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Euxaplotiec

OAOXANEOVOVTOC TIC YETATTUYLOUXES WOV OTOUDES, ot UOTEPX Ao TNV EXTOVNOY| TNG To-
poloug PeTamTLyloxng Sltelfric, aroddvopon TNV avaryxr ahAd Xou TNV UTOYEEMCY) VoL EU-
YUELO THOW TOUC avipmToUg Tou GUVERaAAY GTNY ENTELEN TV GTOYWY LOU Xl Ue oTHpLEaY
ue xdde duvatd TEOTO.

Apyd Yo eha vo euyapto Thow Tov emPBrénovta pov, Avarmhnewth Kodnyntn x. Iwdvvn
[otvvolA, yioe Ty mToAUTIun Bordeta Tou, TNy xoodhynor Tou, xadog xon yia Tig Wtaitepa
ETX000UNTXES CULHTNOELS Tave 6To Véua. Oa fdeha eniong Vo TOV ELY PO THOW Yol TNV
emAoy 1) Tou Y€uatog, ool xaTd TNV EXTOVNOT TNS SLaTEI3Y|C O, EPOBLACTNXO UE VEES Y VG-
oelg, xdhuo o€ Eva UEYEAO PERPOG XEVE TTIOU UTOREL VoL UTHEY ALY, EVE TALTOY POV ELGEY XA
opaAd aToV «<x6opoy TNne e€lowone Euler. Ou feha eniong va euyapiothon tov Kodnyn)
%. Twdvvn Tlovpvapd xon tov Aéxtopa x. Kuptdxo Mavpior, yio Ti¢ Tapatnefoel Toug xou
TNV GUPPBOAY TOUC GTNY OAOXAHEWOT QUTAHS TNG EPYATloC.

Télog Vo Hlehar var eLYAPIOTACE TNV OXOYEVELN UOU X0 TOUG CUYYEVEIC You Tou elvon
dimha pou oe xde pou Prua, ye otneilouy xou motebouy ot guéva. Toug gihoug you, yia
TNV QOXVI] CUUTAEAG TUGY XOL TNV UTOROVY] TOUC GE OUTO TO OmoUTNTiX0 ToE(dL.






MeplAndn

Y70 TPWTO XEPAANMO TNS BlaTEB3IC oXoTOC pag elvan var SoUUe xdmota Baoixd oTotyela Tng
UNYAVIXTC TV PELOTOY xodmg xou TNy e€aywyn Tov elowoewy Euler xou Navier-Stokes.
O acyolntolue eniong ye v Tomxr avdiuon Tou medlou TayUTNTaG X Yo yeddouue
Tic €loWoElg YE TN yeron mvdxwy xou Ya e€aydyoupe TNy e€lowon Tou oTeoflilopol oTig
TEElg %o 0TI 800 YWEXES BLUCTATELS.

Y10 8e0tepo xe@dhato Yo BoluEe 800 GNUAVTIXES LOGOBUVOHES BLUTUTIMOELS TV EELOOCENY
Navier-Stokes xou Euler. Tnv diatinwon tou Leray, dwtinwon, n onolo Yo naléet onuov-
Txd poho oty anddelln e Umapdng ADoewy xou TN SlTOTWoT GTEOBIACUOU-poHC, OTOU
Yo elodyoude xan Tov vouo Biot-Savart mou cuvdéel To medlo g TayLTNTAC UE TO TESlO
O TEOPBIMOUOU TOU UEGK EVOC OAOXANEWTIXO) TEAECTH).

Y10 Tplto xe@dharo Vo ARCOLUE YLl XATOLEG BaciEC WLOTNTES TWV AUCEWY, oV AUTES
urdpyouy, xot Va Peodue xdmoleg Bacixéc owoyéveleg AOoEWY.

Y10 TéTopTOo Mo TEUTTO XEPIAO Bploxovta To facixd amoteAéopata TG dlatefric. XTo
TETUPTO XEPIANO AVAUPEROUACTE OTNV LTOEETN AElwY ADCEWY TOTIXA GTOV YEOVO, EVEK GTO
TEUTTO Xe@dAaLo amodexviouue To xplthiplo Twv Beale-Kato-Majda xou to epapudlouue
Yo TNV EMEXTACT) TWV AOGEWMY OAMXE GTOV YEOVO GTIC 6U0 OLUGTACELS.

e auth N BtatEBY) OEV UTIEYEL TROXATAPXTIXG XEPANALO 1) ToEAETNU XM OTOHTOTE
YenotuonoloUue xon yenlel anddellng, Yo amodeixvIETOL OTO EXAOTOTE HEPAUAULO.

Ynuewwvouue ott 1 SatelPn €xel otneydel xupiwe oto BiBiio twv A. Majda xa A.
Bertozzi, Vorticity and Incompressible flow, Cambridge University Press, 2002. Biéne
[30]






Abstract

In the first chapter of this thesis our aim is to examine some basic concepts of
fluid mechanics,and to derive the Euler and Navier-Stokes equations. We will consider
also a local decomposition of the velocity field. Then, we will use matrices to write the
equations and we will derive the vorticity equation for three and two spatial dimensions.

In the second chapter we will deal with two important formulations of the Navier-
Stokes and the Euler equation, the formulation by Leray, which will play a crucial role
in the proof of the existence of smooth solutions, and the vorticity-stream formulation,
where we also introduce the Biot-Savart law which links the velocity field to its vorticity
through an integral operator.

In the third chapter, we will present some properties of solutions, provided of course
any solutions exist, and we will see some exact solutions to the equations.

In the fourth and fifth chapter we present the basic results of this thesis. In the
fourth chapter we discuss the existence of smooth solutions locally in time, while in the
fifth chapter we prove the well known Beale-Kato-Majda criterion and we apply it in
order to extend the solutions globally in time in two dimensions.

The present thesis does not have preliminaries or an appendix, since everything we
will use will be proven in each chapter.

We note that this thesis is mainly based on the book of A. Majda and A. Bertozzi,
Vorticity and Incompressible flow, Cambridge University Press, 2002. See [30]

i






Contents

ITepiindn i
Abstract ii
1 Introduction 3
1.1 Description of fluids, the Eulerian and Lagrangian points of view . . . . 3
1.2 Derivation of the Navier-Stokes and Euler equations . . . .. ... . .. 9
1.3 Local behavior of the velocity field . . . .. ... ... ... ... .... 15
1.4 The vorticity equation . . . . . . . . ... L oL L 17
1.5 Conserved quantities . . . . . . . . ... L Lo L 25

2 Important reformulations of the Navier-Stokes and Euler equations 29

2.1 Leray’s formulation for incompressible fluids . . . . . . . ... ... ... 29
2.2 The vorticity-stream formulation for incompressible fluids . . . . . . .. 37
2.2.1 Biot-Savart law . . . . . .. .. 38

2.2.2  Vorticity-Stream Formulation . . . . . ... ... ... ... ... 42

3 A priori estimates via energy methods 71
3.1 Energy methods. . . . . . . .. ... 72
3.2 Approximation of the inviscid flow by viscous flows for v << 1 . . . .. 78
3.3 The energy in two dimensions . . . . . . . ... ... ... 84

4 Existence of local in time smooth solutions 97
4.1 Preliminaries . . . . . . . .. L 97
4.2 Existence of smooth solutions for the regularized equations . . . . . . . . 118
4.2.1 3dimensions . . . . .. ... 122

4.2.2 2dimensions . . . .. ... 132

4.3 Existence of smooth solutions as the limit of the regularized solutions . . 141
4.3.1 3dimensions . . . . . . ... 141

4.3.2 2 dimensions . . . .. ... 162



5 Existence of global in time smooth solutions

5.1 Beale-Kato-Majda criterion . . . . .. ... ... ...

5.2 Global solutions in two dimensions . . . . . . . . . ..

Bibliography

CONTENTS

183



CHAPTER

INTRODUCTION

1.1 Description of fluids, the Eulerian and Lagrangian points
of view

We begin with the following definition regarding fluids

Definition 1. Fluid is a quantity which deforms under the action of a shear stress.’

This deformation or movement of the fluid, which is time dependent, is called flow.
If we assume that each particle of the fluid can be decomposed into smaller particles,
then we can consider the fluid as a continuum. This assumption allows us to consider
the existence of some physical quantities. Given a continuum, as the volume of particles
tends to zero the physical quantities tend to become constant. The main idea is to ex-
amine the behavior of each particle and derive the results taking the average quantity.
We note that we will exclude extreme (chaotic) behaviors.?
In order to continue the study of the description of fluids, we will define a mapping
named particle trajectory mapping.
Let D be a region containing an incompressible, homogeneous fluid with velocity u(z, ).
Regarding the homogeneity, we say that a fluid is homogeneous if it has the same
composition throughout its movement. The definition about incompressibility is more
complicated. Schematically we see that (figure 1.1) a fluid is incompressible if its vol-
ume remains constant throughout its movement. In the next section we will discuss
extensively the incompressibility property.

Assume a particle of the fluid with initial position a = (a1, as,...,an). We should
mention that the initial position is not necessarily for ¢ = 0, but for convenience we will
consider this case.

Define ¢ : RN x R — R¥ so that

(a,t) = x

where x will be the position of the particle at time t (x(t)).

Furthermore we assume that ¢ is sufficiently smooth, and given the time and position of
a particle, we are able to find the initial position by means of reverse function ¢~ (z,t) =
a

'[2] pg. 2
?[16]
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Figure 1.1:

Since the mapping is reversible, its Jacobian isn’t equal to zero. So we have

9¢1 941 O¢
a1 Oas dan
Op2  O¢2  O¢2

Tat)=| " PPN 2

don Doy Doy

8a1 8&2 BCLN
This mapping allows us to examine the movement of a volume of a fluid, meaning that
given a quantity of fluid on time ¢t = 0, say €2, and using the above function, we get?

Q(t) = ¢(Qo,t) = {x = ¢(a,t) for a € Q,}.

Formally a is called material coordinate or Lagrangian particle marker which indicates
what it actually describes i.e. a particular fluid particle. The = ¢(a, t) is called spatial
coordinate and indicates a specific position on RV,

There are two points of view to describe the fluid’s flow. The first one is the Lagrangian,
in which we start with a specific particle that we follow throughout its movement and
observe its evolution. In fact, we examine its motion path i.e. trajectory with velocity:

u(6a, ), = 22t

which will be tangential to the trajectory of the particle.
The second one is the Eulerian, in which we study the properties of the fluid in a specific
position as a function of time. It is reasonable to wonder if there is a connection between
them. The answer is positive and in order to understand this connection, it is enough
to observe that the velocity in position x will be equal with the velocity of the particle
i.e.

0¢(a,t)

%[33],pg 26
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We note here that we will follow the Eulerian description in our study. For the sake of
completeness we will discuss some basic properties of the mapping ¢

Proposition 1.1.1. So be Q, € RY and let ¢ be a particle trajectory mapping of a
smooth velocity field, then

oJ

i divu(eo(a,t),t)J(a,t),Va € Q,

Proof. For N = 3, let a = (a1, a2, a3)
By the Jacobi formula? for the derivative of the determinant of a square matrix we have

that
8de;;4(t) — tr (adj(A(t))agE‘t))

So in our case

o1  O0f1 091 525151 §28¢1 5328951
day das das toaq tdag toas
oJ =tr |adj | 202 922 22 Py Py ¢
ot Oa; Oas Oasg Otda1  Otdas  Otdas
O¢3  O¢3 O3 8%¢3  0%¢3  0%s
Oa1  Oaz  Oas Otda; Otday Otdas

We will see each matrix individually

91 0P O¢1
oai das das
odi | 002 002 003
) a1 das das
Op3  Od3  Ods
a1 Oas das

Name M;; the elements of the adjugate matrix for convenience.
My Mo M3

So we have M12 M22 M32
Mz Mas  Mss

Op2 O3 D2 O3

M= 5 9as ~ Bas day’
_ 62063 0 0

12 8@3 Gal 8a1 6&3’
o 002063 062004
13 8@1 8@2 8a2 8&17
2ty = 081065 91 963

- 8&3 aaz 8a2 8(13’

4proof:

Assume that the determinant of a matrix A is a function F(A) = F(a11, a12, ..., 021,22, ..., Gnn) Dy
the chain rule we have that & f = >7" 1 ai{j 8;;-,- we also know that if M;; is the submatrix of

a which follows by deleting the ith row and the jth column we have that A;; = (—1)""7 det M;; and
det A = Z;;l aijAi;. Also we see by product rule that a%j detA =377, (aik% + A g““‘> =

a;j
Sh_y Aw ek furthermore we have that 525 = 65 and thus 294 = ST 577 | det My, %5t =
- 1 OA(t
tr(adj A 87(5 ))
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1 D01 005 001 965
22 8@1 8CL3 8CL3 8a1 ’
001005 96106
23 8&2 8a1 6a1 (9(12’
e 061002 09106
31 8&2 6a3 6a3 8&2’
A 091002 _ 06103
32 8@3 8a1 8a1 8&37
A 00100 061003
33 8a1 8a2 8a2 8&1
Now
%41 ¢ 22
os _ (% W
|5 i
Jtday Otdao otdas
So we conclude trB(t) = by1 + baa + bsz, where
¢ R &3
bii =M M M
=M ea T 5i0a; T Btoar
¢ %o g3
bog = M M- M.
2 = Mg 2 500 T Btday
0%p, %o %P3
b3z = M M. Ms:
33 = M8 500y T 2 000 T P 0tday
Le. o o
LN My
8t ; J 8t8aj
oJ 0 chain rule
E = ;Mw%ul(a,t) =
=N Mk
ot Z J 8aj a.l‘k

Now, we shall prove that Zj M;; Oy,

40

da,

let’s see this for ¢ = 1 and the other follows. So >_, Mljg%;?

[ ] kzl, Zlej%:

Oy Oy Oz Oy Oz Oy
8&1 8@2 8a3 8@1 8a3 8&2
oz
o k=23 Mgt =
Oy Oy Oz3 Oy Oz Oy
6@1 (9(12 6a3 (9(11 6a3 &12

Oy Oz Oy | Oy Oz Oy
8a2 80,1 6&3 80,2 6@3 8&1
Oy Oy Ox3 | Oy Oz Oy
6a2 8@1 (9(13 8a2 (9(13 8a1

6

= 0;1J, where §;;, is Kronecker delta .

Indeed,
Oy Oz Oy Oy Oy O _
6&3 8a1 8a2 8@1 80,2 8&3 -
Oy Oy Oz3 Oy 072 O _
8(13 8a1 8a2 aag 8(12 8@1 N
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o k=32, Mg =

8%3 6952 81’3 6:1:3 (91’2 8%3 81’3 8%2 6133 a’Eg 61:2 (9:173 61:3 8a:2 8%3 81‘3 83:2 8:1:3

8@1 6@2 8a3 6@1 8a3 80,2 8a2 8a1 6a3 80,2 Bag 8&1 +6a3 8&1 8(12 8&3 8(12 aal

At the end
&] 8ul 8u2 ou; ou; .
9 Oipd = E Oird ZE > 8ka E Bxk )J ivuJ

And for N = 2 and let a = (a1,a2) for the derivative of a determinant of a square
matrix by Jacobi’s formula we obtain

Odet A(t)
ot

0 b 2\ (G S
o |adi (88 05 ) | P Do

— tr(adi(A(1) 257)

So in our case

day Oas otdaq Otdas

We will see each matrix individually

9¢1  9¢1
adj ‘9‘“ ggf
2
8a1 Das
Name M;; the elements of the adjugate matrix for convenience.

My, M21)

So we have the matrix
<M12 Moo

T\ 2202 P
8t Otdaq OtOas

82¢ 82¢
ai _ <8t8a11 8t8a12>

So we conclude trB(t) = bi1 + baa where

92¢1 02 o
gt0a; T M2 584,

%1 0%
t0as T M2 5190,

b1 = M

bay = M2
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Ie.
oJ 0%x;
o = 2 Mg, tda;

2%
cham rule
E M;; U
J 8(1

oJ oxy, Ou;
E o Z g 8a (‘)xk

3,

Now, we shall prove that Z M;; gﬁ’“ = d;1J, where J;; is Kronecker delta. Indeed,
lets see this for i =1s0 > . M5 azk

o k=1, 33, My; 5ot = M §ot + Mo Gt

Oas

8562 8:701 8$2 89:1

et et et el U
Oas da1  Oajy dasg

o k= 2 E Ml]Ba Mlgaz—i_Mng;
8.%‘2 81‘2 (91'2 8.732 —0

8@2 (90,1 87@1870,2

for i = 2 we have ), MQ‘]% S0

o k=1,3; M%a = My, gw1+M gg;

8.%'1 81'1 81’1 8301

8(12 8&1 t 9a, 8a1 6&2

o k— 2 Z ngam —Mglgm + Moo Oz

8(12

81‘1 6@ 8x1 8952 o
T Oay 00, | Oy 0ay 7

At the end

Ou; Ou; Ou; 8Z :
Z ik = Z - ““J:Z;azk Za;‘k — divu
0

Proposition 1.1.2. (Transport formula) Let Q C RN be an open and bounded domain
with smooth boundary. Let ¢ be a particle trajectory mapping of a smooth vector field
u. Then for every smooth function f(z,t) we get:

d of
— fdx—/ — +div(fu)dx
dt Jo(o.1) p(r) Ot e

8



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Proof. We set x = ¢(a,t) We have already seen the Jacobian of this mapping so we
change variables and we get

4 fda:— / f(o(a,t),t)J(a,t)da

By Leibniz integral rule we get

d
o7 / T ),t)J(a,t))da

By the product rule

d 0 oJ
ad _ 9 . N
991
! o 0J
& fd:v:/Vfgba,t,t o | J+ <% da
1
By the Proposition 1.1.1 we get :
uy
d
el fda::/ <Vf U2 —|—f(V-U))Jda
dt Jye.) 0 us
1

d of
pn s fdx—/ (at+v (fu))Jda

We change variables again and we conclude :

d

of
— fdr = / — + divfudzx

1.2 Derivation of the Navier-Stokes and Euler equations

In this section our aim is to derive the equations of motion for an incompressible and
homogeneous fluid. We will see in details the 3d case, the 2d case is similar. Assume a
flow and let = be a particle of the fluid, where 7 is the outward normal vector and W
a neighborhood of the particle.

Furthermore, let us assume that we deal with incompressible flows and homogeneous
fluids. We have already see in the previous section the definitions of those concepts.
Concerning the incompressibility there are two points of view. Some refer to incom-
pressibility assuming that the density remains constant, while others claim that the
material-convective derivative of density remains constant. Below we will check that in
our case we can work with both assumptions.

9
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Figure 1.2:

Definition 2. The convective derivative of a quantity includes spatial and temporal

information about motion changes.

D _ 0 N .0
Di = o1 T 2j=1"% 5a;

It is the derivative taken with respect to a mooing coordinate system,and describes the
deform of a fluid under some quantities (such as velocity).

It is known that the movement of objects obeys three basic principles

1. Conservation of mass
2. Conservation of momentum

3. Conservation of energy

We note that we will not deal with the third principle. We begin this investigation with
the first principle.
1.Conservation of mass:

4 pdV:—/ pun dA
dt Jw IW

By the Leibniz integral rule and Gauss-Green theorem?

/8pdV——/ divpu dV =
w

875 —|— divpu dV =0

But W is a random neighborhood of z, so

% + divpu =0 (CM)

Following the first assumption about incompressibility we have that p is constant. So
we conclude by (CM) that
divu =0

5[18] pg 712

10



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

. Following the second assumption we have that

D
pi* ="
i.e. 9
P =—-Vp-u

ot
. So we conclude by (CM) that pdive = 0 and eventually

divu =0

Thus, we notice that the incompressibility together with the conservation of mass gives
us the condition that divu =0
2. Conservation of momentum: Newtons’s second law of motion is

F =ma (SeL)

If we divide with the volume of the fluid, we get

7= ra (SeLV)

Where V = dxidxodrs and a is the acceleration.

Analyzing in each component FV = pag, For the velocity field v = (uy, ug, us) we have

ou; ou; ou; Ou;

TR PRl PR T,
Soa:%u
8u+ ou N ou . ou N
a=—+u—-+u Uz —
875 18%1 281'2 383:3
N
ou OU Def 2
“= B +§jzuﬂamj
_Du
“= Dt

There are two kinds of forces exerted on the fluid.

1. The external forces

2. The internal forces

We set F' the sum of external and internal forces.

We will not deal with body forces, which can be gravity, magnetic field forces, etc. We
will denote these forces as f;(Z,t),i = 1...N Assume also an elementary particle of the
fluid with a shape of a cube For the internal forces, we denote as 0., outward pointing
stresses named normal stresses and 7, ; the tangential to the surface stresses named
shear stresses (see figure 1. 3). x;,x; shows the direction of the stress, meaning that

11



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Figure 1.3:

the stress;; is perpendicular to the direction of z; and parallel to the direction of z; 6,
In order to find the inner forces, we have to find the resultant force per unit volume.
So in the direction of 1 we have that the force is

fgv1 = Opia1 (xl + da:l)dazgdxg — 02y (a:l)dqrgdxg—f—

Togzy (T2 + dxo)dr1dxs — Toog, (T2)dx1drs+
Togz, (T3 + dx3)dr1dre — Toyg, (3)dx1dT

So per unit volume we have

Oxqi21 (‘Tl + dﬂ?l) —Ori1 (1131)

far = dzq +
Troxq (l‘Z + dl‘g) — Tz (332)
+
d.’L‘Q
Txsx1 (1‘3 + daj3) — Txazy (1‘3)
d."L‘g

00412, OTwomy  OTaga,
= + +
fxl 8$1 8:132 8$3

In the same way we can find the internal force in the direction of xs,23 Fy, = f1 +

1o} 0 0 . . . .
Cg;ll’” + SC:;:Q + g;l;?’ This way we also get the rest of forces in the direction of xo,
T3

We denote T the stresses tensor,which is a 3x3 matrix.

Oxyzy Teize  Tzpxs
T = Txoxy Oxzoxe  Txoxs

Txzxy Txzxs Ozzas

[

12



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Consequently the total force is F' = f; + ZZN V - T;;, where T;; are the elements of the
matrix
Substituting all these into (SeLV) we derive

;o Ouy Ot
U+Zu3u— Z&Ej

We can view t;; component as the total stress, which is the sum of normal and shear
stress. Due to the fact that its complicated to solve this equation, since we have to
compute each normal or shear stress, we will express ¢;; as functions of pressure (p),
viscosity (u) and velocity (u).

Normal stresses are the result of the pressure exerted of the fluid so o;; = —pd;;. Shear
stresses tend to cause deformation of the fluid by slippage along a plane. We will use
Newtons law for viscosity. In the two dimension case we have

3u]
Ty, =
a axl
the generalization of this form in three dimensions will not be presented intricately 7

It is sufficient to observe that internal friction exists when fluid particles move, so 74,4,
should depends on the space derivatives of velocity. So 7., may assumed as a linear

function of the derivatives g;‘?, and only those, since the shear stress must vanish for
J

constant velocity. Also must vanish when the fluid rotates umformly, since no viscous

forces are exerted in this case. We conclude that 7;,,; = ( L+ 8“1) So, for

tij = 045 + Tij

by replacing the above relations we get :

811,2‘ 8uj
tw - péij + H 8.73j + 8952-

Therefore

N 3
Ou; Ou; - 0 ou; 8%‘
(% g )—fﬂr;axj (paww(axﬁami))
But the fluid is incompressible so divu = 0 and thus

Ouz 3 Op 3 0%u;
# D) <t

Finally

3
8ul 6ui 1 1 0p
— ) = —f; = = Au;

Where v is the kinematic VlSCOSlty . The kinematic viscosity v = % expresses the speed
of response of the fluid in relation to its tension to remain inert. Kinematic viscosity
can be viewed as the reciprocal of Reynold’s number

"see [12],section 1.2

13



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Definition 3. Reynold’s number is the ratio of inertial forces to viscous forces. It

describes if the flow is laminar or turbulent. Re = % where L is the length of the flow.

For the 2d case we have that our particle is a square and we have four stresses (plus
4 opposite stresses). We follow the same procedure as above. So assuming that the
fluid is ideal, and no body forces exerted, we conclude that incompressible flows of
homogeneous fluids in RV, N = 2,3, are solutions of the system

Du 1
—— = --Vp+vA
Dt p P+ rvAu

divu =0

U(l‘, O) = Ug

with u = (u!, uly ) the velocity, and p the scalar pressure For v > 0 the equation is

called Navier-Stokes, for v = 0 it is known as the Euler equation.

To summarize, if we examine these equations as a mathematical object it is a non linear
time dependent system of partial differential equations. The unknown variables are the
components of velocity and the pressure. As a physics interest object is we will see each
term individually.

o DU s the total acceleration where 2% is the local acceleration and 3 . u; 2% is the
Dt ot j %oz,
8

convective acceleration
e Vp are the pressure forces

e vAu are the viscous forces

We also have the following proposition which gives equivalent concepts for the incom-
pressibility:

Proposition 1.2.1. The following results are equivalent
1. A flow is incompressible
2. divu =0
3. J(a,t) =1

Proof. (1 = 2) it has been proved
(2 = 3) By proposition 1.1.2

vJ .

i divuJ(a,t)
oJ
E = OJ(CL, t)

8Convective acceleration is the acceleration due to movement of the fluid particle to a different
position in the flow field
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Chapter 1 1.3. Local behavior of the velocity field

0J
; 0
J=c
1 00
J(a,0) =det(Vqa) =10 1 0|=1
0 01

So J(a,t) = J(a,0) =1
B3=1)

volp(§2, 1) :/ de = / J(a,t)da = / da = vol§2
H(2t) Q Q

1.3 Local behavior of the velocity field

Now we will examine the behavior of the velocity around a specific position (xg, to).
Assuming that the velocity field is smooth, we will use Taylor’s theorem to expand the
velocity field around (o, to).

Let h € R3, then u(wg+ h,ty) = u(zo, to) + Vu(xo, to)h + O(h?), where O is the Landau
big OY .

Vu is a 3 x 3 matrix i.e. Vu = [g—;;]l]

So Vu + (Vu)T is a symmetric matrix, indeed

(Vu + (Vu)D)T = (V)T + (Vu)D)T = (Vu)T + Vu = Vu + (Vu)T

And Vu — (Vu)T is a skew symmetric matrix, indeed

(Vu — (Vu)1)T = (Vu)T — (Vu))T = (V)T — Vu = —(Vu + (Vu)?)

We add those matrices and we get

(Vu+ (Vu)h) 4+ (Vu — (Vu)T) = 2Vu

1.e

Vu = %(Vu + (Vu)) + %(Vu — (Vu)")

We have proved that Vu is sum of a symmetric and a skew symmetric matrix. We define
D = 3(Vu+ (Vu)T) and @ = 1(Vu— (Vu)T) and we will name D, deformation matrix,
and ) rotation matrix. Below we will see that these names has a physical meaning. '°
We define x = x¢ + h taking the derivative with respect on t

dr _dh
dt — dt

°[1] pg 154
'0[3], pg 18
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Chapter 1 1.3. Local behavior of the velocity field

We know that
dr
ar u(z)
and by the Taylor expansion above
So % ~ u(zo, to) + Vuh = u(xo, ty) + Dh+ Qh which is a linear equation in terms of h.

o if 9 ~ y(z,t) then h(t) = h(0)+u(x to)t which describes infinitesimal translation

o if % ~ (Qh We define the vorticity of the velocity field as w = curlu =V x u

Ous _ Oup
o A
— | Qus _ Quz | _
Sow = oxs ox1 = | w2
OQug _ Ouy w
o1 Oxo 3
We will prove that Qh = (w x h) .
0 Qui _ Qug  Our _ Ous
1 Oxa Oxr1  Ozxs ox1
O =% _ ou 0 OQua _ Ouz
- 9 ox1 Oxa oxs Oxa
Ouz __ Ouy Ouz _ Oug 0
or1 oxs Oxa oxs
0 —w3 wo
So Q2 = % w3 0 —w
—Wwy w1 0
1 0 —Ww3 w2 hl
Qh = 5 w3 0 —Ww1 hg
—wy Wi 0 hs
—wsha + wah3
Qh = 5 w3h1 — w1h3
—wahy + wihs
) 7 k —wshg + wohs
Now w X h = w1 wy w3| = wshi — wihs And so is the result. Conse-
hi ha hs —waohi + wiha

quently % = Qh = %(w X h) Because of the vector product it is a rotation with
angular velocity 1|w|

o if % = Dh . Since D is a symmetric matrix there exists eigenvalues \; and
orthonomal eigenvectors ¢; so that

€; is a base so h(t) =Y. hié;
Consequently dd}? = \ih; ie. hi(t) = hi(0)e
Which is expansion or contraction along é;

To sum up the velocity field is a sum of deformation and vorticity.

u(xz,t) = u(zo, t) + D(z,t)(x — zo) + %w X h(z — )

After this process we are ready to derive the vorticity equation.
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Chapter 1 1.4. The vorticity equation

1.4 The vorticity equation

By differentiating the Navier-Stokes equation in three dimensions, we have:

Ou -i—Zuj% = Op + vAu; =
J

ax 7 B Bl‘l

0 0u; ou; 0 Op
—(— i—)=—(— Au;) =
oo o T2 = By " VA
0 Ou; Ouj Ou; 0 Ou; 0 Op ou;
el i/ LYY A
T D DY i ws Zj:“ﬂ 9z, 0z, Oz 0 "0z
We will use the previous results about the behavior of the velocity field, and we will
utilize the rotation matrix 2. We set V the 3 x 3 matrix with elements gg; and P the
matrix with elements %g—;

So

Al fad U _ _piwn
ot +;“Jaxj+;a:cjamk AV =

ov ov
S+ ) U —+V:P=-P+vAV =
: j

—— 4+ V?=—-P4+vAV (NSM)
According to the previous construction we have obtained a symmetric and a skew sym-
metric matrix D = £(V 4+ VT)andQ = 3(V — VT), where V = D + Q

V2= (D+Q)(D+Q)=D*+DQ+ QD + Q% = (D* + Q%) + (DQ + QD)
The matrix (D? + Q?) is symmetric. Indeed,
(D2 + Q37T = (DY + ()7 = (DD)T + (20)T = (DT)? + (272
but D is symmetric and €2 skew symmetric so
(D* 4+ 07T = D? + (-Q)? = D? + Q2

The matrix (D24 QD) is skew symmetric. Indeed,

(DQ+0D)T = (DT + (D) = Q' DT + DTQT = —OD — DQ = —(DQ + QD)

So for the Navier-Stokes is:

D
E(D+Q)+(QQ+DQ)+(QD+DQ):—P+A(D+Q)

We observe that there exists a symmetric part of the equation, which is D%D—l—QQ—i-D2 =
—P + vAD and the anti-symmetric part, which is %Q + (2D + D) = vAQ

17



Chapter 1 1.4. The vorticity equation

From the anti-symmetric part, and since we have proved that the matrix {2 is linked
with the vorticity, we will derive the vorticity equation. We choose an h € R?, which
does not depend on t and consequently on x. We have proved that Qh = %w X h, we
will multiply the anti-symmetric part with h.

So, for the first term of equation we obtain

D 1D
DQ 1 Dw
e "2 !
We will prove that (DQ + QD)h = 1(—(Dw) x h+ tr(D)(w x h)) We have already saw
0 —w3 wo
that @ =1 | ws 0 -w

—Ww9 w1 0
So
d3iwa — do1ws  dzawa — doswsz  d3zws — dazws
QD = - | diiwz — d3z1wr  diowz — dzaw1  di3wz — dazws
dojwr — diiwe  doawr — digwe  dozwi — di3w2

Also (QD)T = DTQT = —DQ
Hence QD + DQ) =

1 0 d3ows — doows + d3jw1 — diiws  dzzwa — dazws + di1wa — dajwi
= | diiws — d31wi — d3awa + daaws 0 d13ws — dzzwi — daawi + diaws
dorw1 — diiwe — d3zwa + dogws  doowr — diaws — di3ws + d3zwi 0

Name g;; the elements of the above matrix for convenience.
We observe that q1o = d3ows — doows + d3iwi — di1ws — dosws + dziwi — djiwsg =

d33w3 —+ d310.)1 + d32W2 — W3tr(D) = [dgj]w — W3tI‘(D)

The other elements follows so

1 [ ldsjlwhe = [dajlwhs —wsghg + wahs
(QD + DQ)h = 5( [dlj]whg - [dgj]whl ) —trD | w3shy —wihs
[dajlwhy — [dij]whs —woh1 + wiha

It means that (2D + DQ)h = 3(—(Dw) x h+ tr(D)(w x h)).
And now for the last term Qh = %w x h Therefore

A(QR) = %A(w < h)

since Ah =0 )
(AQ)h = i(Aw) X h
Finally 225 + (QD + DQ)h = vAQh
1 Dw 1 1
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Chapter 1 1.4. The vorticity equation

By vector product properties '
Dw
Exh (Dw) x h+ (tr(D)Q) x h =vAw x h
(%: (Dw) + (tr(D)Q)) % h = vAw x h
Dw
i — (Dw) + (tr(D)w) = vAw

This is the vorticity equation, and since the flow is incompressible i.e. divu = 0 we have
that ZE + ggz + 3 19“3 =01i.etr(D)=0.
So the vorticity equatlon reduces to

Dw

— = Dw + vAw

Dt +
It is obvious that this equation is important because we got ridden of the pressure term.
The terms remaining are the velocity and vorticity which are related. For inviscid fluids

the vorticity equation reduces to

Dw
“*_D
Dt Y

Remark:In two dimensions the vorticity of the velocity field is not a vector, i.e.
To calculate the curl we assume that in the x3-direction there is a zero. So we get

i j k 0
w=curlu=V xu=1-2 2 0= 0
- - — |0z Oxo -
0 Oug _ Owy
Ul 'Ll,2 8x1 89c2

It is obvious that the curl in two dimensions points in the direction of 3, since the first
coordinates are 0. We can assume that in this direction there exists an axis of rotation
which is perpendicular to a point. From now on we take vorticity as a scalar quantity
sow = g—qﬁ — %, which measures how much the velocity field rotates around the point.
So it is reasonable for someone to wonder what happens with the vorticity equation in
that case. We will follow the same procedure again.

For the Navier Stokes equation in two dimensions we get

0 Ou; 8u] ou; Z 0 Ou; 0 Op ou;
Z A
J

ot D 0z 0z; 2=z, 0ny | Ozn 0w " omy,
We set V' the 2 x 2 matrix with elements a“’ and P the matrix with elements —8877’
(So far besides the dimensions there is no other change).
50 DV
2
—_— =—-P+vA
Di +V + VAV

According to the previous construction we have a symmetric and a skew symmetric

11140], pg 255
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Chapter 1 1.4. The vorticity equation

matrix D = $(V 4+ V7) and Q = 3(V — VT) accordingly, where V = D + Q with the
difference that D and Q are 2 x 2 matrices.
So for the Navier-Stokes is:

D

DD+ + + (2 +D* +(QD+ DQ) = —P + vA(D + Q)

Again we take the skew symmetric part Q + (2D + DY) = vAQ.

We see that in order to derive the vortlclty equation, we make use of this relation
Qh = %w X h, where h is a vector in two dimensions, which does not depend on time.
Is this equality true in two dimensions?

ou ou
Q:} 0 or " om | _ 1 (0 —w
2\ g2 - gu 0 2\w 0
So Qh_;<;°;f2>
1

A R
Nowwxh=|0 0 w|= <_°‘;Lh2>
hi hy O wh
So we continue our process, by multiplying the anti-symmetric part with h.
So for the first term of equation

D 1D
E( h)_iﬁ(wxh):

DO 1 Dw

T h=""xh

Dt 2 Dt

0 —di1w — dow

1 11 22

And the second term (D + QD) = 3 (dllw ~+ doow 0 >

So (D2 + QD)h = ( h?jj‘;lfl("g)))>

But the fluid is incompressible so the trace of D is zero so(DQ + QD)h = 0.
And now the last term Qh = Fw x h therefore

A(Qh) = %A(w < )

since Ah =0
So we conclude that D
w
§ﬁ X h *V(A(JJ) X h
Le 22 = y(Aw) and for inviscid fluids 22 =0

Which means that in two dimensions for 1ncompressible and inviscid fluids the vorticity
of each particle is constant as particle moves.We will discuss this in the next chapters.
In three dimensions we also have that

We know that Vu = D + Q (remember the construction with the symmetric and skew
symmetric matrices), then Vu -w = (D + Q)w'? by linear properties of the product

12We will also denote - the product between matrices
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Chapter 1 1.4. The vorticity equation

Vu-w= Dw+ Quw
It is easy for someone to see that Qw =0

0 —Wws3 Wy w1 —w3Wwy + W3wa 0
Qw= [ ws 0 —wi wy | = | wiwg—wiwg | =10
—Ww9y W1 0 w3 —WoWw1 + Wiw2 0
Consequently
Dw
— =Vu-w
Dt

Next we see the vorticity transport formula which will be very useful in the following
chapters.

Proposition 1.4.1. Assume ¢ a smooth particle trajectory mapping of a smooth velocity
field of an incompressible fluid. Then the solution w of the % =Vu-wisw(o(a,t),t) =

va¢(a7 t)WO (a)

Proof. We first proof the following lemma.

Lemma 1. Let u(x,t) a smooth velocity field with ¢(a,t) its particle trajectory mapping
so that % = u(¢(a,t),t) and ¢(a,0) = a. Moreover assume h a smooth vector field then
Dh

Ty = Vuh = h(@(a,1),t) = Vad(a. )ho(a)

proof of lemma:

i u(p(a,t),t) (P 2.1.1.1)
00 0
o = O (a1,
00 0
o oL = Vu(dla, )05
So 5
avaczﬁ(a,t) = Vu(¢(a,t),t)Vap(a,t) (P 2.1.1.2)

We multiply with hg(a) and we get

£V ab(a ho(a) = V(60,000 e, o(a)

We continue with the equation %@L = Vu - h. For u = u(¢(a,t),t) and h =
h(¢(a,t),t) we get

Grh(0(e.t).0)+ 3 w5 bla ) = Vu(o(a.0).Hhé(a.).1)
%h(qﬁ(a,t),t) — Vu((a, ), )h(d(a, 1), 1) (P 2.1.1.3)
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Chapter 1 1.4. The vorticity equation

The initial condition for the (P 2.1.1.1) is ¢(a,0) = a so Va¢é(a,0) = V,a so the
initial condition for (P 2.1.1.2) is V,¢(a,0)ho(a) = ho(a).

So we have two equations (P 2.1.1.2) and (P 2.1.1.3) differentiated with respect to
t and same initial conditions. Therefore the V¢ (a,t)ho(a) and h(¢(a,t),t) satisfy
the same differential equation with same initial condition,because of the uniqueness
of the solutions we get h(¢(a,t),t) = Vap(a,t)ho(a)

Now for the proof of the proposition we substitute h = w and the mapping ¢ is the
particle trajectory mapping we have defined. This completes the proof. ]

In two dimension we have the corresponding proposition:

Proposition 1.4.2. Let ¢ a smooth particle trajectory mapping of a smooth velocity
field. Then the vorticity of an inviscid fluid satisfies:

w(¢(a7 t)? t) = WO(a)

, where a € R?

Proof. In two dimensions we have that the particle trajectory mapping is ¢ : a € R? —
#(a,t) € R%Its Jacobian determinant is :

P P
Ja Pl 7oy P2

Jo = 1% 5
3 P2 34592

Since the fluid is incompressible by proposition 1.2.1 we have that J; = 1 so we have
that a%lqbl %(ﬁg — %qbza%ld)z = 1 we continue by adding a row and a column to the
matrix in order to make a 3x3 matrix with the same determinant so we have the matrix

o) o)

A

371% 372@ 0
0 0 1

Assuming now that the vorticity is embedded into three dimension (by assuming that
the first coordinates are 0), by proposition 1.4.1 we have that

%% %@ﬁz 0\ /0 0
w(¢(a,t),t) = Talng T@¢2 0 0 = 0
0 0 1 wo wo
Thus we conclude that w(¢(a,t),t) = wp(a) O

Remark:We observe that in two dimensions we have better results than in the three
dimensions. We see that along particle trajectories the vorticity in two dimensions is
conserved. But in three dimensions this is not true, more precisely in three dimensions
there exists the matrix V,¢ which deforms the initial vorticity.

Now we will examine the vortex lines of the fluid.
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Chapter 1 1.4. The vorticity equation

Definition 4. Let ¢ be a smooth curve such that ¢ = {y(s) € RN : 0 < s < 1} will
be a vortex line in a fized time t if its tangent is everywhere parallel to vorticity w i.e.

W) = N(s)w(y(s). 1)), A(s) # 0.

We have already seen that thanks to the mapping ¢ we are able to examine the
motion of a whole region of fluid in time. Is it possible to examine the behavior of
vortex lines in time in a similar way?

Let ¢ be the vortex line for ¢ = 0 and ¢(t) = {¢(y(s),t) € RY : 0 < s < 1} we will prove
that the curve ¢(t) is also a vortex line.

Indeed %Qb(y(s)?t) = Vagb(y(s),t)%(y(s),t) 50

9 o(u(s).1) = Vaty(s), ) 20

¢ is a vortex line so

by proposition 1.4.1
5. 0W(s), 1) = Als)w(e(y(s), 1))

We observe that the tangent of ¢ is parallel to w. So, since ¢(t) is a vortex line we
understand that for inviscid incompressible fluid vortex lines moves with the fluid.
We will see the next proposition which is similar to the transport formula.

Proposition 1.4.3. Let ¢ a smooth oriented closed curve and ¢ a smooth mapping of
a divergence free velocity field u. Then % $udl = ¢ 2tdl .

Proof. Assume c(t) = {¢(s,t) : 0 < s < 1} by the definition of closed integral we get

d d [* O¢(s,1)
p udl = dt/ u(o(s,t),t) P ds

By the Leibniz integral rule we get

d ! 0 Lo 0
G [ utets 00?5 = [ 2 ot 0.0 2% s
0¢(s,t) 0 0¢(s,t)
/ g (O 0,05 Fuldls, 1) =~ ds
0 0 00
- [ &uw((s,t),t)égj’ D s utots, 1) 2 220D
By the definition of the mapping % = u(p(s,t))
0 0
= [ (50,028 (o5, 2 ol D)
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Chapter 1 1.4. The vorticity equation

o Og(s,t) , 1 [1 D 2
= | Gruets.n.02 s+ 5 [ Sutots.o)Pds
S
° a udl:/l gu(gi)((s £) t)Mds
a o 0'[5 s U)s S
Now

Du . ' Du(¢(s,t),t) O
Dtdl_/o — D -%gb(s,t)
' 06(s.,1)
_/0 S u(@((s,1),0 2% as

To sum up

Du d

Using the above proposition we will prove the next well known theorem

Theorem 1.4.1. (Kelvin’s conservation of circulation)
Let u be a smooth solution of the Euler equation, then the circulation T'yyy around a
curve c(t) moving with the fluid, i.e

Fc(t) = ¢udl

Proof. % Pudl = ¢ %dl but u satisfies Euler so

d

18 constant in time.

We give the following proposition

Proposition 1.4.4. (Helmholtz’s conservation of vorticity fluz)
Let u be a smooth solution of the Fuler equation then the vorticity flux along a surface

S(t) moving with the fluid i.e.
A

18 constant in time.

Proof.
d
A =
by Stokes theorem
_ ds =
dt Jou "’
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Chapter 1 1.5. Conserved quantities

1.5 Conserved quantities

In this section we will see some other quantities that remain constant in time.

First we will see the preserved quantities in R3
We will assume that v is a smooth solution of the 3d Euler Equation which vanishes
sufficiently rapidly as |z| tends to infinity then the following quantities remain constant

in time.

e Total flux of velocity 3

V = / udx
R3
Proof: For the Euler we have

ou; Ou;  Op
o "2 "on; ~ om,

We integrate both parts over R3
ou; 8u, Op
= — dr =
s OF Z U g, /Rs B
8Uz 6”1 8p
= ——d
s O / Z e axj /Rg oz
By Leibniz integral rule
d ou; Oop
— id d — d
dt [ps it = /]R?’ Zu . /Rs ox; .

Lets see each term individually.

olar coordinates 15 o0
/8pd (polar coordinates) / / 0 1sdr
R3 O%; 0 JoB(wo.r) OTi

Since dB(xg,7) is a closed curve of R?

/ P 15— 0
9B(zo,r) OTi

S0 [gs g—;daj =0
We continue with the other term:

ou; 81
/Zuﬂ de_z/ a;Lj

BTotal flux is the amount of quantity passing through a surface area per time.

144 (f"g) xtdt) P b(@)) - 2b(x) — fr,a(@) Lae) + [10) 2 f (et
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Chapter 1 1.5. Conserved quantities

By integration by parts formula we get

8u2 Ou;
_ ) zd
/Zuj jZ/Rax“ v =
ou; , Ou; B 8u3 »
/R3 Zuj dx /R3 Z 8:13] wu;dr = / ulz &x] dzx —/ u;divudr

We know that we deal with 1ncompre851ble fluids, divu = 0 so

So we have that

d
— w; dxr =
dt Jgrs
which is true for all i=1,2,3 so
% udr =
e Total flux of vorticity W = ng wdx
Proof: p p
By Leibniz integral rule
d ow
—W = —d
dt rs Ot v

Now we will use the vorticity equation so
dyi _ d 16
GW=—Jgs 2 uj%“’jd:c + [gs Dwdz
Again we examine each term individually

By integration by parts formula :
ou; ou ou;
dx = I wdx Lwdr = / “ gy = / divud
/RgZ“Jax] v Z/gax . /Rgzax]“ B Dyl IS

divu = 0 so

/ Z uja—wd:z =0
R3 = Oxj
Lets work with the other term:

Dwdx = \Y = d d
s wdx / U-w= /}Rgzax]w]x Z Rdamjw]a:

18D is the 3x3 symmetric matrix from our previous construction.
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Chapter 1 1.5. Conserved quantities

By integration by parts formula

Dwdx:/ uawjda::/ udivwdz
R3 R3 8333 R3

We have that divw = 0 17 s0

Dwdz =0
R3
It turns out that: p
—W =0
dt
. . _ 1 2
e The kinetic energy E = 5 [ps |u|*dz
Proof: p 14
—F = 2d
TR Pl AL

By Leibniz integral rule

d 1 1
—F = |u\2d / 72u8—udm
dt R3 815 R3 2 8t

We take the Euler equation and multiply with u so

d ou
—F=- ——dxr — d
dt /Rsu;uj 81’j o /Rs uvp o
We see each term individually
dp Op
uVp = / U dx = / o -dz
[ [ Soiu=5 [ ol
By integration by parts formula

0
/ uVpdr = Z / 8% pdr = / pdivu = 0z
R3 = 3 0O R3

The other term :

By integration by parts we get

ou;
/. Zwa o [ Zuma o -/ Zuuazj

Ie 9
Uj
2 Uj— =0

To conclude d
—FE =0
dt

17(40] pg. 255
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Chapter 1 1.5. Conserved quantities

e The Helicity H = [ps u - wdz

Proof: J J
—H = / u - wdx
dt dt Jrs

By Leibniz integral formula we have

d 0 ow ou
7 RSu-wdx—/R?)&(u-w)dx—/Rguat+watdaz

By the vorticity equation %—“g = Vuw — uVw

By the Euler equation % = —uVu — Vp So

dH
— = w(Vu —uVw) + w(—uVu — Vp)dx
dt R3
= —Vpw — wuVu + uwwVu — uuVw
R3
It is true that V - (pw) = pdivw + wVp but divw = 0 because div(curlu) = 0 so

V(pw) = wVp.

Moreover uwVu = V(|u|?w) and w(uVu)+uuVw = u(wVutuVw)+u(V(uw))+
uwdivy = V(u(uw)) .

Eventually

dH 1
G s V- (—pw — uuw + §|u|2w)

By the divergence theorem, this integral is equal to the integral of (—pw — uuw +
%|u|2w)n on the boundary of R3, which is an empty set. So the integral is equal
to zero.

Corollary 1.5.1. In R? the above quantities are preserved and the Helicity is equal to

ZEro.

Now, we will prove that the LP-norm of the vorticity in R? is conserved in time.
1
Remark: Let 1 < |p| < oo then the LP-norm of vorticity in R? is ||w||, = ([ge [w[P)? dz
Proof of the Remark:By LP estimates on the vorticity quation we get:

Qw cwlwlP2dx = —/ (u- V)w - w|w|P2da
R2 8t R2

Thus by Leibniz integral rule and integration by parts we have that

d

ad Py —
p R2\w| x=0

d 1 1 4 d
Zw|lp = = rq = Pdz) =0
Glhelly = ([ wPda)i (G [ o)

28



CHAPTER

IMPORTANT REFORMULATIONS OF
THE NAVIER-STOKES AND EULER
EQUATIONS

2.1 Leray’s formulation for incompressible fluids

With the previous matrix construction regarding the Navier Stokes and Euler equation,
we derived the vorticity equation. Our aim now is to examine a different approach.
Someone may ask, why do we care about those formulations regarding our equations.
Firstly, we can get rid of some terms, such as pressure. This is useful since we get rid
of an unknown term that is partially differentiated with respect to z. Eventually, we
obtain an equation with only one unknown quantity. Secondly, we derive propositions
and formulas that will be used in the next chapters. Also, we can study and understand
physical properties. We recall equation (NSM)

DV
+V2=—-P+vAV
Dt v
where V' = [8“’]”' and P is the Hessian of pressure. Recall also that dive = 0, so we

have that trV = 0. It seems that the only information we have here is about the trace,
so for the above matrices equation we take the trace on both parts.

DV

i +VH =tr(—P +vAV) =

tr(—-

tr (DV
Dt

We will examine each term of this equality.

) + tr(V?) = tr(—P) + tr(vAV)

° tr(%) = D11+ Doy + D33

DV 8 ou; Z 0 81%
o o iz D, 3$]

Yr(A+ B) =trA+ trB
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Therefore D;; = gt gg‘ + Zj Uuj % ‘SZE
So

DV _ 00w 0 Qw0 0up 0 Ouz) 0 Oug .
tr( Di > ~ 9t 0y +zj: (“J oz, 8x1>+6t 6x2+zj: (“J oz, 8x2>+8t 8x3+zj: (“ﬂ

DV 8 8u1 OUQ 8u3 8 6u1 OUQ 8u3
tr<D7§> 8t<89:1+8x2+8x3>+zj:u]axj(8xl+8$2+89§3> -

But dive = 0 so

_9p  &p  OPp _ ?p _
o P =Gkt ot =2 g = AP

o tr(AV) = Ay + Ago + Ass
Z 82 auz
8:1:% 830]
So

82 @ul 6 8’&2 32 8U3
AV =2 57 e, * 2 B Gy 2 0 Oy Z d”“—o

Eventually —Ap = trV? = tr(Vu)2 =3, . du; Ouj 2

1,] 81‘j 8:EZ
The above equation is a Poisson we know for its solutions the following.?
—=ln|z| N =2
We define g(z) = i 1 .
N e N 23

Where a(N) is the volume of the unit sphere in RY, we also know that for the Az = f
Poisson the solution is z(x) = [png(z — y)f(y)dy with |z —y| # 0. In our case
p(,t) = [on 9(z = y)tr(Vyuly, 1)) dy.

For N = 2 we have Vop(z,t) = [po g(z—y)tr(Vyu(y,t))?dy where g(z—y) = —5= In |z —

2tr(Vu)? =
Juy Ouy1 Ous duq Oupn
(611) + Oxo Oxq T+t dxn Oz 5 5 5 * s 5 *
uy Oug uo ugy Ou
* Oxo Oxq +(612) +"'+69cN Oxo *
tr
* * Odun Oujg dun Ous 4. +(

Oz Oz N dzg Oz N

3[18],chapter 2
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

yl-
So by the Leibniz integral rule?

Vap(et) = | Vallgle =y)tr((Vyuly, £))*))dy

the trace term is constant when we differentiate with respect to x

Vapet) = [ (V000 0)° gl ~ )y =

_ 2 1wy
Vaplant) = [ (V)5 iy
_ 2 T—Y
Vaplant) = o [ | (Vyu(y. 07—y

For N > 3 we have Vyp(z,t) = [pn g(z — y)tr[(Vyu(y,t))?]dy where g(z —y) =
1 1

N(N=2)a(N) |z[(N-2)"

So by Leibniz integral rule

Vap(et) = | Vallg(z —y)tr((Vyuly, £))*))dy

the trace term is constant when we differentiate with respect to x

Vap(z,t) = /RN tr(Vyu(y, 1)’ Vag(z — y)dy =

1
Vap(x,t) = / tr(Vyu(y, t))? =V |z|(2 — N)dy =
RN CN

T —y
Vap(z,t) =c / tr(Vyu(y,t)? ———
( ) N RN ( Yy ( )) |ZI§‘—y|N
le. VN
-y
Vep(z,t) =c / tr(Vyu(y, t)? ——
( ) N RN ( Y ( )) |x_y|N

this relation links the pressure with the velocity. So we go back to Navier stokes equation

D
FZL =—-Vp+rvAu

and we replace the pressure term with the above solution so

Du
Dt

-y

d A
\x—y\N Y+ VAU

= —cn /]RN tr(Vyu(y,t))?

Someone can easily observe that we have reach to an equation, which is depended only
on time variable t and the unknown term is only the velocity field. We will prove now

the following proposition:

4There is not a singularity in this integral operator so we proceed with simple calculations
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Proposition 2.1.1. Solving the Navier stokes equation with smooth initial velocity ug
such that divug = 0 s equivalent to solving the evolution equation

Du 9
B = ~oN /RN tr(Vyu(y,t)) Wdy + vAu
ult=0 = ugp

Proof. = Assuming that u solves the Navier-Stokes then by the previous construction
we are done.

< Assuming now that u solves the evolution equation then for the Navier stokes 2 i =
—Vp + vAu we have —cn [pn tr(Vyu(y, t))? == erdy +vAu = —Vp + vAu so Vp =

|z—

N fpn tr(Vyu(y, t))? ‘w |Ndy thus the evolution equation becomes the Navier stokes.
So the only remaining equation to be proven is that the vector field is divergence free.
Assume now that u is random solution of the above equation we will prove that this
solution is divergence free and we can omit the initial condition of incompressibility
(divu = 0) assuming all along that divug = 0.

Proof: D
U
D = N /RN tr(V,u(y,t))? ﬁdy + vAu =
. Du .
dlv(ﬁ) =div( —cn o tr(Vyu(y,t))? Wdy +vAu
8 DUk 8 2
_— = — _— _— 7A
g al'k Dt C% &ck AN tr(Vyu(y,t)) | |Ndy + VZ 8 ug =
0 ([ Ouy ouy, / 5 O T —
Tk R ) = t t )d
zk:al']g( ot +zj:u]8xj> Czk: oN r(VyU(Z/, )) a$k(|l‘—y|N ?/JFVZa

thus
0 ouy, Ouj Ouy, 0 Oup
00 2 a2 G 0y T “JaT:kaTj‘

0 1 ou
— 2 k
: /R (T ) 1dy+z 5 2 "

D Ou; Ouy 9 1 .
- (di —L % _ ¢ 2t gyl
ivu) Zawk oz, Czk:/RN r(Vyu(y,t)) 3$k(|x—y|N*1) y + vA(divu)

We reach to the relation
8uj Guk

D
v E —— — V- Vp+rvA(div
d1 w) 0 0 p + vA(divu)
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

By footnote 2 on page 30 we see that

%(divu) = Ap — Ap + vA(divu) =

D .
E(dwu) = vA(divu)

So our goal is to prove that if divug = 0 then dive = 0 in any time. We will use energy
methods

Lets assume that the above equation has two solutions i.e. 5 (1i1) = vA (i) and 5 (i) =
vA(uy) where 1) = divu; and i = divue

d _ _ g ) i 9 )
dt/RN ’U1U2|2d:v:/RN8tIU1 u2|2d:n:/RN 2(uy —UQ)&(ul —1ip)dx

Since they are solutions we have

8(;;1 = —u-Vuy + vAu;
and i
% = —u - Vi + vAuy

So 2 (i) — iz) = —u - Vaiy + VA +u - Viiy — vAd;
We continue our calculations by multiplying the above equation with the i} — s on L?
so we have that

0
f(lﬁ — dQ) . (u~1 — UNQ)dI‘ = / (u] — 1[2) . (—u -Vu1 +vAuy +u- Vg — VAUNQ)dI‘
RN Ot RN

By Leibniz integral rule we have that

1d

- ’1171 — dg‘de = / 2(1[1 — ’lfg) . (—u . V’Ujl + VAU] +u- VZLNQ — I/A’lfg)dx
2dt RN RN

= Q/RN (U — ) (—u)V(up — uz)dx + 2/R v(iy — 2) Ay — ia)dx

N

We will expand on each term individually. Firstly we set w = |y — 1iz|?

/ (U1 —u2) - (—u-V(uy —ug))de = —/ uV [y — p|*dr = —/ u - Vwdx
RN RN RN

We assume that we examine these solutions on a sufficiently small time interval, in
which 47 — 42 has compact support so

—/ u-Vwdr = lim u-Vwdr = lim (/ uwndS—/ wV~ud:U>
RN =90 J B(zo,r) =0 0B (z0,r) B(zo,r)

= lim — wV-udx——/ wV - udx
B(zo,r) RN

T—00
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

The other term

/ 1/(u~1 — u~2)A(u~1 — ’lfg)dl‘ =v lim (’1[1 — UNQ)A(UH — u})dw
RN "= J B(zo,r)
~ ylim V(i — 1i2) - V(s — tip)da = —u/ IV (i1 — i) 2z
=90 J B(zo,r) RN
So
d D) - -2 D)
pn |u1 — ug|*dx = 2 |u1 — u2|*V - udx — 2v |V () — g)|*dx =
RN RN RN
d - -2 - -2
o |uy — da|“dx < 2 |u] — 2|V - udzx
RN RN
Thus
d - -2
7 RN|u1—uz| dx <0

We will use the following lemma, in a more easy form. In the next chapters we will see
the Gronwall’s lemma and we will prove it.

Lemma 2. (Simplified Gronwall’s lemma) Let I=[0,a) be an interval an b a real valued
function, and f a differentiable function on I such that %f < bfinl then f < fgef; b(s)ds

So
/ [0y — 0o |?dz(t) < eo/ u1(0) — uz(0)[2dz(0)
RN RN

So assuming that initially u1(0) = u2(0) = 0 then

/N |1171 — u}]Qda:(t) S 0
R

i.e. 4] —uy = 0Vt We conclude that the solution of this equation is unique, so if initially
our velocity field is divergence free, then divu will be zero at any time. O

Remark :In fact we project the Navier stokes equation on the space of divergence
free vector fields in order to eliminate the pressure term. This projection is called the
Leray’s projection. And this is the Leray’s formulation. We will discuss this projection
a little more.

Proposition 2.1.2. Let u € L?(R") then there exists an orthogonal decomposition such
that:

u=w+ Vq

and

divw = 0
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Proof. We define the following sets
H(RY) is the closure with the L? norm of the set

C={feCPRY):divf =0in RN}

and
GRY)={feRN: f=Vyg forgec L} (RV)}

So it is sufficient to show that u can decompose into u1,us where u; € ‘H and us € G We
know that an element u of a Hilbert space can decompose into two parts® i.e. u+uj +us
where u; € D and D is a closed subspace of the Hilbert space, and us € D+

The L?(R") may be considered as a Hilbert space with inner product :(f,g) = [on f -
gdx, so it is sufficient to show that

1. H(RY) is a closed subspace of L?(RY)

2. HL(RV) = G(RV)

The first is immediate from the definition of H, since :

Assume that f,g € H and A € RY then div(f + g) = divf + divg = 0, furthermore
divAf = Adivf = 0 so we are able to define those two relations in H, so it is a subspace
and it is closed because is the closure of €

For the second we have to prove the two inclusions

e GCH*
Let f € G then fis a square integrable function and f = Vg for some g € leo C(RN )
. Assume that h € H then

f-g_/ Vg-hdx——/ gdivh =0
RN RN RN

thus f € H+

e Ht C G
Assume now that f € Ht = {f € L?: [pn f-g = 0V g € H} we want to find
an h such that f = Vh and h € leoc so the problem comes down to solving the
equation f = Vh

Lemma 3. Let 1 < ¢ < oo and f € VVl;Cl’qG such that [on f-vdx = 0, Yv €
C(RN),then there exists a p such that p € L. and Vp = f in the distribution

loc
S@’n867 .

So it is sufficient to show that f € ngcl’Z(]RN) and also fRN f-gdx =0, Vg €
C(RM)

°[36] pg 94
5See the definition of Sobolev spaces on chapter 4
"|36] pg 73, see section 2.2.2 the discussion about distributions
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Assume that V' cC R, the space W~12(V) is the dual space of I/Vol’Q(V)8
For the dual norm we have

[fllw-12=sup (f,9)
gl y1,2<1
0

so by Cauchy Schwartz

I llw-12 < = sup |[fllz2llgllL> < o0

lgll. 1,2<1
"o

Now assume a g € €(RY) since H is the closure of € with the L? norm we have
that g € # and also f € H* so it is immediate that fRN f-gdx = 0. So by lemma
3 there exists an h € L? such that f = Vh and this completes the proof for the

loc
opposite inclusion.

O

We also have the following proposition for vector fields that are not L? but have a
vanishing property”

Proposition 2.1.3. Let u be a divergence free vector field in RN and q a smooth scalar
such that |u||g] = O[|z|*N]as|z| — oo then [pn uVgdz =0

L.e. the divergence free vector fields and the gradient of the scalar are orthogonal in
L?.
Remark: The O is the big O which means that, let f, g two functions such that f = Ol[g]
then there exists a constant ¢ and a fixed point name zg such that |f(x)| < cg(z)

Va > xg.

Proof. Let B(0,7) be a sphere in RV with surface area cyr™~! then

[u(@)llg(2)] < Cr*NV D < ClaPAD < Ol

dq Jq
uV dx:/ U; dr = / U; dx
/|x<r ! |z|<rzi: O Z jol<r O

integration by parts gives

:Z (—/ qgu'dx—i—/ qun; dS)
i |z|<r  OTi |z|=r

ou
= — q dx + / qun dS
~/|:z:<r Zz: Ox; lz|=r
8[13] pg 291

9With this vanishing property we are able to do the decomposition of the velocity field via orthog-
onality.
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

since divu = 0 we get

/ uVadx = / qun dS
|z|<r |z|=r

As r tends to infinity the last integral tends to zero . O

Note: We define P : L2(RY) — H(RY) such that for a u € L? we have Pu = w,
where P is the Leray or Helmholtz projection of L? to H. We define Leray projection
as the orthogonal projection from L? to the subset of divergence-free vector fields in L?.
We want to write the vector field b € L? as b = P(b) + Vp. Since we want P(b) to be in
the space of divergence free vector fields, we take the divergence in the above equality
So divb = Ap i.e. Vp = —V(—=A)~1divb.1® Consequently

P(b) = b+ V(—A) " (divd)

, where A™! is the inverse of Laplace operator.
It is easy to see now that we can write the Navier-Stokes equation with the projection
term as follows. From the Poisson equation we have

Oou; Ou; 0
—Ap = (it R T L
p Z ij 8:1@1 dlv(;uj (9.%']' u)

Z7j

Sop= (—A)_ldiv(zj uj%u) .
Thus by Navier-Stokes %u + 2 uj %u = —-Vp+rvAu

g 0 14 0
(‘%u__zj:uj@:tju_v(_A) d1v<zj:ujaxju>+VAu

0 0
au = P( — ;ujaxju> +vAu

2.2 The vorticity-stream formulation for incompressible flu-
ids

In this section we will deal with vorticity equation, which exported in the first chapter.
We remember that there are two forms of this equation, one on 2 dimensions and the
other on 3 dimensions. In the first case we also observe that we have a scalar equation,
since the vorticity on 2d is a scalar quantity, but on 3d is a vector equation.
Furthermore, in the first term of both equations we have the material derivative,
which involves the velocity field, which is related to the vorticity through the system
w=Vxu
divu =0
So in this chapter we will try to formulate the vorticity equation into a such way that
the only terms are those involving vorticity. So at the end we will have an evolution
equation of vorticity.

1°[10], pg 14
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

2.2.1 Biot-Savart law

w=Vxu
We want to determine the velocity through vorticity i.e. we want to solve di 0
ivu =
Since the vorticity is something different in 2 dimensions we will do this two times, one
for each dimension. Finally we will see that we will come up to results that have some

similarities between them.

2 dimensions

Firstly we will prove that for the divergence free velocity field u = (u1,uz) exists a
stream function.

Proof : Since divu = 0 the vector field 4 = (—us, u1) is conservative, indeed

We define F' = —usdx1 + uidzo

By Green’s theorem!!

So there exists a gradient field 1 such that @ = —V1) so u; = _% and ug = (%ﬁ
el)

Finally u = %ﬂig
z1

Next we will calculate the curl of this vector by expanding it to the three dimensions
with the third coordinate to be zero.

0
curlu =V x u = 0
Py Py
0x? ox3
So we define w be the scalar quantity w = ,3927%} + 3277’2& = A1 This is a Poisson equation,
1 2

since we examine the 2d case the Newtonian potential is g(z) = — 5= In || so the solution
will be

v = [ ota =)o)y

1
— [ —Inlz— d
(0 /]RZ 5 n|r — ylw(y)dy

So we will differentiate the above equality with respect to x2 and x1 in order to define
the vector u

o 1 0

dxy 27 Ozo

/1nu—ywwmy
RZ

By Leibniz integral rule

oY 1 0
87:2 = 27T/R28m21n|$ ylw(y)dy

"[1] pg 293
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

For the term inside the integral we have that

1 0 1 0

iln\ﬂf—y\z

or: wyiom Y T ey VYY)
1 1 0
= F(e—y)(z—y
T PN e PN
1 0 9 9 1
- - = — _ ) S
2|$ _ y|2 81'2((:61 yl) + (I‘Q y2) ) 2|£E — y|2 (132 y2)
Finally ¥ = f y)d
inally 5~ = R |z wa )dy
Similarly g o = y|2w y)dy
Therefore u1(z, t = [ — 2177 ‘”;2 yyléw(y, t)dy and up = [0 ;ﬂ ﬁl yyléw(y,t)dy
Le.
1 (-8
u(z,1) =/ > ( ) )My,t)dy (2.1)
R e
_ z3
2
We define Ks(x) = % :lnf'
[z[2

Remark: This is an integral transform, the kernel K5 is homogeneous of degree -1.
AT

Indeed Ko(Az) = & [ 77 | = ALKy ()
Az|?

We will name the formula 2.1 Biot-Savart law.

3 dimensions

Now will we solve the system we saw in the introduction using the following proposition

Proposition 2.2.1. Let u vanishes sufficiently rapidly as |x| — oo then the above
system has a smooth solution

u(z,t) :/R L @=y) xwlyi) (2.2)

3 4 |z — y|3

In order to proof the above we will use the following lemma

Lemma 4 (Helmholtz decomposition on 3 dimensions). 12 Let F be a vector field van-
ishes rapidly as x — oo then F can decomposed into a curl free and an divergence free
component

Le. F=V®+VxA

12 [29]
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Helmholtz decomposition states that any vector field can described as a curl-free term
(V@) and a divergence free term (V x A)

Proof. Let F a vector field as above we will use the Dirac delta function in three dimen-
sions to expand the integral d3(x — y) = —ﬁv2 L 13

lz—yl
So F(xz) = [ps F'(y)ds(z — y)dy

_ [ L 2 1

Since the gradient is taken with respect to x

1 F(y)
F(z) = —— 2
(@) 4 R3v [z — y

s |z —yl
We will use the following identity for the Laplace operator V2F = V(V-F)—V x (VF)

dy

By Leibniz integral rule

proof of identity:
0% F;
Ox? + Ox10x2 + Ox10x3

9%F, %Ry 0%F3
Ox10x3 + Oxo0x3 +

OF3 _ OF
ox ox
V x F = OF _ OF

Gl 0O
oFy _ oF

o0x1 0o

92F, 9%Fy 9%Fy + 9%F3

Oxo0x1 8:)3% 8:)3% Oz3071
_ 9%F3 %F, %F, 9%F
V x (v X F) = | Oz30za O3 T + 0x10x2
9% Fy o 9%F3 o 9%F3 + ?F,
0x10x3 027 023 0x20x3
82F1 82F1 82F1
ax% + 696% + 61%
_ | 2k | R | PRy | _ 52 52 22 o2
SoV(V-F)=Vx(VxF) = | 52+ 52+ 57 | = sultogl+opl =V°F
FoLd 3 + 3% F; + 0%F3
890% 890% 890%

, so we will create the ® and A term. Therefore F(z) = —2=(V(V - [os %dy)) +
ﬁ(v X (VX [gs %dy))

o First term:

v-/ F(y) dy_/ v. ' dy
s [T —yl RS [T — Yl

13For the derivation of this form check [26], pg.35
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

We will use the property div(fF) = fdivF + F-Vf

F 1
v-/ ) dy:/ divF(y) + F(y) -V dy
R3 [ — Y| R3 [ — Y| |z —y|

The first term is zero since the divF(y) = 0 because the divergence is taken with
respect to x.

SOV - [ ligy;'dy = Jes F)  Vitgdy = = [os F(y) - Vytydy ™

e Second term:

F F
v x W gy= [ vx £ g,
B | — Y| B [Tyl

We will use the property curl(fF) = fcurlF' + Vf x F

1
|z — y|

v [ EW dy—/RS ‘xiy‘(VXF() +v

x F(y)dy
R3 [T — Y| )

The first term is zero since V x F(y) = 0 because the curl is taken with respect
to x.

F 1 1
V x ) dy—/ v xF(y)dy——/ V,— x F(y)dy
R3 R3

g3 |z — | |z —y Yo —y|

After all F(x) = 22V (= fps F(y) - Vyriardy) + £V % (= fps Vyrziyr X F(y)dy)
F()V(l/ F()deHvX(l F()xv#d)
R T e am Jgs T ey

O]

Lemma 5 (Helmholtz corollary). Let F' be a vector field of which we know its divergence
and its curl functions, namely P =V - F and Q =V x F, then

1 Py)(x—y 1 Qly) x (z—y
b=k [ PO, 1 Qo)

mJrs |z =yl A Jrs  fr =yl
Proof. By Helmholtz decomposition F(z) = V(& [ps F )Vy|x1 1Y) +V < (4 £ fps F
vylﬂﬁ yldy)
We have F(y) - Vy it = Vi F) — 0y Vo - Fy) and F(y) x Vyptn = =V, x
o Ve X F )
Consequently F(z) = V(& (fgs V (‘5( m )— g3 = y‘V F(y)dy))+Vx (& (= Jgs VyX

(52 dy) + fs iy Vo x F()dy)

By divergence and Stokes theorems :

1 Vg F 1 \Y% F
Flr)=—-——V | 2L —= ) dy + —V x [ 422 s (y)d
Am = Jrs |z -yl A R: |7 — Yl
UV = am ad Vit = o5
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

1 -F(y 1 F(y
F(r)=—— VL()d + = v L()dyi
e Je—yl —
1 Vy-Fly))(x—y 1 z—y) X (Vyx F(y
Py— L[ ey, 1 @) x (a5 P,
Am Jrs |z =y A Jrs |z — y|
kg Q
After all F(x = Jus Wdy ) lgizp(y)dy 0
Proof of Proposition 2.2.1. Usmg lemma 5 for the velocity field u where P = divu = 0
and Q = curlu = w we get u(z,t) = & [ps %;lgyt)dy -

We use again the terminology we use in the 2d flows and name the formula 2.2 Biot-
Savart law. We also define K3(z)h = ﬁ%ﬁ‘ and h € R? which is a homogeneous kernel

of degree -2.

Indeed K3(Az)h = ﬁmg = \2K3(x).

Closing this subsection we observe that for both cases we have a non-local operator
given by convolution. The kernels we deal with are homogeneous of degree 1-N with a
singularity at the origin. This integral operator is defined on RY x R* — R.

In the next chapter, we will use this solution to formulate the vorticity equation. We
emphasize the fact that the Biot-Savart law has not occurred by the vorticity equation
and up to now has no relation to it. So in the next subsection, we will see some
differences in the process of the formulation which do not arise from the Biot Savart
law but from the form of the vorticity equation.

2.2.2 Vorticity-Stream Formulation

%w + 22 uj %w =vAw (2d)
%w +2; uj%w = Vuw + vAw (3d)
It is clear that in two dimensions we will just substitute the velocity by the Biot Savart
law on the vorticity equation and we are done. But in three dimensions there are two
terms containing velocity, the problem is for the term involving the gradient of u. The
truth is that we cannot differentiate the velocity field since the derivative of the kernel

by doing heuristic calculations will be of degree -N. So it’s singularity is of type ﬁ
RNIE)

Let us recall the form of vorticity equation {

which is not integrable on . So since the classical concept of differentiation fails
we will develop the following theory for the distribution derivative.

Distribution derivative

The main idea for using the distributions is to generalize concepts which do not exist
in the classic sense(solutions, derivatives etc). To do this we replace the function f by

15

T 1o w
/ / / S(z)dt :/ —a/ 1dS(z)dt = —t" 'na(n)dt = cr
B(0,r) |33\ 8B(0,t) |1’\ o t* Jap(o o U

which is bounded for a < n
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

an integral using test functions.
So a distribution is a functional: f[¢ fRN x)dz where ¢ € C°(RY). We will

say that f € D(RN ), where D is the space of dlstrlbutlons, which is the space of linear
functionals on the vector space of test functions (D).
So we will define the derivative of the distribution as the linear functional :

piflg) = | oD fdo

integration by parts gives that,
Delfle) = [ oDl fde =~ [ (Do)fds
RN RN
To develop the theory we need we will take the following case :

99

8$Jf = - fax]

RN a.’E]

We remember that our problem was to differentiate a function homogeneous of degree
1-N which is C*®(R¥/{0}), that is f(Azx) = A"V f(z)VA > 0 so we will prove the
following proposition

Proposition 2.2.2. Let f be a function as above, then its distribution derivative is given
by the following formula

OF g = p 2 _pv [ Y

dx — Sod (RN
RN Om] RN Om] RN 6$J¢ v CJ /IVQN ¢ CL‘,VQS < CC ( )

Notes:

e The first term is Cauchy’s principle value (we will explain this in the proof)
°cj= f\x|=1 f(x)z;dS
. fRN d¢dzx is the Dirac distribution . We have that fRN dpdr =0

Proof. First of all in order to define the distribution derivative we will prove that ho-
mogeneous functions of degree 1-N smooth away 0, say f, are locally integrable.

Lemma 6. f € L} (RY)

loc

proof of lemma : I want to prove that VK CC R then [i |f(z)|dz < oo

Vz holds xz = ]x\ﬁ, we define r = |z| and y = Y € SN=1 (observe that
|z _
el =l = 1)

We set x =7y, wherer € Rt andy ¢ A = {ye SNl :ryc K} @

So
[ @iz = [ [ e aswar

16[24] pg 7 and 29
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f is homogeneous of degree 1-N

= [ [ tasr = [ [ 15Glasir < [ o

1—N<1sofgcrN*1<oo

“A is the projection onto the sphere of a slice of K

So now we can define the derivative in the distribution sense as following :

0,110 = [ G otwytr = [ 1% an o € @

We will deal with the second integral:
We define gy = X[|z|>i]f($)8i¢, where X[|z|> L] is the characteristic function of the
set {|z] > &} ie.
1 zeRM\B(0,+
X=Xz =30 o g IO )
=N 0 xe€ B(O, N)

We will use the dominated convergence theorem (DCT) which states: Let gy be a
sequence of measurable functions(1), so that gy — g as N — oo a.e. x(2). If there
exist a function f integrable with the property [gn ()| < f(2)(3), then [pn gn(x)dz —
S~ 9(2)dz!7.

(1)First of all our gy is measurable since f(x) is continuous a.e. x, ¢ is C°(RY) and y
is the characteristic function.

Now we will prove (2) i.e.

vz € RM\{0},and, Ve > 0,3Ny € N : YN > Ny, holds, le(:z:);ﬂx)—f(a:)acb(x) <€

Let € > 0 since % — 0 as N — oo we have that

1
VAN VN 2 Ny, 5 < ¢

We choose ¢ = |z| thus 3N; which depends on |x/, such that & < |z

Thus from a Ny and then x € RV\B(0, +).

We set Ny = Ny, and we get Ve > 0,3Ng = Ny : VN > Ny, holds, |xf(33)ai¢>(:v) —
@

F@) o) = 7)o 6(2) — (@) gl =0 < e
We will prove the (3).

0 0

9n(@)] = IS ()5 —6(0)] < | () 5 -0(a)
zj zj

The last function is integrable since ¢ is smooth and has compact support, then it’s

derivative has compact support, so outside of this compact set is zero, and by the lemma

'7[38] pg 67
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6 f is integrable on compact subsets of RV,
Since all the conditions of the DCT are satisfied, we have

/RN Xf($)£¢(x)dx — /}RN f(x)aiqu(a:)dx,asN — 00

[ @ swnto [ )5 o

Oz RN zj
After all, for e = %, for, N — oo, we have, € \, 0 we conclude to:

(@) g-ola)de =l [ f(a) o (w)ds

RN eNO lz|>e

By integration by parts

lim f(a:)i¢(m)da:: lim <—/ 8f(x)¢(x)dm+/|: f(a:)qb(x)njd8>

e\0 |z|>e 8xj e\,0 z|>e 8.Ij

e For the first term we define Cauchy’s principal value In the Riemannian integration
the range of integration is finite, so the improper integrals used for infinite range
or unbounded functions. Cauchy principal value serves for define a value for
the improper integrals'®. We assume that f is integrable outside of a small ball
of radius e. We define the principal value of this function as: P.V. f]RN fdx =

limg\(o f|:1:\26 fdl'

So in our case
lim/ 9f(x) ¢(z)dr = P.V./ 9f(x) ¢(z)dx

e\.0 lz|>e 8l‘j RN 8l‘j

e For the second term

f(@)¢(x)n;dS = Foligs

EE zj=c |7l

We will do a change of variables x = ey so

| e asw)

o, Times o f . F(2)6()nsdS = lime [y F)o(ea)adS() = [y, F()6(0)r;aS()
Eventually we have proof that

. 0
lim T)—
e\0 [z[>e 6.’E]’

(x)dx = —P.V./ 9/(x)

RN 693]

w@m+am/ f(2)2;d5(x)

|z|=1

18[27]
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Remark: The function % f is homogeneous of degree -N. This follows from the propo-
sition below.

Proposition 2.2.3. If the distribution f[¢] is homogeneous of degree a then fis homo-
geneous of degree a. 19

Proof. Definition: A distribution is f[¢] is homogeneous of degree a if f[px] = A4V f[4)]

So [en f(@)p(Az)dr = A" [0 f(2)d(z)dx
By changing variables we get:

AN 2)p(a)de = AN | f(z)p(a)de

RN RN

[ O = A @) (et = 0

This is true for every test function, so
FOT ) = A (@) =
ie f(Ax) =\ f(x) O

So for the function:

1
— —¢(Ax)dx = —dy
—— [ Xy / F(2) () = 0, F16(2)]
RN )\N 8 8.T] J
So the distribution is homogeneous of degree zero i.e. —a— N =0, a =—-N

We close this sub-subsection with two propositions, that will by useful in the following
sections.

Proposition 2.2.4. Let f € C°(RN\{0}) homogeneous of degree 1-N, then the func-
tion %f has mean-value zero on the unit sphere.

Note:The mean-value of a function is (T) /. OB (x,1) de’ where sV~ is the surface
area of N-1 sphere. So we need to prove that

1
/ —de—()
SN—-1 \x| 18%‘]

i.e.

—fdS =0
/|:E 18(1,']f

19[31]
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Proof. We want to see what happens for the mean value on the unit sphere so we will
use a cut-off function to mollify our function and get rid of the singularity. Inside of a
sphere, we will have something that is integrable everywhere and outside of the sphere
we will have the zero function. We set

sinr |r| <7
p(r) = {

0 |r| > 27

And we define g(z) = p(|x|)8%jf(m) with domain of the function Dy = {|z| < w}U{|z| >
27}
We will examine the integrability of g(x)

e outside of the sphere of radius 27, g(x) =0

e inside of the sphere of radius m the only problem is on the singularity x = 0,
since p has compact support and the function i f (x ) is smooth away zero, and

homogeneous of degree -N. It’s singularity is of type ] —Lv but we know that s‘mlm

is integrable in all RV,

So

/lxlgwlw% (lz]) %ﬂ 2)de = /Wp('“ 5 @i + /|x|>2wp('x') 5o f (@

B e Ip(|z]) . o) () 5 g
- /| p(l)) 8% (2)d /H D ) + /ﬂ:ﬂp(’ @)

T 0 x)dx T 8p(|x])7 T =
/| a5, (@) + /|mf<> e =0

. ﬁx‘sﬂp(]a:\)a%jf(m)dx =y fmzrp(r)a%jf(rx)rN*IdS(x)dr

//| - (%J (2)dS(z)dr

By Fubini’s theorem: fw‘ , 8z3f( z) [ 2 drdS( )
o p(:)dr = Jy 51;”” =c#0

So f\xlﬁﬂ (]aj\)azj f(z)dx = cfx|  Oa; 9_f(x)dS(x) = Cf\x|:1 %f(:c)dS(a:)

o fon B2 E F(@)de = [ [, By L (re)dS @) dr

_ /0 " /Ix:r pa; f(2)dS () dr

By Fubini’s theorem: f L@ f(x) [3 p(r)drdS(x)

We calculate fo r)dr =sinT —sin0 = 0

Sof = (’x‘)|x|f( z)dr =0

Ie.
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To conclude cfx‘ 1da: f(x)dS(x) = O

The kernels we have are homogeneous of degree -N smooth away zero, like the above
functions. We will prove the following proposition.

Proposition 2.2.5. Let P(x) = VK (x) in the distribution sense - we will say that P
is the gradient kernel. If P is homogeneous of degree -N, smooth away zero, and has the
mean value property, that we have discuss above. Then P(x) defines a singular integral
operator through the convolution.

P[f](z) = lim Pz —y)f(y)dy
N0 Sjg—y|>e
Note: A singular integral operator is of form T[f](z) = [ K(z—vy)f(y)dy, with singu-
larity on the diagonal of type e ‘ —,(SIO). A smgular integral operator of convolution

type is a singular integral operator exists on RY through convolution by distributions.

Proof. We will prove that the mean value property is enough to ensure the existence of

the above limit. 20

We define P.[f](z) = f‘y|>6 P(y)f

Since € N\, 0 we assume that € =

y)dy, where f € C°

(z —
% N—>oosoﬁ<1weget

/ P(y)f(z — y)dy = / P(y)f(x — y)dy + / P(y)f(z — y)dy
ly|>e ly|>1 e<|ly|<1

ylz

o lim g = f|y|>1 P(y)f(z — y)dy exists since on this range both functions are
integrable, the matter is on range containing zero.

e limy\ g int)y>1 P(y) f(r—y)dy Since f has compact support in this compact support
we give a value k

1
:klim/ / rN=LP(ry)dS (y) r—khm/ / N P(y)dS (y)dr
eNO 8B(0,1) aB(0,1) i

Since 1 is not integrable on a small ball containing zero, we need f|y\:1 P(y)dS(y)

to be zero.

Calculating the gradient of the velocity field in the distribution sense

In this sub-subsection, we will apply the previous theory to handle the problem of
differentiating the velocity u which is determined by the vorticity through Biot-Savart
law.

Proposition 2.2.6. Let u = [pn Kn(x — y)w(y,t)dy then

20(38] pg38-45
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

o In 2d the Vu(z), in the distribution sense, is defined as

Vu() = 5PV [ Ma=v) | onay + w(;s)(g _01)

2 Rz |z —y[?

) 2 _ .2
Where k(x) is the 2 x 2 matriz kernel: g 23;13:22 20
| Ty — I —2x129

o In 3d the Vu, in the distribution sense, is defined as :

Vu(z)]h = —P.V. /R 41%“’25?/2 ;f ey X;%g @I gy o) e

We see that the proposition has two cases, thus we will move on with the proof
individually for each case.

Proof. For this proof we will use the proposition 2.2.2

e For the 2 dimensions : u(z) = [ Ko(x — y)w(y)dy We can write the convolution

as an inner product u(z) =< Ka(y),w(y) >, where Ks(y) is Ko(—y) translated
by x. We want to calculate the j-th derivative of u in the distribution sense.

Oz, u() = On; < Kaly),w(y) >=< 95, Ko(y),w(y) >= 9y, Ko[w] ()

So we get

Oz;u(x) = P.V. /R2 ;%Kg(x —y)w(y)dy — w(x) et Ks(v)z;dS(v)

We will continue with a trivial way i.e. calculating each term of Vu

— Opu1 =PV, [po 8%1 (_% @2_—;/‘3) w(y)dy — w(x) f|v|:1 —%ﬁ%vldS(v)
The first term:
0 xa—y2 w2—y2 O

2 =@ = y)e —ve)
= yl*

SOz lz—y2 |z —y[tox

So we have P.V. [5, 5 (2w> w(y)dy

2m [z —y[*
The second term:

/ 1 v dS(v) = L 0 sin 0d6
—— =—— in
e 2 ]vPvl v 27 J, cosfs

1 [? sin?2
_ L sin 9d9:0
27T 0 2

Le. Opty =P.V. [o ok (2w) w(y)dy

lz—y|*
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_amm@Q:Pﬂﬁﬁ@é%(%E;ﬁ)w@My—w@QﬁwIZMWUMS()
The first term :

0 x1—y1 e —yP =21 —y)? (w2 —y2)? — (1 —11)?

day lz —y2 |z — yl|* B |z — y|*

So we have P.V. [5, 5 ((m2 y2|)x y(‘xl yl)Q) w(y)dy
The second term:

1 v o 1
ds — 0d) = —
/|v _ om0 = 277/0 o o

Le. Oy us(z) =P.V. [0 5 <(w2_y2)2__(ﬁ1_y1)2) w(y)dy — sw(z)

[z—y|

— Opyu1 = PV, [po 6%2 (_%ﬁf:yy‘g) w(y)dy — w(x) f|v| e |v|2U2dS( v)
The first term:

O wa—y2 |-yl —2(@2—w2)?®  (w2—y2)® — (11— y)°

dxa |z —y[2 |z —y|* B |z —y|*

So we have P.V. [L, 5 <(x2 y2|)w ;‘xl y1)2) w(y)dy

The second term :

1 vy T, 1
ds ——sin?0df = ——
/Ivl 1 27?\1)]21}2 (v) = /0 o o

2o )2 — (21— )2
Le. Opyu1 = P.V. [po i (( 2 y2|)x_y(‘41 v1) )w(y)dy + %w(w)

_amwgg:PAnﬁyé%(iﬁgﬁ)w@my—w@yﬁ|1%wpw¢ﬂ)
The first term:

0 xz1—y1 (21 —y1)(w2 —yo)

Owo |l —y2 |z — yl[*

So we have P.V. [L, 5= ( 2%) w(y)dy

[z—y[*
The second term:

1 1 27'('
/ - == cos@sinfdf =0
pl=1 2™ 27 o

Le. Opyug(z) = P.V. [po % (—2%) w(y)dy

Finally

1 2(w1 — y1) (w2 — y2) (2 — y2)* — (21 — 1) w
Vaa) = 5PV [ (m S (o —)? 2wy - ) (2 — ) ) (w)dy
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e For the 3 dimensions:The kernel we have define is a 3 x 3 matrix which acts on
a vector in R3. So in order to write the convolution as an inner product we will
multiply with a vector h.

u(x)h = . K3(z —y)hw(y)dy =< K3(y)h,w(y) >

Thus the j-th derivative of u in the distribution sense is:
(0 u(@))h =< 0:, Ka(y)h,w(y) >= 0s, Kalw](x)

By proposition 2 we get:
Oz;uh = P.V./ i(K;J,(at? —y)h)w(y)dy — w(zx) K3(v)hv;dS(v)
R3 8xj lv|=1
So
[Vu]h = P.V. /

R

o o (5 ) o () o () o s

— The first term:

[ (B iy - [ v, (Ll

::1vx0w—wxwwvh@

4r lz —y[3

PVA—VoRA

By the well known property of tabla operator (V% = p ) we get:

v, ((x—y)xw(y)) _ (!x PV — y) X w(@)] — [(@ — y) X w(y)] © Valz — y,z,)

|z —y3 |z — |

_ Val(z—y) xwy)] [z —y) xw(y)]® Ve|z —y

z =yl |z —yl°
We will do the calculations separately : 1. W
(w2 — y2)ws — (¥3 — y3)w2 0wz —w
Val(z—y)xw(y)l = Vo | (x3 —ys)wr — (x1 —y)ws | = | —ws 0 w1
(21 — y1)wz — (T2 — y2)w1 wp —wr 0
We name the last matrix W so we have:vz[("’l“";_yg)jﬁw(y)] = \w—ly|3W

9 E=y)xw@)|eVe|z—y®
’ lz—y|©

_ ey xw@l @3z —ylz —y) _ ,lz—y) xwy]®(@-y)

|z —y|° |z —yf?
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So we have

/ 1[ L o sle—y) xuw@)]e -y hay
R

s [Je—yP o —yP
_ [ 1 1 3 z—y) xwy)]®(z—y)
= — hdy
r3 4m |z —y|3 4T |z — y|®
0 w3 —Ww?2 hl wghg — LUQh3
Wh=|—-ws 0 w1 ho | = | —wshi +wihg | = —w X h
w9 —W1 0 h3 w2h1 — wlhz
Finally
1 (x—y)xh
P.V. | —————— dy =
v () et

s A |z —y|®  Ax |z —y|®

_P‘V'/ L) xh 3 l@-—yxwle@-y,,
R

— The second term :
We will continue with this part, [(v X w)vi, (v X w)ve, (v X w)va]h

V102W3 — V103W2  V202W3 — V203W2  V2U3W3 — U3U3W2 ha
= | V1V3W1 — V1V1W3 VU3W1 — V1V2W3 UV3U3W1 — V1V3W3 h2
V1V1W2 — V2V1W1  V1V1W2 — V2U2W1  V1U3W2 — V2U3W1 hs

1)17)2W3h1 — 1)1?)3(,02h1 + UQUQWghQ — 1)2?)3&)2}@ + 1)2?)3w3h3 - U3Ugw2h3
= v1v3w1h1 — 1}1U1W3h1 + UQUgwth — 1)12}20.}3h2 + Ugvgwlhg — Ulvgwghg
v1vIwah1 — V2V1W1 N + V1vawahe — vavawi ho + viv3Wah3 — VavzW1hg

So for

1 1 v1v2wzh1 —v1v3wWah1+v2v2wshy —v2v3wWaho+v2v3W3h3—V3V3W2 A3

— T3 v1v3w1 h1 —v1viwshl +v2v3wr he —vivewsha +vzvswi hs—vivzwshs dS(U)
47 ‘U‘ZI ”U| v1viw2h1 —v2viw1 h1+v1v2w2he —vav2w1 ho+v1vV3wWahs —vov3W1 A3

we calculate:

1 3 [om . 9 9, . 2
Tgviv1dS(v) =2 sin” 0 cos® ¢ sin Odpdh) = 2— = —
lv|=1 v 0 Jo 3

1 z 2
/ —=v102dS(v) = 2/2 / sin® @ sin ¢ cos pdpdd = 0,
| o Jo

v|=1 |U‘3

1 z 2m
/|| vagds(v) = 2/2 / sin? 0 cos 6 cos ¢dpdl = 0,
v|=1 o Jo

1 z 27
/| | WUQU?’CZS(U) = 2/2 / sin? 6 cos 0 sin ¢dgdd = 0,
v|]=1 0o Jo

1 2 [ o 4
/ Tz v202dS(v) = 2/2 / sin® 0 sin? pdpdo = 9= _ —W,
| | 0 Jo 3 3

v|=1 "U
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us
1 ER i 2 4w
/ T Usv3dS(v) =2 sin @ cos® fdpdf = 2—— = —
oj=1 || o Jo 3 3
Thus:
1 1 v1v2w3h1 —v1v3wah1+v2vawsha —v2v3waho+v2v3wW3h3 —v3v3wa ha
— T3 v1v3w1 h1 —v1v1wzhl +v2v3wi ha —v1vewshe +vzvzwi ha—vivswshg dS(U)
47 ‘U‘:l |'U| v1v{wah1 —v2v1w1 h1+v1v2w2he —vav2w1 ho+v1vV3wWahs —vov3W1 A3

4 4
1 [ 3wsha — Fwahy
—4JL<J3h1 + %wlhg =-hXw

" dn 3
%’rwghl — %’rwlhg

After those trivial calculations we conclude to :

[Vulh = —P.V./ Lwly)xh 3la-y)xwWio@=y),, L,
3 dm |z —y]? 4w |z — y|® 3

O]

We remind that in the first chapter, we have made a construction with a symmetric
and an anti-symmetric matrix. For the symmetric one D = $(Vu + (Vu)T) we will
close this sub-subsection proving the following proposition.

Proposition 2.2.7. Let u € R3, defined by the Biot-Savart law, the gradient of this
field defined by the above proposition and w = curlu then for the deformation matriz D
we have:

D(z) =P.V. - Pz —y)w(y)dy

where
P(z)h = ;7;’ [(z x h) ® x]b:g)[:z ® (z x h)]

Proof. We take the matrix identity from the above proof:

Vu(z)=P.V. [ Lv <(x—y)><w(y)> dy

gs 4m " lz —yf?
> (z — y) x wl(y)
1 T—Y) Xwy 1 1 3 1
— V(= == - W= -
4w ( |z —y3 > 4 |z —y[3 dm |z — y]5
Where
0 wi(y) —wa(y)
W= 1-ws(y) 0 wi(y)
wa(y) —wi(y) 0
and
R=[z-y) xwy)(@—y"
11 3 1
—PV.| ———— W-——2 __ ~ _Rd
Vu@) =PV, [ W
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and 1 1 3 1
T T T
=PV. [ — - d
Vu@)] =PV [ W Ty
So
11 31 11 3 1
T T T
=PV.| ———— W —Rt+— -0 R d
Vur(Vu) /]Rs Ar |z —yP " Am|z—y[f 4wz —yP? anfe—yp Y
1 1 3 1
—PV. [ ————W4W ) - = — ")d
A% R34ﬂx_y‘3( +wh 4ﬂm_y‘5(R+R)y

_PpV. /R 3 51 ) xw@@ =) + (@ — )@ — v) x w)] Idy

Az —yP
—PV. [ 2l y) x w)] © (2~ ) + (2~ y) @ [ — ) x w(u)]ldy
re A [z —y]
Finally

D=PYV. /R _;Mu(m — ) X w®)] ® (@ — )+ (& — 1) ® [z — ) x w(y)]]dy

O

The formulation

In this last sub-subsection, we will use the previous tools and we will end up with the
result.
For the following proofs we will use this lemma:

Lemma 7. Let u be a smooth velocity field in RN which is divergence free and vanishes
rapidly as |z| /oo . Assume a vector field solving the above equation:

D _ 21
b= V- 2+ vAb (1)

22

which is a convection-diffusion equation . Then the divb solves the scalar equation

D
thivb = vAdivd

proof of lemma:
We take the divergence of (1) and we get :

D
divﬁi = div(Vu - b+ vAb)

We will see each term individually

2Imatrices product
22[39], Chapter 3
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Db

® lem
A AN NT 9
. : - [ Zyp iy
v : 9z, | 0t 1*;“18% v

%bN + Zj Uj%bN
0 0 0
. 0 8b1 8[)]\7 0 Aabl
= = [axl +...+axN} +;[axl <u]axj> +

0 Obyn
oy (“J%) }

0 Ou; Oby 9%, ou; 9*by
= Zdivb+ =2 — ... J ;
ot an 00, T Yamar, T ooy Y 0unox,
ou 0()1 Ou; Oby
—d b J 4L
o+ Z (&Ul 8% + 0T N G:Uj)
0%b; 9%by
* Zu] (830181:] et 8J:N8xj>
So Db 9 ) du; b
. . . Uy 1
div=— = —divd ——divd 1=
v Dt Ot Vo zj:u] Ox; Vo Zz]: Oxq Ox;j
e div(Vu-b)
ou ou ou ou
8—11 am;] by b1 8:vi ...—I—bj\ra,]c]lV
ou ou ou ou
8:(;127 T ﬁ bN bl 8x]¥ +. b 8xx
50 o[ o )
. Ul Ul
d b by — b
iv(Vub) = pn [ e +...+ NﬁxN] +
0 8UN aUN
— b b
+8a:N [ Yox, ox1 et NamN]
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids
0b; Ou ob; Ou
YDECTCIN i AL
- ox1 8x] r oxr N 8333
8 Ul
Z J Omlaxj al Z ]81:1\/838]

8[) (‘9u1 0 8U1 aUN
Z@xl Ox;j ;bjaxj [8351 *- +8xN]

Since u is divergence free

div(Vu - b) Z 0b; duy

Ox; 0x;
e div(rAb)
vAb=vdiv | 3 gjc%" _ ”ZZ 6(2:1- (322
=v Z dlvb = vA(divb)
Finally

0 . . 8Uj 8bi o 8uj abi
57 divh + (u.V)dwb—i—iZj o 0, Z; o 1

Dﬂtdivb = vAdivd

Our result is summarized in the following two propositions.

Proposition 2.2.8. 23 Let u be a smooth velocity field vanishing rapidly as |z| tends to
infinity then the 2d Navier-Stokes equations

%u%—zjuj%u:—Vp%—yAu u € R?
divu =0 (z,t) € R? x [0, 00] (N.S)
ule=0 = uo

are equivalent to the vorticity-stream formulation, which is a scalar evolution equation
of w

{Btw +2; Kslw }ax w=rvAw (VSF)

wlt=0 = wp = curluyg

T
Where u = KQ ng Ks(r — y)w(y)dy with Ka(x) = i (%v fz%)

23 [42]
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Remark:In (V.S.F) we have no information about the pressure, which is an unknown
quantity in the (N.S). So if we find a solution of the (V.S.F) then by the Biot-Savart law
we will determine the velocity field. In the first section of this chapter, we have seen
Leray’s formulation, we will determine the pressure through velocity by the formula

_ Au,; Ouj
Ap= =23, ba oo

Proof. (=) Let u be a solution of (N.S) we will prove that w = curlu solves the (V.S.F).
Since divy = 0 and curlu = w, by the Biot-Savart law, we obtain the velocity field

through vorticity. Furthermore, the initial condition is satisfied, so we have:

0 (ouz 0w, =0 (0w Ow\ 0 (Our Ow)_ 5O (Our 0w
ot \0z1 Oxo 18:701 Ooxr1 Oxg 26932 ory  Oxy) - ax? Ooxr1 Oxo

We will do the calculations

Q0u, 00w 0 Ou 0w
Ot dx, Otdzy | ‘0z, 0z, 0z 0o
20w 0 du O 0wy o O O
2 Oxo 01 2 Oxo 09 - 83@? ox - 8x]2- Ory
So
O du 90w 0 0u 0 0u
Oz1 0t Oxy OF  VOr, 0xr  Ox, Oxs
+ug£% 0 dw 0% Juy + 0% duy _

U v ——+tv — =
8$2 (91‘1 2 81'2 (9.%‘2 ; 8$3 (91’1 ; 895]2 @xz
We substitute the two first terms by the Navier-Stokes

0 ( 6UQ 8UQ 62’1L2 62u2 (9]))

— [~ =—= —us—=+v v —
o0x1 0x 0xo 8x% 8x% 0xo

0 (_ Ouq Ouq 0%uy 0%uy 8p)

30 —

|— —Ug— F+ V—m F+ V—s — —
ox1 0xo 83:% 837% 0x1

6 8UQ_ 8 6u1 (9 8’LL2 8 8u1 82 6u2 82 8u1

B R R AT Y PR Y RO Y . ALY vt
So
Ouq Ous ?uy  Oug Ous D%us 9% Ousy 9% Ous %p
o Ul sy —aa o —Um— t Vst Vs —
0x1 0z Oz Ox1 0o O0x10x9 O0xy 01 0x50r1 011072
Ouduw Ou  Oupbu | Pw P Owm & ow &
8:62 8.1’1 ! 61’181’2 8:1@2 8.%'2 2 61’% 6:@ 8.%'2 833‘% 8302 81'283?1
s P Pu Pu | P P 0w O w0 0w, O ou
! ax% ! 61'16.1‘2 2 81‘13$2 2 8:6% 6$% 61'1 8:3% 6:51 a$% 81‘2 83:% 61’2 N
Thus

Ouy Oug  Oug % ouq % Ouo %

02, 01 Oy 0vs | Org Oz ez, 0

o7

0



Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

8u2 <8u1 + 8’&2) i 8U1 (8u1 + 81@) —0=

Oz \Oz1  Oxg)  Bxy \ Oz O
—ngdivu + gz;divu =0

L.e. 0 =0 which is always true, so w = curlu solves the vorticity equation
(<) Let’s do the opposite. Assume that there is an w which solves the vorticity equation

Dw
Dt
We will prove that the velocity u given by the Biot-Savart law is a solution for the

(N.S). Since the velocity is a SIO the derivatives are in the distribution sense.
Firstly we will prove that this velocity field u satisfies the incompressibility condition.

=vAw,

. 8’LL1 8u2
divy = 24 4 2¥2
e 0z + Oxo
1 2(z1 —y1)(z2 — y2) 1 / 2(z1 — y1)(z2 — y2)
= —P.V. dy — —P.V. dy=0
V- P

To continue with the proof we will use the lemma 7. w solves the vorticity equation, we
also have that Vu - 24w = 0 if we assume that u = (uy,u2,0)” and w = (0,0, w).
Therefore w solves the % = Vuw + vAw

D 3 o .
ﬁtdlvw = vAdivw

So from the lemma we proved we have { which is a scalar parabolic

divw‘t:() =0
equation, by the uniqueness of its solutions we get divw = 0. Thus w is of form
w = V X function and since wy = curlug we set w =V X u
Now that we have prove that w = V x u we will prove that the vorticity equation gives
the first equation of Navier-Stokes.

Dw

E:VAUJ

D
Ecurlu = vAcurlu

D
curl (DltL — VAu) =0

Thus % — vAu is of form % — vAu = V function so we get this function to be -p

% — vAu = V(—p) which is the first equation of Navier-Stokes O

So

Now we will see the 3d case

Proposition 2.2.9. Let u be a smooth velocity field vanishing rapidly as |z| tends to
infinity then the 3d Navier-Stokes equations

%u%—zjuj%u: ~Vp+vAu u€R?

divu =0 (z,t) € R3 x [0, 00] (N.S)

Uly—0 = up

24 matrices product

o8



Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

are equivalent to the vorticity-stream formulation, which is an evolution equation of w

{éiw + X, Kalulgiew = VEalwlo + viw (V.SF)

wli=o = wo = curlyy
Where u = Kslw] = fg2 Ka(e — y)w(y)dy with K(a)h = =28
The proof of this proposition has the same logic as the proof for the two dimensions.

Proof. (=) Assuming that u is a solution for the (N.S), we will prove that w = curlu
is a solution for the (V.S.F). Since divu = 0 and w = curlu the Biot-Savart law defines
the velocity field u. Furthermore, the initial condition is satisfied, so we have

aatcurlu + ZJ: uj 6)?Cjcurlu = Vucurlu + vAcurlu

Let’s start the calculations

Quz _ Oug

gacg gfl‘g

— | 9w _ ow

curlu = drs o)

Qug _ Ouy

ox1 Oxo

Additionally

Oup (Qus _ Qup ) | Oui (Qui _ Qus) 4 Oui (Quy _ Ouy
6331 812 623 a(Ez 81‘3 83:1 8:E3 8:E1 8:22
— | Oua (Ouz _ Ouz Qup (Our _ Ous Qug (Quz _ Ouy
vucurlu - Ox1 \ Oxo oxs + Oxo \ Oxs ox + Ozxz \ 0x1 Oxa

Qus (Qus _ Qup ) 4 Ous (Ouy _ Qus) | Ous (Oup _ Ouy
Oz, \ Oxo oxs Oxg \ O3 o0x1 Oxs \ Oz 0o

Since it is just calculations, we will check the first component of this vector equation
and the other follows.

O (Oug Oup), =~ O (Oug Oup, =~ O (Ousg OQup) =0 (Ouy Ouy
ot \Ozy  Oxz) ' “0x; \Oxo Oxs) 209 \Orxa Ox3)  ~Ox3 \Ozy Oxs
_ 0w (Ous Oup)\ Ow (Our Ous\ Our (Ouy Ow) 0% (Ouz Oup
- 8.%'1 (93?2 81’3 8952 8:6'3 8.%'1 81‘3 8901 Bxg 8;12% 8902 8903

82 8U3 8U2 82 8U3 8u2
T I
O0x3 \Oxy Oz Ox3 \Ozy  Oxs

We substitute the first terms by the Navier-Stokes equation

0 <_ 8U3 8U3 8U3 8%3 8%3 aQU3 ap)

—_ U] — — Uy — — U3—— + V v +v —
0xo ! ox1 2 0x9 3 Oxs Oxy 833% 833% oxs

_0 (O 0w | 0w O Oy Puy  Gp
Oxs ! ox1 2 0xa 383:3 8x% 3x% 81:% O0x9

pg O (Ous _Oup O (Ous Oup) O (Ous Oup
! 8$1 8132 8333 2 8132 8ZE2 8563 3 8ZE3 8932 6953

99



Chapter 2

Our (Ouz 0w
al’g 8x1 3172

P (0w
3:17% Oy Oxs)

_871131 6@ 81'3
0 (‘9“3 _ 3u2>
O0x2 \Oxy Oz
D%us
Oxo 011 “ 0x1019
Bus Bus
8x28x2 v 8
Oug Ous 9%us
O3 0o 2 O0x0013
0? 0%us
+8x2§x3 T 0x10x9
P ououg
83:% 0x1 0o
0u1 6u1

83’LL3
6:1:3 61'2

Oxro \Ox3 O
_, % (6“3 _ 8“2>
Ox2 \Oxy O
o D%us
Ox3
0?p
Oxo0x3

82 us

Ouq <81¢3_(‘9uQ>_8u1<8ul_8us>_

So
0%us

u3
858281‘3
82u2
Ul
813181‘3

8U3 8u3
_ 8755287% _
8U1 8u2
81‘3 8x1
83UQ 33u2
V@x%f)xg B V&c%&zg
82’&3 aQUQ 32U3
- 0r10x3 Ox3 T 0ro2013 +us 0ro013

Our Quy 0wy Our | O Qg Ous Qs
83:1 31'3 61'2 8.’E3 3282 8951 6953 (91’1
63U2 83U3 83’&3 83U3 83U2
Y 0r20rs | 018 | 0120wy | Ore042 | 0a3

r10T3 5 {02 T20x3 T3

8:752 81’2
8311,3
* V@xgaxg
au:g 8u2
axg 81‘3

82u2

v 831@
- 3
Ox3

u3

+ U2

V@m%@xg v

Hence
8u1 6U3
(91‘1 8.%'2

Oug Oug Ouz Oug

8$2 &%2

Oug Ous Ouy %

87361 8903

811,3 BU3
8.%‘2 8.%'3

=0=

81’3 83}2 8903 81‘3

dug

—divu + 8—dlvu =0
83:2

Ox3

2.2. The vorticity-stream formulation for incompressible fluids

=0

I.e. 0 = 0 which always holds, so the w; satisfies the first component of the vorticity
equation. Doing the other calculations we have the same results also for we and ws so
we conclude that w = curlu solves the vorticity equation.

(<) Let’ s do the 0pp0s1te

Assuming that there is an w which solves the vorticity

equation 3tw +2; K3lw ]am w = VK3w]w + vAw we will prove that the u, which we

determine by the Biot- Savart law is a solution for the (N.S).
Remark: u is a SIO all the derivatives are in the distribution sense.
Firstly, we will prove that u satisfies the incompressibility condition.

1 1 1
divu = uy Ous _ tr[Vu]*® =P.V. [ — 5
6(131 477 | |

We can easily see that triW = 0 let us calculate the trace of matrix R

811,2

83}2

Oxs r3 4w |z —y|3 g

tery

(1 —y1)(22 — y2)ws(y)
—(z1 — y1)(z3 — y3)w2(y)
(1 — 1) (23 — y3)w1(y)

trR =+t
e —(z1 — 11)2ws(y)

(21— y1)*wa(y)
—(1 — 1) (22 — y2)wi(y)

%35ee proposition 3.2.7

(22 — y2)2W3(y)

— (22 — y2) (23 — Y3)wa(y)

(z3 — y3) (22 — y2)wi(y)

—(w1 — y1)(z2 — Y2)ws3(y)

(z1 —y1) (w2 — y2)wa(y)
—(z2 — y2)2w1 (y)

60

(w2 — y2) (w3 — y3)ws(y)

— (3 — y3)*wa(y)

(w3 — Z/3)2w1(y)
—(z1 —y1) (w3 — y3)ws(y)

(r1 —y1) (73 — y3)wa(y)
— (72 — y2)(z3 — y3)wi1(y)




Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

= (z1 —y1)(z2 — y2)ws(y) — (z1 — y1)(x3 — y3)wa(y) + (x3 — y3)(x2 — y2)w1(y)
—(@1 —y1) (w2 — y2)ws(y) + (21 — y1) (@3 — y3)wa(y) — (w2 — y2) (23 — y3)wi(y) =0
Thus divu =0
Now we can use the lemma since w solves the vorticity the divw solves the scalar
parabolic equation
%divw = vAdivw
with initial condition divw|i—9 = 0 so by the uniqueness of solutions divw = 0, so w is
of form V x function by taking into account the initial condition of (V.S.F), we have
w = curlu
We use the vorticity equation and substitute the w with curlu and we aim to reach the
Navier-Stokes.

D
Htcurlu = Vucurlu + vAcurlu

We will write down the curl of this vector field, but we will not do substitutions since
its derivative in the distribution sense is a little bit complicated.

8’!13 8u2

_ | u Jua
curlu = ors — Oz
8uz _ 8u1

o1 0z

We will see each term individually :

o)

— du
° Ecurlu = curl 5

°* > uja%jcurlu =2, ujcurl%’;
By the identity V x (fF) =f(VXF)+ (Vf)x F we get

ou ou
E " curly = e
u] -curlu = % {V X <uj 8xj> Vu,; x amj}
= E curl (u] ) E Vu,; x 87

For the second term :

ou ou ou
Vu1><81+Vu2><8 +VUBX873

Oui Ous Ouy Ous Oug Jus Ous Ous Ousz Ous Oug Ous

a$2 axl 8903 83?1 8902 81’2 8x2 81’3 8x2 81’3 83:3 81’3

— u1 oul _ ouj oug U2 Juy _ Ouz 0us ous _ Ou3 Jdus
- 613 81‘1 8$1 81‘1 8523 81‘2 8gc1 81‘2 8333 813 8331 813
Ouy dus Oouy O Oug 3 Oua ug Oul

Ox1 Ox1 Oz 812 + 8x1 812 Ozo 812 8331 813 Ozo 813

_ Ouy [ Ous + Oug \ _ Ouy (Our _ Ouz ) _ Oui [Ouz  Our
8CE1 (9£E2 82133 62132 813 621 323 811 83:2
_ _Ouz (Ouz _ Oug ) _ Ouaz (Ouir _ Ouz \ _ Ouz (Ouz _ Ous _ .26
- oz, \ Oz oxs Oxo \ Ox3 oz Oxz \ 01 Oz =—Vu curlu
_Oug (Oug _ Oup ) _ Oug (OQuy _ Ouz\ _ Ous (Oup _ Ouy
ox1 \ Oz2 Oxs Oxs \ Oz o1 Oxs \ O 0z

26 matrices product
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Finally
0 ou
gj uja—xjcurlu = gj curl <uj 8:@) — (=Vu - curlu)

e vAcurlu=v3}_; %curlu = curl(rvAu)
J

Therefore we get that

D
—curlu = Vu - curlu + vAcurlu

Dt

is

curl 2\5 + zj: ujgxuj —vAu | = Vu - curlu — Vucurlu = 0

So % — vAu is of form V function. Assume that this function is -p then

D
FT; =-Vp+rvAu

which is the Navier-Stokes OJ

We note that the formulation for the Euler arises by taking v = 0.
Firstly we have the corresponding lemma

Lemma 8. Let u be a smooth velocity field in RN which is divergence free and vanishes
rapidly as |z| /oo . Assume a vector field solving the above equation:

D
Byt = Vb (1)

8

which is a convection-diffusion equation®®. Then the divb solves the scalar equation

D

proof of lemma:
We take the divergence of (1) and we get :

. Db
leE = div(Vu - b)

We will see each term individually
o divE
0 0

: 8%1 5
%bN +Zj Uj%bN !

2"matrices product
28[39], Chapter 3
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Chapter 2
0 0 0
0 [0k Dby o ( b 0 ( Oby
= 0t | 0my amhg[axl <“Jaxj>+'“+am <“ax)]
0 8u 8[)1 8251 8’LL 8251\7
— Zdivb+ =4 , J ,
ot oz oz; Y w0, orn T " Banoz,
0 auj 861 8Uj (%N
Edwb ; (8.731 8CC] 8:CN 8a;j
0%b; 0%bn
+Zu] <8$18?L‘j afL‘NaCCj>
50 Db P du; b
“_9g 9 guj o1
div = = divh + ; U g divb Z}: 5 9,
o div(Vu - b)
ou ou ou ou
879:1 ﬁ by by 8:(:1 +...+ by 89511;
ou ou ou ou
Tgc]f ﬁ by bamjf"i_"'"i_bNﬁ
% o[ o 9
. Ul Uy
b) = — |b1— b
div(Vub) P [ 9, +...+ Naa:N] +
0 GuN 8uN
+7(93;‘N [bl 7(9.1‘1 +...+ bNaxN:|
0 Ouq 0 Oun
= — i— A b;
8331 (Zj: b] 8$]) + + 8$N (ZJ: J 8:6]' )
o 8bj 8u1 8bj 8U,N
(; 8951 (%cj + ; 8wN 8wj )
2 2
Ul 0“un
+ (; b] 83:18xj Tt + Z J 6xN8xj)
0b; Ouq 0 [ouy oun
— bt b et Jun
sz: 8131 8$] + ZJ: J 895]- {8951 + Q:EN]
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Since u is divergence free

div(Vu - b) Z ob; %

8SUZ' axj
Finally
5 ‘ Ouj Ob; <~ Ouj Ob;
aleb +(u- V)divd + ZZJ: Ox; Oxj lzj: Ow; O
D .
Ftdwb =0

We continue with the two dimensions, we have the following proposition

Proposition 2.2.10. 2 Let u be a smooth velocity field vanishing rapidly as |z| tends
to infinity then the 2d Euler equation

%zﬁ— Zjuj%u =-Vp uecR?
dive = 0 (z,t) € R? x [0, 00] (E)

U\t:O = Uup

are equivalent to the vorticity-stream formulation, which is a scalar evolution equation
of w

{ath Kslw ]ax w=0 V)

wlt=0 = wo = curlug
Wh Kslw Ko dy with Ky(z) = L (=23, 7,
ere u = Kow fRz 2(r — y)w(y)dy wi 2(z) = 2r \ 2?7 [2]?

Remark:In (V.E) we have no information about the pressure, which is an unknown
quantity in the (N.S). So if we solve the (V.S.F) then by the Biot-Savart law we will
determine the velocity field. In the first section of this chapter, we have seen the Leray

formulation, we will determine the pressure by the formula Ap = — Z” g;; 81:;] The

proof has the same logic as the proof for the Navier-Stokes.

Proof. (=) Let u be a solution of (E) we will prove that w = curlu solves the (V.E).
Since divu = 0 and curlu = w, the Biot-Savart law determines the velocity, furthermore,
the initial condition is satisfied, so we have:

O (Quz Owy O (Ouy Qw0 (Oup Ou) _
ot \ 9z, Ozo Yor, \ oz, 0y 200y \ Oz, Oxy)
We will do the calculations

15) 8“2 0 8u1 0 8u2 0 8'&1

9t 0n;  0t0ms oz, 0m1 9z 01y

29 [42]
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

tu 9 Oup 0 Our _
2(9.%'2 81‘1 26%2 81‘2
So
i%_i%HL 9 Oup 9 Ou
ox, Ot  Ozo Ot Yow, 0x; Oz, Oxy
+Wi%_ 9 Our _

8902 8.7}1 uz@% N

We substitute the two first terms by the (E)

0 <_ Ous Ous 8p) 0 <_ Ouq Ouq 8p>

87.%1 UIai:Cl T 8902 8952 B 87.%'2 187331 12 81'2 8.%'1
gy 2O 00w OOz O Ow
1&%1 8331 13I1 8332 28I2 8331 281‘2 83:2 N
So
_ombuy | Ouy Ousluy | Bua _ &p
Ory 0x; ' 022 0w Oy CO0r0xy  Ox101y
Ouq Ouq 0%uy Ous Ouq 0%uy 9%p
83:2 8.%‘1 63:18372 8.%'2 81‘2 8%2 63:28951
82u2 82u1 aQUQ 62U2
T 81’% - 61‘161’2 + 2 81‘161’2 w2 856% =0
Thus

Ouy Quz _ Ouy Quy | 0wy Oy | Ouz Oy _
8561 8901 8:1:1 8332 89:2 8:61 8:6‘2 8$2 N

Ous <8U1+5U2>+3m <8U1+8UQ>_0

~ Ory \ Ory 0xo dxy \ Oz, | Oy
gzdivu + gz;divu =0

I.e. 0 = 0,50 w = curlu solves the vorticity equation
(«=) Let’s do the opposite. Assume that there is an w, which solves the vorticity equation

Dw

ot~

we will prove that the velocity u which is given by the Biot-Savart law is a solution
for the (N.S). From now on since the velocity is a SIO the derivatives are taken in the
distribution sense.

Firstly we will prove that u satisfies the incompressibility condition.

. 8’LL1 8UQ
divy = 24 4 922
e 81‘1 + 8.%2
1 2(z1 — y1)(2z2 — y2) 1 / 2(z1 —y1)(v2 — y2)
= —P.V. dy — —P.V. dy=20
2 /R pogpt YTV T oy S
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

D 73 _
mdlvw =0

From the lemma 8 we proved we have which is a scalar parabolic

divw]t:() =0
equation so by the uniqueness of its solutions divw = 0. Thus w is of form w =
V X function and since wg = curlug we set w =V X u
Now that we have prove that w = V x u we will prove that the vorticity equation gives
the first equation of Euler.
Dw
— =0
Dt
%curlu =0

Du
]_ _ =
cur < r ) 0

Thus % is of form % = V function so we get this function to be -p % = V(-p)

which actually is the first equation of Euler. O

So

In the 3 dimensions we have

Proposition 2.2.11. Let u be a smooth velocity field vanishing rapidly as |z| tends to
infinity then the 8d Euler equation

Su+ Zjuj%u =-Vp uelk?
divu =0 (z,t) € R3 x [0, 00] (E)

Uli—o = ug

are equivalent to the vorticity-stream formulation, which is an evolution equation of w

%w + Z]’ K?)[w]a%jw = VK3[W]W (V.E)
wli=0 = wo = curlug
Where u = K3|w] = Jre Ks(z — y)w(y)dy with Kz(z)h = ﬁ%g

The proof of this proposition has the same logic as the proof for the two dimensions.

Proof. (=) Let u be a solution for the (E), we will prove that w = curlu is a solution
for the (V.E). Since divu = 0 and w = curlu, the velocity field, u, is determined by the
Biot-Savart law. Furthermore, the initial condition is satisfied, so now we have:

gcurlu + Z Ujicurlu = Vucurlu
J 81,‘]'

ot
Let’s start the calculations
Qug __ OQua
e
_ | 9ws _ 0w
curlu = oes ~ O
Qug _ Qui
311 81‘2
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Additionally

Ouy (Qug _ Qup ) 4 Ouy (Quy _ Qus) 4 Ouy (Oup _ Ouy
Oz, \ Oxo Oxs Oxo \ O3 o0z Oxs \ Oz Oxo

_ Ous ous o Ous Ouao Oduy _ Ous Oua OQua _ %
VUCUTIU = 971 Oz 3 + Oxo Oz3 0x1 + oxs o0x1 Oxa
Ous [ Ouz _ Oug + Ouz (Ouy _ Ous + Oug (OQuz _ Oux

Ox1 \ Oxo Ox3 Oxo \ O3 ox1 Oxz \ Oz Oxo

We will check the first component of this vector equation and the other follows.

O (Oug Ouz), O (Ousg Ouz) =~ O (Oug Oup\,  ~—~O (Oug Ous
at axg axg ! 8$1 8952 8333 2 6932 8232 81‘3 3 8333 8562 8.1?3
_ Ow (Ouy Oup) | Our (Our  Ougl , Owy (Ouz  Ow
N 8:61 8.1‘2 a$3 81‘2 81‘3 8:61 0$3 61’1 83}2

We substitute the first terms by the (E) equation

0 <_ 8U3 3U3 (9’U,3 617 )

87.%2 “ 871‘1 2 8.%'2 s (9.1‘3 6303
_ 9 (_, Ou_ Ou | Oux Op
8373 ! 8:61 2 8%2 3 81’3 8x2

g O (Qus _Oup\ O (Ous Oup) O (Ouz  Ou
! 81‘1 61’2 61'3 2 61’2 8{[}2 &ch 3 81‘3 81'2 81‘3

Ous <8U3__5m2> Ouy <0U1__5m3> Ou <3U2__3U1>0

_871'1 an 81‘3 _8752 81’3 81‘1 _871'3 Bxl 8952
So
(Owlus | Dus  Oupluy | Dus OusOuy - Ou
Ory O0x1 ' Ox10rg  Org Oy 023  OwoOrz Or9dus
__ O  Oumbuy  Ouy | Oupduy | Oup | Duzluy O
Orodxs | Or3 Oy Ow1Ory  Owsdwg  Owedrs | Owzdxz Ox
%p 0%us 0%us 0%us 0%us 0%us

8:62(9.1‘3 T 8x18:r2 - (9%'16:&; 2 61‘% T 6$28.%'3 s 83028903

0%uy 8u1% Oouy Ous  Ouy Oup  Ouy Ous  Ouj Ous aul%

s 6:v§ B 87.%'181‘2 8$1 &%3 8.%‘2 8%3 81’2 83}1 6)903 81‘1 (971‘38.%'2 -

Hence

_%% Ous % Ousy % Ousz Ous  Ouy Jus N ouq %

=0=

8%2 8%2 - 87332 (91113 87173 81132 + 81’3 8.733 8331 8:62 37.%1 81’3

8U3 8’&2

—divu + =——divu =0

633‘2 8$3
L.e. 0 =0, so the w; satisfies the first component of the vorticity equation. Doing the
other calculations, we have the same results also for wo and ws for the second and third
components, so we conclude that w = curlu solves the vorticity equation.

(<) Let’s do the opposite. Assume that there is an w which solves the vorticity equation
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

Lw+ > Kslw ]8:5 w = VEK3[w]w we will prove that,u determined by the Biot-Savart
law is a solution for the (N.S).
Remark: u is a SIO, so the derivatives are in the distribution sense.
Firstly, we will prove that u satisfies the incompressibility condition.
8’LL1 8uQ 8U3 1 1 3

1
divu = —— =tr[Vu]** =P.V. | ———trW — ————trRd
v 0y T o Oz * s O3 iVl r3 4z —y|3 g 4 |z — y|5 Hey

We can easily see that triV = 0, we will calculate the trace of matrix R

(1 —y1)(22 — y2)ws(y) (22 — y2)2w3(y) (72 — y2) (23 — y3)ws
—(z1—y1) (23 —yz)wa(y) —(22 — y2)(z3 — y3)wa(y) — (w3 — y3)*wa(y)
R -t | @1 yi)(zs —ys)wi(y) (23— y3) (22 — y2)wi(y) (z3 — y3)*wi(y)
—(z1 — y1)*ws(y) —(z1 —y1) (22 —y2)ws(y) —(21 —y1) (23 — y3)ws(y)
(z1 — yl)ng(y) (1 — y1) (22 — Yy2)w2(y) (r1 — y1) (w3 — y3)wa2(y)
— (21— Y1) (22 — y2)w1(y) — (22 — y2)%wi(y) —(z2 — y2) (73 — y3)wi1(y)

= (21 —y1)(x2 — y2)ws(y) — (z1 — 1) (23 — y3)w2(y) + (23 — y3)(v2 — y2)w1(y)
—(z1 —y1) (72 — y2)ws(y) + (21 — y1) (23 — y3)wa(y) — (22 — y2)(z3 — y3)wi(y) =0

Thus divu =0
Now we can use the lemma 8 since w solves the vorticity the divw solves the scalar
parabolic equation

Ftdivw =0

with initial condition divw|;—9 = 0 so by the uniqueness of solutions divw = 0, so w
is of form V x function by taking into account the initial condition of (V.E), we have
w = curlu

We take again the vorticity equation and we substitute the w with curlu and our aim
is to reach to the Euler equation.

D
—-curlu = Vu - curlu

Dt

We will write down the curl of this vector field, but we will not do substitutions since
its derivative in the distribution sense, has a complicated form.

Ouz _ Oug

o

_ | Qur _ Ous
curlu = Oes 0z
Ouz _ Ouy

311 81‘2

We will see each term individually :

il _ du
° Ecurlu = curl n

305ee proposition 3.2.7
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

> uj%curlu =2 ujcurlé%
By the identity V x (fF) = f(V x F)+ (Vf) x F we get

Zu]—curlu = Z [V X (u];);j) — Vu; x g;ﬂ
J
= Zcurl (u] oz, ) Z Vu,; x 8$

For the second term :

ou ou 0
VU1X81+VUQX8 “rVUgXTU;)

Ouy Ouz _ Oug Oua Oug Ouz _ Ouz Oua Ougz Ouz _ Ouz Oua
ax2 8£B1 8333 8£E1 8332 8CE2 8:22 8:E3 8:22 8:E3 awg 83:3
o Ouy Ouy Ou1 Oug us Oul uo dug OJuz Jdug OJusz Jus

- dxs O ox1 Ox dxs O ox1 O 8:}0 8:1: ox1 O
Bufau;_aiuiil_i_ Ous Ous  Oup Ous | Ous 3_67@£

8901 (91?1 8901 8362 8:}01 8362 awz 81’2 + 8$1 81’3 awg 81’3

_Ouw (Quz 4 Oup ) _ Ou (Quy _ Qus) _ Ous (Quy _ Ouy
ox1 \ Oz oxs Oxs \ Ox3 oz Oxz \ Oz Oz
_ | _Oua (Ous _ OQua | _ Oup (Qui _ Ouz ) _ Ouz (Qua _ Oui - _ .31
- ox1 \ Oz Oxs Oxs \ Ozx3 o1 Oxs \ Ox1 0z =—Vu curluy
_Ouz (Ouz _ Qua\ _ Ous (Qui _ Ouz) _ OQusz (OJua _ dux
oxr1 \ Ox2 oxs Oxs \ Oz o1 Oxs \ Ox1 0x2
Finally
0 ou
u; ——curlu = curl ( u;— | — (=Vu - curlu
Z J 8:):j Z J 8.7}j ( )
J J
Therefore we get that
D
—-curlu = Vu - curlu
Dt
is
ou ou
curl | — + u;i— | = Vu - curlu — Vu - curlu =0
8t Z ]al’j
J
So D 7 is of form V function . Assume that this function is -p then
Du
A VA
Dt b
which is the Euler equation. O

Finishing this chapter, we observe that those two formulations have some similarities.
In Leray’s formulation, we link the velocity with the pressure while, in the vorticity-
stream formulation, we link the velocity with the vorticity, and in both cases, we have
reached an integral operator. These formulations will play a crucial role in the further
analysis, specifically in Chapter 4.

31 matrices product
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CHAPTER

A PRIORI ESTIMATES VIA ENERGY
METHODS

In the first chapter, we discussed some physical properties of the fluids, and we have
seen that for inviscid fluids the kinetic energy is a conserved quantity. For viscous fluids,
we have the following result:

Proposition 3.0.1. Assume that u is a smooth solution of the Navier Stokes, vanishing
rapidly as |z| tends to infinity. Then

d
—F = —1// \Vu|?da
dt RN

Proof. We know that E = 3 [0y |u|?dx

50 d d (1
—F=— / u|?dx
dt dt 2 RN

By Leibniz integral rule we obtain

d 1 0 1 ou
—FE=—[ Zjufde==[ 2u-—d
TR L 2/RN T

By Navier stokes we get

0
/ 2 - Zu‘;j—Vp—i—l/Au dx

ILe.

We will see each term individually

¢ Ou; .
o [pnu-Vp= [on > ujé% de =73, Jew ujaanj de =73, Jan Wujp dx = [pn p dive dz =
0

Ou; _ Ou;
o fanu-; “ja% do = [pv 32 ui ), azj dz =3 Jan ui“j%uj da

Consequently
Ou;
/ uiuj—l dx
RN 8.T]
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Chapter 3 3.1. Energy methods

by integration by parts gives

0 ou; ou;
—(uu;)u; de = el 1.73 i d
o~ 92 (uwjuj)u; dx /]RN (ujaxj +u 6%) u; dx
Finally [pnu)’; u]-(%‘jdx =0
. f]RN u - Audr = fRN Vu-Vudr = fRN |Vu|? dx

So

d
—F = —1// \Vu|?dx
dt RN

Remark :

1. If v = 0, then we have th same rsult as in chapter 1.

2. Since viscosity is a positive quantity, the sign of the derivative of the kinetic energy
on time is negative, so the function of kinetic energy is decreasing through time.

3. By the simplified Gronwall lemma in Chapter 1 we have that

/ |u|2dx < uge® = ug
RN

The fact that we have proved a bound for the kinetic energy, gives us the idea to continue
with energy methods(L? estimates).

3.1 Basic energy method for the solutions of the Navier-
Stokes and Euler equations

Proposition 3.1.1. Assume that v and w are two smooth solutions of Navier Stokes
equation with external forces F, and F,, inL? and the same viscosity v > 0. Furthermore
we suppose that these solutions exists on a common time interval [0,T), and for fixed
time decay fast enough so that v,w € L?(RY)

Proof. Let 4 = v — w,p = py — Pu, F = F, — F,, Since v, w are solutions to the Navier
Stokes we get

%U — %w = —Vpy, + Vpy + VAV — vAw
divo — divw =0
V]t=0 = wlt=0 = vo — wo

We will use the first equation

;U—F(U-V)v—gtw—(w-V)w:—V(pv—pw)+VA(v—w)+(FU—Fw):>
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Chapter 3 3.1. Energy methods

%u—i—(v Vv — (w-V)w=—-Vp+vAi+F

We want all terms of this equation, to be related with the @ so
(v-Vo—(w-Vw=@w-V)v—(v-Vw+ (v-V)w— (w-V)w

=w-V)v—w)+[(v—w) Vw=(v-V)i+ (a-V)w

Eventually
at a(v-V)a+ (i-Vw=—Vp+vAi+ F
diva =0
=0 = o

We continue by doing a usual step when we do energy methods, i.e. we multiply the
first equation with the @ on L?, so we get

/ (iuﬂv V)i + (@ 'V)w>'ﬁdw=/RN(—Vﬁ+uAa+F)-adx;»

/ gﬁﬁ dx—i—/ [(v-V)a]-u daH—/ [(a-V)w]-t de = — Vp-u de+v A daf—i—/ F-u dx
RN 8t RN RN RN ]RN RN
We see that

° fRNAﬂ-adx:—fRNVﬂ-Vﬂd:n

o Jun VD adr =32 [on 55 4 do
Integration by parts gives — Zj fRN ﬁ%&j dr = — fRN pdivi dx =0

o fenl(v- V)] Gide =3, [onv; ng Ui tidx
Lets examine the fRN vj %ﬂiﬂi dx
J
: . Jd (=~ ~ _ ~2 0 ... ~ 0 ~.
ISntegratlon by parts gives [y Wj(uivj)ui dr = — [pn U B2 Vi dz— [n UV 7y~ U dz
)

_— — 2 P
2Z/Nu,v]axjulda:— ZZJ-:/RN @ax%dm Z/RN divo dx =0

So we have

/u i dx + v vwvam:-/ [(11~V)w]-1]dx+/ F i dx
RN RN RN RN

Le.

1 1
(/ || dx) P4 (/ bl dx> 2+u/ VaV-i dr = —/ [(@V)w]-a dm—i—/ Foide =
RN dt ]RN ]RN RN RN

d -
@] 2 —||i]| 2 + u/ \Viida < / (@ V)] - @ do +/ Fade=
dt RN RN R

N
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Chapter 3 3.1. Energy methods

</RN‘W’2dx>TS/Rw[w'v)w]‘ﬂd“/wﬁﬁdw

For the integrals on the right side of this inequality we will use Holder inequality !

It follows that
/ F’-&dwﬁ‘/ ﬁ'-ﬂdx‘g/ |F - @] dz
RN RN RN

We know that @ and ' € L? so [pn Fidz < ||F||z2]|a] 12
Furthermore

il Ll g +
u L2dt u 2 1%

/RN[(ﬂ-V)w]-ﬂd:r:/ (Vw @) - ide

RN
Since w decay fast enough such that w € L? we have that Vw € L*> 2 additionally
€ L? so [pn[(@- V)w] - ade < ||Vl |al|g2]|al 2 = | Vw] e |[a] 7
We conclude to this relation

o do _ ~ _
[@llze N1l < Vel llze + 1 2zl 2
Assume that ||@|| ;2 # 0 we have that :
d ., 5 ~
gpltlle: < Vwllzelal 2 + [[F]] 2

Now we will use the following lemma

Lemma 9 (Gronwall s lemma). 3 Let I be an interval on the real line and u,q,c non
negative continuous functions on I with c differentiable if

q(t) < e(t) +/ u(s)q(s) ds,Vt e I (H)

then .
4(t) < e(t) + / (s)u(s)el I ds t e 1 (R)

proof of lemma
t
We define p(t) = e~ Jo #(5) 4 [T4)(5)q(s) ds and p(a) = 0 Then

t
a

d - tu S S !
5P = ult)e Jouts) d (q(t) - / u(s)q(s) dS)
By the H we have

%p < ult)ye- Jhuts) ds (c(t) + / " u()(s) ds — / u(5)a(s) ds)

! Assume two measurable functions f and g and let p,q € [1,00] with % + é = 1 then || fg|l11
£l llglla

here Vw is a matrix, but this is not a problem since, let’s think the Vw as a vector i.e. Vw =

8%110, e %w), then the L infinity norm is the supremum of the magnitudes of a%iw, which is, of

IA

course, the definition we have about the L infinity norm of a matrix i.e The L infinity norm of a square
matrix is the supremum of the absolute row sums
*[23]
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The integral of non negative function is an increasing function so we get

p(6) - p(@) < [ clspuls)e 10 ds

So since p(a) =0
t .
p(t) < / C(S)u(s)e_./a u(r) dr ds

Substituting p(t) with its equal we have

t ¢ ¢ s
e~ Ja uls) ds/ u(s)q(s) ds < / c(s)u(s)e” Ja ulr) dr gg

t ' . S
/ u(s)q(s) ds < eJa u(s) ds/ c(s)u(s)e” J3ulr) dr g
a a
Therefore . t
/ u(s)q(s) ds < / c(s)u(s)ef: u(r) dr g
Again by H
t
Q(t) - C(t) < / C(S)u(s)eft u(r) dr ds

How will we apply this lemma to our relation?
For notation convenience we set

lal| L2 = q(t)
[Vwl|zee = p
1F] L2 = =(2)
Thus J
274(1) < pa(t) + 2(t)

We integrate over (0,t)

/Ot %q(S) ds < /Otpq(S) d8+/0tZ(8) ds

t t
q(t) < q(0) +/ pq(s) ds +/ 2(s) ds
0 0
We set ¢(t) = ¢(0) + fg z(s) ds So we reached to the relation
t
q(t) < c(t) + /0 pq(s) ds

By the lemma
t
q(t) < c(t) +/ pc(s)efstpd’" ds =
0
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q(t) < c(t) — /0 c(s)diefi pdr g

S

By integration by parts to the right side we have

g(t) < clt) — [c(s)efi Pd’"} oo™ /O t <jsc(s)> elirdr gg

t t t t
q(t) < c(t) — c(t)els P4+ c(0)elo P I 4 / <dc(s)) el P gs =

0 ds
5
t
a(t) < c(0)els P 4 / ()6l P gs
0
: t , .
q(t) < q(0)efo? @ ¢ / As)ehopdr=lspdr gg
0
Consequently
t
q(t) < Q(O)eﬁpdr + efotpd’"/ z(s)e Pds =
0
6

t t t
q(t) < q(0)eoP ¥ 4 chop dT/ z(s) ds
0

We have reached to

g(t) < el (q<o> + /0 2w du)

Taking the supremum over this relation

, ¢
sup q(t) < sup [efopd” <q(0) +/ z(u) duﬂ
0<t<T 0<t<T 0

Let us check the right part, because our functions are non negative we use the fact that
supab < supasupb

sup [efotpd" <q(0)+ /0 tz(u) du>] < sup eloPd gup (q(0)+ /0 tz(u) du) =

0<t<T 0<t<T 0<t<T

sup_elo” " sup (Q(OH /0 tZ(U) du) < <q(0)+ /0 Tz(u) du> elo pdu

0<t<T 0<t<T

4we see that

d [tpdr ftpdrd ! [tpd d d ) [tpd
a ! _ Jipdr @ dr = elspar ([, %4 @ 9 dr) = —pelirar
ds© © ds J, par=c Ps pdss+ s as? " be

*We see that <-c(s) = <& (f; 2(u) du + q(0)) = = [ 2(u) du = 2(s)

Ssince p, s are positive i <1

"The integral of non negative functions is an increasing function

76
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Finally
T ~ T
sup [l < (Hfélt:oHL? [ 1A dt) oI IVl di (Ene)
0<t<T 0

O
Remark

1. In this proof, we observe that the viscosity v is absent, so this energy estimate for
the solutions of the Navier-Stokes equation, holds for the solutions of the Euler.

2. If there are two solutions for the same problem, we have the same initial conditions
and external forces, so the above estimate imposes the uniqueness of the solutions.
Let u1,us be the solutions then F' = 0 and @], = 0 50 we get that supg<,<p || @ 12 <
0 which gives that u; = ug a.e.x o

3. For viscous fluids from this estimate, we can seek a gradient control for the solu-
tions.
We take the relation

od - . ~ -
e g lillzz + vIValZe < 19wl @3 + 1 Fll izl e
1d
2dt
We integrate this relation over time

lall7: + vlIValie < [Vwlrelalza + [1F] g2 ]la] 2

T4 T , T , T
| gl aew [ 1ValEa < [Vl il e [ 1Pl

1, _ L
3 (lahrls = aleolfs) +v [ IVl e <

T T
(sup HMI%z)/ [Vwl|zee dt + ( sup HﬁHLz>/ 1) 2 dt
0<t<T 0 0<t<T 0

2
T T

V/ IVal7e dt < |lali=oll> + ( sup ”ﬂHL?) / [Vwl| oo di

0 0<t<T 0

T
+ sup [l / |Fll e dt
0<t<T 0

So by the energy estimate above

2
T T

4]0l 72 + ( sup HﬁHm) / [Vwl|zee dt + sup HﬁHm/ 1| 2 di
0<t<T 0 0<t<T 0

T 2

T . _
< filmollfa+ [ IVl de 25 1900 o <||ﬂ|to\|L2 + [ UFIL: dt)
0 0
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T
[ I el 17 (i + [
0 0

We do the calculations

T ~
VE o dt)

T T r
V/ IVallZ: dt < |lali=ol|Z- +/ [Vawllpoe dt o 1Vl @ g7,
0 0

2 T 2 (T v d T =
2 ol / [Vl poe dt €20 ITwllzos d / |F|l o dt
0

0
T ~
+ (/ | F|| 2 dt)
0

T T T 2 T
+ [Pl bt ideolsze Vw”wdw(/ ||F\|det) eI IVl dt
0 0

/ |Vw|| e dte2 lo IVwllzee dt
0

So . . i
v [ 19 < ool (14 [ 19wl dr o 190 )
0 0

_ T - r 2 (T |Iv a1 Tv dt
+2||u|t:0||L2/ 1B o dt / [Vl di €218 19l ey 2 o f 19wl
0 0

T 2 T " -
+ (/ 1F]] 2 dt> </ IVwl| oo dt €2 o 1Vellioe db g efo [Velles dt) =
0 0

T T
y/ Va2, dt < <ef0T [ Vw]| Lo Jr/ V| dt elo ||vu)Loo>
0 0

T T 2
[nmt:on%z T 2ileolly /0 VB2 dt + ( /0 11l dt) ]

T T 2
/0 V|2, dt < c(w, T) (umt:onp T /0 VEe dt)

In the next section we will use the energy estimate (Ene) to approximate the solutions
of the Euler by the solutions of the Navier Stokes.

Finally

3.2 Approximation of the inviscid flow by viscous flows for
v<<1

It is clear that we talk about the properties of the solutions. In this section, we will deal
with the relation between the solutions of the Euler and the Navier Stokes. We will see
some examples, and then we will conclude with a more general result. Firstly, we will
derive some exact solutions for the 3-dimensional case based on the matrix construction
in the first chapter.
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Proposition 3.2.1. Let D(t) be 3 x 3 real symmetric matriz with trace zero.
If we determine the vorticity by the ode

with initial vorticity w|i—o = wo
and the skew symmetric matriz ) by

Qh= %w X h
then )
u(x,t) = §w(t) X x4+ D(t) x x
and w
pla.t) = [ D(0) + D(t? + Q1)

are solutions for the 8 dimensional Navier Stokes.

Proof. Recall that for D and P determined in the same as in matrix construction on
chapter 1 we have that

D
ED+D2+Q2:—P+VAD

D
— 04+ Q9D + DO =vAQ
Dt + + v

We have to understand that this proposition gives us a specific class of solutions, so we
have no problem assuming that there exists a matrix D that depends only on time. We
will denote this matrix as D, furthermore, we assume the vorticity of the velocity field
u, which corresponds to the above matrix D, is w(t)

We define u(z,t) = tw(t) x z + Dz the vorticity of this vector field is

w(z,t) = Vxu(z,t) = = (wt)(V-z) — (V- -w(®t) + (z - V)w(t) — (w(t) - V)2)+Vx(D(t)-z) =

| =

(@, t) = %(:@(t) — W)+ V x (D(t) - 7)
Let’s examine V x (D(t) - )

(w1 d3a (8) + w2 dsa(t) + w3 dss(t))
— g (w1 don () + w3 daa(t) + w3 das(t))

(w1 dia(8) + wa dha(t) + w3 das(t))
(21 da1(t) + o doo(t) + 3 dos(t))

<
X
—
el
—
~
S~—
&
I
Qro

Q|

Tl

(w1 do1 (t) + w2 das(t) + w3 das(t))
— oo (@1 din(t) + w2 dua(t) + 5 dis (1))
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So
dsa(t) — das(t)
V x (D(t)-z) = | di3(t) —ds1(t) | =08
do1 (t) — dy2(t)
Consequently w(z,t) = w(t)
So by the vorticity equation we conclude that %w(t) = D(t)w(t)
By the symmetric part and since D has only time dependence we have that %f)(t) +

D(t)? + Q(t)> = —P(t) we also know that P is ‘the Hessian matrix of pressure so
p(z,t) = 3(P(t)z) - 2°. Eventually p(z,t) = —%[%D(t} +D#)?+Qt)Yz - x O
Now we will use this proposition to see some examples
-1 0 0
Example 1 Let D = 0 — 0 where v;; > 0

0 0 m+n
Then we define w(t) by the system of odes %w = D(t)w with initial value w|t—g = wg = 0

%M = w1
%wz = —2W2
%w:s = (71 +72)ws
Therefore
wy =cle Nt
wo = cge” 12 ¢
w3 = C3e(V1+’Y2)t

Substituting with t=0 we see that ¢; =0 so w; =0
—TNnr
By the above proposition u(z,t) = sw(t) x  + D(t) X x = —Y2 X2
(71 +72) 23
Furthermore Q- h = %w X h Vh so ) is the null matrix.
So we can compute the pressure p(z,t) = —%[%E(t) + D)2+ Qt))z -z = —1(vizt+
a3+ (71 +72)%a3)

Example 2 In this example we will see the case where 4 = v and v = —v so the
—y 0 0
matrix D= 0 v 0
0 0 0
—7T1
So by the previous example we have that u(z,t) = | a2 | and p(z,t) = —372(23+23)
0

We will expand this solution by assuming that in the coordinate we have a function
which only depends on the first coordinate of x i.e £1 an the time t.
So we seek a velocity
—7T1
u(x,t) = Yxo
us (xl, t)

8D is a symmetric matrix

H(p(z,t)) = J(Vp(x,t))T so Vp(z,t) = P(t)z and J(P(t)z)" = P(t)
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Chapter 3 3.2. Approximation of the inviscid flow by viscous flows for v << 1

For the pressure and the first two components of velocity, we know from example 2 that
they satisfy the Navier Stokes equation, so we will check the term ug

0 0 0 0
—us(x1,t) + ur s—ug(z1,t) + uvo—us(x1,t) + uss—us(x1,t) = 9257 + vAug(z1,1)

ot 81‘1 ox X9 81’3 ox

—us(x1,t) —yx iu (x1,t) = ya—2u (x1,1)

ot 3\L1, Y 18x1 3\L1, - (91:% 3\4L1,
Assuming now that v = 0 then we have a pair of solutions u(z,t) = (0,0, uz(x1,t)) and
p(x,t) =0.

Now we will see two cases

e =201 then

0
&’U,g(xl,t) =0
so ug(z1,t) = uz(r1,0)
e v > 0 then
82
au?,(xl,t) = Va—:l:%u;g(xl,t)

The above equation is the heat equation in one dimension so

7(11 v1)?

vt (xl ; )dyl

us(x1,t) =
3(@1 \/47rv

So far, we have two specific solutions for the Euler and the Navier-Stokes. Now, by the
following proposition, we will do an energy estimate for the difference of these solutions.

Proposition 3.2.2. Let the initial value for the velocity ug(z) be a decreasing function
such that |ug(z)| + |Vuo(x)| < M. Assume that ug is a solution as above for the Euler
and uy s a solution as above for the Navier Stokes, then

up(z,t) — uy(z,t)| < cM(vt)?

Proof.
|uE($17t) - UN(:Elat” = ‘(0,0,163(1‘1,0)) - (OaO,UzJ),V(-Tlatm

So we need to estimate |ug(x1,0) — ud (z1,1)|

Thus
N 1 —(@1—y1)?
luz' (x1,t) — uz(x1,0)| = e” i ug(x1,0) dyr — uz(21,0)
4ot
1 4
= e wtug(zy + y1,0) dyr — uz(21,0)
4ot

107t is possible for someone to question whether or not we are capable of achieving this. To clarify,
proposition 4.2.1 provides us with two solutions for the Navier Stokes. It is beneficial for our situation
that we have taken D and w to be solely time-dependent, as the term with viscosity disappears in both
cases.
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Chapter 3 3.2. Approximation of the inviscid flow by viscous flows for v << 1

We set ¢ = (yl so d¢ = di

We get

(vt)?

| e Tt + 0020wty b - u?,(m,m]

R V4mut

C2

(€4U3(561 + (v8)2¢,0) — ug(1, 0)> dg“’

5

R V4T
2
< c/ et ug(z1 + (v8)3C,0) — uz(1, 0)|dC
R

<e /R e (Jus(z1 + (v1) 3¢, 0)] — lua(z1, 0))dC

We set for convenience g(z) = |us(z,0)| and b = x1 + (vt)%C and a =7 .
2

So |u (z1,t) — us(z1,0)] < ¢z e’%%(vtﬁgdg.

By the mean value theorem there exists d € (a,b) so that ¢'(d) = g(b)=gla),

So we conclude that |[ul (z1,t) — ug(x1,0)| < c(vt)%g’(d).
We substitute

3}
ud (21, ) — uz(1,0)] < c(vt)? U3(x1,0)‘ .
81‘1
By the hypothesis |Vus(z1,0)| < M.
In conclusion |uf (1,t) — ud (z1,t)| < c(vt)%M. O

Remark:By the above estimate, if v \, 0, then the solution we construct for the
inviscid fluids approximates the solution for the viscous fluids.
By this example, we have the intuition that the solutions of the Euler may approxi-
mate the solutions of the Navier Stokes. The answer for smooth solutions of Euler is
affirmative.

Proposition 3.2.3. Assume that we have the Navier Stokes and the corresponding
Euler equation. We denote that u¥ and u® the solutions of each equation respectively.
Furthermore we assume that for viscosity 0 < v < 1y exists on a common time interval
and vanishes rapidly as |x| — oo then

sup |ju” — ’LLOHL2(RN) < c(u®, T)vT
0<t<T

Proof. We start from the Navier Stokes, and in the energy estimate we have proved in
the first section, we substitute u; = u° the solution of Navier Stokes with external force
Flo = F} = —vAu® and us = v¥ and external force FY =F,=0

T -
oiItIETHUV_uOHLQ(RN) < {1 = u®)|i=oll L2 +/0 | = VAU 2 gy di elo IVl oo @y

T
sup_[|u” — u®| 2y < VT sup (|AuC] pany)elo IVt
0<t<T 0<t<T

82



Chapter 3 3.2. Approximation of the inviscid flow by viscous flows for v << 1

0 e
sup_|[|u” —UOHL2(RN) < VT( sup ”AUOHL‘Z(JRN)eT”V I” ) =
0<t<T 0<t<T

sup |ju” — uoHLz(RN) < vTe(u®,T)
0<t<T

We can also find a gradient control by Remark 3 in the previous section. Indeed

T
/0 IV — )| vyt

By holder inequality we get

T T i T 1
/ ||V(ul’_u0)”L2(RN)dt§</ 1dt> </ ||V(uv_uo)”2LQ> _
0 0 0

1
2

T T
[ 196 =< 7 ([ 1o -2 )
0 0

=

T T 2
/ IV (' ~u0) | g2yt < T2 —c(u®,T) (II(U” — u”)[1=0||72 +/ IIVAUOI%th> =
0 0

T
/ IV (" = uO) | ponydt < T7 v3(T sup [|Au0||2)? =
0 0<t<T

T
/ IV — )| 2yt < C v3T
0
NOTES:

1. We aim to find a convergence between those two solutions, but the main question is
under which norm. By the above proposition, we have proved that for 0 < v < g
the supg<;<r |’ — u®||f2(gry) is bounded. So we have prove that u” — u” with
L>{[0,T]; L*(R™)} norm.

2. Similarly Vu® — Vu” with L'{[0, T]; L>(RY)} norm.

3. We recall the notation of big-O. Let two functions f, ¢ then f(x) = O(G(x)) with
r—a <= |f(z)| < Mgx)Vx0<zx—a<d
So we have supg<i<r [|u” — U0||L2(RN) = O(v) for v \, 0 and we will say that
the convergence is of order 1 concerning v. We observe that for the specific
. E N 1
solutions we have construct supg<;<p [[u” — u™ || 2@y = O(v2) for v (0 so the
convergence is of order % with respect to v. By the estimate we have done for the

gradients, we see that fOT |V (u” — UO)HLQ(RN)dt < O(y%)
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Chapter 3 3.3. The energy in two dimensions

4. We know that fOT lu” — UO||L2(RN) < supg<<r [|[u” — UO||L2(RN) SO concerning
LY{[0,T], L*(RN)} the convergence of solutions is of order 1, and the gradients of
them is of order % So we have a better convergence in the second case since the
terms are "closer", which is not a strange result if someone considers how the L?

norm behaves on gradients.

With these remarks, we close this section and continue with the last section of this
chapter, which mainly deals with the energy and the estimate we made in the first
section.

3.3 The energy in two dimensions

For the basic energy estimate we have done, in the first section, we assumed that the
velocity field vanishes rapidly as |z| /* oo so that u € L2(RY).

This is a strong assumption since we asking for the kinetic energy to be finite. From a
physical point of view and in three dimensions, this is true, but in two dimensions we
can find a very common counter-example.

This is the example of the velocity fields with vorticity of compact support.

Lemma 10. Let z,y € RN if |z| > 2R and |y| < R with R > 0 then

o\ —
aj;
’x_y’—N: ‘x’—N <1_2 Y + ’y| )

And if || — oo then
o =y = Jz| 7N + O~V

Proof of lemma:We will prove this lemma by induction.
For N =1 we will prove that — L1

[z—yl — Jaf

—~
—
+
[\

8|8

o
+

5 ‘:c

ESES)

SN——

o [fr<—-2Rand —-R<y<Owegetx—y<—-R

If y = 0 we are done since we get %:%
If y # 0 then
vt v
—_ 2
y—o w1 gmy w2
11 |z
y—z  wlr—yl
1
y—x Y-z

So in that case the equality holds.
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Chapter 3 3.3. The energy in two dimensions

e [fr<—-2Rand 0 <y < Rwegetz—y<—2R then

1 _ 1 e

y—x o fr—yl
1 1

y—r  y-—u
So in that case the equality holds.

e Ifz >2Rand —-R<y<Owegety—ax<-2Rso—(y—z)=x—y>2R
then
11 |z
r—y oz |z—yl
1 1

T—y T—y
So in that case the equality holds.

e lfr>2Rand0<y< Rwegety—z<—Rsox—y> R then
1 |z
-y xl|r—yl
1 1

rT—y T—yY
So in that case the equality holds.

For the inductive step we assume that the equality holds for NV = k so we have that

oy = el (12 YT
oF "l

We will examine the case when N = k + 1, we want to prove that

o=yt = (12 YT
o P

By the inductive step and the case n=1 we know that

2
1 |y
. 1—9-"7
<‘“7' ( |\2+|xr2> )
—k—1
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Chapter 3 3.3. The energy in two dimensions

Now for the second part of this lemma we will use this result
We set |z| = a, |y =b and x - y = abcos# then

1 1 b b\?%\
= |1-2- 2
w—y¥ oV < acos@—l— <a) >

1 1
m = 7N<1 —2pCOS€+p2) %

w|z

Weset%zpso

We now set z = p> — 2pcos 6
By Taylor expansion for (1 + z) 2 > for 2 € R around zo = 0 we have that

—N

N z2
A+2)F =14 (1) F V] 2+ (14 2)F) ] o+

N N(N
=1—-——2+ Mzz
2 8
If z— 0 we have (14+2)2 =1+ 0(2)
Consequently for |y| < R and || — oo we have that z — 0 so by substituting

=N
2

o —yI™ = 2™V (A + 271 = 2|7 + O[TV

Someone may wonder why we need this lemma. The answer is easy if we recall the form
of the velocity fields given by Biot Savart law, which kernels have singularity along the
diagonal.

Assume now that the vorticity w is smooth and has compact support i.e. suppw C

{lyl < R}
We will start with the three dimensions:

o us(z,t) ng Ks(z — y)w(y, t)dy = fR3 %dy.
We know that this kernel is homogeneous of degree -2 so K3 ~

Thus uz(x,t) ~ [ps l‘fcw(;’l’z
I"Now we will use the lemma we have |y| < R and we want to see what happens

when |z| oo so :

[ 0Dy [ el + 0l 10 ol )y
R3 RS

1
lz—y[?"

|z — yl?
WB(yvt) 7(*}2(3/’ t)
— (|2 + (%)) / oy ) — ws(y.1) | dy
R3 w2(y7t) — w1 (ya t)

(
— (ja]"2 + (%)) / wlgy,

ly|<R
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Chapter 3 3.3. The energy in two dimensions

We conclude that uz(z,t) ~ O(|z|~2)
So for the kinetic energy for |x| > 2R we get

& 1
/ lug(x,t)|2dx ~ / r4r2dr = =
z|>2R R R

o uy(z,t) = [po Koz — y)w(y, t)dy.
We know that this kernel is homogeneous of degree -1 so Ko ~

Thus ug(z,t) ~ [go ﬁw(y,t)dy.
By the lemma 10 we have that

1 — [l ! 2|2 w
/RQ mw(y,t)dy—ﬁ =+ O(|z| )]/RQ (v, t)dy

_1
lz—yl"

= [lzl™" + O(Ix!_2)]/ w(y,t)dy < cllz| ™" + O(|z7%)].

ly|<R

We conclude that ugz(z,t) ~ O(|z|~1).
So for the kinetic energy for |z| > 2R we get

oo
/ ug (,t)|?da ~ / r~2rdr = oo
|z|>2R R

Remark:By the previous procedure we have that ug(z,t) ~ ﬁ Jge w(y, t)dy + O(|z|~2)
80 if [go w(y,t)dy = 0 we have that ug(x,t) ~ O(|z|72) thus

(o @] o0 1
2 —4 _ -3 _
/|x>2R |ug(x,t)|*dx ~ /R r—rdr = /R rodr = Y

So we have following proposition :

Proposition 3.3.1. Let u(x,t) € R? x R with vorticity of compact support then

/ uldr < 0o <= w(y,t)dy =0
R2 R2

Proof. (<) We have this from the remark. (=) [po (g2 K2(z — y)w(y, t)dy) dz = ¢
So Jpe Ka(z — y)w(y, t)dy = 0

KQ(«’L’)/ w(y,t)dy =0

RQ

Therefore [, w(y,t)dy =0 O
Remark:This proposition holds for all the velocity fields on R?.

For velocity fields with vorticity of compact support and mean value zero, we solve

the problem of finite kinetic energy. We would like a more global result, but the only

result we have is that the kinetic energy in 2 dimensions is locally finite.

So the energy estimate we have made fails in most cases of 2d, thus we will derive a

new estimate
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Chapter 3 3.3. The energy in two dimensions

Energy estimate for 2 dimensions

We will do the following decomposition, in order to use energy methods.

Definition 5. Let u be an incompressible smooth velocity field on R?. Then u has radial
energy decomposition if there exist a smooth radial vorticity &(|x|) such that

u(z,t) = v(x,t) + b(z,t)

e v € L2(R?) and divv =0

o b(x,t)is defined via w by

b(z) = (‘x“i?) ;P/Om sw(s, t)ds

Remark

1. This decomposition is not unique, if we choose another radial vorticity, then we
will have another decomposition.

2. Recall that the total flux of vorticity for the solutions of the Euler equation is
constant in time.Thus we have that fo‘ml sw(s,t)ds = fom sw(s,0)ds so we can find
b(x,t) from the initial value of radial vorticity.

Lemma 11. ' Any smooth incompressible velocity field with vorticity in L' has
radial energy decomposition

We proceed now with the seeking of a class of solutions for Euler and Navier Stokes,
which have radial vorticity.

We search for steady flows. The flow of a fluid is steady if its velocity and all values
depending on its substance are independent of time'?. So now we will see the relation
between stream functions and steady flows.

We begin with the vorticity equation in two dimensions.

Recall that:

0 0 0

hd i — =0 A%

ot T Mo Y T o, V)
We know that since the field is incompressible there exist a stream function tsuch that
Uy = —%1/} and ug = %1/)
We substitute those two in (V) and we get

0 0 0 0 0
PYp—w=0

ot Omy Oz Ory ' O

Since the steady flow
0 0 0

8$2 (91‘1 v 871'1

See [30] lemma 3.2
8] pg 72
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Chapter 3 3.3. The energy in two dimensions

8901 QIZ) %
axl W Fow
This matrix is the Jacobian of the field (¢, w), by this we take that Vi and Vw are
parallel'®. This means that if we have a level curve of 1 in a specific point, then V) is
¢ and parallel to this curve, thus Vw is parallel to this curve, so w along this level curve
is constant. Doing this procedure for every level curve of 1, we conclude that there is
a function F so that w = F(v).

We also know that w = Avy. Consequently, a stream function defines a steady solution
to the 2 dimensional Euler equation <= Ay = F(¢)

So now we will search for our radial vorticity, we know that Ay = w(|z|) we know that
the Laplace operator is invariant under rotation indeed

=0

In N dimensions for rotation we know there exist an orthogonal matrix B such that
2’ = BX and BBT = BT B = I we have that

(IZ;f = Z bkixi
i
for the relation between derivatives after this translation we compute
Z P,k Z bm
and for the second derivatives we have that

9? ] ) 0?
=S ki Y bia =Y bribliar—
2 %:kax;;lax; %’”ax;a;

So for the Laplace operator we see that

=¥ g = X S i -5 (S ) 575

l
82
= 5 _—
kZJ M Oz 0,

where 0y thus Ay =), %/22 = Ay
k

Therefore the solutions of the Laplace equation will be invariant under rotation, this
means that the stream function will be radial .

Lemma 12. Assume that wo(|x|) then this radial vorticity defines a steady solution to
the 2D Euler equation.

13we expand them in 3 dimensions with the 3d coordinate be a zero so Vi x Vw =

i ] k
9
831 852¢ 0] = =0
lew Bzzw 0
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Proof of lemma:It is sufficient to show that the determinant of the Jacobian of the
(10, Atg) is zero. This is true since the gradient of radial functions on a point
pointing away or towards the origin®

“Let f be a radial function then there exist a function g so that f = g(z* + y?) so for a random
(0,y0) we see that V f(zo,90) = (2204’ 2y0g')

T1 = T COoS ¢

So now we will find the stream function, we set |z| =7 { and we will find

To9 = rsing
the Laplace operator in polar coordinates.
The Jacobian of this change to polar coordinates is:

g— [ cos 10} sin ¢
~ \—rsing rcoso
and the Jacobian of the inverse is:

Jm = (COW e

o |

N———

sin ¢ Ojd’
O _ o0 4 060
So for the derivatives we have 8;1 881: 8r %xqb 8¢ and for the Laplacian we get:
Be = o or a5 0
0? 0? 0? 0sing 0 sing 0 0¢ 0 sing 0
A= —— + = = cos? -
8x%+8m% S oz T ¢ or r 96  r agb ¢ Jr r o6 r 0o

0? ., 0cosp d cospd . O cos¢g O coso 8

— +sin¢p— — —singp— +
or r 0¢ r 0¢ or r 0 r 8qz5

02 10 10

AR AR

So now we have that

0? 10
U0 + o) = wlr)
So %1#(7“) = %for sw(s)ds.
_ 9 _ 0 or _ _ x0Y
- or Oxo r Or

. . . uy =
We will determine the velocity 812%2 o or oy O
Y2 =921 = 9rox; — T or
.

Thus u(x) = ( & ) 1[4 sw(s)ds replacing r = |z| we have

u(x) = |§|12 sw(s)ds
(@) <||>/o (5

Remark:The solution is steady thus u(z,t) = u(x)
The only thing to examine now is the viscous fluids. We start again with the vorticity
equation

—w z,t) —i—Zu] X,t) = vAw(z,t)
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Again the velocity field is incompressible so we have

9 9 9
&w@,t) + % % =vAw(z,t)
o1 0T

Since the solution ) is also radial the determinant is zero. Thus we have %—‘Z’ = vAw

This is a heat equation we assume that the initial vorticity is w|;—g = wo(|z|), therefore

lz—y|?
w(w,t) = 7 [eae” Tot w(|y|)dy, we see that the vorticity depends on x by |z| so its

a radial vorticity. We use again the Laplace operator in polar coordinates so we have

that
=y ||
u(z) = |§|1 / swo(s)ds
w? ) Jo

So far we have find a solution for Euler and Navier-Stokes which is defined by a radial
vorticity, so this solution will play the role we want for the decomposition.

Proposition 3.3.2. Every smooth solution u(x,t) of the Euler or the Navier-Stokes with
initial vorticity wo € L' has radial energy decomposition

Proof. We choose any radial vorticity with initial value such that

/}R2 wo(z)dr = /]R2 wo(z)dx

In the previous work, we have defined an exact solution with radial vorticity. So "b" is
the radial eddy above and is the same as in the definition, so in order to complete the
proof, we seek a v such that

v(z,t) = u(x,t) — b(z,t)
, if this v is div free and has finite kinetic energy we are done.

Firstly we know that u and b solve the Euler or the Navier Stokes so divu = divb = 0
So

divu(z,t) = divu(zx,t) — divb(z, t) =
divo(z,t) =0

So know we want to see if u has finite kinetic energy .

wy(x,t) = w(z, t) —w(z,t) =

[ entetin = [ wleie= [ ot nae =

/112{2 wy(z, t)dr = /R2 wo(z)dx — /IR? o(z)dz = 0

And by the Remark below the proposition 3.3.1 we have the desired result O
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Remark:The radial vorticity on the above decomposition and consequently the ve-
locity field b are known. So we will deal only with the field v(x,¢) Since u and b are
solutions of N-S we have that

?;;—i—(u-V)u——Vp—&—yAu—i—F
b
gt +(b-V)b=—Vp, +vAb
=

We subtract those relations and we get :

ou 0Ob

E—E—F(U‘V)u—(b-V)b:—Vp+Vpb+VAu—l/Ab+F
%+(u-V)u—(b-V)b—(b-V)qu(b-V)u—(b-V)b:—Vp+Vpb+VAv+F

g:—l—(v-V)u—i-(bV)(u—b) =—-Vp+ Vp, +vAv+ F
So we reach to the relation!?:
(;:;+(b~V)v+(v~V)b+(v-V)v:—Vp+Vpb+1/Av+F (1)

Thus we have the following energy estimate

Proposition 3.3.3. Assume that uy, us are to smooth solutions for Navier-Stokes with
radial energy decomposition u; = v; +b; external forces F; and pressures p; then we have
the following energy estimate

IV V2| oo+ Vb1 oo II(

T
sup |Jvg — val| 2 < eo vy — )|t = 0|2
<t<T

T
T
Lol ||vU2Loo+I|Vb1”L°°/ | F1 = Fy | g2+ b1 —ba| Lo | Vv | 2 +[| Vb1 = Vba|| poo |02 || 2 dt
0

Proof. We define & = vy — vy, b= by — by, = Fy — Fy, p = p1 — p2 and pp = Dby — Dby
We will find a relation between them. By the relation (1) above we have that:

% + (b1 - V)1 4 (v1 - Vb1 + (v1 - V)oy = =Vp1 — Vpy, + vAv; + Fy
and
% + (by - V)vg + (vg - V)by + (v2 - V)vg = —=Vpa — Vpy, + vAvs + Fy
Thus
Oovy  Ovy

2 ot + (b1 - V)vr + (v1 - V)b + (v1 - V)vg — (be - V)vg — (vg - V)by — (vg - V)ve

Mp(x,t) is a solution to Navier Stokes with external force zero
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= —Vp1 — Vpy, + vAv; + F1 + Vpa + Vpy, — vAvg — F

Our aim is to reach a relation with most orders be the tilded ones.

%
87: + (Ul . V)Ul — (v1 . V)Uz + (U1 . V)Ug — (UQ . V)UQ + (bl . V)vl — (b1 . V)Uz + (bl . V)UQ

—(bg . V)’Ug + (1}1 . V)bl — (1)2 . V)bl + (1)2 . V)bl — (UQ . V)bg =—-Vp—Vpp+ VAU + F
Thus

% + (v1 - V)(v1 — v2) + [(v1 — v2) - V]vg + (b1 - V)(v1 — v2) + [(b1 — b2) - V]va

+(v1 —v2) - Vby + vy - V(by — ba) = —Vp — Vi, + vAG + F
We conclude that

o . N _
8—§+(UI-V)5+(@-V)@+(b1-V)ﬁ+(b-V)U2+(@-V)b1+(v2-V)b = —Vp—Vpp+VrAT+F

(2)
The procedure we will follow is exactly the same as in the previous estimate

/RQ (gj + (v1 - V)T + (& - V)vg + (by - V) 4 (b- Vv + (- V)b + (v2 - V)5> vdx

_ /R2 (~V5 — Vi + vAT + F) ida

We compute

Thus by integration by parts

~ 0 ~ ~92 (9’(]1]. ~ a’Ui
V1,0 =—v;dr = — U; dr — V101, —
I 0x; b Ox; 7 0x;

R2 Ly R2 Ly R?2 Ty

/ [(v1 - V)0]ode =0
R2
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/ (b - V)3]o = 0
R2

as above.

So we have

d -
Hf’HL?%H@HL? + uHVf}H%Q < / (Vugd) - vdx —i—/ (Vugd) - vdx
R2 R2

+/ (Vblﬁ)-f;d:n—l—/ (Vbvy) -9+ | F-odx
R2 R2 R2

By Holder inequality on the right part we have that
o d - - - 5
1ollze J 1ollze < Y[ollzz 9]z [IVvzllzee + ([0l 22 [[Vvz] L2 bl ze

+|9l 2 19l 2 1901l + 1182 No2llze [VBllzee + | 2 1|9]] 2

We will apply Gronwall s lemma to the relation:

d. N - i - ~
gpltllzz < l1ollzz [Vealzee+[Vv2ll 2 [bllzoe+H[oll 2 [ VoLl o +[[vall 22 VOl oo+ 2

= ([Vval[Lee + [Vl o) [|9]] 2 + (HVU2HL2 1]z + [lozllz2 (VD] pe + Hﬁllm)
We set ¢ = [|9 2y, p = || V02| oo+ V01| L0 and 2 = Vo2 | g2 [[b] poo+ 2] 2 IV zo+

| F|| 12 So we have that

T T
sup q(t) < [q(O) + / zdt] elo it
0<t<T 0

Substituting everything we conclude that

sup [Jun = va] 2 < elo 19l IV (0 — )it = 0] 2
<T

0<t

T
T
+elo ”W“wH'wl”Lm/ [F1 = Fa| g2 +([b1—ba|[ oo [ Vva|[ L2+ | Vb1 = Ve | oe v ]| 2 dE
0

O

Remark:

1. As before this estimate does not depend on viscosity so this is also an energy
estimate for the solutions of Euler.
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2. By this energy estimate, we obtain from the result of uniqueness in the 2 dimen-
sions case. Indeed if we assume two solutions to the Navier Stokes equation, with
sam initial data and external forces, we have that F' = 0,9 = 0, and if we choose
the same radial vorticity, then b = 0, so we have that supg<,<y |[v1 — vallz2 < 0
ie. vy =wvg and ug = vy +b=wv9 + b+ us. o
Furthermore, we have an estimate for the supremum of the difference of solutions
of the Navier-Stokes and the Euler. We suppose that the solution of Euler «" is a
solution to Navier Stokes with external force —vAwug and the solution of the Navier
Stokes u” with external force zero then we get that supg<i<rp |u—u|[ L2 < ¢(T)v.

3. We can also find a gradient control for solutions of the Navier Stokes, indeed we
use the relation:

1d

5 g 1002z +vIVolze < 97 (IVoallzee + V] re)

15l 2 (18l I 9v2ll 2 + lwall 2l Fbll s + | Pl 2)

We set p = |[Vva |z + (| Vbi|[z and g = [[Bl| oo [|Voal| g2 + vzl 12 | Vo oo + ]| Fl 2
We integrate over time and we do Holder on the right side so

T ) ) 2 T T

v [ IVl < olmalfe (| sup olie ) + [ Ipliedtt sup ol [ ade
0 0<t<T 0 0<t<T 0

We do the calculations and we have that

T T
v /0 V5|22t < c(p, T) [ /0 6le—olZ + Bl oo | Vol 2 + ||v2|Lz|er||Loodt]

Summarizing in this section, we have seen some basic properties of the solutions of our
equations, and, we have derived some important classes of solutions. But do we have a
general result for the existence of solutions? We will answer this question in the next
chapters.
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CHAPTER

EXISTENCE OF LOCAL IN TIME
SMOOTH SOLUTIONS

In the previous chapter, we used energy estimates to obtain some interesting results
about the properties of "hypothetical" solutions to the Euler and Navier Stokes equa-
tions. However, we are yet to find a general result for the existence of these solutions.
We have only been able to find exact solutions through examples. In this chapter, we
will discuss the existence of the solution locally in time.

Before we begin the search for these solutions, we will provide a brief introduction to
some functional spaces and basic tools that we will need for the following proofs.

4.1 Preliminaries

Sobolev spaces

Definition 6. We define the m-th order, L, Sobolev space in RY with m,p € Z(T to
be the space of functions which are p-integrable and their distribution derivatives up to
order m are p-integrable. We denote W™P(RY).

For p = 2 we denote the Sobolev space of square-integrable functions together with
all their distribution derivatives as H™(R™Y).
We aim to generalize those spaces for m € RY. We will do this generalization via
Fourier transform'. This idea is not arbitrary and this is because for L? functions by
Plancherels theorem?, and the fact that the space L'(RV)N L2(RY) is dense in L2(R")
we can extend the Fourier transform as a function for L?(RY) to L2(RY).
Indeed let g € L2(RY) since L' (RV)NL?(RY) is dense in L2(R") we can find a sequence
{gn}22, € LYRN) N L2(RY) such that ||g — Inll 2@~y — 0.
We define g, (2) = g(x)X[—nn)(x). We have that g, € L*(RY) since

/RN lgn ()| da = /RN 19(2)X () (2)

Let f € L*(RY) we define the Fourier transform of this function to be f(&) = Jon €77 f(z)da
For a more detailed discussion about Fourier transform see [22]
2Plancherels theorem: Let f € L*(RY) N L*(RY) then f € L*(RY) and 1l 2wy = N fll 2@y
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By Holders inequality, and the fact that g is square integrable we obtain:

| lonlalde < clglaas, <o

Furthermore g, is a Cauchy sequence in L?(R™) because it converges in L?(RY), so

Ve > 0 3ng € N such that ¥n,m > N we have that [|g, — gm| 2@~y <€

By Plancherels theorem, since g, —g,, € L'(RV)NL2(RY) we have that ||gn — gml| 2 RN) =
lGn — gmllL2@™y = 190 — gmll L2 @) 3. So g, is a Cauchy sequence. The space L?(RY)
is a Banach space so since g, is Cauchy in this space, there exist a F' € LQ(]RN ) such
that g,, — F. So we define the Fourier transform of g in L?(R™) to be § = F.
Remark:It is not possible to generalize LP Sobolev spaces with Fourier transform due
to the lack of a good relation between norms, as provided by Plancherel’s theorem

To achieve our goal, we must take into consideration that the space of distribution
derivatives, known as D', is too vast to offer a clear definition for the Fourier transform.
Hence, we bring in the space of tempered distributions, referred to as S’4. This space
is the dual of the space of rapidly decreasing functions, known as S. i.e.

S(RN) = {f € C®(RY) : sup |22D°f(z)| < oo V multindicies a, b > O}

zeRN

The space S’ includes all the functionals f[¢] = [pn fodz with ¢ € S

Note:This space is named space of tempered distribution because of the polynomial
(tempered) growth of distributions.

Another great advantage of Fourier transform is that, loosely speaking Fourier transform
exchanges differentiation with multiplications i.e. we have the following proposition.

Proposition 4.1.1. Let D*f € L or L? Ya > 0 then E‘I\f(f) = (i) f(£)

Proof. By the definition of Fourier transform we have that:
DF© = [ e D)o
RN
By integration by parts we get
[ D@ = (-0 [ Do fa)do = (i) fe)
RN RN
So we conclude that : -
Def(&) = (i€)* f(€)
O

SLet f,g € L'RY) then f—g(&) = [one ®(f(z) — g(a))de = [one " f(z)dz —

Jen €7 g(@)dz = f(€) = §(¢)
“as described in [20], Chapters 7,9
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Note: Using the Fourier transform we have "turned" derivatives to products, hence
the assumption of smoothness can be replaced with the assumption of rapidly decaying.

We define the Fourier transform for f € S to be f(£) = Jan €75 f(z)da.

Proposition 4.1.2. The Fourier transform is a tempered distribution.

Proof. Let g, € S

[ oo = [ o [ oy

By Fubini’s theorem we have that

/wa/(xwwdx = / y /R e (a)dg(y)dy = /R dlw)g(a)da
L]

We define for f € S’ the Fourier transform f € S’ to be the distribution defined by

~

flgl = fld Vo € S

All the above results together with the following theorem show us which path to follow
for the desire generalization.

Theorem 4.1.1. 5 f € H™(RY) «— (1+ [¢]2)7 f(€) € LA(RY)

Proof. By Plancherels’s theorem we have that

ID* fll 2y = 1D fll p2 vy = [16€)* F ()l 2@y
Consequently taking the sum above this relation we get that
S0 ey = X [ €I (T 4.11)
jal<m jal<m 7 ¥
We will use this lemma

Lemma 13. There exist positive constants, name c1, co such that

a(l+ 6™ < > P <1+ €)™

la]<m
proof of lemma:
We know that
gl <1 for [¢] <1
€] < Jeflel < fg™ - for [€] > 1 and [a] < m

So we have that >, <, €912 < camax{1, [£]*™} < (1 + |€]2)™ and we are done
with the right inequality.
We continue in order to prove the left inequality, we have that |£]|?™ < ¢ Z?zl |§;-”|2

5[21], pg 301
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SO

(14 (€)™ < 2™ maxf{1, [} < 27e(1+ ) [P <e D 1€

=1 la|<m

Setting ¢; = % we have proved the left inequality.

1
(=) Assume that f € H™ then | < oo where [|flln = (Sajem 1D 12)
We have that

[l frae= [ iR ipae
RN RN
Using the above lemma we get that
m oA 1 A«
1 2\ g5 2d < a2 2d

JRCECRE Cl/RN%m\f |

By the relation (T 4.1.1)
m A 1
[ IR E FdE < 2 57 1D g, = 1l < o0
la|<m

S (fan 101+ [€2)% f2d€)* < o0
(<) Assume now that (1+ |¢[2)% f(¢) € L? then Jan (1 + 1€12)™| f)2d¢ < o0

By the above lemma we have that é Jg > laj<m €92 f(€)de < oo
So by relation (T 1.1.1) we get that

1
L5 i <o

|a|<m

Le.

N|=

DD | = 1l < oo

la|<m

Finally we define H* for s € RY as

. {f e SRV : || flms = (/]RN 1F©)P(+ \5!2)8d§>2 < oo}

We now continue with some properties in Sobolev spaces.

Theorem 4.1.2 (Sobolev embedding). The space H*™" with s > % and k € Z7 is
continuously embedded to C* i.e.3c > 0 such that

[ fllex < el fll pgess
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Proof. We remind that the norm in space C* is |ul|cx = SUP|q|<k SUPzerN [Df ()]

For |a| < k we have that [y |D fldé = [pn |(i6)® F(€)|de
So

[0 < [ elePbif@ns = [ et A9 + 1) de
RN RN RN
By Cauchy -Schwartz inequality we get

[+ EDEIFOI+ ) F de

1

< ([ a+ierseiforae)” ([ ax §|2)_Sd£>;
= |/l grs+ </RN(1 + §|2)sd§>é

For the integral, by using polar coordinates we have that

/ (14 1¢*)dg = C/Oo(l + 725Nty
RN

0

1 oo
= [/ (14 %)~ 5N "tadr + / (1+ TQ)STNldT}
0 1

,FN—2s 3
<ecl|1l+ lim
t—oo | N — 2s 1

For s > % the limit quantity is finite, thus we assume that the integral takes a value,
say C.
Consequently

15752 = [ 1D%F1dE < CI o

By Fourier inversion theorem” we get that sup,cg~ |D?f| < \|@][ I
So sup|,|<k SuPzern [ D f (@) < C| f] o+ =

STt is true that 72 < 72 + 1 and (?)® < (12 4+ 1)°
"Let f be a continuous and integrable function with Fourier transform f(£) then f(z) =

= J7o f(©)erde
Proof:
/ (e zezdg, / / Fly)e S dye’ de =
W /_O:O TV dedy = 7/ fly)etedy —

5 | f2esty -y = @

27T
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We also have the following proposition which generalize the Leibniz rule for the
product of Sobolev functions.

Proposition 4.1.3 (Leibniz rule). ® Let U be an open subset of RN and p,p’ that satisfy
the relation % + 1% =1. If f e WhP(U) and g € W' (U) then f - g € WEY(U) and

Df-g)= Y  D"f-D"™Mg (P 4.1.3)

0<m<a
Proof. The space WHP(U) N C>®(U) is dense in W*P(U)so there exists a sequence
{fa}o2, € WEP(U) N C>®(U) such that f, — f in WFP(U).
Let g € WE?' (U) and ¢ a test function. Then

e For |a| =1, D" is a first order derivative so

@ — K
[rote= [ 25)
Ofn B
8952- du + /Ugal'z(

0 0 0
5(fn : g) = gaimzfn + fnaig

%

So

For n — oo we get Bim(f'g):gaimf“'f%g
e Assume that the relation (P 4.1.3) is true for all multindicies up to order k.

o Weset |a| = |b+c|=|b] + |c| =1+ 1 with [ <k then

/(fng)D“qbdx: (—1)b/ D(fng)DCpda
U U

= (~1)bl(—1)k / DD frg)dda

1)l / De

|a/2

m<b

( >Dmanb "g | pdx

m<b
< ) D" f, D + D £, DY g gda

Consequently we have that

/ (fag) D" pdz
U

1)l / { ( >Dmana EDY < >Dmana—mg+ <Z> Dman“g} ¢dx

m<b

816], pg 124
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— (=1l /U 3

m<a

a m a—m
<m) D"f,D gdx

We conclude that D*(fn - g) = >,.<, <5L> D™f, - D*™g for n — oo then
a -m
-1 S (£) 95
O

Remark:We know that there exists an extension operator E from W#?(U) to Wk»(RN)?
so that for f € W*P(U) we have

f =FEf=faelU
and }
D*f =D*f
So we are able to extend the above result in RY. Now we will prove the following
estimates for the H™ norm of the product of Sobolev functions.

Proposition 4.1.4. ¥m € Z§ 3¢ such that Vu,v € L®(RN) N H™(RY) then
()

[u - vllzm < e{l[ullzee o]l zm + ullm (o]l L} (P4.1.41)
(i)

S 1D - v) = uDllpe < e {IVullge ol ot + fullm ol e} (P 414 i)
0<m<a

Proof. (i) Assume u,v € H™(RY) we have by the above proposition that

D% u-v) = Z ¢qo DPu - Dby

b<a

for all multindices a,b
So for the L? norm of the derivative of the product we get that

1D (u - v)ll 2 = 1) ca DPu- D*"0] 2

b<a

We choose |a| = s € [0, m] and s is an integer, then we have that s — |b| = |a — b| and
we apply the Holder inequality with conjugates % and % So we have that

D*u-v) = ¢ ||Dbu||L23 ||Da—%||L 25

1ol la—b]
b<s

(6]

9[4] section 5.17
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We will estimate each derivative by the Gagliardo-Nirenberg inequality!?:

In our case u € L®°(RN) N H™(RYN) so for p = %,q = o0,k = s,r = 2,5 = |b| and

= @ we have that
b s bl 1-1
| D UHLFT? < || DPull 2 [Jullpe®

Similarly for v € L®(RN) N H™(RYN) so for p = ﬁ,q =00,k = s, =2,j = |a—1|
and 0 = L§b| we have that
la—b|

[a—b]

_ L
1Dl _2e < capll D*0ll s lufl g

Lla—

We conclude that

lo| 1 1bl la—b]

1l 1ol la=bl g la=bl
D*u-v) <y <CbHDSUHLS2 ulloo® Capll D0l 5" lull e ° )
b<s

o] _ |a=b]

m m

It is also true that 1 — we get that

a ~ P 1L} s la—b]
D*u-v) < 5> Gy |(lellze | D%ullz2) * (ull e | D] )+ |
b<s

Thus
D*(u-v) < C([Jvflpee | D" 2 + [[u]| Lo [ D*0]| 2) (1)
This equation is true for all a=s we will take the sum of this relation over all s € [0, m]

e |a| =0 then we get

[u-vllpe < C(JvllzelJullz2 + llullze o] £2)

e |a| <1 then we get

D10 v)7e = llu-vlfFz + 1D v)]72

a<l

Therefore by the first case and relation (1)

2 2
YD (uw)llF: < © [(HUHL‘X’HUHLQ + [lullzee vl £2)” + ([vllzoe [ Dull 12 + [[ull L[| Dol 2)
a<l

10
[19]
Assume that f € LYINW"*" with 1 < ¢ < 0o and a j € N such that j < k.

If L )
1 j 1 1-—
e T N = -7
p N <7“ N ) Ty
Then there exists a positive constant ¢ such that :

j k g0 —0
1D flize < el D" Fll7- llull Lo
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So

2
AP (wv) 72 < C([vllpoelull 2 + [l [[vllzz + [0z | Dull g2 + [[ul L [ Dv]l 2)
a<l

Since the function of square root is an increasing function we have that
1
2
DD -7 | < C(llolleellull 2 + llull e [[o]l 2 + [foll <[ Dull 2 + [[ull o | Dol 2)
a<l
Consequently

lw- vl < ClJollzee ([Jullze + [[Dull2) + [[ullze (vl 22 + [[Do]£2)]

Follows that
|u- vl < C(vllpeellullgr + (lull Lo Jvllg1)

e |a| < 2 then we get

YD (- )72 = |lu-vl7z + [D(u- )72 + |D*(u- )|
a<2

By the two previous cases and relation 1 we get

2 2
D IDYwo)l72 < C([vllpe [l + lullze 0]l L2)*+C (o]l e | Dull 12 + [|u] o | Dol 2)
a<2

2
+C (|[v]l = |D?ul| 2 + [Jul| Lo || D?v]| 12)
Therefore

1
2

YD v)|ie | < C(HvHLwHuHL2 + [lullzee vl 2
a<2

Hvll oo | Dull g2 + l|ull oo 1Dl g2 + ol 2= | D*ull 2 + HU\ILOOHD%Hm)

Consequently
[u-vl[g2 < C(|Jv][peellullmz + [[ull Lo [[v] #2)

Repeating this procedure m times we conclude that
[u- vl < C([Jollzee lull zm + llullze 0]l 2m)

Which completes the proof of (i) we continue with the proof of (ii):
For |a| = s we have that

ID*(u-v) —uD%ll2 < > el|D"u- Dl
b+c=s—1
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We set Du = Vu = h and we get that

ID*(u-v) —uD%llz2 < Y ¢l DPu- D1
b+c=s—1

Recall the steps of the proof of (i)

> ID%u- D[z < Cs (vl Loe |D* |2 + | ]| oo || D~ 0]l 2)
b+c=s—1

We take the sum above all s < m so

> 1D (u-v) = uD] g2 < e (Jollzee Bl gm—1 + All o [0]| rm-1)

a<m

Substituting h with Vu we conclude that

> 1D (- w) = uD%] g2 < e (0]l llulltrm + 1V o [0 grm-1)

a<m
]

Proposition 4.1.5. Vs > % where s is a real number, then H® is a Banach algebra.

Proof. To prove that H® is a Banach algebra it is sufficient to show that for u,v € H*®
it is true that
lw-vllas < cllullgs ||v]|ms

By the definition of the H® norm via Fourier transform we have that

ol = ([ @@ (14 |s|2)sdg)é

For the Fourier transform of the product!!, it is true that:

T = /R e (ula) (e d

1 ~ pT —i€x
= /]RN 27T/RN a(p)eP dpv(x)e” %% dx

27T
So

TP (1+1EP) = 1 (1 +IEP)°

1[7] Chapter 11
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2
< (146" ( [ tate —p)@(pﬂdp)
]RN
Furthermore, it is true that :
(1+1¢2)° < (1+21¢ —p* +2[p*)°
e(4+20E—p*+2p*)" =2° [(1+ € —pl*) + (1+[¢)]
<2525 (T4 |€=p*)" + (L +1¢1%))

Consequently, we have that

2
a-v(€)? ) <ec —p?° a(€é — p)o
@ () e+ le- ) ([ late-milan)

2
re(urlg) ([ 1ate - mowldp)
RN
By Holder inequality and if we set g = (14 |¢ ]2)%, we get that:
@ v (1+[¢1%)" < e(lgal « [8])” + e (|a] * |gd])”

Thus [Ju-vlf3. < [lgall7201007: + lg0]72 a7,

Lemma 14. Assume that f € H® with s > % then

1fllze < Clfllas

proof of lemma:

Il = [ VF©lds = [ (+1€R)FIFO10+16P) ™ ag

<@+ 1EP)2 £zl (L+1€17) 2 pe
We will check the term

1a+1e) T < [ Q+leP) e

> N-1 1
— pL———
/0 cr (1—|—7"2)8 r

1 o) 1
< c/ rN_ldr+c/ TTN_ldr
S
0 1T

N—-2s 1
< ' _
_c<1+tli>I&N—2S+N—2S> <o
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It follows that
w3 < CllullFsllvllFe

Le.
lw-vllgs < cllullgs[|v]| s

O]

From now on we will mostly search for solutions in Sobolev space H™, where energy
methods can be applied. Our approach to finding solutions for the Euler and Navier-
Stokes equations locally in time is to first regularize the equations through convolution
with mollifiers. This will give us a regularized solution for the problem, which we can
then use to approximate and find a solution for the initial problem. To understand the
properties of mollifiers better, let’s list some of their key features.

Mollifiers

Definition 7. Assume that p € C2° is a radial function with p > 0 and [pn p(|2])dz =
1. We call p standard mollifies.
We also define for e > 0 the function p.(x) = p (%)

Definition 8. Assume that u € LP(RN) with 1 < p < oo we define the mollification of
this function as Jou = pe * u i.e.

_ T —
Jeu=e N/RNP< 6y>U(y)dy

Proposition 4.1.6. 2 Assume Jou a mollification as above then Jau € C™

Proof. We will prove this argument bi induction
Assume that z € RY and h sufficiently small we define = + he; € RY and we get

Jeu(z + he]i) — Jeu(x) _ N /RN % [p <W> —p <$ Z yﬂ u(y)dy

Since p € C2°, let K be its compact support then it is true that

l m—l—hei—y B =Yy uniformly on K 1 0 r—y
h p € p € h—0 e@xip €

Therefore

st =g o () o () [
S ) o () e

_ o~ (1O (r-y
=€ /Keaxip - ) uy)dy
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1 0 x—y
T N+l N O%P( c ) u(y)dy

For the second derivative we have that

B ) J i a%iJEu(x + hej) — a%i(]eu(ac)
oz, <ax 6““”)) = jim h

_1hm1/ O (xthe—y\ 0 (xz—y u(y)d
_GN'H h—0 h RN 81’2"0 € 8xip € y)ey

1 liml/ 0 r+hej—y\ 0 x—y ()d
NS0 b Ji axi’) € 83;,~p € ey

Since p € C°, let K be its compact support then it is true that

li 0 l‘+h€j—y _i r—y uni formly on K li 0 =Yy
h 8.%']' 8$ip € 81’2"0 € h—0 € 8xj 61'1',0 €

Thus

0 0 1 0 0 T —y
8%<%J6U(93)> T Ntz Kafﬁjaﬂlip< c )u(y)dy

1 0 0 (x—y)u<y)dy

N €N+2 RN ij 8.Cvip €

Induction hypothesis: Assume that for |a| = k it is true that

a 1 a r—y
D*Jeu(x) —M/RND P( )U(y)dy

€

Then for [b| = |a] + 1 = k + 1 we have that

D' Jou(x) = D(D*Jou(z)) = 81 <6N1+k /R D (x - y) u(y)dy>

By Leibniz integral rule

1 r—y 1 r—y
b _ a+1 _ b
D’ Jeu(z) = NTRIL /RN D™ p <6> u(y)dy = NTRT /RN D’p (€> u(y)dy

Proposition 4.1.7. Let u € C(RYN), then Jou(xz) — u(x) uniformly on any compact
subset of RN and || Jeu(z)| po < |Jullpee

Proof. Assume that 2 € RY, then

sante) —ula) = [ (“”” - y) )y =) = [ p (L) ute— )y~ uto)

€ €

Since [pn pdz = 1 with a simple chance of variablesz = ¥ we have that [pv e Vp (¥) dy =

1, so
N (y) u(x —y)dy —e N /RN p (y) dyu(x)

€ €

Jeu(z) —u(z) = eN/

R
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= [ (%) e =)~ @)y

€

We assume that the support of the mollifier pis a subset of a ball of radius r then

Jeu(x) —u(x) = eN/

B(0,r)

p(4) e — ) — u(@) dy

€

So we have that Vi > 0 ,3¢o = | such that |Jeu(z) — u(z)| <n Ve € K CC RN
Now for the inequality we have that

el =1 [ o (572 )t

sup 1eu(o)] < sup futo) [ o (Z2) o

zERN zeRN €

So

i.e.
[Jew(z)| Lo < [Juflzoo

Proposition 4.1.8. Mollifiers commute with distribution derivatives.

Proof. We have that D*J.u(z) = D® [G_N fRN p (Lzy) u(y)dy]

_ 0w [(T—
=€ N/ Dgp ( y) u(y)dy
RN €

= Veve [ g (U2t

By integration by parts we have that

D Jeu(x) = eN/

RN

13

o (“2Y) Diutshay = (D)@

€

Proposition 4.1.9. Let u € LP(RY) and v € LY(RY) with 1 < p,q < co and %%—% =1
then

/RN Jeu(x) - v(x)dx = /]RN u - Jev(x)dx

Proof.

/RN Jeu(x) - v(x)de = /RN N /RNP <:Jc Z y> w(y)dy - v(z)de

=c /RN /RNP( - y) v(@)uly)dydx

13Since p is a a radial function it is true that D%p (=) = (-1)*Dyp (2=2)

€
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=ty [ o (T2 otaduy

= /RN u(zx) - Jev(x)dx

Proposition 4.1.10. Let f € LP(RN) and 1 < p < oo then

lim 1 Jef (z) = f(@)l[r =0

Proof. 1t is true that

eu(e) - u(z)| =

/RN eNp <x - y) u(y)dy — u(x)

Consequently,

=l < { [ N[ tute =) - @l (Z)]dw]pdy}p

By Minkowski’s integral inequality: '* We have that

=l < [ [ [ tute =) = ata [ (4) \pdw} Lay

< [ L e = = @] 3 e ()] ay

< [ sl = u@los [0 (2 ay

Now, we will examine the ||u_,(z) — u(z)||zr. For the sake of simpler notation, we
define ¢g(y) = ||u—y(z) — u(x)|/z». This function is continuous and bounded

=

e Continuous:

Lemma 15. The space C°(RYN) is dense on LP(RY)

14[21] section 6.3
Let f € LP with 1 < p < oo then

[ (] sewiw) w] < [ (] f(x,y)m)’l’dy
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proof of lemma

We are on the measurable space (R, m), where m is the Lebesgue measure.
Assume that S is the class of all measurable simple functions s(x) such that
m({s(z) # 0}) < oo, S is dense on LP% By Lusin’s theorem®, we have that
for 5, € S and n > 0 there exist a g, € C.(RY) such that g,(z) = s,(z)
except of a set of measure n and |g,| < sup,egrn |gn| < ||snllL~. Hence
lgn — snllzr < Z. Since S is dense on LP we have that ||s,, — s|/zr < Zwith
s € LP, thus [[gn — sl|r < |lgn — snllr + [[sn — s[[r < g, so we have that C.
is dense on L?

It is true that ¢S (z) = gn * pe has compact support , also g, has compact
support then ||g5, — gnll7, = [gn |95, — gn[Pdz < m(B)sup,ep |95, — galP- By
proposition(1.0.7.) we have that sup,cg |g5—gn|P < g, therefore sup,cp g5 —
gn|? < 3. Consequently [lg — g5 llze < [lg — gnllze + |l — gnllr < 7.

By proposition (1.1.6.) we know that g5, € C2° so C2° is dense in L

“[35] pg 67

®Let F be a measurable function on RY such that F(x) =0 for x ¢ A with m(4) < oo
and 7 > 0 then there exists a function g € C.(R") such that f(x) = g(x) except of a set of
measure smaller than n and sup,cpn |g(z)| < sup,cpn |f(2)]

thus there exists an h,, € CS° such that ||k, — u||rr < %, furthermore due to the

fact that hy, is continuous we have that |h,(z1) — hp(z2) < %, and sinceh,, has

compact support we reach to ||h,(x1) — hp(22)|||1r < (g)p.

So
lg(z1) — g(@2)||r = [Ju(z — 21) — u(z — 22)||Lr <
[w(z —21) = hn(z — 21)|lLr + ||Pn(z — 21) = hn(z — 22)| L
oz — 22) — u(z — x2)||r < &

, which proves the continuity.

o It is bounded ||g|[7, < [lu(z —y) — u(z)||7, < 2°|fulf, = M

Now we re able to use dominated convergence theorem since g is bounded and integrable
and p is integrable so we reach to the fact that

11\15 ox 9(y)p (%) =0

Thus lime o || Jeu(x) — u(z)|[r =0 0
Proposition 4.1.11. Let u € H*(RY) then

e = ull e < ecljull

Proof.
Lemma 16. Assume that f € L? then

—_

Jef (&) = p(e€) f(€)
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proof of lemma:

T J(6) = /RN e /RN eNp (W) f(y)dy da
ot creen(s 2

We define x = ew + y thus

TH© = [ 1w [ Ve )N auay

:/ f(y)/ e~ €W =Y () dw dy
RN RN

By Fubini’s theorem we get

THO = [ iy | e=igwptw)du

= p(e€) f(£)

19cf = e = ( 0+ |5|2>5—1|Jj?f|zd£>é
= ( /RNG + 117 A ) (pleg) — 1)|2d§>;
: </RN (W) (1 Ifl?ﬂf(&)?d&f
(H S \2121 m> (/RN<1+ r»s|2>srf<§>12d§)é

(H - - m>2 I

) 1P () 1P ol

We observe that :

IS

Thus we conclude that
[ Jef = flls— < cell fl ms

Proposition 4.1.12. Let u € H*(RY) then

1' Je - SZO
lin |17 = 1l
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Proof. -
[Tew(@) = w(@)l|ms = [[(1 + [£%)2 (Jeu(@) — u())] 2

<031 P(Jeu(@) — u(@) 2 < éllJeul@) — u(@))]|2

S
a<?

By Plancherel’s we have:
[Jew(z) — w(@)||lms < &l Jeu(r) — u(x)| 2
By proposition (1.1.10.) we get that

lim || J.f — f||gs = 0
lin .S = fll

O
Proposition 4.1.13. Let u € H™(RY) and k € ZJ then
Ck :
| Jewl|| grm+x < E—kHuHHm (P 4.1.13 1)
and
k Ck; ..
| JeD u|| poo < ———||ulz2 (P 4.1.13 ii)
3tk
Proof.
2
I eull e = | >~ 1D Jeul|7
a<m+k
We assume that |b] < m and |c¢| < k and we set |a| = |b] + |¢| So we have

D®*Jou = D¢ Ju = DYD¢J.u

By Leibniz integral rule
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2

6‘C‘N/ pe (x — y> Dbu(y)dy
RN €
_ 2 2
< 6‘26/ eV pe <H)‘ ‘DSU(y)‘ dy
RN €
RN € RN

€
Therefore o
a c — r—Yy 2
D JEUSG@G N/ pc( )“Dzu(y)‘ dy
]RN

€
So by those trivial calculations we have

N
el = 5 [ Gee [

\b|<
le|<k

|D*J.|* =

2
[

€

pe (x — y) ‘ (DZU(Z/)}2 dy da

By Fubini’s theorem

Jeul| s < Dbu( 2/ Moo (=) da d
Wil < 35 G5 [ 105 [ Vo (S ) dody

[b|<m
le|<k

Z/ | Dyu(y) *dy

[b|<m
Ck
< — u m
= ck H HH
For the second part of the proof we have that

|J.D*u| = |D¥ J.ul

e N Dk /RN p (x - y) U(y)dy‘

r—Yy
/ Dip () U(y)dy‘
RN €
cort [
RN

By Leibniz integral rule

= E_N

xr —

y) U(y)‘ dy

7 N\

u(y)l dy

By Holder inequality
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o (222) 2dyr (/. |u<y>|2>é

1
IS 2
| JeDFu| < " ( / |u(y)|2dy)
€2 + k RN

k Ck
HJGD u||LOO S €%+k

Consequently

So we conclude

[l 2
O
In this section, we will briefly discuss Leray’s projection in Sobolev spaces. As we
learned in chapter 3, P : L>(RY) — H(RM) is defined for a u € L?. It is worth noting
that for an m € Zar and v € H™, we can extend this decomposition. This means that
for u € H™, there exists a unique orthogonal decomposition © = w + Vq. We also

define the projection operator P : H™ — V™ and w = Pu, where V" is the space of
divergence-free functions.

Proposition 4.1.14. Assume that m € Z& , w € H™ with the above decomposition,
and P the Leray’s projection, then

1. Pu,Vge H™

fRN Pu Vgdx =0

IPullfpm + IVallFm = llullzm
P(D%u) = D*(Pu),¥la] <m
P(Jeu) = J(Pu) , €>0
(Pu,v)gm = (u, Pv)gm

NS v e

1Pl =1

Proof. We remind that the space H™ is a Hilbert space with inner product (u,v)gm =
Z| al<m Jan (D%u) - (D*v)dx We will prove each property individually, the property (2)
is obvious since Pu = w and w, Vu are perpendicular.

1.The space CF (RY) is dense in H? so there exist a sequence u,, such that u, — u in
HY We have that u, = w, + Vg, i.e. Ag, = divu,, this is a Poisson equation so we
have that:

We have proved in lemma 10 that for |z| — oo and |y| < R then
o =y ™ = |27V + O(|l| M)

thus
z
Van(z) = cN|—

_ / divu, (y)dy + O(jz| )
x| ly|<R
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Le. Vau(z) = O(Jz|~™N)
So we have that for |z| < 2R

[e.e]
/ IV |2dx < c/ 2NNl < o0
RN 2R

It follows that Vg, (x) € L? for ¢, = X[‘x|>1}q($) by dominated convergence theorem

we conclude that ¢ € L? = H? also we set w = u — V¢ and consequently w € L? = H°
By the property 4 we have this result for all m € Z[‘)F

4.We start with the relation v = Pu + Vq we differentiate this relation and we get
that:
D% = D*(w + Vq)

D% = D%w + D*(Vq)

It is also true that

So we define the P(D%u) = D*w and we get that

D*(Pu) = D*w = P(D"u)

5. We adopt the same procedure as above
Jeu = Je(w + VQ)

Jeu = Jew + J(Vq)

It is also true that

Y9
div(Jew) = Z —Jew
= Omi
By proposition 4.1.8 we get that
N
0
= J,
Z eaxzw
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So we define P(J.u) = Jew and we get that

Je(Pu) = Jew = P(Jeu)

lallfm = llullf2

la|<m

= Z (Pu+ Vq,Pu+Vq)r2

la|<m
= Y [(Pu, Pu)} + 2(Pu,Vq)12 + (Vq, V)]
la|]<m
By property 2. we get that
= > (IPull: +Val72)

la|<m

Thus
[l 3pm = [ PullFm + [ Vall7rm

6. Assume u,v € H™ then this property Holds since P is orthogonal projection.

7. ||Pul|?> = ||Pul||[Pu|| by Pythagoras theorem we know that ||[Pu| < |lu|| so we

have that
[ Pl

lull —

Recall that P
1P| = sup | Pull

werm |lul
ful0

[lw][#0

Furthermore since P is orthogonal projection it is true that P = P2 so
[Pull = | P?ul| = | P(Pu)l| < || Pl Pull

Consequently ||P|| =1 O

4.2 Existence of smooth solutions for the regularized equa-
tions

In this section, we will deal with Banach space valued functions'®. Our maps are

f :]a,b] — B with B a Banach space. Those spaces are referred to as Bochner spaces,

15[25]
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and we have some more general concepts about differentiation (Frechet derivative) and
integrability (Bochner integrable). These concepts do not differ significantly from what
we already know about derivatives and integrals. For instance, we say that a function
f : la,b] — B is Bochner integrable if f; Ifllz < co. We will give more details about
these spaces as and when we need them.

The regularized equations

The strategy we will follow is known. We start with non-smooth functions and through
convolution with smooth kernels, we end up smooth functions. When dealing with the
Euler and Navier-Stokes equations, we aim to mollify them and obtain approximations.
In the previous chapter, our theory relied on energy estimates, and we plan to continue
using energy methods to prove results.

We consider the following mollification of the Navier Stokes equation,

gtue + Je [(Jeue) - V] (Jeue) = —Vpe + v (AJou) 16 (NS,)

Using the Leray’s formulation!” we project this equation to the closed'® space of H*
divergence free functions,i.e. V* = {u € H® : divu = 0}
So we have that

gtuE + P{J. [(Joue) - V] (Jew)} = vJo(AJcue) (L — NS.)

We set
Fe(“c) = VJE(AJEUE) - P {JE [(Jeue> ) V] (JeUE)}
So we reach to
0
ot
By assuming that the initial value of the mollified function of velocity is equal to the
initial value of the function of velocity we reach to an initial value problem

{gtuf = Fe(u) (IVP)
ue(*,0) = ue(0) = ug

ue = Fe(ue)

Note that the above equation is an ODE, since we consider F; to be known. The goal
is to find the flow of u. given that F,. The problem at hand is to solve the initial value
problem on V*. Additionally, this is an autonomous ODE, because F. is a function
depending only on space. Although, the term F,(u¢) depends on time, since u. is time-
dependent. The well-known Picard-Lindelof theorem will be employed for solving this
problem. This theorem has the benefit of having strong results despite not having very
strict conditions.

6We denote u. the velocity field, because the regularized solution will depend on the choice of ¢,
meaning that if we choose another €, we will take another wu.

7see chapter 2

'*[36] pg 87
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Theorem 4.2.1 (Picard-Lindelof). Assume that B is a Banach space and F is a locally
Lipschitz mapping F : B — B then for ug € B there exists a time T such that the initial
value problem

{jtua) = F(u(t))

ult=0 = uo

has unique local solution on C1([0,T), B)'?
Remark: This theorem gives us a classical solution.

Proof. 2° So we want to solve

{jtu(t) = F(u(t)),t €[0,T)

ult=0 = uo

We will find a u which satisfy the following integral equation

u(t) = uo + /O Flu(s))ds

where the integral here is a Bochner integral
Since F is locally Lipschitz we assume that this is true in an open set O up to time T
We assume for £ > 0 the set

X ={ueC([0,T),B): sup e *|ulp < oo}
0<t<T

The space X is a Banach space with norm | - || x = supg<;cre | - |5
Indeed: Assume that {u,(t)} is a Cauchy sequence in X.

Step 1: We will prove that u(tg) = limy,—co up(to) is well defined Vit € [0,T)
Let tg since u,, is a Cauchy sequence we have that

V8§ > 0 3ng € NVn,m > ng we have ||up,(t) — um(t)||x <0

Thus
e_ktOHUn<t0) — umtoHB <

Le. ||un(to) — um(to)|| B < &' thus uy(to) is a Cauchy sequence, and B is a Banach space
so this sequence converges so u(ty) is well defined.

Step 2: We will prove that u,(t) — u(t) in X

We have

lun(t) = u(®)x < sup_e™|lun(t) — u(®)l|s
0<t<T

Since B is a Banach space we have that ||u, —um || x < supg<;<p e ™6 and supg< < e <
1 thus
Vo >03nVn>ng @ ||up —uml| <9

Ythe space C™([a,b],B) = {f : [a,b] — B is m times differentiable}the derivative is the Frechet
derivative.

20[13] pg 184
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Step 3: We define the following mapping and we will show that it is a contraction
Let v € X we define ® such that ¢u(t) = ug + fot F(u(s))ds with ¢t € [0,T) So we have
that

t
|Pu — Pv||x = sup e_kt]/ Fu — Fv| pds
0<t<T 0

F is locally Lipschitz so

t
|Pu— Pv_X| < sup e_kt/ L|lu —v||pds
0<t<T 0

Thus I
1w — @vflx < flu—vllx

So in the open set O we fix k > L so this mapping is a contraction so we can use
Banach’s fixed point theorem?!

Banach Fixed point theorem:Assume that G is a mapping from a Banach space B
to itself which is a contraction then G has a fixed point i.e.Gu = u

proof: Let ug be a known initial value we set u; = G(ug) then we set ug = G(uy) we
continue this process and we create a recursive sequence u, such that u,+1 = G(uy)
This sequence is a Cauchy sequence, indeed:

[tmt1 — tml|B = |G(um) — G(um-1)| 5

but G is a contraction so
|ums+1 — uml|B < K|lum — tum-1|lB

we continue the same way i.e.

[t — um—1|lB < KQHUmfl — Um—2||B
and we conclude to the following inequality

[ttmi1 = um|[B < K™|lu1 — ol
Without loss of generality we assume that n > m so by triangle inequality we have
[ttm — un||B < [lum — wms1llB + [[ums1 — ums2llB + - + [un—1 — unllB

< w1 —uollp (K™ + K™ + ..+ K" 1)

1 _anm
=T el
So we have that
m
[um —unllp < 5 llur = uoll5

*'5] pg 5
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Consequently choosing m sufficiently large u, is a Cauchy sequence. Furthermore
B is a Banach space so this sequence converges, i.e there exists a u € B such that
uy, — u This u is a fixed point, indeed:

lu = G(u)l[B < [lu—unllp + lun — G(u)ll5
= llu = unll + |G (un-1) — G(u)llB

< lu = unllp + Kllun—1 — ulls

So we have that for n large enough ||lu — G(u)||p = 0 which completes the proof.

And we get that there exist a u such that ®u = u so we have solve the integral equation.
This solution is unique since if we assume two different solutions of the integral equation,
name u, v we have that

t
Juvlle < [ Llu-vlads
0

So |lu—v||p=0ieu=wv O

So firstly we will talk about local in time solution for the regularized problem.

Lemma 17. The space V™ , m € Zar, with the norm of H™ space, is a Banach space

Proof. Tt is a closed subset of a Banach space, and we know that a closed subspace of
a Banach space is Banach space. O

4.2.1 3 dimensions

We will seperate the analysis into 2D and 3D, based on energy estimates. For 2D,
we will use radial finite energy decomposition. Our goal here is to prove a theorem
on three dimensions that affirms the local existence of solutions for the regularized
Navier-Stokes equation.

Theorem 4.2.2. Let ug € V™ ,m € ZJ the initial value of the velocity field ue,then

1. Ye > 0 there exist a unique solution u. € C* ([0, T), V™) of the (IVP).

2. On any time interval [0, T on which the solution exists in C* ([0,T), V™) we have
that :

sup |lucllrz < [luol| 2
0<t<T

Remarks:

1. The time T depends on € and the initial data.

2.The energy estimate that is given in the second part of the theorem depends neither
on € nor on viscosity. So the regularization we choose satisfies our will to achieve an
energy estimate independent of €. Furthermore, if we compare this energy estimate with
the energy estimate in the previous chapter we see that for u; = u. ,uo =0, F}, Fb =
0 ,u(l) = ug and u% = 0, those two estimates are identical, so our energy estimate here is
optimal.
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Proof. Note: In the upcoming proofs, we will utilize numerous constants that arise from
the estimates in the preceding propositions. To simplify notation, we will refer to all
of these constants as "c", with the understanding that each one depends solely on the
values of "m" and "k".

1. For the first part of the theorem we will use the Picard Lindelof theorem, so we
only need data for the F.. We will prove that F, : V™™ — V"™ and also it is locally
Lipschitz. So recall that

Fe(ue) = VJ6(AJEUE) - P{J6 [(JEUG) : V] (J6u€)}

Assume that u, € V™ we will prove that Fe(u.) € V™ ie. Fc(u.) € H™ and
divF (ue) =0
So

[ Fe(ue) || am = [[vJe(Adeue) — P{Je [(Jeue) - V] (Jeue) } || am

By triangle inequality we have that
< vde(Adeue) |am + |1 P {Je [(Jeue) - V] (Jeue) } || am

We will estimate each term individually :

T2 (Aug)|[m P A (TP = ([T 2ul| e

By proposition 4.1.13
cv
< 7‘|queHHm
€

cv
< < lluellam
€
Since u. € H™ we have that
v T2 (Aue) || am < o0

And the other term
1P {Je [(Jeue) - V] (Jeue) } || m

< 1Pl[am e [(Jeue) - V] (Jeue) || gm

By proposition 4.1.13
< CHVJEUG : JEUEHHm

By proposition 4.1.4
< c{lIVJeuellaml|Jeue|| Loo + |V Jeue| oo || Jewel| rm }
By proposition 4.1.13

C
=

< c{||Jeue||Hm+1cuue||L2 i |ue||ch||u€||Hm}

€2

< c(e)uc] Fm
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Since u. € H™ we have that
[P {Je [(Jeue) - V] (Jeue)} |am < oo

Thus || Fe(ue)||gm < oo
Furthermore

divF(ue) = div (vJZAue) — divP (J [(Jeue - V) Jeue]) = 0

So we have prove that Fi(u.) € V™ ie. Fo: V™ = V™
Now we will prove that this mapping is locally Lipschitz

[ Fe(ue) — Fe(ve) || m

= [[vJe(Adeue) =P {Je [(Jeue) - V] (Jeue) }—vJe(Adeve) + P {Je [(Jeve) - V] (Jeve) } || m
By triangle inequality and by add and subtract the term P {J. [(Jeu.) - V] (Jeve) }

1Fe(ue) = Fe(ve)llm < 0I2A(ue — ve)l|
+IP{Je [(Jeue) - V] (Je(ue = ve))} | m
AP {Je [(Je(ue — ve)) - VI (Jeve) } ||am
We will see each term individually

o ||[vJ2A(ue — ve)||lgm = v||J?(ue — ve)||gm+2 By proposition 4.1.13

C
< §||J6(ue —ve)|lm
€

leg%HuE — V|l gm
o [|P{Jc[(Jeuc) - V] (Je(ue = ve))} [ m
< || VJe(ue — ve) - Jeue|| rm
By proposition 4.1.4
< eIV Ie(ue — vo)llmm|| Jeuel| oo + ([ Jeuel| mm ||V Je(ue — ve) [ o<}
< c{lJe(ue = ve) [ gt || Jeuel | oo + ([ Jeuel | mm | JeV (ue — ve) || o<}

By proposition 4.1.13

C C C
<c {Ilue — Ve|lam — lluell 2 + clluel| am — [[ue — Ue||L2}
€ €2 €2

| o

< 5 lluellgm |lue — ve gm

ot

€

124



Chapter 4 4.2. Existence of smooth solutions for the regularized equations

o [|[P{Je[(Je(ue —ve)) - V] (Jeve) } |l
< cl[(VJeve) - Je(ue = ve) |l mm
By proposition 4.1.4
< eIV Ievel mm | Je(ue — ve)ll oo + [V Jevel | Loo [ Je(ue — ve) [ mm }

By proposition 4.1.13

c c c
<c *||115HHM*§HU5 — Vellp2 + j””eHLwHue — Vel gm
€ €2 €2
c
< < llvellam|lue — vl mm
€2

Consequently

C C
1Fe(ue) = Fe(ve)llm < llue = vellmm + =5 (luellzm + [lvellzzm) lue = vell rrm
€2

Assume that OM = {u € V™ : ||ju||gm < M} then we conclude that
[ Fe(ue) = Fe(ve)|am < enmllue — vellgm

Thus F¢ is locally Lipschitz.
By the Picard-Lindelof theorem there exist a unique solution u. € C* ([0, T), V™)

2. For the second part of the theorem we will follow the well known steps for the
energy methods.
We begin with the equation of (IVP) and we multiply with the solution wu, in L?:

d
/IR3 (dtue — Fe(u€)> ~uedr =0

1d
/ ——|ue|?dx :/ Ue - Fe(ue)dx
R3 2dt R3

1d,
5@”’&5”[12 - /1%3 Ue - Fe(ue)dx

Now we will process with the integral on the right part :

Thus

/ Ue - Fe(ue)dr = / U + [va(Aug) — PJ (Jeue - VJGUG)} dx
R3 R3

/ VU - Jf(AuE)d:U — / Ue + JeP [(Jeue - V)Jeue| dx
R3 R3

By proposition 4.1.9 we have that the mollifiers are symmetric so
=v Jeue - A(Jeue)dx — Jeue - P[(Jeue - V) Jeue] dz
R3 R3
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For the first integral we have that

1// Jeue - A(Jeue)dr = —v V(Jeue) - V(Jeue)dx
R3 R3

_ _y/ IV Jeu2da = V|V T2
R3

For the second integral we have that
—/ Jete - P(Jete - V) Jeue] do < —/ Jeue - [Jeue - V] Jeue =0
R3 R3
Consequently
d 2
aHUeHB <0
So by simplified Gronwall we have that
luellZ2 < lluol72

Eventually taking the supremum we conclude that:

sup |Jucllrz < [luol| 2
0<t<T

O

We have currently achieved a smooth solution for the regularized problem within a

certain time frame. However, it is now necessary to determine if we can attain a global
solution for the same problem. Fortunately, the answer is affirmative.
The idea of continuous extension of solutions is the following assume that we have a
solution on the interval [0,7) in B if lim; ,p- u(t) exists then we set iy = u(7T') € B.
This quantity becomes the new initial value, and we find a solution for the updated
initial value problem for the interval [T, T + ¢). The only concern is whether this new
solution effectively solves the initial problem. We define % the new solution, where

it =) u(t) fortel0,T)
e w(T) forte [T, T+c)

We have that u,u satisfy an ivp,so

u(t) = u(t) = ug + /tF(ﬂ(s))ds for 0<t<T (1)
0
and .
() = 1o +/ Fli(s))ds for T <t < T +c @)
T

By relation (1) we have that

lim a(t) = lim uo—i-/o F(u(s))ds

t—T— t—T—
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t

=up+ lim F(u(s))ds
t—=T- Jo

T
—up+ /0 F(a(s))ds

By relation (2) we have that

a(t) = u(T) + / F(u(s))ds

T

:uo+/0T F(ﬂ(s))der/tF(ﬂ(s))ds

T
So w(t) solves the first ivp in the interval [0,7 + ¢). We continue this process until we
find a maximum time 7”. This process may stop for two reasons the first one is that
for T < oo the limit may not exist then we say that the solution is not continuous, the
second one is that the limit may exist but the solution does not belong on the Banach
space, in both cases we will say that the solution blows up.
So we summarize in the following theorem

Theorem 4.2.3. Assume that B is a Banach space and F' : B — B a locally Lipschitz
%u = F(u)

either exist globally
u|t:0 =1Ug € B

mapping then the unique solution u of the ivp {

in time or for T’ < oo the solution blows up.

Proof. Assume that 7™ is the maximum time of existence of the solution u(t). Assume
also that 7™ < oo and the solution does not blow up We have that lim;_,7«- = u(T*) €
%u = F(u)
ulpmrs = u(T™)
By Picard Lindelof we find a solution which satisfy the first ivp for time ¢ —T™ + ¢ which
contradicts the fact that T is the maximum time so T = oo O

B. We set t =t —T* and we have initial value u(7™) for the ivp {

Note: This extension is true on N-dimensions So in our case we have that u. satisfies
the following inequality

[Eelfuclzrm < enrlluell mm
So since it is a solution of the (IVP) we reach to

g luellzm < earlluc]lrm
By Gronwall’s lemma in differential form

If %u(t) < b(t)u(u) (H) for t € I then
u(t) < u(a)ef(f b(s)ds (R)

proof:
Let v(t) = elab()ds it is true that v satisfies the differential equation %v(t) =

b(t)v(t) (1) with initial value v(a) = 1 and v(t) > 0 We define the quotient % and
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we have that
du(t)  gu()o(t) —ult) o)
dtv(t) v2(t)

By relation (1) it follows that

by the (H).
So the function of the quotient is decreasing thus for a <t we have that

u(t) _ ula)
t) — v(a)

Thus we reach to the desired result i.e. u(t) < u(a)v(t) = u(a)efc: b(s)ds

<

<
—~

<

we conclude that |[ue||gm < €T which is an apriori bound, thus for T < coand we

will not have a blow up so by the above theorem we have a global solution.
Conclusions: The regularized problem for the Navier Stokes equation has a smooth
global in time solution on space V'™ in 3 dimensions.

Remark:We have exactly the same result for the Euler equation, indeed

We consider the following mollification of the Euler equation

0

&ue + Je [(Jeue) - V] (Jeue) = —Vpe (Ee)
Using the Leray’s formulation?? we project this equation to the closed®® space of H*
divergence free functions i.e. V* = {u € H® : divu = 0}
So we have that

%ue + P{Jc[(Jeue) - V] (Jeue)} =0 (L —E)
We set
Fe(ue) = =P {Je [(Jeue) - V] (Jeue) }
So we reach to 5
aue = Fe(ue)

By assuming that the initial value of the mollified function of velocity is equal to the
initial value of the function of velocity we reach to an initial value problem

{gtue = Fe(ue) (]VP*)
ue(*,0) = ue(0) = ug

So we have the following theorem which gives a local in time solution for the regularized
Euler:

Theorem 4.2.4. Let ug € V™ ,m € ZJ the initial value of the velocity field u., then

225ee chapter 2
?3[36] pg 87
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1. Ve > 0 there exzist a unique solution u. € C* ([0, T), V™) of the (IVPx).

2. On any time interval [0, T on which the solution exists in C* ([0,T), V™) we have
that :

sup |Jucllrz2 < [luol| 2
<t<T

Proof. We have the same statements as the proof of the theorem above, with some little
adaptations occurring due to the lack of the viscosity term.

1. For the first part of the theorem we will use the Picard Lindelof theorem, so we
only need data for the F,. We will prove that F, : V™™ — V"™ and also it is locally
Lipschitz. So recall that

Fe(ue) = =P {J [(Jeue) - V] (Jeue) }

Assume that u, € V™ we will prove that Fe(u.) € V™ ie. Fc(u.) € H™ and
divF (ue) =0
So

| Fe(ue)llam = [| = P{Je [(Jeue) - V] (Jeue) } || am

i.e. we have that
< ||P{J6 [(Jeue) : V] (Jeus)} | e

We can easily see that
[P {Je [(Jeue) - V] (Jewe) } [ m

< ||P|[am [ Je [(Jeue) - V] (Jeue)| prm

By proposition 4.1.13
S CHVJeue : JeueHHm

By proposition 4.1.4
< c{[|VJeue| mml|Jeuel Lo + |V Jete|| oo || Jetie | mm }

By proposition 4.1.13

c

< e [[euel | gmiclluel 2 + — [|uell p2clluell m
€2
< ¢(€)|uelzm
Since u. € H™ we have that
[P {Je [(Jeue) - V] (Jeue) } [[m < o0

Thus || Fe(ue)||gm < oo
Furthermore

divF (ue) = —divP (Je [(Jeue - V) Jeue]) =0
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So we have prove that Fi(ue) € V™ ie. Fo: V™ - V™
Now we will prove that this mapping is locally Lipschitz

[Fe(uc) — Fe(ve) || am
= || = P{Je[(Jeue) - V] (Jeue)} + P {Jc [(Jeve) - V] (Jeve) } | am
By triangle inequality and by add and subtract the term P {J. [(Jeue) - V] (Jeve) }
[Fe(ue) = Fe(ve)[am < ([P {Je [(Jeue) - V] (Je(ue — ve)) } [ m
P (e (lone =) - ¥ (e} e
We will see each term individually
o [P {Je[(Jeue) - V] (Je(ue — ve)) } [ m
S CHVJe(ue - Ue) : JeueHHm
By proposition 4.1.4
< c{lIVJe(ue — ve)llaml| Jeuell oo + (| Jeue| m [V Je(ue — ve)|| o=}
< c{|[Je(ue = ve)l[ grm+1 (| Jeuel[ oo + [[Jewe| mm || JeV (ue — ve)|[ oo }
By proposition 4.1.13

c c ¢
<c {6”“6 = vl = el 22 + eljuel < lue - ”6”L2}

3 5
€2 €2

c
< 5 lluellzmllue = vell m
2

€

o [|[P{Jc[(Je(ue —ve)) - V] (Jeve) } [ mm
< c|[(VJeve) - Je(ue — ve) || gm
By proposition 4.1.4
< cAlIVIeve| gm || Je(ue — ve) | + [[VIevel [ Loo | Je(ue — ve) || m }

By proposition 4.1.13

c c c
<cq —|vellgm 3 |te — vell g2 + 5 Vel L2¢l|ue — ve|lEm
€ €2 €2

| o

< 5 llvellzmllue = vel| rm

njot

€

Consequently
c
[ Fe(ue) — Fe(ve)|um < —

5 ([uellgm + lvel[rm) [[ue = vel[rrm
2

€
Assume that OM = {u € V™ : |jul|gm < M} then we conclude that
[ Fe(ue) — Fe(ve)llmm < énrllue — vell m

Thus F; is locally Lipschitz.
By Picard-Lindelof theorem there exist a unique solution u. € C' ([0,T), V™)
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2. For the second part of the theorem we will follow the well known steps for the
energy methods.
We begin with the equation of (IVP) and we multiply with the solution w, in L?:

d
/11{3 (dtue — Fe(u€)> ~Uuedxr =0

1d
/ ——|ue|?dx :/ Ue - Fe(ue)dx
R3 2dt R3

Ld,
5 lhucl3: = /RS e - Fi(u)dz

Now we will process with the integral on the right part :

Thus

/ Ue - Fe(ue)dr = —/ Ue - PJe (Jeue - VJeue) dx
R3 R3

By proposition 4.1.9 we have that the mollifiers are symmetric so

= —/ Jeue - P[(Jeue - V) Jeue] do
R3

< —/ Jeue - [Jeue - V] Jeue =0
R3

Consequently
d 2
% Hue ”LQ <0
So by simplified Gronwall we have that
2
luell 2 < lluol72

Eventually taking the supremum we conclude that:

sup |Jucllrz < [luol| 2
<t<T

O]

To conclude we can extend this solution since we have that u, satisfies the following
inequality
[ Fellucllrm < Enrlluel rm

So since it is a solution of the (IVP) we reach to

d ~
g luellzrm < earlluc]lsm

By Gronwall’s lemma in differential form we conclude that ||uc||z= < e®™T which is an
apriori bound, thus for 7" < co we will not have a blow up so by the theorem 4.2.3 we
have a global solution.

Conclusions: The regularized problem for the Euler equation has a smooth global in
time solution on space V™ in 3 dimensions.
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4.2.2 2 dimensions

In this chapter, we will continue discussing the 2-dimensional case using the finite radial
energy decomposition we introduced in the previous chapter. According to lemma 11,
we know that every incompressible velocity field u in 2 dimensions, with w € L', has
a finite radial energy decomposition, meaning that u can be expressed as the sum of y
and b, where y € L? is the term we are interested in, and b is a known quantity. We
know that the y satisfy the following equation:

)
vt (y-V)y+ (- V)y+(y-V)b=—-Vp+vAy (NSy)

We consider the following mollification for the (NSy) assuming that u, = y. + b**

0
a% + Je [(Jeye - V)Ieye + (b V) Jeye + (Jeye - V)b] = =Vp + VJ?(A?JE) (NSye)

Using the Leray’s formulation we project this equation to the closed space of H?® diver-
gence free functions i.e. V*® = {u € H® : divu = 0} and we have that

0
aye + P {Je [(Jeye ' V)Jeye + (b : V)Jeye + (sze : V)b]} = VJEQ(A:UE) (L - NSye)

We set
Fe(ye) = —P{Je [(Jeye - V)Ieye + (b- V) Jeye + (Jeye - V)b]} + VJEQ(Ayé)

By assuming that the initial value of the mollified y is equal to the initial value of y we
reach to an initial value problem

{gtye = Fe(ye) (IVP)
Ye(*,0) = y(0) = vo

So now we have reach to the point where we seek for solutions for the above (IVP), so
we have the following theorem

Theorem 4.2.5. Letyg € V™ ,m € Zar the initial value of the field ye, then

1. Ve > 0 there exist a unique solution y. € C* ([0,T), V™) of the (IVP).

2. On any time interval [0, T| on which the solution exists in C* ([0, T), V™) we have

that :

T
sup ”yeHL2 < ||y0HLgef0 c|[Vb|| oo dt
0<t<T

Proof. 1. For the first part of the theorem: using the Picard Lindelof theorem, we
only require data for F, so will show that F, : V™™ — V™ and it is locally
Lipschitz.

Assume a y. € V™ we have that

1Fe(ye)llm < lv T2 (Aye)llm -+ P {Je [(Jeye - V) Jeye + (b~ V) Teye + (Jeye - V)OI} || rrm

We will estimate each term individually

24In the 2d case we solve this equation for y., observe that it isn’t the same equation as in three
dimensions. Also observe that we don’t mollify the term b, since this is a known quantity.
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[V T2 (Aye) | = v]| TZue| me2

By the proposition 4.1.13

cv

< — [ Jeuellgm
€
cv
< Sl

Since y. € H™ we have that

I J2(Aye)l|m < o0

[P {Je[(Jeye - V)eye + (b V) Jeye + (Jeye - V)OI |l m
< HJE [(Jeye ’ V)Je?/e + (b : V)Jeye + (Jeye : V)b] HHm
By triangle inequality and proposition 1.1.13 we have that
< clll(Jeye - V)Jeyellam + 1~ V) Jeyell zrm + [|(Jeye - V)b zm]
By proposition 4.1.13 we have that
< c[lyellFim + llyellzrn (bl + (Vo )]
Thus we have that
”P{J6 [(J6y6 : V)Jeye =+ (b : V)Jeye + (Jeye : V)b]} HHm <0

So || Fe(ye)||rm < oo, furthermore divFe(y.) = 0 so we have that F, : V™ — V™
Now we will prove that this function is locally Lipschitz

Assume ue, ve with radial energy decomposition u. = y. + b and v. = . + b so we
have that

| Fe(ye) —Fe(ge) || am = ||yJ3(AyE)—P{J€ [(Jeye - V)Jeye + (b V) Jeye + (Jeye - V)I}

—vJ2(AG) + P{J [(Jge - V)T ge + (b - V)IeGe + (Jege - V)b } || grm

By triangle inequality and by add and subtract the term: P {J¢ [(Jeye) - V] (Jeye) }
we have that

< VIITZA(ye — gl mrm + 1P {Je [(Jeye) - V] (Je(ye — 5e))} llam
+HP{JG [(Je(ye - y_e)) ’ V] (Jey_ﬁ)} ||Hm + HP{Je [(b : v)(‘]e(ye - y_e))]} HHm
+HP{J€ [(Js(ye - ge)) ' V] b} HHm
We will see each of these 5 terms individually

[ J
VHJEA(ye — )|l pm = VHJeg(ye — Ye) || m+
By proposition 4.1.13
2 HJE(ye - y_e)HHm

< lye = Gellrm
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[P {Je [(Jeye) - V] (Je(ye — )} lm
By proposition 4.1.13 and 4.1.15

< e\ VIe(Ye — Fe) - Jeyell mm
By proposition 4.1.4
< c(IVIe(ye — Yl | Jeyellrm + IV Je(Ye — el m)|| Jey — €l L)

By proposition 4.1.13

c B c c B
< ¢ (Sllye = gellim S el 2 + ellyellm <5 e = 7l
3 _
< Sluelzm e = Tll

1P {Je [(Je(ye — Ge)) - V] (Jege) } lm
By proposition 4.1.13 and 4.1.15

< || VIebe - Je(ye — Fe) || rm
By proposition 4.1.4
< c(IVIbell L[| Je (e — Gl zm + | TeTellam || Je(Ye — Fe) |l L)

By proposition 4.1.13

C, _ _ C, _ c _
< e (Sl zecliye = gellrm + el 55 e = 7l

w

C _ _
< g,\lyeHHmHye — Ye|| Hm

||P{JE [(b ’ v)(JE(yE - ge))]} HHm
By proposition 4.1.13 and 4.1.15

< CHVJe(yG - g&) : bHHm

Thus
< [[VJe(ye — Ye) |l [|b]] oo

By proposition 4.1.13
c

< gHye - ge”H’”HHh“’
C _
< —lIbllzee llye — gell
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HP{Je [(Je(ye - y_e)) : V] b} ||Hm
By proposition 4.1.13 and 4.1.15

< CHVb : Je(ye - ge)||Hm

Thus
< (Vb o< llye — ellzrm

So in the set OM = {y € V™ : |ly||gm < M}
HFe<ye) - Fe(ge)HHm S LM,bHye - geHH’"

Thus F, is local Lipschitz so by Picard Lindelof theorem there exist a unique
solution of the (IVP), say y. € C1([0,T), V™)

2. For the second part of the theorem we have that

d
/ Ye - %yedl‘ = / Ye - Fe(ye)dx
R2 R2

1d,
gl = [ v Ftwos

For the integral on the right side we have that

/RQ yE‘FE(ye)dx = /R? yﬁ'{_P{JE [(Jeye : V)nye + (b : V)Jeys + (J€ye : V)b]} + VJ?(AyE)}

1
= V/ Jeye - Adeyedx + / [(Jeye - V) eye] Jeyedx
R2 2 g2

1 1
s / (b V)] Jeyede + / (o - V)] Joyedi
2 R2 2 R2

So

1 1
< —1// VJeye - VIeyedr + / [(b-V)Jeye] Jeyedx + = / [(Jeye - V)b] Jeyedx
RQ 2 RQ 2 RQ

25
1
< 7190l e 3

Thus we conclude to the relation

d
lluellze < CITbl el

25Since -V ng VJeye . VJeyedit = _VHVJGyG”i? <0
Also

1/ (b V) oy Jeyeda = —1/ Ty (bJeye)da = —1/ (b V) Joy.] Jeyedx—l/ (Jeye - V)] Jeyeda =
2 Jpe 2 Jpe 2 Jpe 2

R2

1
/ (b V) o] Jeyede = — / [(Jeve - VI Jeyeda
R2 R2
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By Gronwall’s lemma in the differential form we have that

t
H?JEHL2 < ”3/6’t=0HL2efO ClIvblzee

Taking the supremum over this relation, together with the fact that the integral
of a positive quantity as a function is an increasing one we conclude that

T
sup [[yellL2 < ||yollgeelo IVollzoodt
0<t<T

O]

Remark: In the previous chapter, the basic energy estimate in two dimensions is the
same as the energy estimate mentioned above. Therefore, we have once again achieved
an optimal energy estimate. It is worth noting that our bound in two dimensions has a
time dependence, but in three dimensions, this is not the case.

So far we have find a local solution for the regularized problem we cam also extend this
solution on 2 dimension since by the fact that F. is Lipschitz we have the following
inequality

[Ee(ye)llrm < Lary

Also . satisfies the IVP so we have

|ye||Hm

d
%Hyellﬁ < Larplyel| am

LamaT g6 the case of blow

So by Gronwall lemma for 7' < co we find an apriori bound e
up is not true and thus T = oo
Conclusions:The regularized problem for the Navier Stokes equation has a smooth global

in time solution on V™ in 2 dimensions. Why?

We have find a solution for the L — NSy, say y. we know thaty. = u. — b So we
substitute to the L — NSy, the u. — b and we have that

0

aue Qb + PJ. [(Jeu6 V) Jeue

ot
—(Jeue - V)b — (b- V) Jeuec + (b- V)b
+(b-V)Jeue — (b- V)b + (Jeue - V)b — (b- V)b} = vJ?Au, — vAb

We know that b is an exact solution of the Navier Stokes equation so we conclude
that

gtue + PJ, [(Jeug : V)Jeug] = vJ?Au,

This is the regularized Navier Stokes in two dimensions so we see that ue satisfies
this equation, so its a solution.
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Remark: We have exactly the same results for the Euler equation indeed:

%er (Y- V)y+(b-V)y+(y-V)b=-Vp (Ey)

We consider the following mollification for the (Eu) assuming that v, = ye + b

0
&yG + Je [(Jeye : V)Jeye + (b : V)Jeye + (Jeye : V)b] = —Vpe (Eye)

Using the Leray’s formulation we project this equation to the closed space of H?® diver-
gence free functions i.e. V* = {u € H® : divu = 0} and we have that

0
aye + P {Je [(Jeye : V)Jeye + (b ’ V)Jeye + (Jeye ' V)b]} =0 (L - Eye)

We set
Fe(ye) = —P{Jc[(Jeye - V)Jeye + (b~ V) Jeye + (Jeye - V)b }

By assuming that the initial value of the mollified y is equal to the initial value of y we
reach to an initial value problem

{gtye = Fe(ye)

(IVP)
Ye(*,0) = y(0) = o

So now we have reach to the point where we seek for solutions for the above (IVP), so
we have the following theorem Let yg € V™ m € Zgr the initial value of the field ye,
then

1. Ve > 0 there exist a unique solution y. € C* ([0, T), V™) of the (IVP).
2. On any time interval [0, 7] on which the solution exists in C! ([0, T'), V™) we have

that :

sup [lyellzz < [[yollzzelo cIVbllzowdt
0<t<T

Proof. 1. For the first part of the theorem we will prove that F, : V™ — V"™ and
also it is locally Lipschitz
Assume a y. € V™ we have that

[ Fe(ye)llm < [P {Je [(Jeye - V)Jeye + (b V)JeYe + (Jeye - V)I} ||am

We can easily see that

[P {Je [(Jeye - V)Jeye + (b V) Jeye + (Jeye - V)OI || m
< HJG [(Jeye : V)Jeye + (b : V)Jeye + (Jeye : V)b]
By triangle inequality and proposition 4.1.13 we have that

< clll(Jeye - V)Ieyellm + (0 V) Jeyel[am + ([ (Jeye - V)bl rm]
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By proposition 4.1.4
< |V Ieyel oo [ Jeyel[m + |V Jeyell mm || Jeye|| Lo

+el|VIeyel am 1bll Lo + ¢l VOl oo || Jeyel | mrm
By proposition 4.1.13 we have that
< ¢ [lyellFrm + lyellzrm ([l Lo + (V0] 1))
Thus we have that
1P {Je [(Jeye - V) eye + (b V) Ieye + (Jeye - V)OI} [ m < 00

So || Fe(ye)||m < oo, furthermore divFe(y.) = 0 so we have that F, : V™ — V™
Now we will prove that this function is locally Lipschitz

Assume ue, ve with radial energy decomposition u. = y. + b and v. = g + b so we
have that

[ Fe(ye) — Fe(@e)lluam = || = P{Je [(Jeye - V)Jeye + (b V) Jeye + (Jeye - V)]}

+P {Je [(Jege : V)Jeg€ + (b ! V)Je?je + (Jege : V)b]} HHm

By triangle inequality and by add and subtract the term: P {J. [(Jeye) - V] (Jewe)}
we have that

S NP AT [(Jeye) - VI (Je(we = g} [ am + [P {Te [(Je(ye = ge)) - V] (Jege) } | m

HIP AT (b V) (Je(ye = 9} zm + 1P {Je [(Je(ye — Fe)) - VIb} || m

We will see each of these terms individually

[ ]
1P {Je [(Jeye) - VI (Je(ye — )} | m
By proposition 4.1.13 and 4.1.15

< e[|VIe(Ye = ¥e) - Jeyellam
By proposition 4.1.4

< c(IVIe(ye = gl | Jeyel orm + [V Ie(ye = Gellm )| Jey — €] Lo-)

By proposition 4.1.13

c _ c C _
<c (E”ye - yeHHm?Hy6HL2 + CHyEHHmGTJ)Hye - y€HL2)

3
C _
< :3HyeHHmHye — Ye|| Hrm
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HP{J€ [(Je(ye - ge)) ’ v] (Jegs)} HHm
By proposition 4.1.13 and 4.1.15

< || VIe - Je(ye — ve) | rm

By proposition 4.1.4

< c(IVIeTell Lo | Te(Ye — gl mm + | Tetell mrm | Je(ye — e) ||l L)

By proposition 4.1.13

c . B Cc, _ & _
< ¢ (el eeellye = gellzm + gl m 5 lye = gellz2)

w

A )
< gllgellzmllye = gell

||P{JE [(b ’ v)(Je(ye - ge))]} HHm
By proposition 4.1.13 and 4.1.15

< CHVJe(ye - ge) : bHHm
< CHVJe(ye - yie)HHmeHLoo
C _
<c (g”ye - yeHHmeHLOO)

62

< —lollzellye = Gl

1P {Je [(Je(ye — ge)) - V]O} || m
By proposition 4.1.13 and 4.1.15
< cl[Vb- Je(ye — g
By proposition 4.1.13
< (V0] oo [lye — Fell
So in the set OM = {y € V™ : ||ly||gm < M}

| Fe(ye) — Fe(e) || pm < LT\/I,bHyE = Yellmm

Thus F; is locally Lipschitz so by Picard Lindelof theorem there exist a unique
solution of the (IVP), say y. € C1([0,T), V™)
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Chapter 4 4.2. Existence of smooth solutions for the regularized equations

3. For the second part of the theorem we have that

d
/ Ye - %yedx = / Ye - Fe(%)dl'
R2 R2

1d 9
sl = [ v Pude
For the integral on the right side we have that

/ Ye - Fe(ye)dr = _/ Ye - P{Ic[(Jeye - V)Ieye + (b~ V) Jeye + (Jeye - V)b]}
R2 R2

1

§ / [(Jeye : V)Jeye] Jeyedm
R2

1 1
Py / [(b ) V)Jeye] Jeyedr + ~ / [(Jeye)b] Jeyedx
2 R2 2 R2

So by footnote 26

< /R (U] Jeyeda

1
4
< C| Vb < llyel72

Thus we conclude to the relation

d
Jplvellze < CIVOl oo lye 2

By Gronwall’s lemma in the differential form we have that

't
lyellz2 < lyeli=ol|2edo CIVHlIz=

Taking the supremum over this relation, together with the fact that the integral
of a positive quantity as a function is an increasing one we conclude that
T
sup yellzz < [lgollpzelo VPl
0<t<T

O

So far we have find a local solution for the regularized problem we cam also extend this
solution on 2 dimension since by the fact that F is Lipschitz we have the following
inequality

1Ee(ye)llzm < Ly pllyell mm
Also y. satisfies the IVP so we have
D el < Lgg el

T 50 the case of blow

So by Gronwall lemma for T' < oo we find an apriori bound eFap
up is not true and thus T' = oo
Conclusions: The regularized problem for the Euler equation has a smooth global in time

solution on V™ in 2 dimensions.
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We have find a solution for the L — Ey, say y. we know thaty. = u. — b So we
substitute to the L — Ey. the u, — b and we have that

0 0
aue - ab + PJE (Jeue . V)J6U€

—(Jeue - V)b — (b- V) Joue + (b- V)b
(b V)Jeue — (b V)b + (Jeue - V)b — (b V)b] =0

We know that b is an exact solution of the Euler equation so we conclude that

0
Il P . —
tue + PJ. [(Jeu6 V)Jeue] 0

This is the regularized Euler in two dimensions so we see that u. satisfies this
equation, so its a solution.

4.3 Existence of smooth solutions as the limit of the regu-
larized solutions

The primary concern in this section is whether and how we can solve the Navier-Stokes
and Euler equations through the regularized ones. We need to determine the circum-
stances under which this is possible and the time interval required. We will examine
two cases: one for three dimensions and one for two dimensions, as we did before.

4.3.1 3 dimensions

The following theorem summarizes the main result which answers all the previous ques-
tions, for its proof we will need several steps which we will discuss below

Theorem 4.3.1. Assume that ug € V™ with m > [%] +2 = 3% then

1. There exists a time T with upper bound which depends on the initial value i.e.

1

cmlluol| gm

T<

such that Vv > 0 there exists a unique solution u, € C ([0, T],C*(R*))NC* ([0, T], C(R?))
for the Euler and Navier-Stokes equations in the Leray’s form.

2. The solutions u, and u. satisfies the following estimates

sup ||u€HHm < HUOHHW
0<t<T 1-— cmTHu0||Hm

25In the case of the Euler equation we can take m > [%] +1=2
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sup ||UvHHm < HUOHH"L
0<t<T 1 — e T |Juo || gm

3. The solutionsue, u, is uniformly bounded on the spaces

o L% ([0, ] V™ (R3))

o L™ ([0,T],V™(R?))

° sz( , T, Vm=2 R3))
e Cw (| ( ST, Vm( R3))

For the proof we will do the following steps, each of these steps needs several results
to get proved:
Step 1: We will show the energy estimate supg<;<p ||tel|gm < %
Step 2:We will prove that the family of the regularizes solutions forms a Cauchy se-
quence on C ([0,T7], L*(R?))
Step 3: We will prove strong convergence in all the intermediate norms of the high
norm of the space C ([0, 7], H™(R?))
Step 4:Via weak convergences we will prove the third part of the theorem

We also note that in the previous chapters we have an estimate which its constant de-
pends on € in the denominator and M this is not so useful here since we will send € to
zero in order to find the limit solution. So we will prove the following lemma which give
us an estimate with no bad dependence on €

Lemma 18. Assume that ug € V™ then for the solution ue of the (IVP) it is true that

1d

5 g uellrn + VI IV ucllFm < em |V Jeuel| s fuel|7m

Proof. Since u, is a solution of the (IVP) we have

d
e = vJ?Auc — PJ. [(Jeue - V) Jeu)

We observe that the estimate we want to achieve is about Sobolev norms so we differ-
entiate for any multiindex a the above relation and we have that

d
De <dt e> = vD" (vJ2Au) — D (PJ, [(Joue - V) Jouc)

We will do energy methods and we will multiply this relation with the D%u, in L?
Then

/ D° <du€> -D%ucdx = 1// D¢ (JEAUG)-Dauedx/ D {PJ. [(Jeue - V)Jeu]}- D ucda
R3 dt R3 -

Thus by proposition 4.1.8 and 4.1.15(6)

1d

—— |D%|?dx = I// A(DJeue) - D* Jeue —/ D {PJ [(Jeue - V)Jeu]} - Ducdx
2dt Jgs R3 R3
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So
1d

5 dt||Dau€||%2 = v /R . D%Jeue - D*Jouedr — | D*{PJ.[(Jeue - V)Jeu]} - Ducdx

R3
Consequently

1d

§$|]Dau€H%2 + || DI Vue|32 = —/ D {PJ, [(Jeue - V)Jeue]} - D ucda
]R3

Now we will deal with the integral on the right side of the above relation, we see that
by ass and subtract the term [p3 PJe [(Jeue - V) D Jeue] D*uedz

— | D{PJ[(Jeue - V)Jeue]} - D*ucdx
R3

= — PJ [(Jeue - V)DJeue] D*uedx
R3

- / (D% {PJ, [(Jeue - V) Jeu]} — PJ. [(Jeu.V-) DO Jug] | - D
R3

We have that [os PJe [(Jetie - V)DJeu] Douedz = L s (Jeue) - (v (JeDajeug)Q) dz

1
== / divJ.ue| J. D> dz = 0
2 R3
Also by Holders inequality, proposition 4.1.8 and 4.1.15 it follows that

— D {PJ. [(Jeue - V)Jeuel} - D*ucdz
R?)
< |ID%ue||p2||PJe { D* (VJeue - Jeue) — DY (VJeue) - Jeue} || 12

By proposition 4.1.13
< e || D%l 2| D* (VJeue - Jeue) — DY(VJeue) - Jeuel| 2

We reach to the relation
1d

5%”DGU6H%2 + VHDGJGVUGH%Q < emlluel ge||D* (VJeue - Jeue) — DU(VJeue) - Jeuel| 12

Since a < m we get

1d
§%HDGU6H%2 + VHDQJGVUGH%2 < emllue|lam || D* (VJeue - Jeue) — D*(Veue) - Jeuel| 12

We take the sum over this relation,
ld a 2 a 2
Z §£HD Uel72 + Z v[|D*JeVuel|72
la|<m la|<m

< emltellam Y IID* (Veue - Jeue) — D*(VJete) - Jeue| 2

la|<m
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We use the proposition 4.1.4(2) and we have that

1d
5%”“6“%{7'1 + VHJGVUGH%{’” < emlluel am2em ||V Jete|| Lo || Jetel| m
So we conclude that
l1d 2 2 2
5%”“6”Hm + V|| JeVuel[grm < Cn|V Jeue|| Lo ||ue | Fm
O
Proof. Theorem 4.3.1
Step 1:By the above lemma we have that
d
g luellzm < CallV Jeue]| oo luel (PrS1)

For the norm ||.Jeu,|| = we will use the Sobolev embedding theorem 4.1.2 we are on the
case where s > % + 2 so our k=2 so by the theorem sup|, <, [[Du||z < cf[ul| g, thus
we have the following estimate

HV‘JEU/EHLOO < ‘S1|~1p HDaJeue‘Loo < HJeueHHm
al|<2

Now we can use proposition 4.1.13 and we have that ||Jeue| gm < 5lluellgm
Eventually put all this together with the relation (PrS1) we have that

d
gy luellzrm < Cluelzm

Note:The constant C depends only by m
So now we will find the solution which satisfies this inequality

Assume that b(t) solves the differential equation

d
(1) = cb?(t)

with initial value b(0) = |lug||gm Firstly we want to find a relation between our
function and b(t)
Then by combine those two relations we have that

d d

Zlucllam = 22b(t) < clluc]fm — (1)
Le. p
= (luellzm = b(®)) < e ((JuellFpm — b(1))
We set y(t) = ||ue|| gm — b(t) thus we have that
d
Y0 = cfluellmm +6(1) y(t)
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We also set q(t) = (||uel|gm + b(t))
So we have the inequality

%y(y) < cq(t)y(t)

By Gronwall’s inequality in differential form we have that

y(t) < y(o)ef(f cq(s)ds

where y(0) = ||uol[gm — [luol|zm =0

Consequently |luc(t)||gm < b(t).

Now we will find this b by solving the initial value problem, we are sure that we
have a solution since we have a first order ivp.

{gtb(t) = cb2(t)
b(0) = [luol|rm

For convenience we interpret the differentiation with respect to t with ’
So V/'(t) = cb?(t) so for b(t) # 0 we have that

[ =L

b(t) b(O) B
b
b(t) b(0)
b Uy m
Eventually b(t) = 10hs = i
So we have the result i.e.
[|woll e

<
el < 1 — epmt||luollgm

Taking the supremum over this relation we have that

||UOHH'm
sup |luellgm < sup
0<t< o<t<T 1 — cmt|luol| mm

For the supremum of the right quantity: we have that as t takes its supremum the
denominator gets smaller so the fraction gets bigger, so the supremum of this quotient
is achieved when takes it supremum so

sup [ < 71
0<t< ¢ ]_ — cmT||u0||Hm

It is obvious that this bound is uniform since so far we have no dependence on ¢, also
we want to secure that the right part has a supremum .
So for T' < = e is uniformly bounded on C ([0, 7], H™)

IIUOH
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Step 2:The family u. forms a Cauchy sequence?” on C ([0, T], L2)

In order to prove this we will try to estimate the L? norm of the difference u, — ue via
energy methods. We start with the equation of (IVP) and assume that u., uesatisfy
this equation we have that

d d
%UE - %ue’ = Fe(ue) — Fo (Ue’)
So we have the following equation
d

7 (ue — ue) = v(J*Aue — J2 D)

— {PJ€ [(J€u€ . V)Jeug] + PJu [(Jefug/ . V)JEIUE/]}
We multiply this equation with the difference u, — u¢ in the L? and we have that
d
/R3 %(uE — Uer) - (Ue — uer )dx

= 1// (J2Aue — J2Aue) - (ue — ue)dz
R3

- {PJE [(Jgue . V)Jgue] + PJg [(Je/uer . V)Jduel]} . (u€ — uef)dx
R3

So we have that

= —||ue — ue |32 = V/RS(JEAU6 — J2Aug) - (ue — ue)dz

+ {PJ.[(Jeue - V)Jeue) — Py [(Joue - V)Joue]} - (ue — ue )dx
R3

For the terms on the right side of the above relation we will do the estimates separately:2®

1// (J2Auc—J2Aue) - (ue—ue)de = v | J*Auc-(ue—te) =I5 Aug - (ue —ue ) d
R3 R3

We want to maintain the differences so we will not deal with them. We proceed
by add and subtract the term J2Au, - (ue — ue) so we have that

V/ (J2Aue — J2Auy) - (ue — ue)dz
R3

2"How this family forms a sequence since € is a positive real?We set ¢ = % and we construct a
sequence such that :
Ul = U1
U2 = U1
2
Un = UL = Ue

n

28We will use the tools we will need, observe here that we want our estimates to have a "good"
dependance from € or €
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= / T2 AU (e —uer ) — T2 Ate - (e — e ) + T2 Atie - (e —ter) — T3 Atter - (e —ter ) daz
R3

v [/ (J2 = J2) Auc - (ue — ug)dz +/ J2A(ue — u€) - (ue — ug)da
R3 R3

129

For the second integral®® and proposition 4.1.9 we have that

/ T2 A (ue — u€') - (ue — ue)dr = —/ Jo V(e — uer) - Jo V(ue — uer)
R3 R3

= — /Rg |Jo V (ue — u€/)|2dx = —||JeV(ue — uef)HZLQ <0
Thus

1// (J?Aue — J2Aug) - (ue — ue)de < 1// (JE2 - Jfl) At - (e — uer )dx
R3 R

3

By Holders inequality we have that
IJ/RP)(JEAU€ — JEQ/AUEI) (ue — ue)dx < vl| (Je2 — JE/) Aue| 2 ||ue — uer| 12
By triangle inequality we have
< v (|72 Auel g2 + |G Auel 12) [|ue — el 2

= v (1 2uell 2 + [T uel =) llue — wer| 2

By proposition 4.1.13
< wve (elluellgs + €'lluellgs) lue — uell 2

< vemax(e, €)||uel| s ||ue — wer|| 12

So for this term we conclude that

1// (J2Aue — J2Aue) - (ue — ue)dr < vemax(e, €)||ue|| grm ||ue — ue|| 12
R3

/R AP [ D) Jeud — P (e - V) o]} - (v — o)

< {Je [(Jeue - V) Jeue] — Jor [(Joue - V)Jeoue]} - (ue — ue )da
R3

We will add and subtract the term Jo [(Jeue - V) Jeue]

< / T ((Jette - V)] — Jor [(Jotie - V) Joe]
R3
+ Jor [(Jeue - V) Jeue] = Jor [(Joue - V) Joue]

29[18] pg712 theorem 3
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(ue — ue )dx

So we have two integrals:

/ (e = J) [(Jette - V) o] - (e — uer)dae
R3
and
/ T [(Tette - V) eue — (Tt - V) Jurter] - (e — ue )
R?)

In the second integral we add and subtract the terms (Jou, - V) Jeue , (Joue - V) Jeue,
(Jower - V) Jurue

So eventually we will estimate the following 5 integrals:

(a) = [gs (Je — Jor) [(Jeue - V) Jeue] - (ue — ue)dzx

(b) = Jgs Jo {[(Je = Jeo) ue - V] Jeue} - (ue — ue)dx

(¢) = Jps Jer {[Jer (e — uer) - V] Jette} - (e — uer)d

(d) = fRS Je {Jer [(ue - V)(Je = Jer)uel} - (ue — uer)da

(e) = fRB Jeo {Jer [(uer - V) Jer (ue — uer)]} - (ue — uer)da

So let’s start the estimates
(a) <[ (Je = Jer) [(Jeue - V) Jeue] || g2 [[ue — uer|| 2

For the first norm we add and subtract the term (Jcu, - V)Jeue by triangle in-
equality we have that

| (Je = Je) [(Jeue - V)deue] |2 < || e [(Jete - V) Jeue] —(Jewe- V) Jetie || go+|| Jer [(Jetwe - V) Jeue — (Jetie -
By proposition 4.1.11 we have that
< ce||Vdeue - Jeue|| g + c€' ||V Jeue - Jeuel| g

< 2cmax(e, €)||VJeue - Jeue|| g

By proposition 4.1.4 we have that
< emax(€, €) {|VJeue|l oo || Jeue|l g + || Jette]| Lo |V Teue| | e }
By proposition 4.1.7and the fact that m > 3 we have that
< cmax(e, €) (|| Vel Lo uell m + [luell oo el )

By the Sobolev embedding theorem we have that [|u|| Lo+ Vul| Lo < supjyi<o [|[ Dl L <
em||u|lm,, Thus as a result

| (Je = Jer) [(Jeue - V) Jeue] || L2 < emax(e, GI)HUGH%-IW
So (a) < cqmax(e, €)|uelFm ue — ue 12
(0) < [[Jer {[(Je = Jer) ue - V] Jeue} || p2[lue — uel| 2
For the first norm by proposition 4.1.13 we have that

(| Jer {[(Je — Jer) ue - V] Jeu&} 2 < [(Je — Jer) ue - V] Jetel| o

&
Sl
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< c[(Je = Jer) ue - V] Jeue|| g
Since H*(R3) is a Banach algebra we have:
¢ < [|VJeuel[gall(Je — Jer)uel|
So by proposition and 4.1.13 we have that

< elllan (et = el + e = s

By proposition 4.1.11

< clluell g (elluellm + €' lluell )

e {[(Je = Jer) e - V] Jeue} || 2 < cmax(e, €) [Juel|Fm
Consequently (b) < ¢, max(e, € ) ||ue||%m |ue — ue|| 2
(¢) <N Je {[Jer(ue — uer) - V] Jeueh || 2 llue — ue| 12
For the first norm by the proposition 4.1.13 we have that
[ Jer {[Jer (e = uer) - V] Jeue} |12 < || VJeue - Jer(ue — er) o
By the proposition 4.1.4
< c{l[VJeue Lo || Jer (e — uer)|| o + [V Jetie|| ol Jer (ue — uer) || o< }
By the proposition 4.1.13 and the Sobolev embedding we have that
[ Jer {[Jer (ue = uer) - V] Jeuc} || 2 < clluc]|mm [[ue — uel| 2
It follows that (c) < ccl|uc||gm ||ue — ue |72 For (d) we have an estimate as in (b)
ie.
(d) < | Je{Jer [(ue - V) (Je = JerJuel } | 2 llue — uel| 2
For the first norm by the proposition 4.1.13 we have that
[Je {Jer [(ue - V)(Je = Je)uel} |12 < e[V (Je = Jer)ue - uell o
< ||V (Je = Jer)ue - uel| s
The space H*(R3) is a Banach algebra we have:
< clluellem{|(Je = Jer)uel g
< clluc| am (HJGUE — Ue|lgm + [[Jeue — UeHHm)

By proposition 4.1.11 we have

< clluell g (elluellm + €' lucll )

So
e {Je [(e - V) (Je = Je)ue]} || 2 < cmax(e, €)||uc|3pm

As a consequence (d) < cgmax(e, € )||uel|%m |[ue — uer|| 2 Now for the last integral
(e) we have that

1 1
(e) = / (Jeortier - V)| Jor (te — uer)Pda = —/ div(Jeue )| e (ue — ue)|?de = 0
2 R3 2 R3
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So we combine all this relations and we have that :

1d
5 g7 e = welliz < vemax(e, ) ucllmmllue — uel| g2 + camax(e, )[uc|[frm l[ue — uell2

comax(e, € )||uelFmllue—ue || g2 +cellue]| mrm llue —uer |72 +cq max(e, €) el Frm e —uel| 2

By Step 1 we have a uniform bound for ||uc||gm we set this bound M, recall that this
bound depends on time and initial value.If M > 1 then we have M < M 2 fM <1
then M? < M. Assume also that C is the maximum constant of all. And set Cj; the
constant which depends on C and M or M? then we have the relation :

——||lue — u€/||%2 < Chrllue — uer| 2 [max(e, €) + ||ue — u€/||L2]
So J
ﬁHu6 —uellre < Oy [max(e, €) + [Jue — UEIHLZ}

We take the integral with respect to t
o=l < [ ot max(es) + e = 2] ds
By simple calculations
|ue — uer|| 2 < Crrmax(e, €)t + /Ot Chr||ue — uerl| r2ds
We set a(t) = Cpy max(e, €' )t so by Gronwall’s lemma we have

t .

Jue — wellze < aft) | Casas)el? s

0

< Cymax(e, €) | 2t + I LeCMt

>~ 9 CM CM
It is true that e* << x + 1 thus e“Mt < Oyt + 1

e — uer|| 2 < Cpr max(e, €)(2t — 1) < 2tChy max(e, €')

Taking the supremum over this relation we have

sup |lue — ue |2 < Cprr max(e, €)
0<t<T
With out loss generality we assume that ¢ < e So eventually |lue — ue |2 < Carre
thus sequence is Cauchy on C([0, T], L?(R?)) As an intermediate step we prove that the
space C([0,T], L?) is Banach.

Assume that a,, is a Cauchy sequence on C([0, 7], L?) then we have that

Vn > 0, dng € N such that Vn,m > ng : supgeicr ||an — am|lz2 < n we will
show that this sequence converges. The space L? is Banach indeed assume that
fn is a Cauchy sequence on L? i.e. ¥§ > 0, Ing € N such that Vn,m > ng :
supo<i<r [fn— fmllz2 < 6, so we may assume a subsequence f,, such that || f,,,, —
frll < 2% for k > 1 We also assume the series f(2) = fn, + 2.7 (frgss — fne) and
9(x) = | far| + 2277 | frrsr — fnil- It is obvious that | f(z)| < g(x) For the sequence
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of partial sum of g we have that S% = |fu,| + S0 |Fress — Frel
1

Ths [540z2 = (Jio 1l + S8 o = Fal ) * S0 183022 < Ifmllze +
ZiVankH — fnullz2 Consequently for n — oo we have that [|g]|;2 < oo ,s0
| fllz2 < oo thus f € L2 We also have that f,,, — f in L? thus ||f, — fllz2 <
|\ fro— Frkll 2+ fr, — fll 20" So we have that Vi > 0, 3ng € N such that Vn,m > ng
¢ |lan, — al|z2 < n taking the supremum we have that ¥ > 0, 3ng € N such that
Vn,m > ng : supg<i<r ||an —allz2 <

So we have that u, is a Cauchy sequence in a Banach space thus this sequence converges
1.e Ue — Uy

Step 3:The main tool here is the interpolation spaces®’. An interpolation space is
a space layed between two Banach spaces. Loosely speaking the idea is the follow-
ing, assume two Banach spaces XY which are continuously embedded to a Hausdorff
topological space Z. We define the spaces 71 = X NY and 7> = X + Y with norms
||z, max(||.||x, |, ly) and ||.|| = inf {||.|[x +||.][y'}. Via the interpolation method we
seek for all sets S such that X NY € S € X +Y. A well known result is that of the
interpolation in LP spaces3'. Where we have the result:

Let 1 <p < g <r < oosuchthatforf e (0,1): % = g—i—lr;o then |Jul|a < [Juf|9, ||ullt-?.
This gives the interpolation LP N L™ C L9. We observe that the interpolation theory
gives relation between norms so our interest is to have a result us above in L? Sobolev
spaces.

Proposition 4.3.1. Let s € RT then VYu € H® and 0 < r < s we have that

1—T r
el zrr < flull 2 = flell s

proof of proposition 4.3.1 We will prove the following: Assume an r that is a convex

combination of x and y i.e. r = (1 — ANa + Ay for A € (0,1) then ||ul|gr <
—A

lu(@) 2 ull 3

For the H" norm with r > 0 we have that

(1=XN)z+Ay

lullge = 1+ €2)2aE) |2 = 1L+ 1632 a(€)]|

(1=Nz Ay A=N=x q_ Ay
L+ 2 A+ EP) T @)l = A+ 2 a1+ €22 aM|1e
Assume p,q,we will define them later such that % + % = %, by Holder we have that

T 1A NS
lll e < NI+ € 2 all o I+ 1%) 2 a7

For p = & and ¢ = % we have that

H)ﬁd&] - [(/R (1 + €% 2 a A>§d§]

o[>

30 [11]
3114] Chapter 2
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- 1-X " A
lulle < (10 + 1€ 3alz) (10 + g ¥al 2

—-A A
leall e <l el 7o

T

So in our case for x =0, A = £, and y = s we have that r = (1 — A)z 4+ Ay thus by
the previous result

1—r T
[l e < flell o [lell s

We need this relation since we have proved convergence in C([0,T], L?) and also we
have a uniform bound in C([0,7], H™),and we are interested to find convergence for
the intermediate norms of H™norm. So we estimate the H™ norm of the difference
ue — u, where m’ < m. By the above proposition we can easily see that

1_ml m’
| ue — uv”Hm’ < fJue — uvHL2 ™ JJue — UUHI%I

Taking the supremum over this relation we have that

1—m/ m’
sup Hue - uvHHm’ < sup {Hue - UUHLz " ”Ue - UUH[TInm}
0<t<T 0<t<T

/

/
1_m/ m!

Thus supg<;<7 [[te = o gm' < SUPg<iar [Ue — Unll ;2 ™ SUPg<i<r [[Ue — s || fim
By the Step 2 we have that ||uc—ue|| 2 < Chr e, we also now that sup ab < sup asup b
it follows that sup a* < (sup a)*.

1—m 1-m
Consequently supgc;<r [[te — toll 2 ™ < (Supgeier [[tie — uol[z2)” ™.
We also know that the function x® is increasing when a > 0, so we have that supg<; <7 [|ue—

_m ’
wollis ™ < (ce)t
ol
1—cmT|uol| gm
Jeollzrm < limsupe o [lucllzm < limsup, o g < =l

Thus we have also an uniform bound for the H™ norm of u, i.e.

By the Step 1 we have that supg<;<p ||tellgm < and it is also true that

[[wol| grm
1 — e T ||l gm

sup_[[uy||gm <
0<t<T

It is also true by triangle inequality that sup(a +b) < supa + supb so supy<;<7 ||ue —
Uyl| i < (supgcier uellf + supo<i<r lluo| am) = M'w Eventually we combine the
above relations and we have that
sup [|ue — || s < C(ug, Ty m,m’)et =

0<t<T
So we have proved that we have the converge of u. to u, in all spaces C([0,T],V™)
with m’ < m.
We choose m’ > 2+2, so by the Sobolev embedding theorem we have that ||ue—uy||c2 <
|te — uyl|gms, taking the supremum over this relation we have that supg<;<p [[ue —
Uy|lc2 < supp<ier lue = wol| g -
It follows that ue — u, in C([0,T],C?)
To complete the step 3 we have to show that we also have a convergence in C([0, T, C).
We will need the following lemma
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Lemma 19. Assume we have v, — v in C([0,T],X) andv], = f,, — f in C([0,T],Y),
where X C 'Y Hilbert spaces. We want to show that then v' = f € C([0,T],Y).3?

proof of lemma: Adapting classical results on uniform convergence to Hilbert-space-
valued functions.

First of all, from v, — v in C([0,7],X) and X C Y we obtain v, — v in
C([0,T],Y).

Theorem 4.3.2. * Let € > 0. Since v), — [ in C([0,T],Y), there exists an ng € N
such that for all n,m > ng we have

[v7.(s) = v (s)lly <e Vs €[0,T]

Then, by the Mean Value Theorem for Hilbert-space-valued functions, ® applied
to each function vy, — vy, € C([0,T],Y) on any interval between s,t € [0,T], we
obtain

lvn(8) = vm(s) — (Vn(t) — vm(t))|ly <e€lt—s| Vit,s€[0,T], Vn,m>ng

Let now ¢t € [0,7] be fixed and define ¢, (s) := sz ¢y and o(s) ==

s—t

w €Y, with s € [0,T]\ {t} =: E, such that, since v, € C*([0,T],Y),
. _ ! .
}glg% On(s) =v,(t) in Y
Moreover,by the above theorem we get
pn(s) — pm(s)ly < e, Vs€E, ¥Yn,m>ng

such that (¢,,) converges in Y uniformly on E' = [0, T]\{t}, and since (vy,) converges
in Y uniformly on [0,7] D E to v, we obtain that ¢, — ¢ in Y, uniformly on E.
Now from ¢, — ¢ in Y, uniformly on E = [0,7]\ {t}, and v},(t) = f(t) € Y,
we obtain that for any € > 0 there exists an n € N and a corresponding § > 0
such that [vp(t) = f(H)lly < 5, lon(s) —o(s)lly < 5 Vs € B, |lgnls) -
v,y < § VseEN{0<|s—tl <d}, and thus, ||¢(s) — f(t)|ly < e for all
se€ EN{0 < |s—t| <d}. This yields lims_y; ¢(s) = f(2).

So v'(t) = limg—yt ¢(s) = limy oo v}, (t) = f(t) in Y

®This is the Theorem 7.17 pg 152 on [42], adapted to the case of functions with values on a
Hilbert space

This is a trivial adaptation of Theorem 5.19, pg 113,[34] for functions with values in R™, which
we present here for the sake of completeness.
Assume v : [a,b] — Y is continuous and v : (a,b) — Y is differentiable for a Hilbert space Y.
Then, there exists t € (a,b) such that |Jv(b)—v(a)|ly < ||v'(#)|ly (b—a). Indeed, set z := v(b)—v(a).
Then, ¢(t) := (z,v(t))y is continuous on [a, b] and differentiable on (a,b) with ¢'(t) = (2,v'(t))y.

32Since C([0,7T],X) C C([0,T],Y) for X C Y, this implies then v € C([0,T], X) N C*([0,T],Y).
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Applying on ¢ the Mean Value Theorem for real-valued functions® we obtain the existence of a
t € (a,b) such that

¢(b) — ¢(a) = ¢'(t)(b— a) = (2,v'(1))y (b — a)
Using ¢(b) — ¢(a) = (z,v(b))y — (z,v(a))y = (2,v(b) —v(a))y = ||z||3, the Cauchy inequality, and
dividing by ||z|]ly > 0 (for z = 0 nothing has to be shown), we obtain |[v(b) — v(a)|ly = ||z]ly <
[v" @)y (b= a)

We will apply this lemma in our case.
For this we recall the flow %ug = Fc(ue).
We know that a lime_,o Frue = Auy — Pl(uy - V)uy] in V™' =2 gince (we denote u, = u)

v J2 Aue — PJ[(Jeue - V) Jeue) — vAu + Pl(u - V)u]|| g2
By the triangle inequality we have that
< |wJ2Aue — vAu|| g2 + || PT[(Jete - V) Jeue] — Pl(w - V)| gponr—o

< vl[Jewe = ull g + [ Je[(Jeue - V) Jeue] = [(w- V)ul|l g

We add and subtract some terms in order to reach to some terms we can estimate by
the previous results

= v||Jeue—JeutJeu—u|| g +|| Je[(Jetie- V) Jeuse) = Je [(u-V)u] + T [(u- V) u] = [(u- V) u] || grms -2
Again by triangle inequality we have
< v||Jeue — Jeul|| g + V|| Jeu — ul| g

+ | Je[(Jerse - V) Jeue] — [(Jeute - V)JeUE]HHm’f2 + [(Jewe - V) Jeue — (u - u)HHm/,Q

1) (2)

By the proposition 4.1.11 |, 4.1.12 | 4.1.13 and step 2 we have that the first two terms
converge in H™ so we continue with (1) and (2).

(1) < [[Je[(Jeue - V) Jeue] — [(Jeue - V)JeUE]HHm’

By proposition 4.1.12; and steps 1,2,3 we have that (1) — 0
For (2) we have

(2) < [(Jeue - V)Jeue — (Jeue - Vel g —2 + || (Jette - V)ue — (w0 - V)| o —2

(2a) (2b)

So (2a) : [|(Jeue - V) (Jeue _Ue)HHm/—? < [[V(Jeue _u6)||Hm’—2 ||Jeu6HHm/—2 < eM||Jeue—
uEHHm’

By proposition 4.1.12 and steps 1,2,3 we have that (2a) — 0 We continue with (2b) by
adding and subtracting some terms we have

(20) < ||(Jeue'v)ue_(Jeue'v)u||Hm’—2+||(Jeue'v)u_(ue'v)uHHm/—2+||(Ue'v)u_(u'v)“HHm’—?
< lue — U||Hm/—1HUeHHm’ + ||U”Hm’—1”=]6ue - u6||Hm’—2 + ||“HHm’—l”ue - u||Hm/_2
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By proposition 4.1.12 and steps 1,2,3 we have that (2b) — 0

So we conclude that %u, — F(u) in C([0,T]),V™=2). Invoking now v — v in

C([0,T], H™), we obtain from Lemmal9 above, that du = F = vAu — P(u - Vu) €
C([0, 7], H™ %)

This means that the (strong) time-derivative Oyu exists and is continuous in the respec-
tive spaces, such that v € C([0,T], H™) N C*([0,T], H™ ~2) satisfies the Navier-Stokes
and Euler equations. For m’ like before we have by the Sobolev embedding theorem
that wue, u, € C([0,T],C?)NnC([0,T],C)33

Step 4:We start by giving the definitions for the spaces in the third part of the theorem.

o L% (0.7, V™) = {£:[0.7] = V™, ess suppepcr [u(e) 1 < o0}
e Lip ([0,T),V™=2) = {f:]0,T] — V™ 2, { is Lipschitz }
e Cy ([0,T],V™) Assume that w is a weak topology on V™ 34
Co ([0,T], V™) =
{f:[0,T] = (V™ w), f continuous,i.e.fore € (V™)* the functiont — ¢(f(t))is continuous}

We also define the weak convergence.

Definition 9. Assume that B is a Banach space and u,a sequence in B we will say that
uy, (strongly) converge to u in B if ||u, — u||p — 0. If H is a Hilbert space we will say
that uy, (weakly) converge to w in H if V¢inH we have that (un, p)g — (u, ¢)g and we
will write u,, — u

We will also need the following theorem

Theorem 4.3.3. % Let H be a Hilbert space and wu, a bounded sequence on H, then
there exists a subsequence uy, of u, which weakly converge on H.

proof of theorem 4.3.2,Assume a u, is a bounded sequence of H. We define H, is
the closure of the set S = span(ui,ug, ...,u,) , recall that the span of w, contains
all the linear combinations of the elements of u,. The space H, is separable indeed
: The space S is separable since S = Zﬁ:l Aty , A € R, thus every non empty
subset of S contains at least one element of w,. The space H, is the closure of
S. Since S is separable there exists a D dense and countable subset of S. Let U
open subset of H, and a z € U then = € H, thus dz,, € S such that =, — x i.e.

33The w, is a classical solution
34 Assume that H is a Hilbert space and H*its dual,for ¢ € H* we define p(z) = |(x, $)x| this is a
semi norm since

— p(x) >0, by the definition
= ple+y) =z +yo)x| =z, 0)x + [y, d)x| < |(z,9)x[ + (v, #) x| = p(z) + p(y)
— for s >0, p(sz) = |(s7,¢) x| = [s(z, ) x| = Is]|(z, §) x| = sp(x)

The family of semi norms forms a topology,this is the weak topology on X.
35132] pg 313
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UNS #(. The UNS is an open subset of S and D dense on S thus
UND=UNSND)={UNS)ND#0

So H, has countable dense subset,which gives that H, is separable.
We set H} the dual of H° which contains all the functionals [g,,](f) = (un, f) where
un € H and f € H, , we have that g, is bounded since

|9n| = | (un, )]

By Cauchy Schwartz inequality we have

|gn| < lunll] £l

Lemma 20. This is the Helley’s theorem®

Assume that X is a separable normed space and T, a sequence on its dual X* which
is bounded (i.e. there exists a M >0 such that |T,,(f)| < M| f||,Vf € X ) then
3T, subsequence of T,, and a T € X* such that T, (f) = T(f) ,Vfe X

proof of lemma:
Assume that X is separable, then there exist a countable dense subset D = f;72,
Our aim is to create a sequence on reals in order to use the classic result of Bolzano
Weierstrass,i.e. that every bounded sequence has a convergence subsequence. The
T, f is on the dual so it is a functional.

e We have that the sequence T),(f1) is bounded, recall by the hypothesis of
the lemma T,,(f1) < M| f1||, and since we refer to functionals it is true that
T.(f1) € R. Thus by the Bolzano Weierstrass we have that there exists a
subsequence that converges. Assume that k(1,7) is an increasing sequence,
then we define T, (1 ) (f1) be s subsequence of T;,(f1) and a; to be it limit for
n — 0o

e We proceed with T,,(f2), this is a bounded sequence, assume that k(2,n) is
an increasing sequence, then we define Ty ,)(f2) be s subsequence of T, (f2)
and as to be it limit for n — oo

e We continue until take all f; and this way we have create an increasing se-
quence k(j, n)j’;l and a sequence of reals a; such that Ty .\ (f;) — a; as
n — oo We set ng = k(., s) then Vj, ng it is a subsequence of k(7j, s). We also
know that if a sequence converge all its subsequences converge in the same
limit thus T, (f;) — a;.

Now we also have that T}, is a Cauchy sequence since [Ty, — T,,| < 2M || f|| thus
the sequence converge say to a T'(f) (end of proof of lemma).
So by lemma 19 we have that there exists a subsequence gy, (f) — go, where g, € H,
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Lemma 21. This is the Rierz-Frechet representation theorem
Assume that H is a Hilbert space. We define the operator T : H — H* such that
[Thlu = (h,u)g, Vh € H, then T is a linear isometrics of H to H*

proof of lemma
Let h € H first we will prove the linearity oh Th:
Let Vk,l € R and u,v € H then

[Th](ku + lv) = (h,ku + lv)g

(h, k:u)H + (h,lv)H = k(h,u)H + l(h,v)H
[Thju + [Thlv

Furthermore Th is bounded since by Cauchy-Schwartz we have that [Thlu =
(hyw)mr < [|A][Jull

Also [Thlh = (h,h)g = ||h]|,so Th is an isometry.

T is linear since [T'(khy + lhe)](u) = (kh1 + lhe,u) g = k[Thi]u + [T he]u. And we
have that [T0Ju = (0,u)g =0, Vu € H.

Assume now a functional u, # 0 € H*u, is linear so it is continuous, so for 0
which is close we have that the inverse image of u, is also closed , u;1(0) = ker(u,).
Since u, # 0,ker(u,) is a non trivial subspace of H thus H = ker(u,) € ker(u,)*.
So we have that 3h' € H such that (ker(u,),h' )y = 0. We define h, = u,(h')h’

and for h € H we have that h — 55((1?) h' € ker(u,) thus (h - ;L:((:% B, h’)H = 0,80
we have that ue(h) = (h,us(R )R )y = (h,ho) = [Tholh. So we have that T is a
linear isometry 7' : H — H*. (end of proof)

Thus by lemma 20 we have that there exists a p, € H, such that g, = [T'p,]. Con-
sequently limy, o0 (gn,., f)o = (9o, f)u,Yf € H,. So we have reached to the result
that gn, — go in H,. It remains to show that g,, — g, in H.

SinceH, is a closed subspace of H we have that H = H, @ H, j‘ Assume that II is
the orthogonal projection of H toH, then for f € Hit is true that (g, , (I4—11)f)g =
0 since (I; — II)H = TI(H)* = H} , furthermore forf, € H, (f,, (I —II)f)g = 0.
Also we see that (gn,, f)g = (gn,, I1f) g and also (go, f)r = (9o, ILf) . Thus it is
obvious that forf € H and IIf € H,

(gnm f)H = nh_g.lo(gnmnf)H = (907 Hf)H = (goa f)H

lim
n—oo

which completes the proof that g,, — g, in H.

“[32] pg 171

We also have the following proposition

Proposition 4.3.2. 36 Let H be a normed space and u,, — win H, then

[lul| < lim inf ||u,||
n—oo

36(18] pg 723
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proof of proposition: By Cauchy-Schwartz we have that (u,u,) < ||u||||u.|| ,s0

lim inf(u,u,) < ||ul| lim inf |ju,|]
n—oo n— o0

. Then since u, — u we have that lim,,_, inf(u, uy,) = limy, o0 (u, Uy ).
Furthermore
Jul* = (u,u) = lim (u,up) < Ju lim inf |[u,]]

Which verifies that ||u| < limy,— e inf [Juy,]|

We also have that in an finite dimension normed space X, weakly convergence gives
strong convergence,indeed

Since X has a finite dimension, say k, there exists an orthomonal basis ej, ...ex and
we can write its elements as a linear combination of the elements of the basis,i.e.

and
k
U= g a‘e;
=1

We have by the weak convergence that for all functionals f on the dual space of X
(un, f) = (u, f)let the functional g(Zle a‘e’) = a' then we have that ||u, — u|| =

ST
1271 (a5, — a%)eil| = 0

We close with some word for the space L> . The space L™ is the dual of L' By Helly’s
theorem we have that for a sequence u,, € L* there exist subsequence u,, that weakly
x converges. So now we have all the basic arguments which we will need we proceed
with the proof of step 4.

e The space L? is Hilbert, in addition the sequence u, is bounded in L2([0,T], V™)

1
indeed (fOT ||u€||]2gmdt> * < fOT |te||gm. By the Step 1 we have an upper bound
for the ||ue| gm thus

1
T 2
(/ ||u€||§{mdt) <M*T=C< 0
0

Thus by theorem 4.3.2 we have that there exist a subsequence such that converges
to a u. This u is the u, we have found in the step 2 since for m’ < mwe have that
V™ c V™ and we know that the limit of a subsequence is unique. So Ue, — U.
Also by proposition 5.3.2 we have that

ol 2 (jo,y,vmy < Hminf [Jue, || p2(0,77,ym) < C
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e The sequence u, is bounded in L*([0, 7], V™) since

ess sup ||uellgm <ess sup M =M < oo
0<t<T 0<t<T

We know that since L>([0, 7], V™) is a reflexive, seperable, Banach space3”, there
exists a weakly* convergence subsequence to u, we also have that

| || oo (0,77, vmy < limsup [[ue, || poo (jo,7,vm) < M < 00

e By the step 2 we have that || uc||gm < cv||uc|| gm+c|ue||3pm thus | Luc||gm < Cu
Lemma 22. Assume that B is a Banach space and f : [a,b] — Xthen if the
derivative of f is bounded, fis Lipschitz.

Remark:The derivative in this spaces is the Frechet which is the general case of
the usual derivative we use on RY i.e. assume that f; X — Y then f is Frechet

differentiable if
i W+ 1) = £2) = DAy
h—0 ”h”X

=0

proof of lemma: Assume that the derivative is bounded by a constant, say
M. By the fundamental theorem of calculus we have that

b
1£(b) = fla)lz < H/ Df(z)dz||p < Ml|b - al[

So in our case it follows that u. € Lip ([O,T ], Vm*Q). As far as concern u, we
have the following arguments: By the previous work we have that %ue — %u in
C([0,T),V™=2) thus it is true that ||%U/U”Hm—2 is bounded so by the lemma 22
we have that u, € Lip ([0, T], me2)

e We have already prove that ue — u, in C([0,T],V"™), thus [uc — || m <
supg<i<r ||tte — Uyl gm < 1 so it occurs that (ue — uy,¢) — 0 for any ¢ €
Yy (1)38. The space V=" is dense in V"™ so Yy € V™™ | there exists a sequence
¢n in V=™ such that ¢, — y. So by (1) we have that (ue — ty, ¢n) — 0. We want
to prove that (ue — uy, @) — (ue — Uy, y) this is true since [(ue — uy, dp — y)| <
lue—wyl|m_,, |pn—yl| g—m < 1n'. Sowe have that for y € V" that (ue—uy,y) — 0,
we know that wue,u, are continuous so they are and weakly continuous and this
completes the proof of step 4.

As far as concerned the uniqueness of the solution it occurs by the previous chapter
where we have proved that if the solution exists, it is unique. O

37[10] pg 189
38The dual of H™ is the H™™
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So far by the proposition above we see that we have our solution is on C([0, T], C?) N
C'([0,T), C) if we want to speak in terms of Sobolev spaces on C([0, T], V™ )NC* ([0, T], V™ ~2)
for m’ < m. Now we will prove the following theorem, which gives us continuity in the
high H™ norm.

Theorem 4.3.4. Assume that u, is a solution as described above, then u,, € C([0,T), V"™)N
([0, T),v™m2)

Proof. Asin Step 3 of the previous proof we will firstly prove that u, = u € C([0,T), V™)
and then follows that u € C1([0,T), V™ 2). In Step 4, we have proved the weak conti-
nuity -with respect to time, of our solution in V™, we want to prove that limgs_,ou(t +
9) — u(t) ie. ||u(t+9) —u(t)|[gm <nfor § < B we know that ||u(t+9) — u(t)||gm <
(u(t+06) —u(t), u(t+6) —u(®)) gm < [[|u(t+8)[|2m — |u(t)||3m| so it is enough to show
that ||u||gm is a continuous function.

We start with the right continuity on which is the same for v =0 and v > 0.

For t=0 by the previous theorem we have that

[|uol|

wul|gm <
el 1 — emt||uol| rm

SO
[[wol| rm
1 — epmt||uol| gm

lim sup [lul|gm < lim sup < luoll
t—0t t—0t

. By step 4 we have that u; — wug thus by proposition 5.3.2 we have that

|luo|lgm < lim inf ||ul| gm
t—0+

It is also true that lim; ,o+ inf < lim; ,o+ sup so combining those three relations we
have that
. mo_ I _
Tl = Timsup full s = T inf [l = 1

So we have that ||u||gm is strongly right continuous on 0.
For the left continuity we have to see each case individually

e v = (0 The Euler equation is time reversible, indeed:
Recall the Euler equation in 3 dimensions

0
&u—i- (u-V)u=—-Vp

We set u(z,t) = —v(x,t) and p(z,t) = —p(x, —t) thus we have that

0 0 0 ov

au(aj,t) = a(—v(w, —t)) = —av(m, —t) = T

t (17, _t)

The other derivatives in the equation does not change with this substitution since

they are derivatives with respect to = i.e. we have that

ov

E(x, —t)+ (—v-V) —v(x,—t) = =Vp(z, —1)
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So now we set u,(—t) = u(t) and we have the same arguments:
By the previous theorem we have that

l|to]| rrm

]l m <

SO ~
[[o]| rrm

1-— Cth’l_L()HHm

lim sup ||a]gm < lim sup < ao|| gm
t—0— t—0—

. By step 4 we have that u; — g thus by proposition 5.3.2 we have that

llio|| gm < lim inf ||@|| gm
t—0—

It is also true that lim;_,o- inf < lim,_,o- sup so combining those three relations
we have that

lim ||a||7 = lim sup ||a||gm = lim inf ||a|gm = ||ao||gm
—0~ t—0— t—0—

So we have that ||| gm is strongly left continuous on 0. Thus the function

_Ju [0,7)
““Na (=10

we have that ||u||gm is strongly continuous on 0. Now we will prove that ||ul|| gm
is continuous for everyt € (0,7, let Ty be a random time and u(x,Tp) = ur, the
solution on this time. We know then that ||ug,|gm < M so ugp, € V™ and thus
we can use ug, as an initial value for the new IVP

{(;;ltu6 =Fe(ue) telpT)
ue(To)

Assume that @ is the solution of the above ivp, which we are sure that exist since
we have prove that we can find a global solution on the first [VP. By lemma 18

we have that
d1l

ara
. Following the same process as in Step 1 we have that

[l Frm < cml| JeVtiel| oo | el Frm

|, || rm
1-— CthUTo ||Hm

el m <

So by Step 2 we have a solution 4. So we have again the same arguments as
above and we have the continuity of ||u||gm= in all the interval [0,7")

e The Navier Stokes equation is not time reversible, so we will follow another strat-
egy.In order to prove the right continuity on every ¢ € [0,7) we follow the same
arguments as in te case of t = 0.As far as concerned the left continuity, we know
that wu, is bounded on L2([0,T], V™) and thus in L?([0,T], V™ *1), this is a Hilbert

space so by lemma 19 we have that there exists a subsequence that converge on
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Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

V™t Assume now a Ty € (0,T] we will prove the left continuity . We choose T
such that 0 < T' < Tp and w(T) € V™! withT = Ty — 6. With initial value u(T)
and m = m + 1 in the theorem 4.3.1 we have that for m’ < m+ 1 and T/ > T
there exists a solution u € C([T,T'],V™). For m' = m and § = 0 we have the
left continuity on Ty and since Tp is arbitrary we have the left continuity in all
the interval [0,7)

So we conclude that ||u||gm is continuous thus u,, € C([0,T), V™) and %u € C([0,T7),Vm=2)
O

The proof of the following theorem is based on the discussion about the continuity of
solutions in the previous chapter. Here the following proposition summarizes the result
for the existence of maximum interval for the existence of the solution u,.

Proposition 4.3.3. Let ug € V™ with m > 3 and v > 0, then there exists a maximum
interval [0,T*] that the solution w, described in theorem 5.3.1, exists. T*maybe the
infinity ,otherwise for T* < oo we will have limy_,p+ ||u|| gm = 0o

Proof. Assume that T* < oo is the maximum time and lim;_,p+ ||ul[gm = oo, then we
have already seen that we can extend the interval of existence, say [0,7* + &) which
contradicts the initial hypothesis. O

4.3.2 2 dimensions

We will use again the radial energy decomposition, the following theorem will give a
solution y which is the limit of y..

Theorem 4.3.5. Let ug € V™ with m > [%] + 2 =3 then

1. There exists a time T with upper bound which depends on the initial value i.e.

In (||Vanoo+||youHm>

lyoll zrm

- Cm|| VO] Los

such that Vv > 0 there ezists a y, € C ([0,T], C*(R?)) N C* ([0, T], C(R?)) which
defines a unique solution for the Euler and Navier-Stokes equations in the Leray’s
form.

2. The solutions vy, and y. satisfies the following estimates

||yo||HmeCm||Vb||LooT

1+ llyollgm — ||yol| grmecmIVollLoeT

sup |[yellam <
0<t<T

llyol| rm e 1V T

1+ [lyoll zrm — ||yol| gmecmIVolzeT

sup_|lyo[lam <
0<t<T
3. The solutionsy., y, are uniformly bounded on the spaces
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L2 ([0, 7], V™(R?))

o L™ ([0,T],V™(R?))
e Lip ([0,T],V™ %(R?))
e Cw ([0,T],V™(R?))

For the proof of the theorem we will do exactly the same things as in the 3 dimensions
case we will prove four steps and one lemma which give us an estimate with no bad
dependence on e.

Lemma 23. Assume that yo € V'™ then for the solution y. of the (IVP) it is true that
d
gplVellm < cm [[IVIeyell oo + [IVDl| oo] fluel| e

Proof. Since y. is the solution of (IVP) in the 2 dimensions we have that

d
7E:FE €
7Y (Ye)

We differentiate this relation over D® for any multiindex and we get

D (o) = D" (Flu)

We continue by multiplying this relation with D%, in L?(R?) and we have that

[0t (Gue) - Dowa = [ D% () 7
R2 R2

We substitute F, and we reach to the relation

/ D (d > - D%dx = V/ D* (JfAye) - D%ydx
R2 dt R2

— - D*{PJ. [(Jeye - V)Jeye + (b- V)Jeye + (Jeye - V)b]} - Dycdx

By simple calculations and the Leibniz integral rule we have that

1d

S0 w2 = D™ Ly,

- - D{PJ.[(Jeye - V)Jeye + (b-V)Jeye + (Jeye - V)] } - D*edx

Thus

HDayEHLQ / DU APT. [(Jee - V) Teye + (b- V) Jeye + (Jeye - V)B]} - DOyediz
(1.20)

2dt
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Now we will deal with the integral on the right hand of the above relation, we will
separate it in two integrals which will estimate individually

I = D* {PJE [(Jeye : V)Jeye}} : Dayedx
R2

I = / D (P [(Joye - V)b + (b V) Jey]} - DOyedar
R2

For the I} we sum and subtract the term PJ [(Jcye - V) D% Jeye], thus
L= | DPI((Jeye V)Jeyel} = PJe[(Jeye - V)D ey + P [(Jeye - V) D" ey
R
D%y dx

We also have that [po PJe [(Jeye - V)D*Jeye]- D*yedr < [go [(Jeye - V) D Jeye]- D*yeda <
0
So

L < /R2 [Da {PJc[(Jeye - V)Jeyel} — P [(Jeye - V)DGJE%H
-D%yedx
< |[1D*Yell 2|1 D* { PJe [(Jeye - V) Ieyel} — PJe [(Jeye - V) D" Jeyel || 2
For the I5 we have that
I, <c D[(Jeye - V)bJeye| - Dy dz, ¢ >1
RQ

Since

By the properties of the projection P and the mollifier J. we write the integral in
the following form:

I = /R2 Da{[(JeyG : V)b] + [(b : V)J€y€]}DaJEy€dx

We set

Iy = [ D[(b-V)Jy] D" Jeye
RQ

and

122 = Da[(Je?k : v)b]DaJeye
R2

Our goal is to prove that Iy < cI?

e When a = 0 we get
I21 :/ [(b V)Jeye]sze
RQ

and
2= [ [0 Dt
RQ
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By footnote 26 page 135 we recall that
1
I = 513

e When a =1 we get

121 = V[(b : V)Jeye]VJeye
R2

121 = / DQJEye b VJeye dx+/ vJeye Vb Vjeye
R2 R2

i73]: (3
and
I3 = e V[(Jeye - V)OIV Jeye
I2 = g D*b Jy. VJeye do+ /R Veye Vb VJ.y.
(131 [13]2

We easily observe that [I3]s = [I2]2.
For the integral [I1];, using integration by parts we have:

D*Jy. bV de = — | VJye VbV Iy, dz — / D*J.y. b V., do
R2 R2 R2

Thus 2[I3]1 = 2 [ge D*Jeye b Veye dz = — [po VJeye VOV Jeye do = —[I3]5

So we conclude that Iy = —%[122]2 + [1'22]2 + [122]1 + [122]2 = [122]1 + %[122]2 < 0122
e When a =2
121 = DQ[(b'v)Jeye]DQJeye
RQ
I} = | D3Juy.bD?J.y. dx+2 / D?Jy. Vb D*Joy.dx
R2 R2
[13]1 [13]2

+ / VJeye D*b D*J.y, dx
R2

[13]s
and
I3 = | D*[(Jeye- V)b D*Jeye
]R2
I = | D% J.y. D*Jy. do+2 / VJwye D*b D?Joy, dx
R2 R2
121 11312
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+ | D%*J.y. Vb D*J.y.dx
R2

[f;zr]:s
So [I3]2 = [I3]s, [I3]s = [I3]2
For the integral [I1]1, using integration by parts we have:
D3J.y. b D*J.yedx = — / D?J.y. VbV D?J yedr— / D3J.y. b D*J.ycdx
R2 R2 R2

Thus

()1 =2 y D3J.ye b D*Jye dox = — . D?J.y. Vb D*Joyedx = —[I3]3

So we conclude that
1
I, = —5[122]3 +2[I3]5 + [I3]2 + [I3]1 + 2[I3)2 + [I3]3 < e}

e When a =3

121 = D3[(b'v)Jeye]D3Jeye
R2

Iy = / D*Jeye b D* Jeyeda +3/ D*Jeye Vb D* Jeye da
R2 R2

3l [13]2

+3 | D%J.y. D*b D3 J.y + / VJye D3b D3 J.y.
R2 ]R2

3]s [13]a
and

122 = DB[(Jeye : V)b]D?’Jeye
RZ

2= D% Jy. D3y +3 / D3b VJy, D3 J.y.
R2 R2

(1311 [13)2

+3 | D?b D*Jy. D3Jy. dz + / Vb D3 J.ye D3Joye dx
R2 R2

[12]3 (1314

It is obvious that: [121]4 = [122]2, [121]3 = [122]37 [121]2 = [122]4
For the integral [I3];, using integration by parts we have:

y D*J.ye b D3J.ye = — /R ) D3J.ye Vb D3 Jycdx — /R ] D3J.ye b D*J.y. dx

166



Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

So

2[13]) =2 /R ) D*Jye b D3 Jy. = — g Vb D3 Jy. D3Jy. dz = [I3)4

Thus

1
I, = —5[122]4 + 3124 + [I3)3 + [I3)2 + [I3)1 + 3[I3)2 + 3[I3]3 + [I3]4 < I3

e When a = k for the integral I3 will occur k + 1 integrals and for I3 will also
occur k + 1 integrals. The 2, ...,k + 1 integrals of I are equal to some of the
integrals of I2. For the integral [I1]1, using integration by parts we have that
[I3]1 = [I3]k+1. Thus we conclude that Iy < cI3

So by Holders inequality we have Iz < ¢||D*Jeye| 2| D*[(Jeye - V)| 2
By combining all the above relations with (L20) we get :

1d
5%”1)&?/6”%2 < |1 D"el| 2

[HDa {PJc[(Jeye - V)Ieyel} — PIc[(Jeye - V)D" Jeyel || 12 + [|D* [(Jeye - V)] HLQ]

Since a < m we have
l1d
2dt
1D {PJ [(Jeye - V) Jeyel} = PJe [(Jeye - V)DJeye] 2 + [|(Jeye - V)bl am ]

IDYell72 < lyell

We sum over this relation and we get

1d

57 O ID"wellEe < llyellam

la|<m

Z [HDa {PJG [(Jeye : V)Jeye]} - PJe [(Jeye ’ V)Dajeye] HL2 + H(‘]ﬁye : v)bHHm]

la|<m

By the proposition 4.1.13 we have
1d 9
= yellrm < el gm
5 g Vel < llyell

c Z [HDa [(Jeye ) V)Jeye] - [(Jeye : V)Dajeye] 22 + I(Jeye - v)bHHm}

la|]<m
And by proposition 4.1.4
1d 9
5&”@6”1% < cf|yell am

[HVJeye!LoolleyeHHm + 1 eyell 5m IV Ieyell oo + V]| oo || Jeye| zrm
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By the proposition 4.1.13

1d

§£Ilye\l?qm < ellyellFm [1V Jell oo + [IV0]| o]

So eventually we have that

d
Zllvellam < ellyellam [V el + V0] <]

We recall the four steps we will need in order to prove the theorem 4.3.4
Step 1: We will show the energy estimate

llyio | grm e 1VellLooT

1+ llyoll zrm — ||yol| grmecmIVolLoeT

sup_|[yellam <
0<t<T

Step 2:We will prove that the family of the regularized solutions forms a Cauchy
sequence on C ([0, 7], L*(R?))

Step 3: We will prove strong convergence in all the intermediate norms of the high
norm of the space C ([0, 7], H™(R?))

Step 4:Via weak convergences we will prove the third part of the theorem

Proof. Of theorem 4.3.4
Step 1:By lemma 22 we have that

d
Zlellzm < ellyellzm [V el + V]| o]
We set ¢, = ¢, || V|| and by the Sobolev embedding theorem we have that
d 2
gp Vel < cmllyellzm + collyell

So now we will find the solution which satisfies this inequality

Assume that q(t) solves the differential equation

d
2740 = emd®(t) + era(t)
with initial value ¢(0) = |lyo||gm. Firstly we will find a relation between our

function ||ye||g= and q(t) We have that

el — a#)) = em(lyellin — 0 + vl — a(t)

We set z(t) = ||yel| gm — q(t)

It follows that J

Z2(0) < emlyellim +a(0)2(2) + 2(0)
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We also set p(t) = ¢ (||yell zm + q(t)) + ¢, and we reach to the following inequality

2(t) < p(0)=(1)

By Gronwall in differential form we have that
z(t) < ,z'(O)efgp(“”)dS

We have that z(0) = |lyo||gm — ¢(0) = 0 thus z(t) < 0 i.e. ||ye|lam < ¢(t) so now
we will define q(t) so we will solve the initial value problem:

{C‘litq(t) = cm@?(t) + cpq(t)
(0) = [lyollzm

This is a Bernoulli differential equation® so we have that if we set k(t) = o e
will reach to a linear first order ordinary differential equation,i.e.

{jtk(t) + eok(t) = —cm

_ 1 _ 1
k0) = 20 = Twollam

With solution k(t) = e~ Jo evds [c+ fot —emelt @duds], we can easily calculate that
fot cpds = cpt and fst cpdu = cpt — cps so we have that

t
k(t) = e e —i—/ —cme®te 0 ds]
0

% —pt _ Cm Cm

k(t) = ce e + P
Thus we have that q(t) = % for t = 0 we have that the ¢ = m
Eventually ¢(t) = Cb—CmHyf)l\)\i:liggt”—f:nHyoHHm

“[2] pg 32

So we have that

o[ rm ecmVollLoot

em[VbllLoe + [lyoll m — [lyoll mecm VPt

||3/6HH’” <

Taking the supremum over this relation we have for the right quantity is an invreasing
function of t, so the supremum of this fraction is achieved when t=T, so we conclude
that

llyo || rm ecmlIVellooT

CmHvaLOO + HyOHH'm — HyOHH'meCm”Vb”LOOT

sup_||yellgm <
0<t<T
To ensure that the right quantity has a supremum we need

(e[| Vo[ L + [lyol| zm) — In(||yol| rrm)

T<
- Cm|| VO] oo
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Step 2: In order to prove this step we will estimate the supy<;<7 ||y —ye || 2 via energy
methods. Assume that y., yo satisfy the (IVP) on the 2 dimensions, then we have that
%ye = F(y.) and %ye/ = F.(ye), we subtract those two relations and we get

d

%(:% — ye/) = Fe(ye) - Fe’(ye’)

We multiply this relation with y. — y in L? and we get

/ e~ o) (e — yo)d = / Fulye) — Fo(ye)] - (g — o)
R

> dt R2

1d
il = vole = [ [Fotwe) = Fotwe)) - (v - yo)da
R2

Now we will deal with the integral on the right side of this equality. Firstly we have
that

Fo(ye) — Fo(ye) = VJsze — PJc[(Jeye - V)Jeye + (b- V) Jeye + (Jeye - V)b

_VJE/Aye’ + PJo [(Je’ye’ : V)Je’ye’ + (b : V)Je’ye’ + (Je’ye’ : V)b]

So we have to estimate the integrals
[ 280 = T3 (v = i
R

and
/ P I:Je [(']eye : V)Jeye + (b : V)Jeye + (Jeye : V)b]
R2

—Je [((Jeye - V)Jeaye + (b V)Jeye + (Joye - V)] | - (Ye — yer)dx
For the first integral we sum and subtract the term Jf, Aye so

/R2 V(‘]?Aye_Jz/Aye’)‘(yE_ye’)daj = V/R? [JfAye—Jf/Aye+J3Ays—J3Aye']'(ye—ye')dﬂﬁ

- 2_ g2 — Y )dx
= [/R2(Je JE)Aye(ye — ye)d
— /Rz JGQ/ (v(ye - ye’) ’ v(yﬁ - yfl)) dx]

<v / (J2 = J2)Ay. - (ye — yo)da
RQ

< V”(Jg - JE,)AyEHLzHyE — Yol L2

v (|| y€ 1/2 4 :yﬁ 1/2 yﬁ yﬁl 1/2

170



Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

<v (HJerE||H2 + HJE’%HH?) 1ye — yerll 2
< we (ellyellus + €llyell a) llye — yell 2
< wvemax(e, €)||yell zm |lye — verll 2

For the second integral we have the following three integrals:

L= [RQ P[JE[(sze ’ V)Jeye] - Je’[(JEye’ ’ V)Jelyel]] ) (ye - yel)dx

I — /R PLILb- V) eyd = Jel(b- V) Jeye]] - (ye = ye)da

I3 = P[Je[(Jeye : V)b] - JE’[(sze’ : V)b]] ) (ye - ye/)d:t

We will see each integral individually, for the first integral we sum and subtract the
term Jo[(Jeye - V)Jeye], so

/]R? {PJ((Jeye - V)Jeye] — Ple [(Jeye - V) ey} - (Ye — yer)da

< /RQ {Jﬁ [(Jeyﬁ : V)Jeye] — Je [(Js’ys’ : V)Js’ye’]} ’ (ye - ye’)dx
We will add and subtract the term Jo [(Jeye - V) Jeyel

< - Je [(sze : V)Jeyg] — Jo [(Jeye : V)sze]

+ Je [(JeYe - V)Ieye] — Jer [(Jeryer - V) Jeyer]
‘(ye - ye’)dw

So we have two integrals:

/R2 (Je = J) [(Jeye - V) Teyel - (ye — yer)da

and
/R2 Jer [(Jeye : V)Jeye - (Je/ye’ : V)Je/ye’] : (ye - ye’)dx

In the second integral we add and subtract the terms (Joye - V) Jeye , (Joyer - V) Jeye,
(Jeye’ : v) ']e’ye
So eventually we will estimate the following 5 integrals:

(a) = fR2 (Je - Je’) [(Jeye : V)Jeye] : (ye - ye’>dx

(b) = f]RQ Jer {[(Je - Je’) Ye - V] sze} ’ (ye - yg)dx
(C) = fRQ Je {[Je’(ye - ye’) ) V] JeyE} : (ye - ye’)dx
(d) = fR2 JeAde [(Ye - V)(Je = Je)Yel} - (Ye — yer )d

() = Jpe Jer {Jer [(Yer - V) e (Ye — yer )]} - (ye — yer)d
So let’s start the estimates

(@) < || (Je = Je) [(Jewe - V) Jeye] |2 llye — yerll 2
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For the first norm we add and subtract the term (Jeye - V)Jeye by triangle inequality
we have that
I (Je = Jeo) [(Jeye - V) Ieyel |2 < ([ e [(Jeye - V) Ieyel = (Jeue V) Jetel| o+ e [(Jeye - V) Jeyel = (Jeue V) Jeue|
By proposition 4.1.11 we have that
< ce||VIeye - Jeyell gt + c€'||VIeye - Jeyell i

< 2cmax(e, €)||VIeye - Jeyell g

By proposition 4.1.4 we have that
< emax(e, €) {|VJeyell oo | Jeyell mn + | Teyell o |V Jeyel [ }
By proposition 4.1.7and the fact that m > 3 we have that
< cmax(€, ) (I Vyell oo l|yell zrm + l[ell oo l1yell zrm)

By the Sobolev embedding theorem we have that [|ul Lo +[|Vu|| Lo < supjq<s [[D%ul[ L <
cm|u||f,,, Thus as a result

| (Je = Jer) [(Jeye - V) Ieye] |2 < cmax(e, El)H.UEHJ%Im
So (a) < comax(e, €)||yellFm [lye — yell L2
() < e {[(Je = Je) Ye - V] Jeye} I 2llye — verll 22
For the first norm by proposition 4.1.13 we have that
c
[ Jer {[(Je = Jer) ye - V] Jeye) 2 < ET)H [(Je = Jer) Ye - V] JeYell o
<c [(Je - JE’) Ye - V] JeyeHH4
Since H*(IR?) is a Banach algebra we have:
¢ <\ VJeyellmal|(Je = Je)yell s

So by proposition and 4.1.13 we have that

< cllyellam (weye — yellas + e yeHHs>

By proposition 4.1.11
< cllyellam (ellyell m + € lyell )

1Jer {[(Je = Jer) ye - V] Jeye} 2 < cmax(e, €)llyel|Fm
Consequently (b) < ¢, max(e€, € ) ||ye||3rm||ye — yer|| 12

(©) < e {lJer(ye = yer) - VI Jewel llr2llye — yell 2

For the first norm by the proposition 4.1.13 we have that
| Jer {[Jer (Ye — yer) - VI Jeye} Iz < e[ VIeye - Jer(Ye — Yer) o
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By the proposition 4.1.4
< c{IVIeyellzllJe (ye = ye )l o + IV Ieyell ol Jer (ye — yer) | <}
By the proposition 4.1.13 and the Sobolev embedding we have that
1 e {[Jer (e = yer) - VI Jeye} Iz < cllyellmmllye — yell 2
It follows that (c) < cc|lyellrm ||lye — ye||22 For (d) we have an estimate as in (b) i.e.
(d) < NJe{Je [(Ye - V)(Je = Je)yel} 2 llye = yerll 2
For the first norm by the proposition 4.1.13 we have that
e {Jer [(ye - V) (Je = Je)yel } |22 < el V(Je = Jer)ye - yel o

< CHV(JE - Je/)ye : yeHH4

The space H*(R?) is a Banach algebra we have:
< cl|yellzm1(Je = Jer)yell s

< cllyellzm (1 eye = Yellmm + [ Teye — yell zrm)
By proposition 4.1.11 we have

< cllyellam (ellyellzm + € llyell )

So
e {Jer [(ye - V) (Je = Je)yel} |l p2 < emax(e, €)||yel|7m

As a consequence (d) < cqmax(e, €)||ye||%m||ye — Yer | 2 Now for the last integral (e) we
have that

1 1
(e) = / (Jeyer - V)| e (ye — uer) Pda = —/ div(Jerye )| Jer (ye — uer)Pda = 0
2 R3 2 R3

For the I we sum and subtract the term Jo[(b- V)Jy.l, so
I = /Rz P[J[(b- V) Jeye] — Jo[(b- V) Jeye] + Jo[(b- V) Jeye] — Jo[(b- V) Joye]]

'(ye - ye’)dx

< / (Je = T)[(b- V) o] - (ye — yor)dae
R2

+ /R2 Jer [(b -V)Jeye — (b V)ngel] (Ye — Yer )dx

We will see each integral individually
1= [ = Il 9)Jend - (= o)
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and
I22 - /Rz Jer [(b ’ V)Jeye - (b : V)Je’ye'] ’ (yE - yﬁ’)d‘r

So for the first one we have that
I < ||(Je = T (b V) Teyelll 2 lye — yerll 2
We add and subtract the term (b- V)Jy. and by the triange inequality we have that
< [[1el(® - V) Teyel 2 + (| T [(0 - V) Teyelll 2] 1ye — el 2
By the proposition 1.1.11 we have that
< c[ellVIeye - Bll g + €1V Ieye - Oll ] 1ye — vell 2
< 2cmax(e, ) [[VJeye - bll g1 l|ye — yer | 22

< 2cmax(e, €)[10l| Lo | Jeye | 2 1ye — verll 22
We conclude that

I; < cpy max(e, €)[[b oo lye | lye — yerll 2
For the I3 we have that
I3 < || Je [(b- V) (Je = Je)ye] | 2] lye — yerll 2
By the proposition 4.1.13
< IV (Je = Je)ye - bll o llye — yerll 2

< [IV(Je = Je)yel o llbll o l[ye — el 22
< cll(Je = J)Yell 16l oo |ye — yerl| 22
We add and subtract the term vy, and by the triangle inequality we have

< C[”sze — Yellmr 10l oo + | Jerye — Yell i Hb”L‘X’] e — yerll 22
By the proposition 4.1.11 we have
< clellbllLellyell 2 + € + [1bll Lo € el 2] lye — yer | 22

Thus
I3 < copmax(e, €)||yell m |10l oo [ye — yer|l 12

So we conclude that

Iy < Cmax(e, €)[[yell mm [[bll o lye — yerll 2

Combining all this together we have that
d /
Zllve —vell2 < Clmax(e, €)(llyellmm + llyerlmm + Bl zee + [IVoll2o0) + [lye = yell 2]
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Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

By Step 1 we have found a uniform bound for the H™ norm of the regularized solutions,
say M

d
Jillve = verlle < CM [max(e, €)M + [[Vb][ oo + [[bllzo] + CM lye — gl .2

We integrate with respect to t and we have that

t
Hye - ye’||L2 < CM/O [Hlax(e, 6/) + ”vaL‘X’]dx + /R? CMHye - ye’HLde

We set a(t) = Cy f(f [ max(e, €) + ||b]| Lo + || VD] L] dz so by Gronwall we have that
t t
1Ye = yerllz2 < a(t) + / Cara(s)els O drgg
0

1ye = yerll 2 < max(e, €) f(t)
Where f(t) = t+ [ |b]| oo +[|Vb]| poe da+Car [ efs O rds-Coy [ (1b]| oo +]| V]| oo el a4 dis

Taking the supremum over this relation we have that supy<;<r f(t) = L(T) thus

sup ||ye — yellr2 < L(T) max(e, €') <€
0<t<T

with out loss of convergence € < ¢, thus so the family y. forms a Cauchy sequence on
C ([0,7], L?(R?)) which is a Banach space and it follows that y. converges to y, Step
3 By the proposition 4.3.1 we have that for m’such that 0 < m’ < m we have that

’

’
1—m m
||y6 - vaHm/ < ||ye - vaL2 " ||y6 - va;Inm

Taking the supremum over this relation we have that

i !
1—m m_
sup ||ye — Yol gm: < sup {Ilye —yoll 2 ™ lye — yullﬁ”m}
0<t<T 0<t<T

Lm m'
Thus SUPo<¢<T llye — vaHm’ < Supg<i<1 llye — vaLz ™ SuPg<i<T llye — yu||1?m

By the Step 2 we have that ||ye —ye |12 < Crre , we also now that sup ab < sup asup b
it follows that sup a® < (supa)*.

~

17ﬂ l_ﬂ
Consequently supg<;<r [y = ol ;2 ™ < (Supp<ier lye — vollrz) ™.
We also know that the function z® is increasing when a > 0, so we have that supg<;<r [|ye—

_m /
Yolljz ™ < (ce)' .
cm|IVb| oo T

By the Step 1 we have that su < ol srme ‘
y P Po<i<T HyeHH = cm||Vb|| Loo+lyoll mm —llyo || gm ecm IVPILoe T
HyOHHmeCm“VbHLooT

and it is also true that ||y, || gm < limsup,_ g ||yel|lgm <

eVl oo +lyo | m —llyo | zrm e VPl oo™

Thus we have also an uniform bound for the H™ norm of y, i.e.

HyOHHmecm”Vb”LOOT

eml| V0| zoo + llyollzm — Ilyol| grmecmIVollLoeT

sup |yy|[m <
0<t<T
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It is also true by triangle inequality that sup(a + b) < supa + sup b so supp<i<7 ||ye —

vaI?m < (SUPogth lyellF + supg<i<r ||vaHm) = Mw Eventually we combine the
above relations we have that

/

sup v — voll s < Cly0, T, m,m’ )~
0<t<T

So we have proved that we have the converge of y. to y, in all spaces C([0,T], ym'
with m’ < m.

We choose m/ > 2+2 , so by the Sobolev embedding theorem we have that ||ye —yu||c2 <
|%e — Yol gm, taking the supremum over this relation we have that supy<;<r ||y —

Yollo2 < SuPo<i<T lye — vaHm"
It follows that y. — v, in C([0,T], C?)

To complete the step 3 we have to show that we also have a convergence in C*([0, 7], C),
we recall the flow %ye = Fe(ye)-

We know that a lime_,0 Feye = Ayy — Pl(yo - V)yo + (b V)yp + (v - V)b] in V™' =2 gince
(we denote y, = y)

HVJEQAye_PJ€[(Jeye'v)Jeye+(b'v)Jeye+<Jeye'v)b]_VAZ/+P[(y'v)y+(b'v)y+(y'v)b] HHW’*2
By the triangle inequality we have that
< ||I/J62Ay€—I/Ay||Hm/_g—|—HPJE[(Jeye~V)Jey6—|—(b-V)Jeye—l—(JEye-V)b]—P[(y-V)y—l—(b-V)y—l—(y-V)b]HHm/_Q

Firstly we will see the terms, which do not include the b. We add and subtract some
terms in order to reach to some terms we can estimate by the previous results

= v||Jeye—Jey+Jey=yll g e[ (Jeye: V) Jeye] = Je[(y-V)yl+ el (y-V )y = [(y-V )yl gy —
Again by triangle inequality we have
<[ Jeye — eyHHW +v|[Jey — yHHm’

+ HJE[(JEy€ : V)Jeye] - [(Jeye : v)']eye]HHm’*2 + ”(J€y€ ’ V)JEyE - (y : y)HHm’*2
1) 2)

By the proposition 4.1.11, 4.1.12 ,4.1.13 and step 2 we have that the first two terms
converge in H™ so we continue with (1) and (2).

(1) < Jel(Jeye - V)Teye] = [(Jeye - V) Teyelll g

By proposition 4.1.12; and steps 1,2,3 we have that (1) — 0
For (2) we have

(2) < H(Jeye : V)Jeye — (Jeye - V)?/EHHM’f2 + ”(Jeye : V)ye - (3/ : V)?J”Hm’f2
(2a) (2b)

So (2a) : |(Jeye - V) (Jeye — ys)HHm’f2 < |IV(Jeye — ys)”Hm’%”szeHHm’f2 < eM||Jeye —
yEHHm/
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Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

By proposition 4.1.12 and steps 1,2,3 we have that (2a) — 0 We continue with (2b) by
adding and subtracting some terms we have

(20) < [[(Jeve V)ye—(Jeye V)Yl g —2H | (Jeye V)y— e V)Yl grme —2+ [ (We V) y—(4- V)Y || grms -2

< Nye = yll g =1 1Well gt + 191 grm =1 | Te¥e = Yell grmr—2 + (Y1l gpmr—1 |ye = Yl grms -2

By proposition 4.1.12 and steps 1,2,3 we have that (2b) — 0
We continue with the terms that include the term b

||JE[(b ’ V)dee] - (b ’ v)3/||Hm’—2 <

[Je[(b- V) Jeye] — (b V) Jeyell g —2 + [[(0 - V) Jeye — (b V)Yl s —
(1) (2)

By proposition 4.1.12, we have that (1) — 0
For (2) we have that

(2) <I(b- V) Jeye = (b V)yell grm—2 + ([ (0 V)ye — (b V)Yl g2

< oll e (19 (etie = 56 L2 + 19 tc — )l =)

< [|Bf] o (Hjeye — Yell grm—1 + |ye — yHHm’fl)
By proposition 4.1.12, and steps 1,2,3 we have that (2) — 0
The other term is
[ Je[(Jeye V)bl = (y- V)bl -2 < || Je[(Jeye - V)b] = (Jeye - V)OI g2 + |(Jeye - V)b = (y - V)bl jyor—2
(1) 2)

< ”VbHLOO(HJeye - y€||Hm’—2 + ”ye - yHHm’—z)

By proposition 4.1.12, we have that (1) — 0
(2) < 1(Jeye - V)b = (ye - V)bl g2 + [[(we - V)b = (3 - V)bl goms -2

By proposition 4.1.12, and steps 1,2,3 we have that (2) — 0

So we conclude that %y, — F(y) in C([0,T], V™' =2) Invoking now y. — ¥ in
C([0,T], H™), we obtain 8,y = F = vAy — P(y - Vy) € C([0,T], H™ ~2)

This means that the (strong) time-derivative 0,y exists and is continuous in the respec-
tive spaces, such that v € C([0,T], H™ ) N C'([0,T], H™ ~2) satisfies the Navier-Stokes
and Euler equations. For m’ like before we have by the Sobolev embedding theorem
that ye,y, € C([0,T],C?%) N C*([0,T],C)%

Step 4:We will use weak convergence in order to prove this step

39The Yy is a classical solution
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e The space L? is Hilbert, in addition the sequence y, is bounded in L2([0, T], V™)

1
indeed <f(;f Hyeﬂ%{mdt) ? < fOT lyellzrm. By the Step 1 we have an upper bound

for the ||ye||gm thus

1
T 2
(/ Hyellzmdt> <M’T=C< o0
0

Thus by theorem 4.3.2 we have that there exist a subsequence such that converges
to a'y. This y is the y, we have found in the step 2 since for m’ < mwe have that
V™ c V™ and we know that the limit of a subsequence is unique. So Yer, = Y.
Also by proposition 4.3.2 we have that

Yol L2 (jo,r,vmy < Hminf [[ye, |22 jo,r),vm) < C

e The sequence y. is bounded in L*°([0, 7], V™) since ess supg<;<7 [|Ye|lgm < esssupgcicr M =
M < oco. We know that there exists a weakly* convergence subsequence to y, we
also have that

Yl oo (0,77,m) < limsup [|Ye, || o< jo,7p,vm) < M < 00

e By the step 2 we have that ||%y6”Hm < cv||lyellmm + cllye||3m thus H%HH'm <Cumu
So it follows that y. € Lip ([0,T],V™ ?) we also have that H%vaHm < Cy thus
Yo € Lip ([0, T],V™2)

e We have already prove that y. — g, in C([0,T],V™),thus |y — ]| gm <
SUPg<i<7 [|Ye Yol ggm' < 1 50 it occurs that (ye—yy, ¢) — 0 for any ¢ € V=m(1)20,
The space V=" is dense in V"™ so Vg € V™™ | there exists a sequence ¢, in
V=" such that ¢, — g. So by (1) we have that (ye — v, dn) — 0. We want
to prove that (ye — Yv,®) — (Ye — Yu,g) this is true since |[(ye — Yu, Pn — 9)| <
e —yolle_,, lon—gllzr-m < n'. So we have that for g € V=™ that (ye—yv, g) — 0,
we know that ye,y, are continuous so they are and weakly continuous and this
completes the proof of step 4.

As far as concerned the uniqueness of the solution it occurs by the previous chapter
remark 2 where we have proved that if the solution exist it is unique. ]

So far by the proposition above we see that we have our y is on C([0,7],C?) N
C([0,T), C) if we want to speak in terms of Sobolev spaces on C([0, T], V™ )NC*([0, T], V™ ~2)
for m’ < m. Now we will prove the following theorem, which gives us continuity in the
high H™ norm.

Theorem 4.3.6. Assume thaty, is a solution as described above, theny, € C([0,T),V"™)N
cl([o,T),vm2)

4OThe dual of H™ is the H™™
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Proof. Asin Step 3 of the previous proof we will firstly prove that y, =y € C([0,T),V™)
and then follows that y € C*([0,T), V™~2). In Step 4, we have proved the weak conti-

nuity -with respect to time, of our solution in V™, we want to prove that limgs_,ou(t +

0) = y(t) ie. |yt +9) —y(t)|[|gm < n for 6 < we know that ||y(t + 0) — y(t)||gm <

(y(t+0) —y(t), y(t +8) —y())mm < [lly(t+ )3 — [y (t)lI3m | s0 it is enough to show

that ||y||gm is a continuous function.

We start with the right continuity on which is the same for v = 0 and v > 0.

For t=0 by the previous theorem we have that

lyl|gm < llyol| rm eCmIVOlLeT
= eIVl + |lvollzm — |lyol| gmecmIVollizeeT
SO
‘ i ||yOHHmecmHVbllLooT
lim su m < lim su < m
{—0+ pllyllam < t—0+ b em|IVb|| o + |lyoll zrm — ||yol| zrmecmlIVolLeeT = ol

. By step 4 we have that y; — yo thus by proposition 4.3.2 we have that
lyollam < lim inf f[y|ls

It is also true that lim, ,q5+ inf < lim;_,o+ sup so combining those three relations we
have that

I ™= lim s = lim inf =
Jim [yl = lim sup lyllim = lim inf lyllim = ol

So we have that ||y||gm is strongly right continuous on 0.
For the left continuity we have to see each case individually

e v =0 The Euler equation is time reversible, indeed:
Recall the Euler equation in 2 dimensions

0
ay+(y-v)y+(b-v)y+(y-v)b=—Vp

We set y(z,t) = —v(z,t) and p(z,t) = —p(z, —t) and b = —b thus we have that

2 (1) = (vl ~0) = — Sl ~t) = 2 (2, 1)

The other derivatives in the equation does not change with this substitution since
they are derivatives with respect to x i.e. we have that

9 B B
871’(9;, )+ (—v- V) — (@, —t) + (b- Vv + (v Vb)b = —V(z, —t)
So now we set y,(—t) = y(t) and we have the same arguments:

By the previous theorem we have that

Il yio | grm eI VBNl T

1+ lyollgm — ||lyol| gmecmVollLeeT

191l <
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Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

SO

o] grm ecm IVOllLeT

1+ lyollzzm — llyol| gmecmVOllzee

lim sup ||y||gm < lim sup = < [%ollam
t—0— t—0—

. By step 4 we have that g — 7o thus by proposition 4.3.2 we have that
[Follrm < lim inf ||g]| g
t—0—

It is also true that lim;_,o- inf < lim,_,o- sup so combining those three relations
we have that

lim {|g[[7 = lim sup [[g[lg= = lim inf [[g]gm = @] gm
t—0— t—0— t—0—

So we have that ||g||gm is strongly left continuous on 0. Thus the function

_Jy [0,T)
u - —
we have that ||y||gm is strongly continuous on 0. Now we will prove that ||y gm
is continuous for everyt € (0,7, let Ty be a random time and y(z,Ty) = yr, the

solution on this time. We know then that |lyr,||gm < M so yr, € V™ and thus
we can use yr, as an initial value for the new IVP

{;@ye =F.(y.) te[lp,T)
y€(T0)

Assume that g is the solution of the above ivp, which we are sure that exist since
we have prove that we can find a global solution on the first [VP. By lemma 18

we have that
d1

dt 2
Following the same process as in Step 1 we have that

[1GellFrm < cmll JeVTel | oo |Fel Frm

llyo| grm e IVollzeeT

1+ |lyollgm — |lyol|gmecmIVollzeT

[Gell zrm <

So by Step 2 we have a solution . So we have again the same arguments as
above and we have the continuity of ||y||z= in all the interval [0, T)

e The Navier Stokes equation is not time reversible, so we will follow another strat-
egy. We know that y. is bounded on L2([0,T], V™) and thus in L?([0,T], V™),
this is a Hilbert space so by lemma 19 we have that there exists a subsequence
that converge on V™!, Assume now a Ty € (0,7] we will prove the left conti-
nuity . We choose T such that 0 < T < Ty and u(T) € V™! withT = Ty — 6.
With initial value u(T) and m = m + 1 in the theorem 4.3.1 we have that for
m' < m+1and T' > T there exists a solution y € C([T,T"], V™). For m' =m
and d = 0 we have the left continuity on T and since Ty is arbitrary we have the
left continuity in all the interval [0,7)
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So we conclude that ||y[|gm is continuous thus y, € C([0,T), V™) and 4y € C([0,T),V™2)
O

Note : As before (the regularized case) we have prove that there exist a y which
solves the equation

O Py D)+ (b Vi + (- V)8] = vy
and we have b an exact solution so we conclude that u = y+0b solves the Leray’s form of
the Navies Stokes equation The proof of the previous theorem is based on the discussion
about the continuity of solutions in the previous chapter. Here the following proposition
summarizes the result for the existence of maximum interval for the existence of the
solution .

Proposition 4.3.4. Let yg € V™ with m > 3 and v > 0, then there exists a maximum
interval [0,T*] that the solution vy, described in theorem 4.5.1, exists. T*maybe the
infinity, otherwise for T* < co we will have limy_yp+ ||y||gm = o0

Proof. Assume that T* < oo is the maximum time and lim;_,7+ ||y||gm = oo, then we
have already seen that we can extend the interval of existence, say [0,7* + &) which
contradicts the initial hypothesis. O
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CHAPTER

EXISTENCE OF GLOBAL IN TIME
SMOOTH SOLUTIONS

In the previous chapter we found a solution locally in time. The last proposition was
about the existence of this solution globally in time. More specifically we saw that if the
quantity limg_,7« [|u(t)|| gm < oo for T* < oo then the maximum interval of existence is
the [0,00). In this Chapter we will see a criterion, which gives a sufficient condition for
the above relation to hold. This criterion is the well known Beale-Kato-Majda blow up
criterion which links the accumulation of vorticity with the global existence of solutions.
Firstly we will prove this criterion and later we will apply this theorem.

5.1 Beale-Kato-Majda criterion

Theorem 5.1.1. ' Assume that ug € V™ with m > [%] + 2 and u is a solution of the
Euler or the Navier-Stokes as described in the previous chapter and w is its vorticity
defined as w = curlu. Assume that there exists a time T™ such that the above solution
can not be extended continuously in time. We also assume that T* is the first time that
this happens, then fOT* llw(t)|| Leedt = 00

Recall that via Biot-Savart law we have export the velocity by vorticity with a non
local operator. We see that on two dimensions and three dimension we have different
homogeneous kernels of degree (1-N). So for the proof we will have two cases the 3d one
and the 2d

Proof of the criterion

By the proposition 4.3.4 we have that since T < oo is the first time that we can not
extend our solutions it is true that lim; 7+ u(t) = co. Assume that fOT* lw(t)|| peedt =
M < oo we will prove that in this case||u(t)||gm < C for t < T™ and then lim;_,7+ u(t) <
oo which is a contradiction.

ol
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3 dimensions

We will prove the following steps

Step 1:We will find an energy estimate for the H™ norm of the velocity in terms of
IVl Lo

Step 2:We will find an L? estimate for the vorticity in terms of ||w||ec.

Step 3:We will bound the ||Vu/| e in terms of vorticity

Step 4:We will combine all the above steps and we will show that if fOT |lw(t) || Leedt
stays bounded then |[u||gm stays bounded.

Step 1. We will prove that 4% ||u|gm < ¢f|Vul| ool gm
It is true that u satisfies the the Navier Stokes in the Leray’s formulation so we have
that

0
ik vAu — P[(u - V)ul

We differentiate this relation over
pe (gtu) — uD*(Au) — D*(P[(u - V)ul)
We multiply with D% in L? and we get
a 8 a a a a a
D —u ) - D%dx = D%(Au) - D*udx — D*(P[(u- V)u]) - D%udx
R3 ot R3 R3

Thus
1d

510"l = =D uls = [ DU (Pl D)) - DPude

3Dl < [ D*(Pl- D)) - DPuda

To the integral on the right side we add and subtract the term P[(u - V)D%u] and we
have that since [ps P[(u - V)D%u] < 0 that

1d

| D%u|7 2 _/ [D*(P[(u-V)u]) = P[(u- V)D]| - D*udx
2dt R3
So we have that

1d

5 g 1D ullzz < llullam | D*(Pl(u- V)ul) = Pl(u- V)Dul| 2

Taking the sum over this relation
5o S Dl < i 3 ID*(P{(u- V)u) ~ Pl(u- V)D 2
la]<m la|<m
By proposition 4.1.13 we have

1d

2dtHUHHm < el Vaull Lo [Vl gt + [[ull e [ Vul| oo
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So it follows that
1d

5 g7 1l < emlVull e lullZm
Eventually

Ll < enllVullz Jul
Now by Gronwall’s lemma in differential form we have that

|l prm < o] grmefo lIVullzoeds

O]

Step 2. Let w = curlu where u is the above velocity field, we know for the vorticity
equation in 3 dimensions that

gtw—i-(u-V)w: (w-V)u+rvAw
We multiply with w in L? and we have that
/ aw-wdw—}—/ (u-V)w-wdx:/(w-V)u-wdaz—}—u Aw - wdzx
Rr3 Ot R3 R3 R3

We have that [ps(u- V)w - wdz =0 and v [ Aw - wdz = —v [ps [|[Vw||?dz < 0 so
gw-wda: S/ (w-V)u - wdz
R3 Ot R3

It follows that
1d

2dt
Lemma 24. [t is true that in three dimensions that |ul/r2 < c||lw] 2, where w = curlu

lollZ2 < IVl g2 llwl oo lwll 2

By Plancherels theorem we recall that if f € L2 then ||f]|z2 = || /]| .2
Also it is true that Vu = [g; e %% . Vudz
We see that for j-th element, with integration by parts that:

’ 0 o
—iéx | d —iéx | d ceon
/RB€ —axju x——/R3 —(%Uje udr = i&;0

Since we have that 8%],6*@'5‘” = (—i€) 2-we 8T = i€

dz;
Thus we have that Vu(§) = i€a(§)
It is also true that

o) o)
w = ng'uq — Tmu;;
o) o)

Also for the Fourier transform of vorticity we have that

w(§) = /]Rg e () dx
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We will check each :

= 0 e O
® W1 = Fo; U3~ Fg; U2 So

: 0 0
—ix (2 0 7
/Rg e (8332 us 6:753 ’LLQ) dx

NG e O
:/ 6_16$U3d$—/ e—ZELEiqu:ﬂ
R3 8.%’2 R3 a.ﬁUg
i€oliz — i€31s

o)
Fa; Ul — 3o U3 So

; 0 0
—ix (2 0 7
/]R3 e (83:3 Uy 8x1u3> dz

e 0 G
:/ elgxuld:c—/ e 8% _~_ysdr
R3 8563 R3 a371
i3y — i&1U3

-0 . _ 9
® W3 = z-U2 — F-UL So

, 0 0
—iéx [ Y Y d
/R3 € <61L'1 U2 6:1:2 U1> v

e 0 G
— —ix Y dr — —i€x Y d
/Rge 6m1u2 x /Rae (%vgul x

i&1ug — €Uy

€Uz — 1§32 0 —if3 i Uy
Thus d)(f) = ifgal - Zflﬂg = ng 0 —Zfl ’&2 = Sﬁ(f)
i€ — i€y —i&y & 0 U3

We have that det S = &2 + ¢2 + 5% #£ 0 so there exists the inverse matrix say S~!
we will find the inverse

We know that S~!-2<adj(S) where adj(S) is the adjugate matrix of S.

&  —a& o L&
adj(S) = | —&& & —&&
& —&& &

So the inverse is a 3 x 3 symmetric matrix and we know that the norm of symmetric
matrix is the maximum of the magnitude of its eigenvalues. Assume that C' =
max | A1), |A2], |As| We conclude that since 4(&) = S~ (&)

1a(€)llz2 = 1S~ @ ()l 2
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< 187 |zl (&)l 2
< 1Sl ()l 2

< @)l

By the lemma 23 we have that

1d
5 gz < ellwlzee ol

['hus I
w CllwW oo ||W
t 2 > L 2

And by the Gronwall’s inequality in the differential form we have that

wllz2 < [lwol|2efo clellz2ds

O]

Step 3. Assume that w € L? N L N C%7 then in three dimensions via Biot-Savart law
we have that

1

u(z,t) = ﬁ - Ks(z — y)w(y)dy = el Ks(y)w(z — y)dy

On chapter 3 we will show that the kernel P3 = V K3 defines a SIO through convolution,
by proposition 3.17 we have that

Vu(z,t) = cw(x) + Pyw(z) (Rs3)

where Psw(z) = P.V. [p3 VK3(y)w(z — y)dy and P3 is homogeneous of degree -3 with
mean value zero?.

1 ‘J}| < Ro
0 [z] > 2Ry
We have that Psw(z) = P.V. [ps VE3(y)w(z — y)dy

Assume the cut-off function p(|z|) = , we will define Ry later in the proof

=P.V. /Ra VE3(y)p(lyl)w(z —y) + VE3(y)(1 — p(ly]))w(z — y)dy

=P.V. /Rs VEK;(y)p(ly))w(z — y)dy + P.V. /Rg VEK;(y)(1 = p(ly]))w(z — y)dy

So we will see each integral individually:
For € < Ry we have that

B =P, [ VKoo~ )y

=P.V. ( y VEK3(y)p(ly))w(z — y)dy + VE;(y)p(ly))w(z — y)dy>
y|<e

ly|>e

2See chapter 2 for more information
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The singularity of the kernel is on 0 so the second integral is well defined thus
=P.V. " VEs(y)p(lyw(z — y)dy + . VEs3(y)p(lyw(z — y)dy
Yylxe€ y|>e

Again we will see each term individually

o It =P.V. [, .. VEK3(y)p(ly)w(z - y)dy
Since Ps has mean value zero it is true that P.V. [p5 P3(y)pw(z)dy = w(z) [ps Ps(y) =
0 so we have that

Il =P.V. VE3y)p(lyhw(@ —y) — VEs(y)p(ly)w(z)dy

ly|<e

=P.V. VE3)p(ly)(w(z —y) —w(z))

ly|<e

Thus
< [ IVEswplullee - 9) —wlo)ldy
ly|<e
We multiply and divide with the |y|7, for 0 <y < 1 so

wiz —y) — w(@)]
|yy‘7 lyl"dy

< /y|§vz<3<y>p<|y|>r

< /| _ P IV Byl elcondy
Y€

< Jwllcon / WV K3(y)|dy
ly|<e

1

< clwlloo / 7 dy
’ ly|<e ly[?

€
L o
< CHWHCOW/O rvr—?)r dr

So
I} < c1a

o It = [l VEs3(y)p(lyDw(z — y)dy

w|lco~e”

= / VE3(y)p(ly))w(z —y)dy + / VE3(y)p(ly))w(z —y)dy
2e<]y|<Ro ly|>Ro

We will see each integral individually:
B[ YKt - vy
2e<|y|<Ro

So we have that

12 < / VEs()o(y))lw(z — )ldy
2e<|y|<Ro
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< cllwllz= / V() p(ly ) w(z — )ldy
2e<|y|<Ro

1
< efwllz / Ly
2¢<|y|<Ro Yl

Ry 1 )
< c||w||Loo/ ﬁr dr

2e

So

Ry
) < vl o (52

And for the other one we have that

P = / VE3(y)p(ly))w(z —y)dy
ly|>Ro

So we have that

12| < /| I — )y

D=

< lwll g2 / IVK3(y)p(\y!)\2dy>
ly|>Ro
1
2 2
<ol [ dy)
ly|>2Ro
~ 1
< c||lwl| 72 / r2dr>
folls ([~ %

_3
117 < ey opl|w]| 2 Ry 2

1

ly|?

So for the first integral we have that

Ry

_3
] < callwlloone + ezalvlimn (50 ) + evalllaf

For the second integral we have that for ¢ < Ry

B =PV, [ VKa(s)(1 = pllyele ~ )y

=P.V. ( " VE3(y)(1 = p(ly))w(z — y)dy +

ly[>e

VE3(y)(1 = p(ly]))w(z - y)dy>

=P.V. ’ VEK;(y)(1 = p(ly)w(z — y)dy
y|<e

b VR Do - gy + [ TR )t )y
2e<|y|<Ro ly

‘>R0
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By the definition of the cut off function we have that the first2 integrals are zero so we
proceed with the last one and we have that

VEKs3(y)(1 — p(ly)))w(z —y)dy| < /|| . IVEK3(y)(1 = p(ly)||lw(z — y)|dy
Y|>LRo

* 1
< Jwl|f2¢ </ 6T2d7“>
2Rg r
3
2

So |I3| < e2||wl| 2Ry ® Thus we have that

y|>Ro

R -3 :
Prt)] < exlollcon + e n (52 ) + cxanlollafy® + calwloy

_3
2

R _3
< ¢(lwllonn + oll=1n (50 ) + ol By )
We set Rg = 1 then

R
Pra)] < ¢ (wllonr + ol n (52 ) + 2)
Remark we will not deal with the Ry inside of the In, because we want to estimate it
together with 2e.
So by (Rs3)we have that
Ry

IVl < elllzm + ¢ ([wllgone + ]z In (2) T lollze)

By the Sobolev embedding we have that ||w||co~r < ¢|lw]| g2 so we have that

Ry
Vullm < C (ol + ol + ol n (52 ) + lols2
Lemma 25. Assume that u is a velocity field in 8 dimensions and w its vorticity. Then
for s >0 then
[wll =1 < cflull s

proof of lemma:
We have seen on the proof of lemma 23 that w(§) = S4(§) we know that for the
matrix S that [S| = &3 + &3 + & + €2 + &2 + ¢ = 2|¢| Thus we have that

1

Jolls = ( [ 1o(@P + jg)>- )

< (/ﬂ§3 412 1a(€) (1 + |€|2)S_1d£>%

o= </R3(1 +IEP)ae) (1 + f|2)5_1d5>
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So we conclude that
lwlls—1 < cllull gs—

So by the lemma 24 we have that

Ry
IVl < (ol + s + e tn (52 ) + ol

Now if |lu]| g3 < 1,we assume that };—g = ||u/| s and € =  so we have that
IVullpee < C(Jwlzee + 1+ @]z In([[u]| gs) + llwllz2)
It follows that

IVullLee < C 1+ [lw]zee (1 4+ InJullgs) + [lwl|£2)

1

R
TTulls and 52 = [lu|| s then

If ||u||gs > 1 we assume that 2e =
[Vullpee < C (1 + [lwllpee (1 + In f|ul[g3) + [lwl|£2)

We conclude that
[Vulpee < C (1 + |lwl[ree (1 4+ Influllgs) + [[w]lz2) (RSnab)

O

Step 4. gn this step we will combine all the previous results. By the hypothesis we have
that fOT lw(t)||Leedt = M, we also set m(t) = ||w| L. Also by step 2 we have that

lwllr2 < ||w(0)||Lzef5 lllizeods for ¢ < T* we have that ||wl|p2 < ||lwol|2eM < k
So in the (RSnab) we have that

[Vullee < C (14 m(t)(1+In[jullgs) + k)

[Vul[ree < C (8 +m(t)(1+In|ullgs))
where § =1+ k and £ > 0. Thus we have that

[Vul[pee < C(6+m(t)(6 + Inf|ul[gs))

0 <1

In(x) z>1

We also know that if we assume the function In™(z) = { then its is true

that In(z) < In™(x) so we have that
[Vulzee < C (64 m(t)(6 4 In™ |ul|s))

Furthermore we know that Int(z) > 0, Vz, and it is an increasing function thus we
have that
IVullee < C((0+ ™ [[ufl ) +m(t)(8 +In™ ul gm))

So we have that:
[Vul[pe < C(1+m(t) (0 +In™ |lul gm) (RSnabl)
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By the Step 1 we have that

| zrm < |Jaao]] grm e o IV ullzoods

So
It ([l rm) < It (o] prme® o 17 ¥llLocds)

t
=In" |Jugl|gm + c/ V|| pds
0

Thus by (RSnabl) we have that
t
IVullze < O+ m(t)(8 + ™ [Juo s + c/ IVl ds)
0
We set ¢ = 6 + In™ ||ug||gm so we have that
t
[Vulle < €1+ m@)(a+e [ [Vulioeds
0
We set a(t) = C(1+m(t)) so

t
IVull e < a(t)(g +c / |Vl o ds)
0

t
Vull= < qalt) +calt) [ [Vuli=ds
0

By Gronwall inequality® we have that

t
IVl < qa(t) + a(t) / cqa(s)el gy
0

t
< qa(t) + qa(t) /0 _di (e g

S

< qa(t) — qa(t) [efts C“(r)dr] =

s=0

< qa(t) — qa(t) <eftt ca(r)dr _ efg ca(r)dr)

< qa(t) ~ qa(t) + ga(t)ehs "
< qa(t)efg ca(r)dr

Thus )
|Vul e < qa(t)efo ca(r)dr

By step 1 again we have that

HUHHm < HUOHHmecfg qa(s)e.f’(‘)9 ca(r)dr jg

3[17] theorem 11
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ull g < [ grm e Jo aCAFm(s)eld cCOFmENas

'S m(r T
HUHHm < HUOHHmeCfé C/(1+m(s))e.fo CQ4m(r))dr o

Now we have for C‘fos(l + m(r))dr and s <T* that
_ s _ Tx 5 T* _
c/ (14 m(r))dr < 0/ (1+ m(r))dr = C(T* +/ m(r)dr) = C(T* + M)
0 0 0

Thus CT+M) = Q € (0, +00), furthermore for cf(f C'(1 + m(s))eh CQ+m(r))dr g for
s < T we have by the above that

t . t t
c/ C'(1 + m(s))elo COFmm)dr g < c/ C'(1+m(s)Q < C/ 1+ m(s)ds
0 0 0
for t < T* we have that f(f 1+m(s)ds < fOT* 1+ m(s)ds = T* + M thus

t . _
¢ / C'(1+ m(s))elo CO+mNdrge < C(T* + M) = Q' € (0, +00)
0

ef(‘)s C_'(1+m(r))drds

Now for the e¢Jo C'(1+m(s)) and s < t < T* we have that

o Ji O (m(s))eld COxmtrgs (T Qr QT 4

So we conclude that
ull g < lluollam (e9" +1) < R

which is a apriori bound so the limy_ 7+ ||ul[gm < oo which is a contradiction to the
initial hypothesis, which occurs from the hypothesis that fOT |lw|Le < oo thus we
conclude that fOT* |lw||Le = oo O

2 dimensions

4 For the 2 dimensions we will use again the radial energy decomposition for the velocity
field u. Recall that u = y + b where b is defined by the initial vorticity via Biot-Savart
law and also wp, € C> N L%. So we have seen in the previous chapter that we can find
a y and define the solution u.

Again we will prove 4 steps
Step 1:We will find an energy estimate for the H™ norm of y in terms of ||Vy|| e
Step 2:We will bound the ||Vy||r~ in terms of vorticity its vorticity
Step 3:We will find an L? estimate for the vorticity
Step 4:We will combine all the above steps and we will show that if fg* l|wy ()] oo dt
stays bounded then ||y;|| g stays bounded.

28]
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Step 1. We have that y satisfy the equation

gty = vy — Py V)y+ (b V)y + (y- V)Y

We differentiate this relation and we have that

De (gty) = D" (vAy = Pl(y-V)y+ (b-V)y + (y- V)b])

De (gty> = D*(vAy) — DY(P[(y - V)y + (b- V)y + (y - V)b])

We multiply with D% in L?, thus
0
/ D <y) -D%dx =v | D*Ay)-D*udz— [ D*(P[(y-V)y+(b-V)y+(y-V)b])-D*udx
R2 ot R2 R2
So

1d

3Dl < —VIVD e = [ DU(Pl D+ (- D)+ (- V) - Duda

We will deal with the integral on the right side, we will separate it in three integrals
which will estimate individually

I = . DP ((ye - V)y) - D%dx
R

ILr=c| D"P((y-V)b)  D%dx®
R2

For the I; we sum and subtract the term P [(y - V)D* - y], thus
h= [ 0PIy V)ul) = Pl VD) + Plly- V)D"] - Dy

We also have that [p, P[(y-V)D%] - D%dx < 0
So

n< [ ID"P (- Dl = Plly-9)D%)] - D'y
<Dl D*{P [(y - V)yl} = Py - V)D]| 2
For the I we have that
Iy < [|D%[[ 2| D {P [(ye - V)oI} |2
By combining all the above relations with (L11) we get :

1d

5%”Day||%2 < ||ID*Y|| 2

5See pg 164-167
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[ID*{P[(y-V)yl} = P(y - V)D] |2 + [ID* {P [(y - V)b]} || 2]

We sum over this relation and we get

1d
s S ID IR < 3 D%

|a|<m. |la|<m

> ID{PI(y-V)yl} = Plly-V)DYll2 + [|1D* {P[(y - V)bI} || 2]

|a[<m

By the proposition 4.1.4
1d

5 2 Iyl < cllyllzm
2dt

[\VyllLooHylle + yllam [ Vyllee + IVl Loyl m
So eventually we have that

d

Myl < ellyllam (1YYl + VD] L]
By Gronwall’s lemma in differential form we have that
VYl Loo ]IV Loo)

t
yllrm < [Juo| grmeto €

O

Step 2. We know thatdivy = 0 so there exist a stream function z such that Az = w, by
the study in chapter 3 we know that we can find a singular kernel such that

y = / K (p)wy(z — p)dp
RQ
we also have that the kernel P, = VK5 defines a SIO through convolution, and that
Vy(x) = cwy(z) + Powy () (Rs2)
1 |z| < Ro

0 ‘CL‘| Z 2R0
We have that Pywy(z) = P.V. [p2 VKo (p)w(z — p)dp

Assume the cut-off function p(|z|) = , we will define Ry later in the proof

=P.V. /RQ VK (p)p(lphw(z —p) + VEa(p)(1 = p(lpl))wy (x — p)dp

=Y. [ VEa)plll)ele = p)dp+ P [ TEAp)(1 = o))y o = p)p

So we will see each integral individually: Remark:We will hand the following integrals
and we will use several tools, since we dont’t want to do a rough estimate which will
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give us infinity
For ¢ < Ry we have that

L =P.V. /R VK (p)pllpl)wy(z — p)dp

VE;(p)p(lphwy(z — p)dp>

[p|>e

=P.V. </|p< VEKs(p)p(lp|)wy (= —p)dp+/

The singularity of the kernel is on 0 so the second integral is well defined thus

=P.V. VK (p)p(lphw@ — p)dy + VK (p)p(|p)w@ — p)dp

Ip|<e Ip|>e

Again we will see each term individually

o Il =P.V. [l VEs(p)p(lp|)w(z — p)dp
Since P, has mean value zero it is true that P.V. [po Pa(p)pwy (x)dp = wy(x) [g2 P2(p)dp =
0 so we have that

Il =P.V. . VI (p)p(|pl)wy(z — p) — VEs(p)p(|p|)wy (2)dy

=P.V. VEs(p)p(lp)(wy(z = p) = wy(2))

Ip|<e
Thus
1 < /| VRl —p) @)l
p S€

We multiply and divide with the |p|?, for 0 < vy < 1 so

| |wy(z — p) — wy(z)

|
mE |p|"dp

< /| VK (p)o(lp)

§/|< Ip|” |V Ka(p)p(|p))|||wy || co~dp
p|S€
< HWyHC’O,v/ |p’7‘VK2(p)\dp
Ip|<e

1
< cllwy oo / o[ = dy
[p<e |

€
1
SCHCUyHCO,’y/O r'yr—Qrdr

So
1| < c1n

wl|cov€e”
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o 17 = [ VE2(p)p(|pl)wy(a — p)dp

= / VEs(p)p(lyl)wy(z — p)dp + / VEK3(p)p(|pl)wy(x — p)dp
2¢<|p|<Ro [p|>Ro

We will see each integral individually:

- | V Ka(p)p([p])wy(x — p)dp
2e<|p|<Ro
So we have that

12 < / IV Ka(p)p([p]) |y — p)\dp
2e<|p|<Ro
< cllwyllz= / IV Ka(p)o (1)) |y — p)ldp
2e<|p|<Ro

1
<cll= [y
2¢<|p|<Ro Ip|

Ro 1
< cHwaLoo/ T—Zrdr

2e

So
Ry

7 < cxaallo e (52

And for the other one we have that
B[ VEa@pllphes - p)dp
|p[>Ro

So we have that

12 < /| LR I
p|> o

=

< flwyllz2 </|>R \VKz(p)p(\p!)\Qdy>

2\ 2
<l | [ dy
|p|>2Ro
1
< ¢f|wy|| L2 (/ 4rdr>
2Ry T

_3
1P] < erapllwy |2 Ry 2

1

Ip|?
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So for the first integral we have that

Ry 3
] < callylloone + ezaloyllmn (5 ) + vl oy

For the second integral we have that for € < Ry

B =P. [ VEp)(1 = o)yl ~ p)ip

—P.V. ( . VK (p)(1 = p(|pl))wy(z — p)dp + VK3 (p)(1 = p(lpl))wy(z — p)dp>

[p|>e

—PV. [ VEp)(L - p(lp])wy (e — p)dp

Ip|<e

+/ VEKs3(p)(1 - p(lp|))wy(z — p)dp + / VEKs(p)(1 = p(|pl))wy(z — p)dp
2e<|p|<Ro [p[>Ro

By the definition of the cut off function we have that the first 2 integrals are zero so we
proceed with the last one and we have that

\/|>R VE(p)(1 = p(|p]))wy (z — p)dp| < /||>R IVE3(p)(1 — p(1p]))]|wy (2 — p)|dp

* 1
<wyll2c </ 4rdr>
2R r

Thus we have that

3
2

So |I3] < C2HWy||L2RO_

RO _3 _3
1P (@)] < enallolloon + enanlioglin (52 )+ cvanlioylaty + caloyla iy

Ro s
< ¢(luyllonn” + oyll=n (50 ) + lyllaFy )

We set Rg = 1 then

Ry
1Pay ()] < ¢ (leyllonn” + oyl () + liyl12)

Remark we don’t touch the Rj inside of the In, because we want to estimate it together
with 2e.
So by (Rs2)we have that

Ry
193l < ell e+ € (ylloon + oy e 1 (52 ) + ey 1)

By the Sobolev embedding we have that |lwy|/co < cfjwy|| g2 so we have that

Ry
19l < € (Jloioe + Ty o + e 1 (52 ) + sy 2

Lemma 26. Assume that u is a velocity field in 2 dimension and wits vorticity . Then
s > 0 we have that
lwll =2 < cllullas
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proof of lemma: In the two dimensions the vorticity of a velocity field is a scalar
quantity given as w = 8%1“2 — aimul
Also
/ e k7. iud:v =— ie_igm ~udx = &0
R2 al‘] R2 8333

So we have that @(§) =[5, e7%% (8%11@ _ 822 Ul)

= {1l — €210, = (_?52 Zgl) (Z;)

For the matrix S we have that |S| = 7 + &3 = |£| Thus we have that

1
2

Jolls = ( [ 1P + Iy

= </Rg [EP1a) P (1 + 15‘2)81%)%

2\ 2 2\s—1
o< ([ ePtaera + i) )

So we conclude that
[wlls—1 < cllull gs—

So by the lemma 25 we have that

Ry
19w < € (Jlllooe + lollse” + oyl (50 ) + lloyls2

Now if ||y||gs < 1, we assume that % = |ly|ly» and € = 3 so we have that

IVyllze < C (lwyllzee + 1+ lwllzee ([[yllzs) + llwyllz2)
It follows that
IVyllree < C (A [lwoyllpee (1 + [yl g3) + llwyllz2)
If ||lyllgs > 1 we assume that 2¢ = m and £ = ||u|| ;s then
IVyllLee < C(1+ flwyllzoe (1 + I lyllgs) + lloyl22)
We conclude that
IVyllree < C (A [loyllpee (14l g3) + llwyll2) (RSnab)

O]

Step 3. Now as far as concerned the L? norm of vorticity we have by the radial energy
decomposition that u = y + b so w = wy + w, where b is a known radial vorticity. We
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know that wy satisfies the equation Jwy + (y - V)wy + (y - V)wp + (b V)wy = vAwy,s0
by multiplying this equation with w, in L? we have that

0
/]R2 8twy-wydac—i—/]R2 (y-V)wy-wyd:Jc—i—/R2 (y-V)wb-wydx—l—/Rz(b-V)wy-wydx = —v||Vuwy||2,

We know that %ng (y - Vwy - wyde <0, [pa(b- V)wy - wyde <0 and also g2 (y - V)ws -
wydx < ||lwyl 2|yl p2]| Vews|| L It follows that

Ld
2dt

Lemma 27. It is true that in two dimensions that ||Vul|r2 < c||wl 2, where w = curlu

loglI72 < llwyllz2llyll 2| Veop | oo

proof of lemma

By lemma 25 we have that w(&) = ( (i)§ Z?) <Zl> For the determinant of the
—182 2

matrix we know that for & # 0 that det.S # 0 so the inverse matrix is S~! =
i (ZSQ _8§1> we have that |S~!| = [¢|] = ¢ We conclude that since @(¢) =
S—15(¢) 1
[a(©)ll2 = 157 @(E)l| >
< 187l (E)l 2

< cfw(€)llz2

So by lemma 26 we have that

1d

5ol < ellwy 32 Ve
d
Slwyllze < ellwnll ool

So by Gronwall
t
lwyllzz < llay(0)] paelo V2l = (2

where f(t) for finite t is finite O

Step 4. in this step we will combine all the previous results. By the hypothesis we have
that fOT |w(t)||reedt = M, we also set m(t) = ||wy||r~. Also by step 3 we have that
lwl|r2 < f(t) so we go to the relation (RSnab) and we substitute, so we have

IVyllree < C(1+m(t)(1+Inllyllgs) + f(2))

IVyllree < C(6() +m(t)(1 + In[|uflgs))
where §(t) = f(t) + C where (t) for finite t is finiteand C' > 0 We also know that if we
l >1
assume the function In*(z) = On(a:) v= . then its is true that In(z) < In™ () so we
T <
have that

IVyllze < € (3(t) +m(t)(3(t) + In " [[ylls))
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Furthermore we know that In*(z) > 0, Vz, and it is an increasing function thus we
have that

IVyllzee < C((6(t) +In™ [lyllzzm) +m(t)(3(t) + 0" [[yllzm))

So we have that:
[VyllLee < CA+m(t))(0(t) +In™ ||yl gm) (RSnabl1)

By step 1 we have that

yllzm < IIyoHHmeC-’g Wyl oo +[Vb|| oo ds

So
In+(||y|| g ) < 1n+(||yoHHmecf0t IVyllzoo +I Vbl oo ds)

t
= In* lgoll e + ¢ / Vgl + Vb eds
0

Thus by (RSnabl) we have that
t
IVyllzee < C(1+m(t)(3(t) +In™ [lyollzm + 0/ [Vull e +[[VD] Loods)
0
We set q(t) = 6(¢) + In™ |Jug|| gm so we have that
¢
IVyllLe < C(1 4+ m(t))(q(t) + C/O IVyl[Lee + I VD] L~ ds)
We set a(t) = C(1+ mf(t)) so
t
Vsl < a@)(alt) + [ Vgl + [T
We set g(t) = q(t)a(t) + ca(t) fg |Vb|| Lo du and we have that

t
Vgl < g(t) + cat) /O Vg e ds

By Gronwall’s lemma we have that

t t
VYl L= < g(t) +ca(t)/ g(s)els calddr g
0

We expand this term again

t
IVylle < a(t)a(t) + ca(t) / |Vb|| e

+ca(t) /0 t (q(s)a(s) + ca(s) /O ) V0] oo du> els calt)dr g
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We set fg |Vb||podu = U(t) where U(t) is finite when t is finite thus

~T*

T*
VYl < q(t)a(t) + cat)U(#) + ca(t) / (ga(s) + ca(s)U (1) els O ds
0
It follows that
VYl ze < qa(t) + ca(t)U + ca(t)(gM + UcMeM)

IVyllzee < C(t)a(t)

where C(t) = q(t) + cU(t) + cq(t)M + U(t)c>MeM
Again by step 1 we have that

Iyl zrm < |[yo|| grmec o IVullzoeds

[yl zrm < |[yo| mrmecfo C®als)ds

For T* < oo we have that the above quantity is bounded this is an apriori bound so
the lim;_, 7+ ||y||gm < oo which is a contradiction to the initial hypothesis, which occurs

from the hypothesis that fOT* |w||z < oo thus we conclude that fOT* |wyllLee =00 O

5.2 Global solutions in two dimensions

In two dimension the Beale Kato Majda criterion gives global solutions since:

Theorem 5.2.1. Assume that ug is a 2d initial velocity field, with radial energy de-
composition ug = vo + b with vg € H™, m > 3 and curlb = wo(|z|) € C®° N L? then
there exists a unique smooth global solution u(x,t) = v(x,t) + b(x,t) to the 2d Euler or
Navier Stokes equation with v(x,t) € C([0,00), H™) and b an exact eddy solution.

Proof. By the previous chapters discussion about local existance we know that there
exists a solution y, locally in time for the equation, dyy+ (y-V)y+ (y-V)b+(b-V)y =0
So our aim is to extend this solution global in time, so by the Beale-Kato-Majda crite-
rion, we have to show that the norm ||wy||£1(j0,77,z) remains bounded for every finite
time T.

By proposition 1.4.2 we know that w(X(a,t),t) = wo(a), so [|wy(s)|[re = [Jwy(0)| L
and thus

T T
/0 eyl zoeds = /0 ey (0) | edt = CT

So now we have a global solution y to the above equation and a steady solution b to
the Euler equation. We set u = y + b we have that u is a global in time solution to the
Euler equation, on the space V™ + b O

In three dimensions we don’t know if we can bound the quantity fOT* lw(zx,t)| L and
this is an open problem.
Someone may wonder why we have greater results in two dimensions than three, since

202



Chapter 5 5.2. Global solutions in two dimensions

the velocity in 2 dimension has not such good properties. To be honest we choose to
find solutions via energy methods so the problem in two dimension was that velocity
fields did not have finite kinetic energy, but at the end of the day using the radial
energy decomposition we have exact the same results for two and three dimensions
i.e. the local existence of smooth solutions. The tool we use here to globally extend
them, is the vorticity, in two dimensions vorticity is scalar and vorticity equation is
just a scalar transport equation. While in three dimension the vorticity is a vector field
and the vorticity equation has a more complicated form and contains also the term
(w-V)u. This term gives us the information that the vector of vorticity is deformed by
the matrixVu. So in two dimensions we can easily find a bound, but in three dimensions
the case is more complicated.It has been proved by Constantin-Fefferman-Majda® the
CFM blow up criterion where the vorticity direction vector is inolved.

°[10]
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