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Περίληψη

Στο πρώτο κεφάλαιο της διατριβής σκοπός μας είναι να δούμε κάποια βασικά στοιχεία της

μηχανικής των ρευστών καθώς και την εξαγωγή των εξισώσεων Euler και Navier-Stokes.
Θα ασχοληθούμε επίσης με την τοπική ανάλυση του πεδίου ταχύτητας και θα γράψουμε

τις εξισώσεις με τη χρήση πινάκων και θα εξαγάγουμε την εξίσωση του στροβιλισμού στις

τρείς και στις δύο χωρικές διαστάσεις.

Στο δεύτερο κεφάλαιο θα δούμε δύο σημαντίκες ισοδύναμες διατυπώσεις των εξισώσεων

Navier-Stokes και Euler. Την διατύπωση του Leray, διατύπωση, η οποία θα παίξει σημαν-
τικό ρόλο στην απόδειξη της ύπαρξης λύσεων και τη διατύπωση στροβιλισμού-ροής, όπου

θα εισάγουμε και τον νόμο Biot-Savart που συνδέει το πεδίο της ταχύτητας με το πεδίο
στροβιλισμού του μέσω ενός ολοκληρωτικού τελεστή.

Στο τρίτο κεφάλαιο θα μιλήσουμε για κάποιες βασικές ιδιότητες των λύσεων, αν αυτές

υπάρχουν, και θα βρούμε κάποιες βασικές οικογένειες λύσεων.

Στο τέταρτο και πέμπτο κεφάλαιο βρίσκονται τα βασικά αποτελέσματα της διατριβής. Στο

τέταρτο κεφάλαιο αναφερόμαστε στην ύπαρξη λείων λύσεων τοπικά στον χρόνο, ενώ στο

πέμπτο κεφάλαιο αποδεικνύουμε το κριτήριο των Beale-Kato-Majda και το εφαρμόζουμε
για την επέκταση των λύσεων ολικά στον χρόνο στις δύο διαστάσεις.

Σε αυτή τη διατριβή δεν υπάρχει προκαταρκτικό κεφάλαιο ή παράρτημα καθώς οτιδήποτε

χρησιμοποιούμε και χρήζει απόδειξης, θα αποδεικνύεται στο εκάστοτε κεφαλαιο.

Σημειώνουμε οτι η διατριβή έχει στηριχθεί κυρίως στο βιβλίο των A. Majda και A.
Bertozzi, Vorticity and Incompressible flow, Cambridge University Press, 2002. Βλέπε
[30]
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Abstract

In the first chapter of this thesis our aim is to examine some basic concepts of
fluid mechanics,and to derive the Euler and Navier-Stokes equations. We will consider
also a local decomposition of the velocity field. Then, we will use matrices to write the
equations and we will derive the vorticity equation for three and two spatial dimensions.

In the second chapter we will deal with two important formulations of the Navier-
Stokes and the Euler equation, the formulation by Leray, which will play a crucial role
in the proof of the existence of smooth solutions, and the vorticity-stream formulation,
where we also introduce the Biot-Savart law which links the velocity field to its vorticity
through an integral operator.

In the third chapter, we will present some properties of solutions, provided of course
any solutions exist, and we will see some exact solutions to the equations.

In the fourth and fifth chapter we present the basic results of this thesis. In the
fourth chapter we discuss the existence of smooth solutions locally in time, while in the
fifth chapter we prove the well known Beale-Kato-Majda criterion and we apply it in
order to extend the solutions globally in time in two dimensions.

The present thesis does not have preliminaries or an appendix, since everything we
will use will be proven in each chapter.

We note that this thesis is mainly based on the book of A. Majda and A. Bertozzi,
Vorticity and Incompressible flow, Cambridge University Press, 2002. See [30]
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CHAPTER 1
Introduction

1.1 Description of fluids, the Eulerian and Lagrangian points
of view

We begin with the following definition regarding fluids

Definition 1. Fluid is a quantity which deforms under the action of a shear stress.1

This deformation or movement of the fluid, which is time dependent, is called flow.
If we assume that each particle of the fluid can be decomposed into smaller particles,
then we can consider the fluid as a continuum. This assumption allows us to consider
the existence of some physical quantities. Given a continuum, as the volume of particles
tends to zero the physical quantities tend to become constant. The main idea is to ex-
amine the behavior of each particle and derive the results taking the average quantity.
We note that we will exclude extreme (chaotic) behaviors.2

In order to continue the study of the description of fluids, we will define a mapping
named particle trajectory mapping.
Let D be a region containing an incompressible, homogeneous fluid with velocity u(x, t).
Regarding the homogeneity, we say that a fluid is homogeneous if it has the same
composition throughout its movement. The definition about incompressibility is more
complicated. Schematically we see that (figure 1.1) a fluid is incompressible if its vol-
ume remains constant throughout its movement. In the next section we will discuss
extensively the incompressibility property.

Assume a particle of the fluid with initial position a = (a1, a2, ..., aN ). We should
mention that the initial position is not necessarily for t = 0, but for convenience we will
consider this case.
Define ϕ : RN × R → RN so that

(a, t) → x

where x will be the position of the particle at time t (x(t)).
Furthermore we assume that ϕ is sufficiently smooth, and given the time and position of
a particle, we are able to find the initial position by means of reverse function ϕ−1(x, t) =
a

1[2] pg. 2
2[16]
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Chapter 1 1.1. Description of fluids, the Eulerian and Lagrangian points of view

Figure 1.1:

Since the mapping is reversible, its Jacobian isn’t equal to zero. So we have

J(a, t) =

∣∣∣∣∣∣∣∣∣∣

∂ϕ1
∂a1

∂ϕ1
∂a2

∂ϕ1
∂aN

∂ϕ2
∂a1

∂ϕ2
∂a2

∂ϕ2
∂aN

...
∂ϕN
∂a1

∂ϕN
∂a2

∂ϕN
∂aN

∣∣∣∣∣∣∣∣∣∣
̸= 0

This mapping allows us to examine the movement of a volume of a fluid, meaning that
given a quantity of fluid on time t = 0, say Ωo and using the above function, we get3

Ω(t) = ϕ(Ωo, t) = {x = ϕ(a, t) for a ∈ Ωo}.

Formally a is called material coordinate or Lagrangian particle marker which indicates
what it actually describes i.e. a particular fluid particle. The x = ϕ(a, t) is called spatial
coordinate and indicates a specific position on RN .
There are two points of view to describe the fluid’s flow. The first one is the Lagrangian,
in which we start with a specific particle that we follow throughout its movement and
observe its evolution. In fact, we examine its motion path i.e. trajectory with velocity:

u(ϕ(a, t), t) =
∂ϕ(a, t)

∂t

which will be tangential to the trajectory of the particle.
The second one is the Eulerian, in which we study the properties of the fluid in a specific
position as a function of time. It is reasonable to wonder if there is a connection between
them. The answer is positive and in order to understand this connection, it is enough
to observe that the velocity in position x will be equal with the velocity of the particle
i.e.

u(x, t) =
∂ϕ(a, t)

∂t
3[33],pg 26
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Chapter 1 1.1. Description of fluids, the Eulerian and Lagrangian points of view

We note here that we will follow the Eulerian description in our study. For the sake of
completeness we will discuss some basic properties of the mapping ϕ

Proposition 1.1.1. So be Ωo ∈ RN and let ϕ be a particle trajectory mapping of a
smooth velocity field, then

∂J

∂t
= divu(ϕ(a, t), t)J(a, t),∀a ∈ Ωo

Proof. For N = 3, let a = (a1, a2, a3)
By the Jacobi formula4 for the derivative of the determinant of a square matrix we have
that

∂detA(t)

∂t
= tr

(
adj(A(t))

∂A(t)

∂t

)
So in our case

∂J

∂t
= tr

adj

∂ϕ1
∂a1

∂ϕ1
∂a2

∂ϕ1
∂a3

∂ϕ2
∂a1

∂ϕ2
∂a2

∂ϕ2
∂a3

∂ϕ3
∂a1

∂ϕ3
∂a2

∂ϕ3
∂a3




∂2ϕ1
∂t∂a1

∂2ϕ1
∂t∂a2

∂2ϕ1
∂t∂a3

∂2ϕ2
∂t∂a1

∂2ϕ2
∂t∂a2

∂2ϕ2
∂t∂a3

∂2ϕ3
∂t∂a1

∂2ϕ3
∂t∂a2

∂2ϕ3
∂t∂a3




We will see each matrix individually

adj


∂ϕ1
∂a1

∂ϕ1
∂a2

∂ϕ1
∂a3

∂ϕ2
∂a1

∂ϕ2
∂a2

∂ϕ2
∂a3

∂ϕ3
∂a1

∂ϕ3
∂a2

∂ϕ3
∂a3


Name Mij the elements of the adjugate matrix for convenience.

So we have

M11 M21 M31

M12 M22 M32

M13 M23 M33


M11 =

∂ϕ2
∂a2

∂ϕ3
∂a3

− ∂ϕ2
∂a3

∂ϕ3
∂a2

,

M12 =
∂ϕ2
∂a3

∂ϕ3
∂a1

− ∂ϕ2
∂a1

∂ϕ3
∂a3

,

M13 =
∂ϕ2
∂a1

∂ϕ3
∂a2

− ∂ϕ2
∂a2

∂ϕ3
∂a1

,

M21 =
∂ϕ1
∂a3

∂ϕ3
∂a2

− ∂ϕ1
∂a2

∂ϕ3
∂a3

,

4proof:
Assume that the determinant of a matrix A is a function F (A) = F (a11, a12, ..., a21, a22, ..., ann) by
the chain rule we have that d

dt
f =

∑n
i=1

∑n
j=1

∂f
∂aij

∂aij

∂t
we also know that if Mij is the submatrix of

a which follows by deleting the ith row and the jth column we have that Aij = (−1)i+j detMij and
detA =

∑n
j=1 aijAij . Also we see by product rule that ∂

∂aij
detA =

∑n
k=1

(
aik

∂Aik
∂aij

+Aik
∂aik
∂aij

)
=∑n

k=1Aik
∂aik
∂aij

furthermore we have that ∂aik
∂aij

= δkj and thus ∂ detA
∂t

=
∑n

i=1

∑n
j=1 detMij

daij

dt
=

tr(adjA ∂A(t)
∂t

)

5



Chapter 1 1.1. Description of fluids, the Eulerian and Lagrangian points of view

M22 =
∂ϕ1
∂a1

∂ϕ3
∂a3

− ∂ϕ1
∂a3

∂ϕ3
∂a1

,

M23 =
∂ϕ1
∂a2

∂ϕ3
∂a1

− ∂ϕ1
∂a1

∂ϕ3
∂a2

,

M31 =
∂ϕ1
∂a2

∂ϕ2
∂a3

− ∂ϕ1
∂a3

∂ϕ2
∂a2

,

M32 =
∂ϕ1
∂a3

∂ϕ2
∂a1

− ∂ϕ1
∂a1

∂ϕ2
∂a3

,

M33 =
∂ϕ1
∂a1

∂ϕ2
∂a2

− ∂ϕ1
∂a2

∂ϕ2
∂a1

Now

∂J

∂t
=


∂2ϕ1
∂t∂a1

∂2ϕ1
∂t∂a2

∂2ϕ1
∂t∂a3

∂2ϕ2
∂t∂a1

∂2ϕ2
∂t∂a2

∂2ϕ2
∂t∂a3

∂2ϕ3
∂t∂a1

∂2ϕ3
∂t∂a2

∂2ϕ3
∂t∂a3


So we conclude trB(t) = b11 + b22 + b33, where

b11 =M11
∂2ϕ1
∂t∂a1

+M21
∂2ϕ2
∂t∂a1

+M31
∂2ϕ3
∂t∂a1

,

b22 =M12
∂2ϕ1
∂t∂a2

+M22
∂2ϕ2
∂t∂a2

+M32
∂2ϕ3
∂t∂a2

,

b33 =M13
∂2ϕ1
∂t∂a3

+M23
∂2ϕ2
∂t∂a3

+M33
∂2ϕ3
∂t∂a3

I.e.
∂J

∂t
=
∑
i,j

Mij
∂2ϕi
∂t∂aj

⇒

∂J

∂t
=
∑
i,j

Mij
∂

∂aj
ui(a, t)

chain rule⇒

∂J

∂t
=
∑
i,j,k

Mij
∂xk
∂aj

∂ui
∂xk

Now, we shall prove that
∑

jMij
∂xk
∂aj

= δikJ , where δik is Kronecker delta . Indeed,

let’s see this for i = 1 and the other follows. So
∑

jM1j
∂xk
∂aj

• k = 1,
∑

jM1j
∂x1
∂aj

=

∂x1
∂a1

∂x2
∂a2

∂x3
∂a3

−∂x1
∂a1

∂x2
∂a3

∂x3
∂a2

−∂x1
∂a2

∂x2
∂a1

∂x3
∂a3

+
∂x1
∂a2

∂x2
∂a3

∂x3
∂a1

+
∂x1
∂a3

∂x2
∂a1

∂x3
∂a2

−∂x1
∂a1

∂x2
∂a2

∂x3
∂a3

= J

• k = 2,
∑

jM1j
∂x2
∂aj

=

∂x2
∂a1

∂x2
∂a2

∂x3
∂a3

−∂x2
∂a1

∂x2
∂a3

∂x3
∂a2

−∂x2
∂a2

∂x2
∂a1

∂x3
∂a3

+
∂x2
∂a2

∂x2
∂a3

∂x3
∂a1

+
∂x2
∂a3

∂x2
∂a1

∂x3
∂a2

−∂x2
∂a3

∂x2
∂a2

∂x3
∂a1

= 0
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• k = 3,
∑

jM1j
∂x3
∂aj

=

∂x3
∂a1

∂x2
∂a2

∂x3
∂a3

−∂x3
∂a1

∂x2
∂a3

∂x3
∂a2

−∂x3
∂a2

∂x2
∂a1

∂x3
∂a3

+
∂x3
∂a2

∂x2
∂a3

∂x3
∂a1

+
∂x3
∂a3

∂x2
∂a1

∂x3
∂a2

−∂x3
∂a3

∂x2
∂a2

∂x3
∂a1

= 0

At the end

∂J

∂t
=
∑
i,j,k

∂ui
∂xk

δikJ =
∑
i,k

∂ui
∂xk

δikJ =
∑
i=k

∂ui
∂xk

J = (
∑
i

∂ui
∂xk

)J = divuJ

And for N = 2 and let a = (a1, a2) for the derivative of a determinant of a square
matrix by Jacobi’s formula we obtain

∂detA(t)

∂t
= tr(adj(A(t))

∂A(t)

∂t
)

So in our case
∂J

∂t
= tr

[
adj

(
∂ϕ1
∂a1

∂ϕ1
∂a2

∂ϕ2
∂a1

∂ϕ2
∂a2

)(
∂2ϕ1
∂t∂a1

∂2ϕ1
∂t∂a2

∂2ϕ2
∂t∂a1

∂2ϕ2
∂t∂a2

)]
We will see each matrix individually

adj

(
∂ϕ1
∂a1

∂ϕ1
∂a2

∂ϕ2
∂a1

∂ϕ2
∂a2

)

Name Mij the elements of the adjugate matrix for convenience.

So we have the matrix
(
M11 M21

M12 M22

)

M11 =
∂ϕ2
∂a2

,

M12 = −∂ϕ2
∂a1

,

M21 = −∂ϕ1
∂a2

,

M22 =
∂ϕ1
∂a1

Now
∂J

∂t
=

(
∂2ϕ1
∂t∂a1

∂2ϕ1
∂t∂a2

∂2ϕ2
∂t∂a1

∂2ϕ2
∂t∂a2

)
So we conclude trB(t) = b11 + b22 where

b11 =M11
∂2ϕ1
∂t∂a1

+M21
∂2ϕ2
∂t∂a1

,

b22 =M12
∂2ϕ1
∂t∂a2

+M22
∂2ϕ2
∂t∂a2

7



Chapter 1 1.1. Description of fluids, the Eulerian and Lagrangian points of view

I.e.
∂J

∂t
=
∑
i,j

Mij
∂2xi
∂t∂aj

⇒

∂J

∂t
=
∑
i,j

Mij
∂

∂aj
ui

chain rule⇒

∂J

∂t
=
∑
i,j,k

Mij
∂xk
∂aj

∂ui
∂xk

Now, we shall prove that
∑

jMij
∂xk
∂aj

= δikJ , where δik is Kronecker delta. Indeed,

lets see this for i = 1 so
∑

jM1j
∂xk
∂aj

• k=1,
∑

jM1j
∂x1
∂aj

=M11
∂x1
∂a1

+M12
∂x1
∂a2

∂x2
∂a2

∂x1
∂a1

− ∂x2
∂a1

∂x1
∂a2

= J

• k=2,
∑

jM1j
∂x2
∂aj

=M11
∂x2
∂a1

+M12
∂x2
∂a2

∂x2
∂a2

∂x2
∂a1

− ∂x2
∂a1

∂x2
∂a2

= 0

for i = 2 we have
∑

jM2j
∂xk
∂aj

so

• k=1,
∑

jM2j
∂x1
∂aj

=M21
∂x1
∂a1

+M22
∂x1
∂a2

−∂x1
∂a2

∂x1
∂a1

+
∂x1
∂a1

∂x1
∂a2

= 0

• k=2,
∑

jM2j
∂x2
∂aj

=M21
∂x2
∂a1

+M22
∂x2
∂a2

−∂x1
∂a2

∂x2
∂a1

+
∂x1
∂a1

∂x2
∂a2

= J

At the end

∂J

∂t
=
∑
i,j,k

∂ui
∂xk

δikJ =
∑
i,k

∂ui
∂xk

δikJ =
∑
i=k

∂ui
∂xk

J = (
∑
i

∂ui
∂xk

)J = divuJ

Proposition 1.1.2. (Transport formula) Let Ω ⊂ RN be an open and bounded domain
with smooth boundary. Let ϕ be a particle trajectory mapping of a smooth vector field
u. Then for every smooth function f(x, t) we get:

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
ϕ(Ω,t)

∂f

∂t
+ div(fu)dx

8



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Proof. We set x = ϕ(a, t) We have already seen the Jacobian of this mapping so we
change variables and we get

d

dt

ˆ
ϕ(Ω,t)

fdx =
d

dt

ˆ
Ω
f(ϕ(a, t), t)J(a, t)da

By Leibniz integral rule we get

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
Ω

∂

∂t
(f(ϕ(a, t), t)J(a, t))da

By the product rule

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
Ω

(
∂

∂t
f(ϕ(a, t), t)

)
J(a, t) + f(ϕ(a, t), t)

∂J

∂t
⇒

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
Ω
∇f(ϕ(a, t), t)


∂ϕ1
∂t
∂ϕ2
∂t
∂ϕ3
∂t
1

 J + f
∂J

∂t
da

By the Proposition 1.1.1 we get :

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
Ω

(
∇f


u1
u2
u3
1

+ f(∇ · u)
)
Jda

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
Ω

(
∂f

∂t
+∇ · (fu)

)
Jda

We change variables again and we conclude :

d

dt

ˆ
ϕ(Ω,t)

fdx =

ˆ
Ω

∂f

∂t
+ divfudx

1.2 Derivation of the Navier-Stokes and Euler equations

In this section our aim is to derive the equations of motion for an incompressible and
homogeneous fluid. We will see in details the 3d case, the 2d case is similar. Assume a
flow and let x be a particle of the fluid, where n⃗ is the outward normal vector and W
a neighborhood of the particle.
Furthermore, let us assume that we deal with incompressible flows and homogeneous
fluids. We have already see in the previous section the definitions of those concepts.
Concerning the incompressibility there are two points of view. Some refer to incom-
pressibility assuming that the density remains constant, while others claim that the
material-convective derivative of density remains constant. Below we will check that in
our case we can work with both assumptions.

9



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Figure 1.2:

Definition 2. The convective derivative of a quantity includes spatial and temporal
information about motion changes.
D
Dt =

∂
∂t +

∑N
j=1 uj

∂
∂xj

It is the derivative taken with respect to a mooing coordinate system,and describes the
deform of a fluid under some quantities (such as velocity).

It is known that the movement of objects obeys three basic principles

1. Conservation of mass

2. Conservation of momentum

3. Conservation of energy

We note that we will not deal with the third principle. We begin this investigation with
the first principle.
1.Conservation of mass:

d

dt

ˆ
W
ρ dV = −

ˆ
ϑW

ρun dA

By the Leibniz integral rule and Gauss-Green theorem5

ˆ
W

∂ρ

∂t
dV = −

ˆ
W

divρu dV ⇒

ˆ
W

∂ρ

∂t
+ divρu dV = 0

But W is a random neighborhood of x, so

∂ρ

∂t
+ divρu = 0 (CM)

Following the first assumption about incompressibility we have that ρ is constant. So
we conclude by (CM) that

divu = 0
5[18] pg 712
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Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

. Following the second assumption we have that

D

Dt
ρ = 0

i.e.
∂

∂t
ρ = −∇ρ · u

. So we conclude by (CM) that ρdivu = 0 and eventually

divu = 0

Thus, we notice that the incompressibility together with the conservation of mass gives
us the condition that divu = 0
2. Conservation of momentum: Newtons’s second law of motion is

F = ma (SeL)

If we divide with the volume of the fluid, we get

F

V
= ρa (SeLV)

Where V = dx1dx2dx3 and a is the acceleration.
Analyzing in each component Fxi

V = ρaxi For the velocity field u = (u1, u2, u3) we have

axi =
∂ui
∂t

+ u1
∂ui
∂x1

+ u2
∂ui
∂x2

+ u3
∂ui
∂x3

So a = d
dtu

a =
∂u

∂t
+ u1

∂u

∂x1
+ u2

∂u

∂x2
+ u3

∂u

∂x3
⇒

a =
∂u

∂t
+

N∑
j

uj
∂u

∂xj

Def 2⇒

a =
Du

Dt

There are two kinds of forces exerted on the fluid.

1. The external forces

2. The internal forces

We set F the sum of external and internal forces.
We will not deal with body forces, which can be gravity, magnetic field forces, etc. We
will denote these forces as fi(x⃗, t), i = 1...N Assume also an elementary particle of the
fluid with a shape of a cube For the internal forces, we denote as σxixj outward pointing
stresses named normal stresses and τxixj the tangential to the surface stresses named
shear stresses (see figure 1. 3). xi, xj shows the direction of the stress, meaning that

11



Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Figure 1.3:

the stressij is perpendicular to the direction of xi and parallel to the direction of xj 6.
In order to find the inner forces, we have to find the resultant force per unit volume.
So in the direction of x1 we have that the force is

fx1 = σx1x1(x1 + dx1)dx2dx3 − σx1x1(x1)dx2dx3+

τx2x1(x2 + dx2)dx1dx3 − τx2x1(x2)dx1dx3+

τx3x1(x3 + dx3)dx1dx2 − τx3x1(x3)dx1dx2

So per unit volume we have

fx1 =
σx1x1(x1 + dx1)− σx1x1(x1)

dx1
+

τx2x1(x2 + dx2)− τx2x1(x2)

dx2
+

τx3x1(x3 + dx3)− τx3x1(x3)

dx3

fx1 =
∂σx1x1
∂x1

+
∂τx2x1
∂x2

+
∂τx3x1
∂x3

In the same way we can find the internal force in the direction of x2, x3 Fx1 = f1 +
∂σx1x1
∂x1

+
∂τx1x2
∂x2

+
∂τx1x3
∂x3

. This way we also get the rest of forces in the direction of x2,
x3
We denote T̄ the stresses tensor,which is a 3x3 matrix.

T̄ =

σx1x1 τx1x2 τx1x3
τx2x1 σx2x2 τx2x3
τx3x1 τx3x2 σx3x3


6[41]
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Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Consequently the total force is F = fj +
∑N

i ∇ · Tij , where Tij are the elements of the
matrix
Substituting all these into (SeLV) we derive

ρ(
∂ui
∂t

+
N∑
j

uj
∂ui
∂xj

) = fi +
N∑
j

∂tij
∂xj

We can view tij component as the total stress, which is the sum of normal and shear
stress. Due to the fact that its complicated to solve this equation, since we have to
compute each normal or shear stress, we will express tij as functions of pressure (p),
viscosity (µ) and velocity (u).
Normal stresses are the result of the pressure exerted of the fluid so σij = −pδij . Shear
stresses tend to cause deformation of the fluid by slippage along a plane. We will use
Newtons law for viscosity. In the two dimension case we have

τxj = µ
∂uj
∂xi

the generalization of this form in three dimensions will not be presented intricately 7.
It is sufficient to observe that internal friction exists when fluid particles move, so τxixj
should depends on the space derivatives of velocity. So τxixj may assumed as a linear
function of the derivatives ∂ui

∂xj
, and only those, since the shear stress must vanish for

constant velocity. Also must vanish when the fluid rotates uniformly, since no viscous
forces are exerted in this case. We conclude that τxixj = µ(

∂uj
∂xi

+ ∂ui
∂xj

). So, for

tij = σij + τij

by replacing the above relations we get :

tij = pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
Therefore

ρ

(
∂ui
∂t

+

N∑
j

uj
∂ui
∂xj

)
= fi +

3∑
j

∂

∂xj

(
pδij + µ

(∂ui
∂xj

+
∂uj
∂xi

))
But the fluid is incompressible so divu = 0 and thus

ρ(
∂ui
∂t

+

3∑
j

uj
∂ui
∂xj

) = fi −
∂p

∂xi
+ µ

3∑
j

∂2ui
∂x2j

Finally (
∂ui
∂t

+
3∑
j

uj
∂ui
∂xj

)
=

1

ρ
fi −

1

ρ

∂p

∂xi
+ ν∆ui

Where ν is the kinematic viscosity . The kinematic viscosity ν = µ
ρ expresses the speed

of response of the fluid in relation to its tension to remain inert. Kinematic viscosity
can be viewed as the reciprocal of Reynold’s number

7see [12],section 1.2
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Chapter 1 1.2. Derivation of the Navier-Stokes and Euler equations

Definition 3. Reynold’s number is the ratio of inertial forces to viscous forces. It
describes if the flow is laminar or turbulent. Re = ρuL

µ where L is the length of the flow.

For the 2d case we have that our particle is a square and we have four stresses (plus
4 opposite stresses). We follow the same procedure as above. So assuming that the
fluid is ideal, and no body forces exerted, we conclude that incompressible flows of
homogeneous fluids in RN ,N = 2, 3, are solutions of the system

Du

Dt
= −1

ρ
∇p+ ν∆u

divu = 0

u(x, 0) = u0

with u = (u1, ..., uN ) the velocity, and p the scalar pressure For ν > 0 the equation is
called Navier-Stokes, for ν = 0 it is known as the Euler equation.
To summarize, if we examine these equations as a mathematical object it is a non linear
time dependent system of partial differential equations. The unknown variables are the
components of velocity and the pressure. As a physics interest object is we will see each
term individually.

• Du
Dt is the total acceleration where ∂u

∂t is the local acceleration and
∑

j uj
∂u
∂xj

is the
convective acceleration 8

• ∇p are the pressure forces

• ν∆u are the viscous forces

We also have the following proposition which gives equivalent concepts for the incom-
pressibility:

Proposition 1.2.1. The following results are equivalent

1. A flow is incompressible

2. divu = 0

3. J(a, t) = 1

Proof. (1 =⇒ 2) it has been proved
(2 =⇒ 3) By proposition 1.1.2

ϑJ

ϑt
= divuJ(a, t)

∂J

∂t
= 0J(a, t)

8Convective acceleration is the acceleration due to movement of the fluid particle to a different
position in the flow field
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Chapter 1 1.3. Local behavior of the velocity field

∂J

∂t
= 0

J = c

J(a, 0) = det(∇aa) =

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1

So J(a, t) = J(a, 0) = 1
(3 =⇒ 1)

volϕ(Ω, t) =

ˆ
ϕ(Ω,t)

dx =

ˆ
Ω
J(a, t)da =

ˆ
Ω
da = volΩ

1.3 Local behavior of the velocity field

Now we will examine the behavior of the velocity around a specific position (x0, t0).
Assuming that the velocity field is smooth, we will use Taylor’s theorem to expand the
velocity field around (x0, t0).
Let h ∈ R3, then u(x0+h, t0) = u(x0, t0)+∇u(x0, t0)h+O(h2), where O is the Landau
big O9 .
∇u is a 3× 3 matrix i.e. ∇u = [ ∂ui∂xj

]ij .
So ∇u+ (∇u)T is a symmetric matrix, indeed

(∇u+ (∇u)T )T = (∇u)T + ((∇u)T )T = (∇u)T +∇u = ∇u+ (∇u)T

And ∇u− (∇u)T is a skew symmetric matrix, indeed

(∇u− (∇u)T )T = (∇u)T − ((∇u)T )T = (∇u)T −∇u = −(∇u+ (∇u)T )

We add those matrices and we get

(∇u+ (∇u)T ) + (∇u− (∇u)T ) = 2∇u

i.e
∇u =

1

2
(∇u+ (∇u)T ) + 1

2
(∇u− (∇u)T )

We have proved that ∇u is sum of a symmetric and a skew symmetric matrix. We define
D = 1

2(∇u+(∇u)T ) and Ω = 1
2(∇u− (∇u)T ) and we will name D, deformation matrix,

and Ω rotation matrix. Below we will see that these names has a physical meaning. 10

We define x = x0 + h taking the derivative with respect on t

dx

dt
=
dh

dt
9[1] pg 154

10[3], pg 18
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Chapter 1 1.3. Local behavior of the velocity field

We know that
dx

dt
= u(x)

and by the Taylor expansion above
So dh

dt ≈ u(x0, t0)+∇uh = u(x0, t0)+Dh+Ωh which is a linear equation in terms of h.

• if dhdt ≈ u(x0, t) then h(t) = h(0)+u(x,t0)t which describes infinitesimal translation

• if dh
dt ≈ Ωh We define the vorticity of the velocity field as ω = curlu = ∇× u

So ω =


∂u3
∂x2

− ∂u2
∂x3

∂u1
∂x3

− ∂u3
∂x1

∂u2
∂x1

− ∂u1
∂x2

 =

ω1

ω2

ω3


We will prove that Ωh = 1

2(ω × h) .

Ω =
1

2

 0 ∂u1
∂x2

− ∂u2
∂x1

∂u1
∂x3

− ∂u3
∂x1

∂u2
∂x1

− ∂u1
∂x2

0 ∂u2
∂x3

− ∂u3
∂x2

∂u3
∂x1

− ∂u1
∂x3

∂u3
∂x2

− ∂u2
∂x3

0


So Ω = 1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Ωh =

1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

h1h2
h3


Ωh =

1

2

−ω3h2 + ω2h3
ω3h1 − ω1h3
−ω2h1 + ω1h2


Now ω × h =

∣∣∣∣∣∣
i j k
ω1 ω2 ω3

h1 h2 h3

∣∣∣∣∣∣ =
−ω3h2 + ω2h3
ω3h1 − ω1h3
−ω2h1 + ω1h2

 And so is the result. Conse-

quently dh
dt = Ωh = 1

2(ω × h) Because of the vector product it is a rotation with
angular velocity 1

2 |ω|

• if dh
dt = Dh . Since D is a symmetric matrix there exists eigenvalues λi and

orthonomal eigenvectors ēi so that

Dēi = λiēi

ēi is a base so h(t) =
∑

i hiēi
So
∑

i
dhi
dt ēi = D

∑
i hiēi

Consequently dhi
dt = λihi i.e. hi(t) = hi(0)e

λit

Which is expansion or contraction along ēi

To sum up the velocity field is a sum of deformation and vorticity.

u(x, t) = u(x0, t) +D(x, t)(x− x0) +
1

2
ω × h(x− x0)

After this process we are ready to derive the vorticity equation.
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Chapter 1 1.4. The vorticity equation

1.4 The vorticity equation

By differentiating the Navier-Stokes equation in three dimensions, we have:

∂ui
∂t

+
∑
j

uj
∂ui
∂xj

= − ∂p

∂xi
+ ν∆ui ⇒

∂

∂xk
(
∂ui
∂t

+
∑
j

uj
∂ui
∂xj

) =
∂

∂xk
(− ∂p

∂xi
+ ν∆ui) ⇒

∂

∂t

∂ui
∂xk

+
∑
j

∂uj
∂xk

∂ui
∂xj

+
∑
j

uj
∂

∂xj

∂ui
∂xk

= − ∂

∂xk

∂p

∂xi
+ ν∆

∂ui
∂xk

We will use the previous results about the behavior of the velocity field, and we will
utilize the rotation matrix Ω. We set V the 3× 3 matrix with elements ∂ui

∂xk
and P the

matrix with elements ∂
∂xk

∂p
∂xi

So
∂V

∂t
+
∑
j

uj
∂V

∂xj
+
∑
j

∂ui
∂xj

∂uj
∂xk

= −P + ν∆V ⇒

∂V

∂t
+
∑
j

uj
∂V

∂xj
+ V 2 = −P + ν∆V ⇒

DV

Dt
+ V 2 = −P + ν∆V (NSM)

According to the previous construction we have obtained a symmetric and a skew sym-
metric matrix D = 1

2(V + V T )andΩ = 1
2(V − V T ), where V = D +Ω

V 2 = (D +Ω)(D +Ω) = D2 +DΩ+ ΩD +Ω2 = (D2 +Ω2) + (DΩ+ ΩD)

The matrix (D2 +Ω2) is symmetric. Indeed,

(D2 +Ω2)T = (D2)T + (Ω2)T = (DD)T + (ΩΩ)T = (DT )2 + (ΩT )2

but D is symmetric and Ω skew symmetric so

(D2 +Ω2)T = D2 + (−Ω)2 = D2 +Ω2

The matrix (DΩ+ ΩD) is skew symmetric. Indeed,

(DΩ+ ΩD)T = (DΩ)T + (ΩD)T = ΩTDT +DTΩT = −ΩD −DΩ = −(DΩ+ ΩD)

So for the Navier-Stokes is:

D

Dt
(D +Ω) + (Ω2 +D2) + (ΩD +DΩ) = −P +∆(D +Ω)

We observe that there exists a symmetric part of the equation, which is D
DtD+Ω2+D2 =

−P + ν∆D and the anti-symmetric part, which is D
DtΩ+ (ΩD +DΩ) = ν∆Ω
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Chapter 1 1.4. The vorticity equation

From the anti-symmetric part, and since we have proved that the matrix Ω is linked
with the vorticity, we will derive the vorticity equation. We choose an h ∈ R3, which
does not depend on t and consequently on x. We have proved that Ωh = 1

2ω × h, we
will multiply the anti-symmetric part with h.
So, for the first term of equation we obtain

D

Dt
(Ωh) =

1

2

D

Dt
(ω × h) ⇒

DΩ

Dt
h =

1

2

Dω

Dt
× h

We will prove that (DΩ+ΩD)h = 1
2(−(Dω)× h+ tr(D)(ω× h)) We have already saw

that Ω = 1
2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


So

ΩD =
1

2

d31ω2 − d21ω3 d32ω2 − d22ω3 d33ω2 − d23ω3

d11ω3 − d31ω1 d12ω3 − d32ω1 d13ω3 − d33ω1

d21ω1 − d11ω2 d22ω1 − d12ω2 d23ω1 − d13ω2


Also (ΩD)T = DTΩT = −DΩ
Hence ΩD +DΩ =

1

2

 0 d32ω2 − d22ω3 + d31ω1 − d11ω3 d33ω2 − d23ω3 + d11ω2 − d21ω1

d11ω3 − d31ω1 − d32ω2 + d22ω3 0 d13ω3 − d33ω1 − d22ω1 + d12ω2

d21ω1 − d11ω2 − d33ω2 + d23ω3 d22ω1 − d12ω2 − d13ω3 + d33ω1 0


Name qij the elements of the above matrix for convenience.
We observe that q12 = d32ω2 − d22ω3 + d31ω1 − d11ω3 − d22ω3 + d31ω1 − d11ω3 =

d33ω3 + d31ω1 + d32ω2 − ω3tr(D) = [d3j ]ω − ω3tr(D)

The other elements follows so

(ΩD +DΩ)h =
1

2
(

[d3j ]ωh2 − [d2j ]ωh3
[d1j ]ωh3 − [d3j ]ωh1
[d2j ]ωh1 − [d1j ]ωh2

)− trD

−ω3h2 + ω2h3
ω3h1 − ω1h3
−ω2h1 + ω1h2


It means that (ΩD +DΩ)h = 1

2(−(Dω)× h+ tr(D)(ω × h)).
And now for the last term Ωh = 1

2ω × h Therefore

∆(Ωh) =
1

2
∆(ω × h)

since ∆h = 0

(∆Ω)h =
1

2
(∆ω)× h

Finally DΩ
Dt h+ (ΩD +DΩ)h = ν∆Ωh

1

2

Dω

Dt
× h+

1

2

(
− (Dω)× h+ tr(D)(ω × h)

)
=

1

2
ν(∆ω)× h
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Chapter 1 1.4. The vorticity equation

By vector product properties 11

Dω

Dt
× h− (Dω)× h+ (tr(D)Ω)× h = ν∆ω × h(
Dω

Dt
− (Dω) + (tr(D)Ω)

)
× h = ν∆ω × h

Dω

Dt
− (Dω) + (tr(D)ω) = ν∆ω

This is the vorticity equation, and since the flow is incompressible i.e. divu = 0 we have
that ϑu1

ϑx1
+ ϑu2

ϑx2
+ ϑu3

ϑx3
= 0 i.e tr(D) = 0.

So the vorticity equation reduces to

Dω

Dt
= Dω + ν∆ω

It is obvious that this equation is important because we got ridden of the pressure term.
The terms remaining are the velocity and vorticity which are related. For inviscid fluids
the vorticity equation reduces to

Dω

Dt
= Dω

Remark:In two dimensions the vorticity of the velocity field is not a vector, i.e.
To calculate the curl we assume that in the x3-direction there is a zero. So we get

ω = curlu = ∇× u =

∣∣∣∣∣∣
i j k
∂
∂x1

∂
∂x2

0

u1 u2 0

∣∣∣∣∣∣ =
 0

0
∂u2
∂x1

− ∂u1
∂x2


It is obvious that the curl in two dimensions points in the direction of x3, since the first
coordinates are 0. We can assume that in this direction there exists an axis of rotation
which is perpendicular to a point. From now on we take vorticity as a scalar quantity
so ω = ∂u2

∂x1
− ∂u1

∂x2
, which measures how much the velocity field rotates around the point.

So it is reasonable for someone to wonder what happens with the vorticity equation in
that case. We will follow the same procedure again.
For the Navier Stokes equation in two dimensions we get

∂

∂t

∂ui
∂xk

+
∑
j

∂uj
∂xk

∂ui
∂xj

+
∑
j

uj
∂

∂xj

∂ui
∂xk

= − ∂

∂xk

∂p

∂xi
+ ν∆

∂ui
∂xk

We set V the 2× 2 matrix with elements ∂ui
∂xk

and P the matrix with elements ∂
∂xk

∂p
∂xi

.
(So far besides the dimensions there is no other change).
So

DV

Dt
+ V 2 = −P + ν∆V

According to the previous construction we have a symmetric and a skew symmetric
11[40], pg 255
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Chapter 1 1.4. The vorticity equation

matrix D = 1
2(V + V T ) and Ω = 1

2(V − V T ) accordingly, where V = D + Ω with the
difference that D and Ω are 2× 2 matrices.
So for the Navier-Stokes is:

D

Dt
(D +Ω) + (Ω2 +D2) + (ΩD +DΩ) = −P + ν∆(D +Ω)

Again we take the skew symmetric part D
DtΩ+ (ΩD +DΩ) = ν∆Ω.

We see that in order to derive the vorticity equation, we make use of this relation
Ωh = 1

2ω × h, where h is a vector in two dimensions, which does not depend on time.
Is this equality true in two dimensions?

Ω =
1

2

(
0 ∂u1

∂x2
− ∂u2

∂x1
∂u2
∂x1

− ∂u1
∂x2

0

)
=

1

2

(
0 −ω
ω 0

)

So Ωh = 1
2

(
−ωh2
ωh1

)
Now ω × h =

∣∣∣∣∣∣
i j k
0 0 ω
h1 h2 0

∣∣∣∣∣∣ =
(
−ωh2
ωh1

)
So we continue our process, by multiplying the anti-symmetric part with h.
So for the first term of equation

D

Dt
(Ωh) =

1

2

D

Dt
(ω × h) ⇒

DΩ

Dt
h =

1

2

Dω

Dt
× h

And the second term (DΩ+ ΩD) = 1
2

(
0 −d11ω − d22ω

d11ω + d22ω 0

)
So (DΩ+ ΩD)h = 1

2

(
−h2ωtr(D)
h1ωtr(D)

)
But the fluid is incompressible so the trace of D is zero so(DΩ+ ΩD)h = 0.
And now the last term Ωh = 1

2ω × h therefore

∆(Ωh) =
1

2
∆(ω × h)

since ∆h = 0
So we conclude that

1

2

Dω

Dt
× h =

1

2
ν(∆ω)× h

I.e Dω
Dt = ν(∆ω) and for inviscid fluids Dω

Dt = 0
Which means that in two dimensions for incompressible and inviscid fluids the vorticity
of each particle is constant as particle moves.We will discuss this in the next chapters.
In three dimensions we also have that
We know that ∇u = D + Ω (remember the construction with the symmetric and skew
symmetric matrices), then ∇u · ω = (D + Ω)ω12 by linear properties of the product

12We will also denote · the product between matrices
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Chapter 1 1.4. The vorticity equation

∇u · ω = Dω +Ωω
It is easy for someone to see that Ωω = 0

Ωω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

ω1

ω2

ω3

 =

−ω3ω2 + ω3ω2

ω1ω3 − ω1ω3

−ω2ω1 + ω1ω2

 =

0
0
0


Consequently

Dω

Dt
= ∇u · ω

Next we see the vorticity transport formula which will be very useful in the following
chapters.

Proposition 1.4.1. Assume ϕ a smooth particle trajectory mapping of a smooth velocity
field of an incompressible fluid. Then the solution ω of the Dω

Dt = ∇u ·ω is ω(ϕ(a, t), t) =
∇aϕ(a, t)ω0(a)

Proof. We first proof the following lemma.

Lemma 1. Let u(x, t) a smooth velocity field with ϕ(a, t) its particle trajectory mapping
so that ∂ϕ

∂t = u(ϕ(a, t), t) and ϕ(a, 0) = a. Moreover assume h a smooth vector field then

Dh

Dt
= ∇u · h ⇐⇒ h(ϕ(a, t), t) = ∇aϕ(a, t)h0(a)

proof of lemma:
∂ϕ

∂t
= u(ϕ(a, t), t) (P 2.1.1.1)

∂

∂a

∂ϕ

∂t
=

∂

∂a
u(ϕ(a, t), t)

∂

∂t

∂ϕ

∂a
= ∇u(ϕ(a, t), t)∂ϕ

∂a

So
∂

∂t
∇aϕ(a, t) = ∇u(ϕ(a, t), t)∇aϕ(a, t) (P 2.1.1.2)

We multiply with h0(a) and we get

∂

∂t
∇aϕ(a, t)h0(a) = ∇u(ϕ(a, t), t)∇aϕ(a, t)h0(a)

We continue with the equation Dh
Dt = ∇u · h. For u = u(ϕ(a, t), t) and h =

h(ϕ(a, t), t) we get

∂

∂t
h(ϕ(a, t), t) +

∑
uj

∂

∂xj
ϕ(a, t) = ∇u(ϕ(a, t), t)h(ϕ(a, t), t)

∂

∂t
h(ϕ(a, t), t) = ∇u(ϕ(a, t), t)h(ϕ(a, t), t) (P 2.1.1.3)
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Chapter 1 1.4. The vorticity equation

The initial condition for the (P 2.1.1.1) is ϕ(a, 0) = a so ∇aϕ(a, 0) = ∇aa so the
initial condition for (P 2.1.1.2) is ∇aϕ(a, 0)h0(a) = h0(a).
So we have two equations (P 2.1.1.2) and (P 2.1.1.3) differentiated with respect to
t and same initial conditions. Therefore the ∇aϕ(a, t)h0(a) and h(ϕ(a, t), t) satisfy
the same differential equation with same initial condition,because of the uniqueness
of the solutions we get h(ϕ(a, t), t) = ∇aϕ(a, t)h0(a)

Now for the proof of the proposition we substitute h = ω and the mapping ϕ is the
particle trajectory mapping we have defined. This completes the proof.

In two dimension we have the corresponding proposition:

Proposition 1.4.2. Let ϕ a smooth particle trajectory mapping of a smooth velocity
field.Then the vorticity of an inviscid fluid satisfies:

ω(ϕ(a, t), t) = ω0(a)

, where a ∈ R2

Proof. In two dimensions we have that the particle trajectory mapping is ϕ : a ∈ R2 →
ϕ(a, t) ∈ R2.Its Jacobian determinant is :

Jϕ =

∣∣∣∣∣ ∂
∂a1

ϕ1
∂
∂a2

ϕ2
∂
∂a1

ϕ2
∂
∂a2

ϕ2

∣∣∣∣∣
Since the fluid is incompressible by proposition 1.2.1 we have that Jϕ = 1 so we have
that ∂

∂a1
ϕ1

∂
∂a2

ϕ2 − ∂
∂a2

ϕ2
∂
∂a1

ϕ2 = 1 we continue by adding a row and a column to the
matrix in order to make a 3x3 matrix with the same determinant so we have the matrix ∂

∂a1
ϕ1

∂
∂a2

ϕ2 0
∂
∂a1

ϕ2
∂
∂a2

ϕ2 0

0 0 1


Assuming now that the vorticity is embedded into three dimension (by assuming that
the first coordinates are 0), by proposition 1.4.1 we have that

ω(ϕ(a, t), t) =

 ∂
∂a1

ϕ1
∂
∂a2

ϕ2 0
∂
∂a1

ϕ2
∂
∂a2

ϕ2 0

0 0 1

 0
0
ω0

 =

 0
0
ω0


Thus we conclude that ω(ϕ(a, t), t) = ω0(a)

Remark:We observe that in two dimensions we have better results than in the three
dimensions. We see that along particle trajectories the vorticity in two dimensions is
conserved. But in three dimensions this is not true, more precisely in three dimensions
there exists the matrix ∇aϕ which deforms the initial vorticity.
Now we will examine the vortex lines of the fluid.
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Chapter 1 1.4. The vorticity equation

Definition 4. Let c be a smooth curve such that c = {y(s) ∈ RN : 0 < s < 1} will
be a vortex line in a fixed time t if its tangent is everywhere parallel to vorticity ω i.e.
∂y(s)
∂t = λ(s)ω(y(s), t)), λ(s) ̸= 0.

We have already seen that thanks to the mapping ϕ we are able to examine the
motion of a whole region of fluid in time. Is it possible to examine the behavior of
vortex lines in time in a similar way?
Let c be the vortex line for t = 0 and c(t) = {ϕ(y(s), t) ∈ RN : 0 < s < 1} we will prove
that the curve c(t) is also a vortex line.
Indeed ∂

∂tϕ(y(s), t) = ∇aϕ(y(s), t)
∂
∂t(y(s), t) so

∂

∂t
ϕ(y(s), t) = ∇aϕ(y(s), t)

∂y(s)

∂t

c is a vortex line so

∂

∂t
ϕ(y(s), t) = ∇aϕ(y(s), t)λ(s)ω(y(s), 0)

by proposition 1.4.1
∂

∂t
ϕ(y(s), t) = λ(s)ω(ϕ(y(s), t))

We observe that the tangent of ϕ is parallel to ω. So, since c(t) is a vortex line we
understand that for inviscid incompressible fluid vortex lines moves with the fluid.
We will see the next proposition which is similar to the transport formula.

Proposition 1.4.3. Let c a smooth oriented closed curve and ϕ a smooth mapping of
a divergence free velocity field u. Then d

dt

¸
udl =

¸
Du
Dt dl .

Proof. Assume c(t) = {ϕ(s, t) : 0 ≤ s ≤ 1} by the definition of closed integral we get

d

dt

˛
udl =

d

dt

ˆ 1

0
u(ϕ(s, t), t)

∂ϕ(s, t)

∂s
ds

By the Leibniz integral rule we get

d

dt

ˆ 1

0
u(ϕ(s, t), t)

∂ϕ(s, t)

∂s
=

ˆ 1

0

∂

∂t
(u(ϕ(s, t), t)

∂ϕ(s, t)

∂s
)ds

=

ˆ 1

0

∂

∂t
u(ϕ((s, t), t)

∂ϕ(s, t)

∂s
+ u(ϕ(s, t))

∂

∂t

∂ϕ(s, t)

∂s
ds

=

ˆ 1

0

∂

∂t
u(ϕ((s, t), t)

∂ϕ(s, t)

∂s
+ u(ϕ(s, t))

∂

∂s

∂ϕ(s, t)

∂t
ds

By the definition of the mapping ∂ϕ(s,t)
∂t = u(ϕ(s, t))

=

ˆ 1

0

∂

∂t
u(ϕ((s, t), t)

∂ϕ(s, t)

∂s
+ u(ϕ(s, t))

∂

∂s
u(ϕ(s, t))ds
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Chapter 1 1.4. The vorticity equation

=

ˆ 1

0

∂

∂t
u(ϕ((s, t), t)

∂ϕ(s, t)

∂s
ds+

1

2

ˆ 1

0

∂

∂s
|u(ϕ(s, t))|2ds

So
d

dt

˛
udl =

ˆ 1

0

∂

∂t
u(ϕ((s, t), t)

∂ϕ(s, t)

∂s
ds

Now ˛
Du

Dt
dl =

ˆ 1

0

Du(ϕ(s, t), t)

Dt
· ∂
∂s
ϕ(s, t)

=

ˆ 1

0

∂

∂t
u(ϕ((s, t), t)

∂ϕ(s, t)

∂s
ds

To sum up ˛
Du

Dt
dl =

d

dt

˛
udl

Using the above proposition we will prove the next well known theorem

Theorem 1.4.1. (Kelvin’s conservation of circulation)
Let u be a smooth solution of the Euler equation, then the circulation Γc(t) around a
curve c(t) moving with the fluid, i.e

Γc(t) =

˛
udl

is constant in time.

Proof. d
dt

¸
udl =

¸
Du
Dl dl but u satisfies Euler so

d

dt
Γc(t) =

˛
−∇pdl = 0

We give the following proposition

Proposition 1.4.4. (Helmholtz’s conservation of vorticity flux)
Let u be a smooth solution of the Euler equation then the vorticity flux along a surface
S(t) moving with the fluid i.e.

FA(t) =

ˆ
A
ωdS

is constant in time.

Proof.
d

dt
FA(t) =

by Stokes theorem

=
d

dt

˛
∂A
uds = 0
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Chapter 1 1.5. Conserved quantities

1.5 Conserved quantities

In this section we will see some other quantities that remain constant in time.

First we will see the preserved quantities in R3

We will assume that u is a smooth solution of the 3d Euler Equation which vanishes
sufficiently rapidly as |x| tends to infinity then the following quantities remain constant
in time.

• Total flux of velocity 13

V =

ˆ
R3

udx

Proof : For the Euler we have

∂ui
∂t

+
∑
j

uj
∂ui
∂xj

= − ∂p

∂xi

We integrate both parts over R3

ˆ
R3

∂ui
∂t

+
∑
j=1

uj
∂ui
∂xj

dx =

ˆ
R3

− ∂p

∂xi
dx⇒

ˆ
R3

∂ui
∂t

+

ˆ
R3

∑
j=1

uj
∂ui
∂xj

dx =

ˆ
R3

− ∂p

∂xi
dx

By Leibniz integral rule 14

d

dt

ˆ
R3

uidx = −
ˆ
R3

∑
j=1

uj
∂ui
∂xj

dx−
ˆ
R3

∂p

∂xi
dx

Lets see each term individually.
ˆ
R3

∂p

∂xi
dx

(polar coordinates)15
=

ˆ ∞

0

ˆ
∂B(x0,r)

∂p

∂xi
dSdr

Since ∂B(x0, r) is a closed curve of R2

ˆ
∂B(x0,r)

∂p

∂xi
dS = 0

So
´
R3

∂p
∂xi
dx = 0

We continue with the other term:ˆ
R3

∑
j=1

uj
∂ui
∂xj

dx =
∑
j=1

ˆ
R3

uj
∂ui
∂xj

dx

13Total flux is the amount of quantity passing through a surface area per time.
14 d

dx

(´ b(x)
a(x)

f(x, t)dt
)
= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) d

dx
a(x) +

´ b(x)
a(x)

∂
∂x
f(x, t)dt
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Chapter 1 1.5. Conserved quantities

By integration by parts formula we get
ˆ
R3

∑
j=1

uj
∂ui
∂xj

dx =
∑
j=1

ˆ
R3

∂uj
∂xj

uidx⇒

ˆ
R3

∑
j=1

uj
∂ui
∂xj

dx =

ˆ
R3

∑
j=1

∂uj
∂xj

uidx =

ˆ
R3

ui
∑
j=1

∂uj
∂xj

dx =

ˆ
R3

uidivudx

We know that we deal with incompressible fluids, divu = 0 so
ˆ
R3

∑
j=1

uj
∂ui
∂xj

dx = 0

So we have that
d

dt

ˆ
R3

uidx = 0

which is true for all i=1,2,3 so

d

dt

ˆ
R3

udx = 0

• Total flux of vorticity W =
´
R3 ωdx

Proof :
d

dt
W =

d

dt

ˆ
R3

ωdx

By Leibniz integral rule
d

dt
W =

ˆ
R3

∂ω

∂t
dx

Now we will use the vorticity equation so
d
dtW = −

´
R3

∑
j=1 uj

∂ω
∂xj

dx+
´
R3 Dωdx

16

Again we examine each term individually
ˆ
R3

∑
j=1

uj
∂ω

∂xj
dx =

∑
j=1

ˆ
R3

uj
∂ω

∂xj
dx

By integration by parts formula :
ˆ
R3

∑
j=1

uj
∂ω

∂xj
dx =

∑
j=1

ˆ
R3

∂uj
∂xj

ωdx =

ˆ
R3

∑
j=1

∂uj
∂xj

ωdx =

ˆ
R3

ω
∑
j=1

∂uj
∂xj

dx =

ˆ
R3

ωdivudx

divu = 0 so ˆ
R3

∑
j=1

uj
∂ω

∂xj
dx = 0

Lets work with the other term:ˆ
R3

Dωdx =

ˆ
R3

∇u · ω =

ˆ
R3

∑
j=1

∂u

∂xj
ωjdx =

∑
j=1

ˆ
R3

∂u

∂xj
ωjdx

16D is the 3x3 symmetric matrix from our previous construction.
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By integration by parts formulaˆ
R3

Dωdx =

ˆ
R3

u
∂ωj
∂xj

dx =

ˆ
R3

udivωdx

We have that divω = 0 17,so ˆ
R3

Dωdx = 0

It turns out that:
d

dt
W = 0

• The kinetic energy E = 1
2

´
R3 |u|2dx

Proof :
d

dt
E =

1

2

d

dt

ˆ
R3

|u|2dx

By Leibniz integral rule

d

dt
E =

1

2

ˆ
R3

∂

∂t
|u|2dx =

ˆ
R3

1

2
2u
∂u

∂t
dx

We take the Euler equation and multiply with u so

d

dt
E = −

ˆ
R3

u
∑
j=1

uj
∂u

∂xj
dx−

ˆ
R3

u∇pdx

We see each term individuallyˆ
R3

u∇p =
ˆ
R3

∑
j=1

uj
∂p

∂xj
dx =

∑
j=1

ˆ
R3

uj
∂p

∂xj
dx

By integration by parts formulaˆ
R3

u∇pdx =
∑
j=1

ˆ
R3

∂uj
∂xj

pdx =

ˆ
R3

pdivu = 0x

The other term : ˆ
R3

u
∑
j=1

uj
∂u

∂xj
dx =

ˆ
R3

∑
i,j

uiuj
∂ui
∂xj

dx

By integration by parts we getˆ
R3

∑
i,j

uiuj
∂ui
∂xj

=

ˆ
R3

∑
i,j

uiuj
∂ui
∂xj

+

ˆ
R3

∑
i,j

uiui
∂uj
∂xj

I.e
2

ˆ
R3

∑
i,j

uiuj
∂ui
∂xj

= 0

To conclude
d

dt
E = 0

17[40] pg. 255
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• The Helicity H =
´
R3 u · ωdx

Proof :
d

dt
H =

d

dt

ˆ
R3

u · ωdx

By Leibniz integral formula we have

d

dt

ˆ
R3

u · ωdx =

ˆ
R3

∂

∂t
(u · ω)dx =

ˆ
R3

u
∂ω

∂t
+ ω

∂u

∂t
dx

By the vorticity equation ∂ω
∂t = ∇uω − u∇ω

By the Euler equation ∂u
∂t = −u∇u−∇p So

dH

dt
=

ˆ
R3

u(∇u− u∇ω) + ω(−u∇u−∇p)dx

=

ˆ
R3

−∇pω − ωu∇u+ uω∇u− uu∇ω

It is true that ∇ · (pω) = pdivω + ω∇p but divω = 0 because div(curlu) = 0 so
∇(pω) = ω∇p.
Moreover uω∇u = 1

2∇(|u|2ω) and ω(u∇u)+uu∇ω = u(ω∇u+u∇ω)+u(∇(uω))+
uωdivu = ∇(u(uω)) .
Eventually

dH

dt
=

ˆ
R3

∇ · (−pω − uuω +
1

2
|u|2ω)

By the divergence theorem, this integral is equal to the integral of (−pω− uuω+
1
2 |u|

2ω)n on the boundary of R3, which is an empty set. So the integral is equal
to zero.

Corollary 1.5.1. In R2 the above quantities are preserved and the Helicity is equal to
zero.

Now, we will prove that the Lp-norm of the vorticity in R2 is conserved in time.
Remark: Let 1 ≤ |p| ≤ ∞ then the Lp-norm of vorticity in R2 is ||ω||p = (

´
R2 |ω|p)

1
pdx

Proof of the Remark:By Lp estimates on the vorticity quation we get:
ˆ
R2

∂

∂t
ω · ω|ω|p−2dx = −

ˆ
R2

(u · ∇)ω · ω|ω|p−2dx

Thus by Leibniz integral rule and integration by parts we have that

d

dt

ˆ
R2

|ω|pdx = 0

d

dt
||ω||p =

1

p
(

ˆ
R2

|ω|pdx)
1
p
−1

(
d

dt

ˆ
R2

|ω|pdx) = 0
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CHAPTER 2
Important reformulations of
the Navier-Stokes and Euler
equations

2.1 Leray’s formulation for incompressible fluids

With the previous matrix construction regarding the Navier Stokes and Euler equation,
we derived the vorticity equation. Our aim now is to examine a different approach.
Someone may ask, why do we care about those formulations regarding our equations.
Firstly, we can get rid of some terms, such as pressure. This is useful since we get rid
of an unknown term that is partially differentiated with respect to x. Eventually, we
obtain an equation with only one unknown quantity. Secondly, we derive propositions
and formulas that will be used in the next chapters. Also, we can study and understand
physical properties. We recall equation (NSM)

DV

Dt
+ V 2 = −P + ν∆V

where V = [ ∂ui∂xj
]ij and P is the Hessian of pressure. Recall also that divu = 0, so we

have that trV = 0. It seems that the only information we have here is about the trace,
so for the above matrices equation we take the trace on both parts.

tr(
DV

Dt
+ V 2) = tr(−P + ν∆V )1 ⇒

tr(
DV

Dt
) + tr(V 2) = tr(−P ) + tr(ν∆V )

We will examine each term of this equality.

• tr(DVDt ) = D11 +D22 +D33

DV

Dt
= [

∂

∂t

∂ui
∂xj

+
∑
k

uk
∂

∂xk

∂ui
∂xj

]ij

1tr(A+B) = trA+ trB
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Therefore Dii =
∂
∂t
∂ui
∂xi

+
∑

j uj
∂
∂xj

∂ui
∂xi

So

tr

(
DV

Dt

)
=

∂

∂t

∂u1
∂x1

+
∑
j

(
uj

∂

∂xj

∂u1
∂x1

)
+
∂

∂t

∂u2
∂x2

+
∑
j

(
uj

∂

∂xj

∂u2
∂x2

)
+
∂

∂t

∂u3
∂x3

+
∑
j

(
uj

∂

∂xj

∂u3
∂x3

)
⇒

tr

(
DV

Dt

)
=

∂

∂t

(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

)
+
∑
j

uj
∂

∂xj

(
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

)
⇒

tr

(
DV

Dt

)
=

∂

∂t
divu+

∑
j

uj
∂

∂xj
divu

But divu = 0 so

tr(
DV

Dt
) = 0

• trP = ∂2p
∂x21

+ ∂2p
∂x22

+ ∂2p
∂x23

=
∑

j
∂2p
∂x2j

= ∆p

• tr(∆V ) = ∆11 +∆22 +∆33

∆V = [
∑
k

∂2

∂x2k

∂ui
∂xj

]ij

So

tr(∆V ) =
∑
k

∂2

∂x2k

∂u1
∂x1

+
∑
k

∂2

∂x2k

∂u2
∂x2

+
∑
k

∂2

∂x2k

∂u3
∂x3

=
∑
k

∂2

∂x2k
divu = 0

Eventually −∆p = trV 2 = tr(∇u)2 =
∑

i,j
∂ui
∂xj

∂uj
∂xi

2

The above equation is a Poisson we know for its solutions the following.3

We define g(x) =

{
− 1

2π ln|x| N = 2
1

N(N−2)a(N)
1

|x|N−2 N ≥ 3
.

Where a(N) is the volume of the unit sphere in RN , we also know that for the ∆z = f
Poisson the solution is z(x) =

´
RN g(x − y)f(y)dy with |x − y| ≠ 0. In our case

p(x, t) =
´
RN g(x− y)tr(∇yu(y, t))

2dy.
ForN = 2 we have ∇xp(x, t) =

´
R2 g(x−y)tr(∇yu(y, t))

2dy where g(x−y) = − 1
2π ln |x−

2tr(∇u)2 =

tr



( ∂u1
∂x1

)2 + ∂u1
∂x2

∂u2
∂x1

+ ...+ ∂u1
∂xN

∂uN
∂x1

∗ ∗
∗ ∂u1

∂x2

∂u2
∂x1

+ ( ∂u2
∂x2

)2 + ...+ ∂u2
∂xN

∂uN
∂x2

∗
.
.
.

∗ ∗ ∂uN
∂x1

∂u1
∂xN

+ ∂uN
∂x2

∂u2
∂xN

+ ...+ ( ∂uN
∂xN

)2


3[18],chapter 2
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

y|.
So by the Leibniz integral rule4

∇xp(x, t) =

ˆ
R2

∇x((g(x− y)tr((∇yu(y, t))
2))dy

the trace term is constant when we differentiate with respect to x

∇xp(x, t) =

ˆ
R2

tr(∇yu(y, t))
2∇xg(x− y)dy ⇒

∇xp(x, t) =

ˆ
R2

tr(∇yu(y, t))
2(− 1

2π

x− y

|x− y|2
)dy ⇒

∇xp(x, t) = c2

ˆ
R2

tr(∇yu(y, t))
2 x− y

|x− y|2
dy

For N ≥ 3 we have ∇xp(x, t) =
´
RN g(x − y)tr[(∇yu(y, t))

2]dy where g(x − y) =
1

N(N−2)a(N)
1

|x|(N−2)
.

So by Leibniz integral rule

∇xp(x, t) =

ˆ
RN

∇x((g(x− y)tr((∇yu(y, t))
2))dy

the trace term is constant when we differentiate with respect to x

∇xp(x, t) =

ˆ
RN

tr(∇yu(y, t))
2∇xg(x− y)dy ⇒

∇xp(x, t) =

ˆ
RN

tr(∇yu(y, t))
2 1

c̃N
∇x|x|(2−N)dy ⇒

∇xp(x, t) = cN

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy

I.e. ∀N
∇xp(x, t) = cN

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy

this relation links the pressure with the velocity. So we go back to Navier stokes equation

Du

Dt
= −∇p+ ν∆u

and we replace the pressure term with the above solution so

Du

Dt
= −cN

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy + ν∆u

Someone can easily observe that we have reach to an equation, which is depended only
on time variable t and the unknown term is only the velocity field. We will prove now
the following proposition:

4There is not a singularity in this integral operator so we proceed with simple calculations
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Proposition 2.1.1. Solving the Navier stokes equation with smooth initial velocity u0
such that divu0 = 0 is equivalent to solving the evolution equation

Du

Dt
= −cN

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy + ν∆u

u|t=0 = u0

Proof. ⇒ Assuming that u solves the Navier-Stokes then by the previous construction
we are done.
⇐ Assuming now that u solves the evolution equation then for the Navier stokes Du

Dt =
−∇p + ν∆u we have −cN

´
RN tr(∇yu(y, t))

2 x−y
|x−y|N dy + ν∆u = −∇p + ν∆u so ∇p =

cN
´
RN tr(∇yu(y, t))

2 x−y
|x−y|N dy thus the evolution equation becomes the Navier stokes.

So the only remaining equation to be proven is that the vector field is divergence free.
Assume now that u is random solution of the above equation we will prove that this
solution is divergence free and we can omit the initial condition of incompressibility
(divu = 0) assuming all along that divu0 = 0.
Proof :

Du

Dt
= −cN

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy + ν∆u⇒

div
(Du
Dt

)
= div

(
− cN

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy + ν∆u

)
⇒

∑
k

∂

∂xk

Duk
Dt

= −c
∑
k

∂

∂xk

ˆ
RN

tr(∇yu(y, t))
2 x− y

|x− y|N
dy + ν

∑
k

∂

∂xk
∆uk ⇒

∑
k

∂

∂xk

(
∂uk
∂t

+
∑
j

uj
∂uk
∂xj

)
= −c

∑
k

ˆ
RN

tr(∇yu(y, t))
2 ∂

∂xk

( x− y

|x− y|N
)
dy+ν

∑
k

∂

∂xk
∆uk

So we have that ∑
k

∂

∂xk

(
∂uk
∂t

+
∑
j

uj
∂uk
∂xj

)
=

−c̃
∑
k

ˆ
RN

tr(∇yu(y, t))
2 ∂

∂xk
(

1

|x− y|N−1
)dy + ν

∑
k

∂

∂xk

∑
j

∂2uk
∂x2j

thus
∂

∂t

∑
k

∂uk
∂xk

+
∑
j,k

∂uj
∂xk

∂uk
∂xj

+
∑
j,k

uj
∂

∂xk

∂uk
∂xj

=

−c̃
ˆ
RN

tr(∇yu(y, t))
2 ∂

∂xk

1

|x− y|N−1
dy +

∑
j

∂2

∂x2j

∑
k

∂uk
∂xk

D

Dt
(divu) = −

∑
j,k

∂uj
∂xk

∂uk
∂xj

− c̃
∑
k

ˆ
RN

tr(∇yu(y, t))
2 ∂

∂xk
(

1

|x− y|N−1
)dy + ν∆(divu)

We reach to the relation

D

Dt
(divu) = −

∑
j,k

∂uj
∂xk

∂uk
∂xj

−∇ · ∇p+ ν∆(divu)
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

By footnote 2 on page 30 we see that

D

Dt
(divu) = ∆p−∆p+ ν∆(divu) ⇒

D

Dt
(divu) = ν∆(divu)

So our goal is to prove that if divu0 = 0 then divu = 0 in any time. We will use energy
methods
Lets assume that the above equation has two solutions i.e. DDt(ũ1) = ν∆(ũ1) and D

Dt(ũ2) =
ν∆(ũ2) where ũ1 = divu1 and ũ2 = divu2

d

dt

ˆ
RN

|ũ1 − ũ2|2dx =

ˆ
RN

∂

∂t
|ũ1 − ũ2|2dx =

ˆ
RN

2(ũ1 − ũ2)
∂

∂t
(ũ1 − ũ2)dx

Since they are solutions we have

∂ũ1
∂t

= −u · ∇ũ1 + ν∆ũ1

and
∂ũ2
∂t

= −u · ∇ũ2 + ν∆ũ2

So ∂
∂t(ũ1 − ũ2) = −u · ∇ũ1 + ν∆ũ1 + u · ∇ũ2 − ν∆ũ2

We continue our calculations by multiplying the above equation with the ũ1− ũ2 on L2

so we have that
ˆ
RN

∂

∂t
(ũ1 − ũ2) · (ũ1 − ũ2)dx =

ˆ
RN

(ũ1 − ũ2) · (−u · ∇ũ1 + ν∆ũ1 + u · ∇ũ2 − ν∆ũ2)dx

By Leibniz integral rule we have that

1

2

d

dt

ˆ
RN

|ũ1 − ũ2|2dx =

ˆ
RN

2(ũ1 − ũ2) · (−u · ∇ũ1 + ν∆ũ1 + u · ∇ũ2 − ν∆ũ2)dx

= 2

ˆ
RN

(ũ1 − ũ2)(−u)∇(ũ1 − ũ2)dx+ 2

ˆ
RN

ν(ũ1 − ũ2)∆(ũ1 − ũ2)dx

We will expand on each term individually. Firstly we set w = |ũ1 − ũ2|2

ˆ
RN

(ũ1 − ũ2) · (−u · ∇(ũ1 − ũ2))dx = −
ˆ
RN

u∇|ũ1 − ũ2|2dx = −
ˆ
RN

u · ∇wdx

We assume that we examine these solutions on a sufficiently small time interval, in
which ũ1 − ũ2 has compact support so

−
ˆ
RN

u ·∇wdx = lim
r→∞

ˆ
B(x0,r)

u ·∇wdx = lim
r→∞

(ˆ
∂B(x0,r)

uwndS−
ˆ
B(x0,r)

w∇·udx
)

= lim
r→∞

−
ˆ
B(x0,r)

w∇ · udx = −
ˆ
RN

w∇ · udx
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

The other term
ˆ
RN

ν(ũ1 − ũ2)∆(ũ1 − ũ2)dx = ν lim
r→∞

ˆ
B(x0,r)

(ũ1 − ũ2)∆(ũ1 − ũ2)dx

= −ν lim
r→∞

ˆ
B(x0,r)

∇(ũ1 − ũ2) · ∇(ũ1 − ũ2)dx = −ν
ˆ
RN

|∇(ũ1 − ũ2)|2dx

So

d

dt

ˆ
RN

|ũ1 − ũ2|2dx = 2

ˆ
RN

|ũ1 − ũ2|2∇ · udx− 2ν

ˆ
RN

|∇(ũ1 − ũ2)|2dx⇒

d

dt

ˆ
RN

|ũ1 − ũ2|2dx ≤ 2

ˆ
RN

|ũ1 − ũ2|2∇ · udx

Thus
d

dt

ˆ
RN

|ũ1 − ũ2|2dx ≤ 0

We will use the following lemma, in a more easy form. In the next chapters we will see
the Gronwall’s lemma and we will prove it.

Lemma 2. (Simplified Gronwall’s lemma) Let I=[0,a) be an interval an b a real valued
function, and f a differentiable function on I such that d

dtf ≤ bfinI then f ≤ f0e
´ t
a b(s)ds

So ˆ
RN

|ũ1 − ũ2|2dx(t) ≤ e0
ˆ
RN

| ˜u1(0)− ˜u2(0)|2dx(0)

So assuming that initially ˜u1(0) = ˜u2(0) = 0 then
ˆ
RN

|ũ1 − ũ2|2dx(t) ≤ 0

i.e. ũ1− ũ2 = 0∀t We conclude that the solution of this equation is unique, so if initially
our velocity field is divergence free, then divu will be zero at any time.

Remark :In fact we project the Navier stokes equation on the space of divergence
free vector fields in order to eliminate the pressure term. This projection is called the
Leray’s projection. And this is the Leray’s formulation. We will discuss this projection
a little more.

Proposition 2.1.2. Let u ∈ L2(RN ) then there exists an orthogonal decomposition such
that:

u = w +∇q

and
divw = 0
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Proof. We define the following sets
H(RN ) is the closure with the L2 norm of the set

C = {f ∈ C∞
c (RN ) : divf = 0 in RN}

and
G(RN ) = {f ∈ RN : f = ∇g for g ∈ L2

loc(RN )}

So it is sufficient to show that u can decompose into u1,u2 where u1 ∈ H and u2 ∈ G We
know that an element u of a Hilbert space can decompose into two parts5 i.e. u+u1+u2
where u1 ∈ D and D is a closed subspace of the Hilbert space, and u2 ∈ D⊥.
The L2(RN ) may be considered as a Hilbert space with inner product :(f, g) =

´
RN f ·

gdx, so it is sufficient to show that

1. H(RN ) is a closed subspace of L2(RN )

2. H⊥(RN ) = G(RN )

The first is immediate from the definition of H, since :
Assume that f, g ∈ H and λ ∈ RN then div(f + g) = divf + divg = 0, furthermore
divλf = λdivf = 0 so we are able to define those two relations in H, so it is a subspace
and it is closed because is the closure of C
For the second we have to prove the two inclusions

• G ⊂ H⊥

Let f ∈ G then f is a square integrable function and f = ∇g for some g ∈ L2
loc(RN )

. Assume that h ∈ H then
ˆ
RN

f · g =

ˆ
RN

∇g · hdx = −
ˆ
RN

gdivh = 0

thus f ∈ H⊥

• H⊥ ⊂ G
Assume now that f ∈ H⊥ = {f ∈ L2 :

´
RN f · g = 0∀ g ∈ H} we want to find

an h such that f = ∇h and h ∈ L2
loc so the problem comes down to solving the

equation f = ∇h

Lemma 3. Let 1 < q < ∞ and f ∈ W−1,q
loc

6 such that
´
RN f · vdx = 0, ∀v ∈

C(RN ),then there exists a p such that p ∈ Lqloc and ∇p = f in the distribution
sense7.

So it is sufficient to show that f ∈ W−1,2
loc (RN ) and also

´
RN f · gdx = 0, ∀g ∈

C(RN )

5[36] pg 94
6See the definition of Sobolev spaces on chapter 4
7[36] pg 73, see section 2.2.2 the discussion about distributions
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Chapter 2 2.1. Leray’s formulation for incompressible fluids

Assume that V ⊂⊂ RN , the space W−1,2(V ) is the dual space of W 1,2
0 (V )8

For the dual norm we have

∥f∥W−1,2 = sup
∥g∥

W
1,2
0

≤1
(f, g)

so by Cauchy Schwartz

∥f∥W−1,2 ≤ sup
∥g∥

W
1,2
0

≤1
∥f∥L2∥g∥L2 <∞

Now assume a g ∈ C(RN ) since H is the closure of C with the L2 norm we have
that g ∈ H and also f ∈ H⊥ so it is immediate that

´
RN f ·gdx = 0. So by lemma

3 there exists an h ∈ L2
loc such that f = ∇h and this completes the proof for the

opposite inclusion.

We also have the following proposition for vector fields that are not L2 but have a
vanishing property9

Proposition 2.1.3. Let u be a divergence free vector field in RN and q a smooth scalar
such that |u||q| = O[|x|1−N ]as|x| → ∞ then

´
RN u∇qdx = 0

I.e. the divergence free vector fields and the gradient of the scalar are orthogonal in
L2.
Remark: The O is the big O which means that, let f, g two functions such that f = O[g]
then there exists a constant c and a fixed point name x0 such that |f(x)| ≤ cg(x)
∀x ≥ x0.

Proof. Let B(0, r) be a sphere in RN with surface area cNrN−1 then

|u(x)||q(x)| ≤ Cr2(N−1) ≤ C|x|2(N−1) ≤ C|x|1−N

Now ˆ
|x|≤r

u∇q dx =

ˆ
|x|≤r

∑
i

ui
∂q

∂xi
dx =

∑
i

ˆ
|x|≤r

ui
∂q

∂xi
dx

integration by parts gives

=
∑
i

(
−
ˆ
|x|≤r

q
∂u

∂xi
dx+

ˆ
|x|=r

quni dS

)

= −
ˆ
|x|≤r

q
∑
i

∂u

∂xi
dx+

ˆ
|x|=r

qun dS

8[13] pg 291
9With this vanishing property we are able to do the decomposition of the velocity field via orthog-

onality.
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

since divu = 0 we get ˆ
|x|≤r

u∇qdx =

ˆ
|x|=r

qun dS

As r tends to infinity the last integral tends to zero .

Note: We define P : L2(RN ) → H(RN ) such that for a u ∈ L2 we have Pu = w,
where P is the Leray or Helmholtz projection of L2 to H. We define Leray projection
as the orthogonal projection from L2 to the subset of divergence-free vector fields in L2.
We want to write the vector field b ∈ L2 as b = P (b)+∇p. Since we want P (b) to be in
the space of divergence free vector fields, we take the divergence in the above equality
So divb = ∆p i.e. ∇p = −∇(−∆)−1divb.10 Consequently

P(b) = b+∇(−∆)−1(divb)

, where ∆−1 is the inverse of Laplace operator.
It is easy to see now that we can write the Navier-Stokes equation with the projection
term as follows. From the Poisson equation we have

−∆p =
∑
i,j

∂ui
∂xj

∂uj
∂xi

= div

(∑
j

uj
∂

∂xj
u

)
So p = (−∆)−1div(

∑
j uj

∂
∂xj

u) .
Thus by Navier-Stokes ∂

∂tu+
∑

j uj
∂
∂xj

u = −∇p+ ν∆u

∂

∂t
u = −

∑
j

uj
∂

∂xj
u−∇(−∆)−1div

(∑
j

uj
∂

∂xj
u

)
+ ν∆u

∂

∂t
u = P

(
−
∑
j

uj
∂

∂xj
u

)
+ ν∆u

2.2 The vorticity-stream formulation for incompressible flu-
ids

In this section we will deal with vorticity equation, which exported in the first chapter.
We remember that there are two forms of this equation, one on 2 dimensions and the
other on 3 dimensions. In the first case we also observe that we have a scalar equation,
since the vorticity on 2d is a scalar quantity, but on 3d is a vector equation.
Furthermore, in the first term of both equations we have the material derivative,
which involves the velocity field, which is related to the vorticity through the system{
ω = ∇× u

divu = 0
So in this chapter we will try to formulate the vorticity equation into a such way that
the only terms are those involving vorticity. So at the end we will have an evolution
equation of vorticity.

10[10], pg 14
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2.2.1 Biot-Savart law

We want to determine the velocity through vorticity i.e. we want to solve

{
ω = ∇× u

divu = 0
.

Since the vorticity is something different in 2 dimensions we will do this two times, one
for each dimension. Finally we will see that we will come up to results that have some
similarities between them.

2 dimensions

Firstly we will prove that for the divergence free velocity field u = (u1, u2) exists a
stream function.
Proof : Since divu = 0 the vector field ŭ = (−u2, u1) is conservative, indeed
We define F = −u2dx1 + u1dx2
By Green’s theorem11 ˛

C
Fdl =

¨
D

∂u1
∂x1

− (−∂u2
∂x2

) = 0

So there exists a gradient field ψ such that ŭ = −∇ψ so u1 = − ∂ψ
∂x2

and u2 = ∂ψ
∂x1

Finally u =

(
∂ψ
∂x2
∂ψ
∂x1

)
Next we will calculate the curl of this vector by expanding it to the three dimensions
with the third coordinate to be zero.

curlu = ∇× u =

 0
0

∂2ψ
∂x21

+ ∂2ψ
∂x22


So we define ω be the scalar quantity ω = ∂2ψ

∂x21
+ ∂2ψ

∂x22
= ∆ψ This is a Poisson equation,

since we examine the 2d case the Newtonian potential is g(x) = − 1
2π ln |x| so the solution

will be
ψ =

ˆ
R2

g(x− y)(−ω(y))dy

ψ =

ˆ
R2

1

2π
ln |x− y|ω(y)dy

So we will differentiate the above equality with respect to x2 and x1 in order to define
the vector u

∂ψ

∂x2
=

1

2π

∂

∂x2

ˆ
R2

ln |x− y|ω(y)dy

By Leibniz integral rule

∂ψ

∂x2
=

1

2π

ˆ
R2

∂

∂x2
ln |x− y|ω(y)dy

11[1] pg 293
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

For the term inside the integral we have that

∂

∂x2
ln |x− y| = 1

|x− y|
∂

∂x2
|x− y| = 1

|x− y|
∂

∂x2

√
(x− y)(x− y)

=
1

|x− y|
1

2
√
(x− y)(x− y)

∂

∂x2
(x− y)(x− y)

=
1

2|x− y|2
∂

∂x2
((x1 − y1)

2 + (x2 − y2)
2) =

1

2|x− y|2
2(x2 − y2)

Finally ∂ψ
∂x2

= 1
2π

´
R2

x2−y2
|x−y|2ω(y)dy

Similarly ∂ψ
∂x1

= 1
2π

´
R2

x1−y1
|x−y|2ω(y)dy

Therefore u1(x, t) =
´
R2 − 1

2π
x2−y2
|x−y|2ω(y, t)dy and u2 =

´
R2

1
2π

x1−y1
|x−y|2ω(y, t)dy

I.e.

u(x, t) =

ˆ
R2

1

2π

(
− x2−y2

|x−y|2
x1−y1
|x−y|2

)
ω(y, t)dy (2.1)

We define K2(x) =
1
2π

(
− x2

|x|2
x1
|x|2

)
Remark: This is an integral transform, the kernel K2 is homogeneous of degree -1.

Indeed K2(λx) =
1
2π

(
− λx2
λ|x|2
λx1
λ|x|2

)
= λ−1K2(x)

We will name the formula 2.1 Biot-Savart law.

3 dimensions

Now will we solve the system we saw in the introduction using the following proposition

Proposition 2.2.1. Let u vanishes sufficiently rapidly as |x| → ∞ then the above
system has a smooth solution

u(x, t) =

ˆ
R3

1

4π

(x− y)× ω(y, t)

|x− y|3
(2.2)

In order to proof the above we will use the following lemma

Lemma 4 (Helmholtz decomposition on 3 dimensions). 12 Let F be a vector field van-
ishes rapidly as x → ∞ then F can decomposed into a curl free and an divergence free
component
I.e. F = ∇Φ+∇×A

Φ(x) =
1

4π

ˆ
R3

F (y) · ∇y
1

|x− y|
dy

A(x) =
1

4π

ˆ
R3

F (y)×∇y
1

|x− y|
dy

12[29]
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Helmholtz decomposition states that any vector field can described as a curl-free term
(∇Φ) and a divergence free term (∇×A)

Proof. Let F a vector field as above we will use the Dirac delta function in three dimen-
sions to expand the integral δ3(x− y) = − 1

4π∇
2 1
|x−y|

13

So F (x) =
´
R3 F (y)δ3(x− y)dy

F (x) =

ˆ
R3

− 1

4π
F (y)∇2 1

|x− y|

Since the gradient is taken with respect to x

F (x) = − 1

4π

ˆ
R3

∇2 F (y)

|x− y|
dy

By Leibniz integral rule

F (x) = − 1

4π
∇2

ˆ
R3

F (y)

|x− y|
dy

We will use the following identity for the Laplace operator ∇2F = ∇(∇·F )−∇×(∇F )

proof of identity:

∇(∇ · F ) =


∂2F1

∂x21
+ ∂2F2

∂x1∂x2
+ ∂2F3

∂x1∂x3
∂2F1
∂x1∂x2

+ ∂2F2

∂x22
+ ∂2F3

∂x2∂x3
∂2F1
∂x1∂x3

+ ∂2F2
∂x2∂x3

+ ∂2F3

∂x23



∇× F =


∂F3
∂x2

− ∂F2
∂x3

∂F1
∂x3

− ∂F3
∂x1

∂F2
∂x1

− ∂F1
∂x2



∇× (∇× F ) =


∂2F2
∂x2∂x1

− ∂2F1

∂x22
− ∂2F1

∂x23
+ ∂2F3

∂x3∂x1
∂2F3
∂x3∂x2

− ∂2F2

∂x23
− ∂2F2

∂x21
+ ∂2F1

∂x1∂x2
∂2F1
∂x1∂x3

− ∂2F3

∂x21
− ∂2F3

∂x22
+ ∂2F2

∂x2∂x3



So ∇(∇·F )−∇×(∇×F ) =


∂2F1

∂x21
+ ∂2F1

∂x22
+ ∂2F1

∂x23
∂2F2

∂x21
+ ∂2F2

∂x22
+ ∂2F2

∂x23
∂2F3

∂x21
+ ∂2F3

∂x22
+ ∂2F3

∂x23

 = ∂2

∂x21
F+ ∂2

∂x22
F+ ∂2

∂x23
F = ∇2F

, so we will create the Φ and A term. Therefore F (x) = − 1
4π (∇(∇ ·

´
R3

F (y)
|x−y|dy)) +

1
4π (∇× (∇×

´
R3

F (y)
|x−y|dy))

• First term:
∇ ·
ˆ
R3

F (y)

|x− y|
dy =

ˆ
R3

∇ · F (y)

|x− y|
dy

13For the derivation of this form check [26], pg.35
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

We will use the property div(fF ) = fdivF + F · ∇f

∇ ·
ˆ
R3

F (y)

|x− y|
dy =

ˆ
R3

1

|x− y|
divF (y) + F (y) · ∇ 1

|x− y|
dy

The first term is zero since the divF (y) = 0 because the divergence is taken with
respect to x.
So ∇ ·

´
R3

F (y)
|x−y|dy =

´
R3 F (y) · ∇ 1

|x−y|dy = −
´
R3 F (y) · ∇y

1
|x−y|dy

14

• Second term:
∇×

ˆ
R3

F (y)

|x− y|
dy =

ˆ
R3

∇× F (y)

|x− y|
dy

We will use the property curl(fF ) = fcurlF +∇f × F

∇×
ˆ
R3

F (y)

|x− y|
dy =

ˆ
R3

1

|x− y|
(∇× F (y) +∇ 1

|x− y|
× F (y)dy

The first term is zero since ∇× F (y) = 0 because the curl is taken with respect
to x.

∇×
ˆ
R3

F (y)

|x− y|
dy =

ˆ
R3

∇ 1

|x− y|
× F (y)dy = −

ˆ
R3

∇y
1

|x− y|
× F (y)dy

After all F (x) = −1
4π∇(−

´
R3 F (y) · ∇y

1
|x−y|dy) +

1
4π∇× (−

´
R3 ∇y

1
|x−y| × F (y)dy)

F (x) = ∇(
1

4π

ˆ
R3

F (y) · ∇y
1

|x− y|
dy) +∇× (

1

4π

ˆ
R3

F (y)×∇y
1

|x− y|
dy)

Lemma 5 (Helmholtz corollary). Let F be a vector field of which we know its divergence
and its curl functions, namely P = ∇ · F and Q = ∇× F , then

F (x) = − 1

4π

ˆ
R3

P (y)(x− y)

|x− y|3
dy − 1

4π

ˆ
R3

Q(y)× (x− y)

|x− y|3
dy

Proof. By Helmholtz decomposition F (x) = ∇( 1
4π

´
R3 F (y)·∇y

1
|x−y|dy)+∇×( 1

4π

´
R3 F (y)×

∇y
1

|x−y|dy)

We have F (y) · ∇y
1

|x−y| = ∇y(
1

|x−y|F ) −
1

|x−y|∇y · F (y) and F (y) ×∇y
1

|x−y| = −∇y ×
F (y)
|x−y| +

1
|x−y|∇y × F (y)

Consequently F (x) = ∇( 1
4π (
´
R3 ∇y(

F (y)
|x−y|dy)−

´
R3

1
|x−y|∇y·F (y)dy))+∇×( 1

4π (−
´
R3 ∇y×

( F (y)
|x−y|dy) +

´
R3

1
|x−y|∇y × F (y)dy)

By divergence and Stokes theorems :

F (x) = − 1

4π
∇
ˆ
R3

∇y · F (y)
|x− y|

dy +
1

4π
∇×

ˆ
R3

∇y × F (y)

|x− y|
dy

14∇ 1
|x−y| = − x−y

|x−y|3 and ∇y
1

|x−y| =
x−y

|x−y|3
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

F (x) = − 1

4π

ˆ
R3

∇∇y · F (y)
|x− y|

dy +
1

4π

ˆ
R3

∇× ∇y × F (y)

|x− y|
dy ⇒

F (x) = − 1

4π

ˆ
R3

(∇y · F (y))(x− y)

|x− y|3
dy +

1

4π

ˆ
R3

(x− y)× (∇y × F (y))

|x− y|3
dy

After all F (x) = − 1
4π

´
R3

P (y)(x−y)
|x−y|3 dy + 1

4π

´
R3

(x−y)×Q(y)
|x−y|3 dy

Proof of Proposition 2.2.1. Using lemma 5 for the velocity field u where P = divu = 0
and Q = curlu = ω we get u(x, t) = 1

4π

´
R3

(x−y)×ω(y,t)
|x−y|3 dy

We use again the terminology we use in the 2d flows and name the formula 2.2 Biot-
Savart law. We also define K3(x)h = 1

4π
x×h
|x|3 and h ∈ R3 which is a homogeneous kernel

of degree -2.
Indeed K3(λx)h = 1

4π
λx×h
|λx|3 = λ−2K3(x).

Closing this subsection we observe that for both cases we have a non-local operator
given by convolution. The kernels we deal with are homogeneous of degree 1-N with a
singularity at the origin. This integral operator is defined on RN × R+ → R.
In the next chapter, we will use this solution to formulate the vorticity equation. We
emphasize the fact that the Biot-Savart law has not occurred by the vorticity equation
and up to now has no relation to it. So in the next subsection, we will see some
differences in the process of the formulation which do not arise from the Biot Savart
law but from the form of the vorticity equation.

2.2.2 Vorticity-Stream Formulation

Let us recall the form of vorticity equation

{
∂
∂tω +

∑
j uj

∂
∂xj

ω = ν∆ω (2d)
∂
∂tω +

∑
j uj

∂
∂xj

ω = ∇uω + ν∆ω (3d)

It is clear that in two dimensions we will just substitute the velocity by the Biot Savart
law on the vorticity equation and we are done. But in three dimensions there are two
terms containing velocity, the problem is for the term involving the gradient of u. The
truth is that we cannot differentiate the velocity field since the derivative of the kernel
by doing heuristic calculations will be of degree -N. So it’s singularity is of type 1

|x|N

which is not integrable on RN 15. So since the classical concept of differentiation fails
we will develop the following theory for the distribution derivative.

Distribution derivative

The main idea for using the distributions is to generalize concepts which do not exist
in the classic sense(solutions, derivatives etc). To do this we replace the function f by

15

ˆ
B(0,r)

1

|x|a dx =

ˆ r

0

ˆ
∂B(0,t)

1

|x|a dS(x)dt =
ˆ r

0

1

ta

ˆ
∂B(0,t)

1dS(x)dt =

ˆ r

0

1

ta
tn−1na(n)dt = crn−a

which is bounded for a < n
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

an integral using test functions.
So a distribution is a functional: f [ϕ] =

´
RN f(x)ϕ(x)dx where ϕ ∈ C∞

c (RN ). We will
say that f ∈ D́(RN ), where D́ is the space of distributions, which is the space of linear
functionals on the vector space of test functions (D).
So we will define the derivative of the distribution as the linear functional :

D|a|f [ϕ] =

ˆ
RN

ϕD|a|fdx

integration by parts gives that,

D|a|f [ϕ] =

ˆ
RN

ϕD|a|fdx = −
ˆ
RN

(D|a|ϕ)fdx

To develop the theory we need we will take the following case :

∂xjf [ϕ] =

ˆ
RN

∂f

∂xj
ϕdx = −

ˆ
RN

f
∂ϕ

∂xj

We remember that our problem was to differentiate a function homogeneous of degree
1-N which is C∞(RN/{0}), that is f(λx) = λ1−Nf(x)∀λ > 0 so we will prove the
following proposition

Proposition 2.2.2. Let f be a function as above, then its distribution derivative is given
by the following formulaˆ

RN

∂f

∂xj
ϕdx = −

ˆ
RN

f
∂ϕ

∂xj
= P.V.

ˆ
RN

∂f

∂xj
ϕdx− cj

ˆ
RN

δϕdx,∀ϕ ∈ C∞
c (RN )

Notes:

• The first term is Cauchy’s principle value (we will explain this in the proof)

• cj =
´
|x|=1 f(x)xjdS

•
´
RN δϕdx is the Dirac distribution 16. We have that

´
RN δϕdx = 0

Proof. First of all in order to define the distribution derivative we will prove that ho-
mogeneous functions of degree 1-N smooth away 0, say f, are locally integrable.

Lemma 6. f ∈ L1
loc(RN )

proof of lemma : I want to prove that ∀K ⊂⊂ RN then
´
K |f(x)|dx <∞

∀x holds x = |x| x|x| , we define r = |x| and y = x
|x| , y ∈ SN−1 (observe that

| x|x| | =
|x|
|x| = 1)

We set x = ry, where r ∈ R+ and y ∈ Λ = {y ∈ SN−1 : ry ∈ K} a

So ˆ
K
|f(x)|dx =

ˆ t

0

ˆ
Λ
|f(ry)|rN−1dS(y)dr

16[24] pg 7 and 29
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

f is homogeneous of degree 1-N

=

ˆ t

0

ˆ
Λ
|f(y)| 1

rN−1
rN−1dS(y)dr =

ˆ t

0

ˆ
Λ
|f(y)|dS(y)dr ≤

ˆ t

0
crN−1

1−N < 1 so
´ t
0 cr

N−1 <∞
aΛ is the projection onto the sphere of a slice of K

So now we can define the derivative in the distribution sense as following :

∂xjf [ϕ] =

ˆ
RN

∂f(x)

∂xj
ϕ(x)dx = −

ˆ
RN

f(x)
∂ϕ(x)

∂xj
dx,∀ϕ ∈ C∞

c (RN )

We will deal with the second integral:
We define gN = χ[|x|≥ 1

N
]f(x)

∂
∂xj

ϕ, where χ[|x|≥ 1
N
] is the characteristic function of the

set {|x| ≥ 1
N } i.e.

χ = χ[|x|≥ 1
N
] =

{
1 x ∈ RN\B̄(0, 1

N )

0 x ∈ B̄(0, 1
N )

We will use the dominated convergence theorem (DCT) which states: Let gN be a
sequence of measurable functions(1), so that gN → g as N → ∞ a.e. x(2). If there
exist a function f integrable with the property |gN (x)| ≤ f(x)(3), then

´
RN gN (x)dx→´

RN g(x)dx
17.

(1)First of all our gN is measurable since f(x) is continuous a.e. x, ϕ is C∞
c (RN ) and χ

is the characteristic function.
Now we will prove (2) i.e.

∀x ∈ RN\{0}, and,∀ϵ > 0,∃N0 ∈ N : ∀N ≥ N0, holds, |χf(x) ∂
∂xj

ϕ(x)−f(x) ∂
∂xj

ϕ(x)| < ϵ

Let ϵ > 0 since 1
N → 0 as N → ∞ we have that

∀ζ,∃N1 : ∀N ≥ N1,
1

N
< ζ

We choose ζ = |x| thus ∃N1 which depends on |x|, such that 1
N < |x|

Thus from a N1 and then x ∈ RN\B̄(0, 1
N ).

We set N0 = N1, and we get ∀ϵ > 0,∃N0 = N1 : ∀N ≥ N1, holds, |χf(x) ∂
∂xj

ϕ(x) −

f(x) ∂
∂xj

ϕ(x)| = |f(x) ∂
∂xj

ϕ(x)− f(x) ∂
∂xj

ϕ(x)| = 0 < ϵ.
We will prove the (3).

|gn(x)| = |χf(x) ∂
∂xj

ϕ(x)| ≤ |f(x) ∂
∂xj

ϕ(x)|

The last function is integrable since ϕ is smooth and has compact support, then it’s
derivative has compact support, so outside of this compact set is zero, and by the lemma

17[38] pg 67

44



Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

6 f is integrable on compact subsets of RN .
Since all the conditions of the DCT are satisfied, we have

ˆ
RN

χf(x)
∂

∂xj
ϕ(x)dx→

ˆ
RN

f(x)
∂

∂xj
ϕ(x)dx, asN → ∞

ˆ
|x|≥ 1

N

f(x)
∂

∂xj
ϕ(x)dx to

ˆ
RN

f(x)
∂

∂xj
ϕ(x)dx

After all, for ϵ = 1
N , for, N → ∞,we have, ϵ↘ 0 we conclude to:
ˆ
RN

f(x)
∂

∂xj
ϕ(x)dx = lim

ϵ↘0

ˆ
|x|≥ϵ

f(x)
∂

∂xj
ϕ(x)dx

By integration by parts

lim
ϵ↘0

ˆ
|x|≥ϵ

f(x)
∂

∂xj
ϕ(x)dx = lim

ϵ↘0

(
−
ˆ
|x|≥ϵ

∂f(x)

∂xj
ϕ(x)dx+

ˆ
|x|=ϵ

f(x)ϕ(x)njdS

)

• For the first term we define Cauchy’s principal value In the Riemannian integration
the range of integration is finite, so the improper integrals used for infinite range
or unbounded functions. Cauchy principal value serves for define a value for
the improper integrals18. We assume that f is integrable outside of a small ball
of radius ϵ. We define the principal value of this function as: P.V.

´
RN fdx =

limϵ↘0

´
|x|≥ϵ fdx

So in our case

lim
ϵ↘0

ˆ
|x|≥ϵ

∂f(x)

∂xj
ϕ(x)dx = P.V.

ˆ
RN

∂f(x)

∂xj
ϕ(x)dx

• For the second term
ˆ
|x|=ϵ

f(x)ϕ(x)njdS =

ˆ
|x|=ϵ

fϕ
xj
|x|
dS

We will do a change of variables x = ϵy so
ˆ
|y|=1

1

ϵN−1
f(y)ϕ(ϵy)yjϵ

N−1dS(y)

So, limϵ↘0

´
|x|=ϵ f(x)ϕ(x)njdS = limϵ↘0

´
|x|=1 f(x)ϕ(ϵx)xjdS(x) =

´
|x|=1 f(x)ϕ(0)xjdS(x)

Eventually we have proof that

lim
ϵ↘0

ˆ
|x|≥ϵ

f(x)
∂

∂xj
ϕ(x)dx = −P.V.

ˆ
RN

∂f(x)

∂xj
ϕ(x)dx+ ϕ(0)

ˆ
|x|=1

f(x)xjdS(x)

18[27]
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Remark: The function ∂
∂xj

f is homogeneous of degree -N. This follows from the propo-
sition below.

Proposition 2.2.3. If the distribution f [ϕ] is homogeneous of degree a then f is homo-
geneous of degree a. 19

Proof. Definition: A distribution is f [ϕ] is homogeneous of degree a if f [ϕλ] = λ−a−Nf [ϕ]
So
´
RN f(x)ϕ(λx)dx = λ−a−N

´
RN f(x)ϕ(x)dx

By changing variables we get:
ˆ
RN

λ−Nf(λ−1x)ϕ(x)dx = λ−a−N
ˆ
RN

f(x)ϕ(x)dx

ˆ
RN

(f(λ−1x)− λ−af(x))ϕ(x)dx = 0

This is true for every test function, so

f(λ−1x)− λ−af(x) = 0

i.e f(λx) = λaf(x)

So for the function:

∂xjf [ϕλ] = −
ˆ
RN

f(x)
∂

∂xj
ϕ(λx)dx = −

ˆ
RN

f(
y

λ
)λ

∂

∂yj
ϕ(y)

1

λN
dy

= −
ˆ
RN

λN−1f(y)λ
1

λN
∂

∂yj
ϕ(y)dy = −

ˆ
RN

f(x)
∂

∂xj
ϕ(x) = ∂xjf [ϕ(x)]

So the distribution is homogeneous of degree zero i.e. −a−N = 0, a = −N
We close this sub-subsection with two propositions, that will by useful in the following
sections.

Proposition 2.2.4. Let f ∈ C∞(RN\{0}) homogeneous of degree 1-N, then the func-
tion ∂

∂xj
f has mean-value zero on the unit sphere.

Note:The mean-value of a function is 1
sN−1(r)

´
∂B(x,r) fdS, where sN−1 is the surface

area of N-1 sphere. So we need to prove that

1

sN−1

ˆ
|x|=1

∂

∂xj
fdS = 0

i.e. ˆ
|x|=1

∂

∂xj
fdS = 0

19[31]
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Proof. We want to see what happens for the mean value on the unit sphere so we will
use a cut-off function to mollify our function and get rid of the singularity. Inside of a
sphere, we will have something that is integrable everywhere and outside of the sphere
we will have the zero function. We set

p(r) =

{
sinr |r| ≤ π

0 |r| > 2π

And we define g(x) = p(|x|) ∂
∂xj

f(x) with domain of the functionDg = {|x| ≤ π}∪{|x| >
2π}
We will examine the integrability of g(x)

• outside of the sphere of radius 2π, g(x) = 0

• inside of the sphere of radius π the only problem is on the singularity x = 0,
since p has compact support and the function ∂

∂xj
f(x) is smooth away zero, and

homogeneous of degree -N. It’s singularity is of type 1
|x|N but we know that sin|x|

|x|N

is integrable in all RN .

Soˆ
|x|≤π∪|x|>2π

p(|x|) ∂

∂xj
f(x)dx =

ˆ
|x|≤π

p(|x|) ∂

∂xj
f(x)dx+

ˆ
|x|>2π

p(|x|) ∂

∂xj
f(x)dx

=

ˆ
|x|≤π

p(|x|) ∂

∂xj
f(x)dx = −

ˆ
|x|≤π

∂p(|x|)
∂xj

f(x) +

ˆ
|x|=π

p(|x|)f(x) xj
|x|
dx

I.e. ˆ
|x|≤π

p(|x|) ∂

∂xj
f(x)dx+

ˆ
|x|≤π

f(x)
∂p(|x|)
∂xj

xj
|x|
dx = 0

•
´
|x|≤π p(|x|)

∂
∂xj

f(x)dx =
´ π
0

´
|x|=r p(r)

∂
∂xj

f(rx)rN−1dS(x)dr

=

ˆ π

0

ˆ
|x|=r

p(r)

r

∂

∂xj
f(x)dS(x)dr

By Fubini’s theorem:
´
|x|=r

∂
∂xj

f(x)
´ π
0
p(r)
r drdS(x)´ π

0
p(r)
r dr =

´ π
0
sinr
r = c ̸= 0

So
´
|x|≤π p(|x|)

∂
∂xj

f(x)dx = c
´
|x|=r

∂
∂xj

f(x)dS(x) = c
´
|x|=1

∂
∂xj

f(x)dS(x)

•
´
|x|=π ṕ(|x|)

xj
|x|f(x)dx =

´ π
0

´
|x|=r ṕ(r)xjr

N−1f(rx)dS(x)dr

=

ˆ π

0

ˆ
|x|=r

ṕxjf(x)dS(x)dr

By Fubini’s theorem:
´
|x|=r xjf(x)

´ π
0 ṕ(r)drdS(x)

We calculate
´ π
0 ṕ(r)dr = sinπ − sin 0 = 0

So
´
|x|=π ṕ(|x|)

xj
|x|f(x)dx = 0
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To conclude c
´
|x|=1

∂
∂xj

f(x)dS(x) = 0

The kernels we have are homogeneous of degree -N smooth away zero, like the above
functions. We will prove the following proposition.

Proposition 2.2.5. Let P (x) = ∇K(x) in the distribution sense - we will say that P
is the gradient kernel. If P is homogeneous of degree -N, smooth away zero, and has the
mean value property, that we have discuss above. Then P(x) defines a singular integral
operator through the convolution.

P [f ](x) = lim
ϵ↘0

ˆ
|x−y|≥ϵ

P (x− y)f(y)dy

Note: A singular integral operator is of form T [f ](x) =
´
K(x−y)f(y)dy, with singu-

larity on the diagonal of type 1
|x−y|N ,(SIO). A singular integral operator of convolution

type is a singular integral operator exists on RN through convolution by distributions.

Proof. We will prove that the mean value property is enough to ensure the existence of
the above limit. 20

We define Pϵ[f ](x) =
´
|y|≥ϵ P (y)f(x− y)dy, where f ∈ C∞

c

Since ϵ↘ 0 we assume that ϵ = 1
N as N → ∞, so 1

N ≤ 1 we get.
ˆ
|y|≥ϵ

P (y)f(x− y)dy =

ˆ
|y|≥1

P (y)f(x− y)dy +

ˆ
ϵ≤|y|≤1

P (y)f(x− y)dy

• limϵ↘0 =
´
|y|≥1 P (y)f(x − y)dy exists since on this range both functions are

integrable, the matter is on range containing zero.

• limϵ↘0 int|y|≥1P (y)f(x−y)dy Since f has compact support in this compact support
we give a value k

= k lim
ϵ↘0

ˆ 1

ϵ

ˆ
∂B(0,1)

rN−1P (ry)dS(y)dr = k lim
ϵ↘0

ˆ 1

ϵ

ˆ
∂B(0,1)

rN−1 1

rN
P (y)dS(y)dr

Since 1
r is not integrable on a small ball containing zero, we need

´
|y|=1 P (y)dS(y)

to be zero.

Calculating the gradient of the velocity field in the distribution sense

In this sub-subsection, we will apply the previous theory to handle the problem of
differentiating the velocity u which is determined by the vorticity through Biot-Savart
law.

Proposition 2.2.6. Let u =
´
RN KN (x− y)ω(y, t)dy then

20[38] pg38-45
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• In 2d the ∇u(x), in the distribution sense, is defined as

∇u(x) = 1

2π
P.V.

ˆ
R2

k(x− y)

|x− y|2
ω(y)dy +

ω(x)

2

(
0 −1
1 0

)

Where k(x) is the 2× 2 matrix kernel: 1
|x|2

(
2x1x2 x22 − x21
x22 − x21 −2x1x2

)
• In 3d the ∇u, in the distribution sense, is defined as :

[∇u(x)]h = −P.V.

ˆ
R3

1

4π

ω(y)× h

|x− y|3
+

3

4π

{[(x− y)× ω(y)]⊗ (x− y)h}
|x− y|5

dy+
1

3
ω(x)×h

We see that the proposition has two cases, thus we will move on with the proof
individually for each case.

Proof. For this proof we will use the proposition 2.2.2

• For the 2 dimensions : u(x) =
´
R2 K2(x− y)ω(y)dy We can write the convolution

as an inner product u(x) =< ˇK2(y), ω(y) >, where ˇK2(y) is K2(−y) translated
by x. We want to calculate the j-th derivative of u in the distribution sense.

∂xju(x) = ∂xj <
ˇK2(y), ω(y) >=< ∂xj

ˇK2(y), ω(y) >= ∂xjǨ2[ω](x)

So we get

∂xju(x) = P.V.

ˆ
R2

∂

∂xj
K2(x− y)ω(y)dy − ω(x)

ˆ
|v|=1

K2(v)zjdS(v)

We will continue with a trivial way i.e. calculating each term of ∇u

– ∂x1u1 = P.V.
´
R2

∂
∂x1

(
− 1

2π
x2−y2
|x−y|2

)
ω(y)dy − ω(x)

´
|v|=1−

1
2π

v2
|v|2 v1dS(v)

The first term:

− ∂

∂x1

x2 − y2
|x− y|2

=
x2 − y2
|x− y|4

∂

∂x1
|x− y|2 = 2

(x1 − y1)(x2 − y2)

|x− y|4

So we have P.V.
´
R2

1
2π

(
2 (x1−y1)(x2−y2)

|x−y|4

)
ω(y)dy

The second term:
ˆ
|v|=1

− 1

2π

v2
|v|2

v1dS(v) = − 1

2π

ˆ 2π

0
cos θ sin θdθ

= − 1

2π

ˆ 2π

0

sin 2θ

2
dθ = 0

I.e. ∂x1u1 = P.V.
´
R2

1
2π

(
2 (x1−y1)(x2−y2)

|x−y|4

)
ω(y)dy
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– ∂x1u2(x) = P.V.
´
R2

∂
∂x1

(
1
2π

x1−y1
|x−y|2

)
ω(y)dy − ω(x)

´
|v|=1

1
2π

v1
|v|2 v1dS(v)

The first term :

∂

∂x1

x1 − y1
|x− y|2

=
|x− y|2 − 2(x1 − y1)

2

|x− y|4
=

(x2 − y2)
2 − (x1 − y1)

2

|x− y|4

So we have P.V.
´
R2

1
2π

(
(x2−y2)2−(x1−y1)2

|x−y|4

)
ω(y)dy

The second term:
ˆ
|v|=1

1

2π

v1
|v|2

v1dS(v) =
1

2π

ˆ 2π

0
cos2 θdθ =

1

2π
π

I.e. ∂x1u2(x) = P.V.
´
R2

1
2π

(
(x2−y2)2−(x1−y1)2

|x−y|4

)
ω(y)dy − 1

2ω(x)

– ∂x2u1 = P.V.
´
R2

∂
∂x2

(
− 1

2π
x2−y2
|x−y|2

)
ω(y)dy − ω(x)

´
|v|=1−

1
2π

v2
|v|2 v2dS(v)

The first term:

− ∂

∂x2

x2 − y2
|x− y|2

= −|x− y|2 − 2(x2 − y2)
2

|x− y|4
=

(x2 − y2)
2 − (x1 − y1)

2

|x− y|4

So we have P.V.
´
R2

1
2π

(
(x2−y2)2−(x1−y1)2

|x−y|4

)
ω(y)dy

The second term :
ˆ
|v|=1

− 1

2π

v2
|v|2

v2dS(v) =

ˆ 2π

0
− 1

2π
sin2 θdθ = − 1

2π
π

I.e. ∂x2u1 = P.V.
´
R2

1
2π

(
(x2−y2)2−(x1−y1)2

|x−y|4

)
ω(y)dy + 1

2ω(x)

– ∂x2u2(x) = P.V.
´
R2

∂
∂x2

(
1
2π

x1−y1
|x−y|2

)
ω(y)dy − ω(x)

´
|v|=1

1
2π

v1
|v|2 v2dS(v)

The first term:
∂

∂x2

x1 − y1
|x− y|2

= −2
(x1 − y1)(x2 − y2)

|x− y|4

So we have P.V.
´
R2

1
2π

(
−2 (x1−y1)(x2−y2)

|x−y|4

)
ω(y)dy

The second term:
ˆ
|v|=1

− 1

2π
= − 1

2π

ˆ 2π

0
cos θ sin θdθ = 0

I.e. ∂x2u2(x) = P.V.
´
R2

1
2π

(
−2 (x1−y1)(x2−y2)

|x−y|4

)
ω(y)dy

Finally

∇u(x) = 1

2π
P.V.

ˆ
R2

1

|x− y|4

(
2(x1 − y1)(x2 − y2) (x2 − y2)

2 − (x1 − y1)
2

(x2 − y2)
2 − (x1 − y1)

2 −2(x1 − y1)(x2 − y2)

)
ω(y)dy

+
ω(x)

2

(
0 −1
1 0

)
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• For the 3 dimensions:The kernel we have define is a 3 × 3 matrix which acts on
a vector in R3. So in order to write the convolution as an inner product we will
multiply with a vector h.

u(x)h =

ˆ
R3

K3(x− y)hω(y)dy =< ˇK3(y)h, ω(y) >

Thus the j-th derivative of u in the distribution sense is:

(∂xju(x))h =< ∂xj
ˇK3(y)h, ω(y) >= ∂xjǨ3[ω](x)

By proposition 2 we get:

∂xjuh = P.V.

ˆ
R3

∂

∂xj
(K3(x− y)h)ω(y)dy − ω(x)

ˆ
|v|=1

K3(v)hvjdS(v)

So
[∇u]h = P.V.

ˆ
R3

∇x

(
1

4π

(x− y)× h

|x− y|3

)
ω(y)dy

− 1

4π

ˆ
|v|=1

[(
v × h

|v|3

)
v1,

(
v × h

|v|3

)
v2,

(
v × h

|v|3

)
v3

]
ω(x)ds(v)

– The first term:
ˆ
R3

∇x

(
1

4π

(x− y)× h

|x− y|3

)
ω(y)dy =

ˆ
R3

∇x

(
1

4π

[(x− y)× h]ω(y)

|x− y|3

)
iddy

=
1

4π
∇x

(
(x− y)× ω(y)

|x− y|3

)
hdy

By the well known property of tabla operator (∇A
ϕ = ϕ∇A−∇ϕ⊗A

ϕ2
) we get:

∇x

(
(x− y)× ω(y)

|x− y|3

)
=

(
|x− y|3∇x[(x− y)× ω(y)]− [(x− y)× ω(y)]⊗∇x|x− y|3

|x− y|6

)

=
∇x[(x− y)× ω(y)]

|x− y|3
− [(x− y)× ω(y)]⊗∇x|x− y|3

|x− y|6

We will do the calculations separately : 1. ∇x[(x−y)×ω(y)]
|x−y|3

∇x[(x−y)×ω(y)] = ∇x

(x2 − y2)ω3 − (x3 − y3)ω2

(x3 − y3)ω1 − (x1 − y1)ω3

(x1 − y1)ω2 − (x2 − y2)ω1

 =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


We name the last matrix W so we have:∇x[(x−y)×ω(y)]

|x−y|3 = 1
|x−y|3W

2. [(x−y)×ω(y)]⊗∇x|x−y|3
|x−y|6

=
[(x− y)× ω(y)]⊗ 3|x− y|(x− y)

|x− y|6
= 3

[(x− y)× ω(y)]⊗ (x− y)

|x− y|5
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So we have
ˆ
R3

1

4π

[
1

|x− y|3
W − 3

[(x− y)× ω(y)]⊗ (x− y)

|x− y|5

]
hdy

=

ˆ
R3

1

4π

1

|x− y|3
Wh− 3

4π

[(x− y)× ω(y)]⊗ (x− y)

|x− y|5
hdyWh =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

h1h2
h3

 =

 ω3h2 − ω2h3
−ω3h1 + ω1h3
ω2h1 − ω1h2

 = −ω × h


Finally

P.V.

ˆ
R3

∇x

(
1

4π

(x− y)× h

|x− y|3

)
ω(y)dy =

−P.V.

ˆ
R3

1

4π

ω(y)× h

|x− y|3
+

3

4π

[(x− y)× ω(y)]⊗ (x− y)

|x− y|5
hdy

– The second term :
We will continue with this part, [(v × ω)v1, (v × ω)v2, (v × ω)v2]h

=

v1v2ω3 − v1v3ω2 v2v2ω3 − v2v3ω2 v2v3ω3 − v3v3ω2

v1v3ω1 − v1v1ω3 v2v3ω1 − v1v2ω3 v3v3ω1 − v1v3ω3

v1v1ω2 − v2v1ω1 v1v1ω2 − v2v2ω1 v1v3ω2 − v2v3ω1

h1h2
h3



=

v1v2ω3h1 − v1v3ω2h1 + v2v2ω3h2 − v2v3ω2h2 + v2v3ω3h3 − v3v3ω2h3
v1v3ω1h1 − v1v1ω3h1 + v2v3ω1h2 − v1v2ω3h2 + v3v3ω1h3 − v1v3ω3h3
v1v1ω2h1 − v2v1ω1h1 + v1v2ω2h2 − v2v2ω1h2 + v1v3ω2h3 − v2v3ω1h3


So for

1

4π

ˆ
|v|=1

1

|v|3

(
v1v2ω3h1−v1v3ω2h1+v2v2ω3h2−v2v3ω2h2+v2v3ω3h3−v3v3ω2h3
v1v3ω1h1−v1v1ω3h1+v2v3ω1h2−v1v2ω3h2+v3v3ω1h3−v1v3ω3h3
v1v1ω2h1−v2v1ω1h1+v1v2ω2h2−v2v2ω1h2+v1v3ω2h3−v2v3ω1h3

)
dS(v)

we calculate:
ˆ
|v|=1

1

|v|3
v1v1dS(v) = 2

ˆ π
2

0

ˆ 2π

0
sin2 θ cos2 ϕ sin θdϕdθ = 2

2π

3
=

4π

3
,

ˆ
|v|=1

1

|v|3
v1v2dS(v) = 2

ˆ π
2

0

ˆ 2π

0
sin3 θ sinϕ cosϕdϕdθ = 0,

ˆ
|v|=1

1

|v|3
v1v3dS(v) = 2

ˆ π
2

0

ˆ 2π

0
sin2 θ cos θ cosϕdϕdθ = 0,

ˆ
|v|=1

1

|v|3
v2v3dS(v) = 2

ˆ π
2

0

ˆ 2π

0
sin2 θ cos θ sinϕdϕdθ = 0,

ˆ
|v|=1

1

|v|3
v2v2dS(v) = 2

ˆ π
2

0

ˆ 2π

0
sin3 θ sin2 ϕdϕdθ = 2

2π

3
=

4π

3
,
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ˆ
|v|=1

1

|v|3
v3v3dS(v) = 2

ˆ π
2

0

ˆ 2π

0
sin θ cos2 θdϕdθ = 2

2π

3
=

4π

3

Thus:

1

4π

ˆ
|v|=1

1

|v|3

(
v1v2ω3h1−v1v3ω2h1+v2v2ω3h2−v2v3ω2h2+v2v3ω3h3−v3v3ω2h3
v1v3ω1h1−v1v1ω3h1+v2v3ω1h2−v1v2ω3h2+v3v3ω1h3−v1v3ω3h3
v1v1ω2h1−v2v1ω1h1+v1v2ω2h2−v2v2ω1h2+v1v3ω2h3−v2v3ω1h3

)
dS(v)

=
1

4π

 4π
3 ω3h2 − 4π

3 ω2h3
−4π

3 ω3h1 +
4π
3 ω1h3

4π
3 ω2h1 − 4π

3 ω1h2

 =
1

3
h× ω

After those trivial calculations we conclude to :

[∇u]h = −P.V.

ˆ
R3

1

4π

ω(y)× h

|x− y|3
+

3

4π

[(x− y)× ω(y)]⊗ (x− y)

|x− y|5
hdy +

1

3
ω × h

We remind that in the first chapter, we have made a construction with a symmetric
and an anti-symmetric matrix. For the symmetric one D = 1

2(∇u + (∇u)T ) we will
close this sub-subsection proving the following proposition.

Proposition 2.2.7. Let u ∈ R3, defined by the Biot-Savart law, the gradient of this
field defined by the above proposition and ω = curlu then for the deformation matrix D
we have:

D(x) = P.V.

ˆ
R3

P (x− y)ω(y)dy

where

P (x)h =
−3

8π

[(x× h)⊗ x] + [x⊗ (x× h)]

|x|5

Proof. We take the matrix identity from the above proof:

∇u(x) = P.V.

ˆ
R3

1

4π
∇x

(
(x− y)× ω(y)

|x− y|3

)
dy

So
1

4π
∇x

(
(x− y)× ω(y)

|x− y|3

)
=

1

4π

1

|x− y|3
W − 3

4π

1

|x− y|5
R

Where

W =

 0 ω3(y) −ω2(y)
−ω3(y) 0 ω1(y)
ω2(y) −ω1(y) 0


and

R = [(x− y)× ω(y)](x− y)T

∇u(x) = P.V.

ˆ
R3

1

4π

1

|x− y|3
W − 3

4π

1

|x− y|5
Rdy

53



Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

and
[∇u(x)]T = P.V.

ˆ
R3

1

4π

1

|x− y|3
W T − 3

4π

1

|x− y|5
RTdy

So

∇u+(∇u)T = P.V.

ˆ
R3

1

4π

1

|x− y|3
W− 3

4π

1

|x− y|5
R+

1

4π

1

|x− y|3
W T− 3

4π

1

|x− y|5
RTdy

= P.V.

ˆ
R3

1

4π

1

|x− y|3
(W +W T )− 3

4π

1

|x− y|5
(R+RT )dy

= P.V.

ˆ
R3

− 3

4π

1

|x− y|5
[[(x− y)× ω(y)](x− y)T + (x− y)[(x− y)× ω(y)]T ]dy

= P.V.

ˆ
R3

− 3

4π

1

|x− y|5
[[(x− y)× ω(y)]⊗ (x− y) + (x− y)⊗ [(x− y)× ω(y)]]dy

Finally

D = P.V.

ˆ
R3

− 3

8π

1

|x− y|5
[[(x− y)× ω(y)]⊗ (x− y) + (x− y)⊗ [(x− y)× ω(y)]]dy

The formulation

In this last sub-subsection, we will use the previous tools and we will end up with the
result.
For the following proofs we will use this lemma:

Lemma 7. Let u be a smooth velocity field in RN which is divergence free and vanishes
rapidly as |x| ↗ ∞ . Assume a vector field solving the above equation:

D

Dt
b = ∇u · 21b+ ν∆b (1)

which is a convection-diffusion equation22. Then the divb solves the scalar equation

D

Dt
divb = ν∆divb

proof of lemma:
We take the divergence of (1) and we get :

div
Db

Dt
= div(∇u · b+ ν∆b)

We will see each term individually

21matrices product
22[39], Chapter 3
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• divDbDt

∇ ·


∂
∂tb1 +

∑
j uj

∂
∂xj

b1
...

∂
∂tbN +

∑
j uj

∂
∂xj

bN

 =
∂

∂x1

 ∂

∂t
b1 +

∑
j

uj
∂

∂xj
b1

+ . . .

+
∂

∂xN

 ∂

∂t
bN +

∑
j

uj
∂

∂xj
bN


=

∂

∂t

[
∂b1
∂x1

+ . . .+
∂bN
∂xN

]
+
∑
j

[ ∂

∂x1

(
uj
∂b1
∂xj

)
+ . . .

+
∂

∂xN

(
uj
∂bN
∂xj

)]
=

∂

∂t
divb+

∂uj
∂x1

∂b1
∂xj

+ uj
∂2b1
∂x1∂xj

+ . . .+
∂uj
∂xN

+ uj
∂2bN
∂xN∂xj

=
∂

∂t
divb+

∑
j

(
∂uj
∂x1

∂b1
∂xj

+ . . .+
∂uj
∂xN

∂bN
∂xj

)

+
∑
j

uj

(
∂2b1
∂x1∂xj

+ . . .+
∂2bN
∂xN∂xj

)
So

div
Db

Dt
=

∂

∂t
divb+

∑
j

uj
∂

∂xj
divb+

∑
i,j

∂uj
∂x1

∂b1
∂xj

• div(∇u · b)

∇u · b =


∂u1
∂x1

. . . ∂u1
∂xN

...
∂uN
∂x1

. . . ∂uN
∂xN


 b1

...
bN

 =

 b1
∂u1
∂x1

+ . . .+ bN
∂u1
∂xN

...
b1
∂uN
∂x1

+ . . .+ bN
∂uN
∂xN


So

div(∇ub) = ∂

∂x1

[
b1
∂u1
∂x1

+ . . .+ bN
∂u1
∂xN

]
+ . . .

+
∂

∂xN

[
b1
∂uN
∂x1

+ . . .+ bN
∂uN
∂xN

]

=
∂

∂x1

∑
j

bj
∂u1
∂xj

+ . . .+
∂

∂xN

∑
j

bj
∂uN
∂xj
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=

∑
j

∂bj
∂x1

∂u1
∂xj

+ . . .+
∑
j

∂bj
∂xN

∂uN
∂xj


+

∑
j

bj
∂2u1
∂x1∂xj

+ . . .+
∑
j

bj
∂2uN
∂xN∂xj


=
∑
i,j

∂bj
∂xi

∂u1
∂xj

+
∑
j

bj
∂

∂xj

[
∂u1
∂x1

+ . . .+
∂uN
∂xN

]
Since u is divergence free

div(∇u · b) =
∑
i,j

∂bj
∂xi

∂u1
∂xj

• div(ν∆b)

ν∆b = vdiv

∑
j

∂2b

∂x2j

 = ν
∑
i

∑
j

∂

∂xi

∂2bi
∂x2j

= ν
∑
j

∂2

∂x2j
divb = ν∆(divb)

Finally

∂

∂t
divb+ (u · ∇)divb+

∑
i,j

∂uj
∂xi

∂bi
∂xj

=
∑
i,j

∂uj
∂xi

∂bi
∂xj

+ ν∆divb

D

Dt
divb = ν∆divb

Our result is summarized in the following two propositions.

Proposition 2.2.8. 23 Let u be a smooth velocity field vanishing rapidly as |x| tends to
infinity then the 2d Navier-Stokes equations

∂
∂tu+

∑
j uj

∂
∂xj

u = −∇p+ ν∆u u ∈ R2

divu = 0 (x, t) ∈ R2 × [0,∞]

u|t=0 = u0

(N.S)

are equivalent to the vorticity-stream formulation, which is a scalar evolution equation
of ω {

∂
∂tω +

∑
j Ǩ2[ω]

∂
∂xj

ω = ν∆ω

ω|t=0 = ω0 = curlu0
(V.S.F)

Where u = Ǩ2[ω] =
´
R2 K2(x− y)ω(y)dy with K2(x) =

1
2π

(
−x2
|x|2 ,

x1
|x|2

)T
23[42]
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Remark:In (V.S.F) we have no information about the pressure, which is an unknown
quantity in the (N.S). So if we find a solution of the (V.S.F) then by the Biot-Savart law
we will determine the velocity field. In the first section of this chapter, we have seen
Leray’s formulation, we will determine the pressure through velocity by the formula
∆p = −

∑
i,j

∂ui
∂xj

∂uj
∂xi

.

Proof. (⇒) Let u be a solution of (N.S) we will prove that ω = curlu solves the (V.S.F).
Since divu = 0 and curlu = ω, by the Biot-Savart law, we obtain the velocity field
through vorticity. Furthermore, the initial condition is satisfied, so we have:

∂

∂t

(
∂u2
∂x1

− ∂u1
∂x2

)
+u1

∂

∂x1

(
∂u2
∂x1

− ∂u1
∂x2

)
+u2

∂

∂x2

(
∂u2
∂x1

− ∂u1
∂x2

)
= ν

∑
j

∂2

∂x2j

(
∂u2
∂x1

− ∂u1
∂x2

)
We will do the calculations

∂

∂t

∂u2
∂x1

− ∂

∂t

∂u1
∂x2

+ u1
∂

∂x1

∂u2
∂x1

− u1
∂

∂x1

∂u1
∂x2

+u2
∂

∂x2

∂u2
∂x1

− u2
∂

∂x2

∂u1
∂x2

− ν
∑
j

∂2

∂x2j

∂u2
∂x1

+ ν
∑
j

∂2

∂x2j

∂u1
∂x2

= 0

So
∂

∂x1

∂u2
∂t

− ∂

∂x2

∂u1
∂t

+ u1
∂

∂x1

∂u2
∂x1

− u1
∂

∂x1

∂u1
∂x2

+u2
∂

∂x2

∂u2
∂x1

− u2
∂

∂x2

∂u1
∂x2

− ν
∑
j

∂2

∂x2j

∂u2
∂x1

+ ν
∑
j

∂2

∂x2j

∂u1
∂x2

= 0

We substitute the two first terms by the Navier-Stokes

∂

∂x1

(
−u1

∂u2
∂x1

− u2
∂u2
∂x2

+ ν
∂2u2
∂x21

+ ν
∂2u2
∂x22

− ∂p

∂x2

)

− ∂

∂x2

(
−u1

∂u1
∂x1

− u2
∂u1
∂x2

+ ν
∂2u1
∂x21

+ ν
∂2u1
∂x22

− ∂p

∂x1

)
+u1

∂

∂x1

∂u2
∂x1

−u1
∂

∂x1

∂u1
∂x2

+u2
∂

∂x2

∂u2
∂x1

−u2
∂

∂x2

∂u1
∂x2

−ν
∑
j

∂2

∂x2j

∂u2
∂x1

+ν
∑
j

∂2

∂x2j

∂u1
∂x2

= 0

So

−∂u1
∂x1

∂u2
∂x1

− u1
∂2u2
∂x21

− ∂u2
∂x1

∂u2
∂x2

− u2
∂2u2
∂x1∂x2

+ ν
∂2

∂x21

∂u2
∂x1

+ ν
∂2

∂x22

∂u2
∂x1

− ∂2p

∂x1∂x2

+
∂u1
∂x2

∂u1
∂x1

+ u1
∂2u1
∂x1∂x2

+
∂u2
∂x2

∂u1
∂x2

+ u2
∂2u1
∂x22

− ν
∂2

∂x21

∂u1
∂x2

− ν
∂2

∂x22

∂u1
∂x2

+
∂2p

∂x2∂x1

+u1
∂2u2
∂x21

−u1
∂2u1
∂x1∂x2

+u2
∂2u2
∂x1∂x2

−u2
∂2u2
∂x22

−v ∂
2

∂x21

∂u2
∂x1

−ν ∂
2

∂x22

∂u2
∂x1

+ν
∂2

∂x21

∂u1
∂x2

+ν
∂2

∂x22

∂u1
∂x2

= 0

Thus
−∂u1
∂x1

∂u2
∂x1

− ∂u2
∂x1

∂u2
∂x2

+
∂u1
∂x2

∂u1
∂x1

+
∂u2
∂x2

∂u1
∂x2

= 0 ⇒
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−∂u2
∂x1

(
∂u1
∂x1

+
∂u2
∂x2

)
+
∂u1
∂x2

(
∂u1
∂x1

+
∂u2
∂x2

)
= 0 ⇒

−∂u2
∂x1

divu+
∂u1
∂x2

divu = 0

I.e. 0 = 0 which is always true, so ω = curlu solves the vorticity equation
(⇐) Let’s do the opposite. Assume that there is an ω which solves the vorticity equation

Dω

Dt
= ν∆ω,

We will prove that the velocity u given by the Biot-Savart law is a solution for the
(N.S). Since the velocity is a SIO the derivatives are in the distribution sense.
Firstly we will prove that this velocity field u satisfies the incompressibility condition.

divu =
∂u1
∂x1

+
∂u2
∂x2

=
1

2π
P.V.

ˆ
R2

2(x1 − y1)(x2 − y2)

|x− y|4
ω(y)dy − 1

2π
P.V.

ˆ
R2

2(x1 − y1)(x2 − y2)

|x− y|4
ω(y)dy = 0

To continue with the proof we will use the lemma 7. ω solves the vorticity equation, we
also have that ∇u · 24ω = 0 if we assume that u = (u1, u2, 0)

T and ω = (0, 0, ω).
Therefore ω solves the Dω

Dt = ∇uω + ν∆ω

So from the lemma we proved we have

{
D
Dtdivω = ν∆divω

divω|t=0 = 0
which is a scalar parabolic

equation, by the uniqueness of its solutions we get divω = 0. Thus ω is of form
ω = ∇× function and since ω0 = curlu0 we set ω = ∇× u
Now that we have prove that ω = ∇× u we will prove that the vorticity equation gives
the first equation of Navier-Stokes.

Dω

Dt
= ν∆ω

D

Dt
curlu = ν∆curlu

So
curl

(
Du

Dt
− ν∆u

)
= 0

Thus Du
Dt − ν∆u is of form Du

Dt − ν∆u = ∇function so we get this function to be -p
Du
Dt − ν∆u = ∇(−p) which is the first equation of Navier-Stokes

Now we will see the 3d case

Proposition 2.2.9. Let u be a smooth velocity field vanishing rapidly as |x| tends to
infinity then the 3d Navier-Stokes equations

∂
∂tu+

∑
j uj

∂
∂xj

u = −∇p+ ν∆u u ∈ R3

divu = 0 (x, t) ∈ R3 × [0,∞]

u|t=0 = u0

(N.S)

24matrices product

58



Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

are equivalent to the vorticity-stream formulation, which is an evolution equation of ω{
∂
∂tω +

∑
j Ǩ3[ω]

∂
∂xj

ω = ∇Ǩ3[ω]ω + ν∆ω

ω|t=0 = ω0 = curlu0
(V.S.F)

Where u = Ǩ3[ω] =
´
R2 K3(x− y)ω(y)dy with K3(x)h = 1

4π
x×h
|x|3

The proof of this proposition has the same logic as the proof for the two dimensions.

Proof. (⇒) Assuming that u is a solution for the (N.S), we will prove that ω = curlu
is a solution for the (V.S.F). Since divu = 0 and ω = curlu the Biot-Savart law defines
the velocity field u. Furthermore, the initial condition is satisfied, so we have

∂

∂t
curlu+

∑
j

uj
∂

∂xj
curlu = ∇ucurlu+ ν∆curlu

Let’s start the calculations

curlu =


∂u3
∂x2

− ∂u2
∂x3

∂u1
∂x3

− ∂u1
∂x1

∂u2
∂x1

− ∂u1
∂x2


Additionally

∇ucurlu =


∂u1
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ∂u1

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ ∂u1

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
∂u2
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ∂u2

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ ∂u2

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
∂u3
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ∂u3

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ ∂u3

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)


Since it is just calculations, we will check the first component of this vector equation
and the other follows.

∂

∂t

(
∂u3
∂x2

− ∂u2
∂x3

)
+u1

∂

∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+u2

∂

∂x2

(
∂u3
∂x2

− ∂u2
∂x3

)
+u3

∂

∂x3

(
∂u3
∂x2

− ∂u2
∂x3

)

=
∂u1
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+
∂u1
∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+
∂u1
∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
+ν

∂2

∂x21

(
∂u3
∂x2

− ∂u2
∂x3

)
+ν

∂2

∂x22

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ν

∂2

∂x23

(
∂u3
∂x2

− ∂u2
∂x3

)
We substitute the first terms by the Navier-Stokes equation

∂

∂x2

(
−u1

∂u3
∂x1

− u2
∂u3
∂x2

− u3
∂u3
∂x3

+ ν
∂2u3
∂x21

+ ν
∂2u3
∂x22

+ ν
∂2u3
∂x23

− ∂p

∂x3

)

− ∂

∂x3

(
−u1

∂u2
∂x1

− u2
∂u2
∂x2

− u3
∂u2
∂x3

+ ν
∂2u2
∂x21

+ ν
∂2u2
∂x22

+ ν
∂2u2
∂x23

− ∂p

∂x2

)
+u1

∂

∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ u2

∂

∂x2

(
∂u3
∂x2

− ∂u2
∂x3

)
+ u3

∂

∂x3

(
∂u3
∂x2

− ∂u2
∂x3

)
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−∂u1
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
− ∂u1
∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u1
∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
−ν ∂

2

∂x21

(
∂u3
∂x2

− ∂u2
∂x3

)
− ν

∂2

∂x22

(
∂u3
∂x2

− ∂u2
∂x3

)
− ν

∂2

∂x23

(
∂u3
∂x2

− ∂u2
∂x3

)
= 0

So

−∂u1
∂x2

∂u3
∂x1

− u1
∂2u3
∂x1∂x2

− ∂u2
∂x2

∂u3
∂x2

− u2
∂2u3
∂x22

− ∂u3
∂x2

∂u3
∂x3

− u3
∂2u3
∂x2∂x3

+ν
∂3u3
∂x21∂x2

+ ν
∂3u3
∂x32

+ ν
∂3u3
∂x2∂x23

− ∂2p

∂x2∂x3
+
∂u1
∂x3

∂u2
∂x1

+ u1
∂2u2
∂x1∂x3

+
∂u2
∂x3

∂u2
∂x2

+ u2
∂2u2
∂x2∂x3

+
∂u3
∂x3

∂u2
∂x3

+ u3
∂2u2
∂x23

− ν
∂3u2
∂x21∂x3

− ν
∂3u2
∂x22∂x3

− ν
∂3u2
∂x33

+
∂2p

∂x2∂x3
+ u1

∂2u3
∂x1∂x2

− u1
∂2u2
∂x1∂x3

+ u2
∂2u3
∂x22

− u2
∂2u2
∂x2∂x3

+ u3
∂2u3
∂x2∂x3

−u3
∂2u2
∂x23

− ∂u1
∂x1

∂u3
∂x2

+
∂u1
∂x1

∂u2
∂x3

− ∂u1
∂x2

∂u1
∂x3

+
∂u1
∂x2

∂u3
∂x1

− ∂u1
∂x3

∂u2
∂x1

+
∂u1
∂x3

∂u1
∂x2

− ν
∂3u3
∂x21∂x2

+ ν
∂3u2
∂x21∂x3

− ν
∂3u3
∂x32

+ ν
∂3u3
∂x21∂x2

− ν
∂3u3
∂x2∂x23

+ ν
∂3u2
∂x33

= 0

Hence

−∂u2
∂x2

∂u3
∂x2

− ∂u3
∂x2

∂u3
∂x3

+
∂u2
∂x3

∂u2
∂x2

+
∂u3
∂x3

∂u2
∂x3

− ∂u1
∂x1

∂u3
∂x2

+
∂u1
∂x1

∂u2
∂x3

= 0 ⇒

∂u3
∂x2

divu+
∂u2
∂x3

divu = 0

I.e. 0 = 0 which always holds, so the ω1 satisfies the first component of the vorticity
equation. Doing the other calculations we have the same results also for ω2 and ω3 so
we conclude that ω = curlu solves the vorticity equation.
(⇐) Let’s do the opposite. Assuming that there is an ω which solves the vorticity
equation ∂

∂tω +
∑

j Ǩ3[ω]
∂
∂xj

ω = ∇Ǩ3[ω]ω + ν∆ω we will prove that the u, which we
determine by the Biot-Savart law is a solution for the (N.S).
Remark: u is a SIO all the derivatives are in the distribution sense.
Firstly, we will prove that u satisfies the incompressibility condition.

divu =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= tr[∇u]25 = P.V.

ˆ
R3

1

4π

1

|x− y|3
trW − 3

4π

1

|x− y|5
trRdy

We can easily see that trW = 0 let us calculate the trace of matrix R

trR = tr



(x1 − y1)(x2 − y2)ω3(y)
−(x1 − y1)(x3 − y3)ω2(y)

(x2 − y2)
2ω3(y)

−(x2 − y2)(x3 − y3)ω2(y)
(x2 − y2)(x3 − y3)ω3(y)

−(x3 − y3)
2ω2(y)

(x1 − y1)(x3 − y3)ω1(y)
−(x1 − y1)

2ω3(y)
(x3 − y3)(x2 − y2)ω1(y)
−(x1 − y1)(x2 − y2)ω3(y)

(x3 − y3)
2ω1(y)

−(x1 − y1)(x3 − y3)ω3(y)

(x1 − y1)
2ω2(y)

−(x1 − y1)(x2 − y2)ω1(y)
(x1 − y1)(x2 − y2)ω2(y)

−(x2 − y2)
2ω1(y)

(x1 − y1)(x3 − y3)ω2(y)
−(x2 − y2)(x3 − y3)ω1(y)


25see proposition 3.2.7
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Chapter 2 2.2. The vorticity-stream formulation for incompressible fluids

= (x1 − y1)(x2 − y2)ω3(y)− (x1 − y1)(x3 − y3)ω2(y) + (x3 − y3)(x2 − y2)ω1(y)

−(x1 − y1)(x2 − y2)ω3(y) + (x1 − y1)(x3 − y3)ω2(y)− (x2 − y2)(x3 − y3)ω1(y) = 0

Thus divu = 0
Now we can use the lemma since ω solves the vorticity the divω solves the scalar
parabolic equation

D

Dt
divω = ν∆divω

with initial condition divω|t=0 = 0 so by the uniqueness of solutions divω = 0, so ω is
of form ∇× function by taking into account the initial condition of (V.S.F), we have
ω = curlu
We use the vorticity equation and substitute the ω with curlu and we aim to reach the
Navier-Stokes.

D

Dt
curlu = ∇ucurlu+ ν∆curlu

We will write down the curl of this vector field, but we will not do substitutions since
its derivative in the distribution sense is a little bit complicated.

curlu =


∂u3
∂x2

− ∂u2
∂x3

∂u1
∂x3

− ∂u3
∂x1

∂u2
∂x1

− ∂u1
∂x2


We will see each term individually :

• ∂
∂tcurlu = curl∂u∂t

•
∑

j uj
∂
∂xj

curlu =
∑

j ujcurl
∂u
∂xj

By the identity ∇× (fF ) = f(∇× F ) + (∇f)× F we get∑
j

uj
∂

∂xj
curlu =

∑
j

[
∇×

(
uj
∂u

∂xj

)
−∇uj ×

∂u

∂xj

]

=
∑
j

curl

(
uj
∂u

∂xj

)
−
∑
j

∇uj ×
∂u

∂xj

For the second term :

∇u1 ×
∂u

∂x1
+∇u2 ×

∂u

∂x2
+∇u3 ×

∂u

∂x3

=


∂u1
∂x2

∂u3
∂x1

− ∂u1
∂x3

∂u2
∂x1

+ ∂u2
∂x2

∂u3
∂x2

− ∂u2
∂x2

∂u2
∂x3

+ ∂u3
∂x2

∂u3
∂x3

− ∂u3
∂x3

∂u2
∂x3

∂u1
∂x3

∂u1
∂x1

− ∂u1
∂x1

∂u3
∂x1

+ ∂u2
∂x3

∂u1
∂x2

− ∂u2
∂x1

∂u3
∂x2

+ ∂u3
∂x3

∂u1
∂x3

− ∂u3
∂x1

∂u3
∂x3

∂u1
∂x1

∂u2
∂x1

− ∂u1
∂x1

∂u1
∂x2

+ ∂u2
∂x1

∂u2
∂x2

− ∂u2
∂x2

∂u1
∂x2

+ ∂u3
∂x1

∂u2
∂x3

− ∂u3
∂x2

∂u1
∂x3



=


−∂u1
∂x1

(
∂u3
∂x2

+ ∂u2
∂x3

)
− ∂u1

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u1

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
−∂u2
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
− ∂u2

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u2

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
−∂u3
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
− ∂u3

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u3

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
 = −∇u · 26curlu

26matrices product
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Finally ∑
j

uj
∂

∂xj
curlu =

∑
j

curl

(
uj
∂u

∂xj

)
− (−∇u · curlu)

• ν∆curlu = ν
∑

j
∂2

∂x2j
curlu = curl(ν∆u)

Therefore we get that
D

Dt
curlu = ∇u · curlu+ ν∆curlu

is

curl

∂u
∂t

+
∑
j

uj
∂u

∂xj
− ν∆u

 = ∇u · curlu−∇ucurlu = 0

So Du
Dt − ν∆u is of form ∇function. Assume that this function is -p then

Du

Dt
= −∇p+ ν∆u

which is the Navier-Stokes

We note that the formulation for the Euler arises by taking ν = 0.
Firstly we have the corresponding lemma

Lemma 8. Let u be a smooth velocity field in RN which is divergence free and vanishes
rapidly as |x| ↗ ∞ . Assume a vector field solving the above equation:

D

Dt
b = ∇u · 27b (1)

which is a convection-diffusion equation28. Then the divb solves the scalar equation

D

Dt
divb = 0

proof of lemma:
We take the divergence of (1) and we get :

div
Db

Dt
= div(∇u · b)

We will see each term individually

• divDbDt

∇ ·


∂
∂tb1 +

∑
j uj

∂
∂xj

b1
...

∂
∂tbN +

∑
j uj

∂
∂xj

bN

 =
∂

∂x1

 ∂

∂t
b1 +

∑
j

uj
∂

∂xj
b1

+ . . .

27matrices product
28[39], Chapter 3
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+
∂

∂xN

 ∂

∂t
bN +

∑
j

uj
∂

∂xj
bN


=

∂

∂t

[
∂b1
∂x1

+ . . .+
∂bN
∂xN

]
+
∑
j

[
∂

∂x1

(
uj
∂b1
∂xj

)
+ . . .+

∂

∂xN

(
uj
∂bN
∂xj

)]

=
∂

∂t
divb+

∂uj
∂x1

∂b1
∂xj

+ uj
∂2b1
∂x1∂xj

+ . . .+
∂uj
∂xN

+ uj
∂2bN
∂xN∂xj

=
∂

∂t
divb+

∑
j

(
∂uj
∂x1

∂b1
∂xj

+ . . .+
∂uj
∂xN

∂bN
∂xj

)

+
∑
j

uj

(
∂2b1
∂x1∂xj

+ . . .+
∂2bN
∂xN∂xj

)
So

div
Db

Dt
=

∂

∂t
divb+

∑
j

uj
∂

∂xj
divb+

∑
i,j

∂uj
∂x1

∂b1
∂xj

• div(∇u · b)

∇ub =


∂u1
∂x1

. . . ∂u1
∂xN

...
∂uN
∂x1

. . . ∂uN
∂xN


 b1

...
bN

 =

 b1
∂u1
∂x1

+ . . .+ bN
∂u1
∂xN

...
b1
∂uN
∂x1

+ . . .+ bN
∂uN
∂xN


So

div(∇ub) = ∂

∂x1

[
b1
∂u1
∂x1

+ . . .+ bN
∂u1
∂xN

]
+ . . .

+
∂

∂xN

[
b1
∂uN
∂x1

+ . . .+ bN
∂uN
∂xN

]

=
∂

∂x1

∑
j

bj
∂u1
∂xj

+ . . .+
∂

∂xN

∑
j

bj
∂uN
∂xj


=

∑
j

∂bj
∂x1

∂u1
∂xj

+ . . .+
∑
j

∂bj
∂xN

∂uN
∂xj


+

∑
j

bj
∂2u1
∂x1∂xj

+ . . .+
∑
j

bj
∂2uN
∂xN∂xj


=
∑
i,j

∂bj
∂xi

∂u1
∂xj

+
∑
j

bj
∂

∂xj

[
∂u1
∂x1

+ . . .+
∂uN
∂xN

]
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Since u is divergence free

div(∇u · b) =
∑
i,j

∂bj
∂xi

∂u1
∂xj

Finally
∂

∂t
divb+ (u · ∇)divb+

∑
i,j

∂uj
∂xi

∂bi
∂xj

=
∑
i,j

∂uj
∂xi

∂bi
∂xj

D

Dt
divb = 0

We continue with the two dimensions, we have the following proposition

Proposition 2.2.10. 29 Let u be a smooth velocity field vanishing rapidly as |x| tends
to infinity then the 2d Euler equation

∂
∂tu+

∑
j uj

∂
∂xj

u = −∇p u ∈ R2

divu = 0 (x, t) ∈ R2 × [0,∞]

u|t=0 = u0

(E)

are equivalent to the vorticity-stream formulation, which is a scalar evolution equation
of ω {

∂
∂tω +

∑
j Ǩ2[ω]

∂
∂xj

ω = 0

ω|t=0 = ω0 = curlu0
(V.E)

Where u = Ǩ2[ω] =
´
R2 K2(x− y)ω(y)dy with K2(x) =

1
2π

(
−x2
|x|2 ,

x1
|x|2

)T
Remark:In (V.E) we have no information about the pressure, which is an unknown

quantity in the (N.S). So if we solve the (V.S.F) then by the Biot-Savart law we will
determine the velocity field. In the first section of this chapter, we have seen the Leray
formulation, we will determine the pressure by the formula ∆p = −

∑
i,j

∂ui
∂xj

∂uj
∂xi

. The
proof has the same logic as the proof for the Navier-Stokes.

Proof. (⇒) Let u be a solution of (E) we will prove that ω = curlu solves the (V.E).
Since divu = 0 and curlu = ω, the Biot-Savart law determines the velocity, furthermore,
the initial condition is satisfied, so we have:

∂

∂t

(
∂u2
∂x1

− ∂u1
∂x2

)
+ u1

∂

∂x1

(
∂u2
∂x1

− ∂u1
∂x2

)
+ u2

∂

∂x2

(
∂u2
∂x1

− ∂u1
∂x2

)
= 0

We will do the calculations

∂

∂t

∂u2
∂x1

− ∂

∂t

∂u1
∂x2

+ u1
∂

∂x1

∂u2
∂x1

− u1
∂

∂x1

∂u1
∂x2

29[42]
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+u2
∂

∂x2

∂u2
∂x1

− u2
∂

∂x2

∂u1
∂x2

= 0

So
∂

∂x1

∂u2
∂t

− ∂

∂x2

∂u1
∂t

+ u1
∂

∂x1

∂u2
∂x1

− u1
∂

∂x1

∂u1
∂x2

+u2
∂

∂x2

∂u2
∂x1

− u2
∂

∂x2

∂u1
∂x2

= 0

We substitute the two first terms by the (E)

∂

∂x1

(
−u1

∂u2
∂x1

− u2
∂u2
∂x2

− ∂p

∂x2

)
− ∂

∂x2

(
−u1

∂u1
∂x1

− u2
∂u1
∂x2

− ∂p

∂x1

)

+u1
∂

∂x1

∂u2
∂x1

− u1
∂

∂x1

∂u1
∂x2

+ u2
∂

∂x2

∂u2
∂x1

− u2
∂

∂x2

∂u1
∂x2

= 0

So

−∂u1
∂x1

∂u2
∂x1

− u1
∂2u2
∂x21

− ∂u2
∂x1

∂u2
∂x2

− u2
∂2u2
∂x1∂x2

− ∂2p

∂x1∂x2

+
∂u1
∂x2

∂u1
∂x1

+ u1
∂2u1
∂x1∂x2

+
∂u2
∂x2

∂u1
∂x2

+ u2
∂2u1
∂x22

+
∂2p

∂x2∂x1

+u1
∂2u2
∂x21

− u1
∂2u1
∂x1∂x2

+ u2
∂2u2
∂x1∂x2

− u2
∂2u2
∂x22

= 0

Thus
−∂u1
∂x1

∂u2
∂x1

− ∂u2
∂x1

∂u2
∂x2

+
∂u1
∂x2

∂u1
∂x1

+
∂u2
∂x2

∂u1
∂x2

= 0

−∂u2
∂x1

(
∂u1
∂x1

+
∂u2
∂x2

)
+
∂u1
∂x2

(
∂u1
∂x1

+
∂u2
∂x2

)
= 0

−∂u2
∂x1

divu+
∂u1
∂x2

divu = 0

I.e. 0 = 0,so ω = curlu solves the vorticity equation
(⇐) Let’s do the opposite. Assume that there is an ω, which solves the vorticity equation

Dω

Dt
= 0

we will prove that the velocity u which is given by the Biot-Savart law is a solution
for the (N.S). From now on since the velocity is a SIO the derivatives are taken in the
distribution sense.
Firstly we will prove that u satisfies the incompressibility condition.

divu =
∂u1
∂x1

+
∂u2
∂x2

=
1

2π
P.V.

ˆ
R2

2(x1 − y1)(x2 − y2)

|x− y|4
ω(y)dy − 1

2π
P.V.

ˆ
R2

2(x1 − y1)(x2 − y2)

|x− y|4
ω(y)dy = 0
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From the lemma 8 we proved we have

{
D
Dtdivω = 0

divω|t=0 = 0
which is a scalar parabolic

equation so by the uniqueness of its solutions divω = 0. Thus ω is of form ω =
∇× function and since ω0 = curlu0 we set ω = ∇× u
Now that we have prove that ω = ∇× u we will prove that the vorticity equation gives
the first equation of Euler.

Dω

Dt
= 0

D

Dt
curlu = 0

So

curl

(
Du

Dt

)
= 0

Thus Du
Dt is of form Du

Dt = ∇function so we get this function to be -p Du
Dt = ∇(−p)

which actually is the first equation of Euler.

In the 3 dimensions we have

Proposition 2.2.11. Let u be a smooth velocity field vanishing rapidly as |x| tends to
infinity then the 3d Euler equation

∂
∂tu+

∑
j uj

∂
∂xj

u = −∇p u ∈ R3

divu = 0 (x, t) ∈ R3 × [0,∞]

u|t=0 = u0

(E)

are equivalent to the vorticity-stream formulation, which is an evolution equation of ω{
∂
∂tω +

∑
j Ǩ3[ω]

∂
∂xj

ω = ∇Ǩ3[ω]ω

ω|t=0 = ω0 = curlu0
(V.E)

Where u = Ǩ3[ω] =
´
R2 K3(x− y)ω(y)dy with K3(x)h = 1

4π
x×h
|x|3

The proof of this proposition has the same logic as the proof for the two dimensions.

Proof. (⇒) Let u be a solution for the (E), we will prove that ω = curlu is a solution
for the (V.E). Since divu = 0 and ω = curlu, the velocity field, u, is determined by the
Biot-Savart law. Furthermore, the initial condition is satisfied, so now we have:

∂

∂t
curlu+

∑
j

uj
∂

∂xj
curlu = ∇ucurlu

Let’s start the calculations

curlu =


∂u3
∂x2

− ∂u2
∂x3

∂u1
∂x3

− ∂u1
∂x1

∂u2
∂x1

− ∂u1
∂x2
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Additionally

∇ucurlu =


∂u1
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ∂u1

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ ∂u1

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
∂u2
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ∂u2

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ ∂u2

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
∂u3
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ ∂u3

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ ∂u3

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)


We will check the first component of this vector equation and the other follows.

∂

∂t

(
∂u3
∂x2

− ∂u2
∂x3

)
+u1

∂

∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+u2

∂

∂x2

(
∂u3
∂x2

− ∂u2
∂x3

)
+u3

∂

∂x3

(
∂u3
∂x2

− ∂u2
∂x3

)

=
∂u1
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+
∂u1
∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
+
∂u1
∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
We substitute the first terms by the (E) equation

∂

∂x2

(
−u1

∂u3
∂x1

− u2
∂u3
∂x2

− u3
∂u3
∂x3

− ∂p

∂x3

)

− ∂

∂x3

(
−u1

∂u2
∂x1

− u2
∂u2
∂x2

− u3
∂u2
∂x3

− ∂p

∂x2

)
+u1

∂

∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ u2

∂

∂x2

(
∂u3
∂x2

− ∂u2
∂x3

)
+ u3

∂

∂x3

(
∂u3
∂x2

− ∂u2
∂x3

)
−∂u1
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
− ∂u1
∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u1
∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
= 0

So

−∂u1
∂x2

∂u3
∂x1

− u1
∂2u3
∂x1∂x2

− ∂u2
∂x2

∂u3
∂x2

− u2
∂2u3
∂x22

− ∂u3
∂x2

∂u3
∂x3

− u3
∂2u3
∂x2∂x3

− ∂2p

∂x2∂x3
+
∂u1
∂x3

∂u2
∂x1

+ u1
∂2u2
∂x1∂x3

+
∂u2
∂x3

∂u2
∂x2

+ u2
∂2u2
∂x2∂x3

+
∂u3
∂x3

∂u2
∂x3

+ u3
∂2u2
∂x23

+
∂2p

∂x2∂x3
+ u1

∂2u3
∂x1∂x2

− u1
∂2u2
∂x1∂x3

+ u2
∂2u3
∂x22

− u2
∂2u2
∂x2∂x3

+ u3
∂2u3
∂x2∂x3

−u3
∂2u2
∂x23

− ∂u1
∂x1

∂u3
∂x2

+
∂u1
∂x1

∂u2
∂x3

− ∂u1
∂x2

∂u1
∂x3

+
∂u1
∂x2

∂u3
∂x1

− ∂u1
∂x3

∂u2
∂x1

+
∂u1
∂x3

∂u1
∂x2

= 0

Hence

−∂u2
∂x2

∂u3
∂x2

− ∂u3
∂x2

∂u3
∂x3

+
∂u2
∂x3

∂u2
∂x2

+
∂u3
∂x3

∂u2
∂x3

− ∂u1
∂x1

∂u3
∂x2

+
∂u1
∂x1

∂u2
∂x3

= 0 ⇒

∂u3
∂x2

divu+
∂u2
∂x3

divu = 0

I.e. 0 = 0, so the ω1 satisfies the first component of the vorticity equation. Doing the
other calculations, we have the same results also for ω2 and ω3 for the second and third
components, so we conclude that ω = curlu solves the vorticity equation.
(⇐) Let’s do the opposite. Assume that there is an ω which solves the vorticity equation
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∂
∂tω +

∑
j Ǩ3[ω]

∂
∂xj

ω = ∇Ǩ3[ω]ω we will prove that,u determined by the Biot-Savart
law is a solution for the (N.S).
Remark: u is a SIO, so the derivatives are in the distribution sense.
Firstly, we will prove that u satisfies the incompressibility condition.

divu =
∂u1
∂x1

+
∂u2
∂x2

+
∂u3
∂x3

= tr[∇u]30 = P.V.

ˆ
R3

1

4π

1

|x− y|3
trW − 3

4π

1

|x− y|5
trRdy

We can easily see that trW = 0, we will calculate the trace of matrix R

trR = tr



(x1 − y1)(x2 − y2)ω3(y)
−(x1 − y1)(x3 − y3)ω2(y)

(x2 − y2)
2ω3(y)

−(x2 − y2)(x3 − y3)ω2(y)
(x2 − y2)(x3 − y3)ω3(y)

−(x3 − y3)
2ω2(y)

(x1 − y1)(x3 − y3)ω1(y)
−(x1 − y1)

2ω3(y)
(x3 − y3)(x2 − y2)ω1(y)
−(x1 − y1)(x2 − y2)ω3(y)

(x3 − y3)
2ω1(y)

−(x1 − y1)(x3 − y3)ω3(y)

(x1 − y1)
2ω2(y)

−(x1 − y1)(x2 − y2)ω1(y)
(x1 − y1)(x2 − y2)ω2(y)

−(x2 − y2)
2ω1(y)

(x1 − y1)(x3 − y3)ω2(y)
−(x2 − y2)(x3 − y3)ω1(y)


= (x1 − y1)(x2 − y2)ω3(y)− (x1 − y1)(x3 − y3)ω2(y) + (x3 − y3)(x2 − y2)ω1(y)

−(x1 − y1)(x2 − y2)ω3(y) + (x1 − y1)(x3 − y3)ω2(y)− (x2 − y2)(x3 − y3)ω1(y) = 0

Thus divu = 0
Now we can use the lemma 8 since ω solves the vorticity the divω solves the scalar
parabolic equation

D

Dt
divω = 0

with initial condition divω|t=0 = 0 so by the uniqueness of solutions divω = 0, so ω
is of form ∇× function by taking into account the initial condition of (V.E), we have
ω = curlu
We take again the vorticity equation and we substitute the ω with curlu and our aim
is to reach to the Euler equation.

D

Dt
curlu = ∇u · curlu

We will write down the curl of this vector field, but we will not do substitutions since
its derivative in the distribution sense, has a complicated form.

curlu =


∂u3
∂x2

− ∂u2
∂x3

∂u1
∂x3

− ∂u3
∂x1

∂u2
∂x1

− ∂u1
∂x2


We will see each term individually :

• ∂
∂tcurlu = curl∂u∂t

30see proposition 3.2.7
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•
∑

j uj
∂
∂xj

curlu =
∑

j ujcurl
∂u
∂xj

By the identity ∇× (fF ) = f(∇× F ) + (∇f)× F we get∑
j

uj
∂

∂xj
curlu =

∑
j

[
∇×

(
uj
∂u

∂xj

)
−∇uj ×

∂u

∂xj

]

=
∑
j

curl

(
uj
∂u

∂xj

)
−
∑
j

∇uj ×
∂u

∂xj

For the second term :

∇u1 ×
∂u

∂x1
+∇u2 ×

∂u

∂x2
+∇u3 ×

∂u

∂x3

=


∂u1
∂x2

∂u3
∂x1

− ∂u1
∂x3

∂u2
∂x1

+ ∂u2
∂x2

∂u3
∂x2

− ∂u2
∂x2

∂u2
∂x3

+ ∂u3
∂x2

∂u3
∂x3

− ∂u3
∂x3

∂u2
∂x3

∂u1
∂x3

∂u1
∂x1

− ∂u1
∂x1

∂u3
∂x1

+ ∂u2
∂x3

∂u1
∂x2

− ∂u2
∂x1

∂u3
∂x2

+ ∂u3
∂x3

∂u1
∂x3

− ∂u3
∂x1

∂u3
∂x3

∂u1
∂x1

∂u2
∂x1

− ∂u1
∂x1

∂u1
∂x2

+ ∂u2
∂x1

∂u2
∂x2

− ∂u2
∂x2

∂u1
∂x2

+ ∂u3
∂x1

∂u2
∂x3

− ∂u3
∂x2

∂u1
∂x3



=


−∂u1
∂x1

(
∂u3
∂x2

+ ∂u2
∂x3

)
− ∂u1

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u1

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
−∂u2
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
− ∂u2

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u2

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
−∂u3
∂x1

(
∂u3
∂x2

− ∂u2
∂x3

)
− ∂u3

∂x2

(
∂u1
∂x3

− ∂u3
∂x1

)
− ∂u3

∂x3

(
∂u2
∂x1

− ∂u1
∂x2

)
 = −∇u · 31curlu

Finally ∑
j

uj
∂

∂xj
curlu =

∑
j

curl

(
uj
∂u

∂xj

)
− (−∇u · curlu)

Therefore we get that
D

Dt
curlu = ∇u · curlu

is

curl

∂u
∂t

+
∑
j

uj
∂u

∂xj

 = ∇u · curlu−∇u · curlu = 0

So Du
Dt is of form ∇function . Assume that this function is -p then

Du

Dt
= −∇p

which is the Euler equation.

Finishing this chapter, we observe that those two formulations have some similarities.
In Leray’s formulation, we link the velocity with the pressure while, in the vorticity-
stream formulation, we link the velocity with the vorticity, and in both cases, we have
reached an integral operator. These formulations will play a crucial role in the further
analysis, specifically in Chapter 4.

31matrices product
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CHAPTER 3
A priori estimates via energy
methods

In the first chapter, we discussed some physical properties of the fluids, and we have
seen that for inviscid fluids the kinetic energy is a conserved quantity. For viscous fluids,
we have the following result:

Proposition 3.0.1. Assume that u is a smooth solution of the Navier Stokes, vanishing
rapidly as |x| tends to infinity. Then

d

dt
E = −ν

ˆ
RN

|∇u|2dx

Proof. We know that E = 1
2

´
RN |u|2dx

So
d

dt
E =

d

dt

(
1

2

ˆ
RN

|u|2dx
)

By Leibniz integral rule we obtain

d

dt
E =

1

2

ˆ
RN

∂

∂t
|u|2dx =

1

2

ˆ
RN

2u · ∂u
∂t
dx

By Navier stokes we get

ˆ
RN

2u ·

∑
j

uj
∂u

∂xj
−∇p+ ν∆u

 dx

I.e.
2

ˆ
RN

−u ·
∑
j

uj
∂u

∂xj
− u · ∇p− ν(u ·∆u)dx

We will see each term individually

•
´
RN u·∇p =

´
RN

∑
j uj

∂p
∂xj

dx =
∑

j

´
RN uj

∂p
∂xj

dx =
∑

j

´
RN

∂uj
∂xj

p dx =
´
RN p divu dx =

0

•
´
RN u ·

∑
j uj

∂u
∂xj

dx =
´
RN

∑
i ui
∑

j
∂ui
∂xj

dx =
∑

i,j

´
RN uiuj

∂ui
∂xj

dx

Consequently ˆ
RN

uiuj
∂ui
∂xj

dx
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Chapter 3 3.1. Energy methods

by integration by parts gives
ˆ
RN

∂

∂xj
(uiuj)ui dx =

ˆ
RN

(
uj
∂ui
∂xj

+ ui
∂uj
∂xj

)
ui dx

Finally
´
RN u

∑
j uj

∂u
∂xj

dx = 0

•
´
RN u ·∆udx =

´
RN ∇u · ∇u dx =

´
RN |∇u|2 dx

So
d

dt
E = −ν

ˆ
RN

|∇u|2dx

Remark :

1. If ν = 0, then we have th same rsult as in chapter 1.

2. Since viscosity is a positive quantity, the sign of the derivative of the kinetic energy
on time is negative, so the function of kinetic energy is decreasing through time.

3. By the simplified Gronwall lemma in Chapter 1 we have that
ˆ
RN

|u|2dx ≤ u0e
0 = u0

The fact that we have proved a bound for the kinetic energy, gives us the idea to continue
with energy methods(L2 estimates).

3.1 Basic energy method for the solutions of the Navier-
Stokes and Euler equations

Proposition 3.1.1. Assume that v and w are two smooth solutions of Navier Stokes
equation with external forces Fv and Fw inL2 and the same viscosity ν ≥ 0. Furthermore
we suppose that these solutions exists on a common time interval [0, T ], and for fixed
time decay fast enough so that v, w ∈ L2(RN )

Proof. Let ũ = v − w, p̃ = pv − pw, F̃ = Fv − Fw Since v, w are solutions to the Navier
Stokes we get 

D
Dtv −

D
Dtw = −∇pv +∇pw + ν∆v − ν∆w

divv − divw = 0

v|t=0 = w|t=0 = v0 − w0

We will use the first equation

∂

∂t
v + (v · ∇)v − ∂

∂t
w − (w · ∇)w = −∇(pv − pw) + ν∆(v − w) + (Fv − Fw) ⇒
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Chapter 3 3.1. Energy methods

∂

∂t
ũ+ (v · ∇)v − (w · ∇)w = −∇p̃+ ν∆ũ+ F̃

We want all terms of this equation, to be related with the ũ so

(v · ∇)v − (w · ∇)w = (v · ∇)v − (v · ∇)w + (v · ∇)w − (w · ∇)w

= (v · ∇)(v − w) + [(v − w) · ∇]w = (v · ∇)ũ+ (ũ · ∇)w

Eventually 
∂
∂t ũ(v · ∇)ũ+ (ũ · ∇)w = −∇p̃+ ν∆ũ+ F̃

divũ = 0

ũ|t=0 = ũ0

We continue by doing a usual step when we do energy methods, i.e. we multiply the
first equation with the ũ on L2, so we get

ˆ
RN

(
∂

∂t
ũ+ (v · ∇)ũ+ (ũ · ∇)w

)
· ũ dx =

ˆ
RN

(−∇p̃+ ν∆ũ+ F̃ ) · ũ dx⇒

ˆ
RN

∂

∂t
ũ·ũ dx+

ˆ
RN

[(v·∇)ũ]·ũ dx+
ˆ
RN

[(ũ·∇)w]·ũ dx = −
ˆ
RN

∇p̃·ũ dx+ν
ˆ
RN

∆ũ·ũ dx+
ˆ
RN

F̃ ·ũ dx

We see that

•
´
RN ∆ũ · ũ dx = −

´
RN ∇ũ · ∇ũ dx

•
´
RN ∇p̃ · ũ dx =

∑
j

´
RN

∂
∂xj

p̃ ũj dx

Integration by parts gives −
∑

j

´
RN p̃

∂
∂xj

ũj dx = −
´
RN p̃ divũ dx = 0

•
´
RN [(v · ∇)ũ] · ũ dx =

∑
i,j

´
RN vj

∂
∂xj

ũiũidx

Lets examine the
´
RN vj

∂
∂xj

ũiũi dx

Integration by parts gives
´
RN

∂
∂xj

(ũivj)ũi dx = −
´
RN ũ

2
i
∂
∂xj

vj dx−
´
RN ũivj

∂
∂xj

ũi dx

So

2
∑
i,j

ˆ
RN

ũivj
∂

∂xj
ũi dx = −

∑
i,j

ˆ
RN

ũ2i
∂

∂xj
vj dx = −

∑
i

ˆ
RN

ũ2i divv dx = 0

So we have
ˆ
RN

∂

∂t
ũ · ũ dx+ ν

ˆ
RN

∇ũ · ∇ũ dx = −
ˆ
RN

[(ũ · ∇)w] · ũ dx+

ˆ
RN

F̃ · ũ dx

I.e.(ˆ
RN

|ũ|2 dx
) 1

2 d

dt

(ˆ
RN

|ũ|2 dx
) 1

2

+ν

ˆ
RN

∇ũ∇·ũ dx = −
ˆ
RN

[(ũ·∇)w]·ũ dx+
ˆ
RN

F̃ ·ũ dx⇒

∥ũ∥L2

d

dt
∥ũ∥L2 + ν

ˆ
RN

|∇ũ|2dx ≤
ˆ
RN

[(ũ · ∇)w] · ũ dx+

ˆ
RN

F̃ · ũ dx⇒
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Chapter 3 3.1. Energy methods

∥ũ∥L2

d

dt
∥ũ∥L2 + ν

[(ˆ
RN

|∇ũ|2dx
) 1

2

]2
≤
ˆ
RN

[(ũ · ∇)w] · ũ dx+

ˆ
RN

F̃ · ũ dx

For the integrals on the right side of this inequality we will use Holder inequality 1

It follows that ˆ
RN

F̃ · ũ dx ≤
∣∣ˆ

RN

F̃ · ũ dx
∣∣ ≤ ˆ

RN

|F̃ · ũ| dx

We know that ũ and F̃ ∈ L2 so
´
RN F̃ ũdx ≤ ∥F̃∥L2∥ũ∥L2

Furthermore ˆ
RN

[(ũ · ∇)w] · ũ dx =

ˆ
RN

(∇w ũ) · ũdx

Since w decay fast enough such that w ∈ L2 we have that ∇w ∈ L∞ 2, additionally
ũ ∈ L2 so

´
RN [(ũ · ∇)w] · ũ dx ≤ ∥∇w∥L∞∥ũ∥L2∥ũ∥L2 = ∥∇w∥L∞∥ũ∥2L2

We conclude to this relation

∥ũ∥L2

d

dt
∥ũ∥L2 ≤ ∥∇w∥L∞∥ũ∥2L2 + ∥F̃∥L2∥ũ∥L2

Assume that ∥ũ∥L2 ̸= 0 we have that :

d

dt
∥ũ∥L2 ≤ ∥∇w∥L∞∥ũ∥L2 + ∥F̃∥L2

Now we will use the following lemma

Lemma 9 (Gronwall s lemma). 3 Let I be an interval on the real line and u, q, c non
negative continuous functions on I with c differentiable if

q(t) ≤ c(t) +

ˆ t

a
u(s)q(s) ds,∀t ∈ I (H)

then

q(t) ≤ c(t) +

ˆ t

a
c(s)u(s)e

´ t
s u(r) dr ds, t ∈ I (R)

proof of lemma
We define p(t) = e−

´ t
a u(s) ds

´ t
a u(s)q(s) ds and p(a) = 0 Then

d

dt
p = u(t)e−

´ t
a u(s) ds

(
q(t)−

ˆ t

a
u(s)q(s) ds

)
By the H we have

d

dt
p ≤ u(t)e−

´ t
a u(s) ds

(
c(t) +

ˆ t

a
u(s)q(s) ds−

ˆ t

a
u(s)q(s) ds

)
1Assume two measurable functions f and g and let p, q ∈ [1,∞] with 1

p
+ 1

q
= 1 then ∥fg∥L1 ≤

∥f∥Lp∥g∥Lq

2here ∇w is a matrix, but this is not a problem since, let’s think the ∇w as a vector i.e. ∇w =(
∂

∂x1
w, ..., ∂

∂xN
w
)
, then the L infinity norm is the supremum of the magnitudes of ∂

∂xi
w, which is, of

course, the definition we have about the L infinity norm of a matrix i.e The L infinity norm of a square
matrix is the supremum of the absolute row sums

3[23]

74



Chapter 3 3.1. Energy methods

The integral of non negative function is an increasing function so we get

p(t)− p(a) ≤
ˆ t

a
c(s)u(s)e−

´ s
a u(r) dr ds

So since p(a) = 0

p(t) ≤
ˆ t

a
c(s)u(s)e−

´ s
a u(r) dr ds

Substituting p(t) with its equal we have

e−
´ t
a u(s) ds

ˆ t

a
u(s)q(s) ds ≤

ˆ t

a
c(s)u(s)e−

´ s
a u(r) dr ds

ˆ t

a
u(s)q(s) ds ≤ e

´ t
a u(s) ds

ˆ t

a
c(s)u(s)e−

´ s
a u(r) dr ds

Therefore ˆ t

a
u(s)q(s) ds ≤

ˆ t

a
c(s)u(s)e

´ s
t u(r) dr ds

Again by H

q(t)− c(t) ≤
ˆ t

a
c(s)u(s)e

´ s
t u(r) dr ds

How will we apply this lemma to our relation?
For notation convenience we set

∥ũ∥L2 = q(t)

∥∇w∥L∞ = p

∥F̃∥L2 = z(t)

Thus
d

dt
q(t) ≤ pq(t) + z(t)

We integrate over (0,t)
ˆ t

0

d

ds
q(s) ds ≤

ˆ t

0
pq(s) ds+

ˆ t

0
z(s) ds

q(t) ≤ q(0) +

ˆ t

0
pq(s) ds+

ˆ t

0
z(s) ds

We set c(t) = q(0) +
´ t
0 z(s) ds So we reached to the relation

q(t) ≤ c(t) +

ˆ t

0
pq(s) ds

By the lemma

q(t) ≤ c(t) +

ˆ t

0
pc(s)e

´ t
s p dr ds⇒
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4

q(t) ≤ c(t)−
ˆ t

0
c(s)

d

ds
e
´ t
s p dr ds

By integration by parts to the right side we have

q(t) ≤ c(t)−
[
c(s)e

´ t
s p dr

]
s=t,s=0

+

ˆ t

0

(
d

ds
c(s)

)
e
´ t
s p dr ds

q(t) ≤ c(t)− c(t)e
´ t
s p dr + c(0)e

´ t
0 p dr +

ˆ t

0

(
d

ds
c(s)

)
e
´ t
s p dr ds⇒

5

q(t) ≤ c(0)e
´ t
0 p dr +

ˆ t

0
z(s)e

´ t
s p dr ds⇒

q(t) ≤ q(0)e
´ t
0 p dr +

ˆ t

0
z(s)e

´ t
0 p dr−

´ s
0 p dr ds

Consequently

q(t) ≤ q(0)e
´ t
0 p dr + e

´ t
0 p dr

ˆ t

0
z(s)e−psds⇒

6

q(t) ≤ q(0)e
´ t
0 p dr + e

´ t
0 p dr

ˆ t

0
z(s) ds

We have reached to

q(t) ≤ e
´ t
0 p du

(
q(0) +

ˆ t

0
z(u) du

)
Taking the supremum over this relation

sup
0≤t≤T

q(t) ≤ sup
0≤t≤T

[
e
´ t
0 p du

(
q(0) +

ˆ t

0
z(u) du

)]
Let us check the right part, because our functions are non negative we use the fact that
sup ab ≤ sup a sup b

sup
0≤t≤T

[
e
´ t
0 p du

(
q(0) +

ˆ t

0
z(u) du

)]
≤ sup

0≤t≤T
e
´ t
0 p du sup

0≤t≤T

(
q(0) +

ˆ t

0
z(u) du

)
⇒

7

sup
0≤t≤T

e
´ t
0 p du sup

0≤t≤T

(
q(0) +

ˆ t

0
z(u) du

)
≤
(
q(0) +

ˆ T

0
z(u) du

)
e
´ T
0 p du

4we see that

d

ds
e
´ t
s p dr = e

´ t
s p dr d

ds

ˆ t

s

p dr = e
´ t
s p dr

(
p
d

ds
t− p

d

ds
s+

ˆ t

s

∂

∂s
p dr

)
= −pe

´ t
s p dr

5We see that d
ds
c(s) = d

ds

(´ s
0
z(u) du+ q(0)

)
= d

ds

´ s

0
z(u) du = z(s)

6since p, s are positive 1
eps

< 1
7The integral of non negative functions is an increasing function
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Finally

sup
0≤t≤T

∥ũ∥L2 ≤
(
∥ũ|t=0∥L2 +

ˆ T

0
∥F̃∥L2 dt

)
e
´ T
0 ∥∇w∥L∞ dt (Ene)

Remark

1. In this proof, we observe that the viscosity ν is absent, so this energy estimate for
the solutions of the Navier-Stokes equation, holds for the solutions of the Euler.

2. If there are two solutions for the same problem, we have the same initial conditions
and external forces, so the above estimate imposes the uniqueness of the solutions.
Let u1, u2 be the solutions then F̃ = 0 and ũ|t=0 = 0 so we get that sup0≤t≤T ∥ũ∥L2 ≤
0 which gives that u1 = u2 a.e.x

3. For viscous fluids from this estimate, we can seek a gradient control for the solu-
tions.
We take the relation

∥ũ∥L2

d

dt
∥ũ∥L2 + ν∥∇ũ∥2L2 ≤ ∥∇w∥L∞∥ũ∥2L2 + ∥F̃∥L2∥ũ∥L2

1

2

d

dt
∥ũ∥2L2 + ν∥∇ũ∥2L2 ≤ ∥∇w∥L∞∥ũ∥2L2 + ∥F̃∥L2∥ũ∥L2

We integrate this relation over time
ˆ T

0

1

2

d

dt
∥ũ∥2L2 dt+ν

ˆ T

0
∥∇ũ∥2L2 dt ≤

ˆ T

0
∥∇w∥L∞∥ũ∥2L2 dt+

ˆ T

0
∥F̃∥L2∥ũ∥L2 dt

1

2

(
∥ũ|t=T ∥2L2 − ∥ũ|t=0∥2L2

)
+ ν

ˆ T

0
∥∇ũ∥2L2 dt ≤(

sup
0≤t≤T

∥ũ∥2L2

)ˆ T

0
∥∇w∥L∞ dt+

(
sup

0≤t≤T
∥ũ∥L2

)ˆ T

0
∥F̃∥L2 dt

So

ν

ˆ T

0
∥∇ũ∥2L2 dt ≤ ∥ũ|t=0∥2L2 +

(
sup

0≤t≤T
∥ũ∥L2

)2 ˆ T

0
∥∇w∥L∞ dt

+ sup
0≤t≤T

∥ũ∥L2

ˆ T

0
∥F̃∥L2 dt

So by the energy estimate above

∥ũ|t=0∥2L2 +

(
sup

0≤t≤T
∥ũ∥L2

)2 ˆ T

0
∥∇w∥L∞ dt+ sup

0≤t≤T
∥ũ∥L2

ˆ T

0
∥F̃∥L2 dt

≤ ∥ũ|t=0∥2L2 +

ˆ T

0
∥∇w∥L∞ dt e2

´ T
0 ∥∇w∥L∞ dt

(
∥ũ|t=0∥L2 +

ˆ T

0
∥F̃∥L2 dt

)2
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+

ˆ T

0
∥F̃∥L2 dt e

´ T
0 ∥∇w∥L∞ dt

(
∥ũ|t=0∥L2 +

ˆ T

0
∥F̃∥L2 dt

)
We do the calculations

ν

ˆ T

0
∥∇ũ∥2L2 dt ≤ ∥ũ|t=0∥2L2 +

ˆ T

0
∥∇w∥L∞ dt e2

´ T
0 ∥∇w∥L∞ dt ∥ũ|t=0∥2L2

+2∥ũ|t=0∥2L2

ˆ T

0
∥∇w∥L∞ dt e2

´ T
0 ∥∇w∥L∞ dt

ˆ T

0
∥F̃∥L2 dt

+

(ˆ T

0
∥F̃∥L2 dt

)2 ˆ T

0
∥∇w∥L∞ dte2

´ T
0 ∥∇w∥L∞ dt

+

ˆ T

0
∥F̃∥L2 dt ∥ũ|t=0∥L2e

´ T
0 ∥∇w∥L∞ dt +

(ˆ T

0
∥F̃∥L2 dt

)2

e
´ T
0 ∥∇w∥L∞ dt

So

ν

ˆ T

0
∥∇ũ∥2L2 dt ≤ ∥ũ|t=0∥2L2

(
1 +

ˆ T

0
∥∇w∥L∞ dt e

´ T
0 ∥∇w∥L∞ dt

)

+2∥ũ|t=0∥L2

ˆ T

0
∥F̃∥L2 dt

(ˆ T

0
∥∇w∥L∞ dt e2

´ T
0 ∥∇w∥L∞ dt +

1

2
e
´ T
0 ∥∇w∥L∞ dt

)

+

(ˆ T

0
∥F̃∥L2 dt

)2(ˆ T

0
∥∇w∥L∞ dt e2

´ T
0 ∥∇w∥L∞ dt + e

´ T
0 ∥∇w∥L∞ dt

)
⇒

ν

ˆ T

0
∥∇ũ∥2L2 dt ≤

(
e
´ T
0 ∥∇w∥L∞ +

ˆ T

0
∥∇w∥L∞ dt e

´ T
0 ∥∇w∥L∞

)
[
∥ũ|t=0∥2L2 + 2∥ũ|t=0∥L2

ˆ T

0
∥F̃∥L2 dt+

(ˆ T

0
∥F̃∥L2 dt

)2
]

Finally ˆ T

0
∥∇ũ∥2L2 dt ≤ c(w, T )

(
∥ũ|t=0∥L2 +

ˆ T

0
∥F̃∥L2 dt

)2

In the next section we will use the energy estimate (Ene) to approximate the solutions
of the Euler by the solutions of the Navier Stokes.

3.2 Approximation of the inviscid flow by viscous flows for
ν << 1

It is clear that we talk about the properties of the solutions. In this section, we will deal
with the relation between the solutions of the Euler and the Navier Stokes. We will see
some examples, and then we will conclude with a more general result. Firstly, we will
derive some exact solutions for the 3-dimensional case based on the matrix construction
in the first chapter.
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Proposition 3.2.1. Let D̃(t) be 3× 3 real symmetric matrix with trace zero.
If we determine the vorticity by the ode

d

dt
ω(t) = D̃(t)ω(t)

with initial vorticity ω|t=0 = ω0

and the skew symmetric matrix Ω by

Ω h =
1

2
ω × h

then
u(x, t) =

1

2
ω(t)× x+ D̃(t)× x

and
p(x, t) = −1

2
[
d

dt
D̃(t) + D̃(t)2 +Ω(t)2]x · x

are solutions for the 3 dimensional Navier Stokes.

Proof. Recall that for D and P determined in the same as in matrix construction on
chapter 1 we have that

D

Dt
D +D2 +Ω2 = −P + ν∆D

D

Dt
Ω+ ΩD +DΩ = ν∆Ω

We have to understand that this proposition gives us a specific class of solutions, so we
have no problem assuming that there exists a matrix D that depends only on time. We
will denote this matrix as D̃, furthermore, we assume the vorticity of the velocity field
u, which corresponds to the above matrix D̃, is ω(t)
We define u(x, t) = 1

2ω(t)× x+ D̃x the vorticity of this vector field is

ω(x, t) = ∇×u(x, t) = 1

2
(ω(t)(∇ · x)− x(∇ · ω(t)) + (x · ∇)ω(t)− (ω(t) · ∇)x)+∇×(D̃(t)·x) ⇒

ω(x, t) =
1

2
(3ω(t)− ω(t)) +∇× (D̃(t) · x)

Let’s examine ∇× (D̃(t) · x)

∇× (D̃(t) · x) =



∂
∂x2

(x1 d31(t) + x2 d32(t) + x3 d33(t))

− ∂
∂x3

(x1 d21(t) + x2 d22(t) + x3 d23(t))

∂
∂x3

(x1 d11(t) + x2 d12(t) + x3 d13(t))

− ∂
∂x1

(x1 d21(t) + x2 d22(t) + x3 d23(t))

∂
∂x1

(x1 d21(t) + x2 d22(t) + x3 d23(t))

− ∂
∂x2

(x1 d11(t) + x2 d12(t) + x3 d13(t))
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So

∇× (D̃(t) · x) =

d32(t)− d23(t)
d13(t)− d31(t)
d21(t)− d12(t)

 = 08

Consequently ω(x, t) = ω(t)
So by the vorticity equation we conclude that d

dtω(t) = D̃(t)ω(t)

By the symmetric part and since D̃ has only time dependence we have that d
dtD̃(t) +

D̃(t)2 + Ω(t)2 = −P (t) we also know that P is the Hessian matrix of pressure so
p(x, t) = 1

2(P (t)x) · x
9. Eventually p(x, t) = −1

2 [
d
dtD̃(t) + D̃(t)2 +Ω(t)2]x · x

Now we will use this proposition to see some examples

Example 1 Let D =

−γ1 0 0
0 −γ2 0
0 0 γ1 + γ2

 where γij > 0

Then we define ω(t) by the system of odes d
dtω = D(t)ω with initial value ω|t=0 = ω0 = 0

d
dtω1 = −γ1ω1

d
dtω2 = −γ2ω2

d
dtω3 = (γ1 + γ2)ω3

Therefore 
ω1 = c1e

−γ1 t

ω2 = c2e
−γ2 t

ω3 = c3e
(γ1+γ2) t

Substituting with t=0 we see that ci = 0 so ωi = 0

By the above proposition u(x, t) = 1
2ω(t)× x+D(t)× x =

 −γ1 x1
−γ2 x2

(γ1 + γ2) x3


Furthermore Ω · h = 1

2ω × h ∀h so Ω is the null matrix.
So we can compute the pressure p(x, t) = −1

2 [
d
dtD̃(t)+ D̃(t)2+Ω(t)2]x ·x = −1

2(γ
2
1x

2
1+

γ22x
2
2 + (γ1 + γ2)

2x23)
Example 2 In this example we will see the case where γ1 = γ and γ2 = −γ so the

matrix D =

−γ 0 0
0 γ 0
0 0 0


So by the previous example we have that u(x, t) =

−γx1
γx2
0

 and p(x, t) = −1
2γ

2(x21+x
2
2)

We will expand this solution by assuming that in the coordinate we have a function
which only depends on the first coordinate of x i.e x1 an the time t.
So we seek a velocity

u(x, t) =

 −γx1
γx2

u3(x1, t)


8D̃ is a symmetric matrix
9H(p(x, t)) = J(∇p(x, t))T so ∇p(x, t) = P (t)x and J(P (t)x)T = P (t)
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For the pressure and the first two components of velocity, we know from example 2 that
they satisfy the Navier Stokes equation, so we will check the term u3

∂

∂t
u3(x1, t) + u1

∂

∂x1
u3(x1, t) + u2

∂

∂x2
u3(x1, t) + u3

∂

∂x3
u3(x1, t) =

∂

∂x3
p+ ν∆u3(x1, t)

∂

∂t
u3(x1, t)− γx1

∂

∂x1
u3(x1, t) = ν

∂2

∂x21
u3(x1, t)

Assuming now that γ = 0 then we have a pair of solutions u(x, t) = (0, 0, u3(x1, t)) and
p(x, t) = 0.
Now we will see two cases

• ν = 0 10 then
∂

∂t
u3(x1, t) = 0

so u3(x1, t) = u3(x1, 0)

• ν > 0 then
∂

∂t
u3(x1, t) = ν

∂2

∂x21
u3(x1, t)

The above equation is the heat equation in one dimension so

u3(x1, t) =
1√
4πvt

ˆ
R
e

−(x1−y1)
2

4vt u3(x1, 0)dy1

So far, we have two specific solutions for the Euler and the Navier-Stokes. Now, by the
following proposition, we will do an energy estimate for the difference of these solutions.

Proposition 3.2.2. Let the initial value for the velocity u0(x) be a decreasing function
such that |u0(x)|+ |∇u0(x)| ≤M . Assume that uE is a solution as above for the Euler
and uN is a solution as above for the Navier Stokes, then

|uE(x, t)− uN (x, t)| ≤ cM(vt)
1
2

Proof.
|uE(x1, t)− uN (x1, t)| = |(0, 0, u3(x1, 0))− (0, 0, uN3 (x1, t))|

So we need to estimate |u3(x1, 0)− uN3 (x1, t)|
Thus

|uN3 (x1, t)− u3(x1, 0)| =
∣∣∣∣ˆ

R

1√
4πvt

e
−(x1−y1)

2

4vt u3(x1, 0) dy1 − u3(x1, 0)

∣∣∣∣
=

∣∣∣∣ˆ
R

1√
4πvt

e−
y21
4vtu3(x1 + y1, 0) dy1 − u3(x1, 0)

∣∣∣∣
10It is possible for someone to question whether or not we are capable of achieving this. To clarify,

proposition 4.2.1 provides us with two solutions for the Navier Stokes. It is beneficial for our situation
that we have taken D and ω to be solely time-dependent, as the term with viscosity disappears in both
cases.
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We set ζ = y1

(vt)
1
2

so dζ = 1

(vt)
1
2
dy1

We get

=

∣∣∣∣ˆ
R

1√
4πvt

e−
ζ2

4 u3(x1 + (vt)
1
2 ζ)(vt)

1
2dζ − u3(x1, 0)

∣∣∣∣
=

∣∣∣∣ˆ
R

1√
4π

(
e−

ζ2

4 u3(x1 + (vt)
1
2 ζ, 0)− u3(x1, 0)

)
dζ

∣∣∣∣
≤ c

ˆ
R
e

−ζ2

4 |u3(x1 + (vt)
1
2 ζ, 0)− u3(x1, 0)|dζ

≤ c

ˆ
R
e−

ζ2

4 (|u3(x1 + (vt)
1
2 ζ, 0)| − |u3(x1, 0)|)dζ

We set for convenience g(x) = |u3(x, 0)| and b = x1 + (vt)
1
2 ζ and a = x1 .

So |uN3 (x1, t)− u3(x1, 0)| ≤ c
´
R e

− ζ2

4
g(b)−g(a)
b−a (vt)

1
2 ζdζ.

By the mean value theorem there exists d ∈ (a, b) so that g′(d) = g(b)−g(a)
b−a .

So we conclude that |uN3 (x1, t)− u3(x1, 0)| ≤ c(vt)
1
2 g′(d).

We substitute

|uN3 (x1, t)− u3(x1, 0)| ≤ c(vt)
1
2

∣∣∣∣ ∂∂x1u3(x1, 0)
∣∣∣∣ .

By the hypothesis |∇u3(x1, 0)| ≤M .
In conclusion |uE3 (x1, t)− uN3 (x1, t)| ≤ c(vt)

1
2M .

Remark:By the above estimate, if ν ↘ 0, then the solution we construct for the
inviscid fluids approximates the solution for the viscous fluids.
By this example, we have the intuition that the solutions of the Euler may approxi-
mate the solutions of the Navier Stokes. The answer for smooth solutions of Euler is
affirmative.

Proposition 3.2.3. Assume that we have the Navier Stokes and the corresponding
Euler equation. We denote that uν and u0 the solutions of each equation respectively.
Furthermore we assume that for viscosity 0 ≤ ν ≤ ν0 exists on a common time interval
and vanishes rapidly as |x| → ∞ then

sup
0≤t≤T

∥uν − u0∥L2(RN ) ≤ c(u0, T )νT

Proof. We start from the Navier Stokes, and in the energy estimate we have proved in
the first section, we substitute u1 = u0 the solution of Navier Stokes with external force
F 0
1 = F1 = −ν∆u0 and u2 = uν and external force F ν2 = F2 = 0

sup
0≤t≤T

∥uν−u0∥L2(RN ) ≤
[
∥(uν − u0)|t=0∥L2(RN ) +

ˆ T

0
∥ − ν∆u0∥L2(RN )dt

]
e
´ T
0 ∥∇u0∥

L∞(RN ) ⇒

sup
0≤t≤T

∥uν − u0∥L2(RN ) ≤ νT sup
0≤t≤T

(∥∆u0∥L2(RN ))e
´ T
0 ∥∇u0∥L∞dt
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Chapter 3 3.2. Approximation of the inviscid flow by viscous flows for ν << 1

sup
0≤t≤T

∥uν − u0∥L2(RN ) ≤ νT

(
sup

0≤t≤T
∥∆u0∥L2(RN )e

T∥∇0∥L∞

)
⇒

sup
0≤t≤T

∥uν − u0∥L2(RN ) ≤ νTc(u0, T )

We can also find a gradient control by Remark 3 in the previous section. Indeed

ˆ T

0
∥∇(uν − u0)∥L2(RN )dt

By holder inequality we get

ˆ T

0
∥∇(uν − u0)∥L2(RN )dt ≤

(ˆ T

0
1dt

) 1
2
(ˆ T

0
∥∇(uν − u0)∥2L2

) 1
2

⇒

ˆ T

0
∥∇(uν − u0)∥L2(RN )dt ≤ T

1
2

(ˆ T

0
∥∇(uν − u0)∥2L2

) 1
2

ˆ T

0
∥∇(uν−u0)∥L2(RN )dt ≤ T

1
2

1

ν
1
2

c(u0, T )

(
∥(uν − u0)|t=0∥2L2 +

ˆ T

0
∥ν∆u0∥2L2dt

) 1
2

⇒

ˆ T

0
∥∇(uν − u0)∥L2(RN )dt ≤ T

1
2 ν

1
2 (T sup

0≤t≤T
∥∆u0∥L2)2 ⇒

ˆ T

0
∥∇(uν − u0)∥L2(RN )dt ≤ C ν

1
2T

3
2

NOTES:

1. We aim to find a convergence between those two solutions, but the main question is
under which norm. By the above proposition, we have proved that for 0 ≤ ν ≤ ν0
the sup0≤t≤T ∥uν − u0∥L2(RN ) is bounded. So we have prove that u0 → uν with
L∞{[0, T ];L2(RN )} norm.

2. Similarly ∇u0 → ∇uν with L1{[0, T ];L2(RN )} norm.

3. We recall the notation of big-O. Let two functions f, g then f(x) = O(G(x)) with
x→ a ⇐⇒ |f(x)| ≤Mg(x) ∀x 0 ≤ x− a ≤ d
So we have sup0≤t≤T ∥uν − u0∥L2(RN ) = O(ν) for ν ↘ 0 and we will say that
the convergence is of order 1 concerning ν. We observe that for the specific
solutions we have construct sup0≤t≤T ∥uE − uN∥L2(RN ) = O(ν

1
2 ) for ν ↘ 0 so the

convergence is of order 1
2 with respect to ν. By the estimate we have done for the

gradients, we see that
´ T
0 ∥∇(uν − u0)∥L2(RN )dt ≤ O(ν

1
2 )
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4. We know that
´ T
0 ∥uν − u0∥L2(RN ) ≤ sup0≤t≤T ∥uν − u0∥L2(RN ) so concerning

L1{[0, T ], L2(RN )} the convergence of solutions is of order 1, and the gradients of
them is of order 1

2 . So we have a better convergence in the second case since the
terms are "closer", which is not a strange result if someone considers how the L2

norm behaves on gradients.

With these remarks, we close this section and continue with the last section of this
chapter, which mainly deals with the energy and the estimate we made in the first
section.

3.3 The energy in two dimensions

For the basic energy estimate we have done, in the first section, we assumed that the
velocity field vanishes rapidly as |x| ↗ ∞ so that u ∈ L2(RN ).
This is a strong assumption since we asking for the kinetic energy to be finite. From a
physical point of view and in three dimensions, this is true, but in two dimensions we
can find a very common counter-example.
This is the example of the velocity fields with vorticity of compact support.

Lemma 10. Let x, y ∈ RN if |x| ≥ 2R and |y| ≤ R with R > 0 then

|x− y|−N = |x|−N
(
1− 2

x · y
|x|2

+
|y|2

|x|2

)−N
2

And if |x| → ∞ then
|x− y|−N = |x|−N +O(|x|−N−1)

Proof of lemma:We will prove this lemma by induction.
For N = 1 we will prove that 1

|x−y| =
1
|x|

1√(
1+2 x·y

|x|2
+

|y|2
|x|2

)

• If x ≤ −2R and −R ≤ y ≤ 0 we get x− y ≤ −R
If y = 0 we are done since we get 1

|x| =
1
|x|

If y ̸= 0 then
1

y − x
= −1

x

1√
1− 2xy

x2
+ y2

x2

1

y − x
= −1

x

|x|
|x− y|

1

y − x
=

1

y − x

So in that case the equality holds.
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• If x ≤ −2R and 0 < y ≤ R we get x− y ≤ −2R then

1

y − x
= −1

x

|x|
|x− y|

1

y − x
=

1

y − x

So in that case the equality holds.

• If x ≥ 2R and −R ≤ y < 0 we get y − x ≤ −2R so −(y − x) = x − y ≥ 2R
then

1

x− y
=

1

x

|x|
|x− y|

1

x− y
=

1

x− y

So in that case the equality holds.

• If x ≥ 2R and 0 < y ≤ R we get y − x ≤ −R so x− y ≥ R then

1

x− y
=

1

x

|x|
|x− y|

1

x− y
=

1

x− y

So in that case the equality holds.

For the inductive step we assume that the equality holds for N = k so we have that

|x− y|−k = |x|−k
(
1− 2

x · y
|x|2

+
|y|2

|x|2

)−k
2

We will examine the case when N = k + 1, we want to prove that

|x− y|−k−1 = |x|−k−1

(
1− 2

x · y
|x|2

+
|y|2

|x|2

)−k−1
2

By the inductive step and the case n=1 we know that

|x− y|−k |x− y|−1 =

(
|x|−k

(
1− 2

x · y
|x|2

+
|y|2

|x|2

)−k
2

)

·

(
|x|−1

(
1− 2

x · y
|x|2

+
|y|2

|x|2

)−1
2

)

= |x|−k−1

(
1− 2

x · y
|x|2

+
|y|2

|x|2

)−k−1
2
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Now for the second part of this lemma we will use this result
We set |x| = a, |y| = b and x · y = ab cos θ then

1

|x− y|N
=

1

aN

(
1− 2

b

a
cos θ +

(
b

a

)2
)−N

2

We set b
a = p so

1

|x− y|N
=

1

aN
(1− 2p cos θ + p2)−

N
2

We now set z = p2 − 2p cos θ

By Taylor expansion for (1 + z)
−N
2 for z ∈ R around z0 = 0 we have that

(1 + z)
−N
2 = 1 + ((1 + z)

−N
2 )′|z0 z + ((1 + z)

−N
2 )′′|z0

z2

2!
+ ...

= 1− N

2
z +

N(N + 2)

8
z2 + ...

If z → 0 we have (1 + z)
−N
2 = 1 +O(z)

Consequently for |y| ≤ R and |x| → ∞ we have that z → 0 so by substituting

|x− y|−N = |x|−N (1 + |x|−1) = |x|−N +O(|x|−N−1)

Someone may wonder why we need this lemma. The answer is easy if we recall the form
of the velocity fields given by Biot Savart law, which kernels have singularity along the
diagonal.
Assume now that the vorticity ω is smooth and has compact support i.e. suppω ⊂
{|y| ≤ R}
We will start with the three dimensions:

• u3(x, t) =
´
R3 K3(x− y)ω(y, t)dy =

´
R3

(x−y)×ω(y,t)
|x−y|3 dy.

We know that this kernel is homogeneous of degree -2 so K3 ∼ 1
|x−y|2 .

Thus u3(x, t) ∼
´
R3

1×ω(y,t)
|x−y|2 dy.

!!!Now we will use the lemma we have |y| ≤ R and we want to see what happens
when |x| ↗ ∞ so :

ˆ
R3

1× ω(y, t)

|x− y|2
dy =

ˆ
R3

[|x|−2 +O(|x|−3)](1× ω(y, t))dy

= (|x|−2 +O(|x|−3))

ˆ
R3

ω3(y, t)− ω2(y, t)
ω1(y, t)− ω3(y, t)
ω2(y, t)− ω1(y, t)

 dy

= (|x|−2 +O(|x|−3))

ˆ
|y|≤R

ω3(y, t)− ω2(y, t)
ω1(y, t)− ω3(y, t)
ω2(y, t)− ω1(y, t)

 dy

≤ c(|x|−2 +O(|x|−3))
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We conclude that u3(x, t) ∼ O(|x|−2)
So for the kinetic energy for |x| ≥ 2R we get

ˆ
|x|≥2R

|u3(x, t)|2dx ∼
ˆ ∞

R
r−4r2dr =

1

R

• u2(x, t) =
´
R2 K2(x− y)ω(y, t)dy.

We know that this kernel is homogeneous of degree -1 so K2 ∼ 1
|x−y| .

Thus u2(x, t) ∼
´
R2

1
|x−y|ω(y, t)dy.

By the lemma 10 we have thatˆ
R2

1

|x− y|
ω(y, t)dy = [|x|−1 +O(|x|−2)]

ˆ
R2

ω(y, t)dy

= [|x|−1 +O(|x|−2)]

ˆ
|y|≤R

ω(y, t)dy ≤ c[|x|−1 +O(|x|−2)].

We conclude that u2(x, t) ∼ O(|x|−1).
So for the kinetic energy for |x| ≥ 2R we get

ˆ
|x|≥2R

|u2(x, t)|2dx ∼
ˆ ∞

R
r−2rdr = ∞

Remark:By the previous procedure we have that u2(x, t) ∼ 1
|x|
´
R2 ω(y, t)dy+O(|x|−2)

so if
´
R2 ω(y, t)dy = 0 we have that u2(x, t) ∼ O(|x|−2) thus

ˆ
|x|≥2R

|u2(x, t)|2dx ∼
ˆ ∞

R
r−4rdr =

ˆ ∞

R
r−3dr =

1

2R2

So we have following proposition :

Proposition 3.3.1. Let u(x, t) ∈ R2 × R with vorticity of compact support then
ˆ
R2

u2dx ≤ ∞ ⇐⇒
ˆ
R2

ω(y, t)dy = 0

Proof. (⇐) We have this from the remark. (⇒)
´
R2

(´
R2 K2(x− y)ω(y, t)dy

)
dx = c

So
´
R2 K2(x− y)ω(y, t)dy = 0

K2(x)

ˆ
R2

ω(y, t)dy = 0

Therefore
´
R2 ω(y, t)dy = 0

Remark:This proposition holds for all the velocity fields on R2.

For velocity fields with vorticity of compact support and mean value zero, we solve
the problem of finite kinetic energy. We would like a more global result, but the only
result we have is that the kinetic energy in 2 dimensions is locally finite.
So the energy estimate we have made fails in most cases of 2d, thus we will derive a
new estimate
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Energy estimate for 2 dimensions

We will do the following decomposition, in order to use energy methods.

Definition 5. Let u be an incompressible smooth velocity field on R2. Then u has radial
energy decomposition if there exist a smooth radial vorticity ω̄(|x|) such that

u(x, t) = v(x, t) + b(x, t)

• v ∈ L2(R2) and divv = 0

• b(x,t)is defined via ω̄ by

b(x) =

(
−x2
x1

)
1

|x|2

ˆ |x|

0
sω̄(s, t)ds

Remark

1. This decomposition is not unique, if we choose another radial vorticity, then we
will have another decomposition.

2. Recall that the total flux of vorticity for the solutions of the Euler equation is
constant in time.Thus we have that

´ |x|
0 sω̄(s, t)ds =

´ |x|
0 sω̄(s, 0)ds so we can find

b(x,t) from the initial value of radial vorticity.

Lemma 11. 11 Any smooth incompressible velocity field with vorticity in L1 has
radial energy decomposition

We proceed now with the seeking of a class of solutions for Euler and Navier Stokes,
which have radial vorticity.
We search for steady flows. The flow of a fluid is steady if its velocity and all values
depending on its substance are independent of time12. So now we will see the relation
between stream functions and steady flows.
We begin with the vorticity equation in two dimensions.
Recall that:

∂

∂t
ω + u1

∂

∂x1
ω + u2

∂

∂x2
= 0 (V)

We know that since the field is incompressible there exist a stream function ψsuch that
u1 = − ∂

∂tψ and u2 = ∂
∂tψ.

We substitute those two in (V) and we get

∂

∂t
ω − ∂

∂x2
ψ
∂

∂x1
ω +

∂

∂x1
ψ
∂

∂x2
ω = 0

Since the steady flow

− ∂

∂x2
ψ
∂

∂x1
ω +

∂

∂x1
ψ
∂

∂x2
ω = 0 ⇔

11See [30] lemma 3.2
12[8] pg 72
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∣∣∣∣∣ ∂
∂x1

ψ ∂
∂x2

ψ
∂
∂x1

ω ∂
∂x2

ω

∣∣∣∣∣ = 0

This matrix is the Jacobian of the field (ψ, ω), by this we take that ∇ψ and ∇ω are
parallel13. This means that if we have a level curve of ψ in a specific point, then ∇ψ is
c and parallel to this curve, thus ∇ω is parallel to this curve, so ω along this level curve
is constant. Doing this procedure for every level curve of ψ, we conclude that there is
a function F so that ω = F (ψ).
We also know that ω = ∆ψ. Consequently, a stream function defines a steady solution
to the 2 dimensional Euler equation ⇐⇒ ∆ψ = F (ψ)
So now we will search for our radial vorticity, we know that ∆ψ = ω̄(|x|) we know that
the Laplace operator is invariant under rotation indeed

In N dimensions for rotation we know there exist an orthogonal matrix B such that
x′ = BX and BBT = BTB = I we have that

x′k =
∑
i

bkixi

for the relation between derivatives after this translation we compute

∂

∂xi
=
∑
k

∂

∂xi
x′k

∂

∂x′k
=
∑
k

bki
∂

∂x′k

and for the second derivatives we have that

∂2

∂x2i
=
∑
k

bki
∂

∂x′k

∑
l

bli
∂

∂x′l
=
∑
k,l

bkibli
∂2

∂x′k∂x
′
l

So for the Laplace operator we see that

∆x =
∑
i

∂2

∂x2i
=
∑
i

∑
k,l

bkibli
∂2

∂x′k∂x
′
l

=
∑
k,l

(∑
i

bkibli

)
∂2

∂x′k∂x
′
l

=
∑
k,l

δkl
∂2

∂x′k∂x
′
l

where δkl thus ∆x =
∑

k
∂2

∂x′k
2 = ∆x′

Therefore the solutions of the Laplace equation will be invariant under rotation, this
means that the stream function will be radial .

Lemma 12. Assume that ω0(|x|) then this radial vorticity defines a steady solution to
the 2D Euler equation.

13we expand them in 3 dimensions with the 3d coordinate be a zero so ∇ψ × ∇ω =∣∣∣∣∣∣
i j k

∂
∂x1

ψ ∂
∂x2

ψ 0
∂

∂x1
ω ∂

∂x2
ω 0

∣∣∣∣∣∣ = 0
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Proof of lemma:It is sufficient to show that the determinant of the Jacobian of the
(ψ0,∆ψ0) is zero. This is true since the gradient of radial functions on a point
pointing away or towards the origina

aLet f be a radial function then there exist a function g so that f = g(x2 + y2) so for a random
(x0, y0) we see that ∇f(x0, y0) = (2x0g

′, 2y0g
′)

So now we will find the stream function, we set |x| = r

{
x1 = r cosϕ

x2 = r sinϕ
and we will find

the Laplace operator in polar coordinates.
The Jacobian of this change to polar coordinates is:

J =

(
cosϕ sinϕ

−r sinϕ r cosϕ

)
and the Jacobian of the inverse is:

J− =

(
cosϕ − sinϕ

r

sinϕ cosϕ
r

)
.

So for the derivatives we have

{
∂
∂x1

= ∂r
∂x1

∂
∂r +

∂ϕ
∂x1

∂
∂ϕ

∂
∂x2

= ∂r
∂x2

∂
∂r +

∂ϕ
∂x2

∂
∂ϕ

and for the Laplacian we get:

∆ =
∂2

∂x21
+

∂2

∂x22
= cos2 ϕ

∂2

∂r2
− cosϕ

∂

∂r

sinϕ

r

∂

∂ϕ
− sinϕ

r

∂

∂ϕ
cosϕ

∂

∂r
+
∂ϕ

r

∂

∂ϕ

sinϕ

r

∂

∂ϕ

+sin2 ϕ
∂2

∂r2
+ sinϕ

∂

∂r

cosϕ

r

∂

∂ϕ
+

cosϕ

r

∂

∂ϕ
sinϕ

∂

∂r
+

cosϕ

r

∂

∂ϕ

cosϕ

r

∂

∂ϕ
⇒

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ϕ
.

So now we have that
∂2

∂r2
ψ(r) +

1

r

∂

∂r
ψ(r) = ω(r)

So ∂
∂rψ(r) =

1
r

´ r
0 sω̄(s)ds.

We will determine the velocity

{
u1 = − ∂ψ

∂x2
= −∂ψ

∂r
∂r
∂x2

= −x2
r
∂ψ
∂r

u2 =
∂ψ
∂x1

= ∂ψ
∂r

∂r
∂x1

= x1
r
∂ψ
∂r

Thus u(x) =
(−x2

r
x1
r

)
1
r

´ r
0 sω̄(s)ds replacing r = |x| we have

u(x) =

(−x2
|x|2
x1
|x|2

)ˆ |x|

0
sω̄(s)ds

Remark:The solution is steady thus u(x, t) = u(x)
The only thing to examine now is the viscous fluids. We start again with the vorticity
equation

∂

∂t
ω(x, t) +

∑
j

uj
∂

∂xj
ω(X, t) = ν∆ω(x, t)
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Again the velocity field is incompressible so we have

∂

∂t
ω(x, t) +

∣∣∣∣∣ ∂ψ∂x1 ∂ψ
∂x2

∂ω
∂x1

∂ω
∂x2

∣∣∣∣∣ = ν∆ω(x, t)

Since the solution ψ is also radial the determinant is zero. Thus we have ∂ω
∂t = ν∆ω

This is a heat equation we assume that the initial vorticity is ω|t=0 = ω0(|x|), therefore

ω(x, t) = 1
4πvt

´
R2 e

− |x−y|2
4vt ω(|y|)dy, we see that the vorticity depends on x by |x| so its

a radial vorticity. We use again the Laplace operator in polar coordinates so we have
that

u(x) =

(−x2
|x|2
x1
|x|2

)ˆ |x|

0
sω0(s)ds

So far we have find a solution for Euler and Navier-Stokes which is defined by a radial
vorticity, so this solution will play the role we want for the decomposition.

Proposition 3.3.2. Every smooth solution u(x,t) of the Euler or the Navier-Stokes with
initial vorticity ω0 ∈ L1 has radial energy decomposition

Proof. We choose any radial vorticity with initial value such that
ˆ
R2

ω̄0(x)dx =

ˆ
R2

ω0(x)dx

In the previous work, we have defined an exact solution with radial vorticity. So "b" is
the radial eddy above and is the same as in the definition, so in order to complete the
proof, we seek a v such that

v(x, t) = u(x, t)− b(x, t)

, if this v is div free and has finite kinetic energy we are done.
Firstly we know that u and b solve the Euler or the Navier Stokes so divu = divb = 0
So

divv(x, t) = divu(x, t)− divb(x, t) ⇒

divv(x, t) = 0

So know we want to see if u has finite kinetic energy .

ωv(x, t) = ω(x, t)− ω̄(x, t) ⇒
ˆ
R2

ωv(x, t)dx =

ˆ
R2

ω(x, t)dx−
ˆ
R2

ω̄(x, t)dx⇒

ˆ
R2

ωv(x, t)dx =

ˆ
R2

ω0(x)dx−
ˆ
R2

ω̄0(x)dx = 0

And by the Remark below the proposition 3.3.1 we have the desired result
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Remark:The radial vorticity on the above decomposition and consequently the ve-
locity field b are known. So we will deal only with the field v(x, t) Since u and b are
solutions of N-S we have that

∂u

∂t
+ (u · ∇)u = −∇p+ ν∆u+ F

∂b

∂t︸︷︷︸
=0

+(b · ∇)b = −∇pb + ν∆b

We subtract those relations and we get :

∂u

∂t
− ∂b

∂t
+ (u · ∇)u− (b · ∇)b = −∇p+∇pb + ν∆u− ν∆b+ F

∂v

∂t
+ (u · ∇)u− (b · ∇)b− (b · ∇)u+ (b · ∇)u− (b · ∇)b = −∇p+∇pb + ν∆v + F

∂v

∂t
+ (v · ∇)u+ (b · ∇)(u− b) = −∇p+∇pb + ν∆v + F

So we reach to the relation14:

∂v

∂t
+ (b · ∇)v + (v · ∇)b+ (v · ∇)v = −∇p+∇pb + ν∆v + F (1)

Thus we have the following energy estimate

Proposition 3.3.3. Assume that u1, u2 are to smooth solutions for Navier-Stokes with
radial energy decomposition ui = vi+bi external forces Fi and pressures pi then we have
the following energy estimate

sup
0≤t≤T

∥v1 − v2∥L2 ≤ e
´ T
0 ∥∇v2∥L∞+∥∇b1∥L∞ ∥(v1 − v2)|t = 0∥L2

+e
´ T
0 ∥∇v2∥L∞+∥∇b1∥L∞

ˆ T

0
∥F1−F2∥L2+∥b1−b2∥L∞∥∇v2∥L2+∥∇b1−∇b2∥L∞∥v2∥L2dt

Proof. We define ṽ = v1 − v2, b̃ = b1 − b2,F̃ = F1 − F2, p̃ = p1 − p2 and p̃b = pb1 − pb2
We will find a relation between them. By the relation (1) above we have that:

∂v1
∂t

+ (b1 · ∇)v1 + (v1 · ∇)b1 + (v1 · ∇)v1 = −∇p1 −∇pb1 + ν∆v1 + F1

and

∂v2
∂t

+ (b2 · ∇)v2 + (v2 · ∇)b2 + (v2 · ∇)v2 = −∇p2 −∇pb2 + ν∆v2 + F2

Thus

∂v1
∂t

− ∂v2
∂t

+ (b1 · ∇)v1 + (v1 · ∇)b1 + (v1 · ∇)v1 − (b2 · ∇)v2 − (v2 · ∇)b2 − (v2 · ∇)v2

14b(x,t) is a solution to Navier Stokes with external force zero
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= −∇p1 −∇pb1 + ν∆v1 + F1 +∇p2 +∇pb2 − ν∆v2 − F2

Our aim is to reach a relation with most orders be the tilded ones.

∂ṽ

∂t
+ (v1 · ∇)v1 − (v1 · ∇)v2 + (v1 · ∇)v2 − (v2 · ∇)v2 + (b1 · ∇)v1 − (b1 · ∇)v2 + (b1 · ∇)v2

−(b2 · ∇)v2 + (v1 · ∇)b1 − (v2 · ∇)b1 + (v2 · ∇)b1 − (v2 · ∇)b2 = −∇p̃−∇p̃b + ν∆ṽ + F̃

Thus

∂ṽ

∂t
+ (v1 · ∇)(v1 − v2) + [(v1 − v2) · ∇]v2 + (b1 · ∇)(v1 − v2) + [(b1 − b2) · ∇]v2

+(v1 − v2) · ∇b1 + v2 · ∇(b1 − b2) = −∇p̃−∇p̃b + ν∆ṽ + F̃

We conclude that

∂ṽ

∂t
+(v1 ·∇)ṽ+(ṽ ·∇)v2+(b1 ·∇)ṽ+(b̃·∇)v2+(ṽ ·∇)b1+(v2 ·∇)b̃ = −∇p̃−∇p̃b+ν∆ṽ+F̃

(2)
The procedure we will follow is exactly the same as in the previous estimate
ˆ
R2

(
∂ṽ

∂t
+ (v1 · ∇)ṽ + (ṽ · ∇)v2 + (b1 · ∇)ṽ + (b̃ · ∇)v2 + (ṽ · ∇)b1 + (v2 · ∇)b̃

)
ṽdx

=

ˆ
R2

(
−∇p̃−∇p̃b + ν∆ṽ + F̃

)
ṽdx

We compute

• ˆ
R2

∇p̃ · ṽdx = −
ˆ
R2

p̃divṽ = 0

• ˆ
R2

∆ṽ · ṽdx = −
ˆ
R2

∇ṽ · ∇ṽ

• ˆ
R2

ṽ
∂ṽ

∂t
dx =

(ˆ
R2

|ṽ|2dx
) 1

2 d

dt

(ˆ
R2

|ṽ|2dx
)

• ˆ
R2

[(v1 · ∇)ṽ]ṽdx =

ˆ
R2

∑
i,j

v1j ṽi
∂

∂xj
ṽidx =

∑
i,j

ˆ
R2

v1j ṽi
∂

∂xj
ṽidx

Thus by integration by parts
ˆ
R2

v1j ṽi
∂

∂xj
ṽidx = −

ˆ
R2

ṽ2i
∂v1j
∂xj

dx−
ˆ
R2

ṽ1v1j
∂vi
∂xj

So ˆ
R2

[(v1 · ∇)ṽ]ṽdx = 0
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• ˆ
R2

[(b1 · ∇)ṽ]ṽ = 0

as above.

So we have

∥ṽ∥L2

d

dt
∥ṽ∥L2 + ν∥∇ṽ∥2L2 ≤

ˆ
R2

(∇v2ṽ) · ṽdx+

ˆ
R2

(∇v2b̃) · ṽdx

+

ˆ
R2

(∇b1ṽ) · ṽdx+

ˆ
R2

(∇b̃v2) · ṽ +
ˆ
R2

F̃ · ṽdx

By Holder inequality on the right part we have that

∥ṽ∥L2

d

dt
∥ṽ∥L2 ≤ ∥ṽ∥L2 ∥ṽ∥L2 ∥∇v2∥L∞ + ∥ṽ∥L2 ∥∇v2∥L2 ∥b̃∥L∞

+∥ṽ∥L2 ∥ṽ∥L2 ∥∇b1∥L∞ + ∥ṽ∥L2 ∥v2∥L2 ∥∇b∥L∞ + ∥F̃∥L2 ∥ṽ∥L2

We will apply Gronwall s lemma to the relation:

d

dt
∥ṽ∥L2 ≤ ∥ṽ∥L2 ∥∇v2∥L∞+∥∇v2∥L2 ∥b̃∥L∞+∥ṽ∥L2 ∥∇b1∥L∞+∥v2∥L2 ∥∇b̃∥L∞+∥F̃∥L2

= (∥∇v2∥L∞ + ∥∇b1∥L∞) ∥ṽ∥L2 +
(
∥∇v2∥L2 ∥b̃∥L∞ + ∥v2∥L2 ∥∇b̃∥L∞ + ∥F̃∥L2

)
We set q = ∥ṽ∥L2(RN ), p = ∥∇v2∥L∞+∥∇b1∥L∞ and z = ∥∇v2∥L2 ∥b̃∥L∞+∥v2∥L2 ∥∇b̃∥L∞+

∥F̃∥L2 So we have that

sup
0≤t≤T

q(t) ≤
[
q(0) +

ˆ T

0
zdt

]
e
´ T
0 pdt

Substituting everything we conclude that

sup
0≤t≤T

∥v1 − v2∥L2 ≤ e
´ T
0 ∥∇v2∥L∞+∥∇b1∥L∞ ∥(v1 − v2)|t = 0∥L2

+e
´ T
0 ∥∇v2∥L∞+∥∇b1∥L∞

ˆ T

0
∥F1−F2∥L2+∥b1−b2∥L∞∥∇v2∥L2+∥∇b1−∇b2∥L∞∥v2∥L2dt

Remark:

1. As before this estimate does not depend on viscosity so this is also an energy
estimate for the solutions of Euler.
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2. By this energy estimate, we obtain from the result of uniqueness in the 2 dimen-
sions case. Indeed if we assume two solutions to the Navier Stokes equation, with
sam initial data and external forces, we have that F̃ = 0,ṽ0 = 0, and if we choose
the same radial vorticity, then b̃ = 0, so we have that sup0≤t≤T ∥v1 − v2∥L2 ≤ 0
i.e. v1 = v2 and u1 = v1 + b = v2 + b+ u2.
Furthermore, we have an estimate for the supremum of the difference of solutions
of the Navier-Stokes and the Euler. We suppose that the solution of Euler u0 is a
solution to Navier Stokes with external force −ν∆u0 and the solution of the Navier
Stokes uν with external force zero then we get that sup0≤t≤T ∥u−u0∥L2 ≤ c(T )ν.

3. We can also find a gradient control for solutions of the Navier Stokes, indeed we
use the relation:

1

2

d

dt
∥ṽ∥L2 + ν∥∇ṽ∥2L2 ≤ ∥ṽ∥2L2 (∥∇v2∥L∞ + ∥∇b1∥L∞)

+∥ṽ∥L2

(
∥b̃∥L∞∥∇v2∥L2 + ∥v2∥L2∥∇b̃∥L∞ + ∥F̃∥L2

)
We set p = ∥∇v2∥L∞+∥∇b1∥L∞ and q = ∥b̃∥L∞∥∇v2∥L2+∥v2∥L2∥∇b̃∥L∞+∥F̃∥L2

We integrate over time and we do Holder on the right side so

ν

ˆ T

0
∥∇ṽ∥2L2dt ≤ ∥ṽ|t=0∥2L2+

(
sup

0≤t≤T
∥ṽ∥L2

)2

+

ˆ T

0
∥p∥L∞dt+ sup

0≤t≤T
∥ṽ∥L2

ˆ T

0
qdt

We do the calculations and we have that

ν

ˆ T

0
∥∇ṽ∥2L2dt ≤ c(p, T )

[
ν

ˆ T

0
∥ṽ|t=0∥2L2 + ∥b̃∥L∞∥∇v2∥L2 + ∥v2∥L2∥∇b̃∥L∞dt

]
Summarizing in this section, we have seen some basic properties of the solutions of our
equations, and, we have derived some important classes of solutions. But do we have a
general result for the existence of solutions? We will answer this question in the next
chapters.
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CHAPTER 4
Existence of local in time
smooth solutions

In the previous chapter, we used energy estimates to obtain some interesting results
about the properties of "hypothetical" solutions to the Euler and Navier Stokes equa-
tions. However, we are yet to find a general result for the existence of these solutions.
We have only been able to find exact solutions through examples. In this chapter, we
will discuss the existence of the solution locally in time.
Before we begin the search for these solutions, we will provide a brief introduction to
some functional spaces and basic tools that we will need for the following proofs.

4.1 Preliminaries

Sobolev spaces

Definition 6. We define the m-th order, Lp Sobolev space in RN with m, p ∈ Z+
0 to

be the space of functions which are p-integrable and their distribution derivatives up to
order m are p-integrable. We denote Wm,p(RN ).

For p = 2 we denote the Sobolev space of square-integrable functions together with
all their distribution derivatives as Hm(RN ).
We aim to generalize those spaces for m ∈ RN . We will do this generalization via
Fourier transform1. This idea is not arbitrary and this is because for L2 functions by
Plancherels theorem2, and the fact that the space L1(RN )∩L2(RN ) is dense in L2(RN )
we can extend the Fourier transform as a function for L2(RN ) to L2(RN ).
Indeed let g ∈ L2(RN ) since L1(RN )∩L2(RN ) is dense in L2(RN ) we can find a sequence
{gn}∞n=1 ∈ L1(RN ) ∩ L2(RN ) such that ∥g − gn∥L2(RN ) → 0.
We define gn(x) = g(x)χ[−n,n](x). We have that gn ∈ L1(RN ) since

ˆ
RN

|gn(x)|dx =

ˆ
RN

|g(x)χ[−n,n](x)

1Let f ∈ L1(RN ) we define the Fourier transform of this function to be f̂(ξ) =
´
RN e−iξxf(x)dx

For a more detailed discussion about Fourier transform see [22]
2Plancherels theorem: Let f ∈ L1(RN ) ∩ L2(RN ) then f̂ ∈ L2(RN ) and ∥f̂∥L2(RN ) = ∥f∥L2(RN )
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By Holders inequality, and the fact that g is square integrable we obtain:
ˆ
RN

|gn(x)|dx ≤ c∥g∥L2(RN ) <∞

Furthermore gn is a Cauchy sequence in L2(RN ) because it converges in L2(RN ), so

∀ϵ > 0 ∃n0 ∈ N such that ∀n,m > N we have that ∥gn − gm∥L2(RN ) < ϵ

By Plancherels theorem, since gn−gm ∈ L1(RN )∩L2(RN ) we have that ∥ ̂gn − gm∥L2(RN ) =

∥ĝn − ĝm∥L2(RN ) = ∥gn − gm∥L2(RN )
3. So ĝn is a Cauchy sequence. The space L2(RN )

is a Banach space so since ĝn is Cauchy in this space, there exist a F ∈ L2(RN ) such
that ĝn → F . So we define the Fourier transform of g in L2(RN ) to be ĝ = F .
Remark:It is not possible to generalize Lp Sobolev spaces with Fourier transform due
to the lack of a good relation between norms, as provided by Plancherel’s theorem
To achieve our goal, we must take into consideration that the space of distribution
derivatives, known as D′, is too vast to offer a clear definition for the Fourier transform.
Hence, we bring in the space of tempered distributions, referred to as S′4. This space
is the dual of the space of rapidly decreasing functions, known as S. i.e.

S(RN ) =

{
f ∈ C∞(RN ) : sup

x∈RN

|xaDbf(x)| <∞ ∀ multindicies a, b ≥ 0

}

The space S′ includes all the functionals f [ϕ] =
´
RN fϕdx with ϕ ∈ S

Note:This space is named space of tempered distribution because of the polynomial
(tempered) growth of distributions.
Another great advantage of Fourier transform is that, loosely speaking Fourier transform
exchanges differentiation with multiplications i.e. we have the following proposition.

Proposition 4.1.1. Let Daf ∈ L1 or L2 ∀a ≥ 0 then D̂af(ξ) = (iξ)af̂(ξ)

Proof. By the definition of Fourier transform we have that:

D̂af(ξ) =

ˆ
RN

e−iξxDaf(x)dx

By integration by parts we get
ˆ
RN

e−iξxDaf(x) = (−1)|a|
ˆ
RN

Da(e−iξx) f(x)dx = (iξ)af̂(ξ)

So we conclude that :
D̂af(ξ) = (iξ)af̂(ξ)

3Let f, g ∈ L1(RN ) then f̂ − g(ξ) =
´
RN e−iξx(f(x) − g(x))dx =

´
RN e−iξxf(x)dx −´

RN e−iξxg(x)dx = f̂(ξ)− ĝ(ξ)
4as described in [20], Chapters 7,9
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Note: Using the Fourier transform we have "turned" derivatives to products, hence
the assumption of smoothness can be replaced with the assumption of rapidly decaying.
We define the Fourier transform for f ∈ S to be f̂(ξ) =

´
RN e

−iξxf(x)dx.

Proposition 4.1.2. The Fourier transform is a tempered distribution.

Proof. Let g, ϕ ∈ S ˆ
RN

ĝ(x)ϕ(x)dx =

ˆ
RN

ϕ(x)

ˆ
RN

e−iyxg(y)dydx

By Fubini’s theorem we have thatˆ
RN

ĝ(x)ϕ(x)dx =

ˆ
RN

ˆ
RN

e−iyxϕ(x)dxg(y)dy =

ˆ
RN

ϕ̂(x)g(x)dx

We define for f ∈ S′ the Fourier transform f̂ ∈ S′ to be the distribution defined by

f̂ [ϕ] = f [ϕ̂] ∀ϕ ∈ S

All the above results together with the following theorem show us which path to follow
for the desire generalization.

Theorem 4.1.1. 5 f ∈ Hm(RN ) ⇐⇒ (1 + |ξ|2)
m
2 f̂(ξ) ∈ L2(RN )

Proof. By Plancherels’s theorem we have that

∥Daf∥L2(RN ) = ∥D̂af∥L2(RN ) = ∥(iξ)af̂(ξ)∥L2(RN )

Consequently taking the sum above this relation we get that∑
|a|≤m

∥Daf∥2L2(RN ) =
∑
|a|≤m

ˆ
RN

|ξa|2|f̂(ξ)|2dξ (T 4.1.1)

We will use this lemma

Lemma 13. There exist positive constants, name c1, c2 such that

c1(1 + |ξ|2)m ≤
∑
|a|≤m

|ξa|2 ≤ c2(1 + |ξ|2)m

proof of lemma:
We know that {

|ξa| ≤ 1 for |ξ| ≤ 1

|ξa| ≤ |ξ||a| ≤ |ξ|m for |ξ| ≥ 1 and |a| ≤ m

So we have that
∑

|a|≤m |ξa|2 ≤ c2max{1, |ξ|2m} ≤ c2(1 + |ξ|2)m and we are done
with the right inequality.
We continue in order to prove the left inequality, we have that |ξ|2m ≤ c

∑n
j=1 |ξmj |2

5[21], pg 301
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so

(1 + |ξ|2)m ≤ 2mmax{1, |ξ|2m} ≤ 2mc(1 +
n∑
j=1

|ξmj |2) ≤ c̃
∑
|a|≤m

|ξa|2

Setting c1 = 1
c̃ we have proved the left inequality.

(⇒) Assume that f ∈ Hm then ∥f∥Hm <∞ where ∥f∥Hm =
(∑

|a|≤m ∥Daf∥2L2

) 1
2

We have that ˆ
RN

|(1 + |ξ|2)
m
2 f̂ |2dξ =

ˆ
RN

(1 + |ξ|2)m|f̂ |2dξ

Using the above lemma we get that
ˆ
RN

|(1 + |ξ|2)
m
2 f̂ |2dξ ≤ 1

c1

ˆ
RN

∑
|a|≤m

|ξa|2|f̂ |2dξ

By the relation (T 4.1.1)
ˆ
RN

|(1 + |ξ|2)
m
2 f̂ |2dξ ≤ 1

c1

∑
|a|≤m

∥Daf∥2L2(RN ) = ∥f∥Hm <∞

So
(´

RN |(1 + |ξ|2)
m
2 f̂ |2dξ

) 1
2
<∞

(⇐) Assume now that (1 + |ξ|2)
m
2 f̂(ξ) ∈ L2 then

´
RN (1 + |ξ|2)m|f̂ |2dξ <∞

By the above lemma we have that 1
c2

´
RN

∑
|a|≤m |ξa|2f̂(ξ)dξ <∞

So by relation (T 1.1.1) we get that

1

c2

∑
|a|≤m

∥Daf∥2L2 <∞

I.e. ∑
|a|≤m

∥Daf∥2L2

 1
2

= ∥f∥Hm <∞

Finally we define Hs for s ∈ RN as

Hs =

{
f ∈ S′(RN ) : ∥f∥Hs =

(ˆ
RN

|f̂(ξ)|2(1 + |ξ|2)sdξ
) 1

2

<∞

}

We now continue with some properties in Sobolev spaces.

Theorem 4.1.2 (Sobolev embedding). The space Hs+k with s > n
2 and k ∈ Z+

0 is
continuously embedded to Ck i.e.∃c > 0 such that

∥f∥Ck ≤ c∥f∥Hs+k
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Proof. We remind that the norm in space Ck is ∥u∥Ck = sup|a|≤k supx∈RN |Daf(x)|
For |a| ≤ k we have that

´
RN |D̂af |dξ =

´
RN |(iξ)af̂(ξ)|dξ

So ˆ
RN

|D̂af |dξ ≤
ˆ
RN

(1 + |ξ|2)
k
2 |f̂(ξ)|dξ =

ˆ
RN

(1 + |ξ|2)
k
2
+ s

2 |f̂(ξ)|(1 + |ξ|2)
−s
2 dξ

By Cauchy -Schwartz inequality we getˆ
RN

(1 + |ξ|2)
k
2
+ s

2 |f̂(ξ)|(1 + |ξ|2)
−s
2 dξ

≤
(ˆ

RN

(1 + |ξ|2)k+s|f̂(ξ)|2dξ
) 1

2
(ˆ

RN

(1 + |ξ|2)−sdξ
) 1

2

= ∥f∥Hs+k

(ˆ
RN

(1 + |ξ|2)−sdξ
) 1

2

For the integral, by using polar coordinates we have thatˆ
RN

(1 + |ξ|2)−sdξ = c

ˆ ∞

0
(1 + r2)−srN−1dr

=

[ˆ 1

0
(1 + r2)−srN−1dr +

ˆ ∞

1
(1 + r2)−srN−1dr

]
≤ 6c

(ˆ 1

0
rN−1dr +

ˆ ∞

1

1

r2s
rN−1dr

)
≤ c

([
rN

N

]1
0

+

ˆ ∞

1
rN−2s−1dr

)

≤ c

(
1 + lim

t→∞

[
rN−2s

N − 2s

]t
1

)
For s > N

2 the limit quantity is finite, thus we assume that the integral takes a value,
say C.
Consequently

∥D̂af∥L1 =

ˆ
RN

|D̂af |dξ ≤ C∥f∥Hs+k

By Fourier inversion theorem7 we get that supx∈RN |Daf | ≤ ∥D̂af∥L1 .
So sup|a|≤k supx∈RN |Daf(x)| ≤ C∥f∥Hs+k

6It is true that r2 ≤ r2 + 1 and (r2)s ≤ (r2 + 1)s

7Let f be a continuous and integrable function with Fourier transform f̂(ξ) then f(x) =
1
2π

´∞
−∞ f̂(ξ)eiξxdξ

Proof:
1

2π

ˆ ∞

−∞
f̂(ξ)eiξxdξ =

1

2π

ˆ ∞

−∞

ˆ ∞

−∞
f(y)e−iξydyeiξxdξ =

1

2π

ˆ ∞

−∞
f(y)

ˆ ∞

−∞
e−iξyeiξxdξdy =

1

2π

ˆ ∞

−∞
f(y)êiξxdy =

1

2π

ˆ ∞

−∞
f(y)2πδ(y − x)dy = f(x)
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We also have the following proposition which generalize the Leibniz rule for the
product of Sobolev functions.

Proposition 4.1.3 (Leibniz rule). 8 Let U be an open subset of RN and p, p′ that satisfy
the relation 1

p +
1
p′ = 1. If f ∈W k,p(U) and g ∈W k,p′(U) then f · g ∈W k,1(U) and

Da(f · g) =
∑

0≤m≤a
Dmf ·Da−mg (P 4.1.3)

Proof. The space W k,p(U) ∩ C∞(U) is dense in W k,p(U)so there exists a sequence
{fn}∞n=1 ∈W k,p(U) ∩ C∞(U) such that fn → f in W k,p(U).
Let g ∈W k,p′(U) and ϕ a test function. Then

• For |a| = 1 , Da is a first order derivative so
ˆ
U
(fng)D

aϕdx =

ˆ
U
g

(
fn

∂

∂xi
ϕ

)
dx

= −
ˆ
U
gϕ
∂fn
∂xi

dx+

ˆ
U
g
∂

∂xi
(fnϕ)dx

So
∂

∂
(fn · g) = g

∂

∂xi
fn + fn

∂

∂xi
g

For n→ ∞ we get ∂
∂xi

(f · g) = g ∂
∂xi
f + f ∂

∂xi
g

• Assume that the relation (P 4.1.3) is true for all multindicies up to order k.

• We set |a| = |b+ c| = |b|+ |c| = l + 1 with l ≤ k then
ˆ
U
(fng)D

aϕdx = (−1)|b|
ˆ
U
Db(fng)D

cϕdx

= (−1)|b|(−1)|c|
ˆ
U
Dc(Dbfng)ϕdx

= (−1)|a|
ˆ
U
Dc

∑
m≤b

(
b
c

)
DmfnD

b−mg

ϕdx

= (−1)|a|
ˆ
U

∑
m≤b

(
b
c

)[
DmfnD

c−mg +Dc+mfnD
b−mg

]
ϕdx

Consequently we have that ˆ
U
(fng)D

aϕdx

= (−1)|a|
ˆ
U

∑
m≤b

(
b
c

)
DmfnD

a−mg +
∑
m≤b

(
b

m− c

)
DmfnD

a−mg +

(
b
b

)
DmfnD

ag

ϕdx
8[6], pg 124

102



Chapter 4 4.1. Preliminaries

= (−1)|a|
ˆ
U

∑
m≤a

(
a
m

)
DmfnD

a−mgdx

We conclude that Da(fn · g) =
∑

m≤a

(
a
m

)
Dmfn · Da−mg for n → ∞ then

Da(f · g) =
∑

m≤a

(
a
m

)
Dmf ·Da−mg

Remark:We know that there exists an extension operator E fromW k,p(U) toW k,p(RN )9
so that for f ∈W k,p(U) we have

f̃ = Ef = f a.e. U

and
Daf̃ = Daf

So we are able to extend the above result in RN . Now we will prove the following
estimates for the Hm norm of the product of Sobolev functions.

Proposition 4.1.4. ∀m ∈ Z+
0 ,∃c such that ∀u, v ∈ L∞(RN ) ∩Hm(RN ) then

(i)
∥u · v∥Hm ≤ c {∥u∥L∞∥v∥Hm + ∥u∥Hm∥v∥L∞} (P 4.1.4 i)

(ii) ∑
0≤m≤a

∥Da(u · v)− uDav∥L2 ≤ c {∥∇u∥L∞∥v∥Hm−1 + ∥u∥Hm∥v∥L∞} (P 4.1.4 ii)

Proof. (i) Assume u, v ∈ Hm(RN ) we have by the above proposition that

Da(u · v) =
∑
b≤a

ca D
bu ·Da−bv

for all multindices a,b
So for the L2 norm of the derivative of the product we get that

∥Da(u · v)∥L2 = ∥
∑
b≤a

ca D
bu ·Da−bv∥L2

We choose |a| = s ∈ [0,m] and s is an integer, then we have that s − |b| = |a − b| and
we apply the Holder inequality with conjugates |b|

2s and |a−b|
2s So we have that

Da(u · v) =
∑
b≤s

cs ∥Dbu∥
L

2s
|b|

∥Da−bv∥
L

2s
|a−b|

9[4] section 5.17
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Chapter 4 4.1. Preliminaries

We will estimate each derivative by the Gagliardo-Nirenberg inequality10:

In our case u ∈ L∞(RN ) ∩ Hm(RN ) so for p = 2s
|b| ,q = ∞,k = s,r = 2,j = |b| and

θ = |b|
s we have that

∥Dbu∥
L

2s
|b|

≤ cb∥Dsu∥
|b|
s

L2 ∥u∥1−
|b|
s

L∞

Similarly for v ∈ L∞(RN ) ∩ Hm(RN ) so for p = 2s
|a−b| ,q = ∞,k = s,r = 2,j = |a − b|

and θ = |a−b|
s we have that

∥Da−bv∥
L

2s
|a−b|

≤ ca,b∥Dsv∥
|a−b|

s

L2 ∥u∥1−
|a−b|

s
L∞

We conclude that

Da(u · v) ≤ cs
∑
b≤s

(
cb∥Dsu∥

|b|
s

L2 ∥u∥1−
|b|
s

L∞ ca,b∥Dsv∥
|a−b|

s

L2 ∥u∥1−
|a−b|

s
L∞

)

It is also true that 1− |b|
m = |a−b|

m we get that

Da(u · v) ≤ cs
∑
b≤s

c̃a,b

[
(∥v∥L∞∥Dsu∥L2)

|b|
s (∥u∥L∞∥Dsv∥L2)

|a−b|
s

]
Thus

Da(u · v) ≤ C (∥v∥L∞∥Dau∥L2 + ∥u∥L∞∥Dav∥L2) (1)

This equation is true for all a=s we will take the sum of this relation over all s ∈ [0,m]

• |a| = 0 then we get

∥u · v∥L2 ≤ C (∥v∥L∞∥u∥L2 + ∥u∥L∞∥v∥L2)

• |a| ≤ 1 then we get∑
a≤1

∥Da(u · v)∥2L2 = ∥u · v∥2L2 + ∥D(u · v)∥2L2

Therefore by the first case and relation (1)∑
a≤1

∥Da(u·v)∥2L2 ≤ C
[
(∥v∥L∞∥u∥L2 + ∥u∥L∞∥v∥L2)2 + (∥v∥L∞∥Du∥L2 + ∥u∥L∞∥Dv∥L2)2

]
10[19]

Assume that f ∈ Lq ∩W k,r with 1 ≤ q ≤ ∞ and a j ∈ N such that j < k.
If

1

p
=

j

N
+ θ

(
1

r
− k

N

)
+

1− θ

q

Then there exists a positive constant c such that :

∥Djf∥Lp ≤ cp∥Dkf∥θLr∥u∥1−θ
Lq
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So∑
a≤1

∥Da(u·v)∥2L2 ≤ C (∥v∥L∞∥u∥L2 + ∥u∥L∞∥v∥L2 + ∥v∥L∞∥Du∥L2 + ∥u∥L∞∥Dv∥L2)2

Since the function of square root is an increasing function we have that∑
a≤1

∥Da(u · v)∥2L2

 1
2

≤ C (∥v∥L∞∥u∥L2 + ∥u∥L∞∥v∥L2 + ∥v∥L∞∥Du∥L2 + ∥u∥L∞∥Dv∥L2)

Consequently

∥u · v∥H1 ≤ C [∥v∥L∞ (∥u∥L2 + ∥Du∥L2) + ∥u∥L∞ (∥v∥L2 + ∥Dv∥L2)]

Follows that
∥u · v∥H1 ≤ C (∥v∥L∞∥u∥H1 + ∥u∥L∞∥v∥H1)

• |a| ≤ 2 then we get∑
a≤2

∥Da(u · v)∥2L2 = ∥u · v∥2L2 + ∥D(u · v)∥2L2 + ∥D2(u · v)∥2L2

By the two previous cases and relation 1 we get∑
a≤2

∥Da(u·v)∥2L2 ≤ C (∥v∥L∞∥u∥L2 + ∥u∥L∞∥v∥L2)2+C (∥v∥L∞∥Du∥L2 + ∥u∥L∞∥Dv∥L2)2

+C
(
∥v∥L∞∥D2u∥L2 + ∥u∥L∞∥D2v∥L2

)2
Therefore ∑

a≤2

∥Da(u · v)∥2L2

 1
2

≤ C

(
∥v∥L∞∥u∥L2 + ∥u∥L∞∥v∥L2

+∥v∥L∞∥Du∥L2 + ∥u∥L∞∥Dv∥L2 + ∥v∥L∞∥D2u∥L2 + ∥u∥L∞∥D2v∥L2

)
Consequently

∥u · v∥H2 ≤ C (∥v∥L∞∥u∥H2 + ∥u∥L∞∥v∥H2)

Repeating this procedure m times we conclude that

∥u · v∥Hm ≤ C (∥v∥L∞∥u∥Hm + ∥u∥L∞∥v∥Hm)

Which completes the proof of (i) we continue with the proof of (ii):
For |a| = s we have that

∥Da(u · v)− uDav∥L2 ≤
∑

b+c=s−1

c∥Db+1u ·Dcv∥L2
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We set Du = ∇u = h and we get that

∥Da(u · v)− uDav∥L2 ≤
∑

b+c=s−1

c∥Dbu ·Dcv∥L2

Recall the steps of the proof of (i)∑
b+c=s−1

∥Dbu ·Dcv∥L2 ≤ Cs
(
∥v∥L∞∥Ds−1h∥L2 + ∥h∥L∞∥Ds−1v∥L2

)
We take the sum above all s ≤ m so∑

a≤m
∥Da(u · v)− uDav∥L2 ≤ cm (∥v∥L∞∥h∥Hm−1 + ∥h∥L∞∥v∥Hm−1)

Substituting h with ∇u we conclude that∑
a≤m

∥Da(u · v)− uDav∥L2 ≤ cm (∥v∥L∞∥u∥Hm + ∥∇u∥L∞∥v∥Hm−1)

Proposition 4.1.5. ∀s > N
2 where s is a real number, then Hs is a Banach algebra.

Proof. To prove that Hs is a Banach algebra it is sufficient to show that for u, v ∈ Hs

it is true that
∥u · v∥Hs ≤ c∥u∥Hs∥v∥Hs

By the definition of the Hs norm via Fourier transform we have that

∥u · v∥Hs =

(ˆ
RN

|û · v(ξ)|2
(
1 + |ξ|2

)s
dξ

) 1
2

For the Fourier transform of the product11, it is true that:

û · v(ξ) =
ˆ
RN

e−iξx (u(x) · v(x)) dx

=

ˆ
RN

1

2π

ˆ
RN

û(p)eipxdpv(x)e−iξxdx

=
1

2π

ˆ
RN

û(p)

ˆ
RN

v(x)e−i(ξ−p)xdxdp

=
1

2π

ˆ
RN

û(p)v̂(ξ − p)dp =
1

2π
û(ξ) ∗ v̂(ξ)

So

|û · v(ξ)|2
(
1 + |ξ|2

)s
=

1

4π2
(
1 + |ξ|2

)s ∣∣∣∣ˆ
RN

û(ξ − p)v̂(p)dp

∣∣∣∣2
11[7] Chapter 11
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≤
(
1 + |ξ|2

)s(ˆ
RN

|û(ξ − p)v̂(p)| dp
)2

Furthermore, it is true that :(
1 + |ξ|2

)s ≤ (1 + 2|ξ − p|2 + 2|p|2
)s

e
(
4 + 2|ξ − p|2 + 2|p|2

)s
= 2s

[(
1 + |ξ − p|2

)
+
(
1 + |ξ|2

)]s
≤ 2s2s−1

((
1 + |ξ − p|2

)s
+
(
1 + |ξ|2

)s)
Consequently, we have that

|û · v(ξ)|2
(
1 + |ξ|2

)s ≤ c
(
1 + |ξ − p|2

)s(ˆ
RN

|û(ξ − p)v̂(p)| dp
)2

+c
(
1 + |ξ|2

)s(ˆ
RN

|û(ξ − p)v̂(p)| dp
)2

By Holder inequality and if we set g =
(
1 + |ξ|2

) s
2 , we get that:

|û · v(ξ)|2
(
1 + |ξ|2

)s ≤ c (|gû| ∗ |v̂|)2 + c (|û| ∗ |gv̂|)2

Thus ∥u · v∥2Hs ≤ ∥gû∥2L2∥v̂∥2L1 + ∥gv̂∥2L2∥û∥2L1

Lemma 14. Assume that f ∈ Hs with s > N
2 then

∥f̂∥L1 ≤ C∥f∥Hs

proof of lemma:

∥f̂∥L1 =

ˆ
RN

|f̂(ξ)|dξ =
ˆ
RN

(
1 + |ξ|2

) s
2 |f̂(ξ)|

(
1 + |ξ|2

)−s
2 dξ

≤ ∥
(
1 + |ξ|2

) s
2 |f̂(ξ)|∥L2∥

(
1 + |ξ|2

)−s
2 ∥L2

We will check the term

∥
(
1 + |ξ|2

)−s
2 ∥L2 ≤

ˆ
RN

(
1 + |ξ|2

)−s
dξ

=

ˆ ∞

0
crN−1 1

(1 + r2)s
dr

≤ c

ˆ 1

0
rN−1dr + c

ˆ ∞

1

1

r2s
rN−1dr

≤ c

(
1 + lim

t→∞

tN−2s

N − 2s
+

1

N − 2s

)
= K <∞

107



Chapter 4 4.1. Preliminaries

It follows that
∥u · v∥2Hs ≤ C∥u∥2Hs∥v∥2Hs

I.e.
∥u · v∥Hs ≤ c∥u∥Hs∥v∥Hs

From now on we will mostly search for solutions in Sobolev space Hm, where energy
methods can be applied. Our approach to finding solutions for the Euler and Navier-
Stokes equations locally in time is to first regularize the equations through convolution
with mollifiers. This will give us a regularized solution for the problem, which we can
then use to approximate and find a solution for the initial problem. To understand the
properties of mollifiers better, let’s list some of their key features.
Mollifiers

Definition 7. Assume that ρ ∈ C∞
c is a radial function with ρ ≥ 0 and

´
RN ρ(|x|)dx =

1. We call ρ standard mollifies.
We also define for ϵ > 0 the function ρϵ(x) = ρ

(
x
ϵ

)
Definition 8. Assume that u ∈ Lp(RN ) with 1 ≤ p ≤ ∞ we define the mollification of
this function as Jϵu = ρϵ ∗ u i.e.

Jϵu = ϵ−N
ˆ
RN

ρ

(
x− y

ϵ

)
u(y)dy

Proposition 4.1.6. 12 Assume Jϵu a mollification as above then Jϵu ∈ C∞

Proof. We will prove this argument bi induction
Assume that x ∈ RN and h sufficiently small we define x+ hei ∈ RN and we get

Jϵu(x+ hei)− Jϵu(x)

h
= ϵ−N

ˆ
RN

1

h

[
ρ

(
x+ hei − y

ϵ

)
− ρ

(
x− y

ϵ

)]
u(y)dy

Since ρ ∈ C∞
c , let K be its compact support then it is true that

1

h

[
ρ

(
x+ hei − y

ϵ

)
− ρ

(
x− y

ϵ

)]
uniformly on K−−−−−−−−−−→

h→0

1

ϵ

∂

∂xi
ρ

(
x− y

ϵ

)
Therefore

∂

∂xi
Jϵu(x) = lim

h→0
ϵ−N
ˆ
RN

1

h

[
ρ

(
x+ hei − y

ϵ

)
− ρ

(
x− y

ϵ

)]
u(y)dy

= ϵ−N
ˆ
K

1

h

[
ρ

(
x+ hei − y

ϵ

)
− ρ

(
x− y

ϵ

)]
u(y)dy

= ϵ−N
ˆ
K

1

ϵ

∂

∂xi
ρ

(
x− y

ϵ

)
u(y)dy

12[18] pg 714
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=
1

ϵN+1

ˆ
RN

∂

∂xi
ρ

(
x− y

ϵ

)
u(y)dy

For the second derivative we have that

∂

∂xj

(
∂

∂xi
Jϵu(x)

)
= lim

h→0

∂
∂xi
Jϵu(x+ hej)− ∂

∂xi
Jϵu(x)

h

=
1

ϵN+1
lim
h→0

1

h

ˆ
RN

[
∂

∂xi
ρ

(
x+ hej − y

ϵ

)
− ∂

∂xi
ρ

(
x− y

ϵ

)]
u(y)dy

=
1

ϵN+1
lim
h→0

1

h

ˆ
K

[
∂

∂xi
ρ

(
x+ hej − y

ϵ

)
− ∂

∂xi
ρ

(
x− y

ϵ

)]
u(y)dy

Since ρ ∈ C∞
c , let K be its compact support then it is true that

1

h

∂

∂xj

[
∂

∂xi
ρ

(
x+ hej − y

ϵ

)
− ∂

∂xi
ρ

(
x− y

ϵ

)]
uniformly on K−−−−−−−−−−→

h→0

1

ϵ

∂

∂xj

∂

∂xi
ρ

(
x− y

ϵ

)
Thus

∂

∂xj

(
∂

∂xi
Jϵu(x)

)
=

1

ϵN+2

ˆ
K

∂

∂xj

∂

∂xi
ρ

(
x− y

ϵ

)
u(y)dy

=
1

ϵN+2

ˆ
RN

∂

∂xj

∂

∂xi
ρ

(
x− y

ϵ

)
u(y)dy

Induction hypothesis: Assume that for |a| = k it is true that

DaJϵu(x) =
1

ϵN+k

ˆ
RN

Daρ

(
x− y

ϵ

)
u(y)dy

Then for |b| = |a|+ 1 = k + 1 we have that

DbJϵu(x) = D(DaJϵu(x)) =
∂

∂xi

(
1

ϵN+k

ˆ
RN

Daρ

(
x− y

ϵ

)
u(y)dy

)
By Leibniz integral rule

DbJϵu(x) =
1

ϵN+k+1

ˆ
RN

Da+1ρ

(
x− y

ϵ

)
u(y)dy =

1

ϵN+k+1

ˆ
RN

Dbρ

(
x− y

ϵ

)
u(y)dy

Proposition 4.1.7. Let u ∈ C(RN ), then Jϵu(x) → u(x) uniformly on any compact
subset of RN and ∥Jϵu(x)∥L∞ ≤ ∥u∥L∞

Proof. Assume that x ∈ RN , then

Jϵu(x)− u(x) = ϵ−N
ˆ
RN

ρ

(
x− y

ϵ

)
u(y)dy− u(x) = ϵ−N

ˆ
RN

ρ
(y
ϵ

)
u(x− y)dy− u(x)

Since
´
RN ρdx = 1 with a simple chance of variablesx = y

ϵ we have that
´
RN ϵ

−Nρ
(y
ϵ

)
dy =

1, so

Jϵu(x)− u(x) = ϵ−N
ˆ
RN

ρ
(y
ϵ

)
u(x− y)dy − ϵ−N

ˆ
RN

ρ
(y
ϵ

)
dyu(x)
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= ϵ−N
ˆ
RN

ρ
(y
ϵ

)
[u(x− y)− u(x)] dy

We assume that the support of the mollifier ρis a subset of a ball of radius r then

Jϵu(x)− u(x) = ϵ−N
ˆ
B(0,r)

ρ
(y
ϵ

)
[u(x− y)− u(x)] dy

So we have that ∀η > 0 ,∃ϵ0 = r
η such that |Jϵu(x)− u(x)| ≤ η ∀x ∈ K ⊂⊂ RN

Now for the inequality we have that

|Jϵu(x)| = |
ˆ
RN

ρ

(
x− y

ϵ

)
u(y)dy|

So
sup
x∈RN

|Jϵu(x)| ≤ sup
x∈RN

|u(x)
ˆ
RN

ρ

(
x− y

ϵ

)
dy|

i.e.
∥Jϵu(x)∥L∞ ≤ ∥u∥L∞

Proposition 4.1.8. Mollifiers commute with distribution derivatives.

Proof. We have that DaJϵu(x) = Da
[
ϵ−N
´
RN ρ

(x−y
ϵ

)
u(y)dy

]
= ϵ−N

ˆ
RN

Da
xρ

(
x− y

ϵ

)
u(y)dy

13

= ϵ−N (−1)a
ˆ
RN

Da
yρ

(
x− y

ϵ

)
u(y)dy

By integration by parts we have that

DaJϵu(x) = ϵ−N
ˆ
RN

ρ

(
x− y

ϵ

)
Da
yu(y)dy = Jϵ(D

au)(x)

Proposition 4.1.9. Let u ∈ Lp(RN ) and v ∈ Lq(RN ) with 1 ≤ p, q ≤ ∞ and 1
p +

1
q = 1

then ˆ
RN

Jϵu(x) · v(x)dx =

ˆ
RN

u · Jϵv(x)dx

Proof. ˆ
RN

Jϵu(x) · v(x)dx =

ˆ
RN

ϵ−N
ˆ
RN

ρ

(
x− y

ϵ

)
u(y)dy · v(x)dx

= ϵ−N
ˆ
RN

ˆ
RN

ρ

(
x− y

ϵ

)
v(x)u(y)dydx

13Since ρ is a a radial function it is true that Da
xρ

(
x−y
ϵ

)
= (−1)aDa

yρ
(
x−y
ϵ

)
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= ϵ−Nu(y)

ˆ
RN

ρ

(
x− y

ϵ

)
v(x)dxdy

=

ˆ
RN

u(x) · Jϵv(x)dx

Proposition 4.1.10. Let f ∈ Lp(RN ) and 1 ≤ p <∞ then

lim
ϵ↘0

∥Jϵf(x)− f(x)∥Lp = 0

Proof. It is true that

|Jϵu(x)− u(x)| =
∣∣∣∣ˆ

RN

ϵ−Nρ

(
x− y

ϵ

)
u(y)dy − u(x)

∣∣∣∣
=
∣∣∣ϵ−Nρ(y

ϵ

)
[u(x− y)− u(x)] dy

∣∣∣
≤
ˆ
RN

∣∣∣ϵ−Nρ(y
ϵ

)
[u(x− y)− u(x)]

∣∣∣ dy
≤
ˆ
RN

∣∣∣ϵ−Nρ(y
ϵ

)∣∣∣ |[u(x− y)− u(x)]| dy

Consequently,

∥Jϵu− u∥Lp ≤
{ˆ

RN

[ˆ
RN

|u(x− y)− u(x)|
∣∣∣ϵ−Nρ(y

ϵ

)∣∣∣ dx]p dy} 1
p

By Minkowski’s integral inequality: 14 We have that

∥Jϵu− u∥Lp ≤
ˆ
RN

[ˆ
RN

|u(x− y)− u(x)|p
∣∣∣ϵ−Nρ(y

ϵ

)∣∣∣p dx] 1
p
dy

≤
ˆ
RN

[ˆ
RN

|u(x− y)− u(x)|pdx
]
1

p

∣∣∣ϵ−Nρ(y
ϵ

)∣∣∣ dy
≤
ˆ
RN

∥u−y(x)− u(x)∥Lp

∣∣∣ϵ−Nρ(y
ϵ

)∣∣∣ dy
Now, we will examine the ∥u−y(x) − u(x)∥Lp . For the sake of simpler notation, we
define g(y) = ∥u−y(x)− u(x)∥Lp . This function is continuous and bounded

• Continuous:

Lemma 15. The space C∞
c (RN ) is dense on Lp(RN )

14[21] section 6.3
Let f ∈ Lp with 1 ≤ p <∞ then[ˆ

RN

(ˆ
RN

|f(x, y)|dy
)p

dx

]
1

p
≤
ˆ
RN

(ˆ
RN

|f(x, y)|pdx
) 1

p

dy
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proof of lemma
We are on the measurable space (RN ,m), where m is the Lebesgue measure.
Assume that S is the class of all measurable simple functions s(x) such that
m({s(x) ̸= 0}) < ∞, S is dense on Lpa. By Lusin’s theoremb, we have that
for sn ∈ S and η > 0 there exist a gn ∈ Cc(RN ) such that gn(x) = sn(x)
except of a set of measure η and |gn| ≤ supx∈RN |gn| ≤ ∥sn∥L∞ . Hence
∥gn − sn∥Lp ≤ η̃

4 . Since S is dense on Lp we have that ∥sn − s∥Lp ≤ η̃
4with

s ∈ Lp, thus ∥gn − s∥Lp ≤ ∥gn − sn∥Lp + ∥sn − s∥Lp ≤ η̃
2 , so we have that Cc

is dense on Lp

It is true that gϵn(x) = gn ∗ ρϵ has compact support , also gn has compact
support then ∥gϵn − gn∥pLp =

´
RN |gϵn − gn|pdx ≤ m(B) supx∈B |gϵn − gn|p. By

proposition(1.0.7.) we have that supx∈B |gϵn−gn|p ≤
η̃
2 , therefore supx∈B |gϵn−

gn|p ≤ η̃
2 . Consequently ∥g − gϵn∥Lp ≤ ∥g − gn∥Lp + ∥gϵn − gn∥Lp ≤ η.

By proposition (1.1.6.) we know that gϵn ∈ C∞
c so C∞

c is dense in Lp

a[35] pg 67
bLet F be a measurable function on RN such that F (x) = 0 for x /∈ A with m(A) < ∞

and η > 0 then there exists a function g ∈ Cc(RN ) such that f(x) = g(x) except of a set of
measure smaller than η and supx∈RN |g(x)| ≤ supx∈RN |f(x)|

thus there exists an hn ∈ C∞
c such that ∥hn − u∥Lp ≤ δ

3 , furthermore due to the
fact that hn is continuous we have that |hn(x1) − hn(x2) ≤ δ

3 , and sincehn has
compact support we reach to ∥hn(x1)− hn(x2)∥|Lp ≤

(
δ
3

)p.
So

∥g(x1)− g(x2)∥Lp = ∥u(x− x1)− u(x− x2)∥Lp ≤

∥u(x− x1)− hn(x− x1)∥Lp + ∥hn(x− x1)− hn(x− x2)∥Lp

+∥hn(x− x2)− u(x− x2)∥Lp ≤ δ

, which proves the continuity.

• It is bounded ∥g∥pLp ≤ ∥u(x− y)− u(x)∥pLp ≤ 2p∥u∥pLp =M

Now we re able to use dominated convergence theorem since g is bounded and integrable
and ρ is integrable so we reach to the fact that

lim
ϵ↘0

ˆ
RN

g(y)ρ
(y
ϵ

)
= 0

Thus limϵ↘0 ∥Jϵu(x)− u(x)∥Lp = 0

Proposition 4.1.11. Let u ∈ Hs(RN ) then

∥Jϵu− u∥Hs−1 ≤ cϵ∥u∥Hs

Proof.

Lemma 16. Assume that f ∈ L2 then

Ĵϵf(ξ) = ρ̂(ϵξ)f̂(ξ)
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proof of lemma:

Ĵϵf(ξ) =

ˆ
RN

e−iξx
ˆ
RN

ϵ−Nρ

(
x− y

ϵ

)
f(y)dy dx

=

ˆ
RN

f(y)

ˆ
RN

ϵ−Ne−iξxρ

(
x− y

ϵ

)
dx dy

We define x = ϵw + y thus

Ĵϵf(ξ) =

ˆ
RN

f(y)

ˆ
RN

ϵ−Neiξ(ϵw+y)ρ(w)ϵNdwdy

=

ˆ
RN

f(y)

ˆ
RN

e−iϵξwe−iξyρ(w)dw dy

By Fubini’s theorem we get

Ĵϵf(ξ) =

ˆ
RN

e−iξyf(y)dy

ˆ
RN

e−iξwρ(w)dw

= ρ̂(ϵξ)f̂(ξ)

∥Jϵf − f∥Hs−1 =

(ˆ
RN

(1 + |ξ|2)s−1| ̂Jϵf − f |2dξ
) 1

2

=

(ˆ
RN

(1 + |ξ|2)s−1|f̂(ξ)(ρ̂(ϵξ)− 1)|2dξ
) 1

2

≤
(ˆ

RN

(
(ρ(ϵξ)− 1)2

1 + |ξ|2

)
(1 + |ξ|2)s|f̂(ξ)|2dξ

) 1
2

≤
(∥∥∥∥(ρ̂(ϵξ)− 1)2

1 + |ξ|2

∥∥∥∥
∞

) 1
2
(ˆ

RN

(1 + |ξ|2)s|f̂(ξ)|2dξ
) 1

2

=

(∥∥∥∥(ρ̂(ϵξ)− 1)2

1 + |ξ|2

∥∥∥∥
∞

) 1
2

∥f∥Hs

We observe that :

(ρ̂(ϵξ)− 1)2

1 + |ξ|2
≤ (ρ̂(ϵξ)− 1)2

|ξ|2
≤ x|ϵξ|2

|ξ|2
≤ cϵ2

Thus we conclude that
∥Jϵf − f∥Hs−1 ≤ cϵ∥f∥Hs

Proposition 4.1.12. Let u ∈ Hs(RN ) then

lim
ϵ↘0

∥Jϵf − f∥Hs = 0
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Proof.
∥Jϵu(x)− u(x)∥Hs = ∥(1 + |ξ|2)

s
2 ( ̂Jϵu(x)− u(x))∥L2

≤ ∥C
∑
a≤ s

2

|ξa|2( ̂Jϵu(x)− u(x))∥L2 ≤ c̆∥ ̂Jϵu(x)− u(x))∥L2

By Plancherel’s we have:

∥Jϵu(x)− u(x)∥Hs ≤ c̆∥Jϵu(x)− u(x)∥L2

By proposition (1.1.10.) we get that

lim
ϵ↘0

∥Jϵf − f∥Hs = 0

Proposition 4.1.13. Let u ∈ Hm(RN ) and k ∈ Z+
0 then

∥Jϵu∥Hm+k ≤ ck
ϵk
∥u∥Hm (P 4.1.13 i)

and
∥JϵDku∥L∞ ≤ ck

ϵ
N
2
+k

∥u∥L2 (P 4.1.13 ii)

Proof.

∥Jϵu∥Hm+k =

 ∑
a≤m+k

∥DaJϵu∥2L2

 1
2

We assume that |b| ≤ m and |c| ≤ k and we set |a| = |b|+ |c| So we have

DaJϵu = Db+cJϵu = DbDcJϵu

By Leibniz integral rule

= DbDc

ˆ
RN

ϵ−Nρ

(
x− y

ϵ

)
u(y)dy

= Dbϵ−N
ˆ
RN

Dc
xρ

(
x− y

ϵ

)
u(y)dy

= ϵ−c−NDb

ˆ
RN

ρc

(
x− y

ϵ

)
u(y)dy

= ϵ−c−N
ˆ
RN

Db
xρc

(
x− y

ϵ

)
u(y)dy

By integration by parts

DaJϵu = ϵ−c−N
ˆ
RN

ρc

(
x− y

ϵ

)
Db
yu(y)dy
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|DaJϵ|2 =
∣∣∣∣ϵ−c−N ˆ

RN

ρc

(
x− y

ϵ

)
Db
yu(y)dy

∣∣∣∣2
≤ ϵ−2c

ˆ
RN

ϵ−2N

∣∣∣∣ρc(x− y

ϵ

)∣∣∣∣2 ∣∣∣Db
yu(y)

∣∣∣2 dy
≤ ϵ−2c

ˆ
RN

ϵ−N
∣∣∣∣ρc(x− y

ϵ

)∣∣∣∣ dy ˆ
RN

ϵ−N
∣∣∣∣ρc(x− y

ϵ

)∣∣∣∣ ∣∣∣Db
yu(y)

∣∣∣2 dy
Therefore

DaJϵu ≤ Cc
ϵ2c
ϵ−N
ˆ
RN

∣∣∣∣ρc(x− y

ϵ

)∣∣∣∣ ∣∣∣Db
yu(y)

∣∣∣2 dy
So by those trivial calculations we have

∥Jϵu∥Hm+k ≤
∑
|b|≤m
|c|≤k

ˆ
RN

Cc
ϵ2c
ϵ−N
ˆ
RN

∣∣∣∣ρc(x− y

ϵ

)∣∣∣∣ ∣∣∣Db
yu(y)

∣∣∣2 dy dx
By Fubini’s theorem

∥Jϵu∥Hm+k ≤
∑
|b|≤m
|c|≤k

Cc
ϵ2c

ˆ
RN

|Db
yu(y)|2

ˆ
RN

ϵ−Nρc

(
x− y

ϵ

)
dx dy

≤ ck
ϵk

∑
|b|≤m

ˆ
RN

|Db
yu(y)|2dy

≤ ck
ϵk
∥u∥Hm

For the second part of the proof we have that

|JϵDku| = |DkJϵu|

=

∣∣∣∣ϵ−NDk

ˆ
RN

ρ

(
x− y

ϵ

)
u(y)dy

∣∣∣∣
By Leibniz integral rule

= ϵ−N
∣∣∣∣ˆ

RN

Dk
xρ

(
x− y

ϵ

)
u(y)dy

∣∣∣∣
≤ ϵ−N ϵ−k

ˆ
RN

∣∣∣∣ρk (x− y

ϵ

)
u(y)

∣∣∣∣ dy
≤ ϵ−N−k

ˆ
RN

∣∣∣∣ρk (x− y

ϵ

)∣∣∣∣ |u(y)| dy
By Holder inequality

≤

(ˆ
RN

∣∣∣∣ρk (x− y

ϵ

)∣∣∣∣2 dy
) 1

2 (ˆ
RN

|u(y)|2dy
) 1

2
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≤ ϵ−
N
2 ϵ−k

[
ϵ−

N
2

ˆ
RN

∣∣∣∣ρk (x− y

ϵ

)∣∣∣∣2 dy
] 1

2 (ˆ
RN

|u(y)|2
) 1

2

Consequently

|JϵDku| ≤ ck

ϵ
N
2 + k

(ˆ
RN

|u(y)|2dy
) 1

2

So we conclude
∥JϵDku∥L∞ ≤ ck

ϵ
N
2
+k

∥u∥L2

In this section, we will briefly discuss Leray’s projection in Sobolev spaces. As we
learned in chapter 3, P : L2(RN ) → H(RN ) is defined for a u ∈ L2. It is worth noting
that for an m ∈ Z+

0 and u ∈ Hm, we can extend this decomposition. This means that
for u ∈ Hm, there exists a unique orthogonal decomposition u = w + ∇q. We also
define the projection operator P : Hm → V m and w = Pu, where V m is the space of
divergence-free functions.

Proposition 4.1.14. Assume that m ∈ Z+
0 , u ∈ Hm with the above decomposition,

and P the Leray’s projection, then

1. Pu , ∇q ∈ Hm

2.
´
RN Pu ∇qdx = 0

3. ∥Pu∥2Hm + ∥∇q∥2Hm = ∥u∥2Hm

4. P (Dau) = Da(Pu),∀|a| ≤ m

5. P (Jϵu) = Jϵ(Pu) , ϵ > 0

6. (Pu, v)Hm = (u, Pv)Hm

7. ∥P∥ = 1

Proof. We remind that the space Hm is a Hilbert space with inner product (u, v)Hm =∑
|a|≤m

´
RN (D

au) · (Dav)dx We will prove each property individually, the property (2)
is obvious since Pu = w and w,∇u are perpendicular.
1.The space C∞

C (RN ) is dense in H0 so there exist a sequence un such that un → u in
H0 We have that un = wn + ∇qn i.e. ∆qn = divun, this is a Poisson equation so we
have that:

∇qn =

ˆ
|y|≤R

x− y

|x− y|N
divun(y)dy

We have proved in lemma 10 that for |x| → ∞ and |y| ≤ R then

|x− y|−N = |x|−N +O(|x|−N−1)

thus
∇qn(x) = cN

x

|x|N

ˆ
|y|≤R

divun(y)dy +O(|x|−N )
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I.e. ∇qn(x) ≈ O(|x|−N )
So we have that for |x| ≤ 2R

ˆ
RN

|∇qn|2dx ≤ c

ˆ ∞

2R
r−2NrN−1dr <∞

It follows that ∇qn(x) ∈ L2 for qn = χ[|x|≥ 1
n
]q(x) by dominated convergence theorem

we conclude that q ∈ L2 = H0 also we set w = u−∇q and consequently w ∈ L2 = H0

By the property 4 we have this result for all m ∈ Z+
0

4.We start with the relation u = Pu + ∇q we differentiate this relation and we get
that:

Dau = Da(w +∇q)

Dau = Daw +Da(∇q)

It is also true that

div(Daw) =
N∑
i=1

∂

∂xi
Daw

=
N∑
i=1

Da ∂

∂xi
w

= Da
N∑
i=1

∂

∂xi
w = 0

So we define the P (Dau) = Daw and we get that

Da(Pu) = Daw = P (Dau)

5. We adopt the same procedure as above

Jϵu = Jϵ(w +∇q)

Jϵu = Jϵw + Jϵ(∇q)

It is also true that

div(Jϵw) =

N∑
i=1

∂

∂xi
Jϵw

By proposition 4.1.8 we get that

=

N∑
i=1

Jϵ
∂

∂xi
w

= Jϵ

(
N∑
i=1

∂

∂xi
w

)
= 0
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So we define P (Jϵu) = Jϵw and we get that

Jϵ(Pu) = Jϵw = P (Jϵu)

3.
∥u∥2Hm =

∑
|a|≤m

∥u∥2L2

=
∑
|a|≤m

(Pu+∇q, Pu+∇q)L2

=
∑
|a|≤m

[(Pu, Pu)2L + 2(Pu,∇q)L2 + (∇q,∇q)]

By property 2. we get that

=
∑
|a|≤m

(
∥Pu∥2L2 + ∥∇q∥2L2

)
Thus

∥u∥2Hm = ∥Pu∥2Hm + ∥∇q∥2Hm

6. Assume u, v ∈ Hm then this property Holds since P is orthogonal projection.

7. ∥Pu∥2 = ∥Pu∥∥Pu∥ by Pythagoras theorem we know that ∥Pu∥ ≤ ∥u∥ so we
have that

∥Pu∥
∥u∥

≤ 1

Recall that
∥P∥ = sup

u∈Hm

∥u∥≠0

∥Pu∥
∥u∥

≤ sup
u∈Hm

∥u∥≠0

1 = 1

Furthermore since P is orthogonal projection it is true that P = P 2 so

∥Pu∥ = ∥P 2u∥ = ∥P (Pu)∥ ≤ ∥P∥∥Pu∥

Consequently ∥P∥ = 1

4.2 Existence of smooth solutions for the regularized equa-
tions

In this section, we will deal with Banach space valued functions15. Our maps are
f : [a, b] → B with B a Banach space. Those spaces are referred to as Bochner spaces,

15[25]
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Chapter 4 4.2. Existence of smooth solutions for the regularized equations

and we have some more general concepts about differentiation (Frechet derivative) and
integrability (Bochner integrable). These concepts do not differ significantly from what
we already know about derivatives and integrals. For instance, we say that a function
f : [a, b] → B is Bochner integrable if

´ b
a ∥f∥B < ∞. We will give more details about

these spaces as and when we need them.

The regularized equations

The strategy we will follow is known. We start with non-smooth functions and through
convolution with smooth kernels, we end up smooth functions. When dealing with the
Euler and Navier-Stokes equations, we aim to mollify them and obtain approximations.
In the previous chapter, our theory relied on energy estimates, and we plan to continue
using energy methods to prove results.
We consider the following mollification of the Navier Stokes equation,

∂

∂t
uϵ + Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ) = −∇pϵ + νJϵ (∆Jϵuϵ)

16 (NSϵ)

Using the Leray’s formulation17 we project this equation to the closed18 space of Hs

divergence free functions,i.e. V s = {u ∈ Hs : divu = 0}
So we have that

∂

∂t
uϵ + P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} = νJϵ(∆Jϵuϵ) (L−NSϵ)

We set
Fϵ(uϵ) = νJϵ(∆Jϵuϵ)− P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)}

So we reach to
∂

∂t
uϵ = Fϵ(uϵ)

By assuming that the initial value of the mollified function of velocity is equal to the
initial value of the function of velocity we reach to an initial value problem{

∂
∂tuϵ = Fϵ(uϵ)

uϵ(∗, 0) = uϵ(0) = u0
(IVP)

Note that the above equation is an ODE, since we consider Fϵ to be known. The goal
is to find the flow of uϵ given that Fϵ. The problem at hand is to solve the initial value
problem on V s. Additionally, this is an autonomous ODE, because Fϵ is a function
depending only on space. Although, the term Fϵ(uϵ) depends on time, since uϵ is time-
dependent. The well-known Picard-Lindelof theorem will be employed for solving this
problem. This theorem has the benefit of having strong results despite not having very
strict conditions.

16We denote uϵ the velocity field, because the regularized solution will depend on the choice of ϵ,
meaning that if we choose another ϵ, we will take another uϵ

17see chapter 2
18[36] pg 87
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Theorem 4.2.1 (Picard-Lindelof). Assume that B is a Banach space and F is a locally
Lipschitz mapping F : B → B then for u0 ∈ B there exists a time T such that the initial
value problem {

d
dtu(t) = F (u(t))

u|t=0 = u0

has unique local solution on C1([0, T ), B)19

Remark:This theorem gives us a classical solution.

Proof. 20 So we want to solve{
d
dtu(t) = F (u(t)), t ∈ [0, T )

u|t=0 = u0

We will find a u which satisfy the following integral equation

u(t) = u0 +

ˆ t

0
F (u(s))ds

where the integral here is a Bochner integral
Since F is locally Lipschitz we assume that this is true in an open set O up to time T
We assume for k > 0 the set

X = {u ∈ C([0, T ), B) : sup
0≤t≤T

e−kt∥u∥B <∞}

The space X is a Banach space with norm ∥ · ∥X = sup0≤t<T e
−kt∥ · ∥B

Indeed: Assume that {un(t)} is a Cauchy sequence in X.
Step 1: We will prove that u(t0) = limn→∞ un(t0) is well defined ∀t0 ∈ [0, T )
Let t0 since un is a Cauchy sequence we have that

∀δ > 0 ∃n0 ∈ N ∀n,m ≥ n0 we have ∥un(t)− um(t)∥X < δ

Thus
e−kt0∥un(t0)− umt0∥B < δ

I.e. ∥un(t0)−um(t0)∥B < δ′ thus un(t0) is a Cauchy sequence, and B is a Banach space
so this sequence converges so u(t0) is well defined.
Step 2: We will prove that un(t) → u(t) in X
We have

∥un(t)− u(t)∥X ≤ sup
0≤t≤T

e−kt∥un(t)− u(t)∥B

Since B is a Banach space we have that ∥un−um∥X ≤ sup0≤t≤T e
−ktδ and sup0≤t≤T e

−kt ≤
1 thus

∀δ > 0 ∃n1 ∀n ≥ n1 : ∥un − um∥ < δ

19the space Cm([a, b], B) = {f : [a, b] → B is m times differentiable}the derivative is the Frechet
derivative.

20[13] pg 184
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Step 3: We define the following mapping and we will show that it is a contraction
Let u ∈ X we define Φ such that Φu(t) = u0 +

´ t
0 F (u(s))ds with t ∈ [0, T ) So we have

that

∥Φu− Φv∥X = sup
0≤t<T

e−kt∥
ˆ t

0
Fu− Fv∥Bds

F is locally Lipschitz so

∥Φu− Φv_X| ≤ sup
0≤t<T

e−kt
ˆ t

0
L∥u− v∥Bds

Thus
∥Φu− Φv∥X ≤ L

k
∥u− v∥X

So in the open set O we fix k > L so this mapping is a contraction so we can use
Banach’s fixed point theorem21

Banach Fixed point theorem:Assume that G is a mapping from a Banach space B
to itself which is a contraction then G has a fixed point i.e.Gu = u
proof: Let u0 be a known initial value we set u1 = G(u0) then we set u2 = G(u1) we
continue this process and we create a recursive sequence un such that un+1 = G(un)
This sequence is a Cauchy sequence, indeed:

∥um+1 − um∥B = ∥G(um)−G(um−1)∥B

but G is a contraction so

∥um+1 − um∥B ≤ K∥um − um−1∥B

we continue the same way i.e.

∥um − um−1∥B ≤ K2∥um−1 − um−2∥B

and we conclude to the following inequality

∥um+1 − um∥B ≤ Km∥u1 − u0∥B

Without loss of generality we assume that n ≥ m so by triangle inequality we have

∥um − un∥B ≤ ∥um − um+1∥B + ∥um+1 − um+2∥B + ...+ ∥un−1 − un∥B

≤ ∥u1 − u0∥B
(
Km +Km+1 + ...+Kn−1

)
= Km 1−Kn−m

1−K
∥u1 − u0∥B

So we have that
∥um − un∥B ≤ Km

1−K
∥u1 − u0∥B

21[5] pg 5
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Consequently choosing m sufficiently large un is a Cauchy sequence. Furthermore
B is a Banach space so this sequence converges, i.e there exists a u ∈ B such that
un → u This u is a fixed point, indeed:

∥u−G(u)∥B ≤ ∥u− un∥B + ∥un −G(u)∥B

= ∥u− un∥B + ∥G(un−1)−G(u)∥B
≤ ∥u− un∥B +K∥un−1 − u∥B

So we have that for n large enough ∥u−G(u)∥B = 0 which completes the proof.

And we get that there exist a u such that Φu = u so we have solve the integral equation.
This solution is unique since if we assume two different solutions of the integral equation,
name u, v we have that

∥u− v∥B ≤
ˆ t

0
L∥u− v∥Bds

So ∥u− v∥B = 0 i.e u = v

So firstly we will talk about local in time solution for the regularized problem.

Lemma 17. The space V m , m ∈ Z+
0 , with the norm of Hm space, is a Banach space

Proof. It is a closed subset of a Banach space, and we know that a closed subspace of
a Banach space is Banach space.

4.2.1 3 dimensions

We will seperate the analysis into 2D and 3D, based on energy estimates. For 2D,
we will use radial finite energy decomposition. Our goal here is to prove a theorem
on three dimensions that affirms the local existence of solutions for the regularized
Navier-Stokes equation.

Theorem 4.2.2. Let u0 ∈ V m ,m ∈ Z+
0 the initial value of the velocity field uϵ,then

1. ∀ϵ > 0 there exist a unique solution uϵ ∈ C1 ([0, T ), V m) of the (IVP).

2. On any time interval [0, T ] on which the solution exists in C1 ([0, T ), V m) we have
that :

sup
0≤t≤T

∥uϵ∥L2 ≤ ∥u0∥L2

Remarks:
1. The time T depends on ϵ and the initial data.
2.The energy estimate that is given in the second part of the theorem depends neither
on ϵ nor on viscosity. So the regularization we choose satisfies our will to achieve an
energy estimate independent of ϵ. Furthermore, if we compare this energy estimate with
the energy estimate in the previous chapter we see that for u1 = uϵ , u2 = 0 , F1, F2 =
0 , u10 = u0 and u20 = 0, those two estimates are identical, so our energy estimate here is
optimal.
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Chapter 4 4.2. Existence of smooth solutions for the regularized equations

Proof. Note: In the upcoming proofs, we will utilize numerous constants that arise from
the estimates in the preceding propositions. To simplify notation, we will refer to all
of these constants as "c", with the understanding that each one depends solely on the
values of "m" and "k".

1. For the first part of the theorem we will use the Picard Lindelof theorem, so we
only need data for the Fϵ. We will prove that Fϵ : V m → V m and also it is locally
Lipschitz. So recall that

Fϵ(uϵ) = νJϵ(∆Jϵuϵ)− P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)}

Assume that uϵ ∈ V m we will prove that Fϵ(uϵ) ∈ V m i.e. Fϵ(uϵ) ∈ Hm and
divFϵ(uϵ) = 0
So

∥Fϵ(uϵ)∥Hm = ∥νJϵ(∆Jϵuϵ)− P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm

By triangle inequality we have that

≤ ∥νJϵ(∆Jϵuϵ)∥Hm + ∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm

We will estimate each term individually :

∥νJ2
ϵ (∆uϵ)∥Hm

proposition1.1.8
= ∥ν∆(J2

ϵ uϵ)∥Hm = ∥νJ2
ϵ u∥Hm+2

By proposition 4.1.13
≤ cν

ϵ2
∥Jϵuϵ∥Hm

≤ cν

ϵ2
∥uϵ∥Hm

Since uϵ ∈ Hm we have that

∥νJ2
ϵ (∆uϵ)∥Hm <∞

And the other term
∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm

≤ ∥P∥Hm∥Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)∥Hm

By proposition 4.1.13
≤ c∥∇Jϵuϵ · Jϵuϵ∥Hm

By proposition 4.1.4

≤ c {∥∇Jϵuϵ∥Hm∥Jϵuϵ∥L∞ + ∥∇Jϵuϵ∥L∞∥Jϵuϵ∥Hm}

By proposition 4.1.13

≤ c

{
∥Jϵuϵ∥Hm+1c∥uϵ∥L2 +

c

ϵ
5
2

∥uϵ∥L2c∥uϵ∥Hm

}
≤ c(ϵ)∥uϵ∥2Hm
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Since uϵ ∈ Hm we have that

∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm <∞

Thus ∥Fϵ(uϵ)∥Hm <∞
Furthermore

divFϵ(uϵ) = div
(
vJ2

ϵ∆uϵ
)
− divP (Jϵ [(Jϵuϵ · ∇)Jϵuϵ]) = 0

So we have prove that Fϵ(uϵ) ∈ V m i.e. Fϵ : V m → V m

Now we will prove that this mapping is locally Lipschitz

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm

= ∥vJϵ(∆Jϵuϵ)−P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)}−νJϵ(∆Jϵvϵ)+P {Jϵ [(Jϵvϵ) · ∇] (Jϵvϵ)} ∥Hm

By triangle inequality and by add and subtract the term P {Jϵ [(Jϵuϵ) · ∇] (Jϵvϵ)}

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm ≤ ∥vJ2
ϵ∆(uϵ − vϵ)∥Hm

+∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵ(uϵ − vϵ))} ∥Hm

+∥P {Jϵ [(Jϵ(uϵ − vϵ)) · ∇] (Jϵvϵ)} ∥Hm

We will see each term individually

• ∥vJ2
ϵ∆(uϵ − vϵ)∥Hm = ν∥J2

ϵ (uϵ − vϵ)∥Hm+2 By proposition 4.1.13

≤ c

ϵ2
∥Jϵ(uϵ − vϵ)∥Hm

le
c

ϵ2
∥uϵ − vϵ∥Hm

• ∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵ(uϵ − vϵ))} ∥Hm

≤ c∥∇Jϵ(uϵ − vϵ) · Jϵuϵ∥Hm

By proposition 4.1.4

≤ c {∥∇Jϵ(uϵ − vϵ)∥Hm∥Jϵuϵ∥L∞ + ∥Jϵuϵ∥Hm∥∇Jϵ(uϵ − vϵ)∥L∞}

≤ c {∥Jϵ(uϵ − vϵ)∥Hm+1∥Jϵuϵ∥L∞ + ∥Jϵuϵ∥Hm∥Jϵ∇(uϵ − vϵ)∥L∞}

By proposition 4.1.13

≤ c

{
c

ϵ
∥uϵ − vϵ∥Hm

c

ϵ
3
2

∥uϵ∥L2 + c∥uϵ∥Hm
c

ϵ
5
2

∥uϵ − vϵ∥L2

}

≤ c

ϵ
5
2

∥uϵ∥Hm∥uϵ − vϵ∥Hm
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• ∥P {Jϵ [(Jϵ(uϵ − vϵ)) · ∇] (Jϵvϵ)} ∥Hm

≤ c∥(∇Jϵvϵ) · Jϵ(uϵ − vϵ)∥Hm

By proposition 4.1.4

≤ c {∥∇Jϵvϵ∥Hm∥Jϵ(uϵ − vϵ)∥L∞ + ∥∇Jϵvϵ∥L∞∥Jϵ(uϵ − vϵ)∥Hm}

By proposition 4.1.13

≤ c

{
c

ϵ
∥vϵ∥Hm

c

ϵ
3
2

∥uϵ − vϵ∥L2 +
c

ϵ
5
2

∥vϵ∥L2c∥uϵ − vϵ∥Hm

}
≤ c

ϵ
5
2

∥vϵ∥Hm∥uϵ − vϵ∥Hm

Consequently

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm ≤ c

ϵ2
∥uϵ − vϵ∥Hm +

c

ϵ
5
2

(∥uϵ∥Hm + ∥vϵ∥Hm) ∥uϵ − vϵ∥Hm

Assume that OM = {u ∈ V m : ∥u∥Hm ≤M} then we conclude that

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm ≤ cM∥uϵ − vϵ∥Hm

Thus Fϵ is locally Lipschitz.
By the Picard-Lindelof theorem there exist a unique solution uϵ ∈ C1 ([0, T ), V m)

2. For the second part of the theorem we will follow the well known steps for the
energy methods.
We begin with the equation of (IVP) and we multiply with the solution uϵ in L2:

ˆ
R3

(
d

dt
uϵ − Fϵ(uϵ)

)
· uϵdx = 0

ˆ
R3

1

2

d

dt
|uϵ|2dx =

ˆ
R3

uϵ · Fϵ(uϵ)dx

Thus
1

2

d

dt
∥uϵ∥2L2 =

ˆ
R3

uϵ · Fϵ(uϵ)dx

Now we will process with the integral on the right part :
ˆ
R3

uϵ · Fϵ(uϵ)dx =

ˆ
R3

uϵ ·
[
vJ2

ϵ (∆uϵ)− PJϵ (Jϵuϵ · ∇Jϵuϵ)
]
dx

ˆ
R3

vuϵ · J2
ϵ (∆uϵ)dx−

ˆ
R3

uϵ · JϵP [(Jϵuϵ · ∇)Jϵuϵ] dx

By proposition 4.1.9 we have that the mollifiers are symmetric so

= ν

ˆ
R3

Jϵuϵ ·∆(Jϵuϵ)dx−
ˆ
R3

Jϵuϵ · P [(Jϵuϵ · ∇)Jϵuϵ] dx
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For the first integral we have that

ν

ˆ
R3

Jϵuϵ ·∆(Jϵuϵ)dx = −ν
ˆ
R3

∇(Jϵuϵ) · ∇(Jϵuϵ)dx

= −ν
ˆ
R3

|∇Jϵuϵ|2dx = ν∥∇Jϵuϵ∥2L2

For the second integral we have that

−
ˆ
R3

Jϵuϵ · P [(Jϵuϵ · ∇)Jϵuϵ] dx ≤ −
ˆ
R3

Jϵuϵ · [Jϵuϵ · ∇] Jϵuϵ = 0

Consequently
d

dt
∥uϵ∥2L2 ≤ 0

So by simplified Gronwall we have that

∥uϵ∥2L2 ≤ ∥u0∥2L2

Eventually taking the supremum we conclude that:

sup
0≤t≤T

∥uϵ∥L2 ≤ ∥u0∥L2

We have currently achieved a smooth solution for the regularized problem within a
certain time frame. However, it is now necessary to determine if we can attain a global
solution for the same problem. Fortunately, the answer is affirmative.
The idea of continuous extension of solutions is the following assume that we have a
solution on the interval [0, T ) in B if limt→T− u(t) exists then we set ũ0 = u(T ) ∈ B.
This quantity becomes the new initial value, and we find a solution for the updated
initial value problem for the interval [T, T + c). The only concern is whether this new
solution effectively solves the initial problem. We define ũ the new solution, where

ũ(t =)

{
u(t) for t ∈ [0, T )

u(T ) for t ∈ [T, T + c)

We have that u, ũ satisfy an ivp,so

u(t) = ũ(t) = u0 +

ˆ t

0
F (ũ(s))ds for 0 ≤ t < T (1)

and

ũ(t) = ũ0 +

ˆ t

T
F (ũ(s))ds for T ≤ t < T + c (2)

By relation (1) we have that

lim
t→T−

ũ(t) = lim
t→T−

u0 +

ˆ t

0
F (ũ(s))ds
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= u0 + lim
t→T−

ˆ t

0
F (ũ(s))ds

= u0 +

ˆ T

0
F (ũ(s))ds

By relation (2) we have that

ũ(t) = u(T ) +

ˆ t

T
F (ũ(s))ds

= u0 +

ˆ T

0
F (ũ(s))ds+

ˆ t

T
F (ũ(s))ds

So ũ(t) solves the first ivp in the interval [0, T + c). We continue this process until we
find a maximum time T ′. This process may stop for two reasons the first one is that
for T ′ <∞ the limit may not exist then we say that the solution is not continuous, the
second one is that the limit may exist but the solution does not belong on the Banach
space, in both cases we will say that the solution blows up.
So we summarize in the following theorem

Theorem 4.2.3. Assume that B is a Banach space and F : B → B a locally Lipschitz

mapping then the unique solution u of the ivp

{
d
dtu = F (u)

u|t=0 = u0 ∈ B
either exist globally

in time or for T <∞ the solution blows up.

Proof. Assume that T ∗ is the maximum time of existence of the solution u(t). Assume
also that T ∗ <∞ and the solution does not blow up We have that limt→T ∗− = u(T ∗) ∈

B. We set t = t− T ∗− and we have initial value u(T ∗) for the ivp

{
d
dtu = F (u)

u|t=T ∗ = u(T ∗)

By Picard Lindelof we find a solution which satisfy the first ivp for time t−T ∗+c which
contradicts the fact that T ∗ is the maximum time so T ∗ = ∞

Note: This extension is true on N-dimensions So in our case we have that uϵ satisfies
the following inequality

∥Fϵ∥uϵ∥Hm ≤ cM∥uϵ∥Hm

So since it is a solution of the (IVP) we reach to

d

dt
∥uϵ∥Hm ≤ cM∥uϵ∥Hm

By Gronwall’s lemma in differential form

If d
dtu(t) ≤ b(t)u(u) (H) for t ∈ I then

u(t) ≤ u(a)e
´ t
a b(s)ds (R)

proof:
Let v(t) = e

´ t
a b(s)ds it is true that v satisfies the differential equation d

dtv(t) =

b(t)v(t) (1) with initial value v(a) = 1 and v(t) > 0 We define the quotient u(t)
v(t) and
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we have that
d

dt

u(t)

v(t)
=

d
dtu(t)v(t)− u(t) ddtv(t)

v2(t)

By relation (1) it follows that

d

dt

u(t)

v(t)
=

d
dtu(t)− b(t)u(t)

v(t)
≤ 0

by the (H).
So the function of the quotient is decreasing thus for a ≤ t we have that

u(t)

v(t)
≤ u(a)

v(a)

Thus we reach to the desired result i.e. u(t) ≤ u(a)v(t) = u(a)e
´ t
a b(s)ds

we conclude that ∥uϵ∥Hm ≤ ecMT which is an apriori bound, thus for T < ∞and we
will not have a blow up so by the above theorem we have a global solution.
Conclusions: The regularized problem for the Navier Stokes equation has a smooth
global in time solution on space V m in 3 dimensions.
Remark:We have exactly the same result for the Euler equation, indeed
We consider the following mollification of the Euler equation

∂

∂t
uϵ + Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ) = −∇pϵ (Eϵ)

Using the Leray’s formulation22 we project this equation to the closed23 space of Hs

divergence free functions i.e. V s = {u ∈ Hs : divu = 0}
So we have that

∂

∂t
uϵ + P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} = 0 (L− Eϵ)

We set
Fϵ(uϵ) = −P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)}

So we reach to
∂

∂t
uϵ = Fϵ(uϵ)

By assuming that the initial value of the mollified function of velocity is equal to the
initial value of the function of velocity we reach to an initial value problem{

∂
∂tuϵ = Fϵ(uϵ)

uϵ(∗, 0) = uϵ(0) = u0
(IV P∗)

So we have the following theorem which gives a local in time solution for the regularized
Euler:

Theorem 4.2.4. Let u0 ∈ V m ,m ∈ Z+
0 the initial value of the velocity field uϵ, then

22see chapter 2
23[36] pg 87
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1. ∀ϵ > 0 there exist a unique solution uϵ ∈ C1 ([0, T ), V m) of the (IVP∗).

2. On any time interval [0, T ] on which the solution exists in C1 ([0, T ), V m) we have
that :

sup
0≤t≤T

∥uϵ∥L2 ≤ ∥u0∥L2

Proof. We have the same statements as the proof of the theorem above, with some little
adaptations occurring due to the lack of the viscosity term.

1. For the first part of the theorem we will use the Picard Lindelof theorem, so we
only need data for the Fϵ. We will prove that Fϵ : V m → V m and also it is locally
Lipschitz. So recall that

Fϵ(uϵ) = −P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)}

Assume that uϵ ∈ V m we will prove that Fϵ(uϵ) ∈ V m i.e. Fϵ(uϵ) ∈ Hm and
divFϵ(uϵ) = 0
So

∥Fϵ(uϵ)∥Hm = ∥ − P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm

i.e. we have that
≤ ∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm

We can easily see that

∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm

≤ ∥P∥Hm∥Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)∥Hm

By proposition 4.1.13
≤ c∥∇Jϵuϵ · Jϵuϵ∥Hm

By proposition 4.1.4

≤ c {∥∇Jϵuϵ∥Hm∥Jϵuϵ∥L∞ + ∥∇Jϵuϵ∥L∞∥Jϵuϵ∥Hm}

By proposition 4.1.13

≤ c

{
∥Jϵuϵ∥Hm+1c∥uϵ∥L2 +

c

ϵ
5
2

∥uϵ∥L2c∥uϵ∥Hm

}
≤ c(ϵ)∥uϵ∥2Hm

Since uϵ ∈ Hm we have that

∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)} ∥Hm <∞

Thus ∥Fϵ(uϵ)∥Hm <∞
Furthermore

divFϵ(uϵ) = −divP (Jϵ [(Jϵuϵ · ∇)Jϵuϵ]) = 0
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So we have prove that Fϵ(uϵ) ∈ V m i.e. Fϵ : V m → V m

Now we will prove that this mapping is locally Lipschitz

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm

= ∥ − P {Jϵ [(Jϵuϵ) · ∇] (Jϵuϵ)}+ P {Jϵ [(Jϵvϵ) · ∇] (Jϵvϵ)} ∥Hm

By triangle inequality and by add and subtract the term P {Jϵ [(Jϵuϵ) · ∇] (Jϵvϵ)}

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm ≤ ∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵ(uϵ − vϵ))} ∥Hm

+∥P {Jϵ [(Jϵ(uϵ − vϵ)) · ∇] (Jϵvϵ)} ∥Hm

We will see each term individually

• ∥P {Jϵ [(Jϵuϵ) · ∇] (Jϵ(uϵ − vϵ))} ∥Hm

≤ c∥∇Jϵ(uϵ − vϵ) · Jϵuϵ∥Hm

By proposition 4.1.4

≤ c {∥∇Jϵ(uϵ − vϵ)∥Hm∥Jϵuϵ∥L∞ + ∥Jϵuϵ∥Hm∥∇Jϵ(uϵ − vϵ)∥L∞}

≤ c {∥Jϵ(uϵ − vϵ)∥Hm+1∥Jϵuϵ∥L∞ + ∥Jϵuϵ∥Hm∥Jϵ∇(uϵ − vϵ)∥L∞}
By proposition 4.1.13

≤ c

{
c

ϵ
∥uϵ − vϵ∥Hm

c

ϵ
3
2

∥uϵ∥L2 + c∥uϵ∥Hm
c

ϵ
5
2

∥uϵ − vϵ∥L2

}
≤ c

ϵ
5
2

∥uϵ∥Hm∥uϵ − vϵ∥Hm

• ∥P {Jϵ [(Jϵ(uϵ − vϵ)) · ∇] (Jϵvϵ)} ∥Hm

≤ c∥(∇Jϵvϵ) · Jϵ(uϵ − vϵ)∥Hm

By proposition 4.1.4

≤ c {∥∇Jϵvϵ∥Hm∥Jϵ(uϵ − vϵ)∥L∞ + ∥∇Jϵvϵ∥L∞∥Jϵ(uϵ − vϵ)∥Hm}

By proposition 4.1.13

≤ c

{
c

ϵ
∥vϵ∥Hm

c

ϵ
3
2

∥uϵ − vϵ∥L2 +
c

ϵ
5
2

∥vϵ∥L2c∥uϵ − vϵ∥Hm

}
≤ c

ϵ
5
2

∥vϵ∥Hm∥uϵ − vϵ∥Hm

Consequently

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm ≤ c

ϵ
5
2

(∥uϵ∥Hm + ∥vϵ∥Hm) ∥uϵ − vϵ∥Hm

Assume that OM = {u ∈ V m : ∥u∥Hm ≤M} then we conclude that

∥Fϵ(uϵ)− Fϵ(vϵ)∥Hm ≤ c̃M∥uϵ − vϵ∥Hm

Thus Fϵ is locally Lipschitz.
By Picard-Lindelof theorem there exist a unique solution uϵ ∈ C1 ([0, T ), V m)
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2. For the second part of the theorem we will follow the well known steps for the
energy methods.
We begin with the equation of (IVP) and we multiply with the solution uϵ in L2:

ˆ
R3

(
d

dt
uϵ − Fϵ(uϵ)

)
· uϵdx = 0

ˆ
R3

1

2

d

dt
|uϵ|2dx =

ˆ
R3

uϵ · Fϵ(uϵ)dx

Thus
1

2

d

dt
∥uϵ∥2L2 =

ˆ
R3

uϵ · Fϵ(uϵ)dx

Now we will process with the integral on the right part :ˆ
R3

uϵ · Fϵ(uϵ)dx = −
ˆ
R3

uϵ · PJϵ (Jϵuϵ · ∇Jϵuϵ) dx

By proposition 4.1.9 we have that the mollifiers are symmetric so

= −
ˆ
R3

Jϵuϵ · P [(Jϵuϵ · ∇)Jϵuϵ] dx

≤ −
ˆ
R3

Jϵuϵ · [Jϵuϵ · ∇] Jϵuϵ = 0

Consequently
d

dt
∥uϵ∥2L2 ≤ 0

So by simplified Gronwall we have that

∥uϵ∥2L2 ≤ ∥u0∥2L2

Eventually taking the supremum we conclude that:

sup
0≤t≤T

∥uϵ∥L2 ≤ ∥u0∥L2

To conclude we can extend this solution since we have that uϵ satisfies the following
inequality

∥Fϵ∥uϵ∥Hm ≤ c̃M∥uϵ∥Hm

So since it is a solution of the (IVP) we reach to

d

dt
∥uϵ∥Hm ≤ c̃M∥uϵ∥Hm

By Gronwall’s lemma in differential form we conclude that ∥uϵ∥Hm ≤ ec̃MT which is an
apriori bound, thus for T < ∞ we will not have a blow up so by the theorem 4.2.3 we
have a global solution.
Conclusions: The regularized problem for the Euler equation has a smooth global in
time solution on space V m in 3 dimensions.
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4.2.2 2 dimensions

In this chapter, we will continue discussing the 2-dimensional case using the finite radial
energy decomposition we introduced in the previous chapter. According to lemma 11,
we know that every incompressible velocity field u in 2 dimensions, with ω ∈ L1, has
a finite radial energy decomposition, meaning that u can be expressed as the sum of y
and b, where y ∈ L2 is the term we are interested in, and b is a known quantity. We
know that the y satisfy the following equation:

∂

∂t
y + (y · ∇)y + (b · ∇)y + (y · ∇)b = −∇p+ ν∆y (NSy)

We consider the following mollification for the (NSy) assuming that uϵ = yϵ + b24

∂

∂t
yϵ + Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b] = −∇pϵ + νJ2

ϵ (∆yϵ) (NSyϵ)

Using the Leray’s formulation we project this equation to the closed space of Hs diver-
gence free functions i.e. V s = {u ∈ Hs : divu = 0} and we have that

∂

∂t
yϵ + P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} = νJ2

ϵ (∆yϵ) (L−NSyϵ)

We set

Fϵ(yϵ) = −P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]}+ νJ2
ϵ (∆yϵ)

By assuming that the initial value of the mollified y is equal to the initial value of y we
reach to an initial value problem{

∂
∂tyϵ = Fϵ(yϵ)

yϵ(∗, 0) = yϵ(0) = y0
(IVP)

So now we have reach to the point where we seek for solutions for the above (IVP), so
we have the following theorem

Theorem 4.2.5. Let y0 ∈ V m ,m ∈ Z+
0 the initial value of the field yϵ, then

1. ∀ϵ > 0 there exist a unique solution yϵ ∈ C1 ([0, T ), V m) of the (IVP).

2. On any time interval [0, T ] on which the solution exists in C1 ([0, T ), V m) we have
that :

sup
0≤t≤T

∥yϵ∥L2 ≤ ∥y0∥L2e
´ T
0 c∥∇b∥L∞dt

Proof. 1. For the first part of the theorem: using the Picard Lindelof theorem, we
only require data for Fϵ, so will show that Fϵ : V m → V m and it is locally
Lipschitz.
Assume a yϵ ∈ V m we have that

∥Fϵ(yϵ)∥Hm ≤ ∥νJ2
ϵ (∆yϵ)∥Hm+∥P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ∥Hm

We will estimate each term individually
24In the 2d case we solve this equation for yϵ, observe that it isn’t the same equation as in three

dimensions. Also observe that we don’t mollify the term b, since this is a known quantity.
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•
∥νJ2

ϵ (∆yϵ)∥Hm = ν∥J2
ϵ uϵ∥Hm+2

By the proposition 4.1.13
≤ cν

ϵ2
∥Jϵuϵ∥Hm

≤ cν

ϵ2
∥uϵ∥Hm

Since yϵ ∈ Hm we have that

∥νJ2
ϵ (∆yϵ)∥Hm <∞

•
∥P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ∥Hm

≤ ∥Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b] ∥Hm

By triangle inequality and proposition 1.1.13 we have that

≤ c [∥(Jϵyϵ · ∇)Jϵyϵ∥Hm + ∥(b · ∇)Jϵyϵ∥Hm + ∥(Jϵyϵ · ∇)b∥Hm ]

By proposition 4.1.13 we have that

≤ c
[
∥yϵ∥2Hm + ∥yϵ∥Hm (∥b∥L∞ + ∥∇b∥L∞)

]
Thus we have that

∥P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ∥Hm <∞

So ∥Fϵ(yϵ)∥Hm < ∞, furthermore divFϵ(yϵ) = 0 so we have that Fϵ : V m → V m

Now we will prove that this function is locally Lipschitz
Assume uϵ, vϵ with radial energy decomposition uϵ = yϵ + b and vϵ = ȳϵ + b so we
have that

∥Fϵ(yϵ)−Fϵ(ȳϵ)∥Hm = ∥νJ2
ϵ (∆yϵ)−P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]}

−νJ2
ϵ (∆ȳϵ) + P {Jϵ [(Jϵȳϵ · ∇)Jϵȳϵ + (b · ∇)Jϵȳϵ + (Jϵȳϵ · ∇)b]} ∥Hm

By triangle inequality and by add and subtract the term: P {Jϵ [(Jϵyϵ) · ∇] (Jϵȳϵ)}
we have that

≤ ν∥J2
ϵ∆(yϵ − ȳϵ)∥Hm + ∥P {Jϵ [(Jϵyϵ) · ∇] (Jϵ(yϵ − ȳϵ))} ∥Hm

+∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] (Jϵȳϵ)} ∥Hm + ∥P {Jϵ [(b · ∇)(Jϵ(yϵ − ȳϵ))]} ∥Hm

+∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] b} ∥Hm

We will see each of these 5 terms individually

•
ν∥J2

ϵ∆(yϵ − ȳϵ)∥Hm = ν∥J2
ϵ (yϵ − ȳϵ)∥Hm+2

By proposition 4.1.13
≤ c

ϵ2
∥Jϵ(yϵ − ȳϵ)∥Hm

≤ ∥yϵ − ȳϵ∥Hm
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•
∥P {Jϵ [(Jϵyϵ) · ∇] (Jϵ(yϵ − ȳϵ))} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇Jϵ(yϵ − ȳϵ) · Jϵyϵ∥Hm

By proposition 4.1.4

≤ c (∥∇Jϵ(yϵ − ȳϵ)∥L∞∥Jϵyϵ∥Hm + ∥∇Jϵ(yϵ − ȳϵ∥Hm)∥Jϵy − ϵ∥L∞)

By proposition 4.1.13

≤ c
(c
ϵ
∥yϵ − ȳϵ∥Hm

c

ϵ2
∥yϵ∥L2 + c∥yϵ∥Hm

c

ϵ3
∥yϵ − ȳϵ∥L2

)
≤ c3

ϵ3
∥yϵ∥Hm∥yϵ − ȳϵ∥Hm

•
∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] (Jϵȳϵ)} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇Jϵȳϵ · Jϵ(yϵ − ȳϵ)∥Hm

By proposition 4.1.4

≤ c (∥∇Jϵȳϵ∥L∞∥Jϵ(yϵ − ȳϵ)∥Hm + ∥Jϵȳϵ∥Hm∥Jϵ(yϵ − ȳϵ)∥L∞)

By proposition 4.1.13

≤ c
( c
ϵ3
∥ȳϵ∥L2c∥yϵ − ȳϵ∥Hm +

c

ϵ
∥ȳϵ∥Hm

c

ϵ2
∥yϵ − ȳϵ∥L2

)
≤ c3

ϵ3
∥ȳϵ∥Hm∥yϵ − ȳϵ∥Hm

•
∥P {Jϵ [(b · ∇)(Jϵ(yϵ − ȳϵ))]} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇Jϵ(yϵ − ȳϵ) · b∥Hm

Thus
≤ c∥∇Jϵ(yϵ − ȳϵ)∥Hm∥b∥L∞

By proposition 4.1.13
≤ c

ϵ
∥yϵ − ȳϵ∥Hm∥b∥L∞

≤ c

ϵ
∥b∥L∞∥yϵ − ȳϵ∥Hm
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•
∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] b} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇b · Jϵ(yϵ − ȳϵ)∥Hm

Thus
≤ c2∥∇b∥L∞∥yϵ − ȳϵ∥Hm

So in the set OM = {y ∈ V m : ∥y∥Hm ≤M}

∥Fϵ(yϵ)− Fϵ(ȳϵ)∥Hm ≤ LM,b∥yϵ − ȳϵ∥Hm

Thus Fϵ is local Lipschitz so by Picard Lindelof theorem there exist a unique
solution of the (IVP), say yϵ ∈ C1([0, T ), V m)

2. For the second part of the theorem we have that
ˆ
R2

yϵ ·
d

dt
yϵdx =

ˆ
R2

yϵ · Fϵ(yϵ)dx

1

2

d

dt
∥yϵ∥2L2 =

ˆ
R2

yϵ · Fϵ(yϵ)dx

For the integral on the right side we have that
ˆ
R2

yϵ·Fϵ(yϵ)dx =

ˆ
R2

yϵ·
{
−P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]}+ νJ2

ϵ (∆yϵ)
}

= ν

ˆ
R2

Jϵyϵ ·∆Jϵyϵdx+
1

2

ˆ
R2

[(Jϵyϵ · ∇)Jϵyϵ] Jϵyϵdx

+
1

2

ˆ
R2

[(b · ∇)Jϵyϵ] Jϵyϵdx+
1

2

ˆ
R2

[(Jϵyϵ · ∇)b] Jϵyϵdx

So

≤ −ν
ˆ
R2

∇Jϵyϵ · ∇Jϵyϵdx+
1

2

ˆ
R2

[(b · ∇)Jϵyϵ] Jϵyϵdx+
1

2

ˆ
R2

[(Jϵyϵ · ∇)b] Jϵyϵdx

25

≤ 1

4
∥∇b∥L∞∥yϵ∥2L2

Thus we conclude to the relation

d

dt
∥yϵ∥L2 ≤ C∥∇b∥L∞∥yϵ∥L2

25Since −ν
´
R2 ∇Jϵyϵ · ∇Jϵyϵdx = −ν∥∇Jϵyϵ∥2L2 < 0

Also

1

2

ˆ
R2

[(b · ∇)Jϵyϵ] Jϵyϵdx = −1

2

ˆ
R2

Jϵyϵ·∇(b·Jϵyϵ)dx = −1

2

ˆ
R2

[(b · ∇)Jϵyϵ] Jϵyϵdx−
1

2

ˆ
R2

[(Jϵyϵ · ∇)b] Jϵyϵdx⇒

ˆ
R2

[(b · ∇)Jϵyϵ] Jϵyϵdx = −1

2

ˆ
R2

[(Jϵyϵ · ∇)b] Jϵyϵdx
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By Gronwall’s lemma in the differential form we have that

∥yϵ∥L2 ≤ ∥yϵ|t=0∥L2e
´ t
0 C∥∇b∥L∞

Taking the supremum over this relation, together with the fact that the integral
of a positive quantity as a function is an increasing one we conclude that

sup
0≤t≤T

∥yϵ∥L2 ≤ ∥y0∥L2e
´ T
0 c∥∇b∥L∞dt

Remark: In the previous chapter, the basic energy estimate in two dimensions is the
same as the energy estimate mentioned above. Therefore, we have once again achieved
an optimal energy estimate. It is worth noting that our bound in two dimensions has a
time dependence, but in three dimensions, this is not the case.
So far we have find a local solution for the regularized problem we cam also extend this
solution on 2 dimension since by the fact that Fϵ is Lipschitz we have the following
inequality

∥Fϵ(yϵ)∥Hm ≤ LM,b∥yϵ∥Hm

Also yϵ satisfies the IVP so we have

d

dt
∥yϵ∥mH ≤ LM,b∥yϵ∥Hm

So by Gronwall lemma for T <∞ we find an apriori bound eLM,bT so the case of blow
up is not true and thus T = ∞
Conclusions:The regularized problem for the Navier Stokes equation has a smooth global
in time solution on V m in 2 dimensions. Why?

We have find a solution for the L − NSyϵ say yϵ we know thatyϵ = uϵ − b So we
substitute to the L−NSyϵ the uϵ − b and we have that

∂

∂t
uϵ −

∂

∂t
b+ PJϵ

[
(Jϵuϵ · ∇)Jϵuϵ

−(Jϵuϵ · ∇)b− (b · ∇)Jϵuϵ + (b · ∇)b

+(b · ∇)Jϵuϵ − (b · ∇)b+ (Jϵuϵ · ∇)b− (b · ∇)b

]
= νJ2

ϵ∆uϵ − ν∆b

We know that b is an exact solution of the Navier Stokes equation so we conclude
that

∂

∂t
uϵ + PJϵ

[
(Jϵuϵ · ∇)Jϵuϵ

]
= νJ2

ϵ∆uϵ

This is the regularized Navier Stokes in two dimensions so we see that uϵ satisfies
this equation, so its a solution.
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Remark: We have exactly the same results for the Euler equation indeed:

∂

∂t
y + (y · ∇)y + (b · ∇)y + (y · ∇)b = −∇p (Ey)

We consider the following mollification for the (Eu) assuming that uϵ = yϵ + b

∂

∂t
yϵ + Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b] = −∇pϵ (Eyϵ)

Using the Leray’s formulation we project this equation to the closed space of Hs diver-
gence free functions i.e. V s = {u ∈ Hs : divu = 0} and we have that

∂

∂t
yϵ + P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} = 0 (L− Eyϵ)

We set
Fϵ(yϵ) = −P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]}

By assuming that the initial value of the mollified y is equal to the initial value of y we
reach to an initial value problem{

∂
∂tyϵ = Fϵ(yϵ)

yϵ(∗, 0) = yϵ(0) = y0
(IVP)

So now we have reach to the point where we seek for solutions for the above (IVP), so
we have the following theorem Let y0 ∈ V m ,m ∈ Z+

0 the initial value of the field yϵ,
then

1. ∀ϵ > 0 there exist a unique solution yϵ ∈ C1 ([0, T ), V m) of the (IVP).

2. On any time interval [0, T ] on which the solution exists in C1 ([0, T ), V m) we have
that :

sup
0≤t≤T

∥yϵ∥L2 ≤ ∥y0∥L2e
´ T
0 c∥∇b∥L∞dt

Proof. 1. For the first part of the theorem we will prove that Fϵ : V m → V m and
also it is locally Lipschitz
Assume a yϵ ∈ V m we have that

∥Fϵ(yϵ)∥Hm ≤ ∥P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ∥Hm

We can easily see that

2.
∥P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ∥Hm

≤ ∥Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]

By triangle inequality and proposition 4.1.13 we have that

≤ c [∥(Jϵyϵ · ∇)Jϵyϵ∥Hm + ∥(b · ∇)Jϵyϵ∥Hm + ∥(Jϵyϵ · ∇)b∥Hm ]
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By proposition 4.1.4

≤ c∥∇Jϵyϵ∥L∞∥Jϵyϵ∥Hm + c∥∇Jϵyϵ∥Hm∥Jϵyϵ∥L∞

+c∥∇Jϵyϵ∥Hm∥b∥L∞ + c∥∇b∥L∞∥Jϵyϵ∥Hm

By proposition 4.1.13 we have that

≤ c
[
∥yϵ∥2Hm + ∥yϵ∥Hm (∥b∥L∞ + ∥∇b∥L∞)

]
Thus we have that

∥P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ∥Hm <∞

So ∥Fϵ(yϵ)∥Hm < ∞, furthermore divFϵ(yϵ) = 0 so we have that Fϵ : V m → V m

Now we will prove that this function is locally Lipschitz
Assume uϵ, vϵ with radial energy decomposition uϵ = yϵ + b and vϵ = ȳϵ + b so we
have that

∥Fϵ(yϵ)− Fϵ(ȳϵ)∥Hm = ∥ − P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]}

+P {Jϵ [(Jϵȳϵ · ∇)Jϵȳϵ + (b · ∇)Jϵȳϵ + (Jϵȳϵ · ∇)b]} ∥Hm

By triangle inequality and by add and subtract the term: P {Jϵ [(Jϵyϵ) · ∇] (Jϵȳϵ)}
we have that

≤ ∥P {Jϵ [(Jϵyϵ) · ∇] (Jϵ(yϵ − ȳϵ))} ∥Hm + ∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] (Jϵȳϵ)} ∥Hm

+∥P {Jϵ [(b · ∇)(Jϵ(yϵ − ȳϵ))]} ∥Hm + ∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] b} ∥Hm

We will see each of these terms individually

•
∥P {Jϵ [(Jϵyϵ) · ∇] (Jϵ(yϵ − ȳϵ))} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇Jϵ(yϵ − ȳϵ) · Jϵyϵ∥Hm

By proposition 4.1.4

≤ c (∥∇Jϵ(yϵ − ȳϵ)∥L∞∥Jϵyϵ∥Hm + ∥∇Jϵ(yϵ − ȳϵ∥Hm)∥Jϵy − ϵ∥L∞)

By proposition 4.1.13

≤ c
(c
ϵ
∥yϵ − ȳϵ∥Hm

c

ϵ2
∥yϵ∥L2 + c∥yϵ∥Hm

c

ϵ3
∥yϵ − ȳϵ∥L2

)

≤ c3

ϵ3
∥yϵ∥Hm∥yϵ − ȳϵ∥Hm
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•
∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] (Jϵȳϵ)} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇Jϵȳϵ · Jϵ(yϵ − ȳϵ)∥Hm

By proposition 4.1.4

≤ c (∥∇Jϵȳϵ∥L∞∥Jϵ(yϵ − ȳϵ)∥Hm + ∥Jϵȳϵ∥Hm∥Jϵ(yϵ − ȳϵ)∥L∞)

By proposition 4.1.13

≤ c
( c
ϵ3
∥ȳϵ∥L2c∥yϵ − ȳϵ∥Hm +

c

ϵ
∥ȳϵ∥Hm

c

ϵ2
∥yϵ − ȳϵ∥L2

)

≤ c3

ϵ3
∥ȳϵ∥Hm∥yϵ − ȳϵ∥Hm

•
∥P {Jϵ [(b · ∇)(Jϵ(yϵ − ȳϵ))]} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇Jϵ(yϵ − ȳϵ) · b∥Hm

≤ c∥∇Jϵ(yϵ − ȳϵ)∥Hm∥b∥L∞

≤ c
(c
ϵ
∥yϵ − ȳϵ∥Hm∥b∥L∞

)
≤ c2

ϵ
∥b∥L∞∥yϵ − ȳϵ∥Hm

•
∥P {Jϵ [(Jϵ(yϵ − ȳϵ)) · ∇] b} ∥Hm

By proposition 4.1.13 and 4.1.15

≤ c∥∇b · Jϵ(yϵ − ȳϵ)∥

By proposition 4.1.13

≤ c2∥∇b∥L∞∥yϵ − ȳϵ∥Hm

So in the set OM = {y ∈ V m : ∥y∥Hm ≤M}

∥Fϵ(yϵ)− Fϵ(ȳϵ)∥Hm ≤ L∗
M,b∥yϵ − ȳϵ∥Hm

Thus Fϵ is locally Lipschitz so by Picard Lindelof theorem there exist a unique
solution of the (IVP), say yϵ ∈ C1([0, T ), V m)
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3. For the second part of the theorem we have thatˆ
R2

yϵ ·
d

dt
yϵdx =

ˆ
R2

yϵ · Fϵ(yϵ)dx

1

2

d

dt
∥yϵ∥2L2 =

ˆ
R2

yϵ · Fϵ(yϵ)dx

For the integral on the right side we have thatˆ
R2

yϵ · Fϵ(yϵ)dx = −
ˆ
R2

yϵ · P {Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]}

1

2

ˆ
R2

[(Jϵyϵ · ∇)Jϵyϵ] Jϵyϵdx

1

2

ˆ
R2

[(b · ∇)Jϵyϵ] Jϵyϵdx+
1

2

ˆ
R2

[(Jϵyϵ·)b] Jϵyϵdx

So by footnote 26

≤ 1

4

ˆ
R2

[(Jϵyϵ·)b] Jϵyϵdx

≤ C∥∇b∥L∞∥yϵ∥2L2

Thus we conclude to the relation
d

dt
∥yϵ∥L2 ≤ C∥∇b∥L∞∥yϵ∥L2

By Gronwall’s lemma in the differential form we have that

∥yϵ∥L2 ≤ ∥yϵ|t=0∥L2e
´ t
0 C∥∇b∥L∞

Taking the supremum over this relation, together with the fact that the integral
of a positive quantity as a function is an increasing one we conclude that

sup
0≤t≤T

∥yϵ∥L2 ≤ ∥y0∥L2e
´ T
0 c∥∇b∥L∞dt

So far we have find a local solution for the regularized problem we cam also extend this
solution on 2 dimension since by the fact that Fϵ is Lipschitz we have the following
inequality

∥Fϵ(yϵ)∥Hm ≤ L∗
M,b∥yϵ∥Hm

Also yϵ satisfies the IVP so we have

d

dt
∥uϵ∥mH ≤ L∗

M,b∥yϵ∥Hm

So by Gronwall lemma for T <∞ we find an apriori bound eL
∗
M,bT so the case of blow

up is not true and thus T = ∞
Conclusions:The regularized problem for the Euler equation has a smooth global in time
solution on V m in 2 dimensions.
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We have find a solution for the L − Eyϵ say yϵ we know thatyϵ = uϵ − b So we
substitute to the L− Eyϵ the uϵ − b and we have that

∂

∂t
uϵ −

∂

∂t
b+ PJϵ

[
(Jϵuϵ · ∇)Jϵuϵ

−(Jϵuϵ · ∇)b− (b · ∇)Jϵuϵ + (b · ∇)b

+(b · ∇)Jϵuϵ − (b · ∇)b+ (Jϵuϵ · ∇)b− (b · ∇)b

]
= 0

We know that b is an exact solution of the Euler equation so we conclude that

∂

∂t
uϵ + PJϵ

[
(Jϵuϵ · ∇)Jϵuϵ

]
= 0

This is the regularized Euler in two dimensions so we see that uϵ satisfies this
equation, so its a solution.

4.3 Existence of smooth solutions as the limit of the regu-
larized solutions

The primary concern in this section is whether and how we can solve the Navier-Stokes
and Euler equations through the regularized ones. We need to determine the circum-
stances under which this is possible and the time interval required. We will examine
two cases: one for three dimensions and one for two dimensions, as we did before.

4.3.1 3 dimensions

The following theorem summarizes the main result which answers all the previous ques-
tions, for its proof we will need several steps which we will discuss below

Theorem 4.3.1. Assume that u0 ∈ V m with m ≥
[
3
2

]
+ 2 = 326 then

1. There exists a time T with upper bound which depends on the initial value i.e.

T ≤ 1

cm∥u0∥Hm

such that ∀ν ≥ 0 there exists a unique solution uv ∈ C
(
[0, T ], C2(R3)

)
∩C1

(
[0, T ], C(R3)

)
for the Euler and Navier-Stokes equations in the Leray’s form.

2. The solutions uv and uϵ satisfies the following estimates

sup
0≤t≤T

∥uϵ∥Hm ≤ ∥u0∥Hm

1− cmT∥u0∥Hm

26In the case of the Euler equation we can take m ≥
[
N
2

]
+ 1 = 2
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sup
0≤t≤T

∥uv∥Hm ≤ ∥u0∥Hm

1− cmT∥u0∥Hm

3. The solutionsuϵ, uv is uniformly bounded on the spaces

• L2
(
[0, T ], V m(R3)

)
• L∞ ([0, T ], V m(R3)

)
• Lip

(
[0, T ], V m−2(R3)

)
• CW

(
[0, T ], V m(R3)

)
For the proof we will do the following steps, each of these steps needs several results

to get proved:
Step 1: We will show the energy estimate sup0≤t≤T ∥uϵ∥Hm ≤ ∥u0∥Hm

1−cmT∥u0∥Hm

Step 2:We will prove that the family of the regularizes solutions forms a Cauchy se-
quence on C

(
[0, T ], L2(R3)

)
Step 3: We will prove strong convergence in all the intermediate norms of the high
norm of the space C

(
[0, T ], Hm(R3)

)
Step 4:Via weak convergences we will prove the third part of the theorem

We also note that in the previous chapters we have an estimate which its constant de-
pends on ϵ in the denominator and M this is not so useful here since we will send ϵ to
zero in order to find the limit solution. So we will prove the following lemma which give
us an estimate with no bad dependence on ϵ

Lemma 18. Assume that u0 ∈ V m then for the solution uϵ of the (IVP) it is true that

1

2

d

dt
∥uϵ∥2Hm + ν∥Jϵ∇uϵ∥2Hm ≤ cm∥∇Jϵuϵ∥L∞∥uϵ∥2Hm

Proof. Since uϵ is a solution of the (IVP) we have

d

dt
uϵ = νJ2

ϵ∆uϵ − PJϵ [(Jϵuϵ · ∇)Jϵuϵ]

We observe that the estimate we want to achieve is about Sobolev norms so we differ-
entiate for any multiindex a the above relation and we have that

Da

(
d

dt
uϵ

)
= νDa

(
vJ2

ϵ∆uϵ
)
−Da (PJϵ [(Jϵuϵ · ∇)Jϵuϵ])

We will do energy methods and we will multiply this relation with the Dauϵ in L2

Then
ˆ
R3

Da

(
d

dt
uϵ

)
·Dauϵdx = ν

ˆ
R3

Da
(
J2
ϵ∆uϵ

)
·Dauϵdx−

ˆ
R3

Da {PJϵ [(Jϵuϵ · ∇)Jϵuϵ]}·Dauϵdx

Thus by proposition 4.1.8 and 4.1.15(6)

1

2

d

dt

ˆ
R3

|Dauϵ|2dx = ν

ˆ
R3

∆(DaJϵuϵ) ·DaJϵuϵ−
ˆ
R3

Da {PJϵ [(Jϵuϵ · ∇)Jϵuϵ]} ·Dauϵdx
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So

1

2

d

dt
∥Dauϵ∥2L2 = −ν

ˆ
R3

DaJϵuϵ ·DaJϵuϵdx−
ˆ
R3

Da {PJϵ [(Jϵuϵ · ∇)Jϵuϵ]} ·Dauϵdx

Consequently

1

2

d

dt
∥Dauϵ∥2L2 + ν∥DaJϵ∇uϵ∥2L2 = −

ˆ
R3

Da {PJϵ [(Jϵuϵ · ∇)Jϵuϵ]} ·Dauϵdx

Now we will deal with the integral on the right side of the above relation, we see that
by ass and subtract the term

´
R3 PJϵ [(Jϵuϵ · ∇)DaJϵuϵ]D

auϵdx

−
ˆ
R3

Da {PJϵ [(Jϵuϵ · ∇)Jϵuϵ]} ·Dauϵdx

= −
ˆ
R3

PJϵ [(Jϵuϵ · ∇)DaJϵuϵ]D
auϵdx

−
ˆ
R3

[
Da {PJϵ [(Jϵuϵ · ∇) Jϵuϵ]} − PJϵ [(Jϵuϵ∇·)DaJϵuϵ]

]
·Dauϵ

We have that
´
R3 PJϵ [(Jϵuϵ · ∇)DaJϵuϵ]D

auϵdx = 1
2

´
R3(Jϵuϵ) ·

(
∇ (JϵD

aJϵuϵ)
2
)
dx

= −1

2

ˆ
R3

divJϵuϵ|JϵDauϵ|2dx = 0

Also by Holders inequality, proposition 4.1.8 and 4.1.15 it follows that

−
ˆ
R3

Da {PJϵ [(Jϵuϵ · ∇)Jϵuϵ]} ·Dauϵdx

≤ ∥Dauϵ∥L2∥PJϵ {Da (∇Jϵuϵ · Jϵuϵ)−Da(∇Jϵuϵ) · Jϵuϵ} ∥L2

By proposition 4.1.13

≤ cm∥Dauϵ∥L2∥Da (∇Jϵuϵ · Jϵuϵ)−Da(∇Jϵuϵ) · Jϵuϵ∥L2

We reach to the relation

1

2

d

dt
∥Dauϵ∥2L2 + ν∥DaJϵ∇uϵ∥2L2 ≤ cm∥uϵ∥Ha∥Da (∇Jϵuϵ · Jϵuϵ)−Da(∇Jϵuϵ) · Jϵuϵ∥L2

Since a ≤ m we get

1

2

d

dt
∥Dauϵ∥2L2 + ν∥DaJϵ∇uϵ∥2L2 ≤ cm∥uϵ∥Hm∥Da (∇Jϵuϵ · Jϵuϵ)−Da(∇Jϵuϵ) · Jϵuϵ∥L2

We take the sum over this relation,∑
|a|≤m

1

2

d

dt
∥Dauϵ∥2L2 +

∑
|a|≤m

ν∥DaJϵ∇uϵ∥2L2

≤ cm∥uϵ∥Hm

∑
|a|≤m

∥Da (∇Jϵuϵ · Jϵuϵ)−Da(∇Jϵuϵ) · Jϵuϵ∥L2
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We use the proposition 4.1.4(2) and we have that

1

2

d

dt
∥uϵ∥2Hm + ν∥Jϵ∇uϵ∥2Hm ≤ cm∥uϵ∥Hm2cm∥∇Jϵuϵ∥L∞∥Jϵuϵ∥Hm

So we conclude that

1

2

d

dt
∥uϵ∥2Hm + ν∥Jϵ∇uϵ∥2Hm ≤ Cm∥∇Jϵuϵ∥L∞∥uϵ∥2Hm

Proof. Theorem 4.3.1
Step 1:By the above lemma we have that

d

dt
∥uϵ∥Hm ≤ Cm∥∇Jϵuϵ∥L∞∥uϵ∥Hm (PrS1)

For the norm ∥Jϵuϵ∥L∞ we will use the Sobolev embedding theorem 4.1.2 we are on the
case where s ≥ N

2 + 2 so our k=2 so by the theorem sup|a|≤2 ∥Dau∥L∞ ≤ c∥u∥Hs , thus
we have the following estimate

∥∇Jϵuϵ∥L∞ ≤ sup
|a|≤2

∥DaJϵuϵ|L∞ ≤ ∥Jϵuϵ∥Hm

Now we can use proposition 4.1.13 and we have that ∥Jϵuϵ∥Hm ≤ c
ϵ0
∥uϵ∥Hm

Eventually put all this together with the relation (PrS1) we have that

d

dt
∥uϵ∥Hm ≤ C∥uϵ∥2Hm

Note:The constant C depends only by m
So now we will find the solution which satisfies this inequality

Assume that b(t) solves the differential equation

d

dt
b(t) = cb2(t)

with initial value b(0) = ∥u0∥Hm Firstly we want to find a relation between our
function and b(t)
Then by combine those two relations we have that

d

dt
∥uϵ∥Hm − d

dt
b(t) ≤ c∥uϵ∥2Hm − cb2(t)

I.e.
d

dt
(∥uϵ∥Hm − b(t)) ≤ c

(
∥uϵ∥2Hm − b2(t)

)
We set y(t) = ∥uϵ∥Hm − b(t) thus we have that

d

dt
y(t) ≤ c (∥uϵ∥Hm + b(t)) y(t)
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We also set q(t) = (∥uϵ∥Hm + b(t))
So we have the inequality

d

dt
y(y) ≤ cq(t)y(t)

By Gronwall’s inequality in differential form we have that

y(t) ≤ y(0)e
´ t
0 cq(s)ds

where y(0) = ∥u0∥Hm − ∥u0∥Hm = 0
Consequently ∥uϵ(t)∥Hm ≤ b(t).
Now we will find this b by solving the initial value problem, we are sure that we
have a solution since we have a first order ivp.{

d
dtb(t) = cb2(t)

b(0) = ∥u0∥Hm

For convenience we interpret the differentiation with respect to t with ′

So b′(t) = cb2(t) so for b(t) ̸= 0 we have that
ˆ t

0

b′(s)

b2(s)
=

ˆ t

0
cds

−1

b(t)
+

1

b(0)
= ct

1

b(t)
=

1− b(0)ct

b(0)

Eventually b(t) = b(0)
1−b(0)ct =

∥u0∥Hm

1−ct∥u0∥Hm

So we have the result i.e.

∥uϵ∥Hm ≤ ∥u0∥Hm

1− cmt∥u0∥Hm

Taking the supremum over this relation we have that

sup
0≤t≤T

∥uϵ∥Hm ≤ sup
0≤t≤T

∥u0∥Hm

1− cmt∥u0∥Hm

For the supremum of the right quantity: we have that as t takes its supremum the
denominator gets smaller so the fraction gets bigger, so the supremum of this quotient
is achieved when takes it supremum so

sup
0≤t≤T

∥uϵ∥Hm ≤ ∥u0∥Hm

1− cmT∥u0∥Hm

It is obvious that this bound is uniform since so far we have no dependence on ϵ, also
we want to secure that the right part has a supremum .
So for T ≤ 1

c̄m∥u0∥Hm
uϵ is uniformly bounded on C ([0, T ], Hm)
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Step 2:The family uϵ forms a Cauchy sequence27 on C
(
[0, T ], L2

)
In order to prove this we will try to estimate the L2 norm of the difference uϵ − uϵ′ via
energy methods. We start with the equation of (IVP) and assume that uϵ, uϵ′satisfy
this equation we have that

d

dt
uϵ −

d

dt
uϵ′ = Fϵ(uϵ)− Fϵ′(uϵ′)

So we have the following equation

d

dt
(uϵ − uϵ′) = ν(J2

ϵ∆uϵ − J2
ϵ′∆uϵ′)

−{PJϵ [(Jϵuϵ · ∇)Jϵuϵ] + PJϵ′ [(Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ]}

We multiply this equation with the difference uϵ − uϵ′ in the L2 and we have that
ˆ
R3

d

dt
(uϵ − uϵ′) · (uϵ − uϵ′)dx

= ν

ˆ
R3

(J2
ϵ∆uϵ − J2

ϵ′∆uϵ′) · (uϵ − uϵ′)dx

−
ˆ
R3

{PJϵ [(Jϵuϵ · ∇)Jϵuϵ] + PJϵ′ [(Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ]} · (uϵ − uϵ′)dx

So we have that

1

2

d

dt
∥uϵ − uϵ′∥2L2 = ν

ˆ
R3

(J2
ϵ∆uϵ − J2

ϵ′∆uϵ′) · (uϵ − uϵ′)dx

+

ˆ
R3

{PJϵ [(Jϵuϵ · ∇)Jϵuϵ]− PJϵ′ [(Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ]} · (uϵ − uϵ′)dx

For the terms on the right side of the above relation we will do the estimates separately:28

1.

ν

ˆ
R3

(J2
ϵ∆uϵ−J2

ϵ′∆uϵ′)·(uϵ−uϵ′)dx = ν

ˆ
R3

J2
ϵ∆uϵ ·(uϵ−uϵ′)−J2

ϵ′∆uϵ′ ·(uϵ−uϵ′)dx

We want to maintain the differences so we will not deal with them. We proceed
by add and subtract the term J2

ϵ′∆uϵ · (uϵ − uϵ′) so we have that

ν

ˆ
R3

(J2
ϵ∆uϵ − J2

ϵ′∆uϵ′) · (uϵ − uϵ′)dx

27How this family forms a sequence since ϵ is a positive real?We set ϵ = 1
n

and we construct a
sequence such that :

u1 = u1

u2 = u 1
2

...
un = u 1

n
= uϵ

28We will use the tools we will need, observe here that we want our estimates to have a "good"
dependance from ϵ or ϵ′
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=

ˆ
R3

J2
ϵ∆uϵ ·(uϵ−uϵ′)−J2

ϵ′∆uϵ ·(uϵ−uϵ′)+J2
ϵ′∆uϵ ·(uϵ−uϵ′)−J2

ϵ′∆uϵ′ ·(uϵ−uϵ′)dx

= ν

[ˆ
R3

(
J2
ϵ − J2

ϵ′
)
∆uϵ · (uϵ − uϵ′)dx+

ˆ
R3

J2
ϵ′∆(uϵ − uϵ′) · (uϵ − uϵ′)dx

]
For the second integral29 and proposition 4.1.9 we have that

ˆ
R3

J2
ϵ′∆(uϵ − uϵ′) · (uϵ − uϵ′)dx = −

ˆ
R3

Jϵ′∇(uϵ − uϵ′) · Jϵ′∇(uϵ − uϵ′)

= −
ˆ
R3

|Jϵ′∇(uϵ − uϵ′)|2dx = −∥Jϵ′∇(uϵ − uϵ′)∥2L2 ≤ 0

Thus

ν

ˆ
R3

(J2
ϵ∆uϵ − J2

ϵ′∆uϵ′) · (uϵ − uϵ′)dx ≤ ν

ˆ
R3

(
J2
ϵ − J2

ϵ′
)
∆uϵ · (uϵ − uϵ′)dx

By Holders inequality we have that

ν

ˆ
R3

(J2
ϵ∆uϵ − J2

ϵ′∆uϵ′) · (uϵ − uϵ′)dx ≤ ν∥
(
J2
ϵ − J2

ϵ′
)
∆uϵ∥L2∥uϵ − uϵ′∥L2

By triangle inequality we have

≤ ν
(
∥J2

ϵ∆uϵ∥L2 + ∥J2
ϵ′∆uϵ∥L2

)
∥uϵ − uϵ′∥L2

= ν
(
∥J2

ϵ uϵ∥H2 + ∥J2
ϵ′uϵ∥H2

)
∥uϵ − uϵ′∥L2

By proposition 4.1.13

≤ νc
(
ϵ∥uϵ∥H3 + ϵ′∥uϵ∥H3

)
∥uϵ − uϵ′∥L2

≤ νcmax(ϵ, ϵ′)∥uϵ∥H3∥uϵ − uϵ′∥L2

So for this term we conclude that

ν

ˆ
R3

(J2
ϵ∆uϵ − J2

ϵ′∆uϵ′) · (uϵ − uϵ′)dx ≤ νcmax(ϵ, ϵ′)∥uϵ∥Hm∥uϵ − uϵ′∥L2

2. ˆ
R3

{PJϵ [(Jϵuϵ · ∇)Jϵuϵ]− PJϵ′ [(Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ]} · (uϵ − uϵ′)dx

≤
ˆ
R3

{Jϵ [(Jϵuϵ · ∇)Jϵuϵ]− Jϵ′ [(Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ]} · (uϵ − uϵ′)dx

We will add and subtract the term Jϵ′ [(Jϵuϵ · ∇)Jϵuϵ]

≤
ˆ
R3

Jϵ [(Jϵuϵ · ∇)Jϵuϵ]− Jϵ′ [(Jϵuϵ · ∇)Jϵuϵ]

+ Jϵ′ [(Jϵuϵ · ∇)Jϵuϵ]− Jϵ′ [(Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ]

29[18] pg712 theorem 3
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·(uϵ − uϵ′)dx

So we have two integrals:
ˆ
R3

(Jϵ − Jϵ′) [(Jϵuϵ · ∇)Jϵuϵ] · (uϵ − uϵ′)dx

and ˆ
R3

Jϵ′ [(Jϵuϵ · ∇)Jϵuϵ − (Jϵ′uϵ′ · ∇)Jϵ′uϵ′ ] · (uϵ − uϵ′)dx

In the second integral we add and subtract the terms (Jϵ′uϵ · ∇) Jϵuϵ , (Jϵ′uϵ′ · ∇) Jϵuϵ,
(Jϵuϵ′ · ∇) Jϵ′uϵ
So eventually we will estimate the following 5 integrals:
(a) =

´
R3 (Jϵ − Jϵ′) [(Jϵuϵ · ∇)Jϵuϵ] · (uϵ − uϵ′)dx

(b) =
´
R3 Jϵ′ {[(Jϵ − Jϵ′)uϵ · ∇] Jϵuϵ} · (uϵ − uϵ′)dx

(c) =
´
R3 Jϵ′ {[Jϵ′(uϵ − uϵ′) · ∇] Jϵuϵ} · (uϵ − uϵ′)dx

(d) =
´
R3 Jϵ {Jϵ′ [(uϵ · ∇)(Jϵ − Jϵ′)uϵ]} · (uϵ − uϵ′)dx

(e) =
´
R3 Jϵ′ {Jϵ′ [(uϵ′ · ∇)Jϵ′(uϵ − uϵ′)]} · (uϵ − uϵ′)dx

So let’s start the estimates

(a) ≤ ∥ (Jϵ − Jϵ′) [(Jϵuϵ · ∇)Jϵuϵ] ∥L2∥uϵ − uϵ′∥L2

For the first norm we add and subtract the term (Jϵuϵ · ∇)Jϵuϵ by triangle in-
equality we have that

∥ (Jϵ − Jϵ′) [(Jϵuϵ · ∇)Jϵuϵ] ∥L2 ≤ ∥Jϵ [(Jϵuϵ · ∇)Jϵuϵ]−(Jϵuϵ·∇)Jϵuϵ∥H0+∥Jϵ′ [(Jϵuϵ · ∇)Jϵuϵ − (Jϵuϵ · ∇)Jϵuϵ] ∥H0

By proposition 4.1.11 we have that

≤ cϵ∥∇Jϵuϵ · Jϵuϵ∥H1 + cϵ′∥∇Jϵuϵ · Jϵuϵ∥H1

≤ 2cmax(ϵ, ϵ′)∥∇Jϵuϵ · Jϵuϵ∥H1

By proposition 4.1.4 we have that

≤ cmax(ϵ, ϵ′) {∥∇Jϵuϵ∥L∞∥Jϵuϵ∥H1 + ∥Jϵuϵ∥L∞∥∇Jϵuϵ∥H1}

By proposition 4.1.7and the fact that m ≥ 3 we have that

≤ cmax(ϵ, ϵ′) (∥∇uϵ∥L∞∥uϵ∥Hm + ∥uϵ∥L∞∥uϵ∥Hm)

By the Sobolev embedding theorem we have that ∥u∥L∞+∥∇u∥L∞ ≤ sup|a|≤2 ∥Dau∥L∞ ≤
cm∥u∥Hm Thus as a result

∥ (Jϵ − Jϵ′) [(Jϵuϵ · ∇)Jϵuϵ] ∥L2 ≤ cmax(ϵ, ϵ′)∥uϵ∥2Hm

So (a) ≤ camax(ϵ, ϵ′)∥uϵ∥2Hm∥uϵ − uϵ′∥L2

(b) ≤ ∥Jϵ′ {[(Jϵ − Jϵ′)uϵ · ∇] Jϵuϵ} ∥L2∥uϵ − uϵ′∥L2

For the first norm by proposition 4.1.13 we have that

∥Jϵ′ {[(Jϵ − Jϵ′)uϵ · ∇] Jϵuϵ} ∥L2 ≤ c

ϵ0
∥ [(Jϵ − Jϵ′)uϵ · ∇] Jϵuϵ∥H0
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≤ c [(Jϵ − Jϵ′)uϵ · ∇] Jϵuϵ∥H4

Since H4(R3) is a Banach algebra we have:

c ≤ ∥∇Jϵuϵ∥H4∥(Jϵ − Jϵ′)uϵ∥H4

So by proposition and 4.1.13 we have that

≤ c∥uϵ∥Hm

(
∥Jϵuϵ − uϵ∥H3 + ∥Jϵ′uϵ − uϵ∥H3

)
By proposition 4.1.11

≤ c∥uϵ∥Hm

(
ϵ∥uϵ∥Hm + ϵ′∥uϵ∥Hm

)
∥Jϵ′ {[(Jϵ − Jϵ′)uϵ · ∇] Jϵuϵ} ∥L2 ≤ cmax(ϵ, ϵ′)∥uϵ∥2Hm

Consequently (b) ≤ cbmax(ϵ, ϵ′)∥uϵ∥2Hm∥uϵ − uϵ′∥L2

(c) ≤ ∥Jϵ′ {[Jϵ′(uϵ − uϵ′) · ∇] Jϵuϵ} ∥L2∥uϵ − uϵ′∥L2

For the first norm by the proposition 4.1.13 we have that

∥Jϵ′ {[Jϵ′(uϵ − uϵ′) · ∇] Jϵuϵ} ∥L2 ≤ c∥∇Jϵuϵ · Jϵ′(uϵ − uϵ′)H0

By the proposition 4.1.4

≤ c {∥∇Jϵuϵ∥L∞∥Jϵ′(uϵ − uϵ′)∥H0 + ∥∇Jϵuϵ∥H0∥Jϵ′(uϵ − uϵ′)∥L∞}

By the proposition 4.1.13 and the Sobolev embedding we have that

∥Jϵ′ {[Jϵ′(uϵ − uϵ′) · ∇] Jϵuϵ} ∥L2 ≤ c∥uϵ∥Hm∥uϵ − uϵ′∥L2

It follows that (c) ≤ cc∥uϵ∥Hm∥uϵ − uϵ′∥2L2 For (d) we have an estimate as in (b)
i.e.

(d) ≤ ∥Jϵ {Jϵ′ [(uϵ · ∇)(Jϵ − Jϵ′)uϵ]} ∥L2∥uϵ − uϵ′∥L2

For the first norm by the proposition 4.1.13 we have that

∥Jϵ {Jϵ′ [(uϵ · ∇)(Jϵ − Jϵ′)uϵ]} ∥L2 ≤ c∥∇(Jϵ − Jϵ′)uϵ · uϵ∥H0

≤ c∥∇(Jϵ − Jϵ′)uϵ · uϵ∥H4

The space H4(R3) is a Banach algebra we have:

≤ c∥uϵ∥Hm∥(Jϵ − Jϵ′)uϵ∥H5

≤ c∥uϵ∥Hm

(
∥Jϵuϵ − uϵ∥Hm + ∥Jϵ′uϵ − uϵ∥Hm

)
By proposition 4.1.11 we have

≤ c∥uϵ∥Hm

(
ϵ∥uϵ∥Hm + ϵ′∥uϵ∥Hm

)
So

∥Jϵ {Jϵ′ [(uϵ · ∇)(Jϵ − Jϵ′)uϵ]} ∥L2 ≤ cmax(ϵ, ϵ′)∥uϵ∥2Hm

As a consequence (d) ≤ cdmax(ϵ, ϵ′)∥uϵ∥2Hm∥uϵ − uϵ′∥L2 Now for the last integral
(e) we have that

(e) =
1

2

ˆ
R3

(Jϵ′uϵ′ · ∇)|Jϵ′(uϵ − uϵ′)|2dx = −1

2

ˆ
R3

div(Jϵ′uϵ′)|Jϵ′(uϵ − uϵ′)|2dx = 0
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So we combine all this relations and we have that :
1

2

d

dt
∥uϵ − uϵ′∥2L2 ≤ νcmax(ϵ, ϵ′)∥uϵ∥Hm∥uϵ − uϵ′∥L2 + camax(ϵ, ϵ′)∥uϵ∥2Hm∥uϵ − uϵ′∥L2

cbmax(ϵ, ϵ′)∥uϵ∥2Hm∥uϵ−uϵ′∥L2+cc∥uϵ∥Hm∥uϵ−uϵ′∥2L2+cdmax(ϵ, ϵ′)∥uϵ∥2Hm∥uϵ−uϵ′∥L2

By Step 1 we have a uniform bound for ∥uϵ∥Hm we set this bound M, recall that this
bound depends on time and initial value.If M ≥ 1 then we have M ≤ M2, if M < 1
then M2 < M . Assume also that C is the maximum constant of all. And set CM the
constant which depends on C and M or M2 then we have the relation :

1

2

d

dt
∥uϵ − uϵ′∥2L2 ≤ CM∥uϵ − uϵ′∥L2

[
max(ϵ, ϵ′) + ∥uϵ − uϵ′∥L2

]
So

d

dt
∥uϵ − uϵ′∥L2 ≤ CM

[
max(ϵ, ϵ′) + ∥uϵ − uϵ′∥L2

]
We take the integral with respect to t

∥uϵ − uϵ′∥L2 ≤
ˆ t

0
CM

[
max(ϵ, ϵ′) + ∥uϵ − uϵ′∥L2

]
ds

By simple calculations

∥uϵ − uϵ′∥L2 ≤ CM max(ϵ, ϵ′)t+

ˆ t

0
CM∥uϵ − uϵ′∥L2ds

We set a(t) = CM max(ϵ, ϵ′)t so by Gronwall’s lemma we have

∥uϵ − uϵ′∥L2 ≤ a(t)

ˆ t

0
CMa(s)e

´ t
s CMdrds

≤ CM max(ϵ, ϵ′)

(
2t+

1

CM
− 1

CM
eCM t

)
It is true that ex <≤ x+ 1 thus eCM t ≤ CM t+ 1

∥uϵ − uϵ′∥L2 ≤ CM max(ϵ, ϵ′)(2t− 1) ≤ 2tCM max(ϵ, ϵ′)

Taking the supremum over this relation we have

sup
0≤t≤T

∥uϵ − uϵ′∥L2 ≤ CM,T max(ϵ, ϵ′)

With out loss generality we assume that ϵ′ < ϵ So eventually ∥uϵ − uϵ′∥L2 ≤ CM,T ϵ
thus sequence is Cauchy on C([0, T ], L2(R3)) As an intermediate step we prove that the
space C([0, T ], L2) is Banach.

Assume that an is a Cauchy sequence on C([0, T ], L2) then we have that
∀η > 0 , ∃n0 ∈ N such that ∀n,m ≥ n0 : sup0≤t≤T ∥an − am∥L2 ≤ η we will
show that this sequence converges. The space L2 is Banach indeed assume that
fn is a Cauchy sequence on L2 i.e. ∀δ > 0 , ∃n0 ∈ N such that ∀n,m ≥ n0 :
sup0≤t≤T ∥fn−fm∥L2 ≤ δ, so we may assume a subsequence fnk

such that ∥fnk+1
−

fnk
∥ ≤ 1

2k
for k ≥ 1 We also assume the series f(x) = fn1 +

∑∞
1

(
fnk+1

− fnk

)
and

g(x) = |fn1 |+
∑∞

1 |fnk+1
− fnk

|. It is obvious that |f(x)| ≤ g(x) For the sequence
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of partial sum of g we have that SgN = |fn1 |+
∑N

1 |fnk+1
− fnk

|

Thus ∥SgN∥L2 =
(´

R3

∣∣|fn1 |+
∑N

1 |fnk+1
− fnk

|
∣∣2dx) 1

2 So ∥SgN∥L2 ≤ ∥fn1∥L2 +∑N
1 ∥fnk+1

− fnk
∥L2 Consequently for n → ∞ we have that ∥g∥L2 < ∞ ,so

∥f∥L2 < ∞ thus f ∈ L2. We also have that fnk
→ f in L2 thus ∥fn − f∥L2 ≤

∥fn−fnk∥L2+∥fnk
−f∥L2δ′ So we have that ∀η > 0 , ∃n0 ∈ N such that ∀n,m ≥ n0

: ∥an − a∥L2 ≤ η taking the supremum we have that ∀η > 0 , ∃n0 ∈ N such that
∀n,m ≥ n0 : sup0≤t≤T ∥an − a∥L2 ≤ η

So we have that uϵ is a Cauchy sequence in a Banach space thus this sequence converges
i.e uϵ → uv
Step 3:The main tool here is the interpolation spaces30. An interpolation space is
a space layed between two Banach spaces. Loosely speaking the idea is the follow-
ing, assume two Banach spaces X,Y which are continuously embedded to a Hausdorff
topological space Z. We define the spaces T1 = X ∩ Y and T2 = X + Y with norms
∥.∥T1 max(∥.∥X , ∥, ∥Y ) and ∥.∥ = inf {∥.∥X + ∥.∥Y }. Via the interpolation method we
seek for all sets S such that X ∩ Y ⊂ S ⊂ X + Y . A well known result is that of the
interpolation in Lp spaces31. Where we have the result:
Let 1 ≤ p < q < r ≤ ∞ such that for θ ∈ (0, 1) : 1

q = θ
p+

1−θ
r then ∥u∥Lq ≤ ∥u∥θLp∥u∥1−θLr .

This gives the interpolation Lp ∩ Lr ⊂ Lq. We observe that the interpolation theory
gives relation between norms so our interest is to have a result us above in L2 Sobolev
spaces.

Proposition 4.3.1. Let s ∈ R+ then ∀u ∈ Hs and 0 < r < s we have that

∥u∥Hr ≤ ∥u∥1−
r
s

L2 ∥u∥
r
s
Hs

proof of proposition 4.3.1 We will prove the following:Assume an r that is a convex
combination of x and y i.e. r = (1 − λ)x + λy for λ ∈ (0, 1) then ∥u∥Hr ≤
∥u(x)∥1−λHx ∥u∥λHy

For the Hr norm with r > 0 we have that

∥u∥Hr = ∥(1 + |ξ|2)
r
2 û(ξ)∥L2 = ∥(1 + |ξ|2)

(1−λ)x+λy
2 û(ξ)∥L2

(1 + |ξ|2)
(1−λ)x

2 (1 + |ξ|2)
λy
2 û(ξ)∥L2 = (1 + |ξ|2)

(1−λ)x
2 û1−λ(1 + |ξ|2)

λy
2 ûλ∥L2

Assume p,q,we will define them later such that 1
p +

1
q = 1

2 , by Holder we have that

∥u∥Hr ≤ ∥(1 + |ξ|2)
x
2 û∥1−λLp ∥(1 + |ξ|2)

y
2 û∥λLq

For p = 2
1−λ and q = 2

λ we have that

∥u∥Hr ≤

[(ˆ
R3

∣∣(1 + |ξ|2)
x
2 û
∣∣1−λ) 2

1−λ

dξ

] 1−λ
2
[(ˆ

R3

∣∣(1 + |ξ|2)
y
2 û
∣∣λ) 2

λ

dξ

]λ
2

30[11]
31[4] Chapter 2
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∥u∥Hr ≤
(
∥(1 + |ξ|2)

x
2 û∥L2

)1−λ (
∥(1 + |ξ|2)

y
2 û∥L2

)λ
∥u∥Hr ≤ ∥u∥1−λHx ∥u∥λHy

So in our case for x = 0 , λ = r
s , and y = s we have that r = (1− λ)x+ λy thus by

the previous result
∥u∥Hr ≤ ∥u∥1−

r
s

H0 ∥u∥
r
s
Hs

We need this relation since we have proved convergence in C([0, T ], L2) and also we
have a uniform bound in C([0, T ], Hm),and we are interested to find convergence for
the intermediate norms of Hmnorm. So we estimate the Hm′ norm of the difference
uϵ − uv where m′ ≤ m. By the above proposition we can easily see that

∥uϵ − uv∥Hm′ ≤ ∥uϵ − uv∥
1−m′

m

L2 ∥uϵ − uv∥
m′
m
Hm

Taking the supremum over this relation we have that

sup
0≤t≤T

∥uϵ − uv∥Hm′ ≤ sup
0≤t≤T

{
∥uϵ − uv∥

1−m′
m

L2 ∥uϵ − uv∥
m′
m
Hm

}
Thus sup0≤t≤T ∥uϵ − uv∥Hm′ ≤ sup0≤t≤T ∥uϵ − uv∥

1−m′
m

L2 sup0≤t≤T ∥uϵ − uv∥
m′
m
Hm

By the Step 2 we have that ∥uϵ−uϵ′∥L2 ≤ CM,T ϵ , we also now that sup ab ≤ sup a sup b
it follows that sup ak ≤ (sup a)k.

Consequently sup0≤t≤T ∥uϵ − uv∥
1−m′

m

L2 ≤
(
sup0≤t≤T ∥uϵ − uv∥L2

)1−m′
m .

We also know that the function xa is increasing when a > 0, so we have that sup0≤t≤T ∥uϵ−

uv∥
1−m′

m

L2 ≤ (cϵ)1−
m′
m .

By the Step 1 we have that sup0≤t≤T ∥uϵ∥Hm ≤ ∥u0∥Hm

1−cmT∥u0∥Hm
and it is also true that

∥uv∥Hm ≤ lim supϵ→0 ∥uϵ∥Hm ≤ lim supϵ→0
∥u0∥Hm

1−cmT∥u0∥Hm
≤ ∥u0∥Hm

1−cmT∥u0∥Hm

Thus we have also an uniform bound for the Hm norm of uv i.e.

sup
0≤t≤T

∥uv∥Hm ≤ ∥u0∥Hm

1− cmT∥u0∥Hm

It is also true by triangle inequality that sup(a+ b) ≤ sup a+ sup b so sup0≤t≤T ∥uϵ −

uv∥
m′
m
Hm ≤

(
sup0≤t≤T ∥uϵ∥mH + sup0≤t≤T ∥uv∥Hm

)
= M

m′
m Eventually we combine the

above relations and we have that

sup
0≤t≤T

∥uϵ − uv∥Hm′ ≤ C(u0, T,m,m
′)ϵ1−

m′
m

So we have proved that we have the converge of uϵ to uv in all spaces C([0, T ], V m′
)

with m′ < m.
We choosem′ > 3

2+2 , so by the Sobolev embedding theorem we have that ∥uϵ−uv∥C2 ≤
∥uϵ − uv∥Hm′ , taking the supremum over this relation we have that sup0≤t≤T ∥uϵ −
uv∥C2 ≤ sup0≤t≤T ∥uϵ − uv∥Hm′ .
It follows that uϵ → uv in C([0, T ], C2)
To complete the step 3 we have to show that we also have a convergence in C1([0, T ], C).
We will need the following lemma
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Lemma 19. Assume we have vn → v in C([0, T ], X) and v′n = fn → f in C([0, T ], Y ),
where X ⊂ Y Hilbert spaces. We want to show that then v′ = f ∈ C([0, T ], Y ).32

proof of lemma: Adapting classical results on uniform convergence to Hilbert-space-
valued functions.
First of all, from vn → v in C([0, T ], X) and X ⊂ Y we obtain vn → v in
C([0, T ], Y ).

Theorem 4.3.2. a Let ϵ > 0. Since v′n → f in C([0, T ], Y ), there exists an n0 ∈ N
such that for all n,m ≥ n0 we have

∥v′n(s)− v′m(s)∥Y < ϵ ∀ s ∈ [0, T ]

Then, by the Mean Value Theorem for Hilbert-space-valued functions, b applied
to each function vn − vm ∈ C([0, T ], Y ) on any interval between s, t ∈ [0, T ], we
obtain

∥vn(s)− vm(s)− (vn(t)− vm(t))∥Y ≤ ϵ|t− s| ∀ t, s ∈ [0, T ], ∀ n,m ≥ n0

Let now t ∈ [0, T ] be fixed and define ϕn(s) := vn(s)−vn(t)
s−t ∈ Y and ϕ(s) :=

v(s)−v(t)
s−t ∈ Y , with s ∈ [0, T ] \ {t} =: E, such that, since vn ∈ C1([0, T ], Y ),

lim
s→t

ϕn(s) = v′n(t) in Y

Moreover,by the above theorem we get

∥ϕn(s)− ϕm(s)∥Y ≤ ϵ, ∀ s ∈ E, ∀ n,m ≥ n0

such that (ϕn) converges in Y uniformly on E = [0, T ]\{t}, and since (vn) converges
in Y uniformly on [0, T ] ⊃ E to v, we obtain that ϕn → ϕ in Y , uniformly on E.
Now from ϕn → ϕ in Y , uniformly on E = [0, T ] \ {t}, and v′n(t) → f(t) ∈ Y ,
we obtain that for any ϵ > 0 there exists an n ∈ N and a corresponding δ > 0
such that ∥v′n(t) − f(t)∥Y < ϵ

3 , ∥ϕn(s) − ϕ(s)∥Y < ϵ
3 ∀ s ∈ E, ∥ϕn(s) −

v′n(t)∥Y < ϵ
3 ∀ s ∈ E ∩ {0 < |s − t| < δ}, and thus, ∥ϕ(s) − f(t)∥Y < ϵ for all

s ∈ E ∩ {0 < |s− t| < δ}. This yields lims→t ϕ(s) = f(t).
So v′(t) = lims→t ϕ(s) = limn→∞ v′n(t) = f(t) in Y

aThis is the Theorem 7.17 pg 152 on [42], adapted to the case of functions with values on a
Hilbert space

bThis is a trivial adaptation of Theorem 5.19, pg 113,[34] for functions with values in Rn, which
we present here for the sake of completeness.
Assume v : [a, b] → Y is continuous and v : (a, b) → Y is differentiable for a Hilbert space Y .
Then, there exists t ∈ (a, b) such that ∥v(b)−v(a)∥Y ≤ ∥v′(t)∥Y (b−a). Indeed, set z := v(b)−v(a).
Then, ϕ(t) := (z, v(t))Y is continuous on [a, b] and differentiable on (a, b) with ϕ′(t) = (z, v′(t))Y .

32Since C([0, T ], X) ⊂ C([0, T ], Y ) for X ⊂ Y , this implies then v ∈ C([0, T ], X) ∩ C1([0, T ], Y ).
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Applying on ϕ the Mean Value Theorem for real-valued functionsc we obtain the existence of a
t ∈ (a, b) such that

ϕ(b)− ϕ(a) = ϕ′(t)(b− a) = (z, v′(t))Y (b− a)

Using ϕ(b)−ϕ(a) = (z, v(b))Y − (z, v(a))Y = (z, v(b)−v(a))Y = ∥z∥2Y , the Cauchy inequality, and
dividing by ∥z∥Y > 0 (for z = 0 nothing has to be shown), we obtain ∥v(b) − v(a)∥Y = ∥z∥Y ≤
∥v′(t)∥Y (b− a)

We will apply this lemma in our case.
For this we recall the flow d

dtuϵ = Fϵ(uϵ).
We know that a limϵ→0 Fϵuϵ = ∆uv − P [(uv · ∇)uv] in V m′−2 since (we denote uv = u)

∥νJ2
ϵ∆uϵ − PJϵ[(Jϵuϵ · ∇)Jϵuϵ]− ν∆u+ P [(u · ∇)u]∥Hm′−2

By the triangle inequality we have that

≤ ∥νJ2
ϵ∆uϵ − ν∆u∥Hm′−2 + ∥PJϵ[(Jϵuϵ · ∇)Jϵuϵ]− P [(u · ∇)u]∥Hm′−2

≤ ν∥Jϵuϵ − u∥Hm′ + ∥Jϵ[(Jϵuϵ · ∇)Jϵuϵ]− [(u · ∇)u]∥Hm′−2

We add and subtract some terms in order to reach to some terms we can estimate by
the previous results

= ν∥Jϵuϵ−Jϵu+Jϵu−u∥Hm′+∥Jϵ[(Jϵuϵ·∇)Jϵuϵ]−Jϵ[(u·∇)u]+Jϵ[(u·∇)u]−[(u·∇)u]∥Hm′−2

Again by triangle inequality we have

≤ ν∥Jϵuϵ − Jϵu∥Hm′ + ν∥Jϵu− u∥Hm′

+ ∥Jϵ[(Jϵuϵ · ∇)Jϵuϵ]− [(Jϵuϵ · ∇)Jϵuϵ]∥Hm′−2︸ ︷︷ ︸
(1)

+ ∥(Jϵuϵ · ∇)Jϵuϵ − (u · u)∥Hm′−2︸ ︷︷ ︸
(2)

By the proposition 4.1.11 , 4.1.12 , 4.1.13 and step 2 we have that the first two terms
converge in Hm′ so we continue with (1) and (2).

(1) ≤ ∥Jϵ[(Jϵuϵ · ∇)Jϵuϵ]− [(Jϵuϵ · ∇)Jϵuϵ]∥Hm′

By proposition 4.1.12, and steps 1,2,3 we have that (1) → 0
For (2) we have

(2) ≤ ∥(Jϵuϵ · ∇)Jϵuϵ − (Jϵuϵ · ∇)uϵ∥Hm′−2︸ ︷︷ ︸
(2a)

+ ∥(Jϵuϵ · ∇)uϵ − (u · ∇)u∥Hm′−2︸ ︷︷ ︸
(2b)

So (2a) : ∥(Jϵuϵ ·∇)(Jϵuϵ−uϵ)∥Hm′−2 ≤ ∥∇(Jϵuϵ−uϵ)∥Hm′−2∥Jϵuϵ∥Hm′−2 ≤ ϵM∥Jϵuϵ−
uϵ∥Hm′

By proposition 4.1.12 and steps 1,2,3 we have that (2a) → 0 We continue with (2b) by
adding and subtracting some terms we have

(2b) ≤ ∥(Jϵuϵ·∇)uϵ−(Jϵuϵ·∇)u∥Hm′−2+∥(Jϵuϵ·∇)u−(uϵ·∇)u∥Hm′−2+∥(uϵ·∇)u−(u·∇)u∥Hm′−2

≤ ∥uϵ − u∥Hm′−1∥uϵ∥Hm′ + ∥u∥Hm′−1∥Jϵuϵ − uϵ∥Hm′−2 + ∥u∥Hm′−1∥uϵ − u∥Hm′−2
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By proposition 4.1.12 and steps 1,2,3 we have that (2b) → 0
So we conclude that d

dtuϵ → F (u) in C([0, T ], V m′−2). Invoking now vϵ → v in
C([0, T ], Hm′

), we obtain from Lemma19 above, that ∂tu = F = ν∆u − P (u · ∇u) ∈
C([0, T ], Hm′−2)
This means that the (strong) time-derivative ∂tu exists and is continuous in the respec-
tive spaces, such that u ∈ C([0, T ], Hm′

)∩C1([0, T ], Hm′−2) satisfies the Navier-Stokes
and Euler equations. For m′ like before we have by the Sobolev embedding theorem
that uϵ, uu ∈ C([0, T ], C2) ∩ C1([0, T ], C)33

Step 4:We start by giving the definitions for the spaces in the third part of the theorem.

• L∞ ([0, T ], V m) =
{
f : [0, T ] → V m, ess sup0≤t≤T ∥u(x)∥Hm ≤ ∞

}
• Lip

(
[0, T ], V m−2

)
=
{
f : [0, T ] → V m−2, f is Lipschitz

}
• Cw ([0, T ], V m) Assume that w is a weak topology on V m 34

Cw ([0, T ], V m) =

{f : [0, T ] → (V m, w), f continuous, i.e.forϕ ∈ (V m)∗ the functiont→ ϕ(f(t))is continuous}

We also define the weak convergence.

Definition 9. Assume that B is a Banach space and una sequence in B we will say that
un (strongly) converge to u in B if ∥un − u∥B → 0. If H is a Hilbert space we will say
that un (weakly) converge to u in H if ∀ϕinH we have that (un, ϕ)H → (u, ϕ)H and we
will write un ⇀ u

We will also need the following theorem

Theorem 4.3.3. 35 Let H be a Hilbert space and un a bounded sequence on H, then
there exists a subsequence ukn of un which weakly converge on H.

proof of theorem 4.3.2,Assume a un is a bounded sequence of H. We define Ho is
the closure of the set S = span(u1, u2, ..., un) , recall that the span of un contains
all the linear combinations of the elements of un. The space Ho is separable indeed
: The space S is separable since S =

∑k
n=1 λnun , λn ∈ R, thus every non empty

subset of S contains at least one element of un. The space Ho is the closure of
S. Since S is separable there exists a D dense and countable subset of S. Let U
open subset of Ho and a x ∈ U then x ∈ Ho thus ∃xn ∈ S such that xn → x i.e.

33The uv is a classical solution
34Assume that H is a Hilbert space and H∗its dual,for ϕ ∈ H∗ we define ρ(x) = |(x, ϕ)X | this is a

semi norm since

– ρ(x) ≥ 0 , by the definition

– ρ(x+ y) = |(x+ y, ϕ)X | = |(x, ϕ)X + |(y, ϕ)X | ≤ |(x, ϕ)X |+ |(y, ϕ)X | = ρ(x) + ρ(y)

– for s > 0 , ρ(sx) = |(sx, ϕ)X | = |s(x, ϕ)X | = |s||(x, ϕ)X | = sρ(x)

The family of semi norms forms a topology,this is the weak topology on X.
35[32] pg 313
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U ∩ S ̸= ∅. The U ∩ S is an open subset of S and D dense on S thus

U ∩D = U ∩ (S ∩D) = (U ∩ S) ∩D ̸= ∅

So Ho has countable dense subset,which gives that Ho is separable.
We set H∗

o the dual of Ho which contains all the functionals [gn](f) = (un, f) where
un ∈ H and f ∈ Ho , we have that gn is bounded since

|gn| = |(un, f)|

By Cauchy Schwartz inequality we have

|gn| ≤ ∥un∥∥f∥

Lemma 20. This is the Helley’s theorema

Assume that X is a separable normed space and Tn a sequence on its dual X∗ which
is bounded (i.e. there exists a M ≥ 0 such that |Tn(f)| ≤M∥f∥,∀f ∈ X ) then
∃Tnk

subsequence of Tn and a T ∈ X∗ such that Tnk
(f) → T (f) , ∀f ∈ X

proof of lemma:
Assume that X is separable, then there exist a countable dense subset D = fi

∞
i=1

Our aim is to create a sequence on reals in order to use the classic result of Bolzano
Weierstrass,i.e. that every bounded sequence has a convergence subsequence. The
Tnf is on the dual so it is a functional.

• We have that the sequence Tn(f1) is bounded, recall by the hypothesis of
the lemma Tn(f1) ≤ M∥f1∥, and since we refer to functionals it is true that
Tn(f1) ⊂ R. Thus by the Bolzano Weierstrass we have that there exists a
subsequence that converges. Assume that k(1, n) is an increasing sequence,
then we define Tk(1,n)(f1) be s subsequence of Tn(f1) and a1 to be it limit for
n→ ∞

• We proceed with Tn(f2), this is a bounded sequence, assume that k(2, n) is
an increasing sequence, then we define Tk(2,n)(f2) be s subsequence of Tn(f2)
and a2 to be it limit for n→ ∞

• We continue until take all fi and this way we have create an increasing se-
quence k(j, n)∞j=1 and a sequence of reals aj such that Tk(j,n)(fj) → aj as
n→ ∞ We set ns = k(., s) then ∀j, ns it is a subsequence of k(j, s). We also
know that if a sequence converge all its subsequences converge in the same
limit thus Tns(fj) → aj .

Now we also have that Tns is a Cauchy sequence since |Tns − Tn′
s
| ≤ 2M∥f∥ thus

the sequence converge say to a T (f) (end of proof of lemma).
So by lemma 19 we have that there exists a subsequence gnk

(f) → go, where go ∈ Ho
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Lemma 21. This is the Rierz-Frechet representation theorem
Assume that H is a Hilbert space. We define the operator T : H → H∗ such that
[Th]u = (h, u)H , ∀h ∈ H, then T is a linear isometrics of H to H∗

proof of lemma
Let h ∈ H,first we will prove the linearity oh Th:
Let ∀k, l ∈ R and u, v ∈ H then

[Th](ku+ lv) = (h, ku+ lv)H

(h, ku)H + (h, lv)H = k(h, u)H + l(h, v)H

[Th]u+ [Th]v

Furthermore Th is bounded since by Cauchy-Schwartz we have that [Th]u =
(h, u)H ≤ ∥h∥∥u∥
Also [Th]h = (h, h)H = ∥h∥,so Th is an isometry.
T is linear since [T (kh1 + lh2)](u) = (kh1 + lh2, u)H = k[Th1]u+ l[Th2]u. And we
have that [T0]u = (0, u)H = 0 , ∀u ∈ H.
Assume now a functional uo ̸= 0 ∈ H∗,uo is linear so it is continuous, so for 0
which is close we have that the inverse image of uo is also closed , u−1

o (0) = ker(uo).
Since uo ̸= 0,ker(uo) is a non trivial subspace of H thus H = ker(uo)

⊕
ker(uo)

⊥.
So we have that ∃h′ ∈ H such that (ker(uo), h

′)H = 0. We define ho = uo(h
′)h′

and for h ∈ H we have that h − uo(h)
uo(h′)

h′ ∈ ker(uo) thus
(
h− uo(h)

uo(h′)
h′, h′

)
H

= 0,so
we have that uo(h) = (h, uo(h

′)h′)H = (h, ho) = [Tho]h. So we have that T is a
linear isometry T : H → H∗. (end of proof)
Thus by lemma 20 we have that there exists a po ∈ Ho such that go = [Tpo]. Con-
sequently limn→∞(gnk

, f)H = (go, f)H ,∀f ∈ Ho. So we have reached to the result
that gnk

⇀ go in Ho. It remains to show that gnk
⇀ go in H.

SinceHo is a closed subspace of H we have that H = Ho
⊕
H⊥
o . Assume that Π is

the orthogonal projection of H toHo then for f ∈ Hit is true that (gnk
, (Id−Π)f)H =

0 since (Id −Π)H = Π(H)⊥ = H⊥
o , furthermore forfo ∈ Ho (fo, (Id −Π)f)H = 0.

Also we see that (gnk
, f)H = (gnk

,Πf)H and also (go, f)H = (go,Πf)H . Thus it is
obvious that forf ∈ H and Πf ∈ Ho

lim
n→∞

(gnk
, f)H = lim

n→∞
(gnk

,Πf)H = (go,Πf)H = (go, f)H

which completes the proof that gnk
⇀ go in H.

a[32] pg 171

We also have the following proposition

Proposition 4.3.2. 36 Let H be a normed space and un ⇀ uin H, then

∥u∥ ≤ lim
n→∞

inf ∥un∥

36[18] pg 723
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proof of proposition: By Cauchy-Schwartz we have that (u, un) ≤ ∥u∥∥un∥ ,so

lim
n→∞

inf(u, un) ≤ ∥u∥ lim
n→∞

inf ∥un∥

. Then since un ⇀ u we have that limn→∞ inf(u, un) = limn→∞(u, un).
Furthermore

∥u∥2 = (u, u) = lim
n→∞

(u, un) ≤ ∥u∥ lim
n→∞

inf ∥un∥

Which verifies that ∥u∥ ≤ limn→∞ inf ∥un∥

We also have that in an finite dimension normed space X, weakly convergence gives
strong convergence,indeed

Since X has a finite dimension, say k, there exists an orthomonal basis e1, ...ek and
we can write its elements as a linear combination of the elements of the basis,i.e.

un =
k∑
i=1

ainei

and

u =
k∑
i=1

aiei

We have by the weak convergence that for all functionals f on the dual space of X
(un, f) → (u, f)let the functional g(

∑k
i=1 a

iei) = ai then we have that ∥un − u∥ =

∥
∑k

1(a
i
n − ai)ei∥ → 0

We close with some word for the space L∞ . The space L∞ is the dual of L1 By Helly’s
theorem we have that for a sequence un ∈ L∞ there exist subsequence unk

that weakly
∗ converges. So now we have all the basic arguments which we will need we proceed
with the proof of step 4.

• The space L2 is Hilbert, in addition the sequence uϵ is bounded in L2([0, T ], V m)

indeed
(´ T

0 ∥uϵ∥2Hmdt
) 1

2 ≤
´ T
0 ∥uϵ∥Hm . By the Step 1 we have an upper bound

for the ∥uϵ∥Hm thus

(ˆ T

0
∥uϵ∥2Hmdt

) 1
2

≤M2T = C <∞

Thus by theorem 4.3.2 we have that there exist a subsequence such that converges
to a u. This u is the uv we have found in the step 2 since for m′ < mwe have that
V m ⊂ V m′ and we know that the limit of a subsequence is unique. So uϵk ⇀ u.
Also by proposition 5.3.2 we have that

∥uv∥L2([0,T ],Vm) ≤ lim inf ∥uϵk∥L2([0,T ],Vm) ≤ C
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• The sequence uϵ is bounded in L∞([0, T ], V m) since

ess sup
0≤t≤T

∥uϵ∥Hm ≤ ess sup
0≤t≤T

M =M <∞

We know that since L∞([0, T ], V m) is a reflexive, seperable, Banach space37, there
exists a weakly∗ convergence subsequence to uv we also have that

∥uv∥L∞([0,T ],Vm) ≤ lim sup ∥uϵk∥L∞([0,T ],Vm) ≤M <∞

• By the step 2 we have that ∥ ddtuϵ∥Hm ≤ cν∥uϵ∥Hm+c∥uϵ∥2Hm thus ∥ ddtuϵ∥Hm ≤ CM

Lemma 22. Assume that B is a Banach space and f : [a, b] → Xthen if the
derivative of f is bounded, f is Lipschitz.

Remark:The derivative in this spaces is the Frechet which is the general case of
the usual derivative we use on RN i.e. assume that f ;X → Y then f is Frechet
differentiable if

lim
h→0

∥f(x+ h)− f(x)− [Df ](h)∥Y
∥h∥X

= 0

proof of lemma: Assume that the derivative is bounded by a constant, say
M. By the fundamental theorem of calculus we have that

∥f(b)− f(a)∥B ≤ ∥
ˆ b

a
Df(x)dx∥B ≤M∥b− a∥B

So in our case it follows that uϵ ∈ Lip
(
[0, T ], V m−2

)
. As far as concern uv we

have the following arguments: By the previous work we have that ∂
∂tuϵ →

∂
∂tu in

C([0, T ], V m−2) thus it is true that ∥ ∂∂tuv∥Hm−2 is bounded so by the lemma 22
we have that uv ∈ Lip

(
[0, T ], V m−2

)
• We have already prove that uϵ → uv in C([0, T ], V m′

), thus ∥uϵ − uv∥Hm′ ≤
sup0≤t≤T ∥uϵ − uv∥Hm′ ≤ η so it occurs that (uϵ − uv, ϕ) → 0 for any ϕ ∈
V −m′(1)38. The space V −m′ is dense in V −m so ∀y ∈ V −m , there exists a sequence
ϕn in V −m′ such that ϕn → y. So by (1) we have that (uϵ−uv, ϕn) → 0. We want
to prove that (uϵ − uv, ϕ) → (uϵ − uv, y) this is true since |(uϵ − uv, ϕn − y)| ≤
∥uϵ−uv∥H−m∥ϕn−y∥H−m ≤ η′. So we have that for y ∈ V −m that (uϵ−uv, y) → 0,
we know that uϵ, uv are continuous so they are and weakly continuous and this
completes the proof of step 4.

As far as concerned the uniqueness of the solution it occurs by the previous chapter
where we have proved that if the solution exists, it is unique.

37[10] pg 189
38The dual of Hm is the H−m
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So far by the proposition above we see that we have our solution is on C([0, T ], C2)∩
C1([0, T ], C) if we want to speak in terms of Sobolev spaces on C([0, T ], V m′

)∩C1([0, T ], V m′−2)
for m′ < m. Now we will prove the following theorem, which gives us continuity in the
high Hm norm.

Theorem 4.3.4. Assume that uv is a solution as described above, then uv ∈ C([0, T ), V m)∩
C1([0, T ), V m−2)

Proof. As in Step 3 of the previous proof we will firstly prove that uv = u ∈ C([0, T ), V m)
and then follows that u ∈ C1([0, T ), V m−2). In Step 4, we have proved the weak conti-
nuity -with respect to time, of our solution in V m, we want to prove that limδ→0 u(t+
δ) → u(t) i.e. ∥u(t+ δ)− u(t)∥Hm ≤ η for δ ≤ β we know that ∥u(t+ δ)− u(t)∥Hm ≤
(u(t+ δ)−u(t), u(t+ δ)−u(t))Hm ≤

∣∣∥u(t+ δ)∥2Hm −∥u(t)∥2Hm

∣∣ so it is enough to show
that ∥u∥Hm is a continuous function.
We start with the right continuity on which is the same for ν = 0 and ν > 0.
For t=0 by the previous theorem we have that

∥u∥Hm ≤ ∥u0∥Hm

1− cmt∥uo∥Hm

so
lim
t→0+

sup ∥u∥Hm ≤ lim
t→0+

sup
∥u0∥Hm

1− cmt∥u0∥Hm
≤ ∥u0∥Hm

. By step 4 we have that ut ⇀ u0 thus by proposition 5.3.2 we have that

∥u0∥Hm ≤ lim
t→0+

inf ∥u∥Hm

It is also true that limt→0+ inf ≤ limt→0+ sup so combining those three relations we
have that

lim
t→0+

∥u∥mH = lim
t→0+

sup ∥u∥Hm = lim
t→0+

inf ∥u∥Hm = ∥u0∥Hm

So we have that ∥u∥Hm is strongly right continuous on 0.
For the left continuity we have to see each case individually

• ν = 0 The Euler equation is time reversible, indeed:
Recall the Euler equation in 3 dimensions

∂

∂t
u+ (u · ∇)u = −∇p

We set u(x, t) = −v(x, t) and p(x, t) = −p̄(x,−t) thus we have that

∂

∂t
u(x, t) =

∂

∂t
(−v(x,−t)) = − ∂

∂t
v(x,−t) = ∂v

∂t
(x,−t)

The other derivatives in the equation does not change with this substitution since
they are derivatives with respect to x i.e. we have that

∂v

∂t
(x,−t) + (−v · ∇)− v(x,−t) = −∇p̄(x,−t)
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So now we set uv(−t) = ū(t) and we have the same arguments:
By the previous theorem we have that

∥ū∥Hm ≤ ∥ū0∥Hm

1− cmt∥ū0∥Hm

so
lim
t→0−

sup ∥ū∥Hm ≤ lim
t→0−

sup
∥ū0∥Hm

1− cmt∥ū0∥Hm
≤ ∥ū0∥Hm

. By step 4 we have that ūt ⇀ ū0 thus by proposition 5.3.2 we have that

∥ū0∥Hm ≤ lim
t→0−

inf ∥ū∥Hm

It is also true that limt→0− inf ≤ limt→0− sup so combining those three relations
we have that

lim
t→0−

∥ū∥mH = lim
t→0−

sup ∥ū∥Hm = lim
t→0−

inf ∥ū∥Hm = ∥ū0∥Hm

So we have that ∥ū∥Hm is strongly left continuous on 0. Thus the function

u =

{
u [0, T )

ū (−T, 0)

we have that ∥u∥Hm is strongly continuous on 0. Now we will prove that ∥u∥Hm

is continuous for everyt ∈ (0, T ), let T0 be a random time and u(x, T0) = uT0 the
solution on this time. We know then that ∥uT0∥Hm ≤ M so uT0 ∈ V m and thus
we can use uT0 as an initial value for the new IVP{

d
dtuϵ = Fϵ(uϵ) t ∈ [T0, T )

uϵ(T0)

Assume that ūϵ is the solution of the above ivp, which we are sure that exist since
we have prove that we can find a global solution on the first IVP. By lemma 18
we have that

d

dt

1

2
∥ūϵ∥2Hm ≤ cm∥Jϵ∇ūϵ∥L∞∥ūϵ∥2Hm

. Following the same process as in Step 1 we have that

∥ūϵ∥Hm ≤ ∥uT0∥Hm

1− cmt∥uT0∥Hm

So by Step 2 we have a solution ū. So we have again the same arguments as
above and we have the continuity of ∥u∥Hm in all the interval [0, T )

• The Navier Stokes equation is not time reversible, so we will follow another strat-
egy.In order to prove the right continuity on every t ∈ [0, T ) we follow the same
arguments as in te case of t = 0.As far as concerned the left continuity, we know
that uϵ is bounded on L2([0, T ], V m) and thus in L2([0, T ], V m+1), this is a Hilbert
space so by lemma 19 we have that there exists a subsequence that converge on
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V m+1. Assume now a T0 ∈ (0, T ] we will prove the left continuity . We choose T̃
such that 0 < T̃ < T0 and u(T̃ ) ∈ V m+1 withT̃ = T0 − δ. With initial value u(T̃ )
and m = m + 1 in the theorem 4.3.1 we have that for m′ < m + 1 and T ′ ≥ T̃
there exists a solution u ∈ C([T̃ , T ′], V m′

). For m′ = m and δ = 0 we have the
left continuity on T0 and since T0 is arbitrary we have the left continuity in all
the interval [0, T )

So we conclude that ∥u∥Hm is continuous thus uv ∈ C([0, T ), V m) and d
dtu ∈ C([0, T ), V m−2)

The proof of the following theorem is based on the discussion about the continuity of
solutions in the previous chapter. Here the following proposition summarizes the result
for the existence of maximum interval for the existence of the solution uv.

Proposition 4.3.3. Let u0 ∈ V m with m ≥ 3 and ν ≥ 0, then there exists a maximum
interval [0, T ∗] that the solution uv described in theorem 5.3.1, exists. T ∗maybe the
infinity ,otherwise for T ∗ <∞ we will have limt→T ∗ ∥u∥Hm = ∞

Proof. Assume that T ∗ ≤ ∞ is the maximum time and limt→T ∗ ∥u∥Hm = ∞, then we
have already seen that we can extend the interval of existence, say [0, T ∗ + δ) which
contradicts the initial hypothesis.

4.3.2 2 dimensions

We will use again the radial energy decomposition, the following theorem will give a
solution y which is the limit of yϵ.

Theorem 4.3.5. Let u0 ∈ V m with m ≥
[
2
2

]
+ 2 = 3 then

1. There exists a time T with upper bound which depends on the initial value i.e.

T ≤
ln
(
∥∇b∥L∞+∥y0∥Hm

∥y0∥Hm

)
cm∥∇b∥L∞

such that ∀ν ≥ 0 there exists a yv ∈ C
(
[0, T ], C2(R2)

)
∩ C1

(
[0, T ], C(R2)

)
which

defines a unique solution for the Euler and Navier-Stokes equations in the Leray’s
form.

2. The solutions yv and yϵ satisfies the following estimates

sup
0≤t≤T

∥yϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

1 + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T

sup
0≤t≤T

∥yv∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

1 + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T

3. The solutionsyϵ, yv are uniformly bounded on the spaces

162



Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

• L2
(
[0, T ], V m(R2)

)
• L∞ ([0, T ], V m(R2)

)
• Lip

(
[0, T ], V m−2(R2)

)
• CW

(
[0, T ], V m(R2)

)
For the proof of the theorem we will do exactly the same things as in the 3 dimensions

case we will prove four steps and one lemma which give us an estimate with no bad
dependence on ϵ.

Lemma 23. Assume that y0 ∈ V m then for the solution yϵ of the (IVP) it is true that

d

dt
∥yϵ∥Hm ≤ cm [∥∇Jϵyϵ∥L∞ + ∥∇b∥L∞ ] ∥uϵ∥Hm

Proof. Since yϵ is the solution of (IVP) in the 2 dimensions we have that

d

dt
yϵ = Fϵ(yϵ)

We differentiate this relation over Da for any multiindex and we get

Da

(
d

dt
yϵ

)
= Da (Fϵ(yϵ))

We continue by multiplying this relation with Dayϵ in L2(R2) and we have that
ˆ
R2

Da

(
d

dt
yϵ

)
·Dayϵdx =

ˆ
R2

Da (Fϵ(yϵ)) ·Dayϵdx

We substitute Fϵ and we reach to the relation
ˆ
R2

Da

(
d

dt
yϵ

)
·Dayϵdx = ν

ˆ
R2

Da
(
J2
ϵ∆yϵ

)
·Dayϵdx

−
ˆ
R2

Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ·Dayϵdx

By simple calculations and the Leibniz integral rule we have that

1

2

d

dt
∥Dayϵ∥2L2 = −ν∥Da+1Jϵyϵ∥2L2

−
ˆ
R2

Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ·Dayϵdx

Thus

1

2

d

dt
∥Dayϵ∥2L2 ≤

ˆ
R2

Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]} ·Dayϵdx

(L20)
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Now we will deal with the integral on the right hand of the above relation, we will
separate it in two integrals which will estimate individually

I1 =

ˆ
R2

Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} ·Dayϵdx

I2 =

ˆ
R2

Da {PJϵ [(Jϵyϵ · ∇)b+ (b · ∇)Jϵyϵ]} ·Dayϵdx

For the I1 we sum and subtract the term PJϵ [(Jϵyϵ · ∇)DaJϵyϵ], thus

I1 =

ˆ
R2

Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} − PJϵ [(Jϵyϵ · ∇)DaJϵyϵ] + PJϵ [(Jϵyϵ · ∇)DaJϵyϵ]

·Dayϵdx

We also have that
´
R2 PJϵ [(Jϵyϵ · ∇)DaJϵyϵ]·Dayϵdx ≤

´
R2 [(Jϵyϵ · ∇)DaJϵyϵ]·Dayϵdx ≤

0
So

I1 ≤
ˆ
R2

[
Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} − PJϵ [(Jϵyϵ · ∇)DaJϵyϵ]

]
·Dayϵdx

≤ ∥Dayϵ∥L2∥Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} − PJϵ [(Jϵyϵ · ∇)DaJϵyϵ] ∥L2

For the I2 we have that

I2 ≤ c

ˆ
R2

Da[(Jϵyϵ · ∇)bJϵyϵ] ·Dayϵ dx, c > 1

Since

By the properties of the projection P and the mollifier Jϵ we write the integral in
the following form:

I2 =

ˆ
R2

Da{[(Jϵyϵ · ∇)b] + [(b · ∇)Jϵyϵ]}DaJϵyϵdx

We set
I12 =

ˆ
R2

Da[(b · ∇)Jϵyϵ]D
aJϵyϵ

and
I22 =

ˆ
R2

Da[(Jϵyϵ · ∇)b]DaJϵyϵ

Our goal is to prove that I2 ≤ cI22

• When a = 0 we get

I12 =

ˆ
R2

[(b · ∇)Jϵyϵ]Jϵyϵ

and
I22 =

ˆ
R2

[(Jϵyϵ · ∇)b]Jϵyϵ
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By footnote 26 page 135 we recall that

I2 =
1

2
I22

• When a = 1 we get

I12 =

ˆ
R2

∇[(b · ∇)Jϵyϵ]∇Jϵyϵ

I12 =

ˆ
R2

D2Jϵyϵ b ∇Jϵyϵ dx︸ ︷︷ ︸
[I12 ]1

+

ˆ
R2

∇Jϵyϵ ∇b ∇Jϵyϵ︸ ︷︷ ︸
[I12 ]2

and
I22 =

ˆ
R2

∇[(Jϵyϵ · ∇)b]∇Jϵyϵ

I22 =

ˆ
R2

D2b Jϵyϵ ∇Jϵyϵ dx︸ ︷︷ ︸
[I22 ]1

+

ˆ
R2

∇Jϵyϵ ∇b ∇Jϵyϵ︸ ︷︷ ︸
[I22 ]2

We easily observe that [I12 ]2 = [I22 ]2.
For the integral [I12 ]1, using integration by parts we have:
ˆ
R2

D2Jϵyϵ b ∇Jϵyϵ dx = −
ˆ
R2

∇Jϵyϵ ∇b∇Jϵyϵ dx−
ˆ
R2

D2Jϵyϵ b ∇Jϵyϵ dx

Thus 2[I12 ]1 = 2
´
R2 D

2Jϵyϵ b ∇Jϵyϵ dx = −
´
R2 ∇Jϵyϵ ∇b∇Jϵyϵ dx = −[I22 ]2

So we conclude that I2 = −1
2 [I

2
2 ]2+ [I22 ]2+ [I22 ]1+ [I22 ]2 = [I22 ]1+

3
2 [I

2
2 ]2 ≤ cI22

• When a = 2

I12 =

ˆ
R2

D2[(b · ∇)Jϵyϵ]D
2Jϵyϵ

I12 =

ˆ
R2

D3Jϵyϵ b D
2Jϵyϵ dx︸ ︷︷ ︸

[I12 ]1

+2

ˆ
R2

D2Jϵyϵ ∇b D2Jϵyϵdx︸ ︷︷ ︸
[I12 ]2

+

ˆ
R2

∇Jϵyϵ D2b D2Jϵyϵ dx︸ ︷︷ ︸
[I12 ]3

and
I22 =

ˆ
R2

D2[(Jϵyϵ · ∇)b]D2Jϵyϵ

I22 =

ˆ
R2

D3b Jϵyϵ D
2Jϵyϵ dx︸ ︷︷ ︸

[I22 ]1

+2

ˆ
R2

∇Jϵyϵ D2b D2Jϵyϵ dx︸ ︷︷ ︸
[I22 ]2
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+

ˆ
R2

D2Jϵyϵ ∇b D2Jϵyϵdx︸ ︷︷ ︸
[I22 ]3

So [I12 ]2 = [I22 ]3, [I12 ]3 = [I22 ]2
For the integral [I12 ]1, using integration by parts we have:
ˆ
R2

D3Jϵyϵ b D
2Jϵyϵdx = −

ˆ
R2

D2Jϵyϵ ∇b∇D2Jϵyϵdx−
ˆ
R2

D3Jϵyϵ b D
2Jϵyϵdx

Thus

2[I12 ]1 = 2

ˆ
R2

D3Jϵyϵ b D
2Jϵyϵ dx = −

ˆ
R2

D2Jϵyϵ ∇b D2Jϵyϵdx = −[I22 ]3

So we conclude that

I2 = −1

2
[I22 ]3 + 2[I22 ]3 + [I22 ]2 + [I22 ]1 + 2[I22 ]2 + [I22 ]3 ≤ cI22

• When a = 3

I12 =

ˆ
R2

D3[(b · ∇)Jϵyϵ]D
3Jϵyϵ

I12 =

ˆ
R2

D4Jϵyϵ b D
3Jϵyϵdx︸ ︷︷ ︸

[I12 ]1

+3

ˆ
R2

D3Jϵyϵ ∇b D3Jϵyϵ dx︸ ︷︷ ︸
[I12 ]2

+3

ˆ
R2

D2Jϵyϵ D
2b D3Jϵyϵ︸ ︷︷ ︸

[I12 ]3

+

ˆ
R2

∇Jϵyϵ D3b D3Jϵyϵ︸ ︷︷ ︸
[I12 ]4

and
I22 =

ˆ
R2

D3[(Jϵyϵ · ∇)b]D3Jϵyϵ

I22 =

ˆ
R2

D4b Jϵyϵ D
3Jϵyϵ︸ ︷︷ ︸

[I22 ]1

+3

ˆ
R2

D3b ∇Jϵyϵ D3Jϵyϵ︸ ︷︷ ︸
[I22 ]2

+3

ˆ
R2

D2b D2Jϵyϵ D
3Jϵyϵ dx︸ ︷︷ ︸

[I22 ]3

+

ˆ
R2

∇b D3Jϵyϵ D
3Jϵyϵ dx︸ ︷︷ ︸

[I22 ]4

It is obvious that: [I12 ]4 = [I22 ]2, [I12 ]3 = [I22 ]3, [I12 ]2 = [I22 ]4.
For the integral [I12 ]1, using integration by parts we have:
ˆ
R2

D4Jϵyϵ b D
3Jϵyϵ = −

ˆ
R2

D3Jϵyϵ ∇b D3Jϵyϵdx−
ˆ
R2

D3Jϵyϵ b D
4Jϵyϵ dx
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So

2[I12 ]1 = 2

ˆ
R2

D4Jϵyϵ b D
3Jϵyϵ = −

ˆ
R2

∇b D3Jϵyϵ D
3Jϵyϵ dx = [I22 ]4

Thus

I2 = −1

2
[I22 ]4 + 3[I22 ]4 + [I22 ]3 + [I22 ]2 + [I22 ]1 + 3[I22 ]2 + 3[I22 ]3 + [I22 ]4 ≤ cI22

.

.

.

• When a = k for the integral I12 will occur k + 1 integrals and for I22 will also
occur k+ 1 integrals. The 2, ..., k + 1 integrals of I12 are equal to some of the
integrals of I22 . For the integral [I12 ]1, using integration by parts we have that
[I12 ]1 = [I22 ]k+1. Thus we conclude that I2 ≤ cI22

So by Holders inequality we have I2 ≤ c∥DaJϵyϵ∥L2∥Da[(Jϵyϵ · ∇)b]∥L2

By combining all the above relations with (L20) we get :

1

2

d

dt
∥Dayϵ∥2L2 ≤ ∥Dayϵ∥L2[

∥Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} − PJϵ [(Jϵyϵ · ∇)DaJϵyϵ] ∥L2 + ∥Da [(Jϵyϵ · ∇)b] ∥L2

]
Since a ≤ m we have

1

2

d

dt
∥Dayϵ∥2L2 ≤ ∥yϵ∥Hm[

∥Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} − PJϵ [(Jϵyϵ · ∇)DaJϵyϵ] ∥L2 + ∥(Jϵyϵ · ∇)b∥Hm

]
We sum over this relation and we get

1

2

d

dt

∑
|a|≤m

∥Dayϵ∥2L2 ≤ ∥yϵ∥Hm

∑
|a|≤m

[
∥Da {PJϵ [(Jϵyϵ · ∇)Jϵyϵ]} − PJϵ [(Jϵyϵ · ∇)DaJϵyϵ] ∥L2 + ∥(Jϵyϵ · ∇)b∥Hm

]
By the proposition 4.1.13 we have

1

2

d

dt
∥yϵ∥2Hm ≤ ∥yϵ∥Hm

c
∑
|a|≤m

[
∥Da [(Jϵyϵ · ∇)Jϵyϵ]− [(Jϵyϵ · ∇)DaJϵyϵ] ∥L2 + ∥(Jϵyϵ · ∇)b∥Hm

]
And by proposition 4.1.4

1

2

d

dt
∥yϵ∥2Hm ≤ c∥yϵ∥Hm[

∥∇Jϵyϵ∥L∞∥Jϵyϵ∥Hm + ∥Jϵyϵ∥Hm∥∇Jϵyϵ∥L∞ + ∥∇b∥L∞∥Jϵyϵ∥Hm

]
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By the proposition 4.1.13

1

2

d

dt
∥yϵ∥2Hm ≤ c∥yϵ∥2Hm

[
∥∇Jϵ∥L∞ + ∥∇b∥L∞

]
So eventually we have that

d

dt
∥yϵ∥Hm ≤ c∥yϵ∥Hm

[
∥∇Jϵ∥L∞ + ∥∇b∥L∞

]

We recall the four steps we will need in order to prove the theorem 4.3.4
Step 1: We will show the energy estimate

sup
0≤t≤T

∥yϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

1 + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T

Step 2:We will prove that the family of the regularized solutions forms a Cauchy
sequence on C

(
[0, T ], L2(R2)

)
Step 3: We will prove strong convergence in all the intermediate norms of the high
norm of the space C

(
[0, T ], Hm(R2)

)
Step 4:Via weak convergences we will prove the third part of the theorem

Proof. Of theorem 4.3.4
Step 1:By lemma 22 we have that

d

dt
∥yϵ∥Hm ≤ c∥yϵ∥Hm

[
∥∇Jϵ∥L∞ + ∥∇b∥L∞

]
We set cb = cm∥∇b∥L∞ and by the Sobolev embedding theorem we have that

d

dt
∥yϵ∥Hm ≤ cm∥yϵ∥2Hm + cb∥yϵ∥Hm

So now we will find the solution which satisfies this inequality

Assume that q(t) solves the differential equation

d

dt
q(t) = cmq

2(t) + cbq(t)

with initial value q(0) = ∥y0∥Hm . Firstly we will find a relation between our
function ∥yϵ∥Hm and q(t) We have that

d

dt
(∥yϵ∥Hm − q(t)) = cm(∥yϵ∥2Hm − q2(t)) + cb(∥yϵ∥Hm − q(t))

We set z(t) = ∥yϵ∥Hm − q(t)
It follows that

d

dt
z(t) ≤ cm(∥yϵ∥Hm + q(t))z(t) + cbz(t)
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We also set p(t) = cm(∥yϵ∥Hm + q(t))+ cb, and we reach to the following inequality

d

dt
z(t) ≤ p(t)z(t)

By Gronwall in differential form we have that

z(t) ≤ z(0)e
´ t
0 p(s)ds

We have that z(0) = ∥y0∥Hm − q(0) = 0 thus z(t) ≤ 0 i.e. ∥yϵ∥Hm ≤ q(t) so now
we will define q(t) so we will solve the initial value problem:{

d
dtq(t) = cmq

2(t) + cbq(t)

q(0) = ∥y0∥Hm

This is a Bernoulli differential equationa so we have that if we set k(t) = 1
q(t) we

will reach to a linear first order ordinary differential equation,i.e.{
d
dtk(t) + cbk(t) = −cm
k(0) = 1

q(0) =
1

∥y0∥Hm

With solution k(t) = e−
´ t
0 cbds

[
c +
´ t
0 −cme

´ s
t cbduds

]
, we can easily calculate that´ t

0 cbds = cbt and
´ t
s cbdu = cbt− cbs so we have that

k(t) = e−cbt
[
c+

ˆ t

0
−cmecbte−cbsds

]
So

k(t) = ce−cbt − cm
cb

+
cm
cbecbt

Thus we have that q(t) = cbe
cbt

ccb−cmecbt+cm
for t = 0 we have that the c = 1

∥y0∥Hm

Eventually q(t) = cbe
cbt∥y0∥Hm

cb−cm∥y0∥Hmecbt+cm∥y0∥Hm

a[2] pg 32

So we have that

∥yϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞ t

cm∥∇b∥L∞ + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞ t

Taking the supremum over this relation we have for the right quantity is an invreasing
function of t, so the supremum of this fraction is achieved when t=T, so we conclude
that

sup
0≤t≤T

∥yϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

cm∥∇b∥L∞ + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T

To ensure that the right quantity has a supremum we need

T ≤ ln(cm∥∇b∥L∞ + ∥y0∥Hm)− ln(∥y0∥Hm)

cm∥∇b∥L∞
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Step 2: In order to prove this step we will estimate the sup0≤t≤T ∥yϵ−yϵ′∥L2 via energy
methods. Assume that yϵ, yϵ′ satisfy the (IVP) on the 2 dimensions, then we have that
d
dtyϵ = Fϵ(yϵ) and d

dtyϵ′ = Fϵ′(yϵ′), we subtract those two relations and we get

d

dt
(yϵ − yϵ′) = Fϵ(yϵ)− Fϵ′(yϵ′)

We multiply this relation with yϵ − yϵ′ in L2 and we get
ˆ
R2

d

dt
(yϵ − yϵ′) · (yϵ − yϵ′)dx =

ˆ
R2

[Fϵ(yϵ)− Fϵ′(yϵ′)] · (yϵ − yϵ′)dx

So
1

2

d

dt
∥yϵ − yϵ′∥2L2 =

ˆ
R2

[Fϵ′(yϵ′)− Fϵ′(yϵ′)] · (yϵ − yϵ′)dx

Now we will deal with the integral on the right side of this equality. Firstly we have
that

Fϵ′(yϵ′)− Fϵ′(yϵ′) = νJ2
ϵ∆yϵ − PJϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]

−νJ2
ϵ′∆yϵ′ + PJϵ′ [(Jϵ′yϵ′ · ∇)Jϵ′yϵ′ + (b · ∇)Jϵ′yϵ′ + (Jϵ′yϵ′ · ∇)b]

So we have to estimate the integrals
ˆ
R2

ν(J2
ϵ∆yϵ − J2

ϵ′∆yϵ′) · (yϵ − yϵ′)dx

and ˆ
R2

P

[
Jϵ [(Jϵyϵ · ∇)Jϵyϵ + (b · ∇)Jϵyϵ + (Jϵyϵ · ∇)b]

−Jϵ′ [(Jϵ′yϵ′ · ∇)Jϵ′yϵ′ + (b · ∇)Jϵ′yϵ′ + (Jϵ′yϵ′ · ∇)b]

]
· (yϵ − yϵ′)dx

For the first integral we sum and subtract the term J2
ϵ′∆yϵ so

ˆ
R2

ν(J2
ϵ∆yϵ−J2

ϵ′∆yϵ′)·(yϵ−yϵ′)dx = ν

ˆ
R2

[
J2
ϵ∆yϵ−J2

ϵ′∆yϵ+J
2
ϵ′∆yϵ−J2

ϵ′∆yϵ′
]
·(yϵ−yϵ′)dx

= ν
[ˆ

R2

(J2
ϵ − J2

ϵ )∆yϵ(yϵ − yϵ′)dx

−
ˆ
R2

J2
ϵ′ (∇(yϵ − yϵ′) · ∇(yϵ − yϵ′)) dx

]
≤ ν

ˆ
R2

(J2
ϵ − J2

ϵ′)∆yϵ · (yϵ − yϵ′)dx

≤ ν∥(J2
ϵ − J2

ϵ′)∆yϵ∥L2∥yϵ − yϵ′∥L2

By triangle inequality we have that

≤ ν
(
∥J2

ϵ∆yϵ∥L2 + ∥J2
ϵ′∆yϵ∥L2

)
∥yϵ − yϵ′∥L2
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≤ ν
(
∥J2

ϵ yϵ∥H2 + ∥Jϵ′yϵ∥H2

)
∥yϵ − yϵ′∥L2

≤ νc
(
ϵ∥yϵ∥H3 + ϵ′∥yϵ∥H3

)
∥yϵ − yϵ′∥L2

≤ νcmax(ϵ, ϵ′)∥yϵ∥Hm∥yϵ − yϵ′∥L2

For the second integral we have the following three integrals:

I1 =

ˆ
R2

P
[
Jϵ[(Jϵyϵ · ∇)Jϵyϵ]− Jϵ′ [(Jϵyϵ′ · ∇)Jϵ′yϵ′ ]

]
· (yϵ − yϵ′)dx

I2 =

ˆ
R2

P
[
Jϵ[(b · ∇)Jϵyϵ]− Jϵ′ [(b · ∇)Jϵ′yϵ′ ]

]
· (yϵ − yϵ′)dx

I3 = P
[
Jϵ[(Jϵyϵ · ∇)b]− Jϵ′ [(Jϵyϵ′ · ∇)b]

]
· (yϵ − yϵ′)dx

We will see each integral individually, for the first integral we sum and subtract the
term Jϵ′ [(Jϵyϵ · ∇)Jϵyϵ], so

ˆ
R2

{PJϵ [(Jϵyϵ · ∇)Jϵyϵ]− PJϵ′ [(Jϵ′yϵ′ · ∇)Jϵ′yϵ′ ]} · (yϵ − yϵ′)dx

≤
ˆ
R2

{Jϵ [(Jϵyϵ · ∇)Jϵyϵ]− Jϵ′ [(Jϵ′yϵ′ · ∇)Jϵ′yϵ′ ]} · (yϵ − yϵ′)dx

We will add and subtract the term Jϵ′ [(Jϵyϵ · ∇)Jϵyϵ]

≤
ˆ
R2

Jϵ [(Jϵyϵ · ∇)Jϵyϵ]− Jϵ′ [(Jϵyϵ · ∇)Jϵyϵ]

+ Jϵ′ [(Jϵyϵ · ∇)Jϵyϵ]− Jϵ′ [(Jϵ′yϵ′ · ∇)Jϵ′yϵ′ ]

·(yϵ − yϵ′)dx

So we have two integrals:
ˆ
R2

(Jϵ − Jϵ′) [(Jϵyϵ · ∇)Jϵyϵ] · (yϵ − yϵ′)dx

and ˆ
R2

Jϵ′ [(Jϵyϵ · ∇)Jϵyϵ − (Jϵ′yϵ′ · ∇)Jϵ′yϵ′ ] · (yϵ − yϵ′)dx

In the second integral we add and subtract the terms (Jϵ′yϵ · ∇) Jϵyϵ , (Jϵ′yϵ′ · ∇) Jϵyϵ,
(Jϵyϵ′ · ∇) Jϵ′yϵ
So eventually we will estimate the following 5 integrals:
(a) =

´
R2 (Jϵ − Jϵ′) [(Jϵyϵ · ∇)Jϵyϵ] · (yϵ − yϵ′)dx

(b) =
´
R2 Jϵ′ {[(Jϵ − Jϵ′) yϵ · ∇] Jϵyϵ} · (yϵ − yϵ′)dx

(c) =
´
R2 Jϵ′ {[Jϵ′(yϵ − yϵ′) · ∇] Jϵyϵ} · (yϵ − yϵ′)dx

(d) =
´
R2 Jϵ {Jϵ′ [(yϵ · ∇)(Jϵ − Jϵ′)yϵ]} · (yϵ − yϵ′)dx

(e) =
´
R2 Jϵ′ {Jϵ′ [(yϵ′ · ∇)Jϵ′(yϵ − yϵ′)]} · (yϵ − yϵ′)dx

So let’s start the estimates

(a) ≤ ∥ (Jϵ − Jϵ′) [(Jϵyϵ · ∇)Jϵyϵ] ∥L2∥yϵ − yϵ′∥L2
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For the first norm we add and subtract the term (Jϵyϵ · ∇)Jϵyϵ by triangle inequality
we have that

∥ (Jϵ − Jϵ′) [(Jϵyϵ · ∇)Jϵyϵ] ∥L2 ≤ ∥Jϵ [(Jϵyϵ · ∇)Jϵyϵ]−(Jϵuϵ·∇)Jϵuϵ∥H0+∥Jϵ′ [(Jϵyϵ · ∇)Jϵyϵ]−(Jϵuϵ·∇)Jϵuϵ∥H0

By proposition 4.1.11 we have that

≤ cϵ∥∇Jϵyϵ · Jϵyϵ∥H1 + cϵ′∥∇Jϵyϵ · Jϵyϵ∥H1

≤ 2cmax(ϵ, ϵ′)∥∇Jϵyϵ · Jϵyϵ∥H1

By proposition 4.1.4 we have that

≤ cmax(ϵ, ϵ′) {∥∇Jϵyϵ∥L∞∥Jϵyϵ∥H1 + ∥Jϵyϵ∥L∞∥∇Jϵyϵ∥H1}

By proposition 4.1.7and the fact that m ≥ 3 we have that

≤ cmax(ϵ, ϵ′) (∥∇yϵ∥L∞∥yϵ∥Hm + ∥yϵ∥L∞∥yϵ∥Hm)

By the Sobolev embedding theorem we have that ∥u∥L∞+∥∇u∥L∞ ≤ sup|a|≤2 ∥Dau∥L∞ ≤
cm∥u∥Hm Thus as a result

∥ (Jϵ − Jϵ′) [(Jϵyϵ · ∇)Jϵyϵ] ∥L2 ≤ cmax(ϵ, ϵ′)∥yϵ∥2Hm

So (a) ≤ camax(ϵ, ϵ′)∥yϵ∥2Hm∥yϵ − yϵ′∥L2

(b) ≤ ∥Jϵ′ {[(Jϵ − Jϵ′) yϵ · ∇] Jϵyϵ} ∥L2∥yϵ − yϵ′∥L2

For the first norm by proposition 4.1.13 we have that

∥Jϵ′ {[(Jϵ − Jϵ′) yϵ · ∇] Jϵyϵ} ∥L2 ≤ c

ϵ0
∥ [(Jϵ − Jϵ′) yϵ · ∇] Jϵyϵ∥H0

≤ c [(Jϵ − Jϵ′) yϵ · ∇] Jϵyϵ∥H4

Since H4(R2) is a Banach algebra we have:

c ≤ ∥∇Jϵyϵ∥H4∥(Jϵ − Jϵ′)yϵ∥H4

So by proposition and 4.1.13 we have that

≤ c∥yϵ∥Hm

(
∥Jϵyϵ − yϵ∥H3 + ∥Jϵ′yϵ − yϵ∥H3

)
By proposition 4.1.11

≤ c∥yϵ∥Hm

(
ϵ∥yϵ∥Hm + ϵ′∥yϵ∥Hm

)
∥Jϵ′ {[(Jϵ − Jϵ′) yϵ · ∇] Jϵyϵ} ∥L2 ≤ cmax(ϵ, ϵ′)∥yϵ∥2Hm

Consequently (b) ≤ cbmax(ϵ, ϵ′)∥yϵ∥2Hm∥yϵ − yϵ′∥L2

(c) ≤ ∥Jϵ′ {[Jϵ′(yϵ − yϵ′) · ∇] Jϵyϵ} ∥L2∥yϵ − yϵ′∥L2

For the first norm by the proposition 4.1.13 we have that

∥Jϵ′ {[Jϵ′(yϵ − yϵ′) · ∇] Jϵyϵ} ∥L2 ≤ c∥∇Jϵyϵ · Jϵ′(yϵ − yϵ′)H0

172



Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

By the proposition 4.1.4

≤ c {∥∇Jϵyϵ∥L∞∥Jϵ′(yϵ − yϵ′)∥H0 + ∥∇Jϵyϵ∥H0∥Jϵ′(yϵ − yϵ′)∥L∞}

By the proposition 4.1.13 and the Sobolev embedding we have that

∥Jϵ′ {[Jϵ′(yϵ − yϵ′) · ∇] Jϵyϵ} ∥L2 ≤ c∥yϵ∥Hm∥yϵ − yϵ′∥L2

It follows that (c) ≤ cc∥yϵ∥Hm∥yϵ − yϵ′∥2L2 For (d) we have an estimate as in (b) i.e.

(d) ≤ ∥Jϵ {Jϵ′ [(yϵ · ∇)(Jϵ − Jϵ′)yϵ]} ∥L2∥yϵ − yϵ′∥L2

For the first norm by the proposition 4.1.13 we have that

∥Jϵ {Jϵ′ [(yϵ · ∇)(Jϵ − Jϵ′)yϵ]} ∥L2 ≤ c∥∇(Jϵ − Jϵ′)yϵ · yϵ∥H0

≤ c∥∇(Jϵ − Jϵ′)yϵ · yϵ∥H4

The space H4(R2) is a Banach algebra we have:

≤ c∥yϵ∥Hm∥(Jϵ − Jϵ′)yϵ∥H5

≤ c∥yϵ∥Hm

(
∥Jϵyϵ − yϵ∥Hm + ∥Jϵ′yϵ − yϵ∥Hm

)
By proposition 4.1.11 we have

≤ c∥yϵ∥Hm

(
ϵ∥yϵ∥Hm + ϵ′∥yϵ∥Hm

)
So

∥Jϵ {Jϵ′ [(yϵ · ∇)(Jϵ − Jϵ′)yϵ]} ∥L2 ≤ cmax(ϵ, ϵ′)∥yϵ∥2Hm

As a consequence (d) ≤ cdmax(ϵ, ϵ′)∥yϵ∥2Hm∥yϵ− yϵ′∥L2 Now for the last integral (e) we
have that

(e) =
1

2

ˆ
R3

(Jϵ′yϵ′ · ∇)|Jϵ′(yϵ − uϵ′)|2dx = −1

2

ˆ
R3

div(Jϵ′yϵ′)|Jϵ′(yϵ − uϵ′)|2dx = 0

For the I2 we sum and subtract the term Jϵ′ [(b · ∇)Jϵyϵ], so

I2 =

ˆ
R2

P
[
Jϵ[(b · ∇)Jϵyϵ]− Jϵ′ [(b · ∇)Jϵyϵ] + Jϵ′ [(b · ∇)Jϵyϵ]− Jϵ′ [(b · ∇)Jϵ′yϵ′ ]

]
·(yϵ − yϵ′)dx

≤
ˆ
R2

(Jϵ − Jϵ′)[(b · ∇)Jϵyϵ] · (yϵ − yϵ′)dx

+

ˆ
R2

Jϵ′
[
(b · ∇)Jϵyϵ − (b · ∇)Jϵ′yϵ′

]
· (yϵ − yϵ′)dx

We will see each integral individually

I12 =

ˆ
R2

(Jϵ − Jϵ′)[(b · ∇)Jϵyϵ] · (yϵ − yϵ′)dx
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and
I22 =

ˆ
R2

Jϵ′
[
(b · ∇)Jϵyϵ − (b · ∇)Jϵ′yϵ′

]
· (yϵ − yϵ′)dx

So for the first one we have that

I12 ≤ ∥(Jϵ − Jϵ′)[(b · ∇)Jϵyϵ]∥L2∥yϵ − yϵ′∥L2

We add and subtract the term (b · ∇)Jϵyϵ and by the triange inequality we have that

≤
[
∥Jϵ[(b · ∇)Jϵyϵ]∥L2 + ∥Jϵ′ [(b · ∇)Jϵyϵ]∥L2

]
∥yϵ − yϵ′∥L2

By the proposition 1.1.11 we have that

≤ c
[
ϵ∥∇Jϵyϵ · b∥H1 + ϵ′∥∇Jϵyϵ · b∥H1

]
∥yϵ − yϵ′∥L2

≤ 2cmax(ϵ, ϵ′)∥∇Jϵyϵ · b∥H1∥yϵ − yϵ′∥L2

≤ 2cmax(ϵ, ϵ′)∥b∥L∞∥Jϵyϵ∥H2∥yϵ − yϵ′∥L2

We conclude that

I12 ≤ c2,1max(ϵ, ϵ′)∥b∥L∞∥yϵ∥Hm∥yϵ − yϵ′∥L2

For the I22 we have that

I22 ≤ ∥Jϵ′
[
(b · ∇)(Jϵ − Jϵ′)yϵ

]
∥L2

]
∥yϵ − yϵ′∥L2

By the proposition 4.1.13

≤ c∥∇(Jϵ − Jϵ′)yϵ · b∥H0∥yϵ − yϵ′∥L2

≤ c∥∇(Jϵ − Jϵ′)yϵ∥H0∥b∥L∞∥yϵ − yϵ′∥L2

≤ c∥(Jϵ − Jϵ′)yϵ∥H1∥b∥L∞∥yϵ − yϵ′∥L2

We add and subtract the term yϵ, and by the triangle inequality we have

≤ c
[
∥Jϵyϵ − yϵ∥H1∥b∥L∞ + ∥Jϵ′yϵ − yϵ∥H1∥b∥L∞

]
∥yϵ − yϵ′∥L2

By the proposition 4.1.11 we have

≤ c
[
ϵ∥b∥L∞ϵ∥yϵ∥H2 + ϵ′ + ∥b∥L∞ϵ′∥yϵ∥H2

]
∥yϵ − yϵ′∥L2

Thus
I22 ≤ c2,2max(ϵ, ϵ′)∥yϵ∥Hm∥b∥L∞∥yϵ − yϵ′∥L2

So we conclude that

I2 ≤ Cmax(ϵ, ϵ′)∥yϵ∥Hm∥b∥L∞∥yϵ − yϵ′∥L2

Combining all this together we have that

d

dt
∥yϵ − yϵ′∥L2 ≤ C

[
max(ϵ, ϵ′)(∥yϵ∥Hm + ∥yϵ′∥Hm + ∥b∥L∞ + ∥∇b∥L∞) + ∥yϵ − yϵ′∥L2

]
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By Step 1 we have found a uniform bound for theHm norm of the regularized solutions,
say M

d

dt
∥yϵ − yϵ′∥L2 ≤ CM

[
max(ϵ, ϵ′)M + ∥∇b∥L∞ + ∥b∥L∞

]
+ CM∥yϵ − yϵ′∥L2

We integrate with respect to t and we have that

∥yϵ − yϵ′∥L2 ≤ CM

ˆ t

0

[
max(ϵ, ϵ′) + ∥∇b∥L∞

]
dx+

ˆ
R2

CM∥yϵ − yϵ′∥L2dx

We set a(t) = CM
´ t
0

[
max(ϵ, ϵ′) + ∥b∥L∞ + ∥∇b∥L∞

]
dx so by Gronwall we have that

∥yϵ − yϵ′∥L2 ≤ a(t) +

ˆ t

0
CMa(s)e

´ t
s CM drds

∥yϵ − yϵ′∥L2 ≤ max(ϵ, ϵ′)f(t)

Where f(t) = t+
´ t
0 ∥b∥L∞+∥∇b∥L∞dx+CM

´ t
0 e
´ t
s CM drds+CM

´ t
0 ∥b∥L∞+∥∇b∥L∞e

´ t
s CM drds

Taking the supremum over this relation we have that sup0≤t≤T f(t) = L(T ) thus

sup
0≤t≤T

∥yϵ − yϵ′∥L2 ≤ L(T )max(ϵ, ϵ′) ≤ ϵ̃

with out loss of convergence ϵ′ < ϵ, thus so the family yϵ forms a Cauchy sequence on
C
(
[0, T ], L2(R2)

)
which is a Banach space and it follows that yϵ converges to yv Step

3 By the proposition 4.3.1 we have that for m’such that 0 ≤ m′ ≤ m we have that

∥yϵ − yv∥Hm′ ≤ ∥yϵ − yv∥
1−m′

m

L2 ∥yϵ − yv∥
m′
m
Hm

Taking the supremum over this relation we have that

sup
0≤t≤T

∥yϵ − yv∥Hm′ ≤ sup
0≤t≤T

{
∥yϵ − yv∥

1−m′
m

L2 ∥yϵ − yv∥
m′
m
Hm

}

Thus sup0≤t≤T ∥yϵ − yv∥Hm′ ≤ sup0≤t≤T ∥yϵ − yv∥
1−m′

m

L2 sup0≤t≤T ∥yϵ − yv∥
m′
m
Hm

By the Step 2 we have that ∥yϵ−yϵ′∥L2 ≤ CM,T ϵ , we also now that sup ab ≤ sup a sup b
it follows that sup ak ≤ (sup a)k.

Consequently sup0≤t≤T ∥yϵ − yv∥
1−m′

m

L2 ≤
(
sup0≤t≤T ∥yϵ − yv∥L2

)1−m′
m .

We also know that the function xa is increasing when a > 0, so we have that sup0≤t≤T ∥yϵ−

yv∥
1−m′

m

L2 ≤ (cϵ)1−
m′
m .

By the Step 1 we have that sup0≤t≤T ∥yϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

cm∥∇b∥L∞+∥y0∥Hm−∥y0∥Hmecm∥∇b∥L∞T

and it is also true that ∥yv∥Hm ≤ lim supϵ→0 ∥yϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

cm∥∇b∥L∞+∥y0∥Hm−∥y0∥Hmecm∥∇b∥L∞T

Thus we have also an uniform bound for the Hm norm of yv i.e.

sup
0≤t≤T

∥yv∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

cm∥∇b∥L∞ + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T
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It is also true by triangle inequality that sup(a + b) ≤ sup a + sup b so sup0≤t≤T ∥yϵ −

yv∥
m′
m
Hm ≤

(
sup0≤t≤T ∥yϵ∥mH + sup0≤t≤T ∥yv∥Hm

)
= M

m′
m Eventually we combine the

above relations we have that

sup
0≤t≤T

∥yϵ − yv∥Hm′ ≤ C(y0, T,m,m
′)ϵ1−

m′
m

So we have proved that we have the converge of yϵ to yv in all spaces C([0, T ], V m′
)

with m′ < m.
We choosem′ > 3

2+2 , so by the Sobolev embedding theorem we have that ∥yϵ−yv∥C2 ≤
∥yϵ − yv∥Hm′ , taking the supremum over this relation we have that sup0≤t≤T ∥yϵ −
yv∥C2 ≤ sup0≤t≤T ∥yϵ − yv∥Hm′ .
It follows that yϵ → yv in C([0, T ], C2)
To complete the step 3 we have to show that we also have a convergence in C1([0, T ], C),
we recall the flow d

dtyϵ = Fϵ(yϵ).
We know that a limϵ→0 Fϵyϵ = ∆yv−P [(yv ·∇)yv+(b ·∇)yv+(yv ·∇)b] in V m′−2 since
(we denote yv = y)

∥νJ2
ϵ∆yϵ−PJϵ[(Jϵyϵ·∇)Jϵyϵ+(b·∇)Jϵyϵ+(Jϵyϵ·∇)b]−ν∆y+P [(y·∇)y+(b·∇)y+(y·∇)b]∥Hm′−2

By the triangle inequality we have that

≤ ∥νJ2
ϵ∆yϵ−ν∆y∥Hm′−2+∥PJϵ[(Jϵyϵ·∇)Jϵyϵ+(b·∇)Jϵyϵ+(Jϵyϵ·∇)b]−P [(y·∇)y+(b·∇)y+(y·∇)b]∥Hm′−2

Firstly we will see the terms, which do not include the b. We add and subtract some
terms in order to reach to some terms we can estimate by the previous results

= ν∥Jϵyϵ−Jϵy+Jϵy−y∥Hm′+∥Jϵ[(Jϵyϵ·∇)Jϵyϵ]−Jϵ[(y·∇)y]+Jϵ[(y·∇)y]−[(y·∇)y]∥Hm′−2

Again by triangle inequality we have

≤ ν∥Jϵyϵ − Jϵy∥Hm′ + ν∥Jϵy − y∥Hm′

+ ∥Jϵ[(Jϵyϵ · ∇)Jϵyϵ]− [(Jϵyϵ · ∇)Jϵyϵ]∥Hm′−2︸ ︷︷ ︸
(1)

+ ∥(Jϵyϵ · ∇)Jϵyϵ − (y · y)∥Hm′−2︸ ︷︷ ︸
(2)

By the proposition 4.1.11, 4.1.12 ,4.1.13 and step 2 we have that the first two terms
converge in Hm′ so we continue with (1) and (2).

(1) ≤ ∥Jϵ[(Jϵyϵ · ∇)Jϵyϵ]− [(Jϵyϵ · ∇)Jϵyϵ]∥Hm′

By proposition 4.1.12, and steps 1,2,3 we have that (1) → 0
For (2) we have

(2) ≤ ∥(Jϵyϵ · ∇)Jϵyϵ − (Jϵyϵ · ∇)yϵ∥Hm′−2︸ ︷︷ ︸
(2a)

+ ∥(Jϵyϵ · ∇)yϵ − (y · ∇)y∥Hm′−2︸ ︷︷ ︸
(2b)

So (2a) : ∥(Jϵyϵ · ∇)(Jϵyϵ − yϵ)∥Hm′−2 ≤ ∥∇(Jϵyϵ − yϵ)∥Hm′−2∥Jϵyϵ∥Hm′−2 ≤ ϵM∥Jϵyϵ −
yϵ∥Hm′
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By proposition 4.1.12 and steps 1,2,3 we have that (2a) → 0 We continue with (2b) by
adding and subtracting some terms we have

(2b) ≤ ∥(Jϵyϵ·∇)yϵ−(Jϵyϵ·∇)y∥Hm′−2+∥(Jϵyϵ·∇)y−(yϵ·∇)y∥Hm′−2+∥(yϵ·∇)y−(y·∇)y∥Hm′−2

≤ ∥yϵ − y∥Hm′−1∥yϵ∥Hm′ + ∥y∥Hm′−1∥Jϵyϵ − yϵ∥Hm′−2 + ∥y∥Hm′−1∥yϵ − y∥Hm′−2

By proposition 4.1.12 and steps 1,2,3 we have that (2b) → 0
We continue with the terms that include the term b

∥Jϵ[(b · ∇)Jϵyϵ]− (b · ∇)y∥Hm′−2 ≤

∥Jϵ[(b · ∇)Jϵyϵ]− (b · ∇)Jϵyϵ∥Hm′−2︸ ︷︷ ︸
(1)

+ ∥(b · ∇)Jϵyϵ − (b · ∇)y∥Hm′−2︸ ︷︷ ︸
(2)

By proposition 4.1.12, we have that (1) → 0
For (2) we have that

(2) ≤ ∥(b · ∇)Jϵyϵ − (b · ∇)yϵ∥Hm′−2 + ∥(b · ∇)yϵ − (b · ∇)y∥Hm′−2

≤ ∥b∥L∞
(
∥∇(Jϵyϵ − yϵ)∥Hm′−2 + ∥∇(yϵ − y)∥Hm′−2

)
≤ ∥b∥L∞

(
∥Jϵyϵ − yϵ∥Hm′−1 + ∥yϵ − y∥Hm′−1

)
By proposition 4.1.12, and steps 1,2,3 we have that (2) → 0
The other term is

∥Jϵ[(Jϵyϵ·∇)b]−(y·∇)b∥Hm′−2 ≤ ∥Jϵ[(Jϵyϵ · ∇)b]− (Jϵyϵ · ∇)b∥Hm′−2︸ ︷︷ ︸
(1)

+ ∥(Jϵyϵ · ∇)b− (y · ∇)b∥Hm′−2︸ ︷︷ ︸
(2)

≤ ∥∇b∥L∞
(
∥Jϵyϵ − yϵ∥Hm′−2 + ∥yϵ − y∥Hm′−2

)
By proposition 4.1.12, we have that (1) → 0

(2) ≤ ∥(Jϵyϵ · ∇)b− (yϵ · ∇)b∥Hm′−2 + ∥(yϵ · ∇)b− (y · ∇)b∥Hm′−2

By proposition 4.1.12, and steps 1,2,3 we have that (2) → 0
So we conclude that d

dtyϵ → F (y) in C([0, T ], V m′−2). Invoking now yϵ → y in
C([0, T ], Hm′

), we obtain ∂ty = F = ν∆y − P (y · ∇y) ∈ C([0, T ], Hm′−2)
This means that the (strong) time-derivative ∂ty exists and is continuous in the respec-
tive spaces, such that v ∈ C([0, T ], Hm′

)∩C1([0, T ], Hm′−2) satisfies the Navier-Stokes
and Euler equations. For m′ like before we have by the Sobolev embedding theorem
that yϵ, yv ∈ C([0, T ], C2) ∩ C1([0, T ], C)39

Step 4:We will use weak convergence in order to prove this step

39The yv is a classical solution

177



Chapter 4 4.3. Existence of smooth solutions as the limit of the regularized solutions

• The space L2 is Hilbert, in addition the sequence yϵ is bounded in L2([0, T ], V m)

indeed
(´ T

0 ∥yϵ∥2Hmdt
) 1

2 ≤
´ T
0 ∥yϵ∥Hm . By the Step 1 we have an upper bound

for the ∥yϵ∥Hm thus

(ˆ T

0
∥yϵ∥2Hmdt

) 1
2

≤M2T = C <∞

Thus by theorem 4.3.2 we have that there exist a subsequence such that converges
to a y. This y is the yv we have found in the step 2 since for m′ < mwe have that
V m ⊂ V m′ and we know that the limit of a subsequence is unique. So yϵk ⇀ y.
Also by proposition 4.3.2 we have that

∥yv∥L2([0,T ],Vm) ≤ lim inf ∥yϵk∥L2([0,T ],Vm) ≤ C

• The sequence yϵ is bounded in L∞([0, T ], V m) since ess sup0≤t≤T ∥yϵ∥Hm ≤ ess sup0≤t≤T M =
M <∞. We know that there exists a weakly∗ convergence subsequence to yv we
also have that

∥yv∥L∞([0,T ],Vm) ≤ lim sup ∥yϵk∥L∞([0,T ],Vm) ≤M <∞

• By the step 2 we have that ∥ ddtyϵ∥Hm ≤ cv∥yϵ∥Hm + c∥yϵ∥2Hm thus ∥ ddt∥Hm ≤ CM
So it follows that yϵ ∈ Lip

(
[0, T ], V m−2

)
we also have that ∥ ddtyv∥Hm ≤ CM thus

yv ∈ Lip
(
[0, T ], V m−2

)
• We have already prove that yϵ → yv in C([0, T ], V m′

),thus ∥yϵ − yv∥Hm′ ≤
sup0≤t≤T ∥yϵ−yv∥Hm′ ≤ η so it occurs that (yϵ−yv, ϕ) → 0 for any ϕ ∈ V −m′(1)40.
The space V −m′ is dense in V −m so ∀g ∈ V −m , there exists a sequence ϕn in
V −m′ such that ϕn → g. So by (1) we have that (yϵ − yv, ϕn) → 0. We want
to prove that (yϵ − yv, ϕ) → (yϵ − yv, g) this is true since |(yϵ − yv, ϕn − g)| ≤
∥yϵ−yv∥H−m∥ϕn−g∥H−m ≤ η′. So we have that for g ∈ V −m that (yϵ−yv, g) → 0,
we know that yϵ, yv are continuous so they are and weakly continuous and this
completes the proof of step 4.

As far as concerned the uniqueness of the solution it occurs by the previous chapter
remark 2 where we have proved that if the solution exist it is unique.

So far by the proposition above we see that we have our y is on C([0, T ], C2) ∩
C1([0, T ], C) if we want to speak in terms of Sobolev spaces on C([0, T ], V m′

)∩C1([0, T ], V m′−2)
for m′ < m. Now we will prove the following theorem, which gives us continuity in the
high Hm norm.

Theorem 4.3.6. Assume that yv is a solution as described above, then yv ∈ C([0, T ), V m)∩
C1([0, T ), V m−2)

40The dual of Hm is the H−m
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Proof. As in Step 3 of the previous proof we will firstly prove that yv = y ∈ C([0, T ), V m)
and then follows that y ∈ C1([0, T ), V m−2). In Step 4, we have proved the weak conti-
nuity -with respect to time, of our solution in V m, we want to prove that limδ→0 u(t+
δ) → y(t) i.e. ∥y(t + δ) − y(t)∥Hm ≤ η for δ ≤ β we know that ∥y(t + δ) − y(t)∥Hm ≤
(y(t+ δ)− y(t), y(t+ δ)− y(t))Hm ≤

∣∣∥y(t+ δ)∥2Hm −∥y(t)∥2Hm

∣∣ so it is enough to show
that ∥y∥Hm is a continuous function.
We start with the right continuity on which is the same for v = 0 and v > 0.
For t=0 by the previous theorem we have that

∥y∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

cm∥∇b∥L∞ + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T

so

lim
t→0+

sup ∥y∥Hm ≤ lim
t→0+

sup
∥y0∥Hmecm∥∇b∥L∞T

cm∥∇b∥L∞ + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T
≤ ∥y0∥Hm

. By step 4 we have that yt ⇀ y0 thus by proposition 4.3.2 we have that

∥y0∥Hm ≤ lim
t→0+

inf ∥y∥Hm

It is also true that limt→0+ inf ≤ limt→0+ sup so combining those three relations we
have that

lim
t→0+

∥y∥mH = lim
t→0+

sup ∥y∥Hm = lim
t→0+

inf ∥y∥Hm = ∥y0∥Hm

So we have that ∥y∥Hm is strongly right continuous on 0.
For the left continuity we have to see each case individually

• v = 0 The Euler equation is time reversible, indeed:
Recall the Euler equation in 2 dimensions

∂

∂t
y + (y · ∇)y + (b · ∇)y + (y · ∇)b = −∇p

We set y(x, t) = −v(x, t) and p(x, t) = −p̄(x,−t) and b = −b̄ thus we have that

∂

∂t
y(x, t) =

∂

∂t
(−v(x,−t)) = − ∂

∂t
v(x,−t) = ∂v

∂t
(x,−t)

The other derivatives in the equation does not change with this substitution since
they are derivatives with respect to x i.e. we have that

∂v

∂t
(x,−t) + (−v · ∇)− v(x,−t) + (b̄ · ∇)v + (v · ∇b̄)b = −∇p̄(x,−t)

So now we set yv(−t) = ȳ(t) and we have the same arguments:
By the previous theorem we have that

∥ȳ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

1 + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T
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so

lim
t→0−

sup ∥ȳ∥Hm ≤ lim
t→0−

sup
∥y0∥Hmecm∥∇b∥L∞T

1 + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T
≤ ∥ȳ0∥Hm

. By step 4 we have that ȳt ⇀ ȳ0 thus by proposition 4.3.2 we have that

∥ȳ0∥Hm ≤ lim
t→0−

inf ∥ȳ∥Hm

It is also true that limt→0− inf ≤ limt→0− sup so combining those three relations
we have that

lim
t→0−

∥ȳ∥mH = lim
t→0−

sup ∥ȳ∥Hm = lim
t→0−

inf ∥ȳ∥Hm = ∥ū0∥Hm

So we have that ∥ȳ∥Hm is strongly left continuous on 0. Thus the function

u =

{
y [0, T )

ȳ (−T, 0)

we have that ∥y∥Hm is strongly continuous on 0. Now we will prove that ∥y∥Hm

is continuous for everyt ∈ (0, T ), let T0 be a random time and y(x, T0) = yT0 the
solution on this time. We know then that ∥yT0∥Hm ≤ M so yT0 ∈ V m and thus
we can use yT0 as an initial value for the new IVP{

d
dtyϵ = Fϵ(yϵ) t ∈ [T0, T )

yϵ(T0)

Assume that ȳϵ is the solution of the above ivp, which we are sure that exist since
we have prove that we can find a global solution on the first IVP. By lemma 18
we have that

d

dt

1

2
∥ȳϵ∥2Hm ≤ cm∥Jϵ∇ȳϵ∥L∞∥ȳϵ∥2Hm

Following the same process as in Step 1 we have that

∥ȳϵ∥Hm ≤ ∥y0∥Hmecm∥∇b∥L∞T

1 + ∥y0∥Hm − ∥y0∥Hmecm∥∇b∥L∞T

So by Step 2 we have a solution ȳ. So we have again the same arguments as
above and we have the continuity of ∥y∥Hm in all the interval [0, T )

• The Navier Stokes equation is not time reversible, so we will follow another strat-
egy. We know that yϵ is bounded on L2([0, T ], V m) and thus in L2([0, T ], V m+1),
this is a Hilbert space so by lemma 19 we have that there exists a subsequence
that converge on V m+1. Assume now a T0 ∈ (0, T ] we will prove the left conti-
nuity . We choose T̃ such that 0 < T̃ < T0 and u(T̃ ) ∈ V m+1 withT̃ = T0 − δ.
With initial value u(T̃ ) and m = m + 1 in the theorem 4.3.1 we have that for
m′ < m + 1 and T ′ ≥ T̃ there exists a solution y ∈ C([T̃ , T ′], V m′

). For m′ = m
and δ = 0 we have the left continuity on T0 and since T0 is arbitrary we have the
left continuity in all the interval [0, T )
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So we conclude that ∥y∥Hm is continuous thus yv ∈ C([0, T ), V m) and d
dty ∈ C([0, T ), V m−2)

Note : As before (the regularized case) we have prove that there exist a y which
solves the equation

∂

∂t
+ P

[
(y · ∇)y + (b · ∇)y + (y · ∇)b

]
= ν∆y

and we have b an exact solution so we conclude that u = y+b solves the Leray’s form of
the Navies Stokes equation The proof of the previous theorem is based on the discussion
about the continuity of solutions in the previous chapter. Here the following proposition
summarizes the result for the existence of maximum interval for the existence of the
solution yv.

Proposition 4.3.4. Let y0 ∈ V m with m ≥ 3 and v ≥ 0, then there exists a maximum
interval [0, T ∗] that the solution yv described in theorem 4.3.1, exists. T ∗maybe the
infinity, otherwise for T ∗ <∞ we will have limt→T ∗ ∥y∥Hm = ∞

Proof. Assume that T ∗ ≤ ∞ is the maximum time and limt→T ∗ ∥y∥Hm = ∞, then we
have already seen that we can extend the interval of existence, say [0, T ∗ + δ) which
contradicts the initial hypothesis.
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CHAPTER 5
Existence of global in time
smooth solutions

In the previous chapter we found a solution locally in time. The last proposition was
about the existence of this solution globally in time. More specifically we saw that if the
quantity limt→T ∗ ∥u(t)∥Hm ≤ ∞ for T ∗ <∞ then the maximum interval of existence is
the [0,∞). In this Chapter we will see a criterion, which gives a sufficient condition for
the above relation to hold. This criterion is the well known Beale-Kato-Majda blow up
criterion which links the accumulation of vorticity with the global existence of solutions.
Firstly we will prove this criterion and later we will apply this theorem.

5.1 Beale-Kato-Majda criterion

Theorem 5.1.1. 1 Assume that u0 ∈ V m with m ≥
[
N
2

]
+ 2 and u is a solution of the

Euler or the Navier-Stokes as described in the previous chapter and ω is its vorticity
defined as ω = curlu. Assume that there exists a time T ∗ such that the above solution
can not be extended continuously in time. We also assume that T ∗ is the first time that
this happens, then

´ T ∗

0 ∥ω(t)∥L∞dt = ∞

Recall that via Biot-Savart law we have export the velocity by vorticity with a non
local operator. We see that on two dimensions and three dimension we have different
homogeneous kernels of degree (1-N). So for the proof we will have two cases the 3d one
and the 2d

Proof of the criterion

By the proposition 4.3.4 we have that since T ∗ < ∞ is the first time that we can not
extend our solutions it is true that limt→T ∗ u(t) = ∞. Assume that

´ T ∗

0 ∥ω(t)∥L∞dt =
M <∞ we will prove that in this case∥u(t)∥Hm ≤ C for t ≤ T ∗ and then limt→T ∗ u(t) <
∞ which is a contradiction.

1[9]
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3 dimensions

We will prove the following steps
Step 1:We will find an energy estimate for the Hm norm of the velocity in terms of
∥∇u∥L∞

Step 2:We will find an L2 estimate for the vorticity in terms of ∥ω∥L∞ .
Step 3:We will bound the ∥∇u∥L∞ in terms of vorticity
Step 4:We will combine all the above steps and we will show that if

´ T ∗

0 ∥ω(t)∥L∞dt
stays bounded then ∥u∥Hm stays bounded.

Step 1. We will prove that d
dt∥u∥Hm ≤ c∥∇u∥L∞∥u∥Hm

It is true that u satisfies the the Navier Stokes in the Leray’s formulation so we have
that

∂

∂t
u = ν∆u− P [(u · ∇)u]

We differentiate this relation over

Da

(
∂

∂t
u

)
= νDa(∆u)−Da(P [(u · ∇)u])

We multiply with Dau in L2 and we get
ˆ
R3

Da

(
∂

∂t
u

)
·Daudx =

ˆ
R3

Da(∆u) ·Daudx−
ˆ
R3

Da(P [(u · ∇)u]) ·Daudx

Thus
1

2

d

dt
∥Dau∥2L2 = −ν∥∇Dau∥2L2 −

ˆ
R3

Da(P [(u · ∇)u]) ·Daudx

1

2

d

dt
∥Dau∥2L2 ≤

ˆ
R3

Da(P [(u · ∇)u]) ·Daudx

To the integral on the right side we add and subtract the term P [(u · ∇)Dau] and we
have that since

´
R3 P [(u · ∇)Dau] ≤ 0 that

1

2

d

dt
∥Dau∥2L2 ≤

ˆ
R3

[
Da(P [(u · ∇)u])− P [(u · ∇)Dau]

]
·Daudx

So we have that

1

2

d

dt
∥Dau∥2L2 ≤ ∥u∥Hm∥Da(P [(u · ∇)u])− P [(u · ∇)Dau]∥L2

Taking the sum over this relation

1

2

d

dt

∑
|a|≤m

∥Dau∥2L2 ≤ ∥u∥Hm

∑
|a|≤m

∥Da(P [(u · ∇)u])− P [(u · ∇)Dau]∥L2

By proposition 4.1.13 we have

1

2

d

dt
∥u∥2Hm ≤ cm∥∇u∥L∞∥∇u∥Hm−1 + ∥u∥Hm∥∇u∥L∞
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So it follows that
1

2

d

dt
∥u∥2Hm ≤ cm∥∇u∥L∞∥u∥2Hm

Eventually
d

dt
∥u∥Hm ≤ cm∥∇u∥L∞∥u∥Hm

Now by Gronwall’s lemma in differential form we have that

∥u∥Hm ≤ ∥u0∥Hme
´ t
0 c∥∇u∥L∞ds

Step 2. Let ω = curlu where u is the above velocity field, we know for the vorticity
equation in 3 dimensions that

∂

∂t
ω + (u · ∇)ω = (ω · ∇)u+ ν∆ω

We multiply with ω in L2 and we have thatˆ
R3

∂

∂t
ω · ωdx+

ˆ
R3

(u · ∇)ω · ωdx =

ˆ
R3

(ω · ∇)u · ωdx+ ν

ˆ
R3

∆ω · ωdx

We have that
´
R3(u · ∇)ω · ωdx = 0 and ν

´
R3 ∆ω · ωdx = −ν

´
R3 ∥∇ω∥2dx ≤ 0 so

ˆ
R3

∂

∂t
ω · ωdx ≤

ˆ
R3

(ω · ∇)u · ωdx

It follows that
1

2

d

dt
∥ω∥2L2 ≤ ∥∇u∥L2∥ω∥L∞∥ω∥L2

Lemma 24. It is true that in three dimensions that ∥u∥L2 ≤ c∥ω∥L2, where ω = curlu

By Plancherels theorem we recall that if f ∈ L2 then ∥f∥L2 = ∥f̂∥L2

Also it is true that ∇̂u =
´
R3 e

−iξx · ∇udx
We see that for j-th element, with integration by parts that:

ˆ
R3

e−iξx · ∂

∂xj
udx = −

ˆ
R3

∂

∂xj
e−iξx · udx = iξj û

Since we have that ∂
∂xj

e−iξx = (−iξ) ∂
∂xj

xe−iξx = −iξje−iξx

Thus we have that ∇̂u(ξ) = iξû(ξ)
It is also true that

ω =

 ∂
∂x2

u3 − ∂
∂x3

u2
∂
∂x3

u1 − ∂
∂x1

u3
∂
∂x1

u2 − ∂
∂x2

u1


Also for the Fourier transform of vorticity we have that

ω̂(ξ) =

ˆ
R3

e−iξxω(x)dx
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We will check each :

• ω1 =
∂
∂x2

u3 − ∂
∂x3

u2 So

ˆ
R3

e−iξx
(

∂

∂x2
u3 −

∂

∂x3
u2

)
dx

=

ˆ
R3

e−iξx
∂

∂x2
u3dx−

ˆ
R3

e−iξx
∂

∂x3
u2dx

iξ2û3 − iξ3û2

• ω2 =
∂
∂x3

u1 − ∂
∂x1

u3 So

ˆ
R3

e−iξx
(

∂

∂x3
u1 −

∂

∂x1
u3

)
dx

=

ˆ
R3

e−iξx
∂

∂x3
u1dx−

ˆ
R3

e−iξx
∂

∂x1
u3dx

iξ3û1 − iξ1û3

• ω3 =
∂
∂x1

u2 − ∂
∂x2

u1 So

ˆ
R3

e−iξx
(

∂

∂x1
u2 −

∂

∂x2
u1

)
dx

=

ˆ
R3

e−iξx
∂

∂x1
u2dx−

ˆ
R3

e−iξx
∂

∂x2
u1dx

iξ1û2 − iξ2û1

Thus ω̂(ξ) =

iξ2û3 − iξ3û2
iξ3û1 − iξ1û3
iξ1û2 − iξ2û1

 =

 0 −iξ3 iξ2
iξ3 0 −iξ1
−iξ2 iξ1 0

û1û2
û3

 = Sû(ξ)

We have that detS = ξ21 + ξ22 + ξ23 ̸= 0 so there exists the inverse matrix say S−1

we will find the inverse
We know that S−1 1

detSadj(S) where adj(S) is the adjugate matrix of S.

adj(S) =

 ξ21 −ξ1ξ2 ξ1ξ3
−ξ1ξ2 ξ2 −ξ2ξ3
ξ1ξ3 −ξ2ξ3 ξ23


So the inverse is a 3×3 symmetric matrix and we know that the norm of symmetric
matrix is the maximum of the magnitude of its eigenvalues. Assume that C =
max |λ1|, |λ2|, |λ3| We conclude that since û(ξ) = S−1ω̂(ξ)

∥û(ξ)∥L2 = ∥S−1ω̂(ξ)∥L2
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≤ ∥S−1∥L∞∥ω̂(ξ)∥L2

≤ ∥S−1∥∥ω̂(ξ)∥L2

≤ c∥ω̂(ξ)∥L2

By the lemma 23 we have that

1

2

d

dt
∥ω∥2L2 ≤ c∥ω∥L∞∥ω∥2L2

Thus
d

dt
∥ω∥L2 ≤ c∥ω∥L∞∥ω∥L2

And by the Gronwall’s inequality in the differential form we have that

∥ω∥L2 ≤ ∥ω0∥L2e
´ t
0 c∥ω∥L2ds

Step 3. Assume that ω ∈ L2 ∩ L∞ ∩ C0,γ then in three dimensions via Biot-Savart law
we have that

u(x, t) =
1

4π

ˆ
R3

K3(x− y)ω(y)dy =
1

4π

ˆ
R3

K3(y)ω(x− y)dy

On chapter 3 we will show that the kernel P3 = ∇K3 defines a SIO through convolution,
by proposition 3.17 we have that

∇u(x, t) = cω(x) + P3ω(x) (Rs3)

where P3ω(x) = P.V.
´
R3 ∇K3(y)ω(x − y)dy and P3 is homogeneous of degree -3 with

mean value zero2.

Assume the cut-off function ρ(|x|) =

{
1 |x| ≤ R0

0 |x| ≥ 2R0

, we will define R0 later in the proof

We have that P3ω(x) = P.V.
´
R3 ∇K3(y)ω(x− y)dy

= P.V.

ˆ
R3

∇K3(y)ρ(|y|)ω(x− y) +∇K3(y)(1− ρ(|y|))ω(x− y)dy

= P.V.

ˆ
R3

∇K3(y)ρ(|y|)ω(x− y)dy + P.V.

ˆ
R3

∇K3(y)(1− ρ(|y|))ω(x− y)dy

So we will see each integral individually:
For ϵ ≤ R0 we have that

I1 = P.V.

ˆ
R3

∇K3(y)ρ(|y|)ω(x− y)dy

= P.V.

(ˆ
|y|≤ϵ

∇K3(y)ρ(|y|)ω(x− y)dy +

ˆ
|y|≥ϵ

∇K3(y)ρ(|y|)ω(x− y)dy

)
2See chapter 2 for more information
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The singularity of the kernel is on 0 so the second integral is well defined thus

= P.V.

ˆ
|y|≤ϵ

∇K3(y)ρ(|y|)ω(x− y)dy +

ˆ
|y|≥ϵ

∇K3(y)ρ(|y|)ω(x− y)dy

Again we will see each term individually

• I11 = P.V.
´
|y|≤ϵ∇K3(y)ρ(|y|)ω(x− y)dy

Since P3 has mean value zero it is true that P.V.
´
R3 P3(y)ρω(x)dy = ω(x)

´
R3 P3(y) =

0 so we have that

I11 = P.V.

ˆ
|y|≤ϵ

∇K3(y)ρ(|y|)ω(x− y)−∇K3(y)ρ(|y|)ω(x)dy

= P.V.

ˆ
|y|≤ϵ

∇K3(y)ρ(|y|)(ω(x− y)− ω(x))

Thus
|I11 | ≤

ˆ
|y|≤ϵ

|∇K3(y)ρ(|y|)||ω(x− y)− ω(x)|dy

We multiply and divide with the |y|γ , for 0 < γ < 1 so

≤
ˆ
|y|≤ϵ

|∇K3(y)ρ(|y|)|
|ω(x− y)− ω(x)|

|y|γ
|y|γdy

≤
ˆ
|y|≤ϵ

|y|γ |∇K3(y)ρ(|y|)|∥ω∥C0,γdy

≤ ∥ω∥C0,γ

ˆ
|y|≤ϵ

|y|γ |∇K3(y)|dy

≤ c∥ω∥C0,γ

ˆ
|y|≤ϵ

|y|γ 1

|y|3
dy

≤ c∥ω∥C0,γ

ˆ ϵ

0
rγ

1

r3
r2dr

So
|I11 | ≤ c1,1∥ω∥C0,γ ϵγ

• I21 =
´
|y|≥ϵ∇K3(y)ρ(|y|)ω(x− y)dy

=

ˆ
2ϵ≤|y|≤R0

∇K3(y)ρ(|y|)ω(x− y)dy +

ˆ
|y|>R0

∇K3(y)ρ(|y|)ω(x− y)dy

We will see each integral individually:

I2a1 =

ˆ
2ϵ≤|y|≤R0

∇K3(y)ρ(|y|)ω(x− y)dy

So we have that

|I2a1 | ≤
ˆ
2ϵ≤|y|≤R0

|∇K3(y)ρ(|y|)||ω(x− y)|dy
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≤ c∥ω∥L∞

ˆ
2ϵ≤|y|≤R0

|∇K3(y)ρ(|y|)||ω(x− y)|dy

≤ c∥ω∥L∞

ˆ
2ϵ≤|y|≤R0

1

|y|3
dy

≤ c∥ω∥L∞

ˆ R0

2ϵ

1

r3
r2dr

So
|I2a1 | ≤ c1,2a∥ω∥L∞ ln

(
R0

2ϵ

)
And for the other one we have that

I2b1 =

ˆ
|y|>R0

∇K3(y)ρ(|y|)ω(x− y)dy

So we have that

|I2b1 | ≤
ˆ
|y|>R0

|∇K3(y)ρ(|y|)||ω(x− y)|dy

≤ ∥ω∥L2

(ˆ
|y|>R0

|∇K3(y)ρ(|y|)|2dy

) 1
2

≤ c∥ω∥L2

(ˆ
|y|>2R0

∣∣∣∣ 1

|y|3

∣∣∣∣2 dy
) 1

2

≤ c∥ω∥L2

(ˆ ∞

2R0

1

r6
r2dr

) 1
2

|I2b1 | ≤ c1,2b∥ω∥L2R
− 3

2
0

So for the first integral we have that

|I1| ≤ c1,1∥ω∥C0,γ ϵγ + c1,2a∥ω∥L∞ ln

(
R0

2ϵ

)
+ c1,2b∥ω∥L2R

− 3
2

0

For the second integral we have that for ϵ ≤ R0

I2 = P.V.

ˆ
R3

∇K3(y)(1− ρ(|y|))ω(x− y)dy

= P.V.

(ˆ
|y|≤ϵ

∇K3(y)(1− ρ(|y|))ω(x− y)dy +

ˆ
|y|≥ϵ

∇K3(y)(1− ρ(|y|))ω(x− y)dy

)

= P.V.

ˆ
|y|≤ϵ

∇K3(y)(1− ρ(|y|))ω(x− y)dy

+

ˆ
2ϵ≤|y|≤R0

∇K3(y)(1− ρ(|y|))ω(x− y)dy +

ˆ
|y|>R0

∇K3(y)(1− ρ(|y|))ω(x− y)dy
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By the definition of the cut off function we have that the first2 integrals are zero so we
proceed with the last one and we have that∣∣ ˆ

|y|>R0

∇K3(y)(1− ρ(|y|))ω(x− y)dy
∣∣ ≤ ˆ

|y|>R0

|∇K3(y)(1− ρ(|y|))||ω(x− y)|dy

≤ ∥ω∥L2c

(ˆ ∞

2R0

1

r6
r2dr

)
So |I2| ≤ c2∥ω∥L2R

− 3
2

0 Thus we have that

|P3ω(x)| ≤ c1,1∥ω∥C0,γ ϵγ + c1,2a∥ω∥L∞ ln

(
R0

2ϵ

)
+ c1,2b∥ω∥L2R

− 3
2

0 + c2∥ω∥L2R
− 3

2
0

≤ c′
(
∥ω∥C0,γ ϵγ + ∥ω∥L∞ ln

(
R0

2ϵ

)
+ ∥ω∥L2R

− 3
2

0

)
We set R0 = 1 then

|P3ω(x)| ≤ c′
(
∥ω∥C0,γ ϵγ + ∥ω∥L∞ ln

(
R0

2ϵ

)
+ ∥ω∥L2

)
Remark we will not deal with the R0 inside of the ln, because we want to estimate it
together with 2ϵ.
So by (Rs3)we have that

∥∇u∥L∞ ≤ c∥ω∥L∞ + c′
(
∥ω∥C0,γ ϵγ + ∥ω∥L∞ ln

(
R0

2ϵ

)
+ ∥ω∥L2

)
By the Sobolev embedding we have that ∥ω∥C0,γ ≤ c∥ω∥H2 so we have that

∥∇u∥L∞ ≤ C

(
∥ω∥L∞ + ∥ω∥H2ϵγ + ∥ω∥L∞ ln

(
R0

2ϵ

)
+ ∥ω∥L2

)
Lemma 25. Assume that u is a velocity field in 3 dimensions and ω its vorticity. Then
for s > 0 then

∥ω∥Hs−1 ≤ c∥u∥Hs

proof of lemma:
We have seen on the proof of lemma 23 that ω̂(ξ) = Sû(ξ) we know that for the
matrix S that |S| = ξ23 + ξ22 + ξ21 + ξ23 + ξ22 + ξ21 = 2|ξ| Thus we have that

∥ω∥Hs−1 =

(ˆ
R3

|ω̂(ξ)|2(1 + |ξ|2)s−1dξ

) 1
2

≤
(ˆ

R3

4|ξ|2|û(ξ)|2(1 + |ξ|2)s−1dξ

) 1
2

c ≤
(ˆ

R3

(1 + |ξ|2)|û(ξ)|2(1 + |ξ|2)s−1dξ

)
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So we conclude that
∥ω∥s−1 ≤ c∥u∥Hs−1

So by the lemma 24 we have that

∥∇u∥L∞ ≤ C

(
∥ω∥L∞ + ∥u∥H3ϵγ + ∥ω∥L∞ ln

(
R0

2ϵ

)
+ ∥ω∥L2

)
Now if ∥u∥H3 ≤ 1,we assume that R0

2ϵ = ∥u∥H3 and ϵ = 1
2 so we have that

∥∇u∥L∞ ≤ C (∥ω∥L∞ + 1 + ∥ω∥L∞ ln(∥u∥H3) + ∥ω∥L2)

It follows that

∥∇u∥L∞ ≤ C (1 + ∥ω∥L∞(1 + ln ∥u∥H3) + ∥ω∥L2)

If ∥u∥H3 > 1 we assume that 2ϵ = 1
∥u∥H3

and R0
2ϵ = ∥u∥H3 then

∥∇u∥L∞ ≤ C (1 + ∥ω∥L∞(1 + ln ∥u∥H3) + ∥ω∥L2)

We conclude that

∥∇u∥L∞ ≤ C (1 + ∥ω∥L∞(1 + ln ∥u∥H3) + ∥ω∥L2) (RSnab)

Step 4. In this step we will combine all the previous results. By the hypothesis we have
that

´ T ∗

0 ∥ω(t)∥L∞dt = M , we also set m(t) = ∥ω∥L∞ . Also by step 2 we have that
∥ω∥L2 ≤ ∥ω(0)∥L2e

´ t
0 ∥ω∥L∞ds, for t < T ∗ we have that ∥ω∥L2 ≤ ∥ω0∥L2ecM ≤ k

So in the (RSnab) we have that

∥∇u∥L∞ ≤ C (1 +m(t)(1 + ln ∥u∥H3) + k)

∥∇u∥L∞ ≤ C (δ +m(t)(1 + ln ∥u∥H3))

where δ = 1 + k and k ≥ 0. Thus we have that

∥∇u∥L∞ ≤ C (δ +m(t)(δ + ln ∥u∥H3))

We also know that if we assume the function ln+(x) =

{
ln(x) x ≥ 1

0 x < 1
then its is true

that ln(x) ≤ ln+(x) so we have that

∥∇u∥L∞ ≤ C
(
δ +m(t)(δ + ln+ ∥u∥H3)

)
Furthermore we know that ln+(x) ≥ 0, ∀x, and it is an increasing function thus we
have that

∥∇u∥L∞ ≤ C
(
(δ + ln+ ∥u∥Hm) +m(t)(δ + ln+ ∥u∥Hm)

)
So we have that:

∥∇u∥L∞ ≤ C(1 +m(t))(δ + ln+ ∥u∥Hm) (RSnab1)
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By the Step 1 we have that

∥u∥Hm ≤ ∥u0∥Hmec
´ t
0 ∥∇u∥L∞ds

So
ln+(∥u∥Hm) ≤ ln+(∥u0∥Hmec

´ t
0 ∥∇u∥L∞ds)

= ln+ ∥u0∥Hm + c

ˆ t

0
∥∇u∥L∞ds

Thus by (RSnab1) we have that

∥∇u∥L∞ ≤ C(1 +m(t))(δ + ln+ ∥u0∥Hm + c

ˆ t

0
∥∇u∥L∞ds)

We set q = δ + ln+ ∥u0∥Hm so we have that

∥∇u∥L∞ ≤ C(1 +m(t))(q + c

ˆ t

0
∥∇u∥L∞ds)

We set a(t) = C(1 +m(t)) so

∥∇u∥L∞ ≤ a(t)(q + c

ˆ t

0
∥∇u∥L∞ds)

∥∇u∥L∞ ≤ qa(t) + ca(t)

ˆ t

0
∥∇u∥L∞ds

By Gronwall inequality3 we have that

∥∇u∥L∞ ≤ qa(t) + a(t)

ˆ t

0
cqa(s)e

´ s
t ca(r)drds

≤ qa(t) + qa(t)

ˆ t

0
− d

ds

(
e
´ s
t ca(r)dr

)
ds

≤ qa(t)− qa(t)
[
e
´ s
t ca(r)dr

]s=t
s=0

≤ qa(t)− qa(t)
(
e
´ t
t ca(r)dr − e

´ t
0 ca(r)dr

)
≤ qa(t)− qa(t) + qa(t)e

´ t
0 ca(r)dr

≤ qa(t)e
´ t
0 ca(r)dr

Thus
∥∇u∥L∞ ≤ qa(t)e

´ t
0 ca(r)dr

By step 1 again we have that

∥u∥Hm ≤ ∥u0∥Hmec
´ t
0 qa(s)e

´ s
0 ca(r)drds

3[17] theorem 11
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∥u∥Hm ≤ ∥u0∥Hmec
´ t
0 qC(1+m(s))e

´ s
0 cC(1+m(r))drds

∥u∥Hm ≤ ∥u0∥Hmec
´ t
0 C

′(1+m(s))e
´ s
0 C̃(1+m(r))drds

Now we have for C̃
´ s
0 (1 +m(r))dr and s ≤ T ∗ that

C̃

ˆ s

0
(1 +m(r))dr ≤ C̃

ˆ T∗

0
(1 +m(r))dr = C̃(T ∗ +

ˆ T ∗

0
m(r)dr) = C̃(T ∗ +M)

Thus eC̃(T ∗+M) = Q ∈ (0,+∞), furthermore for c
´ t
0 C

′(1 +m(s))e
´ s
0 C̃(1+m(r))drds for

s < T we have by the above that

c

ˆ t

0
C ′(1 +m(s))e

´ s
0 C̃(1+m(r))drds ≤ c

ˆ t

0
C ′(1 +m(s))Q ≤ C̄

ˆ t

0
1 +m(s)ds

for t ≤ T ∗ we have that
´ t
0 1 +m(s)ds ≤

´ T ∗

0 1 +m(s)ds = T ∗ +M thus

c

ˆ t

0
C ′(1 +m(s))e

´ s
0 C̃(1+m(r))drds ≤ C̄(T ∗ +M) = Q′ ∈ (0,+∞)

Now for the ec
´ t
0 C

′(1+m(s))e
´ s
0 C̃(1+m(r))drds and s ≤ t ≤ T ∗ we have that

ec
´ t
0 C

′(1+m(s))e
´ s
0 C̃(1+m(r))drds ≤ e

´ T∗
0 Q′

= eQ
′T ∗

+ 1

So we conclude that
∥u∥Hm ≤ ∥u0∥Hm(eQ

′T ∗
+ 1) ≤ R

which is a apriori bound so the limt→T ∗ ∥u∥Hm < ∞ which is a contradiction to the
initial hypothesis, which occurs from the hypothesis that

´ T ∗

0 ∥ω∥L∞ < ∞ thus we
conclude that

´ T ∗

0 ∥ω∥L∞ = ∞

2 dimensions

4 For the 2 dimensions we will use again the radial energy decomposition for the velocity
field u. Recall that u = y + b where b is defined by the initial vorticity via Biot-Savart
law and also ωb ∈ C∞ ∩ L2. So we have seen in the previous chapter that we can find
a y and define the solution u.

Again we will prove 4 steps
Step 1:We will find an energy estimate for the Hm norm of y in terms of ∥∇y∥L∞

Step 2:We will bound the ∥∇y∥L∞ in terms of vorticity its vorticity
Step 3:We will find an L2 estimate for the vorticity
Step 4:We will combine all the above steps and we will show that if

´ T ∗

0 ∥ωy(t)∥L∞dt
stays bounded then ∥yt∥Hm stays bounded.

4[28]
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Step 1. We have that y satisfy the equation

∂

∂t
y = ν∆y − P [(y · ∇)y + (b · ∇)y + (y · ∇)b]

We differentiate this relation and we have that

Da

(
∂

∂t
y

)
= Da (ν∆y − P [(y · ∇)y + (b · ∇)y + (y · ∇)b])

I.e.
Da

(
∂

∂t
y

)
= Da(ν∆y)−Da(P [(y · ∇)y + (b · ∇)y + (y · ∇)b])

We multiply with Dau in L2, thus
ˆ
R2

Da

(
∂

∂t
y

)
·Daudx = ν

ˆ
R2

Da(∆y)·Daudx−
ˆ
R2

Da(P [(y·∇)y+(b·∇)y+(y·∇)b])·Daudx

So

1

2

d

dt
∥Dau∥2L2 ≤ −ν∥∇Dau∥2L2 −

ˆ
R2

Da(P [(y · ∇)y + (b · ∇)y + (y · ∇)b]) ·Daudx

We will deal with the integral on the right side, we will separate it in three integrals
which will estimate individually

I1 =

ˆ
R2

DaP ((yϵ · ∇)y) ·Daydx

I2 = c

ˆ
R2

DaP ((y · ∇)b) ·Daydx5

For the I1 we sum and subtract the term P [(y · ∇)Da · y], thus

I1 =

ˆ
R2

Da {P [(y · ∇)y]} − P [(y · ∇)Day] + P [(y · ∇)Day] ·Daydx

We also have that
´
R2 P [(y · ∇)Day] ·Daydx ≤ 0

So
I1 ≤

ˆ
R2

[
Da {P [(y · ∇)y]} − P [(y · ∇)Day]

]
·Daydx

≤ ∥Day∥L2∥Da {P [(y · ∇)y]} − P [(y · ∇)Day] ∥L2

For the I2 we have that

I2 ≤ ∥Day∥L2∥Da {P [(yϵ · ∇)b]} ∥L2

By combining all the above relations with (L11) we get :

1

2

d

dt
∥Day∥2L2 ≤ ∥Day∥L2

5See pg 164-167
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[
∥Da {P [(y · ∇)y]} − P [(y · ∇)Day] ∥L2 + ∥Da {P [(y · ∇)b]} ∥L2

]
We sum over this relation and we get

1

2

d

dt

∑
|a|≤m

∥Day∥2L2 ≤
∑
|a|≤m

∥Day∥L2

∑
|a|≤m

[
∥Da {P [(y · ∇)y]} − P [(y · ∇)Day] ∥L2 + ∥Da {P [(y · ∇)b]} ∥L2

]
By the proposition 4.1.4

1

2

d

dt
∥y∥2Hm ≤ c∥y∥Hm[

∥∇y∥L∞∥y∥Hm + ∥y∥Hm∥∇y∥L∞ + ∥∇b∥L∞∥y∥Hm

]
So eventually we have that

d

dt
∥y∥Hm ≤ c∥y∥Hm

[
∥∇y∥L∞ + ∥∇b∥L∞

]
By Gronwall’s lemma in differential form we have that

∥y∥Hm ≤ ∥u0∥Hme
´ t
0 c(∥∇y∥L∞+∥∇b∥L∞ )

Step 2. We know thatdivy = 0 so there exist a stream function z such that ∆z = ωy by
the study in chapter 3 we know that we can find a singular kernel such that

y =

ˆ
R2

K2(p)ωy(x− p)dp

we also have that the kernel P2 = ∇K2 defines a SIO through convolution, and that

∇y(x) = cωy(x) + P2ωy(x) (Rs2)

Assume the cut-off function ρ(|x|) =

{
1 |x| ≤ R0

0 |x| ≥ 2R0

, we will define R0 later in the proof

We have that P2ωy(x) = P.V.
´
R2 ∇K2(p)ω(x− p)dp

= P.V.

ˆ
R2

∇K2(p)ρ(|p|)ω(x− p) +∇K2(p)(1− ρ(|p|))ωy(x− p)dp

= P.V.

ˆ
R2

∇K2(p)ρ(|p|)ω(x− p)dp+ P.V.

ˆ
R2

∇K2(p)(1− ρ(|p|))ωy(x− p)dp

So we will see each integral individually: Remark:We will hand the following integrals
and we will use several tools, since we dont’t want to do a rough estimate which will
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give us infinity
For ϵ ≤ R0 we have that

I1 = P.V.

ˆ
R2

∇K2(p)ρ(|p|)ωy(x− p)dp

= P.V.

(ˆ
|p|≤ϵ

∇K2(p)ρ(|p|)ωy(x− p)dp+

ˆ
|p|≥ϵ

∇K2(p)ρ(|p|)ωy(x− p)dp

)
The singularity of the kernel is on 0 so the second integral is well defined thus

= P.V.

ˆ
|p|≤ϵ

∇K2(p)ρ(|p|)ω(x− p)dy +

ˆ
|p|≥ϵ

∇K2(p)ρ(|p|)ω(x− p)dp

Again we will see each term individually

• I11 = P.V.
´
|p|≤ϵ∇K2(p)ρ(|p|)ω(x− p)dp

Since P2 has mean value zero it is true that P.V.
´
R2 P2(p)ρωy(x)dp = ωy(x)

´
R2 P2(p)dp =

0 so we have that

I11 = P.V.

ˆ
|p|≤ϵ

∇K2(p)ρ(|p|)ωy(x− p)−∇K2(p)ρ(|p|)ωy(x)dy

= P.V.

ˆ
|p|≤ϵ

∇K2(p)ρ(|p|)(ωy(x− p)− ωy(x))

Thus

|I11 | ≤
ˆ
|p|≤ϵ

|∇K2(p)ρ(|p|)||ωy(x− p)− ωy(x)|dp

We multiply and divide with the |p|γ , for 0 < γ < 1 so

≤
ˆ
|p|≤ϵ

|∇K2(p)ρ(|p|)|
|ωy(x− p)− ωy(x)|

|p|γ
|p|γdp

≤
ˆ
|p|≤ϵ

|p|γ |∇K2(p)ρ(|p|)|∥ωy∥C0,γdp

≤ ∥ωy∥C0,γ

ˆ
|p|≤ϵ

|p|γ |∇K2(p)|dp

≤ c∥ωy∥C0,γ

ˆ
|p|≤ϵ

|p|γ 1

|p|2
dy

≤ c∥ωy∥C0,γ

ˆ ϵ

0
rγ

1

r2
rdr

So
|I11 | ≤ c1,1∥ω∥C0,γ ϵγ
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• I21 =
´
|p|≥ϵ∇K2(p)ρ(|p|)ωy(x− p)dp

=

ˆ
2ϵ≤|p|≤R0

∇K2(p)ρ(|y|)ωy(x− p)dp+

ˆ
|p|>R0

∇K3(p)ρ(|p|)ωy(x− p)dp

We will see each integral individually:

I2a1 =

ˆ
2ϵ≤|p|≤R0

∇K2(p)ρ(|p|)ωy(x− p)dp

So we have that

|I2a1 | ≤
ˆ
2ϵ≤|p|≤R0

|∇K2(p)ρ(|p|)||ωy(x− p)|dp

≤ c∥ωy∥L∞

ˆ
2ϵ≤|p|≤R0

|∇K2(p)ρ(|p|)||ωy(x− p)|dp

≤ c∥ωy∥L∞

ˆ
2ϵ≤|p|≤R0

1

|p|2
dy

≤ c∥ωy∥L∞

ˆ R0

2ϵ

1

r2
rdr

So

|I2a1 | ≤ c1,2a∥ωy∥L∞ ln

(
R0

2ϵ

)
And for the other one we have that

I2b1 =

ˆ
|p|>R0

∇K2(p)ρ(|p|)ω(x− p)dp

So we have that

|I2b1 | ≤
ˆ
|p|>R0

|∇K2(p)ρ(|p|)||ωy(x− p)|dp

≤ ∥ωy∥L2

(ˆ
|p|>R0

|∇K2(p)ρ(|p|)|2dy

) 1
2

≤ c∥ωy∥L2

(ˆ
|p|>2R0

∣∣∣∣ 1

|p|2

∣∣∣∣2 dy
) 1

2

≤ c∥ωy∥L2

(ˆ ∞

2R0

1

r4
rdr

) 1
2

|I2b1 | ≤ c1,2b∥ωy∥L2R
− 3

2
0
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So for the first integral we have that

|I1| ≤ c1,1∥ωy∥C0,γ ϵγ + c1,2a∥ωy∥L∞ ln

(
R0

2ϵ

)
+ c1,2b∥ωy∥L2R

− 3
2

0

For the second integral we have that for ϵ ≤ R0

I2 = P.V.

ˆ
R2

∇K2(p)(1− ρ(|p|))ωy(x− p)dp

= P.V.

(ˆ
|p|≤ϵ

∇K2(p)(1− ρ(|p|))ωy(x− p)dp+

ˆ
|p|≥ϵ

∇K2(p)(1− ρ(|p|))ωy(x− p)dp

)

= P.V.

ˆ
|p|≤ϵ

∇K2(p)(1− ρ(|p|))ωy(x− p)dp

+

ˆ
2ϵ≤|p|≤R0

∇K2(p)(1− ρ(|p|))ωy(x− p)dp+

ˆ
|p|>R0

∇K2(p)(1− ρ(|p|))ωy(x− p)dp

By the definition of the cut off function we have that the first 2 integrals are zero so we
proceed with the last one and we have that∣∣ˆ

|p|>R0

∇K2(p)(1− ρ(|p|))ωy(x− p)dp
∣∣ ≤ ˆ

|p|>R0

|∇K3(p)(1− ρ(|p|))||ωy(x− p)|dp

≤ ∥ωy∥L2c

(ˆ ∞

2R0

1

r4
rdr

)
So |I2| ≤ c2∥ωy∥L2R

− 3
2

0 Thus we have that

|P2ωy(x)| ≤ c1,1∥ωy∥C0,γ ϵγ + c1,2a∥ωy∥L∞ ln

(
R0

2ϵ

)
+ c1,2b∥ωy∥L2R

− 3
2

0 + c2∥ωy∥L2R
− 3

2
0

≤ c′
(
∥ωy∥C0,γ ϵγ + ∥ωy∥L∞ ln

(
R0

2ϵ

)
+ ∥ωy∥L2R

− 3
2

0

)
We set R0 = 1 then

|P3ωy(x)| ≤ c′
(
∥ωy∥C0,γ ϵγ + ∥ωy∥L∞ ln

(
R0

2ϵ

)
+ ∥ωy∥L2

)
Remark we don’t touch the R0 inside of the ln, because we want to estimate it together
with 2ϵ.
So by (Rs2)we have that

∥∇y∥L∞ ≤ c∥ωy∥L∞ + c′
(
∥ωy∥C0,γ ϵγ + ∥ωy∥L∞ ln

(
R0

2ϵ

)
+ ∥ωy∥L2

)
By the Sobolev embedding we have that ∥ωy∥C0,γ ≤ c∥ωy∥H2 so we have that

∥∇y∥L∞ ≤ C

(
∥ωy∥L∞ + ∥ωy∥H2ϵγ + ∥ωy∥L∞ ln

(
R0

2ϵ

)
+ ∥ωy∥L2

)
Lemma 26. Assume that u is a velocity field in 2 dimension and ωits vorticity . Then
s > 0 we have that

∥ω∥Hs−1 ≤ c∥u∥Hs
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proof of lemma: In the two dimensions the vorticity of a velocity field is a scalar
quantity given as ω = ∂

∂x1
u2 − ∂

∂x2
u1

Also ˆ
R2

e−iξx · ∂

∂xj
udx = −

ˆ
R2

∂

∂xj
e−iξx · udx = iξj û

So we have that ω̂(ξ) =
´
R2 e

−iξx
(

∂
∂x1

u2 − ∂
∂x2

u1

)
= iξ1û2 − iξ2û1 =

(
0 iξ1

−iξ2 0

)(
û1
û2

)
For the matrix S we have that |S| = ξ21 + ξ22 = |ξ| Thus we have that

∥ω∥Hs−1 =

(ˆ
R3

|ω̂(ξ)|2(1 + |ξ|2)s−1dξ

) 1
2

≤
(ˆ

R3

|ξ|2|û(ξ)|2(1 + |ξ|2)s−1dξ

) 1
2

c ≤
(ˆ

R3

(1 + |ξ|2)|û(ξ)|2(1 + |ξ|2)s−1dξ

)
So we conclude that

∥ω∥s−1 ≤ c∥u∥Hs−1

So by the lemma 25 we have that

∥∇y∥L∞ ≤ C

(
∥ωy∥L∞ + ∥y∥H3ϵγ + ∥ωy∥L∞ ln

(
R0

2ϵ

)
+ ∥ωy∥L2

)
Now if ∥y∥H3 ≤ 1, we assume that R0

2ϵ = ∥y∥H3 and ϵ = 1
2 so we have that

∥∇y∥L∞ ≤ C (∥ωy∥L∞ + 1 + ∥ω∥L∞ ln(∥y∥H3) + ∥ωy∥L2)

It follows that

∥∇y∥L∞ ≤ C (1 + ∥ωy∥L∞(1 + ln ∥y∥H3) + ∥ωy∥L2)

If ∥y∥H3 > 1 we assume that 2ϵ = 1
∥y∥H3

and R0
2ϵ = ∥u∥H3 then

∥∇y∥L∞ ≤ C (1 + ∥ωy∥L∞(1 + ln ∥y∥H3) + ∥ωy∥L2)

We conclude that

∥∇y∥L∞ ≤ C (1 + ∥ωy∥L∞(1 + ln ∥y∥H3) + ∥ωy∥L2) (RSnab)

Step 3. Now as far as concerned the L2 norm of vorticity we have by the radial energy
decomposition that u = y + b so ω = ωy + ωb where b is a known radial vorticity. We
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know that ωy satisfies the equation ∂
∂tωy + (y · ∇)ωy + (y · ∇)ωb + (b · ∇)ωy = ν∆ωy,so

by multiplying this equation with ωy in L2 we have that
ˆ
R2

∂

∂t
ωy ·ωydx+

ˆ
R2

(y·∇)ωy ·ωydx+
ˆ
R2

(y·∇)ωb·ωydx+
ˆ
R2

(b·∇)ωy ·ωydx = −v∥∇ωy∥2L2

We know that 1
2

´
R2(y · ∇)ωy · ωydx ≤ 0,

´
R2(b · ∇)ωy · ωydx ≤ 0 and also

´
R2(y · ∇)ωb ·

ωydx ≤ ∥ωy∥L2∥y∥L2∥∇ωb∥L∞ It follows that

1

2

d

dt
∥ωy∥2L2 ≤ ∥ωy∥L2∥y∥L2∥∇ωb∥L∞

Lemma 27. It is true that in two dimensions that ∥∇u∥L2 ≤ c∥ω∥L2, where ω = curlu

proof of lemma

By lemma 25 we have that ω̂(ξ) =
(

0 iξ1
−iξ2 0

)(
û1
û2

)
For the determinant of the

matrix we know that for ξ ̸= 0 that detS ̸= 0 so the inverse matrix is S−1 =

1
ξ1ξ2

(
0 −iξ1
iξ2 0

)
we have that |S−1| = |ξ| = c We conclude that since û(ξ) =

S−1ω̂(ξ)
∥û(ξ)∥L2 = ∥S−1ω̂(ξ)∥L2

≤ ∥S−1∥∥ω̂(ξ)∥L2

≤ c∥ω̂(ξ)∥L2

So by lemma 26 we have that

1

2

d

dt
∥ωy∥2L2 ≤ c∥ωy∥2L2∥∇ωb∥L∞

d

dt
∥ωy∥L2 ≤ c∥ωb∥L∞∥ωy∥L2

So by Gronwall
∥ωy∥L2 ≤ ∥ωy(0)∥L2e

´ t
0 ∥∇ωb∥L∞ = f(t)

where f(t) for finite t is finite

Step 4. in this step we will combine all the previous results. By the hypothesis we have
that

´ T ∗

0 ∥ω(t)∥L∞dt = M , we also set m(t) = ∥ωy∥L∞ . Also by step 3 we have that
∥ω∥L2 ≤ f(t) so we go to the relation (RSnab) and we substitute, so we have

∥∇y∥L∞ ≤ C (1 +m(t)(1 + ln ∥y∥H3) + f(t))

∥∇y∥L∞ ≤ C (δ(t) +m(t)(1 + ln ∥u∥H3))

where δ(t) = f(t) +C where δ(t) for finite t is finiteand C ≥ 0 We also know that if we

assume the function ln+(x) =

{
ln(x) x ≥ 1

0 x < 1
then its is true that ln(x) ≤ ln+(x) so we

have that
∥∇y∥L∞ ≤ C

(
δ(t) +m(t)(δ(t) + ln+ ∥y∥H3)

)
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Chapter 5 5.1. Beale-Kato-Majda criterion

Furthermore we know that ln+(x) ≥ 0, ∀x, and it is an increasing function thus we
have that

∥∇y∥L∞ ≤ C
(
(δ(t) + ln+ ∥y∥Hm) +m(t)(δ(t) + ln+ ∥y∥Hm)

)
So we have that:

∥∇y∥L∞ ≤ C(1 +m(t))(δ(t) + ln+ ∥y∥Hm) (RSnab1)

By step 1 we have that

∥y∥Hm ≤ ∥y0∥Hmec
´ t
0 ∥∇y∥L∞+∥∇b∥L∞ds

So
ln+(∥y∥Hm) ≤ ln+(∥y0∥Hmec

´ t
0 ∥∇y∥L∞+∥∇b∥L∞ds)

= ln+ ∥y0∥Hm + c

ˆ t

0
∥∇y∥L∞ + ∥∇b∥L∞ds

Thus by (RSnab1) we have that

∥∇y∥L∞ ≤ C(1 +m(t))(δ(t) + ln+ ∥y0∥Hm + c

ˆ t

0
∥∇u∥L∞ + ∥∇b∥L∞ds)

We set q(t) = δ(t) + ln+ ∥u0∥Hm so we have that

∥∇y∥L∞ ≤ C(1 +m(t))(q(t) + c

ˆ t

0
∥∇y∥L∞ + ∥∇b∥L∞ds)

We set a(t) = C(1 +m(t)) so

∥∇y∥L∞ ≤ a(t)(q(t) + c

ˆ t

0
∥∇y∥L∞ + ∥∇b∥L∞ds)

We set g(t) = q(t)a(t) + ca(t)
´ t
0 ∥∇b∥L∞du and we have that

∥∇y∥L∞ ≤ g(t) + ca(t)

ˆ t

0
∥∇y∥L∞ds

By Gronwall’s lemma we have that

∥∇y∥L∞ ≤ g(t) + ca(t)

ˆ t

0
g(s)e

´ t
s ca(t)drds

We expand this term again

∥∇y∥L∞ ≤ q(t)a(t) + ca(t)

ˆ t

0
∥∇b∥L∞du

+ca(t)

ˆ t

0

(
q(s)a(s) + ca(s)

ˆ s

0
∥∇b∥L∞du

)
e
´ t
s ca(t)drds
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We set
´ t∗
0 ∥∇b∥L∞du = U(t) where U(t) is finite when t is finite thus

∥∇y∥L∞ ≤ q(t)a(t) + ca(t)U(t) + ca(t)

ˆ T ∗

0
(qa(s) + ca(s)U(t)) e

´ T∗
s ca(t)drds

It follows that

∥∇y∥L∞ ≤ qa(t) + ca(t)U + ca(t)(qM + UcMecM )

∥∇y∥L∞ ≤ C(t)a(t)

where C(t) = q(t) + cU(t) + cq(t)M + U(t)c2MecM

Again by step 1 we have that

∥y∥Hm ≤ ∥y0∥Hmec
´ t
0 ∥∇u∥L∞ds

∥y∥Hm ≤ ∥y0∥Hmec
´ t
0 C(s)a(s)ds

For T ∗ < ∞ we have that the above quantity is bounded this is an apriori bound so
the limt→T ∗ ∥y∥Hm <∞ which is a contradiction to the initial hypothesis, which occurs
from the hypothesis that

´ T ∗

0 ∥ω∥L∞ <∞ thus we conclude that
´ T ∗

0 ∥ωy∥L∞ = ∞

5.2 Global solutions in two dimensions

In two dimension the Beale Kato Majda criterion gives global solutions since:

Theorem 5.2.1. Assume that u0 is a 2d initial velocity field, with radial energy de-
composition u0 = v0 + b with v0 ∈ Hm, m > 3 and curlb = ω0(|x|) ∈ C∞ ∩ L2 then
there exists a unique smooth global solution u(x, t) = v(x, t) + b(x, t) to the 2d Euler or
Navier Stokes equation with v(x, t) ∈ C([0,∞), Hm) and b an exact eddy solution.

Proof. By the previous chapters discussion about local existance we know that there
exists a solution y, locally in time for the equation, ∂ty+(y ·∇)y+(y ·∇)b+(b ·∇)y = 0
So our aim is to extend this solution global in time, so by the Beale-Kato-Majda crite-
rion, we have to show that the norm ∥ωy∥L1([0,T ],L∞) remains bounded for every finite
time T.
By proposition 1.4.2 we know that ω(X(a, t), t) = ω0(a), so ∥ωy(s)∥L∞ = ∥ωy(0)∥L∞

and thus ˆ T

0
∥ωy∥L∞ds =

ˆ T

0
∥ωy(0)∥L∞dt = CT

So now we have a global solution y to the above equation and a steady solution b to
the Euler equation. We set u = y + b we have that u is a global in time solution to the
Euler equation, on the space V m + b

In three dimensions we don’t know if we can bound the quantity
´ T ∗

0 ∥ω(x, t)∥L∞ and
this is an open problem.
Someone may wonder why we have greater results in two dimensions than three, since
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Chapter 5 5.2. Global solutions in two dimensions

the velocity in 2 dimension has not such good properties. To be honest we choose to
find solutions via energy methods so the problem in two dimension was that velocity
fields did not have finite kinetic energy, but at the end of the day using the radial
energy decomposition we have exact the same results for two and three dimensions
i.e. the local existence of smooth solutions. The tool we use here to globally extend
them, is the vorticity, in two dimensions vorticity is scalar and vorticity equation is
just a scalar transport equation. While in three dimension the vorticity is a vector field
and the vorticity equation has a more complicated form and contains also the term
(ω · ∇)u. This term gives us the information that the vector of vorticity is deformed by
the matrix∇u. So in two dimensions we can easily find a bound, but in three dimensions
the case is more complicated.It has been proved by Constantin-Fefferman-Majda6 the
CFM blow up criterion where the vorticity direction vector is inolved.

6[10]
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