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Περίληψη 
Σκοπός αυτής της μεταπτυχιακής εργασίας είναι η δημιουργία ενός υβριδικού συστήματος, 

που θα μπορεί να δέχεται αναλογικά σήματα στην ELF περιοχή του φάσματος (< 30𝐻𝑧), να 

τα ενισχύει, να τα φιλτράρει και να αποθηκεύει τα δεδομένα σε ηλεκτρονικό υπολογιστή. Για 

την επίτευξη του σκοπού αυτού, σχεδιάστηκε μια εξατομικευμένη πλακέτα (PCB) με τα 

απαραίτητα ηλεκτρονικά υλικά (ICs, κλπ.), αναπτύχθηκε μία εφαρμογή (standalone software) 

με την χρήση του MATLAB, καθώς και ένα firmware για Arduino board με σκοπό την σωστή 

επικοινωνία των παραπάνω. 

Ξεκινώντας με το PCB, φτιάχτηκε με δύο πιθανές εισόδους. Η μία προέρχεται απευθείας από 

μία αναλογική πηγή τάσης, ενώ η δεύτερη αρχικά δέχεται ψηφιακό σήμα, έτσι ώστε ο 

χρήστης να μπορεί να δουλέψει είτε με ψηφιακό είτε με αναλογικό αρχικό σήμα εισόδου. 

Στην πρώτη περίπτωση, το σήμα αρχικά περνά από ένα προενισχυτή  (𝑥20) και καταλήγει σε 

αναλογικό φίλτρο εγκοπής (Notch) που φιλτράρει τα 50𝐻𝑧  του θορύβου που προκαλεί το 

ρεύμα. Στην συνέχεια, το πλέον φιλτραρισμένο σήμα είναι έτοιμο να σταλθεί σε μια πλακέτα 

Arduino Uno R3, η οποία δρα ως μεσολαβητής για την επικοινωνία PCB-MATLAB/Υπολογιστή. 

Στην δεύτερη περίπτωση, το σήμα (8-bit ψηφιακό) αρχικά περνά από DAC ενσωματωμένο 

στο PCB, και μετά όντας πλέον αναλογικό, ακολουθεί την ίδια πορεία με την πρώτη 

περίπτωση. Το Arduino, στην συνέχεια, παίρνει δείγματα κάθε 2ms από το σήμα εξόδου του 

PCB, τα μετατρέπει σε κλίμακα 0 –  5 (σύμφωνα με την βιβλιογραφία) και μέσω της θύρας 

USB τα στέλνει στον υπολογιστή . Εκεί, η εφαρμογή στον υπολογιστή, μετά την εισαγωγή 

μερικών απαραίτητων παραμέτρων από τον χρήστη, ξεκινάει να λαμβάνει τα δείγματα του 

σήματος από το Arduino. Αφού τελειώσει η λήψη, ακολουθεί μια διαδικασία 

μετασχηματισμού Fourier, με σκοπό την «μεταφορά» του ληφθέντος σήματος στο χώρο της 

συχνότητας. Έπειτα, μπορεί να φιλτραριστεί το σήμα περεταίρω (Low Pass Butterworth Filter) 

μέσω ενσωματωμένου εργαλείου ψηφιακού φιλτραρίσματος (DSP). Μάλιστα, μπορούν να 

επιλεχθούν η τάξη του φίλτρου (1 − 10) καθώς και η συχνότητα αποκοπής (1-100Hz καθώς 

προορίζεται για ανάλυση ELF σημάτων). Τέλος, δίνεται η δυνατότητα αποθήκευσης σε αρχείο 

τριών διαφορετικών μορφών (.mat, .txt και .xlsx). 
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Abstract 
The goal of this postgraduate dissertation is the development of a hybrid system, able to 

receive analog signals in the ELF part of the spectrum (< 30 𝐻𝑧), amplify and filter them and 

lastly save the data on a computer. To achieve this, a PCB with all the necessary hardware (ICs, 

etc.) was designed, and a standalone application, using MATLAB, was developed, as well as  

Arduino firmware, so the PCB could interface with the computer. 

Starting with the PCB - it is made with two different inputs in mind. One is to be connected 

directly to an analog voltage source and the other one is to receive a digital input so that the 

user can work either with a digital or an analog input/initial signal. In the first case, the signal 

initially goes through a preamplifier (𝑥20) and then through an analog Notch filter, so that the 

50𝐻𝑧 noise of the powerline supply is filtered out. The, now filtered, signal is ready to be 

transferred to an Arduino board, which acts as the interface, for the communication between 

the PCB and the computer. In the second case, the input signal (8-bit digital) goes through an 

onboard DAC, and then, as an analog signal follows the same path as in the first case. The 

Arduino board takes samples every 2ms from the PCB output pin, scales it between 0 –  5, and 

then through the onboard USB port, sends it to the computer. There, the standalone 

application, after the user selects the value of some necessary parameters, starts receiving 

samples of the signal from the Arduino. After it’s done receiving data, it automatically begins 

a process of Fourier transform, so that the signal is mapped to the frequency domain. 

Following that, one can filter the signal further through a built-in digital filtering tool (Low Pass 

Butterworth Filter). Additionally, the order of the filter (1 − 10) and the cutoff frequency (1 −

100 𝐻𝑧 because it is made with ELF signals in mind) can be selected (DSP). Lastly, the option 

of saving the data is given to the user in three different format files (.mat, .xlsx, .txt). 
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Chapter 1 Introduction 
This thesis describes the development of a software-hardware/analog-digital hybrid system 

capable of amplifying and filtering signals within the ELF band of radio frequencies. 

It opens with a brief introduction to fundamental laws in electronics, as well as to analog and 

digital low pass and notch filtering, and more. 

1.1 Ohm’s Law 
Ohm's Law, unveiled by Georg Simon Ohm and presented in his 1827 paper titled "The 

Galvanic Circuit Investigated Mathematically," constitutes the first and arguably the most 

significant relationship among current, voltage, and resistance. 

An electric circuit is created when a conductive path is established, enabling the uninterrupted 

flow of electric charge. This continuous movement of electric charge along the conductors in 

a circuit is known as current and it is commonly described in analogical terms, similar to the 

flow of liquid through a hollow pipe. 

The force motivating these charge carriers to move is called Voltage. In more scientific terms, 

Voltage is a measure of potential energy between two points. When discussing the presence 

of Voltage in a circuit, we are addressing the measurement of the potential energy available 

to transport charge carriers between specific points in the circuit. The term “Voltage” has no 

meaning without specifying two distinct points of reference. 

Current does not move freely through a conductor. It’s met with opposition to that movement. 

This opposition to the motion is more properly called resistance. The amount of current is 

dependent on the voltage present and the amount of resistance in the circuit. Similar to 

voltage, resistance is relative between two points. Consequently, descriptions of voltage and 

resistance frequently specify being "between" or "across" two points within a circuit. 

Ohm’s fundamental discovery revealed that the electric current flowing through a metal 

conductor in a circuit is directly proportional to the Voltage applied across it for any given 

temperature. 

 

Figure 1.1: Simple circuit depicting the 3 fundamental units in electronics. 
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Ohm expressed his discovery in the form of a simple equation, effectively describing how 

current, voltage, and resistance interrelate [1, p. 4]:  

 𝐼 =
𝑉

𝑅
 

1.1 

Where [1, p. 2]: 

• 𝐼 is the symbol of Current - measured in Amperes (S.I.) 

• 𝑉 symbolizes the Voltage across the conductor - measured in Volts (S.I.) 

• 𝑅  symbolizes the Resistance/opposition of the conductor to the flow of current – 

measured in Ohm (S.I.) 

1.2 Kirchhoff's Laws 
Born on 12 March 1824 in Prussia, a state within the German Empire, Gustav Robert Kirchhoff 

was a German physicist renowned for his contributions to electrical circuits, black body 

radiation, and spectroscopy. 

In 1845, while still a student, Kirchhoff formulated his circuit laws, which are now ubiquitous 

in electrical engineering, as they are the fundamental/basic laws used in circuit analysis to 

solve complex problems. Originally conceived as a seminar exercise, his study later evolved 

into his doctoral dissertation.  

Kirchhoff’s first circuit law – also known as Kirchhoff’s Current Law (KCL) states that the sum 

of all currents flowing into a node equals the sum of currents flowing out of the node. It can 

be written as [1, p. 2]: 

 
∑𝑖𝐼𝑁 =∑𝑖𝑂𝑈𝑇 

 

1.2 

 

Figure 1.2: Kirchhoff's Current Law. 

 

Note: Kirchhoff’s First Law (10.1.4) | CIE A Level Physics Revision Notes 2022. (n.d.). Save My Exams. 
https://www.savemyexams.com/a-level/physics/cie/22/revision-notes/10-d-c-circuits/10-1-dc-practical-circuits--kirchhoffs-

laws/10-1-4-kirchhoffs-first-law/ 
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According to his second circuit law or KVL, the sum of voltages around a loop is zero. 

Mathematically, this is written as [1, p. 2]:  

 ∑𝑉𝑛 = 0

𝑛

 1.3 

 

Where n is the number of element Voltages around the loop. 

Figure 1.3: Kirchhoff's Voltage Law. 

 

Note: GeeksforGeeks. (2023, June 15). Kirchhoff s Laws. https://www.geeksforgeeks.org/kirchhoffs-laws/ 

1.3 Filters 
Filters, in general, are frequency-selective circuits capable of passing/amplifying or 

attenuating a signal depending on its frequency. Thus, using filters, one can minimize the 

effect of the noise (irrelevant or else undesirable frequencies) in a signal. Analog filters are a 

basic building block of signal processing and more generally, in electronics. 

There are many practical applications for filters. Some of them being: 

• In Radio communications, filters enable radio receivers to only "see" the desired signal 

while rejecting all other signals (assuming the other signals have different frequency 

content). 

• In DC power supplies, filters are used to eliminate undesired high frequencies that are 

present on AC input lines. Additionally, filters are used on a power supply's output to 

reduce ripples. 

• In audio electronics, there are the so-called crossover networks. They are networks of 

filters used to channel low-frequency audio to woofers, mid-range frequencies to 

midrange speakers, and high-frequency sounds to tweeters. 
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1.3.1 Filter specifications  
Assuming the filter is a 2-port network (1 input – 1 output), then we can define the following 

terms:  

• Passband  

• Stopband  

• Passband & stopband ripples 

Passband is defined as the range of frequencies, that are passed seemingly “untouched”, or in 

scientific terms, with the minimum attenuation through the filter. While stopband is the band 

of frequencies that are heavily attenuated or blocked by the filter. Passband and stopband 

ripples are, as the name suggests, fluctuations (measured in dB) occurring in the passband or 

stopband of a filter’s frequency magnitude response curve. 

1.3.2 Classification of filters 
There are mainly two ways of classifying a filter; depending on the components used in making 

the circuit and depending on its frequency magnitude response. 

Using the former, there are two types of filters: 

• Passive filters 

• Active filters 

Passive filters are built using – as the name suggests – passive components such as resistors, 

capacitors and inductors. On the other hand, an active filter is made using active elements 

(transistors, op-amps) in addition to resistors and capacitors. 

Using the latter, they can be classified as [2, Ch. 1.1]:  

1. Low Pass Filters: Only signals with low frequencies – between 0𝐻𝑧  and 𝑓𝑐
1  - are 

allowed to pass through the filter, while higher frequencies are blocked/attenuated.  

2. High Pass Filters: Opposite of the low-pass, it only allows high-frequency signals while 

frequencies below fc are blocked/attenuated. 

3. Band Stop Filters: Blocks/Attenuates signals whose frequencies fall within a certain 

band set up between two points, while allowing the rest to pass through2. 

4. Band Pass Filters: Allows signals whose frequency falls within a certain range (between 

two points) to pass while blocking the rest of the frequencies on either side of said 

range. 

Finally, it is also worth noting that depending on the operating frequency range, filters may 

be categorized as Audio Frequency (AF) or Radio Frequency (RF) filters. 

 
1 fc: Cutoff Frequency. It’s explained later on. 
2 NOTE: A notch filter is a band-stop filter with a narrow band-stop bandwidth. Notch filters are used to attenuate 
a narrow range of frequencies, and it’s one of the two filters used in this project. 
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Figure 1.4: A basic depiction of the four major filter types. 

 

Note: An Introduction to Filters. (2023, September 30). All About Circuits. https://www.allaboutcircuits.com/technical-
articles/an-introduction-to-filters/ 

Some More Key Terms 

• Response curves: they are graphs used to describe how a filter behaves. On the y-axis, 

we usually have attenuation or gain, while frequency goes on the x-axis. 

Attenuation/Gain, or Magnitude of the TF, is simply the ratio 
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
, often expressed in 

decibels using the following formula [3, p. 321]: 

 
 

𝐴(𝑑𝐵) = 20 𝑙𝑜𝑔10 ∙  
𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

 1.4 

• Cutoff or −3𝑑𝐵  Frequency (𝑓𝑐   or 𝑓3𝑑𝐵  ): Cutoff or “minus 3dB” frequency, is the 

frequency value that corresponds to a 3dB drop of the output signal’s amplitude 

relative to that of the input signal. That 3dB value means that the output power is 

reduced by one-half or that: 

 
𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

=
1

√2
⇒ 𝑉𝑂𝑈𝑇 =

𝑉𝐼𝑁

√2
 1.5 

It’s worth mentioning that there is only one 𝑓𝑐  for low-pass and high-pass filters, but 

for band-pass and band-stop filters there are two. They are normally referred to as 𝑓
1
 

and 𝑓2. 
 

• Stopband Frequency (𝑓𝑠):  It’s the frequency value at which the attenuation reaches a 

specific value. 
❖ For band-pass and band-stop filters, two Stopband frequencies exist. The 

frequency range between them is referred to as the stopband.  
❖ For low-pass and high-pass filters, frequencies beyond or before -respectively- 

the fs are referred to as the stopband. 
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• Center Frequency (𝑓0): is a central frequency that lies between the upper and lower 

cutoff frequencies (for band-pass and band-stop filters). It can be calculated by the 

geometric mean [4, p. 8.9-8.10] of 𝐹𝐻 and 𝐹𝐿
3: 𝑓0 = √𝐹𝐻𝐹𝐿  

• Bandwidth (𝐵𝑊 ): is defined as the width of the passband. Mathematically, it’s the 

difference between the frequencies where the response is -3dB from the maximum 

value [4, p. 8.9]: 𝐵𝑊 = 𝐹𝐻 − 𝐹𝐿 

• Quality factor (𝑄): It basically measures how close to perfect (ideal) a filter4 can be. 

Basically, the higher its value, the better the filter; the lower the losses. A general 

definition that applies to any system (and from which all other definitions are derived) 

is: 

  𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
 1.6 

 

For band-pass and notch filters, the value of Q is given by the following equation [4, p. 

8.9]:  

 𝑄 =
𝑓0
𝐵𝑊

 
1.7 

 

1.4 Transfer Function And Transforms 
The filters used in this system - both analog and digital – are linear circuits5, meaning that they 

can be represented by a 2-port network as shown below: 

Figure 1.5: A Two-Port Network. 

 

Note: Characterization of Linear Time-Invariant Two-Port Networks | BengalStudents. (n.d.). 
https://www.bengalstudents.com/books/elecrical-circuit-theory-and/characterization-linear-time 

This means that they can be described using what is called a Transfer Function. A Filter’s 

Transfer Function- in the s domain- can be6 defined as the ratio of the output Voltage of the 

filter to its input voltage [5, p. 45]: 

 
3 See next bullet point. 
4 Or how close to perfect a component can be. 
5 Explained in Chapter 1.6 
6 In reality, the transfer function can be defined as a ratio between two chosen units of a system. For example, 
between the input current and the output voltage of a circuit. 
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 𝐻(𝑠) =
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
 1.8 

 

In the time domain, however, it is different. It’s defined as the convolution of the input: 

 𝑣𝑂𝑈𝑇(𝑡) = 𝑣𝐼𝑁(𝑡) ∗ ℎ(𝑡) 
1.9 

As noticed, the Transfer Function is expressed in terms of the variable “s”. That variable comes 

from the Laplace Transform, and it represents complex frequency (angular frequency ω7). The 

Laplace Transform is a mathematical technique that changes a function of time into a function 

of the (angular) frequency domain or else the s-domain. In electronics, it’s used to more easily 

analyze a complex circuit. It’s defined by8 [5, p. 35]: 

 ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑡
∞

0−
𝑑𝑡,  𝑠 = σ + 𝑗ω9 1.10 

But if the Laplace Transform takes us from the time domain to the frequency domain, why 

don’t we just use the (continuous time) Fourier Transform (definition below [6, p. 288])? 

 ℱ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑗ω𝑡
∞

−∞

𝑑𝑡 1.11 

The answer is that the Laplace Transform is, in a way, a generalized Fourier Transform, or in a 

more mathematical term, it can be considered as a super-set for the Continuous Time Fourier 

Transform. That can be seen when in the Laplace Transform,  σ = 0 , we get the Fourier 

Transform but only for t>0. But there are some differences; the Fourier Transform is exclusively 

used in bilateral form (see that the integral limits are from 𝑡 → −∞ to 𝑡 → ∞), whereas the 

Laplace is not (it’s more often than not used in unilateral form). That’s why it is very well suited 

to problems involving initial conditions (𝑡 = 0 ), and it’s used to calculate the transient 

response of a system. 

The Fourier Transform is used in the Telecommunications Field, where almost all signals of 

interest are sinusoidal and complex exponential (which are the kind for which the Fourier 

Transform is well suited), and the steady-state response is the sought solution. 

So, we can say, that the Transfer Function is a mathematical description of the filter’s 

frequency (s) domain behavior. If a filter’s Transfer Function is given, we can compute the 

specific magnitude and phase information of the circuit, by simply substituting 𝑠 = 𝑗ω10 and 

evaluating the expression at the angular frequency’s (ω) value of interest. 

Given, that it is a complex function, it can be expressed as: 

 
7 The conversion between these is simple using the well-known formula: ω(

𝑟𝑎𝑑

𝑠𝑒𝑐
) = 2 ∗ 𝑝𝑖 ∗ 𝑓(𝐻𝑧) 

8 This is the definition of the unilateral Laplace transform. 
9 The notation for the lower limit means that even if f(t) is discontinuous at 𝑡 = 0, we can start the integration 
prior to the discontinuity, as long as the integral converges. 
10 In the electronics field – for AC analysis, it’s assumed σ = 0 . The reason is that we are looking at the response 
of the system to periodic (and thus non-decaying) sinusoidal signals, whereby Laplace conveniently reduces to 
Fourier along the imaginary axis. The real axis in the Laplace domain represents exponential decay/growth 
factors that pure signals do not have, and which Fourier does not model. 
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 𝑇(𝑗ω) = |𝑇(𝑗ω)|𝑒𝑗ϕ(ω) 1.12 

where:  

 ϕ(ω) = 𝑎𝑟𝑔(𝑇(𝑗ω)) 1.13 

Usually, the magnitude of T(jω) can be expressed in decibels, in terms of the Gain Function 

which is the unit used for Bode plots [2, p. 3]:  

 𝐺(ω) = 20𝑙𝑜𝑔10(|𝑇(𝑗ω)|) 
1.14 

Alternatively, in terms of the Attenuation function [2, p. 3]: 

 𝐴(ω) = −20𝑙𝑜𝑔10(|𝑇(𝑗ω)|) 1.15 

In this use case, the transfer function is a ratio of voltages. That is why the conversion to 

decibels is 20 times the logarithm of the ratio. Had it been a ratio of powers, it would be 

converted to decibels by taking 10 times the logarithm of the ratio [3, p. 322]. 

When we want to see the output expressed in terms of time, all we need to do is take the 

Inverse Laplace of 𝑉𝐼𝑁(𝑠) ∗ 𝑇(𝑠). 

 𝑉𝑂𝑈𝑇(𝑡) = ℒ
−1𝑉𝐼𝑁(𝑠)𝑇(𝑠) 1.16 

But what happens when we need to work on the digital domain? How will we digitize the 

Transfer function? For linear systems, the Laplace transform is used to transform time domain 

characteristics to the frequency domain. For the discrete time (digital) systems, the Z-

Transform will be used [6, p. 742]: 

 𝑍{𝑥(𝑛)} = 𝑋(𝑧) = ∑ 𝑥(𝑛) 𝑧−𝑛
∞

𝑛=−∞

 1.17 
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1.5 Digital Filters 
Linear electronic analog filters are those that can be described with linear differential 

equations – because of the equations that govern the components like inductors and 

capacitors (derivatives with respect to time). Using those equations, and Kirchoff’s and Ohm’s 

Laws, we can derive the transfer function of a system fairly easily. This will later be referred to 

as “Analog Filter Theory”. 

Now, besides Analog filters, we can also create Digital ones that serve the same function. 

There is a variety of methods that can be used to design said type of filters; a common one 

being using the so-called “analog filter approximation functions”. These are already developed 

functions, that have the same properties 11  as their analog filter’s Transfer Functions 

counterpart – with Butterworth and Chebyshev being the most common. The reason they are 

used in Digital Filter Design is that they are more easily12 translated for use in discrete-time 

systems. 

Most of the filters designed that way, are recursive in nature, meaning that the output of the 

filter will depend on previous values of itself – as well as past and current values of the input13. 

These types of filters can theoretically have impulse responses that continue forever, and 

therefore, are commonly referred to as Infinite Impulse Response filters (I.I.R.). 

Another method of designing digital filters, which does not depend on analog filter theory, 

but rather uses the frequency response of the desired filter, to directly determine the digital 

filter coefficients. These types of filters generally have an impulse response containing only a 

finite number of values and thus are commonly called Finite Impulse Response filters (F.I.R.). 

 
11  Or -more specifically - as close as possible, because there is no perfect equivalent to analog filters at all 
frequencies. 
12 Compared to Transfer functions derived from pure circuit analysis 
13 The equation that describes this is called “difference equation” and it’s the discrete time counterpart of a 
differential equation.  
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Figure 1.6: Block diagrams of an FIR (a) and an IIR (b) filter. 

 

Note: Mathuranathan. (2021, May 15). Choosing FIR or IIR ? Understand design perspective - GaussianWaves. 
GaussianWaves. https://www.gaussianwaves.com/2017/02/choosing-a-filter-fir-or-iir-understanding-the-design-

perspective/ 

The initial decision in designing a system containing a digital filter is determining whether to 

use an IIR or FIR filter. First, and foremost, the appropriate filter type must be selected based 

on the application's requirements.  

IIR filters have the advantages of providing higher selectivity for a particular order and a 

closed-form design technique that doesn’t require iteration. The design technique also 

provides for a rather precise solution to the specifications of gain and edge frequencies. 

However, IIR filters also have the disadvantages of nonlinear phase characteristics and 

possible instability due to poor implementation. FIR (non-recursive) filters, on the other hand, 

can provide a linear phase response (constant group delay14 ) that is important for data 

transmission and high-quality audio systems. Also, they are always stable because they are 

implemented using an all-zero transfer function. Since no poles can fall outside the unit circle, 

the filter will always be stable. But because of this, the order of the filter is much higher than 

the IIR filter, which has a comparable magnitude response. This higher order leads to longer 

processing times and larger memory requirements. In addition, FIR filters must be designed 

using an iterative method since the required filter length to satisfy a given filter specification 

can only be estimated [2, pp. 187–188]. 

 
14 In the field of signal processing, group delay and phase delay are two interconnected ways of describing how 
a signal’s frequency components experience time delays while traversing through a LTI system (such as a 
microphone or a filter – analog or digital). While phase delay specifically characterizes the time shift of a 
sinusoidal component (a sine wave in steady state), group delay describes the time shift of the envelope of a 
wave “packet”. This packet essentially is a cluster/group of oscillations centered around a single frequency, 
travelling collectively.  
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Figure 1.7: Visualization of group delay.

 

Note: Lacoste, R. (2021, January 29). Group Delay Basics - More Filter Fun - Circuit Cellar. Circuit Cellar. 
https://circuitcellar.com/research-design-hub/group-delay-basics-more-filter-fun/ 

Taking all this into account, the filter designer needs to consider the requirements imposed 

on the digital filter. If the magnitude response is crucial with less emphasis on phase response, 

opting for an IIR filter would be preferable. On the other hand, if phase response holds greater 

significance than magnitude response, choosing an FIR filter is warranted. In cases where both 

magnitude and phase response are equally important, one must also consider processing time 

constraints and memory requirements. If other options prove ineffective, it is possible to 

design both an FIR and IIR filter (with some phase correction) to meet the specifications. 

Subsequently, both filters can be tested to assess the results. 

After settling on the filter type, several additional decisions must be made. For instance, will 

the system operate in real-time, or can it be a non-real-time system? A real-time system 

involves providing input samples to the digital filter and processing them to generate an 

output sample - all before the next input sample arrives. This imposes a very precise time 

constraint on the available processing time, with higher sampling frequencies providing less 

time for processing. On the other hand, some systems are afforded the luxury of operating in 

non-real-time. For example, signals can be recorded and processed at a later time15. In this 

case, extensive processing is possible due to the lack of a fixed time interval that marks the 

end of the processing time16. 

As mentioned previously, when designing an IIR filter, one must select the right “analog filter 

approximation function”. The second step is finding a method of translating their analog 

 
15 This is the way the digital filter designed for this system operates. 
16 Given that for this project the IIR approach was chosen, more emphasis should be placed on how to proceed 
after deciding to design such a filter.  
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filter’s characteristics 17  into those of a digital one – or in other words, finding the 

corresponding discrete Transfer function for the digital filter. The three most common and 

widely known methods are the following:   

• Impulse Response invariant design 

• Step response invariant design  

• Bilinear transform design 

 

1.5.1 Impulse Response Invariant Design 
Impulse Response Invariant Design, otherwise called impulse invariant transformation (IIT), is 

based on the idea of creating a digital filter with an impulse response18  that is a sampled 

version of the impulse response h(t) of the analog filter [2, p. 142]. 

Let’s start by taking the inverse Laplace transform of the analog filter’s TF 𝐻(𝑠)  and thus 

determining its continuous impulse response ℎ(𝑡). Next, to determine the system’s discrete-

time impulse response ℎ(𝑛𝑇), all that is needed is to sample the ℎ(𝑡), by effectively replacing 

𝑡 with 𝑛𝑇. Lastly, the discrete TF 𝐻(𝑧) can be calculated by simply taking the Z-Transform of 

ℎ(𝑛𝑇) [2, Ch. 6.1]. 

Figure 1.8: Impulse Response Invariant Design steps. 

 

 

1.5.2 Step Response Invariant Design 
An alternative approach for digitizing an analog transfer function is to match the step response 

of both systems (analog and digital) [2, p. 146]. 

The step response of a system, given a specific initial state, consists of the time evolution of 

its outputs, when subjected to Heaviside step functions as inputs. In electronic engineering 

and control theory, the step response characterizes the behavior, with respect to time, of a 

system’s output as its input transitions from zero to one in a brief interval. 

The process of the Step Response Invariant Design is quite similar to that of IIT, with the 

distinction that, in this case, instead of the impulse response ℎ(𝑡), it’s the step response of 

the analog filter that will be sampled and then transformed using the Z-transform [2, Ch. 6.2]. 

 
17  It’s worth reminding that the analog filter approximation transfer function still describes/approximates an 
analog filter. 
18 In the field of signal processing and control theory, the impulse response of a system is its output when it’s 
subjected to a short input signal δ(𝑡). Broadly speaking, the impulse response denotes how any dynamic system 
reacts to external alteration. 
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Figure 1.9: Step Response Invariant Design steps. 

 

Finding the step response of a system is simple, given that we already have its TF 𝐻(𝑠): 

 

FOUT(s)

FIN(s)
= 𝐻(𝑠) ⇒ 𝐹𝑂𝑈𝑇(𝑠) = 𝐹𝐼𝑁(𝑠)𝐻(𝑠) ⇒ 𝐹𝑂𝑈𝑇(𝑠) =

1

𝑠
𝐻(𝑠) 

 

1.18 

where  
1

𝑠
   is the Laplace Transform of the step/Heaviside function 𝑢(𝑡) = {

1, 𝑡 > 0
0, 𝑡 < 0

  and 

𝐹𝑂𝑈𝑇(𝑠) is the step response of the analog filter. 

Now, to find the time-domain response 𝑓𝑂𝑈𝑇(𝑡)  to the step input, all that is needed is an 

inverse Laplace transform: 

 𝑓𝑂𝑈𝑇(𝑡) = ℒ
−1{FOUT(s)} 

1.19 

Then, simply sample it to get the discrete-time version 𝑓𝑂𝑈𝑇(𝑛𝑇). Next step is an Z-Transform 

[2, p. 147]:  

 𝐹𝑂𝑈𝑇(𝑧) = 𝑍𝑓𝑂𝑈𝑇(𝑛𝑇) = 𝐻(𝑧) ⋅
1

1 − 𝑧−1
⇒ 𝐻(𝑧) = 𝐹𝑂𝑈𝑇(𝑧) ⋅ (1 − 𝑧

−1)  
1.20 

Figure 1.10: Step Response example. 

 

Note: Step response. (2023, October 27). In Wikipedia. https://en.wikipedia.org/wiki/Step_response 
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1.5.3 Bilinear Transform Design 
Both the impulse invariant and step invariant design methods provide good approximations 

for lowpass and some bandpass analog filter responses. However, they cannot provide good 

matching of high-frequency responses, which makes it impossible to use them for highpass or 

bandstop filter design [2, p. 151]. That is why they fail to be the best approaches for matching 

analog filter responses when a precise match is needed throughout a wide range of 

frequencies. Additionally, distortion from aliasing can occur, if a careful selection of the 

sampling frequency and strict band-limiting19 don’t take place.  

Bilinear Transform Design attempts to tackle these problems – by aiming to make an adequate 

match over the entire filter frequency range. Certainly, this poses a challenge as the analog 

frequency range spans from zero to infinity, while the digital frequency only extends from zero 

to 2π20. Nevertheless, a transformation from the analog s-domain to the digital z-domain has 

been developed. 

In this approach, the relationship between the complex variables s and z can be described by 

the following equation, with T representing the sampling period [2, p. 151]: 

 𝑠 =
2

𝑇
⋅
𝑧 − 1

𝑧 + 1
 

1.21 

So, once the analog TF 𝐻(𝑠) has been determined, the bilinear transform substitution (1.21) 

can be used to simply derive the digital TF 𝐻(𝑧). 

  

 
19  A bandlimited signal, strictly speaking, is a signal with zero energy beyond a specific frequency range. 
Practically, a signal is considered bandlimited if its energy outside a designated frequency range is sufficiently 
low to be deemed negligible for a specific application. 
20 The digital frequency range of 0 to 2π represents the normalized angular frequency, expressed in units of 

radians per sample: ω𝑛𝑜𝑟𝑚 =
𝜔𝑎𝑛𝑎𝑙𝑜𝑔

𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
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1.6 Modeling Electronic Circuits 
Kirchhoff’s and Newton’s laws lead to mathematical models that describe the relationship 

between the input and output of dynamic systems. One such model is the linear, time-

invariant21 differential equation [5, p. 16]:  

 
𝑑𝑛𝑐(𝑡)

𝑑𝑡𝑛
+ 𝑑𝑛−1

𝑑𝑛−1𝑐(𝑡)

𝑑𝑡𝑛−1
+⋯+ 𝑑0𝑐(𝑡) = 𝑏𝑚

𝑑𝑚𝑟(𝑡)

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑟(𝑡)

𝑑𝑡𝑚−1
+⋯+ 𝑏0𝑟(𝑡)  

 

1.22 

which relates the output, 𝑐(𝑡), to the input, 𝑟(𝑡), by way of the system parameters, 𝑎𝑖 and 𝑏𝑗. 

So, a system’s input-output relationship can be described by a differential equation, where the 

formulation and coefficients of the equation serve as a description of the system. However, it 

is not a fully satisfying representation from a systems perspective. This is obvious, when 

looking at 1.22 – a general, nth-order, linear, time-invariant differential equation, we see that 

the system parameters, which are the coefficients, as well as the output and the input appear 

throughout the equation. 

A mathematical representation, such as that shown in Figure 1.11, in which the input, output 

and the system are distinct and separate parts, would be preferred. 

Figure 1.11: Block Diagram representation of a system. 

 

Note: [5, p. 34] 

Representing a system characterized by a differential equation in the form of a block diagram 

poses a challenge, and the Laplace Transform (1.10) serves as the mathematical tool for 

achieving this.  

As mentioned earlier, the notation for the lower limit means that even if f(t) is discontinuous 

at 𝑡 = 0 , we can start the integration prior to the discontinuity as long as the integral 

converges. This property has distinct advantages when applying the Laplace transform to the 

solution of differential equations, where the initial conditions are discontinuous at 𝑡 = 0.  For 

example, using differential equations, we have to solve for the initial conditions after the 

discontinuity knowing the initial conditions before said discontinuity. Whereas, using the 

Laplace Transform, we need only know the initial conditions before the discontinuity [5, p. 

35]. 

Typically, a system that a LTI differential equation can represent, can be modeled as a transfer 

function. Starting with the general nth-order, linear, time-invariant differential equation that 

 
21 A circuit can be defined as linear when the relationship between its input and output is linear. Additionally, 
time invariance means that whether we apply an input to the system now or T seconds from now, the output 
will be identical except for a time delay of T seconds.  
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is 1.22, and after taking the Laplace Transform of both sides - assuming that all initial 

conditions are zero- we get: 

 
𝐶(𝑠)

𝑅(𝑠)
= 𝐻(𝑠) =

𝑏𝑚𝑠
𝑚 + 𝑏𝑚−1𝑠

𝑚−1 +⋯+ 𝑏0
α𝑛𝑠𝑛 + α𝑛−1𝑠𝑛−1 +⋯+ α0

 1.23 

Now, the input 𝑅(𝑠), the output 𝐶(𝑠) and the system – the ratio of polynomials in s – are 

separated. 𝐻(𝑠)  is the transfer function (as defined in previous chapters) and is evaluated 

with zero initial conditions. 

Figure 1.12: Block diagram of a transfer function. 

 

Note: [5, p. 45] 

Of course, the term “system” also includes electrical circuits/networks, meaning that they can 

also be modeled as a TF. In fact, resistors, inductors, and capacitors - the three basic building 

blocks of electronic (passive) components - can be individually modeled into the s-domain. 

Figure 1.13 summarizes the voltage-current-charge and impedance relationships for resistors, 

inductors, and capacitors, under zero initial conditions. 

Figure 1.13: Voltage-current, voltage-charge, current-voltage, and impedance relationships for capacitors, inductors and 
resistors. 

 

Note: Nise, N. S. (2014). Control Systems Engineering. Wiley. p 47 

Many electrical networks consist of multiple loops and nodes and that is why finding their TF 

can pose a challenge. But the process can be broken down into steps [5, p. 51]: 

1. Using Figure 1.13, replace passive element values with their impedances. 

2. Replace all sources and time variables with their Laplace transform. 

3. Assume a transform current and a current direction in each mesh/loop. 

4. Write Kirchhoff’s voltage law around each mesh/loop. 

5. Solve the simultaneous equations for the output. 

6. Using said equations, form the TF. 
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1.6.1 Poles, Zeros and System Response 
Discussion of a system’s time response is moot if the system does not have stability. But in 

order to explain what stability means in this context, we need to start from the fact that the 

output response of a system is the sum of two responses: the forced response and the natural 

response. The first one is also called steady-state response and it’s defined as the behavior of 

the system after a long time period has passed since an external excitation and steady 

operating conditions have been reached. Natural response describes the way the system 

dissipates or acquires energy22. The form or nature of this response is dependent only on the 

system, not the input [5, p. 10]23. 

For a system to be useful, it’s crucial for the natural response to eventually either diminish to 

zero, thus leaving only the forced response to remain present, or to oscillate. However, in 

certain systems, the natural response doesn't attenuate or oscillate but instead grows 

indefinitely. Over time, the escalating natural response surpasses the forced response 

significantly, resulting in a complete loss of control. This condition, called instability, poses a 

risk of potential self-destruction for the physical device unless design measures, such as limit 

stops, are implemented. Therefore, systems must be designed to be stable – that is, their 

natural response must decay to zero or oscillate as time approaches infinity. 

Using these concepts, the following definitions of stability, instability, and marginal stability 

can be made [5, Ch. 6.1]:  

• A linear, time-invariant system is stable if the natural response approaches zero as time 

approaches infinity. 

• A linear, time-invariant system is unstable if the natural response grows without bound 

as time approaches infinity. 

• A linear, time-invariant system is marginally stable if the natural response neither 

decays nor grows but remains constant or oscillates as time approaches infinity. 

The above definitions rely on a description of the natural response. But because when one is 

looking at the total response, it can be difficult to differentiate between the natural and the 

forced response, an alternate definition of stability can be made24: 

• A system is stable if every bounded input yields a bounded output. 

• A system is unstable if any bounded input yields an unbounded output. 

While various techniques, such as solving differential equations or performing inverse Laplace 

transforms, will lead to the evaluation of the output response, they are time-intensive and 

laborious. Productivity is enhanced by analysis and design techniques that yield results swiftly. 

The use of poles and zeros and their relationship to the time response of a system is such a 

technique.  

 
22 Simply put, the natural response is the system’s response to initial conditions with all external forces set to 
zero, while the forced response is the system’s response to an external stimulus with zero initial conditions. 
23 For reference, in linear differential equations these responses were referred to as the homogenous (natural 
response) and the particular (forced response) solutions. 
24 This is referred to as the Bounded-Input, bounded-output (BIBO) definitions of stability. 
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The poles of a transfer function are the values of the Laplace transform variable, s, that cause 

the transfer function to become infinite or any roots of the denominator of the transfer 

function that are common to roots of the numerator. Now, the zeros of a transfer function are 

the values of the Laplace transform variable, s, that cause the transfer function to become 

zero, or any roots of the numerator of the transfer function that are common to roots of the 

denominator [5, p. 159].  

Figure 1.14: The left (stable) and right (unstable) half planes. 

 

Note: THE LAPLACE TRANSFORM | Chapter Six. Infinite Impulse Response Filters. (n.d.). 
https://flylib.com/books/en/2.729.1/the_laplace_transform.html 

But how do poles and zeros relate to the stability of a system? By simply taking the inverse 

Laplace transform of the transfer function of a system25 one can prove that poles in the left 

half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural responses 

that decay to zero as time approaches infinity. On the other hand, poles in the right half-plane 

(rhp) yield either pure exponential or exponentially increasing sinusoidal natural responses. 

Finally, a system with poles on the imaginary axis (ℜ(𝑠) = 𝟎) yields pure sinusoidal oscillations 

as a natural response26. 

Transient Response 

Zeros, on the other hand, don’t directly affect the stability of an LTI system, and that’s 

apparent when looking at the definitions of stability. What they do affect is the time - and 

consequently the transient - response of the system, which is defined as the system’s initial 

response to a sudden change in its inputs. It refers to the behaviour of the system during the 

time period immediately after a change in its input and the arrival to the stable state. 

 

 
25 It should be clear that the inverse Laplace transform of the TF of a system yields its natural response, while the 
inverse Laplace transform of the input 𝑅𝐼𝑁(𝑠)  yields the forced response. A simple addition gives us the full 
response of a system – that is the inverse Laplace of the output 𝐶𝑂𝑈𝑇(𝑠). Visualized in Figure 1.19.  
26 If the pole is equal to zero, we still get a marginally stable system, but natural response is a constant value – 
not a sinusoid. 



Modeling Electronic Circuits         
   

19 
 

Figure 1.15: Plot of a system's Transient Response. 

 

Note: Admin. (2014, April 9). ▷ Transient Response analysis of control systems. Electrical Equipment. 
https://engineering.electrical-equipment.org/panel-building/transient-response-analysis-of-control-systems.html 

Adding a zero to a system leads to a new TF 𝐻(𝑠) → (𝑠 + 𝑎) ⋅ 𝐻(𝑠), which consists of two 

parts: the derivative27 of the original response (𝑠 ⋅ 𝐻(𝑠)) and a scaled version of the original 

response (𝑎 ⋅ 𝐻(𝑠)). How the value of the zero affects the response is depicted on Figure 1.16. 

Figure 1.16: Effect of zeros on the transient response with a step function as input. 

 

 
27 Derivative in respect to time. According to easily available Laplace Transform tables: ℒ [

𝑑𝑓

𝑑𝑡
] = 𝑠𝐹(𝑠) − 𝑓(0−) 

where 𝑓(0−) = 0 because of the zero initial conditions. 
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The transient response can be further analyzed, depending on the order of the filter. 

Intuitively, the 1st 
 order28 systems are the simplest to analyze. Changing the parameters (such 

as the coefficients of the TF) only changes the speed of the response. Said speed – or more 

generally – performance can be described using these three terms [5, Ch. 4.3]: 

• Time constant: It’s the time it takes for the output to get to ~63% of the final value 

(steady state). 

• Rise time (𝑇𝑟): the time it takes for the output to go from 10% to 90% of the final 

value. 

• Settling time (𝑇𝑠): the time it takes for the output to stay within 2% of the final value. 

Figure 1.17: Example with Rise, Peak and Settling time. 

 

Note: Quality of the transient response for an arbitrary transfer function. (n.d.). Engineering Stack Exchange. 
https://engineering.stackexchange.com/questions/45598/quality-of-the-transient-response-for-an-arbitrary-transfer-

function 

While these terms remain useful when analyzing the transients of higher-order filters, it’s not 

the most important aspect of the analysis. The reason why is that - now - changing the 

system’s parameters can lead not only to a change in the speed of the response but also to a 

change in the form of the response [5, Ch. 4.4]. Those forms are shown in Figure 1.18: 

1. Undamped Response: 

a. Poles: Both29 imaginary at ±𝑗ω1 

b. Natural Response: Undamped sinusoid with radian frequency equal to ω1 

2. Underdamped Response: 

a. Poles: Two complex at −σ𝑑 ± 𝑗ω𝑑   

 
28  The order of a system can be defined using only the TF. More specifically, whichever of the order of the 
numerator and denominator is larger, that is the order of the system. 
29 There are only two poles, because it’s defined for a 2nd order system – both for simplicity and because a 2nd 

order system will be used for this project. 

https://engineering.stackexchange.com/questions/45598/quality-of-the-transient-response-for-an-arbitrary-transfer-function
https://engineering.stackexchange.com/questions/45598/quality-of-the-transient-response-for-an-arbitrary-transfer-function
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b. Natural Response: Damped sinusoid described by: 𝑐(𝑡) = 𝐴𝑒(−𝜎𝑑)𝑐𝑜𝑠(ω𝑑𝑡 −

ϕ) 
3. Critically Damped Response: 

a. Poles: two real at −σ1 

b. Natural Response: Described by: 𝑐(𝑡) = 𝐾1𝑒
(−𝑡 𝜎𝑑) + 𝐾2𝑡𝑒

(−𝑡 𝜎𝑑) 

4. Overdamped Response: 

a. Poles: two real at σ1, σ2 

b. Natural Response: Two exponentials with time constants equal to the 

reciprocal of the pole locations:  𝑐(𝑡) = 𝐾1𝑒
(−σ1) + 𝐾2𝑒

(−σ2) 

In Figure 1.18 we can also see a dimensionless variable ζ. This is called the damping ratio of a 

system and it’s defined as [5, p. 170]: 

 

𝜁 =
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑒𝑐𝑎𝑦 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (

𝑟𝑎𝑑
𝑠𝑒𝑐)

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (
𝑟𝑎𝑑
𝑠𝑒𝑐)

=
1

2𝜋
⋅

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑃𝑒𝑟𝑖𝑜𝑑(𝑠𝑒𝑐)

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 

1.24 

 

Figure 1.18: The 4 forms of a transient response.

 

Using ζ and the natural frequency we can derive a general 2nd order TF to quickly find the 

transient response of the system we are working on by simply comparing its TF to the general 

one. Starting with a general system:  

 𝐺(𝑠) =
𝑏

𝑠2 + 𝑎 ⋅ 𝑠 + 𝑏
 

1.25 
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The natural frequency of a 2nd order system is defined as the frequency of oscillation of the 

system without damping [5, p. 169]. So, for the 𝐺(𝑠) to be undamped, it needs to have both 

its poles to be imaginary. Therefore 𝑎 = 0 and 𝑆𝑝 = ±𝑗√𝑏 → ω𝑛 = √𝑏. 

Now, according to the definition 1.24 and assuming an underdamped system30, the magnitude 

of the exponential decay is equal to |ℜ(𝑆𝑝)| =
𝑎

2
. That means: 𝑎 = 2ζω𝑛. 

The general Transfer function looks like this: 

 𝐺(𝑠) =
ω𝑛
2

𝑠2 + 2ζω𝑛𝑠 + ω𝑛2
 1.26 

Figure 1.19: Example of a system 𝐺(𝑠) with a unit step input (
1

𝑠
). (a) Block diagram of the system, showing its input and 

output; (b) pole-zero plot of the system; (c) evolution of the system’s step response. 

 

Note: Nise, N. S. (2014). Control Systems Engineering. Wiley. p.160 

 
30  This assumption is because an underdamped system’s poles are complex – they have both a real and an 
imaginary part.  
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Now, using 1.26 and what was previously said about the 4 types of transient responses and 

their relationship to their poles, it can be concluded: 

• If ζ = 0 the system is Undamped (𝑆𝑝 = ±𝑗ω𝑛) 

• If 0 < ζ < 1  the system is Underdamped ( 𝑆𝑝 = −ζω𝑛 ±ω𝑛√ζ2 − 1 , where 

 ζ2 − 1 < 0) 

• If ζ = 1 the system is Critically Damped (𝑆𝑝 = −ζω𝑛) 

• If ζ > 1 the system is Overdamped (𝑆𝑝 = −ζω𝑛 ±ω𝑛√ζ2 − 1, where ζ2 − 1 > 0) 

  



Designing the Hardware and Firmware       
     

24 
 

Chapter 2 Designing the System 
As mentioned in the Error! Reference source not found., the goal is the development 

of a hybrid system capable of receiving analog or digital signals and eventually - 

through software - filtering out the signals that are outside of the ELF band as shown 

in the following block diagram. 

Figure 2.1: Simplified Block Diagram of the System. 

 
 

2.1 Designing the Hardware and Firmware 
The hardware part of this system, after receiving a signal, is responsible for amplifying 

it, filtering out the power supply noise (50Hz), and finally sending it to a computer for 

the final processing (DSP). 

As shown in the block diagram (Figure 2.2), the PCB will be handling the pre-

amplification and the filtering, while the interfacing with the computer will be done 

through an Arduino board, more specifically Arduino Uno R3.  

Figure 2.2: Block Diagram of the Hardware part of the system. 

 
 

2.1.1 Custom PCB 
In this section, the specifications of the PCB along with its components will be 

examined. 

Digital to Analog Converter 

The block diagram in Figure 2.2 is omitting a specific part of the PCB design. If the 

digital input of the board is to be used, the signal will have to be converted to analog, 
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before it goes through the pre-amplifier and the analog notch filter. To do that, a 

specific IC called DAC (Digital to Analog Converter) is needed, and as expected, just the 

IC is not enough, but rather a whole subcircuit must be designed.  

Figure 2.3: DAC circuit and Pre-Amplifier Schematics. 

 

Note: TS922 is the Amplifier IC used. It's 'cut' in half in the picture because it is comprised of two identical operational 
amplifiers - one used for the DAC circuit and one as an Amplifier. 

The specific name of the DAC is “DAC0808” and it’s an 8-bit one, meaning that its digital input 

is comprised of 8 parallel bits – 1 pin for each bit. As shown in Figure 2.5 the input pins 5-12 

are the digital-in pins, with A1 being the MSB and A8 the LSB. 5VDC powers DAC0808 through 

the VCC pin. 𝑉𝑅𝐸𝐹+ and 𝑉𝑅𝐸𝐹− pins are necessary reference voltages for transistor logic. The 

𝑉𝐸𝐸 has similar use, as it’s mainly directly connected to the emitter of NPN and PNP transistor 

within the IC according to its schematics. It can also be regarded as a negative power supply 

pin, as it is usually connected to negative volts. The COMP pin is used for voltage stability and 

lastly, I0 is the output pin, from which the converted signal comes out.  

Figure 2.4: Current-to-Voltage converter circuit. 

 

Note: Keim, R. (2020, September 27). Transimpedance Amplifier: Op-Amp-Based Current-to-Voltage signal converter. Video 
Tutorial. https://www.allaboutcircuits.com/video-tutorials/op-amp-applications-current-to-voltage-converter/ 
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The output of DAC0808, as seen in Figure 2.331, isn’t connected directly to the next stage of 

the PCB, but first, it is going through an operational amplifier32. The reason for that is because 

the 𝐼0   pin is outputting current – not voltage [7]. The DAC is designed like this because a 

smooth continuous output current is more desirable, as it does not contain the DAC noise that 

is created during its operation. Many systems use the DAC output current directly, but in this 

case, a voltage output is needed. The op-amp, in this specific configuration (more clearly 

depicted in Figure 2.4), functions as a Current-to-Voltage converter. 

Because on (ideal) op amps, the inverting and non-inverting inputs have very high input 

impedance, no current can go through. So, it must go through RF, and for that to happen, 𝑉𝑂𝑈𝑇 

needs to be at a lower voltage in comparison to the voltage of the non-inverting input. Due to 

the operational principles of op-amps since the inverting input is directly connected to the 

ground (𝑉 = 0), the voltage at the non-inverting input will also be zero33. This is the reason 

the input is connected to the non-inverting input, so it would be possible for 𝑉𝑂𝑈𝑇  to be at 

lower potential, and for the current to flow as intended. 

While it is not its current use case, an amplification of the input still takes place. The current-

to-voltage amplifier can be described as having a gain, but since the output and input signals 

have different units, and therefore cannot be directly compared, is more difficult to know its 

gain. According to the datasheet [7], the voltage on pin 4 (the DAC’s output), restricted to a 

range of −0.55  to 0.4𝑉  when 𝑉𝐸𝐸 = −5𝑉 . However, the output voltage compliance is 

extended to −5𝑉 when 𝑉𝐸𝐸 < −10𝑉. This created a problem, since after the DAC subcircuit, 

the signal is routed through a unskippable 𝑥20 amplifier. More details and how this issue was 

resolved are provided on chapter 3.2.1. 

Figure 2.5: Pin connections (left) and internal block diagram (right) of the DAC0808. 

 

 

 

 
31 In the schematic, one can see pairs of capacitors connected to power input pins. These are called “decoupling 
capacitors” and will be analyzed in the appendix: A.2.  
32 The DAC subcircuit shown in the schematic Figure 2.3, is the one proposed by the manufacturer [7, p. 4] for a 
typical DAC application. 
33 This is called virtual grounding. 
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Preamplifier 

In the schematic Figure 2.3 is also shown the Preamplifier part of the PCB. It’s vital, so that 

low level signals are amplified to a “standard” operating level. The IC used here (and every 

time an op amp is needed for this PCB) is the TS922 and it consists of 2 separate op-amps. It 

is shown in Figure 2.6 along with the IC’s pin layout.  

Figure 2.6: Pin connections for the operational Amplifier TS922 (for SO8 and TSSOP8 formats). 

 

The op amp is in the noninverting configuration, and the resistor values are selected so that 

the gain is 𝑥20 . Shown below is the equation that applies to this configuration and the 

“standalone” circuit [8, p. 73]: 

 𝐺𝑎𝑖𝑛 =
𝑉𝑜
𝑉𝑖
⇒ 𝐺𝑎𝑖𝑛 = 1 +

𝑅2
𝑅1

 2.1 

 

Substituting the values for the resistors used in the PCB results in: 

 𝐺𝑎𝑖𝑛 = 1 +
95𝑘𝑂ℎ𝑚

5.1𝑘𝑂ℎ𝑚
= 19.627451 

2.2 

 

Figure 2.7: The op amp configuration used for the preamplifier; the non-inverting configuration. 

 

Note: [8, p. 74] 
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Notch Filter 

Lastly, the part of the PCB where the power supply noise will be filtered out – the notch filter. 

The filter is depicted on Figure 2.8 and the schematic used, on Figure 2.9. This filter 

configuration is called “Bootstrapped Twin-T notch filter”. First, while a larger number of 

resistors34  were used, the overall resistance is the same, based on the resistors-in-series 

principle.  

Figure 2.8: Bootstrapped Twin-T Notch Filter. 

 

The transfer function that describes this circuit is35: 

 𝐻(𝑠) =
𝑠2 + 𝜔0

𝑠2 +
𝜔0
𝑄 𝑠 + 𝜔0

 2.3 

Where: 

 ω0 =
1

𝑅 ⋅ 𝐶
 

2.4 

 

 𝑄 =
1

4(1 − 𝑘)
 2.5 

 

 𝑘 =
𝑅5

𝑅4 + 𝑅5
 2.6 

 
34 Compared to the theoretical filter on Figure 2.8 
35 All equations used in this subsection are derived on A.3 
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The first step is choosing the value of the Notch Frequency (𝐹𝑁𝑂𝑇𝐶𝐻), and since the goal is 

filtering power supply noise, that value is 50𝐻𝑧. To make this happen, the appropriate values 

for both R and C must be chose according to:  

 ω𝑁𝑂𝑇𝐶𝐻 = ω0 2.7 

so 𝐹𝑁𝑂𝑇𝐶𝐻 = 50 ⇒
1

2π𝑅𝐶
= 50𝐻𝑧 . Knowing what the product 𝑅 ⋅ 𝐶   must be equal to, the 

values shown in the schematic Figure 2.9 were opted for - 𝑅 = 320𝑘𝑂ℎ𝑚 and 𝐶 = 10𝑛𝐹.  

Figure 2.9: The notch filter schematic. 

 

This still leaves the question of the voltage divider and the two op-amps. All three have a very 

significant role in the filter. Starting with the divider, already from the filter’s equations – more 

specifically 2.5 and 2.6– it’s evident that it directly affects the Quality factor of the system. The 

divider, and generally the whole feedback loop, is there so a higher Q factor can be achieved. 

Had it not been there, the value of the Q would be constant – opposed to now where it can 

be changed by changing the values of 𝑅4 and 𝑅5
36 – and lower37. Lower Q means a not very 

precise notch, in other words, larger BW, resulting in more frequencies being affected than 

desired. With the voltage follower and the values chosen here, the quality factor is equal to 

𝑄 = 0.4875.  

 
36 Or even live – while the system is on – by replacing the two resistors with a potentiometer.  
37 The value can be calculated by following the exact same method as in A.3, but for the same circuit – just 
without the feedback loop. It will result in: 𝑄 = 0.25. 
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Figure 2.10: Effect of Quality factor on the notch. 

 

As for the op amps, both are configured in the same way – the Voltage Follower. They do not 

provide any amplification to their inputs, but rather isolate them from their output loop, 

thanks to their key principles [8, Ch. 2.1.2]; both inputs are at the same voltage, and at both 

the impedance is very high, meaning that they “draw” little to virtually zero current. Thirdly, 

the output impedance of an op amp is very low. Now, it’s very apparent that T2 (see Figure 

2.8) is there so the voltage divider is functioning as expected and the well-known equation is 

an extremely good approximate38. 

T1 on the other hand, while using the same logic, is placed there for a slightly different reason.  

Generally, when sending a signal from one circuit to another, the input impedance of the latter 

(can be considered load impedance), as well as the output impedance of the former must be 

taken into consideration. They can form a voltage divider (see Figure 2.11) and have unwanted 

effects on the transmitted signal. Having a voltage follower on the output means very low 

output impedance and minimizes the parasitic voltage divider effect. 

 
38 If there is a significant amount of current drawn from the node between the two resistors, the equation 

𝑉𝑂𝑈𝑇 =
𝑅2

𝑅2+𝑅1
⋅ 𝑉𝐼𝑁 is invalid. If there is a small amount of current, the equation can be still used, as it is a very 

good approximate. 
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Figure 2.11: Impedances between subcircuits. 

 

COMPLETE PCB 

Now that all subcircuits have been examined, the only thing left is to combine them. The 

complete PCB schematic will be found on the Appendix (see here A.1), while 3D pictures of 

the PCB as well as layouts of both sides of the PCB are found on the next two pages. 

Before the conclusion of the hardware section, it is important to comment on a component 

shared among all subcircuits of the PCB; the decoupling capacitors. On the schematics several 

capacitors can be noticed either next to the PCB’s power supply pins, or right before the 𝑉𝑐𝑐 

pins of the ICs, all seemingly routing the traces to ground. The short answer as to why they 

are there, is to filter out power supply noise. The exact reason and how that happens is 

analyzed in detail on A.239. 

Figure 2.12: Photo of the Board during testing of the DAC. 

 

 
39 The PCB was designed using the open source KICAD software. 
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Figure 2.13: Front side of the PCB on KiCad 3D Viewer. 

 

Figure 2.14: Back side of the PCB on KiCad 3D Viewer. 
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Figure 2.15: PCB Schematic of the front of the board. 

 

Figure 2.16: PCB Schematic of the back of the board. 
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2.1.2 Arduino Firmware 
The interfacing between the Computer and the Custom PCB was done using an Arduino Uno 

R3 board. The data from the PCB were transmitted to the Arduino board by connecting the 

output signal pin from the PCB to the 𝐴0 analog in pin on the Arduino, while at the same time 

having the ground pins of both connected to each other to avoid floating voltages 40 . 

Using the on-board ADC on the Arduino, the input signal is sampled every 2ms by reading the 

value of input41. That voltage immediately gets converted to digital and takes a value between 

0 − 1023, because the integrated ADC is a 10-bit one. To change the input value to a range 

that corresponds to the voltage the pin is reading (which has to be from 0 − 5𝑉 for an Arduino 

Uno because that’s its limit), the following equation is used [9]: 

 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑃𝑖𝑛𝑉𝑎𝑙𝑢𝑒 ⋅
5

1023
 

2.8 

 

Figure 2.17: Arduino Uno R3 SMD version. 

 

The sketch (as Arduino code files are named) starts with initializing most of the variables that 

will be used. Then comes the “void setup” function, that will be executed only one time. 

Within it, there is the “Serial.begin(115200)” command, that sets the baud rate for the 

communication between the computer and the Arduino board to 115200. 

Then follows the “void loop()” function. Whatever command is within it, will be executed 

sequentially forever until the board is turned off. This is where the sampling takes place using 

the “analogRead(Insert Pin Number)”. This command also uses the ADC and returns the value 

read on the pin. After the value is saved on a variable, it’s converted to the 0 − 5𝑉 range and 

 
40 The ground plane acts as a reference voltage for the input signal. 
41 This interval is important, as it will be the value of the Sampling Frequency that will be used on the Software 
for further calculations. 
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sent to the computer serially through the USB port, using the Eq. 2.8 and the command 

“Serial.println(Voltage_in,5) ” respectively. 

The writing and loading of the firmware on the actual board was done using the Arduino 

Integrated Development Environment (Arduino IDE). 

Figure 2.18: Flow chart of the Arduino Firmware. 
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2.2 Developing the Software Application 
In this chapter, the software part of the system will be analyzed. Key parts of the code, as well 

as the Digital filter will be examined.  

The entirety of the software was written MATLAB. It is a standalone app that can be installed 

on any computer, without the requirement of having MATLAB preinstalled, as long as the 

hardware can support it. 

2.2.1 The interface between the Hardware and the Software 
The first step in interfacing an Arduino with this app is matching the Baud rate of 

communication. From the Arduino side it can be done while writing the firmware, and it is 

covered in 2.1.2. 

From the MATLAB side it is a little more complicated. First, the program needs to know to 

which USB port the Arduino is connected. When the user wants to start receiving data after 

connecting their USB-Serial Device (in this case an Arduino Uno R3), they need to press the 

”Start Sampling” button under the “TOOLS” tab on the top left of the main window. Then, 

MATLAB communicates directly with the OS (Windows) to see the existing ports on the 

computer [10]. It outputs the name of the available ports (for example “COM3”) and its 

description (for example “Communications Port”) on a matrix variable. 

Figure 2.19: MATLAB communication with Windows for port availability. 

 

The user then is met with a small window that consists of a list with two columns containing 

the available ports and their description respectively. They would have to pick a port with a 

description similar to “USB SERIAL DEVICE”, because that’s how a board like Arduino Uno 

would show up on Windows42.  

 
42 The full description of the sequence of events is shown on the flow chart on Figure 2.23 
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Figure 2.20: Window for the user to select the port. 

 

After picking the desired port, the user is met with another window, asking to select the values 

of some key variables for the sampling43 that is about to take place. Those are: 

• Sampling Frequency: This variable needs to be matched with the firmware in the 

Arduino. In this case, Arduino samples its analog input every 2ms, so the correct value 

for the sampling frequency would be 
1

2(𝑚𝑠)
. 

• Number of samples: User gets to decide how many samples they want to receive. The 

more samples, the better the analysis of the signal that will follow. 

• Voltage Offset: Arduino can receive only positive input through the analog in pins, 

between 0-5 Volts. This means the custom PCB’s input needs an offset – for example 

if the input is a sine with amplitude of 2V, the only option is to shift it, so it oscillates 

around 3𝑉44. 

• Baud rate: the measure of the speed of data transmission in a communication 

channel/port. 

 

 
43 Or to be specific, the data that are about to be received. 
44 This also needs to take into account the preamplifier on the PCB. So technically, the example set, would not 
work. 
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Figure 2.21: Prompt for the user to input some key for the sampling variable values. 

 
 

Now that the (serial)port45 and Baud rate are picked by the user, they need to be coded into 

the program. This is done by the MATLAB function “serialport(PORT,BAUDRATE)”46. After that, 

an additional setting needs to be made: the terminator for both read and write 

communications with the specified serial port will have to be defined. This is done by the 

MATLAB function “configureTerminator(device,terminator)”. As seen on the actual code 

(Figure 2.22), “device” is the serialport object47 and “terminator” is “CR/LF”, meaning that the 

terminator is set for both read and write. The program as it is, will not be sending data to the 

port (Arduino), so it is made that way in case of future updates. 

Lastly, on the top right of the window, the connected port is always displayed.  

Figure 2.22: Setting the port and defining the terminator to read and write. 

 

 
45 “Serial”, since the data will be received one by one.  
46 In reality, after the user picks a port, this function is used with a seemingly hardcoded baud rate of 115200. 
But right after that, the input window shown in Figure 2.21 pops up, and the Baud rate will be immediately 
updated with the value chosen by the user.  
47 In a way, the output/return of the serialport(PORT,BAUDRATE)” function. 
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Figure 2.23: Flow chart of the interfacing process on the MATLAB side. 
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2.2.2 Lowpass Butterworth Filter 
This filter is responsible for eliminating signals with frequencies over 30𝐻𝑧 (ideally), meaning 

that it is a lowpass one. Having the software part of the system handle that, means that a 

digital one had to be designed. It has the IIR filter classification since it is made from the 

Butterworth approximation function – the Butterworth polynomial. 

Starting with a normalized48 Butterworth lowpass filter [11, p. 413]: 

 𝐻𝑛𝑜𝑟𝑚(𝑠) =
1

𝑎0 +⋯+ 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛𝑠𝑛
=

1

𝐵𝑛(𝑠)
 2.9 

Where 𝐵𝑛(𝑠) is the nth order Butterworth polynomial, which can also be written as [12, p. 

494]:  

 𝐵𝑛(𝑠) = ∑𝑎𝑘𝑠
𝑘

𝑛

𝑘=0

 2.10 

But the cutoff frequency will be at 30𝐻𝑧, not at 1𝐻𝑧. Because of that, the TF needs to be 

scaled (see 48) for a general cutoff frequency (angular in this case) ω𝑐: 

 
𝐻(𝑠) =

1

∑ 𝑎𝑘 (
𝑠
ω𝑐
)𝑛

𝑘=0

𝑘 2.11 

Where the coefficients 𝑎𝑘 can be calculated by the recursion formula [11, p. 413]: 

 𝑎𝑘+1 =
𝑐𝑜𝑠(𝑘γ)

𝑠𝑖𝑛((𝑘 + 1)γ)
⋅ 𝑎𝑘 2.12 

Or by [12, p. 494]: 

 𝑎𝑘 =∏
𝑐𝑜𝑠((μ − 1)γ)

𝑠𝑖𝑛(μγ)

𝑘

𝜇=1

 2.13 

Where 𝑎0 = 1 and: 

 γ =
π

2𝑛
 2.14 

Now, having the continuous non-normalized TF (Eq.2.11), it’s possible to derive the discrete 

time/digital TF. Using the Bilinear Transform Design and Eq.1.21: 

 
𝐻(𝑧) =

1

∑ 𝑎𝑘
1
ω𝑐
𝑘 (
2
𝑇 ⋅
𝑧 − 1
𝑧 + 1)

𝑘
𝑛
𝑘=0

 2.15 

 
48 Normalized means it’s in a form were ω𝑐 = 1. This is usually done to allow focus on the inherent characteristics 
of the filter design, such as order and behaviour, without being influenced by specific frequency and magnitude 

scales. To “un-normalize” or, in other words, scale a TF, simply substitute: {
𝑓𝑜𝑟 𝐻𝑛(ω):  ω →

ω

ω𝑐

 𝑓𝑜𝑟 𝐻𝑛(𝑠):  𝑠 →
𝑠

ω𝑐
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Since the calculations are going to be done programmatically, the difference equation 

describing the, now discrete, system is needed. In general, the difference equation describing 

the system’s output can be written as [2, p. 123]49: 

 𝑦(𝑛) = ∑𝑐𝑘 ⋅ 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

−∑𝑑𝑘 ⋅ 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 2.16 

From the difference equation of a system its TF can also be derived according to [2, p. 125]: 

 𝑦(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛)
𝑍 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
→         𝑌(𝑧) = 𝑋(𝑧) ⋅ 𝐻(𝑧) ⇒ 𝐻(𝑧) =

𝑌(𝑧)

𝑋(𝑧)
 2.17 

Now, applying Z Transform on Eq.2.16: 

 𝑌(𝑧) = 𝒵∑𝑐𝑘 ⋅ 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

− 𝒵 ∑𝑑𝑘 ⋅ 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 2.18 

And using a property of the Z transform [2, p. 127]: 

 𝒵{𝑥(𝑛 − 𝑘)} = 𝑋(𝑧)𝑧−𝑘 2.19 

So, Eq.2.18 becomes: 

 

𝑌(𝑧) = 𝑋(𝑧)∑𝑐𝑘 ⋅ z
−k

𝑀

𝑘=0

− 𝑌(𝑧)∑𝑑𝑘 ⋅ z
−k

𝑁

𝑘=1

⇒ 𝑌(𝑧) (1 −∑𝑑𝑘 ⋅ 𝑧
−𝑘

𝑁

𝑘=1

)

= 𝑋(𝑧)∑ 𝑐𝑘 ⋅ 𝑧
−𝑘

𝑀

𝑘=0

⇒ 𝐻(𝑧) =
∑ 𝑐𝑘 ⋅ 𝑧

−𝑘𝑀
𝑘=0

1 − ∑ 𝑑𝑘 ⋅ 𝑧−𝑘
𝑁
𝑘=1

 

2.20 

Now, if Eq.2.15 is expressed in the form of Eq.2.20 – that is a polynomial of 𝑧−𝑘 on the 

denominator and the numerator – they would be directly comparable, meaning that each 

coefficient 𝑐𝑘 and 𝑑𝑘 is now calculated. Substituting them on Eq.2.16 yields the Butterworth 

filter’s difference equations. An example of this but for a 2nd order Butterworth filter (also 

meaning 𝑀,𝑁 = 2) is on A.4. 

This same exact logic is applied programmatically through MATLAB. The exact code handling 

this is shown on Figure 2.24. 

 
49 Notice that the equation is recursive as expected for an IIR filter. 
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Figure 2.24: Code snippet handling the difference equation. 

 

Additionally, there is a tool programmed into the app that allows the user to choose certain 

aspects of the lowpass filter (such as the order of the filter and the Cutoff Frequency within 

the range of 1 − 100𝐻𝑧) and also displays, as graphs, the theoretical/estimated frequency as 

well as the phase response. It is accessed through a button on the top left of the main window 

called “Filter Specifications”. See below a photo of that tool. 

Figure 2.25: Filter Specifications Window. 
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2.2.3 The software 
Since the interfacing between hardware and software has already been discussed, this chapter 

will cover the remaining software features. 

The application consists of three main tabs. Each one is a window with 3 graphs, and the user 

can switch between them from the top left of the window. Starting with the tab called 

“Sampling”, the first two graphs (counting from top to bottom) display the signal; the former 

with the x-axis being number of samples, and the latter with the x-axis being time (seconds). 

The third graph displays the Fourier transform of the input signal, showcasing its  main 

frequencies. 

Figure 2.26: Main window of the MATLAB app. 

 
 

On the second tab, which is called “Filtering”, the two top graphs display the filtered signal 

(again with the x-axis alternating between samples and time respectively), and the last one 

displays its Fourier Transform.  

The pattern continues on the last tab (called “Comparison”), which the three graphs display 

both the input and the filtered signals on top of one another, for a direct comparison50. After 

 
50 Since usually the number of samples is large (the number is in the thousands) and the graphs will display the 
whole signal from start to finish, the outcome may look zoomed out or congested/cluttered. This is solved by a 
built-in MATLAB feature: When the cursor is hovering over a graph, several buttons are displayed on the top right 
of said graph. One of them is a zoom in button, that results in a drag box. The user can choose which part of the 
signal they want zoomed in and include it in the drag box. Figure 2.30 shows both before and after the zoom in. 
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the user follows the steps outlined while discussing the interface between hardware and 

software, the program will actually start receiving data via the USB port that was selected, and 

a progress bar will be displayed, showing the percentage of data already received. 

Figure 2.27: Progress bar. 

 

When the process is finished, the Sampling tab will look like on Figure 2.30. Now that the data 

have been received, the user can filter the input signal. To do that, they need to click: 

Tools→Filter. After filtering, all the graphs on tab 2 and tab 3 will be filled immediately. 

As explained in 2.2.2, the user can change the order of the filter and the cutoff frequency, by 

opening the “Filter Specifications” window. If they filter the input, without opening that 

window first, then the app defaults the filter into a 2nd order one with 𝐹𝑐 = 30𝐻𝑧
51. What was 

also failed to be mentioned, is that the user can filter the input multiple times (simultaneously 

deleting the previous filtered signal and all its data). 

Figure 2.28: Data and Key Variables window. 

 

 
51 The ELF band. 
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Another feature of the application is that all the data (data points, Cutoff frequency, sampling 

frequency etc.) are available to view on the “Data and Key Variables” window, accessed 

through the “View Variables” button on the top left (see Figure 2.28 above). From that 

window, there is the option to export all data in three ways:  

1. a MATLAB “.mat” file 

2. a text (.txt) file 

3. an Excel file 

while all of them will be formatted accordingly. The same option is given on the main 

application window, on the top left, through the “File” button. There, the user will be able to 

save all data in the three ways mentioned above, while also being given the option to load a 

previously saved file. It must be a MATLAB .mat file that was created previously by the same 

app.   

If a file made by a different MATLAB app is selected, then an error message will appear stating 

what went wrong and advising the user how to properly load a file. The same approach is 

followed for any misuse of the app, for example if the “Filter” button is pressed without having 

received any input data yet (input signal from the port), an error message will appear 

describing that there are no data/signal to filter and prompting the user to first take samples 

from the serial port. That message is displayed on Figure 2.29 below. 

Figure 2.29: One of the error messages displayed, when the app is not used properly. 

 

All messages and the general process is displayed on the flow chart on Figure 2.35. 
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Figure 2.30: Graphs with plotted data. 
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Coding the Fourier Transform 

It is mentioned that the last graph on every tab is a plot of the Fourier Transform of either the 

input or the filtered signal. Specifically, it’s a magnitude response of the Fourier Transform, 

which yields the main frequencies of the input signal. To provide a thorough explanation of 

the method used here, a more in-depth theoretical foundation is required that what was 

provided in 1.4. The Fourier analysis is a family of mathematical techniques based on 

decomposing signals into sinusoids. Choosing which member to utilize depends on if the signal 

is periodic or not and if it discrete or not. Table 1 sums up all four different cases [13, p. 144].  

The Fourier Series states that every periodic continuous time signal can be represented by an 

infinite number of sinusoids. The mathematical expression is [6, p. 191]: 

 𝑥(𝑡) = ∑ 𝑎𝑘𝑒
−𝑗𝑘ω0𝑡

∞

𝑘=−∞

 2.21 

Where 𝑎𝑘 are complex coefficient measuring the portion of the signal that is at each harmonic 

of the fundamental component. The frequency of the initial signal is ω𝑜, and by the expression 

above, it’s apparent that the frequency of each sinusoid is 𝑘 ⋅ ω0. These coefficients are given 

by [6, p. 191]: 

 𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)𝑒(−𝑗ω0𝑘𝑡)

𝑇

𝑑𝑡 
2.22 

Where 𝑇 is the period of 𝑥(𝑡). 

The Fourier Transform avoids the limitations of the periodicity of 𝑥(𝑡), and expands the same 

idea for non-periodic signals, building on the notion that an aperiodic signal can be viewed as 

a periodic signal with an infinite period. More precisely, in the Fourier series representation 

of a periodic signal, as the period increases, the fundamental frequency decreases and the 

harmonically related components (𝑎𝑘) become closer in frequency. As the period becomes 

infinite, the frequency components form a continuum and the Fourier series sum becomes an 

integral [6, p. 284]. Based on this, the Fourier Transform formula can be derived (see Eq.1.11). 

Table 1: The four Fourier approaches. 

Signal Fourier approach 

Aperiodic-Continuous time Fourier Transform 

Periodic-Continuous time Fourier Series 

Aperiodic-Discrete time Discrete Time Fourier Transform 

Periodic-Discrete time Discrete (Time) Fourier Series 
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Additionally, the Fourier Transform can be expanded even further, to periodic signals. The 

resulted transform consists of a train of impulses (delta functions) in the frequency domain, 

with the areas of impulses proportional to the Fourier series coefficients [6, p. 297]. 

Both of these have their discrete time counterparts called “Discrete Time Fourier Series” and 

”Discrete Time Fourier Transform” respectively. It would seem that the DTFT is the approach 

suitable for a computer implementation of Fourier transform. However, that’s not the case, 

because the spectrum concept obtained from the DTFT is a continuous function of frequency 

as shown in the mathematical definition: 

 𝑋(𝑒(𝑗ω)) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 2.23 

For the sake of conciseness, here is the definitions of the inverse DTFT: 

 𝑥[𝑛] =
1

2π
∫ 𝑋(𝑒𝑗ω)𝑒𝑗ω𝑑𝜔

2𝜋

 
2.24 

Additionally, the four classes of signal on Table 1 all extend to positive and negative infinity. 

But a computer would only have a finite number of samples stored – not infinite. The way 

around this problem is to make the finite data look like an infinite length signal. This is done 

by “imagining” that the signal has an infinite number of samples on the left and on the right 

of the actual data samples [13, p. 144]. If these imagined points are a duplication of the actual 

samples, the signal looks discrete and periodic, making it ideal for a DTFS. If they have a value 

of zero, the signal looks aperiodic and the DTFT applies. 

But it happens that synthesizing an aperiodic signal requires an infinite number of sinusoids52. 

This fact alone makes it impossible to calculate the DTFT in a computer algorithm. However, 

the DTFT sum can change into a computable form. First the continuous frequency variable ω 

must be sampled and then the limits of the sum must become finite. The result is called DFT 

(Discrete Fourier Transform) and its definition is [14, p. 303]: 

 𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗(
2π
𝑁
)𝑘𝑛

𝑁−1

𝑛=0

 2.25 

Where N is the signal length. 

So, now there is a computable form of Fourier Transform for aperiodic signals. What about 

periodic signals? As it turns out, the DFT and the DTFS are mathematically the same 

operation53 [15, p. 4]. In addition to that, the summation of inverse DFT requires the time-

domain signal (input 𝑥[𝑛] ) must also be periodic with a period of N [14, p. 318].  

To sum up, the DFT is the go-to for both periodic and non-periodic signals when done 

 
52 Directly related to the fact that the DTFT is a continuous function of ω. 
53 The difference between DTFS and DFT is a scaling factor of 

1

𝑁
, where 𝑁: number of samples[15, p. 4]. This is 

apparent when directly comparing the inverse DFT [16, p. 619] to the DTFS. Also, unlike the DTFS, it is a legitimate 
transform because an inverse transformation can be defined. 
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arithmetically on a computer, with the detail of “assuming” that the sampled signal (periodic 

or not) is a period of an infinite signal. 

Looking at Figure 2.32, the DFT is done on line 987 using the function54 “fft()”. Then on the 

next line the magnitude of the transform is taken, since the phase spectrum is of no 

importance for this part of the system. Next step is “rejecting” half of the values that comprise 

the transform. 

Figure 2.31: View of a signal in the time and frequency domain. 

 

Note: Signals - Frequency analysis. (n.d.). https://makeabilitylab.github.io/physcomp/signals/FrequencyAnalysis/index.html 

The reason why is not obvious and very specific. The DTFT (𝑋(𝑒𝑗ω)) is always periodic with a 

period of 2π, and the DFT (as a sampled version of it) inherits this periodicity [14, p. 311]: 

 𝑋[𝑘] = 𝑋[𝑘 + 𝑁] 2.26 

When the signal 𝑥[𝑛]  is real, there is also conjugate symmetry in the DTFT, meaning that, 

inherently, the DFT coefficients must also satisfy the following property [14, p. 312]: 

 𝑋[−𝑘] = 𝑋 ∗ [𝑘] 2.27 

Combining the two properties:  

 𝑋[𝑁 − 𝑘] = 𝑋 ∗ [𝑘] ⇒ |𝑋[𝑁 − 𝑘]| = |𝑋[𝑘]| 2.28 

Because of this, there are “duplicate” peaks on the magnitude spectrum that are of no 

importance in the context of this system, since the goal is knowing the main frequency of the 

input signal.   

Figure 2.32: The function that performs Fast Fourier Transform in the app. 

 

 
54 FFT (Fast Fourier Transform) is a very effective algorithm performing DFT. 
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Lastly, on lines 990-991 (Figure 2.32) the x-axis is converted from frequency bins into actual 

units of frequency [17]. These bins are essentially integers counting from 0 to 
𝑁−1

2
, where 𝑁 is 

the number of samples55. The division by 2 is there to avoid the mirroring effect that was 

analyzed previously. Basically, those frequencies will be ignored, as they will not be plotted.  

Then, the multiplication of those bins by the ratio 
𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
  results in the true 

frequencies. 

A thing to note is the frequency “resolution”. Each bin56 is multiplied by the ratio mentioned 

above, meaning that the ratio is directly proportional to the accuracy of the true frequency 

values. For example, let’s say the input signal’s frequency is 𝑓 = 17.5𝐻𝑧. For the FFT to yield 

the exact result, along with respecting the Nyquist theorem, the ratio must be:  

 
𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
= 0.5 ⇒ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 2 ⋅ 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  2.29 

  

Communication Throughout the application 

Error! Reference source not found. shows the source code of the application when it’s c

ollapsed57. It makes it apparent that the app is comprised of several standalone functions58. 

All those functions need to communicate effectively and have equal access to all 

important/necessary variables for the application to work properly, and that doesn’t come 

inherently. To overcome that problem, a class object was created, the code of which is 

provided in A.8. 

In MATLAB there are two types of classes [18]: 

1. Value classes 

2. Handle Classes 

The former enable the user to create new array classes that have the same semantics as 

numeric classes, while the latter define objects that reference the object. Copying an object 

creates another reference to the same object [18]. Their basic difference is that a value class 

constructor returns an object that is associated with the variable to which it is assigned. If you 

reassign this variable, MATLAB® creates an independent copy of the original object [19]. If you 

pass this variable to a function to modify it, the function must return the modified object as 

an output argument.  

A handle class constructor on the other hand, returns a handle object that is a reference to 

the object created. You can assign the handle object to multiple variables or pass it to 

functions without causing MATLAB to make a copy of the original object. A function that 

 
55 These bins are manually set for this app on line 990. The bins used by default from MATLAB (when someone 
plots the magnitude of the FFT using “plot(magnitude)”) range from 1 to 𝑁.  
56 From a programming point of view, the bins are elements of a matrix. 
57 For example, when a function is collapsed only its name is displayed and not its contents. It can of course be 
expanded to view every line of code within. 
58 And not nested ones. 
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modifies a handle object passed as an input argument does not need to return the object [19]. 

Simply put, copying a handle object does not copy the underlying data associated with the 

object. The copy is another handle59  referring to the same object. Therefore, if a function 

modifies a handle object passed as an input argument, the modification affects the original 

input object in the caller's workspace [20]. Based on that last property alone, it is quite 

obvious why a Handle type of class was chosen. 

In MATLAB to create a new “handle” class is a little complicated. In reality, the handle class is 

an abstract class60, meaning that an instance of it cannot be created directly. One must use 

the handle class to derive other classes, which can be concrete ones whose instances are 

handle objects. 

Figure 2.33: The entirety of the source code for the application in a collapsed form. 

 
 

To define a handle class, a derivation of the “new” (on Figure 2.34 it’s the “MyHandleClass”) 

class from handle is necessary. This is done using the syntax [20] shown on Figure 2.34. 

 
59  A handle is a variable that refers to an object of a handle class. There are to MATLAB what pointer are to 𝐶++. 
60 The handle class is the superclass for all classes that follow handle semantics. A handle is a variable that refers 
to an object of a handle class. Multiple variables can refer to the same object[20]. 
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Figure 2.34: Defining a class as a Handle class in MATLAB. 

 

Using this type of class allows all the functions to access the same variable (if need be), and 

even change it, updating it for the other functions at the same time. All that needs to be done 

to use this within the app is to first create an object of the class, and then in order to give a 

function access to it, to use that object as an argument for that function when calling it. In this 

case, the object is “myclass” and the handle class is “Get_data_class2”. Creating it was done 

by the command “myclass = Get_data_class2;”. 
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Figure 2.35: Flow chart of the custom MATLAB application. 
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Chapter 3 Final Measurements and Conclusions 
In this last chapter the final measurements and their comparison to theoretical expectations 

will be discussed along with final conclusions. 

3.1 Transient Responses and Stability  
As with every system, filters also have transient responses. Just as previously stated, to 

calculate it we need the transfer function. 

3.1.1 Digital Filter 
As a case in point, for the Butterworth filter, the transient response and stability will be 

calculated only the 2nd order filter with 𝐹𝑐 = 30𝐻𝑧 variant. The same variant was also used to 

plot the frequency response on a later subchapter.  

The transfer function for the values stated above (see general at Eq.2.11) is61: 

 𝐻2𝑛𝑑(𝑠) =
1

2.814𝑒(−5)𝑠2 + 0.007503𝑠 + 1
 3.1 

 

A quick calculation for the poles will yield these two answers: 

• Pole 1: 𝑝1 = (−1.3329 + 1.3329𝑗) ⋅ 𝑒
2 

• Pole 2: 𝑝2 = (−1.3329 − 1.3329𝑗) ⋅ 𝑒
2 

Both are on the LHP, meaning that the system (filter) is stable. 

Moving on to the expected transient response, a simple direct comparison between the TF 

and the general 2nd order TF’s denominator (see Eq. 1.26) will provide the solution: ζ =

0.0038. And since 0 < ζ < 1, the system is underdamped, meaning that a damped oscillation 

around the steady state value should be expected (of course before the steady state is 

reached). 

 
61 While the actual filter is digital, the theoretical transient response and stability will be calculated using the 
continuous time TF. It will make virtually no difference, as both this and the discrete time TF describe two forms 
of the same system. 



Transient Responses and Stability        
    

55 
 

Figure 3.1: Comparison between the Theoretical and the Filter's Step Response. 
Note: The notable shift at the beginning is because the System data used for this graph, take into account the delay filtering 

causes. 

 

Figure 3.2: Comparison of Transient responses with a sine as an input. 
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3.1.2 Notch Filter 
To calculate the transient response and stability for the notch filter, the same method will be 

followed. Comparing the denominator of the Notch filter’s TF (Eq.2.3) to that of the general 

2nd order TF yields 2ζω0
2 =

ω0

𝑄
⇒ ζ = 0.0033  , meaning it’s also an underdamped system. 

The reason the graph on Figure 3.3 doesn’t resemble that of Figure 3.1 is because the Notch 

filter’s TF has zeros, which, as aforementioned, affect the transient response. 

Additionally, the two poles of the filter end up being: 

• 𝑝1 = −391.7323 

• 𝑝2 = −249.2933 

Proving that the system is stable as expected. 

Figure 3.3: Theoretical Step Response of the Notch Filter. 

 

Figure 3.4: Theoretical Transient response of the Notch Filter with a sine as input. 
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3.2 Frequency Responses 
An analysis on a filter wouldn’t be complete without the magnitude/frequency62 responses. 

3.2.1 Notch Filter’s Response 
Starting with the Notch Filter, measuring had to be done in real time on the PCB. To measure 

the Voltage (because the amplitude of the input and the output of the filter are needed to 

calculate the magnitude) an oscilloscope was used – specifically the PicoScope 2204 USB 

Oscilloscope. It’s powered through a USB port by a computer, while simultaneously sending 

the data through it too. To use it, the PicoScope software is necessary, available for free on 

the company’s website. Since it comes with an integrated function generator, it was used as a 

signal source too. 

Figure 3.5: The PicoScope 2204A Oscilloscope by © 2024 Pico Technology Ltd. 

 

Using The PicoScope as an analog signal source  

Starting with the PicoScope as the (analog) signal source, the data were taken manually, by 

measuring the signal at the PCB’s input and output pins. Using the PicoScope, the following 

values were measured: both the maximum and minimum values for the input and output 

(𝑉𝑚𝑎𝑥𝐼𝑁  and 𝑉𝑚𝑎𝑥𝑂𝑈𝑇 , 𝑉𝑚𝑖𝑛𝐼𝑁  and 𝑉𝑚𝑖𝑛𝑂𝑈𝑇 ) and the Peak-to-Peak Values 63  (𝑉𝑝𝑝𝐼𝑁 

𝑉𝑝𝑝𝑂𝑈𝑇). Since they match (as seen in Table 2), only the peak-to-peak values will be used for 

the calculations. 

Using the data shown in Table 2, the frequency response of the filter was plotted in Figure 3.6. 

On the y-axis is the ratio between input and output of the filter in dBs – calculated using 

𝑀𝑎𝑔 = 20 ∗ 𝑙𝑜𝑔10
𝑉𝑝𝑝𝑂𝑈𝑇

𝑉𝑝𝑝𝐼𝑁
, while the x-axis is simply the frequency in Hertz. One thing to keep 

in mind is that to avoid clipping due to saturation of the op amp and to keep the PCB’s output 

signal to be within 0 − 5𝑉 (since it’s sent to an Arduino Uno board), an offset had to be set, 

 
62 Magnitude/Frequency Response is the ratio of the output signal’s amplitude to the amplitude of the input 
signal, both with respect to frequency. 
63 Both the min-max and peak-to-peak values are not needed but were taken for validation. 
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along with a limitation to the input signal’s amplitude. Those values, in the end were: 

𝑉𝑂𝐹𝐹𝑆𝐸𝑇 = 130𝑚𝑉 and 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 130𝑚𝑉64. 

Figure 3.6: Frequency Response of the Notch filter. 

 

On Figure 3.7 both the theoretical and the actual frequency responses are plotted. To calculate 

and plot the theoretical one, the filter was constructed in MATLAB using its TF. The frequency 

response was acquired using the built-in function “bode(transf. function)”. It’s clear that the 

maximum value for the y-axis is 0 for the theoretical plot. And that’s what it should be, given 

that 𝑙𝑜𝑔101 = 0. The reason that the system’s plot maximum is at around 25𝑑𝐵, is because 

between the PCB’s input pin (which is where 𝑉𝑝𝑝𝐼𝑁  was measured) and the filter, is the 

preamplifier. Had the measurement taken place exactly before the filter, its max would be at 

0 as well. But since it’s just “shifted” upwards compared to the theory, and on the x-axis they 

align, the comparison is still valid as is. However, in the interest of inclusivity, since the 

magnitude is calculated by the 20 𝑙𝑜𝑔10
𝑉𝑝𝑝𝑂𝑈𝑇

𝑉𝑝𝑝𝐼𝑁
 , and the preamplifier has a gain of 20, to 

roughly get an idea of what the graph would look like had the output of the preamplifier been 

considered as 𝑉𝑝𝑝𝐼𝑁 (on the above equation : 𝑉𝑝𝑝𝐼𝑁 → 20 ⋅ 𝑉𝑝𝑝𝐼𝑁), all that needs to be done 

is subtract 20 from each magnitude point. This is thanks to the property of logarithmic 

functions: 

 𝑙𝑜𝑔
𝑎

𝑏
= 𝑙𝑜𝑔𝑎 − 𝑙𝑜𝑔𝑏 3.2 

Concluding this part of the testing, the notch filter is capable of a −32.928 𝑑𝐵 drop, when 

the max output sits at +24.477 dB . By a simple subtraction, the net attenuation is at 

57,405 𝑑𝐵, making it a successful implementation. 

 
64 Theoretically, those values would be too high for the limitations stated above, but thanks to loses and trace 
resistance it results in voltages just under the limits. 
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Figure 3.7: Comparison of the Theoretical and actual filter's frequency responses using an analog signal source. 
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Table 2: Custom PCB data while measuring input directly from an analog Voltage Source. 

f(Hz) Vppout(V) Vppin(V) Vmaxout(V) Vmaxin(V) Vminout(mV) Vminin(V) db(Vout/Vin) 

0.1 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835 

0.5 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835 

2.5 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835 

1 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835 

5 5.012 0.3101 5.012 0.2675 -0.6104 -0.04257 24.17018592 

7.5 4.821 0.3101 4.91 0.2675 0.08911 -0.04257 23.8327073 

10 4.642 0.3101 4.82 0.2675 0.1784 -0.04257 23.5040674 

15 4.19 0.3101 4.592 0.2675 0.4015 -0.04257 22.61424513 

20 3.571 0.3101 4.285 0.2675 0.714 -0.04257 21.22576168 

25 2.946 0.3101 3.972 0.2675 1.026 -0.04257 19.55461953 

30 2.276 0.3101 3.615 0.2675 1.339 -0.04257 17.31340983 

35 1.652 0.3101 3.303 0.2675 1.651 -0.04257 14.53016553 

40 1.071 0.3101 3.035 0.2675 1.964 -0.04257 10.76575409 

45 0.5356 0.3101 2.767 0.2675 2.232 -0.04257 4.746776042 

47.5 0.2678 0.3101 2.633 0.2675 2.365 -0.04257 -1.273823871 

48 0.2231 0.3101 2.633 0.2675 2.365 -0.04257 -2.860043919 

48.5 0.1785 0.3101 2.589 0.2675 2.41 -0.04257 -4.797270916 

49 0.1785 0.3101 2.589 0.2675 2.41 -0.04257 -4.797270916 

49.5 0.1785 0.3101 2.589 0.2675 2.41 -0.04257 -4.797270916 

50 0.007 0.3101 2.513 0.2675 2.443 -0.04257 -32.92807452 

50.5 0.1793 0.3101 2.591 0.2675 2.412 -0.04257 -4.758429534 

51 0.1793 0.3101 2.591 0.2675 2.412 -0.04257 -4.758429534 

51.5 0.3571 0.3101 2.678 0.2675 2.321 -0.04257 1.225761679 

52 0.4018 0.3101 2.723 0.2675 2.321 -0.04257 2.250163323 

52.5 0.4463 0.3101 2.723 0.2675 2.276 -0.04257 3.162502412 

55 0.6694 0.3101 2.856 0.2675 2.187 -0.04257 6.683678836 

60 1.071 0.3101 3.035 0.2675 1.964 -0.04257 10.76575409 

70 1.741 0.3101 3.347 0.2675 1.607 -0.04257 14.9859401 

80 2.276 0.3101 3.615 0.2675 1.339 -0.04257 17.31340983 

90 2.678 0.3101 3.838 0.2675 1.16 -0.04257 18.72617613 

100 3.035 0.3101 4.017 0.2675 0.9818 -0.04257 19.81313858 

110 3.303 0.3101 4.151 0.2675 0.8478 -0.04257 20.54813615 

120 3.526 0.3101 4.24 0.2675 0.714 -0.04257 21.11561083 

130 3.705 0.3101 4.329 0.2675 0.6247 -0.04257 21.54572892 

150 3.928 0.3101 4.463 0.2675 0.5354 -0.04257 22.05339426 

170 4.151 0.3101 4.553 0.2675 0.4015 -0.04257 22.53301934 

200 4.374 0.3101 4.687 0.2675 0.3122 -0.04257 22.98754025 

250 4.508 0.3101 4.731 0.2675 0.2229 -0.04257 23.24964282 

300 4.642 0.3101 4.82 0.2675 0.1784 -0.04257 23.5040674 

400 4.731 0.3101 4.865 0.2675 0.1337 -0.04257 23.66902364 

700 4.731 0.3101 4.865 0.2675 0.1337 -0.04257 23.66902364 

1000 4.776 0.3101 4.865 0.2675 0.08911 -0.04257 23.75125104 
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Using a Digital Signal Source 

Now, all that’s left for testing the PCB is measuring the Notch filter when the input signal is 

coming from a microcontroller. The board used is named ATmega1284P and the firmware used 

is analyzed in A.6. 

Measuring was done using the same method as before. To measure the response 

(20𝑙𝑜𝑔10 (
𝑉𝑝𝑝𝑂𝑈𝑇

𝑉𝑝𝑝𝐼𝑁
)), direct probing on the PCB traces had to be done. More specifically, 𝑉𝑝𝑝𝐼𝑁 

was measured from the signal directly before the filter, while 𝑉𝑝𝑝𝑂𝑈𝑇, naturally, is the output 

of the PCB (which is also the output of the notch). 

But in Table 365 , where the measuring data are displayed, there are some extra values. In 

particular: 𝑉𝑝𝑝𝑎𝑓𝑡𝑒𝑟 𝑉𝑜𝑙𝑡 𝑑𝑖𝑣𝑖𝑑𝑒𝑟  and 𝑉𝑝𝑝𝑝𝑟𝑒 𝑉𝑜𝑙𝑡 𝑑𝑖𝑣𝑖𝑑𝑒𝑟 . They refer to a voltage divider and 

were taken to measure its effectiveness. But there’s only one voltage divider mentioned so 

far, and it is in the notch filter itself, so it doesn’t make sense to measure there for this purpose.  

The schematics provided so far are the ones used to make the PCB, but while measuring using 

a digital signal source, it was discovered that the converted signal’s (coming from the DAC 

subcircuit) amplitude was really high. In fact, it was too great for the preamplifier that follows, 

resulting in the saturation of the op amp and clipping of the signal66. 

Figure 3.8: Op amp saturation and signal clipping. 

 

A possible solution is changing the resistance R14 at the op amp on the DAC subcircuit67 so it 

wouldn’t amplify the DAC IC’s output as much as it does68, but changing that resistor’s value 

resulted to loss of the signal resolution69. 

The actual solution can be attributed to the high impedance of the op amp inputs. Since the 

signal is routed directly to the preamplifier (after the DAC subcircuit that is), the current on 

that trace would be low enough for a voltage divider to work. So, a voltage divider was 

implemented before the SPDT switch, resulting in approximately 𝑉𝑂𝑈𝑇 = 0.0383995 ⋅ 𝑉𝐼𝑁 . 

This change did not require a redesign and re-printing of the entire PCB, saving both time and 

resources. It is visible in Figure 2.12. 

 
65 The 30.67Hz and 145.9Hz are the minimum and maximum frequencies the firmware would allow. 
66 The supply voltage to the preamplifier’s op amp is ±10𝑉 and the gain is 𝑥20. Meaning that its input signal’s 

amplitude must not exceed 
10

20
𝑉 

67 R4 in Figure 2.3 or R14 in Appendix A.1. 
68  Even though it’s configured as a Current-to-Voltage converter, as stated before, it still amplifies its input: 
𝑉𝑂𝑈𝑇 = −𝐼𝐼𝑁𝑅. 
69 Discovered when that solution was attempted. 
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Figure 3.9: Voltage Divider Values. 

 

Back to the notch filter, the results are displayed in Table 3. The actual notch is clearly defined, 

though not as prominent as the previous results. On Figure 3.11, the comparison of theoretical 

and experimental data is displayed. 

Table 3: Measurement Data from the Notch while using ATmega as a signal source. 

f(Hz) Vppout(V) Vpppre_Volt_div(V) Vppafter_Volt_div(V) Vppbefore_filter(V) db(Vout/Vin_PCB) db(Vout/Vin_FILTER) 

30.67 2.835 8.056 0.2705 6.266 20.40771588 -6.888746546 

41 1.418 8.056 0.2686 6.266 14.45140445 -12.90628319 

43.42 1.063 8.056 0.2686 6.266 11.94854512 -15.40914252 

44.76 0.886 8.056 0.2686 6.266 10.36655427 -16.99113337 

47.68 0.7086 8.145 0.3583 6.087 5.923086797 -18.68004308 

48.73 0.4431 8.056 0.2686 6.266 4.347914834 -23.00977281 

50.3 0.5316 7.967 0.3577 6.176 3.441320642 -21.3024463 

54.16 0.866 8.145 0.3577 6.266 7.679979037 -17.18944997 

59.29 1.417 8.145 0.3577 6.266 11.9570182 -12.91241081 

60.94 1.506 8.145 0.3577 6.266 12.48612063 -12.38330837 

64.62 1.86 8.145 0.358 6.266 14.31259835 -10.54954893 

67.5 2.126 8.145 0.3577 6.266 15.4808864 -9.388542607 

69.6 2.215 8.145 0.358 6.266 15.82981408 -9.0323332 

71.1 2.481 8.145 0.358 6.265 16.81487475 -8.045886221 

75 2.747 8.145 0.3577 6.265 17.70679439 -7.161248318 

77.9 2.835 8.145 0.358 6.266 17.97340073 -6.888746546 

82.9 3.189 8.145 0.358 6.265 18.99542985 -5.865331122 

90.13 3.544 8.145 0.3577 6.265 19.91949546 -4.948547242 

97.45 3.898 8.145 0.3577 6.265 20.74645789 -4.121584811 

102.6 4.075 8.145 0.358 6.265 21.12489173 -3.735869245 

112.6 4.341 8.145 0.3577 6.265 21.68141691 -3.18662579 

118.7 4.518 8.145 0.3577 6.265 22.02854573 -2.839496975 

124.4 4.696 8.145 0.3577 6.265 22.36418296 -2.503859742 

127.2 4.786 8.145 0.3577 6.265 22.52907508 -2.338967621 

134 4.873 8.145 0.3577 6.265 22.68554942 -2.182493279 

140.8 5.05 8.145 0.3577 6.265 22.99544876 -1.872593944 

145.9 5.05 8.145 0.3577 6.265 22.99544876 -1.872593944 
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Figure 3.10: Notch filter's frequency response when using the DAC – a digital signal source as input. 

 

Figure 3.11: Comparison of theoretical and actual data, when the input is from a digital signal source. 
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3.2.2 Butterworth Digital Filter’s Response 
Moving on to testing the Digital Filter, the measuring process went as follows: First, an Arduino 

Uno was programmed to output a sine signal at a specific frequency. Since it’s a digital signal, 

it is discrete, with a specific time interval. This interval essentially is the sampling frequency 

of the signal, and it was chosen to be much greater than the signal’s innate frequency and by 

extension than the Nyquist frequency, valued at 𝐹𝑆 = 20𝑘𝐻𝑧
70. The reason being not to lose 

any information that is in the input signal.  

Technically, according to the Nyquist theorem, a sampling frequency at twice the Nyquist 

frequency should suffice for an accurate reconstruction of the signal. Indeed, when measured 

at close to that value71, the Fourier Transform would yield the correct results, but the sampled 

signal would not resemble a sine. That would lead to a very peculiar looking signal after 

undergoing filtering at the Butterworth filter, making it difficult to accurately measure the 

peak-to-peak values in order to evaluate the digital filter. 

Figure 3.12: Sine sampled at Nyquist Frequency. 
Note: The amplitude of the input signal is 1, while the sampled is around 0,04. That is because the samples align at the 

zeros of the sine. The reason because they are not exactly zero is the accuracy of the calculations. 

 

 
70 Additionally the number of samples was 10000 for each frequency. 
71 If a sine is sampled at exactly the Nyquist frequency, it so happens that the samples align with the zeros of the 
signal, making reconstruction impossible. 
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Figure 3.13: A zoom in of the above graph. 

 

Figure 3.14: Sine sampled close to the Nyquist frequency. 
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Next step was to connect the custom MATLAB app to the same port and receive the data. 

Then, after filtering, all the data were exported to excel files using the app’s built-in feature. 

Finally, from there, the peak-to-peak values for both the input and the filtered signal were 

measured, and then the magnitude response was plotted (Figure 3.15). To measure the peak-

to-peak value for the filtered signal, the transient response had to be taken into account. The 

values were calculated using the last half of the samples, where the steady state was 

undoubtedly reached. The testing was indicatively done only for the 2nd order and for 𝐹𝐶 =

30𝐻𝑧 to match the ELF band. The data used for the plot are presented on Table 4. Finally, the 

theoretical value was calculated using the filter’s TF for these values, and plotted using the 

built-in MATLAB function “bode()”. 

Figure 3.15: Magnitude Response Comparison. 
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Table 4: Data taken while testing the digital filter. 

.f (Hz) A(dB) 

2.5 -0.000207252 

5 -0.003335147 

7.5 -0.016860944 

10 -0.053322686 

12.5 -0.129053701 

15 -0.263409222 

17.5 -0.475870621 

20 -0.783351116 

22.5 -1.194479981 

25 -1.709615592 

27.5 -2.320115799 

30 -3.010355066 

32.5 -3.762229994 

35 -4.553442218 

37.5 -5.367914145 

40 -6.191867484 

42.5 -7.015947735 

45 -7.828085636 

47.5 -8.62515304 

50 -9.403909244 

52.5 -10.16441557 

55 -10.90014653 

57.5 -11.61362178 

60 -12.3055007 

62.5 -12.97597113 

65 -13.62711583 

67.5 -14.25518869 

70 -14.86430029 

72.5 -15.45520629 

75 -16.03068003 

77.5 -16.58589605 

80 -17.12519459 

82.5 -17.64980009 

85 -18.16226343 

87.5 -18.65749536 

90 -19.13995458 

92.5 -19.61010963 

95 -20.07104942 

97.5 -20.51715924 

100 -20.95244856 

110 -22.59735421 

120 -24.10229064 

130 -25.48852818 

140 -26.7724855 

150 -27.96899165 

170 -30.14169209 

200 -32.96319396 

250 -36.84045766 

300 -40.01038702 

320 -41.13302616 

330 -41.66911309 

340 -42.18983736 

350 -42.69277732 

360 -43.18305929 

400 -45.01564768 

450 -47.06644367 

470 -47.823312 

490 -48.55291692 

550 -50.56470225 

750 -55.98569231 

1000 -61.02615965 

1200 -64.26065987 

1400 -67.00538998 

1600 -69.40381382 

2000 -73.45988464 
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3.3 Conclusions  
Within the scope of this postgraduate dissertation, a PCB was designed and printed, capable 

of amplifying both digital and analog signals as well as filtering out their power supply noise. 

Interfacing directly with an Arduino Uno board, the analog signal, is sampled, converted to 

digital and sent to a computer for further processing. There, an app was developed using 

MATLAB, able to communicate with the Arduino via the USB port and receive the sampled 

signal. Then it can be analyzed to its frequencies using FFT, and be filtered by a digital Lowpass 

Butterworth filter, attenuating higher frequencies, in order to match the ELF band. All the 

while, the order and cutoff frequency are not hardcoded but chosen by the user. Finally, the 

data can be saved in 3 different ways ( .mat, .xlsx ,.txt) for future analysis. 

Looking at the results above, the implementation of the system was generally successful, as it 

can carry out all its assigned tasks mentioned above. 

The digital filter is almost an exact match of the theoretical one as shown in their comparison 

graph. The FFT provides the correct results, as long as the right values are selected by the user, 

who needs to match the sampling frequencies on the app and the Arduino, while 

simultaneously respecting the Nyquist sampling theorem. 

The notch filter when using a digital signal source, was seemingly the least successful 

implementation. While a notch is clearly visible, the dB drop is not at the ideal level, sitting at 

only −23.01𝑑𝐵 maximum attenuation at 48.73Hz72. 

However, the notch filtering results when an analog signal source was used, imply that the 

filter itself is well designed and assembled (as theoretical and measured data align almost 

perfectly), and that there is a flaw elsewhere.  

A possible cause for this outcome is that noise was detected from the 5V pin, as it close to the 

digital data pins. Even if it’s not the sole cause, it certainly is a change that needs to be made 

in future revisions of the PCB. 

3.4 Future Improvements 
There are several basic improvements that can be done, mainly on the PCB side of the system. 

First and foremost, the power supply pins could be replaced for example by a DC power jack 

(common barrel-type power connector). It could supply a higher Voltage and then using 

Voltage regulators, such as buck or step-down converters, that Voltage could be reduced to 

supply each IC with the voltage level they need. This would minimize the number of power 

supply connectors to just one, making the interfacing with the board easier (less cluttered). It 

also gives the side bonus of making the board more durable, as those pins can be broken fairly 

easily, while a barrel connector is more robust. Doing this, would also remove the need for a 

5V, which, as already mentioned, was producing measurable noise during the DAC testing. 

 
72 A measurement at exactly 50𝐻𝑧 could not be taken due to limitations of the hardware while measuring. 
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Additionally, a low-pass filter could be added immediately after the DAC IC to filter out the 

“steps” of the converted signal and possible noise created by IC itself73. 

On the software side, some more features could be added. For instance, using the data that 

are already available (after receiving from the Arduino), there could be a window plotting the 

magnitude and the phase response of the Butterworth filter. Another one is more types of 

filters. For now, only the Butterworth Lowpass is available, but an option like a Chebyshev 

could be added. Or even different filters in terms of frequency response, like bandpass, 

stopband, etc. Although this would go beyond the goal set for this system; Attenuating signals 

that are out of the ELF band. 

Lastly, the user is required to fill in the offset value of the input signal. This can change on 

future iterations of the app, because this value can actually be calculated programmatically 

using the well-known formula [21, p. 63]:  

xdc =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡
𝑇

0

 

𝑇 is the frequency of the signal and its value is already known by the app thanks to the Fourier 

analysis. 

 

 
73 These filters are known as reconstructive filters. 
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A.2 Decoupling Capacitors 
When designing a circuit many novice engineers take a stable and well-regulated power supply 

for granted, only to find that their circuits don’t perform as expected during testing. Analog 

circuits, such as audio amplifiers or radios may produce a strange hum or a crackling noise 

audible in the background, and digital circuits such as microcontrollers may become unstable 

and unpredictable. If there is a voltage spike, the program loaded in the processor could skip 

instructions, which is clearly not wanted. The reason for this underperformance often lies in 

the fact that the input voltage (from the power supply) is rarely stable in practice. However, 

when viewed through an oscilloscope, a DC power supply shows many glitches, voltage spikes 

and AC voltage components. For this reason, Decoupling Capacitors are added to the circuit 

to smooth out the power supply voltage. 

Appendix Figure 1: Decoupling Capacitor. 

 

Note: Yates, J. (2023, August 31). What Are Decoupling Capacitors? Knowles Precision Devices Blog. 
https://blog.knowlescapacitors.com/blog/decoupling-capacitors 

Additionally, in digital circuits the power source may be contaminated from the logic board or 

other devices. More specifically, logic circuits are made of millions of logic gates, which 

constantly change their output states between ON and OFF. These logic gates, in turn, consist 

of transistors, that generate what is called Transient Load during the switching. As a result, 

the current drawn by the devices fluctuates, generating noise, which propagates back to the 

power source. Therefore, capacitors used for decoupling essentially serve three roles: 

a) Protecting the power source from electrical noise generated within the circuit. 

b) Protecting the circuit from electrical noise generated by other devices connected to 

the same power source. 

c) Filter out voltage spikes and dips while allowing only the DC component to pass 

through. 

But how do they work? A decoupling capacitor acts as a local electrical energy reservoir. 

Capacitors, like batteries, need time to charge and discharge. When used as decoupling 

capacitors, they oppose quick changes of voltage. If the input voltage suddenly drops, the 
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capacitor provides the energy to keep the voltage stable. Similarly, if there is a voltage spike, 

the capacitor “absorbs” the excess energy. So, they essentially bypass the power source when 

needed, earning themselves their second name Bypass Capacitors. It’s not uncommon to 

have a single capacitor for each integrated circuit used. As a matter of fact, in digital systems 

almost all capacitors on the board may be used for decoupling. 

Now, it’s already established that power signal reaching the ICs is not inherently stable and 

that it can be contaminated from the fast switching of the states of the transistors that make 

up the ICs74. Another reason for the unstable state is the intrinsic inductance and impedance 

of the power trail/trace/wire. Specifically, between the VRM and the pads of the IC is the 

inductance of the VRM75. The transient current76, flowing through this inductance, generates 

a voltage drop, otherwise called “switching noise”. This appears on the power rails of the IC. 

The way to reduce this noise is to reduce the loop inductance from the IC pads to the VRM 

[22, p. 323].  

Appendix Figure 2: The effect of the distance between the decoupling capacitors and the IC on the transient response. 

 

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.325" 

Since, an intrinsic inductance is present on all traces on the PCB, then also present on the 

trace between the decoupling capacitor and the IC77. Hence, the most important quality of 

 
74 Additionally, this switching to its outputs of the ICs, needs power that will ultimately come from the power 
supply. This switching can be very quick from a few nanoseconds to a few microseconds [22, p. 323]. This requires 
different power levels from the supply, very quickly, making the power signal unstable. 
75 VRM stands for Voltage Regulator Module. It’s an IC responsible for the power distribution on the PCB. If a PCB 
doesn’t have one integrated, does not matter in the context of this chapter, as everything said is true for VRMs 
or simple Power pins, power jacks, etc.  
76 The term “transient current” refers to the current during the switching of  the output states, while the power 
source is still “unstable” – before the steady state. 
77 The inductance of the trace between the power supply and the capacitor is already decoupled by it. But the 
inductance of the trace between the capacitor and the IC is yet to be addressed. 
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the decoupling capacitor is the loop78 inductance between the capacitor itself and the device 

to which it provides the charge. The closer the capacitor is to the device, the lower the loop 

inductance [22, p. 305]. The longer the path length between the decoupling capacitor and the 

pads of the IC, the higher the loop inductance and the higher the switching noise  [22, p. 323]. 

Because of that, the preferred placement of decoupling capacitors is as close as possible to 

the IC they are decoupling. 

So, the main idea, how they work and where to place them are now explained. But how is the 

capacitance of each one chosen? To answer that question accurately79 , the value of the 

current draw, the current’s transient time and the acceptable voltage change are necessary 

[22, p. 303]: 

 
C =

Δ𝑄

Δ𝑉
=
Δ𝑡 ⋅ 𝐼

Δ𝑉
 

1 

Where C is the amount of decoupling capacitance needed, Δ𝑄 is the charge depletion of the 

capacitor to supply the current requirements of the chip during the transient current time, Δ𝑉 

is the acceptable voltage drop (noise) on the capacitor, which is the voltage droop on the 

capacitor as the current bleeds off charge, Δ𝑡 is the time during which the transient current 

occurs and lastly 𝐼 the current draw of the die (IC) [22, p. 303]. However, knowing all these 

values for each IC can be challenging. Fortunately, the precise value of capacitance is not 

important as long as it is larger than the minimum required to supply the local charge during 

the switching event [22, p. 304]. Unless someone has a specific requirement for their device, 

a good starting place is to use at least 10𝑢𝐹 of decoupling capacitance per IC [22, p. 305]. 

A common recommendation is using three decoupling capacitors for each IC, separated in 

value by a decade. This is completely wrong. To understand why, one must look at a capacitor 

as its real equivalent circuit and not as an ideal component. An ideal capacitor’s impedance is 

analogous to 
1

f
 forever. But a real one has some self-inductance and an internal equivalent 

series resistance. This means that a real capacitor behaves like an ideal RLC circuit [23]. 

Appendix Figure 3: Equivalent circuit model of a real capacitor. 

 

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.327" 

On the figure above is shown an equivalent circuit model of a real capacitor. The L is the loop 

self-inductance (Equivalent Self Inductance or ESL) between the capacitor and the pads on the 

 
78The word “loop” refers to the loop from power to ground trail.  
79 The capacitor is selected so that during the time in which we expect to see a transient current, the rise or fall 
time, the voltage drop from the current draw is an acceptably small drop.  
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IC, while the C is its intrinsic capacitance, and the R is the equivalent series resistance (ESR) 

due to the conductor plates in series with the capacitor. 

Appendix Figure 4: Impedance of real vs ideal capacitor. 

 

The impedance profile of a real capacitor has a dip in the middle at the frequency referred to 

as self-resonant frequency (SRF). It the point where the reactance of the L and ideal C are 

equal but of opposite sign [22, p. 327]. And it can be calculated by: 

 𝑓𝑆𝑅𝐹 =
1

2π√𝐿𝐶
 2 

And its impedance by: 

 𝑍𝐶𝐴𝑃 = 𝐸𝑆𝑅 + 𝑋𝐶 + 𝐶𝐿 ⇒ 𝑍𝐶𝐴𝑃 = 𝐸𝑆𝑅 + 2π𝑓𝐿 +
1

2π𝑓𝐶
 3 

Where 𝐿 is the loop inductance between the capacitor and the pads of the IC. When three 

capacitors are added in parallel, while there will be three dips, there will also be two peaks 

corresponding to the parallel resonances of adjacent L and C values (example given on 

Appendix Figure 5). And what generates the noise on the power rail is a high impedance. It is 

not about how low the impedance goes, it is about how high the impedance goes [22, p. 329].  

Appendix Figure 5: The impedance profile of three different valued decoupling capacitors in parallel. 

 

Note: Effective Use of Decoupling (Bypass) Capacitors Point 1 | Dealing with Noise Using Capacitors | TechWeb. (n.d.). 
https://techweb.rohm.com/know-how/nowisee/7669/. 
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Back to the recommendation to use three different valued decoupling capacitors for each IC. 

It assumes that the capacitors are through-hole. Generally, in through-hole capacitors the 

smaller the capacitance, the smaller its body. This matters because different body sizes will 

have different mounting inductance (the bigger the body, the higher the inductance).  

Indeed, if through-hole capacitors are used, choosing three different valued ones in parallel 

makes sense as portrayed below (the parallel combination yields lower loop inductance). 

Appendix Figure 6: Impedance profile of three leaded capacitors and their parallel 

 

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.332" 

However, nowadays with SMD or MLCC (Multi-Layered Ceramic Capacitors) the capacitor’s 

body size is the same (at least for the values of interest for decoupling), meaning that they all 

have the same loop inductance (much lower than the through-hole counterpart). A 

consequence of that is: MLCC capacitors, all capacitors in the same body size are high-

frequency capacitors [22, p. 333].  

Concluding this discussion, below is a comparison of the impedance profiles for the cases 

discussed. 

Appendix Figure 7: Comparing three different combinations of three capacitors. 

 

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.334". 
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What was used 

It’s apparent from the last four figures that at high frequencies, the loop inductance dominates 

over capacitance when it comes to their impedance contribution. So, a correct conclusion is 

that when selecting capacitors as decoupling capacitors, a large capacitance for low-frequency 

performance and a low inductance for high-frequency performance should be the intention. 

While it was just explained what the ideal combination of capacitors is, generally, a single, 

low-inductance capacitor may be perfectly adequate [22, p. 334]. 

That why on this system a 0.1𝑢𝐹 SMD capacitor for each power IC pin was used, eliminating 

the switching and high frequency noise. But in the PCB schematic there can also be seen 10𝑢𝐹 

electrolytic capacitors on each power-in pin of the PCB80 (they are parallel with the 0.1𝑢𝐹 

ones for each power trail respectively). This higher capacity, bigger volume capacitor takes 

care of the low carrying-low frequency noise81. 

A.3 DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER    
On this chapter, the derivation of the notch filter – otherwise called “Bootstrapped Twin-T 

Notch filter” – will take place. 

Appendix Figure 8: The Bootstrapped Twin-T Notch Filter. 

 

 
80 That is 4 pins: +10𝑉,−10𝑉,−15𝑉 𝑎𝑛𝑑 + 5𝑉 
81 Notice that the placement of the electrolytic and the SMD capacitors are in line with everything analyzed on 
this chapter. The electrolytic is responsible for lower frequencies but has a large loop inductance. That loop 
inductance (that produces high-frequency noise) is taken care of by the SMD capacitor, placed AFTER the 
electrolytic one (along the power trace) and as close as possible to the IC. Of course, this is true for all ICs and 
power traces on the PCB. 
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This derivation assumes that the op amps are ideal (their properties are on an earlier chapter 

-  Digital to Analog Converter27). That means: 

 𝑉𝐷 = 𝑉𝑜𝑢𝑡 
4 

And: 

 𝑉𝐹 = 𝑉𝐺 5 

Where because of the voltage divider (see node F): 

 𝑉𝐹 =
𝑅5

𝑅4 + 𝑅5
𝑉𝑜𝑢𝑡 ⇒ 𝑉𝐹 = 𝑘𝑉𝑜𝑢𝑡 

6 

The constant 𝑘 is equal to: 

 𝑘 =
𝑅5

𝑅4 + 𝑅5
 7 

Now that some basic properties of the circuit have been laid out, there’s one more thing that 

needs to be pointed out. If the values of the resistors and capacitors (on the filter part – no 

the voltage divider part) form a “symmetry”, not only yields the frequency response needed, 

but also makes the derivations easier. Specifically: 

 

{
 
 

 
 
𝑅1 = 𝑅2 = 𝑅
𝐶1 = 𝐶2 = 𝐶

𝑅3 =
𝑅

2
𝐶3 = 2𝐶

 8 

 

Appendix Figure 9:  The Symmetrical Bootstrapped Twin-T Notch Filter. 

 

Now let’s start the derivation by performing nodal analysis on nodes A, B, D. Using Kirchhoff’s 

Current Law (KCL) on node A: 
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 𝑖𝐴1 = 𝑖𝐴2 + 𝑖𝐴3 9 

By Ohm’s Law: 

 
𝑖 =

𝑉𝐻𝐼𝐺𝐻 − 𝑉𝐿𝑂𝑊
𝑅

 
10 

The Laplace Transform of a capacitor is: 

 
𝑍𝐶 =

1

𝑠𝐶
 

11 

Where:  

 𝑠 = 𝑗ω 12 

Using all that: 

(𝑉𝐼𝑁 − 𝑉𝐴)𝑠𝐶 = (𝑉𝐴 − 𝑉𝐷)𝑠𝐶 +
𝑉𝐴 − 𝑉𝐺
𝑅3

 ⇒ 

(𝑉𝐼𝑁 − 𝑉𝐴)𝑠𝐶 = (𝑉𝐴 − 𝑉𝑂𝑈𝑇)𝑠𝐶 + (𝑉𝐴 − 𝑘𝑉𝑂𝑈𝑇)
2

𝑅
 ⇒ 

𝑉𝐼𝑁𝑠𝐶 − 𝑉𝐴𝑠𝐶 = 𝑉𝐴𝑠𝐶 − 𝑉𝑂𝑈𝑇𝑠𝐶 + 𝑉𝐴
2

𝑅
−
2𝑘

𝑅
𝑉𝑂𝑈𝑇  ⇒ 

𝑉𝐼𝑁𝑠𝐶 = 2𝑉𝑎𝑠𝐶 − 𝑉𝑂𝑈𝑇𝑠𝐶 + 𝑉𝐴
2

𝑅
− 𝑉𝑂𝑈𝑇

2𝑘

𝑅
 ⇒ 

𝑉𝐼𝑁𝑠𝐶 + (𝑠𝐶 +
2𝑘

𝑅
)𝑉𝑂𝑈𝑇 = (2𝑠𝐶 +

2

𝑅
)𝑉𝐴  ⇒ 

 𝑉𝐴 =
𝑉𝐼𝑁𝑠𝐶 + (𝑠𝐶 +

2𝑘
𝑅 )𝑉𝑂𝑈𝑇

2𝑠𝐶 +
2
𝑅

 13 

Applying the same logic on node B yields: 

𝑖𝐵1 = 𝑖𝐵2 + 𝑖𝐵3 ⇒ 

(𝑉𝐼𝑁 − 𝑉𝐵)

𝑅1
=
𝑉𝐵 − 𝑉𝑂𝑈𝑇

𝑅
+
𝑉𝐵 − 𝑘𝑉𝑂𝑈𝑇

1
2𝐶𝑠

 ⇒ 

1

𝑅
𝑉𝐼𝑁 −

1

𝑅
𝑉𝐵 =

1

𝑅
𝑉𝐵 −

1

𝑅
𝑉𝑂𝑈𝑇 + 2𝑠𝐶𝑘𝑉𝑂𝑈𝑇  ⇒ 

1

𝑅
𝑉𝐼𝑁 + (

1

𝑅
+ 2𝑠𝑘𝐶) 𝑉𝑂𝑈𝑇 = (2𝑠𝐶 +

2

𝑅
)𝑉𝐵  ⇒ 

 𝑉𝐵 =

1
𝑅 𝑉𝐼𝑁 + (

1
𝑅 + 2𝑠𝑘𝐶)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
2
𝑅

 14 
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And lastly for node D:  

 𝑖𝐷1 = 𝑖𝐷2 + 𝑖𝐷3 15 

from ideal op amp and from the schematic we get: 

 {
𝑖𝐷3 = 0
𝑖𝐷1 = 𝑖𝐵2
𝑖𝐷3 = −𝑖𝐴2

 16 

Substituting the above equations we get:  

𝑖𝐵2 + 𝑖𝐴2 = 0 ⇒ 

𝑉𝐵
𝑅
−
𝑉𝐷
𝑅
+ 𝑉𝐴𝑠𝐶 − 𝑉𝐷𝑠𝐶 = 0 ⇒ 

1

𝑅
𝑉𝐵 −

1

𝑅
𝑉𝑂𝑈𝑇 + 𝑠𝐶𝑉𝐴 − 𝑠𝐶𝑉𝑂𝑈𝑇 = 0 ⇒ 

 
𝑠𝐶𝑉𝐴 +

1

𝑅
𝑉𝐵 = (𝑠𝐶 +

1

𝑅
)𝑉𝑂𝑈𝑇 

17 

 

By substituting 𝑉𝐴 and 𝑉𝐵 on the equation above yields: 

𝑠𝐶
𝑉𝐼𝑁𝑠𝐶 + (𝑠𝐶 +

2𝑘
𝑅 𝑉𝑂𝑈𝑇)

2𝑠𝐶 +
2
𝑅

+
1

𝑅

1
𝑅 𝑉𝐼𝑁 + (

1
𝑅 + 2𝑠𝐶𝑘)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
1
𝑅

= (𝑠𝐶 +
1

𝑅
)𝑉𝑂𝑈𝑇  ⇒ 

𝑉𝐼𝑁(𝑠𝐶)
2 + [(𝑠𝐶)2 +

2𝑠𝐶𝑘
𝑅
]𝑉𝑂𝑈𝑇 +

𝑉𝐼𝑁
𝑅2
+ (

1
𝑅2
+
2𝑠𝐶𝑘
𝑅
)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
2
𝑅

= (𝑠𝐶 +
1

𝑅
)  ⇒ 

[(𝑠𝐶)2 +
1

𝑅2
] 𝑉𝐼𝑁 + [(𝑠𝐶)

2 +
2𝑘𝑠𝐶

𝑅
+
1

𝑅2
] 𝑉𝑂𝑈𝑇 = (𝑠𝐶 +

1

𝑅
) (2𝑠𝐶 +

2

𝑅
)𝑉𝑂𝑈𝑇  ⇒ 

[(sC)2 +
1

R2
] VIN = −[(sC)

2 +
2ksC

R
+
1

R2
] VOUT + [2(sC

2) +
2sC

R
+
2sC

R
+
2

R2
] VOUT  ⇒ 

[(𝑠𝐶)2 +
1

𝑅2
] 𝑉𝐼𝑁 = [(𝑠𝐶)

2 +
4𝑠𝐶

𝑅
−
4𝑠𝐶𝑘

𝑅
+
1

𝑅2
] 𝑉𝑂𝑈𝑇 ⇒ 

𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

=
(𝑠𝐶)2 +

1
𝑅2

(𝑠𝐶)2 +
1
𝑅2
+
4𝑠𝐶(1 − 𝑘)

𝑅

 ⇒ 

 𝐻(𝑠) =
𝑠2 +

1
(𝑅𝐶)2

𝑠2 +
4(1 − 𝑘)𝑠
𝑅𝐶 +

1
(𝑅𝐶)2

 18 

 

Now setting: 
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ω0 =

1

𝑅 ⋅ 𝐶
,  𝑠 = 𝑗ω 

19 

Resulting in: 

 𝐻(ω) =
ω2 −ω0

2

ω2 − 4𝑗ω0ω(1 − 𝑘) − ω0
2 20 

Now let’s write the denominator in quadratic form: 

 ω2 − ω0
2 − 4𝑗ω0ω(1 − 𝑘) ⇒

ω2

ω0
2 − 1 = 4𝑗

ω

ω0
(1 − 𝑘) 21 

Setting: 

 𝑔 =
ω

ω0
 22 

And taking the magnitude on both sides: 

 |𝑔2 − 1|  = √(4𝑔(1 − 𝑘))
2
⇒ 𝑔2 − 1 = ±4𝑔(1 − 𝑘)

⇒ 𝑔2 ± 4𝑔(1 − 𝑘) − 1 

23 

Using the quadratic formula to solve, we get: 

 
𝑔1,2 = ±2(1 − 𝑘) ± √4(1 − 𝑘)2 + 1 

24 

Two of those answers are not valid. The variable g is a fraction of two frequency units, that is 

why only a positive value for it is of interest. It's also true that: 

 𝑘 =
𝑅5

𝑅4 + 𝑅5
→ 𝑘 < 1 ⇒ 1 − 𝑘 > 0 25 

Now let's assume that: 

2(1 − 𝑘) < √4(1 − 𝑘)2 + 1 ⇒ 4(1 − 𝑘)2 < |4(1 − 𝑘)2 + 1|  ⇒ 

 4(1 − 𝑘)2 < 4(1 − 𝑘)2 + 1 ⇒ 0 < 1, 𝑡𝑟𝑢𝑒 26 

So, the initial assumption is true as well. All the above leave us with: 

 
𝑔1, 𝑔2 = √4(1 − 𝑘)2 + 1 ± 2(1 − 𝑘) 

27 

The values 𝑔1 and 𝑔2, are also the cutoff 'frequencies' for the H(g). That is easily proven by 

just calculating: 

 20 log|𝐻(𝑔1)|  and 20 log|𝐻(𝑔2)| 
28 

That means, it's very easy to calculate the Quality factor of this Transfer Function, and by 

extend, the system it is representing. First, we know that the center frequency (notch 

frequency) is the geometric mean of the two cutoff frequencies. So: 
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 𝑔0 = √𝑔1𝑔2 = ⋯ = 1 29 

Now using equation 22 to go back to actual frequency units: 

 ω𝑁𝑂𝑇𝐶𝐻 = ω0 30 

Taking the equation for the Bandwidth: 

 𝐵𝑊 = |𝜔1 − 𝜔2| ⇒ 𝐵𝑊 = (𝑔1 − 𝑔2) ⋅ ω0 = ω0 ⋅ 4(1 − 𝑘) 
31 

Now, all information needed for calculating the quality factor are known: 

 𝑄 =
ω𝑁𝑂𝑇𝐶𝐻
𝐵𝑊

⇒ 𝑄 =
ω0

ω0 ⋅ 4(1 − 𝑘)
⇒ 𝑄 =

1

4(1 − 𝑘)
 32 

Finally, based on the result, we can substitute Q on the initial Transfer Function of the system: 

 𝐻(𝑠) =
𝑠2 +

1
𝑅2𝐶2

𝑠2 +
1
𝑄𝑅𝐶 𝑠 +

1
𝑅2𝐶2

 or 𝐻(𝑠) =
𝑠2 +ω0

𝑠2 +
ω0
𝑄 𝑠 + ω0

 33 

 

A.4 Deriving the difference equation for a 2nd order Butterworth 

Lowpass Filter 
Starting with the Butterworth Lowpass transfer function: 

 𝐻(𝑠) =
1

∑ 𝑎𝑘 (
𝑠
ω𝑐
)
𝑘

𝑛
𝑘=0

 34 

Taking the Bilinear transform: 

 
s =

2

T
⋅
1 − z−1

1 + z−1
 

35 

We get: 

 H(z) =
1

∑ 𝑎𝑘
1
ω𝑐
𝑘 (
2
𝑇 ⋅
1 − 𝑧−1

1 + 𝑧−1
)
𝑘

𝑛
𝑘=0

 36 

For n=2 (second order filter): 

 H(z) =
1

a0 +
a1
ωc
⋅
2
T ⋅

1 − z1

1 + z−1
+
a2
ωc2
⋅ (
2
T ⋅
1 − z−1

1 + z−2
)
2 37 

After some tedious algebra we get: 

 𝐻(𝑧) =

A2

D +
(
2A2

D
) z−1 +

A2

𝐷 𝑧
−2

1 + [
2A2𝑎0 − 8𝑎2

𝐷 ] 𝑧−1 + [
𝑎0𝐴2 − 2𝑎1𝐴 + 4𝑎2

𝐷 ] 𝑧−2
 38 
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Where: 

 α = T ⋅ ωc and D = 𝐴2a0 + 2a1A + 4a2 39 

Now the form of the transfer function on equation 38 is directly comparable with the one 

from equation 2.20 (repeated below for the reader’s convenience). 

 𝐻(𝑧) =
∑ 𝑐𝑘 ⋅ 𝑧

−𝑘𝑀
𝑘=0

1 − ∑ 𝑑𝑘 ⋅ 𝑧−𝑘
𝑁
𝑘=1

 40 

By direct comparison: 

𝑐0 =
𝐴2

𝐷
,  𝑐1 =

2𝐴2

𝐷
 𝑐2 =

𝐴1

𝐷
 and 𝑑1 =

2𝐴2𝑎0 − 8𝑎2
𝐷

,  𝑑2 =
𝑎0𝐴

2 − 2𝑎1𝐴 + 4𝑎2
𝐷

 

And given that the (general) difference equation is (see equation 2.16): 

 𝑦(𝑛) = ∑𝑐𝑘 ⋅ 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

−∑𝑑𝑘 ⋅ 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 41 

we now have everything we need to construct it (𝑀 = 𝑁 = 2  since this is a 2nd order 

example): 

 𝑦(𝑛) = −𝑑1𝑦(𝑛 − 1) − 𝑑2𝑦(𝑛 − 2) + 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) + 𝑏2𝑥(𝑛 − 2) 
42 

Which is straight forward to transform into code. 

 

A.5 ARDUINO CODE 
 

FOR OPERATIONAL SYSTEM 

const int BaudRate = 115200.00; 

const unsigned long eventInterval = 2;  

unsigned long previousTime = 0;   

 

void setup() { 

  Serial.begin(115200); 

} 

void loop() { 

  unsigned long currentTime = millis();   

  if (currentTime - previousTime >= eventInterval) { 

    int SensorValue= analogRead(A0); 

    float Voltage_in = SensorValue * (5.0 / 1023.0); 

    Serial.println(Voltage_in, 5); 

    previousTime = currentTime; 

  } 

} 

FOR TESTING THE DIGITAL FILTER ON MATLAB 

const float f = 10; 

const float pi = 3.14159; 
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float mysine = 0.00000; 

float fs=20000; 

void setup() { 

  Serial.begin(115200);   

} 

float t=0.000; 

void loop() { 

    mysine = sin(2*pi*f*t); 

    Serial.println(mysine, 5); 

    t = t + 1/(fs); 

} 
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A.6 ATmega Firmware 
To test the system with a digital signal source, a microcontroller board can be used. So, for 

that purpose a sine generator with adjustable frequency was designed using the ATMEL 

ATmega1284P programming board, which is a development board for the ATmega1284P 

microcontroller. On Appendix Figure 10 all the capabilities, I/O, buttons and sensors on the 

board are shown. 

To achieve this, the main idea was the so-called look-up table. The microcontroller would read 

the values of a table which are sampled values of a sine wave, while the adjusting of the 

frequency would happen by changing the rate at which the look-up table values are read. 

This firmware was coded in AVR-Assembly using the IDE Microchip Studio82 through the JTAG 

header (using a debugger83). The actual code can be seen on A.7. 

Appendix Figure 10: The ATmega 1284p board. 

 

Note: Picture taken from "AVR364: MEGA-1284P Xplained Hardware User's Guide". 

MCU’s Architecture 

Before explaining the details of the firmware, it’s necessary to dive into the microcontroller’s 

architecture. The ATmega1284P is a low-power CMOS 8-bit microcontroller based on the AVR 

enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the 

ATmega1284P achieves throughputs approaching 1 MIPS per MHz allowing the system 

designer to optimize power consumption versus processing speed [24, p. 13]. 

 
82 It’s the IDE used for developing and debugging AVR® and SAM microcontroller applications. 
83 More specifically, Microchip Atmel-ICE, Programming Kit for SAM and Atmel AVR Microcontrollers. 
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Appendix Figure 11: ATmega1284P board's block diagram. 

 

Its features include but not limited to 128KB of In-System Programmable Flash with Read-

While-Write capabilities, 4KB EEPROM, 16KB SRAM, 32 general purpose I/O lines, 32 general 

working registers84, three flexible Timer/Counters with compare modes and PWM, a 10-bit 

ADC with optional differential input stage with programmable gain. 

Those 32 I/O lines are divided into 4 PORTS: PORTA, PORTB, PORTC, PORTD. All four of them 

are 8-bit bi-directional I/O ports with internal pull-up resistors (selected for each bit) and all 

of them also serve the functions of various other features of the microcontroller. But, only one 

of them – PORTA – serves as analog input for the board, because it’s connected to the board’s 

ADC. 

Moving on to the AVR core architecture, its block diagram is shown in Appendix Figure 12. The 

main function of the CPU core is to ensure correct program execution. The CPU must therefore 

be able to access memories, perform calculations, control peripherals, and handle interrupts. 

 
84 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers 
are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in 
one single instruction executed in one clock cycle [24, p. 14]. 
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Appendix Figure 12: Block diagram of the AVR architecture. 

 

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single 

clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a 

typical ALU operation, two operands are output from the Register File, the operation is 

executed, and the result is stored back in the Register File – in one clock cycle [24, pp. 18–19]. 

Six of the 32 registers85 can be used as three 16-bit indirect address register pointers for Data 

Space addressing – enabling efficient address calculations (specifically R26-R31 as shown 

below). One of these address pointers can also be used as an address pointer for look-up 

tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z 

register (which will be used in the code). 

Appendix Figure 13: AVR CPU General Purpose Working Registers (Register File). 

 

 
85 The registers store data elements. 
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The ALU supports arithmetic and logic operations between registers or between a constant 

and a register. Single register operations can also be executed in the ALU. After an arithmetic 

operation, the Status Register is updated to reflect information about the result of the 

operation [24, p. 19].  

Program flow is provided by conditional and unconditional jump and call instructions, able to 

directly address the whole address space. Most AVR instructions have a single 16-bit word 

format. Every program memory address contains a 16- or 32-bit instruction [24, p. 19]. 

Program Flash memory space is divided into two sections, the Boot Program section and the 

Application Program section. Both sections have dedicated Lock bits for write and read/write 

protection [24, p. 19].  

Appendix Figure 14: Program memory map. 

 

During interrupts86 and subroutine calls, the return address Program Counter87 (PC) is stored 

on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently 

the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user 

programs must initialize the Stack Pointer (SP) in the Reset routine (before subroutines or 

interrupts are executed). The Stack Pointer88  is read/write accessible in the I/O space. The 

data SRAM can easily be accessed through the five different addressing modes supported in 

the AVR architecture. 

But what is the role of this Status Register that is mentioned in earlier paragraphs? The Status 

Register contains information about the result of the most recently executed arithmetic 

instruction. This information can be used for altering program flow in order to perform 

conditional operations. Note that the Status Register is updated after all ALU operations, as 

specified in the AVR Instruction Set Manual. This will in many cases remove the need for using 

 
86 Interrupts are used on this firmware and will be explained further in the next pages. 
87 The Program Counter also known as Instruction Pointer is a special register that keeps track of the memory 
address of the next instruction to be executed in a program.  
88 The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses 
after interrupts and subroutine calls. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space 
[24, p. 22]. 
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the dedicated compare instructions, resulting in faster and more compact code. The Status 

Register is not automatically stored when entering an interrupt routine and restored when 

returning from an interrupt. This must be handled by software [24, p. 20]. It’s an 8-bit register 

and it’s vital for interrupts since its most significant bit is the Global Interrupt Enable bit. It 

must be set (to high) for the interrupts to be enabled. The individual interrupt enable control 

is then performed in separate control registers. If the Global Interrupt Enable Register is 

cleared, none of the interrupts are enabled independent of the individual interrupt enable 

settings [24, p. 20]. This fact is important as this Bit will be set multiple times throughout the 

code. 

Going over the code 

This firmware uses what is called an interrupt. Programming using interrupts is a technique 

based on an automatic mechanism in the hardware of the microcontroller, which allows a 

device to provide service to internal or external devices, only at the moment it is required. 

The interrupt is asynchronous and can occur at any time during the execution of the main 

program. Then they can stop the main program from executing to perform a separate 

interrupt service routine (ISR). When the ISR is completed, program control is returned to the 

main program at the instruction that was interrupted [25]. 

The main program (main loop) of this system’s firmware is shown on the below. This loop runs 

continuously, until the board is disconnected from power, or an interrupt is enabled. The 

instruction “nop” basically means “no operation”. It essentially keeps the microprocessor idle 

until further notice. This means that the goal of this firmware will be handled by the interrupt 

technique alone.  

Appendix Figure 15: Main Program/Loop. 

 

There are two interrupts used here. One is utilizing a timer (see  TIMER1_OVF” - Vector 16 on 

Table 5) and the other an onboard ADC (“ADC” - Vector 25). The idea is that each time the 

timer/counter interrupt goes off, a value of the look-up table will be read. How it works, is it 

starts counting from an initial value at a certain frequency. If somehow that initial value was 

changed live-while the board is on, let’s say increased, then the look-up table’s values would 

be read faster. That is where the ADC comes in. By connecting a potentiometer between the 

𝑉𝑐𝑐  and 𝐺𝑁𝐷  pins with its output connected to a PORTA pin (since it’s connected to the 
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onboard ADC), then by turning the potentiometer the counter’s initial value could be changed, 

altering the sine’s frequency live. 

Table 5: Reset and Interrupt Vectors. 

Vector Number Program Address Source Interrupt Definition 

1 $0000 RESET 
External Pin. Power-on Reset, Brown-out Reset,  
Watchdog Reset. and JTAG AVR Reset 

2 $0002 INT0 External Interrupt Request 0 

3 $0004 INT1 External Interrupt Request 1 

4 $0006 INT2 External Interrupt Request 2 

5 $0008 PCINT0 Pin Change Interrupt Request 0 

6 $000A PCINT1 Pin Change Interrupt Request 1 

7 $000C PCINT2 Pin Change Interrupt Request 2 

8 $000E PCINT3 Pin Change Interrupt Request 3 

9 $0010 WDT Watchdog Time-out Interrupt 

10 $0012 TIMER2_COMPA Timer/Counter2 Compare Match A 

11 $0014 TIMER2_COMPB Timer/Counter2 Compare Match B 

12 $0016 TIMER2_OVF Timer/Counter2 Overflow 

13 $0018 TIMER1_CAPT Timer/Counter1 Capture Event 

14 $001A TIMER1_COMPA Timer/Counter1 Compare Match A 

15 S001C TIMER' СОМРВ Timer/Counter1 Compare Match В 

16 $001E TIMER1_OVF Timer/Counter1 Overflow 

17 $0020 TIMER0_СОМРА Timer/Counter0 Compare Match А 

18 $0022 ТIМЕR0_СОМРВ Timer/Counter0 Compare match B 

19 $0024 TIMER0_OVF Timer/Counter0 Overflow 

20 $0026 SPI_STC SPI Serial Transfer Complete 

21 $0028 USART0_RX USART0 Rx Complete 

22 S002A USART0_UDRE USART0 Data Register Empty 

23 $002С USART0_ТХ USART0 Тх Complete 

24 3002E ANALOG_COMP Analog Comparator 

25 $0030 ADC ADC Conversion Complete 

26 $0032 ЕЕ_READY EEPROM Ready 

27 $0034 TWI two-wire Serial Interface 

28 $0036 SPM_READY Store Program Memory Ready 

29 $0038 USART1_RX USART1 Rx Complete 

30 $003A USART1_UDRE USART1 Data Register Empty 

31 $003C USART1_TX USART1 Tx Complete 

32 $003E TIMER3_CAPT Timer/Counter3 Capture Event 

33 $0040 TIMER3_COMPA Timer/Counter3 Compare Match A 

34 $0042 TIMER3_CONAPB Timer/Counter3 Compare Match B 

35 $0044 TIMER3_OVF Timer/Counter3 Overflow 
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A flexible interrupt module has its control registers in the I/O space with an additional Global 

Interrupt Enable bit in the Status Register89. All interrupts have a separate Interrupt Vector in 

the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt 

Vector position. The lower the Interrupt Vector address, the higher the priority [24, p. 19]. 

The code starts by tackling the interrupts. This is because the interrupts are placed at the start 

of the Flash memory90 [24, p. 73]. The first command is “jmp INIT”, which makes sure the 

initialization routine for the interrupts is run first (see Appendix Figure 17 and Appendix Figure 

18). Immediately after there is a series of pairs of “nop” and “reti” commands – 35 pairs to be 

exact – the same number as the interrupts. Each pair of these commands disables an interrupt 

(if all interrupts are enabled, the main loop may be interrupted at seemingly random times, 

which is obviously not wanted). They are disabled one by one in the order shown in Table 5, 

and that’s because they are identified based on their Flash memory address. Notice that the 

TIMER1_OVF and ADC_INTER which will be used, are number 15 and 24 respectively instead 

of 16 and 25 like in Table 5. This is because the first command of the code “jmp INIT” takes up 

2 flash addresses91. 

Appendix Figure 16: Enabling the two interrupts that will be used. 

 

Also notice that the “reti” command after the “jmp TIMER1_OVF” is commented out while the 

one after “jmp ADC_INTER” is not. That is because the “jmp TIMER1_OVF” takes up address 

on the flash memory. Had the “reti” not been commented out, then the addresses would be 

misaligned and the enabling of the ADC_INTER interrupt would have failed92. 

Now to explain what’s in the initialization (initial settings for their first run) for the interrupts. 

Both of their behaviour (along with all the interrupts) are controlled by the values of some 

 
89 Will be explained in the next pages. 
90 This can be changed by changing a bit in the MCUCR (MCU control Register) – specifically the IVSEL bit. When 
it’s set to high , the Interrupt Vectors are moved to the beginning of the Boot Loader section of the Flash [24, p. 
73]. But this is not the case here. 
91 While “nop” and “reti” take up 1 flash memory address (together-not each). 
92 This of course happens because the ADC interrupt has lower priority than the TIMER1_OVF since its vector is 
larger – comes at a later address. 
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registers (each interrupts has its own of course). First of all, while configuring these settings93, 

all interrupts must be disabled – and reenabled when done. This is achieved through the “cli” 

and ”sei” commands.  

Starting with the ADC, it is enabled by setting the ADC Enable bit (ADEN) in the ADCSRA 

register. Voltage reference and input channel selections will not go into effect until ADEN is 

set. The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and 

ADCL. By default, the result is presented right adjusted, but can optionally be presented left 

adjusted by setting the ADLAR bit in ADMUX. If the result is left adjusted and no more than 8-

bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then 

ADCH, to ensure that the content of the Data Registers belongs to the same conversion. Once 

ADCL is read, ADC access to Data Registers is blocked. This means that if ADCL has been read, 

and a conversion completes before ADCH is read, neither register is updated and the result 

from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers 

is re-enabled [24, p. 245]. The ADC has its own interrupt which can be triggered when a 

conversion is completed. Additionally, with ADMUX’s last five LSBs one can choose which pin 

to use as an analog input.  In the end the value 00000 was given to them, making the ADC0 

pin the input pin, to which the output of the potentiometer will be connected. 

A conversion can be triggered automatically by various sources. Auto Triggering is enabled by 

setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by 

setting the ADC Trigger Select bits, ADTS in ADCSRB [24, p. 245]. Finally, the DIDR0 register’s 

bits should all be set to 1 in order to disable digital input (since the input in this case is analog). 

More specifically, when this bit is written logic one, the digital input buffer on the 

corresponding ADC pin is disabled. When an analog signal is applied to the ADC7:0 pin and 

the digital input from this pin is not needed, this bit should be written logic one to reduce 

power consumption in the digital input buffer [24, p. 261]. 

Appendix Figure 17: Initialization settings for the ADC interrupt. 

 

 
93 This also goes for later configuring – not just the initialization. 
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Concluding this part, the appropriate values were given to the ADC’s Register’s bit in order 

to have auto triggering, the trigger source to be on Free Running mode (ADCSRB register), to 

choose an input pin and various other details in order for it to work properly. More in depth 

analysis can be found on the board’s datasheet.  

Appendix Figure 18: Initialization settings for the Timer interrupt. 

 

Moving on to the initialization of the TIMER1_OVF. The Timer/Counter (TCNT1) is a 16-bit 

register. The Timer/Counter Control Registers (TCCR1A/B/C), on the other hand, are an 8-bit 

registers. Interrupt requests signals are all visible in the Timer Interrupt Flag Register (TIFR1). 

All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK1) [24, p. 

116]. 

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source 

on the Tn pin. The Clock Select logic block controls which clock source and edge the 

Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive 

when no clock source is selected. The output from the Clock Select logic is referred to as the 

timer clock (clkTn) [24, p. 116]. 

The simplest mode of operation is the Normal mode (WGMn3:0 = 094), which is the mode 

used in this system. In this mode the counting direction is always up (incrementing), and no 

counter clear is performed. The counter simply overruns when it passes its maximum 16-bit 

value (MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the 

Timer/Counter Overflow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 

becomes zero. The TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not 

cleared. However, combined with the timer overflow interrupt that automatically clears the 

TOV1 Flag, the timer resolution can be increased by software. There are no special cases to 

consider in the Normal mode, a new counter value can be written anytime [24, p. 127]. 

 
94 Controlled by the TCCR1A and TCCR1B registers. 
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Lastly, the TCNT1H and TCNT1L registers give direct access, both for read and for write 

operations, to the Timer/Counter unit 16-bit counter [24, p. 138]. And by changing their value, 

the initial value (the one from which the Timer/Counter starts counting)95. 

So, all that needs to be done, is equalize the values of these 2 registers to those of the ADC’s 

result (ADCL and ADCH) and then the goal is achieved. 

Finally, at the end of the INIT part, there are some necessary settings to be addressed that 

have nothing to do with the interrupts. On lines 130 and 131 (on the figure below), the PORTB 

is configured as an output (it’s through there that the look-up table values are sent to the 

PCB). On 133 and 134 PORTA is configured as an input (since it’s going to be to where the 

potentiometer is connected) and on 136 its internal pull-up resistors are enabled. Line 137 

resets the general-purpose register r17 to all zeros. Lastly, on lines 139 and 140, the address 

of look-up table is acquired. This can only be done (as previously stated on page - 17 -) by 

using the general-purpose register Z (comprised of r30 and r31)96. More specifically, the two 

registers (r30 and r31) now have the address on the Flash Memory of the look-up table’s first 

value. So to get to the rest of the values and eventually output them, all that needs to be done 

is “go” to the next address. This is done by the command “ADIW ZL,$01”, which will be used 

later on. The reason the table’s address was first acquired here (on the INIT where the initial 

setting for the interrupts were configured) is because when the time comes for the first look-

up table value to be read and sent to the PCB, the program knows where to look for it.   

Appendix Figure 19: Configuring the ports and getting the flash address of the look up table. 

 

The main loop is covered, as is the initialization and enabling of the interrupts. That only leaves 

explaining the part of the code that’s executed when each interrupt happens. 

 
95 For more information about each bit of each register and their functions see the board’s datasheet. 
96 Two register because the Flash memory address is 16bits. 
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Appendix Figure 20: What 's executed when the ADC interrupt happens. 

 

Starting with the ADC: after temporarily disabling the interrupts, the next thing is saving the 

Status Register’s information to general purpose register 19 for “safekeeping”. It’s a safety 

measure because depending on what’s in the main program, maybe while this part of the 

code is run, the Status Register’s data get changed which could lead to abnormal and 

unpredictable behaviour. The necessity of this was already stressed earlier (see page - 19 -). 

Next, the ADCRA register is re-configured the same way (as in the initialization), to reenable 

the ADC and auto-triggering among other minor settings. This is necessary – without it there 

would be an interrupt each time the potentiometer was used – but only the first time. 

Then, the result of the ADC – stored in ADCL and ADCH registers, is moved to the general-

purpose registers r20 and r21 respectively (see line 174-175 on Appendix Figure 20).  Through 

the value given to the ADMUX register, the ADCL and ADCH are left adjusted (visualized on 

Appendix Figure 21). 

Appendix Figure 21: Left adjusted ADCL and ADCH. 

 

This means that the MSB (ADC9) is located on the ADCH on the left of the “matrix”. By the 

command “LSR r21” the MSB (which was saved on r21 earlier) is shifted right four times (as 

the command is repeated four times). This leaves the four “most significant” spaces of the r21 

vacant. The next two commands are “LDI r16,$F0” and “add r21,r16”. The former gives the 

value of 𝐹0 (HEX) to the r16 register, and the latter adds the value of r16 to that of the r21 

and saves it on the r21. This results in the r21 having the value (from MSB: left to LSB: right): 

1 − 1 − 1 − 1 − 𝐴𝐷𝐶9 − 𝐴𝐷𝐶8 − 𝐴𝐷𝐶7 − 𝐴𝐷𝐶6 .  All this was done so the counter will still 
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count fast enough (at the appropriate range) for measuring on the custom PCB, while at the 

same time the potentiometer’s value has a noticeable effect on the frequency97. 

Then, on lines 184 and 185, the r20 gets its “vacant” places filled with 0’s, so later when this 

value is transferred to the counter’s starting number, it would lead to a bug. 

Lastly, the saved state of the Status Register is transferred back to the current Status Register, 

and the interrupts are reenabled. 

Appendix Figure 22: The code executed when the Timer interrupt happens. 

 

Continuing with the code that’s executed only when the Timer interrupts occurs, after the two 

known commands (lines 192, 193), the command “lpm” is executed. This command moves 

the contents of the ZL (==address) to r0. This is done cause the Z register is not a “normal” 

one like the other 32. This command along with r0 act as mediators. Indeed, after going to the 

next address of the table (line 196), the register r0 is used on line 197. All its data are 

transferred to the register r23. Now r23 “points” to the value the address on r0 was leading.  

On line 198 the value that the address on r23 points, is compared to $18, which is the last 

value of the look-up table (that’s how it’s detected if the end of the table is reached). If they 

are equal, the code jumps to the loop called “finito_sine”. If not, then the value is outputted 

to PORTB. Then, on lines 204-205, the values of the ADC’s current result are transferred to the 

TCNT1H and TCNT1L respectively, so when the counter starts counting again, it starts from the 

value given by the potentiometer. The rest three commands are already explained. 

Finally, on the “finito_sine” loop, the look-up table’s first value’s address is acquired again 

(lines 212-213), so we can start over and the output can be continuous and periodic as it 

should be. Again, the ADC’s current values are transferred to the initial number of the counter 

(lines 216 217).  

This conclude the ATmega1284P’s firmware analysis. 

 
97 Had this not been done, the frequency would be too low (without the four MSBs being constantly 1111) 
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Appendix Figure 23: finito_sine loop's code. 

 

Appendix Figure 24: The look-up table. 

 

Appendix Figure 25: The ATmega1284P board ready to be connected to the rest of the system. 
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A.7 ATmega CODE 
jmp INIT ; 0000 + 0001 -> flash memory address 

 

nop;1 

reti 

nop;2 

reti 

nop;3 

reti 

nop;4 

reti 

nop;5 

reti 

nop;6 

reti 

nop;7 

reti 

nop;8 

reti 

nop;9 

reti 

nop;10 

reti 

nop;11 

reti 

nop;12 

reti 

nop;13 

reti 

nop;14 

reti 

jmp TIMER1_OVF ;15  

;reti 

nop;16 

reti 

nop;17 

reti 

nop;18 

reti 

nop;19 

reti 

nop;20 

reti 

nop;21 

reti 

nop;22 

reti 

NOP;22 

RETI 

jmp ADC_INTER;23 ;flash memory address -> 0030 + 0031 

reti 

nop;24 

reti 

nop;25 

reti 

nop;26 

reti 

nop;27 
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reti 

nop;28 

reti 

nop;29 

reti 

nop;30  

reti 

nop;31 

reti 

nop;32 

reti 

nop;33 

reti 

nop;34 

reti 

nop;35 

reti 

 

INIT: 

  

 cli ; disables interrupts 

  

;---------setting the adc interrupt------------------- 

 ldi r16,$E0 

 STS ADMUX,r16 

 

 ldi r16,$E8 

 STS ADCSRA,r16 

 

 ldi r16,$00 

 STS ADCSRB,r16 

 

 ldi r16,$FF 

 STS DIDR0,r16 

 

 ;ADCL and ADCH – The ADC Data Register 

 ldS r20,ADCL 

 ldS r21,ADCH 

  

 ;ADMUX->11 0 00000 

 ;      ;  ↓ 

 ;    ;right adjust 

  

 ;---------setting the timer1 interrupt initial settings------------------- 

 

 ; σεταρω καταλληλα τα registers 

 ldi r16,$00 

 STS TCCR1A,r16 ;->00 00 00 00 

  

 ldi r16,$01 

 STS TCCR1B,r16 ;-> 00 00 01 01    SO bySETTING TCCR1A AND TCCR1B LIKE 

THAT, WGM13 WGM12 WGM11 WGM10→ 0000 WHICH MEANS NORMAL OPERATION (NO PWM 

etc) (2 of them are in TCCR1A and the other 2 in TCCR1B) 

 ;the last 3 bits of TCCR1B are choosing the clock prescaler 

  

 ldi r16,$00 

 STS TCCR1C,r16 

  

 ldi r16,$01 

 STS TIMSK1, r16 
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 ldi r16,$01 

 STS TIFR1,r16 

 ; Im giving to the counter an initial value  

 ldi r16,$01 

 ldi r17,$01 

 STS TCNT1H,r16  

 STS TCNT1L,r17 

 

 

 sei ;enables interrupts 

 ;--------------------------------------------------------- 

 

 LDI R17,$FF 

 OUT DDRB,R17; output 

 

 LDI R17,$00 

 OUT DDRA,R17;INPUT (IN PINA WE WILL CONNECT THE POTENTIOMETER, CAUSE 

PORTA IS CONNECTED TO AN ONBOARD ADC) 

 ldi r17, $FF ; Init value 

 out PORTA, r17 ; Enable pull-up resistors 

 LDI R17,$00 

  

 LDI ZH, HIGH(sinetable*2) 

 LDI ZL, LOW(sinetable*2); ta settarw εδω, γιατι την πρώτη φορά που θα 

κανει o timer interrupt, θα πρεπει να ξερει που θα διαβάσει. 

 

main: 

 nop 

     nop 

 nop 

 nop 

 nop 

 nop 

 nop 

 nop 

rjmp main 

 

sinetable: 

 .DW 

$887F,$9A91,$ACA3,$BDB4,$CCC5,$DAD3,$E6E0,$EFEB,$F7F3,$FBF9,$FDFD,$FDFD,$F9

FB,$F3F7,$EBEF,$E0E6,$D3DA,$C5CC,$B4BD,$A3AC,$919A,$7F88,$6C75,$5A63,$4951,

$3840 

 .DW 

$2A31,$1D23,$1217,$0A0E,$0406,$0002,$0000,$0200,$0604,$0E0A,$1712,$231D,$31

2A,$4038,$5149,$635A,$756C,$0018 

 

ADC_INTER: 

 

 cli ; disables interrupts 

 in r19,sreg 

  

 ldi r16,$E8 

 STS ADCSRA,r16 

 

  ;ADCL and ADCH – The ADC Data Register 

  ;ADCL and ADCH – The ADC Data Register 

 ldS r20,ADCL; Both must be read so the register gets updated 

 ldS r21,ADCH; Both must be read so the register gets updated 

 

 

 LSR r21 
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 LSR r21 

 LSR r21 

 LSR r21 

 

 LDI R16,$F0 

 add r21,r16; 1111 xxxx 

 LDI R16,$00; xx00 0000  

 add r20,r16 

 out sreg,r19 

 sei ;enables interrupts 

 reti 

  

TIMER1_OVF: 

 

 cli 

 in r19,SREG 

 

 lpm 

 adiw zl,$01 

 mov r23,r0  

 cpi r23,$18 ; that’s the last value of the table 

 breq finito_sine 

 OUT portb, R23 

  

 ;;ldi r20,$00 

 ;ldi r21,$00 

 STS TCNT1H,r21; Taking the values from the ADC – that’s how I can 

change the frequency 

 

 STS TCNT1L,r20; Taking the values from the ADC – that’s how I can 

change the frequency 

 

 out SREG,r19 

 sei 

reti 

  

finito_sine: 

 

 LDI ZH, HIGH(sinetable*2) 

 LDI ZL, LOW(sinetable*2) 

 ;ldi r20,$00 

 ;ldi r21,$00 

 STS TCNT1H,r21; Taking the values from the ADC – that’s how I can 

change the frequency 

 

 STS TCNT1L,r20; Taking the values from the ADC – that’s how I can 

change the frequency 

 

 

 out SREG,r19 

 sei 

reti  
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A.8 MATLAB CODE 
CODE CREATING THE CLASS 

classdef Get_data_class2 < handle  %This is a Handle Class 

    properties (SetAccess = public) 

        rt_data=[]; 

        time_variable=[]; 

        board=[]; 

        Sample_Freq=[]; 

        Samples=[]; 

        Fourier_data=[]; 

        Hertz=[]; 

        Filtered_data=[]; % 

        Filter_Fourier_data=[]; 

        Filter_Hertz=[]; 

        tab1_plots=zeros(3,1); 

        tab2_plots=zeros(3,1); 

        tab3_plots=zeros(3,1); 

        Filter_Spec_plots=zeros(2,1); 

        prog_bar; 

        Fourier_Peaks_Input=[]; 

        Fourier_Peak_Pos_Input=[]; 

        Fourier_Peaks_Filtered=[]; 

        Fourier_Peak_Pos_Filtered=[]; 

        tab1_edt_field; 

        tab2_edt_field; 

        tab3_edt_field; 

        Filter_Cutoff_Ang_Freq; 

        Filter_order; 

        Var_window=zeros(2,1); 

        Spec_window=zeros(2,1); 

        Baudrate; 

        Offset; 

    end 

    methods 

        function S=saveobj(obj) % defining a save object method 

            %S.board=obj.board; no need to be saved 

            S.rt_data=obj.rt_data; 

            S.time_variable=obj.time_variable; 

            S.Sample_Freq=obj.Sample_Freq; 

            S.Samples=obj.Samples; 

            S.Filtered_data=obj.Filtered_data; 

            S.Fourier_data=obj.Fourier_data; 

            S.Hertz=obj.Hertz; 

            S.Filter_Fourier_data=obj.Filter_Fourier_data; 

            S.Filter_Hertz=obj.Filter_Hertz; 

            S.Fourier_Peaks_Input=obj.Fourier_Peaks_Input; 

            S.Fourier_Peak_Pos_Input=obj.Fourier_Peak_Pos_Input; 

            S.Fourier_Peaks_Filtered=obj.Fourier_Peaks_Filtered; 

            S.Fourier_Peak_Pos_Filtered=obj.Fourier_Peak_Pos_Filtered; 

            %s.tab1_edt_field=obj.tab1_edt_field;→ no need to be saved 

            %s.tab2_edt_field=obj.tab2_edt_field;→ no need to be saved 

            %s.tab3_edt_field=obj.tab3_edt_field;→ no need to be saved 

            S.Filter_Cutoff_Ang_Freq=obj.Filter_Cutoff_Ang_Freq; 

            S.Filter_order=obj.Filter_order; 

            S.Baudrate=obj.Baudrate; 

            S.Offset=obj.Offset; 

        end 

    end 

end 
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THE APPLICATION SOURCE CODE 

function main_function() 

    %%  creating an object by calling a predefined class 

    myclass = Get_data_class2; 

    Contents(myclass) 

end 

function Contents(myclass,main_fig) 

    %% creating the main uifigure(window), in which the whole app will be 

displayed 

    if (~exist('main_fig','var')) 

        main_fig=uifigure(); 

        main_fig.WindowState='maximize'; 

    end 

    main_fig.MenuBar='none'; 

    main_fig.NumberTitle='off'; 

    main_fig.Name='ELF Signal Analyzer'; 

    main_fig.Resize='on'; 

    main_fig.Color = "#86b2b5"; 

    main_fig.AutoResizeChildren='off'; 

    main_fig.CloseRequestFcn={@Close,myclass,main_fig}; 

    %% creating a grid just so I can make the Tabs take on the full window 

    pause(2);% Delay so everything loads before opening the window 

    grid=uigridlayout(main_fig,[1 1]); 

    grid.BackgroundColor=[0.8 0.8 0.8]; 

    grid.RowHeight={'1x'}; 

    grid.ColumnWidth={'1x'}; 

    grid.RowSpacing=0; 

    grid.Padding=[0 0 0 0]; 

    %% setting the autoresize callback function ↓ 

    main_fig.SizeChangedFcn={@Resize,myclass}; 

    %% creating a tab group and assigning some of its attributes 

    tg = uitabgroup(grid); 

    tg.TabLocation='top'; 

    tg.Units='normalized'; 

    %% setting the 3 tabs and their attributes 

    tab1 = uitab(tg,"Title","Sampling"); 

    tab1.BackgroundColor= '#86b2b5'; 

    tab1.ForegroundColor=[0 0 0]; 

    tab1.AutoResizeChildren='off'; 

 

    tab2 = uitab(tg,"Title","Filtering"); 

    tab2.BackgroundColor= "#86b2b5"; 

    tab2.ForegroundColor=[0 0 0]; 

    tab2.Scrollable='on'; 

 

    tab3 = uitab(tg,"Title","Comparison"); 

    tab3.BackgroundColor= "#86b2b5"; 

    tab3.ForegroundColor=[0 0 0]; 

    tab3.Scrollable='on'; 

    %% creating a menu to view different key variables in this confined space 

    m1 = uimenu('Parent',main_fig,'Text','File'); 

    m11= uimenu(m1,'Text','Save'); 

    uimenu(m11,'Text','Matlab File','Tooltip','As a .mat 

file','Accelerator','M','MenuSelectedFcn',{@SaveAsMat,myclass,main_fig}); 

    uimenu(m11,'Text','Excel 

File','Separator','on','Accelerator','E','MenuSelectedFcn',{@SaveAsExcel,my

class,main_fig}) 

    uimenu(m11,'Text','Text 

File','Separator','on','Accelerator','T','MenuSelectedFcn',{@SaveAsText,myc

lass,main_fig}) 
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    uimenu(m1,'Text','Load','Separator','on','Tooltip',"Load previous 

files",'Accelerator','L','MenuSelectedFcn',{@Load_func,myclass,main_fig}) 

 

    m2 = uimenu('Parent',main_fig,'Text','&View Variables'); 

    m2.MenuSelectedFcn={@View_Var,myclass,main_fig}; 

    m2.Accelerator='K'; 

 

    m4= uimenu('Parent',main_fig,'Text','Tools'); 

    uimenu(m4,'Text','Start 

Sampling','Accelerator','B','MenuSelectedFcn',{@checkifavailable,myclass,ma

in_fig}); 

    uimenu(m4,'Text','Reset','Tooltip',"Reset all 

data",'Separator','on','Accelerator','R','MenuSelectedFcn',{@Reset,myclass,

main_fig}) 

    uimenu(m4,'Text','Filter','Tooltip',"Filter the input 

signal",'Separator','on','Accelerator','G','MenuSelectedFcn',{@plot_tab2,ma

in_fig,myclass}) 

 

    uimenu('Parent',main_fig,'Text','&Filter 

Specifications','Tooltip',"View and change filter 

specifications",'MenuSelectedFcn',{@Filter_Spec_Window,myclass}); 

 

    %% now im calling the tab1_function, tab2functions and tab3functions, so 

Everything is loaded as soon as the user opens the app 

    tab1_function(tab1,myclass); 

    tab2_function(tab2,myclass); 

    tab3_function(tab3,myclass); 

end 

function tab1_function(tab1,myclass) 

    %%  main window properties 

    mw1=tab1; %mw1=main window 

    %%  creating a grid inside the tab1 window 

    gr1=uigridlayout(mw1,[4 1]); % 2x1 grid (rows x columns) 

    gr1.Padding= [0 0 0 0] ; % [left bottom right top] 

    gr1.BackgroundColor='#86b2b5'; 

    gr1.RowHeight={'fit','fit','fit','fit'}; 

    gr1.Scrollable='on'; 

    gr12=uigridlayout(gr1,[1 5]); 

    gr12.BackgroundColor='#86b2b5'; 

    gr12.RowHeight={'0.5x'}; 

    gr12.ColumnWidth={'1x','1x','1x','1x','fit'}; 

    gr12.ColumnSpacing=15; 

    gr12.Layout.Row=1; 

    gr12.Padding=[10 0 10 2];% [left bottom right top] 

    %% creating an edifield so the port is Displayed 

    edt_tab1=uieditfield(gr12); 

    edt_tab1.Layout.Row=1; 

    edt_tab1.Layout.Column=5; 

    edt_tab1.HorizontalAlignment='center'; 

    edt_tab1.Placeholder='No port connected'; 

    edt_tab1.Editable='off'; 

    edt_tab1.BackgroundColor="#f0c7a3"; 

    edt_tab1.Tooltip='This field displays the current port to which the app 

is connected.'; 

    myclass.tab1_edt_field=edt_tab1; 

    %%      setting my plot attributes 

    ax1=uiaxes('Parent',gr1); 

    ax2=uiaxes('Parent',gr1); 

    ax3=uiaxes('Parent',gr1); 

 

    ax1.Layout.Row=2; 
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    ax2.Layout.Row=3; 

    ax3.Layout.Row=4; 

 

    ax1.Title.String='Input Signal'; 

    ax1.XLabel.String='Sample size'; 

    ax1.YLabel.String='Magnitude'; 

    ax1.XGrid='on'; 

    ax1.YGrid='on'; 

    ax1.Color=[0.1 0.1 0.1]; 

    ax1.GridColor='#00FFFF'; 

    ax1.GridAlpha=0.22; 

    ax1.TickDir='out'; 

 

    ax2.Title.String='Input Signal'; 

    ax2.XLabel.String='Time(sec)'; 

    ax2.YLabel.String='Magnitude'; 

    ax2.XGrid='on'; 

    ax2.YGrid='on'; 

    ax2.Color=[0.1 0.1 0.1]; 

    ax2.GridColor='#00FFFF'; 

    ax2.GridAlpha=0.22; 

    ax2.TickDir='out'; 

 

    ax3.Title.String= 'Fourier Transform of Input Signal'; 

    ax3.XLabel.String='Frequency(Hz)'; 

    ax3.YLabel.String='Magnitude'; 

    ax3.XGrid='on'; 

    ax3.YGrid='on'; 

    ax3.Color=[ 0.1 0.1 0.1]; 

    ax3.GridColor='#00FFFF'; 

    ax3.GridAlpha=0.22; 

    ax3.TickDir='out'; 

    %% plotting in the axis if data exist (in case user presses "refresh" 

and has already sampled data) 

    plot(ax1,myclass.rt_data,'- .','Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

 

    plot(ax2,myclass.time_variable, myclass.rt_data,'- .','Color',[1.0000 

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); % plot marker 

properties : https://www.mathworks.com/help/matlab/creating_plots/specify-

line-and-marker-appearance-in-plots.html 

 

    plot(ax3,myclass.Hertz,myclass.Fourier_data,'- .','Color',[1.0000 

0.4706 0.0902],"MarkerEdgeColor",[0 0 0],"MarkerSize",8) 

    %% giving the axis a "global" handle 

    myclass.tab1_plots(1)=ax1; 

    myclass.tab1_plots(2)=ax2; 

    myclass.tab1_plots(3)=ax3; 

end 

function Resize(src,~,~) 

    %% getting the full size of tab1 

    width=src.Position(3); 

    height=src.Position(4); 

    %% resize grid to give it the full window space 

    children=get(src,'Children'); 

    children(5).RowHeight= height; 

    children(5).ColumnWidth=width; 

end 

function View_Var(~,~,myclass,main_fig) 
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    if 

(isempty(myclass.rt_data))&&(isempty(myclass.time_variable))&&(isempty(mycl

ass.Samples))&&(isempty(myclass.Fourier_data))&&(isempty(myclass.Hertz)) 

        beep; 

        uialert(main_fig,{'No data found to view','First take samples from 

the Serial port device.'},'Error','Icon','error'); 

        return 

    end 

    if myclass.Var_window(1)==true 

        return 

    end 

    myclass.Var_window(1)=true; 

    %% creating a Table with the data and Variables 

    extra_samples=zeros(1,length(myclass.rt_data)); 

    extra_samples(1)=myclass.Samples; 

    extra_samples(2:end)=0/0; 

 

    extra_Sample_Freq=zeros(1,length(myclass.rt_data)); 

    extra_Sample_Freq(1)=myclass.Sample_Freq; 

    extra_Sample_Freq(2:end)=0/0; 

 

    extra_Baudrate=zeros(1,length(myclass.rt_data)); 

    extra_Baudrate(1)=myclass.Baudrate; 

    extra_Baudrate(2:end)=0/0; 

 

    extra_Offset=zeros(1,length(myclass.rt_data)); 

    extra_Offset(1)=myclass.Offset; 

    extra_Offset(2:end)=0/0; 

 

    extra_Peaks_Input=zeros(1,length(myclass.rt_data)); 

    

extra_Peaks_Input(1:length(myclass.Fourier_Peaks_Input))=myclass.Fourier_Pe

aks_Input; 

    extra_Peaks_Input(length(myclass.Fourier_Peaks_Input)+1:end)=0/0; 

 

    extra_Peaks_Pos_Input=zeros(1,length(myclass.rt_data)); 

    

extra_Peaks_Pos_Input(1:length(myclass.Fourier_Peak_Pos_Input))=myclass.Fou

rier_Peak_Pos_Input; 

    

extra_Peaks_Pos_Input(length(myclass.Fourier_Peak_Pos_Input)+1:end)=0/0; 

 

    extra_Peaks_Filtered=zeros(1,length(myclass.rt_data)); 

    

extra_Peaks_Filtered(1:length(myclass.Fourier_Peaks_Filtered))=myclass.Four

ier_Peaks_Filtered; 

    extra_Peaks_Filtered(length(myclass.Fourier_Peaks_Filtered)+1:end)=0/0; 

 

    extra_Peaks_Pos_Filtered=zeros(1,length(myclass.rt_data)); 

    

extra_Peaks_Pos_Filtered(1:length(myclass.Fourier_Peak_Pos_Filtered))=mycla

ss.Fourier_Peak_Pos_Filtered; 

    

extra_Peaks_Pos_Filtered(length(myclass.Fourier_Peak_Pos_Filtered)+1:end)=0

/0; 

 

    extra_Input_Fourier_data=zeros(1,length(myclass.rt_data)); 

    

extra_Input_Fourier_data(1:length(myclass.Fourier_data))=myclass.Fourier_da

ta(1:end); 

    extra_Input_Fourier_data(length(myclass.Fourier_data)+1:end)=0/0; 
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    extra_Input_Hertz=zeros(1,length(myclass.rt_data)); 

    extra_Input_Hertz(1:length(myclass.Hertz))=myclass.Hertz(1:end); 

    extra_Input_Hertz(length(myclass.Hertz)+1:end)=0/0; 

 

    extra_Filtered_Fourier_data=zeros(1,length(myclass.rt_data)); 

    

extra_Filtered_Fourier_data(1:length(myclass.Filter_Fourier_data))=myclass.

Filter_Fourier_data(1:end); 

    

extra_Filtered_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=0/0; 

 

    extra_Filtered_Hertz_data=zeros(1,length(myclass.rt_data)); 

    

extra_Filtered_Hertz_data(1:length(myclass.Filter_Hertz))=myclass.Filter_He

rtz(1:end); 

    extra_Filtered_Hertz_data(length(myclass.Filter_Hertz)+1:end)=0/0; 

 

    Filtered_data=zeros(1,length(myclass.rt_data)); 

 

    extra_Filter_Cutoff_Ang_Freq=zeros(1,length(myclass.rt_data)); 

 

    extra_Filter_order=zeros(1,length(myclass.rt_data)); 

 

    if ~isempty(myclass.Filter_Cutoff_Ang_Freq) && 

~isempty(myclass.Filter_order) && ~isempty(myclass.Filtered_data) 

        Filtered_data(1:end)=myclass.Filtered_data; 

 

        

extra_Filter_Cutoff_Ang_Freq(1)=myclass.Filter_Cutoff_Ang_Freq/(2*pi); 

        extra_Filter_Cutoff_Ang_Freq(2:end)=0/0; 

 

        extra_Filter_order(1)=myclass.Filter_order; 

        extra_Filter_order(2:end)=0/0; 

    else 

        Filtered_data(1:end)=0/0; 

        extra_Filter_Cutoff_Ang_Freq(1:end)=0/0; 

        extra_Filter_order(1:end)=0/0; 

    end 

    % saving all ↓ 

    Vars=table(myclass.rt_data',myclass.time_variable',Filtered_data',... 

        

extra_Input_Fourier_data',extra_Input_Hertz',extra_Filtered_Fourier_data',e

xtra_Filtered_Hertz_data',... 

        

extra_Peaks_Input',extra_Peaks_Pos_Input',extra_Peaks_Filtered',extra_Peaks

_Pos_Filtered',... 

        

extra_Sample_Freq',extra_samples',extra_Filter_Cutoff_Ang_Freq',extra_Filte

r_order',extra_Baudrate',extra_Offset'); 

    %% creating a uifigure and grid layout to show everything 

    Var_fig=uifigure('Name','Data and Key Variables'); 

    myclass.Var_window(2)=Var_fig; 

    Var_fig.DeleteFcn={@Close_Window_Request,myclass}; 

    Var_grid1=uigridlayout(Var_fig,[2 1]); 

    Var_grid1.RowHeight={'1x',50}; 

    Var_grid2=uigridlayout(Var_grid1,[1 4]); 

    Var_grid2.Layout.Row=2; 

    Var_grid2.ColumnWidth={'1x','1x','1x','0.5x'}; 

    %% creating a uitable to show the data in a specific format 

    uit=uitable(Var_grid1); 
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    uit.ColumnName={'Input Signal','Time','Filtered Signal',... 

        "Input Signal's Fourier Transform's Magnitude","Input Signal's 

Fourier Transform's Frequency (Hz)",... 

        "Filtered Signal's Fourier Transform's Magnitude","Filtered Signal's 

Fourier Transform's Frequency (Hz)",... 

        "Magnitude of Input Signal's Fourier Peaks","Position of Input 

Signal's Fourier Peaks (Hz)",... 

        "Magnitude of Filtered Signal's Peaks","Position of Filtered 

Signal's Peaks (Hz)",... 

        'Sampling Frequency','Number of Samples','Cutoff Frequency 

(Hz)','Filter Order','Baudrate used',"Signal's Voltage Offset (V)"}; 

    uit.Data=Vars; 

    uit.Layout.Row=1; 

    uit.RowName = 'numbered'; 

    %% creating a menu bar(so the user can save data from here too) 

    export = uimenu('Parent',Var_fig,'Text','Exp&ort Data'); 

    uimenu(export,'Text','Matlab File','Tooltip','As a .mat 

file','Accelerator','M','MenuSelectedFcn',{@SaveAsMat,myclass,main_fig}); 

    uimenu(export,'Text','Excel 

File','Separator','on','Accelerator','E','MenuSelectedFcn',{@SaveAsExcel,my

class,main_fig}) 

    uimenu(export,'Text','Text 

File','Separator','on','Accelerator','T','MenuSelectedFcn',{@SaveAsText,myc

lass,main_fig}) 

    %% creating a close button 

    Cls_btn=uibutton(Var_grid2); 

    Cls_btn.Layout.Column=4; 

    Cls_btn.Text='Close'; 

    Cls_btn.ButtonPushedFcn={@(x,y)delete(Var_fig)}; 

end 

function Reset(~,~,myclass,main_fig) 

    main_fig.Name='ELF Signal Analyzer'; 

    for k1=1:1:3 

        c1=myclass.tab1_plots(k1); 

        cla(c1); 

    end 

    % reseting them as empty variables 

    myclass.rt_data=[]; 

    myclass.time_variable=[]; 

    myclass.board=[]; 

    myclass.Sample_Freq=[]; 

    myclass.Samples=[]; 

    myclass.Fourier_data=[]; 

    myclass.Hertz=[]; 

    myclass.Filtered_data=[]; 

    myclass.Filter_Fourier_data=[]; 

    myclass.Filter_Hertz=[]; 

    myclass.Fourier_Peaks_Input=[]; 

    myclass.Fourier_Peak_Pos_Input=[]; 

    myclass.Fourier_Peaks_Filtered=[]; 

    myclass.Fourier_Peak_Pos_Filtered=[]; 

    myclass.prog_bar=[]; 

    myclass.tab1_edt_field.Value=''; 

    myclass.tab2_edt_field.Value=''; 

    myclass.tab3_edt_field.Value=''; 

    myclass.Filter_Cutoff_Ang_Freq=[]; 

    myclass.Filter_order=[]; 

    myclass.Baudrate=[]; 

    myclass.Offset=[]; 

 

    for k2=1:1:3 
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        c2=myclass.tab2_plots(k2); 

        cla(c2); 

        c3=myclass.tab3_plots(k2); 

        cla(c3); 

    end 

end 

function Load_func(~,~,myclass,main_fig) 

    [file,path] = uigetfile('.mat'); 

 

    if (isequal(file,0)) && (isequal(path,0)) 

        return 

    end 

 

    file_type=extractAfter(file,"."); 

    if strcmp(file_type,"mat")==0 

        beep 

        uialert(main_fig,{'You tried to load an incompatible save file.',... 

            'Please ensure that the save files have a ".mat" 

extension.'},'Error while loading data','CloseFcn',@(h,e) close(gcf)); 

        return 

    end 

    full_path=strcat(path,file); 

    load(full_path,'S'); 

    if (isempty(S.rt_data))||(isempty(S.time_variable))... 

            ||(isempty(S.Sample_Freq))||(isempty(S.Samples))... 

            ||(isempty(S.Fourier_data))||(isempty(S.Hertz))... 

            

||(isempty(S.Fourier_Peaks_Input))||(isempty(S.Fourier_Peak_Pos_Input)) 

 

        beep 

        uialert(main_fig,{'You tried to load an incompatible save file.',... 

            'Please ensure that the save files came from this app.'},'Error 

while loading data','CloseFcn',@(h,e) close(gcf)); 

        clear S; 

        return 

    end 

    %% importing (in the current class instance) the data that are definetely 

saved 

    myclass.rt_data=S.rt_data; 

    myclass.time_variable=S.time_variable; 

    myclass.Samples=S.Samples; 

    myclass.Fourier_data=S.Fourier_data; 

    myclass.Hertz=S.Hertz; 

    myclass.Sample_Freq=S.Sample_Freq; 

    myclass.Fourier_Peaks_Input=S.Fourier_Peaks_Input; 

    myclass.Fourier_Peak_Pos_Input=S.Fourier_Peak_Pos_Input; 

    myclass.Baudrate=S.Baudrate; 

    myclass.Offset=S.Offset; 

    %%  Changing the name of the window so the user can see the name of the 

file they loaded while working on the app 

    main_fig.Name=append('ELF Signal Analyzer',' - ',file); 

    %% plots of tab1 

    ax1=myclass.tab1_plots(1); 

    plot(ax1,myclass.rt_data,'- .','Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    ax2=myclass.tab1_plots(2); 

    plot(ax2,myclass.time_variable,myclass.rt_data,'- .','Color',[1.0000 

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

    ax3=myclass.tab1_plots(3); 

    plot(ax3,myclass.Hertz,myclass.Fourier_data,'- .','Color',[1.0000 

0.4706 0.0902],"MarkerEdgeColor",[0 0 0],"MarkerSize",8) 
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    %% checking if the rest of the class data were saved in the file we are 

trying to load and if yes, importing them as well 

    if 

(isempty(S.Filtered_data))||(isempty(S.Filter_Fourier_data))||(isempty(S.Fi

lter_Hertz))... 

            

||(isempty(S.Filter_Cutoff_Ang_Freq))||(isempty(S.Filter_order)) 

        return 

    end 

    %% importing (in the current class instance) the rest of the saved data 

    myclass.Filtered_data=S.Filtered_data; 

    myclass.Filter_Fourier_data=S.Filter_Fourier_data; 

    myclass.Filter_Hertz=S.Filter_Hertz; 

    myclass.Fourier_Peaks_Filtered=S.Fourier_Peaks_Filtered; 

    myclass.Fourier_Peak_Pos_Filtered=S.Fourier_Peak_Pos_Filtered; 

    myclass.Filter_Cutoff_Ang_Freq=S.Filter_Cutoff_Ang_Freq; 

    myclass.Filter_order=S.Filter_order; 

 

    %% plots of tab2 

    plot(myclass.tab2_plots(1),myclass.Filtered_data,'- .','Color',[1.0000 

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

 

    

plot(myclass.tab2_plots(2),myclass.time_variable,myclass.Filtered_data,'- 

.','Color',[1.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

 

    

plot(myclass.tab2_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'- .','Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

    %% plots of tab3 

    plot(myclass.tab3_plots(1),myclass.rt_data,'Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    hold(myclass.tab3_plots(1),'on');% 'hold on' but for uiaxes 

    plot(myclass.tab3_plots(1),myclass.Filtered_data,'Color',[0 0.4470 

0.7410],"MarkerEdgeColor","k","MarkerSize",8) 

    legend(myclass.tab3_plots(1),{'Input Signal','Filtered 

Signal'},'EdgeColor','white','TextColor','white'); 

    hold(myclass.tab3_plots(1),'off'); 

 

    

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.rt_data,'Color',[1

.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    hold(myclass.tab3_plots(2),'on');% 'hold on' but for uiaxes 

    

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.Filtered_data,'Col

or',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8) 

    legend(myclass.tab3_plots(2),{'Input Signal','Filtered 

Signal'},'EdgeColor','white','TextColor','white'); 

    hold(myclass.tab3_plots(2),'off'); 

 

    

plot(myclass.tab3_plots(3),myclass.Hertz,myclass.Fourier_data,'Color',[1.00

00 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    hold(myclass.tab3_plots(3),'on');% 'hold on' but for uiaxes 

    

plot(myclass.tab3_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'Color',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8) 

    legend(myclass.tab3_plots(3),{'Input Signal','Filtered 

Signal'},'EdgeColor','white','TextColor','white'); 

    hold(myclass.tab3_plots(3),'off'); 
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end 

function Close(~,~,myclass,main_fig) 

    msg='You are about to close the program'; 

    title='Confirm Exit'; 

    selection=uiconfirm(main_fig,msg,title,'Icon','warning',... 

        'Options',{'Save and Exit','Don''t Save','Cancel'},... 

        'DefaultOption',1,'CancelOption',3); 

    switch selection 

        case 'Save and Exit' 

            if 

(~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))... 

                    

&&(~isempty(myclass.Samples))&&(~isempty(myclass.Sample_Freq))... 

                    

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))... 

                    

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))... 

                    

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field)) 

                if (isempty(myclass.Filtered_data))... 

                        

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

. 

                        

&&(isempty(myclass.Fourier_Peaks_Filtered))&&(isempty(myclass.Fourier_Peak_

Pos_Filtered))... 

                        

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

) 

                    beep; 

                    uialert(main_fig,{'You are only saving the data of the 

Input signal.','If you filter first, you will save additional data about the 

filter and the filtered signal.'},... 

                        'Warning','Icon','info','CloseFcn',{@(x,y) 

uiresume(main_fig)}) 

                    uiwait(main_fig); 

                end 

                %% creating a dialog box for the user 

                defaultFileName=fullfile(pwd,'*.mat'); 

                [baseFileName, folder] = uiputfile(defaultFileName, 'Specify 

a file'); 

                if (baseFileName == 0) 

                    return; 

                end 

                [~, baseFileNameNoExt, ~] = fileparts(baseFileName); 

                fullFileName = fullfile(folder, [baseFileNameNoExt, 

'.mat']); 

                S=myclass.saveobj(); 

                save(fullFileName,'S'); 

                delete(findall(0)); 

            else 

                beep; 

                uialert(main_fig,{'No data found to save','First take 

samples from the Serial port device.'},'Error','Icon','error'); 

                return 

            end 

        case  "Don't Save" 

            delete(findall(0)); 

    end 
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end 

function SaveAsMat(~,~,myclass,main_fig) 

    if (~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))... 

            &&(~isempty(myclass.Baudrate))&&(~isempty(myclass.Offset))... 

            

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))... 

            

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))... 

            

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field)) 

        if (isempty(myclass.Filtered_data))... 

                

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

. 

                

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

) 

            beep; 

            uialert(main_fig,{'You are only saving the data of the Input 

signal.','If you filter first, you will save additional data about the filter 

and the filtered signal.'},... 

                'Warning','Icon','info','CloseFcn',{@(x,y) 

uiresume(main_fig)}) 

            uiwait(main_fig); 

        end 

        %% creating a dialog box for the user 

        defaultFileName=fullfile(pwd,'*.mat'); 

        [baseFileName, folder] = uiputfile(defaultFileName, 'Specify a 

file'); 

        if (baseFileName == 0) 

            return; 

        end 

        [~, baseFileNameNoExt, ~] = fileparts(baseFileName); 

        fullFileName = fullfile(folder, [baseFileNameNoExt, '.mat']); 

        S=myclass.saveobj(); 

        save(fullFileName,'S'); 

        return 

    else 

        beep; 

        uialert(main_fig,{'No data found to save','First take samples from 

the Serial port device.'},'Error','Icon','error'); 

        return 

    end 

end 

function SaveAsExcel(~,~,myclass,main_fig) 

    if (~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))... 

            

&&(~isempty(myclass.Samples))&&(~isempty(myclass.Sample_Freq))... 

            &&(~isempty(myclass.Baudrate))&&(~isempty(myclass.Offset))... 

            

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))... 

            

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))... 

            

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field)) 

 

        old_rt_data = myclass.rt_data; 
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        old_time=myclass.time_variable; 

 

        old_samples=zeros(1,length(myclass.rt_data)); 

        old_samples(1)=myclass.Samples; 

        old_samples(2:end)=0/0; 

 

        old_Sample_Freq=zeros(1,length(myclass.rt_data)); 

        old_Sample_Freq(1)=myclass.Sample_Freq; 

        old_Sample_Freq(2:end)=0/0; 

 

        old_Baudrate=zeros(1,length(myclass.rt_data)); 

        old_Baudrate(1)=myclass.Baudrate; 

        old_Baudrate(2:end)=0/0; 

 

        old_Offset=zeros(1,length(myclass.rt_data)); 

        old_Offset(1)=myclass.Offset; 

        old_Offset(2:end)=0/0; 

 

        old_Peaks_Input=zeros(1,length(myclass.rt_data)); 

        

old_Peaks_Input(1:length(myclass.Fourier_Peaks_Input))=myclass.Fourier_Peak

s_Input; 

        old_Peaks_Input(length(myclass.Fourier_Peaks_Input)+1:end)=0/0; 

 

        old_Peaks_Pos_Input=zeros(1,length(myclass.rt_data)); 

        

old_Peaks_Pos_Input(1:length(myclass.Fourier_Peak_Pos_Input))=myclass.Fouri

er_Peak_Pos_Input; 

        

old_Peaks_Pos_Input(length(myclass.Fourier_Peak_Pos_Input)+1:end)=0/0; 

 

        old_Input_Fourier_data=zeros(1,length(myclass.rt_data)); 

        

old_Input_Fourier_data(1:length(myclass.Fourier_data))=myclass.Fourier_data

(1:end); 

        old_Input_Fourier_data(length(myclass.Fourier_data)+1:end)=0/0; 

 

        old_Input_Hertz=zeros(1,length(myclass.rt_data)); 

        old_Input_Hertz(1:length(myclass.Hertz))=myclass.Hertz(1:end); 

        old_Input_Hertz(length(myclass.Hertz)+1:end)=0/0; 

 

        %% creating a Tables with the data and Variable Names 

 

        T1=table(old_rt_data','VariableNames',{'Input Signal'}); 

        T2=table(old_time','VariableNames',{'Time Variable  (sec)'}); 

        T3=table(old_Input_Fourier_data','VariableNames',{'Magnitude of the 

Fourier Transform of Input Signal'}); 

        T4=table(old_Input_Hertz','VariableNames',{'Hertz of the Fourier 

Transform of Input Signal'}); 

        T5=table(old_samples','VariableNames',{'Number of samples'}); 

        T6=table(old_Sample_Freq','VariableNames',{'Sampling Frequency 

(Hz)'}); 

        T7=table(old_Baudrate','VariableNames',{'Baudrate used'}); 

        T8=table(old_Offset','VariableNames',{'Voltage Offset of Input 

Signal (V)'}); 

        T9=table(old_Peaks_Input','VariableNames',"Input Signal's Fourier 

Transform's Peaks' Magnitude"); 

        T10=table(old_Peaks_Pos_Input','VariableNames',"Input Signal's 

Fourier Transform's Peaks' Position (Hz)"); 

 

        if (isempty(myclass.Filtered_data))... 
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&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

. 

                

&&(isempty(myclass.Fourier_Peaks_Filtered))&&(isempty(myclass.Fourier_Peak_

Pos_Filtered))... 

                

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

) 

            beep; 

            uialert(main_fig,{'You are only saving the data of the Input 

signal.','If you filter first, you will save additional data about the filter 

and the filtered signal.'},... 

                'Warning','Icon','info','CloseFcn',{@(x,y) 

uiresume(main_fig)}) 

            uiwait(main_fig); 

 

            T_all=[T1,T2,T3,T4,T5,T6,T7,T8,T9,T10]; 

        elseif (~isempty(myclass.Filtered_data))... 

                

&&(~isempty(myclass.Filter_Fourier_data))&&(~isempty(myclass.Filter_Hertz))

... 

                

&&(~isempty(myclass.Filter_Cutoff_Ang_Freq))&&(~isempty(myclass.Filter_orde

r)) 

 

            old_Filtered_data=myclass.Filtered_data; 

 

            old_Peaks_Filtered=zeros(1,length(myclass.rt_data)); 

            

old_Peaks_Filtered(1:length(myclass.Fourier_Peaks_Filtered))=myclass.Fourie

r_Peaks_Filtered; 

            

old_Peaks_Filtered(length(myclass.Fourier_Peaks_Filtered)+1:end)=0/0; 

 

            old_Peaks_Pos_Filtered=zeros(1,length(myclass.rt_data)); 

            

old_Peaks_Pos_Filtered(1:length(myclass.Fourier_Peak_Pos_Filtered))=myclass

.Fourier_Peak_Pos_Filtered; 

            

old_Peaks_Pos_Filtered(length(myclass.Fourier_Peak_Pos_Filtered)+1:end)=0/0

; 

 

            old_Filtered_Fourier_data=zeros(1,length(myclass.rt_data)); 

            

old_Filtered_Fourier_data(1:length(myclass.Filter_Fourier_data))=myclass.Fi

lter_Fourier_data(1:end); 

            

old_Filtered_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=0/0; 

 

            old_Filtered_Hertz_data=zeros(1,length(myclass.rt_data)); 

            

old_Filtered_Hertz_data(1:length(myclass.Filter_Hertz))=myclass.Filter_Hert

z(1:end); 

            

old_Filtered_Hertz_data(length(myclass.Filter_Hertz)+1:end)=0/0; 

 

            old_Filter_Cutoff_Ang_Freq=zeros(1,length(myclass.rt_data)); 

            

old_Filter_Cutoff_Ang_Freq(1)=myclass.Filter_Cutoff_Ang_Freq/(2*pi); 

            old_Filter_Cutoff_Ang_Freq(2:end)=0/0; 
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            old_Filter_order=zeros(1,length(myclass.rt_data)); 

            old_Filter_order(1)=myclass.Filter_order; 

            old_Filter_order(2:end)=0/0; 

 

            T1 =table(old_rt_data','VariableNames',{'Input Signal'}); 

            T2 =table(old_time','VariableNames',{'Time Variable  (sec)'}); 

            T3 =table(old_Filtered_data,'VariableNames',{'Filtered 

Signal'}); 

            T4 =table(old_Input_Fourier_data','VariableNames',{'Magnitude 

of the Fourier Transform of Input Signal'}); 

            T5 =table(old_Input_Hertz','VariableNames',{'Frequency of the 

Fourier Transform of Input Signal (Hz)'}); 

            T6 =table(old_Peaks_Input','VariableNames',"Input Signal's 

Fourier Transform's Peaks' Magnitude"); 

            T7 =table(old_Peaks_Pos_Input','VariableNames',"Input Signal's 

Fourier Transform's Peaks' Position (Hz)"); 

            T8=table(old_Filtered_Fourier_data','VariableNames',{'Magnitude 

of the Fourier Transform of Filtered Signal'}); 

            T9=table(old_Filtered_Hertz_data','VariableNames',{'Frequency 

of the Fourier Transform of Filtered Signal (Hz)'}); 

            T10=table(old_Peaks_Filtered','VariableNames',"Filtered 

Signal's Fourier Transform's Peaks' Magnitude"); 

            T11=table(old_Peaks_Pos_Filtered','VariableNames',"Filtered 

Signal's Fourier Transform's Peaks' Position (Hz)"); 

            T12=table(old_Filter_Cutoff_Ang_Freq','VariableNames',{'Cutoff 

Frequency of the Filter (Hz)'}); 

            T13=table(old_Filter_order','VariableNames',{'Filter Order'}); 

            T14=table(old_samples','VariableNames',{'Number of samples'}); 

            T15=table(old_Sample_Freq','VariableNames',{'Sampling 

Frequency'}); 

            T16=table(old_Baudrate','VariableNames',{'Baudrate used'}); 

            T17=table(old_Offset','VariableNames',{'Voltage Offset of Input 

Signal (V)'}); 

 

            

T_all=[T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17]; 

        end 

        %----------------creating a dialog box-----------------------------

--------- 

        defaultFileName=fullfile(pwd,'*.xlsx'); 

        [baseFileName, folder] = uiputfile(defaultFileName, 'Specify a 

file'); 

        if (baseFileName == 0) 

            return; 

        end 

        [~,baseFileNameNoExt,~] = fileparts(baseFileName); 

        fullFileName = fullfile(folder, [baseFileNameNoExt, '.xlsx']); 

        writetable(T_all,fullFileName); 

        return 

    else 

        beep; 

        uialert(main_fig,{'No data found to save','First take samples from 

the Serial port device.'},'Error','Icon','error'); 

        return 

    end 

end 

function SaveAsText(~,~,myclass,main_fig) 

    if(~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))... 

            

&&(~isempty(myclass.Samples))&&(~isempty(myclass.Sample_Freq))... 
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            &&(~isempty(myclass.Baudrate))&&(~isempty(myclass.Offset))... 

            

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))... 

            

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))... 

            

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field)) 

 

        Fourier_Peaks_Input=zeros(1,length(myclass.rt_data)); 

        

Fourier_Peaks_Input(1:(length(myclass.Fourier_Peaks_Input)))=myclass.Fourie

r_Peaks_Input(1:end); 

        Fourier_Peaks_Input(length(myclass.Fourier_Peaks_Input)+1:end)=' '; 

 

        Fourier_Peak_Pos_Input=zeros(1,length(myclass.rt_data)); 

        

Fourier_Peak_Pos_Input(1:(length(myclass.Fourier_Peak_Pos_Input)))=myclass.

Fourier_Peak_Pos_Input; 

        

Fourier_Peak_Pos_Input(length(myclass.Fourier_Peak_Pos_Input)+1:end)=' '; 

 

        Samples=zeros(1,length(myclass.rt_data)); 

        Samples(1)=myclass.Samples; 

        Samples(2:end)=' '; 

 

        Sample_Freq=zeros(1,length(myclass.rt_data)); 

        Sample_Freq(1)=myclass.Sample_Freq; 

        Sample_Freq(2:end)=' '; 

 

        Baudrate=zeros(1,length(myclass.rt_data)); 

        Baudrate(1)=myclass.Baudrate; 

        Baudrate(2:end)=' '; 

 

        Offset=zeros(1,length(myclass.rt_data)); 

        Offset(1)=myclass.Offset; 

        Offset(2:end)=' '; 

 

        Fourier_data=zeros(1,length(myclass.rt_data)); 

        Fourier_data(1:length(myclass.Fourier_data))=myclass.Fourier_data; 

        Fourier_data(length(myclass.Fourier_data)+1:end)=' '; 

 

        Hertz=zeros(1,length(myclass.rt_data)); 

        Hertz(1:length(myclass.Hertz))=myclass.Hertz; 

        Hertz(length(myclass.Hertz)+1:end)=' '; 

 

        txt_data=compose('%.5f',myclass.rt_data); 

 

        txt_time=compose('%.3f',myclass.time_variable); 

 

        txt_samples=compose('%c',Samples); 

        txt_samples(1)=compose('%d',Samples(1)); 

 

        txt_Fourier_data=compose('%.14f',Fourier_data); 

        

txt_Fourier_data(length(myclass.Fourier_data)+1:end)=compose('%c',Fourier_d

ata(length(myclass.Fourier_data)+1:end)); 

 

        txt_Hertz=compose('%f',Hertz); 



Appendix-MATLAB CODE         

- 47 - 
 

        

txt_Hertz(length(myclass.Hertz)+1:end)=compose('%c',Hertz(length(myclass.He

rtz)+1:end)); 

 

        txt_Sample_Freq=compose('%c',Sample_Freq); 

        txt_Sample_Freq(1)=compose('%d',Sample_Freq(1)); 

 

        txt_Baudrate=compose('%c',Baudrate); 

        txt_Baudrate(1)=compose('%d',Baudrate(1)); 

 

        txt_Offset=compose('%c',Offset); 

        txt_Offset(1)=compose('%d',Offset(1)); 

 

        txt_Fourier_Peaks_Input=compose('%c',Fourier_Peaks_Input); 

        

txt_Fourier_Peaks_Input(1:(length(myclass.Fourier_Peaks_Input)))=compose('%

d',Fourier_Peaks_Input(1:(length(myclass.Fourier_Peaks_Input)))); 

 

        txt_Fourier_Peak_Pos_Input=compose('%c',Fourier_Peak_Pos_Input); 

        

txt_Fourier_Peak_Pos_Input(1:(length(myclass.Fourier_Peak_Pos_Input)))=comp

ose('%d',Fourier_Peak_Pos_Input(1:(length(myclass.Fourier_Peak_Pos_Input)))

); 

 

        T1=table(txt_data','VariableNames',"|Input Signal|"); 

        T2=table(txt_time','VariableNames',"|Time(sec)|"); 

        T3=table(txt_Fourier_data','VariableNames',"|Fourier Magnitude 

(Input Signal)|"); 

        T4=table(txt_Hertz','VariableNames',"|Fourier Frequency - Hz (Input 

Signal)|"); 

        T5=table(txt_samples','VariableNames',"|Number of Samples|"); 

        T6=table(txt_Sample_Freq','VariableNames',"|Sampling Frequency|"); 

        T7=table(txt_Baudrate','VariableNames',"|Baudrate|"); 

        T8=table(txt_Offset','VariableNames',"|Offset Value(V)|"); 

        T9=table(txt_Fourier_Peaks_Input','VariableNames',"|Magnitude 

Fourier Transform's Peaks (Input Signal)|"); 

        T10=table(txt_Fourier_Peak_Pos_Input','VariableNames',"|Position 

Fourier Transform's Peaks (Hz) (Input Signal)|"); 

        if (isempty(myclass.Filtered_data))... 

                

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

. 

                

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

) 

            T_all=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10]; 

        else % if they saved the filtered data: 

            Fourier_Peaks_Filtered=zeros(1,length(myclass.rt_data)); 

            

Fourier_Peaks_Filtered(1:(length(myclass.Fourier_Peaks_Filtered)))=myclass.

Fourier_Peaks_Filtered(1:end); 

            

Fourier_Peaks_Filtered(length(myclass.Fourier_Peaks_Filtered)+1:end)=' '; 

 

            Fourier_Peak_Pos_Filtered=zeros(1,length(myclass.rt_data)); 

            

Fourier_Peak_Pos_Filtered(1:(length(myclass.Fourier_Peak_Pos_Filtered)))=my

class.Fourier_Peak_Pos_Filtered; 

            

Fourier_Peak_Pos_Filtered(length(myclass.Fourier_Peak_Pos_Filtered)+1:end)=

' '; 
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            Filter_Cutoff_Ang_Freq=zeros(1,length(myclass.rt_data)); 

            Filter_Cutoff_Ang_Freq(1)=myclass.Filter_Cutoff_Ang_Freq; 

            Filter_Cutoff_Ang_Freq(2:end)=' '; 

 

            Filter_order=zeros(1,length(myclass.rt_data)); 

            Filter_order(1)=myclass.Filter_order; 

            Filter_order(2:end)=' '; 

 

            Filter_Fourier_data=zeros(1,length(myclass.rt_data)); 

            

Filter_Fourier_data(1:length(myclass.Filter_Fourier_data))=myclass.Filter_F

ourier_data; 

            

Filter_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=' '; 

 

            Filter_Hertz=zeros(1,length(myclass.rt_data)); 

            

Filter_Hertz(1:length(myclass.Filter_Hertz))=myclass.Filter_Hertz; 

            Filter_Hertz(length(myclass.Filter_Hertz)+1:end)=' '; 

 

            txt_Filtered_data=compose('%.5f',myclass.Filtered_data); 

 

            

txt_Filter_Cutoff_Ang_Freq=compose('%c',Filter_Cutoff_Ang_Freq); 

            

txt_Filter_Cutoff_Ang_Freq(1)=compose('%d',Filter_Cutoff_Ang_Freq(1)); 

 

            txt_Filter_Fourier_data=compose('%.14f',Filter_Fourier_data); 

            

txt_Filter_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=compose(

'%c',Filter_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)); 

 

            txt_Filter_Hertz=compose('%f',Filter_Hertz); 

            

txt_Filter_Hertz(length(myclass.Filter_Hertz)+1:end)=compose('%c',Filter_He

rtz(length(myclass.Filter_Hertz)+1:end)); 

 

            txt_Filter_order=compose('%c',Filter_order); 

            txt_Filter_order(1)=compose('%d',Filter_order(1)); ; 

 

            

txt_Fourier_Peaks_Filtered=compose('%c',Fourier_Peaks_Filtered); 

            

txt_Fourier_Peaks_Filtered(1:(length(myclass.Fourier_Peaks_Filtered)))=comp

ose('%d',Fourier_Peaks_Filtered(1:(length(myclass.Fourier_Peaks_Filtered)))

); 

 

            

txt_Fourier_Peak_Pos_Filtered=compose('%c',Fourier_Peak_Pos_Filtered); 

            

txt_Fourier_Peak_Pos_Filtered(1:(length(myclass.Fourier_Peak_Pos_Filtered))

)=compose('%d',Fourier_Peak_Pos_Filtered(1:(length(myclass.Fourier_Peak_Pos

_Filtered)))); 

 

            T11=table(txt_Filtered_data,'VariableNames',"|Filtered 

Signal|"); 

            T12=table(txt_Filter_Fourier_data','VariableNames',"|Fourier 

Magnitude (Filtered Signal)|"); 

            T13=table(txt_Filter_Hertz','VariableNames',"|Fourier Frequency 

- Hz (Filtered Signal)|"); 
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T14=table(txt_Filter_Cutoff_Ang_Freq','VariableNames',"|Filter's Cutoff 

Frequency (Hz)|"); 

            T15=table(txt_Filter_order','VariableNames',"|Filter Order|"); 

            

T16=table(txt_Fourier_Peaks_Filtered','VariableNames',"|Magnitude Fourier 

Transform's Peaks (Filtered Signal)|"); 

            

T17=table(txt_Fourier_Peak_Pos_Filtered','VariableNames',"|Position Fourier 

Transform's Peaks (Hz) (Filtered Signal)|"); 

            T_all=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 

T17]; 

        end 

        %----------------creating a dialog box----------------------------- 

        defaultFileName=fullfile(pwd,'*.txt'); 

        [baseFileName, folder] = uiputfile(defaultFileName, 'Specify a 

file'); 

        if (baseFileName == 0) 

            return; 

        end 

        [~, baseFileNameNoExt, ~] = fileparts(baseFileName); 

        fullFileName = fullfile(folder, [baseFileNameNoExt, '.txt']); 

        writetable(T_all,fullFileName,'Delimiter','tab'); 

        return 

    else 

        beep; 

        uialert(main_fig,{'No data found to save','First take samples from 

the Serial port device.'},'Error','Icon','error'); 

        return 

    end 

end 

function checkifavailable(~,~,myclass,main_fig) 

    %% setting and configuring the port 

    [port_num] = PortCheck(main_fig); 

    if port_num=="None" 

        return 

    end 

 

    myclass.rt_data=[]; 

    myclass.time_variable=[]; 

    myclass.board=[]; 

    myclass.Sample_Freq=[]; 

    myclass.Samples=[]; 

    myclass.Fourier_data=[]; 

    myclass.Hertz=[]; 

    myclass.Filtered_data=[]; 

    myclass.Filter_Fourier_data=[]; 

    myclass.Filter_Hertz=[]; 

    myclass.Fourier_Peaks_Input=[]; 

    myclass.Fourier_Peak_Pos_Input=[]; 

    myclass.Fourier_Peaks_Filtered=[]; 

    myclass.Fourier_Peak_Pos_Filtered=[]; 

    myclass.prog_bar=[]; 

    myclass.Filter_Cutoff_Ang_Freq=[]; 

    myclass.Filter_order=[]; 

    myclass.Baudrate=[]; 

    myclass.Offset=[]; 

    for k2=1:1:3 

        c2=myclass.tab2_plots(k2); 

        cla(c2); 

        c3=myclass.tab3_plots(k2); 



Appendix-MATLAB CODE         

- 50 - 
 

        cla(c3); 

    end 

 

    try 

        arduino = serialport(port_num,115200); 

    catch ME 

        if (strcmp(ME.identifier,'serialport:serialport:ConnectionFailed')) 

            msg=append('Unable to connect to the serialport device at port 

',string(port_num),'. Verify that the port is not in use by another program, 

and that a device is properly connected to it.'); 

        end 

        beep; 

        uialert(main_fig,msg,'Error','Icon','error'); 

        return 

    end 

    arduino.StopBits=1; % not necessary 

    configureTerminator(arduino,"CR/LF"); 

    flush(arduino); 

    myclass.board=arduino; 

    myclass.tab1_edt_field.Value=arduino.Port; 

    myclass.tab2_edt_field.Value=arduino.Port; 

    myclass.tab3_edt_field.Value=arduino.Port; 

    %% calling the dialog box for Sampling Freq + # of samples 

    Input_Box(myclass,main_fig); 

end 

function [port_num] = PortCheck(main_fig) 

    %% finding usb serial device connected to the computer 

    NET.addAssembly("System.Management"); 

    mngmtQuery = System.Management.ObjectQuery(); 

    mngmtQuery.QueryString =  "SELECT * FROM Win32_PnPEntity WHERE Name LIKE 

'%(COM%'"; 

    mngmtSearcher = System.Management.ManagementObjectSearcher(mngmtQuery); 

    mngmtObjColl = mngmtSearcher.Get(); 

    comRep = repmat("",mngmtObjColl.Count,2); 

    enMngmtObjColl = mngmtObjColl.GetEnumerator; 

    p = 0; 

    while enMngmtObjColl.MoveNext() 

        p = p + 1; 

        com = enMngmtObjColl.Current; 

        caption = com.GetPropertyValue("Caption"); 

        comRep(p,1) = string(caption).extract("COM" + digitsPattern); 

        comRep(p,2) = string(com.GetPropertyValue("Description")); 

    end 

    if isempty(comRep) % in case there are NO PORTS AVAILABLE at the time 

        beep 

        uialert(main_fig,"No available port found on your computer. First 

connect your USB serial device.",'No device is found','CloseFcn',@(h,e) 

close(gcf)); 

        port_num="None"; 

        return 

    end 

    [numRows,~] = size(comRep); 

    for k=1:1:numRows 

        lists(k)=join(comRep(k,:)); 

    end 

    %% creating a list of com ports so the user can choose 

    list=num2cell(lists(:)); 

    [indx,tf] = 

listdlg('ListSize',[300,150],'ListString',list,'PromptString',"Select the 

port to which your serial device is connected.",'SelectionMode','single'); 

    if tf==0 %if user clicked cancel or the x button 
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        port_num="None"; 

    elseif tf==1 

        Str=comRep(indx,2); 

        newStr = erase(Str," "); 

        newStr = erase(newStr,"-"); 

        newStr = lower( newStr ); 

        if ( contains(newStr,"usbserial")==1 ) || ( 

contains(newStr,"arduino")==1 ) 

            port_num=comRep(indx); 

        elseif comRep(indx,2)~="USB Serial Device" 

            beep 

            uialert(main_fig,'Please choose a USB Serial Device.','No 

compatible device is selected','CloseFcn',@(h,e) close(gcf)); 

            port_num="None"; 

        end 

    end 

end 

function Input_Box(myclass,main_fig) 

    %%  %----------------------Dialog Box------------------------------ 

    prompt = {'Enter the appropriate Sampling Frequency (Hz):','Enter the 

number of samples:','Enter the Voltage Offset Value (V):','Enter Baudrate:'}; 

    dlgtitle = 'Input'; 

    dims = [1 35]; 

    definput = {'1000','2500','2.5','115200'}; 

    opts.WindowStyle = 'modal'; 

    answers=inputdlg(prompt,dlgtitle,dims,definput,opts); 

    %----------------interpreting user's inputs-------------------- 

    if (isempty(answers)) %checks if the cancel button was pressed 

        return 

    elseif 

(isempty(answers{1,1}))||(isempty(answers{2,1}))||(isempty(answers{3,1}))||

(isempty(answers{4,1})) %checks if one or more inputs were left empty 

        beep 

        uialert(main_fig,'You left one or more inputs blank. Please fill in 

both before continuing.','Empty Inputs','CloseFcn',@(h,e) close(gcf)); 

        return 

    elseif 

(~isempty(answers{1,1}))&&(~isempty(answers{2,1}))&&(~isempty(answers{3,1})

)&&(~isempty(answers{4,1}))  %checks if both inputs are filled 

        inputs1=str2num(answers{1,1}); 

        inputs2=str2num(answers{2,1}); 

        inputs3=str2num(answers{3,1}); 

        inputs4=str2num(answers{4,1}); 

        if  ( ~isempty(inputs1) ) && ( ~isempty(inputs2) ) && ( 

~isempty(inputs3) ) && ( ~isempty(inputs4) ) % checks if only numbers are 

inserted by the user 

            if ( class(inputs1)~="double" ) || ( class(inputs2)~="double" ) 

|| ( class(inputs3)~="double" ) || ( class(inputs4)~="double" ) % for example 

if someone inserts a HEX number 

                beep 

                uialert(main_fig,'One or both inputs were not a correct type. 

Please make sure to only insert real (R) numbers.','Incorrect 

Inputs','CloseFcn',@(h,e) close(gcf)); 

                return 

            end 

            if (mod(inputs2,1)~=0)||(mod(inputs4,1)~=0) % making sure the # 

of samples input is an integer 

                beep 

                uialert(main_fig,'The Number of Samples and the Baudrate 

should be integers.','Incorrect value of Number of Samples or 

Baudrate','CloseFcn',@(h,e) close(gcf)); 
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                return 

            end 

            myclass.Sample_Freq=inputs1; 

            myclass.Samples=inputs2; 

            myclass.Offset=inputs3; 

            myclass.Baudrate=inputs4; 

            myclass.board.BaudRate=myclass.Baudrate; 

            configureCallback(myclass.board,"terminator",@(obj,evnt) 

begin(myclass,main_fig)) 

        else 

            beep 

            uialert(main_fig,'One or both inputs were not numbers. Please 

make sure to only insert numbers.','Incorrect Inputs','CloseFcn',@(h,e) 

close(gcf)); 

            return 

        end 

    end 

end 

function begin(myclass,main_fig) 

    configureCallback(myclass.board,"off"); % ↓ 

    t = mytimer(myclass,main_fig);%initialize the t variable cause it is used 

on the next command 

    start(t); 

end 

function t= mytimer(myclass,main_fig) 

    t = timer; 

    %timer's timing properties↓ 

    t.StartDelay=0; 

    t.Period=0.001; 

    t.TasksToExecute=myclass.Samples; 

    t.BusyMode='queue'; 

    t.ExecutionMode='fixedSpacing'; 

    % callback function properties↓ 

    t.StartFcn = {@set_prog_bar,myclass,main_fig}; 

    t.TimerFcn = {@pull_data,myclass,t} ; 

    t.StopFcn  = {@plot_tab1,myclass}; 

    t.ErrorFcn = {@(x,y)disp('unspecified error in timer')}; 

end 

function pull_data(~,~,myclass,t) 

    progbar=myclass.prog_bar; 

    myclass.rt_data(timerfind(t).TasksExecuted) = 

str2double(readline(myclass.board)); %Read line of ASCII string data from 

serial port 

    progress=(timerfind(t).TasksExecuted/timerfind(t).TasksToExecute); 

    switch progbar.CancelRequested 

        case 0 

            if(progress<0.8) 

                progbar.Message='Loading your data'; 

                progbar.Value=progress; 

            elseif (progress>0.8) 

                progbar.Message='Finishing up'; 

                progbar.Value=progress; 

            end 

        case 1 % if user presses cancel: ↓ 

            myclass.rt_data=[]; 

            myclass.time_variable=[]; 

            myclass.Samples=[]; 

            myclass.Fourier_data=[]; 

 

            stop(t); 

            return 
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    end 

end 

function set_prog_bar(~,~,myclass,main_fig) 

    wait_window = uiprogressdlg(main_fig,'Title','Please Wait','Value',0); 

    wait_window.ShowPercentage='on'; 

    wait_window.Cancelable='on'; 

    wait_window.CancelText='Cancel'; 

    myclass.prog_bar=wait_window; 

end 

function plot_tab1(~,~,myclass) 

 

    delete(timerfindall); % deleting all timers 

 

    close(myclass.prog_bar); 

    myclass.prog_bar=[]; 

 

    if (~isempty(myclass.rt_data))&&(~isempty(myclass.Samples)) 

        ax1=myclass.tab1_plots(1); 

        plot(ax1,myclass.rt_data,'- .','Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

        ax2=myclass.tab1_plots(2); 

        %-------------------evaluating time axis--------------------------- 

        time=0:(1/myclass.Sample_Freq):myclass.Samples; 

        myclass.time_variable=time(1:myclass.Samples);% taking as many 

points as there are samples 

 

        plot(ax2,myclass.time_variable, myclass.rt_data,'- 

.','Color',[1.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); % 

plot marker properties : 

https://www.mathworks.com/help/matlab/creating_plots/specify-line-and-

marker-appearance-in-plots.html 

 

        [f_Hz, Y1]=fourier(myclass); 

 

        ax3=myclass.tab1_plots(3); 

        plot(ax3,f_Hz,Y1,'- .','Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor",[0 0 0],"MarkerSize",8) 

    end 

    %% finding the  maximum values of the fourier transform (and their pos 

in Hz) 

 

    if isempty(myclass.Fourier_data) || isempty(myclass.Hertz) % this is 

incase user pressed cancel while sampling 

        return 

    end 

 

    

[pks,locs]=findpeaks(myclass.Fourier_data,myclass.Hertz,'MinPeakProminence'

,10); 

 

    if myclass.Fourier_data(1)>=5*myclass.Fourier_data(2) 

        pks=[myclass.Fourier_data(1) ,pks]; 

        [pks_sorted,index]=sort(pks,'descend'); 

        position = find(pks==myclass.Fourier_data(1)); 

        locs=[locs(1:position-1) myclass.Hertz(1) locs(position:end)]; 

        locs_sorted=locs(index); 

    else 

        [pks_sorted,index]=sort(pks,'descend'); 

        locs_sorted=locs(index); 

    end 

    myclass.Fourier_Peaks_Input=pks_sorted; 
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    myclass.Fourier_Peak_Pos_Input=locs_sorted; 

end 

function [f_Hz, Y1] = fourier(myclass) 

    L=length( myclass.rt_data); 

    X_F=fft( myclass.rt_data); 

    X_mag=abs(X_F); 

    Y1=X_mag(1:round((L/2))); 

    f_bins=(0:(L-1)/2); 

    f_Hz = (myclass.Sample_Freq/L).*f_bins; 

    %% saving them as class properties so i can use them in different 

functions 

    myclass.Fourier_data=Y1; 

    myclass.Hertz=f_Hz; 

end 

function tab2_function(tab2,myclass) 

    grid1_tab2=uigridlayout(tab2,[4 1]); 

    grid1_tab2.RowHeight={'fit','fit','fit','fit'}; 

    grid1_tab2.BackgroundColor='#86b2b5'; 

    grid1_tab2.Scrollable='on'; 

    grid1_tab2.Padding= [0 0 0 0] ; % [left bottom right top] 

 

    grid2_tab2=uigridlayout(grid1_tab2,[1 5]); 

    grid2_tab2.Layout.Row=1; 

    grid2_tab2.BackgroundColor='#86b2b5'; 

    grid2_tab2.ColumnWidth={'1x' '1x' '1x' '1x' 'fit'}; 

    grid2_tab2.RowHeight={'0.5x'}; 

    grid2_tab2.ColumnSpacing=15; 

    grid2_tab2.Padding=[10 0 10 2];% [left bottom right top] 

 

    %% creating an edifield so the port is Displayed 

    edt_tab2=uieditfield(grid2_tab2); 

    edt_tab2.Layout.Row=1; 

    edt_tab2.Layout.Column=5; 

    edt_tab2.HorizontalAlignment='center'; 

    edt_tab2.Placeholder='No port connected'; 

    edt_tab2.Editable='off'; 

    edt_tab2.BackgroundColor="#f0c7a3"; 

    edt_tab2.Tooltip='This field displays the current port to ehich the app 

is connected.'; 

    myclass.tab2_edt_field=edt_tab2; % so i can update the value as as a 

port is connected 

    %% creating the axis where the plots are gonna be displayed in. 

    ax21=uiaxes('Parent',grid1_tab2); 

    ax21.Layout.Row=2; % επιλέγω την θέση στο grid (2x1) 

    ax21.Title.String='Filtered Signal'; 

    ax21.XLabel.String='Sample size'; 

    ax21.YLabel.String='Magnitude'; 

    ax21.XGrid='on'; 

    ax21.YGrid='on'; 

    ax21.Color=[0.1 0.1 0.1]; 

    ax21.GridColor='#00FFFF'; 

    ax21.GridAlpha=0.22; 

    ax21.TickDir='out';  %direction of the Tick marks 

 

    ax22=uiaxes('Parent',grid1_tab2); 

    ax22.Layout.Row=3; % επιλέγω την θέση στο grid (2x1) 

    ax22.Title.String='Filtered Signal'; 

    ax22.XLabel.String='Time(sec)'; 

    ax22.YLabel.String='Magnitude'; 

    ax22.XGrid='on'; 

    ax22.YGrid='on'; 
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    ax22.Color=[0.1 0.1 0.1]; 

    ax22.GridColor='#00FFFF'; 

    ax22.GridAlpha=0.22; 

    ax22.TickDir='out';  %direction of the Tick marks 

 

    ax23=uiaxes('Parent',grid1_tab2); 

    ax23.Layout.Row=4; % επιλέγω την θέση στο grid (2x1) 

    ax23.Title.String='Fourier of the filtered signal'; 

    ax23.XLabel.String='Frequency (Hz)'; 

    ax23.YLabel.String='Magnitude'; 

    ax23.XGrid='on'; 

    ax23.YGrid='on'; 

    ax23.Color=[0.1 0.1 0.1]; 

    ax23.GridColor='#00FFFF'; 

    ax23.GridAlpha=0.22; 

    ax23.TickDir='out';  %direction of the Tick marks 

    %%      giving the axis a "global" handle 

    myclass.tab2_plots(1)=ax21; 

    myclass.tab2_plots(2)=ax22; 

    myclass.tab2_plots(3)=ax23; 

end 

function plot_tab2(~,~,main_fig,myclass) 

    if 

(isempty(myclass.rt_data))&&(isempty(myclass.time_variable))&&(isempty(mycl

ass.Samples))&&(isempty(myclass.Fourier_data))&&(isempty(myclass.Hertz)) 

        beep; 

        uialert(main_fig,{'No data have been found','First take samples from 

the Serial port device.'},'Error','Icon','error'); 

        return %if the user hasnt sampled their signal, then nothing will be 

shown 

    end 

 

    filter(myclass); 

 

    plot(myclass.tab2_plots(1),myclass.Filtered_data,'- .','Color',[1.0000 

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

 

    

plot(myclass.tab2_plots(2),myclass.time_variable,myclass.Filtered_data,'- 

.','Color',[1.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

 

    

plot(myclass.tab2_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'- .','Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8); 

 

    plot_tab3(myclass); % so it plots the comparison graphs 

    %% finding the  maximum values of the fourier transform (and their pos 

in Hz) 

    

[pks,locs]=findpeaks(myclass.Filter_Fourier_data,myclass.Filter_Hertz,'MinP

eakProminence',10); 

    if  myclass.Filter_Fourier_data(1)>=10*myclass.Filter_Fourier_data(2) 

        pks=[ (myclass.Filter_Fourier_data(1) ) ,pks']; 

        [pks_sorted,index]=sort(pks,'descend'); 

        position = find(pks==myclass.Filter_Fourier_data(1)); 

        locs=[locs(1:position-1) myclass.Filter_Hertz(1) 

locs(position:end)]; 

        locs_sorted=locs(index); 

    else 

        [pks_sorted,index]=sort(pks,'descend'); 
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        locs_sorted=locs(index); 

    end 

    myclass.Fourier_Peaks_Filtered=pks_sorted; 

    myclass.Fourier_Peak_Pos_Filtered=locs_sorted; 

end 

function filter(myclass) 

    if isempty(myclass.Filter_order) && 

isempty(myclass.Filter_Cutoff_Ang_Freq) 

        n=2; 

        wc=2*pi*30; 

        myclass.Filter_order=n; 

        myclass.Filter_Cutoff_Ang_Freq=wc; 

    else 

        n=myclass.Filter_order; 

        wc=myclass.Filter_Cutoff_Ang_Freq; 

    end 

    %% calculating the Transfer Function's a_k coefficients. 

 

    Ts=1/myclass.Sample_Freq; 

    a=zeros(length(n)); 

    coef=zeros(length(n)); 

    a(1)=1; 

    g=pi/(2*n); 

    coef(1)=1; 

    for k=0:1:n-1 

        a(k+2)=a(k+1)*(cos(k*g)/sin((k+1)*g)); 

        coef(k+2)=a(k+2)/wc^(k+1); 

    end 

    H_s=tf(1,flip(coef)); 

    sysd = c2d(H_s,Ts,'tustin'); % bilinear transform 

    [num,den] = tfdata(sysd); 

    f = cell2mat(den); 

    c = cell2mat(num); 

 

    x=myclass.rt_data; 

    yn=(myclass.Offset)*ones(length(x),1); 

    yn1=(myclass.Offset)*ones( [ length(x) (length(c)-1) ] ); 

    yn2=(myclass.Offset)*ones( [ length(x) (length(c)) ] ); 

    for nn=length(c):1:length(x) 

        for i=1:1:length(c)-1 

            yn1(nn,i)=-f(i+1)*yn(nn-i); 

        end 

        for i=0:1:length(c)-1 

            yn2(nn,i+1)=c(i+1)*x(nn-i); 

        end 

        yn(nn)=sum(yn1(nn,:))+sum(yn2(nn,:)); 

    end 

    %% performing fourier transform on the filterred signal 

    L=length(yn); 

    X_F_yn=fft(yn); 

    X_mag_yn=abs(X_F_yn); 

    Y1_yn=X_mag_yn(1:round((L/2))); 

    f_bins=(0:(L-1)/2); 

    f_Hz_yn = (myclass.Sample_Freq/L).*f_bins; 

    %% saving them as class properties so i can use them in different 

functions 

    myclass.Filtered_data=yn; 

    myclass.Filter_Fourier_data=Y1_yn; 

    myclass.Filter_Hertz=f_Hz_yn; 

end 

function Filter_Spec_Window(~,~,myclass) 
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    if myclass.Spec_window(1)==true % checking if the window is already open 

        return 

    end 

    Spec_Fig=uifigure(); 

    Spec_Fig.Visible='off'; 

    Spec_Fig.MenuBar='none'; 

    Spec_Fig.NumberTitle='off'; 

    Spec_Fig.Name='Filter Specifications'; 

    Spec_Fig.Resize='off'; 

    Spec_Fig.Units='pixels'; 

    Spec_Fig.Position=[300 300 970 550]; %[left bottom width height] 

    movegui(Spec_Fig,'center'); 

    Spec_Fig.Visible='on'; 

    Spec_Fig.DeleteFcn={@Close_Window_Request,myclass}; 

 

    myclass.Spec_window(1)=true; 

    myclass.Spec_window(2)=Spec_Fig; 

 

    %%  setting up a grid layout 

 

    Spec_grid=uigridlayout(Spec_Fig,[3 1]);% 3x1 grid (rows x columns) 

    Spec_grid.RowHeight={'1x' '1x' '0.3x'}; 

    Spec_grid.ColumnWidth={'1x'}; 

    Spec_grid.RowSpacing=0; 

    Spec_grid.Padding=[0 0 0 0]; 

    %%  creating some axes to display my bode plots 

    Bode_ax1=uiaxes("Parent",Spec_grid); 

    Bode_ax2=uiaxes("Parent",Spec_grid); 

 

    Bode_ax1.Layout.Row=1; 

    Bode_ax2.Layout.Row=2; 

 

    Bode_ax1.Title.String='Magnitude Estimation of the Filter'; 

    Bode_ax1.YLabel.String='Magnitude (dB)'; 

    Bode_ax1.XGrid='on'; 

    Bode_ax1.YGrid='on'; 

    Bode_ax1.GridAlpha=0.22; 

    Bode_ax1.TickDir='out'; 

 

    Bode_ax2.Title.String='Phase Estimation of the Filter'; 

    Bode_ax2.YLabel.String='Phase [°]'; 

    Bode_ax2.XGrid='on'; 

    Bode_ax2.YGrid='on'; 

    Bode_ax2.GridAlpha=0.22; 

    Bode_ax2.TickDir='out'; 

    %%  creating options to change the filter to your liking 

 

    Spec_grid2=uigridlayout(Spec_grid,[2 6]); % 1x3 grid (rows x columns) 

    Spec_grid2.Layout.Row=3; 

    Spec_grid2.RowHeight={'1x' '1x'}; 

    Spec_grid2.ColumnWidth={150 150 150 150 150 150}; 

 

    lbl1=uilabel('Parent',Spec_grid2,"Text",'Filter Type:'); 

    lbl2=uilabel('Parent',Spec_grid2,"Text",'Filter Degree:'); 

    lbl3=uilabel('Parent',Spec_grid2,"Text",'Cutoff Frequency (in Hz):'); 

    lbl4=uilabel('Parent',Spec_grid2,"Text",'X-axis unit:'); 

 

    lbl1.Layout.Row=1; 

    lbl2.Layout.Row=1; 

    lbl3.Layout.Row=1; 

    lbl4.Layout.Row=1; 
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    lbl1.Layout.Column=1; 

    lbl2.Layout.Column=2; 

    lbl3.Layout.Column=3; 

    lbl4.Layout.Column=4; 

 

    edt_field=uieditfield("Parent",Spec_grid2); 

    edt_field.Editable='off'; 

    edt_field.Value='Butterworth Low Pass'; 

    edt_field.HorizontalAlignment='center'; 

    edt_field.Layout.Column=1; 

    edt_field.Layout.Row=2; 

 

    spn1=uispinner("Parent",Spec_grid2); 

    spn1.Layout.Column=2; 

    spn1.Layout.Row=2; 

    spn1.Limits=[1 10]; 

    spn1.LowerLimitInclusive='on'; 

    spn1.UpperLimitInclusive='on'; 

    if isempty(myclass.Filter_order) 

        spn1.Value=2; 

    else 

        spn1.Value=myclass.Filter_order; 

    end 

    spn2=uispinner("Parent",Spec_grid2); 

    spn2.Layout.Column=3; 

    spn2.Layout.Row=2; 

    spn2.Value=30;% Default Value 

    spn2.Limits=[1 100]; 

    spn2.LowerLimitInclusive='on'; 

    spn2.UpperLimitInclusive='on'; 

    if isempty(myclass.Filter_Cutoff_Ang_Freq) 

        spn2.Value=30; % Default Value 

    else 

        spn2.Value=myclass.Filter_Cutoff_Ang_Freq/(2*pi); 

    end 

    %%  creating dropdown for x-axis unit choice 

    drp=uidropdown(Spec_grid2); 

    drp.Layout.Column=4; 

    drp.Layout.Row=2; 

    drp.Items={'rad/s','Hz'}; 

    drp.Value='Hz'; % Default value 

    drp.Placeholder='Options'; 

    %% couple of control buttons 

    apply_btn=uibutton(Spec_grid2); 

    apply_btn.Text='Apply'; 

    apply_btn.Layout.Row=2; 

    apply_btn.Layout.Column=5; 

    apply_btn.ButtonPushedFcn= {@(x,y) 

Plot_Spec_Window(Bode_ax1,Bode_ax2,spn1,spn2,drp,myclass)}; 

 

    cncl_btn=uibutton(Spec_grid2); 

    cncl_btn.Text='OK'; 

    cncl_btn.Layout.Row=2; 

    cncl_btn.Layout.Column=6; 

    cncl_btn.ButtonPushedFcn= {@(x,y)delete(Spec_Fig)}; 

 

    Plot_Spec_Window(Bode_ax1,Bode_ax2,spn1,spn2,drp) 

end 

function Plot_Spec_Window(Bode_ax1,Bode_ax2,spn1,spn2,drp,myclass) 

    %%  Creating the actual filter specs 
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    wc=2*pi*spn2.Value; 

    g=pi/(2*spn1.Value); 

    a=zeros(length(spn1.Value)); 

    coef=zeros(length(spn1.Value)); 

    a(1)=1; 

    coef(1)=1; 

    for k=0:1:(spn1.Value)-1 

        a(k+2)=a(k+1)*(cos(k*g)/sin((k+1)*g)); 

        coef(k+2)=a(k+2)/wc^(k+1); 

    end 

    if spn1.Value==1 % unfortunately this is the only way to do this 

        H_s=@(s)1./(coef(1)+coef(2)*s.^1); 

    elseif spn1.Value==2 

        H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2); 

    elseif spn1.Value==3 

        H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3); 

    elseif spn1.Value==4 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4); 

    elseif spn1.Value==5 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5); 

    elseif spn1.Value==6 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6); 

    elseif spn1.Value==7 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7); 

    elseif spn1.Value==8 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7+coef(9)*s.^8); 

    elseif spn1.Value==9 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7+coef(9)*s.^8+coef(10)*s.^9); 

    elseif spn1.Value==10 

        

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7+coef(9)*s.^8+coef(10)*s.^9++coef(11)*s.

^10); 

    end 

    %%  getting the x axis right 

    omega =2*pi*logspace(-3,4,2000); 

    Hz=logspace(-3,4,2000); 

    if drp.Value=="rad/s" 

        X_axis_choice=omega; 

        Bode_ax1.XLabel.String='Angular Frequency [rad/s]'; 

        Bode_ax2.XLabel.String='Angular Frequency [rad/s]'; 

    elseif drp.Value=="Hz" 

        X_axis_choice=Hz; 

        Bode_ax1.XLabel.String='Frequency [Hz]'; 

        Bode_ax2.XLabel.String='Frequency [Hz]'; 

    end 

    %%  setting up the change of phase y axis 

    phase_Deg = rad2deg( angle(H_s(1i*X_axis_choice)) ); 

    %%  and now the magnitude y axis 

    magn = abs(H_s(1i*X_axis_choice)); 
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    magn_dB = 20 * log10(magn); 

    %%  now actually creating the plots 

    semilogx(Bode_ax1,X_axis_choice/2/pi,magn_dB); 

    semilogx(Bode_ax2,X_axis_choice/2/pi,phase_Deg); 

    %%  saving the user selecteed cutoff freq and filter order so they can 

be used to actually filter the rest of the signal 

    myclass.Filter_Cutoff_Ang_Freq=wc; 

    myclass.Filter_order=spn1.Value; 

end 

function Close_Window_Request(src,~,myclass) 

    if src.Name=="Filter Specifications" 

        myclass.Spec_window(1)=false; 

        return 

    end 

 

    if src.Name=="Data and Key Variables" 

        myclass.Var_window(1)=false; 

        return 

    end 

end 

function tab3_function(tab3,myclass) 

    grid1_tab3=uigridlayout(tab3,[4 1]); 

    grid1_tab3.RowHeight={'fit','fit','fit','fit'}; 

    grid1_tab3.BackgroundColor='#86b2b5'; 

    grid1_tab3.Scrollable='on'; 

    grid1_tab3.Padding= [0 0 0 0] ; % [left bottom right top] 

 

    grid2_tab3=uigridlayout(grid1_tab3,[1 5]); 

    grid2_tab3.Layout.Row=1; 

    grid2_tab3.BackgroundColor='#86b2b5'; 

    grid2_tab3.ColumnWidth={'1x' '1x' '1x' '1x' 'fit'}; 

    grid2_tab3.RowHeight={'0.5x'}; 

    grid2_tab3.ColumnSpacing=15; 

    grid2_tab3.Padding=[10 0 10 2];% [left bottom right top] 

    %% creating an edifield so the port is Displayed 

    edt_tab3=uieditfield(grid2_tab3); 

    edt_tab3.Layout.Row=1; 

    edt_tab3.Layout.Column=5; 

    edt_tab3.HorizontalAlignment='center'; 

    edt_tab3.Placeholder='No port connected'; 

    edt_tab3.Editable='off'; 

    edt_tab3.BackgroundColor="#f0c7a3"; 

    edt_tab3.Tooltip='This field displays the current port to ehich the app 

is connected.'; 

    myclass.tab3_edt_field=edt_tab3; 

 

    %% creating the axis where the plots are gonna be displayed in. 

    ax31=uiaxes('Parent',grid1_tab3); 

    ax31.Layout.Row=2; 

    ax31.Title.String='Signal Comparison'; 

    ax31.XLabel.String='Sample size'; 

    ax31.YLabel.String='Magnitude'; 

    ax31.XGrid='on'; 

    ax31.YGrid='on'; 

    ax31.Color=[0.1 0.1 0.1]; 

    ax31.GridColor='#00FFFF'; 

    ax31.GridAlpha=0.22; 

    ax31.TickDir='out'; 

 

    ax32=uiaxes('Parent',grid1_tab3); 

    ax32.Layout.Row=3; 
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    ax32.Title.String='Signal Comparison'; 

    ax32.XLabel.String='Time(sec)'; 

    ax32.YLabel.String='Magnitude'; 

    ax32.XGrid='on'; 

    ax32.YGrid='on'; 

    ax32.Color=[0.1 0.1 0.1]; 

    ax32.GridColor='#00FFFF'; 

    ax32.GridAlpha=0.22; 

    ax32.TickDir='out'; 

 

    ax33=uiaxes('Parent',grid1_tab3); 

    ax33.Layout.Row=4; 

    ax33.Title.String='Comparison of each Fourier Transform'; 

    ax33.XLabel.String='Frequency (Hz)'; 

    ax33.YLabel.String='Magnitude'; 

    ax33.XGrid='on'; 

    ax33.YGrid='on'; 

    ax33.Color=[0.1 0.1 0.1]; 

    ax33.GridColor='#00FFFF'; 

    ax33.GridAlpha=0.22; 

    ax33.TickDir='out'; 

    %%      giving the axis a "global" handle 

    myclass.tab3_plots(1)=ax31; 

    myclass.tab3_plots(2)=ax32; 

    myclass.tab3_plots(3)=ax33; 

end 

function plot_tab3(myclass) 

    plot(myclass.tab3_plots(1),myclass.rt_data,'Color',[1.0000 0.4706 

0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    hold(myclass.tab3_plots(1),'on');% 'hold on' but for uiaxes 

    plot(myclass.tab3_plots(1),myclass.Filtered_data,'Color',[0 0.4470 

0.7410],"MarkerEdgeColor","k","MarkerSize",8) 

    legend(myclass.tab3_plots(1),{'Input Signal','Filtered 

Signal'},'EdgeColor','white','TextColor','white'); 

    hold(myclass.tab3_plots(1),'off'); 

 

    

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.rt_data,'Color',[1

.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    hold(myclass.tab3_plots(2),'on');% 'hold on' but for uiaxes 

    

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.Filtered_data,'Col

or',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8) 

    legend(myclass.tab3_plots(2),{'Input Signal','Filtered 

Signal'},'EdgeColor','white','TextColor','white'); 

    hold(myclass.tab3_plots(2),'off'); 

 

    

plot(myclass.tab3_plots(3),myclass.Hertz,myclass.Fourier_data,'Color',[1.00

00 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8) 

    hold(myclass.tab3_plots(3),'on');% 'hold on' but for uiaxes 

    

plot(myclass.tab3_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'Color',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8) 

    legend(myclass.tab3_plots(3),{'Input Signal','Filtered 

Signal'},'EdgeColor','white','TextColor','white'); 

    hold(myclass.tab3_plots(3),'off'); 

end 

 


