
Master’s Thesis GEORGE MYSTRIDIS
“Hybrid Electronic ELF Signal

Processing System”

Postgraduate Studies-MET Physics Department University of Ioannina

Postgraduate studies in Modern Electronic Technologies

Laboratory of Electronics, Telecommunications and Applications

Physics Department

School of Sciences

University of Ioannina

Master’s Thesis

Hybrid Electronic ELF Signal Processing System

Georgios Mystridis

Ιdentification number: 803

Thesis advisor: Vasileios Christofilakis

Ioannina

March 2024

ii

iii

Acknowledgements
With the completion of my master’s thesis, I would like to express my gratitude to all those

who have contributed to it.

I would like to thank Assistant Professor Vasileios Christofilakis, my master's thesis supervisor,

for his continuous support and guidance during its development. I extend my gratitude to the

technician Georgios Baldoumas for his invaluable help and to Assistant Professor Ioannis

Papadopoulos and Professor Konstantinos Fountas for being part of the three-member

committee reviewing this dissertation.

I owe thanks to my friends Spyridon Liontos and Alexandros Sakkas for their interest and help

during various challenges of this dissertation.

Last but definitely not least, I want to thank my parents, Eleni Petgazle and Panagiotis

Mystridis, for their crucial support over all these years, without which this work would not

have been possible.

iv

Contents
Acknowledgements ... iii

Περίληψη .. vi

Abstract .. vii

List of Figures .. viii

List of Tables ... x

List of Abbreviations ... xi

Chapter 1 Introduction .. 1

1.1 Ohm’s Law .. 1

1.2 Kirchhoff's Laws .. 2

1.3 Filters .. 3

1.3.1 Filter specifications .. 4

1.3.2 Classification of filters .. 4

Some More Key Terms .. 5

1.4 Transfer Function And Transforms ... 6

1.5 Digital Filters ... 9

1.5.1 Impulse Response Invariant Design .. 12

1.5.2 Step Response Invariant Design ... 12

1.5.3 Bilinear Transform Design .. 14

1.6 Modeling Electronic Circuits ... 15

1.6.1 Poles, Zeros and System Response .. 17

Transient Response ... 18

Chapter 2 Designing the System .. 24

2.1 Designing the Hardware and Firmware .. 24

2.1.1 Custom PCB .. 24

Digital to Analog Converter ... 24

Preamplifier ... 27

Notch Filter ... 28

COMPLETE PCB ... 31

2.1.2 Arduino Firmware .. 34

2.2 Developing the Software Application ... 36

2.2.1 The interface between the Hardware and the Software ... 36

2.2.2 Lowpass Butterworth Filter ... 40

v

2.2.3 The software .. 43

Coding the Fourier Transform ... 47

Communication Throughout the application .. 50

Chapter 3 Final Measurements and Conclusions .. 54

3.1 Transient Responses and Stability .. 54

3.1.1 Digital Filter .. 54

3.1.2 Notch Filter .. 56

3.2 Frequency Responses ... 57

3.2.1 Notch Filter’s Response ... 57

Using The PicoScope as an analog signal source .. 57

Using a Digital Signal Source ... 61

3.2.2 Butterworth Digital Filter’s Response .. 64

3.3 Conclusions ... 69

3.4 Future Improvements ... 69

Bibliography ... 71

Appendix ..- 1 -

A.1 PCB SCHEMATIC ...- 1 -

A.2 Decoupling Capacitors ...- 2 -

A.3 DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER- 7 -

A.4 Deriving the difference equation for a 2nd order Butterworth Lowpass Filter ... - 12 -

A.5 ARDUINO CODE ... - 13 -

A.6 ATmega Firmware .. - 15 -

A.7 ATmega CODE .. - 28 -

A.8 MATLAB CODE ... - 32 -

vi

Περίληψη
Σκοπός αυτής της μεταπτυχιακής εργασίας είναι η δημιουργία ενός υβριδικού συστήματος,

που θα μπορεί να δέχεται αναλογικά σήματα στην ELF περιοχή του φάσματος (< 30𝐻𝑧), να

τα ενισχύει, να τα φιλτράρει και να αποθηκεύει τα δεδομένα σε ηλεκτρονικό υπολογιστή. Για

την επίτευξη του σκοπού αυτού, σχεδιάστηκε μια εξατομικευμένη πλακέτα (PCB) με τα

απαραίτητα ηλεκτρονικά υλικά (ICs, κλπ.), αναπτύχθηκε μία εφαρμογή (standalone software)

με την χρήση του MATLAB, καθώς και ένα firmware για Arduino board με σκοπό την σωστή

επικοινωνία των παραπάνω.

Ξεκινώντας με το PCB, φτιάχτηκε με δύο πιθανές εισόδους. Η μία προέρχεται απευθείας από

μία αναλογική πηγή τάσης, ενώ η δεύτερη αρχικά δέχεται ψηφιακό σήμα, έτσι ώστε ο

χρήστης να μπορεί να δουλέψει είτε με ψηφιακό είτε με αναλογικό αρχικό σήμα εισόδου.

Στην πρώτη περίπτωση, το σήμα αρχικά περνά από ένα προενισχυτή (𝑥20) και καταλήγει σε

αναλογικό φίλτρο εγκοπής (Notch) που φιλτράρει τα 50𝐻𝑧 του θορύβου που προκαλεί το

ρεύμα. Στην συνέχεια, το πλέον φιλτραρισμένο σήμα είναι έτοιμο να σταλθεί σε μια πλακέτα

Arduino Uno R3, η οποία δρα ως μεσολαβητής για την επικοινωνία PCB-MATLAB/Υπολογιστή.

Στην δεύτερη περίπτωση, το σήμα (8-bit ψηφιακό) αρχικά περνά από DAC ενσωματωμένο

στο PCB, και μετά όντας πλέον αναλογικό, ακολουθεί την ίδια πορεία με την πρώτη

περίπτωση. Το Arduino, στην συνέχεια, παίρνει δείγματα κάθε 2ms από το σήμα εξόδου του

PCB, τα μετατρέπει σε κλίμακα 0 – 5 (σύμφωνα με την βιβλιογραφία) και μέσω της θύρας

USB τα στέλνει στον υπολογιστή . Εκεί, η εφαρμογή στον υπολογιστή, μετά την εισαγωγή

μερικών απαραίτητων παραμέτρων από τον χρήστη, ξεκινάει να λαμβάνει τα δείγματα του

σήματος από το Arduino. Αφού τελειώσει η λήψη, ακολουθεί μια διαδικασία

μετασχηματισμού Fourier, με σκοπό την «μεταφορά» του ληφθέντος σήματος στο χώρο της

συχνότητας. Έπειτα, μπορεί να φιλτραριστεί το σήμα περεταίρω (Low Pass Butterworth Filter)

μέσω ενσωματωμένου εργαλείου ψηφιακού φιλτραρίσματος (DSP). Μάλιστα, μπορούν να

επιλεχθούν η τάξη του φίλτρου (1 − 10) καθώς και η συχνότητα αποκοπής (1-100Hz καθώς

προορίζεται για ανάλυση ELF σημάτων). Τέλος, δίνεται η δυνατότητα αποθήκευσης σε αρχείο

τριών διαφορετικών μορφών (.mat, .txt και .xlsx).

vii

Abstract
The goal of this postgraduate dissertation is the development of a hybrid system, able to

receive analog signals in the ELF part of the spectrum (< 30 𝐻𝑧), amplify and filter them and

lastly save the data on a computer. To achieve this, a PCB with all the necessary hardware (ICs,

etc.) was designed, and a standalone application, using MATLAB, was developed, as well as

Arduino firmware, so the PCB could interface with the computer.

Starting with the PCB - it is made with two different inputs in mind. One is to be connected

directly to an analog voltage source and the other one is to receive a digital input so that the

user can work either with a digital or an analog input/initial signal. In the first case, the signal

initially goes through a preamplifier (𝑥20) and then through an analog Notch filter, so that the

50𝐻𝑧 noise of the powerline supply is filtered out. The, now filtered, signal is ready to be

transferred to an Arduino board, which acts as the interface, for the communication between

the PCB and the computer. In the second case, the input signal (8-bit digital) goes through an

onboard DAC, and then, as an analog signal follows the same path as in the first case. The

Arduino board takes samples every 2ms from the PCB output pin, scales it between 0 – 5, and

then through the onboard USB port, sends it to the computer. There, the standalone

application, after the user selects the value of some necessary parameters, starts receiving

samples of the signal from the Arduino. After it’s done receiving data, it automatically begins

a process of Fourier transform, so that the signal is mapped to the frequency domain.

Following that, one can filter the signal further through a built-in digital filtering tool (Low Pass

Butterworth Filter). Additionally, the order of the filter (1 − 10) and the cutoff frequency (1 −

100 𝐻𝑧 because it is made with ELF signals in mind) can be selected (DSP). Lastly, the option

of saving the data is given to the user in three different format files (.mat, .xlsx, .txt).

viii

List of Figures
Figure 1.1: Simple circuit depicting the 3 fundamental units in electronics. 1

Figure 1.2: Kirchhoff's Current Law. ... 2

Figure 1.3: Kirchhoff's Voltage Law. ... 3

Figure 1.4: A basic depiction of the four major filter types. .. 5

Figure 1.5: A Two-Port Network. .. 6

Figure 1.6: Block diagrams of an FIR (a) and an IIR (b) filter. ... 10

Figure 1.7: Visualization of group delay. .. 11

Figure 1.8: Impulse Response Invariant Design steps. ... 12

Figure 1.9: Step Response Invariant Design steps. .. 13

Figure 1.10: Step Response example. .. 13

Figure 1.11: Block Diagram representation of a system. ... 15

Figure 1.12: Block diagram of a transfer function. .. 16

Figure 1.13: Voltage-current, voltage-charge, current-voltage, and impedance relationships for

capacitors, inductors and resistors. ... 16

Figure 1.14: The left (stable) and right (unstable) half planes. .. 18

Figure 1.15: Plot of a system's Transient Response. .. 19

Figure 1.16: Effect of zeros on the transient response with a step function as input. 19

Figure 1.17: Example with Rise, Peak and Settling time. ... 20

Figure 1.18: The 4 forms of a transient response. ... 21

Figure 1.19: Example of a system 𝐺𝑠 with a unit step input (1𝑠). (a) Block diagram of the

system, showing its input and output; (b) pole-zero plot of the system; (c) evolution of the

system’s step response. ... 22

Figure 2.1: Simplified Block Diagram of the System. ... 24

Figure 2.2: Block Diagram of the Hardware part of the system. ... 24

Figure 2.3: DAC circuit and Pre-Amplifier Schematics. .. 25

Figure 2.4: Current-to-Voltage converter circuit. ... 25

Figure 2.5: Pin connections (left) and internal block diagram (right) of the DAC0808. 26

Figure 2.6: Pin connections for the operational Amplifier TS922 (for SO8 and TSSOP8 formats).

.. 27

Figure 2.7: The op amp configuration used for the preamplifier; the non-inverting

configuration. ... 27

Figure 2.8: Bootstrapped Twin-T Notch Filter. ... 28

Figure 2.9: The notch filter schematic. .. 29

Figure 2.10: Effect of Quality factor on the notch. .. 30

Figure 2.11: Impedances between subcircuits. ... 31

Figure 2.12: Photo of the Board during testing of the DAC. .. 31

Figure 2.13: Front side of the PCB on KiCad 3D Viewer. .. 32

Figure 2.14: Back side of the PCB on KiCad 3D Viewer. ... 32

Figure 2.15: PCB Schematic of the front of the board. .. 33

Figure 2.16: PCB Schematic of the back of the board.. 33

Figure 2.17: Arduino Uno R3 SMD version. ... 34

Figure 2.18: Flow chart of the Arduino Firmware. ... 35

ix

Figure 2.19: MATLAB communication with Windows for port availability. 36

Figure 2.20: Window for the user to select the port. .. 37

Figure 2.21: Prompt for the user to input some key for the sampling variable values. 38

Figure 2.22: Setting the port and defining the terminator to read and write. 38

Figure 2.23: Flow chart of the interfacing process on the MATLAB side. 39

Figure 2.24: Code snippet handling the difference equation. ... 42

Figure 2.25: Filter Specifications Window. ... 42

Figure 2.26: Main window of the MATLAB app. .. 43

Figure 2.27: Progress bar. ... 44

Figure 2.28: Data and Key Variables window. .. 44

Figure 2.29: One of the error messages displayed, when the app is not used properly. 45

Figure 2.30: Graphs with plotted data. .. 46

Figure 2.31: View of a signal in the time and frequency domain. ... 49

Figure 2.32: The function that performs Fast Fourier Transform in the app. 49

Figure 2.33: The entirety of the source code for the application in a collapsed form. 51

Figure 2.34: Defining a class as a Handle class in MATLAB. ... 52

Figure 2.35: Flow chart of the custom MATLAB application. ... 53

Figure 3.1: Comparison between the Theoretical and the Filter's Step Response. Note: The

notable shift at the beginning is because the System data used for this graph, take into account

the delay filtering causes. .. 55

Figure 3.2: Comparison of Transient responses with a sine as an input. 55

Figure 3.3: Theoretical Step Response of the Notch Filter. .. 56

Figure 3.4: Theoretical Transient response of the Notch Filter with a sine as input. 56

Figure 3.5: The PicoScope 2204A Oscilloscope by © 2024 Pico Technology Ltd. 57

Figure 3.6: Frequency Response of the Notch filter. .. 58

Figure 3.7: Comparison of the Theoretical and actual filter's frequency responses using an

analog signal source. .. 59

Figure 3.8: Op amp saturation and signal clipping. ... 61

Figure 3.9: Voltage Divider Values. .. 62

Figure 3.10: Notch filter's frequency response when using the DAC – a digital signal source as

input. .. 63

Figure 3.11: Comparison of theoretical and actual data, when the input is from a digital signal

source. .. 63

Figure 3.12: Sine sampled at Nyquist Frequency. Note: The amplitude of the input signal is 1,

while the sampled is around 0,04. That is because the samples align at the zeros of the sine.

The reason because they are not exactly zero is the accuracy of the calculations. 64

Figure 3.13: A zoom in of the above graph. ... 65

Figure 3.14: Sine sampled close to the Nyquist frequency. ... 65

Figure 3.15: Magnitude Response Comparison. .. 66

x

List of Tables
Table 1: The four Fourier approaches. ... 47

Table 2: Custom PCB data while measuring input directly from a Voltage Source.................. 60

Table 3: Measurement Data from the Notch while using ATmega as a signal source. 62

Table 4: Data taken while testing the digital filter. ... 67

Table 5: Reset and Interrupt Vectors... - 20 -

xi

List of Abbreviations
Abbreviation Definition
ELF Extremely Low Frequency

AC Alternating Current

AF Audio Frequency

BW Bandwidth

DAC Digital to Analog Converter

DC Direct Current

FIR Finite Impulse Response

IC Integrated Circuit

IIR Infinite Impulse Response

IIT Impulse Invariant Transformation

KCL Kirchhoff's Current Law

KVL Kirchhoff's Voltage Law

LTI Linear Time Invariant

USB Universal Serial Bus

PCB Printed Circuit Board

RF Radio Frequency

TF Transfer Function

MSB Most Significant Bit

LSB Less Significant Bit

SI International System of Units

RHP Right-Half plane

LHP Left-Half plane

FFT Fast Fourier Transform

DFT Discreet Fourier Transform

DTFS Discreet Time Fourier Series

DTFT Discreet Time Fourier Transform

CTFS Continuous Time Fourier Series

CTFT Continuous Time Fourier Transform

VRM Voltage Regulator Module

IDE Integrated Development Environment

ISR Interrupt Service Routine

Ohm’s Law

1

Chapter 1 Introduction
This thesis describes the development of a software-hardware/analog-digital hybrid system

capable of amplifying and filtering signals within the ELF band of radio frequencies.

It opens with a brief introduction to fundamental laws in electronics, as well as to analog and

digital low pass and notch filtering, and more.

1.1 Ohm’s Law
Ohm's Law, unveiled by Georg Simon Ohm and presented in his 1827 paper titled "The

Galvanic Circuit Investigated Mathematically," constitutes the first and arguably the most

significant relationship among current, voltage, and resistance.

An electric circuit is created when a conductive path is established, enabling the uninterrupted

flow of electric charge. This continuous movement of electric charge along the conductors in

a circuit is known as current and it is commonly described in analogical terms, similar to the

flow of liquid through a hollow pipe.

The force motivating these charge carriers to move is called Voltage. In more scientific terms,

Voltage is a measure of potential energy between two points. When discussing the presence

of Voltage in a circuit, we are addressing the measurement of the potential energy available

to transport charge carriers between specific points in the circuit. The term “Voltage” has no

meaning without specifying two distinct points of reference.

Current does not move freely through a conductor. It’s met with opposition to that movement.

This opposition to the motion is more properly called resistance. The amount of current is

dependent on the voltage present and the amount of resistance in the circuit. Similar to

voltage, resistance is relative between two points. Consequently, descriptions of voltage and

resistance frequently specify being "between" or "across" two points within a circuit.

Ohm’s fundamental discovery revealed that the electric current flowing through a metal

conductor in a circuit is directly proportional to the Voltage applied across it for any given

temperature.

Figure 1.1: Simple circuit depicting the 3 fundamental units in electronics.

Kirchhoff's Laws

2

Ohm expressed his discovery in the form of a simple equation, effectively describing how

current, voltage, and resistance interrelate [1, p. 4]:

 𝐼 =
𝑉

𝑅

1.1

Where [1, p. 2]:

• 𝐼 is the symbol of Current - measured in Amperes (S.I.)

• 𝑉 symbolizes the Voltage across the conductor - measured in Volts (S.I.)

• 𝑅 symbolizes the Resistance/opposition of the conductor to the flow of current –

measured in Ohm (S.I.)

1.2 Kirchhoff's Laws
Born on 12 March 1824 in Prussia, a state within the German Empire, Gustav Robert Kirchhoff

was a German physicist renowned for his contributions to electrical circuits, black body

radiation, and spectroscopy.

In 1845, while still a student, Kirchhoff formulated his circuit laws, which are now ubiquitous

in electrical engineering, as they are the fundamental/basic laws used in circuit analysis to

solve complex problems. Originally conceived as a seminar exercise, his study later evolved

into his doctoral dissertation.

Kirchhoff’s first circuit law – also known as Kirchhoff’s Current Law (KCL) states that the sum

of all currents flowing into a node equals the sum of currents flowing out of the node. It can

be written as [1, p. 2]:

∑𝑖𝐼𝑁 =∑𝑖𝑂𝑈𝑇

1.2

Figure 1.2: Kirchhoff's Current Law.

Note: Kirchhoff’s First Law (10.1.4) | CIE A Level Physics Revision Notes 2022. (n.d.). Save My Exams.
https://www.savemyexams.com/a-level/physics/cie/22/revision-notes/10-d-c-circuits/10-1-dc-practical-circuits--kirchhoffs-

laws/10-1-4-kirchhoffs-first-law/

Filters

3

According to his second circuit law or KVL, the sum of voltages around a loop is zero.

Mathematically, this is written as [1, p. 2]:

 ∑𝑉𝑛 = 0

𝑛

 1.3

Where n is the number of element Voltages around the loop.

Figure 1.3: Kirchhoff's Voltage Law.

Note: GeeksforGeeks. (2023, June 15). Kirchhoff s Laws. https://www.geeksforgeeks.org/kirchhoffs-laws/

1.3 Filters
Filters, in general, are frequency-selective circuits capable of passing/amplifying or

attenuating a signal depending on its frequency. Thus, using filters, one can minimize the

effect of the noise (irrelevant or else undesirable frequencies) in a signal. Analog filters are a

basic building block of signal processing and more generally, in electronics.

There are many practical applications for filters. Some of them being:

• In Radio communications, filters enable radio receivers to only "see" the desired signal

while rejecting all other signals (assuming the other signals have different frequency

content).

• In DC power supplies, filters are used to eliminate undesired high frequencies that are

present on AC input lines. Additionally, filters are used on a power supply's output to

reduce ripples.

• In audio electronics, there are the so-called crossover networks. They are networks of

filters used to channel low-frequency audio to woofers, mid-range frequencies to

midrange speakers, and high-frequency sounds to tweeters.

Filters

4

1.3.1 Filter specifications
Assuming the filter is a 2-port network (1 input – 1 output), then we can define the following

terms:

• Passband

• Stopband

• Passband & stopband ripples

Passband is defined as the range of frequencies, that are passed seemingly “untouched”, or in

scientific terms, with the minimum attenuation through the filter. While stopband is the band

of frequencies that are heavily attenuated or blocked by the filter. Passband and stopband

ripples are, as the name suggests, fluctuations (measured in dB) occurring in the passband or

stopband of a filter’s frequency magnitude response curve.

1.3.2 Classification of filters
There are mainly two ways of classifying a filter; depending on the components used in making

the circuit and depending on its frequency magnitude response.

Using the former, there are two types of filters:

• Passive filters

• Active filters

Passive filters are built using – as the name suggests – passive components such as resistors,

capacitors and inductors. On the other hand, an active filter is made using active elements

(transistors, op-amps) in addition to resistors and capacitors.

Using the latter, they can be classified as [2, Ch. 1.1]:

1. Low Pass Filters: Only signals with low frequencies – between 0𝐻𝑧 and 𝑓𝑐
1 - are

allowed to pass through the filter, while higher frequencies are blocked/attenuated.

2. High Pass Filters: Opposite of the low-pass, it only allows high-frequency signals while

frequencies below fc are blocked/attenuated.

3. Band Stop Filters: Blocks/Attenuates signals whose frequencies fall within a certain

band set up between two points, while allowing the rest to pass through2.

4. Band Pass Filters: Allows signals whose frequency falls within a certain range (between

two points) to pass while blocking the rest of the frequencies on either side of said

range.

Finally, it is also worth noting that depending on the operating frequency range, filters may

be categorized as Audio Frequency (AF) or Radio Frequency (RF) filters.

1 fc: Cutoff Frequency. It’s explained later on.
2 NOTE: A notch filter is a band-stop filter with a narrow band-stop bandwidth. Notch filters are used to attenuate
a narrow range of frequencies, and it’s one of the two filters used in this project.

Filters

5

Figure 1.4: A basic depiction of the four major filter types.

Note: An Introduction to Filters. (2023, September 30). All About Circuits. https://www.allaboutcircuits.com/technical-
articles/an-introduction-to-filters/

Some More Key Terms

• Response curves: they are graphs used to describe how a filter behaves. On the y-axis,

we usually have attenuation or gain, while frequency goes on the x-axis.

Attenuation/Gain, or Magnitude of the TF, is simply the ratio
𝑉𝑂𝑈𝑇

𝑉𝐼𝑁
, often expressed in

decibels using the following formula [3, p. 321]:

𝐴(𝑑𝐵) = 20 𝑙𝑜𝑔10 ∙
𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

 1.4

• Cutoff or −3𝑑𝐵 Frequency (𝑓𝑐 or 𝑓3𝑑𝐵): Cutoff or “minus 3dB” frequency, is the

frequency value that corresponds to a 3dB drop of the output signal’s amplitude

relative to that of the input signal. That 3dB value means that the output power is

reduced by one-half or that:

𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

=
1

√2
⇒ 𝑉𝑂𝑈𝑇 =

𝑉𝐼𝑁

√2
 1.5

It’s worth mentioning that there is only one 𝑓𝑐 for low-pass and high-pass filters, but

for band-pass and band-stop filters there are two. They are normally referred to as 𝑓
1

and 𝑓2.

• Stopband Frequency (𝑓𝑠): It’s the frequency value at which the attenuation reaches a

specific value.
❖ For band-pass and band-stop filters, two Stopband frequencies exist. The

frequency range between them is referred to as the stopband.
❖ For low-pass and high-pass filters, frequencies beyond or before -respectively-

the fs are referred to as the stopband.

Transfer Function And Transforms

6

• Center Frequency (𝑓0): is a central frequency that lies between the upper and lower

cutoff frequencies (for band-pass and band-stop filters). It can be calculated by the

geometric mean [4, p. 8.9-8.10] of 𝐹𝐻 and 𝐹𝐿
3: 𝑓0 = √𝐹𝐻𝐹𝐿

• Bandwidth (𝐵𝑊): is defined as the width of the passband. Mathematically, it’s the

difference between the frequencies where the response is -3dB from the maximum

value [4, p. 8.9]: 𝐵𝑊 = 𝐹𝐻 − 𝐹𝐿

• Quality factor (𝑄): It basically measures how close to perfect (ideal) a filter4 can be.

Basically, the higher its value, the better the filter; the lower the losses. A general

definition that applies to any system (and from which all other definitions are derived)

is:

  𝑄 = 2𝜋
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
 1.6

For band-pass and notch filters, the value of Q is given by the following equation [4, p.

8.9]:

 𝑄 =
𝑓0
𝐵𝑊

1.7

1.4 Transfer Function And Transforms
The filters used in this system - both analog and digital – are linear circuits5, meaning that they

can be represented by a 2-port network as shown below:

Figure 1.5: A Two-Port Network.

Note: Characterization of Linear Time-Invariant Two-Port Networks | BengalStudents. (n.d.).
https://www.bengalstudents.com/books/elecrical-circuit-theory-and/characterization-linear-time

This means that they can be described using what is called a Transfer Function. A Filter’s

Transfer Function- in the s domain- can be6 defined as the ratio of the output Voltage of the

filter to its input voltage [5, p. 45]:

3 See next bullet point.
4 Or how close to perfect a component can be.
5 Explained in Chapter 1.6
6 In reality, the transfer function can be defined as a ratio between two chosen units of a system. For example,
between the input current and the output voltage of a circuit.

Transfer Function And Transforms

7

 𝐻(𝑠) =
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
 1.8

In the time domain, however, it is different. It’s defined as the convolution of the input:

 𝑣𝑂𝑈𝑇(𝑡) = 𝑣𝐼𝑁(𝑡) ∗ ℎ(𝑡)
1.9

As noticed, the Transfer Function is expressed in terms of the variable “s”. That variable comes

from the Laplace Transform, and it represents complex frequency (angular frequency ω7). The

Laplace Transform is a mathematical technique that changes a function of time into a function

of the (angular) frequency domain or else the s-domain. In electronics, it’s used to more easily

analyze a complex circuit. It’s defined by8 [5, p. 35]:

 ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑠𝑡
∞

0−
𝑑𝑡, 𝑠 = σ + 𝑗ω9 1.10

But if the Laplace Transform takes us from the time domain to the frequency domain, why

don’t we just use the (continuous time) Fourier Transform (definition below [6, p. 288])?

 ℱ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑗ω𝑡
∞

−∞

𝑑𝑡 1.11

The answer is that the Laplace Transform is, in a way, a generalized Fourier Transform, or in a

more mathematical term, it can be considered as a super-set for the Continuous Time Fourier

Transform. That can be seen when in the Laplace Transform, σ = 0 , we get the Fourier

Transform but only for t>0. But there are some differences; the Fourier Transform is exclusively

used in bilateral form (see that the integral limits are from 𝑡 → −∞ to 𝑡 → ∞), whereas the

Laplace is not (it’s more often than not used in unilateral form). That’s why it is very well suited

to problems involving initial conditions (𝑡 = 0), and it’s used to calculate the transient

response of a system.

The Fourier Transform is used in the Telecommunications Field, where almost all signals of

interest are sinusoidal and complex exponential (which are the kind for which the Fourier

Transform is well suited), and the steady-state response is the sought solution.

So, we can say, that the Transfer Function is a mathematical description of the filter’s

frequency (s) domain behavior. If a filter’s Transfer Function is given, we can compute the

specific magnitude and phase information of the circuit, by simply substituting 𝑠 = 𝑗ω10 and

evaluating the expression at the angular frequency’s (ω) value of interest.

Given, that it is a complex function, it can be expressed as:

7 The conversion between these is simple using the well-known formula: ω(

𝑟𝑎𝑑

𝑠𝑒𝑐
) = 2 ∗ 𝑝𝑖 ∗ 𝑓(𝐻𝑧)

8 This is the definition of the unilateral Laplace transform.
9 The notation for the lower limit means that even if f(t) is discontinuous at 𝑡 = 0, we can start the integration
prior to the discontinuity, as long as the integral converges.
10 In the electronics field – for AC analysis, it’s assumed σ = 0 . The reason is that we are looking at the response
of the system to periodic (and thus non-decaying) sinusoidal signals, whereby Laplace conveniently reduces to
Fourier along the imaginary axis. The real axis in the Laplace domain represents exponential decay/growth
factors that pure signals do not have, and which Fourier does not model.

Transfer Function And Transforms

8

 𝑇(𝑗ω) = |𝑇(𝑗ω)|𝑒𝑗ϕ(ω) 1.12

where:

 ϕ(ω) = 𝑎𝑟𝑔(𝑇(𝑗ω)) 1.13

Usually, the magnitude of T(jω) can be expressed in decibels, in terms of the Gain Function

which is the unit used for Bode plots [2, p. 3]:

 𝐺(ω) = 20𝑙𝑜𝑔10(|𝑇(𝑗ω)|)
1.14

Alternatively, in terms of the Attenuation function [2, p. 3]:

 𝐴(ω) = −20𝑙𝑜𝑔10(|𝑇(𝑗ω)|) 1.15

In this use case, the transfer function is a ratio of voltages. That is why the conversion to

decibels is 20 times the logarithm of the ratio. Had it been a ratio of powers, it would be

converted to decibels by taking 10 times the logarithm of the ratio [3, p. 322].

When we want to see the output expressed in terms of time, all we need to do is take the

Inverse Laplace of 𝑉𝐼𝑁(𝑠) ∗ 𝑇(𝑠).

 𝑉𝑂𝑈𝑇(𝑡) = ℒ
−1𝑉𝐼𝑁(𝑠)𝑇(𝑠) 1.16

But what happens when we need to work on the digital domain? How will we digitize the

Transfer function? For linear systems, the Laplace transform is used to transform time domain

characteristics to the frequency domain. For the discrete time (digital) systems, the Z-

Transform will be used [6, p. 742]:

 𝑍{𝑥(𝑛)} = 𝑋(𝑧) = ∑ 𝑥(𝑛) 𝑧−𝑛
∞

𝑛=−∞

 1.17

Digital Filters

9

1.5 Digital Filters
Linear electronic analog filters are those that can be described with linear differential

equations – because of the equations that govern the components like inductors and

capacitors (derivatives with respect to time). Using those equations, and Kirchoff’s and Ohm’s

Laws, we can derive the transfer function of a system fairly easily. This will later be referred to

as “Analog Filter Theory”.

Now, besides Analog filters, we can also create Digital ones that serve the same function.

There is a variety of methods that can be used to design said type of filters; a common one

being using the so-called “analog filter approximation functions”. These are already developed

functions, that have the same properties 11 as their analog filter’s Transfer Functions

counterpart – with Butterworth and Chebyshev being the most common. The reason they are

used in Digital Filter Design is that they are more easily12 translated for use in discrete-time

systems.

Most of the filters designed that way, are recursive in nature, meaning that the output of the

filter will depend on previous values of itself – as well as past and current values of the input13.

These types of filters can theoretically have impulse responses that continue forever, and

therefore, are commonly referred to as Infinite Impulse Response filters (I.I.R.).

Another method of designing digital filters, which does not depend on analog filter theory,

but rather uses the frequency response of the desired filter, to directly determine the digital

filter coefficients. These types of filters generally have an impulse response containing only a

finite number of values and thus are commonly called Finite Impulse Response filters (F.I.R.).

11 Or -more specifically - as close as possible, because there is no perfect equivalent to analog filters at all
frequencies.
12 Compared to Transfer functions derived from pure circuit analysis
13 The equation that describes this is called “difference equation” and it’s the discrete time counterpart of a
differential equation.

Digital Filters

10

Figure 1.6: Block diagrams of an FIR (a) and an IIR (b) filter.

Note: Mathuranathan. (2021, May 15). Choosing FIR or IIR ? Understand design perspective - GaussianWaves.
GaussianWaves. https://www.gaussianwaves.com/2017/02/choosing-a-filter-fir-or-iir-understanding-the-design-

perspective/

The initial decision in designing a system containing a digital filter is determining whether to

use an IIR or FIR filter. First, and foremost, the appropriate filter type must be selected based

on the application's requirements.

IIR filters have the advantages of providing higher selectivity for a particular order and a

closed-form design technique that doesn’t require iteration. The design technique also

provides for a rather precise solution to the specifications of gain and edge frequencies.

However, IIR filters also have the disadvantages of nonlinear phase characteristics and

possible instability due to poor implementation. FIR (non-recursive) filters, on the other hand,

can provide a linear phase response (constant group delay14) that is important for data

transmission and high-quality audio systems. Also, they are always stable because they are

implemented using an all-zero transfer function. Since no poles can fall outside the unit circle,

the filter will always be stable. But because of this, the order of the filter is much higher than

the IIR filter, which has a comparable magnitude response. This higher order leads to longer

processing times and larger memory requirements. In addition, FIR filters must be designed

using an iterative method since the required filter length to satisfy a given filter specification

can only be estimated [2, pp. 187–188].

14 In the field of signal processing, group delay and phase delay are two interconnected ways of describing how
a signal’s frequency components experience time delays while traversing through a LTI system (such as a
microphone or a filter – analog or digital). While phase delay specifically characterizes the time shift of a
sinusoidal component (a sine wave in steady state), group delay describes the time shift of the envelope of a
wave “packet”. This packet essentially is a cluster/group of oscillations centered around a single frequency,
travelling collectively.

Digital Filters

11

Figure 1.7: Visualization of group delay.

Note: Lacoste, R. (2021, January 29). Group Delay Basics - More Filter Fun - Circuit Cellar. Circuit Cellar.
https://circuitcellar.com/research-design-hub/group-delay-basics-more-filter-fun/

Taking all this into account, the filter designer needs to consider the requirements imposed

on the digital filter. If the magnitude response is crucial with less emphasis on phase response,

opting for an IIR filter would be preferable. On the other hand, if phase response holds greater

significance than magnitude response, choosing an FIR filter is warranted. In cases where both

magnitude and phase response are equally important, one must also consider processing time

constraints and memory requirements. If other options prove ineffective, it is possible to

design both an FIR and IIR filter (with some phase correction) to meet the specifications.

Subsequently, both filters can be tested to assess the results.

After settling on the filter type, several additional decisions must be made. For instance, will

the system operate in real-time, or can it be a non-real-time system? A real-time system

involves providing input samples to the digital filter and processing them to generate an

output sample - all before the next input sample arrives. This imposes a very precise time

constraint on the available processing time, with higher sampling frequencies providing less

time for processing. On the other hand, some systems are afforded the luxury of operating in

non-real-time. For example, signals can be recorded and processed at a later time15. In this

case, extensive processing is possible due to the lack of a fixed time interval that marks the

end of the processing time16.

As mentioned previously, when designing an IIR filter, one must select the right “analog filter

approximation function”. The second step is finding a method of translating their analog

15 This is the way the digital filter designed for this system operates.
16 Given that for this project the IIR approach was chosen, more emphasis should be placed on how to proceed
after deciding to design such a filter.

Digital Filters

12

filter’s characteristics 17 into those of a digital one – or in other words, finding the

corresponding discrete Transfer function for the digital filter. The three most common and

widely known methods are the following:

• Impulse Response invariant design

• Step response invariant design

• Bilinear transform design

1.5.1 Impulse Response Invariant Design
Impulse Response Invariant Design, otherwise called impulse invariant transformation (IIT), is

based on the idea of creating a digital filter with an impulse response18 that is a sampled

version of the impulse response h(t) of the analog filter [2, p. 142].

Let’s start by taking the inverse Laplace transform of the analog filter’s TF 𝐻(𝑠) and thus

determining its continuous impulse response ℎ(𝑡). Next, to determine the system’s discrete-

time impulse response ℎ(𝑛𝑇), all that is needed is to sample the ℎ(𝑡), by effectively replacing

𝑡 with 𝑛𝑇. Lastly, the discrete TF 𝐻(𝑧) can be calculated by simply taking the Z-Transform of

ℎ(𝑛𝑇) [2, Ch. 6.1].

Figure 1.8: Impulse Response Invariant Design steps.

1.5.2 Step Response Invariant Design
An alternative approach for digitizing an analog transfer function is to match the step response

of both systems (analog and digital) [2, p. 146].

The step response of a system, given a specific initial state, consists of the time evolution of

its outputs, when subjected to Heaviside step functions as inputs. In electronic engineering

and control theory, the step response characterizes the behavior, with respect to time, of a

system’s output as its input transitions from zero to one in a brief interval.

The process of the Step Response Invariant Design is quite similar to that of IIT, with the

distinction that, in this case, instead of the impulse response ℎ(𝑡), it’s the step response of

the analog filter that will be sampled and then transformed using the Z-transform [2, Ch. 6.2].

17 It’s worth reminding that the analog filter approximation transfer function still describes/approximates an
analog filter.
18 In the field of signal processing and control theory, the impulse response of a system is its output when it’s
subjected to a short input signal δ(𝑡). Broadly speaking, the impulse response denotes how any dynamic system
reacts to external alteration.

Digital Filters

13

Figure 1.9: Step Response Invariant Design steps.

Finding the step response of a system is simple, given that we already have its TF 𝐻(𝑠):

FOUT(s)

FIN(s)
= 𝐻(𝑠) ⇒ 𝐹𝑂𝑈𝑇(𝑠) = 𝐹𝐼𝑁(𝑠)𝐻(𝑠) ⇒ 𝐹𝑂𝑈𝑇(𝑠) =

1

𝑠
𝐻(𝑠)

1.18

where
1

𝑠
 is the Laplace Transform of the step/Heaviside function 𝑢(𝑡) = {

1, 𝑡 > 0
0, 𝑡 < 0

 and

𝐹𝑂𝑈𝑇(𝑠) is the step response of the analog filter.

Now, to find the time-domain response 𝑓𝑂𝑈𝑇(𝑡) to the step input, all that is needed is an

inverse Laplace transform:

 𝑓𝑂𝑈𝑇(𝑡) = ℒ
−1{FOUT(s)}

1.19

Then, simply sample it to get the discrete-time version 𝑓𝑂𝑈𝑇(𝑛𝑇). Next step is an Z-Transform

[2, p. 147]:

 𝐹𝑂𝑈𝑇(𝑧) = 𝑍𝑓𝑂𝑈𝑇(𝑛𝑇) = 𝐻(𝑧) ⋅
1

1 − 𝑧−1
⇒ 𝐻(𝑧) = 𝐹𝑂𝑈𝑇(𝑧) ⋅ (1 − 𝑧

−1)
1.20

Figure 1.10: Step Response example.

Note: Step response. (2023, October 27). In Wikipedia. https://en.wikipedia.org/wiki/Step_response

Digital Filters

14

1.5.3 Bilinear Transform Design
Both the impulse invariant and step invariant design methods provide good approximations

for lowpass and some bandpass analog filter responses. However, they cannot provide good

matching of high-frequency responses, which makes it impossible to use them for highpass or

bandstop filter design [2, p. 151]. That is why they fail to be the best approaches for matching

analog filter responses when a precise match is needed throughout a wide range of

frequencies. Additionally, distortion from aliasing can occur, if a careful selection of the

sampling frequency and strict band-limiting19 don’t take place.

Bilinear Transform Design attempts to tackle these problems – by aiming to make an adequate

match over the entire filter frequency range. Certainly, this poses a challenge as the analog

frequency range spans from zero to infinity, while the digital frequency only extends from zero

to 2π20. Nevertheless, a transformation from the analog s-domain to the digital z-domain has

been developed.

In this approach, the relationship between the complex variables s and z can be described by

the following equation, with T representing the sampling period [2, p. 151]:

 𝑠 =
2

𝑇
⋅
𝑧 − 1

𝑧 + 1

1.21

So, once the analog TF 𝐻(𝑠) has been determined, the bilinear transform substitution (1.21)

can be used to simply derive the digital TF 𝐻(𝑧).

19 A bandlimited signal, strictly speaking, is a signal with zero energy beyond a specific frequency range.
Practically, a signal is considered bandlimited if its energy outside a designated frequency range is sufficiently
low to be deemed negligible for a specific application.
20 The digital frequency range of 0 to 2π represents the normalized angular frequency, expressed in units of

radians per sample: ω𝑛𝑜𝑟𝑚 =
𝜔𝑎𝑛𝑎𝑙𝑜𝑔

𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Modeling Electronic Circuits

15

1.6 Modeling Electronic Circuits
Kirchhoff’s and Newton’s laws lead to mathematical models that describe the relationship

between the input and output of dynamic systems. One such model is the linear, time-

invariant21 differential equation [5, p. 16]:

𝑑𝑛𝑐(𝑡)

𝑑𝑡𝑛
+ 𝑑𝑛−1

𝑑𝑛−1𝑐(𝑡)

𝑑𝑡𝑛−1
+⋯+ 𝑑0𝑐(𝑡) = 𝑏𝑚

𝑑𝑚𝑟(𝑡)

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑟(𝑡)

𝑑𝑡𝑚−1
+⋯+ 𝑏0𝑟(𝑡)

1.22

which relates the output, 𝑐(𝑡), to the input, 𝑟(𝑡), by way of the system parameters, 𝑎𝑖 and 𝑏𝑗.

So, a system’s input-output relationship can be described by a differential equation, where the

formulation and coefficients of the equation serve as a description of the system. However, it

is not a fully satisfying representation from a systems perspective. This is obvious, when

looking at 1.22 – a general, nth-order, linear, time-invariant differential equation, we see that

the system parameters, which are the coefficients, as well as the output and the input appear

throughout the equation.

A mathematical representation, such as that shown in Figure 1.11, in which the input, output

and the system are distinct and separate parts, would be preferred.

Figure 1.11: Block Diagram representation of a system.

Note: [5, p. 34]

Representing a system characterized by a differential equation in the form of a block diagram

poses a challenge, and the Laplace Transform (1.10) serves as the mathematical tool for

achieving this.

As mentioned earlier, the notation for the lower limit means that even if f(t) is discontinuous

at 𝑡 = 0 , we can start the integration prior to the discontinuity as long as the integral

converges. This property has distinct advantages when applying the Laplace transform to the

solution of differential equations, where the initial conditions are discontinuous at 𝑡 = 0. For

example, using differential equations, we have to solve for the initial conditions after the

discontinuity knowing the initial conditions before said discontinuity. Whereas, using the

Laplace Transform, we need only know the initial conditions before the discontinuity [5, p.

35].

Typically, a system that a LTI differential equation can represent, can be modeled as a transfer

function. Starting with the general nth-order, linear, time-invariant differential equation that

21 A circuit can be defined as linear when the relationship between its input and output is linear. Additionally,
time invariance means that whether we apply an input to the system now or T seconds from now, the output
will be identical except for a time delay of T seconds.

Modeling Electronic Circuits

16

is 1.22, and after taking the Laplace Transform of both sides - assuming that all initial

conditions are zero- we get:

𝐶(𝑠)

𝑅(𝑠)
= 𝐻(𝑠) =

𝑏𝑚𝑠
𝑚 + 𝑏𝑚−1𝑠

𝑚−1 +⋯+ 𝑏0
α𝑛𝑠𝑛 + α𝑛−1𝑠𝑛−1 +⋯+ α0

 1.23

Now, the input 𝑅(𝑠), the output 𝐶(𝑠) and the system – the ratio of polynomials in s – are

separated. 𝐻(𝑠) is the transfer function (as defined in previous chapters) and is evaluated

with zero initial conditions.

Figure 1.12: Block diagram of a transfer function.

Note: [5, p. 45]

Of course, the term “system” also includes electrical circuits/networks, meaning that they can

also be modeled as a TF. In fact, resistors, inductors, and capacitors - the three basic building

blocks of electronic (passive) components - can be individually modeled into the s-domain.

Figure 1.13 summarizes the voltage-current-charge and impedance relationships for resistors,

inductors, and capacitors, under zero initial conditions.

Figure 1.13: Voltage-current, voltage-charge, current-voltage, and impedance relationships for capacitors, inductors and
resistors.

Note: Nise, N. S. (2014). Control Systems Engineering. Wiley. p 47

Many electrical networks consist of multiple loops and nodes and that is why finding their TF

can pose a challenge. But the process can be broken down into steps [5, p. 51]:

1. Using Figure 1.13, replace passive element values with their impedances.

2. Replace all sources and time variables with their Laplace transform.

3. Assume a transform current and a current direction in each mesh/loop.

4. Write Kirchhoff’s voltage law around each mesh/loop.

5. Solve the simultaneous equations for the output.

6. Using said equations, form the TF.

Modeling Electronic Circuits

17

1.6.1 Poles, Zeros and System Response
Discussion of a system’s time response is moot if the system does not have stability. But in

order to explain what stability means in this context, we need to start from the fact that the

output response of a system is the sum of two responses: the forced response and the natural

response. The first one is also called steady-state response and it’s defined as the behavior of

the system after a long time period has passed since an external excitation and steady

operating conditions have been reached. Natural response describes the way the system

dissipates or acquires energy22. The form or nature of this response is dependent only on the

system, not the input [5, p. 10]23.

For a system to be useful, it’s crucial for the natural response to eventually either diminish to

zero, thus leaving only the forced response to remain present, or to oscillate. However, in

certain systems, the natural response doesn't attenuate or oscillate but instead grows

indefinitely. Over time, the escalating natural response surpasses the forced response

significantly, resulting in a complete loss of control. This condition, called instability, poses a

risk of potential self-destruction for the physical device unless design measures, such as limit

stops, are implemented. Therefore, systems must be designed to be stable – that is, their

natural response must decay to zero or oscillate as time approaches infinity.

Using these concepts, the following definitions of stability, instability, and marginal stability

can be made [5, Ch. 6.1]:

• A linear, time-invariant system is stable if the natural response approaches zero as time

approaches infinity.

• A linear, time-invariant system is unstable if the natural response grows without bound

as time approaches infinity.

• A linear, time-invariant system is marginally stable if the natural response neither

decays nor grows but remains constant or oscillates as time approaches infinity.

The above definitions rely on a description of the natural response. But because when one is

looking at the total response, it can be difficult to differentiate between the natural and the

forced response, an alternate definition of stability can be made24:

• A system is stable if every bounded input yields a bounded output.

• A system is unstable if any bounded input yields an unbounded output.

While various techniques, such as solving differential equations or performing inverse Laplace

transforms, will lead to the evaluation of the output response, they are time-intensive and

laborious. Productivity is enhanced by analysis and design techniques that yield results swiftly.

The use of poles and zeros and their relationship to the time response of a system is such a

technique.

22 Simply put, the natural response is the system’s response to initial conditions with all external forces set to
zero, while the forced response is the system’s response to an external stimulus with zero initial conditions.
23 For reference, in linear differential equations these responses were referred to as the homogenous (natural
response) and the particular (forced response) solutions.
24 This is referred to as the Bounded-Input, bounded-output (BIBO) definitions of stability.

Modeling Electronic Circuits

18

The poles of a transfer function are the values of the Laplace transform variable, s, that cause

the transfer function to become infinite or any roots of the denominator of the transfer

function that are common to roots of the numerator. Now, the zeros of a transfer function are

the values of the Laplace transform variable, s, that cause the transfer function to become

zero, or any roots of the numerator of the transfer function that are common to roots of the

denominator [5, p. 159].

Figure 1.14: The left (stable) and right (unstable) half planes.

Note: THE LAPLACE TRANSFORM | Chapter Six. Infinite Impulse Response Filters. (n.d.).
https://flylib.com/books/en/2.729.1/the_laplace_transform.html

But how do poles and zeros relate to the stability of a system? By simply taking the inverse

Laplace transform of the transfer function of a system25 one can prove that poles in the left

half-plane (lhp) yield either pure exponential decay or damped sinusoidal natural responses

that decay to zero as time approaches infinity. On the other hand, poles in the right half-plane

(rhp) yield either pure exponential or exponentially increasing sinusoidal natural responses.

Finally, a system with poles on the imaginary axis (ℜ(𝑠) = 𝟎) yields pure sinusoidal oscillations

as a natural response26.

Transient Response

Zeros, on the other hand, don’t directly affect the stability of an LTI system, and that’s

apparent when looking at the definitions of stability. What they do affect is the time - and

consequently the transient - response of the system, which is defined as the system’s initial

response to a sudden change in its inputs. It refers to the behaviour of the system during the

time period immediately after a change in its input and the arrival to the stable state.

25 It should be clear that the inverse Laplace transform of the TF of a system yields its natural response, while the
inverse Laplace transform of the input 𝑅𝐼𝑁(𝑠) yields the forced response. A simple addition gives us the full
response of a system – that is the inverse Laplace of the output 𝐶𝑂𝑈𝑇(𝑠). Visualized in Figure 1.19.
26 If the pole is equal to zero, we still get a marginally stable system, but natural response is a constant value –
not a sinusoid.

Modeling Electronic Circuits

19

Figure 1.15: Plot of a system's Transient Response.

Note: Admin. (2014, April 9). ▷ Transient Response analysis of control systems. Electrical Equipment.
https://engineering.electrical-equipment.org/panel-building/transient-response-analysis-of-control-systems.html

Adding a zero to a system leads to a new TF 𝐻(𝑠) → (𝑠 + 𝑎) ⋅ 𝐻(𝑠), which consists of two

parts: the derivative27 of the original response (𝑠 ⋅ 𝐻(𝑠)) and a scaled version of the original

response (𝑎 ⋅ 𝐻(𝑠)). How the value of the zero affects the response is depicted on Figure 1.16.

Figure 1.16: Effect of zeros on the transient response with a step function as input.

27 Derivative in respect to time. According to easily available Laplace Transform tables: ℒ [

𝑑𝑓

𝑑𝑡
] = 𝑠𝐹(𝑠) − 𝑓(0−)

where 𝑓(0−) = 0 because of the zero initial conditions.

Modeling Electronic Circuits

20

The transient response can be further analyzed, depending on the order of the filter.

Intuitively, the 1st
 order28 systems are the simplest to analyze. Changing the parameters (such

as the coefficients of the TF) only changes the speed of the response. Said speed – or more

generally – performance can be described using these three terms [5, Ch. 4.3]:

• Time constant: It’s the time it takes for the output to get to ~63% of the final value

(steady state).

• Rise time (𝑇𝑟): the time it takes for the output to go from 10% to 90% of the final

value.

• Settling time (𝑇𝑠): the time it takes for the output to stay within 2% of the final value.

Figure 1.17: Example with Rise, Peak and Settling time.

Note: Quality of the transient response for an arbitrary transfer function. (n.d.). Engineering Stack Exchange.
https://engineering.stackexchange.com/questions/45598/quality-of-the-transient-response-for-an-arbitrary-transfer-

function

While these terms remain useful when analyzing the transients of higher-order filters, it’s not

the most important aspect of the analysis. The reason why is that - now - changing the

system’s parameters can lead not only to a change in the speed of the response but also to a

change in the form of the response [5, Ch. 4.4]. Those forms are shown in Figure 1.18:

1. Undamped Response:

a. Poles: Both29 imaginary at ±𝑗ω1

b. Natural Response: Undamped sinusoid with radian frequency equal to ω1

2. Underdamped Response:

a. Poles: Two complex at −σ𝑑 ± 𝑗ω𝑑

28 The order of a system can be defined using only the TF. More specifically, whichever of the order of the
numerator and denominator is larger, that is the order of the system.
29 There are only two poles, because it’s defined for a 2nd order system – both for simplicity and because a 2nd

order system will be used for this project.

https://engineering.stackexchange.com/questions/45598/quality-of-the-transient-response-for-an-arbitrary-transfer-function
https://engineering.stackexchange.com/questions/45598/quality-of-the-transient-response-for-an-arbitrary-transfer-function

Modeling Electronic Circuits

21

b. Natural Response: Damped sinusoid described by: 𝑐(𝑡) = 𝐴𝑒(−𝜎𝑑)𝑐𝑜𝑠(ω𝑑𝑡 −

ϕ)
3. Critically Damped Response:

a. Poles: two real at −σ1

b. Natural Response: Described by: 𝑐(𝑡) = 𝐾1𝑒
(−𝑡 𝜎𝑑) + 𝐾2𝑡𝑒

(−𝑡 𝜎𝑑)

4. Overdamped Response:

a. Poles: two real at σ1, σ2

b. Natural Response: Two exponentials with time constants equal to the

reciprocal of the pole locations: 𝑐(𝑡) = 𝐾1𝑒
(−σ1) + 𝐾2𝑒

(−σ2)

In Figure 1.18 we can also see a dimensionless variable ζ. This is called the damping ratio of a

system and it’s defined as [5, p. 170]:

𝜁 =
𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑒𝑐𝑎𝑦 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (

𝑟𝑎𝑑
𝑠𝑒𝑐)

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (
𝑟𝑎𝑑
𝑠𝑒𝑐)

=
1

2𝜋
⋅

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑃𝑒𝑟𝑖𝑜𝑑(𝑠𝑒𝑐)

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

1.24

Figure 1.18: The 4 forms of a transient response.

Using ζ and the natural frequency we can derive a general 2nd order TF to quickly find the

transient response of the system we are working on by simply comparing its TF to the general

one. Starting with a general system:

 𝐺(𝑠) =
𝑏

𝑠2 + 𝑎 ⋅ 𝑠 + 𝑏

1.25

Modeling Electronic Circuits

22

The natural frequency of a 2nd order system is defined as the frequency of oscillation of the

system without damping [5, p. 169]. So, for the 𝐺(𝑠) to be undamped, it needs to have both

its poles to be imaginary. Therefore 𝑎 = 0 and 𝑆𝑝 = ±𝑗√𝑏 → ω𝑛 = √𝑏.

Now, according to the definition 1.24 and assuming an underdamped system30, the magnitude

of the exponential decay is equal to |ℜ(𝑆𝑝)| =
𝑎

2
. That means: 𝑎 = 2ζω𝑛.

The general Transfer function looks like this:

 𝐺(𝑠) =
ω𝑛
2

𝑠2 + 2ζω𝑛𝑠 + ω𝑛2
 1.26

Figure 1.19: Example of a system 𝐺(𝑠) with a unit step input (
1

𝑠
). (a) Block diagram of the system, showing its input and

output; (b) pole-zero plot of the system; (c) evolution of the system’s step response.

Note: Nise, N. S. (2014). Control Systems Engineering. Wiley. p.160

30 This assumption is because an underdamped system’s poles are complex – they have both a real and an
imaginary part.

Modeling Electronic Circuits

23

Now, using 1.26 and what was previously said about the 4 types of transient responses and

their relationship to their poles, it can be concluded:

• If ζ = 0 the system is Undamped (𝑆𝑝 = ±𝑗ω𝑛)

• If 0 < ζ < 1 the system is Underdamped (𝑆𝑝 = −ζω𝑛 ±ω𝑛√ζ2 − 1 , where

 ζ2 − 1 < 0)

• If ζ = 1 the system is Critically Damped (𝑆𝑝 = −ζω𝑛)

• If ζ > 1 the system is Overdamped (𝑆𝑝 = −ζω𝑛 ±ω𝑛√ζ2 − 1, where ζ2 − 1 > 0)

Designing the Hardware and Firmware

24

Chapter 2 Designing the System
As mentioned in the Error! Reference source not found., the goal is the development

of a hybrid system capable of receiving analog or digital signals and eventually -

through software - filtering out the signals that are outside of the ELF band as shown

in the following block diagram.

Figure 2.1: Simplified Block Diagram of the System.

2.1 Designing the Hardware and Firmware
The hardware part of this system, after receiving a signal, is responsible for amplifying

it, filtering out the power supply noise (50Hz), and finally sending it to a computer for

the final processing (DSP).

As shown in the block diagram (Figure 2.2), the PCB will be handling the pre-

amplification and the filtering, while the interfacing with the computer will be done

through an Arduino board, more specifically Arduino Uno R3.

Figure 2.2: Block Diagram of the Hardware part of the system.

2.1.1 Custom PCB
In this section, the specifications of the PCB along with its components will be

examined.

Digital to Analog Converter

The block diagram in Figure 2.2 is omitting a specific part of the PCB design. If the

digital input of the board is to be used, the signal will have to be converted to analog,

Designing the Hardware and Firmware

25

before it goes through the pre-amplifier and the analog notch filter. To do that, a

specific IC called DAC (Digital to Analog Converter) is needed, and as expected, just the

IC is not enough, but rather a whole subcircuit must be designed.

Figure 2.3: DAC circuit and Pre-Amplifier Schematics.

Note: TS922 is the Amplifier IC used. It's 'cut' in half in the picture because it is comprised of two identical operational
amplifiers - one used for the DAC circuit and one as an Amplifier.

The specific name of the DAC is “DAC0808” and it’s an 8-bit one, meaning that its digital input

is comprised of 8 parallel bits – 1 pin for each bit. As shown in Figure 2.5 the input pins 5-12

are the digital-in pins, with A1 being the MSB and A8 the LSB. 5VDC powers DAC0808 through

the VCC pin. 𝑉𝑅𝐸𝐹+ and 𝑉𝑅𝐸𝐹− pins are necessary reference voltages for transistor logic. The

𝑉𝐸𝐸 has similar use, as it’s mainly directly connected to the emitter of NPN and PNP transistor

within the IC according to its schematics. It can also be regarded as a negative power supply

pin, as it is usually connected to negative volts. The COMP pin is used for voltage stability and

lastly, I0 is the output pin, from which the converted signal comes out.

Figure 2.4: Current-to-Voltage converter circuit.

Note: Keim, R. (2020, September 27). Transimpedance Amplifier: Op-Amp-Based Current-to-Voltage signal converter. Video
Tutorial. https://www.allaboutcircuits.com/video-tutorials/op-amp-applications-current-to-voltage-converter/

Designing the Hardware and Firmware

26

The output of DAC0808, as seen in Figure 2.331, isn’t connected directly to the next stage of

the PCB, but first, it is going through an operational amplifier32. The reason for that is because

the 𝐼0 pin is outputting current – not voltage [7]. The DAC is designed like this because a

smooth continuous output current is more desirable, as it does not contain the DAC noise that

is created during its operation. Many systems use the DAC output current directly, but in this

case, a voltage output is needed. The op-amp, in this specific configuration (more clearly

depicted in Figure 2.4), functions as a Current-to-Voltage converter.

Because on (ideal) op amps, the inverting and non-inverting inputs have very high input

impedance, no current can go through. So, it must go through RF, and for that to happen, 𝑉𝑂𝑈𝑇

needs to be at a lower voltage in comparison to the voltage of the non-inverting input. Due to

the operational principles of op-amps since the inverting input is directly connected to the

ground (𝑉 = 0), the voltage at the non-inverting input will also be zero33. This is the reason

the input is connected to the non-inverting input, so it would be possible for 𝑉𝑂𝑈𝑇 to be at

lower potential, and for the current to flow as intended.

While it is not its current use case, an amplification of the input still takes place. The current-

to-voltage amplifier can be described as having a gain, but since the output and input signals

have different units, and therefore cannot be directly compared, is more difficult to know its

gain. According to the datasheet [7], the voltage on pin 4 (the DAC’s output), restricted to a

range of −0.55 to 0.4𝑉 when 𝑉𝐸𝐸 = −5𝑉 . However, the output voltage compliance is

extended to −5𝑉 when 𝑉𝐸𝐸 < −10𝑉. This created a problem, since after the DAC subcircuit,

the signal is routed through a unskippable 𝑥20 amplifier. More details and how this issue was

resolved are provided on chapter 3.2.1.

Figure 2.5: Pin connections (left) and internal block diagram (right) of the DAC0808.

31 In the schematic, one can see pairs of capacitors connected to power input pins. These are called “decoupling
capacitors” and will be analyzed in the appendix: A.2.
32 The DAC subcircuit shown in the schematic Figure 2.3, is the one proposed by the manufacturer [7, p. 4] for a
typical DAC application.
33 This is called virtual grounding.

Designing the Hardware and Firmware

27

Preamplifier

In the schematic Figure 2.3 is also shown the Preamplifier part of the PCB. It’s vital, so that

low level signals are amplified to a “standard” operating level. The IC used here (and every

time an op amp is needed for this PCB) is the TS922 and it consists of 2 separate op-amps. It

is shown in Figure 2.6 along with the IC’s pin layout.

Figure 2.6: Pin connections for the operational Amplifier TS922 (for SO8 and TSSOP8 formats).

The op amp is in the noninverting configuration, and the resistor values are selected so that

the gain is 𝑥20 . Shown below is the equation that applies to this configuration and the

“standalone” circuit [8, p. 73]:

 𝐺𝑎𝑖𝑛 =
𝑉𝑜
𝑉𝑖
⇒ 𝐺𝑎𝑖𝑛 = 1 +

𝑅2
𝑅1

 2.1

Substituting the values for the resistors used in the PCB results in:

 𝐺𝑎𝑖𝑛 = 1 +
95𝑘𝑂ℎ𝑚

5.1𝑘𝑂ℎ𝑚
= 19.627451

2.2

Figure 2.7: The op amp configuration used for the preamplifier; the non-inverting configuration.

Note: [8, p. 74]

Designing the Hardware and Firmware

28

Notch Filter

Lastly, the part of the PCB where the power supply noise will be filtered out – the notch filter.

The filter is depicted on Figure 2.8 and the schematic used, on Figure 2.9. This filter

configuration is called “Bootstrapped Twin-T notch filter”. First, while a larger number of

resistors34 were used, the overall resistance is the same, based on the resistors-in-series

principle.

Figure 2.8: Bootstrapped Twin-T Notch Filter.

The transfer function that describes this circuit is35:

 𝐻(𝑠) =
𝑠2 + 𝜔0

𝑠2 +
𝜔0
𝑄 𝑠 + 𝜔0

 2.3

Where:

 ω0 =
1

𝑅 ⋅ 𝐶

2.4

 𝑄 =
1

4(1 − 𝑘)
 2.5

 𝑘 =
𝑅5

𝑅4 + 𝑅5
 2.6

34 Compared to the theoretical filter on Figure 2.8
35 All equations used in this subsection are derived on A.3

Designing the Hardware and Firmware

29

The first step is choosing the value of the Notch Frequency (𝐹𝑁𝑂𝑇𝐶𝐻), and since the goal is

filtering power supply noise, that value is 50𝐻𝑧. To make this happen, the appropriate values

for both R and C must be chose according to:

 ω𝑁𝑂𝑇𝐶𝐻 = ω0 2.7

so 𝐹𝑁𝑂𝑇𝐶𝐻 = 50 ⇒
1

2π𝑅𝐶
= 50𝐻𝑧 . Knowing what the product 𝑅 ⋅ 𝐶 must be equal to, the

values shown in the schematic Figure 2.9 were opted for - 𝑅 = 320𝑘𝑂ℎ𝑚 and 𝐶 = 10𝑛𝐹.

Figure 2.9: The notch filter schematic.

This still leaves the question of the voltage divider and the two op-amps. All three have a very

significant role in the filter. Starting with the divider, already from the filter’s equations – more

specifically 2.5 and 2.6– it’s evident that it directly affects the Quality factor of the system. The

divider, and generally the whole feedback loop, is there so a higher Q factor can be achieved.

Had it not been there, the value of the Q would be constant – opposed to now where it can

be changed by changing the values of 𝑅4 and 𝑅5
36 – and lower37. Lower Q means a not very

precise notch, in other words, larger BW, resulting in more frequencies being affected than

desired. With the voltage follower and the values chosen here, the quality factor is equal to

𝑄 = 0.4875.

36 Or even live – while the system is on – by replacing the two resistors with a potentiometer.
37 The value can be calculated by following the exact same method as in A.3, but for the same circuit – just
without the feedback loop. It will result in: 𝑄 = 0.25.

Designing the Hardware and Firmware

30

Figure 2.10: Effect of Quality factor on the notch.

As for the op amps, both are configured in the same way – the Voltage Follower. They do not

provide any amplification to their inputs, but rather isolate them from their output loop,

thanks to their key principles [8, Ch. 2.1.2]; both inputs are at the same voltage, and at both

the impedance is very high, meaning that they “draw” little to virtually zero current. Thirdly,

the output impedance of an op amp is very low. Now, it’s very apparent that T2 (see Figure

2.8) is there so the voltage divider is functioning as expected and the well-known equation is

an extremely good approximate38.

T1 on the other hand, while using the same logic, is placed there for a slightly different reason.

Generally, when sending a signal from one circuit to another, the input impedance of the latter

(can be considered load impedance), as well as the output impedance of the former must be

taken into consideration. They can form a voltage divider (see Figure 2.11) and have unwanted

effects on the transmitted signal. Having a voltage follower on the output means very low

output impedance and minimizes the parasitic voltage divider effect.

38 If there is a significant amount of current drawn from the node between the two resistors, the equation

𝑉𝑂𝑈𝑇 =
𝑅2

𝑅2+𝑅1
⋅ 𝑉𝐼𝑁 is invalid. If there is a small amount of current, the equation can be still used, as it is a very

good approximate.

Designing the Hardware and Firmware

31

Figure 2.11: Impedances between subcircuits.

COMPLETE PCB

Now that all subcircuits have been examined, the only thing left is to combine them. The

complete PCB schematic will be found on the Appendix (see here A.1), while 3D pictures of

the PCB as well as layouts of both sides of the PCB are found on the next two pages.

Before the conclusion of the hardware section, it is important to comment on a component

shared among all subcircuits of the PCB; the decoupling capacitors. On the schematics several

capacitors can be noticed either next to the PCB’s power supply pins, or right before the 𝑉𝑐𝑐

pins of the ICs, all seemingly routing the traces to ground. The short answer as to why they

are there, is to filter out power supply noise. The exact reason and how that happens is

analyzed in detail on A.239.

Figure 2.12: Photo of the Board during testing of the DAC.

39 The PCB was designed using the open source KICAD software.

Designing the Hardware and Firmware

32

Figure 2.13: Front side of the PCB on KiCad 3D Viewer.

Figure 2.14: Back side of the PCB on KiCad 3D Viewer.

Designing the Hardware and Firmware

33

Figure 2.15: PCB Schematic of the front of the board.

Figure 2.16: PCB Schematic of the back of the board.

Designing the Hardware and Firmware

34

2.1.2 Arduino Firmware
The interfacing between the Computer and the Custom PCB was done using an Arduino Uno

R3 board. The data from the PCB were transmitted to the Arduino board by connecting the

output signal pin from the PCB to the 𝐴0 analog in pin on the Arduino, while at the same time

having the ground pins of both connected to each other to avoid floating voltages 40 .

Using the on-board ADC on the Arduino, the input signal is sampled every 2ms by reading the

value of input41. That voltage immediately gets converted to digital and takes a value between

0 − 1023, because the integrated ADC is a 10-bit one. To change the input value to a range

that corresponds to the voltage the pin is reading (which has to be from 0 − 5𝑉 for an Arduino

Uno because that’s its limit), the following equation is used [9]:

 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑃𝑖𝑛𝑉𝑎𝑙𝑢𝑒 ⋅
5

1023

2.8

Figure 2.17: Arduino Uno R3 SMD version.

The sketch (as Arduino code files are named) starts with initializing most of the variables that

will be used. Then comes the “void setup” function, that will be executed only one time.

Within it, there is the “Serial.begin(115200)” command, that sets the baud rate for the

communication between the computer and the Arduino board to 115200.

Then follows the “void loop()” function. Whatever command is within it, will be executed

sequentially forever until the board is turned off. This is where the sampling takes place using

the “analogRead(Insert Pin Number)”. This command also uses the ADC and returns the value

read on the pin. After the value is saved on a variable, it’s converted to the 0 − 5𝑉 range and

40 The ground plane acts as a reference voltage for the input signal.
41 This interval is important, as it will be the value of the Sampling Frequency that will be used on the Software
for further calculations.

Designing the Hardware and Firmware

35

sent to the computer serially through the USB port, using the Eq. 2.8 and the command

“Serial.println(Voltage_in,5) ” respectively.

The writing and loading of the firmware on the actual board was done using the Arduino

Integrated Development Environment (Arduino IDE).

Figure 2.18: Flow chart of the Arduino Firmware.

Developing the Software Application

36

2.2 Developing the Software Application
In this chapter, the software part of the system will be analyzed. Key parts of the code, as well

as the Digital filter will be examined.

The entirety of the software was written MATLAB. It is a standalone app that can be installed

on any computer, without the requirement of having MATLAB preinstalled, as long as the

hardware can support it.

2.2.1 The interface between the Hardware and the Software
The first step in interfacing an Arduino with this app is matching the Baud rate of

communication. From the Arduino side it can be done while writing the firmware, and it is

covered in 2.1.2.

From the MATLAB side it is a little more complicated. First, the program needs to know to

which USB port the Arduino is connected. When the user wants to start receiving data after

connecting their USB-Serial Device (in this case an Arduino Uno R3), they need to press the

”Start Sampling” button under the “TOOLS” tab on the top left of the main window. Then,

MATLAB communicates directly with the OS (Windows) to see the existing ports on the

computer [10]. It outputs the name of the available ports (for example “COM3”) and its

description (for example “Communications Port”) on a matrix variable.

Figure 2.19: MATLAB communication with Windows for port availability.

The user then is met with a small window that consists of a list with two columns containing

the available ports and their description respectively. They would have to pick a port with a

description similar to “USB SERIAL DEVICE”, because that’s how a board like Arduino Uno

would show up on Windows42.

42 The full description of the sequence of events is shown on the flow chart on Figure 2.23

Developing the Software Application

37

Figure 2.20: Window for the user to select the port.

After picking the desired port, the user is met with another window, asking to select the values

of some key variables for the sampling43 that is about to take place. Those are:

• Sampling Frequency: This variable needs to be matched with the firmware in the

Arduino. In this case, Arduino samples its analog input every 2ms, so the correct value

for the sampling frequency would be
1

2(𝑚𝑠)
.

• Number of samples: User gets to decide how many samples they want to receive. The

more samples, the better the analysis of the signal that will follow.

• Voltage Offset: Arduino can receive only positive input through the analog in pins,

between 0-5 Volts. This means the custom PCB’s input needs an offset – for example

if the input is a sine with amplitude of 2V, the only option is to shift it, so it oscillates

around 3𝑉44.

• Baud rate: the measure of the speed of data transmission in a communication

channel/port.

43 Or to be specific, the data that are about to be received.
44 This also needs to take into account the preamplifier on the PCB. So technically, the example set, would not
work.

Developing the Software Application

38

Figure 2.21: Prompt for the user to input some key for the sampling variable values.

Now that the (serial)port45 and Baud rate are picked by the user, they need to be coded into

the program. This is done by the MATLAB function “serialport(PORT,BAUDRATE)”46. After that,

an additional setting needs to be made: the terminator for both read and write

communications with the specified serial port will have to be defined. This is done by the

MATLAB function “configureTerminator(device,terminator)”. As seen on the actual code

(Figure 2.22), “device” is the serialport object47 and “terminator” is “CR/LF”, meaning that the

terminator is set for both read and write. The program as it is, will not be sending data to the

port (Arduino), so it is made that way in case of future updates.

Lastly, on the top right of the window, the connected port is always displayed.

Figure 2.22: Setting the port and defining the terminator to read and write.

45 “Serial”, since the data will be received one by one.
46 In reality, after the user picks a port, this function is used with a seemingly hardcoded baud rate of 115200.
But right after that, the input window shown in Figure 2.21 pops up, and the Baud rate will be immediately
updated with the value chosen by the user.
47 In a way, the output/return of the serialport(PORT,BAUDRATE)” function.

Developing the Software Application

39

Figure 2.23: Flow chart of the interfacing process on the MATLAB side.

Developing the Software Application

40

2.2.2 Lowpass Butterworth Filter
This filter is responsible for eliminating signals with frequencies over 30𝐻𝑧 (ideally), meaning

that it is a lowpass one. Having the software part of the system handle that, means that a

digital one had to be designed. It has the IIR filter classification since it is made from the

Butterworth approximation function – the Butterworth polynomial.

Starting with a normalized48 Butterworth lowpass filter [11, p. 413]:

 𝐻𝑛𝑜𝑟𝑚(𝑠) =
1

𝑎0 +⋯+ 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛𝑠𝑛
=

1

𝐵𝑛(𝑠)
 2.9

Where 𝐵𝑛(𝑠) is the nth order Butterworth polynomial, which can also be written as [12, p.

494]:

 𝐵𝑛(𝑠) = ∑𝑎𝑘𝑠
𝑘

𝑛

𝑘=0

 2.10

But the cutoff frequency will be at 30𝐻𝑧, not at 1𝐻𝑧. Because of that, the TF needs to be

scaled (see 48) for a general cutoff frequency (angular in this case) ω𝑐:

𝐻(𝑠) =

1

∑ 𝑎𝑘 (
𝑠
ω𝑐
)𝑛

𝑘=0

𝑘 2.11

Where the coefficients 𝑎𝑘 can be calculated by the recursion formula [11, p. 413]:

 𝑎𝑘+1 =
𝑐𝑜𝑠(𝑘γ)

𝑠𝑖𝑛((𝑘 + 1)γ)
⋅ 𝑎𝑘 2.12

Or by [12, p. 494]:

 𝑎𝑘 =∏
𝑐𝑜𝑠((μ − 1)γ)

𝑠𝑖𝑛(μγ)

𝑘

𝜇=1

 2.13

Where 𝑎0 = 1 and:

 γ =
π

2𝑛
 2.14

Now, having the continuous non-normalized TF (Eq.2.11), it’s possible to derive the discrete

time/digital TF. Using the Bilinear Transform Design and Eq.1.21:

𝐻(𝑧) =

1

∑ 𝑎𝑘
1
ω𝑐
𝑘 (
2
𝑇 ⋅
𝑧 − 1
𝑧 + 1)

𝑘
𝑛
𝑘=0

 2.15

48 Normalized means it’s in a form were ω𝑐 = 1. This is usually done to allow focus on the inherent characteristics
of the filter design, such as order and behaviour, without being influenced by specific frequency and magnitude

scales. To “un-normalize” or, in other words, scale a TF, simply substitute: {
𝑓𝑜𝑟 𝐻𝑛(ω): ω →

ω

ω𝑐

 𝑓𝑜𝑟 𝐻𝑛(𝑠): 𝑠 →
𝑠

ω𝑐

Developing the Software Application

41

Since the calculations are going to be done programmatically, the difference equation

describing the, now discrete, system is needed. In general, the difference equation describing

the system’s output can be written as [2, p. 123]49:

 𝑦(𝑛) = ∑𝑐𝑘 ⋅ 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

−∑𝑑𝑘 ⋅ 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 2.16

From the difference equation of a system its TF can also be derived according to [2, p. 125]:

 𝑦(𝑛) = ℎ(𝑛) ∗ 𝑥(𝑛)
𝑍 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
→ 𝑌(𝑧) = 𝑋(𝑧) ⋅ 𝐻(𝑧) ⇒ 𝐻(𝑧) =

𝑌(𝑧)

𝑋(𝑧)
 2.17

Now, applying Z Transform on Eq.2.16:

 𝑌(𝑧) = 𝒵∑𝑐𝑘 ⋅ 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

− 𝒵 ∑𝑑𝑘 ⋅ 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 2.18

And using a property of the Z transform [2, p. 127]:

 𝒵{𝑥(𝑛 − 𝑘)} = 𝑋(𝑧)𝑧−𝑘 2.19

So, Eq.2.18 becomes:

𝑌(𝑧) = 𝑋(𝑧)∑𝑐𝑘 ⋅ z
−k

𝑀

𝑘=0

− 𝑌(𝑧)∑𝑑𝑘 ⋅ z
−k

𝑁

𝑘=1

⇒ 𝑌(𝑧) (1 −∑𝑑𝑘 ⋅ 𝑧
−𝑘

𝑁

𝑘=1

)

= 𝑋(𝑧)∑ 𝑐𝑘 ⋅ 𝑧
−𝑘

𝑀

𝑘=0

⇒ 𝐻(𝑧) =
∑ 𝑐𝑘 ⋅ 𝑧

−𝑘𝑀
𝑘=0

1 − ∑ 𝑑𝑘 ⋅ 𝑧−𝑘
𝑁
𝑘=1

2.20

Now, if Eq.2.15 is expressed in the form of Eq.2.20 – that is a polynomial of 𝑧−𝑘 on the

denominator and the numerator – they would be directly comparable, meaning that each

coefficient 𝑐𝑘 and 𝑑𝑘 is now calculated. Substituting them on Eq.2.16 yields the Butterworth

filter’s difference equations. An example of this but for a 2nd order Butterworth filter (also

meaning 𝑀,𝑁 = 2) is on A.4.

This same exact logic is applied programmatically through MATLAB. The exact code handling

this is shown on Figure 2.24.

49 Notice that the equation is recursive as expected for an IIR filter.

Developing the Software Application

42

Figure 2.24: Code snippet handling the difference equation.

Additionally, there is a tool programmed into the app that allows the user to choose certain

aspects of the lowpass filter (such as the order of the filter and the Cutoff Frequency within

the range of 1 − 100𝐻𝑧) and also displays, as graphs, the theoretical/estimated frequency as

well as the phase response. It is accessed through a button on the top left of the main window

called “Filter Specifications”. See below a photo of that tool.

Figure 2.25: Filter Specifications Window.

Developing the Software Application

43

2.2.3 The software
Since the interfacing between hardware and software has already been discussed, this chapter

will cover the remaining software features.

The application consists of three main tabs. Each one is a window with 3 graphs, and the user

can switch between them from the top left of the window. Starting with the tab called

“Sampling”, the first two graphs (counting from top to bottom) display the signal; the former

with the x-axis being number of samples, and the latter with the x-axis being time (seconds).

The third graph displays the Fourier transform of the input signal, showcasing its main

frequencies.

Figure 2.26: Main window of the MATLAB app.

On the second tab, which is called “Filtering”, the two top graphs display the filtered signal

(again with the x-axis alternating between samples and time respectively), and the last one

displays its Fourier Transform.

The pattern continues on the last tab (called “Comparison”), which the three graphs display

both the input and the filtered signals on top of one another, for a direct comparison50. After

50 Since usually the number of samples is large (the number is in the thousands) and the graphs will display the
whole signal from start to finish, the outcome may look zoomed out or congested/cluttered. This is solved by a
built-in MATLAB feature: When the cursor is hovering over a graph, several buttons are displayed on the top right
of said graph. One of them is a zoom in button, that results in a drag box. The user can choose which part of the
signal they want zoomed in and include it in the drag box. Figure 2.30 shows both before and after the zoom in.

Developing the Software Application

44

the user follows the steps outlined while discussing the interface between hardware and

software, the program will actually start receiving data via the USB port that was selected, and

a progress bar will be displayed, showing the percentage of data already received.

Figure 2.27: Progress bar.

When the process is finished, the Sampling tab will look like on Figure 2.30. Now that the data

have been received, the user can filter the input signal. To do that, they need to click:

Tools→Filter. After filtering, all the graphs on tab 2 and tab 3 will be filled immediately.

As explained in 2.2.2, the user can change the order of the filter and the cutoff frequency, by

opening the “Filter Specifications” window. If they filter the input, without opening that

window first, then the app defaults the filter into a 2nd order one with 𝐹𝑐 = 30𝐻𝑧
51. What was

also failed to be mentioned, is that the user can filter the input multiple times (simultaneously

deleting the previous filtered signal and all its data).

Figure 2.28: Data and Key Variables window.

51 The ELF band.

Developing the Software Application

45

Another feature of the application is that all the data (data points, Cutoff frequency, sampling

frequency etc.) are available to view on the “Data and Key Variables” window, accessed

through the “View Variables” button on the top left (see Figure 2.28 above). From that

window, there is the option to export all data in three ways:

1. a MATLAB “.mat” file

2. a text (.txt) file

3. an Excel file

while all of them will be formatted accordingly. The same option is given on the main

application window, on the top left, through the “File” button. There, the user will be able to

save all data in the three ways mentioned above, while also being given the option to load a

previously saved file. It must be a MATLAB .mat file that was created previously by the same

app.

If a file made by a different MATLAB app is selected, then an error message will appear stating

what went wrong and advising the user how to properly load a file. The same approach is

followed for any misuse of the app, for example if the “Filter” button is pressed without having

received any input data yet (input signal from the port), an error message will appear

describing that there are no data/signal to filter and prompting the user to first take samples

from the serial port. That message is displayed on Figure 2.29 below.

Figure 2.29: One of the error messages displayed, when the app is not used properly.

All messages and the general process is displayed on the flow chart on Figure 2.35.

Developing the Software Application

46

Figure 2.30: Graphs with plotted data.

Developing the Software Application

47

Coding the Fourier Transform

It is mentioned that the last graph on every tab is a plot of the Fourier Transform of either the

input or the filtered signal. Specifically, it’s a magnitude response of the Fourier Transform,

which yields the main frequencies of the input signal. To provide a thorough explanation of

the method used here, a more in-depth theoretical foundation is required that what was

provided in 1.4. The Fourier analysis is a family of mathematical techniques based on

decomposing signals into sinusoids. Choosing which member to utilize depends on if the signal

is periodic or not and if it discrete or not. Table 1 sums up all four different cases [13, p. 144].

The Fourier Series states that every periodic continuous time signal can be represented by an

infinite number of sinusoids. The mathematical expression is [6, p. 191]:

 𝑥(𝑡) = ∑ 𝑎𝑘𝑒
−𝑗𝑘ω0𝑡

∞

𝑘=−∞

 2.21

Where 𝑎𝑘 are complex coefficient measuring the portion of the signal that is at each harmonic

of the fundamental component. The frequency of the initial signal is ω𝑜, and by the expression

above, it’s apparent that the frequency of each sinusoid is 𝑘 ⋅ ω0. These coefficients are given

by [6, p. 191]:

 𝑎𝑘 =
1

𝑇
∫ 𝑥(𝑡)𝑒(−𝑗ω0𝑘𝑡)

𝑇

𝑑𝑡
2.22

Where 𝑇 is the period of 𝑥(𝑡).

The Fourier Transform avoids the limitations of the periodicity of 𝑥(𝑡), and expands the same

idea for non-periodic signals, building on the notion that an aperiodic signal can be viewed as

a periodic signal with an infinite period. More precisely, in the Fourier series representation

of a periodic signal, as the period increases, the fundamental frequency decreases and the

harmonically related components (𝑎𝑘) become closer in frequency. As the period becomes

infinite, the frequency components form a continuum and the Fourier series sum becomes an

integral [6, p. 284]. Based on this, the Fourier Transform formula can be derived (see Eq.1.11).

Table 1: The four Fourier approaches.

Signal Fourier approach

Aperiodic-Continuous time Fourier Transform

Periodic-Continuous time Fourier Series

Aperiodic-Discrete time Discrete Time Fourier Transform

Periodic-Discrete time Discrete (Time) Fourier Series

Developing the Software Application

48

Additionally, the Fourier Transform can be expanded even further, to periodic signals. The

resulted transform consists of a train of impulses (delta functions) in the frequency domain,

with the areas of impulses proportional to the Fourier series coefficients [6, p. 297].

Both of these have their discrete time counterparts called “Discrete Time Fourier Series” and

”Discrete Time Fourier Transform” respectively. It would seem that the DTFT is the approach

suitable for a computer implementation of Fourier transform. However, that’s not the case,

because the spectrum concept obtained from the DTFT is a continuous function of frequency

as shown in the mathematical definition:

 𝑋(𝑒(𝑗ω)) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛
∞

𝑛=−∞

 2.23

For the sake of conciseness, here is the definitions of the inverse DTFT:

 𝑥[𝑛] =
1

2π
∫ 𝑋(𝑒𝑗ω)𝑒𝑗ω𝑑𝜔

2𝜋

2.24

Additionally, the four classes of signal on Table 1 all extend to positive and negative infinity.

But a computer would only have a finite number of samples stored – not infinite. The way

around this problem is to make the finite data look like an infinite length signal. This is done

by “imagining” that the signal has an infinite number of samples on the left and on the right

of the actual data samples [13, p. 144]. If these imagined points are a duplication of the actual

samples, the signal looks discrete and periodic, making it ideal for a DTFS. If they have a value

of zero, the signal looks aperiodic and the DTFT applies.

But it happens that synthesizing an aperiodic signal requires an infinite number of sinusoids52.

This fact alone makes it impossible to calculate the DTFT in a computer algorithm. However,

the DTFT sum can change into a computable form. First the continuous frequency variable ω

must be sampled and then the limits of the sum must become finite. The result is called DFT

(Discrete Fourier Transform) and its definition is [14, p. 303]:

 𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗(
2π
𝑁
)𝑘𝑛

𝑁−1

𝑛=0

 2.25

Where N is the signal length.

So, now there is a computable form of Fourier Transform for aperiodic signals. What about

periodic signals? As it turns out, the DFT and the DTFS are mathematically the same

operation53 [15, p. 4]. In addition to that, the summation of inverse DFT requires the time-

domain signal (input 𝑥[𝑛]) must also be periodic with a period of N [14, p. 318].

To sum up, the DFT is the go-to for both periodic and non-periodic signals when done

52 Directly related to the fact that the DTFT is a continuous function of ω.
53 The difference between DTFS and DFT is a scaling factor of

1

𝑁
, where 𝑁: number of samples[15, p. 4]. This is

apparent when directly comparing the inverse DFT [16, p. 619] to the DTFS. Also, unlike the DTFS, it is a legitimate
transform because an inverse transformation can be defined.

Developing the Software Application

49

arithmetically on a computer, with the detail of “assuming” that the sampled signal (periodic

or not) is a period of an infinite signal.

Looking at Figure 2.32, the DFT is done on line 987 using the function54 “fft()”. Then on the

next line the magnitude of the transform is taken, since the phase spectrum is of no

importance for this part of the system. Next step is “rejecting” half of the values that comprise

the transform.

Figure 2.31: View of a signal in the time and frequency domain.

Note: Signals - Frequency analysis. (n.d.). https://makeabilitylab.github.io/physcomp/signals/FrequencyAnalysis/index.html

The reason why is not obvious and very specific. The DTFT (𝑋(𝑒𝑗ω)) is always periodic with a

period of 2π, and the DFT (as a sampled version of it) inherits this periodicity [14, p. 311]:

 𝑋[𝑘] = 𝑋[𝑘 + 𝑁] 2.26

When the signal 𝑥[𝑛] is real, there is also conjugate symmetry in the DTFT, meaning that,

inherently, the DFT coefficients must also satisfy the following property [14, p. 312]:

 𝑋[−𝑘] = 𝑋 ∗ [𝑘] 2.27

Combining the two properties:

 𝑋[𝑁 − 𝑘] = 𝑋 ∗ [𝑘] ⇒ |𝑋[𝑁 − 𝑘]| = |𝑋[𝑘]| 2.28

Because of this, there are “duplicate” peaks on the magnitude spectrum that are of no

importance in the context of this system, since the goal is knowing the main frequency of the

input signal.

Figure 2.32: The function that performs Fast Fourier Transform in the app.

54 FFT (Fast Fourier Transform) is a very effective algorithm performing DFT.

Developing the Software Application

50

Lastly, on lines 990-991 (Figure 2.32) the x-axis is converted from frequency bins into actual

units of frequency [17]. These bins are essentially integers counting from 0 to
𝑁−1

2
, where 𝑁 is

the number of samples55. The division by 2 is there to avoid the mirroring effect that was

analyzed previously. Basically, those frequencies will be ignored, as they will not be plotted.

Then, the multiplication of those bins by the ratio
𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 results in the true

frequencies.

A thing to note is the frequency “resolution”. Each bin56 is multiplied by the ratio mentioned

above, meaning that the ratio is directly proportional to the accuracy of the true frequency

values. For example, let’s say the input signal’s frequency is 𝑓 = 17.5𝐻𝑧. For the FFT to yield

the exact result, along with respecting the Nyquist theorem, the ratio must be:

𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
= 0.5 ⇒ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 2 ⋅ 𝐹𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 2.29

Communication Throughout the application

Error! Reference source not found. shows the source code of the application when it’s c

ollapsed57. It makes it apparent that the app is comprised of several standalone functions58.

All those functions need to communicate effectively and have equal access to all

important/necessary variables for the application to work properly, and that doesn’t come

inherently. To overcome that problem, a class object was created, the code of which is

provided in A.8.

In MATLAB there are two types of classes [18]:

1. Value classes

2. Handle Classes

The former enable the user to create new array classes that have the same semantics as

numeric classes, while the latter define objects that reference the object. Copying an object

creates another reference to the same object [18]. Their basic difference is that a value class

constructor returns an object that is associated with the variable to which it is assigned. If you

reassign this variable, MATLAB® creates an independent copy of the original object [19]. If you

pass this variable to a function to modify it, the function must return the modified object as

an output argument.

A handle class constructor on the other hand, returns a handle object that is a reference to

the object created. You can assign the handle object to multiple variables or pass it to

functions without causing MATLAB to make a copy of the original object. A function that

55 These bins are manually set for this app on line 990. The bins used by default from MATLAB (when someone
plots the magnitude of the FFT using “plot(magnitude)”) range from 1 to 𝑁.
56 From a programming point of view, the bins are elements of a matrix.
57 For example, when a function is collapsed only its name is displayed and not its contents. It can of course be
expanded to view every line of code within.
58 And not nested ones.

Developing the Software Application

51

modifies a handle object passed as an input argument does not need to return the object [19].

Simply put, copying a handle object does not copy the underlying data associated with the

object. The copy is another handle59 referring to the same object. Therefore, if a function

modifies a handle object passed as an input argument, the modification affects the original

input object in the caller's workspace [20]. Based on that last property alone, it is quite

obvious why a Handle type of class was chosen.

In MATLAB to create a new “handle” class is a little complicated. In reality, the handle class is

an abstract class60, meaning that an instance of it cannot be created directly. One must use

the handle class to derive other classes, which can be concrete ones whose instances are

handle objects.

Figure 2.33: The entirety of the source code for the application in a collapsed form.

To define a handle class, a derivation of the “new” (on Figure 2.34 it’s the “MyHandleClass”)

class from handle is necessary. This is done using the syntax [20] shown on Figure 2.34.

59 A handle is a variable that refers to an object of a handle class. There are to MATLAB what pointer are to 𝐶++.
60 The handle class is the superclass for all classes that follow handle semantics. A handle is a variable that refers
to an object of a handle class. Multiple variables can refer to the same object[20].

Developing the Software Application

52

Figure 2.34: Defining a class as a Handle class in MATLAB.

Using this type of class allows all the functions to access the same variable (if need be), and

even change it, updating it for the other functions at the same time. All that needs to be done

to use this within the app is to first create an object of the class, and then in order to give a

function access to it, to use that object as an argument for that function when calling it. In this

case, the object is “myclass” and the handle class is “Get_data_class2”. Creating it was done

by the command “myclass = Get_data_class2;”.

Developing the Software Application

53

Figure 2.35: Flow chart of the custom MATLAB application.

Transient Responses and Stability

54

Chapter 3 Final Measurements and Conclusions
In this last chapter the final measurements and their comparison to theoretical expectations

will be discussed along with final conclusions.

3.1 Transient Responses and Stability
As with every system, filters also have transient responses. Just as previously stated, to

calculate it we need the transfer function.

3.1.1 Digital Filter
As a case in point, for the Butterworth filter, the transient response and stability will be

calculated only the 2nd order filter with 𝐹𝑐 = 30𝐻𝑧 variant. The same variant was also used to

plot the frequency response on a later subchapter.

The transfer function for the values stated above (see general at Eq.2.11) is61:

 𝐻2𝑛𝑑(𝑠) =
1

2.814𝑒(−5)𝑠2 + 0.007503𝑠 + 1
 3.1

A quick calculation for the poles will yield these two answers:

• Pole 1: 𝑝1 = (−1.3329 + 1.3329𝑗) ⋅ 𝑒
2

• Pole 2: 𝑝2 = (−1.3329 − 1.3329𝑗) ⋅ 𝑒
2

Both are on the LHP, meaning that the system (filter) is stable.

Moving on to the expected transient response, a simple direct comparison between the TF

and the general 2nd order TF’s denominator (see Eq. 1.26) will provide the solution: ζ =

0.0038. And since 0 < ζ < 1, the system is underdamped, meaning that a damped oscillation

around the steady state value should be expected (of course before the steady state is

reached).

61 While the actual filter is digital, the theoretical transient response and stability will be calculated using the
continuous time TF. It will make virtually no difference, as both this and the discrete time TF describe two forms
of the same system.

Transient Responses and Stability

55

Figure 3.1: Comparison between the Theoretical and the Filter's Step Response.
Note: The notable shift at the beginning is because the System data used for this graph, take into account the delay filtering

causes.

Figure 3.2: Comparison of Transient responses with a sine as an input.

Transient Responses and Stability

56

3.1.2 Notch Filter
To calculate the transient response and stability for the notch filter, the same method will be

followed. Comparing the denominator of the Notch filter’s TF (Eq.2.3) to that of the general

2nd order TF yields 2ζω0
2 =

ω0

𝑄
⇒ ζ = 0.0033 , meaning it’s also an underdamped system.

The reason the graph on Figure 3.3 doesn’t resemble that of Figure 3.1 is because the Notch

filter’s TF has zeros, which, as aforementioned, affect the transient response.

Additionally, the two poles of the filter end up being:

• 𝑝1 = −391.7323

• 𝑝2 = −249.2933

Proving that the system is stable as expected.

Figure 3.3: Theoretical Step Response of the Notch Filter.

Figure 3.4: Theoretical Transient response of the Notch Filter with a sine as input.

Frequency Responses

57

3.2 Frequency Responses
An analysis on a filter wouldn’t be complete without the magnitude/frequency62 responses.

3.2.1 Notch Filter’s Response
Starting with the Notch Filter, measuring had to be done in real time on the PCB. To measure

the Voltage (because the amplitude of the input and the output of the filter are needed to

calculate the magnitude) an oscilloscope was used – specifically the PicoScope 2204 USB

Oscilloscope. It’s powered through a USB port by a computer, while simultaneously sending

the data through it too. To use it, the PicoScope software is necessary, available for free on

the company’s website. Since it comes with an integrated function generator, it was used as a

signal source too.

Figure 3.5: The PicoScope 2204A Oscilloscope by © 2024 Pico Technology Ltd.

Using The PicoScope as an analog signal source

Starting with the PicoScope as the (analog) signal source, the data were taken manually, by

measuring the signal at the PCB’s input and output pins. Using the PicoScope, the following

values were measured: both the maximum and minimum values for the input and output

(𝑉𝑚𝑎𝑥𝐼𝑁 and 𝑉𝑚𝑎𝑥𝑂𝑈𝑇 , 𝑉𝑚𝑖𝑛𝐼𝑁 and 𝑉𝑚𝑖𝑛𝑂𝑈𝑇) and the Peak-to-Peak Values 63 (𝑉𝑝𝑝𝐼𝑁

𝑉𝑝𝑝𝑂𝑈𝑇). Since they match (as seen in Table 2), only the peak-to-peak values will be used for

the calculations.

Using the data shown in Table 2, the frequency response of the filter was plotted in Figure 3.6.

On the y-axis is the ratio between input and output of the filter in dBs – calculated using

𝑀𝑎𝑔 = 20 ∗ 𝑙𝑜𝑔10
𝑉𝑝𝑝𝑂𝑈𝑇

𝑉𝑝𝑝𝐼𝑁
, while the x-axis is simply the frequency in Hertz. One thing to keep

in mind is that to avoid clipping due to saturation of the op amp and to keep the PCB’s output

signal to be within 0 − 5𝑉 (since it’s sent to an Arduino Uno board), an offset had to be set,

62 Magnitude/Frequency Response is the ratio of the output signal’s amplitude to the amplitude of the input
signal, both with respect to frequency.
63 Both the min-max and peak-to-peak values are not needed but were taken for validation.

Frequency Responses

58

along with a limitation to the input signal’s amplitude. Those values, in the end were:

𝑉𝑂𝐹𝐹𝑆𝐸𝑇 = 130𝑚𝑉 and 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 130𝑚𝑉64.

Figure 3.6: Frequency Response of the Notch filter.

On Figure 3.7 both the theoretical and the actual frequency responses are plotted. To calculate

and plot the theoretical one, the filter was constructed in MATLAB using its TF. The frequency

response was acquired using the built-in function “bode(transf. function)”. It’s clear that the

maximum value for the y-axis is 0 for the theoretical plot. And that’s what it should be, given

that 𝑙𝑜𝑔101 = 0. The reason that the system’s plot maximum is at around 25𝑑𝐵, is because

between the PCB’s input pin (which is where 𝑉𝑝𝑝𝐼𝑁 was measured) and the filter, is the

preamplifier. Had the measurement taken place exactly before the filter, its max would be at

0 as well. But since it’s just “shifted” upwards compared to the theory, and on the x-axis they

align, the comparison is still valid as is. However, in the interest of inclusivity, since the

magnitude is calculated by the 20 𝑙𝑜𝑔10
𝑉𝑝𝑝𝑂𝑈𝑇

𝑉𝑝𝑝𝐼𝑁
 , and the preamplifier has a gain of 20, to

roughly get an idea of what the graph would look like had the output of the preamplifier been

considered as 𝑉𝑝𝑝𝐼𝑁 (on the above equation : 𝑉𝑝𝑝𝐼𝑁 → 20 ⋅ 𝑉𝑝𝑝𝐼𝑁), all that needs to be done

is subtract 20 from each magnitude point. This is thanks to the property of logarithmic

functions:

 𝑙𝑜𝑔
𝑎

𝑏
= 𝑙𝑜𝑔𝑎 − 𝑙𝑜𝑔𝑏 3.2

Concluding this part of the testing, the notch filter is capable of a −32.928 𝑑𝐵 drop, when

the max output sits at +24.477 dB . By a simple subtraction, the net attenuation is at

57,405 𝑑𝐵, making it a successful implementation.

64 Theoretically, those values would be too high for the limitations stated above, but thanks to loses and trace
resistance it results in voltages just under the limits.

Frequency Responses

59

Figure 3.7: Comparison of the Theoretical and actual filter's frequency responses using an analog signal source.

Frequency Responses

60

Table 2: Custom PCB data while measuring input directly from an analog Voltage Source.

f(Hz) Vppout(V) Vppin(V) Vmaxout(V) Vmaxin(V) Vminout(mV) Vminin(V) db(Vout/Vin)

0.1 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835

0.5 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835

2.5 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835

1 5.192 0.3101 5.101 0.2675 -0.09003 -0.04257 24.47665835

5 5.012 0.3101 5.012 0.2675 -0.6104 -0.04257 24.17018592

7.5 4.821 0.3101 4.91 0.2675 0.08911 -0.04257 23.8327073

10 4.642 0.3101 4.82 0.2675 0.1784 -0.04257 23.5040674

15 4.19 0.3101 4.592 0.2675 0.4015 -0.04257 22.61424513

20 3.571 0.3101 4.285 0.2675 0.714 -0.04257 21.22576168

25 2.946 0.3101 3.972 0.2675 1.026 -0.04257 19.55461953

30 2.276 0.3101 3.615 0.2675 1.339 -0.04257 17.31340983

35 1.652 0.3101 3.303 0.2675 1.651 -0.04257 14.53016553

40 1.071 0.3101 3.035 0.2675 1.964 -0.04257 10.76575409

45 0.5356 0.3101 2.767 0.2675 2.232 -0.04257 4.746776042

47.5 0.2678 0.3101 2.633 0.2675 2.365 -0.04257 -1.273823871

48 0.2231 0.3101 2.633 0.2675 2.365 -0.04257 -2.860043919

48.5 0.1785 0.3101 2.589 0.2675 2.41 -0.04257 -4.797270916

49 0.1785 0.3101 2.589 0.2675 2.41 -0.04257 -4.797270916

49.5 0.1785 0.3101 2.589 0.2675 2.41 -0.04257 -4.797270916

50 0.007 0.3101 2.513 0.2675 2.443 -0.04257 -32.92807452

50.5 0.1793 0.3101 2.591 0.2675 2.412 -0.04257 -4.758429534

51 0.1793 0.3101 2.591 0.2675 2.412 -0.04257 -4.758429534

51.5 0.3571 0.3101 2.678 0.2675 2.321 -0.04257 1.225761679

52 0.4018 0.3101 2.723 0.2675 2.321 -0.04257 2.250163323

52.5 0.4463 0.3101 2.723 0.2675 2.276 -0.04257 3.162502412

55 0.6694 0.3101 2.856 0.2675 2.187 -0.04257 6.683678836

60 1.071 0.3101 3.035 0.2675 1.964 -0.04257 10.76575409

70 1.741 0.3101 3.347 0.2675 1.607 -0.04257 14.9859401

80 2.276 0.3101 3.615 0.2675 1.339 -0.04257 17.31340983

90 2.678 0.3101 3.838 0.2675 1.16 -0.04257 18.72617613

100 3.035 0.3101 4.017 0.2675 0.9818 -0.04257 19.81313858

110 3.303 0.3101 4.151 0.2675 0.8478 -0.04257 20.54813615

120 3.526 0.3101 4.24 0.2675 0.714 -0.04257 21.11561083

130 3.705 0.3101 4.329 0.2675 0.6247 -0.04257 21.54572892

150 3.928 0.3101 4.463 0.2675 0.5354 -0.04257 22.05339426

170 4.151 0.3101 4.553 0.2675 0.4015 -0.04257 22.53301934

200 4.374 0.3101 4.687 0.2675 0.3122 -0.04257 22.98754025

250 4.508 0.3101 4.731 0.2675 0.2229 -0.04257 23.24964282

300 4.642 0.3101 4.82 0.2675 0.1784 -0.04257 23.5040674

400 4.731 0.3101 4.865 0.2675 0.1337 -0.04257 23.66902364

700 4.731 0.3101 4.865 0.2675 0.1337 -0.04257 23.66902364

1000 4.776 0.3101 4.865 0.2675 0.08911 -0.04257 23.75125104

Frequency Responses

61

Using a Digital Signal Source

Now, all that’s left for testing the PCB is measuring the Notch filter when the input signal is

coming from a microcontroller. The board used is named ATmega1284P and the firmware used

is analyzed in A.6.

Measuring was done using the same method as before. To measure the response

(20𝑙𝑜𝑔10 (
𝑉𝑝𝑝𝑂𝑈𝑇

𝑉𝑝𝑝𝐼𝑁
)), direct probing on the PCB traces had to be done. More specifically, 𝑉𝑝𝑝𝐼𝑁

was measured from the signal directly before the filter, while 𝑉𝑝𝑝𝑂𝑈𝑇, naturally, is the output

of the PCB (which is also the output of the notch).

But in Table 365 , where the measuring data are displayed, there are some extra values. In

particular: 𝑉𝑝𝑝𝑎𝑓𝑡𝑒𝑟 𝑉𝑜𝑙𝑡 𝑑𝑖𝑣𝑖𝑑𝑒𝑟 and 𝑉𝑝𝑝𝑝𝑟𝑒 𝑉𝑜𝑙𝑡 𝑑𝑖𝑣𝑖𝑑𝑒𝑟 . They refer to a voltage divider and

were taken to measure its effectiveness. But there’s only one voltage divider mentioned so

far, and it is in the notch filter itself, so it doesn’t make sense to measure there for this purpose.

The schematics provided so far are the ones used to make the PCB, but while measuring using

a digital signal source, it was discovered that the converted signal’s (coming from the DAC

subcircuit) amplitude was really high. In fact, it was too great for the preamplifier that follows,

resulting in the saturation of the op amp and clipping of the signal66.

Figure 3.8: Op amp saturation and signal clipping.

A possible solution is changing the resistance R14 at the op amp on the DAC subcircuit67 so it

wouldn’t amplify the DAC IC’s output as much as it does68, but changing that resistor’s value

resulted to loss of the signal resolution69.

The actual solution can be attributed to the high impedance of the op amp inputs. Since the

signal is routed directly to the preamplifier (after the DAC subcircuit that is), the current on

that trace would be low enough for a voltage divider to work. So, a voltage divider was

implemented before the SPDT switch, resulting in approximately 𝑉𝑂𝑈𝑇 = 0.0383995 ⋅ 𝑉𝐼𝑁 .

This change did not require a redesign and re-printing of the entire PCB, saving both time and

resources. It is visible in Figure 2.12.

65 The 30.67Hz and 145.9Hz are the minimum and maximum frequencies the firmware would allow.
66 The supply voltage to the preamplifier’s op amp is ±10𝑉 and the gain is 𝑥20. Meaning that its input signal’s

amplitude must not exceed
10

20
𝑉

67 R4 in Figure 2.3 or R14 in Appendix A.1.
68 Even though it’s configured as a Current-to-Voltage converter, as stated before, it still amplifies its input:
𝑉𝑂𝑈𝑇 = −𝐼𝐼𝑁𝑅.
69 Discovered when that solution was attempted.

Frequency Responses

62

Figure 3.9: Voltage Divider Values.

Back to the notch filter, the results are displayed in Table 3. The actual notch is clearly defined,

though not as prominent as the previous results. On Figure 3.11, the comparison of theoretical

and experimental data is displayed.

Table 3: Measurement Data from the Notch while using ATmega as a signal source.

f(Hz) Vppout(V) Vpppre_Volt_div(V) Vppafter_Volt_div(V) Vppbefore_filter(V) db(Vout/Vin_PCB) db(Vout/Vin_FILTER)

30.67 2.835 8.056 0.2705 6.266 20.40771588 -6.888746546

41 1.418 8.056 0.2686 6.266 14.45140445 -12.90628319

43.42 1.063 8.056 0.2686 6.266 11.94854512 -15.40914252

44.76 0.886 8.056 0.2686 6.266 10.36655427 -16.99113337

47.68 0.7086 8.145 0.3583 6.087 5.923086797 -18.68004308

48.73 0.4431 8.056 0.2686 6.266 4.347914834 -23.00977281

50.3 0.5316 7.967 0.3577 6.176 3.441320642 -21.3024463

54.16 0.866 8.145 0.3577 6.266 7.679979037 -17.18944997

59.29 1.417 8.145 0.3577 6.266 11.9570182 -12.91241081

60.94 1.506 8.145 0.3577 6.266 12.48612063 -12.38330837

64.62 1.86 8.145 0.358 6.266 14.31259835 -10.54954893

67.5 2.126 8.145 0.3577 6.266 15.4808864 -9.388542607

69.6 2.215 8.145 0.358 6.266 15.82981408 -9.0323332

71.1 2.481 8.145 0.358 6.265 16.81487475 -8.045886221

75 2.747 8.145 0.3577 6.265 17.70679439 -7.161248318

77.9 2.835 8.145 0.358 6.266 17.97340073 -6.888746546

82.9 3.189 8.145 0.358 6.265 18.99542985 -5.865331122

90.13 3.544 8.145 0.3577 6.265 19.91949546 -4.948547242

97.45 3.898 8.145 0.3577 6.265 20.74645789 -4.121584811

102.6 4.075 8.145 0.358 6.265 21.12489173 -3.735869245

112.6 4.341 8.145 0.3577 6.265 21.68141691 -3.18662579

118.7 4.518 8.145 0.3577 6.265 22.02854573 -2.839496975

124.4 4.696 8.145 0.3577 6.265 22.36418296 -2.503859742

127.2 4.786 8.145 0.3577 6.265 22.52907508 -2.338967621

134 4.873 8.145 0.3577 6.265 22.68554942 -2.182493279

140.8 5.05 8.145 0.3577 6.265 22.99544876 -1.872593944

145.9 5.05 8.145 0.3577 6.265 22.99544876 -1.872593944

Frequency Responses

63

Figure 3.10: Notch filter's frequency response when using the DAC – a digital signal source as input.

Figure 3.11: Comparison of theoretical and actual data, when the input is from a digital signal source.

Frequency Responses

64

3.2.2 Butterworth Digital Filter’s Response
Moving on to testing the Digital Filter, the measuring process went as follows: First, an Arduino

Uno was programmed to output a sine signal at a specific frequency. Since it’s a digital signal,

it is discrete, with a specific time interval. This interval essentially is the sampling frequency

of the signal, and it was chosen to be much greater than the signal’s innate frequency and by

extension than the Nyquist frequency, valued at 𝐹𝑆 = 20𝑘𝐻𝑧
70. The reason being not to lose

any information that is in the input signal.

Technically, according to the Nyquist theorem, a sampling frequency at twice the Nyquist

frequency should suffice for an accurate reconstruction of the signal. Indeed, when measured

at close to that value71, the Fourier Transform would yield the correct results, but the sampled

signal would not resemble a sine. That would lead to a very peculiar looking signal after

undergoing filtering at the Butterworth filter, making it difficult to accurately measure the

peak-to-peak values in order to evaluate the digital filter.

Figure 3.12: Sine sampled at Nyquist Frequency.
Note: The amplitude of the input signal is 1, while the sampled is around 0,04. That is because the samples align at the

zeros of the sine. The reason because they are not exactly zero is the accuracy of the calculations.

70 Additionally the number of samples was 10000 for each frequency.
71 If a sine is sampled at exactly the Nyquist frequency, it so happens that the samples align with the zeros of the
signal, making reconstruction impossible.

Frequency Responses

65

Figure 3.13: A zoom in of the above graph.

Figure 3.14: Sine sampled close to the Nyquist frequency.

Frequency Responses

66

Next step was to connect the custom MATLAB app to the same port and receive the data.

Then, after filtering, all the data were exported to excel files using the app’s built-in feature.

Finally, from there, the peak-to-peak values for both the input and the filtered signal were

measured, and then the magnitude response was plotted (Figure 3.15). To measure the peak-

to-peak value for the filtered signal, the transient response had to be taken into account. The

values were calculated using the last half of the samples, where the steady state was

undoubtedly reached. The testing was indicatively done only for the 2nd order and for 𝐹𝐶 =

30𝐻𝑧 to match the ELF band. The data used for the plot are presented on Table 4. Finally, the

theoretical value was calculated using the filter’s TF for these values, and plotted using the

built-in MATLAB function “bode()”.

Figure 3.15: Magnitude Response Comparison.

Frequency Responses

67

Table 4: Data taken while testing the digital filter.

.f (Hz) A(dB)

2.5 -0.000207252

5 -0.003335147

7.5 -0.016860944

10 -0.053322686

12.5 -0.129053701

15 -0.263409222

17.5 -0.475870621

20 -0.783351116

22.5 -1.194479981

25 -1.709615592

27.5 -2.320115799

30 -3.010355066

32.5 -3.762229994

35 -4.553442218

37.5 -5.367914145

40 -6.191867484

42.5 -7.015947735

45 -7.828085636

47.5 -8.62515304

50 -9.403909244

52.5 -10.16441557

55 -10.90014653

57.5 -11.61362178

60 -12.3055007

62.5 -12.97597113

65 -13.62711583

67.5 -14.25518869

70 -14.86430029

72.5 -15.45520629

75 -16.03068003

77.5 -16.58589605

80 -17.12519459

82.5 -17.64980009

85 -18.16226343

87.5 -18.65749536

90 -19.13995458

92.5 -19.61010963

95 -20.07104942

97.5 -20.51715924

100 -20.95244856

110 -22.59735421

120 -24.10229064

130 -25.48852818

140 -26.7724855

150 -27.96899165

170 -30.14169209

200 -32.96319396

250 -36.84045766

300 -40.01038702

320 -41.13302616

330 -41.66911309

340 -42.18983736

350 -42.69277732

360 -43.18305929

400 -45.01564768

450 -47.06644367

470 -47.823312

490 -48.55291692

550 -50.56470225

750 -55.98569231

1000 -61.02615965

1200 -64.26065987

1400 -67.00538998

1600 -69.40381382

2000 -73.45988464

Conclusions

69

3.3 Conclusions
Within the scope of this postgraduate dissertation, a PCB was designed and printed, capable

of amplifying both digital and analog signals as well as filtering out their power supply noise.

Interfacing directly with an Arduino Uno board, the analog signal, is sampled, converted to

digital and sent to a computer for further processing. There, an app was developed using

MATLAB, able to communicate with the Arduino via the USB port and receive the sampled

signal. Then it can be analyzed to its frequencies using FFT, and be filtered by a digital Lowpass

Butterworth filter, attenuating higher frequencies, in order to match the ELF band. All the

while, the order and cutoff frequency are not hardcoded but chosen by the user. Finally, the

data can be saved in 3 different ways (.mat, .xlsx ,.txt) for future analysis.

Looking at the results above, the implementation of the system was generally successful, as it

can carry out all its assigned tasks mentioned above.

The digital filter is almost an exact match of the theoretical one as shown in their comparison

graph. The FFT provides the correct results, as long as the right values are selected by the user,

who needs to match the sampling frequencies on the app and the Arduino, while

simultaneously respecting the Nyquist sampling theorem.

The notch filter when using a digital signal source, was seemingly the least successful

implementation. While a notch is clearly visible, the dB drop is not at the ideal level, sitting at

only −23.01𝑑𝐵 maximum attenuation at 48.73Hz72.

However, the notch filtering results when an analog signal source was used, imply that the

filter itself is well designed and assembled (as theoretical and measured data align almost

perfectly), and that there is a flaw elsewhere.

A possible cause for this outcome is that noise was detected from the 5V pin, as it close to the

digital data pins. Even if it’s not the sole cause, it certainly is a change that needs to be made

in future revisions of the PCB.

3.4 Future Improvements
There are several basic improvements that can be done, mainly on the PCB side of the system.

First and foremost, the power supply pins could be replaced for example by a DC power jack

(common barrel-type power connector). It could supply a higher Voltage and then using

Voltage regulators, such as buck or step-down converters, that Voltage could be reduced to

supply each IC with the voltage level they need. This would minimize the number of power

supply connectors to just one, making the interfacing with the board easier (less cluttered). It

also gives the side bonus of making the board more durable, as those pins can be broken fairly

easily, while a barrel connector is more robust. Doing this, would also remove the need for a

5V, which, as already mentioned, was producing measurable noise during the DAC testing.

72 A measurement at exactly 50𝐻𝑧 could not be taken due to limitations of the hardware while measuring.

Future Improvements

70

Additionally, a low-pass filter could be added immediately after the DAC IC to filter out the

“steps” of the converted signal and possible noise created by IC itself73.

On the software side, some more features could be added. For instance, using the data that

are already available (after receiving from the Arduino), there could be a window plotting the

magnitude and the phase response of the Butterworth filter. Another one is more types of

filters. For now, only the Butterworth Lowpass is available, but an option like a Chebyshev

could be added. Or even different filters in terms of frequency response, like bandpass,

stopband, etc. Although this would go beyond the goal set for this system; Attenuating signals

that are out of the ELF band.

Lastly, the user is required to fill in the offset value of the input signal. This can change on

future iterations of the app, because this value can actually be calculated programmatically

using the well-known formula [21, p. 63]:

xdc =
1

𝑇
∫ 𝑥(𝑡)𝑑𝑡
𝑇

0

𝑇 is the frequency of the signal and its value is already known by the app thanks to the Fourier

analysis.

73 These filters are known as reconstructive filters.

71

Bibliography
[1] P. Horowitz, The art of electronics, Third edition. New York, NY: Cambridge University

Press, 2015.

[2] L. Thede, Practical analog and digital filter design. in Artech House microwave library.

Boston, Mass. London: Artech House, 2005.

[3] A. R. Hambley, Electrical engineering: principles and applications, Seventh edition,

Global edition. NY, NY: Pearson, 2019.

[4] H. Zumbahlen, Basic linear design. Norwood, Mass.: Analog Devices, 2007.

[5] N. S. Nise, Control systems engineering. Place of publication not identified: John Wiley,

2014.

[6] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & systems, 2nd ed. in Prentice-

Hall signal processing series. Upper Saddle River, N.J: Prentice Hall, 1997.

[7] “dac0808.pdf.” Accessed: Jan. 24, 2024. [Online]. Available:

https://www.ti.com/lit/ds/symlink/dac0808.pdf?ts=1706036605362&ref_url=https%253A%

252F%252Fwww.google.com%252F

[8] A. S. Sedra and K. C. Smith, Microelectronic circuits, Seventh edition. in The Oxford

series in electrical and computer engineering. New York ; Oxford: Oxford University Press,

2015.

[9] “Read Analog Voltage.” Accessed: Jan. 26, 2024. [Online]. Available:

https://www.arduino.cc/en/Tutorial/BuiltInExamples/ReadAnalogVoltage

[10] “How to read COM port caption.” Accessed: Jan. 28, 2024. [Online]. Available:

https://www.mathworks.com/matlabcentral/answers/447648-how-to-read-com-port-

caption#comment_1970290

[11] S. Winder, Analog and digital filter design, 2. ed. Amsterdam: Newnes, 2002.

[12] L. Weinberg, Network analysis and synthesis, Repr. with corr. Huntington: Krieger,

1975.

[13] S. W. Smith, The scientist and engineer’s guide to digital signal processing, 1. ed. San

Diego, Calif: California Technical Publ, 1997.

[14] J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First, Second edition, Global

edition. in Always Learning. Harlow: Pearson, 2017.

[15] “ch_DFT.pdf.” Accessed: Feb. 06, 2024. [Online]. Available:

https://web.mit.edu/~gari/teaching/6.555/lectures/ch_DFT.pdf

[16] C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, systems, and transforms, 4. ed. Upper

Saddle River, NJ: Pearson Prentice Hall, 2008.

72

[17] “Fast Fourier transform - MATLAB fft.” Accessed: Feb. 12, 2024. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/fft.html#d126e476156

[18] “Handle Classes - MATLAB & Simulink.” Accessed: Feb. 12, 2024. [Online]. Available:

https://www.mathworks.com/help/matlab/handle-classes.html

[19] “Comparison of Handle and Value Classes - MATLAB & Simulink.” Accessed: Feb. 12,

2024. [Online]. Available:

https://www.mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-

classes.html

[20] “Superclass of all handle classes - MATLAB.” Accessed: Feb. 12, 2024. [Online].

Available: https://www.mathworks.com/help/matlab/ref/handle-class.html

[21] A. IZADIAN, FUNDAMENTALS OF MODERN ELECTRIC CIRCUIT ANALYSIS AND FILTER

SYNTHESIS: a transfer function approach. S.l.: SPRINGER INTERNATIONAL PU, 2024.

[22] E. Bogatin, Bogatin’s Practical Guide to Prototype Breadboard and PCB Design. Boston

London: Artech House, 2021.

[23] E. Bogatin, L. Smith, and S. Sandler, “The Myth of Three Capacitor Values | 2020-03-

03 | Signal Integrity Journal.” Accessed: Feb. 05, 2024. [Online]. Available:

https://www.signalintegrityjournal.com/articles/1589-the-myth-of-three-capacitor-values

[24] “ATmega164A_PA-324A_PA-644A_PA-1284_P_Data-Sheet-40002070A.pdf.”

Accessed: Feb. 05, 2024. [Online]. Available:

https://alpha.physics.uoi.gr/foudas_public/Micro2019UoI/ATmega164A_PA-324A_PA-

644A_PA-1284_P_Data-Sheet-40002070A.pdf

[25] “AVR® Interrupts - Developer Help.” Accessed: Feb. 21, 2024. [Online]. Available:

https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/8-bit-

avr/structure/interrupts/

[26] “Atmel.Schematics_1.pdf.” Accessed: Feb. 05, 2024. [Online]. Available:

https://alpha.physics.uoi.gr/foudas_public/Micro2019UoI/Atmel.Schematics_1.pdf

[27] “AVR364: MEGA-1284P Xplained Hardware User’s Guide”.

[28] “AVR Instruction Set Manual”.

[29] “ATmega1284P-Datasheet-Summary.pdf.” Accessed: Feb. 05, 2024. [Online].

Available: https://alpha.physics.uoi.gr/foudas_public/Micro2019UoI/ATmega1284P-

Datasheet-Summary.pdf

[30] The Mathworks Inc., “MATLAB.” in MATLAB Version: 9.14.0.2206163 (R2023a). The

MathWorks Inc., 2023. [Online]. Available: https://www.mathworks.com

[31] “DSP System Toolbox.” Accessed: Jan. 29, 2024. [Online]. Available:

https://www.mathworks.com/products/dsp-system.html

73

[32] “Διακόπτης Συρόμενος Mini SPDT - 1A/250VAC,” grobotronics.com. Accessed: Jan. 24,

2024. [Online]. Available: https://grobotronics.com/mini-spdt-1a-250vac.html

[33] “LTST-C171TBKT.pdf.” Accessed: Jan. 24, 2024. [Online]. Available:

https://grobotronics.com/images/companies/1/datasheets/LTST-

C171TBKT.pdf?1521198076155

[34] “Rail-to-rail high output current dual operational .pdf.” Accessed: Jan. 24, 2024.

[Online]. Available: https://grobotronics.com/images/companies/1/ts922.pdf

Appendix-PCB SCHEMATIC

- 1 -

Appendix

A.1 PCB SCHEMATIC

Appendix-Decoupling Capacitors

- 2 -

A.2 Decoupling Capacitors
When designing a circuit many novice engineers take a stable and well-regulated power supply

for granted, only to find that their circuits don’t perform as expected during testing. Analog

circuits, such as audio amplifiers or radios may produce a strange hum or a crackling noise

audible in the background, and digital circuits such as microcontrollers may become unstable

and unpredictable. If there is a voltage spike, the program loaded in the processor could skip

instructions, which is clearly not wanted. The reason for this underperformance often lies in

the fact that the input voltage (from the power supply) is rarely stable in practice. However,

when viewed through an oscilloscope, a DC power supply shows many glitches, voltage spikes

and AC voltage components. For this reason, Decoupling Capacitors are added to the circuit

to smooth out the power supply voltage.

Appendix Figure 1: Decoupling Capacitor.

Note: Yates, J. (2023, August 31). What Are Decoupling Capacitors? Knowles Precision Devices Blog.
https://blog.knowlescapacitors.com/blog/decoupling-capacitors

Additionally, in digital circuits the power source may be contaminated from the logic board or

other devices. More specifically, logic circuits are made of millions of logic gates, which

constantly change their output states between ON and OFF. These logic gates, in turn, consist

of transistors, that generate what is called Transient Load during the switching. As a result,

the current drawn by the devices fluctuates, generating noise, which propagates back to the

power source. Therefore, capacitors used for decoupling essentially serve three roles:

a) Protecting the power source from electrical noise generated within the circuit.

b) Protecting the circuit from electrical noise generated by other devices connected to

the same power source.

c) Filter out voltage spikes and dips while allowing only the DC component to pass

through.

But how do they work? A decoupling capacitor acts as a local electrical energy reservoir.

Capacitors, like batteries, need time to charge and discharge. When used as decoupling

capacitors, they oppose quick changes of voltage. If the input voltage suddenly drops, the

Appendix-Decoupling Capacitors

- 3 -

capacitor provides the energy to keep the voltage stable. Similarly, if there is a voltage spike,

the capacitor “absorbs” the excess energy. So, they essentially bypass the power source when

needed, earning themselves their second name Bypass Capacitors. It’s not uncommon to

have a single capacitor for each integrated circuit used. As a matter of fact, in digital systems

almost all capacitors on the board may be used for decoupling.

Now, it’s already established that power signal reaching the ICs is not inherently stable and

that it can be contaminated from the fast switching of the states of the transistors that make

up the ICs74. Another reason for the unstable state is the intrinsic inductance and impedance

of the power trail/trace/wire. Specifically, between the VRM and the pads of the IC is the

inductance of the VRM75. The transient current76, flowing through this inductance, generates

a voltage drop, otherwise called “switching noise”. This appears on the power rails of the IC.

The way to reduce this noise is to reduce the loop inductance from the IC pads to the VRM

[22, p. 323].

Appendix Figure 2: The effect of the distance between the decoupling capacitors and the IC on the transient response.

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.325"

Since, an intrinsic inductance is present on all traces on the PCB, then also present on the

trace between the decoupling capacitor and the IC77. Hence, the most important quality of

74 Additionally, this switching to its outputs of the ICs, needs power that will ultimately come from the power
supply. This switching can be very quick from a few nanoseconds to a few microseconds [22, p. 323]. This requires
different power levels from the supply, very quickly, making the power signal unstable.
75 VRM stands for Voltage Regulator Module. It’s an IC responsible for the power distribution on the PCB. If a PCB
doesn’t have one integrated, does not matter in the context of this chapter, as everything said is true for VRMs
or simple Power pins, power jacks, etc.
76 The term “transient current” refers to the current during the switching of the output states, while the power
source is still “unstable” – before the steady state.
77 The inductance of the trace between the power supply and the capacitor is already decoupled by it. But the
inductance of the trace between the capacitor and the IC is yet to be addressed.

Appendix-Decoupling Capacitors

- 4 -

the decoupling capacitor is the loop78 inductance between the capacitor itself and the device

to which it provides the charge. The closer the capacitor is to the device, the lower the loop

inductance [22, p. 305]. The longer the path length between the decoupling capacitor and the

pads of the IC, the higher the loop inductance and the higher the switching noise [22, p. 323].

Because of that, the preferred placement of decoupling capacitors is as close as possible to

the IC they are decoupling.

So, the main idea, how they work and where to place them are now explained. But how is the

capacitance of each one chosen? To answer that question accurately79 , the value of the

current draw, the current’s transient time and the acceptable voltage change are necessary

[22, p. 303]:

C =

Δ𝑄

Δ𝑉
=
Δ𝑡 ⋅ 𝐼

Δ𝑉

1

Where C is the amount of decoupling capacitance needed, Δ𝑄 is the charge depletion of the

capacitor to supply the current requirements of the chip during the transient current time, Δ𝑉

is the acceptable voltage drop (noise) on the capacitor, which is the voltage droop on the

capacitor as the current bleeds off charge, Δ𝑡 is the time during which the transient current

occurs and lastly 𝐼 the current draw of the die (IC) [22, p. 303]. However, knowing all these

values for each IC can be challenging. Fortunately, the precise value of capacitance is not

important as long as it is larger than the minimum required to supply the local charge during

the switching event [22, p. 304]. Unless someone has a specific requirement for their device,

a good starting place is to use at least 10𝑢𝐹 of decoupling capacitance per IC [22, p. 305].

A common recommendation is using three decoupling capacitors for each IC, separated in

value by a decade. This is completely wrong. To understand why, one must look at a capacitor

as its real equivalent circuit and not as an ideal component. An ideal capacitor’s impedance is

analogous to
1

f
 forever. But a real one has some self-inductance and an internal equivalent

series resistance. This means that a real capacitor behaves like an ideal RLC circuit [23].

Appendix Figure 3: Equivalent circuit model of a real capacitor.

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.327"

On the figure above is shown an equivalent circuit model of a real capacitor. The L is the loop

self-inductance (Equivalent Self Inductance or ESL) between the capacitor and the pads on the

78The word “loop” refers to the loop from power to ground trail.
79 The capacitor is selected so that during the time in which we expect to see a transient current, the rise or fall
time, the voltage drop from the current draw is an acceptably small drop.

Appendix-Decoupling Capacitors

- 5 -

IC, while the C is its intrinsic capacitance, and the R is the equivalent series resistance (ESR)

due to the conductor plates in series with the capacitor.

Appendix Figure 4: Impedance of real vs ideal capacitor.

The impedance profile of a real capacitor has a dip in the middle at the frequency referred to

as self-resonant frequency (SRF). It the point where the reactance of the L and ideal C are

equal but of opposite sign [22, p. 327]. And it can be calculated by:

 𝑓𝑆𝑅𝐹 =
1

2π√𝐿𝐶
 2

And its impedance by:

 𝑍𝐶𝐴𝑃 = 𝐸𝑆𝑅 + 𝑋𝐶 + 𝐶𝐿 ⇒ 𝑍𝐶𝐴𝑃 = 𝐸𝑆𝑅 + 2π𝑓𝐿 +
1

2π𝑓𝐶
 3

Where 𝐿 is the loop inductance between the capacitor and the pads of the IC. When three

capacitors are added in parallel, while there will be three dips, there will also be two peaks

corresponding to the parallel resonances of adjacent L and C values (example given on

Appendix Figure 5). And what generates the noise on the power rail is a high impedance. It is

not about how low the impedance goes, it is about how high the impedance goes [22, p. 329].

Appendix Figure 5: The impedance profile of three different valued decoupling capacitors in parallel.

Note: Effective Use of Decoupling (Bypass) Capacitors Point 1 | Dealing with Noise Using Capacitors | TechWeb. (n.d.).
https://techweb.rohm.com/know-how/nowisee/7669/.

Appendix-Decoupling Capacitors

- 6 -

Back to the recommendation to use three different valued decoupling capacitors for each IC.

It assumes that the capacitors are through-hole. Generally, in through-hole capacitors the

smaller the capacitance, the smaller its body. This matters because different body sizes will

have different mounting inductance (the bigger the body, the higher the inductance).

Indeed, if through-hole capacitors are used, choosing three different valued ones in parallel

makes sense as portrayed below (the parallel combination yields lower loop inductance).

Appendix Figure 6: Impedance profile of three leaded capacitors and their parallel

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.332"

However, nowadays with SMD or MLCC (Multi-Layered Ceramic Capacitors) the capacitor’s

body size is the same (at least for the values of interest for decoupling), meaning that they all

have the same loop inductance (much lower than the through-hole counterpart). A

consequence of that is: MLCC capacitors, all capacitors in the same body size are high-

frequency capacitors [22, p. 333].

Concluding this discussion, below is a comparison of the impedance profiles for the cases

discussed.

Appendix Figure 7: Comparing three different combinations of three capacitors.

Note: Image taken from "Bogatin's Practical Guide to Prototype Breadboard and PCB Design, p.334".

Appendix-DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER

- 7 -

What was used

It’s apparent from the last four figures that at high frequencies, the loop inductance dominates

over capacitance when it comes to their impedance contribution. So, a correct conclusion is

that when selecting capacitors as decoupling capacitors, a large capacitance for low-frequency

performance and a low inductance for high-frequency performance should be the intention.

While it was just explained what the ideal combination of capacitors is, generally, a single,

low-inductance capacitor may be perfectly adequate [22, p. 334].

That why on this system a 0.1𝑢𝐹 SMD capacitor for each power IC pin was used, eliminating

the switching and high frequency noise. But in the PCB schematic there can also be seen 10𝑢𝐹

electrolytic capacitors on each power-in pin of the PCB80 (they are parallel with the 0.1𝑢𝐹

ones for each power trail respectively). This higher capacity, bigger volume capacitor takes

care of the low carrying-low frequency noise81.

A.3 DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER
On this chapter, the derivation of the notch filter – otherwise called “Bootstrapped Twin-T

Notch filter” – will take place.

Appendix Figure 8: The Bootstrapped Twin-T Notch Filter.

80 That is 4 pins: +10𝑉,−10𝑉,−15𝑉 𝑎𝑛𝑑 + 5𝑉
81 Notice that the placement of the electrolytic and the SMD capacitors are in line with everything analyzed on
this chapter. The electrolytic is responsible for lower frequencies but has a large loop inductance. That loop
inductance (that produces high-frequency noise) is taken care of by the SMD capacitor, placed AFTER the
electrolytic one (along the power trace) and as close as possible to the IC. Of course, this is true for all ICs and
power traces on the PCB.

Appendix-DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER

- 8 -

This derivation assumes that the op amps are ideal (their properties are on an earlier chapter

- Digital to Analog Converter27). That means:

 𝑉𝐷 = 𝑉𝑜𝑢𝑡
4

And:

 𝑉𝐹 = 𝑉𝐺 5

Where because of the voltage divider (see node F):

 𝑉𝐹 =
𝑅5

𝑅4 + 𝑅5
𝑉𝑜𝑢𝑡 ⇒ 𝑉𝐹 = 𝑘𝑉𝑜𝑢𝑡

6

The constant 𝑘 is equal to:

 𝑘 =
𝑅5

𝑅4 + 𝑅5
 7

Now that some basic properties of the circuit have been laid out, there’s one more thing that

needs to be pointed out. If the values of the resistors and capacitors (on the filter part – no

the voltage divider part) form a “symmetry”, not only yields the frequency response needed,

but also makes the derivations easier. Specifically:

{

𝑅1 = 𝑅2 = 𝑅
𝐶1 = 𝐶2 = 𝐶

𝑅3 =
𝑅

2
𝐶3 = 2𝐶

 8

Appendix Figure 9: The Symmetrical Bootstrapped Twin-T Notch Filter.

Now let’s start the derivation by performing nodal analysis on nodes A, B, D. Using Kirchhoff’s

Current Law (KCL) on node A:

Appendix-DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER

- 9 -

 𝑖𝐴1 = 𝑖𝐴2 + 𝑖𝐴3 9

By Ohm’s Law:

𝑖 =

𝑉𝐻𝐼𝐺𝐻 − 𝑉𝐿𝑂𝑊
𝑅

10

The Laplace Transform of a capacitor is:

𝑍𝐶 =

1

𝑠𝐶

11

Where:

 𝑠 = 𝑗ω 12

Using all that:

(𝑉𝐼𝑁 − 𝑉𝐴)𝑠𝐶 = (𝑉𝐴 − 𝑉𝐷)𝑠𝐶 +
𝑉𝐴 − 𝑉𝐺
𝑅3

 ⇒

(𝑉𝐼𝑁 − 𝑉𝐴)𝑠𝐶 = (𝑉𝐴 − 𝑉𝑂𝑈𝑇)𝑠𝐶 + (𝑉𝐴 − 𝑘𝑉𝑂𝑈𝑇)
2

𝑅
 ⇒

𝑉𝐼𝑁𝑠𝐶 − 𝑉𝐴𝑠𝐶 = 𝑉𝐴𝑠𝐶 − 𝑉𝑂𝑈𝑇𝑠𝐶 + 𝑉𝐴
2

𝑅
−
2𝑘

𝑅
𝑉𝑂𝑈𝑇 ⇒

𝑉𝐼𝑁𝑠𝐶 = 2𝑉𝑎𝑠𝐶 − 𝑉𝑂𝑈𝑇𝑠𝐶 + 𝑉𝐴
2

𝑅
− 𝑉𝑂𝑈𝑇

2𝑘

𝑅
 ⇒

𝑉𝐼𝑁𝑠𝐶 + (𝑠𝐶 +
2𝑘

𝑅
)𝑉𝑂𝑈𝑇 = (2𝑠𝐶 +

2

𝑅
)𝑉𝐴 ⇒

 𝑉𝐴 =
𝑉𝐼𝑁𝑠𝐶 + (𝑠𝐶 +

2𝑘
𝑅)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
2
𝑅

 13

Applying the same logic on node B yields:

𝑖𝐵1 = 𝑖𝐵2 + 𝑖𝐵3 ⇒

(𝑉𝐼𝑁 − 𝑉𝐵)

𝑅1
=
𝑉𝐵 − 𝑉𝑂𝑈𝑇

𝑅
+
𝑉𝐵 − 𝑘𝑉𝑂𝑈𝑇

1
2𝐶𝑠

 ⇒

1

𝑅
𝑉𝐼𝑁 −

1

𝑅
𝑉𝐵 =

1

𝑅
𝑉𝐵 −

1

𝑅
𝑉𝑂𝑈𝑇 + 2𝑠𝐶𝑘𝑉𝑂𝑈𝑇 ⇒

1

𝑅
𝑉𝐼𝑁 + (

1

𝑅
+ 2𝑠𝑘𝐶) 𝑉𝑂𝑈𝑇 = (2𝑠𝐶 +

2

𝑅
)𝑉𝐵 ⇒

 𝑉𝐵 =

1
𝑅 𝑉𝐼𝑁 + (

1
𝑅 + 2𝑠𝑘𝐶)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
2
𝑅

 14

Appendix-DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER

- 10 -

And lastly for node D:

 𝑖𝐷1 = 𝑖𝐷2 + 𝑖𝐷3 15

from ideal op amp and from the schematic we get:

 {
𝑖𝐷3 = 0
𝑖𝐷1 = 𝑖𝐵2
𝑖𝐷3 = −𝑖𝐴2

 16

Substituting the above equations we get:

𝑖𝐵2 + 𝑖𝐴2 = 0 ⇒

𝑉𝐵
𝑅
−
𝑉𝐷
𝑅
+ 𝑉𝐴𝑠𝐶 − 𝑉𝐷𝑠𝐶 = 0 ⇒

1

𝑅
𝑉𝐵 −

1

𝑅
𝑉𝑂𝑈𝑇 + 𝑠𝐶𝑉𝐴 − 𝑠𝐶𝑉𝑂𝑈𝑇 = 0 ⇒

𝑠𝐶𝑉𝐴 +

1

𝑅
𝑉𝐵 = (𝑠𝐶 +

1

𝑅
)𝑉𝑂𝑈𝑇

17

By substituting 𝑉𝐴 and 𝑉𝐵 on the equation above yields:

𝑠𝐶
𝑉𝐼𝑁𝑠𝐶 + (𝑠𝐶 +

2𝑘
𝑅 𝑉𝑂𝑈𝑇)

2𝑠𝐶 +
2
𝑅

+
1

𝑅

1
𝑅 𝑉𝐼𝑁 + (

1
𝑅 + 2𝑠𝐶𝑘)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
1
𝑅

= (𝑠𝐶 +
1

𝑅
)𝑉𝑂𝑈𝑇 ⇒

𝑉𝐼𝑁(𝑠𝐶)
2 + [(𝑠𝐶)2 +

2𝑠𝐶𝑘
𝑅
]𝑉𝑂𝑈𝑇 +

𝑉𝐼𝑁
𝑅2
+ (

1
𝑅2
+
2𝑠𝐶𝑘
𝑅
)𝑉𝑂𝑈𝑇

2𝑠𝐶 +
2
𝑅

= (𝑠𝐶 +
1

𝑅
) ⇒

[(𝑠𝐶)2 +
1

𝑅2
] 𝑉𝐼𝑁 + [(𝑠𝐶)

2 +
2𝑘𝑠𝐶

𝑅
+
1

𝑅2
] 𝑉𝑂𝑈𝑇 = (𝑠𝐶 +

1

𝑅
) (2𝑠𝐶 +

2

𝑅
)𝑉𝑂𝑈𝑇 ⇒

[(sC)2 +
1

R2
] VIN = −[(sC)

2 +
2ksC

R
+
1

R2
] VOUT + [2(sC

2) +
2sC

R
+
2sC

R
+
2

R2
] VOUT ⇒

[(𝑠𝐶)2 +
1

𝑅2
] 𝑉𝐼𝑁 = [(𝑠𝐶)

2 +
4𝑠𝐶

𝑅
−
4𝑠𝐶𝑘

𝑅
+
1

𝑅2
] 𝑉𝑂𝑈𝑇 ⇒

𝑉𝑂𝑈𝑇
𝑉𝐼𝑁

=
(𝑠𝐶)2 +

1
𝑅2

(𝑠𝐶)2 +
1
𝑅2
+
4𝑠𝐶(1 − 𝑘)

𝑅

 ⇒

 𝐻(𝑠) =
𝑠2 +

1
(𝑅𝐶)2

𝑠2 +
4(1 − 𝑘)𝑠
𝑅𝐶 +

1
(𝑅𝐶)2

 18

Now setting:

Appendix-DERIVATION OF THE TRANSFER FUNCTION OF THE NOTCH FILTER

- 11 -

ω0 =

1

𝑅 ⋅ 𝐶
, 𝑠 = 𝑗ω

19

Resulting in:

 𝐻(ω) =
ω2 −ω0

2

ω2 − 4𝑗ω0ω(1 − 𝑘) − ω0
2 20

Now let’s write the denominator in quadratic form:

 ω2 − ω0
2 − 4𝑗ω0ω(1 − 𝑘) ⇒

ω2

ω0
2 − 1 = 4𝑗

ω

ω0
(1 − 𝑘) 21

Setting:

 𝑔 =
ω

ω0
 22

And taking the magnitude on both sides:

 |𝑔2 − 1| = √(4𝑔(1 − 𝑘))
2
⇒ 𝑔2 − 1 = ±4𝑔(1 − 𝑘)

⇒ 𝑔2 ± 4𝑔(1 − 𝑘) − 1

23

Using the quadratic formula to solve, we get:

𝑔1,2 = ±2(1 − 𝑘) ± √4(1 − 𝑘)2 + 1

24

Two of those answers are not valid. The variable g is a fraction of two frequency units, that is

why only a positive value for it is of interest. It's also true that:

 𝑘 =
𝑅5

𝑅4 + 𝑅5
→ 𝑘 < 1 ⇒ 1 − 𝑘 > 0 25

Now let's assume that:

2(1 − 𝑘) < √4(1 − 𝑘)2 + 1 ⇒ 4(1 − 𝑘)2 < |4(1 − 𝑘)2 + 1| ⇒

 4(1 − 𝑘)2 < 4(1 − 𝑘)2 + 1 ⇒ 0 < 1, 𝑡𝑟𝑢𝑒 26

So, the initial assumption is true as well. All the above leave us with:

𝑔1, 𝑔2 = √4(1 − 𝑘)2 + 1 ± 2(1 − 𝑘)

27

The values 𝑔1 and 𝑔2, are also the cutoff 'frequencies' for the H(g). That is easily proven by

just calculating:

 20 log|𝐻(𝑔1)| and 20 log|𝐻(𝑔2)|
28

That means, it's very easy to calculate the Quality factor of this Transfer Function, and by

extend, the system it is representing. First, we know that the center frequency (notch

frequency) is the geometric mean of the two cutoff frequencies. So:

Appendix-Deriving the difference equation for a 2nd order Butterworth Lowpass Filter

- 12 -

 𝑔0 = √𝑔1𝑔2 = ⋯ = 1 29

Now using equation 22 to go back to actual frequency units:

 ω𝑁𝑂𝑇𝐶𝐻 = ω0 30

Taking the equation for the Bandwidth:

 𝐵𝑊 = |𝜔1 − 𝜔2| ⇒ 𝐵𝑊 = (𝑔1 − 𝑔2) ⋅ ω0 = ω0 ⋅ 4(1 − 𝑘)
31

Now, all information needed for calculating the quality factor are known:

 𝑄 =
ω𝑁𝑂𝑇𝐶𝐻
𝐵𝑊

⇒ 𝑄 =
ω0

ω0 ⋅ 4(1 − 𝑘)
⇒ 𝑄 =

1

4(1 − 𝑘)
 32

Finally, based on the result, we can substitute Q on the initial Transfer Function of the system:

 𝐻(𝑠) =
𝑠2 +

1
𝑅2𝐶2

𝑠2 +
1
𝑄𝑅𝐶 𝑠 +

1
𝑅2𝐶2

 or 𝐻(𝑠) =
𝑠2 +ω0

𝑠2 +
ω0
𝑄 𝑠 + ω0

 33

A.4 Deriving the difference equation for a 2nd order Butterworth

Lowpass Filter
Starting with the Butterworth Lowpass transfer function:

 𝐻(𝑠) =
1

∑ 𝑎𝑘 (
𝑠
ω𝑐
)
𝑘

𝑛
𝑘=0

 34

Taking the Bilinear transform:

s =

2

T
⋅
1 − z−1

1 + z−1

35

We get:

 H(z) =
1

∑ 𝑎𝑘
1
ω𝑐
𝑘 (
2
𝑇 ⋅
1 − 𝑧−1

1 + 𝑧−1
)
𝑘

𝑛
𝑘=0

 36

For n=2 (second order filter):

 H(z) =
1

a0 +
a1
ωc
⋅
2
T ⋅

1 − z1

1 + z−1
+
a2
ωc2
⋅ (
2
T ⋅
1 − z−1

1 + z−2
)
2 37

After some tedious algebra we get:

 𝐻(𝑧) =

A2

D +
(
2A2

D
) z−1 +

A2

𝐷 𝑧
−2

1 + [
2A2𝑎0 − 8𝑎2

𝐷] 𝑧−1 + [
𝑎0𝐴2 − 2𝑎1𝐴 + 4𝑎2

𝐷] 𝑧−2
 38

Appendix-ARDUINO CODE

- 13 -

Where:

 α = T ⋅ ωc and D = 𝐴2a0 + 2a1A + 4a2 39

Now the form of the transfer function on equation 38 is directly comparable with the one

from equation 2.20 (repeated below for the reader’s convenience).

 𝐻(𝑧) =
∑ 𝑐𝑘 ⋅ 𝑧

−𝑘𝑀
𝑘=0

1 − ∑ 𝑑𝑘 ⋅ 𝑧−𝑘
𝑁
𝑘=1

 40

By direct comparison:

𝑐0 =
𝐴2

𝐷
, 𝑐1 =

2𝐴2

𝐷
 𝑐2 =

𝐴1

𝐷
 and 𝑑1 =

2𝐴2𝑎0 − 8𝑎2
𝐷

, 𝑑2 =
𝑎0𝐴

2 − 2𝑎1𝐴 + 4𝑎2
𝐷

And given that the (general) difference equation is (see equation 2.16):

 𝑦(𝑛) = ∑𝑐𝑘 ⋅ 𝑥(𝑛 − 𝑘)

𝑀

𝑘=0

−∑𝑑𝑘 ⋅ 𝑦(𝑛 − 𝑘)

𝑁

𝑘=1

 41

we now have everything we need to construct it (𝑀 = 𝑁 = 2 since this is a 2nd order

example):

 𝑦(𝑛) = −𝑑1𝑦(𝑛 − 1) − 𝑑2𝑦(𝑛 − 2) + 𝑏0𝑥(𝑛) + 𝑏1𝑥(𝑛 − 1) + 𝑏2𝑥(𝑛 − 2)
42

Which is straight forward to transform into code.

A.5 ARDUINO CODE

FOR OPERATIONAL SYSTEM

const int BaudRate = 115200.00;

const unsigned long eventInterval = 2;

unsigned long previousTime = 0;

void setup() {

 Serial.begin(115200);

}

void loop() {

 unsigned long currentTime = millis();

 if (currentTime - previousTime >= eventInterval) {

 int SensorValue= analogRead(A0);

 float Voltage_in = SensorValue * (5.0 / 1023.0);

 Serial.println(Voltage_in, 5);

 previousTime = currentTime;

 }

}

FOR TESTING THE DIGITAL FILTER ON MATLAB

const float f = 10;

const float pi = 3.14159;

Appendix-ARDUINO CODE

- 14 -

float mysine = 0.00000;

float fs=20000;

void setup() {

 Serial.begin(115200);

}

float t=0.000;

void loop() {

 mysine = sin(2*pi*f*t);

 Serial.println(mysine, 5);

 t = t + 1/(fs);

}

Appendix-ATmega Firmware

- 15 -

A.6 ATmega Firmware
To test the system with a digital signal source, a microcontroller board can be used. So, for

that purpose a sine generator with adjustable frequency was designed using the ATMEL

ATmega1284P programming board, which is a development board for the ATmega1284P

microcontroller. On Appendix Figure 10 all the capabilities, I/O, buttons and sensors on the

board are shown.

To achieve this, the main idea was the so-called look-up table. The microcontroller would read

the values of a table which are sampled values of a sine wave, while the adjusting of the

frequency would happen by changing the rate at which the look-up table values are read.

This firmware was coded in AVR-Assembly using the IDE Microchip Studio82 through the JTAG

header (using a debugger83). The actual code can be seen on A.7.

Appendix Figure 10: The ATmega 1284p board.

Note: Picture taken from "AVR364: MEGA-1284P Xplained Hardware User's Guide".

MCU’s Architecture

Before explaining the details of the firmware, it’s necessary to dive into the microcontroller’s

architecture. The ATmega1284P is a low-power CMOS 8-bit microcontroller based on the AVR

enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the

ATmega1284P achieves throughputs approaching 1 MIPS per MHz allowing the system

designer to optimize power consumption versus processing speed [24, p. 13].

82 It’s the IDE used for developing and debugging AVR® and SAM microcontroller applications.
83 More specifically, Microchip Atmel-ICE, Programming Kit for SAM and Atmel AVR Microcontrollers.

Appendix-ATmega Firmware

- 16 -

Appendix Figure 11: ATmega1284P board's block diagram.

Its features include but not limited to 128KB of In-System Programmable Flash with Read-

While-Write capabilities, 4KB EEPROM, 16KB SRAM, 32 general purpose I/O lines, 32 general

working registers84, three flexible Timer/Counters with compare modes and PWM, a 10-bit

ADC with optional differential input stage with programmable gain.

Those 32 I/O lines are divided into 4 PORTS: PORTA, PORTB, PORTC, PORTD. All four of them

are 8-bit bi-directional I/O ports with internal pull-up resistors (selected for each bit) and all

of them also serve the functions of various other features of the microcontroller. But, only one

of them – PORTA – serves as analog input for the board, because it’s connected to the board’s

ADC.

Moving on to the AVR core architecture, its block diagram is shown in Appendix Figure 12. The

main function of the CPU core is to ensure correct program execution. The CPU must therefore

be able to access memories, perform calculations, control peripherals, and handle interrupts.

84 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers
are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in
one single instruction executed in one clock cycle [24, p. 14].

Appendix-ATmega Firmware

- 17 -

Appendix Figure 12: Block diagram of the AVR architecture.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single

clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a

typical ALU operation, two operands are output from the Register File, the operation is

executed, and the result is stored back in the Register File – in one clock cycle [24, pp. 18–19].

Six of the 32 registers85 can be used as three 16-bit indirect address register pointers for Data

Space addressing – enabling efficient address calculations (specifically R26-R31 as shown

below). One of these address pointers can also be used as an address pointer for look-up

tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z

register (which will be used in the code).

Appendix Figure 13: AVR CPU General Purpose Working Registers (Register File).

85 The registers store data elements.

Appendix-ATmega Firmware

- 18 -

The ALU supports arithmetic and logic operations between registers or between a constant

and a register. Single register operations can also be executed in the ALU. After an arithmetic

operation, the Status Register is updated to reflect information about the result of the

operation [24, p. 19].

Program flow is provided by conditional and unconditional jump and call instructions, able to

directly address the whole address space. Most AVR instructions have a single 16-bit word

format. Every program memory address contains a 16- or 32-bit instruction [24, p. 19].

Program Flash memory space is divided into two sections, the Boot Program section and the

Application Program section. Both sections have dedicated Lock bits for write and read/write

protection [24, p. 19].

Appendix Figure 14: Program memory map.

During interrupts86 and subroutine calls, the return address Program Counter87 (PC) is stored

on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently

the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user

programs must initialize the Stack Pointer (SP) in the Reset routine (before subroutines or

interrupts are executed). The Stack Pointer88 is read/write accessible in the I/O space. The

data SRAM can easily be accessed through the five different addressing modes supported in

the AVR architecture.

But what is the role of this Status Register that is mentioned in earlier paragraphs? The Status

Register contains information about the result of the most recently executed arithmetic

instruction. This information can be used for altering program flow in order to perform

conditional operations. Note that the Status Register is updated after all ALU operations, as

specified in the AVR Instruction Set Manual. This will in many cases remove the need for using

86 Interrupts are used on this firmware and will be explained further in the next pages.
87 The Program Counter also known as Instruction Pointer is a special register that keeps track of the memory
address of the next instruction to be executed in a program.
88 The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space
[24, p. 22].

Appendix-ATmega Firmware

- 19 -

the dedicated compare instructions, resulting in faster and more compact code. The Status

Register is not automatically stored when entering an interrupt routine and restored when

returning from an interrupt. This must be handled by software [24, p. 20]. It’s an 8-bit register

and it’s vital for interrupts since its most significant bit is the Global Interrupt Enable bit. It

must be set (to high) for the interrupts to be enabled. The individual interrupt enable control

is then performed in separate control registers. If the Global Interrupt Enable Register is

cleared, none of the interrupts are enabled independent of the individual interrupt enable

settings [24, p. 20]. This fact is important as this Bit will be set multiple times throughout the

code.

Going over the code

This firmware uses what is called an interrupt. Programming using interrupts is a technique

based on an automatic mechanism in the hardware of the microcontroller, which allows a

device to provide service to internal or external devices, only at the moment it is required.

The interrupt is asynchronous and can occur at any time during the execution of the main

program. Then they can stop the main program from executing to perform a separate

interrupt service routine (ISR). When the ISR is completed, program control is returned to the

main program at the instruction that was interrupted [25].

The main program (main loop) of this system’s firmware is shown on the below. This loop runs

continuously, until the board is disconnected from power, or an interrupt is enabled. The

instruction “nop” basically means “no operation”. It essentially keeps the microprocessor idle

until further notice. This means that the goal of this firmware will be handled by the interrupt

technique alone.

Appendix Figure 15: Main Program/Loop.

There are two interrupts used here. One is utilizing a timer (see TIMER1_OVF” - Vector 16 on

Table 5) and the other an onboard ADC (“ADC” - Vector 25). The idea is that each time the

timer/counter interrupt goes off, a value of the look-up table will be read. How it works, is it

starts counting from an initial value at a certain frequency. If somehow that initial value was

changed live-while the board is on, let’s say increased, then the look-up table’s values would

be read faster. That is where the ADC comes in. By connecting a potentiometer between the

𝑉𝑐𝑐 and 𝐺𝑁𝐷 pins with its output connected to a PORTA pin (since it’s connected to the

Appendix-ATmega Firmware

- 20 -

onboard ADC), then by turning the potentiometer the counter’s initial value could be changed,

altering the sine’s frequency live.

Table 5: Reset and Interrupt Vectors.

Vector Number Program Address Source Interrupt Definition

1 $0000 RESET
External Pin. Power-on Reset, Brown-out Reset,
Watchdog Reset. and JTAG AVR Reset

2 $0002 INT0 External Interrupt Request 0

3 $0004 INT1 External Interrupt Request 1

4 $0006 INT2 External Interrupt Request 2

5 $0008 PCINT0 Pin Change Interrupt Request 0

6 $000A PCINT1 Pin Change Interrupt Request 1

7 $000C PCINT2 Pin Change Interrupt Request 2

8 $000E PCINT3 Pin Change Interrupt Request 3

9 $0010 WDT Watchdog Time-out Interrupt

10 $0012 TIMER2_COMPA Timer/Counter2 Compare Match A

11 $0014 TIMER2_COMPB Timer/Counter2 Compare Match B

12 $0016 TIMER2_OVF Timer/Counter2 Overflow

13 $0018 TIMER1_CAPT Timer/Counter1 Capture Event

14 $001A TIMER1_COMPA Timer/Counter1 Compare Match A

15 S001C TIMER' СОМРВ Timer/Counter1 Compare Match В

16 $001E TIMER1_OVF Timer/Counter1 Overflow

17 $0020 TIMER0_СОМРА Timer/Counter0 Compare Match А

18 $0022 ТIМЕR0_СОМРВ Timer/Counter0 Compare match B

19 $0024 TIMER0_OVF Timer/Counter0 Overflow

20 $0026 SPI_STC SPI Serial Transfer Complete

21 $0028 USART0_RX USART0 Rx Complete

22 S002A USART0_UDRE USART0 Data Register Empty

23 $002С USART0_ТХ USART0 Тх Complete

24 3002E ANALOG_COMP Analog Comparator

25 $0030 ADC ADC Conversion Complete

26 $0032 ЕЕ_READY EEPROM Ready

27 $0034 TWI two-wire Serial Interface

28 $0036 SPM_READY Store Program Memory Ready

29 $0038 USART1_RX USART1 Rx Complete

30 $003A USART1_UDRE USART1 Data Register Empty

31 $003C USART1_TX USART1 Tx Complete

32 $003E TIMER3_CAPT Timer/Counter3 Capture Event

33 $0040 TIMER3_COMPA Timer/Counter3 Compare Match A

34 $0042 TIMER3_CONAPB Timer/Counter3 Compare Match B

35 $0044 TIMER3_OVF Timer/Counter3 Overflow

Appendix-ATmega Firmware

- 21 -

A flexible interrupt module has its control registers in the I/O space with an additional Global

Interrupt Enable bit in the Status Register89. All interrupts have a separate Interrupt Vector in

the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt

Vector position. The lower the Interrupt Vector address, the higher the priority [24, p. 19].

The code starts by tackling the interrupts. This is because the interrupts are placed at the start

of the Flash memory90 [24, p. 73]. The first command is “jmp INIT”, which makes sure the

initialization routine for the interrupts is run first (see Appendix Figure 17 and Appendix Figure

18). Immediately after there is a series of pairs of “nop” and “reti” commands – 35 pairs to be

exact – the same number as the interrupts. Each pair of these commands disables an interrupt

(if all interrupts are enabled, the main loop may be interrupted at seemingly random times,

which is obviously not wanted). They are disabled one by one in the order shown in Table 5,

and that’s because they are identified based on their Flash memory address. Notice that the

TIMER1_OVF and ADC_INTER which will be used, are number 15 and 24 respectively instead

of 16 and 25 like in Table 5. This is because the first command of the code “jmp INIT” takes up

2 flash addresses91.

Appendix Figure 16: Enabling the two interrupts that will be used.

Also notice that the “reti” command after the “jmp TIMER1_OVF” is commented out while the

one after “jmp ADC_INTER” is not. That is because the “jmp TIMER1_OVF” takes up address

on the flash memory. Had the “reti” not been commented out, then the addresses would be

misaligned and the enabling of the ADC_INTER interrupt would have failed92.

Now to explain what’s in the initialization (initial settings for their first run) for the interrupts.

Both of their behaviour (along with all the interrupts) are controlled by the values of some

89 Will be explained in the next pages.
90 This can be changed by changing a bit in the MCUCR (MCU control Register) – specifically the IVSEL bit. When
it’s set to high , the Interrupt Vectors are moved to the beginning of the Boot Loader section of the Flash [24, p.
73]. But this is not the case here.
91 While “nop” and “reti” take up 1 flash memory address (together-not each).
92 This of course happens because the ADC interrupt has lower priority than the TIMER1_OVF since its vector is
larger – comes at a later address.

Appendix-ATmega Firmware

- 22 -

registers (each interrupts has its own of course). First of all, while configuring these settings93,

all interrupts must be disabled – and reenabled when done. This is achieved through the “cli”

and ”sei” commands.

Starting with the ADC, it is enabled by setting the ADC Enable bit (ADEN) in the ADCSRA

register. Voltage reference and input channel selections will not go into effect until ADEN is

set. The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and

ADCL. By default, the result is presented right adjusted, but can optionally be presented left

adjusted by setting the ADLAR bit in ADMUX. If the result is left adjusted and no more than 8-

bit precision is required, it is sufficient to read ADCH. Otherwise, ADCL must be read first, then

ADCH, to ensure that the content of the Data Registers belongs to the same conversion. Once

ADCL is read, ADC access to Data Registers is blocked. This means that if ADCL has been read,

and a conversion completes before ADCH is read, neither register is updated and the result

from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL Registers

is re-enabled [24, p. 245]. The ADC has its own interrupt which can be triggered when a

conversion is completed. Additionally, with ADMUX’s last five LSBs one can choose which pin

to use as an analog input. In the end the value 00000 was given to them, making the ADC0

pin the input pin, to which the output of the potentiometer will be connected.

A conversion can be triggered automatically by various sources. Auto Triggering is enabled by

setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by

setting the ADC Trigger Select bits, ADTS in ADCSRB [24, p. 245]. Finally, the DIDR0 register’s

bits should all be set to 1 in order to disable digital input (since the input in this case is analog).

More specifically, when this bit is written logic one, the digital input buffer on the

corresponding ADC pin is disabled. When an analog signal is applied to the ADC7:0 pin and

the digital input from this pin is not needed, this bit should be written logic one to reduce

power consumption in the digital input buffer [24, p. 261].

Appendix Figure 17: Initialization settings for the ADC interrupt.

93 This also goes for later configuring – not just the initialization.

Appendix-ATmega Firmware

- 23 -

Concluding this part, the appropriate values were given to the ADC’s Register’s bit in order

to have auto triggering, the trigger source to be on Free Running mode (ADCSRB register), to

choose an input pin and various other details in order for it to work properly. More in depth

analysis can be found on the board’s datasheet.

Appendix Figure 18: Initialization settings for the Timer interrupt.

Moving on to the initialization of the TIMER1_OVF. The Timer/Counter (TCNT1) is a 16-bit

register. The Timer/Counter Control Registers (TCCR1A/B/C), on the other hand, are an 8-bit

registers. Interrupt requests signals are all visible in the Timer Interrupt Flag Register (TIFR1).

All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK1) [24, p.

116].

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source

on the Tn pin. The Clock Select logic block controls which clock source and edge the

Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive

when no clock source is selected. The output from the Clock Select logic is referred to as the

timer clock (clkTn) [24, p. 116].

The simplest mode of operation is the Normal mode (WGMn3:0 = 094), which is the mode

used in this system. In this mode the counting direction is always up (incrementing), and no

counter clear is performed. The counter simply overruns when it passes its maximum 16-bit

value (MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the

Timer/Counter Overflow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1

becomes zero. The TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not

cleared. However, combined with the timer overflow interrupt that automatically clears the

TOV1 Flag, the timer resolution can be increased by software. There are no special cases to

consider in the Normal mode, a new counter value can be written anytime [24, p. 127].

94 Controlled by the TCCR1A and TCCR1B registers.

Appendix-ATmega Firmware

- 24 -

Lastly, the TCNT1H and TCNT1L registers give direct access, both for read and for write

operations, to the Timer/Counter unit 16-bit counter [24, p. 138]. And by changing their value,

the initial value (the one from which the Timer/Counter starts counting)95.

So, all that needs to be done, is equalize the values of these 2 registers to those of the ADC’s

result (ADCL and ADCH) and then the goal is achieved.

Finally, at the end of the INIT part, there are some necessary settings to be addressed that

have nothing to do with the interrupts. On lines 130 and 131 (on the figure below), the PORTB

is configured as an output (it’s through there that the look-up table values are sent to the

PCB). On 133 and 134 PORTA is configured as an input (since it’s going to be to where the

potentiometer is connected) and on 136 its internal pull-up resistors are enabled. Line 137

resets the general-purpose register r17 to all zeros. Lastly, on lines 139 and 140, the address

of look-up table is acquired. This can only be done (as previously stated on page - 17 -) by

using the general-purpose register Z (comprised of r30 and r31)96. More specifically, the two

registers (r30 and r31) now have the address on the Flash Memory of the look-up table’s first

value. So to get to the rest of the values and eventually output them, all that needs to be done

is “go” to the next address. This is done by the command “ADIW ZL,$01”, which will be used

later on. The reason the table’s address was first acquired here (on the INIT where the initial

setting for the interrupts were configured) is because when the time comes for the first look-

up table value to be read and sent to the PCB, the program knows where to look for it.

Appendix Figure 19: Configuring the ports and getting the flash address of the look up table.

The main loop is covered, as is the initialization and enabling of the interrupts. That only leaves

explaining the part of the code that’s executed when each interrupt happens.

95 For more information about each bit of each register and their functions see the board’s datasheet.
96 Two register because the Flash memory address is 16bits.

Appendix-ATmega Firmware

- 25 -

Appendix Figure 20: What 's executed when the ADC interrupt happens.

Starting with the ADC: after temporarily disabling the interrupts, the next thing is saving the

Status Register’s information to general purpose register 19 for “safekeeping”. It’s a safety

measure because depending on what’s in the main program, maybe while this part of the

code is run, the Status Register’s data get changed which could lead to abnormal and

unpredictable behaviour. The necessity of this was already stressed earlier (see page - 19 -).

Next, the ADCRA register is re-configured the same way (as in the initialization), to reenable

the ADC and auto-triggering among other minor settings. This is necessary – without it there

would be an interrupt each time the potentiometer was used – but only the first time.

Then, the result of the ADC – stored in ADCL and ADCH registers, is moved to the general-

purpose registers r20 and r21 respectively (see line 174-175 on Appendix Figure 20). Through

the value given to the ADMUX register, the ADCL and ADCH are left adjusted (visualized on

Appendix Figure 21).

Appendix Figure 21: Left adjusted ADCL and ADCH.

This means that the MSB (ADC9) is located on the ADCH on the left of the “matrix”. By the

command “LSR r21” the MSB (which was saved on r21 earlier) is shifted right four times (as

the command is repeated four times). This leaves the four “most significant” spaces of the r21

vacant. The next two commands are “LDI r16,$F0” and “add r21,r16”. The former gives the

value of 𝐹0 (HEX) to the r16 register, and the latter adds the value of r16 to that of the r21

and saves it on the r21. This results in the r21 having the value (from MSB: left to LSB: right):

1 − 1 − 1 − 1 − 𝐴𝐷𝐶9 − 𝐴𝐷𝐶8 − 𝐴𝐷𝐶7 − 𝐴𝐷𝐶6 . All this was done so the counter will still

Appendix-ATmega Firmware

- 26 -

count fast enough (at the appropriate range) for measuring on the custom PCB, while at the

same time the potentiometer’s value has a noticeable effect on the frequency97.

Then, on lines 184 and 185, the r20 gets its “vacant” places filled with 0’s, so later when this

value is transferred to the counter’s starting number, it would lead to a bug.

Lastly, the saved state of the Status Register is transferred back to the current Status Register,

and the interrupts are reenabled.

Appendix Figure 22: The code executed when the Timer interrupt happens.

Continuing with the code that’s executed only when the Timer interrupts occurs, after the two

known commands (lines 192, 193), the command “lpm” is executed. This command moves

the contents of the ZL (==address) to r0. This is done cause the Z register is not a “normal”

one like the other 32. This command along with r0 act as mediators. Indeed, after going to the

next address of the table (line 196), the register r0 is used on line 197. All its data are

transferred to the register r23. Now r23 “points” to the value the address on r0 was leading.

On line 198 the value that the address on r23 points, is compared to $18, which is the last

value of the look-up table (that’s how it’s detected if the end of the table is reached). If they

are equal, the code jumps to the loop called “finito_sine”. If not, then the value is outputted

to PORTB. Then, on lines 204-205, the values of the ADC’s current result are transferred to the

TCNT1H and TCNT1L respectively, so when the counter starts counting again, it starts from the

value given by the potentiometer. The rest three commands are already explained.

Finally, on the “finito_sine” loop, the look-up table’s first value’s address is acquired again

(lines 212-213), so we can start over and the output can be continuous and periodic as it

should be. Again, the ADC’s current values are transferred to the initial number of the counter

(lines 216 217).

This conclude the ATmega1284P’s firmware analysis.

97 Had this not been done, the frequency would be too low (without the four MSBs being constantly 1111)

Appendix-ATmega Firmware

- 27 -

Appendix Figure 23: finito_sine loop's code.

Appendix Figure 24: The look-up table.

Appendix Figure 25: The ATmega1284P board ready to be connected to the rest of the system.

Appendix-ATmega CODE

- 28 -

A.7 ATmega CODE
jmp INIT ; 0000 + 0001 -> flash memory address

nop;1

reti

nop;2

reti

nop;3

reti

nop;4

reti

nop;5

reti

nop;6

reti

nop;7

reti

nop;8

reti

nop;9

reti

nop;10

reti

nop;11

reti

nop;12

reti

nop;13

reti

nop;14

reti

jmp TIMER1_OVF ;15

;reti

nop;16

reti

nop;17

reti

nop;18

reti

nop;19

reti

nop;20

reti

nop;21

reti

nop;22

reti

NOP;22

RETI

jmp ADC_INTER;23 ;flash memory address -> 0030 + 0031

reti

nop;24

reti

nop;25

reti

nop;26

reti

nop;27

Appendix-ATmega CODE

- 29 -

reti

nop;28

reti

nop;29

reti

nop;30

reti

nop;31

reti

nop;32

reti

nop;33

reti

nop;34

reti

nop;35

reti

INIT:

 cli ; disables interrupts

;---------setting the adc interrupt-------------------

 ldi r16,$E0

 STS ADMUX,r16

 ldi r16,$E8

 STS ADCSRA,r16

 ldi r16,$00

 STS ADCSRB,r16

 ldi r16,$FF

 STS DIDR0,r16

 ;ADCL and ADCH – The ADC Data Register

 ldS r20,ADCL

 ldS r21,ADCH

 ;ADMUX->11 0 00000

 ; ; ↓

 ; ;right adjust

 ;---------setting the timer1 interrupt initial settings-------------------

 ; σεταρω καταλληλα τα registers

 ldi r16,$00

 STS TCCR1A,r16 ;->00 00 00 00

 ldi r16,$01

 STS TCCR1B,r16 ;-> 00 00 01 01 SO bySETTING TCCR1A AND TCCR1B LIKE

THAT, WGM13 WGM12 WGM11 WGM10→ 0000 WHICH MEANS NORMAL OPERATION (NO PWM

etc) (2 of them are in TCCR1A and the other 2 in TCCR1B)

 ;the last 3 bits of TCCR1B are choosing the clock prescaler

 ldi r16,$00

 STS TCCR1C,r16

 ldi r16,$01

 STS TIMSK1, r16

Appendix-ATmega CODE

- 30 -

 ldi r16,$01

 STS TIFR1,r16

 ; Im giving to the counter an initial value

 ldi r16,$01

 ldi r17,$01

 STS TCNT1H,r16

 STS TCNT1L,r17

 sei ;enables interrupts

 ;---

 LDI R17,$FF

 OUT DDRB,R17; output

 LDI R17,$00

 OUT DDRA,R17;INPUT (IN PINA WE WILL CONNECT THE POTENTIOMETER, CAUSE

PORTA IS CONNECTED TO AN ONBOARD ADC)

 ldi r17, $FF ; Init value

 out PORTA, r17 ; Enable pull-up resistors

 LDI R17,$00

 LDI ZH, HIGH(sinetable*2)

 LDI ZL, LOW(sinetable*2); ta settarw εδω, γιατι την πρώτη φορά που θα

κανει o timer interrupt, θα πρεπει να ξερει που θα διαβάσει.

main:

 nop

 nop

 nop

 nop

 nop

 nop

 nop

 nop

rjmp main

sinetable:

 .DW

$887F,$9A91,$ACA3,$BDB4,$CCC5,$DAD3,$E6E0,$EFEB,$F7F3,$FBF9,$FDFD,$FDFD,$F9

FB,$F3F7,$EBEF,$E0E6,$D3DA,$C5CC,$B4BD,$A3AC,$919A,$7F88,$6C75,$5A63,$4951,

$3840

 .DW

$2A31,$1D23,$1217,$0A0E,$0406,$0002,$0000,$0200,$0604,$0E0A,$1712,$231D,$31

2A,$4038,$5149,$635A,$756C,$0018

ADC_INTER:

 cli ; disables interrupts

 in r19,sreg

 ldi r16,$E8

 STS ADCSRA,r16

 ;ADCL and ADCH – The ADC Data Register

 ;ADCL and ADCH – The ADC Data Register

 ldS r20,ADCL; Both must be read so the register gets updated

 ldS r21,ADCH; Both must be read so the register gets updated

 LSR r21

Appendix-ATmega CODE

- 31 -

 LSR r21

 LSR r21

 LSR r21

 LDI R16,$F0

 add r21,r16; 1111 xxxx

 LDI R16,$00; xx00 0000

 add r20,r16

 out sreg,r19

 sei ;enables interrupts

 reti

TIMER1_OVF:

 cli

 in r19,SREG

 lpm

 adiw zl,$01

 mov r23,r0

 cpi r23,$18 ; that’s the last value of the table

 breq finito_sine

 OUT portb, R23

 ;;ldi r20,$00

 ;ldi r21,$00

 STS TCNT1H,r21; Taking the values from the ADC – that’s how I can

change the frequency

 STS TCNT1L,r20; Taking the values from the ADC – that’s how I can

change the frequency

 out SREG,r19

 sei

reti

finito_sine:

 LDI ZH, HIGH(sinetable*2)

 LDI ZL, LOW(sinetable*2)

 ;ldi r20,$00

 ;ldi r21,$00

 STS TCNT1H,r21; Taking the values from the ADC – that’s how I can

change the frequency

 STS TCNT1L,r20; Taking the values from the ADC – that’s how I can

change the frequency

 out SREG,r19

 sei

reti

Appendix-MATLAB CODE

- 32 -

A.8 MATLAB CODE
CODE CREATING THE CLASS

classdef Get_data_class2 < handle %This is a Handle Class

 properties (SetAccess = public)

 rt_data=[];

 time_variable=[];

 board=[];

 Sample_Freq=[];

 Samples=[];

 Fourier_data=[];

 Hertz=[];

 Filtered_data=[]; %

 Filter_Fourier_data=[];

 Filter_Hertz=[];

 tab1_plots=zeros(3,1);

 tab2_plots=zeros(3,1);

 tab3_plots=zeros(3,1);

 Filter_Spec_plots=zeros(2,1);

 prog_bar;

 Fourier_Peaks_Input=[];

 Fourier_Peak_Pos_Input=[];

 Fourier_Peaks_Filtered=[];

 Fourier_Peak_Pos_Filtered=[];

 tab1_edt_field;

 tab2_edt_field;

 tab3_edt_field;

 Filter_Cutoff_Ang_Freq;

 Filter_order;

 Var_window=zeros(2,1);

 Spec_window=zeros(2,1);

 Baudrate;

 Offset;

 end

 methods

 function S=saveobj(obj) % defining a save object method

 %S.board=obj.board; no need to be saved

 S.rt_data=obj.rt_data;

 S.time_variable=obj.time_variable;

 S.Sample_Freq=obj.Sample_Freq;

 S.Samples=obj.Samples;

 S.Filtered_data=obj.Filtered_data;

 S.Fourier_data=obj.Fourier_data;

 S.Hertz=obj.Hertz;

 S.Filter_Fourier_data=obj.Filter_Fourier_data;

 S.Filter_Hertz=obj.Filter_Hertz;

 S.Fourier_Peaks_Input=obj.Fourier_Peaks_Input;

 S.Fourier_Peak_Pos_Input=obj.Fourier_Peak_Pos_Input;

 S.Fourier_Peaks_Filtered=obj.Fourier_Peaks_Filtered;

 S.Fourier_Peak_Pos_Filtered=obj.Fourier_Peak_Pos_Filtered;

 %s.tab1_edt_field=obj.tab1_edt_field;→ no need to be saved

 %s.tab2_edt_field=obj.tab2_edt_field;→ no need to be saved

 %s.tab3_edt_field=obj.tab3_edt_field;→ no need to be saved

 S.Filter_Cutoff_Ang_Freq=obj.Filter_Cutoff_Ang_Freq;

 S.Filter_order=obj.Filter_order;

 S.Baudrate=obj.Baudrate;

 S.Offset=obj.Offset;

 end

 end

end

Appendix-MATLAB CODE

- 33 -

THE APPLICATION SOURCE CODE

function main_function()

 %% creating an object by calling a predefined class

 myclass = Get_data_class2;

 Contents(myclass)

end

function Contents(myclass,main_fig)

 %% creating the main uifigure(window), in which the whole app will be

displayed

 if (~exist('main_fig','var'))

 main_fig=uifigure();

 main_fig.WindowState='maximize';

 end

 main_fig.MenuBar='none';

 main_fig.NumberTitle='off';

 main_fig.Name='ELF Signal Analyzer';

 main_fig.Resize='on';

 main_fig.Color = "#86b2b5";

 main_fig.AutoResizeChildren='off';

 main_fig.CloseRequestFcn={@Close,myclass,main_fig};

 %% creating a grid just so I can make the Tabs take on the full window

 pause(2);% Delay so everything loads before opening the window

 grid=uigridlayout(main_fig,[1 1]);

 grid.BackgroundColor=[0.8 0.8 0.8];

 grid.RowHeight={'1x'};

 grid.ColumnWidth={'1x'};

 grid.RowSpacing=0;

 grid.Padding=[0 0 0 0];

 %% setting the autoresize callback function ↓

 main_fig.SizeChangedFcn={@Resize,myclass};

 %% creating a tab group and assigning some of its attributes

 tg = uitabgroup(grid);

 tg.TabLocation='top';

 tg.Units='normalized';

 %% setting the 3 tabs and their attributes

 tab1 = uitab(tg,"Title","Sampling");

 tab1.BackgroundColor= '#86b2b5';

 tab1.ForegroundColor=[0 0 0];

 tab1.AutoResizeChildren='off';

 tab2 = uitab(tg,"Title","Filtering");

 tab2.BackgroundColor= "#86b2b5";

 tab2.ForegroundColor=[0 0 0];

 tab2.Scrollable='on';

 tab3 = uitab(tg,"Title","Comparison");

 tab3.BackgroundColor= "#86b2b5";

 tab3.ForegroundColor=[0 0 0];

 tab3.Scrollable='on';

 %% creating a menu to view different key variables in this confined space

 m1 = uimenu('Parent',main_fig,'Text','File');

 m11= uimenu(m1,'Text','Save');

 uimenu(m11,'Text','Matlab File','Tooltip','As a .mat

file','Accelerator','M','MenuSelectedFcn',{@SaveAsMat,myclass,main_fig});

 uimenu(m11,'Text','Excel

File','Separator','on','Accelerator','E','MenuSelectedFcn',{@SaveAsExcel,my

class,main_fig})

 uimenu(m11,'Text','Text

File','Separator','on','Accelerator','T','MenuSelectedFcn',{@SaveAsText,myc

lass,main_fig})

Appendix-MATLAB CODE

- 34 -

 uimenu(m1,'Text','Load','Separator','on','Tooltip',"Load previous

files",'Accelerator','L','MenuSelectedFcn',{@Load_func,myclass,main_fig})

 m2 = uimenu('Parent',main_fig,'Text','&View Variables');

 m2.MenuSelectedFcn={@View_Var,myclass,main_fig};

 m2.Accelerator='K';

 m4= uimenu('Parent',main_fig,'Text','Tools');

 uimenu(m4,'Text','Start

Sampling','Accelerator','B','MenuSelectedFcn',{@checkifavailable,myclass,ma

in_fig});

 uimenu(m4,'Text','Reset','Tooltip',"Reset all

data",'Separator','on','Accelerator','R','MenuSelectedFcn',{@Reset,myclass,

main_fig})

 uimenu(m4,'Text','Filter','Tooltip',"Filter the input

signal",'Separator','on','Accelerator','G','MenuSelectedFcn',{@plot_tab2,ma

in_fig,myclass})

 uimenu('Parent',main_fig,'Text','&Filter

Specifications','Tooltip',"View and change filter

specifications",'MenuSelectedFcn',{@Filter_Spec_Window,myclass});

 %% now im calling the tab1_function, tab2functions and tab3functions, so

Everything is loaded as soon as the user opens the app

 tab1_function(tab1,myclass);

 tab2_function(tab2,myclass);

 tab3_function(tab3,myclass);

end

function tab1_function(tab1,myclass)

 %% main window properties

 mw1=tab1; %mw1=main window

 %% creating a grid inside the tab1 window

 gr1=uigridlayout(mw1,[4 1]); % 2x1 grid (rows x columns)

 gr1.Padding= [0 0 0 0] ; % [left bottom right top]

 gr1.BackgroundColor='#86b2b5';

 gr1.RowHeight={'fit','fit','fit','fit'};

 gr1.Scrollable='on';

 gr12=uigridlayout(gr1,[1 5]);

 gr12.BackgroundColor='#86b2b5';

 gr12.RowHeight={'0.5x'};

 gr12.ColumnWidth={'1x','1x','1x','1x','fit'};

 gr12.ColumnSpacing=15;

 gr12.Layout.Row=1;

 gr12.Padding=[10 0 10 2];% [left bottom right top]

 %% creating an edifield so the port is Displayed

 edt_tab1=uieditfield(gr12);

 edt_tab1.Layout.Row=1;

 edt_tab1.Layout.Column=5;

 edt_tab1.HorizontalAlignment='center';

 edt_tab1.Placeholder='No port connected';

 edt_tab1.Editable='off';

 edt_tab1.BackgroundColor="#f0c7a3";

 edt_tab1.Tooltip='This field displays the current port to which the app

is connected.';

 myclass.tab1_edt_field=edt_tab1;

 %% setting my plot attributes

 ax1=uiaxes('Parent',gr1);

 ax2=uiaxes('Parent',gr1);

 ax3=uiaxes('Parent',gr1);

 ax1.Layout.Row=2;

Appendix-MATLAB CODE

- 35 -

 ax2.Layout.Row=3;

 ax3.Layout.Row=4;

 ax1.Title.String='Input Signal';

 ax1.XLabel.String='Sample size';

 ax1.YLabel.String='Magnitude';

 ax1.XGrid='on';

 ax1.YGrid='on';

 ax1.Color=[0.1 0.1 0.1];

 ax1.GridColor='#00FFFF';

 ax1.GridAlpha=0.22;

 ax1.TickDir='out';

 ax2.Title.String='Input Signal';

 ax2.XLabel.String='Time(sec)';

 ax2.YLabel.String='Magnitude';

 ax2.XGrid='on';

 ax2.YGrid='on';

 ax2.Color=[0.1 0.1 0.1];

 ax2.GridColor='#00FFFF';

 ax2.GridAlpha=0.22;

 ax2.TickDir='out';

 ax3.Title.String= 'Fourier Transform of Input Signal';

 ax3.XLabel.String='Frequency(Hz)';

 ax3.YLabel.String='Magnitude';

 ax3.XGrid='on';

 ax3.YGrid='on';

 ax3.Color=[0.1 0.1 0.1];

 ax3.GridColor='#00FFFF';

 ax3.GridAlpha=0.22;

 ax3.TickDir='out';

 %% plotting in the axis if data exist (in case user presses "refresh"

and has already sampled data)

 plot(ax1,myclass.rt_data,'- .','Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8);

 plot(ax2,myclass.time_variable, myclass.rt_data,'- .','Color',[1.0000

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); % plot marker

properties : https://www.mathworks.com/help/matlab/creating_plots/specify-

line-and-marker-appearance-in-plots.html

 plot(ax3,myclass.Hertz,myclass.Fourier_data,'- .','Color',[1.0000

0.4706 0.0902],"MarkerEdgeColor",[0 0 0],"MarkerSize",8)

 %% giving the axis a "global" handle

 myclass.tab1_plots(1)=ax1;

 myclass.tab1_plots(2)=ax2;

 myclass.tab1_plots(3)=ax3;

end

function Resize(src,~,~)

 %% getting the full size of tab1

 width=src.Position(3);

 height=src.Position(4);

 %% resize grid to give it the full window space

 children=get(src,'Children');

 children(5).RowHeight= height;

 children(5).ColumnWidth=width;

end

function View_Var(~,~,myclass,main_fig)

Appendix-MATLAB CODE

- 36 -

 if

(isempty(myclass.rt_data))&&(isempty(myclass.time_variable))&&(isempty(mycl

ass.Samples))&&(isempty(myclass.Fourier_data))&&(isempty(myclass.Hertz))

 beep;

 uialert(main_fig,{'No data found to view','First take samples from

the Serial port device.'},'Error','Icon','error');

 return

 end

 if myclass.Var_window(1)==true

 return

 end

 myclass.Var_window(1)=true;

 %% creating a Table with the data and Variables

 extra_samples=zeros(1,length(myclass.rt_data));

 extra_samples(1)=myclass.Samples;

 extra_samples(2:end)=0/0;

 extra_Sample_Freq=zeros(1,length(myclass.rt_data));

 extra_Sample_Freq(1)=myclass.Sample_Freq;

 extra_Sample_Freq(2:end)=0/0;

 extra_Baudrate=zeros(1,length(myclass.rt_data));

 extra_Baudrate(1)=myclass.Baudrate;

 extra_Baudrate(2:end)=0/0;

 extra_Offset=zeros(1,length(myclass.rt_data));

 extra_Offset(1)=myclass.Offset;

 extra_Offset(2:end)=0/0;

 extra_Peaks_Input=zeros(1,length(myclass.rt_data));

extra_Peaks_Input(1:length(myclass.Fourier_Peaks_Input))=myclass.Fourier_Pe

aks_Input;

 extra_Peaks_Input(length(myclass.Fourier_Peaks_Input)+1:end)=0/0;

 extra_Peaks_Pos_Input=zeros(1,length(myclass.rt_data));

extra_Peaks_Pos_Input(1:length(myclass.Fourier_Peak_Pos_Input))=myclass.Fou

rier_Peak_Pos_Input;

extra_Peaks_Pos_Input(length(myclass.Fourier_Peak_Pos_Input)+1:end)=0/0;

 extra_Peaks_Filtered=zeros(1,length(myclass.rt_data));

extra_Peaks_Filtered(1:length(myclass.Fourier_Peaks_Filtered))=myclass.Four

ier_Peaks_Filtered;

 extra_Peaks_Filtered(length(myclass.Fourier_Peaks_Filtered)+1:end)=0/0;

 extra_Peaks_Pos_Filtered=zeros(1,length(myclass.rt_data));

extra_Peaks_Pos_Filtered(1:length(myclass.Fourier_Peak_Pos_Filtered))=mycla

ss.Fourier_Peak_Pos_Filtered;

extra_Peaks_Pos_Filtered(length(myclass.Fourier_Peak_Pos_Filtered)+1:end)=0

/0;

 extra_Input_Fourier_data=zeros(1,length(myclass.rt_data));

extra_Input_Fourier_data(1:length(myclass.Fourier_data))=myclass.Fourier_da

ta(1:end);

 extra_Input_Fourier_data(length(myclass.Fourier_data)+1:end)=0/0;

Appendix-MATLAB CODE

- 37 -

 extra_Input_Hertz=zeros(1,length(myclass.rt_data));

 extra_Input_Hertz(1:length(myclass.Hertz))=myclass.Hertz(1:end);

 extra_Input_Hertz(length(myclass.Hertz)+1:end)=0/0;

 extra_Filtered_Fourier_data=zeros(1,length(myclass.rt_data));

extra_Filtered_Fourier_data(1:length(myclass.Filter_Fourier_data))=myclass.

Filter_Fourier_data(1:end);

extra_Filtered_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=0/0;

 extra_Filtered_Hertz_data=zeros(1,length(myclass.rt_data));

extra_Filtered_Hertz_data(1:length(myclass.Filter_Hertz))=myclass.Filter_He

rtz(1:end);

 extra_Filtered_Hertz_data(length(myclass.Filter_Hertz)+1:end)=0/0;

 Filtered_data=zeros(1,length(myclass.rt_data));

 extra_Filter_Cutoff_Ang_Freq=zeros(1,length(myclass.rt_data));

 extra_Filter_order=zeros(1,length(myclass.rt_data));

 if ~isempty(myclass.Filter_Cutoff_Ang_Freq) &&

~isempty(myclass.Filter_order) && ~isempty(myclass.Filtered_data)

 Filtered_data(1:end)=myclass.Filtered_data;

extra_Filter_Cutoff_Ang_Freq(1)=myclass.Filter_Cutoff_Ang_Freq/(2*pi);

 extra_Filter_Cutoff_Ang_Freq(2:end)=0/0;

 extra_Filter_order(1)=myclass.Filter_order;

 extra_Filter_order(2:end)=0/0;

 else

 Filtered_data(1:end)=0/0;

 extra_Filter_Cutoff_Ang_Freq(1:end)=0/0;

 extra_Filter_order(1:end)=0/0;

 end

 % saving all ↓

 Vars=table(myclass.rt_data',myclass.time_variable',Filtered_data',...

extra_Input_Fourier_data',extra_Input_Hertz',extra_Filtered_Fourier_data',e

xtra_Filtered_Hertz_data',...

extra_Peaks_Input',extra_Peaks_Pos_Input',extra_Peaks_Filtered',extra_Peaks

_Pos_Filtered',...

extra_Sample_Freq',extra_samples',extra_Filter_Cutoff_Ang_Freq',extra_Filte

r_order',extra_Baudrate',extra_Offset');

 %% creating a uifigure and grid layout to show everything

 Var_fig=uifigure('Name','Data and Key Variables');

 myclass.Var_window(2)=Var_fig;

 Var_fig.DeleteFcn={@Close_Window_Request,myclass};

 Var_grid1=uigridlayout(Var_fig,[2 1]);

 Var_grid1.RowHeight={'1x',50};

 Var_grid2=uigridlayout(Var_grid1,[1 4]);

 Var_grid2.Layout.Row=2;

 Var_grid2.ColumnWidth={'1x','1x','1x','0.5x'};

 %% creating a uitable to show the data in a specific format

 uit=uitable(Var_grid1);

Appendix-MATLAB CODE

- 38 -

 uit.ColumnName={'Input Signal','Time','Filtered Signal',...

 "Input Signal's Fourier Transform's Magnitude","Input Signal's

Fourier Transform's Frequency (Hz)",...

 "Filtered Signal's Fourier Transform's Magnitude","Filtered Signal's

Fourier Transform's Frequency (Hz)",...

 "Magnitude of Input Signal's Fourier Peaks","Position of Input

Signal's Fourier Peaks (Hz)",...

 "Magnitude of Filtered Signal's Peaks","Position of Filtered

Signal's Peaks (Hz)",...

 'Sampling Frequency','Number of Samples','Cutoff Frequency

(Hz)','Filter Order','Baudrate used',"Signal's Voltage Offset (V)"};

 uit.Data=Vars;

 uit.Layout.Row=1;

 uit.RowName = 'numbered';

 %% creating a menu bar(so the user can save data from here too)

 export = uimenu('Parent',Var_fig,'Text','Exp&ort Data');

 uimenu(export,'Text','Matlab File','Tooltip','As a .mat

file','Accelerator','M','MenuSelectedFcn',{@SaveAsMat,myclass,main_fig});

 uimenu(export,'Text','Excel

File','Separator','on','Accelerator','E','MenuSelectedFcn',{@SaveAsExcel,my

class,main_fig})

 uimenu(export,'Text','Text

File','Separator','on','Accelerator','T','MenuSelectedFcn',{@SaveAsText,myc

lass,main_fig})

 %% creating a close button

 Cls_btn=uibutton(Var_grid2);

 Cls_btn.Layout.Column=4;

 Cls_btn.Text='Close';

 Cls_btn.ButtonPushedFcn={@(x,y)delete(Var_fig)};

end

function Reset(~,~,myclass,main_fig)

 main_fig.Name='ELF Signal Analyzer';

 for k1=1:1:3

 c1=myclass.tab1_plots(k1);

 cla(c1);

 end

 % reseting them as empty variables

 myclass.rt_data=[];

 myclass.time_variable=[];

 myclass.board=[];

 myclass.Sample_Freq=[];

 myclass.Samples=[];

 myclass.Fourier_data=[];

 myclass.Hertz=[];

 myclass.Filtered_data=[];

 myclass.Filter_Fourier_data=[];

 myclass.Filter_Hertz=[];

 myclass.Fourier_Peaks_Input=[];

 myclass.Fourier_Peak_Pos_Input=[];

 myclass.Fourier_Peaks_Filtered=[];

 myclass.Fourier_Peak_Pos_Filtered=[];

 myclass.prog_bar=[];

 myclass.tab1_edt_field.Value='';

 myclass.tab2_edt_field.Value='';

 myclass.tab3_edt_field.Value='';

 myclass.Filter_Cutoff_Ang_Freq=[];

 myclass.Filter_order=[];

 myclass.Baudrate=[];

 myclass.Offset=[];

 for k2=1:1:3

Appendix-MATLAB CODE

- 39 -

 c2=myclass.tab2_plots(k2);

 cla(c2);

 c3=myclass.tab3_plots(k2);

 cla(c3);

 end

end

function Load_func(~,~,myclass,main_fig)

 [file,path] = uigetfile('.mat');

 if (isequal(file,0)) && (isequal(path,0))

 return

 end

 file_type=extractAfter(file,".");

 if strcmp(file_type,"mat")==0

 beep

 uialert(main_fig,{'You tried to load an incompatible save file.',...

 'Please ensure that the save files have a ".mat"

extension.'},'Error while loading data','CloseFcn',@(h,e) close(gcf));

 return

 end

 full_path=strcat(path,file);

 load(full_path,'S');

 if (isempty(S.rt_data))||(isempty(S.time_variable))...

 ||(isempty(S.Sample_Freq))||(isempty(S.Samples))...

 ||(isempty(S.Fourier_data))||(isempty(S.Hertz))...

||(isempty(S.Fourier_Peaks_Input))||(isempty(S.Fourier_Peak_Pos_Input))

 beep

 uialert(main_fig,{'You tried to load an incompatible save file.',...

 'Please ensure that the save files came from this app.'},'Error

while loading data','CloseFcn',@(h,e) close(gcf));

 clear S;

 return

 end

 %% importing (in the current class instance) the data that are definetely

saved

 myclass.rt_data=S.rt_data;

 myclass.time_variable=S.time_variable;

 myclass.Samples=S.Samples;

 myclass.Fourier_data=S.Fourier_data;

 myclass.Hertz=S.Hertz;

 myclass.Sample_Freq=S.Sample_Freq;

 myclass.Fourier_Peaks_Input=S.Fourier_Peaks_Input;

 myclass.Fourier_Peak_Pos_Input=S.Fourier_Peak_Pos_Input;

 myclass.Baudrate=S.Baudrate;

 myclass.Offset=S.Offset;

 %% Changing the name of the window so the user can see the name of the

file they loaded while working on the app

 main_fig.Name=append('ELF Signal Analyzer',' - ',file);

 %% plots of tab1

 ax1=myclass.tab1_plots(1);

 plot(ax1,myclass.rt_data,'- .','Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 ax2=myclass.tab1_plots(2);

 plot(ax2,myclass.time_variable,myclass.rt_data,'- .','Color',[1.0000

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8);

 ax3=myclass.tab1_plots(3);

 plot(ax3,myclass.Hertz,myclass.Fourier_data,'- .','Color',[1.0000

0.4706 0.0902],"MarkerEdgeColor",[0 0 0],"MarkerSize",8)

Appendix-MATLAB CODE

- 40 -

 %% checking if the rest of the class data were saved in the file we are

trying to load and if yes, importing them as well

 if

(isempty(S.Filtered_data))||(isempty(S.Filter_Fourier_data))||(isempty(S.Fi

lter_Hertz))...

||(isempty(S.Filter_Cutoff_Ang_Freq))||(isempty(S.Filter_order))

 return

 end

 %% importing (in the current class instance) the rest of the saved data

 myclass.Filtered_data=S.Filtered_data;

 myclass.Filter_Fourier_data=S.Filter_Fourier_data;

 myclass.Filter_Hertz=S.Filter_Hertz;

 myclass.Fourier_Peaks_Filtered=S.Fourier_Peaks_Filtered;

 myclass.Fourier_Peak_Pos_Filtered=S.Fourier_Peak_Pos_Filtered;

 myclass.Filter_Cutoff_Ang_Freq=S.Filter_Cutoff_Ang_Freq;

 myclass.Filter_order=S.Filter_order;

 %% plots of tab2

 plot(myclass.tab2_plots(1),myclass.Filtered_data,'- .','Color',[1.0000

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8);

plot(myclass.tab2_plots(2),myclass.time_variable,myclass.Filtered_data,'-

.','Color',[1.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8);

plot(myclass.tab2_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'- .','Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8);

 %% plots of tab3

 plot(myclass.tab3_plots(1),myclass.rt_data,'Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 hold(myclass.tab3_plots(1),'on');% 'hold on' but for uiaxes

 plot(myclass.tab3_plots(1),myclass.Filtered_data,'Color',[0 0.4470

0.7410],"MarkerEdgeColor","k","MarkerSize",8)

 legend(myclass.tab3_plots(1),{'Input Signal','Filtered

Signal'},'EdgeColor','white','TextColor','white');

 hold(myclass.tab3_plots(1),'off');

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.rt_data,'Color',[1

.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 hold(myclass.tab3_plots(2),'on');% 'hold on' but for uiaxes

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.Filtered_data,'Col

or',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8)

 legend(myclass.tab3_plots(2),{'Input Signal','Filtered

Signal'},'EdgeColor','white','TextColor','white');

 hold(myclass.tab3_plots(2),'off');

plot(myclass.tab3_plots(3),myclass.Hertz,myclass.Fourier_data,'Color',[1.00

00 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 hold(myclass.tab3_plots(3),'on');% 'hold on' but for uiaxes

plot(myclass.tab3_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'Color',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8)

 legend(myclass.tab3_plots(3),{'Input Signal','Filtered

Signal'},'EdgeColor','white','TextColor','white');

 hold(myclass.tab3_plots(3),'off');

Appendix-MATLAB CODE

- 41 -

end

function Close(~,~,myclass,main_fig)

 msg='You are about to close the program';

 title='Confirm Exit';

 selection=uiconfirm(main_fig,msg,title,'Icon','warning',...

 'Options',{'Save and Exit','Don''t Save','Cancel'},...

 'DefaultOption',1,'CancelOption',3);

 switch selection

 case 'Save and Exit'

 if

(~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))...

&&(~isempty(myclass.Samples))&&(~isempty(myclass.Sample_Freq))...

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))...

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))...

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field))

 if (isempty(myclass.Filtered_data))...

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

.

&&(isempty(myclass.Fourier_Peaks_Filtered))&&(isempty(myclass.Fourier_Peak_

Pos_Filtered))...

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

)

 beep;

 uialert(main_fig,{'You are only saving the data of the

Input signal.','If you filter first, you will save additional data about the

filter and the filtered signal.'},...

 'Warning','Icon','info','CloseFcn',{@(x,y)

uiresume(main_fig)})

 uiwait(main_fig);

 end

 %% creating a dialog box for the user

 defaultFileName=fullfile(pwd,'*.mat');

 [baseFileName, folder] = uiputfile(defaultFileName, 'Specify

a file');

 if (baseFileName == 0)

 return;

 end

 [~, baseFileNameNoExt, ~] = fileparts(baseFileName);

 fullFileName = fullfile(folder, [baseFileNameNoExt,

'.mat']);

 S=myclass.saveobj();

 save(fullFileName,'S');

 delete(findall(0));

 else

 beep;

 uialert(main_fig,{'No data found to save','First take

samples from the Serial port device.'},'Error','Icon','error');

 return

 end

 case "Don't Save"

 delete(findall(0));

 end

Appendix-MATLAB CODE

- 42 -

end

function SaveAsMat(~,~,myclass,main_fig)

 if (~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))...

 &&(~isempty(myclass.Baudrate))&&(~isempty(myclass.Offset))...

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))...

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))...

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field))

 if (isempty(myclass.Filtered_data))...

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

.

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

)

 beep;

 uialert(main_fig,{'You are only saving the data of the Input

signal.','If you filter first, you will save additional data about the filter

and the filtered signal.'},...

 'Warning','Icon','info','CloseFcn',{@(x,y)

uiresume(main_fig)})

 uiwait(main_fig);

 end

 %% creating a dialog box for the user

 defaultFileName=fullfile(pwd,'*.mat');

 [baseFileName, folder] = uiputfile(defaultFileName, 'Specify a

file');

 if (baseFileName == 0)

 return;

 end

 [~, baseFileNameNoExt, ~] = fileparts(baseFileName);

 fullFileName = fullfile(folder, [baseFileNameNoExt, '.mat']);

 S=myclass.saveobj();

 save(fullFileName,'S');

 return

 else

 beep;

 uialert(main_fig,{'No data found to save','First take samples from

the Serial port device.'},'Error','Icon','error');

 return

 end

end

function SaveAsExcel(~,~,myclass,main_fig)

 if (~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))...

&&(~isempty(myclass.Samples))&&(~isempty(myclass.Sample_Freq))...

 &&(~isempty(myclass.Baudrate))&&(~isempty(myclass.Offset))...

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))...

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))...

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field))

 old_rt_data = myclass.rt_data;

Appendix-MATLAB CODE

- 43 -

 old_time=myclass.time_variable;

 old_samples=zeros(1,length(myclass.rt_data));

 old_samples(1)=myclass.Samples;

 old_samples(2:end)=0/0;

 old_Sample_Freq=zeros(1,length(myclass.rt_data));

 old_Sample_Freq(1)=myclass.Sample_Freq;

 old_Sample_Freq(2:end)=0/0;

 old_Baudrate=zeros(1,length(myclass.rt_data));

 old_Baudrate(1)=myclass.Baudrate;

 old_Baudrate(2:end)=0/0;

 old_Offset=zeros(1,length(myclass.rt_data));

 old_Offset(1)=myclass.Offset;

 old_Offset(2:end)=0/0;

 old_Peaks_Input=zeros(1,length(myclass.rt_data));

old_Peaks_Input(1:length(myclass.Fourier_Peaks_Input))=myclass.Fourier_Peak

s_Input;

 old_Peaks_Input(length(myclass.Fourier_Peaks_Input)+1:end)=0/0;

 old_Peaks_Pos_Input=zeros(1,length(myclass.rt_data));

old_Peaks_Pos_Input(1:length(myclass.Fourier_Peak_Pos_Input))=myclass.Fouri

er_Peak_Pos_Input;

old_Peaks_Pos_Input(length(myclass.Fourier_Peak_Pos_Input)+1:end)=0/0;

 old_Input_Fourier_data=zeros(1,length(myclass.rt_data));

old_Input_Fourier_data(1:length(myclass.Fourier_data))=myclass.Fourier_data

(1:end);

 old_Input_Fourier_data(length(myclass.Fourier_data)+1:end)=0/0;

 old_Input_Hertz=zeros(1,length(myclass.rt_data));

 old_Input_Hertz(1:length(myclass.Hertz))=myclass.Hertz(1:end);

 old_Input_Hertz(length(myclass.Hertz)+1:end)=0/0;

 %% creating a Tables with the data and Variable Names

 T1=table(old_rt_data','VariableNames',{'Input Signal'});

 T2=table(old_time','VariableNames',{'Time Variable (sec)'});

 T3=table(old_Input_Fourier_data','VariableNames',{'Magnitude of the

Fourier Transform of Input Signal'});

 T4=table(old_Input_Hertz','VariableNames',{'Hertz of the Fourier

Transform of Input Signal'});

 T5=table(old_samples','VariableNames',{'Number of samples'});

 T6=table(old_Sample_Freq','VariableNames',{'Sampling Frequency

(Hz)'});

 T7=table(old_Baudrate','VariableNames',{'Baudrate used'});

 T8=table(old_Offset','VariableNames',{'Voltage Offset of Input

Signal (V)'});

 T9=table(old_Peaks_Input','VariableNames',"Input Signal's Fourier

Transform's Peaks' Magnitude");

 T10=table(old_Peaks_Pos_Input','VariableNames',"Input Signal's

Fourier Transform's Peaks' Position (Hz)");

 if (isempty(myclass.Filtered_data))...

Appendix-MATLAB CODE

- 44 -

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

.

&&(isempty(myclass.Fourier_Peaks_Filtered))&&(isempty(myclass.Fourier_Peak_

Pos_Filtered))...

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

)

 beep;

 uialert(main_fig,{'You are only saving the data of the Input

signal.','If you filter first, you will save additional data about the filter

and the filtered signal.'},...

 'Warning','Icon','info','CloseFcn',{@(x,y)

uiresume(main_fig)})

 uiwait(main_fig);

 T_all=[T1,T2,T3,T4,T5,T6,T7,T8,T9,T10];

 elseif (~isempty(myclass.Filtered_data))...

&&(~isempty(myclass.Filter_Fourier_data))&&(~isempty(myclass.Filter_Hertz))

...

&&(~isempty(myclass.Filter_Cutoff_Ang_Freq))&&(~isempty(myclass.Filter_orde

r))

 old_Filtered_data=myclass.Filtered_data;

 old_Peaks_Filtered=zeros(1,length(myclass.rt_data));

old_Peaks_Filtered(1:length(myclass.Fourier_Peaks_Filtered))=myclass.Fourie

r_Peaks_Filtered;

old_Peaks_Filtered(length(myclass.Fourier_Peaks_Filtered)+1:end)=0/0;

 old_Peaks_Pos_Filtered=zeros(1,length(myclass.rt_data));

old_Peaks_Pos_Filtered(1:length(myclass.Fourier_Peak_Pos_Filtered))=myclass

.Fourier_Peak_Pos_Filtered;

old_Peaks_Pos_Filtered(length(myclass.Fourier_Peak_Pos_Filtered)+1:end)=0/0

;

 old_Filtered_Fourier_data=zeros(1,length(myclass.rt_data));

old_Filtered_Fourier_data(1:length(myclass.Filter_Fourier_data))=myclass.Fi

lter_Fourier_data(1:end);

old_Filtered_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=0/0;

 old_Filtered_Hertz_data=zeros(1,length(myclass.rt_data));

old_Filtered_Hertz_data(1:length(myclass.Filter_Hertz))=myclass.Filter_Hert

z(1:end);

old_Filtered_Hertz_data(length(myclass.Filter_Hertz)+1:end)=0/0;

 old_Filter_Cutoff_Ang_Freq=zeros(1,length(myclass.rt_data));

old_Filter_Cutoff_Ang_Freq(1)=myclass.Filter_Cutoff_Ang_Freq/(2*pi);

 old_Filter_Cutoff_Ang_Freq(2:end)=0/0;

Appendix-MATLAB CODE

- 45 -

 old_Filter_order=zeros(1,length(myclass.rt_data));

 old_Filter_order(1)=myclass.Filter_order;

 old_Filter_order(2:end)=0/0;

 T1 =table(old_rt_data','VariableNames',{'Input Signal'});

 T2 =table(old_time','VariableNames',{'Time Variable (sec)'});

 T3 =table(old_Filtered_data,'VariableNames',{'Filtered

Signal'});

 T4 =table(old_Input_Fourier_data','VariableNames',{'Magnitude

of the Fourier Transform of Input Signal'});

 T5 =table(old_Input_Hertz','VariableNames',{'Frequency of the

Fourier Transform of Input Signal (Hz)'});

 T6 =table(old_Peaks_Input','VariableNames',"Input Signal's

Fourier Transform's Peaks' Magnitude");

 T7 =table(old_Peaks_Pos_Input','VariableNames',"Input Signal's

Fourier Transform's Peaks' Position (Hz)");

 T8=table(old_Filtered_Fourier_data','VariableNames',{'Magnitude

of the Fourier Transform of Filtered Signal'});

 T9=table(old_Filtered_Hertz_data','VariableNames',{'Frequency

of the Fourier Transform of Filtered Signal (Hz)'});

 T10=table(old_Peaks_Filtered','VariableNames',"Filtered

Signal's Fourier Transform's Peaks' Magnitude");

 T11=table(old_Peaks_Pos_Filtered','VariableNames',"Filtered

Signal's Fourier Transform's Peaks' Position (Hz)");

 T12=table(old_Filter_Cutoff_Ang_Freq','VariableNames',{'Cutoff

Frequency of the Filter (Hz)'});

 T13=table(old_Filter_order','VariableNames',{'Filter Order'});

 T14=table(old_samples','VariableNames',{'Number of samples'});

 T15=table(old_Sample_Freq','VariableNames',{'Sampling

Frequency'});

 T16=table(old_Baudrate','VariableNames',{'Baudrate used'});

 T17=table(old_Offset','VariableNames',{'Voltage Offset of Input

Signal (V)'});

T_all=[T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17];

 end

 %----------------creating a dialog box-----------------------------

 defaultFileName=fullfile(pwd,'*.xlsx');

 [baseFileName, folder] = uiputfile(defaultFileName, 'Specify a

file');

 if (baseFileName == 0)

 return;

 end

 [~,baseFileNameNoExt,~] = fileparts(baseFileName);

 fullFileName = fullfile(folder, [baseFileNameNoExt, '.xlsx']);

 writetable(T_all,fullFileName);

 return

 else

 beep;

 uialert(main_fig,{'No data found to save','First take samples from

the Serial port device.'},'Error','Icon','error');

 return

 end

end

function SaveAsText(~,~,myclass,main_fig)

 if(~isempty(myclass.rt_data))&&(~isempty(myclass.time_variable))...

&&(~isempty(myclass.Samples))&&(~isempty(myclass.Sample_Freq))...

Appendix-MATLAB CODE

- 46 -

 &&(~isempty(myclass.Baudrate))&&(~isempty(myclass.Offset))...

&&(~isempty(myclass.Fourier_data))&&(~isempty(myclass.Hertz))...

&&(~isempty(myclass.Fourier_Peaks_Input))&&(~isempty(myclass.Fourier_Peak_P

os_Input))...

&&(~isempty(myclass.tab1_edt_field))&&(~isempty(myclass.tab2_edt_field))&&(

~isempty(myclass.tab3_edt_field))

 Fourier_Peaks_Input=zeros(1,length(myclass.rt_data));

Fourier_Peaks_Input(1:(length(myclass.Fourier_Peaks_Input)))=myclass.Fourie

r_Peaks_Input(1:end);

 Fourier_Peaks_Input(length(myclass.Fourier_Peaks_Input)+1:end)=' ';

 Fourier_Peak_Pos_Input=zeros(1,length(myclass.rt_data));

Fourier_Peak_Pos_Input(1:(length(myclass.Fourier_Peak_Pos_Input)))=myclass.

Fourier_Peak_Pos_Input;

Fourier_Peak_Pos_Input(length(myclass.Fourier_Peak_Pos_Input)+1:end)=' ';

 Samples=zeros(1,length(myclass.rt_data));

 Samples(1)=myclass.Samples;

 Samples(2:end)=' ';

 Sample_Freq=zeros(1,length(myclass.rt_data));

 Sample_Freq(1)=myclass.Sample_Freq;

 Sample_Freq(2:end)=' ';

 Baudrate=zeros(1,length(myclass.rt_data));

 Baudrate(1)=myclass.Baudrate;

 Baudrate(2:end)=' ';

 Offset=zeros(1,length(myclass.rt_data));

 Offset(1)=myclass.Offset;

 Offset(2:end)=' ';

 Fourier_data=zeros(1,length(myclass.rt_data));

 Fourier_data(1:length(myclass.Fourier_data))=myclass.Fourier_data;

 Fourier_data(length(myclass.Fourier_data)+1:end)=' ';

 Hertz=zeros(1,length(myclass.rt_data));

 Hertz(1:length(myclass.Hertz))=myclass.Hertz;

 Hertz(length(myclass.Hertz)+1:end)=' ';

 txt_data=compose('%.5f',myclass.rt_data);

 txt_time=compose('%.3f',myclass.time_variable);

 txt_samples=compose('%c',Samples);

 txt_samples(1)=compose('%d',Samples(1));

 txt_Fourier_data=compose('%.14f',Fourier_data);

txt_Fourier_data(length(myclass.Fourier_data)+1:end)=compose('%c',Fourier_d

ata(length(myclass.Fourier_data)+1:end));

 txt_Hertz=compose('%f',Hertz);

Appendix-MATLAB CODE

- 47 -

txt_Hertz(length(myclass.Hertz)+1:end)=compose('%c',Hertz(length(myclass.He

rtz)+1:end));

 txt_Sample_Freq=compose('%c',Sample_Freq);

 txt_Sample_Freq(1)=compose('%d',Sample_Freq(1));

 txt_Baudrate=compose('%c',Baudrate);

 txt_Baudrate(1)=compose('%d',Baudrate(1));

 txt_Offset=compose('%c',Offset);

 txt_Offset(1)=compose('%d',Offset(1));

 txt_Fourier_Peaks_Input=compose('%c',Fourier_Peaks_Input);

txt_Fourier_Peaks_Input(1:(length(myclass.Fourier_Peaks_Input)))=compose('%

d',Fourier_Peaks_Input(1:(length(myclass.Fourier_Peaks_Input))));

 txt_Fourier_Peak_Pos_Input=compose('%c',Fourier_Peak_Pos_Input);

txt_Fourier_Peak_Pos_Input(1:(length(myclass.Fourier_Peak_Pos_Input)))=comp

ose('%d',Fourier_Peak_Pos_Input(1:(length(myclass.Fourier_Peak_Pos_Input)))

);

 T1=table(txt_data','VariableNames',"|Input Signal|");

 T2=table(txt_time','VariableNames',"|Time(sec)|");

 T3=table(txt_Fourier_data','VariableNames',"|Fourier Magnitude

(Input Signal)|");

 T4=table(txt_Hertz','VariableNames',"|Fourier Frequency - Hz (Input

Signal)|");

 T5=table(txt_samples','VariableNames',"|Number of Samples|");

 T6=table(txt_Sample_Freq','VariableNames',"|Sampling Frequency|");

 T7=table(txt_Baudrate','VariableNames',"|Baudrate|");

 T8=table(txt_Offset','VariableNames',"|Offset Value(V)|");

 T9=table(txt_Fourier_Peaks_Input','VariableNames',"|Magnitude

Fourier Transform's Peaks (Input Signal)|");

 T10=table(txt_Fourier_Peak_Pos_Input','VariableNames',"|Position

Fourier Transform's Peaks (Hz) (Input Signal)|");

 if (isempty(myclass.Filtered_data))...

&&(isempty(myclass.Filter_Fourier_data))&&(isempty(myclass.Filter_Hertz))..

.

&&(isempty(myclass.Filter_Cutoff_Ang_Freq))&&(isempty(myclass.Filter_order)

)

 T_all=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10];

 else % if they saved the filtered data:

 Fourier_Peaks_Filtered=zeros(1,length(myclass.rt_data));

Fourier_Peaks_Filtered(1:(length(myclass.Fourier_Peaks_Filtered)))=myclass.

Fourier_Peaks_Filtered(1:end);

Fourier_Peaks_Filtered(length(myclass.Fourier_Peaks_Filtered)+1:end)=' ';

 Fourier_Peak_Pos_Filtered=zeros(1,length(myclass.rt_data));

Fourier_Peak_Pos_Filtered(1:(length(myclass.Fourier_Peak_Pos_Filtered)))=my

class.Fourier_Peak_Pos_Filtered;

Fourier_Peak_Pos_Filtered(length(myclass.Fourier_Peak_Pos_Filtered)+1:end)=

' ';

Appendix-MATLAB CODE

- 48 -

 Filter_Cutoff_Ang_Freq=zeros(1,length(myclass.rt_data));

 Filter_Cutoff_Ang_Freq(1)=myclass.Filter_Cutoff_Ang_Freq;

 Filter_Cutoff_Ang_Freq(2:end)=' ';

 Filter_order=zeros(1,length(myclass.rt_data));

 Filter_order(1)=myclass.Filter_order;

 Filter_order(2:end)=' ';

 Filter_Fourier_data=zeros(1,length(myclass.rt_data));

Filter_Fourier_data(1:length(myclass.Filter_Fourier_data))=myclass.Filter_F

ourier_data;

Filter_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=' ';

 Filter_Hertz=zeros(1,length(myclass.rt_data));

Filter_Hertz(1:length(myclass.Filter_Hertz))=myclass.Filter_Hertz;

 Filter_Hertz(length(myclass.Filter_Hertz)+1:end)=' ';

 txt_Filtered_data=compose('%.5f',myclass.Filtered_data);

txt_Filter_Cutoff_Ang_Freq=compose('%c',Filter_Cutoff_Ang_Freq);

txt_Filter_Cutoff_Ang_Freq(1)=compose('%d',Filter_Cutoff_Ang_Freq(1));

 txt_Filter_Fourier_data=compose('%.14f',Filter_Fourier_data);

txt_Filter_Fourier_data(length(myclass.Filter_Fourier_data)+1:end)=compose(

'%c',Filter_Fourier_data(length(myclass.Filter_Fourier_data)+1:end));

 txt_Filter_Hertz=compose('%f',Filter_Hertz);

txt_Filter_Hertz(length(myclass.Filter_Hertz)+1:end)=compose('%c',Filter_He

rtz(length(myclass.Filter_Hertz)+1:end));

 txt_Filter_order=compose('%c',Filter_order);

 txt_Filter_order(1)=compose('%d',Filter_order(1)); ;

txt_Fourier_Peaks_Filtered=compose('%c',Fourier_Peaks_Filtered);

txt_Fourier_Peaks_Filtered(1:(length(myclass.Fourier_Peaks_Filtered)))=comp

ose('%d',Fourier_Peaks_Filtered(1:(length(myclass.Fourier_Peaks_Filtered)))

);

txt_Fourier_Peak_Pos_Filtered=compose('%c',Fourier_Peak_Pos_Filtered);

txt_Fourier_Peak_Pos_Filtered(1:(length(myclass.Fourier_Peak_Pos_Filtered))

)=compose('%d',Fourier_Peak_Pos_Filtered(1:(length(myclass.Fourier_Peak_Pos

_Filtered))));

 T11=table(txt_Filtered_data,'VariableNames',"|Filtered

Signal|");

 T12=table(txt_Filter_Fourier_data','VariableNames',"|Fourier

Magnitude (Filtered Signal)|");

 T13=table(txt_Filter_Hertz','VariableNames',"|Fourier Frequency

- Hz (Filtered Signal)|");

Appendix-MATLAB CODE

- 49 -

T14=table(txt_Filter_Cutoff_Ang_Freq','VariableNames',"|Filter's Cutoff

Frequency (Hz)|");

 T15=table(txt_Filter_order','VariableNames',"|Filter Order|");

T16=table(txt_Fourier_Peaks_Filtered','VariableNames',"|Magnitude Fourier

Transform's Peaks (Filtered Signal)|");

T17=table(txt_Fourier_Peak_Pos_Filtered','VariableNames',"|Position Fourier

Transform's Peaks (Hz) (Filtered Signal)|");

 T_all=[T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16

T17];

 end

 %----------------creating a dialog box-----------------------------

 defaultFileName=fullfile(pwd,'*.txt');

 [baseFileName, folder] = uiputfile(defaultFileName, 'Specify a

file');

 if (baseFileName == 0)

 return;

 end

 [~, baseFileNameNoExt, ~] = fileparts(baseFileName);

 fullFileName = fullfile(folder, [baseFileNameNoExt, '.txt']);

 writetable(T_all,fullFileName,'Delimiter','tab');

 return

 else

 beep;

 uialert(main_fig,{'No data found to save','First take samples from

the Serial port device.'},'Error','Icon','error');

 return

 end

end

function checkifavailable(~,~,myclass,main_fig)

 %% setting and configuring the port

 [port_num] = PortCheck(main_fig);

 if port_num=="None"

 return

 end

 myclass.rt_data=[];

 myclass.time_variable=[];

 myclass.board=[];

 myclass.Sample_Freq=[];

 myclass.Samples=[];

 myclass.Fourier_data=[];

 myclass.Hertz=[];

 myclass.Filtered_data=[];

 myclass.Filter_Fourier_data=[];

 myclass.Filter_Hertz=[];

 myclass.Fourier_Peaks_Input=[];

 myclass.Fourier_Peak_Pos_Input=[];

 myclass.Fourier_Peaks_Filtered=[];

 myclass.Fourier_Peak_Pos_Filtered=[];

 myclass.prog_bar=[];

 myclass.Filter_Cutoff_Ang_Freq=[];

 myclass.Filter_order=[];

 myclass.Baudrate=[];

 myclass.Offset=[];

 for k2=1:1:3

 c2=myclass.tab2_plots(k2);

 cla(c2);

 c3=myclass.tab3_plots(k2);

Appendix-MATLAB CODE

- 50 -

 cla(c3);

 end

 try

 arduino = serialport(port_num,115200);

 catch ME

 if (strcmp(ME.identifier,'serialport:serialport:ConnectionFailed'))

 msg=append('Unable to connect to the serialport device at port

',string(port_num),'. Verify that the port is not in use by another program,

and that a device is properly connected to it.');

 end

 beep;

 uialert(main_fig,msg,'Error','Icon','error');

 return

 end

 arduino.StopBits=1; % not necessary

 configureTerminator(arduino,"CR/LF");

 flush(arduino);

 myclass.board=arduino;

 myclass.tab1_edt_field.Value=arduino.Port;

 myclass.tab2_edt_field.Value=arduino.Port;

 myclass.tab3_edt_field.Value=arduino.Port;

 %% calling the dialog box for Sampling Freq + # of samples

 Input_Box(myclass,main_fig);

end

function [port_num] = PortCheck(main_fig)

 %% finding usb serial device connected to the computer

 NET.addAssembly("System.Management");

 mngmtQuery = System.Management.ObjectQuery();

 mngmtQuery.QueryString = "SELECT * FROM Win32_PnPEntity WHERE Name LIKE

'%(COM%'";

 mngmtSearcher = System.Management.ManagementObjectSearcher(mngmtQuery);

 mngmtObjColl = mngmtSearcher.Get();

 comRep = repmat("",mngmtObjColl.Count,2);

 enMngmtObjColl = mngmtObjColl.GetEnumerator;

 p = 0;

 while enMngmtObjColl.MoveNext()

 p = p + 1;

 com = enMngmtObjColl.Current;

 caption = com.GetPropertyValue("Caption");

 comRep(p,1) = string(caption).extract("COM" + digitsPattern);

 comRep(p,2) = string(com.GetPropertyValue("Description"));

 end

 if isempty(comRep) % in case there are NO PORTS AVAILABLE at the time

 beep

 uialert(main_fig,"No available port found on your computer. First

connect your USB serial device.",'No device is found','CloseFcn',@(h,e)

close(gcf));

 port_num="None";

 return

 end

 [numRows,~] = size(comRep);

 for k=1:1:numRows

 lists(k)=join(comRep(k,:));

 end

 %% creating a list of com ports so the user can choose

 list=num2cell(lists(:));

 [indx,tf] =

listdlg('ListSize',[300,150],'ListString',list,'PromptString',"Select the

port to which your serial device is connected.",'SelectionMode','single');

 if tf==0 %if user clicked cancel or the x button

Appendix-MATLAB CODE

- 51 -

 port_num="None";

 elseif tf==1

 Str=comRep(indx,2);

 newStr = erase(Str," ");

 newStr = erase(newStr,"-");

 newStr = lower(newStr);

 if (contains(newStr,"usbserial")==1) || (

contains(newStr,"arduino")==1)

 port_num=comRep(indx);

 elseif comRep(indx,2)~="USB Serial Device"

 beep

 uialert(main_fig,'Please choose a USB Serial Device.','No

compatible device is selected','CloseFcn',@(h,e) close(gcf));

 port_num="None";

 end

 end

end

function Input_Box(myclass,main_fig)

 %% %----------------------Dialog Box------------------------------

 prompt = {'Enter the appropriate Sampling Frequency (Hz):','Enter the

number of samples:','Enter the Voltage Offset Value (V):','Enter Baudrate:'};

 dlgtitle = 'Input';

 dims = [1 35];

 definput = {'1000','2500','2.5','115200'};

 opts.WindowStyle = 'modal';

 answers=inputdlg(prompt,dlgtitle,dims,definput,opts);

 %----------------interpreting user's inputs--------------------

 if (isempty(answers)) %checks if the cancel button was pressed

 return

 elseif

(isempty(answers{1,1}))||(isempty(answers{2,1}))||(isempty(answers{3,1}))||

(isempty(answers{4,1})) %checks if one or more inputs were left empty

 beep

 uialert(main_fig,'You left one or more inputs blank. Please fill in

both before continuing.','Empty Inputs','CloseFcn',@(h,e) close(gcf));

 return

 elseif

(~isempty(answers{1,1}))&&(~isempty(answers{2,1}))&&(~isempty(answers{3,1})

)&&(~isempty(answers{4,1})) %checks if both inputs are filled

 inputs1=str2num(answers{1,1});

 inputs2=str2num(answers{2,1});

 inputs3=str2num(answers{3,1});

 inputs4=str2num(answers{4,1});

 if (~isempty(inputs1)) && (~isempty(inputs2)) && (

~isempty(inputs3)) && (~isempty(inputs4)) % checks if only numbers are

inserted by the user

 if (class(inputs1)~="double") || (class(inputs2)~="double")

|| (class(inputs3)~="double") || (class(inputs4)~="double") % for example

if someone inserts a HEX number

 beep

 uialert(main_fig,'One or both inputs were not a correct type.

Please make sure to only insert real (R) numbers.','Incorrect

Inputs','CloseFcn',@(h,e) close(gcf));

 return

 end

 if (mod(inputs2,1)~=0)||(mod(inputs4,1)~=0) % making sure the #

of samples input is an integer

 beep

 uialert(main_fig,'The Number of Samples and the Baudrate

should be integers.','Incorrect value of Number of Samples or

Baudrate','CloseFcn',@(h,e) close(gcf));

Appendix-MATLAB CODE

- 52 -

 return

 end

 myclass.Sample_Freq=inputs1;

 myclass.Samples=inputs2;

 myclass.Offset=inputs3;

 myclass.Baudrate=inputs4;

 myclass.board.BaudRate=myclass.Baudrate;

 configureCallback(myclass.board,"terminator",@(obj,evnt)

begin(myclass,main_fig))

 else

 beep

 uialert(main_fig,'One or both inputs were not numbers. Please

make sure to only insert numbers.','Incorrect Inputs','CloseFcn',@(h,e)

close(gcf));

 return

 end

 end

end

function begin(myclass,main_fig)

 configureCallback(myclass.board,"off"); % ↓

 t = mytimer(myclass,main_fig);%initialize the t variable cause it is used

on the next command

 start(t);

end

function t= mytimer(myclass,main_fig)

 t = timer;

 %timer's timing properties↓

 t.StartDelay=0;

 t.Period=0.001;

 t.TasksToExecute=myclass.Samples;

 t.BusyMode='queue';

 t.ExecutionMode='fixedSpacing';

 % callback function properties↓

 t.StartFcn = {@set_prog_bar,myclass,main_fig};

 t.TimerFcn = {@pull_data,myclass,t} ;

 t.StopFcn = {@plot_tab1,myclass};

 t.ErrorFcn = {@(x,y)disp('unspecified error in timer')};

end

function pull_data(~,~,myclass,t)

 progbar=myclass.prog_bar;

 myclass.rt_data(timerfind(t).TasksExecuted) =

str2double(readline(myclass.board)); %Read line of ASCII string data from

serial port

 progress=(timerfind(t).TasksExecuted/timerfind(t).TasksToExecute);

 switch progbar.CancelRequested

 case 0

 if(progress<0.8)

 progbar.Message='Loading your data';

 progbar.Value=progress;

 elseif (progress>0.8)

 progbar.Message='Finishing up';

 progbar.Value=progress;

 end

 case 1 % if user presses cancel: ↓

 myclass.rt_data=[];

 myclass.time_variable=[];

 myclass.Samples=[];

 myclass.Fourier_data=[];

 stop(t);

 return

Appendix-MATLAB CODE

- 53 -

 end

end

function set_prog_bar(~,~,myclass,main_fig)

 wait_window = uiprogressdlg(main_fig,'Title','Please Wait','Value',0);

 wait_window.ShowPercentage='on';

 wait_window.Cancelable='on';

 wait_window.CancelText='Cancel';

 myclass.prog_bar=wait_window;

end

function plot_tab1(~,~,myclass)

 delete(timerfindall); % deleting all timers

 close(myclass.prog_bar);

 myclass.prog_bar=[];

 if (~isempty(myclass.rt_data))&&(~isempty(myclass.Samples))

 ax1=myclass.tab1_plots(1);

 plot(ax1,myclass.rt_data,'- .','Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 ax2=myclass.tab1_plots(2);

 %-------------------evaluating time axis---------------------------

 time=0:(1/myclass.Sample_Freq):myclass.Samples;

 myclass.time_variable=time(1:myclass.Samples);% taking as many

points as there are samples

 plot(ax2,myclass.time_variable, myclass.rt_data,'-

.','Color',[1.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8); %

plot marker properties :

https://www.mathworks.com/help/matlab/creating_plots/specify-line-and-

marker-appearance-in-plots.html

 [f_Hz, Y1]=fourier(myclass);

 ax3=myclass.tab1_plots(3);

 plot(ax3,f_Hz,Y1,'- .','Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor",[0 0 0],"MarkerSize",8)

 end

 %% finding the maximum values of the fourier transform (and their pos

in Hz)

 if isempty(myclass.Fourier_data) || isempty(myclass.Hertz) % this is

incase user pressed cancel while sampling

 return

 end

[pks,locs]=findpeaks(myclass.Fourier_data,myclass.Hertz,'MinPeakProminence'

,10);

 if myclass.Fourier_data(1)>=5*myclass.Fourier_data(2)

 pks=[myclass.Fourier_data(1) ,pks];

 [pks_sorted,index]=sort(pks,'descend');

 position = find(pks==myclass.Fourier_data(1));

 locs=[locs(1:position-1) myclass.Hertz(1) locs(position:end)];

 locs_sorted=locs(index);

 else

 [pks_sorted,index]=sort(pks,'descend');

 locs_sorted=locs(index);

 end

 myclass.Fourier_Peaks_Input=pks_sorted;

Appendix-MATLAB CODE

- 54 -

 myclass.Fourier_Peak_Pos_Input=locs_sorted;

end

function [f_Hz, Y1] = fourier(myclass)

 L=length(myclass.rt_data);

 X_F=fft(myclass.rt_data);

 X_mag=abs(X_F);

 Y1=X_mag(1:round((L/2)));

 f_bins=(0:(L-1)/2);

 f_Hz = (myclass.Sample_Freq/L).*f_bins;

 %% saving them as class properties so i can use them in different

functions

 myclass.Fourier_data=Y1;

 myclass.Hertz=f_Hz;

end

function tab2_function(tab2,myclass)

 grid1_tab2=uigridlayout(tab2,[4 1]);

 grid1_tab2.RowHeight={'fit','fit','fit','fit'};

 grid1_tab2.BackgroundColor='#86b2b5';

 grid1_tab2.Scrollable='on';

 grid1_tab2.Padding= [0 0 0 0] ; % [left bottom right top]

 grid2_tab2=uigridlayout(grid1_tab2,[1 5]);

 grid2_tab2.Layout.Row=1;

 grid2_tab2.BackgroundColor='#86b2b5';

 grid2_tab2.ColumnWidth={'1x' '1x' '1x' '1x' 'fit'};

 grid2_tab2.RowHeight={'0.5x'};

 grid2_tab2.ColumnSpacing=15;

 grid2_tab2.Padding=[10 0 10 2];% [left bottom right top]

 %% creating an edifield so the port is Displayed

 edt_tab2=uieditfield(grid2_tab2);

 edt_tab2.Layout.Row=1;

 edt_tab2.Layout.Column=5;

 edt_tab2.HorizontalAlignment='center';

 edt_tab2.Placeholder='No port connected';

 edt_tab2.Editable='off';

 edt_tab2.BackgroundColor="#f0c7a3";

 edt_tab2.Tooltip='This field displays the current port to ehich the app

is connected.';

 myclass.tab2_edt_field=edt_tab2; % so i can update the value as as a

port is connected

 %% creating the axis where the plots are gonna be displayed in.

 ax21=uiaxes('Parent',grid1_tab2);

 ax21.Layout.Row=2; % επιλέγω την θέση στο grid (2x1)

 ax21.Title.String='Filtered Signal';

 ax21.XLabel.String='Sample size';

 ax21.YLabel.String='Magnitude';

 ax21.XGrid='on';

 ax21.YGrid='on';

 ax21.Color=[0.1 0.1 0.1];

 ax21.GridColor='#00FFFF';

 ax21.GridAlpha=0.22;

 ax21.TickDir='out'; %direction of the Tick marks

 ax22=uiaxes('Parent',grid1_tab2);

 ax22.Layout.Row=3; % επιλέγω την θέση στο grid (2x1)

 ax22.Title.String='Filtered Signal';

 ax22.XLabel.String='Time(sec)';

 ax22.YLabel.String='Magnitude';

 ax22.XGrid='on';

 ax22.YGrid='on';

Appendix-MATLAB CODE

- 55 -

 ax22.Color=[0.1 0.1 0.1];

 ax22.GridColor='#00FFFF';

 ax22.GridAlpha=0.22;

 ax22.TickDir='out'; %direction of the Tick marks

 ax23=uiaxes('Parent',grid1_tab2);

 ax23.Layout.Row=4; % επιλέγω την θέση στο grid (2x1)

 ax23.Title.String='Fourier of the filtered signal';

 ax23.XLabel.String='Frequency (Hz)';

 ax23.YLabel.String='Magnitude';

 ax23.XGrid='on';

 ax23.YGrid='on';

 ax23.Color=[0.1 0.1 0.1];

 ax23.GridColor='#00FFFF';

 ax23.GridAlpha=0.22;

 ax23.TickDir='out'; %direction of the Tick marks

 %% giving the axis a "global" handle

 myclass.tab2_plots(1)=ax21;

 myclass.tab2_plots(2)=ax22;

 myclass.tab2_plots(3)=ax23;

end

function plot_tab2(~,~,main_fig,myclass)

 if

(isempty(myclass.rt_data))&&(isempty(myclass.time_variable))&&(isempty(mycl

ass.Samples))&&(isempty(myclass.Fourier_data))&&(isempty(myclass.Hertz))

 beep;

 uialert(main_fig,{'No data have been found','First take samples from

the Serial port device.'},'Error','Icon','error');

 return %if the user hasnt sampled their signal, then nothing will be

shown

 end

 filter(myclass);

 plot(myclass.tab2_plots(1),myclass.Filtered_data,'- .','Color',[1.0000

0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8);

plot(myclass.tab2_plots(2),myclass.time_variable,myclass.Filtered_data,'-

.','Color',[1.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8);

plot(myclass.tab2_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'- .','Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8);

 plot_tab3(myclass); % so it plots the comparison graphs

 %% finding the maximum values of the fourier transform (and their pos

in Hz)

[pks,locs]=findpeaks(myclass.Filter_Fourier_data,myclass.Filter_Hertz,'MinP

eakProminence',10);

 if myclass.Filter_Fourier_data(1)>=10*myclass.Filter_Fourier_data(2)

 pks=[(myclass.Filter_Fourier_data(1)) ,pks'];

 [pks_sorted,index]=sort(pks,'descend');

 position = find(pks==myclass.Filter_Fourier_data(1));

 locs=[locs(1:position-1) myclass.Filter_Hertz(1)

locs(position:end)];

 locs_sorted=locs(index);

 else

 [pks_sorted,index]=sort(pks,'descend');

Appendix-MATLAB CODE

- 56 -

 locs_sorted=locs(index);

 end

 myclass.Fourier_Peaks_Filtered=pks_sorted;

 myclass.Fourier_Peak_Pos_Filtered=locs_sorted;

end

function filter(myclass)

 if isempty(myclass.Filter_order) &&

isempty(myclass.Filter_Cutoff_Ang_Freq)

 n=2;

 wc=2*pi*30;

 myclass.Filter_order=n;

 myclass.Filter_Cutoff_Ang_Freq=wc;

 else

 n=myclass.Filter_order;

 wc=myclass.Filter_Cutoff_Ang_Freq;

 end

 %% calculating the Transfer Function's a_k coefficients.

 Ts=1/myclass.Sample_Freq;

 a=zeros(length(n));

 coef=zeros(length(n));

 a(1)=1;

 g=pi/(2*n);

 coef(1)=1;

 for k=0:1:n-1

 a(k+2)=a(k+1)*(cos(k*g)/sin((k+1)*g));

 coef(k+2)=a(k+2)/wc^(k+1);

 end

 H_s=tf(1,flip(coef));

 sysd = c2d(H_s,Ts,'tustin'); % bilinear transform

 [num,den] = tfdata(sysd);

 f = cell2mat(den);

 c = cell2mat(num);

 x=myclass.rt_data;

 yn=(myclass.Offset)*ones(length(x),1);

 yn1=(myclass.Offset)*ones([length(x) (length(c)-1)]);

 yn2=(myclass.Offset)*ones([length(x) (length(c))]);

 for nn=length(c):1:length(x)

 for i=1:1:length(c)-1

 yn1(nn,i)=-f(i+1)*yn(nn-i);

 end

 for i=0:1:length(c)-1

 yn2(nn,i+1)=c(i+1)*x(nn-i);

 end

 yn(nn)=sum(yn1(nn,:))+sum(yn2(nn,:));

 end

 %% performing fourier transform on the filterred signal

 L=length(yn);

 X_F_yn=fft(yn);

 X_mag_yn=abs(X_F_yn);

 Y1_yn=X_mag_yn(1:round((L/2)));

 f_bins=(0:(L-1)/2);

 f_Hz_yn = (myclass.Sample_Freq/L).*f_bins;

 %% saving them as class properties so i can use them in different

functions

 myclass.Filtered_data=yn;

 myclass.Filter_Fourier_data=Y1_yn;

 myclass.Filter_Hertz=f_Hz_yn;

end

function Filter_Spec_Window(~,~,myclass)

Appendix-MATLAB CODE

- 57 -

 if myclass.Spec_window(1)==true % checking if the window is already open

 return

 end

 Spec_Fig=uifigure();

 Spec_Fig.Visible='off';

 Spec_Fig.MenuBar='none';

 Spec_Fig.NumberTitle='off';

 Spec_Fig.Name='Filter Specifications';

 Spec_Fig.Resize='off';

 Spec_Fig.Units='pixels';

 Spec_Fig.Position=[300 300 970 550]; %[left bottom width height]

 movegui(Spec_Fig,'center');

 Spec_Fig.Visible='on';

 Spec_Fig.DeleteFcn={@Close_Window_Request,myclass};

 myclass.Spec_window(1)=true;

 myclass.Spec_window(2)=Spec_Fig;

 %% setting up a grid layout

 Spec_grid=uigridlayout(Spec_Fig,[3 1]);% 3x1 grid (rows x columns)

 Spec_grid.RowHeight={'1x' '1x' '0.3x'};

 Spec_grid.ColumnWidth={'1x'};

 Spec_grid.RowSpacing=0;

 Spec_grid.Padding=[0 0 0 0];

 %% creating some axes to display my bode plots

 Bode_ax1=uiaxes("Parent",Spec_grid);

 Bode_ax2=uiaxes("Parent",Spec_grid);

 Bode_ax1.Layout.Row=1;

 Bode_ax2.Layout.Row=2;

 Bode_ax1.Title.String='Magnitude Estimation of the Filter';

 Bode_ax1.YLabel.String='Magnitude (dB)';

 Bode_ax1.XGrid='on';

 Bode_ax1.YGrid='on';

 Bode_ax1.GridAlpha=0.22;

 Bode_ax1.TickDir='out';

 Bode_ax2.Title.String='Phase Estimation of the Filter';

 Bode_ax2.YLabel.String='Phase [°]';

 Bode_ax2.XGrid='on';

 Bode_ax2.YGrid='on';

 Bode_ax2.GridAlpha=0.22;

 Bode_ax2.TickDir='out';

 %% creating options to change the filter to your liking

 Spec_grid2=uigridlayout(Spec_grid,[2 6]); % 1x3 grid (rows x columns)

 Spec_grid2.Layout.Row=3;

 Spec_grid2.RowHeight={'1x' '1x'};

 Spec_grid2.ColumnWidth={150 150 150 150 150 150};

 lbl1=uilabel('Parent',Spec_grid2,"Text",'Filter Type:');

 lbl2=uilabel('Parent',Spec_grid2,"Text",'Filter Degree:');

 lbl3=uilabel('Parent',Spec_grid2,"Text",'Cutoff Frequency (in Hz):');

 lbl4=uilabel('Parent',Spec_grid2,"Text",'X-axis unit:');

 lbl1.Layout.Row=1;

 lbl2.Layout.Row=1;

 lbl3.Layout.Row=1;

 lbl4.Layout.Row=1;

Appendix-MATLAB CODE

- 58 -

 lbl1.Layout.Column=1;

 lbl2.Layout.Column=2;

 lbl3.Layout.Column=3;

 lbl4.Layout.Column=4;

 edt_field=uieditfield("Parent",Spec_grid2);

 edt_field.Editable='off';

 edt_field.Value='Butterworth Low Pass';

 edt_field.HorizontalAlignment='center';

 edt_field.Layout.Column=1;

 edt_field.Layout.Row=2;

 spn1=uispinner("Parent",Spec_grid2);

 spn1.Layout.Column=2;

 spn1.Layout.Row=2;

 spn1.Limits=[1 10];

 spn1.LowerLimitInclusive='on';

 spn1.UpperLimitInclusive='on';

 if isempty(myclass.Filter_order)

 spn1.Value=2;

 else

 spn1.Value=myclass.Filter_order;

 end

 spn2=uispinner("Parent",Spec_grid2);

 spn2.Layout.Column=3;

 spn2.Layout.Row=2;

 spn2.Value=30;% Default Value

 spn2.Limits=[1 100];

 spn2.LowerLimitInclusive='on';

 spn2.UpperLimitInclusive='on';

 if isempty(myclass.Filter_Cutoff_Ang_Freq)

 spn2.Value=30; % Default Value

 else

 spn2.Value=myclass.Filter_Cutoff_Ang_Freq/(2*pi);

 end

 %% creating dropdown for x-axis unit choice

 drp=uidropdown(Spec_grid2);

 drp.Layout.Column=4;

 drp.Layout.Row=2;

 drp.Items={'rad/s','Hz'};

 drp.Value='Hz'; % Default value

 drp.Placeholder='Options';

 %% couple of control buttons

 apply_btn=uibutton(Spec_grid2);

 apply_btn.Text='Apply';

 apply_btn.Layout.Row=2;

 apply_btn.Layout.Column=5;

 apply_btn.ButtonPushedFcn= {@(x,y)

Plot_Spec_Window(Bode_ax1,Bode_ax2,spn1,spn2,drp,myclass)};

 cncl_btn=uibutton(Spec_grid2);

 cncl_btn.Text='OK';

 cncl_btn.Layout.Row=2;

 cncl_btn.Layout.Column=6;

 cncl_btn.ButtonPushedFcn= {@(x,y)delete(Spec_Fig)};

 Plot_Spec_Window(Bode_ax1,Bode_ax2,spn1,spn2,drp)

end

function Plot_Spec_Window(Bode_ax1,Bode_ax2,spn1,spn2,drp,myclass)

 %% Creating the actual filter specs

Appendix-MATLAB CODE

- 59 -

 wc=2*pi*spn2.Value;

 g=pi/(2*spn1.Value);

 a=zeros(length(spn1.Value));

 coef=zeros(length(spn1.Value));

 a(1)=1;

 coef(1)=1;

 for k=0:1:(spn1.Value)-1

 a(k+2)=a(k+1)*(cos(k*g)/sin((k+1)*g));

 coef(k+2)=a(k+2)/wc^(k+1);

 end

 if spn1.Value==1 % unfortunately this is the only way to do this

 H_s=@(s)1./(coef(1)+coef(2)*s.^1);

 elseif spn1.Value==2

 H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2);

 elseif spn1.Value==3

 H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3);

 elseif spn1.Value==4

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4);

 elseif spn1.Value==5

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5);

 elseif spn1.Value==6

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6);

 elseif spn1.Value==7

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7);

 elseif spn1.Value==8

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7+coef(9)*s.^8);

 elseif spn1.Value==9

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7+coef(9)*s.^8+coef(10)*s.^9);

 elseif spn1.Value==10

H_s=@(s)1./(coef(1)+coef(2)*s.^1+coef(3)*s.^2+coef(4)*s.^3+coef(5)*s.^4+coe

f(6)*s.^5+coef(7)*s.^6+coef(8)*s.^7+coef(9)*s.^8+coef(10)*s.^9++coef(11)*s.

^10);

 end

 %% getting the x axis right

 omega =2*pi*logspace(-3,4,2000);

 Hz=logspace(-3,4,2000);

 if drp.Value=="rad/s"

 X_axis_choice=omega;

 Bode_ax1.XLabel.String='Angular Frequency [rad/s]';

 Bode_ax2.XLabel.String='Angular Frequency [rad/s]';

 elseif drp.Value=="Hz"

 X_axis_choice=Hz;

 Bode_ax1.XLabel.String='Frequency [Hz]';

 Bode_ax2.XLabel.String='Frequency [Hz]';

 end

 %% setting up the change of phase y axis

 phase_Deg = rad2deg(angle(H_s(1i*X_axis_choice)));

 %% and now the magnitude y axis

 magn = abs(H_s(1i*X_axis_choice));

Appendix-MATLAB CODE

- 60 -

 magn_dB = 20 * log10(magn);

 %% now actually creating the plots

 semilogx(Bode_ax1,X_axis_choice/2/pi,magn_dB);

 semilogx(Bode_ax2,X_axis_choice/2/pi,phase_Deg);

 %% saving the user selecteed cutoff freq and filter order so they can

be used to actually filter the rest of the signal

 myclass.Filter_Cutoff_Ang_Freq=wc;

 myclass.Filter_order=spn1.Value;

end

function Close_Window_Request(src,~,myclass)

 if src.Name=="Filter Specifications"

 myclass.Spec_window(1)=false;

 return

 end

 if src.Name=="Data and Key Variables"

 myclass.Var_window(1)=false;

 return

 end

end

function tab3_function(tab3,myclass)

 grid1_tab3=uigridlayout(tab3,[4 1]);

 grid1_tab3.RowHeight={'fit','fit','fit','fit'};

 grid1_tab3.BackgroundColor='#86b2b5';

 grid1_tab3.Scrollable='on';

 grid1_tab3.Padding= [0 0 0 0] ; % [left bottom right top]

 grid2_tab3=uigridlayout(grid1_tab3,[1 5]);

 grid2_tab3.Layout.Row=1;

 grid2_tab3.BackgroundColor='#86b2b5';

 grid2_tab3.ColumnWidth={'1x' '1x' '1x' '1x' 'fit'};

 grid2_tab3.RowHeight={'0.5x'};

 grid2_tab3.ColumnSpacing=15;

 grid2_tab3.Padding=[10 0 10 2];% [left bottom right top]

 %% creating an edifield so the port is Displayed

 edt_tab3=uieditfield(grid2_tab3);

 edt_tab3.Layout.Row=1;

 edt_tab3.Layout.Column=5;

 edt_tab3.HorizontalAlignment='center';

 edt_tab3.Placeholder='No port connected';

 edt_tab3.Editable='off';

 edt_tab3.BackgroundColor="#f0c7a3";

 edt_tab3.Tooltip='This field displays the current port to ehich the app

is connected.';

 myclass.tab3_edt_field=edt_tab3;

 %% creating the axis where the plots are gonna be displayed in.

 ax31=uiaxes('Parent',grid1_tab3);

 ax31.Layout.Row=2;

 ax31.Title.String='Signal Comparison';

 ax31.XLabel.String='Sample size';

 ax31.YLabel.String='Magnitude';

 ax31.XGrid='on';

 ax31.YGrid='on';

 ax31.Color=[0.1 0.1 0.1];

 ax31.GridColor='#00FFFF';

 ax31.GridAlpha=0.22;

 ax31.TickDir='out';

 ax32=uiaxes('Parent',grid1_tab3);

 ax32.Layout.Row=3;

Appendix-MATLAB CODE

- 61 -

 ax32.Title.String='Signal Comparison';

 ax32.XLabel.String='Time(sec)';

 ax32.YLabel.String='Magnitude';

 ax32.XGrid='on';

 ax32.YGrid='on';

 ax32.Color=[0.1 0.1 0.1];

 ax32.GridColor='#00FFFF';

 ax32.GridAlpha=0.22;

 ax32.TickDir='out';

 ax33=uiaxes('Parent',grid1_tab3);

 ax33.Layout.Row=4;

 ax33.Title.String='Comparison of each Fourier Transform';

 ax33.XLabel.String='Frequency (Hz)';

 ax33.YLabel.String='Magnitude';

 ax33.XGrid='on';

 ax33.YGrid='on';

 ax33.Color=[0.1 0.1 0.1];

 ax33.GridColor='#00FFFF';

 ax33.GridAlpha=0.22;

 ax33.TickDir='out';

 %% giving the axis a "global" handle

 myclass.tab3_plots(1)=ax31;

 myclass.tab3_plots(2)=ax32;

 myclass.tab3_plots(3)=ax33;

end

function plot_tab3(myclass)

 plot(myclass.tab3_plots(1),myclass.rt_data,'Color',[1.0000 0.4706

0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 hold(myclass.tab3_plots(1),'on');% 'hold on' but for uiaxes

 plot(myclass.tab3_plots(1),myclass.Filtered_data,'Color',[0 0.4470

0.7410],"MarkerEdgeColor","k","MarkerSize",8)

 legend(myclass.tab3_plots(1),{'Input Signal','Filtered

Signal'},'EdgeColor','white','TextColor','white');

 hold(myclass.tab3_plots(1),'off');

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.rt_data,'Color',[1

.0000 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 hold(myclass.tab3_plots(2),'on');% 'hold on' but for uiaxes

plot(myclass.tab3_plots(2),myclass.time_variable,myclass.Filtered_data,'Col

or',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8)

 legend(myclass.tab3_plots(2),{'Input Signal','Filtered

Signal'},'EdgeColor','white','TextColor','white');

 hold(myclass.tab3_plots(2),'off');

plot(myclass.tab3_plots(3),myclass.Hertz,myclass.Fourier_data,'Color',[1.00

00 0.4706 0.0902],"MarkerEdgeColor","k","MarkerSize",8)

 hold(myclass.tab3_plots(3),'on');% 'hold on' but for uiaxes

plot(myclass.tab3_plots(3),myclass.Filter_Hertz,myclass.Filter_Fourier_data

,'Color',[0 0.4470 0.7410],"MarkerEdgeColor","k","MarkerSize",8)

 legend(myclass.tab3_plots(3),{'Input Signal','Filtered

Signal'},'EdgeColor','white','TextColor','white');

 hold(myclass.tab3_plots(3),'off');

end

