
Modularity-Based Fairness in Network
Communities

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Konstantinos Manolis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2024



Examining Committee:

• Evangelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina (Advisor)

• Panagiotis Tsaparas, Assoc. Professor, Department of Computer Science and
Engineering, University of Ioannina

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina



DEDICATION

This thesis is dedicated to those who have been the pillars of support and love
throughout my journey, not only during this postgraduate program but throughout
all my 26 years.

To my family, who have nurtured me with love and support that has shaped the
person I am today. Your sacrifices, encouragement, and unwavering belief in me have
been my foundation and strength. Your presence is a constant reminder of what it
means to love unconditionally and strive unrelentingly.

To my partner, whose endless emotional and physical support throughout this
postgraduate program has been nothing short of extraordinary. Your patience, un-
derstanding, and companionship have been my sanctuary. Your belief in me and my
aspirations has been a source of motivation and courage, pushing me to surpass my
limits and achieve beyond my dreams.

To my friends, who have illuminated the darkest of days with their unwavering
support and infectious optimism. Your ability to make difficult days seem brighter
and challenges more surmountable has been a beacon of hope and joy in my life. The
laughter, conversations, and moments of solace we’ve shared have been invaluable in
this journey.

This dedication is a tribute to all of you, for without your love, support, and belief,
this journey would have been a far different experience. Thank you for being my light
during the darkest times and my anchor throughout the storms. This achievement is
as much yours as it is mine.



ACKNOWLEDGEMENTS

I extend my deepest gratitude to my supervisor, Professor Evangelia Pitoura, for her
invaluable guidance, patience, and unwavering support throughout the entirety of my
thesis preparation and execution. Her expertise and insightful feedback were instru-
mental in shaping both the direction and substance of this research. Her dedication to
excellence and her commitment to nurturing my academic and professional growth
have left an indelible mark on my journey, for which I am profoundly grateful.

I am also immensely thankful to Christos Gkartzios for his substantial contri-
butions and the robust support he has offered me. His expertise and constructive
suggestions have significantly enriched my work, providing me with a broader per-
spective and deepening my understanding of the subject matter. His encouragement
and readiness to assist at every turn have been sources of motivation during chal-
lenging moments.



TABLE OF CONTENTS

List of Figures iii

List of Tables v

List of Algorithms vi

Abstract vii

Εκτεταμένη Περίληψη viii

1 Introduction 1

2 Fairness Metrics 3
2.1 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fairness in Community Detection . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Balance Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Fair Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Diversity Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Algorithms 9
3.1 Louvain Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Fair Modularity Louvain Modifictaiton . . . . . . . . . . . . . . . . . . . 12
3.3 Diversity Louvain Modification . . . . . . . . . . . . . . . . . . . . . . . 13

4 Dataset Description 16
4.1 Real World Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Symmetric Synthetic Model . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 Assymetric Synthetic Model . . . . . . . . . . . . . . . . . . . . . 19

i



5 Experiments 22
5.1 Evaluation of Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Real World Networks . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Synthetic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Comparative Analysis of Modified Louvain Algorithms . . . . . . . . . 37

5.3.1 Fair Modularity Analysis . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Diversity Modularity Analysis . . . . . . . . . . . . . . . . . . . . 40

6 Related Work 43

7 Epilogue 46
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Bibliography 48

ii



LIST OF FIGURES

5.1 Distribution of fbalance in the real datasets. The red line corresponds to 0. 24
5.2 Distribution of fmodularity in the real datasets. The red line corresponds

to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Distribution of diversity fairness in the real datasets. The red line cor-

responds to 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Distribution of fbalance in synthetic datasets. The red line corresponds

to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Distribution of fmodularity in synthetic datasets. The red line corresponds

to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Distribution of Filter Bubble fairness in synthetic datasets. The red line

corresponds to 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.7 Distribution of fbalance in asymetric synthetic datasets by changing phR.

The red line corresponds to 0. . . . . . . . . . . . . . . . . . . . . . . . 28
5.8 Distribution of fmodularity in asymetric synthetic datasets by changing

phR. The red line corresponds to 0. . . . . . . . . . . . . . . . . . . . . . 29
5.9 Distribution of Filter Bubble fairness in asymetric synthetic datasets by

changing phR. The red line corresponds to 0. . . . . . . . . . . . . . . . 29
5.10 Distribution of fbalance in asymetric synthetic datasets by changing pcR.

The red line corresponds to 0. . . . . . . . . . . . . . . . . . . . . . . . 29
5.11 Distribution of fmodularity in asymetric synthetic datasets by changing

pcR. The red line corresponds to 0. . . . . . . . . . . . . . . . . . . . . . 30
5.12 Distribution of Filter Bubble fairness in asymetric synthetic datasets by

changing pcR. The red line corresponds to 0. . . . . . . . . . . . . . . . 30
5.13 Facebook-Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . . 31
5.14 Deezer-Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . . . 32
5.15 Twitch-Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . . . 33

iii



5.16 Pokec-Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . . . . 34
5.17 Pokec(age)-Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . 35
5.18 NBA - Fairness Metrics Correlation . . . . . . . . . . . . . . . . . . . . . 36
5.20 Fair Modularity Deezer . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.19 Fair Modularity Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.21 Fair Modularity Twitch . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.22 Fair Modularity NBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.23 Fair Diversity Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.24 Fair Diversity Deezer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.25 Fair Diversity Twitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.26 Fair Diversity NBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



LIST OF TABLES

4.1 Network characteristics, AvRd (AvBd): average degree of the red (blue)
nodes, Rh (Bh): red (blue) homompily. . . . . . . . . . . . . . . . . . . 17

4.2 Communities detected and their aggregated balance and modularity
fairness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Synthetic dataset characteristics. . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Detected communities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



LIST OF ALGORITHMS

3.1 Louvain algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Fair Modularity Louvain algorithm . . . . . . . . . . . . . . . . . . . . . 13
3.3 Diversity Louvain algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



ABSTRACT

Konstantinos Manolis, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2024.
Modularity-Based Fairness in Network Communities.
Advisor: Evangelia Pitoura, Professor.

In this thesis, we study the fairness of community structures in networks from a
group-based perspective. Specifically, we assume that individuals in a social network
belong to different groups based on the value of one of their sensitive attributes, such
as their age, gender, or race. We view community fairness as the lack of discrimi-
nation towards any of the groups. For simplicity, let us assume that nodes belong
to two groups, the blue and the red group. We introduce three fairness metrics.
The first metric, termed balance-fairness, equitably represents communities by en-
suring an equal distribution of red and blue nodes in each community. The second,
termed modularity-fairness, refines the notion of modularity to demand equal intra-
community connectivity for the groups. The third metric, termed diversity-fairness,
promotes intra-community edges between nodes of different color thus addressing the
filter-bubble phenomenon. We have modified the Louvain algorithm, a well-known
community detection algorithm, to produce communities that are both well-connected
and fair. We present an extensive evaluation using several real-world and synthetic
networks. The goal of our evaluation is twofold: (1) to study the fairness of commu-
nities in networks and the causes of unfairness and (2) to evaluate the effectiveness
of our fairness-enhanced Louvain algorithm.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Κωνσταντίνος Μανώλης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συ-
στημάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπι-
στήμιο Ιωαννίνων, 2024.
Δικαιοσύνη βασισμένη στην αρθρωτότητα σε δικτυακές κοινότητες.
Επιβλέπων: Ευαγγελία Πιτουρά, Καθηγήτρια.

Στην παρούσα διατριβή, μελετάμε τη δικαιοσύνη των κοινοτήτων στα δίκτυα
από μια οπτική γωνία που βασίζεται σε ομάδες. Συγκεκριμένα, υποθέτουμε ότι
τα άτομα σε ένα κοινωνικό δίκτυο ανήκουν σε διαφορετικές ομάδες με βάση την
τιμή ενός από τα ευαίσθητα χαρακτηριστικά τους, όπως η ηλικία, το φύλο ή η φυλή
τους. Θεωρούμε τη δικαιοσύνη της κοινότητας ως την έλλειψη διακρίσεων προς
οποιαδήποτε από τις ομάδες. Για λόγους απλότητας, ας υποθέσουμε ότι οι κόμβοι
ανήκουν σε δύο ομάδες, την μπλε και την κόκκινη ομάδα. Εισάγουμε τρεις μετρικές
δικαιοσύνης. Η πρώτη μετρική, που ονομάζεται ισορροπία-δικαιοσύνη, αντιπροσω-
πεύει δίκαια τις κοινότητες εξασφαλίζοντας την ισοκατανομή των κόκκινων και
μπλε κόμβων σε κάθε κοινότητα. Η δεύτερη, που ονομάζεται modularity-fairness,
βελτιώνει την έννοια της αρθρωτότητας ώστε να απαιτεί ίση συνδεσιμότητα εντός
της κοινότητας για τις ομάδες. Η τρίτη μετρική, που ονομάζεται δικαιοσύνη ποικιλο-
μορφίας, προάγει τις ενδοκοινοτικές ακμές μεταξύ κόμβων διαφορετικού χρώματος,
αντιμετωπίζοντας έτσι το φαινόμενο του φίλτρου-φούσκας. Τροποποιήσαμε τον αλ-
γόριθμο Louvain, έναν γνωστό αλγόριθμο ανίχνευσης κοινοτήτων, για να παράγουμε
κοινότητες που είναι τόσο καλά συνδεδεμένες όσο και δίκαιες. Παρουσιάζουμε μια
εκτεταμένη αξιολόγηση χρησιμοποιώντας διάφορα δίκτυα του πραγματικού κόσμου
και συνθετικά δίκτυα. Ο στόχος της αξιολόγησής μας είναι διττός: (1) να μελετή-
σουμε τη δικαιοσύνη των κοινοτήτων στα δίκτυα και τις αιτίες της αδικίας και (2)
να αξιολογήσουμε την αποτελεσματικότητα του ενισχυμένου με δικαιοσύνη αλγο-
ρίθμου Louvain.
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CHAPTER 1

INTRODUCTION

Social networks play a pivotal role in shaping opinions and influencing decision-
making processes. However, despite the extensive research on algorithmic fairness,
the fairness issues stemming from the interconnection between individuals in a net-
work have received comparatively less attention [1]. In this paper, we examine the
community structures formed within social networks through the lens of fairness.

We take a group-based approach in which we assume that individuals in a social
network belong to one of two groups based on the value of one of their attributes, for
example their gender, age, or race. Most previous work on group-based fairness in
clustering takes a representation based approach that asks that a sufficient percentage
of nodes in each cluster belongs to the protected group [2, 3, 4].

In this paper, we introduce a novel fairness notion for communities, termed mod-
ularity fairness. Modularity is a characterization of the quality of communities based
on the connectivity of each community. Specifically, high values of modularity indi-
cate that there are many edges within communities and few edges between them [5].
The proposed modularity fairness asks that the nodes of the protected group in each
community are well-connected, that is, in each community, the nodes that belong
to the protected group have many intra-community edges and few inter-community
ones.

We also introduce a fairness notion for communities, termed diversity fairness, in-
spired by the work of [6] which addresses the filter bubble problem in link predictions.
Filter bubble is a common problem in social network where an individual’s exposure
to information on the internet becomes limited to ideas and viewpoints similar to
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their own. This occurs because algorithms predict and select content based on past
behavior, effectively isolating users from contrasting perspectives. This can reinforce
biases and reduce the diversity of content encountered, leading to a narrower under-
standing of the world. Diversity fairness evaluates the variety within a community
by examining the connections between differently categorized nodes, such as those
labeled by different colors. Enhancing the number of connections between nodes of
distinct colors within the community leads to greater diversity.

Then, we provide insights of the balance, modularity fairness and diversity fair-
ness present in real networks by evaluating the balance, modularity fairness and
diversity fairness of several real world networks. In addition, we seek to explore the
confounding factors that may lead to unfairness. Previous research has shown that
the relative size of the groups and homophily (i.e., the tendency of nodes to connect
with similar nodes) affect various properties in the network, such as the degree and
Pagerank distribution of the groups [7, 8]. To study the effect of these parameters
on community fairness, we propose a new extension of the stochastic block model
[9] and use it to create various synthetic networks. We report findings from experi-
ments conducted on these synthetic networks, aiming at evaluating the impact of size
imbalance, homophily, and connectivity on balance and modularity fairness.

The remainder of this paper is structured as follows. In Chapter 2, we define the
three types of community fairness, in Chapter 3 we describe the Louvain algorithm
and our proposed modifications using the introduced fairness metrics, Fair Modu-
larity and diversity modularity, in Chapter 4, we descrcibe the real networks and we
introduce the synthetic models used for the experimental evaluation. In Chapter 5, the
document presents the outcomes of our empirical assessment, showcasing the findings
from community detection, the evaluation of fairness across various networks, and
the analysis of correlations among different fairness metrics. Chapter 6 discusses the
existing literature, while Chapter 7 concludes with our findings and outlines potential
future research to further develop the concept introduced.
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CHAPTER 2

FAIRNESS METRICS

2.1 Community Detection

2.2 Fairness in Community Detection

2.3 Balance Fairness

2.4 Fair Modularity

2.5 Diversity Fairness

2.1 Community Detection

Community detection was vastly studied over the past years in computer science
field. With the rapid popularity and development on the social networks, community
detection procedure and classifying users is of considerable importance in network
analysis. This evolution had a crucial impact in optimization of classical, state of the
art methods but also the development of new techniques, using modern technologies.

Most classical methods [?] in community detection are based on the network
topological structure and morphology. They are using statistical models in order to
calculate and determine similarities between the components of the graph and try to
cluster them in groups. Depending on the model used, there are different approaches
to achieve the community partitioning. Traditional methods, such Kernighan-Lin al-
gorithm and spectral bisection method are trying to find an optimal cut and divide
the network in two pieces and belong to the Graph Partitioning family of algorithms.
Other well known techniques use similarity or divisive metrics in order to merge or
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divide the nodes between them (Hierarchical Clustering and Girvan-Newman algo-
rithm). But the needs of the rapid evolution in social networks created a new problem.
These algorithms are very dependent on edge density and modern social networks
with thousands and millions connections between its users, designed strange and
confusing patterns that created the need for new techniques.

Deep learning techniques have been developed to bring the solution in the above
problem. It offers a flexible solution for handling high-dimensional network data
with improved accuracy compared to traditional methods like spectral clustering and
statistical inference. The use of deep neural networks (DNNs), deep nonnegative ma-
trix factorization and deep sparce filtering as deep learning models has significantly
advanced the field of community detection. DNNs are further divided into convo-
lutional networks, graph attention networks, generative adversarial networks and
autoencoders. The latest developments in deep learning for community detection in-
clude the use of popular benchmark datasets, evaluation metrics and open-source
implementation for experimentation settings. With its various practical applications
in various domains, deep learning continues to be a fast-growing field in community
detection.

In our work we use three community detection algorithms to evaluate our proce-
dures.

2.2 Fairness in Community Detection

Let G = (V,E) be an undirected graph, where V is the set of nodes and E ⊆ V × V

the set of edges. We assume that the nodes belong to one of two groups based on the
value of one their attributes, namely the blue group, denoted as B, and the red group,
denoted as R, where B ∪ R = V and B ∩ R = ∅. Let us call protected group the red
group. We will use ϕ to denote the ratio of the red nodes in the overall population,
that is, ϕ = |R|

|V |

Let C = {C1, C2, . . . Ck} be the set of communities. For a community Ci, abusing
slightly the notation, we use B(Ci) and R(Ci), for respectively the blue and red
nodes that belong to Ci. We assess the fairness of each community from two distinct
perspectives. Firstly, we analyze whether every group is adequately represented within
each community. Secondly, we evaluate whether the members of each group are

4



sufficiently well-connected within their respective communities.

2.3 Balance Fairness

Our first notion of fairness is based on balance. For a community Ci ∈ C, its balance,
balance(Ci), is defined in [2]:

balance(Ci) = min

(
|R(Ci)|
|B(Ci)|

,
|B(Ci)|
|R(Ci)|

)
. (2.1)

Balance focus on the representation of each group in each community. A commu-
nity with an equal number of red and blue nodes has balance 0.5 (perfectly balanced),
while a monochromatic community has balance 1 (fully unbalanced). Balance encap-
sulates a specific notion of fairness.

We adopt a demographic parity approach [?] to balanced-based fairness. For a
community Ci to be fair towards the protected group R, we ask that the percentage
of red nodes in the community is at least equal to ϕ, i.e., the percentage of red nodes
in the overall population.

Definition 2.1. For a community Ci ∈ C, the balance fairness of Ci, fbalance(Ci), is
defined as:

fbalance(Ci) =
|R(Ci)|
|Ci|

− ϕ. (2.2)

Negative values of fbalance(Ci) indicate unfairness towards the red group, that is,
the fact that the red nodes are less well-represented in the community than the blue
ones. Positive values indicate the opposite.

2.4 Fair Modularity

Our second notion of fairness evaluates for each community how well the members
of each group are connected within the community emphasizing the importance of
strong connections. Our definition is based on modularity [5]. Modularity measures
the divergence between the number of intra-communities edges from the expected
such number assuming random connections. Specifically, the modularity of commu-
nity Ci, QCi

, is defined as:

5



QCi
=

1

2m

∑
u∈Ci

∑
v∈Ci

(Auv −
du dv
2m

) (2.3)

where A is the adjacency matrix, m the number of edges in G and du, dv the
degree of node u, and v respectively.

Modularity provides a measure of how well all nodes in a community are con-
nected with each other. We are interested in the connectivity of the red nodes in
particular. To this end, for each red node u in Ci we take the difference between the
actual number of its intra-community edges and the expected such number. We call
this measure red modularity (QR

Ci
):

QR
Ci

=
1

2m

∑
u∈R(Ci)

∑
v∈Ci

(Auv −
du dv
2m

) (2.4)

We define similarly the blue modularity (QB
Ci
) as:

QB
Ci

=
1

2m

∑
u∈B(Ci)

∑
v∈Ci

(Auv −
du dv
2m

) (2.5)

An equivalent more efficient way to express modularity was derived in [?]:

QCi
=

Lc

m
−
(
dCi

2m

)2

(2.6)

where LCi
is the number of intra-community edges, and dCi

the sum of the degrees
of nodes in community Ci.

Following a similar approach, we derive the following more efficient formulas for
the red and blue modularity:

QR
Ci

=
LR
c

m
−

dCi
dRCi

(2m)2
(2.7)

QB
Ci

=
LB
c

m
−

dCi
dBCi

(2m)2
(2.8)

where LR
Ci
(LB

Ci
) is the number of intra-community edges with at least one red

(blue) endpoint and dRCi
(dBCi

) is the sum of the degrees of the red (blue) nodes in Ci.
We now define modularity fairness by comparing the red and the blue modularity.

Definition 2.2. For a community Ci ∈ C, the modularity fairness of Ci, fmodularity(Ci)

is defined as:
fmodularity(Ci) =

RQCi
− BQCi

|QCi
|

. (2.9)
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Negative values of fmodularity(Ci) indicate unfairness towards the red group, that
is, the fact that the red nodes are less connected within the community than the blue
ones. Positive values indicate the opposite.

2.5 Diversity Fairness

Our third notion of fairness expands the modularity family definitions and evaluates
how well are connected the members of each group in the whole network. Inspired
by [6] they are addressing the filter bubble problem through the lens of algorithmic
fairness, particularly focusing on dyadic-level fairness criteria. It introduces two cri-
teria, namely subgroup dyadic-level protection and mixed dyadic-level protection, to
assess fairness in link formation with respect to protected group memberships. The
former ensures representativeness of protected subgroups in link creation, while the
latter evaluates homogeneity in nodes participating in each link to prevent segregation
and filter bubble effects.

Building upon this foundation, the paper incorporates the network modularity
measure as a tool to assess mixed dyadic-level protection. Network modularity, ini-
tially developed for community detection, quantifies homophily in social networks
by analyzing link density within communities. The modularity measure is adapted
for fairness evaluation by considering protected attribute values, such as gender, in
the calculation. A higher modularity value indicates a network biased towards intra-
group links, signaling potential unfairness.

This Diversity Modularity metric is inspired by foundational work documented
in [6] and is designed to quantify the degree of modularity within networks, taking
into account the attributes among nodes. The metric is defined as follows:

QD =
1

2m

∑
i,j∈C

(Ai,j −
didj
2m

)δ(ci, cj)(1− δ(Pi, Pj)) (2.10)

Here, QD represents the diversity modularity, where Ai,j denotes the adjacency
matrix element indicating the presence (or absence) of an edge between nodes i and
j. The term, di and dj refer to the degrees of nodes i and j respectively, while m

represents the total number of edges in the network. The δ(Pi, Pj) is the kronecher
function for the attribute we study each time, so it is 1 if nodes i and j have the same
value for the selected attribte and 0 otherwise.
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Integrating the (1− δ(Pi, Pj)) we can rewrite 2.10 as:

QD =
1

2m

∑
j∈P (Ci)

∑
i∈Ci

(Ai,j −
didj
2m

) (2.11)

The sets Ci and P (Ci) denote the community to which node i belongs and the
subset of nodes within Ci that possess an attribute value opposite to that of node i,
respectively.

Definition 2.3. To facilitate a more efficient computation and analysis of the modu-
larity metric, an equivalent formulation is proposed:

QD =
LP
Ci

m
−

dCi
dPCi

(2m)2
(2.12)

In this expression, LP
Ci
signifies the sum of the weights of edges connecting nodes of

differing attributes within the same community Ci. Meanwhile, dCi
and dPCi

represent
the cumulative degrees of nodes within Ci and the aggregate edge weights connecting
nodes of opposite attributes within the community (inclusive of inter-community con-
nections), respectively. This reformulation not only retains the original metric’s intent
but also enhances computational efficiency, enabling a more streamlined analysis of
modularity in networks characterized by attribute polarization.

In alignment with this concept, our proposed fairness-aware framework extends
this evaluation by introducing a metric that gauges the reduction in modularity mea-
sure. This metric serves as a means to appraise whether the link prediction results
contribute to bias by favoring either inter-group or intra-group links. The framework
aims to quantify and mitigate unfairness in the modified network resulting from link
predictions, enhancing the understanding of the network’s fairness in terms of mixed
dyadic-level protection.
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CHAPTER 3

ALGORITHMS

3.1 Louvain Algorithm

3.2 Fair Modularity Louvain Modifictaiton

3.3 Diversity Louvain Modification

3.1 Louvain Algorithm

The first algorithm we use to detect communities in our experiments is the Louvain
algorithm as proposed by [10] and [11]. Louvain Community Detection algorithm is a
simple method to detect a network’s community structure. The algorithm is divided
in 2 phases. On the first phase, it assigns every node in its own community, so the
in the first partition there are as many communities as the total number of nodes in
the network. Next, for every node i, they evaluate the gain of modularity by moving
each node to the neighbouring communities and try to find the maximum positive
modularity. If there is no positive modularity the node remains in its community.
This process is repeated for all nodes until there is no other improvement.

Lemma 3.1. The modularity gain obtained by moving a node i into a community C can
be calculated by the following formula as introduced by [10]:

∆Q =

[∑
in +2

∑
i∈Ci

di,in

2m
−
(∑

tot +
∑

i∈Ci
di

2m

)2
]
−

[∑
in

2m
−
(∑

tot

2m

)2

−
(∑

i∈Ci
di

2m

)2
]

(3.1)
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In 3.1, ∆Q is the change in modularity,
∑

in is the sum of the weights of the
edges inside the community,

∑
i∈Ci

di,in is the sum of the weights of the edges from
node i to nodes in the community, m is the sum of the weights of all the edges in
the network,

∑
tot is the sum of the weights of the edges incident to nodes in the

community,
∑

i∈Ci
di is the sum of the weights of the edges incident to node i.

From 3.1 with simple Algebra (combining [10][11]) we can derive in the formula:

∆Q =

∑
i∈Ci

di,in

2m
−
∑

tot ·
∑

i∈Ci
di

2m2
(3.2)

where m is the size of the graph,
∑

i∈Ci
di,in is the sum of the weights of the links

from i to nodes in C , di is the sum of the weights of the links incident to node i and∑
tot is the sum of the weights of the links incident to nodes in C. The weight of a

link is considered as 1 unless specified otherwise.
The goal of the second phase is to build a new network, whose nodes are now the

communities found in the first phase. For that cause, the weights of the links between
the new nodes are given by the sum of the weight of the links between nodes in the
corresponding two communities. Once this phase is complete, it is possible to reapply
the first phase creating bigger communities with increased modularity.
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Algorithm 3.1 Louvain algorithm
Input: Graph G(V,E) where V is the set of vertices, E is the set of edges.
Output: List of N clusters detected.
repeat
Assign every vertex v ∈ V a unique community number, calculate the modularity
Q for the initial partition.
for each vertex v ∈ V do
Calculate the modularity gain ∆Q by removing v from its current community
and placing it in the community of each neighbor.
if ∆Q > 0 then
Move v to the community with the highest modularity gain.

end if
end for
Aggregate every node that belongs to the same community and create a new
”meta-node” representing them. Now the new V is the set of those ”meta-nodes”.

Recalculate the weight of the edges between these new ”meta-nodes”.
until there is no change in modularity
=0
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3.2 Fair Modularity Louvain Modifictaiton

We propose a modification to Louvain Algorithm for community detection named
Fair Modularity Louvain. Our modification optimizes the fair modularity metric in-
troduced earlier in this work and its purpose is to build communities of equal red and
blue connectivity thus, there is no group that is more connected than the other inside
the community. For that purpose it is crucial to balance the modularity between the
red connectivity and blue connectivity. The algorithm also works in 2 steps as the
original procedure.

Before we describe the algorithm steps, we need to introduce a new metric named
Fair modularity gain ∆QF . That value is adjacent to the modularity gain ∆Q 3.1
from Louvain and is responsible for calculating the increase of fair modularity when
a node moves from a community to another.

Lemma 3.2. The Fair Modularity gain for red nodes perspective is defined as:

∆QR
F =

∑R
in +2

∑
i∈C dRi,in

2m
−

(∑R
tot +

∑
i∈Ci

di

2m

)2
−
∑R

in

2m
−

(∑R
tot

2m

)2

−
(∑

i∈Ci
di

2m

)2


(3.3)

∆QR
F =

∑
i∈C dRi,in
2m

−
∑R

tot ·
∑

i∈Ci
di

2m2
(3.4)

∆QB
F =

∑
i∈C dBi,in
2m

−
∑B

tot ·
∑

i∈Ci
di

2m2
(3.5)

∆QF = |∆QR
F −∆QB

F | (3.6)

In 3.3 ∆QR
F is the change in fair modularity for red nodes,

∑R
in is the sum of the

weights of the edges inside the community with at least one red node,
∑

i∈C dRi,in is
the sum of the weights of the edges from node i with at least one red node, m is the
sum of the weights of all the edges in the network,

∑R
tot is the sum of the weights of

the edges incident to nodes inside the community with at least one red node,
∑

i∈Ci
di

is the sum of the weights of the edges incident to node i.
Again with simple calculations from 3.3 we can derive to 3.4. Adjacently for the

blue node perspective, replacing the adjacent variables from the 3.3 we can conclude
to the 3.5. The algorithm optimizes the 3.6.
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Again the goal of the second phase is to build a new network, whose nodes are
now the communities found in the first phase. For that cause, the weights of the links
between the new nodes are given by the sum of the weight of the links between nodes
in the corresponding two communities. Once this phase is complete, it is possible to
reapply the first phase creating bigger communities with increased fair modularity.

Algorithm 3.2 Fair Modularity Louvain algorithm
Input: Graph G(V,E,A, λ) where V is the set of vertices, E is the set of edges
and A is the attributes of each node in the graph and λ ∈ [0, 1] controlling the
participation rate of each modularity value.
Output: List of N clusters detected.
repeat
Assign every vertex v ∈ V a unique community number, calculate the modularity
Q and the fair modularity QF for the initial partition and calculate the Qdiff =

λQ− (1− λ)QF

for each vertex v ∈ V do
Calculate the modularity gain ∆Q and the fair modularity gain ∆QF by re-
moving v from its current community and placing it in the community of each
neighbor.
if λ∆Q− (1− λ)∆QF > 0 then
Move v to the community with the highest gain.

end if
end for
Aggregate every node that belongs to the same community and create a new
”meta-node” representing them. Now the new V set is those ”meta-nodes”.
Recalculate the weight of the edges between these new ”meta-nodes”.

until there is no change in Qdiff =0

3.3 Diversity Louvain Modification

The Diversity Louvain Algorithm represents an innovative modification of the tra-
ditional Louvain Algorithm, specifically tailored for enhanced community detection
within networks. This advanced algorithm endeavors to optimize the segregation of
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communities by meticulously adjusting the distribution of Red-Blue edges within
these groups without losing the community structure that the original Louvain algo-
rithm offers. The algorithm works in 2 steps as the original procedure.

Before we describe the algorithm steps, we need to introduce a new metric named
Diversity Modularity Gain ∆QD. This value is adjacent to the modularity gain ∆Q

from Louvain and is responsible for calculating the increase in Diversity modularity
when a node moves from a community to another.

Lemma 3.3. The Diversity Modularity gain is defined as:

∆QD =

∑P
in +2

∑
i∈C dPi,in

2m
−

(∑P
tot +

∑
i∈Ci

di

2m

)2
−
∑P

in

2m
−

(∑P
tot

2m

)2

−
(∑

i∈Ci
di

2m

)2


(3.7)

∆QD =

∑
i∈C dPi,in
2m

−
∑P

tot ·
∑

i∈Ci
di

2m2
(3.8)

In 3.7 ∆QD is the change in diversity modularity,
∑P

in is the sum of the weights
of the edges inside the community between nodes with different attribute,

∑
i∈C dPi,in

is the sum of the weights of the edges from node i to nodes with different attribute
in the community, m is the sum of the weights of all the edges in the network,

∑P
tot

is the sum of the weights of the edges incident to nodes with different attribute in
the community,

∑
i∈Ci

di is the sum of the weights of the edges incident to node i.
Again with simple calculations from 3.7 we can derive to 3.8.

Initially, the algorithm designates each node to a single community, establishing
an initial partition. Subsequent to this assignment, the algorithm calculates the mod-
ularity Q, the diversity modularity QD and their difference Qdiff = λQ − (1 − λ)QD.
This λ controls participation rate of each modularity value ensuring that the final
communities will not lose much of the structure.

Next for every node i, they evaluate the gain of modularity ∆Q and the diversity
modularity gain ∆QD by moving each node to the neighbouring communities and
try to find the maximum positive gain. We assume the final gain as final_gain =

λ∆Q − (1 − λ)∆QD. If there is no positive gain the node remains in its community.
This process is repeated for all nodes until there is no other improvement of Qdiff .

The subsequent phase is characterized by the construction of a novel network
framework, wherein the nodes are constituted by the communities identified during

14



the initial phase. In this restructured network, the linkage weight between newly
formed nodes is determined by the aggregate weight of connections spanning nodes
across the respective communities. This model presupposes a unitary weight assign-
ment weight = 1 for edges interlinking nodes of divergent colors. Upon the completion
of this phase, the algorithm permits a reiteration of the initial phase, facilitating the
amalgamation of communities into larger entities with augmented diversity modu-
larity.

This iterative process—comprising the initial assignment and optimization phase,
followed by the network reconstruction and community integration phase—persists
until no further gains in Diversity Modularity are realized.

Algorithm 3.3 Diversity Louvain algorithm
Input: Graph G(V,E,A, λ) where V is the set of vertices, E is the set of edges
and A is the attributes of each node in the graph and λ ∈ [0, 1] controlling the
participation rate of each modularity value.
Output: List of N clusters detected.
repeat
Assign every vertex v ∈ V a unique community number, calculate the modularity
Q and the Diversity modularity QD for the initial partition and calculate the
Qdiff = λQ− (1− λ)QD

for each vertex v ∈ V do
Calculate the modularity gain ∆Q and the diversity modularity gain ∆QD by
removing v from its current community and placing it in the community of
each neighbor.
if λ∆Q− (1− λ)∆QD > 0 then
Move v to the community with the highest gain.

end if
end for
Aggregate every node that belongs to the same community and create a new
”meta-node” representing them. Now the new V set is those ”meta-nodes”
Recalculate the weight of the edges between these new ”meta-nodes”.

until there is no change in Qdiff =0
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CHAPTER 4

DATASET DESCRIPTION

4.1 Real World Data

4.2 Synthetic Data

In this section, we study the balance and modularity fairness of several real and
synthetic networks. To detect communities, we use the Louvain algorithm, a greedy
algorithm that optimizes modularity [10].

4.1 Real World Data

We study the following real datasets:

• Pokec1 Nodes are the users of the Pokec social network and edges are friendship
relationships between them. We study both the gender attribute (Pokec‐g) and
the age attribute (Pokec‐a). For the age attribute, we remove nodes that have
no value for this attribute, or the value was not a possible value for age. We
use the median value of the remaining nodes for splitting the nodes into two
(almost) equal-sized groups.

• Deezer2 Nodes are Deezer users from European countries and edges are mutual
follower relationships between them.

1https://snap.stanford.edu/data/soc-Pokec.html
2https://snap.stanford.edu/data/feather-deezer-social.html
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• Facebook3 The dataset consists of friends list from Facebook.

• Twitch Gamers4 Nodes are twitch users and edges are mutual follower rela-
tionship between them.

• NBA5 Nodes are NBA players and data collected from Twitter.

Note that for Deezer and Facebook the actual values of the sensitive attribute are
hidden in the datasets. We also report homophily values that indicate the tendency
of nodes to connect with nodes with similar attribute values, in our case, with nodes
of the same color. We report separately the homophily of the red (Rh) and the
homophily of the blue nodes (Bh). Rh is computed as the ratio of the number of
the actual edges connecting two red nodes and the expected number of such edges
(estimated as ϕ2). Rh > 1 indicates homophily, while Rh < 1 heterophily (tendency
to connect with nodes of the opposite color). Similarly, we compute Bh as the ratio
of the number of the actual edges between two blue nodes and the expected such
number (estimated as (1− ϕ)2).

In Table 4.2(left), we report the results of the Louvain algorithm: the number of
communities detected, their average size, and the average modularity of all commu-
nities.

Table 4.1: Network characteristics, AvRd (AvBd): average degree of the red (blue)
nodes, Rh (Bh): red (blue) homompily.

Network # Nodes # Edges Attribute # Blue nodes # Red nodes AvRd AvBd ϕ

Pokec-g 1,632,803 22,301,964 Gender 804,474 828,289 28.28 26.32 0.51
Pokec-a 1,095,590 10,779,932 Age 546,212 549,381 14.20 25.20 0.50
Pokec-a asym 1,095,590 10,779,932 Age ≤ 30 250,863 844,705 35.5 15.08 0.77
Deezer 28,281 92,752 Gender 12,535 15,738 6.73 6.34 0.57
Facebook 4,039 88,234 Gender 1,532 2,507 42.09 46.30 0.62
Twitch Gamers 168,114 6,797,557 Maturity 79,033 89,081 74.31 88.26 0.53
NBA 400 10,621 Age ≤ 26 204 196 43.54 61.9 0.49

3http://snap.stanford.edu/data/ego-Facebook.html
4https://snap.stanford.edu/data/twitch_gamers.html
5https://github.com/EnyanDai/FairGNN/tree/main/dataset/NBA
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Table 4.2: Communities detected and their aggregated balance and modularity fair-
ness.

Network # Comms Size Mod
Balance Modularity

Min Avg Per. fair R Per. fair B Min Avg Per. fair R Per. fair B

Pokec-g 38 42,967.5 0.71 0.19 0.49 0.57 0.58 -1 0.1 0.85 0.15
Pokec-a 47 23,309.9 0.72 0 0.36 0.65 0.50 -1 -0.46 0.02 0.99
Pokec-a asym 47 23,309 0.72 -0.5 0.13 0.78 0.45 -1 0.44 0.02 0.99
Deezer 88 348.86 0.69 0.11 0.56 0.58 0.50 -1 0.18 0.92 0.10
Facebook 16 252.19 0.83 0.43 0.62 0.58 0.58 -0.05 0.23 0.95 0.09
Twitch Gamers 21 8,005.43 0.42 0.37 0.63 0.52 0.65 -0.40 0.22 0.52 0.65
NBA 6 23.33 0.18 -0.4 -0.03 0.54 0.55 -0.86 -0.1 0.67 0.66

4.2 Synthetic Data

4.2.1 Symmetric Synthetic Model

To study the factors that may lead to unfairness, we introduce a new model based on
the stochastic block model [4] to create networks with nodes of different colors and
connectivity behavior. The model has three important parameters:

• pR: the probability that a node belongs to the red group. This parameter controls
the relative size of the two groups. By setting pR = 0.5, we get groups of equal
size, while when pR < 0.5, the red group is the minority group.

• ph: the probability that a node connects with a a node that has the same color
with it. This parameter controls homophily. With ph = 1, we have perfect ho-
mophily, with ph = 0, nodes connect only with nodes of the opposite color and
we get heterophily, while ph = 0.5 results in neutral behavior.

• pc: the probability that a node connects with a a node that belongs to the same
community with it. This parameter controls modularity. Large values of pc lead
to well-connected communities, while when pc ≤ 0.5, there is no community
structure.

We start by an initial assignment of nodes in h communities and then generate
edges between them. Note that the actual number of communities created differs from
h, depending on the values of the parameters. First, we assign an equal number of
nodes to each community. Then, for each of the nodes, we use pR to determine its
color. Finally, we generate edges as follows. For each node u, we create h edges on
average. To create edge e = (u, v), we first select the community that v will belong
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to and then its color. Specifically, we use pc to determine whether e will be an inter-
community or an intra-community edge. Then, we use ph to determine the color of
node v. Let X ∈ {R,B} be the selected color. If e is an intra-community edge, we
choose as v uniformly at random a node of color X in the community of u. In case
of an inter-community edge, we first choose uniformly at random one of the h − 1

communities other than the community of u. Let C be this community. We choose
as v uniformly at random a node of color X in C.

Table 4.3 summarizes the parameters. We study the influence of size imbalance
(pR), homophily (ph) and intra-cluster connectivity (pc) in fairness. In each case, we
vary one of the three parameters and use the default values for the other. We run
each experiment 5 times.

Table 4.3: Synthetic dataset characteristics.

Parameter Meaning Default

N number of nodes 4000
pR ratio of red nodes 0.5
l edges per new node 4
h initial number of communities 5
ph homophily 0.5
pc prob. of intra-cluster edge 0.7

4.2.2 Assymetric Synthetic Model

In this subsection, we present an extension of our previously introduced model, aimed
at further advancing the evaluation framework for network fairness. Building upon
the foundation laid out in our earlier work, which introduced a novel synthetic net-
work generation model to assess fairness based on various criteria, we now introduce
an enhanced and more intricate model. This new iteration incorporates a height-
ened complexity, featuring an expanded set of parameters designed to capture and
evaluate a broader spectrum of behaviors within the synthesized networks. Through
this augmentation, we aim to deepen our understanding of fairness considerations
in network structures and provide a more comprehensive tool for researchers and
practitioners to assess and address nuanced aspects of fairness in network models.
The model has these important parameters:
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• pR: the probability that a node belongs to the red group. This parameter controls
the relative size of the two groups. By setting pR = 0.5, we get groups of equal
size, while when pR < 0.5, the red group is the minority group.

• phR: the probability of a red node connects with a a node that has the same color
with it. This parameter controls homophily of the red group. With phR = 1,
we have perfect homophily, with phR = 0, nodes connect only with nodes of
the opposite color and we get heterophily, while phR = 0.5 results in neutral
behavior.

• phB: the probability of blue node connects with a node that has the same color
with it. This parameter controls homophily of the blue group. With phB = 1,
we have perfect homophily, with phB = 0, nodes connect only with nodes of
the opposite color and we get heterophily, while phB = 0.5 results in neutral
behavior.

• pcR: the probability that a red node connects with a node that belongs to the
same community with it. This parameter controls red group modularity. Large
values of pcR lead to well-connected communities, while when pcR ≤ 0.5, there
is no community structure among red nodes.

• pcB: the probability that a blue node connects with a node that belongs to the
same community with it. This parameter controls blue group modularity. Large
values of pcB lead to well-connected communities, while when pcB ≤ 0.5, there
is no community structure among the blue nodes.

We start by an initial assignment of nodes in k communities and then generate
edges between the nodes. Note that the actual number of communities created differs
from k, depending on the values of the other parameters. First, we assign an equal
number of nodes to each community. Then, for each of the nodes, we use pR to
determine the color of the node. Finally, we generate edges as follows. For each node
u, we create l edges on average. To create an edge e = (u, v) for u, we first select the
community that target node v will belong to and then the color of v. Specifically, we
use pcR and pcB values if the initial node u is red or blue adjacently, to determine
whether e will be an inter-community or an intra-community edge. Then, we use phR
and phB values if the initial node u is red or blue adjacently, to determine the color of
target node v. Let X ∈ {R,B} be the selected color. If e is an intra-community edge,
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we choose as v uniformly at random a node of color X in the same community as u.
If e is an inter-community edge, we first choose uniformly at random one of the k−1

communities other than the community of u. Let C be this community. We choose
as v uniformly at random a node of color X in community C.
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CHAPTER 5

EXPERIMENTS

5.1 Evaluation of Fairness

5.2 Fairness Metrics Correlation

5.3 Comparative Analysis of Modified Louvain Algorithms

5.1 Evaluation of Fairness

We initiated the analysis by performing community detection on various social net-
works, encompassing both real-world and synthetic instances. Two widely employed
algorithms, Louvain and Spectral Clustering, were employed for this task. The pri-
mary objective of community detection was to identify cohesive groups within the
network.

Subsequently, we evaluated the identified community structures using the modu-
larity value. Modularity serves as a metric to assess the quality of community struc-
tures, measuring the extent to which the network is partitioned into distinct, internally
connected groups.

In Table 5.1, we report results about the communities detected in the real net-
works using the Louvain algorithm, specifically, we report the number of communities
detected, their average size, and their average modularity.

Having established the community structures, our focus shifted to the examination
of fairness within these communities. We employed two distinct fairness definitions
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Table 5.1: Detected communities.

Network Number Avg. Size Avg. Mod

Pokec-g 38 42,967 0.71

Pokec-a 47 23,309 0.72

Pokec-a asym 47 23,309 0.72

Deezer 88 348 0.69

Facebook 16 252 0.83

Twitch Gamers 21 8,005 0.42

ΝΒΑ 6 66,7 0.18

to comprehensively assess the distribution of resources and opportunities among
community members.

5.1.1 Real World Networks

In Figures 5.1 and 5.2, we plot respectively the distribution of fbalance and fmodularity

of the communities found in the real networks. Negative values correspond to com-
munities unfair towards the red group, while positive values to communities unfair
towards the blue group. Unfair communities exist in all networks both in the case
of fbalance and fmodularity , as indicated by the large number of communities having
non-zero fbalance and fmodularity values. In terms of fbalance, Pokec is almost gender
balanced (Pokec-g), while it is unfair towards the younger individuals (Pokec-a).
Pokec is also modularity fair for gender (Pokec-g) and modularity unfair towards the
younger individuals (Pokec-a). Deeezer is almost gender balanced, but the members
of the red group are more connected in their communities as indicated by the ma-
jority of positive fmodularity values. Facebook is slightly balanced unfair towards the
red group, which is also the largest group, but heavily modularity unfair towards
the blue group. Finally, Twitch is both balanced and modularity unfair towards the
more mature users.

When examining diversity and fairness through Figure 5.3, we define a commu-
nity as fair if the actual count of edges connecting Red and Blue nodes matches the
expected count of such connections, with a baseline value of 0.5. Communities scor-
ing above this threshold are deemed fair, whereas those below are considered less
fair. The analysis reveals that the Facebook network exhibits complete fairness, with
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every community aligning with diversity expectations. Similarly, the Deezer network
predominantly hosts communities that are considered fair. In contrast, the Pokec net-
work, across two selected attributes, displays a mix of fair and less fair communities,
albeit with a majority leaning towards fairness. Conversely, communities within the
NBA and Twitch networks show a notable lack of diversity, particularly within the
NBA network, where no community meets the diversity criterion.
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Figure 5.1: Distribution of fbalance in the real datasets. The red line corresponds to 0.
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Figure 5.2: Distribution of fmodularity in the real datasets. The red line corresponds to
0.
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Figure 5.3: Distribution of diversity fairness in the real datasets. The red line corre-
sponds to 0.5
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5.1.2 Synthetic Networks

In Figure 5.4, we report results regarding fbalance. We use violin plots to depict the
distribution of fbalance in the communities for different values of our parameters.
Again negative values indicate unfairness towards the red group, while positive val-
ues unfairness towards the blue group. Size imbalance (pB) is directly reflected in
fbalance, since there is balance unfairness towards the smaller group. In terms of ho-
mophily (ph), when the networks have low homophily, i.e., ph < 0.5, all communities
are almost balanced, i.e., their fbalance is very close to 0. As networks become ho-
mophilic (ph increases), the fbalance of many communities deviates from 0 towards
values corresponding to monochromatic communities (recall that ϕ = pR = 0.5). Fi-
nally, intra-cluster connectivity (pc) has a very small effect on fbalance. While pc affects
the quality of the communities, it does not affect fairness, indicating that quality may
not have a direct influence on fairness.

In Figure 5.5, we report results regarding fmodularity. In terms of pR, we get the
best fairness, when the two groups have equal sizes (pR = 0.5). In all other cases, the
algorithm favors the larger group, creating better connected communities (positive
values) for this group. Homophily (ph) seems to also affect fmodularity , since nodes end
up in communities in which they are less connected. Again pc has a smaller effect on
fairness.
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Figure 5.4: Distribution of fbalance in synthetic datasets. The red line corresponds to
0.

In Figure 5.7, we report results regarding fbalance compared with ph changes. We
use violin plots to depict the distribution of fbalance in the communities for differ-
ent values of our parameters. Again negative values indicate unfairness towards the
red group, while positive values unfairness towards the blue group. In terms of ho-
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Figure 5.5: Distribution of fmodularity in synthetic datasets. The red line corresponds
to 0.
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mophily it seems when the nodes of one group tend to connect only with the opposite
group (phB = 0) meaning no signs of homophily all communities are almost close to 0
thus considered balanced. When both groups are homophilic and connect only with
nodes of their group, as it is obvious the networks show great variance on their fair-
ness, making them unbalanced. We can conclude that heterophily leads to balanced
networks.

In Figure 5.8, we report results regarding fmodularity compared with ph changes.
Homophily, seems to also affect fmodularity , since nodes end up in communities in
which they are less connected. The group that is most connected with itself seems to
be favored in the network. In the case of one group being fully homophilic, we see
that as the other group becomes more homophilic there is a significant variance in
the modularity value of the communities.

In Figure 5.10 and 5.11, we report results of fbalance and fmodularity compared
with pc changes respectively. For both fairness definitions it seems that there is low
contribution of the connectivity in the changes of fairness.
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Figure 5.7: Distribution of fbalance in asymetric synthetic datasets by changing phR.
The red line corresponds to 0.
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Figure 5.8: Distribution of fmodularity in asymetric synthetic datasets by changing phR.
The red line corresponds to 0.
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Figure 5.9: Distribution of Filter Bubble fairness in asymetric synthetic datasets by
changing phR. The red line corresponds to 0.
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Figure 5.10: Distribution of fbalance in asymetric synthetic datasets by changing pcR.
The red line corresponds to 0.
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Figure 5.11: Distribution of fmodularity in asymetric synthetic datasets by changing pcR.
The red line corresponds to 0.
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Figure 5.12: Distribution of Filter Bubble fairness in asymetric synthetic datasets by
changing pcR. The red line corresponds to 0.
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5.2 Fairness Metrics Correlation

Across all networks analyzed, there is a notable relationship between Balance and
Modularity fairness, indicating a strong correlation. However, for other metrics, there
is no significant correlation observed. In figures 5.13, 5.14, 5.15, 5.16, 5.17 we can see
the results for the real networks.
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31



Balance Fairness Modularity Fairness Diversity Fairness Modularity

Ba
la

nc
e 

Fa
irn

es
s

M
od

ul
ar

ity
 Fa

irn
es

s
Di

ve
rs

ity
 Fa

irn
es

s
M

od
ul

ar
ity

1 0.86 -0.14 -0.0057

0.86 1 -0.096 0.012

-0.14 -0.096 1 -0.28

-0.0057 0.012 -0.28 1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.14: Deezer-Fairness Metrics Correlation

32



Balance Fairness Modularity Fairness Diversity Fairness Modularity

Ba
la

nc
e 

Fa
irn

es
s

M
od

ul
ar

ity
 Fa

irn
es

s
Di

ve
rs

ity
 Fa

irn
es

s
M

od
ul

ar
ity

1 0.97 0.025 -0.44

0.97 1 -0.0032 -0.37

0.025 -0.0032 1 -0.048

-0.44 -0.37 -0.048 1

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.15: Twitch-Fairness Metrics Correlation
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5.3 Comparative Analysis of Modified Louvain Algorithms

5.3.1 Fair Modularity Analysis

In this section, we delve into the comparative analysis of the modified Louvain al-
gorithm, which is tailored to foster equal connectivity within communities, especially
between nodes identified as red and blue. As outlined in Section 3.2, a community
achieves fair connectivity when the connectivity density between red and blue group
members is equivalent. This adaptation is grounded in the concept of Fair Modu-
larity, referenced in 2.4 and 3.2, which acts as the guiding objective function for the
algorithm’s optimization process.

Throughout our experiments, we concurrently evaluate both modularity and fair
modularity metrics, adjusting their influence in the optimization process according to
the value of λ ∈ [0, 1]. This adjustment is governed by the equation:

Qdiff = 1×Q+ (1− λ)×QF (5.1)

where Qdiff represents the combined metric used for optimization, blending the tra-
ditional modularity Q and fair modularity QF based on the λ. A λ value of 0 focuses
the algorithm purely on optimizing fair modularity QF , whereas a λ of 1 shifts the
focus entirely to traditional modularity Q, mirroring the original Louvain algorithm.
This framework allows us to examine the impact of varying degrees of fair metric
optimization on community structure, highlighting the balance between different op-
timization metrics. The outcomes of these experiments and the effects of this metric
balance are illustrated in Figures 5.19, 5.20, 5.21, and 5.22, showcasing the results
of this trade-off.
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(a) Fair Modularity (b) Modularity

Figure 5.20: Fair Modularity Deezer

(a) Fair Modularity (b) Modularity

Figure 5.19: Fair Modularity Facebook
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(a) Fair Modularity (b) Modularity

Figure 5.21: Fair Modularity Twitch

(a) Fair Modularity (b) Modularity

Figure 5.22: Fair Modularity NBA

In our results, we analyze the difference in connectivity density between red and
blue nodes, represented by |QR−QB| alongside the modularity value’s impact on the
network. Our findings reveal that for λ ≤ 0.5 the algorithm tends to identify a number
of communities equal to the number of nodes in the graph, thereby achieving the
highest possible fairness in community connectivity. Conversely, for λ > 0.5, where
the modularity value has a greater influence on the optimization process, the result-
ing community structure significantly improves compared to scenarios with lower λ.
As the λ increases, the fair modularity value rises, indicating that the communities
become more coherent. However, it’s noteworthy that an increase in fair modularity
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(bearing in mind that values approaching 0 denote fairness) suggests a deviation
from absolute fairness. This deviation implies that as communities become more de-
fined and structured, the fairness in modularity—compared to that of communities
identified by the original Louvain algorithm—starts to diverge from the ideal of zero,
indicating a shift towards structured yet less evenly connected communities.

5.3.2 Diversity Modularity Analysis

In this section we compare the modified Louvain algorithm for community detection,
aimed at enhancing community diversity by prioritizing edges between nodes of dif-
fering attributes, such as gender. The core of this modification is Diversity Modularity
as introduced in 2.5, and 3.3 which serves as the objective function for optimization
within the algorithm.

Diversity Modularity is designed to quantify the degree of diversity within de-
tected communities by evaluating the distribution of edges connecting nodes with
varied attributes. This metric is integrated into the optimization process of the Lou-
vain algorithm, alongside the traditional Modularity metric, to guide the formation
of diverse communities. The experimental framework incorporates a lambda (λ) pa-
rameter, which operates within a range of 0 to 1. This parameter dictates the trade-off
between traditional Modularity and Diversity Modularity in the community detection
process. The final optimization function is defined as:

Qdiff = 1×Q+ (1− λ)×QD

The experiment evaluates the impact of varying λ values on the resulting com-
munity structures, specifically observing changes in both Modularity and Diversity
Modularity metrics. This analysis aims to understand how the emphasis on diversity
modularity influences the overall graph structure and the balance between achieving
high modularity and enhancing diversity within communities. In the figures 5.23
5.24 5.25 5.26 we can see the results on real social networks.
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Figure 5.23: Fair Diversity Facebook
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Figure 5.24: Fair Diversity Deezer
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Figure 5.25: Fair Diversity Twitch
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Figure 5.26: Fair Diversity NBA

In our observations, even with a λ = 0, where optimization is solely focused on
diversity modularity, the impact on traditional modularity metrics is minimal. This
phenomenon is particularly pronounced in well-structured networks, which appear
to be less susceptible to alterations induced by prioritizing diversity. Consistent with
our expectations, increasing lambda values correlate with a decrease in diversity mod-
ularity and an enhancement in traditional modularity metrics across real social net-
works. This trend validates our hypothesis regarding the interplay between diversity
enhancement and structural integrity within community detection algorithms.
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CHAPTER 6

RELATED WORK

There has been a lot of recent research in fairness in machine learning [12, 13],
although fairness for graph data has been less explored [1]. The balanced view ap-
proach of fairness was introduced in the seminal work of fairlets [2] for the case
of clustering of non-graph data. It has been extended in various directions, such as
for supporting more than one protected group [3], and for improving performance
[14]. A balanced view has also been considered for graph data through a spectral
clustering algorithm with fairness constraints [4].

Another view of fairness is that of ensuring results of equal quality for both groups
by minimizing the clustering cost. This view is taken for non-graph data in the socially
fair k-means clustering approach that seeks to minimize the maximum of the average
k-means objective applied to each group [15] and in equitable clustering that seeks to
minimize the distance of each point to its nearest center [16]. In a sense, modularity-
based clustering follows this view, since its goal is maintaining good clustering quality
in terms of intra-cluster connectivity.

There is also research on individual fairness in graphs e.g., [17]. Modularity-
based fairness can be also applied at the individual node level, by looking at the
connectivity of individual nodes; we leave this as future work. Finally, modularity
has been refined to promote mixed links, i.e., links connecting nodes of different color in
link recommendations [6]. In this paper, we focus on the connectivity of the protected
group inside each community. It would be interesting to also look into promoting
mixed links inside each community.
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[18] research on community detection in weighted networks introduces a nuanced
perspective on algorithmic fairness and modularity. They emphasize the complexity
of weighted connections in networks, proposing intra-centrality and inter-centrality
metrics to better understand community structures. This work aligns with the thesis’s
exploration of fairness in modularity-based community detection, offering a method-
ological foundation for evaluating the impact of algorithm modifications on fairness
metrics. Their findings on the applications in Delay Tolerant Networks (DTN) and
Online Social Networks (OSN) illustrate the practical implications of these algorithms,
underscoring the relevance of fairness considerations in diverse network contexts.

One prominent method for evaluating community detection fairness is through
the application of fairness metrics such as balance, distance definition [15], and indi-
vidual fairness [19]. These metrics assess how well community detection algorithms
represent protected attributes within identified communities, thus providing a nu-
anced understanding of algorithmic fairness. For instance, the balance metric eval-
uates the proportionate representation of different groups, offering insights into the
demographic parity achieved by community detection algorithms.

Recent advancements in fair clustering have introduced novel perspectives and
methodologies for integrating fairness into unsupervised learning tasks, such as com-
munity detection. A significant contribution in this domain has been made by [19],
who proposed a local search-based algorithm for k-median and k-means clustering
that addresses individual fairness. This work defines individual fairness in terms
of ensuring that each point in a dataset is clustered with a center within a cer-
tain expected radius, thereby guaranteeing fair treatment across all data points. The
algorithm achieves a bicriteria approximation that balances clustering quality with
fairness, presenting a notable step forward in the pursuit of equitable algorithms in
machine learning. This research complements the traditional focus on group fairness
by highlighting the importance of treating individuals equitably within the cluster-
ing process, thereby enriching the discourse on fairness in community detection and
offering new pathways for algorithmic development.

Another work that is related with in-processing procedure for community de-
tection algorithm [20] introducing ”I-Louvain,” an algorithm for attributed graph
clustering that enhances the original Louvain method by incorporating a new mea-
sure based on inertia alongside Newman’s modularity. This dual approach allows
for more efficient community detection in graphs by considering both the relation-
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ships and the attributes of vertices, showcasing an advance over existing methods that
either focus solely on relational information or require categorical attributes. The ex-
periments highlight I-Louvain’s superior performance in creating meaningful clusters
compared to methods like ToTeM, especially under conditions of data degradation or
when handling numerical attributes. This demonstrates I-Louvain’s robustness and
its potential for broader application in community detection tasks.

Another related work on Louvain modification introduced by [21], discussing
the integration of node attributes into the Louvain algorithm to enhance commu-
nity detection. It introduces two modified algorithms, LAA (Louvain-AND-Attribute)
and LOA (Louvain-OR-Attribute), focusing on how the inclusion of node attributes
alongside traditional modularity optimization can improve the detection of cohesive
groups within networks. This approach is compared against standard methods like
Newman’s Eigenvector, showcasing its effectiveness in achieving higher modularity
and denser community partitions, especially in scenarios where both node attributes
and structural properties are considered.
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CHAPTER 7

EPILOGUE

7.1 Conclusions

7.2 Future Work

7.1 Conclusions

This thesis has explored the intricate dynamics of fairness in modularity-based com-
munity detection within social networks. Through a meticulous examination of the
modified Louvain algorithms tailored for fairness in connectivity, we have unveiled
the delicate balance between optimizing for modularity and ensuring equitable repre-
sentation within identified communities. Key findings from our comparative analysis
underscore the potential for algorithmic adjustments to foster inclusivity without sub-
stantially compromising the structural integrity of community partitions. Specifically,
the introduction of Fair Modularity and Diversity Modularity metrics has illuminated
the path towards more nuanced and equitable community detection methodologies.
Our research not only contributes to the burgeoning discourse on fairness in machine
learning but also provides a practical framework for implementing fairness-aware
algorithms in social network analysis.
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7.2 Future Work

As part of the ongoing exploration into the fairness of community detection algo-
rithms, a significant avenue for future research lies in the examination of alternative
modularity approaches. Specifically, investigating the applicability and fairness out-
comes of community detection algorithms from different modularity families in com-
parison to our work with the Louvain method. This approach not only broadens the
spectrum of fairness evaluation but also contributes to a more holistic understanding
of how different algorithms perform in real-world scenarios.

Moreover, there is a compelling need to extend our analysis to encompass a wider
variety of real-world networks. Such an expansion would not only serve to validate
our existing findings but also provide a deeper insight into the practical implications
and effectiveness of fairness-aware community detection across diverse settings. This
endeavor is crucial for bridging the gap between theoretical models and their real-
world applicability, ensuring that our approaches are robust and versatile.

The development of new fairness metrics also represents a critical area for future
exploration. Moving beyond the confines of Fair Modularity and Diversity Modularity,
it is essential to investigate new dimensions of fairness. This exploration will enable
a more comprehensive understanding of fairness in community detection, facilitating
the integration of these considerations into algorithmic designs. Such advancements
are key to evolving the field and ensuring that fairness is intricately woven into the
fabric of community detection methodologies.

Finally, revisiting and optimizing our proposed algorithms is imperative. This in-
volves a meticulous refinement of the mathematical foundations to better align with
our fairness objectives, enhancing both the efficiency and intuition behind these al-
gorithms. By focusing on the optimization of fairness-aware algorithms such as the
modified Louvain method, future work can ensure that these approaches are not
only theoretically sound but also practically applicable across a variety of network
structures and datasets. This holistic approach to refinement and optimization is es-
sential for advancing the pursuit of fairness in community detection, ensuring that our
methods are both effective and aligned with the principles of equity and inclusivity.

Through these focused areas of future work, we aim to further the discourse and
implementation of fairness in community detection, bridging theoretical models with
practical applications to foster more inclusive and equitable digital communities.
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