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Περίληψη

Η μοντελοποίηση της εκτιμήτριας Kaplan-Meier με τη μέθοδο της τοπικής
πολυωνυμικής προσαρμογής για τυχαία λογοκριμένα δεδομένα από δεξιά, για αυ-
θαίρετο αριθμό συνεχών συμμεταβλητών διερευνάται λεπτομερώς. Οι στατισ-
τικές ιδιότητες της εκτιμήτριας συνάρτησης ποσοτικοποιούνται αναλυτικά και η

εφαρμογή της στην πράξη γίνεται εφικτή με την ανάπτυξη αντίστοιχης μεθόδου

επιλογής εύρους ζώνης που βασίζεται αποκλειστικά και μόνο στα δεδομένα. Οι
επιδόσεις της μεθόδου μελετώνται βάσει προσομοιώσεων με δείγματα πεπερασμέ-

νου μεγέθους από γνωστές κατανομές. Τέλος, η μέθοδος χρησιμοποιείται στην
ανάλυση ενός πραγματικού συνόλου δεδομένων και έτσι αναδεικνύεται η πρακτική

χρησιμότητα της μεθόδου.
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Abstract

The local polynomial modeling of the Kaplan–Meier estimate for random
designs under the right censored data setting in the presence of an arbitrary
number of continuous covariates is investigated in detail. The statistical prop-
erties of the derived estimate is quantified analytically and its implementation
is facilitated by the development of corresponding data driven bandwidth se-
lector. Numerical evidence is also provided on its finite sample performance.
A real life data analysis illustrates how the methodological advances proposed
herein help to generate additional insights in comparison to existing methods.
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CHAPTER1
Estimation of Survival
Function

1.1 Introduction

Survival analysis is a branch of statistics for analyzing the expected dura-
tion of time until one event occurs, such as death in biological organisms and
failure in mechanical systems. Survival Analysis is used to estimate the lifes-
pan of a particular population under study. It is also called “Time to Event”
Analysis as the goal is to estimate the time for an individual or a group of
individuals to experiences an event of interest. While the event of interest
is often death (in this case we study the time to death for patients having a
specific disease) or recurrence (in this case we study the time to relapse of a
certain disease), it is not limited to the fields of medicine and epidemiology.
In fact, it can be used in many domains. For example, we may also analyze
the time until: finding a new job after a period of unemployment, the failure
of a mechanical system or a machine, a bank or a company goes bankrupt, a
customer buys a new product or stops its current subscription, a taxi picks you
up after having called the taxi company and an employee leaves the company.
As is evident, the event of interest does not necessarily have to be a death or a
disease, but in all situations we are interested in the time until a specific event
occurs. There are unique features of time to event variables. First, time to
event is always positive and the distribution of such variables is often skewed.
For example, in a study assessing time to relapse in high risk patients, the
majority of events (relapses) may occur early in the follow up with very few
occurring later. On the other hand, in a study of time to death in a community
based sample, the majority of events (deaths) may occur later in the follow
up. Standard statistical procedures that assume normality of distributions do
not apply. Non-parametric procedures could be invoked except for the fact
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Chapter 1 1.1. Introduction

that there are additional issues. Specifically, complete data (actual time to
event data) is not always available on each participant in a study. In many
studies, participants are enrolled over a period of time (months or years) and
the study ends on a specific calendar date. Thus, participants who enroll later
are followed for a shorter period than participants who enroll early. Some
participants may drop out of the study before the end of the follow-up period
(e.g., move away, become disinterested) and others may die during the follow-
up period (assuming the outcome of interest is not death). In each of these
instances, we have incomplete follow up information. These times are called
censored times. Additionally, when the event is not yet observed at the end of
the study (i.e., the survival duration is greater than the observed duration),
this is referred as right-censoring and it is the type of censoring that we will
focus on this thesis. Survival analysis attempts to answer certain questions,
such as what is the proportion of a population which will survive past a certain
time? Of those that survive, at what rate will they die or fail? Can multiple
causes of death or failure be taken into account? How do particular circum-
stances or characteristics increase or decrease the probability of survival? The
goal of survival analysis is thus to model and describe time-to-event data in an
appropriate way, taking the particularities of this type of data into account.
Firstly, in this thesis, in order to estimate the survival function in the presence
of censorship, we use the Maximum Likelihood Estimator, in Section 1.3, for
which it is necessary to know the distribution of the data in advance. When we
do not know the distribution of the data, we use the Kaplan-Meier estimator,
discussed in Section 1.4, which gives us a discontinuous estimate. This discon-
tinuity is addressed by a modification of the estimator using kernel smoothing
which is given in Section 2.3. Furthermore, when we do not have censoring
we can estimate the cumulative distribution function with kernel estimation.
In case we have a multivariate variable with two or more factors we can also
estimate the distribution with the multivariate kernel estimation. In both in-
stances the choice of the bandwidth of the estimator is of crucial importance.
In Chapter 3 in order to estimate the conditional distribution function we
present a new estimator whose asymptotic properties are developed in Chap-
ter 4. To estimate the distribution of the covariates of the estimator we use
the kernels where when we have one covariate we deal with the univariate case
while otherwise we deal with the multivariate one. In Chapter 5 we give the
optimal bandwidth choice, first for the univariate case and then for the multi-
variate. Finally, in Chapter 6 we provide a real data example to illustrate the
performance of our estimator using two covariates.
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Chapter 1 1.2. Survival analysis and types of data

1.2 Survival analysis and types of data

The important difference in data analysed in survival analysis is the pres-
ence of censoring. Censored data is any data for which we do not always know
exactly when the event occurred. There are three main types of censored data:
right censored, left censored and interval censored, see Turkson et al. (2021).
The time T which measures the duration of the event of interest for the pop-
ulation under study is a random variable. T is considered to be left-censored
if it is less than the censoring time U , which is again a random variable. In
other words, for left-censoring to occur, the event of interest must occur for
the subject before that person is observed in the study, i.e. T < U . For such
subjects, we know that they have experienced the event sometime before time
U , but the exact time is not known. The exact time will be known if and only
if T is greater than or equal to U . The data from a left-censored sampling
scheme can be represented as a pair of random variables (Y, δ), Y = max(T,U)
and

δ =

{
0, if U ≤ T,

1, if U > T.

When a specific subject is followed for a while, gets lost to follow-up, and
returns and continues being studied, is said to be interval-censored. In this
case it holds that U < T < B, where B is a censoring time, which is again a
random variable. In interval-censoring, the observed data consists of intervals
I1, I2, . . . , In, where for each i = 1, 2, . . . , n, the ith response lies in the interval
Ii. In this case, an uncensored observation of an observed death corresponds to
an observed interval consisting of a single point. Suppose we have the situation
where we have performed a test on a subject at time y1 and the subject tested
negative. Subsequently, at time y2 > y1, the subject was tested positive. In
this scenario, we know the subject was exposed to the event of study sometime
between y1 and y2, but we do not know the exact time of the exposure. For
example, if in a clinical trial, the time to remission has been assessed, then
if the ith patient is in remission at, say, the 8th week after the trail, but was
absent for future check-ups, and resurfaces and was out of remission on the
11th week, then Ii = [8 , 11) is the ith patient’s censoring interval or length of
remission.
Right censored data is data for items that have not yet failed. They are
considered “still alive” as their failure time has not yet occurred, though it
is expected to occur at some point in the future. In particular, for a specific
subject under study, if we assume that there is a time T and a censoring
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time U , the T ’s are independent and identically distributed, i.i.d. for short,
with probability density function (p.d.f.) fT (t) and survival function ST (t) =
1 − FT (t), where FT (t) is the cumulative distribution function (c.d.f.). The
exact lifetime T of a subject will be known, if and only if T is less than or
equal to U ; if T is greater than U , the subject is a survivor and the event time
is censored at U . The data from this experiment can be represented as a pair
of random variables (Y, δ), Y = min(T,U) and

δ =

{
0, if T > U,

1, if T ≤ U.

It follows from the above that left-censoring is a special case of right-censoring
with the time axis reversed. It is because of this phenomenon that there have
been few techniques developed explicitly for left-censored data.
Some reasons for right-censoring include: study ends without subject expe-
riencing the event; the subject is lost to follow up within the study period;
subject deliberately withdraws the treatment variable; the subject is obliged
to withdraw from the treatment due to reasons beyond their control and sub-
ject withdraws from the study due to another reason (i.e., death, if death is
not the event of interest).
In addition, double-censoring occurs as a result of a combination of left and
right-censoring. In this case, we note that Y = max

{
min(T, y), l

}
, where l

and y are, respectively, the left and right-censoring times associated with T
and l < y. In this case, T is only observed if it falls in the interval [l, y]. Oth-
erwise, one of the endpoints of the interval is observed and the other endpoint
probably remains undisclosed. We should also note that double-censoring is
not the same as interval-censoring. The above types of censoring are depicted
in Fig. 1.1. In practice, the most common type and the one that we will focus
on in this thesis is right censored data.
In addition to the above data types there is Type I and Type II censoring.

Type I censoring occurs when a study is designed to end at a fixed time point
U . At the end of the study period, any subject that did not experience the
event is censored. In type I censoring, the number of uncensored observations
is a random variable. This type of censoring is also called “right censored”
since the times of failure to the right are missing. Another way to design a
study is to assume that for a given sample Y1, Y2, . . . , Yn, only the first r < n
lifetimes are observed. The value of r is fixed beforehand. This is Type II
censoring scheme. For example, one might employ n = 100 units in the study
and then test until at least half of them fail. Then r = 50, but U is unknown
until the 50th failure occurs. Type II censoring has the significant advantage
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Chapter 1 1.2. Survival analysis and types of data

Figure 1.1: Main types of censored data, see https://help.reliasoft.com/
weibull20/index.htm#t=data_types.htm.

of knowing in advance how many failure times the test will yields. This helps
enormously when planning adequate tests. However, an open-ended random
test time is generally impractical from a management point of view and this
type of testing is rarely seen.
Assume a random sample of i.i.d. observations T1, . . . , Tn from c.d.f. FT and
p.d.f fT . For the survival function ST (t) of the T population, see Klein and
Moeschberger (2003), we have

ST (t) = P (T ≥ t) =

∫ ∞

t
fT (x)dx,

and it expresses the probability that a certain object of interest will survive
beyond a certain time t. As presented later on, this definition is frequently
met in data analysis.
The random variable T refers to time until the occurrence of an event. For in-
stance, it might refer to the age that an individual passes away. Equivalently,
the survival function can be interpreted as the probability that an individual
is still alive after age t. For example, if ST (60) = 0.8, it means that there are
80% of the individuals in the population who will still be alive at the age of 60.
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Chapter 1 1.3. Maximum likelihood estimation for censored data

The basic properties of ST are summarized below.

1) ST (0) = 1, i.e. nothing has occurred before time zero.

2) ST (∞) = 0, i.e. the event of interest will certainly occur in [0,∞).

3) ST (t) is non-increasing as a function of t ∈ [0,+∞).

4) When T is discrete random variable, then ST (t) is right-continuous as a
function of t.

Often, the p.d.f. of the available sample is unknown and therefore it should be
estimated. There are many estimation methods, which are generally divided
to the parametric and the non-parametric approaches, respectively. The para-
metric approach relies on assuming a certain distribution for the available data
set in hand. As a result estimation under the parametric framework reduces
in estimation of the assumed distribution parameters. The non-parametric
approach makes no assumptions about the distribution of the underlying pop-
ulation. The focus here is the non-parametric approach but before elaborating,
we briefly discuss the most popular parametric method in the next section.

1.3 Maximum likelihood estimation for censored data

Under the parametric approach we assume that we have available a sample
of n observations from the population under study (Yi, δi), i = 1, . . . , n. Yi =
min(Ti, Ui), where for all i it holds that Ti ∼ fT , Ui ∼ fU , T − i, Ui are
independent and we are interested in estimating the p.d.f. fT or equivalently
the survival function ST = 1− FT . Obviously, in order to estimate ST (y) we
cannot simply replace the available data in the formula of the survival function
as it holds that

SY (y) = P (Y ≥ y) = P (min(T,U) ≥ Y )

= P ((T ≥ Y ) and (U ≥ Y ))

= P (T ≥ Y )P (U ≥ Y )

= ST (y)SU (y).

The above equation shows that if we apply the definition of the survival func-
tion to the available data, we estimate the product of the survival functions
of T and U and not the survival function ST (y) as we would like, see Lawless
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Chapter 1 1.3. Maximum likelihood estimation for censored data

(2011).
The available data (Yi, δi), i = 1, . . . , n actually come from the joint density
of (Y, δ). Now, the joint density (Y, δ) is

f(Y, δ) = lim
h→0

P (y ≤ Y ≤ y + h, δ = δ∗)

h
, y ≥ 0, δ∗ = 0, 1. (1.1)

The p.d.f. f(Y, δ) can take two forms depending on the value of δ. In the first
case δ = 1, which means that T ≤ U , we conclude that Y = min(T,U) = T .
Thus, using P14 from the Appendix we get for k ∈ (y, y + h)

P (y ≤ Y ≤ y + h, δ = 1) = P (y ≤ T ≤ y + h, U ≥ T )

≃ P (y ≤ T ≤ y + h, U ≥ y)

(P14)
= P (y ≤ T ≤ y + h)P (U ≥ y)

= fT (k)h
{
1− FU (y)

}
.

Hence,

f(y, δ = 1) = lim
h→0

fT (k)h
{
1− FU (y)

}
h

= fT (y)
{
1− FU (y)

}
= fT (y)SU (y). (1.2)

In the second case δ = 0 which means that T > U . Hence Y = min(T,U) = U
and thus, using P14 from the Appendix we get for k ∈ (y, y + h)

P (y ≤ Y ≤ y + h, δ = 0) = P (y ≤ U ≤ y + h, T > U)

≃ P (y ≤ U ≤ y + h, T ≥ y)

(P14)
= P (y ≤ U ≤ y + h)P (T ≥ y)

= fU (k)h
{
1− FT (y)

}
.

Thus,

f(y, δ = 0) = lim
h→0

fU (k)h
{
1− FT (y)

}
h

= fU (y)
{
1− FT (y)

}
= fU (y)ST (y). (1.3)

Taking into account (1.2) and (1.3) we have from (1.1), that the joint density
of (Y, δ) is

f(Y, δ) =
{
fT (y)SU (y)

}δ{
fU (y)ST (y)

}1−δ
= fT (y)

δST (y)
1−δfU (y)

1−δSU (y)
δ.

9



Chapter 1 1.3. Maximum likelihood estimation for censored data

As in the case of complete data, here too, every available observation, censored
or uncensored, contributes information to the likelihood. In more detail, we
have to take into consideration that the p.d.f. of (Y, δ) has a continuous
component (Y ) and a binary component (δ). So, for fixed i, (Yi, δi) = (Ti, 1)
for Ti uncensored at t and (Yi, δi) = (Ui, 0) for Ti > Ui censored at t. The
corresponding probabilities for these two cases are

P (Yi, δi = 1) = P (Yi = Ti|δi = 1)P (δi = 1) = P (Yi = Ti|Ti ≤ Ui)P (Ti ≤ Ui)

=
fT (Yi)

1− ST (Yi)

{
1− ST (Yi)

}
= fT (Yi),

P (Yi, δi = 0) = P (Yi = Ui|δi = 0)P (δi = 0) = P (Ti ≥ Ui) = ST (Yi).

The Maximum Likelihood Estimation (MLE) method first estimates the scalar
parameter θ (or the parameter vector θ) of the underlying p.d.f. fT by maxi-
mizing the likelihood function which is given by

L(θ) =
n∏

i=1

Li(θ) =

{∏
δi=1

Li(θ)

}{∏
δi=0

Li(θ)

}
=

n∏
i=1

fT (yi; θ)
δiST (yi; θ)

1−δi .

The result of the above maximization procedure is substituted to the assumed
p.d.f. fT to yield the parametric estimate of the underlying density.

Example 1.3.1. Suppose we have a sample of censored observations from an
exponential distribution. Then the likelihood is

L(θ) =
n∏

i=1

{
θ exp(−θyi)

}δi{exp(−θyi)
}1−δi .
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Chapter 1 1.3. Maximum likelihood estimation for censored data

The log-likelihood is

lnL(θ) = ln

[ n∏
i=1

{
θ exp(−θyi)

}δi{exp(−θyi)
}1−δi

]

= ln

[ n∏
i=1

{
θ exp(−θyi)

}δi]+ ln

[ n∏
i=1

{
exp(−θyi)

}1−δi

]

=
n∑

i=1

δi ln
{
θ exp(−θyi)

}
+

n∑
i=1

(1− δi) ln
{
exp(−θyi)

}
=

n∑
i=1

δi

[
ln(θ) + ln

{
exp(−θyi)

}]
+

n∑
i=1

(1− δi) ln
{
exp(−θyi)

}
=

n∑
i=1

δi

[
ln(θ)− θyi

]
−

n∑
i=1

(1− δi)θyi

= ln(θ)
n∑

i=1

δi − θ
n∑

i=1

δiyi − θ
n∑

i=1

(1− δi)yi.

Differentiating lnL(θ) with respect to θ, so equal to 0 and solving for θ yields
that the MLE of θ, say θ̂, is

θ̂ =

∑n
i=1 δi∑n
i=1 yi

. (1.4)
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Chapter 1 1.3. Maximum likelihood estimation for censored data

Generating 30 observations from the Exponential distribution Exp(7) and
30 censoring times from the Exponential distribution Exp(3) yields 30 right
censored observations with 30% censoring. Then the MLE of the underlying
survival function is exp(−θ̂y) with θ̂ given in (1.4) and its results depicted in
Fig. 1.2. As we can see the estimation is very close since the true parameter
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Figure 1.2: MLE estimation for the Survival function of the Exp(7) with 30%
censoring

is equal to 7 and the estimated one is equal to 7.353.
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Example 1.3.2. Suppose we have a sample of censored observations from a
Weibull distribution. Then the likelihood is

L(a, b) =
n∏

i=1

([ b
a

(yi
a

)b−1
exp
{
−
(yi
a

)b }]δi[
exp
{
−
(yi
a

)b }]1−δi
)
.

Then, the log-likelihood is

lnL(a, b) = ln

{ n∏
i=1

([ b
a

(yi
a

)b−1
exp
{
−
(yi
a

)b }]δi[
exp
{
−
(yi
a

)b }]1−δi
)}

= ln

( n∏
i=1

[ b
a

(yi
a

)b−1
exp
{
−
(yi
a

)b }]δi)

+ ln

( n∏
i=1

[
exp
{
−
(yi
a

)b }]1−δi
)

=

n∑
i=1

ln
[ b
a

(yi
a

)b−1
exp
{
−
(yi
a

)b }]δi
+

n∑
i=1

ln
[
exp
{
−
(yi
a

)b }]1−δi

=

n∑
i=1

δi ln
[ b
a

(yi
a

)b−1
exp
{
−
(yi
a

)b }]
+

n∑
i=1

(1− δi) ln
[
exp
{
−
(yi
a

)b }]
=

n∑
i=1

δi

[
ln(b)− ln(a) + (b− 1)

{
ln(yi)− ln(a)

}
−
(yi
a

)b]
−

n∑
i=1

(1− δi)
(yi
a

)b
.

Differentiating lnL(a, b) with respect to a and to b, equal to zero and solving
the system of equations, no closed form expression is obtained.
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Chapter 1 1.3. Maximum likelihood estimation for censored data

Generating 30 observations from the Weibull distribution Weib(1.1, 1.7) and
30 censoring times from the Weibull distribution Weib(2, 3) yields 30 right
censored observations with 30% censoring. Then after 6 iterations of the
Newton’s method we get the results depicted in Fig. 1.3. As we can see the
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Figure 1.3: MLE estimation for Weibull distribution with 30% censoring

estimation is very close since the true shape and scale parameters are equal
to 1.1 and 1.7 respectively and the estimated are equal to 0.900 and 1.702.

The following theorem, see Rao (2017), shows that the MLE estimate in the
random right censorship setting is a consistent estimate of the true parameter
θ.

14



Chapter 1 1.3. Maximum likelihood estimation for censored data

Theorem 1.3.1. Suppose
{
Yi
}
be i.i.d. random variables with density f(Y ; θ).

If θ is the real parameter and θ̂ the MLE then under almost sure uniform con-
vergence of the likelihood we have

θ̂
a.s.→ θ.

Proof. Define l(θ) = E[log f(Y ; θ)] (the expected log-likelihood). To prove the
result we first need to show that the expectation of the maximum likelihood
is maximum at the true parameter and that this is the unique maximum. In
other words we need to show that E

{
n−1L(θk)− n−1L(θ)

}
≤ 0 for all θk ∈ Θ.

To do this, we have

l(θk)− l(θ) = E
{ 1

n
L(θk)

}
−
{ 1

n
L(θ)

}
=

∫
log

f(y; θk)

f(y; θ)
f(y; θ)dy

= E

{
log

f(Y ; θk)

f(Y ; θ)

}
≤ log E

{
f(Y ; θk)

f(Y ; θ)

}
= log

∫
f(y; θk)

f(y; θ)
f(y; θ)dy = log

∫
f(y; θk)dy

= log 1 = 0.

f(y; θk) = f(y; θ) for all y only when θ and no other function of f gives
equality. Hence only when θk = θ do we have

E

{
log

f(Y ; θk)

f(Y ; θ)

}
= log

∫
f(y; θk)

f(y; θ)
f(y; θ)dy = log

∫
f(y; θk)dy = 0,

thus, E
{
n−1L(Y ; θk)

}
has a unique maximum at θ.

Finally, we need to show that θ̂
a.s.→ θ. To simplify notation for the remainder

of this proof we assume the likelihood has been standardized by n i.e

Ln(θk) =
1

n

n∑
i=1

log f(Yi; θk).

We note that since l(θk) is maximum at θ if |Ln(θ̂)− l(θ)| a.s.→ 0, then θ̂
a.s.→ θ.

Thus we need to prove θ if |Ln(θ̂) − l(θ)| a.s.→ 0. We do this using a sandwich
argument. First we note for every MLE θ̂

Ln(Y ; θ) ≤ Ln(Y ; θ̂)
a.s.→ l(θ̂) ≤ l(θ), (1.5)

where we are treating θ̂ as if it were a non-random fixed value in Θ. Returning
to |E

{
Ln(Y ; θ)

}
−Ln(Y ; θ̂)| we note that the difference can be written as

l(θ)− Ln(Y ; θ̂) =
{
l(θ)− Ln(Y ; θ)

}
+
{
l(θ̂)− Ln(Y ; θ̂)

}
+
{
Ln(Y ; θ)− l(θ̂)

}
.
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Chapter 1 1.3. Maximum likelihood estimation for censored data

Now, by using (1.5) we have

l(θ)− Ln(Y ; θ̂) ≤
{
l(θ)− Ln(Y ; θ)

}
+
{
l(θ̂)− Ln(Y ; θ̂)

}
+
{
Ln(Y ; θ̂)− l(θ̂)

}
= l(θ)− Ln(Y ; θ),

and

l(θ)− Ln(Y ; θ̂) ≥
{
l(θ)− Ln(Y ; θ)

}
+
{
l(θ̂)− Ln(Y ; θ̂)

}
+
{
Ln(Y ; θ)− l(θ)

}
= l(θ̂)− Ln(Y ; θ̂).

Thus,
l(θ̂)− Ln(Y ; θ̂) ≤ l(θ)− Ln(Y ; θ̂) ≤ l(θ)− Ln(Y ; θ).

Therefore, we have that

|l(θ)− Ln(Y ; θ̂)| ≤ sup
θ∈Θ

|l(θk)− Ln(Y ; θk)|
a.s.→ 0.

Since E
{
Ln(Y ; θk)

}
has a unique maximum at E

{
Ln(Y ; θ)

}
this implies

θ̂
a.s.→ θ.

Additionally, the MLE estimate θ̂ of θ is asymptotically normal as shown
in the next theorem, see Rao (2017).

Theorem 1.3.2. Assume that for the right censored data Yi = min(Ti, Ui),
i = 1, . . . , n, the censoring times are constant with U1 = · · · = Un = c. The
maximum likelihood estimator θ̂ = argmax

{
L(θ)

}
satisfies

√
n(θ̂ − θ)

d→ N(0, I(θ)−1),

where I(θ) is the Fisher’s information measure given by

I(θ) = −E

{
1

n

n∑
i=1

δi
∂ log fT (Yi, θ)

∂θ2
+

1

n

n∑
i=1

(1− δi)
∂ logST (ci, θ)

∂θ2

}
.

Proof. We recall that Yi are i.i.d. random variables, then

1√
n

∂Ln(Y ; θk)

∂θk

∣∣∣
θ
=

1√
n

n∑
i=1

∂ log f(Yi; θk)

∂θk

∣∣∣
θ
,

is the sum of independent random variables. We note that

E

{
∂ log f(Yi; θk)

∂θk

∣∣∣
θ

}
=

∫
∂ log f(y; θk)

∂θk

∣∣∣
θ
f(y; θ)dy = 0,
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Chapter 1 1.3. Maximum likelihood estimation for censored data

thus, ∂ log f(Yi;θk)
∂θk

∣∣∣
θ
is a zero mean random variable and its variance is I(θ).

Hence, ∂Ln(Y ;θk)
∂θk

∣∣∣
θ
is the sum of i.i.d. random variables with mean zero and

variance I(θ). Therefore, we have

1√
n

∂Ln(Y ; θk)

∂θk

∣∣∣
θ

d→ N(0, I(θ)). (1.6)

By (1.6) and Taylor’s theorem we obtain

1

n

∂Ln(Y ; θk)

∂θk

∣∣∣
θ̂
=

1

n

∂Ln(Y ; θk)

∂θk

∣∣∣
θ
+ (θ̂ − θ)

1

n

∂2Ln(Y ; θk)

∂θk
2

∣∣∣
θ̃
, (1.7)

for some real number θ̃ between θ̂ and θ.

I(θ) = −E
{ ∂2

∂θ2
log f(Y |θ)

}
= − ∂2

∂θ2
E
{
n−1 logL(θ)

}
= − ∂2

∂θ2
1

n
E
{ n∑
i=1

δi log fT (yi; θ) +

n∑
i=1

(1− δi) logST (ci; θ)
}
.

The consistency result in Theorem 1.3.1, (1.3) and (1.7), give

1

n

∂Ln(Y ; θk)

∂θk

∣∣∣
θ
− I(θ)(θ̂ − θ) +

{
1

n

∂2Ln(Y ; θk)

∂θk
2

∣∣∣
θ̃
− I(θ)

}
(θ̂ − θ) = 0. (1.8)

Multiplying (1.8) by
√
n and rearranging gives

√
n(θ̂ − θ) = I(θ)−1 1√

n

∂Ln(Y ; θk)

∂θk

∣∣∣
θ
+ op(1). (1.9)

By substituting (1.6) into (1.9) finishes the proof.

Note that for c = 0, i.e. when all observations are censored, the Fisher
information measure is 0 so the asymptotic variance of the estimator is not
finite. This is expected based on the interpretation of the measure. Although,
its variance will be greater than the variance of a corresponding estimator with
complete data.
Next, we turn our attention to the non-parametric estimation approach. We
start with the Kaplan-Meier which is the most popular estimator of the sur-
vival function in the right censored data setting.
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Chapter 1 1.4. Kaplan-Meier estimator

1.4 Kaplan-Meier estimator

The Kaplan-Meier estimator was introduced in Kaplan and Meier (1958)
and it is commonly referred to as the Product-Limit Estimator. Since then, it
has been the most commonly-used estimator in medical/public health studies
involving failure time data. The estimator may be derived heuristically by
partitioning the time axis into a number of small intervals, estimating the
conditional survival probability in each interval by the proportion of surviving
individuals, and multiplying these estimates together to get an estimate for the
unconditional survival probability. Assuming a sample (Yi, δi), i = 1, . . . , n,
where Yi = min(Ti, Ui) and δi the censoring indicator

δi =

{
0, if Ui ≤ Ti,

1, if Ui > Ti,

the Kaplan-Meier estimate, say F̂T (y), of the unconditional c.d.f. FT (y), is
defined by

F̂T (y) =


0, if 0 ≤ y ≤ Z1,

1−
∏k−1

i=1

(
n−i

n−i+1

)Λi

, if Zk−1 < y ≤ Zk, k = 2, . . . , n,

1, if y > Zn,

(1.10)

where (Zi,Λi) are the ordered Y ′
i s, along with their censoring indicators δi,

i = 1, . . . , n.
For almost four decades the Kaplan–Meier estimator has been one of the key
statistical methods for analyzing censored survival data, and it is discussed in
most textbooks on survival analysis. The estimator defined by (1.10) is a step
function with jumps at those observations Yi for which δi = 1. We will confirm
that later in Example 1.4.1.. If δi = 1 for all i (i.e., no censoring occurs), the
Kaplan-Meier estimator reduces to a step function with jumps of height 1/n
at each of the Yi, which is the usual empirical distribution function.
The Kaplan-Meier estimate has the following properties

1) Since the underlying distribution functions FT and G may have jumps,
some of the Yi may be identical. In this case, the ordering of the Y ′

i s
into Z ′

is is not unique. However, the Kaplan-Meier estimator is.

2) We adopt the convention of defining the Kaplan-Meier estimator F̂T

to be equal to one for y > Zn if δi = 0. Such a convention has the
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Chapter 1 1.4. Kaplan-Meier estimator

advantages of definiteness and the fact that it does not matter very
much for large n (in the sense that it is asymptotically consistent).

3) When the last non-censored observation is not the biggest observation
of the sample, then in the interval of the biggest complete observation
and then, the Kaplan-Meier estimation is very unstable.

Furthermore, it is assumed that y ∈ [0, TY ], where

TY = sup{y : 1− FT (y) > ε}, for a small ε > 0.

The consistency of the Kaplan-Meier was established in Theorem 2.1 in
Chen and Lo (1997) according to which for 0 < β < 1/2

sup
y∈[0,TY ]

|F̂T (y)− FT (y)| = o(n−β) a.s.. (1.11)

In particular, if Ty = T(n), where T(n) is the largest observation of the ordered
sample, is uncensored, i.e. if δ(n) = 1, then β = 1/2, see Karunamuni and

Yang (1991). Otherwise, the rate of convergence of F̂T is n−1/2 for y ∈ [0, TF ]
where TF is the largest uncensored observation. The rate of convergence of
F̂T is n−β, 0 < β < 1/2, for y ∈ [TF , TY ]. In addition, to ensure the existence
of supremum in (1.11) we require the absolute difference to be bounded, i.e.
there is M such that |F̂T − FT | ≤ M .
When the biggest observation of the sample is uncensored then the rate of con-
vergence of F̂T to FT is 1/2. Furthermore, the smaller the β is, the fewer the
uncensored observations near the endpoint. This, in turn, is reflected in the
convergence rate of F̂T : the smaller the β, the slower the rate of convergence.
The estimator F̂T is rather unstable near the endpoint TY , thus may converge
to FT at an arbitrarily slow rate near TY when the censoring is arbitrarily
heavy.
In order to investigate Kaplan-Meier’s variance we have to introduce an alter-
native form of (1.10), which is the following

ŜT (t) =
∏

i:tq≤t

(
1− dq

nq

)
, q = 1, 2, . . . . (1.12)

In (1.12) tq is a time when at least one event happened, dq is the number of
events that happened at time tq, and nq is the number of individuals known
to have survived, i.e. have not yet had an event or been censored, up to time
tq.
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Chapter 1 1.4. Kaplan-Meier estimator

To establish how this equivalent form is derived, taking into account that T
belongs to [0, T(n)), where we recall that T(n) is the largest ordered observation,
we divide the interval into m sub-intervals [0, t1) . . . [tm−1, tm), where tm =
T(n). Suppose that S(v|u) = S(v)/S(u), v > u the conditional probability
that an event will occur later than the time v given that it has not occurred
until time u.
The survival function at time t ∈ [tj , tj+1] where j ∈ (0, 1 . . . ,m− 1) is given
by

P (T ≥ t) =
m∏
q=1

ST (tq|tq−1)

= P (T > tq|T > tq−1)P (T > tq−1)

=
{
1− P (T ≤ tq|T > tq−1)

}
P (T > tq−1)

=
{
1− P (T ≤ tq|T > tq−1)

}
ST (tq−1)

=
{
1− P (T ≤ tq|T > tq−1)

}{
1− P (T ≤ tq−1|T > tq−2)

}
ST (tq−2)

=
{
1− P (T ≤ tq|T > tq−1)

}{
1− P (T ≤ tq−1|T > tq−2)

}
. . .{

1− P (T ≤ t0|T > t−1)
}
, (1.13)

where in the last line we have that 1−P (T ≤ t0|T > t−1) = 1−P (T = t0). In
addition, if there is no event in (tq−1, tq] then S(tq|tq−1) = 1. In order to derive
a practically useful version of (1.12) we have to approximate the probability
1− P (T ≤ tq|T > tq−1).
The number of events (under study) up to time tq is

dq =
n∑

i=1

I(tq−1<Ti≤tq ,δq=1), q = 1, 2, . . . ,m.

The total number of individuals who survive after time tq (i.e. have not yet
experienced the event and are not censored) is

nq =

n∑
i=1

I(Ti≥tq−1), q = 1, 2, . . . ,m.

Then,

1− P (T ≤ tq|T > tq−1) ≈ 1− dq
nq

. (1.14)

So by repeatedly substituting (1.14) to (1.13) we obtain (1.12).
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Chapter 1 1.4. Kaplan-Meier estimator

As is evident from (1.12), the size of the jumps of the Kaplan-Meier estima-
tor depend not only on the number of events observed at each tq, but also on
the pattern of the censored observations prior to tq. The Product-Limit esti-
mator is based on the assumption of non-informative censoring which means
that knowledge of a censoring time for an individual provides no further infor-
mation about this person’s likelihood of survival at a future time. In addition,
the estimator is well defined for all time points less than the largest observed
study time tmax. Supposing that the largest study time corresponds to a death
time, then, the estimated survival curve is zero beyond this point. If the largest
time point is censored, the value of ST (t) beyond this point is undetermined
as we are unable to predict when this last survivor would have died if the
survivor had not been censored. However, several non-parametric suggestions
have been made to account for this ambiguity.

Example 1.4.1. We consider the survival times (where + stands for censored
observation): 0, 9, 13, 13+, 18, 23, 28+, 31, 34.
The data is already arranged so that the smallest survival is at the beginning
and the largest is at the end. Then by using the equivalent form to (1.10) we
get

ŜT (0) = 1,

ŜT (9) = Ŝ(0)
8− 1

8
= 0.875,

ŜT (13) = Ŝ(9)
7− 1

7
= 0.75,

ŜT (13+) = Ŝ(13)
6− 0

6
= 0.75,

. . .

ŜT (34) = Ŝ(31)
1− 1

1
= 0.

The result is shown graphically in Fig. 1.4. There, it is seen that the
survival duration of a subject is represented by the length of the horizontal
lines along the X-axis of serial times. The plot in Fig. 1.4 also contains the
confident intervals of the survival probabilities. The occurrence of the event
determines the interval. The discontinuous points correspond to the change in
the cumulative probability of surviving a given time as seen in the Y -axis and
the dotted lines correspond to confident intervals. The closed form expression
is provided in (1.18).
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Figure 1.4: The Kaplan-Meier Estimator

As mentioned earlier, the Kaplan-Meier estimator is essentially a maximum
likelihood estimator. To see this, we recall first that dq and nq is the number
of events and the number of individuals at risk up to time tq, respectively.
Then the discrete hazard function is hq = dq/nq and the survival function is

ST (t) =
∏

q:tq<t

(1− hq).

The likelihood for the hazard function is

L =

q∏
j=1

hj
dj (1− hj)

nj−dj ,

so applying logs in both sides we get

log(L) =

q∑
j=1

{
dj log(hj) + (nj − dj) log(1− hj)

}
.

In order to find the maximum we set the derivative with respect to hq equal
to zero and we obtain

dq
hq

− nq − dq
1− hq

= 0.
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Hence,

ĥq =
dq
nq

.

So, taking into consideration that the second derivative of ĥq is negative which
implies that it is maximum, the survival function will be estimated from

Ŝ(t) =
∏

q:tq<t

(1− ĥq) =
∏

q:tq<t

(
1− dq

nq

)
= ŜT (t).

Trying to show that the Kaplan-Meier estimator is a maximum likelihood
estimator we referred to the hazard function. The hazard rate function reflect
the “approximate” probability of an individual of age t experiencing the event
in the next time instant. The hazard rate is defined by

h(t) = lim
∆t→0

P (t ≤ T ≤ t+∆t|t > 0)

∆t
=

fT (t)

1− FT (t)
.

Now, let p̂j = 1− dj/nj so

ŜT (t) =
∏

j:tj≤t

p̂j ⇔ log
{
ŜT (t)

}
=

q∑
j=1

log(p̂j).

Thus,

Var

[
log
{
ŜT (t)

}]
= Var

{ q∑
j=1

log(p̂j)

}
=

q∑
j=1

Var

{
log(p̂j)

}
.

The number of those who survive, nj − dj , follows binomial distribution with
parameters nj and pj , for j = 1, . . . , q. Hence, Var(nj − pj) = njpj(1 − pj).
Using this and P (10) from the appendix

Var(p̂j) = Var

(
1− dj

nj

)
= Var

(
nj − dj

nj

)
(P10)
=

Var(nj − dj)

nj
2

=
njpj(1− pj)

nj
2

=
pj(1− pj)

nj
.

Based on Taylor’s Expansion of any real function g(x) at x we have that

Var {g(X)} =

{
dg(X)

dX

}2

Var(X).
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Therefore,

Var {log(p̂j)} ≃ Var(p̂j)

p̂2j
=

p̂j(1−p̂j)
nj

p̂2j
=

1− p̂j
nj p̂j

=

{
1− (1− dj

nj
)
}

nj(1− dj
nj
)

=

dj
nj

nj(
nj−dj
nj

)
=

dj
nj

nj − dj
=

dj
nj(nj − dj)

.

Thus,

Var
[
log
{
ŜT (t)

}]
=

q∑
j=1

dj
nj(nj − dj)

. (1.15)

Now, by using the Taylor’s expansion one more time we have that

Var
[
log
{
ŜT (t)

}]
=

Var
{
ŜT (t)

}
ŜT (t)

2

⇔ Var
{
ŜT (t)

}
= ŜT (t)

2
Var
[
log
{
ŜT (t)

}]
. (1.16)

By combining (1.15) and (1.16) we get

Var
{
ŜT (t)

}
= ŜT (t)

2
q∑

j=1

dj
nj(nj − dj)

⇔ Var
{
1− F̂T (t)

}
=
{
1− F̂T (t)

}2 q∑
j=1

dj
nj(nj − dj)

⇔Var
{
F̂T (t)

}
=
{
1− F̂T (t)

}2 q∑
j=1

dj
nj(nj − dj)

. (1.17)

This is the so-called Greenwood’s estimate of the Kaplan-Meier’s variance
which tends to underestimate the true variance of the Kaplan–Meier estimator
for small samples, see Greenwood (1926). However, on average, Greenwood’s
estimator is closer to the true variance compared to other estimators.
The standard error (SE) of the Product-Limit estimator is given by

SE
{
ŜT (t)

}
=

[
Var
{
ŜT (t)

}]1/2
=

{
ŜT (t)

2
q∑

j=1

dj
nj(nj − dj)

}1/2

.
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In the case of no censoring, (1.15) reduces to ŜT (t)
{
1−ST (t)

}
/n, the stan-

dard binomial variance estimator. In large samples the Kaplan–Meier estima-
tor, evaluated at a given time t, is approximately normally distributed so that
a standard 100(1− α)% confidence interval for ST (t) takes the form(

ŜT (t)− z1−a/2Var
{
ŜT (t)

}
, ŜT (t) + z1−a/2Var

{
ŜT (t)

})
, (1.18)

with z1−α/2 the 1− α/2 fractile of the standard normal distribution.
In order to avoid the discontinuity of the Kaplan-Meier estimator we will use
kernel smoothing. In the next section the main principles for the case of
complete data will be introduced and in the end a continuous form of Kaplan-
Meier estimator in the presence of censored data will be given.

1.5 Comparing Kaplan-Meier estimator with MLE

In this section we use n observations from the Exponential distribution,
Exp(1) which are censored on the right by n observations from Uniform dis-
tribution, U(0, 1.1). In total we have 60% censoring in our data. Taking into
consideration that we know beforehand the distribution of the data we can use
the MLE in order to estimate the parameter of the underlying distribution.
Although, we can also use the Kaplan-Meier estimator. Our aim is to produce
these two estimates and to compare them.
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At first we generate 50 observations from Exp(1) and 50 censoring times
from U(0, 1.1). Thus, this yields 50 right censored observations with 60% cen-
soring. The results of the two estimations are presented in Fig. 1.5. The black
line is the true distribution, the red is the MLE estimation of the survival func-
tion and the blue one is the Kaplan-Meier estimation. The MLE estimation
is close enough since the true parameter is equal to 1 and the estimated one
is equal to 1.028. Although, the Kaplan-Meier estimation is not that close.
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Figure 1.5: MLE and Kaplan-Meier estimations for Exponential distribution
with 60% censoring and 50 observations
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After that we generate 100 observations from Exp(1) and 100 censoring
times from U(0, 1.1). Thus, this yields 100 right censored observations with
60% censoring. The results of the two estimations are presented in Fig. 1.6.
We recall that the black line is the true distribution, the red is the MLE
estimation of the survival function and the blue one is the Kaplan-Meier es-
timation. The MLE estimation is closer than previous since the estimated
parameter is now equal to 1.011. Also, the Kaplan-Meier estimation is closer
than before too.
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Figure 1.6: MLE and Kaplan-Meier estimations for Exponential distribution
with 60% censoring and 100 observations
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Then, we generate 200 observations from Exp(1) and 200 censoring times
from U(0, 1.1). Thus, this yields 200 right censored observations with 60%
censoring. The results of the two estimations are presented in Fig. 1.7. We
recall that the black line is the true distribution, the red is the MLE estimation
of the survival function and the blue one is the Kaplan-Meier estimation. The
MLE estimation is even closer since the estimated parameter is now equal to
1.004. Also, the Kaplan-Meier estimation is even closer too.
So, we conclude that the larger the sample, the closer the two estima-
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Figure 1.7: MLE and Kaplan-Meier estimations for Exponential distribution
with 60% censoring and 200 observations

tions. This, conclusion is very rational taking into consideration that MLE
and Kaplan-Meier estimators are asymptotically unbiased.

Now, in order to see how the two estimators are affected by the censorship
rate we generate 50 observations from the Exponential distribution and 50
censoring times from the Uniform distribution in three different censorship
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Chapter 1 1.5. Comparing Kaplan-Meier estimator with MLE

rates.

At first, we generate 50 observations from Exp(1) and 50 censoring times
from U(1, 2.4). Thus, this yields 50 right censored observations with 20%
censoring. The results of the two estimations are presented in Fig. 1.8. The
MLE estimation is very close since the true parameter is equal to 1 and the
estimated one is equal to 1.021. In addition, the Kaplan-Meier estimation is
very close too.
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Figure 1.8: MLE and Kaplan-Meier estimations for Exponential distribution
with 20% censoring
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Then, we generate 50 observations from Exp(1) and 50 censoring times
from U(0, 2.2). Thus, this yields 50 right censored observations with 40%
censoring. The results of the two estimations are presented in Fig. 1.9. The
MLE estimation is close since the estimated parameter is now equal to 1.023.
In addition, the Kaplan-Meier estimation is close too. Although, the two
estimations are not so close as previously.
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Figure 1.9: MLE and Kaplan-Meier estimations for Exponential distribution
with 40% censoring
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Then, we generate 50 observations from Exp(1) and 50 censoring times
from U(0, 1.1). Thus, this yields 50 right censored observations with 60%
censoring. The results of the two estimations are presented in Fig. 1.10. The
MLE estimation is close but not so close as previously since the estimated
parameter is now equal to 1.028. Also, the Kaplan-Meier estimation is not so
close as previously too.
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Figure 1.10: MLE and Kaplan-Meier estimations for Exponential distribution
with 60% censoring

So, we conclude that the lower the censorship the better the estimations.
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CHAPTER2
Continues Estimation of
Distribution Function

2.1 Univariate kernel density estimation

Even thought survival analysis is usually about censored data, when we
have available the complete data i.e. data for which we know the exact failure
time we can use a simpler estimator. This is the case when all items in the
analysis have their exact failure times recorded. For example if we have 10
components under test, all of these components fail during the test, and the
exact failure time is recorded then we have complete data.
In the case of complete data, the oldest and most widely used non-parametric
way is to review the density of observations in the random sample with a simple
histogram. The histogram was the first non-parametric density estimator,
though its exact date of invention is not known for certain, but likely to
have been in the 17th century. Its chronological primacy is due to its simple
computation. From the histogram, we might be able to identify a common and
well-understood probability distribution that can be used, such as the normal
distribution. If not, we may have to fit a model to estimate the distribution.
The classical frequency histogram is formed by constructing a complete set
of non-overlapping intervals, called bins, and counting the number of points
in each bin. In order for the bin counts to be comparable, the bins should
all have the same width. The counts, or frequencies of observations, in each
bin are then plotted as a bar graph with the bins on the X-axis and the
frequencies on the Y -axis. If so, then the histogram is completely determined
by two parameters, the bin width, h, and the bin origin, x0, which is any
conveniently chosen bin interval endpoint. Often the bin origin is chosen to
be x0 = 0. The choice of the number of bins is important as it controls the
coarseness of the distribution (number of bars) and, in turn, how well the
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Chapter 2 2.1. Univariate kernel density estimation

density of the observations is plotted. It is a good idea to experiment with
different bin sizes for a given data sample to get multiple perspectives or views
on the same data. Reviewing a histogram of a data sample with a range of
different numbers of bins will help to identify whether the density looks like
a common probability distribution or not. A histogram density estimator is a
step function with a constant value within each of the bins, where the constant
is given by the proportion of data points Xi, i = 1, . . . , n which fall in the bin
divided by the bin volume.
In case the shape of a histogram matches a well-known probability distribution,
we can attempt to estimate the density in a parametric way. Although, in some
cases, a data sample may not resemble a common probability distribution or
cannot be easily made to fit the distribution. This is often the case when
the underlying density is multimodal. In this case, the parametric density
estimation is inefficient.
The definition of the histogram, with bin width h, is given by

f̂(x) =
1

2hn

n∑
i=1

1{|x−Xi|<h}.

Equivalently, the non-parametric estimator of F (x) in the case of complete
data is the empirical estimation of F (x) = P (X ≤ x) given by

F̂ (x) = n−1
n∑

i=1

1{Xi≤x}. (2.1)

The empirical distribution, or empirical distribution function, can be used to
describe a sample of observations of a given variable. Its value at a given point
is equal to the proportion of observations from the sample that are less than
or equal to that point. In other words, the value of the empirical distribution
function at a given point is obtained by

1) Counting the number of observations that are less than or equal to x.

2) Dividing the number that obtained by the total number of observations,
so as to obtain the proportion of observations that is less than or equal
to x.

From (2.1) also follows the very useful conclusion that F̂ (x) can be viewed as
c.d.f. of a discrete random variable, taking values X1, . . . , Xn, with probability
1/n for each. Moreover, the empirical distribution is the non-parametric MLE
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Chapter 2 2.1. Univariate kernel density estimation

of c.d.f.. The strong convergence of F̂ (x) to the real F (x) is provided by the
Glivenko–Cantelli theorem which asserts the following, see Glivenko (1933).

Theorem 2.1.1. Let Xi, i = 1, . . . , n be an i.i.d. sequence of random vari-
ables with distribution function F on R. Then,

sup
x∈R

|F̂ (x)− F (x)| → 0 a.s..

This result is perhaps the oldest and most well known result in the very
large field of empirical process theory. It was proved by Birkhoff (1931) in the
case of continuous F (x) and Borovkov (1984) in the general case.

Proof. Let ϵ > 0. Then fix k > 1/ϵ, and then consider the points k0, . . . , kk
such that

−∞ = k0 < k1 ≤ k2 ≤ · · · ≤ kk−1 < kk = ∞.

that define a partition of R into k disjoint intervals such that

F (kj
−) ≤ j/k ≤ F (kj), j = 1, . . . , k − 1,

where, for each j,

F (kj
−) = P (Tj < kj) = F (kj)− P (X = kj).

Then, by construction, if kj−1 < kj ,

F (kj
−)− F (kj−1) ≤

j

k
− (j − 1)

k
=

1

k
< ϵ.

In the following recall that F̂ (x) is a random variable. Now, by the Strong
Law of Large Numbers, the estimator converges pointwise to the true c.d.f..
That is, as n → ∞, for j = 1, . . . , k − 1,

F̂ (kj)
a.s.→ F (kj) and F̂ (kj

−)
a.s.→ F (kj

−).

It immediately follows that, for each j, j = 1, . . . , k − 1,

|F̂ (kj)− F (kj)|
a.s.→ 0 and |F̂ (kj

−)− F (kj
−)| a.s.→ 0,

as n → ∞. Taking the maximum over all j,

∆n = max
j

{|F̂ (kj)− F (kj)|, |F̂ (kj
−)− F (kj

−)|} a.s.→ 0 as n → ∞.
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For any x identify j such that

kj−1 ≤ t < kj .

Then, for a small ϵ > 0 we have

F̂ (x)− F (x) ≤ F̂ (kj
−)− F (kj−1) ≤ F̂ (kj

−)− F (kj
−) + ϵ,

F̂ (x)− F (x) ≥ F̂ (kj−1)− F (kj
−) ≥ F̂ (kj−1)− F (kj−1)− ϵ,

and thus for any x,

F̂ (kj−1)− F (kj−1)− ϵ ≤ F̂ (x)− F (x) ≤ F̂ (kj
−)− F (kj

−) + ϵ,

and thus,
|F̂ (x)− F (x)| ≤ ∆n + ϵ

a.s.→ ϵ as n → ∞.

Hence, as this holds for arbitrary x, it follows that

sup
x∈R

|F̂ (x)− F (x)| a.s.→ ϵ as n → ∞.

This holds for every ϵ > 0; that is, if Aϵ denotes the set of ω on which this
convergence is observed, then P (Aϵ) = 1, and then by definition

A ≡ ∪ϵ>0Aϵ ≡ lim
ϵ→0

Aϵ ⇒ P (A) = P (lim
ϵ→0

Aϵ) = lim
ϵ→0

P (Aϵ) = 1,

and it follows that

P [ lim
n→∞

sup
x∈R

|F̂ (x)− F (x)| = 0] = 1.

Nevertheless, the problem that arises is that empirical distribution is not a
continuous function and so it is not further used. Therefore, a non-parametric
alternative to the well known MLE estimate of the p.d.f, which produces con-
tinues estimate of the density is the kernel approach

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K is a kernel function and h its bandwidth. Equivalently, the distribu-
tion function estimator is given by

F̂ (x) =
1

nh

n∑
i=1

∫ x

−∞
K

(
w −Xi

h

)
dw.
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This process is called kernel smoothing, or Kernel Density Estimation (KDE)
and perhaps it is the most common non-parametric approach for estimating
the probability density function and the distribution function of a continuous
random variable, see Wand and Jones (1994), Silverman (1986) and Scott
(2015). The first appearance of kernel estimators is likely to be in Fix Hodges
in 1951: as the original technical report is difficult to find, it has been re-
published in 1989, see Fix and Hodges (1989). KDE is a non-parametric
method for using a data-set in order to estimate probabilities for new points.
In this case, a kernel K is a mathematical function that returns a probability
for a given value of a random variable. Usually K is chosen to be a unimodal
probability density function that is also symmetric about zero and the most
common types and shapes are given in table 2.1 and Fig. 2.1 respectively.

Kernels Kernel Function K(u)

Gaussian K(u) = 1√
2π

exp(−1
2u

2)

Epanechnikov K(u) = 3
4(1− u2)1{|u|≤1}

Uniform K(u) = 1
21{|u|≤1}

Triangular K(u) = (1− |u|)1{|u|≤1}

Triweight K(u) = 35
32(1− u2)31{|u|≤1}

Tricube K(u) = 70
81(1− |u|3)31{|u|≤1}

Biweight K(u) = 15
16(1− u2)21{|u|≤1}

Cosine K(u) = π
4 cos(

π
2u)1{|u|≤1}

Silverman K(u) = 1
2 exp(−

|u|√
2
sin
(

|u|√
2
+ π

4

)
Table 2.1: Types of common used kernels

This ensures that f̂(x) is itself also a density. Combining the properties of
the kernels and the definition of f̂(x), we can conclude to this assumption. In
order to see this, at first we observe that K > 0 which implies that f̂(x) > 0.
Also,∫ +∞

−∞
f̂(x)dx =

1

n

n∑
i=1

∫ +∞

−∞
K

(
x−Xi

h

)
dx =

1

n
n

∫ +∞

−∞
K(u)du = 1.

Furthermore, f̂ will inherit all the continuity and differentiability properties
of the kernel K, so that if, for example, K is the normal density function, then
f̂ will be a smooth curve having derivatives of all orders. However, kernels
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Figure 2.1: Shapes of commonly used kernels
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that are not densities are also sometimes used. The kernel effectively smooths
or interpolates the probabilities across the range of outcomes for a random
variable such that the sum of probabilities equals one, a requirement of well-
behaved probabilities which is ensured by the division with n. The kernel
function weights the contribution of observations from a data sample based
on their relationship or distance to a given sample for which the probability
is requested. Specifically, this estimation is constructed by centring a scaled
kernel at each observation. The value of the kernel estimate at the point x
is simply the average of the n kernel ordinates at that point. One can think
of the kernel as spreading a “probability mass” of size 1/n associated with
each data point about its neighbourhood. Combining contributions from each
data point means that in regions where there are many observations, and it
is expected that the true density has a relatively large value, the kernel esti-
mate should also assume a relatively large value. The opposite should occur
in regions where there are relatively few observations.
As the kernels are placed on each data point, the anchor point placement
problem that the histogram suffers from is thus eliminated. The increased
smoothness of kernel estimators in comparison to histograms is not solely an
aesthetic improvement, as it also leads to improved statistical properties. The
choice of the shape of the kernel function is not a particularly important one.
The most unimodal densities perform about the same as each other when used
as a kernel. Thus, it follows that the choice between kernels can be made on
other grounds such as computational efficiency. In addition, we should men-
tion that it is possible to obtain better rates of convergence by relaxing the
restriction that the kernel is a density function. When K is constrained to
be a probability density function then it is necessarily true that µ2(K) > 0,
where µ2(K) =

∫
x2K(x)dx. However, without this restriction, it is possible

to construct K so that µ2(K) = 0 which will have the effect of reducing the
bias. However, the choice of h is very important as it controls the range of the
data that continues to estimate the underlying p.d.f. at a given point. To sum
up, the kernel estimator is a sum of “bumps” placed at the observations where
the kernel function determines the shape of the bumps while the bandwidth
parameter determines their width.
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Chapter 2 2.1. Univariate kernel density estimation

We take the precip data which are publicly available in R and give the
average amount of precipitation (rainfall) in inches for each of 70 United States
(and Puerto Rico) cities in order to understand how the estimation is affected
from the bandwidth. With the black line we have the optimal bandwidth
which is equal to 3.348. Then, we take the kernel estimations for three higher
values of bandwidth. Specifically, with the red line is depicted the estimation
with bandwidth equal to 4, with the green line the one equal to 6 and with
the blue line the one equal to 8. As presented in Fig. 2.2 the higher the h, the
smoother the estimator. This is a problem because it smooths features of the
curve that we are interested in.
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Figure 2.2: Kernel estimation with different bandwidths
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Then, working with the same data set we recall that with the black line we
have the optimal bandwidth which is equal to 3.348. Then, we take the kernel
estimations for three lower values of bandwidth. Specifically, with the red line
is depicted the estimation with bandwidth equal to 3, with the green line the
one equal to 2 and with the blue line the one equal to 1. As presented in Fig.
2.3 the lower the h, the more the estimator tends to take the form of the data.
This is a problem because the variation is greatly increased.
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Figure 2.3: Kernel estimation with different bandwidths
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Recalling the same data and optimal bandwidth we take again three differ-
ent estimations. The first one which is depicted with the red line has a small
enough bandwidth equal to 0.8, the green line has bandwidth very close to the
optimal and equal to 3 and the blue line has a quite large bandwidth equal
to 20. As presented in Fig. 2.4 depending on the size of the bandwidth our
estimation can vary a lot. Therefore, there has to be a balance in this choice
because we want neither small nor large values for the bandwidth. In Chapter
5 we will investigate in more detail how this can be achieved.
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Figure 2.4: Kernel estimation with different bandwidths
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Looking at the definition of the histogram and that of the kernel estimator
we observe that, by taking K to be the uniform kernel, the two estimators
are identical. In addition, some important properties of kernels are given in
A1-A5 of the next Chapter.
For the purpose of the next theorem we provide the following definition. Let
an and bn each be sequences of real numbers. We say that an is of small order
bn (or an is “small oh” bn), and we write

an = o(bn) as n → ∞ ⇔ lim
n→∞

|an/bn| = 0.

Theorem 2.1.2. The asymptotic properties of the kernel estimator f̂(x), see
Silverman (1986), are given by

E
{
f̂(x)

}
= f(x) +

h2

2
f ′′(x)

∫
u2K(u)du+ o(h2),

V ar
{
f̂(x)

}
=

1

nh
f(x)

∫
K2(u)du+ o

{
(nh)−1

}
.

As we can see, f̂ is a biased estimator, however asymptotically h → 0 as
n → ∞ and thus the bias shrinks to zero.

Proof. For the purpose of the proof we use the P4, P9, P11, P12 and P13
properties from the appendix. Fixing i in second step below

E
{
f̂(x)

}
= E

{
1

nh

n∑
i=1

K

(
x−Xi

h

)}
(P9)
= E

{
1

h
K

(
x−Xi

h

)}
(P4)
=

∫
1

h
K

(
x− z

h

)
f(z)dz.

Using the change of variable x− z = hu so that dz = hdu gives

E
{
f̂(x)

}
=

∫
1

h
K(u)f(x− hu)hdu

=

∫
K(u)f(x− hu)du. (2.2)

By a Taylor expansion of f(x− hu) around x we get

f(x− hu) = f(x)− huf ′(x) +
1

2
h2u2f ′′(x) + o(h2). (2.3)
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By substituting (2.3) in (2.2)

E
{
f̂(x)

}
=

∫
K(u)

{
f(x)− huf ′(x) +

1

2
h2u2f ′′(x) + o(h2)

}
du

= f(x)

∫
K(u)du− hf ′(x)

∫
uK(u)du

+
1

2
h2f ′′(x)

∫
u2K(u)du+ o(h2)

= f(x) +
h2

2
f ′′(x)

∫
u2K(u)du+ o(h2).

Regarding the variance expression of the theorem, fixing i in third step below
since X1, . . . , Xn are i.i.d.

Var
{
f̂(x)

}
= Var

{
1

nh

n∑
i=1

K

(
x−Xi

h

)}
(P12)
=

1

(nh)2
Var

{ n∑
i=1

K

(
x−Xi

h

)}
(P13)
=

1

nh2
Var

{
K

(
x−Xi

h

)}
(P11)
=

1

nh2

(
E

{
K

(
x−Xi

h

)}2

−
[
E

{
K

(
x−Xi

h

)}]2)
(P4)
=

1

nh2

[∫
K

(
x− z

h

)2

f(z)dz −
{∫

K

(
x− z

h

)
f(z)dz

}2
]
.

Using the change of variable x− z = hu so that dz = hdu gives

Var
{
f̂(x)

}
=

1

nh2

[∫
K(u)2f(x− hu)hdu−

{∫
K(u)f(x− hu)hdu

}2
]

=
1

nh

∫
K(u)2f(x− hu)du− 1

n

{∫
K(u)f(x− hu)du

}2

. (2.4)

By substituting (2.3) in (2.4)

Var
{
f̂(x)

}
=

1

nh

∫
K(u)2

{
f(x) + o(1)

}
du− 1

n

{
f(x) + o(1)

}2

=
1

nh
f(x)

∫
K(u)2du+ o

{
(nh)−1

}
,

thus finishes the proof of the theorem.
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Figure 2.5: Kernel density estimation

Example 2.1.1. In this example we use the geyser data which are publicly
available in R. It is about a data frame with 299 observations on 2 variables.
The first one, the “duration”, is a numeric variable and contains the eruption
time for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA,
in minutes. The second variable which is the one that we use in this example,
the “waiting”, is also a numeric variable and contains the waiting time for this
eruption. As presented in Fig. 2.5 with grey color is depicted the histogram
of the “waiting” data and with the blue line its density. Then, the black line
is the kernel density estimation with the Gaussian kernel and the red line is
the estimation with the rectangular kernel. In addition, the bandwidth of the
kernel estimator is selected automatically and we will discuss in more detail
how it is calculated in Chapter 5.

2.2 Multivariate kernel density estimation

Up to now, we have concentrated on the estimation of density underling a
set of univariate observations. But, for the purpose of this thesis we need to
establish the analysis of multivariate data. In the multivariate case, the dis-
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tinction between different possible applications of density estimation becomes
more important than for the univariate case. It is easy to comprehend a plot
of a two-dimensional density function. However, presentational difficulties
make it unlikely that density estimates will be useful, directly, for exploratory
purpose for more than two dimensions. An experienced user with access to
sophisticated graphics facilities might be able to inspect a three-dimensional
density function. On the other hand, if the intention is not to look at the
density function but instead to use it as an ingredient in some other statistical
techniques, it may be necessary to estimate densities in higher-dimensional
space.
Thus, we will now investigate the extension of the kernel density estimator to
the multivariate setting. The need for non-parametric density estimates for
recovering structure in multivariate data is, perhaps, greater since paramet-
ric modelling is more difficult than in the univariate case. The most general
smoothing parametrization of the kernel estimator in higher dimensions re-
quires the specification of many more bandwidth parameters than in the uni-
variate setting. This leads us to consider simpler smoothing parametrizations
as well. Also, the sparseness of data in higher-dimensional space makes kernel
smoothing difficult unless the sample size is very large. This phenomenon,
usually called the curse of dimensionality, means that, with practical sample
sizes, reasonable non-parametric density estimation is very difficult in more
than about five dimensions.
Nevertheless, there have been several studies where the kernel density esti-
mator has been an effective tool for displaying structure in bivariate samples.
The multivariate kernel density estimator that we will introduce is a direct
extension of the univariate estimator. We should note that there are also ap-
proaches to multivariate smoothing which attempt to alleviate the curse of
dimensionality by assuming that the multivariate function has some simpli-
fying structure. In its most general form, the d-dimensional kernel density
estimator is

f̂(x ) =
1

n

n∑
i=1

KH (X i − x ),

whereX 1, . . . ,X n denote a d-variate random sample withX i = (Xi1, . . . , Xid)
⊤

and x ∈ Rd a generic vector with representation x = (x1, . . . , xd)
⊤. In addi-

tion, the crucial tuning parameter H is a symmetric positive definite d × d
matrix called the bandwidth matrix and K is a d-variate probability density
function, i.e.

KH (x ) = |H |−1/2K (H−1/2x ),
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where

K (x ) =
d∏

j=1

K(xj).

The bandwidth controls the orientation and the extent of the smoothing ap-
plied via the kernel. Multivariate kernel functions can be constructed from
univariate ones in various ways. There are two popular ways of doing so when
we wish the kernel to be a multivariate density itself. In the previous expres-
sion we use the product kernel K which is a common technique for generating
multivariate kernels from a symmetric univariate kernel K.
A popular choice for K is the standard d-variate normal density

K (x ) = (2π)−d/2 exp

(
−1

2
x⊤x

)
,

in which case K{H−1(X i − x )} is the N(X i,H ) (normal) density in the
vector x . The normal kernel can be constructed from the univariate standard
normal density using either the product or spherically symmetric extensions.
The scaled, translated normal kernel is

KH (x −X i) = (2π)−d/2|H |−1/2 exp

{
−1

2
(x −X i)

⊤H−1(x −X i)

}
,

which is a normal density centred at X i with covariance matrix H . This is
one of the main reasons that we parametrize H as a variance matrix. For
this, and other reasons, the normal kernel is almost universally preferred for
multivariate data, in contrast to the univariate case where other kernels can
be preferred.
For the purpose of the next theorem we provide the following definition. Let
an and bn each be sequences of real numbers. We say that an is of order bn
(or an is “big oh” bn), and write

an = O(bn) as n → ∞ ⇔ lim
n→∞

sup |an/bn| < ∞.

Also, according to the multivariate Taylor’s expansion for any d-variate real
function f and a sequence of d-dimensional vectors an with all components
tending to zero, Df (x ) denotes a vector of first order partial derivatives of f
and Hf (x ) the Hessian matrix of f , i.e. the d× d matrix with the (i, j) entry
equal to

∂2

∂xi∂xj
f(x ).
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Chapter 2 2.2. Multivariate kernel density estimation

Then, assuming that all entries of Hf (x ) are continuous in a neighborhood of
x ,

f(x + αn) = f(x ) + αn
⊤Df (x ) +

1

2
αn

⊤Hf (x )αn + o(αn
⊤αn). (2.5)

Theorem 2.2.1. In order to derive the asymptotic properties except for A3
and A5 assumptions of the next Chapter we will also assume that each entry
of Hfx is piecewise continuous and square integrable (see Silverman (1986)).

E
{
f̂(x)

}
= f(x) +

1

2
tr
{
H1/2HfxH

1/2

∫
u2K(u)du

}
+o
{
tr(H)

}
,

Var
{
f̂(x)

}
= n−1|H|−1/2f(x)

∫
K(u)2du+ o(n−1|H|−1/2).

Proof. For the purpose of the proof we use the P1, P4, P9, P11, P12 and
P13 properties from the appendix. Fixing i in the second step below

E
{
f̂(x )

}
= E

{
n−1

n∑
i=1

KH (x −X i)
}

(P1),P (9)
= E

{
KH (x −X i)

}
(P4)
=

∫
KH (x − z )f(z )dz

=

∫
H−1/2K

{
H 1/2(x − z )

}
f(z )dz .

Using the change of variable x − z = H 1/2u so that dz = H 1/2du gives

E
{
f̂(x )

}
=

∫
H−1/2K (u)f(x −H 1/2u)H 1/2du

=

∫
K (u)f(x −H 1/2u)du .

By a Taylor expansion of f(x −H 1/2u) around x we get

E
{
f̂(x )

}
=

∫
K (u)

{
f(x )− (H 1/2u)⊤Dfx +

1

2
(H 1/2u)⊤Hfx (H

1/2u)
}

+ o
{
tr(H )

}
= f(x ) +

1

2
tr
{
H 1/2HfxH

1/2

∫
uu⊤K (u)du

}
+o
{
tr(H )

}
.
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Chapter 2 2.2. Multivariate kernel density estimation

Regarding the variance we have, fixing i in second step below

Var
{
f̂(x )

}
= Var

{
n−1

n∑
i=1

KH (x −X i)
}

(P12),P (13)
= n−1Var

{
KH (x −X i)

}
(P11)
= n−1

(
E
{
KH (x −X i)

2
}
−
[
E
{
KH (x −X i)

}]2)
.

Using the change of variable x − z = H 1/2u so that dz = H 1/2du gives

Var
{
f̂(x )

}
= n−1

[
|H |−1/2

∫
K (u)2f(x −H 1/2u)du

−
{∫

K (u)f(x −H 1/2u)
}2
]
.

Then, by (2.5) we have

Var
{
f̂(x )

}
= n−1|H |−1/2f(x )

∫
K (u)2du + o(n−1|H |−1/2).

Just as in the univariate case, some important choices have to be made
when constructing a multivariate kernel density estimator. First of all, the
d-variate kernel has to be selected. Secondly, one has to decide on the par-
ticular smoothing parametrization. A full bandwidth matrix allows for more
flexibility; however, it also introduces more complexity into the estimator since
more parameters need to be chosen. A simplification of (2.2) can be obtained
by imposing the restriction that H is a diagonal positive definite d × d ma-
trix. Then for H = diag(h1, . . . , hd) the kernel estimator can be written (see
Epanechnikov (1969))

f̂(x ) = n−1

( d∏
l=1

hl

)−1 n∑
i=1

K

(
x1 −Xi1

h1
, . . . ,

xd −Xid

hd

)
,

A further simplification follows when we assume that H = h2I with h >
0. This choice leads to the single bandwidth kernel estimator (see Cacoullos
(1964))

f̂(x ) = n−1h−d
n∑

i=1

K
{
(x −X i)/h

}
.
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Chapter 2 2.2. Multivariate kernel density estimation

Thus, we see that there is a hierarchical class of smoothing parametrizations
from which to choose when using a multivariate kernel estimator. We will
discuss the implications of this choice in detail in Chapter 5.

Example 2.2.1. In this example we simulate data from a bivariate normal
distribution. In particular, we produce a 2-dimensional normal variable with

µ = (0, 0)⊤ and Σ =

(
1.50 0.25
0.25 0.50

)
. In addition, we take H =

(
1.25 0
0 0.75

)
, a

diagonal and positive defined bandwidth matrix. Then, a plot using the KDE
object structure is depicted in Fig. 2.6. To conclude with, a perspective plot
of the previous estimation is given in Fig. 2.7.
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Figure 2.6: Multivariate kernel density estimation
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Figure 2.7: Perspective plot of multivariate kernel density estimation
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Chapter 2 2.3. A continuous non-parametric survival function estimator

2.3 A continuous non-parametric survival function
estimator

Through this section we assume that the available data are the pairs (Yi, δi),
i = 1, . . . , n, where Yi = min(Ti, Ui) and δi = 1{Ti≤Ui} with 1{·} the indicator
function of {·}. Recall that FT is the c.d.f. of T and G is the c.d.f. of U . The
c.d.f. of Y denoted by F , satisfies 1 − F (y) =

{
1 − FT (y)

}{
1 − G(y)

}
. An

estimate of the unknown survival function can be defined by ŜT (y) = 1−F̂T (y)
where

F̂T (y) =
1

n

n∑
i=1

δi
1−G(Yi)

W

(
y − Yi

h

)
,

where

W (y) =

∫ y

−∞
K(u)du.

We recall that the real-valued function K is called kernel and integrates to
1, while h is called bandwidth and controls the amount of smoothing applied
to the estimate. Estimator ŜT (y) cannot be used directly in practice as it in-
volves the unknown censoring distribution G(y). An estimate of the unknown
censoring distribution G(y) is obtained by reversing the intuitive role played
by Ti and Ui and estimate 1 − G(y) by the (sightly modified) Kaplan-Meier
estimator,

1− Ĝ(y) =


1, 0 ≤ y ≤ Z1,∏k−1

i=1

(
n−i+1
n−i+2

)1−Λi

, Zk−1 < y ≤ Zk, k = 2, . . . , n,∏n
i=1

(
n−i+1
n−i+2

)1−Λi

, y > Zn,

where (Zi,Λi) are the ordered Yi’s, along with their censoring indicators δi,
i = 1, . . . , n. This gives rise to the practically useful estimator

Ŝn(y) = 1− 1

n

n∑
i=1

δi

1− Ĝ(Yi)
W

(
y − Yi

h

)
.

The estimator ŜT (y) was employed in the context of survival function estima-
tion in Gulati and Padgett (1996) where its asymptotic mean square error,
optimal (with respect to MSE) bandwidth, strong uniform consistency and
convergence to a mean zero Gaussian process were established. In addition,
Kulasekera et al. (2001) and Lemdani and Ould-Saıd (2003) respectively pro-
vided the conditions under which the estimate has superior Mean Square Error
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Chapter 2 2.3. A continuous non-parametric survival function estimator

(MSE) and Mean Integrated Absolute Error compared to the Kaplan-Meier
Estimate. Applications of ŜT (y) include the works of Claeskens and Hall
(2002) and Kim et al. (2005) on kernel hazard rate estimation. Moreover,
the distribution estimate 1 − ŜT (y) has been applied extensively on quantile
estimation under random right censorship, see Lio and Padgett (1992) and
the references therein. To sum up, this estimator can be used when we have
censored data and we want to avoid the discontinuity of the Kaplan-Meier
estimator.
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CHAPTER3
Estimation of Conditional
Distribution Function

3.1 Conditional c.d.f. estimation under random right
censoring

Throughout this section the available data are the pairs of random variables
(Y, δ) where Y = min(T,U) and δ = 1{T≤U}. Recall that T ∼ fT and U ∼ fU .
Usually there are more than one factors that affect survival at each given time
point. Covariate information is typically assumed real valued and denoted as
a d-dimensional vector, say X = (X1, . . . , Xd)

⊤, coming from a d-variate p.d.f.
fX and c.d.f. FX , with support, supp(fX ) ≡ S = [M1, T1]×· · ·×[Md, Td] ⊂ Rd.
Conditioning on covariate information it is common to assume that survival
and censoring times, i.e. T |X and U |X are independent from each other.
Hence, the way that covariates X1, . . . , Xd affect survival times is independent
from the way that affect the censoring variable.
Let (X i, Yi, δi) be an i.i.d. random sample from the population (X , Y, δ), with
X i = (Xi1, . . . , Xid)

⊤. Given X = x , the variables Y and U have conditional
distribution functions F (·|X ) and G(·|X ) respectively, while FT (·|X ) is the
conditional distribution function of T given X . From the independence of T
and U given X it holds that

F (Y |X ) = P (Y ≤ y|X = x )

= P (min(T,U) ≤ y|X = x )

= P
{
(T ≤ y|X = x ) ∩ (U ≤ y|X = x )

}
= P (T ≤ y|X = x )P (U ≤ y|X = x ).

The objective is to estimate the conditional distribution function FT (Y |X =
x ) = P (Y ≤ y|X = x ) which implicitly also provides an estimate of the
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Chapter 3 3.1. Conditional c.d.f. estimation under random right censoring

conditional survival function

ST (Y |X = x ) = P (Y > y|X = x ) = 1− FT (Y |X = x ),

based on the data (X i, Yi, δi), i = 1, . . . , n.
For any conditional p.d.f. or c.d.f. function, say g(y|x ), Dd(y|x ) denotes the
gradient vector

Dd(y|x ) = ġ(y|x ) =
(
∂g(y|x )
∂x1

, . . . ,
∂g(y|x )
∂xd

)⊤
,

and Hd(y|x ) the Hessian matrix

Hd(y|x ) = g̈(y|x ) =


∂2g(y|x )
∂x1

2 . . . ∂2g(y|x )
∂x1xd

. . . . . . . . .
∂2g(y|x )
∂xdx1

. . . ∂2g(y|x )
∂xd

2

 .

Let ŜT = 1 − F̂T be the Kaplan-Meier estimate for the survival function ST .
In the absence of censoring, the Kaplan-Meier estimator is in fact unbiased.
Now, if the last survivor in the sample actually dies, then ŜT = 0 and therefore
the Kaplan-Meier estimator remains unbiased. However, the possibility that
the last remaining survivor will become censored rather than die is increased,
if censoring exists. In this case ŜT will never drop to zero. Therefore, the
possibility of the last survivor becoming censored is the source of bias in the
Kaplan-Meier estimator. However, Kaplan-Meier estimator is an asymptoti-
cally unbiased estimator, i.e.,

E{F̂T (Y )|X = x} = FT (y|x ).

Then, it is reasonable to regard the data

{F̂T (Yi),X i, δi = 1}, i = 1, . . . , n,

as of coming from the non-parametric regression

F̂T (Yi) = FT (y|X i) + εi(y), i = 1, . . . , n, (3.1)

where the εi(y)
′s denote conditionally mean zero error terms since,

E(ε) = E
{
E(ε|X )

}
= E

(
E
[{

F̂T (Y )− FT (Y |X )
}∣∣∣X ])

= E
{
FT (Y |X )− FT (Y |X )

}
= 0.
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This motivates a local linear approach in estimating FT (y|x ): in parallel to Fan
and Gijbels (1996), a multivariate Taylor expansion of FT (y|X = z ) around
x = (x1, . . . , xd)

⊤ reveals that each coefficient of the expansion corresponds
to a vector of partial derivatives of the conditional distribution function. Pro-
vided that FT (y|z ) is a smooth function (a function that has continuous deriva-
tives up to some desired order over some domain) it can be accurately approx-
imated locally by d-dimensional hyperplanes with coefficients βν , ν = 0, 1,
i.e.

E{F̂T (Y )|X = z} = FT (y|z ) ≃ FT (y|x ) + Ḟ T (y|x )⊤(z − x )

≡ β0 + β⊤
1 (z − x ). (3.2)

By (3.2) it is immediately established that the scalar β0 corresponds to FT (y|x )
and the d-variate vector β⊤

1 = (β1,1, . . . , β1,d)
⊤ corresponds to the vector of

first order partial derivatives

Ḟ T (y|x ) =
(
∂FT (y|x )

∂x1
, . . . ,

∂FT (y|x )
∂xd

)⊤

d×1

.

Thus estimation of β0 essentially corresponds to estimation of FT (y|x ). By

(3.2)

FT (y|X i) ≃ FT (y|x ) + Ḟ T (y|x )⊤(X i − x ) ≡ β0 + β⊤
1 (X i − x ). (3.3)

By (3.1) and (3.3)

εi(y) = F̂T (Yi)− FT (y|X i) = F̂T (Yi)− β0 − β1
⊤(X i − x ).

Thus, the β̂ν , ν = 0, 1, are obtained by solving the least squares optimization
problem where we can incorporate a weight scheme to down-weigh the contri-
butions of a data point away from x . We can assign a weightK{H−1(X i−x )}
to the point (X i, Yi, δi) and by taking the square of εi(y), it leads to the fol-
lowing weighted least squares problem

min
β0,β1

n∑
i=1

{F̂T (y)− β0 − β1
⊤(X i − x )}2K{H−1(X i − x )}, (3.4)

where H denotes the bandwidth matrix

H = diag{h1, . . . , hd},

where we recall that hi is a positive number, usually called the bandwidth
or window width, i.e. is the amount of smoothing applied to the data in the
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ith, i = 1, . . . , d direction and K denotes the d-variate kernel introduced in
Section 2.2. The choice of the shape of the kernel function is not a particularly
important one. However, the choice of the value for the bandwidth is very
important.
We can write (3.4) in matrix notation as

min
B

(Y −XB)⊤W (Y −XB),

where,

X =

 1 (X 1 − x )⊤

. . . . . .
1 (X n − x )⊤


n×(d+1)

, Y =
(
F̂T (y1), . . . , F̂T (yn)

)⊤
n×1

,

W = diag
[
K{H−1(X 1−x )}, . . . ,K{H−1(X n−x )}

]
n×n

, B =

(
β0
β1

)
(d+1)×1

.

Hence, we have to minimize S with respect to B, where S is

S = (Y −XB)⊤W (Y −XB) (3.5)

= (Y ⊤ −B⊤X⊤)(W Y −WXB)

= Y ⊤W Y − Y ⊤WXB −B⊤X⊤W Y +B⊤X⊤WXB. (3.6)

By taking the derivative of (3.6) with respect to B so equally to 0 and solving
for B yields

B̂ = (X⊤WX )
−1

X TW Y =

(
β̂0
β̂1

)
. (3.7)

Thus,

β̂0 = e1(X
⊤WX)−1XTW Y, (3.8)

where,

e1 = (1, 0, . . . , 0)1×(d+1).
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In order to find β̂0 we will first calculate the quantity X⊤WX .

X⊤WX =


1 . . . 1

(X11 − x1) . . . (Xn1 − x1)
...

. . .
...

(X1d − xd) . . . (Xnd − xd)


(d+1)×nK{H−1(X 1 − x )} . . . 0

...
. . .

...
0 . . . K{H−1(X n − x )}


n×n

×

1 (X11 − x1) . . . (X1d − xd)
...

. . .
. . .

...
1 (Xn1 − x1) . . . (Xnd − xd)


n×(d+1)

=

(
Sn,0(x ) Sn,1(x )

⊤

Sn,1(x ) Sn,2(x )

)
(d+1)×(d+1)

.

The calculation of (X⊤WX)−1 is in the Appendix.
Now, we have to calculate the quantity X⊤W Y which is given by

(
1 . . . 1

(X 1 − x )⊤ . . . (X n − x )⊤

)
K{H−1(X 1 − x )} . . . 0

...
. . .

0 . . . K{H−1(X n − x )}


F̂T (y)

. . .

F̂T (y)


=

( ∑n
i=1K{H−1(X i − x )}F̂T (y)∑n

i=1K{H−1(X i − x )}(X i − x )F̂T (y)

)
. (3.9)

For d = 1 an equivalent form of (3.8), say F̃L(y|x ), is given by

F̃L(y|x ) ≡ β̂0 =
n∑

i=1

Sn,2(x )− Sn,1(x )(X i − x )

Sn,2(x )Sn,0(x )− Sn,1(x )Sn,1(x )
×

K{H−1(X i − x )}F̂T (y). (3.10)
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For d > 1 note that we only need the first row of the (X⊤WX)−1. Suppose
that,

p1 = (A−BD−1C )−1

=
{
Sn,0(x )− Sn,1(x )

⊤Sn,2(x )
−1Sn,1(x )

}−1
,

p2 = −A−1B(D −CA−1B)−1

= −Sn,0(x )
−1Sn,1(x )

⊤{Sn,2(x )− Sn,1(x )Sn,0(x )
−1Sn,1(x )

⊤}−1
,

with A,B ,C and D given in Appendix, gives,

F̃L(y|x ) ≡ β̂0 =
(
p1 p2

)
1×(d+1)

( ∑n
i=1K{H−1(X i − x )}F̂T (y)∑n

i=1K{H−1(X i − x )}(X i − x)F̂T (y)

)
(d+1)×1

= p1

n∑
i=1

K{H−1(X i − x )}F̂T (y) (3.11)

+ p2

n∑
i=1

K{H−1(X i − x )}(X i − x)F̂T (y)

=
n∑

i=1

{
p1 + p2(X i − x)

}
K{H−1(X i − x )}F̂T (y). (3.12)

where,

Sn,0(x ) =
n∑

i=1

K{H−1(X i − x )},

Sn,1(x ) =
n∑

i=1

K{H−1(X i − x )}(X i − x ),

Sn,2(x ) =
n∑

i=1

K{H−1(X i − x )}(X i − x )(X i − x )⊤. (3.13)

Note that S̃L(y|x ) is continuous only in x . Now, let K ∗
H (·) = |H |−1K (H−1·)

and for any real function g set R(g) =
∫
g2. The following assumptions and

definitions are used throughout the thesis.

A1. fX is continuous at x , while ST (y|x ) is twice continuously partially
differentiable in a neighbourhood of x .

A2. The point x = (x1, ..., xd)
⊤ is in the support of fX . At x , FT is continu-

ously differentiable and all second-order derivatives of FT are continuous.
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A3. The sequence of bandwidth matrices H is such that n−1|H | and each
entry of H tends to zero as n → ∞, with H remaining symmetric and
positive definite. Also, there is a fixed constant L such that the condition
number of H (i.e., the ratio of its largest to its smallest eigenvalue) is
at most L for all n.

A4. |H | converges to zero in such a way so that nH → ∞ and H log n → 0.

A5. The kernel K is a compactly supported, bounded kernel such that∫
uu⊤K(u) = µ2(K )I,

where µ2(K ) is a scalar and I is the d× d identity matrix. In addition,
all odd-order moments of K vanish, that is,∫

ul11 ...u
ld
d K(u) = 0,

for all non-negative integers l1, ..., ld such that their sum is odd. Note
that this last condition is satisfied by spherically symmetric kernels and
product kernels based on symmetric univariate kernels. Furthermore, K
satisfies

R(K) =

∫
K 2 < ∞,

∫
|u2K | < ∞,

∫
K = 1 and

∫
uK = 0.

An important consequence of taking supp(fX ) ≡ S is that S is compact, closed
and bounded with smooth boundary, satisfying cl(Sint) = Sint, where cl(·) is
the closure of the set (·) and

Sint = [M1 + h1, T1 − h1]× · · · × [Md + hd, Td − hd].

Then, since for any p.d.f. fX ≥ 0 on S it follows that a discontinuity will
occur across the boundary of S, denoted by ∂S, while fX is smooth on S.

Since J = [1, 1]d is a compact and simply connected set which satisfies
cl(Jint) = J , then the effective kernel support or smoothing window of K is
Jn(x )∩S, where Jn(x ) = x −H J . The assumptions on S and the properties
of J ensure that Jn(x ) ∩ S is measurable and has a positive measure for all
x ∈ S. Now, let x ∈ S. Transposing and rescaling the support J of the kernel,
leads to the set

Jx = H−1
{
x − Jn(x ) ∩ S

}
= {z ∈ Rd : z = H−1(x − y), y ∈ Jn(x ) ∩ S}.
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Since only data falling in Jn(x ) ∩ S contribute to F̃L(y|x ), for x ∈ Sint, it
holds that Jn(x ) ∩ S = Jn(x ) ⊂ S which implies that Jx = J . Consequently,
when x ∈ Sint, the moment conditions of assumption A5 hold and the estimate
behaves as expected. Note that the same is true asymptotically for all x ∈ S
as by assumption A3, Jx = J , for n → ∞. However, from a finite sample
standpoint, when x is in the boundary of S, i.e. for x ∈ Sb,l or x ∈ Sb,r,
where

Sb,l = [M1,M1+h1]×· · ·×[Md,Md+hd], Sb,r = [T1−h1, T1]×· · ·×[Td−hd, Td],

then Jn(x )∩ S ̸= Jn(x ) or equivalently Jn(x )∩ S ̸⊂ S and hence part of the
smoothing window is devoid of data. For example, in the case where x ∈ Sb,l,
the effective support of K is actually Jx = [1, c1] × · · · × [1, cd] ≡ D, with
0 < ci < 1, for all i ∈ 1, . . . , d and consequently the moment conditions for
K in assumption A5 no longer hold. For the same reason, the effective kernel
support of K is also asymmetric in the right boundary as Jx = [c1, 1]× · · · ×
[cd, 1], for x ∈ Sb,r. Thus employing K without any modification for kernel
estimation of FT (y|x) is expected to result in inflated bias at any x ∈ Sb =
Sb,l ∩ Sb,r in the usual asymptotic analysis. Focusing on the left boundary, as
treatment of the right boundary is similar, the automatic boundary adjustment
of F̃L(y|x ) and its asymptotic properties are discussed next.
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CHAPTER4
Asymptotic properties of
Conditional Distribution
Function

4.1 Asymptotic properties

Now, let M = (M1, . . . ,Md) and T = (T1, . . . , Td) where Ti, Mi, i = 1, . . . , d
denote positive constants and let

Sb,l = [M1,M1+h1]×· · ·×[Md,Md+hd], Sb,r = [T1−h1, T1]×· · ·×[Td−hd, Td],

so that Sb = Sb,l ∪ Sb,r is the boundary of supp(fX ). For a positive d-variate
constant c = (c1, . . . , cd) if (0, . . . , 0)d×1 < c < (1, . . . , 1)d×1 then x = M +
Hc ∈ Sb,l is a left boundary point, while if (1, . . . , 1)d×1 < c < diag{M1/h1 −
1, . . . ,Md/hd−1}, so that x = M+Hc ∈ supp(fX ) and in the right boundary
diag{T1/h1 − 1, . . . , Td/hd − 1} ≤ c ≤ diag{T1/h1, . . . , Td/hd} so that x =
T−Hc ∈ Sb,r. The analysis focuses on the left boundary as treatment of the

right boundary is similar. First denote the bias of F̂L(y|x ) by

bF̃L(,c)
(y|x ) =

{
bF̃L,c

(y|x ), y ∈ [0, TY ], x ∈ [0, hj ]
d ∪ [Mj − hj ,Mj ]

d,

bF̃L
(y|x ), y ∈ [0, TY ], x ∈ [Mj − hj ,Mj ]

d,

and its variance by

σ2
F̃L(,c)

(y|x ) =

{
σ2

F̃L,c
(y|x ), y ∈ [0, TY ], x ∈ [0, hj ]

d ∪ [Mj − hj ,Mj ]
d,

σ2
F̃L

(y|x ), y ∈ [0, TY ], x ∈ [Mj − hj ,Mj ]
d,
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for j = 1, . . . , d. Also let

S0,c =

∫ ∞

−c
K(u)du ,

S1,c =

∫ ∞

−c
uK(u)du ,

S2,c =

∫ ∞

−c
u2K(u)du .

(4.1)

Lemma 4.1.1. Assume that |H| → 0 and n|H| → ∞. Then

Sn,l = n|H|l+1fX(x)Sl,c{1 + op(1)}, l = 0, 1, 2.

Proof. The proof of lemma is given for j = 2. The cases j = 0, 1 are proved in
an entirely similar manner. We use the P1, P4 and P9-P13 properties from
the appendix. In addition, first, write

Sn,2 =

n∑
i=1

K{H−1(X i − x )}(X i − x )(X i − x )⊤

= E
{
Sn,2(x )

}
+Var

{
Sn,2(x )

}
. (4.2)

For fixed i in the third step below

E
{
Sn,2(x )

}
= E

[ n∑
i=1

K{H−1(X i − x )}(X i − x )(X i − x )⊤
]

(P1),(P9)
= nE

[
K{H−1(X i − x )}(X i − x )(X i − x )⊤

]
(P4)
=

∫
nK{H−1(u − x )}(X i − x )(X i − x )⊤fX (u)du .

Using the change of variable u − x = Hz so that du = H dz gives

E
{
Sn,2(x )

}
=

∫
nK (z )(Hz )(Hz )⊤fX (x +Hz )H dz

= n|H |3
∫

z⊤zK (z )fX (x +Hz )dz .
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Chapter 4 4.1. Asymptotic properties

Now, by using (2.5) we get

E
{
Sn,2(x )

}
= n|H |3

∫
z⊤zK (z )

[
fX (x ) + (Hz )⊤DfX (x )

+
1

2
(Hz )⊤HfX (x )Hz + o

{
tr(H 2)

}]
dz

= n|H |3fX (x )

∫
z⊤zK (z )dz{1 + op(|H |)}

= n|H |3fX (x )S2,c{1 + op(|H |)}. (4.3)

Regarding the variance we have

Var
{
Sn,2(x )

}
= Var

[
n−1

n∑
i=1

K{H−1(X i − x )}(X i − x )(X i − x )⊤
]

(P12),(P13)
= n−1Var

[
K{H−1(X i − x )}(X i − x )(X i − x )⊤

]
(P11)
= n−1

(
E
[{

K{H−1(X i − x )}(X i − x )(X i − x )⊤
}2]

−
[
E
{
K{H−1(X i − x )}(X i − x )(X i − x )⊤

}]2)
.

For X i = u , using the change of variable u −x = Hz so that du = H dz and
fixing i in the first step below

Var
{
Sn,2(x )

} (P4)
= n−1

[ ∫
K (z )2(Hz )(Hz )⊤(Hz )(Hz )⊤fX (x +Hz )H dz

−
{∫

K (z )(Hz )(Hz )⊤fX (x +Hz )H dz

}2]
(P10)
= n−1|H |

[ ∫
K (z )2(Hz )(Hz )⊤(Hz )(Hz )⊤fX (x +Hz )dz

−
{
|H |

∫
K (z )(Hz )(Hz )⊤fX (x +Hz )dz

}2]
= Op

(
n−1|H |

)
. (4.4)

Combining (4.2), (4.3) and (4.4) finishes the proof.
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A useful and asymptotically equivalent representation of F̃L(y|x ) by using
(3.13), (4.1) and Lemma 4.1.1 is obtained by the relationship

F̃L(y|x ) =
n∑

i=1

Sn,2(x )− Sn,1(x )(X i − x )

Sn,2(x )Sn,0(x )− Sn,1(x )Sn,1(x )
K{H−1(X i − x )}F̂T (y)

=
n∑

i=1

n|H |3fX (x )S2,c − n|H |2fX (x )S1,c(X i − x )

n|H |3fX (x )S2,cn|H |fX (x )S0,c − (n|H |2fX (x )S1,c)
2×

K{H−1(X i − x )}F̂T (y)

=
1

n|H |fX (x )

n∑
i=1

S2,c − S1,c |H |−1(X i − x )

S2,cS0,c − S1,c
2 ×

K{H−1(X i − x )}F̂T (y)

=
1

n|H |fX (x )

n∑
i=1

Kc
∗{H−1(X i − x )}F̂T (y).

where,

K c
∗(u) =

S2,c − S1,cu

S2,cS0,c − S2
1,c

K (u)I {−c,+∞}(u).

The case of estimation in the interior is obtained by taking (1, . . . , 1)d×1 <
c < MH−1 − (1, . . . , 1)d×1 and assumption A1 in Section 3.1. The asymp-
totic properties of F̂L(y|x ) are summarized in the next theorem.

Theorem 4.1.2. Under assumptions A1 and A5 in Section 3.1, the bias and
variance of F̃L(y|x) are given by

bF̃L(,c)
(y|x) = µ2(Kc

∗)

2fX(x)

[
2tr
{
H⊤DfX(x)Ḟ T (y|x)⊤H

}
+fX(x)tr

{
H⊤HFT

(y|x)H
}

+ tr
{
H⊤HfX(x)H

}
FT (y|x)

]
+ o(H⊤H).

σ2
F̃L(,c)

(y|x) = R(Kc
∗)

n|H|fX(x)
{
1− FT (y|x)

}2 n∑
i=1

di
ni(ni − di)

+ O(n−1).

The above results imply that F̃L(y|x ) achieves the same rate of conver-
gence in the boundary of the covariates domain and in the interior and that
the derivative order leaves the bias rate of convergence unaffected. However,
the second term on the right hand side of the variance expression is nega-
tive which implies that kernel smoothing improves the estimate variance by a
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second order effect. Although, the presence of the survival function of the cen-
soring distribution in the denominator of the variance expression indicates that
F̃L are expected to be more variable in practice than their complete sample
counterparts. Now, let NT ≤ MY denote the largest uncensored observation.
For y ∈ [0, NT ] it is known from Karunamuni and Yang, see Karunamuni and
Yang (1991), that ŜT converges to ST in probability with rate n−1/2. As a
consequence, F̃L is expected to exhibit a very robust behavior in [0, NT ]. On
the contrary and in correspondence to ŜT , the finite sample performance of
F̃L is expected to diminish for y > NT , i.e. beyond the last uncensored obser-
vation.

Proof. For the purpose of the proof we use the P1- P6, P8, P10-P13 and P17
properties from the appendix. For fixed i in the last step below

E{F̃L(y|x )} = E

[
1

n|H |fX (x )

n∑
i=1

K c
∗{H−1(X i − x )}F̂T (y)

]
(P1)
=

1

n|H |fX (x )
E

[ n∑
i=1

K c
∗{H−1(X i − x )}F̂T (y)

]
(P2)
=

1

n|H |fX (x )
E

[ n∑
i=1

K c
∗{H−1(X i − x )}E{F̂T (y)|X i}

]
(P1),(P9)

=
n

n|H |fX (x )
E

[
K c

∗{H−1(X i − x )}E{F̂T (y)|X i}
]

(P3)
=

1

|H |fX (x )
E

[
K c

∗{H−1(X i − x )}FT (y|X i)

]
(P4)
=

1

|H |fX (x )

∫
K c

∗{H−1(u − x )}fX (u)FT (y|u)du .

Using the change of variable u − x = Hz so that du = H dz gives

E{F̃L(y|x )} =
1

|H |fX (x )

∫
K c

∗{H−1(Hz )}fX (x +Hz )FT (y|x +Hz )H dz

(P10)
=

|H |
|H |fX (x )

∫
K c

∗(z )fX (x +Hz )FT (y|x +Hz )dz

=
1

fX (x )

∫
K c

∗(z )fX (x +Hz )FT (y|x +Hz )dz . (4.5)

Now, we want to replace the unknown fX (x+Hz ) and FT (y|x+Hz ) in (4.5).
In order to accomplish that we will use the multivariate version of Taylor’s
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theorem. Applying (2.5) with f(x) = fX (x ), αn = Hz gives

f(x +Hz ) = fX (x ) + (Hz )⊤DfX (x ) +
1

2
(Hz )⊤HfX (x )Hz + o

{
(Hz )⊤Hz

}
= fX (x ) + (Hz )⊤DfX (x ) +

1

2
(Hz )⊤HfX (x )Hz + o

{
tr(H 2)

}
.

(4.6)

Note that,

o
{
(Hz )⊤Hz

}
= o(z⊤H⊤Hz )

(P5)
= o

{
tr(z⊤H⊤Hz )

}(P8)
= o

{
tr(zz⊤H⊤H )

}
(P6)
= o

{
zz⊤tr(H⊤H )

}(A3)
= o

{
tr(H 2)

}
.

Further, (2.5) with f(x) = FT (y|x ), αn = Hz gives

FT (y|x +Hz ) = FT (y|x ) + (Hz )⊤DFT
(y|x ) + 1

2
(Hz )⊤HFT

(y|x )Hz

+ o
{
(Hz )⊤Hz

}
(17)
= FT (y|x ) + (Hz )⊤DFT

(y|x ) + 1

2
(Hz )⊤HFT

(y|x )Hz

+ o
{
tr(H 2)

}
. (4.7)

Now, by multiplying (4.6) with (4.7) we have that

f(x +Hz )FT (y|x +Hz ) = fX (x )FT (y|x ) + fX (x )(Hz )⊤DFT
(y|x )

+
1

2
fX (x )(Hz )⊤HFT

(y|x )Hz + fX (x )o
{
tr(H 2)

}
+(Hz )⊤DfX (x )FT (y|x )

+ (Hz )⊤DfX (x )(Hz )⊤DFT
(y|x ) + 1

2
(Hz )⊤DfX (x )(Hz )⊤HFT

(y|x )Hz

+ (Hz )⊤DfX (x )o
{
tr(H 2)

}
+
1

2
(Hz )⊤HfX (x )HzFT (y|x )

+
1

2
(Hz )⊤HfX (x )Hz (Hz )⊤DFT

(y|x ) + 1

2
(Hz )⊤HfX (x )(Hz )o

{
tr(H 2)

}
+

1

4
(Hz )⊤HfX (x )Hz (Hz )⊤HFT

(y|x )Hz + o
{
tr(H 2)

}
o
{
tr(H 2)

}
+ o
{
tr(H 2)

}1
2
(Hz )⊤HFT

(y|x )Hz + o
{
tr(H 2)

}
(Hz )⊤DFT

(y|x )

+ o
{
tr(H 2)

}
FT (y|x ). (4.8)

Combining (4.8) with the following properties from A5 in Section 3.1∫
zK c

∗(z )dz = 0 and

∫
ul11 ...u

ld
d K(u) = 0,
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and by including all lower order terms in o
{
tr(H 2)

}
yields

f(x +Hz )FT (y|x +Hz ) = fX (x )FT (y|x ) + (Hz )⊤DfX (x )(Hz )⊤DFT
(y|x )

+
1

2
(Hz )⊤HfX (x )HzFT (y|x ) +

1

2
fX (x )(Hz )⊤HFT

(y|x )Hz + o(H⊤H ).

Substitute the above equation in (4.5) to obtain

E{F̃L(y|x )} =
1

fX (x )

∫
K c

∗(z )
{
fX (x )FT (y|x ) + (Hz )⊤DfX (x )(Hz )⊤DFT

(y|x )

+
1

2
(Hz )⊤HfX (x )HzFT (y|x ) +

1

2
fX (x )(Hz )⊤HFT

(y|x )Hz

+ o(H⊤H )
}
dz . (4.9)

Rearranging (4.8), (4.9) gives

E{F̃L(y|x )} =

∫
K c

∗(z )
{
FT (y|x ) +

1

fX (x )
(Hz )⊤DfX (x )(Hz )⊤DFT

(y|x )

+
1

2
(Hz )⊤HFT

(y|x )Hz + o(H⊤H )
}
dz

=

∫
K c

∗(z )
{ 1

fX (x )
(Hz )⊤DfX (x )(Hz )⊤DFT

(y|x )

+

∫
K c

∗(z )
{1
2

1

fX (x )
(Hz )⊤HfX (x )HzFT (y|x )

}
dz

+

∫
K c

∗(z )
{1
2
(Hz )THFT

(y|x )Hz
}
dz

+

∫
K c

∗(z )FT (y|x )dz +

∫
K c

∗(z )o(H⊤H )dz .

By the following conditions from A5 in Section 3.1

∫
uu⊤K(u) = µ2(K )I and

∫
K c

∗(z )dz = 1,
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the above equation becomes

E{F̃L(y|x )} =
µ2(K c

∗)

2

[
2

fX (x )
tr
{
H⊤DfX (x )DFT

(y|x )⊤H
}
+tr

{
H⊤HFT

(y|x )H
}]

+

[
1 +

tr
{
H⊤HfX (x )H

}
µ2(K c

∗)

2fX (x )

]
FT (y|x ) + o(H⊤H )

=
µ2(K c

∗)

2

[
2

fX (x )
tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+tr

{
H⊤HFT

(y|x )H
}]

+

[
1 +

tr
{
H⊤HfX (x )H

}
µ2(K c

∗)

2fX (x )

]
FT (y|x ) + o(H⊤H ).

(4.10)

From definition of bias and (4.10) we have that

bF̃L(,c)
(y|x ) = E{F̃L(y|x )} − FT (y|x )

=
µ2(K c

∗)

2

[
2

fX (x )
tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+tr

{
H⊤HFT

(y|x )H
}]

+

[
tr
{
H⊤HfX (x )H

}
µ2(K c

∗)

2fX (x )

]
FT (y|x ) + o(H⊤H )

=
µ2(K c

∗)

2fX (x )

[
2tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+fX (x )tr

{
H⊤HFT

(y|x )H
}

+ tr
{
H⊤HfX (x )H

}
FT (y|x )

]
+ o(H⊤H ).

which complete the first part of the proof.
In order to prove the variance of F̃L(y|x ) we will use the following bias/variance
decomposition

Var
{
F̃L(y|x )

}
= Var

[
E
{
F̃L(y|x )|X

}]
+ E

[
Var
{
F̃L(y|x )|X

}]
. (4.11)

For the first term of the variance above

Var
{
F̃L(y|x )|X

}
= Var

[
1

n|H |fX (x )

n∑
i=1

K c
∗{H−1(X i − x )}F̂T (y)|X i

]
(P12),(P13)

=
n

n2|H |2fX (x )2
K c

∗{H−1(X i − x )}2Var{F̂T (y)|X i}

=
1

n|H |2fX (x )2
K c

∗{H−1(X i − x )}2Var{F̂T (y)|X i}.

(4.12)
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Thus, fixing i in the first step below

E
[
Var
{
F̃L(y|x )|X

}]
= E

[
1

n|H |2fX (x )2
K c

∗{H−1(X i − x )}2Var{F̂T (y)|X i}
]

(P4)
=

1

n|H |2fX (x )2

∫
K c

∗{H−1(u − x )}2fX (u)

Var{F̂T (y)|u}du . (4.13)

Using the change of variable u − x = Hz so that du = H dz (4.13) gives

E
[
Var
{
F̃L(y|x )|X

}]
=

1

n|H |2fX (x )2

∫
K c

∗{z}2fX (x +Hz )×

Var{F̂T (y|x + (Hz)}H dz

(P10)
=

|H |
n|H |2fX (x )2

∫
K c

∗{z}2fX (x +Hz )×

Var{F̂T (y|x +Hz}dz

=
1

n|H |fX (x )2

∫
K c

∗{z}2fX (x +Hz )×

Var{F̂T (y|x +Hz}dz . (4.14)

By substituting the conditional form of Kaplan-Meier’s estimator variance
(1.17) in (4.14) we have that

E
[
Var
{
F̃L(y|x )|X

}]
=

1

n|H |fX (x )2

∫
K c

∗{z}2fX (x +Hz )×

{
1− F̂T (y|x +Hz )

}2
×

n∑
i=1

di
ni(ni − di)

dz .

From (4.6) and (4.7) we have that

f(x +Hz ) = fX (x ) + (Hz )⊤DfX (x ) +
1

2
(Hz )⊤HfX (x )Hz + o

{
tr(H 2)

}
.
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Similarly,

FT (y|x +Hz ) = FT (y|x ) + (Hz )⊤DFT
(y|x ) + 1

2
(Hz )⊤HFT

(y|x )Hz

+ o
{
tr(H 2)

}
.

Now, note that

FT (y|x +Hz )2 =
[
FT (y|x ) + (Hz )⊤DFT

(y|x ) + 1

2
(Hz )⊤HFT

(y|x )Hz

+ o
{
tr(H 2)

}][
FT (y|x ) + (Hz )⊤DFT

(y|x ) + 1

2
(Hz )⊤×

HFT
(y|x )Hz + o

{
tr(H 2)

}]
= FT (y|x )2 + FT (y|x )(Hz )⊤DFT

(y|x ) + 1

2
FT (y|x )(Hz )⊤×

HFT
(y|x )Hz +

{
(Hz )⊤DFT

(y|x )
}2

+ (Hz )⊤DFT
(y|x )FT (y|x ) + (Hz )⊤DFT

(y|x )1
2
(Hz )⊤×

HFT
(y|x )Hz +

{1
2
(Hz )

⊤
HFT

(y|x )Hz
}2

+
1

2
(Hz )⊤×

HFT
(y|x )HzFT (y|x ) +

1

2
(Hz )⊤HFT

(y|x )Hz (Hz )⊤×

DFT
(y|x ).

Then,

{
1− FT (y|x +Hz )

}2
= 1− 2FT (y|x +Hz ) + FT (y|x +Hz )2

=
{
1− FT (y|x )

}2−2(Hz )⊤DFT
(y|x )

− (Hz )⊤HFT
(y|x )Hz + FT (y|x )(Hz )⊤DFT

(y|x )

+
1

2
FT (y|x )(Hz )⊤HFT

(y|x )Hz +
{
(Hz )⊤DFT

(y|x )
}2

+ (Hz )⊤DFT
(y|x )FT (y|x ) +

1

2
(Hz )⊤DFT

(y|x )(Hz )⊤×

HFT
(y|x )Hz +

{1
2
(Hz )⊤HFT

(y|x )Hz
}2

+
1

2
(Hz )⊤×

HFT
(y|x )HzFT (y|x )

1

2
(Hz )⊤HFT

(y|x )Hz (Hz )⊤×

DFT
(y|x ).
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By taking into consideration the above expansions and by ignoring the negli-
gible parts, the first term of (4.11) is

E
[
Var
{
F̃L(y|x )|X

}]
=

1

n|H |fX (x )2

∫
K c

∗{z}2fX (x )
{
1− FT (y|x )

}2×
n∑

i=1

di
ni(ni − di)

dz +O(n−1)

=
fX (x )

n|H |fX (x )2
{
1− FT (y|x )

}2 n∑
i=1

di
ni(ni − di)

×∫
K c

∗{z}2 dz +O(n−1)

=
R(K c

∗)

n|H |fX (x )

{
1− FT (y|x )

}2 n∑
i=1

di
ni(ni − di)

+ O(n−1).

(4.15)

As regards the other part we have

E
{
F̃L(y|x )|X

}
= E

[
1

n|H |fX (x )

n∑
i=1

K c
∗{H−1(X i − x )}F̂T (y)|X i

]
(P1),(P9)

=
n

n|H |fX (x )
K c

∗{H−1(X i − x )}E(F̂T (y)|X i)

(P3)
=

1

|H |fX (x )
K c

∗{H−1(X i − x )}FT (y|X i).

Thus, fixing i in the third step below

Var
[
E
{
F̃L(y|x )|X

}]
= Var

[
1

|H |fX (x )
K c

∗{H−1(X i − x )}FT (y|X i)

]
(P11)
= E

[
1

|H |2fX (x )2
K c

∗{H−1(X i − x )}2FT (y|X i)
2

]
− E

[
1

|H |fX (x )
K c

∗{H−1(X i − x )}FT (y|X i)

]2
(P4),(P1)

=
1

|H |2fX (x )2

∫
K c

∗{H−1(u − x )}2×

fX (u)FT (y|u)2du −
[

1

|H |fX (x )

∫
K c

∗{H−1×

(u − x )}fX (u)FT (y|u)du
]2
.
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Using the change of variable u − x = Hz so that du = H dz we have

Var
[
E
{
F̃L(y|x )|X

}]
=

1

|H |2fX (x )2

∫
K c

∗{z}2fX (x +Hz )FT (y|x +Hz )2H dz

− 1

|H |2fX (x )2

[ ∫
K c

∗{z}fX (x +Hz )FT (y|x +Hz )H dz

]2
=

1

|H |fX (x )2

∫
K c

∗{z}2fX (x +Hz )FT (y|x +Hz )2dz

− 1

fX (x )2

[ ∫
K c

∗{z}fX (x +Hz )FT (y|x +Hz )dz

]2
.

Now, by applying the Taylor expansions for fX (x + Hz ), FT (y|x + Hz ),
FT (y|x +Hz )2 and by ignoring the negligible parts we get

Var
[
E
{
F̃L(y|x )|X

}]
= O(H⊤H ). (4.16)

Combining (4.15) and (4.16) completes the proof of the theorem.
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CHAPTER5
Bandwidth Selection

5.1 Univariate bandwidth selection

The practical implementation of the estimator in (3.10) requires the specifi-
cation of the bandwidth H . The problem of choosing the amount of smooth-
ing to apply to the data is of crucial importance in kernel estimation and
has become an important topic in recent years. It is still a burgeoning area
of research, see Silverman (1986), Wand and Jones (1994), Scott (2015) and
Chacón and Duong (2018).
The appropriate choice of smoothing parameter is influenced by the purpose
for which the density estimate is to be used. If the purpose is to explore
the data in order to suggest possible models, then it will be quite sufficient
to choose the bandwidth subjectively by eye. This would involve looking at
several density estimates over a range of bandwidths and selecting the density
that is the “most pleasing” to the eye. One such strategy is to begin with a
large bandwidth and to decrease the amount of smoothing until variations that
are more “random” start to appear. This approach is more viable when the
user has reasons to believe that there is certain structure in the data. However,
there are also many applications that require to select the bandwidth auto-
matically from the data. One reason is that it can be very time consuming
to select the bandwidth by eye if there are many density estimates required
for a given problem. Another is that, in many cases, the user has no prior
knowledge about the structure of the data and would not have any feeling for
which bandwidth gives an estimate closest to the true density. When kernel
estimators are used for presenting conclusions in larger statistical procedures,
automatic bandwidth selection is usually necessary. A method that uses the
data to produce a bandwidth h is called a bandwidth selector. The bandwidth
selection problem is present in all types of kernel estimation.
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Chapter 5 5.1. Univariate bandwidth selection

Currently available bandwidth selectors can be roughly divided into two
classes. The first class consists of simple easily computable formulas which
aim to find a bandwidth that is “reasonable” for a wide range of situations,
but without out any mathematical guarantees of being close to the optimal
bandwidth. We will call such bandwidth selectors quick and simple. Quick
and simple bandwidth selectors are motivated by the need to have fast auto-
matically generated kernel estimates for algorithms that require many curve
estimation steps as well as providing a reasonable starting point for subjective
choice of the smoothing parameter. The second type of bandwidth selector
will be labelled as hi-tech since such selection procedures are based on more in-
volved mathematical arguments and require considerably more computational
effort, but aim to give a good answer for very general classes of underlying
functions. Each of the hi-tech bandwidth selectors that we discuss can be
motivated through aiming to minimise MISE and can be shown to attain this
goal asymptotically to some extent. Such a bandwidth selector is said to be
consistent with respect to MISE. To end with, some high-tech bandwidth se-
lectors are as follows: least squares cross-validation, biased cross validation,
plug-in bandwidth selectors etc.
It should be pointed out that there exist approaches to bandwidth selection
based on other loss criteria. However, their analysis is more difficult. At the
time of writing this thesis in the field of bandwidth selection, new selectors
are developed and several unresolved issues. The performance of a kernel es-
timator requires the specification of appropriate error criteria for measuring
the error when estimating the density at a single point as well as the error
when estimating the density over the whole real line. In classical parametric
statistics it is common to measure the closeness of an estimator to its target
parameter by the size of the Mean Squared Error (MSE)

MSE
{
F̃L(y|x )

}
= E

{
F̃L(y|x )− FT (y|x )

}2

= Var
{
F̃L(y|x )

}
+Bias

{
F̃L(y|x )

}2
. (5.1)

Let us, take into consideration only one covariate. Then we have only one
bandwidth h1 = h and not a bandwidth matrix H . Thus, Theorem 4.1.2
gives

bF̃L(,c)
(y|x) = h2µ2(K c

∗)

2fX (x)
HfX (x)FT +

h2µ2(K c
∗)

2
×{

2
1

fX (x)
DfX (x)Ḟ T (y|x) +HFT

(y|x)
}
+ o(h2). (5.2)
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σ2
F̃L(,c)

(y|x) = R(K c
∗)

nhfX (x)

{
1− FT (y|x)

}2 q∑
j=1

dj
nj(nj − dj)

+ O(n−1). (5.3)

By substituting (5.2) and (5.3) in (5.1) we get

MSE
{
F̃L(y|x)

}
=

R(K c
∗)

nhfX (x)

{
1− FT (y|x)

}2 q∑
j=1

dj
nj(nj − dj)

+

[{
h2µ2(K c

∗)

2fX (x)
HfX (x)

}
FT (y|x)

+
h2µ2(K c

∗)

2

{
2

1

fX (x)
DfX (x)ḞT (y|x)

+HFT
(y|x) + o(h2)

}]2
+O(n−1).

The appealing feature of MSE is its simple decomposition into variance and
squared bias.
This error criterion is often preferred to other criteria such as mean absolute
error since it is mathematically simpler to work with. The variance-bias de-
composition allows easier analysis and interpretation of the performance of
the kernel density estimator.
Rather than simply estimating the function at a fixed point, it is usually desir-
able, especially from a data analytic viewpoint, to estimate it over the entire
real line. In this case our estimate is the function F̃L(y|x ) so we need to
consider an error criterion that globally measures the distance between the
functions F̃L(y|x ) and FT (y|x ). One such error criterion is the Integrated
Squared Error (ISE) given by

ISE
{
F̃L(y|x )

}
=

∫ {
F̃L(y|x )− FT (y|x )

}2
dy.

This may be recognized as the L2 distance between F̃L(y|x ) and FT (y|x ). The
ISE is appropriate if we are only concerned with the data set at hand, but it
does not take into account other possible data sets. Therefore, it will be more
appropriate to analyse the expected value of this random quantity, the Mean
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Integrated Squared Error (MISE)

MISE
{
F̃L(y|x )

}
= E

[ ∫ {
F̃L(y|x )− FT (y|x )

}2
dy
]

=

∫
Bias

{
F̃L(y|x )

}2
dy +

∫
Var
{
F̃L(y|x )

}
dy

=

∫
R(K c

∗)

nhfX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

dy

+O(n−1) +

∫ [{
h2µ2(K c

∗)

2fX (x )
HfX (x )

}
FT (y|x )

+
h2µ2(K c

∗)

2

{
2

1

fX (x )
DfX (x )Ḟ T (y|x )

+HFT
(y|x )

}]2
dy + o(h4).

A problem with the MSE and MISE expressions is that they depend on the
bandwidth in a complicated way. This makes it difficult to interpret the influ-
ence of the bandwidth on the performance of the kernel estimator. Although,
as we can see, one way of overcoming this problem involves the derivation
of large sample approximations for leading variance and bias terms. These
approximations have very simple expressions that allow a deeper appreciation
of the role of the bandwidth. They can also be used to obtain the rate of
convergence of the kernel estimator and the MISE-optimal bandwidth.
After the integration of the MISE expression we obtain

MISE
{
F̃L(y|x )

}
= AMISE

{
F̃L(y|x )

}
+o(h4) + O(n−1),
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where

AMISE
{
F̃L(y|x)

}
=

∫
R(K c

∗)

nhfX (x)

{
1− FT (y|x)

}2 q∑
j=1

dj
nj(nj − dj)

dy

+

∫ [{
h2µ2(K c

∗)

2fX (x)
HfX (x)

}
FT (y|x) +

h2µ2(K c
∗)

2
×{

2
1

fX (x)
DfX (x)ḞT (y|x) +HFT

(y|x)
}]2

dy

=
R(K c

∗)

nhfX (x)

q∑
j=1

dj
nj(nj − dj)

∫ {
1− FT (y|x)

}2
dy

+
h4µ2(K c

∗)2

4

∫ {HfX (x)FT (y|x)
fX (x)

+
2

fX (x)
DfX (x)Ḟ T (y|x) +HFT

(y|x)
}2

dy. (5.4)

We call this the asymptotic MISE since it provides a useful large sample ap-
proximation to the MISE. The AMISE is a much simpler expression to com-
prehend than the expression for the MISE. Notice that the integrated squared
bias is asymptotically proportional to h2, so for this quantity to decrease one
needs to take h to be small. However, taking h small means an increase in
the leading term of the integrated variance since this quantity is proportional
to h−1. Therefore, as n increases h should vary in such a way that each of
the components of the MISE becomes smaller. This is known as the variance-
bias trade-off and is a mathematical quantification for the critical role of the
bandwidth. For very small h, F̃L(y|x ) is very spiky and hence very variable in
the sense that, over repeated sampling from FT (y|x ), the spikes would appear
in different places. There is, however, very little bias. If more smoothing is
performed, that is h is increased, then the variability is reduced at the expense
of introducing bias: for increasingly large h, there would be large bias because
all features are eventually smoothed away, but little variance because the data
are essentially ignored.

79



Chapter 5 5.1. Univariate bandwidth selection

Another advantage of AMISE is that the optimal bandwidth with respect
to this criterion has a closed form expression. This can be easily derived by
differentiating (5.4) with respect to h and setting the derivative equal to zero.

∂AMISE
{
F̃L(y|x)

}
∂h

= − R(K c
∗)

nh2fX (x)

q∑
j=1

dj
nj(nj − dj)

∫ {
1− FT (y|x)

}2
dy

+ h3µ2(K c
∗)2
∫ {HfX (x)FT (y|x)

fX (x)

+
2

fX (x)
DfX (x)Ḟ T (y|x) +HFT

(y|x)
}2

dy

= 0.

Thus,

R(K c
∗)

nh2fX (x)

q∑
j=1

dj
nj(nj − dj)

∫ {
1− FT (y|x)

}2
dy = h3µ2(K c

∗)2×

∫ {HfX (x)FT (y|x)
fX (x)

+
2

fX (x)
DfX (x)Ḟ T (y|x) +HFT

(y|x)
}2

dy

⇔ R(K c
∗)

nfX (x)

q∑
j=1

dj
nj(nj − dj)

∫ {
1− FT (y|x)

}2
dy = h5µ2(K c

∗)2×

∫ {HfX (x)FT (y|x)
fX (x)

+
2

fX (x)
DfX (x)Ḟ T (y|x) +HFT

(y|x)
}2

dy ⇔

h5 =

R(K c
∗)

nfX (x)

∑q
j=1

dj
nj(nj−dj)

∫ {
1− FT (y|x)

}2
dy

µ2(K c
∗)2
∫ {HfX

(x)FT (y|x)
fX (x) + 2

fX (x)DfX (x)Ḟ T (y|x) +HFT
(y|x)

}2
dy

.

For

a =
1

nfX (x)

q∑
j=1

dj
nj(nj − dj)

∫ {
1− FT (y|x)

}2
dy,

b =

∫ {HfX (x)FT (y|x)
fX (x)

+
2

fX (x)
DfX (x)Ḟ T (y|x) +HFT

(y|x)
}2

dy,

We have

hopt
5 =

aR(K c
∗)

bµ2(K c
∗)2

.
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Therefore,

hopt =

{
aR(K c

∗)

bµ2(K c
∗)2

}1/5

. (5.5)

The formula (5.5) for the optimal window width can not be used in practice
since it shows that hopt depends on unknown functions that need to be esti-
mated. Nevertheless, a useful conclusion can be drawn. The ideal bandwidth
will converge to zero as the sample size increases, but at a very slow rate. In
order to obtain a practically useful expression we can replace the unknown
quantities in (5.5) with their data driven estimations. First of all, we can
estimate FT with the Kaplan-Meier estimator. Then we will discuss some
methods in order to estimate fX .
A very easy and natural approach is to use a standard family of distributions
to assign a value to the term fX in the expression (5.5) for the ideal band-
width. For example, we can suppose the normal distribution with mean µ
and variance σ2. The parameters of the distribution can be estimated from
the corresponding MLE estimators by using the data. While this method will
work well if the population is normally distributed, it may oversmooth some-
what if the population is multimodal. In order to avoid such situations we can
create a histogram of our data. Then, consider that we get a result like Fig.
5.1 our method will be appropriate in order to select the optimal bandwidth.
Otherwise, we can choose a more appropriate distribution to assign a value to
the fX .
Another approach is the plug-in bandwidth selector which is based on the

simple idea of “plugging in” estimates of the unknown quantities that appear
in formulas for the asymptotically optimal bandwidth. Now, we can estimate
then unknown fX by using again kernel density estimation. Unfortunately,
this rule is not fully automatic since it depends on the choice of the new
bandwidth g. One way of choosing g is to appeal to the formula for the
AMSE-optimal bandwidth. However, this rule for choosing g has the same
defect as the one for choosing h above: it depends on an unknown density
functional. We could estimate this unknown density by using another kernel
estimate, but its optimal bandwidth depends again on an amount that we do
not know and this problem will not go away. The usual strategy for overcom-
ing this problem is to estimate the unknown quantity in the optimal formula
for g with a quick and simple estimate, such as a version of the normal scale
rule described in the previous approach. This means that we really have a
family of direct plug-in bandwidth selectors that depend on the number of
stages of functional estimation before a quick and simple estimate is used.
Also motivated by the formula for the AMISE-optimal bandwidth, solve-the-
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Figure 5.1: Histogram of Normal distribution

equation (STE) rules require that h be chosen to satisfy the relationship (5.5).
The only difference with the previous method is that when we use kernel
estimation for the fX we consider that its bandwidth g is a function of h.
Although this approach also leads to a “stage selection” problem, as in the
direct plug-in case.

5.2 Multivariate bandwidth selection

As in the univariate setting we are also able to obtain a simple asymptotic
approximation to the MISE of a multivariate kernel estimator under certain
smoothness assumptions on the FT and fX . These assumptions are needed
to allow us to use a multivariate version of Taylor’s theorem which we had
previously introduced.
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Firstly, we have to obtain the multivariate MSE which is given by

MSE
{
F̃L(y|x )

}
= E

{
F̃L(y|x )− FT (y|x )

}2

= Var
{
F̃L(y|x )

}
+Bias

{
F̃L(y|x )

}2

=
R(K c

∗)

n|H |fX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

+

(
µ2(K c

∗)

2fX (x )

[
2tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+ fX (x )tr

{
H⊤HFT

(y|x )H
}
+FT (y|x )×

tr
{
H⊤HfX (x )H

}]
+ o(H⊤H )

)2

+O(n−1),

In addition, the multivariate MISE given by

MISE
{
F̃L(y|x )

}
=

∫
MSE

{
F̃L(y|x )

}
dy

=

∫
Bias

{
F̃L(y|x )

}2
dy +

∫
Var
{
F̃L(y|x )

}
dy

=

∫
R(K c

∗)

n|H |fX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

dy

+

∫ (
µ2(K c

∗)

2fX (x )

[
2tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+ fX (x )tr

{
H⊤HFT

(y|x )H
}
+FT (y|x )×

tr
{
H⊤HfX (x )H

}]
+ o(H⊤H )

)2

dy +O(n−1).

If we integrate the multivariate MISE expression then we obtain the multi-
variate AMISE

MISE
{
F̃L(y|x )

}
= AMISE

{
F̃L(y|x )

}
+o
{
(H⊤H )

2
}
+O(n−1),
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where,

AMISE
{
F̃L(y|x )

}
=

∫
R(K c

∗)

n|H |fX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

dy

+

∫ (
µ2(K c

∗)

2fX (x )

[
2tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+ fX (x )tr

{
H⊤HFT

(y|x )H
}
+FT (y|x )×

tr
{
H⊤HfX (x )H

}])2

dy.

At the time of writing, the problem of selecting a bandwidth matrix from the
data had received considerably less attention in the literature that its univari-
ate counterpart. However, many of the ideas discussed in the univariate case
for selecting h can be extended to the multivariate case. In this section we
will briefly discuss some of these ideas, without getting into the more practical
issues.
There are several levels of sophistication when specifying the bandwidth ma-
trix H . The simplest corresponds to the restriction H = hI for some h > 0.
The use of a single smoothing parameter h implies that the version of the
kernel placed on each data point is scaled equally in all directions. Although,
this method is appropriate when the spread of data points is equal in all the
coordinate directions. If not, we can pre-scale the data to avoid extreme dif-
ferences of spread in the covariates. If this is done then there will generally
be no need to consider more complicated forms of the kernel density estimate
than the one involving a single smoothing parameter. To sum up, this re-
striction has the advantage that one only has to deal with a single smoothing
parameter, but the considerable disadvantage that the amount of smoothing
is the same in each coordinate direction.
Now, in order to find the optimal bandwidth we can replace in (5.6) |H | with
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hd and H with hI as we mentioned previously. Then, (5.6) gives

AMISE
{
F̃L(y|x )

}
=

∫
R(K c

∗)

nhdfX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

dy

+

∫ (
µ2(K c

∗)

2fX (x )

[
2tr
{
H⊤DfX (x )Ḟ T (y|x )⊤H

}
+ fX (x )tr

{
H⊤HFT

(y|x )H
}
+FT (y|x )×

tr
{
H⊤HfX (x )H

}])2

dy

=
1

hd

∫
R(K c

∗)

nfX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

dy

+ h4
∫ (

µ2(K c
∗)

2fX (x )

[
2tr
{
DfX (x )Ḟ T (y|x )⊤

}
+ fX (x )tr

{
HFT

(y|x )
}
+FT (y|x )tr

{
HfX (x )

}])2

dy.

(5.6)

With

a1 =
1

hd

∫
R(K c

∗)

nfX (x )

{
1− FT (y|x )

}2 q∑
j=1

dj
nj(nj − dj)

dy,

and

b1 =

∫ (
µ2(K c

∗)

2fX (x )

[
2tr
{
DfX (x )Ḟ T (y|x )⊤

}
+ fX (x )tr

{
HFT

(y|x )
}
+FT (y|x )tr

{
HfX (x )

}])2

dy.

Then, (5.6) becomes

AMISE
{
F̃L(y|x )

}
=

a1
hd

+ b1h
4. (5.7)

By differentiating (5.7) with respect to h and setting the derivative equal to
zero, we get

∂AMISE
{
F̃L(y|x )

}
∂h

= −d
a1

hd+1
+ 4b1h

3 = 0.
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Thus,

da1
hd+1

= 4b1h
3

da1
4b1

= h3hd+1

hd+4 =
da1
4b1

hopt =

(
da1
4b1

)1/d+4

.

Given the more stable performance of plug-in approaches in the univariate set-
ting it seems worthwhile to investigate the performance of their multivariate
extensions. Using the asymptotic approximations developed by the previous
restriction it is possible to develop multivariate versions of plug-in type band-
width selectors. From (5.6) and the discussion following we see that fX is
unknown quantity. We showed that explicit MISE expressions are available
for the univariate kernel density estimator when fX is a normal density and
K is a Gaussian kernel. These expressions can perform exact MISE calcula-
tions without having to resort to numerical integration. In the multivariate
setting the difficulties associated with numerical integration are magnified, so
a flexible class of multivariate densities exhibiting explicit MISE expressions
is useful to have. Multivariate normal density serve this same purpose in the
multivariate setting. Thus, we can take fX to be a standard density such as
multivariate normal and K the d-variate normal kernel.
In certain circumstances, it may be more appropriate to use a vector of
smoothing parameters or even a matrix of shrinking coefficients. This will
be the case, for example, if the spread of the data points is very much greater
in one of the coordinates directions than the others. So, at the next level,
H = diag(h1, . . . , hn), where at the expense of introducing d − 1 additional
smoothing parameters, one has the flexibility to smooth by different amounts
in each of the d coordinate directions. However, there are situations where one
might wish to smooth in directions different to those of the coordinate axes.
In this case the full bandwidth matrix, would be appropriate.
The Least Squares Cross-Validation selector (LSCV) can be used for selection
of a bandwidth matrix H . Where, surprisingly, the relative rate of conver-
gence of LSCV improves for higher dimensions. Least squares cross-validation
is the name given to a conceptually simple and appealing bandwidth selector.
Its motivation comes from expanding the MISE of the estimator and then ig-
nore term does not depend on H . After that, we use an unbiased estimator for
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the unknown part thus this is the reason for the term “cross-validation” which
refers to the use of part of a sample to obtain information about another part.
It therefore seems reasonable to choose H to minimise this unbiased estima-
tor. In addition, biased cross validation also has a straightforward extension
to higher dimensions. In this method, instead of the exact MISE formula used
by least squares cross-validation, Biased Cross-Validation (BCV) is based on
the formula for the asymptotic MISE (AMISE).
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CHAPTER6
Real data analysis

6.1 Real data analysis

Through this section, we will apply a real data example for the estimator
given by (3.10). The example is from Statlog (German Credit Data) Data Set
which is provided by Prof. Hofmann and describes the profile of 1000 credit
recipients of a German bank. The data set is comprised of 20 variables and it is
publicly available at http://archive.ics.uci.edu/ml/datasets/Statlog+
(German\\+Credit+D-ata). This dataset classifies people described by this
set of attributes as good or bad credit risks. Although the initial dataset in-
volves variables which altogether describe the customers profile, such as the
level of balance in their checking account (qualitative, measured in four levels
representing the range of Deutsche Marks (DM) in which the account balance
falls in), the duration of their employment (qualitative, measured in five lev-
els representing periods of years), the level of their balance in their savings
account (qualitative as the range of DM in which the balance falls in) etc. for
illustrative purpose of our method we only use four attributes. Specifically,
the age of the credit recipient (‘Age’, continuous, in years), its credit amount
(‘Amount’ continuous, in DM), the duration of each credit (in months, vari-
able: ‘Duration’), the classification of each applicant as good or bad credit
risk, and the variable ‘Creditability’ which contains the censoring indicator
for each record, with δ = 1 denoting the bad/defaulted credits and with δ = 0
the good credits. There are 300 applicants classified as bad credits and 700
as good. The institution regards good credits as censored as it is not known
if they are going to default; thus the amount of censoring is 70%.
With this example, we want to model the time to default, i.e. to estimate the
probability that the duration of a credit will extend beyond a specific point
in time. This information provides very useful guidance to bank managers
when deciding whether to approve a loan to a prospective applicant based on
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his/her profile. This is because there are two types of risks associated with
the bank’s decision: if the applicant is a good credit risk, i.e. if it is likely to
repay the loan, disapproving the loan results in a loss of business to the bank.
On the other hand, if the applicant is a bad credit risk, i.e. if it is not likely
to repay the loan, approval of the loan results in a financial loss to the bank.
According to the data set description, it is worse to classify a customer as
good when he/she is bad, than it is to classify a customer as bad when he/she
is good.
In our data the random variable Y which represents survival time corresponds
to the duration in order to repay, the censoring indicator δ corresponds to the
variable censoring and the covariate information denoted as the d-dimensional
vector X corresponds to the variable ‘Amount’ which is the first column of the
vector and the variable ‘Age’ which is the second column which means that
d = 2. In addition, for the d-variate kernel K we chose the normal density
function. Now, for the bandwidth h we use the function bw.nrd in R which is
a bandwidth selector for Gaussian Kernels and the most common variation.
In order to have a better physical interpretation we will estimate the condi-
tional survival function which is given by

S̃L(y|x ) = 1− F̃L(y|x ).

In accordance to the discussion in Chapter 3 and for ease of presentation
and visualization, an indicative situation of a practitioner utilizing only two
covariates (‘Amount’ and ‘Age’) is exemplified. Thus there are three candidate
models

S1 = P (Duration ≥ y|‘Amount’ = x1),

S2 = P (Duration ≥ y|‘Age’ = x2),

B = P (Duration ≥ y|‘Amount’ = x1, ‘Age’ = x2),

and obviously B = S1 ∪S2. All models (probabilities) above are estimated by
1− F̃L(y|x ).
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Figure 6.1: P (Duration ≥ y|‘Amount’ = x1)

In the first model we only maintain the covariate of credit amount. In
order to analyze the present data set, 50 different levels for this covariate and
variable Y have been considered by taking a sequence in its domain. Thus
there are 2500 different covariate level combinations. Consequently, we plot
these estimates and create a graph on R2 in which the values of the estimator
are depicted on the Z-axis. As presented in Fig. 6.1 the higher the credit
amount, the higher the probability to survive so the lower the probability to
default.
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Figure 6.2: P (Duration ≥ y|‘Age’ = x2)

In the second model we only maintain the covariate of age. In order to
analyze the present data set, 50 different levels for this covariate and variable Y
have been considered by taking a sequence in its domain. Thus there are 2500
different covariate level combinations. Consequently, we plot these estimates
and create a graph on R2 in which the values of the estimator are depicted
on the Z-axis. As presented in Fig. 6.2 the higher the age, the higher the
probability to survive so the lower the probability to default.
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Figure 6.3: P (Duration ≥ y|‘Amount’ = x1, ‘Age’ = 63.57)

In the third model we have both covariates but we maintain one of them
constant. Specifically, we consider the age equal to 63.57 years. In order to
analyze the present data set, 50 different levels for this covariate and variable Y
have been considered by taking a sequence in its domain. Thus there are 2500
different covariate level combinations. Consequently, we plot these estimates
and create a graph on R2 in which the values of the estimator are depicted on
the Z-axis. As presented in Fig. 6.3 the higher the credit amount, the higher
the probability to survive so the lower the probability to default.

93



Chapter 6 6.1. Real data analysis

Figure 6.4: P (Duration ≥ y|‘Amount’ = 11006.04, ‘Age’ = x2)

In the fourth model we have both covariates but we maintain one of them
constant. Specifically, we consider the amount equal to 11006.04 DM. For the
purpose of analyzing the present data set, 50 different levels for this covariate
and variable Y have been considered by taking a sequence in its domain. Thus
there are 2500 different covariate level combinations. Consequently, we plot
these estimates and create a graph on R2 in which the values of the estimator
are depicted on the Z-axis. As presented in Fig. 6.4 the higher the age, the
higher the probability to survive so the lower the probability to default.

94



Chapter 6 6.1. Real data analysis

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration

S
ur

vi
va

l

Without Age

Age=63,57

Age=52,14

Age=46,43

Age=35

Figure 6.5: P (Duration|‘Amount’ = 9337, ‘Age’ = (63.57, 52.14, 46.43
and 35))

As is evident in Fig. 6.5 by holding the ‘Amount’ covariate fixed and equal
to 9337 DM we can understand how the ‘Age’ covariate affects the probability
to default. In particular, the black line is the estimate without the ‘Age’
covariate, the red line is the estimate for ‘Age’=63.75 years, the green line is
for ‘Age’=52.14 years, the blue line is for ‘Age’=46.43 years and the light blue
is for ‘Age’=35 years. Thus, we conclude that the higher the age, the higher
the probability to survive so the lower the probability to default.
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Figure 6.6: P (Duration ≥ y|‘Amount’ = (14715.02, 11006.04, 9151.55
and 5442.57), ‘Age’ = 47)

As is evident in Fig. 6.6 by holding the ‘Age’ covariate fixed and equal to
47 years we can understand how the ‘Amount’ covariate affects the probability
to default. In particular, the black line is the estimate without the ‘Amount’
covariate, the red line is the estimate for ‘Amount’=14715.02 DM, the green
line is for ‘Amount’=1106.04 DM, the blue line is for ‘Amount’=9151.55 DM
and the light blue is for ‘Amount’=442.57 DM. Thus, we conclude that the
higher the amount, the higher the probability to survive so the lower the
probability to default.
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An in depth investigation of the models behavior can be achieved through
the concept of conditional MISE. Consequently it is reasonable, for individuals
with the specific attributes, to draw the loan decision based on the probability
to default returned by the model with the smallest MISE.
Summarizing the analysis, depending on the attributes of each potential loan
recipient, the proposed methodology is capable of suggesting tailor made rec-
ommendations to practitioners and thus enable drawing data-driven optimal
decisions.
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Appendix

The derivation of the asymptotic bias will require some additional matrix
results. But first we have to define the trace of a square matrix A, denoted by
tr(A), which is the sum of the diagonal entries of A. Furthermore, in order to
show Theorem 4.1.2, we need the following properties:

P1. If α is scalar and W a random variable, E(αW ) = αE(W ).

P2. If W,Z are random variables, E(W ) = E
{
E(W |Z)

}
.

P3. E{F̂T (Y )|X = x} = FT (y|x ).

P4. E
{
g(W )

}
=
∫∞
−∞ g(w)f(w)dw.

P5. If α is scalar, tr(α) = α.

P6. If α is scalar and A a square matrix, tr(αA) = αtr(A).

P7. If W,Z are random variables, E(W + Z) = E(W ) + E(Z).

P8. If A is a square matrix and z a real column vector, tr(z⊤Az) = tr(zz⊤A).

P9. Xi are identically distributed variables which means that E(X1) = . . .E(Xn).
So, for a fixed i and (P7) E(X1 + · · · + Xn) = E(X1) + · · · + E(Xn) =
nE(Xi).

P10.
∫
g(Ax)dx = |A|

∫
g(y)dy, where A represents an invertible d×d matrix.

P11. Var(X) = E(X2)−
{
E(X)

}2
, where X is a random variable.

P12. If α is scalar and W a random variable, Var(αW ) = α2Var(W ).

P13. Var(W + Z) = Var(W ) + Var(Z), where W and Z are independent
random variables.
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P14. P (x < X ≤ x + dx) ≈ f(x)dx, where f(x) is the p.d.f. of the random
variable X.

For the estimator of the conditional c.d.f. in Chapter 4 we have that X =
(X1, . . . , Xd)

⊤ where X i = (Xi1, . . . , Xid)
⊤ and x = (x1, . . . , xd)

⊤. So,

X =

 1 (X 1 − x )⊤

. . . . . .
1 (X n − x )⊤


n×(d+1)

=

 1 X11 − x1 . . . X1d − xd
. . . . . . . . . . . .
1 Xn1 − x1 . . . Xnd − xd

 .

Also,

Y =
(
F̂T (y1), . . . , F̂T (yn)

)⊤
n×1

,

W = diag
[
K{H−1(X 1 − x )}, . . . ,K{H−1(X n − x )}

]
n×n

,

B =

(
β0
β1

)
(d+1)×1

.

So, the estimator (3.7) is given by

B̂ = (X⊤WX)
−1

XTW Y =


β̂0
β̂11
. . .

β̂1d


(d+1)×1

.

In order to find β̂0, firstly we have to calculate X⊤W Y .

X⊤W Y =


1 . . . 1

(X11 − x1) . . . (Xn1 − x1)
...

. . .
...

(X1d − xd) . . . (Xnd − xd)


(d+1)×nK{H−1(X 1 − x )} . . . 0

...
. . .

...
0 . . . K{H−1(X n − x )}


n×n

F̂T (y1)
. . .

F̂T (yn)


n×1

=


∑n

i=1K{H−1(X i − x )}F̂T (y)∑n
i=1K{H−1(X i − x )}(X i1 − x1)F̂T (y)

. . .∑n
i=1K{H−1(X i − x )}(X id − xd)F̂T (y)


=

( ∑n
i=1K{H−1(X i − x )}F̂T (y)∑n

i=1K{H−1(X i − x )}(X i − x)F̂T (y)

)
(d+1)×1

.
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Now, we have to calculate the quantity X⊤WX .

X⊤WX =


1 . . . 1

(X11 − x1) . . . (Xn1 − x1)
...

. . .
...

(X1d − xd) . . . (Xnd − xd)


(d+1)×nK{H−1(X 1 − x )} . . . 0

...
. . .

...
0 . . . K{H−1(X n − x )}


n×n

×

1 (X11 − x1) . . . (X1d − xd)
...

. . .
. . .

...
1 (Xn1 − x1) . . . (Xnd − xd)


n×(d+1)

=



n∑
i=1

K{H−1(X i − x )} . . .
n∑

i=1
K{H−1(X i − x )}(Xid − xd)

n∑
i=1

K{H−1(X i − x )}(Xi1 − x1) . . .
n∑

i=1
K{H−1(X i − x )}(Xi1 − x1)(Xid − xd)

...
. . .

...
n∑

i=1
K{H−1(X i − x )}(Xid − xd) . . .

n∑
i=1

K{H−1(X i − x )}(Xid − xd)
2


=

(
Sn,0(x ) Sn,1(x )

⊤

Sn,1(x ) Sn,2(x )

)
(d+1)×(d+1)

.

With,

Sn,0(x )1×1 =

n∑
i=1

K{H−1(X i − x )},

Sn,1(x )d×1 =

n∑
i=1

K{H−1(X i − x )}(X i − x ),

Sn,2(x )d×d =

n∑
i=1

K{H−1(X i − x )}(X i − x )(X i − x )⊤.

Now, we want to calculate (X⊤WX)−1. From linear algebra, the inverse, say
M−1, of a 2× 2 block matrix M where

M =

(
A B
C D

)
,
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with A is m ×m invertible matrix, D is n × n invertible matrix and B and
C are conformable with them for partitioning, is

M−1 =

(
(A−BD−1C )−1 −A−1B(D −CA−1B)−1

−D−1C (A−BD−1C )−1 (D −CA−1B)−1

)
.

Note that from (3.7),

β̂0 = e1(X
⊤WX)−1XTW Y,

where,

e1 = (1, 0, . . . , 0)1×(d+1).

Thus, we only need the first row of the (X⊤WX)−1. Suppose that,

p1 = (A−BD−1C )−1

=
{
Sn,0(x )− Sn,1(x )

⊤Sn,2(x )
−1Sn,1(x )

}−1
,

p2 = −A−1B(D −CA−1B)−1

= −Sn,0(x )
−1Sn,1(x )

⊤{Sn,2(x )− Sn,1(x )Sn,0(x )
−1Sn,1(x )

⊤}−1
,

gives,

e1(X
⊤WX)−1 =

(
p1 p2

)
.

So,

β̂0 =
(
p1 p2

)
1×(d+1)

( ∑n
i=1K{H−1(X i − x )}F̂T (y)∑n

i=1K{H−1(X i − x )}(X i − x)F̂T (y)

)
(d+1)×1

= p1

n∑
i=1

K{H−1(X i − x )}F̂T (y) + p2

n∑
i=1

K{H−1(X i − x )}(X i − x)F̂T (y)

=
n∑

i=1

{
p1 + p2(X i − x)

}
K{H−1(X i − x )}F̂T (y). (7.1)

For d = 1 an equivalent form of (7.1) is given by

F̃L(y|x ) ≡ β̂0 =
n∑

i=1

Sn,2(x )− Sn,1(x )(X i − x )

Sn,2(x )Sn,0(x )− Sn,1(x )Sn,1(x )
×

K{H−1(X i − x )}F̂T (y).
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Now, by using lemma 4.1.1

p1 =
{
Sn,0(x )− Sn,1(x )

⊤Sn,2(x )
−1Sn,1(x )

}−1

=
[
n|H |fX (x )S0,c − n|H |2fX (x )S⊤

1,c

{
n|H |3fX (x )S2,c

}−1
n|H |2fX (x )S1,c

]−1

=
1

n|H |fX (x )

{
S0,c(x )− S1,c(x )

⊤S2,c(x )
−1S1,c(x )

}−1

=
1

n|H |fX (x )
p̃1. (7.2)

and

p2 = −Sn,0(x )
−1Sn,1(x )

⊤{Sn,2(x )− Sn,1(x )Sn,0(x )
−1Sn,1(x )

⊤}−1

= −
n|H |2fX (x )S⊤

1,c

n|H |fX (x )S0,c

{
n|H |3fX (x )S2,c (7.3)

− n2|H |4fX (x )2

n|H |fX (x )
S1,c(x )S0,c(x )

−1S1,c(x )
⊤}−1

= − 1

n|H 2|fX (x )
S0,c(x )

−1S1,c(x )
⊤{S2,c(x )− S1,c(x )S0,c(x )

−1S1,c(x )
⊤}−1

= − 1

n|H 2|fX (x )
p̃2. (7.4)

By substituting (7.2) and (7.4) in (7.1)

F̃L(y|x ) ≡ β̂0 =
n∑

i=1

{
p1 + p2(X i − x)

}
K{H−1(X i − x )}F̂T (y)

=
n∑

i=1

{ 1

n|H |fX (x )
p̃1 −

1

n|H 2|fX (x )
p̃2(X i − x)

}
×

K{H−1(X i − x )}F̂T (y)

=
1

n|H |fX (x )

n∑
i=1

{
p̃1 − p̃2|H |−1(X i − x)

}
×

K{H−1(X i − x )}F̂T (y)

=
1

n|H |fX (x )

n∑
i=1

Kc
∗{H−1(X i − x )}F̂T (y).

Where,
K c

∗(u) = (p̃1 − p̃2u)K (u)I {−c,+∞}(u).

103



104



Bibliography

Birkhoff, G. D. (1931). Proof of the ergodic theorem, Proceedings of the Na-
tional Academy of Sciences 17(12): 656–660.

Borovkov, A. (1984). Mathematical statistics. parameter estimation, Nauka,
Moscow .

Cacoullos, T. (1964). Estimation of a multivariate density, Technical report,
University of Minnesota.

Chacón, J. E. and Duong, T. (2018). Multivariate kernel smoothing and its
applications, CRC Press.

Chen, K. and Lo, S.-H. (1997). On the rate of uniform convergence of the
product-limit estimator: strong and weak laws, The Annals of Statistics
25(3): 1050–1087.

Claeskens, G. and Hall, P. (2002). Theory & methods: Data sharpening
for hazard rate estimation, Australian & New Zealand Journal of Statistics
44(3): 277–283.

Epanechnikov, V. A. (1969). Non-parametric estimation of a multivariate
probability density, Theory of Probability & Its Applications 14(1): 153–
158.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications:
monographs on statistics and applied probability 66, Vol. 66, CRC Press.

Fix, E. and Hodges, J. L. (1989). Discriminatory analysis. nonparametric dis-
crimination: Consistency properties, International Statistical Review/Revue
Internationale de Statistique 57(3): 238–247.

105



Bibliography

Glivenko, V. (1933). Sulla determinazione empirica delle leggi di probabilita,
Gion. Ist. Ital. Attauri. 4: 92–99.

Greenwood, M. (1926). The” errors of sampling” of the survivorship tables,
Reports on public health and medical subjects .

Gulati, S. and Padgett, W. (1996). Families of smooth confidence bands for
the survival function under the general random censorship model, Lifetime
Data Analysis 2: 349–362.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete
observations, Journal of the American Statistical Association 53(282): 457–
481.

Karunamuni, R. and Yang, S. (1991). Weak and strong uniform consistency
rates of kernel density estimates for randomly censored data, Canadian
Journal of Statistics 19(4): 349–359.

Kim, C., Bae, W., Choi, H. and Park, B. U. (2005). Non-parametric haz-
ard function estimation using the kaplan–meier estimator, Nonparametric
Statistics 17(8): 937–948.

Klein, J. P. and Moeschberger, M. L. (2003). Survival analysis: techniques for
censored and truncated data, Vol. 1230, Springer.

Kulasekera, K., Williams, C. L., Coffin, M. and Manatunga, A. (2001). Smooth
estimation of the reliability function, Lifetime Data Analysis 7: 415–433.

Lawless, J. F. (2011). Statistical models and methods for lifetime data, John
Wiley & Sons.

Lemdani, M. and Ould-Saıd, E. (2003). L1-deficiency of the Kaplan–Meier
stimator, Statistics & Probability Letters 63(2): 145–155.

Lio, Y. and Padgett, W. (1992). Asymptotically optimal bandwidth for a
smooth nonparametric quantile estimator under censoring, Journal of Non-
parametric Statistics 1(3): 219–229.

Rao, S. S. (2017). Advanced statistical inference, Texas A & M University .

Scott, D. W. (2015). Multivariate density estimation: theory, practice, and
visualization, John Wiley & Sons.

Silverman, B. W. (1986). Density estimation for statistics and data analysis,
Vol. 26, CRC Press.

106



Bibliography

Turkson, A. J., Ayiah-Mensah, F. and Nimoh, V. (2021). Handling censoring
and censored data in survival analysis: a standalone systematic literature
review, International Journal of Mathematics and Mathematical Sciences
2021: 1–16.

Wand, M. P. and Jones, M. C. (1994). Kernel smoothing, CRC Press.

107


