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Περίληψη

Ο Μεγάλος Επιταχυντής Αδρονίων LHC ειναι ο μεγαλύτερος επιταχυντής στοι-
χειωδών σωματιδίων στον κόσμο. Βρίσκεται στο ερευνητικό κέντρο του CERN στην
Γενεύη της Ελβετίας. Τέσσερις μεγάλοι ανιχνευτές έχουν εγκατασταθεί σε τέσσε-

ρα απο τα σημεία που πραγματοποιούνται συγκρούσεις σωματιδίων, ούτως ώστε να

συλλέξουν την πληροφορία από τα προϊόντα των συγκρούσεων. ΄Ενας από τους πιο

μεγάλους ανιχνευτές είναι ο CMS ανιχνευτής που βρίσκεται στο σημείο 5 του συ-
γκροτήματος. Ο ανιχνευτής απαρτίζεται από ένα υπεραγώγιμο σωληνοειδές μαγνήτη

ικανό για την παραγωγή μαγνητικού πεδίου μεγέθους των 4 Tesla αλλά μεταξύ άλλων
και από ένα πολυ-σύνθετο σύστημα ανίχνευσης μυονίων.

Κατά το τέλος της τρίτης περιόδου της λειτουργίας του επιταχυντή, το σύστημα

θα αναβαθμιστεί ούτως ώστε να αυξηθεί η ονομαστική τιμή της φωτεινότητας του

μηχανήματος σε 7.5 × 1034cm−2s−1
από την τρέχουσα τιμή 1 × 1034cm−2s−1

, με

σχέδια για τα επόμενα 12 χρόνια να δεκαπλασιάσει την συνολική του συσσώρευση

φωτεινότητας στα 4000 fb−1
. Ο αναβαθμισμένος επιταχυντής θα ονομάζεται HL-

LHC, ο υψηλής φωτεινότητας μεγάλος επιταχυντής αδρονίων. Λόγω της αυξημένης
φωτεινότητας ο αριθμός ανελαστικών συγκερούσεων ανά 40MHz θα αυξηθεί περίπου
στις 200, από τον τρέχων αριθμό των 50. Για να μπορέσουν να αντέξουν στην

αυξημένη ακτινοβολία τα ηλεκτρονικά του συστήματος θα αναβαθμιστούν, καθώς και

επίσης για να μπορέσουν να ανταπεξέλθουν στον ανεβασμένο όγκο πληροφορίας που

θα προέρχεται από τα προϊόντα των συγκρούσεων πρωτονίων με συνολική ενέργεια

κέντρου μάζας στα 14TeV. Οι αναβαθμίσεις συνιστούν την δεύτερη φάση αναβάθμισης
του συστήματος Phase-2.
Ο ανιχνευτής του πειράματος CMS θα αναβαθμίσει μερικά από τα συστήματα α-

νίχνευσης, καθώς και μερικά από τα ηλεκτρονικά συστήματα που τον υποστηρίζουν.

Ο ανιχνευτής λαμβάνει σήματα από συγκρούσεις της τάξης των μερικών δεκάδων

Petabytes ανά δευτερόλεπτο. Ο όγκος της πληροφορίας καθιστά δύσκολη την απο-
θήκευση του συνολικού ποσοστού της πληροφορίας αυτής, σε κοινά αποθηκευτικά

μέσα όπως αυτά των σκληρών δίσκων. Για τον λόγο αυτόν το σύστημα ανίχνευσης

σωματιδίων συμπεριλαμβάνει ένα σύστημα σκανδαλισμού. Το σύστημα σκανδαλισμού

απαρτίζεται από το πρώτο επίπεδο σκανδαλισμού Level-1 Trigger, το οποίο λαμβάνει
και επεξεργάζεται δεδομένα σε πραγματικό χρόνο απο τον ανιχνευτή σε ειδικά κα-

τευσκευασμένες ηλεκτρονικές κάρτες με FPGA, και κατα δεύτερον από το σύστημα
υψηλού επιπέδου σκανδαλισμού High Level Trigger το οποίο απαρτίζεται από κλασι-
κής αρχιτεκτονικής επεξεργαστές. Το πρώτο επίπεδο σκανδαλισμού είναι υπεύθυνο

για την μείωση του ρυθμού πληροφορίας από 40MHz σε 750KHz, καθώς και για την
μετάδοση της πληροφορίας στο δεύτερο επίπεδο σκανδαλισμού από όπου ο ρυθμός

πληροφορίας μειώνεται περαιτέρω στα 7.5KHz όπου και αποθηκεύεται τελικώς σε
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κοινά αποθηκευτικά μέσα ούτως ώστε να μελετηθούν τα δεδομένα από ερευνητές σε

όλο τον κόσμο.

Το πρώτο επίπεδο σκανδαλισμού, με την χρήση αλγορίθμων μπορεί να προβεί

σε ανακατασκευή των τροχιών των σωματιδίων και να αποφανθεί για την σημασία

του περιεχομένου της πληροφορίας. Στην συνέχεια σηματοδοτεί όλα τα συστήματα

του να μεταδώσουν Read-Out την προσωρινά αποθηκευμένη πληροφορία τους στο
σύστημα ανάγνωσης DAQ ούτως ώστε να μεταφερθεί η πληροφορία στο δεύτερο ε-
πίπεδο σκανδαλισμού. Στην παρούσα εργασία έχει υλοποιηθεί το Readout σύστημα
για τις νέες αναβαθμισμένες κάρτες που θα δέχονται πληροφορία για την ανίχνευση

των μυονίων στην περιοχή του βαρελιού. Το σύστημα καθώς βρίσκεται υπό ανάπτυ-

ξη, χρησιμοποιεί παράλληλα ηλεκτρονικές κάρτες από το τρέχων σύστημα, καθώς

μεταδίδει την αποθηκευμένη πληροφορία από τον ανιχνευτή σε αυτές με την χρήση

οπτικών ινών σε υψηλές ταχύτητες. Λόγω της ευρείας χρήσης συστημάτων μετάδο-

σης πληροφορίας υψηλών ταχυτήτων με οπτικές ίνες, πραγματοποιήθηκε η ανάπτυξη

ενός πρωτοκόλλου κατά την μελέτη αυτών.
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Abstract

The Large Hadron Collider is the world’s largest and most powerful particle
accelerator and collider. Four large detectors are placed on the LHC’s interaction
points in order to capture the data produced by proton-proton collisions. One of
the two largest detectors is the CMS detector located at interaction point 5. It
features a superconducting solenoid magnet and an elaborate muon system. The
LHC is planned to be upgraded to the High Luminosity Large Hadron Collider
(HL-LHC) at the end of its third run, Run 3. The new machine will increase its
nominal luminosity value from 1× 1034cm−2s−1 to 7.5× 1034cm−2s−1, with a ten
fold increase in its total integrated luminosity up to 4000 fb−1. As a result the
average number of inelastic collisions per bunch crossing, pileup, will increase from
what is currently 50, up to 200. In order to sustain the radiation and the increased
data flow the CMS detector is planned to be upgraded, the upgrades called the
phase-2 upgrades. This thesis focuses on the readout implementation in FPGA
custom made boards for the BMTL1 back end system. The readout mechanism
provides the stored data from the detector to a phase-1 system in order to be
relayed to the Data Acquisition (DAQ) system. Along with the readout system
a comprehensive view of the high speed link protocols used in the firmware, was
required. This was achieved by further studying and correctly implementing a
newly created high speed protocol at 10 Gbps in a commercially available FPGA
board.
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Chapter 1

Large Hadron Collider

The Large Hadron Collider (LHC) is the world’s largest and most powerful
particle accelerator and collider. It is located at the European Oranization for
Nuclear Physics, Conseil Européen pour la Recherche Nucléaire (CERN), in an
underground tunnel 100 meters underneath the Franco-Swiss border near Geneva,
Switzerland. The LHC consists of a 26.7 kilometer ring of superconducting mag-
nets with a number of accelerating structures to boost the energy of the particles.
The LHC is built with two beam-pipes, kept at ultrahigh vacuum, which cross
at four interaction points. Particles inside the accelerator form two high-energy
beams travelling in opposite directions at a speed close to the speed of light while
they are made to collide at those 4 interaction points where the two rings of the

(a) (b)

Figure 1.1: Underground Location of the LHC collider 1.1a, Schematic layout of
the LHC two-beam design and its four Interaction Regions (IR) 1.1b
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machine intersect. A beam particle in each ring can reach a maximum energy of
7 TeV which results to a maximum center-of-mass collision energy of 14 TeV.

The LHC has been designed with four experimental insertions at the locations
of each of the four interaction points. The CMS and ATLAS high luminosity
experiments L > 1034cm−2s−1 using proton-proton collisions, the LHCb B-meson
experiment requiring medium luminosities L ∝ 1032cm−2s−1 for proton-proton
collisions and the ALICE experiment dedicated for ion collisions, requiring low
luminosities L ∝ 1029cm−2s−1.

The beams are guided around the accelerator by a strong magnetic field main-
tained by superconducting electromagnets. The coils used for the construction of
the magnets are designed to function is a superconductive state, this way ensuring
the efficient conduction of electricity without any resistance or energy loss. To
achieve this, the magnets need to be cooled to −271.3◦C, a temperature colder
than outer space. For this reason the accelerator is connected to a distribution
system of liquid Helium responsible for cooling the magnets [1].

1.1 LHC Injection Chain

Filling the LHC with protons or ions requires a series of pre-accelerators that
successively increase their energy before being injected into the main accelerator,
as depicted in figure 1.2.

The first system is the 72 meter long Linear ACcelerator 4 (Linac4), located 12
meters below ground. The Linac4 is designed to accelerate negative hydrogen ions
to 160 Mev and then inject them into the PSB, through transfer and measurement
lines in which the ions are stripped of their two electrons to leave only protons[2].

The Proton Synchrotron Booster (PSB) contains four superimposed rings with
a radius of 25 meters, that receive beams of protons from the Linac4, and acceler-
ates them to 2 GeV for injection into the PS [3].

The Proton Synchrotron (PS) with a circumference of 628 meters, accelerates
72 proton bunches up to 26 GeV, each bunch consisting of about 1.15×1011 protons
[4].

The particles are then inserted to the Super Proton Synchrotron (SPS), which
is the second largest machine in CERN’s accelerator complex, with a circumference
of nearly 7 kilometers. Inside the SPS up to 4 batches of 72 bunches are accelerated
to 450 GeV before they are injected to the LHC machine [5].

Once the particles are inside the LHC machine they are accelerated up to
6.5 GeV by receiving an electrical impulse from metallic chambers containing an

2
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Figure 1.2: LHC injection chain Schematic view

electromagnetic field, known as radiofrequency (RF) cavities. Inside the LHC
machine a total of 16 RF cavities, 8 for each of the two rings, are housed in
four cylindrical refrigerators called cryomodules, which enable them to work in a
superconducting state [6].

1.2 LHC Bunch Structure

The radio frequency (RF) systems provide a longitudinal focusing which con-
straints the particle motion in the longitudinal phase space to a confined area
known as the RF bucket (slots). The machine operates at an RF frequency of 400
MHz, which corresponds to a wavelength of 75 cm or buckets (slots) of 2.5 ns.
The LHC’s circumference is equal to 35640 RF wavelengths, allowing the same
number of buckets (slots). If all available buckets (slots) were filled with particles
then collisions would occur at intervals of only 37.5 cm (1.25 ns). This way a more
realistic bunch spacing is chosen, equal to one bunch per 10 RF buckets (slots) or
25 ns [1].

The RF system thus specifies the maximum number of bunches to be 3564, 25
ns apart with a frequency of 40.078 MHz, the frequency known as the LHC clock.
3564 bunches form the LHC orbit, whereas the orbit’s frequency is defined as the
time a particle bunch inside the LHC machine completes a full circle, and is equal
to 11.2455 KHz.

Not all bunches in an orbit are filled with particles. Batches from the SPS will
be injected into the LHC machine by groups of 3, 3 and 4 72-bunch trains, forming
through the entire orbit’s structure a quasi 4-fold symmetry, as shown in figure 1.3

3
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[7]. As a result only 2808 bunches of the available 3564 are filled with particles,
with a notable gap at the end of every orbit of 119 empty bunches. The most
notable of all the bunches is the Bunch Crossing 0 (BC0), indicating the start of
the orbit’s structure as shown in figure 1.3.

Figure 1.3: LHC bunch structure

1.3 High Luminosity - LHC

The Large Hadron Collider (LHC) was successfully commissioned in 2010 for
proton–proton collisions, achieving a center of mass energy of 7 TeV. It operated
with 8 TeV center of mass proton collisions from April 2012 until the conclusion
of Run 1 in 2013. During Run 2 from 2015 to the end of 2018, the LHC conducted
proton collisions at a center of mass energy of 13 TeV, while attaining the nominal
design luminosity of 1 × 1034cm−2s−1 on 26 June 2016, and a peak luminosity of
2 × 1034cm−2s−1 in 2018. Currently at the writing of this thesis at Run 3, the
machine operates with at 6.8 TeV center of mass proton collisions.

The remarkable achievements of the LHC have solidified CERN’s status as a
leading center for high-energy physics on both European and global scales. The
discovery of the Higgs boson in 2012 was a major milestone in the history of science
by the LHC ATLAS and CMS experiments [8]. However, in order to maintain and
extend its discovery potential, a major upgrade has been decided and approved in
spring 2016 by the CERN Council, to be implemented after the end of Run 3.

The upgraded High Luminosity Large Hadron Collider (HL-LHC) will aim to
extend the machine’s operability by another decade, increase its luminosity by a
factor of five to 5× 1034cm−2s−1 and increase its integrated luminosity by a factor

4
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of 10 at 250 fb−1 per year, with the goal of 3000 fb−1 in the 12 years or so after
the upgrade.

The machine is likely to be pushed to a peak levelled luminosity of 7.5 ×
1034cm−2s−1 increasing the average pile-up in the detectors up to around 200 from
the current value of 50. This luminosity level should enable to collect up to 400
fb−1/year , which could yield about 4000 fb−1 of total integrated luminosity [9].
With these changes in hand all of the experiments will need to upgrade as well in
order to cope effectively with the higher pile-up.

5



Chapter 2

Compact Muon Solenoid

2.1 Introduction

The CMS detector is one of the two large general-purpose detectors operating at
the LHC at CERN [10]. It is located at P5, 100 meters below ground level, outside
of the French village of Cessy, between Lake Geneva and the Jura mountains.
Proton-Proton collisions occur at the center of the detector, generating throusands
of secondary particles. These particles are subsequently distributed in various
directions around the interaction point. During Run 3 approximately 50 inelastic
collisions (pile-up) occur per bunch crossing (25 ns). For every event the CMS
detector identifies the resulting particles’ tracks and measures their energy in order
to later on re-create the event. The detector successfully led to the discovery of
Higgs Boson at its first run [8]. Since then the CMS serves a broad physics program,
ranging from the study of the Higgs Mechanism to search for new particles that
could make up dark matter.

The CMS detector is depicted in figure 2.1. The detector houses a superconduc-
tive magnet that is capable of producing a magnetic field of 4 Tesla. The magnet
helps to identify the charge of the particles by bending them in opposite directions,
while also allowing the measurement of the particle’s momentum by the amount it
is bent. The magnet surrounds the following detector systems, starting from the
inner most region and moving outwards, the tracker system followed by the Elec-
tromagnetic Calorimeter (ECAL) and at last the Hadronic Calorimeter (HCAL)
systems. The tracker placed as close as possible to the interaction point records
the paths taken by the particles, the ECAL absorbs and measures photons and
electons while HCAL absorbs and measures Hadron particles. The muon system is
located outside of the magnet. Muons are not stopped by the calorimeters inside
the magnet, therefore chambers are placed outside the magnet in order to detect

6
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them. The detector has a total weight of 14000 tonnes, with overall dimensions of
21.6 meters of length and 14.6 meters diameter.

The detector was lowered in pieces from the surface at P5, called SX5, and
assembled at the Underground eXperimental Cavern (UXC) 100 meters under-
ground. All the electronics at the UXC are radiation hardened, while all the rest
of the electronics are located at the Underground Service Cavern (USC) behind a 7
meter concrete wall. The electronics are labeled front-end and back-end electronics
respectively. While the information from the front end electronics on the detector
is transferred via 90 meter long fiber optic cables to the back end electronics at
the service room.

Figure 2.1: Schematic view of the CMS detector

2.2 The CMS coordinate system

The CMS coordinate system places its origin at the center of the collision point,
inside the detector. As shown in figure 2.2a the y axis points vertically upwards

7
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while the x-axis points radially inwards towards the the center of the LHC. The z-
axis points along the beam direction towards the Jura mountains. The azimuthal
angle ϕ is measured from the x axis in the x-y plane, the plane providing the
transverse view of the detector. While the polar angle θ is measured from the z
axis. The CMS coordinate system uses another quantity to describe the angle of
a particle relative to the beam axis, called pseudorapidity, η, and is defined as:

η = ln tan
θ

2

Figure 2.2b shows the relation of the pseudorapidity with the polar angle θ.

(a) (b)

Figure 2.2: CMS coordinate system (2.2a), Relation of pseudorapidity η with the
polar angle θ (2.2b)

2.3 CMS Detector

2.3.1 The superconducting solenoid magnet

The superconductive Solenoid magnet of CMS is depicted in figure 2.3. It
serves the crucial role of bending the trajectories of charged particles, allowing
for the identification of the charge of the particle and the measurement of its
momentum based on the amount the trajectory is bent. In order to achieve a high
bending power the superconductive magnet’s field has been designed to reach a
nominal value of 4 Tesla. The magnet is formed by a cylindrical coil of 50 km of
superconductive cable inside an aluminium sheath, which needs to be cooled down
to a temperature of 4 Kelvin. Approximately 18500 amps are drawn by the coil.
The magnet has a diameter of 6 meters and a length of 12.5 meters with a total
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weight of 220 tonnes, making it the largest of its kind. The magnet due to its size
and structure, is providing support for the sub-detector systems inside it. The flux
of the solenoid’s magnetic field is returned by a 12500 tonne steel yoke comprising
5 wheels and 2 endcaps, that forms the bulk of the detector’s mass [10].

Figure 2.3: The superconducting solenoid magnet

2.3.2 Tracker

The tracking system of CMS is the innermost part of the CMS detector, in-
stalled as close as possible to the beam pipe. It is designed to provide a precise
and efficient measurement of the trajectories of charged particles emerging from
the LHC collisions. On average 1000 charged particles emerge from approximately
50 proton-proton interactions every 25 ns. This requires the tracker system to be a
high granularity, fast response and radiation hardened electronic system, all while
disturbing the particles as little as possible [10].

The Phase-1 Tracker system shown in figure 2.4a along with its layout in figure
2.4b. It is 5.8 meters wide with a 2.5 meter diameter. The innermost part of
the tracker consists of 66 million Silicon Pixels cells, arranged in three cylindrical
layers, at radii of 4.4, 7.3 and 10.2 cm surrounding the barrel and two disks on
each side. A total of 10 Silicon Strip detectors that surround the Pixel cells are
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placed in the barrel region between 20cm and 116cm, while 12 disks in total are
placed in the endcap regions. The silicon strip tracker has a total of 9.3 million
strips, while the tracker’s total area of coverage in pseudorapidity ranges from -2.5
to 2.5 as shown in figure 2.4b.

(a) (b)

Figure 2.4: Left: Phase-1 Tracker, Right: Cross section of the Phase-1 tracker

The Phase-2 upgraded tracker will be implemented at the end of Run 3. The
system will offer increased radiation hardness in order to be able to cope with the
increased HL-LHC particle flux, as well as higher granularity. The systems tracks
will also be delivered into the Level-1 Trigger system, contrary to the current setup
that only offers them to the High Level Trigger system. The Phase-2 Tracker
system will be composed by an Inner Tracker and an Outer Tracker.

The Inner tracker will be equipped with pixel modules. Thin silicon sensors
of thickness 100-150 µm segmented into pixel sizes of 25 × 100 µm2 or 50 × 50
µm2, are designed in order to exhibit the required radiation tolerance and increase
the resolution. Four cylindrical layers and eight small plus four large disc-like
structures in each forward direction compose the inner tracker as shown in figure
2.5. This way the overall pseudorapidity coverage will extend to |η| ≈ 4 [11].

The Outer tracker will be populated with pT modules. There are two versions
of the pT module, the 2-strip modules or 2S modules featuring two strip sensors
with a length of about 5 cm and the pixel-strip or PS modules featuring a strip
along with a macro-pixel sensor with a length of 2.4 cm. PS modules are deployed
in the first three layers of the Outer tracker in the radial region of 200-600 mm,
while another 3 layers of 2S modules are deployed in the outermost area of the
tracker above 600 mm. In the endcaps the modules are arranged in rings with the
2S modules placed at the outermost parts of the rings, shown in figure 2.5. Finally,
the outer tracker will be responsible for delivering track data to the Level-1 Trigger
system [11].
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Figure 2.5: Phase-2 Tracker layout in r−z view. The Inner tracker is indicated by
green and yellow lines, while the Outer tracker is indicated by blue and red lines

2.3.3 Calorimeters

Two Calorimeter detectors surround the tracker, while being confined inside the
solenoid magnet at CMS. The Calorimeters are placed in the following order, the
Electromagnetic Calorimeter (ECAL) and Hadronic Calorimeter (HCAL), moving
from the center of the detector outwards. There are two parts in each Calorime-
ters, one for each region they are located. There is the ECAL Barrel (EB), the
ECAL Endcap (EE), the HCAL Barrel (HB) and the HCAL Endcap (HE). Both
of the endcap calorimeters will be replaced by a new detector the High Granularity
Calorimeter (HG-CAL).

Electromagnetic Calorimeter (ECAL)

The Electromagnetic Calorimeter (ECAL) is a homogeneous crystal calorimeter
that provides high precision measurements of photons and electrons. The ECAL
Barrel (EB) consists of 61200 lead tungstate PbWO4 crystals while it covers the
area of pseudorapidity |η| < 1.479 The crystals are highly transparent and scin-
tillate when electrons and photons pass though it. The crystals emit a blue-green
scintillation light, estimated at 420–430 nm of wavelength, which is captured by
Avalanche PhotoDiodess (APDs). The total barrel crystal volume is 8.14 m3 and
its weight is equal to 67.4 tonnes [10]. The ECAL detector is depicted in figure
2.6a.

Hadronic Calorimeter (HCAL)

The Hadronic Calorimeter (HCAL) is a sampling calorimeter covering for the
barrel region a pseudorapidity range of |η| < 1.3. The HCAL Barrel (HB) is radi-
ally restricted between the outer extend of the ECAL at R = 1.77m and the inner
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extent of the superconductive magnet at R = 2.95m. HCAL is very important
for the measurement of hadrons’s energies. Due to the lack of available space, the
total amount of material required to absorb the hadronic shower is constrained.
Therefore a complementary outer hadron calorimeter is placed outside the solenoid
magnet, also called the tail catcher.

The HB is divided into two half-barrel sections, the HB- and HB+. Each half-
section can be inserted from either end of the barrel. Each half-barrels consist
of 18 identical azimuthal wedges, 36 in total for the whole HB. The wedges are
constructed out of flat brass absorber plates which are aligned parallel to the beam
axis. The plates are bolted together in a staggered geometry, while the innermost
and outermost plates are made of stainless steel for structural strength. The plastic
scintillator is divided into 16 η sectors. A total amount of 70000 scintillator tiles
are grouped intro scintillator tray units, while the first one is installed in front of
the first steel plate [10]. A picture of the Hadronic Calorimeter (HCAL) is shown
in figure 2.6b.

(a) (b)

Figure 2.6: Left: The Electromagnetic Calorimeter (ECAL), Right: The Hadronic
Calorimeter (HCAL)

High Granularity Calorimeter (HG-CAL)

The High Granularity Calorimeter (HG-CAL) will be part of the Phase-2 up-
grades for the replacement of ECAL and HCAL endcap calorimeters. The HG-
CAL will feature an unprecedented transverse and longitudinal segmentation for
both electromagnetic and hadronic compartments, for the pseudorapidity range of
1.4 < η < 3.0. It will be divided in two compartments, the electromagnetic com-
partment (CE-E) with 28 sampling layers, and the hadronic compartment (CE-H)
with 24 sampling layers. A figure of the HG-CAL layout is shown in figure 2.7.
The CE-E sections are made out of alternating absorber material, copper or lead,
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and silicon detectors that are assembled in casettes. The CE-H sections will use
silicon detector modules similar to those in the CE-E for the first 8 layers and
scintillator tiles along with silicon detector for all subsequent layers, assembled in
a similar way as CE-E detectors in casettes. The CE-H absorber material is made
of stainless steel disk of 35 mm thickness for the first 12 layers and 68 mm for the
last 12 [12].

Figure 2.7: Layout of one half of the HG-CAL

2.3.4 The Muon System

As indicated by the detectors middle name, the detection of muons is of great
importance to the Compact Muon Solenoid (CMS).The muon system serves three
main goals, identifying muons, measuring their momentum and reconstructing
their trajectories, eventually enabling the system’s trigger mechanisms. In order
to perform this, the muon system uses gaseous particle detectors for muon iden-
tification, sandwiched between steel layers of the return yoke. The muon system
due to the shape of the magnet, is comprised by one barrel section, and two pla-
nar endcap regions, consisting of about 25000 m2 of detector planes. Drift Tube
(DT) chambers used in barrel sections cover a range of |η| < 1.2, Cathode Strip
Chambers (CSCs) used in the endcap region cover a range of 0.9 < |η| < 2.4, while
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both are complemented by Resistive Plate Chambers (RPCs) covering a region of
|η| < 1.9. The muon system is depicted in figure 2.8.

Figure 2.8: r-z view of one quarter of the CMS detector, the muon system is
depicted with colors

Drift Tube (DT) system

The Drift Tube (DT) system is located in the barrel section ot the muon system.
The DT is divided into five wheels, wheel -2, -1, 0, 1, 2 on the longidutinal view.
Each wheel is divided in 12 Sectors on the transverse view as shown in figure 2.9,
60 sectors in total for the whole barrel. The sectors can also be grouped in 12
wedges with each wedge consisting of the 5 Sectors of each of the 5 wheels in the
z-axis. Every Sector consists of 4 DT chambers labeled MB1, MB2, MB3, MB4,
forming concentric cylinders around the beam axis. The top and bottom Sectors
consist of 5 DT chambers due to their increased size. This makes a total of 250
chambers for the whole barrel [10].

The basic element of the DT detector is the drift cell. The cell’s cross section
dimensions are 13 mm × 42 mm, with a length up to 2.4 meters. At the center
of the cell a 50 µm diameter gold-plated stainless steel anode wire is placed, while
cathode and electrode strips are glued on the sides of the cell, shown in figure
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Figure 2.9: Layout of the CMS barrel muon DT chambers in 12 sectors for one of
the 5 wheels

2.10a. A high density electric field is created by the anode’s high voltage at 3600
V assisted by the electrode strips at 1800 V and the cathode strips at -1200 V.
The ionizing gas, a mixture of 85 % Ar and 15 % CO2 which provides a saturated
drift velocity of about 54 µm/ns, is used to measure the spatial position of an
ionizing particle by causing the ionization of electrons in the gas while producing
an avalanche effect. The drift time of the ionized electrons is measured by the
electronics, while the maximum drift time is restricted by the maximum drift path
of 21 mm to ∼390 ns [13]. The barrel muon system contains a total of 172000
Drift Tube (DT) cells.

The Drift Tube (DT) cells are grouped in four half-staggered layers which form
one SuperLayer (SL), each SL consisting of 50 to 100 cells. A chamber consists of
3 or 2 SuperLayer (SL), as shown in figure 2.10b. The 2 outer SLs, SL1 and SL3,
are placed is such a way that their anode wires are parallel to the beam line, this
way providing measurements on the r−ϕ plane, while the inner SL, SL2, is placed
in way that the anode wires are orthogonal to the beam line, this way providing
measurements on the r − z plane or θ angle. The θ measuring SL is not present
in the fourth outermost chamber, MB4, of each sector.
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(a) (b)

Figure 2.10: Left: Single DT cell, Right: Schematic view of a DT chamber

Cathode Strip Chambers (CSCs)

Cathode Strip Chambers (CSCs) are used for muon detection in the endcap
regions of the CMS detector. The system is comprised of trapezoidal chambers,
covering 10◦ or 20◦ in ϕ direction, installed in four disks at each side of the barrel’s
endcaps, vertical to the beam axis. There are a total of 540 trapezoidal Cathode
Strip Chamber (CSC) modules. The first disk, the one closest to the interaction
point, is separated into 3 rings ME1/1, ME1/2, and ME1/3, while the rest of
the disks are segmented into 2 rings, as shown in figure 2.8. The rings closer to
the beampipe, ME1/1, ME2/1, ME3/1, and ME4/1 are referred to as inner rings,
while the others are referred to as outer rings. The largest chambers are about 3.4
meters in length and up to 1.5 meters wide. The CSC system covers an area of
pseudorapidity 0.9 < |η| < 2.4, while the area of 0.9 < |η| < 1.1 is covered by a
combination of DT system and CSC system, know as the overlap region [14].

The CSCs are multi-wire proportional chambers consisting of 6 anode wire
planes, interleaved among 7 copper cathode panels which contain strips that run
lengthwise, milled at a constant ∆ϕ width. The six gaps created are filled with
gas containing a mixture of 40% Ar + 50% CO2 + 10% CF4. The muon coordi-
nates along the wires are obtained by interpolating charges induced on the strips,
produced by the ionization of the gas [10].

Resistive Plate Chambers (RPCs)

The Resistive Plate Chambers (RPCs) are gaseous parallel-plate detectors that
have been installed at CMS to provide additional spatial resolution along with a
more precise time measurement, coparable to that of scintillators, to the muon
system. An RPC is capable of tagging an event with a time resolution smaller
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than the 25 ns between 2 consecutive Bunch Crossings (BXs). This way they
are very important in order to identify the relevant BX to which a muon track is
associated, all while being in the presence of a high particle rate and background.
In total there are 480 Resistive Plate Chamber (RPC) modules located in the
barrel and 576 the two endcap regions. In the barrel region there are 4 RPC
stations installed in 6 layers forming 6 coaxial cylinders around the beampipe, 2
layers surrounding the first two DT station while the two remaining attached to
the inner side of each DT station. The RPCs in the endcaps are placed in four
concentric disks around the beampipe [10].

The Resistive Plate Chamber (RPC) module consists of 2 gaps between two
resistive plates, up and down gap, each filled with a mixture of 96% C2H2F4, 3.5%
i-C4H10 and 0.5% SF6. Each module is operated in avalanche mode. The plates
of the module are coated with graphite and an electrical field is created inside the
gaps by applying a high voltage to the plates. When a charged particles passes
through the gas, it ionizes it and creates an avalanche effect. The induced charge
on the plates is read out by a strip placed between the two plates [10].

As part of the phase-2 upgrades two additional layers of Improved RPC (iRPC)
chambers will be installed at disks RE3/1 and RE4/1, as shown in figure 2.8. The
new layers will cover the very forward region at ranges of 1.8 < η < 2.4, while
the new chambers will feature thicker plates and gas gaps, this way leading to
increased sensitivity [14].

Gas Electron Multiplier (GEM) detectors

Gas Electron Multipliers (GEMs) gaseous detectors are a new addition to the
muon system as part of the phase-2 upgrades. Three new detectors are planned
to be installed in the locations of GE1/1, GE2/1 and ME0, as shown in figure 2.8.
The new detectors will cover the very forward reagion of 1.6 < |η| < 2.4 near the
beampipe, while the ME0 detector aims to take advantage of the the new inner
tracker capabilities in order to extend muon triggering capabilities up to |η| ∼ 2.8
[14].

2.4 Phase-2 Trigger and DAQ System

Proton-Proton collisions at a 40 MHz, at the center of the detector, produce
several tens of Petabytes of data every second. This high data stream cannot be
directly stored in disks. Therefore in order to reduce the event rate a Trigger
system is implemented. The CMS trigger system is an online event selection
system that receives data directy from the detector in real time, process them and
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determines if the data is useful. To determine if the data are useful or not, a
trigger menu of algorithms is implemented, which is specified by the physics fields
of interest.

There are two stages in the trigger system, the Level 1 Trigger (L1T) system
and the High Level Trigger (HLT). The first stage is the L1T, it processes data on
every single Bunch Crossing (BX) every 25 ns. In order to process this amount
of data, custom made processor board are used with powerfull FPGAs and high
speed optical links. The phase-1 Level 1 Trigger (L1T) reduced the event rate
down to 100 KHz with a latency of 4 µs, while the phase-2 Level 1 Trigger (L1T)
reduces the event rate down to 750 KHz with an increased latency of 12.5 µs. The
data is processed by all of the subsystems and when an event if accepted the data
stored up to this point in local buffers are read out by the Data Acquisition (DAQ)
system, eventually transmitted to the High Level Trigger (HLT). The HLT forms
the second stage of the data processing trigger system. It consists of commercial
CPUs and GPUs where a more complex higher lever algorithms are able to reduce
the event rate even further to 7.5 KHz. At which point the data are stored and
subjected to further offline analysis by physicists in institutions all around the
world.

2.4.1 Level-1 Trigger

The Level 1 Trigger (L1T) is the first stage of the trigger system. It processes
data produced by the collisions at the center of the CMS detector. The Phase-2
Level 1 Trigger (L1T) is based on custom made ATCA boards. It is located in the
service room at the Underground Service Cavern (USC) next to the Underground
eXperimental Cavern (UXC) cavern where the detector is located.

In figure 2.11 the block diagram of the Level 1 Trigger (L1T) system is de-
picted. It utilizes a layered architecture processing data coming from the detector
in stages. The trigger system receives trigger data from the detector via three
different paths, the calorimeter trigger path, the muon trigger path and the track
trigger path. The last added as part of the phase-2 upgraded system. At the first
stage, data (Hits) from the detector arrive at each path, digitized by the front-end
electronics, transmitted via fiber-optic cables stretching up to 90 meters via 10
Gbps links using the lpGBT link protocol to the back-end system at USC. At
the second stage the data gathered from the detector are processed by algorithms
in order to produce Trigger Primitivess (TPs), which contain useful information
such as measurements of energy, ϕ, θ position, quality of measurement and Bunch
Crossing (BX) of the Trigger Primitives (TP). At the next stage the Trigger Primi-
tivess (TPs) are forwarded via CMS Standard Protocol (CSP) optical links to each
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subsystem trigger processing boards in order to reconstruct the particles. The par-
ticle data from the three subsystems are then transmitted to the correlator trigger
subsystem in order to reconstruct the whole event. Eventually all the data from
all subsystems, along with the correlator data, are transmitted to the Global Trig-
ger (GT) subsystem in order to run a menu of algorithms and determine if the
data contains meaningful information. If data are found to be of interest then
the Global Trigger (GT) produces the Level-1 Accept (L1A) signal and transmits
it to all systems, both front end and back end through the Timing and Control
Distribution System (TCDS). The data are then read out and transmitted to the
High Level Trigger (HLT) system by the Data Acquisition (DAQ) system.

Figure 2.11: Functional diagram of the CMS Level-1 Phase-2 Trigger System

Calorimeter Trigger

A Barrel Calorimeter Trigger (BCT) back end processes the HCAL and ECAL
information from the barrel region, while HG-CAL uses its own back end system.
Outputs from the BCT, Hadron Forward Calorimeter (HF) primitives from the
endcap regions and High Granularity Calorimeter (HG-CAL) trigger primitives
are sent to the Global Calorimeter Trigger (GCT). In the GCT calorimeter-only
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objects are built such as hadronically decaying tau leptons candidates, electron or
photon candidates, energy sums and jets. Finally the GCT’s output is transmitted
both to the Correlator trigger and to the Global Trigger (GT) [15].

Muon Trigger

Due to the muon systems structural form, the muon reconstruction is split
into 3 subsystems, the BMTF, the Overlap Muon Track Finder (OMFT) and the
Endcap Muon Track Finder (EMTF). The BMTF algorithm is implemented by
the GMT boards due to its low utilization footprint.

In the endcap region Trigger primitives are created by front-end electronics
receiving hits from CSCs in the region of 1.2 < η < 2.4. In order to be produced,
hits that form straight line patterns to at least four layers, are required. They
are produced by CSC Trigger Motherboardss (TMBs) and are transmitted to the
Endcap Muon Track Finder (EMTF) back end system. RPC detectors installed
at regions of 0.9 < η < 1.9 and iRPC detectors extending the overall coverage to
η < 2.4, transmit hits to the EMTF system in order to improve and assist the
timing resolution of the generated Trigger primitives. The EMTF then processes
all the available Trigger Primitives from the endcap region in order to reconstruct
standalone muons. This information is then forwarded to the GMT along with all
non zero trigger primitives.

The overlap region covers the range of pseudorapidity 0.9 < η < 1.2. The Over-
lap Muon Track Finder (OMFT) receives trigger primitives from both the barrel
and endcap parts that correspond to this region. It then performs track match-
ing and muon reconstruction, while eventually it transmits all non zero trigger
primitives along with the reconstructed muons, to the GMT.

The barrel region consists of 60 sectors containing DT chambers and RPCs
as discussed in 2.3.4. Muons passing through the DT cells ionize the gas and in
turn produce a signal. Signals from the Drift Tube (DT) cells are digitized by
the On detector Board for Drift Tubes (OBDT), forming TDC hits. One OBDT
is responsible for transmitting Hits from one SL to the back end boards. Since a
categorization of SLs is applied, based on their orientation providing θ or ϕ view
measurements, the same categorization is applied to the OBDTs. The TDC hits
are transmitted through 10 Gbps lpGBT links to the Barrel Muon Trigger Level-
1 (BMTL1) back-end boards. The BMTL1 boards running the AM algorithm
produce stubs, or track segments, which contain information about the ϕ or θ
coordinates, ϕ or θ bending, BX number, quality of the trigger primitive, among
others. RPC Hits are used complementary to the DT Hits in order to improve
the robustness and the overall performance of the system, by producing Super
Primitives. Two Sectors are able to be processed by one BMTL1 board, the
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outputs of which are eventually transmitted to the GMT via CSP optical links at
25 Gbps [15].

All data are collected by the Global Muon Trigger (GMT) system, receiving
trigger primitives by the BMTL1 and reconstructed muons from the OMFT and
EMTF, along with their non zero trigger primitives. The muon reconstruction of
the barrel region is performed by the Kalman filter algorithm. The algorithm can
also detect slow and displaced muons. The main operation of the GMT is the
removal of misreconstructed muons and the removal of duplicate muons that are
found on the borders of the aforementioned subsystems. The GMT also receives
track data from either the Track Finder (TF) or the Global Track Trigger (GTT) in
order generate track matched muons called tracker muons and L1 tracks matched
to muon stubs, called tracks plus muon stubs. Due to latency considerations the
tracker data will be delivered by the TF. The GMT outputs are delivered to the
Correlator Trigger system and the GT system.

Track Trigger

As part of the phase-2 upgrade a Track Trigger path has been added to the L1T
system. The track trigger system will process information from the outer tracker
area of |η| < 2.4. Due the increased pileup of around 200, data are processed
directly on the outer tracker’s pT modules. The modules perform hit correlations
between two closely spaced silicon sensors, this way filtering signals of particles
with a pT above 2 GeV. This way the data rate is reduced by one order of mag-
nitude. The pairs of correlated Hits, called stubs are transferred to the back end
Track Finder (TF) system. The stubs are processed by the track finding algorithm,
called the hybrid algorithm, which first generates seeds, also called tracklets. It
does so by processing stubs from two adjacent disks that also meet certain criteria
for their distance from the beamspot. The tracklets produced are thus consistent
with particles of pT > 2GeV, |η| < 2.4 and |z0| < 15 cm. Once the tracklets are
produced they are projected to other layers or disks, in order to explore for extra
matching stubs within a confined window surrounding the projection. A minimum
of four stubs are necessary for formation of a L1 track. Once the tracks are formed
a Kalman filter algorithm is used to identify the best stub candidates and compute
the track’s parameters. The track data are then transmitted to the Global Track
Triggers (GTTs) which is responsible for the reconstruction of the primary vertex,
at which point the data are finally transmitted to the Global Trigger (GT) and
Correlator trigger [15].

Correlator Trigger

The Correlator Trigger system receives inputs from all the previous track finder
subsystems , GTT, GMT, GCT and HG-CAL. The CT system performs particle
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identifications and produces higher-level trigger objects by employing more sophis-
ticated algorithms. This is feasible due to the increased latency time of 12.5 µs of
the phase-2 system, the inclusion of tracker data in the L1T system in contrast to
the phase-1 system and the advanced capabilities of the electronics systems used.
The CT system is separated in two layers, layer-1 and layer-2. At layer-1 the
Particle Flow (PF) algorithm is used in order to generate particle flow candidates.
The particle flow candidates are constructed from the matching of calorimeter
cluster data and L1 tracks, whereas PF muons are formed by matching standalone
muons transmitted by the GMT, with L1 tracks by the outer silicon tracker, in
which case the PF muon is not reused during the linking phase with the calorime-
ter clusters. The PUPPI algorithm is also implemented in layer-1, which is used
to indicate particles originating from the hard scatter or from pileup interactions.
Due to latency requirements layer-1 CT must receive, reconstruct and transmit
all data to the layer-2 CT within 1 µs. At which stage final trigger objects are
built by applying further isolation criteria, before finally transmitted to the GT
[15].

Global Trigger

The Global Trigger (GT) receives inputs from the CT, GMT, GCT and the
GTT system. Inside the GT a large amount of algorithms process the received
data, each one describing a distinct event’s signature from the trigger menu. The
algorithms’ outputs are monitored in parallel. Whenever one of the algorithms
determines the data contain valuable information about a specific event, a L1A
signal is generated along with the trigger type that was produced. The L1A signal
is then transmitted to all previous subsystems by the Timing and Control Dis-
tribution System (TCDS), initiating the readout to the Data Acquisition (DAQ)
system.

2.4.2 Data Acquisition and High Level Trigger

The output rate of the L1T is set to be 750 KHz while the latency of the
system is 12.5 µs. Due to bandwidth and resolution considerations the L1T do
not always provide the full resolution of data that is produced. The data are thus
stored in buffers deep enough, in order to be transmitted after the delay of 12.5 µs
in which time the GT will have made a decision of whether to accept or discard
the event. Once the systems receive the Level-1 Accept (L1A) signal through the
Timing and Control Distribution System (TCDS) system, they deliver the event’s
data at full resolution to the Data Acquisition (DAQ) system through read out
links. The TCDS2 system for the phase-2 upgraded system delivers the Timing
Trigger Control (TTC) signals along with the readout buffers’ status in order to
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alert the Trigger Throttling System (TTS) in order to prevent buffer overflow.

Eventually the data are transmitted to the High Level Trigger (HLT) in order
to be processed by a large number of CPUs and GPUs. In the High Level Trigger
(HLT) a more sophisticated event reconstruction takes place in order to further
reduce the event rate to 7.5 KHz and permanently store the event in order to be
reconstructed offline and be used for analysis. The HLT runs the CMS Software
(CMSSW), which is also used for offline reconstruction, while the average event
processing time is 200-300 ms.
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Chapter 3

FPGA - Programming Languages

3.1 FPGAs

A Field Programmable Gate Array (FPGA) is a type of Integrated Circuit
that can be programmed many times after manufacturing. In contrast to a con-
ventional micro-controller it does not follow the same CPU-oriented architecture,
rather it consists of an array of Configurable Logic Blocks and interconnects that
can be connected to perform various digital functions. Such logic blocks can be
Flip-Flops, Look Up Tables, Digital Signal Processing (DSP) slices, Random Ac-
cess Memory (RAM) Blocks, high-speed Input/Output (I/0) Serializers/Deserial-
izers Multi-gigabit Transceiver (Transmitter-Receiver) blocks and finally I/O (In-
put/Output) Pins to be able to receive signals from the outside world, see 3.1.
FPGAs were originally developed as a successor to programmable read-only mem-
ory (PROM) and programmable logic devices (PLDs) [16], designed to have the
option to be programmed in a factory or in the field by a programmer, hence
the name ”field-programmable”. The need to be able to reprogram an integrated
circuit arose after it was evident that an application-specific integrated circuits
(ASICs) once manufactured, if an error was observed, it was far too costly to
redesign and manufacture again. Currently the two biggest manufacturers are
XILINX and Altera.

A process in a conventional computer is handled by the CPU. Modern CPUs
have many cores and each core can support hyper-threading. That means that
whenever a process needs to be handled, one core and more specifically one thread
compute the result of the process. This creates a problem when many processes
need to be handled, because each has to wait for a thread to be freed and then be
handled. FPGAs do not share the same problem, as their logic blocks are parallel
in nature. Each process can be handled by a distinct section of the chip and
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Figure 3.1: Visualization of a modern FPGA, its interconnects and CLBs

specific resources may be allocated for it, without interfering with other processes.
Essentially each FPGA can be configured to handle one hundred processes in one
cycle whereas a CPU would need one hundred cycles to handle them all. As a
result, FPGA can be very efficient when it comes to algorithms.

In modern FPGAs there is an abundance of resources so it is even possible
to configure the fpga to recreate a microprocessor. Xilinx offers the MicroBlaze
package that allows the user to configure and use a 32-bit/64-bit microprocessor
based on the Reduced instruction set computer (RISC) Harvard architecture. An-
other method of combining an FPGA with a microprocessor is the System On
Chip (SOC). A System On Chip is an integrated circuit that integrates most com-
ponents of a computer. These components typically include a Central Proccessing
Unit (CPU), memory interfaces, Input/Output (I/O) devices and secondary stor-
age, all on a single substrate or microchip. These components allow the use of a
light-weight operating system (In most cases Linux). There exists a ZYNQ series
currently manufactured by Xilinx which includes a SOC along with an FPGA.
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3.2 Programming Languages

There exist two types of Programming Languages, Software Programming Lan-
guages (SPLs) and Hardware Description Languages (HDLs). Software Program-
ming Languages can be used to create executable software in an operating system
such as Linux, Windows, Mac OS to be run by the processor or the microprocessor
(µP) of the system, or create a bit-file to be loaded in micro-controller (µC ).

Hardware Description Languages (HDLs) on the other hand aims to describe
via text a digital electronic circuit. As Hardware is concurrent in its nature, so is
the language that describes it. Every statement is executed simultaneously, unlike
software programming languages, where each statement is executed sequentially,
one instruction at a time. The most common Hardware Description Languages
are VHDL and Verilog, this thesis focuses on the first.

3.2.1 VHDL

VHISC (Very High Speed Integrated Circuit) Hardware Description Language
(VHDL) was developed in 1983 by the US department of Defence in order to
document the behaviour of the ASICs, companies included in their equipment.
The need to simulate the ASIC from the information of this documentation led to
the creation of simulators that could read the VHDL files and show the expected
output. So the next step was the development of logic synthesis tools that could
read the VHDL files and output a definition of the physical elements of the circuit.

There exist three main versions of the language. The original version of the
language was released by Institute of Electrical and Electronics Engineers (IEEE)
1076-1987 [17], the updated version of IEEE 1076-1993 and finally version IEEE
1076-2008. This thesis follows version VHDL-93 and on.

VHDL code is written in a text file. A design in VHDL is described as an
Entity. The VHDL module is split at the entity’s port declaration, its inputs and
outputs, and at its architecture. The entity’s ports are the same as they would
be as Pins in an IC. The architecture describes the behaviour of the module. In
3.2 this is more evident. AVHDL design may consist of many entities, and a
very complex system may need to be described. A design is then described with
a hierarchy in mind, entities can contain other entities, declared as Components.
Components can be instantiated in the architecture of an entity and its Port pins
can be connected accordingly with a certain Port Map using signals , which rep-
resent an electrical wire and/or busses, which represent many parallel electrical
wires. Each component instantiated inside another Entity is regarded as a lower
level block in the hierarchy of the design. This is analogous to using many ICs
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Figure 3.2: Depiction of a VHDL entity as an IC

that are connected together to form an even bigger design.

We can write statements in VHDL that are executed concurrently, essentially
everything we will write inside the architecture will be executed concurrently. We
use Processes to execute statements sequentially every time the value of one of
the signals declared in the sensitivity list of the process changes. Combining gates
(concurrent logic) and registers (sequential logic) produces a Combinational Logic
that describes the function of a circuit.

At figure 3.3 we can see the VHDL code for a rising edge D Flip-Flop with
asynchronous reset. In the port declaration we have the input and output ports,
and in the architecture we have the process along with its sensitivity list. We can
see that the reset is asynchronous because it does not depend at the clock, as when
its value changes the process is triggered. This entity could then be instantiated as
a component inside the architecture of another and possibly bigger design. That
means once we have declared one entity we can use it multiple times without the
need to rewrite everything again. This is very usefull as VHDL also allows us to
use packages and declare functions, procedures and types in them, in order to use
them in different designs. Xilinx, because some designs are common and often
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Figure 3.3: VHDL code for a D Flip-Flop with asynchronous Reset

needed includes some packages as IPs (Intellectual Property). The IPs are often
configured by the user with minimal difficulty and they contain all the necessary
code files. Such IPs could for example be how to set up a FIFO, or perhaps a
clocking Wizard that allows us to set up MMCM or PLL to produce a specific
clock output.

Vivado Design Suite by Xilinx is a software suite for synthesis and analysis
of HDL designs for FPGAs. Initially the VHDL code files are processed by the
compiler and the hierarchy of the design is created, linking all components ac-
cordingly. Next step is to perform and RTL analysis during which the compiler
checks for syntax errors, at this stage the Register-Transfer Level (RTL) design
is only expressed as a design abstraction which models the synchronous digital
circuit, about to be created, in terms of the flow of digital signals between hard-
ware registers and the logical operations performed on those signals. It is a high
level representation of the circuit from which lower-level representations and actual
wiring will be derived. We can use behavioural simulation to check with a test
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Figure 3.4: Flowchart of VHDL code Development to FPGA programming

bench what is the functionality of our design, and if our specifications are not met
we re-design our circuit. The next stage is Synthesis, at this level the Register-
Transfer Level (RTL) design is transformed into the a gate-level representation,
and only after that begins Implementation. Both at Synthesis and at Impementa-
tion the compiler takes account of any Xilinx Design Constraints (XDC) files the
user may have included, but they are specifically required for Implementation in
order to connect the I/O Pins of the FPGA and constrain the design accordingly.
In Vivado Implementation the following steps are performed:

• Opt Design: Optimizes the logical design to fit onto the target device.

• Place Design: Places the design onto the target device and improves timings.

• Route Design: Routes the design onto the target device.
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After Implementation the user can perform a more in-depth Post-Implementation
Functional Simulation that can correctly give an estimate on timings, power con-
sumption etc. If timing reports and simulations, all satisfy the specifications then
we move on to Bitstream Generation where a .bit file is created in order to pro-
gramm the FPGA.

Various tools are available in order to debug our design even when it is run-
ning on hardware. Such tools are Integrated Logic Analyzers (ILAs), Virtual
Input/Outputs (VIOs) and one more that we will use extensively, the IPbus, more
to be explained later in this thesis. If we do not observe the expected behaviour
then we can modify our design and our constrains accordingly and repeat the
process of figure 3.4.

3.2.2 Verilog

Verilog is a Hardware Description Language (HDL) standardized as IEEE 1364
[18] initially developed by Gateway Design Automation, acquired by Cadence De-
sign Systems in 1990. Verilog syntax resembles that of C programming Language,
and it is widely adopted by programmers in the US, whereas VHDL is mainly
used in Europe. Vivado Design Suite allows us to use both Verilog and VHDL in
our designs (Mixed), as long as they can be expressed as components in the other
language’s syntax.

3.2.3 TCL

Tool Command Language (TCL) is a high level, interpreted programming lan-
guage with varibales, procedures and control structures. It has been adopted as the
standard application programming interface (API) by most EDA vendors. AMD
has also adopted TCL as the native programming language for the Vivado Design
Suite, as it provides control of the application. access to design objects and cre-
ate custom reports. Furstermore Vivado uses Xilinx Design Constraintss (XDCs)
to specify the design constrains, which is based on a subset of TCL commands
availiable in the application [19].

3.2.4 Python

Python is high-level programming language that is a cross-platform program-
ming language, meaning it runs on all the major operating systems, is dynamically
typed , meaning the user does not need to specidy the data type of the variable
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explicitly, is an interpreted Language , meaning that the source code is executed
line by line and its design philosophy empasizes on code readability with the use
of indentation [20]. In this thesis it is mainly used along with the IPbus tool in
order to control and monitor the status of an FPGA.

3.2.5 Bash Scripting

Bash is a Unix shell and command Language developed for the GNU’s Not
Unix (GNU) Project as a free software replacement for the Bourne shell. Bash
is a command processor that operates within a text window where users input
commands to perform actions. Bash can also read and execute commands from
a file, called a shell script. In a System On Chip (SOC) where a light-weigh
operating system such as Linux is present, Bash scripts are used in order to test
various functions of the FPGA and often automate others.
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Chapter 4

MultiGigabit Transceivers

4.1 Multi-gigabit transceiver

4.1.1 Introduction

FPGAs are used in order to process in parallel large amounts of data. That
data needs to be delivered to the chip and possibly transmitted to another by some
means. One way would be to use wires in parallel that could transmit and receive
the data, but this adds cost and complexity to the system, while we would run
out of I/O pins on the chip too. That way Multi-Gigabit Transceivers (MGTs)
are used.

A Multi-Gigabit Transceiver (MGT) is a special block inside the FPGA that
converts data from parallel interfaces to serial and from serial to parallel on the
receiving end. This SerDes (Serializer / Deserializer) block is capable of operating
at serial bit rates above 1 Gigabit/sec. MGTs using optical links (with optic
fibers cables) exhibit minimal attenuation, and thus the can be used over longer
distances, this way reducing the cost compared to the parallel wire scheme, all
while delivering the same data throughput.

Some types of transceivers used in the UltraScale architecture of Xilinx FPGAs
are GTH, GTY and GTM. All transceivers are arranged in groups of four, known as
a transceiver Quad where Each transceiver is a combined transmitter and receiver.
Table 4.1 shows various types of transceivers (Ultrascale U and Ultrascale+ UP)
along with their maximum Line Data Rate [21]. In this thesis we will focus more
on the GTH transceivers.
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KU (Kintex) KUP (Kintex) VU (Virtex) VUP (Virtex)

GTH 16.3 16.3 16.3 -

GTY 16.3 32.75 30.5 32.75

GTM - - - 58.0

Table 4.1: Types of MGTs along with their Maximum Line Data Rate in Gb/s

4.1.2 PMA - PCS

A picture of a channel of an MGT is shown at figure 4.1. The Multi-Gigabit
Transceivers (MGTs) is divided in two functional groups, the Physical Medium
Attachment (PMA) and the Physical Coding Sublayer (PCS).

Figure 4.1: MGT channel topology

The PCS block is responsible for data encoding and decoding, scrambling and
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de-scrambling, Comma detection, byte and word alignment, Pseudorandom Binary
Sequence (PRBS) pattern generation and checking and consists of various FIFOs
for clock correction and channel bonding. The PMA receives/transmits data in
parallel from the PCS and convert them to serial streams. It consists of Phase
Locked Loops (PLLs), Serial In Parallel Out (SIPO) and Parallel In Serial Out
(PISO) register blocks, signal equalization modules, voltage termination modules
and clock recovery blocks.

4.1.3 Phase Locked Loop (PLL) - Quads

In order to be able to convert parallel data to a serial stream, PLLs are used to
create a much higher clock. A Phase Locked Loop (PLL) is a closed-loop control
system that generates an output signal whose phase is related to the phase of an
input signal. It typically consists of a Phase Detector, that compares the phase
of the input signal against the feedback output signal, a Loop Filter, a Voltage
Controlled Oscillator (VCO), that proportionally controls the frequency and the
phase of the oscillator thus producing a periodic signal of a specific frequency and
a Feedback Divider (N) that determines the VCO multiplication ratio.

Figure 4.2: GTH QPLL Detail

Figure 4.3 depicts the clustering of four GTH3/4 CHANNEL primitives and
one GTH3/4 COMMON primitive that form a Quad (Q). The COMMON primi-
tive contains two LC-tank PLLs called the QPLL0 and QPLL1 and only need to be
instantiated when a QPLL is in use. Whereas each CHANNEL primitive consists
of a Channel Phase Locked Loop (CPLL), a transmitter and a receiver, and needs
to be instantiated each time. The clocks produced by the PLLs need a reference
clock source, often called the MGTREFCLK. GTH transceiver structure allows
two modes of operation, input and output mode. In the input mode we provide a
clock source on the dedicated reference clock pins that are used to drive the QPLL
or the CPLL, using the IBUFDS3/4 GTE3 buffer primitive. In the output mode
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Figure 4.3: GTH Transceiver Quad Configuration

the recovered clock RXRECCLKOUT from any of the four Channels’ Receivers
from the same Quads can be used with the OBUFDS GTE3/4 buffer primitive, as
shown in figure 4.3.

VCO Frequency (GHz)

QPLL0 9.8 – 16.375

QPLL1 8.0 – 13.0

CPLL 2.0 - 6.25

Table 4.2: Nominal Operating Range Of QPLL/CPLL

The reference clock for a Quad Q(n) can be sourced from the refence clock of
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up to two Quads below Q(n − 1) and Q(n − 2), or from up to two Quads above
Q(n+ 1) and Q(n+ 2). The selection of QPLL or CPLL depends on desired line
rate. The operating line rates for each type of Phase Locked Loop are detailed in
Table 4.2.

4.1.4 Transmitter Functional Blocks

Each transceiver includes an independent transmitter. Parallel data flows from
the user design into the TX interface, through the PCS and PMA, and then out
of the TX driver as a high-speed serial data stream. Figure 4.4 shows the TX
block diagram of a transceiver with all its functional blocks along with its clocking
network. The most used and important are described below in greater detail.

• TX interface
The TX interface is the gateway to the TX datapath. Data can be written
by the user to the TXDATA port of the TX interface on the positive edge of
TXUSRCLK2. The width of the port depends on the TX DATA WIDTH,
with possible combinations being 16,20,32,40,64 and 80 bits. The TXUSR-
CLK2 frequency is determines by the line rate, the width of the TXDATA
port and by the protocol we have chosen (whether 8b/10b is selected). As the
data are exported from the TX interface they are inserted with the TXUSR-
CLK to thePCS via the internal datapath, with the width being configurable
between 2-bytes and 4-bytes (Internal Datapath Width). TXUSRCLK and

Figure 4.4: GTH Transceiver TX Block Diagram with Clock Domains

TXUSRCLK2 have a fixed-rate relationship which can be seen at table 4.3,
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while equation 4.1 shows how to calculate the required rate for TXUSRCLK
for all cases except when the asynchronous gearbox is used.

TXUSRCLK =
LineRate

InternalDatapathWidth
(4.1)

TXUSRCLK and TXUSRCLK2 must be positive-edge aligned and buffers

Internal Datapath TX DATA WIDTH Relationship

2-Byte 16, 20 FTXUSRCLK2 = FTXUSRCLK

2-Byte 32, 40 FTXUSRCLK2 = FTXUSRCLK/2

4-Byte 32, 40 FTXUSRCLK2 = FTXUSRCLK

4-Byte 64, 80 FTXUSRCLK2 = FTXUSRCLK/2

Table 4.3: TXUSRCLK2 to TXUSRCLK Frequency Relationship

like BUFG GTs must be instantiated to drive them. Despite operating at
different frequencies, the transmitter reference clock MGTREFCLK, TXUS-
RCLK and TXUSRCLK2 must share the same oscillator as their source.
That requires the frequencies of the two clocks to be multiplied or divided
versions of the MGTREFCLK [22].

• TX 8B/10B Encoder
The 8b/10b encoding scheme is used by high-speed protocols, designed to
achieve DC-balance and bounded disparity in order to allow reasonable clock
recovery. The protocol uses an extra of 2 bits in an 8 bit word to encode
it, in order to prevent a large amount of consecutive 0s or 1s [23]. The
trasmitter has a built in encoder in order to reduce the use of additional
device resources.

• TX Synchronous Gearbox
Some other high-speed data rate protocols use the 64b/66b encoding scheme
in order to reduce the overhead of the 8b/10b. The TX synchronous gearbox
provides support for this encoding, waiting to receive the word, where 64 bits
are used for the payload and a total of 2 additional bits for the header, which
is responsible for alignment, and control procedures. The potential interfaces
are the same as the internal datapath width, 2-byte, 4-byte and 8-byte.

Figure 4.5 demonstrates the first four clock cycles of Bit and Byte ordering
for both the header (2 bits) and the payload (64 bits) of two 64b/66b words,
while using a 4-byte (32 bits) internal datapath width. Initially We have
available 2 bits from the header of the word and 32 bits from the data.
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Figure 4.5: TX Synchronous Gearbox Bit and Byte Ordering

On the first clock cycle the 2 bits of header and 30 bits of the word are
transmitted. On the second second clock cycle we transmit the 2 bits that
were left over and another 30 from the second part of the data. When another
64b/66b word arrives its header (2 bits), the left over 2 data bits from the
first word, and 28 bits of data from the current word are transmitted on the
third clock cycle. And so on the process continues.

After a few clock cycles we can see that we would begin to lose data. In
order to avoid this, for one (or two , depending on the relationship of the
internal datapath width and the TX data width) clock cycles of TXSUS-
RCLK2 the transmission is halted. The TX gearbox has a specific port
named TXSEQUENCE, for which the user is responsible to provide an in-
crementing counter, using the TXUSRCLK2. When 64B/66B encoding is in
use, the counter must increment from 0 to 32 and repeat from 0. However
the the counter must increment once every two TXUSRCLK2 cycles when
TX DATA Width and the internal datapath width is the same.
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• TX Buffer
In figure 4.4 we can see that the PCS block is split in two clock domains, the
TXUSRCLK clock domain and the PMA parallel clock domain XCLK. In
order to transmit data the two clocks must have the same frequencies and all
phase differences between the two need to be resolved. In order to achieve
this, the GTH transmitter includes the TX buffer.

• TX Buffer Bypass
When minimal latency in the design is necessary, the TX buffer needs to be
bypassed and the the TX phase alignment circuit is used in order to resolve
differences between the XCLK and TXUSRCLK clock domains.

• TX Polarity Control
In the event that TXP and TXN differential traces are swapped by accident
on the PCB, the data transmitted are reversed. In order to counter this we
invert the parallel data before serialization in order to offset the reversed
polarity on the differential pair.

• TX Fabric Clock Output Control
In many instances the user may need to output clocks used to transfer data
in parallel inside the transmitter, in order to build additional logic designs
in the same clocking region. The TX Clock Divider Control block is divided
in two main functions, the serial clock divider control and the parallel clock
divider and selector control. Using the parallel clock selector the user can
output the desired clock.

• TX Configurable Driver
The TX Configurable Driver is a high-speed current-mode differential output
buffer that features differential voltage control and calibrated termination
resistors.

4.1.5 Receiver Functional Blocks

Each transceiver also includes an independent Receiver RX. High-speed serial
data flows into the PMA of the transceiver, converts to parallel data into the PCS
and finally is driven out to the design logic, availiable to be read by the user. Figure
4.6 shows the RX block diagram of a transceiver with all its functional blocks along
with its clocking network. The most used and important are described below in
greater detail.
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Figure 4.6: GTH Transceiver RX Block Diagram with Clock Domains

• RX Analog Front End
The RX analog front end is a high-speed current-mode input differential
buffer which features Configurable RX termination voltage and calibrated
termination resistors.

• RX Equalizer (DFE and LPM)
A signal travelling through a transmission medium, is subjected to various
effects such as attenuation, distortion and noise. to combat this, there are
two types of adaptive filtering available in the receiver, the Low Power Mode
(LPM) and the Decision Feedback Equalizer (DFE) mode. LPM focuses
on power efficiency and is mainly used on shorter reach and low reflection
channel. Whereas DFE is used for longer reach lossier channels, allowing
a better compensation of losses by a better adjustment of filter parameters
than when using a linear equalizer. DFE can also equalize a channel without
amplifying noise and crosstalk between other channels.

• RX clock data recovery
The Clock Data Recovery (CDR) circuit shown in figure 4.7 exists in every
channel of a Quad of a GTH transceiver. It is responsible for recovering the
clock and data from an incoming serial data stream. Incoming data first
go through the equalization stages of the receiver and are then captured by
an edge and data sampler, while also transmitted further along the receiver
blocks. Both data arriving from both the edge and data samplers are used
by the CDR state machine in order to determine the phase of the incoming
data stream and to control the Phase Interpolators (PIs). The PLL provides
a base clock to the Phase Interpolator that in turn produces fine, evenly
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spaced sampling phases which allows the CDR state machine to have a fine
phase control. Thus a clock is recovered by the data stream and available to
use, as described in section 4.1.3.

Figure 4.7: Clock Data Recovery Circuit Detail

• RX Fabric Clock Output Control
The RX clock divider control block performs two main functions, serial clock
divider control and parallel clock divider and selector control. A desired clock
used by the receiver block can be driven out, in order to be used in the design
logic by the user.

• RX Polarity Control
In the event RXP and RXN differential traces are swapped by accident on
the PCB, then the differential data received by the receiver RX are reversed.
In order to counter this we invert the parallel data in the PCS after the SIPO
to offset the reversed polarity of the differential pair.

• RX Byte and Word Alignment
In order to convert serial data to parallel data, with specific length words, we
need to know where are the boundaries of each word, and align the received
data with the data sent by the transmitted. In order to achieve this alignment
the transmitter sends a recognizable sequence, usually called a comma. The
receiver searches for the comma word in the incoming data and when it is
found all of the subsequent serial data are organized, in order to match the
words sent by the transmitter.

• RX 8B/10B Decoder
The GTH transceiver has a built in 8b/10b Decoder in the Receiver block.
If data are encoded in this scheme then in order to decode them without
consuming additional device resources, this block is enabled by the user.

• RX Elastic Buffer
As shown at figure 4.6 the RX datapath has two internal parallel clock do-
mains. The RXUSRCLK parallel clock domain in the PCS and the XCLK
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parallel clock domain in the PMA. The two clocks in order to receive data
from the PMA to the PCS need sufficiently close rates and all phase differ-
ences between the two, resolved. In order to achieve this, the GTH receiver
includes the RX Elastic Buffer.

• RX Buffer Bypass
The Elastic Buffer can be bypassed to achieve a lower latency. The RX
phase alignment circuit is used to adjust the phase difference between the
SIPO parallel clock domain and the RX XCLK domain. The RX XCLK is
configured to use RXUSRCLK when using RX phase alignment.

• RX Synchronous Gearbox
When the 64b/66b encoding scheme is used, the RX Synchronous Gear-
box can provide support in order to separate the Header from the payload
of the word. The RX Synchronous Gearbox receives data from the paral-
lel XCLK PMA clock domain and for the reasons described at 4.1.4, the
output data occasionally are invalid. In order to keep track, the RX Syn-
chronous Gearbox provides us with output ports RXHEADERVALID and
RXDATAVALID. In contrast to the TX Synchronous Gearbox, the RX Gear-
box internally manages all sequencing and deasserts the signals of the valid
ports. The RXDATAVALID signal, for instance, is deasserted every 32 cycles
for the 4-byte internal datapath width when the RXDATA width is 64 bits,
that follows the same sequencing as the TX. The potential RX synchronous
gearbox interfaces are 2-bytes, 4-bytes, and 8-bytes.

Data out of the RX Synchronous Gearbox are not necessarily aligned. The
user is responsible for the alignment logic and must utilize the RXGEAR-
BOXSLIP port. The port causes the contents of the gearbox to slip to the
next possible alignment. Simultaneously, the user logic design checks for
alignment markers or control words that are predefined. If, after a certain
amount of clock cycles, no alignment markers are found the user logic re-
asserts the RXGEARBOXSLIP port and repeats the process until correct
alignment is reached.

• RX Interface
The RX interface is the gateway to the RX datapath. Data are received
through the RXDATA output port by reading them at the positive edge
of the RXUSRCLK2 clock. The output port width is determined by the
RX DATA WIDTH and can be se to 16,20,32,40,64 or 80 bits. The TX
interface is divided in two parallel clock domains, the PCS RXUSRCLK2
clock domain and the RXUSRCLK2 which is the clock that provides the
user the data. RXUSRCLK and RXUSRCLK2 have a fixed-rate relationship
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which is the same relationship the TXUSRCLK and TXUSRCLK2 have, as
shown at table 4.3. The two clocks must be positive-edge aligned, while the
equation that is required to calculate the RXUSRCLK frequency is the same
as the equation 4.1.

4.2 A Synchronous Link Protocol

4.2.1 Introduction

In the context of learning about the protocols used in optical links at CMS
and FPGAs in general, a simple synchronous link protocol was created. All tests
and development were done using the AMD Kintex UltraScale FPGA KCU105
Evaluation Kit, with the XCKU040-2FFVA1156E chip. The board contains 20
GTH transceivers (arranged in five Quads), two of which are connected to SFP+
connectors which we can utilize with SFP modules and fiber-optic cables [24].

The protocol implemented is a synchronous link protocol. As depicted at figure
4.8, protocols can be categorized into two types, synchronous and asynchronous.
Synchronous link protocols are established when the user produces data at the
same clock domain as the MGT’s TX interface clock (TXUSRCLK2) operates.
When the user’s clock and the TXUSRCLK2 are the same, data can flow without
fear of data loss or corruption. If the user’s clock is not the same as the TXUS-
RCLK2, then the two frequencies may not be the same and/or the phases of the
two clocks may not be aligned. In order to cross clock domains and prevent loss
of data or corruption, a dual port FIFO is used with the two clocks connected as
input clocks. The frequency of the user clock needs to be of a lower value than
the TXUSRCLK2, otherwise the FIFO would receive way more input words than
it can output and it would fill up, thus discarding new words and lose data.

The protocol is based on the 64b/66b encoding scheme. This choice is based
on the reduced overhead of the 64b/66b encoding in compared to 8b/10b. The
overhead of the 64b66b encoding is 2 header bits for every 64 payload bits, which
leads to 3.125% overhead. In contrast the overhead of the 8b10b encoding is 20%.
When comparing the two we can see that the 64b/66b encoding is more efficient
at 96.875% efficiency compared to 8b/10b encoding scheme’s efficiency at 80%.

The Line Rate of the Link is designed to be 10.3125 Gb/s. The QPLL of
the next quad, quad(n + 1), is used because of it having a reference clock input
connected to a Si570 programmable low-jitter LVDS differential oscillator [24],
which is set to 156.25 MHz. In addition the transceiver needs a free-running clock
in order to be able to reset itself, which is this case is provided by a system clock
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Figure 4.8: Synchronous - Asynchronous Link Protocols with Clock Domains

produced by a Si5335A LVDS Clock Generator, set at 125 MHz. The internal
datapath width of both the receiver and the transmitter is set to 4-bytes (32 bits),
which requires the condition of 4.3 is met, FT/RXUSRCLK2 = FT/RXUSRCLK/2. A
synchronous gearbox is used and a PCS buffer is enabled at trasmitter and the
receiver as well.

4.2.2 Protocol Logic Modules

Figure 4.9 shows a visualization of the protocol as blocks. Each block serves a
distinct purpose and each block’s purpose is discussed in further detail.

• Top Module

In general we refer to the Top module as the highest module in Hierarchy. It
is a module that contains all other blocks and its ports serve as a gateway to
the outside world, in the sense that they are constrained by the user within
XDC files. That means that the user creates the correct ports, input/output
data ports, reset ports, status ports, and ties others to pins on the board,
such as clocks, GPIOs , buttons and so on.
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Figure 4.9: Protocol Logic Diagram Blocks

In our design the top module includes all of the blocks depicted in figure
4.9. Its main function is to connect each block with the others using internal
signals. Other functions include routing and buffering all the resets, as well
as instantiating the IBUFDS buffer primitive as stated in 4.1.3, in order to
drive the MGT reference clock.

All reset signals are asynchronous to the user’s logic clock domain, which in
this case is the TXUSRCLK2 because this is a synchronous link protocol.
Reset signals may be asserted by the user via VIO and push buttons, but
they may also be triggered by state machine of the protocol, which are using
the Free-running clock. Not only resets, but also many other signals used
by the user need to cross their clock domain and use some other. This is
referred to as Clock Domain Crossing (CDC) and requires some techniques
in order to overcome Metastability issues in our design. One technique used
to combat this, it to use a Dual Flip Flop Synchronizer fig 4.10, where the
metastable signal of the first flip flop is stabilized by the second flip flop,
before the user receives the signal. In order for this to work, the signal’s
origin clock must have a lower frequency than the one the signal crosses.
Another way to cross large amounts of data to another clock domain is by
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using FIFOs, as discussed in the asynchronous protocol.

Figure 4.10: CDC with Dual Flip Flop Synchronizer Logic

• Wrapper Block

The wrapper module is provided by the Vivado transceiver’s IP. It contains
the IP core and two Clocking Network Helper blocks. The two Helper blocks
are responsible for creating and buffering the T/RXUSRCLK and T/RXUS-
RCLK2 from the T/RXOUTCLK port of the master transceiver channel via
BUFG GT buffer primitives, one block for the transmitter and one for the
receiver. The relationship of the clocks depends on the settings table 4.3
contains.

• Reset Procedures

The Top module contains all reset procedures the transceiver needs to follow
in order to Initialize and configure itself, after user input or system power
up. The reset procedure follows the next steps, in the following order:

1. Reset the associated PLL driving TX/RX.

2. Reset TX and RX datapaths (PMA and PCS)

The associated PLL used needs to be reset first. Once the PLL locks we can
reset the datapath, with PMA reset first and PCS second. We can categorize
the resets in three groups. First group contains signals used to reset the
TX transmitter, the associated PLL reset signal and the TX datapath reset
signal. Second group contains signals used to reset the associated PLL of
the RX receiver and the RX datapath. Third group contains the Reset All
signal, responsible for resetting all logic, while it triggers the signals of the
other two groups. It is used in order to avoid redundant PLL reset sequences.
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• Initialization Module

The Initialization module is provided by the Vivado transceiver’s IP. The
module contains the state machine shown at figure 4.11 designed to assist and
monitor system bring-up. The state machine is activated whenever a Reset
All is triggered by the user. It then monitors for timely reset completion
and successful TX and RX initialization, retrying resets as necessary. [25].
When Initialization is completed, the machine monitors the RX Data Good
indicator and resets whenever link loss occurs, while incrementing a counter
used for debugging purposes by the user.

Figure 4.11: Initialization Module State Machine

• Cyclic Redundancy Check (CRC) module

Cyclic Redundancy Check (CRC) is an error-detection code commonly used
in digital networks to detect accidental changes to digital data. The CRC
technique creates and attaches a certain amount of extra bits, also called
a checksum, to the transmitted message. The CRC checksum is calculated
based on the remainder of a polynomial division, modulo two, of the mes-
sage’s bits. The receiver can then perform the same calculation and in the
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event the two checksums do not match we know that there is data corruption
[26]. A logic diagram of a serial calculation of CRC-32 using Linear Feed-
back Shift Registers (LFSRs) is depicted at figure 4.12, where XOR gates
are placed in the same positions as the coefficients of the polynomial 4.2. For
this protocol the same CRC-32 polynomial is used, as defined in the IEEE
802.3 Ethernet Standard [27]. Because the serial implementation would need
64 clocks cycles in order to calculate the checksum, a parallel implementation
is used based on an open source code. This way time spent on calculating
the checksum significantly decreases to just one clock cycle.

G(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
(4.2)

Figure 4.12: Linear Feedback Shift Register Implementation of CRC-32

• Scrambler - Descrambler block

In contrast to the 8B/10b encoding scheme, a separate scrambler block is
needed in order to encode the 64b/66b data. This is done in order to achieve
DC-Balance, allow receiver reference clock recovery and to maintain a small
Run Length. The protocol uses a self-synchronous scrambler, with a 58-bit
polynomial provided by Xilinx for 64b/66b encoding. The descrambler block
performs the inverse operation in order to return the data to their original
form.

• Transmitter Logic module

The TX module contains all logic functions related to the protocol from the
transmitter side. In figure 4.13 we can see the module’s input and output
pins, on the left and right side respectively. A reset all input is connected
in order to reset all logic inside the block, while a tx active pin is monitored
for link loss. The txusrclk2 is provided by the clocking helper block in the
IP wrapper and all logic is implemented in the same (txusrclk2) domain.
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A special, error injection, control pin is connected as a means to test data-
loss detection. User data 64-bit words, are clocked with the txusrclk2 and
inserted along with a data valid bit. The data valid bit specifies when user
data are available to be transmitted.

Figure 4.13: Transmitter Logic Block

The protocol produces two types of words, a control word and a data word
as shown in figure 4.14. The Header (2 bits) of the 64b/66b word declares
what type the word is. Header bits equal to ”01” declare data words while
”10” header bits declare a control word. The protocol does not produce
”11” or ”00” header bits, in order to maintain a small Run Length, when
transmitted with the rest of scrambled word. This is done because the header
word does not pass through the scrambler block. Whether the word contains
data by the user is indicated by the data valid bit and the user is responsible
to assert ”HIGH” whenever data are available. The protocol logic then
produces a header with ”01” bits, and forwards the message. If the data
valid bit is ”LOW” the header bits ”10” are produced and a control word
is transmitted. In all instances except one, the control word transmitted is
the word ”0x5555555555555555” and it is used for synchronization by the
receiver.

Inside the module the txsequence counter that is necessary for the TX syn-
chronous gearbox driven by the txusrclk2, is also implemented and indepen-
dent by the user inputs. The counter counts up to 32 decimal, at which point
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Figure 4.14: Data and Control Words with their corresponding Headers

a stopdata signal stops the flow of new words from being driven out of the
block. The counter then resets to zero and starts incrementing again.

The data are passed through the CRC calculator block and the scrambler
before exiting the block. The CRC checksum is stored and when no more
available data are present the user sets the data valid bit ”low”. The CRC
checksum is then attached, at the next clock cycle, to the end of the message
and transmitted last, figure 4.15 . The txdata (64-bit) are driven out by
the txusrclk2 and inserted to the TX interface inside the TX wrapper, along
with the txheader (2-bits). The tx sequence is driven out as an output bus
in order to be used by the TX synchronous gearbox as stated in 4.1.4, but
also for user monitor and debug purposes.

The VHDL code for this module is presented at appendix A.1

Figure 4.15: CRC Checksum transmission at the end of message
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• Receiver Logic module

Figure 4.16: Receiver Logic Block

The Receiver module is responsible for data alignment and error-detection.
The inputs and outputs pins can be seen at the left and right side at fig-
ure 4.16. A reset all pin is present in order to prerform a reset to all logic
processes inside the block. when triggered by the user. A rx active pin is
present, allowing the receiver to monitor for any link loss and other malfunc-
tions, so as to trigger a reset without user input. A pin is available for clock
input, thus connecting the rxusrclk2 as required for the case a synchronous
gearbox is enabled.

Rx data 64 bits containing the payload of the word flow for the the RX inter-
face and are clocked into the module with rxusrclk2, The RX header is also
provided in the same way, utilizing the rxdata in[63:0] and rxheader in[1:0]
ports respectively. The receiver synchronous gearbox as stated in 4.1.5
performs all sequencing internally and is thus able to conclude whenever
data and their header are valid, while the input ports rxheadervalid and
rxdatavalid allow the receiver to monitor this procedure.

Initially all words from the RX interface are scrambled, except the header,
so they are passed through the descrambler block to return to their normal
form. However, even though the data are not scrambled at this point, there is
still no guarantee that the RX gearbox has correctly identified the boundaries
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for each word upon receipt. This implies that the RX gearbox may deliver
a part of a word along with a part of what would be the next word, viewed
from the transmitter side. To ensure the receiver aligns its 64 bit frame to the
correct boundaries and outputs the same word as sent by the transmitter, the
rxgearboxslip is triggered. The rxgearboxslip performs a bitslip and moves
the boudaries of the frame by one bit.

Figure 4.17: Receiver Synchronization Process

The receiver synchronization process is depicted at figure 4.17. After a
reset signal, the receiver enters a state of waiting for control words. It
then observes signals rxdata valid and rxheader valid, and when both are
set ”HIGH” the receiver first inspects the words for the correct header. Only
when the correct header is found, the receiver compares the payload of the
word to the predefined word for alignment, ”0x5555555555555555”. If the
header received is an illegal header ”11” or ”00”, or even a data word header,
a rxgearboxslip counter is incremented. If the header correctly indicates a
control word but the payload is not the predefined word, the rxgearboxslip
counter increments again. When the counter reaches 32 decimal, the rxgear-
boxslip is driven ”HIGH”, and after one clock cycle set to ”LOW” while the
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counter resets to zero. This is done in order to allow time for the rx gear-
box to correctly rearrange its frame, repeating the same process as many
times needed until alignment is achieved. When both the header and the
synchronization word are correctly read by the receiver then another counter
increments. The counter needs to reach a decimal value of 8 for the synchro-
nization OK bit to be set to ”HIGH.” If an invalid header or a an invalid
synchronization with correct header is read then this counter resets to zero.
This logic is implemented as a safety measure, making sure 8 correct words
are received without any errors in between. The receiver after sync OK bit is
asserted ”HIGH” is read to receive data words and control words containing
the CRC checksum at the end of message, enabling in turn the CRC logic
block whenever user data are received. Upon CRC checksum calculation the
receiver is able to determine if there was any data-loss, although not making
known the quantity of the bit flips. Whenever the Header, the synchroniza-
tion word or the CRC checksum is different than expected the counter resets
to zero, repeating the process again.

The sync OK bit is driven out and used by the Initialization module when
the state machine is at RX monitoring stage, but also monitored by the
user via various methods. After all steps have been successfully executed
the rxdata out port delivers the message 64-bits to the user, clocked at the
rxusrclk2 clock domain.

4.2.3 Normal Operation

A conventional exchange of information, in the normal operation of the protocol
is as follows:

1. Transmission of synchronization words.

2. Receiver Alignment.

3. Transmission of data + CRC checksum.

4. Data reception + CRC evaluation.

The creation of an additional module, from now on referred to as the ”userside”
module, was needed for the purpose of testing the link protocol by following the
aforementioned steps. The module provides the appropriate user created words
that need to be transmitted. This is performed with the help of an incrementing
counter, clocked at txusrclk2. While the counter is below a certain value, the
data valid bit is set to ”HIGH” as the contents of the counter are transmitted as
user words, and when the counter reaches a set value it drives the data valid bit
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”LOW”, thus the receiver is able to transmit the synchronization words in those
available slots. The userside module also controls some functional pins like reset,
reset rx datapath , error injection and loopback.

There are two methods the user can test a link protocol in a single board. The
first method is by using an external loopback and the second method is by using an
internal loopback. In the KCU105 board as mentioned in 4.2.1, two transceivers
are connected to SFP+ pluggable connectors. With an Optical Transceiver module
that plugs into the connector, the user can connect an optic fiber cable from the
transmitter of the module to the receiver. Figure 4.18 shows the KCU105 board
with a single optic fiber cable connected to one transceiver SFP+ modules. The
module used can support a maximum data rate of 10.3125 Gb/s over a 300 meter
optic fiber cable [28].

Figure 4.18: KCU105 Board with connected Optic-Fiber cable and RJ45 cable

The second method to establish a loopback between the transmitter and the
receiver is based on an internal property of the transceiver, the internal loopback
feature. In the internal loopback mode the transceiver datapath is configured in
a way which the traffic stream is folded back to the source, as shown in figure
4.19. A 3-bit input port selects which loopback mode the transceiver will follow,
as shown in table 4.4.
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Figure 4.19: Internal Loopback view, with numbered mode paths

There are two main categories, the Near-End loopback modes where the loop-
back occurs at the same end where the signal originates and the Far-End loopback
modes where the signal travels over the entire communication path. Near-End
loopback modes are more focused on internal transceiver functionality, while Far-
End loopback modes test the entire communication path.

Port Path Description

000 - Normal Operation

001 1 Near-end PCS Loopback

010 2 Near-end PMA Loopback

011 - Reserved

100 3 Far-end PMA Loopback

101 - Reserved

110 4 Far-end PCS Loopback

Table 4.4: GTH transciver Loopback Port Modes

To assess and confirm whether the link protocol is functioning as expected, the
deployment of several IP tools is necessary. The three tools used are the Xilinx
VIO IP package, the Xilinx ILA IP package and the IPbus protocol.

The VIOs IP package allows the user to monitor and drive internal device
signals. In figure 4.20 we can see the signals that are being monitored and their
real time values. The user is also able to set a value to the signal, only if the IP is
declared properly so and the specific port set as an output port. To use the VIOs
IP the user must include its component in the RTL design and manually connect
each desired pin to the component’s ports [29].
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Figure 4.20: VIOs transceiver internal signals

While using the VIO IP may be acceptable when monitoring relatively stable
signals, the same technique cannot be applied for very high frequency signals.
The ILA IP package allows users to insert probes into their designs to monitor
and capture signals at various points within the design, at system speeds. These
signals are connected to the probe inputs and sampled when a trigger occurs,
storing all data to on-chip Block RAM (BRAM). Several triggering options allow
the user to capture specific events or conditions of the design. After the trigger
occurs, the sample buffer is filled and uploaded into the Vivado logic analyzer,
where the data are displayed in a waveform window [30]. The user can view the
otherwise inaccessible sample of those signals. For the evaluation of the protocol
ILA probes were placed at the transmitter module and the receiver module.

Figure 4.21 shows the ILA data for the start of the message at the transmitter
module. Initially synchronization words, with txheader ”10” and predefined word
”0x5555555555555555”, are transmitted as shown. The counter pattern created
by the userside module then enters the transmitter module, shown as the user-
word64 in1. After a few clock cycles the data are processed and driven out of the
module after being scrambled along with the data word header ”01”, shown by the
txdata out and txheader out probe respectively, from where they will be inserted
to the IP core wrapper.

When user created counter words are no longer available, the transmitter ap-
pends the CRC checksum at the end of the message and transmits it with the

1Probes with 64 bits only display their MSBs, thus virtual probes are created and displayed
with the 32 bit LSBs view, for the user’s convenience.
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Figure 4.21: TX ILA start of message

header ”10”, thus distinguishing it from the rest of the message sent. We can see
the 32 bit checksum attached at the end of the message at the txdata out probe,
shown at figure 4.22.

Figure 4.22: TX ILA end of message and CRC Checksum

Data arrive at the receiver side and are inserted at the receiver module in order
to be processed before presented to the user. In figure 4.23 the synchronization
words appear at the rxdata in probe, along with their header indicated by the
rxheader in probe. The sync OK probe indicates that the link alignment has
already been achieved. When the header changes to indicate data words, the
counter pattern from the userside module can be seen arriving in the correct order,
after being de-scrambled. The CRC checksum calculation module also receives the
data words and begins generating its own Checksum, which is locally stored, as
shown by the crc checksum probe in figure 4.24. When the last data word is
transmitted and the header changes from ”01” to ”10”, the receiver expects the
control word containing the CRC Checksum calculated by the transmitter. The
receiver then checks its own stored Checksum value with the one received and if
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Figure 4.23: RX ILA start of message

the two are found to be identical then the crc match signal is driven ”HIGH” and
there is no data loss. If the two values are found to be different the crc match signal
is driven ”LOW” and indicates loss of data, while the signal resets the transceiver
as stated in 4.2.2.

Figure 4.24: RX ILA end of message and CRC evaluation

The last evaluation tool using the IPbus protocol will be discussed in greater
detail in the next section.
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4.3 IPBus

4.3.1 The IPBus protocol

The last few decades the electronics systems of particle experiments were based
on the VMEbus standard. The new eletronics systems are now based on the
newer ATCA standards, where specifications incorporate industry standard serial
communication technologies such as Gigabit Ethernet, but do not explicitly specify
the hardware access protocol for reading and modifying with software applications
the memory spaces of the boards from external devices. The control system of an
experiment needs to have a reliable and predictable behaviour at all times, since
it is responsible for monitoring and debugging all hardware, but also needs to be
highly scalable. The necessity of such a protocol led to the creation of the IPbus
protocol.

The IPbus protocol is a simple packet-based control protocol for reading and
modifying memory-mapped resources within FPGA-based IP-aware hardware de-
vices which have a virtual A32/D32 bus. The protocol assumes the existence of a
virtual bus with 32-bit word addressing and 32-bit data transfer, with the 32-bit
data width fixed [31]. The protocol can perform the following operations:

• Read A read operation of user definable depth. There are two types, an
address incrementing read that is used for multiple continuous registers and
a non address incrementing read used for ports or FIFOs.

• Write A write operation of user definable depth. Categorized in two types,
the same as with read operations.

• Read-Modify-Write bits (RMWbits)A bit masked write operation, that
allows the modification of a selective group of bit within a 32-bit register.

• Read-Modify-Write sum (RMWsum) An increment operation, that al-
lows the addition of values to a register.

The User Datagram Protocol (UDP) has been chosen as the transport protocol
in order to reduce FPGA resource usage. The IPbus protocol operates in a trans-
actional manner. The client, normally through software, transmits a request to
the device for every read, write or RMW operation. In turn the device responds
with a message indicating an error code equal to 0 for a successful transaction and
in the case of reads includes the returned data. To reduce latency it is possible to
combine multiple transactions into a single packet. Following a client request or
instruction an packet is formed, containing the header which is the first 32 bits
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of the packet that specify the packet type and ID fields, followed by the IPbus
transactions. The IPbus packet now contained within the payload of the UDP
transport protocol packet, which in turn is contained within an IP packet and
wrapped within an Ethernet packet, shown in figure 4.25, is transmitted to the
device. The packet returned by the hardware device follows the same format, with
the exception of the transaction field, containing the relevant response [32].

Figure 4.25: IPbus, UDP, IP, Ethernet Packet Structure

A suite of IPbus software and firmware components can be used to create a
reliable and scalable control system. The suite consists of the following components
[31]:

• IPbus firmware The implementation of the IPbus protocol within end-
user hardware FPGAs. The firmware module is an implementation of a
UDP server in VHDL, as it interprets IPbus transactions on an FPGA. The
module has been designed with ease of integration in mind. The user is able
to include the module inside the rest of the user logic design, on the same
FPGA, while only using resources available inside the FPGA. The module
additionally incorporates the echo request/reply functionality from ICMP, a
feature used by the Unix Ping command.

• ControlHub The ControlHub is a software application that establishes a
central access point for IPbus control over individual devices. More specif-
ically, it manages simultaneous hardware access from various control appli-
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cations to one or more devices while it also incorporates the IPbus relia-
bility mechanism for handling UDP packets between itself and the hard-
ware devices. The implementation of the ControlHub is done in Erlang,
a general-purpose, concurrent programming language capable of construct-
ing high-availability, fault-tolerant applications. In Erlang the fundamental
structural unit is the process. The ControHub then uses a distinct Erlang
process for each connected client and IPbus device, this way ensuring the
distribution of the workload across multiple CPU cores. Since ControlHub
is a software application and no additional resources are needed from the
hardware device (FPGA), the TCP transport protocol is used to communi-
cate with the uHAL interface, which uses far superior congestion mitigation
and flow control algorithms. The ControlHub can be considered as a network
switch that listens for TCP connections on port 10203.

• uHAL uHAL is the Hardware Access Library (HAL) that provides the user
(client) with C++/Python API for IPbus read, write, RMW transactions. It
uses a delayed dispatch model where numerous transactions are queued and
concatenated within the payload buffers of the transport layer until either
the dispatch method is used or the command queue surpasses the maximum
packet size. In order to address each device’s register, XML files are created
by the user and used, where each node of the XML tree represents a register,
a BRAM or a FIFO. One XML file can reference other address files, this way
with minimal effort a similar hierarchical structure to the firmware design is
created. The uHAL interface to each device is separated into two operation
modes. The local-client mode, where the uHAL library interfaces directly
with the device over the UDP transport protocol. The remote-client mode,
where communication with the hardware devices is performed exclusively via
the ControlHub, in order to deploy more reliability measures. The connection
file used to indicate the location of the hardware, specifies which type is used.

4.3.2 IPBus Firmware

The IPbus firmware is implemented in VHDL. Several modules can be included
in any project in order to provide control over specific user-defined registers inside
the design. The most significant modules of the protocol are listed below.

• IPBus Infra The IPbus Infrastructure module is responsible for the im-
plementation of the UDP server. This is the core of the IPbus protocol,
where UDP packets are received by the client software application. The UDP
packet’s payload is converted to the IPbus packet and subsequently sent to
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the IPbus fabric module. The process is reversed whenever a response from
the device is performed.

• IPBus Fabric The fabric module of the IPbus addresses the correct reg-
isters that the received IPbus packet specifies. This is performed with the
additional information the decoder file provides. It is responsible to match
the IPbus packets with their corresponding registers from the Address Table
(XML file), while executing the transactions contained in those packets.

• IPBus Decoder The IPbus decoder is a package providing the function
called by the fabric module. The function provides the information for as-
signing the correct address of a register addressed by the client on the soft-
ware side to the appropriate register on the firmware side. The file is created
by a Python script called gen ipbus addr decode by reading the address ta-
ble the XML file contains. This script is included with the IPbus suite. The
script produces the appropriate decoders for each node of the table. When
creating a project this file needs to be created by the user and included in
the design.

• IPbus Slaves On the software side each register is declared by the address
table. On the firmware side each register is translated to slave modules that
the user must include inside the design. There are many types of slave mod-
ules, the most common type being the ipbus ctrlreg v slave, which represents
a bank of control / status registers of configurable size, with read access to
status register and read-write access to control registers.

A simple point to point local connection between a client PC and a server
Hardware FPGA is shown in figure 4.26.

4.3.3 IPBus integration with the Synchronous Protocol

The IPbus protocol was integrated within the Synchronous Protocol project.
This was the last evaluation tool used to monitor and control the design. The
client PC connects with the board via an RJ45 cable, connected to an SFP to
Ethernet module on a transceiver channel on the board, using the 1000BASE-X
Gigabit Ethernet Standard.

The necessary modifications were made inside the firmware and the avail-
able modules for the instantiation of the IPbus firmware were included. A ip-
bus ctrlreg v slave was used in order to control several registers, while also mon-
itoring others, while the gen ipbus addr decode script was used in order for the
decoder package tobe created and included in the project libraries. The same
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Figure 4.26: Logic Diagram of IPbus protocol communication between client and
server

ports that were monitored and controled by the VIO tool, were also connected
to the slave’s input and output ports, thus able to create a trigger to the signals
either from the VIO tool or from the IPbus protocol.

Once the integration of the protocol was completed, the control from the soft-
ware side was implemented. A connection file was created in order to interface
between the Python script and the uHAL interface. The connection file specifies
the id of the hardware board the script wishes to talk to, the IP location of the
board and the address table file’s location, shown in figure 4.27.

Figure 4.27: IPbus Connection File for the Link Protocol Integration Tests

The Address Table used can be seen at figure 4.28. The table specifies the
address of the one slave implemented at the firmware side. Since the slave can be
used both for control and monitoring status the address table is separated in two
nodes, one for control signals and the other for status signals. The addresses of
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the nodes inside the top node are calculated by adding their value to their parent’s
node address. The masking performed is done in order to be able to write or read
a single individual bit from a single register, even though the IPbus protocol is
word-oriented.

Figure 4.28: IPbus Address Table File for the Link Protocol Integration Tests

Using the created connection file and address table file a C++ program or
a Python script use the uHAL library’s methods to read or write value to the
registers specified by the nodes of the address table. A simple Python script
was used in order to monitor synchronization lock of the link the protocol was
implemented, the script can be seen at A.3. In addition the script first reads the
current synchronization status and then performs the necessary resets while it then
it displays a message to the user about the status of the link, the output of the
script is shown at 4.29. In this example script not all register were used.

Figure 4.29: Output of Python control.py script inside the client’s Terminal

IPbus Build tool (IPBB)

The IPBB tool is a command-line firmware management and project building
software tool. The need for such a tool arises when firmware projects for large
FPGAs nowadays consist of hundreds of source code files. Components from those
source code package files may be created and used in common by different develop-
ers. This way the IPBB tool is used in order to correctly set up and build complex
firmware projects based on the source code files provided.
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Figure 4.30: IPbus Connection File for the Link Protocol Integration Tests

In order for the IPBB tool to function correctly the user must sort all source
code files in a format as the one shown at figure 4.30. The user needs to store
every address table file, with the extension .XML, in the addr table folder, this
way all address tables may be gathered by the tool by the use of a single command
instruction. The rest of the files are distributed at four different folders.

• cfg folder stores all dependency files necessary for the rest of the files in the
groups.

• cgn folder is used to store all IP package files, ending with the .xci extension.

• ucf folder stores all constrain files with the .XDC extension, containing all
useful TCL instructions for constraining the design.

• hdl folder contains all VHDL files.

The IPBB tool creates a project by calling the top dependency file. In turn
the file specifies each file that is necessary for the project and calls them from the
groups. Once all the correct files are included the Vivado Suite must be sourced
by the user and then used by the IPBB tool in order to make the project. When
the project is build the user can continue to issue IPBB commands in order to run
Synthesis, Implementation and Bitstream Generation, or open the project with
GUI using the Vivado Suite Environment. The IPBB tool also offers automated
generation of the IPbus decoders file from the address tables contained in the
project, through a single command (ipbb vivado gendecoders).

The files essential for the implementation of the Synchronous Link Protocol,
as well as those utilized by the IPbus protocol, were categorized and placed into
the specified groups. Corresponding dependency files were created to accurately
reference each required file. That way the project can be successfully built using
IPBB commands.
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Chapter 5

BMTL1 Firmware - Readout
System

5.1 EMP Framework

5.1.1 EMP Framework Structure

The Extensive Modular (data) Processor (EMP) framework is a generic Phase-2
framework developed for the Serenity Carrier Cards, as a continuation of the MP7
framework. The EMP framework contains several top-level designs for different
FPGAs and boards. The purpose of the framework is to provide the user with
all necessary foundational elements, in order to create an working environment for
the implementation of trigger algorithms [33].

Each framework design instantiates an entity called the emp payload and con-
nects its ports to the infrastructure blocks, the control bus (IPbus), and input and
output buffers (Links). The framework is configurable by the user, via the the
setting of parameters the package emp project decl offers, this way the framework
is able to adapt to the different algorithm designs until all criteria are met. In
addition the framework offers Timing Trigger Control (TTC) signals which are
necessary for the entire system’s operation. THe main blocks of the EMP frame-
work are shown in figure 5.1 and are as follows:

• TTC

The TTC block is responsible for the distribution of the TTC signals. The
signals mentioned are the Level-1 Accept signal, the Bunch Crossing 0 (BC0)
signal, the LHC 40.078 MHz Clock and the TTC control signals received by
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Figure 5.1: EMP Framework Logic Modules

the board. The payload clock is also created with the help of an Advanced
Mixed Mode Clock Manager (MMCME4 ADV) primitive, with the LHC
clock as the input source clock.

• Infrastructure

The infrastructure block of the framework is responsible for creating all clocks
necessary for the IPbus protocol and the TTC blocks. The block contains all
logic required for the IPbus implementation. While the communication of
the IPbus was performed via Ethernet cable before, on the new ATCA boards
for Phase-2 the System On Chip (SOC) included is able to communicate with
the Field Programmable Gate Array (FPGA) via PCB trace routes.

• Datapath

The Datapath block contains all link protocols the user can implement on the
board. The datapath module interfaces with the Payload module in order
to establish bidirectional transmission of data to and from the Multi-Gigabit
Transceivers. Inside the module the nessesary TTC signals are distributed
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along with the IPbus signals and the correct reference clock signals for the
MGT PLLs. Depending on the number of Quads on the board, the Datapath
module creates the Region blocks, where a Region represents a quad instance.

A Region as shown in figure 5.2 contains the following blocks. On every
instance of a Region block the TX and RX EMP buffers are present. The
buffers can be controlled by the Empbutler tool commands, and have a
normal length of 1024 frames and 64 bit width. The Region block is then
responsible for creating either one of the emp be mgt or emp fe mgt modules,
this way differentiating the Front End link protocols by the Back end link
protocols. The GBT and lpGBT constitute the front end protocols and the
CSP the back end protocol for Phase-2.

Figure 5.2: Region Block with EMP Buffers and available Link protocols

The bus used to transport the data to and from the payload follows a specific
format witch is declared as a record in the framework’s package files. The record
specifies the following ldata type of bus while the lword specifies the word format.
The lword type’s fields are as follows:

• Valid This bit signifies that the data contained within the word is user data
and not idle filler words.

• start This bit is asserted ”High” on the first clock of each packet, containing
many words.
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• last This bit asserts ”High” on the last clock of each packet.

• Strobe This bit indicates at what phase the data are clocked relative to the
LHC clock.

• data The data field contains the 64-bit word of the payload data received
or transmitted.

The Framework can be configured by the user, by modifying the packages
emp proj decl and emp device decl, found on the similarly named files.

(a) emp device decl package (b) emp proj decl package

Figure 5.3: The two package files used by the user to configure the Framework

The emp device decl package can be configured to specify the number of regions
and the number of reference clocks provided. Furthermore the type of the MGT
can be specified for each transceiver along with the reference clock provided for each
Region (Quad). The emp proj decl package is responsible for setting the Payload’s
clock ratio to the LHC clock, by setting the CLOCK RATIO constant among
other parameters, while also configuring each Region. The user has the option to
specify what components are instantiated in each Region. By the mgt kind type
the user can select the protocol used for the Receiver and the Transmitter. The
most common options are no mgt in order to disable the MGT on that specific
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region, gty16 or gty25 for the CSP back end links, gbt or lpGBT for the front end
links. The EMP buffers can also be disabled or enabled by setting no buf or buf,
respectively.

5.1.2 Empbutler tool

The Empbutler tool is the main command-line software tool used for controlling
and monitoring the EMP framework’s TTC control signals, RX/TX buffers and
link firmware. The Empbutler can be used to display the board’s information
and issue the reset commands to bring-up or correctly reset the system. The
tool can also be used to control the board’s MGTs by addressing each channel
and setting them to loopback mode, PRBS mode, DFE LPM mode or completely
power them off, while also used to display the MGT’s link status for alignment
and errors. The Empbutler tool can configure the EMP RX/TX buffers found in
every Region instance in the datapath module. The buffers can be configured to
load a generated counter, a generated random pattern or data from a file, given
that the user has followed the specified EMP buffer data file format. The buffers
can also be configured to capture mode and store their contents to output files,
displayed in the aforementioned format.

5.2 Front-End Link Protocols

Data from events at the CMS detector at the Underground eXperimental Cav-
ern (UXC), are digitized by the on-detector electronics and need to be transmitted
to the Underground Service Cavern (USC) in order to be processed. The data are
transferred via fiber-optic cables to the USC. Because of the increased radiation in
the UXC the on-detector electronics use radiation tolerant ASICs that implement
the protocols used. The protocols themselves need to be able to correct errors that
might occur.

5.2.1 GBT

The GigaBit Transceiver (GBT) protocol is the protocol used for transmission
of data from the en-detector electronics to the boards at USC, during Phase-1. The
protocol is synchronous to the LHC 40.078 MHz clock and operates at line rates
of 4.8 Gb/s. In order to combat bit errors that might occur the protocol uses the
Reed-Solomon Forward Error Correction (FEC) code. The GBT frame consists
of 120-bits in total as shown in figure 5.4. The first LSB 32 bits are used for the
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Reed Solomon codes in order for the receiver to be able to correct corrupted data.
The 4 MSB bit are used for the Header of the packet and they are responsible
for alignment and lock of the link after the receiver correctly reads a number of
consecutive frames that contain a valid header. The 80 bits shown at figure 5.4
contain the payload of the frame and transfer the user data. This field is not pre-
assigned and can be used for Data Acquisition (DAQ), Timing Trigger Control
(TTC) or other Experiment Control (EC) applications. The remaining 4 bits are
used for slow control, with two of them reserved for GBT control and the other
two user reserved. In the GBT-FPGA implementation the 4 slow control bits can
also be used in addition to the payload, that way the estimated user bandwidth is
3.36 Gb/s [34].

Figure 5.4: GBT frame format

5.2.2 lpGBT

The lpGBT protocol is developed as the natural evolution of the GBT protocol.
While the protocol is synchronous to the LHC clock, it is asymmetric to its uplink
and downlink path rine rates. The Uplink path being the Front End to Back
End path, while the Downlink path being the Back End to Front End path. The
protocol also uses Reed-Solomon FEC codes in order to ensure link robustness,
while the user may chose between two provided schemes FEC5 or FEC12.

The encoding scheme used for the downlink path is set to FEC12, while the
downlink line rate is set to 2.56Gb/s. The downlink frame size is 64 bits including
all frame fields, header 4 bit, user data 32 bit, External Control (EC) 2 bits,
Internal Control (IC) 2 bits, FEC 24 bits, this way the user total bandwidth
provided is 1.28Gb/s.

The uplink datapath line rate can be configured to 10.24Gb/s or 5.12Gb/s, with
256 bit and 128 bit frame sizes respectively. The user is also able to chose between
the two encoding FEC schemes, FEC12 or FEC5, depending on the application of
the links. This way the uplink datapath can be configure in four different types of
operation, as shown with the correct fields in table 5.1 [35].

71



5.3. Back End Link Protocols Chapter 5. BMTL1 Firmware - Readout System5.3. Back End Link Protocols Chapter 5. BMTL1 Firmware - Readout System5.3. Back End Link Protocols Chapter 5. BMTL1 Firmware - Readout System

5.12G/FEC5 5.12G/FEC12 10.24G/FEC5 10.24G/FEC12

Header 2 bits 2 bits 2 bits 2 bits

IC 2 bits 2 bits 2 bits 2 bits

EC 2 bits 2 bits 2 bits 2 bits

FEC 10 bits 24 bits 20 bits 48 bits

User Data 112 bits 98 bits 230 bits 202 bits

Table 5.1: lpGBT Uplink Frame formats with their Fields

5.3 Back End Link Protocols

5.3.1 CSP

The CMS Standard Protocol (CSP) is used to transmit LHC-synchronous data
over asynchronous links between backend boards [33]. The protocol is based on
the 64b/67b encoding. The data generated and supplied to the protocol is syn-
chronous to the LHC clock but the reference clock of the links is not synchronous.
That means that the reference clock of the links is higher than the clock used
to generate the data. The link protocol is able to transmit data at 16Gb/s and
25Gb/s depending on the board specifications. For the 25Gb/s mode the payload
frequency used is 360MHz, thus a total of nine 64-bit words are able to be trans-
ferred per one LHC clock, while for the 16Gb/s the payload frequency is set to
240MHz and a total of six 64-bit words are able to be transferred per one LHC
clock. The protocol consists of two types of words, filler (control) words and data
words carrying data to and from the payload. The protocol also contains a CRC
mechanism in order to indicate bitflip errors.

5.4 Hardware

In this section the boards used for the slice test which this thesis focuses on,
will be briefly discussed along with their primary functions.

5.4.1 OBDT

The On detector Board for Drift Tubes (OBDT) are responsible for the time
digitization of the DT signals. On the longitudinal view the Barrel muon detector
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is divided in five wheels -2, -1, 0, +1, +2. On the transverse view every wheel
is divided into 12 Sector. Each Sector consists of 4 DT Chambers named MB1,
MB2, MB3 and MB4. Each DT Chamber consists of three SuperLayers (SLs),
two of them measuring position and bending angle in the transverse view (r − ϕ)
and one SL measuring position in the longitudinal view (r − z), while the outer
Chamber MB4 is equipped with only two (r − ϕ) SLs. A SL consists of DT cells
that are grouped in four half-staggered layers [15]. One OBDT board is connected
per SL, receiving inputs from 240 DT channels. The number of OBDTs per Sector
is shown in table 5.2. The variations on the total number per Sector is due to
difference in Chamber sizes.

Sector Number Of OBDTs

1, 2, 3, 5, 6, 7, 8, 10, 12 14

4 16

9, 11 12

Table 5.2: The number of OBDT boards per Sector

Figure 5.5: The OBDT board

The OBDT generates TDC Hits. The format of a TDC hit is shown in figure
5.6. The frame consists of the channel number of the DT cell, the bunch crossing
number and the TDC value.

There are two available versions of the board each using a different ASIC for
the link protocol implemented, one version for the GBT and one for the lpGBT.
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Figure 5.6: TDC Hit frame Format

A picture of the OBDT board is shown at figure 5.5.

5.4.2 BMTL1

Figure 5.7: The BMTL1 board

The BMTL1 ATCA board is depicted at figure 5.7. The board receives Drift
Tube (DT) Hit data from On detector Board for Drift Tubes (OBDT) boards and
Resistive Plate Chamber (RPC) data from Link Boards. The board processes data
received by using the AM algorithm, for a total of two Sectors. The AM algorithm
running on the firmware of the board produces muon track segments, refer to as
Trigger Primitive Generatorss (TPGs) or stubs, from the TDC Hits transmitted
by the OBDT board. In each BX the BMTL1 system can create a maximum of 28
stubs per sector, up to 16 stubs in the transverse view - four ϕ stubs per chamber
and up to 12 stubs in the longitudinal view four θ stubs for MB1, MB2, MB3
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[15]. RPC data can be used complementary to the DT data and produce a Super
Primitive. The frame of a TPG is 64-bits wide, and it is transmitted to the Global
Muon Trigger (GMT) via 25Gb/s optical links with the CSP protocol.

The BMTL1 board uses a Xilinx XCVU13P FPGA which offers four Super
Logic Regions (SLRs), 1.728.000 Look Up Tables (LUTs), 3.456.000 Flip FLops,
12.288 DSP slices, 94.5 Mb Block RAM (BRAM), 360 Mb UltraRAM and 128
GTY transceivers. The optical connectivity of the board is performed via Samtec
FireFlies modules, offering 40 RX and TX channels by using 10 x4 bidirectional
connectors capable of running at 25Gb/s, 80 RX channels by using 7 x12 RX
connectors (one connector is x8) and 36 TX channels by using 3 x12 connectors
capable of running at 16Gb/s.

The board is controlled by a ZYNQ Ultrascale+ SOC. Offering an Arm Cortex
A-53 Quad core, capable of running Linux. While the module is connected to the
FPGA by four GTH MGTs running at 10Gb/s and 20 Low Voltage Differential
Signaling (LVDS) pairs [36].

5.4.3 OCEAN - TM7

(a) (b)

Figure 5.8: The OCEAN board at 5.8a and the TM7 board at 5.8b

The Ocean ATCA board is prototype board of the X2O boards the the GMT
system will use. The board receives the TPG data from the BMTL1 board us-
ing the CSP protocol at 25Gb/s and reconstructs muon candidates using the
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Kalman Muon Track Finder (KMTF) algorithm. The board features a ZYNQ
Ultrascale+ ZU19EG-2 SOC capable of running Linux, which controls the FPGA
and 72 transceivers, 28 GTY capable of running at 28Gb/s and 44 GTH capable
of running at 16 Gb/s [37]. The board is shown in figure 5.8a.

The TM7 board is a µTCA Phase-1 Board. It was designed to be used in the
trigger (TwinMux) and the readout second-level electronics upgrade. The board
offers a Virtex-7 FPGA and six 12-fiber MTP receivers for a maximum of 72
inputs. The board interfaces with the AMC13 board present in the µTCA crate,
while the AMC13 receives timing data from the TCDS and delivers readout data
to the DAQ system [38]. A picture of the board can be seen in figure 5.8b.

5.5 Layout of the USC setup

At figure 5.9 we can see the setup of the phase-2 upgraded electronics tests for
the Barrel Muon Trigger at the USC along with boards from the UXC. In order
to validate each board’s functionality, multi-board tests must be performed. The
setup layout at the writing of this thesis (January 2024) is as follows.

Thirteen OBDTs with the GBT chip are installed in Sector 12 and eight OBDTs
with the lpGBT chip are installed in Sector 1, all OBDTs are located in wheel +2
of the CMS detector. DT cells transmit muon pulses to the OBDTs, which in turn
convert them to TDC Hit data and transmit them to the USC setup.

At the USC setup two crates are used, one crate includes the Phase-2 ATCA
boards BMTL1-OCEAN while the other crate available is a µTCA crate which
includes a TM7 and AM13 board along with a Clock Expansion board. At the
µTCA crate the AM13 board which is responsible for the distribution of the TCDS
signals, generates a local LHC Clock and distributes it through the backplane of
the crate. The Clock Expansion board was made in order to expose this clock
to SMA connectors, from where the LHC clock is provided to the BMTL1 board
which in turn exposes it on SMA connectors itself and the OCEAN board is able
to also receive the clock. This clock distribution ensures the system operates at
the same clock, using the same clock source and all boards are synchronous to
each other. The TM7 board transmits to the BC0 signal via a GBT link to the
BMTL1 which in turn propagates the signal to the OCEAN via a CSP link. The
BC0 signal is transmitted once every 3564 clocks cycles of the LHC clock which
is equivalent to one Orbit. The BC0 signal is critical to the AM and the KMTF
algorithms.

The TDC Hit data arrive at the USC and are driven inside the BMTL1 board,
where the firmware of the board is correctly set, so that regions with the correct
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Figure 5.9: USC test setup Layout

protocol are instantiated. The BMTL1 firmware will support two Sector instan-
tiations for the AM algorithm. At the time time of writing this thesis only one
Sector of AM algorithm is implemented, rerouting the inputs from OBDTs of one
Sector at a time, accordingly. The Hits arriving at the BMTL1 are processed by
the AM algorithm and track segments or TPs are produced for four chambers (one
Sector) only for the transverse view, ϕ TPs (stubs). The TPs are then transmitted
to the OCEAN board in order for the KMTF algorithm to match and reconstruct
the muon tracks and produce muon candidates.
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These tests are performed in order to observe and validate the data flow (link
protocols used) and the algorithms used. All firmware instances offer some form of
data monitoring, either from ILAs or by IPbus scripts reading internal registers.
In order to be able to gather all data of the system a Readout mechanism needs
to be implemented. The proposed scheme is shown in figure 5.10.

Figure 5.10: Proposed Readout Layout at USC setup

Hit data from the OBDTs, TP data from the AM algorithm and Muon Track
data from the KMTF algorithm transmitted back from the OCEAN via CSP links,
are collected by the Readout Module inside the BMTL1 firmware. The data are
collected and then transmitted to the TM7 Phase-1 board via 12 GBT links, where
the TM7 interfaces with the AMC13 board via the µTCA crate backplane and the
data are delivered to the DAQ system.
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5.6 Readout Firmware

5.6.1 Layout Of Readout module

The BMTL1 firmware implementation follows the EMP framework specifica-
tions, that way the payload module contains the algorithm implemented in the
board and the datapath module contains all link protocol logic. The Readout
module’s firmware implementation in the BMTL1 firmware is shown in figure 5.11.
The position of the Readout module was chosen to be inside the Payload module
in order to easier interface with the AM algorithm’s instance, which for the case
of one sector is the dt sector module, but also to not disrupt the flow of data with
the EMP ldata bus type between the payload and the datapath modules.

Figure 5.11: Readout Module Diagram in the BMTL1 firmware

TDC Hit data arrive at the GBT or lpGBT RX modules of the datapath
block, depending from which Sector the OBDTs belong to. The Hits are then
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propagated to the payload block and driven inside the dt sector module. The AM
algorithm produces Trigger Primitivess (TPs) which are necessary for the KMTF
algorithm and thus are transmitted via CSP links to the OCEAN board. The TPs
produced along with the TDC Hits are driven out of the dt sector and are inserted
to the Readout module. Once inside the top Readout module the Hits enter the
Hit module and the TPs enter the TP module. When the KMTF algorithm has
reconstructed muon tracks by the TPs that were transmitted, the track data are
sent to the BMTL1 and inserted to the datapath RX module of the CSP protocol.
The data are then transferred to the payload module and inserted directly to the
Readout module where in turn are directed inside the Track module.

All three modules store the information received temporary, in buffers. The
data are then driven out of the buffers and directed to the datapath. First the data
enter the TX EMP buffers as specified by the EMP framework and then continue
to the GBT sorter module of the GBT protocol.

The GBT sorter module exists because the GBT protocol transmits/receives
its words on the LHC clock, whereas the rest of the system uses the 360 MHz clock
clkp with a clock ratio of 9 to the LHC clock. This way the data need to cross
from the clkp domain to the LHC clock domain. This is easily performed, for the
reason that the two clocks are synchronous, given that the clkp clock is generated
as a multiple of the LHC clock, thus having the same source. The GBT TX sorter
receives the data from the EMP buffers and stores them for 9 clkp clock cycles
or one LHC clock cycle, in local registers and then proceeds to present them at
the appropriate GBT protocol’s TX ports, in order for the data to be successfully
sent.

Inside the sorter module there has been created a multiplexer controlled by
an IPbus slave. The multiplexer can be configured to export the data from the
EMP buffers, this being the default setting of the multiplexer, or to output a
locally generated static word with a counter pattern at its LSB bits. The format
of the word is specified as 0xCABABABABABABAB & counter[23:0], where the
counter is incremented with the LHC clock. This pattern is offered for evaluating
the link’s normal operation, and the activation of it depends on scripts executed
to communicate with the IPbus slave.

Each module used in the Readout module will be explained further in the next
sections.

5.6.2 Readout Hit module

In figure 5.12 the data flow of the TDC Hits is shown. The dt sector module
drives out an array of vectors of 32 bits, where each element of the array corre-
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Figure 5.12: Readout Hit module logic Diagram

sponds to the Hits originating from the OBDTs. The data are driven out by the
clkp clock and are inserted into the top Readout module and sorted to the Hit
module of the Readout.

The data pass through their first sorting process, during which two 32 bit data
words are combined in order to form a 64 bit word. One word populates the 32
MSB bits while the other word the 32 LSB bits of the 64 bit word. The data
form a seven 64-bit array with the 7th element consisting of zeroes and a 32-bit
Hit word. Each non zero word of the 64-bit array is inserted to FIFOs.

Each FIFO is using the common clock Block RAM primitive RAMB36E2,
which offers a 36-bit wide by 1024-bit deep dual port RAM, configurable to a 72-
bit wide by 512 deep dual port RAM [39]. The FIFOs used were configured to
be the latter, but using only the 64 LSB bits. Each FIFO offers status indicator
output ports, for when the FIFO is empty or full of data, each state indicated by
the empty and full ports respectively.

The data pass through their second sorting process to form a four 64-bit array.
During the process, the empty ports of each pair of FIFOs are monitored. The
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aim of the second sorting phase is to descrease the seven 64-bit input array to a
four 64-bit output array. Two FIFOs try to merge their outputs to one common
lane, while the 7th FIFO has no contest and assumes full control of the lane. The
other FIFOs’ empty ports are monitored, and depending on which state they are
found, the sorting mechanism assumes control of the common lane, accordingly. If
one of the two FIFOs is empty while the other one is not, the latter (not-empty)
assumes control of the common lane and drives its data out. If both FIFOs are
empty, then the lane displays zeroes. If both FIFOs are not empty the control of
the lane alternates between the two FIFOs’ outputs. One of the FIFOs holds its
data while the other drives its data out and the process is reversed on the next
clock cycle. This sorting is needed in order to maintain a balance between the two
FIFOs, otherwise one of them would be prone to fully filling its available cells and
in turn lose data.

Each of the four common lanes comprising a four 64-bit array are fed into 4
separate FIFOs. The data pass through their third and last sorting stage from
where the same sorting mechanism is implemented as the one described previously.
In summary the four FIFO outputs are sorted to two 64-bit lanes. Each of the
two lanes’ data are transferred to the datapath module in order to be transferred
by a GBT link to the TM7 board, each lane corresponding to one GBT link.

Data are inserted to the GBT sorter as described previously. When a 64 bit
contains two Hit words then the GBT sorter will transmit a 84 bit word with the
64 bits of data populating the frames’ LSBs positions while the 20 MSB bits of
the GBT frame are filled with zeroes. If the 64-bit Hit word contains one 32-bit
Hit word at its LSB position, the GBT sorter transmits a 84 bit word with the 52
MSB bits filled with zeroes followed by the 32 bit Hit word. If the 64-bit Hit word
contains a 32-bit Hit word at its MSB position then the GBT sorter will transmit
a 84 bit word with the 20 MSB bits as zeroes, followed by the 32 bit word with
the LSB 32-bits of the 84 bit frame also filled with zeroes.

It is expected that the system will not transmit continuously Hit data but in
reality a more sporadic stream of Hit data. The number of the GBT links provided
for the transmission of the data to the TM7 board was chosen with this principle
in mind, where in total 12 GBT link are connected between the two boards.

5.6.3 Readout TP module

The TPs produced by the AM algorithm are driven out of the dt sector module
by the clkp clock. Each dt sector instance offers a four 64-bit vector array, each
corresponding to the TPs produce by one of the Chambers of the Sector.

The normal TP frame consists of 64-bits of data, but in order to leave room
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Figure 5.13: Readout TP module logic Diagram

for expansion as proposed by the AM algorithm developers, a Generic was set in
the readout package. The tpg readout size Generic specifies the bit width of the
TP frame by the developer, with no additional configuration, the only limit being
the GBT frame width with 84-bits.

In figure 5.13 the process of the TP module is depicted. The TPs are inserted
as an array of four vectors. The data are then stored in four FIFOs, using the same
primitives with the Hits module. If data are present the word enters the FIFO,
whereas zeroes (no data) get discarded. Each pair of the four FIFOs go through
the same sorting scheme that was earlier described. This way the output array is
decreased to a two 64-bit vector array. In figure 5.13 the process is depicted for
a pair of FIFOs and not for all four FIFOs, while the other two not shown follow
the same procedure.

Each Readout module’s TP output is driven out and transferred to the data-
path module, where one GBT link is dedicated for each output. Before data are
transmitted, the GBT sorter attaches an additional 20 bits of zeroes at the MSB
position of the GBT frame, given that the default 64 bit width is selected. In case
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the tpg readout size is set to a higher value than 64, the TP bit width surpasses
the lword ’s bit width. While the ldata type bus is the only bus used to transfer
payload data to and from the datapath, the TP frame is broken in two parts in
order to be transferred. The first part consists of the 64 LSBs fo the TP frame,
while the second part consists of the rest of the bits that remained, placed as the
LSBs of the lword ’s 64 bit frame. The TP frame is reconstructed at the GBT
sorter. The GBT sorter stores the first part of the frame and wait for the second
part at the next clkp clock cycle. When all the parts are available the frame with
the correct bit width is reconstructed, while the rest of the 84 bits required for the
GBT frame are filled with zeroes. In figure 5.13 an example of tpg readout size set
to 68 is depicted.

5.6.4 Readout Track module

Track data are provided to the Readout module via the ldata bus from the
datapath module. The track data are trasmitted from the OCEAN board via four
CSP links at 25Gb/s. Each link contains the exact same information as the other
three. In each LHC clock cycle a total of nine 64-bit words can be transferred from
one CSP link. The first eight words transmitted from the OCEAN to the BMTL1
in one LHC clock cycle may contain track data, while the 9th word is zeroes.

In figure 5.14 the logic diagram of the Readout track module is depicted. The
data are inserted to the Readout module by setting the correct channel number
of the ldata channel number. The muon link generic is also set at the readout
package. Once track data are inside the module, they are stored in a single FIFO.
The data are then driven out of the FIFO continuously until the FIFO is empty.
The common output lane of the FIFO is split in two lanes. The first lane receives
one track word while the other lane receives the following track data word at the
clkp clock cycle. Essentially this mechanism is a time demultiplexing mechanism,
where data are split in two lanes per clock cycle. Before exporting data to one lane
again the FIFO must wait another 8 clkp clock pulses. This is essential in order to
not lose data as the GBT protocol transmits a 84-bit word per 9 clkp clock pulses
or 1 LHC clock pulse.

The data arrive at the GBT sorter where an additional 20 bit filled with zeroes
are attached to the front of the track frame, this way creating the GBT 84 bit
frame that is transmitted. Two GBT links are used, one for each lane.

The total amount of BRAM used for the Readout implementation is 16 RAMB-
36E2 primitives, each primitive offering 36Kbit BRAM, whereas the system in total
offers 94.5 Mbits of BRAM. Each Readout module for one sector uses in total 6
GBT links, whereas the final version for the two sector implementation will use all
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Figure 5.14: Readout Track module logic Diagram

12 available GBT links transmitting to the TM7.

5.7 USC Slice test

The Readout firmware was tested with various methods. The first method
being the simulation of the design on software. Once simulation tests were suc-
cessful then ILAs were added to the design in order to test the implementation on
hardware. The DT group had available a test setup at the SX5 surface building
at Point 5. The setup included the same boards as the USC setup, with the main
difference being only one Chamber present and no TM7 with GBT links imple-
mented. Tests pulses from the OBDT were used, as well as cosmic muons in order
to receive Hit data to the BMTL1 board.

At the USC setup a TM7 board was configured to receive 12 GBT links, as
stated previously. A portion of the data received by the TM7 can be viewed by a
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script provided by the DT group. The script enables twelve 4096 deep local buffers
for each GBT link to capture mode for a certain, user-defined, amount of time.
Once the exposure time is over the script reads and displays the contents of each
buffer to the user’s terminal, while the user can also chose the amount of words
printed on the terminal, in order to avoid printing all 4096 words for each channel.

Trying to validate the data transmitted from one board to the data received by
the other board when using Hit data from OBDTs poses a challenge. Hit data are
transmitted by the OBDTs, while the user is able to observe them at the BMTL1
board with ILA triggers or scripts. When the user tries to observe data received
by the TM7, the script for the local buffers is also executed. Here is the challenge,
the user cannot execute the TM7 buffer script fast enough in order to capture the
same Hit word that was observed at the BMTL1 board, this is due to the fact
that the data are transmitted at ns time scales. Furthermore since a Hit word is
independent by the user there is no way for a script monitoring the TM7 data to
determine if the data received are in fact the correct data.

A more elaborate plan was proposed in order to validate the system’s func-
tionality with the assistance of the GBT buffer script. The layout of the test is
depicted in figure 5.15.

Figure 5.15: BMTL1-TM7 Readout test Layout

Hit data provided by the DT group are loaded in the RX EMP buffers at
the datapath module, while the connections from the OBDTs are cut inside the
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firmware implementation. The EMP buffers are loaded with the user data by the
Empbutler command line tool. The Empbutler can issue the PlayOnce command
when setting the buffers, this way the buffer contents (1024 words) will be pre-
sented only once per LHC orbit, to the rest of the system [33]. If this setting is
not used, the buffer contents will be read continuously during one LHC orbit. The
provided Hits’ data format must be modified in order to meet the specific EMP
file format. This is performed by a custom C++ program that reads the contents
of the original Hit data file and builds the EMP format file. The Receiver RX
EMP buffers are loaded in order to simulate exactly the same dataflow from the
datapath to the payload’s AM algorithm instance.

The Hit data enter the AM algorithm’s instance and are slightly altered as
described in figure 5.16.

Figure 5.16: Hit word format as Input and Output from the AM Algorithm

Once the altered Hit data are driven out of the dt sector module, they are
inserted into the Readout module. The process inside the Hit Readout module
was described in 5.6.2. When the Hit data exit the Readout module they are
transferred to the GBT sorter module in order to be transmitted to the TM7
board. At the TM7 board the user can observe the Hit data by calling the buffer
script provided by the DT group. Since on every LHC orbit the data arriving are
the same, that is until the user loads a different data file to the EMP buffers, the
script will capture the Hit contents of multiple orbits, each orbit’s Hit contents
identical to the others. Given that the buffers on the TM7 board are 4096 cells
deep, whereas the EMP buffers are only 1024 cells deep, it is guaranteed that all of
the contents of the EMP buffers will be received, at least one orbit’s Hit contents.
The data can then be reviewed in order to determine if the functionality of the
system is correct.

It also possible for the user to execute a Bash script on a remote PC that uses
SSH to log in the ZYNQ on the BMTL1 board and execute another Bash script
that contains all the Empbutler commands needed to load the Hit contents in the
RX EMP buffers. The Bash script executed by the remote PC also uses ssh to log
into the machine that controls the TM7 board and issue a command to execute
the buffer script.
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A small sample of the whole process can be shown in the figures 5.17, 5.18,
5.19. The RX EMP buffer is loaded with eight hits as shown in figure 5.17. Each
64 bit word contains two Hit words, whereas each 64 bit word is separated by eight
frames of zeroes by the next data word. This is performed in order to correctly
simulate the behaviour of lpGBT and GBT protocol that the OBDTs normally
use, since each word from both of these protocols is delivered once per LHC clock
cycle. The data words are injected to specific region channels, as agreed upon with
the DT group developers. For this instance the inputs are mapped to simulate Hits
from MB3 (chamber 3) SL1 and SL3.

Figure 5.17: USC test setup Layout

The Hit data arrive at the AM algorithm’s module where the are processed.
Their new format upon exit is as stated previously at 5.16. For instance the Hit
word 0x8140021 is converted to 0x80428001. In figure 5.18 the eight Hit words
with the new format are shown1, after exiting the AM algorithm’s module.

Figure 5.18: USC test setup Layout

Once the data enter the Readout module they are stored and sorted by the Hit
module. The Hits enter the module from two separate lanes as shown in figure
5.18. Those lanes are part of the thirteen 32-bit vector array that is connected
as an input to the Hit module. Since one lane containing data is the seventh

1The 32th bit is displayed separately from the rest of the word
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element of the array and the other one the ninth element, the sorting mechanism
will output each lane’s contents to one GBT link, respectively.

The data are then transmitted to the the TM7 board where they are captured
and displayed via the buffer script. In figure 5.8b the data from one of the two
links are displayed for many orbits. The orbit count is indicated by the arrivalOC
variable. In total four Hit words are expected and four Hit words are received per
orbit as expected, each arriving at the exact same BXs as every other orbit’s Hit
data.

Figure 5.19: USC test setup Layout
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Chapter 6

Conclusions

This thesis details the Readout Design that was implemented on the firmware of
the Barrel Muon Trigger Level-1 (BMTL1) board for the Compact Muon Solenoid
(CMS) Experiment at CERN’s High Luminosity Large Hadron Collider (HL-LHC).
The firmware design module that was produced was tested and integrated with
the rest of the system’s framework.

During the time of the Phase-2 upgrades, the Phase-2 boards, link protocols
and algorithms were tested. As the system is not in its final form, many test se-
tups include Phase-1 equipment interfacing with the under development Phase-2
equipment. Multi board slice tests are performed in order to evaluate the Phase-2
upgraded hardware, firmware and software. The implementation of a Readout
Design serves as a solution to monitor and evaluate data generated by the algo-
rithms implemented on the Phase-2 boards. The Readout module offers a store
and transmit mechanism, while using minimal FPGA resources. This addition to
the firmware does not add to the complexity of the framework, nor does it disrupt
the normal behaviour of the rest of the system.

As a result of the learning process of the system’s framework, a simple syn-
chronous link protocol was created. The protocol was created for educational
purposes, aiming to achieve a better understanding of the protocols used in op-
tical links both at the CMS experiment and link protocols in general. The link
protocol was designed to be operated by the same tools that the Phase-2 system
will use and was evaluated using the appropriate Phase-2 software tools.
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Appendix A

Appendix A

A.1 HDL codes

Listing A.1: codefiles/protocol/TX module.vhd

1
2 library IEEE;
3 use IEEE.STD LOGIC 1164.all;
4
5 use IEEE.NUMERIC STD.all;
6 use IEEE.std logic unsigned.all;
7
8
9 entity TX module is

10 port(reset all : in std logic;
11 txusrclk2 : in std logic;
12 tx active : in std logic;
13 txheader out : out std logic vector(5 downto 0);
14 txsequence out : out std logic vector(6 downto 0);
15 txdata out : out std logic vector(63 downto 0);
16 userword64 in : in std logic vector(63 downto 0);
17 data valid bit : in std logic; −−−−−if its 1 its writedata

if its 0 its writecontrolword
18 crc error vio : in std logic
19 );
20 end TX module;
21
22 architecture Behavioral of TX module is
23
24
25 signal example stimulus reset sync : std logic;
26 signal example stimulus reset int : std logic;
27
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28 signal stopdata : std logic;
29 signal cn : std logic vector(5 downto 0) := (

others => ’0’);
30 signal write sync : std logic := ’1’;
31 signal txdata out reg : std logic vector(63 downto 0);
32 signal txheader out reg : std logic vector(5 downto 0);
33 signal txheader out reg del : std logic vector(5 downto 0);
34 signal crcen : std logic;
35 signal crc out : std logic vector(31 downto 0);
36 signal txdata out scrambled : std logic vector(63 downto 0);
37 signal txdata unscrambled : std logic vector(63 downto 0);
38 signal crcreset : std logic;
39 signal crc error bit : std logic;
40 signal scrambler en : std logic;
41 signal data valid bit del : std logic;
42 signal userword64 in crc : std logic vector(63 downto 0);
43 signal userword64 in del : std logic vector(63 downto 0);
44 signal crc stored : std logic vector(31 downto 0);
45 signal crc alt : std logic;
46
47 component gtwizard ultrascale 0 example reset synchronizer
48 port(
49 clk in : in std logic;
50 rst in : in std logic;
51 rst out : out std logic
52 );
53 end component;
54
55 component SCRAMBLER BLOCK
56 generic (
57 TX DATA WIDTH : integer
58 );
59 port (
60 −− User Interface
61 UNSCRAMBLED DATA IN : in std logic vector(TX DATA WIDTH−1

downto 0);
62 SCRAMBLED DATA OUT : out std logic vector(TX DATA WIDTH−1

downto 0);
63 DATA VALID IN : in std logic;
64 −− System Interface
65 USER CLK : in std logic;
66 SYSTEM RESET : in std logic
67 );
68 end component;
69
70 component ucrc par
71 generic (
72 POLYNOMIAL : std logic vector;
73 INIT VALUE : std logic vector;
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74 DATA WIDTH : integer range 2 to 256
75 );
76 port (
77 clk i : in std logic; −− clock
78 rst i : in std logic; −− init CRC
79 clken i : in std logic; −− clock enable
80 data i : in std logic vector(DATA WIDTH − 1 downto 0); −−

data input
81 match o : out std logic; −− CRC match flag
82 crc o : out std logic vector(POLYNOMIAL’length − 1 downto 0))

; −− CRC output
83 end component;
84
85 begin
86
87
88 example stimulus reset int <= reset all or (not tx active);
89
90 reset synchronizer2inst :

gtwizard ultrascale 0 example reset synchronizer
91 port map(
92 clk in => txusrclk2,
93 rst in => example stimulus reset int,
94 rst out => example stimulus reset sync
95 );
96
97
98
99 process(txusrclk2)
100 variable cnt : integer := 0;
101 variable order : integer := 0;
102 begin
103 if rising edge(txusrclk2) then
104 cn <= cn + ’1’;
105 if example stimulus reset sync = ’1’ then
106 cn <= (others => ’0’);
107 write sync <= ’1’;
108 stopdata <= ’0’;
109 end if;
110 if cn = "011111" then
111 stopdata <= ’1’;
112 else
113 stopdata <= ’0’;
114 end if;
115 if cn = "100000" then
116 cn <= (others => ’0’);
117 end if;
118
119 txsequence out <= ’0’ & cn;
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120
121
122 if stopdata = ’0’ then
123 if data valid bit del = ’1’ then
124 txdata out reg <= userword64 in del; −−−−sending data

words
125 txheader out reg <= "000001";
126 −− crcen<=’1’;
127 −− crcreset<=’0’;
128 write sync <= ’0’;
129 elsif data valid bit del = ’0’ then
130 −− crcen<=’0’;
131 −− crcreset<=’1’;
132 if write sync = ’0’ then
133 write sync <= ’1’;
134 if crc error vio = ’1’ then
135 if crc alt = ’1’ then
136 crc alt <= ’0’;
137 txdata out reg <= x"00000000" & crc stored;
138 txheader out reg <= "000010";
139 else
140 txdata out reg <= x"00000000" & crc error bit &

crc out(30 downto 0);
141 txheader out reg <= "000010";
142 end if;
143 else
144 if crc alt = ’1’ then
145 crc alt <= ’0’;
146 txdata out reg <= x"00000000" & crc stored;
147 txheader out reg <= "000010";
148 else
149 txdata out reg <= x"00000000" & crc out;
150 txheader out reg <= "000010";
151 end if;
152 end if;
153 else
154 txdata out reg <= x"5555555555555555";
155 txheader out reg <= "000010";
156 end if;
157 end if;
158 if data valid bit = ’1’ then
159 crcen <= ’1’;
160 crcreset <= ’0’;
161 userword64 in crc <= userword64 in;
162 elsif data valid bit = ’0’ then
163 crcen <= ’0’;
164 crcreset <= ’1’;
165 end if;
166 −−−−delay 1 clock the headers
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167 txheader out reg del <= txheader out reg;
168
169
170 −−−−−−data valid bit is delayed and we use the delayed one on

the logic above.
171 −−−−−−the not delayed one is used for enabling the crc

generator one clock before everything.
172 data valid bit del <= data valid bit;
173
174
175 −−−−−the data from the external source (user) are inserted in

the crc. and the delayed by one clock cycle data are used
for the logic above.

176 userword64 in del <= userword64 in;
177
178 elsif stopdata = ’1’ then
179 crcen <= ’0’;
180 −−−−−−special fix...comment out and run it to see the problem

.
181 if crcreset = ’1’ and crcen = ’0’ and write sync = ’0’ and

txheader out reg = "000001" then
182 crc stored <= crc out;
183 crc alt <= ’1’;
184 end if;
185 end if;
186 end if;
187
188
189 end process;
190 txheader out <= txheader out reg del;
191 txdata out <= txdata out scrambled;
192 txdata unscrambled <= txdata out reg;
193
194 crcgen : ucrc par
195 generic map(
196 POLYNOMIAL => "00000100110000010001110110110111",
197 INIT VALUE => "11111111111111111111111111111111",
198 DATA WIDTH => 64
199 )
200 port map (
201 clk i => txusrclk2, −− clock
202 rst i => crcreset, −− init CRC
203 clken i => crcen, −− clock enable
204 data i => userword64 in crc, −− data input
205 match o => open, −− CRC match flag
206 crc o => crc out −− CRC output
207 );
208
209 crc error bit <= not crc out(31);
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210 scrambler en <= not stopdata;
211
212 scrambler : SCRAMBLER BLOCK
213 generic map(
214 TX DATA WIDTH => 64
215 )
216 port map(
217 −− User Interface
218 UNSCRAMBLED DATA IN => txdata unscrambled,
219 SCRAMBLED DATA OUT => txdata out scrambled,
220 DATA VALID IN => scrambler en,
221 −− System Interface
222 USER CLK => txusrclk2,
223 SYSTEM RESET => example stimulus reset sync
224 );
225
226 end Behavioral;

Listing A.2: codefiles/protocol/RX module.vhd

1
2 library IEEE;
3 use IEEE.STD LOGIC 1164.all;
4 use IEEE.std logic unsigned.all;
5 use IEEE.NUMERIC STD.all;
6
7 entity RX module is
8 port(reset all : in std logic;
9 rxusrclk2 : in std logic;

10 rx active : in std logic;
11 rxheader in : in std logic vector(5 downto 0);
12 rxgearboxslip out : out std logic;
13 rxdata in : in std logic vector(63 downto 0);
14 rxdata out : out std logic vector(63 downto 0);
15 sync : out std logic;
16 rxdatavalid : in std logic vector(1 downto 0);
17 rxheadervalid : in std logic vector(1 downto 0)
18 );
19 end RX module;
20
21 architecture Behavioral of RX module is
22
23 signal example checking reset sync : std logic;
24 signal example checking reset int : std logic;
25 signal counter : std logic vector(6 downto 0)

:= (others => ’0’);
26 signal syncok : std logic

:= ’0’;
27 signal rxgearboxslip out reg : std logic
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:= ’0’;
28 signal cnt reg : std logic vector(5 downto 0)

:= (others => ’0’);
29 signal error reg : std logic

:= ’0’;
30 signal tries : std logic vector(11 downto 0)

:= (others => ’0’);
31 signal rxdata in i : std logic vector(63 downto 0);
32 signal rxdata out reg : std logic vector(63 downto 0);
33 signal rxheader in del : std logic vector(5 downto 0);
34
35
36 component syncbit
37 port (clk : in std logic;
38 i in : in std logic;
39 o out : out std logic
40 );
41 end component;
42
43 component DESCRAMBLER BLOCK
44 generic (
45 RX DATA WIDTH : integer
46 );
47 port (
48 −− User Interface
49 SCRAMBLED DATA IN : in std logic vector(RX DATA WIDTH−1

downto 0);
50 UNSCRAMBLED DATA OUT : out std logic vector(RX DATA WIDTH−1

downto 0);
51 DATA VALID IN : in std logic;
52 −− System Interface
53 USER CLK : in std logic;
54 SYSTEM RESET : in std logic
55 );
56 end component;
57
58 component ucrc par
59 generic (
60 POLYNOMIAL : std logic vector;
61 INIT VALUE : std logic vector;
62 DATA WIDTH : integer range 2 to 256
63 );
64 port (
65 clk i : in std logic; −− clock
66 rst i : in std logic; −− init CRC
67 clken i : in std logic; −− clock enable
68 data i : in std logic vector(DATA WIDTH − 1 downto 0); −−

data input
69 match o : out std logic; −− CRC match flag
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70 crc o : out std logic vector(POLYNOMIAL’length − 1 downto 0))
; −− CRC output

71 end component;
72
73 signal crcreset : std logic;
74 signal crcen : std logic;
75 signal crc match : std logic;
76 signal crc checksum : std logic vector(31 downto 0);
77 signal crc checksum stored : std logic vector(31 downto 0);
78 signal crc incoming : std logic vector(31 downto 0);
79 signal crc check : std logic;
80
81 begin
82
83 example checking reset int <= reset all or (not rx active);
84
85 reset synchronizer1inst : syncbit
86 port map(
87 clk => rxusrclk2,
88 i in => example checking reset int,
89 o out => example checking reset sync
90 );
91
92 descrambler : DESCRAMBLER BLOCK
93 generic map(
94 RX DATA WIDTH => 64
95 )
96 port map(
97 −− User Interface
98 SCRAMBLED DATA IN => rxdata in,
99 UNSCRAMBLED DATA OUT => rxdata in i,
100 DATA VALID IN => rxdatavalid(0),
101 −− System Interface
102 USER CLK => rxusrclk2,
103 SYSTEM RESET => example checking reset sync
104 );
105
106 crccheck : ucrc par
107 generic map (
108 POLYNOMIAL => "00000100110000010001110110110111",
109 INIT VALUE => "11111111111111111111111111111111",
110 DATA WIDTH => 64
111 )
112 port map (
113 clk i => rxusrclk2,
114 rst i => crcreset,
115 clken i => crcen,
116 data i => rxdata in i,
117 match o => open,
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118 crc o => crc checksum);
119
120
121 process(rxusrclk2)
122
123 begin
124
125 if rising edge(rxusrclk2) then
126 if example checking reset sync = ’1’ then
127 counter <= (others => ’0’);
128 rxgearboxslip out reg <= ’0’;
129 cnt reg <= (others => ’0’);
130 syncok <= ’0’;
131 error reg <= ’0’;
132 counter <= (others => ’0’);
133 else
134 if rxdatavalid = "01" then
135 −−−−−header is delayed one clock cycle to be synchronous

with the unscambled data
136 −−−−−it is delayed inside this loop because the descrambler

is also enabled or disabled via the rxdatavalid.
137 −−−−−so we need them to be synchronous.
138 rxheader in del <= rxheader in;
139
140 −−−−−−−control word header
141 if rxheader in del = "000010" then
142 if rxdata in i = x"5555555555555555" then
143 if counter = "001000" then
144 syncok <= ’1’;
145 rxgearboxslip out reg <= ’0’;
146 cnt reg <= (others => ’0’);
147 else
148 counter <= counter+’1’;
149 syncok <= ’0’;
150 end if;
151 elsif rxdata in i(63 downto 32) = x"00000000" then
152 −−−−−maybe if sync=’1’ then
153 crcreset <= ’1’;
154 crcen <= ’0’;
155 if crc checksum = rxdata in i(31 downto 0) or

crc checksum stored = rxdata in i(31 downto 0) then
156 crc match <= ’1’;
157 else
158 counter <= (others => ’0’);
159 syncok <= ’0’;
160 crc match <= ’0’;
161 end if;
162 −−−end if;
163 else
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164 syncok <= ’0’;
165 counter <= (others => ’0’);
166 cnt reg <= cnt reg+’1’;
167 if cnt reg = "100000" then
168 rxgearboxslip out reg <= ’1’;
169 cnt reg <= (others => ’0’);
170 else
171 rxgearboxslip out reg <= ’0’;
172 end if;
173 end if;
174 −−−−−−−invalid header
175 elsif rxheader in del = "000000" or rxheader in del = "

000011" then
176 cnt reg <= cnt reg+’1’;
177 if cnt reg = "100000" then
178 rxgearboxslip out reg <= ’1’;
179 cnt reg <= (others => ’0’);
180 else
181 rxgearboxslip out reg <= ’0’;
182 end if;
183 −−−−−−−data header
184 elsif rxheader in del = "000001" then
185 if syncok = ’0’ and counter = "0000000" then
186 cnt reg <= cnt reg+’1’;
187 if cnt reg = "100000" then
188 rxgearboxslip out reg <= ’1’;
189 cnt reg <= (others => ’0’);
190 else
191 rxgearboxslip out reg <= ’0’;
192 end if;
193 elsif syncok = ’1’ then
194 rxdata out reg <= rxdata in i;
195 end if;
196 end if;
197 if rxheader in = "000001" then
198 crcreset <= ’0’;
199 crcen <= ’1’;
200 end if;
201 elsif rxdatavalid = "00" then
202 crcen <= ’0’;
203 if rxheader in del = "000010" and rxdata in i(63 downto 32)

= x"00000000" then
204 crc checksum stored <= crc checksum;
205 end if;
206 end if;
207 end if;
208 end if;
209 end process;
210 rxgearboxslip out <= rxgearboxslip out reg;
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211 rxdata out <= rxdata out reg;
212 end Behavioral;

A.2 IPbus code

Listing A.3: codefiles/IPBus/control.py

1 import uhal
2 import time
3
4 manager = uhal.ConnectionManager("file://connection file.xml")
5 hw = manager.getDevice("KCU105board")
6
7 syncok = hw.getNode("myreg.mystat.synclock").read()
8 hw.dispatch()
9

10 print("sync is =", syncok)
11
12 print("sending reset rx datapath and tx datapath pll")
13
14 hw.getNode("myreg.myctrl.rst tx datapath pll").write(1)
15 hw.getNode("myreg.myctrl.rst rx datapath").write(1)
16
17 time.sleep(3)
18
19 hw.getNode("myreg.myctrl.rst tx datapath pll").write(0)
20 hw.getNode("myreg.myctrl.rst rx datapath").write(0)
21
22
23 while(True):
24 syncok = hw.getNode("myreg.mystat.synclock").read()
25 hw.dispatch()
26 print("sync is =", syncok)
27 time.sleep(1)
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ATCA Advanced Telecommunications Computing Architecture. 18, 59, 67, 74–
76
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BC0 Bunch Crossing 0. 4, 66, 76

BCT Barrel Calorimeter Trigger. 19

BMTF Barrel Muon Track Finder. 20

BMTL1 Barrel Muon Trigger Level-1. v, 20, 21, 74–80, 84–87, 90

BRAM Block RAM. 56, 61, 75, 81, 84
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GNU GNU’s Not Unix. 31
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HDL Hardware Description Language. 26, 28, 30

HE HCAL Endcap. 11
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TCP Transmission Control Protocol. 61

TDC Time Digital Converter. 20, 73, 74, 76, 79, 80

TF Track Finder. 21

TMB Trigger Motherboards. 20
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TTC Timing Trigger Control. 22, 66, 67, 71
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VCO Voltage Controlled Oscillator. 34
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Glossary

A32/D32 The address bus A32 is used to specify a memory address. The data
bus D32 is used to indicate the data. 59

Bash Bash is a Unix shell and command language. (Bourne Again Shell). 31, 87

Empbutler The Empbutler tool is the main command-line software tool used
for controlling and monitoring the EMP framework’s TTC control signals,
RX/TX buffers and link firmware. 68, 70, 87

IPbus The IPbus protocol is a simple packet-based control protocol for reading
and modifying memory-mapped resources within FPGAs. 30, 31, 55, 58–68,
78, 80

LC An electric circuit consisting of an inductor, represented by the letter L, and
a capacitor, represented by the letter C, connected together. 34

Metastability The state a register can enter where its output has not reached
its expected value and can oscillates between ’1’ and ’0’. 45

pile-up the number of events per bunch crossing. 5, 6

Run Length Run length is defined as the number of identical contiguous symbols
which appear in a signal stream. 48, 49

SerDes Serializer / Deserializer. 32

SSH SSH (Secure Shell) is a cryptographic network protocol commonly used for
remote command-line login. 87

VMEbus VMEbus is a computer bus standard physically based on Eurocard
sizes. 59
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