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ETXAPIXTIEL

Apyikd Oobera vo vyaptotom Tov emPAETOVTA Lov AvarAnpmty Kabnynt Avopéa ZapPa-
XoaAla, oo T cuvepyasio, To ¥pOVo TOV KOl TNV ETAOYT VTOV TOL 1O10ATEPO ATTONTITIKOD
oA Ko evolapépovtog Bépatog. EmumAiéov, Ba ffela va gvyapiotiom ta dAlo 600 uEAN g
emtponng, Tov Kanynt Ocddmpo BAdyo ywa 6ca pag Epabde otn dopopikn| yeopeTpio Kot Tov
Enikovpo Kabnynm Nucodrao Poido.

Ag Ba elyo KatapEPEL Vo apyicm Kot VoL OAOKANPDOGM TO LETATTUYLOKO OV YOPIC TV TOAVTIUN
oTNPIEN TNG OIKOYEVELAG LOV.

Evyopiotd eniong toug cupgottntég Kot ¢piAovg LoV GTO TOVETIGTI IO Y10 TV dAANA0UTOCTHPIEN
KoL OAEG TIG EVOLUPEPOVGEC GVLINTNOELG TTOV EYOLLE.

TéNog, B B va VYAPIGTIC® TOLG TOAD KOVTIVOLG OV avOp®TOVE Yo TV KATAvONGT) TOVG,
NV ToTN TOVG 6€ PEVA KABOAN TN SLAPKELN TOV LETOTTVYLOKOV KOl TY) GUVELGPOPE TOVG GTO VO
yivopon KaAdTepn.






Abstract

The Ricci flow is a certain weakly parabolic partial differential equation which deforms a given
Riemannian metric on a compact manifold in the direction of its Ricci curvature. This particular
flow, share similarities to the heat flow, however it is nonlinear and exihibits many phenomena
not present in the study of the heat equation. The Ricci flow was introduced by Hamilton in
his seminal paper [18] and was used by Hamilton & Perelman in resolution of the Poincare
conjecture in dimension 3.

The objective of this master thesis is to present the following result due to Hamilton [18]:

Main Theorem: Let M3 be an oriented compact 3-dimensional manifold which admits a
smooth Riemannian metric with strictly positive Ricci curvature. Then, M? also admits a
smooth Riemannian metric of constant positive curvature. In particular, if M3 is simply
connected then it is diffeomorphic to S®.
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MNEPIAHVH

H ponj Ricci etvon pia dodikacio mapapdpemong pag petpiknig Riemann ot dievbvvon g
kapumvAdtTog Ricei. H pon Ricci gtvan éva 10164lmv mapafoiikod TOTOL Pn-YPOoUKO GOGTN LN
dpopikdv eElomoemv. Otav n apyikn cvvinkn etval éva cvumayég moAdmTuypa Riemann,
tote M pon Ricci vdpyel, TovAdyIGTOV, Y10, £vo, LKpd ¥povikd ddotnua. H ovykekpiuévn
pon ypnotporombnke and tovg R. Hamilton & G. Perelman yw v entivon g Ewkaciog tov
Poincare.

2y petamtuytokn owtppn Bo avardoovpe Ta Pacucd ototyeia mepi tng porg Ricei ka, petald
dA oV, Bo amodeiovpe To e&ng Bemdpnua tov Hamilton [18]:

Kevipwé Osdpnpa: Eotw M3 mpocavaroliouévo, coumayic molbrroyua didoracns 3 to
omoio eival epootoouévo e Acio uetpikn Riemann ue avotnpd Ostikn koumviotnta Ricci.
Tote, To M3 epodidlerau pe pia Asia petpiicy Riemann otalsphic koumvAdtnrog. Zvykekpiuévo,
av 10 M3 eivar amAé ovvextiko tote sivar diapopouoppixd ue ) opaipa S°.
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CHAPTER 1

PRELIMINARIES ON RIEMANNIAN GEOMETRY

The purpose of this chapter, is to set up the notation and to recall fundamental definitions from
Riemannian geometry. We follow the exposition in [1], [2], [7], [19], [22] and [26].

1.1 Vector bundles

Let M be a smooth manifold of dimension m. The set of all smooth real valued functions of
M will be denoted by C'*°(M). We would like now to associate to every point = € M a vector
space I/, in such a way that these vector spaces fit together to form another manifold which is
then called a vector bundle over M.

Definition 1.1.1. Let E be a smooth manifold and let 7: EE — M be a smooth surjective
map. The triple (E, 7, M) is called a real vector bundle of rank n over M, if the following
three conditions are satisfied:

(1) For each v € M, the set E, = 7w ' (x) possesses a real vector space structure of
dimension n.

(2) For each x € M, there exists a neighborhood U C M around x, and a diffeomorphism
@: U x R" — 71 (U), with the property ® (y,v) € E, for all (y,v) € U x R™

(3) The smooth map @, : R" — E, given by @, (v) = @ (y,v) is a R-linear isomorphism.
The manifold F is called the total manifold, the map 7 is said to be the projection map and M

the base manifold. The vector space FE, is called the fiber over the point x. When M is fixed
and 7 is known, for simplicity we denote the bundle (F, w, M) only by the letter E.

Definition 1.1.2. 4 smooth section o of (E,m, M) is a smooth map o: M — E with the
property ™o o = I, where I stands for the identity map of M. The space of sections of
(E, 7, M) is denoted by T'(E).
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Chapter 1 1.1. Vector bundles

If 0, 01, 00 € I'(E) and f € C*°(M) a smooth function, then we can form new sections
01 + 05 and fo, from point-wise addition and multiplication on each fiber respectively. More
precisely, we define

(014 02)(x) = 01(x) + 02(x) and (fo)(z) = f(z)o(x), =z M.

The most simple vector bundle over a manifold M is the trivial vector bundle M x R¥. Moreover,

the tangent bundle 7'M of a manifold is an example of a vector bundle. The space of sections
of T'M is usually denoted by X(M).

Let (E,m, M) be a vector bundle and U an open subset of the manifold M. A collection

{¥1,- .., @k} of (smooth) sections defined in U is called frame if, for every = € M, the vectors
{¢1(x),...,¢r(z)} consists a basis of F,. If ¢ is a section, then it can be written in the form
o= fip1+ -+ fepr
The functions f;, j € {1,...,k}, are called the components of the section ¢ with respect to

the given frame. It turns out that ¢ is smooth if and only if its components are smooth; see for
example [1, Proposition 2.8].

The class of all vector bundles can be equipped with a category structure. This can be achieved
once we introduce the notion of a bundle map.

Definition 1.1.3. Let (E, 7, M) and (F,0,N) be vector bundles. A pair (f, L) of smooth
maps f - M — N and L : E — F is called a bundle map if:

(1) L is fiber preserving, i.e. it holds f om =60 o L,
(2) Ly = L|g, : E; — Fy () is linear for each x € M.

If M = N, then the map L : E — F is called a morphism if (I, L) is a bundle map. A
morphism L is called an isomorphism if it is invertible.

One simple method of constructing vector bundles is by restricting bundles on submanifolds or
by taking subbundles of other vector bundles. We give the precise definitions below.

Definition 1.1.4. Let (E,m, M) be a vector bundle over the manifold M. If ¥ C M is a
submanifold of M, then the triple (1='(X), m, ) is called the restricted bundle. Offen we
denote the restricted bundle only by the symbol Els.

Definition 1.1.5. Let (E,m, M) be a vector bundle over the manifold M. A vector bundle
(V, 71, M) is a called sub-bundle of (E, m, M) if the following three conditions are satisfied.:

(1) V is a submanifold of the total space E,
2) V, =V N E,, foreach every x € M,

(3) m = 7l|v.
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Chapter 1 1.2. Connections and metrics

1.2 Connections and metrics

The investigation of geometric properties of vector bundles requires the notion of the directional
derivative. Here we give the basic facts about metrics and associated to them connections.

Definition 1.2.1. 4 (/inear) connection on a vector bundle E over the manifold M is a map
VE: X(M) x T(E) — T(E), written VE (X, @) = V&, satisfying the properties:

(1) Forevery X,Y € X(M) and ¢ € I (E), it holds
Ve =Vxe+Vye.
(2) Forevery X € X(M), f € C* (M) and p € I' (E), it holds
Vixe = fVie.

(3) Forevery X € X(M), f € C* (M) and 1, ps € I' (E), it holds

VE(p1+92) = Vi + Vigs.
(4) Forevery X € X(M), p € I'(E) and f € C*> (M), it holds

Vi (fo) = (Xf) o+ [Vxe.

The usual directional derivative in the Euclidean space is a connection. With respect to this
connection, any constant vector field on the Euclidean space is parallel. Hence, we give the
following general definition. Another important fact is the following:

Proposition 1.2.2. Let E be a vector bundle over M equipped with a connection V. If
pe€(E)and X,Y € X(M) such that X, =Y, at a point x € M, then

For that reason, often we write
E _ vk
Vel = VX,SO-

Definition 1.2.3. Let (E, 7, M) be a vector bundle equipped with a connection VE. A section
¢ € T'(E) is said to be parallel with respect to VZ if VEo = 0, for each vector field X €

We can define higher derivatives of sections of a vector bundle over a manifold M whose tangent
bundle 7'M is equipped with a connection.
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Chapter 1 1.2. Connections and metrics

Definition 1.2.4. Let (E, 7, M) be a vector bundle over a manifold M and assume that E
equipped with a connection V¥ and T M with a connection VM. For each XY € X(M),
the map V% y: T'(E) — I'(E), given by

v%{,yw = V;E<V1€<P - ng)vgy%

is called the second covariant derivative of ¢, with respect to the directions X and Y. By
coupling the connections V™ and V¥, one may define, the k' derivative V* of ¢ € T'(E).

To each connection, we associate an operator which measures the non commutativity of the
second covariant derivative.

Definition 1.2.5. Let (E,m, M) be a vector bundle over M. Assume that the bundles E
and TM are equipped with connections VY and V™, respectively. The linear operator

RE: X(M) x X(M) x ['(E) — I'(E), given by
RE (X7 Y? 90) = v%(,YSD - v?’,X@?
for each X,Y € X(M) and ¢ € T'(E), is called the curvature tensor associated with V.

Now let us turn our attention to vector bundles equipped with a Riemannian metric structure.

Definition 1.2.6. 4 Riemannian metric on a vector bundle £ over M is a smoothmap gg: I'(E) %
['(E) — C*(M), such that its restriction to the fibers is a positive definite inner product.

Often we denote Riemannian metrics by the symbol (-, -). It is known that every vector bundle
admits a Riemannian metric. The proof uses the partition of unity to glue local Riemannian
metrics on each fiber; see for example [2].

Definition 1.2.7. Let E be a vector bundle of rank k over M equipped with a connection V¥
and a Riemannian metric gg.

(1) We say that V¥ is compatible with the Riemannian metric gz if it satisfies

Xgr(p1,p2) = 95(Vie1, 02) + gr(p1, Vies),

Joreach X € X(M) and ¢y, ps € I'(E). A vector bundle E endowed with both of these
structures is called Riemannian vector bundle endowed with a compatible connection.

(2) We say that a set of sections {1, . .., ¢} defined in an open neighborhood of M, con-
sists a local orthonormal frame, with respect to gg if and only if

9e (i, p;) = dij,
foreachi,je{1,... k}.

Using the Gram-Schmidt process we can always find local orthonormal frames of sections in a
Riemannian vector bundle.
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Chapter 1 1.3. The induced bundle

1.3 The induced bundle

There is a natural way to differentiate sections along curves on M. More precisely, suppose
that v : [0,1] — M is a smooth (not-necessarily regular) curve and let E be a rank k vector
bundle over M. Moreover, suppose that the bundle £ is equipped with a Riemannian metric
g and a compatible connection VE. Let o be a section defined only along the image of ~y. If

{¢1, ..., ¢k} is alocal orthonormal frame around 2y € M, then ¢ can be decomposed as
k
(o)) =2 fiO)(pioMN®), te(01), (1.1)
j=1

where the functions f; : [0,1] — R, j € {1,...,k}, are called the components of ¢ with
respect to the given frame. We say that ¢ is smooth along -y if its components given in (1.1)
are smooth. The question now is how to define the derivative of ¢ in the direction of 7. Since
we require the directional derivative to satisfy the properties of Definition 1.2.1, we see that the
only possible way to define it is via the formula:

k

k
Ve =D [0 ®) + Y fi(t) Ve, te(0,1). (12)
j=1

j=1

It can be very easily checked that the above definition does not depend on the choice of the local
frame. It is not hard to see that, if ¢o; and ¢4 are smooth sections along -y, then

(ge(1, 02))" = ge(V2p1, 2) + geler, V],p2). (1.3)

Definition 1.3.1. A4 section ¢ along a smooth curve is called parallel if
¥ _
Ve =0. (1.4)

Note that the ODE (1.4) is of first order and linear. From the standard theory of ODEs, we can
easily prove that the initial value problem

Vzl(t)(p - 0, tE (071),
©~(0) = $o,

has a unique solution, which can be extended up to y(1). The obtained section is called the
parallel transport of p, along the curve . With the use of the formula (1.3), we can show that
the parallel transport preserves the lengths and and the angles of sections. Consequently, given
two points xy and yy on the manifold M and a smooth curve ~y joining them, then the parallel
transport gives rise to a linear isometry P, : F,; — Ey.
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Chapter 1 1.3. The induced bundle

We would like now to extend the above formulation for sections defined along the image of
smooth maps. Suppose that 2 and M are smooth manifolds, (F, m, M) is a vector bundle of
rank k over M and f : ¥ — M is a smooth map. The map f induces a new vector bundle of
rank £ over X.. Indeed:

» Take as total space the set
JE={(z,¢):x €Y and £ € Ey, },
and as projection the map 7y : f*E — X given by
r(x, ) = x.
The space f*F contains all sections of £ with base point at f ().

* Let VZ be a linear connection on E. Suppose that {1, ..., .} is a frame field of F
defined in an open neighborhood of f(x) € N. Then, any section o € I’ ( f*E) can be
written in the form

Zaa Qoaof()

where 0, @ € {1,..., k}, are the components of o with respect to the given frame field.
These functions are defined in a neighborhood of > and they are smooth. Define now,

k

k
Vo =3 (Xoa) (a0 f)+ Y 0aViix Pa

a=1 a=1

for each X € X(X). One can easily verify that the above definition of the pull-back
connection is independent of the choice of the frame field.

+ The curvature tensor R/ of the pull-back bundle is given by
RI(X,Y)o = RE(df(X), df (Y))o.
foreach X, Y € T,M and o € I'(f*E).
« Inthe case £ = TN and V7 is a torsion-free connection, i.e.
viY - VvIX = [X,Y],
then the following formula holds
VLdf(Y) = VEdf (X) = df (X, Y)),
foreach X, Y € X(M).
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Chapter 1 1.4. Symmetric and anti-symmetric tensors

1.4 Symmetric and anti-symmetric tensors

Since Riemannian geometry is written in a tensorial language, it is important to study the space
of tensorial maps between vector bundles. Let (£, m, M) be a vector bundle of rank & and
(V, 9, M) a vector bundle of rank [ over the manifold M endowed with linear connections V%
and VYV, respectively. The space Hom(E"; V), of r-copies E” = E X --- x E of Eto V,
becomes a vector bundle with total space

Hom(E"; V') = U,ep Hom(ED; RY),
and projection map
m(x,0) = .

This particular bundle is called the homomorphism bundle. A natural connection V! on the
homomorphism bundle is given by

(Vggo) (01,...,0,) =Vi{plo,...,0.)} —o(Vior,...,0.) — - —(o1,...,VEd,)

where X € X(M), ¢ € I'(Hom(E";V))and 04,...,0, € I'(E). There is also a natural way
to construct Riemannian metrics on the homomorphism bundle. Let gz and gy be Riemannian
metrics which are compatible with the connections V¥ and VY. Then a natural metric on the
homomorphism bundle Hom that is compatible with V¥ is given by

k

9u Pz, V) = Z gv(p(oiy, ..., 0:), 904, ..., 04,)),

i1yein=1

where {01, ...,0%} is an orthonormal basis at the point = with respect to gg. Sections of the
homomorphism bundle Hom(E"; R) are often called (r, 0)-tensors or simply r-tensors. There
are two interesting types of tensors, the symmetric and the alternative ones. More precisely:

Definition 1.4.1. 4 section p € Hom(E";R) is called symmetric multilinear tensor of degree
rif

O(o1,. .0 Oy 0p) = 0(01, .0, Oy 04y, Oy),
and alternative multilinear tensor of degree r if
o(o1,..., 00,04y 0p) = —@(01, ..., 0j, oo Ty, Oy,

foreachi,j € {1,...,r}. We denote the space of symmetric multilinear tensors of degree
r by the symbol S(E"). Often we refer to elements of S(E?) as symmetric 2-tensors. The
space of alternative bilinear tensors of degree r is denoted by the letter Q)(E"). Elements of
Q(E?) are called anti-symmetric 2-tensors.
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Chapter 1 1.5. Exterior powers of vector bundles

1.5 Exterior powers of vector bundles

Denote by A"(IR¥) the dual space of all alternative multilinear forms of degree r. Elements of
AT (Rk) are called r-vectors. Given vectors vy, . .., v, on the Euclidean space R”, the exterior
product vy A - - - A\ v, is the linear map which on an alternating tensor w of degree r takes the
value

(Vi A A (w) =w(vg, ...y 0,).

The exterior product is linear in each variable separately. Interchanging two elements the sign of
the product changes and if two variables are the same the exterior product vanishes. An r-vector
¢ is called simple or decomposable if it can be written as a single wedge product of vectors,
that is

E=v A A,

Note that there are r-vectors which are not simple. For example, let {e1, €2, e3,e4} be the
standard basis of R*. Then, the 2-vector

§:€1A€2+€3/\€4

is not simple. Using standard techniques from Linear Algebra one can verify that the exterior
product v; A --- A v, is zero if and only if the vectors are linearly dependent. Moreover, if
{e1,..., e} consists a basis for R¥, then the r-vectors

{el-l/\-~/\e“ 1<y <<’lr§]{7}
consists a basis of A”(IR¥). Therefore, the dimension of the vector space of r-vectors is

dim A" (R¥) = (k) __

r ri(k —r)l
Each simple vector represents a unique r-dimensional subspace of R¥. We can equip A" (R¥)
with a natural inner product, which we denote by (-, -). Indeed, define

(Vp Ao AU, wp A+ Awy) = det((vi,wﬁ)lg’jgr, (1.5)

on simple r-vectors and then extend linearly. Moreover, if {e;, . .., €} is an orthonormal basis
of R” then, the r-vectors

{el-l/\-~/\eir:1§i1<~~<z}§k}

consist an orthonormal basis for the exterior power A”(R¥). Now if E is a vector bundle of rank
k over a manifold M, then we can form the exterior power A"(E) of E by gluing together all
the spaces A"(E), i.e.

AN'(E) = Ugem A" (EL).
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Chapter 1 1.6. The Levi-Civita connection

1.6 The Levi-Civita connection

Let g be a metric on a m-dimensional manifold M. Then there is a unique compatible with g
connection V, referred as the Levi-Civita connection, given by the Koszul formula

2(VxY, Z) = X(g(Y,2)) + Y (g(X, 2)) — Z(g(X,Y)) (16)
forall X,Y,Z € X(M). The Levi-Civita also satisfy
ViY — Vy X = [X,Y],

for each X,Y € X(M). Denote by R the associated with V curvature tensor. Combining R
with g we obtain a (4, 0)-tensor, which by abuse of notation, we denote it again by letter R, i.e.

for each X, Y, Z, W € X(M). The curvature tensor of a Riemannian manifold satisfies the
following important identities:

(1) Symmetries of the curvature tensor:

(2) 1° Bianchi identity of the curvature:

R(X,Y,Z,W)+ R(Y,Z,X,W)+ R(Z,X,Y,W) = 0. (1.8)

(3) 2" Bianchi identity of the curvature:

(VxR)(Y, Z,W) + (VyR)(Z, X, W) + (VzR)(X,Y,W) = 0. (1.9)

The Riemannian curvature tensor is a very complicated object and for its better understanding
we may consider various by-products of this quantity. If X, Y € T, M are linearly independent
vectors, then

R(X7 Y? X? Y)
(X X)g(Y,Y) — g(X.Y )2

is called the sectional curvature of the plane I spanned by the vectors X and Y. As a matter
of fact, the sectional curvature depends on the plane I/ and not on the generating vectors X
and Y. So the sectional curvature of a Riemannian manifold at a point = can be regarded as a
function defined on A?(7,,M). One important relationships between the Riemannian and the
sectional curvature is the following algebraic result by Riemann; see [26, Proposition 3.1.3].

sec(X,Y) =
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Chapter 1 1.6. The Levi-Civita connection

Theorem 1.6.1. Let M be a Riemannian manifold and x € M. Then the following two
properties are equivalent:

(1) For each IT € A*(T,M), we have sec(II) = k.
(2) The Riemann curvature tensor at x is given by
foreach XY, Z,W € T, M.

Definition 1.6.2. A Riemannian manifold M that satisfies either of these two conditions for
all x € M and the same k € R for all x € M is said to have constant curvature k. Such
Riemannian manifolds are shortly called space forms of curvature k.

The Euclidean space R™ equipped with the inner product gg, the sphere S™(r) C R™T! of
radius r > 0 with metric gg the induced one from the Euclidean space and the hyperbolic space
H™(r) modelled by

H"™(r) = {(z0,Z1, .-, Tm_1) € R™ : 29 > 0} and Riemannian metric gy = r°x;°gxr,

consist examples of space forms. According to a classical theorem in Riemannian geometry, the
following result holds:

Theorem 1.6.3. Let M be a simply connected, m-dimensional Riemannian manifold with
constant sectional curvature k. Then, M is isometric to R™ if k = 0, to S™ if k = r—2 and
to ™ if k = —r2

By contracting the operator R with the metric g we obtain the Ricci operator Ric and scalar
curvature S, i.e.

Ric(X,Y) =try(R(X,-,Y-)) and S = try(Ric),
where X,Y € X(M). Finally, we define the trace-free Ricci tensor or the Einstein tensor by
E = Ric— (S/m)g.

Definition 1.6.4. A Riemannian manifold for which the Einstein tensor is identically zero is
called Einstein manifold.

It is a well-known fact that an Einstein manifold of dimension greater than two, has constant
scalar curvature; see for example [26, Proposition 3.1.5 & Corollary 3.1.6.]. The classification
of Einstein manifolds in dimensions greater than three, is still a wide open problem. For more
details we refer to the book of Besse [3].
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Chapter 1 1.6. The Levi-Civita connection

The symmetries given in (1.7) allow us to regard the curvature tensor of a Riemannian manifold
as a symmetric bilinear form on the exterior power of 2-vectors. More precisely, we define the
curvature operator R : N> (T M) x A>(TM) — C>=(M) by

RIXAY,ZAW) =R(X,Y,Z,W),

for each X\ Y, Z, W € X(M). We now investigate the tensors satisfying the same algebraic
identities as the curvature tensor of a Riemannian manifold at one point. There is a natural way
to construct tensors satisfying the conditions (1.7) and (1.8) of the curvature tensor. First we
need the following definition:

Definition 1.6.5. Let V' be a m-dimensional vector space and S(V') the space of symmetric
bilinear forms of V. Given ¢,v € S(V), the multi-linear map

eV VxVxVxV =R
given by
(o D 9)(v1,v2,v3,v4) = @(v1,v3)F (2, v4) + ©(v2,v4)0(v1,v3)
— (1, V1) (va, v3) — (v, v3)P V1, V4),
is called the Kulkarni-Nomizu product of ¢ and .

The above product appeared for the first time in papers of Kulkarni [21] and Nomizu [25] and
for that reason is called by their names. Just by straight-forward computations one can check
the validity of the following:

Lemma 1.6.6. Let (M, g) be a Riemannian manifold. The following properties hold true:
(1) For each symmetric 2-tensors p and v, it holds o 9 = 9 ) .
(2) The (4,0)-tensor ¢ N ¥ satisfies the properties (1.7) and (1.8).
(3) For each symmetric 2-tensors p and v, the following formulas hold
Vx(e®9) = (Vxp) B9+ @ (VxV), X eX(M),

and

Alp DY) = (Ap) DV +2(Vxe) O (VxI) + ¢ @O (AD).

In the sequel we introduce another important tensor in Riemannian geometry, the so-called Weyl
tensor. Roughly speaking, the Weyl tensor measures how far is a Riemannian metric g from
being locally conformal to a flat one; locally conformally flat means that around each point
there exists an open neighborhood U and a function ¢ € C°°(U) such that

7 =e*yg,

has zero Riemann curvature operator. The precise definition is the following:
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Definition 1.6.7. Let (M, g) be a Riemannian manifold of dimension m > 3. The tensor W
given by

S 1

is called the Weyl tensor.

As we will see in the next theorem, the Weyl tensor provides information only in dimension
greater than three. Furthermore, we will see that simply connected Einstein 3-manifolds are
fully classified.

Theorem 1.6.8. The Weyl tensor of a 3-dimensional Riemannian manifold M is identically
zero. Therefore, the Riemannian curvature tensor of a 3-dimensional Riemannian manifold
is fully determined by its Ricci tensor. In particular, an Einstein 3-manifold is isometric with
a space form.

Proof. At first observe that due to the results of Lemma 1.6.6, the Weyl tensor has the identities
(1.7) and (1.8) of the Riemannian curvature tensor K. Moreover,

trsW(X,-,Y,-)) =0, forall XY € X(M).
Consider a local orthonormal frame {ey, €5, €3} on the manifold M. Then,
Wi(er, ez, e1,€e2) + Wier, e3,e1,€3) = 0,
W(GQ, €1, €9, 61) + W(GQ, €3, €9, 63) = 0,
W(@g, €1, €3, 61) + W(@g, €9, €3, 62) = 0,

from where it follows that

Wieq,es,e1,e5) = Wi(eq,es, er,e3) = W(es, e, ez, e3) = 0.
Moreover,

Wi(eq,es,e1,e3) = —W(eq, e, €3, e3) — Wi(es, e, e3,e3) = 0.
Hence, in general,

W(e;, ej,ex, e;) =0, unless the indices i, j, k are all distinct.

But in dimension 3 there are only three possible choices for the indices, and so the Weyl tensor
must vanish identically. Let us assume now that our 3-manifold is Einstein. Then the scalar
curvature S is constant (see [26, Proposition 3.1.5 & Corollary 3.1.6.]) and from the equation
(1.10) we deduce that the Riemannian manifold M is a space form. This completes the proof
of the theorem. 0J

We conclude this section with a lemma which provides us with some information about the
algebraic structure of the curvature operator of 3-dimensional Riemannian manifolds.
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Lemma 1.6.9. Let M be a 3-dimensional Riemannian manifold. Then, there exists a local
orthonormal frame {e1, eo, €3} satisfying the following properties:

(1) The curvature operator is diagonalized in the form
R(eg A\ €3, €9 N 63) = Al, R(61 A €3, €1 A 63) = )\2, R(Gl A\ €9, €1 N 62) = )\3,
where A\ > \y > A3 are continuous functions.

(2) The Ricci tensor, with respect to the frame {e1, e, e3}, takes the form

Ao + A3 0 0
Ric = 0 /\1 + /\3 0
0 0 AL+ A2

(3) The scalar curvature has the form

S == 2()\1 -+ )\2 + )\3)

Proof. The existence of the local frame which diagonalizes R follows from the observation in
Theorem 1.6.8 that R is fully determined by Ric. Note that the bi-vectors

{61 AN €9, €1 AN €3, €9 AN 63}

form an orthonormal frame of A%(T'M) with respect to the inner product (-, -) given in (1.5).
With respect to this frame we have that

Ric(el, 61) R(@l A\ €9, €1 A\ 62) + R(61 A\ €3, €1 A\ 63) = )\3 —f- )\2,
RiC(GQ, 62) R(eg A €1, €9 A 61) + R(eg A €3, €9 A\ 63) = )\3 + )\1,
RiC(€3, 63) = R(63 N €1,€3 A 61) + R(Gg AN €9, €3 A 62) = )\2 + )\1,

and the other elements of Ric are equal to zero. Combining the above results, we see that

S = Ric(ey,e1) + Ric(ey, e2) + Ric(es, e3)
=2(M + A2+ A3).

This completes the proof. O
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1.7 Lie derivatives

We discuss here another notion differentiation of vector fields which generalizes the directional
derivative.

Definition 1.7.1. Let M be a smooth m-dimensional manifold and X € X(M).

(1) The Lie derivative of f € C°°(M) in the direction of X is Lx f = df (X).

(2) The Lie derivative of a vector field Y € X(M) in the direction of X is LxY = [X,Y].
We would like to define the notion of the Lie derivative of a tensor in the direction of a vector

field. Before giving the precise definition we need some preliminaries. Let X be a vector field
on M andletp: M x I — M, I C R, be the map satisfying

dﬁp(x,t) (at) = Xa:a
p(x,0) =,

for each (z,t) € M x I. Then, for each t € I, the map given by = — ¢i(x) = ¢(z,t) is a

local diffeomorphism.

Definition 1.7.2. Let M be a smooth m-dimensional manifold and X € X(M) and let T be

a r-tensor on the tangent bundle of M. The Lie derivative of T in the direction X is defined

by

(1.11)

t—0 t ’

reM.

It turns out that the Lie derivative of a r-tensor satisfies the property described in the following
proposition; see [26, Appendix 1, page 376].

Proposition 1.7.3. Let T be a r-tensor and X a vector field on M. Then
(LxT) (Vi Ys) = X(T(Vi,...,Y)) = T(LxYi,..o V) = oo = T(Vi,... Ly Yy),
Corollary 1.7.4. Let (M, g) be a Riemannian manifold. Then,
(Lxg)(Y.Z) = g(Vy X, Z) + g(VzX,Y),
where V the Levi-Civita connection and X € X(M).

Proof. Using Proposition 1.7.3 and properties of the Levi-Civita connection we have

(Lxg)(Y; Z) = X(9(Y, 2)) = g(LxY, Z) = (Y, Lx Z)
= 9(VxY,2) +g(Y,VxZ) = g([X, Y], Z) — g(Y, [X, Z])
=9(VyX,Z) + g(VzX.Y),
for each X, Y, Z € X(M). This completes the proof. O
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1.8 Point-wise conformal metrics

For later use, let us consider here the simplest deformations of a Riemannian metric, namely
the conformal ones. They are obtained by changing at each point the lengths of all vectors by a
scaling factor (depending on the point) without changing the angles.

Definition 1.8.1. 7wo Riemannian metrics g and g on a manifold M are said to be (point-
wise) conformal if there exists a smooth function o on M such that § = e*#g.

In the following, we compute the various invariants of the metric g in terms of those of g and the
derivatives of f with respect to the Levi-Civita connection V of g. More precisely, the following
result holds:

Theorem 1.8.2. Let (M, g) be a Riemannian m-dimensional manifold, ¢ € C*(M) a
smooth function on M and § the metric given by § = ¢*¢g. Then:

(1) The Levi-Civita connections ¥V and ¥V of the metrics G and g, respectively, are related
by the formula

VxY =VxY + (XQ)Y + (Yp)X — g(X,Y )V, forall X,Y € X(M).

(2) The volume formsV and V of the metrics G and g, respectively, are related by

V =e"V.
(3) The gradients of a function f € C°° (M) with respect the metrics G and g are related by
Vf=e?V/f.
(4) The Laplacians of a function f € C*(M) with respect to G and g are related by
Af = e {Af + (m = 2)g(Ve,V[)}.
(5) The curvature operators R and R of the conformal metrics § and g are related by
R=e¥{R+9® (Vo —dp®dp—LVy|’g)}.
(6) The Ricci tensors Ric and Ric of the metrics G and g, respectively, are related by
Ric = Ric — (m —2)(V?¢ — dp @ dp) — (Ap — (m — 2)|Ve[*)g.
(7) The scalar curvatures S and S of the metrics G and g, respectively, are related by
S=e*{S—2(m—1)Ap — (m—2)(m—1)|Ve|*}.

Proof. The proofs of the formulas follow by long but straight-forward computations; see for
example [3, Theorem 1.159]. O
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1.9 Global Riemannian geometry

Suppose that v : [a,b] — M is a regular curve in a manifold M equipped with a Riemannian
metric g. The length of 7y is given by

b
Lo)= [ W
The distance between two points x,y € M can now be defined as
dist(x, y) = inf { length of all curves joining the points x, y }

Note that the above mentioned set of curves is always non-empty since manifolds are assumed
to be connected. It turns out that dist is a topological metric on M. In fact the topology on M
induced by this metric coincides with the original topology of M. We say that the Riemannian
manifold M is complete if and only if (M, dist) is a complete metric space. The diameter
diam(M) of a compact Riemannian manifold M is given by the formula

diam(M ) = max{dist(z,y) : z,y € M }.

In order to find the curve with the smallest length joining two points x and y, we have to mini-
mize the length functional. The Euler-Lagrange equation for the variation of the length leads to
the following:
YA
Vv =0. (1.12)

Solutions of (1.12) are called geodesic curves. From the basic theory of ODEs we obtain the
following important result; for the proof see for example [26].

Theorem 1.9.1 (Existence & uniqueness). Let M be a Riemannian manifold. Then:

(1) For each fixed point x € M and each v € T, M, there is a neighborhood U, in M
around the point x, an open ball B(0,0,) in T, M around v such that for each y € U,
and w € B(0,9,), there is a geodesic v, ., : (—2,2) — U such that

Yw(0) =y and 7,,(0) =w.
Moreover, the mapping F : U, x B(0,0,) X (—2,2) — M given by
is smooth.

(2) Let I and I, be two open intervals with ty € I, NIy and v, : Iy — M and 5 : 15 — M
are geodesics with v, (ty) = Va(to) and vi(to) = V5(to). Then, v1 (11N 1y) = o (I1 N 1).
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Remark 1.9.2. Let us make some comments regarding the last theorem:

(1) As one can easily see any geodesic curve has speed of constant length. Therefore, in the
sequel, we will always assume that geodesics are parametrized with respect to the arc length.

(2) Geodesics are locally length minimizing. However, this property is not true in general as
already the sphere consists a counterexample.

Definition 1.9.3. Let x € M and consider an open ball B(0,6,) C T,M as in Theorem
1.9.1. The smooth map exp,, : B(0,0,) — M given by

exp,(v) = F(z,v,1),
is called the exponential map.

Let us collect in the next theorem the most important properties of the exponential map. The
reader can find the proofs in any classical book of differential geometry; for example see [26].

Theorem 1.9.4. Fix a point x in a Riemannian manifold M. Then, the following statements
hold true:

(1) Foreachv € To(T, M), it holds

dexp,|o(v) = v,

which means that the exponential map when restricted in a small neighborhood of the
origin of T, M is a diffeomorphism.

(2) Let ¢ a sufficiently small number such that exp, : B(0,0) — M is a diffeomorphism.
Then each geodesic starting from x meets orthogonally the boundary of exp,(B(0,9)).

(3) Ifthe distance function d, : M — R given by
d,(y) = dist(z,y)

is smooth at y, then
(Vda)(y) = 70(b),
where vy, : [0,b] — M is the unique geodesic that is connecting the points x and y,

(4) The Riemannian manifold M is complete if and only if, for each x € M, the exponential
map exp,, is defined in all of T, M. In this case, for each pair of points v,y € M there
exists at least one geodesic curve joining these two given points.

The second part of the above theorem is known in the literature as the Gaull Lemma. The third
part is due to Hopf and Rinow. Notice that compact Riemannian manifolds are always complete.
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Definition 1.9.5. Fix a point x in a complete Riemannian manifold M.
(1) The cutlocus of x in T, M is defined to be the set of all vectors v € T,, M such that

(1) = exp,(tv)

is a length minimizing geodesic for all times t € [0, 1] but fails to be minimizing for
t € [1,1 + ¢) for each positive number ¢ > 0.

(2) The cut locus Cut(z) of x in M is defined to be the image of the cut locus of x in T, M
under the exponential map.

(3) The least distance from x to cut locus Cut(x) is called the injectivity radius inj(x) of z.
The injectivity radius inj(M) of a Riemannian manifold is the infimum of the injectivity
radii at all points.

Fix a point x € M and consider the closed set
D, = {v e T,M : dist(exp,(v),z) = [v|} C T, M.
It turns out that the boundary 0D, of D, is exactly the cut locus of  in T, M and that
Cut(z) = exp,(0D,).

Moreover, the map
exp, : int(D,) — M — Cut(x)
is a diffeomorphism. From Sard’s Theorem it follows that the set Cut(x) has measure zero.

Another interesting fact is that the injectivity radius inj(x) of z can be defined equivalently as the
supremum of all » > 0 such that the exponential map exp, : B(0,r) — M is diffeomorphism.

We conclude this section with three results which show how the geometry affects the topology
of the manifold and vise versa; for the proofs we refer to [8] and [26].

Theorem 1.9.6 (Cheng-Bonnet-Myers). Let (M, g) be a complete m-dimensional Riemannian
manifold such that
Ric > (m — 1)kg,

where k is a positive constant. Then, the following facts hold:

(1) The manifold M is compact with finite fundamental group.
(2) The diameter of M can be estimated from above by diam(M) < 7 /\/k.

(3) If diam(M) = 7 /\'k, then M is isometric to S}
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Theorem 1.9.7 (Bishop-Cheeger-Gromov). Suppose that (M, g) is a Riemannian manifold of
dimension m such that Ric > (m — 1)kg, where k is a real constant. Then, for each x € M,

we have that
V(B(z,7)) < V/n“(r).

where V¥ (r) the volume of the ball of radius r in the simply-connected m-dimensional space
form of curvature k. As a matter of fact, the function

., VB@.r)

V()
is non-increasing and its limit as v — 0 is 1.
Theorem 1.9.8 (Klingenberg). Let M be a Riemannian manifold. The following facts hold:
(1) If M is compact, then the injectivity radius inj(M) is always positive.

(2) If M is compact and all the sectional curvatures are bounded from above by k > 0, then

inj(M) > min {W/\/E, (1/2) - length of the shortest closed geodesic}.

(3) If M is complete and simply connected whose sectional curvatures are pinched between
k and k /4 for some positive constant k, then

inj(M) > 7/Vk.

(4) If M is compact, even-dimensional, orientable whose sectional curvatures are positive
and bounded from above by a positive constant k, then

inj(M) > 7 /Vk.

1.10 Index notation

In the following chapters we will perform computations involving tensors with respect to local
coordinates or orthonormal frames. Let us briefly discuss the conventions that we will use,
following the exposition in [26]. Suppose that £ is a m-dimensional real vector space. We use
subscripts to denote vectors in £. Therefore, a basis of £ will be denoted by {e1, ..., en}.
Given a vector v € V, we then write it as a linear combination of this basis as follows

m

v = E v'e; = v'e;.
i=1
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Note that we use superscripts for the coefficients of v and then automatically sum over indices
that are repeated as both subscripts and superscripts. Let us consider now the basis {¢?, ..., ™}
of dual space V* given by ei(ej) = 5; This basis of the dual space is called associated with
{e1,...,emn}. Then we see that

v' = e'(v).
Hence, we decide to use superscripts for dual basisin V*. If o : V' — V' is a linear map then we
denote the components of the matrix of ¢ with respect to the basis {eq, . .., e, } by ¢!, namely

p(e;) = @gej‘
If o : V x V — R is a bilinear form, then we may represent the coefficients of its matrix with
respect to the basis {e1, ..., e, } by @;j, thatis ¢;; = ¢(e;, ;). Consequently, we may write
 in the form ‘ ‘
('p = SDZj e’L ® 6],
where & is the multiplication on 1-forms, i.e. if wi,wy € V*and X, Y € V, then
w1 (24 MQ(X, Y) = WI(X) . (A)Q(Y).

On the other hand, if ¢ : V' x V' — V is a vector valued bilinear form, then its coefficients with
respect to the basis {eq, . .., e,,} will be denoted by gpfj, that is
SD(%ej) = prfjek‘

Suppose that (2!, ..., ™) is a coordinate system in a Riemannian manifold /. Then we denote
the corresponding basic vector fields by {0, . . ., 9,, }. With respect to this basis, we have

(1) Components of the metric and of its inverse: 9(0;,0;) = gi; and (9%) = (gi5) "

(2) Components of the Riemannian 3-tensor: R(0;,0;,0,) = RL;,.0..

(3) Components of the Riemannian 4-tensor: R(0;, 05,0k, 0)) = Riji = ghkR?jl'
(4) Components of the Ricci curvature: Ric(8;,0;) = Rij = g™ Ripji.

(5) Scalar curvature in local coordinates: S = gij Ri; = gij gklRikjl.
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CHAPTER

THE RICCI FLOW EQUATION

In this chapter, we introduce the Ricci flow as an evolution equation, give examples of special
solutions to the Ricci flow and compute the evolution equations of various geometric quantities.

2.1 Motivation

The concept of the Ricci flow was introduced in 1982 in the seminal paper of Hamilton [18].
The Ricci flow is an evolution equation which deforms a Riemannian metric in the direction of
its Ricci curvature. In local coordinates, we can describe the Ricci flow by the equation

g(t) = —2Ry(t),  te(0,T), 2.1)

where g;;(t) denotes the components of a time-dependent Riemannian metric and R;;(¢) the
components of the Ricci curvature of the corresponding metric at time ¢ € (0,7"). Hamilton
was inspired by the work of Eells and Sampson [14] on the harmonic heat map flow, where under
certain conditions they succeeded to deform a smooth map between Riemannian manifolds into
a harmonic one. Hamilton’s main idea was to try to deform a given Riemannian metric on
manifold by a heat-type equation. He was led to consider the equation (2.1) due to this fact: If
M is a Riemannian m-dimensional manifold, then around each point there exists a coordinate
system (xl, ..., 2"™) where each coordinate function 2t M — R, 1 < i < m,is harmonic
with respect to the Riemannian metric of M ; see [26, page 409]. In such a coordinate system,
the components of the Ricci tensor satisfy

—2R;; = Ag,j + (lower order terms).

However, let us mention here that, the property of a coordinate system to be harmonic is not
preserved under (2.1). Moreover, it turns out that the equation (2.1) is not parabolic, so the
existence for short time of the initial value problem

L(t) = —2R;: (1),

ng< ) ]( ) (22)
9:5(0) = gij,

is not guarantied from the standard theory of parabolic PDEs.
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2.2 Definitions and examples

Suppose that (0, 7") is an open interval of the real line and let { g; }+ (0, be an arbitrary smooth
family of Riemannian metrics on a manifold A/. This means that for each (x,¢) € M x (0,7T)
we have an inner product g(, 4 on the tangent space 7, M. Then, we can regard {g; }+c(0,r) as
a metric g acting on the spatial tangent bundle H, defined by

H={XeT(M x(0,T)):dmr(X) =0},
where 7o : M x (0,T) — (0, T) is the natural projection map given by
7T2(l', t) ={.

Observe that each g; is a Riemannian metric on H since H ;) is isomorphic to 7 M via .
We can even extend naturally g into a Riemannian metric on M x (0, T"), with respect to which
we have the orthogonal decomposition

T(M x (0,T)) = H & RO,

Since H is a vector subbundle of T'(M x (0,7")), every section of H is also a section of the
tangent bundle 7'(M x (0,7)). We call the elements of I'(H) spatial vector fields. There is a
natural connection V on M x (0,7T). As a matter of fact, define V by

VxY =VyY, Vxd,=0, Vp0 =0 and VyX = [0, X], (2.3)

for each spatial vector fields X and Y, where V' stands for the Levi-Civita connection of g;.
One can readily check that V is compatible with g, i.e.

Xg(Y1,Y2) = g(VxY1,Y2) + g(Y1, VxYa),

foreach X € T'(M x(0,T)) and spatial vector fields Y7, Y5 € I'(H). Moreover, the connection
V is spatially symmetric, that is

VY1Y2 - VYQ}/I - [)/173/2]7

for each Y1, Y2 € I'(H). Let us give now the formal definition of the Ricci flow.

Definition 2.2.1. Let M be a m-dimensional manifold and {g:}.co 1) be a one-parameter
family of Riemannian metrics on M. We say that {g; }1c (0,1 is a solution of the Ricci flow if

V.9t = —2Ric,,

where Ric, is the Ricci curvature of the metric g.
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Example 2.2.2. Let us give some examples of metrics evolving under the Ricci flow.

(1)

2)

3)

(4)

Spheres. Let us denote by (S™, go) the m-dimensional unit sphere lying in R™*1, Then,
Ricy, = (m — 1)go.
Consider now the family of metrics {g; }+(o,r) given by

g = {1 —2(m — 1)t}go where T = ﬁ
From the formulas of Theorem 1.8.2, we have that

Ricy, = Ricgy = (m — 1)go,
for each t € (0,7"). Moreover, for each time-independent vector fields X,Y on M, we
obtain

{vatgt}(Xv Y) = at{gt(X7 Y)} = at{go(Xv Y) - 2<m - 1)t90(X7 Y)}
= _2(m - 1)90(X7 Y)
— —2Ric, (X,Y).

Hence {g; }+c(0,r) is a solution to the Ricci flow for every ¢ < T'. This shows that the sphere
evolves by shrinking homothetically and at 7" it collapses to a point.

Hyperbolic spaces. Let (H™, g) be the m-dimensional hyperbolic space of constant sec-
tional curvature —1. Then, Ric,, = —(m — 1)go. A similar computation as above shows
that the metrics {g¢ }1c(0,00) given by

gy = {1 +2(m — 1)t}go, where t > 0,

consist a solution to the Ricci flow. Hence the hyperbolic space expands homothetically to
infinity.

Einstein manifolds. Let (), go) be an Einstein manifold. Then, Ric,, = X go, where
A € R is a constant. Consider the family of metrics {g; }+c(o,r) given by

gt = (1 — 2Xt)go, for t such that 1 — 2\t > 0.

Similar computations as in the previous examples show that g; is a solution to the Ricci
flow. Hence, if A > 0 the flow exists up to time 1/(2)) and if A < 0 the flow exists for all
positive times.

Product manifolds Let (M1, g;(t)) and (Ma, go(t)) be solutions to the Ricci flow defined
in a common time interval (0,7"). Then, the family of metrics {g; };c (0,7 given by

gr = g1(t) x ga(t),

consists a solution to the Ricci flow on My X M,.

37



Chapter 2 2.3. Evolution equations

2.3 Evolution equations

In this section we will see how various geometric quantities evolve under the Ricci flow. With
abuse of notation, we will denote all connections by the same letter V.

Lemma 2.3.1 (Uhlenbeck’s trick). Let {g; }ico,r) be a solution of the Ricci flow. Then,

(1) There exists a local smooth time-dependent tangent orthonormal frame field {e,, . . . , e, }
with respect to g, satisfying

Vaei = Rije;, 1€{1,...,m},
foreacht € [0,T).
(2) The induced volume form dyu, on (M, g;) evolves according to the equation
Vo, duy = —Sdyuy.

Moreover, the volume V; of the evolved metrics satisfy

atv = — /Sd/,l/t
Proof. Denote by P, : T'M — T'M the (time-dependent) adjoint operator associated with the
Ricci curvature, i.e.
Ric(X,)Y) = q(PX,)Y)=q(X,PY), X,Y €X(M).
Consider now the time-dependent family of bundle isomorphisms ¢; : T'M — T'M given by
Vat@tzpto(ﬂt, te (OaT)a
Yo = 1.

We claim that ¢}g;, = go, for every t € [0,7T). Indeed, consider a local coordinate chart
{01, ..., 0n} in a neighborhood of ;. Using from (2.3) the fact that

[&,@] = Vaﬁi =0, 1€ {1, ce ,m},
we obtain
0dr91(0:,05)} = 0{g1(¢i(0:), 04(9;))} = (Va,9:) (01(0i), p1(05))
+9:(Va,1(9i), 0:(0;)) + 9e(0:(0:), Vo, 00(05))
= —2Ric(pi(0;), 0:(9;))

+9:((Pr 0 9:)(05), 9:(05))) + 9e(0:(0i), (Pr 0 ) (05)))
= 0.
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Hence, if {vy, ..., v, } is a local orthonormal frame with respect to the metric gq, then

{er = @i(v1), -y em = 0e(vm) }

is a local time-dependent orthonormal frame with respect to g;, for each ¢ € [0, T'). Moreover,
this frame satisfies

Vo6 = Rije;.
Denote by {wy, . .., wn, } the corresponding dual frame of {e1, ..., e, }. Then,
Vaw; = —Rz’ij
foreachi € {1,...,m}. Hence,
Vo, dity = Vo, (w1 A+ Awp) = —=Swi A -+ Awy, = —Sdjy.
By integrating we get

8tV = —/Sd/Lt,

and the proof is completed. H

Our next goal is to compute how the Riemann curvature tensor evolves under the Ricci flow.
We start with some auxiliary results that we will frequently use in the sequel. First let us denote
by Cp(T'M) the space of all (4, 0)-tensors satisfying the properties (1.7), (1.8) and (1.9) of the
Riemannian curvature tensor. Define now the bundle map @) : Cg(T'M) — C*°(M) given by

Q(R)ijri = Rijav Riiap + 2Riakb Rjae — 2Riaiy Rjaks, (2.4)

where we use Einstein’s summation convention and the components are regarded with respect
to a local orthonormal frame. Another thing that we will use often in our computations are the
Ricci identities that we state in the following lemma.

Lemma 2.3.2 (Ricci identities). Let ¢ be a (r,0)-tensor on a Riemannian manifold. Then,
the following formula holds:

(vg(,ng - V?CXSO)(ZM 227 ceey Zr) (25)
e —o(R(X,Y, Z1), Zoy o Z) — - — o(Z1, oy R(X, Y, Z,)),

where X,Y, Zy, ..., Z, € X(M).
Proof. The proof follows by direct computations and for that reason we omit it. O
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Lemma 2.3.3. The following formula holds:

(AR+ Q(R))ijiu = (Vi Ric) — (Vi Ric)j, — (V3 Ric)u + (V3 Ric)i,
+RiaRajkl + RjaRiakla (26)

where the indices are regarded with respect to a local orthonormal frame.

Proof. Using the second Bianchi identity (1.9) we obtain

(VEiR)(X7 Y7 Z? W) = _<VXR)(Y’ ei,Z, W) - (VYR)(eiaXa Zv W)
= (VxR)(e;, Y, Z, W) — (VyR)(e;, X, Z,W).

Since {e;} is an orthonormal frame we have

(V2 xR)(e;, Y, Z,W) =V .VxR(e; Y, Z,W)

and

(Vi,YR) (eiv X? Z7 W) = veivyR(eia X7 Z> W)

Thus, we can write the Laplacian operator as

(V2 R)(X,Y,Z,W) 2.7)

VL

(AR)(X,Y,Z, W)=

s
Il
N

(Ve,((VxR)(e;,Y, Z,W)—(VyR)(e;, X, Z,W))

[
NE

-.
Il
,_.

((vgi,XR) <6i7 Y? 27 W) - (Vzi,YR)(eh X, Z, W))

I

1

7

Using the Ricci identity (2.5) we deduce

R)(e;, Y, Z,W) — (VZ xR)(e. Y. Z,W)) = (2.8)

i.j=1

> (v

=1

Z R(X,e;,ei,€5)R(e;, Y, Z,W) + > R(X,e;, Y, e;)Res, e, Z,W)
5

R(X, €;, Z, e]-)R(ei, Y, €j, W) + Z R(X, €, VV, €j)R(€i, Y, Z, €j).
i,j=1 i,j=1
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By interchanging X with Y we obtain

m

> (V3o R)(en X, ZW) — (V2 yR)(ei, X, Z,IV)) (2.9)

=1

=Y R(Y.eieie;)R(e;, X, ZW)+ Y _ R(Y.e;, X,¢;)R(ei,¢;, Z, W)

ij=1 ij=1

+ > R(Y,e;, Z,e;)R(e;, X, 5, W)+ Y R(Y,e;, W, ¢;)R(e;, X, Z, ¢;).

1,j=1 1,j=1

Then, we subtract (2.9) by (2.8),

M

((V?X,eiR)(eh Y7 Z7 W) - (v%/,eiR)(elﬁ X: Z: W))

1

1

VL

@
Il
—

(Ve xB)(es, Y, Z,W) + (Ve y R)(ei, X, Z, V)

(R(Y, €, X, €j) — R(X, €, Yv, ej))R(ei, €j, Z, W)

-

<
Il
—

IMS

+2 R(X, ei,Z, ej)R(ei,Y, €j,W>

IMS

7 1

<

—2) " R(X,e;, W, e;)R(Y, e;, Z, ¢;)

ij=1
— " (Rie(X.¢)R(e;. Y, Z,W) = Ric(Y, ¢;)Rle;, X, Z,W)).
1,7=1

We use the first Bianchi identity (1.8) to get

R(Y, 61'7X, ej) - R(X, €Z‘,Y, Gj) = R(X, Y, €i7ej)'

41



Chapter 2

2.3. Evolution equations

Then, by the definition of Q(R)

I
MSQIMS NNgE

<.
Il
—

Hence, by (2.7)

(AR+Q(R))(X,Y,Z, W) =

((v2X,eiR) <€i7 Yva Za W) o

(V2 xR)(e:;, Y, Z,W) +
R)(X,Y,Z,W)

(RZC(X €])R(€j, Y, Z, W) -

(VYo R) (e X, Z, W)

(V2 yR) (e, X, Z,W))

RiC(Y, ej)R<€j> X, 7, W))

m

Z(v_z)(,eiR> (eia Ya Z, W)

=1
- Z(v%’,ezR)(
=1

+3 Ric(X,e;)R(e;, Y, Z, W)

1=1

(2.10)

eiaXa Z7 W)

+ " Ric(Y,e;)R(X, e:, Z,W).

Then, using the second Bianchi identity (1.9),

V. Rlep,Y,Z, W)=

Asa consequence,

m

Z(Vi(,eiR) (eia }/7 Zv W) =

=1

VekR(ek, Y, €k, W) —

VWR(eka Y7 €k, Z)

m

> (Vi zR) (e, Y e, W)

=1

Z (ViwR)(ei, Y, e;, Z)
1

(V;;ZRZC)(Y W) — (ViwRic)(Y, 2).
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Interchanging X with Y we get the following expression

Z(vg/,eiR>(ei7X7 Z’ W) = Z(v%'ZR)(ean €is W)
i=1 i=1
Z WR euX ewz)
i=1

= (Vi 4 Ric)(X, W) — (Vi Ric)(X, Z).

By replacing the last two equations in (2.10) the proof is completed. 0

Lemma 2.3.4. Let {g:}icjo,r) be a solution of the Ricci flow equation and {e, ..., ey} an
orthonormal frame as in Lemma 2.3.1. Then, with respect to this frame, the following holds:

(1) The Riemannian curvature tensor evolves according to
(Vo,R)ijt = (AR + Q(R))ijni- (2.11)
(2) The Ricci tensor evolves according to
(Va,Ric)i; = (ARic)i; + 2R;q0Rap. (2.12)
(3) The scalar curvature evolves according to
.S = AS + | Ric|*. (2.13)

Proof. The proof follows using Lemma 2.3.1 and 2.3.3 and straightforward computations. []
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CHAPTER

SHORT-TIME EXISTENCE

In this chapter, we prove that the Ricci flow equation, with initial data a compact Riemannian
manifold, has always a smooth solution for a short time. It turns out that the Ricci flow equation
is a weakly parabolic system and the existence of a short-time solution is not guarantied from
the standard theory of PDEs. We will present the so-called DeTurck’s trick, presented in [13].
DeTurck’s idea was to modify the Ricci flow equation in a way that it becomes strictly parabolic.
Then he shows that these two equations are equivalent and the existence and uniqueness of the
solution follows from the theory of parabolic PDEs.

3.1 Nature of the Ricci flow

3.1.1 The symbol

Firstly, we introduce the concept of parabolicity of differential operators on vector bundles. Let
M be a smooth manifold with a Riemannian metric g associated with the Levi-Civita connection
VM. Let E and F be vector bundles over M with E equipped with a Riemannian metric ~ which
is compatible with the connection VZ. Using the connections VM and V¥ we can construct
V", the n—th iterated covariant derivative of a section ¢ € I'(E).

Definition 3.1.1. 4 differential operator L: T'(E) — T'(F) of the form
LW)(z) =Q(z, Vi(z),...,V"(z)) € F,

where () is smooth in all its variables, is called differential operator of order n. If L is R-linear
in 1) then we say that L is a linear differential operator. Otherwise, L is called a non-linear
differential operator.

Let £: I'(E) — I'(F) be a linear differential operator of order n. Then, in index notation £
can be written as

L) = D AV, 0,0) + o+ D AN Vo, ) + A(W),

ilu~~~’in,
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Chapter 3 3.1. Nature of the Ricci flow

where for each x € M,
Az),..., A"(x): B, — F,,

are linear maps. These maps are called the coefficients of the linear operator L.

Definition 3.1.2. Let L: I'(E) — I'(F') be a linear differential operator of order n. Also, let
re€Mand&=3"" &0, € T,M. The linear map o¢(L,x): (E), — (F), given by

is called the principal symbol of the operator L at the point x in the direction &.

Definition 3.1.3. The operator L is called elliptic operator if o[L](§) () is a bundle isomor-
phism of the fiber for every non-zero & € X(M) or equivalently, if there exists ¢ > 0 such
that for all & and ) we have

(o[L]() (W), ¥) = clePlv]. (.1

We are interested in the case where the manifold M is equipped with a one-parameter family of
smooth metrics {g; }scpo,7). We denote by { V9 },c(o 1) the corresponding Levi-Civita connec-
tions. Let E and I be vector bundles over M where E' is equipped with a fixed metric h and
connections { V' } (o 1) which are compatible with h, that is,

vh(h1, ) = h(Vuih1, ¥a) + h(ty, Viyiha),

for each tangent vector v, sections 11,19 € I'(E) and ¢ € [0, 7). One can use the connections
V' and V¥ to construct (V)" acting on sections of E. Let {t(t)}icjo,7) be a smooth time-
dependent family of sections of F, where smooth means for each (z,t) € M x [0,T) the

time-derivative
aQﬁ ¢(l’,t—|—h) —¢($at)

ot~ h ’
exists. Hence, {3t?/f}te[o,T) is another family of sections on E. We consider the equation
o(x,t) = (LY)(z,t) = Q(a,t, (VHY(x, t)yonny (Vt)”¢(a;, t)) (3.2)

where L: I'(E) — I'(F) is a time-dependent differential operator of order n. If for each fixed ¢
the operator L is linear elliptic then we say that (3.2) is a linear parabolic differential equation.

Theorem 3.1.4. Let L be a parabolic differential operator at 1y € I'(E). Then, there exists
T > 0 and a smooth family 1 (t) € I'(E),t € [0,T] such that there exists a unique smooth
solution for the initial value problem

¥(0) = o
fort € [0,T] where T depends on the initial data 1.
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Chapter 3 3.2. Ricci-DeTurck flow

3.1.2 Linearization of the Ricci tensor

We need to explain what parabolicity means when L is a non-linear operator L: I'(E) — ['(F).
Definition 3.1.5. The linearization DL of L at 1y, in case that it exists, is defined to be the
linear map DL, : I'(E) — I'(F) is given by

DL, (1) = lim Lo+ 5%) = L(po) _ IL(p(s))

s—0 S 85 5:07

where p: [0,1] — T'(E) is a one-parameter family of sections with ¢(0) = ¢o and ¢'(0) =
Js5¢(0) = 1.

Definition 3.1.6. We say that the equation (3.2) is strictly (or strong) parabolic when the equa-

tion o
— =D
8t ESDO (w)7

is parabolic for every ¢, € I'(E).
We focus now on the Ricci flow equation where the operator is

L = —2Ric: T'(Sym(T*M x T*M)) — T'(Sym(T*M x T*M)).
Using Lemma 2.3.4 with 0;g = h the linearization of —2Ric is given by

D(—2Ric) = —2D(Ric)(h)

= (Vih)i — (Vi k)i + (ViR — (V).
=1
Then, the principal symbol is
o[=2D(Ric)|(&)(M)w = _ &i&ihui — Ge&ihai + Exilui — Eiibna.
=1

We can choose hy; = £ and then o[—2D(Ric)](§)(h)w = 0 and thus an inequality such
(3.1) can not hold. Hence, Ricci flow is not a strictly parabolic equation.

3.2 Ricci-DeTurck flow

Firstly, we introduce some definitions that we will use. Let f: M — N be a smooth map
between two Riemannian manifolds (M, g) and (N, h) of dimension m and n respectively. We
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Chapter 3 3.2. Ricci-DeTurck flow

know that the derivative df of f is viewed as a section of the vector bundle T M*® f*(T'N). This
vector bundle is endowed with the induced connection V. We denote with VM the Levi-Civita
connection on 7'M, V¥ the Levi-Civita connection on 7N and V/ the pull-back connection on
f*(T'N). Then the connection V is given by

(Vxdf)(Y) = Vidf (V) — df (VYY),

forall X,Y € X(M).

Definition 3.2.1. The harmonic map Laplacian of f with respect to the metrics g and h is defined
by

Agnf = (Ve df)(es),
=1

where {e;} is a local orthonormal frame on (M, g).

Note that A, f is a section of the vector bundle f*(T'N). Let {2} and {y*} be local coordi-
nates around the points z € M and f(z) € N respectively. Then, the harmonic map Laplacian
of f can be written in the form

n m n N o ba c 0
Ag,hf = ; (AMf“ + Z Z ng(Fh)gc aj;z aii) oy (3.4)

ij=1a,b=1

where

. m .y aZfa afa

i k=1

is the Laplacian operator of f®. Also f“ are the components of f and I'y, I';, the Christoffel
symbols with respect to the connections VM and V' respectively.

The next Lemma states that the harmonic map Laplacian of a map f: M — N is unchanged
under the action of a diffeomorphism on M.

Lemma 3.2.2. Let f: M — N be a smooth map between two Riemannian manifolds (M, g)
and (N, h). Also, let p: M — M be a diffeomorphism. Then, it holds

(A n(f 0 @) (@) = (Bgnf)(p(x)) € Thp@yN,
forall x € M.

Proof. Fix v € M. Let {z'} be local coordinates around ¢(x) € M. Then, we can induce
local coordinates {y'} around = by y* = z' o . Also, fix local coordinates {z*} around
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Chapter 3 3.2. Ricci-DeTurck flow

fow(x) € N. Then, in these coordinates we have that 222" () = 212 (o(2)), (*g)¥ = g

oyt ozt
and (T'y- ) = (I'y)7;. We compute,

(Dprgnlfop))(@) = ( 3 (prg)? (M (), O(f o w)a)

a=1 “ijk= ayzayj ayk
N i Of 09)" (f o)\ 0
)7 () . .
+ Z_: ((p g) ( h)bc ayz ay] Hza
1,9=1a,b=1
n m - 82]6(1 afa
= i — k2
2. (axiaxa' To)s axk)
a=1 i,5,k=1
AN I aftofe\ o
1] 1'\ a ~J —J
! uz—l a;1 7t Oz &cj) 9z
= (Agnf)(p(x)).
This completes the proof. 0

Now, we can introduce the Ricci-DeTurck flow.

Definition 3.2.3. Let M be a compact Riemannian manifold endowed with a fixed metric h.
Also, let §(t) = g,t € [0,T) be a one-parameter family of Riemannian metrics on M. The
metric {J }tepo,r) IS a solution to the Ricci-DeTurck’s flow on M if it suffices the following
equation

0

aﬁ) = —2Ricz) — Le,g(1),
where & = Ag, n1.

We will show that the Ricci-DeTurck flow is strictly parabolic and as a consequence the parabolic
theory of PDEs implies that there exists a unique solution.

Proposition 3.2.4. Let M be a compact Riemannian manifold endowed with a fixed metric
h. Given any initial metric gy, there exists T' > 0 and a smooth one-parameter family of
Riemannian metrics { g }1cjo,r), such that {g }ico,r) is a solution to the Ricci-DeTurck flow
with §(0) = go. Moreover, the solution {g; }ic(o,1) is unique.

Proof. In local coordinates {z;}, the Ricci tensor of § takes the form

1

=3 > 55 (0:0dk+0;0kGu— 000Gk — 0i0kgin) + (Tg)% (Tg)al,— (T3) 5T, (3.5)

i7j7k7lﬂp:1

R;
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We denote with I'; and I', the Christoffel symbols associated with the metrics g and h, re-
spectively. Then, the vector field £ = Ay ;I can be written locally, according to (3.4), in the
form

=Y §"(Tw)i — (Ta)h)
i,k,l=1

By the definition of the Christoffel symbols, this implies

> G (Oihyk + Okhig — 05hix) — 7 DGy + OkGss — 03Gn)) D1
i,k,l=1

By Corollary (1.7.4) we obtain

(Leg)ji = Z G™(0:0;G;1 + 0;0kGa — 0;0,ix) + (lower order terms). (3.6)
g k=1

Finally, combining (3.5) and (3.6) we deduce

—2Rj — (Leg)ji = Z G 0,015 + (lower order terms).
ivjkl=1

The above form of the Ricci-DeTurck shows that it is strictly parabolic. The theory of parabolic
PDEs implies that there exists a unique solution on a short time interval [0,7") where T is a
positive real number. This completes the proof. 0

Proposition 3.2.5. Let M be a compact Riemannian manifold endowed with a fixed metric
h. Also, let {G: }icjo,r) be a family of Riemannian metrics on M satisfying the Ricci-DeTurck
flow, that is,
0
ot

where & = Ag, nI. Moreover, assume that {got}te[o;p) is a one-parameter family of diffeo-
morphisms such that

§(t) = —2Ricz) — Le,g(1),

9 () = &lu(a)),

forall (x,t) € M x [0,T). Then, the family of metrics {g;}:cjo,r) defined by g. = @} o G
forms a solution to the Ricci flow.
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Proof. Since g(t) = ¢;(g(t)),t € [0, T) we have

O oy Pras(@(E+8) — i (9(t))
Sa(t) = " (5(1))) = lim -
i Pis 0+ 5) — 93 (g(t + 5)) + i PO+ 5)) = 07 (9(1)
s—0 S s—0 S
*\—1 *
* . SO o SO S - ] ~ * ~
= ot 1 2= DY 4 )+ pif01a(0)
s—0 S
= (Lxg(1)) + 1 (9g(1)) (3.7)
= ¢, (Lxg(t)) + i (—2Ricge) — Lxg(1))
= @7 (=2Ricgp)) = —2Ricy,
Indeed, the metrics { gt}te[o,T) is a solution to the Ricci flow. This completes the proof. O

Conversely, we can show that if we have a solution to the Ricci flow then we can construct a
solution of the Ricci-DeTurck flow.

Proposition 3.2.6. Let M be a compact Riemannian manifold endowed with a fixed metric
h. Also, let the family of Riemannian metrics {g:}icor) be a solution to the Ricci flow.
Moreover, suppose that {¢, }icio.1) is a family of diffeomorphisms on M evolving under the
harmonic heat map flow, that is,

0
a@t = Agt,h@t-

Then, the family of metrics {G: }1c(o,1) defined by ¢; o g = g; forms a solution to the Ricci-
DeTurck flow. Furthermore,

9 ula) = &),

Sorall (z,t) € M x [0,T), where §& = Ag, 51
Proof. According to the equation (3.7), since ¢; (g(t)) = g(t),t € [0,T) we have
1 (LxG() + i (05(1) = Dug(t).
We have assumed that the family of metrics { gt}te[o,T) is a solution to the Ricci flow. Thus,

i (Lxg(t) +¢;(0g(t)) = —2Ricy,

and as a consequence,
©; (Lxg(t) + 0:g(t) + 2Ricz(t)) = 0.
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This implies that the family of metrics {g; }+c[o,r) forms a solution to the Ricci-DeTurck flow.
Finally, by Lemma 3.2.2 we have,

%(pt(l‘) = (Agnp) () = (AgrG.npr) (T)

= (Bg.n)(pr(2)) = &l pi()),
for all (z,t) € M x [0,T). This completes the proof. O

Theorem 3.2.7. Let M be a compact Riemannian manifold and let gy be a smooth metric
on M. Then, there exist a real number T' > 0 and a smooth family of metrics {g; }ico,r)
such that {g:}ico,1) is a solution to the Ricci flow and g(0) = go. Moreover, the solution

{9t }rejo,r) is unique.

Proof. We have already shown in Proposition 3.2.4 that there exist 7' > 0 and a smooth one-
parameter family of metrics {g; }+c(o,7), such that {g; }+c[0,7) is a solution to the Ricci-DeTurck
flow with g(0) = go. Hence,

8t§(t) = —2RiC§(t) — ,Cgtg@),
where & = Ay, 1. For each point z € M we denote by ¢;(x) the solution of the ODE

2 () = &),

with initial condition ¢y = I. By Proposition 3.2.5 we know that the metrics

9(t) = ¢ (Ag(t), t€0,T),

form a solution to the Ricci flow with g(0) = gq.

In the next step, we prove the uniqueness statement. Let g;(¢) and g2(¢), t € [0,T') be two
solutions to the Ricci flow with ¢;(0) = ¢g2(0). We want to show that

g1(t) = g2(t)

for all t € [0,7). We will argue by contradiction. Suppose that g;(t) # go(t) for some
t € [0,T). We define 7 € R by

T=inf{t € [0,T) | g1 (t) # g2(t)}.

Then, it is true that g;(7) = go(7). Also, let ¢} be solution to the harmonic map heat flow

ERSUN
{ Ztlwt:[ a1 (8),h Pt (3.8)
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and similarly, let ¢? be solution to the harmonic map heat flow

9,2 A
{ gtft: - 92(8),h Pt (3.9)

The harmonic map heat flow is a parabolic equation so there exists a unique solution on a short
time interval [, 7 4 ¢), where £ > 0. Furthermore, if we choose ¢ to be small enough, we have
that ; and 7 are diffeomorphisms for all ¢ € [0, 7). Then, for each ¢ € [r, T + ¢) we define
two Riemannian metrics g; and g; on M by

gi(t) = ()" (u(t)  and  ga(t) = ()" (32(1)).

Using Proposition 3.2.6 we obtain that the metrics g; and g» are solutions to the Ricci-DeTurck
flow ont € [1, T + £). Hence, by Proposition 3.2.4 and due to the fact that g, (7) = ga(7) we
conclude that ¢, (t) = go(t) forall t € [r,7 + ). Foreacht € [1,7 + ¢), we also define a
vector field & on M by

Agiwynd =& = Dg)nl-

Then, using Proposition 3.2.6 we obtain

Jom=ael@)  md Do) = alei),

for all (x,t) € M x [1,7 + €). By the way that we have define (! and ¢? in (3.8) and (3.9)
respectively, it holds ! = I = ¢2. Hence, we have that

vr = o4,
forallt € [7,7 + ¢). Finally, we can conclude that
g1(t) = (9)"(61(1)) = (¢)"(2(1)) = ga(1),

for every t € [7,7 + ). This contradicts the definition of 7 and the proof is competed. 0

3.3 Curvature blow-up at finite time

In this section, we show that as we approach the finite maximal time of existence of the flow 7'
the Riemannian curvature tensor explodes.
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3.3.1 Derivative estimates for the curvature tensor

We denote withV™ A the n—th iterated covariant derivative of the tensor A and with A x B any
linear combination of contractions or metric contractions of A ® B with coefficients that do not
depend on A or B. For example, if A = A;;; and B = B,,, then A * B may represent

3
Im Im
24,5 Bjq, or  Aijug " Bmgr or E Aijrad " Brymks -

s=1

The *-notation is very abstract but we use it in order to take bounds and avoid complicated
combinations of tensors. The most useful property obtained by the Cauchy-Schwartz inequality
is

|Ax B| < C|A]|B,
where C' > 0 is a constant.

We denote (A*)* any k-fold product A * ... * A. Let A be a n-tensor. We use the following
equations

Vi AJA = ViAA — AV, A = g9(V,V,V,A4 - V,V,V,4)
=" ([Vi, VilV;A+ ViViV,A = V,V;V, A)
= g7([Vi, ViV, A+ VilVi, V,14).

Since

(Vo Vil Aiy i = = > BRI Aiy i = > Rijistg ™ Aiy i = R A,
s=1

s=1

we get
[V,AJA=R*VA+V(R+xA) =R« VA+ VR« A.

Then, we can use the second Bianchi identity (1.9) and obtain [see [9], page 227]
[V,A]JA = R*VA+ VRicx A. (3.10)

It also holds
AJA]? = 2(AA, A) + 2|V A2 (3.11)

Let A be a tensor field satisfying the evolution equation
Vs A=AA+ B.

where B is a tensor of same type as A. Then, we can derive the following equations:
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Using (3.11) we obtain
8t|A|2 = v@tgt(A7 A) = 2gt(v8tAv A) + Vatgt(Aa A) (312)
=2g(Vy,A,A)+ Ricx Ax A
=2g;(AA+ B, A) 4+ Ricx Ax A
= A|AP? = 2|VA]® + B* A+ Ricx (A*)%.

We would like to know how the covariant derivative of A, VA = 0A + A % I" evolves. The
evolution equation of the Christoffel symbols

vatrfj = _gkl(vile + V,;Ry + ViR;j)
can be written in the form
Vo, I =g * VRic.
Then, by (3.10)
Vo, VA = 0,(0A) + Vy,AxT + A%V, (3.13)
= aVatA + v(atA x '+ A x Vo, I'
= V(0,A) + Ax VRic
= V(AA+ B)+ A x VRic
=AVA+ R«VA+VRicx A+ VB + AxVRic
=AVA+ R*xVA+ VRicx A+ VB.

We observe that V A satisfies an evolution equation of the type
Vo, VA=A(VA)+C, where C =R*xVA+VRicx A+ VB.
Thus, using (3.12) we obtain
O|VAP? = A|VAP?=2|VVA|*+(R*VA+V Ricx A+ V B)xV A+ Ricx((VA)*)%. (3.14)

We use the above formulas to compute quantities concerning the Riemannian curvature tensor
whose evolution equation (2.11) can be rewritten with the *x-notation as:

VaR=A(R)+RxR. (3.15)
Then, using (3.12) we get
O(|R*) = A|R)? = 2|[VR]* + (R)*® (3.16)
and by (3.14) we have
O|VR|? = A|VR]*> = 2|VVR|* + R (VR)*. (3.17)
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Proposition 3.3.1. Let M be a m-dimensional compact Riemannian manifold and let g; be
a solution to the Ricci flow on M. Then, given a > 0 and integer n, there exists a constant
C, depending only on m,n and max{a, 1} such that if

|R(z, 1), < K,
forall (x,t) € M x [0, ] then,

n 1
V" R, )], < CK 1.

Sorall (z,t) € M x (0, %].

Proof. We work by induction on n. Let n = 1. Then, by (3.17) we have

O|VR|* = A|[VR]* — 2|VVR|* + R* (VR)*. (3.18)

We define
F(x,t) = t|VR> + B|R|?,

where [ a constant that we will choose later. Note that at t = 0 we have
F = p|R* < BK*.
Then, we differentiate /' and get
0,F = |VR|? + td,([VR[?) + B0, R]*.
Thus, using (3.16) and (3.17) we have

OF = |VR|* + t(A|VR]* — 2|V2R|?* + R (VR)*)
+ B(A[R]* = 2|[VRP + (R)*)
= AF + (1 -28)|VR]* + B(R)*® + tR * (VR)* — 2t|V*R|?
< AF + (1 -28)|VR]* + BCy| R + tC1|R||VR)?
= AF + |VR|*(1 — 28 + tCy|R|) + BCy|R|?

where C1, Cy are constants depending on m. By assumption we have that |R| < K for all
t € [0, %]. Thus,

OF < AF + |VR*(1 — 28 + C1K) + BCL K.
If we choose (3 such that 3 > % we obtain

OF < AF + BC,K?3,
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Chapter 3 3.3. Curvature blow-up at finite time

forall ¢ € [0, ]. We can apply the scalar maximum principle and solve the associated ODE

Z—? = 8K, u(0) = BK2

Hence,

sup F(z,t) < CoBK*t + BK? < CyBaK? + BK? = (aCy + 1)3K?* < C*K?,

xeM
for all t € [0, %], where C' is a constant depending only on m and a. Concluding, by the
definition of /' we have CK

VR| < =,
| |_ﬂ

for all t € (0, #]. This proves the case where n = 1. Similarly, we work on the case where

n > 1 by using the identities

V" AJA=V"AA—AV"A=> V'R«+V""A (3.19)
i=1
and calculate .
Va(V'R) = AV'R+ Y V'Rx V" 'R.
i=1
Also, the following holds

OIV"RP? = AIV'R]> = 2|V""'R*+ > V'R+ V" 'R+ V"R.
i=1
In order to control | V™ R|? we consider the quantity

G =1"V"RP + by ¥ coit"'|V" R

=1

and apply the scalar maximum principle. This completes the proof. 0

3.3.2 Convergence of smooth metrics

We need to define a notion of convergence of sequences of metrics, or more general convergence
of sections of a certain vector bundle.
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Definition 3.3.2. Let E be a vector bundle over a Riemannian manifold M with Riemannian
metric g and connection N on E. Let U C M be an open set with U a compact set in M
and let (§;) be a sequence of sections of E. For each p > 0 we say that £, converges in C?
to & € I'(E|y) if for every € > 0 there exists ko = ko(c) such that

sup sup |V*(&§ — )|, < €.
0<a<p zcU

whenever k > ko. Moreover, we say that &, converges in C™ to { on U if &, converges in CP
to & on U for every p € N.

We write g, > g1 when g5 — g7 is non-negative definite.

Proposition 3.3.3. Let M be a compact manifold and {g; }1c (0,1 be a smooth one-parameter
family of metrics on M. If there exists a constant K < oo such that

[ [t

6_Cg(ac,O) < 9(z,t) < ecg(:v,O)u
Sor all (z,t) € M x [0,T). Moreover, the metrics g, converge uniformly to a continuous
metric gr ast — T.

At <K,

forall x € M, then

Proof : Fix (z,t) € M x [0,T) and X € T, M. Then,
g(mt)(X !
log <—>dt‘: /8 log g0 (X, X dt‘
e (05 | diflog g (X, X))
! 1
| a4 (XX dt‘
/ g(zt)(X X) t9( ,t)( )

1

t X
< / &:gﬂ( )(dt
0 ( ‘X’g(zt) |X‘g(zt)
t
< OtY(x
/0 D gy
<K,
since
T(X, X)| <|Tly;=sup [T(Y,Z)],
Y,ZeTy M
[Y]g=|Z]g=1
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for all unit vectors X € 7T, M and 2-tensors 7'. By considering the exponential of the inequality

we obtain
e % 9.0) (X, X) < grany (X, X) < €€ g0)(X, X).

Since X is arbitrary we have
e 90y < 9any < € 9(0)- (3.20)

This shows that the metrics { g }+c(o,7) are equivalent. Hence,

T
0

where K’ a positive constant. Note that now the norm is taken with respect to a constant metric
go rather that the time-dependent g;. Define now

dt < K', (3.21)
0

g

9
g(x,T) = g(z,0)+ [ =gl t)dt.
o Ot

The definition is well since by (3.21) % g(z, ) is absolutely integrable with respect to the metric
go. Hence, using the fundamental theorem of calculus we get

T

0
< =g, t
%_[‘atmz

dt = 0,
go

dt.

g0

9(e.7) - g(o Ol = | [ ot tii

Then,

T
9
. ~ —y 9
lim [g(2, T') = g(, )4, < lim, /t ( 5:9(@t)

for all x € M. Since M is compact the convergence is uniform. Hence, g; — g uniformly
ast — T'. Since g, are continuous we can conclude that g7 is continuous. By taking the limit
of the equation (3.20) as ¢ — T" we conclude that g is positive definite. Thus, the metrics g,
converge to a continuous Riemannian metric g7. This completes the proof. 0

Lemma 3.3.4. Let (M, g) be a Riemannian manifold and NV the Levi-Civita connection as-
sociated with the metric g. Also, let V be a torsion free connection on M. Then,

VXY — ﬁXY = F(Xa Y)a

where
29<F(X7 Y),Z) = (6X9)<Y7 Z) + (6Yg)(X7 Z) - (6Zg)<X7 Y)

Moreover, it holds B _
V(atgt) - v(atgt) = Vg, * 0:94.
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Proof. By Koszul’s formula (1.6) and since V is torsion-free we have

20(VyX. Z) = X(g(Y.2)) + Y (9(X. 2)) ~ Z{g(X.)
+g([Xa Y],Z) B g([X’ Z]7Y) - g([Y> Z]’X)
= (Vxg)(¥.2) + (Vra) (X.Z) — (V2g) (X.Y)
+29(VxY, Z)

forall XY, Z € X(M). This completes the proof. O

Lemma 3.3.5. Let (M, g) be a Riemannian manifold and V the Levi-Civita connection as-

sociated with the metric g. Also, let V be a fixed background connection on M which is
torsion free. Then, given an integer n > 1 we have,

m—1
V"0rgs — V"0igs = Z Z Vigy s % Vg « V'O,
1=0 i14...+ig=m—I
Proof- We work by induction on n. When n = 1 we have by Lemma 3.3.4
V(0rgs) — ﬁ(atgt) = ﬁgt * 01t
Suppose that n > 2 and

V" (igr) — V" (Orge) (3.22)

m—2
- Z Z Vitge s+ x Vg, V'Oyg,.
1=0

i1+ Aig=m—l—1

Hence,

V" Bige) — VV" " (Out) (3.23)
- Z ﬁilgt oo Xk 6iqgt * V%latgt

T Z 62‘1% koo ok Vﬁiqgt * 6latgf;-

1=0 i14..4ig=m—I—1

By Lemma 3.3.4 we can deduce
V!9 = VV'0,g, + Vi 6laltg(t)
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and o o _ o
VV7g = VV/g + Vg x Vg,
Therefore, (3.23) becomes

n—1
V"0,g — V"0,g = Z Z Vitg, s---% Vg, % Vlatgt.

1=0 i+-+ig=m—I

This completes the proof. O

Let V be the Levi-Civita connection associated with the metric go. For every integer n we define
the continuous functions
u,: [0,7) = R givenby u,(t) = sup [V"09(x,t)| gz
zeEM

and

Un: [0,T) - R givenby ,(t) = sup |6”8tg(:c,t)|go,
zeM

foreach t € [0, 7). Since M is compact we can write

V"/ 8Tg(7)dT:/ V"0,g(T)dr,
0 0

forall t € [0,7) and hence,

. t
sup |V" g4, g/ U (7)dT (3.24)
0

zeM
forallt € [0,7).

Proposition 3.3.6. Assume that fOT u,(t)dt < oo for m € N. Then, fOT Uy, (t)dt < oo for
n > 1.

Proof. We work by induction on n. Fix n > 1 and suppose that fOT w(t)dt < ooforl <1<
n — 1. By (3.24) we have

sup |§1gt|go < 00 (3.25)
(z,)EM x[0,T)

for 1 <[ < n — 1. We have already shown in Proposition 3.3.3 that the metrics gy and g; are
uniformly equivalent for all £ € [0,7"). Using Lemma 3.3.5 we have

|V”8tgt|go - |Vn3t9t|go

n—1
< Cl Z Z ‘Vilgt‘go T ’viqgt’goyvlatgt’gm

=0 i1+...+i1=n—1
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where (] is a positive constant. Then, due to (3.25) we obtain

n—1

V" 0iglg9 < |V"Orgitlgy + C2 > V' Drgilg,

=1
+ 02(1 + |Vngt|go)|8tgt|go

and again by the equivalence of the metrics we get

n—1

V" 0igtlgo < Cs|V"Orgilg, + Co > V' Orgil g

=1

+ 0203(1 + ‘6ngt‘go)|8tgt|gt'

By (3.24) we have
n—1 t
iin(t) < Coun(t) + C2 > an(t) + G (1 + / fin(7)dr ) o (1),
1=1 0

forall t € [0,7). Then, we can conclude that

d b
pr log (1 +/0 un<7')d7') < Ciup(t) "

for all t € [0,7). By assumption we have fOT un(t)dt < oo for every n € N and by the
induction hypothesis we have that fOT w(t)dt < oo forevery 1 <1 < mn — 1. Thus,

t
/ U (T)dT < 0.
0

This completes the proof. 0

Proposition 3.3.7. The metric g; in Proposition 3.3.3 is smooth and the metrics g, converge
inC*tograst —T.
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Proof. By Proposition 3.3.6 we have that fOT T, (t)dt hence we define

T
90, T) = gla,1) / Bug(z, 7)dr
t
and we have .
Vg2, T) = V()] < | / n(r)dr| = 0, (3.26)
t

for all x € M ast — I'. This completes the proof. O

3.3.3 Curvature blow up at finite time

Theorem 3.3.8. Let M be a m-dimensional compact Riemannian manifold and let { g }1c (0,1
be the maximal solution to the Ricci flow on M. Furthermore, suppose that T' < oo. Then,

lim (sup |R(x,t)]) = oo.
t—T xeM

Proof. Suppose by contradiction that there is a constant X > 0 such that |R(x,t)| < K. Then,
it follows by Proposition 3.3.7 that ¢, converges uniformly in C'*° to a smooth metric g7. Since

gr is smooth by Theorem 3.2.7 we know that there exists a unique solution to the Ricci flow
g(t) with g(0) = g(T') on [0, &],& > 0. Thus, define

) t), tel0,7),
g(t) = { Qgt)_ T), tg {T,T)nt g)

Q

and then §, is a solution to the Ricci flow with §(0) = go. This contradicts the definition of T’
and completes the proof. ]
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CHAPTER

THE VECTORIAL MAXIMUM PRINCIPLE

The maximum principle is one of the most useful tools in geometric analysis. In this chapter,
we present the maximum principle for scalar smooth functions on a manifold M and in the
second part we generalize the principle for sections of a vector bundle. This generalization was
firstly made by Hamilton in [17]. In particular, we present a generalized version of Hamilton’s
maximum principle, based on [4].

4.1 Scalar maximum principle

In this section, we assume that M is a compact manifold endowed with a continuous time-
dependent family of Riemannian metrics {g; }+c[o,r). Consider the parabolic semi-linear opera-
tor L, given by

Lu=uy — Au— g(X,Vu) — V(u,t),

where u: M x[0,7") — R is a smooth function, X is a time-dependent continuous vector field,
A is the Laplacian with respect to g, and W(z,t): R x [0,7) — R is a map locally Lipschitz
in the first variable and continuous in the second.

Proposition 4.1.1. Let u: M x [0,T) — R be a smooth function, satisfying
u — Au > 0. 4.1)
If u(x,0) > c for all x € M for some ¢ € R then u(x,t) > cforall (x,t) € M x [0,T).
Proof. Fix € > 0. Define an auxiliary function u.: M x [0,7) — R given by
ue(z,t) = u(z,t) + (1 +1).

By hypothesis,
us(2,0) =u(z,0) +e>c+e>c.

Suppose that there exists an € > ( such that

u€<$’t) S Cu
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Chapter 4 4.1. Scalar maximum principle

forall (x,t) € M x [0,T). Since M is compact, there exists a point (z',¢") € M x [0,T") such
that

u(2;ty=c and  wu.(z,t) <ec,
forall (x,t) € M x [0,t']. Thus, at (2/,t') it holds
O (2, t) <0 and  Au(z',t") > 0.
Therefore, using (4.1)
0> 0w, —Au. =0u+e—Au>e >0,

which is a contradiction. Hence, u.(x,t) > cforall (x,t) € M x [0,T) and since ¢ > 0 is
arbitrary the result follows. O

Proposition 4.1.2. Let u,v: M x [0,T) — R be smooth functions, satisfying the differential
inequality
Lv < Lu,

on M x [0,T) and v(x,0) < u(x,0) for all x € M. Then,
o(1) < (e b)
forall (x,t) € M x [0,T).

Proof. Consider the smooth function w: M x [0,T’) given by w = u — v. Then, by hypothesis
we have

0 < dw — Aw — g(X, Vw) — (U(u,t) — ¥(v,1)).

Since W is locally Lipschitz in the first variable, there exists a constant ¢ > 0 such that
U (u(z,t),t) — U(v(z,t),t)| < clu(z,t) — v(z,t)] = clw(z, t)],
forall (x,t) € M x [0,t;] where t; < T'. Lete > 0 and define the auxiliary function w. by
we(z,t) = w(x,t) + ee*.
Note that at (x,0) forall z € M it holds
we(z,0) = w(x,0) + & = u(z,0) — v(z,0) + & > 0.
On the other hand,
Lw. = Lw + eL(e*) = Lw + 2cee? > 2cee®.
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Hence,
dw. > Aw + g(X, Vw) — c|w| + 2cee??".

Let (2/,t") € M x (0,T) be the first point and time that w.(z’,¢") = 0. Then,
w(z' 1) = —ee.
Moreover, since this is a local minimum for the spatial derivatives it holds
Vuw. (', 1) =Vw(z' ') =0 and  Aw.(2,t') = Aw(z',t') > 0.
On the other hand, the time derivative
dyw(z’ 1) + 2cee®? = dyw,.(a',1') < 0.
Thus, at (z/,t') € M x [0,T") we obtain
0> Jw. > Aw + g(X, Vw) — cee®t + 9cee?t > cee® > 0,
which is a contradiction. Hence, for every ¢ > 0 we have w. > 0 which implies w > 0 on

M x [0,t1]. Since t; € (0,T) is arbitrary we have w = uw — v > 0 on M x [0,T). This
completes the proof. 0

Theorem 4.1.3 (Comparison Principle). Let u: M x [0,T) — R be a smooth function which
satisfies the differential inequality

Ou — Au < g(X, Vu) + ¥(u,t).
Let ¢ be the solution to the associated ODE

{ ¢'(t) = U(o(t), 1), (4.2)

#(0) = maxgep u(z, 0).

Then, the solution u of the partial inequality is bounded from below by the solution ¢ of the
ODE, that is

u(z,t) < o(t),
Jorall (x,t) € M x [0,T).
Proof. The proof is an immediate consequence of the Proposition 4.1.2. O
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4.2 Hamilton’s maximum principle

In this section, let (E, 7, M) be a vector bundle of rank d over a compact smooth m-dimensional
manifold M equipped with a fixed metric & on the fibers £, = 7 (z), 2 € M. Let {g: }1eo.1)
be a family of time-dependent Riemannian metrics on M and let { V9 },co 1) the corresponding
Levi-Civita connections on M. Furthermore, let {V*};c[0,r) denote a family of connections on
E compatible with k. For a section ¢: M — FE of the vector bundle we can define a new
section A¢: M — FE using the connections V¥ and V*. Suppose that a time-dependent section
o(-,t) € I'(E) satisfies the parabolic equation

Oip(x,t) = (Ap)(x,1) + f(¢(x,1)) (4.3)

where f: E — FE alocally Lipschitz map, mapping each fiber F, to itself.

The Hamilton’s maximum principle provides us, roughly speaking, that the behavior of the PDE
(4.3) can be described by the behavior of the ODE

d
Zo(w,1) = £(8(,1) @4

in the fibers £, x € M.

Definition 4.2.1. A subset C' C R" is called convex if for each pair of points the segment
that connects them lies within the set, that is, for every x,y € C we have,

2yl ={(l -tz +ty [ 0<t<1}CC

The set C'is called strictly convex if for every x,y € C' the above segment is contained in
the interior of C.

Definition 4.2.2. Let C C R" be a closed and convex set.

(1) A4 supporting half-space of the set C' is a half-space of R"™ which contains C' and has
points of C arbitrarily close to its boundary.

(2) A supporting hyperplane to C' is a hyperplane which is the boundary of a supporting
half-space to C.

(3) The tangent cone 1,,,C' of C' at xy € OC is the intersection of the supporting half-spaces
of C that are arbitrarily close to x.

Definition 4.2.3. Let C' C R" be a closed and convex set and xo € OC. Then,

(1) A non-zero vector £ is called normal vector of OC' at x, if £ is normal to a supporting
hyperplane of C' passing through xo. This normal vector is called inward normal if it
points into the half-space containing C.
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(2) A4 non-zero vector 1 is called inward pointing at x, if

(&,m >0,

for each inward normal vector & at xy.

Definition 4.2.4. Suppose that (E,m, M) is a vector bundle and C' a closed subset of E.

(1) The set C is called fiber-convex (or convex in the fiber) if for every x € M the set
C, = C N E, is a convex subset of the fiber E,.

(2) The set C' is called invariant under parallel transport by the connection V; if for every
curve c: [0,b] — M x R and any vector Vi € Cy), the unique parallel section
V(t) € Equy,t € [0,b] along c(t) with V(0) = V; is contained in C.

In order to prove the Hamilton’s maximum principle we need the following result.

Lemma 4.2.5. Let C C FE be a closed, convex in the fiber and invariant under parallel
transport with respect to V' subset of E. If  is a smooth section mapped in C' then, for all
z e Mandv e T, M, the Hessian

VZ,USO = VUVUSO - VVUUQO,

belongs into the tangent cone T,C, of C, at the point ¢(x).

Proof. 1t suffices to prove the result in the case where there exists a point xy which is mapped
via ¢ is in the boundary of C, since otherwise the result is trivially true.

Consider a unit vector v € T, M and a normal coordinate system {z; } in an open neighborhood
U around a point x4 such that 0, ]IO = v. Moreover, choose a local basis {1 (z0), - . ., x(z0) }
of F,, and extend it into a local geodesic orthonormal frame field. Then,

k
Y= Z Uipi
=1
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where the components u;: U — R, i € {1,...,k}, are smooth functions. We calculate,

V309 (w0) = Vo, Va, ¢(w0) = Vv, a,, ¢(20)

K
=V, Z Va,, ui(z0)¢i(o)

. =1
=" Vo., (@eyui(0))pi(w0)
- Z(axlaxlui)($0)¢i($o)

= Z(Uz' 07)"(0)¢i(wo),

where v: (—¢,¢) — U x R is a length minimizing geodesic such that
7(0) =z and 7(0) = Iy, 0.

Define now the set
k
C= {(yl yoe e ;yk) € Rk : Zizlyigoih?o € ng}-

Clearly C is a closed and convex subset of R¥. Since ¢ € C and C is invariant under parallel
transport, we deduce that the curve o': (—¢,¢) — R¥, given by

U:(Ulo’%--wukowa

lies in C. It suffices to prove that ¢”(0) points into C. Indeed, because C is convex, for each
unit inward pointing normal £ of C at (0), we have

9(s) = {§,0(s) = (0)) > 0,

forall s € (—¢,¢). Because ¢ attains its minimum at s = 0, from standard calculus we get that
¢"(0) > 0, which implies (¢”(0),&) > 0. This completes the proof. O

Definition 4.2.6. Consider the family of closed and convex sets {C(t)}+>o C E.

(1) We say that the sets C(t) depend continuously on ¢ if lim;_,., C(t) = C|(to) with respect
to the pointed Hausdorff topology.
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(2) Wesay that the family {C(t)} is invariant under the ODE (4.4) if for every to > 0,z € M
and ¢y € Cy(to) the solution ¢(x,t) of (4.4) with ¢(x,ty) = ¢o satisfies ¢(z,t) €
C.(t) for all t > to, for which the solution ¢(x,t) exists.

Theorem 4.2.7 (Hamilton’s vectorial maximum principle). For t € [0,9],0 > 0 let C(t) C
E be a closed subset depending continuously on t. Suppose that each of the sets C(t) is
invariant under parallel transport, convex in the fiber and that the family {C(t)}icp.) is
invariant under the ODE (4.4). Then, for every solution ¢(z,t) € I'(E) on M x [0, 0] of the
parabolic equation (4.3) with ¢(x,t) € C(0) for all x € M we have ¢(x,t) € C(t) for all
(x,t) € M x [0,0].

Proof. Foreach S € I,y € M we let
() = di (S, Ci(y)),

denote the distance between .S and the convex set C,,(¢) in the fiber V,,. For each solution ¢(x, t)
to the parabolic equation (4.3), defined on M X [0, 6] we consider the maximal distance to C(t),

s(t) = sup re(p(7,t)).

The function s is not differentiable but we can define the upper converse Dini derivative

s'(to) = limsup s(to) = slto = h).
ANO h

Let o denote the maximum of s on [0, §]. Since f is locally Lipschitz, we can find a constant
L > 0 such that the restriction of f to the ball Ba,,(¢(y, t)) is L/2-Lipschitz continuous for all
(y,t) € M x [0, 4]. Our goal is to show that

$(t) < L(t),
for all ¢ € [0, §]. Then, if we define

by (4.2) we get that
g/(t) _ e—Lt(S’(t) — Ls(t)) <0,

forall ¢ € [0,0]. Since s(0) = 0 we deduce g(0) = 0 which implies g(¢) < 0 forall ¢ € [0, J]
and hence s(t) = 0 for all ¢ € [0, 6]. This proves the theorem.

Thus, it remains to compute (). Forty € [0, §] there exists xy € M with s(tg) = 74, (d(xo, to)).
We assume that s(ty) > 0. For h > 0 by the definition of s we have

S(to — h) Z Tto_h(gb(xo,to - h))
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Hence, we compute

S(to) — S(to — h)

s'(to) = limsup

AN\ h

< lim sup Tty (@(0,t0)) — T4g—n(P(w0, to — h))
NG A

_ lim sup " (@0 10)) = Tao-n(9(z0, ) = hAG (o, to) = hf (B(@0,t0))).
hN\0 h

The last equality follows as we write ¢(xo, to — h) = ¢(o, o) — h - L (g, t) + o(h) and use
the fact that r;,_, are uniformly Lipschitz continuous functions as distance functions.

One can prove that for each ¢ the function r; is C* on £\ C(t) since C(¢) is convex. We
observe that the closed neighborhood r~*([0, s(¢)]) of C, is convex. Also, by construction
o(z,t9) € E\ C(t) forall z € M. Then, Vry, (¢(zo,to)) is equal to the unit outward normal
to 77 1([0, s(to)]) at ¢(zo, to). Thus by Lemma 4.2.5 we deduce that

k(A¢(zo,t0), Vi, (d(z0,10))) < 0.

Thus,
S/(to) < lim sup Tto (¢(I07 to)) — Tto—h(¢($o, to)h— hAgb(:Eo, to) — hf(qﬁ(xo’ to)))
RN\
< limsup Tto (#(20: 10)) = Tto-n(P(20, o) — hf (P[0, to))>.
RN\0 h

Since C'(t) is continuous with respect to the pointed Hausdorff topology, we can see that Vr; is
also continuous with respect to t. Thus, for each € > 0 there exists a 0 > 0 such that

k(Ag(zo,to), Vri—n(d(zo,t0))) < e,
for all (¢, h) with |¢(o, to) — | + || < §. We know that for every convex function it holds
Tto-n(@(T0,t0) — hf(P(w0,t0)) — hAG(T0,T0)) = —eh + T44-n(P(T0, To) — hf(P(T0,t0))),
for small i > 0. Since ¢ is arbitrary we have
rio-n(@(20, to) — hf(d(x0,0)) = hAG(0,t0)) = T1y—n(D(0, to) — hf (¢(xo, t0)))-
For h > 0 we choose a unique ¢y, € C,,(to — h) with
rio—n(@(20, to) — hf(d(z0,t0))) = |on + hf(d(20,0)) — d(@o, to)]-
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Using the triangle inequality and the fact that f is L /2-Lipschitz continuous on By, (¢(20, to))
we have

rto—h(¢(x07 tO) - hf(qb(an tO))) — T (¢(270, tO)) (4-5)
= |pn + hf(d(x0,t0)) — d(o, to)| — 71, (¢(70, 0))
> |on + hf(dn) — d(xo,to)| — | f(d(xo, t0)) — f(on)] — di(P(o, to), Ct,)
> dy(¢n + hf(dn), d(zo, t0)) — h§|¢(ﬂfovto) — ¢n| — di(d(x0, t0), Ciy)

> di(on + hf(on), ¢(x0,t0)) — hLs(to) — di(d(wo, o), Cy,)
> —di(¢n + hf(én), C(to)) — hLs(to).

The term ¢, + h f(¢y,) approximates the solution 7,, with vy, (to — h) = ¢ € Cyy(to — h)
up to first order. Since the family C'(¢) is invariant under the ODE (4.4) we have

You (£) € Cay (1)
for all t > to — h. Hence, we conclude that d(C(ty), ¢) = o(h) and obtain by (4.5)
s'(to) = Ls(to).
This completes the proof. [

4.3 The maximum principle for 2-tensors
Lemma 4.3.1. Let E be a vector bundle over a Riemannian manifold M and let K be the set
of non-negative definite symmetric 2-tensors,
K ={0 € Sym(E*® E*): 0 > 0}.
Then, K is invariant under parallel transport.

Proof. Let~y : [0,1] — M be a geodesic, Ps the parallel transport operator of vectors along
7 and II, the parallel transport operator of 2-tensors along the curve . Consider ¥ € K.
Then, for each v € T, (o) M, we have

85{ (Hsﬁ) (Psv, Psv)} = (Vo I139) (P, Pw) + 211,60 (Vy, Pyv, Pov) = 0.

Therefore, for each vector v € T’ )M, it holds (Hsﬁ) (Psv, Psv) = 9(v,v). Consequently,
for each w € T’(,) M, we obtain that
(ILY) (w, w) = (P, w, P, 'w) > 0.

S S

This completes the proof. O
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CHAPTER

3-MANIFOLDS WITH POSITIVE RICCI CURVATURE

5.1 Statement of the main result

Hamilton’s first major achievement using the Ricci flow method was the following result proved
in [18]:

Main Theorem: Let M3 be an oriented compact 3-dimensional manifold which admits a
smooth Riemannian metric with strictly positive Ricci curvature. Then, M? also admits a
smooth Riemannian metric of constant positive curvature. In particular, if M3 is simply
connected then it is diffeomorphic to S®.

Hamilton proved this result starting the Ricci flow process from a metric with strictly positive
Ricci curvature. From the maximum principle, it follows that this property is preserved under the
flow. The maximal time of existence of the flow is finite and as time is approaching its maximal
value, the volume of the manifold decreases to zero and the shape of the evolved manifold
becomes spherical. One idea to conclude the proof would be to pass to a limit, but the fact that
the manifold is shrinking to a point is preventing us to use this idea. Hamilton overcomes this
problem by rescaling properly the Riemannian metric and the time to ensure that the volumes of
the evolved manifolds remain constant. Let us describe the main steps of the proof of Hamilton.

Step 1: The Ricci flow exists for finite time and the Riemannian curvature operator of the
evolved metrics explodes as time is approaching is maximal time of existence.

Step 2: The positivity of the Ricci curvature is preserved under the Ricci flow process.

Step 3: The sectional curvatures of the evolved metrics get close to each other as time is ap-
proaching its maximal time of existence.

Step 4: Rescale time and metric to obtain a solution to the volume preserving Ricci flow

2 [SdM
Vsg=—2Ric+ -2 —— .q. A
29 T3 [dMm 7 -1

Step 5: The solution of the (5.1) exists for all times and converges to a Riemannian metric of
constant sectional curvature.
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5.2 Curvature quantities in three dimensions

Let us investigate here the structure of the curvature operator of a three dimensional compact
manifold M3. At this point let us recall a well-known result due to Stiefel [30], which says that
each such manifold is parallelizable, that is there exists a smooth globally defined frame field.
Recall now that the Riemann curvature tensor is fully determined by the Ricci tensor, i.e. in
local coordinates we have

gikgji 5 Gitgjk S,
where g¢;;, R;ji and R;; are the components of the metric, the Riemann curvature tensor and
of the Ricci curvature, respectively, with respect to a fixed orthonormal frame. Suppose that
{e1, €2, €3} is an orthonormal basis at # € M? such that {e; A e, €1 Aes, e; A ey} diagonalizes
the curvature operator R and denote by k1 > ko > k3 the corresponding eigenvalues. Then at
the point x we have that

Riji = g Rk — gjnRa — guRjk + gy — (5.2)

Ko + K3 0 0
Ric = 0 K1+ K3 0
0 0 K1+ Ko

and S = 2(k; + Ko + K3), see Lemma 1.6.9. By replacing
1
R; = 5)\“ 1€ {1,2,3}

we get the following

Ao+ A3 0 0
Ric = 5 0 )\1 + )\3 0 s (53)
0 0 AL+ Ao

and S = A\ + Ay + A3. Observe that A\ + Ay > \; + A3 > Ay + A3. Moreover, we define
RUXANY,ZAW) =Y R(X,Y,e,¢;,)R(Z,W,e;,¢5)
ij=1

and

RYXANY,ZAW) =2 R(X,e;, Z,¢;)R(Y, e;, W,e)

ij=1

—2)  R(X,e;,W,e))R(Y, e1, Z,€)).

1,5=1
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Note that
R* + R = Q(R),
where QQ(R) is given in (2.4).

Hence, with respect to the frame {es A e3,e1 A e3,e1 A ey}, the tensors R? and R have the
representations

o0 0 AAg 0 0
RP=|0 X 0 and R'=[ 0 AXg 0
0 0 s 0 0 A
and consequently
A2 4+ Ao 0 0
R*+ R = 0 A2 4 A 0 . (5.4)
0 0 A2+ A
In general, [see [1] Section 12.2.1]
a b e\ [df —e* ce—bf be—cd
b d e| =|ce—bf af—c* bc—ae|. (5.5)
c e f be —cd bc—ae ad—b?

Let us investigate now the behavior of the initial value problem

{S’(t) = S%(t) + S*(t), te[0,T), (5.6)

5(0) = So,

on various subsets of the space of symmetric matrices with real coefficients.

Lemma 5.2.1. Let {S = S(t)} C Cp(R?) be a solution of the ODE given in (5.6). Then, the
components s;; of S satisfy

ij iy
Consequently, if S(0) is diagonal, then S(t) remains diagonal for all t € (0,T).

Proof. The expression for s;; follows directly from (5.5). The second statement of the lemma
is a consequence of the uniqueness of solutions of initial value problems for ODEs. O
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Lemma 5.2.2. Let {S = S(t)} C C(R?) be a solution of the ODE given in (5.6). Then, the
eigenvalues of A are smooth and satisfy

[y = [ 4 pops,  py = p3+paps  and = p3 + pfio, (5.8)
Joreveryt € 0,T).

Proof. Assume that S(0) is diagonal and suppose that
811<O) 2 822(0) 2 833(0). (59)

As we have already proved in the last lemma, A remains diagonal for all ¢t € [0, T"). Moreover,
according to (5.7) we have

|, = 8T, + 502833, Sny = 39+ 511533 and Sy = S35 + 511590

Subtracting, we deduce that

(811 - 522)/ = (511 - 322)(511 + S22 — 533)
and

(822 - 833), = (822 - 833)(822 + S33 — 811)-
From (5.9), we conclude that

Sll(t) 2 Sgg(t) 2 Sgg(t), forall t € [O,T)

Consequently, we have j1; = 11, f12 = S99 and 3 = ss3, from where the assertion follows. [

Lemma 5.2.3. Consider the eigenvalues j1;, > o > ps3 of an element in Cp(R3) as real-
valued functions on Cg(R?). Then, y, is a convex function while yi3 and i3 + i3 are concave
functions.

Proof. Fix S,T € Cp(R?) and let ¢ € [0, 1]. Then,
pi(tS + (1 —6)7T) = maxyes2(tS(v,v) + (1 — )T (v,v))

< maxyes (£5(v,0)) + max,ese (1 — OT(v,v))

= tui(S)+ (1 —t)us (7).
Hence, 4 is convex. Now using the fact

ps(S) = minyes2S(v,v) = —py (—5),
it follows that p3 is concave. Moreover, from
f2 + p3 = Miny yesew 10 (S(v,v) + S(w, w)),

it follows that p5 + pu3 is concave. This completes the proof. O
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Lemma 5.2.4. Fix a real number € > 0. Then, the set
K= {S S CB<R3)Z /,L2(S) + /Lg(S) > 8},

where (11(S) > ua(S) > ps(S) are the eigenvalues of S, is convex and invariant under the
ODE (5.6).

Proof. Let us show at first the invariance of our set under the ODE. Consider the function
f:[0,T) — R given by f = ps + 3. From (5.8), we have that

f'= 03+ 13+ paps + pape > g f. (5.10)
From our assumptions we have that
f(0) = pa(S) + p3(S) > e and  21(S) > pa(S) + ps(S) > 0. (5.11)

First we show that f stays positive on [0, 7). To show this, suppose to the contrary that there
exists a first time ¢y € (0,7) such that f(¢) > 0 for each t € [0,ty) and f(to) = 0. By
integrating (5.11) we see that

fto) = F(0)el’ % > o, (5.12)

which leads to a contradiction. Hence f is everywhere positive and from the second inequality of
(5.11) the function (i, is everywhere positive. Going back to (5.12) we see that f > f(0) > «.

To show convexity, we consider the function g : Cz(R?) — R given by
g(‘S) = MQ(S) + M3(S) = minv,w€S2&vJ_w{S<U7 U) + S(w7 U})}

Then one can readily check that g is concave which implies that our set is also convex; see also
Lemma 5.2.3. This completes the proof. 0

Lemma 5.2.5. Fix a real number € € (0,1). Then, the set

K =1{5€Cs(R®) : ua(S) + ps(9) > 2ep1(5)},
where 111 (S) > u2(S) > us(S) are the eigenvalues of S, is convex and invariant under the
ODE (5.6).

Proof. Let us show at first the invariance of our set under the ODE. Consider the function
f:10,7) — R given by f = us + ps — 2e11. Note that since € € (0, 1) we have that 1y > 0.
From (5.8), we have that
o= (e +ps —2pM)
= 3+ p3 — 2epaps + (p2 + ps — 26p1) 0
> (1 —e)(us + p3) +e(ps — 2uaps + A3) + (2 + ps — 261 )
> [
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Using the same arguments as in the previous lemma, we deduce that the function f stays positive
in [0,7") and so the inequality

po + 3 > 2ep1 > 0

is preserved in time. To show convexity consider the function g : Cg(R3) — R given by

9(S) = 2em(S) — (u2(S) + p3(9))
= 2emax,cs2S(v, V) + max, ,es? &vJ_w{ — S(v,v) — S(w, w)}

Then one can readily check that g is convex which implies that our set is also convex. 0

Lemma 5.2.6. For every € € (0, 1) there exists 6 € (0,1) such that, for each ¢ > 0, the set
K ={S €Cp(R®): pa(S) + ps(S) > 2¢u1(S) and pua(S) — ps(S) < etr(5)'°},

where (11(S) > ua(S) > us(S) are the eigenvalues of S, is convex and invariant under the
ODE (5.6).

Proof. We already know by Lemma 5.2.5, that the inequality o + 3 > 2 is preserved in
time by the ODE (5.6). If u1(S) = ps(5), then pq(t) = ps(t) for all ¢ € [0,7) and in this
case we have nothing to prove. So let us suppose that 111 (S) > p3(S). This condition will be
preserved under the ODE and moreover, 241 > o + i3 > 2ep1. Since, € € (0, 1), it follows
that ;11 > 0. So we may assume that the solution of the ODE satisfies po + g3 > 2cp; > 0.
Using (5.8) we get that

1
/

(log(p — p3))" = — (43 + popts — p3 — pjia) = pn + pi3 — pa. (5.13)
Moreover,

1
log(pu + o + pi3)) = —————— (13 + popis + 3 + prps + 113 +
(log(p1 + pia + p3)) T (13 + papis + piy + papis + s + pafia)
pia (e — p3) + pialpin + ps) + (1 + ps)?

= . (5.14)
M1+ po + s
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Combining (5.13) and (5.14), we conclude that

(log( e )1_5)/ = <log(u1 — p3) — (1 —6) log(pur + pa + N3)>/

M1 pe + s
= 0(p1 + pz — pa) + (1= 6) (g + pi3 — pa)
(- 5)N1(N2 — pi3) + pro(p2 + p3) + (1 + pia)?
M1+ p2 + 3
gyl = ) it pt3) + 11
p1t plo + p3

= 0(p + p3 — p2) — (1

2

Ha

= 0(puy + pg — - (1-90)—.
(1 + 3 — p2) — ( >M1+M2+M3

Due to 251y < o + s < 2pus it follows that £(p; + ps — p2) < po. Moreover, since

p1+ po + p3 < 3py and  2pp > o + ps,

we deduce that )
13 o Holpia + pig) _ 2epapin _ Epts

p1 + p2 + p3 6411 — 6 3
Putting everything together, we deduce that for § < £2/(3 + ¢2), we have that

1 — 3 ' b5 (1—=9)e
| < —— 7" ) <0.
(Og(#l + 12 +M3)1_5) - M2<5 3 > -

Convexity follows from the convexity of g : Cg(R?) — R given by

9(8) = m(S) = pa(S) = ¢(pa(S) + p2(S) +M3(S))1_5

This completes the proof. [

5.3 Finite-time explosion of the curvature

We already know that the Ricci flow has a unique (up to diffeomorphisms) solution on a maximal
time interval [0, T'), where T' < oo. We claim that if the Ricci curvature is strictly positive, then
T is finite. More precisely, the following more general result holds:

Theorem 5.3.1. Let g = g, be a solution of the Ricci flow on a compact m-dimensional
manifold M™ defined on a maximal time interval [0,T). If the metric g(0) has positive
scalar curvature, then T is finite.
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Proof. Because M™ is compact and the scalar curvature initially is strictly positive, there exists
a positive constant o > 0 such that the minimum of the scalar curvature at time zero is equal to
0. From Proposition 2.13, we obtain that

2
0;S = AS + 2|Ric|* > AS + ES?

From the comparison maximum principle 4.1.3, we immediately see that

mo
~—m—2tp

Since the right hand side diverges to oo, the scalar curvature becomes singular in finite time. [

Corollary 5.3.2. Let g = g: be a solution of the Ricci flow on a compact 3-dimensional
manifold M? defined in a maximal time interval [0,T). If g(0) has strictly positive scalar
curvature, then

lim sup,_,{ max,enrs| Ric|(z, t) } = oc.

Proof. Since the maximal time 7" is finite, the Riemann curvature tensor must explode as time
approaches its maximal value. Recall from (5.2) that in the 3-dimensional case we have that
Yikdj1 — Gilgik

Riji = g R — gj R — guRjk + gl — %57

where g;;, ;i and R;; are the components of the metric, Riemann curvature tensor and of the
Ricci curvature, respectively, with respect to an orthonormal frame. Consequently, there exists
a positive constant ¢ such that [Rm| < ¢ |Ric|. Since the left hand side explodes as time tends
to its maximal value, we obtain our result. O

Corollary 5.3.3. Let g = ¢; be a solution of the Ricci flow on a compact 3-dimensional
manifold M? defined in a finite maximal time interval [0,T). If the Ricci curvature of the
initial metric is positive, then the scalar curvature explodes as time approaches its maximal
value T'. More precisely,
limsup,_,{max,enrsS (2, )} = oc.
Proof. From Corollary 5.3.2 and the fact that
4‘RZC‘2 = ()\1 + /\2)2 + (/\1 + )\3)2 + (/\2 + )\3)2 S 4(/\1 + )\2 + )\3)2 = 452,

we immediately obtain the result. O
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5.4 Evolution of the Ricci curvature

Suppose that g = g, is a solution of the Ricci flow on a compact 3-dimensional manifold M3
defined in a finite maximal time interval [0,7"). From now on we work only on the bundle
(V, h) obtained via the Uhlenbeck’s Trick in Section 2.3.

Theorem 5.4.1. Let g = g; be a solution of the Ricci flow on a compact 3-dimensional
manifold defined in a finite maximal time interval [0, T'). If the there exists a point where the
Ricci curvature of the initial metric is strictly positive, then the evolved Riemannian metrics
have strictly positive Ricci curvature everywhere.

Proof. Recall from (5.2) that in the 3-dimensional case we have that

Riji = g R — gjnRa — guRj, + gy — ws
Hence, from the evolution equation of the curvature tensor, we deduce that
Vo Ric = ARic + 3tr(Ric)Ric — ARic'® + (2|Ric|” — tr(Ric)?)g.
Define now the map ¥ : Sym(V* ® V*) — Sym(V* ® V*) given by
U(S) = 3tr(S)S — 45@ + (25> — tr(S)?)g.

Thus, W satisfies the null-eigenvector condition and the result follows from Hamilton’s tensorial
maximum principle. O

Lemma5.4.2. Let g = g; be a solution of the Ricci flow on a compact 3-dimensional manifold
M3 defined in a finite maximal time interval [0, T). If the Ricci curvature of the initial metric
is positive, then there exist constants ¢ > 0 and £ > 0 depending only on the initial metric
such that

)\1 (:U7 t)

(2, 8) + Na(z, ) =

where Ay (z,t) > Ao(x,t) > As(z,t), are the eigenvalues of the curvature operator of the
metric g, at v € M? given in (5.3) and Ric > ¢ g.

Proof. Note that such constants ¢ and ¢ exist at time 0 by the compactness of M? and the
positivity of the Ricci tensor. As a matter of fact, since the Ricci curvature is initially positive,
the continuous function Ao (-, 0) + Az(+, 0) is positive and bounded from below. Hence, there
exists a constant ¢ > 0 such that

(. 0) <c
Aa(+,0) + A3(-,0) —
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It remains to show that these bounds are preserved under the flow. To achieve this goal, consider
the subset K of S(V') given by

K={SeSV): M(S) < c(Xa(S) + A3(S)) & Aa(S) + As(S) > 2.

From the Lemmas 5.2.4,5.2.5 and 4.3.1 it follows that the set /C is fiber-wise convex, invariant
under parallel transport and that the fiber-wise map @ : S(V') — S(V') given by

Q(S) = S* + 5%,
points into K. Now the result follows from Hamilton’s tensorial maximum principle. O

Lemma5.4.3. Let g = g; be a solution of the Ricci flow on a compact 3-dimensional manifold
M?3 defined in a finite maximal time interval [0, T). If the Ricci curvature of the initial metric
is positive, then there exists a positive time-independent constant (3 such that

Ric > BSg.

Proof. From Theorem 5.4.2, we have that there exists a time-independent constant ¢ > 0 such
that

)\2+)\39>ﬁ >>\1+)\2+)\3 S

= 2¢7 ~ 6c 9:6_69'

as long the flow exists. Setting 5 = 1/6¢ > 0, we deduce the result. OJ

Ric >

In the following theorem, we show that the pinching of the eigenvalues becomes better as the
scalar curvature tends to infinity. As a matter of fact, we show the following result.

Lemma5.4.4. Let g = g; be a solution of the Ricci flow on a compact 3-dimensional manifold
M? defined in a finite maximal time interval [0, T)) and suppose that the Ricci curvature of
the initial metric is positive. There exist positive constants § € (0, 1) and c depending only
on the initial metric, such that

A(z,t) — Ag(z, 1) < c
Mz, t) + Ao(z,t) + A3z, t) = (Ai(z,t) + No(x, t) + A3(x,1))%

where A\i(xz,t) > Xo(x,t) > A3(x,t), are the eigenvalues of the curvature operator of the
metric g; at x € M? given in (5.3).

Proof. The proof follows as a direct consequence of Hamilton’s tensorial maximum principle
and Lemma 5.2.6. OJ

Theorem 5.4.5. Let g = g; be a solution of the Ricci flow on a compact 3-dimensional
manifold M3 defined in a finite maximal time interval [0,T). If g(0) has strictly positive
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Ricci curvature then, there exist positive constants ¢ and 0, depending only on the initial
metric o, such that

E? a5
? S cS .
Proof. From
1 Ao+ A3 — 2\ 0 0
E=- 0 A+ A3 — 2 0 ,
0 0 A1+ Ao — 23

we have that

B2 (A2 4 A3 —20)2 4+ (A1 4+ A3 — 2X09)2 4+ (A + Ay — 2X3)?
S22 36(\1 + A2 + A3)?

6(A2 4+ A2 4+ A2) — 6(A A2 + AMAz + Ao )3)

36(A1 + A2 + A3)?
(A1 = A2)? 4+ (Aa = A3)* + (A3 — \1)?
12(A1 + Ao + A3)?
3(A\1 — A3)?
T 12(A1 + Ao+ A3)2

Now the result follows from the estimate in Lemma 5.4.4. O

5.5 The gradient estimate for the scalar curvature

The above estimates are results that concern a point of the manifold /. We need a global result.
Since the dimension of the manifold is 3 and we want to show that the metric is getting close to
an Einstein metric, it is reasonable to expect that the scalar curvature is getting close to being
constant (see Section 1.6) and hence a bound on |V.S|. This section is about finding a way to
bound the quantity |V.S| that will help us pass to global results.

Consider the functions Spax and Sy, given by
Smax(t) = maxgepsS(x,t) and  Spin(t) = mingepsS(x,t).

The purpose of this section is to show that these functions pinch together as time approaches its
maximum value. The proof rely heavily in a gradient estimate for the scalar curvature. In order
to achieve this estimate we need to obtain several evolution equations.
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Chapter 5 5.5. The gradient estimate for the scalar curvature

Firstly, we will use the following general result. Let A be a m x m matrix then it holds
1
|A]* > —(trace A)%. (5.15)
m
Recall that in Corollary 5.3.3 we proved that

|Ric|* < S2. (5.16)

Proposition 5.5.1. Let M™ be an m-dimensional manifold and {g:}.cjo,r) a solution to the
Ricci flow. Then,

o (5F) -5 (5) ()]

Proof. We calculate using the evolution equation of the scalar curvature (2.13)

\VS!2

|Ric|*+— (VS V|Ric|?). (5.17)

O|VS|? = A|VS|? — 2|VVS|* + 4(VS, V|Ric|?). (5.18)
We know that S > 0 is preserved, thus we compute
2 2
o, <|V5| ) < (AJVSP = 2VTSP +4(VS, V| Ric]) - ’VSS| (AS + 2| Ric]?).
Since |V .S|? and S are smooth functions we use the fact that
IVSIP\  A(IVSP) B |IVS]2PAS 2 9 |VS|2 9
A( 5 = 5 o2 o2 (VIVS|Z,VS) + VS|~
Then,
5 VSI?\ A VS|? _ 2|V S|4 n 2(V|VS|?, VS) _ 2|lVVSJ?
‘s ) S 53 S? S
|VS\ | Ric|* + <VS V|Ric|?)
2 4 2 2
_A ]VS| _9g |VS| n (VIVS[,VS)  [VVS]
S S4 S3 S2
2 4
- —|VS|2|R2'C|2 + §<v5, V|Ric|?)
IVS|2 VS\ > 2 , 4 .
=A ( ) - 25|V {—= | - §|VS]2\R10\2 1 §<VS,V\RZC\2>.
This completes the proof. O
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Corollary 5.5.2. Let M™ be an m-dimensional manifold and {gt}tE[O,T) a solution to the
Ricci flow. Then,

V|2 VS| VS
< — -
at( ) <At 25|V (=3

Proof. 1t suffices to show that

2 2
LIS
q2

|Ric|> + 8V3|VRicl”. (5.19)

(VS, V|Ric|?) < 8/3|VRic|?.

Gl

Note that
|V|Ric|?| < 2|V Ric||Ric|

and using (5.15)
|VS|? < 3|VRic|.

Thus, by the Cauchy-Schwartz inequality and (5.16)

VS, V| RicP) < S|5|1V|Ricf)
< 8|VS||VRic| 'R;;C'
< 8V/3|VRic|*.
This completes the proof. O

Note that the reaction terms in equation (5.19) are negative except the last one. Thus, we need
to control the term |V Ric|?.

Lemma 5.5.3. On a 3-dimensional manifold it holds
1 1
|V Ric|* — §|v5|2 > §|VRZ'C|2. (5.20)

Proof. Note that
1
IVE|* = |VRic|* — §|VS|2.

Using equation (5.15) we have

1g 1 11 1 ° 1
ViE]? > =Y |ViRicy; — =VSgyl* == |=V;9 — =V,;S8| = —|VS|%.
| k | —3zzl| ZC] 3 g]| 3‘2 J 3 J 108| |
This completes the proof. O
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Lemma 5.5.4. Let M? be a 3-dimensional manifold and g;,t € [0, T) a solution to the Ricci

flow. Then,
HE]? = A(EP) = 2\VE[? = 8tr,(Ric®) + ?smzcﬁ 988,
Proof- We compute using the evolution equation of the scalar curvature (2.13)
0,5% = 2S(AS + | Ric]?) = AS? — 2|VS|? + 4S|Ric|*.
By the evolution equation of the Ricci tensor 2.3.4 we obtain

(MR@'C\Z = 8tRinij = A‘RZCP — 2‘VRZC|2 — 4RiququRij-

(5.21)

(5.22)

Note that the above equations hold in any dimension m. Since m = 3 we can use (5.2) and then

(5.22) becomes

Oi|Ric|* = A|Ric|* — 2|V Ric|* — 25* — 8tr,(Ric*) + 10S|Ric|*.

Combining this with (5.21) the result follows.

We define

W= %S|Ric|2 — 8tr(Ric*) — 25
and
_|vsP
s
Using Corollary 5.19 and Lemma 5.5.4 we compute

2
AV <A (@) ~25 ‘V (V—S>

37
1% +7(8\/§+1)\E|2.

2 2
5 — 2%]1%2’0!2 + 8V3|VRic|?

(8vV3 + 1)(A(|E)?) = 2|VE] + W)

L 37
2
Thus, by Lemma 5.5.3 we obtain

9 O

8,V < AV — |VRic|* + 7(8\/5 +1)W.

Then, since we have diagonalize Ric and E we can prove algebraically that

20

W< §S|E\2.
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As a consequence, equation (5.25) becomes
0,V < AV — |VRic|* + C,S|E)*.
Using equation (5.15) we have
%\VSF < |VRicl*. (5.27)

Concluding by Theorem 5.4.5 we get
1
oV < AV — g|VS|2 + Cy8327. (5.28)

for some positive constants Cs and ~.

Theorem 5.5.5. Let g = g;,t € [0,T) be a solution to the Ricci flow on a compact manifold
M3 with initially strictly positive Ricci curvature, then there exist positive constants 3 > 0
and 6 € (0,1), depending only on the initial metric gy such that for each 5y € [0, (], there
exists ¢ > 0 depending only on By and go such that

2
‘st C < s 4 es,

Proof. We compute
DS = A(ST) = (2= 7)(1 = 7)STIVS[2 +2(2 — 7)S | Ricl.

Hence, by (5.28) we get

H(V = BS*T) < AV = BS*7) + (B2 =) (1 =757 = é)lVSP (5.29)
+ CS8*2 —2B(2 — 7) S| Ricl*.

We proved in Lemma 5.4.2 that there exists € > 0 such that Ric > €g. Thus, S > ¢ fore > 0.

We can choose /3 such that
(32)”

2-701-7)
Then, for every 3 € [0, 3] the second term of equation (5.29) is non-positive.
Using 3| Ric|* > |S|* we get

B§3

03513—27 o 26(2 o 7)31_7|Ri0|2 S 0353_27 — C4S3_Wa

where C'3, Cy are constants. Note that when S is large enough the above term is dominated by
the quantity S®~7 which is negative, hence we can get an upper bound for it. Thus, we obtain
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0(V = BS*7) < A(V = BS*77) + Cs,
for some constant C's. Thus, by the scalar maximum principle we get
(V = BS*77) < Cst + Cs,
for a constant C's. By Theorem (5.3.1) we know that 7" is finite, hence

‘VSF 2—y 2—~
S SV BT 4 GT+ G < BSTT 4 C

for some constant C.

This completes the proof. [
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5.6 Consequences of the gradient estimate

Lemma 5.6.1. Let g = ¢, t € [0,T), be a solution of the Ricci flow on a 3-dimensional
compact manifold M3. If g(0) has strictly positive Ricci curvature then, then there exists
positive constants c,6 > 0, depending only on the initial metric such that

Smin C
1> >1——=.
- Smax Sr?’lax
More precisely,
Smm
lim;_,p—— = 1.

max

Proof. By Corollary 5.3.3 we have that R,,,,, tends to infinity as time tends to its maximal value
T'. Hence, there exist constants 3y, ¢, > 0 such that
VS| < oS30 + ¢

max

from where it follows that there exists 7 € [0, T’) such that
3-5
|VS| S vV 50 Smgx 9
forallt € (1,T). Fixt € (1,T). Since M? is compact there exists zo(t) € M? such that
Smax(t) = S(zo(),1).

Fix € € (0, 1) and consider the geodesic ball B(z((t), L(e,t)) where

1

L(ﬁ,t) = S—(t) < 0
€ max

Let v be a minimizing unit length geodesic from z((t) to x(t) € B(zo(t), L(e,t)). Then,
_s
Smax_S /|VS|d$<\/ﬁ0LEtSm§X S\/_ ax -

This implies a lower bound for S on B(xz(t), L(t)), that is

@(Si)é) (5.30)

€
The proof will be completed if we can choose a time-independent € > 0 such that

S > S (1

B(zo(t), L(e, t)) = M>.
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Since Spax — 00 ast — T, there exists ¢ € (7,T'), depending on f3y, d and &, such that
S > (1 — ) Smax, (5.31)

on B(xo(t), L(e,t)) forall t € [t,T). According to (5.30) and Theorem 5.4.3, there exists a
constant 5 > 0, depending only on g, such that

Ric > S g > B(1 —&)Smax 9-
Choose a time-independent £ > 0 such that
NoX < 1
pl—g) €
Then, by Bonnet-Myers’ Theorem 1.9.6 we have that

) 1
diam,, (M?) < v2m < = L(e, ).

T VB = &) Sma(t) T e/ Smax(t)
This completes the proof. 0

As a consequence of the above estimate we obtain the following important corollary.

Corollary 5.6.2. Let g = g;,t € [0,T), be a solution of the Ricci flow on a 3-dimensional
compact manifold M3 such that g(0) has strictly positive Ricci curvature. Then, for each
e € (0,1) there exists T, € [0,T) such that

mingepAz(7,t) > (1 — e)’maxyensAi(y, t) > 0,

forallt € [T.,T), where A\ stands for the biggest and \3 for the smallest eigenvalue of
the curvature operator. As a matter of fact, after some time, the metric will have strictly
positive sectional curvature everywhere. Additionally, the evolved metrics are approaching
an Einstein metric uniformly as time approaches its maximal value.

Proof. According to Lemma 5.4.4, there exist positive uniform constants ¢ > 0 and ¢ € (0, 1),
such that
A3 > M\ — eSS0

Using the estimate
M > M+ A+ A3=5,

we deduce that, for each point in space-time it holds

A
51— S8 > 13¢50 >1— 3¢S
A1 A1
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Fix z,y € M? and consider ¢ € (0,1). By Theorem 5.6.1 the quantity Sy, tends to infinity as
t approaches T'. Hence, there exists 7. € (0,7") such that for each t € (7, 7T), we have that

)\1 Z )\2 Z )\3 Z (1 — E))\l. (532)
Consequently, keeping in mind (5.31) and (5.32), we get

Na(2,8) > (1— (@) > ——E8(a, 1)

1—¢ (1-¢)?
. >
= Sin(t) > == Snax(t)

@S(y,t) Gl

> (1 —e)*M(y, ).

Vv

Vv

(Al(ya t) + )‘2<y7 t) + )‘3(?/? t))

From the last inequality we conclude the proof. 0

Corollary 5.6.3. Let g = g;,t € [0,T), be a solution of the Ricci flow on a 3-dimensional
compact manifold M3 such that g(0) has strictly positive Ricci curvature. Then,

T T
limy_, 7 / Smax (T)dT > limy_,p / Smin(T)dT = 0.
0 0

Proof. By the estimates in Lemma 5.6.1, it suffices to show that

T
limt_g/ Smaz (T)dT = 00.
0
Consider the differentiable function f : [0,7) — (0, co) given by

F(t) = 2o Smaxirg (0.

Moreover,
f/ = 2Smcm:f'
From (2.13) and the fact that | Ric| < S, we have
O(S — f) = AS + 2|Ric|* — 2Smax f
< AS +25% — 2 f
S A(S - f) + 2SmaxS - 2Smaxf
= A(S_ f) +28max<S_ f)
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Note that
(S - f)(O) S Smax(o) - f(o) = 0.

Hence, by the comparison maximum principle 4.1.3 and Lemma 5.6.1 we obtain that there exists
a time-independent constant € > () such that

f(t) > S(fL‘,t) > Smin(t) > (1 - 5)SmaX(t)’

for all points in space-time. Since S tends to infinity, then f tends to infinity as well as
t — T'. Going back to the definition of f, we see that

t
limt_g/ Shmax (T)dT = 00.
0

This completes the proof. 0

Corollary 5.6.4. Let g = g;,t € [0,T), be a solution of the Ricci flow on a 3-dimensional
compact manifold M? such that g(0) has strictly positive Ricci curvature. Then, the volume
of the evolved metrics tends to zero as time approaches its maximal value, i.e.

lim;_,7V (t) = 0.
Consequently, as the curvature explodes the volume shrinks to zero.

Proof. Recall from Lemma 2.3.1 that the volume evolves in time under the Ricci flow according
to the equation

V' = —/SdM < —SminV-

By integration we deduce that

log V(¢) — log V(0) < — / S (5)1.

Due to Corollary 5.6.3 the right hand side of the last inequality tends to —oo as ¢ tends to 7.
Consequently,
lim; 7 log V' (t) = —o0,

or, equivalently,

This completes the proof. O
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5.7 The normalized Ricci flow

We have already seen that a solution g = g; of a Ricci flow in a 3-dimensional manifold exists
only for finite time 7', if the initial metric has positive Ricci curvature. In this case, the sectional
curvatures get pinched together but the volume tends to zero. In order to avoid shrinking of the
manifold, we will perform a time-depending rescaling of each metric to keep the volume of the
evolved manifolds constant in time. To achieve this goal, let ¢ : [0,7") — (0, 00) be a smooth
positive function with ¢/(0) = 1 and consider the 1-parameter family of metrics given by

g(t) = »(t)g(t), t<[0,T).

In the sequel we use over-line symbol to refer to quantities depending to the metric g. According
to the formulas of the subsection 1.8 we obtain that

V=V, A=¢'A, Rm=¢Rm and Ric = Ric. (5.33)
Moreover,
R=v"'R, du=v¢*%du, V=v*?V and Ru = v ' Re. (5.34)

The volume with respect to the metric g is given by the formula
V= [l [ =y

Since we want to keep the volume fixed we need to choose a smooth function ¢ such that
V(t) = V(0), for each t € [0, T"). From the last equality we deduce that

b(t) = (V(£)/V(0)) >, foreach e [0,T). (5.35)

Lemma 5.7.1. Let g = g;,t € [0,T) be a solution to the Ricci flow and let ) : [0,T) — R
given by (5.35). Then, the one-parameter family of the Riemannian metrics g = 1 g, evolves
according to the equation

Vag=1v(-2Ric+77),
where o is the time-dependent function given by o = (2/3)Rq,. By rescaling the time via

t
t—s= / W(T)dr,
0
the evolution equation of the family of Riemannian metrics g becomes

V.0 = —2Ric+707. (5.36)

Equation (5.36) is called the normalized Ricci flow.
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Proof. First observe that 9, = 1 0. Moreover,

OV TRV g (g — —/2eeR0),

0O = 0y = Vo)

from where we deduce that

Oy =po=19’p and O =97 (5.37)

The first identity follows by differentiating g and using the evolution equations of the metric g
and the first identity of (5.37). The second claim can be readily verified. 0

We will need in the sequel to use maximum principle arguments similar to those employed in the
previous sections to control the behavior of various geometric quantities under the normalized
Ricci flow. For this purpose, we have to compute the corresponding evolution equations. There
is a very simple way of going from the unnormalized evolution equations to the normalized
ones, just by exploiting the formulas (5.33) and (5.34). More precisely, this correspondence
is due to the following simple observation. If P = P(g) is some tensorial quantity involving
components of the metric for the Ricci flow, then the same quantity calculated for the normalized
Ricci flow will be related to P by a rule of the form

P(g) = 4" P(g),
where £ is an integer. The number £ is called the degree of P.

Lemma 5.7.2. Let P = P(g) be a tensorial quantity of degree k and suppose that under the
Ricci flow it satisfies

Vo, P = AP+ Q.
Then, P = P(g) evolves in time under the normalized Ricci flow by the equation
Vo.P=AP+ koP + 4" 1Q.
Proof. From the formulas in (5.33), the facts 9, = 1) ~'9, and 0,10 = 1)*p, we obtain that
Vo, P = ¢ 'Va, (W P) = (") P + ¢* 1 Vp, P
= kY* 2 (0) P+ " (AP + Q)
= k"2 (WP P+ TIAP +M1Q
= ¢ 'AW'P) + Q + koP
= AP +¢*'Q + koP.

This completes the proof. O
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As for the unnormalized Ricci flow, it is convenient to perform computations for the evolution
equations of various geometric quantities, with respect to orthonormal frames in space-time. It
turns out that the Uhlenbeck’s trick can be adapted also for the normalized Ricci flow. More
precisely, consider the family us : (T'M, g(0)) — (T'M,g(s)), given as the solution of

= b
{ Vo,us = Ricyg) o us — (0/2)us,

Uy =

- . . .
where Ric is the (1, 1)-Ricci tensor. Easily we show that

uzg(s) = g(0),

for each s € [0,7"). Hence, if {e1(0), ..., e, (0)} is a local orthonormal with respect to g(0),
then

{e1 = use1(0),...,em = use,, (0)}
is orthonormal with respect to g(s). As a matter of fact,

Va.&: = Zj (Rij — (2/2)0i5)e;.

In order to simply the notation, let us denote with the same letter pullbacks of tensors via .
Using the above observation we see that

VoR=AR+R +R —oR.

Lemma 5.7.3. Let g be the solution of the normalized Ricci flow in a compact 3-dimensional
manifold. Then, the curvature operator 'R evolves under the normalized Ricci flow by the
equation

VoR=AR+R +R —oR.
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5.8 Convergence of the normalized Ricci flow
In this section we will show exponential convergence to a metric of constant curvature of the
normalized Ricci flow. The following lemma is of crucial importance:

Lemma 5.8.1. Let (M3, go) be a compact Riemannian manifold with positive Ricci curvature
and g = §(s) the solution of the normalized Ricci flow, with initial data the Riemannian
metric o, and denote by T the maximal time of existence of the flow. Then, there exist
constants ¢ > 0 and > 0 such that the following facts hold true:

(1) lim, 7 Smax(8)/Smin(s) = 1.
(2) RZC Z ﬁgmin g
S

3) max < C

4) T = .

(5) Smin > 1/c and diamgz(M?) < c.
©  |Bo| <ce seo00)

Proof. Part (1) of the lemma follows from the corresponding estimates in Lemma 5.6.1 for the
unnormalized Ricci flow, since the inequalities are scale-invariant.

(2) By Lemma 5.4.3 and the formulas (5.33) and (5.34) we have that there exists a positive
time-independent constant S > ( such that

Ric = Ric> 59> BSming = B Smin g
(3) By Bonnet-Myers’ Theorem 1.9.6, the diameter of (M?3,75), is estimated from above by

V2T

\/B Smin .

We can get a lower bound for the diameter from the fact that the volume of the manifold (A 3.9)
is constant /. Because

L = diamy(M?) < (5.38)

Ric = Ric >0,
by Bishop-Gromov volume comparison theorem 1.9.7, we have that

V:wm%i»§w§@»:%*.
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Combining the last two inequalities, we have that

I
(%) SLS%7

from where we obtain an upper bound for .S,;,. By the estimate in Lemma 5.6.1 we obtain that
there exists a positive time-independent constant € such that

§min Smin
_— = >1- 5.39
Smax Smax N 67 ( )

from where we obtain the desired upper bound for Si.x.
(4) By Corollary 5.6.3 we have that

oo = lim /t Smax(T)dT = lim /Sw(x)gmax(:v)w_l(x)dx = lim /8 Shnax () dx.
0 0 0

t—=T s—T s—=T

Since Sy is bounded from above, we deduce that necessarily the maximal time of existence
of the normalized Ricci flow is infinite, that is

T = .
(5) Recall from Corollary 5.6.2 that

)\S(Iv t)
m
t—=T /\1 (yv t)

)

uniformly for all 2, y € M?3. It follows by scaling invariance that

As(z, 5)

5—00 Al(y7 S)

uniformly for all points x,y € M?3. Therefore if we wait long enough, there exists so > 0 such
that (M?>,g(so)) is 1/4-pinched. This means that for each s > s, the sectional curvatures are
pinched between K (s) and K (s)/4, for some time-dependent constant K (s) > 0. Observe
that K (s) equals to some multiple of Sy, (s). Let us pass now to the universal covering M? of
M?3. Clearly each metric g(s) can be lifted in a locally isometric way to a Riemannian metric
on M3. For simplicity, we denote the lifted metrics again by the same symbol g(s). According
to Klingenberg’s injectivity radius estimate 1.9.8, we have that for each s > s, there exists a
positive time-independent constant €1 such that

~1/2

inj5 (M?) > &1 (Smax(s)) (5.40)
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On the other hand, because we have a uniform upper bound on sectional curvatures, the volume
of M3 is at least some multiple of the cube of the injectivity radius of M3, by the second part
of the Bishop-Gromov volume comparison theorem 1.9.7. Hence, from (5.40), we have

Vi) (MP) > e5(injgey (M?)? > 283 (Smaals)) 7 (5.41)

for each s > 5. Because the Ricci tensor of (M3, 5(s)) is bounded from below, by Bonnet-
Myers’ theorem 1.9.6 the fundamental group of M? is finite. Furthermore, since the volume of
M?3 is constant under the normalized Ricci flow we have that

V() (M?) = |m1 (M?)[V = constant, (5.42)

for each s > sp. Combining the equations (5.42) with (5.41), we obtain a lower bound for
S'maz- From part (1) of the lemma, we get a uniform lower bound for S, as well.

(6) It suffices to prove that

‘Eg(s) < cg(s)e_‘ss, s € [0,00),

since by what we already showed in (3) and (5) the scalar curvature R is uniformly bounded.
From the computations in Theorem 5.4.5 we see that

<M

- 2

i

Thus, it suffices to prove that there exist time-independent constants ¢, § > 0 such that
A= Ag < e (A A+ X+ ).
To achieve this goal, let us consider the time-dependent convex sets

F(s) = {S€Cs(V): Ma(S) + A3(85) > e,
X2 (S) + A3(S) > e2M1(9),
A(S) = A3(S) < ce % (Xa(S) + A3(9)) }

where €1, €5, ¢, § are positive constants. We show at first that the ODE
S =52+ 5% — 08,
with S(0) € F(0) remains inside F () for appropriately chosen d > 0. Using the equations
M= AT+ X3 — 0A1, Ay = A3+ M3 — o)Xy and Ay = A3+ M\ — o)s,
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and following the same idea as in Lemmas 5.2.4 and 5.2.5 we deduce that the first two conditions
are preserved under the ODE. Moreover,
A2+ )\ A2+ A3

<0 — .
A2+ A3 2

A1 — A3\’
IOg (665ﬁ> = 6+)\3 - )\2 —
2 3

Using the facts o\ < Ay + Az and 2M\; > Ay + A3 > 1, we see that
(3/2)er < M+ X+ A3 <ea(Aa+A3) + Ao+ A3 = (1 +£2)( A2 + A3).

By choosing

3

5 — #’
2(1 + 52)

we have Ay + A3 > 20 and thus

Al — A3
og (42729 <
NPV WE
The sets F () are closed, convex and invariant under parallel translation by analogous methods

to those used in the proof of Lemma 5.2.6. The result follows from the Hamilton’s tensorial
maximum principle. This concludes the proof of the lemma. 0

Theorem 5.8.2. Let § = §(s) be the solution to the normalized Ricci flow on a 3-dimensional
manifold with initially strictly positive Ricci curvature. Then G converges in infinite time
uniformly to a smooth metric g, with constant positive sectional curvatures.

Proof. By Proposition 3.3.7 (see also [5]), the family of Riemannian metrics g(s) converge
smoothly, exponentially and uniformly to a smooth Riemannian metric g . On the other hand,

|E| = |Ric — (5/3)g| < ce™,

where ¢, 3 are time-independent positive constant. Passing to the limit, we see that the metric
0. 1s Einstein with positive scalar curvature. By a classical theorem in Riemannian Geometry,
it follows that g has positive constant sectional curvatures. This completes the proof. 0
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