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Abstract

The Ricci flow is a certain weakly parabolic partial differential equation which deforms a given
Riemannian metric on a compact manifold in the direction of its Ricci curvature. This particular
flow, share similarities to the heat flow, however it is nonlinear and exihibits many phenomena
not present in the study of the heat equation. The Ricci flow was introduced by Hamilton in
his seminal paper [18] and was used by Hamilton & Perelman in resolution of the Poincare
conjecture in dimension 3.

The objective of this master thesis is to present the following result due to Hamilton [18]:

Main Theorem: Let M3 be an oriented compact 3-dimensional manifold which admits a
smooth Riemannian metric with strictly positive Ricci curvature. Then, M3 also admits a
smooth Riemannian metric of constant positive curvature. In particular, if M3 is simply
connected then it is diffeomorphic to S3.
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ΠΕΡΙΛΗΨΗ

Η ροή Ricci είναι μια διαδικασία παραμόρφωσης μιας μετρικής Riemann στη διεύθυνση της
καμπυλότητας Ricci. Η ροή Ricci είναι ένα ιδιάζων παραβολικού τύπου μη-γραμμικό σύστημα
διαφορικών εξισώσεων. Όταν η αρχική συνθήκη είναι ένα συμπαγές πολύπτυγμα Riemann,
τότε η ροή Ricci υπάρχει, τουλάχιστον, για ένα μικρό χρονικό διάστημα. Η συγκεκριμένη
ροή χρησιμοποιήθηκε από τους R. Hamilton & G. Perelman για την επίλυση της Εικασίας του
Poincare.

Στην μεταπτυχιακή διατριβή θα αναλύσουμε τα βασικά στοιχεία περί της ροής Ricci και, μεταξύ
άλλων, θα αποδείξουμε το εξής θεώρημα του Hamilton [18]:

Κεντρικό Θεώρημα: Έστω M3 προσανατολισμένο, συμπαγές πολύπτυγμα διάστασης 3 το
οποίο είναι εφοδιασμένο με λεία μετρική Riemann με αυστηρά θετική καμπυλότητα Ricci.
Τότε, τοM3 εφοδιάζεται με μια λεία μετρική Riemann σταθερής καμπυλότητας. Συγκεκριμένα,
αν τοM3 είναι απλά συνεκτικό τότε είναι διαφορομορφικό με τη σφαίρα S3.
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CHAPTER1
PRELIMINARIES ON RIEMANNIAN GEOMETRY

The purpose of this chapter, is to set up the notation and to recall fundamental definitions from
Riemannian geometry. We follow the exposition in [1], [2], [7], [19], [22] and [26].

1.1 Vector bundles

Let M be a smooth manifold of dimension m. The set of all smooth real valued functions of
M will be denoted by C∞(M). We would like now to associate to every point x ∈M a vector
space Ex in such a way that these vector spaces fit together to form another manifold which is
then called a vector bundle overM .

Definition 1.1.1. Let E be a smooth manifold and let π : E → M be a smooth surjective
map. The triple (E, π,M) is called a real vector bundle of rank n overM , if the following
three conditions are satisfied:

(1) For each x ∈ M , the set Ex = π−1 (x) possesses a real vector space structure of
dimension n.

(2) For each x ∈M , there exists a neighborhood U ⊂M around x, and a diffeomorphism
Φ : U × Rn → π−1 (U), with the property Φ (y, v) ∈ Ey for all (y, v) ∈ U × Rn.

(3) The smooth map Φy : Rn → Ey given by Φy (v) = Φ (y, v) is a R-linear isomorphism.

The manifold E is called the total manifold, the map π is said to be the projection map andM
the base manifold. The vector space Ex is called the fiber over the point x. WhenM is fixed
and π is known, for simplicity we denote the bundle (E, π,M) only by the letter E.

Definition 1.1.2. A smooth section σ of (E, π,M) is a smooth map σ : M → E with the
property π ◦ σ = I , where I stands for the identity map of M . The space of sections of
(E, π,M) is denoted by Γ(E).
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Chapter 1 1.1. Vector bundles

If σ, σ1, σ2 ∈ Γ(E) and f ∈ C∞(M) a smooth function, then we can form new sections
σ1 + σ2 and fσ, from point-wise addition and multiplication on each fiber respectively. More
precisely, we define

(σ1 + σ2)(x) = σ1(x) + σ2(x) and (fσ)(x) = f(x) σ(x), x ∈M.

Themost simple vector bundle over amanifoldM is the trivial vector bundleM×Rk.Moreover,
the tangent bundle TM of a manifold is an example of a vector bundle. The space of sections
of TM is usually denoted by X(M).
Let (E, π,M) be a vector bundle and U an open subset of the manifold M . A collection
{φ1, . . . , φk} of (smooth) sections defined inU is called frame if, for every x ∈M , the vectors
{φ1(x), . . . , φk(x)} consists a basis of Ex. If φ is a section, then it can be written in the form

φ = f1φ1 + · · ·+ fkφk.

The functions fj , j ∈ {1, . . . , k}, are called the components of the section φ with respect to
the given frame. It turns out that φ is smooth if and only if its components are smooth; see for
example [1, Proposition 2.8].
The class of all vector bundles can be equipped with a category structure. This can be achieved
once we introduce the notion of a bundle map.
Definition 1.1.3. Let (E, π,M) and (F, θ,N) be vector bundles. A pair (f, L) of smooth
maps f :M → N and L : E → F is called a bundle map if:

(1) L is fiber preserving, i.e. it holds f ◦ π = θ ◦ L,

(2) Lx = L|Ex : Ex → Ff(x) is linear for each x ∈M .

If M ≡ N , then the map L : E → F is called a morphism if (I, L) is a bundle map. A
morphism L is called an isomorphism if it is invertible.

One simple method of constructing vector bundles is by restricting bundles on submanifolds or
by taking subbundles of other vector bundles. We give the precise definitions below.
Definition 1.1.4. Let (E, π,M) be a vector bundle over the manifold M . If Σ ⊂ M is a
submanifold of M , then the triple (π−1(Σ), π,Σ) is called the restricted bundle. Often we
denote the restricted bundle only by the symbol E|Σ.
Definition 1.1.5. Let (E, π,M) be a vector bundle over the manifold M . A vector bundle
(V, π1,M) is a called sub-bundle of (E, π,M) if the following three conditions are satisfied:

(1) V is a submanifold of the total space E,

(2) Vx = V ∩ Ex, for each every x ∈M ,

(3) π1 = π|V .
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Chapter 1 1.2. Connections and metrics

1.2 Connections and metrics

The investigation of geometric properties of vector bundles requires the notion of the directional
derivative. Here we give the basic facts about metrics and associated to them connections.

Definition 1.2.1. A (linear) connection on a vector bundle E over the manifoldM is a map
∇E : X(M)× Γ(E) → Γ(E), written ∇E(X,φ) = ∇E

Xφ, satisfying the properties:

(1) For every X,Y ∈ X(M) and φ ∈ Γ (E), it holds

∇E
X+Y φ = ∇E

Xφ+∇E
Y φ.

(2) For every X ∈ X(M), f ∈ C∞ (M) and φ ∈ Γ (E), it holds

∇E
fXφ = f∇E

Xφ.

(3) For every X ∈ X(M), f ∈ C∞ (M) and φ1, φ2 ∈ Γ (E), it holds

∇E
X(φ1 + φ2) = ∇E

Xφ1 +∇E
Xφ2.

(4) For every X ∈ X(M), φ ∈ Γ (E) and f ∈ C∞ (M), it holds

∇E
X (fφ) = (Xf)φ+ f∇E

Xφ.

The usual directional derivative in the Euclidean space is a connection. With respect to this
connection, any constant vector field on the Euclidean space is parallel. Hence, we give the
following general definition. Another important fact is the following:

Proposition 1.2.2. Let E be a vector bundle over M equipped with a connection ∇E . If
φ ∈ Γ(E) and X,Y ∈ X(M) such that Xx = Yx at a point x ∈M , then

∇E
Xφ|x = ∇E

Y φ|x.

For that reason, often we write
∇E

Xφ|x ≡ ∇E
Xx
φ.

Definition 1.2.3. Let (E, π,M) be a vector bundle equipped with a connection∇E . A section
φ ∈ Γ(E) is said to be parallel with respect to ∇E if ∇E

Xφ = 0, for each vector field X ∈
X(M).

We can define higher derivatives of sections of a vector bundle over amanifoldM whose tangent
bundle TM is equipped with a connection.
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Chapter 1 1.2. Connections and metrics

Definition 1.2.4. Let (E, π,M) be a vector bundle over a manifold M and assume that E
equipped with a connection ∇E and TM with a connection ∇M . For each X,Y ∈ X(M),
the map ∇2

X,Y : Γ(E) → Γ(E), given by

∇2
X,Y φ = ∇E

X∇E
Y φ−∇E

∇M
X Y φ,

is called the second covariant derivative of φ, with respect to the directions X and Y . By
coupling the connections ∇M and ∇E , one may define, the kth derivative∇k of φ ∈ Γ(E).

To each connection, we associate an operator which measures the non commutativity of the
second covariant derivative.
Definition 1.2.5. Let (E, π,M) be a vector bundle over M . Assume that the bundles E
and TM are equipped with connections ∇E and ∇M , respectively. The linear operator
RE : X(M)× X(M)× Γ(E) → Γ(E), given by

RE (X,Y, φ) = ∇2
X,Y φ−∇2

Y,Xφ,

for each X,Y ∈ X(M) and φ ∈ Γ(E), is called the curvature tensor associated with∇E .

Now let us turn our attention to vector bundles equipped with a Riemannian metric structure.
Definition 1.2.6. ARiemannianmetric on a vector bundleE overM is a smoothmap gE : Γ(E)×
Γ(E) → C∞(M), such that its restriction to the fibers is a positive definite inner product.

Often we denote Riemannian metrics by the symbol 〈· , ·〉. It is known that every vector bundle
admits a Riemannian metric. The proof uses the partition of unity to glue local Riemannian
metrics on each fiber; see for example [2].
Definition 1.2.7. Let E be a vector bundle of rank k overM equipped with a connection∇E

and a Riemannian metric gE .

(1) We say that ∇E is compatible with the Riemannian metric gE if it satisfies

XgE(φ1, φ2) = gE
(
∇E

Xφ1, φ2

)
+ gE

(
φ1,∇E

Xφ2

)
,

for eachX ∈ X(M) and φ1, φ2 ∈ Γ(E). A vector bundle E endowed with both of these
structures is called Riemannian vector bundle endowed with a compatible connection.

(2) We say that a set of sections {φ1, . . . , φk} defined in an open neighborhood ofM , con-
sists a local orthonormal frame, with respect to gE if and only if

gE(φi, φj) = δij,

for each i, j ∈ {1, . . . , k}.

Using the Gram-Schmidt process we can always find local orthonormal frames of sections in a
Riemannian vector bundle.
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Chapter 1 1.3. The induced bundle

1.3 The induced bundle

There is a natural way to differentiate sections along curves on M . More precisely, suppose
that γ : [0, 1] → M is a smooth (not-necessarily regular) curve and let E be a rank k vector
bundle over M . Moreover, suppose that the bundle E is equipped with a Riemannian metric
gE and a compatible connection ∇E . Let φ be a section defined only along the image of γ. If
{φ1, . . . , φk} is a local orthonormal frame around x0 ∈M , then φ can be decomposed as

(φ ◦ γ)(t) =
k∑

j=1

fj(t)(φj ◦ γ)(t), t ∈ (0, 1), (1.1)

where the functions fj : [0, 1] → R, j ∈ {1, . . . , k}, are called the components of φ with
respect to the given frame. We say that φ is smooth along γ if its components given in (1.1)
are smooth. The question now is how to define the derivative of φ in the direction of γ′. Since
we require the directional derivative to satisfy the properties of Definition 1.2.1, we see that the
only possible way to define it is via the formula:

∇γ
γ′(t)φ =

k∑
j=1

f ′
j(t)(φj ◦ γ)(t) +

k∑
j=1

fj(t)∇E
γ′(t)φj, t ∈ (0, 1). (1.2)

It can be very easily checked that the above definition does not depend on the choice of the local
frame. It is not hard to see that, if φ1 and φ2 are smooth sections along γ, then

(gE(φ1, φ2))
′ = gE(∇γ

γ′φ1, φ2) + gE(φ1,∇γ
γ′φ2). (1.3)

Definition 1.3.1. A section φ along a smooth curve is called parallel if

∇γ
γ′φ ≡ 0. (1.4)

Note that the ODE (1.4) is of first order and linear. From the standard theory of ODEs, we can
easily prove that the initial value problem{

∇γ
γ′(t)φ = 0, t ∈ (0, 1),

φγ(0) = φ0,

has a unique solution, which can be extended up to γ(1). The obtained section is called the
parallel transport of φ0 along the curve γ. With the use of the formula (1.3), we can show that
the parallel transport preserves the lengths and and the angles of sections. Consequently, given
two points x0 and y0 on the manifoldM and a smooth curve γ joining them, then the parallel
transport gives rise to a linear isometry Pγ : Ex0 → Ey0 .
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Chapter 1 1.3. The induced bundle

We would like now to extend the above formulation for sections defined along the image of
smooth maps. Suppose that Σ and M are smooth manifolds, (E, π,M) is a vector bundle of
rank k overM and f : Σ → M is a smooth map. The map f induces a new vector bundle of
rank k over Σ. Indeed:

• Take as total space the set

f ∗E =
{
(x, ξ) : x ∈ Σ and ξ ∈ Ef(x)

}
,

and as projection the map πf : f ∗E → Σ given by

πf (x, ξ) = x.

The space f ∗E contains all sections of E with base point at f(Σ).

• Let ∇E be a linear connection on E. Suppose that {φ1, . . . , φk} is a frame field of E
defined in an open neighborhood of f(x) ∈ N . Then, any section σ ∈ Γ

(
f ∗E

)
can be

written in the form

σ(x) =
k∑

α=1

σα(x)(φα ◦ f)(x),

where σα, α ∈ {1, . . . , k}, are the components of σ with respect to the given frame field.
These functions are defined in a neighborhood of Σ and they are smooth. Define now,

∇f
Xσ =

k∑
α=1

(Xσα)(φα ◦ f) +
k∑

α=1

σα∇E
df(X)φα,

for each X ∈ X(Σ). One can easily verify that the above definition of the pull-back
connection is independent of the choice of the frame field.

• The curvature tensor Rf of the pull-back bundle is given by

Rf (X,Y )σ = RE(df(X), df(Y ))σ,

for eachX,Y ∈ TxM and σ ∈ Γ(f ∗E).

• In the case E = TN and∇N is a torsion-free connection, i.e.

∇N
XY −∇N

Y X = [X,Y ],

then the following formula holds

∇f
Xdf(Y )−∇f

Y df(X) = df([X,Y ]),

for eachX,Y ∈ X(M).
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Chapter 1 1.4. Symmetric and anti-symmetric tensors

1.4 Symmetric and anti-symmetric tensors

Since Riemannian geometry is written in a tensorial language, it is important to study the space
of tensorial maps between vector bundles. Let (E, π1,M) be a vector bundle of rank k and
(V, π2,M) a vector bundle of rank l over the manifoldM endowed with linear connections∇E

and ∇V , respectively. The space Hom(Er;V ), of r-copies Er = E × · · · × E of E to V ,
becomes a vector bundle with total space

Hom(Er;V ) = ∪x∈M Hom(Er
x;Rl),

and projection map
π(x, σ) = x.

This particular bundle is called the homomorphism bundle. A natural connection ∇H on the
homomorphism bundle is given by

(∇H
Xφ
)
(σ1, . . . , σr) = ∇V

X{φ(σ1, . . . , σr)} − φ(∇E
Xσ1, . . . , σr)− · · · − φ(σ1, . . . ,∇E

Xσr)

where X ∈ X(M), φ ∈ Γ(Hom(Er;V )) and σ1, . . . , σr ∈ Γ(E). There is also a natural way
to construct Riemannian metrics on the homomorphism bundle. Let gE and gV be Riemannian
metrics which are compatible with the connections ∇E and ∇V . Then a natural metric on the
homomorphism bundle Hom that is compatible with∇H is given by

gH(φx, ϑx) =
k∑

i1,...,ir=1

gV
(
φ(σi1 , . . . , σir), ϑ(σi1 , . . . , σir)

)
,

where {σ1, . . . , σk} is an orthonormal basis at the point x with respect to gE . Sections of the
homomorphism bundle Hom(Er;R) are often called (r, 0)-tensors or simply r-tensors. There
are two interesting types of tensors, the symmetric and the alternative ones. More precisely:

Definition 1.4.1. A section φ ∈ Hom(Er;R) is called symmetric multilinear tensor of degree
r if

φ(σ1, . . . , σi, . . . , σj, . . . , σr) = φ(σ1, . . . , σj, . . . , σi, . . . , σr),

and alternative multilinear tensor of degree r if

φ(σ1, . . . , σi, . . . , σj, . . . , σr) = −φ(σ1, . . . , σj, . . . , σi, . . . , σr),

for each i, j ∈ {1, . . . , r}. We denote the space of symmetric multilinear tensors of degree
r by the symbol S(Er). Often we refer to elements of S(E2) as symmetric 2-tensors. The
space of alternative bilinear tensors of degree r is denoted by the letter Ω(Er). Elements of
Ω(E2) are called anti-symmetric 2-tensors.
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Chapter 1 1.5. Exterior powers of vector bundles

1.5 Exterior powers of vector bundles

Denote by Λr(Rk) the dual space of all alternative multilinear forms of degree r. Elements of
Λr(Rk) are called r-vectors. Given vectors v1, . . . , vr on the Euclidean space Rk, the exterior
product v1 ∧ · · · ∧ vr is the linear map which on an alternating tensor ω of degree r takes the
value

(v1 ∧ · · · ∧ vr)(ω) = ω(v1, . . . , vr).

The exterior product is linear in each variable separately. Interchanging two elements the sign of
the product changes and if two variables are the same the exterior product vanishes. An r-vector
ξ is called simple or decomposable if it can be written as a single wedge product of vectors,
that is

ξ = v1 ∧ · · · ∧ vr.
Note that there are r-vectors which are not simple. For example, let {e1, e2, e3, e4} be the
standard basis of R4. Then, the 2-vector

ξ = e1 ∧ e2 + e3 ∧ e4
is not simple. Using standard techniques from Linear Algebra one can verify that the exterior
product v1 ∧ · · · ∧ vr is zero if and only if the vectors are linearly dependent. Moreover, if
{e1, . . . , ek} consists a basis for Rk, then the r-vectors

{ei1 ∧ · · · ∧ eir : 1 ≤ i1 < · · · < ir ≤ k}

consists a basis of Λr(Rk). Therefore, the dimension of the vector space of r-vectors is

dimΛr(Rk) =

(
k

r

)
=

n!

r!(k − r)!
.

Each simple vector represents a unique r-dimensional subspace of Rk. We can equip Λr(Rk)
with a natural inner product, which we denote by (· , ·). Indeed, define

(v1 ∧ · · · ∧ vr, w1 ∧ · · · ∧ wr) = det
(
〈vi, wj〉

)
1≤i,j≤r

, (1.5)

on simple r-vectors and then extend linearly. Moreover, if {e1, . . . , ek} is an orthonormal basis
of Rk then, the r-vectors

{ei1 ∧ · · · ∧ eir : 1 ≤ i1 < · · · < ir ≤ k}

consist an orthonormal basis for the exterior powerΛr(Rk). Now ifE is a vector bundle of rank
k over a manifoldM , then we can form the exterior power Λr(E) of E by gluing together all
the spaces Λr(E), i.e.

Λr(E) = ∪x∈MΛr(Ex).
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Chapter 1 1.6. The Levi-Civita connection

1.6 The Levi-Civita connection

Let g be a metric on a m-dimensional manifoldM . Then there is a unique compatible with g
connection∇, referred as the Levi-Civita connection, given by the Koszul formula

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X,Y )) (1.6)
+g([X,Y ], Z)− g([X,Z], Y )− g([Y, Z], X),

for allX,Y, Z ∈ X(M). The Levi-Civita also satisfy

∇XY −∇YX = [X,Y ],

for each X,Y ∈ X(M). Denote by R the associated with ∇ curvature tensor. Combining R
with g we obtain a (4, 0)-tensor, which by abuse of notation, we denote it again by letter R, i.e.

R(X,Y, Z,W ) = −g(R(X,Y, Z),W ),

for each X,Y, Z,W ∈ X(M). The curvature tensor of a Riemannian manifold satisfies the
following important identities:

(1) Symmetries of the curvature tensor:

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(Z,W,X, Y ). (1.7)

(2) 1st Bianchi identity of the curvature:

R(X,Y, Z,W ) + R(Y, Z,X,W ) + R(Z,X, Y,W ) = 0. (1.8)

(3) 2nd Bianchi identity of the curvature:

(∇XR)(Y, Z,W ) + (∇YR)(Z,X,W ) + (∇ZR)(X,Y,W ) = 0. (1.9)

The Riemannian curvature tensor is a very complicated object and for its better understanding
we may consider various by-products of this quantity. IfX,Y ∈ TxM are linearly independent
vectors, then

sec(X,Y ) =
R(X,Y,X, Y )

g(X,X)g(Y, Y )− g(X,Y )2
,

is called the sectional curvature of the plane Π spanned by the vectors X and Y . As a matter
of fact, the sectional curvature depends on the plane Π and not on the generating vectors X
and Y . So the sectional curvature of a Riemannian manifold at a point x can be regarded as a
function defined on Λ2(TxM). One important relationships between the Riemannian and the
sectional curvature is the following algebraic result by Riemann; see [26, Proposition 3.1.3].
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Theorem 1.6.1. Let M be a Riemannian manifold and x ∈ M . Then the following two
properties are equivalent:

(1) For each Π ∈ Λ2(TxM), we have sec(Π) = k.

(2) The Riemann curvature tensor at x is given by

R(X,Y, Z,W ) = k
{
g(X,Z)g(Y,W )− g(Y, Z)g(X,W )

}
,

for each X,Y, Z,W ∈ TxM .

Definition 1.6.2. A Riemannian manifoldM that satisfies either of these two conditions for
all x ∈ M and the same k ∈ R for all x ∈ M is said to have constant curvature k. Such
Riemannian manifolds are shortly called space forms of curvature k.

The Euclidean space Rm equipped with the inner product gR, the sphere Sm(r) ⊂ Rm+1 of
radius r > 0 with metric gS the induced one from the Euclidean space and the hyperbolic space
Hm(r) modelled by

Hm(r) = {(x0, x1, . . . , xm−1) ∈ Rm : x0 > 0} and Riemannian metric gH = r2x−2
0 gR,

consist examples of space forms. According to a classical theorem in Riemannian geometry, the
following result holds:

Theorem 1.6.3. Let M be a simply connected, m-dimensional Riemannian manifold with
constant sectional curvature k. Then,M is isometric to Rm if k = 0, to Sm

r if k = r−2 and
to Hm

r if k = −r−2.

By contracting the operator R with the metric g we obtain the Ricci operator Ric and scalar
curvature S, i.e.

Ric(X,Y ) = trg
(
R(X, · , Y · )

)
and S = trg(Ric),

whereX,Y ∈ X(M). Finally, we define the trace-free Ricci tensor or the Einstein tensor by

E = Ric− (S/m)g.

Definition 1.6.4. A Riemannian manifold for which the Einstein tensor is identically zero is
called Einstein manifold.

It is a well-known fact that an Einstein manifold of dimension greater than two, has constant
scalar curvature; see for example [26, Proposition 3.1.5 & Corollary 3.1.6.]. The classification
of Einstein manifolds in dimensions greater than three, is still a wide open problem. For more
details we refer to the book of Besse [3].
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Chapter 1 1.6. The Levi-Civita connection

The symmetries given in (1.7) allow us to regard the curvature tensor of a Riemannian manifold
as a symmetric bilinear form on the exterior power of 2-vectors. More precisely, we define the
curvature operatorR : Λ2(TM)× Λ2(TM) → C∞(M) by

R(X ∧ Y, Z ∧W ) = R(X,Y, Z,W ),

for each X,Y, Z,W ∈ X(M). We now investigate the tensors satisfying the same algebraic
identities as the curvature tensor of a Riemannian manifold at one point. There is a natural way
to construct tensors satisfying the conditions (1.7) and (1.8) of the curvature tensor. First we
need the following definition:
Definition 1.6.5. Let V be a m-dimensional vector space and S(V ) the space of symmetric
bilinear forms of V . Given φ, ϑ ∈ S(V ), the multi-linear map

φ©∧ ϑ : V × V × V × V → R

given by

(φ©∧ ϑ)(v1, v2, v3, v4) = φ(v1, v3)ϑ(v2, v4) + φ(v2, v4)ϑ(v1, v3)

− φ(v1, v4)ϑ(v2, v3)− φ(v2, v3)ϑ(v1, v4),

is called the Kulkarni-Nomizu product of φ and ϑ.

The above product appeared for the first time in papers of Kulkarni [21] and Nomizu [25] and
for that reason is called by their names. Just by straight-forward computations one can check
the validity of the following:
Lemma 1.6.6. Let (M, g) be a Riemannian manifold. The following properties hold true:

(1) For each symmetric 2-tensors φ and ϑ, it holds φ©∧ ϑ = ϑ©∧ φ.

(2) The (4, 0)-tensor φ©∧ ϑ satisfies the properties (1.7) and (1.8).

(3) For each symmetric 2-tensors φ and ϑ, the following formulas hold

∇X(φ©∧ ϑ) = (∇Xφ)©∧ ϑ+ φ©∧ (∇Xϑ), X ∈ X(M),

and
∆(φ©∧ ϑ) = (∆φ)©∧ ϑ+ 2(∇Xφ)©∧ (∇Xϑ) + φ©∧ (∆ϑ).

In the sequel we introduce another important tensor in Riemannian geometry, the so-calledWeyl
tensor. Roughly speaking, the Weyl tensor measures how far is a Riemannian metric g from
being locally conformal to a flat one; locally conformally flat means that around each point
there exists an open neighborhood U and a function φ ∈ C∞(U) such that

g = e2φg,

has zero Riemann curvature operator. The precise definition is the following:
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Definition 1.6.7. Let (M, g) be a Riemannian manifold of dimensionm ≥ 3. The tensor W
given by

W = R− S

2m(m− 1)
g©∧ g − 1

m− 2
E©∧ g. (1.10)

is called the Weyl tensor.

As we will see in the next theorem, the Weyl tensor provides information only in dimension
greater than three. Furthermore, we will see that simply connected Einstein 3-manifolds are
fully classified.
Theorem 1.6.8. The Weyl tensor of a 3-dimensional Riemannian manifoldM is identically
zero. Therefore, the Riemannian curvature tensor of a 3-dimensional Riemannian manifold
is fully determined by its Ricci tensor. In particular, an Einstein 3-manifold is isometric with
a space form.

Proof. At first observe that due to the results of Lemma 1.6.6, the Weyl tensor has the identities
(1.7) and (1.8) of the Riemannian curvature tensor R. Moreover,

trg(W(X, · , Y, · )) = 0, for all X,Y ∈ X(M).

Consider a local orthonormal frame {e1, e2, e3} on the manifoldM . Then,

W(e1, e2, e1, e2) +W(e1, e3, e1, e3) = 0,

W(e2, e1, e2, e1) +W(e2, e3, e2, e3) = 0,

W(e3, e1, e3, e1) +W(e3, e2, e3, e2) = 0,

from where it follows that

W(e1, e2, e1, e2) = W(e1, e3, e1, e3) = W(e2, e3, e2, e3) = 0.

Moreover,

W(e1, e2, e1, e3) = −W(e2, e2, e2, e3)−W(e3, e2, e3, e3) = 0.

Hence, in general,

W(ei, ej, ek, el) = 0, unless the indices i, j, k are all distinct.

But in dimension 3 there are only three possible choices for the indices, and so the Weyl tensor
must vanish identically. Let us assume now that our 3-manifold is Einstein. Then the scalar
curvature S is constant (see [26, Proposition 3.1.5 & Corollary 3.1.6.]) and from the equation
(1.10) we deduce that the Riemannian manifoldM is a space form. This completes the proof
of the theorem. □
We conclude this section with a lemma which provides us with some information about the
algebraic structure of the curvature operator of 3-dimensional Riemannian manifolds.
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Lemma 1.6.9. Let M be a 3-dimensional Riemannian manifold. Then, there exists a local
orthonormal frame {e1, e2, e3} satisfying the following properties:

(1) The curvature operator is diagonalized in the form

R(e2 ∧ e3, e2 ∧ e3) = λ1, R(e1 ∧ e3, e1 ∧ e3) = λ2, R(e1 ∧ e2, e1 ∧ e2) = λ3,

where λ1 ≥ λ2 ≥ λ3 are continuous functions.

(2) The Ricci tensor, with respect to the frame {e1, e2, e3}, takes the form

Ric =

λ2 + λ3 0 0
0 λ1 + λ3 0
0 0 λ1 + λ2

 .

(3) The scalar curvature has the form

S = 2(λ1 + λ2 + λ3).

Proof. The existence of the local frame which diagonalizesR follows from the observation in
Theorem 1.6.8 thatR is fully determined by Ric. Note that the bi-vectors

{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3}

form an orthonormal frame of Λ2(TM) with respect to the inner product (· , ·) given in (1.5).
With respect to this frame we have that

Ric(e1, e1) = R(e1 ∧ e2, e1 ∧ e2) +R(e1 ∧ e3, e1 ∧ e3) = λ3 + λ2,

Ric(e2, e2) = R(e2 ∧ e1, e2 ∧ e1) +R(e2 ∧ e3, e2 ∧ e3) = λ3 + λ1,

Ric(e3, e3) = R(e3 ∧ e1, e3 ∧ e1) +R(e3 ∧ e2, e3 ∧ e2) = λ2 + λ1,

and the other elements of Ric are equal to zero. Combining the above results, we see that

S = Ric(e1, e1) + Ric(e2, e2) + Ric(e3, e3)

= 2(λ1 + λ2 + λ3).

This completes the proof. □
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1.7 Lie derivatives

We discuss here another notion differentiation of vector fields which generalizes the directional
derivative.

Definition 1.7.1. LetM be a smoothm-dimensional manifold and X ∈ X(M).

(1) The Lie derivative of f ∈ C∞(M) in the direction of X is LXf = df(X).

(2) The Lie derivative of a vector field Y ∈ X(M) in the direction of X is LXY = [X,Y ].

We would like to define the notion of the Lie derivative of a tensor in the direction of a vector
field. Before giving the precise definition we need some preliminaries. LetX be a vector field
onM and let φ :M × I →M , I ⊂ R, be the map satisfying{

dφ(x,t)(∂t) = Xx,

φ(x, 0) = x,
(1.11)

for each (x, t) ∈ M × I . Then, for each t ∈ I , the map given by x 7→ φt(x) = φ(x, t) is a
local diffeomorphism.

Definition 1.7.2. LetM be a smoothm-dimensional manifold and X ∈ X(M) and let T be
a r-tensor on the tangent bundle ofM . The Lie derivative of T in the directionX is defined
by

(LXT )(Y1, . . . , Yr)|x = lim
t→0

(φ∗
tT − T )(Y1, . . . , Yr)|x

t
, x ∈M.

It turns out that the Lie derivative of a r-tensor satisfies the property described in the following
proposition; see [26, Appendix 1, page 376].

Proposition 1.7.3. Let T be a r-tensor and X a vector field onM . Then

(LXT )(Y1, . . . , Yr) = X(T (Y1, . . . , Yr))− T (LXY1, . . . , Yr)− · · · − T (Y1, . . . ,LXYr).

Corollary 1.7.4. Let (M, g) be a Riemannian manifold. Then,

(LXg)(Y, Z) = g(∇YX,Z) + g(∇ZX,Y ),

where ∇ the Levi-Civita connection and X ∈ X(M).

Proof. Using Proposition 1.7.3 and properties of the Levi-Civita connection we have

(LXg)(Y, Z) = X(g(Y, Z))− g(LXY, Z)− g(Y,LXZ)

= g(∇XY, Z) + g(Y,∇XZ)− g([X,Y ], Z)− g(Y, [X,Z])

= g(∇YX,Z) + g(∇ZX,Y ),

for eachX,Y, Z ∈ X(M). This completes the proof. □
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1.8 Point-wise conformal metrics

For later use, let us consider here the simplest deformations of a Riemannian metric, namely
the conformal ones. They are obtained by changing at each point the lengths of all vectors by a
scaling factor (depending on the point) without changing the angles.

Definition 1.8.1. Two Riemannian metrics g and g on a manifold M are said to be (point-
wise) conformal if there exists a smooth function φ onM such that g = e2φg.

In the following, we compute the various invariants of the metric g in terms of those of g and the
derivatives of f with respect to the Levi-Civita connection∇ of g. More precisely, the following
result holds:

Theorem 1.8.2. Let (M, g) be a Riemannian m-dimensional manifold, φ ∈ C∞(M) a
smooth function onM and g the metric given by g = e2φg. Then:

(1) The Levi-Civita connections ∇ and ∇ of the metrics g and g , respectively, are related
by the formula

∇XY = ∇XY + (Xφ)Y + (Y φ)X − g(X,Y )∇φ, for all X,Y ∈ X(M).

(2) The volume forms V and V of the metrics g and g , respectively, are related by

V = emφV.

(3) The gradients of a function f ∈ C∞(M) with respect the metrics g and g are related by

∇f = e−2φ∇f.

(4) The Laplacians of a function f ∈ C∞(M) with respect to g and g are related by

∆f = e−2φ
{
∆f + (m− 2)g(∇φ,∇f)

}
.

(5) The curvature operators R and R of the conformal metrics g and g are related by

R = e2φ
{
R+ g©∧

(
∇2φ− dφ⊗ dφ− 1

2
|∇φ|2g

)}
.

(6) The Ricci tensors Ric and Ric of the metrics g and g , respectively, are related by

Ric = Ric− (m− 2)
(
∇2φ− dφ⊗ dφ

)
−
(
∆φ− (m− 2)|∇φ|2

)
g.

(7) The scalar curvatures S and S of the metrics g and g , respectively, are related by

S = e−2φ
{
S − 2(m− 1)∆φ− (m− 2)(m− 1)|∇φ|2

}
.

Proof. The proofs of the formulas follow by long but straight-forward computations; see for
example [3, Theorem 1.159]. □
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1.9 Global Riemannian geometry

Suppose that γ : [a, b] → M is a regular curve in a manifoldM equipped with a Riemannian
metric g. The length of γ is given by

L(γ) =

∫ b

a

|γ′(t)|dt

The distance between two points x, y ∈M can now be defined as

dist(x, y) = inf
{
length of all curves joining the points x, y

}
.

Note that the above mentioned set of curves is always non-empty since manifolds are assumed
to be connected. It turns out that dist is a topological metric onM . In fact the topology onM
induced by this metric coincides with the original topology ofM . We say that the Riemannian
manifold M is complete if and only if (M, dist) is a complete metric space. The diameter
diam(M) of a compact Riemannian manifoldM is given by the formula

diam(M) = max{dist(x, y) : x, y ∈M}.

In order to find the curve with the smallest length joining two points x and y, we have to mini-
mize the length functional. The Euler-Lagrange equation for the variation of the length leads to
the following:

∇γ
γ′γ

′ = 0. (1.12)

Solutions of (1.12) are called geodesic curves. From the basic theory of ODEs we obtain the
following important result; for the proof see for example [26].

Theorem 1.9.1 (Existence & uniqueness). LetM be a Riemannian manifold. Then:

(1) For each fixed point x ∈ M and each v ∈ TxM , there is a neighborhood Ux in M
around the point x, an open ball B(0, δx) in TxM around v such that for each y ∈ Ux

and w ∈ B(0, δx), there is a geodesic γy,w : (−2, 2) → U such that

γy,w(0) = y and γ′y,w(0) = w.

Moreover, the mapping F : Ux × B(0, δx)× (−2, 2) →M given by

F (y, w, t) = γy,w(t)

is smooth.

(2) Let I1 and I2 be two open intervals with t0 ∈ I1 ∩ I2 and γ1 : I1 →M and γ2 : I2 →M
are geodesics with γ1(t0) = γ2(t0) and γ′1(t0) = γ′2(t0). Then, γ1(I1∩ I2) = γ2(I1∩ I2).
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Remark 1.9.2. Let us make some comments regarding the last theorem:

(1) As one can easily see any geodesic curve has speed of constant length. Therefore, in the
sequel, we will always assume that geodesics are parametrized with respect to the arc length.

(2) Geodesics are locally length minimizing. However, this property is not true in general as
already the sphere consists a counterexample.

Definition 1.9.3. Let x ∈ M and consider an open ball B(0, δx) ⊂ TxM as in Theorem
1.9.1. The smooth map expx : B(0, δx) →M given by

expx(v) = F (x, v, 1),

is called the exponential map.

Let us collect in the next theorem the most important properties of the exponential map. The
reader can find the proofs in any classical book of differential geometry; for example see [26].

Theorem 1.9.4. Fix a point x in a Riemannian manifoldM . Then, the following statements
hold true:

(1) For each v ∈ T0(TxM), it holds

dexpx|0(v) = v,

which means that the exponential map when restricted in a small neighborhood of the
origin of TxM is a diffeomorphism.

(2) Let δ a sufficiently small number such that expx : B(0, δ) → M is a diffeomorphism.
Then each geodesic starting from x meets orthogonally the boundary of expx(B(0, δ)).

(3) If the distance function dx :M → R given by

dx(y) = dist(x, y)

is smooth at y, then
(∇dx)(y) = γ′0(b),

where γ0 : [0, b] →M is the unique geodesic that is connecting the points x and y,

(4) The Riemannian manifoldM is complete if and only if, for each x ∈M , the exponential
map expx is defined in all of TxM . In this case, for each pair of points x, y ∈ M there
exists at least one geodesic curve joining these two given points.

The second part of the above theorem is known in the literature as the Gauß Lemma. The third
part is due to Hopf and Rinow. Notice that compact Riemannian manifolds are always complete.

31



Chapter 1 1.9. Global Riemannian geometry

Definition 1.9.5. Fix a point x in a complete Riemannian manifoldM .

(1) The cut locus of x in TxM is defined to be the set of all vectors v ∈ TxM such that

γ(t) = expx(tv)

is a length minimizing geodesic for all times t ∈ [0, 1] but fails to be minimizing for
t ∈ [1, 1 + ε) for each positive number ε > 0.

(2) The cut locus Cut(x) of x inM is defined to be the image of the cut locus of x in TxM
under the exponential map.

(3) The least distance from x to cut locus Cut(x) is called the injectivity radius inj(x) of x.
The injectivity radius inj(M) of a Riemannian manifold is the infimum of the injectivity
radii at all points.

Fix a point x ∈M and consider the closed set

Dx =
{
v ∈ TxM : dist(expx(v), x) = |v|

}
⊂ TxM.

It turns out that the boundary ∂Dx ofDx is exactly the cut locus of x in TxM and that

Cut(x) = expx(∂Dx).

Moreover, the map
expx : int(Dx) →M − Cut(x)

is a diffeomorphism. From Sard’s Theorem it follows that the set Cut(x) has measure zero.
Another interesting fact is that the injectivity radius inj(x) of x can be defined equivalently as the
supremum of all r > 0 such that the exponential map expx : B(0, r) →M is diffeomorphism.
We conclude this section with three results which show how the geometry affects the topology
of the manifold and vise versa; for the proofs we refer to [8] and [26].

Theorem 1.9.6 (Cheng-Bonnet-Myers). Let (M, g) be a completem-dimensional Riemannian
manifold such that

Ric ≥ (m− 1)kg,

where k is a positive constant. Then, the following facts hold:

(1) The manifoldM is compact with finite fundamental group.

(2) The diameter ofM can be estimated from above by diam(M) ≤ π/
√
k.

(3) If diam(M) = π/
√
k, thenM is isometric to Sm

k .
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Theorem 1.9.7 (Bishop-Cheeger-Gromov). Suppose that (M, g) is a Riemannian manifold of
dimensionm such thatRic ≥ (m−1)kg, where k is a real constant. Then, for each x ∈M ,
we have that

V (B(x, r)) ≤ V k
m(r).

where V k
m(r) the volume of the ball of radius r in the simply-connectedm-dimensional space

form of curvature k. As a matter of fact, the function

r 7→ V (B(x, r))

V k
m(r)

,

is non-increasing and its limit as r → 0 is 1.

Theorem 1.9.8 (Klingenberg). LetM be a Riemannian manifold. The following facts hold:

(1) IfM is compact, then the injectivity radius inj(M) is always positive.

(2) IfM is compact and all the sectional curvatures are bounded from above by k > 0, then

inj(M) ≥ min
{
π/

√
k , (1/2) · length of the shortest closed geodesic

}
.

(3) IfM is complete and simply connected whose sectional curvatures are pinched between
k and k/4 for some positive constant k, then

inj(M) ≥ π/
√
k.

(4) IfM is compact, even-dimensional, orientable whose sectional curvatures are positive
and bounded from above by a positive constant k, then

inj(M) ≥ π/
√
k.

1.10 Index notation

In the following chapters we will perform computations involving tensors with respect to local
coordinates or orthonormal frames. Let us briefly discuss the conventions that we will use,
following the exposition in [26]. Suppose that E is am-dimensional real vector space. We use
subscripts to denote vectors in E. Therefore, a basis of E will be denoted by {e1, . . . , em}.
Given a vector v ∈ V , we then write it as a linear combination of this basis as follows

v =
m∑
i=1

viei = viei.
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Note that we use superscripts for the coefficients of v and then automatically sum over indices
that are repeated as both subscripts and superscripts. Let us consider now the basis {e1, . . . , em}
of dual space V ∗ given by ei(ej) = δij. This basis of the dual space is called associated with
{e1, . . . , em}. Then we see that

vi = ei(v).

Hence, we decide to use superscripts for dual basis in V ∗. If φ : V → V is a linear map then we
denote the components of the matrix of φ with respect to the basis {e1, . . . , em} by φj

i , namely

φ(ei) = φj
iej.

If φ : V × V → R is a bilinear form, then we may represent the coefficients of its matrix with
respect to the basis {e1, . . . , em} by φij , that is φij = φ(ei, ej). Consequently, we may write
φ in the form

φ = φij e
i ⊗ ej,

where ⊗ is the multiplication on 1-forms, i.e. if ω1, ω2 ∈ V ∗ andX,Y ∈ V , then

ω1 ⊗ ω2(X,Y ) = ω1(X) · ω2(Y ).

On the other hand, if φ : V ×V → V is a vector valued bilinear form, then its coefficients with
respect to the basis {e1, . . . , em} will be denoted by φk

ij , that is

φ(ei, ej) = φk
ijek.

Suppose that (x1, . . . , xm) is a coordinate system in a RiemannianmanifoldM . Then we denote
the corresponding basic vector fields by {∂1, . . . , ∂m}. With respect to this basis, we have

(1) Components of the metric and of its inverse: g(∂i, ∂j) = gij and (gij) = (gij)
−1.

(2) Components of the Riemannian 3-tensor: R(∂i, ∂j, ∂k) = Rl
ijk∂l.

(3) Components of the Riemannian 4-tensor: R(∂i, ∂j, ∂k, ∂l) = Rijkl = ghkR
h
ijl.

(4) Components of the Ricci curvature: Ric(∂i, ∂j) = Rij = gklRikjl.

(5) Scalar curvature in local coordinates: S = gijRij = gijgklRikjl.
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CHAPTER2
THE RICCI FLOW EQUATION

In this chapter, we introduce the Ricci flow as an evolution equation, give examples of special
solutions to the Ricci flow and compute the evolution equations of various geometric quantities.

2.1 Motivation

The concept of the Ricci flow was introduced in 1982 in the seminal paper of Hamilton [18].
The Ricci flow is an evolution equation which deforms a Riemannian metric in the direction of
its Ricci curvature. In local coordinates, we can describe the Ricci flow by the equation

g′ij(t) = −2Rij(t), t ∈ (0, T ), (2.1)
where gij(t) denotes the components of a time-dependent Riemannian metric and Rij(t) the
components of the Ricci curvature of the corresponding metric at time t ∈ (0, T ). Hamilton
was inspired by the work of Eells and Sampson [14] on the harmonic heat map flow, where under
certain conditions they succeeded to deform a smooth map between Riemannian manifolds into
a harmonic one. Hamilton’s main idea was to try to deform a given Riemannian metric on
manifold by a heat-type equation. He was led to consider the equation (2.1) due to this fact: If
M is a Riemannian m-dimensional manifold, then around each point there exists a coordinate
system (x1, . . . , xm) where each coordinate function xi : M → R, 1 ≤ i ≤ m, is harmonic
with respect to the Riemannian metric ofM ; see [26, page 409]. In such a coordinate system,
the components of the Ricci tensor satisfy

−2Rij = ∆gij + (lower order terms).
However, let us mention here that, the property of a coordinate system to be harmonic is not
preserved under (2.1). Moreover, it turns out that the equation (2.1) is not parabolic, so the
existence for short time of the initial value problem{

g′ij(t) = −2Rij(t),

gij(0) = gij,
(2.2)

is not guarantied from the standard theory of parabolic PDEs.
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2.2 Definitions and examples

Suppose that (0, T ) is an open interval of the real line and let {gt}t∈(0,T ) be an arbitrary smooth
family of Riemannian metrics on a manifoldM . This means that for each (x, t) ∈M × (0, T )
we have an inner product g(x,t) on the tangent space TxM . Then, we can regard {gt}t∈(0,T ) as
a metric g acting on the spatial tangent bundleH, defined by

H = {X ∈ T (M × (0, T )) : dπ2(X) = 0},

where π2 :M × (0, T ) → (0, T ) is the natural projection map given by

π2(x, t) = t.

Observe that each gt is a Riemannian metric on H since H(x,t) is isomorphic to TxM via π2.
We can even extend naturally g into a Riemannian metric onM × (0, T ), with respect to which
we have the orthogonal decomposition

T (M × (0, T )) = H⊕ R∂t.

Since H is a vector subbundle of T (M × (0, T )), every section of H is also a section of the
tangent bundle T (M × (0, T )). We call the elements of Γ(H) spatial vector fields. There is a
natural connection∇ onM × (0, T ). As a matter of fact, define∇ by

∇XY = ∇t
XY, ∇X∂t = 0, ∇∂t∂t = 0 and ∇∂tX = [∂t, X], (2.3)

for each spatial vector fields X and Y , where ∇t stands for the Levi-Civita connection of gt.
One can readily check that∇ is compatible with g, i.e.

Xg(Y1, Y2) = g(∇XY1, Y2) + g(Y1,∇XY2),

for eachX ∈ T (M×(0, T )) and spatial vector fieldsY1, Y2 ∈ Γ(H). Moreover, the connection
∇ is spatially symmetric, that is

∇Y1Y2 −∇Y2Y1 = [Y1, Y2],

for each Y1, Y2 ∈ Γ(H). Let us give now the formal definition of the Ricci flow.

Definition 2.2.1. Let M be a m-dimensional manifold and {gt}t∈(0,T ) be a one-parameter
family of Riemannian metrics onM . We say that {gt}t∈(0,T ) is a solution of the Ricci flow if

∇∂tgt = −2Ricgt ,

where Ricg is the Ricci curvature of the metric g.

36
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Example 2.2.2. Let us give some examples of metrics evolving under the Ricci flow.

(1) Spheres. Let us denote by (Sm, g0) them-dimensional unit sphere lying in Rm+1. Then,

Ricg0 = (m− 1)g0.

Consider now the family of metrics {gt}t∈(0,T ) given by

gt =
{
1− 2(m− 1)t

}
g0 where T =

1

2(m− 1)
.

From the formulas of Theorem 1.8.2, we have that

Ricgt = Ricg0 = (m− 1)g0,

for each t ∈ (0, T ). Moreover, for each time-independent vector fields X,Y on M , we
obtain {

∇∂tgt
}
(X,Y ) = ∂t

{
gt(X,Y )

}
= ∂t

{
g0(X,Y )− 2(m− 1)tg0(X,Y )

}
= −2(m− 1)g0(X,Y )

= −2Ricgt(X,Y ).

Hence {gt}t∈(0,T ) is a solution to the Ricci flow for every t < T . This shows that the sphere
evolves by shrinking homothetically and at T it collapses to a point.

(2) Hyperbolic spaces. Let (Hm, g0) be the m-dimensional hyperbolic space of constant sec-
tional curvature −1. Then, Ricg0 = −(m − 1)g0. A similar computation as above shows
that the metrics {gt}t∈(0,∞) given by

gt =
{
1 + 2(m− 1)t

}
g0, where t > 0,

consist a solution to the Ricci flow. Hence the hyperbolic space expands homothetically to
infinity.

(3) Einstein manifolds. Let (M, g0) be an Einstein manifold. Then, Ricg0 = λ g0, where
λ ∈ R is a constant. Consider the family of metrics {gt}t∈(0,T ) given by

gt = (1− 2λt)g0, for t such that 1− 2λt > 0.

Similar computations as in the previous examples show that gt is a solution to the Ricci
flow. Hence, if λ > 0 the flow exists up to time 1/(2λ) and if λ ≤ 0 the flow exists for all
positive times.

(4) Product manifolds Let (M1, g1(t)) and (M2, g2(t)) be solutions to the Ricci flow defined
in a common time interval (0, T ). Then, the family of metrics {gt}t∈(0,T ) given by

gt = g1(t)× g2(t),

consists a solution to the Ricci flow onM1 ×M2.
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2.3 Evolution equations

In this section we will see how various geometric quantities evolve under the Ricci flow. With
abuse of notation, we will denote all connections by the same letter∇.

Lemma 2.3.1 (Uhlenbeck’s trick). Let {gt}t∈[0,T ) be a solution of the Ricci flow. Then,

(1) There exists a local smooth time-dependent tangent orthonormal frame field {e1, . . . , em}
with respect to gt satisfying

∇∂tei = Rijej, i ∈ {1, . . . ,m},

for each t ∈ [0, T ).

(2) The induced volume form dµt on (M, gt) evolves according to the equation

∇∂tdµt = −Sdµt.

Moreover, the volume Vt of the evolved metrics satisfy

∂tV = −
∫
Sdµt.

Proof. Denote by Pt : TM → TM the (time-dependent) adjoint operator associated with the
Ricci curvature, i.e.

Ric(X,Y ) = gt(PtX,Y ) = gt(X,PtY ), X, Y ∈ X(M).

Consider now the time-dependent family of bundle isomorphisms φt : TM → TM given by{
∇∂tφt= Pt ◦ φt, t ∈ (0, T ),

φ0 = I.

We claim that φ∗
t gt = g0, for every t ∈ [0, T ). Indeed, consider a local coordinate chart

{∂1, . . . , ∂m} in a neighborhood of φt. Using from (2.3) the fact that

[∂t, ∂i] = ∇∂t∂i = 0, i ∈ {1, . . . ,m},

we obtain

∂t{φ∗
t gt(∂i, ∂j)} = ∂t{gt(φt(∂i), φt(∂j))} = (∇∂tgt)(φt(∂i), φt(∂j))

+gt(∇∂tφt(∂i), φt(∂j)) + gt(φt(∂i),∇∂tφt(∂j))

= −2Ric(φt(∂i), φt(∂j))

+gt((Pt ◦ φt)(∂i), φt(∂j))) + gt(φt(∂i), (Pt ◦ φt)(∂j)))

= 0.
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Hence, if {v1, . . . , vm} is a local orthonormal frame with respect to the metric g0, then

{e1 = φt(v1), . . . , em = φt(vm)}

is a local time-dependent orthonormal frame with respect to gt, for each t ∈ [0, T ). Moreover,
this frame satisfies

∇∂tei = Rijej.

Denote by {ω1, . . . , ωm} the corresponding dual frame of {e1, . . . , em}. Then,

∇∂tωi = −Rijωj,

for each i ∈ {1, . . . ,m}. Hence,

∇∂tdµt = ∇∂t(ω1 ∧ · · · ∧ ωm) = −Sω1 ∧ · · · ∧ ωm = −Sdµt.

By integrating we get

∂tV = −
∫
Sdµt,

and the proof is completed. □

Our next goal is to compute how the Riemann curvature tensor evolves under the Ricci flow.
We start with some auxiliary results that we will frequently use in the sequel. First let us denote
by CB(TM) the space of all (4, 0)-tensors satisfying the properties (1.7), (1.8) and (1.9) of the
Riemannian curvature tensor. Define now the bundle map Q : CB(TM) → C∞(M) given by

Q(R)ijkl = RijabRklab + 2RiakbRjalb − 2RialbRjakb, (2.4)

where we use Einstein’s summation convention and the components are regarded with respect
to a local orthonormal frame. Another thing that we will use often in our computations are the
Ricci identities that we state in the following lemma.

Lemma 2.3.2 (Ricci identities). Let φ be a (r, 0)-tensor on a Riemannian manifold. Then,
the following formula holds:

(∇2
X,Y φ − ∇2

Y,Xφ)(Z1, Z2, . . . , Zr) (2.5)
= −φ(R(X,Y, Z1), Z2, . . . , Zr)− · · · − φ(Z1, Z2, . . . , R(X,Y, Zr)),

where X,Y, Z1, . . . , Zr ∈ X(M).

Proof. The proof follows by direct computations and for that reason we omit it. □
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Lemma 2.3.3. The following formula holds:

(∆R +Q(R))ijkl = (∇2
ikRic)jl − (∇2

ilRic)jk − (∇2
jkRic)il + (∇2

jlRic)ik

+RiaRajkl +RjaRiakl, (2.6)

where the indices are regarded with respect to a local orthonormal frame.

Proof. Using the second Bianchi identity (1.9) we obtain

(∇eiR)(X,Y, Z,W ) = −(∇XR)(Y, ei, Z,W )− (∇YR)(ei, X, Z,W )

= (∇XR)(ei, Y, Z,W )− (∇YR)(ei, X, Z,W ).

Since {ei} is an orthonormal frame we have

(∇2
ei,X

R)(ei, Y, Z,W ) = ∇ei∇XR(ei, Y, Z,W )

and
(∇2

ei,Y
R)(ei, X, Z,W ) = ∇ei∇YR(ei, X, Z,W ).

Thus, we can write the Laplacian operator as

(∆R)(X,Y, Z,W )=
m∑
i=1

(∇2
ei,ei

R)(X,Y, Z,W ) (2.7)

=
m∑
i=1

(∇ei((∇XR)(ei, Y, Z,W )−(∇YR)(ei, X, Z,W ))

=
m∑
i=1

(
(∇2

ei,X
R)(ei, Y, Z,W )−(∇2

ei,Y
R)(ei, X, Z,W )

)
.

Using the Ricci identity (2.5) we deduce

m∑
i=1

(
∇2

X,ei
R)(ei, Y, Z,W )− (∇2

ei,X
R)(ei, Y, Z,W )

)
= (2.8)

m∑
i,j=1

R(X, ei, ei, ej)R(ej, Y, Z,W ) +
m∑

i,j=1

R(X, ei, Y, ej)R(ei, ej, Z,W )

+
m∑

i,j=1

R(X, ei, Z, ej)R(ei, Y, ej,W ) +
m∑

i,j=1

R(X, ei,W, ej)R(ei, Y, Z, ej).
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By interchangingX with Y we obtain

m∑
i=1

(
∇2

Y,ei
R)(ei, X, Z,W )− (∇2

ei,Y
R)(ei, X, Z,W )

)
(2.9)

=
m∑

i,j=1

R(Y, ei, ei, ej)R(ej, X, Z,W )+
m∑

i,j=1

R(Y, ei, X, ej)R(ei, ej, Z,W )

+
m∑

i,j=1

R(Y, ei, Z, ej)R(ei, X, ej,W )+
m∑

i,j=1

R(Y, ei,W, ej)R(ei, X, Z, ej).

Then, we subtract (2.9) by (2.8),

m∑
i=1

(
(∇2

X,ei
R)(ei, Y, Z,W )− (∇2

Y,ei
R)(ei, X, Z,W )

)
−

m∑
i=1

(
(∇2

ei,X
R)(ei, Y, Z,W ) + (∇2

ei,Y
R)(ei, X, Z,W )

)
=

m∑
i,j=1

(
R(Y, ei, X, ej)−R(X, ei, Y, ej)

)
R(ei, ej, Z,W )

+2
m∑

i,j=1

R(X, ei, Z, ej)R(ei, Y, ej,W )

−2
m∑

i,j=1

R(X, ei,W, ej)R(Y, ei, Z, ej)

−
m∑

i,j=1

(
Ric(X, ej)R(ej, Y, Z,W )−Ric(Y, ej)R(ej, X, Z,W )

)
.

We use the first Bianchi identity (1.8) to get

R(Y, ei, X, ej)−R(X, ei, Y, ej) = R(X,Y, ei, ej).
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Then, by the definition of Q(R)

m∑
i=1

(
(∇2

X,ei
R)(ei, Y, Z,W )− (∇2

Y,ei
R)(ei, X, Z,W )

)
−

m∑
i=1

(
(∇2

ei,X
R)(ei, Y, Z,W ) + (∇2

ei,Y
R)(ei, X, Z,W )

)
= Q(R)(X,Y, Z,W )

−
m∑
j=1

(Ric(X, ej)R(ej, Y, Z,W )−Ric(Y, ej)R(ej, X, Z,W )).

Hence, by (2.7)

(∆R +Q(R))(X,Y, Z,W ) =
m∑
i=1

(∇2
X,ei

R)(ei, Y, Z,W ) (2.10)

−
m∑
i=1

(∇2
Y,ei

R)(ei, X, Z,W )

+
m∑
i=1

Ric(X, ei)R(ei, Y, Z,W )

+
m∑
i=1

Ric(Y, ei)R(X, ei, Z,W ).

Then, using the second Bianchi identity (1.9),

∇ekR(ek, Y, Z,W ) = ∇ekR(ek, Y, ek,W )−∇WR(ek, Y, ek, Z).

As a consequence,

m∑
i=1

(∇2
X,ei

R)(ei, Y, Z,W ) =
m∑
i=1

(∇2
X,ZR)(ei, Y, ei,W )

−
m∑
i=1

(∇2
X,WR)(ei, Y, ei, Z)

= (∇2
X,ZRic)(Y,W )− (∇2

X,WRic)(Y, Z).
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InterchangingX with Y we get the following expression
m∑
i=1

(∇2
Y,ei

R)(ei, X, Z,W ) =
m∑
i=1

(∇2
Y,ZR)(ei, X, ei,W )

−
m∑
i=1

(∇2
Y,WR)(ei, X, ei, Z)

= (∇2
Y,ZRic)(X,W )− (∇2

Y,WRic)(X,Z).

By replacing the last two equations in (2.10) the proof is completed. □
Lemma 2.3.4. Let {gt}t∈[0,T ) be a solution of the Ricci flow equation and {e1, . . . , em} an
orthonormal frame as in Lemma 2.3.1. Then, with respect to this frame, the following holds:

(1) The Riemannian curvature tensor evolves according to

(∇∂tR)ijkl = (∆R +Q(R))ijkl. (2.11)

(2) The Ricci tensor evolves according to

(∇∂tRic)ij = (∆Ric)ij + 2RiajbRab. (2.12)

(3) The scalar curvature evolves according to

∂tS = ∆S + |Ric|2. (2.13)

Proof. The proof follows using Lemma 2.3.1 and 2.3.3 and straightforward computations. □
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CHAPTER3
SHORT-TIME EXISTENCE

In this chapter, we prove that the Ricci flow equation, with initial data a compact Riemannian
manifold, has always a smooth solution for a short time. It turns out that the Ricci flow equation
is a weakly parabolic system and the existence of a short-time solution is not guarantied from
the standard theory of PDEs. We will present the so-called DeTurck’s trick, presented in [13].
DeTurck’s idea was to modify the Ricci flow equation in a way that it becomes strictly parabolic.
Then he shows that these two equations are equivalent and the existence and uniqueness of the
solution follows from the theory of parabolic PDEs.

3.1 Nature of the Ricci flow

3.1.1 The symbol

Firstly, we introduce the concept of parabolicity of differential operators on vector bundles. Let
M be a smooth manifold with a Riemannian metric g associated with the Levi-Civita connection
∇M . LetE andF be vector bundles overM withE equippedwith a Riemannianmetrichwhich
is compatible with the connection ∇E . Using the connections ∇M and ∇E we can construct
∇n, the n−th iterated covariant derivative of a section ψ ∈ Γ(E).

Definition 3.1.1. A differential operator L : Γ(E) → Γ(F ) of the form

L(ψ)(x) = Q(x,∇ψ(x), . . . ,∇nψ(x)) ∈ Fx,

whereQ is smooth in all its variables, is called differential operator of ordern. IfL isR-linear
in ψ then we say that L is a linear differential operator. Otherwise, L is called a non-linear
differential operator.

Let L : Γ(E) → Γ(F ) be a linear differential operator of order n. Then, in index notation L
can be written as

L(ψ) =
∑

i1,...,in

An(∇n
∂i1 ...∂in

ψ) + . . .+
∑
i1

A1(∇∂i1
ψ) + A0(ψ),
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Chapter 3 3.1. Nature of the Ricci flow

where for each x ∈M ,
A0(x), . . . , An(x) : Ex → Fx,

are linear maps. These maps are called the coefficients of the linear operator L.
Definition 3.1.2. Let L : Γ(E) → Γ(F ) be a linear differential operator of order n. Also, let
x ∈M and ξ =

∑m
i=1 ξi∂i ∈ TxM . The linear map σξ(L, x) : (E)x → (F )x given by

σξ(L, x)ψ =
∑

i1,...,in

ξi1 . . . ξikA
n(ψ(x)),

is called the principal symbol of the operator L at the point x in the direction ξ.

Definition 3.1.3. The operator L is called elliptic operator if σ[L](ξ)(ψ) is a bundle isomor-
phism of the fiber for every non-zero ξ ∈ X(M) or equivalently, if there exists c > 0 such
that for all ξ and ψ we have

〈σ[L](ξ)(ψ), ψ〉 ≥ c|ξ|2|ψ|2. (3.1)

We are interested in the case where the manifoldM is equipped with a one-parameter family of
smooth metrics {gt}t∈[0,T ). We denote by {∇gt}t∈[0,T ) the corresponding Levi-Civita connec-
tions. Let E and F be vector bundles overM where E is equipped with a fixed metric h and
connections {∇t}t∈[0,T ) which are compatible with h, that is,

vh(ψ1, ψ2) = h(∇t
vψ1, ψ2) + h(ψ1,∇t

vψ2),

for each tangent vector v, sections ψ1, ψ2 ∈ Γ(E) and t ∈ [0, T ). One can use the connections
∇t and ∇gt to construct (∇t)n acting on sections of E. Let {ψ(t)}t∈[0,T ) be a smooth time-
dependent family of sections of E, where smooth means for each (x, t) ∈ M × [0, T ) the
time-derivative

∂ψ

∂t
= lim

h→0

ψ(x, t+ h)− ψ(x, t)

h
,

exists. Hence, {∂tψ}t∈[0,T ) is another family of sections on E. We consider the equation

∂tψ(x, t) = (Lψ)(x, t) = Q(x, t, (∇t)ψ(x, t), . . . , (∇t)nψ(x, t)) (3.2)

whereL : Γ(E) → Γ(F ) is a time-dependent differential operator of order n. If for each fixed t
the operatorL is linear elliptic then we say that (3.2) is a linear parabolic differential equation.

Theorem 3.1.4. Let L be a parabolic differential operator at ψ0 ∈ Γ(E). Then, there exists
T > 0 and a smooth family ψ(t) ∈ Γ(E), t ∈ [0, T ] such that there exists a unique smooth
solution for the initial value problem {

∂tψ = Lψ,
ψ(0) = ψ0

(3.3)

for t ∈ [0, T ] where T depends on the initial data ψ0.
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Chapter 3 3.2. Ricci-DeTurck flow

3.1.2 Linearization of the Ricci tensor

We need to explain what parabolicity means whenL is a non-linear operatorL : Γ(E) → Γ(F ).

Definition 3.1.5. The linearization DL of L at ψ0, in case that it exists, is defined to be the
linear map DLφ0 : Γ(E) → Γ(F ) is given by

DLφ0(ψ) = lim
s→0

L(φ0 + sψ)− L(φ0)

s
=
∂L(φ(s))

∂s

∣∣∣
s=0

,

where φ : [0, 1] → Γ(E) is a one-parameter family of sections with φ(0) = φ0 and φ′(0) =
∂sφ(0) = ψ.

Definition 3.1.6. We say that the equation (3.2) is strictly (or strong) parabolic when the equa-
tion

∂ψ

∂t
= DLφ0(ψ),

is parabolic for every φ0 ∈ Γ(E).

We focus now on the Ricci flow equation where the operator is

L = −2Ric : Γ(Sym(T ∗M × T ∗M)) → Γ(Sym(T ∗M × T ∗M)).

Using Lemma 2.3.4 with ∂tg = h the linearization of −2Ric is given by

D(−2Ric) = −2D(Ric)(h)kl

=
m∑
i=1

(∇2
i,lh)ki − (∇2

k,lh)ii + (∇2
k,ih)li − (∇2

i,ih)kl.

Then, the principal symbol is

σ[−2D(Ric)](ξ)(h)kl =
m∑
i=1

ξiξlhki − ξkξlhii + ξkξihli − ξiξihkl.

We can choose hkl = ξkξl and then σ[−2D(Ric)](ξ)(h)kl = 0 and thus an inequality such
(3.1) can not hold. Hence, Ricci flow is not a strictly parabolic equation.

3.2 Ricci-DeTurck flow

Firstly, we introduce some definitions that we will use. Let f : M → N be a smooth map
between two Riemannian manifolds (M, g) and (N, h) of dimensionm and n respectively. We
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Chapter 3 3.2. Ricci-DeTurck flow

know that the derivative df of f is viewed as a section of the vector bundleTM∗⊗f ∗(TN). This
vector bundle is endowed with the induced connection∇. We denote with∇M the Levi-Civita
connection on TM ,∇N the Levi-Civita connection on TN and∇f the pull-back connection on
f ∗(TN). Then the connection∇ is given by

(∇Xdf)(Y ) = ∇f
Xdf(Y )− df(∇M

X Y ),

for allX,Y ∈ X(M).

Definition 3.2.1. The harmonicmap Laplacian of f with respect to themetrics g and h is defined
by

∆g,hf =
n∑

i=1

(∇eidf)(ei),

where {ei} is a local orthonormal frame on (M, g).

Note that ∆g,hf is a section of the vector bundle f ∗(TN). Let {xi} and {ya} be local coordi-
nates around the points x ∈M and f(x) ∈ N respectively. Then, the harmonic map Laplacian
of f can be written in the form

∆g,hf =
n∑

a=1

(
∆Mf

a +
m∑

i,j=1

n∑
a,b=1

gij(Γh)
a
bc

∂f b

∂xi
∂f c

∂xj

) ∂

∂ya
(3.4)

where

∆Mf
a =

m∑
i,j,k=1

gij
(

∂2fa

∂xi∂xj
− (Γg)

k
ij

∂fa

∂xk

)
,

is the Laplacian operator of fa. Also fa are the components of f and Γg,Γh the Christoffel
symbols with respect to the connections∇M and∇N respectively.
The next Lemma states that the harmonic map Laplacian of a map f : M → N is unchanged
under the action of a diffeomorphism onM .

Lemma 3.2.2. Let f : M → N be a smooth map between two Riemannian manifolds (M, g)
and (N, h). Also, let φ : M →M be a diffeomorphism. Then, it holds

(∆φ∗(g),h(f ◦ φ))(x) = (∆g,hf)(φ(x)) ∈ Tf(φ(x))N,

for all x ∈M .

Proof. Fix x ∈ M . Let {xi} be local coordinates around φ(x) ∈ M . Then, we can induce
local coordinates {yi} around x by yi = xi ◦ φ. Also, fix local coordinates {za} around

48



Chapter 3 3.2. Ricci-DeTurck flow

f ◦φ(x) ∈ N . Then, in these coordinates we have that ∂(f◦φ)a
∂yi

(x) = ∂fa

∂xi (φ(x)), (φ∗g)ij = gij

and (Γφ∗g)
k
ij = (Γg)

k
ij . We compute,

(∆φ∗(g),h(f ◦ φ))(x) =
n∑

a=1

( m∑
i,j,k=1

(φ∗g)ij
(
∂2(f ◦ φ)a

∂yi∂yj
− (Γφ∗g)

k
ij

∂(f ◦ φ)a

∂yk

)

+
m∑

i,j=1

n∑
a,b=1

(φ∗g)ij(Γh)
a
bc

∂(f ◦ φ)b

∂yi
∂(f ◦ φ)c

∂yj

)
∂

∂za

=
n∑

a=1

( m∑
i,j,k=1

gij
(

∂2fa

∂xi∂xj
− (Γg)

k
ij

∂fa

∂xk

)

+
m∑

i,j=1

n∑
a,b=1

gij(Γh)
a
bc

∂f b

∂xi
∂f c

∂xj

)
∂

∂za

= (∆g,hf)(φ(x)).

This completes the proof. □
Now, we can introduce the Ricci-DeTurck flow.

Definition 3.2.3. LetM be a compact Riemannian manifold endowed with a fixed metric h.
Also, let g̃(t) = g̃t, t ∈ [0, T ) be a one-parameter family of Riemannian metrics onM . The
metric {g̃t}t∈[0,T ) is a solution to the Ricci-DeTurck’s flow on M if it suffices the following
equation

∂

∂t
g̃(t) = −2Ricg̃(t) − Lξt g̃(t),

where ξt = ∆g̃t,hI .

Wewill show that the Ricci-DeTurck flow is strictly parabolic and as a consequence the parabolic
theory of PDEs implies that there exists a unique solution.

Proposition 3.2.4. Let M be a compact Riemannian manifold endowed with a fixed metric
h. Given any initial metric g0, there exists T > 0 and a smooth one-parameter family of
Riemannian metrics {g̃t}t∈[0,T ), such that {g̃t}t∈[0,T ) is a solution to the Ricci-DeTurck flow
with g̃(0) = g0. Moreover, the solution {g̃t}t∈[0,T ) is unique.

Proof. In local coordinates {xi}, the Ricci tensor of g̃ takes the form

Rjl=
1

2

m∑
i,j,k,l,p=1

g̃ik(∂i∂lg̃jk+∂j∂kg̃il−∂j∂lg̃ik−∂i∂kg̃jl)+(Γg̃)
p
jl(Γg̃)a

i
ip−(Γg̃)

p
il(Γg̃)

i
jp. (3.5)
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We denote with Γg̃ and Γh the Christoffel symbols associated with the metrics g and h, re-
spectively. Then, the vector field ξ = ∆g̃,hI can be written locally, according to (3.4), in the
form

ξ =
m∑

i,k,l=1

g̃ik
(
(Γh)

l
ik − (Γg̃)

l
ik

)
∂l.

By the definition of the Christoffel symbols, this implies

ξ =
1

2

m∑
i,k,l=1

g̃ik(hjl(∂ihjk + ∂khij − ∂jhik)− g̃jl(∂ig̃jk + ∂kg̃ij − ∂j g̃ik))∂l.

By Corollary (1.7.4) we obtain

(Lξg̃)jl =
n∑

i,j,k,l=1

g̃ik(∂i∂j g̃jk + ∂j∂kg̃il − ∂j∂lg̃ik) + (lower order terms). (3.6)

Finally, combining (3.5) and (3.6) we deduce

−2Rjl − (Lξg̃)jl =
∑

i,j,k,l=1

g̃ik∂i∂kg̃jl + (lower order terms).

The above form of the Ricci-DeTurck shows that it is strictly parabolic. The theory of parabolic
PDEs implies that there exists a unique solution on a short time interval [0, T ) where T is a
positive real number. This completes the proof. □

Proposition 3.2.5. Let M be a compact Riemannian manifold endowed with a fixed metric
h. Also, let {g̃t}t∈[0,T ) be a family of Riemannian metrics onM satisfying the Ricci-DeTurck
flow, that is,

∂

∂t
g̃(t) = −2Ricg̃(t) − Lξt g̃(t),

where ξt = ∆g̃t,hI . Moreover, assume that {φt}t∈[0,T ) is a one-parameter family of diffeo-
morphisms such that

∂

∂t
φt(x) = ξt(φt(x)),

for all (x, t) ∈ M × [0, T ). Then, the family of metrics {gt}t∈[0,T ) defined by gt = φ∗
t ◦ g̃t

forms a solution to the Ricci flow.
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Proof. Since g(t) = φ∗
t (g̃(t)), t ∈ [0, T ) we have

∂

∂t
g(t) = ∂t(φ

∗(g̃(t))) = lim
s→0

φ∗
t+s(g̃(t+ s))− φ∗

t (g̃(t))

s

= lim
s→0

φ∗
t+s(g̃(t+ s))− φ∗

t (g̃(t+ s))

s
+ lim

s→0

φ∗
t (g̃(t+ s))− φ∗

t (g̃(t))

s

= φ∗
t

(
lim
s→0

(φ∗
t )

−1 ◦ φ∗
t+s − I

s

)
(g̃(t+ s)) + φ∗

t (∂tg̃(t))

= φ∗
t (LX g̃(t)) + φ∗

t (∂tg̃(t)) (3.7)
= φ∗

t (LX g̃(t)) + φ∗
t (−2Ricg̃(t) − LX g̃(t))

= φ∗
t (−2Ricg̃(t)) = −2Ricgt .

Indeed, the metrics {gt}t∈[0,T ) is a solution to the Ricci flow. This completes the proof. □
Conversely, we can show that if we have a solution to the Ricci flow then we can construct a
solution of the Ricci-DeTurck flow.

Proposition 3.2.6. Let M be a compact Riemannian manifold endowed with a fixed metric
h. Also, let the family of Riemannian metrics {gt}t∈[0,T ) be a solution to the Ricci flow.
Moreover, suppose that {φt}t∈[0,T ) is a family of diffeomorphisms onM evolving under the
harmonic heat map flow, that is,

∂

∂t
φt = ∆gt,hφt.

Then, the family of metrics {g̃t}t∈[0,T ) defined by φ∗
t ◦ g̃t = gt forms a solution to the Ricci-

DeTurck flow. Furthermore,
∂

∂t
φt(x) = ξt(φt(x)),

for all (x, t) ∈M × [0, T ), where ξt = ∆g̃t,hI .

Proof. According to the equation (3.7), since φ∗
t (g̃(t)) = g(t), t ∈ [0, T ) we have

φ∗
t (LX g̃(t)) + φ∗

t (∂tg̃(t)) = ∂tg(t).

We have assumed that the family of metrics {gt}t∈[0,T ) is a solution to the Ricci flow. Thus,

φ∗
t (LX g̃(t)) + φ∗

t (∂tg̃(t)) = −2Ricgt

and as a consequence,
φ∗
t (LX g̃(t) + ∂tg̃(t) + 2Ricg̃(t)) = 0.
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This implies that the family of metrics {g̃t}t∈[0,T ) forms a solution to the Ricci-DeTurck flow.
Finally, by Lemma 3.2.2 we have,

∂

∂t
φt(x) = (∆gt,hφt)(x) = (∆φ∗

t (g̃t),h
φt)(x)

= (∆g̃t,hI)(φt(x)) = ξt(φt(x)),

for all (x, t) ∈M × [0, T ). This completes the proof. □
Theorem 3.2.7. Let M be a compact Riemannian manifold and let g0 be a smooth metric
on M . Then, there exist a real number T > 0 and a smooth family of metrics {gt}t∈[0,T )

such that {gt}t∈[0,T ) is a solution to the Ricci flow and g(0) = g0. Moreover, the solution
{gt}t∈[0,T ) is unique.

Proof. We have already shown in Proposition 3.2.4 that there exist T > 0 and a smooth one-
parameter family of metrics {gt}t∈[0,T ), such that {gt}t∈[0,T ) is a solution to the Ricci-DeTurck
flow with g̃(0) = g0. Hence,

∂tg̃(t) = −2Ricg̃(t) − Lξt g̃(t),

where ξt = ∆g̃t,hI . For each point x ∈M we denote by ϕt(x) the solution of the ODE

∂

∂t
φt(x) = ξt(φt(x)),

with initial condition φ0 = I . By Proposition 3.2.5 we know that the metrics

g(t) = φ∗
t (∂tg̃(t)), t ∈ [0, T ),

form a solution to the Ricci flow with g(0) = g0.
In the next step, we prove the uniqueness statement. Let g1(t) and g2(t), t ∈ [0, T ) be two
solutions to the Ricci flow with g1(0) = g2(0). We want to show that

g1(t) = g2(t)

for all t ∈ [0, T ). We will argue by contradiction. Suppose that g1(t) 6= g2(t) for some
t ∈ [0, T ). We define τ ∈ R by

τ = inf{t ∈ [0, T ) | g1(t) 6= g2(t)}.

Then, it is true that g1(τ) = g2(τ). Also, let φ1
t be solution to the harmonic map heat flow{

∂
∂t
φ1
t = ∆g1(t),hφt,

φ1
τ = I

(3.8)
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and similarly, let ϕ2
t be solution to the harmonic map heat flow{

∂
∂t
φ2
t = ∆g2(t),hφt

φ2
τ = I.

(3.9)

The harmonic map heat flow is a parabolic equation so there exists a unique solution on a short
time interval [τ, τ + ε), where ε > 0. Furthermore, if we choose ε to be small enough, we have
that φ1

t and φ2
t are diffeomorphisms for all t ∈ [0, T ). Then, for each t ∈ [τ, τ + ε) we define

two Riemannian metrics g̃1 and g̃1 onM by

g1(t) = (φ1
t )

∗(g̃1(t)) and g2(t) = (φ2
t )

∗(g̃2(t)).

Using Proposition 3.2.6 we obtain that the metrics g̃1 and g̃2 are solutions to the Ricci-DeTurck
flow on t ∈ [τ, τ + ε). Hence, by Proposition 3.2.4 and due to the fact that g̃1(τ) = g̃2(τ) we
conclude that g̃1(t) = g̃2(t) for all t ∈ [τ, τ + ε). For each t ∈ [τ, τ + ε), we also define a
vector field ξt onM by

∆g̃1(t),hI = ξt = ∆g̃2(t),hI.

Then, using Proposition 3.2.6 we obtain

∂

∂t
φ1
t (x) = ξt(φ

1
t (x)) and

∂

∂t
φ2
t (x) = ξt(φ

2
t (x)),

for all (x, t) ∈ M × [τ, τ + ε). By the way that we have define φ1
t and φ2

t in (3.8) and (3.9)
respectively, it holds φ1

τ = I = φ2
τ . Hence, we have that

φ1
t = φ2

t ,

for all t ∈ [τ, τ + ε). Finally, we can conclude that

g1(t) = (φ1
t )

∗(g̃1(t)) = (φ2
t )

∗(g̃2(t)) = g2(t),

for every t ∈ [τ, τ + ε). This contradicts the definition of τ and the proof is competed. □

3.3 Curvature blow-up at finite time

In this section, we show that as we approach the finite maximal time of existence of the flow T
the Riemannian curvature tensor explodes.
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3.3.1 Derivative estimates for the curvature tensor

We denote with∇nA the n−th iterated covariant derivative of the tensor A and with A ∗B any
linear combination of contractions or metric contractions ofA⊗B with coefficients that do not
depend on A or B. For example, if A = Aijkl and B = Bpqr then A ∗B may represent

2AijklBjql, or Aijklg
lmBmqr or

3∑
s=1

Aijkslg
lmBk1mk3 .

The ∗-notation is very abstract but we use it in order to take bounds and avoid complicated
combinations of tensors. The most useful property obtained by the Cauchy-Schwartz inequality
is

|A ∗B| ≤ C|A||B|,
where C > 0 is a constant.
We denote (A∗)k any k-fold product A ∗ . . . ∗ A. Let A be a n-tensor. We use the following
equations

[∇k,∆]A = ∇k∆A−∆∇kA = gij(∇k∇i∇jA−∇i∇j∇kA)

= gij([∇k,∇i]∇jA+∇i∇k∇jA−∇i∇j∇kA)

= gij([∇k,∇i]∇jA+∇i[∇k,∇j]A).

Since

[∇k,∇j]Ai1...in = −
n∑

s=1

Rm
kjisAi1...m...in =

n∑
s=1

Rkjislg
lmAi1...m...in = R ∗ A,

we get
[∇,∆]A = R ∗ ∇A+∇(R ∗ A) = R ∗ ∇A+∇R ∗ A.

Then, we can use the second Bianchi identity (1.9) and obtain [see [9], page 227]

[∇,∆]A = R ∗ ∇A+∇Ric ∗ A. (3.10)

It also holds
∆|A|2 = 2〈∆A,A〉+ 2|∇A|2. (3.11)

Let A be a tensor field satisfying the evolution equation

∇∂tA = ∆A+B.

where B is a tensor of same type as A. Then, we can derive the following equations:
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Using (3.11) we obtain

∂t|A|2 = ∇∂tgt(A,A) = 2gt(∇∂tA,A) +∇∂tgt(A,A) (3.12)
= 2gt(∇∂tA,A) + Ric ∗ A ∗ A
= 2gt(∆A+B,A) + Ric ∗ A ∗ A
= ∆|A|2 − 2|∇A|2 +B ∗ A+Ric ∗ (A∗)2.

We would like to know how the covariant derivative of A, ∇A = ∂A + A ∗ Γ evolves. The
evolution equation of the Christoffel symbols

∇∂tΓ
k
ij = −gkl(∇iRjl +∇jRil +∇lRij)

can be written in the form
∇∂tΓ = g−1 ∗ ∇Ric.

Then, by (3.10)

∇∂t∇A = ∂t(∂A) +∇∂tA ∗ Γ + A ∗ ∇∂tΓ (3.13)
= ∂∇∂tA+∇∂tA ∗ Γ + A ∗ ∇∂tΓ

= ∇(∂tA) + A ∗ ∇Ric
= ∇(∆A+B) + A ∗ ∇Ric
= ∆∇A+R ∗ ∇A+∇Ric ∗ A+∇B + A ∗ ∇Ric
= ∆∇A+R ∗ ∇A+∇Ric ∗ A+∇B.

We observe that∇A satisfies an evolution equation of the type

∇∂t∇A = ∆(∇A) + C, where C = R ∗ ∇A+∇Ric ∗ A+∇B.

Thus, using (3.12) we obtain

∂t|∇A|2 = ∆|∇A|2−2|∇∇A|2+(R∗∇A+∇Ric∗A+∇B)∗∇A+Ric∗((∇A)∗)2. (3.14)

We use the above formulas to compute quantities concerning the Riemannian curvature tensor
whose evolution equation (2.11) can be rewritten with the ∗-notation as:

∇∂tR = ∆(R) + R ∗R. (3.15)

Then, using (3.12) we get

∂t(|R|2) = ∆|R|2 − 2|∇R|2 + (R)∗3 (3.16)

and by (3.14) we have

∂t|∇R|2 = ∆|∇R|2 − 2|∇∇R|2 +R ∗ (∇R)∗2. (3.17)

55



Chapter 3 3.3. Curvature blow-up at finite time

Proposition 3.3.1. Let M be a m-dimensional compact Riemannian manifold and let gt be
a solution to the Ricci flow onM . Then, given a > 0 and integer n, there exists a constant
C, depending only onm,n and max{a, 1} such that if

|R(x, t)|gt ≤ K,

for all (x, t) ∈M × [0, a
K
] then,

|∇nR(x, t)|gt ≤ CK
1

tn/2
,

for all (x, t) ∈M × (0, a
K
].

Proof. We work by induction on n. Let n = 1. Then, by (3.17) we have

∂t|∇R|2 = ∆|∇R|2 − 2|∇∇R|2 +R ∗ (∇R)∗2. (3.18)

We define
F (x, t) = t|∇R|2 + β|R|2,

where β a constant that we will choose later. Note that at t = 0 we have

F = β|R|2 ≤ βK2.

Then, we differentiate F and get

∂tF = |∇R|2 + t∂t(|∇R|2) + β∂t|R|2.

Thus, using (3.16) and (3.17) we have

∂tF = |∇R|2 + t(∆|∇R|2 − 2|∇2R|2 +R ∗ (∇R)∗2)
+ β(∆|R|2 − 2|∇R|2 + (R)∗3)

= ∆F + (1− 2β)|∇R|2 + β(R)∗3 + tR ∗ (∇R)∗2 − 2t|∇2R|2

≤ ∆F + (1− 2β)|∇R|2 + βC2|R|3 + tC1|R||∇R|2

= ∆F + |∇R|2(1− 2β + tC1|R|) + βC2|R|3

where C1, C2 are constants depending on m. By assumption we have that |R| ≤ K for all
t ∈ [0, a

K
]. Thus,

∂tF ≤ ∆F + |∇R|2(1− 2β + C1K) + βC2K
3.

If we choose β such that β ≥ C1a+1
2

we obtain

∂tF ≤ ∆F + βC2K
3,
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for all t ∈ [0, a
K
]. We can apply the scalar maximum principle and solve the associated ODE

du

dt
= C2βK

3, u(0) = βK2.

Hence,

sup
x∈M

F (x, t) ≤ C2βK
3t+ βK2 ≤ C2βaK

2 + βK2 = (aC2 + 1)βK2 ≤ C2K2,

for all t ∈ [0, a
K
], where C is a constant depending only on m and a. Concluding, by the

definition of F we have
|∇R| ≤ CK√

t
,

for all t ∈ (0, a
K
]. This proves the case where n = 1. Similarly, we work on the case where

n > 1 by using the identities

[∇n,∆]A = ∇n∆A−∆∇nA =
n∑

i=1

∇iR ∗ ∇n−iA (3.19)

and calculate

∇∂t(∇nR) = ∆∇nR +
n∑

i=1

∇iR ∗ ∇n−iR.

Also, the following holds

∂t|∇nR|2 = ∆|∇nR|2 − 2|∇n+1R|2 +
n∑

i=1

∇iR ∗ ∇n−iR ∗ ∇nR.

In order to control |∇nR|2 we consider the quantity

G = tn|∇nR|2 + bm

n∑
i=1

cn,it
n−i|∇n−iR|2

and apply the scalar maximum principle. This completes the proof. □

3.3.2 Convergence of smooth metrics

We need to define a notion of convergence of sequences of metrics, or more general convergence
of sections of a certain vector bundle.
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Definition 3.3.2. Let E be a vector bundle over a Riemannian manifoldM with Riemannian
metric g and connection ∇ on E. Let U ⊂ M be an open set with U a compact set in M
and let (ξi) be a sequence of sections of E. For each p ≥ 0 we say that ξk converges in Cp

to ξ ∈ Γ(E|U) if for every ε > 0 there exists k0 = k0(ε) such that

sup
0≤a≤p

sup
x∈U

|∇a(ξk − ξ)|g < ε.

whenever k > k0. Moreover, we say that ξk converges in C∞ to ξ on U if ξk converges in Cp

to ξ on U for every p ∈ N.

We write g2 ≥ g1 when g2 − g1 is non-negative definite.

Proposition 3.3.3. LetM be a compact manifold and {gt}t∈(0,T ] be a smooth one-parameter
family of metrics onM . If there exists a constantK <∞ such that∫ T

0

∣∣∣ ∂
∂t
g(x, t)

∣∣∣
gt
dt ≤ K,

for all x ∈M , then
e−Cg(x,0) ≤ g(x,t) ≤ eCg(x,0),

for all (x, t) ∈ M × [0, T ). Moreover, the metrics gt converge uniformly to a continuous
metric gT as t→ T .

Proof : Fix (x, t) ∈M × [0, T ) andX ∈ TxM . Then,∣∣∣ log( g(x,t)(X,X)

g(x,0)(X,X)

)
dt
∣∣∣ = ∣∣∣ ∫ t

0

∂t(log g(x,t)(X,X))dt
∣∣∣

=
∣∣∣ ∫ t

0

1

g(x,t)(X,X)
∂tg(x,t)(X,X)dt

∣∣∣
=
∣∣∣ ∫ t

0

1

|X|2g(x,t)
∂tg(x,t)(X,X)dt

∣∣∣
≤
∫ t

0

∣∣∣∂tg(x,t)( X

|X|g(x,t)
,

X

|X|g(x,t)

)∣∣∣dt
≤
∫ t

0

∣∣∣∂tg(x,t)∣∣∣
g(x,t)

≤ K,

since
|T (X,X)| ≤ |T |g = sup

Y,Z∈TxM
|Y |g=|Z|g=1

|T (Y, Z)|,
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for all unit vectorsX ∈ TxM and 2-tensors T . By considering the exponential of the inequality
we obtain

e−Cg(x,0)(X,X) ≤ g(x,t)(X,X) ≤ eCg(x,0)(X,X).

SinceX is arbitrary we have

e−Cg(x,0) ≤ g(x,t) ≤ eCg(x,0). (3.20)

This shows that the metrics {gt}t∈[0,T ) are equivalent. Hence,∫ T

0

∣∣∣ ∂
∂t
g(x, t)

∣∣∣
g0
dt ≤ K ′, (3.21)

whereK ′ a positive constant. Note that now the norm is taken with respect to a constant metric
g0 rather that the time-dependent gt. Define now

g(x, T ) = g(x, 0) +

∫ T

0

∂

∂t
g(x, t)dt.

The definition is well since by (3.21) ∂
∂t
g(x, t) is absolutely integrable with respect to the metric

g0. Hence, using the fundamental theorem of calculus we get

|g(x, T )− g(x, t)|g0 =
∣∣∣ ∫ T

t

∂

∂t
g(x, t)dt

∣∣∣
g0

≤
∫ T

t

∣∣∣ ∂
∂t
g(x, t)

∣∣∣
g0
dt.

Then,

lim
t→T

|g(x, T )− g(x, t)|g0 ≤ lim
t→T

∫ T

t

∣∣∣ ∂
∂t
g(x, t)

∣∣∣
g0
dt = 0,

for all x ∈ M . SinceM is compact the convergence is uniform. Hence, gt → gT uniformly
as t → T . Since gt are continuous we can conclude that gT is continuous. By taking the limit
of the equation (3.20) as t → T we conclude that gT is positive definite. Thus, the metrics gt
converge to a continuous Riemannian metric gT . This completes the proof. □
Lemma 3.3.4. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection as-
sociated with the metric g. Also, let ∇̃ be a torsion free connection onM . Then,

∇XY − ∇̃XY = Γ(X,Y ),

where
2g(Γ(X,Y ), Z) = (∇̃Xg)(Y, Z) + (∇̃Y g)(X,Z)− (∇̃Zg)(X,Y ).

Moreover, it holds
∇(∂tgt)− ∇̃(∂tgt) = ∇̃gt ∗ ∂tgt.
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Proof. By Koszul’s formula (1.6) and since ∇̃ is torsion-free we have

2g
(
∇YX,Z

)
= X

(
g(Y, Z)

)
+ Y

(
g(X,Z)

)
− Z

(
g(X,Y )

)
+g
(
[X,Y ], Z

)
− g
(
[X,Z], Y

)
− g
(
[Y, Z], X

)
= (∇̃Xg)(Y, Z) + (∇̃Y g)(X,Z)− (∇̃Zg)(X,Y )

+2g(∇̃XY, Z)

for allX,Y, Z ∈ X(M). This completes the proof. □
Lemma 3.3.5. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection as-
sociated with the metric g. Also, let ∇̃ be a fixed background connection on M which is
torsion free. Then, given an integer n ≥ 1 we have,

∇n∂tgt − ∇̃n∂tgt =
m−1∑
l=0

∑
i1+...+iq=m−l

∇̃i1gt ∗ · · · ∗ ∇̃iqgt ∗ ∇̃l∂tgt.

Proof. We work by induction on n. When n = 1 we have by Lemma 3.3.4

∇(∂tgt)− ∇̃(∂tgt) = ∇̃gt ∗ ∂tgt.

Suppose that n ≥ 2 and

∇n−1(∂tgt)− ∇̃n−1(∂tgt) (3.22)

=
m−2∑
l=0

∑
i1+...+iq=m−l−1

∇̃i1gt ∗ · · · ∗ ∇̃iqgt ∗ ∇̃l∂tgt.

Hence,

∇∇n−1(∂tgt)−∇∇̃n−1(∂tgt) (3.23)

=
m−2∑
l=0

∑
i1+...+iq=m−l−1

∇̃i1gt ∗ · · · ∗ ∇̃iqgt ∗ ∇∇̃l∂tgt

+
m−2∑
l=0

∑
i1+...+iq=m−l−1

∇̃i1gt ∗ · · · ∗ ∇∇̃iqgt ∗ ∇̃l∂tgt.

By Lemma 3.3.4 we can deduce

∇∇̃l∂tgt = ∇̃∇̃l∂tgt + ∇̃gt ∗ ∇̃l∂tg(t)
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and
∇∇̃jgt = ∇̃∇̃jgt + ∇̃gt ∗ ∇̃jgt.

Therefore, (3.23) becomes

∇n∂tg − ∇̃n∂tg =
n−1∑
l=0

∑
i1+···+iq=m−l

∇̃i1gt ∗ · · · ∗ ∇̃iqgt ∗ ∇̃l∂tgt.

This completes the proof. □

Let ∇̃ be the Levi-Civita connection associated with the metric g0. For every integer nwe define
the continuous functions

un : [0, T ) → R given by un(t) = sup
x∈M

|∇n∂tg(x, t)|g(x,t)

and
ũn : [0, T ) → R given by ũn(t) = sup

x∈M
|∇̃n∂tg(x, t)|g0 ,

for each t ∈ [0, T ). SinceM is compact we can write

∇̃n

∫ t

0

∂τg(τ)dτ =

∫ t

0

∇̃n∂τg(τ)dτ,

for all t ∈ [0, T ) and hence,

sup
x∈M

|∇̃ngt|g0 ≤
∫ t

0

ũn(τ)dτ (3.24)

for all t ∈ [0, T ).

Proposition 3.3.6. Assume that
∫ T

0
un(t)dt < ∞ for m ∈ N. Then,

∫ T

0
ũn(t)dt < ∞ for

n ≥ 1.

Proof. We work by induction on n. Fix n ≥ 1 and suppose that
∫ T

0
ũl(t)dt < ∞ for 1 ≤ l ≤

n− 1. By (3.24) we have
sup

(x,t)∈M×[0,T )

|∇̃lgt|g0 <∞ (3.25)

for 1 ≤ l ≤ n − 1. We have already shown in Proposition 3.3.3 that the metrics g0 and gt are
uniformly equivalent for all t ∈ [0, T ). Using Lemma 3.3.5 we have

|∇̃n∂tgt|g0 − |∇n∂tgt|g0

≤ C1

n−1∑
l=0

∑
i1+...+i1=n−l

|∇̃i1gt|g0 · · · |∇̃iqgt|g0 |∇̃l∂tgt|g0 ,
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where C1 is a positive constant. Then, due to (3.25) we obtain

|∇̃n∂tgt|g0 ≤ |∇n∂tgt|g0 + C2

n−1∑
l=1

|∇̃l∂tgt|g0

+ C2(1 + |∇̃ngt|g0)|∂tgt|g0

and again by the equivalence of the metrics we get

|∇̃n∂tgt|g0 ≤ C3|∇n∂tgt|gt + C2

n−1∑
l=1

|∇̃l∂tgt|g0

+ C2C3(1 + |∇̃ngt|g0)|∂tgt|gt .

By (3.24) we have

ũn(t) ≤ C3un(t) + C2

n−1∑
l=1

ũl(t) + C2C3

(
1 +

∫ t

0

ũn(τ)dτ
)
u0(t),

for all t ∈ [0, T ). Then, we can conclude that

d

dt
log
(
1 +

∫ t

0

ũn(τ)dτ
)
≤ C3un(t)

1

1 +
∫ t

0
ũn(τ)dτ

+ C2
1

1 +
∫ t

0
ũn(τ)dτ

n−1∑
l=1

ũl(t) + C2C3u0(t)

≤ C3un(t) + C2

n−1∑
l=1

ũl(t) + C2C3u0(t),

for all t ∈ [0, T ). By assumption we have
∫ T

0
un(t)dt < ∞ for every n ∈ N and by the

induction hypothesis we have that
∫ T

0
ũl(t)dt <∞ for every 1 ≤ l ≤ n− 1. Thus,∫ t

0

ũn(τ)dτ < 0.

This completes the proof. □

Proposition 3.3.7. The metric gt in Proposition 3.3.3 is smooth and the metrics gt converge
in C∞ to gt as t→ T .
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Proof. By Proposition 3.3.6 we have that
∫ T

0
ũn(t)dt hence we define

g(x, T ) = g(x, t)−
∫ T

t

∂tg(x, τ)dτ

and we have

|∇ng(x, T )−∇ng(x, t)| ≤
∣∣∣ ∫ T

t

ũn(τ)dτ
∣∣∣→ 0, (3.26)

for all x ∈M as t→ T . This completes the proof. □

3.3.3 Curvature blow up at finite time

Theorem 3.3.8. LetM be am-dimensional compact Riemannian manifold and let {gt}t∈[0,T )

be the maximal solution to the Ricci flow onM . Furthermore, suppose that T <∞. Then,

lim
t→T

( sup
x∈M

|R(x, t)|) = ∞.

Proof. Suppose by contradiction that there is a constantK > 0 such that |R(x, t)| ≤ K. Then,
it follows by Proposition 3.3.7 that gt converges uniformly in C∞ to a smooth metric gT . Since
gT is smooth by Theorem 3.2.7 we know that there exists a unique solution to the Ricci flow
ḡ(t) with ḡ(0) = g(T ) on [0, ε̄], ε̄ > 0. Thus, define

g̃(t) =

{
g(t), t ∈ [0, T ),
ḡ(t− T ), t ∈ [T, T + ε̄)

and then g̃t is a solution to the Ricci flow with g̃(0) = g0. This contradicts the definition of T
and completes the proof. □
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CHAPTER4
THE VECTORIAL MAXIMUM PRINCIPLE

The maximum principle is one of the most useful tools in geometric analysis. In this chapter,
we present the maximum principle for scalar smooth functions on a manifold M and in the
second part we generalize the principle for sections of a vector bundle. This generalization was
firstly made by Hamilton in [17]. In particular, we present a generalized version of Hamilton’s
maximum principle, based on [4].

4.1 Scalar maximum principle

In this section, we assume that M is a compact manifold endowed with a continuous time-
dependent family of Riemannian metrics {gt}t∈[0,T ). Consider the parabolic semi-linear opera-
tor L, given by

Lu = ut −∆u− g(X,∇u)−Ψ(u, t),

where u : M× [0, T ) → R is a smooth function,X is a time-dependent continuous vector field,
∆ is the Laplacian with respect to gt and Ψ(x, t) : R × [0, T ) → R is a map locally Lipschitz
in the first variable and continuous in the second.

Proposition 4.1.1. Let u : M × [0, T ) → R be a smooth function, satisfying

∂tu−∆u ≥ 0. (4.1)

If u(x, 0) ≥ c for all x ∈M for some c ∈ R then u(x, t) ≥ c for all (x, t) ∈M × [0, T ).

Proof. Fix ε > 0. Define an auxiliary function uε : M × [0, T ) → R given by

uε(x, t) = u(x, t) + ε(1 + t).

By hypothesis,
uε(x, 0) = u(x, 0) + ε ≥ c+ ε > c.

Suppose that there exists an ε > 0 such that

uε(x, t) ≤ c,
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for all (x, t) ∈M × [0, T ). SinceM is compact, there exists a point (x′, t′) ∈M × [0, T ) such
that

uε(x
′, t′) = c and uε(x, t) ≤ c,

for all (x, t) ∈M × [0, t′]. Thus, at (x′, t′) it holds

∂tuε(x
′, t′) ≤ 0 and ∆uε(x

′, t′) ≥ 0.

Therefore, using (4.1)

0 ≥ ∂tuε −∆uε = ∂tu+ ε−∆u ≥ ε > 0,

which is a contradiction. Hence, uε(x, t) > c for all (x, t) ∈ M × [0, T ) and since ε > 0 is
arbitrary the result follows. □
Proposition 4.1.2. Let u, v : M × [0, T ) → R be smooth functions, satisfying the differential
inequality

Lv ≤ Lu,

onM × [0, T ) and v(x, 0) ≤ u(x, 0) for all x ∈M . Then,

v(x, t) ≤ u(x, t),

for all (x, t) ∈M × [0, T ).

Proof. Consider the smooth functionw : M × [0, T ) given by w = u−v. Then, by hypothesis
we have

0 ≤ ∂tw −∆w − g(X,∇w)−
(
Ψ(u, t)−Ψ(v, t)

)
.

Since Ψ is locally Lipschitz in the first variable, there exists a constant c > 0 such that∣∣Ψ(u(x, t), t)−Ψ(v(x, t), t)
∣∣ ≤ c|u(x, t)− v(x, t)| = c|w(x, t)|,

for all (x, t) ∈M × [0, t1] where t1 < T . Let ε > 0 and define the auxiliary function wε by

wε(x, t) = w(x, t) + εe2ct.

Note that at (x, 0) for all x ∈M it holds

wε(x, 0) = w(x, 0) + ε = u(x, 0)− v(x, 0) + ε > 0.

On the other hand,

Lwε = Lw + εL(e2ct) = Lw + 2cεe2ct ≥ 2cεe2ct.
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Hence,
∂twε ≥ ∆w + g(X,∇w)− c|w|+ 2cεe2Ct.

Let (x′, t′) ∈M × (0, T ) be the first point and time that wε(x
′, t′) = 0. Then,

w(x′, t′) = −εe2ct′ .

Moreover, since this is a local minimum for the spatial derivatives it holds

∇wε(x
′, t′) = ∇w(x′, t′) = 0 and ∆wε(x

′, t′) = ∆w(x′, t′) ≥ 0.

On the other hand, the time derivative

∂tw(x
′, t′) + 2cεe2ct

′
= ∂twε(x

′, t′) ≤ 0.

Thus, at (x′, t′) ∈M × [0, T ) we obtain

0 ≥ ∂twε ≥ ∆w + g(X,∇w)− cεe2ct
′
+ 2cεe2ct

′ ≥ cεe2ct
′
> 0,

which is a contradiction. Hence, for every ε > 0 we have wε > 0 which implies w ≥ 0 on
M × [0, t1]. Since t1 ∈ (0, T ) is arbitrary we have w = u − v ≥ 0 on M × [0, T ). This
completes the proof. □

Theorem 4.1.3 (Comparison Principle). Let u : M × [0, T ) → R be a smooth function which
satisfies the differential inequality

∂tu−∆u ≤ g(X,∇u) + Ψ(u, t).

Let ϕ be the solution to the associated ODE{
ϕ′(t) = Ψ(ϕ(t), t),
ϕ(0) = maxx∈M u(x, 0).

(4.2)

Then, the solution u of the partial inequality is bounded from below by the solution ϕ of the
ODE, that is

u(x, t) ≤ ϕ(t),

for all (x, t) ∈M × [0, T ).

Proof. The proof is an immediate consequence of the Proposition 4.1.2. □

67



Chapter 4 4.2. Hamilton’s maximum principle

4.2 Hamilton’s maximum principle

In this section, let (E, π,M) be a vector bundle of rank d over a compact smoothm-dimensional
manifoldM equipped with a fixed metric k on the fibersEx = π−1(x), x ∈M . Let {gt}t∈[0,T )

be a family of time-dependent Riemannian metrics onM and let {∇gt}t∈[0,T ) the corresponding
Levi-Civita connections onM . Furthermore, let {∇t}t∈[0,T ) denote a family of connections on
E compatible with k. For a section ϕ : M → E of the vector bundle we can define a new
section∆ϕ : M → E using the connections∇gt and∇t. Suppose that a time-dependent section
ϕ(·, t) ∈ Γ(E) satisfies the parabolic equation

∂tϕ(x, t) = (∆ϕ)(x, t) + f(ϕ(x, t)) (4.3)

where f : E → E a locally Lipschitz map, mapping each fiber Ex to itself.
The Hamilton’s maximum principle provides us, roughly speaking, that the behavior of the PDE
(4.3) can be described by the behavior of the ODE

d

dt
ϕ(x, t) = f(ϕ(x, t)) (4.4)

in the fibers Ex, x ∈M .

Definition 4.2.1. A subset C ⊂ Rn is called convex if for each pair of points the segment
that connects them lies within the set, that is, for every x, y ∈ C we have,

[x, y] = {(1− t)x+ ty | 0 ≤ t ≤ 1} ⊂ C.

The set C is called strictly convex if for every x, y ∈ C the above segment is contained in
the interior of C.

Definition 4.2.2. Let C ⊂ Rn be a closed and convex set.

(1) A supporting half-space of the set C is a half-space of Rn which contains C and has
points of C arbitrarily close to its boundary.

(2) A supporting hyperplane to C is a hyperplane which is the boundary of a supporting
half-space to C.

(3) The tangent cone Tx0C of C at x0 ∈ ∂C is the intersection of the supporting half-spaces
of C that are arbitrarily close to x0.

Definition 4.2.3. Let C ⊂ Rn be a closed and convex set and x0 ∈ ∂C. Then,

(1) A non-zero vector ξ is called normal vector of ∂C at x0, if ξ is normal to a supporting
hyperplane of C passing through x0. This normal vector is called inward normal if it
points into the half-space containing C.
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(2) A non-zero vector η is called inward pointing at x0, if

〈ξ, η〉 ≥ 0,

for each inward normal vector ξ at x0.

Definition 4.2.4. Suppose that (E, π,M) is a vector bundle and C a closed subset of E.

(1) The set C is called fiber-convex (or convex in the fiber) if for every x ∈ M the set
Cx = C ∩ Ex is a convex subset of the fiber Ex.

(2) The set C is called invariant under parallel transport by the connection ∇t if for every
curve c : [0, b] → M × R and any vector V0 ∈ Cc(0), the unique parallel section
V (t) ∈ Ec(t), t ∈ [0, b] along c(t) with V (0) = V0 is contained in C.

In order to prove the Hamilton’s maximum principle we need the following result.

Lemma 4.2.5. Let C ⊂ E be a closed, convex in the fiber and invariant under parallel
transport with respect to ∇t subset of E. If φ is a smooth section mapped in C then, for all
x ∈M and v ∈ TxM , the Hessian

∇2
v,vφ = ∇v∇vφ−∇∇vvφ,

belongs into the tangent cone TxCx of Cx at the point φ(x).

Proof. It suffices to prove the result in the case where there exists a point x0 which is mapped
via φ is in the boundary of C , since otherwise the result is trivially true.
Consider a unit vector v ∈ Tx0M and a normal coordinate system {xi} in an open neighborhood
U around a point x0 such that ∂x1 |x0

= v.Moreover, choose a local basis {φ1(x0), . . . , φk(x0)}
of Ex0 and extend it into a local geodesic orthonormal frame field. Then,

φ =
k∑

i=1

uiφi ,
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where the components ui : U → R, i ∈ {1 , . . . , k}, are smooth functions. We calculate,

∇2
v,vφ(x0) = ∇∂x1

∇∂x1
φ(x0)−∇∇∂x1

∂x1
φ(x0)

= ∇∂x1

k∑
i=1

∇∂x1
ui(x0)φi(x0)

=
k∑

i=1

∇∂x1
(∂x1ui(x0))φi(x0)

=
k∑

i=1

(∂x1∂x1ui)(x0)φi(x0)

=
k∑

i=1

(ui ◦ γ)′′(0)φi(x0),

where γ : (−ε, ε) → U × R is a length minimizing geodesic such that

γ(0) = x0 and γ′(0) = ∂x1x0.

Define now the set

C =
{
(y1 , . . . , yk) ∈ Rk :

∑k

i=1
yiφi|x0 ∈ Cx0

}
.

Clearly C is a closed and convex subset of Rk. Since φ ∈ C and C is invariant under parallel
transport, we deduce that the curve σ : (−ε, ε) → Rk, given by

σ = (u1 ◦ γ , . . . , uk ◦ γ),

lies in C. It suffices to prove that σ′′(0) points into C. Indeed, because C is convex, for each
unit inward pointing normal ξ of C at σ(0), we have

g(s) = 〈ξ, σ(s)− σ(0)〉 ≥ 0,

for all s ∈ (−ε, ε). Because g attains its minimum at s = 0, from standard calculus we get that
g′′(0) ≥ 0, which implies 〈σ′′(0), ξ〉 ≥ 0. This completes the proof. □

Definition 4.2.6. Consider the family of closed and convex sets {C(t)}t≥0 ⊂ E.

(1) We say that the setsC(t) depend continuously on t if limt→t0 C(t) = C(t0)with respect
to the pointed Hausdorff topology.
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(2) We say that the family {C(t)} is invariant under theODE (4.4) if for every t0 ≥ 0, x ∈M
and ϕ0 ∈ Cx(t0) the solution ϕ(x, t) of (4.4) with ϕ(x, t0) = ϕ0 satisfies ϕ(x, t) ∈
Cx(t) for all t ≥ t0, for which the solution ϕ(x, t) exists.

Theorem 4.2.7 (Hamilton’s vectorial maximum principle). For t ∈ [0, δ], δ > 0 let C(t) ⊂
E be a closed subset depending continuously on t. Suppose that each of the sets C(t) is
invariant under parallel transport, convex in the fiber and that the family {C(t)}t∈[0,δ] is
invariant under the ODE (4.4). Then, for every solution ϕ(x, t) ∈ Γ(E) onM × [0, δ] of the
parabolic equation (4.3) with ϕ(x, t) ∈ C(0) for all x ∈ M we have ϕ(x, t) ∈ C(t) for all
(x, t) ∈M × [0, δ].

Proof. For each S ∈ Ey, y ∈M we let

rt(S) = dk(S,Ct(y)),

denote the distance between S and the convex setCy(t) in the fiber Vy. For each solution ϕ(x, t)
to the parabolic equation (4.3), defined onM× [0, δ]we consider the maximal distance toC(t),

s(t) = sup
x∈M

rt(ϕ(x, t)).

The function s is not differentiable but we can define the upper converse Dini derivative

s′(t0) = lim sup
h↘0

s(t0)− s(t0 − h)

h
.

Let r0 denote the maximum of s on [0, δ]. Since f is locally Lipschitz, we can find a constant
L > 0 such that the restriction of f to the ballB2r0(ϕ(y, t)) is L/2-Lipschitz continuous for all
(y, t) ∈M × [0, δ]. Our goal is to show that

s′(t) ≤ Ls(t),

for all t ∈ [0, δ]. Then, if we define

g(t) = s(t)e−Lt,

by (4.2) we get that
g′(t) = e−Lt(s′(t)− Ls(t)) ≤ 0,

for all t ∈ [0, δ]. Since s(0) = 0 we deduce g(0) = 0 which implies g(t) ≤ 0 for all t ∈ [0, δ]
and hence s(t) = 0 for all t ∈ [0, δ]. This proves the theorem.
Thus, it remains to compute s′(t). For t0 ∈ [0, δ] there existsx0 ∈M with s(t0) = rt0(ϕ(x0, t0)).
We assume that s(t0) > 0. For h > 0 by the definition of s we have

s(t0 − h) ≥ rt0−h(ϕ(x0, t0 − h)).
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Hence, we compute

s′(t0) = lim sup
h↘0

s(t0)− s(t0 − h)

h

≤ lim sup
h↘0

rt0(ϕ(x0, t0))− rt0−h(ϕ(x0, t0 − h))

h

= lim sup
h↘0

rt0(ϕ(x0, t0))− rt0−h(ϕ(x0, t0)− h∆ϕ(x0, t0)− hf(ϕ(x0, t0)))

h
.

The last equality follows as we write ϕ(x0, t0 − h) = ϕ(x0, t0)− h · d
dt
ϕ(x0, t) + o(h) and use

the fact that rt0−h are uniformly Lipschitz continuous functions as distance functions.
One can prove that for each t the function rt is C1 on E \ C(t) since C(t) is convex. We
observe that the closed neighborhood r−1([0, s(t0)]) of Ct0 is convex. Also, by construction
ϕ(x, t0) ∈ E \ C(t) for all x ∈M . Then,∇rt0(ϕ(x0, t0)) is equal to the unit outward normal
to r−1([0, s(t0)]) at ϕ(x0, t0). Thus by Lemma 4.2.5 we deduce that

k(∆ϕ(x0, t0),∇rt0(ϕ(x0, t0))) ≤ 0.

Thus,

s′(t0) ≤ lim sup
h↘0

rt0(ϕ(x0, t0))− rt0−h(ϕ(x0, t0)− h∆ϕ(x0, t0)− hf(ϕ(x0, t0)))

h

≤ lim sup
h↘0

rt0(ϕ(x0, t0))− rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0)))

h
.

Since C(t) is continuous with respect to the pointed Hausdorff topology, we can see that∇rt is
also continuous with respect to t. Thus, for each ε > 0 there exists a δ > 0 such that

k(∆ϕ(x0, t0),∇rt−h(ϕ(x0, t0))) ≤ ε,

for all (ϕ, h) with |ϕ(x0, t0)− ϕ|+ |h| ≤ δ.We know that for every convex function it holds

rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0))− h∆ϕ(x0, t0)) ≥ −εh+ rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0))),

for small h > 0. Since ε is arbitrary we have

rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0))− h∆ϕ(x0, t0)) ≥ rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0))).

For h > 0 we choose a unique ϕh ∈ Cx0(t0 − h) with

rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0))) = |ϕh + hf(ϕ(x0, t0))− ϕ(x0, t0)|.
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Using the triangle inequality and the fact that f isL/2-Lipschitz continuous onB2s(t0)(ϕ(x0, t0))
we have

rt0−h(ϕ(x0, t0)− hf(ϕ(x0, t0)))− rt0(ϕ(x0, t0)) (4.5)
= |ϕh + hf(ϕ(x0, t0))− ϕ(x0, t0)| − rt0(ϕ(x0, t0))

≥ |ϕh + hf(ϕh)− ϕ(x0, t0)| − h|f(ϕ(x0, t0))− f(ϕh)| − dk(ϕ(x0, t0), Ct0)

≥ dk(ϕh + hf(ϕh), ϕ(x0, t0))− h
L

2
|ϕ(x0, t0)− ϕh| − dk(ϕ(x0, t0), Ct0)

≥ dk(ϕh + hf(ϕh), ϕ(x0, t0))− hLs(t0)− dk(ϕ(x0, t0), Ct0)

≥ −dk(ϕh + hf(ϕh), C(t0))− hLs(t0).

The term ϕh + hf(ϕh) approximates the solution γϕh
with γϕh

(t0 − h) = ϕh ∈ Cx0(t0 − h)
up to first order. Since the family C(t) is invariant under the ODE (4.4) we have

γϕh
(t) ∈ Cx0(t)

for all t ≥ t0 − h. Hence, we conclude that dk(C(t0), ϕ) = o(h) and obtain by (4.5)

s′(t0) = Ls(t0).

This completes the proof. □

4.3 The maximum principle for 2-tensors

Lemma 4.3.1. Let E be a vector bundle over a Riemannian manifoldM and letK be the set
of non-negative definite symmetric 2-tensors,

K = {θ ∈ Sym(E∗ ⊗ E∗) : θ ≥ 0}.

Then, K is invariant under parallel transport.

Proof. Let γ : [0, 1] → M be a geodesic, Ps the parallel transport operator of vectors along
γ and Πs the parallel transport operator of 2-tensors along the curve γ. Consider ϑ ∈ Kγ(0).
Then, for each v ∈ Tγ(0)M , we have

∂s
{(

Πsϑ
)
(Psv, Psv)

}
= (∇∂sΠsϑ) (Psv, Psv) + 2Πsθ (∇∂sPsv, Psv) = 0.

Therefore, for each vector v ∈ Tγ(0)M , it holds
(
Πsϑ

)
(Psv, Psv) = ϑ(v, v). Consequently,

for each w ∈ Tγ(s)M , we obtain that(
Πsϑ

)
(w,w) = ϑ(P−1

s w,P−1
s w) ≥ 0.

This completes the proof. □
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CHAPTER5
3-MANIFOLDS WITH POSITIVE RICCI CURVATURE

5.1 Statement of the main result

Hamilton’s first major achievement using the Ricci flowmethod was the following result proved
in [18]:
Main Theorem: Let M3 be an oriented compact 3-dimensional manifold which admits a
smooth Riemannian metric with strictly positive Ricci curvature. Then, M3 also admits a
smooth Riemannian metric of constant positive curvature. In particular, if M3 is simply
connected then it is diffeomorphic to S3.
Hamilton proved this result starting the Ricci flow process from a metric with strictly positive
Ricci curvature. From themaximumprinciple, it follows that this property is preserved under the
flow. The maximal time of existence of the flow is finite and as time is approaching its maximal
value, the volume of the manifold decreases to zero and the shape of the evolved manifold
becomes spherical. One idea to conclude the proof would be to pass to a limit, but the fact that
the manifold is shrinking to a point is preventing us to use this idea. Hamilton overcomes this
problem by rescaling properly the Riemannian metric and the time to ensure that the volumes of
the evolved manifolds remain constant. Let us describe the main steps of the proof of Hamilton.
Step 1: The Ricci flow exists for finite time and the Riemannian curvature operator of the
evolved metrics explodes as time is approaching is maximal time of existence.
Step 2: The positivity of the Ricci curvature is preserved under the Ricci flow process.
Step 3: The sectional curvatures of the evolved metrics get close to each other as time is ap-
proaching its maximal time of existence.
Step 4: Rescale time and metric to obtain a solution to the volume preserving Ricci flow

∇∂tg = −2Ric+
2

3

∫
S dM∫
dM

· g. (5.1)

Step 5: The solution of the (5.1) exists for all times and converges to a Riemannian metric of
constant sectional curvature.

75



Chapter 5 5.2. Curvature quantities in three dimensions

5.2 Curvature quantities in three dimensions

Let us investigate here the structure of the curvature operator of a three dimensional compact
manifoldM3. At this point let us recall a well-known result due to Stiefel [30], which says that
each such manifold is parallelizable, that is there exists a smooth globally defined frame field.
Recall now that the Riemann curvature tensor is fully determined by the Ricci tensor, i.e. in
local coordinates we have

Rijkl = gjlRik − gjkRil − gilRjk + gikRjl −
gikgjl − gilgjk

2
S, (5.2)

where gij , Rijkl and Rij are the components of the metric, the Riemann curvature tensor and
of the Ricci curvature, respectively, with respect to a fixed orthonormal frame. Suppose that
{e1, e2, e3} is an orthonormal basis at x ∈M3 such that {e2∧ e3, e1∧ e3, e1∧ e2} diagonalizes
the curvature operatorR and denote by κ1 ≥ κ2 ≥ κ3 the corresponding eigenvalues. Then at
the point x we have that

Ric =

κ2 + κ3 0 0
0 κ1 + κ3 0
0 0 κ1 + κ2

 .

and S = 2(κ1 + κ2 + κ3), see Lemma 1.6.9. By replacing

κi =
1

2
λi, i ∈ {1, 2, 3}

we get the following

Ric =
1

2

λ2 + λ3 0 0
0 λ1 + λ3 0
0 0 λ1 + λ2

 , (5.3)

and S = λ1 + λ2 + λ3. Observe that λ1 + λ2 ≥ λ1 + λ3 ≥ λ2 + λ3. Moreover, we define

R2(X ∧ Y, Z ∧W ) =
m∑

i,j=1

R(X,Y, ei, ej)R(Z,W, ei, ej)

and

R#(X ∧ Y, Z ∧W ) = 2
m∑

i,j=1

R(X, ei, Z, ej)R(Y, ei,W, ej)

− 2
m∑

i,j=1

R(X, ei,W, ej)R(Y, ei, Z, ej).
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Note that
R2 +R# = Q(R),

where Q(R) is given in (2.4).
Hence, with respect to the frame {e2 ∧ e3, e1 ∧ e3, e1 ∧ e2}, the tensors R2 and R# have the
representations

R2 =

λ21 0 0
0 λ22 0
0 0 λ3

 and R# =

λ2λ3 0 0
0 λ1λ3 0
0 0 λ1λ2


and consequently

R2 +R# =

λ21 + λ2λ3 0 0
0 λ22 + λ1λ3 0
0 0 λ23 + λ1λ2

 . (5.4)

In general, [see [1] Section 12.2.1]a b c
b d e
c e f

#

=

df − e2 ce− bf be− cd
ce− bf af − c2 bc− ae
be− cd bc− ae ad− b2

 . (5.5)

Let us investigate now the behavior of the initial value problem{
S ′(t) = S2(t) + S#(t), t ∈ [0, T ),

S(0) = S0,
(5.6)

on various subsets of the space of symmetric matrices with real coefficients.

Lemma 5.2.1. Let {S = S(t)} ⊂ CB(R3) be a solution of the ODE given in (5.6). Then, the
components sij of S satisfy

s′ij = 2s2ij − tr(S)sij −
1

2

(
|S|2 − tr(S)2

)
δij. (5.7)

Consequently, if S(0) is diagonal, then S(t) remains diagonal for all t ∈ (0, T ).

Proof. The expression for sij follows directly from (5.5). The second statement of the lemma
is a consequence of the uniqueness of solutions of initial value problems for ODEs. □
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Lemma 5.2.2. Let {S = S(t)} ⊂ CB(R3) be a solution of the ODE given in (5.6). Then, the
eigenvalues of A are smooth and satisfy

µ′
1 = µ2

1 + µ2µ3, µ′
2 = µ2

2 + µ1µ3 and µ′
3 = µ2

3 + µ1µ2, (5.8)

for every t ∈ [0, T ).

Proof. Assume that S(0) is diagonal and suppose that

s11(0) ≥ s22(0) ≥ s33(0). (5.9)

As we have already proved in the last lemma, A remains diagonal for all t ∈ [0, T ). Moreover,
according to (5.7) we have

s′11 = s211 + s22s33, s′22 = s222 + s11s33 and s′33 = s233 + s11s22.

Subtracting, we deduce that

(s11 − s22)
′ = (s11 − s22)(s11 + s22 − s33)

and
(s22 − s33)

′ = (s22 − s33)(s22 + s33 − s11).

From (5.9), we conclude that

s11(t) ≥ s22(t) ≥ s33(t), for all t ∈ [0, T ).

Consequently, we have µ1 = s11, µ2 = s22 and µ3 = s33, from where the assertion follows. □
Lemma 5.2.3. Consider the eigenvalues µ1 ≥ µ2 ≥ µ3 of an element in CB(R3) as real-
valued functions on CB(R3). Then, µ1 is a convex function while µ3 and µ2+µ3 are concave
functions.

Proof. Fix S, T ∈ CB(R3) and let t ∈ [0, 1]. Then,

µ1(tS + (1− t)T ) = maxv∈S2(tS(v, v) + (1− t)T (v, v))

≤ maxv∈S2(tS(v, v)) +maxv∈S2((1− t)T (v, v))

= tµ1(S) + (1− t)µ1(T ).

Hence, µ1 is convex. Now using the fact

µ3(S) = minv∈S2S(v, v) = −µ1(−S),

it follows that µ3 is concave. Moreover, from

µ2 + µ3 = minv,w∈S2;v⊥w(S(v, v) + S(w,w)),

it follows that µ2 + µ3 is concave. This completes the proof. □
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Lemma 5.2.4. Fix a real number ε > 0. Then, the set

K =
{
S ∈ CB(R3) : µ2(S) + µ3(S) ≥ ε

}
,

where µ1(S) ≥ µ2(S) ≥ µ3(S) are the eigenvalues of S, is convex and invariant under the
ODE (5.6).

Proof. Let us show at first the invariance of our set under the ODE. Consider the function
f : [0, T ) → R given by f = µ2 + µ3. From (5.8), we have that

f ′ = µ2
2 + µ2

3 + µ1µ3 + µ1µ2 ≥ µ1f. (5.10)

From our assumptions we have that

f(0) = µ2(S) + µ3(S) ≥ ε and 2µ1(S) ≥ µ2(S) + µ3(S) > 0. (5.11)

First we show that f stays positive on [0, T ). To show this, suppose to the contrary that there
exists a first time t0 ∈ (0, T ) such that f(t) > 0 for each t ∈ [0, t0) and f(t0) = 0. By
integrating (5.11) we see that

f(t0) ≥ f(0)e
∫ t0
0 µ1(s)ds > 0, (5.12)

which leads to a contradiction. Hence f is everywhere positive and from the second inequality of
(5.11) the function µ1 is everywhere positive. Going back to (5.12) we see that f ≥ f(0) ≥ ε.
To show convexity, we consider the function g : CB(R3) → R given by

g(S) = µ2(S) + µ3(S) = minv,w∈S2 & v⊥w

{
S(v, v) + S(w,w)

}
.

Then one can readily check that g is concave which implies that our set is also convex; see also
Lemma 5.2.3. This completes the proof. □
Lemma 5.2.5. Fix a real number ε ∈ (0, 1). Then, the set

K =
{
S ∈ CB(R3) : µ2(S) + µ3(S) ≥ 2εµ1(S)

}
,

where µ1(S) ≥ µ2(S) ≥ µ3(S) are the eigenvalues of S, is convex and invariant under the
ODE (5.6).

Proof. Let us show at first the invariance of our set under the ODE. Consider the function
f : [0, T ) → R given by f = µ2 + µ3 − 2εµ1. Note that since ε ∈ (0, 1) we have that µ1 ≥ 0.
From (5.8), we have that

f ′ = (µ2 + µ3 − 2µλ1)
′

= µ2
2 + µ2

3 − 2εµ2µ3 + (µ2 + µ3 − 2εµ1)µ1

≥ (1− ε)(µ2
2 + µ2

3) + ε(µ2
3 − 2µ2µ3 + λ22) + (µ2 + µ3 − 2εµ1)µ1

≥ fµ1.
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Using the same arguments as in the previous lemma, we deduce that the function f stays positive
in [0, T ) and so the inequality

µ2 + µ3 ≥ 2εµ1 ≥ 0

is preserved in time. To show convexity consider the function g : CB(R3) → R given by

g(S) = 2εµ1(S)− (µ2(S) + µ3(S))

= 2εmaxv∈S2S(v, v) +maxv,w∈S2 & v⊥w

{
− S(v, v)− S(w,w)

}
.

Then one can readily check that g is convex which implies that our set is also convex. □

Lemma 5.2.6. For every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that, for each c > 0, the set

K =
{
S ∈ CB(R3) : µ2(S) + µ3(S) ≥ 2εµ1(S) and µ1(S)− µ3(S) ≤ c tr(S)1−δ

}
,

where µ1(S) ≥ µ2(S) ≥ µ3(S) are the eigenvalues of S, is convex and invariant under the
ODE (5.6).

Proof. We already know by Lemma 5.2.5, that the inequality µ2 + µ3 ≥ 2εµ1 is preserved in
time by the ODE (5.6). If µ1(S) = µ3(S), then µ1(t) = µ3(t) for all t ∈ [0, T ) and in this
case we have nothing to prove. So let us suppose that µ1(S) > µ3(S). This condition will be
preserved under the ODE and moreover, 2µ1 > µ2 + µ3 ≥ 2εµ1. Since, ε ∈ (0, 1), it follows
that µ1 > 0. So we may assume that the solution of the ODE satisfies µ2 + µ3 ≥ 2εµ1 > 0.
Using (5.8) we get that

(
log(µ1 − µ3)

)′
=

1

µ1 − µ3

(µ2
1 + µ2µ3 − µ2

3 − µ1µ2) = µ1 + µ3 − µ2. (5.13)

Moreover,

(
log(µ1 + µ2 + µ3)

)′
=

1

µ1 + µ2 + µ3

(µ2
1 + µ2µ3 + µ2

2 + µ1µ3 + µ2
3 + µ1µ2)

=
µ1(µ2 − µ3) + µ2(µ2 + µ3) + (µ1 + µ3)

2

µ1 + µ2 + µ3

. (5.14)

80



Chapter 5 5.3. Finite-time explosion of the curvature

Combining (5.13) and (5.14), we conclude that(
log

µ1 − µ3

(µ1 + µ2 + µ3)1−δ

)′

=
(
log(µ1 − µ3)− (1− δ) log(µ1 + µ2 + µ3)

)′
= δ(µ1 + µ3 − µ2) + (1− δ)(µ1 + µ3 − µ2)

−(1− δ)
µ1(µ2 − µ3) + µ2(µ2 + µ3) + (µ1 + µ3)

2

µ1 + µ2 + µ3

= δ(µ1 + µ3 − µ2)− (1− δ)
µ1(µ2 − µ3) + µ2(µ2 + µ3) + µ2

2

µ1 + µ2 + µ3

= δ(µ1 + µ3 − µ2)− (1− δ)
µ2
2

µ1 + µ2 + µ3

.

Due to 2εµ1 ≤ µ2 + µ3 ≤ 2µ2 it follows that ε(µ1 + µ3 − µ2) ≤ µ2.Moreover, since

µ1 + µ2 + µ3 ≤ 3µ1 and 2µ2 ≥ µ2 + µ3,

we deduce that
µ2
2

µ1 + µ2 + µ3

≥ µ2(µ2 + µ3)

6µ1

≥ 2εµ2µ1

6µ1

=
εµ2

3
.

Putting everything together, we deduce that for δ ≤ ε2/(3 + ε2), we have that(
log

µ1 − µ3

(µ1 + µ2 + µ3)1−δ

)′

≤ µ2

(δ
ε
− (1− δ)ε

3

)
≤ 0.

Convexity follows from the convexity of g : CB(R3) → R given by

g(S) = µ1(S)− µ3(S)− c
(
µ1(S) + µ2(S) + µ3(S)

)1−δ
.

This completes the proof. □

5.3 Finite-time explosion of the curvature

We already know that the Ricci flow has a unique (up to diffeomorphisms) solution on amaximal
time interval [0, T ), where T ≤ ∞. We claim that if the Ricci curvature is strictly positive, then
T is finite. More precisely, the following more general result holds:

Theorem 5.3.1. Let g = gt be a solution of the Ricci flow on a compact m-dimensional
manifold Mm defined on a maximal time interval [0, T ). If the metric g(0) has positive
scalar curvature, then T is finite.
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Proof. BecauseMm is compact and the scalar curvature initially is strictly positive, there exists
a positive constant ϱ > 0 such that the minimum of the scalar curvature at time zero is equal to
ϱ. From Proposition 2.13, we obtain that

∂tS = ∆S + 2|Ric|2 ≥ ∆S +
2

m
S2.

From the comparison maximum principle 4.1.3, we immediately see that

S ≥ mϱ

m− 2tϱ
.

Since the right hand side diverges to∞, the scalar curvature becomes singular in finite time. □

Corollary 5.3.2. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional
manifold M3 defined in a maximal time interval [0, T ). If g(0) has strictly positive scalar
curvature, then

lim supt→T

{
maxx∈M3 |Ric|(x, t)

}
= ∞.

Proof. Since the maximal time T is finite, the Riemann curvature tensor must explode as time
approaches its maximal value. Recall from (5.2) that in the 3-dimensional case we have that

Rijkl = gjlRik − gjkRil − gilRjk + gikRjl −
gikgjl − gilgjk

2
S,

where gij , Rijkl and Rij are the components of the metric, Riemann curvature tensor and of the
Ricci curvature, respectively, with respect to an orthonormal frame. Consequently, there exists
a positive constant c such that |Rm| ≤ c |Ric|. Since the left hand side explodes as time tends
to its maximal value, we obtain our result. □

Corollary 5.3.3. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional
manifold M3 defined in a finite maximal time interval [0, T ). If the Ricci curvature of the
initial metric is positive, then the scalar curvature explodes as time approaches its maximal
value T . More precisely,

lim supt→T

{
maxx∈M3S(x, t)

}
= ∞.

Proof. From Corollary 5.3.2 and the fact that

4|Ric|2 = (λ1 + λ2)
2 + (λ1 + λ3)

2 + (λ2 + λ3)
2 ≤ 4(λ1 + λ2 + λ3)

2 = 4S2,

we immediately obtain the result. □
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5.4 Evolution of the Ricci curvature

Suppose that g = gt is a solution of the Ricci flow on a compact 3-dimensional manifoldM3

defined in a finite maximal time interval [0, T ). From now on we work only on the bundle
(V, h) obtained via the Uhlenbeck’s Trick in Section 2.3.

Theorem 5.4.1. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional
manifold defined in a finite maximal time interval [0, T ). If the there exists a point where the
Ricci curvature of the initial metric is strictly positive, then the evolved Riemannian metrics
have strictly positive Ricci curvature everywhere.

Proof. Recall from (5.2) that in the 3-dimensional case we have that

Rijkl = gjlRik − gjkRil − gilRjk + gikRjl −
gikgjl − gilgjk

2
S.

Hence, from the evolution equation of the curvature tensor, we deduce that

∇∂tRic = ∆Ric+ 3tr(Ric)Ric− 4Ric(2) +
(
2|Ric|2 − tr(Ric)2

)
g.

Define now the map Ψ : Sym(V ∗ ⊗ V ∗) → Sym(V ∗ ⊗ V ∗) given by

Ψ(S) = 3tr(S)S − 4S(2) +
(
2|S|2 − tr(S)2

)
g.

Thus,Ψ satisfies the null-eigenvector condition and the result follows fromHamilton’s tensorial
maximum principle. □
Lemma 5.4.2. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional manifold
M3 defined in a finite maximal time interval [0, T ). If the Ricci curvature of the initial metric
is positive, then there exist constants c > 0 and ε > 0 depending only on the initial metric
such that

λ1(x, t)

λ2(x, t) + λ3(x, t)
≤ c,

where λ1(x, t) ≥ λ2(x, t) ≥ λ3(x, t), are the eigenvalues of the curvature operator of the
metric gt at x ∈M3 given in (5.3) and Ric ≥ ε g.

Proof. Note that such constants c and ε exist at time 0 by the compactness of M3 and the
positivity of the Ricci tensor. As a matter of fact, since the Ricci curvature is initially positive,
the continuous function λ2(· , 0) + λ3(· , 0) is positive and bounded from below. Hence, there
exists a constant c > 0 such that

λ1(· , 0)
λ2(· , 0) + λ3(· , 0)

≤ c.
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It remains to show that these bounds are preserved under the flow. To achieve this goal, consider
the subsetK of S(V ) given by

K = {S ∈ S(V ) : λ1(S) ≤ c(λ2(S) + λ3(S)) & λ2(S) + λ3(S) ≥ 2ε}.

From the Lemmas 5.2.4,5.2.5 and 4.3.1 it follows that the set K is fiber-wise convex, invariant
under parallel transport and that the fiber-wise map Q : S(V ) → S(V ) given by

Q(S) = S2 + S#,

points into K. Now the result follows from Hamilton’s tensorial maximum principle. □
Lemma 5.4.3. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional manifold
M3 defined in a finite maximal time interval [0, T ). If the Ricci curvature of the initial metric
is positive, then there exists a positive time-independent constant β such that

Ric ≥ βS g.

Proof. From Theorem 5.4.2, we have that there exists a time-independent constant c > 0 such
that

Ric ≥ λ2 + λ3
2

g ≥ λ1
2c
g ≥ λ1 + λ2 + λ3

6c
g =

S

6c
g.

as long the flow exists. Setting β = 1/6c > 0, we deduce the result. □
In the following theorem, we show that the pinching of the eigenvalues becomes better as the
scalar curvature tends to infinity. As a matter of fact, we show the following result.

Lemma 5.4.4. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional manifold
M3 defined in a finite maximal time interval [0, T ) and suppose that the Ricci curvature of
the initial metric is positive. There exist positive constants δ ∈ (0, 1) and c depending only
on the initial metric, such that

λ1(x, t)− λ3(x, t)

λ1(x, t) + λ2(x, t) + λ3(x, t)
≤ c

(λ1(x, t) + λ2(x, t) + λ3(x, t))δ
,

where λ1(x, t) ≥ λ2(x, t) ≥ λ3(x, t), are the eigenvalues of the curvature operator of the
metric gt at x ∈M3 given in (5.3).

Proof. The proof follows as a direct consequence of Hamilton’s tensorial maximum principle
and Lemma 5.2.6. □
Theorem 5.4.5. Let g = gt be a solution of the Ricci flow on a compact 3-dimensional
manifold M3 defined in a finite maximal time interval [0, T ). If g(0) has strictly positive
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Ricci curvature then, there exist positive constants c and δ, depending only on the initial
metric g0, such that

|E|2

S2
≤ cS−2δ.

Proof. From

E =
1

6

λ2 + λ3 − 2λ1 0 0
0 λ1 + λ3 − 2λ2 0
0 0 λ1 + λ2 − 2λ3

 ,

we have that

|E|2

S2
=

(λ2 + λ3 − 2λ1)
2 + (λ1 + λ3 − 2λ2)

2 + (λ1 + λ2 − 2λ3)
2

36(λ1 + λ2 + λ3)2

=
6(λ21 + λ22 + λ23)− 6(λ1λ2 + λ1λ3 + λ2λ3)

36(λ1 + λ2 + λ3)2

=
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2

12(λ1 + λ2 + λ3)2

≤ 3(λ1 − λ3)
2

12(λ1 + λ2 + λ3)2
.

Now the result follows from the estimate in Lemma 5.4.4. □

5.5 The gradient estimate for the scalar curvature

The above estimates are results that concern a point of the manifoldM . We need a global result.
Since the dimension of the manifold is 3 and we want to show that the metric is getting close to
an Einstein metric, it is reasonable to expect that the scalar curvature is getting close to being
constant (see Section 1.6) and hence a bound on |∇S|. This section is about finding a way to
bound the quantity |∇S| that will help us pass to global results.
Consider the functions Smax and Smin given by

Smax(t) = maxx∈M3S(x, t) and Smin(t) = minx∈M3S(x, t).

The purpose of this section is to show that these functions pinch together as time approaches its
maximum value. The proof rely heavily in a gradient estimate for the scalar curvature. In order
to achieve this estimate we need to obtain several evolution equations.
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Firstly, we will use the following general result. Let A be am×m matrix then it holds

|A|2 ≥ 1

m
(traceA)2. (5.15)

Recall that in Corollary 5.3.3 we proved that

|Ric|2 ≤ S2. (5.16)

Proposition 5.5.1. Let Mm be an m-dimensional manifold and {gt}t∈[0,T ) a solution to the
Ricci flow. Then,

∂t

(
|∇S|2

S

)
= ∆

(
|∇S|2

S

)
−2S

∣∣∣∣∇(∇S
S

)∣∣∣∣2−2
|∇S|2

S2
|Ric|2+ 4

S
〈∇S,∇|Ric|2〉. (5.17)

Proof. We calculate using the evolution equation of the scalar curvature (2.13)

∂t|∇S|2 = ∆|∇S|2 − 2|∇∇S|2 + 4〈∇S,∇|Ric|2〉. (5.18)

We know that S > 0 is preserved, thus we compute

∂t

(
|∇S|2

S

)
=

1

S

(
∆|∇S|2 − 2|∇∇S|2 + 4〈∇S,∇|Ric|2〉

)
− |∇S|2

S2
(∆S + 2|Ric|2).

Since |∇S|2 and S are smooth functions we use the fact that

∆

(
|∇S|2

S

)
=

∆(|∇S|2)
S

− |∇S|2∆S
S2

− 2

S2
〈∇|∇S|2,∇S〉+ |∇S|2

S3
|∇S|2.

Then,

∂t

(
|∇S|2

S

)
= ∆

(
|∇S|2

S

)
− 2|∇S|4

S3
+

2〈∇|∇S|2,∇S〉
S2

− 2|∇∇S|2

S

− 2

S2
|∇S|2|Ric|2 + 4

S
〈∇S,∇|Ric|2〉

= ∆

(
|∇S|2

S

)
− 2S

(
|∇S|4

S4
+

〈∇|∇S|2,∇S〉
S3

− |∇∇S|2

S2

)
− 2

S2
|∇S|2|Ric|2 + 4

S
〈∇S,∇|Ric|2〉

= ∆

(
|∇S|2

S

)
− 2S

∣∣∣∣∇(∇S
S

)∣∣∣∣2 − 2

S2
|∇S|2|Ric|2 + 4

S
〈∇S,∇|Ric|2〉.

This completes the proof. □
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Corollary 5.5.2. Let Mm be an m-dimensional manifold and {gt}t∈[0,T ) a solution to the
Ricci flow. Then,

∂t

(
|∇S|2

S

)
≤ ∆

(
|∇S|2

S

)
− 2S

∣∣∣∣∇(∇S
S

)∣∣∣∣2 − 2
|∇S|2

S2
|Ric|2 + 8

√
3|∇Ric|2. (5.19)

Proof. It suffices to show that

4

S
〈∇S,∇|Ric|2〉 ≤ 8

√
3|∇Ric|2.

Note that
|∇|Ric|2| ≤ 2|∇Ric||Ric|

and using (5.15)
|∇S|2 ≤ 3|∇Ric|2.

Thus, by the Cauchy-Schwartz inequality and (5.16)

4

S
〈∇S,∇|Ric|2〉 ≤ 4

S
|S||∇|Ric|2|

≤ 8|∇S||∇Ric| |Ric|
S

≤ 8
√
3|∇Ric|2.

This completes the proof. □
Note that the reaction terms in equation (5.19) are negative except the last one. Thus, we need
to control the term |∇Ric|2.
Lemma 5.5.3. On a 3-dimensional manifold it holds

|∇Ric|2 − 1

3
|∇S|2 ≥ 1

37
|∇Ric|2. (5.20)

Proof. Note that
|∇E|2 = |∇Ric|2 − 1

3
|∇S|2.

Using equation (5.15) we have

|∇kE|2 ≥
1

3

3∑
i=1

|∇iRicij −
1

3
∇iSgij|2 =

1

3

∣∣∣∣12∇jS − 1

3
∇jS

∣∣∣∣2 = 1

108
|∇S|2.

This completes the proof. □
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Lemma 5.5.4. LetM3 be a 3-dimensional manifold and gt, t ∈ [0, T ) a solution to the Ricci
flow. Then,

∂t|E|2 = ∆(|E|2)− 2|∇E|2 − 8 trg(Ric3) +
26

3
S|Ric|2 − 2S3.

Proof. We compute using the evolution equation of the scalar curvature (2.13)

∂tS
2 = 2S(∆S + |Ric|2) = ∆S2 − 2|∇S|2 + 4S|Ric|2. (5.21)

By the evolution equation of the Ricci tensor 2.3.4 we obtain

∂t|Ric|2 = ∂tRijRij = ∆|Ric|2 − 2|∇Ric|2 − 4RipjqRpqRij. (5.22)

Note that the above equations hold in any dimensionm. Sincem = 3we can use (5.2) and then
(5.22) becomes

∂t|Ric|2 = ∆|Ric|2 − 2|∇Ric|2 − 2S3 − 8 trg(Ric3) + 10S|Ric|2.

Combining this with (5.21) the result follows. □

We define
W =

26

3
S|Ric|2 − 8 tr(Ric3)− 2S3

and
V =

|∇S|2

S
+

37

2
(8
√
3 + 1)|E|2.

Using Corollary 5.19 and Lemma 5.5.4 we compute

∂tV ≤ ∆

(
|∇S|2

S

)
− 2S

∣∣∣∣∇(∇S
S

)∣∣∣∣2 − 2
|∇S|2

S2
|Ric|2 + 8

√
3|∇Ric|2 (5.23)

+
37

2
(8
√
3 + 1)(∆(|E|2)− 2|∇E|2 +W ) (5.24)

Thus, by Lemma 5.5.3 we obtain

∂tV ≤ ∆V − |∇Ric|2 + 37

2
(8
√
3 + 1)W. (5.25)

Then, since we have diagonalize Ric and E we can prove algebraically that

W ≤ 50

3
S|E|2. (5.26)
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As a consequence, equation (5.25) becomes

∂tV ≤ ∆V − |∇Ric|2 + C1S|E|2.

Using equation (5.15) we have
1

3
|∇S|2 ≤ |∇Ric|2. (5.27)

Concluding by Theorem 5.4.5 we get

∂tV ≤ ∆V − 1

3
|∇S|2 + C2S

3−2γ. (5.28)

for some positive constants C2 and γ.

Theorem 5.5.5. Let g = gt, t ∈ [0, T ) be a solution to the Ricci flow on a compact manifold
M3 with initially strictly positive Ricci curvature, then there exist positive constants β > 0
and δ ∈ (0, 1), depending only on the initial metric g0 such that for each β0 ∈ [0, β], there
exists c > 0 depending only on β0 and g0 such that

|∇S|2

S3
≤ β0S

−δ + cS−3.

Proof. We compute

∂tS
2−γ = ∆(S2−γ)− (2− γ)(1− γ)S−γ|∇S|2 + 2(2− γ)S1−γ|Ric|2.

Hence, by (5.28) we get

∂t(V − βS2−γ) ≤ ∆(V − βS2−γ) +
(
β(2− γ)(1− γ)S−γ − 1

3

)
|∇S|2 (5.29)

+ CS3−2γ − 2β(2− γ)S1−γ|Ric|2.

We proved in Lemma 5.4.2 that there exists ε > 0 such that Ric ≥ εg. Thus, S ≥ ε for ε > 0.
We can choose β̄ such that

β̄ ≤ (3ε)γ

3(2− γ)(1− γ)
.

Then, for every β ∈ [0, β̄] the second term of equation (5.29) is non-positive.
Using 3|Ric|2 ≥ |S|2 we get

C3S
3−2γ − 2β(2− γ)S1−γ|Ric|2 ≤ C3S

3−2γ − C4S
3−γ,

where C3, C4 are constants. Note that when S is large enough the above term is dominated by
the quantity S3−γ which is negative, hence we can get an upper bound for it. Thus, we obtain
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∂t(V − βS2−γ) ≤ ∆(V − βS2−γ) + C5,

for some constant C5. Thus, by the scalar maximum principle we get

(V − βS2−γ) ≤ C5t+ C6,

for a constant C6. By Theorem (5.3.1) we know that T is finite, hence

|∇S|2

S
≤ V ≤ βS2−γ + C5T + C6 ≤ βS2−γ + C,

for some constant C .
This completes the proof. □
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5.6 Consequences of the gradient estimate

Lemma 5.6.1. Let g = gt, t ∈ [0, T ), be a solution of the Ricci flow on a 3-dimensional
compact manifold M3. If g(0) has strictly positive Ricci curvature then, then there exists
positive constants c, δ > 0, depending only on the initial metric such that

1 ≥ Smin

Smax
≥ 1− c

Sδ
max
.

More precisely,
limt→T

Smin

Smax
= 1.

Proof. By Corollary 5.3.3 we have thatRmax tends to infinity as time tends to its maximal value
T . Hence, there exist constants β0, c, δ > 0 such that

|∇S|2 ≤ β0S
3−δ
max + c2,

from where it follows that there exists τ ∈ [0, T ) such that

|∇S| ≤
√
β0 S

3−δ
2

max ,

for all t ∈ (τ, T ). Fix t ∈ (τ, T ). SinceM3 is compact there exists x0(t) ∈M3 such that

Smax(t) = S(x0(t), t).

Fix ε ∈ (0, 1) and consider the geodesic ball B(x0(t), L(ε, t)) where

L(ε, t) =
1

ε
√
Smax(t)

<∞.

Let γ be a minimizing unit length geodesic from x0(t) to x1(t) ∈ B(x0(t), L(ε, t)). Then,

Smax − S(x1(t)) ≤
∫
γ

|∇S|ds ≤
√
β0 L(ε, t)S

3−δ
2

max ≤
√
β0
ε
S
1− δ

2
max .

This implies a lower bound for S on B(x0(t), L(t)), that is

S ≥ Smax

(
1−

√
β0
ε

( 1

Smax

) δ
2
)
. (5.30)

The proof will be completed if we can choose a time-independent ε > 0 such that

B(x0(t), L(ε, t)) ≡M3.
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Since Smax → ∞ as t→ T , there exists t̄ ∈ (τ, T ), depending on β0, δ and ε, such that

S ≥ (1− ε)Smax, (5.31)

on B(x0(t), L(ε, t)) for all t ∈ [t̄, T ). According to (5.30) and Theorem 5.4.3, there exists a
constant β > 0, depending only on g0 such that

Ric ≥ βS g ≥ β(1− ε)Smax g.

Choose a time-independent ε > 0 such that
√
2 π√

β(1− ε)
≤ 1

ε
.

Then, by Bonnet-Myers’ Theorem 1.9.6 we have that

diamgt(M
3) ≤

√
2 π√

β(1− ε)Smax(t)
≤ 1

ε
√
Smax(t)

= L(ε, t).

This completes the proof. □
As a consequence of the above estimate we obtain the following important corollary.

Corollary 5.6.2. Let g = gt, t ∈ [0, T ), be a solution of the Ricci flow on a 3-dimensional
compact manifold M3 such that g(0) has strictly positive Ricci curvature. Then, for each
ε ∈ (0, 1) there exists Tε ∈ [0, T ) such that

minx∈M3λ3(x, t) ≥ (1− ε)3maxy∈M3λ1(y, t) > 0,

for all t ∈ [Tε, T ), where λ1 stands for the biggest and λ3 for the smallest eigenvalue of
the curvature operator. As a matter of fact, after some time, the metric will have strictly
positive sectional curvature everywhere. Additionally, the evolved metrics are approaching
an Einstein metric uniformly as time approaches its maximal value.

Proof. According to Lemma 5.4.4, there exist positive uniform constants c > 0 and δ ∈ (0, 1),
such that

λ3 ≥ λ1 − c S1−δ.

Using the estimate
3λ1 ≥ λ1 + λ2 + λ3 = S,

we deduce that, for each point in space-time it holds

λ3
λ1

≥ 1− c

λ1
S1−δ ≥ 1− 3c S−δ ≥ 1− 3c S−δ

min.
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Fix x, y ∈M3 and consider ε ∈ (0, 1). By Theorem 5.6.1 the quantity Smin tends to infinity as
t approaches T . Hence, there exists Tε ∈ (0, T ) such that for each t ∈ (Tε, T ), we have that

λ1 ≥ λ2 ≥ λ3 ≥ (1− ε)λ1. (5.32)

Consequently, keeping in mind (5.31) and (5.32), we get

λ3(x, t) ≥ (1− ε)λ1(x, t) ≥
1− ε

3
S(x, t)

≥ 1− ε

3
Smin(t) ≥

(1− ε)2

3
Smax(t)

≥ (1− ε)2

3
S(y, t) =

(1− ε)2

3

(
λ1(y, t) + λ2(y, t) + λ3(y, t)

)
≥ (1− ε)3λ1(y, t).

From the last inequality we conclude the proof. □
Corollary 5.6.3. Let g = gt, t ∈ [0, T ), be a solution of the Ricci flow on a 3-dimensional
compact manifoldM3 such that g(0) has strictly positive Ricci curvature. Then,

limt→T

∫ T

0

Smax(τ)dτ ≥ limt→T

∫ T

0

Smin(τ)dτ = ∞.

Proof. By the estimates in Lemma 5.6.1, it suffices to show that

limt→T

∫ T

0

Smax(τ)dτ = ∞.

Consider the differentiable function f : [0, T ) → (0,∞) given by

f(t) = e2
∫ t
0 Smax(τ)dτSmax(0).

Moreover,
f ′ = 2Smaxf.

From (2.13) and the fact that |Ric| ≤ S, we have

∂t(S − f) = ∆S + 2|Ric|2 − 2Smaxf

≤ ∆S + 2S2 − 2Smaxf

≤ ∆(S − f) + 2SmaxS − 2Smaxf

= ∆(S − f) + 2Smax(S − f).
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Note that
(S − f)(0) ≤ Smax(0)− f(0) = 0.

Hence, by the comparison maximum principle 4.1.3 and Lemma 5.6.1 we obtain that there exists
a time-independent constant ε > 0 such that

f(t) ≥ S(x, t) ≥ Smin(t) ≥ (1− ε)Smax(t),

for all points in space-time. Since Smax tends to infinity, then f tends to infinity as well as
t→ T . Going back to the definition of f , we see that

limt→T

∫ t

0

Smax(τ)dτ = ∞.

This completes the proof. □

Corollary 5.6.4. Let g = gt, t ∈ [0, T ), be a solution of the Ricci flow on a 3-dimensional
compact manifoldM3 such that g(0) has strictly positive Ricci curvature. Then, the volume
of the evolved metrics tends to zero as time approaches its maximal value, i.e.

limt→TV (t) = 0.

Consequently, as the curvature explodes the volume shrinks to zero.

Proof. Recall from Lemma 2.3.1 that the volume evolves in time under the Ricci flow according
to the equation

V ′ = −
∫
S dM ≤ −SminV.

By integration we deduce that

logV (t)− logV (0) ≤ −
∫ t

0

Smin(s)ds.

Due to Corollary 5.6.3 the right hand side of the last inequality tends to −∞ as t tends to T .
Consequently,

limt→T logV (t) = −∞,

or, equivalently,
limt→TV (t) = 0.

This completes the proof. □
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5.7 The normalized Ricci flow

We have already seen that a solution g = gt of a Ricci flow in a 3-dimensional manifold exists
only for finite time T , if the initial metric has positive Ricci curvature. In this case, the sectional
curvatures get pinched together but the volume tends to zero. In order to avoid shrinking of the
manifold, we will perform a time-depending rescaling of each metric to keep the volume of the
evolved manifolds constant in time. To achieve this goal, let ψ : [0, T ) → (0,∞) be a smooth
positive function with ψ(0) = 1 and consider the 1-parameter family of metrics given by

g(t) = ψ(t)g(t), t ∈ [0, T ).

In the sequel we use over-line symbol to refer to quantities depending to the metric g. According
to the formulas of the subsection 1.8 we obtain that

∇ = ∇, ∆ = ψ−1∆, Rm = ψ Rm and Ric = Ric. (5.33)

Moreover,

R = ψ−1R, dµ = ψ3/2dµ, V = ψ3/2V and Rav = ψ−1Rav. (5.34)

The volume with respect to the metric g is given by the formula

V =

∫
dµ =

∫
ψ3/2dµ = ψ3/2V.

Since we want to keep the volume fixed we need to choose a smooth function ψ such that
V (t) = V (0), for each t ∈ [0, T ). From the last equality we deduce that

ψ(t) =
(
V (t)/V (0)

)−2/3
, for each t ∈ [0, T ). (5.35)

Lemma 5.7.1. Let g = gt, t ∈ [0, T ) be a solution to the Ricci flow and let ψ : [0, T ) → R
given by (5.35). Then, the one-parameter family of the Riemannian metrics g = ψ g, evolves
according to the equation

∇∂tg = ψ
(
− 2Ric+ ϱ g

)
,

where ϱ is the time-dependent function given by ϱ = (2/3)Rav. By rescaling the time via

t→ s =

∫ t

0

ψ(τ)dτ,

the evolution equation of the family of Riemannian metrics g becomes

∇∂sg = −2Ric+ ϱ g. (5.36)

Equation (5.36) is called the normalized Ricci flow.
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Proof. First observe that ∂t = ψ ∂s. Moreover,

∂tψ
−3/2(t) =

∂tV (t)

V (0)
= −

∫
Rdµ∫
dµ

V (t)

V (0)
= −Rav(t)ψ

−3/2(t) = −(3/2)ϱ(t)ψ−3/2(t),

from where we deduce that

∂tψ = ψϱ = ψ2ρ and ∂sψ = ψϱ. (5.37)

The first identity follows by differentiating g and using the evolution equations of the metric g
and the first identity of (5.37). The second claim can be readily verified. □

Wewill need in the sequel to use maximum principle arguments similar to those employed in the
previous sections to control the behavior of various geometric quantities under the normalized
Ricci flow. For this purpose, we have to compute the corresponding evolution equations. There
is a very simple way of going from the unnormalized evolution equations to the normalized
ones, just by exploiting the formulas (5.33) and (5.34). More precisely, this correspondence
is due to the following simple observation. If P = P (g) is some tensorial quantity involving
components of themetric for the Ricci flow, then the same quantity calculated for the normalized
Ricci flow will be related to P by a rule of the form

P (g) = ψkP (g),

where k is an integer. The number k is called the degree of P .

Lemma 5.7.2. Let P = P (g) be a tensorial quantity of degree k and suppose that under the
Ricci flow it satisfies

∇∂tP = ∆P +Q.

Then, P = P (g) evolves in time under the normalized Ricci flow by the equation

∇∂sP = ∆P + kϱP + ψk−1Q.

Proof. From the formulas in (5.33), the facts ∂s = ψ−1∂t and ∂tψ = ψ2ϱ, we obtain that

∇∂sP = ψ−1∇∂t(ψ
kP
)
= ψ−1(∂tψ

k)P + ψk−1∇∂tP

= kψk−2(∂tψ)P + ψk−1
(
∆P +Q

)
= kψk−2(ψ2ϱ)P + ψk−1∆P + ψk−1Q

= ψ−1∆(ψkP ) +Q+ kϱP

= ∆P + ψk−1Q+ kϱP .

This completes the proof. □
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As for the unnormalized Ricci flow, it is convenient to perform computations for the evolution
equations of various geometric quantities, with respect to orthonormal frames in space-time. It
turns out that the Uhlenbeck’s trick can be adapted also for the normalized Ricci flow. More
precisely, consider the family us : (TM, g(0)) → (TM, g(s)), given as the solution of{

∇∂sus = Ric
♭

g(s) ◦ us − (ϱ/2)us,

u0 = I.

where Ric♭ is the (1, 1)-Ricci tensor. Easily we show that

u∗sg(s) = g(0),

for each s ∈ [0, T ). Hence, if {e1(0), . . . , em(0)} is a local orthonormal with respect to g(0),
then

{e1 = use1(0), . . . , em = usem(0)}

is orthonormal with respect to g(s). As a matter of fact,

∇∂tei =
∑

j

(
Rij − (ϱ/2)δij

)
ej.

In order to simply the notation, let us denote with the same letter pullbacks of tensors via us.
Using the above observation we see that

∇∂sR = ∆R+R2
+R# − ϱR.

Lemma 5.7.3. Let g be the solution of the normalized Ricci flow in a compact 3-dimensional
manifold. Then, the curvature operator R evolves under the normalized Ricci flow by the
equation

∇∂sR = ∆R+R2
+R# − ϱR.
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5.8 Convergence of the normalized Ricci flow

In this section we will show exponential convergence to a metric of constant curvature of the
normalized Ricci flow. The following lemma is of crucial importance:

Lemma 5.8.1. Let (M3, g0) be a compact Riemannian manifold with positive Ricci curvature
and g = g(s) the solution of the normalized Ricci flow, with initial data the Riemannian
metric g0, and denote by T the maximal time of existence of the flow. Then, there exist
constants c > 0 and β > 0 such that the following facts hold true:

(1) lims→T Smax(s)/Smin(s) = 1.

(2) Ric ≥ β Smin g.

(3) Smax ≤ c.

(4) T = ∞.

(5) Smin ≥ 1/c and diam g(M
3) ≤ c.

(6)
∣∣∣Eg(s)

∣∣∣ ≤ ce−βs, s ∈ [0,∞).

Proof. Part (1) of the lemma follows from the corresponding estimates in Lemma 5.6.1 for the
unnormalized Ricci flow, since the inequalities are scale-invariant.
(2) By Lemma 5.4.3 and the formulas (5.33) and (5.34) we have that there exists a positive
time-independent constant β > 0 such that

Ric = Ric ≥ βS g ≥ βSmin g = β Smin g.

(3) By Bonnet-Myers’ Theorem 1.9.6, the diameter of (M3, g), is estimated from above by

L = diam g(M
3) ≤

√
2 π

√
β
√
Smin

. (5.38)

We can get a lower bound for the diameter from the fact that the volume of the manifold (M3, g)
is constant V . Because

Ric = Ric ≥ 0,

by Bishop-Gromov volume comparison theorem 1.9.7, we have that

V = V
(
B(x0, L)) ≤ V (S3(L)) =

4π

3
L
3
.
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Combining the last two inequalities, we have that(3V
4π

) 1
3 ≤ L ≤

√
2 π√

β
√
Smin

,

from where we obtain an upper bound for Smin. By the estimate in Lemma 5.6.1 we obtain that
there exists a positive time-independent constant ε such that

Smin

Smax
=
Smin

Smax
≥ 1− ε, (5.39)

from where we obtain the desired upper bound for Smax.
(4) By Corollary 5.6.3 we have that

∞ = lim
t→T

∫ t

0

Smax(τ)dτ = lim
s→T

∫ s

0

ψ(x)Smax(x)ψ
−1(x)dx = lim

s→T

∫ s

0

Smax(x)dx.

Since Smax is bounded from above, we deduce that necessarily the maximal time of existence
of the normalized Ricci flow is infinite, that is

T = ∞.

(5) Recall from Corollary 5.6.2 that

lim
t→T

λ3(x, t)

λ1(y, t)
→ 1,

uniformly for all x, y ∈M3. It follows by scaling invariance that

lim
s→∞

λ3(x, s)

λ1(y, s)
→ 1,

uniformly for all points x, y ∈M3. Therefore if we wait long enough, there exists s0 > 0 such
that (M3, g(s0)) is 1/4-pinched. This means that for each s ≥ s0, the sectional curvatures are
pinched between K(s) and K(s)/4, for some time-dependent constant K(s) > 0. Observe
thatK(s) equals to some multiple of Smin(s). Let us pass now to the universal coveringM3 of
M3. Clearly each metric g(s) can be lifted in a locally isometric way to a Riemannian metric
onM3. For simplicity, we denote the lifted metrics again by the same symbol g(s). According
to Klingenberg’s injectivity radius estimate 1.9.8, we have that for each s ≥ s0, there exists a
positive time-independent constant ε1 such that

injg(s)(M3) ≥ ε1
(
Smax(s)

)−1/2
. (5.40)
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On the other hand, because we have a uniform upper bound on sectional curvatures, the volume
ofM3 is at least some multiple of the cube of the injectivity radius ofM3, by the second part
of the Bishop-Gromov volume comparison theorem 1.9.7. Hence, from (5.40), we have

Vg(s)(M3) ≥ ε2
(
injg(s)(M3)

)3 ≥ ε2ε
3
1

(
Smax(s)

)−3/2
, (5.41)

for each s ≥ s0. Because the Ricci tensor of (M3, g(s)) is bounded from below, by Bonnet-
Myers’ theorem 1.9.6 the fundamental group ofM3 is finite. Furthermore, since the volume of
M3 is constant under the normalized Ricci flow we have that

Vg(s)(M3) = |π1(M3)|V = constant, (5.42)

for each s ≥ s0. Combining the equations (5.42) with (5.41), we obtain a lower bound for
Smax. From part (1) of the lemma, we get a uniform lower bound for Smin as well.
(6) It suffices to prove that ∣∣∣Eg(s)

∣∣∣ ≤ c S(s)e−δs, s ∈ [0,∞),

since by what we already showed in (3) and (5) the scalar curvature R is uniformly bounded.
From the computations in Theorem 5.4.5 we see that∣∣∣Eg(s)

∣∣∣ ≤ λ1 − λ3
2

.

Thus, it suffices to prove that there exist time-independent constants c, δ > 0 such that

λ1 − λ3 ≤ ce−δt(λ1 + λ2 + λ3).

To achieve this goal, let us consider the time-dependent convex sets

F(s) =
{
S ∈ CB(V ) : λ2(S) + λ3(S) ≥ ε1,

λ2(S) + λ3(S) ≥ ε2λ1(S),

λ1(S)− λ3(S) ≤ ce−δs(λ2(S) + λ3(S))
}
.

where ε1, ε2, c, δ are positive constants. We show at first that the ODE

S ′ = S2 + S# − ϱS,

with S(0) ∈ F(0) remains inside F(s) for appropriately chosen δ > 0. Using the equations

λ′1 = λ21 + λ2λ3 − ϱλ1, λ
′
2 = λ22 + λ1λ3 − ϱλ2 and λ′3 = λ23 + λ1λ2 − ϱλ3,
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and following the same idea as in Lemmas 5.2.4 and 5.2.5 we deduce that the first two conditions
are preserved under the ODE. Moreover,

log
(
eδs
λ1 − λ3
λ2 + λ3

)′
= δ + λ3 − λ2 −

λ22 + λ23
λ2 + λ3

≤ δ − λ2 + λ3
2

.

Using the facts ε2λ1 ≤ λ2 + λ3 and 2λ1 ≥ λ2 + λ3 ≥ ε1, we see that

(3/2)ε1 ≤ λ1 + λ2 + λ3 ≤ ε2(λ2 + λ3) + λ2 + λ3 = (1 + ε2)(λ2 + λ3).

By choosing
δ =

3 ε1
2(1 + ε2)

,

we have λ2 + λ3 ≥ 2δ and thus

log
(
eδs
λ1 − λ3
λ2 + λ3

)
≤ 0.

The setsF(s) are closed, convex and invariant under parallel translation by analogous methods
to those used in the proof of Lemma 5.2.6. The result follows from the Hamilton’s tensorial
maximum principle. This concludes the proof of the lemma. □
Theorem 5.8.2. Let g = g(s) be the solution to the normalized Ricci flow on a 3-dimensional
manifold with initially strictly positive Ricci curvature. Then g converges in infinite time
uniformly to a smooth metric g∞ with constant positive sectional curvatures.

Proof. By Proposition 3.3.7 (see also [5]), the family of Riemannian metrics g(s) converge
smoothly, exponentially and uniformly to a smooth Riemannian metric g∞. On the other hand,

|E| =
∣∣Ric− (S/3)g| ≤ ce−βs,

where c, β are time-independent positive constant. Passing to the limit, we see that the metric
g∞ is Einstein with positive scalar curvature. By a classical theorem in Riemannian Geometry,
it follows that g∞ has positive constant sectional curvatures. This completes the proof. □
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