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Abstract

This PhD thesis aims to develop models for the predictive modeling of atherosclerotic plaque
progression, both in coronary and carotid arteries. In this thesis, active contour models and dynamic
threshold segmentation techniques have been implemented for the segmentation of the inner wall, outer
wall, CP and NCP in coronary and carotid arteries, using computed tomography angiography images.
Additionally, through this thesis machine learning models that utilize both imaging and non-imaging
data for the prediction of coronary artery disease were developed, whereas models using only non-

imaging data were developed for the carotid artery disease prediction.

The first chapter presents the physiology of the cardiovascular system. More specifically, the function of
the circulatory system, the anatomy and function of the heart, the coronary and carotid arteries’ anatomy,
are presented. Then, the pathophysiology of atherosclerosis and atherosclerosis risk factors are
presented. Finally, this chapter reports the imaging modalities of atherosclerosis, both invasive and non-

invasive, and the advantages and the disadvantages of each technique in clinical practice.

In the second chapter of this thesis, an extensive presentation of the existing in the literature methods for
the three-dimensional reconstruction of the coronary and carotid arteries and the localization of
atherosclerotic plaques, both at an automated level and at a non-automated level, is performed. Then,
existing studies for the prediction of coronary and carotid artery disease, utilizing either standard
statistical analysis techniques or machine learning techniques, are presented. Finally, in this chapter, all
the existing biomarkers for the diagnosis and prediction of carotid disease and the mechanism by which
they participate in the pathogenesis of the disease, as well as the existing studies in the literature that

demonstrate their importance, are presented.

The third chapter describes the proposed methodology for the three-dimensional reconstruction of the
inner and outer wall of the coronary and carotid arteries and for the identification and characterization of
atherosclerotic plaques (calcified and non-calcified plaques). In addition to this, different processes for
validating the proposed methodology are presented, as well as the innovative aspect of the present

methodology compared to the existing literature.

The fourth chapter of the thesis aims to present machine learning models for the prediction of coronary
artery disease, predicting the obstructive coronary artery disease, the progression of the disease and the

xXiii



placement of an endovascular stent. The proposed models were trained with non-imaging and imaging

data, geometry and blood flow based data.

In the fifth chapter of this paper, machine learning models were proposed to diagnose and identify
subjects with asymptomatic carotid disease and participants with the presence of high-risk

atherosclerotic plaques, using typical medical records as input.

Finally, in the sixth chapter, the association of carotid artery disease with the presence of clinically
asymptomatic brain lesions, was presented. More specifically, the aim of this chapter is to correlate
ultrasound markers of the carotid artery, as well as characteristics of each patient (demographic, clinical,
hematological, biochemical data and risk factors) with the presence of clinically asymptomatic brain

lesions in the ipsilateral hemisphere.

The seventh and last chapter of this paper constitutes a discussion section, related to the contribution of

the proposed PhD thesis, as well as to possible future research steps.
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Iepiinynm

H mopodoa odaktopikny owtpip] otoxevel oty avOmTLEN] HOVIEA®V Yo TNV TPOYVOGCTIKN
HoVTELOTTOINGN TNG 0ONPOUATIKNG TAAKAGS, TOGO GE GTEPAVIAIN ayYEio 0G0 KOl OTIC KOPWOTIOEG apTnpiec.
1o mhaioa g dTpiPrg oG avoartoxdnkay texvikég enegepyaciog afovikng ayyeloypapiog yio tnv
TPICTACTATI EMEIKOVIOT] TOV OTEPOVIAIOV OyYelmv Kol Kopotidwv, kabhg emiong kot  HOVTEAQ
HNYOVIKNG HLabnong mov a&lomotobv 1060 OMEIKOVIOTIKE OGO Kol U OMEIKOVIGTIKG OE0OUEVA Yo TV
TpOPAEYN TG oTEPOVIOING KOl KOPMOTIOKNG VOGOV, Ztdyoc g Ooatping eivan n emkbpwon tov
TPOTEWVOUEVOV HEBOJOAOYLOV KO 1] OVATTLEN OAOKANPOUEVOV HOVTEA®V Y10, TNV JUGTPOUATMGT| TOV

KIVOUVOL GTIV GTEPAVIOI0 KOl KAPMTIOIKT VOGO.

H épevuva g dwtpipng Eexivnoe émetta amd v ALy avtopatonompuéveoy neBodoAoyudy yio tov
AVTOUOTO EVIOTICUO TOL ECMTEPIKOD Kol €EMTEPIKOD TOLYMUATOG TOV CTEQOVIOI®V Kol KOPOTIO®V
apTNPLOV KOl TNV TPIOOLAGTATI] OVOKATAGKELT TOL TAPOLG APTNPLOKOD OEVIPOV, KAOMG Kot EMELTA OO
TNV UEAETN OPOP®V TEPLOPIGUAOV GTOV OLTOUOTO EVIOMIGUO Kol XOPAKTNPIGUO NG 0ONPOUOTIKNG
TAOKaG.  Xtn ovuvéyewn, M dwTpiPn Paciotnke oty a&lOmOiNoT OTEWKOVIGTIKOV OEOOUEVOV TOV
TPOKVTTOVV MO UN EMEUPATIKEG OTEIKOVIGTIKEG TEXVIKES Y10 TNV KAAVTEPT dtoElpNO™ TNG OTEPAVIOIOG

KOl KAPOTIOIKNG VOGOU.

210 TPAOTO KEQAANIO apylkd mapovcstdleTonr 1 uooAoyio Tov Kapdlayyslwkod cvotiuatos. Ilo
OLYKEKPILEVA TOPOVGIALETAL 1] AELTOVPYIR TOL KUKAOPOPIKOL GLGTIHOTOC, 1 avatopia Kot 1) Aettovpyio
™G Kopdlig, ol GTEPAVIOIEG Ko KapmTideg aptnpieg Kot 1 avatopioo Tovg. X1 GLVEXELD TaPOVCIALETaL
n mobopuoioloyion TG abnpookAnpwong, kaBmG Kol TAPAYOVTEG KIVOUVOL Yo EUQGAVIOT NG
afNPOCKANP®ONG Kot KATO10 EMONUOAOYIKA GTOLYEl Yo TV oTEPaviaia Kol KopwTidtky voco Télog
070 KEPAAOO aWTO TOPOLGLALOVTOL Ol TPOTTOL ATEIKOVIONG TNG ABNPOGKANP®ONG, TOCO 01 EXEUPATIKOL,

060 Kol ot un enepPoticot, To TAEOVEKTILATO KOL TO, LELOVEKTNLOTO OVTAV GTNV KAWVIKY TPAE.

210 OeVTEPO KEPAANIO TNG TOPOVGOS STPIPNg YIvVETOL O EKTEVIG TOPOLGIACT] TNG LIAPYOVCOGC
BipAoypapiag oxetikd pe Tig HeBAOOVG TPIGAAGTOTIG AVAKATACKEVNG TOV CTEPAVIOIMV Kol KAPMOTIOWV
apTNPIOV KOl EVIOTICUOD TOV aONPOUATIKOV TAUK®OV, TOGO GE OLTOLUTOTOMUEVO EMINESO, OGO KOl GE
U1 OLTOUOTOTOMUEVO EMIMEDD. XTN CULVEYELD, YiveTal il AETTOUEPTS OVOPOPE GE NON LITAPYOVGES
HEAETEC Yol TN OLOGTPOUATOGCT TOV KIVOUVOL Y10l GTEQOVIOIN KOl KAPMOTIOKY VOGO, aEl0moimvTos it

TEXVIKEG TUTIKNG OTOTIOTIKNG OVOALONG €ite TEYVIKEG unyavikhg udbnone. TéEAog, 6To KEPAANIO QWTO,

XXV



ToPoVcalovTal GUVOAIKA OAol o1 Vmapyovies Prodeikteg vy T Owdyvomon Kot mpOPAeyn NG
KOAPOTIOKNG VOGOL KOl O UNYOVIGUOC LE TOV OTTO10 GUUUETEYOLY 0TI TOBOYEVEST] TG VOGOV, KOOMS Kot

oL VTLaPYoVoES 6T PIPAtoypapio LEAETEG TOV KATOOEIKVIOVV TN GTLLOVTIKOTNTO TOVG.

210 1pito KeQdAoo TapovoidleTor 1 TpoTevouev neBodoroyio Yoo TNV TPIGOACTTN OVOKATOCKELN
TOV ECMOTEPIKOD KOl TOV EEMTEPIKOL TOLYDUATOS TOV CTEPOVIAIOV KOl KOPOTIOWMV 0pTNPLOV Kol Y1t TOV
EVTOTIGUO KO YOPUKTNPIOUO TV adnpouatik®v TAakov. 1o cvykekpipéva, ot adnpouatikés TAGKES
mov evromilovion Jwywpilovtor o€ acPectomomuéveg Kol Un- 0oPECTOMOMUEVEC TAGKES, TOV
amoteAobvTol Kuplwg amd Awidin kol wvddn 1oto. Emumdéov mapovcialoviar dtopopetikol TpoOmTOL
EMKOPOONG TNG TPOTEWOUEVNG HeBodoAoYing, kabBdg emiong Kol 1 KAVOTOUOG TTTVUY TNG TAPOVCOG

nebodoroyiag cuykpitika pe Ty vdpyovoa fipAoypoeia.

To térapto Ke@dhioto TG SaTPPrg GTOXEVEL GTNV TAPOLGINGT HOVIEA®MV UNYXOVIKNG Hadnong v
JOTPOUATOOT, TOL KWOOVOL Yio oTePoviaia. vOGo, TPOPREMOVING TNV TAPOLGID GTEPAVOING
nmoforoyng voocov, eite v e&EMEN g vOcov, eite v tomobBétnon evdayyslwokoy otevi. Ta
TPOTEWVOUEVO HOVTEAD EKTTOLOEVTNKOY L€ U1 OMEKOVIGTIKO KOl OTEKOVICTIKG O0€0OUEVA, TOV
TPOKOTTOLV amd TNV YEOUETPia TV ayyeimv, KoB®G Kol TNV LOVTIEAOTOINGN TNG CUUOTIKNG PONG TOV

ayyeiov.

210 mEUMTO KEPAAOO NG Tapovcos epyoaciog, mPoTtddnkav HovTéAo pNyOVIKAG Hanong yw
SWyVOGoT KOl TV ovoyveOPLo OTOU®V [LE OCLUTTOUATIKY KAP®OTOKY VOGO KOl Yo TV oviyvevuon
ATOU®V HE TOPOLGIN aONPOUATIKOV 0cTOOOV TAAKOV DYNAOD KIVOUVOL, YPNOLOTOIDVTIOS O 16000

TUTIKG 1A TPIKA OEOOUEVQL.

Télog, 6T0 £KTO KEPAANLO TAPOVGLAGTNKE 1 GLGYETION TNG KOPMOTIOKNG VOGOV LE TNV TAPOLGIO KAVIKA
ACVUTTOUOTIKOV gyKePalkov PAafov. Tho cvykekpiuéva, oTOXOG TOL KEPAANMOVL GLTOV NTOV M
GLOYETION VIEPNYOYPOPIKMY SEIKTMV TNG KOPOTIOKNG aptnpioc, kabdg Kot yopaKTnploTikd Tov Kade
ac0evoug (ONUOYPAELKE, KAVIKE, o1aTOAOYIKE, PLoynUiKd 0E00UEVE Kol TAPAYOVTEG KIVOUVOV) LE TNV

TAPOVGIO KAVIKA ACLUTTOUATIKOV EYKEPUAK®OV PAAP®OV 6TO OpUOTAELPO NUICEAIP1O.

To éBoopo ko teAevtaio KepdAoo g mapovoug epyaciag amotedel por evotnta. ovlTnons, mov
oyetiletal pPe T GUVEISQOPE TNG TPOTEWOUEVNG OOAKTOPIKNG SaTpiPng, kobmdg Kot pe to mbovd

HEALOVTIKA £pELVITIKG PripLoTaL.
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Chapter 1 Introduction

1.1 Physiology of the cardiovascular system
1.2 Central nervous system vasculature
1.3 Atherosclerosis

1.4 Imaging of atherosclerosis

1.1 Physiology of the cardiovascular system
1.1.1 Introduction

The cardiovascular (CV) system is responsible for providing blood supply throughout the body and its
purpose is the transportation of nutrients, oxygen, carbon dioxide, hormones, and blood cells to and
from the cells in the body. The main components of the CV system are the heart, the arteries, the veins
and the capillaries. The heart and the vessels are responsible for providing adequate blood flow to all
parts of the body. The CV system is regulated by a myriad of stimuli including changing blood volume,

hormones, electrolytes, osmolarity, medications, adrenal glands, kidneys and much more [1].

The heart is the organ that pumps the blood through the vessels. It pumps blood directly into the arteries,
more specifically the aorta or the pulmonary artery. Blood vessels, including arteries, capillaries, and
veins, which transport blood to and from the heart, consist of the circulation system, as it is shown in
Figure 1.1. Blood vessels play a significant role in the function of circulation system, since they control
the amount of the blood flow to specific parts of the body. Arteries are distinguished between large and
small arteries and are responsible to transport the blood away from the heart. Large arteries receive the
highest pressure of blood flow and are more thick and elastic to accommodate the high pressures,
whereas small arteries, such as arterioles, have more smooth muscle which contracts or relax to regulate

blood flow to specific portions of the body. On the other hand, capillaries branch off of arterioles and



are made from a single cell layer. This thin layer allows the exchange of nutrients, gases, and waste with

tissues and organs. Also, the veins transport blood back to the heart.

Figure 1.1 The circulation system [2].

1.1.2 The Cardiovascular system

The heart, a muscular organ, which is located between the lungs, in the middle compartment of the
human chest, supplies blood through the blood vessels of the circulatory system. It is surrounded by a
membrane called pericardium, which is a fibroserous sac that encloses the heart and the roots of great
vessels. It is a cone-shaped organ and its size in an adult is about 12 cm in length, 8 to 9 cm in breadth
at the broadest part, and 6 cm in thickness. The heart is subdivided by septa into right and left halves,
and a constriction subdivides each half of the organ into two cavities, the atrium (upper cavity) and the
ventricle (lower cavity). Therefore, the heart consists of four chambers, the right and left atria and the

right and left ventricles [3].

The heart includes also four valves, two atrioventricular and two semilunar. The right atrioventricular,
known also as tricuspid, separates the right atrium from the right ventricle preventing backflow into the
atrium. The left one, known as bicuspid or mitral valve, separates the left atrium from the left ventricle.
The semilunar valves are the pulmonary and the aortic. The first one separates the right ventricle from

the pulmonary arteries and prevents backflow after ventricular contraction, while the second one

2



separates the left ventricle from the aorta and prevents backflow after ventricular contraction.

Anatomical features of the heart are shown in Figure 1.2 [3].

The arterial supply of the heart is provided by the right and left coronary arteries which arise from the
aorta immediately above the aortic valve. Most of the blood from the heart walls drains into the right
atrium through the coronary sinus, which lies in the posterior part of the atrioventricular groove. The
heart is innervated by sympathetic and parasympathetic fibers of the autonomic nervous system via the

cardiac plexuses situated below the arch of the aorta.

Coronary arteries are the only branches of the ascending aorta. Traditionally, a coronary artery has been
described as any artery or arterial branch that carries blood to the cardiac parenchyma. The cardiac
parenchyma is defined as any structure located in the pericardial cavity and includes not only the
myocardium, but also structures such as the pulmonary truck, the superior vena cava, and the semilunar

valves. Coronary arteries are located on the epicardial surface of the heart [4].

Cut edge of pericardiu

Left pulmonary veina <
5 Rigit pulmonary
veins

Oblique vein of leftatrium

Great cardias vein

Small cardiac vein

Posterior vein of left ventricle

Middle cardiac vein

Figure 1.2 Heart anatomy [3].

There are two main coronary arteries, the left main coronary artery (LMCA) and the right coronary
artery (RCA). The LMCA artery originates from the left sinus of valsalva and travels anteriorly and
leftward. It is positioned between the left atrial appendage and the pulmonary trunk and is divided into
two major branches: the left anterior descending (LAD) and left circumflex (LCX) arteries. The LAD

extends from the left main and curves around the pulmonary trunk prior to entering the anterior



interventricular groove and extending to the apex and it then extends distally to the apex within the
inferior interventricular sulcus towards the crux of the heart. It then provides branches to the inferior
walls of both ventricles. The LCX artery provides two major branches: septal perforator arteries and
diagonal branches. The septal perforator arteries branch at right angles from the anterior descending
artery and supply the anterior two thirds of the intraventricular septum. On the other hand, the RCA
artery originates from above the right cusp of the aortic valve and supplies blood to the right ventricle,
the right atrium, and the sinoatrial and atrioventricular nodes. The coronary arteries, as it is shown in

Figure 1.3, run along the outer surface of the heart [5].
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Figure 1.3 The coronary arteries [2].

1.1.3 Arterial morphology

The arteries are the blood vessel that deliver oxygen-rich blood from the heart to the tissues of the body.
In general, the arteries are distincted into two main categories: the elastic and the muscular. The elastic
arteries are characterized by large diameters and are located close to the heart. On the other hand, the
location of the muscular arteries is at the periphery, such as the femoral and the iliac arteries. Each
artery is considered as a muscular tube lined by smooth tissue, which consists of three histologically

distinct regions, the intima, the media and the adventitia layer, as it is shown in Figure 1.4 [4, 6, 7].
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Figure 1.4 Arterial morphology [4].

The intima is the inner layer of arteries and veins. This layer consists of an elastic membrane lining and
smooth endothelium that is covered by elastic tissues. An endothelial membrane lies between the lumen
and the intima wall layer. Often, the internal elastic lamina separates the tunica intima from the tunica
media. This layer is structured by a smooth lining of endothelial cells, which provides the opportunity to
the arteries to cope with the high-pressure surges of blood from the heart because they have very thick
muscular walls [8]. The pathological alterations of intimal components is directly associated with
atherosclerosis, a common disease of arterial wall, since the intima layer and its endothelial lining
contribute to the inner smooth surface of blood vessels, the anticoagulant characteristics of the vessel
wall and the expression of adhesion molecules walls [8]. Atherosclerosis is a common disease of arterial
wall, involving the deposition of calcium, collagen fibers, cellular waste products and fatty substances,
resulting to the build-up of atherosclerotic plague. These alterations contribute to significant changes in

the mechanical behavior of atherosclerotic arteries, which significantly differ from the healthy ones.

The media is the middle layer of the artery, composed mainly of smooth muscle cells (SMCs), a network
of elastic and collagen fibrils and elastic laminae which separate the media into a number of fiber-
reinforced layers. The media consists of a highly organized three-dimensional network of elastin,
vascular SMC and collagen with extracellular matrix proteoglycans. As it was found recently [9] the

media behaves mechanically as if its material properties were homogeneous.

The adventitia is the outer layer composed primarily of thick bundles of collagen fibrils arranged in
helical structures and fibroblast cells. The tunica externa, also known as the tunica adventitia (or

adventitia for short), is the outermost tunica (layer) of a blood vessel, surrounding the tunica media. It is
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mainly composed of collagen and, in arteries, is supported by an external elastic lamina. The collagen

serves to anchor the blood vessel to nearby organs, giving it stability [10].

Undoubtedly, the artery wall constituents have a significant growth interest in the mechanical properties
of biological soft tissue, since there is a strong belief that the mechanical factors play a significant role

on the atherosclerotic plaque development and progression [11].

1.2 Central nervous system vasculature

The common carotid artery (CCA) is a large elastic artery, which provides the main blood supply to the
head and neck region. There is one CCA on either side of the body and these arteries differ in their
origin. The left CCA arises from the aortic arch within the superior mediastinum, whilst the right CCA
arises from the brachiocephalic trunk posterior to the right sternoclavicular joint. The CCA ascends
lateral to the trachea and esophagus within the deep cervical fascia, the carotid sheath, with the internal
jugular vein and the vagus nerve [12]. The CCA ascends in the neck medial to the internal jugular vein
and normally has no branches. Occasionally, the superior thyroid artery arises proximal to the
bifurcation into internal and external carotid arteries (ECAS). The bifurcation is usually located at the
level of the superior border of the thyroid cartilage. Variations in the levels at which the carotid
bifurcates are more often above this position than below. The ECA, supplying the extracranial structures
of the head, gives off several branches before its terminal bifurcation into the internal maxillary and
superficial temporal arteries. These are the superior thyroid, ascending pharyngeal, lingual, facial,
occipital, and posterior auricular arteries. The internal carotid artery (ICA) proceeds posteromedially to
enter the carotid canal at the base of the skull without giving off any branches. On the medial side of the
bifurcation lie the small, oval carotid body, a chemoreceptor, and the carotid sinus, a pressure receptor
intrinsic to the wall of the common and internal carotid arteries. It supplies the forehead, nose, eyes and
the ipsilateral cerebral hemisphere [13]. The basic anatomy of carotid arterial tree is shown in Figure
1.5, below.

Near its bifurcation, the CCA forms two specialized structures, the carotid sinus and the carotid body.
The carotid sinus is a dilation of the base of the ICA, which is involved in relaying information about the
arterial blood pressure to the hypothalamus. It is therefore referred to as a baroreceptor and is innervated
by the carotid branch of the glossopharyngeal nerve. On the other hand, the carotid body is an oval
structure, located posterior to the carotid bifurcation, involved in relaying information about the arterial

chemical composition to respiratory centers in the brainstem. Like the carotid sinus, it is innervated by



the carotid branch of the glossopharyngeal nerve. The carotid body is surrounded by a fibrous capsule
and consists of multiple lobules divided by septa. Within each lobule, there are two types of cells:
glomus (type 1) cells and sustenacular (type Il) cells. The glomus cells are involved in storing peptides,
such as neurotensin, and amines, such as adrenaline, noradrenaline and dopamine. The sustentacular
cells separate the glomus cells from an extensive network of fenestrated sinusoids. The carotid body is a
chemoreceptor stimulated by hypercapnia, hypoxia and increased hydrogen ion concentration (low pH).
In response to these changes, the carotid body changes the rate and volume of respiration via a reflex
involving the respiratory centres in the brainstem [12].

Figure 1.5: Basic Anatomy of carotid arterial tree [14].

1.3 Atherosclerosis

1.3.1 Introduction

Atherosclerosis, the leading cause of morbidity and mortality worldwide, derives its name from the
Greek words “athere” meaning the soft lipid-rich material in the centre of atheroma and “sclerosis”,
referring to connective tissue in the plaques [15]. The most commonly affected by atherosclerosis
arteries include those of medium and large size, such as the coronary arteries, the aorta and cerebral

arteries.

Atherosclerosis is a chronic inflammatory disease caused by high concentrations of lowdensity
lipoprotein (LDL) cholesterol [16] and is characterized by the vascular obstruction from the deposition

of atherosclerotic plaque, which results in reduced blood flow [17]. Atherosclerosis begins with the
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accumulation of lipid laden foam cells in the intima layer of the artery. Lipid retention is the first step in
the pathogenesis of atherosclerosis which is followed by the chronic inflammation at susceptible sites in

the walls of the major arteries [18], causing plaque growth.

1.3.2 Mechanism of Atherosclerosis

During the past years the understanding of atherosclerosis mechanism has undergone a remarkable
progression, since atherosclerosis was considered as a cholesterol storage disorder. Currently,
atherosclerosis is considered as an inflammatory disorder and the appreciation of arterial remodeling has
expanded attention beyond stenoses evident by angiographic imaging modality to include the biology of
nonstenotic atherosclerotic plaques [19].  Atherosclerotic plaque development starts from the
accumulation of lipids in the arterial wall to advanced atherosclerotic lesions, characterized by an
inflammatory response, the proliferation of SMCs and the thickening of the arterial wall. The
mechanism of atherosclerosis pathogenesis is a complex process and its major steps are described
below.

Atherosclerotic disease refers to the development of the atherosclerotic plaque in the inner wall of the
arteries. The inner layer of coronary arteries is lined by endothelial cells, which are in contact with the
blood and normally resist the attachment of the white blood cells streaming past them. Arterial
endothelial cells, as it is shown in Figure 1. 6b, express adhesion molecules able to capture leukocytes
on their surfaces. The alterations of endothelium permeability in combination with changes in the
composition of the extracellular matrix beneath the endothelium allow the retention of cholesterol-
containing LDL particles in the artery wall. Biochemically modified LDL particles may induce the
leykocyte adhesion, whereas modified particles undergo endocytosis by monocyte-derived
macrophages, leading to intracellular cholesterol accumulation.

When monocytes which are the most numerous white blood cells in plaques, reside in the arterial wall,
they differentiate into macrophages. Inside the growing atheroma, the mononuclear phagocytes
surround the lipoprotein particles and are transformed to foam cells. The formation of atheroma
involves the recruitment of SMCs from the middle layer of the arterial wall into the tunica intima
(Figure 1. 6¢). The proliferation of resident intimal SMCs and the synthesis of extracellular medium
macromolecules. These macromolecules include elastin, proteoglycans and collagen. SMCs and
macrophages die in advanced lesions by apoptosis. The extracellular lipid which is derived from the
dead cells can build up in the plague composing the lipid pool or necrotic core (NC) of the plaque.

Plaque lesions generally cause stenoses and produce limited blood flow which can lead to tissue
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ischaemia (Figure 1. 6d). Thrombi are generated when the fibrous cap of a plaque ruptures and enables

blood coagulation components to come into contact with the thrombogenic plaque [20].

Among prominent risk factors that promote the atherosclerosis are hypertension, diabetes mellitus (DM),
dyslipidemia, obesity, sedentary lifestyle, family history, smoking and genetic predisposition.
Atherosclerosis diagnosis is clinical and the definitive diagnosis is made through imaging tests. Disease
management plan includes some behavior modifications, such as the physical activity with low caloric
diet, rich in fiber component, whereas the main class of drugs used in treatment are the antiplatelet drugs

and the antiatherogenic drugs [18].
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Figure 1. 6 Stages in the development of atherosclerotic lesions [20].

1.3.3 Coronary Artery Disease

Coronary artery disease (CAD) is a common public health disease, due to the high mortality rate of its
acute clinical manifestations, such as major adverse coronary events (MACE) and the related costs for
the health care system, as high as 27% of total cardiovascular disease (CVD) costs. According to the
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latest epidemiological available data (WHO Mortality Database) more than 4 million deaths each year
across Europe are caused by CVD, reaching 45% of all deaths. Specifically, the number of deaths from
CVD is higher in women reaching the 49% of all deaths and 40% in male gender. CAD accounts for the
20% of total deaths for the females and 19% respectively for the men [21].

The gold standard of CAD diagnosis is the invasive coronary angiography (CA), a widely used
procedure in the clinical practice, according to the guidelines for assessing CVD. CA reduces drastically
the misdiagnosis of the high burden CAD patients but concurrently it may be used excessively. It has
been reported that only 41% of patients undergoing CA have obstructive CAD, meaning that more than
50% of the procedures may be unnecessary [22]. Nowadays both the European and the American
guidelines put great emphasis on the pre-test patient stratification, according to their risk of having an
obstructive CAD, potentially leading to MACE, by the use of clinical PTP (pre-test probability) models.
The main economic and process-of-care advantage of PTP models relies in balancing the diagnostic
accuracy in identifying patients likely to have obstructive CAD with accuracy in identifying those who
are unlikely to benefit from potentially expensive testing and who may be managed conservatively.
Reduction in unnecessary testing means saving time, anxiety, and cost for patients, limiting radiation
exposure and in lowering the rate of false-positive test results that could lead to more invasive,
unnecessary procedures. The PTP models will thus serve as a “System-Firewall” identifying the high
risk ones who need to be appointed to more thoroughly diagnostic assessment [23, 24]. At the moment
there are various such validated diagnostic models of the PTP of stable obstructive CAD, which most of
them are reported in Chapter 2 of the current thesis. Briefly, in 1979 Diamond and Forrester (the
Diamond-Forrester score) [25] proposed an easy and simple PTP model of obstructive CAD, still
recommended by the American Heart Association (AHA) guidelines. The European Society of
Cardiology (ESC) guidelines for stable CAD have replaced the DF score with 2 new revised scores
(CAD Consortium Basic and CAD Consortium Clinical) [26, 27].

1.3.4 Carotid Artery Disease

Carotid artery disease, the build-up of atherosclerotic plaques in carotid bifurcations, is a highly
prevalent and devastating disease of our times, with enormous socioeconomic burden. It constitutes the
primary cause of cerebrovascular events and ischaemic stroke, and accounts for up to 30% of all strokes.
In the European Union, this translates to more than 150.000 deaths annually and over €12 billion per

year in direct and indirect costs.
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The disease is characterized by the development of an atherosclerotic plaque inside the artery wall that
reduces blood flow to the brain and increases the risk for transient ischemic attack (TIA) or stroke.
Some carotid plaques are soft and tend to corrupt or to create irregular projections in the carotid lumen.
This process consists an “inner trauma” of the human organism and in order to heal it, thrombus is
created through platelets. This thrombus can grow and interrupt the blood flow into the carotid artery.
This situation provokes the stroke, which consists a medical emergency that occurs when the brain loses

all or much of its blood supply.

Carotid artery disease often develops slowly and is either asymptomatic or symptomatic, with the first
clinical signs of the condition might be a stroke or TIA. ATIA is a temporary shortage of blood flow to
the brain which may cause burning sensation or weakness in one side of the body, inability to control the

movements of the limbs (upper and lower), loss of vision from the one eye and inability to talk clearly.

With suspicion of carotid artery disease presence, the patient should undergo some imaging
examinations, including as first line examination the US of carotid arteries. Supplementary examinations
are the CTA of the brain, the angiography of the cervical and intracranial vessels and the brain MRI,

basically for evaluating the extent and severity of extracranial carotid stenoses [28].

Regarding the management of carotid artery disease, it involves lifestyle alterations, medication therapy
and in some cases surgery. More specifically, in compliance with the current guidelines (shown in
Figure 1.7), asymptomatic patients with 70% stenosis in their carotid artery, are considered to be at high
risk of cerebrovascular events and are therefore directed to surgical intervention, carotid endarterectomy
(CEA) or carotid artery stenting. In contrast, asymptomatic patients with <60% stenosis are considered
to be at low-intermediate risk, and unless other confounding factors exist, they are subjected to medical
treatment alone. For recently symptomatic patients, i.e. patients who have had symptoms, such as TIA or
stroke (minor non disabling strokes) within the previous 6 months, the cut-off point of 50% stenosis for
surgical intervention, is used. However, it is not uncommon these days to treat symptomatic patients
with 50-69% stenosis but not vulnerable plaque features, as determined by US, MRI or CT angiography
with medical treatment alone. For previously symptomatic patients, i.e. patients with symptoms before
the last 6 months, treatment is usually conservative and involves the administration of medical therapy
[29, 30].
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Figure 1. 7 Current guidelines for carotid artery disease management [30].

1.4 Imaging of atherosclerosis

1.4.1 Imaging of Coronary Artery Disease

CAD, the most common type of heart disease, is according to the "AHA one of the main causes of death
worldwide [31]. Due to the awareness of the mortality rate of CAD, different cardiac imaging
modalities, mostly imlemented shown in Figure 1.8, have been developed over the last years to provide
accurate and early diagnosis of CAD and to support patient’s management. CA is a predominant method
for the detection of CVD. However, despite the broad implementation of this technique, angiographic
imaging portrays only the two-dimensional (2D) silhouette of the lumen and fails to depict the entire
circumference of the vessel wall. Contrary to this, different modalities overcome this limitation,
investigating the changes of the composition of atherosclerotic plaque and evaluating accurately the

arterial pathology [32].

Thus, alternative invasive and non-invasive imaging modalities, which have their own strengths and

weaknesses are nowadays available and able to detect atherosclerosis. More specifically, invasive
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[intravascular ultrasound (IVUS), optical coherence tomography (OCT), Near-infrared spectroscopy
(NIRS)] and non-invasive techniques [computed tomography angiography (CTA), magnetic resonance
imaging (MRI), positron emission tomography computed tomography (PET-CT)] provide reliable
assessment of the lumen pathology, quantification of the plaque burden (PB) and characterization of

atherosclerotic plaque composition [33, 34].

Invasive Cardiovascular imaging modalities

IVUS is a widely used technique, not only in clinical applications, but also in research, especially in the
study of plaque evolution, due to its ability to visualize the vessel wall with increased accuracy. The
required equipment to perform IVUS modality consists of a catheter, a transducer, a pullback device and
a scanning console. 1VUS catheter incorporates an US transducer combined usually with an inflatable
balloon either with a stent, or without, in order to expand narrowed areas. Recent developments in
IVUS image processing combined with the analysis of intravascular ultrasound radiofrequency (IVUS-
RF) backscatter signal allow the evaluation of the atherosclerotic plaque composition [35]. There are
several advantages for the use of IVUS imaging in the evaluation of CAD. First of all, the full
circumference of the vessel wall and not just two surfaces can be visualized, due to its tomographic
orientation. Thus, a reliable assessment of vessels is provided, including cases, such as ostial or
bifurcation stenoses, diffusely diseased segments, eccentric plaques, which are difficult to be assessed
by angiography [36]. Moreover, IVUS has the potential to quantify the percentage of narrowing. Its
penetrating nature provides remarkable images of the atherosclerotic plaque and provides insight into
the nature of the plaque. Finally, another important benefit by the use of IVUS is that it may reveal what
in the past has been referred to as “re-stenosis”, which may be a recurrence of the plaque buildup that
may have previously been removed. Additionally, IVUS provides the physician the ability to identify
buildup that may have been missed during angiogram or angioplasty. On the other hand, IVUS still has
indigenous limitations, such as several artifacts and speckle noise, which affect the clinical interpretation
of the IVUS image and the processing of medical images for computer-aided diagnosis, regardless of the
type of the catheter [34, 37].

OCT imaging modality utilizes near infrared light and relies on measuring the time delay and the
magnitude of the backscattered light to generate the final images. OCT provides a detailed visualization
of the vessel wall, better plaque characterization than IVUS, visualization of plaque micro-features, such

as the presence of microcalcifications, neovascularization, and plague hemorrhage [38].. In addition to
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this, OCT could also detect stent fracture and early thrombus adhesion at the site of stent fracture.
Although OCT provides a high image axial resolution, its poor signal penetration prevents the
visualization of the outer vessel wall. In addition to this, OCT modality fails to provide the any details
about the vessel geometry and as result information about the distribution of the plaque into the three
dimensional (3D) space [34, 39]

NIRS uses the absorption, emission or scattering of light in the near-infrared portion of the
electromagnetic spectrum (700-3000 nm) by atoms or molecules to determine sample composition or
characteristics. This modality relies on the principle that different organic molecules absorb and scatter
NIRS light with different degrees and wavelengths. This CV imaging has the potential to determine the
chemical composition of atherosclerotic plaques in vivo, such as the lipid-rich plaques, improving
possibly the patient risk management and the guiding therapy selection [40]. NIRS takes advantages of
the non-ionizing radiation dose, which does not damage the tissue and of the good depth of penetration,
which is about 2 to 3 mm. On the other hand, NIRS modality does not provide any details about the

vessel geometry and the distribution of plaque in the 3D space.
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Figure 1.8 Imaging Techniques of Coronary Artery disease [41].

Non-invasive Cardiovascular imaging modalities

Cardiac MR, an imaging technique with a high potential to visualize vessel anatomy, is based on the
differences in biophysical response of the tissue to an electromagnetic radiofrequency pulse application
within a strong, static magnetic field. MRI is a diagnostic imaging modality with excellent soft tissue

contrast and therefore able to analyze the components of atherosclerosis plaque components [51,52].
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Computed tomography coronary angiography

Computed Tomography (CT) modality is a medical imaging technique that utilizes computer-processed
X-rays to produce tomographic images of specific parts of the body. CT scanners take advantages of the
digital geometry processing to generate a 3D image of the internals of an object from a large series of
2D X-ray images taken around a single axis of rotation. CT scan, contrary to the conventional X-ray
imaging, forms a full 3D computer model of patient’s body organs. Since its invention in the 1970s, CT

scan modality is considered as the ultimate choice for the clinical diagnosis of body organs.

CT images are acquired on the basis of the ability of body organs to block x-rays, which is called radio
density. Attenuation values are recorded by CT scanner systems in a plane of a finite slice thickness for
the whole cross-section, where every component of the cross section image represents a pixel. More

specifically, attenuation value is represented mathematically as

It = Ioe_“Ax, (11)
where I, represents the attenuation value of the examined object, I, corresponds to the intensity in the

beam path without any obstruction and w is the linear transformation coefficient of a specific material.

However, in clinical CT dataset, the attenuation value is represented in Hounsfield Units (HU) scale.
HU scale transforms the original linear attenuation into one in which the radiodensity of distilled water
at standard temperature and pressure (STP) is defined as 0 HU, whereas the radiodensity of air at STP is
defined as -1000 HU. More specifically, in a voxel with average linear attenuation coefficient given as

u, the corresponding HU value is given by:

HU = 1000 » —Fwater_ (1.2)

)
Uwater —Hair

where w,,qter @Nd U, are the liner attenuation coefficients for water and air, respectively.

However, due to the “motion” of the heart, CTA has not been widely utilized for imaging the cardiac
system. Imaging of coronary arteries requires high spatial acquisition imaging systems and additionally
a high temporal resolution is required to emulate the dynamic heart as a “static organ”. Recently,
advancements in medical imaging introduced the multi-slice CT system that guarantees both higher
spatial resolution and lower acquisition speed time. Dual source technique reduced the acquisition time
by imaging in half rotation, whereas the multi slice system improved the spatial resolution. Thus, high
diagnostic accuracy has been achieved with multislice CT scanners (64 slice and higher), and in selected

patients coronary CTA is regarded as a reliable alternative to invasive coronary angiography [42].
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CTA is a cardiac imaging modality for the detection of CAD and the exclusion of significant CAD. The
basic clinical value of CTA is its high NPV and the portion of patients who could undergo this modality
consists of symptomatic patients with intermediate CV risk [43]. Different studies have indicated that
the introduction of 64-slice and 320- slice systems allows not only the identification of coronary
stenosis, but also provides information about the composition and the distribution of atherosclerotic
plaque in the 3D space [34, 44, 45]. While CTA modality can non-invasively detect atherosclerotic
plaques and coronary artery stenosis, it is directly associated with the exposure in high radiation dose.
This is even eminent in the hybrid cardiac imaging field, where the patients are additionally exposed to

even higher radiation dose from nuclear perfusion scanning [46].

1.4.2 Imaging of Carotid Artery Disease

The technical improvement of imaging of carotid artery disease has been shifted from 2D to 3D and
various imaging modalities have been implemented for the CAS diagnosis, including US, CT and

magnetic resonance angiography (MRA).

US is considered as the first line examination for CAS diagnosis, due to its accuracy and non-invasive
nature. This modality fuses two modes: the B-mode in which images are produced by the reflected
sound waves and the colour-Doppler US mode that visualizes the motion of the moving parts or fluid
(blood) to measure the speed and other flow parameters [47]. CTAis also considered as an accurate and
non-invasive technique for imaging intracranial and extracranial blood vessels and was found to be an
excellent examination for the detection of carotid occlusion and categorization of stenosis in either the
0%—-29% or >50% ranges. MRA is also a non-invasive modality that uses the combination of MRI
technology and intravenous contrast to visualize blood vessels. Compared to US, MRA was hound to be

more accurate in identifying severe cases of CAS (>70%) and cases of total occlusion [48].
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Chapter 2 Literature Overview

2.1 Introduction

2.2 Three-dimensional reconstruction based on Computed Tomography
2.3 Prediction of Coronary Artery Disease

2.4 Prediction of Carotid Artery Disease

2.5 Serum Markers in Carotid Artery Disease

2.6 Contribution of this thesis

2.1 Introduction

The recent years, technical breakthroughs, in the field of coronary and carotid imaging and identification
of novel biomarkers, have enabled the progress of CVDs risk stratification. A remarkable growth in
scientific publications on personalized medicine in the field of CVDs has been notified, including the
use of new medical image processing techniques and the implementation of ML techniques for the early
disease diagnosis and prognosis. The aim of this chapter is to present the existing in the literature
studies regarding the techniques for CTA image processing, techniques for CAD and carotid disease

prediction and to present the carotid artery disease related biomarkers.

More specifically, at first techniques for the CTA image analysis for the detection of coronary and
carotid arteries and the distribution of atherosclerotic plaques, are presented. Most of these studies are
based on well-known image processing techniques, whereas others have been developed based on
existing software tools with the need of manual user interaction. The technical pipeline of these studies,
their evaluation and their accuracy are presented. Subsequently, a presentation of techniques for CAD
risk stratification is performed. The presented studies distinct into non-imaging based studies and

imaging based studies and their outcomes vary according to the proposed problem definition of each
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study. More specifically, most of the studies aim to detect either the future presence of CAD, as it is

defined by DS and number of occluded vessels or the progression of CAD.

Subsequently, we present studies regarding the carotid artery disease prediction. Studies concerning the
prediction of carotid artery disease, taking advantage of ML techniques, are presented and their
outcomes are basically based on the presence of either CAS or the presence of high risk carotid plaques.
Additionally, a detailed review for serum biomarkers related to carotid artery disease presence, is

reported.

2.2 3D reconstruction based on computed tomography angiography

Technological developments of CV imaging have led to the development of different techniques for the
3D reconstruction of coronary and carotid arteries. CTA modality is a noninvasive imaging modality,
which utilizes computer-processed X-rays to produce tomographic images of arteries and has
experienced a remarkable progress in the last years in the field of 3D reconstruction of coronary [49, 50]
and carotid arteries [48]. The progressive improvements of CT scanners, as far as the spatial resolution
and the acquisition time are concerned, allow the visualization of the entire coronary arterial tree and
carotid bifurcation. More specifically, the 2D CTA slices visualize accurately the inner wall, the outer
wall and the atherosclerotic plaques of arteries and provide information about their composition. Thus,
the detailed visualization of CTA slices in combination with the tomographic orientation of CTA, allow
the reliable reconstruction of artery inner wall, outer wall, atherosclerotic plaques and their distribution
in the 3D space. In addition to this, CTA imaging allows the reconstruction either of a bifurcated artery

segment or the full reconstruction of the arterial tree.

2.2.1 3D reconstruction of coronary arteries based on CTA

Regarding the coronary artery reconstruction, different methodological solutions have been implemented
for the accurate coronary vessel detection, including approaches based on the topological thinning [51],
the particle filtering [52], the graph-based analysis [53], vessel tracking, active contours [54], minimal

cost path computations [55] and fuzzy connectedness [56].

The basic aim of medical image processing is the segmentation process that assigns labels to the voxels.
As far as the CTA images analysis is concerned, existing studies are dedicated to provide the coronary
vessel geometry, whereas other studies aimed to detect and characterize the atherosclerotic plaques.

More specifically, most of the studies aim to detect the coronary lumen and to evaluate the 3D coronary
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artery geometry derived by the CTA slices, while other studies aim to detect the PB region and
characterize its composition, by distinguishing the atherosclerotic plaque into calcified plaques (CP) and

non-calcified (NCP) plaque.

Wang et al. [56] proposed a methodology for the segmentation and quantification of stenosed coronary
arteries based on CTA images, using a localized region-based level sets framework. Primarily, as a
preprocessing step, the entire heart is detected employing a mathematical morphology algorithm in order
to accurate extract the coronary arteries. The coronary artery detection was achieved by implementing a
Hessian-matrix based filter to enhance the visualization of vessel structures and subsequently, the initial
coronary artery surface is estimated by a localized thresholding algorithm. Finally, the accurate lumen
border detection was achieved by implementing a region-based level set algorithm.

On the other hand, Bouraoui et al. [57] proposed an automated algorithm for the segmentation of
coronary arteries based on mathematical morphology techniques and discrete geometric tools. More
specifically, the main steps of the algorithm is the CTA image preprocessing, the heart region
localization, employing grey-level hit-or-miss opening and the implementation of a region-growing
algorithm. The accuracy of this proposed methodology was finally validated using 60 CTA images by
an expert cardiologist, who confirmed that the 90% of the images voxels were correctly segmented,
whereas the remaining 10% of the CTA images voxels concerned two pathological data with low image

quality, presenting important calcification, in the presence of stent.

Shahzad et al. [58] in a different attempt, presented a methodology for the automatic detection and
quantification of coronary artery stenoses in CTA images. In this approach, the coronary centerlines
were firstly extracted a two-point minimum cost path approach for the initialization of lumen
segmentation, which was then achieved using graph cuts. Subsequently, a robust kernel regression
model was applied to quantify the expected healthy coronary artery lumen diameter and then the lumen
stenoses were computed by estimating the difference between estimated and expected diameter profiles.
The validation dataset consisted of 30 testing datasets and the methodology was compared both by
quantitative CA and manual assessment based on 3 experts’ observers annotation. In addition to this, as
far as the lumen segmentation is concerned, the dice coefficient (DICE) value for the health and diseased

vessels was 0.68 and 0.65, respectively.

In a different direction, Chen et al. in 2014 [59] proposed a methodology for the segmentation of

coronary arteries in a semi-automatic manner. The first step of their methodology is to isolate the heart
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and coronary arteries region and to search for the probable location of coronary arteries by 3D region
growing algorithm. Subsequently, the complete and accurate detection of coronary arteries is achieved
applying discrete wavelet transformation and A —mean operation. The proposed methodology was
evaluated using 20 datasets and compared using the annotations edited by an expert radiologist using a
commercial software workstation. The maximum calculated distance error was 2.2 mm, whereas the
overlap ratio was 86.8%. The proposed methodology was directly compared to Yang et al.[60] study,

where the maximum distance error and the overlap ratio were 2.3 mm and 68 %, respectively.

Kitamura et al. [61] presented a novel segmentation approach for the lumen and atherosclerotic plaque
segmentation, considering the vessel as a tubular structure, whereas CP are more likely globular. Their
segmentation idea was based on multi-label graph cuts utilizing higher-order potentials to impose shape
priors. A standardized evaluation framework, presented in the medical image computing and computer
assisted intervention (MICCAI) segmentation challenge 2012, was utilized and a sensitivity of 51.1%
and a PPV of 33.3% compared to CTA reference, whereas the DICE as far as the lumen segmentation is

concerned was 0.74 for the diseased coronary vessels and 0.73 for healthy ones.

In the same rationale Chen et al. [62] in 2015 proposed a novel segmentation for the detection of
coronary artery pathologies. The proposed methodology consists of two basic steps: the implementation
of a 3D region growing algorithm to initially segment the coronary arteries and subsequently, a vessel-
texture discrimination algorithm was applied to detect the location of the vessel. The presented
methodology was evaluated using a commercial software and an existing study based on a level set
algorithm [60]. The efficiency of the proposed method was analyzed, computing the overlapping metric
and the Hausdorff distance (HD). The average overlapping metric of the proposed approach was 0.96
and the mean HD was 1.08.

Yuanzhi et al. [63] presented an active contour framework with accurate shape and size constraints on
the vessel cross-sectional planes to accurately segment the vessel. The proposed approach includes a
multiscale vessel axis tracing in a 3D CTA images, a vessel boundary delineation on the cross-sectional
planes, based on the extracted axis and finally the deformation of the vessel boundary surface, which is
voxelized to produce the vessel segmentation. The novel aspect of the proposed methodology is its
ability to achieve an accurate point detection in problematic CTA image region, such as vascular

pathological regions and to avoid the disconnected and incomplete segmentation of the vessels. The
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presented study is evaluated using two publicly available databases, the Rotterdam Coronary Artery

evaluation framework datasets and the mean true positive ratio is 96.37+1.05.

On the other hand, in a recently published study, proposed by Athanasiou et al. [64], a semi-automated
methodology was presented for the identification of the coronary lumen, the outer wall and the CP,
based on a Gaussian mixture model. More specifically, the CTA image voxels were classified into
lumen, outer wall and CP, utilizing a 3-component Gaussian Mixture Model (GMM). The setting
parameters of GMM was adapted to each CTA, based on a set of region, manually annotated by an
expert. The validation procedure included the comparison of the volume, area and length of the lumen

and outer wall, as well as the CP volume against 1VUS findings and promising results were extracted.

Zhu et al. [65] in 2022, in another attempt, proposed a U-shaped network based on spatio-temporal
feature fusion structure to segment coronary arteries from 2D CTA slices, by combining features of
multiple levels and different receptive fields separately to get more precise boundaries. The proposed
methodology achieves the mean DICE of 0.87. In a similar approach, Mirunalini et al. [66] proposed a
deep learning based model to segment and reconstruct the coronary artery, using the U-Net model for
the segmentation and the Maximum Intensity Projection (MIP) reconstruction algorithm to analyze the

presence of stenosis.
The studies related to coronary lumen detection are presented in Table 2.1.

Although extensive methodologies have been proposed for the automated segmentation of the coronary
lumen based on 3D CTA images, several methodologies have been proposed for the atherosclerotic
plaque region detection and the characterization of its composition. It has been indicated that the
characterization and quantification of atherosclerotic plaque is of high significance for the patient risk
stratification and contributes to the improvement of patient’s management. Atherosclerotic plaque
composition is classified into CP, NCP and mixed plague. As far as the CP is concerned, its
identification is well established even at the early stages of CTA usage in terms of calcium score and is
considered as a strong predictor of coronary events [67, 68], while the identification of NCP remains

still a challenging problem.

Detection of NCP based on non-invasive imaging modalities was performed in a study proposed by
Schroeder et al. [69], who attempted to characterize the atherosclerotic plaque, using CTA modality and

analyzing thirty-four plaques. In this approach, the atherosclerotic plaque was classified into soft,
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intermediate and CP using an HU-based analysis. More specifically, the mean density values of soft,
intermediate plaques and CP was 14 + 26 HU, 91 £+ 21 HU and CP 419 + 194 HU, respectively. This
approach was compared with the 1VUS findings and a reliable performance of CTA, in terms of
characterization of coronary lesion configuration, was indicated. In the same manner, Hur et al. [70]
attempted to determine the diagnostic accuracy of CTA imaging modality to quantify and characterize
the atherosclerotic plaque region. The atherosclerotic plaque composition was analyzed based on HU
criteria, and more specifically the mean CT values for soft, fibrous, mixed and CP were 54+13 HU,
82117 HU, 162+57 HU, 392+155 HU, respectively. The proposed methodology was evaluated using
thirty-nine patients who underwent both CTA and IVUS and the utilized stenotic sites were totally sixty
one. The correlation coefficients for the measurements of the lumen, vessel, plaque area, and percentage
of luminal obstruction were 0.712, 0.654, 0.753 and 0.799, respectively and thus, it was observed that
the luminal obstruction correlated well with this derived by the IVUS modality. However, a significant
overlap was observed among the soft and the fibrous plaques and the classification of NCP as vulnerable

or stable plaques, based on HU threshold analysis, remains still limited.

In 2011, Papadopoulou et al. [71] evaluated the ability of CTA modality to detect and quantify the
atherosclerotic plaques, using as reference standard the 1IVUS modality. The CTA and IVUS co-
registration step was developed, based on a dedicated software, MeVisLab software, whereas the co-
registered region of interest (ROI) was considered for plaque analysis. Coronary inner and outer wall
detection was performed manually implementing a stepwise approach. The atherosclerotic plaques were
identified manually and classified into two categories, the NCP and the mixed/classified plaques. The
evaluation procedure showed promising results, and the derived correlation coefficient for any type of
atherosclerotic plaque volume was 0.91. However, the basic limitation of the presented methodology
was the selection of the utilized dataset, where all of the patients presented high prevalence of the

disease and the diagnostic accuracy might be lower in populations with lower prevalence.

Leber et al. [72], in another study, investigated the accuracy of CTA to detect different types of
coronary plaques (CP, NCP and mixed plaques), in comparison with IVUS modality. The lumen and the
outer wall of coronary arteries was empirically determined based on a display setting that was
empirically determined, so that the CTA image equaled the IVUS image in size and pattern and
permitted the exact separation between the inner wall, the outer wall, the atherosclerotic plaque and the

surrounding tissue. In this study, the optimal setting to detect plaque and outer vessel boundaries ranged
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from 395 to 809 HU, whereas the intensity of the lumen ranges from 165 to 339 HU. In the validation
procedure, 38 vessels were totally utilized and only 23 of 145 coronary lesions were misclassified,
whereas the correlation coefficient for the plaque volume was 0.69. The results of this study
demonstrated the CTA ability to detect and quantify atherosclerotic plaque, while a further improvement
of CTA is required for the assessment of very small and distal coronary plaques. In the same rationale,
\oros et al. [73] attempted to investigate the accuracy of CTA to detect the coronary inner and outer wall
and evaluated their findings against IVUS with radiofrequency backscatter analysis. The CTA image
analysis, as far as the inner and outer wall borders detection is concerned, was applied by an experienced
user [74, 75], whereas the atherosclerotic plaque detection was applied based on an HU based analysis.
More specifically, the CTA voxels were classified as CP with attenuation values higher than 150 HU, as
high density NCP with 30-149 HU and as low density NCP with —100-30 HU. The accuracy of their
study was investigated, by extracting geometrical and compositional features, such as the minimal
lumen diameter (MLD), the degree of stenosis (DS), the minimal lumen area (MLA), the percentage of
area stenosis (%AS) and the volume and percentage of 3 plaque components: CP, high density NCP, and
low density NCP. Correlation coefficients of CTA derived features against the Virtual Histology-
Intravascular Ultrasound (VH-IVUS) derived features indicate an important correlation. More
specifically, the correlation coefficient for the MLD, the %DS, the MLA, the %AS were 0.59, 0.43,
0.65, 0.44, respectively, whereas the correlation coefficient for the NCP volume and CP volume were
0.84, 0.65, respectively. This work was considered as the first prospective study to implement a 3D,
quantitative analysis of co-registered CTA and VH-IVUS datasets, providing promising results for the
CTA accuracy. On the other hand, since manual measurements of coronary plaques are time-consuming,
computational attempts have been undertaken to automate the extraction of coronary plaques using the
CTA imaging modality. More specifically, Dey et al. [76] attempted to evaluate the accuracy of
developed automated algorithm [77] for the automated detection and quantification of NCP and CP. The
proposed methodology combines HU density scan specific thresholds for the inner wall and the
atherosclerotic plaques, and more specifically the mean HU value for the NCP was 242.6+25.9 HU,
whereas for the CP 535+67.4 HU. The proposed developed algorithm was validated against 1VUS
manual image analysis and totally 22 NCP were utilized. A strong correlation of NCP volumes derived
by the proposed algorithm against IVUS image analysis was indicated and the correlation coefficient
was 0.92. In a similar manner, Brodoefel et al. [78] evaluated the CTA accuracy to detect and

characterize the atherosclerotic plaque region in comparison with VH-IVUS. The plaque
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characterization analysis was performed using a dedicated software, the SUREPlaque™ software, that
automatically provides the vessel boundaries, while the 3 different components of atherosclerotic
plaques, the fatty, fibrous and CP were extracted based on HU density values. More specifically, lipid
plaque components range from -150 to 60 HU, lipid plaque from 61 to 149 HU and CP from 150 to 1300
HU. The methodology was validated in 14 patients, using 22 coronary lesions and good correlation was
achieved for the entire plaque volume (r>=0.76) and NCP volume (r?= 0.84), whereas the correlation for

the plaque composition proved very poor and insignificant.

On the other hand, Boogers et al. [79] aimed to prove the feasibility of CTA imaging modality to
automatically quantify the coronary plaque, using a co-registration algorithm of CTA and IVUS data.
The CTA images analysis was performed using a dedicated and extended version of the QAngio CT
software (QAngio CT 1.1, Medis medical imaging systems, Leiden, the Netherlands), which provides
the lumen and outer vessel wall borders. The proposed methodology was evaluated in comparison with
IVUS images analysis using patients with 146 coronary lesions and the correlation coefficients for the
MLA, the Lumen AS, the PB, the Remodeling index were 0.75, 0.79, 0.64 and 0.56, respectively. Based
on Boogers et al. study, another approach was introduced by Graaf et al. [80], who investigated the
automatic quantitative assessment of coronary stenosis and plaque constitution on CTA, compared to
VH-IVUS. The lumen and vessel wall detection was applied based on the previously described
methodology [79], while the plaque classification was based on two different approaches. More
specifically, in the first approach different fixed HU cut-off values were used for classifying the plaque
tissue, —30 to 75 HU, for NC, 76-130 HU for fibro-fatty, 131-350 HU for fibrotic, and higher than 351
for dense calcium. The selection of these HU value ranges was based on Brodoefel et al. [81] study and
optimized using different datasets. As far as the second approach for threshold definition is concerned,
its selection is user independent and is based on the principle that the plaque attenuation values is
directly associated with the lumen intensity value. The study, proposed by Graaf et al. [80], was
validated using 109 vessels, of which 69 revealed atherosclerosis. As far as the fixed thresholds is
concerned, good correlations were achieved for volumes of fibrotic tissue (r = 0.695), fibro-fatty tissue
(r = 0.714), NC (r = 0.523) and dense calcium (r = 0.736), whereas for the dynamic threshold tissue
classifier, the correlation plague volume for NC was 0.479 and the volumes of dense calcium, fibrotic

and fibro-fatty volumes were all significantly overestimated by CTA image analysis.
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However, the previously described studies are implemented either using manual estimations [70-72, 82],
or utilizing available software [78, 80, 83]. A different approach was proposed by Jawaid et al. [84],
who implemented a support vector machine (SVM) classifier, after computing the radial profiles by
averaging the CTA image intensity in rings around the vessel centerline to identify the abnormal
coronary segments. A derivative-based method was also applied to localize the position and the length

of the NCP.

The above described methodologies for atherosclerotic plaque detection are summarized in Table 2.2.

25



Table 2.1 Coronary Lumen Detection Methodologies based on CTA modality.

Studies

Methodology

Dataset

Results

Wang et al. [56]

localized region-based level
sets

clinical data provided by St
Thomas’hospital, London

Accurate lumen segmentation

Bouraoui et al. [57]

mathematical
techniques,
geometrical tools

morphology
discrete

60 CTA images

90% correct segmentation

Shahzad et al.[58]

robust kernel regression

30 testing datasets compared to
quantitative CA

DICE (healthy vessels): 68%
DICE (diseased vessels): 65%

Chen et al. [59]

3D region growing Discret
wavelet transformation

manually edited by a radiologist
using commercial software

Overlap ratio 86.8 %

Kitamura et al. [61]

multi-label graph cuts

MICCAI 2012, Quantitative CT

DICE (healthy vessels): 73%
DICE (diseased vessels): 74%

Chen et al. [62] 3D region growing vessel- | commercial software from GE | Overlapping metric 0.96
texture discrimination | Healthcare and the level-set | Mean HD: 1.08
algorithm method proposed by Yang et al.

Yuanzhi et al. [63]

Active contour models

Rotterdam  Coronary  Artery
evaluation framework datasets

True positive ratio: 96.37£1.05

Athanasiou et al. [64]

Gaussian Mixture Model

IVUS

Lumen volume correlation: 0.76

Zhu et al. [65] U-shaped network 30 patients DICE of 0.87

Mirunalini et al. [66] | a deep learning based model | 50 patients SSIM values
of 0.84829, 0.85739, 0.83857,
0.8459, .8531 for different

rotation angles
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Table 2.2 Plaque Characterization Methodologies based on CTA modality.

Study Plaque Methodology Comparison | Results
CP | NCP intermediate
Schroeder et al. | v v v HU-based analysis IVUS Nonparametric ~ Kruskal-Wallis  test
[69] revealed a significant difference of plaque
density among the three groups
Hur et al. [70] v v Fibrous, HU-based analysis, | IVUS Lumen Area: r=0.712, Plaque Area:
mixed soft:54+13 HU, fibrous: r=0.753
82117 HU, mixed:162+57 Vessel Area: r=0.654, DS: r=0.799
HU, CP:392+155 HU
Papadopoulou et | v/ Mixed, | - Inner, outer wall & plaques | IVUS
al. [71] CP manually edited
Leberetal. [72] |V v mixed manually annotated IVUS Missclassified 23/145 plaques,
plague volume: r=0.69
Vorosetal. [73] | v v High density | Inner & outer wall manually | IVUS vessel plaque volumes: r = 0.51
NCP edited,
high density NCP: 30-149
HU,
low density NCP:-100-30
HU, CP: >150 HU
Dey et al. [76] v v - scan-specific attenuation | IVUS Mean plaque volume correlation (r =
threshold 0.92)
Brodoefel et al. | v v fibrous SUPERplaque software | VH-IVUS NCP (%)28.2 + 6.1 (CT), 29.9 £ 5.2
[78] inner & outer wall, NCP: - (IVus)
150-60 HU, CP: 150-1300 Fibrous (%)53.2 £ 8.7 (CT), 55.3 £ 12.2
HU, fibrous:61-149 (IVUS)
CP (%) 18.7 + 125 (CT), 14.4 + 9.1
(IVUSs)
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2.2.2 3D reconstruction of carotid arteries based on CTA

Regarding the imaging of carotid arteries, CTA is considered as a promising non-invasive imaging
modality utilized for the assessment of the carotid stenosis, supplementary to the use of US imaging.
The main advantage of the CTA in carotid imaging is the ability to image the artery bifurcations, from
the aortic arch to the brain parenchyma [85]. On the other hand, the high radiation dosage, for the need

of intravenous contrast and the high intensity artifacts, consists of the acknowledged drawbacks of CTA.

Different studies have been conducted for the lumen carotid detection and the identification and
characterization of carotid atherosclerotic plaques. More specifically, Sanderse et al. [86] presented an
automatic initialization algorithm to detect the carotid arteries providing a fully automated approach for
vessel centerline detection and segmentation. The carotid arteries are detected in axial slices of the
volume of interest by applying a circular Hough transform. A hierarchical clustering approach was used
to select carotid related signals in the Hough space, whereas a feedback architecture was introduced to
successfully detect the range of the vessel diameters. The presented methodology was trained using 20
patient datasets and tested using 31 patient datasets. An overall detection accuracy of 0.88 was
achieved. The main limitation of the proposed methodology was the fact that 21% of the overall cases
cannot be successfully detected. In another attempt, Van Velsen et al. [87] presented a study based on
the detection of lumen-like structures by analyzing the density, edge and ridge knowledge. Upon
initialization with a start and endpoint, the lumen path is automatically defined in 3D image data instead
of 2D MIP images, and the extracted lumen path is subsequently used as initialization for automatic
lumen segmentation with a level set method. The shape of the vessel lumen is defined by evolving a
surface toward the lumen boundaries using a speed term, which is defined based on image information
and a smoothness constraint, while a predefined lumen path was used to assure a good initialization even
if a stenosis or obstruction is present. In this work, the required image information for the speed term is
based on image intensity and edge information. Manniesing and Niessen [88], in another study,
presented an automatic method that segments the internal carotid arteries (ICAs) across the difficult
locations of the skull base in CTA. The proposed methodology consists of the following three steps: (i)
the entropy profiling to select the lower region that includes the skull base, (ii) the selection of a rough
vessel segmentation which is used as input for a Hough transform to detect the 2D circular shapes in this
plane and finally, (iii) the center points which are used to initialize a level set which evolves with a prior
shape constraint on its topology. This proposed methodology was validated using 20 carotid arteries of

10 patient datasets and finally 18 out of 20 were successfully detected automatically.
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On the other hand, Cuisenaire [89] developed a fully automated vessel extraction and segmentation tool,
specifically used for head and neck region. This work focuses particularly on the initial centerline
extraction technique. It uses a locally adaptive front propagation algorithm that attempts to find the
optimal path connecting the ends of the vessel, typically from the lowest image of the scan to the circle
of willis in the brain. It uses a patient adapted anatomical model of the different vessels both to initialize
and constrain this fast marching, eliminating the need for manual selection of seed points. The initial
centerline of each vessel was extracted and the vessels were segmented using the initialized 3D active
surfaces using the spline-snake to identify true centerline from the segmented mask edges.

Another semi-automated technique for lumen segmentation of the carotid bifurcation in CTA using the
level set approach was proposed by Manniesing et al. [90]. Firstly, the central vessel axis is obtained
using path tracking between three user-defined seed points, using Dijkstra algorithm and voxel based
backtracking method. Secondly, starting from this path, the segmentation is automatically obtained using
a level set coupled with fast marching method. The cost and speed functions for path tracking and
segmentation make use of intensity and homogeneity slice-based image features. The method was
validated on a large dataset of 234 carotid bifurcations of 129 ischemic stroke patients with
atherosclerotic disease. The results were compared to manually obtained lumen segmentations.
Parameter optimization was carried out on a subset of 30 representative carotid bifurcations. With the
optimized parameter settings, the method successfully tracked the central vessel paths in 201 of the
remaining 204 bifurcations (99%) which were not part of the training set. The comparison with
manually drawn segmentations shows that the average overlap between the method and observers is
similar (for the inter-observer set the results were 92% vs. 87% and for the intra-observer set 94% vs.
94%). Similarly, Vukadinovic et al. [91] presented a level-set based and GentleBoost classification
based approach for the segmentation of the carotid artery outer vessel wall and the atherosclerotic
plague components. This methodology consists of three steps: (i) the lumen segmentation based on the
level set methodology [92], (ii) implementation of GentleBoost classifier to detect calcium pixels, (iii)
implementation of GentleBoost classifier for voxels inside and outside the carotid artery lumen. The
proposed methodology was trained and optimized using 20 datasets, whereas it was evaluated on 80
datasets. The reference standard of the implemented validation procedure was expert’s manual
annotation and the similarity index for the outer vessel wall and the atherosclerotic plague was

0.92+0.03 and 0.81+0.06, respectively. In addition to this, the estimated correlation coefficients for the
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vessel volume, the plaque volume, the fibrous volume, the lipid volume and the calcium volume were
0.96, 0.81, 0.89, 0.46 and 0.95, respectively.

Freiman et al. [93] proposed a practical methodology for the modeling of the total aortic arch and of the
entire carotid vasculature, starting with an automated ROI identification which is followed by the
implementation of an automatic watershed-based segmentation of the aorta. Aorta segmentation
primarily relies in the prior knowledge of its anatomy, structure, location and its brightness.
Subsequently, a Gaussian distribution was estimated for the carotid vasculature intensity, and finally
carotid artery segmentation was applied, using graph min-cut segmentation approach, followed by a
semi-automated graph-based refinement. The proposed methodology was validated using four different
datasets and totally 66 patients, achieving HD and DICE of 1.55 and 0.91, respectively. Tang et al. [94]
proposed a semi-automatic carotid lumen segmentation method and CAS (carotid artery stenosis)
quantification using a level-set based approach, which was initiated with a centerline obtained from user
defined seed points. This study consists of three steps: (i) the implementation of an iterative minimum
cost path approach to extract the carotid vessel centerline, (ii) the implementation of a level set approach
to extract initial carotid lumen boundary and (iii) the removal of the side branches in the segmented
lumen. The obtained DICE of this proposed methodology was 90.2%, whereas the mean absolute
surface distance was 0.34 mm. As far as the CAS quantification is concerned, the average error was
15.7% and 19.2% for cross-sectional diameter-based stenosis and cross-sectional area-based stenosis,

respectively.

Dos Santos et al. [95] proposed a semi-automatic method in which they segmented vessel walls and
surrounding tissues with an adaptive segmentation and region growing algorithms. The slice interval is
determined for the segmentation and analysis process. The initial seed point in the lumen is set manually
in the first slice to specify the artery side to be segmented and the exact position of the vessel. A typical
diameter of 6 mm is used to create a ROI around the lumen and to generate a histogram. Gaussian fitting
is executed, and 90% of the area under the curve (AUC) is chosen as the initial blood attenuation HU
interval. The next step is the segmentation of the lumen using the initial seed and the attenuation
interval, with a region-growing algorithm. The use of an adaptive attenuation interval in each slice
prevents the common problem of dilution during region growing. By fitting the attenuation value
histogram onto a Gaussian curve, it is possible to decrease the influence of the less frequent attenuation

values representing surrounding tissues. After the initial slice is obtained, segmentation proceeds
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automatically along the vessel and throughout the entire CT image stack. If the stenosis is so severe that
no pixel identifies the lumen, the same initial seed position is used for the next slice. In this study, they
concluded that there was no significant difference between the maximum percent stenosis value obtained

using the semi-automated tool and those obtained using manual measurements.

Hemmati et al. [96] proposed a methodology for the carotid lumen segmentation based basically on a
3D level set model. Firstly, the grey levels of the CTA images were uniformly enhanced by the mean
shift smoothing and then the vessel centerlines of the carotid arteries were extracted using a 3D Hessian
based fast marching shortest path algorithm, whereas the final carotid artery segmentation was achieved
utilizing a 3D level set function. This presented methodology was evaluated using 14 different CTA

volumes and the achieved DICE was 0.85.

Bozkurt et al. [97] provided a novel method for carotid artery lumen segmentation on CTA images by
using automatic vessel segmentation with inverse approach, in which vessel segmentation is performed
after bone region is segmented and eliminated. The region growing and random walk segmentation
methods are utilized in the elimination of bone region and the vessel segmentation. The seed points in
the mentioned methods are not manually determined by any starting point. In automatic segmentation,
seeds are automatically selected from the experimentally determined intervals according to the local
histogram. The stages of preprocessing and post-processing are utilized for better segmentation. The
tracking of vessel centers based on continuity is employed for 3D reconstruction and 3D imaging of the
vessels. Experiments were conducted with different data sets including various CTA images by using the

mentioned methods. As a result, DICE above 92% was achieved together 99% accuracy.
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Table 2.3 Methodologies for 3D reconstruction of carotid arteries using CTA imaging modality.

Study Methodology Detection Results

Sanderse et al. | circular Hough transform Vessel detection and 20 datasets (training set), 31 datasets (test set),

[86] centerline 88% accuracy

Manniesing & | Hough transform and a level set Vessel detection 20 carotid arteries (10 patients), 90% accuracy (18/20

Niessen [88]

which evolves with a prior shape
constraint

correctly identified)

Cuisenaire et

locally adaptive front propagation

Vessel detection and

al. [89] algorithm (centerline extraction) centerline
Vukadinovic | Level set methodology, GentleBoost | Lumen, outer wall, DICE: 0.92+0.03 (outer wall), 0.81+0.06 (plaque) in 80
et al. [91] classification framework plague components datasets, vessel volume (r>=0.96), plague volume (r>=0.81),
(lumenreshols = 320HU, fibrous fibrous volume (r?=0.89), lipid volume (r>=0.46), calcium
tissUethresnoli=130 HU, lipidinresnois=60 volume (r?=0.95)
HU)
Freimanetal. | Automatic watershed-based Carotid lumen 71 multicenter clinical CTA datasets, DICE of 84.5% (SD =
[93] segmentation of the aorta, graph-cut 3.3%) and MSSD 0.48 mm (SD =0.12 mm.)
optimization framework for carotid
segmentation
Hemmati et 3D Hessian based fast marching Carotid lumen 14 CTA datasets, 0.85 similarity index accuracy
al. [96] shortest path (centerline extraction),
3D level set (lumen segmentation)
Guha et al. geodesic path propagation algorithm | Carotid vessel eight patients’ CTA image, the accuracy of all the segmented
[98] based on fuzzy distance transform. data was verified by overlaying the phantoms with the

original images

dos Santos et
al. [95]

adaptive segmentation algorithm and
region growing

CAS

no significant difference between the maximum percent
stenosis value obtained using the semi-automated tool and
those obtained using manual measurements

Bozkurt et al.
[97]

region growing and random walk
segmentation methods

Carotid vessel

DICE 92%

Saba et al.
[99]

HU attenuation analysis

Lipids, fibrous tissue,
calcium plaque

Relation between the monochromatic kiloelectron volt values
and the HU range of the plaque
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2.3 Prediction of coronary artery disease

2.3.1 Non-imaging CAD prediction

In this section, we are going to provide a cohesive state of the art on ML methods for obstructive
CAD prediction, focusing on studies employing non-imaging data and imaging based data. We
primarily drew on our recently published literature review, where we analysed and contrasted the
relevant literature with respect to the acquired dataset, the examined feature space, the employed
predictive modelling schemes and their discriminative or predictive capacity [100].

As it is shown in Table 2.4, the detection of obstructive CAD, defined as a >50% diameter stenosis in
at least one main coronary artery vessel assessed by CA or CTA, is formulated as a binary
classification problem on the basis of a confined set of demographic, clinical, and biohumoral
characteristics. We should clarify that the negative class is defined: either as (i) the complement of
the positive class, or as (ii) individuals with no presence of CAD. On this basis, parametric (e.g.
neural networks) or non-parametric (e.g. kernel methods) classification algorithms have been
combined with feature evaluation techniques, aiming at specifying an accurate decision hyperplane

and, in parallel, identifying the most informative features with respect to CAD severity.

Kurt et al.[101] demonstrated that, irrespectively of the classification algorithm, typical heart disease
risk factors [i.e. age, sex, body mass index (BMI), smoking status, DM, hypertension,
hypercholesterolemia, and family history of CAD] yield a high number of false positive predictions.
In particular, a LR based model, a classification and regression tree (CART), a feed-forward neural
network (FFNN) and a radial basis function network (RBF) have all resulted in a relatively high
sensitivity (ranging from 89.5-92.3), however, their specificity was <50%. Correlation-based feature
selection (CFS), a filter-based feature selection approach, identified treadmill stress testing-related
characteristics (i.e. Duke Treadmill Score, and post exercise recovery period with persistent
electrocardiographic ST-segment changes) amongst the most informative features with respect to
CAD severity diagnosis [102]; a FFNN fed additionally with information on smoking, DM, and high
density lipoprotein (HDL) attained 88.4% accuracy. Alizadehsani et al. by exploring the predictive
potential of kernel-based methods, and particularly of SVM, both in feature selection and
classification tasks [103]: (i) evaluated the discriminative capability of 54 features, concerning
demographic, clinical, electrocardiographic, echocardiographic, and laboratory data (via the SVM
weight vector), and (ii) demonstrated that kernel-based methods (i.e. SVM and bagging SVM)
outperform both FFNN and naive Bayes (NB), exhibiting 93.4% and 92.7% accuracy, and high
sensitivity and specificity rates, as well. In a subsequent study, Alizadehsani et al. assessed the
diagnostic accuracy of the same feature set with respect to the level of stenosis at LAD artery, LCX
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artery, and right coronary artery (RCA)] separately, formulating a 2-class problem where a >50%
diameter stenosis characterizes a stenotic artery [104]. The DS of LAD, LCX and RCA was
diagnosed with 86.14%, 83.17% and 83.5% accuracy, respectively by (i) adopting a common feature
set for all arteries, encompassing the 24 top ranked features according to a combined info-gain index,
and (ii) employing a multiple kernel learning algorithm. Nahar et al. using the UCI Cleveland heart
disease dataset, showed that knowledge-based feature selection may increase considerably the
sensitivity of predictions [105]. Ensemble learning of the specified dataset, using a rotation forest
with FFNN as the base classifier, reached 91.2% accuracy, 95.6% sensitivity, and 86.7% specificity
[106].

Unlike black-box ML techniques, fuzzy rule-based classifiers provide interpretable decisions.
Tsipouras et al. proposed an optimized fuzzy model for the diagnosis of CAD severity considering
traditional CV risk factors as well as two non-invasive features, namely carotid—femoral and
augmentation index. Their four-stage methodology encompassed: (i) induction of a decision tree, (ii)
extraction of the rule base from the decision tree, in disjunctive normal form and formulation of a
crisp model, (iii) transformation of the crisp set of rules into a fuzzy model, and (iv) optimization of
the parameters of the fuzzy model [107]. The optimized fuzzy model resulted in 73.4% accuracy,
80.0% sensitivity and 65.2% specificity, presenting comparable performance with a FFNN (73.9%
accuracy) and significantly better results than an adaptive neuro-fuzzy inference system (56.8%
accuracy), both applied to the same task.

ML naturally arises as favourable solutions to CAD severity diagnosis when omics big data need to
be exploited (

Table 2.5). The Corus CAD algorithm, which constitutes an exemplar case, was developed via a
combination of microarray and RT-PCR gene expression data analysis, collected from age and sex-
matched patients with symptoms suggestive of CAD [108]. The Corus CAD method is decomposed
into the following phases: (i) feature selection based on an unsupervised cluster analysis, which
yielded to the identification of meta-genes, (ii) a ridge linear regression model of the age, sex, and
the selected genes. In [108], a 0.75 (0.70 — 0.80) AUC is reported with respect to the identification of
the obstructive CAD patients. Dogan et al. exploited a comprehensive dataset of genome-wide DNA
methylation data, SNP data and phenotype data [i.e. age, gender, systolic blood pressure (SBP),
HDL, total cholesterol (TC) level, haemoglobin (Hb) A1C, smoking status, and the use of statins]
derived from the Framingham Heart Study [109]. Random forest (RF) classification was employed
for the identification of CAD vs control individuals, while addressing the class-imbalance issue
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through a heuristic repeated under sampling approach. Sequential feature selection, by the ROC
AUC of each feature, retained four CpG sites (cg26910465, cgl1355601, cgl16410464 and
€g12091641), two SNPs (rs6418712 and rs10275666), age and gender. This classifier was capable
of classifying symptomatic CAD with an accuracy, sensitivity and specificity of 0.78, 0.75, and 0.80,
respectively. In contrast, a model using only conventional CAD risk factors as predictors had an

accuracy, sensitivity and specificity of 0.65, 0.42, and 0.89, respectively.
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Table 2.4 Non-imaging CAD Severity Diagnosis Methods based on Machine Learning [100].

Study Dataset- Outcome Methods Performance
Feature set
Kurt et al., | n=1245 subjects, Class 1 n=865:>50% | Classification: LR, CART, FFNN, | LR CART
[101] typical heart disease = Stenosis in at least one RBF Acc..79.5 Acc.:79.9
risk factors coronary artery vessel Evaluation: Training, Test, | Sens.:92.3 Sens.:92.3
Class 0 (1=380): Otherwise = Validation sets (60%-20%-20%) Spec.: 45.6 Spec.: 47.1
FFNN RBF
Acc.:79.1 Acc.:76.7
Sens.: 91.7 Sens.: 89.5
Spec.: 45.6 Spec.: 42.6
Verma et al, n=335 Class 1 (48.9%): CAD Feature Selection: CFS FFNN FURIA
[102] subjects who were | Class 0 (51.1%): No CAD | Clustering: k-means Acc.: 88.40 Acc.: 82.80
suspected for CAD, Classification: FFNN, LR, Fuzzy
Smoking, DM, unordered rule induction algorithm
clinical, (FURIA), Decision tree (C4.5).
cejligtrocardiographic Evaluation: 10-fold cross-validation
a
Alizadehsani et | n=303 Class 1 (n=865) >50% Feature selection: SVM weights SVM Bagging SVM
al. [103] subjects, stenosis in at least one | Classification: SVM, NB, Bagging Acc.: 93.39 Acc.: 92.74
demographic, g&onary artery vessel in | of S\VMs, FFNN Sens.: 95.37 Sens.: 95.37
clinical, Evaluation: 10-fold cross-validation | Spec.: 88.51 Spec.: 86.21
electrocardiographic, = Class 0 (n=380) FENN NB
echocardiographic, Otherwise Acc.: 87.13 Acc.: 55.37
and laboratory data Sens.:90.28 | Sens.: 38.89
Spec.: 79.31 Spec. :96.55
Alizadehsani et | n=303 Problem | Feature selection Approach | Approach 11
al. [104] subjects, Class 1 — LAD stenotic: = Approach | Different feature set for  LAD LAD
demographic, >50% each artery: SVM weights Acc.:85.81 Acc.:86.14
clinical, Class 0 Otherwise Approach 1l Common feature set  gens 9266 Sens. 90.96
electrocardiographic, | problem II for all arteries: Information Gain Spec.76.19 Spec.:79.37
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Study Dataset- Outcome Methods Performance
Feature set
echocardiographic, Class 1 — LCX stenotic: | Classification: SVM with kernel LCX LCX
and laboratory data | >50% fusion Acc.: 77.23 Acc.: 83.17
Class 0: Otherwise Evaluation: 10-fold cross-validation | gens.: 69.75 Sens.: 90.9
Problem Il1 Spec.: 82.07 Spec.:79°85mued
Class 1 — RCA stenotic: RCA RCA
>50% . .
] Acc.:81.85 Acc.: 83.50
Class 0: Otherwise Sens. 68.4 Sens.: 87.01
Spec. 89.95 Spec.: 78.57
Nahar et al, The UCI Heart Class 1 n=165:>50% | Feature Selection: CFS, Knowledge- = Approach 1l — Knowledge-based
[105] Disease Dataset diameter stenosis. based feature selection feature selection:
n=303 Class 0 n=138: Classification: Sequential minimal | Acc.: 77.95, Sens.: 0.811
Otherwise optimization Approach 1l — Knowledge-based
Evaluation: feature selection combined with CFS:
Approach | 10-fold cross-validation | Acc.: 83.83, Sens.: 0.919
Approach Il Training — Test sets
Karabulut & | The UCI Heart | Class 1 — Existence of | Classification: Rotation forest with = Acc.: 91.2
Ibrikci, [106] Disease Dataset CAD n=165 :>50% | FFNNs as the base classifier Sens.: 95.6
n=303, diameter stenosis. Evaluation: 10-fold cross-validation | gpec.: 86.7
clinical, Class 0 — Absence of CAD AUC: 0915

Tsipouras et al.,
[107]

electrocardiographic,
and laboratory data

n = 199 subjects
demographic,
clinical,
echocardiographic,
and laboratory data

n=138
Otherwise
Class 1 n=110: >50%

diameter stenosis in at least
one coronary artery vessel
Class 0 n = 89: without
any narrowing visible in
CA

Optimized fuzzy model

Evaluation: 10-fold stratified cross-
validation
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Table 2.5 Pre-test CAD Severity Scores based on Genomics.

Study Dataset Outcome Methods Feature Set Performance
COMPASS cohort Obstructive CAD: | Feature evaluation: | Age, sex, microarray and | ROC AUC:
n=610 >50% stenosis in at | Hierarchical clustering, | RT-PCR gene expression | 0.75 (0.70 -

least 1 vessel (13% | identification of meta-genes | data 0.80)
CORUS CAD [108, ) o )
110] obstructive CAD, Classm.catlon: Ridge
>50% diameter | regression
stenosis) Evaluation: Leave one
patient out cross-validation
Training Set n=1545 Presence of CAD Sequential feature selection, | Genome-wide DNA | Acc. 0.77
Symptomatic CHD: ROC AUC , Classification: | methylation and SNP | Sens. 0.75]

Dogan et al [109] n=173 RF, data, Phenotype Spec. 0.80
Normal: n=1372 Evaluation: Training — Test

sets Sets
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2.3.2 Imaging CAD prediction

Several studies in the literature have investigated the role of typical risk factors for the CAD prediction.
Nevertheless, existing studies have proved that the atherosclerotic plaque is non-uniformly distributed in
the same vessel sites and is identified in different patient’s artery segments. This phenomenon cannot
explain the existence of the established risk factors which are assumed to affect the entire vasculature of
patients [111]. Thus, a new atherosclerosis risk factors category has been introduced, the artery
geometry based risk factors, which have led to the concept that the initial vessel geometry and its local
mechanical forces may play a crucial role in the initiation and progression of the atherosclerotic plaque.
Identification of high-risk atheromatic plaques and the prediction of atheromatic plaque progression

consists a significant task in biomedical research area [112-115].

Thus, in this section, studies related to the CAD prediction based on imaging features are going to be
presented and are summarized in Table 2.6, below. More specifically, the advancement of
computational modeling has provided insights into the atheromatic plaque progression and the potential
for in vivo wall shear stress (WSS) calculations was first demonstrated using a fusion of IVUS and X-
ray angiography to acquire the 3D artery geometry. Existing studies confirmed the direct association of
low WSS artery regions with the atheromatic plaque formation [113, 114], while PREDICTION study
[115] concluded that low baseline WSS regions cause a decrease of luminal area and increase of PB.
Thus, further longitudinal studies area now justified to evaluate whether WSS calculations combined
with artery anatomical imaging can more accurately predict clinical events, which may be possibly
implemented using non-invasive coronary imaging [116]. CTA is a promising non-invasive coronary
imaging, providing useful prognostic information of atherosclerosis progression, since it is able to
accurately detect the inner and outer wall of coronary arteries and identify the CP and NCP, as well
[117]. Based on this direction, Liu et al [118] investigated the effect of biomechanical factors for the
progression of atherosclerosis, utilizing 365 coronary segments of 3 mm and concluded that the decrease
in MLA was independently predicted by low baseline Von Mises stress (-0.73 + 0.13 mm?). Kolossvary
et al. [119] aimed to detect atherosclerotic plaques with a napkin-ring sign (NRS), implementing a
supervised approach based on predefined measurements, so-called radiomics features [120]. NRS is
considered as a significant prognostic biomarker of MACE. Different texture features derived by a
radiomic dataset are able to identify the atherosclerotic plaques with and without NRS [119]. Another
existing in the literature study proposed a ML based model to discriminate between patients with acute

or chronic Myocardial Infarction (MI) and control subjects, using as input the CTA based calcium score.
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This study resulted in an AUC of 0.78 [121]. Except for the examination of automated analysis and
diagnostics performance of CTA imaging modality, prognostic evaluation has also been applied in CTA
imaging. More specifically, survival analysis was performed in different patient groups with a CV risk
and it was indicated that ML based models exhibited a larger AUC (0.79) than the individual clinical
and CTA metrics (Framingham risk score: 0.61, segment stenosis score: 0.64) [122]. Similarly to this
approach, another predictive model was developed using CTA imaging features, based on the DS. This
prognostic model provided a risk score for all-cause death and non-fatal M1 and resulted in an AUC of
0.771 [123].
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Table 2.6 Imaging based CAD prediction studies.

Study

Dataset-
Feature set

Outcome

Methods

Performance

Stone et al. [115]-
PREDICTION
study

endothelial shear stress
and arterial plaque
characteristics

Progression of CAD

Statistical analysis

low baseline WSS regions cause a
decrease of luminal area and increase of
PB

Liu et al [118]

365 coronary segments
of 3mm

Progression of CAD

Statistical analysis

the decrease in MLA was independently
predicted by low baseline Von Mises
stress (-0.73 + 0.13 mm?)

Mannil et al. [121] | 30 patients with chronic | Detection of Ml decision tree C4.5 | AUC: 0.78
M, 30 subjects without (J48), KNN
cardiac abnormality locally weighted
learning, Random
Forest
Motwani et al. 10 030 patients clinical | predict 5-year all-cause gain ranking, AUC: 0.79
[122] & CTA parameters mortality model building
with a boosted
ensemble
algorithm, and 10-
fold stratified
cross-validation
van Rosendael et | 8844 patients, >3 year follow-up for Ml Statistical AUC: 0.771

al. [123]

CTA risk scores

and death

analysis, XGBoost
model
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2.4 Prediction of carotid artery disease

Carotid artery disease is considered as the main risk factor of cerebrovascular events and ischemic
stroke. Prediction of carotid artery disease enables the early diagnosis of the disease, as it is defined by
the presence of CAS or the presence of vulnerable carotid plaques. Different studies, summarized in
Table 2.7, have been presented in the literature for the prognosis of carotid disease, taking advantage of

statistical analysis techniques and ML models.

More specifically, Jamthikar et al. [124] proposed a ML based algorithm for the development of a CV-
stroke risk stratification tool, consisting of an online and offline system and concluded that ML-based
integrated model with the event-equivalent gold standard as artery DS, is powerful and offers low cost
and high performance for the CV-stroke risk assessment. Firstly, a principal component analysis was
implemented for the selection of the most significant input features and then, a RF classifier was
implemented to predict the risk of each test subject. The algorithm was validated using a 10-fold cross
validation scheme and the final system named “AtheroRisk-Integrated” was compared against
“AtheroRisk-Conventional”. Left and right CCAs of 202 Japanese patients were retrospectively
examined to obtain 395 US scans. AtheroRisk-Integrated system [AUC =0.80, P<0.0001, 95%
confidence interval (Cl): 0.77 to 0.84] showed an improvement of ~18% against AtheroRisk-
Conventional ML (AUC =0.68, P<0.0001, 95% CI: 0.64 to 0.72).

In a same attempt Verde et al. [125] investigated and compared the performance of conventional ML
classifiers, capable of identifying the presence of carotid disease, exploring as input heart rate variability
features and evaluating the classification scheme in terms of accuracy, precision, recall and F-measure.
Totally, 126 patients (89 individuals suffering from carotid diseases and 37 healthy subjects) participated
in this study and their pathological state was identified by analyzing the intima media thickness (IMT)
value, evaluated with the B-mode US. In another study, Greco et al. [126] taking advantage of statistical
based models, developed a model for the prediction of individuals of high risk for carotid DS. A
multivariable regression analysis was implemented to identify the major risk factors for the pathological
condition for the DS (>50%) and the C-statistic measure was computed for the evaluation of the
proposed model. The independent input features were demographics, comorbidities, and lifestyle
characteristics. Finally, the proposed predicting scoring system with a more efficient C-statistic value
was created for the identification of those individuals with a higher probability of a pathological DS.
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De Weerd et al. [127] proposed a carotid artery disease prediction model for the identification of
individuals with a CAS >50% and >70% and for the detection of the most efficient predictors of CAS
>50 % and 70%. Age, sex, history of vascular disease, SPB and diastolic blood pressure (DBP),
TC/HDL ratio, DM and current smoking were identified as the most significant predictors of stenosis
(>50% and >70%). In addition to this, the proposed model discriminated well between participants with
and without stenosis, with an AUC corrected for over optimism of 0.82 for moderate stenosis and of

0.87 for severe stenosis.

Khanna et al. [128], in another attempt, proposed a nonlinear model for the 10-year prediction carotid
image phenotypes, which were automatically measured utilizing AtheroEdge™ system. More
specifically, nine conventional CV risk factors, in combination with five types of carotid image
phenotypes were adapted in a non-linear mathematical model for 10 year prediction of carotid
phenotypes. In this study, totally 206 Japanese patients participated, and totally 407 US scans left/right
CCA were selected. This fused prediction model concluded that the age and the Hb presented the
highest influence on the 10 year carotid phenotypes, whereas the AUC for the five types of carotid
phenotypes were 0.96, 0.94, 0.90, 1.0, and 1.0 for the average IMT, the maximum IMT, the minimum

IMT, the wall variability and the total plaque area, respectively.

Araki et al. [129] proposed an innovative risk stratification model for the classification of high and risk
carotid plaques or the classification between symptomatic and asymptomatic plaques. The overall
model was based on the grayscale morphology of the US carotid wall, while Hao-wen Li et al. [130]
conducted an observational study to distinguish the high risk plaques (vulnerable plaques) and the low
risk (stable) carotid artery plaques, which were classified using high-resolution MRI modality. Three
hundred twenty-six patients with ischemic stroke (189 patients with vulnerable plaque and 81 patients
with stable plaque) and 432 normal controls were included in this study. Finally, ADAMTS7
polymorphisms of both rs7173743 and rs3825807 were associated with carotid plaque vulnerability but

not the prevalence of ischemic stroke.
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Table 2.7: Summary of studies for the carotid artery disease stratification.

Study Methodology Input Output Results
Jamthikar | ML based algorithm | 47 risk factors Low risk- High risk based | AUC =0.80, P<0.0001, 95%
et al. [124] (RF classifier) 34 were |ma_ge—b:jlsed phenotypes, 13 risk on the artery DS Cl: 0.77 t0 0.84
factors (patients’ demographics, blood
biomarkers)
Verde et | SVM, Bayesian | Heart rate variable features Healthy -Pathological | Accuracy: 0.72
Classification, Decision
al. [125] Tree, Multilayer based on IMT evaluated
Perceptron, LMT, with the B-mode US
Instance-based
Learning algorithm
Greco et | multivariable regression | Sex, age, race, marital status, smokers, | ldentifications of | C statistic = 0.753
analysis high blood pressure, comorbidities (High | . .. .
al. [126] cholesterol, CAD, PAD, DM), Family individuals whose CAS
history, BMI, Dietary habits, Exercise >50%
de Weerd | Multivariable LR age, sex, DM, history of coronary and/or | Identifications of | AUC: 0.82 (moderate stenosis),
cerebrovascular  disease, medication | . . . .
et al. [127] information, blood pressure, lipid levels, individuals whose CAS | 0.87 (severe stenosis)
current smoking, waist circumference | >50% (moderate stenosis)
and BMI and >70% (severe
stenosis)
Khanna et | Non-linear parametric | Typical risk factors (ethnicity, gender, | Five  carotid  artery | AUC: 0.96 (average IMT),
model age, artery type, BMI, Hb, hypertension,
al. [126] LDL, smoking), Types of carotid plagues
automated image phenotypes
Hao-wen | multivariate LR | Male, Age, BMI, Hypertension, DM, | distinguish vulnerable | ADAMTS? variants rs3825807
Li et al analyses Hypgrllpldgmla, Previous hlstorx of TIA, and stable carotid plaques | and rs7173743 associated with
Previous history of stroke, smoking, TG,
[130] TC, LDL, HDL, FBG, Hb the risk for carotid plaque

vulnerability
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2.5 Serum Markers in Carotid Artery Disease

Regarding the contribution of serum biomarkers to the pathogenesis of atherosclerosis, biomarkers
distinct into inflammatory, endothelial and cell adhesion, matrix-degrading or proteolysis biomarkers,
lipid and metabolic ones and their contribution to the carotid atherosclerosis pathophysiology, is

described below.
Inflammatory biomarkers

Inflammation process has a significant role in mediating all stages of atherosclerotic disease. Immune
cell types (monocytes, macrophages, T-cells and neutrophils) and specialized lipid mediators, have a
significantly contribution to the vascular inflammation and are activated by risk factors present in the
vascular wall, such as shear stress, oxidized lipoproteins and oxidative stress [131]. C-reactive protein
(CRP) is considered as one of the most significant biomarkers of inflammation and the measurement of
both CRP and high-sensitivity CRP (hs-CRP) is widely used in clinical practice for the vascular disease
stratification. Several studies have indicated that hs-CRP is associated with the presence of unstable
CAS [132], the presence of ICA stenosis [133] and the detection of vascular risk patients [134].
Elevated levels of hs-CRP are associated with lower echogenicity of carotid plaques, suggesting a
relation between the hs-CRP and the potential vulnerability of the plaques [135], whereas vulnerable
atherosclerotic plagques indicated upregulation of hs-CRP [136]. Nevertheless, increased levels of hs-
CRP are independently associated with high risk of ischemic stroke [137] and among the risk factors for

acute Anterior Circulation Stroke [138].

Pentraxin-3 (PTX-3), another acute phase protein, constitutes a potential inflammatory biomarker and is
shown to be independently associated with the severity of carotid atherosclerosis [139] [140].
Additionally, Shindo et al. investigated the prognostic significance of PTX-3 of the vulnerability of
carotid plaques through immunohistochemical analysis. [136]

Interleukin (IL)-6, a pleiotropic proinflammatory cytokine, has been shown to be localized into
inflammatory cells in the vulnerable plaques and its elevated levels are associated with high risk of
atherosclerotic plaques [135] [136]. Additionally, IL-6 was shown to be associated with the presence of
ICA stenosis [9], and also through a genetic association study, it was indicated that IL-6 is associated
with ICA stenosis [17]. On the other hand, tumor Necrosis Factor alpha (TNF-a), an inflammatory
cytokine involved in early inflammatory events, has been correlated with the prevalence and severity of

CAS [140] and with high risk carotid plaques. Vulnerable atherosclerotic plaque showed upregulation of
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the TNF-a and increased levels of TNF-a are directly linked with high size carotid plaques [136] [141].
Immunohistochemistry analysis indicated that TNF-a combined with hypoxia and oxidized LDL
markedly increased MMP-7 expression, which is directly associated with the symptomatic carotid artery
disease [142], whereas immunohistochemistry analysis of plaques after CEA indicated that TNF-a was

significantly increased in symptomatic patients [143].

Endothelial and cell adhesion biomarkers

Cell adhesion molecules (CAMs) are responsible for the regulation of the inflammatory response and the
endothelial function. Selectins, a family of cell-surface glycoproteins, are involved in the rolling and
anchoring of leukocytes on the vascular wall, whereas intercellular adhesion molecules (ICAMs) and
vascular cell adhesion molecules (VCAMs), induce firm adhesion of inflammatory cells at the vascular
surface. Expression of VCAM-1, ICAM-1, and L-selectin has been consistently observed in

atherosclerotic plaques and their soluble forms have been identified in the circulation [144].

More specifically, VCAM-1 showed a significant association with the ICA stenosis [133] and the CV
mortality [145]. As for the high risk plaques, vulnerable atherosclerotic plaques indicated upregulation
of VCAM-1 [136]. ICAM-1, an endothelial- and leukocyte-associated transmembrane protein, showed
also a significant association with CV mortality [145] and with the presence of ICA stenosis [146].

Selectins, a family of CAMs, have also been indicated to be associated with carotid artery disease, with
E-selectin gene variants to be independently and significantly associated with ICA stenosis [146],
whereas high risk atherosclerotic plaques showed its upregulation [136]. On the other hand, lower
values of L-selectin were associated with atherosclerotic plaque size [141].

Additionally, NGAL is found in granules of activated human neutrophils and has been proposed as a
valuable biomarker for the detection of unstable carotid plaques in asymptomatic patients [147].

Matrix-degrading or proteolysis biomarkers

MMPs contribute to the degradation of both matrix and non-matrix proteins, involved in the process of
plague destabilization and cap erosion and this function takes place in the extracellular environment.
Different studies have indicated that MMPs play a significant role in the detection of vulnerable high
risk atherosclerotic plaques in patients with advanced CAS. It was indicated that the combination of
MMP-1, MMP-7 and Tissue Inhibitor of Metalloproteinase (TIMP)-1 demonstrated the highest positive
predictive value (PPV) 89.4% and negative predictive value (NPV) 60.1% for patients correctly

46



classified as individuals with unstable and stable carotid lesions by means of blood sample analysis
[148]. Additionally, levels of MMP-9 were significantly elevated in individuals with unstable
atherosclerotic plaques in comparison with those with stable ones [149], whereas immunohistochemistry
analysis indicated that the mRNA levels of MMP-2, MMP -7, MMP -9 and MMP -14 were elevated in
vulnerable plaques, among which expression of MMP-2 and MMP -14 were the highest [150]. In a
similar study, Sigala et al. [151] concluded that MMP-9 is directly related to plaque instability.

In another direction, other studies attempted to correlate levels of MMPs with the presence of
symptomatic carotid artery disease. Elevated levels of MMP-2 and MMP-9 were observed in patients
with symptomatic carotid artery disease in comparison with those without symptoms [149]. On the
other hand, Abbas et al. [142] concluded that carotid artery disease patients had significantly high
plasma levels of MMP-7, compared with healthy individuals, with the highest levels of MMP-7 in
patients with symptoms within the last 2 months [142]. ICA stenosis was shown through a genetic
association study to be associated with MMP-3 and MMP-9 gene variants [146]. In addition to this,
total mortality was also independently associated with elevated plasma levels of MMP-7 [142], while
higher serum MMP-9 levels in the acute phase of ischemic stroke were associated with increased risk of

mortality and major disability [152].

Lipid biomarkers.

Lipid factors are, together with inflammatory factors, the main actors in the onset, evolution and
destabilization of the atherosclerotic plague. Firstly, LDL is independently related with the presence and
extent of subclinical early systematic atherosclerosis [153]. Low levels of LDL are likely to prevent
large artery atherosclerosis [154], could reduce the ischemic complications and affects the plaque
stability and antithrombus formation [155]. Other studies have shown that increased levels of LDL were
independent risk factor for the occurrence of CAS [140] and showed positive associations with ischemic
stroke [156].

The oxidation of LDL is considered as a significant atherogenic modification of LDL within the vascular
wall, where oxidized low-density lipoprotein (ox-LDL) can trigger the expression of adhesion molecules
on the cell surface, and thus stimulate the activation of endothelial cells These adhesion molecules
mediate the rolling and adhesion of blood leukocytes, that adhere to the endothelium and migrate into
the intima, causing the activation of macrophages, the release of proinflammatory cytokines and the

production of proteolytic enzymes, contributing to the matrix degradation and plaque destabilization
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[157]. The role of circulating ox-LDL has gained considerable attention and low levels of ox-LDL are a
promising therapeutic target against atherosclerosis [158]. In a study conducted by Sigala et al. [151], it
was indicated that ox-LDL levels were associated with the presence of clinical symptoms of carotid
artery disease. Additionally, there are efforts to clarify the correlation between the morphology of
human atherosclerotic plaques and the ox-LDL levels in plasma and plaques. It was shown that elevated
ox-LDL levels are related with the vulnerability to rupture [159]. Ox-LDL levels are also considered as
significant biomarker for the prognosis of carotid artery disease. In a study by Markstad et al. [160], the
authors indicated that ox-LDL leads to the release of Soluble lectin-like oxidized LDL receptor-1
(sLOX-1) from endothelial cells and that circulating levels of sSLOX-1 are associated with the risk of
ischemic stroke, whereas Wang et al. [161] showed that elevated levels of ox-LDL were associated with

the high risk mortality and poor functional outcome within one year after stroke onset.

On the other hand, high HDL is characterized by its antioxidant, antithrombotic, anti-inflammatory and
antiapoptotic characteristics and may play a significant protective role in acute stroke, protecting and
limiting the ischaemia on the blood-brain barrier and on the parenchymal cerebral compartment [162].
Lower levels of HDL were independently associated with an increased risk of having echolucent,
rupture-prone atherosclerotic plaques [163] [164] [165]. Moreover, HDL contributes as a prognostic
marker for the severity of stroke, since low baseline HDL (<35 mg/dL) at admission was associated with
higher stroke severity and poor clinical outcome during follow-up in patients with atherosclerotic
ischemic stroke [166].

Triglyceride-rich lipoproteins (TRLsS), a pool of lipoproteins that includes chylomicrons, very LDLs,
intermediate-density lipoproteins and other remnant lipid metabolism particles, appear to promote
atherogenesis independently of LDL [167]. Elevated levels of TRLs seem to be associated with plaque
echolucency, which is characterized by increased lipid content and macrophage density plaques.
Echolucent carotid plaques were proven to be related with higher risk for future ischemic stroke,
particularly in previously symptomatic individuals, for restenosis after CEA, as well as for Ml [165]
[168]. On the other hand, in a study presented by Kofoed et al. [168], it was shown that TRLs are

elevated in patients with CAS higher than 50%, compared with controls.

Although circulating lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) has been considered as a
novel biomarker for the CVDs, its correlation between the atherosclerotic plaque expression of Lp-

PLA(2), inflammation, stability and the presence of clinical symptoms, especially for cerebrovascular
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disease remains poorly defined. Nevertheless, in a study conducted by Mannheim et al. [169], it was
shown that symptomatic carotid artery plaques are characterized by increased levels of Lp-PLA(2),
strongly supporting the role of Lp-PLA(2) in the pathophysiology and clinical representation of
cerebrovascular disease. In addition to this, Lp-PLA2 consists a significant biomarker for the
management of asymptomatic patients with carotid artery disease, since its elevated levels is directly
associated with high grade of CAS [170], and with the presence of unstable atherosclerotic plaques
[170] [138]. Regarding the prognostic significance of Lp-PLAZ2, it has been shown that its activity is an
independent predictor for coronary heart disease and ischemic stroke in the general population [171] and

Lp-PLA2 in its highest levels had an increased risk of recurrence after the first ischemic stroke [172].

ApolipoproteinS (Apos) are the protein components of plasma lipoproteins, which consist of a core of
triglyceride and cholesterol esters and a peripheral region of phospholipid, sphingolipid and protein. The
most relevant subtypes are considered the Apo A-I (the main protein on HDL), Apo B-100 (the main
protein on LDL), Apo C-II (important in chylomicrons and very LDL, activates lipoprotein lipase), and
Apo E (present in chylomicrons, very LDL, and intermediate density lipoprotein, allowing the binding
of these lipoproteins to the hepatocytes).

ApoA-I (or ApoAl) levels may be clinically useful for the diagnosis of stroke and for the differentiation
between ischemic and hemorrhagic strokes [173], whereas reduced ApoA-I levels are risk factors for a
first ischemic stroke and elevated ApoA-1 is considered as a risk factor for a first hemorrhagic stroke
[174]. A meta-analysis by Paternoster et al. [175] indicated a clear association of APOe with carotid

IMT, suggesting the possibility of a specific association with large artery ischemic stroke.

Proprotein convertase subtilisin kexin type 9 (PCSK-9) is a protease produced at the liver and is
detectable in human plasma. It consists a key regulator of the metabolism of LDL, and recently has been
suggested to participate in the development of atherosclerosis [176]. Chan et al. [177] showed that
serum PCSK-9 levels is considered as an independent predictor of carotid IMT and may contribute to
increased risk of subclinical carotid atherosclerosis, independently of conventional risk factors. On the
other hand, Xie et al. [178] concluded that plasma PCSK-9 levels are associated with 10-year

progression of atherosclerosis.
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Metabolic biomarkers

Proinflammatory chemerin, leptin, and resistin are considered as adipokines which influence the
vascular wall function. Association of circulating adipokines with the cerebrovascular symptomatology
and the carotid plaque vulnerability was investigated and it was shown that low levels of chemerin and
elevated levels of restinin were related to the plaque instability, the risk of stroke and the severity of

carotid artery disease [179].

On the other hand, adiponectin, an anti-inflammatory and vasculoprotective adipokine, may act as a
novel prognostic biomarker for atherosclerosis in stroke, since it was shown to be related with the risk of
ischemic stroke [180] [181]. In a study by Gustafsson et al. [182], the role of circulating adiponectin to
the vascular function and morphology was investigated and the authors concluded that elevated levels
are associated with less arterial pathology, while Saarikoski et al. [183] supported the role of adiponectin

in the pathophysiology of early atherosclerosis.

Fatty acid binding protein 4 (FABP4) has been also shown to play an important role in macrophage
cholesterol trafficking and has been considered as a key factor connecting the vascular and lipid
accumulation with the inflammation process. Increased levels of FABP4 are associated with the
presence of carotid artery disease, plaque instability and adverse outcome in patients with carotid
atherosclerosis, since the highest mMRNA levels of FABP4 have been observed in patients with the most
recent symptoms [184] [185].

Elevated levels of homocysteine (hcy) have been associated with carotid plaque development and
hyperhomocysteinemia has been described as an independent CV risk factor. More specifically, in a
study presented by Alsulaimani et al. [186], it was shown that elevated hcy was independently
associated with plaque morphology and increased plaque area, subclinical markers of stroke risk,
whereas high hyperhomocysteinemia prevalence in patients with extracranial cerebrovascular disease
was confirmed by Alvarez et al. [187]. In addition to this, higher total hcy levels were associated with

asymptomatic carotid artery disease [188].

Osteoprotegerin (OPG) is a secretory glycoprotein which belongs to the TNF receptor family and its
high concentration has been related with the CV and vascular disease and contributes to the
atherosclerotic plaque stability. Studies have shown that higher levels of OPG have been observed in

asymptomatic plaques related to symptomatic ones [189] and all plaques exhibited calcification were
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significantly higher in asymptomatic patients. The effect of OPG in atherosclerotic plaques was
confirmed by a study by Schiro et al., in which OPG was significantly elevated in symptomatic

individuals related to asymptomatic group [190].

In Table 2.8, all the types of biomarkers related to carotid artery disease and their associations with the

disease, are presented.

In addition to the contribution of each type of biomarker to atherosclerosis pathophysiology, different
studies have confirmed the association of serum biomarkers with the presence of CAS, the diagnosis of
vulnerability of carotid atherosclerotic plaques, the presence of symptomatic carotid artery disease and

their prognostic value for the future stroke and CV mortality.

Regarding the detection of carotid artery disease presence, there different studies that aim to identify the
most significant serum biomarkers associated either with the presence of CAS greater than 50% [132]
[133] [140] [146] [168], or with the early detection of subclinical carotid atherosclerosis [134] [183]. In
these studies, the presence of carotid artery disease was mainly assessed by carotid US and the analysis

of data was implemented using conventional statistical techniques, as it is reported in Table 2.9.

Nevertheless, the focus of CAS diagnosis was also shifted from pure stenosis quantification to plaque
characterization and more specifically to the detection of high risk vulnerable plaques. This has led to
further advancements in the existing imaging tools and identification of high risk plaque related imaging
characteristics and to the identification of plaque histology characteristics related to high risk plaques
[191]. Table 2.10 indicates all the existing methodologies for the detection of vulnerable plaques. In
most of these studies, the instability of atherosclerotic plaques was considered after the
immunohistochemistry analysis of carotid plaques [136], whereas, in other studies vulnerable plaques
was considered after the implementation of carotid US [141]. All types of serum biomarkers seem to be
associated with the vulnerability of plaques and some of them have been also detected as useful
biomarkers for the diagnosis of CAS, such as the hs-CRP, the PTX-3, the IL-6 and the TNF-q,
concluding that the measurement of inflammatory biomarkers contribute both to the diagnosis and the

monitoring of the disease progression.

Additionally inflammatory TNF-a, matrix degrading biomarkers (MMP-2, MMP-7, MMP-9), ox-LDL

and metabolic biomarkers (restinin, OPN, OPG) have been shown to be associated with symptomatic
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carotid artery disease, as presented in Table 2.11. Early detection of symptomatic carotid artery disease

patients may provide a cost-effective disease detection and management strategy.

Apart from the diagnostic based circulating biomarkers, in this section, biomarkers with high prognostic
value for the progression of carotid artery disease are also reported. More specifically, biomarkers
associated with high risk of future stroke or CV event are described in Table 2.12. Circulating
biomarkers which constitute the typical lipid patient profile (LDL, TC, triglyceride, ox-LDL, Lp-PLAZ2),
inflammatory biomarkers such as hs-CRP, TNF-a, IL-6, adipokines (Adiponectin, Leptin, FABP4) and
hcy are related to high risk of future stroke. Meta-analyses, conducted by Gorgui et al. [62] and Gairolla
et al. [63], concluded that levels of adiponectin and leptin are significantly associated with ischemic
stroke, showing that adipokines may have a cause-effect relation with carotid artery disease. As for the
CV mortality, typical hs-CRP biomarker, endothelial and cell adhesion biomarker (VCAM-1, ICAM-1),
MMPs (MMP7. MMP-9), ox-LDL and FABP4 seem to be associated with the CV mortality, as it is
shown in Table 2.13. An indicative study by Zhong et al. [152], concluded that the high value of MMP-
9 was associated with high CV mortality and major disability. In this study, data collection from 3,186
participants were analyzed and 767 of them have experienced major disability or died. On the other
hand, Wang et al. [161] in another study collected biochemical markers from 3688 patients and

concluded that the patients in the highest ox-LDL quartile had a higher risk of one year stroke mortality.

In Table 2.14, we summarize all the presented studies, based on their participants and their clinical
characteristics, providing specific biomarkers for the risk stratification of asymptomatic participants, of
symptomatic participants (either with diagnosis of carotid artery disease or undergoing CEA), of
symptomatic, asymptomatic and controls participants and of the general population.
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Table 2.8 Serum biomarkers related to clinical outputs of carotid artery disease.

Type of Biomarkers Diagnosis of | Plaque Symptomatic Future | Stroke CV Mortality
Biomarkers Carotid Vulnerability Carotid Artery | Stroke | Severity
Artery Disease Event
Disease
hs-CRP [133] [132, [135] [136] [137] [193]
134] [192]
[138]
-
S PTX-3 [140] [139] [136]
©
E IL-6 [133] [146] [135] [136]
f—_cu TNF-a [140] [136] [141] [148] [142] [143]
” NGAL [147]
s & VCAM-1 [136] [145]
©
2 E ICAM-1 [146] [145]
S E E-selectin [146] [136]
[<B]
S 2 L-selectin [141]
(@) [«5)
o L
c T
w <
. MMP-1 [148]
> TIMP-1 [148]
'g MMP-2 [150] [149]
g 2 MMP-3 [146]
>
Z 3 MMP-7 [148] [150] [142] [142]
g 2 MMP-9 [146] [149] [150] [151] [149] [152]

53




Type of Biomarkers Diagnosis of | Plaque Symptomatic Future | Stroke CV Mortality
Biomarkers Carotid Vulnerability Carotid Artery | Stroke | Severity
Artery Disease Event
Disease
MMP-14 [150]
LDL [140] [156]
TC [156]
triglyceride [156]
ox-LDL [159] [151] [160] [161]
HDL [164] [163] [166] [156]
TRL [168] [165] [168]
Lp-PLA2 [170] [170] [138] [169] [171]
[172]
5
= apoA-I [173] [174]
% apoE
-t PCSK9 [L77]
restinin [179] [179]
adiponectin [183] [180] [181]
leptin [181]
Q é FABP4 [184] [184] [184]
S =
_‘3 g homocysteine | [188] [186] [186]
S 5 OPG [189] [189] [190]
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Table 2.9 A summary of studies investigating biomarkers related to carotid artery disease diagnosis.

Study Biomarker | Methodology Dataset Output
Puz et al. [132] hs-CRP laboratory tests, US 65 patients with ICA stenosis | Patients with ICA stenosis had significantly
examination, statistical analysis | >50% (39 symptomatic) and | higher serum concentrations and CRP values
30 healthy than the individuals from the control group (p =
0.009)
Horn et al. [134] hs-CRP laboratory tests, US subclinical and advanced rate of both subclinical and advanced stages of
examination, statistical analysis | (INVADE study-n = 3,092, > | atherosclerosis was higher in patients with
55 years) pathological hs-CRP
Debing et al. [133] hs-CRP, IL- | statistical analysis, high- 180 patients with ICA levels of hs-CRP, VCAM-1, and IL-6 in the CEA
6, SVCAM-1 | resolution B-mode US stenosis, 180 age-matched group were significantly higher than in the
and sex-matched controls. control group
Yietal. [140] PTX-3, CTA, statistical analysis 206 patients with ischemic plasma levels of PTX-3, TNF-a, and LDL were
TNF-a, LDL stroke increased significantly in the CAS group patients
vs. the CAS-free
Knoflach et al. [139] | PTX-3 statistical analysis, high- 132 young men, 205 young PTX-3 level was independently associated with
resolution B-mode US women, 562 individuals 55 to | prevalent
94 years old
Biscetti et al. [146] IL-6, ICAM- | genetic association study 933 individuals (344 patients | IL-6, ICAM-1, MMP-3, and MMP-9 gene
1, E-selectin, with ICA stenosis-CEA and polymorphisms were independently associated
MMP-3, 589 controls) with ICA stenosis
MMP-9
Kofoed et al. [168] TRL high-resolution B-mode US and | 66 controls and 323 patients | fasting and postprandial triglyceride-rich
computerized image analysis with CAS > 50% lipoproteins are elevated in patients with CAS of
>50%
Chan et al. [177] PCSK-9 biochemical analysis, carotid US | 95 asymptomatic subjects serum PCSK-9 remained an independent
predictor of mean carotid IMT
Saarikoski et al. adiponectin US data on carotid IMT 2,147 young adults low serum adiponectin concentration is
[183] independently related with increased carotid IMT
early atherosclerosis
Holm et al. [184] FABP4 enzyme immunoassay, statistical | 28 asymptomatic, 31 FABP4 levels were higher in patients with
analyses symptomatic, 202 patients carotid atherosclerosis
with acute ischemic stroke
Jia et al. [188] hcy carotid duplex US examination | 5393 Chinese participants hcy> 19.3umol/L was considered as an
independent indicator of asymptomatic CAS
Alsulaimani et al. hcy ultrasonographic assessment of | 1327 stroke-free subjects increasing hcy was associated with an increasing

[186]

plague morphology measured by
gray-scale median

risk
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Table 2.10 A summary of studies investigating biomarkers related to carotid atherosclerotic plaque vulnerability.

Study Biomarker | Methodology Dataset Output
Yamagami et al. [135] hs-CRP, IL- | statistical analyses 246 patients, including 80 | 1L-6 and hs-CRP were negatively
6 patients with a history of | correlated with carotid plaque
stroke/TIA echogenicity
Shindo et al. [136] hs-CRP, histological analysis, statistical | 58 patients with CAS vulnerable group showed upregulation
PTX-3, IL- | analysis of proinflammatory cytokines,
6, TNF-q, endothelial activation markers and
VCAM-1 inflammation markers. and
downregulation of anti-inflammatory
markers
Andersson et al. [141] TNF-a US procedure, measurement 1,016 subjects Plaque size was also related to
serum markers, statistical increased levels of TNF-a
analysis
Pelisek et al. [148] TNF-a, Measurement of serum markers | patients (n = 101) were Circulating levels of MMP-1, MMP-7,
MMP-1, by ELISA assays, Multiscore classified as TIMP-1, and TNF-a were significantly
TIMP-1, analysis histologically stable (n= | enhanced in patients with unstable
MMP-7 37) or unstable (n = 64). | plaques
Guo et al. [150] MMP-2, carotid plaque specimens, 64 patients The mRNA levels of MMP-2, MMP-7,
MMP-7, histology and MMP-9 and MMP-14 were elevated in
MMP-14 immunohistochemistry analysis vulnerable plaques
Alvarez et al. [149] MMP-9 histopathologic analysis, 40 patients with CAS MMP-9 was also significantly higher
immunohistochemistry in the symptomatic group and in
(macrophage count, T patients with unstable plaques
lymphocytes, activated T
lymphocytes)
Eilenberg et al. [147] NGAL, histological investigation, 83 patients with Circulating NGAL and MMP-9/NGAL
MMP-9 statistical analysis asymptomatic CAS are significantly increased in
asymptomatic patients with vulnerable
carotid atherosclerotic plagues
Sarlon-Bartoli et al. Lp-PLA2 laboratory measurements, 42 patients (neurological | Plasma Lp-PLA2 level was

[170]

histological assessment and
immunohistochemistry of
carotid plaques, statistical
analyses

symptoms were present in
16, unstable plaques in
23)

independently associated with unstable
carotid plaques
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Study

Biomarker

Methodology

Dataset

Output

Yang et al. [138] Lp-PLA2 laboratory examination, carotid | 100 patients with acute Hs-CRP and Lp-PLAZ2 levels were
ultrasonography and grouping, | anterior circulation stroke | significantly higher in vulnerable
statistics analysis and 50 noninfarction plaque group than in mixed plaque

subjects (control group) group and stable plague group

K. Nishi et al. [159] Ox-LDL histopathological characteristics | 44 patients The ox-LDL level was significantly
of plaques, higher in vulnerable than stable
immunohistochemical analysis, plaques
statistical analysis

Mathiesen et al. [163] HDL ultrasonography, statistical 216 with CAS, 223 Low levels of HDL are associated with
Analysis control subjects an increased risk of having echolucent,

rupture-prone atherosclerotic plagues

Peters et al. [164] HDL Measurement of IMT, statistical | 984 individuals Low levels of HDL are related to
analysis echolucency of the carotid intima-

media

Nordestgaard et al. [165] | TRL, HDL | US imaging methods, 111 asymptomatic, 135 Vulnerable plaques are associated with
histological characterization symptomatic patients elevated levels of triglyceride-rich

with CAS, 44 ipsilateral lipoproteins and with reduced levels of
ischaemic strokes HDL

Kofoed et al. [168] TRL high-resolution B-mode US and | 66 controls and 323 Fasting and postprandial triglyceride-
computerized image analysis patients with CAS > 50% | rich lipoproteins are elevated in

patients with CAS of > 50% compared
with controls

Gasbarrino et al. [179] Restinin, association of circulating n=165 symptomatic and Low chemerin and high resistin levels

Chemerin adipokines and carotid plaque asymptomatic patients were associated with plaque instability
instability

Holm et al. [184] FABP4 enzyme immunoassay, 28 asymptomatic, 31 FABP4 is linked to plaque instability
statistical analyses symptomatic, 202 acute in patients with carotid atherosclerosis

ischemic stroke

Davaine et al. [189] OPG OPG measurement, histological | 73 carotid plagues (49 Circulating OPG levels were higher in

and immunological analyses,
statistical analysis

asymptomatic and 24
symptomatic)

the plasma of asymptomatic patients
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Table 2.11 A summary of studies investigating biomarkers related to symptomatic carotid artery disease.

Study Biomarkers | Methodology Dataset Output
Abbas et al. [142] MMP-7 immunohistochemistry, 182 consecutive MMP-7 could contribute to plaque
statistical analyses patients with instability
moderate (50-69%),
23 healthy controls
Schneiderman et al. [143] | TNF-a lesion analysis, statistical 40 symptomatic, 38 TNF-o was significantly increased in
analysis asymptomatic patients | symptomatic patients
with progressive
stenosis
B. Alvarez et al. [149] MMP-2, MMP-2 and MMP-9 40 patients with CAS | Elevated MMP-9 concentration is
MMP-9 measurement, statistical associated with carotid plaque instability
analysis
Sigala et al. [151] Ox-LDL Immunohistochemistry, data | 36 patients Ox-LDL was increased in symptomatic
analysis and statistics undergoing CEA, 20 | patients
controls
Gasbarrino [61] Restinin Measurement of circulation 165 neurologically restinine levels were significantly elevated
adipokines, data analysis and | symptomatic and in symptomatic
statistics asymptomatic patients
A. Schiro et al. [190] OPN, OPG | Measurement of circulating - OPN and OPG were significantly elevated
EMPs, platelet MPs (PMPs) in the symptomatic
and inflammatory markers,
statistical analysis
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Table 2.12 A summary of studies investigating biomarkers related to future stroke event.

Study Biomarkers Methodology Dataset Output
Zhou et al. | hs-CRP Meta-analysis 2436 ischemic strokes, When comparing the highest with the
[137] 655 hemorrhagic strokes | lowest hs-CRP category, the pooled RR of
from 66,560 participant | ischemic strokes was 1.46
Yang et al. | hs-CRP Laboratory examination, carotid 100 patients with acute Hs-CRP and Lp-PLA2 are among the risk
[138] ultrasonography and grouping, anterior circulation factors for anterior circulation stroke
statistics analysis stroke and 50 controls
Maetal. [192] | hs-CRP, TNF- | Data collection, statistical 288 ischemic stroke Hs-CRP, TNF-qa, and IL-6 are considered to
a, IL-6 analysis patients and 300 controls | be important markers of the body's
inflammatory state in ischemic stroke
Guetal. [156] | LDL, TC, Baseline information collection, Six cohort studies in TC, LDL, and triglyceride showed positive
triglyceride statistical analysis China with 267, 500 associations with ischemic stroke
participants
Markstad et al. | Ox-LDL Analyses of the plague tissue: 202 patients undergoing | Ox-LDL induces the release of sSLOX-1
[160] cytokines and chemokines, CEA from endothelial cells and that
measurement of SLOX-1 in blood
samples, statistical analysis
Oei etal. [171] | Lp-PLA2 Measurement of Lp-PLA2 308 coronary heart Lp-PLA2 activity is an independent
activity, statistical analysis disease cases, 110 predictor of ischemic stroke
ischemic stroke cases,
and a random sample of
1820 subjects
Elkind et al. | Lp-PLA2 Measurement of Lp-PLA2 467 patients Stroke patients with Lp-PLA2 activity
[172] activity, statistical analysis levels in the highest quartile had an
increased risk of recurrence after first
ischemic stroke
Alsulaimani et | hcy Assessment of hcy, assessment of | 1327 stroke-free subjects | elevated hcy was independently associated
al. carotid atherosclerosis, statistical with plaque morphology
[186] analysis
Gorgui et al. | Adiponectin systematic review and meta- - increased adiponectin levels were
[62] analysis associated with an increase in risk for
ischemic stroke
Gairolla et al. | Adiponectin, systematic review - adiponectin and leptin are significantly
[63] leptin associated with stroke
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Table 2.13 A summary of studies investigating biomarkers related to CV mortality.

Study Biomarkers | Methodology Dataset Output
Mayer et al. hs-CRP Clinical and laboratory 1065 patients with The risk of all-cause and CV mortality significantly
[193] data collection, statistical | neurological increased in patients with elevated serum levels of hs-
analysis asymptomatic carotid | CRP
atherosclerosis
Hoke et al. VCAM-1, Measurement of CAMs, | 855 patients significant association between CV mortality and
[145] ICAM-1 statistical analysis ICAM-1
Abbas et al. MMP-7 Immunohistochemistry, 182 consecutive high plasma levels of MMP-7 were independently
[142] statistical analyses patients with associated with total mortality
moderate (50-69%)
levels, 23 healthy
controls
Zhong et al. MMP-9 Data collection, statistical | 3186 participants, Higher log MMP-9 was associated with death and major
[152] analysis 767 participants disability.
(24.6%) experienced
major disability or
died
Wang et al. Ox-LDL Biochemical indicators, 3688 patients Patients in the highest ox-LDL quartile had a higher risk
[161] diagnosis of stroke and of 1-year stroke mortality
stroke subtype
classification, statistical
analysis
Holm et al. FABP4 Enzyme immunoassay, asymptomatic (n = levels of FABP4 were significantly associated with total
[184] statistical analyses 28), symptomatic (n | and CV mortality

= 31), patients with
acute ischemic stroke
(n=202)
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Table 2.14 Biomarkers related with different clinical outputs of carotid artery disease in i) Symptomatic, Asymptomatic & Controls, ii) Asymptomatic, iii)
Symptomatic and in iv) General population.

i) Symptomatic, Asymptomatic & Controls
Carotid Artery Disease Diagnosis hs-CRP [132] [134] [133], IL-6 [133] [146], sSVCAM-1 [133], ICAM-1 [146], E-selectin [146], MMP-
3 [146], MMP-9 [146], TRL [168], FABP4 [184]
Carotid Atherosclerotic Plaque hs-CRP [135] , IL-6 [135], TRL [165] [168], HDL [165] [163], Restinin [179], Chemerin [179],
Vulnerability FABPA4 [184], Osteoprotegerin [189], Lp-PLA2 [170] ,TNF-a [148], MMP-1 [148], TIMP-1 [148],
MMP-7 [148]
Symptomatic Carotid Artery Disease MMP-7 [142], TNF-a [143] [192], hs-CRP [192], IL-6 [192], Ox-LDL [151], Restinin [61]
CV Mortality MMP-7 [142], FABP4 [184]
i) Asymptomatic
Carotid Artery Disease Diagnosis PCSK-9 [177], hcy [186]
Carotid Atherosclerotic Plaque NGAL [147], MMP-9 [147]
Vulnerability
Future Stroke Event Homocysteine [186]
CV mortality hs-CRP [193]
iii) Symptomatic patients (either with diagnosis of carotid artery disease or undergoing CEA)
Carotid Artery Disease Diagnosis PTX -3 [140], TNF-a [140], LDL [140]
Carotid Atherosclerotic Plaque MMP-9 [149], Lp-PLA2 [138]
Vulnerability
Future Stroke Event. hs-CRP [137] [138], MMP-2 [149], MMP-9 [149], Ox-LDL [160], Lp-PLA2 [171]
iv) General population
Carotid Artery Disease Diagnosis Adiponectin [183], hcy [188], PTX-3 [139]
Carotid Atherosclerotic Plaque MMP-2 [150], MMP-7 [150], MMP-14 [150], Ox-LDL [159], HDL [164], TNF-a [141]
Vulnerability
Future Stroke Event. LDL [156], TC [156], triglycerides [156], Lp-PLA2 [172]
CV Mortality MMP-9 [152], Ox-LDL [161], VCAM-1 [145], ICAM-1 [145]
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2.6 Contribution of this thesis

It is clear from the abovementioned literature overview regarding the coronary and carotid lumen and
atherosclerotic plaques detection (Table 2.1, Table 2.2, Table 2.3) that the majority of the studies are
based either on the vessel or the atherosclerotic plaque detection. Most of the studies, concerning lumen
detection, are performed using typical image processing techniques, whereas atherosclerotic plaque
detection is performed based on HU analysis, with specific ranges for each plaque component.
Additionally, the evaluation process of the existing studies includes either the comparison with other
imaging techniques or the qualitatively evaluation.

In this thesis, we focus on developing an overall pipeline for the reconstruction of the entire coronary
arterial tree and the carotid artery bifurcation non-invasively using CTA, which provides 3D models of
the lumen, the outer wall, the CP and the NCP in order to overcome the literature limitations, regarding
the implemented methodology and the validation strategy. Our methodology for reliable segmentation

of the CTA images renders it a useful tool in the clinical and research arena.

In particular, our approach uses active contours to detect the inner, outer wall and CP, whereas the NCP
segmentation is performed using a fully adaptive HU- based threshold technique in order to be
independent by the different CTA scanners. Additionally, our proposed pipeline integrates an algorithm
for the blooming effect removal, in cases of high HU intensities values such as in CP or stented arteries.
The proposed segmentation method is validated using experts’ manual annotations, but also to enhance
our validation results it is compared with an invasive imaging modality i.e. IVUS and VH-IVUS
modality. The DICE coefficient for the lumen segmentation is 0.75, whereas for the CP and NCP was
0.72 and 0.7, respectively, which is similar or better than most of the other studies presented in the

current literature.

The obtained results indicate that the proposed methodology allows reliable and automated detection of
the luminal and vessel wall borders and fast and accurate characterization of plaque type in CTA images.
The previous presented methodologies have limitations such as that they are based on high quality
images or on thresholding techniques. Our method can handle any kind of CTA data, while it combines
arterial reconstruction with plaque characterization. In addition to this, all the potential validation
strategies have been performed for the evaluation of our methodology. Our methodology has been

integrated into useful tools clinically evaluated for both the coronary and carotid artery disease [194].
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Accurate CTA image analysis has led to the development of CAD risk prediction models using
geometry-based risk factors. The overall 3D reconstruction pipeline has been utilized for the calculation
of geometry based features, such as the DS, the MLA, the MLD, the presence and volume of CP.
Additionally, biomechanical features, such as the SmartFFR and WSS, have been utilized for CAD risk
prediction models. As it is shown in Table 2.6, statistical analysis and ML models have been
implemented to predict the progression of the CAD, the prediction of MI and the CV-related mortality,

using as input imaging and non-imaging data.

This thesis focuses on presenting a pipeline for the imaging based CAD risk prediction, which includes
the following steps: (i) CTA image analysis, (ii) calculation of imaging-based parameters, (iii) dataset
collection and curation, (iv) problem definition, (v) class imbalance handling, (vi) feature selection and
classification and finally (vii) the model evaluation. Four different approaches have been proposed for
CAD prediction, which include as outcome the prediction of obstructive CAD (2-class or 3-class
problems) and the site-specific CAD progression and PCI placement. The achieved accuracies were
0.81, 0.67, 0.74 and 0.78, indicating promising results for the CAD risk prediction.

Comparing with other existing studies in the literature, our proposed methodology takes into account
imaging features, deriving from the non-invasive CTA imaging modality, whereas other existing studies
calculate imaging features from IVUS modality. Regarding the first approach, the implementation of
ML models for CAD prediction, using as input the combination of both imaging (geometrical and
biomechanical) constitutes a novelty of my thesis. It is clear from the literature that assessing and
predicting CAD severity was achieved traditionally using statistical modelling and not ML. In spite of
the reported good discrimination ability of such parametric regression models, a recent systematic
review demonstrated the paucity of external validation and head-to-head comparisons, the poor
reporting of their technical characteristics as well as the variability in outcome variables, predictors and
prediction horizons, which limits their applicability in evidence-based decision making in healthcare
[195]. Thus, the limitations of statistical analysis techniques are overcome through this thesis with the
implementation of classical ML models for CAD prediction. In conclusion, the work of this thesis
related to CAD is in line with the latest CAD guidelines regarding the necessity of using non-invasive
CTA imaging for diagnosis of CAD. More specifically, using our methodology, besides the CAD
diagnosis which is provided by CTA, prediction of coronary stenosis or disease progression will be
delivered to the clinician to further support the treatment selection.
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Regarding the carotid artery disease prediction, through this thesis, attempts have been undertaken to
detect the presence of carotid disease, as it is defined by CAS and the presence of carotid plaques
vulnerability, as they are defined either by histology based features or by the presence of symptomatic
disease Most of the existing studies, concerning the CAS presence and high risk plaques presence, are
basically based on inflammatory biomarkers (hs-CRP, PTX-3, IL-6, TNF-a), ICAM-1, VCAM-1, E-
selectin and MMPs and are basically based on statistical analysis. In this thesis, we present a ML based
model for the detection of CAS presence, taking into account demographics, clinical data, typical risk
factors and medication therapy, whereas for the histology based high risk plaques detection, lipid related
biomarkers are used, as well. Comparing to other similar studies in the literature, our approach achieves
a higher accuracy (0.78 for CAS detection) and 0.67 (average for high risk plaque detection), based only
on typical health records, easily recorded by a general practitioner. External validation dataset have
been also used for the validation of ML model focused on CAS presence detection. More specifically,
512 individuals were utilized for the evaluation of our model and the overall accuracy was 0.89.
Comparing to the similar existing in the literature studies, as it is shown in Table 5.27, the achieved
accuracies either with the training dataset or with the external validation datasets, are higher. In addition
to this, in this thesis, our aim is to contribute to the carotid artery disease early detection only for the
asymptomatic individuals. Thus, retrospective datasets only for asymptomatic participants were utilized
for the development of the diagnosis of CAS. As it is shown in Table 2.14, there are only two studies,

which aim to detect CAS presence in asymptomatic participants.

Moreover, diagnostic prediction of high risk plaques has been defined based on histology related
components, such as the total collagen, the smooth muscle cells, the neutrophils, the lipid and the
macrophages. Comparing with other existing in the literature studies (shown in Table 2.10), which
basically define high risk plaques based on US-derived features, the histology based clinical outcome
definition constitutes a novelty of the proposed models. However, regarding the existing in the literature
studies for high risk plaques detection, there are not similar studies in the literature, which use typical
medical records for the plaque vulnerability detection to be directly compared with our proposed

models.

Additionally, through this thesis, ML based models have been developed for the detection of high risk
plaques, as they are defined by the presence of symptomatic carotid artery disease. Two ML models
have been developed and their accuracies were 0.79 and 0.65. Based on the existing in the literature
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studies, it is found that TNF-a, MMPs, ox-LDL and metabolic biomarkers are associated with the
symptomatic disease (Table 2.8) and the association of TNF-a. and MMPs (MMP-8, TIMP-2, MMP-
9/TIMP-1) has been confirmed through this thesis. In addition to this, in this thesis, it was established
the association of biomarkers, such as OPG, OPN, leptin, RANTES, FABP4 and GDF15 with

symptomatic artery disease.

The last contribution of the proposed thesis is the investigation of the relation between carotid artery
disease and silent brain lesions. A dataset of 211 participants was utilized for this analysis and US
related features, clinical features, risk factors, hematological and biochemical features were used for the
analysis. CAS presence, previous MI, alcohol abuse and previous CABG are positive factors for SBIs
presence and high values of SBP, triglycerides, creatine and HbAlc are also associated with the presence
of SBls.

65



Chapter 3 3D arterial Reconstruction using CTA

3.1 Introduction

3.2 Methodology for 3D inner and outer wall reconstruction
3.3 Methodology for atherosclerotic plague characterization
3.4 Dataset

3.5 Results

3.6 Discussion- Beyond the state of the art

3.1 Introduction

Due to its less invasive nature, a great interest has been focused on the imaging and diagnosis of
CAD and carotid artery disease using CTA modality. Different studies (described in detail in Chapter
2) have indicated that CTA modality is able to analyze accurately the coronary and the carotid artery
wall and provides not only the detection and quantification of the atherosclerotic plaque [196, 197],
but also the classification of its composition [198, 199]. In addition to its high accuracy, CTA
provides robust prognostic information in patients with suspected CAD and allows the risk
stratification as well, when CAD is present [200], while it can be used for prediction of plaque
growth based on computational modelling [201, 202]. Moreover, CTA provides a promising
potential in detecting certain vulnerable lesions in risk of embolic events [203].

In this chapter, we present a new semi-automated methodology for 3D coronary and carotid artery
reconstruction using CTA modality, implementing the active contour models for the segmentation of
2D CTA images. In order to investigate the accuracy of our methodology, we implemented a
validation procedure for the inner wall and outer wall detection, utilizing both manual annotations
and the IVUS modality for the coronary arteries and only manual annotations for the carotid arteries.
Additionally, we examine the accuracy of the CTA modality to identify the PB region and specify the
atherosclerotic plague composition. More specifically, a methodology for the identification and

volumetric quantification of CP and NCP is proposed, using density measurements, quantified by
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HU. The detection of CP is achieved by an active contour based approach incorporating prior
shapes, whereas the NCP is detected by an adaptive threshold based technique. The proposed
methodology for coronary atherosclerotic plaque detection is evaluated using the corresponding VH-
IVUS images and manual annotations, whereas the carotid atherosclerotic plaque detection is

evaluated using only manual annotations.

3.2 Methodology for 3D inner and outer wall reconstruction

The proposed methodology includes 7 stages, as it is shown in Figure 3.1, below [204-206]. In the
first stage, the CTA images are acquired and then they are pre-processed to detect the vessel
silhouette. In the third stage, a blooming effect removal technique is implemented and in the fourth
stage, a centerline extraction approach of the vessel is applied. In the fifth stage, two weight
functions for the lumen and the outer wall of arteries are estimated. In the sixth stage, an extension
of active contour models for the lumen and the outer wall segmentation is implemented. Finally, in
the last seventh stage the 3D surfaces for the lumen and the outer wall are constructed, employing the
Fast Marching cubes algorithm.

CTCA .
. Pre- Centerline

images . :
acqusition processmg extraction

Lumen & Weight
Outer wall function
segmentation estimation

3D models
construction

Figure 3.1 The proposed methodology outline [204].
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3.2.1 Preprocessing

The image preprocessing step is applied in the axial DICOM acquired slices to remove irrelevant
details of the CTA images. A vessel enhancement filter, the Frangi Vesselness filter [207] is
implemented to identify tubular structures and limit the ROI to vessel candidate regions. In Figure

3.2, an example of the implementation of the Vesselness filter is shown.

F

Region of
interest

Region of
interest

- e
Vesselness filter

Figure 3.2 An example of the implementation of the Vesselness filter in a CTA image [204].

3.2.2 Blooming effect removal

The blooming effect is a typical CTA image artifact, where small high density objects are illustrated
thicker with smeared edges. This artifact affects the visualization and the quantification of small
structures, such as the calcifications, as well as, the visualization of metal stents. Thus, in this step
we aim to remove the blooming effect, by applying the Blind deconvolution approach [208]. In
general, an output CTA image can be modeled by the convolution of the deblurred input image with
the point spread function (PSF) of the system, as it is shown in Eq.(3.1):

flx,y) =h(x,y) = g(x,y), (3.1)
where h(x,y) corresponds to the PSF of the CT system, g(x,y) is the real input structure and
f(x,y) represents the output image. In this approach, since the PSF of each CT system is not
defined, we estimate the CT system’s PSF, using a Gaussian kernel and subsequently we implement
on the high intensities CTA image’s regions a deconvolution technique to acquire the deblurred CTA
image [209]. The estimated Gaussian kernel is considered as a symmetric Gaussian lowpass filter of
size 5 with a standard deviation 0.8.

An example of the blooming effect removal step is illustrated below, in Figure 3.3.
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Figure 3.3 An example of the implementation of blooming effect removal technique [204].

3.2.3 Centerline extraction

The centerline is mainly required for creating an initial vessel mask for the vessel segmentation
algorithm. However, the centerline extraction stage still remains a challenging task, since the size of
the vessels is small and several reconstruction artifacts are observed. In the proposed methodology, a
minimum cost path approach is implemented for the centerline extraction, based on Metzt et al.
[210] approach.
The proposed centerline extraction methodology is quite simple and, therefore easy to implement,
since the main requirement is the starting point and the ending point of the vessel to extract the
corresponding centerline. The cost function, which is considered for the minimum cost path
approach is a combination of the lumen and vessel weight.
Firstly, we extract the image weight based on the vesselness measure (W,qss0;) [207]. Subsequently,
we compute the value of the top 50% of the image intensities, which are higher than 100 HU,
considering only the parts of the image, where the w,,.¢s,; measure is higher than 0. This computed
value ml is very significant, since it is used for the extraction of the lumen weight. More
specifically, the lumen weight is extracted by using a generalized bell-shaped membership function
and it is defined as:

Wiymen = 0.9 - ﬁ +0.1, (3.2)
where a = 0.02, b is the minimum value between ml — lsy,-.s and 500, and c is the value of ml +
Chinres- Heuristically, the threshold of the lumen (I;,,.5) and the CP (cpipnres) Were defined with the

value of 80 HU and 400 HU, respectively. More details can be found in the Appendix (Threshold

selection).
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The considered cost function V for the minimum path approach is a combination of the vessel and
the lumen weight and is defined by:

V' = Wyesset * Wiumen (3.3)
In order to calculate the shortest distance from a list of points to all other pixels in an image volume,
a Multistencil Fast Marching Method is implemented based on the approach described in [211]. An

example of the above procedure is depicted in Figure 3.4.

Vesselness
weight

Intensity
weight

Path using Fast
Marching

Figure 3.4 Example of a successfully extracted coronary artery centerline using the vesselness/intensity cost

function [204].

3.2.4 Estimation of weight function for the inner and outer wall

Similarly to the previous step, in this stage two different membership functions for the lumen and the
outer wall are computed, aiming to compensate different protocols for discriminating the lumen and

the outer wall. These membership functions are all adapted to the mean vessel intensity across the
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centerline, assuming that this corresponds to the mean lumen intensity. More specifically, the mean
lumen intensity I,m.n is calculated, taking into consideration only the pixels of the image, whose
intensities are higher than 100 HU and their Euclidean distance from the extracted centerline is less
than 5.

For the lumen a generalized bell-shaped membership function is used, whereas for the outer wall a
sigmoidal membership functions is implemented, as it is shown in Figure 3.5. The generalized bell-

shaped membership function is defined as:
1

g% (x;a,b,c) = W (3.4)
whereas the sigmoidal membership function is defined as:
g59™(x; a,b) = W (3.5)
where x is the image and a, b, c are the defined parameters.
For the lumen, the membership function is given by:
frumen = (1 = €) * 9" (X; Aumens Prumens Crumen) + € (3.6)

where apmen = 0.02, biymen = min([max([Iiymen — lenres  150])  500]) — 0.01 and Cjymen =
Tumen + CPenres-
The membership function for the outer wall and the plaques is in both cases a sigmoidal function and
IS given by:

fouter = (1 =€) - g°9™(%; Qouters bouter) + &, 3.7)
where  agyrer = 0.02 and byyeer = min(200, max([Tymen — linres — NCPenres 1001)).  The
threshold value for the lumen (I;1,,-.5) as previously stated is 80 HU. The intensity threshold for NCP
(ncpenres) is defined by the value of 50 HU. The value of the (ncpsny-es) 1S defined heuristically and
based on the current literature [212, 213]. More details can be found in the Appendix (Threshold
selection).
The parameter ¢ is a weight of the membership functions and in all cases, it is defined by the value
of 0.05. In Table 3.1, we summarize the different values of the parameters of the membership

functions for each component.

71



Likelihood

— inner wall

-===guter wall

.
.t
ARD

| 1 1 1 L

-200

0 200 400 600 800 1000 1200
HU values

Figure 3.5 Membership functions distributions for lumen and outer wall over HU [204].

Table 3.1 A summary of the parameters of the membership functions for the lumen and the outer wall.

Parameters a b c
Lumen 0.02 min([max([Lymen — lenres 1501 5001) | Lymen +
~0.01 CPenres-
Outer wall 0.02 min(200, max([Tumen — Linres -
— NCPinres  100]))

3.2.5 Lumen segmentation

In this step, an extension of the active contour models [214] is implemented for the lumen

segmentation. This approach is based on regional measures and does not depend on any edge

definition. In other words, the boundaries of the detected objects are not necessarily defined by the

gradient. The main improvement of our lumen level set segmentation approach is that it incorporates

a prior shape [215], aiming to segment an object whose shape is similar to the given prior shape

which is independent of translation, scaling and rotation, from a background where there are several

objects. For the lumen segmentation, the prior shape is a tubular mask across centerline with a small

radius.
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Update of lumen intensities

Our purpose is to implement the membership function in the part of the CTA image, which is near to
the extracted centerline. Thus, first, in order to update the membership function for the lumen, we
calculate the Euclidean distance transform only of the pixels around the extracted centerline. This

estimated distance d; limits the ROI, since based on its value, we considered only the pixels whose
distance transform is lower than 4/Px’ where p, is the pixel spacing of the DICOM image and 4 is an
approximate value for the radius of the lumen. In other words, we assume that: fi men =0
- pixels:d, > %/, and in the same manner fye., = 0 - pixels:d, > %/, . For the lumen

pixels, the updated membership function is given by:
f1 = frumen gSi‘gm (d1i A2,lumen» b2,lumen)’ (3.8)
where a; jymen = —0.5 and by jymen = Z/px, whereas for the outer wall plaques pixels, the updated
membership function is given by:
frouter = fouter gsm (d1i Az,0uter, bZ,outer)’ (3.9)
where a; outer = —0.5 and b, gyer = Z'S/Px'

Approximation of an initial binary image

For the implementation of the Level Set method approach, an approximation of an initial image-

shape ¢ is required. This image is a binary image, which includes 0’s as background pixels and 1’s

as foreground pixels. The intensity threshold value for the estimation of the initial image is Wi/z.
Thus, the pixel value of initial image is 1, when f; - w; is higher than Wi/z, whereas it is 0, when f; -

w; Is lower than Wi/z. The parameter w; is an estimated weight to multiply the probability in the

level set method and it is defined 1000.

Calculation of the speed function

The Level set methods have been widely used in the field of machine vision for segmentation
problems, since they are used for the modelling of evolving curves or surfaces. The basic idea
behind the level set approaches is the presentation of the interface of a surface, using a higher

dimensional function, which is called the level set function. This means that the 2D curve could be
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described by the 3D level set function, where the additional dimension t represents the time. In the
proposed methodology, the detected curve CeQ is represented by the zero level set of a Lipschitz
function , such that:
C=do={(xy,t)eQip(xy,t)=0},
inside(C)=w={(x,y,t)eQ:gp(x,y,t)>0}, (3.10)
inside(C)=w={(x,y,t)eQ:p(xy,t)<0},

where X,Y are the spatial coordinates of the 2D image, t is the dimension of time and v c Q.

In this stage, a level set based variational method using prior shapes is implemented for the lumen
segmentation and our aim is to incorporate shape priors into the Chan-Vese’s model for
segmentation. This approach is based on Cremers et al. [216] and Chan et al. [215] studies, in which
besides the basic level set segmentation function ¢, a shape function ¥ and a labelling function L
are introduced. The key idea of this methodology is that the defined prior shape is compared with
the region where both the level set function ¢ and the labelling function L are positive.

In the presented methodology, the speed function that is impemented to evolve the level set curve is
based on Chan et al. approach [215]. The defined speed function is a Chan-Vese energy function,
combined with prior shapes and with a labelling function and is given by:

E(@,¢,L,c1,¢2) = Ecy + Espape + Ey, (3.11)
where E¢y is the Chan-Vese energy funtion, Egj,yp,. is a shape comparison term and Ey, is a labelling
term.

The Chan-Vese energy funtion [214] is widely used in medical image segmentation approaches and it

is defined as:
ECV(Cli €2, C) = finside(C)(u(x' y) - Cl)ZdXdy + foutside(C)(u(x' y) - CZ)dedyl (312)

Disretizing the above speed function equation and writing it as a pixelwise function, it gives

Ecy(,y) = (u(x,y) — ¢1)? — (u(x, ) — )%, (3.13)
where u is the image, x, y are the spatial coordinates of the 2D image, C is the segmentation curve
and c;, c, are the average greyscale intensity values inside and outside of C, respectively.

The shape comparison term is defined as:

Eshape (0, L) = [, (H(@)H(L) — HW))  dxdy, (3.14)
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where H is the Heaviside function and H(@)H (L) represents the intersection of ¢ > 0 and L > 0.
The labelling function Ey, is a term that indicates if the lumen is segmented successfully, since then

this term will be small and it is given by:

Ey(P,ci,¢2) = [, [(w = c))? H@) + (u = ¢2)*(1 — H@))|dxdy, (3.15)

Sparse Field Algorithm implementation

As previously mentioned, the key idea of Level Set approaches is that only the area, where ¢ (x,y) =
0 is important to accurately represent the curve. In this approach, a sparse field algorithm approach,
proposed by Whitaker et al. [217] is implemented to maintain an accurate and minimal
representation of ¢. Once the initial ¢ is defined, the algorithm returns fully initialized arrays for the
label map and for an updated ¢. Both arrays are of the same size and the label map records the
status of each point. Once the energy function has been computed for the part of the image which is
around the centerline, the level sets may be deformed in order to minimize some of the energy
function. Thus, a sparse field approach is implemented twice to update ¢ near the zero level set.
First, based on the initial ¢ and on a positive factor a, which controls the speed and curvature of the
level set, the algorithm results in a Nnew @;,men. Subsequently, based on the resulted ¢;,men, the
algorithm is implemented again, using a higher value of factor a , to achieve a smoother lumen
shape. In the first step, a lower value of factor @ was applied, in order to provide fast segmentation
in the whole image. In the second implementation of sparse field algorithm, a higher value of factor
« is selected and applied only at the ROI in order to provide smooth and accurate segmented objects
which depict only the coronary arteries.In the first step, the factor « is defined 0.1, whereas in the
second step factor «a is defined 0.6, as it is shown in Figure 3.6. The value of a factor affects only
the speed of the segmentation and it does not affect the quality of the segmentation. The number of
iterations for the sparse field algorithm impementation is set to 200.

3.2.6 Outer wall segmentation

Similarly to the previous step, a Level Set model is implemented for the outer wall segmentation.
However, in this stage the initial ¢ is based on the lumen shape, as segmented in the previous stage
and on the updated values of outer wall intensities. More specifically, the required ¢ of this stage is

also a binary image, which includes 1’s for the pixels, where either the w; - f5 syuter + Wi * f2 piaque 1S
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higher than Wi/z or the segmented lumen (@men) has a positive value. Furthermore, the energy

function for this stage, is calculated only for the pixels, where @, men 1S higher than -0.1. The sparse
field algorithm implementation process for the outer wall is exactly the same as in the previous stage

described.

Figure 3.6 Lumen Segmentation example, a) acquired image, b) a factor 0.1, ¢) a factor 0.6 [204].

3.2.7 3D surface construction

In this stage, an isosurface of data from each different extracted ¢ array is computed to construct the
mesh surfaces. In this step the algorithm marching cubes, proposed by Lorensen and Cline [218], is
implemented to construct 3D surfaces for the lumen and the outer wall. Marching cubes extracts a
polygonal mesh of an isosurface from a 3D discrete scalar field, by proceeding through it. A
triangulation approach is implemented, and connecting the detected border points of each CTA
image, 3D models are constructed. An example of 3D reconstruction of coronary arteries in the

baseline and follow-up for one case is shown in Figure 3.7, below.

In Figure 3.8 below, we demonstrate (a) the 3D reconstruction of a carotid artery bifurcation, (b) the

2D CTA slice without segmentation and (c) the 2D segmentation of the inner wall and outer wall.
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Baseline

Follow-up

Figure 3.7 Example of 3D reconstruction of coronary artery in baseline and follow-up [204].

2D CTCA axial slice

Calcified Plaques

Figure 3.8 (a) 3D reconstruction of a carotid artery bifurcation, (b) the 2D CTA slice without segmentation

and (c) the 2D segmentation of the inner wall and outer wall [206].
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3.3 Methodology for atherosclerotic plaque characterization

The proposed methodology is based on the accurate detection of the lumen and the outer wall of
coronary and carotid vessels, as described previously. The detection and characterization of
atherosclerotic plaques is implemented in the ROI, which is inside the outer wall and outside the

lumen, as it is shown in Figure 3.9, below.

- Wall

Plaque ROI

Figure 3.9 Region of Interest (ROI) [204].

The characterization of atherosclerotic plaque into CP and NCP requires the accurate detection of the
lumen and the outer wall. The proposed methodology includes four steps: In the first step a weight
function for CP is estimated to approximate the potential HU values ranges for the CP. In the second
step, an extended approach of active contour models without edges is implemented to detect the CP.
In the third step, an adaptive intensity range is extracted based on the mean lumen intensity for the
detection of NCP. Finally, in the fourth step, the 3D geometrical models for the inner and the outer

wall, the CP and the NCP are constructed, employing the fast marching approach.
3.3.1 Estimation of weight function for the CP

In this step, similarly to the lumen and the outer wall, a membership function for the the CP is

estimated, aiming to compensate a different protocol for discriminating the lumen CP into the ROI.
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Contrary to the CP intensity ranges, the NCP intensity ranges are close to the outer wall HU values

and as a result, a membership function cannot be extracted for the NCP detection. The utilized
membership function for the CP, illustrated in Figure 3.10, is a sigmoidal function, adapted to each

CTA image, since it is based on Iymen. The Ipmen Value as stated previously, corresponds to the
mean intensity values of the top of half image intensities, which are higher than 100 HU, taking into

consideration only the image’s pixels which correspond to the initial vessel mask, extracted by the

Frangi vesselness filter [207].

The membership function for the CP (fcp) is a sigmoidal function which is given by:
L (3.16)

—a(x-b) !

9" (xab) =

where x is the image and a, b are the defined parameters.
In our case the f,, is given by:
fop = (1 =€) g59™(x; acp, bep) + &, (3.17)

where a., = 0.05, bep = Iumen + CPenres- ThE CPenres is defined by the value of 400 HU. As

stated previously, more details can be found in Appendix (Threshold selection).
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Figure 3.10 Membership functions distribution for CP over HU [204].

3.3.2 CP segmentation
In this stage, the Level Set method [214, 217, 219, 220] is applied in the ROI of the outer wall. The

main idea of CP segmentation is exactly the same with this proposed in the previous chapter for the
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segmentation of the inner and the outer wall. The initial ¢ for the CP segmentation is based only on

the updated plaques intensity function. In other words, the initial ¢ is also a binary image, which
includes 1’s for the pixels, where w; - fo,, is larger than Wi/z. For this phase, only a sparse field

algorithm implementation is required, as the segmented objects are relatively smaller and the a factor

is 0.5. An example of the segmentation procedure is demonstrated in Figure 3.11.

Figure 3.11 An example of the segmentation procedure: a) the acquired image, b) inner wall, outer wall and

CP [205].

In addition to this, we demonstrate in Figure 3.12 below, an example of the centreline extraction, in
combination with the lumen and CP segmentation, across the length of the centreline. The
segmentation procedure is indicated not only across all the length of the vessel centreline, but also in
a 2D CTA slice. Moreover, in Figure 3.12, we illustrate the DS, by providing the exact lumen and

outer wall surfaces in mm? per 0.5mm.
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Figure 3.12 a) Lumen (red) segmentation and CP (green) segmentation across the vessel centerline, b) Lumen
(red) and CP (green) segmentation in a 2D CTA slice, ¢) Lumen (green) and outer wall (grey) suface per 0.5

mm.

3.3.3 NCP segmentation

Contrary to the CP, the NCP usually have a lower intensity, which makes the detection of the NCP a
challenging problem. Different studies have indicated that the luminal intensity is clearly related to
the intensity inside the atherosclerotic plaque [221]. Thus, in this study due to the lower intensities
of NCP, the NCP cannot be successfully identified by a level set approach, since the intensity ranges
are close to the intensity ranges of the outer wall. The identification of NCP is achieved by a
dynamic thresholding technique. Thresholding is a conventional segmentation technique, in which
the image pixels are partitioned depending on their intensity value, using an appropriate threshold
value. However, in the case of dynamic thresholding segmentation, the threshold value is not a
constant value and relies on the mean intensity values of pixels, which correspond to the lumen

region.

The main idea of this approach is to adapt the threshold values of NCP into the luminal intensity, by
defining a critical value threshold. More specifically the range of NCP HU values is extracted based

on the mean luminal intensity (ml). The ml is computed after the implementation of the Frangi
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vesselness filter. The ml value is the mean value of the highest of half image intensities, which are
higher than 100 HU, considering only the parts of the CTA image, which are potential coronary
vessels. After the definition of the ml, the range of NCP intensities is defined from 100 HU to the ml
value. In addition to this, the aforementioned segmentation approach is implemented in the ROI,
which is located inside the segmented outer wall and outside the inner wall. An example of the

segmentation procedure is demonstrated in Figure 3.13.

Figure 3.13 An example of the segmentation procedure: a) the acquired image, b) inner wall, outer wall and

NCP plaques [205].

3.3.4 3D surface reconstruction

The Marching cubes algorithm, which has been proposed by Lorensen and Cline [222], is applied to
construct the 3D surfaces for the the CP and the NCP. More specifically, a triangle topology is
defined by constant density surfaces, applying the divide- and- conquer approach to create inter-slice
connectivity. In Figure 3.14, a 3D reconstructed geometry of the lumen, the outer wall and the CP
back-projected in volume rendering is illustrated. Moreover, in Figure 3.15 and Figure 3.16, lumen,
outer wall and both types of atherosclerotic plaques (CP and NCP) are shown for coronary arterial

tree and coronary artery bifurcation, respectively.
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Calcified plaque

Figure 3.14 3D reconstructed models for the lumen, the outer wall and the CP [204].

Non-calcified plaques Calcified plaques

Figure 3.15 3D reconstructed models of a coronary arterial bifurcation for the lumen, the outer wall, the CP

and the NCP.
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Calcified plaques
Non-calcified plaques

Figure 3.16 3D reconstructed models of a coronary arterial tree for the lumen, the outer wall, the CP and the

NCP.
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3.4 Dataset

3.4.1 Dataset for 3D coronary artery reconstruction

3.4.1.1 Dataset for inner wall and outer wall segmentation

The data used for the validation of the inner and outer wall segmentaion, were acquired from 12
patients, who underwent CTA imaging for clinical purposes. Our validation dataset consists of
twelve coronary arteries, deriving from six different medical centers. Two arteries were completely
healthy (no stenosis present), nine arteries had an intermediate stenosis (seven had a 30%-50% DS
and two had a 50%-70% DS) and one artery was fully occluded (>90% DS). Five arteries were
scanned with a 64-slice Dual Source Siemens SOMATOM Definition Flash® CT scanner, two
arteries were scanned with a Philips Brilliance 64 CT Scanner® and the remaining five arteries were

scanned with a 64-slice General Electric Medical Systems Discovery PET-CT 690® scanner.

IVUS and biplane X-ray angiography were acquired from eight patients who underwent coronary
catheterization. CTA imaging was also acquired for the same patients. Registration between the
imaging modalities was performed using major landmarks common for all modalities, such as the

bifurcations or large CP.

3.4.1.2 Dataset for CP and NCP segmentation
Dataset to compare with VH-1VUS modality

The proposed methodology was validated using imaging data from 18 patients, who underwent
CA, IVUS and CTA imaging for clinical purposes. All of the patients enrolled in the study had a
significant luminal stenosis (>50%), which was initially confirmed by the CTA imaging and
further investigated by VH-IVUS. This imaging dataset was provided by the Heart Institute,
University of Sao Paulo, Sdo Paulo, Brazil and the CTA images acquisition was performed using a
64slice MDCT scanner (Aquillion 64TM, Toshiba Medical Systems, Japan), while the IVUS
examination was performed using a 20 MHz electronic multi-array 2.9 F catheter (Eagle Eye®,
\Volcano Corporation Inc) connected to a dedicated console (InVision Gold®, Volcano Corporation

Inc., San Diego, CA, USA).
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Dataset to compare with manual expert’s annotations

The imaging data were acquired from 27 patients, who underwent CTA imaging for clinical
purposes and one of their coronary arteries was selected for manual expert’s analysis. 8 coronary
arteries had no significant stenosis (<30%), 8 had an intermediate stenosis (30%-50%), 8 had a
significant stenosis (50%70%) and 3 coronary arteries were fully occluded with a stenosis higher
than 70%. In addition to this, the utilized imaging dataset was derived by six different medical
centers and the coronary arteries were scanned with different CTA scanners (64-slice Dual Source
Siemens SOMATOM Definition Flash® CT scanner, Philips Brilliance 64 CT Scanner®, 64-slice

General Electric Medical Systems Discovery PET-CT 690®).
3.4.2 Dataset for 3D carotid artery reconstruction

A total of 16 patients (4 females and 12 males) with a mean age of 76 years (range: 55-86 years)
were used for the validation of the carotid artery reconstruction. 14 patients have no previous event,
whereas 2 of them have a following stroke event. CTA was performed on either a Philips ICT (256
rows) or an Iqon (64rows) with the same protocol. Bolus tracking was used with the ROI placed in
the aortic arch. 80 ml of Imeron 350 was administered with a flow rate of 4ml/s followed by a 50ml

saline chaser. Collimation and reconstruction matrix was 0.9mm

3.5 Results

3.5.1 Results for coronary artery reconstruction
3.5.1.1 Results for inner wall and outer wall segmentation
Artery reconstruction using manual annotations

Reconstruction of arteries was successfully obtained in 12 patients, 2 RCA, 8 LAD and 2 LCX, by
the proposed methodology in a semi-automatic manner, whereas an expert radiologist manually

annotated in the corresponding segments the lumen and the outer wall.

The aim of the validation process is to assess the accuracy and the quality of the proposed
methodology. In this study, our purpose is to validate our methodology, using as gold standard a
medical expert’s annotations. It is known that the lack of expert-annotated datasets remains one of

the main challenges in medical image processing [223]. Generating high-quality expert-derived
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annotations in CTA images is time-consuming and requires a specialized in CTA imaging field

medical expert.
Artery and CP reconstruction using IVUS

Reconstructions of arteries based on IVUS modality is performed using the study proposed by
Bourantas et al. [224]. This approach combines the IVUS and X-ray angiography and based on the
3D luminal centerline, derived from two angiographic projections, it places the lumen and the media-

adventitial borders detected by IVUS frames onto the centerline.
Metrics for evaluating 3D image segmentation

The lumen and the outer wall reconstructed by the two different modalities were compared using as
metrics for the 3D image segmentation the DICE and the HD [225]. Additional metrics were used
for the validation of the proposed methodology against the 1I\VUS based reconstructed segments. For
this purpose we used for comparison two types of DS (DS1, DS2), the PB, the MLA and the MLD.
In more detail, the DICE, also called overlap index, is an overlap based metric, which is widely used
to compare directly automatic and expert’s annotations segmentations. It is considered as a statistical
validation metric to evaluate the performance of both the reproducibility of manual segmentations

and the spatial overlap accuracy of automated segmentation [226]. DICE is defined as:

2|sgns¢|

DICE = ,
|sgl+ls¢|

(3.18)

where S¢ presents the automatic segmentation and S; presents the expert’s annotations.
HD is a spatial distance based metric and is commonly used in the evaluation of image segmentation
as dissimilarity measure. HD between two finite point sets A and B is defined as:

HD(A, B) = max(h(4, B), h(B, A)), (3.19)
where h(A,B) = max rg1eilrallla - b]|.
The 3D models reconstructed by CTA and IVUS were compared using as validation metrics the DS,
the DS2, the PB, the MLA and the MLD. Each 3D model was sliced per 0.5 mm, to estimate the

validation metrics. Based on the literature, two different ways of DS estimation were used [227].

More specifically, DS1 and DS2 are given by:
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DS1 =22=-100%, (3.20)

DS2 = % 100%, (3.21)

where A is the luminal diameter at the site of maximal narrowing, B is the diameter of the normal
distal coronary artery beyond the bulb where the artery walls are intersected and C is the diameter of
estimated original width of the coronary artery at the site of maximal narrowing, as it is shown in

Figure 3.17 below.

Figure 3.17 Diagram of a coronary stenosis.

The PB is extracted based both on the inner and the outer wall contours areas per 0.5 mm and is
given by:

outer_wall_area—inner_wall_area

PB =

, (3.22)

outer_wall_area

Comparison using manual annotations

For both quantitative evaluation and comparison purposes, we present in Table 3.2 the DICE and HD
distributions obtained by the comparison of the proposed segmentation methodology and the expert’s
manual segmentation. The HD demonstrates the degree of resemblance between the two models
which are superimposed on one another. Thus, the lower HD implies better segmentation, while a

higher DICE implies higher accuracy of the segmentation.
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The validation process indicates a good agreement, since the mean value of DICE is 0.749, while the
mean value of HD is 1.746. In Figure 3.18, an example of the lumen 3D models reconstructed by the
proposed methodology and by the expert’s annotation, is shown. The two reconstructed arteries
indicate a similar geometry. The semi-automated reconstructed artery is smoother than the manually

segmented, since a pixel by pixel segmentation may not result in a smooth shape.

Table 3.2 Segmentation Validation metrics for CTA images.

Cases Arteries DICE HD
#1 LAD 0.847 0.837
#2 LAD 0.675 1.910
#3 LAD 0.777 0.860
#4 LAD 0.674 2.423
#5 LAD 0.759 1.589
#6 LAD 0.810 1.510
#7 LAD 0.574 2.671
#8 LAD 0.751 1.800
#9 LCX 0.847 1.296

#10 LCX 0.722 1.830
#11 RCA 0.781 2.341
#12 RCA 0.778 1.880

[}

3
o

a) b)

Figure 3.18 Lumen and CP objects detected by a) the proposed methodology, and b) the medical expert

annotation [204].

Comparison using IVUS findings

As far as the comparison with IVUS process is concerned, we demonstrate in Table 3.3 the values of

the comparison metrics. The metrics of the 3D models derived by our methodology are correlated
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with those derived by the 1VUS findings, and the Bland altman and correlation plots for DS1, DS2,
MLA, MLD, and PB are demonstrated in Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22 and
Figure 3.23, respectively. It is clear, that the correlation between the two methodologies is

statistically significant for all the reconstructed cases.

Table 3.3 Comparison of geometrical metrics derived by the presented methodology with those derived by an

IVUS based approach.
Cases Method DS1(%) | DS2(%) | PB(/0.5mm) | MLA(mm?) | MLD(mm)
#1 CT 0.29 0.53 0.53+0.09 3.73 1.10
IVUS 0.43 0.47 0.54+0.17 3.72 1.11
#2 CT 0.17 0.33 0.45+0.09 7.2 1.49
IVUS 0.27 0.37 0.5+£0.07 8.37 1.64
#3 CT 0.64 0.55 0.45+0.11 0.95 0.75
IVUS 0.54 0.46 0.38+0.2 3.81 1.15
#4 CT 0.27 0.33 0.5+£0.07 5.46 1.32
IVUS 0.17 0.33 0.42+0.2 7.45 1.62
#5 CT 0.54 0.56 0.55+0.09 0.83 0.78
IVUS 0.5 0.62 0.51+0.08 3.18 1.03
#6 CT 0.34 0.48 0.46+0.09 5.14 1.28
IVUS 0.24 0.33 0.54+0.09 4.28 1.19
#7 CT 0.54 0.72 0.48+0.08 3.05 0.87
IVUS 0.5 0.62 0.52+0.09 4.79 1.24
#8 CT 0.43 0.42 0.36+0.09 1.47 0.79
IVUS 0.3 0.51 0.26+0.22 251 0.9
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Figure 3.19 Bland Altman and Correlation plots for the DS1.
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Figure 3.20 Bland Altman and Correlation plots for the DS2.
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Figure 3.21 Bland Altman and Correlation plots for the MLA.
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Figure 3.22 Bland Altman and Correlation plots for the MLD.

0.2
Plaque Burden (1=0.75). p=0.03

g 015 mm—m—m————————— 0.6
) y=1262x -0.1375
g2 01 . R:=05569 * , .
Mm . 0.5 . L
8 =
&2 005 . " L |
p < E 04 s
RS 0 - —
2=
% o -0.05 °® 03
Sy L]
= °
A .01 02

g | | [ 03 0.35 04 045 0.5 0.55 0.6

TS Average Plaque Burden CTCA

Figure 3.23 Bland Altman and Correlation plots for the PB.

The results above indicate a good correlation between the presented methodology and an already
validated 3D reconstruction methodology [224], which utilizes the IVUS imaging modality. In some
cases, the presented methodology indicates an excellent agreement, compared to the IVUS modality
as it is shown in Figure 3.24, below. It is observed the calculated surfaces per 0.5 mm of the 3D

coronary model derived by CTA based method are similar to those derived by 1IVUS based method.
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Figure 3.24 Comparison between the inner wall area per 0.5mm derived by the presented methodology and

the inner wall area per 0.5mm derived by an I\VUS based approach.

Evaluation of blooming effect removal using IVUS findings

As far as the validation of blooming effect removal is concerned, we demonstrate in Table 3.4 the
geometrical features derived by the CTA based methodology with and without the incorporation of
blooming effect removal, in comparison with the IVUS based reconstruction methodology. It is
observed that the geometrical features derived by the methodology which incorporates the blooming
effect removal indicates a better correlation with those derived by the CTA based methodology,
which do not incorporate the blooming effect removal. In addition to this, in Figure 3.25, we
demonstrate that the mean error of the lumen area per 0.5mm derived by the CTA based
methodology when the blooming effect removal is incorporated, is lower than the respective error of
the lumen area per 0.5 mm derived by the CTA based methodology without the incorporation of

blooming effect removal, when it is compared to the IVUS based methodology.
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Table 3.4 Comparison of geometrical metrics derived by the presented methodology with the
incorporation of blooming effect removal, without the blooming effect removal and with those

derived by an IVUS based approach.

: : IVUS
Cases Metrics CTA CTA Blooming
DS1 0.30 0.31 0.27
#1
DS2 0.54 0.53 0.46
PB 0.56 0.52 0.52
PB/0.5mm 0.53+0.09 0.48+0.17 0.54+0.17
DS1 0.38 0.28 0.16
#2
DS2 0.36 0.34 0.33
PB 0.54 0.50 0.37
PB/0.5mm 0.50+0.07 0.46+0.06 0.36+0.2
DS1 0.62 0.60 0.22
#3
DS2 0.72 0.70 0.45
PB 0.47 0.42 0.64
PB/0.5mm 0.48+0.08 0.47+0.09 0.52+0.09
DS1 0.56 0.47 0.28
#4
DS2 0.59 0.51 0.68
PB 0.53 0.57 0.73
PB/0.5mm 0.55+0.09 0.58+0.08 0.51+0.08
DS1 0.44 0.41 0.29
#5
DS2 0.41 0.41 0.60
PB 0.36 0.39 0.50
PB/0.5mm 0.36+0.09 0.37+0.09 -
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Figure 3.25 Comparison of the proposed methodology (with and without blooming incorporation) with IVUS

based methodology.

3.5.1.2 Results for CP and NCP segmentation

In the validation procedure, 18 coronary arteries and 90 CTA and VH-IVVUS slices were identified,
registered and used for the validation procedure. After the implementation of the proposed
methodology and the analysis of VH-IVVUS slices, we identified 6 CP lesions and 12 NCP lesions.
As far as the 3D comparison procedure is concerned, we present in Table 3.5 and Table 3.6 the
volume and the length of the lesions obtained by the proposed methodology and by the VH-IVUS
for CP and NCP, respectively.

The correlation between CTA and VH-IVUS is extracted using Bland Altman analysis and linear
regression correlation analysis. The Bland Altman plots and the correlation plots are shown in
Figure 3.26 for the CP volume and CP length of lesion, whereas in Figure 3.27, the corresponding
plots for the NCP volume and length of the lesion are shown. As far as the 2D comparison
procedure is concerned, in Figure 3.28 and Figure 3.29 the Bland Altman analysis and the

correlation plot for the CP area and NCP area are shown, respectively. The comparison results
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indicate that the Pearson's correlation (r) for the CP volume, the length of the lesion and the area
was 0.93, 0.84 and 0.85, while the Degree of correlation (R?) was 0.85, 0.71 and 0.72, for the CP

volume, the CP length of the lesion and the CP area, respectively.
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Figure 3.26 Bland-Altman and correlation plots for CTA and VH-IVVUS for the CP volume and the CP length

of lesion.
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Figure 3.27 Bland-Altman and correlation plots for CTA and VH-IVVUS for the NCP volume and NCP length

of lesion.
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Figure 3.28 Bland-Altman and correlation plots for CTA and VH-IVVUS for the CP area.
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Figure 3.29 Bland-Altman and correlation plots for CTA and VH-IVUS for the NCP area.

The corresponding correlation values of NCP are 0.92, 0.95 and 0.81 for Pearson's correlation (r),
and 0.85, 0.9, 0.64 for the Degree of correlation (R?), for the plaque volume, the length of lesion
and the area, respectively. The mean values of the plaque volume extracted by the proposed
methodology are 6.98+4.59 mm?® and 120.59+83.11 mm? for CP and NCP, respectively, whereas
the corresponding mean values of the plaque volume by VH-IVUS are 5+3.58 mm? for CP and
129.28+101.3 mm? for NCP. The mean value of the CP length of the lesion is 3.63+2.25 mm and
for the NCP lesion is 40.375£18.62 mm, while the mean value of the CP length of lesion based on
VH-IVUS is 4.04+£1.97 mm and of NCP lesion 46£18.29 mm. In addition to this, the mean value
of the plaque area based on CTA and VH-IVUS is 0.59+0.99 mm? and 0.42+0.61 mm? for CP,
respectively, and 2.31+1.17 mm? and 2.26+1.38 mm? for NCP, respectively. The previously
described correlation metrics and the mean values of the validation metrics are shown in Table 3.7

and Table 3.8, respectively.
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Table 3.5 Validation metrics for the CP.

Case | CP  volume VH-| CP volume | Length of the CP | Length of the CP
IVUS (mm®) CTA (mm?®) lesion VH-IVUS (mm) | lesion CTA (mm)
#1 2.81 2.72 2.9 1.3
#2 0.86 1.49 1.68 15
#3 9.54 10.69 481 4
#4 5.56 7.2 6.57 7.5
#5 8.8 13.51 5.81 4
#6 241 6.24 2.49 35
Table 3.6 Validation metrics for the NCP.
Case NCP volume VH- NCP volume Length of the NCP Length of the NCP
IVUS (mm?®) CTA (mm?®) lesion VH-IVUS (mm) | lesion CTA (mm)
#1 246.39 369.84 59 50.5
#2 158.73 179.63 715 67.5
#3 80.42 100.69 26 20
#4 18.39 20.16 24 21
#5 29.11 37.09 26 20.5
#6 151.12 131.24 42 32
#1 93.89 69.25 325 36.5
#8 197.48 200.69 735 72
#9 35.12 31.14 18 16.5
#10 105.29 95.05 33 36.5
#11 67.74 87.39 325 43.5
#12 263.38 229.2 46.5 45
Table 3.7 CTA and VH-IVUS correlation metrics.
Correlation metrics Pearson's correlation (r) | Degree of correlation (R?)
CP volume vs VH-IVUS 0.93 0.85
CP | CP length of lesion vs VH-IVUS 0.84 0.71
CP area vs VH-IVUS 0.85 0.72
NCP volume vs VH-IVUS 0.92 0.85
NCP |NCP length of lesion vs VH-IVUS 0.95 0.90
NCP area vs VH-IVUS 0.81 0.64
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Table 3.8 CTA and VH-IVVUS validation metrics.

Metrics CTA VH-IVUS
volume 6.98+4.59 5+3.58
CP length of lesion 3.63+£2.25 4.04+1.97
area 0.59+0.99 0.42+0.61
volume 120.59+83.11 129.28+101.3
NCP length of lesion 40.375+18.62 38.46+18.29
area 2.31+1.17 2.26+1.38

Comparison with manual annotations

The utilized data were acquired from 27 patients, who underwent CTA imaging for clinical
purposes. 1350 CTA slices were utilized and manually annotated for the lumen segmentation
validation, whereas 78 CTA slices and 47 CTA slices were utilized for the CP and NCP
segmentation validation procedure, respectively. In Table 3.9, we present the DICE and HD for
the lumen segmentation, whereas in Table 3.10 and Table 3.11, we present the DICE and HD
distributions for the CP and NCP, respectively. The mean value of DICE was 0.72+0.08, 0.7+0.09
and 0.62+0.07, for the lumen, CP and NCP, respectively, whereas the mean HD value was 1.95
+0.45, 1.74 +0.34 and 1.95 £0.36 for lumen, CP and NCP, respectively. In Figure 3.30, we show
the manual and the automated segmentation for the lumen (Figure 3.30a and Figure 3.30b), the CP

(Figure 3.30c and Figure 3.30d) and the NCP (Figure 3.30e and Figure 3.30f).

Table 3.9 Validation metrics against manual annotations for the lumen segmentation.

Cases Lumen Cases Lumen
DICE HD DICE HD
#1 0.79+0.1 2.39+0.86 #15 0.77+0.05 2.43+0.18
#2 0.83+0.05 2.074£0.35 #16 0.66+0.14 1.6+0.43
#3 0.67+£0.09 1.69+0.57 #17 0.52+0.12 1.78+0.58
#4 0.8+0.06 1.77+0.55 #18 0.68+0.08 1.588+0.73
#5 0.79+0.04 1.63+0.3 #19 0.81+0.1 1.86+0.66
#6 0.72+0.1 2.09+0.37 #20 0.77+0.08 1.68+0.43
#7 0.64+0.12 1.54+0.16 #21 0.58+0.13 2.03+0.34
#8 0.75+0.07 2.22+0.28 #22 0.68+0.12 1.940.57
#9 0.65+0.09 2+0.31 #23 0.59+0.1 2.04+0.73
#10 0.66+0.07 2.3+0.17 #24 0.78+0.07 1.64+0.34
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Cases Lumen Cases Lumen
DICE HD DICE HD
#11 0.64+0.03 2.31+0.38 #25 0.73+0.09 1.84+0.44
#12 0.73+0.06 2.9+0.97 #26 0.82+0.05 2.05+0.32
#13 0.65+0.03 2.24+0.4 #27 0.8+0.08 1.67+0.62
#14 0.81+0.07 1.43+0.23

Cases CP
DICE HD
#1 0.79+0.12 1.33+0.16
#2 0.66+0.11 2.38+0.27
#3 0.67+0.09 2.56+0.23
#4 0.62+0.13 1.27+0.24
#5 0.61+0.15 1.89+0.38
#6 0.62+0.06 1.82+0.58
#7 0.72+0.07 1.58+0.36
#8 0.71£0.05 1.31+0.21
#9 0.78+0.04 1.94+0.51
#10 0.68+0.07 1.61+0.63
#11 0.72+0.08 1.87+0.32
#12 0.73+£0.17 1.35+0.43
#13 0.76+0.09 1.82+0.15

Table 3.10 Validation metrics against manual annotations for the CP segmentation.

Table 3.11 Validation metrics against manual annotations for the NCP segmentation.

Cases NCP

DICE HD
#1 0.69+0.08 2.39+0.56
#2 0.65 1.41
#3 0.78+0.06 1.42+0.2
#4 0.51+0.09 2.98+0.34
#5 0.54+0.08 1.28+0.38
#6 0.65+0.08 2.25+0.46
#7 0.49+0.08 1.89+0.56
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Manual Automated
segmentation segmentation

Figure 3.30 Manual and automated segmentation for the lumen (a, b), for the CP (c, d) and the NCP (e,f)

[205].
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3.5.2 Results for carotid artery reconstruction

Comparison with manual annotations

In the first validation strategy, shown in the Figure 3.31, we implement a validation procedure as far
as the 2D segmentation is concerned, computing the DICE and the HD. Reconstruction of carotid
arteries, both for the left common artery and the right common artery, was successfully obtained in
16 patients. Our results indicated a value of DICE is 0.83 and 0.8, whereas the HD is 1.55 and 1.44,
as far as the inner wall and outer wall detection is concerned, respectively. The respective evaluation
metrics for the identification of CP is 0.71 and 1.63, whereas the DICE and the HD for the NCP are

0.7 and, respectively.

Carotid artery

CT imaging l
Gold standard Manual Annotations (medical expert)
Validation
- ] 16 cases — DICE coefficient

Metrics .
Hausdorff Distance

(32 carotid arteries)

Figure 3.31 First Validation Strategy.

In the second validation strategy, shown in Figure 3.32, correlation analysis was implemented for the
comparison of inner wall and outer wall area, derived by the automated proposed segmentation
algorithm and these derived by manual expert’s annotation. Correlation analysis for the inner wall is

illustrated in Figure 3.33, whereas correlation analysis for the outer wall is illustrated in Figure 3.34.

Carotid artery

CT imaging

Validation Gold standard Manual Annotations (medical expert)
—— (650 inner wall slices,

——
500 outer wall slices) Metrics Inner Wall Area, Outer Wall Area

Figure 3.32 Second Validation Strategy.
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Figure 3.33 Correlation Analysis for the inner wall area.
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Figure 3.34 Correlation Analysis for the outer wall area.

3.6 Discussion

In this chapter, a semi-automated methodology for the reconstruction of the lumen and the outer wall
of coronary and carotid arteries, using CTA images, was presented. The main innovation of this

study is its automatic nature, since it only requires the starting and the ending point of the artery to
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accurately reconstruct it. In addition to this, the presented methodology provides accurately the 3D
reconstruction of the entire coronary and carotid arterial tree and the user needs only to annotate the
starting point of the bifurcation and the ending points of the vessel branches. The presented
methodology is mainly based on a level set segmentation model [215] for the segmentation of the
lumen and the outer wall, which allows an accurate segmentation and its applicability is not limited
by the low CTA images quality [214]. The unique preprocessing step of the acquired CTA images is
to detect the vessel candidate regions. In addition to this, the extraction of the centerline using a
minimum cost path based approach in combination with appropriate cost functions selection, ensures
that the extracted centerline may be the globally optimal solution. Therefore, once the vessel
centerline is successfully extracted, an appropriate initial vessel mask for the lumen segmentation is
created. Furthermore, minimum cost path approaches are able to overcome problems related to

overlapping pathologies, depicted in the image, as well as, issues of low image quality.

As for the coronary artery reconstruction, to our knowledge, our study is the only approach in the
literature that allows a 3D reconstruction of coronary anatomy, which is compared both by a medical
expert’s annotations and IVUS findings. The results of the proposed methodology demonstrated that
our approach is able to accurately segment the lumen and outer wall and provide geometrically
correct 3D models. In the literature, several methodologies [73, 197, 228-230] have been presented
for the segmentation of CTA cross sectional images and the classification of its plaque components.
These approaches are time consuming, since corrections of the detected borders are sometimes
required and the reconstruction of the coronary anatomy is not implemented in an automatic or semi-
automatic manner. This limitation is overcome by the new proposed automatic methodology, which
provides in a fast manner the segmentation of CTA images.

Furthermore, existing studies [64, 73, 80] are evaluated using only 1IVUS modality, whereas the
presented study is validated using both medical expert annotation and 1IVUS 3D models. Although,
the manual annotation requires a lot of effort and time, since the expert annotates in each slice the
lumen and the outer wall, expert manual segmentation of real images is regarded as a practical gold
standard against which new segmentation algorithms can be compared [223]. On the other hand, a

comparison with IVUS 3D reconstructed models allow us to validate the geometry of the
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reconstructed arteries and extract validation metrics, such as the coronary lumen stenosis, the PB, the

MLA and the MLD.

In contrast to Athanasiou et al. existing study [64], which focused on comparison metrics, such as the
comparison of the volume and areas of the ROI, the length and angle of the vessel, our validation
process is dedicated to quantify the region of agreement, the overlap region between our proposed
methodology and the manual segmentation, as well as validation metrics which demonstrate the 3D
model accuracy. It is known that an objective validation of image segmentation is of great
importance, but it is such a difficult task. Based on the literature [223, 225], the selected in this
approach comparison metrics are two of the most common measures and their values indicate how
accurately the segmentation algorithm performs. More specifically, the mean value of DICE is
0.749, while its standard deviation (SD) is 0.0787 and the mean value of HD is 1.746, while its SD is
0.573. The correlation coefficients for the DS1, the DS2, the PB, the MLA and MLD, when
comparing the derived from the proposed methodology 3D models with the IVUS reconstructed
models, were 0.79, 0.77, 0.75, 0.85, 0.81, respectively. In the proposed methodology, the validation
dataset consists of data acquired from three different scanners. That means that our 3D
reconstruction approach is applicable in different clinical environments, since each CT scanner is

characterized by its different properties and settings.

Regarding the carotid artery reconstruction, different studies have been proposed in the literature for
the carotid arteries CTA imaged analysis. Most of them are dedicated on the entire carotid vessel
(outer wall) detection [86, 88, 89, 91, 97] and do not identify the inner wall (lumen) of the carotid
arteries. On the other hand, Freiman et al. [93] in a study proposed in 2012 presented a graph-cut
based segmentation algorithm for the accurate detection of carotid artery lumen (inner wall) and
achieves an overall DICE of 84.5% * 3.3%. Nevertheless, this study is validated against
experimental existing studies [231] and not directly compared to experts’ manual annotations, which
is considered as the gold standard. Moreover, another carotid artery lumen segmentation
methodology has been presented by Hemmati et al. [96] and achieves an overall DICE of 0.85.
However, this study is not capable of identifying the vessel centerline of small branches and it is

necessary to remove small branches in centerline extraction stage. Additionally, the methodology
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fails to identify the vessel centerline in the regions where the vessel is occluded. Other existing
studies, such as the study proposed by Guha et al. [98] and dos Santos et al. [95] have not been

validated quantitatively.

Our proposed study for the segmentation of the entire carotid artery vasculature and the
atherosclerotic plaques presented a complete methodology for the segmentation of the two
anatomical layers of the carotid arteries, both the inner wall and the outer wall. The detection of both
the inner and the outer wall of the carotid artery constitutes the novel aspect of the proposed
methodology, since both layers have a clinical significance. More specifically, the DS, calculated by
the segmentation of the inner wall, is considered as one of the most significant geometric features of
the carotid artery and its value contributes to the clinical decision and the patient management.
Additionally, the quantification of the overall PB region, computed by the detection of both the inner
wall and outer wall, is also a significant measurement as far as the carotid artery disease prediction

and its progression is concerned.

Regarding the atherosclerotic plaques detection based on CTA, this methodology presents an
automated methodology for their reconstruction. To our knowledge, the proposed study
constitutes a novel approach due to its automated nature and its validation process, as far as the
CTA validation process is concerned. More specifically, the proposed study is validated utilizing
VH-1VUS modality for the 3D distribution of CP and NCP, while it is also validated in terms of

CP and NCP segmentation accuracy, by directly comparing medical doctor’s annotations.

As far as the CP is concerned, its pixels can be easily identified using the CTA modality due to
their high intensity values. On the other hand, the detection of NCP constitutes a challenging
problem, since the NCP intensity is characterized by lower intensity values, close to the blood
and the muscle tissues. The CTA modality is a promising non-invasive technique to accurately
detect the NCP in the PB. Direct identification and quantification of NCP and PB is an important
issue, since the NCP has been indicated as a significant indicator of acute coronary syndromes
[35] and its presence is more likely to be associated with high-risk groups, such as those with

elevated inflammatory biomarkers and those suffering from DM [36, 37].
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In the proposed methodology, two 2D segmentation approaches are implemented for the
detection of CP and NCP. The identification of CP relies on level set models, whereas the NCP
detection is based on a dynamic thresholding technique. Although the level set models achieve an
accurate segmentation, in the case of NCP this is not applicable, since the HU intensities of NCP
proposed in the literature are close to those of the outer wall. Therefore, since an accurate inner
and outer wall detection has been achieved, a validated ROI detection ensures the accurate CP and
NCP detection. As a result, a good correlation was indicated and no significant differences of
plaque volumes, lengths of coronary atherosclerotic plaque lesions and areas quantified by CTA
and VH-IVUS were observed. In Table 3.12, a comparison of the NCP volumes derived by the
proposed methodology and by other methodologies is presented. It is observed that the study
proposed by Dey et al. [16] indicate a higher correlation. This study is concentrated only on the
quantification and detection of NCP and does not provide any details about the vessel geometry
and the distribution of the plaque in 3D space. In addition to this, the study proposed by Dey et
al., [16] requires by the user the starting and the ending point of the plaque lesion to quantify the
NCP lesion. Contrary to this study, our proposed methodology is able to identify either CP or
NCP lesions in the entire coronary arterial tree, indicating only the starting point of the coronary

bifurcation and the ending points of each coronary artery branch.

Furthermore, several studies have been conducted focusing on the ability of expert observers to
detect and annotate manually NCP using CTA. These studies indicate a strong correlation with the
NCP volumes derived by IVUS. However, these approaches are time consuming, since they are
not implemented in an automatic or semi-automatic manner [39-42]. In our methodology, this
limitation is overcome, since the proposed methodology requires low computation time for the 3D
reconstruction of coronary arteries. In addition to this, it should be noted that the proposed
methodology achieves an expedite 3D coronary reconstruction of the entire coronary arterial tree.
In this way, the atherosclerotic plaque can be identified not only in coronary segments, but also in

crucial regions, such as the coronary bifurcations.
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Table 3.12 Comparison of the proposed methodology with the other methodologies for the NCP detection.

Study Volume by Volume by Pearson's Degree of
CTA IVUS correlation correlation (R?)
(r)

Brodoefel et al. [17] 56.7+30 55.8+26 - 0.84

Dey et al.[16] 116+80.1 105.9483.5 0.94 -

Leber et al. [18] 59.8+76.6 67.7+67.9 - 0.69
Schepis et al. [19] 89166 90+73 0.89 -

Proposed methodology | 120.59+83.11 | 129.28+101.3 0.92 0.85

Other studies have demonstrated that the mean luminal attenuation value varies, due to the
different acquisition dose protocol. In addition to this, it has been indicated that the intra-arterial
injection of iodinated contrast agent affects not only the luminal attenuation value, but also the
atherosclerotic plague attenuation value [43]. The luminal attenuation varies also between
patients. In our study, the segmentation of NCP is clearly related to the mean luminal attenuation
and more specifically the computed ml value varies from 276- 418 HU. As such, the proposed

methodology can be adapted to all the CTA acquired images and acquisition protocols.

Apart from the selected HU threshold values for NCP, another important factor for the accurate
identification of NCP is the reliable identification of ROI. Accurate lumen and outer wall area
segmentation results in accurate PB region detection. In our study, the detection of the ROI has
already been validated [38] using both manual expert’s annotations and a 3D reconstruction
methodology using angiographic data fuzzed with IVUS data [34]. Thus, the presented
methodology for NCP detection is a promising technique allowing the accurate PB

characterization.

Furthermore, it should be noted that the VH-IVUS permits the plaque characterization with a
higher spatial resolution than the non-invasive CTA. Due to its low spatial resolution, CTA is
limited to identify the different subtypes of the NCP, contrary to VH-IVUS and to extract in a
reliable manner the smaller atherosclerotic plaque volumes. This approach was validated using

large NCP volumes, ranging from 18.39 -263.38 mm?, which are more prone to rupture.
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The presented methodology incorporates the blooming effect removal, aiming to improve the
CTA image visualization of calcifications. In this manner, an accurate 3D quantification of CP is
achieved, without overestimating the CP volume, which results in the overestimation of the
coronary lumen stenosis. The blooming effect remains a challenging artifact of CTA images,
which can be limited by deconvolution and filtering techniques. In addition, we implement a
deconvolution procedure on the high intensity image’s pixels to quantify in a reliable manner the
CP volume. Thus, no significance difference is observed between the CP volumes derived by the
presented methodology and those extracted by VH-1VVUS analysis, achieving a high Pearson's

correlation (r=0.93).
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Chapter 4 Coronary Artery Disease Prediction

4.1 Introduction
4.2 Coronary artery disease prediction based on imaging and non-imaging data

4.3 A Machine Learning Approach for the Prediction of the Progression of
Cardiovascular Disease based on Clinical and Non-Invasive Imaging Data

4.4 Site specific prediction of atherosclerotic plaque progression

4.5 Site specific prediction of PCI stenting based on imaging and biomechanics data

using gradient boosting tree ensembles

4.5 Conclusions

4.1 Introduction

The recent advances in coronary imaging techniques, either invasive or non-invasive, have enabled
the identification of coronary vessels features, which are considered as CAD risk factors. Taking
advantage of the overall pipeline of 3D reconstruction of coronary arteries, which was described in
detail in chapter 3, in this chapter we aim to develop and present innovative ML models for the CAD

prediction.
More specifically, the basic aim of this chapter is to:

I.  develop a ML predictive model, which incorporates both non-invasive imaging data, derived
by CTA and typical patient’s baseline characteristics to predict the CAD risk and especially
the obstructive disease [232].

ii. present a patient specific ML based model for the prediction of CAD progression using
vasculature geometrical features based on CTA imaging and the conventional CAD risk

factors [233].
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iii.  present a site specific ML tree- based model for the prediction of atherosclerosis progression
[234].

iv.  present a site specific model for the prediction of the coronary site specific Percutaneous
Coronary Intervention (PCI) stenting placement, based on imaging derived predictors,

implementing a gradient boosting tree ensemble technique [235].

4.2 Coronary artery disease prediction using machine learning
4.2.1 Methodology

4.2.1.1 CTA Image Analysis and Three-Dimensional Reconstruction

The first step of the development of the CAD risk prediction model was the analysis of the CTA
images. This analysis was conducted by implementing an active contour based model for the
segmentation of CTA images and aimed to provide a detailed geometry of the three major coronary
arteries, the LAD, the LCX, and the RCA. This methodology is integrated in a dedicated software
tool, which can semi-automatically provide the detailed 3D coronary artery anatomy [204, 205].

More details for the overall 3D reconstruction methodology can be found in the Chapter 3.
4.2.1.2 Calculation of the smarTFFR index

In this study, except of the geometrical derived metrics. a blood-flow-based index, the smarTFFR
index [236] was utilized. In order to calculate suarTFFR, blood flow finite element simulations are
carried out on the reconstructed 3D models of the coronary arteries. The arterial lumen is discretized
into tetrahedral finite elements of face size that ranges from 0.09 to 0.12 mm and the respective
Navier-Stokes and continuity equations are then solved using the Finite Elements method. A
transient blood flow simulation is performed on the 3D reconstructed artery. The flow is considered
laminar and the blood is treated as a Newtonian fluid with density 1050 kg/m® and dynamic viscosity
0.0035 Pa-s. For each timestep, the Pd/Pa value is calculated to construct the Pd/Pa vs. flow curve.
The calculated Pd/Pa values for every timestep are then connected to create the appropriate patient-
specific curve. The patient-specific curve is constructed for a flow range of 0-4 ml/s and the
smArRTFFR value is calculated by dividing the area under the patient specific curve to the respective
AUC of the respective healthy arterial segment [237]. The overall procedure for smarTFFR index

calculation is shown in Figure 4.1.
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Figure 4. 1 Overall procedure for the suartFFR index calculation.

4.2.1.3 Problem Definition

In the presented approach, the CAD risk stratification problem has been formulated as a two-class
classification problem based on the maximal coronary artery stenosis. This hypothesis is based on
the findings of the Coronary Artery Disease Reporting and Data System (CAD-RADS) [238], which
provides a standardized method to associate findings of the CTA imaging modality to facilitate
decision making regarding further patient management. Figure 4.2 shows the distribution of the
population across the two CAD-severity groups. More specifically, among the total 263 patients who
underwent CTA imaging for clinical purposes, 55 patients underwent PCI stenting procedure and 10
patients coronary artery bypass grafting (CABG) procedure, whereas CTA images of 11 patients
were considered as interpretable either at the baseline time step or at the follow-up time step. The
annotation was based on the assessment of the obstructive disease: at least one major artery with
stenosis > 50% and at the follow-up time step 125 participants were at Class 1— C,, whereas 62
participants were at Class 2— C,.

The definition of these two classes is based on the quantitative DS derived by the CTA imaging
modality according to the society of CV CT guidelines committee [239]. More specifically, the first
class, the no CAD—minimal CAD class (Class 1— C;)), includes the grading scale 0, 1, and 2
(normal, minimal, and mild), whereas the obstructive CAD class (Class 2— C,)) includes the grading
scale 3, 4 ,and 5 (moderate, severe, and occluded), as it is shown in Table 4. 1. This classification

was selected because we want to predict the obstructive CAD disease.

Table 4. 1 Definition of the utilized CAD risk classes.
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Proposed Recommended Stenosis Quantitative Stenosis
Classes Grading Scale of CAD
Class 1—C; 0: Normal No luminal stenosis
1: Minimal Plaque with <25% stenosis
2: Mild 25-49% stenosis
Class 2— C, 3: Moderate 50-69% stenosis
4: Severe 70-99% stenosis
5: Occluded 100% stenosis
| 263 cases ‘

- STENTORCAGE

INTERFRETABLE

NO

l

‘ 187 cases |

~ Max Lumen
Stenosis

i (Al ;

T segments)

lecsn% Jj:s.un,g
125 No CAD- 62 Obstructive
Minimal CAD CAD

Figure 4.2 Flow chart depicting the distribution of the cohort in CAD-severity groups based on the CTA

imaging at the follow-up step. in total, 287 patient imagings (125 in Class 1 and 62 in Class 2) were analyzed

[232].

Baseline imaging and non-imaging characteristics were trained into a gradient boosting classification
scheme, aiming to discriminate the patients at low risk (Class C;) and those at high risk (Class C,),
concerning their follow-up time step. This predictive supervised learning approach aims to learn
mapping from input features x to output Y given a labeled set of input output pairs D = {(x;, )}V,

where D is the training set, and N is the number of training examples [240]. Each sample (x;, Y;)
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associates the input features with the risk prediction of CAD severity, Y, where Y € {C;, C,}, is
estimated by a non-linear parameterized function (f) of input features x € R4, x = [xq, x5, ..., xy].
The goal of this supervised classification problem is to obtain an approximation F (x) of the function
F*(x) mapping the input x to output Y. The function F*(x) minimizes the expected value of some
specified loss function L(y,F(x)), whereas the procedure followed in this proposed study is to
restrict the function F(x) to be a member of parameterized class of functions F(x;Y). In addition to
this, in this paper, we constructed our model based on additive expansions of the form
F(x; {Bm, am ). F*(x) and F(x; {Bm, am}}) , which are described in the following equations
[240].

F*(x) = argmin E,,L(y,F(x)) = argminE, [(Ey (L(y,F(x))) |x)] (4.1)

F(x; {Bm, am}g/l) = %:1 Bmh(x; anm), (4.2)
where h(x;a) is a simple parameterized function of the input variables x, characterized by the
parameters a = {a,, a,, ..... }, whereas {8,,, a,,}}! denotes the entire parameter set [240].

The selected predictive model was nested into an easy ensemble classification scheme to overcome
the class imbalance problem. To estimate the classification performance of the proposed method, an
externally stratified 10-fold cross-validation was applied, with data pre-processing, a multivariate
feature ranking, and a gradient boosting classification scheme being efficiently combined at each
iteration of the procedure. The overall proposed model performs feature selection in the learning
time since it achieves model fitting and feature selection simultaneously. Data-preprocessing and
feature ranking follow the resampling procedure itself, which reduces the selection bias in the
estimates of the model’s performance, whereas stratification assures that each validation fold retains
the class distribution in the dataset. In addition to these, randomized search optimization of the
model’s hyper-parameters over an internal 3-fold cross-validation contributes to the fine-tuning of
the presented model.

4.2.1.4 Easy Ensemble Algorithm Implementation-Class Imbalance Handling

The easy ensemble algorithm [241] is a class imbalance handling approach in which P are the
training instances of the minority class, whereas Q denotes the instances of the majority class. The
idea of the easy ensemble algorithm is to employ random resampling to generate K subsets of
{04,0,,...., 0k} from Q (]Q;| < 1Q], i = 1,2,...K). Subsequently, each Q; U P is trained by the
classifier, and the final decision is selected by majority voting. In the proposed predictive model

approach, the easy ensemble approach is combined with the gradient boosting classifier.
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4.2.1.5 Data Pre-Processing

In this step, one hot encoding procedure was implemented to represent all the categorical input
features as binary vectors. In addition to this, a curation procedure was implemented to curate our
dataset both for outliers and missing values. All the input features whose missing values were higher
than 10% were removed from the dataset, whereas features with missing values lower than 10% were
imputed by either the most frequent value (categorical type features) or the median value (numerical
type features).

4.2.1.6 Recursive Feature Elimination

In this step, our aim is to reduce the dimensionality d of input features x € R? to overcome the risk
of overfitting, which basically arises when the number of d is comparatively large, and the number
of the training patterns is small. In this study, a feature ranking technique with a SVM with recursive
feature elimination (RFE) was implemented to rank the input features. The whole SMV RFE
procedure is shown in Table 4.2 [242].

Table 4.2 SVM RFE Algorithm [242].

Input:
Training Examples: Xo = [x1, X5, e o) Xpe oo X |7
Class labels: v = [y1, V2, e o) Yir e 71 1T
Initialize:
Subset of features: s = [1,2, ....,d]
Feature ranked listr = [ ]
Repeat until s = [ ]
Restrict training examples to good feature in DICEs: X = X, (:, s)
Train the classifier: a = SVM_train(X,y)
Minimize over aj: | = %thYhYkahak(xh Xy + A6px) — Xk, Subject to: 0<a,<C and
2k AYr =0
Outputs: Parameters: a,
Compute the weight vector of dimension length(s): w = Y ai Vi Xk
Compute the ranking criteria: c; = (w;)?, for all i
Find the feature with smallest ranking criterion: f = argmin(c)
Update feature ranked list: r = [s(f), 7]
Eliminate the feature with smallest ranking criterion: s = s(1: f — 1, f + 1: length(s))

Output: Feature ranked list r
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4.2.1.7 Gradient Boosting Classification

In the first step, the gradient boosting classification algorithm [243] implements a numerical
implementation minimizing the equation of F*(x) (Equation 4.1). The Gradient Boosting
classification algorithm [243] implements a numerical implementation, minimizing Equation 4.1 and
yields an additive expansion of the form:

F*(x) = Y=o fm (%), (4.3)

where f, is an initial guess and {f,,}} are successive “boosts”, each based on the sequence of
preceding steps. More specifically, for the steepest-descent

fm(x) = —PmGm (%), (4.4)
with
YLy, F
Im(x) = [35 [< (?;F(x)(xmxﬂl ’ (4.5)
F(x)=Fpn-1(x)
Fr1(x) = 27251 fi (%), (4.6)
and
Pm = argmiany,xL(yr Fn1(x) = pgm(x)), (4.7)

Subsequently, based on the training dataset D = {(x;,Y;)}}_, and aiming to minimize Equation 4.1,
we try a “greedy-stagewise” approach to obtain

(B, am) = argming q Z{V=1 Ly, Fn—1(x;) + Bh(x;; a)), (4.8)
and then

E,(x) = Fpp_1(x) + B h(x; ay,). (4.9)
Given an approximation of F,,_,(x), the function B,,h(x; a,,) can be considered as the best greedy
step towards the data based estimate of F*(x), whereas the data based analogue of the unconstrained
negative gradient;

OL(yiF(x)
i | 4.1
gm(xl) [ JF (x;) ]F(x)sz_l(x)’ ( 0)

gives the best steepest-descent step direction —g,, = {—g.,(x;)}Y in the N-dimensional data space at
Fpn_1(x). The most highly correlated h(x;a) with —g,,(x) over the data distribution can be
obtained from the solution

U = argming g Xilal—gm(x;) — Bh(x; @)]?. (4.11)
The line search is performed by

Pm = argming LIy L(ys, Fnoy (60) + ph(xi; @), (4.12)
and the final approximation is given by:
En(x) = Fppoq1(X) + ph(x; ay). (4.13)

The overall pipeline of the proposed ML methodology is shown in Figure 4.3, below.
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Figure 4.3 Overall pipeline of the proposed methodology [232].

4.2.2 Dataset

The proposed study is based on the EVINCI population [244], in which patient-specific information,
both imaging and non-imaging, were collected for clinical purposes and utilized as the baseline
information for the development of a CAD risk stratification methodology, whereas the follow-up
data were collected after 6.22 + 1.42 during the SMARTool project (September 2016—November
2017) [245]. More specifically, during the H2020 SMARTool project, a prospective, multicenter
study in patients was conducted by 7 medical centers (Pisa, Turku, Zurich, Barcelona, Warsaw,
Naples, Viareggio) from 5 European countries. All the participants signed informed consent to
participate in the study and all the following procedures. Patients who previously underwent
coronary CTA during the EVINCI (Evaluation of Integrated Cardiac Imaging for the Detection and
Characterization of Ischemic Heart Disease; FP7-222915; n = 152-February 2009—-June 2012) [12]
and ARTreat (FP7-224297; n = 18) [13] clinical studies were prospectively included to undergo
follow-up CTA. In addition to this, individuals (n = 32) who underwent CTA in the period from
2009 to 2012 were also prospectively included. A detailed list of inclusion and exclusion criteria is
provided in the Appendix (Full list of eligibility, inclusion, exclusion and exit criteria).

Anonymized data were acquired from 187 patients, derived by different medical centers, and the
cohort data were obtained under a data protection agreement fulling all the ethical and legal

requirements for data sharing posed by the General Data Protection Regulation in a third-level care
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setting. Table 4.3 below demonstrates the collected data types. The median age of the patients of our
dataset is 61 years old (45-76), and at their first visit to the physician, all the participants underwent
CTA imaging regardless of the presence of symptoms. More specifically, 45% and 25% of the
participants had atypical and typical angina, respectively, whereas 12% of them had other symptoms,
and 16% were asymptomatic. In addition to this, as for the pharmaceutical treatment of the
participants, 18%, 28%, 13%, 40%, 13%, 10%, 3%, and 48% of them received angiotensin receptor
blockers (ARBS), angiotensin converting enzyme inhibitors (ACEi), diuretics, beta blockers, calcium
antagonists, oral antidiabetics, insulin, and statins, respectively, at the baseline time step.

Table 4.3 Imaging and non-imaging data utilized.

Type Features
Imaging | Geometrical | DS, MLA, MLD, PB, CP Volume, NCP volume, smarTFFR Index, Number of
data vasculature CP, Number of NCP
Non- Demographic Age, Gender
imaging S

data Risk factors | Family History of CAD, Hypertension, DM, Dyslipidemia, Smoking, Obesity,
Metabolic Syndrome, Past Smokers
Biohumoral Creatinine, Uric Acid, Glucose, TC, HDL, LDL, Triglycerides, Insulin,
Markers Aspartate Aminotransferase, Alanine Aminotransferase, Alkaline Phosphatase,
Gamma-glutamyl Transferase, hs-CRP, IL-6, TSH, fT3, fT4, Leptin, MMP2
Protein Plasma, MMP9 Protein Plasma, hs-cardiac Troponin T, N terminal
Fragment of Pro-brain Natriuretic Peptide, Lipidomics, Metabolomics

4.2.3 Results

CAD Risk-Prediction Model Performance Evaluation

The utilized CAD risk-prediction model performance metrics are the balanced accuracy, the NPV,
the PPV, the AUC, and the sensitivity and specificity. The values of the adopted performance
metrics and their mean value and the 10-fold SD are given in Table 4.4. The average balanced
accuracy of the selected predictive model is 0.81, while its sensitivity and specificity is 0.88 and
0.73, respectively. In Figure 4.4, we demonstrate the normalized confusion matrix regarding the
selected gradient boosting classification algorithm combined with an SVM RFE feature selection
technique, where the percentage of the true negative predicted cases is 73%, whereas the percentage
of the true positives cases is 87%.

In addition to this, in Table 4.5 the respective performance metrics over the different folds and their

mean and SD values using only non-imaging data are shown. The average balanced accuracy of the
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predictive model trained only by non-imaging features is 0.69, while its sensitivity and specificity are
both 0.69.

0.8

Confusion Matrix with Normalization

True label

F0.4

Predicted label

- 0.2

Figure 4. 4 Confusion Matrix

Table 4.4 Evaluation of the CAD risk-prediction problem over 10-fold using imaging and non-imaging data.

Folds Balanced NPV PPV ROC AUC Sensitivity Specificity
Accuracy

Fold #0 0.73 0.78 0.67 0.60 0.67 0.78
Fold #1 0.75 0.86 0.63 0.82 0.84 0.67
Fold #2 0.89 1 0.72 0.92 1 0.78
Fold #3 0.69 0.78 0.6 0.72 0.6 0.78
Fold #4 0.84 1 0.63 0.83 1 0.67
Fold #5 0.84 1 0.63 0.89 1 0.67
Fold #6 0.95 1 0.84 1 1 0.89
Fold #7 0.78 1 0.56 0.78 1 0.56
Fold #8 0.8 0.86 0.72 0.88 0.84 0.75
Fold #9 0.8 0.86 0.72 0.75 0.84 0.75

Mean £ SD | 0.81+0.08 0.92+0.1 0.68+0.08 | 0.82+0.11 0.88 £0.15 0.73+£0.09
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Table 4.5 Evaluation of the CAD risk-prediction problem over 10-fold using only non-imaging data.

Folds Balanced NPV PPV ROC AUC Sensitivity Specificity
Accuracy

Fold #0 0.5 0.6 0.4 0.33 0.33 0.67
Fold #1 0.56 0.64 0.5 0.65 0.33 0.78
Fold #2 0.72 1 0.5 0.89 1 0.44
Fold #3 0.69 0.78 0.6 0.69 0.6 0.78
Fold #4 0.79 0.88 0.67 0.87 0.8 0.78
Fold #5 0.78 1 0.56 0.78 1 0.56
Fold #6 0.79 0.88 0.67 0.8 0.8 0.78
Fold #7 0.72 1 0.5 0.76 1 0.44
Fold #8 0.6 0.64 0.67 0.79 0.33 0.88
Fold #9 0.71 0.75 0.67 0.83 0.67 0.75

Mean+SD | 0.69+0.1 0.82+0.16 057+£0.1 | 0.74+0.16 0.69+0.28 0.69+0.15

Additionally, a SHAPIley Additive exPlanations (SHAP) analysis was implemented for explaining
the prediction of the proposed model by computing the contribution of each feature to the prediction
[246]. The most important predictors of the proposed model are presented in Figure 4.5, below.
Mean absolute SHAP values for the 10 most significant features are estimated to illustrate the global
feature importance. As it is shown in Figure 4.5, the most significant feature is the number of the
existing CP and the highest coronary DS at the baseline step. In addition to this, input features such
as pro-brain natriuretic peptide (NT-proBNP), MMP-2 and 9, leptin, LDL, and patient characteristics
such as weight, age, and height are highly ranked as significant features for the prognosis of CAD.

In addition to this, in Figure 4.6 below, we demonstrate the global interpretability of the proposed
model by representing how much each input feature, either positively or negatively, contributes to
the target variable. In Figure 4.6, we show with yellow columns the input features that contribute
positively to the output target (detection of Class 2, CAD class). On the other hand, with blue
columns, we indicate the input predictors that contribute negatively to the output target (detection of
Class 1, no-CAD class). As it is shown in Figure 4.6, most of the input features contribute
negatively to the output target and contribute to the prognosis of Class 1. Indicatively, the most
significant features that contribute positively to the output target are thyroid stimulating hormone,
medication therapy of beta blockers, aspartate aminotransferase, DM, and MLA. In the presented
model, we observe that the most significant predictor for the prognosis of CAD is thyroid stimulating
hormone, which confirms the effect of the thyroid hormones on the CV system [247, 248]. Thyroid
hormone is considered as a significant regulator of CV system function and hemodynamics through
different mechanisms. More specifically, inadequate thyroid hormone levels impair the relaxation of

vascular SMCs and decrease cardiac contractility by regulating calcium uptake and the expression of
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several contractile proteins in cardiomyocytes. Additionally, low thyroid hormone levels also
increase systemic vascular resistance and induce endothelial dysfunction by reducing nitric oxide
availability [249, 250]. As for the imaging-based input predictors, MLA has the most significant
positive effect on the proposed model. As it is shown in Figure 4.6, the most significant feature with
negative effect on the output is the number of the CP at the baseline analysis of patient imaging.
Different studies in the literature have confirmed the prognostic capability of the presence of CP
[251]. Calcification of the coronary arteries plays a key role in the pathophysiology of
atherosclerosis, and these lesions are considered advanced lesions [252]. In addition to this, patient
height contributes negatively to the prognosis of the output target, confirming the genetic
relationship between height and CAD [253, 254]. As for the biochemical predictors for the no-CAD
class (Class 1), we observed that pro-brain natriuretic peptide, LDL, and MMP- 2 have a high

negative effect on the output target.
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Figure 4.5 Feature importance based on mean SHAP values. The number of the existing CP and the highest

coronary DS are indicated as the most significant features.
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contribute positively to the output target are thyroid stimulating hormone, medication therapy of beta blockers, aspartate aminotransferase, diabetes, and
minimum lumen area, whereas the most significant feature with negative effect on the output is the number of the CP at the baseline analysis of patient

imaging.
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4.3 Prediction of the progression of coronary artery disease using machine learning
4.3.1 Methodology

4.3.1.1 CTA image acquisition and analysis

The geometrical vasculature features utilized in the proposed ML based model are estimated based on an
already published methodology for the 3D reconstruction of coronary arteries, which is described in
detail in Chapter 3 [204, 205].

4.3.1.2 Problem Definition

The principal utilized classes C; are namely “No CAD”, “Non obstructive CAD” and “Obstructive
CAD”. C, is characterized by the absence of coronary stenosis, while C; is characterized by stenosis
<30% at any vessel or stenosis between 30% and 50%. All the participants with at least one stenosis >
50% were considered of the obstructive CAD class C,. At the follow-up time step 18 (37.5%)
participants were at class C,-No CAD, 17 (35.4%) at class C;-non obstructive CAD and 16 (33.3%)

were at class C,-Obstructive CAD.

4.3.1.3 Feature Selection

In the proposed study, we employed feature selection techniques, aiming to reduce the dimension of
input features and identify the redundant features. More specifically, we implemented the gain ratio
algorithm (case 1), the principal components analysis (case 2) and the attribute evaluation technique
(case 3). The progressive improvement of the sensitivity and specificity ratio is achieved through a
proper customization of the input features, accompanied by a forward selection procedure [255-257].

4.3.1.4 Classification

After feature selection algorithms implementation, we examined four different ML algorithms; a
parametric model [artificial neural network (ANN)], a non-parametric kernel-based model SVM, an
ensemble model [(RF)] and J48 [255-257].

4.3.1.5 Evaluation

In terms of evaluation, we apply the ten-fold cross validation, which splits the initial dataset into ten
subsets, whereby the nine subsets are used for training and the remaining one subset is used for testing.

Moreover, it should be noted that the feature selection techniques are repeated in every ten-fold
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repetition, ensuring that the feature selection procedure is based exclusively on the training dataset. In
addition to this, it should be highlighted that our initial dataset is considered as a balance dataset,

including almost same portions of patients of the three classes.

The performance of each classification scheme is quantified using as evaluation metrics the sensitivity
and the specificity of each class, which denote the model’s ability to quantify the positive and the

negative results, respectively.
4.3.2 Dataset

Patient-specific information have been collected from retrospective data recorded during the EVINCI
study [258] and are utilized as the baseline information. In the presented study, a dataset of 48 patients
was used, who underwent CTA imaging to diagnose their risk of CAD and evaluate the percentage of
coronary vessels’ stenosis. This assessment has been reperformed after 5+2 years during SMARTool
follow-up re-evaluation. Except for CTA imaging, in both time- slices, baseline and follow-up, a variety
of data was collected and analysed, including clinical history and lifestyle of each patient, as well as

molecular systemic variables and inflammatory and monocyte markers.

Based on the assembled dataset, we aim to identify the factors that affect the progression of
atherosclerosis. More specifically, in this study due to the relatively small number of patients, we
focused only on vessel’s geometrical features based on the CTA imaging modality in the baseline step,

as well as on the patient’s medical history and lifestyle. In Table 4.6, we present the utilized feature set.

Table 4.6 Variables used in the current proposed model.

Category Features
Geometrical vasculature DS, MLA, MLD, PB, CP Volume, NCP Volume
) Family History of CAD, Hypertension, DM, Dyslipidemia, Smoking,
Risk factors Obesity, Metabolic Syndrome, Past smokers
4.3.3 Results

In Table 4.7, we present the obtained sensitivity and specificity for each of the three different classes,
after implementing the classification schemes. As far as the class of non-obstructive CAD is concerned,

its sensitivity is observed lower than these of the other classes.
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Table 4.7 Classification Performance.

Class Class Class
No CAD Nonobstructive CAD Obstructive CAD
Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity

Case 1 SVM 0.67 0.73 0.42 0.81 0.44 0.85
ANN 0.6 0.79 0.49 0.65 0.42 0.78

RF 0.69 0.85 0.48 0.71 0.47 0.75

J48 0.67 0.73 0.42 0.81 0.63 0.75

Case 2 SVM 0.54 0.82 0.53 0.59 0.44 0.85
ANN 0.8 0.79 0.48 0.88 0.57 0.75

RF 0.6 0.82 0.53 0.78 0.63 0.79

J48 0.6 0.82 0.58 0.81 0.59 0.82

Case 3 SVM 0.74 0.85 0.48 0.71 0.46 0.75
ANN 1 0.5 0.42 0.91 0.32 0.97

RF 0.74 0.76 0.36 0.81 0.63 0.79

J48 0.87 0.79 0.36 0.91 0.82 0.82

It is noted that in case we implement the J48 classification algorithm, after the class attribute evaluation
feature selection technique, we achieve a sensitivity of 0.87 and 0.82 for the healthy class, the No CAD
class and the unhealthy class, the Obstructive class, respectively. The confusion matrix of the
aforementioned approach is showed in Table 4.8. In addition to this, the ranking of the selected
features, maintained by this classification scheme is illustrated in Table 4.9 and the best performance of

the proposed model is achieved by maintaining the eight first ranking features.

Table 4.8 Confusion matrix of Case 3-J48.

Prediction
Class Class Class
No CAD Nonobstructive CAD Obstructive CAD
No CAD 13 1 1
Annotation Nonobstructive CAD 6 6 5
Obstructive CAD 1 2 13
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Table 4.9 Features ranking selection by Case 3-J48.

Features

Current symptoms [142]t

volume of the most significant calfified plagque (mm?3)

volume of the most significant NCP (mm?)

Class Attribute | exjstence of NCP {0,1}
evaluator

Minimal lumen area (mm?)
Past smokers {0,1}
existence of CP {0,1}
MLD (mm)

4.4 Site specific prediction of atherosclerotic plague progression using machine learning
4.4.1 Methodology

4.4.1.1 CTA analysis & 3D reconstruction

The coronary artery 3D reconstruction was performed using an already validated semi-automated
methodology, which is described in detail in Chapter 3 [204, 205].

4.4.1.2 Blood Flow & Mass Transport Modeling

Blood behaves as a Newtonian fluid and its flow assumed to be laminar and incompressible, modeled by

Navier-Stokes equations and the continuity equation as follows:

—uViu, 4+ p(u; V), +Vp, =0 (4.14)

V-u, =0 (4.15)
where u is the dynamic viscosity of blood, u; is the blood velocity, p is the blood density , and p; is the
pressure. LDL was assumed not to influence the blood flow and LDL transport in the lumen was

approximated by the convection-diffusion equations that follows:

V- (—DlVCl + Clul) =0 (416)
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where D, is the luminal LDL diffusivity, c; is the luminal LDL concentration and u; is the blood
velocity, as previously described. Due to the oxidation of LDL particles, a term of degradation is added

in its convection diffusion equation, as follows:

4.17
V- (—DWVCW + Klagcwuw) = T Cw ( )

where D,, is the diffusivity of the solute in the arterial wall, c,, is the LDL concentration in the wall,

K44 the solute lag coefficient for the LDL, and 7, is the consumption rate constant.

In Figure 4.7, we illustrate the a) 3D luminal reconstruction, b) the endothelial shear stress (ESS)

distribution and the ¢) normalized subendothelial LDL concentration.
4.4.1.3 Problem Definition

The atherosclerotic disease progression was formulated as a two-class problem, the “no significant
progression class” (Class,) and the “significant progression class” (Class;). The factors which define
the atheromatic plaque progression were the lumen change, the PB change and the plaque change.
Significant progression was considered, where at least two of these factors increase higher than 20%.
The proposed model was trained using 1018 artery segments, where 691 were at Class, and 327 were at

Class;.

4.4.1.4 Dataset Preprocessing

The preprocessing step, which refers to the transformation of data before feeding them to the algorithm,
aims to enhance the quality of the input features in order to achieve a high prediction accuracy. In this
step, we implement a class imbalance handling technique, the Synthetic Minority Oversampling
Technique (SMOTE) algorithm, [259], which oversamples the minority class with a percentage of 20%.
Due to synthetic samples, SMOTE method avoids over-fitting largely and does not avoid potentially

useful samples.
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Figure 4.7 a) 3D reconstruction, b) ESS distribution at the luminal surface, ¢) normalized subendothelial LDL

concentration [234].

4.4.1.5 Classification-Prediction

In this step, tree based ML schemes are implemented to predict the progression of atheromatic plaque in
each coronary artery segment. Tree based prediction models are considered to be one of the best and
mostly used supervised learning methods. In our approach 5 different modifications of tree based
algorithms are implemented, the J48, the logistic model tree (LMT), the RF, the random tree (RT) and
finally the RepTree algorithm.
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In addition to this, ranking feature selection techniques are incorporated to the classification schemes in
order to reduce the input dimensionality and identify the redundant features. More specifically, we
implemented the ingogain ratio algorithm (Case 1), the principal components analysis (Case 2) and the
relief ranking technique (Case 3).

4.4.1.6 Evaluation

The performance of the utilized ML based models is evaluated applying the ten-fold cross validation.
Ten-fold cross validation divides the initial dataset into ten subsets in every ten-fold repetition and
utilizes the nine subsets for training and the remaining one dataset for testing. The performance of each
classification scheme is quantified using as evaluation metrics the sensitivity and the specificity of each

class, which denote the model’s ability to quantify the positive and the negative results, respectively.

4.4.2 Dataset

The utilized in this study baseline data was based on EVINCI study [244], in which patients underwent
CTA imaging for clinical purposes and patient-specific data was collected, whereas the follow-up data
have been assembled after 5+2 years during SMARTool project [260]. More specifically, 1018
coronary segments of 3 mm, derived from 40 reconstructed coronary arteries, where blood flow
modeling was simulated. The utilized input features were imaging based and biomechanical features
and included the lumen area (mm?), the outer wall area (mm?), the PB area, the maximum ESS (Pa), the
minimum ESS (Pa), the mean ESS (Pa), the luminal area where ESS was lower than 1 Pa (mm?), the
maximum LDL concentration and the minimum LDL concentration. These values were calculated as

the mean values of 6 0.5 mm cross-sections.
4.4.3 Results

In Table 4.10, we demonstrate the accuracy and the AUC for each classification scheme. The obtained
results are very promising for all the different tree-based algorithms. However, RF outperforms the
other models’ performance and achieves an accuracy of 0.84 and an AUC of 0.91. Moreover, the most
highly ranked input features after the implementation of Relief ranking technique [235] are the
normalized maximum and minimum LDL concentration, and the luminal area where the WSS is lower
than 1 Pa.
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Table 4.10 Performance of the utilized prediction models.

Tree based prediction models
J48 LMT RF RT RepTree

No feature Acc. 0.8 0.78 0.83 0.75 0.77
selection AUC 0.83 0.83 0.91 0.75 0.82
Acc. 0.789 0.78 0.84 0.76 0.78

Case 1
AUC 0.82 0.83 0.9 0.76 0.82
Case 2 Acc. 0.72 0.72 0.8 0.73 0.74
ase AUC | 0.74 0.77 0.87 0.73 0.78
AccC. 0.79 0.79 0.84 0.76 0.77

Case 3
AUC 0.82 0.84 0.91 0.76 0.82

4.5 Site specific prediction of PCI stenting using machine learning
4.5.1 Methodology

4.5.1.1 CTA analysis & 3D reconstruction

CTA images were analyzed using a validated automated methodology, [204, 205], which is described in
detail in Chapter 3. The whole procedure is incorporated in a user-friendly software tool, which requires
the minimum user interaction and provides automatically not only the 3D models of coronary inner and
outer wall and the CP and NCP in the 3D space, but also it provides geometrical artery features, such as

the DS, and biomechanical features, such as the FFR index.

4.5.1.2 Calculation of smarTFFR

The process of calculation of smarTFFR index is described in detail in chapter 4, in section 4.2.1.2.
4.5.1.2 Problem Definition

In this work, the PCI risk problem is formulated as a two class problem, representing the PCI procedure
as a nonlinear parametric function of two imaging based features f(x) = C;, x = [x4, x,], where x;
represent the coronary artery DS and x, represents the Fractional Flow Reserve index (smarTFFR). The
proposed predictive model was trained using 481 coronary segments, where 445 were at Class, —No

PCI placement and 36 were at Class;-PCI placement.
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4.5.1.3 Easy Ensemble algorithm implementation-Class Imbalance Handling

Imbalanced medical datasets constitute a problem often found in medical prediction problems. In the
proposed predictive model, we utilize the Easy Ensemble algorithm [261] for handling the class
imbalance problem. The idea behind Easy Ensemble algorithm is to employ random resampling to
generate K subsets of {Q4,Q, ...., Qg} from Q (|Q;| < |Q]|, i=1,2,...K). Subsequently, each Q; U P is

trained by the classifier and the final decision is selected by majority voting.

In the proposed predictive modeling approach Easy Ensemble idea is combined with the Extreme
Gradient Boosting classifier and each individual model is trained by the Equations (4.18)-(4.20)
presented below.

4.5.1.4 Extreme gradient boosting using tree ensembles

The extreme gradient boosting (XGB) algorithm was used as an optimized classifier that uses the
gradient methods to build a tree ensemble model consisting of a real set CARTS. These are used as base
learners to additively combine multiple tree predictions, and thus yields higher performance over the
conventional trees [262]. For a given set of N-observations (x) = {x;,y;},i = 1,2, ....., N, the goal is to

add at each step t, a tree function:

() = w(q(x)),w € RY, q:R% > {1,2,..., L} (4.18)

which improves the prediction performance of the model by minimizing the following regularized
objective:

N (4.19)
B = ) 10T + i) +7,

i=1

where [(.) is the loss function at step t, ¥;,_, is the estimated value at step t— 1, g is a function that
assigns values to the tree leaves, and r is the regularization term that is used to avoid overfitting and

reduce the model complexity [17, 18]. The regularization term is defined as follows:

(4.20)

J

1 2

r= yL+§AZ Wi
i=1
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where w is the weight on the leaves, y is a constant value, and L is the total number of leaves in each

tree learner.

4.5.2 Dataset

Patient-specific imaging and non-imaging data were collected during the EVINCI study [244]. In this
study totally 263 patients have enrolled and underwent CTA imaging for clinical purposes and this
imaging assessment has been reperformed after 5+2 years during the SMARTOool project [15]. A PCI
stenting procedure and CABG were performed in 55 patients and 10 patients, respectively. In addition to
this, CTA images of 11 patients were considered as uninterpretable and thus, in the proposed study,
baseline imaging of 187 patients was analyzed to predict the risk of PCI placement. In this approach,
totally 481 coronary segments were utilized for the prediction of PCI placement and the input of the

proposed model was the

4.5.3 Results

The XGB classification scheme was validated using 10-fold cross validation and for each fold we
present in

Table 4.11 the accuracy and the AUC. The mean value of accuracy was 0.78, whereas the mean AUC
was equal to 0.87. The receiver operating characteristic (ROC) curve is depicted in Figure 4.8, where

the AUC score was evaluated on different thresholds across each fold and averaged across all folds.

10 ROC fold 0 [AUC = 0.87)
ROC fold 1 (AUC = 0.97)
08 - ROC fold 2 (AUC = 0.73)
" ROC fold 3 [AUC = 0.87)
o ROC fold 4 (AUC = 0.84)
w 067 ROC fold 5 (AUC = 0.98)
= ROC fold 6 (AUC = 0.76)
£ pa- ROC fold 7 (AUC = 0.86)
g ROC fold 8 (AUC = 0.89)
= ROC fold 9 (AUC = 0.95)
02 A Chance
Mean ROC [AUC = 0.87  0.08)
0.0 - + 1 std. dev.

0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 4.8 Prediction performance (sensitivity versus 1-specificity) of the XGB tree ensembles across each fold.
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Table 4.11 Evaluation of the CAD risk prediction problem over the 10-folds.

Evaluation Metric

Folds Accuracy AUC
Fold #0 0.88 0.87
Fold #1 0.88 0.97
Fold #2 0.52 0.73
Fold #3 0.85 0.87
Fold #4 0.82 0.84
Fold #5 0.88 0.98
Fold #6 0.40 0.76
Fold #7 0.83 0.86
Fold #8 0.77 0.89
Fold #9 0.89 0.95

Meanz+std 0.78+0.17 0.87+0.08

4.6 Discussion

Regarding the first study, a novel approach for the prediction of obstructive CAD is presented. The aim
of this study is to develop a ML model for the CAD risk prediction, which takes into account different
types of data, including both imaging and non-imaging data. To our knowledge, our approach to
combine the imaging and blood-flow-based characteristics with typical CAD risk factors constitutes the
novelty of the presented study.

Different methodologies have been presented for the prediction of CAD and the identification of the
major CAD risk factors. Most of these studies are concentrated on the different CAD-related risk-
prediction outputs and are based either on statistical analysis [6,37,38] or ML classification schemes
[263]. Our proposed study in comparison with these ones is more concentrated on the CAD risk
prediction and its future presence and achieves a higher evaluation metrics, as it is shown in Table 4.12.
Additionally, recent studies have indicated that non-invasive CV imaging and especially the CTA
imaging modality utilized in this study provides useful prognostic information of atherosclerosis
progression since it permits the accurate quantification of luminal area and the detection of PB region

and the characterization of its composition. Moreover, the overall PB, which can be provided by CTA
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imaging, is highly relevant to the degree and characteristics of atherosclerosis [264]. In addition to this,
the clinical relevance of the overall coronary PB has been also emphasized by studies showing that
increased NCP volumes is directly linked with acute coronary syndrome patients [265]. Furthermore,
the latest technological advancements in patient-specific blood-flow modeling have introduced

alternative CAD progression risk factors, such as fractional flow reserve (FFR) index and WSS.

Table 4.12 Comparison of the proposed methodology with existing in the literature studies.

Study

Methodology

Input

Results

D’Agostino et al.
[266]

Statistical analysis

Age, total cholesterol, HDL, Systolic BP,
BP treatment, Smoking, Diabetes, Incident
CAD events

0.763
(men), 0.793 (women)

C  statistic:

Weng et al. [263]

ML classification
schemes to predict
CV events

Demographics,  history  of  medical

conditions,  prescription  drugs, acute

medical outcomes, referrals to specialists,
admissions to hospitals, biological results

sensitivity 67.5%,
PPV 18.4%, specificity
70.7%, NPV 95.7%

Stone et al. [115]

Statistical analysis

Demographics and Clinical Characteristics,
Medical Therapy, endothelial shear stress,
atherosclerotic plaque characteristics, based
on CA and IVUS

41%
predictive value and
92%

predictive value

positive

negative

Liu et al. [118]

Statistical analysis

WSS, von Mises stress (VMS) based on
CTA imaging

Our study

Gradient Boosting
Classification with
RFE

Patient’s Characteristics, CAD Risk Factors,

biohumoral  markers, imaging based

features, SmartFFR index

81% accuracy, 88%
sensitivity, 73%
specificity

The prognostic capability of CTA imaging modality and its derived imaging features has also been
confirmed by the proposed study, in which the overall accuracy of the proposed predictive model using
both imaging and non-imaging data is 0.81. Moreover, the prognostic significance of imaging-derived
features is also indicated by the collected results, shown in Table 4.4. More specifically, the predictive
model trained by the non-imaging-based features achieved a comparatively lower accuracy of 0.69.

Furthermore, another notable point of the proposed CAD risk-predictive model is that the input
geometrical features are derived by an automated CTA image analysis tool [204, 205], able to detect
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accurately the inner and outer wall and atherosclerotic plaques and provide an accurate 3D model of
coronary arteries and the atherosclerotic plaques distribution over the 3D space. As far as the smarTFFR
index is concerned, it is also calculated automatically by the developed software tool in the 3D
reconstructed coronary artery.

In addition to this, another innovative aspect of the presented predictive model is the implementation of
the easy ensemble algorithm, which constitutes a random resampling scheme, which mainly handles the
class imbalance problem. Except for the class imbalance handling, the applied easy ensemble scheme
allows the progressive correction of the model’s decision hyperplane and subsequently the reduction of
the classification error. Additionally, the predictive capability of the proposed model is evaluated based
on nested stratified cross-validation, which provides unbiased estimation of the predictive model’s
capability. Moreover, except for the innate hyperparameters of the classification algorithm, the input
features are also treated as a hyper-parameter, and SVM RFE feature selection technique is implemented
to eliminate the input features’ dimension. The particular ML algorithm was selected after the
implementation of different classification schemes in combination with different feature selection
techniques, and the highest accuracy was provided by the combination of the extreme gradient boosting
algorithm and the SVM feature selection technique.

As for the second presented approach, multiple models were performed to predict the progression of
CAD, taking into account non-invasive image-based features and traditional atherosclerosis risk factors,
such as the medical history and lifestyle. The combination of the input features as well as the problem
formulation as a three class problem, integrating the graduation of atherosclerosis, constitute a crucial
novelty of the presented study. This study is considered as a preliminary approach and it is important to
further validate our results in larger datasets.

After the implementation of different classification schemes, we conclude that the tree-based algorithms
and more specifically C4.5 (J48) algorithm combined by a ranking feature selection method,
outperforms the other classification models [257]. In general, tree-based algorithms constitutes a typical
type of machine-learning approaches and are able to handle the non-linearities, the heterogeneous data,
and many predictors, by searching through the input variables to find this one, which seperates the
outcome into two groups [267].

In this point, it should be highlighted that the ability to foresee a future health condition of the most
patients is a significant aspect of the proposed model. The sensitivity for the first class is 0.71+0.13,

based on the different implementation, whereas for the most accurate model is 0.87. In this manner, the
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patient may avoid undergo a multiple CTA imaging in the follow-up time slice step, considering the
risks related to radiation from medical imaging. In addition to this, another aspect of the proposed study
worth mentioning is the model’s ability to accurately identify the non-healthy patients, those of the third
class. In the last case of J48 algorithm, the sensitivity is 0.82. An accurate prediction of such a status
contributes significantly to the clinical patient management, allowing the timely diagnosis of CAD and

the safe selection of treatment.

Through the third approach, we investigate the role of the biomechanical forces acting within the artery
and we investigate how these forces may affect the atheromatic plaque progression. More specifically,
the developed model is based on imaging and biomechanical features, derived by a noninvasive imaging
technique and ignoring the systematic atherosclerosis risk factors.

The basic novel aspect of the proposed approach is the implementation of ML based models in order to
address the new analytic challenges in the CAD risk prediction. More specifically, the utilized tree
based prediction schemes search among the utilized input predictors to find the variable that best
separates the outcome. In this manner, tree based models are capable of handling the non-linearities, the
heterogeneous data, and many predictors, by searching through the input variables to find this one,
which seperates the outcome into two groups [267].

In comparison with the existing in the literature studies [114, 115], the data utilized in our approach
derive by a non-invasive and thus, the double inference of the proposed study is the ability of CTA to
visualize accurately the coronary artery anatomy and its clinical importance in the prediction of
atheromatic plaque progression.

In the fourth study, we examine the predictability of two imaging based features, the coronary artery DS
and the smarTFFR index to identify the crucial coronary lesions. An overall accuracy 0.78+0.17 was
achieved, implementing a class imbalance handling algorithm, the Easy ensemble technique and a ML
classification scheme, the XGB. In general tree based classification algorithms are extensively
implemented in medical prediction problems and constitute a typical classification scheme, able to
handle non-linearities aiming to separate the outcome into two groups. More specifically, a tree
ensemble method was used to develop a supervised learning model for the prediction of a site specific
PCI stenting placement. The main idea behind gradient boosting trees is the use of first and second
order gradient statistics to improve the overall performance of the prediction over a set of individual
decision trees. In addition to this, the optimal solution across each split, that ensures that the most value

split is maintained at each boosting step is based on an exact greedy algorithm.
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Apart from the XGB algorithm predictability, through this study it is clear that CTA imaging and
biomechanics based features have a significant prognostic value and its non-invasive nature of CTA

imaging modality highly contributes to the CV research area. To our knowledge, the predicted outcome
of the presented study constitutes the novelty of this study.
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Chapter 5 Carotid artery disease prediction

5.1 Introduction

5.2 Methodology

5.3 Diagnostic Prediction of Carotid Artery Disease

5.4 Diagnostic Prediction of the vulnerability of Carotid Artery Plaques
5.5 Discussion- Beyond the state of the art

5.6 Conclusions

5.1 Introduction

Except of CAD risk prediction, carotid artery disease risk stratification plays also a crucial role for the
prevention and management of CVDs. The management of carotid artery disease in the current clinical
practice in based on the 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery

(ESVS) and the selection of management of carotid artery disease is based on the degree of CAS.

In this chapter, our aim is to present ML based models for the identification of carotid artery disease
high risk patients, based on non-imaging data. Available data such as: (i) demographics, (ii) risk factors,
(iii) circulating biomarkers, (iv) clinical data and (v) medication therapy will provide input to a series of
ML risk stratification and prediction models including:

e Diagnosis of carotid artery disease presence

e Diagnosis of high risk vulnerable plaque
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5.2 Methodology
5.2.1 Statistical analysis

Descriptive Statistics

The per-class sampling distribution of each continuous variable was described by the arithmetic mean
and SD values, whereas the distribution of the categorical variables within each class was described by
the corresponding percentages.

Null Hypothesis Significance Testing

The statistical significance of the utilized feature sets, with respect to the defined problems, was
evaluated by appropriate parametric and nonparametric univariate two-sample statistical tests, based on
the type (continuous numeric or categorical) and the per class distribution (Gaussian or non-Gaussian)
of the dependent variables, as it is shown in Table 5. 1. The assumption of normality was verified using
the Shapiro-Wilk test. In case of k-sample statistical testing, a multiple pairwise comparison of the

group means is subsequently applied using the Tukey’s honestly significant difference criterion.

5.2.2 Machine learning predictive modeling

ML modeling utilizes two different techniques: the supervised learning and the unsupervised learning.
Supervised learning trains a model based on known input and output data to predict the future output
given new input data, whereas unsupervised learning aims to investigate hidden patterns or intrinsic

structures based on input data.

More specifically, in this section we present a supervised ML model that makes predictions, taking into
consideration set of input data and known responses to the data output and trains a model to generate

reasonable predictions for the response to new data.

The development of the predictive models overall training and evaluation procedure based on ML
techniques is shown in Figure 5.1.
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Table 5. 1 Univariate Null hypothesis Significance Tests.

Statistical Test Independent | Dependent
Variable Variable Null Hypothesis
Type Type
Fisher’s exact | Two-sample test | Binary Binary Independence (no non-random associations)
test between two binary variables by estimating
exactly the conditional distributions (2x2
contingency table).
Pearson  Chi- | Two-sample test | Binary Categorical | Independence (no non-random associations)
square test (y?) between two categorical variables when the
with one comparing groups are independent.
degree of
freedom
Student t-test Two-sample Binary Numerical | Equality of means and variances of two
parametric test independent data samples; a Gaussian
distribution is assumed.
Mann-Whitney | Two-sample Binary Numerical | Equality of medians of two independent data
U test non-parametric samples; normality of data is not assumed.
test
Pearson  Chi- | k-sample test Categorical | Categorical | Independence (no non-random associations)
square test with between two categorical variables when the
more than one comparing groups (k >2) independently
degrees of
freedom
One-way k-sample Categorical | Numerical | Equality of means of k>2 independent data
analysis  of | parametric test samples; a Gaussian distribution is assumed.
variance
(ANOVA)
Kruskal-Wallis | k-sample  non- | Categorical | Numerical | Equality of distributions of k>2 independent
test parametric test

data samples; normality of data is not

assumed.
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Data Curation
Problem Formulation as Machine Learning
Class Imbalance Problem handling

Partition of the dataset into k-folds training and test set

|

|

|

|

| Data Preprocessing
| Feature Selection

| Classification scheme

| Model Evaluation & PerforJFﬁance metrics computation

Model Selection |

Figure 5. 1 Pipeline of Predictive Models Overall Training and Evaluation Procedure based on Machine Learning

Techniques.

5.2.2.1 Data Curation

In the first step, a data quality assessment procedure is implemented to effectively manage the quality of
the data. Data cleaning procedure, also known as data curation procedure, is considered as a key aspect,
prior to the development of any data analytics services. In this step, the data curation framework
proposed by Pezoulas et al. [268] is implemented in each utilized dataset and the framework outputs two
different documents: (i) the data quality assessment report, and (ii) the curated dataset. In Figure 5.2, we

show the output of the implemented data curation framework.

Output #1: Curated Dataset
Missing values are highlighted with gray, good features with blue, fair features with green,
and bad features with rose

Output #2: Data Quality Evaluation Report
A report which summarizes the missing values, the state, whether outliers/
incompatibilities were detected or not, per feature

e

T |

Figure 5.2 Curation Procedure Output.
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5.2.2.2 Problem Formulation as Machine Learning

The carotid artery disease risk stratification problem has been formulated as a two class classification
problem, based on the presence of CAS, individuals’ symptoms and the vulnerability of the carotid

atherosclerotic plaques.

This overall predictive supervised learning approach aims to learn a mapping from input features x to
output Y, given a labeled set of input output pairs D = {(x;, y;)}X.;, where D is the training set and N is
the number of training examples [240]. Each sample (x;, y;) associates the input features with the carotid
artery disease risk prediction Y, where Y € {C;, C,}, is estimated by a non-linear parameterized function
(f) of input features x € RY, x = [x4,X,, ..., Xq]. The goal of this supervised classification problem is to
obtain an approximation F(x) of the function F*(x) mapping the input x to output Y. Table 5.2 outlines
the model selection, identification and evaluation process given the model M and the dataset Z. An

external cross-validation is applied to obtain a less biased estimation of model’s performance.
5.2.2.3 Class Imbalance Problem handling

Medical datasets are often not balanced in their class labels. Most existing classification methods tend to
perform poorly on minority class examples when the dataset is extremely imbalanced. In the
development of this predictive model, we utilize the Easy ensemble technique. The Easy Ensemble
algorithm [241] is a class imbalance handling approach, in which P are the training instances of the
minority class, whereas Q denotes the instances of the majority class. The idea of Easy Ensemble
algorithm is to employ random resampling to generate K subsets of {Q4, Q,, ..., Qx} from Q (|Q;| < |Q],
i=1,2,...K). Subsequently, each Q; U P is trained by the classifier and the final decision is selected by

majority voting.

Let us denote by P and Q the training samples corresponding to the minority and majority class,
respectively. EasyEnsemble algorithm: (i) employs bootstrap resampling to generate T subsets
Q1,0,,K,Q from Q (]Q;| < |Q|,i = 1,K,T), (ii) trains a classifier M; for each Q; UP,i =1,K,T, and

(iif) combines via majority voting their individual decisions [241] (Table 5.3).
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Table 5.2 CAD Risk Stratification Model Training and Evaluation Procedure.

Input: X, Model M
1. Data Curation

Cross-validation:

2. if the dataset X exhibits the Class Imbalance Problem

M= cjassifier encapsulated into an Easy Ensemble repeated under-sampling scheme

else

M= selected classifier

3. Randomly partition X into 10 disjoint stratified folds X}, with k = 1, k, 10, of equal size (i.e. N/10).
4. Fork =1,k,10:

a.
b.

Let X¢rqin = X — X be the training set and X;.s; = X} the test set.

Data-preprocessing

i) One Hot encoding of categorical features.

i) Imputation of missing values.

Feature Ranking

i) Apply the balanced random forest algorithm to X;,.,i, SO as to produce a ranked list of features Ry.
Model Selection and Identification

i) Optimize model’s M} hyper-parameters on X;,..i,, by grid-search over 3-fold cross-validation.

i) Compute 8, € R™ on X;,.4in based on the selected classifier.

Model Evaluation

i) Evaluate model’s M), performance on X,.s by classification performance metrics (e.g. sensitivity,
specificity, negative predictive value).

5. Compute the average performance metrics over the 10-fold cross-validation for the training dataset and the
external dataset.

Table 5.3 The Easy Ensemble Algorithm [241].

Input: P,Q, T

1.

fori =1,K,T
a. Randomly sample a subset Q; from Q, |Q;| = |P].

b. Learn M; using P and Q;. M; is a classifier with M base learners F,,, ;, m = 1,K, M.

Output: A bag of T balanced classifiers, {M;};=1 x r-
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5.2.2.4 Data Preprocessing

In this step, a one hot encoding procedure was implemented to represent all the categorical input
features as binary vectors. In addition to this, a curation procedure was implemented to check our
dataset both for outliers and missing values. All the input features whose missing values were higher
than 10% were removed from the dataset, whereas features with missing values lower than 10% have
been imputed by either the most frequent value (categorical type features) or the median value

(numerical type features).
5.2.2.5 Feature Selection

Feature selection techniques aim to identify and remove the irrelevant and redundant attributes from the
overall dataset that do not contribute to the accuracy of the predictive model. Different feature selection
techniques, as described in detail in Table 5.4, have been implemented and tested for the development of
the most accurate predictive model.

5.2.2.6 Classification scheme

Classification schemes implementation constitutes one of the most important aspect in supervised
learning. In the overall pipeline, we implement different classification schemes, such as the Gradient
Boosting, the XGB, the Adaboost, the C-Support Vector kernel based, the k-nearest neighbors, the
Decision tree classifier, as described in detail in Table 5.4.

5.2.2.7 Model Evaluation & Selection

The evaluation of the expected generalization performance was based on nested stratified cross-
validation which provides an unbiased estimation of the model’s classification performance, with data-
pre-processing and feature evaluation following the resampling procedure itself in order to reduce the
selection bias in the estimates of the model’s classification performance. We should mention that,
besides the innate hyper-parameters of the classification algorithm, the input size is also treated as a

hyper-parameter, which yields the minimum input size optimizing a specific criterion.
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Table 5.4: Development of Predictive Models.

1) Data Curation

Data quality evaluation report

(missing  values,

range values, types,

outliers/incompatibilities, data standardization)

2) Problem
Formulation as
Machine Learning

Classes C € {C4,Cy, ...

,Cpn} estimated by a non-linear parameterized function, F, of a

confined set of features x € R, such that F(x) = C

3) Class Imbalance
Problem handling

Easy Ensemble Algorithm

(Randomly repeated under-sampling scheme)

4) Partition of the
dataset into k-folds
training and test set

K stratified disjoint folds of equal size

5) Data
Preprocessing

e Encoding of categorical features
¢ Imputation of missing values (<10%)

6) Feature Selection

e RFE )

e RFE and cross-validated selection
of the best number of features

o Select From Model (considered | ®

unimportant and removed
features under a  specific | o
feature_importances_ values) o

o RF, Select KBest (Select features
according to the k highest scores) | o

Select Fpr scheme (Select the pvalues
below alpha based on a False Positive Rate
test)

Select | (Select the p-values corresponding
to Family-wise error rate)

Sparse Principal Components Analysis
Nonnegative Matrix Factorization feature
selection

Linear Discriminant Analysis

7) Classification

¢ Gradient Boosting o

C-Support Vector kernel based

scheme o XGBoost e k-nearest neighbors
o AdaBoost e Decision tree classifier

8) Model Evaluation | e Accuracy e NPV

and Performance e Sensitivity e ROC AUC

metrics computation | e Specificity e True Negative
o PPV o False Positive

9) Model Selection o Exhaustive search over specified parameter values for an estimator
o Randomized search on hyper parameters

5.2.3 Tuning of the cut off threshold values

The proposed binary classification model, expect for the prediction of the Class (C,, C;), provides the
probability of each patient to be targeted as pathological (C;), by assuming that instances with
probabilities over 0.5 are considered in C;. The main idea of the tuning of the cut off threshold is to find
a threshold according to an optimization procedure of some performance metric. More specifically, in
this proposed model and based on the training dataset, we tune the cut off threshold based on i) ROC
curve and on the ii) balanced accuracy. The idea of using the ROC curve for tuning the threshold is to

identify that threshold that gives us the upper-left corner of the curve [269]. Mathematically speaking,

that threshold p that satisfies the following equations:
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TPR(p) = 1 — FPR(p) (5.1)
p* = argmin, [TPR(p) + FPR(p) — 1| (5.2)

where TPR is the true positive rate and FPR is the false positive rate.

5.3 Diagnostic prediction of carotid artery disease
5.3.1 Problem definition

The diagnostic prediction of carotid artery disease problem aims to identify the individuals of high risk
for the presence of at least one of the carotid arteries with CAS > 50%. The development of this model
is based on retrospective dataset, with different clinical views of input features. The detection of these
individuals has been formulated as a multivariate 2 class classification problem based on the CAS, as it
is defined by carotid US. More specifically, high risk group (Class 1) included the individuals whose at
least one of the carotid arteries (common, internal or external, left or right) has a CAS above 50%,
whereas low risk group (Class 0) included the individuals whose CAS were below 50%. In Figure 5.3,
we demonstrate the concept of diagnostic prediction of CAS >50% clinical problem.

_._“T_.T:. ML model

Evaluaton Resuts == =
Input Model AUC CA F1 Precision Recall .

SVM 0.860 0.785 0.760

Output: Diagnostic Prediction of Stenosis >50%
» e
Ste i

=
Patient

e e e ( Clinical Decision Support ‘

Recommendation for US
Imaging screening

Figure 5.3 Diagnostic Prediction of CAS>50% clinical problem.

5.3.2 Dataset

The training dataset, utilized for the presented carotid artery disease risk stratification model, was
collected from individuals admitted to the Clinic for Vascular and endovascular surgery, in the
University Clinical Center of Serbia during Taxinomisis project (European Union’s Horizon 2020

research and innovation program under grant agreement No 755320). The data were anonymized and
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were obtained under a data protection agreement, fulling all the ethical and legal requirements for data
sharing posed by the General Data Protection Regulation. The patients were included no matter the
indications and the only criterion for the inclusion was the age over 50 years old. The time period
collected the dataset was from 01.03.2021 to 01.01.2022. More specifically, the non imaging based
input features views were Demographics, Clinical Data, Risk Factors, and Medication Therapy. For the

training process, 881 individuals were utilized and 438 of them were at high risk group (Class 1).

Regarding the validation cohort a total 140 participants were utilized for the external validation of the
proposed model. These participants were collected by Clinic for Vascular and endovascular surgery, in
the University Clinical Center of Serbia during Taxinomisis project. Table 5.5 demonstrates the baseline
characteristics (mean-SD for continuous features, presence percentage for categorical features) for the

different features’ types the training cohort.

Table 5.5 Baseline Characteristics of training and external validation cohort.

Baseline Input features Overall Cohort (N=881)
Age (years), mean (SD) 66.99 (8.11)
Gender (male), n (%) 642 (73.32%)
Height (cm), mean (SD) 173.33 (9)
Weight (kg), mean (SD) 81.16 (15.75)
Body Mass Index (BMI) (kg/m?), mean (SD) 26.89 (4.09)
Smoking, n (%) 429 (48.69%)
Alcohol Consumption, n (%) 175 (19.86%)
DM, n (%) 249 (28.26%)
Hypertension, n (%) 741 (84.11)
Hyperlipoproteinemia, n (%) 424 (48.13)
CAD, n (%) 250 (28.39%)
Aneurysm Disease, n (%) 288 (32.69%)
Antiaggregant Therapy, n (%) 707 (80.25%)
Antihypertensive Therapy, n (%) 707 (80.25%)
Anticoagulant Therapy, n (%) 68 (7.72%)
Statin Therapy, n (%) 505 (57.32%)
At least one CAS>50%, n (%) 438 (49.72%)
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5.3.3 Results

Statistical analysis results

Table 5.6 provides the basic descriptive statistics of the distribution of numerical and categorical features
of the utilized training dataset in each class. Statistical analysis was performed to the whole dataset and
continuous variables were analyzed with independent-samples t-test, whereas categorical data were
compared with Chi-square test. Compared with the healthy group, CAS group was in older age (CAS
group vs Non-CAS group: 68.18+7.52 vs 65.81+8.49 years old), had higher weight (CAS group vs Non-
CAS group: 95.92+38.01 vs 83.98+16.55 kg) and lower height (CAS group vs Non-CAS group:
154.58+39.2 vs 174.26+10.02 cm). Additionally, CAS group had a higher proportion of females and
individuals with hyperlipoproteinemia, DM, hypertension, smoking, CAD, antiaggregant,
antihypertensive and statin therapy. Amongst the risk factors, hyperlipoproteinemia, DM, hypertension,
smoking, alcohol consumption, CAD and aneurysm disease show statistically significant different
proportions between Class 0 and Class 1. Regarding the medication therapy, the use of antiaggregant,

antihypertensive and statin therapy were identified as statistically different between Class 0 and Class 1

Table 5. 6 Subjects characteristics in CAS group and non-CAS group.

Variables Non CAS group CAS group P value
(N=443) (N=438)
Age 65.81+8.49 68.18+7.52 0.261
Height 174.47+£8.72 172.11+£9.15 0.132
Weight 83.76+16.11 78.4+14.88 0.261
BMI 27.4+4.16 26.36+3.96 0.609
Gender (male) 110 (24.83%) 125 (28.53%) 0.214
HLP 169 (38.14%) 255 (58.21%) <0.001
DM 93 (20.99%) 156 (35.62%) <0.001
HTA 342 (77.2%) 399 (91.1%) <0.001
Smoking 180 (40.63%) 249 (56.85%) <0.001
Alcohol consumption 107 (24.15%) 68 (15.52%) 0.001
Coronary disease 93 (20.99%) 157 (35.84%) <0.001
Aneurysm Disease 231 (52.14%) 57 (13.01%) <0.001
Antiaggregant 317 (71.56%) 390 (89.04%) <0.001
Antihypertensive 304 (68.62%) 362 (82.65%) <0.001
Anticoagulant 37 (8.35%) 31 (7.08%) 0.473
Statin 225 (50.79%) 280 (63.93%) <0.001
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Model performance evaluation results

The proposed machine learning model was evaluated using as performance metrics the balanced

accuracy, negative predictive value (NPV), positive predictive value (PPV), AUC, the sensitivity and the

specificity. In Table 5.7, we demonstrate the values for each utilized metric per fold, their mean values

and SD for training dataset, where the mean balanced accuracy, sensitivity and specificity of the

proposed model is 0.78, 0.82 and 0.74, respectively, while in Figure 5.4 and Figure 5.5, we demonstrate

the normalized confusion matrix and the ROC curve for the proposed model, respectively. Except of the

10-fold cross validation for the evaluation of the proposed models, we utilized also an external

validation dataset, including 521 individuals. Regarding the external dataset cohort, we show in Table
5.8 the obtained results in three different cases (Case 1-Cut-off: 0.5, Case 2-Cut-off: 0.4 and Case 3-Cut-

off: 0.56). The highest sensitivity (0.93) and specificity (0.88) is achieved in case 2 and 3, respectively.

Table 5.7 Evaluation of the carotid artery disease risk prediction problem over the 10-folds.

Folds Balanced Accuracy NPV PPV ROC AUC | Sensitivity | Specificity
Fold #0 0.730556 0.744186 0.717391 0.832828 0.75 0.711111
Fold #1 0.830233 0.857143 0.804348 0.903876 0.860465 0.8
Fold #2 0.875711 0.904762 0.847826 0.946253 0.906977 0.844444
Fold #3 0.693182 0.666667 0.72973 0.786674 0.613636 0.772727
Fold #4 0.727273 0.857143 0.666667 0.860537 0.909091 0.545455
Fold #5 0.840909 0.894737 0.8 0.872934 0.909091 0.772727
Fold #6 0.772727 0.772727 0.772727 0.829545 0.772727 0.772727
Fold #7 0.840909 0.857143 0.826087 0.907541 0.863636 0.818182
Fold #8 0.693182 0.707317 0.680851 0.779959 0.727273 0.659091
Fold #9 0.75 0.805556 0.711538 0.782025 0.840909 0.659091

Mean 0.775468 0.806738 0.755717 0.850217 0.815381 0.735556

SD 0.066792 0.081343 0.062966 0.058085 0.097482 0.091537

Table 5.8 Validation of the carotid artery disease risk problem using an external validation dataset.

Case 1 Cut-off: 0.5

Case 2 Cut-off: 0.4

Case 3 Cut-off: 0.56

_, |True Positive (TP) 388 407 360

& | True Negative (TN) 68 63 71

4 | False Positive (FP) 13 18 10
False Negative (FN) 52 33 80
Sensitivity 0.88 0.93 0.82
Specificity 0.84 0.78 0.88
PPV 0.97 0.96 0.97
NPV 0.57 0.66 0.47
Accuracy 0.88 0.9 0.83
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Figure 5.4 Normalized confusion matrix regarding the diagnosis of carotid artery disease presence.
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Figure 5.5 ROC curve analysis regarding the diagnosis of carotid artery disease presence.
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Tuning of cut-off threshold values

Two different approaches have been followed for the definition of cut-off probability threshold values,
using the ROC analysis and the balanced accuracy maximization approach. In Figure 5.6 and Figure
5.7, we show these two approaches, concluding that 0.57 and 0.56 are the best cut-off values for the

definition of low risk class (Class 0) and high risk class (Class 1).

TPR+FPR-1

0.0002 0 .
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Probability
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Figure 5.6 Tuning of threshold value based on ROC analysis regarding the diagnosis of carotid artery disease

presence.
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Figure 5.7 Tuning of threshold value based on balanced accuracy regarding the diagnosis of carotid artery disease

presence.
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5.4 Diagnostic prediction of the vulnerability of carotid artery plaques
5.4.1 Problem definition

The aim of the this proposed second approach is to identify individuals of high risk carotid plaque, as it
is shown in Figure 5.8. Different datasets have been utilized for the development of this model, where
high risk plaques have been defined based either on the histological composition of atherosclerotic
plaques or on the presence of symptoms. The carotid artery disease risk stratification problem based on
the vulnerability of plaques has been formulated as multivariate 2-class classification problem of the

presence of high risk plagues. On this basis, seven subproblems were defined aiming at providing a

multilevel characterization of one individual’s status.

Vi.

Vii.

Subproblem 1:-USMI Dataset based on the composition of total collagen
a. Class 0: Low Risk Plaques (cases 107)
b. Class 1: High Risk Plaques (cases 101)

Subproblem 2:-USMI Dataset based on the composition of SMCs
a. Class 0: Low Risk Plaques (cases 157)
b. Class 1: High Risk Plaques (cases 52)

Subproblem 3:-USMI Dataset based on the composition of lipid
a. Class 0: Low Risk Plagues (cases 111)
b. Class 1: High Risk Plaques (cases 96)

Subproblem 4:-USMI Dataset based on the composition of neutrophils
a. Class 0: Low Risk Plaques (cases 113)
b. Class 1: High Risk Plaques (cases 85)

Subproblem 5:-USMI Dataset based on the composition of macrophages
a. Class 0: Low Risk Plaques (cases 113)
b. Class 1: High Risk Plaques (cases 86)

Subproblem 6- USMI whole dataset based on the presence of symptomatic disease
a. Class 0: Low Risk Plaques (cases 241)
b. Class 1: High Risk Plaques (cases 44)

Subproblem 7- Atheroexpress dataset based on the presence of symptomatic disease
a. Class 0: Low Risk Plagues (cases 64)
b. Class 1: High Risk Plaques (cases 310)
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Figure 5.8 Diagnostic Prediction of vulnerable plague components.

5.4.2 Dataset

Input features for the diagnostic prediction of vulnerable plaque components were retrospective dataset,
collected during the Taxinomisis project and were provided by USMI and UMC clinical center.
Subproblem 1-6 were formulated based on a dataset provided by USMI center, whereas Subproblem 7

was formulated based on a dataset provided by UMC [270].

More specifically, Subproblem 1-5 were defined as a multivariate 2 class classification problem based
on 5 different plaque histology related features. Thus, 5 different subproblems (Subproblem 1,
Subproblem 2, Subproblem 3, Subproblem 4 and Subproblem 5) have been defined and their input
features and baseline characteristics for each subproblem are illustrated in Table 5.10. Clinical doctors
from USMI have identified the most significant histological-plaque related features, which are directly
associated with the vulnerability of the atherosclerotic plagues. For each one of these five plaque related
features, a cut off value has been defined, in order to binarize the output of our proposed models.
Clinical doctors have statistically analyzed USMI dataset to identify accurate cut-off values for the
classification of non-vulnerable-low risk plaques (Class 0) and vulnerable-high risk plaques (Class 1).
Subproblem 1-5 have been defined based on the concentration of total collagen, SMCs, lipid,
neutrophils and macrophages, respectively, whereas the implemented cut-off values for the definition of

the output of our proposed models are shown in Table 5.9, below.

Regarding the subproblems 6 and 7, the output has been defined based on the presence of symptoms. In

Table 5.11 and Table 5.12, we show the input features and their basic statistics for Subproblem 6 and
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Subproblem 7, respectively, including as input views demographics, clinical data, risk factors,

heamatological, biochemical and serum markers.

Table 5.9 Roc curve analysis identifying symptomatic patients according to intraplaque parameters.

Overall AUC p- Youden  Cut-off = Sensitivity  Specificity +LR -LR

content (95% CI) value index value (%) (%)

Total 0.808 <0.001 0.55 = 22.68 86.48 68.06 271 0.20

collagen (0.743-0.863)

(%)

SMCs (%) 0.748 <0.001 0.43 =282 59.46 81.94 329 049
(678-0.809)

Lipid 0.705 <0.001 0.39 >5.61 78.38 60.42 198 0.36
(0.633-0.771)

Neutrophil 0.757 <0.001 0.48 >5.44 83.78 64.58 237 0.25

(cell/mm?) (0.688-0.818)

Macrophage 0.628 0.006 0.27 >4.46 89.19 37.50 143 0.29

s (0.553-0.699)
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Table 5.10 Baseline Characteristics of training datasets regarding Subproblems 1-5.

Subproblem 1 Subproblem 2 Subproblem 3 Subproblem 4 Subproblem 5
(<22.68 threshold of | (<2.82 of SMCs) (>5.61 threshold (>5.44 threshold (>4.46 of
total collagen) of Lipid) Neutrophils) Macrophages)
(N=208) (N=209) (N=207) (N=199) (N=202)
Demographics
Age (years), mean (SD) 72.61 (8.26) 72.51 (8.24) 72.52 (8.29) 72.53 (8.21) 72.59 (8.17)
Gender (male), n (%) 140 (67.31%) 141 (67.46%) 138 (66.67%) 135 (67.84%) 137 (67.82%)
Clinical Data
SBP (mmHg), mean (SD) 137 (12.59) 136.82 (12.48) 136.80 (12.57) 137.32 (12.5) 137.11 (12.53)
DBP (mmHg), mean (SD) 81.87 (7.29) 81.91 (7.29) 81.88 (7.34) 81.75 (7.38) 81.79 (7.35)
Risk Factors
Smoking, n (%) 53 (25.48%) 52 (24.88%) 52 (25.12%) 49 (24.62%) 49 (24.26%)
Hypertension, n (%) 150 (72.12%) 150 (71.77%) 148 (71.5%) 144 (72.36%) 147 (72.77%)
DM, n (%) 46 (22.12%) 47 (22.49%) 46 (22.22%) 44 (22.11%) 45 (22.23%)
Chronic CAD, n (%) 41 (19.71%) 42 (20.1%) 41 (19.81%) 39 (19.6%) 40 (19.8%)

Medication Therapy

Statin, n (%)

112 (53.85%)

113 (54.07%)

112 (54.11%)

109 (54.77%)

110 (54.46%)

Clopidogrel, n (%) 48 (23.08%) 48 (22.97%) 48 (23.19%) 46 (23.12%) 47 (23.27%)
Ca blockers, n (%) 66 (31.73%) 65 (31.1%) 65 (31.4%) 64 (32.16%) 65 (32.18%)
Anticoagulants, n (%) 13 (6.25%) 13 (6.22%) 13 (6.28%) 12 (6.03%) 13 (6.43%)
Diuretics, n (%) 30 (14.42%) 29 (13.88%) 29 (14.01%) 27 (13.57%) 27 (13.37%)
B-blockers, n (%) 58 (27.88%) 57 (27.27%) 56 (27.05%) 54 (27.14%) 55 (27.23%)
ACEi, n (%) 9 (4.33%) 9 (4.31%) 9 (4.35%) 9 (4.52%) 6 (2.97%)
ARBs, n (%) 98 (47.12%) 100 (47.85%) 98 (47.34%) 94 (47.24%) 96 (47.52%)

Lipid Biomarkers

TC, mean (SD) 192.38 (44.3)4 191.97 (44.39) 192.1 (44.56) 191.71 (44.86) 191.64 (44.55)
HDL, mean (SD) 50.96 (14.97) 50.99 (15.21) 51.02 (15.21) 51.15 (15.32) 51.25 (15.22)
LDL, mean (SD) 114.73 (39.75) 114.11 (39.94) 114.28 (40.15) 114.19 (40.48) 114.07 (40.19)
Triglycerides, mean (SD) 141 (74.42) 141.91 (74.51) 141.55 (74.62) 139.75 (72.42) 139.36 (72.25)
High Risk Plaques 101 (48.56%) 52 (24.88%) 96 (46.38%) 86 (43.22%) 135 (66.83%)
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Table 5.11 Baseline Characteristics of training datasets regarding Subproblem 6.

Overall Cohort (N=285)

Clinical Data Serum Markers
Age, mean (SD) 72.73 (8.2) CCL2, mean (SD) 90.94 (123.74)
Gender (male), n (%) 189 (66.32%) | OPG, mean (SD) 883.62 (859.56)
SBP, mean (SD) 134.91 (12.67) | hs-CRP, mean (SD) 3.82 (5.26)
DBP, mean (SD) 81.24 (7.21) P-selectin, mean (SD) 97.67 (88.18)
waist circumference, mean (SD) | 91.4 (7.925) ICAM-1, mean (SD) 221.94 (100.56)
Risk Factors VCAM-1, mean (SD) 420.62 (265.39)
Hypertension, n (%) 207 (72.63%) | Adiponectin, mean (SD) | 4.63 (3.35)
DM, n (%) 67 (23.51%) E-selectin, mean (SD) 21.28 (13.64)
Dyslipidemia, n (%) 151 (52.98%) | Resistin, mean (SD) 11.47 (42.97)
Chronic CAD, n (%) 64 (22.46%) Leptin, mean (SD) 25.76 (40.52)
Smoking, n (%) 69 (24.21%) IL-a, mean (SD) 11.09 (22.99)
Medication TNF-a, mean (SD) 43.59 (136.08)
Statins, n (%) | 158 (55.44%) | CCL5, mean (SD) 70.85 (58.36)
Biochemical CCL4, mean (SD) 41.08 (96.71)
D-dimer, mean (SD) 571.97 CCL3, mean (SD) 69.23 (309.38)
(1331.38)

Fibrinogenemia, mean (SD) 3.94 (1.42) CD40L, mean (SD) 602.75 (1277.29)
Fasting Insulinemia, mean (SD) | 10.98 (8.88) IL-6, mean (SD) 2.81 (3.38)
Fasting C-peptidemia, mean 3.09 (1.43) sIL-6R, mean (SD) 36.62 (17.73)
(SD)
Lpa, mean (SD) 0.12 (0.19) IGF-1, mean (SD) 1.39 (2.47)
TC, mean (SD) 195.02 (45.71) | L-selectin, mean (SD) 3018.34 (1437.18)
HDL, mean (SD) 51.8 (15.77) MMP-9, mean (SD) 579.38 (529.52)
LDL, mean (SD) 116.69 (41.14) | proMMP-9, mean (SD) 22.16 (9.45)
Triglyceridemia, mean (SD) 138.41 (68.9) | MMP-8, mean (SD) 15.77 (20.11)
Fasting Glycemia, mean (SD) 113.07 (33.78) | TIMP-1, mean (SD) 410.02 (431.72)
Heamatological TIMP-2, mean (SD) 115.42 (57.28)
WBC, mean (SD) 7.18 (1.65) TIMP-3, mean (SD) 14.76 (17.18)
Neutrophils, mean (SD) 64.12 (7.68) TIMP-4, mean (SD) 6.01 (15.24)
Monocytes, mean (SD) 6.47 (1.87) MMP-9/TIMP-1, mean 17.14 (14.51)

(SD)
Lymphocytes, mean (SD) 25.2 (6.7) FAP, mean (SD) 142.05 (89.99)
Platelets, mean (SD) 233.88 (65.05) | OPN, mean (SD) 69.58 (75.8)
RBC, mean (SD) 4.64 (0.5) RANKL, mean (SD) 1915.6 (1924.73)

Neutrophil elastase, mean | 310.73 (377.69)

(SD)

Total Vitamin D, mean 42.75 (31.95)

(SD)

PCSK-9, mean (SD) 294.73 (128.17)
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Table 5.12 Baseline Characteristics of training datasets regarding Subproblem 7.

Overall Cohort (N=374)

Demographics

Serum markers

Age, mean (SD) 68.51 (8.84) FABP4, mean (SD) 12984.2 (11711.48)
Gender (male), n (%) 94 (25.13%) Cystatin C, mean (SD) 337610.88 (131515.87)
Clinical Lp-PLA(2), mean (SD) 113.9 (47.63)
SBP, mean (SD) 153.55 (25.76) PCSK-9, mean (SD) 31896.72 (18998.12)
DBP, mean (SD) 81.70 (13.22) GDF15, mean (SD) 3361.78 (7608.91)
MAP, mean (SD) 105.65 (15.65) RANTES, mean (SD) 3.63 (4.29)
BMI, mean (SD) 26.59 (3.88) hs-CRP, mean (SD) 31.96 (385.22)
Heamatological TAT, mean (SD) 116.12 (770.8)
Hb, mean (SD) 8.69 (0.97) Myeloperoxidase, mean (SD) 44.03 (42.04)
Haematocrit, mean (SD) 0.41 (0.05) Nt-pro-b, mean (SD) 234.19 (2365.15)
Risk factors PDGF, mean (SD) 0.25 (0.65)
CAD, n (%) 122 (32.62%) OPG, mean (SD) 1.75 (0.72)
PAOD, n (%) 80 (21.39%) VEGF-A, mean (SD) 8.53 (6.68)
peripheral intervention, n (%) | 61 (16.31%) VWF, mean (SD) 57.6 (50.44)
DM, n (%) 66 (17.65%) Biochemical
treatment of DM, n (%) 64 (17.11%) Creatinine, mean (SD) 95.46 (29.8)
smoking current, n (%) 138 (36.89 %) GFR, mean (SD) 76.2 (23.14)
Hypertension, n (%) 255 (68.18%) Glucose, mean (SD) 6.64 (2.09)
TC, mean (SD) 176.26 (46.24)
Symptomatic Disease 310 (82.89%) LDL, mean (SD) 105.95 (39.91)
HDL, mean (SD) 43.4 (14.31)

Triglycerides, mean (SD)

138.1 (74.68)

5.4.3 Results

Statistical Analysis Results

In Table 5.13-Table 5.17, we show the statistical analysis results for class of low risk plaques, in

comparison with class of high risk plaques for Subproblems 1-5.

Individuals, who receive

anticoagulants therapy (Subproblem 1-p:0.035, Subproblem 1-p:0.013, Subproblem 4-p:0.014),
Clopidogrel (Subproblem 1- p:0.002, Subproblem 5- p:0.007), ACEi (Subproblem 3- p:0.009)
and Ca blockers (Subproblem 3- p:0.036) are more susceptible of the presence of high risk

plaques.
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Table 5.13 Subjects characteristics in high risk plaques group and low risk plaques group regarding

Subproblem 1.

Low risk plaques High risk plagues P value
(N=107) (N=101)

Age (years), mean (SD) 71.21 (8.02) 74.09 (8.3) 0.899
Gender (male), n (%) 66 (61.11) 74 (73.27) 0.076
SBP (mmHg), mean (SD) 139.48 (15.54) 134.4 (10.98) 0.305
DBP (mmHg), mean (SD) 81.98 (6.54) 81.76 (8.04) 0.097
Smoking, n (%) 29 (27.1%) 24 (23.76%) 0.837
Hypertension, n (%) 80 (74.76%) 70 (69%) 0.381
DM, n (%) 25 (23.36%) 21 (21%) 0.656
Chronic CAD, n (%) 20 (18.69%) 21 (21%) 0.704
Statin, n (%) 58 (54.21%) 54 (53%) 0.915
Clopidogrel, n (%) 20 (18.69%) 28 (28%) 0.132
Ca blockers, n (%) 36 (33.64%) 30 (30%) 0.543
Anticoagulants, n (%) 3 (2.8%) 10 (10%) 0.035
Diuretics, n (%) 14 (13.08%) 16 (16%) 0.572
B-blockers, n (%) 33 (30.84%) 25 (25%) 0.329
ACEi, n (%) 5 (4.67%) 4 (4%) 0.801
ARBsS, n (%) 54 (50.47%) 44 (44%) 0.32

TC, mean (SD) 194.81 (50.4) 189.75 (36.75) 0.084
HDL, mean (SD) 51.74 (14.95) 50.12 (15.02) 0.474
LDL, mean (SD) 115.06 (45.18) 114.39 (33.13) 0.076
Triglycerides, mean (SD) 144.55 (85.1) 137.17 (61.01) 0.239

Table 5.14 Subjects characteristics in high risk plaques group and low risk plaques group regarding

Subproblem 2.
Low risk plaques High risk plagues P value
(N=157) (N=52)

Age (years), mean (SD) 72.36 (7.86) 72.96 (9.37) 0.145
Gender (male), n (%) 106 (67.52) 35 (67.31) 0.978
SBP (mmHg), mean (SD) 136.3 (12.48) 138.43 (12.47) 0.844
DBP (mmHg), mean (SD) 81.83 (7.51) 82.18 (6.65) 0.23

Smoking, n (%) 40 (25.48%) 12 (23.08%) 0.277
Hypertension, n (%) 115 (73.25%) 35 (67.31%) 0.411
DM, n (%) 37 (23.57%) 10 (19.23%) 0.517
Chronic CAD, n (%) 31 (19.75%) 11 (21.15%) 0.827
Statin, n (%) 87 (55.41%) 26 (50%) 0.498
Clopidogrel, n (%) 28 (17.83%) 20 (38.46%) 0.002
Ca blockers, n (%) 47 (29.94%) 18 (34.62%) 0.529
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Low risk plaques High risk plagues P value
(N=157) (N=52)

Anticoagulants, n (%), 6 (3.82%) 7 (13.46%) 0.013
Diuretics, n (%) 23 (14.65%) 6 (11.54%) 0.575
B-blockers, n (%) 37 (23.57%) 20 (38.46%) 0.037
ACEi, n (%) 7 (4.46%) 2 (3.85%) 0.851
ARBs, n (%) 78 (49.68%) 22 (42.31%) 0.357
TC, mean (SD) 192.89 (45.63) 189.14 (40.65) 0.99

HDL, mean (SD) 52.29 (14.93) 47 (15.49) 0.684
LDL, mean (SD) 113.78 (40.68) 115.1 (37.94) 0.766
Triglycerides, mean (SD) 139.16 (68.75) 150.24 (89.96) 0.196

Table 5.15 Subjects characteristics in high risk plaques group and low risk plaques group regarding

Subproblem 3.
Low risk plaques High risk plagues P value
(N=111) (N=96)
Age (years), mean (SD) 72.47 (7.63) 72.57 (9.03) 0.143
Gender (male), n (%) 70 (63.06%) 68 (70.83%) 0.238
SBP (mmHg), mean (SD) 133.73 (11.1) 140.39 (13.28) 0.661
DBP (mmHg), mean (SD) 81.55 (7.74%) 82.26 (6.86) 0.219
Smoking, n (%) 33 (29.73%) 19 (19.79%) 0.831
Hypertension, n (%) 79 (71.17%) 69 (71.88%) 0.723
DM, n (%) 23 (20.72%) 23 (23.96%) 0.577
Chronic CAD, n (%) 21 (18.92%) 20 (20.83%) 0.731
Statin, n (%) 59 (53.15%) 53 (55.21%) 0.768
Clopidogrel, n (%) 25 (22.52%) 23 (23.96%) 0.808
Ca blockers, n (%) 29 (26.13%) 36 (37.5%) 0.079
Anticoagulants, n (%) 5 (4.5%) 8 (8.33%) 0.259
Diuretics, n (%) 14 (12.61%) 15 (15.63%) 0.534
B-blockers, n (%) 30 (27.03%) 26 (27.08%) 0.993
ACEi, n (%) 1 (0.9%) 8 (8.33%) 0.009
ARBs, n (%) 55 (49.55%) 43 (44.79%) 0.495
TC, mean (SD) 186.22 (42.96) 198.77 (45.62) 0.582
HDL, mean (SD) 51.65 (14.85) 50.3 (15.64) 0.741
LDL, mean (SD) 108.88 (38.52) 120.41 (41.27) 0.946
Triglycerides, mean (SD) 134.14 (65.02) 149.97 (83.78) 0.339
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Table 5.16 Subjects characteristics in high risk plaques group and low risk plaques group regarding

Subproblem 4.
Low risk plaques High risk plagues P value
(N=113) (N=86)

Age (years), mean (SD) 71.99 (7.68) 73.24 (8.85) 0.412
Gender (male), n (%) 75 (66.37%) 60 (69.77%) 0.612
SBP (mmHg), mean (SD) 135.53 (12.06) 139.65 (12.74) 0574
DBP (mmHg), mean (SD) 81.54 (7.24) 82.03 (7.6) 0.59

Smoking, n (%) 27 (23.89%) 22 (25.58%) 0.641
Hypertension, n (%) 80 (70.8%) 64 (74.42%) 0.572
DM, n (%) 27 (23.89%) 17 (19.77%) 0.488
Chronic CAD, n (%) 20 (17.7%) 19 (22.09%) 0.44

Statin, n (%) 69 (61.06%) 40 (46.51%) 0.042
Clopidogrel, n (%) 23 (20.35%) 23 (26.74%) 0.291
Ca blockers, n (%) 30 (26.55%) 34 (39.53%) 0.053
Anticoagulants, n (%) 3 (2.65%) 9 (10.47%) 0.022
Diuretics, n (%) 14 (12.39%) 13 (15.12%) 0.579
B-blockers, n (%) 33 (29.2%) 21 (24.42%) 0.453
ACEi, n (%) 5 (4.42%) 4 (4.65%) 0.939
ARBsS, n (%) 54 (47.79%) 40 (46.51%) 0.859
TC, mean (SD) 188.15 (42.09) 196.3 (48.06) 0.798
HDL, mean (SD) 51.2 (14.21) 51.09 (16.72) 0.488
LDL, mean (SD) 110.71 (37.82) 118.69 (43.48) 0.576
Triglycerides, mean (SD) 134.72 (58.48) 146.27 (87.17) 0.066

Table 5.17 Subjects characteristics in high risk plaques group and low risk plaques group regarding

Subproblem 5.

Low risk plaques High risk plagues P value
(N=67) (N=135)

Age (years), mean (SD) 71.78 (7.3) 73 (8.57) 0.246
Gender (male), n (%) 44 (65.679%) 93 (68.89%) 0.646
SBP (mmHg), mean (SD) 136.13 (12.19) 137.6 (12.72) 0.759
DBP (mmHg), mean (SD) | 81.78 (7.2) 81.8 (7.45) 0.425
Smoking, n (%) 14 (20.9%) 35 (25.93%) 0.866
Hypertension, n (%) 48 (71.64%) 99 (73.33%) 0.8

DM, n (%) 16 (23.88%) 29 (21.48%) 0.7

Chronic CAD, n (%) 11 (16.42%) 29 (21.48%) 0.396
Statin, n (%) 36 (53.73%) 74 (54.81%) 0.885
Clopidogrel, n (%) 8 (11.94%) 39 (28.89%) 0.007
Ca blockers, n (%) 15 (22.39%) 50 (37.04%) 0.036
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Low risk plaques High risk plagues P value
(N=67) (N=135)

Anticoagulants, n (%) 1 (1.49%) 12 (8.89%) 0.044
Diuretics, n (%) 11 (16.42%) 16 (11.85%) 0.37

B-blockers, n (%) 18 (26.87%) 37 (27.41%) 0.935
ACEi, n (%) 2 (2.99%) 4 (2.96%) 0.993
ARBs, n (%) 35 (52.24%) 61 (45.19%) 0.346
TC, mean (SD) 186.94 (42.7) 193.95 (45.42) 0.908
HDL, mean (SD) 49.92 (14.57) 51.90 (15.55) 0.283
LDL, mean (SD) 108.38 (37.07) 116.88 (41.48) 0.794
Triglycerides, mean (SD) 142 (83) 138.07 (66.67) 0.603

Table 5.18 and Table 5.19 provide the basic descriptive statistics of the distribution of numerical
and categorical features with respect to Subproblem 6 and Subproblem 7, respectively.
Regarding Subproblem 6, the presence of carotid artery disease symptoms is significantly
correlated with higher mean value of monocytes % (p=0.046), hs-CRP (p=0.026), leptin
p=0.013), TNF-a (p=0.021), CCL5 (p=0.023), MMP-8 (p=0.032), MMP-9/ TIMP-1 (p=0.001)
and OPN (p=0.006). On the other hand, carotid artery disease symptoms are significantly
correlated with lower mean values of Neutrophils (%) (p=0.045), RBCs (p=0.038), Lpa (t-test
p=0.004), TIMP2 (p=0.014), Total Vitamin D (p=0.017) and PCSK9 (p=0.034). As for
Subproblem 7, carotid artery disease symptoms are significantly associated with higher mean
values of Serum FABP4 (p=0.006), of RANTES (p=0.032) and age (p=0.003), whereas GDF15
exhibits lower mean values (p=0.04). In addition to this, individuals with history of CAD are
more susceptible to present carotid artery symptoms.

Table 5.18 Subjects characteristics in high risk plaques group and low risk plagques group regarding

Subproblem 6.

Subproblem 6 Low risk plagues High risk plaques P value
Variables (N=241) (N=44)

Age, mean (SD) 72.39 (8.14 74.59 (8.48 0.885
Gender 65.1 72.7 0.328
waist circumference, mean (SD) 91.57 (8.55 90.3 (8.7 0.736
Hypertension, (%) 73% 70.5% 0.725
DM, (%) 23.7% 22.7% 0.894
Dyslipidemia, (%) 51.5% 61.4% 0.226

162



Subproblem 6 Low risk plaques High risk plagues P value
Variables (N=241) (N=44)

Chronic CAD, (%) 23.7% 15.9% 0.258
Total WBC, mean (SD) 7.15 (1.71) 7.33(1.35) 0.101
Neutrophils, mean (SD) 64.41 (7.37) 62.5 (9.29) 0.045
Monocytes, mean (SD) 6.39 (1.91) 6.8 (1.64) 0.046
Lymphocytes, mean (SD) 25.01 (6.4) 26.23 (8.28) 0.059
Platelets, mean (SD) 232.26 (66.73) 242.66 (56.6)3 0.58
RBC, mean (SD) 4.67 (0.49) 4.47 (0.55) 0.038
D-dimer, mean (SD) 610.6 (4500.1) 353.56 (470.29) 0.168
Fibrinogenemia, mean (SD) 3.93(1.5) 4.01 (1.04) 0.877
Fasting Insulinemia, mean (SD) 11.1(9.97) 10.31 (5.14) 0.23
Fasting C peptidemia, mean (SD) | 3.08 (1.53) 3.17 (1.41) 0.175
Lpa, mean (SD) 0.13 (0.24) 0.06 (0.09) 0.004
TC, mean (SD) 195.57 (47.63) 191.98 (37.03) 0.292
HDL, mean (SD) 52.52 (15.68) 47.79 (16.78) 0.793
LDL, mean (SD) 116.32 (43.16) 118.77 (31.19) 0.177
Triglyceridemia, mean (SD) 137.48 (72.15) 143.49 (5.36) 0.283
Fasting Glycemia, mean (SD) 112.81 (34.45) 114.52 (31.51) 0.867
CCL2, mean (SD) 94.62 (133.68) 71 (65.85) 0.099
OPG, mean (SD) 853.94 (925.82) 1037.64 (743.15) 0.033
hs-CRP, mean (SD) 3.69 (5.76) 4.43 (4.07) 0.026
P-selectin, mean (SD) 98.05 (90.12) 95.73 (104.28) 0.48
ICAM-1, mean (SD) 221.3 (97.45) 225.41 (127.03) 0.238
VCAM-1, mean (SD) 427.31 (267.29) 384.58 (285.92) 0.701
Adiponectin, mean (SD) 4.7 (3.61) 4.28 (3.09) 0.412
E-selectin, mean (SD) 21.1 (14.96) 22.19 (11.07) 0.674
Resistin, mean (SD) 12.23 (49.12) 7.58 (7.66) 0.41
Leptin, mean (SD) 24.08 (29.56) 34.37 (81.98) 0.013
IL-a, mean (SD) 12.86 (28.57) 16.21 (36.09) 0.368
TNF-a, mean (SD) 36.14 (135.44) 82.29 (171.3) 0.021
CCLS5, mean (SD) 68.32 (60.04) 84.21 (58.43) 0.023
CCL4, mean (SD) 41.58 (109.54) 38.47 (35.53) 0.412
CCL3, mean (SD) 70.22 (340.99) 64.08 (218.09) 0.882
CD40L, mean (SD) 589.77 (1328.57) 670.12 (1397.59) 0.625
IL-6, mean (SD) 2.82 (3.51) 2.76 (4.2) 0.802
sIL-6R, mean (SD) 37.14 (19.18) 33.93 (15.45) 0.323
IGF-1, mean (SD) 1.5(3.57) 0.92 (0.82) 0.284
L-selectin, mean (SD) 3068.96 (1562.11) 2757.99 (1195.13) | 0.342
MMP-9, mean (SD) 569.65 (525.82) 631.65 (615.29) 0.125
pro-MMP-9, mean (SD) 21.62 (11.96) 24.47 (14.78) 0.108
MMP-8, mean (SD) 14.31 (19.8) 23.67 (22.46) 0.032
TIMP-1, mean (SD) 415.52 (457.3) 380.58 (345.01) 0.478
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Subproblem 6 Low risk plaques High risk plagues P value
Variables (N=241) (N=44)

TIMP-2, mean (SD) 118.99 (61.89) 96.88 (45.13) 0.014
TIMP-3, mean (SD) 14.67 (17.97) 15.2 (18.31) 0.614
TIMP-4, mean (SD) 6.32 (17.69) 4.41 (1.78) 0.363
MMP-9/TIMP-1, mean (SD) 16.55 (15.77) 19.99 (24.23) 0.001
FAP, mean (SD) 142.93 (97.75) 137.52 (77.3) 0.923
OPN, mean (SD) 64.4 (76.14) 97.28 (79.4) 0.006
RANKL, mean (SD) 1911.25 (2253.08) 1935.97 (2037.27) | 0.677
MPO, mean (SD) 318.16 (542.5) 398.08 (589.36) 0.098
Neutrophil elastase, mean (SD) 317.59 (494.7) 279.52 (230.29) 0.524
Total Vitamin D, mean (SD) 44.04 (35.87) 36.17 (22.41) 0.017
PCSK-9, mean (SD) 301.07 (130.91) 260.95 (129.08) 0.034

Table 5.19 Subjects characteristics in high risk plaques group and low risk plaques group regarding

Subproblem 7.
Subproblem 7 Low risk plaques High risk plaques P value
Variables (N=64) (N=310)
Age, mean (SD) 65.52 (9.35) 69.12 (8.62) 0.003
Gender (male), n (%) 62.1 74.7 0.431
SBP, mean (SD) 157.2 (23.77) 152.8 (26.13) 0.249
DBP, mean (SD) 83.78 (13.17) 81.27 (13.21) 0.2
MAP, mean (SD) 108.25 (14.46) 105.11 (15.85) 0.176
BMI, mean (SD) 27.11 (3.56) 26.49 (3.94) 0.254
Hb, mean (SD) 8.83(0.85) 8.66 (0.99) 0.23
Haematocrit, mean (SD) 0.42 (0.04) 0.41 (0.05) 0.162
CAD, n (%) 37.5% 31.6% 0.36
PAOD, n (%) 25.0% 20.6% 0.439
peripheral intervention, n (%) | 20.3% 15.5% 0.341
DM, n (%) 14.1% 18.4% 0.448
treatment of DM, n (%) 14.1% 17.7% 0.525
smoking current, n (%) 31.2% 38.1% 0.287
Hypertension, n (%) 73.4% 67.1% 0.349
FABP4, mean (SD) 10665.36 (4736.71) 13482.39 (12672.09) 0.006
Cystatin C, mean (SD) 331507.69 (112363.14) | 338922.11 (135438.71) | 0.705
Lp-PLA(2), mean (SD) 110.52 (42.49) 114.65 (48.72) 0.541
PCSK-9, mean (SD) 34973.27 (23839.7) 31204.49 (17706.34) 0.155
GDF15, mean (SD) 3809.32 (7751.99) 3261.44 (7586.86) 0.04
RANTES, mean (SD) 3.11 (3.99) 3.74 (4.35) 0.032
hs-CRP, mean (SD) 3.79 (5.73) 37.97 (424.2) 0.52
TAT, mean (SD) 94.047 (186.91) 120.81 (844.64) 0.801
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Subproblem 7 Low risk plaques High risk plaques P value
Variables (N=64) (N=310)

Myeloperoxidase, mean (SD) | 37.59 (35.82) 45.39 (43.17) 0.178
Nt-pro-b, mean (SD) 77.11 (74.9) 267.48 (2603.03) 0.559
PDGF, mean (SD) 0.22 (0.33) 0.26 (0.7) 0.708
OPG, mean (SD) 1.67 (0.66) 1.77 (0.74) 0.315
VEGF-A, mean (SD) 7.18 (4.14) 8.84 (7.11) 0.09
VWEF, mean (SD) 48.05 (26.77) 59.62 (53.85) 0.14
Creatinine, mean (SD) 95.89 (25.86) 95.37 (30.58) 0.902
GFR, mean (SD) 78.67 (26.88) 75.4 (26.14) 0.38
Glucose, mean (SD) 6.7 (2.35) 6.62 (2.04) 0.832
TC, mean (SD) 181.27 (48.34) 175.18 (45.81) 0.381
LDL, mean (SD) 109.07 (40.47) 105.29 (39.84) 0.532
HDL, mean (SD) 43.87 (13.88) 43.29 (14.42) 0.79
Triglycerides, mean (SD) 151.95 (72.92) 135.12 (74.86) 0.133

Model performance-evaluation results

Balanced accuracy, sensitivity, specificity, PPV, NPV and AUC were utilized for the evaluation
of the proposed models. In Table 5.20-Table 5.26, we demonstrate the values for each utilized

performance metric per fold, their mean values and SD, for Subproblems 1-7, respectively.

The achieved accuracies were 0.62+0.13, 0.64+0.11, 0.63+0.07, 0.58+0.12, 0.53+0.12, 0.65+
0.09, 0.79+0.12, whereas the AUC values were 0.64, 0.67, 0.65, 0.64, 0.54, 0.57, 0.77, for

Subproblems 1-7, respectively. ROC curves analyses are shown in Figure 5.9- Figure 5.15.

Table 5.20 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of

plaques over the 10-folds, regarding Subproblem 1.

Subproblem 1
Accuracy | Sensitivity | Specificity PPV NPV AUC
fold #0 0.768182 0.9 0.636364 | 0.692308 | 0.875 | 0.881818
fold #1 0.472727 0.4 0.545455 | 0.444444 05 0.445455
fold #2 0.809091 0.8 0.818182 0.8 0.818182 | 0.809091
fold #3 0.659091 0.5 0.818182 | 0.714286 | 0.642857 | 0.827273
fold #4 0.627273 0.8 0.454545 | 0.571429 | 0.714286 | 0.627273
fold #5 0.563636 0.4 0.727273 | 0.571429 | 0.571429 | 0.527273
fold #6 0.477273 0.5 0.454545 | 0.454545 05 0.563636
fold #7 0.763636 0.727273 0.8 0.8 0.727273 | 0.745455
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Subproblem 1

Accuracy | Sensitivity | Specificity PPV NPV AUC

fold #8 0.5 0.6 0.4 0.5 0.5 0.42

fold #9 0.55 0.6 0.5 0.545455 | 0.555556 0.57
Mean 0.6190909 0.622727 | 0.615455 | 0.60939 | 0.640458 | 0.641727
SD 0.126690605 | 0.176709 | 0.165203 | 0.133609 | 0.137739 | 0.164343

Table 5. 21 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of
plaques over the 10-folds, regarding Subproblem 2.

Subproblem 2
Accuracy | Sensitivity | Specificity PPV NPV AUC

fold #0 0.475 0.2 0.75 0.2 0.75 0.35
fold #1 0.7125 0.8 0.625 0.4 | 0.909091 0.725
fold #2 0.70625 0.6 0.8125 0.5 | 0.866667 0.875
fold #3 0.60625 0.4 0.8125 0.4 0.8125 0.675
fold #4 0.64375 0.6 0.6875 0.375 | 0.846154 0.5875
fold #5 0.7125 0.8 0.625 0.4 | 0.909091 0.8375
fold #6 0.44375 0.2 0.6875 | 0.166667 | 0.733333 0.475
fold #7 0.8 | 0.666667 | 0.933333 0.8 0.875 | 0.966667
fold #8 0.616667 0.5 ] 0.733333 | 0.428571 | 0.785714 | 0.566667
fold #9 0.633333 0.6 | 0.666667 0.375 | 0.833333 0.68
Mean 0.635 0.536667 | 0.733333 | 0.404524 | 0.832088 | 0.673833
SD 0.10940883 | 0.214562 | 0.097143 | 0.172016 | 0.061573 | 0.188268

Table 5.22 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of

plaques over the 10-folds, regarding Subproblem 3.

Subproblem 3
Accuracy | Sensitivity | Specificity PPV NPV AUC

fold #0 0.694444 | 0.888889 0.5 | 0.571429 | 0.857143 | 0.796296
fold #1 0.568182 0.5| 0.636364 | 0.555556 | 0.583333 0.5
fold #2 0.668182 0.7 | 0.636364 | 0.636364 0.7 | 0.718182
fold #3 0.613636 05| 0.727273 0.625 | 0.615385 | 0.554545
fold #4 0.718182 0.8 | 0.636364 | 0.666667 | 0.777778 | 0.763636
fold #5 0.527273 0.6 | 0.454545 0.5 | 0.555556 | 0.554545
fold #6 0.527273 0.6 | 0.454545 0.5 | 0.555556 | 0.690909
fold #7 0.661616 | 0.777778 | 0.545455 | 0.583333 0.75 | 0.606061
fold #8 0.59596 | 0.555556 | 0.636364 | 0.555556 | 0.636364 | 0.656566
fold #9 0.69697 | 0.666667 | 0.727273 | 0.666667 | 0.727273 | 0.646465
Mean 0.6271718 0.658889 | 0.595455 | 0.586057 | 0.675839 | 0.648721
SD 0.070824639 | 0.131994 | 0.101527 | 0.061407 | 0.102577 | 0.096224
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Table 5.23 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of

plaques over the 10-folds, regarding Subproblem 4.

Subproblem 4
Accuracy | Sensitivity | Specificity PPV NPV AUC

fold #0 0.474747 | 0.222222 | 0.727273 0.4 | 0.533333 | 0.676768
fold #1 0.560606 | 0.666667 | 0.454545 0.5 0.625 | 0.757576
fold #2 0.59596 | 0.555556 | 0.636364 | 0.555556 | 0.636364 | 0.656566
fold #3 0.383838 | 0.222222 | 0.545455 | 0.285714 | 0.461538 | 0.40404
fold #4 0.530303 | 0.333333 | 0.727273 0.5 ] 0.571429 | 0.575758
fold #5 0.540404 | 0.444444 | 0.636364 0.5 ] 0.583333 | 0.434343
fold #6 0.729167 0.625 | 0.833333 | 0.714286 | 0.769231 | 0.729167
fold #7 0.541667 0.5 | 0.583333 | 0.444444 | 0.636364 | 0.645833
fold #8 0.75 0.5 1 1 0.75 0.75
fold #9 0.693182 0.75 | 0.636364 0.6 | 0.777778 | 0.761364
Mean 0.5799874 0.481944 0.67803 0.55 0.634437 | 0.639142
SD 0.11530471 | 0.179788 0.15432 | 0.195223 | 0.104809 | 0.130109

Table 5.24 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of

plaques over the 10-folds, regarding Subproblem 5.

Subproblem 5
Accuracy | Sensitivity | Specificity PPV NPV AUC

fold #0 0.535714 | 0.357143 | 0.714286 | 0.714286 | 0.357143 | 0.530612
fold #1 0.607143 0.5 0.714286 | 0.777778 | 0.416667 | 0.612245
fold #2 0.452381 | 0.571429 | 0.333333 | 0.666667 0.25 | 0.607143
fold #3 0.47619 | 0.285714 | 0.666667 | 0.666667 | 0.285714 | 0.440476
fold #4 0.380952 | 0.428571 | 0.333333 0.6 0.2 | 0.416667
fold #5 0.554945 | 0.538462 | 0.571429 0.7 0.4 | 0.659341
fold #6 0.664835 | 0.615385 | 0.714286 0.8 0.5 | 0.747253
fold #7 0.730769 | 0.461538 1 1 0.5| 0.78022
fold #8 0.543956 | 0.230769 | 0.857143 0.75 0.375 | 0.373626
fold #9 0.368132 | 0.307692 | 0.428571 0.5 0.25 | 0.241758
Mean 0.5315017 0.42967 0.633333 | 0.71754 | 0.353452 | 0.540934
SD 0.116715996 | 0.130302 | 0.218852 | 0.132455 | 0.104952 | 0.172064
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Table 5.25 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of

plaques over the 10-folds, regarding Subproblem 6.

Subproblem 6
Accuracy | Sensitivity | Specificity | AUC

fold #0 0.66 1 0.32 0.83
fold #1 0.675 0.6 0.75 0.7
fold #2 0.754167 0.8 | 0.708333 0.75
fold #3 0.429167 0.4 | 0.458333 | 0.466667
fold #4 0.654167 0.6 | 0.708333 | 0.708333
fold #5 0.729167 0.75| 0.708333 | 0.645833
fold #6 0.6875 0.75 0.625 | 0.71875
fold #7 0.708333 0.75| 0.666667 0.75
fold #8 0.604167 0.5 ] 0.708333 | 0.53125
fold #9 0.625 0.75 0.5 | 0.614583
Mean 0.652667 0.69 0.615333 | 0.671542
SD 0.090732 0.16964 | 0.141669 | 0.109226

Table 5.26 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of

plaques over the 10-folds, regarding Subproblem 7.

Subproblem 6
Accuracy | Sensitivity | Specificity | AUC

fold #0 0.75 0.75 0.75 0.775
fold #1 0.75 1 0.5 0.75
fold #2 0.825 0.9 0.75 0.7
fold #3 0.7 0.9 0.5 0.725
fold #4 0.95 0.9 1 0.975
fold #5 1 1 1 1
fold #6 0.616667 0.9 | 0.333333 | 0.366667
fold #7 0.783333 0.9 | 0.666667 | 0.883333
fold #8 0.697368 | 0.894737 0.5 ] 0.776316
fold #9 0.796053 | 0.842105 0.75 | 0.710526
Mean 0.786842 0.898684 0.675 0.766184
SD 0.115869 0.071385 | 0.220304 | 0.17677
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Figure 5. 9 ROC curve analysis regarding Subproblem 1.
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Figure 5.10 ROC curve analysis regarding Subproblem 2.
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Figure 5.11 ROC curve analysis regarding Subproblem 3.
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Figure 5.12 ROC curve analysis regarding Subproblem 4.
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Figure 5. 13 ROC curve analysis regarding Subproblem 5.
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Figure 5.14 ROC curve analysis regarding Subproblem 6.

171



& ROC fold 0 (AUC = 0.74)

ROC fold 1 (AUC = 0.71)
ROC fold 2 (AUC = 0.74)
ROC fold 3 (AUC = 0.64)
ROC fold 4 (AUC = 0.96)
ROC fold 5 (AUC = 1.00)
ROC fold 6 (AUC = 0.52)
ROC fold 7 (AUC = 0.88)
ROC fold 8 (AUC = 0.78)
ROC fold 9 (AUC = 0.71)
Chance

Mean ROC (AUC = 0.77 = 0.14)

+ 1 std. dev.

0.8 1

0.6 1

0.4 1

True Positive Rate

0.2 1

0.0 1

00 02 04 06 08 10
False Positive Rate

Figure 5. 15 ROC curve analysis regarding Subproblem 7.

Tuning of cut-off threshold values

In Figure 5.16- Figure 5.25, we show the tuning process of threshold values for Subproblem 1-5.
Regarding the first approach and the second approach (described in section 5.2.3), cut-off
threshold values were defined 0.5, 0.45, 0.52, 0.47, 0.47 and 0.51, 0.54, 0.52, 0.65, 0.48 for
Subproblem 1-5, respectively.
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Figure 5.16 Tuning of threshold value based on ROC analysis regarding Subproblem 1.
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Figure 5.17 Tuning of threshold value based on balanced accuracy regarding Subproblem 1.
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Figure 5. 18 Tuning of threshold value based on ROC analysis regarding Subproblem 2.
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Figure 5. 19 Tuning of threshold value based on balanced accuracy regarding Subproblem 2.
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Figure 5. 20 Tuning of threshold value based on ROC analysis regarding Subproblem 3.
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Figure 5. 21 Tuning of threshold value based on balanced accuracy regarding Subproblem 3.
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Figure 5. 22 Tuning of threshold value based on ROC analysis regarding Subproblem 4.
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Figure 5. 23 Tuning of threshold value based on balanced accuracy regarding Subproblem 4.
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Figure 5. 24 Tuning of threshold value based on ROC analysis regarding Subproblem 5.
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Figure 5. 25 Tuning of threshold value based on balanced accuracy regarding Subproblem 5.
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5.5 Discussion

In this section, we have focused on the design and evaluation of ML based models for the
prediction of carotid artery disease. Having formulated the specified problems as binary
classification problems according to the presence of CAS over 50%, the vulnerability and the
stability of the atherosclerotic plaques, we methodically developed a carotid artery disease risk
stratification methodology encompassing data pre-processing, feature evaluation, class
imbalance handling and classification steps. Different feature selection techniques have been
implemented for the identification of the most informative input features, aiming to achieve the
highest classification accuracy. In this direction, we conclude that most of the selected predictive
models incorporate RF-based feature ranking, which was able to effectively detect conditional
dependencies between input and output variables, taking also into account the underlying feature
inter-correlations. On top of these, a complete data pre-processing procedure was also applied to
resolve issues concerning missing data, unbalanced classes, and, as a result, improve the quality
of the dataset.

In addition to this, the input data of all the proposed machine learning models are typical health
records, such as demographics data, clinical data, risk factors and medical therapy data. Thus, an
innovative concept of the proposed models is their ability to either identify individuals with the
presence of CAS or with high risk of unstable plaques with the minimum cost and safety.

In addition to this, all the presented models have been integrated in a cloud-based platform, the
Taxinomisis platform, and except for their easy applicability, the proposed models provide an
explainability to the users. More specifically, a SHAP analysis was implemented to identify the

most significant features in each developed model.

Except for the studies aiming to identify the biomarkers associated with carotid artery disease
diagnosis, there have been presented also studies aiming to identify CAS based on ML
techniques. More specifically, Jun Xiong Yin et al. [271] concluded that family history of
dyslipidemia, high level of LDL, low level of HDL, aging, and low BMI are the most significant
risk factors of asymptomatic CAS. Yu et al. [272] implemented typical ML classifiers to identify
subjects with CAS, using 17 candidate input features and achieved the highest accuracy of 0.748.
In a same way, Fan et al. [273] implemented six different ML models to predict the
asymptomatic CAS patients and LR showed the optimal performance in predicting asymptomatic
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CAS, with an accuracy of 0.747. On the other hand, Poorthuis et al. [274] presented a model for
the detection of CAS, including as input features age, sex, smoking, hypertension,
hypercholesterolemia, DM, vascular and cerebrovascular disease, measured blood pressure, and
blood lipids and achieving an area under the receiver operating characteristic curve of 0.75 (95%
Cl, 0.74-0.75) for >50% asymptomatic CAS.

In the overall proposed pipeline for the detection of asymptomatic carotid artery disease, the
highest accuracy and AUC were 0.78 and 0.85, respectively and were achieved implementing the
RF selection technique and the Gradient boosting classification scheme. In addition to the
results using the training dataset, an external validation dataset of 521 individuals was used for
evaluation of the proposed model. Accuracy, sensitivity and specificity were 0.88, 0.88 and 0.84,
respectively. In Table 5.27, we summarize the existing machine learning based studies for the
diagnosis of CAS, in comparison with our overall proposed approach. As it is shown, the overall
evaluation metrics of the proposed pipeline were higher than those provided in other recent
studies in the literature [271-274].

As for the diagnosis of high risk plaques, seven different ML models have been developed for
the early detection of individuals with high risk plaques. The output of each model has been

defined based on different histological based features and presence of symptoms.

The majority of the existing studies take into account imaging based features to characterize the
high risk plaques and their aim is to associate the high risk plaques with different biomarkers
[150] [149] [170]. However, in the presented ML models, we aim not to identify a relation
between the output and specific biomarkers, but to identify the output (high risk plaques), based

on defined input features. The average accuracy of the proposed seven models was 0.64.

Regarding the diagnostic prediction of symptomatic carotid artery disease (Subproblem 6,
Subproblem 7), the input includes atherosclerosis related serum markers and the achieved

accuracy was 0.65 and 0.79 for Subproblem 6 and 7, respectively.
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Table 5. 27 Summary of the existing in the literature machine learning based studies in comparison with

our proposed approach.

Study Methodology Dataset Output-Results
Jun  Xiong | ML 2841 high risk individual of | concluded that family history of
Yin et al. stroke enrolled, 326 (11.6%) | dyslipidemia, high level of LDL,
[271] were diagnosed as ACS by | low level of high HDL, aging, and
ultrasonography low BMI are the most significant
risk factors of ACS, AUC=0.87
Yu et al|ML 17 candidate input features, | Accuracy=0.748
[272] 2732 asymptomatic subjects
Fan et al. | ML 18,441 subjects, 6553 were | Accuracy= 0.747
[273] diagnosed with asymptomatic
CAS, input risk factors &
biomarkers
Poorthuis et | Systematic input risk  factors & | AUC=0.75
al. [274] review biomarkers
Our ML Demographics, Clinical Data, | Accuracy= 0.78, AUC=0.85
Appproach Risk  Factors, Medication

(subproblem
#1)

Therapy, 881 patients
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Chapter 6 Silent brain lesions detection

6.1 Introduction
6.2 Association of carotid artery disease with silent brain lesions

6.3 Discussion

6.1 Introduction

Despite the association of the presence of CAS with stroke manifestation, the relation between the
carotid territory condition and the presence of clinically asymptomatic ischemic events remains unclear.
More specifically, these clinically asymptomatic lesions are small, radiologically-detected infarctions,
detected by brain imaging without a corresponding clinical manifestation. Their prevalence is estimated
about 10-20% with a yearly increase of 3-4% in population-based cohorts, while magnetic MRI-defined
SBIs increased the risk of incident stroke, ischemic stroke, intracerebral hemorrhage, and death [275].
In a meta-analysis study conducted by Finn et al. [275], it was found that both carotid IMT and CAS are
both are significantly associated with silent brain infarcts (SBIs). In another study, SBIs and white
matter brain lesions were investigated in patients with asymptomatic CAS >50% and they concluded
that DS may be relevant in the association between asymptomatic CAS and SBIs, and DS > 70% may
pose a risk of SBI development [276]. Similarly, Rudolph et al. [277] found that SBI is a significant risk
factor for future stroke, with odds ratio (OR) 4.6 (95% CI: 3.0-7.2;p < 0.0001), with an estimated

prevalence in asymptomatic carotid patients of 17-33.3%.

In this chapter our aim is to study the association of the presence of SBIs with the carotid territory, as it
is defined by US-based parameters and to associate demographics, clinical data and CVD-related risk

factors with the presence of SBls.
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6.2 Association of carotid artery disease with silent brain lesions
6.2.1 Brain MRI analysis

Brain MRI imaging was performed in individuals, participating in Taxinomisis clinical study. More
specifically, individuals with moderate to severe extracranial CAS, both asymptomatic and symptomatic,
were enrolled in the prospective observational multi-center trial in six European vascular centers
(Athens-NKUA, Barcelona-FCRB, Belgrade-UBEO, Genoa-USMI, Munich-TUM, and Utrecht-UMC).
Inclusion lasted from 30.3.2018 to 31.12.2019. All study participants have underwent MRI imaging of
brain and carotid arterial tree from aortic arch up to the circle of Willis. Diffusion weighted imaging has
been performed additionally to detect acute ischemic brain lesions.

Regarding the MRI acquisition protocol, 2D and 3D Time-of-flight (TOF) imaging was performed to
identify the carotid bifurcation and disease affected section of artery, as it is shown in Figure 6.1. Axial
T1-weighted imaging is performed through this segment of artery (Figure 6. 2). Selected matched T2-
and proton density-weighted imaging was also performed. Phase contrast imaging is carried out at

locations in the CCA and the ICA to provide inlet and outlet flow profiles.

Figure 6.1: Example of 3D TOF image, where the red point depicts the lumen of the CCA.
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Figure 6. 2: 2D TOF images of the right and left carotid arteries are shown at the sides of the image with
the axial slice locations for the T1-weighted sequence illustrated in yellow. The corresponding T1-
weighted slices, from CCA to ICA, are shown in the centre of the image.

The acquisition parameters for the MRI sequences were as follows: (i) TOF images: repetition time: 23
ms, effective echo time: 3.2 ms, field of view (FOV): 160 mm; slice thickness 0.5 mm (ii) fast-spin echo
double-inversion recovery prepared sequences (T1-weighted): repetition time: 1428.57 ms, effective
echo time: 7.672 ms, FOV: 100 mm, slice thickness: 2.5 mm (or lower); (iii) T2-weighted : repetition
time: 1379.31 ms, effective echo time: 99.74 ms, FOV: 100 mm, slice thickness: 2.5 mm (or lower); and
(iv) proton density-weighted sequences: repetition time: 1379.31 ms, effective echo time: 7.67 ms.
Phase-contrast images were acquired in CCA and the ICA. The acquired data were stored in DICOM
format and then transferred to a workstation for further analysis.

Brain MRI analysis consisted of identification of different brain lesions in terms of their localization,
time of occurrence, and correlation with symptoms and carotid plaque features seen both on MRI and

US. More specifically, an expert neuroradiologist annotated different brain lesions categories:

1. Chronic white matter ischemia, which were defined as a white matter hyperintensity of presumed
vascular origin and were recognized on MRI as a signal abnormality of variable size in the white

matter. These lesions have the following characteristics: hyperintensity on T2-weighted images
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such as fluid-attenuated inversion recovery, without cavitation (signal different from CSF).
Lesions in the subcortical grey matter or brainstem are not included in this category unless
explicitly stated. The utilized scale for this type of lesions was the Modified Fazekas scale
(1987) (Figure 6.3)

Cortical infarcts, which affect the cerebral cortex and are typically presented with deficits such as
neglect and aphasia.

Lacunar infarcts, which occur when an artery to the deep part of the brain, containing structures
like the thalamus or basal ganglia, is blocked. These arteries are very small and branch off
directly from a larger artery, making them particularly vulnerable to blockages.

Subcortical infarcts, which affect the small vessels deep in the brain, and typically present with

purely motor hemiparesis affecting the face, arm, and leg (Figure 6. 4)

Other data that were collected related to posterior circulation stroke or watershed territory lesions

in patients (either cortical or lacunar). (Figure 6.5)

Grade2

Figure 6.3 Chronic white matter ischemia.
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Figure 6. 4 Examples of a) cortical, b) lacunar and ¢) small subcortical infarcts.

* Posterior circulation stroke Watershed territory (either cortical or lacunae)

Figure 6.5 Posterior circulation stroke.

6.2.2 Methodology

The SPSS 23.0 program (Statistical Package for the Social Sciences, version 23.0 for Windows) was
used for the analyses. Normal distribution of continuous variables was tested using the Kolmogorov—
Smirnov and Shapiro-Wilk tests. Descriptive statistics were presented as mean (SD) for continuous
variables and as number (%) for categorical variables. Mann—Whitney U test was used for continuous
variables Pearson’s chi-squared test and OR analysis were used for categorical variables. The statistical

significance level was accepted as p<0.05.
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6.2.3 Dataset

Assessment of all baseline brain MRI images has been performed by expert radiologist from Bologna
group. Analysis of the baseline brain MRI images was performed in cases provided by 4 clinical centers
(UBEO, FCRB, USMI and TUM), participating in Taxinomisis clinical study, while brain images from
UMC and NKUA are not suitable for brain tissue assessment. Regarding the location of brain lesions,
neuroradiologists annotated cortical, lacunar and subcortical infarcts. Active lesions were reported as
active if the stenosis and plaque morphology corresponded to the brain lesions, as shown in Figure 6.6.
All brain images of the baseline were assessed by automatic segmentation and the quantification of

“white matter lesion of presumed vascular origin” was performed using BIANCA software [278].

Figure 6.6 Plaque stenosis (arrow) on the left side that corresponds to the brain lesion (encircled) on the right side.

In Table 6.1-6.3, we show 3 different datasets and their baseline characteristics (mean value for
continuous features and percentages for categorical ones), which were used in the proposed approach.
The 1% dataset and the 2" dataset are site specific datasets and aim to associate US based features with
the presence of SBIs. On the other hand, the 3™ dataset is a patient specific dataset and aims to associate
demographics, clinical data, risk factors and medication therapy with the presence of SBIs. Regarding
the Dataset 1, it includes 296 carotid arteries (right and left) and their ipsilateral presence of SBIs. The
percentages of brain lesions for cortical, lacunar and subcortical infracts are 13.9%, 1.7% and 7.1%,
respectively. As for Dataset 2, we use the CAS of 389 carotid arteries and their ipsilateral presence of
brain lesions. 50.4 % of the utilized carotid arteries have a DS over 50%, whereas 14.7% of carotid
arteries have a DS over 70%, as it is shown in Table 6. As far as Dataset 3 is concerned, in Table 6.3, we
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demonstrate baseline characteristics of clinical data, hematological, biochemical data and CVD related

risk factors for 211 patients from 4 different clinical centers.

Table 6.1 Baseline characteristics of Dataset 1.

Overall Cohort (N=296)

ICA stenosis, mean (SD) 53.63 (25.961)
PSV, mean (SD) 183.630 (97.6744)
ICA/PSV CCA, mean (SD) 3.59 (2.11)

St Mary's ratio, mean (SD) 13.74 (8.59)
Cortical, n (%) 41 (13.9%)
Lacunar, n (%) 5 (1.7%)

Small subcortical, n (%) 21 (7.1%)

Active, n (%)

59 (19.9%)

Table 6.2 Baseline characteristics of Dataset 2.

Overall Cohort (N=389)

Presence of CAS>50% 196 (50.4%)
Presence of CAS>70% 57 (14.7%)
Cortical , n (%) 47 (12.1%)
Lacunar, n (%) 9 (2.3%)
Small subcortical, n (%) 29 (7.5%)

Active, n (%)

77 (19.8%)

Table 6. 3 Baseline characteristics of Dataset 3.

Overall Cohort (N=211)

Height, mean (SD) 169.83 (9.15) Sex (male), n (%) 131 (62.1%)
Weight, mean (SD) 76.36 (11.57) Alcohol abuse, n(%) 21 (10%)
BMI, mean (SD) 26.23 (3.19) DM, n (%) 62 (29.4%)
SBP, mean (SD) 131.31 (16.36) Hypertension, n(%) 180 (85.3%)
DBP, mean (SD) 79.88 (8.62) Hypercholesterolemia, n(%) | 125 (59.2%)
Puls rate, mean (SD) 70.56 (7.15) COPD, n(%) 25 (11.8%)
Age, mean (SD) 69.86 (7.63) Coronary disease, n(%) 48 (22.7%)
Hb, mean (SD) 12.16 (2.79) Angina pectoris, n(%) 50 (23.7%)
Hct, mean (SD) 40.61 (4.69) Previous Ml, n(%) 20 (9.5%)
Creatinine, mean (SD) 86.01 (25.33) Previous CABG/PCI, n(%) | 29 (13.7%)
Cholesterol, mean (SD) 4.61 (1.1) Atherosclerosis of aortiliac 52 (24.6%)

segment or

femoropoplitealcrural, n(%)
LDL, mean (SD) 2.56 (0.98) Aneurysm, n(%) 8 (3.8%)
HDL, mean (SD) 1.49 (0.56) Statin, n(%) 190 (90%)
Triglycerides, mean (SD) 1.53(0.81) Cortical , n (%) 46 (21.8%)
Glucose, mean (SD) 6.44 (2.48) Lacunar, n (%) 8 (3.8%)
CRP, mean (SD) 3.53 (3.63) Small subcortical, n (%) 26 (12.3%)
HbAlc, mean (SD) 6.07 (0.89) Active, n (%) 66 (31.3%)
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6.2.4 Results

Regarding the analysis of Dataset 1, as it is shown in Table 6.4, the higher mean values of ICA stenosis
and St Mary's ratio are significantly associated with the presence of Cortical infarcts (p=0.014, p=0.004
for stenosis and St. Mary’s ratio, respectively), small subcortical infarcts (p=0.018, p=0.013 for stenosis

and St. Mary’s ratio, respectively) and Active lesions (p=0.002 for both stenosis and St. Mary’s ratio).

In Table 6.5, it is clearly shown that the CAS in the ipsilateral carotid artery is considered as a
statistically significant risk factor for the presence of cortical infarcts. More specifically, we have
observed in 47 (12.1%) out of 389 cortical infarcts, in which 30 of them had an over 50 % DS in their
ipsilateral carotid artery (OR: 1.860, C1:0.989-3.499, p=0.05) and 18 of them had an over 70 % DS in
their ipsilateral carotid artery (OR: 4.822, Cl:2.453-9.481, p<0.001).

As for the 3" dataset, the mean age of the study’s participants was 69.86 +7.63 in the 211 patients (131
males, 80 females) enrolled in the study. Positive risk factors for the presence of brain lesion was the
previous MI (OR: 2.685, CI: 1.022-7.056, p value:0.039 for cortical infarct association and OR:2.481,
Cl: 0.975-6.311, p value: 0.05 for active lesions association), the alcohol abuse (OR: 3.474 , Cl: 1.204-
10.018, p value:0.015 for small subcortical infarct association) and the previous CABG/PCI placement
(OR: 2.882, Cl: 1.074-7.734, p value:0.03 for small subcortical infarct association). In addition to this,
statistically significant higher mean values have been reported in the Class of brain lesion presence for
the SBP (lacunar infarct, p value: 0.019), triglycerides (lacunar infarct, p value<0.001), Creatinine (small
subcortical infarct, p value: 0.001) and HbA1c (small subcortical infarct, p value: 0.008).
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Table 6.4 Subjects characteristics in the Class 0 (Absence of Brain lesion) and Class 1 (Presence of Brain lesion) for cortical, lacunar, small

subcortical and active infarct, regarding Dataset 1.

Class 0 Class 0 P Class 0 Class 0 (Presence | P
(Absence of (Presence of value (Absence of of Lacunar) value
Cortical) Cortical) Lacunar) N=6
N=248 N=41 N=291
ICA stenosis, mean (SD) 52.22 59.44 0.014 53.64 (26.07) 52.80 (20.413) 0.572
PSV, mean (SD) 178.88 212.533 0.674 | 184.15(97.35) 158.25(126.43) 0.59
PSV ICA/ PSV CCA, mean (SD) | 3.4 (2.07) 453 (2.2) 0.222 |3.6(2.1) 2.89 (2.78) 0.536
St Mary's ratio, mean (SD) 13.09 (7.78) 16.96 (12.13) 0.004 | 13.76 (8.53) 12.71 (12.78) 0.331
Class 0 (Absence of | Class 0 (Presence | P value | Class O (Absence | Class 0 (Presence | P value
small subcortical) small subcortical) of Active of Active
N=275 N=21 N=237 N=59
ICA stenosis, mean (SD) 51.90 (33.37) 53.76 (25.38) 0.018 | 53.45 (24.46) 54.34 (31.52) 0.002
PSV, mean (SD) 181.35(97.69) 219.08(94.37) 0.79 179.33 (98.77) 201.28 (92.16) 0.619
PSV ICA/ PSV CCA, mean (SD) | 3.55 (2.09) 4.15 (2.45) 0.381 | 3.47(2.08) 4.11 (2.18) 0.266
St Mary's ratio, mean (SD) 13.46 (8.2) 18.05 (13.04) 0.013 13.17 (7.59) 16.06 (11.7) 0.002
Table 6.5 Odds Ratio analysis for the association of DS and the presence of Brain lesion, regarding Dataset 2.
Presence of Odds Ration -CI | P value Presence of Odds Ration P
Cortical Infarct Lacunar Infarct | —CI value
Presence of CAS >50%, n (%) | 30 (15.3%) 1.860 0.05 4 (2%) 0.779 (0.206- 0.712
Absence of CAS >50%, n (%) | 17 (8.9%) (989-3.499) 5 (2.6%) 2.946)
Presence of CAS >70%, n (%) | 18 (31.6%) 4.822 <0.001 1 (1.8%) 0.723 (0.089- 0.761
Absence of CAS >70%, n (%) | 29 (8.7%) (2.453-9.481) 8 (2.4%) 5.895)
Presence of Small Odds Ration -CI | P value Presence of Odds Ration P
subcortical Infarct Active Lesion —Cl value
Presence of CAS >50%, n (%) | 12 (6.1%) 0.671 (0.312- 0.306 38 (19.8%) 1.007 0.979
Absence of CAS >50%, n (%) | 17 (8.9% 1.446) 39 (19.9%) (0.611-1.658)
Presence of CAS >70%, n (%) | 6 (10.5%) 1.581 0.339 19 (33.3%) 2.362
Absence of CAS >70%, n (%) | 23 (6.9%) (0.614-4.071) 58 (17.5%) (1.272-4.388)
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Table 6.6 Subjects characteristics for continuous input features in the Class 0 (Absence of Brain lesion) and Class 1 (Presence of Brain lesion) for

cortical, lacunar, small subcortical and active infarct, regarding Dataset 2.

Class 0 Class 0 P value Class 0 (Absence of Class 0 (Presence of | P value

(Absence of Cortical) (Presence of Cortical) Lacunar) Lacunar)

N=165 N=46 N=203 N=8
Height 169.42 (8.85) 171.16 (10.07) 0.209 169.81 (9.197) 170.57 (8.26) 0.757
Weight 76.03 (12.08) 77.47 (9.74) 0.111 76.009 (11.49) 85.14 (9.84) 0.392
BMI 26.31 (3.37) 25.96 (2.45) 0.132 26.16 (3.16) 28.37 (3.73) 0.346
SBP 132.18 (16.71) 128.16 (14.8) 0.325 131.16 (16.54) 134.75 (14.64) 0.019
DBP 80.46 (8.09) 77.81 (10.13) 0.055 79.73 (8.66) 81.50 (7.65) 0.473
Puls rate 70.66 (7.54) 70.20 (5.6) 0.255 70.43 (7.26) 72 (2.24) 0.118
Age 70.25 (7.91) 68.48 (6.43) 0.242 69.82 (7.55) 73.38 (8.62) 0.552
Hb 11.98 (2.8) 12.76 (2.67) 0.141 12.14 (2.79) 11.84 (2.92) 0.931
Hct 40.49 (4.85) 41.02 (4.13) 0.72 40.48 (4.62) 43.3 (6.43) 0.491
Creatinine 86.53 (24.74) 84.03 (27.7) 0.677 85.58 (25.31) 98.11 (26.52) 0.639
Cholesterol 4.6 (1.08) 4.62 (1.2) 0.355 4.61 (L) 4.15 (1.22) 0.928
LDL 2.54 (0.99) 2.63 (0.94) 0.811 2.57 (0.99) 2.18 (0.74) 0.447
HDL 1.5 (0.56) 1.42 (0.56) 0.901 1.5 (0.57) 1.22 (0.44) 0.363
Triglycerides 1.52 (0.8) 1.56 (0.83) 0.726 1.49 (0.73) 2.44 (1.75) <0.001
Glucose 6.56 (2.35) 6.03 (2.88) 0.835 6.46 (2.5) 6.12 (2.43) 0.962
CRP 3.55 (3.68) 3.46 (3.49) 0.864 3.55(3.7) 2.96 (L.77) 0.481
HbAlc 6.09 (0.85) 6.03 (1.03) 0.594 6.08 (0.89) 6.15 (1.48) 0.371

Class 0 Class 0 P value Class 0 (Absence of Class 0 (Presence of | P value

(Absence of Small (Presence of Small Active) Active)

subcortical) subcortical) N=145 N=66

N=185 N=26
Height 170.06 (8.83) 168.74 (11.22) 0.048 169.78 (8.64) 169.93 (10.24) 0.037
Weight 76.13 (11.55) 78.09 (12.02) 0.723 75.86 (11.88) 77.42 (10.92) 0.483
BMI 26.09 (3.17) 27.07 (3.31) 0.516 26.18 (3.28) 26.36 (2.99)4 0.875
SBP 130.74 (16.28) 135.64 (16.81) 0.504 131.08 (16.29) 131.81 (16.64) 0.448
DBP 79.60 (8.55) 81.44 (9.05) 0.879 80.13 (8.08) 79.34 (9.75) 0.134
Puls rate 70.28 (7.45) 72.38 (4.64) 0.182 70.51 (7.85) 70.67 (5.3) 0.056
Age 69.92 (7.75) 69.42 (7.03) 0.517 70.12 (7.85) 69.30 (7.16) 0.585
Hb 12.07 (2.82) 12.74 (2.6) 0.227 11.98 (2.82) 12.54 (2.69) 0.276
Hct 40.53 (4.65) 41.42 (4.94) 0.377 40.34 (4.65) 41.22 (4.78) 0.457
Creatinine 84.71 (22.95) 96.71 (38.09) 0.001 85.72 (24.46) 86.69 (27.47) 0.686
Cholesterol 4.65 (1.11) 4.29 (1.05) 0.85 4.64 (1.08) 4.53 (1.17) 0.431
LDL 2.59 (0.99) 2.3(0.85) 0.404 2.58 (1) 2.51 (0.94) 0.773
HDL 1.51 (0.57) 1.34 (0.47) 0.711 1.53 (0.57) 1.38 (0.53) 0.724
Triglycerides 1.52 (0.81) 1.59 (0.82) 0.967 1.45(0.72) 1.71 (0.97) 0.058
Glucose 6.42 (2.45) 6.73 (2.73) 0.383 6.5 (2.33) 6.32 (2.79) 0.518
CRP 3.59 (3.77) 3.18 (2.61) 0.437 3.71 (4.1 3.15(2.31) 0.178
HbAlc 6.03 (0.79) 6.45 (1.28) 0.008 6.03 (0.83) 6.18 (1.01) 0.263
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Table 6. 7 Odds Ratio analysis for the association of CVD related risk factors and the presence of Brain lesions, regarding Dataset 3.

Presence of Odds Ration - | P value Presence of Odds Ration - P

Cortical Infarct Cl Lacunar Infarct Cl value
Sex (male), n(%) 32 (24.4%) 0.656(0.326- 0.237 8 (6.2%) 0.938 (0.898- 0.025
Sex (female), n(%) 14 (17.5%) 1.323) 0 (0%) 0.981)
Alcohol abuse (no), n(%) 7 (3.8%) 1.257 (0.147- 0.834
Alcohol abuse (yes), n(%) 1 (4.8%) 10.746)
Diabetes mellitus (no), n(%) 36 (24.2%) 0.604 (0.278- 0.198 6 (4.1%) 0.783 0.154- 0.768
Diabetes mellitus (yes), n(%) 10 (16.1 %) 1.309) 2 (3.2%) 3.992
Hypertension (no), n(%) 7 (23.3%) 0.909 (0.363- 0.838 0 (0%) 1.047 (1.014- 0.246
Hypertension (yes), n(%) 39 (21.7%) 2.274) 8 (4.5%) 1.080)
COPD (no), n(%) 43 (24.2%) 0.131 (0.017- 0.022 7 (4%) 1.006 (0.119- 0.996
COPD (yes), n(%) 1 (4%) 0.996) 1 (4%) 8.537)
Coronary disease (no), n(%) 31 (20%) 0.298 5 (3.3%) 1.973 (0.454- 0.357
Coronary disease (yes), n(%) 13 (27.1%) 3 (6.3%) 8.58)
Angina pectoris (no), n(%) 26 (26.8%) 0.372(0.142- 0.039 2 (2.1%) 2.968 (0.479- 0.222
Angina pectoris (yes), n(%) 6 (12%) 0.976) 3 (6%) 18.378)
Previous MI (no), n(%) 36 (19.9%) 2.685 (1.022- 0.039 8 (4.5%) 0.955 (0.926- 0.335
Previous MI (yes), n(%) 8 (40%) 7.056) 0 (0%) 0.986)
Previous Cabg/pci (no), n(%) | 36 (20.9%) 1.439 (0.589- 0.423 6 (3.5%) 2.025 (0.388- 0.394
Previous Cabg/pci (yes), n(%) | 8 (27.6%) 3.516) 2 (6.9%) 10.556)
Atherosclerosis of aortiliac 34 (23.4%) 0.683 (0.303- 0.358 6 (4.2 %) 0.913 (0.178- 0.913
segment or 1.543) 4.674)
femoropoplitealcrural (no), n
(%)
Atherosclerosis of aortiliac 9 (17.3%) 2 (3.8%)
segment or
femoropoplitealcrural (yes),
n(%)
Aneurysm (no), n(%) 40 (21.2%) 1.242 (0.241- 0.795 8 (4.3%) 0.957 (0.929- 0.55
Aneurysm (yes), n(%) 2 (25%) 6.388) 0 (0%) 0.987)
Statin (no), n(%) 6 (31.6%) 0.578 (0.207- 0.381 1 (5.3%) 0.696 (0.081- 0.74
Statin (yes), n(%) 40 (21.1%) 1.616) 7 (3.7%) 5.98)
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Presence of Small | Odds Ration - | P value Presence of Active | Odds Ration - P

subcortical Infarct | Cl Infarct Cl value
Sex (male), n(%) 17 (13%) 0.862 (0.364- 0.736 44 (33.6%) 0.75 (0.407- 0.355
Sex (female), n(%) 9 (11.4%) 2.04) 22 (27.5%) 1.381)
Alcohol abuse (ho), n(%) 19 (10.3%) 3.474 (1.204- 0.015 59 (31.9%) 0.854 (0.316- 0.756
Alcohol abuse (yes), n(%) 6 (28.6%) 10.018) 6 (28.6%) 2.313)
Diabetes mellitus (no), n(%) 19 (12.8%) 0.864 (0.344- 0.756 49 (32.9%) 0.771 (0.401- 0.435
Diabetes mellitus (yes), n(%) 7 (11.3%) 2.173) 17 (27.4%) 1.483)
Hypertension (no), n(%) 2 (6.9%) 2.077 (0.464- 0.33 6 (20%) 2 (0.776-5.155) | 0.145
Hypertension (yes), n(%) 24 (13.3%) 9.301) 60 (33.3%)
COPD (no), n(%) 22 (12.4%) 0.613 (0.135- 0.522 58 (32.6%) 0.394 (0.129- 0.092
COPD (yes), n(%) 2 (8%) 2.78) 4 (16%) 1.201)
Coronary disease (no), n(%) 15 (9.7%) 2.138 (0.87- 0.092 43 (27.7%) 1.706 (0.867- 0.12
Coronary disease (yes), n(%) 9 (18.8%) 5.257) 19 (39.6%) 3.358)
Angina pectoris (no), n(%) 15 (15.6%) 0.6 (0.205- 0.348 33 (34%) 0.681 (0.319- 0.32
Angina pectoris (yes), n(%) 5 (10%) 1.759) 13 (26%) 1.455)
Previous MI (no), n(%) 20 (11.1%) 2 (0.608-6.575) | 0.246 52 (28.7%) 2.481 (0.975- 0.05
Previous M1 (yes), n(%) 4 (20%) 10 (50%) 6.311)
Previous Cabg/pci (no), n(%) | 17 (9.9%) 2.882 (1.074- 0.03 50 (29.1%) 1.722 (0.767- 0.184
Previous Cabg/pci (yes), n(%) | 7 (24.1%) 7.734) 12 (41.4%) 3.868)
Atherosclerosis of aortiliac 18 (12.5%) 0.745 (0.262- 0.58 49 (33.8%) 0.588 (0.283- 0.152
segment or 2.119) 1.221)
femoropoplitealcrural (no),
n(%)
Atherosclerosis of aortiliac 5 (9.6%) 12 (23.1%)
segment or
femoropoplitealcrural (yes),
n(%)
Aneurysm (no), n(%) 22 (11.7%) 1.078 (0.127- 0.945 58 (30.7%) 0.753 (0.148- 0.732
Aneurysm (yes), n(%) 1 (12.5%) 9.18) 2 (25%) 3.842)
Statin (no), n(%) 1 (5.3%) 2.744 (0.351- 0.317 5 (26.3%) 1.324 (0.456- 0.605
Statin (yes), n(%) 25 (13.2%) 21.468) 61 (32.1%) 3.843)
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6.3 Discussion

According to existing in the literature studies and due to the rapid development of MRI scans, there are
not specific diagnostic criteria for the detection of SBIs. Accurate diagnosis of SBIs is related to the
utilized scan methodology, the size and location of the lesions, the implemented acquisition protocol and
modality’s resolution. Despite MRI is considered as the gold standard for the detection of SBIs, there
are still clinical centers that identify SBIs through the use of CT. This leads to the underestimations of
SBls and to the increase of SBI-related cerebral events [277].

In the literature, there are different approaches that attempted to associate the CAS with the presence of
SBls either in the ipsilateral site or in the contralateral. More specifically, Baradaran et al. [279]
concluded that the prevalence of SBIs ipsilateral to ICA disease (33%) compared with the contralateral
side was higher and the prevalence of cortical SBIs occurring downstream from ICA disease was also
higher. This was also confirmed by a study proposed by Mujdat Deniz Benli et al. [276], who found
that the number of SBIs was in the ipsilateral hemisphere compared to that in the contralateral
hemisphere (p =0.022). Based on this conclusion, we investigated the role of US based features of each
carotid artery with the SBIs in the ipsilateral hemisphere in brain. The main innovative aspect of our
approach is the proposed concept, since there are no other similar approaches in the literature, which are
dedicated to associate typical US based metrics with the presence of SBIs. Through our study, it is clear
that there is a strong relation between the DS and St. Mary’s ratio of carotid artery with the presence of
cortical, lacunar and active brain lesions. Additionally, another innovation of our study is the attempt
that has been undertaken to characterize the brain lesions according to their localization (cortical,
lacunar and small subcortical infarcts). Thus, we have concluded that CAS is a statistically significant
measure for all the types of SBIs, except of lacunar lesions. Lacunar lesions have traditionally been
considered to arise from microcirculatory disturbances at the level of the small perforating arteries and
published literature does not support extracranial carotid disease as an etiological factor for carotid
artery disease [280]. Similarly to other published in the literature studies, our findings have confirmed
that the presence of CAS in lacunar infarct is an incidental finding and routinely evaluating for carotid
artery disease is not required in patients presenting with radiologically confirmed lacunar infarcts [281].

Except for the per site analysis of association between carotid territory and SBIs’ presence, a per patient
analysis has been performed, aiming to investigate more systemic factors for the pathogenesis of SBIs.
Several studies have examined the incidence of SBIs and its relation to risk factors for stroke, with an
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increased two- to three-fold risk in the presence of SBI on MRI in elderly populations. Risk factors for
SBIs are considered to be comparable to those for stroke and CVD; therefore, CV patients may also be
at high risk of silent infarcts with similar risk factors such as ageing, hypertension and DM. Based on
this hypothesis, SBI is prevalent following involvement of atherosclerosis in systemic vascular disease
and often unnoticed and untreated, this condition may account for undetected cognitive and functional

decline as well as unexpected ischaemic stroke [282].

Based on the presence of systemic risk factors for SBIs similar to these of vascular disease, risk factors
such as the gender, alcohol abuse, the DM, hypertension, hypercholesterolemia, COPD, CAD, angina
pectoris, previous MI, previous CABG/PCI placement, atherosclerosis, aneurysm disease and statin
therapy, were investigate with the association of SBIs. Through our study, it was found that the previous
M, the alcohol abuse and previous CABG/PCI placement are strongly related to the presence of SBIs,
confirming the relation of systemic vascular disease risk factors with the risk factors for SBIs. Except of
risk factors, it was also found that high values of clinical data, such as the SBP, and biochemical data,
such as triglycerides, creatine and HbAlc, are associated with the presence of SBIs, assuming that high
values of SBP, triglycerides, creatine and HbAlc correspond to hypertension, hypertriglyceridemia,

renal dysfunction and DM.

In Table 6.8, we demonstrate a summary of similar in the literature studies, showing that the utilized
dataset of our approach has more participants and the output of our study is not limited to the assessment

of the contribution of CAS presence to the ipsilateral and contralateral SBIs presence.

Table 6. 8 Comparison of our approach with existing in the literature studies.

Study Dataset Methodology Results
Baradaran et | 104 patients with | McNemar test to compare -higher prevalence of SBls ipsilateral to ICA
al. [279] Asymptomatic the prevalence of any SBI disease (33%) compared with the
Carotid Artery Wilcoxon signed-rank test to | contralateral side
compare the total number of | -no significant difference in the prevalence of
SBIs ipsilateral vs lacunar SBIs between hemispheres
contralateral to extracranial | (P=0.109),
internal carotid artery -significantly higher prevalence of cortical
stenosis SBIs occurring downstream from ICA
disease (P=0.0045)
Claudina Meta analysis - The prevalence of SBI in asymptomatic
Rudolph et carotid patients is 17-33.3%.
al. [277] -SBI is a significant risk factor for future
stroke, OR 4.6 (95% CI: 3.0-7.2; p<0.0001)
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Study Dataset Methodology Results
Mijdat 69 patients (35 -Mann-Whitney U test was | -frequency of Fazekas grade 1 DWMLs was
Deniz Benli | females, 34 males) | used lower in the hemisphere ipsilateral to the ICA
et al. [276] , (15.9%) >SBlIs | for continuous variables stenosis compared to the contralateral
-Fisher’s exact test or hemisphere (p =0.035)
Pearson’s -number of SBIs was also higher in the
chi-squared test was used for | ipsilateral hemisphere compared to that in the
categorical variables contralateral hemisphere (p = 0.022).
Our study 296 carotid Statistical analysis Association of CAS, previous MI, alcohol
arteries abuse and previous CABG/PCI with presence
389 carotid of SBIs
arteries High values of SBP, triglycerides, creatine

211 patients

and HbA1c are associated with the presence
of SBIs
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Chapter 7 Conclusions and future work

7.1 Conclusions

7.2 Future work

7.1 Conclusions
The aim of this thesis is to present different methodologies for the predictive modeling of
atherosclerosis, developing models both for the CAD and carotid artery disease prediction. Overall

pipelines based on ML techniques have been proposed for CAD and carotid disease prediction.

Based on the lack of existing in the literature studies for imaging based CAD prediction, our idea was to
collect both imaging and non-imaging features for the disease’s prediction. In the literature, the
association of imaging and biomechanical related features with the CAD progression, is well
established. Different studies have confirmed the association of low WSS with the CAD progression,
either analyzing IVUS or CTA images. However, most of these studies do not take into account other
typical CAD risk factors and the new concept of geometrical based CAD risk factors. Thus, the first
objective of our thesis was to collect geometry based CAD risk factors by analyzing CTA images.,
including features, such as DS, MLA, MLD, PB, CP and NCP volume.

An overall methodology for the 3D coronary reconstruction and plaque characterization using CTA
images, was developed and evaluated through this thesis. This overall methodology includes the
following steps: (i) CTA images preprocessing, (ii) blooming effect removal, (iii) centerline extraction,
(iv) inner wall and outer wall segmentation, (v) CP and NCP segmentation and (vi) 3D surface
construction and provides accurately 3D models of the inner wall, outer wall, CP and NCP. Active
contour models technique was implemented for the inner, outer wall and CP segmentation, whereas
dynamic thresholding technique was used for NCP segmentation. The proposed methodology was
validated using manual annotations for inner wall, CP and NCP segmentation and was compared also
with IVUS and VH-IVUS modality. DICE for inner wall, CP and NCP was 0.75, 0.7 and 0.62,
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respectively, whereas degree of correlation for CP and NCP volume was 0.93 and 0.92, respectively.
Regarding the carotid artery reconstruction, manual annotations were used for the technique evaluation
and it was found that DICE for the inner wall, outer wall, CP and NCP was 0.83, 0.8, 0.71 and 0.7,
respectively [204-206].

The technical innovations of the proposed methodology were the integration of the blooming effect
removal in cases of high intensity objects and the integration of vessel centerline extraction, which
allows the accurate lumen segmentation in cases of fully occluded vessels. In addition to this, both the
detection of CP and the NCP constitute a novelty of the proposed methodology. Based on the concept
that the absolute HU range of both CP and NCP plaques is significantly affected by the dose protocol
selection and the luminal density [221], our approach is fully adaptive on each acquisition dose protocol
methodology for the detection of CP and NCP, as well as their 3D models construction. Overall
proposed pipeline was integrated into a user-friendly platform which requires the minimal user
interaction and provides 3D models for inner wall, outer wall, CP and NCP and all the geometrical based

features by annotating the starting and the ending point of the vessel [194].

Promising results of the proposed 3D reconstruction methodology allow the calculation of geometry
based features using the provided by the methodology 3D models. In particular, features such as the DS,
the MLA, MLD, PB, CP volume, NCP volume and biomechanical modeling features, such as the
smartFFR index, the maximum ESS, minimum ESS, mean ESS, the luminal area where ESS was lower
than 1 Pa, the maximum LDL concentration and the minimum LDL concentration, were utilized for ML
CAD risk prediction models. The overall methodology for these models development was the dataset
collection, the preprocessing of the data, the classification and feature selection scheme implementation
and finally the model evaluation. Four different approaches have been developed for CAD prediction
having as clinical outcomes, the prediction of obstructive CAD (as a 2-class and 3-class problem), the
CAD progression and the prediction of PCI placement. Achieved accuracies of the proposed models
were 0.81, 0.67, 0.74 and 0.78, respectively, indicating promising results in the CAD prediction.
Additionally, high predictability of imaging based features was also confirmed through our first
approach (Chapter 4.2), in which accuracy of the model using imaging and non imaging features was

0.81, whereas accuracy using only non imaging data was 0.69 [232-235].

However, except for the prediction of obstructive CAD presence, CAD progression and PCI placement,

the prediction of the CAD-related events is also a very important task both for the clinical research area
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and for patients’ management. However, all the proposed ML models were trained using an existing
dataset of 187 participants, in which there were only few CAD-related events. This is a low—medium-
risk population, and we have few major CAD events to use for the development of such an event-
prediction model. On the other hand, thanks to the advantage of our intermediate CAD risk population,
we were able to build a model that can be used as a prognostic decision-support tool by clinicians to
properly monitor and manage patients of intermediate CAD risk for the next years after a first imaging is
available. In addition to this, number of patients utilized for the development of proposed models was
limited, compared to some existing in the literature models.

Another limitation of the proposed methodologies for CAD prediction is that the evaluation of the
proposed models was applied with the use of the training dataset and not with the use of an external

dataset.

In addition to CAD prediction, in this thesis, prognostic modeling of atherosclerosis progression was
developed for the carotid artery disease risk stratification. Based on the latest clinical guidelines, the
management of asymptomatic carotid artery disease is based on the CAS, and not take into account the
presence of vulnerable atherosclerotic plaques [283]. Thus, in the fifth chapter of our thesis we aim to
develop ML models for the diagnostic prediction of CAS presence, high risk plaques presence and
symptomatic disease presence. The overall ML based pipeline includes the data collection and curation,
the definition of the clinical outcome, the class imbalance handling, the implementation of feature
selection and classification techniques, the evaluation of the model and finally the integration of them

into a cloud-based platform.

Regarding the detection of CAS presence only demographics, clinical data, risk factors and medication
therapy were used as input and an overall 0.78 accuracy was achieved, using as training dataset 881
individuals. The training dataset included only asymptomatic individuals and was also externally
validated using 521 asymptomatic individuals. The achieved accuracy of the proposed model using the
external dataset was 0.88, whereas the sensitivity and specificity was 0.88 and 0.84, respectively. The
main limitation of this external validation dataset was the class imbalance, since the majority of
individuals (n=440-84.5%) were at class of CAS presence and only 81 of the individuals were at class of
CAS absence.
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On the other hand, ML models for the atherosclerotic high risk plaques detection have used as input
clinical, demographics, risk factors, biochemical and medication therapy data and their clinical outcome

was defined based on the atherosclerotic plaque histology.

A first limitation of these models was the use of imbalance retrospective training datasets and the
inclusion of both symptomatic and asymptomatic individuals for the training of the proposed models. In
case of symptomatic individuals, the carotid artery disease risk stratification has not clinical
significance, since according to the current guidelines, surgery is recommended. In addition to this, the

proposed models for diagnostic prediction of plaque vulnerability have not been externally validated.

In this thesis, attempts have been also undertaken to associate carotid artery disease with silent brain
lesions. Despite the known relationship between CAS and brain lesions, there are very limited studies
that aim to associate CAS with asymptomatic brain lesions. In the last chapter of this PhD thesis, we
aim to associate both the carotid condition and patient’s comorbidities with the presence of SBIs in the
ipsilateral hemisphere. The detection of SBIs has been performed by experts neuroradiologists and
typical statistical analysis techniques have been implemented for the detection of the most statistically

significant features.

Through this thesis, analyzing brain MRI of 211 patients, it was indicated that high mean values of ICA
stenosis and St Mary's ratio are associated with the presence of cortical, small subcortical and active
infarcts. Additionally, it was found that CAS in the ipsilateral carotid artery is considered as a
statistically significant risk factor for the presence of cortical infarcts, whereas positive risk factors for
the presence of silent brain lesions was the previous Ml, the alcohol abuse and the previous CABG/PCI
placement. Moreover, higher mean values of SBP, triglycerides, creatinine and HbAlc are also

associated with silent brain lesions presence.

Undoubtedly, as we enter the age of precision medicine, risk assessment and prediction models are
considered more notable. In this thesis, our principal aim is to present innovative ML based models for
the CAD and carotid artery disease prediction, taking into account both imaging and non-imaging based
features. The capability of ML models, combined with a detailed input set of parameters and a balanced
dataset of patients may provide novel and promising stratification approaches, contributing to the

clinical and research CV area.
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7.2 Future work

Regarding the methodology for the 3D arteries reconstruction and atherosclerotic plaques detection, a
future step could be the implementation of deep learning techniques in CTA images to improve
segmentation performance, using more CTA cases both for training and testing. In addition to this,
another future important analysis is the use of the proposed methodology to compare the CTA
performance in the field of CAD diagnosis with PET and SPECT.

In spite of the high predictability of proposed studies for the CAD risk prediction, a future step for their
deployment could be the integration of new features, concerning molecular systemic variables,
inflammatory and monocyte markers, the lipid profile, exposome as well as mRNA sequencing.
Therefore, a more detailed input space and a larger dataset of patients ensure a more effective
multimodal prediction scheme and potentially a refined formulation of the classification problem.
Additionally, development of ML model for CAD related events prediction is also a future step for the
CAD risk prediction problem, using as input both imaging and non imaging data. Collection of external
validation datasets for the CAD risk prediction developed models is also our next step for their broadly

evaluation and to check how accurately they generally perform.

The work performed in this thesis is not finished in terms of carotid artery disease prediction. More
specifically, our first aim is to use more external individuals, to test the diagnostic presence of CAS,
especially of healthy (Class 0) individuals and to collect data for external validation of the diagnostic
high risk plaques presence. This task is challenging since high risk plaques are difficult to be defined
and are basically based either on histology of plaque features or on image related features, such as large,
echolucent plaques, intraplague haemorrhage and presence of lipid-rich necrotic core. Another future
work for the carotid artery disease prediction is to develop a model for the prediction of CVD related

events, such as stroke, TIA, MI, using imaging and non imaging features.

Final, regarding the brain MRI analysis, a future step is the analysis of the brain MRI images at a follow
up time step, in order to evaluate the progression of the lesions. In addition to this, except of the
implementation of statistical analysis for the data analysis, another step is to perform feature selection

techniques for the detection of significant features for the presence of brain lesions.
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Appendix

Threshold selection (Chapter 3)

The selection of the intensity thresholds of the lumen and the CP were based on the current literature.
More specifically, due to the variety of CT scanners, the average range of lumen intensity is 200 HU-
500 HU 2211 whereas the intensity of CP is higher than 500 HU [284]. In this methodology, we have to
identify the optimal threshold values for the discrimination of the lumen, the outer wall and the CP.
These threshold values are extracted based on the calculation of the mean lumen intensity (liumen), In
combination with the known ranges of the lumen and CP intensities. Thus, as far as the lumen threshold
is concerned and considering that the intensity of the lumen is affected by the acquisition dose protocol,
we selected a relative small lires (lthres =B0HU). As it is demonstrated in Table 1 (page 33), in order to
find the lower limit of the lumen intensity value, the lnres is subtracted from the mean lumen intensity
and the value of 80 HU is a good approximation in order to agree with the lumen range proposed from
the literature (around 500HU). As it is demonstrated in the Figure 10, the HU values which are possible
to match with the lumen are about 500 HU. Furthermore, several experiments have been implemented
using lires Values close to 80HU in order to examine the algorithm effectiveness for the whole range of
the membership function demonstrated in Figure 10 (page 33). A similar approach has been
implemented for the CP. More specifically, according to current literature HU>500 may identify CP. For
this purpose our approach was implemented after the detection of the lumen border and especially at the
region out of the lumen border. In a similar approach the cptnres Should be 400HU for optimal accuracy in
CP detection.

As far as the attenuation HU value for NCP is concerned, it depends also on the contrast protocol.
However, based on the literature a potential range for NCP is from 0 t0100 HU [228, 285-290]. Thus,
the threshold value of NCP is defined to be 50 HU, in order to include HU values around 50 HU,
depending on the density of the lumen. This selected threshold value is considered as an indicative value

for the NCP, which is adapted to the lumen density.
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Full list of eligibility, inclusion, exclusion and exit criteria (Chapter 4 )

Eligibility criteria:
A. Clinical history and lifestyle data records available at one-time point.

B. At least one previous CCTA examination performed for suspected CHD and of good quality to
allow for: a) Non-invasive FFR-CT assessment b) Quantitative (automated) 17 segments (AHA)
analysis and measurement with <10% error of MLA (mm?2), lumen area stenosis (%), mean PB (mm3),
PB at MLA (%), and remodeling index, c) Plaque phenotype assessment: HU based classification in CP,
NCP and mixed, napkin-ring sign, CAC score.

C. Previous blood and plasma sample available for retrospective analysis
Inclusion criteria:

1) male and female subjects

2) aged 45-82 years

3) Caucasian population

4) submitted to CCTA for suspected CHD between 2009 and 2012 (in the context of EVINCI and
ARTreat FPVII studies) at the Hospitals reported in “SMARTool Clinical Center” document and

satisfying the elegibility criteria reported above

5) submitted to clinical Follow-up in the last 6 months with stable clinical conditions and

documented CHD or persistent intermediate/high probability of CHD

6) Signed informed consents (clinical and genetic)

Exclusion criteria:

1) Multi-vessel severe disease (3 vessels and/or LM disease with >90% stenosis).
2) Severe coronary calcification (CAC score > 600).

3) Having undergone surgical procedures related to heart diseases (valve replacement, CRT or

CRTD treatment, any surgery of the heart or arteries).
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4) Documented MACE at history (MI, severe heart failure, recurrent angina) in the last 6 months

with/without revascularization

5) Documented severe peripheral vascular disease (carotid, femoral)

6) Surgery of carotid and/or peripheral arteries or cerebral ischemic attack
7) History/surgery of Abdominal Aortic Aneurysm(AAA).

8) Severe Heart failure (NYHA Class I11-1V)

9) LV dysfunction (left ventricle EF <40%).

10)  Atrial fibrillation.

11)  Lack of written informed consent (clinical consent and/or genetic consent)
12)  Pregnancy (evaluated by urine test) and breastfeeding

13)  Active Cancer

14)  Asthma

15)  Cardiomyopathy or congenital heart disease

16)  Significant valvular disease (hemodynamically significant valvular stenosis or insufficiency by

echoDoppler)
17)  Renal dysfunction (creatinine > 1.3 mg/dL)
18)  Chronic Kidney Disease (eGFR < 30 ml/min/1.73 m2)

19)  Hepatic failure (at least 3 of the following: albumin < 3.5 g/dL; prolonged prothrombin time—PT,
jaunDICE; ascites)

20)  Waldenstrom disease
21)  Multiple myeloma
22)  Autoimmune/Acute inflammatory disease

23)  Previous severe adverse reaction to iodine contrast agent
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24)  Positivity at blood tests for HIV, Hepatitis B and C (CRF number 1-clinical evaluation)

Exit Criteria:
A) Informed consent retired by the patient (genetic or clinical)

B) Adverse events to contrast medium during

234



Author's Publications
Journal Publications

1. V. I. Kigka, G. Rigas, A. Sakellarios, P. Siogkas, I. O. Andrikos, T. Exarchos, D. Loggitsi, C.
Anagnostopoulos, L. Michalis, D. Neglia, G. Pelosi, O. Parodi, D. Fotiadis, "3D Reconstruction of
Coronary Arteries and Atherosclerotic Plaquesbased on Computed Tomography Angiography

images”, Biomedical Signal Processing and Control, Elsevier, 2018.

2. V. I. Kigka, A. Sakellarios, G. Rigas, L. Athanasiou, P. Tsompou, G. Karanasiou, P. Lemos, L.
Michalis, D. Fotiadis, "A three-dimensional quantification of calcified and non-calcified plaques in
coronary arteries based on computed tomography coronary angiography images: Comparison with
expert's annotations and virtual histology intravascular ultrasound”, Computers in Biology and
Medicine, 2019.

3. V. I. Kigka, V. Potsika, M. Mantzaris, V. Tsakanikas, I. Koncar, D. | Fotiadis, Serum Biomarkers in
Carotid Artery Disease, Diagnsotics, 2021.

4. Vassiliki 1 Kigka, Eleni Georga, Vassilis Tsakanikas, Savvas Kyriakidis, Panagiota Tsompou,
Panagiotis Siogkas, Lampros K Michalis, Katerina K Naka, Danilo Neglia, Silvia Rocchiccioli,
Gualtiero Pelosi, Dimitrios | Fotiadis, Antonis Sakellarios, Machine learning coronary artery disease
prediction based on imaging and non-imaging data, Diagnostis, MDPI, 2022.

5. Vassiliki I. Kigka et al., Estimating the risk for asymptomatic carotid artery disease using machine
learning, (to be submitted)

6. Savvas Kyriakidis, George Rigas, Vassiliki Kigka, Dimitris Zaridis, Georgia Karanasiou, Panagiota
Tsompou, Gianna Karanasiou, Lampros Lakkas, Sotirios Nikopoulos, Katerina K Naka, Lampros K
Michalis, Dimitrios | Fotiadis, Antonis | Sakellarios, An All-in-One Tool for 2D Atherosclerotic
Disease Assessment and 3D Coronary Artery Reconstruction, Journal of Cardiovascular
Development and Disease, MDPI, Journal of Cardiovascular Development and Disease, 2023.

7. Antonis | Sakellarios, Panagiotis Siogkas, Vassiliki Kigka, Panagiota Tsompou, Dimitrios Pleouras,
Savvas Kyriakidis, Georgia Karanasiou, Gualtiero Pelosi, Sotirios Nikopoulos, Katerina K Naka,
Silvia Rocchiccioli, Lampros K Michalis, Dimitrios | Fotiadis, Error Propagation in the Simulation
of Atherosclerotic Plaque Growth and the Prediction of Atherosclerotic Disease Progression,
Diagnostics, MDPI, 2021.

235



8.

10.

11.

Antonis | Sakellarios, Panagiota Tsompou, Vassiliki Kigka, Panagiotis Siogkas, Savvas Kyriakidis,
Nikolaos Tachos, Georgia Karanasiou, Arthur Scholte, Alberto Clemente, Danilo Neglia, Oberdan
Parodi, Juhani Knuuti, Lampros K Michalis, Gualtiero Pelosi, Silvia Rocchiccioli, Dimitrios |
Fotiadis, Non-invasive prediction of site-specific coronary atherosclerotic plaque progression using
lipidomics, blood flow, and LDL transport modeling, Applied Sciences, MDPI, 2021.

Dimitrios S Pleouras, Antonis | Sakellarios, Panagiota Tsompou, Vassiliki Kigka, Savvas
Kyriakidis, Silvia Rocchiccioli, Danilo Neglia, Juhani Knuuti, Gualtiero Pelosi, Lampros K
Michalis, Dimitrios | Fotiadis, Simulation of atherosclerotic plague growth using computational
biomechanics and patient-specific data, Scientific Reports, 2020.

Dimitrios S Pleouras, Antonis | Sakellarios, George Rigas, Georgia Karanasiou, Panagiota Tsompou,
Gianna Karanasiou, Vassiliki Kigka, Savvas Kyriakidis, Vasileios Pezoulas, George Gois, Nikolaos
Tachos, Aidonis Ramos, Gualtiero Pelosi, Silvia Rocchiccioli, Lampros K Michalis, Dimitrios |
Fotiadis, A Novel Approach to Generate a Virtual Population of Human Coronary Arteries for In
Silico Clinical Trials of Stent Design, IEEE Open Journal of Engineering in Medicine and Biology,
2021.

Theofilos Karasavvidis, Vasileios Bouris, William Xiang, Georgios Tzavellas, Nektarios Charisis,
Leonidas Palaiodimos, Vassiliki Kigka, Christos V Bourantas, loannis Gkiatas, Prophylaxis for
Venous Thromboembolic Events in Elective Total Hip and Total Knee Arthroplasty, Current

Pharmaceutical Design, 2022.
Conference Publications

V. I. Kigka, A. Sakellarios, G. Rigas, P. Tsobou, I. O. Andrikos, L. K. Michalis, D. I. Fotiadis," A
three-dimensional quantification of non-calcified plaque based on computed tomography coronary
angiography images: comparison with virtual histology intravascular ultrasound”, World Congress
on Medical Physics & Biomedical Engineering (IUPESM), Prague, Czech Republic, 3-8 June, 2018.
V. I. Kigka, E. I. Georga, A. I. Sakellarios, N. S. Tachos, I. Andrikos, P. Tsompou, S. Rocchiccioli,
G. Pelosi, O. Parodi, L. K. Michalis, D. I. Fotiadis, "A Machine Learning Approach for the
Prediction of the Progression of Cardiovascular Disease based on Clinical and Non-Invasive
Imaging Data"”, 40th International Engineering in Medicine and Biology Conference (EMBC),
Honolulu, Hawaii, July 17-21, 2018.

Vassiliki | Kigka, Antonis | Sakellarios, Eleni | Georga, Panagiotis Siogkas, Panagiota Tsompou,

Savvas Kyriakidis, Silvia Rocchiccioli, Gualtiero Pelosi, Katerina Naka, Lampros K Michalis,

236



10.

Dimitrios | Fotiadis, Site specific prediction of PCI stenting based on imaging and biomechanics
data using gradient boosting tree ensembles, 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), 2020.

Vassiliki | Kigka, Antonis | Sakellarios, Michalis D Mantzaris, Vassilis D Tsakanikas, Vassiliki T
Potsika, Domenico Palombo, Fabrizio Montecucco, Dimitrios | Fotiadis, A Machine Learning Model
for the Identification of High risk Carotid Atherosclerotic Plaques., 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021.

Vassiliki 1 Kigka, Savvas Kyriakidis, Antonis Sakellarios, Vassiliki Potsika, Vasilis Tsakanikas,
Dimitra Loggitsi, Lampros K Michalis, Dimitrios | Fotiadis, Three-Dimensional Reconstruction of
Carotid Arteries Using Computed Tomography Angiography, 8th European Medical and Biological
Engineering Conference: Proceedings of the EMBEC 2020, November 29-December 3, 2020
Portoroz, Slovenia, 2021.

Vassiliki 1 Kigka, Antonis | Sakellarios, Vassilis D Tsakanikas, Vassiliki T Potsika, Igor Koncar,
Dimitrios | Fotiadis, Detection of asymptomatic carotid artery stenosis through machine learning,
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), 2022,

Vassiliki Kigka, Antonis Sakellarios, Vasilis D. Tsakanikas, Vassiliki Potsika, Igor Koncar,
Dimitrios |I. Fotiadis, Early Diagnosis of Carotid Artery Disease based on non-imaging data, IEEE
EMBS International Conference on Data Science and Engineering in Healthcare, Medicine &
Biology, 2023 (accepted)

P. Siogkas, V. Kigka, A. Sakellarios, T. Exarchos, D. Fotiadis, "Analysis of Coronary Computed
Tomography Angiography for 3D Reconstruction of Arterial Trees and Plague Detection”, IEEE
International Conference on Biomedical and Health Informatics (BHI), Orlando, Florida, 16-19
February, 2017.

SC Tassi, Vassiliki Kigka, Panagiotis Siogkas, Silvia Rocchiccioli, Gualtriero Pelosi, Dimitrios I
Fotiadis, Antonis | Sakellarios, Graph-guided gaussian process-based diagnosis of cvd severity with
uncertainty measures, Proccedings of the 45th EMBC Conference, 2023.

A. Sakellarios, G. Rigas, V. Kigka, P. Siogkas, P. Tsompou, G. Karanasiou , T. P. Exarchos, I.
Andrikos, N. Tachos, Gualtiero Pelosi, Oberdan Parodi, Dimitrios I. Fotiadis, "SMARTool: A Tool

for Clinical Decision Support for the Management of Patients with Coronary Artery Disease Based

237



11.

12.

13.

14.

15.

16.

on Modeling of Atherosclerotic Plague Process”, International Conference of the IEEE Engineering
in Medicine and Biology Society , Korea, 11-15 July 2017

Antonis | Sakellarios, Panagiota Tsompou, Vassiliki Kigka, Gianna Karanasiou, Konstantina
Tsarapatsani, Savvas Kyriakidis, Georgia Karanasiou, Panagiotis Siogkas, Sotiris Nikopoulos, Silvia
Rocchiccioli, Gualtiero Pelosi, Lampros K Michalis, Dimitrios | Fotiadis, A proof-of-concept study
for the prediction of the de-novo atherosclerotic plaque development using finite elements*, 2021
43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), 2021.

Antonis | Sakellarios, Panagiota Tsompou, Panagiotis Siogkas, Vassiliki Kigka, loannis Andrikos,
Nikolaos Tachos, Elena Georga, Savvas Kyriakidis, Silvia Rocchiccioli, Gualtriero Pelosi, Dimitrios
| Fotiadis, Predictive models of coronary artery disease based on computational modeling: the
SMARTool system, 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2019.

Dimitrios Pleouras, Antonis | Sakellarios, Savvas Kyriakidis, Vassiliki Kigka, Panagiotis Siogkas,
Panagiota Tsompou, Nikolaos Tachos, Elena Georga, loannis Andrikos, Silvia Rocchiccioli,
Gualtriero Pelosi, Lampros K Michalis, Dimitrios | Fotiadis, A computational multi-level
atherosclerotic plague growth model for coronary arteries, 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.

Michalis Mantzaris, Vassiliki Potsika, Panagiotis Siogkas, Vassiliki Kigka, Vasileios Pezoulas,
loannis Pappas, Themis Exarchos, Igor Koncar, Jaroslav Pelisek, Evangelos Andreakos, Dimitrios
Fotiadis, “A Multimodal Advanced Approach for the Stratification of Carotid Artery Disease”, IEEE
19th International Conference on Bioinformatics and Bioengineering (BIBE), 2019.

A. I. Sakellarios, N. Tachos, E. Georga, G. Rigas, V. I. Kigka, P. Siogkas, S. Kyriakidis, G.
Karanasiou, P. Tsompou, I. Andrikos, S. Rocchiccioli, G. Pelosi, O. Parodi, D. I. Fotiadis, "A novel
concept of the management of coronary artery disease patients based on machine learning risk
stratification and computational biomechanics ", World Congress on Medical Physics & Biomedical
Engineering (IUPESM), Prague, Czech Republic, 3-8 June, 2018.

I. O. Andrikos, A. | Sakellarios, P. K. Siogkas, P. I. Tsompou, V. I. Kigka, L. K. Michalis, D. I.
Fotiadis, "A Novel Method for 3D Reconstruction of Coronary Bifurcation Using Quantitative
Coronary Angiography", World Congress on Medical Physics & Biomedical Engineering
(IUPESM), Prague, Czech Republic, 3-8 June, 2018.

238



17.

18.

19.

20.

21.

22,

23.

P. I. Tsompou, A. I. Sakellarios, P. K. Siogkas, I. O. Andrikos, V. I. Kigka, P. A. Lemos, L. K.
Michalis, D. I. Fotiadis, "Comparison of 3D reconstruction methods based on different
cardiovascular imaging: a study of multimodality reconstruction method", 40th International
Engineering in Medicine and Biology Conference (EMBC), Honolulu, Hawaii, July 17-21, 2018.

A. Sakellarios, P. Siogkas, E. Georga, N. Tachos, V. I. Kigka, P. Tsompou, I. Andrikos, G. S.
Karanasiou, S. Rocchiccioli, J. Correia, G. Pelosi, P. Stofella, N. Filipovic, O. Parodi, D. I. Fotiadis,
"A Clinical Decision Support Platform for the Risk Stratification, Diagnosis, and Prediction of
Coronary Artery Disease Evolution”, 40th International Engineering in Medicine and Biology
Conference (EMBC), Honolulu, Hawaii, July 17-21, 2018.

loannis O Andrikos, Antonis | Sakellarios, Panagiotis K Siogkas, Panagiota | Tsompou, Vassiliki |
Kigka, Lampros K Michalis, Dimitrios I Fotiadis, “A new method for the 3D reconstruction of
coronary bifurcations pre and post the angioplasty procedure using the QCA”, 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019.
Panagiota | Tsompou, Panagiotis K Siogkas, Antonis | Sakellarios, loannis O Andrikos, Vassiliki I
Kigka, Pedro A Lemos, Lampros K Michalis, Dimitrios I Fotiadis, “A comparison of three
multimodality coronary 3D reconstruction methods”, 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), 2019.

Vassilis Tsakanikas, Panagiotis Siogkas, Michalis Mantzaris, Vassiliki Potsika, Vassiliki Kigka,
Themis Exarchos, Igor Koncar, Marija Jovanovi¢, Aleksandra Vuj¢i¢, Stefan Duci¢, Jaroslav
Pelisek, Dimitrios Fotiadis, “A deep learning oriented method for automated 3D reconstruction of
carotid arterial trees from MR imaging”, 42nd Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), 2020.

Dimitris Pleouras, Antonis Sakellarios, Georgia Karanasiou, Savvas Kyriakidis, Panagiota Tsompou,
Vassiliki Kigka, Dimitrios I Fotiadis, “Atherosclerotic Plaque Growth Prediction in Coronary
Arteries using a Computational Multi-level Model: The Effect of Diabetes”, 19th International
Conference on Bioinformatics and Bioengineering (BIBE), 2019.

Panagiota | Tsompou, loannis O Andrikos, Georgia S Karanasiou, Antonis | Sakellarios, Nikolaos
Tsigkas, Vassiliki | Kigka, Savvas Kyriakidis, Lampros K Michalis, Dimitrios | Fotiadis, Validation
study of a novel method for the 3D reconstruction of coronary bifurcations, 2020 42nd Annual

International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020.

239



Book Chapters

. V. I. Kigka, T. Exarchos, G. Rigas, A. Sakellarios, P. Siogkas, L.K. Michalis and D.I. Fotiadis,
"IVUS tracking: Advantages and Disadvantage s of Intravascular Ultrasound in the Detection of
Artery Geometrical Features and Plaque Type Morphology”, 'Handbook of Speckle Filtering and
Tracking in Cardiovascular Ultrasound Imaging and Video, IET, 2017, Editors: Christos P. Loizou,
Constantinos S. Pattichis, Jan D hooge.

. A. Sakellarios, G. Karanasiou, P. Siogkas, V. I. Kigka, T. Exarchos, G. Rigas, L. K. Michalis, D. I.
Fotiadis,"Available Computational Techniques to Model Atherosclerotic Plaque Progression
Implementing a Multi-Level Approach”, Computational Biomechanics for Medicine, Springer,
Cham, 2017, Editors: Karol Miller, Poul Nielsen.

E. I. Georga, N. S. Tachos, A. I. Sakellarios, V. I. Kigka, T. P. Exarchos, G. Pelosi, O. Parodi, L. K.
Michalis, D. I. Fotiadis, “Artificial Intelligence and Data Mining Methods for Cardiovascular Risk
Prediction”, Cardiovascular Computing- Methodologies and Clinical Applications, Series in

BioEngineering , Springer, Editors: Golemati Spyretta, Nikita Konstantina.

240



Short CV

Vassiliki I. Kigka was born in loannina, Greece, in 1992. She received the Diploma degree (diploma of
Computer Engineer- 5 years equivalent to Meng.) in Computer Engineering and Informatics from the
University of Patras, Greece, in 2015. She holds a Master of science in Advanced Materials with
Specialisation in Biomaterials & Biomedical Engineering from the Department of Material Science,
University of loannina, Greece. She received Medical Doctor degree in July 2023, from Medical
school, University of loannina, Greece. In May 2022, she obtained a scholarship from the National
Scholarships’ Foundation (IKY, Greece) for the finalization of her PhD thesis, entitled Predictive
Modeling of atheromatic plaque growth. She is currently a PhD candidate in the Department of

Materials Science and Engineering of University of loannina.

Since 2016 she is a research assistant at the Unit of Medical Technology and Intelligent Information
Systems at the Department of Computer Science of the University of loannina and has participated in
various European projects. Her research interests include medical image processing, medical data

mining and biomedical engineering.

241



