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Abstract 

This PhD thesis aims to develop models for the predictive modeling of atherosclerotic plaque 

progression, both in coronary and carotid arteries. In this thesis, active contour models and dynamic 

threshold segmentation techniques have been implemented for the segmentation of the inner wall, outer 

wall, CP and NCP in coronary and carotid arteries, using computed tomography angiography images.  

Additionally, through this thesis machine learning models that utilize both imaging and non-imaging 

data for the prediction of coronary artery disease were developed, whereas models using only non-

imaging data were developed for the carotid artery disease prediction.  

The first chapter presents the physiology of the cardiovascular system. More specifically, the function of 

the circulatory system, the anatomy and function of the heart, the coronary and carotid arteries’ anatomy, 

are presented. Then, the pathophysiology of atherosclerosis and atherosclerosis risk factors are 

presented.  Finally, this chapter reports the imaging modalities of atherosclerosis, both invasive and non-

invasive, and the advantages and the disadvantages of each technique in clinical practice. 

In the second chapter of this thesis, an extensive presentation of the existing in the literature methods for 

the three-dimensional reconstruction of the coronary and carotid arteries and the localization of 

atherosclerotic plaques, both at an automated level and at a non-automated level, is performed. Then, 

existing studies for the prediction of coronary and carotid artery disease, utilizing either standard 

statistical analysis techniques or machine learning techniques, are presented. Finally, in this chapter, all 

the existing biomarkers for the diagnosis and prediction of carotid disease and the mechanism by which 

they participate in the pathogenesis of the disease, as well as the existing studies in the literature that 

demonstrate their importance, are presented. 

The third chapter describes the proposed methodology for the three-dimensional reconstruction of the 

inner and outer wall of the coronary and carotid arteries and for the identification and characterization of 

atherosclerotic plaques (calcified and non-calcified plaques).  In addition to this, different processes for 

validating the proposed methodology are presented, as well as the innovative aspect of the present 

methodology compared to the existing literature. 

The fourth chapter of the thesis aims to present machine learning models for the prediction of coronary 

artery disease, predicting the obstructive coronary artery disease, the progression of the disease and the 
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placement of an endovascular stent. The proposed models were trained with non-imaging and imaging 

data, geometry and blood flow based data. 

In the fifth chapter of this paper, machine learning models were proposed to diagnose and identify 

subjects with asymptomatic carotid disease and participants with the presence of high-risk 

atherosclerotic plaques, using typical medical records as input. 

Finally, in the sixth chapter, the association of carotid artery disease with the presence of clinically 

asymptomatic brain lesions, was presented. More specifically, the aim of this chapter is to correlate 

ultrasound markers of the carotid artery, as well as characteristics of each patient (demographic, clinical, 

hematological, biochemical data and risk factors) with the presence of clinically asymptomatic brain 

lesions in the ipsilateral hemisphere. 

The seventh and last chapter of this paper constitutes a discussion section, related to the contribution of 

the proposed PhD thesis, as well as to possible future research steps. 

  



xxv 
 

Περίληψη 

Η παρούσα διδακτορική διατριβή στοχεύει στην ανάπτυξη μοντέλων για την προγνωστική 

μοντελοποίηση της αθηρωματικής πλάκας, τόσο σε στεφανιαία αγγεία όσο και στις καρωτίδες αρτηρίες.  

Στα πλαίσια της διατριβής αυτής αναπτύχθηκαν τεχνικές επεξεργασίας αξονικής αγγειογραφίας για την 

τριστάστατη επεικόνιση των στεφανιαίων αγγείων και καρωτίδων, καθώς επίσης και  μοντέλα 

μηχανικής μάθησης που αξιοποιούν τόσο απεικονιστικά όσο και μη απεικονιστικά δεδομένα για την 

πρόβλεψη της στεφανιαίας και καρωτιδικής νόσου.  Στόχος της διατριβής είναι η επικύρωση των 

προτεινόμενων μεθοδολογιών και η ανάπτυξη ολοκληρωμένων μοντέλων για την διαστρωμάτωση του 

κινδύνου στην στεφανιαία και καρωτιδική νόσο. 

Η έρευνα της διατριβής ξεκίνησε έπειτα από την έλλειψη αυτοματοποιημένων μεθοδολογιών για τον 

αυτόματο εντοπισμό του εσωτερικού και εξωτερικού τοιχώματος των στεφανιαίων και καρωτίδων 

αρτηριών και την τρισδιάστατη ανακατασκευή του πλήρους αρτηριακού δέντρου, καθώς και έπειτα από 

την μελέτη διαφόρων περιορισμών στον αυτόματο εντοπισμό και χαρακτηρισμό της αθηρωματικής 

πλάκας.  Στη συνέχεια, η διατριβή βασίστηκε στην αξιοποίηση απεικονιστικών δεδομένων που 

προκύπτουν από μη επεμβατικές απεικονιστικές τεχνικές για την καλύτερη διαχείρηση της στεφανιαίας 

και καρωτιδικής νόσου. 

Στο πρώτο κεφάλαιο αρχικά παρουσιάζεται η φυσιολογία του καρδιαγγειακού συστήματος.  Πιο 

συγκεκριμένα παρουσιάζεται η λειτουργία του κυκλοφορικόυ συστήματος, η ανατομία και η λειτουργία 

της καρδιάς, οι στεφανιαίες και καρωτίδες αρτηρίες και η ανατομία τους.  Στη συνέχεια παρουσιάζεται 

η παθοφυσιολογία της αθηροσκλήρωσης, καθώς και παράγοντες κινδύνου για εμφάνιση της 

αθηροσκλήρωσης και κάποια επιδημιολογικά στοιχεία για την στεφανιαία και καρωτιδική νόσο  Τέλος 

στο κεφάλαιο αυτό παρουσιάζονται οι τρόποι απεικόνισης της αθηροσκλήρωσης, τόσο οι επεμβατικοί, 

όσο και οι μη επεμβατικοί, τα πλεονεκτήματα και τα μειονεκτήματα αυτών στην κλινική πράξη. 

Στο δεύτερο κεφάλαιο της παρούσας διατριβής γίνεται μια εκτενής παρουσίαση της υπάρχουσας 

βιβλιογραφίας σχετικά με τις μεθόδους τρισδιάστατης ανακατασκευής των στεφανιαίων και καρωτίδων 

αρτηριών και εντοπισμού των αθηρωματικών πλακών, τόσο σε αυτοματοποιημένο επίπεδο, όσο και σε 

μη αυτοματοποιημένο επίπεδο.  Στη συνέχεια, γίνεται μία λεπτομερής αναφορά σε ήδη υπάρχουσες 

μελέτες για τη διαστρωμάτωση του κινδύνου για στεφανιαία και καρωτιδική νόσο, αξιοποιώντας είτε 

τεχνικές τυπικής στατιστικής ανάλυσης είτε τεχνικές μηχανικής μάθησης.  Τέλος, στο κεφάλαιο αυτό, 
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παρουσιάζονται συνολικά όλοι οι υπάρχοντες βιοδείκτες για τη διάγνωση και πρόβλεψη της 

καρωτιδικής νόσου και ο μηχανισμός με τον οποίο συμμετέχουν στη παθογένεση της νόσου, καθώς και 

οι υπάρχουσες στη βιβλιογραφία μελέτες που καταδεικνύουν τη σημαντικότητα τους. 

Στο τρίτο κεφάλαιο παρουσιάζεται η προτεινόμενη μεθοδολογία για την τρισδιάστατη ανακατασκευή 

του εσωτερικού και του εξωτερικού τοιχώματος των στεφανιαίων και καρωτίδων αρτηριών και για τον 

εντοπισμό και χαρακτηρισμό των αθηρωματικών πλακών.  Πιο συγκεκριμένα, οι αθηρωματικές πλάκες 

που εντοπίζονται διαχωρίζονται σε ασβεστοποιημένες και μη- ασβεστοποιημένες πλάκες, που 

αποτελούνται κυρίως από λιπίδια και ινώδη ιστό.  Επιπλέον παρουσιάζονται διαφορετικοί τρόποι 

επικύρωσης της προτεινόμενης μεθοδολογίας, καθώς επίσης και η καινοτόμος πτυχή της παρούσας 

μεθοδολογίας συγκριτικά με την υπάρχουσα βιβλιογραφία. 

Το τέταρτο κεφάλαιο της διατριβής στοχεύει στην παρουσίαση μοντέλων μηχανικής μάθησης για τη 

διαστρωμάτωση του κινδύνου για στεφανιαία νόσο, προβέποντας την παρουσία στεφαναίας 

παθολογικής νόσου, είτε την εξέλιξη της νόσου, είτε την τοποθέτηση ενδαγγειακού στεντ.  Τα 

προτεινόμενα μοντέλα εκπαιδεύτηκαν με μη απεικονιστικά και απεικονιστικά δεδομένα, που 

προκύπτουν από την γεωμετρία των αγγείων, καθώς και την μοντελοποίηση της αιματικής ροής των 

αγγείων. 

Στο πέμπτο κεφάλαιο της παρούσας εργασίας, προτάθηκαν μοντέλα μηχανικής μάθησης για τη 

διάγνωση και την αναγνώριση ατόμων με ασυμπτωματική καρωτιδική νόσο και για την ανίχνευση 

ατόμων με παρουσία αθηρωματικών ασταθών πλακών υψηλού κινδύνου, χρησιμοποιώντας ως είσοδο 

τυπικά ιατρικά δεδομένα.  

Τέλος, στο έκτο κεφάλαιο παρουσιάστηκε η συσχέτιση της καρωτιδικής νόσου με την παρουσία κλινικά 

ασυμπτωματικών εγκεφαλικών βλαβών.  Πιο συγκεκριμένα, στόχος του κεφάλαιου αυτού ήταν η 

συσχέτιση υπερηχογραφικών δεικτών της καρωτιδικής αρτηρίας, καθώς και χαρακτηριστικά του κάθε 

ασθενούς (δημογραφικά, κλινικά, αιματολογικά, βιοχημικά δεδομένα και παράγοντες κινδύνου) με την 

παρουσία κλινικά ασυμπτωματικών εγκεφαλικών βλαβών στο ομόπλευρο ημισφαίριο. 

Το έβδομο και τελευταίο κεφάλαιο της παρούσας εργασίας αποτελεί μια ενότητα συζήτησης, που 

σχετίζεται με τη συνεισφορά της προτεινόμενης διδακτορικής διατριβής, καθώς και με τα πιθανά 

μελλοντικά ερευνητικά βήματα. 
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Chapter 1 Introduction 

 

1.1 Physiology of the cardiovascular system 

1.2 Central nervous system vasculature 

1.3 Atherosclerosis 

1.4 Imaging of atherosclerosis 

 

 

 

1.1 Physiology of the cardiovascular system 

1.1.1 Introduction 

The cardiovascular (CV) system is responsible for providing blood supply throughout the body and its 

purpose is the transportation of nutrients, oxygen, carbon dioxide, hormones, and blood cells to and 

from the cells in the body.  The main components of the CV system are the heart, the arteries, the veins 

and the capillaries.  The heart and the vessels are responsible for providing adequate blood flow to all 

parts of the body.  The CV system is regulated by a myriad of stimuli including changing blood volume, 

hormones, electrolytes, osmolarity, medications, adrenal glands, kidneys and much more [1]. 

The heart is the organ that pumps the blood through the vessels. It pumps blood directly into the arteries, 

more specifically the aorta or the pulmonary artery.  Blood vessels, including arteries, capillaries, and 

veins, which transport blood to and from the heart, consist of the circulation system, as it is shown in 

Figure 1.1.  Blood vessels play a significant role in the function of circulation system, since they control 

the amount of the blood flow to specific parts of the body.  Arteries are distinguished between large and 

small arteries and are responsible to transport the blood away from the heart.  Large arteries receive the 

highest pressure of blood flow and are more thick and elastic to accommodate the high pressures, 

whereas small arteries, such as arterioles, have more smooth muscle which contracts or relax to regulate 

blood flow to specific portions of the body.  On the other hand, capillaries branch off of arterioles and 
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are made from a single cell layer.  This thin layer allows the exchange of nutrients, gases, and waste with 

tissues and organs.  Also, the veins transport blood back to the heart. 

 

Figure 1.1 The circulation system [2]. 

 

1.1.2 The Cardiovascular system 

The heart, a muscular organ, which is located between the lungs, in the middle compartment of the 

human chest, supplies blood through the blood vessels of the circulatory system.  It is surrounded by a 

membrane called pericardium, which is a fibroserous sac that encloses the heart and the roots of great 

vessels.  It is a cone-shaped organ and its size in an adult is about 12 cm in length, 8 to 9 cm in breadth 

at the broadest part, and 6 cm in thickness.  The heart is subdivided by septa into right and left halves, 

and a constriction subdivides each half of the organ into two cavities, the atrium (upper cavity) and the 

ventricle (lower cavity).  Therefore, the heart consists of four chambers, the right and left atria and the 

right and left ventricles [3]. 

The heart includes also four valves, two atrioventricular and two semilunar. The right atrioventricular, 

known also as tricuspid, separates the right atrium from the right ventricle preventing backflow into the 

atrium. The left one, known as bicuspid or mitral valve, separates the left atrium from the left ventricle. 

The semilunar valves are the pulmonary and the aortic. The first one separates the right ventricle from 

the pulmonary arteries and prevents backflow after ventricular contraction, while the second one 
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separates the left ventricle from the aorta and prevents backflow after ventricular contraction.  

Αnatomical features of the heart are shown in Figure 1.2 [3]. 

The arterial supply of the heart is provided by the right and left coronary arteries which arise from the 

aorta immediately above the aortic valve. Most of the blood from the heart walls drains into the right 

atrium through the coronary sinus, which lies in the posterior part of the atrioventricular groove. The 

heart is innervated by sympathetic and parasympathetic fibers of the autonomic nervous system via the 

cardiac plexuses situated below the arch of the aorta.   

Coronary arteries are the only branches of the ascending aorta. Traditionally, a coronary artery has been 

described as any artery or arterial branch that carries blood to the cardiac parenchyma.  The cardiac 

parenchyma is defined as any structure located in the pericardial cavity and includes not only the 

myocardium, but also structures such as the pulmonary truck, the superior vena cava, and the semilunar 

valves. Coronary arteries are located on the epicardial surface of the heart [4]. 

 

Figure 1.2 Heart anatomy [3]. 

 

There are two main coronary arteries, the left main coronary artery (LMCA) and the right coronary 

artery (RCA).  The LMCA artery originates from the left sinus of valsalva and travels anteriorly and 

leftward.  It is positioned between the left atrial appendage and the pulmonary trunk and is divided into 

two major branches: the left anterior descending (LAD) and left circumflex (LCX) arteries.  The LAD 

extends from the left main and curves around the pulmonary trunk prior to entering the anterior 
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interventricular groove and extending to the apex and it then extends distally to the apex within the 

inferior interventricular sulcus towards the crux of the heart.  It then provides branches to the inferior 

walls of both ventricles.  The LCX artery provides two major branches: septal perforator arteries and 

diagonal branches.  The septal perforator arteries branch at right angles from the anterior descending 

artery and supply the anterior two thirds of the intraventricular septum.  On the other hand, the RCA 

artery originates from above the right cusp of the aortic valve and supplies blood to the right ventricle, 

the right atrium, and the sinoatrial and atrioventricular nodes.  The coronary arteries, as it is shown in 

Figure 1.3, run along the outer surface of the heart [5]. 

 

Figure 1.3 The coronary arteries [2]. 

 

1.1.3 Arterial morphology 

The arteries are the blood vessel that deliver oxygen-rich blood from the heart to the tissues of the body.  

In general, the arteries are distincted into two main categories: the elastic and the muscular.  The elastic 

arteries are characterized by large diameters and are located close to the heart.  On the other hand, the 

location of the muscular arteries is at the periphery, such as the femoral and the iliac arteries.  Each 

artery is considered as a muscular tube lined by smooth tissue, which consists of three histologically 

distinct regions, the intima, the media and the adventitia layer, as it is shown in Figure 1.4 [4, 6, 7]. 
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Figure 1.4 Arterial morphology [4]. 

The intima is the inner layer of arteries and veins. This layer consists of an elastic membrane lining and 

smooth endothelium that is covered by elastic tissues. An endothelial membrane lies between the lumen 

and the intima wall layer. Often, the internal elastic lamina separates the tunica intima from the tunica 

media. This layer is structured by a smooth lining of endothelial cells, which provides the opportunity to 

the arteries to cope with the high-pressure surges of blood from the heart because they have very thick 

muscular walls [8].  The pathological alterations of intimal components is directly associated with 

atherosclerosis, a common disease of arterial wall, since the intima layer and its endothelial lining 

contribute to the inner smooth surface of blood vessels, the anticoagulant characteristics of the vessel 

wall and the expression of adhesion molecules walls [8].  Atherosclerosis is a common disease of arterial 

wall, involving the deposition of calcium, collagen fibers, cellular waste products and fatty substances, 

resulting to the build-up of atherosclerotic plaque.  These alterations contribute to significant changes in 

the mechanical behavior of atherosclerotic arteries, which significantly differ from the healthy ones. 

The media is the middle layer of the artery, composed mainly of smooth muscle cells (SMCs), a network 

of elastic and collagen fibrils and elastic laminae which separate the media into a number of fiber-

reinforced layers. The media consists of a highly organized three-dimensional network of elastin, 

vascular SMC and collagen with extracellular matrix proteoglycans. As it was found recently [9] the 

media behaves mechanically as if its material properties were homogeneous.  

The adventitia is the outer layer composed primarily of thick bundles of collagen fibrils arranged in 

helical structures and fibroblast cells. The tunica externa, also known as the tunica adventitia (or 

adventitia for short), is the outermost tunica (layer) of a blood vessel, surrounding the tunica media. It is 
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mainly composed of collagen and, in arteries, is supported by an external elastic lamina. The collagen 

serves to anchor the blood vessel to nearby organs, giving it stability [10]. 

Undoubtedly, the artery wall constituents have a significant growth interest in the mechanical properties 

of biological soft tissue, since there is a strong belief that the mechanical factors play a significant role 

on the atherosclerotic plaque development and progression [11]. 

1.2 Central nervous system vasculature  

The common carotid artery (CCA) is a large elastic artery, which provides the main blood supply to the 

head and neck region.  There is one CCA on either side of the body and these arteries differ in their 

origin. The left CCA arises from the aortic arch within the superior mediastinum, whilst the right CCA 

arises from the brachiocephalic trunk posterior to the right sternoclavicular joint. The CCA ascends 

lateral to the trachea and esophagus within the deep cervical fascia, the carotid sheath, with the internal 

jugular vein and the vagus nerve [12].  The CCA ascends in the neck medial to the internal jugular vein 

and normally has no branches. Occasionally, the superior thyroid artery arises proximal to the 

bifurcation into internal and external carotid arteries (ECAs). The bifurcation is usually located at the 

level of the superior border of the thyroid cartilage. Variations in the levels at which the carotid 

bifurcates are more often above this position than below. The ECA, supplying the extracranial structures 

of the head, gives off several branches before its terminal bifurcation into the internal maxillary and 

superficial temporal arteries. These are the superior thyroid, ascending pharyngeal, lingual, facial, 

occipital, and posterior auricular arteries. The internal carotid artery (ICA) proceeds posteromedially to 

enter the carotid canal at the base of the skull without giving off any branches. On the medial side of the 

bifurcation lie the small, oval carotid body, a chemoreceptor, and the carotid sinus, a pressure receptor 

intrinsic to the wall of the common and internal carotid arteries. It supplies the forehead, nose, eyes and 

the ipsilateral cerebral hemisphere [13].  The basic anatomy of carotid arterial tree is shown in Figure 

1.5 , below.  

Near its bifurcation, the CCA forms two specialized structures, the carotid sinus and the carotid body.  

The carotid sinus is a dilation of the base of the ICA, which is involved in relaying information about the 

arterial blood pressure to the hypothalamus. It is therefore referred to as a baroreceptor and is innervated 

by the carotid branch of the glossopharyngeal nerve.  On the other hand, the carotid body is an oval 

structure, located posterior to the carotid bifurcation, involved in relaying information about the arterial 

chemical composition to respiratory centers in the brainstem.  Like the carotid sinus, it is innervated by 
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the carotid branch of the glossopharyngeal nerve.  The carotid body is surrounded by a fibrous capsule 

and consists of multiple lobules divided by septa. Within each lobule, there are two types of cells: 

glomus (type I) cells and sustenacular (type II) cells.  The glomus cells are involved in storing peptides, 

such as neurotensin, and amines, such as adrenaline, noradrenaline and dopamine.  The sustentacular 

cells separate the glomus cells from an extensive network of fenestrated sinusoids. The carotid body is a 

chemoreceptor stimulated by hypercapnia, hypoxia and increased hydrogen ion concentration (low pH). 

In response to these changes, the carotid body changes the rate and volume of respiration via a reflex 

involving the respiratory centres in the brainstem [12]. 

 

 

Figure 1.5: Basic Anatomy of carotid arterial tree [14]. 

 

1.3 Atherosclerosis  

1.3.1 Introduction 

Atherosclerosis, the leading cause of morbidity and mortality worldwide, derives its name from the 

Greek words “athere” meaning the soft lipid-rich material in the centre of atheroma and “sclerosis”, 

referring to connective tissue in the plaques [15].  The most commonly affected by atherosclerosis 

arteries include those of medium and large size, such as the coronary arteries, the aorta and cerebral 

arteries. 

Atherosclerosis is a chronic inflammatory disease caused by high concentrations of lowdensity 

lipoprotein (LDL) cholesterol [16] and is characterized by the vascular obstruction from the deposition 

of atherosclerotic plaque, which results in reduced blood flow [17].  Atherosclerosis begins with the 
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accumulation of lipid laden foam cells in the intima layer of the artery.  Lipid retention is the first step in 

the pathogenesis of atherosclerosis which is followed by the chronic inflammation at susceptible sites in 

the walls of the major arteries [18], causing plaque growth. 

1.3.2 Mechanism of Atherosclerosis 

During the past years the understanding of atherosclerosis mechanism has undergone a remarkable 

progression, since atherosclerosis was considered as a cholesterol storage disorder.  Currently, 

atherosclerosis is considered as an inflammatory disorder and the appreciation of arterial remodeling has 

expanded attention beyond stenoses evident by angiographic imaging modality to include the biology of 

nonstenotic atherosclerotic plaques [19].  Atherosclerotic plaque development starts from the 

accumulation of lipids in the arterial wall to advanced atherosclerotic lesions, characterized by an 

inflammatory response, the proliferation of SMCs and the thickening of the arterial wall.  The 

mechanism of atherosclerosis pathogenesis is a complex process and its major steps are described 

below. 

Atherosclerotic disease refers to the development of the atherosclerotic plaque in the inner wall of the 

arteries.  The inner layer of coronary arteries is lined by endothelial cells, which are in contact with the 

blood and normally resist the attachment of the white blood cells streaming past them.  Arterial 

endothelial cells, as it is shown in Figure 1. 6b, express adhesion molecules able to capture leukocytes 

on their surfaces.  The alterations of endothelium permeability in combination with changes in the 

composition of the extracellular matrix beneath the endothelium allow the retention of cholesterol-

containing LDL particles in the artery wall.  Biochemically modified LDL particles may induce the 

leykocyte adhesion, whereas modified particles undergo endocytosis by monocyte-derived 

macrophages, leading to intracellular cholesterol accumulation. 

When monocytes which are the most numerous white blood cells in plaques, reside in the arterial wall, 

they differentiate into macrophages.  Inside the growing atheroma, the mononuclear phagocytes 

surround the lipoprotein particles and are transformed to foam cells.  The formation of atheroma 

involves the recruitment of SMCs from the middle layer of the arterial wall into the tunica intima 

(Figure 1. 6c). The proliferation of resident intimal SMCs and the synthesis of extracellular medium 

macromolecules. These macromolecules include elastin, proteoglycans and collagen. SMCs and 

macrophages die in advanced lesions by apoptosis. The extracellular lipid which is derived from the 

dead cells can build up in the plaque composing the lipid pool or necrotic core (NC) of the plaque.  

Plaque lesions generally cause stenoses and produce limited blood flow which can lead to tissue 
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ischaemia (Figure 1. 6d). Thrombi are generated when the fibrous cap of a plaque ruptures and enables 

blood coagulation components to come into contact with the thrombogenic plaque [20]. 

Among prominent risk factors that promote the atherosclerosis are hypertension, diabetes mellitus (DM), 

dyslipidemia, obesity, sedentary lifestyle, family history, smoking and genetic predisposition.  

Atherosclerosis diagnosis is clinical and the definitive diagnosis is made through imaging tests.  Disease 

management plan includes some behavior modifications, such as the physical activity with low caloric 

diet, rich in fiber component, whereas the main class of drugs used in treatment are the antiplatelet drugs 

and the antiatherogenic drugs [18]. 

 

Figure 1. 6 Stages in the development of atherosclerotic lesions [20]. 

1.3.3 Coronary Artery Disease  

Coronary artery disease (CAD) is a common public health disease, due to the high mortality rate of its 

acute clinical manifestations, such as major adverse coronary events (MACE) and the related costs for 

the health care system, as high as 27% of total cardiovascular disease (CVD) costs.  According to the 
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latest epidemiological available data (WHO Mortality Database) more than 4 million deaths each year 

across Europe are caused by CVD, reaching 45% of all deaths.  Specifically, the number of deaths from 

CVD is higher in women reaching the 49% of all deaths and 40% in male gender.  CAD accounts for the 

20% of total deaths for the females and 19% respectively for the men [21]. 

The gold standard of CAD diagnosis is the invasive coronary angiography (CA), a widely used 

procedure in the clinical practice, according to the guidelines for assessing CVD.  CA reduces drastically 

the misdiagnosis of the high burden CAD patients but concurrently it may be used excessively.  It has 

been reported that only 41% of patients undergoing CA have obstructive CAD, meaning that more than 

50% of the procedures may be unnecessary [22].  Nowadays both the European and the American 

guidelines put great emphasis on the pre-test patient stratification, according to their risk of having an 

obstructive CAD, potentially leading to MACE, by the use of clinical PTP (pre-test probability) models.  

The main economic and process-of-care advantage of PTP models relies in balancing the diagnostic 

accuracy in identifying patients likely to have obstructive CAD with accuracy in identifying those who 

are unlikely to benefit from potentially expensive testing and who may be managed conservatively.  

Reduction in unnecessary testing means saving time, anxiety, and cost for patients, limiting radiation 

exposure and in lowering the rate of false-positive test results that could lead to more invasive, 

unnecessary procedures.  The PTP models will thus serve as a “System-Firewall” identifying the high 

risk ones who need to be appointed to more thoroughly diagnostic assessment [23, 24].  At the moment 

there are various such validated diagnostic models of the PTP of stable obstructive CAD, which most of 

them are reported in Chapter 2 of the current thesis.  Briefly, in 1979 Diamond and Forrester (the 

Diamond-Forrester score) [25] proposed an easy and simple PTP model of obstructive CAD, still 

recommended by the American Heart Association (AHA) guidelines.  The European Society of 

Cardiology (ESC) guidelines for stable CAD have replaced the DF score with 2 new revised scores 

(CAD Consortium Basic and CAD Consortium Clinical) [26, 27]. 

1.3.4 Carotid Artery Disease  

Carotid artery disease, the build-up of atherosclerotic plaques in carotid bifurcations, is a highly 

prevalent and devastating disease of our times, with enormous socioeconomic burden.  It constitutes the 

primary cause of cerebrovascular events and ischaemic stroke, and accounts for up to 30% of all strokes. 

In the European Union, this translates to more than 150.000 deaths annually and over €12 billion per 

year in direct and indirect costs.  
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The disease is characterized by the development of an atherosclerotic plaque inside the artery wall that 

reduces blood flow to the brain and increases the risk for transient ischemic attack (TIA) or stroke.  

Some carotid plaques are soft and tend to corrupt or to create irregular projections in the carotid lumen.  

This process consists an “inner trauma” of the human organism and in order to heal it, thrombus is 

created through platelets.  This thrombus can grow and interrupt the blood flow into the carotid artery. 

This situation provokes the stroke, which consists a medical emergency that occurs when the brain loses 

all or much of its blood supply. 

Carotid artery disease often develops slowly and is either asymptomatic or symptomatic, with the first 

clinical signs of the condition might be a stroke or TIA. A TIA is a temporary shortage of blood flow to 

the brain which may cause burning sensation or weakness in one side of the body, inability to control the 

movements of the limbs (upper and lower), loss of vision from the one eye and inability to talk clearly.  

With suspicion of carotid artery disease presence, the patient should undergo some imaging 

examinations, including as first line examination the US of carotid arteries. Supplementary examinations 

are the CTA of the brain, the angiography of the cervical and intracranial vessels and the brain MRI, 

basically for evaluating the extent and severity of extracranial carotid stenoses [28].  

Regarding the management of carotid artery disease, it involves lifestyle alterations, medication therapy 

and in some cases surgery.  More specifically, in compliance with the current guidelines (shown in 

Figure 1.7), asymptomatic patients with 70% stenosis in their carotid artery, are considered to be at high 

risk of cerebrovascular events and are therefore directed to surgical intervention, carotid endarterectomy 

(CEA) or carotid artery stenting.  In contrast, asymptomatic patients with <60% stenosis are considered 

to be at low-intermediate risk, and unless other confounding factors exist, they are subjected to medical 

treatment alone. For recently symptomatic patients, i.e. patients who have had symptoms, such as TIA or 

stroke (minor non disabling strokes) within the previous 6 months, the cut-off point of 50% stenosis for 

surgical intervention, is used. However, it is not uncommon these days to treat symptomatic patients 

with 50-69% stenosis but not vulnerable plaque features, as determined by US, MRI or CT angiography 

with medical treatment alone.  For previously symptomatic patients, i.e. patients with symptoms before 

the last 6 months, treatment is usually conservative and involves the administration of medical therapy 

[29, 30]. 
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Figure 1. 7 Current guidelines for carotid artery disease management [30]. 

 

1.4 Imaging of atherosclerosis 

1.4.1 Imaging of Coronary Artery Disease 

CAD, the most common type of heart disease, is according to the `AHA one of the main causes of death 

worldwide [31].  Due to the awareness of the mortality rate of CAD, different cardiac imaging 

modalities, mostly imlemented shown in Figure 1.8, have been developed over the last years to provide 

accurate and early diagnosis of CAD and to support patient’s management.  CA is a predominant method 

for the detection of CVD.  However, despite the broad implementation of this technique, angiographic 

imaging portrays only the two-dimensional (2D) silhouette of the lumen and fails to depict the entire 

circumference of the vessel wall.  Contrary to this, different modalities overcome this limitation, 

investigating the changes of the composition of atherosclerotic plaque and evaluating accurately the 

arterial pathology [32]. 

Thus, alternative invasive and non-invasive imaging modalities, which have their own strengths and 

weaknesses are nowadays available and able to detect atherosclerosis.  More specifically, invasive 
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[intravascular ultrasound (IVUS), optical coherence tomography (OCT), Near-infrared spectroscopy 

(NIRS)] and non-invasive techniques [computed tomography angiography (CTA), magnetic resonance 

imaging (MRI), positron emission tomography computed tomography (PET-CT)] provide reliable 

assessment of the lumen pathology, quantification of the plaque burden (PB) and characterization of 

atherosclerotic plaque composition [33, 34]. 

Invasive Cardiovascular imaging modalities 

IVUS is a widely used technique, not only in clinical applications, but also in research, especially in the 

study of plaque evolution, due to its ability to visualize the vessel wall with increased accuracy.  The 

required equipment to perform IVUS modality consists of a catheter, a transducer, a pullback device and 

a scanning console.  IVUS catheter incorporates an US transducer combined usually with an inflatable 

balloon either with a stent, or without, in order to expand narrowed areas.  Recent developments in 

IVUS image processing combined with the analysis of intravascular ultrasound radiofrequency (IVUS-

RF) backscatter signal allow the evaluation of the atherosclerotic plaque composition [35].  There are 

several advantages for the use of IVUS imaging in the evaluation of CAD.  First of all, the full 

circumference of the vessel wall and not just two surfaces can be visualized, due to its tomographic 

orientation.  Thus, a reliable assessment of vessels is provided, including cases, such as ostial or 

bifurcation stenoses, diffusely diseased segments, eccentric plaques, which are difficult to be assessed 

by angiography [36].  Moreover, IVUS has the potential to quantify the percentage of narrowing. Its 

penetrating nature provides remarkable images of the atherosclerotic plaque and provides insight into 

the nature of the plaque.  Finally, another important benefit by the use of IVUS is that it may reveal what 

in the past has been referred to as “re-stenosis”, which may be a recurrence of the plaque buildup that 

may have previously been removed.  Additionally, IVUS provides the physician the ability to identify 

buildup that may have been missed during angiogram or angioplasty.  On the other hand, IVUS still has 

indigenous limitations, such as several artifacts and speckle noise, which affect the clinical interpretation 

of the IVUS image and the processing of medical images for computer-aided diagnosis, regardless of the 

type of the catheter [34, 37]. 

OCT imaging modality utilizes near infrared light and relies on measuring the time delay and the 

magnitude of the backscattered light to generate the final images.  OCT provides a detailed visualization 

of the vessel wall, better plaque characterization than IVUS, visualization of plaque micro-features, such 

as the presence of microcalcifications, neovascularization, and plaque hemorrhage [38]..  In addition to 
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this, OCT could also detect stent fracture and early thrombus adhesion at the site of stent fracture.  

Although OCT provides a high image axial resolution, its poor signal penetration prevents the 

visualization of the outer vessel wall.  In addition to this, OCT modality fails to provide the any details 

about the vessel geometry and as result information about the distribution of the plaque into the three 

dimensional (3D) space [34, 39] 

NIRS uses the absorption, emission or scattering of light in the near-infrared portion of the 

electromagnetic spectrum (700-3000 nm) by atoms or molecules to determine sample composition or 

characteristics.  This modality relies on the principle that different organic molecules absorb and scatter 

NIRS light with different degrees and wavelengths.  This CV imaging has the potential to determine the 

chemical composition of atherosclerotic plaques in vivo, such as the lipid-rich plaques, improving 

possibly the patient risk management and the guiding therapy selection [40].  NIRS takes advantages of 

the non-ionizing radiation dose, which does not damage the tissue and of the good depth of penetration, 

which is about 2 to 3 mm.  On the other hand, NIRS modality does not provide any details about the 

vessel geometry and the distribution of plaque in the 3D space. 

 

Figure 1.8 Imaging Techniques of Coronary Artery disease [41]. 

 

Non-invasive Cardiovascular imaging modalities 

Cardiac MRI, an imaging technique with a high potential to visualize vessel anatomy, is based on the 

differences in biophysical response of the tissue to an electromagnetic radiofrequency pulse application 

within a strong, static magnetic field.  MRI is a diagnostic imaging modality with excellent soft tissue 

contrast and therefore able to analyze the components of atherosclerosis plaque components [51,52]. 
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Computed tomography coronary angiography 

Computed Tomography (CT) modality is a medical imaging technique that utilizes computer-processed 

X-rays to produce tomographic images of specific parts of the body.  CT scanners take advantages of the 

digital geometry processing to generate a 3D image of the internals of an object from a large series of 

2D X-ray images taken around a single axis of rotation.  CT scan, contrary to the conventional X-ray 

imaging, forms a full 3D computer model of patient’s body organs. Since its invention in the 1970s, CT 

scan modality is considered as the ultimate choice for the clinical diagnosis of body organs. 

CT images are acquired on the basis of the ability of body organs to block x-rays, which is called radio 

density.  Attenuation values are recorded by CT scanner systems in a plane of a finite slice thickness for 

the whole cross-section, where every component of the cross section image represents a pixel.  More 

specifically, attenuation value is represented mathematically as  

 𝐼𝑡 = 𝐼0𝑒−𝜇𝛥𝑥,  (1.1) 

where 𝐼𝑡 represents the attenuation value of the examined object, 𝐼0 corresponds to the intensity in the 

beam path without any obstruction and 𝜇 is the linear transformation coefficient of a specific material. 

However, in clinical CT dataset, the attenuation value is represented in Hounsfield Units (HU) scale.  

HU scale transforms the original linear attenuation into one in which the radiodensity of distilled water 

at standard temperature and pressure (STP) is defined as 0 HU, whereas the radiodensity of air at STP is 

defined as -1000 HU.  More specifically, in a voxel with average linear attenuation coefficient given as 

𝜇, the corresponding HU value is given by:  

 𝐻𝑈 = 1000 ∗
𝜇−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟−𝜇𝑎𝑖𝑟
,  (1.2) 

where 𝜇𝑤𝑎𝑡𝑒𝑟 and 𝜇𝑎𝑖𝑟 are the liner attenuation coefficients for water and air, respectively. 

However, due to the “motion” of the heart, CTA has not been widely utilized for imaging the cardiac 

system.  Imaging of coronary arteries requires high spatial acquisition imaging systems and additionally 

a high temporal resolution is required to emulate the dynamic heart as a “static organ”. Recently, 

advancements in medical imaging introduced the multi-slice CT system that guarantees both higher 

spatial resolution and lower acquisition speed time.  Dual source technique reduced the acquisition time 

by imaging in half rotation, whereas the multi slice system improved the spatial resolution.  Thus, high 

diagnostic accuracy has been achieved with multislice CT scanners (64 slice and higher), and in selected 

patients coronary CTA is regarded as a reliable alternative to invasive coronary angiography [42]. 
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CTA is a cardiac imaging modality for the detection of CAD and the exclusion of significant CAD.  The 

basic clinical value of CTA is its high NPV and the portion of patients who could undergo this modality 

consists of symptomatic patients with intermediate CV risk [43].  Different studies have indicated that 

the introduction of 64-slice and 320- slice systems allows not only the identification of coronary 

stenosis, but also provides information about the composition and the distribution of atherosclerotic 

plaque in the 3D space [34, 44, 45].  While CTA modality can non-invasively detect atherosclerotic 

plaques and coronary artery stenosis, it is directly associated with the exposure in high radiation dose.  

This is even eminent in the hybrid cardiac imaging field, where the patients are additionally exposed to 

even higher radiation dose from nuclear perfusion scanning [46]. 

1.4.2 Imaging of Carotid Artery Disease  

The technical improvement of imaging of carotid artery disease has been shifted from 2D to 3D and 

various imaging modalities have been implemented for the CAS diagnosis, including US, CT and 

magnetic resonance angiography (MRA).  

US is considered as the first line examination for CAS diagnosis, due to its accuracy and non-invasive 

nature.  This modality fuses two modes: the B-mode in which images are produced by the reflected 

sound waves and the colour-Doppler US mode that visualizes the motion of the moving parts or fluid 

(blood) to measure the speed and other flow parameters [47].  CTA is also considered as an accurate and 

non-invasive technique for imaging intracranial and extracranial blood vessels and was found to be an 

excellent examination for the detection of carotid occlusion and categorization of stenosis in either the 

0%–29% or >50% ranges.  MRA is also a non-invasive modality that uses the combination of MRI 

technology and intravenous contrast to visualize blood vessels.  Compared to US, MRA was hound to be 

more accurate in identifying severe cases of CAS (>70%) and cases of total occlusion [48].   
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2.1 Introduction 

The recent years, technical breakthroughs, in the field of coronary and carotid imaging and identification 

of novel biomarkers, have enabled the progress of CVDs risk stratification.  A remarkable growth in 

scientific publications on personalized medicine in the field of CVDs has been notified, including the 

use of new medical image processing techniques and the implementation of ML techniques for the early 

disease diagnosis and prognosis.  The aim of this chapter is to present the existing in the literature 

studies regarding the techniques for CTA image processing, techniques for CAD and carotid disease 

prediction and to present the carotid artery disease related biomarkers. 

More specifically, at first techniques for the CTA image analysis for the detection of coronary and 

carotid arteries and the distribution of atherosclerotic plaques, are presented.  Most of these studies are 

based on well-known image processing techniques, whereas others have been developed based on 

existing software tools with the need of manual user interaction.  The technical pipeline of these studies, 

their evaluation and their accuracy are presented.  Subsequently, a presentation of techniques for CAD 

risk stratification is performed.  The presented studies distinct into non-imaging based studies and 

imaging based studies and their outcomes vary according to the proposed problem definition of each 
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study.  More specifically, most of the studies aim to detect either the future presence of CAD, as it is 

defined by DS and number of occluded vessels or the progression of CAD. 

Subsequently, we present studies regarding the carotid artery disease prediction.  Studies concerning the 

prediction of carotid artery disease, taking advantage of ML techniques, are presented and their 

outcomes are basically based on the presence of either CAS or the presence of high risk carotid plaques.  

Additionally, a detailed review for serum biomarkers related to carotid artery disease presence, is 

reported. 

2.2 3D reconstruction based on computed tomography angiography 

Technological developments of CV imaging have led to the development of different techniques for the 

3D reconstruction of coronary and carotid arteries.  CTA modality is a noninvasive imaging modality, 

which utilizes computer-processed X-rays to produce tomographic images of arteries and has 

experienced a remarkable progress in the last years in the field of 3D reconstruction of coronary [49, 50] 

and carotid arteries [48].  The progressive improvements of CT scanners, as far as the spatial resolution 

and the acquisition time are concerned, allow the visualization of the entire coronary arterial tree and 

carotid bifurcation.  More specifically, the 2D CTA slices visualize accurately the inner wall, the outer 

wall and the atherosclerotic plaques of arteries and provide information about their composition. Thus, 

the detailed visualization of CTA slices in combination with the tomographic orientation of CTA, allow 

the reliable reconstruction of artery inner wall, outer wall, atherosclerotic plaques and their distribution 

in the 3D space.  In addition to this, CTA imaging allows the reconstruction either of a bifurcated artery 

segment or the full reconstruction of the arterial tree. 

2.2.1 3D reconstruction of coronary arteries based on CTA 

Regarding the coronary artery reconstruction, different methodological solutions have been implemented 

for the accurate coronary vessel detection, including approaches based on the topological thinning [51], 

the particle filtering [52], the graph-based analysis [53], vessel tracking, active contours [54], minimal 

cost path computations [55] and fuzzy connectedness [56]. 

The basic aim of medical image processing is the segmentation process that assigns labels to the voxels.  

As far as the CTA images analysis is concerned, existing studies are dedicated to provide the coronary 

vessel geometry, whereas other studies aimed to detect and characterize the atherosclerotic plaques.  

More specifically, most of the studies aim to detect the coronary lumen and to evaluate the 3D coronary 
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artery geometry derived by the CTA slices, while other studies aim to detect the PB region and 

characterize its composition, by distinguishing the atherosclerotic plaque into calcified plaques (CP) and 

non-calcified (NCP) plaque. 

Wang et al. [56] proposed a methodology for the segmentation and quantification of stenosed coronary 

arteries based on CTA images, using a localized region-based level sets framework.  Primarily, as a 

preprocessing step, the entire heart is detected employing a mathematical morphology algorithm in order 

to accurate extract the coronary arteries.  The coronary artery detection was achieved by implementing a 

Hessian-matrix based filter to enhance the visualization of vessel structures and subsequently, the initial 

coronary artery surface is estimated by a localized thresholding algorithm.  Finally, the accurate lumen 

border detection was achieved by implementing a region-based level set algorithm. 

On the other hand, Bouraoui et al. [57] proposed an automated algorithm for the segmentation of 

coronary arteries based on mathematical morphology techniques and discrete geometric tools.  More 

specifically, the main steps of the algorithm is the CTA image preprocessing, the heart region 

localization, employing grey-level hit-or-miss opening and the implementation of a region-growing 

algorithm.  The accuracy of this proposed methodology was finally validated using 60 CTA images by 

an expert cardiologist, who confirmed that the 90% of the images voxels were correctly segmented, 

whereas the remaining 10% of the CTA images voxels concerned two pathological data with low image 

quality, presenting important calcification, in the presence of stent. 

Shahzad et al. [58] in a different attempt, presented a methodology for the automatic detection and 

quantification of coronary artery stenoses in CTA images.  In this approach, the coronary centerlines 

were firstly extracted a two-point minimum cost path approach for the initialization of lumen 

segmentation, which was then achieved using graph cuts.  Subsequently, a robust kernel regression 

model was applied to quantify the expected healthy coronary artery lumen diameter and then the lumen 

stenoses were computed by estimating the difference between estimated and expected diameter profiles.  

The validation dataset consisted of 30 testing datasets and the methodology was compared both by 

quantitative CA and manual assessment based on 3 experts’ observers annotation.  In addition to this, as 

far as the lumen segmentation is concerned, the dice coefficient (DICE) value for the health and diseased 

vessels was 0.68 and 0.65, respectively. 

In a different direction, Chen et al. in 2014 [59] proposed a methodology for the segmentation of 

coronary arteries in a semi-automatic manner.  The first step of their methodology is to isolate the heart 
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and coronary arteries region and to search for the probable location of coronary arteries by 3D region 

growing algorithm.  Subsequently, the complete and accurate detection of coronary arteries is achieved 

applying discrete wavelet transformation and λ – mean operation.  The proposed methodology was 

evaluated using 20 datasets and compared using the annotations edited by an expert radiologist using a 

commercial software workstation.  The maximum calculated distance error was 2.2 mm, whereas the 

overlap ratio was 86.8%.  The proposed methodology was directly compared to Yang et al.[60] study, 

where the maximum distance error and the overlap ratio were 2.3 mm and 68 %, respectively.   

Kitamura et al. [61] presented a novel segmentation approach for the lumen and atherosclerotic plaque 

segmentation, considering the vessel as a tubular structure, whereas CP are more likely globular.  Their 

segmentation idea was based on multi-label graph cuts utilizing higher-order potentials to impose shape 

priors.  A standardized evaluation framework, presented in the medical image computing and computer 

assisted intervention (MICCAI) segmentation challenge 2012, was utilized and a sensitivity of 51.1% 

and a PPV of 33.3% compared to CTA reference, whereas the DICE as far as the lumen segmentation is 

concerned was 0.74 for the diseased coronary vessels and 0.73 for healthy ones. 

In the same rationale Chen et al. [62] in 2015 proposed a novel segmentation for the detection of 

coronary artery pathologies.  The proposed methodology consists of two basic steps: the implementation 

of a 3D region growing algorithm to initially segment the coronary arteries and subsequently, a vessel-

texture discrimination algorithm was applied to detect the location of the vessel.  The presented 

methodology was evaluated using a commercial software and an existing study based on a level set 

algorithm [60].  The efficiency of the proposed method was analyzed, computing the overlapping metric 

and the Hausdorff distance (HD).  The average overlapping metric of the proposed approach was 0.96 

and the mean HD was 1.08. 

Yuanzhi et al. [63] presented an active contour framework with accurate shape and size constraints on 

the vessel cross-sectional planes to accurately segment the vessel.  The proposed approach includes a 

multiscale vessel axis tracing in a 3D CTA images, a vessel boundary delineation on the cross-sectional 

planes, based on the extracted axis and finally the deformation of the vessel boundary surface, which is 

voxelized to produce the vessel segmentation.  The novel aspect of the proposed methodology is its 

ability to achieve an accurate point detection in problematic CTA image region, such as vascular 

pathological regions and to avoid the disconnected and incomplete segmentation of the vessels.  The 
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presented study is evaluated using two publicly available databases, the Rotterdam Coronary Artery 

evaluation framework datasets and the mean true positive ratio is 96.37±1.05. 

On the other hand, in a recently published study, proposed by Athanasiou et al. [64], a semi-automated 

methodology was presented for the identification of the coronary lumen, the outer wall and the CP, 

based on a Gaussian mixture model.  More specifically, the CTA image voxels were classified into 

lumen, outer wall and CP, utilizing a 3-component Gaussian Mixture Model (GMM).  The setting 

parameters of GMM was adapted to each CTA, based on a set of region, manually annotated by an 

expert.  The validation procedure included the comparison of the volume, area and length of the lumen 

and outer wall, as well as the CP volume against IVUS findings and promising results were extracted.  

Zhu et al. [65] in 2022, in another attempt, proposed a U-shaped network based on spatio-temporal 

feature fusion structure to segment coronary arteries from 2D CTA slices, by combining features of 

multiple levels and different receptive fields separately to get more precise boundaries.  The proposed 

methodology achieves the mean DICE of 0.87.  In a similar approach, Mirunalini et al. [66] proposed a 

deep learning based model to segment and reconstruct the coronary artery, using the U-Net model for 

the segmentation and the Maximum Intensity Projection (MIP) reconstruction algorithm to analyze the 

presence of stenosis. 

The studies related to coronary lumen detection are presented in Table 2.1. 

Although extensive methodologies have been proposed for the automated segmentation of the coronary 

lumen based on 3D CTA images, several methodologies have been proposed for the atherosclerotic 

plaque region detection and the characterization of its composition.  It has been indicated that the 

characterization and quantification of atherosclerotic plaque is of high significance for the patient risk 

stratification and contributes to the improvement of patient’s management.  Atherosclerotic plaque 

composition is classified into CP, NCP and mixed plaque.  As far as the CP is concerned, its 

identification is well established even at the early stages of CTA usage in terms of calcium score and is 

considered as a strong predictor of coronary events [67, 68], while the identification of NCP remains 

still a challenging problem. 

Detection of NCP based on non-invasive imaging modalities was performed in a study proposed by 

Schroeder et al. [69], who attempted to characterize the atherosclerotic plaque, using CTA modality and 

analyzing thirty-four plaques.  In this approach, the atherosclerotic plaque was classified into soft, 
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intermediate and CP using an HU-based analysis.  More specifically, the mean density values of soft, 

intermediate plaques and CP was 14 ± 26 HU, 91 ± 21 HU and CP 419 ± 194 HU, respectively.  This 

approach was compared with the IVUS findings and a reliable performance of CTA, in terms of 

characterization of coronary lesion configuration, was indicated.  In the same manner, Hur et al. [70] 

attempted to determine the diagnostic accuracy of CTA imaging modality to quantify and characterize 

the atherosclerotic plaque region.  The atherosclerotic plaque composition was analyzed based on HU 

criteria, and more specifically the mean CT values for soft, fibrous, mixed and CP were 54±13 HU, 

82±17 HU, 162±57 HU, 392±155 HU, respectively.  The proposed methodology was evaluated using 

thirty-nine patients who underwent both CTA and IVUS and the utilized stenotic sites were totally sixty 

one.  The correlation coefficients for the measurements of the lumen, vessel, plaque area, and percentage 

of luminal obstruction were 0.712, 0.654, 0.753 and 0.799, respectively and thus, it was observed that 

the luminal obstruction correlated well with this derived by the IVUS modality.  However, a significant 

overlap was observed among the soft and the fibrous plaques and the classification of NCP as vulnerable 

or stable plaques, based on HU threshold analysis, remains still limited. 

In 2011, Papadopoulou et al. [71] evaluated the ability of CTA modality to detect and quantify the 

atherosclerotic plaques, using as reference standard the IVUS modality.  The CTA and IVUS co-

registration step was developed, based on a dedicated software, MeVisLab software, whereas the co-

registered region of interest (ROI) was considered for plaque analysis.  Coronary inner and outer wall 

detection was performed manually implementing a stepwise approach.  The atherosclerotic plaques were 

identified manually and classified into two categories, the NCP and the mixed/classified plaques.  The 

evaluation procedure showed promising results, and the derived correlation coefficient for any type of 

atherosclerotic plaque volume was 0.91.  However, the basic limitation of the presented methodology 

was the selection of the utilized dataset, where all of the patients presented high prevalence of the 

disease and the diagnostic accuracy might be lower in populations with lower prevalence. 

Leber et al. [72], in another study, investigated  the accuracy of CTA to detect different types of 

coronary plaques (CP, NCP and mixed plaques), in comparison with IVUS modality.  The lumen and the 

outer wall of coronary arteries was empirically determined based on a display setting that was 

empirically determined, so that the CTA image equaled the IVUS image in size and pattern and 

permitted the exact separation between the inner wall, the outer wall, the atherosclerotic plaque and the 

surrounding tissue.  In this study, the optimal setting to detect plaque and outer vessel boundaries ranged 
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from 395 to 809 HU, whereas the intensity of the lumen ranges from 165 to 339 HU.  In the validation 

procedure, 38 vessels were totally utilized and only 23 of 145 coronary lesions were misclassified, 

whereas the correlation coefficient for the plaque volume was 0.69.  The results of this study 

demonstrated the CTA ability to detect and quantify atherosclerotic plaque, while a further improvement 

of CTA is required for the assessment of very small and distal coronary plaques.  In the same rationale, 

Voros et al. [73] attempted to investigate the accuracy of CTA to detect the coronary inner and outer wall 

and evaluated their findings against IVUS with radiofrequency backscatter analysis.  The CTA image 

analysis, as far as the inner and outer wall borders detection is concerned, was applied by an experienced 

user [74, 75], whereas the atherosclerotic plaque detection was applied based on an HU based analysis.  

More specifically, the CTA voxels were classified as CP with attenuation values higher than 150 HU, as 

high density NCP with 30-149 HU and as low density NCP with −100-30 HU.  The accuracy of their 

study was investigated, by extracting geometrical and compositional features, such as the minimal 

lumen diameter (MLD), the degree of stenosis (DS), the minimal lumen area (MLA), the percentage of 

area stenosis (%AS) and the volume and percentage of 3 plaque components: CP, high density NCP, and 

low density NCP.  Correlation coefficients of CTA derived features against the Virtual Histology-

Intravascular Ultrasound (VH-IVUS) derived features indicate an important correlation.  More 

specifically, the correlation coefficient for the MLD, the %DS, the MLA, the %AS were 0.59, 0.43, 

0.65, 0.44, respectively, whereas the correlation coefficient for the NCP volume and CP volume were 

0.84, 0.65, respectively.  This work was considered as the first prospective study to implement a 3D, 

quantitative analysis of co-registered CTA and VH-IVUS datasets, providing promising results for the 

CTA accuracy.  On the other hand, since manual measurements of coronary plaques are time-consuming, 

computational attempts have been undertaken to automate the extraction of coronary plaques using the 

CTA imaging modality.  More specifically, Dey et al. [76] attempted to evaluate the accuracy of 

developed automated algorithm [77] for the automated detection and quantification of NCP and CP.  The 

proposed methodology combines HU density scan specific thresholds for the inner wall and the 

atherosclerotic plaques, and more specifically the mean HU value for the NCP was 242.6±25.9 HU, 

whereas for the CP 535±67.4 HU.  The proposed developed algorithm was validated against IVUS 

manual image analysis and totally 22 NCP were utilized.  A strong correlation of NCP volumes derived 

by the proposed algorithm against IVUS image analysis was indicated and the correlation coefficient 

was 0.92.  In a similar manner, Brodoefel et al. [78] evaluated the CTA accuracy to detect and 

characterize the atherosclerotic plaque region in comparison with VH-IVUS.  The plaque 
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characterization analysis was performed using a dedicated software, the SUREPlaque™ software, that 

automatically provides the vessel boundaries, while the 3 different components of atherosclerotic 

plaques, the fatty, fibrous and CP were extracted based on HU density values.  More specifically, lipid 

plaque components range from -150 to 60 HU, lipid plaque from 61 to 149 HU and CP from 150 to 1300 

HU.  The methodology was validated in 14 patients, using 22 coronary lesions and good correlation was 

achieved for the entire plaque volume (r2=0.76) and NCP volume (r2= 0.84), whereas the correlation for 

the plaque composition proved very poor and insignificant.   

On the other hand, Boogers et al. [79] aimed to prove the feasibility of CTA imaging modality to 

automatically quantify the coronary plaque, using a co-registration algorithm of CTA and IVUS data.  

The CTA images analysis was performed using a dedicated and extended version of the QAngio CT 

software (QAngio CT 1.1, Medis medical imaging systems, Leiden, the Netherlands), which provides 

the lumen and outer vessel wall borders.  The proposed methodology was evaluated in comparison with 

IVUS images analysis using patients with 146 coronary lesions and the correlation coefficients for the 

MLA, the Lumen AS, the PB, the Remodeling index were 0.75, 0.79, 0.64 and 0.56, respectively.  Based 

on Boogers et al. study, another approach was introduced by Graaf et al. [80], who investigated the 

automatic quantitative assessment of coronary stenosis and plaque constitution on CTA, compared to 

VH-IVUS.  The lumen and vessel wall detection was applied based on the previously described 

methodology [79], while the plaque classification was based on two different approaches.  More 

specifically, in the first approach different fixed HU cut-off values were used for classifying the plaque 

tissue, −30 to 75 HU, for NC, 76–130 HU for fibro-fatty, 131–350 HU for fibrotic, and higher than 351 

for dense calcium.  The selection of these HU value ranges was based on Brodoefel et al. [81] study and 

optimized using different datasets. As far as the second approach for threshold definition is concerned, 

its selection is user independent and is based on the principle that the plaque attenuation values is 

directly associated with the lumen intensity value.  The study, proposed by Graaf et al. [80], was 

validated using 109 vessels, of which 69 revealed atherosclerosis.  As far as the fixed thresholds is 

concerned, good correlations were achieved for volumes of fibrotic tissue (r = 0.695), fibro-fatty tissue 

(r = 0.714), NC (r = 0.523) and dense calcium (r = 0.736), whereas for the dynamic threshold tissue 

classifier, the correlation plaque volume for NC was 0.479 and the volumes of dense calcium, fibrotic 

and fibro-fatty volumes were all significantly overestimated by CTA image analysis. 
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However, the previously described studies are implemented either using manual estimations [70-72, 82], 

or utilizing available software [78, 80, 83].  A different approach was proposed by Jawaid et al. [84], 

who implemented a support vector machine (SVM) classifier, after computing the radial profiles by 

averaging the CTA image intensity in rings around the vessel centerline to identify the abnormal 

coronary segments.  A derivative-based method was also applied to localize the position and the length 

of the NCP. 

The above described methodologies for atherosclerotic plaque detection are summarized in Table 2.2. 
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Table 2.1 Coronary Lumen Detection Methodologies based on CTA modality. 

Studies Methodology Dataset Results 

Wang et al. [56] localized region-based level 

sets 

clinical data provided by St 

Thomas’hospital, London 

Accurate lumen segmentation 

Bouraoui et al. [57] mathematical morphology 

techniques, discrete 

geometrical tools 

60 CTA images 

 

90% correct segmentation 

Shahzad et al.[58] robust kernel regression 30 testing datasets compared to 

quantitative CA 

DICE (healthy vessels): 68%  

DICE (diseased vessels): 65%  

Chen et al. [59] 3D region growing Discret 

wavelet transformation 

manually edited by a radiologist 

using commercial software 

Overlap ratio 86.8 %  

Kitamura et al. [61] multi-label graph cuts MICCAI 2012, Quantitative CT DICE (healthy vessels): 73%  

DICE (diseased vessels): 74%  

Chen et al. [62] 3D region growing vessel-

texture discrimination 

algorithm 

commercial software from GE 

Healthcare and the level-set 

method proposed by Yang et al.  

Overlapping metric 0.96 

Mean HD: 1.08 

Yuanzhi et al. [63] Active contour models  

 

Rotterdam Coronary Artery 

evaluation framework datasets 

True positive ratio: 96.37±1.05 

Athanasiou et al. [64] Gaussian Mixture Model IVUS Lumen volume correlation: 0.76 

Zhu et al. [65]  U-shaped network 30 patients DICE of 0.87 

Mirunalini et al. [66]  a deep learning based model 50 patients SSIM values 

of 0.84829, 0.85739, 0.83857, 

0.8459, .8531 for different 

rotation angles 
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Table 2.2 Plaque Characterization Methodologies based on CTA modality. 

Study Plaque Methodology Comparison Results 

CP NCP intermediate 

Schroeder et al. 

[69] 

✓ ✓ ✓ HU-based analysis IVUS Nonparametric Kruskal-Wallis test 

revealed a significant difference of plaque 

density among the three groups  

Hur et al. [70] ✓ ✓ Fibrous, 

mixed 

HU-based analysis, 

soft:54±13 HU, fibrous: 

82±17 HU, mixed:162±57 

HU, CP:392±155 HU 

IVUS 

 

Lumen Area: r=0.712, Plaque Area: 

r=0.753 

Vessel Area: r=0.654,  DS: r=0.799 

Papadopoulou et 

al. [71] 

✓ Mixed, 

CP 

- Inner, outer wall & plaques 

manually edited 

IVUS  

Leber et al. [72] ✓ ✓ mixed manually annotated IVUS Missclassified 23/145 plaques,  

plaque volume: r=0.69 

Voros et al. [73] ✓ ✓ High density 

NCP 

Inner & outer wall manually 

edited,  

high density NCP: 30-149 

HU, 

 low density NCP:-100-30 

HU, CP: >150 HU 

IVUS 

 

vessel plaque volumes: r = 0.51 

 

Dey et al. [76] ✓ ✓ - scan-specific attenuation 

threshold 

IVUS 

 

Mean plaque volume correlation (r = 

0.92) 

Brodoefel et al. 

[78] 

✓ ✓ fibrous SUPERplaque software 

inner & outer wall, NCP: -

150-60 HU, CP: 150-1300 

HU, fibrous:61-149 

VH-IVUS 

 

NCP (%)28.2 ± 6.1 (CT), 29.9 ± 5.2 

(IVUS) 

Fibrous (%)53.2 ± 8.7 (CT), 55.3 ± 12.2 

(IVUS) 

CP (%) 18.7 ± 12.5 (CT), 14.4 ± 9.1 

(IVUS) 
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2.2.2 3D reconstruction of carotid arteries based on CTA 

Regarding the imaging of carotid arteries, CTA is considered as a promising non-invasive imaging 

modality utilized for the assessment of the carotid stenosis, supplementary to the use of US imaging.  

The main advantage of the CTA in carotid imaging is the ability to image the artery bifurcations, from 

the aortic arch to the brain parenchyma [85]. On the other hand, the high radiation dosage, for the need 

of intravenous contrast and the high intensity artifacts, consists of the acknowledged drawbacks of CTA. 

Different studies have been conducted for the lumen carotid detection and the identification and 

characterization of carotid atherosclerotic plaques.  More specifically, Sanderse et al. [86] presented an 

automatic initialization algorithm to detect the carotid arteries providing a fully automated approach for 

vessel centerline detection and segmentation.  The carotid arteries are detected in axial slices of the 

volume of interest by applying a circular Hough transform.  A hierarchical clustering approach was used 

to select carotid related signals in the Hough space, whereas a feedback architecture was introduced to 

successfully detect the range of the vessel diameters.  The presented methodology was trained using 20 

patient datasets and tested using 31 patient datasets.  An overall detection accuracy of 0.88 was 

achieved.  The main limitation of the proposed methodology was the fact that 21% of the overall cases 

cannot be successfully detected.  In another attempt, Van Velsen et al. [87] presented a study based on 

the detection of lumen-like structures by analyzing the density, edge and ridge knowledge.  Upon 

initialization with a start and endpoint, the lumen path is automatically defined in 3D image data instead 

of 2D MIP images, and the extracted lumen path is subsequently used as initialization for automatic 

lumen segmentation with a level set method.  The shape of the vessel lumen is defined by evolving a 

surface toward the lumen boundaries using a speed term, which is defined based on image information 

and a smoothness constraint, while a predefined lumen path was used to assure a good initialization even 

if a stenosis or obstruction is present.  In this work, the required image information for the speed term is 

based on image intensity and edge information.  Manniesing and Niessen [88], in another study, 

presented an automatic method that segments the internal carotid arteries (ICAs) across the difficult 

locations of the skull base in CTA.  The proposed methodology consists of the following three steps: (i) 

the entropy profiling to select the lower region that includes the skull base, (ii) the selection of a rough 

vessel segmentation which is used as input for a Hough transform to detect the 2D circular shapes in this 

plane and finally, (iii) the center points which are used to initialize a level set which evolves with a prior 

shape constraint on its topology.  This proposed methodology was validated using 20 carotid arteries of 

10 patient datasets and finally 18 out of 20 were successfully detected automatically.   
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On the other hand, Cuisenaire [89] developed a fully automated vessel extraction and segmentation tool, 

specifically used for head and neck region. This work focuses particularly on the initial centerline 

extraction technique. It uses a locally adaptive front propagation algorithm that attempts to find the 

optimal path connecting the ends of the vessel, typically from the lowest image of the scan to the circle 

of willis in the brain. It uses a patient adapted anatomical model of the different vessels both to initialize 

and constrain this fast marching, eliminating the need for manual selection of seed points. The initial 

centerline of each vessel was extracted and the vessels were segmented using the initialized 3D active 

surfaces using the spline-snake to identify true centerline from the segmented mask edges.  

Another semi-automated technique for lumen segmentation of the carotid bifurcation in CTA using the 

level set approach was proposed by Manniesing et al. [90].  Firstly, the central vessel axis is obtained 

using path tracking between three user-defined seed points, using Dijkstra algorithm and voxel based 

backtracking method. Secondly, starting from this path, the segmentation is automatically obtained using 

a level set coupled with fast marching method. The cost and speed functions for path tracking and 

segmentation make use of intensity and homogeneity slice-based image features. The method was 

validated on a large dataset of 234 carotid bifurcations of 129 ischemic stroke patients with 

atherosclerotic disease. The results were compared to manually obtained lumen segmentations. 

Parameter optimization was carried out on a subset of 30 representative carotid bifurcations. With the 

optimized parameter settings, the method successfully tracked the central vessel paths in 201 of the 

remaining 204 bifurcations (99%) which were not part of the training set.  The comparison with 

manually drawn segmentations shows that the average overlap between the method and observers is 

similar (for the inter-observer set the results were 92% vs. 87% and for the intra-observer set 94% vs. 

94%).  Similarly, Vukadinovic et al. [91] presented a level-set based and GentleBoost classification 

based approach for the segmentation of the carotid artery outer vessel wall and the atherosclerotic 

plaque components.  This methodology consists of three steps: (i) the lumen segmentation based on the 

level set methodology [92], (ii) implementation of GentleBoost classifier to detect calcium pixels, (iii) 

implementation of GentleBoost classifier for voxels inside and outside the carotid artery lumen.  The 

proposed methodology was trained and optimized using 20 datasets, whereas it was evaluated on 80 

datasets.  The reference standard of the implemented validation procedure was expert’s manual 

annotation and the similarity index for the outer vessel wall and the atherosclerotic plaque was 

0.92±0.03 and 0.81±0.06, respectively.  In addition to this, the estimated correlation coefficients for the 
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vessel volume, the plaque volume, the fibrous volume, the lipid volume and the calcium volume were 

0.96, 0.81, 0.89, 0.46 and 0.95, respectively. 

Freiman et al. [93] proposed a practical methodology for the modeling of the total aortic arch and of the 

entire carotid vasculature, starting with an automated ROI identification which is followed by the 

implementation of an automatic watershed-based segmentation of the aorta.  Aorta segmentation 

primarily relies in the prior knowledge of its anatomy, structure, location and its brightness.  

Subsequently, a Gaussian distribution was estimated for the carotid vasculature intensity, and finally 

carotid artery segmentation was applied, using graph min-cut segmentation approach, followed by a 

semi-automated graph-based refinement.  The proposed methodology was validated using four different 

datasets and totally 66 patients, achieving HD and DICE of 1.55 and 0.91, respectively.  Tang et al. [94] 

proposed a semi-automatic carotid lumen segmentation method and CAS (carotid artery stenosis) 

quantification using a level-set based approach, which was initiated with a centerline obtained from user 

defined seed points. This study consists of three steps: (i) the implementation of an iterative minimum 

cost path approach to extract the carotid vessel centerline, (ii) the implementation of a level set approach 

to extract initial carotid lumen boundary and (iii) the removal of the side branches in the segmented 

lumen.  The obtained DICE of this proposed methodology was 90.2%, whereas the mean absolute 

surface distance was 0.34 mm.  As far as the CAS quantification is concerned, the average error was 

15.7% and 19.2% for cross‐sectional diameter‐based stenosis and cross‐sectional area‐based stenosis, 

respectively. 

Dos Santos et al. [95] proposed a semi-automatic method in which they segmented vessel walls and 

surrounding tissues with an adaptive segmentation and region growing algorithms. The slice interval is 

determined for the segmentation and analysis process. The initial seed point in the lumen is set manually 

in the first slice to specify the artery side to be segmented and the exact position of the vessel. A typical 

diameter of 6 mm is used to create a ROI around the lumen and to generate a histogram. Gaussian fitting 

is executed, and 90% of the area under the curve (AUC) is chosen as the initial blood attenuation HU 

interval. The next step is the segmentation of the lumen using the initial seed and the attenuation 

interval, with a region-growing algorithm.  The use of an adaptive attenuation interval in each slice 

prevents the common problem of dilution during region growing.  By fitting the attenuation value 

histogram onto a Gaussian curve, it is possible to decrease the influence of the less frequent attenuation 

values representing surrounding tissues. After the initial slice is obtained, segmentation proceeds 
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automatically along the vessel and throughout the entire CT image stack.  If the stenosis is so severe that 

no pixel identifies the lumen, the same initial seed position is used for the next slice.  In this study, they 

concluded that there was no significant difference between the maximum percent stenosis value obtained 

using the semi-automated tool and those obtained using manual measurements. 

Hemmati et al. [96] proposed a methodology for the carotid lumen segmentation based basically on a 

3D level set model.  Firstly, the grey levels of the CTA images were uniformly enhanced by the mean 

shift smoothing and then the vessel centerlines of the carotid arteries were extracted using a 3D Hessian 

based fast marching shortest path algorithm, whereas the final carotid artery segmentation was achieved 

utilizing a 3D level set function.  This presented methodology was evaluated using 14 different CTA 

volumes and the achieved DICE was 0.85. 

Bozkurt et al. [97]  provided a novel method for carotid artery lumen segmentation on CTA images by 

using automatic vessel segmentation with inverse approach, in which vessel segmentation is performed 

after bone region is segmented and eliminated. The region growing and random walk segmentation 

methods are utilized in the elimination of bone region and the vessel segmentation. The seed points in 

the mentioned methods are not manually determined by any starting point. In automatic segmentation, 

seeds are automatically selected from the experimentally determined intervals according to the local 

histogram. The stages of preprocessing and post-processing are utilized for better segmentation. The 

tracking of vessel centers based on continuity is employed for 3D reconstruction and 3D imaging of the 

vessels. Experiments were conducted with different data sets including various CTA images by using the 

mentioned methods. As a result, DICE above 92% was achieved together 99% accuracy. 

.
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Table 2.3 Methodologies for 3D reconstruction of carotid arteries using CTA imaging modality. 

Study Methodology Detection Results 

Sanderse et al. 

[86] 

circular Hough transform Vessel detection and 

centerline 

20 datasets (training set), 31 datasets (test set),  

88% accuracy 

Manniesing & 

Niessen [88] 

Hough transform and a level set 

which evolves with a prior shape 

constraint 

Vessel detection 20 carotid arteries (10 patients), 90% accuracy (18/20 

correctly identified) 

Cuisenaire et 

al. [89] 

locally adaptive front propagation 

algorithm (centerline extraction) 

Vessel detection and 

centerline 

 

Vukadinovic 

et al. [91] 

Level set methodology, GentleBoost 

classification framework 

(lumenthreshold = 320HU, fibrous 

tissuethreshold=130 HU, lipidthreshold=60 

HU) 

Lumen, outer wall, 

plaque components 

DICE: 0.92±0.03 (outer wall), 0.81±0.06 (plaque) in 80 

datasets, vessel volume (r2=0.96), plaque volume (r2=0.81), 

fibrous volume (r2=0.89), lipid volume (r2=0.46), calcium 

volume (r2=0.95) 

Freiman et al. 

[93] 

Automatic watershed-based 

segmentation of the aorta, graph-cut 

optimization framework for carotid 

segmentation 

Carotid lumen 71 multicenter clinical CTA datasets, DICE of 84.5% (SD = 

3.3%) and MSSD 0.48 mm (SD = 0.12 mm.) 

Hemmati et 

al. [96] 

3D Hessian based fast marching 

shortest path (centerline extraction), 

3D level set (lumen segmentation) 

Carotid lumen  14 CTA datasets, 0.85 similarity index accuracy 

Guha et al. 
[98]  

geodesic path propagation algorithm 

based on fuzzy distance transform. 

Carotid vessel eight patients’ CTA image, the accuracy of all the segmented 

data was verified by overlaying the phantoms with the 

original images 

dos Santos et 

al. [95] 

adaptive segmentation algorithm and 

region growing 

CAS no significant difference between the maximum percent 

stenosis value obtained using the semi-automated tool and 

those obtained using manual measurements 

Bozkurt et al. 

[97] 

region growing and random walk 

segmentation methods 

Carotid vessel DICE 92% 

Saba et al. 
[99] 

HU attenuation analysis Lipids, fibrous tissue, 

calcium plaque  

Relation between the monochromatic kiloelectron volt values 

and the HU range of the plaque 
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2.3 Prediction of coronary artery disease 

2.3.1 Non-imaging CAD prediction  

In this section, we are going to provide a cohesive state of the art on ML methods for obstructive 

CAD prediction, focusing on studies employing non-imaging data and imaging based data.  We 

primarily drew on our recently published literature review, where we analysed and contrasted the 

relevant literature with respect to the acquired dataset, the examined feature space, the employed 

predictive modelling schemes and their discriminative or predictive capacity [100].   

As it is shown in Table 2.4, the detection of obstructive CAD, defined as a ≥50% diameter stenosis in 

at least one main coronary artery vessel assessed by CA or CTA, is formulated as a binary 

classification problem on the basis of a confined set of demographic, clinical, and biohumoral 

characteristics.  We should clarify that the negative class is defined: either as (i) the complement of 

the positive class, or as (ii) individuals with no presence of CAD.  On this basis, parametric (e.g. 

neural networks) or non-parametric (e.g. kernel methods) classification algorithms have been 

combined with feature evaluation techniques, aiming at specifying an accurate decision hyperplane 

and, in parallel, identifying the most informative features with respect to CAD severity. 

Kurt et al.[101] demonstrated that, irrespectively of the classification algorithm, typical heart disease 

risk factors [i.e. age, sex, body mass index (BMI), smoking status, DM, hypertension, 

hypercholesterolemia, and family history of CAD] yield a high number of false positive predictions.  

In particular, a LR based model, a classification and regression tree (CART), a feed-forward neural 

network (FFNN) and a radial basis function network (RBF) have all resulted in a relatively high 

sensitivity (ranging from 89.5-92.3), however, their specificity was <50%.  Correlation-based feature 

selection (CFS), a filter-based feature selection approach, identified treadmill stress testing-related 

characteristics (i.e. Duke Treadmill Score, and post exercise recovery period with persistent 

electrocardiographic ST-segment changes) amongst the most informative features with respect to 

CAD severity diagnosis [102]; a FFNN fed additionally with information on smoking, DM, and high 

density lipoprotein (HDL) attained 88.4% accuracy.  Alizadehsani et al. by exploring the predictive 

potential of kernel-based methods, and particularly of SVM, both in feature selection and 

classification tasks [103]: (i) evaluated the discriminative capability of 54 features, concerning 

demographic, clinical, electrocardiographic, echocardiographic, and laboratory data (via the SVM 

weight vector), and (ii) demonstrated that kernel-based methods (i.e. SVM and bagging SVM) 

outperform both FFNN and naïve Bayes (NB), exhibiting 93.4% and 92.7% accuracy, and high 

sensitivity and specificity rates, as well.  In a subsequent study, Alizadehsani et al. assessed the 

diagnostic accuracy of the same feature set with respect to the level of stenosis at LAD artery, LCX 
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artery, and right coronary artery (RCA)] separately, formulating a 2-class problem where a ≥50% 

diameter stenosis characterizes a stenotic artery [104].  The DS of LAD, LCX and RCA was 

diagnosed with 86.14%, 83.17% and 83.5% accuracy, respectively by (i) adopting a common feature 

set for all arteries, encompassing the 24 top ranked features according to a combined info-gain index, 

and (ii) employing a multiple kernel learning algorithm.  Nahar et al. using the UCI Cleveland heart 

disease dataset, showed that knowledge-based feature selection may increase considerably the 

sensitivity of predictions [105].  Ensemble learning of the specified dataset, using a rotation forest 

with FFNN as the base classifier, reached 91.2% accuracy, 95.6% sensitivity, and 86.7% specificity 

[106]. 

Unlike black-box ML techniques, fuzzy rule-based classifiers provide interpretable decisions.  

Tsipouras et al. proposed an optimized fuzzy model for the diagnosis of CAD severity considering 

traditional CV risk factors as well as two non-invasive features, namely carotid–femoral and 

augmentation index.  Their four-stage methodology encompassed: (i) induction of a decision tree, (ii) 

extraction of the rule base from the decision tree, in disjunctive normal form and formulation of a 

crisp model, (iii) transformation of the crisp set of rules into a fuzzy model, and (iv) optimization of 

the parameters of the fuzzy model [107].  The optimized fuzzy model resulted in 73.4% accuracy, 

80.0% sensitivity and 65.2% specificity, presenting comparable performance with a FFNN (73.9% 

accuracy) and significantly better results than an adaptive neuro-fuzzy inference system (56.8% 

accuracy), both applied to the same task. 

ML naturally arises as favourable solutions to CAD severity diagnosis when omics big data need to 

be exploited ( 

Table 2.5).  The Corus CAD algorithm, which constitutes an exemplar case, was developed via a 

combination of microarray and RT-PCR gene expression data analysis, collected from age and sex-

matched patients with symptoms suggestive of CAD [108].  The Corus CAD method is decomposed 

into the following phases: (i) feature selection based on an unsupervised cluster analysis, which 

yielded to the identification of meta-genes, (ii) a ridge linear regression model of the age, sex, and 

the selected genes. In [108], a 0.75 (0.70 – 0.80) AUC is reported with respect to the identification of 

the obstructive CAD patients.  Dogan et al. exploited a comprehensive dataset of genome-wide DNA 

methylation data, SNP data and phenotype data [i.e. age, gender, systolic blood pressure (SBP), 

HDL, total cholesterol (TC) level, haemoglobin (Hb) A1C, smoking status, and the use of statins] 

derived from the Framingham Heart Study [109].  Random forest (RF) classification was employed 

for the identification of CAD vs control individuals, while addressing the class-imbalance issue 
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through a heuristic repeated under sampling approach.  Sequential feature selection, by the ROC 

AUC of each feature, retained four CpG sites (cg26910465, cg11355601, cg16410464 and 

cg12091641), two SNPs (rs6418712 and rs10275666), age and gender.  This classifier was capable 

of classifying symptomatic CAD with an accuracy, sensitivity and specificity of 0.78, 0.75, and 0.80, 

respectively. In contrast, a model using only conventional CAD risk factors as predictors had an 

accuracy, sensitivity and specificity of 0.65, 0.42, and 0.89, respectively.  
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Table 2.4 Non-imaging CAD Severity Diagnosis Methods based on Machine Learning [100]. 

Study Dataset- 

Feature set 

Outcome Methods Performance 

Kurt et al., 

[101] 
n=1245 subjects,  

typical heart disease 

risk factors 

Class 1 n=865:≥50% 

stenosis in at least one 

coronary artery vessel  

Class 0 ( 380):n =  Otherwise 

Classification: LR, CART, FFNN, 

RBF 

Evaluation: Training, Test, 

Validation sets (60%-20%-20%) 

LR 

Acc.:79.5 

Sens.:92.3 

Spec.: 45.6 

CART 

Acc.:79.9 

Sens.:92.3 

Spec.: 47.1 

FFNN 

Acc.:79.1 

Sens.: 91.7 

Spec.: 45.6 

RBF 

Acc.:76.7 

Sens.: 89.5 

Spec.: 42.6 

Verma et al., 

[102] 

n=335 

subjects who were 

suspected for CAD,  

Smoking, DM, 

clinical, 

electrocardiographic 

data 

Class 1 (48.9%): CAD 

Class 0 (51.1%): No CAD 

Feature Selection: CFS 

Clustering: k-means 

Classification: FFNN, LR, Fuzzy 

unordered rule induction algorithm 

(FURIA), Decision tree (C4.5). 

Evaluation: 10-fold cross-validation 

FFNN 

Acc.: 88.40 

FURIA 

Acc.: 82.80 

Alizadehsani et 

al. [103] 

n=303 

subjects,  

demographic, 

clinical, 

electrocardiographic, 

echocardiographic, 

and laboratory data 

Class 1 (n=865) ≥50% 

stenosis in at least one 

coronary artery vessel in 

CA 

Class 0 (n=380) 

Otherwise 

Feature selection: SVM weights 

Classification: SVM, NB, Bagging 

of SVMs, FFNN 

Evaluation: 10-fold cross-validation 

SVM 

Acc.: 93.39 

Sens.: 95.37 

Spec.: 88.51 

Bagging SVM 

Acc.: 92.74 

Sens.: 95.37 

Spec.: 86.21 

FFNN 

Acc.: 87.13 

Sens.: 90.28 

Spec.: 79.31 

NB 

Acc.: 55.37 

Sens.: 38.89 

Spec. :96.55 

Alizadehsani et 

al. [104] 
n=303 

subjects,  

demographic, 

clinical, 

electrocardiographic, 

Problem I 

Class 1 – LAD stenotic:  

≥50%  

Class 0 Otherwise 

Problem II 

Feature selection 

Approach I  Different feature set for 

each artery: SVM weights 

Approach II  Common feature set 

for all arteries: Information Gain 

Approach I Approach II 

LAD 

Acc.:85.81 

Sens.:92.66 

Spec.:76.19 

LAD 

Acc.:86.14 

Sens.: 90.96 

Spec.:79.37 
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(Continued

) 

Study Dataset- 

Feature set 

Outcome Methods Performance 

echocardiographic, 

and laboratory data 

 

Class 1 – LCX stenotic:  

≥50%  

Class 0: Otherwise 

Problem III 

Class 1 – RCA stenotic:  

≥50%  

Class 0: Otherwise 

Classification: SVM with kernel 

fusion 

Evaluation: 10-fold cross-validation 

LCX 

Acc.: 77.23 

Sens.: 69.75 

Spec.: 82.07 

LCX 

Acc.: 83.17 

Sens.: 90.9 

Spec.:72.22 

RCA 

Acc.:81.85 

Sens. 68.4 

Spec. 89.95 

RCA 

Acc.: 83.50 

Sens.: 87.01 

Spec.: 78.57 

Nahar et al., 

[105] 

The UCI Heart 

Disease Dataset 

n=303 

 

Class 1 n=165:≥50% 

diameter stenosis. 

Class 0 n=138: 

 Otherwise 

Feature Selection: CFS, Knowledge-

based feature selection 

Classification: Sequential minimal 

optimization 

Evaluation:  

Approach I 10-fold cross-validation 

Approach II Training – Test sets  

Approach II – Knowledge-based 

feature selection: 

Acc.: 77.95, Sens.: 0.811 

Approach II – Knowledge-based 

feature selection combined with CFS: 

Acc.: 83.83, Sens.: 0.919 

Karabulut & 

Ibrikci, [106] 

The UCI Heart 

Disease Dataset 

n=303,  

clinical, 

electrocardiographic, 

and laboratory data 

Class 1 – Existence of 

CAD n=165 ∶≥50% 

diameter stenosis. 

Class 0 – Absence of CAD 

n=138 

 Otherwise 

Classification: Rotation forest with 

FFNNs as the base classifier 

Evaluation: 10-fold cross-validation 

Acc.: 91.2 

Sens.: 95.6 

Spec.: 86.7 

AUC: 0.915 

Tsipouras et al., 

[107] 
𝑛 = 199 subjects  

demographic, 

clinical, 

echocardiographic, 

and laboratory data 

Class 1 𝑛 = 110: ≥50% 

diameter stenosis in at least 

one coronary artery vessel 

Class 0 𝑛 = 89: without 

any narrowing visible in 

CA 

Optimized fuzzy model 

Evaluation: 10-fold stratified cross-

validation 

Acc.: 73.4, Sens.: 80.0, Spec.: 65.2 
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Table 2.5 Pre-test CAD Severity Scores based on Genomics. 

Study Dataset Outcome Methods Feature Set Performance 

CORUS CAD [108, 

110] 

COMPASS cohort 

n=610 

Obstructive CAD: 

≥50% stenosis in at 

least 1 vessel (13% 

obstructive CAD, 

≥50% diameter 

stenosis) 

Feature evaluation: 

Hierarchical clustering, 

identification of meta-genes 

Classification: Ridge 

regression 

Evaluation: Leave one 

patient out cross-validation 

Age, sex, microarray and 

RT-PCR gene expression 

data 

ROC AUC: 

0.75 (0.70 – 

0.80) 

Dogan et al [109] 

Training Set n=1545 

Symptomatic CHD: 

n=173 

Normal: n=1372 

 

Presence of CAD Sequential feature selection, 

ROC AUC , Classification: 

RF,  

Evaluation: Training – Test 

sets Sets 

Genome-wide DNA 

methylation and SNP 

data, Phenotype 

Acc. 0.77 

Sens. 0.75| 

Spec. 0.80 
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2.3.2 Imaging CAD prediction  

Several studies in the literature have investigated the role of typical risk factors for the CAD prediction.  

Nevertheless, existing studies have proved that the atherosclerotic plaque is non-uniformly distributed in 

the same vessel sites and is identified in different patient’s artery segments.  This phenomenon cannot 

explain the existence of the established risk factors which are assumed to affect the entire vasculature of 

patients [111].  Thus, a new atherosclerosis risk factors category has been introduced, the artery 

geometry based risk factors, which have led to the concept that the initial vessel geometry and its local 

mechanical forces may play a crucial role in the initiation and progression of the atherosclerotic plaque.  

Identification of high-risk atheromatic plaques and the prediction of atheromatic plaque progression 

consists a significant task in biomedical research area [112-115].  

Thus, in this section, studies related to the CAD prediction based on imaging features are going to be 

presented and are summarized in Table 2.6, below.  More specifically, the advancement of 

computational modeling has provided insights into the atheromatic plaque progression and the potential 

for in vivo wall shear stress (WSS) calculations was first demonstrated using a fusion of IVUS and X-

ray angiography to acquire the 3D artery geometry.  Existing studies confirmed the direct association of 

low WSS artery regions with the atheromatic plaque formation [113, 114], while PREDICTION study 

[115] concluded that low baseline WSS regions cause a decrease of luminal area and increase of PB.  

Thus, further longitudinal studies area now justified to evaluate whether WSS calculations combined 

with artery anatomical imaging can more accurately predict clinical events, which may be possibly 

implemented using non-invasive coronary imaging [116].  CTA is a promising non-invasive coronary 

imaging, providing useful prognostic information of atherosclerosis progression, since it is able to 

accurately detect the inner and outer wall of coronary arteries and identify the CP and NCP, as well 

[117].  Based on this direction, Liu et al [118] investigated the effect of biomechanical factors for the 

progression of atherosclerosis, utilizing 365 coronary segments of 3 mm and concluded that the decrease 

in MLA was independently predicted by low baseline Von Mises stress (-0.73 ± 0.13 mm2).  Kolossváry 

et al. [119] aimed to detect atherosclerotic plaques with a napkin-ring sign (NRS), implementing a 

supervised approach based on predefined measurements, so-called radiomics features [120].  NRS is 

considered as a significant prognostic biomarker of MACE.  Different texture features derived by a 

radiomic dataset are able to identify the atherosclerotic plaques with and without NRS [119].  Another 

existing in the literature study proposed a ML based model to discriminate between patients with acute 

or chronic Myocardial Infarction (MI) and control subjects, using as input the CTA based calcium score.  
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This study resulted in an AUC of 0.78 [121].  Except for the examination of automated analysis and 

diagnostics performance of CTA imaging modality, prognostic evaluation has also been applied in CTA 

imaging.  More specifically, survival analysis was performed in different patient groups with a CV risk 

and it was indicated that ML based models exhibited a larger AUC (0.79) than the individual clinical 

and CTA metrics (Framingham risk score: 0.61, segment stenosis score: 0.64) [122].  Similarly to this 

approach, another predictive model was developed using CTA imaging features, based on the DS.  This 

prognostic model provided a risk score for all-cause death and non-fatal MI and resulted in an AUC of 

0.771 [123].
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Table 2.6 Ιmaging based CAD prediction studies. 

Study Dataset- 

Feature set 

Outcome Methods Performance 

Stone et al. [115]- 

PREDICTION 

study 

endothelial shear stress 

and arterial plaque 

characteristics 

Progression of CAD Statistical analysis low baseline WSS regions cause a 

decrease of luminal area and increase of 

PB 

Liu et al [118] 365 coronary segments 

of 3 mm 

Progression of CAD Statistical analysis  the decrease in MLA was independently 

predicted by low baseline Von Mises 

stress (-0.73 ± 0.13 mm2) 

Mannil et al. [121] 30 patients with chronic 

MI, 30 subjects without 

cardiac abnormality 

Detection of MI 

 

decision tree C4.5 

(J48), KNN 

locally weighted 

learning, Random 

Forest 

AUC: 0.78 

Motwani et al. 
[122] 

10 030 patients clinical 

& CTA parameters  

predict 5-year all-cause 

mortality  

gain ranking, 

model building 

with a boosted 

ensemble 

algorithm, and 10-

fold stratified 

cross-validation 

AUC: 0.79 

van Rosendael et 

al. [123] 

8844 patients,  

CTA risk scores  

≥3 year follow-up for MI 

and death 

Statistical 

analysis, XGBoost 

model 

AUC: 0.771 
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2.4 Prediction of carotid artery disease 

Carotid artery disease is considered as the main risk factor of cerebrovascular events and ischemic 

stroke.  Prediction of carotid artery disease enables the early diagnosis of the disease, as it is defined by 

the presence of CAS or the presence of vulnerable carotid plaques.  Different studies, summarized in 

Table 2.7, have been presented in the literature for the prognosis of carotid disease, taking advantage of 

statistical analysis techniques and ML models. 

More specifically, Jamthikar et al. [124] proposed a ML based algorithm for the development of a CV-

stroke risk stratification tool, consisting of an online and offline system and concluded that ML-based 

integrated model with the event-equivalent gold standard as artery DS, is powerful and offers low cost 

and high performance for the CV-stroke risk assessment.  Firstly, a principal component analysis was 

implemented for the selection of the most significant input features and then, a RF classifier was 

implemented to predict the risk of each test subject.  The algorithm was validated using a 10-fold cross 

validation scheme and the final system named “AtheroRisk-Integrated” was compared against 

“AtheroRisk-Conventional”.  Left and right CCAs of 202 Japanese patients were retrospectively 

examined to obtain 395 US scans. AtheroRisk-Integrated system [AUC =0.80, P<0.0001, 95% 

confidence interval (CI): 0.77 to 0.84] showed an improvement of ~18% against AtheroRisk-

Conventional ML (AUC =0.68, P<0.0001, 95% CI: 0.64 to 0.72). 

In a same attempt Verde et al. [125] investigated and compared the performance of conventional ML 

classifiers, capable of identifying the presence of carotid disease, exploring as input heart rate variability 

features and evaluating the classification scheme in terms of accuracy, precision, recall and F-measure.  

Totally, 126 patients (89 individuals suffering from carotid diseases and 37 healthy subjects) participated 

in this study and their pathological state was identified by analyzing the intima media thickness (IMT) 

value, evaluated with the B-mode US.  In another study, Greco et al. [126] taking advantage of statistical 

based models, developed a model for the prediction of individuals of high risk for carotid DS.  A 

multivariable regression analysis was implemented to identify the major risk factors for the pathological 

condition for the DS (>50%) and the C-statistic measure was computed for the evaluation of the 

proposed model.  The independent input features were demographics, comorbidities, and lifestyle 

characteristics.  Finally, the proposed predicting scoring system with a more efficient C-statistic value 

was created for the identification of those individuals with a higher probability of a pathological DS. 
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De Weerd et al. [127] proposed a carotid artery disease prediction model for the identification of 

individuals with a CAS >50% and >70% and for the detection of the most efficient predictors of CAS 

>50 % and 70%.  Age, sex, history of vascular disease, SPB and diastolic blood pressure (DBP), 

TC/HDL ratio, DM and current smoking were identified as the most significant predictors of stenosis 

(>50% and >70%).  In addition to this, the proposed model discriminated well between participants with 

and without stenosis, with an AUC corrected for over optimism of 0.82 for moderate stenosis and of 

0.87 for severe stenosis.  

Khanna et al. [128], in another attempt, proposed a nonlinear model for the 10-year prediction carotid 

image phenotypes, which were automatically measured utilizing AtheroEdge™ system.  More 

specifically, nine conventional CV risk factors, in combination with five types of carotid image 

phenotypes were adapted in a non-linear mathematical model for 10 year prediction of carotid 

phenotypes.  In this study, totally 206 Japanese patients participated, and totally 407 US scans left/right 

CCA were selected.  This fused prediction model concluded that the age and the Hb presented the 

highest influence on the 10 year carotid phenotypes, whereas the AUC for the five types of carotid 

phenotypes were 0.96, 0.94, 0.90, 1.0, and 1.0 for the average IMT, the maximum IMT, the minimum 

IMT, the wall variability and the total plaque area, respectively. 

Araki et al. [129] proposed an innovative risk stratification model for the classification of high and risk 

carotid plaques or the classification between symptomatic and asymptomatic plaques.  The overall 

model was based on the grayscale morphology of the US carotid wall, while Hao-wen Li et al. [130] 

conducted an observational study to distinguish the high risk plaques (vulnerable plaques) and the low 

risk (stable) carotid artery plaques, which were classified using high-resolution MRI modality.  Three 

hundred twenty-six patients with ischemic stroke (189 patients with vulnerable plaque and 81 patients 

with stable plaque) and 432 normal controls were included in this study. Finally, ADAMTS7 

polymorphisms of both rs7173743 and rs3825807 were associated with carotid plaque vulnerability but 

not the prevalence of ischemic stroke. 
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Table 2.7: Summary of studies for the carotid artery disease stratification. 

Study Methodology Input  Output Results 

Jamthikar 

et al. [124] 

ML based algorithm 

(RF classifier) 

47 risk factors  

34 were image-based phenotypes, 13 risk 

factors (patients’ demographics, blood 

biomarkers) 

Low risk- High risk based 

on the artery DS 

  

AUC =0.80, P<0.0001, 95% 

CI: 0.77 to 0.84 

Verde et 

al. [125] 

SVM, Bayesian 

Classification, Decision 

Tree, Multilayer 

Perceptron, LMT, 

Instance-based 

Learning algorithm 

Heart rate variable features Healthy -Pathological 

based on IMT evaluated 

with the B-mode US 

Accuracy: 0.72  

Greco et 

al. [126] 

multivariable regression 

analysis 

Sex, age, race, marital status, smokers, 

high blood pressure, comorbidities (High 

cholesterol, CAD, PAD, DM), Family 

history, BMI, Dietary habits, Exercise 

Identifications of 

individuals whose CAS 

>50% 

C statistic = 0.753 

de Weerd 

et al. [127] 

Multivariable LR age, sex, DM, history of coronary and/or 

cerebrovascular disease, medication 

information, blood pressure, lipid levels, 

current smoking, waist circumference 

and BMI  

Identifications of 

individuals whose CAS 

>50% (moderate stenosis) 

and >70% (severe 

stenosis) 

AUC: 0.82 (moderate stenosis), 

0.87 (severe stenosis) 

Khanna et 

al. [128] 
 

Non-linear parametric 

model 

Typical risk factors (ethnicity, gender, 

age, artery type, BMI, Hb, hypertension, 

LDL, smoking), Types of carotid 

automated image phenotypes  

Five carotid artery 

plaques  

AUC: 0.96 (average IMT),  

Hao-wen 

Li et al. 

[130] 

multivariate LR 

analyses 

Male, Age, BMI, Hypertension, DM, 

Hyperlipidemia, Previous history of TIA, 

Previous history of stroke, smoking, TG, 

TC, LDL, HDL, FBG, Hb 

distinguish vulnerable 

and stable carotid plaques 

ADAMTS7 variants rs3825807 

and rs7173743  associated with 

the risk for carotid plaque 

vulnerability 
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2.5 Serum Markers in Carotid Artery Disease 

Regarding the contribution of serum biomarkers to the pathogenesis of atherosclerosis, biomarkers 

distinct into inflammatory, endothelial and cell adhesion, matrix-degrading or proteolysis biomarkers, 

lipid and metabolic ones and their contribution to the carotid atherosclerosis pathophysiology, is 

described below. 

Inflammatory biomarkers 

Inflammation process has a significant role in mediating all stages of atherosclerotic disease. Immune 

cell types (monocytes, macrophages, T-cells and neutrophils) and specialized lipid mediators, have a 

significantly contribution to the vascular inflammation and are activated by risk factors present in the 

vascular wall, such as shear stress, oxidized lipoproteins and oxidative stress [131]. C-reactive protein 

(CRP) is considered as one of the most significant biomarkers of inflammation and the measurement of 

both CRP and high-sensitivity CRP (hs-CRP) is widely used in clinical practice for the vascular disease 

stratification.  Several studies have indicated that hs-CRP is associated with the presence of unstable 

CAS [132], the presence of ICA stenosis [133] and the detection of vascular risk patients [134].  

Elevated levels of hs-CRP are associated with lower echogenicity of carotid plaques, suggesting a 

relation between the hs-CRP and the potential vulnerability of the plaques [135], whereas vulnerable 

atherosclerotic plaques indicated upregulation of hs-CRP [136].  Nevertheless, increased levels of hs-

CRP are independently associated with high risk of ischemic stroke [137] and among the risk factors for 

acute Anterior Circulation Stroke [138]. 

Pentraxin-3 (PTX-3), another acute phase protein, constitutes a potential inflammatory biomarker and is 

shown to be independently associated with the severity of carotid atherosclerosis [139] [140].  

Additionally, Shindo et al. investigated the prognostic significance of PTX-3 of the vulnerability of 

carotid plaques through immunohistochemical analysis. [136]  

Interleukin (IL)-6, a pleiotropic proinflammatory cytokine, has been shown to be localized into 

inflammatory cells in the vulnerable plaques and its elevated levels are associated with high risk of 

atherosclerotic plaques [135] [136]. Additionally, IL-6 was shown to be associated with the presence of 

ICA stenosis [9], and also through a genetic association study, it was indicated that IL-6 is associated 

with ICA stenosis [17]. On the other hand, tumor Necrosis Factor alpha (TNF-α), an inflammatory 

cytokine involved in early inflammatory events, has been correlated with the prevalence and severity of 

CAS [140] and with high risk carotid plaques. Vulnerable atherosclerotic plaque showed upregulation of 
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the TNF-α and increased levels of TNF-α are directly linked with high size carotid plaques [136] [141].  

Immunohistochemistry analysis indicated that TNF-α combined with hypoxia and oxidized LDL 

markedly increased MMP-7 expression, which is directly associated with the symptomatic carotid artery 

disease [142], whereas immunohistochemistry analysis of plaques after CEA indicated that TNF‐α was 

significantly increased in symptomatic patients [143]. 

Endothelial and cell adhesion biomarkers 

Cell adhesion molecules (CAMs) are responsible for the regulation of the inflammatory response and the 

endothelial function.  Selectins, a family of cell-surface glycoproteins, are involved in the rolling and 

anchoring of leukocytes on the vascular wall, whereas intercellular adhesion molecules (ICAMs) and 

vascular cell adhesion molecules (VCAMs), induce firm adhesion of inflammatory cells at the vascular 

surface. Expression of VCAM-1, ICAM-1, and L-selectin has been consistently observed in 

atherosclerotic plaques and their soluble forms have been identified in the circulation [144]. 

More specifically, VCAM-1 showed a significant association with the ICA stenosis [133] and the CV 

mortality [145]. As for the high risk plaques, vulnerable atherosclerotic plaques indicated upregulation 

of VCAM-1 [136].  ICAM-1, an endothelial- and leukocyte-associated transmembrane protein, showed 

also a significant association with CV mortality [145] and with the presence of ICA stenosis [146]. 

Selectins, a family of CAMs, have also been indicated to be associated with carotid artery disease, with 

E-selectin gene variants to be independently and significantly associated with ICA stenosis [146], 

whereas high risk atherosclerotic plaques showed its upregulation [136].  On the other hand, lower 

values of L-selectin were associated with atherosclerotic plaque size [141]. 

Additionally, NGAL is found in granules of activated human neutrophils and has been proposed as a 

valuable biomarker for the detection of unstable carotid plaques in asymptomatic patients [147]. 

Matrix-degrading or proteolysis biomarkers 

MMPs contribute to the degradation of both matrix and non-matrix proteins, involved in the process of 

plaque destabilization and cap erosion and this function takes place in the extracellular environment.  

Different studies have indicated that MMPs play a significant role in the detection of vulnerable high 

risk atherosclerotic plaques in patients with advanced CAS.  It was indicated that the combination of 

MMP-1, MMP-7 and Tissue Inhibitor of Metalloproteinase (TIMP)-1 demonstrated the highest positive 

predictive value (PPV) 89.4% and negative predictive value (NPV) 60.1% for patients correctly 
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classified as individuals with unstable and stable carotid lesions by means of blood sample analysis 

[148].  Additionally, levels of MMP-9 were significantly elevated in individuals with unstable 

atherosclerotic plaques in comparison with those with stable ones [149], whereas immunohistochemistry 

analysis indicated that the mRNA levels of MMP‑2, MMP ‑7, MMP ‑9 and MMP ‑14 were elevated in 

vulnerable plaques, among which expression of MMP‑2 and MMP ‑14 were the highest [150].  In a 

similar study, Sigala et al. [151] concluded that MMP-9 is directly related to plaque instability.  

In another direction, other studies attempted to correlate levels of MMPs with the presence of 

symptomatic carotid artery disease.  Elevated levels of MMP-2 and MMP-9 were observed in patients 

with symptomatic carotid artery disease in comparison with those without symptoms [149].  On the 

other hand, Abbas et al. [142] concluded that carotid artery disease patients had significantly high 

plasma levels of MMP-7, compared with healthy individuals, with the highest levels of MMP-7 in 

patients with symptoms within the last 2 months [142].  ICA stenosis was shown through a genetic 

association study to be associated with MMP-3 and MMP-9 gene variants [146].  In addition to this, 

total mortality was also independently associated with elevated plasma levels of MMP-7 [142], while 

higher serum MMP-9 levels in the acute phase of ischemic stroke were associated with increased risk of 

mortality and major disability [152]. 

Lipid biomarkers.  

Lipid factors are, together with inflammatory factors, the main actors in the onset, evolution and 

destabilization of the atherosclerotic plaque. Firstly, LDL is independently related with the presence and 

extent of subclinical early systematic atherosclerosis [153].  Low levels of LDL are likely to prevent 

large artery atherosclerosis [154], could reduce the ischemic complications and affects the plaque 

stability and antithrombus formation [155].  Other studies have shown that increased levels of LDL were 

independent risk factor for the occurrence of CAS [140] and showed positive associations with ischemic 

stroke [156]. 

The oxidation of LDL is considered as a significant atherogenic modification of LDL within the vascular 

wall, where oxidized low-density lipoprotein (ox-LDL) can trigger the expression of adhesion molecules 

on the cell surface, and thus stimulate the activation of endothelial cells  These adhesion molecules 

mediate the rolling and adhesion of blood leukocytes, that adhere to the endothelium and migrate into 

the intima, causing the activation of macrophages, the release of proinflammatory cytokines and the 

production of proteolytic enzymes, contributing to the matrix degradation and plaque destabilization 
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[157].  The role of circulating ox-LDL has gained considerable attention and low levels of ox-LDL are a 

promising therapeutic target against atherosclerosis [158].  In a study conducted by Sigala et al. [151], it 

was indicated that ox-LDL levels were associated with the presence of clinical symptoms of carotid 

artery disease.  Additionally, there are efforts to clarify the correlation between the morphology of 

human atherosclerotic plaques and the ox-LDL levels in plasma and plaques. It was shown that elevated 

ox-LDL levels are related with the vulnerability to rupture [159].  Ox-LDL levels are also considered as 

significant biomarker for the prognosis of carotid artery disease. In a study by Markstad et al. [160], the 

authors indicated that ox-LDL leads to the release of Soluble lectin-like oxidized LDL receptor-1 

(sLOX-1) from endothelial cells and that circulating levels of sLOX-1 are associated with the risk of 

ischemic stroke, whereas Wang et al. [161] showed that elevated levels of ox-LDL were associated with 

the high risk mortality and poor functional outcome within one year after stroke onset. 

On the other hand, high HDL is characterized by its antioxidant, antithrombotic, anti-inflammatory and 

antiapoptotic characteristics and may play a significant protective role in acute stroke, protecting and 

limiting the ischaemia on the blood–brain barrier and on the parenchymal cerebral compartment [162].  

Lower levels of HDL were independently associated with an increased risk of having echolucent, 

rupture-prone atherosclerotic plaques [163] [164] [165].  Moreover, HDL contributes as a prognostic 

marker for the severity of stroke, since low baseline HDL (≤35 mg/dL) at admission was associated with 

higher stroke severity and poor clinical outcome during follow-up in patients with atherosclerotic 

ischemic stroke [166]. 

Triglyceride-rich lipoproteins (TRLs), a pool of lipoproteins that includes chylomicrons, very LDLs, 

intermediate-density lipoproteins and other remnant lipid metabolism particles, appear to promote 

atherogenesis independently of LDL [167].  Elevated levels of TRLs seem to be associated with plaque 

echolucency, which is characterized by increased lipid content and macrophage density plaques.  

Echolucent carotid plaques were proven to be related with higher risk for future ischemic stroke, 

particularly in previously symptomatic individuals, for restenosis after CEA, as well as for MI [165] 

[168].  On the other hand, in a study presented by Kofoed et al. [168], it was shown that TRLs are 

elevated in patients with CAS higher than 50%, compared with controls. 

Although circulating lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) has been considered as a 

novel biomarker for the CVDs, its correlation between the atherosclerotic plaque expression of Lp-

PLA(2), inflammation, stability and the presence of clinical symptoms, especially for cerebrovascular 



49 
 

disease remains poorly defined.  Nevertheless, in a study conducted by Mannheim et al. [169], it was 

shown that symptomatic carotid artery plaques are characterized by increased levels of Lp-PLA(2), 

strongly supporting the role of Lp-PLA(2) in the pathophysiology and clinical representation of 

cerebrovascular disease.  In addition to this, Lp-PLA2 consists a significant biomarker for the 

management of asymptomatic patients with carotid artery disease, since its elevated levels is directly 

associated with high grade of CAS [170], and with the presence of unstable atherosclerotic plaques 

[170] [138].  Regarding the prognostic significance of Lp-PLA2, it has been shown that its activity is an 

independent predictor for coronary heart disease and ischemic stroke in the general population [171] and 

Lp-PLA2 in its highest levels had an increased risk of recurrence after the first ischemic stroke [172]. 

ApolipoproteinS (Apos) are the protein components of plasma lipoproteins, which consist of a core of 

triglyceride and cholesterol esters and a peripheral region of phospholipid, sphingolipid and protein. The 

most relevant subtypes are considered the Apo A-I (the main protein on HDL), Apo B-100 (the main 

protein on LDL), Apo C-II (important in chylomicrons and very LDL, activates lipoprotein lipase), and 

Apo E (present in chylomicrons, very LDL, and intermediate density lipoprotein, allowing the binding 

of these lipoproteins to the hepatocytes). 

ApoA-I (or ApoA1) levels may be clinically useful for the diagnosis of stroke and for the differentiation 

between ischemic and hemorrhagic strokes [173], whereas reduced ApoA-I levels are risk factors for a 

first ischemic stroke and elevated ApoA-I is considered as a risk factor for a first hemorrhagic stroke 

[174].  A meta-analysis by Paternoster et al. [175] indicated a clear association of APOe with carotid 

IMT, suggesting the possibility of a specific association with large artery ischemic stroke. 

Proprotein convertase subtilisin kexin type 9 (PCSK-9) is a protease produced at the liver and is 

detectable in human plasma. It consists a key regulator of the metabolism of LDL, and recently has been 

suggested to participate in the development of atherosclerosis [176].  Chan et al. [177] showed that 

serum PCSK-9 levels is considered as an independent predictor of carotid IMT and may contribute to 

increased risk of subclinical carotid atherosclerosis, independently of conventional risk factors.  On the 

other hand, Xie et al. [178] concluded that plasma PCSK-9 levels are associated with 10-year 

progression of atherosclerosis. 
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Metabolic biomarkers 

Proinflammatory chemerin, leptin, and resistin are considered as adipokines which influence the 

vascular wall function.  Association of circulating adipokines with the cerebrovascular symptomatology 

and the carotid plaque vulnerability was investigated and it was shown that low levels of chemerin and 

elevated levels of restinin were related to the plaque instability, the risk of stroke and the severity of 

carotid artery disease [179].  

On the other hand, adiponectin, an anti-inflammatory and vasculoprotective adipokine, may act as a 

novel prognostic biomarker for atherosclerosis in stroke, since it was shown to be related with the risk of 

ischemic stroke [180] [181].  In a study by Gustafsson et al. [182], the role of circulating adiponectin to 

the vascular function and morphology was investigated and the authors concluded that elevated levels 

are associated with less arterial pathology, while Saarikoski et al. [183] supported the role of adiponectin 

in the pathophysiology of early atherosclerosis.  

Fatty acid binding protein 4 (FABP4) has been also shown to play an important role in macrophage 

cholesterol trafficking and has been considered as a key factor connecting the vascular and lipid 

accumulation with the inflammation process.  Increased levels of FABP4 are associated with the 

presence of carotid artery disease, plaque instability and adverse outcome in patients with carotid 

atherosclerosis, since the highest mRNA levels of FABP4 have been observed in patients with the most 

recent symptoms [184] [185]. 

Elevated levels of homocysteine (hcy) have been associated with carotid plaque development and 

hyperhomocysteinemia has been described as an independent CV risk factor.  More specifically, in a 

study presented by Alsulaimani et al. [186], it was shown that elevated hcy was independently 

associated with plaque morphology and increased plaque area, subclinical markers of stroke risk, 

whereas high hyperhomocysteinemia prevalence in patients with extracranial cerebrovascular disease 

was confirmed by Alvarez et al. [187].  In addition to this, higher total hcy levels were associated with 

asymptomatic carotid artery disease [188]. 

Osteoprotegerin (OPG) is a secretory glycoprotein which belongs to the TNF receptor family and its 

high concentration has been related with the CV and vascular disease and contributes to the 

atherosclerotic plaque stability.  Studies have shown that higher levels of OPG have been observed in 

asymptomatic plaques related to symptomatic ones [189] and all plaques exhibited calcification were 



51 
 

significantly higher in asymptomatic patients.  The effect of OPG in atherosclerotic plaques was 

confirmed by a study by Schiro et al., in which OPG was significantly elevated in symptomatic 

individuals related to asymptomatic group [190]. 

In Table 2.8, all the types of biomarkers related to carotid artery disease and their associations with the 

disease, are presented. 

In addition to the contribution of each type of biomarker to atherosclerosis pathophysiology, different 

studies have confirmed the association of serum biomarkers with the presence of CAS, the diagnosis of 

vulnerability of carotid atherosclerotic plaques, the presence of symptomatic carotid artery disease and 

their prognostic value for the future stroke and CV mortality. 

Regarding the detection of carotid artery disease presence, there different studies that aim to identify the 

most significant serum biomarkers associated either with the presence of CAS greater than 50% [132] 

[133] [140] [146] [168], or with the early detection of subclinical carotid atherosclerosis  [134] [183].  In 

these studies, the presence of carotid artery disease was mainly assessed by carotid US and the analysis 

of data was implemented using conventional statistical techniques, as it is reported in Table 2.9.  

Nevertheless, the focus of CAS diagnosis was also shifted from pure stenosis quantification to plaque 

characterization and more specifically to the detection of high risk vulnerable plaques. This has led to 

further advancements in the existing imaging tools and identification of high risk plaque related imaging 

characteristics and to the identification of plaque histology characteristics related to high risk plaques 

[191].  Table 2.10 indicates all the existing methodologies for the detection of vulnerable plaques.  In 

most of these studies, the instability of atherosclerotic plaques was considered after the 

immunohistochemistry analysis of carotid plaques [136], whereas, in other studies vulnerable plaques 

was considered after the implementation of carotid US [141].  All types of serum biomarkers seem to be 

associated with the vulnerability of plaques and some of them have been also detected as useful 

biomarkers for the diagnosis of CAS, such as the hs-CRP, the PTX-3, the IL-6 and the TNF-α, 

concluding that the measurement of inflammatory biomarkers contribute both to the diagnosis and the 

monitoring of the disease progression. 

Additionally inflammatory TNF‐α, matrix degrading biomarkers (MMP-2, MMP-7, MMP-9), ox-LDL 

and metabolic biomarkers (restinin, OPN, OPG) have been shown to be associated with symptomatic 
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carotid artery disease, as presented in Table 2.11.  Early detection of symptomatic carotid artery disease 

patients may provide a cost-effective disease detection and management strategy. 

Apart from the diagnostic based circulating biomarkers, in this section, biomarkers with high prognostic 

value for the progression of carotid artery disease are also reported.  More specifically, biomarkers 

associated with high risk of future stroke or CV event are described in Table 2.12.  Circulating 

biomarkers which constitute the typical lipid patient profile (LDL, TC, triglyceride, ox-LDL, Lp-PLA2), 

inflammatory biomarkers such as hs-CRP, TNF-α, IL-6, adipokines (Adiponectin, Leptin, FABP4) and 

hcy are related to high risk of future stroke.  Meta-analyses, conducted by Gorgui et al. [62] and Gairolla 

et al. [63], concluded that levels of adiponectin and leptin are significantly associated with ischemic 

stroke, showing that adipokines may have a cause-effect relation with carotid artery disease.  As for the 

CV mortality, typical hs-CRP biomarker, endothelial and cell adhesion biomarker (VCAM-1, ICAM-1), 

MMPs (MMP7. MMP-9), ox-LDL and FABP4 seem to be associated with the CV mortality, as it is 

shown in Table 2.13.  An indicative study by Zhong et al. [152], concluded that the high value of MMP-

9 was associated with high CV mortality and major disability.  In this study, data collection from 3,186 

participants were analyzed and 767 of them have experienced major disability or died.  On the other 

hand, Wang et al. [161] in another study collected biochemical markers from 3688 patients and 

concluded that the patients in the highest ox-LDL quartile had a higher risk of one year stroke mortality.  

In Table 2.14, we summarize all the presented studies, based on their participants and their clinical 

characteristics, providing specific biomarkers for the risk stratification of asymptomatic participants, of 

symptomatic participants (either with diagnosis of carotid artery disease or undergoing CEA), of 

symptomatic, asymptomatic and controls participants and of the general population. 
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Table 2.8 Serum biomarkers related to clinical outputs of carotid artery disease. 

Type of 

Biomarkers 

Biomarkers Diagnosis of 

Carotid 

Artery 

Disease 

Plaque 

Vulnerability 

Symptomatic 

Carotid Artery 

Disease 

Future 

Stroke 

Event 

Stroke 

Severity 

CV Mortality 

In
fl

a
m

m
a
to

ry
 

hs-CRP [133] [132, 

134]  

[135] [136]   [137] 

[192] 

[138]  

 [193] 

PTX-3 [140] [139]  [136]      

IL-6 [133] [146]  [135] [136]     

TNF-α [140]  [136] [141] [148] [142] [143]    

E
n

d
o

th
el

ia
l 

a
n

d
 C

el
l 

A
d

h
es

io
n

 B
io

m
a
rk

er
s NGAL  [147]     

VCAM-1  [136]     [145] 

ICAM-1 [146]     [145] 

E-selectin [146] [136]      

L-selectin  [141]     

M
a
tr

ix
 D

eg
ra

d
in

g
 o

r 

P
ro

te
o
ly

si
s 

MMP-1  [148]     

TIMP-1  [148]     

MMP-2  [150]  [149]    

MMP-3 [146]       

MMP-7  [148] [150]  [142]   [142] 

MMP-9 [146]  [149] [150] [151] [149]   [152] 
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Type of 

Biomarkers 

Biomarkers Diagnosis of 

Carotid 

Artery 

Disease 

Plaque 

Vulnerability 

Symptomatic 

Carotid Artery 

Disease 

Future 

Stroke 

Event 

Stroke 

Severity 

CV Mortality 

MMP-14  [150]      

L
ip

id
 R

el
a
te

d
 

LDL [140]   [156]   

TC    [156]   

triglyceride    [156]   

ox-LDL  [159] [151] [160]  [161] 

HDL  [164] [163]   [166] [156]  

TRL [168]  [165] [168]     

Lp-PLA2 [170]  [170] [138] [169]  [171] 

[172] 

 

  

apoA-I     [173] [174]  

apoE       

PCSK9 [177]       

M
et

a
b

o
li

c 

B
io

m
a
rk

er
s 

restinin  [179] [179]    

adiponectin [183]   [180] [181]     

leptin   [181]     

FABP4 [184] [184] [184]    

homocysteine [188] [186]    [186]    

OPG  [189] [189] [190]    
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Table 2.9 A summary of studies investigating biomarkers related to carotid artery disease diagnosis. 

Study Biomarker Methodology Dataset Output 

Puz et al. [132] hs-CRP laboratory tests, US 

examination, statistical analysis 

65 patients with ICA stenosis 

> 50% (39 symptomatic) and 

30 healthy  

Patients with ICA stenosis had significantly 

higher serum concentrations and CRP values 

than the individuals from the control group (p = 

0.009) 

Horn et al. [134]  hs-CRP laboratory tests, US 

examination, statistical analysis 

subclinical and advanced 

(INVADE study-n = 3,092, > 

55 years) 

rate of both subclinical and advanced stages of 

atherosclerosis was higher in patients with 

pathological hs-CRP 

Debing et al. [133]  hs-CRP, IL-

6, sVCAM-1 

statistical analysis, high-

resolution B-mode US 

180 patients with ICA 

stenosis, 180 age-matched 

and sex-matched controls. 

levels of hs-CRP, VCAM-1, and IL-6 in the CEA 

group were significantly higher than in the 

control group  

Yi et al. [140]  PTX-3, 

TNF-α, LDL 

CTA, statistical analysis 206 patients with ischemic 

stroke 

plasma levels of PTX-3, TNF-α, and LDL were 

increased significantly in the CAS group patients 

vs. the CAS-free  

Knoflach et al. [139]  PTX-3 statistical analysis, high-

resolution B-mode US 

132 young men, 205 young 

women, 562 individuals 55 to 

94 years old  

PTX-3 level was independently associated with 

prevalent  

Biscetti et al. [146]  IL-6, ICAM-

1, E-selectin, 

MMP-3, 

MMP-9 

genetic association study 933 individuals (344 patients 

with ICA stenosis-CEA and 

589 controls)  

IL-6, ICAM-1, MMP-3, and MMP-9 gene 

polymorphisms were independently associated 

with ICA stenosis 

Kofoed et al. [168]  TRL high-resolution B-mode US and 

computerized image analysis 

66 controls and 323 patients 

with CAS ≥ 50% 

fasting and postprandial triglyceride-rich 

lipoproteins are elevated in patients with CAS of 

≥ 50%  

Chan et al. [177]  PCSK-9 biochemical analysis, carotid US 95 asymptomatic subjects serum PCSK-9 remained an independent 

predictor of mean carotid IMT 

Saarikoski et al. 

[183]  

adiponectin US data on carotid IMT 2,147 young adults low serum adiponectin concentration is 

independently related with increased carotid IMT 

early atherosclerosis 

Holm et al. [184]  FABP4 enzyme immunoassay, statistical 

analyses 

28 asymptomatic, 31 

symptomatic, 202 patients 

with acute ischemic stroke  

FABP4 levels were higher in patients with 

carotid atherosclerosis 

Jia et al. [188]  hcy carotid duplex US examination 5393 Chinese participants  hcy> 19.3μmol/L was considered as an 

independent indicator of asymptomatic CAS  

Alsulaimani et al. 

[186]  

hcy ultrasonographic assessment of 

plaque morphology measured by 

gray-scale median  

1327 stroke-free subjects increasing hcy was associated with an increasing 

risk  
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Table 2.10 A summary of studies investigating biomarkers related to carotid atherosclerotic plaque vulnerability. 

Study Biomarker Methodology Dataset Output 

Yamagami et al. [135]  hs-CRP, IL-

6 

statistical analyses 246 patients, including 80 

patients with a history of 

stroke/TIA 

IL-6 and hs-CRP were negatively 

correlated with carotid plaque 

echogenicity  

Shindo et al. [136]  hs-CRP, 

PTX-3, IL-

6, TNF-α, 

VCAM-1 

histological analysis, statistical 

analysis 

58 patients with CAS vulnerable group showed upregulation 

of proinflammatory cytokines, 

endothelial activation markers and 

inflammation markers. and 

downregulation of anti-inflammatory 

markers 

Andersson et al. [141]  TNF-a US procedure, measurement 

serum markers, statistical 

analysis 

1,016 subjects Plaque size was also related to 

increased levels of TNF-α 

Pelisek et al. [148] 

 

TNF-α, 

MMP-1, 

TIMP-1, 

MMP-7 

Measurement of serum markers 

by ELISA assays, Multiscore 

analysis 

patients (n = 101) were 

classified as 

histologically stable (n = 

37) or unstable (n = 64). 

Circulating levels of MMP-1, MMP-7, 

TIMP-1, and TNF-α were significantly 

enhanced in patients with unstable 

plaques  

Guo et al. [150]  MMP-2, 

MMP-7, 

MMP-14 

carotid plaque specimens, 

histology and 

immunohistochemistry analysis  

64 patients The mRNA levels of MMP‑2, MMP‑7, 

MMP‑9 and MMP‑14 were elevated in 

vulnerable plaques 

Alvarez et al. [149]  

 

MMP-9 histopathologic analysis, 

immunohistochemistry 

(macrophage count, T 

lymphocytes, activated T 

lymphocytes) 

40 patients with CAS MMP-9 was also significantly higher 

in the symptomatic group and in 

patients with unstable plaques  

Eilenberg et al. [147]  

 

NGAL, 

MMP-9 

histological investigation, 

statistical analysis 

83 patients with 

asymptomatic CAS 

Circulating NGAL and MMP-9/NGAL 

are significantly increased in 

asymptomatic patients with vulnerable 

carotid atherosclerotic plaques 

Sarlon-Bartoli et al. 
[170]  

Lp-PLA2 laboratory measurements, 

histological assessment and 

immunohistochemistry of 

carotid plaques, statistical 

analyses 

42 patients (neurological 

symptoms were present in 

16, unstable plaques in 

23) 

Plasma Lp-PLA2 level was 

independently associated with unstable 

carotid plaques 
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Study Biomarker Methodology Dataset Output 

Yang et al. [138]  

 

Lp-PLA2 laboratory examination, carotid 

ultrasonography and grouping, 

statistics analysis 

100 patients with acute 

anterior circulation stroke 

and 50 noninfarction 

subjects (control group) 

Hs-CRP and Lp-PLA2 levels were 

significantly higher in vulnerable 

plaque group than in mixed plaque 

group and stable plaque group  

K. Nishi et al. [159]  Ox-LDL histopathological characteristics 

of plaques, 

immunohistochemical analysis, 

statistical analysis 

44 patients The ox-LDL level was significantly 

higher in vulnerable than stable 

plaques  

Mathiesen et al. [163] HDL ultrasonography, statistical 

Analysis 

216 with CAS, 223 

control subjects 

Low levels of HDL are associated with 

an increased risk of having echolucent, 

rupture-prone atherosclerotic plaques 

Peters et al. [164]  HDL Measurement of IMT, statistical 

analysis 

984 individuals Low levels of HDL are related to 

echolucency of the carotid intima-

media 

Nordestgaard et al. [165]  TRL, HDL US imaging methods, 

histological characterization 

111 asymptomatic, 135 

symptomatic patients 

with CAS, 44 ipsilateral 

ischaemic strokes 

Vulnerable plaques are associated with 

elevated levels of triglyceride-rich 

lipoproteins and with reduced levels of 

HDL 

Kofoed et al. [168] TRL high-resolution B-mode US and 

computerized image analysis 

66 controls and 323 

patients with CAS ≥ 50% 

Fasting and postprandial triglyceride-

rich lipoproteins are elevated in 

patients with CAS of ≥ 50% compared 

with controls 

Gasbarrino et al. [179]  Restinin, 

Chemerin 

association of circulating 

adipokines and carotid plaque 

instability 

n=165 symptomatic and 

asymptomatic patients  

Low chemerin and high resistin levels 

were associated with plaque instability  

Holm et al. [184]  FABP4 enzyme immunoassay, 

statistical analyses 

28 asymptomatic, 31 

symptomatic, 202 acute 

ischemic stroke  

FABP4 is linked to plaque instability 

in patients with carotid atherosclerosis 

Davaine et al. [189]  

 

OPG OPG measurement, histological 

and immunological analyses, 

statistical analysis 

73 carotid plaques (49 

asymptomatic and 24 

symptomatic) 

Circulating OPG levels were higher in 

the plasma of asymptomatic patients  
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Table 2.11 A summary of studies investigating biomarkers related to symptomatic carotid artery disease. 

Study Biomarkers Methodology Dataset  Output 

Abbas et al. [142] MMP-7 immunohistochemistry, 

statistical analyses 

182 consecutive 

patients with 

moderate (50–69%), 

23 healthy controls 

MMP-7 could contribute to plaque 

instability  

Schneiderman et al. [143]  TNF‐α lesion analysis, statistical 

analysis 

40 symptomatic, 38 

asymptomatic patients 

with progressive 

stenosis  

TNF‐α was significantly increased in 

symptomatic patients  

B. Alvarez et al. [149] MMP-2, 

MMP-9 

MMP-2 and MMP-9 

measurement, statistical 

analysis 

40 patients with CAS Elevated MMP-9 concentration is 

associated with carotid plaque instability  

Sigala et al. [151] Ox-LDL Immunohistochemistry, data 

analysis and statistics 

36 patients 

undergoing CEA, 20 

controls 

Ox-LDL was increased in symptomatic 

patients 

Gasbarrino [61] Restinin Measurement of circulation 

adipokines, data analysis and 

statistics 

165 neurologically 

symptomatic and 

asymptomatic patients  

restinine levels were significantly elevated 

in symptomatic  

A. Schiro et al. [190]  OPN, OPG  Measurement of circulating 

EMPs, platelet MPs (PMPs) 

and inflammatory markers, 

statistical analysis 

- OPN and OPG were significantly elevated 

in the symptomatic  
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Table 2.12 A summary of studies investigating biomarkers related to future stroke event. 

Study Biomarkers Methodology Dataset Output 

Zhou et al. 
[137]  

hs-CRP Meta-analysis 2436 ischemic strokes, 

655 hemorrhagic strokes 

from 66,560 participant 

When comparing the highest with the 

lowest hs-CRP category, the pooled RR of 

ischemic strokes was 1.46  

Yang et al. 
[138] 

hs-CRP Laboratory examination, carotid 

ultrasonography and grouping, 

statistics analysis 

100 patients with acute 

anterior circulation 

stroke and 50 controls 

Hs-CRP and Lp-PLA2 are among the risk 

factors for anterior circulation stroke 

Ma et al. [192] hs-CRP, TNF-

α, IL-6 

Data collection, statistical 

analysis 

288 ischemic stroke 

patients and 300 controls 

Hs-CRP, TNF-α, and IL-6 are considered to 

be important markers of the body's 

inflammatory state in ischemic stroke 

Gu et al. [156] LDL, TC, 

triglyceride 

Baseline information collection, 

statistical analysis 

Six cohort studies in 

China with 267, 500 

participants 

TC, LDL, and triglyceride showed positive 

associations with ischemic stroke 

Markstad et al. 
[160] 

Ox-LDL Analyses of the plaque tissue: 

cytokines and chemokines, 

measurement of sLOX‐1 in blood 

samples, statistical analysis  

202 patients undergoing 

CEA 

Ox-LDL induces the release of sLOX-1 

from endothelial cells and that  

Oei et al. [171] Lp-PLA2 Measurement of Lp-PLA2 

activity, statistical analysis 

308 coronary heart 

disease cases, 110 

ischemic stroke cases, 

and a random sample of 

1820 subjects 

Lp-PLA2 activity is an independent 

predictor of ischemic stroke  

Elkind et al. 
[172] 

Lp-PLA2 Measurement of Lp-PLA2 

activity, statistical analysis 

467 patients Stroke patients with Lp-PLA2 activity 

levels in the highest quartile had an 

increased risk of recurrence after first 

ischemic stroke 

Alsulaimani et 

al. 
[186] 

hcy Assessment of hcy, assessment of 

carotid atherosclerosis, statistical 

analysis 

1327 stroke-free subjects elevated hcy was independently associated 

with plaque morphology  

Gorgui et al. 

[62] 

Adiponectin systematic review and meta-

analysis 

- increased adiponectin levels were 

associated with an increase in risk for 

ischemic stroke 

Gairolla et al. 

[63] 

Adiponectin, 

leptin 

systematic review - adiponectin and leptin are significantly 

associated with stroke 
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Table 2.13 A summary of studies investigating biomarkers related to CV mortality. 

Study Biomarkers Methodology Dataset Output 

Mayer et al. 
[193]  

hs-CRP Clinical and laboratory 

data collection, statistical 

analysis 

1065 patients with 

neurological 

asymptomatic carotid 

atherosclerosis 

The risk of all-cause and CV mortality significantly 

increased in patients with elevated serum levels of hs-

CRP  

Hoke et al. 
[145]  

VCAM-1, 

ICAM-1 

Measurement of CAMs, 

statistical analysis 

855 patients significant association between CV mortality and 

ICAM-1  

Abbas et al. 
[142]  

MMP-7 Immunohistochemistry, 

statistical analyses 

182 consecutive 

patients with 

moderate (50–69%) 

levels, 23 healthy 

controls 

high plasma levels of MMP-7 were independently 

associated with total mortality 

Zhong et al. 
[152] 
 

MMP-9 Data collection, statistical 

analysis 

3186 participants, 

767 participants 

(24.6%) experienced 

major disability or 

died 

Higher log MMP-9 was associated with death and major 

disability. 

Wang et al. 
[161] 
 

Ox-LDL Biochemical indicators, 

diagnosis of stroke and 

stroke subtype 

classification, statistical 

analysis 

3688 patients Patients in the highest ox-LDL quartile had a higher risk 

of 1-year stroke mortality 

Holm et al. 
[184] 
 

FABP4 Enzyme immunoassay, 

statistical analyses 

asymptomatic (n = 

28), symptomatic (n 

= 31), patients with 

acute ischemic stroke 

(n = 202) 

levels of FABP4 were significantly associated with total 

and CV mortality 
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Table 2.14 Biomarkers related with different clinical outputs of carotid artery disease in i) Symptomatic, Asymptomatic & Controls, ii) Asymptomatic, iii) 

Symptomatic and in iv) General population. 

i) Symptomatic, Asymptomatic & Controls 

Carotid Artery Disease Diagnosis hs-CRP  [132] [134] [133], IL-6 [133] [146], sVCAM-1 [133], ICAM-1 [146], E-selectin [146], MMP-

3 [146], MMP-9 [146], TRL [168], FABP4 [184] 

Carotid Atherosclerotic Plaque 

Vulnerability 

hs-CRP [135] , IL-6 [135], TRL [165] [168], HDL [165] [163], Restinin  [179], Chemerin [179], 

FABP4 [184], Osteoprotegerin [189], Lp-PLA2 [170] ,TNF-α [148], MMP-1 [148], TIMP-1 [148], 

MMP-7 [148]  

Symptomatic Carotid Artery Disease MMP-7  [142], TNF‐α [143] [192], hs-CRP  [192], IL-6  [192], Ox-LDL  [151], Restinin [61] 

CV Mortality MMP-7 [142], FABP4 [184] 

ii) Asymptomatic 

Carotid Artery Disease Diagnosis PCSK-9 [177], hcy [186] 

Carotid Atherosclerotic Plaque 

Vulnerability 

NGAL [147], MMP-9 [147] 

Future Stroke Event Homocysteine [186] 

CV mortality hs-CRP [193] 

iii) Symptomatic patients (either with diagnosis of carotid artery disease or undergoing CEA) 

Carotid Artery Disease Diagnosis PTX -3  [140], TNF-α [140], LDL [140] 

Carotid Atherosclerotic Plaque 

Vulnerability 

MMP-9  [149], Lp-PLA2 [138] 

Future Stroke Event. hs-CRP [137] [138], MMP-2 [149], MMP-9 [149], Ox-LDL [160], Lp-PLA2 [171] 

iv) General population 

Carotid Artery Disease Diagnosis Adiponectin [183], hcy [188], PTX-3  [139] 

Carotid Atherosclerotic Plaque 

Vulnerability 

MMP-2 [150], MMP-7 [150], MMP-14 [150], Ox-LDL [159], HDL [164], TNF-α [141] 

Future Stroke Event. LDL [156], TC [156], triglycerides [156], Lp-PLA2 [172] 

CV Mortality MMP-9 [152], Ox-LDL  [161], VCAM-1 [145], ICAM-1 [145] 
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2.6 Contribution of this thesis 

It is clear from the abovementioned literature overview regarding the coronary and carotid lumen and 

atherosclerotic plaques detection (Table 2.1, Table 2.2, Table 2.3) that the majority of the studies are 

based either on the vessel or the atherosclerotic plaque detection.  Most of the studies, concerning lumen 

detection, are performed using typical image processing techniques, whereas atherosclerotic plaque 

detection is performed based on HU analysis, with specific ranges for each plaque component.  

Additionally, the evaluation process of the existing studies includes either the comparison with other 

imaging techniques or the qualitatively evaluation. 

In this thesis, we focus on developing an overall pipeline for the reconstruction of the entire coronary 

arterial tree and the carotid artery bifurcation non-invasively using CTA, which provides 3D models of 

the lumen, the outer wall, the CP and the NCP in order to overcome the literature limitations, regarding 

the implemented methodology and the validation strategy.  Our methodology for reliable segmentation 

of the CTA images renders it a useful tool in the clinical and research arena.  

In particular, our approach uses active contours to detect the inner, outer wall and CP, whereas the NCP 

segmentation is performed using a fully adaptive HU- based threshold technique in order to be 

independent by the different CTA scanners.  Additionally, our proposed pipeline integrates an algorithm 

for the blooming effect removal, in cases of high HU intensities values such as in CP or stented arteries.  

The proposed segmentation method is validated using experts’ manual annotations, but also to enhance 

our validation results it is compared with an invasive imaging modality i.e. IVUS and VH-IVUS 

modality. The DICE coefficient for the lumen segmentation is 0.75, whereas for the CP and NCP was 

0.72 and 0.7, respectively, which is similar or better than most of the other studies presented in the 

current literature.  

The obtained results indicate that the proposed methodology allows reliable and automated detection of 

the luminal and vessel wall borders and fast and accurate characterization of plaque type in CTA images. 

The previous presented methodologies have limitations such as that they are based on high quality 

images or on thresholding techniques. Our method can handle any kind of CTA data, while it combines 

arterial reconstruction with plaque characterization.  In addition to this, all the potential validation 

strategies have been performed for the evaluation of our methodology. Our methodology has been 

integrated into useful tools clinically evaluated for both the coronary and carotid artery disease [194]. 
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Accurate CTA image analysis has led to the development of CAD risk prediction models using 

geometry-based risk factors.  The overall 3D reconstruction pipeline has been utilized for the calculation 

of geometry based features, such as the DS, the MLA, the MLD, the presence and volume of CP.  

Additionally, biomechanical features, such as the SmartFFR and WSS, have been utilized for CAD risk 

prediction models.  As it is shown in Table 2.6, statistical analysis and ML models have been 

implemented to predict the progression of the CAD, the prediction of MI and the CV-related mortality, 

using as input imaging and non-imaging data. 

This thesis focuses on presenting a pipeline for the imaging based CAD risk prediction, which includes 

the following steps: (i) CTA image analysis, (ii) calculation of imaging-based parameters, (iii) dataset 

collection and curation, (iv) problem definition, (v) class imbalance handling, (vi) feature selection and 

classification and finally (vii) the model evaluation.  Four different approaches have been proposed for 

CAD prediction, which include as outcome the prediction of obstructive CAD (2-class or 3-class 

problems) and the site-specific CAD progression and PCI placement.  The achieved accuracies were 

0.81, 0.67, 0.74 and 0.78, indicating promising results for the CAD risk prediction.  

Comparing with other existing studies in the literature, our proposed methodology takes into account 

imaging features, deriving from the non-invasive CTA imaging modality, whereas other existing studies 

calculate imaging features from IVUS modality.  Regarding the first approach, the implementation of 

ML models for CAD prediction, using as input the combination of both imaging (geometrical and 

biomechanical) constitutes a novelty of my thesis.  It is clear from the literature that assessing and 

predicting CAD severity was achieved traditionally using statistical modelling and not ML.  In spite of 

the reported good discrimination ability of such parametric regression models, a recent systematic 

review demonstrated the paucity of external validation and head-to-head comparisons, the poor 

reporting of their technical characteristics as well as the variability in outcome variables, predictors and 

prediction horizons, which limits their applicability in evidence-based decision making in healthcare 

[195].  Thus, the limitations of statistical analysis techniques are overcome through this thesis with the 

implementation of classical ML models for CAD prediction. In conclusion, the work of this thesis 

related to CAD is in line with the latest CAD guidelines regarding the necessity of using non-invasive 

CTA imaging for diagnosis of CAD. More specifically, using our methodology, besides the CAD 

diagnosis which is provided by CTA, prediction of coronary stenosis or disease progression will be 

delivered to the clinician to further support the treatment selection.  
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Regarding the carotid artery disease prediction, through this thesis, attempts have been undertaken to 

detect the presence of carotid disease, as it is defined by CAS and the presence of carotid plaques 

vulnerability, as they are defined either by histology based features or by the presence of symptomatic 

disease  Most of the existing studies, concerning the CAS presence and high risk plaques presence, are 

basically based on inflammatory biomarkers (hs-CRP, PTX-3, IL-6, TNF-α), ICAM-1, VCAM-1, E-

selectin and MMPs and are basically based on statistical analysis.  In this thesis, we present a ML based 

model for the detection of CAS presence, taking into account demographics, clinical data, typical risk 

factors and medication therapy, whereas for the histology based high risk plaques detection, lipid related 

biomarkers are used, as well.  Comparing to other similar studies in the literature, our approach achieves 

a higher accuracy (0.78 for CAS detection) and 0.67 (average for high risk plaque detection), based only 

on typical health records, easily recorded by a general practitioner.  External validation dataset have 

been also used for the validation of ML model focused on CAS presence detection.  More specifically, 

512 individuals were utilized for the evaluation of our model and the overall accuracy was 0.89.  

Comparing to the similar existing in the literature studies, as it is shown in Table 5.27, the achieved 

accuracies either with the training dataset or with the external validation datasets, are higher.  In addition 

to this, in this thesis, our aim is to contribute to the carotid artery disease early detection only for the 

asymptomatic individuals. Thus, retrospective datasets only for asymptomatic participants were utilized 

for the development of the diagnosis of CAS.  As it is shown in Table 2.14, there are only two studies, 

which aim to detect CAS presence in asymptomatic participants.  

Moreover, diagnostic prediction of high risk plaques has been defined based on histology related 

components, such as the total collagen, the smooth muscle cells, the neutrophils, the lipid and the 

macrophages.  Comparing with other existing in the literature studies (shown in Table 2.10), which 

basically define high risk plaques based on US-derived features, the histology based clinical outcome 

definition constitutes a novelty of the proposed models.  However, regarding the existing in the literature 

studies for high risk plaques detection, there are not similar studies in the literature, which use typical 

medical records for the plaque vulnerability detection to be directly compared with our proposed 

models. 

Additionally, through this thesis, ML based models have been developed for the detection of high risk 

plaques, as they are defined by the presence of symptomatic carotid artery disease.  Two ML models 

have been developed and their accuracies were 0.79 and 0.65.  Based on the existing in the literature 
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studies, it is found that TNF-α, MMPs, ox-LDL and metabolic biomarkers are associated with the 

symptomatic disease (Table 2.8) and the association of TNF-α and MMPs (MMP-8, TIMP-2, MMP-

9/TIMP-1) has been confirmed through this thesis.  In addition to this, in this thesis, it was established 

the association of biomarkers, such as OPG, OPN, leptin, RANTES, FABP4 and GDF15 with 

symptomatic artery disease. 

The last contribution of the proposed thesis is the investigation of the relation between carotid artery 

disease and silent brain lesions.  A dataset of 211 participants was utilized for this analysis and US 

related features, clinical features, risk factors, hematological and biochemical features were used for the 

analysis.  CAS presence, previous MI, alcohol abuse and previous CABG are positive factors for SBIs 

presence and high values of SBP, triglycerides, creatine and HbA1c are also associated with the presence 

of SBIs. 
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Chapter 3 3D arterial Reconstruction using CTA 

3.1 Introduction 

3.2 Methodology for 3D inner and outer wall reconstruction 

3.3 Methodology for atherosclerotic plaque characterization 

3.4 Dataset 

3.5 Results 

3.6 Discussion- Beyond the state of the art 

 

 

 

3.1 Introduction 

Due to its less invasive nature, a great interest has been focused on the imaging and diagnosis of 

CAD and carotid artery disease using CTA modality.  Different studies (described in detail in Chapter 

2) have indicated that CTA modality is able to analyze accurately the coronary and the carotid artery 

wall and provides not only the detection and quantification of the atherosclerotic plaque [196, 197], 

but also the classification of its composition [198, 199].  In addition to its high accuracy, CTA 

provides robust prognostic information in patients with suspected CAD and allows the risk 

stratification as well, when CAD is present [200], while it can be used for prediction of plaque 

growth based on computational modelling [201, 202].  Moreover, CTA provides a promising 

potential in detecting certain vulnerable lesions in risk of embolic events [203].  

In this chapter, we present a new semi-automated methodology for 3D coronary and carotid artery 

reconstruction using CTA modality, implementing the active contour models for the segmentation of 

2D CTA images.  In order to investigate the accuracy of our methodology, we implemented a 

validation procedure for the inner wall and outer wall detection, utilizing both manual annotations 

and the IVUS modality for the coronary arteries and only manual annotations for the carotid arteries.  

Additionally, we examine the accuracy of the CTA modality to identify the PB region and specify the 

atherosclerotic plaque composition.  More specifically, a methodology for the identification and 

volumetric quantification of CP and NCP is proposed, using density measurements, quantified by 



 

67 
 

HU.  The detection of CP is achieved by an active contour based approach incorporating prior 

shapes, whereas the NCP is detected by an adaptive threshold based technique. The proposed 

methodology for coronary atherosclerotic plaque detection is evaluated using the corresponding VH-

IVUS images and manual annotations, whereas the carotid atherosclerotic plaque detection is 

evaluated using only manual annotations.   

3.2 Methodology for 3D inner and outer wall reconstruction  

The proposed methodology includes 7 stages, as it is shown in Figure 3.1, below [204-206].  In the 

first stage, the CTA images are acquired and then they are pre-processed to detect the vessel 

silhouette.  In the third stage, a blooming effect removal technique is implemented and in the fourth 

stage, a centerline extraction approach of the vessel is applied.  In the fifth stage, two weight 

functions for the lumen and the outer wall of arteries are estimated.  In the sixth stage, an extension 

of active contour models for the lumen and the outer wall segmentation is implemented.  Finally, in 

the last seventh stage the 3D surfaces for the lumen and the outer wall are constructed, employing the 

Fast Marching cubes algorithm. 

 

Figure 3.1 The proposed methodology outline [204]. 
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3.2.1 Preprocessing 

The image preprocessing step is applied in the axial DICOM acquired slices to remove irrelevant 

details of the CTA images.  A vessel enhancement filter, the Frangi Vesselness filter [207] is 

implemented to identify tubular structures and limit the ROI to vessel candidate regions.  In Figure 

3.2, an example of the implementation of the Vesselness filter is shown. 

 

Figure 3.2 An example of the implementation of the Vesselness filter in a CTA image [204]. 

3.2.2 Blooming effect removal 

The blooming effect is a typical CTA image artifact, where small high density objects are illustrated 

thicker with smeared edges.  This artifact affects the visualization and the quantification of small 

structures, such as the calcifications, as well as, the visualization of metal stents.  Thus, in this step 

we aim to remove the blooming effect, by applying the Blind deconvolution approach [208].  In 

general, an output CTA image can be modeled by the convolution of the deblurred input image with 

the point spread function (PSF) of the system, as it is shown in Eq.(3.1): 

 𝑓(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ∗ 𝑔(𝑥, 𝑦),  (3.1) 

where ℎ(𝑥, 𝑦) corresponds to the PSF of the CT system, 𝑔(𝑥, 𝑦) is the real input structure and 

𝑓(𝑥, 𝑦) represents the output image.  In this approach, since the PSF of each CT system is not 

defined, we estimate the CT system’s PSF, using a Gaussian kernel and subsequently we implement 

on the high intensities CTA image’s regions a deconvolution technique to acquire the deblurred CTA 

image [209].  The estimated Gaussian kernel is considered as a symmetric Gaussian lowpass filter of 

size 5 with a standard deviation 0.8. 

An example of the blooming effect removal step is illustrated below, in Figure 3.3. 
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Figure 3.3 An example of the implementation of blooming effect removal technique [204]. 

3.2.3 Centerline extraction 

The centerline is mainly required for creating an initial vessel mask for the vessel segmentation 

algorithm.  However, the centerline extraction stage still remains a challenging task, since the size of 

the vessels is small and several reconstruction artifacts are observed.  In the proposed methodology, a 

minimum cost path approach is implemented for the centerline extraction, based on Metzt et al. 

[210] approach. 

The proposed centerline extraction methodology is quite simple and, therefore easy to implement, 

since the main requirement is the starting point and the ending point of the vessel to extract the 

corresponding centerline.  The cost function, which is considered for the minimum cost path 

approach is a combination of the lumen and vessel weight. 

Firstly, we extract the image weight based on the vesselness measure (𝑤𝑣𝑒𝑠𝑠𝑒𝑙) [207].  Subsequently, 

we compute the value of the top 50% of the image intensities, which are higher than 100 HU, 

considering only the parts of the image, where the 𝑤𝑣𝑒𝑠𝑠𝑒𝑙  measure is higher than 0.  This computed 

value ml  is very significant, since it is used for the extraction of the lumen weight.  More 

specifically, the lumen weight is extracted by using a generalized bell-shaped membership function 

and it is defined as: 

 𝑤𝑙𝑢𝑚𝑒𝑛 = 0.9 ∙
1

1+|
𝑥−𝑐

𝑎
|
2𝑏 + 0.1,  (3.2) 

where 𝑎 = 0.02, 𝑏 is the minimum value between 𝑚𝑙 − 𝑙𝑡ℎ𝑟𝑒𝑠 and 500, and 𝑐 is the value of 𝑚𝑙 +

𝑐𝑝𝑡ℎ𝑟𝑒𝑠.  Heuristically, the threshold of the lumen (𝑙𝑡ℎ𝑟𝑒𝑠) and the CP (𝑐𝑝𝑡ℎ𝑟𝑒𝑠) were defined with the 

value of 80 HU and 400 HU, respectively. More details can be found in the Appendix (Threshold 

selection).  
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The considered cost function 𝑉 for the minimum path approach is a combination of the vessel and 

the lumen weight and is defined by: 

 𝑉 = 𝑤𝑣𝑒𝑠𝑠𝑒𝑙 ∙ 𝑤𝑙𝑢𝑚𝑒𝑛  (3.3) 

In order to calculate the shortest distance from a list of points to all other pixels in an image volume, 

a Multistencil Fast Marching Method is implemented based on the approach described in [211].  An 

example of the above procedure is depicted in Figure 3.4. 

 

Figure 3.4 Example of a successfully extracted coronary artery centerline using the vesselness/intensity cost 

function [204]. 

 

3.2.4 Estimation of weight function for the inner and outer wall  

Similarly to the previous step, in this stage two different membership functions for the lumen and the 

outer wall are computed, aiming to compensate different protocols for discriminating the lumen and 

the outer wall.  These membership functions are all adapted to the mean vessel intensity across the 
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centerline, assuming that this corresponds to the mean lumen intensity.  More specifically, the mean 

lumen intensity  𝐼𝑙̅𝑢𝑚𝑒𝑛 is calculated, taking into consideration only the pixels of the image, whose 

intensities are higher than 100 HU and their Euclidean distance from the extracted centerline is less 

than 5. 

For the lumen a generalized bell-shaped membership function is used, whereas for the outer wall a 

sigmoidal membership functions is implemented, as it is shown in Figure 3.5.  The generalized bell-

shaped membership function is defined as: 

 𝑔𝑏𝑒𝑙𝑙(𝑥; 𝑎, 𝑏, 𝑐) =
1

1+|
𝑥−𝑐

𝑎
|
2𝑏,  (3.4) 

whereas the sigmoidal membership function is defined as: 

 𝑔𝑠𝑖𝑔𝑚(𝑥; 𝑎, 𝑏) =
1

1+𝑒−𝑎(𝑥−𝑏),  (3.5) 

where 𝑥 is the image and 𝑎, 𝑏, 𝑐 are the defined parameters. 

For the lumen, the membership function is given by: 

 𝑓𝑙𝑢𝑚𝑒𝑛 = (1 − 𝜀) ∙ 𝑔𝑏𝑒𝑙𝑙(𝑥; 𝑎𝑙𝑢𝑚𝑒𝑛, 𝑏𝑙𝑢𝑚𝑒𝑛, 𝑐𝑙𝑢𝑚𝑒𝑛) + 𝜀, (3.6) 

where 𝑎𝑙𝑢𝑚𝑒𝑛 = 0.02, 𝑏𝑙𝑢𝑚𝑒𝑛 = 𝑚𝑖𝑛([𝑚𝑎𝑥([𝐼𝑙̅𝑢𝑚𝑒𝑛 − 𝑙𝑡ℎ𝑟𝑒𝑠    150])     500]) − 0.01 and 𝑐𝑙𝑢𝑚𝑒𝑛 =

𝐼𝑙̅𝑢𝑚𝑒𝑛 + 𝑐𝑝𝑡ℎ𝑟𝑒𝑠. 

The membership function for the outer wall and the plaques is in both cases a sigmoidal function and 

is given by: 

 𝑓𝑜𝑢𝑡𝑒𝑟 =  (1 − 𝜀) ∙ 𝑔𝑠𝑖𝑔𝑚(𝑥; 𝑎𝑜𝑢𝑡𝑒𝑟, 𝑏𝑜𝑢𝑡𝑒𝑟) + 𝜀, (3.7) 

where 𝑎𝑜𝑢𝑡𝑒𝑟 = 0.02 and 𝑏𝑜𝑢𝑡𝑒𝑟 = 𝑚𝑖𝑛(200, 𝑚𝑎𝑥([𝐼𝑙̅𝑢𝑚𝑒𝑛 − 𝑙𝑡ℎ𝑟𝑒𝑠 − 𝑛𝑐𝑝𝑡ℎ𝑟𝑒𝑠    100])).  The 

threshold value for the lumen (𝑙𝑡ℎ𝑟𝑒𝑠) as previously stated is 80 HU. The intensity threshold for NCP 

(𝑛𝑐𝑝𝑡ℎ𝑟𝑒𝑠) is defined by the value of 50 HU.  The value of the (𝑛𝑐𝑝𝑡ℎ𝑟𝑒𝑠) is defined heuristically and 

based on the current literature [212, 213].  More details can be found in the Appendix (Threshold 

selection). 

The parameter 𝜀 is a weight of the membership functions and in all cases, it is defined by the value 

of 0.05.  In Table 3.1, we summarize the different values of the parameters of the membership 

functions for each component. 
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Figure 3.5 Membership functions distributions for lumen and outer wall over HU [204]. 

 

Table 3.1 A summary of the parameters of the membership functions for the lumen and the outer wall. 

Parameters 𝑎 𝑏 𝑐 

Lumen 0.02 𝑚𝑖𝑛([𝑚𝑎𝑥([𝐼𝑙̅𝑢𝑚𝑒𝑛 − 𝑙𝑡ℎ𝑟𝑒𝑠    150])     500])

− 0.01 

𝐼𝑙̅𝑢𝑚𝑒𝑛 +

𝑐𝑝𝑡ℎ𝑟𝑒𝑠. 

Outer wall 0.02 𝑚𝑖𝑛(200, 𝑚𝑎𝑥([𝐼𝑙̅𝑢𝑚𝑒𝑛 − 𝑙𝑡ℎ𝑟𝑒𝑠 

− 𝑛𝑐𝑝𝑡ℎ𝑟𝑒𝑠    100])) 

- 

 

3.2.5 Lumen segmentation 

In this step, an extension of the active contour models [214] is implemented for the lumen 

segmentation.  This approach is based on regional measures and does not depend on any edge 

definition.  In other words, the boundaries of the detected objects are not necessarily defined by the 

gradient.  The main improvement of our lumen level set segmentation approach is that it incorporates 

a prior shape [215], aiming to segment an object whose shape is similar to the given prior shape 

which is independent of translation, scaling and rotation, from a background where there are several 

objects. For the lumen segmentation, the prior shape is a tubular mask across centerline with a small 

radius. 
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Update of lumen intensities 

Our purpose is to implement the membership function in the part of the CTA image, which is near to 

the extracted centerline.  Thus, first, in order to update the membership function for the lumen, we 

calculate the Euclidean distance transform only of the pixels around the extracted centerline.  This 

estimated distance 𝑑1 limits the ROI, since based on its value, we considered only the pixels whose 

distance transform is lower than 4 𝑝𝑥
⁄ , where 𝑝𝑥 is the pixel spacing of the DICOM image and 4 is an 

approximate value for the radius of the lumen.  In other words, we assume that: 𝑓𝑙𝑢𝑚𝑒𝑛 = 0

→ 𝑝𝑖𝑥𝑒𝑙𝑠: 𝑑1 > 4
𝑝𝑥

⁄  and in the same manner 𝑓𝑜𝑢𝑡𝑒𝑟 = 0 → 𝑝𝑖𝑥𝑒𝑙𝑠: 𝑑1 > 4
𝑝𝑥

⁄ .  For the lumen 

pixels, the updated membership function is given by: 

 𝑓1 = 𝑓𝑙𝑢𝑚𝑒𝑛 ∙ 𝑔𝑠𝑖𝑔𝑚(𝑑1; 𝑎2,𝑙𝑢𝑚𝑒𝑛, 𝑏2,𝑙𝑢𝑚𝑒𝑛), (3.8) 

where 𝑎2,𝑙𝑢𝑚𝑒𝑛 = −0.5 and 𝑏2,𝑙𝑢𝑚𝑒𝑛 = 2
𝑝𝑥

⁄ , whereas for the outer wall plaques pixels, the updated 

membership function is given by: 

 𝑓2,𝑜𝑢𝑡𝑒𝑟 = 𝑓𝑜𝑢𝑡𝑒𝑟 ∙ 𝑔𝑠𝑖𝑔𝑚(𝑑1; 𝑎2,𝑜𝑢𝑡𝑒𝑟 , 𝑏2,𝑜𝑢𝑡𝑒𝑟), (3.9) 

where 𝑎2,𝑜𝑢𝑡𝑒𝑟 = −0.5 and 𝑏2,𝑜𝑢𝑡𝑒𝑟 = 2.5
𝑝𝑥

⁄ . 

Approximation of an initial binary image 

For the implementation of the Level Set method approach, an approximation of an initial image-

shape 𝜑 is required.  This image is a binary image, which includes 0’s as background pixels and 1’s 

as foreground pixels.  The intensity threshold value for the estimation of the initial image is 
𝑤𝑖

2⁄ .  

Thus, the pixel value of initial image is 1, when 𝑓1 ∙ 𝑤𝑖 is higher than 
𝑤𝑖

2⁄ , whereas it is 0, when 𝑓1 ∙

𝑤𝑖 is lower than 
𝑤𝑖

2⁄ . The parameter 𝑤𝑖 is an estimated weight to multiply the probability in the 

level set method and it is defined 1000. 

Calculation of the speed function 

The Level set methods have been widely used in the field of machine vision for segmentation 

problems, since they are used for the modelling of evolving curves or surfaces.  The basic idea 

behind the level set approaches is the presentation of the interface of a surface, using a higher 

dimensional function, which is called the level set function.  This means that the 2D curve could be 
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described by the 3D level set function, where the additional dimension t  represents the time.  In the 

proposed methodology, the detected curve C  is represented by the zero level set of a Lipschitz 

function , such that: 

 

( ) ( ) 

( ) ( ) ( ) 

( ) ( ) ( ) 
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 

 
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= =  

= =  

 (3.10) 

where ,x y  are the spatial coordinates of the 2D image, t  is the dimension of time and   . 

In this stage, a level set based variational method using prior shapes is implemented for the lumen 

segmentation and our aim is to incorporate shape priors into the Chan-Vese’s model for 

segmentation.  This approach is based on Cremers et al. [216] and Chan et al. [215] studies, in which 

besides the basic level set segmentation function 𝜑, a shape function 𝜓  and a labelling function 𝐿 

are introduced.  The key idea of this methodology is that the defined prior shape is compared with 

the region where both the level set function 𝜑 and the labelling function 𝐿 are positive. 

In the presented methodology, the speed function that is impemented to evolve the level set curve is 

based on Chan et al. approach [215].  The defined speed function is a Chan-Vese energy function, 

combined with prior shapes and with a labelling function and is given by: 

 𝐸(𝜑, 𝜓, 𝐿, 𝑐1, 𝑐2) = 𝐸𝐶𝑉 + 𝐸𝑠ℎ𝑎𝑝𝑒 + 𝐸𝜓, (3.11) 

where 𝐸𝐶𝑉 is the Chan-Vese energy funtion, 𝐸𝑠ℎ𝑎𝑝𝑒 is a shape comparison term and 𝐸𝜓 is a labelling 

term. 

The Chan-Vese energy funtion [214] is widely used in medical image segmentation approaches and it 

is defined as: 

 𝛦𝐶𝑉(𝑐1, 𝑐2, 𝐶) = ∫ (𝑢(𝑥, 𝑦) − 𝑐1)2𝑑𝑥𝑑𝑦 + ∫ (𝑢(𝑥, 𝑦) − 𝑐2)2𝑑𝑥𝑑𝑦
𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

, (3.12) 

Disretizing the above speed function equation and writing it as a pixelwise function, it gives 

 𝛦𝐶𝑉(𝑥, 𝑦) = (𝑢(𝑥, 𝑦) − 𝑐1)2 − (𝑢(𝑥, 𝑦) − 𝑐2)2, (3.13) 

where 𝑢 is the image, 𝑥, 𝑦 are the spatial coordinates of the 2D image, 𝐶 is the segmentation curve 

and 𝑐1, 𝑐2 are the average greyscale intensity values inside and outside of 𝐶, respectively. 

The shape comparison term is defined as: 

 𝐸𝑠ℎ𝑎𝑝𝑒(𝜑, 𝐿, 𝜓) = ∫ (𝛨(𝜑)𝛨(𝐿) − 𝐻(𝜓))
2

𝑑𝑥𝑑𝑦
𝛺

, (3.14) 
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where 𝛨 is the Heaviside function and 𝛨(𝜑)𝛨(𝐿) represents the intersection of 𝜑 > 0 and 𝐿 > 0.  

The labelling function 𝐸𝜓 is a term that indicates if the lumen is segmented successfully, since then 

this term will be small and it is given by: 

 𝛦𝜓(𝜓, 𝑐1, 𝑐2) = ∫ [(𝑢 − 𝑐1)2𝐻(𝜓) + (𝑢 − 𝑐2)2(1 − 𝐻(𝜓))]𝑑𝑥𝑑𝑦
𝛺

, (3.15) 

Sparse Field Algorithm implementation 

As previously mentioned, the key idea of Level Set approaches is that only the area, where 𝜑(𝑥, 𝑦) ≈

0 is important to accurately represent the curve.  In this approach, a sparse field algorithm approach, 

proposed by Whitaker et al. [217] is implemented to maintain an accurate and minimal 

representation of 𝜑.  Once the initial 𝜑 is defined, the algorithm returns fully initialized arrays for the 

label map and for an updated 𝜑.  Both arrays are of the same size and the label map records the 

status of each point.  Once the energy function has been computed for the part of the image which is 

around the centerline, the level sets may be deformed in order to minimize some of the energy 

function.  Thus, a sparse field approach is implemented twice to update 𝜑 near the zero level set.  

First, based on the initial 𝜑 and on a positive factor 𝛼, which controls the speed and curvature of the 

level set, the algorithm results in a new 𝜑𝑙𝑢𝑚𝑒𝑛.  Subsequently, based on the resulted 𝜑𝑙𝑢𝑚𝑒𝑛, the 

algorithm is implemented again, using a higher value of factor 𝛼 , to achieve a smoother lumen 

shape.  In the first step, a lower value of factor 𝛼 was applied, in order to provide fast segmentation 

in the whole image. In the second implementation of sparse field algorithm, a higher value of factor 

𝛼 is selected and applied only at the ROI in order to provide smooth and accurate segmented objects 

which depict only the coronary arteries.In the first step, the factor 𝛼 is defined 0.1, whereas in the 

second step factor 𝛼 is defined 0.6, as it is shown in Figure 3.6.  The value of 𝛼 factor affects only 

the speed of the segmentation and it does not affect the quality of the segmentation.  The number of  

iterations for the sparse field algorithm impementation is set to 200. 

3.2.6 Outer wall segmentation 

Similarly to the previous step, a Level Set model is implemented for the outer wall segmentation. 

However, in this stage the initial 𝜑 is based on the lumen shape, as segmented in the previous stage 

and on the updated values of outer wall intensities.  More specifically, the required 𝜑 of this stage is 

also a binary image, which includes 1’s for the pixels, where either the 𝑤𝑖 ∙ 𝑓2,𝑜𝑢𝑡𝑒𝑟 + 𝑤𝑖 ∙ 𝑓2,𝑝𝑙𝑎𝑞𝑢𝑒 is 
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higher than 
𝑤𝑖

2⁄  or the segmented lumen (𝜑𝑙𝑢𝑚𝑒𝑛) has a positive value.  Furthermore, the energy 

function for this stage, is calculated only for the pixels, where 𝜑𝑙𝑢𝑚𝑒𝑛 is higher than -0.1.  The sparse 

field algorithm implementation process for the outer wall is exactly the same as in the previous stage 

described. 

 

Figure 3.6 Lumen Segmentation example, a) acquired image, b) a factor 0.1, c) a factor 0.6 [204]. 

 

3.2.7 3D surface construction 

In this stage, an isosurface of data from each different extracted 𝜑 array is computed to construct the 

mesh surfaces.  In this step the algorithm marching cubes, proposed by Lorensen and Cline [218], is 

implemented to construct 3D surfaces for the lumen and the outer wall.  Marching cubes extracts a 

polygonal mesh of an isosurface from a 3D discrete scalar field, by proceeding through it. A 

triangulation approach is implemented, and connecting the detected border points of each CTA 

image, 3D models are constructed.  An example of 3D reconstruction of coronary arteries in the 

baseline and follow-up for one case is shown in Figure 3.7, below. 

In Figure 3.8 below, we demonstrate (a) the 3D reconstruction of a carotid artery bifurcation, (b) the 

2D CTA slice without segmentation and (c) the 2D segmentation of the inner wall and outer wall. 
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Figure 3.7 Example of 3D reconstruction of coronary artery in baseline and follow-up [204]. 

 

 

Figure 3.8 (a) 3D reconstruction of a carotid artery bifurcation, (b) the 2D CTA slice without segmentation 

and (c) the 2D segmentation of the inner wall and outer wall [206]. 
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3.3 Methodology for atherosclerotic plaque characterization  

The proposed methodology is based on the accurate detection of the lumen and the outer wall of 

coronary and carotid vessels, as described previously.  The detection and characterization of 

atherosclerotic plaques is implemented in the ROI, which is inside the outer wall and outside the 

lumen, as it is shown in Figure 3.9, below. 

 

 

Figure 3.9 Region of Interest (ROI) [204]. 

 

The characterization of atherosclerotic plaque into CP and NCP requires the accurate detection of the 

lumen and the outer wall.  The proposed methodology includes four steps: In the first step a weight 

function for CP is estimated to approximate the potential HU values ranges for the CP.  In the second 

step, an extended approach of active contour models without edges is implemented to detect the CP.  

In the third step, an adaptive intensity range is extracted based on the mean lumen intensity for the 

detection of NCP.  Finally, in the fourth step, the 3D geometrical models for the inner and the outer 

wall, the CP and the NCP are constructed, employing the fast marching approach. 

3.3.1 Estimation of weight function for the CP 

In this step, similarly to the lumen and the outer wall, a membership function for the the CP is 

estimated, aiming to compensate a different protocol for discriminating the lumen CP into the ROI.  
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Contrary to the CP intensity ranges, the NCP intensity ranges are close to the outer wall HU values 

and as a result, a membership function cannot be extracted for the NCP detection.  The utilized 

membership function for the CP, illustrated in Figure 3.10, is a sigmoidal function, adapted to each 

CTA image, since it is based on 𝐼𝑙̅𝑢𝑚𝑒𝑛.  The 𝐼𝑙𝑢𝑚𝑒𝑛 value as stated previously, corresponds to the 

mean intensity values of the top of half image intensities, which are higher than 100 HU, taking into 

consideration only the image’s pixels which correspond to the initial vessel mask, extracted by the 

Frangi vesselness filter [207]. 

The membership function for the CP (𝑓𝑐𝑝) is a sigmoidal function which is given by: 

 ( )
( )

1
; ,

1

sigm

a x b
g x a b

e− −
=

+
,  (3.16) 

where 𝑥 is the image and 𝑎, 𝑏 are the defined parameters. 

In our case the 𝑓𝑐𝑝 is given by: 

 𝑓𝑐𝑝 =  (1 − 𝜀) ∙ 𝑔𝑠𝑖𝑔𝑚(𝑥; 𝑎𝑐𝑝, 𝑏𝑐𝑝) + 𝜀, (3.17) 

where 𝑎𝑐𝑝 = 0.05,  𝑏𝑐𝑝 = 𝐼𝑙𝑢𝑚𝑒𝑛 + 𝑐𝑝𝑡ℎ𝑟𝑒𝑠.  The 𝑐𝑝𝑡ℎ𝑟𝑒𝑠 is defined by the value of 400 HU.  As 

stated previously, more details can be found in Appendix (Threshold selection). 

 

Figure 3.10 Membership functions distribution for CP over HU [204]. 

3.3.2 CP segmentation 

In this stage, the Level Set method [214, 217, 219, 220] is applied in the ROI of the outer wall.  The 

main idea of CP segmentation is exactly the same with this proposed in the previous chapter for the 
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segmentation of the inner and the outer wall.  The initial 𝜑 for the CP segmentation is based only on 

the updated plaques intensity function.  In other words, the initial 𝜑 is also a binary image, which 

includes 1’s for the pixels, where  𝑤𝑖 ∙ 𝑓𝑐𝑝 is larger than 
𝑤𝑖

2⁄ .  For this phase, only a sparse field 

algorithm implementation is required, as the segmented objects are relatively smaller and the 𝑎 factor 

is 0.5.  An example of the segmentation procedure is demonstrated in Figure 3.11. 

 

Figure 3.11 An example of the segmentation procedure: a) the acquired image, b) inner wall, outer wall and 

CP [205]. 

 

In addition to this, we demonstrate in Figure 3.12 below, an example of the centreline extraction, in 

combination with the lumen and CP segmentation, across the length of the centreline.  The 

segmentation procedure is indicated not only across all the length of the vessel centreline, but also in 

a 2D CTA slice.  Moreover, in Figure 3.12, we illustrate the DS, by providing the exact lumen and 

outer wall surfaces in mm2 per 0.5mm. 
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Figure 3.12 a) Lumen (red) segmentation and CP (green) segmentation across the vessel centerline, b) Lumen 

(red) and CP (green) segmentation in a 2D CTA slice, c) Lumen (green) and outer wall (grey) suface per 0.5 

mm. 

 

3.3.3 NCP segmentation 

Contrary to the CP, the NCP usually have a lower intensity, which makes the detection of the NCP a 

challenging problem.  Different studies have indicated that the luminal intensity is clearly related to 

the intensity inside the atherosclerotic plaque [221].  Thus, in this study due to the lower intensities 

of NCP, the NCP cannot be successfully identified by a level set approach, since the intensity ranges 

are close to the intensity ranges of the outer wall.  The identification of NCP is achieved by a 

dynamic thresholding technique.  Thresholding is a conventional segmentation technique, in which 

the image pixels are partitioned depending on their intensity value, using an appropriate threshold 

value.  However, in the case of dynamic thresholding segmentation, the threshold value is not a 

constant value and relies on the mean intensity values of pixels, which correspond to the lumen 

region. 

The main idea of this approach is to adapt the threshold values of NCP into the luminal intensity, by 

defining a critical value threshold.  More specifically the range of NCP HU values is extracted based 

on the mean luminal intensity (ml). The ml is computed after the implementation of the Frangi 
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vesselness filter.  The ml value is the mean value of the highest of half image intensities, which are 

higher than 100 HU, considering only the parts of the CTA image, which are potential coronary 

vessels.  After the definition of the ml, the range of NCP intensities is defined from 100 HU to the ml 

value.  In addition to this, the aforementioned segmentation approach is implemented in the ROI, 

which is located inside the segmented outer wall and outside the inner wall. An example of the 

segmentation procedure is demonstrated in Figure 3.13. 

 

Figure 3.13 An example of the segmentation procedure: a) the acquired image, b) inner wall, outer wall and 

NCP plaques [205]. 

 

3.3.4 3D surface reconstruction 

The Marching cubes algorithm, which has been proposed by Lorensen and Cline [222], is applied to 

construct the 3D surfaces for the the CP and the NCP.  More specifically, a triangle topology is 

defined by constant density surfaces, applying the divide- and- conquer approach to create inter-slice 

connectivity. In Figure 3.14, a 3D reconstructed geometry of the lumen, the outer wall and the CP 

back-projected in volume rendering is illustrated.  Moreover, in Figure 3.15 and Figure 3.16, lumen, 

outer wall and both types of atherosclerotic plaques (CP and NCP) are shown for coronary arterial 

tree and coronary artery bifurcation, respectively. 
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Figure 3.14 3D reconstructed models for the lumen, the outer wall and the CP [204]. 

 

 

Figure 3.15 3D reconstructed models of a coronary arterial bifurcation for the lumen, the outer wall, the CP 

and the NCP. 
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Figure 3.16 3D reconstructed models of a coronary arterial tree for the lumen, the outer wall, the CP and the 

NCP. 

 

 

 

 



 

85 
 

3.4 Dataset 

3.4.1 Dataset for 3D coronary artery reconstruction 

3.4.1.1 Dataset for inner wall and outer wall segmentation 

The data used for the validation of the inner and outer wall segmentaion, were acquired from 12 

patients, who underwent CTA imaging for clinical purposes.  Our validation dataset consists of 

twelve coronary arteries, deriving from six different medical centers. Two arteries were completely 

healthy (no stenosis present), nine arteries had an intermediate stenosis (seven had a 30%-50% DS 

and two had a 50%-70% DS) and one artery was fully occluded (>90% DS). Five arteries were 

scanned with a 64-slice Dual Source Siemens SOMATOM Definition Flash® CT scanner, two 

arteries were scanned with a Philips Brilliance 64 CT Scanner® and the remaining five arteries were 

scanned with a 64-slice General Electric Medical Systems Discovery PET-CT 690® scanner. 

IVUS and biplane X-ray angiography were acquired from eight patients who underwent coronary 

catheterization. CTA imaging was also acquired for the same patients. Registration between the 

imaging modalities was performed using major landmarks common for all modalities, such as the 

bifurcations or large CP.  

3.4.1.2 Dataset for CP and NCP segmentation 

Dataset to compare with VH-IVUS modality  

The proposed methodology was validated using imaging data from 18 patients, who underwent 

CA, IVUS and CTA imaging for clinical purposes.  All of the patients enrolled in the study had a 

significant luminal stenosis (>50%), which was initially confirmed by the CTA imaging and 

further investigated by VH-IVUS.  This imaging dataset was provided by the Heart Institute, 

University of Sao Paulo, São Paulo, Brazil and the CTA images acquisition was performed using a 

64slice MDCT scanner (Aquillion 64TM, Toshiba Medical Systems, Japan), while the IVUS 

examination was performed using a 20 MHz electronic multi-array 2.9 F catheter (Eagle Eye®, 

Volcano Corporation Inc) connected to a dedicated console (InVision Gold®, Volcano Corporation 

Inc., San Diego, CA, USA).  
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Dataset to compare with manual expert’s annotations  

The imaging data were acquired from 27 patients, who underwent CTA imaging for clinical 

purposes and one of their coronary arteries was selected for manual expert’s analysis.  8 coronary 

arteries had no significant stenosis (<30%), 8 had an intermediate stenosis (30%-50%), 8 had a 

significant stenosis (50%70%) and 3 coronary arteries were fully occluded with a stenosis higher 

than 70%.  In addition to this, the utilized imaging dataset was derived by six different medical 

centers and the coronary arteries were scanned with different CTA scanners (64-slice Dual Source 

Siemens SOMATOM Definition Flash® CT scanner, Philips Brilliance 64 CT Scanner®, 64-slice 

General Electric Medical Systems Discovery PET-CT 690®).  

3.4.2 Dataset for 3D carotid artery reconstruction 

A total of 16 patients (4 females and 12 males) with a mean age of 76 years (range: 55–86 years) 

were used for the validation of the carotid artery reconstruction.  14 patients have no previous event, 

whereas 2 of them have a following stroke event.  CTA was performed on either a Philips ICT (256 

rows) or an Iqon (64rows) with the same protocol. Bolus tracking was used with the ROI placed in 

the aortic arch.  80 ml of Imeron 350 was administered with a flow rate of 4ml/s followed by a 50ml 

saline chaser.  Collimation and reconstruction matrix was 0.9mm 

3.5 Results 

3.5.1 Results for coronary artery reconstruction 

3.5.1.1 Results for inner wall and outer wall segmentation 

Artery reconstruction using manual annotations 

Reconstruction of arteries was successfully obtained in 12 patients, 2 RCA, 8 LAD and 2 LCX, by 

the proposed methodology in a semi-automatic manner, whereas an expert radiologist manually 

annotated in the corresponding segments the lumen and the outer wall. 

The aim of the validation process is to assess the accuracy and the quality of the proposed 

methodology.  In this study, our purpose is to validate our methodology, using as gold standard a 

medical expert’s annotations.  It is known that the lack of expert-annotated datasets remains one of 

the main challenges in medical image processing [223].  Generating high-quality expert-derived 
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annotations in CTA images is time-consuming and requires a specialized in CTA imaging field 

medical expert. 

Artery and CP reconstruction using IVUS 

Reconstructions of arteries based on IVUS modality is performed using the study proposed by 

Bourantas et al. [224]. This approach combines the IVUS and X-ray angiography and based on the 

3D luminal centerline, derived from two angiographic projections, it places the lumen and the media-

adventitial borders detected by IVUS frames onto the centerline. 

Metrics for evaluating 3D image segmentation 

The lumen and  the outer wall  reconstructed by the two different modalities were compared using as 

metrics for the 3D image segmentation the DICE and the HD [225].  Additional metrics were used 

for the validation of the proposed methodology against the IVUS based reconstructed segments.  For 

this purpose we used for comparison two types of DS (DS1, DS2), the PB, the MLA and the MLD.  

In more detail, the DICE, also called overlap index, is an overlap based metric, which is widely used 

to compare directly automatic and expert’s annotations segmentations.  It is considered as a statistical 

validation metric to evaluate the performance of both the reproducibility of manual segmentations 

and the spatial overlap accuracy of automated segmentation [226].  DICE is defined as: 

 𝐷𝐼𝐶𝐸 =
2|𝑆𝑔

1∩𝑆𝑡
1|

|𝑆𝑔
1|+|𝑆𝑡

1|
, (3.18) 

where 𝑆𝑡
1 presents the automatic segmentation and 𝑆𝑔

1 presents the expert’s annotations. 

HD is a spatial distance based metric and is commonly used in the evaluation of image segmentation 

as dissimilarity measure.  HD between two finite point sets A and B is defined as: 

 𝐻𝐷(𝐴, 𝐵) = 𝑚𝑎𝑥(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)), (3.19) 

where ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖. 

The 3D models reconstructed by CTA and IVUS were compared using as validation metrics the DS1, 

the DS2, the PB, the MLA and the MLD.  Each 3D model was sliced per 0.5 mm, to estimate the 

validation metrics. Based on the literature, two different ways of DS estimation were used [227]. 

More specifically, DS1 and DS2 are given by: 
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 𝐷𝑆1 =
𝐵−𝐴

𝐵
∙ 100%, (3.20) 

 𝐷𝑆2 =
𝐶−𝐴

𝐶
∙ 100%, (3.21) 

where 𝐴 is the luminal diameter at the site of maximal narrowing, 𝐵 is the diameter of the normal 

distal coronary artery beyond the bulb where the artery walls are intersected and 𝐶 is the diameter of 

estimated original width of the coronary artery at the site of maximal narrowing, as it is shown in 

Figure 3.17 below. 

 

Figure 3.17 Diagram of a coronary stenosis. 

 

The PB is extracted based both on the inner and the outer wall contours areas per 0.5 mm and is 

given by: 

 𝑃𝐵 =
𝑜𝑢𝑡𝑒𝑟_𝑤𝑎𝑙𝑙_𝑎𝑟𝑒𝑎−𝑖𝑛𝑛𝑒𝑟_𝑤𝑎𝑙𝑙_𝑎𝑟𝑒𝑎

𝑜𝑢𝑡𝑒𝑟_𝑤𝑎𝑙𝑙_𝑎𝑟𝑒𝑎
, (3.22) 

Comparison using manual annotations 

For both quantitative evaluation and comparison purposes, we present in Table 3.2 the DICE and HD 

distributions obtained by the comparison of the proposed segmentation methodology and the expert’s 

manual segmentation.  The HD demonstrates the degree of resemblance between the two models 

which are superimposed on one another.  Thus, the lower HD implies better segmentation, while a 

higher DICE implies higher accuracy of the segmentation. 
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The validation process indicates a good agreement, since the mean value of DICE is 0.749, while the 

mean value of HD is 1.746.  In Figure 3.18, an example of the lumen 3D models reconstructed by the 

proposed methodology and by the expert’s annotation, is shown.  The two reconstructed arteries 

indicate a similar geometry.  The semi-automated reconstructed artery is smoother than the manually 

segmented, since a pixel by pixel segmentation may not result in a smooth shape. 

 

Table 3.2 Segmentation Validation metrics for CTA images. 

Cases Arteries DICE  HD 

#1 LAD 0.847 0.837 

#2 LAD 0.675 1.910 

#3 LAD 0.777 0.860 

#4 LAD 0.674 2.423 

#5 LAD 0.759 1.589 

#6 LAD 0.810 1.510 

#7 LAD 0.574 2.671 

#8 LAD 0.751 1.800 

#9 LCX 0.847 1.296 

#10 LCX 0.722 1.830 

#11 RCA 0.781 2.341 

#12 RCA 0.778 1.880 

 

 

Figure 3.18 Lumen and CP objects detected by a) the proposed methodology, and b) the medical expert 

annotation [204]. 

Comparison using IVUS findings 

As far as the comparison with IVUS process is concerned, we demonstrate in Table 3.3 the values of 

the comparison metrics.  The metrics of the 3D models derived by our methodology are correlated 
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with those derived by the IVUS findings, and the Bland altman and correlation plots for DS1, DS2, 

MLA, MLD, and PB are demonstrated in Figure 3.19, Figure 3.20, Figure 3.21, Figure 3.22 and 

Figure 3.23, respectively.  It is clear, that the correlation between the two methodologies is 

statistically significant for all the reconstructed cases. 

 

Table 3.3 Comparison of geometrical metrics derived by the presented methodology with those derived by an 

IVUS based approach. 

Cases Method DS1(%) DS2(%) PB(/0.5mm) MLA(mm2) MLD(mm) 

#1 CT 0.29 0.53 0.53±0.09 3.73 1.10 

IVUS 0.43 0.47 0.54±0.17 3.72 1.11 

#2 CT 0.17 0.33 0.45±0.09 7.2 1.49 

IVUS 0.27 0.37 0.5±0.07 8.37 1.64 

#3 CT 0.64 0.55 0.45±0.11 0.95 0.75 

IVUS 0.54 0.46 0.38±0.2 3.81 1.15 

#4 CT 0.27 0.33 0.5±0.07 5.46 1.32 

IVUS 0.17 0.33 0.42±0.2 7.45 1.62 

#5 CT 0.54 0.56 0.55±0.09 0.83 0.78 

IVUS 0.5 0.62 0.51±0.08 3.18 1.03 

#6 CT 0.34 0.48 0.46±0.09 5.14 1.28 

IVUS 0.24 0.33 0.54±0.09 4.28 1.19 

#7 CT 0.54 0.72 0.48±0.08 3.05 0.87 

IVUS 0.5 0.62 0.52±0.09 4.79 1.24 

#8 CT 0.43 0.42 0.36±0.09 1.47 0.79 

IVUS 0.3 0.51 0.26±0.22 2.51 0.9 
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Figure 3.19 Bland Altman and Correlation plots for the DS1. 

 

 

Figure 3.20 Bland Altman and Correlation plots for the DS2. 

 

 

Figure 3.21 Bland Altman and Correlation plots for the MLA. 
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Figure 3.22 Bland Altman and Correlation plots for the MLD. 

 

 

Figure 3.23 Bland Altman and Correlation plots for the PB. 

 

The results above indicate a good correlation between the presented methodology and an already 

validated 3D reconstruction methodology [224], which utilizes the IVUS imaging modality.  In some 

cases, the presented methodology indicates an excellent agreement, compared to the IVUS modality 

as it is shown in Figure 3.24, below.  It is observed the calculated surfaces per 0.5 mm of the 3D 

coronary model derived by CTA based method are similar to those derived by IVUS based method. 
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Figure 3.24 Comparison between the inner wall area per 0.5mm derived by the presented methodology and 

the inner wall area per 0.5mm derived by an IVUS based approach. 

 

Evaluation of blooming effect removal using IVUS findings 

As far as the validation of blooming effect removal is concerned, we demonstrate in Table 3.4 the 

geometrical features derived by the CTA based methodology with and without the incorporation of 

blooming effect removal, in comparison with the IVUS based reconstruction methodology.  It is 

observed that the geometrical features derived by the methodology which incorporates the blooming 

effect removal indicates a better correlation with those derived by the CTA based methodology, 

which do not incorporate the blooming effect removal.  In addition to this, in Figure 3.25, we 

demonstrate that the mean error of the lumen area per 0.5mm derived by the CTA based 

methodology when the blooming effect removal is incorporated, is lower than the respective error of 

the lumen area per 0.5 mm derived by the CTA based methodology without the incorporation of 

blooming effect removal, when it is compared to the IVUS based methodology. 
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Table 3.4 Comparison of geometrical metrics derived by the presented methodology with the 

incorporation of blooming effect removal, without the blooming effect removal and with those 

derived by an IVUS based approach. 

Cases Metrics CTA CTA Blooming 
IVUS 

#1 
DS1 0.30 0.31 0.27 

DS2 0.54 0.53 0.46 

PB 0.56 0.52 0.52 

PB/0.5mm 0.53±0.09 0.48±0.17 0.54±0.17 

#2 
DS1 0.38 0.28 0.16 

DS2 0.36 0.34 0.33 

PB 0.54 0.50 0.37 

PB/0.5mm 0.50+0.07 0.46+0.06 0.36+0.2 

#3 
DS1 0.62 0.60 0.22 

DS2 0.72 0.70 0.45 

PB 0.47 0.42 0.64 

PB/0.5mm 0.48±0.08 0.47±0.09 0.52±0.09 

#4 
DS1 0.56 0.47 0.28 

DS2 0.59 0.51 0.68 

PB 0.53 0.57 0.73 

PB/0.5mm 0.55±0.09 0.58±0.08 0.51±0.08 

#5 
DS1 0.44 0.41 0.29 

DS2 0.41 0.41 0.60 

PB 0.36 0.39 0.50 

PB/0.5mm 0.36±0.09 0.37±0.09 - 
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Figure 3.25 Comparison of the proposed methodology (with and without blooming incorporation) with IVUS 

based methodology. 

 

3.5.1.2 Results for CP and NCP segmentation 

In the validation procedure, 18 coronary arteries and 90 CTA and VH-IVUS slices were identified, 

registered and used for the validation procedure.  After the implementation of the proposed 

methodology and the analysis of VH-IVUS slices, we identified 6 CP lesions and 12 NCP lesions.  

As far as the 3D comparison procedure is concerned, we present in Table 3.5 and Table 3.6 the 

volume and the length of the lesions obtained by the proposed methodology and by the VH-IVUS 

for CP and NCP, respectively.  

The correlation between CTA and VH-IVUS is extracted using Bland Altman analysis and linear 

regression correlation analysis.  The Bland Altman plots and the correlation plots are shown in 

Figure 3.26 for the CP volume and CP length of lesion, whereas in Figure 3.27, the corresponding 

plots for the NCP volume and length of the lesion are shown.  As far as the 2D comparison 

procedure is concerned, in Figure 3.28 and Figure 3.29 the Bland Altman analysis and the 

correlation plot for the CP area and NCP area are shown, respectively. The comparison results 
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indicate that the Pearson's correlation (r) for the CP volume, the length of the lesion and the area 

was 0.93, 0.84 and 0.85, while the Degree of correlation (R2) was 0.85, 0.71 and 0.72, for the CP 

volume, the CP length of the lesion and the CP area, respectively.   

 

 

Figure 3.26 Bland-Altman and correlation plots for CTA and VH-IVUS for the CP volume and the CP length 

of lesion. 
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Figure 3.27 Bland-Altman and correlation plots for CTA and VH-IVUS for the NCP volume and NCP length 

of lesion. 

 

Figure 3.28 Bland-Altman and correlation plots for CTA and VH-IVUS for the CP area. 
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Figure 3.29 Bland-Altman and correlation plots for CTA and VH-IVUS for the NCP area. 

 

The corresponding correlation values of NCP are 0.92, 0.95 and 0.81 for Pearson's correlation (r), 

and 0.85, 0.9, 0.64 for the Degree of correlation (R2), for the plaque volume, the length of lesion 

and the area, respectively.  The mean values of the plaque volume extracted by the proposed 

methodology are 6.98±4.59 mm3 and 120.59±83.11 mm3 for CP and NCP, respectively, whereas 

the corresponding mean values of the plaque volume by VH-IVUS are 5±3.58 mm3 for CP and 

129.28±101.3 mm3 for NCP.  The mean value of the CP length of the lesion is 3.63±2.25 mm and 

for the NCP lesion is 40.375±18.62 mm, while the mean value of the CP length of lesion based on 

VH-IVUS is 4.04±1.97 mm and of NCP lesion 46±18.29 mm.  In addition to this, the mean value 

of the plaque area based on CTA and VH-IVUS is 0.59±0.99 mm2 and 0.42±0.61 mm2 for CP, 

respectively, and 2.31±1.17 mm2 and 2.26±1.38 mm2 for NCP, respectively.  The previously 

described correlation metrics and the mean values of the validation metrics are shown in Table 3.7 

and Table 3.8, respectively.  
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Table 3.5 Validation metrics for the CP. 

Case CP volume VH-

IVUS (mm3) 

CP volume 

CTA (mm3) 

Length of the CP 

lesion VH-IVUS (mm) 

Length of the CP 

lesion CTA (mm) 

#1  2.81  2.72  2.9  1.3  

#2  0.86  1.49  1.68  1.5  

#3  9.54  10.69  4.81  4  

#4  5.56  7.2  6.57  7.5  

#5  8.8  13.51  5.81  4  

#6 2.41 6.24 2.49 3.5 

 

Table 3.6 Validation metrics for the NCP. 

Case NCP volume VH-

IVUS (mm3) 

NCP volume 

CTA (mm3) 

Length of the NCP 

lesion VH-IVUS (mm) 

Length of the NCP 

lesion CTA (mm) 

#1  246.39 369.84 59 50.5 

#2  158.73 179.63 71.5 67.5 

#3  80.42 100.69 26 20 

#4  18.39 20.16 24 21 

#5  29.11 37.09 26 20.5 

#6  151.12 131.24 42 32 

#7  93.89 69.25 32.5 36.5 

#8  197.48 200.69 73.5 72 

#9  35.12 31.14 18 16.5 

#10  105.29 95.05 33 36.5 

#11  67.74 87.39 32.5 43.5 

#12 263.38 229.2 46.5 45 

 

Table 3.7 CTA and VH-IVUS correlation metrics. 

 Correlation metrics Pearson's correlation (r) Degree of correlation (R2) 

CP 

CP volume vs VH-IVUS  0.93 0.85 

CP length of lesion vs VH-IVUS  0.84 0.71 

CP area vs VH-IVUS  0.85 0.72 

NCP 

NCP volume vs VH-IVUS  0.92 0.85 

NCP length of lesion vs VH-IVUS  0.95 0.90 

NCP area vs VH-IVUS  0.81 0.64 
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Table 3.8 CTA and VH-IVUS validation metrics. 

 Metrics CTA VH-IVUS 

CP 

volume 6.98±4.59 5±3.58 

length of lesion 3.63±2.25 4.04±1.97 

area 0.59±0.99 0.42±0.61 

NCP 

volume 120.59±83.11 129.28±101.3 

length of lesion 40.375±18.62 38.46±18.29 

area 2.31±1.17 2.26±1.38 

 

Comparison with manual annotations  

The utilized data were acquired from 27 patients, who underwent CTA imaging for clinical 

purposes.  1350 CTA slices were utilized and manually annotated for the lumen segmentation 

validation, whereas 78 CTA slices and 47 CTA slices were utilized for the CP and NCP 

segmentation validation procedure, respectively.  In Table 3.9, we present the DICE and HD for 

the lumen segmentation, whereas in Table 3.10 and Table 3.11, we present the DICE and HD 

distributions for the CP and NCP, respectively.  The mean value of DICE was 0.72±0.08, 0.7±0.09 

and 0.62±0.07, for the lumen, CP and NCP, respectively, whereas the mean HD value was 1.95 

±0.45, 1.74 ±0.34 and 1.95 ±0.36 for lumen, CP and NCP, respectively.  In Figure 3.30, we show 

the manual and the automated segmentation for the lumen (Figure 3.30a and Figure 3.30b), the CP 

(Figure 3.30c and Figure 3.30d) and the NCP (Figure 3.30e and Figure 3.30f). 

Table 3.9 Validation metrics against manual annotations for the lumen segmentation. 

Cases  Lumen   Cases  Lumen   

DICE  HD  DICE  HD  

#1 0.79±0.1 2.39±0.86 #15 0.77±0.05 2.43±0.18 

#2 0.83±0.05 2.07±0.35 #16 0.66±0.14 1.6±0.43 

#3 0.67±0.09 1.69±0.57 #17 0.52±0.12 1.78±0.58 

#4 0.8±0.06 1.77±0.55 #18 0.68±0.08 1.588±0.73 

#5 0.79±0.04 1.63±0.3 #19 0.81±0.1 1.86±0.66 

#6 0.72±0.1 2.09±0.37 #20 0.77±0.08 1.68±0.43 

#7 0.64±0.12 1.54±0.16 #21 0.58±0.13 2.03±0.34 

#8 0.75±0.07 2.22±0.28 #22 0.68±0.12 1.9±0.57 

#9 0.65±0.09 2±0.31 #23 0.59±0.1 2.04±0.73 

#10 0.66±0.07 2.3±0.17 #24 0.78±0.07 1.64±0.34 
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Cases  Lumen   Cases  Lumen   

DICE  HD  DICE  HD  

#11 0.64±0.03 2.31±0.38 #25 0.73±0.09 1.84±0.44 

#12 0.73±0.06 2.9±0.97 #26 0.82±0.05 2.05±0.32 

#13 0.65±0.03 2.24±0.4 #27 0.8±0.08 1.67±0.62 

#14 0.81±0.07 1.43±0.23    

 

Table 3.10 Validation metrics against manual annotations for the CP segmentation. 

Cases CP  

DICE HD 

#1 0.79±0.12 1.33±0.16 

#2 0.66±0.11 2.38±0.27 

#3 0.67±0.09 2.56±0.23 

#4 0.62±0.13 1.27±0.24 

#5 0.61±0.15 1.89±0.38 

#6 0.62±0.06 1.82±0.58 

#7 0.72±0.07 1.58±0.36 

#8 0.71±0.05 1.31±0.21 

#9 0.78±0.04 1.94±0.51 

#10 0.68±0.07 1.61±0.63 

#11 0.72±0.08 1.87±0.32 

#12 0.73±0.17 1.35±0.43 

#13 0.76±0.09 1.82±0.15 

 

Table 3.11 Validation metrics against manual annotations for the NCP segmentation. 

Cases NCP 

DICE HD 

#1 0.69±0.08 2.39±0.56 

#2 0.65 1.41 

#3 0.78±0.06 1.42±0.2 

#4 0.51±0.09 2.98±0.34 

#5 0.54±0.08 1.28±0.38 

#6 0.65±0.08 2.25±0.46 

#7 0.49±0.08 1.89±0.56 
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Figure 3.30 Manual and automated segmentation for the lumen (a, b), for the CP (c, d) and the NCP (e,f) 

[205]. 
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3.5.2 Results for carotid artery reconstruction 

Comparison with manual annotations  

In the first validation strategy, shown in the Figure 3.31, we implement a validation procedure as far 

as the 2D segmentation is concerned, computing the DICE and the HD.  Reconstruction of carotid 

arteries, both for the left common artery and the right common artery, was successfully obtained in 

16 patients. Our results indicated a value of DICE is 0.83 and 0.8, whereas the HD is 1.55 and 1.44, 

as far as the inner wall and outer wall detection is concerned, respectively.  The respective evaluation 

metrics for the identification of CP is 0.71 and 1.63, whereas the DICE and the HD for the NCP are 

0.7 and, respectively. 

 

Figure 3.31 First Validation Strategy. 

 

In the second validation strategy, shown in Figure 3.32, correlation analysis was implemented for the 

comparison of inner wall and outer wall area, derived by the automated proposed segmentation 

algorithm and these derived by manual expert’s annotation.  Correlation analysis for the inner wall is 

illustrated in Figure 3.33, whereas correlation analysis for the outer wall is illustrated in Figure 3.34.  

 

Figure 3.32 Second Validation Strategy. 
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Figure 3.33 Correlation Analysis for the inner wall area. 

 

 

Figure 3.34 Correlation Analysis for the outer wall area. 

 

3.6 Discussion 

In this chapter, a semi-automated methodology for the reconstruction of the lumen and the outer wall 

of coronary and carotid arteries, using CTA images, was presented.  The main innovation of this 

study is its automatic nature, since it only requires the starting and the ending point of the artery to 
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accurately reconstruct it.  In addition to this, the presented methodology provides accurately the 3D 

reconstruction of the entire coronary and carotid arterial tree and the user needs only to annotate the 

starting point of the bifurcation and the ending points of the vessel branches.  The presented 

methodology is mainly based on a level set segmentation model [215] for the segmentation of the 

lumen and the outer wall, which allows an accurate segmentation and its applicability is not limited 

by the low CTA images quality [214].  The unique preprocessing step of the acquired CTA images is 

to detect the vessel candidate regions.  In addition to this, the extraction of the centerline using a 

minimum cost path based approach in combination with appropriate cost functions selection, ensures 

that the extracted centerline may be the globally optimal solution.  Therefore, once the vessel 

centerline is successfully extracted, an appropriate initial vessel mask for the lumen segmentation is 

created.  Furthermore, minimum cost path approaches are able to overcome problems related to 

overlapping pathologies, depicted in the image, as well as, issues of low image quality. 

As for the coronary artery reconstruction, to our knowledge, our study is the only approach in the 

literature that allows a 3D reconstruction of coronary anatomy, which is compared both by a medical 

expert’s annotations and IVUS findings.  The results of the proposed methodology demonstrated that 

our approach is able to accurately segment the lumen and outer wall and provide geometrically 

correct 3D models.  In the literature, several methodologies [73, 197, 228-230] have been presented 

for the segmentation of CTA cross sectional images and the classification of its plaque components.  

These approaches are time consuming, since corrections of the detected borders are sometimes 

required and the reconstruction of the coronary anatomy is not implemented in an automatic or semi-

automatic manner.  This limitation is overcome by the new proposed automatic methodology, which 

provides in a fast manner the segmentation of CTA images. 

Furthermore, existing studies [64, 73, 80] are evaluated using only IVUS modality, whereas the 

presented study is validated using both medical expert annotation and IVUS 3D models.  Although, 

the manual annotation requires a lot of effort and time, since the expert annotates in each slice the 

lumen and the outer wall, expert manual segmentation of real images is regarded as a practical gold 

standard against which new segmentation algorithms can be compared [223].  On the other hand, a 

comparison with IVUS 3D reconstructed models allow us to validate the geometry of the 
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reconstructed arteries and extract validation metrics, such as the coronary lumen stenosis, the PB, the 

MLA and the MLD. 

In contrast to Athanasiou et al. existing study [64], which focused on comparison metrics, such as the 

comparison of the volume and areas of the ROI, the length and angle of the vessel, our validation 

process is dedicated to quantify the region of agreement, the overlap region between our proposed 

methodology and the manual segmentation, as well as validation metrics which demonstrate the 3D 

model accuracy.  It is known that an objective validation of image segmentation is of great 

importance, but it is such a difficult task.  Based on the literature [223, 225], the selected in this 

approach comparison metrics are two of the most common measures and their values indicate how 

accurately the segmentation algorithm performs.  More specifically, the mean value of DICE is 

0.749, while its standard deviation (SD) is 0.0787 and the mean value of HD is 1.746, while its SD is 

0.573.  The correlation coefficients for the DS1, the DS2, the PB, the MLA and MLD, when 

comparing the derived from the proposed methodology 3D models with the IVUS reconstructed 

models, were 0.79, 0.77, 0.75, 0.85, 0.81, respectively.  In the proposed methodology, the validation 

dataset consists of data acquired from three different scanners.  That means that our 3D 

reconstruction approach is applicable in different clinical environments, since each CT scanner is 

characterized by its different properties and settings. 

Regarding the carotid artery reconstruction, different studies have been proposed in the literature for 

the carotid arteries CTA imaged analysis.  Most of them are dedicated on the entire carotid vessel 

(outer wall) detection [86, 88, 89, 91, 97] and do not identify the inner wall (lumen) of the carotid 

arteries.  On the other hand, Freiman et al. [93] in a study proposed in 2012 presented a graph-cut 

based segmentation algorithm for the accurate detection of carotid artery lumen (inner wall) and 

achieves an overall DICE of 84.5% ± 3.3%.  Nevertheless, this study is validated against 

experimental existing studies [231] and not directly compared to experts’ manual annotations, which 

is considered as the gold standard.  Moreover, another carotid artery lumen segmentation 

methodology has been presented by Hemmati et al. [96] and achieves an overall DICE of 0.85.  

However, this study is not capable of identifying the vessel centerline of small branches and it is 

necessary to remove small branches in centerline extraction stage.  Additionally, the methodology 
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fails to identify the vessel centerline in the regions where the vessel is occluded.  Other existing 

studies, such as the study proposed by Guha et al. [98] and dos Santos et al. [95] have not been 

validated quantitatively. 

Our proposed study for the segmentation of the entire carotid artery vasculature and the 

atherosclerotic plaques presented a complete methodology for the segmentation of the two 

anatomical layers of the carotid arteries, both the inner wall and the outer wall.  The detection of both 

the inner and the outer wall of the carotid artery constitutes the novel aspect of the proposed 

methodology, since both layers have a clinical significance.  More specifically, the DS, calculated by 

the segmentation of the inner wall, is considered as one of the most significant geometric features of 

the carotid artery and its value contributes to the clinical decision and the patient management.  

Additionally, the quantification of the overall PB region, computed by the detection of both the inner 

wall and outer wall, is also a significant measurement as far as the carotid artery disease prediction 

and its progression is concerned.   

Regarding the atherosclerotic plaques detection based on CTA, this methodology presents an 

automated methodology for their reconstruction.  To our knowledge, the proposed study 

constitutes a novel approach due to its automated nature and its validation process, as far as the 

CTA validation process is concerned.  More specifically, the proposed study is validated utilizing 

VH-IVUS modality for the 3D distribution of CP and NCP, while it is also validated in terms of 

CP and NCP segmentation accuracy, by directly comparing medical doctor’s annotations.  

As far as the CP is concerned, its pixels can be easily identified using the CTA modality due to 

their high intensity values.  On the other hand, the detection of NCP constitutes a challenging 

problem, since the NCP intensity is characterized by lower intensity values, close to the blood 

and the muscle tissues.  The CTA modality is a promising non-invasive technique to accurately 

detect the NCP in the PB.  Direct identification and quantification of NCP and PB is an important 

issue, since the NCP has been indicated as a significant indicator of acute coronary syndromes 

[35] and its presence is more likely to be associated with high-risk groups, such as those with 

elevated inflammatory biomarkers and those suffering from DM [36, 37].  
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In the proposed methodology, two 2D segmentation approaches are implemented for the 

detection of CP and NCP.  The identification of CP relies on level set models, whereas the NCP 

detection is based on a dynamic thresholding technique.  Although the level set models achieve an 

accurate segmentation, in the case of NCP this is not applicable, since the HU intensities of NCP 

proposed in the literature are close to those of the outer wall.  Therefore, since an accurate inner 

and outer wall detection has been achieved, a validated ROI detection ensures the accurate CP and 

NCP detection.  As a result, a good correlation was indicated and no significant differences of 

plaque volumes, lengths of coronary atherosclerotic plaque lesions and areas quantified by CTA 

and VH-IVUS were observed.  In Table 3.12, a comparison of the NCP volumes derived by the 

proposed methodology and by other methodologies is presented.  It is observed that the study 

proposed by Dey et al. [16] indicate a higher correlation.  This study is concentrated only on the 

quantification and detection of NCP and does not provide any details about the vessel geometry 

and the distribution of the plaque in 3D space.  In addition to this, the study proposed by Dey et 

al., [16] requires by the user the starting and the ending point of the plaque lesion to quantify the 

NCP lesion.  Contrary to this study, our proposed methodology is able to identify either CP or 

NCP lesions in the entire coronary arterial tree, indicating only the starting point of the coronary 

bifurcation and the ending points of each coronary artery branch.   

Furthermore, several studies have been conducted focusing on the ability of expert observers to 

detect and annotate manually NCP using CTA.  These studies indicate a strong correlation with the 

NCP volumes derived by IVUS.  However, these approaches are time consuming, since they are 

not implemented in an automatic or semi-automatic manner [39-42].  In our methodology, this 

limitation is overcome, since the proposed methodology requires low computation time for the 3D 

reconstruction of coronary arteries.  In addition to this, it should be noted that the proposed 

methodology achieves an expedite 3D coronary reconstruction of the entire coronary arterial tree.  

In this way, the atherosclerotic plaque can be identified not only in coronary segments, but also in 

crucial regions, such as the coronary bifurcations.  
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Table 3.12 Comparison of the proposed methodology with the other methodologies for the NCP detection. 

Study Volume by 

CTA 

Volume by 

IVUS 

Pearson's 

correlation 

(r) 

Degree of 

correlation (R2) 

Brodoefel et al. [17] 56.7±30 55.8±26 - 0.84 

Dey et al.[16] 116±80.1 105.9±83.5 0.94 - 

Leber et al. [18] 59.8±76.6 67.7±67.9 - 0.69 

Schepis et al. [19] 89±66 90±73 0.89 - 

Proposed methodology 120.59±83.11 129.28±101.3 0.92 0.85 

 

Other studies have demonstrated that the mean luminal attenuation value varies, due to the 

different acquisition dose protocol.  In addition to this, it has been indicated that the intra-arterial 

injection of iodinated contrast agent affects not only the luminal attenuation value, but also the 

atherosclerotic plaque attenuation value [43].  The luminal attenuation varies also between 

patients.  In our study, the segmentation of NCP is clearly related to the mean luminal attenuation 

and more specifically the computed ml value varies from 276- 418 HU.  As such, the proposed 

methodology can be adapted to all the CTA acquired images and acquisition protocols.  

Apart from the selected HU threshold values for NCP, another important factor for the accurate 

identification of NCP is the reliable identification of ROI.  Accurate lumen and outer wall area 

segmentation results in accurate PB region detection.  In our study, the detection of the ROI has 

already been validated [38] using both manual expert’s annotations and a 3D reconstruction 

methodology using angiographic data fuzzed with IVUS data [34].  Thus, the presented 

methodology for NCP detection is a promising technique allowing the accurate PB 

characterization.  

Furthermore, it should be noted that the VH-IVUS permits the plaque characterization with a 

higher spatial resolution than the non-invasive CTA.  Due to its low spatial resolution, CTA is 

limited to identify the different subtypes of the NCP, contrary to VH-IVUS and to extract in a 

reliable manner the smaller atherosclerotic plaque volumes.  This approach was validated using 

large NCP volumes, ranging from 18.39 -263.38 mm3, which are more prone to rupture.  
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The presented methodology incorporates the blooming effect removal, aiming to improve the 

CTA image visualization of calcifications.  In this manner, an accurate 3D quantification of CP is 

achieved, without overestimating the CP volume, which results in the overestimation of the 

coronary lumen stenosis.  The blooming effect remains a challenging artifact of CTA images, 

which can be limited by deconvolution and filtering techniques.  In addition, we implement a 

deconvolution procedure on the high intensity image’s pixels to quantify in a reliable manner the 

CP volume.  Thus, no significance difference is observed between the CP volumes derived by the 

presented methodology and those extracted by VH-IVUS analysis, achieving a high Pearson's 

correlation (r=0.93).  
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Chapter 4 Coronary Artery Disease Prediction  

4.1 Introduction 

4.2 Coronary artery disease prediction based on imaging and non-imaging data 

4.3 A Machine Learning Approach for the Prediction of the Progression of 

Cardiovascular Disease based on Clinical and Non-Invasive Imaging Data 

4.4 Site specific prediction of atherosclerotic plaque progression 

4.5 Site specific prediction of PCI stenting based on imaging and biomechanics data 

using gradient boosting tree ensembles 

4.5 Conclusions 

 

 

 

4.1 Introduction 

The recent advances in coronary imaging techniques, either invasive or non-invasive, have enabled 

the identification of coronary vessels features, which are considered as CAD risk factors.  Taking 

advantage of the overall pipeline of 3D reconstruction of coronary arteries, which was described in 

detail in chapter 3, in this chapter we aim to develop and present innovative ML models for the CAD 

prediction.  

More specifically, the basic aim of this chapter is to: 

i. develop a ML predictive model, which incorporates both non-invasive imaging data, derived 

by CTA and typical patient’s baseline characteristics to predict the CAD risk and especially 

the obstructive disease [232]. 

ii. present a patient specific ML based model for the prediction of CAD progression using 

vasculature geometrical features based on CTA imaging and the conventional CAD risk 

factors [233]. 
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iii. present a site specific ML tree- based model for the prediction of atherosclerosis progression 

[234]. 

iv. present a site specific model for the prediction of the coronary site specific Percutaneous 

Coronary Intervention (PCI) stenting placement, based on imaging derived predictors, 

implementing a gradient boosting tree ensemble technique [235]. 

 

4.2 Coronary artery disease prediction using machine learning 

4.2.1 Methodology 

4.2.1.1 CTA Image Analysis and Three-Dimensional Reconstruction  

The first step of the development of the CAD risk prediction model was the analysis of the CTA 

images. This analysis was conducted by implementing an active contour based model for the 

segmentation of CTA images and aimed to provide a detailed geometry of the three major coronary 

arteries, the LAD, the LCX, and the RCA. This methodology is integrated in a dedicated software 

tool, which can semi-automatically provide the detailed 3D coronary artery anatomy [204, 205].  

More details for the overall 3D reconstruction methodology can be found in the Chapter 3. 

4.2.1.2 Calculation of the SMARTFFR index 

In this study, except of the geometrical derived metrics. a blood-flow-based index, the SMARTFFR 

index [236] was utilized.  In order to calculate SMARTFFR, blood flow finite element simulations are 

carried out on the reconstructed 3D models of the coronary arteries. The arterial lumen is discretized 

into tetrahedral finite elements of face size that ranges from 0.09 to 0.12 mm and the respective 

Navier-Stokes and continuity equations are then solved using the Finite Elements method. A 

transient blood flow simulation is performed on the 3D reconstructed artery.  The flow is considered 

laminar and the blood is treated as a Newtonian fluid with density 1050 kg/m3 and dynamic viscosity 

0.0035 Pa∙s.  For each timestep, the Pd/Pa value is calculated to construct the Pd/Pa vs. flow curve.  

The calculated Pd/Pa values for every timestep are then connected to create the appropriate patient-

specific curve. The patient-specific curve is constructed for a flow range of 0-4 ml/s and the 

SMARTFFR value is calculated by dividing the area under the patient specific curve to the respective 

AUC of the respective healthy arterial segment [237].  The overall procedure for SMARTFFR index 

calculation is shown in Figure 4.1. 
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Figure 4. 1 Overall procedure for the SMARTFFR index calculation. 

 

4.2.1.3 Problem Definition 

In the presented approach, the CAD risk stratification problem has been formulated as a two-class 

classification problem based on the maximal coronary artery stenosis. This hypothesis is based on 

the findings of the Coronary Artery Disease Reporting and Data System (CAD-RADS) [238], which 

provides a standardized method to associate findings of the CTA imaging modality to facilitate 

decision making regarding further patient management.  Figure 4.2 shows the distribution of the 

population across the two CAD-severity groups. More specifically, among the total 263 patients who 

underwent CTA imaging for clinical purposes, 55 patients underwent PCI stenting procedure and 10 

patients coronary artery bypass grafting (CABG) procedure, whereas CTA images of 11 patients 

were considered as interpretable either at the baseline time step or at the follow-up time step. The 

annotation was based on the assessment of the obstructive disease: at least one major artery with 

stenosis > 50% and at the follow-up time step 125 participants were at Class 1— 𝐶1, whereas 62 

participants were at Class 2— 𝐶2. 

The definition of these two classes is based on the quantitative DS derived by the CTA imaging 

modality according to the society of CV CT guidelines committee [239]. More specifically, the first 

class, the no CAD—minimal CAD class (Class 1— 𝐶1)), includes the grading scale 0, 1, and 2 

(normal, minimal, and mild), whereas the obstructive CAD class (Class 2— 𝐶2)) includes the grading 

scale 3, 4 ,and 5 (moderate, severe, and occluded), as it is shown in Table 4. 1.  This classification 

was selected because we want to predict the obstructive CAD disease.  

Table 4. 1 Definition of the utilized CAD risk classes. 
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Proposed 

Classes 

Recommended Stenosis 

Grading Scale of CAD 

Quantitative Stenosis 

Class 1— 𝐶1 0: Normal No luminal stenosis 

1: Minimal Plaque with <25% stenosis 

2: Mild 25–49% stenosis 

Class 2— 𝐶2 3: Moderate 50–69% stenosis 

4: Severe 70–99% stenosis 

5: Occluded 100% stenosis 

 

 

Figure 4.2 Flow chart depicting the distribution of the cohort in CAD-severity groups based on the CTA 

imaging at the follow-up step. in total, 287 patient imagings (125 in Class 1 and 62 in Class 2) were analyzed 

[232]. 

Baseline imaging and non-imaging characteristics were trained into a gradient boosting classification 

scheme, aiming to discriminate the patients at low risk (Class 𝐶1) and those at high risk (Class 𝐶2), 

concerning their follow-up time step. This predictive supervised learning approach aims to learn 

mapping from input features 𝑥 to output 𝑌 given a labeled set of input output pairs 𝐷 = {(𝑥𝑖, 𝑌𝑖)}𝑖=1
𝑁 , 

where 𝐷 is the training set, and 𝑁 is the number of training examples [240]. Each sample (𝑥𝑖, 𝑌𝑖) 
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associates the input features with the risk prediction of CAD severity, 𝑌, where 𝑌 ∈ {𝐶1, 𝐶2}, is 

estimated by a non-linear parameterized function (𝑓) of input features 𝑥 ∈ 𝑅𝑑, 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁]. 

The goal of this supervised classification problem is to obtain an approximation 𝐹(𝑥) of the function 

𝐹∗(𝑥) mapping the input 𝑥 to output 𝑌. The function 𝐹∗(𝑥) minimizes the expected value of some 

specified loss function 𝐿(𝑦, 𝐹(𝑥)), whereas the procedure followed in this proposed study is to 

restrict the function 𝐹(𝑥) to be a member of parameterized class of functions 𝐹(𝑥; 𝑌). In addition to 

this, in this paper, we constructed our model based on additive expansions of the form 

𝐹(𝑥; {𝛽𝑚, 𝑎𝑚}1
𝑀). 𝐹∗(𝑥) and 𝐹(𝑥; {𝛽𝑚, 𝑎𝑚}1

𝑀) , which are described in the following equations 

[240]. 

 𝐹∗(𝑥) = arg 𝑚𝑖𝑛 𝐸𝑦,𝑥𝐿(𝑦, 𝐹(𝑥)) = arg min 𝐸𝑥 [(𝐸𝑦 (𝐿(𝑦, 𝐹(𝑥))) |𝑥)]. (4.1) 

 𝐹(𝑥; {𝛽𝑚, 𝑎𝑚}1
𝑀) = ∑ 𝛽𝑚ℎ(𝑥; 𝑎𝑚)𝑀

𝑚=1 ,  (4.2) 

where ℎ(𝑥; 𝑎) is a simple parameterized function of the input variables 𝑥, characterized by the 

parameters 𝑎 = {𝑎1, 𝑎2, … . . }, whereas {𝛽𝑚, 𝑎𝑚}1
𝑀 denotes the entire parameter set  [240]. 

The selected predictive model was nested into an easy ensemble classification scheme to overcome 

the class imbalance problem. To estimate the classification performance of the proposed method, an 

externally stratified 10-fold cross-validation was applied, with data pre-processing, a multivariate 

feature ranking, and a gradient boosting classification scheme being efficiently combined at each 

iteration of the procedure. The overall proposed model performs feature selection in the learning 

time since it achieves model fitting and feature selection simultaneously. Data-preprocessing and 

feature ranking follow the resampling procedure itself, which reduces the selection bias in the 

estimates of the model’s performance, whereas stratification assures that each validation fold retains 

the class distribution in the dataset. In addition to these, randomized search optimization of the 

model’s hyper-parameters over an internal 3-fold cross-validation contributes to the fine-tuning of 

the presented model. 

4.2.1.4 Easy Ensemble Algorithm Implementation-Class Imbalance Handling 

The easy ensemble algorithm [241] is a class imbalance handling approach in which 𝑃 are the 

training instances of the minority class, whereas 𝑄 denotes the instances of the majority class. The 

idea of the easy ensemble algorithm is to employ random resampling to generate K subsets of 

{𝑄1, 𝑄2, … . , 𝑄𝐾} from 𝑄 (|𝑄𝑖| < |𝑄|, i = 1,2,…K). Subsequently, each 𝑄𝑖 ∪ 𝑃 is trained by the 

classifier, and the final decision is selected by majority voting.  In the proposed predictive model 

approach, the easy ensemble approach is combined with the gradient boosting classifier. 
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4.2.1.5 Data Pre-Processing 

In this step, one hot encoding procedure was implemented to represent all the categorical input 

features as binary vectors. In addition to this, a curation procedure was implemented to curate our 

dataset both for outliers and missing values. All the input features whose missing values were higher 

than 10% were removed from the dataset, whereas features with missing values lower than 10% were 

imputed by either the most frequent value (categorical type features) or the median value (numerical 

type features). 

4.2.1.6 Recursive Feature Elimination 

In this step, our aim is to reduce the dimensionality 𝑑 of input features 𝑥 ∈ 𝑅𝑑 to overcome the risk 

of overfitting, which basically arises when the number of 𝑑 is comparatively large, and the number 

of the training patterns is small. In this study, a feature ranking technique with a SVM with recursive 

feature elimination (RFE) was implemented to rank the input features. The whole SMV RFE 

procedure is shown in Table 4.2 [242]. 

Table 4.2 SVM RFE Algorithm [242]. 

Input: 

Training Examples: 𝑋0 = [𝑥1, 𝑥2, … . , 𝑥𝑘 , … . 𝑥𝑙  ]𝑇 

Class labels: 𝑦 = [𝑦1, 𝑦2, … . , 𝑦𝑘 , … . 𝑦𝑙  ]𝑇 

Initialize: 

Subset of features: 𝑠 = [1,2, … . , 𝑑] 

Feature ranked list 𝑟 = [ ] 

Repeat until 𝑠 = [ ] 

Restrict training examples to good feature in DICEs: 𝑋 = 𝑋0(: , 𝑠) 

Train the classifier: 𝑎 = 𝑆𝑉𝑀_𝑡𝑟𝑎𝑖𝑛(𝑋, 𝑦) 

Minimize over 𝑎𝑘: 𝐽 =
1

2
∑ 𝑦ℎ𝑦𝑘𝑎ℎ𝑎𝑘(𝑥ℎ ∙ 𝑥𝑘 + 𝜆𝛿ℎ𝑘) − ∑ 𝑎𝑘𝑘ℎ𝑘 , subject to: 0 ≤ 𝑎𝑘 ≤ 𝐶 and 

∑ 𝑎𝑘𝑦𝑘 = 0𝑘   

Outputs: Parameters: 𝑎𝑘 

Compute the weight vector of dimension length(s): 𝑤 = ∑ 𝑎𝑘𝑦𝑘𝑥𝑘𝑘  

Compute the ranking criteria: 𝑐𝑖 = (𝑤𝑖)2, for all 𝑖 

Find the feature with smallest ranking criterion: 𝑓 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑐) 

Update feature ranked list: 𝑟 = [𝑠(𝑓), 𝑟] 

Eliminate the feature with smallest ranking criterion: 𝑠 = 𝑠(1: 𝑓 − 1, 𝑓 + 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠)) 

Output: Feature ranked list 𝑟 
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4.2.1.7 Gradient Boosting Classification 

In the first step, the gradient boosting classification algorithm [243] implements a numerical 

implementation minimizing the equation of 𝐹∗(𝑥) (Equation 4.1).  The Gradient Boosting 

classification algorithm [243] implements a numerical implementation, minimizing Equation 4.1 and 

yields an additive expansion of the form: 

 𝐹∗(𝑥) = ∑ 𝑓𝑚(𝑥)𝑀
𝑚=0 ,  (4.3) 

where 𝑓0 is an initial guess and {𝑓𝑚}1
𝑀 are successive “boosts”, each based on the sequence of 

preceding steps.  More specifically, for the steepest-descent 

 𝑓𝑚(𝑥) = −𝑝𝑚𝑔𝑚(𝑥),  (4.4) 

with  

 𝑔𝑚(𝑥) = [
𝜕𝐸𝑦[⟨𝐿(𝑦, 𝐹(𝑥))|𝑥⟩]

𝜕𝐹(𝑥)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)

,  (4.5) 

 𝐹𝑚−1(𝑥) = ∑ 𝑓𝑖(𝑥)𝑚−1
𝑖=0 ,  (4.6) 

and  

 𝑝𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝𝐸𝑦,𝑥𝐿(𝑦, 𝐹𝑚−1(𝑥) − 𝑝𝑔𝑚(𝑥)),  (4.7) 

Subsequently, based on the training dataset 𝐷 = {(𝑥𝑖 , 𝑌𝑖)}𝑖=1
𝑁  and aiming to minimize Equation 4.1, 

we try a “greedy-stagewise” approach to obtain  

 (𝛽𝑚, 𝑎𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽,𝑎 ∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛽ℎ(𝑥𝑖; 𝑎))𝛮
𝜄=1 , (4.8) 

and then 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛽𝑚ℎ(𝑥; 𝑎𝑚).  (4.9) 

Given an approximation of 𝐹𝑚−1(𝑥), the function 𝛽𝑚ℎ(𝑥; 𝑎𝑚) can be considered as the best greedy 

step towards the data based estimate of  𝐹∗(𝑥), whereas the data based analogue of the unconstrained 

negative gradient; 

 −𝑔𝑚(𝑥𝑖) = − [
𝜕𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
,  (4.10) 

gives the best steepest-descent step direction −𝑔𝑚 = {−𝑔𝑚(𝑥𝑖)}1
𝑁 in the N-dimensional data space at 

𝐹𝑚−1(𝑥).  The most highly correlated ℎ(𝑥; 𝑎) with −𝑔𝑚(𝑥) over the data distribution can be 

obtained from the solution  

 𝛼𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑎,𝛽 ∑ [−𝑔𝑚(𝑥𝑖) − 𝛽ℎ(𝑥𝑖; 𝑎)]2𝛮
𝜄=1 .  (4.11) 

The line search is performed by 

 𝑝𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝑝ℎ(𝑥𝑖; 𝑎𝑚))𝛮
𝜄=1 , (4.12) 

and the final approximation is given by: 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑝𝑚ℎ(𝑥; 𝑎𝑚).  (4.13) 

The overall pipeline of the proposed ML methodology is shown in Figure 4.3, below. 
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Figure 4.3 Overall pipeline of the proposed methodology [232]. 

 

4.2.2 Dataset 

The proposed study is based on the EVINCI population [244], in which patient-specific information, 

both imaging and non-imaging, were collected for clinical purposes and utilized as the baseline 

information for the development of a CAD risk stratification methodology, whereas the follow-up 

data were collected after 6.22 ± 1.42 during the SMARTool project (September 2016–November 

2017) [245].  More specifically, during the H2020 SMARTool project, a prospective, multicenter 

study in patients was conducted by 7 medical centers (Pisa, Turku, Zurich, Barcelona, Warsaw, 

Naples, Viareggio) from 5 European countries. All the participants signed informed consent to 

participate in the study and all the following procedures. Patients who previously underwent 

coronary CTA during the EVINCI (Evaluation of Integrated Cardiac Imaging for the Detection and 

Characterization of Ischemic Heart Disease; FP7-222915; n = 152-February 2009–June 2012) [12] 

and ARTreat (FP7-224297; n = 18) [13] clinical studies were prospectively included to undergo 

follow-up CTA.  In addition to this, individuals (n = 32) who underwent CTA in the period from 

2009 to 2012 were also prospectively included. A detailed list of inclusion and exclusion criteria is 

provided in the Appendix (Full list of eligibility, inclusion, exclusion and exit criteria).  

Anonymized data were acquired from 187 patients, derived by different medical centers, and the 

cohort data were obtained under a data protection agreement fulling all the ethical and legal 

requirements for data sharing posed by the General Data Protection Regulation in a third-level care 
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setting.  Table 4.3 below demonstrates the collected data types. The median age of the patients of our 

dataset is 61 years old (45–76), and at their first visit to the physician, all the participants underwent 

CTA imaging regardless of the presence of symptoms. More specifically, 45% and 25% of the 

participants had atypical and typical angina, respectively, whereas 12% of them had other symptoms, 

and 16% were asymptomatic. In addition to this, as for the pharmaceutical treatment of the 

participants, 18%, 28%, 13%, 40%, 13%, 10%, 3%, and 48% of them received angiotensin receptor 

blockers (ARBs), angiotensin converting enzyme inhibitors (ACEi), diuretics, beta blockers, calcium 

antagonists, oral antidiabetics, insulin, and statins, respectively, at the baseline time step. 

 

Table 4.3 Imaging and non-imaging data utilized. 

Type Features 

Imaging 

data  

Geometrical 

vasculature 

DS, MLA, MLD, PB, CP Volume, NCP volume, SMARTFFR Index, Number of 

CP, Number of NCP 

Non-

imaging 

data 

Demographic

s 

Age, Gender 

Risk factors Family History of CAD, Hypertension, DM, Dyslipidemia, Smoking, Obesity, 

Metabolic Syndrome, Past Smokers 

Biohumoral 

Markers 

Creatinine, Uric Acid, Glucose, TC, HDL, LDL, Triglycerides, Insulin, 

Aspartate Aminotransferase, Alanine Aminotransferase, Alkaline Phosphatase, 

Gamma-glutamyl Transferase, hs-CRP, IL-6, TSH, fT3, fT4, Leptin, MMP2 

Protein Plasma, MMP9 Protein Plasma, hs-cardiac Troponin T, N terminal 

Fragment of Pro-brain Natriuretic Peptide, Lipidomics, Metabolomics 

 

4.2.3 Results 

CAD Risk-Prediction Model Performance Evaluation 

The utilized CAD risk-prediction model performance metrics are the balanced accuracy, the NPV, 

the PPV, the AUC, and the sensitivity and specificity.  The values of the adopted performance 

metrics and their mean value and the 10-fold SD are given in Table 4.4. The average balanced 

accuracy of the selected predictive model is 0.81, while its sensitivity and specificity is 0.88 and 

0.73, respectively. In Figure 4.4, we demonstrate the normalized confusion matrix regarding the 

selected gradient boosting classification algorithm combined with an SVM RFE feature selection 

technique, where the percentage of the true negative predicted cases is 73%, whereas the percentage 

of the true positives cases is 87%. 

In addition to this, in Table 4.5 the respective performance metrics over the different folds and their 

mean and SD values using only non-imaging data are shown. The average balanced accuracy of the 
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predictive model trained only by non-imaging features is 0.69, while its sensitivity and specificity are 

both 0.69. 

 

Figure 4. 4 Confusion Matrix 

 

Table 4.4 Evaluation of the CAD risk-prediction problem over 10-fold using imaging and non-imaging data. 

Folds  Balanced 

Accuracy 

NPV PPV ROC AUC Sensitivity Specificity 

Fold #0 0.73 0.78 0.67 0.60 0.67 0.78 

Fold #1 0.75 0.86 0.63 0.82 0.84 0.67 

Fold #2 0.89 1 0.72 0.92 1 0.78 

Fold #3 0.69 0.78 0.6 0.72 0.6 0.78 

Fold #4 0.84 1 0.63 0.83 1 0.67 

Fold #5 0.84 1 0.63 0.89 1 0.67 

Fold #6 0.95 1 0.84 1 1 0.89 

Fold #7 0.78 1 0.56 0.78 1 0.56 

Fold #8 0.8 0.86 0.72 0.88 0.84 0.75 

Fold #9 0.8 0.86 0.72 0.75 0.84 0.75 

Mean ± SD 0.81 ± 0.08 0.92 ± 0.1 0.68 ± 0.08 0.82 ± 0.11 0.88 ± 0.15 0.73 ± 0.09 
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Table 4.5 Evaluation of the CAD risk-prediction problem over 10-fold using only non-imaging data. 

Folds  Balanced 

Accuracy 

NPV PPV ROC AUC Sensitivity Specificity 

Fold #0 0.5 0.6 0.4 0.33 0.33 0.67 

Fold #1 0.56 0.64 0.5 0.65 0.33 0.78 

Fold #2 0.72 1 0.5 0.89 1 0.44 

Fold #3 0.69 0.78 0.6 0.69 0.6 0.78 

Fold #4 0.79 0.88 0.67 0.87 0.8 0.78 

Fold #5 0.78 1 0.56 0.78 1 0.56 

Fold #6 0.79 0.88 0.67 0.8 0.8 0.78 

Fold #7 0.72 1 0.5 0.76 1 0.44 

Fold #8 0.6 0.64 0.67 0.79 0.33 0.88 

Fold #9 0.71 0.75 0.67 0.83 0.67 0.75 

Mean ± SD 0.69 ± 0.1 0.82 ± 0.16 0.57 ± 0.1 0.74 ± 0.16 0.69 ± 0.28 0.69 ± 0.15 

 

Additionally, a SHAPley Additive exPlanations (SHAP) analysis was implemented for explaining 

the prediction of the proposed model by computing the contribution of each feature to the prediction 

[246]. The most important predictors of the proposed model are presented in Figure 4.5, below. 

Mean absolute SHAP values for the 10 most significant features are estimated to illustrate the global 

feature importance. As it is shown in Figure 4.5, the most significant feature is the number of the 

existing CP and the highest coronary DS at the baseline step. In addition to this, input features such 

as pro-brain natriuretic peptide (NT-proBNP), MMP-2 and 9, leptin, LDL, and patient characteristics 

such as weight, age, and height are highly ranked as significant features for the prognosis of CAD. 

In addition to this, in Figure 4.6 below, we demonstrate the global interpretability of the proposed 

model by representing how much each input feature, either positively or negatively, contributes to 

the target variable. In Figure 4.6, we show with yellow columns the input features that contribute 

positively to the output target (detection of Class 2, CAD class). On the other hand, with blue 

columns, we indicate the input predictors that contribute negatively to the output target (detection of 

Class 1, no-CAD class).  As it is shown in Figure 4.6, most of the input features contribute 

negatively to the output target and contribute to the prognosis of Class 1. Indicatively, the most 

significant features that contribute positively to the output target are thyroid stimulating hormone, 

medication therapy of beta blockers, aspartate aminotransferase, DM, and MLA.  In the presented 

model, we observe that the most significant predictor for the prognosis of CAD is thyroid stimulating 

hormone, which confirms the effect of the thyroid hormones on the CV system [247, 248]. Thyroid 

hormone is considered as a significant regulator of CV system function and hemodynamics through 

different mechanisms. More specifically, inadequate thyroid hormone levels impair the relaxation of 

vascular SMCs and decrease cardiac contractility by regulating calcium uptake and the expression of 
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several contractile proteins in cardiomyocytes.  Additionally, low thyroid hormone levels also 

increase systemic vascular resistance and induce endothelial dysfunction by reducing nitric oxide 

availability [249, 250]. As for the imaging-based input predictors, MLA has the most significant 

positive effect on the proposed model. As it is shown in Figure 4.6, the most significant feature with 

negative effect on the output is the number of the CP at the baseline analysis of patient imaging.  

Different studies in the literature have confirmed the prognostic capability of the presence of CP 

[251]. Calcification of the coronary arteries plays a key role in the pathophysiology of 

atherosclerosis, and these lesions are considered advanced lesions [252]. In addition to this, patient 

height contributes negatively to the prognosis of the output target, confirming the genetic 

relationship between height and CAD [253, 254].  As for the biochemical predictors for the no-CAD 

class (Class 1), we observed that pro-brain natriuretic peptide, LDL, and MMP- 2 have a high 

negative effect on the output target. 

 

Figure 4.5 Feature importance based on mean SHAP values. The number of the existing CP and the highest 

coronary DS are indicated as the most significant features. 
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Figure 4.6 Input Features Contribution Table (blue, features with negative effect; yellow, features with positive effect). The most significant features that 

contribute positively to the output target are thyroid stimulating hormone, medication therapy of beta blockers, aspartate aminotransferase, diabetes, and 

minimum lumen area, whereas the most significant feature with negative effect on the output is the number of the CP at the baseline analysis of patient 

imaging. 
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4.3 Prediction of the progression of coronary artery disease using machine learning 

4.3.1 Methodology  

4.3.1.1 CTA image acquisition and analysis 

The geometrical vasculature features utilized in the proposed ML based model are estimated based on an 

already published methodology for the 3D reconstruction of coronary arteries, which is described in 

detail in Chapter 3 [204, 205]. 

4.3.1.2 Problem Definition 

The principal utilized classes 𝐶𝑖 are namely “No CAD”, “Non obstructive CAD” and “Obstructive 

CAD”. 𝐶0 is characterized by the absence of coronary stenosis, while 𝐶1 is characterized by stenosis 

<30% at any vessel or stenosis between 30% and 50%.  All the participants with at least one stenosis > 

50% were considered of the obstructive CAD class 𝐶2.  At the follow-up time step 18 (37.5%) 

participants were at class 𝐶0-No CAD, 17 (35.4%) at class 𝐶1-non obstructive CAD and 16 (33.3%) 

were at class 𝐶2-Obstructive CAD. 

4.3.1.3 Feature Selection 

In the proposed study, we employed feature selection techniques, aiming to reduce the dimension of 

input features and identify the redundant features.  More specifically, we implemented the gain ratio 

algorithm (case 1), the principal components analysis (case 2) and the attribute evaluation technique 

(case 3).  The progressive improvement of the sensitivity and specificity ratio is achieved through a 

proper customization of the input features, accompanied by a forward selection procedure [255-257]. 

4.3.1.4 Classification 

After feature selection algorithms implementation, we examined four different ML algorithms; a 

parametric model [artificial neural network (ANN)], a non-parametric kernel-based model SVM, an 

ensemble model [(RF)] and J48 [255-257]. 

4.3.1.5 Evaluation 

In terms of evaluation, we apply the ten-fold cross validation, which splits the initial dataset into ten 

subsets, whereby the nine subsets are used for training and the remaining one subset is used for testing.  

Moreover, it should be noted that the feature selection techniques are repeated in every ten-fold 
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repetition, ensuring that the feature selection procedure is based exclusively on the training dataset.  In 

addition to this, it should be highlighted that our initial dataset is considered as a balance dataset, 

including almost same portions of patients of the three classes. 

The performance of each classification scheme is quantified using as evaluation metrics the sensitivity 

and the specificity of each class, which denote the model’s ability to quantify the positive and the 

negative results, respectively. 

4.3.2 Dataset 

Patient-specific information have been collected from retrospective data recorded during the EVINCI 

study [258] and are utilized as the baseline information.  In the presented study, a dataset of 48 patients 

was used, who underwent CTA imaging to diagnose their risk of CAD and evaluate the percentage of 

coronary vessels’ stenosis.  This assessment has been reperformed after 5±2 years during SMARTool 

follow-up re-evaluation.  Except for CTA imaging, in both time- slices, baseline and follow-up, a variety 

of data was collected and analysed, including clinical history and lifestyle of each patient, as well as 

molecular systemic variables and inflammatory and monocyte markers. 

Based on the assembled dataset, we aim to identify the factors that affect the progression of 

atherosclerosis.  More specifically, in this study due to the relatively small number of patients, we 

focused only on vessel’s geometrical features based on the CTA imaging modality in the baseline step, 

as well as on the patient’s medical history and lifestyle.  In Table 4.6, we present the utilized feature set.   

 

Table 4.6 Variables used in the current proposed model. 

Category Features 

Geometrical vasculature DS, MLA, MLD, PB, CP Volume, NCP Volume 

Risk factors 
Family History of CAD, Hypertension, DM, Dyslipidemia, Smoking, 

Obesity, Metabolic Syndrome, Past smokers 

 

4.3.3 Results 

In Table 4.7, we present the obtained sensitivity and specificity for each of the three different classes, 

after implementing the classification schemes.  As far as the class of non-obstructive CAD is concerned, 

its sensitivity is observed lower than these of the other classes. 
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Table 4.7 Classification Performance. 

  Class 

No CAD 

Class 

Nonobstructive CAD 

Class 

Obstructive CAD 

  Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

Case 1  SVM 0.67 0.73 0.42 0.81 0.44 0.85 

ANN 0.6 0.79 0.49 0.65 0.42 0.78 

RF 0.69 0.85 0.48 0.71 0.47 0.75 

J48 0.67 0.73 0.42 0.81 0.63 0.75 

Case 2 SVM 0.54 0.82 0.53 0.59 0.44 0.85 

ANN 0.8 0.79 0.48 0.88 0.57 0.75 

RF 0.6 0.82 0.53 0.78 0.63 0.79 

J48 0.6 0.82 0.58 0.81 0.59 0.82 

Case 3 SVM 0.74 0.85 0.48 0.71 0.46 0.75 

ANN 1 0.5 0.42 0.91 0.32 0.97 

RF 0.74 0.76 0.36 0.81 0.63 0.79 

J48 0.87 0.79 0.36 0.91 0.82 0.82 

 

It is noted that in case we implement the J48 classification algorithm, after the class attribute evaluation 

feature selection technique, we achieve a sensitivity of 0.87 and 0.82 for the healthy class, the No CAD 

class and the unhealthy class, the Obstructive class, respectively.  The confusion matrix of the 

aforementioned approach is showed in Table 4.8.  In addition to this, the ranking of the selected 

features, maintained by this classification scheme is illustrated in Table 4.9 and the best performance of 

the proposed model is achieved by maintaining the eight first ranking features. 

 

Table 4.8 Confusion matrix of Case 3-J48. 

 Prediction 

Class 

No CAD 

Class 

Nonobstructive CAD 

Class 

Obstructive CAD 

Annotation 

No CAD 13 1 1 

Nonobstructive CAD 6 6 5 

Obstructive CAD 1 2 13 
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Table 4.9 Features ranking selection by Case 3-J48. 

Class Attribute 

evaluator 

Features 

Current symptoms [142]t 

volume of the most significant calfified plaque (mm3) 

volume of the most significant NCP (mm3) 

existence of NCP {0,1} 

Minimal lumen area (mm2) 

Past smokers {0,1} 

existence of CP {0,1} 

MLD (mm) 

 

4.4 Site specific prediction of atherosclerotic plaque progression using machine learning 

4.4.1 Methodology 

4.4.1.1 CTA analysis & 3D reconstruction 

The coronary artery 3D reconstruction was performed using an already validated semi-automated 

methodology, which is described in detail in Chapter 3 [204, 205]. 

4.4.1.2 Blood Flow & Mass Transport Modeling 

Blood behaves as a Newtonian fluid and its flow assumed to be laminar and incompressible, modeled by 

Navier-Stokes equations and the continuity equation as follows:  

−𝜇∇2𝑢𝑙 + 𝜌(𝑢𝑙 ∙ ∇)𝑢𝑙 + ∇𝑝𝑙 = 0 
(4.14) 

∇ ∙ 𝑢𝑙 = 0 (4.15) 

where 𝜇 is the dynamic viscosity of blood, 𝑢𝑙 is the blood velocity, 𝜌 is the blood density , and 𝑝𝑙 is the 

pressure.  LDL was assumed not to influence the blood flow and LDL transport in the lumen was 

approximated by the convection-diffusion equations that follows: 

∇ ∙ (−𝐷𝑙∇𝑐𝑙 + 𝑐𝑙𝑢𝑙) = 0 
(4.16) 
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where 𝐷𝑙 is the luminal LDL diffusivity, 𝑐𝑙 is the luminal LDL concentration and 𝑢𝑙 is the blood 

velocity, as previously described.  Due to the oxidation of LDL particles, a term of degradation is added 

in its convection diffusion equation, as follows: 

∇ ∙ (−𝐷𝑤∇𝑐𝑤 + 𝐾𝑙𝑎𝑔𝑐𝑤𝑢𝑤) = 𝑟𝑤𝑐𝑤 
(4.17) 

where 𝐷𝑤 is the diffusivity of the solute in the arterial wall, 𝑐𝑤 is the LDL concentration in the wall, 

𝐾𝑙𝑎𝑔 the solute lag coefficient for the LDL, and 𝑟𝑤is the consumption rate constant. 

In Figure 4.7, we illustrate the a) 3D luminal reconstruction, b) the endothelial shear stress (ESS) 

distribution and the c) normalized subendothelial LDL concentration. 

4.4.1.3 Problem Definition 

The atherosclerotic disease progression was formulated as a two-class problem, the “no significant 

progression class” (𝐶𝑙𝑎𝑠𝑠0) and the “significant progression class” (𝐶𝑙𝑎𝑠𝑠1).  The factors which define 

the atheromatic plaque progression were the lumen change, the PB change and the plaque change.  

Significant progression was considered, where at least two of these factors increase higher than 20%.  

The proposed model was trained using 1018 artery segments, where 691 were at 𝐶𝑙𝑎𝑠𝑠0 and 327 were at 

𝐶𝑙𝑎𝑠𝑠1. 

4.4.1.4 Dataset Preprocessing 

The preprocessing step, which refers to the transformation of data before feeding them to the algorithm, 

aims to enhance the quality of the input features in order to achieve a high prediction accuracy.  In this 

step, we implement a class imbalance handling technique, the Synthetic Minority Oversampling 

Technique (SMOTE) algorithm, [259], which oversamples the minority class with a percentage of 20%.  

Due to synthetic samples, SMOTE method avoids over-fitting largely and does not avoid potentially 

useful samples. 
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Figure 4.7 a) 3D reconstruction, b) ESS distribution at the luminal surface, c) normalized subendothelial LDL 

concentration [234]. 

 

4.4.1.5 Classification-Prediction 

In this step, tree based ML schemes are implemented to predict the progression of atheromatic plaque in 

each coronary artery segment.  Tree based prediction models are considered to be one of the best and 

mostly used supervised learning methods.  In our approach 5 different modifications of tree based 

algorithms are implemented, the J48, the logistic model tree (LMT), the RF, the random tree (RT) and 

finally the RepTree algorithm.   
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In addition to this, ranking feature selection techniques are incorporated to the classification schemes in 

order to reduce the input dimensionality and identify the redundant features.  More specifically, we 

implemented the ingogain ratio algorithm (Case 1), the principal components analysis (Case 2) and the 

relief ranking technique (Case 3). 

4.4.1.6 Evaluation 

The performance of the utilized ML based models is evaluated applying the ten-fold cross validation. 

Ten-fold cross validation divides the initial dataset into ten subsets in every ten-fold repetition and 

utilizes the nine subsets for training and the remaining one dataset for testing.  The performance of each 

classification scheme is quantified using as evaluation metrics the sensitivity and the specificity of each 

class, which denote the model’s ability to quantify the positive and the negative results, respectively. 

4.4.2 Dataset 

The utilized in this study baseline data was based on EVINCI study [244], in which patients underwent 

CTA imaging for clinical purposes and patient-specific data was collected, whereas the follow-up data 

have been assembled after 5±2 years during SMARTool project [260].  More specifically, 1018 

coronary segments of 3 mm, derived from 40 reconstructed coronary arteries, where blood flow 

modeling was simulated.  The utilized input features were imaging based and biomechanical features 

and included the lumen area (mm2), the outer wall area (mm2), the PB area, the maximum ESS (Pa), the 

minimum ESS (Pa), the mean ESS (Pa), the luminal area where ESS was lower than 1 Pa (mm2), the 

maximum LDL concentration and the minimum LDL concentration.  These values were calculated as 

the mean values of 6 0.5 mm cross-sections. 

4.4.3 Results 

In Table 4.10, we demonstrate the accuracy and the AUC for each classification scheme.  The obtained 

results are very promising for all the different tree-based algorithms.  However, RF outperforms the 

other models’ performance and achieves an accuracy of 0.84 and an AUC of 0.91.  Moreover, the most 

highly ranked input features after the implementation of Relief ranking technique [235] are the 

normalized maximum and minimum LDL concentration, and the luminal area where the WSS is lower 

than 1 Pa. 
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Table 4.10 Performance of the utilized prediction models. 

 
Tree based prediction models 

J48 LMT RF RT RepTree 

No feature 

selection 

Acc. 0.8 0.78 0.83 0.75 0.77 

AUC 0.83 0.83 0.91 0.75 0.82 

Case 1 
Acc. 0.789 0.78 0.84 0.76 0.78 

AUC 0.82 0.83 0.9 0.76 0.82 

Case 2 
Acc. 0.72 0.72 0.8 0.73 0.74 

AUC 0.74 0.77 0.87 0.73 0.78 

Case 3 
Acc. 0.79 0.79 0.84 0.76 0.77 

AUC 0.82 0.84 0.91 0.76 0.82 

 

4.5 Site specific prediction of PCI stenting using machine learning 

4.5.1 Methodology  

4.5.1.1 CTA analysis & 3D reconstruction 

CTA images were analyzed using a validated automated methodology, [204, 205], which is described in 

detail in Chapter 3.  The whole procedure is incorporated in a user-friendly software tool, which requires 

the minimum user interaction and provides automatically not only the 3D models of coronary inner and 

outer wall and the CP and NCP in the 3D space, but also it provides geometrical artery features, such as 

the DS, and biomechanical features, such as the FFR index. 

4.5.1.2 Calculation of SMARTFFR 

The process of calculation of SMARTFFR index is described in detail in chapter 4, in section 4.2.1.2. 

4.5.1.2 Problem Definition 

In this work, the PCI risk problem is formulated as a two class problem, representing the PCI procedure 

as a nonlinear parametric function of two imaging based features 𝑓(𝑥) = 𝐶𝑖, 𝑥 = [𝑥1, 𝑥2], where 𝑥1 

represent the coronary artery DS and 𝑥2 represents the Fractional Flow Reserve index (SMARTFFR).  The 

proposed predictive model was trained using 481 coronary segments, where 445 were at 𝐶𝑙𝑎𝑠𝑠0 −No 

PCI placement and 36 were at 𝐶𝑙𝑎𝑠𝑠1-PCI placement. 
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4.5.1.3 Easy Ensemble algorithm implementation-Class Imbalance Handling 

Imbalanced medical datasets constitute a problem often found in medical prediction problems.  In the 

proposed predictive model, we utilize the Easy Ensemble algorithm [261] for handling the class 

imbalance problem.  The idea behind Easy Ensemble algorithm is to employ random resampling to 

generate K subsets of {𝑄1, 𝑄2, … . , 𝑄𝐾} from 𝑄 (|𝑄𝑖| < |𝑄|, i=1,2,…K).  Subsequently, each 𝑄𝑖 ∪ 𝑃 is 

trained by the classifier and the final decision is selected by majority voting. 

In the proposed predictive modeling approach Easy Ensemble idea is combined with the Extreme 

Gradient Boosting classifier and each individual model is trained by the Equations (4.18)-(4.20) 

presented below. 

4.5.1.4 Extreme gradient boosting using tree ensembles 

The extreme gradient boosting (XGB) algorithm was used as an optimized classifier that uses the 

gradient methods to build a tree ensemble model consisting of a real set CARTs. These are used as base 

learners to additively combine multiple tree predictions, and thus yields higher performance over the 

conventional trees [262]. For a given set of 𝑁-observations (𝑥) = {𝑥𝑖 , 𝑦𝑖}, 𝑖 = 1,2, … . . , 𝑁, the goal is to 

add at each step 𝑡, a tree function: 

𝑓𝑡(𝑥) = 𝑤(𝑞(𝑥)), 𝑤 ∈ 𝑅𝐿 , 𝑞: 𝑅𝑑 → {1,2, … . , 𝐿} 
(4.18) 

which improves the prediction performance of the model by minimizing the following regularized 

objective:  

𝐸(𝑡) = ∑ 𝑙(𝑦𝑖, 𝑦̃𝑖,𝑡−1 + 𝑓𝑡(𝑥𝑖)) + 𝑟

𝑁

𝑖=1

, 

(4.19) 

where 𝑙(.) is the loss function at step 𝑡, 𝑦̃𝑖,𝑡−1 is the estimated value at step 𝑡− 1, 𝑞 is a function that 

assigns values to the tree leaves, and 𝑟 is the regularization term that is used to avoid overfitting and 

reduce the model complexity [17, 18]. The regularization term is defined as follows:  

𝑟 = 𝛾𝐿 +
1

2
𝜆 ∑ 𝑤𝑗

2

𝐽

𝑖=1

 

(4.20) 
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where 𝑤 is the weight on the leaves, 𝛾 is a constant value, and 𝐿 is the total number of leaves in each 

tree learner. 

4.5.2 Dataset 

Patient-specific imaging and non-imaging data were collected during the EVINCI study [244].  In this 

study totally 263 patients have enrolled and underwent CTA imaging for clinical purposes and this 

imaging assessment has been reperformed after 5±2 years during the SMARTool project [15].  A PCI 

stenting procedure and CABG were performed in 55 patients and 10 patients, respectively. In addition to 

this, CTA images of 11 patients were considered as uninterpretable and thus, in the proposed study, 

baseline imaging of 187 patients was analyzed to predict the risk of PCI placement.  In this approach, 

totally 481 coronary segments were utilized for the prediction of PCI placement and the input of the 

proposed model was the  

4.5.3 Results  

The XGB classification scheme was validated using 10-fold cross validation and for each fold we 

present in  

Table 4.11 the accuracy and the AUC.  The mean value of accuracy was 0.78, whereas the mean AUC 

was equal to 0.87.  The receiver operating characteristic (ROC) curve is depicted in Figure 4.8, where 

the AUC score was evaluated on different thresholds across each fold and averaged across all folds.  

 

Figure 4.8 Prediction performance (sensitivity versus 1-specificity) of the XGB tree ensembles across each fold. 
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Table 4.11 Evaluation of the CAD risk prediction problem over the 10-folds. 

Evaluation Metric 

Folds Accuracy AUC 

Fold #0 0.88 0.87 

Fold #1 0.88 0.97 

Fold #2 0.52 0.73 

Fold #3 0.85 0.87 

Fold #4 0.82 0.84 

Fold #5 0.88 0.98 

Fold #6 0.40 0.76 

Fold #7 0.83 0.86 

Fold #8 0.77 0.89 

Fold #9 0.89 0.95 

Mean±std 0.78±0.17 0.87±0.08 

 

4.6 Discussion 

Regarding the first study, a novel approach for the prediction of obstructive CAD is presented.  The aim 

of this study is to develop a ML model for the CAD risk prediction, which takes into account different 

types of data, including both imaging and non-imaging data.  To our knowledge, our approach to 

combine the imaging and blood-flow-based characteristics with typical CAD risk factors constitutes the 

novelty of the presented study. 

Different methodologies have been presented for the prediction of CAD and the identification of the 

major CAD risk factors.  Most of these studies are concentrated on the different CAD-related risk-

prediction outputs and are based either on statistical analysis [6,37,38] or ML classification schemes 

[263].  Our proposed study in comparison with these ones is more concentrated on the CAD risk 

prediction and its future presence and achieves a higher evaluation metrics, as it is shown in Table 4.12. 

Additionally, recent studies have indicated that non-invasive CV imaging and especially the CTA 

imaging modality utilized in this study provides useful prognostic information of atherosclerosis 

progression since it permits the accurate quantification of luminal area and the detection of PB region 

and the characterization of its composition.  Moreover, the overall PB, which can be provided by CTA 
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imaging, is highly relevant to the degree and characteristics of atherosclerosis [264].  In addition to this, 

the clinical relevance of the overall coronary PB has been also emphasized by studies showing that 

increased NCP volumes is directly linked with acute coronary syndrome patients [265].  Furthermore, 

the latest technological advancements in patient-specific blood-flow modeling have introduced 

alternative CAD progression risk factors, such as fractional flow reserve (FFR) index and WSS.  

 

Table 4.12 Comparison of the proposed methodology with existing in the literature studies. 

Study Methodology Input Results 

D’Agostino et al. 

[266] 

Statistical analysis Age, total cholesterol, HDL, Systolic BP, 

BP treatment, Smoking, Diabetes, Incident 

CAD events 

C statistic: 0.763 

(men),  0.793 (women) 

Weng et al. [263] ML classification 

schemes to predict 

CV events 

Demographics, history of medical 

conditions, prescription drugs, acute 

medical outcomes, referrals to specialists, 

admissions to hospitals, biological results 

sensitivity 67.5%,  

PPV 18.4%, specificity 

70.7%, NPV 95.7% 

Stone et al. [115] Statistical analysis Demographics and Clinical Characteristics, 

Medical Therapy, endothelial shear stress, 

atherosclerotic plaque characteristics, based 

on CA and IVUS 

41% positive 

predictive value and 

92% negative 

predictive value 

Liu et al. [118] Statistical analysis WSS, von Mises stress (VMS) based on 

CTA imaging 

- 

Our study Gradient Boosting 

Classification with 

RFE 

Patient’s Characteristics, CAD Risk Factors, 

biohumoral markers, imaging based 

features, SmartFFR index 

81% accuracy, 88% 

sensitivity, 73% 

specificity 

 

The prognostic capability of CTA imaging modality and its derived imaging features has also been 

confirmed by the proposed study, in which the overall accuracy of the proposed predictive model using 

both imaging and non-imaging data is 0.81.  Moreover, the prognostic significance of imaging-derived 

features is also indicated by the collected results, shown in Table 4.4.  More specifically, the predictive 

model trained by the non-imaging-based features achieved a comparatively lower accuracy of 0.69. 

Furthermore, another notable point of the proposed CAD risk-predictive model is that the input 

geometrical features are derived by an automated CTA image analysis tool [204, 205], able to detect 



 

136 
 

accurately the inner and outer wall and atherosclerotic plaques and provide an accurate 3D model of 

coronary arteries and the atherosclerotic plaques distribution over the 3D space.  As far as the SMARTFFR 

index is concerned, it is also calculated automatically by the developed software tool in the 3D 

reconstructed coronary artery. 

In addition to this, another innovative aspect of the presented predictive model is the implementation of 

the easy ensemble algorithm, which constitutes a random resampling scheme, which mainly handles the 

class imbalance problem.  Except for the class imbalance handling, the applied easy ensemble scheme 

allows the progressive correction of the model’s decision hyperplane and subsequently the reduction of 

the classification error.  Additionally, the predictive capability of the proposed model is evaluated based 

on nested stratified cross-validation, which provides unbiased estimation of the predictive model’s 

capability.  Moreover, except for the innate hyperparameters of the classification algorithm, the input 

features are also treated as a hyper-parameter, and SVM RFE feature selection technique is implemented 

to eliminate the input features’ dimension.  The particular ML algorithm was selected after the 

implementation of different classification schemes in combination with different feature selection 

techniques, and the highest accuracy was provided by the combination of the extreme gradient boosting 

algorithm and the SVM feature selection technique. 

As for the second presented approach, multiple models were performed to predict the progression of 

CAD, taking into account non-invasive image-based features and traditional atherosclerosis risk factors, 

such as the medical history and lifestyle.  The combination of the input features as well as the problem 

formulation as a three class problem, integrating the graduation of atherosclerosis, constitute a crucial 

novelty of the presented study.  This study is considered as a preliminary approach and it is important to 

further validate our results in larger datasets. 

After the implementation of different classification schemes, we conclude that the tree-based algorithms 

and more specifically C4.5 (J48) algorithm combined by a ranking feature selection method, 

outperforms the other classification models [257].  In general, tree-based algorithms constitutes a typical 

type of machine-learning approaches and are able to handle the non-linearities, the heterogeneous data, 

and many predictors, by searching through the input variables to find this one, which seperates the 

outcome into two groups [267]. 

In this point, it should be highlighted that the ability to foresee a future health condition of the most 

patients is a significant aspect of the proposed model.  The sensitivity for the first class is 0.71±0.13, 

based on the different implementation, whereas for the most accurate model is 0.87.  In this manner, the 
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patient may avoid undergo a multiple CTA imaging in the follow-up time slice step, considering the 

risks related to radiation from medical imaging.  In addition to this, another aspect of the proposed study 

worth mentioning is the model’s ability to accurately identify the non-healthy patients, those of the third 

class.  In the last case of J48 algorithm, the sensitivity is 0.82.  An accurate prediction of such a status 

contributes significantly to the clinical patient management, allowing the timely diagnosis of CAD and 

the safe selection of treatment. 

Through the third approach, we investigate the role of the biomechanical forces acting within the artery 

and we investigate how these forces may affect the atheromatic plaque progression.  More specifically, 

the developed model is based on imaging and biomechanical features, derived by a noninvasive imaging 

technique and ignoring the systematic atherosclerosis risk factors. 

The basic novel aspect of the proposed approach is the implementation of ML based models in order to 

address the new analytic challenges in the CAD risk prediction.  More specifically, the utilized tree 

based prediction schemes search among the utilized input predictors to find the variable that best 

separates the outcome.  In this manner, tree based models are capable of handling the non-linearities, the 

heterogeneous data, and many predictors, by searching through the input variables to find this one, 

which seperates the outcome into two groups [267]. 

In comparison with the existing in the literature studies [114, 115], the data utilized in our approach 

derive by a non-invasive and thus, the double inference of  the proposed study is the ability of CTA to 

visualize accurately the coronary artery anatomy and its clinical importance in the prediction of 

atheromatic plaque progression.   

In the fourth study, we examine the predictability of two imaging based features, the coronary artery DS 

and the SMARTFFR index to identify the crucial coronary lesions.  An overall accuracy 0.78±0.17 was 

achieved, implementing a class imbalance handling algorithm, the Easy ensemble technique and a ML 

classification scheme, the XGB.  In general tree based classification algorithms are extensively 

implemented in medical prediction problems and constitute a typical classification scheme, able to 

handle non-linearities aiming to separate the outcome into two groups.  More specifically, a tree 

ensemble method was used to develop a supervised learning model for the prediction of a site specific 

PCI stenting placement.  The main idea behind gradient boosting trees is the use of first and second 

order gradient statistics to improve the overall performance of the prediction over a set of individual 

decision trees.  In addition to this, the optimal solution across each split, that ensures that the most value 

split is maintained at each boosting step is based on an exact greedy algorithm. 
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Apart from the XGB algorithm predictability, through this study it is clear that CTA imaging and 

biomechanics based features have a significant prognostic value and its non-invasive nature of CTA 

imaging modality highly contributes to the CV research area.  To our knowledge, the predicted outcome 

of the presented study constitutes the novelty of this study. 
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Chapter 5 Carotid artery disease prediction  

5.1 Introduction 

5.2 Methodology 

5.3 Diagnostic Prediction of Carotid Artery Disease  

5.4 Diagnostic Prediction of the vulnerability of Carotid Artery Plaques 

5.5 Discussion- Beyond the state of the art 

5.6 Conclusions 

 

 

 

5.1 Introduction 

Except of CAD risk prediction, carotid artery disease risk stratification plays also a crucial role for the 

prevention and management of CVDs.  The management of carotid artery disease in the current clinical 

practice in based on the 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery 

(ESVS) and the selection of management of carotid artery disease is based on the degree of CAS.  

In this chapter, our aim is to present ML based models for the identification of carotid artery disease 

high risk patients, based on non-imaging data.  Available data such as: (i) demographics, (ii) risk factors, 

(iii) circulating biomarkers, (iv) clinical data and (v) medication therapy will provide input to a series of 

ML risk stratification and prediction models including: 

• Diagnosis of carotid artery disease presence 

• Diagnosis of high risk vulnerable plaque  

 

 

 



 

140 
 

5.2 Methodology 

5.2.1 Statistical analysis  

Descriptive Statistics 

The per-class sampling distribution of each continuous variable was described by the arithmetic mean 

and SD values, whereas the distribution of the categorical variables within each class was described by 

the corresponding percentages. 

Null Hypothesis Significance Testing 

The statistical significance of the utilized feature sets, with respect to the defined problems, was 

evaluated by appropriate parametric and nonparametric univariate two-sample statistical tests, based on 

the type (continuous numeric or categorical) and the per class distribution (Gaussian or non-Gaussian) 

of the dependent variables, as it is shown in Table 5. 1.  The assumption of normality was verified using 

the Shapiro-Wilk test.  In case of k-sample statistical testing, a multiple pairwise comparison of the 

group means is subsequently applied using the Tukey’s honestly significant difference criterion. 

5.2.2 Machine learning predictive modeling 

ML modeling utilizes two different techniques: the supervised learning and the unsupervised learning.  

Supervised learning trains a model based on known input and output data to predict the future output 

given new input data, whereas unsupervised learning aims to investigate hidden patterns or intrinsic 

structures based on input data. 

More specifically, in this section we present a supervised ML model that makes predictions, taking into 

consideration set of input data and known responses to the data output and trains a model to generate 

reasonable predictions for the response to new data.  

The development of the predictive models overall training and evaluation procedure based on ML 

techniques is shown in Figure 5.1. 
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Table 5. 1 Univariate Null hypothesis Significance Tests. 

Statistical Test Independent 

Variable 

Type 

Dependent 

Variable 

Type 

Null Hypothesis 

Fisher’s exact 

test 

Two-sample test Binary Binary Independence (no non-random associations) 

between two binary variables by estimating 

exactly the conditional distributions (2×2 

contingency table). 

Pearson Chi-

square test (χ2) 

with one 

degree of 

freedom 

Two-sample test 

 

Binary Categorical Independence (no non-random associations) 

between two categorical variables when the 

comparing groups are independent. 

Student t-test Two-sample 

parametric test 

Binary Numerical Equality of means and variances of two 

independent data samples; a Gaussian 

distribution is assumed. 

Mann-Whitney 

U test 

Two-sample 

non-parametric 

test 

Binary Numerical Equality of medians of two independent data 

samples; normality of data is not assumed.  

Pearson Chi-

square test with 

more than one 

degrees of 

freedom 

k-sample test Categorical Categorical Independence (no non-random associations) 

between two categorical variables when the 

comparing groups ( 2)k   independently 

One-way 

analysis of 

variance 

(ANOVA) 

k-sample 

parametric test 

Categorical Numerical Equality of means of 2k   independent data 

samples; a Gaussian distribution is assumed.  

Kruskal-Wallis 

test 

k-sample non-

parametric test 

Categorical Numerical Equality of distributions of 2k   independent 

data samples; normality of data is not 

assumed. 
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Figure 5. 1 Pipeline of Predictive Models Overall Training and Evaluation Procedure based on Machine Learning 

Techniques. 

 

5.2.2.1 Data Curation  

In the first step, a data quality assessment procedure is implemented to effectively manage the quality of 

the data.  Data cleaning procedure, also known as data curation procedure, is considered as a key aspect, 

prior to the development of any data analytics services.  In this step, the data curation framework 

proposed by Pezoulas et al. [268] is implemented in each utilized dataset and the framework outputs two 

different documents: (i) the data quality assessment report, and (ii) the curated dataset.  In Figure 5.2, we 

show the output of the implemented data curation framework. 

 

Figure 5.2 Curation Procedure Output. 

Model Selection

Model Evaluation & Performance metrics computation

Classification scheme

Feature Selection  

Data Preprocessing 

Partition of the dataset into k-folds training and test set 

Class Imbalance Problem handling

Problem Formulation as Machine Learning

Data Curation
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5.2.2.2 Problem Formulation as Machine Learning 

The carotid artery disease risk stratification problem has been formulated as a two class classification 

problem, based on the presence of CAS, individuals’ symptoms and the vulnerability of the carotid 

atherosclerotic plaques. 

This overall predictive supervised learning approach aims to learn a mapping from input features x to 

output Y, given a labeled set of input output pairs D = {(xi, yi)}i=1
N , where D is the training set and N is 

the number of training examples [240]. Each sample (xi, yi) associates the input features with the carotid 

artery disease risk prediction Y, where Y ∈ {C1, C2}, is estimated by a non-linear parameterized function 

(f) of input features x ∈ Rd, x = [x1, x2, … , xd].  The goal of this supervised classification problem is to 

obtain an approximation F(x) of the function F∗(x) mapping the input x to output Y.  Table 5.2 outlines 

the model selection, identification and evaluation process given the model M and the dataset Z.  An 

external cross-validation is applied to obtain a less biased estimation of model’s performance. 

5.2.2.3 Class Imbalance Problem handling 

Medical datasets are often not balanced in their class labels. Most existing classification methods tend to 

perform poorly on minority class examples when the dataset is extremely imbalanced.  In the 

development of this predictive model, we utilize the Easy ensemble technique.  The Easy Ensemble 

algorithm [241] is a class imbalance handling approach, in which P are the training instances of the 

minority class, whereas Q denotes the instances of the majority class.  The idea of Easy Ensemble 

algorithm is to employ random resampling to generate K subsets of {Q1, Q2, … . , QK} from Q (|Qi| < |Q|, 

i=1,2,…K). Subsequently, each Qi ∪ P is trained by the classifier and the final decision is selected by 

majority voting.  

Let us denote by 𝑃 and 𝑄 the training samples corresponding to the minority and majority class, 

respectively.  EasyEnsemble algorithm: (i) employs bootstrap resampling to generate 𝑇 subsets 

𝑄1, 𝑄2, 𝐾, 𝑄𝑇 from 𝑄 (|𝑄𝑖| < |𝑄|, 𝑖 = 1, 𝐾, 𝑇), (ii) trains a classifier 𝑀𝑖 for each 𝑄𝑖 ∪ 𝑃, 𝑖 = 1, 𝐾, 𝑇, and 

(iii) combines via majority voting their individual decisions [241] (Table 5.3).   

 

 

 



 

144 
 

Table 5.2 CAD Risk Stratification Model Training and Evaluation Procedure. 

Input: 𝑋, Model 𝑀 

1. Data Curation 

Cross-validation: 

2. if the dataset X exhibits the Class Imbalance Problem 

M  classifier encapsulated into an Easy Ensemble repeated under-sampling scheme 

else 

M selected classifier 

3. Randomly partition 𝑋 into 10 disjoint stratified folds 𝑋𝑘, with 𝑘 = 1, 𝑘, 10, of equal size (i.e. 𝑁 10⁄ ). 

4. For 𝑘 = 1, 𝑘, 10: 

a. Let 𝑋𝑡𝑟𝑎𝑖𝑛 = 𝑋 − 𝑋𝑘 be the training set and 𝑋𝑡𝑒𝑠𝑡 = 𝑋𝑘 the test set. 

b. Data-preprocessing 

i) One Hot encoding of categorical features. 

ii) Imputation of missing values. 

c. Feature Ranking 

i) Apply the balanced random forest algorithm to 𝑋𝑡𝑟𝑎𝑖𝑛 so as to produce a ranked list of features 𝑅𝑘. 

d. Model Selection and Identification 

i) Optimize model’s 𝑀𝑘 hyper-parameters on 𝑋𝑡𝑟𝑎𝑖𝑛 by grid-search over 3-fold cross-validation. 

ii) Compute 𝜃𝑘 ∈ 𝑅𝑚 on 𝑋𝑡𝑟𝑎𝑖𝑛 based on the selected classifier. 

e. Model Evaluation 

i) Evaluate model’s 𝑀𝑘 performance on 𝑋𝑡𝑒𝑠𝑡 by classification performance metrics (e.g. sensitivity, 

specificity, negative predictive value). 

5. Compute the average performance metrics over the 10-fold cross-validation for the training dataset and the 

external dataset. 

 

Table 5.3 The Easy Ensemble Algorithm [241]. 

Input: 𝑃, 𝑄, 𝑇  

1. for 𝑖 = 1, 𝐾, 𝑇 

a. Randomly sample a subset 𝑄𝑖 from 𝑄, |𝑄𝑖| = |𝑃|. 

b. Learn 𝑀𝑖 using 𝑃 and 𝑄𝑖.  𝑀𝑖 is a classifier with 𝑀 base learners 𝐹𝑚,𝑖, 𝑚 = 1, 𝐾, 𝑀.  

Output: A bag of 𝑇 balanced classifiers, {𝑀𝑖}𝑖=1,𝐾,𝑇. 
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5.2.2.4 Data Preprocessing 

In this step, a one hot encoding procedure was implemented to represent all the categorical input 

features as binary vectors.  In addition to this, a curation procedure was implemented to check our 

dataset both for outliers and missing values.  All the input features whose missing values were higher 

than 10% were removed from the dataset, whereas features with missing values lower than 10% have 

been imputed by either the most frequent value (categorical type features) or the median value 

(numerical type features). 

5.2.2.5 Feature Selection 

Feature selection techniques aim to identify and remove the irrelevant and redundant attributes from the 

overall dataset that do not contribute to the accuracy of the predictive model.  Different feature selection 

techniques, as described in detail in Table 5.4, have been implemented and tested for the development of 

the most accurate predictive model. 

5.2.2.6 Classification scheme 

Classification schemes implementation constitutes one of the most important aspect in supervised 

learning.  In the overall pipeline, we implement different classification schemes, such as the Gradient 

Boosting, the XGB, the Adaboost, the C-Support Vector kernel based, the k-nearest neighbors, the 

Decision tree classifier, as described in detail in Table 5.4. 

5.2.2.7 Model Evaluation & Selection 

The evaluation of the expected generalization performance was based on nested stratified cross-

validation which provides an unbiased estimation of the model’s classification performance, with data-

pre-processing and feature evaluation following the resampling procedure itself in order to reduce the 

selection bias in the estimates of the model’s classification performance.  We should mention that, 

besides the innate hyper-parameters of the classification algorithm, the input size is also treated as a 

hyper-parameter, which yields the minimum input size optimizing a specific criterion. 
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Table 5.4: Development of Predictive Models. 

1) Data Curation Data quality evaluation report (missing values, range values, types, 

outliers/incompatibilities, data standardization)  

2) Problem 

Formulation as 

Machine Learning 

Classes C ∈ {C1, C2, … , Cn} estimated by a non-linear parameterized function, F, of a 

confined set of features x ∈ R ,  such that F(x) = C 

3) Class Imbalance 

Problem handling 

Easy Ensemble Algorithm  

(Randomly repeated under-sampling scheme) 

4) Partition of the 

dataset into k-folds 

training and test set  

K stratified disjoint folds of equal size 

5) Data 

Preprocessing 
• Encoding of categorical features  

• Imputation of missing values (<10%) 

6) Feature Selection • RFE 

• RFE and cross-validated selection 

of the best number of features 

• Select From Model (considered 

unimportant and removed 

features under a specific 

feature_importances_ values) 

• RF, Select KBest (Select features 

according to the k highest scores) 

• Select Fpr scheme (Select the pvalues 

below alpha based on a False Positive Rate 

test)  

• Select I (Select the p-values corresponding 

to Family-wise error rate) 

• Sparse Principal Components Analysis 

• Nonnegative Matrix Factorization feature 

selection 

• Linear Discriminant Analysis 

7) Classification 

scheme 
• Gradient Boosting 

• XGBoost 

• AdaBoost 

• C-Support Vector kernel based  

• k-nearest neighbors 

• Decision tree classifier 

8) Model Evaluation 

and Performance 

metrics computation 

• Accuracy 

• Sensitivity 

• Specificity 

• PPV 

• NPV 

• ROC AUC 

• True Negative 

• False Positive 

9) Model Selection • Exhaustive search over specified parameter values for an estimator 

• Randomized search on hyper parameters 

 

5.2.3 Tuning of the cut off threshold values 

The proposed binary classification model, expect for the prediction of the Class (𝐶0, 𝐶1), provides the 

probability of each patient to be targeted as pathological (𝐶1), by assuming that instances with 

probabilities over 0.5 are considered in 𝐶1.  The main idea of the tuning of the cut off threshold is to find 

a threshold according to an optimization procedure of some performance metric. More specifically, in 

this proposed model and based on the training dataset, we tune the cut off threshold based on i) ROC 

curve and on the ii) balanced accuracy.  The idea of using the ROC curve for tuning the threshold is to 

identify that threshold that gives us the upper-left corner of the curve [269]. Mathematically speaking, 

that threshold 𝑝 that satisfies the following equations: 
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 𝑇𝑃𝑅(𝑝) = 1 − 𝐹𝑃𝑅(𝑝)  (5.1) 

 𝑝∗ = arg 𝑚𝑖𝑛𝑝 |𝑇𝑃𝑅(𝑝) + 𝐹𝑃𝑅(𝑝) − 1|  (5.2) 

where 𝑇𝑃𝑅 is the true positive rate and 𝐹𝑃𝑅 is the false positive rate. 

5.3 Diagnostic prediction of carotid artery disease  

5.3.1 Problem definition 

The diagnostic prediction of carotid artery disease problem aims to identify the individuals of high risk 

for the presence of at least one of the carotid arteries with CAS > 50%.  The development of this model 

is based on retrospective dataset, with different clinical views of input features.  The detection of these 

individuals has been formulated as a multivariate 2 class classification problem based on the CAS, as it 

is defined by carotid US.  More specifically, high risk group (Class 1) included the individuals whose at 

least one of the carotid arteries (common, internal or external, left or right) has a CAS above 50%, 

whereas low risk group (Class 0) included the individuals whose CAS were below 50%.  In Figure 5.3, 

we demonstrate the concept of diagnostic prediction of CAS >50% clinical problem. 

 

Figure 5.3 Diagnostic Prediction of CAS>50% clinical problem. 

 

5.3.2 Dataset 

The training dataset, utilized for the presented carotid artery disease risk stratification model, was 

collected from individuals admitted to the Clinic for Vascular and endovascular surgery, in the 

University Clinical Center of Serbia during Taxinomisis project (European Union’s Horizon 2020 

research and innovation program under grant agreement No 755320).  The data were anonymized and 
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were obtained under a data protection agreement, fulling all the ethical and legal requirements for data 

sharing posed by the General Data Protection Regulation.  The patients were included no matter the 

indications and the only criterion for the inclusion was the age over 50 years old.  The time period 

collected the dataset was from 01.03.2021 to 01.01.2022.  More specifically, the non imaging based 

input features views were Demographics, Clinical Data, Risk Factors, and Medication Therapy.  For the 

training process, 881 individuals were utilized and 438 of them were at high risk group (Class 1).  

Regarding the validation cohort a total 140 participants were utilized for the external validation of the 

proposed model. These participants were collected by Clinic for Vascular and endovascular surgery, in 

the University Clinical Center of Serbia during Taxinomisis project.  Table 5.5 demonstrates the baseline 

characteristics (mean-SD for continuous features, presence percentage for categorical features) for the 

different features’ types the training cohort. 

 

Table 5.5 Baseline Characteristics of training and external validation cohort. 

Baseline Input features Overall Cohort (N=881) 

Age (years), mean (SD) 66.99 (8.11) 

Gender (male), n (%) 642 (73.32%) 

Height (cm), mean (SD) 173.33 (9) 

Weight (kg), mean (SD) 81.16 (15.75) 

Body Mass Index (BMI) (kg/m2), mean (SD) 26.89 (4.09) 

Smoking, n (%) 429 (48.69%) 

Alcohol Consumption, n (%) 175 (19.86%) 

DM, n (%) 249 (28.26%) 

Hypertension, n (%) 741 (84.11) 

Hyperlipoproteinemia, n (%) 424 (48.13) 

CAD, n (%) 250 (28.39%) 

Aneurysm Disease, n (%) 288 (32.69%) 

Antiaggregant Therapy, n (%) 707 (80.25%) 

Antihypertensive Therapy, n (%) 707 (80.25%) 

Anticoagulant Therapy, n (%) 68 (7.72%) 

Statin Therapy, n (%) 505 (57.32%) 

At least one CAS>50%, n (%) 438 (49.72%) 
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5.3.3 Results 

Statistical analysis results 

Table 5.6 provides the basic descriptive statistics of the distribution of numerical and categorical features 

of the utilized training dataset in each class.  Statistical analysis was performed to the whole dataset and 

continuous variables were analyzed with independent-samples t-test, whereas categorical data were 

compared with Chi-square test.  Compared with the healthy group, CAS group was in older age (CAS 

group vs Non-CAS group: 68.18±7.52 vs 65.81±8.49 years old), had higher weight (CAS group vs Non-

CAS group: 95.92±38.01 vs 83.98±16.55 kg) and lower height (CAS group vs Non-CAS group: 

154.58±39.2 vs 174.26±10.02 cm).  Additionally, CAS group had a higher proportion of females and 

individuals with hyperlipoproteinemia, DM, hypertension, smoking, CAD, antiaggregant, 

antihypertensive and statin therapy.  Amongst the risk factors, hyperlipoproteinemia, DM, hypertension, 

smoking, alcohol consumption, CAD and aneurysm disease show statistically significant different 

proportions between Class 0 and Class 1.  Regarding the medication therapy, the use of antiaggregant, 

antihypertensive and statin therapy were identified as statistically different between Class 0 and Class 1 

 

Table 5. 6 Subjects characteristics in CAS group and non-CAS group. 

Variables Non CAS group 

(N=443) 

CAS group 

(N=438) 

P value 

Age 65.81±8.49 68.18±7.52 0.261 

Height 174.47±8.72 172.11±9.15 0.132 

Weight 83.76±16.11 78.4±14.88 0.261 

BMI 27.4±4.16 26.36±3.96 0.609 

Gender (male) 110 (24.83%) 125 (28.53%) 0.214 

HLP 169 (38.14%) 255 (58.21%) <0.001 

DM 93 (20.99%) 156 (35.62%) <0.001 

HTA 342 (77.2%) 399 (91.1%) <0.001 

Smoking 180 (40.63%) 249 (56.85%) <0.001 

Alcohol consumption 107 (24.15%) 68 (15.52%) 0.001 

Coronary disease 93 (20.99%) 157 (35.84%) <0.001 

Aneurysm Disease 231 (52.14%) 57 (13.01%) <0.001 

Antiaggregant 317 (71.56%) 390 (89.04%) <0.001 

Antihypertensive 304 (68.62%) 362 (82.65%) <0.001 

Anticoagulant 37 (8.35%) 31 (7.08%) 0.473 

Statin 225 (50.79%) 280 (63.93%) <0.001 
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Model performance evaluation results 

The proposed machine learning model was evaluated using as performance metrics the balanced 

accuracy, negative predictive value (NPV), positive predictive value (PPV), AUC, the sensitivity and the 

specificity.  In Table 5.7, we demonstrate the values for each utilized metric per fold, their mean values 

and SD for training dataset, where the mean balanced accuracy, sensitivity and specificity of the 

proposed model is 0.78, 0.82 and 0.74, respectively, while in Figure 5.4 and Figure 5.5, we demonstrate 

the normalized confusion matrix and the ROC curve for the proposed model, respectively.  Except of the 

10-fold cross validation for the evaluation of the proposed models, we utilized also an external 

validation dataset, including 521 individuals.  Regarding the external dataset cohort, we show in Table 

5.8 the obtained results in three different cases (Case 1-Cut-off: 0.5, Case 2-Cut-off: 0.4 and Case 3-Cut-

off: 0.56).  The highest sensitivity (0.93) and specificity (0.88) is achieved in case 2 and 3, respectively. 

Table 5.7 Evaluation of the carotid artery disease risk prediction problem over the 10-folds. 

Folds  Balanced Accuracy NPV PPV ROC AUC Sensitivity Specificity 

Fold #0 0.730556 0.744186 0.717391 0.832828 0.75 0.711111 

Fold #1 0.830233 0.857143 0.804348 0.903876 0.860465 0.8 

Fold #2 0.875711 0.904762 0.847826 0.946253 0.906977 0.844444 

Fold #3 0.693182 0.666667 0.72973 0.786674 0.613636 0.772727 

Fold #4 0.727273 0.857143 0.666667 0.860537 0.909091 0.545455 

Fold #5 0.840909 0.894737 0.8 0.872934 0.909091 0.772727 

Fold #6 0.772727 0.772727 0.772727 0.829545 0.772727 0.772727 

Fold #7 0.840909 0.857143 0.826087 0.907541 0.863636 0.818182 

Fold #8 0.693182 0.707317 0.680851 0.779959 0.727273 0.659091 

Fold #9 0.75 0.805556 0.711538 0.782025 0.840909 0.659091 

Mean 0.775468 0.806738 0.755717 0.850217 0.815381 0.735556 

SD 0.066792 0.081343 0.062966 0.058085 0.097482 0.091537 

 

Table 5.8 Validation of the carotid artery disease risk problem using an external validation dataset. 

  Case 1 Cut-off: 0.5 Case 2 Cut-off: 0.4 Case 3 Cut-off: 0.56 

N
=

5
2

1
 True Positive (TP) 388 407 360 

True Negative (TN) 68 63 71 

False Positive (FP) 13 18 10 

False Negative (FN) 52 33 80 

 Sensitivity 0.88 0.93 0.82 

 Specificity 0.84 0.78 0.88 

 PPV 0.97 0.96 0.97 

 NPV 0.57 0.66 0.47 

 Accuracy 0.88 0.9 0.83 
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Figure 5.4 Normalized confusion matrix regarding the diagnosis of carotid artery disease presence. 

 

 

Figure 5.5 ROC curve analysis regarding the diagnosis of carotid artery disease presence. 
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Tuning of cut-off threshold values  

Two different approaches have been followed for the definition of cut-off probability threshold values, 

using the ROC analysis and the balanced accuracy maximization approach.  In Figure 5.6 and Figure 

5.7, we show these two approaches, concluding that 0.57 and 0.56 are the best cut-off values for the 

definition of low risk class (Class 0) and high risk class (Class 1). 

 

Figure 5.6 Tuning of threshold value based on ROC analysis regarding the diagnosis of carotid artery disease 

presence. 

 

Figure 5.7 Tuning of threshold value based on balanced accuracy regarding the diagnosis of carotid artery disease 

presence. 
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5.4 Diagnostic prediction of the vulnerability of carotid artery plaques 

5.4.1 Problem definition 

The aim of the this proposed second approach is to identify individuals of high risk carotid plaque, as it 

is shown in Figure 5.8.  Different datasets have been utilized for the development of this model, where 

high risk plaques have been defined based either on the histological composition of atherosclerotic 

plaques or on the presence of symptoms.  The carotid artery disease risk stratification problem based on 

the vulnerability of plaques has been formulated as multivariate 2-class classification problem of the 

presence of high risk plaques.  On this basis, seven subproblems were defined aiming at providing a 

multilevel characterization of one individual’s status. 

i. Subproblem 1:-USMI Dataset based on the composition of total collagen 

a. Class 0: Low Risk Plaques (cases 107) 

b. Class 1: High Risk Plaques (cases 101) 

ii. Subproblem 2:-USMI Dataset based on the composition of SMCs 

a. Class 0: Low Risk Plaques (cases 157) 

b. Class 1: High Risk Plaques (cases 52) 

iii. Subproblem 3:-USMI Dataset based on the composition of lipid 

a. Class 0: Low Risk Plaques (cases 111) 

b. Class 1: High Risk Plaques (cases 96) 

iv. Subproblem 4:-USMI Dataset based on the composition of neutrophils 

a. Class 0: Low Risk Plaques (cases 113) 

b. Class 1: High Risk Plaques (cases 85) 

v. Subproblem 5:-USMI Dataset based on the composition of macrophages  

a. Class 0: Low Risk Plaques (cases 113) 

b. Class 1: High Risk Plaques (cases 86) 

vi. Subproblem 6- USMI whole dataset based on the presence of symptomatic disease 

a. Class 0: Low Risk Plaques (cases 241) 

b. Class 1: High Risk Plaques (cases 44) 

vii. Subproblem 7- Atheroexpress dataset based on the presence of symptomatic disease 

a. Class 0: Low Risk Plaques (cases 64) 

b. Class 1: High Risk Plaques (cases 310) 
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Figure 5.8 Diagnostic Prediction of vulnerable plaque components. 

 

5.4.2 Dataset 

Input features for the diagnostic prediction of vulnerable plaque components were retrospective dataset, 

collected during the Taxinomisis project and were provided by USMI and UMC clinical center.  

Subproblem 1-6 were formulated based on a dataset provided by USMI center, whereas Subproblem 7 

was formulated based on a dataset provided by UMC [270]. 

More specifically, Subproblem 1-5 were defined as a multivariate 2 class classification problem based 

on 5 different plaque histology related features.  Thus, 5 different subproblems (Subproblem 1, 

Subproblem 2, Subproblem 3, Subproblem 4 and Subproblem 5) have been defined and their input 

features and baseline characteristics for each subproblem are illustrated in Table 5.10.  Clinical doctors 

from USMI have identified the most significant histological-plaque related features, which are directly 

associated with the vulnerability of the atherosclerotic plaques.  For each one of these five plaque related 

features, a cut off value has been defined, in order to binarize the output of our proposed models.  

Clinical doctors have statistically analyzed USMI dataset to identify accurate cut-off values for the 

classification of non-vulnerable-low risk plaques (Class 0) and vulnerable-high risk plaques (Class 1).  

Subproblem 1-5 have been defined based on the concentration of total collagen, SMCs, lipid, 

neutrophils and macrophages, respectively, whereas the implemented cut-off values for the definition of 

the output of our proposed models are shown in Table 5.9, below. 

Regarding the subproblems 6 and 7, the output has been defined based on the presence of symptoms.  In 

Table 5.11 and Table 5.12, we show the input features and their basic statistics for Subproblem 6 and 
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Subproblem 7, respectively, including as input views demographics, clinical data, risk factors, 

heamatological, biochemical and serum markers.  

 

Table 5.9 Roc curve analysis identifying symptomatic patients according to intraplaque parameters. 

Overall 

content 

AUC  

(95% CI) 

p- 

value 

Youden 

index 

Cut-off 

value 

Sensitivity 

(%) 

Specificity 

(%) 

+ LR - LR 

Total 

collagen 

(%) 

0.808  

(0.743-0.863) 

<0.001 0.55 ≦ 22.68 86.48 68.06 2.71 0.20 

SMCs (%) 0.748 

 (678-0.809) 

<0.001 0.43 ≦ 2.82 59.46 81.94 3.29 0.49 

Lipid 0.705  

(0.633-0.771) 

<0.001 0.39 >5.61 78.38 60.42 1.98 0.36 

Neutrophil 

(cell/mm2) 

0.757  

(0.688-0.818) 

<0.001 0.48 >5.44 83.78 64.58 2.37 0.25 

Macrophage

s 

0.628  

(0.553-0.699) 

0.006 0.27 >4.46 89.19 37.50 1.43 0.29 
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Table 5.10 Baseline Characteristics of training datasets regarding Subproblems 1-5. 

 Subproblem 1 

(<22.68 threshold of 

total collagen) 

(N=208) 

Subproblem 2 

(<2.82 of SMCs) 

 

(N=209) 

Subproblem 3 

(>5.61 threshold 

of Lipid) 

(N=207) 

Subproblem 4 

(>5.44 threshold 

Neutrophils) 

(N=199) 

Subproblem 5 

(>4.46 of 

Macrophages) 

(N=202) 

Demographics 

Age (years), mean (SD) 72.61 (8.26) 72.51 (8.24) 72.52 (8.29) 72.53 (8.21) 72.59 (8.17) 

Gender (male), n (%) 140 (67.31%) 141 (67.46%) 138 (66.67%) 135 (67.84%) 137 (67.82%) 

Clinical Data 

SBP (mmHg), mean (SD) 137 (12.59) 136.82 (12.48) 136.80 (12.57) 137.32 (12.5) 137.11 (12.53) 

DBP (mmHg), mean (SD) 81.87 (7.29) 81.91 (7.29) 81.88 (7.34) 81.75 (7.38) 81.79 (7.35) 

Risk Factors 

Smoking, n (%) 53 (25.48%) 52 (24.88%) 52 (25.12%) 49 (24.62%) 49 (24.26%) 

Hypertension, n (%) 150 (72.12%) 150 (71.77%) 148 (71.5%) 144 (72.36%) 147 (72.77%) 

DM, n (%) 46 (22.12%) 47 (22.49%) 46 (22.22%) 44 (22.11%) 45 (22.23%) 

Chronic CAD, n (%) 41 (19.71%) 42 (20.1%) 41 (19.81%) 39 (19.6%) 40 (19.8%) 

Medication Therapy 

Statin, n (%) 112 (53.85%) 113 (54.07%) 112 (54.11%) 109 (54.77%) 110 (54.46%) 

Clopidogrel, n (%) 48 (23.08%) 48 (22.97%) 48 (23.19%) 46 (23.12%) 47 (23.27%) 

Ca blockers, n (%) 66 (31.73%) 65 (31.1%) 65 (31.4%) 64 (32.16%) 65 (32.18%) 

Anticoagulants, n (%) 13 (6.25%) 13 (6.22%) 13 (6.28%) 12 (6.03%) 13 (6.43%) 

Diuretics, n (%) 30 (14.42%) 29 (13.88%) 29 (14.01%) 27 (13.57%) 27 (13.37%) 

β-blockers, n (%) 58 (27.88%) 57 (27.27%) 56 (27.05%) 54 (27.14%) 55 (27.23%) 

ACEi, n (%) 9 (4.33%) 9 (4.31%) 9 (4.35%) 9 (4.52%) 6 (2.97%) 

ARBs, n (%) 98 (47.12%) 100 (47.85%) 98 (47.34%) 94 (47.24%) 96 (47.52%) 

Lipid Biomarkers 

TC, mean (SD) 192.38 (44.3)4 191.97 (44.39) 192.1 (44.56) 191.71 (44.86) 191.64 (44.55) 

HDL, mean (SD) 50.96 (14.97) 50.99 (15.21) 51.02 (15.21) 51.15 (15.32) 51.25 (15.22) 

LDL, mean (SD) 114.73 (39.75) 114.11 (39.94) 114.28 (40.15) 114.19 (40.48) 114.07 (40.19) 

Triglycerides, mean (SD) 141 (74.42) 141.91 (74.51) 141.55 (74.62) 139.75 (72.42) 139.36 (72.25) 

High Risk Plaques 101 (48.56%) 52 (24.88%) 96 (46.38%) 86 (43.22%) 135 (66.83%) 
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Table 5.11 Baseline Characteristics of training datasets regarding Subproblem 6. 

Overall Cohort (N=285) 

Clinical Data Serum Markers 

Age, mean (SD) 72.73 (8.2) CCL2, mean (SD) 90.94 (123.74) 

Gender (male), n (%) 189 (66.32%) OPG, mean (SD) 883.62 (859.56) 

SBP, mean (SD) 134.91 (12.67) hs-CRP, mean (SD) 3.82 (5.26) 

DBP, mean (SD) 81.24 (7.21) P-selectin, mean (SD) 97.67 (88.18) 

waist circumference, mean (SD) 91.4 (7.925) ICAM-1, mean (SD) 221.94 (100.56) 

Risk Factors  VCAM-1, mean (SD) 420.62 (265.39) 

Hypertension, n (%) 207 (72.63%) Adiponectin, mean (SD) 4.63 (3.35) 

DM, n (%) 67 (23.51%) E-selectin, mean (SD) 21.28 (13.64) 

Dyslipidemia, n (%) 151 (52.98%) Resistin, mean (SD) 11.47 (42.97) 

Chronic CAD, n (%) 64 (22.46%) Leptin, mean (SD) 25.76 (40.52) 

Smoking, n (%) 69 (24.21%) IL-α, mean (SD) 11.09 (22.99) 

Medication TNF-α, mean (SD) 43.59 (136.08) 

Statins, n (%) 158 (55.44%) CCL5, mean (SD) 70.85 (58.36) 

Biochemical CCL4, mean (SD) 41.08 (96.71) 

D-dimer, mean (SD) 571.97 

(1331.38) 

CCL3, mean (SD) 69.23 (309.38) 

Fibrinogenemia, mean (SD) 3.94 (1.42) CD40L, mean (SD) 602.75 (1277.29) 

Fasting Insulinemia, mean (SD) 10.98 (8.88) IL-6, mean (SD) 2.81 (3.38) 

Fasting C-peptidemia, mean 

(SD) 

3.09 (1.43) sIL-6R, mean (SD) 36.62 (17.73) 

Lpa, mean (SD) 0.12 (0.19) IGF-1, mean (SD) 1.39 (2.47) 

TC, mean (SD) 195.02 (45.71) L-selectin, mean (SD) 3018.34 (1437.18) 

HDL, mean (SD) 51.8 (15.77) MMP-9, mean (SD) 579.38 (529.52) 

LDL, mean (SD) 116.69 (41.14) proMMP-9, mean (SD) 22.16 (9.45) 

Triglyceridemia, mean (SD) 138.41 (68.9) MMP-8, mean (SD) 15.77 (20.11) 

Fasting Glycemia, mean (SD) 113.07 (33.78) TIMP-1, mean (SD) 410.02 (431.72) 

Heamatological  TIMP-2, mean (SD) 115.42 (57.28) 

WBC, mean (SD) 7.18 (1.65) TIMP-3, mean (SD) 14.76 (17.18) 

Neutrophils, mean (SD) 64.12 (7.68) TIMP-4, mean (SD) 6.01 (15.24) 

Monocytes, mean (SD) 6.47 (1.87) MMP-9/TIMP-1, mean 

(SD) 

17.14 (14.51) 

Lymphocytes, mean (SD) 25.2 (6.7) FAP, mean (SD) 142.05 (89.99) 

Platelets, mean (SD) 233.88 (65.05) OPN, mean (SD) 69.58 (75.8) 

RBC, mean (SD) 4.64 (0.5) RANKL, mean (SD) 1915.6 (1924.73) 

  Neutrophil elastase, mean 

(SD) 

310.73 (377.69) 

  Total Vitamin D, mean 

(SD) 

42.75 (31.95) 

  PCSK-9, mean (SD) 294.73 (128.17) 
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Table 5.12 Baseline Characteristics of training datasets regarding Subproblem 7. 

 

5.4.3 Results 

Statistical Analysis Results 

In Table 5.13-Table 5.17, we show the statistical analysis results for class of low risk plaques, in 

comparison with class of high risk plaques for Subproblems 1-5.  Individuals, who receive 

anticoagulants therapy (Subproblem 1-p:0.035, Subproblem 1-p:0.013, Subproblem 4-p:0.014), 

Clopidogrel (Subproblem 1- p:0.002, Subproblem 5- p:0.007), ACEi (Subproblem 3- p:0.009) 

and Ca blockers (Subproblem 3- p:0.036) are more susceptible of the presence of high risk 

plaques. 

 

 

Overall Cohort (N=374) 

Demographics Serum markers 

Age, mean (SD) 68.51 (8.84) FABP4, mean (SD) 12984.2 (11711.48) 

Gender (male), n (%) 94 (25.13%) Cystatin C, mean (SD) 337610.88 (131515.87) 

Clinical Lp-PLA(2), mean (SD) 113.9 (47.63) 

SBP, mean (SD) 153.55 (25.76) PCSK-9, mean (SD) 31896.72 (18998.12) 

DBP, mean (SD) 81.70 (13.22) GDF15, mean (SD) 3361.78 (7608.91) 

MAP, mean (SD) 105.65 (15.65) RANTES, mean (SD) 3.63 (4.29) 

BMI, mean (SD) 26.59 (3.88) hs-CRP, mean (SD) 31.96 (385.22) 

Heamatological TAT, mean (SD) 116.12 (770.8) 

Hb, mean (SD) 8.69 (0.97) Myeloperoxidase, mean (SD) 44.03 (42.04) 

Haematocrit, mean (SD) 0.41 (0.05) Nt-pro-b, mean (SD) 234.19 (2365.15) 

Risk factors PDGF, mean (SD) 0.25 (0.65) 

CAD, n (%) 122 (32.62%) OPG, mean (SD) 1.75 (0.72) 

PAOD, n (%) 80 (21.39%) VEGF-A, mean (SD) 8.53 (6.68) 

peripheral intervention, n (%) 61 (16.31%) VWF, mean (SD) 57.6 (50.44) 

DM, n (%) 66 (17.65%) Biochemical 

treatment of DM, n (%) 64 (17.11%) Creatinine, mean (SD) 95.46 (29.8) 

smoking current, n (%) 138 (36.89 %) GFR, mean (SD) 76.2 (23.14) 

Hypertension, n (%) 255 (68.18%) Glucose, mean (SD) 6.64 (2.09) 

 TC, mean (SD) 176.26 (46.24) 

Symptomatic Disease 310 (82.89%) LDL, mean (SD) 105.95 (39.91) 

  HDL, mean (SD) 43.4 (14.31) 

  Triglycerides, mean (SD) 138.1 (74.68) 
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Table 5.13 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 1. 

 Low risk plaques 

(N=107) 

High risk plaques 

(N=101) 

P value 

Age (years), mean (SD) 71.21 (8.02) 74.09 (8.3) 0.899 

Gender (male), n (%) 66 (61.11) 74 (73.27) 0.076 

SBP (mmHg), mean (SD) 139.48 (15.54) 134.4 (10.98) 0.305 

DBP (mmHg), mean (SD) 81.98 (6.54) 81.76 (8.04) 0.097 

Smoking, n (%) 29 (27.1%) 24 (23.76%) 0.837 

Hypertension, n (%) 80 (74.76%) 70 (69%) 0.381 

DM, n (%) 25 (23.36%) 21 (21%) 0.656 

Chronic CAD, n (%) 20 (18.69%) 21 (21%) 0.704 

Statin, n (%) 58 (54.21%) 54 (53%) 0.915 

Clopidogrel, n (%) 20 (18.69%) 28 (28%) 0.132 

Ca blockers, n (%) 36 (33.64%) 30 (30%) 0.543 

Anticoagulants, n (%) 3 (2.8%) 10 (10%) 0.035 

Diuretics, n (%) 14 (13.08%) 16 (16%) 0.572 

β-blockers, n (%) 33 (30.84%) 25 (25%) 0.329 

ACEi, n (%) 5 (4.67%) 4 (4%) 0.801 

ARBs, n (%) 54 (50.47%) 44 (44%) 0.32 

TC, mean (SD) 194.81 (50.4) 189.75 (36.75) 0.084 

HDL, mean (SD) 51.74 (14.95) 50.12 (15.02) 0.474 

LDL, mean (SD) 115.06 (45.18) 114.39 (33.13) 0.076 

Triglycerides, mean (SD) 144.55 (85.1) 137.17 (61.01) 0.239 

 

Table 5.14 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 2. 

 Low risk plaques 

(N=157) 

High risk plaques 

(N=52) 

P value 

Age (years), mean (SD) 72.36 (7.86) 72.96 (9.37) 0.145 

Gender (male), n (%) 106 (67.52) 35 (67.31) 0.978 

SBP (mmHg), mean (SD) 136.3 (12.48) 138.43 (12.47) 0.844 

DBP (mmHg), mean (SD) 81.83 (7.51) 82.18 (6.65) 0.23 

Smoking, n (%) 40 (25.48%) 12 (23.08%) 0.277 

Hypertension, n (%) 115 (73.25%) 35 (67.31%) 0.411 

DM, n (%) 37 (23.57%) 10 (19.23%) 0.517 

Chronic CAD, n (%) 31 (19.75%) 11 (21.15%) 0.827 

Statin, n (%) 87 (55.41%) 26 (50%) 0.498 

Clopidogrel, n (%) 28 (17.83%) 20 (38.46%) 0.002 

Ca blockers, n (%) 47 (29.94%) 18 (34.62%) 0.529 
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 Low risk plaques 

(N=157) 

High risk plaques 

(N=52) 

P value 

Anticoagulants, n (%),  6 (3.82%) 7 (13.46%) 0.013 

Diuretics, n (%) 23 (14.65%) 6 (11.54%) 0.575 

β-blockers, n (%) 37 (23.57%) 20 (38.46%) 0.037 

ACEi, n (%) 7 (4.46%) 2 (3.85%) 0.851 

ARBs, n (%) 78 (49.68%) 22 (42.31%) 0.357 

TC, mean (SD) 192.89 (45.63) 189.14 (40.65) 0.99 

HDL, mean (SD) 52.29 (14.93) 47 (15.49) 0.684 

LDL, mean (SD) 113.78 (40.68) 115.1 (37.94) 0.766 

Triglycerides, mean (SD) 139.16 (68.75) 150.24 (89.96) 0.196 

 

Table 5.15 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 3. 

 Low risk plaques 

(N=111) 

High risk plaques 

(N=96) 

P value 

Age (years), mean (SD) 72.47 (7.63) 72.57 (9.03) 0.143 

Gender (male), n (%) 70 (63.06%) 68 (70.83%) 0.238 

SBP (mmHg), mean (SD) 133.73 (11.1) 140.39 (13.28) 0.661 

DBP (mmHg), mean (SD) 81.55 (7.74%) 82.26 (6.86) 0.219 

Smoking, n (%) 33 (29.73%) 19 (19.79%) 0.831 

Hypertension, n (%) 79 (71.17%) 69 (71.88%) 0.723 

DM, n (%) 23 (20.72%) 23 (23.96%) 0.577 

Chronic CAD, n (%) 21 (18.92%) 20 (20.83%) 0.731 

Statin, n (%) 59 (53.15%) 53 (55.21%) 0.768 

Clopidogrel, n (%) 25 (22.52%) 23 (23.96%) 0.808 

Ca blockers, n (%) 29 (26.13%) 36 (37.5%) 0.079 

Anticoagulants, n (%) 5 (4.5%) 8 (8.33%) 0.259 

Diuretics, n (%) 14 (12.61%) 15 (15.63%) 0.534 

β-blockers, n (%) 30 (27.03%) 26 (27.08%) 0.993 

ACEi, n (%) 1 (0.9%) 8 (8.33%) 0.009 

ARBs, n (%) 55 (49.55%) 43 (44.79%) 0.495 

TC, mean (SD) 186.22 (42.96) 198.77 (45.62) 0.582 

HDL, mean (SD) 51.65 (14.85) 50.3 (15.64) 0.741 

LDL, mean (SD) 108.88 (38.52) 120.41 (41.27) 0.946 

Triglycerides, mean (SD) 134.14 (65.02) 149.97 (83.78) 0.339 
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Table 5.16 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 4. 

 Low risk plaques 

(N=113) 

High risk plaques 

(N=86) 

P value 

Age (years), mean (SD) 71.99 (7.68) 73.24 (8.85) 0.412 

Gender (male), n (%) 75 (66.37%) 60 (69.77%) 0.612 

SBP (mmHg), mean (SD) 135.53 (12.06) 139.65 (12.74) 0574 

DBP (mmHg), mean (SD) 81.54 (7.24) 82.03 (7.6) 0.59 

Smoking, n (%) 27 (23.89%) 22 (25.58%) 0.641 

Hypertension, n (%) 80 (70.8%) 64 (74.42%) 0.572 

DM, n (%) 27 (23.89%) 17 (19.77%) 0.488 

Chronic CAD, n (%) 20 (17.7%) 19 (22.09%) 0.44 

Statin, n (%) 69 (61.06%) 40 (46.51%) 0.042 

Clopidogrel, n (%) 23 (20.35%) 23 (26.74%) 0.291 

Ca blockers, n (%) 30 (26.55%) 34 (39.53%) 0.053 

Anticoagulants, n (%) 3 (2.65%) 9 (10.47%) 0.022 

Diuretics, n (%) 14 (12.39%) 13 (15.12%) 0.579 

β-blockers, n (%) 33 (29.2%) 21 (24.42%) 0.453 

ACEi, n (%) 5 (4.42%) 4 (4.65%) 0.939 

ARBs, n (%) 54 (47.79%) 40 (46.51%) 0.859 

TC, mean (SD) 188.15 (42.09) 196.3 (48.06) 0.798 

HDL, mean (SD) 51.2 (14.21) 51.09 (16.72) 0.488 

LDL, mean (SD) 110.71 (37.82) 118.69 (43.48) 0.576 

Triglycerides, mean (SD) 134.72 (58.48) 146.27 (87.17) 0.066 

 

Table 5.17 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 5. 

 Low risk plaques 

(N=67) 

High risk plaques 

(N=135) 

P value 

Age (years), mean (SD) 71.78 (7.3) 73 (8.57) 0.246 

Gender (male), n (%) 44 (65.679%) 93 (68.89%) 0.646 

SBP (mmHg), mean (SD) 136.13 (12.19) 137.6 (12.72) 0.759 

DBP (mmHg), mean (SD) 81.78 (7.2) 81.8 (7.45) 0.425 

Smoking, n (%) 14 (20.9%) 35 (25.93%) 0.866 

Hypertension, n (%) 48 (71.64%) 99 (73.33%) 0.8 

DM, n (%) 16 (23.88%) 29 (21.48%) 0.7 

Chronic CAD, n (%) 11 (16.42%) 29 (21.48%) 0.396 

Statin, n (%) 36 (53.73%) 74 (54.81%) 0.885 

Clopidogrel, n (%) 8 (11.94%) 39 (28.89%) 0.007 

Ca blockers, n (%) 15 (22.39%) 50 (37.04%) 0.036 



 

162 
 

 Low risk plaques 

(N=67) 

High risk plaques 

(N=135) 

P value 

Anticoagulants, n (%) 1 (1.49%) 12 (8.89%) 0.044 

Diuretics, n (%) 11 (16.42%) 16 (11.85%) 0.37 

β-blockers, n (%) 18 (26.87%) 37 (27.41%) 0.935 

ACEi, n (%) 2 (2.99%) 4 (2.96%) 0.993 

ARBs, n (%) 35 (52.24%) 61 (45.19%) 0.346 

TC, mean (SD) 186.94 (42.7) 193.95 (45.42) 0.908 

HDL, mean (SD) 49.92 (14.57) 51.90 (15.55) 0.283 

LDL, mean (SD) 108.38 (37.07) 116.88 (41.48) 0.794 

Triglycerides, mean (SD) 142 (83) 138.07 (66.67) 0.603 

 

Table 5.18 and Table 5.19 provide the basic descriptive statistics of the distribution of numerical 

and categorical features with respect to Subproblem 6 and Subproblem 7, respectively.  

Regarding Subproblem 6, the presence of carotid artery disease symptoms is significantly 

correlated with higher mean value of monocytes % (p=0.046), hs-CRP (p=0.026), leptin 

p=0.013), TNF-α (p=0.021), CCL5 (p=0.023), MMP-8 (p=0.032), MMP-9/ TIMP-1 (p=0.001) 

and OPN (p=0.006). On the other hand, carotid artery disease symptoms are significantly 

correlated with lower mean values of Neutrophils (%) (p=0.045), RBCs (p=0.038), Lpa (t-test 

p=0.004), TIMP2 (p=0.014), Total Vitamin D (p=0.017) and PCSK9 (p=0.034).  As for 

Subproblem 7, carotid artery disease symptoms are significantly associated with higher mean 

values of Serum FABP4 (p=0.006), of RANTES (p=0.032) and age (p=0.003), whereas GDF15 

exhibits lower mean values (p=0.04). In addition to this, individuals with history of CAD are 

more susceptible to present carotid artery symptoms. 

 

Table 5.18 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 6. 

Subproblem 6 

Variables 

Low risk plaques 

(N=241) 

High risk plaques 

(N=44) 

P value 

Age, mean (SD) 72.39 (8.14 74.59 (8.48 0.885 

Gender 65.1 72.7 0.328 

waist circumference, mean (SD) 91.57 (8.55 90.3 (8.7 0.736 

Hypertension, (%) 73% 70.5% 0.725 

DM, (%) 23.7% 22.7% 0.894 

Dyslipidemia, (%) 51.5% 61.4% 0.226 
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Subproblem 6 

Variables 

Low risk plaques 

(N=241) 

High risk plaques 

(N=44) 

P value 

Chronic CAD, (%) 23.7% 15.9% 0.258 

Total WBC, mean (SD) 7.15 (1.71) 7.33 (1.35) 0.101 

Neutrophils, mean (SD) 64.41 (7.37) 62.5 (9.29) 0.045 

Monocytes, mean (SD) 6.39 (1.91) 6.8 (1.64) 0.046 

Lymphocytes, mean (SD) 25.01 (6.4) 26.23 (8.28) 0.059 

Platelets, mean (SD) 232.26 (66.73) 242.66 (56.6)3 0.58 

RBC, mean (SD) 4.67 (0.49) 4.47 (0.55) 0.038 

D-dimer, mean (SD) 610.6 (4500.1) 353.56 (470.29) 0.168 

Fibrinogenemia, mean (SD) 3.93 (1.5) 4.01 (1.04) 0.877 

Fasting Insulinemia, mean (SD) 11.1 (9.97) 10.31 (5.14) 0.23 

Fasting C peptidemia, mean (SD) 3.08 (1.53) 3.17 (1.41) 0.175 

Lpa, mean (SD) 0.13 (0.24) 0.06 (0.09) 0.004 

TC, mean (SD) 195.57 (47.63) 191.98 (37.03) 0.292 

HDL, mean (SD) 52.52 (15.68) 47.79 (16.78) 0.793 

LDL, mean (SD) 116.32 (43.16) 118.77 (31.19) 0.177 

Triglyceridemia, mean (SD) 137.48 (72.15) 143.49 (5.36) 0.283 

Fasting Glycemia, mean (SD) 112.81 (34.45) 114.52 (31.51) 0.867 

CCL2, mean (SD) 94.62 (133.68) 71 (65.85) 0.099 

OPG, mean (SD) 853.94 (925.82) 1037.64 (743.15) 0.033 

hs-CRP, mean (SD) 3.69 (5.76) 4.43 (4.07) 0.026 

P-selectin, mean (SD) 98.05 (90.12) 95.73 (104.28) 0.48 

ICAM-1, mean (SD) 221.3 (97.45) 225.41 (127.03) 0.238 

VCAM-1, mean (SD) 427.31 (267.29) 384.58 (285.92) 0.701 

Adiponectin, mean (SD) 4.7 (3.61) 4.28 (3.09) 0.412 

E-selectin, mean (SD) 21.1 (14.96) 22.19 (11.07) 0.674 

Resistin, mean (SD) 12.23 (49.12) 7.58 (7.66) 0.41 

Leptin, mean (SD) 24.08 (29.56) 34.37 (81.98) 0.013 

IL-α, mean (SD) 12.86 (28.57) 16.21 (36.09) 0.368 

TNF-α, mean (SD) 36.14 (135.44) 82.29 (171.3) 0.021 

CCL5, mean (SD) 68.32 (60.04) 84.21 (58.43) 0.023 

CCL4, mean (SD) 41.58 (109.54) 38.47 (35.53) 0.412 

CCL3, mean (SD) 70.22 (340.99) 64.08 (218.09) 0.882 

CD40L, mean (SD) 589.77 (1328.57) 670.12 (1397.59) 0.625 

IL-6, mean (SD) 2.82 (3.51) 2.76 (4.2) 0.802 

sIL-6R, mean (SD) 37.14 (19.18) 33.93 (15.45) 0.323 

IGF-1, mean (SD) 1.5 (3.57) 0.92 (0.82) 0.284 

L-selectin, mean (SD) 3068.96 (1562.11) 2757.99 (1195.13) 0.342 

MMP-9, mean (SD) 569.65 (525.82) 631.65 (615.29) 0.125 

pro-MMP-9, mean (SD) 21.62 (11.96) 24.47 (14.78) 0.108 

MMP-8, mean (SD) 14.31 (19.8) 23.67 (22.46) 0.032 

TIMP-1, mean (SD) 415.52 (457.3) 380.58 (345.01) 0.478 



 

164 
 

Subproblem 6 

Variables 

Low risk plaques 

(N=241) 

High risk plaques 

(N=44) 

P value 

TIMP-2, mean (SD) 118.99 (61.89) 96.88 (45.13) 0.014 

TIMP-3, mean (SD) 14.67 (17.97) 15.2 (18.31) 0.614 

TIMP-4, mean (SD) 6.32 (17.69) 4.41 (1.78) 0.363 

MMP-9/TIMP-1, mean (SD) 16.55 (15.77) 19.99 (24.23) 0.001 

FAP, mean (SD) 142.93 (97.75) 137.52 (77.3) 0.923 

OPN, mean (SD) 64.4 (76.14) 97.28 (79.4) 0.006 

RANKL, mean (SD) 1911.25 (2253.08) 1935.97 (2037.27) 0.677 

MPO, mean (SD) 318.16 (542.5) 398.08 (589.36) 0.098 

Neutrophil elastase, mean (SD) 317.59 (494.7) 279.52 (230.29) 0.524 

Total Vitamin D, mean (SD) 44.04 (35.87) 36.17 (22.41) 0.017 

PCSK-9, mean (SD) 301.07 (130.91) 260.95 (129.08) 0.034 

 

Table 5.19 Subjects characteristics in high risk plaques group and low risk plaques group regarding 

Subproblem 7. 

Subproblem 7 

Variables 

Low risk plaques 

(N=64) 

High risk plaques 

(N=310) 

P value 

Age, mean (SD) 65.52 (9.35) 69.12 (8.62) 0.003 

Gender (male), n (%) 62.1 74.7 0.431 

SBP, mean (SD) 157.2 (23.77) 152.8 (26.13) 0.249 

DBP, mean (SD) 83.78 (13.17) 81.27 (13.21) 0.2 

MAP, mean (SD) 108.25 (14.46) 105.11 (15.85) 0.176 

BMI, mean (SD) 27.11 (3.56) 26.49 (3.94) 0.254 

Hb, mean (SD) 8.83 (0.85) 8.66 (0.99) 0.23 

Haematocrit, mean (SD) 0.42 (0.04) 0.41 (0.05) 0.162 

CAD, n (%) 37.5% 31.6% 0.36 

PAOD, n (%) 25.0% 20.6% 0.439 

peripheral intervention, n (%) 20.3% 15.5% 0.341 

DM, n (%) 14.1% 18.4% 0.448 

treatment of DM, n (%) 14.1% 17.7% 0.525 

smoking current, n (%) 31.2% 38.1% 0.287 

Hypertension, n (%) 73.4% 67.1% 0.349 

FABP4, mean (SD) 10665.36 (4736.71) 13482.39 (12672.09) 0.006 

Cystatin C, mean (SD) 331507.69 (112363.14) 338922.11 (135438.71) 0.705 

Lp-PLA(2), mean (SD) 110.52 (42.49) 114.65 (48.72) 0.541 

PCSK-9, mean (SD) 34973.27 (23839.7) 31204.49 (17706.34) 0.155 

GDF15, mean (SD) 3809.32  (7751.99) 3261.44  (7586.86) 0.04 

RANTES, mean (SD) 3.11 (3.99) 3.74 (4.35) 0.032 

hs-CRP, mean (SD) 3.79 (5.73) 37.97 (424.2) 0.52 

TAT, mean (SD) 94.047 (186.91) 120.81 (844.64) 0.801 
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Subproblem 7 

Variables 

Low risk plaques 

(N=64) 

High risk plaques 

(N=310) 

P value 

Myeloperoxidase, mean (SD) 37.59 (35.82) 45.39 (43.17) 0.178 

Nt-pro-b, mean (SD) 77.11 (74.9) 267.48 (2603.03) 0.559 

PDGF, mean (SD) 0.22 (0.33) 0.26 (0.7) 0.708 

OPG, mean (SD) 1.67 (0.66) 1.77 (0.74) 0.315 

VEGF-A, mean (SD) 7.18 (4.14) 8.84 (7.11) 0.09 

VWF, mean (SD) 48.05 (26.77) 59.62 (53.85) 0.14 

Creatinine, mean (SD) 95.89 (25.86) 95.37 (30.58) 0.902 

GFR, mean (SD) 78.67 (26.88) 75.4 (26.14) 0.38 

Glucose, mean (SD) 6.7 (2.35) 6.62 (2.04) 0.832 

TC, mean (SD) 181.27 (48.34) 175.18 (45.81) 0.381 

LDL, mean (SD) 109.07 (40.47) 105.29 (39.84) 0.532 

HDL, mean (SD) 43.87 (13.88) 43.29 (14.42) 0.79 

Triglycerides, mean (SD) 151.95 (72.92) 135.12 (74.86) 0.133 

 

Model performance-evaluation results 

Balanced accuracy, sensitivity, specificity, PPV, NPV and AUC were utilized for the evaluation 

of the proposed models.  In Table 5.20-Table 5.26, we demonstrate the values for each utilized 

performance metric per fold, their mean values and SD, for Subproblems 1-7, respectively. 

The achieved accuracies were 0.62±0.13, 0.64±0.11, 0.63±0.07, 0.58±0.12, 0.53±0.12, 0.65± 

0.09, 0.79±0.12, whereas the AUC values were 0.64, 0.67, 0.65, 0.64, 0.54, 0.57, 0.77, for 

Subproblems 1-7, respectively.  ROC curves analyses are shown in Figure 5.9- Figure 5.15.  

 

Table 5.20 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 1. 

 

Subproblem 1 

Accuracy Sensitivity Specificity PPV NPV AUC 

fold #0 0.768182 0.9 0.636364 0.692308 0.875 0.881818 

fold #1 0.472727 0.4 0.545455 0.444444 0.5 0.445455 

fold #2 0.809091 0.8 0.818182 0.8 0.818182 0.809091 

fold #3 0.659091 0.5 0.818182 0.714286 0.642857 0.827273 

fold #4 0.627273 0.8 0.454545 0.571429 0.714286 0.627273 

fold #5 0.563636 0.4 0.727273 0.571429 0.571429 0.527273 

fold #6 0.477273 0.5 0.454545 0.454545 0.5 0.563636 

fold #7 0.763636 0.727273 0.8 0.8 0.727273 0.745455 
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Subproblem 1 

Accuracy Sensitivity Specificity PPV NPV AUC 

fold #8 0.5 0.6 0.4 0.5 0.5 0.42 

fold #9 0.55 0.6 0.5 0.545455 0.555556 0.57 

Mean 0.6190909 0.622727 0.615455 0.60939 0.640458 0.641727 

SD 0.126690605 0.176709 0.165203 0.133609 0.137739 0.164343 

 

Table 5. 21 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 2. 

 

Subproblem 2 

Accuracy Sensitivity Specificity PPV NPV AUC 

fold #0 0.475 0.2 0.75 0.2 0.75 0.35 

fold #1 0.7125 0.8 0.625 0.4 0.909091 0.725 

fold #2 0.70625 0.6 0.8125 0.5 0.866667 0.875 

fold #3 0.60625 0.4 0.8125 0.4 0.8125 0.675 

fold #4 0.64375 0.6 0.6875 0.375 0.846154 0.5875 

fold #5 0.7125 0.8 0.625 0.4 0.909091 0.8375 

fold #6 0.44375 0.2 0.6875 0.166667 0.733333 0.475 

fold #7 0.8 0.666667 0.933333 0.8 0.875 0.966667 

fold #8 0.616667 0.5 0.733333 0.428571 0.785714 0.566667 

fold #9 0.633333 0.6 0.666667 0.375 0.833333 0.68 

Mean 0.635 0.536667 0.733333 0.404524 0.832088 0.673833 

SD 0.10940883 0.214562 0.097143 0.172016 0.061573 0.188268 

 

Table 5.22 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 3. 

 

Subproblem 3 

Accuracy Sensitivity Specificity PPV NPV AUC 

fold #0 0.694444 0.888889 0.5 0.571429 0.857143 0.796296 

fold #1 0.568182 0.5 0.636364 0.555556 0.583333 0.5 

fold #2 0.668182 0.7 0.636364 0.636364 0.7 0.718182 

fold #3 0.613636 0.5 0.727273 0.625 0.615385 0.554545 

fold #4 0.718182 0.8 0.636364 0.666667 0.777778 0.763636 

fold #5 0.527273 0.6 0.454545 0.5 0.555556 0.554545 

fold #6 0.527273 0.6 0.454545 0.5 0.555556 0.690909 

fold #7 0.661616 0.777778 0.545455 0.583333 0.75 0.606061 

fold #8 0.59596 0.555556 0.636364 0.555556 0.636364 0.656566 

fold #9 0.69697 0.666667 0.727273 0.666667 0.727273 0.646465 

Mean 0.6271718 0.658889 0.595455 0.586057 0.675839 0.648721 

SD 0.070824639 0.131994 0.101527 0.061407 0.102577 0.096224 
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Table 5.23 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 4. 

 

Subproblem 4 

Accuracy Sensitivity Specificity PPV NPV AUC 

fold #0 0.474747 0.222222 0.727273 0.4 0.533333 0.676768 

fold #1 0.560606 0.666667 0.454545 0.5 0.625 0.757576 

fold #2 0.59596 0.555556 0.636364 0.555556 0.636364 0.656566 

fold #3 0.383838 0.222222 0.545455 0.285714 0.461538 0.40404 

fold #4 0.530303 0.333333 0.727273 0.5 0.571429 0.575758 

fold #5 0.540404 0.444444 0.636364 0.5 0.583333 0.434343 

fold #6 0.729167 0.625 0.833333 0.714286 0.769231 0.729167 

fold #7 0.541667 0.5 0.583333 0.444444 0.636364 0.645833 

fold #8 0.75 0.5 1 1 0.75 0.75 

fold #9 0.693182 0.75 0.636364 0.6 0.777778 0.761364 

Mean 0.5799874 0.481944 0.67803 0.55 0.634437 0.639142 

SD 0.11530471 0.179788 0.15432 0.195223 0.104809 0.130109 

 

Table 5.24 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 5. 

 

Subproblem 5 

Accuracy Sensitivity Specificity PPV NPV AUC 

fold #0 0.535714 0.357143 0.714286 0.714286 0.357143 0.530612 

fold #1 0.607143 0.5 0.714286 0.777778 0.416667 0.612245 

fold #2 0.452381 0.571429 0.333333 0.666667 0.25 0.607143 

fold #3 0.47619 0.285714 0.666667 0.666667 0.285714 0.440476 

fold #4 0.380952 0.428571 0.333333 0.6 0.2 0.416667 

fold #5 0.554945 0.538462 0.571429 0.7 0.4 0.659341 

fold #6 0.664835 0.615385 0.714286 0.8 0.5 0.747253 

fold #7 0.730769 0.461538 1 1 0.5 0.78022 

fold #8 0.543956 0.230769 0.857143 0.75 0.375 0.373626 

fold #9 0.368132 0.307692 0.428571 0.5 0.25 0.241758 

Mean 0.5315017 0.42967 0.633333 0.71754 0.353452 0.540934 

SD 0.116715996 0.130302 0.218852 0.132455 0.104952 0.172064 
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Table 5.25 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 6. 

 

Subproblem 6 

Accuracy Sensitivity Specificity AUC 

fold #0 0.66 1 0.32 0.83 

fold #1 0.675 0.6 0.75 0.7 

fold #2 0.754167 0.8 0.708333 0.75 

fold #3 0.429167 0.4 0.458333 0.466667 

fold #4 0.654167 0.6 0.708333 0.708333 

fold #5 0.729167 0.75 0.708333 0.645833 

fold #6 0.6875 0.75 0.625 0.71875 

fold #7 0.708333 0.75 0.666667 0.75 

fold #8 0.604167 0.5 0.708333 0.53125 

fold #9 0.625 0.75 0.5 0.614583 

Mean 0.652667 0.69 0.615333 0.671542 

SD 0.090732 0.16964 0.141669 0.109226 

 

Table 5.26 Evaluation of the carotid artery disease risk prediction problem based on the vulnerability of 

plaques over the 10-folds, regarding Subproblem 7. 

 

Subproblem 6 

Accuracy Sensitivity Specificity AUC 

fold #0 0.75 0.75 0.75 0.775 

fold #1 0.75 1 0.5 0.75 

fold #2 0.825 0.9 0.75 0.7 

fold #3 0.7 0.9 0.5 0.725 

fold #4 0.95 0.9 1 0.975 

fold #5 1 1 1 1 

fold #6 0.616667 0.9 0.333333 0.366667 

fold #7 0.783333 0.9 0.666667 0.883333 

fold #8 0.697368 0.894737 0.5 0.776316 

fold #9 0.796053 0.842105 0.75 0.710526 

Mean 0.786842 0.898684 0.675 0.766184 

SD 0.115869 0.071385 0.220304 0.17677 
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Figure 5. 9 ROC curve analysis regarding Subproblem 1. 

 

 

Figure 5.10 ROC curve analysis regarding Subproblem 2. 
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Figure 5.11 ROC curve analysis regarding Subproblem 3. 

 

 

Figure 5.12 ROC curve analysis regarding Subproblem 4. 
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Figure 5. 13 ROC curve analysis regarding Subproblem 5. 

 

 

Figure 5.14 ROC curve analysis regarding Subproblem 6. 
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Figure 5. 15 ROC curve analysis regarding Subproblem 7. 

 

Tuning of cut-off threshold values  

In Figure 5.16- Figure 5.25, we show the tuning process of threshold values for Subproblem 1-5.  

Regarding the first approach and the second approach (described in section 5.2.3), cut-off 

threshold values were defined 0.5, 0.45, 0.52, 0.47, 0.47 and 0.51, 0.54, 0.52, 0.65, 0.48 for 

Subproblem 1-5, respectively. 
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Figure 5.16 Tuning of threshold value based on ROC analysis regarding Subproblem 1. 

 

 

Figure 5.17 Tuning of threshold value based on balanced accuracy regarding Subproblem 1. 
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Figure 5. 18 Tuning of threshold value based on ROC analysis regarding Subproblem 2. 

 

 

Figure 5. 19 Tuning of threshold value based on balanced accuracy regarding Subproblem 2. 
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Figure 5. 20 Tuning of threshold value based on ROC analysis regarding Subproblem 3. 

 

 

Figure 5. 21 Tuning of threshold value based on balanced accuracy regarding Subproblem 3. 
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Figure 5. 22 Tuning of threshold value based on ROC analysis regarding Subproblem 4. 

 

 

Figure 5. 23 Tuning of threshold value based on balanced accuracy regarding Subproblem 4. 
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Figure 5. 24 Tuning of threshold value based on ROC analysis regarding Subproblem 5. 

 

 

Figure 5. 25 Tuning of threshold value based on balanced accuracy regarding Subproblem 5. 
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5.5 Discussion 

In this section, we have focused on the design and evaluation of ML based models for the 

prediction of carotid artery disease.  Having formulated the specified problems as binary 

classification problems according to the presence of CAS over 50%, the vulnerability and the 

stability of the atherosclerotic plaques, we methodically developed a carotid artery disease risk 

stratification methodology encompassing data pre-processing, feature evaluation, class 

imbalance handling and classification steps.  Different feature selection techniques have been 

implemented for the identification of the most informative input features, aiming to achieve the 

highest classification accuracy.  In this direction, we conclude that most of the selected predictive 

models incorporate RF-based feature ranking, which was able to effectively detect conditional 

dependencies between input and output variables, taking also into account the underlying feature 

inter-correlations.  On top of these, a complete data pre-processing procedure was also applied to 

resolve issues concerning missing data, unbalanced classes, and, as a result, improve the quality 

of the dataset. 

In addition to this, the input data of all the proposed machine learning models are typical health 

records, such as demographics data, clinical data, risk factors and medical therapy data.  Thus, an 

innovative concept of the proposed models is their ability to either identify individuals with the 

presence of CAS or with high risk of unstable plaques with the minimum cost and safety. 

In addition to this, all the presented models have been integrated in a cloud-based platform, the 

Taxinomisis platform, and except for their easy applicability, the proposed models provide an 

explainability to the users.  More specifically, a SHAP analysis was implemented to identify the 

most significant features in each developed model. 

Except for the studies aiming to identify the biomarkers associated with carotid artery disease 

diagnosis, there have been presented also studies aiming to identify CAS based on ML 

techniques.  More specifically, Jun Xiong Yin et al. [271] concluded that family history of 

dyslipidemia, high level of LDL, low level of HDL, aging, and low BMI are the most significant 

risk factors of asymptomatic CAS.  Yu et al. [272] implemented typical ML classifiers to identify 

subjects with CAS, using 17 candidate input features and achieved the highest accuracy of 0.748.  

In a same way, Fan et al. [273] implemented six different ML models to predict the 

asymptomatic CAS patients and LR showed the optimal performance in predicting asymptomatic 
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CAS, with an accuracy of 0.747.  On the other hand, Poorthuis et al. [274] presented a model for 

the detection of CAS, including as input features age, sex, smoking, hypertension, 

hypercholesterolemia, DM, vascular and cerebrovascular disease, measured blood pressure, and 

blood lipids and achieving an area under the receiver operating characteristic curve of 0.75 (95% 

CI, 0.74-0.75) for ≥50% asymptomatic CAS. 

In the overall proposed pipeline for the detection of asymptomatic carotid artery disease, the 

highest accuracy and AUC were 0.78 and 0.85, respectively and were achieved implementing the 

RF selection technique and the Gradient boosting classification scheme.  In addition to the 

results using the training dataset, an external validation dataset of 521 individuals was used for 

evaluation of the proposed model.  Accuracy, sensitivity and specificity were 0.88, 0.88 and 0.84, 

respectively.  In Table 5.27, we summarize the existing machine learning based studies for the 

diagnosis of CAS, in comparison with our overall proposed approach.  As it is shown, the overall 

evaluation metrics of the proposed pipeline were higher than those provided in other recent 

studies in the literature [271-274]. 

As for the diagnosis of high risk plaques, seven different ML models have been developed for 

the early detection of individuals with high risk plaques.  The output of each model has been 

defined based on different histological based features and presence of symptoms. 

The majority of the existing studies take into account imaging based features to characterize the 

high risk plaques and their aim is to associate the high risk plaques with different biomarkers 

[150] [149] [170].  However, in the presented ML models, we aim not to identify a relation 

between the output and specific biomarkers, but to identify the output (high risk plaques), based 

on defined input features.  The average accuracy of the proposed seven models was 0.64.  

Regarding the diagnostic prediction of symptomatic carotid artery disease (Subproblem 6, 

Subproblem 7), the input includes atherosclerosis related serum markers and the achieved 

accuracy was 0.65 and 0.79 for Subproblem 6 and 7, respectively.  
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Table 5. 27 Summary of the existing in the literature machine learning based studies in comparison with 

our proposed approach. 

Study Methodology Dataset Output-Results 

Jun Xiong 

Yin et al. 

[271] 

ML 2841 high risk individual of 

stroke enrolled, 326 (11.6%) 

were diagnosed as ACS by 

ultrasonography 

concluded that family history of 

dyslipidemia, high level of LDL, 

low level of high HDL, aging, and 

low BMI are the most significant 

risk factors of ACS, AUC=0.87 

Yu et al.  

[272] 

ML 17 candidate input features, 

2732 asymptomatic subjects 

Accuracy= 0.748 

Fan et al. 

[273] 

ML 18,441 subjects, 6553 were 

diagnosed with asymptomatic 

CAS, input risk factors & 

biomarkers 

Accuracy= 0.747 

Poorthuis et 

al. [274] 

Systematic 

review 

input risk factors & 

biomarkers 

AUC=0.75 

Our 

Appproach 

(subproblem 

#1) 

ML Demographics, Clinical Data, 

Risk Factors, Medication 

Therapy, 881 patients 

Accuracy= 0.78, AUC=0.85 
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Chapter 6 Silent brain lesions detection 

6.1 Introduction 

6.2 Association of carotid artery disease with silent brain lesions 

6.3 Discussion 

 

 

 

6.1 Introduction 

Despite the association of the presence of CAS with stroke manifestation, the relation between the 

carotid territory condition and the presence of clinically asymptomatic ischemic events remains unclear.  

More specifically, these clinically asymptomatic lesions are small, radiologically-detected infarctions, 

detected by brain imaging without a corresponding clinical manifestation.  Their prevalence is estimated 

about 10–20% with a yearly increase of 3–4% in population-based cohorts, while magnetic MRI-defined 

SBIs increased the risk of incident stroke, ischemic stroke, intracerebral hemorrhage, and death [275].  

In a meta-analysis study conducted by Finn et al. [275], it was found that both carotid IMT and CAS are 

both are significantly associated with silent brain infarcts (SBIs).  In another study, SBIs and white 

matter brain lesions were investigated in patients with asymptomatic CAS >50% and they concluded 

that DS may be relevant in the association between asymptomatic CAS and SBIs, and DS ≥ 70% may 

pose a risk of SBI development [276].  Similarly, Rudolph et al. [277] found that SBI is a significant risk 

factor for future stroke, with odds ratio (OR) 4.6 (95% CI: 3.0–7.2;p < 0.0001), with an estimated 

prevalence in asymptomatic carotid patients of 17–33.3%.  

In this chapter our aim is to study the association of the presence of SBIs with the carotid territory, as it 

is defined by US-based parameters and to associate demographics, clinical data and CVD-related risk 

factors with the presence of SBIs. 
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6.2 Association of carotid artery disease with silent brain lesions 

6.2.1 Brain MRI analysis  

Brain MRI imaging was performed in individuals, participating in Taxinomisis clinical study.  More 

specifically, individuals with moderate to severe extracranial CAS, both asymptomatic and symptomatic, 

were enrolled in the prospective observational multi-center trial in six European vascular centers 

(Athens-NKUA, Barcelona-FCRB, Belgrade-UBEO, Genoa-USMI, Munich-TUM, and Utrecht-UMC). 

Inclusion lasted from 30.3.2018 to 31.12.2019.  All study participants have underwent MRI imaging of 

brain and carotid arterial tree from aortic arch up to the circle of Willis. Diffusion weighted imaging has 

been performed additionally to detect acute ischemic brain lesions.  

Regarding the MRI acquisition protocol, 2D and 3D Time-of-flight (TOF) imaging was performed to 

identify the carotid bifurcation and disease affected section of artery, as it is shown in Figure 6.1. Axial 

T1-weighted imaging is performed through this segment of artery (Figure 6. 2).  Selected matched T2-

and proton density-weighted imaging was also performed. Phase contrast imaging is carried out at 

locations in the CCA and the ICA to provide inlet and outlet flow profiles.  

 

Figure 6.1: Example of 3D TOF image, where the red point depicts the lumen of the CCA. 
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Figure 6. 2: 2D TOF images of the right and left carotid arteries are shown at the sides of the image with 

the axial slice locations for the T1-weighted sequence illustrated in yellow. The corresponding T1-

weighted slices, from CCA to ICA, are shown in the centre of the image. 

 

The acquisition parameters for the MRI sequences were as follows: (i) TOF images: repetition time: 23 

ms, effective echo time: 3.2 ms, field of view (FOV): 160 mm; slice thickness 0.5 mm (ii) fast-spin echo 

double-inversion recovery prepared sequences (T1-weighted): repetition time: 1428.57 ms, effective 

echo time: 7.672 ms, FOV: 100 mm, slice thickness: 2.5 mm (or lower); (iii) T2-weighted : repetition 

time: 1379.31 ms, effective echo time: 99.74 ms, FOV: 100 mm, slice thickness: 2.5 mm (or lower); and 

(iv) proton density-weighted sequences: repetition time: 1379.31 ms, effective echo time: 7.67 ms.  

Phase-contrast images were acquired in CCA and the ICA. The acquired data were stored in DICOM 

format and then transferred to a workstation for further analysis. 

Brain MRI analysis consisted of identification of different brain lesions in terms of their localization, 

time of occurrence, and correlation with symptoms and carotid plaque features seen both on MRI and 

US.  More specifically, an expert neuroradiologist annotated different brain lesions categories: 

1. Chronic white matter ischemia, which were defined as a white matter hyperintensity of presumed 

vascular origin and were recognized on MRI as a signal abnormality of variable size in the white 

matter.  These lesions have the following characteristics: hyperintensity on T2-weighted images 
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such as fluid-attenuated inversion recovery, without cavitation (signal different from CSF). 

Lesions in the subcortical grey matter or brainstem are not included in this category unless 

explicitly stated.  The utilized scale for this type of lesions was the Modified Fazekas scale 

(1987) (Figure 6.3) 

2. Cortical infarcts, which affect the cerebral cortex and are typically presented with deficits such as 

neglect and aphasia. 

3. Lacunar infarcts, which occur when an artery to the deep part of the brain, containing structures 

like the thalamus or basal ganglia, is blocked. These arteries are very small and branch off 

directly from a larger artery, making them particularly vulnerable to blockages. 

4. Subcortical infarcts, which affect the small vessels deep in the brain, and typically present with 

purely motor hemiparesis affecting the face, arm, and leg (Figure 6. 4) 

5. Other data that were collected related to posterior circulation stroke or watershed territory lesions 

in patients (either cortical or lacunar). (Figure 6.5) 

 

 

Figure 6.3 Chronic white matter ischemia. 
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Figure 6. 4 Examples of a) cortical, b) lacunar and c) small subcortical infarcts. 

 

Figure 6.5 Posterior circulation stroke. 

 

6.2.2 Methodology  

The SPSS 23.0 program (Statistical Package for the Social Sciences, version 23.0 for Windows) was 

used for the analyses. Normal distribution of continuous variables was tested using the Kolmogorov–

Smirnov and Shapiro–Wilk tests. Descriptive statistics were presented as mean (SD) for continuous 

variables and as number (%) for categorical variables. Mann–Whitney U test was used for continuous 

variables Pearson’s chi-squared test and OR analysis were used for categorical variables. The statistical 

significance level was accepted as p<0.05. 
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6.2.3 Dataset  

Assessment of all baseline brain MRI images has been performed by expert radiologist from Bologna 

group.  Analysis of the baseline brain MRI images was performed in cases provided by 4 clinical centers 

(UBEO, FCRB, USMI and TUM), participating in Taxinomisis clinical study, while brain images from 

UMC and NKUA are not suitable for brain tissue assessment.  Regarding the location of brain lesions, 

neuroradiologists annotated cortical, lacunar and subcortical infarcts.  Active lesions were reported as 

active if the stenosis and plaque morphology corresponded to the brain lesions, as shown in Figure 6.6. 

All brain images of the baseline were assessed by automatic segmentation and the quantification of 

“white matter lesion of presumed vascular origin” was performed using BIANCA software [278].  

 

Figure 6.6 Plaque stenosis (arrow) on the left side that corresponds to the brain lesion (encircled) on the right side. 

 

In Table 6.1-6.3, we show 3 different datasets and their baseline characteristics (mean value for 

continuous features and percentages for categorical ones), which were used in the proposed approach. 

The 1st dataset and the 2nd dataset are site specific datasets and aim to associate US based features with 

the presence of SBIs.  On the other hand, the 3rd dataset is a patient specific dataset and aims to associate 

demographics, clinical data, risk factors and medication therapy with the presence of SBIs.  Regarding 

the Dataset 1, it includes 296 carotid arteries (right and left) and their ipsilateral presence of SBIs.  The 

percentages of brain lesions for cortical, lacunar and subcortical infracts are 13.9%, 1.7% and 7.1%, 

respectively.  As for Dataset 2, we use the CAS of 389 carotid arteries and their ipsilateral presence of 

brain lesions.  50.4 % of the utilized carotid arteries have a DS over 50%, whereas 14.7% of carotid 

arteries have a DS over 70%, as it is shown in Table 6.  As far as Dataset 3 is concerned, in Table 6.3, we 
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demonstrate baseline characteristics of clinical data, hematological, biochemical data and CVD related 

risk factors for 211 patients from 4 different clinical centers.  

Table 6.1 Baseline characteristics of Dataset 1. 

Overall Cohort (N=296) 

ICA stenosis, mean (SD) 53.63 (25.961) 

PSV, mean (SD) 183.630 (97.6744) 

ICA/PSV CCA, mean (SD) 3.59 (2.11) 

St Mary's ratio, mean (SD) 13.74 (8.59) 

Cortical, n (%) 41 (13.9%) 

Lacunar, n (%) 5 (1.7%) 

Small subcortical, n (%) 21 (7.1%) 

Active, n (%) 59 (19.9%) 

 

Table 6.2 Baseline characteristics of Dataset 2. 

Overall Cohort (N=389) 

Presence of CAS>50% 196 (50.4%) 

Presence of CAS>70% 57 (14.7%) 

Cortical , n (%) 47 (12.1%) 

Lacunar, n (%) 9 (2.3%) 

Small subcortical, n (%) 29 (7.5%) 

Active, n (%) 77 (19.8%) 

 
Table 6. 3 Baseline characteristics of Dataset 3. 

Overall Cohort (N=211) 

Height, mean (SD) 169.83 (9.15) Sex (male), n (%) 131 (62.1%) 

Weight, mean (SD) 76.36 (11.57) Alcohol abuse, n(%) 21 (10%) 

BMI, mean (SD) 26.23 (3.19) DM, n (%) 62 (29.4%) 

SBP, mean (SD) 131.31 (16.36) Hypertension, n(%) 180 (85.3%) 

DBP, mean (SD) 79.88 (8.62) Hypercholesterolemia, n(%) 125 (59.2%) 

Puls rate, mean (SD) 70.56 (7.15) COPD, n(%) 25 (11.8%) 

Age, mean (SD) 69.86 (7.63) Coronary disease, n(%) 48 (22.7%) 

Hb, mean (SD) 12.16 (2.79) Angina pectoris, n(%) 50 (23.7%) 

Hct, mean (SD) 40.61 (4.69) Previous MI, n(%) 20 (9.5%)  

Creatinine, mean (SD) 86.01 (25.33) Previous CABG/PCI, n(%) 29 (13.7%) 

Cholesterol, mean (SD) 4.61 (1.1) Atherosclerosis of aortiliac 

segment or 

femoropoplitealcrural, n(%) 

52 (24.6%) 

LDL, mean (SD) 2.56 (0.98) Aneurysm, n(%) 8 (3.8%) 

HDL, mean (SD) 1.49 (0.56) Statin, n(%) 190 (90%) 

Triglycerides, mean (SD) 1.53 (0.81) Cortical , n (%) 46 (21.8%) 

Glucose, mean (SD) 6.44 (2.48) Lacunar, n (%) 8 (3.8%) 

CRP, mean (SD) 3.53 (3.63) Small subcortical, n (%) 26 (12.3%) 

HbA1c, mean (SD) 6.07 (0.89) Active, n (%) 66 (31.3%) 
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6.2.4 Results 

Regarding the analysis of Dataset 1, as it is shown in Table 6.4, the higher mean values of ICA stenosis 

and St Mary's ratio are significantly associated with the presence of Cortical infarcts (p=0.014, p=0.004 

for stenosis and St. Mary’s ratio, respectively), small subcortical infarcts (p=0.018, p=0.013 for stenosis 

and St. Mary’s ratio, respectively) and Active lesions (p=0.002 for both stenosis and St. Mary’s ratio). 

In Table 6.5, it is clearly shown that the CAS in the ipsilateral carotid artery is considered as a 

statistically significant risk factor for the presence of cortical infarcts.  More specifically, we have 

observed in 47 (12.1%) out of 389 cortical infarcts, in which 30 of them had an over 50 % DS in their 

ipsilateral carotid artery (OR: 1.860, CI:0.989-3.499, p=0.05) and 18 of them had an over 70 % DS in 

their ipsilateral carotid artery (OR: 4.822, CI:2.453-9.481, p<0.001). 

As for the 3rd dataset, the mean age of the study’s participants was 69.86 ±7.63 in the 211 patients (131 

males, 80 females) enrolled in the study.  Positive risk factors for the presence of brain lesion was the 

previous MI (OR: 2.685, CI: 1.022-7.056, p value:0.039 for cortical infarct association and OR:2.481, 

CI: 0.975-6.311, p value: 0.05 for active lesions association), the alcohol abuse (OR: 3.474 , CI: 1.204-

10.018, p value:0.015 for small subcortical infarct association) and the previous CABG/PCI placement 

(OR: 2.882, CI: 1.074-7.734, p value:0.03 for small subcortical infarct association).  In addition to this, 

statistically significant higher mean values have been reported in the Class of brain lesion presence for 

the SBP (lacunar infarct, p value: 0.019), triglycerides (lacunar infarct, p value<0.001), Creatinine (small 

subcortical infarct, p value: 0.001) and HbA1c (small subcortical infarct, p value: 0.008). 
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Table 6.4 Subjects characteristics in the Class 0 (Absence of Brain lesion) and Class 1 (Presence of Brain lesion) for cortical, lacunar, small 

subcortical and active infarct, regarding Dataset 1. 

 Class 0  

(Absence of 

Cortical) 

N=248 

Class 0  

(Presence of 

Cortical) 

N=41 

P 

value 

Class 0  

(Absence of 

Lacunar) 

N=291 

Class 0 (Presence 

of Lacunar) 

N=6 

P 

value 

ICA stenosis, mean (SD) 52.22 59.44 0.014 53.64 (26.07) 52.80 (20.413) 0.572 

PSV, mean (SD) 178.88 212.533 0.674 184.15 (97.35) 158.25(126.43) 0.59 

PSV ICA/ PSV CCA, mean (SD) 3.4 (2.07) 4.53 (2.2) 0.222 3.6 (2.1) 2.89 (2.78) 0.536 

St Mary's ratio, mean (SD) 13.09 (7.78) 16.96 (12.13) 0.004 13.76 (8.53) 12.71 (12.78) 0.331 

 Class 0 (Absence of 

small subcortical) 

N=275 

Class 0 (Presence 

small subcortical) 

N=21 

P value Class 0 (Absence 

of Active 

N=237 

Class 0 (Presence 

of Active 

N=59 

P value 

ICA stenosis, mean (SD) 51.90 (33.37) 53.76 (25.38) 0.018 53.45 (24.46) 54.34 (31.52) 0.002 

PSV, mean (SD) 181.35(97.69) 219.08(94.37) 0.79 179.33 (98.77) 201.28 (92.16) 0.619 

PSV ICA/ PSV CCA, mean (SD) 3.55 (2.09) 4.15 (2.45) 0.381 3.47 (2.08) 4.11 (2.18) 0.266 

St Mary's ratio, mean (SD) 13.46 (8.2) 18.05 (13.04) 0.013 13.17 (7.59) 16.06 (11.7) 0.002 

 
Table 6.5 Odds Ratio analysis for the association of DS and the presence of Brain lesion, regarding Dataset 2. 

 Presence of 

Cortical Infarct 

Odds Ration –CI P value Presence of 

Lacunar Infarct 

Odds Ration  

–CI 

P 

value 

Presence of CAS >50%, n (%) 30 (15.3%) 1.860 

(989-3.499) 

0.05 4 (2%) 0.779 (0.206-

2.946) 

0.712 

Absence of CAS >50%, n (%) 17 (8.9%) 5 (2.6%) 

Presence of CAS >70%, n (%) 18 (31.6%) 4.822 

(2.453-9.481) 
<0.001 1 (1.8%) 0.723 (0.089-

5.895) 

0.761 

Absence of CAS >70%, n (%) 29 (8.7%) 8 (2.4%) 

 Presence of Small 

subcortical Infarct 

Odds Ration –CI P value Presence of 

Active Lesion 

Odds Ration  

–CI 

P 

value 

Presence of CAS >50%, n (%) 12 (6.1%) 0.671 (0.312-

1.446) 

0.306 38 (19.8%) 1.007  

(0.611-1.658) 

0.979 

Absence of CAS >50%, n (%) 17 (8.9% 39 (19.9%) 

Presence of CAS >70%, n (%) 6 (10.5%) 1.581 

(0.614-4.071) 

0.339 19 (33.3%) 2.362  

(1.272-4.388) 

 

Absence of CAS >70%, n (%) 23 (6.9%) 58 (17.5%) 
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Table 6.6 Subjects characteristics for continuous input features in the Class 0 (Absence of Brain lesion) and Class 1 (Presence of Brain lesion) for 

cortical, lacunar, small subcortical and active infarct, regarding Dataset 2. 

 Class 0  

(Absence of Cortical) 

N=165 

Class 0  

(Presence of Cortical) 

N=46 

P value Class 0 (Absence of 

Lacunar) 

N=203 

Class 0 (Presence of 

Lacunar) 

N=8 

P value 

Height 169.42 (8.85) 171.16 (10.07) 0.209 169.81 (9.197) 170.57 (8.26) 0.757 

Weight 76.03 (12.08) 77.47 (9.74) 0.111 76.009 (11.49) 85.14 (9.84) 0.392 

BMI 26.31 (3.37) 25.96 (2.45) 0.132 26.16 (3.16) 28.37 (3.73) 0.346 

SBP 132.18 (16.71) 128.16 (14.8) 0.325 131.16 (16.54) 134.75 (14.64) 0.019 

DBP 80.46 (8.09) 77.81 (10.13) 0.055 79.73 (8.66) 81.50 (7.65) 0.473 

Puls rate 70.66 (7.54) 70.20 (5.6) 0.255 70.43 (7.26) 72 (2.24) 0.118 

Age 70.25 (7.91) 68.48 (6.43) 0.242 69.82 (7.55) 73.38 (8.62) 0.552 

Hb 11.98 (2.8) 12.76 (2.67) 0.141 12.14 (2.79) 11.84 (2.92) 0.931 

Hct 40.49 (4.85) 41.02 (4.13) 0.72 40.48 (4.62) 43.3 (6.43) 0.491 

Creatinine 86.53 (24.74) 84.03 (27.7) 0.677 85.58 (25.31) 98.11 (26.52) 0.639 

Cholesterol 4.6 (1.08) 4.62 (1.2) 0.355 4.61 (1.1) 4.15 (1.22) 0.928 

LDL 2.54 (0.99) 2.63 (0.94) 0.811 2.57 (0.99) 2.18 (0.74) 0.447 

HDL 1.5 (0.56) 1.42 (0.56) 0.901 1.5 (0.57) 1.22 (0.44) 0.363 

Triglycerides 1.52 (0.8) 1.56 (0.83) 0.726 1.49 (0.73) 2.44 (1.75) <0.001 

Glucose 6.56 (2.35) 6.03 (2.88) 0.835 6.46 (2.5) 6.12 (2.43) 0.962 

CRP 3.55 (3.68) 3.46 (3.49) 0.864 3.55 (3.7) 2.96 (1.77) 0.481 

HbA1c 6.09 (0.85) 6.03 (1.03) 0.594 6.08 (0.89) 6.15 (1.48) 0.371 

 Class 0  

(Absence of Small 

subcortical) 

N=185 

Class 0  

(Presence of Small 

subcortical) 

N=26 

P value Class 0 (Absence of 

Active) 

N=145 

Class 0 (Presence of 

Active) 

N=66 

P value 

Height 170.06 (8.83) 168.74 (11.22) 0.048 169.78 (8.64) 169.93 (10.24) 0.037 

Weight 76.13 (11.55) 78.09 (12.02) 0.723 75.86 (11.88) 77.42 (10.92) 0.483 

BMI 26.09 (3.17) 27.07 (3.31) 0.516 26.18 (3.28) 26.36 (2.99)4 0.875 

SBP 130.74 (16.28) 135.64 (16.81) 0.504 131.08 (16.29) 131.81 (16.64) 0.448 

DBP 79.60 (8.55) 81.44 (9.05) 0.879 80.13 (8.08) 79.34 (9.75) 0.134 

Puls rate 70.28 (7.45) 72.38 (4.64) 0.182 70.51 (7.85) 70.67 (5.3) 0.056 

Age 69.92 (7.75) 69.42 (7.03) 0.517 70.12 (7.85) 69.30 (7.16) 0.585 

Hb 12.07 (2.82) 12.74 (2.6) 0.227 11.98 (2.82) 12.54 (2.69) 0.276 

Hct 40.53 (4.65) 41.42 (4.94) 0.377 40.34 (4.65) 41.22 (4.78) 0.457 

Creatinine 84.71 (22.95) 96.71 (38.09) 0.001 85.72 (24.46) 86.69 (27.47) 0.686 

Cholesterol 4.65 (1.11) 4.29 (1.05) 0.85 4.64 (1.08) 4.53 (1.17) 0.431 

LDL 2.59 (0.99) 2.3 (0.85) 0.404 2.58 (1) 2.51 (0.94) 0.773 

HDL 1.51 (0.57) 1.34 (0.47) 0.711 1.53 (0.57) 1.38 (0.53) 0.724 

Triglycerides 1.52 (0.81) 1.59 (0.82) 0.967 1.45 (0.72) 1.71 (0.97) 0.058 

Glucose 6.42 (2.45) 6.73 (2.73) 0.383 6.5 (2.33) 6.32 (2.79) 0.518 

CRP 3.59 (3.77) 3.18 (2.61) 0.437 3.71 (4.1) 3.15 (2.31) 0.178 

HbA1c 6.03 (0.79) 6.45 (1.28) 0.008 6.03 (0.83) 6.18 (1.01) 0.263 
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Table 6. 7 Odds Ratio analysis for the association of CVD related risk factors and the presence of Brain lesions, regarding Dataset 3. 

 

 Presence of 

Cortical Infarct 

Odds Ration -

CI 

P value Presence of 

Lacunar Infarct 

Odds Ration -

CI 

P 

value 

Sex (male), n(%) 32 (24.4%) 0.656(0.326-

1.323) 

0.237 8 (6.2%) 0.938 (0.898-

0.981) 

0.025 

Sex (female), n(%) 14 (17.5%) 0 (0%) 

Alcohol abuse (no), n(%)    7 (3.8%) 1.257 (0.147-

10.746) 

0.834 

Alcohol abuse (yes), n(%)  1 (4.8%) 

Diabetes mellitus (no), n(%) 36 (24.2%) 0.604 (0.278-

1.309) 

0.198 6 (4.1%) 0.783 0.154-

3.992 

0.768 

Diabetes mellitus (yes), n(%) 10 (16.1 %) 2 (3.2%)  

Hypertension (no), n(%) 7 (23.3%) 0.909 (0.363-

2.274) 

0.838 0 (0%) 1.047 (1.014-

1.080) 

0.246 

Hypertension (yes), n(%) 39 (21.7%) 8 (4.5%) 

COPD (no), n(%) 43 (24.2%) 0.131 (0.017-

0.996) 

0.022 7 (4%) 1.006 (0.119-

8.537) 

0.996 

COPD (yes), n(%) 1 (4%) 1 (4%) 

Coronary disease (no), n(%) 31 (20%)  0.298 5 (3.3%) 1.973 (0.454-

8.58) 

0.357 

Coronary disease (yes), n(%) 13 (27.1%) 3 (6.3%) 

Angina pectoris (no), n(%) 26 (26.8%) 0.372(0.142-

0.976) 

0.039 2 (2.1%) 2.968 (0.479-

18.378) 

0.222 

Angina pectoris (yes), n(%) 6 (12%) 3 (6%) 

Previous MI (no), n(%) 36 (19.9%) 2.685 (1.022-

7.056) 

0.039 8 (4.5%) 0.955 (0.926-

0.986) 

0.335 

Previous MI (yes), n(%) 8 (40%) 0 (0%) 

Previous Cabg/pci (no), n(%) 36 (20.9%) 1.439 (0.589-

3.516) 

0.423 6 (3.5%) 2.025 (0.388-

10.556) 

0.394 

Previous Cabg/pci (yes), n(%) 8 (27.6%) 2 (6.9%) 

Atherosclerosis of aortiliac 

segment or 

femoropoplitealcrural (no), n 

(%) 

34 (23.4%) 0.683 (0.303-

1.543) 

0.358 6 (4.2 %) 0.913 (0.178-

4.674) 

0.913 

Atherosclerosis of aortiliac 

segment or 

femoropoplitealcrural (yes), 

n(%) 

9 (17.3%) 2 (3.8%) 

Aneurysm (no), n(%) 40 (21.2%) 1.242 (0.241-

6.388) 

0.795 8 (4.3%) 0.957 (0.929-

0.987) 

0.55 

Aneurysm (yes), n(%) 2 (25%) 0 (0%) 

Statin (no), n(%) 6 (31.6%) 0.578 (0.207-

1.616) 

0.381 1 (5.3%) 0.696 (0.081-

5.98) 

0.74 

Statin (yes), n(%) 40 (21.1%) 7 (3.7%) 
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Presence of Small 

subcortical Infarct 

Odds Ration -

CI 

P value Presence of Active 

Infarct 

Odds Ration -

CI 

P 

value 

Sex (male), n(%) 17 (13%) 0.862 (0.364-

2.04) 

0.736 44 (33.6%) 0.75 (0.407-

1.381) 

0.355 

Sex (female), n(%) 9 (11.4%) 22 (27.5%) 

Alcohol abuse (no), n(%) 19 (10.3%) 3.474 (1.204-

10.018) 

0.015 59 (31.9%) 0.854 (0.316-

2.313) 

0.756 

Alcohol abuse (yes), n(%) 6 (28.6%) 6 (28.6%) 

Diabetes mellitus (no), n(%) 19 (12.8%) 0.864 (0.344-

2.173) 

0.756 49 (32.9%) 0.771 (0.401-

1.483) 

0.435 

Diabetes mellitus (yes), n(%) 7 (11.3%) 17 (27.4%) 

Hypertension (no), n(%) 2 (6.9%) 2.077 (0.464-

9.301) 

0.33 6 (20%) 2 (0.776-5.155) 0.145 

Hypertension (yes), n(%) 24 (13.3%) 60 (33.3%) 

COPD (no), n(%) 22 (12.4%) 0.613 (0.135-

2.78) 

0.522 58 (32.6%) 0.394 (0.129-

1.201) 

0.092 

COPD (yes), n(%) 2 (8%) 4 (16%) 

Coronary disease (no), n(%) 15 (9.7%) 2.138 (0.87-

5.257) 

0.092 43 (27.7%) 1.706 (0.867-

3.358) 

0.12 

Coronary disease (yes), n(%) 9 (18.8%) 19 (39.6%) 

Angina pectoris (no), n(%) 15 (15.6%) 0.6 (0.205-

1.759) 

0.348 33 (34%) 0.681 (0.319-

1.455) 

0.32 

Angina pectoris (yes), n(%) 5 (10%) 13 (26%) 

Previous MI (no), n(%) 20 (11.1%) 2 (0.608-6.575) 0.246 52 (28.7%) 2.481 (0.975-

6.311) 

0.05 

Previous MI (yes), n(%) 4 (20%) 10 (50%) 

Previous Cabg/pci (no), n(%) 17 (9.9%) 2.882 (1.074-

7.734) 

0.03 50 (29.1%) 1.722 (0.767-

3.868) 

0.184 

Previous Cabg/pci (yes), n(%) 7 (24.1%) 12 (41.4%) 

Atherosclerosis of aortiliac 

segment or 

femoropoplitealcrural (no), 

n(%) 

18 (12.5%) 0.745 (0.262-

2.119) 

0.58 49 (33.8%) 0.588 (0.283-

1.221) 

0.152 

Atherosclerosis of aortiliac 

segment or 

femoropoplitealcrural (yes), 

n(%) 

5 (9.6%) 12 (23.1%) 

Aneurysm (no), n(%) 22 (11.7%) 1.078 (0.127-

9.18) 

0.945 58 (30.7%) 0.753 (0.148-

3.842) 

0.732 

Aneurysm (yes), n(%) 1 (12.5%) 2 (25%) 

Statin (no), n(%) 1 (5.3%) 2.744 (0.351-

21.468) 

0.317 5 (26.3%) 1.324 (0.456-

3.843) 

0.605 

Statin (yes), n(%) 25 (13.2%) 61 (32.1%) 
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6.3 Discussion  

According to existing in the literature studies and due to the rapid development of MRI scans, there are 

not specific diagnostic criteria for the detection of SBIs.  Accurate diagnosis of SBIs is related to the 

utilized scan methodology, the size and location of the lesions, the implemented acquisition protocol and 

modality’s resolution.  Despite MRI is considered as the gold standard for the detection of SBIs, there 

are still clinical centers that identify SBIs through the use of CT.  This leads to the underestimations of 

SBIs and to the increase of SBI-related cerebral events [277]. 

In the literature, there are different approaches that attempted to associate the CAS with the presence of 

SBIs either in the ipsilateral site or in the contralateral.  More specifically, Baradaran et al. [279] 

concluded that the prevalence of SBIs ipsilateral to ICA disease (33%) compared with the contralateral 

side was higher and the prevalence of cortical SBIs occurring downstream from ICA disease was also 

higher.  This was also confirmed by a study proposed by Müjdat Deniz Benli et al. [276], who found 

that the number of SBIs was in the ipsilateral hemisphere compared to that in the contralateral 

hemisphere (p = 0.022).  Based on this conclusion, we investigated the role of US based features of each 

carotid artery with the SBIs in the ipsilateral hemisphere in brain.  The main innovative aspect of our 

approach is the proposed concept, since there are no other similar approaches in the literature, which are 

dedicated to associate typical US based metrics with the presence of SBIs.  Through our study, it is clear 

that there is a strong relation between the DS and St. Mary’s ratio of carotid artery with the presence of 

cortical, lacunar and active brain lesions.  Additionally, another innovation of our study is the attempt 

that has been undertaken to characterize the brain lesions according to their localization (cortical, 

lacunar and small subcortical infarcts).  Thus, we have concluded that CAS is a statistically significant 

measure for all the types of SBIs, except of lacunar lesions.  Lacunar lesions have traditionally been 

considered to arise from microcirculatory disturbances at the level of the small perforating arteries and 

published literature does not support extracranial carotid disease as an etiological factor for carotid 

artery disease [280].  Similarly to other published in the literature studies, our findings have confirmed 

that the presence of CAS in lacunar infarct is an incidental finding and routinely evaluating for carotid 

artery disease is not required in patients presenting with radiologically confirmed lacunar infarcts [281]. 

Except for the per site analysis of association between carotid territory and SBIs’ presence, a per patient 

analysis has been performed, aiming to investigate more systemic factors for the pathogenesis of SBIs.  

Several studies have examined the incidence of SBIs and its relation to risk factors for stroke, with an 
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increased two- to three-fold risk in the presence of SBI on MRI in elderly populations. Risk factors for 

SBIs are considered to be comparable to those for stroke and CVD; therefore, CV patients may also be 

at high risk of silent infarcts with similar risk factors such as ageing, hypertension and DM.  Based on 

this hypothesis, SBI is prevalent following involvement of atherosclerosis in systemic vascular disease 

and often unnoticed and untreated, this condition may account for undetected cognitive and functional 

decline as well as unexpected ischaemic stroke [282]. 

Based on the presence of systemic risk factors for SBIs similar to these of vascular disease, risk factors 

such as the gender, alcohol abuse, the DM, hypertension, hypercholesterolemia, COPD, CAD, angina 

pectoris, previous MI, previous CABG/PCI placement, atherosclerosis, aneurysm disease and statin 

therapy, were investigate with the association of SBIs.  Through our study, it was found that the previous 

MI, the alcohol abuse and previous CABG/PCI placement are strongly related to the presence of SBIs, 

confirming the relation of systemic vascular disease risk factors with the risk factors for SBIs.  Except of 

risk factors, it was also found that high values of clinical data, such as the SBP, and biochemical data, 

such as triglycerides, creatine and HbA1c, are associated with the presence of SBIs, assuming that high 

values of SBP, triglycerides, creatine and HbA1c correspond to hypertension, hypertriglyceridemia, 

renal dysfunction and DM. 

In Table 6.8, we demonstrate a summary of similar in the literature studies, showing that the utilized 

dataset of our approach has more participants and the output of our study is not limited to the assessment 

of the contribution of CAS presence to the ipsilateral and contralateral SBIs presence. 

Table 6. 8 Comparison of our approach with existing in the literature studies. 

Study  Dataset  Methodology Results 

Baradaran et 

al. [279] 

104 patients with 

Asymptomatic 

Carotid Artery 

McNemar test to compare 

the prevalence of any SBI  

Wilcoxon signed-rank test to 

compare the total number of 

SBIs ipsilateral vs 

contralateral to extracranial 

internal carotid artery 

stenosis 

-higher prevalence of SBIs ipsilateral to ICA 

disease (33%) compared with the 

contralateral side  

-no significant difference in the prevalence of 

lacunar SBIs between hemispheres 

(P=0.109),  

-significantly higher prevalence of cortical 

SBIs occurring downstream from ICA 

disease (P=0.0045) 

Claudina 

Rudolph et 

al. [277] 

 
Meta analysis - The prevalence of SBI in asymptomatic 

carotid patients is 17–33.3%.  

-SBI is a significant risk factor for future 

stroke, OR 4.6 (95% CI: 3.0–7.2; p < 0.0001) 
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Study  Dataset  Methodology Results 

Müjdat 

Deniz Benli 

et al. [276] 

69 patients (35 

females, 34 males) 

, (15.9%) →SBIs 

-Mann–Whitney U test was 

used 

for continuous variables  

-Fisher’s exact test or 

Pearson’s 

chi-squared test was used for 

categorical variables 

-frequency of Fazekas grade 1 DWMLs was 

lower in the hemisphere ipsilateral to the ICA 

stenosis compared to the contralateral 

hemisphere (p = 0.035) 

-number of SBIs was also higher in the 

ipsilateral hemisphere compared to that in the 

contralateral hemisphere (p = 0.022). 

Our study 296 carotid 

arteries 

389 carotid 

arteries 

211 patients 

Statistical analysis Association of CAS, previous MI, alcohol 

abuse and previous CABG/PCI with presence 

of SBIs 

High values of SBP, triglycerides, creatine 

and HbA1c are associated with the presence 

of SBIs 
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Chapter 7 Conclusions and future work 

7.1 Conclusions 

7.2 Future work 

 

 

 

7.1 Conclusions 

The aim of this thesis is to present different methodologies for the predictive modeling of 

atherosclerosis, developing models both for the CAD and carotid artery disease prediction.  Overall 

pipelines based on ML techniques have been proposed for CAD and carotid disease prediction. 

Based on the lack of existing in the literature studies for imaging based CAD prediction, our idea was to 

collect both imaging and non-imaging features for the disease’s prediction.  In the literature, the 

association of imaging and biomechanical related features with the CAD progression, is well 

established.  Different studies have confirmed the association of low WSS with the CAD progression, 

either analyzing IVUS or CTA images.  However, most of these studies do not take into account other 

typical CAD risk factors and the new concept of geometrical based CAD risk factors.  Thus, the first 

objective of our thesis was to collect geometry based CAD risk factors by analyzing CTA images., 

including features, such as DS, MLA, MLD, PB, CP and NCP volume.  

An overall methodology for the 3D coronary reconstruction and plaque characterization using CTA 

images, was developed and evaluated through this thesis.  This overall methodology includes the 

following steps: (i) CTA images preprocessing, (ii) blooming effect removal, (iii) centerline extraction, 

(iv) inner wall and outer wall segmentation, (v) CP and NCP segmentation and (vi) 3D surface 

construction and provides accurately 3D models of the inner wall, outer wall, CP and NCP.  Active 

contour models technique was implemented for the inner, outer wall and CP segmentation, whereas 

dynamic thresholding technique was used for NCP segmentation.  The proposed methodology was 

validated using manual annotations for inner wall, CP and NCP segmentation and was compared also 

with IVUS and VH-IVUS modality.  DICE for inner wall, CP and NCP was 0.75, 0.7 and 0.62, 
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respectively, whereas degree of correlation for CP and NCP volume was 0.93 and 0.92, respectively.  

Regarding the carotid artery reconstruction, manual annotations were used for the technique evaluation 

and it was found that DICE for the inner wall, outer wall, CP and NCP was 0.83, 0.8, 0.71 and 0.7, 

respectively [204-206]. 

The technical innovations of the proposed methodology were the integration of the blooming effect 

removal in cases of high intensity objects and the integration of vessel centerline extraction, which 

allows the accurate lumen segmentation in cases of fully occluded vessels.  In addition to this, both the 

detection of CP and the NCP constitute a novelty of the proposed methodology.  Based on the concept 

that the absolute HU range of both CP and NCP plaques is significantly affected by the dose protocol 

selection and the luminal density [221], our approach is fully adaptive on each acquisition dose protocol 

methodology for the detection of CP and NCP, as well as their 3D models construction.  Overall 

proposed pipeline was integrated into a user-friendly platform which requires the minimal user 

interaction and provides 3D models for inner wall, outer wall, CP and NCP and all the geometrical based 

features by annotating the starting and the ending point of the vessel [194]. 

Promising results of the proposed 3D reconstruction methodology allow the calculation of geometry 

based features using the provided by the methodology 3D models.  In particular, features such as the DS, 

the MLA, MLD, PB, CP volume, NCP volume and biomechanical modeling features, such as the 

smartFFR index, the maximum ESS, minimum ESS, mean ESS, the luminal area where ESS was lower 

than 1 Pa, the maximum LDL concentration and the minimum LDL concentration, were utilized for ML 

CAD risk prediction models.  The overall methodology for these models development was the dataset 

collection, the preprocessing of the data, the classification and feature selection scheme implementation 

and finally the model evaluation.  Four different approaches have been developed for CAD prediction 

having as clinical outcomes, the prediction of obstructive CAD (as a 2-class and 3-class problem), the 

CAD progression and the prediction of PCI placement.  Achieved accuracies of the proposed models 

were 0.81, 0.67, 0.74 and 0.78, respectively, indicating promising results in the CAD prediction.  

Additionally, high predictability of imaging based features was also confirmed through our first 

approach (Chapter 4.2), in which accuracy of the model using imaging and non imaging features was 

0.81, whereas accuracy using only non imaging data was 0.69 [232-235]. 

However, except for the prediction of obstructive CAD presence, CAD progression and PCI placement, 

the prediction of the CAD-related events is also a very important task both for the clinical research area 
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and for patients’ management.  However, all the proposed ML models were trained using an existing 

dataset of 187 participants, in which there were only few CAD-related events. This is a low–medium-

risk population, and we have few major CAD events to use for the development of such an event-

prediction model.  On the other hand, thanks to the advantage of our intermediate CAD risk population, 

we were able to build a model that can be used as a prognostic decision-support tool by clinicians to 

properly monitor and manage patients of intermediate CAD risk for the next years after a first imaging is 

available.  In addition to this, number of patients utilized for the development of proposed models was 

limited, compared to some existing in the literature models. 

Another limitation of the proposed methodologies for CAD prediction is that the evaluation of the 

proposed models was applied with the use of the training dataset and not with the use of an external 

dataset.  

In addition to CAD prediction, in this thesis, prognostic modeling of atherosclerosis progression was 

developed for the carotid artery disease risk stratification.  Based on the latest clinical guidelines, the 

management of asymptomatic carotid artery disease is based on the CAS, and not take into account the 

presence of vulnerable atherosclerotic plaques [283].  Thus, in the fifth chapter of our thesis we aim to 

develop ML models for the diagnostic prediction of CAS presence, high risk plaques presence and 

symptomatic disease presence.  The overall ML based pipeline includes the data collection and curation, 

the definition of the clinical outcome, the class imbalance handling, the implementation of feature 

selection and classification techniques, the evaluation of the model and finally the integration of them 

into a cloud-based platform.   

Regarding the detection of CAS presence only demographics, clinical data, risk factors and medication 

therapy were used as input and an overall 0.78 accuracy was achieved, using as training dataset 881 

individuals.  The training dataset included only asymptomatic individuals and was also externally 

validated using 521 asymptomatic individuals.  The achieved accuracy of the proposed model using the 

external dataset was 0.88, whereas the sensitivity and specificity was 0.88 and 0.84, respectively.  The 

main limitation of this external validation dataset was the class imbalance, since the majority of 

individuals (n=440-84.5%) were at class of CAS presence and only 81 of the individuals were at class of 

CAS absence. 
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On the other hand, ML models for the atherosclerotic high risk plaques detection have used as input 

clinical, demographics, risk factors, biochemical and medication therapy data and their clinical outcome 

was defined based on the atherosclerotic plaque histology.  

A first limitation of these models was the use of imbalance retrospective training datasets and the 

inclusion of both symptomatic and asymptomatic individuals for the training of the proposed models.  In 

case of symptomatic individuals, the carotid artery disease risk stratification has not clinical 

significance, since according to the current guidelines, surgery is recommended.  In addition to this, the 

proposed models for diagnostic prediction of plaque vulnerability have not been externally validated. 

In this thesis, attempts have been also undertaken to associate carotid artery disease with silent brain 

lesions.  Despite the known relationship between CAS and brain lesions, there are very limited studies 

that aim to associate CAS with asymptomatic brain lesions.  In the last chapter of this PhD thesis, we 

aim to associate both the carotid condition and patient’s comorbidities with the presence of SBIs in the 

ipsilateral hemisphere.  The detection of SBIs has been performed by experts neuroradiologists and 

typical statistical analysis techniques have been implemented for the detection of the most statistically 

significant features.  

Through this thesis, analyzing brain MRI of 211 patients, it was indicated that high mean values of ICA 

stenosis and St Mary's ratio are associated with the presence of cortical, small subcortical and active 

infarcts.  Additionally, it was found that CAS in the ipsilateral carotid artery is considered as a 

statistically significant risk factor for the presence of cortical infarcts, whereas positive risk factors for 

the presence of silent brain lesions was the previous MI, the alcohol abuse and the previous CABG/PCI 

placement.  Moreover, higher mean values of SBP, triglycerides, creatinine and HbA1c are also 

associated with silent brain lesions presence. 

Undoubtedly, as we enter the age of precision medicine, risk assessment and prediction models are 

considered more notable.  In this thesis, our principal aim is to present innovative ML based models for 

the CAD and carotid artery disease prediction, taking into account both imaging and non-imaging based 

features.  The capability of ML models, combined with a detailed input set of parameters and a balanced 

dataset of patients may provide novel and promising stratification approaches, contributing to the 

clinical and research CV area. 
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7.2 Future work 

Regarding the methodology for the 3D arteries reconstruction and atherosclerotic plaques detection, a 

future step could be the implementation of deep learning techniques in CTA images to improve 

segmentation performance, using more CTA cases both for training and testing.  In addition to this, 

another future important analysis is the use of the proposed methodology to compare the CTA 

performance in the field of CAD diagnosis with PET and SPECT. 

In spite of the high predictability of proposed studies for the CAD risk prediction, a future step for their 

deployment could be the integration of new features, concerning molecular systemic variables, 

inflammatory and monocyte markers, the lipid profile, exposome as well as mRNA sequencing.  

Therefore, a more detailed input space and a larger dataset of patients ensure a more effective 

multimodal prediction scheme and potentially a refined formulation of the classification problem.  

Additionally, development of ML model for CAD related events prediction is also a future step for the 

CAD risk prediction problem, using as input both imaging and non imaging data.  Collection of external 

validation datasets for the CAD risk prediction developed models is also our next step for their broadly 

evaluation and to check how accurately they generally perform. 

The work performed in this thesis is not finished in terms of carotid artery disease prediction.  More 

specifically, our first aim is to use more external individuals, to test the diagnostic presence of CAS, 

especially of healthy (Class 0) individuals and to collect data for external validation of the diagnostic 

high risk plaques presence.  This task is challenging since high risk plaques are difficult to be defined 

and are basically based either on histology of plaque features or on image related features, such as large, 

echolucent plaques, intraplaque haemorrhage and presence of lipid-rich necrotic core.  Another future 

work for the carotid artery disease prediction is to develop a model for the prediction of CVD related 

events, such as stroke, TIA, MI, using imaging and non imaging features. 

Final, regarding the brain MRI analysis, a future step is the analysis of the brain MRI images at a follow 

up time step, in order to evaluate the progression of the lesions.  In addition to this, except of the 

implementation of statistical analysis for the data analysis, another step is to perform feature selection 

techniques for the detection of significant features for the presence of brain lesions.  
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Appendix 

Threshold selection (Chapter 3) 

The selection of the intensity thresholds of the lumen and the CP were based on the current literature. 

More specifically, due to the variety of CT scanners, the average range of lumen intensity is 200 HU–

500 HU [221], whereas the intensity of CP is higher than 500 HU [284].  In this methodology, we have to 

identify the optimal threshold values for the discrimination of the lumen, the outer wall and the CP. 

These threshold values are extracted based on the calculation of the mean lumen intensity (Ilumen), in 

combination with the known ranges of the lumen and CP intensities. Thus, as far as the lumen threshold 

is concerned and considering that the intensity of the lumen is affected by the acquisition dose protocol, 

we selected a relative small lthres (lthres =80HU). As it is demonstrated in Table 1 (page 33), in order to 

find the lower limit of the lumen intensity value, the lthres  is subtracted from the mean lumen intensity 

and the value of 80 HU is a good approximation in order to agree with the lumen range proposed from 

the literature (around 500HU). As it is demonstrated in the Figure 10, the HU values which are possible 

to match with the lumen are about 500 HU.  Furthermore, several experiments have been implemented 

using lthres  values close to 80HU in order to examine the algorithm effectiveness for the whole range of 

the membership function demonstrated in Figure 10 (page 33). A similar approach has been 

implemented for the CP. More specifically, according to current literature HU>500 may identify CP. For 

this purpose our approach was implemented after the detection of the lumen border and especially at the 

region out of the lumen border. In a similar approach the cpthres should be 400HU for optimal accuracy in 

CP detection.  

As far as the attenuation HU value for NCP is concerned, it depends also on the contrast protocol. 

However, based on the literature a potential range for NCP is from 0 to100 HU [228, 285-290].  Thus, 

the threshold value of NCP is defined to be 50 HU, in order to include HU values around 50 HU, 

depending on the density of the lumen. This selected threshold value is considered as an indicative value 

for the NCP, which is adapted to the lumen density. 
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Full list of eligibility, inclusion, exclusion and exit criteria (Chapter 4 ) 

Eligibility criteria:  

A. Clinical history and lifestyle data records available at one-time point. 

B. At least one previous CCTA examination performed for suspected CHD and of good quality to 

allow for: a) Non-invasive FFR-CT assessment b) Quantitative (automated) 17 segments (AHA) 

analysis and measurement with ≤10% error of MLA (mm2), lumen area stenosis (%), mean PB (mm3), 

PB at MLA (%), and remodeling index, c) Plaque phenotype assessment: HU based classification in CP, 

NCP and mixed, napkin-ring sign, CAC score. 

C. Previous blood and plasma sample available for retrospective analysis 

Inclusion criteria: 

1) male and female subjects  

2) aged 45-82 years  

3) Caucasian population  

4) submitted to CCTA for suspected CHD between 2009 and 2012 (in the context of EVINCI and 

ARTreat FPVII studies) at the Hospitals reported in “SMARTool Clinical Center” document and 

satisfying the elegibility criteria reported above  

5) submitted to clinical Follow-up in the last 6 months with stable clinical conditions and 

documented CHD or persistent intermediate/high probability of CHD 

6) Signed informed consents (clinical and genetic) 

Exclusion criteria: 

1) Multi-vessel severe disease (3 vessels and/or LM disease with >90% stenosis).  

2) Severe coronary calcification (CAC score > 600).  

3) Having undergone surgical procedures related to heart diseases (valve replacement, CRT or 

CRTD treatment, any surgery of the heart or arteries).  
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4) Documented MACE at history (MI, severe heart failure, recurrent angina) in the last 6 months 

with/without revascularization 

5) Documented severe peripheral vascular disease (carotid, femoral) 

6) Surgery of carotid and/or peripheral arteries or cerebral ischemic attack  

7) History/surgery of Abdominal Aortic Aneurysm(AAA).  

8) Severe Heart failure (NYHA Class III-IV) 

9) LV dysfunction (left ventricle EF <40%). 

10) Atrial fibrillation.  

11) Lack of written informed consent (clinical consent and/or genetic consent) 

12) Pregnancy (evaluated by urine test) and breastfeeding 

13) Active Cancer 

14) Asthma 

15) Cardiomyopathy or congenital heart disease 

16) Significant valvular disease (hemodynamically significant valvular stenosis or insufficiency by 

echoDoppler) 

17) Renal dysfunction (creatinine > 1.3 mg/dL) 

18) Chronic Kidney Disease (eGFR < 30 ml/min/1.73 m2)  

19) Hepatic failure (at least 3 of the following: albumin < 3.5 g/dL; prolonged prothrombin time–PT; 

jaunDICE; ascites) 

20) Waldenstrom disease  

21) Multiple myeloma 

22) Autoimmune/Acute inflammatory disease 

23) Previous severe adverse reaction to iodine contrast agent 
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24) Positivity at blood tests for HIV, Hepatitis B and C (CRF number 1-clinical evaluation) 

Exit Criteria:  

A) Informed consent retired by the patient (genetic or clinical) 

B) Adverse events to contrast medium during 
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