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Abstract in English

The main goal of this thesis is to find conditions, under which, Banach Lattices
are isomorphic either to C(K), where K is compact, or to L1(µ), with respect to the
measure µ.

In Chapter 1, we give some basic notations and definitions for vector lattices.
Also, we provide an algebraic view of ideal and band theory, which will end up to
the Riesz Decomposition Theorem. Concluding this chapter, our main focus turns
to maximal and minimal ideals and the Archimedean vector lattices of finite and
infinite dimension.

In Chapter 2, we make use of basic notions of Functional Analysis and discuss
more about the duals of vector lattices. Firstly, we present Nakano’s Theorem.
Equipping a vector lattice with a norm turns our work to the study of normed
vector lattices. We state properties of normed vector lattices and dive more into
the topological and order properties, which will help us determine the structure of
normed vector lattices. Lastly, the introduction of quasi interior points helps us to
extract useful conclusions about whether or not a normed vector lattice has ideals.

In Chapter 3, we study the abstract M -spaces and the abstract L-spaces. The
space of all continuous real functions on a compact space K and the space of all
integrable functions are important classes of Banach Lattices. They are thoroughly
discussed, as well as their duality. Using topological arguments, we restate well
known theorems of Functional Analysis and Measure Theory from a lattice point of
view. We conclude the chapter by mentioning some extension and representation
theorems of AL and AM spaces.





Abstract in Greek

Στόχος αυτής της διατριβής είναι να βρούμε κατάλληλες προϋποθέσεις κάτω από

τις οποίες ένα πλέγμα Banach είναι ισόμορφο με τον C(K), για κάποιο συμπαγές K, ή
ισόμορφο με τον L1(µ), ως προς το μέτρο µ.
Στο Κεφάλαιο 1 παραθέτουμε κάποιες βασικές έννοιες και ορισμούς σχετικά με

τα διανυσματικά πλέγματα. Στη συνέχεια, ασχολούμαστε με τη θεωρία ιδεωδών και

λωρίδων, το Θεώρημα Αναπαράστασης του Riesz και τα μεγιστοτικά και ελαχιστικά
ιδεώδη, καθώς και τα διανυσματικά πλέγματα με την Αρχιμήδεια ιδιότητα, πεπερασμένης

ή μη διάστασης.

Στο Κεφάλαιο 2, χρησιμοποιώντας βασικές έννοιες της Συναρτησιακής Ανάλυσης,

αναλύουμε τους δυικούς ενός διανυσματικού πλέγματος V , ξεκινώντας με το θεώρημα
του Nakano. Μελετάμε διανυσματικά πλέγματα τα οποία έχουμε εφοδιάσει με νόρμα,
παραθέτοντας ιδιότητες που βοηθούνε στον καθορισμό της δομής τους. Το τελευταίο

μέρος του Κεφαλαίου πραγματεύεται τα οιονεί-εσωτερικά σημεία με στόχο να εξάγουμε

χρήσιμα συμπεράσματα σχετικά με το εάν ή όχι ένα νορμοποιημένο διανυσματικό πλέγμα

έχει ιδεώδη.

Στο Κεφάλαιο 3 μελετάμε τους αφηρημένους M και L χώρους. Ο χώρος όλων των
συνεχών συναρτήσεων πάνω από ένα συμπαγές σύνολοK, καθώς και ο χώρος όλων των
ολοκληρώσιμων συναρτήσεων, αποτελούν σημαντικές κατηγορίες Banach πλεγμάτων.
Αυτές και η δυικότητα τους μελετώνται στο πρώτο και δεύτερο μέρος τους κεφαλαίου,

αντίστοιχα. Επίσης, χρησιμοποιώντας τοπολογικά επιχειρήματα επαναδιατυπώνουμε,

από την σκοπιά των πλεγμάτων, γνωστά θεωρήματα από τη Συναρτησιακή Ανάλυση

και τη Θεωρία Μέτρου. Αυτή η συζήτηση ολοκληρώνεται με θεωρήματα επέκτασης και

αναπαράστασης των αφηρημένων M και L χώρων.
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Chapter 1

Basic Aspects of Vector Lattices

1.1 Real Vector Lattices

To introduce the concept of lattices firstly we discuss ordered sets. In this paragraph
we will define lattices, as well as vector lattices, and discuss some basic properties.
Also we will talk more about convergence and completeness with respect to the given
order.

Remark 1.1.1. We denote by g.c.d the greatest common divider and by l.c.m the
least common multiplier of any two natural numbers.

Firstly we need to define ordered sets.

Definition 1.1.2. A binary relation ≼ which satisfies the following :

(i) x ≼ x holds for every x ∈ A (reflexive)

(ii) x ≼ y and y ≼ x implies x = y, for x, y ∈ A (antisymmetric)

(iii) x ≼ y and y ≼ z implies x ≼ z, for x, y, z ∈ A (transitive)

is called a partial order.

Definition 1.1.3. A set A endowed with a partial order is called a partially ordered
set and is denoted by (A,≼).

Definition 1.1.4. A binary relation ≼ which satisfies the following :

(i) x ≼ x holds for every x ∈ A

(ii) x ≼ y and y ≼ z implies x ≼ z, for all x, y, z ∈ A

is called a partial preorder.

Definition 1.1.5. A set A endowed with a partial preorder is called a partially
preordered set and is denoted by (A,≼).

The following examples of orders will be in use from now on.

1



2 Banach Lattices

Example 1.1.6. Let Rn, where n ∈ N. The binary relation ≼ defined as follows:

a ≼ b ⇔ ai ⩽ bi for all i = 1, 2, . . . , n

for all a, b ∈ X , a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), is called the lexicographic
ordering. Since x ≼ x implies that xi ≤ xi, for all i = 1, 2, . . . , n, which holds for
all xi, we have that ≼ is reflexive. Moreover, suppose x, y, z ∈ X, with x ≼ y and
x ≼ z . This implies xi ≤ yi and yi ≤ zi for all i = 1, 2, . . . , n. Thus xi ≤ zi, for all
i = 1, 2, . . . , n. Therefore x ≼ z holds.

Furthermore, we examine if the antisymmetric property holds, in order to deter-
mine if this partial preorder is a partial order. Let x, y ∈ X such that x ≼ y and
y ≼ x, for all i = 1, 2, . . . , n . Then xi ≤ yi and yi ≤ xi holds for all i = 1, 2, . . . , n.
Therefore xi = yi, for all i = 1, 2, . . . , n, hence x = y. Thus the lexicographic
ordering is a partial order.

Example 1.1.7. Let K ⊆ R. Denote by C(K) the space of all real continuous
functions on K. The binary relation “ ≼ ”, called the canonical ordering,

f ≼ g ⇔ f(t) ⩽ g(t), for all t ∈ K,

is a partial order.
Indeed, for some f ∈ C(K), obviously f(t) ≤ f(t) for all t ∈ K so f ≼ f

holds. Let f, g, h ∈ C(K) such that f ≼ g and g ≼ h for all t ∈ K. This implies
f(t) ≤ g(t) and g(t) ≤ h(t) for all t. Thus f(t) ≤ h(t) and therefore f ≼ h . Lastly
let f, g ∈ C(K) such that f ≼ g and g ≼ f . Then f(t) ≤ g(t) and g(t) ≤ f(t) hold
for all t ∈ K and therefore f(t) = g(t) for all t ∈ K. Hence f = g and the ordering
is antisymmetric.

Example 1.1.8. The binary relation “≼” defined as follows:

m ≼ n ⇔ m|n, for n,m ∈ N

is a partial order called the divisibility relation.
Let x ∈ J , then obviously x|x and hence “≼” is reflexive. Now let x, y, z ∈ J such

that x ≼ y and y ≼ z or equivalently x\y and y|x. Thus there exist m, k ∈ Z such
that y = mx and z = ky. To prove the anti-symmetry of the ordering let x, y ∈ J
such that x|y and y|x and x ̸= y. Thus, there exist m, k ∈ Z such that y = mx and
x = ky. We easily obtain that x = mkx. Thus m = k = 1. Therefore the divisibility
relation is a partial order.

Example 1.1.9. Let X be a set and P (X) be the power set of X. Then, the binary
relation “≼” defined as follows:

U ≼ V ⇔ U ⊂ V

for all U, V ∈ P (X) is called set inclusion and is a partial preorder. Let U ∈ P (X),
then obviously U ⊂ U and hence U ≼ U . For U, V,W ∈ P (X) such that U ≼ V and
V ≼ W we obtain that U ⊂ V and V ⊂ W . Therefore U ⊂ V ⊂ W and U ⊂ W . For
U,W ∈ P (X) such that U ≼ W and W ≼ U we obtain that U ⊂ W and W ⊂ U .
Therefore U = W , so set inclusion is a partial order.
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Definition 1.1.10. A partially ordered set (A,≼) is called totally ordered if every
two elements of A are related with respect to ≼ i.e. for every x, y ∈ A it holds that
either x ≼ y or y ≼ x.

Remark 1.1.11. A set A is called ordered if it is partially ordered.

Example 1.1.12. Let N endowed with the divisibility relation. Suppose x, y ∈ N
and x ̸= y. It is obvious that it is not generally true that x\y or y\x and hence
that either x ≼ y or y ≼ x. Therefore the divisibility relation is not a total order.
However, N endowed with the usual ordering ‘≤’ is totally ordered.

Example 1.1.13. Let A be a set containing at least two elements. Then the powerset
P(A) is not totally ordered, with respect to set inclusion.

Definition 1.1.14. Let (A,≼) be an ordered set and x, y ∈ A. The set of all z ∈ A
such that x ≼ z ≼ y is called an order interval in A and is denoted by [x, y].

The following discussion is about the least and greatest elements of an arbitrary
ordered set.

Definition 1.1.15. Let (A,≼) be an ordered set and [x, y] ⊂ A for some x, y ∈ A.
A non empty set C ⊂ [x, y] is called order bounded.

Definition 1.1.16. Let (A,≼) be an ordered set. The set B ⊂ A is called majorized
(or upper bounded) if there exists M ∈ A such that b ≼ M holds for every b ∈ B. In
this case M is called a majorant or an upper bound of B. We denote by BM the set
of all majorants of B.

Definition 1.1.17. Let (A,≼) be an ordered set. The set B ⊂ A is called minorized
(or lower bounded) if there exists m ∈ A such that m ≼ b holds for every b ∈ B. In
this case, m is called a minorant or a lower bound of B. We denote by Bm the set
of all minorants of B.

Definition 1.1.18. Let (A,≼) be a partially ordered set and B ̸= ∅ a subset of A.
If there exists a ∈ BM such that a ≼ M for each M in BM then a is called least
upper bound or supremum of B and we denote it by supB.

Definition 1.1.19. Let (A,≼) be a partially ordered set and B ̸= ∅ a subset of A.
If there exists a ∈ Bm such that m ≼ a for each m in Bm then a is called greatest
lower bound or infimum of B and we denote it by inf B.

Remark 1.1.20. Let (A,≼) be a directed set and B ⊆ A. If supB and inf B exist,
then they are unique.

Proof. Let a, a′ be suprema of A. Since a is the supremum of A, a is a majorant of
A. But a′ is supremum, hence a ≼ a′. Similarly a′ is supremum of A thus a′ is a
majorant of A. But a is supremum, so a′ ≼ a. Because “≼” is a partial order, by the
anti-symmetry of the order we obtain a′ = a. Therefore the supremum is unique.

To prove that the infimum of a directed set is unique we work analogously.
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Example 1.1.21. Let P (X) be the power set of X endowed with the set inclusion.
It is obvious that ∅ is the infimum of P (X) and that X is the supremum of P (X).

Definition 1.1.22. A partially preordered set A is called directed upward if for any
two elements a, b ∈ A there exists c ∈ A such that c ≽ a and c ≽ b.

Definition 1.1.23. A partially preordered set A is called directed downward if for
any two elements a, b ∈ A there exists c ∈ A such that c ≼ a and c ≼ b.

Remark 1.1.24. Directed upward or directed downward sets are simply called di-
rected.

Example 1.1.25. Let S = {1, 2, 3}. The relation {{1, 1}, {2, 2}, {3, 3}, {1, 3}, {2, 3}}
is a partial order on S. Endowed with this partial order, S is directed upward but
not directed downward.

Definition 1.1.26. Let (S,≼) be a directed set and x ∈ S. The set of all z ∈ S
such that z ≽ x is called the section of S for x and is denoted by Sx.

Example 1.1.27. Let S = {1, 2, 3}. The relation {{1, 1}, {2, 2}, {3, 3}, {1, 3}, {2, 3}}
is a partial order on S. It is easy to see that the section of S for 1 is the set {1, 3}.

Definition 1.1.28. Let A be a set. A set F of subsets of A satisfying the following:

(i) F ̸= ∅ and ∅ /∈ F

(ii) U ∈ F and U ⊂ G ⊂ A implies that G ∈ F

(iii) U ∈ F and G ∈ F implies U ∩G ∈ F

is called a filter on A.

Example 1.1.29. Let X be a topological space and fix a x0 ∈ X. Denote by Nx0

the set of all neighborhoods of x0. Then Nx0 is a filter in X.

• Since every neighborhood of x0 must contain x0, we have that ∅ /∈ Nx0 .

• If U ∈ Nx0 and W ⊃ U , then x0 ∈ int(W ), so W ∈ Nx0 .

• Suppose U ∈ Nx0 and W ∈ Nx0 . Then, obviously, U ∩W ∈ Nx0 .

Now we are ready to state the definition of lattice.

Definition 1.1.30. A partially ordered set (L,≼) is called a lattice if the elements
x∨y := sup{x, y} and x∧y := inf{x, y} both exist in L, for each pair (x, y) ∈ L×L.
Moreover, the mappings (x, y) 7→ x ∨ y and (x, y) 7→ x ∧ y are called the lattice
operations.
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Example 1.1.31. Let X be a topological space. We denote by O the set of all
open subsets of X, i.e. the topology of X. Then, (O,⊂) endowed with the following
lattice operations

(U, V ) 7→ U ∧ V = U ∩ V, for every U, V ∈ O

and

(U, V ) 7→ U ∨ V = U ∪ V, for every U, V ∈ O

is a lattice. We remark that the union and the intersection of any two open sets are
open, hence both sup and inf exist in O.

Example 1.1.32. Let X be a topological space. We denote by C the set of all
closed subsets of X. Then (C,⊂) endowed with the following lattice operations is a
lattice.

(U, V ) 7→ U ∧ V = U ∩ V for every U, V ∈ C

and

(U, V ) 7→ U ∨ V = U ∪ V for every U, V ∈ C.

The union and the intersection of any two closed sets are open, hence both sup and
inf exist in C.

We proceed to prove some basic properties regarding lattice operations.

Definition 1.1.33. (L,≼) is called a distributive lattice if L is a lattice and

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

holds for every x, y, z ∈ L.

Proposition 1.1.34. Let (L,≼) be a lattice. The lattice operations satisfy all of the
following:

(i) They are idempotent.

(ii) They are commutative.

(iii) They are associative.

(iv) It holds that x ∧ (x ∨ y) = x, for all x, y ∈ L.

(v) It holds that x ∨ (x ∧ y) = x, for all x, y ∈ L.

Proposition 1.1.35. Let (L,≼) be a lattice.Then the following properties are equiv-
alent:

(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), for every x, y, z ∈ L.

(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), for every x, y, z ∈ L.
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Proof. (i) Let x, y, z ∈ L. Suppose that (i) holds, then

(x ∨ y) ∧ (x ∨ z) =
[
(x ∨ y) ∧ x

]
∨
[
(x ∨ y) ∧ z

]
By (v) of Proposition 1.1.34 it holds that x ∨ (x ∧ y) = x. Also, by the
commutativity of the infimum it holds that (x ∨ y) ∧ z = z ∧ (x ∨ y). Thus,
taking into account the assumption, we get

z ∧ (x ∨ y) = (z ∧ x) ∨ (z ∧ y) .

Hence, we obtain[
(x ∨ y) ∧ x

]
∨
[
(x ∨ y) ∧ z

]
= x ∨

[
(z ∧ x) ∨ (z ∧ y)

= x ∨
[
(x ∧ z) ∨ (y ∧ z)

=
[
x ∨ (x ∧ z)

]
∨
[
x ∨ (y ∧ z)

]
by the distributivity of the supremum. So, by (iv) from Proposition 1.1.34[

x ∨ (x ∧ z)
]
∨
[
x ∨ (y ∧ z)

]
= x ∨

[
x ∨ (y ∧ z)

]
= x ∨ (y ∧ z) (1.1)

Therefore the assertion is proven.

(ii) We work analogously.

Definition 1.1.36. Let (L,≼) be a lattice. If supL and inf L exist in L, then supL
is called the greatest element of L, whereas inf L is called the smallest element of L.

Example 1.1.37. Let X be a set and denote by P (X) the power set of X. Then
inf P (X) = ∅ and supP (X) = X in view of Example 1.1.21. Since ∅, X ∈ P (X),
they are the smallest and the greatest element of P (X), respectively.

Example 1.1.38. Let D = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0} and (D,≼), where
“≼” is the lexicographic order. Then infD = (0, 0). Since (0, 0) ∈ D, it follows that
(0, 0) is the smallest element of D.

Definition 1.1.39. Let (L,≼) be a lattice and x ∈ L. If there exist y ∈ L such that
y ∨ x = supL and y ∧ x = inf L then y is called complement of x and is denoted by
xc.

Theorem 1.1.40. Let (L,≼) be a distributive lattice such that supL and inf L exist
in L. Let x be an element of L such that xc exists in L. Then xc is unique.

Proof. Let x′ ∈ L be another complement of x. Then x′ = x′ ∨ inf L or equivalently
x′ = x′ ∨ (x∧ xc) and, by distributivity, we obtain that x′ = (x′ ∨ x)∧ (x′ ∨ xc). The
last equality yields the following

x′ = supL ∧ (x′ ∨ xc) = x′ ∧ xc.

Hence x′ = x′∨xc. We work similarly for xc and we end up to xc = xc∨x′. Therefore
xc = x′.
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Example 1.1.41. Denote byD125 the set of all dividers of 125, i.e. D = {1, 5, 25, 125}.
ThenD125 with the divisibility relation is a totally ordered set. Moreover, it is easy to
see that the distributive laws hold for all elements ofD125. But 25∧5 = 5 and 25∨5 =
25, so, since the complement is unique, this implies that 25 and 5 have no comple-
ments. This is because 125 and 1 complement each other as 125∨1 = 125 = supD125

and 125 ∧ 1 = 1 = infD125.

Definition 1.1.42. Let (L,≼) be a distributive lattice. If inf L and supL exist in
L and every x has a complement xc ∈ L, then (L,≼) is called a Boolean Algebra.

Definition 1.1.43. Let (L,≼) be a lattice and L0 a subset of L. We call L0 sublattice
of L if x ∧ y ∈ L0 and x ∨ y ∈ L0, for every x, y ∈ L0.

Example 1.1.44. Let X be a topological space and denote by P (X) the power set
of X and by O the set of all open sets of P (X). Then (O,⊂) is a sublattice of P (X).
Indeed, for any U, V ∈ O it holds that U ∧ V ∈ O and U ∨ V ∈ O.

Example 1.1.45. Let X be a topological space and denote by P (X) the power set
of X and by C the set of all closed sets of P (X). Then (C,⊂) is a sublattice of
P (X). Indeed, for any U, V ∈ C it holds that U ∧ V ∈ C and U ∨ V ∈ C.

Definition 1.1.46. Let (L,≼) be a lattice. L is said to be (countably) complete
if every (countable) subset of L has infimum and supremum. A sublattice L0 of a
complete lattice L is called a complete sublattice of L if, for every subset A of L0,
the elements supA and inf A both belong in L0.

— CHECKED UNTIL THIS POINT —

Remark 1.1.47. A subset L0 of a countably complete or complete lattice L can be
a countably complete or complete lattice, respectively, despite not being a sublattice
of L, under the inherited order by L.

Definition 1.1.48. Let V be a vector space over R and ≼ an order. V is called an
ordered vector space if the following are satisfied:

(i) If x ≼ y, then x+ z ≼ y + z holds for every x, y, z ∈ V.

(ii) If x ≼ y, then λx ≼ λy for every x, y ∈ V and λ ∈ R+.

An ordered vector space is denoted by (V,≼).

Definition 1.1.49. Let (V,≼) be an ordered vector space. V is called a vector lattice
(also called a Riesz space or a linear lattice), if x∧ y and x∨ y both exist and belong
in V for every x, y ∈ V .

Example 1.1.50. The one dimensional vector space Rn over R endowed with the
lexicographic order is a vector lattice. Let x̄, ȳ, z̄ ∈ R such that x̄ ≼ ȳ. Then
obviously x̄ + z̄ ≼ ȳ + z̄ holds for all x̄, ȳ, z̄ ∈ Rn. Moreover for every λ ∈ R+ and
x̄, ȳ ∈ Rn, such that x̄ ≼ ȳ, iy holds that λx̄ ≼ λȳ. Thus Rn is an ordered vector
space. To validate that Rn is a vector lattice, we need to prove x̄∧ ȳ and x̄∨ ȳ both
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exist in Rn, for every x̄, ȳ ∈ Rn. Now we define x̄∧ ȳ = min(xi, yi) for all i = 1, . . . , n
and x ∨ y = max(xi, yi) for all i = 1, . . . , n. Both x̄ ∧ ȳ and x̄ ∨ ȳ exist in R. Hence

x̄ ∧ ȳ =
(
min(x1, y1),min(x2, y2), . . . ,min(xn, yn)

)
and

x̄ ∨ ȳ =
(
max(x1, y1),max(x2, y2), . . . ,max(xn, yn)

)
exist in Rn. Therefore Rn, with the lexicographic order, is a vector lattice.

Proposition 1.1.51. Let V1, V2 be ordered vector spaces. and T : V1 7→ V2 a lin-
ear bijective map. Then x ≼V1 y if and only if Tx ≼V2 Ty defines a partial order
satisfying (i) and (ii) from 1.1.48.

Proof. Firstly we need to prove that this is actually a partial order.

• Let x ∈ V1. Then x ≼V1 x holds since V1 is a vector space and thus Tx ≼V2 Tx
holds, since T is linear.

• Let x, y ∈ V such that x ≼V1 y and y ≼V1 x hold. This implies that Tx ≼V2 Ty
and Ty ≼V2 Tx hold. Since V1 and V2 are vector spaces, it holds that x = y
and Tx = Ty.

• Let x, y, z ∈ V such that x ≼V1 y and y ≼V1 z. Then, it is imminent that
Tx ≼ Tz.

Now we need to show that this partial order satisfies (i) and (ii) from 1.1.48.

(i) Let x, y ∈ V1 such that x1 ≼V1 y1. Since V1 is a vector lattice it holds that
x+ z ≼V1 y + z for all z ∈ V1. Since T is linear and V a vector lattice it holds
that T (x+ z) ≼V2 T (y + z).

(ii) Let x, y ∈ V and λ ∈ R+ such that x ≼V1 y. Since V1 is a vector lattice, it
holds that λx ≼V1 λy. Since T is linear and V2 a vector lattice, it holds that
λTx ≼V2 λTy.

Therefore the proof is complete.

Definition 1.1.52. Let V1, V2 be ordered vector spaces. A linear bijective map
T : V1 7→ V2 such that x ≼V1 y if and only if Tx ≼V2 Ty is called an isomorphism of
ordered vector spaces or simply an order isomorphism.

Remark 1.1.53. The range of an order isomorphism of a vector lattice V1 into a
vector lattice V2 is not, necessarily, a sublattice of V2.

Example 1.1.54. Let X be a topological space and denote by (O,⊂) the lattice of
all open subsets of X. Let p : (2X ,⊂) 7→ (O,⊂) be an order isomorphism. Then, by
Example ?? it holds that p(2X) is not a sublattice of (O,⊂).

Definition 1.1.55. Let (V,≼) be an ordered vector space. We denote by V+ the
set of all positive elements x ∈ V . Then, V+ is called the positive cone of V and all
x ∈ V+ are called positive.
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Definition 1.1.56. Let B be a Boolean Algebra. A real function µ : B 7→ R is
called finitely additive if it satisfies:

µ(x ∨ y) = µ(x) + µ(y)

when x ∧ y = 0 for all x, y ∈ B.

Remark 1.1.57. Let B be a Boolean Algebra. Denote by ba(B) the space of all
bounded finitely additive functions with values from B. Then ba(B) endowed with
the canonical ordering is a vector lattice. The lattice operations are given as follows:

µ1 ∨ µ2(x) = sup
y≼x

{µ1(x) + µ2(x ∧ yc)}

and
µ1 ∧ µ2(x) = inf

y≼x
{µ1(x) + µ2(x ∧ yc)}

hold for all x, y ∈ V .

Proposition 1.1.58. Let {Va}α∈A be a family of vector lattices. Then the Carte-
sian product

∏
α Va is a vector lattice if the vector and lattice operations are defined

“coordinate-wise”.

Proof. It is obvious that the Cartesian product of a family of vector spaces is a vector
space if the vector operations are defined coordinate-wise. Now let x̄, ȳ ∈ {Va}. Then

x̄ = (x1.x2, . . . , xa) and ȳ = (y1, y2, . . . , ya).

Since each Va is a vector lattice for each α ∈ A it holds that xa ∧ ya ∈ Va and
xa ∨ ya ∈ Va. Hence, the lattice operations defined as follows

x̄ ∧ ȳ = (x1 ∧ y1, x2 ∧ y2, . . . , xa ∧ ya)

and
x̄ ∨ ȳ = (x1 ∨ y1, x2 ∨ y2, . . . , xa ∨ ya)

are well defined and
∏

α Va is indeed a vector lattice.

Definition 1.1.59. Let {Va}α∈A be a family of vector lattices. The ordering of∏
α Va so obtained is called canonical and is a generalization of the canonical ordering

defined in Example 1.1.7.

Definition 1.1.60. Let {Va}α∈A be a family of vector lattices. Then the direct sum
of the family {Va}, denoted by

⊕
α{Va} is understood to be the vector sublattice of∏

α Va containing exactly all finitely non-zero families (xα)α∈A.

Proposition 1.1.61. Suppose (V,≼) is a vector lattice and A is a non-empty subset
of V endowed with the ordering of V . Then the following are valid:

(i) If supA exists then x+ supA = sup(x+ A).

(ii) If inf A exists then x+ inf A = inf(x+ A).
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(iii) supA = − inf(−A).

Proof. We recall that if A is a subset of V then it holds that x+A = {x+y : y ∈ A}.

(i) Let B =: {x+ y : y ∈ A}. We want to prove that x+ supA = sup(x+A). We
will show that both x + supA and sup(x + A) are equal to supB. Obviously
supB = sup(x+A). Moreover suppose that there exists an other upper bound
M for B. Then x+ y ≼ M for all y ∈ A. Since supA exists, this also holds for
the supremum of A. Hence, x + sup(A) ≼ M and thus x + sup(A) = supB.
Since the supremum of B is unique we have that x+ supA = sup(x+ A).

(ii) Similarly for inf B. Let B =: {x + y : y ∈ A}. Obviously inf B = inf(x + A).
Suppose there exist another lower bound m for B. Then m ≼ x + y for
all y ∈ A. Since inf B exists, this holds for the infimum of A also. Hence
m ≼ x + inf(A) and thus x + inf(A) = inf(B). Since the infimum of B is
unique, then x+ inf A = inf(x+ A).

(iii) Recall that if A is a subset of V , then −A =: {−x : x ∈ A}. Note that
for any −x ∈ −A we have that inf(−A) ≼ −x. Thus − inf(−A) ≽ x. Hence
− sup(−A) is greater or equal to x . Suppose M is another upper bound of −A.
Then M ≽ x, for all x ∈ A. This implies −M ≼ −x and thus −M is a lower
bound of −A. Hence −M ≼ inf(−A) or, equivalently, M ≽ − inf(−A). So
− inf(−A) is the least upper bound of −A. Therefore − sup(−A) = − inf(−A).
But sup(kA) = k supA and hence supA = − inf(−A).

Definition 1.1.62. Let (L,≼) be a lattice. For every x ∈ L, we define the positive
part, the negative part and the absolute value or the modulus of x by x+ := x ∨ 0,
x− := (−x) ∨ 0 and |x| = x ∨ (−x), respectively.

Example 1.1.63. Let X be a topological space. Denote by C(X) the space of all
real valued, continuous functions on X. Take f(x) = x. Then

f+ = f(x), x ≽ 0

and
f− = f(x) , x ≼ 0

and

|f |(x) =

{
x x ≽ 0

−x x ≼ 0.

Definition 1.1.64. Let (L,≼) be a lattice. If |x| ∧ |y| = 0 holds for every pair of
elements x, y ∈ L then x, y are called orthogonal or disjoint or lattice disjoint. We
denote such elements by x ⊥ y.

Definition 1.1.65. Let (L,≼) be a lattice and A,B ⊂ V . Then A and B are called
orthogonal if x ⊥ y holds for every pair (x, y) ∈ A×B.
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Definition 1.1.66. Let (V,≼) be an ordered vector space and U ⊂ V+ be a non-
empty set. If 0 /∈ U and u ∧ v = 0 holds for every u, v ∈ U such that u ̸= v, then U
is called an orthogonal system.

Remark 1.1.67. Let (V,≼) be a vector lattice and ∅ ≠ A ⊂ V . We denote

A⊥ = {x ∈ V : x ⊥ y, for all y ∈ A}.

The following provide some primary properties of the absolute value.

Proposition 1.1.68. Let (V,≼) be a vector lattice. Then the following properties
hold for all x ∈ V :

(i) x = x+ − x−.

(ii) |x| = x+ + x−.

(iii) |x| = 0 ⇔ x = 0 , |λx| = |λ|x| , |x+ y| ≼ |x|+ |y|. (triangle inequality)

(iv) x+ y = x ∧ y + x ∨ y.

(v) |x− y| = x ∧ y − x ∨ y.

(vi) |x ∨ y − x1 ∨ y1| ≼ |x− x1|+ |y − y1|.

(vii) |x ∧ y − x1 ∧ y1| ≼ |x− x1|+ |y − y1|.

Proof. (i) First, we need to validate that x = x+ − x− for all x ∈ V . It suffices to
observe that, for y = 0 by (iv) we obtain

x+ 0 = x ∧ 0 + x ∨ 0.

By Definition 1.1.62 the assertion follows.

(ii) We need to verify that |x| = x+ + x−. Let x ∈ V then x+ + x− is equal to
x+ − x− + 2x−. By (i) this is equal to x+ 2x−.Thus

x+ + x− = 2x− + x = x+ (−2x) ∨ 0

= (−2x+ x) ∨ (0 + x)

= (−x) ∨ x

= x ∧ (−x).

• First we need to check that |x| = 0 or equivalently that x = 0. Suppose
x = 0 then |x| = x ∨ (−x) by (ii). Thus |0| = 0 ∨ (−0) = 0 which implies
that |x| = 0. Conversely let x ∈ V and suppose |x| = 0. Therefore
x ∨ (−x) = 0. By the anti-symmetry of the ordering, we obtain that if
x∨ (−x) ≼ 0 and x∨ (−x) ≽ 0 hold then x∨−x = 0. This implies x ≼ 0
and x ≽ 0 which yields that x = 0, by the anti-symmetric property.
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• To validate that |λx| = |λ||x|, let x ∈ V and λ ∈ R+. Since V is a vector
space, x ≼ |x| implies that λx ≼ λ|x| for all x ∈ V and λ ∈ R+. Hence
|λx| ≼ λ|x|, since every element is lower or equal to its absolute value.
This implies λ|x| ≼ |λ||x|. Hence |λx| ≼ |λ||x|.

Now if x ≼ x then |x| ≼ |x| which is equivalent to |x| ≼
∣∣1
λ
· λ · x

∣∣ for
λ ∈ R+. This leads to |x| ≼ 1

|λ|
· |λx| or equivalently |λ||x| ≼ |λx|. Since

|λx| ≼ |λ||x| holds it follows that |λ| · |x| = |λx|.
• Now the last property is the triangle inequality. Let x, y ∈ V . Then
x+ ≼ |x| and x− ≼ |x|, y+ ≼ |y| and y− ≼ |y| hold for every x, y ∈ V .
This also implies that (x + y)+. ≼ |x| + |y| and (x + y)− ≼ |x| + |y|. By
adding by members we obtain that (x + y)+ + (x + y)− ≼ |x| + |y|. But
by ii) (x+ y)+ + (x+ y)− = |x+ y| and therefore |x+ y| ≼ |x|+ |y|.

(iii) We need to verify that x+y = x∨y+x∧y holds for all x, y ∈ V . By translation
invariance from Proposition 1.1.61 we obtain that

x1 − (x ∧ y) + y1 = x1 + (−x) ∨ (−y) + y1

= (x1 − x+ y) ∨ (x1 − y + y1).

Let x = x1 and y = y1. Then

x− (x ∧ y) + y = (x− x+ y) ∨ (x− y + y)

x+ y = y ∨ x+ x ∧ y

x+ y = x ∨ y + x ∧ y.

(iv) Now x ∨ y = x + (y − x) ∨ 0 = x + (y − x)+ by the translation invariance.
Then x ∧ y = x + (y − x) ∧ 0 or equivalently x ∧ y = x − (x − y) ∨ 0 which
is also equivalent to x ∧ y = x− (x− y)+. Substracting by members, x ∨ y =
x+ (y − x) ∨ 0 = x+ (y − x)+ and x ∧ y = x− (x− y)+ we obtain

x ∨ y − x ∧ y = x+ (y − x)+ − x+ (x− y)+

= (y − x)+ + (x− y)+

= (y − x)+ + (y − x)−.

Thus x ∨ y − x ∧ y = |y − x| by (ii). Since |x − y| = |y − x|, we have that
x ∨ y − x ∧ y = |x− y| holds for all x, y ∈ V .

(v) To check that |x ∨ y − x1 ∨ y1| ≼ |x − x1| + |y − y1|, let x, y, x1, y1 ∈ V . We
observe that

x ∨ y − x1 ∨ y1 = x ∨ y + x1 ∨ y − x1 ∨ y − x1 ∨ y1

= (x ∨ y − x1 ∨ y) + (x1 ∨ y − x1 ∨ y1)
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For the first additional of the last equality we have that

x ∨ y − x1 ∨ y = y + (x− y) ∨ 0− y − (x1 − y) ∨ 0

= (x− y)+ − (x1 − y)+

which is less or equal than |x− y| − |x1 − y| with respect to the ordering. By
reverse triangle inequality we get

|x− y| − |x1 − y| ≼ |x− y − x1 + y| = |x− x1|.

Thus x∨ y−x1∨ y ≼ |x−x1|. Hence (x1∨ y−x1∨ y1) ≼ |y− y1| and therefore

x ∨ y − x1 ∨ y1 = (x ∨ y − x1 ∨ y) + (x1 ∨ y − x1 ∨ y) ≼ |x− x1|+ |y − y1|,

and

|x ∨ y − x1 ∨ y1| = |x ∨ y − x1 ∨ y + x1 ∨ y − x1 ∨ y|
≼ |x ∨ y − x1 ∨ y|+ |x1 ∨ y − x1 ∨ y|
≼ |x− x1|+ |y − y1|

In that case |x ∨ y − x1 ∨ y1| ≼ |x− x1|+ |y − y1|.

(vi) To prove the last property we work similarly as in (vi) by replacing x, x1, y1, y
by −x,−y,−y1,−x1 and using mainly (iii) from Proposition 1.1.61.

Corollary 1.1.69. Let (V,≼) be a vector lattice. The following relations hold for
every x, y ∈ V :

(i) x ∨ y =
1

2
(x+ y + |x+ y|).

(ii) x ∧ y =
1

2
(x+ y − |x− y|)|.

(iii) |x| ∨ |y| = 1

2
(|x+ y|+ |x− y|).

(iv) |x| ∧ |y| = 1

2

∣∣|x+ y| − |x− y|
∣∣.

In particular x ⊥ y is equivalent to |x+ y| = |x− y|.

Proof. (i) We already proved in Proposition 1.1.68 that x+ y = x∧ y+ x∨ y and
|x−y| = x∨y+x∧y hold for every x, y ∈ V . Now since x∧y = x+y−x∨y we
have that |x−y| = x∨y−(x+y)+x∨y. Equivalently 2(x∨y)−(x+y) = |x−y|
and hence x ∨ y =

1

2
(x+ y + |x− y|).

(ii) Moreover we also seen that x + y − x ∧ y = x ∨ y holds for every x, y ∈ V
in Proposition 1.1.68. Thus |x − y| = x ∨ y − x ∧ y and this is equivalent to
|x− y| = x+ y− x∧ y− x∧ y. Therefore 2(x∧ y) = x+ y− |x− y| and hence

x ∧ y =
1

2
(x+ y − |x− y|).
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(iii) We will now verify that |x| ∨ |y| = 1

2
(|x + y| + |x − y|). By definition of the

absolute values, |x| ∨ |y| = (x ∨ −x) ∨ (y ∨ −y) holds for all x, y ∈ V . This is
equal to (x∨−y)∨ (y ∨−x) by distributivity of the supremum. Now by direct
direct computation and (i) we obtain that

(x ∨ −y) ∨ (y ∨ −x) =
1

2

(
x− y − |x− (−y)|

)
∨ 1

2

(
y − x+ | − x− y|

)
=

1

2

(
x− y − |x− (−y)|

)
∨
(
y − x+ | − x− y|

)
=

1

2
|x+ y|+ 1

2
[(x− y) ∨ (y − x)]

=
1

2
|x+ y|+ 1

2
|x− y|

=
1

2
(|x+ y|+ |x− y|).

Hence, |x| ∨ |y| = 1

2
(|x+ y|+ |x− y|) holds for all x, y ∈ V .

(iv) By applying (iv) from Proposition 1.1.68 we obtain that

|x| ∧ |y|+ |x| ∨ |y| = |x|+ |y| ⇔
|x| ∧ |y| = |x|+ |y| − |x| ∨ |y|

= |x|+ |y| − 1

2
|x+ y| − 1

2
|x− y|

from (iii). Let x = u+ v and y = u− v. Then

|x|+ |y| − 1

2
|x+ y| − 1

2
|x− y| = |u+ v|+ |u− v| − 1

2
|u+ v + y − v| − 1

2
|u+ v − u+ v|

= |u+ v|+ |u− v| − 1

2
|2u| − 1

2
|2v|

= 2|u| ∨ |v| − |u| − |v|

=
2

2

(
|u|+ |v|+

∣∣|u| − |v|
∣∣)− |u| − |v|

=
∣∣|u| − |v|

∣∣ = ∣∣1
2
|x+ y| = |x− y|

∣∣.
Thus, |x| ∧ |y| = 1

2

∣∣|x+ y| − |x− y|
∣∣ holds for every x, y ∈ V .

To prove the last assertion it suffices to observe that x ⊥ y or equivalently that
|x| ∧ |y| = 0. Hence by (iv) we obtain that

0 =
1

2

∣∣|x+ y| − |x− y|
∣∣

or equivalently
|x+ y| = |x− y|.
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Corollary 1.1.70. Let (V,≼) be a vector lattice. Then the following hold for every
x, y ∈ V :

(i) x ≼ y implies x+ ≼ y+ and x− ≼ y− and conversely.

(ii) x ⊥ y if and only if |x| ∨ |y| = |x|+ |y|.

(iii) x ⊥ y implies (x+ y)+ = x+ + y+ and |x+ y| = |x|+ |y|.

Proof. (i) If x ≼ y then x+ ≼ y+ and x− ≼ y− hold for every x, y ∈ V , by
Proposition 1.1.68. Conversely if x+ ≼ y+ and x− ≼ y− hold then we need to
prove that x ≼ y. Then x+ ≼ y+ implies that x + x− ≼ y + y− and x− ≼ y−

implies that x+−x ≼ y+−y. Adding by members, we obtain x++x− ≼ y++y−

or equivalently |x| ≼ |y|. Since x ≼ |x| and y ≼ |y|, then

x ≼ |x| ≼ |y|

and hence x ≼ y.

(ii) Now if x ⊥ y then by definition |x| ∧ |y| = 0. Thus by (iv) from 1.1.68 we
obtain

|x|+ |y| = |x| ∧ |y|+ |x| ∨ |y|
or equivalently

|x|+ |y| = |x| ∨ |y|.

(iii) Let x, y ∈ V such that x ⊥ y and assume that (x+ y)∧ z ≼ x∧ z + y ∧ z hold
for every x, y, z ∈ V+. We need to prove that (x++ y+)∧ (x−+ y−) = 0. First,
we need to prove that x+ ⊥ x−, where x = x+ − x−. Hence we need to verify
that x+ ∧ x− = 0. Indeed

x+ ∧ x− = x− − x− + x+ ∧ x−

= x− + (x+ − x−) ∧ 0

= x−(−(x+ + x−) ∨ 0)

= x−(−x) ∨ 0

= x− − x− = 0.

Now we observe that |x + y| = (x + y)+ + (x + y)−. Since the decomposition
is unique, we have

x+ + x− + y+ + y− = (x+ y) = (x+ y)+ + (x+ y)−.

So it suffices to prove that (x+ y)+ ⊥ (x+ y)−. Indeed

(x+ y)+ ∧ (x+ y)− ≼ x+ ∧ (x− + y−) + y+ ∧ (x− + y−)

≼ x+ ∧ x− + x+ ∧ y− + y+ ∧ x− + y+ ∧ y− = 0.

Since x+ ∧ y− ≼ |x| ∧ |y| = 0 and y+ ∧ x− ≼ |x| ∧ |y| = 0 it follows that
(x+ y)+ = x+ + y+ and |x+ y| = |x|+ |y|.
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We conclude this paragraph with results regarding the infinite distributivity of
lattices.

Proposition 1.1.71. Let (V,≼) be a vector lattice and (xj)j∈J , (yj)j∈J be families
of elements in V . If supj(xj) =: x and infj(yj) =: y exist in V , then

x ∧ z := sup
j
(xj ∧ z)

and
x ∨ y := inf

j
(yj ∨ z)

hold for every z ∈ V .

Proof. Since x ≽ xj, for each j ∈ J we have that x ∧ z ≽ xj ∧ z holds for arbitrary
z ∈ V . Suppose there exists another upper bound u ∈ V such that u ≽ xj ∧ z for
all j. Then by using (iv) from Proposition 1.1.68 we obtain u ≽ xj + z = xj ∨ z.
Moreover x ∨ z ≽ xj ∨ z holds for every z ∈ V since x ≽ xj from hypothesis. Then
by adding u in both sides we obtain u + x ∨ z ≽ u + xj ∨ z. By (iv) again we get
u+ x∨ z ≽ xj + z, for all j ∈ J . Thus it holds for the supj xj. So u+ x∨ z ≽ x+ z.
Hence u ≽ (x+ z − z ∨ z) = x ∧ z. Therefore u ≽ x ∧ z for a random upper bound.
As a consequence

x ∧ z = sup
j
(xj ∧ z)

The proof of the other inequality is similar.

Corollary 1.1.72. Let (V,≼) be a vector lattice and A ⊂ V . Then A⊥ is a vector
subspace of V and contains the suprema and infima of all of its subsets.

Proof. Fix z ∈ V such that x, y ∈ {z}⊥. To verify that A⊥ is a vector subspace of V
it suffices to prove that |αx + βy| ∧ |z| ≼ 0 holds for every x, y ∈ A⊥ and α, β ∈ R,
i.e A⊥ is closed under orthogonality. By (iii) from Corollary 1.1.69 we obtain

|αx| ∨ |βy| = 1

2

(
|αx+ βy|+ |αx− βy|

)
or equivalently

2
(
|αx| ∨ |βy|

)
=

(
|αx+ βy|+ |αx− βy|

)
,

which implies that

|αx+ βy| ≼ 2
(
|αx| ∨ |βy|

)
⇔ |αx+ βy| ≼ 2

(
|α||x| ∨ |β||y|

)
or

|αx+ βy| ∧ z ≼
(
|α||x| ∨ |β||y|

)
⇔ |αx+ βy| ≼ 2

(
(|α||x| ∧ z) ∨ (|β||y| ∧ z)

)
.

Since x, y ∈ {z}⊥, it holds that |x| ∧ z = 0 and |y| ∧ z = 0. Thus

|αx+ βy| ∧ z ≼ 0.

Therefore {z}⊥ is a vector subspace of V . Now, if B ⊂ {z}⊥ and supB or inf B exists
in B, then supB ∈ {z}⊥. This is true as x ∧ z = sup(xj ∧ z) = 0, where x = supB

and xj ∈ B. Lastly, since {z}⊥ is a vector subspace then the intersection of all vector

subspaces of the form {z}⊥ is a vector subspace. Therefore A⊥ =
⋂

z∈A {z}⊥.
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Corollary 1.1.73. Any subset A of V consisting of elements, which are pairwise
orthogonal, is linearly independent.

Proof. Let u1, . . . , un, n ∈ N be non zero elements of V such that ui ⊥ uj for each
i, j with i ̸= j. Suppose that V is linearly dependent. Then there exist an integer
1 ⩽ k ⩽ n and numbers bj ∈ R such that

uk = u1b1 + u2b2 + · · ·+ uk−1bk−1 + uk+1bk+1 + . . . unbj.

Now let A = (u1, . . . , un) be the set of the Corollary 1.1.72. Since uk =
∑
j ̸=k

bjuj then

uk = supA and by Corollary 1.1.72 we have uk ∈ A⊥ which leads to uk ⊥ uk since
uk also belongs in A. Hence uk = 0 which is a contradiction. Thus V is linearly
independent.

Proposition 1.1.74. Let (L,≼) be any lattice and Uj ⊂ L , j ∈ J such that
xj = supUj for each j. If x := supj xj exists, then

x = sup
⋃
j

Uj.

Proof. Let Uj ⊂ L , j ∈ J . We want to prove that x is the least upper bound of⋃
j Uj. Suppose there exist an other upper bound u ∈ L of

⋃
j Uj. Then u ≽ xj ∀j.

This implies u ≽ supj xj. Hence u ≽ x ∀j. Therefore

x = sup
⋃
j

Uj.

Proposition 1.1.75. Let (V,≼) be a vector lattice. If x, y are positive elements in
V then

[0, x+ y] = [0, x] + [0, y] (DC)

holds for the corresponding order intervals. Equivalently if xi and yj belong in V+

for all 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ m such that
∑

xi =
∑

yj then there exist zij ∈ V
which satisfy xi =

∑
i zij and yj =

∑
j zij for all i, j.

Proof. To prove the first form of the decomposition property we need to prove that
[0, x + y] ⊂ [0, x] + [0.y] and the reverse inclusion. Since V is an ordered space, the
first inclusion of the corresponding intervals holds for all x, y ∈ V+. To verify the
converse inclusion, let z ∈ [0, x+y] define u := z∧x and v := z−u, where z = u+v.
Since u ∈ [0, x] by definition we need to show that v ∈ [0, y]. Hence by translation
invariance and Proposition 1.1.61 we get

v = z − z ∧ x = z − x ∧ z = z + (−x ∨ −z) = (z − x) ∨ 0.

Thus v ≼ (x+ y − x) ∨ 0, which implies that v ≼ y ∨ 0. Therefore v ≽ 0 and v ≼ y.
So v ∈ [0, y].
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Corollary 1.1.76. For every x, y, z ∈ V+ it holds that (x+ y) ∧ z ≼ x ∧ z + y ∧ z.

Proof. Let w ∈ V+ such that w := (x + y) ∧ z. Then 0 ≼ w ≼ x + y which
implies that = w1 + w2 by DC , where w1 ∈ [0, x] and w2 ∈ [0, y]. Then w1 ≼
w ≼ z andw2 ≼ w ≼ z hold. Thus w1 ≼ x ∧ z and w2 ≼ y ∧ z. Therefore
w = w1 + w2 = (x+ y) ∧ z ≼ x ∧ z + y ≼ z.

Definition 1.1.77. Let (D,≼) be an ordered set and F ⊂ D is a filter. Then F
is said to order converge to x ∈ D if F contains a family of order intervals with
intersection {x}.

Definition 1.1.78. Let (D,≼) be an ordered set and (xn)n∈N be a sequence in D.
Then (xn) is said to order converge to x ∈ D if its section filter contains a sequence
of order intervals with intersection {x}.

Definition 1.1.79. Let (D,≼) be an ordered set and U0 ⊂ D a non void set. U0 is
called order dense if for every x ∈ D there exists a filter F ⊂ D such that its section
filter belongs in U0 and F order converges to x.

Definition 1.1.80. Let (V,≼) be a vector space and A ⊂ V a non empty set. A
family (ui)i∈I of subsets of A is called directed if for every i, j there exists k such
that ui ⊂ uk and uj ⊂ uk.

Example 1.1.81. Let (V,≼) be a vector space. Then the section filters of upward
or downward directed families (ua)α∈A with supremum or infimum respectively are
the prime examples of order convergent filters in V .

Remark 1.1.82. We use the notations ua ↑ u for upward directed families and
ua ↓ u for downward directed families are often used.

Proposition 1.1.83. Let (V,≼) be a vector lattice and F a filter on V . Then F is
order convergent to x ∈ V if and only if there exists a family (uα)α∈A in V such that
ua ↓ 0 and the sets Fα := {u ∈ V : |u− x| ≼ uα} belong to F .

Proof. (i) Suppose that F is order convergent to x ∈ V . This implies that F
contains a family of order intervals with intersection {x}. Denote this family
by (uα)α∈A. Thus ∩αuα = {x}. This implies that there exists a subfamily (zα)
of order intervals such that for all v ∈ V it holds |v − x| ≼ za for all α ∈ A.
Hence it holds that za ↓ x. Since za is a subfamily of order intervals za ↓ 0
must hold by hypothesis. Set Fα = {v ∈ V : |v − x| ≼ za} and the proof is
complete.

(ii) Reversely suppose that there exists a family (uα)α∈A in V such that Fα := {u ∈
V : |u− x| ≼ uα} belong to F for each α . We want to show that there exists
a family of order intervals with intersection {x}. The (uα)α∈A is this family.
Since Fα ∈ V for each α and ua ↓ 0, it is imminent that ∩αuα = {x}.

Proposition 1.1.84. Let (V,≼) be a vector lattice and (xn)n∈N a sequence in V .
Then (xn) is order convergent to x ∈ V if and only if there exists a sequence ua ↓ 0
such that |xm − x| ≼ un for all m ⩾ n and n ∈ N.
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Definition 1.1.85. Let (V,≼) be a vector lattice.

(i) V is said to be Archimedean if for all x, y ∈ V and for all n ∈ N, nx ≼
y implies x ≼ 0.

(ii) V is said to be l1-relatively complete if 0 ≼ xn ≼ λnx holds for xn, x ∈ V

and for some (λn)n∈N ∈ l1 implies that the series
∞∑
i=1

xn is order convergent.

Equivalently, if the preceding holds then sup
n∑

ν=1

xν exists.

(iii) V is said to be countably order complete if supB exists in V for every non-empty
countable majorized subset B of V .

(iv) V is said to be order complete if supB exists in V for every non-empty ma-
jorized subset B of V .

Remark 1.1.86. In the following, (ii) from Definition 1.1.85, will be referred to as
(OS).

Remark 1.1.87. In terms of Riesz, spaces a countably order complete Riesz space
is called Dedekind σ-complete and an order complete Riesz space is called Dedekind
complete.

Example 1.1.88. The vector lattice R with the lexicographic order is Archimedean.

Remark 1.1.89. Each of the axioms defined in Definition 1.1.85 implies the pre-
ceding. The reverse does not always hold.

Example 1.1.90. Let K be a compact space and denote by C(K) the space of all
continuous real valued functions on K. Then C(K) is Archimedean but not every
sublattice of C(K) is l1-relative complete. Consider the vector lattice of all piecewise
linear, continuous real functions on K = [0, 1]. Take

xn =


nx, 0 ⩽ x ⩽

1

2

−nx− n
1

2
⩽ x ⩽ 1

and λn =
1

n2
.

Definition 1.1.91. Let (V,≼) be a vector lattice. If V+ contains an element u
such that {u} is a maximal orthogonal system i.e it is not contained in any other
orthogonal system, then u is called a weak order unit.

Proposition 1.1.92. Let (V,≼) be an Archimedean vector lattice and U ⊂ V a
maximal orthogonal system. Then the directed family (xn, H) such that n ∈ N and
H is any finite subset of U , order converges to x ∈ V+ where

xn,H =
∑
u∈H

(x ∧ nu) and x := sup
n,H

xn,H .
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Proof. Since x := sup
n,H

xn,H , we have x ≽ xn,H for any H ⊂ U and n ∈ N. Suppose

z ≽ xn,H for every n ∈ N and arbitrary H. Then it suffices to show that z ≽ z. Let
u ∈ U be fixed. Then by distributivity and translation invariance we obtain

0 ≼ z − (x ∧ nu) ⇔ 0 ≼ (x− z) ∧ (nu− z)

⇔ 0 ≼ (z − x) ∨ (z − nu).

Hence

0 = (z − x) ∨ (z − nu) ∧ 0 ⇔ 0 =
[
((z − x) ∧ 0

]
∨
[
(z − nu) ∧ 0

]
⇔ 0 = (z − x)+ ∨ (z − nu)+

⇔ 0 = (z − x)− ∧ (z − nu)−.

Since V is Archimedean supn

(
u− 1

n
z

)
= u holds for every n ∈ N and since u ≽ 0

we get supn

(
u− 1

n
z

)+

= u. Thus

0 = (z − x)− ∧ (z − nu)−

or equivalently

0 = (z − x)− ∧ (u− n−1z)+.

Using the distributive law, we have the following:

0 = sup
n

[
(z − x)− ∧ (u− n−1z)+

]
= sup

n
(z − x)− ∧ supn(u− n−1z)+

= sup
n
(z − x)− ∧ 0.

Since u ∈ U is positive and U is maximal it follows that (z − x)− = 0. Therefore,
z − x ≽ 0 or, equivalently, z ≽ x .

The following corollary comes as a consequence.

Corollary 1.1.93. If V is an Archimedean vector lattice and u a weak order unit in
V , then x = supn(x ∧ nu) for all x ∈ V+.

Proof. Since {u} is a maximal orthogonal system, we can apply Proposition 1.1.92
to {u}. Therefore, since the only finite subset of {u} is u itself we obtain

xn,u =
∑
t∈u

(x ∧ nu) and x := sup
n,t

xn,t

and the assertion is imminent.
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The Dedekind completion of any vector lattice V will be useful in the next para-
graphs.

Proposition 1.1.94. For every Archimedean vector lattice V , there exist a Dedekind
completion vector lattice V such that V ⊂ V and V is a sublattice of V . Moreover

x̄ = sup{x ∈ V : x ≼ x̄} = inf{x ∈ V : x ≽ x̄}

holds, for every x̄ ∈ V and V is determined uniquely to within isomorphism by the
preceding properties.

It follows that V is embedded in its Dedekind completion with respect to arbitrary
infima and suprema.
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1.2 Bands and band projections

In this chapter we will mainly discuss about bands and band projections. Before
stating the definition of band, we will focus on some basic aspects of ideal theory
and some properties of the set of all ideals denoted by I(V ), where V is a vector
lattice.

Definition 1.2.1. Let (V. ≼) be an ordered vector space and A be a non-empty
subset of V . Then V is called saturated if x, y ∈ A implies [x, y] ∈ V .

Definition 1.2.2. Let (V,≼) be a vector lattice and A be a non-void subset of V . If
for every x ∈ A and y ∈ V , such that |y| ≼ |x|, it holds that y ∈ A, then A is called
solid or absolute convex.

Solidness is a stronger notion than saturancy, mainly and commonly used to
define ideals.

Definition 1.2.3. Let (V. ≼) be a vector lattice and I ⊂ V . If I is a solid vector
subspace of V then I is called an ideal or lattice ideal.

Remark 1.2.4. Let V be a vector lattice. The set of all ideals of V is denoted by
I(V ).

Proposition 1.2.5. Let V be a vector lattice. Then each ideal I of V is a vector
sublattice of V and conversely each saturated vector sublattice is an ideal.

Proof. Let I be an ideal in V . Then, by definition, I is a vector subspace of V .
Hence, it is closed under the lattice operations and I is a sublattice of V . Moreover,
since I is solid, the existence of x∧y and x∨y in V implies that both the supremum
and the infimum of any x, y ∈ I is in I. Hence I is a vector sublattice.

Conversely, let A be a saturated vector sublattice of V . To prove that A is an
ideal, we need to show that A is solid and a vector subspace of V . Since A is a vector
sublattice of V , we have that A is closed under the lattice operations, which implies
that A is a vector subspace of V . Furthermore, it holds that [x, y] ∈ A whenever
x, y ∈ A. Let z ∈ V and x0 ∈ [x, y] ⊂ A for some x, y ∈ A such that |z| ≼ |x0|. By
the decomposition property, we get [0, z] ⊂ [0, x0]. Therefore [0.z] ⊂ [x, y] ⊂ A and
hence z ∈ A. Consequently A is solid.

Proposition 1.2.6. Let V be a vector lattice. Then the following properties hold:

(i) Let Ia ∈ I(V ) , a ∈ A. Then
⋂

a Ia is an ideal.

(ii) The intersection of saturated spaces is also saturated.

Proof. (i) Let Ia be ideals of V . Then take x ∈
⋂

a Ia and y ∈ V such that
|y| ≼ |x|. By the decomposition property this implies that [0, y] ⊂ [0, x] ⊂ Ia
for some a ∈ A. Hence y ∈ Ia or equivalently y ∈

⋂
a Ia.

(ii) Let Va be saturated ordered spaces and A ⊂
⋂

a Va. Let x, y ∈ A. Thus x, y ∈
A ⊂ Va for some a ∈ A. Since each VA is saturated, we get [x, y] ∈ A ⊂ Va.
Hence [x, y] ⊂

⋂
a Va.
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Proposition 1.2.7. Let V be a vector lattice and U ⊂ V . Then any subset U is
contained in the smallest solid subset that contains U and in the smallest ideal of V
containing B.

Proof. (i) Denote by A :=
⋂

i{Bi ⊂ V | Bi are solid and Bi ⊃ U}. We will
prove that this set is solid and is the smallest solid set containing U . First we
observe that A is solid as the intersection of solid sets is also solid. Moreover
suppose there exists another set W ⊂ V smaller than A containing U . If
x ∈

⋂
i{Bi ⊂ V | Bi are solid and Bi ⊃ U} then x ∈ Bi for some Bi ⊃ U .

This implies that there exists i such that Bi = W . Hence x ∈ W and therefore
A = W .

(ii) Denote by J :=
⋂

i{Bi ∈ I(V ) : Bi ⊃ U}. We will prove that J is the smallest
ideal containing U . We observe that the intersection of ideals is also an ideal
by the previous proposition. Let I ∈ I(V ) containing U smaller than J . Then
for every x ∈

⋂
i{Bi ∈ I(V ) : Bi ⊃ U} there exists i such that x ∈ Bi. Thus

x ∈ Bi ∩ I and x ∈ I. Therefore I = J .

Definition 1.2.8. Let V be a vector lattice. The set A defined in the previous
proposition is called the solid hull or solid cover of U and is denoted by S(U).

Definition 1.2.9. Let V be a vector lattice. The ideal I generated by the singleton
{u} is called a principal ideal and is denoted by Vu. We can assume that u is positive.

Definition 1.2.10. Let V be a vector lattice. The element u ∈ V+ is called a strong
order unit if V = Vu

Example 1.2.11. For any vector lattice V , the sets {0} and V itself are ideals.
Indeed, let y ∈ V such that |y| ≼ |x| where x ∈ {0}. This implies |y| ≼ 0 or
equivalently y+ + y− ≼ 0. Thus y+ ≼ 0 and y− ≼ 0, but 0 is the only element in V
and thus y+ = and y− = 0. Therefore {0} is an ideal. The proof that V is an ideal
is trivial.

Remark 1.2.12. Let V be the vector lattice of real functions on a non-empty set
X endowed with the canonical ordering. Denote by L(F, V ) the space of all positive
linear maps from F to V , where F, V are ordered vector spaces.

Example 1.2.13. Let V be any vector lattice and x ∈ V+. Then the symmetric
order interval [−x, x] is solid. Let y ∈ V and x0 ∈ [−x, x] such that |y| ≼ |x0|. This
implies y+ + y− ≼ (x0)

+ + (x0)
−. By the uniqueness of the representation of both y

and x0, we obtain y+ ≼ (x0)
+ and y− ≼ (x0)

−. The decomposition property yields
that y+ ∈ [0, (x0)

+] and y− ∈ [0, (x0)
−]. Equivalently y+−y− ∈ [0, (x0)

+]− [0, (x0)
−].

Thus y ∈ [0, x0] ⊂ [0, x]. Therefore y ∈ [−x, x] and this validates our initial claim.
Furthermore, the vector subspace

⋃∞
1 n[−x, x] is the principal ideal Vx. Now suppose

A is a directed subset of V+. Then
⋃
{n[−x, x] : n ∈ N, x ∈ A} is the ideal generated

by A. Any subset B of V is solid if and only if B =
⋃
{[−|x|, |x|] : x ∈ B}.
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Proposition 1.2.14. Let Va be a family of vector lattices. Then each Va can be
identified by an ideal of

∏
a Va and of

⊕
a Va.

Proof. (i) Let I ∈ I(
∏

a Va). Then I is of the following form

I = I1 × I2 × · · · × Ia,

where Ia are ideals of Va for each a. Suppose that Ia = {1} for all a except in
the j-th position. Hence

I = {1} × {1} · · · × Ij × . . . {1}.

Suppose that Ij = VJ and therefore Vj can be identified with an ideal I in∏
a Va for all j.

(ii) Let I ∈ I(
⊕

Va) then each x ∈ I has a components and is of the following form

x = x1 + x2 + . . . xa.

Suppose that xa = 0 for all a except in the j-th position. Hence I ∋ x = xj for
all xj ∈ VJ . Hence Vj can be identified with an ideal I of I ∈ I(

⊕
Va). This

holds for all j.

Proposition 1.2.15. The mapping B 7→ S(B) is monotone and idempotent.

Proof. Denote by π the mapping B 7→ S(B). Then

π(π(B)) = π(S(B)) = S(B) = π(B)

since the smallest solid subset containing S(B) is itself. Thus π is idempotent.
Moreover, suppose that there exist B1, B2 subsets of V such that B1 ⊂ B2. Suppose
that S(B1) ≽ S(B2) then this implies that there exist U ∈ S(B1) and V ∈ S(B2)
such that B2 ⊂ V ⊂ B1 ⊂ V which is a contradiction. Hence S(B1) ⊂ S(B2) and
therefore the mapping is monotone with respect to set inclusion.

Definition 1.2.16. Let V be a vector space over R or C and A a non-empty subset
of V . If |λ| ⩽ 1, λ ∈ R implies λA ⊂ A then A is called circled.

Proposition 1.2.17. Let (V. ≼) be any vector lattice and A ⊂ V . Denote by S(A)
the set of all x ∈ V such that there exist y ∈ A satisfying |y| ≼ |x|. Then

(i) If A is solid then A is circled.

(ii) The convex hull of A is solid.

(iii) Any fixed sum of solid sets is solid.

Proof. First we need to check that S(A) is solid. Clearly S(A) ⊂ B for any B ⊂ V
where B is any superset of A. Now let u ∈ V such that |z| ≼ |y| for any y ∈ S(A).
This implies |z| ≼ |x| for some x ∈ A. Therefore by definition of S(A), u ∈ S(A)
and hence S(A) is solid.
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(i) To validate that solid sets are circled we need to prove that λA ⊂ A holds for

any λ ∈ R , |λ| ⩽ 1. Take w ∈ λA. Since A is solid, we have that
1

λ
w ∈ λA.

For arbitrary y ∈ V if |y| ≼ |1
λ
w| then y ∈ A as A is solid. Now |y| ≼ |1

λ
w|

or equivalently |λ||y| ≼ |w| which implies |λy| ≼ |w| and conversely , by using
(iv) from Proposition 1.1.68. Thus λy ∈ A for any λ ∈ R such that |λ| ⩽ 1.
Hence A is circled.

(ii) Recall that convA =

{
n∑

i=1

λixi :
n∑

i=1

λi = 1, xi ∈ A

}
. Let A be a solid subset

of V and y ∈ V . We need to prove that |y| ≼
n∑

i=1

λixi implies y ∈ convA for

a convex combination of xi. Now |y| ≼
n∑

i=1

λixi implies y+ ≼
n∑

i=1

λi|xi| and

y− ≼
n∑

i=1

λi|xi|. By using the decomposition property there exist bi, ci ∈ [0, |xi|]

such that y+ =
n∑

i=1

λibi and y− =
n∑

i=1

λici for every for every i = 1, . . . , n. Then

bi − ci ∈
[
− |xi|, |xi|

]
⊂ A since A is solid. Moreover, since y = y+ − y− we

obtain y =
n∑

i=1

λibi −
n∑

i=1

λici =
n∑

i=1

λi(bi − ci). So y is convex combination of

elements of A and therefore y ∈ convA. Therefore convA is solid.

(iii) Let Fi =
{
Ai : Ai are solid for all i

}
be a family of subsets of V and denote

by
∑

i Ai be the sum of Ai. Let y ∈ V and x ∈
∑

i Ai such that |y| ≼
|x|. This implies |y| ≼ |

∑
i xi| and equivalently y+ + y− ≼

∑
i |xi|. By the

decomposition property, there exists zi, wi such that y+ =
∑

i wi, wi ∈ [0, |xi|]
and y− =

∑
i zi, zi ∈ [0, |zi|] for any i. Since Ai are solid wi − zi ∈ [−|xi|, |xi|]

which is a subset of
∑

iAi. Moreover, since y = y+ − y− we obtain y =∑
i wi − sumizi =

∑
i(wi − zi) and this implies y ∈

∑
Ai. Therefore

∑
i Ai is

solid.

Recall that by I(V ) we have denoted the set of all ideals of a vector lattice V .
We proceed now to prove that I(V ) is a distributive lattice. First, we need to show
that I(V ) is a lattice.

Proposition 1.2.18. Let (V. ≼) be any vector lattice. Then I(V ) endowed with set
inclusion is a lattice. The lattice operations are defined as follows:

(i) I ∧ J = I ∩ J for all I, J ∈ I(V ).

(ii) I ∨ J = I + J for all I, J ∈ I(V ).

Proof. We discussed earlier that “⊂” is a partial order, hence (I(V ),⊂) is an ordered
set. Obviously I + J and I ∩ J are vector subspaces of I(V ), so we need to verify
that I + J and I ∩ J are solid in order to validate that both lattice operations are
well defined.
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(i) Let y ∈ V and x ∈ I ∩J such that |y| ≼ |x| for some x ∈ I ∩J . Since x ∈ I ∩J
then x ∈ I and x ∈ J thus |y| ≼ |x| implies that y ∈ I and y ∈ J since I, J are
ideals. So y ∈ I ∩ J and therefore I ∩ J is solid.

(ii) The sum of ideals is indeed solid by Proposition 1.2.17 for n = 2. Hence I + J
is solid

Consequently I(V ) is a lattice.

Proposition 1.2.19. Let (V. ≼) be any vector lattice. Then
(
I(V ),⊂

)
is a dis-

tributive lattice.

Proof. Since we proved the equivalence of the two distributive laws in Proposition
1.1.35, it suffices to prove that one of them holds.

For arbitrary I, J,K ∈ I(V ) we will prove that (I + J)∩K = (I ∩K) + (J ∩K).
Obviously (I ∩K)+(J ∩K) ⊂ (I+J)∩K. To prove the reverse let z ∈ (I+J)∩K.
Then z = x + y such that x ∈ I and y ∈ J by the decomposition property. This
implies |z| = |x + y| which is less or equal to |x| + |y| with respect to the ordering.
Thus there exist u ∈ [0, |x|] and v ∈ [0, |y|] such that |z| = u+ v. So u ∈ I ∩K and
v ∈ J ∩K. Thus |z| ∈ I ∩K + J ∩K and therefore z ∈ I ∩K + J ∩K since the sum
is solid. Hence (I + J) ∩K = (I ∩K) + (J ∩K) holds for any I, J,K ∈ I(V ).

Remark 1.2.20. It is easily shown that I(V ) is a complete lattice.

Proposition 1.2.21. Let (V. ≼) be any vector lattice. Then I(V ) is a complete
lattice.

Proof. We proved already that I(V ) endowed with set inclusion is a vector lattice. So
it is enough to show that every subset of I(V ) has a least upper bound and a greatest
lower bound. The sets {0}, V are ideals and hence belong in I(V ). Moreover, for
every J ⊂ I(V ), it holds that {0} ⊂ J ⊂ V . Hence {0} is the least upper bound and
V is the greatest lower bound of I(V ).

Before moving further we need to turn our focus to linear maps.

Definition 1.2.22. Let V,E be ordered vector spaces and T : V 7→ E be a linear
operator.

(i) If Tx ≽ 0 holds for all x ∈ V then T is positive. The operator T is called
strictly positive if Tx ≻ 0 stands for all x ∈ V+ except {∅}.

(ii) The operator T is called a lattice homomorphism if T satisfies the following:

T (x ∨ y) = Tx ∨ Ty

and

T (x ∧ y) = Tx ∧ Ty

for all x, y ∈ V , when V,E are vector lattices.
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(iii) The operator T is called order continuous if for every order convergent filter
F in V the filter with base T (F ) is order convergent in E i.e.

F
≼V−−→ x implies T (F )

≼E−−→ Tx.

(iv) The operator T is called sequentially order continuous if for every sequence
(xn)n∈N ∈ V with order limit x, T (xn) order converges to Tx in F i.e

xn
≼V−−→ x implies T (xn)

≼E−−→ Tx.

We will state an example of a lattice homomorphism from an algebraic aspect.
To assist the reader, we will use Hasse Diagrams, which obviously are lattices. In
this example, we will make use of D6 and D30.

Example 1.2.23. Let D6 be the set of all the divisors of 6 and D30 be the set of all
divisors of 30. Let T : D6 7→ D30 be the following linear map:

T (1) = 1 T (2) = 6 T (3) = 15 T (6) = 30.

To verify that T is a lattice homomorphism we must check that T (x∨ y) = Tx∨ Ty
and T (x ∧ y) = Tx ∧ Ty hold for all x, y ∈ D6 and Tx, Ty ∈ D30.

• Let x = 1 and y = 2 then T (1 ∨ 2) = T (1) ∨ T (2) or equivalently T (2) = 1 ∨ 6
or equivalently 6 = 6 which is true.

• Let x = 1 and y = 3 then T (1∨ 3)T (1)∨ T (3) or equivalently T (3) = 1∨ 15 or
equivalently 15 = 15 which is true.

• Let x = 2 and y = 6 then T (2∨ 6) = T (2)∨T (6) or equivalently T (6) = 6∨ 30
or equivalently 30 = 30 which is true.

• Let x = 2 and y = 3 then T (2∨ 3) = T (2)∨T (3) or equivalently T (3) = 6∨ 15
or equivalently 15 = 15 which is true.

By repeating the same process for the remaining pairs we validate that T (x∨y)Tx∨
Ty holds for all x, y ∈ D6 and Tx, Ty ∈ D30. Similarly we can verify that T (x∧y) =
Tx ∧ Ty is a similar process.

Hence T (x∧y) = Tx∧Ty also holds for all x, y ∈ D6 and Tx, Ty ∈ D30. Therefore
T is lattice homomorphism.

6

3 2

1

30

6 10 15

32 5

1
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Proposition 1.2.24. Let V, F be ordered vector spaces. Then the set K ⊂ L(V, F )
of all positive linear maps satisfies the following:

(i) K +K ⊂ K

(ii) λK ⊂ K, λ ⩽ 0

Proof. (i) Let f, g ∈ K. Then f+g is positive. This holds for all f, g and therefore
the sum of K +K is equal to K.

(ii) Let f ∈ K and λ ∈ R+. Then λf is a positive linear map and thus λf ∈ K.
Therefore λK ⊂ K.

Definition 1.2.25. Let V, F be ordered vector spaces. Then the set K ⊂ L(V, F )
of all positive linear maps satisfying (i) and (ii) from Proposition 1.2.24 is called a
wedge or a proper cone

Definition 1.2.26. Let V, F be ordered vector spaces. If in addition the set K of
all positive linear maps satisfies K ∩ −K = {0} then K is the positive cone of an
ordering called the canonical ordering of L(V, F )

Proposition 1.2.27. Let V, F be ordered vector spaces and denote by L(V, F ) the
set of all linear maps and K the subset of all positive linear maps. If F ̸= {0} then
K ∩ −K = {0} if and only if V = V+ − V+.

Remark 1.2.28. If F = {0}, then we may have K ∩ −K ̸= {0} since for example,
the linear functions f(x) = x+ 4 and −f(x) = −(x+ 4) map all x ∈ V to 0.

Proposition 1.2.29. Let V be a vector lattice and F ̸= {0}. Then it holds that
K ∩ −K = {0}.

Proof. Recall than K is the set of all positive linear maps from V to F . Then
K ∩ −K = {f ∈ ∧ − f ∈ K} = {0}.

Proposition 1.2.30. Let V, F be ordered vector spaces and ϕ : V+ 7→ F+ be an
additive, positive homogeneous map. Then there exists a unique positive linear map
T : (V+ − V+) 7→ F extending ϕ.

Proof. Let x ∈ (V+−V+). Then x = z−y where z, y ∈ V+. We define Tx = ϕz−ϕy.
Suppose there exist an other decomposition of x such that x = u − v where both
u, v ∈ V+. Then Tx = Tx or equivalently ϕz − ϕy = ϕu − ϕv. Since ϕ is additive
and the representation is unique it follows that z = u and y = v. Hence the value
Tx is independent of the representation of x. Moreover let w, x ∈ (V+ − V+) such
that w = w1 + w2 and x = x1 + x2. Then

T (w + x) = ϕ(w1 + x1)− ϕ(w2 + x2)

= ϕw1 + ϕx1 − ϕw2 + ϕx2

= (ϕw1 − ϕw2) + (ϕx1 − ϕx2)

= Tw + Tx.

Hence T is linear. Moreover since ϕ is positive so is T , as T is an extension of ϕ.
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Corollary 1.2.31. Every lattice homomorphism T between vector lattices is positive.
Moreover if T : V 7→ F is positive then

∣∣T (x)∣∣ ≼ T |x| for all x ∈ V .

Proof. Let x ∈ V+. Then Tx = Tx+ = (Tx)+ ≽ 0. Thus T is positive. Moreover
suppose that T is positive, Then for each x ∈ V it holds x+ ≼ |x| and x− ≼ |x|.
Hence Tx+ ≼ T |x| and Tx− ≼ T |x|. Since Tx ≼

∣∣|Tx|∣∣ for every Tx ∈ F we obtain
|Tx| ≼ T |x| for all x ∈ V .

Proposition 1.2.32. Let V, F be vector lattices and T : V 7→ F be a linear operator.
Then the following are equivalent:

(i) T is a lattice homomorphism.

(ii) |Tx| = T |x|, for all x ∈ V .

(iii) Tx+ ∧ Tx− = 0, for all x ∈ V .

Moreover if T is a surjective lattice homomorphism between V and F then T (A) is
solid in F , for any solid subset A in V .

Proof. (i) Let T : V 7→ F be a lattice homomorphism. We will show that Tx+ ∧
Tx− = 0 holds for all x ∈ V . Let x ∈ V , then Tx+ ∧Tx− = T (x+ ∧ x−). Since
x+ ∧ x− = 0 we obtain that T (x+ ∧ x−) = T (0) = 0.

(ii) Suppose that T (x+ ∧ x−) = 0 holds for all x ∈ V . Since T is linear and
x = x+−x− by the decomposition property, we have that Tx = T (x+−x−) =
Tx+ − Tx−. By the uniqueness of the representation, Tx = (Tx)+ = (Tx)−.
Hence we obtain that Tx+ = (Tx)+ and Tx− = (Tx)−. Thus

|Tx| = (Tx)+ + (Tx)− = Tx+ + Tx− = T (x+ + x−) = T |x|

holds for all x ∈ V .

(iii) To conclude suppose that |Tx| = T |x| holds for all x ∈ V . In order to prove
that T is a lattice homomorphism, we need to show that T (x∨y) = Tx∨Ty and
T (x∧ y) = Tx∧Ty hold for all x, y ∈ V . Let x, y ∈ V and x ≽ 0, then |x| = x
and this implies T |x| = Tx ≽ 0. Thus (Tx)+ ≽ T (x+) and (Tx)− ≽ T (x−)
since T is positive. By the uniqueness of the representation, linearity of T and
translation invariance we obtain

T (x ∨ y) = Tx+ T [0 ∨ (y − x)]

= Tx+ T (y − x)+

= Tx+ [0 ∨ T (y − x)]

= Tx ∨ [T (y − x) + Tx]

= Tx ∨ [Ty − Tx+ Tx]

= Tx ∨ Ty.

Hence T (x ∨ y) = Tx ∨ Ty. We work similarly for T (x ∧ y).
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Suppose T is a surjective lattice homomorphism from V to I ⊂ f and A ⊂ V
a non-empty solid set. To prove the last assertion we need to show that if x ∈ A
and y ∈ V such that |Ty| ≼ |Tx| holds then Ty ∈ T (A). Suppose that |Ty| ≼ |Tx|
holds for x ∈ A and y ∈ V . Then Ty+ = (Ty)+ ≼ |Tx| and Ty− = (Ty)− ≼
|Tx| = T |x|. Since A is solid y+ ≼ |x| and this implies y+ = y+ ∧ |x|. Hence
Ty+ = T (y+ ∧ |x|) which is equal to Ty+ ∧ T |x|. Similarly for y− we obtain that
Ty− = Ty−∧T |x|. By substracting Ty+ and Ty− we obtain T (|x|∧y+)−T (|x|∧y−)
which is equal to T (|x| ∧ y+) − (|x| ∧ y−), since T is linear. Now denote by z the
element |x|∧y+)−(|x|∧y−). It suffices to show that z ∈ A. Since y ∈ A we have that
y+ − y− ∈ A which implies that |x| ∧ y+)− (|x| ∧ y−) = z ∈ A. Hence Ty = Tz ∈ A.
Thus T (A) is solid.

Remark 1.2.33. Let T : V 7→ F be a lattice homomorphism. Then T
(
T−1(x)

)
= x

holds for all x ∈ V .

Proposition 1.2.34. Let V, F be vector lattices and T : V 7→ F is a positive linear
map. The set {x ∈ V : T |x| = 0} is an ideal in V .

Proof. We need to prove that {x ∈ V : T |x| = 0} is a solid vector subspace. Let
x, y ∈ V then if x, y ∈ {x ∈ V : T |x| = 0} it holds that T |x| = 0 and T |y| = 0.
Since T is linear it holds that T (|x| + |y|) = 0 which implies by Corollary 1.1.70
that T (|x + y|) = 0. Hence x + y ∈ {x ∈ V : T |x| = 0}. Moreover let λ ∈ R,
then T (|λx|) = |λ|T |x| = 0 which implies that λx ∈ {x ∈ V : T |x| = 0}. Hence
{x ∈ V : T |x| = 0} is a vector subspace of V . To prove that {x ∈ V : T |x| = 0}
is solid let x ∈ {x ∈ V : T |x| = 0} and y ∈ V such that |y| ≼ |x|. By the linearity
of T this implies that T |y| ≼ T |x| = 0. Hence y ∈ {x ∈ V : T |x| = 0}. Therefore
{x ∈ V : T |x| = 0} is an ideal in V .

Definition 1.2.35. The set {x ∈ V : T |x| = 0} is called the absolute kernel or the
null ideal of T and is denoted by kerT .

Proposition 1.2.36. Let V be a vector lattice and I ⊂ V an ideal. Define the
canonical map q from V to V/I. If V/I is endowed with the finest ordering that
makes q positive then q is a lattice homomorphism of V onto V/I and V/I is a
vector lattice.

Proof. Let I ⊂ V be an ideal and q : V 7→ V/I be the canonical map. The finest
ordering that makes q positive is defined as follows:

q(x) ≼ q(y) if and only if there exists x1 ∈ x+ I and y1 ∈ y + I such that x1 ≼ y1.

We need to prove that this ordering is indeed a partial one satisfying the axioms
needed in order for V/I to be a vector lattice.

(i) Let x1 ∈ V such that x1 ∈ x + I. Then obviously x1 ≼ x1 and equivalently
q(x1) ≼ q(x1). Thus the ordering is reflexive.
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(ii) To prove that “≼” is transitive we need to prove that for all x1, y1, z1 ∈ V
such that x1 ≼ y1 and y1 ≼ z1, it holds that x1 ≼ z1 holds. Let x1, y1, z1 ∈ V
such that x1 ≼ y1 and y1 ≼ z1. If x1 ∈ x + I, y1 ∈ y + I, z1 ∈ z + I then
x + I ⊂ y + I and y + I ⊂ z + I. Since the subset relation is transitive we
obtain that x+I ⊂ y+I ⊂ z+I holds for all x1, y1, z1 ∈ V . Hence x+I ⊂ z+I
holds for all x, y ∈ V and therefore x1 ≼ z1 or equivalently q(x1) ≼ q(z1).

(iii) We need to verify that if x1, y1 ∈ V such that q(x) ≼ q(y) and q(y) ≼ q(x) hold,
then q(x1) = q(x2). Let x1, y1 ∈ V such that q(x) ≼ q(y) and q(y) ≼ q(x).
This implies that there exist x1 ∈ x + I and y1 ∈ y + I respectively such that
x1 ≼ y1 and y1 ≼ x1 , or equivalently x + I ⊂ y + I and y + I ⊂ x + I holds
respectively. Since q is positive, we obtain that x+I = y+I holds for all x1, y1
and hence q(x) = q(y).

Moreover q is a linear map, since it maps a vector space V to the quotient of V . We
need to show that “≼” satisfies both axioms of vector lattices.

(i) Let x, y, z ∈ V such that q(x) ≼ q(y). Since q(z) ≼ q(z), adding by members
we obtain q(x) + q(z) ≼ q(y) + q(z). Equivalently q(x + z) ≼ q(y + z) holds.
This implies x+ z ≼ y + z, by definition of the ordering.

(ii) Now let λ ∈ R+ and x, y ∈ V . If x ≼ y holds then q(x) ≼ q(y). We multiply
both members of the last inequality by λ and we obtain λq(x) ≼ λq(y). Thus
we have q(λx) ≼ q(λy) and so λx ≼ λy.

We proceed to proof that q is a lattice homomorphism and V/I is a vector lattice.
We need to check that sup{x, y} and inf{x, y} exist for all x, y ∈ V/I. Specifically
we need to show that for any given x, y ∈ V the least upper bound of the element
{q(x), q(y)} is the element q(x ∨ y). We observe that q(x ∨ y) is a majorant of q(x)
and q(y) as q is positive. Hence q(x∨ y) ≽ q(x)∨ q(y). We work analogously for the
proof of the greatest upper bound. Now, to prove that q is a lattice homomorphism,
let z ∈ V such that q(z) ≽ q(x) and q(z) ≽ q(y) for some x, y ∈ V . This implies
that there exist z1 ∈ z + I and z2 ∈ z + I such that z1 ≽ x and z2 ≽ y. Since I is
an ideal it follows that z1 − z2 ∈ I. Thus |z1 − z2| ∈ I. So there exists an element
w ∈ I such that w = z2 + |z1 − z2|. It follows that q(w) = q(z) ≽ q(x ∨ y) since
w ≽ x∨ y. Hence q(x∨ y) ≽ q(x)∨ q(y) and the proof is complete. Now the proof of
q(x ∧ y) = q(x) ∧ q(y) comes as a consequence from (v) of Proposition 1.1.68, since
q is linear.

An immediate corollary is the following.

Corollary 1.2.37. Let V, F be vector lattices and T : V 7→ F a linear map satisfying
T (V+) = F+. Then the following are equivalent:

(i) T is a lattice homomorphism.

(ii) T−1(B) is solid for each solid set B ⊂ F .

(iii) T−1(0) is an ideal in V .



32 Banach Lattices

Proof. (i) Let T : V 7→ F such that T is a lattice homomorphism. Let x ∈ T−1(B),
where B is a solid subset of F , and y ∈ V such that |y| ≼ |x|. Since T is linear
it holds that |Ty| = T |y|, which leads to |Ty| ≼ |Tx| ∈ B, for Ty ∈ B. Hence
y ∈ T−1(B) and therefore T−1(B) is solid.

(ii) Assume that T−1(B) is solid for some B ⊂ F . We need to prove that T−1(0) is
an ideal in V or equivalently that T−1(0) is a solid vector subspace of V . We
know that {0} is a solid subset of F and thus by assumption T−1(0) is solid.
Since T is linear and T (V+) = F+ we have that T−1(0) is a vector subspace of
V . Therefore T−1(0) is an ideal in V .

(iii) Let I = T−1(0) be an ideal, T0 : V/I 7→ F a bijection map and q : V 7→ V/I the
canonical map. We know that kerT0 = {x ∈ V : T0(x+ I)} = 0. Equivalently,
kerT0 contains all x ∈ V such that T (x) = 0. Since T is a linear bijection, we
have that x ∈ T−1(0). But T (V+) = F+ and T−1(0) is an ideal, thus x = 0 and
kerT0 = {0}. By the First Theorem of isomorphisms it holds that V/I ∼= F .
It holds that T = T0 ◦ q as the following commutative diagram implies.

V F

V/I

T

q
T0

Since q is a lattice homomorphism so is T .

Remark 1.2.38. The space V/I does not inherit any of the properties stated in the
Definition 1.1.85 and the canonical map q is not always order continuous.

Example 1.2.39. Let X be a non empty set and V be the vector lattice of all
real functions on X under the canonical ordering. Set F = RX0 . If V = RX then
the restriction map f 7→ f0 where f ∈ V and f0 = f |X0 is lattice homomorphism
and eventually order continuous. Suppose X is a normal topological space and
X0 is nowhere dense subset of X. Consider the family of all f ∈ V+ such that
f(X0) = {1}. Then this family is directed downward and order converges to 0 ∈ V+

since X0 is a nowhere dense. Thus the restriction of a lattice homomorphism is not
order continuous. Set I = {f ∈ V : f(X0) = {0}}. Then I is an ideal and V/I can
be identified as the vector sublattice of F whose elements are restrictions to X0 of
functions f ∈ V+. Thus the restriction map f 7→ f0 is exactly the canonical map
q : V → V/I. Thus it follows that q is not order continuous.

Definition 1.2.40. Let V be a vector lattice and I, J ∈ I(V ). Then I, J are said to
be complementary ideals of V if I ∩ J = {0} and I + J = V .

Example 1.2.41. Let V, F be ordered spaces and denote by L(V, F ) the space of all
linear maps from V to F . Let A = {f ∈ L(V, F ) : f(x) = 0} and B = {f ∈ L(V, F ) :
f(x) ̸= 0} . Then A ∩ B = {0} and A + B = {f ∈ L(V, F ) : f(x) = 0 and f(x) ̸=
0} = L(F, V ). Hence A,B are complementary.
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Proposition 1.2.42. Let V be any vector lattice and I, J ∈ I(V ) such that I, J are
complementary. Then the projection p : V 7→ I is positive and ker p = J . Moreover
I = J⊥.

Proof. First, we need to show that the projection p is positive. Since V = I + J , for
every x ∈ V , we have that x = y+w such that x ∈ I and y ∈ J , by the decomposition
property. Suppose that x ≽ 0. Then x+ = y++w+ and x− = y−+w−. This implies
0 ≼ y+−y−+w++w−. Thus in order to validate that x is positive we need to verify
that y− = 0 and w− = 0. We claim that y− ∧ (y+ + w+) = 0. Indeed y− ⊥ y+ + w+

holds because y− ∧ y+ = 0 and y− ∧w+ ∈ I ∩ J = {0}. By Corollary 1.1.76 we have
y− ∧ (y+ + w+) ≼ (y− ∧ y+) + y− ∧ w+ = 0 + 0 = 0. Hence our claim is true and
y− = 0, so y+ + w+ ≽ 0. Analogously we prove that w− ∧ (y+ + w+) = 0 and we
conclude that w− = 0. Hence p is positive.

Now we will determine the kernel of p.

ker p = {x ∈ V : p(x) = 0} = {x ∈ V : p(y + w) = 0 : y ∈ I and w ∈ J}
= {y + w : p(y + w) = 0}
= {y + w : y = 0}
= {w ∈ J}.

Hence ker p = J .
To prove the last assertion we need to verify that I ⊂ J⊥ and J⊥ ⊂ J . Since I, J

are complementary it holds that I ⊂ J⊥ ∀z ∈ J⊥. Suppose x ∈ J⊥ then |x| ∈ J⊥

since x is positive. Then |x| = u+v for appropriate u, v such that u ∈ I+ and v ∈ J+.
Hence v ≼ |x| ∈ J⊥ or equivalently v ∈ J⊥ ∪ J ⊃ I ∪ J = {0}. Thus v = 0. So
|x| = u ∈ I+ implies |x| ∈ I and hence x ∈ I since x ≽ 0 and I is an ideal. Therefore
J⊥ ⊂ I for every x and hence I = J⊥. By symmetry we obtain that I = I⊥⊥.

We are ready to define band and band projections.

Definition 1.2.43. Let V be any vector lattice and I ⊂ V an ideal. If A ⊂ I and
supA = x ∈ V implies that x ∈ I then I is called a band. A complemented ideal
I of V is called a projection band. The corresponding projection map V → I with
kernel I⊥ is called a band projection.

Example 1.2.44. Let F, V be vector spaces such that V = [−2, 2] × [−2, 2] and
denote by L(F, V ) the space of all linear maps and K ⊂ L(F, V ) the set of all
positive linear maps. Then K is a band.

Example 1.2.45. Let X = R2 endowed with the lexicographic order. The sets
Sx = {(̇x, 0) : x ∈ R} and Sy = {(0, y) : y ∈ R} are bands in R2. It follows that Sx

and Sy are complemented ideals and projection bands.

Proposition 1.2.46. For any subset A of a vector lattice V it holds that A⊥ is a
band.
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Proof. First we need to show that A⊥ is solid. Let x ∈ V and z ∈ A⊥ such that
|x| ≼ |z|. Because z ∈ A⊥, it holds that |z| ∧ |y| = 0 for all y ∈ A. By the
decomposition property it follows that |x| ∧ |y| ≼ |z| ∧ |y| = 0. Hence x ∈ A⊥. Now
from Corollary 1.1.72 we obtain that A⊥ contains all suprema and infima of any of
its subsets. Therefore A⊥ is a band.

Proposition 1.2.47. Let V be an Archimedean vector lattice. A subset B in V is a
band if and only if B is of the form B = B⊥⊥

Proof. Let B ⊂ V such that B = B⊥⊥. By Corollary 1.1.72 , since B is the orthog-
onal of a subset of V it follows that B contains all infima and suprema of any of
its subsets. Hence it is a band by Proposition 1.2.46 . Conversely suppose that B
is band. Obviously B⊥⊥ ⊂ B. To complete the proof we need to show the reverse
allocation. But B ⊂ B⊥⊥ is obvious.

Definition 1.2.48. Let V be any vector lattice and I ⊂ V an ideal. If, for any
countable subset A of I, supA = x ∈ V implies that x ∈ I then I is called a σ -ideal.

Remark 1.2.49. Denote by B(V ) the set of all projection bands and by P (V ) the
set of all band projections.

Remark 1.2.50. Observe that B(V ) is not empty as {∅} and V are complementary
ideals and thus belong in B(V ). At the same time P (V ) is not empty also.

Theorem 1.2.51. Let V be a vector lattice. Then B(V ) is a sublattice of I(V ) and
a Boolean Algebra. Moreover, let p be an idempotent endomorphism. Then p is a
band projection if and only if p ≽ 0 and 1V − p ≽ 0 where 1V is the identity mapping
of V . Lastly, every band projection is an order continuous lattice homomorphism.

Proof. • First we will prove that B(V ) is a sublattice of I(V ) and a Boolean
Algebra. The lattice operations of B(V ) are inherited by I(V ), thus it holds

A ∧B = A ∩B and A ∨B = A+B,

where A,B are bands. Thus it suffices to show that B(V ) is closed under
these operations i.e A ∩ B ∈ B(V ) and A + B ∈ B(V ). Since A,B are bands
it holds that V = A + A⊥ and V = B + B⊥. Equivalently we obtain that
V = V ∩ V = A + A⊥ ∩ B + B⊥ . Hence by distributivity we obtain the
following:

V = A ∩B + A ∩B⊥ + A⊥ ∩B + A⊥ ∩B⊥.

In view of the definition of band and Proposition 1.2.42, it suffices to prove that
A∩B⊥+A⊥∩B+A⊥∩B⊥ ⊥ A∩B. This is imminent as any decomposition of
x ∈ A∩B and y ∈ A∩B⊥+A⊥∩B+A⊥∩B⊥ is {∅}. Thus A∩B ∈ B(V ). Now
we observe that A∩ V = A and B ∩ V = B or equivalently A = A∩ (B +B⊥)
and B = B ∩ (A+A⊥). Then distributivity implies that A = A∩B +A∩B⊥

and B = B ∩A+B ∩A⊥. Now A+B = A ∩B +A ∩B⊥ +B ∩A+B ∩A⊥

which is equal to A∩B+B∩A⊥+A∩B⊥ since A+B is an ideal. We observe
that A∩B+B ∩A⊥+A∩B⊥ ⊥ A⊥ ∩B⊥ and thus A+B ∈ B(V ). Therefore
B(V ) is a sublattice of I(V ). Moreover {0} and V are the infimum and the
supremum of B(V ) respectively and hence B(V ) is a Boolean Algebra.
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• Now let A ∈ B(V ) and p ∈ P (V ) be an idempotent endomorphism where pA is
the corresponding band projection with kernel A⊥. By Proposition 1.2.42 p is
positive. Also let 1V − p : V 7→ V −A be the associated projection of A⊥ with
kernel A. Similarly by Proposition 1.2.42 1V − p is positive. Hence 1V − p ≽ 0.
Conversely, let p ∈ L(V, V ) be an idempotent endomorphism and 1V − p ≽ 0.
Then 1V ≽ 0. This implies that there exist x ∈ V such that 0 ≼ px+ ≼ x+

and 0 ≼ px− ≼ x− , or equivalently 0 ≼ px+ ∧ px− ≼ x+ ∧ x− = 0. Thus
px+ ∧ px− = 0 and by Proposition 1.2.32 p is a lattice homomorphism. Hence
p−1(0) and (1V − p)−1(0) are ideals by corollary 1.2.37. Thus p is a band
projection, since p−1(0) and (1V − p)−1(0) are complementary.

• Furthermore if p is a band projection then for every x it holds that x = x1 +
x2 and y = y1 + y2 are the corresponding decompositions of x, y ∈ V into
components of p and p−1. Thus [x, y] = [x1 + y1, x2 + y2] holds for the order
interval which shows that every order convergent filter F of V then pF order
converges to px. Hence p is order continuous.

In the next theorem, we will establish an isomorphism between P (V ) and B(V ).
By that means, since B(V ) is a Boolean Algebra, we expect that P (V ) is too.

Theorem 1.2.52. Let V be a vector lattice. Then P (V ) is a Boolean Algebra under
the following lattice operations:

F ∨G = F +G− FG

and
F ∧G = FG

for all F,G ∈ P (V ), and the mapping P 7→ PV is an isomorphism from P (V ) to
B(V ). Furthermore, every pair of band projections commutes.

Proof. It is clear that the mapping P 7→ PV is a bijection from P (V ) to B(V ). To
validate the remaining assumptions it suffices to prove that PA∧PB and PA∨PB are
band projections with ranges A∩B and A+B respectively. In the previous theorem
we provided a decomposition of the space V as follows:

V = A ∩B + A ∩B⊥ + A⊥ ∩B + A⊥ ∩B⊥.

Now let x ∈ V such that x ∈ A∩B⊥+A⊥∩B+A⊥∩B⊥. Thus PAPB(x) vanishes in
A∩B⊥+A⊥∩B+A⊥∩B⊥ and for all y ∈ A∩B it holds that PAPB(y) = y and hence
PAPB is the associated band projection of A ∩B with range A ∩B. It is immediate
that PBPA is also a band projection with range A ∩B. Hence PAPB = PBPA. Now,
let x ∈ V such that x ∈ A+B for all A,B ∈ B(V ) . By the previous decomposition
it follows that x ∈ A∩B⊥+A⊥∩B+A∩B. Thus PA∨PB = (PA+PB −PAPB)(x)
or equivalently PA ∨ PB = (PA + PB)(x) = x leaving its element x fixed. Moreover
PA ∨PB(y) = (PA +PB −PAPB)(y) which vanishes in A⊥ ∩B⊥ for all y ∈ A⊥ ∩B⊥.
Hence PA ∨ PB is the band projection associated with the band A + B with range
A+B.
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The last main theorem proven in this chapter decomposes V into the direct sum
of orthogonal bands.

Theorem 1.2.53 (Riesz Decomposition Theorem). Let V be an order complete vec-
tor lattice and A be a non empty subset of V . Then V is the direct sum of the band
generated by A and the band A⊥ i.e. V = BA+A⊥. Specifically, each band is a band
projection.

Proof. Suppose A is a non-void subset of V . Denote by BA the band generated by A
and A⊥ the complement of A. We need to prove that BA and A⊥ are complementary
ideals. Equivalently we need to show that y ∧ w = for all y ∈ BA and w ∈ A⊥. For
an arbitrary a ∈ A it holds that a ∈ BA. Let y ∈ A⊥. Then y ∈ A⊥ for all x ∈ A.
Take x = a and hence y ⊥ a. Therefore, BA ⊥ A⊥ for all a, y. Since BA and A⊥ are
bands, it holds that BA ∩ A⊥ = {0}. Therefore, V = BA + A⊥ as the direct sum of
vector subspaces. By definition, for any band A of V , B(A) is a projection band.

To finish the proof, we need to prove that every x in V is of the form x = y + z,
where y ∈ BA and z ∈ A⊥. Take y =: sup[0, x] ∩ BA. This y exists in BA, as V
is order complete by hypothesis, for all x ∈ V+. Now, suppose that x = y + z. It
suffices to prove that z ∈ A⊥. Suppose that u ∈ A. Then |u| ∈ A, since A is solid.
Let w := z ∧ |u|. Since w ∈ BA it holds that w ≼ x − y or equivalently w + y ≼ x.
Hence w + y ≼ y. So w ≼ 0 and hence w = 0 since x ∈ V+. By the definition of w,
we obtain that z ∧ |u| = 0. This holds of all u ∈ A, thus z ∈ A⊥.

The following example marks the fact that not all ideals are bands.

Example 1.2.54. Let X be the Cantor set and V the vector sublattice of RX

containing the constant one function with countable support. Denote by I the set
of all f ∈ V such that f(F) = {0} where F is the filter of all substets of X with
countable complement. Then I is a vector subspace of X and solid, hence an ideal.
It holds that I is a σ-ideal but not a band.

Example 1.2.55. Let X = [0, 1] under its standard topology and let V = C(X)
denote the vector lattice of all continuous functions on X under the canonical order-
ing. Set Bp = {f ∈ V : f(t) = 0 for all t ⩾ p} for all 0 ⩽ p ⩽ 1. We know that
any continuous function on a compact has a supremum and an infimum and since
f(t) = 0, it follows that Bp is a band but not a projection band. Denote by e the
constant function equal to one. If Bp was a band, then e = e1 + e2 is the unique
decomposition according to Theorem 1.2.53. Hence e1 and e2 are continuous func-
tions only with values 0 and 1 or, equivalently, the characteristic functions of a pair
of closed-and-open subsets of X. Any compact space of the form of X is connected
and thus it follows that e1 = 0 or e1 = e and, therefore, Bp is not a projection band.

Remark 1.2.56. Example 1.2.55 states that not every band is a projection band in
a vector lattice V .

The following proposition helps us determine when the band generated by A,
where A is a subset of V , is a projection band.
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Proposition 1.2.57. Let V be a vector lattice and A ⊂ V . Then the band, generated
by A, is a projection band if and only if

xA := sup
n,H

(
x ∧ n

∑
y∈H

|y|
)

exists for each x ∈ V+ and n ∈ N and H a finite subset of A. Furthermore, if BA is
a projection band, the corresponding band projection is given by x 7→ (xA)

+ − (xA)
+.

Proof. Let A be a majorized subset of V and denote by BA the band generated
by A. Let FA ∈ P (V ), such that FA is the band projection associated with BA

and take A, such that y := sup[0, x] ∩ BA exists in BA. Thus, by 1.2.53, BA is a
projection band if and only if F (x) := sup[0, x] ∩ BA exists, for all x ∈ V+ and if so
FA(x) = x 7→ FAx

+ = FAx
−. Now denote by IA the ideal generated by A, containing

z ∈ V , such that |z| ≼ n
∑

y∈H |y| for suitable n and H ∈ A, where H is finite. Such
ideal exists, since A is arbitrary. Now, denote by Jz the vector subspace of all z ∈ V+,
such that z = supC, where (C,≼) is a directed subset of A+. To show that Jz is an
ideal we need to prove that it is solid. Let z ∈ J and x ∈ V+, such that |x| ≼ |z|.
Since |z| ∈ A, this implies that |x| ∈ A. It also implies that there exist C ⊂ A, such
that x = supC. Therefore, x ∈ Jz and Jz is solid. Hence Jz is an ideal.

Definition 1.2.58. Let V be a vector lattice. The band generated by the singleton
{u} is called a principal band and is denoted by B(u). If each principal band of V is
a projection band, then V is said to have the principal projection property (PPP).

Proposition 1.2.59. Let V be a vector lattice having the principal projection prop-
erty. Then V is Archimedean.

Proof. Let u ∈ V such that Bu is the principal band generated by the singleton
{u}. We need to prove that if nx ≼ y, for all y ∈ V , then x ≼ 0. Equivalently,
we need to show that {nx} is majorized, when x ≼ 0 and n ∈ N. Suppose that
x ≽ 0 and {nx} is majorized. Since Bu is a band, {nx} has a supremum in Bu.
Thus N has a supremum, which is a contradiction. Hence x ≼ 0 and therefore V is
Archimedean.

Corollary 1.2.60. Let V be any vector lattice and B(u) ⊂ V . Then B(u) is a
projection band if and only if sup

(
x ∧ n|u|

)
exists in V for all x ∈ V+.

Proof. Obviously, if Bu is projection band, then sup
(
x ∧ n|u|

)
exists in V for all

x ∈ V+. Conversely, suppose that, for all x ∈ V+, it holds that sup
(
x ∧ n|u|

)
exists

in V . Thus, by proposition 1.2.57, this supremum exists for all finite subsets of any
subset A. Take {u} ⊂ A. Obviously, {u} is of finite dimension and thus the band
generated by u is a projection band, by Proposition 1.2.57.

Corollary 1.2.61. V has the principal projection property if and only if sup
(
x∧ny

)
exists for each pair x, y ∈ V+. Moreover, if V is countably order complete, then V
has the principal projection property.
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Proof. Suppose that for every pair of x, y ∈ V+ the sup
(
x ∧ ny

)
exists. Then, by

Corollary 1.2.60, the band generated by y is a principal band and hence a projection
band. Therefore, V has the principal projection property.

Conversely, suppose that V has the principal projection property. This means
that every principal band is a projection band. It follows that for every y the band
generated by y is a projection band, hence by Corollary 1.2.60, it follows that sup

(
x∧

ny
)
exists for all pairs of x ∈ V+. So it exists for every pair of x, y and the proposition

is complete.

Theorem 1.2.62 (Main Inclusion Theorem). Let V be any vector lattice. Then the
following implications hold on any vector lattice V :

(COC)

(OC) (PPP ) (A)

(PP )

Proof. We observe that (PP ) → (PPP ) is imminent. By Definition 1.1.85, it holds
that any order complete vector lattice V is countably order complete i.e. (OC) →
(COC). From Proposition 1.2.59, we obtained the last implication i.e. (PPP ) → (A)
and by Corollary 1.2.61, we obtained that (COC) → (PPP ). By Theorem 1.2.53,
we have that for any vector lattice V satisfying the axiom (OC) each band is a
projection band, hence V has the (PP ) property.

Remark 1.2.63. None of the implications can be reversed yet.

The following result will be in later use but allows us, for now, to describe P (V )
as an ordered subset of V , under satisfactory assumptions.

Proposition 1.2.64. Let V be a vector lattice having the principal projection prop-
erty, containing weak order units. The Boolean Algebra P (V ) is mapped isomorphi-
cally onto the set of all weak order units u ∈ V , satisfying v ∧ (u− v) = 0, v ∈ V by
P 7→ Pu.

Proof. Let p : P (V ) 7→ {the set of all weak order units u ∈ V : v ∧ (v − u) = 0}.
Since V has the principal projection property, then up = pu is a weak order unit in
pV , by Corollary 1.1.93, and the order continuity of p. Now, let U be a fixed order
unit in V . Then 0 ≼ up ≼ u, by Theorem 1.2.51 and thus 0 ≼ up − u. This implies
up ∧ (u − up) = 0, for all p ∈ P (V ). If p ≼ q, then it holds up ≼ uq, since both p, q
are positive. Conversely, if up ≼ uq holds, then pV ⊂ qV , which implies that p ≼ q.
Hence, for arbitrary p, q ∈ P (V ) the map p 7→ pu is an isomorphism from P (V ) onto
the set of all v ∈ [0, u], such that v ∧ (u− v) = 0. Since P (V ) is a Boolean Algebra,
so is this set. Now, we need to validate that the range of the isomorphism is all of
v ∈ V , such that v∧(u−v) = 0. Since V has the principal projection property, every
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band Bu is a projection band and thus ()u − v)⊥ ∈ B(u)⊥. If pV is the associated
projection, then by the decomposition property, it holds that u = v + (u− v) is the
unique decomposition by Theorem 1.2.53. Thus v = pV u. Therefore, p 7→ pu maps
P (V ) onto all of v ∈ V , such that v ∧ (u− v) = 0.

To conclude this paragraph we will prove a proposition regarding the set of char-
acteristic elements of an order interval.

Definition 1.2.65. Let V be a vector lattice. The set {x ∈ V : x ∧ (v − x) = 0} is
sometimes called the set of characteristic elements of the order interval [0, v] and is
denoted by Bv.

Example 1.2.66. Let X be a non void set and V = RX under the canonical ordering
and v is the constant one function. Then Bv = {f ∈ V : f ∧ (v − f) = 0}

Remark 1.2.67. Let X be a non-void set. If V = RX under the canonical ordering,
where v is the constant one function. Then x ∈ Bv if and only if x is the characteristic
function of a subset of X

Definition 1.2.68. Let V be a vector lattice and K a non-void subset of V . The
element x ∈ V is an extreme point of K if there not exist y, z ∈ K, such that y ̸= z
and 0 ⩽ λ ⩽ 1 such that x = λy + (1 − λ)z. The set of all extreme points of V is
called the extreme boundary of V .

Proposition 1.2.69. Let V be any vector lattice and v ∈ V+. Then (Bv,≼) is a
Boolean Algebra and identical with the extreme boundary of the order interval [0, v].

Proof. Since “≼” is induced by V , to prove that Bv is a Boolean Algebra it suffices
to prove that x∧ y ∈ Bv and x∨ y ∈ Bv for all x, y ∈ Bv. We observe that if x ∈ Bv

then v − x is the complement of x ∈ Bv. Let x, y ∈ Bv and denote w := x ∨ y. We
need to show that w∧(w−v) = 0. Hence by translation invariance and distributivity
we obtain that

v − z = v − x ∨ y

= v + (−x) ∧ (−y)

= (v − x) ∧ (v − y)

and thus by associativity of the supremum and the infimum and distributivity again
we obtain

w ∧ (v − w) = w ∧ [(v − x) ∧ (v − y)]

= x ∨ y ∧ [(v − x) ∧ (v − y)]

=
(
x ∧ [(v − x) ∧ (v − y)]

)
∨
(
y ∧ [(v − x) ∧ (v − y)]

)
=

(
(x ∧ (v − x) ∧ (v − y)

)
∨
(
y ∧ (v − y) ∧ (v − x)

)
.

Since x, y ∈ Bv, we have that w ∧ (v − w) = 0, thus z := x ∨ y ∈ Bv. We work,
similarly, for x ∧ y. Therefore Bv is a Boolean Algebra.
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1.3 Simple and Semi-Simple Vector Lattices

In this paragraph we will discuss more about ideal theory. Archimedean vector
lattices of finite dimension will play a major role in this discussion. The main target is
to prove that any vector lattice V is the sum of orthogonal ideals satisfying properties
we will discuss in the meantime.

Proposition 1.3.1. Let V be any vector lattice and I ⊂ I(V ) be an ideal. Denote
by q the canonical map from V 7→ V/I. Then q is a homomorphism of I(V ) onto
I(V/I). Moreover denote by SV (I) the sublattice of all ideals superset of I. Then the
restriction map from SV (I) is an isomorphism onto I(V/I).

Proof. Let J ∈ I(V ). Then q(J) is a vector subspace of V/I. Since q is a lattice
homomorphism between vector lattices, q maps J onto an ideal of I(V/I). Indeed,
by Proposition 1.2.32, q(J) is solid in V/I. To prove that J 7→ q(J) is a lattice
homomorphism of the vector lattice I(V ) onto I(V/I), we need to validate that
q(J +K) = q(J)+ q(K) and q(J ∩K) = q(J)∩ q(K) for any given ideal I, J ∈ I(V ).

Obviously, q(J ∨K) = q(J +K), since q is a positive linear map with respect to
the sum of ideals. We observe that q(J∩K) ⊂ q(J)∩q(K) holds, for any J,K ∈ I(V ).
Moreover, it holds that J ∩ K ⊂ K and J ∩ K ⊂ J . Thus q(J ∩ K) ⊂ q(K) and
q(J∩K) ⊂ q(J) or, equivalently, q(J∩K) ⊂ q(K)∧q(J), since V/I is a vector lattice.
So we only need to prove that q(J) ∩ q(K) ⊂ q(J ∩K). Let z ∈ q(J) ∩ q(K) Then
there exist x ∈ J and y ∈ K, such that z = q(x) = q(y). Now, |z| = |q(x) ∧ q(y)|
and since q is a lattice homomorphism, it follows that |z| = |q(x)| ∧ |q(y)| and by
Proposition 1.2.32, |z| = q(|x|) ∧ q(|y|) and thus |z| = q(|x| ∧ |y|). So |z| ∈ q(K ∩ J)
and since K ∩ J is solid, it follows that z ∈ q(I ∩ J). Hence q(J)∩ q(K) ⊂ q(J ∩K)
holds for any J,K ∈ I(V ). Thus J 7→ q(J) is a lattice homomorphism of the vector
lattice I(V ) into I(V/I).

We need to prove that q is surjective. We observe that for any U ∈ V/I, since
q is linear and there exist a one-to-one correspondence between ideals of V and
V/I, it follows that there exists J ∈ V , such that q−1(U) ∈ I(V ) and therefore
U = q(q−1(U).

Definition 1.3.2. Let V be a vector lattice and I ∈ I(V ). Then I is called amaximal
ideal, if V is the only ideal properly containing I.

Example 1.3.3. Let X be a compact topological vector space and denote by V
the vector lattice of real, continuous functions with values from X. Then, the sets
Ix = {f ∈ C(X) : f(x) = 0 , x ∈ V } are maximal ideals in V . Indeed, it is easy
to prove than the only proper ideal containing Ix is C(X). Set J = C(X), then
suppose J ⊃ Ix. Then there exists a continuous function f ∈ J , such that f /∈ Ix.
This implies that f ̸= 0. Hence J contains all zero functions and all the non-zero
functions. Therefore J = C(X) and Ix are maximal ideals.

Example 1.3.4. Let V be the set of all integers endowed with the divisibility rela-
tion. Then pZ , p is a prime integer, are maximal ideals. Suppose there exist another
maximal ideal, such that J ⊃ pZ. Then there exists an integer k ∈ J , such that k/p.
It follows that k = p and hence the only ideal properly containing pZ is Z = V .
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Definition 1.3.5. Let V be a vector lattice and I ∈ I(V ). Then I is called a minimal
ideal if {0} is the only ideal properly contained in I.

Definition 1.3.6. Let V be a vector lattice. The intersection of all maximal ideals
of V is called the radical of V and is denoted by RV .

Definition 1.3.7. Let V be a vector lattice. Then V is called simple if I(V ) = {0, V }
and semi-simple if RV = {0}.

Remark 1.3.8. If V is simple then {0} is a maximal ideal in V .

Example 1.3.9. Then n-dimensional vector lattice Rn endowed with the lexicogr-
pahic ordering is totally ordered and hence Rn has one maximal ideal

J = {x̄ : x1 = 0}

and one minimal ideal

I = {x̄ : xi = 0 for i = 1, . . . , n− 2}.

Remark 1.3.10. Maximal and minimal ideals does not always exist in any vector
lattice V .

Proposition 1.3.11. Let V be any vector lattice. Then V/RV is semi-simple and
Archimedean.

Proof. We observe that RV is an ideal by the corrseponding definition. To prove
that V/RV is semi-simple, we need to validate that RV/RV

= {0}. Suppose RV = J ,
where J is a non trivial ideal. Hence there exist I ∈ V/RV such that q−1(I) = J ,
where J ⊂

⋂
K and K ∈ SV (RV ). By Proposition 1.3.1, q−1 is a bijection onto the

set of all maximal ideals of V . Thus J is maximal, which is a contradiction. Hence
RV = {0} and therefore RV is semi-simple.

Corollary 1.3.12. Suppose V is a semi-simple vector lattice. Then V is Archimedean.

Proof. Let I be a maximal ideal in V and x, y ∈ V such that nx ≼ y. If y ∈ I
then it follows that x ∈ I. Otherwise, the ideal generated by I ∪ {x} is proper and
hence I ⊂ I ∪ {x}, which is a contradiction as H is maximal. Thus x ∈ H or,
equivalently, x ∈ RV and since V is semi-simple, it follows that x = 0. Hence V is
Archimedean.

Proposition 1.3.13. Let V be a non-trivial vector lattice. Then the following as-
sertions are equivalent:

(i) V is isomorphic to R0.

(ii) V is simple.

(iii) V is totally ordered and Archimedean.
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Proof. (i) Let J ∈ I(R0) be a non-empty maximal ideal. Then the order interval
[−x, x] is contained in J for some x ∈ R0. This holds for every x ∈ R0, otherwise
J would not be maximal. Therefore R0 ⊂ J which is a contradiction. Thus R0

is simple and by hypothesis so is V .

(ii) We must prove that for each pair (x, y) ∈ V × V it holds either x ≼ y or
x ≽ y. Suppose that x ≽ 0 and x ≼ 0 holds for any given x ∈ V . This implies
x+ ≻ 0 and x− ≻ 0. Thus the ideal generated by x+ would be non empty and
a subset of V , which is a contradiction as V is simple. Thus x+ ≻ 0 or x− ≻ 0.
This proves our first assertion. By Corollary 1.3.12, since V is simple, it is
semi-simple and hence Archimedean.

(iii) Let f : V → R0 be a linear map such that x 7→ λe where e is any positive
element in V such that x = λe. Since f is linear we want to validate that
there is only one λ ∈ R such that x = λe. We will make use of the fact
that R is connected. Since V is totally ordered, let C1 = {λ ∈ R : x ≼ λe}
and C2 = {λ ∈ R : x ≽ λe}. By the decomposition property, any convex
combination x = µy+ (1− µ)z, such that y ̸= z and µ ≤ 1, is contained either
in C1 or C2. Hence C1 and C2 are convex. Let yn = n−1e. Since e is positive
and V Archimedean, it follows that inf(n−1e) = 0 and 0 ∈ C1. Thus C1 is
closed. Similarly for C2. It is easy to observe that ∅ ̸= C1 and ∅ ̸= C2. Since
R is connected, it follows that C1 ∩C2 is non empty but can not correspond to
more than one λ per x. Therefore, there is only one λ ∈ R, such that x = λe
and thus f is an isomorphism.

Corollary 1.3.14. Let V be any vector and I ∈ I(V ). If I is maximal, then V/I ∼=
R0. If I is minimal, then I ∼= R0.

Proof. Let I ∈ I(V ) such that I is maximal. We observe, by Proposition 1.3.1 that
q(I) ∈ V/I. But, if there exists J ⊃ I such that j ∈ V then q(J) ⊃ q(I) ∈ V/I,
which is a contradiction in view of Proposition 1.3.11. Thus RV/I = {0, V/I} and
hence V/I is simple. Now, by Proposition 1.3.13, it follows that V/I ∼= R0. If I
is minimal then {0} is the only ideal contained properly in I by definition. Thus
I(I) = {0, I} and hence I is simple. Therefore, by Proposition 1.3.13, I ∼= R0.

Proposition 1.3.15. Let V be an Archimedean vector lattice and I ∈ I(V ) . If I is
minimal, then I⊥ is maximal and V = I + I⊥. If I is maximal, then I⊥ is minimal
if and only if I⊥ is a projection band.

Proof. Let I be a minimal ideal of V . By Corollary 1.3.14, it follows that I ∼= R0.
To prove that V = I + I⊥ we need to show that I is a projection band. Denote by
xI := sup

n,H
(x ∧ n

∑
|y|), x ∈ V+, n ∈ N and H is a finite subset of A. Obviously, xI

exists since R0 is simple and, by Proposition 1.2.57, I is a projection band. Thus
V = I + I⊥. This also implies that I has linear dimension 1. Hence I⊥ is maximal.
If not, there would exist y ∈ J ⊃ I⊥ but J⊥ ⊃ I⊥⊥ = I as V is Archimedean, and
thus y ∈ I, which comes to a contradiction of the dimension of I. If I is maximal,
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then I is a projection band if and only if V = I + I⊥. By Corollary 1.3.14, it follows
that V/I ∼= R0 thus I⊥ has at most linear dimension of 1. If I⊥has linear dimension
of 1, then I⊥ ∼= R0 and by 1.3.14 I⊥ is minimal. Therefore, V = I + I⊥ implies that
I⊥ and conversely.

Definition 1.3.16. Let V be a vector lattice. An element u ∈ V is called an atom
if the principal ideal Vu is totally ordered.

Proposition 1.3.17. Let V be an Archimedean vector lattice. Then the following
are equivalent:

(i) u is an atom in V .

(ii) Vu is minimal.

(iii) V ⊥
u is maximal.

Proof. (i) Suppose u is an atom. It follows that the principal ideal Vu generated
by u is totally ordered. This implies that x ≼ y or y ≼ x for all x, y ∈ Vu.
We need to prove that the only ideal properly contained in Vu is {0}. Now let
x, y ∈ Vu such that x, y ∈ I ⊂ Vu. Then the ideal generated by u is of the
following form:

Vu =
n=1⋃
∞

−n[−u, u]

for all n ∈ N. Suppose x ≼ y. Since V is Archimedean it follows that if nx ≼ y
holds then x ≼ 0 for all n ∈ N. Take n = 1 and thus x ≼ 0 . Therefore x ∈ I
implies that x ≼ 0 and thus I = {0}.

(ii) Since V is Archimedean by Proposition 1.3.15 it is imminent that V ⊥
u is maxi-

mal.

(iii) Let u be an order unit and Vu is the principal ideal generated by u. We need
to prove that u is an atom in V or, equivalently, that the princiapal ideal Vu is
totally ordered. By hypothesis, V ⊥

u is maximal. Since Vu is principal, it follows
that Vu is a minimal ideal in V . By Proposition 1.3.13 and Corollary 1.3.14, it
follows that Vu is totally ordered and Archimedean. Therefore u is an atom.

Proposition 1.3.18. Suppose V is of finite dimension. Then maximal and minimal
ideal exist and I(V ) is finite.

Proof. Let V be a finite dimensional vector lattice and suppose I(V ) is not finite.
It follows that there exist ideals I ∈ I(V ) of infinite dimension. This implies that
there exists a chain of ideals, such that there exist x ∈ Ij+1, where x /∈ Ij for all
j ∈ N. By hypothesis, there would exist infinite such x. Therefore V has infinite
elements, which is a contradiction. Hence I(V ) is finite. Moreover, since I(V ) is a
vector lattice endowed with set inclusion the existence of maximal and minimal ideal
is obvious
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Before moving to finite dimensional vector lattices, we need to recall some topo-
logical properties and definitions.

Definition 1.3.19. Let V be a vector lattice and A ̸= {∅} a linearly independent
subset of V that is maximal. Then A is called a Hamel basis.

Remark 1.3.20. The existence of such basis in topological vector spaces is evident
due to Zorn’s Lemma. Indeed., let V be a topological vector space and {Ai : Ai ⊂
V , for all i} be a family of V . Set

A1 = {x1, x2 ∈ V : x1 ⊥ x2}
A2 = {x1, x2, x3 ∈ V : x1 ⊥ x2, x2 ⊥ x3, x3 ⊥ x1}
...

Aj = {xi ∈ V : x1 ⊥ xj, xj ⊥ xj+1 for all j = 2, . . . k − 1}.

We observe that A1 ⊂ A2 ⊂ · · · ⊂ Aj and hence Aj is an upper bound for this chain.
Therefore by Zorn’s Lemma Aj is maximal and by Definition 1.3.19 it follows that
Aj is a Hamel basis.

Definition 1.3.21. Let V be a vector space over a field K. The set of all x ∈ V
satisfying f(x) = a, where f is a map and a ∈ V , is called a hyperplane and is
denoted by H.

Definition 1.3.22. Let V be a vector space over a fields K and H a hyperplane.
The following sets are uniquely determined by H:

(i) Oa = {x ∈ V : f(x) < a}.

(ii) Oa = {x ∈ V : f(x) > a}.

(iii) Ca = {x ∈ V : f(x) ≤ a}.

(iv) Ca = {x ∈ V : f(x) ≥ a}.

These sets are called semi-spaces.

Remark 1.3.23. All semi-spaces are convex sets.

Example 1.3.24. In view of Proposition 1.3.13, C1 is a Ca semi-space and C2 is a
Ca semi-space and H is the hyperplane of all x ∈ V , where f(x) = λe.

Definition 1.3.25. Let V be a vector space over K and A ⊂ V . Then A is called
absorbing if for every x ∈ A there exists λ ∈ R+ such that x ∈ λA.

Example 1.3.26. Let V be a vector lattice. Then the order interval [−u, u], for any
u in V , is absorbing for any n ∈ N.

Recall that a vector space V endowed with a topology T is a topological vector
space if the operations of addition and multiplication are continuous.
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Definition 1.3.27. Let V be any vector space endowed with a a topology T and
x ∈ V . A subset U of V is called a neighborhood of x if there exists B ⊂ U such that
x ∈ B. The system of all neighborhoods of any given element x is denoted by Nx.

We state the following separation theorem from [1], as we will make use of in the
following proposition.

Theorem 1.3.28. Let V be a topological vector space V and U a convex subset of
V , such that U o ̸= ∅. Let C ⊂ V be convex set, such that U o ∩ C = ∅. Then there
exists a closed real hyperplane H separating U and C. Moreover, if U,C are also
open, then H separates U,C strictly.

Proposition 1.3.29. If V is a totally ordered vector lattice of finite dimension, then
V is isomorphic to Rn endowed with the lexicographic order.

Proof. We observe that Rn is a totally ordered space endowed with the lexicographic
ordering defined as follows: if xn = (x1, x2, . . . , xn) and yn = (y1, y2, . . . yn) then
xn ≽ yn if and only if xi ≽ yi for the first ordinal i < n such that xj ̸= yj.
First, we need to check that V has the same 0-neighborhoods as Rn. It is easy to
observe that for an order unit u ∈ V the order interval is absorbing, convex and
obviously a zero neighborhood when V is a topological vector space endowed with
the unique Hausdorff Topology. Suppose that n ⩾ 1 is the dimension of V . Since
V is a vector lattice then V+ contains elements in its interior as the decomposition
property yields that [0, 2u] = u + [−u, u], where u is an order unit. Because V
is totally ordered, it follows that V is the union of the positive cone V+ and the
V+/{0}. By the decomposition property, both sets are convex and obviously one of
them with non empty interior. Hence, by Theorem 1.3.28, there exists a hyperplane
H strictly separating V o

+ from (−V+/{0})o. This implies 0 ∈ H and each x ∈ V has
the following representation: x = λu + y such that y ∈ H and λ ∈ R. Moreover, it
follows that V+ is a Ca semi-space obviously containing u. Hence x ≽ 0 if and only
if either λ > 0 or λ = 0 and y ≽ 0. Therefore, V is isomorphic to the Cartesian
product R × H using the map x 7→ λu + y ordered by the relation (λ, y) ≽ 0 if
and only if λ > 0 or λ = 0 and y ≽ 0. By induction to n, the proof is complete.
The dimension of a hyperplane is always lower from the space V . Actually H is
totally ordered vector sublattice and the induction hypothesis yields that H ∼= Rn−1.
Therefore V ∼= R×H ∼= R× Rn−1 = Rn.

Remark 1.3.30. If V is any vector lattice, then the real space R×M endowed with
the following ordering:

(λ, y) ≽ 0 if and only if λ > 0 or y ≽ 0 and λ = 0

forms a vector lattice.

Definition 1.3.31. If V is any vector lattice, then the real space R × M is called
the lexicographic union of R with M and is denoted by R ◦M .

We analyze the lexicographic union more in the following proposition.
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Proposition 1.3.32. Let V be a vector lattice and M ⊂ V be a proper ideal con-
taining every other proper ideal of V . Then V is isomorphic to R ◦M and V has no
other projection bands other than {0} and V itself.

Proof. Obviously M is a maximal ideal and it contains all proper ideals by hypoth-
esis. To prove the isomorphism let x ∈ V+ such that x /∈ M . Denote by V1(x) the
linear vector subspace generated by x. Then V = V1(x)+M since dimV1(x) = 1. We
need to validate that z > 0 and λ > 0, where z = λx+y , λ ∈ R and y ∈ M . If λ > 0
then the ideal generated by x is all of V as Iz ⊈ M and the order interval [−x.x]
is contained in V . Hence V = Iz+ + Iz− , where Iz+ , Iz− are complementary ideals
thus the projection bands. Suppose that I ∈ I(V ) is a projection band such that
V = I + I+. This implies that {0} ≠ I ̸= V and similarly for I⊥. Hence I ⊂ M and
I⊥ ⊂ M sinceM is a maximal ideal. This implies I+I⊥ ⊂ M or equivalently V ⊂ M
which is a contradiction. Thus there are no other projection bands rather than {0}
and V itself. Therefore Iz+ = {0} or Iz− = {0}. But Iz+ = {0} is impossible since
its image through the canonical map q is always positive. Thus λ > 0 and z− = 0
or equivalently λ > 0 and z > 0 and the proof is complete as the map x 7→ λx+ y is
an isomorphism by an inspection of the proof from Proposition 1.3.29.

Remark 1.3.33. In comparison of the proof of 1.3.29 M plays the role of the hy-
perplane H and linear space V1(x) is obviously isomorphic to R0.

Before stating the main theorem we shall prove the following lemma.

Lemma 1.3.34. Let V be any vector lattice and I ∈ I(V ). Denote by q the canonical
map from V to V/I. Then for any finite orthogonal system {yi : i = 1, . . . , n} of V/I
there exists an orthogonal system {xi : i = 1, . . . , n} of V such that yi = q(xi) for all
i.

Proof. Let {yi : i = 1, . . . , n} be an orthogonal system of V/I. We will use induction
on n. Obviously, for n = 1 the assertion is true. We want to construct an orthogonal
system {xi} ∈ V and prove that yi = q(xi) , for all i. By the induction hypothesis
there exist xi ∈ V+ such that yi = q(xi) holds for all indexes up to n− 1. Let xn > 0
be an element such that q(xk) = yk. We define x′

i = xi−xi∧xk , i = 1, . . . , n−1 and
x′
n = xn−xn∧(x1+. . . xn−1). By the hypothesis q(xi∧xk) = q(xi)∧q(xk) = ui∧uk = 0

and hence xi ∧ xk ∈ I. By the distributivity of I(V/I) we obtain

q(x′
n) = q(xn − xn ∧ (x1 + . . . xn))

= q(xn)− q(xn) ∧ q(x1 + . . . xn)

= q(xn)− q(xn) ∧ [q(x1) + · · ·+ q(xn−1)].

Hence q(xn)∧q(xi) = un∧ui = 0 for all i up to n−1 and hence xn∧(x1+. . . xn−1) ∈ I.
Thus q(x′

n) ∈ V/I and q(x′
i) = q(xi) = ui. Lastly, we need to verify that {x′

i} is an
orthogonal system. To validate that, it suffices to prove that for indexes i, j such
that i ̸= j and q(x′

i) ∧ q(xj) = 0 where q is the canonical map. Let x′
i = xi − xi ∧ xn

and x′
j = xj − xj ∧ xn. Then

q(x′
i ∧ x′

j) = q
[
(xi − xi ∧ xn) ∧ (xj − xj ∧ xn)

]
.
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By distributivity this equals to[
q(xi)− q(xi ∧ xn)

]
∧
[
q(xj)− q(xj ∧ xn)

]
.

Therefore
q(x′

i ∧ x′
j) = (ui − 0) ∧ (un − 0) = ui ∧ un = 0.

Hence {xi} is an orthogonal system in V .

Theorem 1.3.35. Let V be a finite vector lattice. Denote by r the dimension of RV .
Then V =

∑n−r
j=1 Ij, where Ij are orthogonal ideals of the form of the lexicographic

union R and Mj, where Mj is a unique maximal ideal. This decomposition is unique
except of a variation of indexes.

Proof. The radical of V is denoted by RV . From Proposition 1.3.11, it follows that
V/RV is Archimedean. Let dimV = n , thus dimV/RV = n − r where r is the
dimension of RV . By Corollary 1.3.14 each minimal ideal is isomorphic to R0 and
hence their linear dimension is 1. By Proposition 1.3.15 each minimal ideal is a
projection band. Hence by induction to k we obtain that V/RV =

∑k Ij where Ij
are minimal ideals, orthogonal by pairs. Therefore there exist yj ∈ Ij for each j such
that {yj : j = 1, . . . , n} is an orthogonal system. Now Lemma 1.3.34 implies that
there exists an orthogonal system {xj : j = 1, . . . , n} in V , where q(x′

j) = yj ∈ V/RV .
Denote by V1 the vector subspace of V generated by {xj}. Obviously, {yj} is a Hamel
basis in V/RV hence V = V1+RV . We claim that I(V1) = V . If not then I(V1) ⊉ RV

and since I(V1) is proper it follows that I(V1) is not maximal. Hence there exists
a maximal ideal J superset of I(V1) such that J ⊉ RV which is a contradiction
to the definition of RV . Hence, if Ij denotes the ideal generated by {xj} then V
is the sum of k mutually orthogonal ideals Ij. Now we want to prove that Mj is
maximal and thus Ij = R ◦ MJ . We claim that Mj is the unique maximal ideal of
Ij where Mj = Ij ∩ RV for all j. Since Ij is a linear subspace of V of dimension
1 then Mj has codimension 1. Suppose that there is another maximal ideal K of
codimension one different from Mj. Denote by K ′ the ideal of codimension 1 such
that K ′ = K +

∑
i ̸=j Ii. By the decomposition property K ′ is maximal and clearly a

superset of RV . Thus K = K ′ ∩ Ij ⊃ RV ∩ Ij = Mj which is a contradiction. Hence
K ′ = Mj. This implies also, by Proposition 1.3.32, that Mj contains every proper

ideal of Ij and therefore Ij = R ◦ Mj. Hence V =
k∑

i=1

R ◦ MJ . Lastly, we need to

check that this decomposition is unique except a permutation of indices. We need
to prove that if J is a projection band of the form R ◦N then J = Ij for some j up
to k. We know that Ij = V ∩ Ij = (J + J⊥) ∩ Ij, By the distributivity of I(V ) it
follows that Ij = J ∩ Ij + J⊥ ∩ Ij. Since V has no projection bands, by Proposition
1.3.32, it follows that J ∩ Ij = {0} or Ij ∩ J = Ij for at least one index j. We
observe that J⊥ ⊃ I⊥j , since Ij is a projection band, thus J⊥ ∩ Ij = {0}. Now if
Ij ∩ J = {0}, this implies that J ⊂ I⊥j and thus J is a non trivial projection band,
which is a contradiction to Proposition 1.3.32. Therefore J ∩ Ij = Ij and the proof
is complete.

Corollary 1.3.36. Denote by n the dimension of V . For any finite dimensional
vector lattice V such that n ⩾ 1 the following are equivalent:
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(i) V is semi-simple.

(ii) V is isomorphic to Rn.

(iii) V is Archimedean.

Proof. (i) By Theorem 1.3.35, V is the sum of orthogonal ideals isomorphic to R0.
Hence V ∼= Rn.

(ii) Suppose V is isomorphic to Rn. By Proposition 1.3.13, R is totally ordered
and Archimedean. Hence V , by induction to n, is simple. Therefore, any
intersection of proper maximal ideals is actually the set {0}/ Thus RV = {0}
and hence V is semi-simple.

(iii) Suppose V is Archimedean and RV ̸= {0}. Then there exist a non-void ideal
J ∈ RV , such that J ⊂ M for every maximal ideal M ∈ I(V ). Thus I is
minimal in V . By Proposition 1.3.15, this implies that I⊥ is maximal and this
leads to RV being a subset of I⊥, which is a contradiction, by the definition of
RV . Thus RV = {0} and therefore V is semi-simple.

Summarizing the previous discussion we state the next remark.

Remark 1.3.37. Rn endowed with the canonical ordering corresponds to radical
RRn = {0}, whereas RRn is a totally ordered maximal ideal when Rn is endowed
with the lexicographic ordering.

Corollary 1.3.38. The Boolean Algebra B(V ) is isomorphic to the set of all ideals
of V/RV when V is a finite dimensional vector lattice.

Proof. We observe that Theorem 1.3.35 implies that V is the sum of orthogonal ideals
i.e V =

∑j=1
k Ij. Thus any band in V is the sum of ideals such that V =

∑
i∈I Ij

where I is a finite subset of indexes and conversely. Now by proposition 1.3.1 ti
follows that B 7→ q(B) is a lattice homomorphism since B(V ) is a sublattice of
I(V ) by Theorem 1.2.51. Hence the canonical map q maps B(V ) isomorphically to
I(V/RV ) as the following diagram shows in view of 1.3.1.

I(V )

B(V )

I(V/RV )

q

π

q

Corollary 1.3.39. If M is a unique maximal ideal of V and V is of finite dimension
with no projection bands except {∅} and V itself, then V is the lexicographic union
R ◦M .
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Proof. V/RV is isomorphic to R0, thus, by Corollary 1.3.14, V/RV has dimension
1 and RV is the only maximal ideal. Otherwise, there would exist J ⊃ RV , such
that J⊥ is minimal and hence, by Proposition 1.3.15, it follows that V = I + I⊥ or,
equivalently, J is a projection band which is a contradiction.

Remark 1.3.40. Corollary 1.3.39 states a converse of Proposition 1.3.32. We note
that this converse fails in the infinite dimensional case.

Example 1.3.41. Let X = [0.1] be the real unit interval and denote by V the vector
lattice of real valued continuous functions with values from X. Then Example 1.2.55
and Example 1.3.3, indicate that M = Bp = {f ∈ V : f(t) = 0 for all t ⩾ p}, for all
0 ⩽ p ⩽ 1, is the unique maximal ideal but V has no projection bands at all.

Definition 1.3.42. Let V be a vector lattice. An element v ∈ V is called infinitely
small if n|v| ≼ x holds for some x ∈ V and for all n ∈ N.

Corollary 1.3.43. The set of all infinitely small elements of V is an ideal.

Proof. The decomposition property implies that any addition of infinitely small ele-
ments and any scalar multiplication by λ ≥ 0 are infinitely small elements. Moreover,
by definition, for any y ∈ V , a infinitely small element x, such that |y| ≼ |x|, it holds
that y is infinitely small. Therefore, the proof is complete.

Corollary 1.3.44. If V is Archimedean then the set of all infinitely small elements
is the zero ideal and conversely.

Proof. Since V is Archimedean for any infinitely small element u it holds that if
n|u| ≼ v , n ∈ N then |u| = 0. Since the set of all infinitely small elements is an ideal
this implies that u = 0. Thus the set is the zero ideal.

Proposition 1.3.45. Let V be a vector lattice and u is an order unit in V . Then
V is Archimedean, if and only if V is semi-simple. Moreover RV is the ideal of all
infinitely small elements of V .

Proof. If u is an order unit in V by definition V = Vu where Vu is the ideal generated
by {u}. Hence, every proper ideal in V is contained in a maximal ideal. Now, if v ∈ V
is an infinitely small element, then it follows that n|v| ≼ u, for all n ∈ N. Thus by
the decomposition property, the order interval n[−u, u] is contained in [−u.u]. Hence
by 1.3.13 v is contained in any maximal ideal. Hence v ∈ RV . Suppose that v ∈ RV

is a positive element not infinitely small. Hence u is not a majorant of nv, for some
n ∈ N. Then denote by y := (nv − u)+, which is positive and is also equal to
(u − nv)−. Since (nv − u)+ is not an order unit of V , then (nv − u)+ is contained
in a maximal ideal J of V . Because 0 ≼ (u − nv)+ ≼ nv and v ∈ I, it follows that
(u − nv)+ − (u − nv)− ∈ I or equivalently u − nv ∈ I and hence u ∈ I, which is
a contradiction. Thus V is an infinitely small element. Now, if V is Archimedean,
then RV is the zero ideal, by Corollary 1.3.44 and the previous discussion. Hence V
is semi-simple. The reverse has proven in Proposition 1.3.13.

An immediate corollary is the following.
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Corollary 1.3.46. Let V be a non-trivial totally ordered vector lattice with order
unit u ∈ V . Then V is the lexicographic union of R with the ideal of all infinitely
small elements.

Proof. We know that I(V ) is totally ordered under set inclusion. By Proposition
1.3.45 it follows that RV = Ifs, where Ifs is the ideal of all infinitely small elements
and eventually a maximal ideal in view of Proposition 1.3.45. Hence by Proposition
1.3.15, since I⊥fs is a projection band, which is a contradiction to the statement of
Proposition 1.3.32. Since V ∼= R ◦ M , by Corollary 1.3.39, where M is a maximal
ideal, it follows that V = R ◦ Ifs.



Chapter 2

Duality and Normed Lattices

2.1 Dual Spaces of Vector Lattices

In this section we will talk about the structure of the space V ⋆, which is the vector
space of all order bounded linear forms. The main target is to prove Nakano’s
Theorem and in order to do this we will use functional analysis.

Definition 2.1.1. Let V be a vector space. A linear map f : V → R is called a
linear form.

Example 2.1.2. LetX = [0, 1] and denote by C(X) the space of all continuous func-
tions with domain the compact space X endowed with the canonical ordering. The
function f(x) =

∫ 1

0
g(x)dx is a linear form. It is clear that f is positive homogeneous

and additive.

Definition 2.1.3. For any vector lattice V , the vector space of all linear forms on
V is denoted by V ∗ and is called the algebraic dual of V .

Definition 2.1.4. Let V be any vector lattice. If for every interval [x, y] ⊂ V the
set f([x, y]) is order bounded then f ∈ V ⋆ is called order bounded. The vector space
of all order bounded linear forms of V is called the order dual of V and is denoted
by V ⋆.

Definition 2.1.5. Let V be a vector lattice. A linear form f ∈ V ∗ is called order
continuous or sequentially order continuous if f is zero convergent for every filter or
sequence respectively, that order converges to 0 in V .

Remark 2.1.6. The space of all order continuous linear forms is denoted by V ⋆
0

whereas the space of all sequentially order continuous linear forms is denoted by V ⋆
00.

Moreover it is easy to observe that V ⋆
00 ⊂ V ⋆

0 ⊂ V ⋆.

Remark 2.1.7. Continuity at 0 ∈ V implies that f is continuous in all x ∈ V , since
f is linear.

Remark 2.1.8. On a non-Archimedean vector lattice V , a linear form convergent
on order convergent filters is not necessary order bounded.

51
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Remark 2.1.9. The canonical order of V ⋆ is determined as shown in Example 1.1.7.
Moreover since f ∈ V ⋆ is uniquely determined by its values on V+ we can view V ⋆

as a subspace of RV .

Proposition 2.1.10. Let V be a vector lattice. Then V ⋆ endowed with the canonical
ordering is an Archimedean and order complete vector lattice. The lattice operations
are defined as follows:

(i) f ∨ g(x) = sup{f(y) + g(z) : y ≽ 0 , z ≽ 0 and y + z = x}.

(ii) f ∧ g(x) = inf{f(y) + g(z) : y ≽ 0 , z ≽ 0 and y + z = x}.

such that f, g ∈ V ⋆ and x ∈ V+. Furthermore if A ⊂ V ⋆ is any directed, majorized
set, then at x ∈ V+ the supremum f0 = supA is given by

f0(x) = sup
f∈A

f(x).

Proof. (i) Let h : V+ → R defined by h(x) = sup{f(y) + g(x − y) : 0 ≼ y ≼ x}.
We observe that h(x) ≼ k(x) ∈ V ⋆ for all k(x) that majorizes f and g. Thus
by Proposition 1.2.30 it suffices to show that h is positive homogeneous and
additive and that the linear form h̃ defined by h is order bounded. It is evident
by the definition of h that is positive homogeneous for all λ ∈ R+. Let x ∈ V
such that x = x1+x2, where x1, x2 ∈ V+. Thus, by the decomposition property,
we obtain [0.x] = [0, x1] + [0.x2] and therefore

h(x1 + x2) = sup{f(y1) + f(y2) + g(x1 − y1) + g(x2 − y2)} = h(x1) + h(x2),

where the supremum is taken over all y1 ∈ [0, x1] and y2 ∈ [0, y1]. Lastly, we
need to verify that h̃ is order bounded. By the definition of h, it is enough
to observe that h([0, x]) is order bounded in R, for each x ∈ V+. This is true
since for every majorized k(x) ∈ V ⋆, such that h(x) ≼ k(x), it follows that
h([x, y]) ⊂ k([x, y]) for all intervals. Since k(x) is positive, it follows that h is
order bounded and hence h̃ is order bounded.

(ii) To prove the last assertion let A be a directed and majorized subset of V ⋆.
We set r(x) = sup{f(y) : f ∈ A}, where r : V+ → R. Obviously r is positive
homogeneous and additive by definition. Thus the positive linear form defined
by r, denoted by f0, is order bounded since f0 is majorized and minorized by
elements in V ⋆. Therefore f0 = supA in V ⋆.

Corollary 2.1.11. Let V be a vector lattice. Then for every f, g ∈ V ⋆ and x ∈ V+

it holds that f+ = f ∨ 0 , f− = (−f) ∨ 0 and |f | = f ∨ (−f), where

(i) f+(x) = sup{f(y) : 0 ≼ y ≼ x}.

(ii) f−(x) = − inf{f(y) : 0 ≼ y ≼ x}.

(iii) |f |(x) = sup{|f(z)| : 0 ≼ |z| ≼ x}.
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In addition, for every majorized subset {fk : k ∈ A} of V ⋆,fo := supk fk then at
x ∈ V+, f0 is given by

f0(x) = sup{fk1(x1) + · · ·+ fkn(xn)},

where {ki}, for all i up to n, runs over all non-empty finite subsets of A and {xi}
runs over all finite decomposition of x = x1 + · · ·+ xn into positive summands.

Proof. The positive and the negative part of each f ∈ V ⋆ is an immediate conse-
quence of (i) by substituting g with the zero function. The unique representation
of any element as the difference of two positive elements implies that if z = u − v ,
u ≽ 0 and v ≽ 0 then {u+ v ≼ x} = {z : |z| ≼ x} for x ∈ V+. Thus

|f |(x) = (−f) ∨ f = sup{f(z) : |z| ≼ |x|},

which is equal to sup{|f(z)| : z ≼ x}. To prove the last assertion, let {k1, . . . kn} be
a finite non-empty subset of A and x ∈ V+ where x = x1 + x2 + · · · + xn such that
xi ≽ 0 ∀i. Hence we obtain

(supifki)(x) = sup{fk1(x1) + · · ·+ fkn(xn)},

where the supremum is taken over all positive decompositions of x, as a result of
multiple application of (i) and the associativity of supremum. We observe that the
set of all suprema is directed in V ⋆. Indeed, if there exist {fi : i ∈ A} finite subsets
of V ⋆, then supifi ∈ {fi} since V ⋆ is order complete and since V ⋆ is Archimedean,
the assertion is imminent. Hence there exist f0 ∈ V ⋆, such that f0 = (supifki(x)),
Proposition 2.1.10. Therefore

f0 = sup{fk1(x1) + · · ·+ fkn(xn)}.

Corollary 2.1.12. Let V be a vector lattice. Any f ∈ V ∗ also belongs in V ⋆ if and
only if it is the difference of two positive linear forms.

Proof. Suppose f ∈ V ∗ is the difference of two positive linear forms. By the unique-
ness of the decomposition and Corollary 2.1.11 it holds that

f = f+ − f− = sup{f(y) : 0 ≼ y ≼ x} − inf{f(y) : 0 ≼ y ≼ x}.

Hence there exist y1 ≼ x and y2 ≼ x such that f(y1) = sup{f(y)} and f(y2) =
inf{f(y)}. Thus we obtain

0 < f(y1)− f(y2) = f(y1 − y2) ≼ f(x− y1) ≼ f(x).

It follows that f([y2, y1]) ⊂ f([y2, x]) for an arbitrary interval [x, y]. Therefore f is
order bounded.

Conversely suppose f is order bounded. Hence by Corollary 2.1.11 and the
uniqueness of the representation it follows that f is the difference of two positive
functions such that

f = f+ − f−.
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Corollary 2.1.13. Let V be a vector lattice and f, g ∈ V ⋆. Two functions f, g
are called lattice orthogonal if and only if there exists a positive decomposition of
x = y + z such that |f |(y) < ϵ and |g|(z) < ϵ, where ϵ > 0 and x ∈ V+.

Proof. By Definition 1.1.64, two elements are lattice orthogonal if the infimum of
their absolute values is zero. Since f, g ∈ V ⋆ then |f | ∧ |g| = inf{|f |(y) + |g|(z)},
where y ≽ 0 and z ≽ 0 and x = y + z. If there exists ϵ > 0 such that |f |(y) < ϵ
and |g|(z) < ϵ then |f | ∧ |g| = inf{|f |(y) + |g|(z)} ≼ ϵ+ ϵ = 2ϵ. Since ϵ is arbitrary
we can choose ϵ so close as we want to zero. Hence inf{|f |(y) + |g|(z)} = 0 and
therefore |f | ∧ |g| = 0. The converse is evident.

Proposition 2.1.14. Let V be a vector lattice and F ⊂ V a filter possessing a base
of symmetric order intervals {[−x, x] : x ∈ D}. Then the set BF of all f ∈ V ⋆ such
that limF f(x) = 0 is a band in V ⋆.

Proof. First we need to verify that BF is an ideal. We observe that BF is a vector
subspace of V ⋆. Thus we need to validate that BF is a solid vector subspace. Let
f, g ∈ V ⋆. Then f ∧ g(x) = inf{f(z) + g(y) : x = y + z, z ≽ 0 and y ≽ 0}. Since
limF f(x) = 0 and limF g(x) = 0, for an appropriate F satisfying the hypothesis,
it follows that f ∧ g ∈ V ⋆. We work similarly for f ∨ g for x ∈ V+. Thus BF is
a vector subspace of V ⋆. To prove that BF is solid, let f ∈ BF and g ∈ V ⋆, such
that |g|(z) ≼ |f |(x), where |z| ≼ x or, equivalently, z ∈ [−x, x]. Since x belongs in
a directed set it follows that there exists ϵ > 0 ∈ R, such that |f(z)| < ϵ , |z| ≼ x.
Hence by (iii) it follows that∣∣|g|(z)∣∣ ≼ ∣∣|f |(z)∣∣ ≼ |f |(z) ≼ ϵ,

where z ∈ [−x, x]. Hence |g| ∈ BF and thus g ∈ BF . Therefore, BF is an ideal. To
prove that BF is a band, let {(gβ) : β ∈ B} be a directed family of BF and denote
by g := sups gs where g ∈ V ⋆. Then there exists xi ∈ D for some i and β0 ∈ B such
that (g− gβ0)(xi) ≼ ϵ. Since D is directed there exists x1 ∈ D such that x1 ≼ xi and
|gβ0|(x− 1) ≼ ϵ. Hence we obtain

|g(z)− gβ0(z)| ≼ (g − gβ0)(x1) ≼ (g − gβ0)(xi) ≼ ϵ

for all z ∈ [−x, x]. Therefore |g(z)| ≼ 2ϵ by the triangle inequality and the relation
above. Thus g ∈ BF , since BF is an ideal.

Corollary 2.1.15. Let V be a vector lattice. Then V ⋆
0 and V ⋆

00 are projection bands
in V ⋆.

Proof. We know that V ⋆
00 ⊂ V ⋆

0 ⊂ V ⋆. Let

F0 := {Fi ⊂ V : Fi is order convergent

and they have a base of symmetric order intervals}.

Respectively we define F00 the family of order convergent filters with countable base
of symmetric order intervals. By Proposition 2.1.14, BF0 and BF00 are bands. Since
all bands are intersection invariant and V ⋆

0 , V ⋆
00 are vector spaces, it follows that

V ⋆
0 =

⋂
F∈F0

BF and V ⋆
00 =

⋂
F∈F00

BF . Therefore by Theorem 1.2.53 each band is a

projection band and the proof is complete.
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Proposition 2.1.16. Let V be a vector lattice and f ̸= 0 be a linear form on V .
The following are equivalent:

(i) f is a lattice homomorphism of V onto R.

(ii) f(x+) ∧ f(x−) = 0 for all x ∈ V .

(iii) f is positive f−1(0) is maximal ideal in V .

(iv) f is positive and If is minimal in V ⋆.

Proof. i) → ii) Since f is a linear mapping the equivalences from (i) to (ii) are
obtained by Proposition 1.2.32.

ii) → iii) Now since f is a lattice homomorphism it follows that f is positive
and by Corollary 1.2.37 f−1(0) is an ideal. Thus by Example 1.3.3 f−1(0) is
maximal.

iii) → iv) Let g ∈ V ⋆ and denote by I⋆f the ideal generated by f such that
|g| ≼ cf for some c ∈ R+ and g ∈ I⋆f . Then x ∈ f−1(0) implies that |g(x)| ≼
cf(x) = 0 since f−1(0) is an ideal in V and f a lattice homomorphism. Hence
f−1(0) ⊂ g−1(0) and it follows that g = 0 or g = µf , µ ∈ R. This implies that
g is a scalar multiple of f for some µ ∈ R. Hence I⋆f is one dimensional and
isomorphic to R0. Therefore I⋆f is minimal by Corollary 1.3.14.

iv) → i) Let f ∈ V and x ∈ V . Suppose f(x+) > 0. Denote by τ the mapping
from V+ → R+ where

τ(v) = sup{f(z) : z ∈ [0, v] ∩ P},

and P =
∞⋃
n[0, x]. By the decomposition property it follows that [0, v] =

[0, v1] + [0, v2] when v = v1 + v2. We observe that τ is additive and positive
homogeneous. Hence there exist a positive extension τ̃ : V → R defined by
τ such that 0 ≼ τ̃ ≼ f . Since I⋆f is minimal it follows that τ̃ = µf for some
µ ∈ R+. Because τ̃(x−) = f(x−) > 0 it follows that µ = 1. Now if τ(x+) = 0
then f(x+) = 0 and therefore f(x+) ∧ f(x−) = 0 holds.

Remark 2.1.17. In view of Definition 1.3.16 and Proposition 1.3.17 we observe that
every lattice homomorphism f ∈ V ⋆ is a positive atom.

Definition 2.1.18. Let V be a vector lattice. The band V ⋆
a generated by the set of

all atoms a is called the atomic part of V ⋆.

Example 2.1.19. Consider the space V = Rn. Then (Rn)⋆ = Rn, if Rn is finite
dimensional, endowed with the lexicographic ordering. By Corollary 1.3.36, Rn is
Archimedean and thus is countably order complete. Hence, there exists subsets of
Rn, such that any positive linear form is bounded, by Proposition 2.1.43. Moreover,
finite dimensional Rn is super Dedekind Complete .
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Example 2.1.20. Let V = R ◦ M be the lexicographic union of R and the vector
lattice M . By definition of V it follows that M is order bounded in V and hence for
each f ∈ V ⋆ we obtain that f(M) = 0. Hence the set {f ∈ V ⋆ : f(M) = 0} is an
ideal and it follows that V ⋆ is isomorphic with (V/M)⋆. Moreover, by definition of
V , it follows that V/M ∼= R. Since dimR = 1, it follows that dimV ⋆ = 1.

A more general version of the previous example is the following.

Example 2.1.21. In view of Theorem 1.3.35, if V is finite dimensional it follows
that V ⋆ is isomorphic to (V/RV )

⋆ as {f ∈ V ⋆ : f(Mj) = 0 ∀j} is an ideal and thus
dimV ⋆ = n− r.

Proposition 2.1.22. Let V be a vector lattice. Then V ⋆ is isomorphic to V if and
only if V is Archimedean.

Proof. (i) Suppose V ⋆ is isomorphic to V . By Theorem 1.3.35 and Example 2.1.21,
it follows that RV = {0}. Hence, by Corollary 1.3.36, it follows that V is
Archimedean.

(ii) Conversely, suppose V is Archimedean. Then, by Corollary 1.3.36, it follows
that V is semi-simple or, equivalently, RV = {0}. Hence by Example 2.1.21,
V ⋆ ∼= (V/RV )

⋆ holds and hence V ⋆ ∼= V .

Example 2.1.23. Let V be a vector lattice. We have seen that there exist non-
Archimedean vector lattices of arbitrary linear dimension such that dimV ⋆ = 1 .
Sometimes, even if V is Archimedean, it can occur that V ⋆ = {0}. An example of
such space is the vector lattice Lp(µ) of all finite Lebesgue measurable function on
R modulo µ-null functions, where µ is a Lebesgue measure on R.

In general, if V is any vector lattice, the spaces V ⋆, V ⋆
0 andV ⋆

00 are distinct.

Example 2.1.24. Let V = C([0, 1]). Then V ⋆
0 = {0}. Let F =

1

n
[0, x] such

that x ∈ C([0, 1]). Then by definition, each sequence of linear function on F order

converges to 0. Hence for every g ∈ V ⋆
0 it follows that g

≼−→ 0. Since g is positive it
follows that g = 0 and therefore V ⋆

0 = {0}.

Example 2.1.25. Let B be a Boolean Algebra and denote by KB the Stone Rep-
resentation Space. Denote by VB the vector lattice of real function on KB which
is the linear hull of the characteristic functions of all open-and-closed subsets of K.
The vector lattice M of all bounded, finitely additive real functions on B can be
identified with the order dual of V ⋆

B and in fact with the order dual of C(KB).

Example 2.1.26. Let X be a locally compact space. Denote by K(X) the vector
lattice of all real valued continuous functions with compact support on X. The order
dual M(X) of K(X) is an order complete vector lattice whose elements are called
Radon Measures on X.
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Remark 2.1.27. Sometimes an immediate question arises if a linear form defined
on a vector lattice V or ideal I can be extended to V with preservation of order
related properties. In general the answer is negative.

Example 2.1.28. Let V = R ◦ M . Then no non-zero, order bounded linear form
has an order bounded extension to V .

Before moving further, we need to remind the reader of the Hahn-Banach Theo-
rem as we will make use of it in the next proposition.

Theorem 2.1.29 (Hahn-Banach Theorem). Let V be a topological vector space, L
an affine hyperplane in V and A a non-void, convex, open subset of V , such that
A ∩ L = ∅. Then there exists a closed hyperplane H, which contains L and not
intersecting A.

Proposition 2.1.30. Let V be a vector lattice and M a vector subspace of V . A
function f ∈ M⋆ has a positive extension F in V ⋆ if and only if there exists an
appropriate convex, absorbing subset of V such that f is bounded above on M ∩ (U −
V+).

Proof. Suppose that f has a positive extension. Then U = {x ∈ V : f(x) < 1}
is convex and absorbing. Any convex combination of x = λy + (1 − λ)z , λ ∈ R ,
y ̸= z ∈ V implies f(λy + (1− λz)) = f(λy) + f(1− λ)z. Since f is a linear form it
follows that

f(λy + (1− λz)) = λf(x) + (1− λ)f(x) = λf(x) + f(x)− λf(x) < 1.

Moreover, if x ∈ U , there exists µ ∈ R+ such that f

(
1

µ
x

)
=

1

µ
f(x) < 1. Hence

f(x) < µ · 1. Thus x ∈ µU . Now obviously f is bounded above on M ∩ (U − V+).
Conversely, suppose U is a convex, absorbing subset of V , such that f is bounded
above on M ∩ (U − V+). Let c ∈ R and y ∈ V , such that y ∈ M ∩ (U − V+) and
f(y) < c. We observe that the set of all x ∈ M , such that f(x) = c is a hyperplane
in M and given that f is non-zero it follows that the set {x : f(x) = c} is an affine
hyperplane denoted by Hc. By the definition of Hc it follows that Hc∩ (U−V+) = ∅.
Moreover, U is a 0-neighborhood for the local convex topology and by translation so
is (U − V+). Hence, by Theorem 2.1.29, there exists H ⊂ V such that Hc ⊂ H and
H∩(U−V+) = ∅. This implies that 0 /∈ H henceH is defined byH = {x ∈ V : F (x)}
for suitable F ∈ V ⋆. Since Hc is a proper maximal subspace of M and 0 /∈ H, then
M ∩H = ∅ must holds. Hence F is a positive extension of f . Indeed, F (x) < c for
all x ∈ ()U − V+). Therefore, F ≽ 0, for all x ∈ V+.

Definition 2.1.31. The mapping p : V → R, where V is a vector space, is called a
semi-norm, if all of the following hold:

• p(x+ y) ≼ p(x) + p(y) for every x, y ∈ V .

• p(λx) = |λ|p(x) for every x ∈ V and λ ∈ R.
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Proposition 2.1.32. Let V be a vector lattice and M ⊂ V a vector subspace such
that IM = V . Then each f ∈ M⋆ has an order bounded extension on V .

Proof. We will apply Proposition 2.1.30. Due to Proposition 2.1.10, it is sufficient to
show that any positive linear form on M has a positive extension. For that reason,
let τ : V → R+ defined by

τ(v) = inf{f(y) : y ∈ M : y ≽ |x|}, x ∈ V.

Since IM is an ideal and IM = V , we obtain that τ is well defined as τ(v) exists. In
addition τ is a semi-norm. Indeed it is obvious that τ is positive homogeneous. Let
v ∈ V , such that v = z + w then

τ(z + w) = inf{f(y) : y ∈ M : y ≽ |z + w|}.

By the decomposition property, it follows that y /∈ [−(z+w), (z+w)] or, equivalently,
y /∈ [−z, z] + [−w.w]. Hence we obtain

inf{f(y) : y ∈ M : y ≽ |z + w|} ≼ inf{f(y) : y ≽ |z|}+ inf{f(y) : y ≽ |w|},

by distributivity. Therefore, τ(x + y) ≼ τ(x) + τ(y), for all x, y ∈ V+. Now, we
denote by U the set of all x ∈ V such that τ(x) < 1. In view of 2.1.30 and since τ is
a semi-norm is obvious that U is convex and absorbing. In order to apply 2.1.30we
need to show that f(x) < 1, for all y ∈ M ∩ (U − V+). Now let u = y + v, where
p(v) < 1 , v ∈ V+ and y ∈ M . Obviously p(y) ≼ p(u). Equivalently, f(y) ≼ f(u)
and thus 0 ≼ y ≼ u. Hence 0 ≼ y+ ≼ u+ y−. Therefore we obtain

f(y) = p(y+)− p(y−) ≼ p(u+ y−)− p(y−)

≼ p(u) + p(y−)− p(y−)

= p(u) < 1.

Hence f(y) < 1 holds, for all x ∈ V . And thus by Proposition 2.1.30 there exists an
extension F of f , which is evident order bounded.

Corollary 2.1.33. If V is an Archimedean vector lattice then every f ∈ V ⋆ has an
order bounded extension F to its Dedekind completion.

Proof. We know that V can be identified as a sublattice of V̄ . Moreover since V is
Archimedean, V̄ is also Archimedean. Thus it follows, from Corollary 1.3.36, that
V̄ is Semi-Simple. Hence the ideal generated by V is maximal in V̄ and IV = V̄ .
Therefore, by Proposition 2.1.32, each f has an order extension to V̄ .

Remark 2.1.34. Let V be any vector lattice and denote by V ⋆
s a vector sublattice

of V ⋆. We shall write ⟨V, V ⋆
s ⟩ for the pair (V, V ⋆

s ) endowed with the evaluation map
defined as follows:

(x, f) 7→ ⟨x, f⟩ = f(x) on V × V ⋆
s .

Unless the contrary is clearly stated, we do not assume that V ⋆
s separates V .
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Definition 2.1.35. Let V be a vector lattice and A ⊂ V . The set Ap is called the
polar of A and is defined as follows:

Ap = {x ∈ F : ⟨x, f⟩ ≼ 1, for all x ∈ v}.

Definition 2.1.36. Let V be a vector lattice and A ⊂ V . If A is a subspace of V ,
then the set Ap is called the annihilator of A.

Proposition 2.1.37. Let V be a vector lattice and V ⋆
s be a vector sublattice of V ⋆

and A ⊂ V . If A is solid in V , then Ap is solid in V ⋆
s . Actually the polar of any

ideal in V is an ideal in V ⋆
s .

Proof. Let x ∈ A and f ∈ Ap , g ∈ V ⋆
s . Then, in view of Corollary 2.1.11, it

holds |f |(x) = sup{|f(z)| : |z| ≼ |x|} ≼ 1 and since A is solid, it follows that
|f | ∈ Ap. Thus, if there exists g ∈ V ⋆

s , such that |g|(x) ≼ |f |(x), then it implies
|g(x)| ≼ |f(x)| ≼ |f |(|x|) ≼ 1 as seen above. Hence g ∈ Ap. The last assertion is
imminent as Ip is a vector subspace of V ⋆

s .

Remark 2.1.38. We can not change the roles of V and V ⋆
s and expect the same

results. The polar Jp of an ideal in V ⋆
s is not necessarily an ideal in V . This

follows from the fact that the evaluation map V → (V ⋆
s )

⋆ is not necessarily a lattice
homomorphism despite the fact that each element on V can define an order bounded
linear form on V ⋆

s .

The situation can be improved if V ⋆
s is assumed to be an ideal of V ⋆.

Proposition 2.1.39. Let V be a vector lattice and J an ideal of V ⋆. Then the
evaluation map q̃ : V → J⋆ where x 7→ x̃ and x̃(f) = ⟨x, f⟩, such that x ∈ V and
f ∈ J is a lattice homomorphism of V into J⋆.

Proof. It is obvious that the evaluation map is linear. In view of Proposition 1.2.32
and since each lattice homomorphism is positive, we need to prove the uniqueness of
the representation of x or, equivalently, (q̃)+ and (q+)∼ agree on J⋆. We know that
(f(x))+ ≼ f(x+). So we need to verify the reverse allocation. For that purpose, let
τ : V+ → R+, such that

τg(x) = sup{g(z) : z ∈ [0, y] ∩ P},

where P =
n=1⋃
∞

n[0, x+], which is a subset of V . By Proposition 2.1.32, τ is positive

homogeneous and additive, hence τg extends to a linear form Tg ∈ V ⋆. We observe
that 0 ≼ Tg ≼ f by definition. Since J is an ideal in V ⋆, it follows that Tg(x

−) = 0
and hence Tg ∈ J . So, we obtain

f(x+) = Tg(x
+) ≼ sup

0≼h≼f
= (f(x))+.

This is true for all f ∈ J⋆, hence we obtain

(q̃)+ ≽ (x+)∼

and the proof is complete.
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Corollary 2.1.40. Let V be a vector lattice and F an ideal of V ⋆. The annihilator
F p ⊂ V is an ideal in V and V/F p is identified as a vector sublattice of F ⋆.

Proof. We showed that q̃ is a lattice homomorphism and by definition

F p = {f ∈ V ⋆ : ⟨x, f⟩ ≼ 1 , x ∈ F}.

It is clear that ker q̃ ⊂ F p. By Corollary1.2.37, it follows that q̃−1(0) is an ideal in V
and thus ∅ ≠ F p∩ker q̃. Hence F p is the kernel of q̃. Since F p ⊂ V , then F p 7→ V/F p

can be identified as a vector sublattice of F ⋆.

Remark 2.1.41. It is worth mentioning that the evaluation map V → F ⋆ is not
sequentially order continuous, either not order continuous, unless F ⊂ V ⋆

00. If f is
order continuous, then it follows that q is sequentially order continuous as V ⋆

00 ⊂ V ⋆
0 .

We will see later that if V is super Dedekind Complete, then V ⋆
00 = V ⋆

0 .

Definition 2.1.42. Let V be a vector lattice. The mapping r 7→ xr, xr ∈ V is called
a monotone transfinite sequence, where xr maps the set of all ordinals r < q into V ,
such that if r1 < r2 < q holds, then xr1 ≼ xr2 .

Recall that a function ϕ is monotone with respect to the ordering when x ≼ y
implies ϕ(x) ≼ ϕ(y) for all x, y ∈ V+.

Proposition 2.1.43. Let V be a countable order complete vector lattice. If there
exists a strictly monotone map ϕ : V+ → R in V , then V is order complete. Further-
more if ∅ ̸= A ⊂ V such that each subset of A is majorized. Then supA exists and
there exists a countable C0 ⊂ A such that supC0 = supA.

Proof. To prove the first assertion consider a transfinite sequence r 7→ xr. The
construction of R implies that there are no uncountable sets B ⊂ R, where B is
an ordered set and the ordering is induced by R. Hence the existence of a strictly
positive monotone function implies that any transfinite sequence in V is countable in
V+. Therefore, for an arbitrary B ⊂ R a transfinite sequence validates the existence
of supB which is in R. Hence V is order complete.

Suppose that ∅ ̸= A is a subset of V . Also every countable subset C of A is
majorized. Let vc = supC and the set of all vc is denoted by CM . Since V is order
complete, we can construct a sequence (rq)q < ϵ by transfinite recursion where q is
an ordinal and belongs to the set of all countable ordinals up to ϵ such that

rq = rq+1 if and only if rq is the greatest element of CM .

We observe that rq can not be strictly monotone for each countable ordinal q. This
implies that vc is the supremum of A and the proof is complete.

Remark 2.1.44. In Remark 1.1.89 we stated that a countably order complete vector
lattice V is order complete. Then Proposition 2.1.43 implies the reverse, if there
exists a strictly monotone function.
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Definition 2.1.45. Let V be an order complete vector lattice. If every majorized
subset A of V has a countable subset C such that supC = supA then V is called
super Dedekind Complete.

Proposition 2.1.46. Let V be a super Dedekind Complete vector lattice. Then
V ⋆
00 = V ⋆

0 .

Proof. We know that V ⋆
00 ⊂ V ⋆

0 . Hence to prove the equality we need to validate
the reverse inclusion. For that reason, let f ∈ V ⋆

0 and F ∈ V a filter. Moreover, let
A ⊂ V be a majorized subset of V and A0 a countable subset of A. By hypothesis,
since V is super Dedekind Complete, it follows that supA0 = supA and thus infA0

exists as A0 is a directed subset of A. Now Proposition 1.1.84, implies that there
exists a family (zn) ↓ 0 and and a (xn)n∈N such that |xm − 0| ≼ zn, for all m ⩾ n.
Let Fj = {z ∈ V : |z − 0| ≼ za} (j ∈ J). These sets belong to the filter F and since
V is super Dedekind Complete, J is countable and therefore by Proposition 1.1.83,
it follows that F is order convergent to 0. Thus f ∈ V ⋆

00.

Corollary 2.1.47. Let V be a countably order complete vector lattice. If there exists
a strictly positive linear form on V , then V is super Dedekind complete.

Proof. We can define a strictly positive monotone mapping on V+ as a strictly positive
linear form and we follow the previous proof of Proposition 2.1.43.

Definition 2.1.48. Let V be a vector lattice and 0 ≼ f ∈ V ⋆. Then the set of all
x ∈ V such that f(|x|) = 0 is called the absolute kernel and is denoted by N(f).

Remark 2.1.49. Let V be a vector lattice and 0 ≼ f ∈ V ⋆. Then N(f) is an ideal
of V . Moreover if f ∈ V ⋆

00 then N(f) is a band.

The following proposition provides conditions sufficient to makeN(f) a projection
band whenever f ∈ V ⋆

00.

Proposition 2.1.50. Let V be a countably order complete vector lattice and f ∈ V ⋆
00.

Then V = N(f) +N(f)⊥ provided that f is a positive order continuous linear form
and N(f)⊥ is super Dedekind Complete.

Proof. Let f ∈ V ⋆
00 be a strictly positive map in N(f)⊥. Since N(f)⊥ is the orthogo-

nal of a band it is a band itself. By the Corollary 2.1.47, since V is a countably order
complete, it follows that N(f)⊥ is super Dedekind Complete. Because V is countably
order complete, the set [0, v] ∩N(f)⊥ is directed and each subset of it is majorized.
Thus sup[0, v] ∩N(f)⊥ exists in N(f)⊥ by Proposition 2.1.43, and therefore N(f)⊥

is a projection band, as a result of Theorem 1.2.53. Hence V = N(f)⊥ + N(f)⊥⊥.
Moreover, we know that N(f)∩N(f)⊥ = ∅ and thus N(f) ⊂ (N(f))⊥. Now suppose
that M is a maximal system in N(f). Then there exists a maximal system S ∈ V ,
such that S ⊃ M . This implies S/M ⊂ N(f)⊥. Therefore, if x ∈ N(f)⊥⊥ by Propo-
sition 1.1.92, it follows that x ∈ N(f), as N(f) is a band. Hence N(f) = N(f)⊥⊥

by Proposition 1.2.47, since V is Archimedean.

Definition 2.1.51. Let V be a vector lattice and 0 ≼ f ∈ V ⋆. For every f the band
N(f)⊥ ⊂ V is called the band of strict positivity of f , denoted by P (f).
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Proposition 2.1.52. Let V be a countably order complete vector lattice. Then N(f∧
g) = N(f) +N(g), such that f, g ∈ V ⋆

0 . Actually if f ⊥ g, then V = N(f) +N(g).

Proof. We know that N(f ∧ g) = {x ∈ V : f ∧ g(|x|) = 0}. By Proposition 2.1.10, it
follows that N(f ∧ g) =

{
x ∈ V : inf{f(y) + g(z) : y ≽ 0 and z ≽ 0 : x = y + z}

}
.

So in order to prove that N(f ∧ g) ⊂ N(f) +N(g) we need to prove that f(y) = 0
and g(z) = 0 for y, z ∈ V+. Let x ∈ N(f ∧ g), x ≽ 0. Then there exists a positive

decomposition of x such that x = yz + zn, where f(yn) + g(zn) <
1

2n+1
, n ∈ N. Now

we set z̄n = sup
k⩾n

zk and ȳn = x − z̄n. By hypothesis, supzk exists for all countable

majorized subsets of N(f ∧ g). Thus it follows that g(z̄n) ≼
∞∑
k⩾n

g(zk), because g is

order continuous. Therefore g(z̄n) ≼
1

2n
, for all n ∈ N. Thus g(z̄n) → 0. Moreover,

we observe that ȳn ≼ yk as ȳn ≼ x− zk ≼ yk. Hence f(ȳn)− 0, since f(ȳk) <
1

wk+1
,

for all n ∈ N. Now, if x = y + z, where z = infn z̄n and y = supn ȳn, then z ∈ N(g)
as g(z) = 0 and y ∈ N(f), as f(y) = 0, since f ∈ V ⋆

0 . Hence, x ∈ N(f) +N(g).
The reverse inclusion is obtained by using Proposition 2.1.10.
Now if f ⊥ g, it follows that |f |∧ |g| = 0 and hence f ∧g = 0. This implies f = 0

or g = 0 If f ∈ V ⋆
0 and f = 0, it holds that N(f) = N(0). Because N(f) is a band in

V , it follows that N(f)⊥ = N(g) as N(g) contains all non-zero functions than maps
the absolute value of x to 0. Moreover, N(f) is a projection band by Proposition
2.1.50 and therefore V = N(f) +N(f)⊥ or, equivalently, V = N(f) +N(g).

Corollary 2.1.53. Let V be a countably order complete vector lattice. Then for all
f, g ∈ V ⋆

0 , it holds that

(i) N(f ∨ g) = N(f) ∩N(g).

(ii) N(f ∧ g) = N(f) +N(g).

(iii) P (f ∧ g) = P (f) ∩ P (g).

(iv) P (f ∨ g) = P (f) + P (g).

Proof. If 0 ≼ f ∈ V ⋆
00 then P (f) is a projection band by Proposition 2.1.50 and hence

V = P (f) + P (f)⊥. By the definition of P (f), it follows that P (f)⊥ = (N(f)⊥)⊥.
Since V is countably order complete, it follows that V is Archimedean and hence by
Proposition 1.2.47 and Theorem 1.2.53, it follows that V = P (f)+N(f). Therefore,
it follows that P (f) ∈ B(V ) by Theorem 1.2.51 and hence P (f) ∈ I(V ). Thus
P (f ∧ g) = P (f)∩ P (g) and P (f ∨ g) = P (f) + P (g) hold for all pairs of f, g ∈ V ⋆

00.
We proved in Proposition 2.1.52, that N(f ∧g) = N(f)+N(g) holds. Hence we only
need to show that N(f ∨ g) = N(f)∩N(g). It is obvious by Proposition 2.1.10 that
N(f) ∩N(g) ⊂ N(f ∨ g). To prove the reverse, let 0 ≼ x ∈ N(f ∨ g). This implies
that f ∨ g(x) = 0 or equivalently by Proposition 2.1.10, that

sup{f(y) + g(z) : y ≽ 0 and z ≽ 0 : x = y + z}.
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Suppose y ∈ N(f) and z ∈ N(g). They are both positive and we assume that
x = y + z. Hence f(y) = f(x) = 0 ∈ N(f) and g(x) = g(z) = 0 ∈ N(g). Therefore
f(x) = 0 and g(x) = 0. Hence x ∈ N(f) and x ∈ N(g) or, equivalently, x ∈
N(f) ∩N(g) and the proof is complete.

Example 2.1.54. Let µ be a signed measure on a (X,S) measurable space and
denote by V the order complete vector lattice of all µ-integrable real functions on X.
Let N be the ideal of µ-null integrable functions. Since µ defines a strictly positive
linear form on V , by definition, it follows that V/N is super Dedekind Complete by
2.1.47, since V is countably order complete.

Example 2.1.55. With the previous conditions applied for the measure µ and the
space V we can apply Proposition 2.1.52, where µ+ = f and µ− = g. Hence we
obtain that V = N(µ+) +N(µ−), because µ+ ⊥ µ−. This implies that there exists a
decomposition of X into components X1, X2, where obviously X1∩X2 is |µ|−null as
N(µ+)∩N(µ−) = {0} and the restriction of µ to {X1 ∩S : S ∈ S} is positive and to
{X2 ∩ S : S ∈ S} is negative. Such a decomposition is called a Hahn Decomposition
of X with respect to µ.

Theorem 2.1.56 (Nakano). Let V be a vector lattice that satisfies the (OC) property
and F ⊂ V ⋆

00 such that F is an ideal. Denote by q the evaluation map from V to F ⋆.
Then q(V ) is an order dense ideal of F ⋆

00.

Proof. The proof is divided into four parts. Before proceeding to the first suppose
that F separates V . By Corollary 2.1.40 we obtain that F p is an ideal in V and since
V is order complete, F p is a band. This is a contradiction to the separation of V
from F . Therefore, we can construct (F p)⊥ and by Theorem 1.2.53, it follows that
V = F p + (F p)⊥ and thus V/F p is isomorphic to (F p)⊥, since q is the kernel of the
evaluation map. Hence we can assume that q is injective and V can be identified as
the order complete vector sublattice of q(V ) it F ⋆

00.

(i) In the first part, we want to decompose both V and F into the sum of projection
bands. Denote by Vx the band generated by x ∈ V+. Let N(x) = {f ∈ F <
x, |f | >= 0} and P (x) = N(f)⊥. Since f ∈ V ⋆

00, it follows that N(x) is a band
and hence, by Proposition 2.1.50 :

F = N(x) + P (x) and V = Vx +
(
Vx

)⊥
We observe that these decompositions are dual in the sense that N(x) =

(
Vx

)p
and P (x) =

(
(Vx)

⊥)p. Since N(x), P (x) are bands it follows that F is the sum
of ideals such that

F = (Vx)
p +

(
(Vx)

⊥)p.
Thus it is imminent that N(x) = (Vx)

p, since each f is order continuous.
Lastly, P (x) = ((Vx)

⊥)p as both ideals are complementary to N(x) and, by
Proposition 1.2.42 and Definition 1.2.43, they must agree.



64 Banach Lattices

(ii) In this part we will find a decomposition of F ⋆
00 into bands B(ui) and a decom-

position of bands Vi ⊂ V , subsets of B(ui). Firstly, let 0 ≼ u ∈ V . We want
to show that if u = u1 + u2, where u1 ∧ u2 = 0 and u1, u2 ∈ F ⋆

00, then it follows
that u1, u2 ∈ V . Now denote by P (ui) ⊂ F the band of strict positivity of ui

,i = 1, 2. By Proposition 2.1.50, it follows that P (u) = P (u1) + P (u2). Hence
in view of the first part we obtain the following decomposition

F ⋆
00 = B(u1) +B(u2) +B(u)⊥

V = Vu + (Vu)
⊥

F = P (u1) + P (u2) +N(u),

where B(ui) are bands generated by u1 and u2 and Vu is band generated by
u. For the purpose of the second part, denote by Vi the band generated by all
bands N(f)⊥ ⊂ V , such that f is positive and N(f) is the absolute kernel. It
follows from Corollary 2.1.53, that V1 ∩ V2 = {∅}, and since P (u) =

(
(Vu)

⊥)p
from the first part, it holds that Vi ⊂ V . Suppose that xe ∈ V is orthogonal to
V1 + V2. Then ⟨|x|, f⟩ = 0 for all strictly positive function f ∈ P (u1) + P (u2).
Therefore x ∈ (Vu)

⊥ since (Vx)
⊥ = P (x)p. Hence V1 + V2 is a band in V and

by Theorem 1.2.53, if follows that V = V1 + V2. But we know that f ∈ P (ui)
are positive and thus N(f)⊥ ⊂ B(ui). So Vi ⊂ B(ui) for i = 1, 2. The
decomposition of u in the beginning is unique. Otherwise, let v1, v2 ∈ F ⋆

00, such
that u = v1 + v2, where vi ∈ Vi ⊂ B(ui). Then ui = vi must hold for i = 1, 2,
since B(u1) ⊥ B(u2) and B(ui) are bands.

(iii) We will show that V is an ideal in F ⋆
00. Since V is identified with an order

complete sublattice of F ⋆
00, it suffices to show that V is solid in F ⋆

00. For
that reason, let u ∈ V and v ∈ F ⋆

00, such that 0 ≼ v ≼ u. Now we set
w := sup[0, v] ∩ V , which exists in V and is taken as element of F ⋆

00. If we
prove that w = v then this part is complete. Assume that v = w + y. If we
show that y = 0 then we get the desired result. Suppose that y ̸= 0, then there
exists µ ∈ R+, such that z = y − µu and (y − µu)+ > 0. If Pz is the band
projection of F ⋆

00 onto Bz+, where Bz+ is the band generated by z+, then

Pz(y − µu) = Pz(y)− Pz(µu) = z+ > 0.

Since Pz ≽ 0, then 0 ≼ µPz(u) ≼ Pz(y) ≼ y, by Theorem 1.2.51. But in view
of Theorem 1.2.53, it follows that u = Pz(u)+(1V −Pz)(u) is a decomposition
of u ∈ V . Hence Pz(u) ∈ V by the second part. This is a contradiction though
as w+ µPz(u) ≼ w+ y = v and w+ µPz(u) ∈ V . Therefore y = 0 necessarily
and V is an ideal in F ⋆

00.

(iv) We proceed to the last part in order to validate that V is order dense in F ⋆
00

or, equivalently, in view of Definition 1.1.79 and Definition 2.1.5, that the band
generated by V in F ⋆ is F ⋆

00. We want to show that if f is a positive order
continuous linear form on F and f ⊥ V , then f = 0. If f ⊥ V , then it follows
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that P (f) ⊥ P (u) for all u ∈ V+, by Corollary 2.1.53. Thus the orthogonality
implies that P (f) ⊂ N(u), for all u ∈ V+, since P (u) = N(u)⊥. Therefore,
from the first part it follows that P (f) ⊂ V p = {0} and hence f = 0.
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2.2 Normed Vector Lattices

In this section we will discuss vector lattices endowed with a semi-norm or a norm.
We will define Banach Lattices and discuss thoroughly properties of these spaces.

Before stating the main definitions we will remind the reader of some basic topo-
logical relations.

Definition 2.2.1. Let V be a topological vector space over R. If for every x, y ∈ V ,
x ̸= y, there exist Ux and Uy open subsets of V , such that x ∈ Ux and y ∈ Uy and
Ux ∩ Uy = ∅, then V is called Hausdorff or T2.

Definition 2.2.2. Let V be a topological vector space. If V is a vector lattice and a
Hausdorff topological vector space over R, which has a base of solid 0-neighborhoods,
then V is called a topological vector lattice.

Example 2.2.3. Let R0 be the vector lattice over R. Then R0 endowed with the
lexicographic ordering is a Hausdorff space, as R itself is. Moreover, let U0 be a
0-neighborhood given as the union of symmetrical order intervals, for some xi ∈ V
i.e U = {

⋃
[−xi, xi] : xi ∈ V for some i}. In Example 1.2.13, we proved that the

symmetric order interval is solid and we also know that solidness is union invariant.
Hence R0 is a topological vector lattice.

Definition 2.2.4. Let V be a topological vector lattice and T is the topology en-
dowed with V . If T is locally convex, then V is called a locally convex vector lattice.

Remark 2.2.5. Definition 2.2.4 has meaning, since locally convex vector lattices
have a 0-neighborhood base of solid sets, as the convex hull of a solid set is also
solid, as shown in Proposition 1.2.17.

Remark 2.2.6. Recall that a semi-norm is a norm if p(x) = 0 implies x = 0.

Definition 2.2.7. Let V be a topological vector lattice and M ⊂ V an absorbing
set. Then the non negative, real function pM defined as follows:

pM : V → R such that pM(x) = inf{λ > 0 : x ∈ λM}

is called the gauge or Minkowski functional.

Definition 2.2.8. Let V be a topological vector space. The Minkowski functional
of an absorbing, convex and solid subset of V is called a lattice semi-norm.

Definition 2.2.9. Let V be a vector lattice and p : V → R a semi-norm (norm). If
|x| ≼ |y| implies p(x) ⩽ p(y), then p is a lattice semi norm (lattice norm).

Definition 2.2.10. Let V be a vector lattice and p a lattice norm. The pair (V, p)
is called a normed vector lattice. If in addition (V, p) is complete with respect to the
norm, then V is called a Banach Lattice.
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Remark 2.2.11. If p is a function on a topological vector space V , then p is a lattice
semi-norm if p is a semi-norm, such that 0 ≼ x ≼ y, and also implies that p(x) ≼ p(y)
and p(x) = p(|x|), for all x, y ∈ V . In this case, lattices semi-norms(norms), often
called monotone semi-norms(norms).

Proposition 2.2.12. Let (V, p) be a normed vector lattice. Then V is necessarily
Archimedean.

Proof. Suppose V is not Archimedean. Then, there would exist a sequence (yn)n∈N ∈
V , such that inf(n−1y) ̸= 0. Let v := inf(n−1y). Then, it holds that 0 ≺ v ≼ n−1yn.

Set yn =
n2 + 1

n4
. Since p is a semi norm, it holds that p(v) ≼

n2 + 1

n4
for n ∈ N.

Hence, p(v) ≼ 0 . By the anti-symmetric property of the ordering, this implies that
p(v) = 0. Because p is positive, it follows that v = 0, which contradicts the definition
of a semi-norm.

Proposition 2.2.13. Let V be a vector lattice and U is the unit ball of V . Then V
is a normed vector lattice if and only if U is solid in V .

Proof. Suppose V is a normed vector lattice. Then V is necessarily Archimedean
by Proposition 2.2.12. We want to validate that U is solid or, equivalently, that for
every x ∈ V and y ∈ U , such that |x| ≼ |y|, it follows that x ∈ U . Let y ∈ U , then

p(y) ⩽ 1. It follows by the decomposition property that
1

n
· y ∈ U . Thus, let x ∈ V ,

such that |x| ≼ | 1
n
· y|. Since V is Archimedean, it follows that x = 0 and since

0 ∈ U , it follows that x ∈ U . Therefore U is solid.
Let V be a vector lattice endowed with a positive norm p and U is the unit

ball. We suppose that U is solid in V . In view of Definition 2.2.9, we want to
prove that for every x, y ∈ V , such that |x| ≼ |y|, it follows that p(x) ⩽ p(y). Let
x ∈ V and y ∈ U ⊂ V , such that |x| ≼ |y|. It follows that x ∈ U , since U is solid.
Therefore, p(x) ⩽ p(y). Otherwise, p(x) ⩾ p(y′) ⩾ 0, since p is positive for some

y′ ∈ U . This implies that x ≽ 0. Let y′ =
1

n
y, such that |x| ≼ | 1

n
y|. Since V is

necessarily Archimedean, in order to be a vector lattice it follows that x = 0, which
is a contradiction. Hence p(x) ⩽ p(y), which validates that p is a lattice norm and
(V, p) is a normed vector lattice.

Example 2.2.14. Let V be a vector lattice and f ∈ V ⋆ a positive function. Then
the mapping x 7→ f(|x|) is a lattice semi-norm. First we need to check that this
mapping is a semi-norm.

• The triangle inequality holds for all x, y ∈ V with respect to the ordering.
Hence, we obtain |x+ y| ≼ |x|+ |y|. Since f is linear and positive this implies

f(|x+ y|) ≼ f(|x|+ |y|) ⇔ f(|x+ y|) ≼ f(|x|) + f(|y|).

Hence the triangle inequality holds for all x, y and p(x), p(y).
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• By definition of p for λ ∈ R we obtain that

p(λx) = f(|λx|) = f(|λ||x|)

by Proposition 1.1.68. Now, f(|λ||x|) = |λ|f(|x|), since f ∈ V ⋆. Hence p(λx) =
|λ|p(x) holds, for all x ∈ V and λ ∈ R∗

+. Thus p is a semi-norm. Moreover, if
|x| ≼ |y| holds, then f(|x|) ≼ f(|y|), which implies that p is a lattice semi-norm.

Example 2.2.15. Let (X,Σ, µ) be a measure space. Then ∥.∥L1 is lattice semi-norm.
We know that

L1 = {f ∈ V ⋆ :

∫
|f |dµ < ∞}.

We know that L1 is a vector lattice endowed with the canonical ordering. Now we
know that

∥f + g∥L1 =

∫
|f + g|dµ

≼
∫

|f |dµ+

∫
|g|dµ

and

∥λf∥L1 =

∫
|λf |dµ =

∫
|λ||f |dµ = |λ|

∫
|f |dµ.

Hence ∥.∥L1 is a semi-norm. Moreover, if |f | ≼ |g| then∫
|f |dµ ≼

∫
|g|dµ

holds, because the integral is monotone with respect to the ordering we use here.
Hence, (L1, ∥.∥L1 ,≼) is a normed vector lattice. Moreover, we know that (L1, ∥.∥L1)
is a Banach space and therefore (L1, ∥.∥L1 ,≼) is Banach lattice.

Example 2.2.16. Let K = [a, b] be a compact interval. We denote by C([a, b]) the
space of all continuous, real functions on [a, b]. The space C([a, b]) endowed with the
supremum norm is a Banach lattice with order unit e the constant function equal to
one. The supremum norm is defined as follows:

∥ · ∥C([a,b]) = sup
f∈C([a,b])

∥f∥.

We know that the supremum norm is indeed a norm. To validate that it is a lattice
norm, we need to verify that for every f, g ∈ C([a, b]), such that |f | ≼ |g|, it follows
that sup ∥f∥ ⩽ sup ∥g∥. We know that C([a, b]) is a vector lattice endowed with
the canonical ordering. This implies that f ≼ g if and only if f(t) ≼ g(t), for all
t ∈ [a, b]. Therefore it is imminent that sup ∥f∥ ⩽ sup ∥g∥. Moreover, we know that
the supremum norm is complete. Hence

(
C([a, b]), ∥ · ∥C([a,b])

)
is a Banach lattice.
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Example 2.2.17. The vector lattice MB of all bounded, finitely additive, real func-
tions on a Boolean Algebra B, is a Banach lattice under the norm:

µ 7→ ∥µ∥ := sup
b∈B

|µ|(b).

By this definition, ∥µ∥ is called the total variation of µ. Let µ1 and µ2 be two bounded
finitely additive, real function on B, such that |µ1| ≼ |µ2|. Since both functions are
bounded, it follows that there exist A,B ∈ R, such that |µ1| ≼ A ≼ |µ2| ≼ B. Hence
supb∈B |µ1|(b) ⩽ supb∈B |µ2|(b). So ∥µ∥ is a lattice norm and therefore

(
MB, ∥µ∥

)
is

a normed vector lattice. Let (µn)n∈N be a Cauchy sequence of functions µ ∈ MB.
Then

for all, ϵ > 0, there exists n0 ∈ N, for all k, l ⩾ n0, such that ∥µk − µl∥ < ϵ.

This implies sup
b∈B

|µk−µl| < ϵ, by definition of the norm. Since µk and µl are bounded,

there exist upper bounds for both A and B respectively. Set B = µ ∈ V . Then

for all k, for all ϵ′, there exists n
′

0 ∈ N, for all k ⩾ n
′

0, such that sup
b∈B

|µk − µ| < ϵ′.

Therefore sup
b∈B

|µk − µ| < ϵ′ + ϵ. The quantity ϵ + ϵ′ can be as close to zero as we

want, hence sup |µk − µ| → 0 or, equivalently, µk → µ. Therefore the sequence is
convergent and the norm is complete. So

(
MB, ∥µ∥

)
is a Banach lattice.

Example 2.2.18. Let V be the vector lattice of all rapidly decreasing sequences
a = (a1, a2, . . . ). The lattice norms

ρk(a) =
∞∑
n=1

nk|an| (k = 1, 2, . . . )

define a topology, such that V is a complete metrizable locally convex vector lattice.
The fact that V is complete is an easy verification, as all sequence are rapidly decreas-
ing, which implies that every Cauchy sequence has the desired behavior. Moreover,
it is an easy verification that ρk are norms and lattice norms as a ≼ b implies

|a| ≼ |b| ⇔ |an| ≼ |bn|, ∀n ∈ N ⇔ nk|an| ≼ nk|bn| ⇔
∞∑
n=1

nk|an| ⩽
∞∑
n=1

nk|bn|.

Therefore ρk(a) ⩽ ρk(b). Lastly, the fact that V is metrizable comes as a consequence
of the local convexity of the topology.

Proposition 2.2.19. Let V be a normed vector lattice. Then the following hold for
all x ∈ V :

(i) The mappings x 7→ x+ , x 7→ x− , x 7→ |x|, (x, y) 7→ x ∧ y and (x, y) 7→ x ∨ y
are uniformly continuous.

(ii) V+ is closed and V is Archimedean.
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(iii) If S is a solid subset of V then S is closed.

(iv) If B is a band in V then B is closed in V . This holds for σ-ideals too.

(v) Let B be a band in V and denote by pB the associated band projection. Then
pB is continuous.

Proof. (i) Let p be a lattice norm. By Remark 2.2.11, p is monotone. In Propo-
sition 1.1.68 we proved that |x ∨ y − x1 ∨ y1| ≼ |x − x1| + |y − y1| and
|w ∧ y − x1 ∧ y1| ≼ |x− x1| + |y − y1| holds, for all x, y ∈ V . Thus the lattice
operations are uniformly continuous, as the difference of the values (x, y) and
(x1, y1) can be as less than a positive ϵ > 0 as we want. Now, if we take y = 0
we observe that (x, 0) 7→ x ∨ 0 = x+ and (x, 0) 7→ x ∧ 0 = x− and therefore
are uniformly continuous. Lastly, x 7→ ∥x∥ is the sum of uniformly continuous
functions and as a result uniformly continuous itself.

(ii) We define the positive cone in V as all x ∈ V such that the negative part is
equal to 0. Since x 7→ x− is uniformly continuous, it follows that that x 7→ x−

is continuous. Thus V+ = (x−)−1(0), where {0} is closed in V . Therefore V+

is closed as the inverse image of a closed set via continuous map.

(iii) We denote the closure of a subset S by S. Suppose that S is solid. We want to
validate that S is solid. We need to prove that for x ∈ S and y ∈ V , such that
|y| ≼ |x| then y ∈ S. For that reason, let (xn)n∈N be a convergent sequence
to x ∈ S. Then |xn| ∈ S, since S is solid. Thus we define (yn) , n ∈ N, such
that y+n = y+ ∧ |xn| and y−n = |xn| ∧ y , yn ∈ S, since |yn| ≼ |xn|. Now we
obtain that limn yn = y, since the lattice operation of infimum is uniformly
continuous. Therefore y ∈ S.

(iv) Let B be a band in V and (xn) , n ∈ N be an increasing sequence in B. If
xn → x ∈ V then x = supn xn, since V+ is closed. Because B is a band,
it follows that supn xn = x ∈ B. Moreover, let I be a σ-ideal. Let (kn)
be a sequence in I convergent to k ∈ V . Set un = |kn| ∧ |k|. Then (i),
implies that un → k. Furthermore, let (xn) be an increasing sequence in I,
such that xn := sup

0≼z≼n
uz, n ∈ N. Hence, 0 ≼ un ≼ xn ≼ |k|. Therefore,

∥xn − |k|∥ ≼ ∥un − |k|∥. This verifies that xn is convergent to |k| ∈ V . It
follows that |k| = supn xn and since I is a σ-ideal, we have |k| ∈ I. So k ∈ I,
since I is solid. Therefore I is closed.

(v) Let B be a band in V and denote by pB the associated band projection. Then
|pBx| ≼ pB|x| ≼ |x| holds, by Theorem 1.2.51, which implies that ∥pBx∥ ≼ ∥x∥,
for all x ∈ V . Hence pB is continuous, as it is linear and bounded with norm
equal or less than 1.

Corollary 2.2.20. Let V be a vector lattice and V0 a vector sublattice of V . Then
V0 is a sublattice in V . This also holds for ideals respectively.
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Proof. The closure of a vector subspace is also a vector subspace. Moreover, since
the lattice operations are uniform continuous by Proposition 2.2.19, we obtain that
V0 is closed in V . Furthermore, by (iii) from Proposition 2.2.19, it follows that the
closure of a solid set is solid. Hence, for any ideal I ∈ I(V ), we have that Ī is an
ideal.

Corollary 2.2.21. If V is a normed vector lattice then the completion of V is a
Banach Lattice with respect to the unique extensions of vector and lattice operations,
and also of the norm.

Proof. Let V be a Banach lattice. By definition, V is a vector sublattice of its
completion. The closure of V+ is the positive cone of Ṽ , since V is Archimedean.
Moreover, by (ii) of Proposition 2.2.19, it follows that (Ṽ+) is closed in Ṽ . Hence
Ṽ is also Archimedean, and both the lattice operations and the norm are uniformly
continuous as extensions. Therefore Ṽ is a Banach lattice as the rest properties of
Proposition 2.2.19 follow from the norm of V .

In order to prove the last implication of the following Corollary 2.2.23 we will
make use of the following lemma.

Lemma 2.2.22. Let V be a topological vector space and H ⊂ V be a hyperplane
such that H = {x : f(x) = a}. Then f is continuous if and only if H is closed.

Corollary 2.2.23. Let V be a normed vector lattice and f : V → R be a function
in V ⋆

0 . If f is lattice homomorphism then f is norm-continuous.

Proof. Since f is a lattice homomorphism, the inverse image of {0} via f is a σ-
ideal in V by Proposition 2.2.19. Moreover, as f is positive and f−1(0) determines
uniquely the semi spaces in Definition 1.3.22, it follows that f−1(0) is a hyperplane
in V . Thus f is continuous by Lemma 2.2.22.

The following Theorem results in stronger assertions about continuity given that
(V, p) is norm complete.

Theorem 2.2.24. Let V, F be normed vector lattices such that V is a Banach lattice.
If T : V → F is a positive linear map, then T is continuous. This holds for all T .

Proof. Let T : V → F be a positive linear map. Since the unit ball U is an absorbing,
convex and solid subset of V , then the lattice norm in V can be the gauge of U . Now,
suppose T is not continuous. This means that T is unbounded in the unit ball U .
Since U contains the symmetric order interval [−x, x], such that ∥x∥ ≼ 1, it follows
that T is unbounded on U ∩ V+. Hence, there exists a sequence (vn)n∈N ∈ V , such
that ∥T (vn)∥ ≽ n3, for all n ∈ N. Because V is complete with respect to the norm

we know that
∞∑
j=1

n−2vn exists in V and it holds that z ≽ n−2vn, since V+ is closed in

V by Proposition 2.2.19, where z =
∞∑
j=1

n−2vn. This implies that Tz ≽ n−2Tvn ≽ 0

or, equivalently, ∥Tz∥ ≽ n−2∥Tvn∥ ≽ n, for all n ∈ N. This is a contradiction to the
norm completion in V . Therefore T is continuous.
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Remark 2.2.25. V+ is norm complete, since V+ is closed in V and V is norm
complete.

To proceed further, we will need the following notations.

Definition 2.2.26. Let V be a Banach lattice and F a normed lattice. A linear
map f : V → F is called absolutely majorized, if there exists a linear map T : V → F
satisfying |fx| ≼ Tx, for all x ∈ V+.

Example 2.2.27. Let V = R and F = R endowed with the lexicographic ordering
and the absolute value. Consider the map f : R → R, where r 7→ 2r, and T : R → R,
where r 7→ 3r , r ∈ R+. It is easy to observe that |fx| ≼ Tx holds for all x ∈ R.
Hence f is absolutely majorized.

Corollary 2.2.28. Let V be a Banach Lattice and F a normed vector lattice. Any
absolutely majorized linear map is continuous.

Proof. Let S : V → F be an absolutely majorized linear map. If T is a positive
linear map, then |Sx| ≼ Tx holds, for all x ∈ V+. Hence S = T − (T − S), which is
the difference of two positive linear maps. Thus S is positive, by Corollary 2.1.12,
and, by Theorem 2.2.24, it is also continuous.

For the following corollaries, assume that V is a Banach Lattice and F is a normed
vector lattice.

Corollary 2.2.29. Any positive linear form is continuous.

Proof. By Corollary 2.1.12, any positive linear form is the difference of two positive
linear forms. By Proposition 2.2.19, both f+ and f− are uniformly continuous and
hence continuous.

Corollary 2.2.30. Any maximal ideal M ⊂ V is closed.

Proof. By Corollary 1.3.14, any maximal ideal is the kernel of a positive linear map.
Since any positive linear map is continuous, and the kernel is the inverse image of
{0}, which is a closed set via a continuous map, it follows that M is closed.

Corollary 2.2.31. Suppose ∥ · ∥1 and ∥ · ∥2 are different norms for the same Banach
Lattice V . Then ∥ · ∥1 and ∥ · ∥2 are equivalent.

Proof. Let V be a Banach lattice and U be the unit ball of V . Then V is necessarily
Archimedean by Proposition 2.2.12. Let ∥ · ∥1 and ∥ · ∥2 be two different norms for
V . We want to prove that they are equivalent or, that there exists positive fixed
numbers k1 and k2 such that

k1∥ · ∥1 ⩽ ∥ · ∥2 ⩽ k2∥ · ∥1.

By Theorem 2.2.24, it follows that the identity mapping is positive and continuous
in both directions and since V is Archimedean the respective open subsets contain
each other. Hence, we can choose k1 = min

∥u∥=1
u and k2 = max

∥u∥=1
u, where u ∈ U and

the proof is complete.
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Proposition 2.2.32. Let V be a normed vector lattice and I ⊂ V a closed ideal.
Under the canonical ordering and the norm induced by V , V/I is a normed vector
lattice. In addition, if V is norm complete, then V/I is norm complete.

Proof. If V is complete, then V/I is norm complete with respect to the norm given
by x 7→ p(x+I) = inf{p(x) : x ∈ x+I}. To verify that the quotient norm is a lattice
norm, we need to validate that q(U) is solid in V/I, where U is the unit ball and q
the quotient map. This is obvious, as q is a lattice homomorphism, by Proposition
1.2.32 and Corollary 1.2.37, and thus q maps U to a solid q(U).

Definition 2.2.33. Let V be a locally convex space V . If each solid absorbing and
convex subset of V is a 0-neighborhood, then V is called barreled.

We will need the following Theorem due to Banach and Steinhaus.

Definition 2.2.34. Let V be a topological space and H ⊂ RV . Then H is called
equicontinuous at t0, if for each neighborhood N , there exists a neighborhood Ut0 of
t0, such that [f(t), f(t0)] ∈ N , whenever t0 ∈ U0 and f ∈ H.

Theorem 2.2.35. Let V be a barreled locally convex space. Then every simply
bounded subset in V is equicontinuous.

Definition 2.2.36. The space of all continuous linear forms is called the strong dual
of V and is denoted by V ′.

Proposition 2.2.37. Let V be a normed vector lattice. Then V ′ ⊂ V ⋆ and V ′ is a
Banach Lattice, which is order complete under the ordering generated by V ⋆ and its
dual norm. Moreover, V ′ is an ideal in V ⋆ and if V is barreled, then V ′ is a band in
V ⋆. If V is a Banach Lattice itself, then V ′ = V ⋆.

Proof. We know that f is a continuous linear form thus, by Proposition 2.1.10, it
follows that f = f+ − f−. This implies that f− ∈ V ′ and f+ ∈ V ′, by Corollary
2.2.29. Hence V ′ ⊂ V ⋆.

Moreover, by (i) of Proposition 2.1.10, it follows that V ′ is closed under the lattice
operations and hence V ′ is a sublattice of V ⋆. Proposition 2.1.37 indicates that the
polar of the unit ball is solid in V ⋆ and thus V ′ is an ideal in V ⋆. This also implies
that the dual norm is a lattice norm and, since V is a normed vector lattice, the
dual norm is complete due to the uniform continuity of the lattice operations by
Proposition 2.2.19. Therefore V ′ is a Banach lattice. Since V ⋆ is order complete, by
Proposition 2.1.10, it follows that V ′ is order complete.

Now we want to validate that the barreldness of V implies that V ′ is a band in
V ⋆. For that reason. let {fa} be a directed family in V ′, such that f0 = supa fa exists
in V ⋆. By (i) of Proposition 2.1.10, we obtain that lima fa(x) = f0(x), for all x ∈ V .
Since V ′ is a sublattice of V ⋆, we can verify that there exists a filter or, more specific,
a U -neighborhood for each x ∈ V , such that [fa(x), fa(x0)] ⊂ U , for some x0 ∈ U .
Hence V ′ is bounded for all x ∈ V and, by the Banach-Steinhaus Theorem, V ′ is
equicontinuous. Therefore f0 ∈ V ′ and V ′ is a band in V ⋆. The last assertion comes
from Corollary 2.2.21. Indeed, let f ∈ V ⋆. Since f is a positive linear form, it follows
that f is continuous and since V is a Banach lattice, it follows that f ∈ V ′.
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Definition 2.2.38. Let ⟨x, f⟩ be the evaluation map from V to R. The coarsest
topology that makes ⟨x, f⟩ continuous, for all f ∈ V ′, is called the weak topology and
is denoted by σ(V, V ′).

In the same frame, we can define another topology in the bidual V ′′ of V .

Definition 2.2.39. Let x ∈ V and f ∈ V ′. The evaluation map ⟨x, f⟩ : V ′ → R is a
linear functional. The coarsest topology that makes ⟨x, f⟩ continuous, is called the
weak apostrophe topology and is denoted by σ(V ′, V ).

Corollary 2.2.40. If I is a closed ideal of a normed vector lattice, then Ip is a
σ(V ′, V ) closed band of V ′. Furthermore, I ′ can be identified with the quotient V ′/Ip,
which is a Banach Lattice, and (V/I)′ can be identified with the normed ideal Ip of
V ′.

Proof. The polar of an ideal I in V is given by

Ip = {f ∈ V ′ : ⟨x, f⟩ ≼ 1 , for all x ∈ I}.

Since I is a closed ideal and f is a continuous map, it follows that f−1(0) maps
closed sets to closed sets. Hence Ip is closed in the σ(V ′, V ) weak topology, for all
x ∈ I. To verify that Ip is a band we need to prove that for every subset U of Ip,
if supU exists in V , then supU ∈ Ip. Let U ⊂ Ip be a directed and majorized set.
Then for all x ∈ I+, we set f0 := supU . Hence, by Proposition 2.1.10, it follows that
f0 = sup

f∈Ip
f . Therefore f0 exists in V ′ and obviously f0 ∈ Ip. Thus Ip is a band in

V ′.
For the last two assertions we need to show that there exists p and s order

isomorphisms, such that p : I ′ → V ′/Ip and s : (V/I)′ → Ip. By Corollary 2.1.40, it
follows that Ip is the kernel of the evaluation map V 7→ V ′ ⊂ V ⋆, since V ′ is an ideal
in V ⋆ by Proposition 2.2.37. Hence, e|I′ : I ′ → V ′ and ker e|I′ = Ip. Therefore, by
the first Theorem of isomorphisms, it follows that I ′ ∼= V ′/Ip. Since V is a normed
vector lattice and I is a closed ideal, it follows that (V ′/I ′) = (V/I)′.

Lastly, since Ip is the kernel of a lattice homomorphism, it follows that Ip is a pro-
jection band by Theorem 1.2.53 and the fact that V is Archimedean, by Proposition
2.2.12. Therefore, V ′/I ′ = (V/I)′ ∼= Ip.

Corollary 2.2.41. The evaluation map yields an isomorphism between a normed
vector lattice V and a sublattice of its bidual V ′′.

Proof. The evaluation map provides a natural embedding of V into its bidual V ′′. In
fact, if f ∈ V ′′, then ⟨x, f⟩ := f(x), x ∈ V and f ∈ V ′′. Hence, in view of Proposition
2.1.39, we obtain that V 7→ V ′′ is a lattice homomorphism as V ′ is an ideal of V ⋆.
The proof is complete, as the Hahn-Banach Theorem yields that ⟨x, f⟩ is a norm
isomorphism.

Proposition 2.2.42. Let N be a normed vector sublattice of V . If f ∈ N , then
there exists a positive function F ∈ V ′, such that F |N = f and ∥F∥ = ∥f∥.
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Proof. In view of Proposition 2.1.30, in order for f to have a positive extension it
needs to be bounded above on N ∩ (U −V+). Let U be the unit ball in V and f ∈ N ′

such that f is positive and f(x) ≼ 1, for all x ∈ U ∩ N . To verify our claim, let
x ∈ (U − V+) ∩ N ′. Thus x ≼ u, which implies that x+ ≼ u+ ∈ U . Hence, by the
decomposition property, it follows that x+ ∈ U ∩ N . Moreover, f(x) ≼ f(x+) ≼ 1,
since f is a positive linear map. Therefore, there exists a positive extension F such
that

{F (x) = 1 , x ∈ V } ∩ U o = ∅.

Hence ∥F∥ ≼ 1, which implies that ∥F∥ = ∥f∥.

Remark 2.2.43. Let V be a normed vector lattice with a unit ball U and f be a
positive function on V . Since |f(x)| ≼ f(|x|) holds, for all x, and U is solid in V ,
the norm of f is given as follows:

∥x∥ = sup{f(x) : x ∈ U ∩ V+}.

Remark 2.2.44. In view of Proposition 2.1.10, formula (i), the supremum of a
directed family {fa} of V

′
+ exists in V ′ and is denoted by f := supa fa. Therefore

∥f∥ = supa ∥fa∥.

Remark 2.2.45. As V can be identified as a normed vector sublattice of V ′′, the
norm of each x ∈ V+ is given by

∥f∥ = sup{⟨x, x′⟩ : x′ ∈ Up ∩ V
′

+},

in view of Corollary 2.2.41. Thus V+ can by viewed as a convex cone of continuous
real functions on the σ − (V ′, V )-compact space X = Up ∩ V

′
+.

Definition 2.2.46. Let V be a normed vector lattice. Suppose there exists a subset
P of V+, such that P is the unique smallest set, such that each x ∈ V+ reaches its
maximum in P . If so, P is called the Silov boundary of V+.

Definition 2.2.47. Let X be a topological space and K be a non-void, closed subset
of X. Then a non-void subset A of K is called an extreme subset of K if the following
are satisfied:

(i) A is closed and convex.

(ii) If for some x, y ∈ K, there exist 0 < λ < 1, such that if λx + (1 − λ)y ∈ A,
then x, y ∈ A.

Definition 2.2.48. An extreme subset of a convex set C is called a face.

Definition 2.2.49. Let V be a vector space and C a convex subset of V . A face F
of C is called hereditary with respect to the ordering, if v ∈ F and u ∈ C, such that
u ≽ v implies u ∈ F .

Remark 2.2.50. If V is a normed vector lattice with unit ball U , we write Up
+ for

the positive part of Up ∩ V
′
+ of the dual unit ball.
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Theorem 2.2.51. Let A,B be non-empty, disjoint convex subsets of a local convex
space, such that A is closed and B is compact. Then there exists a closed, real
hyperplane in V , strictly separating A and B.

Lemma 2.2.52. Let H be an ordered space and G be an H-separating hyperplane
of H∗. H is endowed with the weak topology σ(H,G). If K is a convex subset of H
and x0 be a maximal extreme point of K, then there exists a positive linear f in G,
for all x0-neighborhoods such that

sup
x∈K/U

f(x) < f(x0).

Proof. The weak topology σ(H,G) allows the existence of closed semi spaces Hi =
{x ∈ H : fi(x) ≼ ai}, where fi ∈ G, for all i, such that

x0 ∈ H \ (H1 ∪ · · · ∪Hn) ⊂ U.

Let Ki = K ∩ Hi and denote by K0 the convex hull of
n⋃
1

Ki. It follows that K0 is

compact. It is necessary that x0 ̸= K0. Otherwise, x0 ∈
n⋃
1

Ki, which is a contradic-

tion by hypothesis. Since x0 is maximal in K, it follows that (x0 +H+) ∩K = {x0}
and so (x0 + H+) ∩ K0 = ∅. It follows from Theorem 2.2.51, that there exists a
σ(H,G)-closed real hyperplane {x ∈ H : f(x) = α} strictly separating K0 from
x0 +H+.

Moreover, we can assume that sup{f(x) : x ∈ K0} < α < f(x0) without loss of
generality. This yields that f is positive and since it is bounded below on H+, the
assertion follows because K \ U ⊂ K0.

Theorem 2.2.53. Let V be a normed vector lattice and U be the unit ball of V . If
P ⊂ V+, then P can be considered as the positive cone of real functions on the weak
compact space Up

+. Moreover, P is identical with the weak closure P of the set of all
extreme points in Up

+, such that all extreme points are maximal in Up
+ with respect to

the canonical ordering in V ′.

Proof. We recall that a boundary Q of V+ is a closed subset of Up
+, such that each

x ∈ V+ takes its maximum on Q or, equivalently, its maximum with respect to the
norm. The proof consists of two parts. In the first part, we will show that P is a
boundary of V+ and in the second part we will prove that P is contained in every
other boundary Q.

(i) Let x0 ∈ V+. We will validate that there exists x
′
0 ∈ P , such that ⟨x0, x

′
0⟩ =

sup{⟨x0, x
′⟩ : x′ ∈ Up

+ = ∥x0∥}. By Definition 2.2.49, it follows that the family
of all closed hereditary faces of Up

+ is ordered under downward inclusion and
hence we can apply Zorn’s lemma. Thus, we obtain that each closed hereditary
face F of Up

+ contains a minimal such face F0. Now, we set F = {y′ ∈ Up
+ :

⟨x0, y
′⟩ = ∥x0∥}. By the defintion of F , it follows that F is a hereditary face

and indeed closed. Hence, it contains a minimal face F0. Since F0 is convex
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and compact, it follows that F0 contains an extreme point x
′
0, as F0 is a face of

Up
+, which is extreme in Up

+. Suppose that x
′
0 were not maximal in U+. Then

there would exist y′ ∈ F0, satisfying y′ > x
′
+ as F0 is hereditary. But, we know

that V+ separates V ′ and this would lead to the existence of some y ∈ V+, such
that ⟨y, y′⟩ > ⟨y, x′

0⟩, which follows that the set

Fy := {y′ ∈ F0 : ⟨y, y′⟩ = sup
z′∈F0

< y, z′ >}

would be a closed hereditary face properly contained in F0. This contradicts
the minimality of F0. Therefore F0 = {x′

0} and so x
′
0 ∈ P .

(ii) Verifying that every boundary Q of V+ contains P comes as a result of Lemma
2.2.52 by setting H = V

′
σ, G = V and K = Up

+.

The following remark provides a more general result in view of the proof of
Theorem 2.2.53.

Remark 2.2.54. Let V be an ordered topological vector space with total positive
cone V+ and K be a convex weak compact subset of V . Then the Silov boundary of
V+ is the weak closure of the set of extreme points of K, which are maximal in K,
under the canonical ordering induced by V ′.

Lemma 2.2.55. Suppose V is an ordered vector space and a topological vector space,
such that the positive cone is closed. Let C be a directed set in V , such that its section
filter is convergent to x ∈ V . Then x = supA.

Proof. Fix a w ∈ A. Then there exist c ∈ C, such that c ≽ w or, equivalently,
c−w ∈ V+. Since the section filter converges to x, it follows that c−w ∈ V+ implies
x − w ∈ V+, as V+ is closed. Therefore, x is a majorant in C. Moreover, let u be
another majorant of C. It follows that u− c ∈ V+, which implies that u− x ∈ V+ as
x is a majorant of C. Thus u ≽ x for all c ∈ C. Therefore x = supC and the proof
is complete.

Theorem 2.2.56. Let V be a normed vector lattice and {xa} be a directed family
in V . Moreover, there exists x ∈ V , such that lima⟨xa, x

′⟩ = ⟨x, x′⟩, for all x′ in the
Silov boundary P of V+. Then x = supa xa and lima ∥x− xa∥ = 0.

Proof. Let {xa} be a family in V , such that x′ 7→ ⟨xa, x
′⟩ is a family of continuous real

valued functions on the weak topology of P , where P is compact. These functions
are convergent pointwise to ⟨x, x′⟩, where ⟨x, x′⟩ is a continuous function. Since {xa}
is directed, the convergence is uniform, as Dini’s classical Theorem implies. Hence,
lima ∥x − xa∥ = 0 follows from Theorem 2.2.53. Moreover, since V+ is closed in V ,
Lemma 2.2.52 yields that x = supa xa.

Remark 2.2.57. Theorem 2.2.56 is an extension of Dini’s classical convergence
Theorem.
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Remark 2.2.58. Recall that Dini’s Theorem presupposes that the family of contin-
uous real-valued functions should be monotonically increasing. This fact is obtained
as xa is directed in P ⊂ V+, where P is the Silov boundary.

Remark 2.2.59. We can apply the previous theorem for downward directed families.

Proposition 2.2.60. A family satisfying the hypothesis of Theorem 2.2.56 contains
a countable subfamily having the same limit and supremum.

Proof. Let {xak} be a countable subfamily of {xa}. Since {xak} is countable and V
is Archimedean, it follows that {xak} is closed in {xa}. Since limk⟨xak , x

′⟩ = ⟨x, x′⟩,
for all x′ in the Silov boundary P of V+, it follows that x = limk xak . Moreover, since
V is normed, it follows that limk ∥x− xak∥ = 0.

Corollary 2.2.61. Any directed family which is weakly convergent, is also norm
convergent in a normed vector lattice.

Proof. The result follows from Lemma 2.2.55 and Theorem 2.2.56, as any {xa} satis-
fying the hypothesis of 2.2.55 is continuous on the σ(V ′, V )-compact space P . Hence
the result of 2.2.56 implies the assertion.

Theorem 2.2.62. Let V be a Banach Lattice. The following assertions are equiva-
lent:

(i) V is countably order complete and each decreasing sequence yn ∈ V such that
lim yn = 0 norm converges to 0.

(ii) V is order complete and each f ∈ V ′ is order continuous.

(iii) Any majorized directed family in V is weakly convergent.

(iv) Any directed family in V having infimum of zero converges to 0 with respect to
the norm of V .

(v) The evaluation map V 7→ V ′′ maps V onto an ideal of the Banach Lattice V ′′.

(vi) The order intervals [x, y], for all x, y ∈ V , are σ(V ′, V ) compact.

Proof. Suppose V is order complete and each f ∈ V ′ is order continuous. We want
to validate that any majorized, directed family in V is weakly convergent. Let fn
be a directed family in V , such that f = supn fn. Since V is order complete, this
supremum exists and is well defined. Moreover, since f is order continuous it follows
that fn → f weakly.

Suppose that every majorized, directed family in V is weakly convergent. We
want to prove that any directed family in V , having infimum, is zero convergent to 0
with respect to the norm. By inspection of the proofs of Lemma 2.2.55 and Theorem
2.2.56, we can assume that if A ⊂ V and inf A = 0, then the weak convergence
implies that any minorized family has inf = 0. Hence, by Theorem 2.2.56, we obtain
that any family norm converges to 0.
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Suppose that any directed family in V , having infimum, is zero convergent to 0
with respect to the norm. We want to validate that V is countably order complete
and each decreasing sequence yn ∈ V , such that lim yn = 0, norm converges to 0.
Suppose that any directed family with zero infimum is norm convergent to 0. Such
family can be the set of all majorants of a directed set in V . Denote this set by MA.
It follows that B = MA − A is a directed downward set, such that inf B = 0. Thus,
by hypothesis, A is a Cauchy Family, as MA is countable and by (i) it follows that
supA exists in view of Lemma 2.2.55.

Suppose that V is countably order complete and each decreasing sequence yn ∈ V ,
such that lim yn = 0, norm converges to 0. We need to validate that V is order
complete and each f ∈ V ′ is order continuous. An inspection of this proof gives us
another way to prove that countable order complete vector lattices are order complete
as we did in Proposition 2.1.43. Now, let A ⊂ V be a directed set. Assume further
that A contains the supremum of each of its countable subsets. Analogously as shown
in Proposition 2.1.43, we claim that for a strictly positive transfinite sequence {xa},
such that {xa}a<β ∈ A, β ∈ B, such that B is countable. If not, then there would
exist an increasing sequence un of ordinals, such that an < β and a real c, such that
∥xan+1 − xan∥ > ϵ, for all n ∈ N. But (xan) is convergent to its supremum in A,
which shows that (xan) is a Cauchy sequence, which is a contradiction. Hence, by
transfinite recursion we can construct an increasing sequence xa ∈ A, where all a
are countable, such that xa+1 = xa if and only if xa = supA. As a consequence, V
is super Dedekind Complete and by (v), each continuous linear form on V is order
continuous.

Suppose that V is order complete and each f ∈ V is order continuous. We will
prove that the evaluation map maps V onto and an ideal of V ′′. By Proposition
2.2.37, we can obtain that V ′ = V ⋆

00 and Nakano’s Theorem, shows that q(V ) is order
dense in V ⋆

00 ⊂ V ′′. Hence by Proposition 2.2.37, as V ′ is an ideal, the assertion is
imminent.

Suppose that the order intervals [x, y] are weakly compact. We need to validate
that any f ∈ V ′ is order continuous. For that reason, let A is a directed subset of
V and v ∈ V is a majorant of A. Thus, the order interval [0, v] is a superset of A,
provided without loss of generality, that A ⊂ V+. Therefore, A is weakly convergent
as [0, v] is compact, to some x ∈ [0, v] by Theorem 2.2.56. Moreover, Theorem 2.2.56,
implies that x = supA, since V+ is closed with respect to the norm and the weak
topology. Hence, any convergent linear form on V ′ is clearly order continuous.

We proceed to the following useful corollaries.

Corollary 2.2.63. Suppose V is a Banach lattice such that any one of the allegations
in Theorem 2.2.62 are satisfied. Then V is super Dedekind complete. Moreover,
since V ⊂ V ′′, the band BV , generated by V , is considered to be the band of all order
continuous linear forms on V .

Proof. Since V has a directed family with zero infimum, its norm is zero convergent
by (iii) of Theorem 2.2.62. Moreover, the topology of V allows us to apply Uris-
hon’s Lemma and obtain the fact that V is metrizable. Hence, it is countable order
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complete, because (i) indicates that we can find a directed subset A of the directed
family {fa}, such that supA = supa fa. Hence, V is super Dedekind complete, as
{fa} is norm convergent in A.

This assertion is valid as q(V ) is order dense in V ⋆
00, by Nakano’s Theorem. Since

(i) holds from Theorem 2.2.62, it follows that BV is the band of all order continuous
linear forms on V .

Corollary 2.2.64. If V satisfies any of the assertions establishes in Theorem 2.2.62,
then any band projection BV in V ′ is weakly apostrophe continuous. Hence any band
in V ′ is σ(V ′, V )-closed.

Proof. Endow V ′ with the locally convex topology. Since the Minkowski gauge of a
solid, convex and absorbing set is a semi-norm, we can define a family of lattice semi-
norms through evaluation, such that f 7→ px(f) = ⟨x, |f |⟩ generating the topology.
This topology is called the topology of the uniform convergence on order bounded
subsets of V . We denote this topology by o(V ′, V ). Theorem 2.2.62 (i), indicates
that each interval in the weak apostrophe topology is compact and hence the uniform
convergence topology is well defined and consistent with the dual system ⟨V, V ′′⟩
by Corollary 2.2.41 and the weak topology associated with o(V ′, V ) is the weak
topology σ(V ′, V ). Reversely, denote by P ′ a band projection in V ′. It follows that,
0 ≼ P (|f |) = |Pf | ≼ |f | holds from Theorem 1.2.51, for all f ∈ V ′. Thus the
semi-norms px satisfy

px(Pf) ≼ px(f),

since px are monotone. This holds, for all x ∈ V+ and consequently P ′ is o(V ′, V )-
continuous, as it is positive and satisfy Theorem 2.2.24. Equivalently, P ′ is σ(V ′, V )
continuous and as V ′ is order complete by Theorem 1.2.53, each band is a projection
band and by Proposition 1.3.15, it follows that each band is closed in σ(V ′, V ).

Definition 2.2.65. Let V be a Banach lattice. Then V is reflexive, if the canonical
embedding q from V to V ′′ is surjective, where q is the evaluation map.

The following Theorem results in a characterization of reflexive Banach Lattices
due to Ogasawara [1948].

Theorem 2.2.66. V is a reflexive Banach Lattice if and only if the following two
are satisfied:

(i) Any norm bounded increasing sequence in V norm converges.

(ii) Each positive decreasing sequence in V ′ is norm convergent.

Furthermore, if V is reflexive then V is super Dedekind complete. Also, both condi-
tions above may be satisfied with directed families instead of sequences.

Proof. We need to validate that both conditions are necessary and sufficient in order
for V to be reflexive.
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(i) Firstly, conditions (i) and (ii) are necessary. In order to prove that, let f ∈ V
be a norm bounden increasing sequence. Since V is reflexive we obtain that f
is weak apostrophe convergent and by Thoerem 2.2.56 it follows that f is norm
convergent. Moreover, any sequence satisfying (ii) is weak apostrophe conver-
gent by Theorem 2.2.62, which implies that is norm convergent, by Theorem
2.2.56 in V ′, as V is reflexive.

(ii) Now we need to validate that conditions (i) and (ii) are sufficient. We observe
that the first condition clearly implies (i), from Theorem 2.2.62, is valid. We
know that q(V ) is order dense in V ⋆

00 by Nakano’s Theorem. Since V ′ is order
complete, by Corollary 2.2.63, it follows that V ′′ = (V ′)⋆00. Hence, V ′′ is the
band generated by q(V ). Now let v ∈ V ′′, such that v ≽ 0. Then, there
exists a directed set A ⊂ V+, such that v = sup q(A), by Proposition 1.2.57.
We need to verify that v ∈ q(V ). As shown above in Theorem 2.2.62, by
transfinite recursion we can construct a sequence (xa)a<β that is maximal and
strictly increasing. Thus (xa) is countable, since A is norm bounded in V .
Now (i) implies that v = supa xa exists in V and it is imminent that v =
supa xa = sup q(A), since q(V ) is an ideal in V ′′. Furthermore, any strictly
increasing transfinite sequence must be countable otherwise, as in Theorem
2.2.62, there would exist a positive c ∈ R, such that ∥xan+1 − xan∥ ≽ c, which
is a contradiction, as every norm bounded increasing sequence is convergent in
V by (i). Therefore both conditions are sufficient.

Example 2.2.67. Let co be the space of all real null sequences. The space co satisfies
all of the implications of Theorem 2.2.62. We will validate is the fifth implication.
What we know is that the dual of c0 is l1 and the dual of l1 is l∞. Hence, what
we need to prove is that c0 is an ideal through evaluation in l∞. We notice that
co ⊂ l∞. We will validate that c0 is a solid vector subspace in l∞. Since the zero
function belongs in c0, it is easy to observe that the sum of zero sequences is also a
zero sequence, as also the scalar multiplication of a sequence. Thus, co is a vector
subspace of l∞. Lastly, we need to prove that c0 is solid. Let x ∈ l∞ and y ∈ c0 such
that |x| ≼ |y|. Taking limits in both members we obtain the following

lim |x| ≼ lim |y| → 0,

for all x, y. Thus lim |x| → 0 and therefore x ∈ c0. Hence c0 is an ideal in l∞ and
the fact that the evaluation maps c0 onto an ideal in l∞ is more obvious. The rest
of implications follow in view of the proof of Theorem 2.2.62.

Definition 2.2.68. Let V be a reflexive Banach lattice. If V is isomorphic to an
ideal in V ′′ through evaluation, then V is called a KB-space.

Remark 2.2.69. The first implication of Theorem 2.2.66 is equivalent to V be a
KB-space.

Example 2.2.70. An intermediate class between reflexive Banach lattice and those,
which are ideals in their biduals, are KB spaces. Examples of non-reflexive KB-
spaces are the spaces l1 and L1(µ).
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Definition 2.2.71. Let V be a normed vector lattice. The norm of V is said to be
order continuous, if every order convergent filter in V converges with respect to the
norm.

Lemma 2.2.72. Let V be a normed vector lattice. For a couple of real numbers c > 0

and δ > 0 we take a sequence (un)n∈N, such that ∥un∥ ⩾ 1+ δ and ∥
n∑

v=1

uv∥ ⩽ c, hold

for all n. Suppose also that at least one of the following holds :

(i) (un) is majorized.

(ii) V is order complete with order continuous norm.

Then there exists a sequence (k(n))n∈N of natural numbers and a disjoint sequence
(xn) ∈ V+, satisfying ∥xn∥ ⩾ 1 and xn ≼ uk(n), for all n ∈ N.

Proof. We should note first that for each t > 0 there exists a sequence (k(n))n∈N ∈ N
such that

∥(cvk(1) − vk(n))
−∥ ⩾ 1 + δ/2 (2.1)

for all n. Otherwise, there would exist a subsequence (un) of (vn) such that

∥(cu1 − uk)
−∥ ⩾ 1 + δ/2

whenever j < k. This implies

tc ⩾ t∥u1 + · · ·+ un∥ = ∥nun+1 − (un+1 − tu1)− · · · − (un+1 − aun)∥.

This leads to

tc ⩾ ∥nun+1 − (un+1 − tu)+ − · · · − (un+1 − tun)
+∥

or, equivalently,
tc ⩾ n(1 + δ)− n(1 + δ/2) = nδ/2,

for all n, which is a contradiction. Secondly, there exists ρ ∈ N, such that

∥(u1 − uρ+1 − · · · − uρ+n)
+∥ ⩾ 1 + δ/2. (2.2)

Otherwise, for any ρ ∈ N, there would exist at least one real r(ρ), such that

∥(u1 − uρ+1 − · · · − uρ+r(ρ))
+∥ ⩾ 1 + δ/2.

By setting ρ = 1 and ρj+1 = r(ρi) recursively, we obtain the following

c ⩾ ∥u2 + · · ·+ uρ(n+1)
∥

= ∥nu1 − (u1 − u2 − . . . uρ2)− · · · − (u1 − uρn+1)− · · · − uρn+1∥,

which results to

c ⩾ ∥nu1 − (u1 − u2 − · · · − uρ2)
+ − · · · − (u1 − uρn+1 − · · · − uρn+1)

+∥.
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So,
c ⩾ n(1 + δ)− n(1 + δ/2) = nδ/2,

which is a contradiction. Now, we will validate that there exist (x1, y1, . . . ), such
that 0 ≼ x1 ≼ uk(1), ∥x∥ ⩾ 1, and 0 ≼ yn ≼ uk(n), ∥yn∥ ⩾ 1 + δ/2 and x1 ∧ yn = 0,
for all n ⩾ 2, under each of the additional assumptions (i) and (ii). Then the proof
will be completed by induction.

• Suppose that there exists a majorized sequence (un)n∈N ∈ V . Then, by rela-
tion 2.1, there exists a sequence (k(n))n∈N ∈ N, such that

∥∥(3δ−1∥x∥uk(1) −
uk(n))

−
∥∥ > 1 + δ/2, whenever n ⩾ 2. By defining

x1 :=

(
uk(1) −

δ

3∥x∥
x

)+

and yn :=

(
uk(1) −

3∥x∥
δ

uk(1)

)+

it is clear that x1 ∧ yn = 0, for all n ∈ N. Furthermore, by the decomposition
property,

x1 =

(
uk(1) −

δ

3∥x∥
x

)
+ (uk(1) −

δ

3∥x∥
x

)−

.

Thus

∥x1∥ =

∥∥∥∥(uk(1) −
δ

3∥x∥
x

)
+ (uk(1) −

δ

3∥x∥
x

)−∥∥∥∥
⩾ ∥uk(1)∥ − δ/3−

∥∥∥∥(uk(1) −
δ

3∥x∥
x

)−∥∥∥∥
⩾ 1 + δ/3.

• Now suppose that V is order complete with an order continuous norm. Hence,
by relation 2.1, there exists a sequence of natural numbers (k(n))n∈N, such that

∥(uk(n) − uk(1))
+∥ ⩾ 1 + δ/2,

for all n ⩾ 2. By relation 2.2 there exists ρ ∈ N, such that

∥(uk(1) − uk(ρ+1) − · · · − uk(ρ+n))
+∥ ⩾ 1 + δ/2,

for all n. We define the following:

x1 := inf
n
(uk(1) − uk(ρ+1) − · · · − uk(ρ+n))

+,

y1 := (uk(ρ+n−1) − uk(1))
+ for n ⩾ 2.

It is clear that ∥x1∥ ⩾ 1+δ/2, because x1 is the infimum, ∥·∥ is order continuous
and ∥yn∥ ⩾ 1 + δ/2, by hypothesis. Consequently,

0 ≼ x1 ∧ y1 ≼ (uk(1) − uk(ρ+1) − · · · − uk(ρ+n))
+ ∧ (uk(ρ+n−1) − uk(1))

+.

or, equivalently, by distributivity

0 ≼ x1 ∧ y1 ≼ (yn)
− ∧ (yn)

+ = 0

whenever n ⩾ 2.
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The proof is complete.

The previous lemma is vital for the remaining of the chapter.

Theorem 2.2.73. Let V be a countably order complete Banach lattice. The following
assertions are equivalent:

(i) V has an order continuous norm.

(ii) Suppose V L
0 is a Banach sublattice of V . Then there exist no V L

0 ∈ V such that
V L
0

∼= l∞.

(iii) Any positive linear map T from l∞ to V is weakly compact.

(iv) Let I ∈ I(V ). Every closed ideal I in V is a band.

Proof. Suppose V has order continuous norm. Then, Corollary 2.2.31, states that
every vector lattice isomorphism is continuous in both directions. Since, l∞ has no
order continuous norm, we can not find a suitable vector sublattice isomorphic to
l∞.

Suppose V has order continuous norm. It is clear that if (i) holds, then (iv) holds,
by (iii) from Theorem 2.2.62. Moreover, (iii) holds, when V has order continuous
norm. Indeed, any interval is mapped in V through a linear positive map. Hence,
(vi) from Theorem 2.2.62, implies that any interval is weakly compact. Thus, if
[x, y]l∞ , then f(x, y) is σ-(V, V ′) ∈ V , and f is a positive linear map.

We suppose that there exists no Banach sublattice V L
0 isomorphic to l∞. Now,

suppose that V has no order continuous norm. We will validate the implication,
by contradiction. If V has no order continuous norm, then there exists a positive
c ∈ R and a sequence (zn)n∈N ∈ V , such that ∥zn − zn+1∥ ≽ c, for all n ∈ N. Take
zn to be a decreasing sequence. We can find a specific un satisfying the hypothesis

of Lemma 2.2.72. Take un, such that un =
1

ϵ
(1 + δ)(znzn+1) for any given δ > 0.

It is easy to observe that ∥un∥ ≽ 1. Therefore, there exists a disjoint normalized
sequence (xn)n∈N, such that x0 = ϵ−1(1 + δ)z1 is the majorant of the linear hull of

xn forms a sublattice of V , and
k∑
1

xn ≼ x0, k ∈ N holds. Since V is countably order

complete by Lemma 2.2.72, it follows that there exists a sequence (an)n∈N ∈ l∞,

such that
n∑
1

anxn is convergent in x ∈ V . Then the mapping an 7→ x is continuous

and there exist an one-to-one correspondence for every an. Therefore, an 7→ x is an
isomorphism from l∞ to a vector sublattice of V . The norm in V0 is well defined as
the following estimate validates that V0 is closed in V .

sup
n

|an| ≼ ∥
∑

−1∞∥anxn∥ ≼ sup
n
(an)∥x0.

Hence, we found a vector sublattice of V isomorphic to l∞, which is a contradiction.
Therefore V has order continuous norm.
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Suppose that there exists a Banach sublattice, which is isomorphic to l∞. Thus
by (iii), there exists a positive linear map, mapping the unit ball to a weakly compact
set in V . Thus, Ul∞ is weakly compact, which is a contradiction.

Suppose that all ideal in V are closed and that V has no order continuous norm.
Take a sequence (xn)n∈N ∈ V+ and, by Lemma 2.2.72, we can find a disjoint, nor-

malized sequence (xn)n∈N ∈ V+, which is majorized. Let x := supn

n∑
i=1

xi. Since

V is countably order complete, it follows that x ∈ B(xn), where B(xn) is the band
generated by xn . If I is the ideal generated by xn, we will show that x /∈ I. If

x ∈ I, then there exist v ∈ I, such that 0 ≼ v ≼ x and ∥x− v∥ <
1

2
and v ≼

k∑
i=1

cixi

for appropriate ci ∈ R. If Pn is the band projection of V onto the principal ideal
generated by xn and if yn = Pnv, then we obtain 0 ≼ yn ≼ Pnx = xn, by Theorem
1.2.51, for all n ∈ N. Recall that if V is countable order complete, then V has
the principal projection property. Moreover, (xn) forms a maximal system in I and
hence xn generates a principal ideal. As a consequence

1

2
> ∥x− v∥ ≽ ∥

k+1∑
i=1

xi −
k∑

i=1

yi∥ ≽ ∥
k+1∑
i=1

xi −
k∑

i=1

xi∥,

which is equal to ∥xk+1∥. By Lemma 2.2.72, it follows that ∥xk+1∥ = 1, which is a
contradiction.

Corollary 2.2.74. Every separable and countable order complete Banach lattice has
order continuous norm.

Proof. Suppose V is a separable Banach lattice and (xn)n∈N ∈ V a sequence. Since V
is separable, span{(xn)} = V . This implies that span{(xn)}∩I ̸= ∅, where I ∈ I(V ).
Since V is a Banach lattice, it is also Archimedean by Proposition 2.2.12 . Thus, it
follows that there exist n0, such that xn0 is the limit of a sequence (yn) and xn0 ∈ I.
Thus I is closed, since inf yn = (xn0) ∈ I. This implies that sup yn ∈ I, since V is
countably order complete. Therefore, I is band and by Theorem 2.2.73, it follows
that V has order continuous norm.

Proposition 2.2.75. Let V be a Banach lattice. The following allegations are equiv-
alent:

(i) The evaluation map provides an isomorphism from V to a band in V ′′.

(ii) Every norm bounded increasing sequence (xn)n∈N ∈ V converges.

(iii) Suppose V L
0 is a vector sublattice of V . Then V L

0 ≇ c0.

(iv) Let T : c0 → V be a positive linear map. Then T is weakly compact.

Proof. Suppose the evaluation map provides an isomorphism from V to a band in V ′′.
By assumption the band of all continuous linear forms denoted by BV , by Corollary
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2.2.63, is isomorphic to V . Since V is a subset of V ′′, we suppose that BV ⊂ V ′′.
Hence (i), from Theorem 2.2.62, holds and as a result, (iii) from 2.2.62 holds. So the
proof is complete.

Suppose every norm bounded increasing sequence (xn)n∈N ∈ V converges. If
T : c0 → V is a positive linear map, then for every sequence (en)n∈N it follows that

Ten ∈ V . Denote by z =: sup
k∑

n=1

Ten , where (en) = (δnm) ∈ c0. Then T maps the unit

ball U of c0 to the symmetric order interval [−z, z]. By (vi) from Theorem 2.2.62,
every order interval is weakly compact and hence T is weakly compact.

Let T : c0 → V be a weakly compact, linear and positive operator. Suppose
there exists a closed vector sublattice of V , such that V L

0
∼= c0. Then every positive

linear map is weakly compact. Let 1c0 : c0 → V L
0 be the identity map. If en =

(1, 1, 1, . . . , 1, 0, . . . , 0), then lim en = 0. Hence en ∈ c0 but 1(en) has not a weakly
convergent subsequence, hence 1 is not weakly compact, which is a contradiction.

Given that no Banach sublattice of V is isomorphic to c0, we claim that V has
order continuous norm. Otherwise, it follows from Lemma 2.2.72 that there would
exist a majorized normalized, orthogonal sequence or, equivalently, a Banach sublat-
tice isomorphic to c0, which contradicts our assumption. Therefore (v) holds, from
Theorem 2.2.62, and V is an ideal in V ′′. Now, let (yn)n∈N ∈ V be a norm bounded
increasing sequence, which is not Cauchy. We want to apply Lemma 2.2.72 for that
sequence. Assume also that yn ⊂ V+. By Lemma 2.2.72, it follows that yn is ma-
jorized in V ′′, hence there exists a constant c > 0 and a subsequence (yk(n)), such
that vn := c(yk(n+1) − yk(n)), for all n ∈ N. If vn is considered as a sequence of V ′′,
it satisfies the hypothesis of Lemma 2.2.72. Hence there exists a normalized disjoint
sequence (xn) ⊂ V+, such that its linear hull form a vector sublattice, which is iso-
morphic to c0 and that is a contradiction. Therefore, (yn) is Cauchy and convergent
in V .

The following theorem provides an analogous characterization as Theorem 2.2.66,
not supposing that V is countably order complete as in Theorem 2.2.73.

Theorem 2.2.76. Let V be a Banach lattice. The following allegations are equiva-
lent:

(i) V is reflexive.

(ii) V ′ and V ′′ have order continuous norm.

(iii) Let V L
0 be a Banach sublattice of V . Then V L

0 ≇ c0.

(iv) (V L
0 )′ be a Banach sublattice of V ′. Then (V L

0 )′ ≇ c0.

(v) If V L
0 is separable, then V L

0 is reflexive.

Proof. Suppose V is reflexive. Then by Nakano’s Theorem, it holds that q(V ) is
order dense in V ⋆

00. Hence (iv) holds from Theorem 2.2.62 and as a consequence (i)
also holds, from Theorem 2.2.62. Therefore the assertion is imminent.
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Suppose V ′ and V ′′ have order continuous norm. Then we can apply Theorem
2.2.62 and, by Theorem 2.2.66, we obtain that V ′ is reflexive, hence so is V .

Suppose V is reflexive. Since the dual of Banach subspace of a reflexive Banach
space is also reflexive, it follows than there exist neither Banach sublattices V L

0

isomorphic to c0 nor Banach sublattices (V L
0 )′ isomorphic to c0

Suppose V is not reflexive. Then at least one of V ′ and V ′′ does not have order
continuous norm.

• Suppose V ′ has not order continuous norm while V ′ does. Then by Lemma
2.2.72, there exists a disjoint majorized, normalized sequence in V ′, which forms
a vector lattice isomorphic to c0, which is a contradiction, by Proposition 2.2.75.

• Suppose V ′′ has not order continuous norm, while V ′ does. Since V ′′ is order
complete, it follows that l∞ is contained in V ′′ as a closed vector subspace.
Now, the band generated, in V ′′, by en = (δnm) ∈ l∞, is denoted by Ben . By
Corollary 2.2.64, it follows that the corresponding band projection is weakly
continuous and as a result the adjoint of a band projection V ′ → B

′
n.

Let V L
0 be a Banach sublattice of V , such that V L

0 is not isomorphic to c0. It
follows that the Banach space V is reflexive if and only if V ′ is closed. Hence V is
reflexive.

Suppose V is reflexive. The sequence (xn)n∈N constructed previously generates
a vector sublattice of V . Hence, if V L

0 is separable, it follows from Theorem 2.2.73
that V L

0 is reflexive.
Suppose that V is not reflexive. Then V contains one closed vector sublattice

isomorphic to c0 or l1, which are not reflexive.
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2.3 Quasi Interior Positive Elements

In this paragraph we will analyze elements of the positive cone V+ of any vector
lattice. Especially, our interest will turn to the quasi interior elements. Usefull prop-
erties and some equivalences which concern continuity would be further asserted.

Proposition 2.3.1. Let V be an Archimedean vector lattice. A positive element
u ∈ V is a weak order unit if and only if the principal ideal Vu is order dense in V .

Proof. It suffices to prove that u is a weak order unit or, equivalently, that if u∧|x| =
0, then x = 0 due to Corollary 1.1.93. Hence, by Proposition 1.2.47, it follows that
Vu is order dense, if {v⊥} = {0}. Therefore, u ∧ |x| = 0, and this implies x = 0.

Remark 2.3.2. In general, order convergence does not imply topological conver-
gence thus weak order units are of no use and we need to introduce a new notion.

Example 2.3.3. Let V = C([0, 1]) and fn be a sequence of functions given by

fn = tn, for all t ∈ [0, 1] and n ∈ N. It follows that fn
≼V−−→ 0, with the canonical

ordering, whereas ∥fn∥ = 1, for every n ∈ N.

Definition 2.3.4. Let V be any topological vector lattice and u ∈ V+. A positive
element u is called quasi interior point, if the principal ideal Vu generated by u is
dense in V .

We observe that there exists a connection between the notions of weak order units
and quasi interior points.

Example 2.3.5. Suppose V = R. Then V is locally convex and Hausdorff. Hence
it is a topological vector lattice. Let r ∈ R, such that r = 1 . Then the ideal I1
generated by 1, is of the following form

I1 =
∞⋃
i=1

n[−1, 1], n ∈ N.

It is readily seen that I1 is a principal ideal and I1 = R . Therefore, 1 is a strong
unit and hence a quasi interior point of R.

For the remaining of this session, denote by W the set of all weak order units
and by Q the set of all quasi interior points of V+.

Remark 2.3.6. The set of all weak order units satisfies W + V+ = W .

Proof. If W is empty then the assertion is eminent. Suppose W ̸= ∅. Let u ∈ W be
a weak order unit. Hence, u ∧ v = 0, for all v ∈ V+. Hence, by the decomposition
property, the interval [0, u] is a superset to [0, v]. Otherwise, there would exist
u′ ∈ W , such that u ⊂ u′, which is a contradiction since u is a maximal orthogonal
system. Hence, [0, u] + [0, v] = [0, u]. This holds for all u and v and hence the
assertion is proven.



Duality and Normed lattices 89

The following proposition presents a similar result for the set of all quasi interior
points Q of V+. But first we will present a separation theorem.

Theorem 2.3.7 (Second Separation Theorem). Let A,B be non-empty, disjoint,
convex subsets of a locally convex space V , such that A is closed and B is compact.
Then there exists a closed, real hyperplane H ∈ V , strictly separating A and B, i.e.

f(A) < 0 < f(B).

Definition 2.3.8. Let V a topological vector space over a field. The real function
x → |x| is called a pseudo-norm if the following are satisfied :

(i) |λ| ≥ 1 implies that |λx| ≥ |x| for each x ∈ V .

(ii) |x| = 0 if and only if x = 0.

Proposition 2.3.9. Let V be a topological vector lattice. Then the following hold:

(i) Q is a sublattice and a convex subcone of V+ such that Q+ V+ = Q.

(ii) If Q ̸= ∅ then Q is dense in V+ as long as V is locally convex.

(iii) If V+ has non-empty interior then Q = (V+)
o.

(iv) Q ̸= ∅ if V is complete metrizable and separable or equivalently if V is a Banach
lattice.

Proof. (i) We need to show that Q is a convex subcone of V+. Let x ∈ Q and
λ > 0 in R. Then the ideal generated by the element λx + y, where y ∈ V+
implies that Vλx+y ⊃ Vx . Since x ∈ Q, then λx+ y ∈ Q.

To prove that Q is a sublattice, we need to show that x ∧ y and x ∨ y both
belong in Q for every quasi interior point x and y. The supremum of two
maximal orthogonal systems is also a maximal orthogonal system and hence
the ideal generated by x ∧ y is principal and as a consequence dense in V .
Therefore, x ∧ y ∈ Q. Moreover, let u ∈ V̄x ∩ V̄y. Since the intersection of
ideals is solid, then |u| ∈ V̄x ∩ V̄y. Hence, we can find two sequences one in
each ideal and denote by w := inf(xn, yn) ∈ Vx ∩ Vy and limnwn = |w| . Hence
|w| ∈ Vx ∩ Vy, thus w ∈ Vx ∩ Vy. Therefore, the intersection is dense in V and
since Vx∧y = Vx ∩ Vy, then x ∧ y ∈ Q.

(ii) We need to prove that Q = V+. Suppose there exists y ∈ V+\Q. Then (i)
implies that y ̸= 0 and Q is compact, since it is a closed subset of a closed set
and hence the previous separation theorem can be applied. Therefore, there
exists a positive continuous function f , such that f(y) < −1 and f(u) ≥ 0,
for some u ∈ Q. We can find an appropriate element u0 in Q, such that
f(u + u0) < 0. This leads to a contradiction, as u + u0 ∈ Q and since Q is a
sublattice and a convex subcone, this implies y ∈ Q. Hence Q is dense in V+.
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(iii) Suppose (V+)
o ̸= ∅. Let w ∈ (V+)

o . We need to construct a principal ideal
dense in V+. The set (−x+ (V+)

o) ∩ (x+ (V+)
o) is a neighborhood of the zero

element and as a consequence, it is contained in the symmetric interval [−x, x].
Thus, Vx, the ideal generated by x, contains all elements of V+. Therefore,
Vx = V+ and thus, x ∈ Q. Conversely, suppose q ∈ Q and the ideal generated
by q is dense in V+. This implies that [0, u] ∩ V0 ̸= ∅, where V0 is any subset
of V+. Therefore, u ∈ V0, for all V0 and thus in V+. Consequently, Q ⊂ (V+)

o

and the assertion is proven.

(iv) Suppose V is separable and complete metrizable. The lattice operations of V
are inherited by V+ and since they are continuous, any dense ideal in V can be
mapped via a continuous map to V+. Hence, V+ is also separable. Let vn, n ∈ N
be a sequence of elements in U , where U is a countable dense subset of V+. We
need to find a norm convergent sequence of xn to any element x ∈ V+. For that
reason we want to define a topology on V . Since V is metrizable, the pseudo
norm ρ on V defines a metric (x, y) 7→ ρ(x − y). Since lattice operations are
continuous and V is complete, it follows that ρ defines the topology of V . Thus,

we can find a positive sequence of numbers cn, n ∈ N, so that ρ(cn, vn) <
1

2n
.

Since V is complete and V+ is closed, the series
∑

n cnxn is convergent to a
positive element in V+. Since U is dense in V , it follows that x ∈ V+ and as a
consequence in (V+)

o. Therefore by (iii), x ∈ Q.

Remark 2.3.10. The following inclusion is eminent in any topological vector lattice:

(V+)
o ⊂ Q ⊂ W.

Theorem 2.3.11. Let V be a normed vector lattice and u ∈ V+. The following
notions are equivalent:

(i) u is a quasi interior point of V+.

(ii) The sequence (xn)n∈N, where xn := x ∧ nu, for any x ∈ V , is norm convergent
to x.

(iii) Let f be a positive linear form on V ′, then f(u) is strictly positive.

Proof. Let x ∈ V+ and a sequence (xn), such that xn = x ∧ nu. Suppose u is quasi
interior to V+. This implies that we can find a convergent sequence (yn)n∈N ∈ Vu

convergent to x. Without loss of generality, suppose yk is increasing. Since any
normed lattice is Archimedean, we can find an integer-valued function of positive
numbers k 7→ n(k), such that yk ⩽ n(k)u. This implies yk ⩽ x ∧ n(k)u = xn(k) ⩽ x.
Since yk is increasing, it follows that limk ||x−xn(k)|| = 0 and hence limn ||x−xn|| = 0,
because xn is also increasing.

Suppose (xn) → x with respect to the norm of V . Let f be a continuous positive
map, such that f(u) ⩾ 0, where u is a quasi interior point of V+. If f(u) = 0,
this implies f(xn) = 0, for all n and each x ∈ V+. Since xn is convergent and f is
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continuous, it follows that f(x) = 0, for all x ∈ V+ and hence f = 0. Therefore,
f(u) > 0.

Suppose f is a positive and continuous linear map and u is an element in V , such
that Vu ̸= V . Then Vu is non empty and V+ is closed. Hence the Hahn Banach
Theorem can be applied and imply that f(Vu) = ∅. Moreover, V ′ is an ideal of
V ⋆, hence, by Corollary 2.1.11, we obtain that sup |f(v)| are going to zero, where
0 ⩽ v ⩽ u. Hence, by the continuity of f this implies f = 0, which is a contradiction.
Therefore, u is a quasi interior point of V+.

Definition 2.3.12. Let V be a topological vector space and A a non empty subset
of V . Then a real hyperplane H is called a supporting hyperplane of A, if A∩H ̸= ∅,
and if A is contained in one of the closed semi-spaces determined by H.

Corollary 2.3.13. Suppose V is a normed vector lattice and u is a positive element
in V+. Then there exists a closed supporting hyperplane H containing u if and only
if x /∈ Q ⊂ V+.

Proof. Let H be a hyperplane and u ∈ H. Then H is of the following form H =
{x ∈ V : f(x) = α | f ∈ V ′}. Since f is a positive continuous map, then α must be
zero, since u is also positive. It also holds that f ⩾ 0. Now, by Theorem 2.3.11, the
assertion is imminent as the negation of (iii) is satisfied. Therefore u is not a quasi
interior point of V+.

Remark 2.3.14. If V is a Banach lattice then the assumption that H is closed, can
be omitted.

Proof. Let H be a supporting hyperplane of V+. By Definition 1.3.21, it holds that
f ∈ V ∗. Since V is a Banach lattice, it follows, from Corollary 2.2.29, that f ∈ V ′.
Since {a} is closed, it follows that H is necessarily closed.

Remark 2.3.15. If S is the set of all points of V+, where V+ is supported by a
closed hyperplane H, then it follows that V+ is the disjoint union of S and the quasi
interior Q.

Proof. We know that V+ contains all positive x, such that x ≽ 0 with respect to
the ordering. Let H be a closed hyperplane supporting V+ as a subset of V . Then
V+ is included in one of the semi-spaces determined by H. Thus, for some x ∈ V+,
it follows that x ∈ V+ ∩ H. But, if there exists x ∈ Q ∩ (V+ ∩ H), it follows that
Vx is not dense, as there would exist ϵ > 0, such that B(x, ϵ) ∩ B(y, c) = ∅, where
y ∈ V+\H and c > 0 since H is closed in V . Hence V = S ∪Q.

Corollary 2.3.16. Let V be a vector lattice and F a sublattice of V . If x is a quasi
interior of V+, then x is a quasi interior point of F+.

Proof. Let f0 be a continuous positive linear map from F to R. By Theorem 2.3.11,
it follows that f0 is indeed positive for every quasi interior point x ∈ V+. Denote by
U the unit ball of V . It follows, from Proposition 2.2.42, that f0 is bounded above
in F ∩ (U − V+) and hence we can find a positive extension F from V to R, such
that F (x) ⩾ 0. Therefore, x is quasi interior in F+.
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Examples 2.3.17. (i) Let (X,Σ, µ) be a measure space. If (X,Σ, µ) is totally σ-
finite, then each of the Banach Lattices Lp(µ) possesses quasi-interior positive
elements.

• If p < ∞, then, by Definition 2.3.4, f(t) must be positive in order to be
a quasi interior point. Moreover, since Lp contains the equivalence class
of all µ measurable functions, it follows that all f ∈ Lp are quasi interior
to Lp. This holds, as X is totally σ-finite. Otherwise, the assertion is not
true in general. Moreover, in reference to Theorem 2.3.11, one can find
quasi interior points, if the second assertion is valid for all f ∈ Lp(µ).

• If p = ∞, then f is a quasi interior positive element, if and only if the
µ-essential infimum of f is > 0, while the strictly positive functions f ∈ V
are the weak order units of V .

Thus Q = (V+)
o for V = L∞(µ), while the functions f ∈ V , satisfying f(t) > 0

a.e (µ), are precisely the weak order units of V .

(ii) Let X be a completely regular topological space and denote by V = Cb(X)
the Banach Lattice of all real-valued, bounded and continuous functions on X
with respect to the supremum norm. By Definition 2.3.4 and Theorem 2.3.11,
it follows that the quasi interior points of V are the functions f , such that
inft∈X f(t) > 0. Moreover, let f ∈ V . Then f is a weak order unit, if the
zero set {t ∈ X : f(t) = 0}, namely U , is nowhere dense. Indeed, f should be
strictly positive in order for the principal ideal generated by f to be equal to V .
By definition of X, we validate that the closure Ū has void interior. Suppose
that there exists a y ∈ Ū o. Thus, there exist ϵ > 0, such that B(y, ϵ) ⊂ Ū .
Hence, for every x ∈ U , it follows that y /∈ Ū . Therefore, there exists a positive
function g, such that g(x) = 0, for every x ∈ U , and g(y) = 1, which is a
contradiction. Thus Ū o = ∅.

(iii) Let X be a locally compact, non compact space and let V = C0(X) be the
Banach lattice of all real-valued, continuous function onX vanishing at infinity.
Suppose f ∈ V +. This implies that f ≽ 0. It follows that lim f does not tend
to 0, when n → ∞. Thus V + is void. Moreover, the quasi interior of V is
non void, if and only if X is σ-compact. Equivalently, it follows that X is
the countable union of compact sets. Obviously, f ∈ V should be positive in
order to generate a dense ideal by Definition 2.3.4. But, since V + is empty, it
is necessary and sufficient that X is σ-compact. Suppose X is the countable
union of compact sets such that

V =
n⋃

i=1

Kn.

Since X is locally compact and σ-compact, we take the one-point compactifi-
cation V ⋆ = V ∪ {∞}. It follows that K is also closed in V ⋆. Now we define
fn : V ⋆ → [0, 1], such that fn(∞) = 0 and fn|Kn = {1} by Uryshon’s Lemma.
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Then we define f : V ⋆ → R such that

f(x) =
∑
n

1

2n
fn(x).

The function is well defined and continuous. It follows, by the definition of f ,
that f(∞) = 0 but, if x ∈ Kn for some n, it follows that

f(x) ⩾
1

2n
fm(x) =

1

2m
> 0,

since all fm are positive and equal to 1 on Km. Therefore, f |V is a strictly
positive continuous real function that generate a dense ideal in V .

Remark 2.3.18. The property of a Banach lattice V to contain quasi interior points
is not inherited by closed ideals of V . This can be seen taking C(X) as V and Cb(X)
as a closed ideal. The assertion comes from the discussion in Example 2.3.17 .

Proposition 2.3.19. Let V, F be normed vector lattices. Consider a positive con-
tinuous linear map T : V → F , such that T (V ) is dense in F . If x ∈ Q, then Tx is
quasi interior in F+.

Proof. Take x ∈ V+ be a quasi interior point to V+. Since V+ is dense in V , then
T (V+) is dense in T (V ), as T is continuous and positive. By hypothesis, T (V+) ⊂
T (V ), where T (V ) = F . Thus for the ideal Vx, generated by x, we obtain the
following

T (Vx) =
⋃
n

nT ([−x, x]),

where Vx =
⋃
n

n[−x, x], which is a subset of
⋃
n

n[−Tx, Tx]. Thus
⋃
n

n[−Tx, Tx] = FTx

and consequently Tx is quasi interior to F+

Corollary 2.3.20. Suppose V is a normed vector lattice and I is a closed ideal and
q : V → V/I denotes the canonical map. Then q maps the quasi-interior of V+ into
the quasi-interior of (E/I)+.

Proof. By Proposition 2.2.32, V and V/I are normed vector lattices, and since q is
positive and surjective, we can apply Proposition 2.3.19 and the result is imminent.

Corollary 2.3.21. If V+ contains quasi-interior points and V0 is a vector sublattice
of V , which is the range of a continuous, positive projection, then V0 contains quasi-
interior points.

Proof. Since V+ is closed and p is continuous and positive, by Proposition 2.2.42, we
can find an extension P to V . Thus, if u ∈ QV+ , then P

∣∣
QV+

= Q(V0)+ and applying

Proposition 2.3.19 we obtain the desired result.

Proposition 2.3.22. Suppose V is an normed vector lattice and q : V → I ∈ I(V ′′)
is an isomorphism, where q is the evaluation map. Then W = Q. In other words W
and Q are identical in V+.
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Proof. We can assume that V is a Banach lattice. Then, Proposition 1.1.94 states
that V is a sublattice of Ṽ . Hence the completion Ṽ can be identified with the closure
of V in its bidual and Ṽ is an ideal in V ′′, whenever V is. Hence, each weak order
unit and quasi interior point of V+ preserves its status under the transition from V
to Ṽ , as the evaluation map is positive and continuous. Since V is Archimedean for
every weak order unit u ∈ V+, it holds, by Corollary 1.1.93, that x = supn x ∧ nu.
Moreover (vi) from Theorem 2.2.62, holds by hypothesis, hence the supn is a norm
limit, where n ∈ N. Therefore, u is a quasi interior point to V+, by Theorem 2.3.11.
Therefore, W ⊂ Q. The reverse inclusion is obvious by the definition of Q.

The idea behind the proof of Proposition 2.3.22 is that V is not necessarily order
complete in order to apply Theorem 2.2.62, hence through isomorphism we used
the completion of V .

Now we present a theorem regarding the bipolar of a polar set.

Example 2.3.23. The spaces Lp(µ) (1 ⩽ p < ∞) are examples of Banach Lattices to
which Proposition 2.3.22 can be applied. More specifically, if L1(µ) is a non-reflexive
KB- space, by Example 2.2.70, it follows that WL1(µ) = QL1(µ). More generally,
Proposition 2.3.22 applies to reflexive Banach spaces.

Remark 2.3.24. Consider the space C0(X) of all real valued continuous functions
vanishing on infinity. If X is the discrete space N, then we obtain c0. It is interesting
to observe that those space with X discrete are the only ones which are ideals in
their bidual.

Definition 2.3.25. Suppose V is a vector space and M is a subset of V . Then the
polar of Mp is also a subset of F , denoted by Mpp and called the bipolar of M .

The following theorem is a consequence of Hahn-Banach theorem.

Theorem 2.3.26. Let ⟨V, F ⟩ be a duality. The bipolar Upp of any subset U of V is
the convex hull of M ∪ {0} with respect to the weak topology.

Corollary 2.3.27. Let
{
Ua : a ∈ A

}
be a family of σ(V, F ) closed convex subsets

of V , containing 0. If M :=
⋂

αMα, then Mp is the σ(V, F ) closed convex hull of⋃
Mp

a .

Theorem 2.3.28. Let V be a countably order complete Banach lattice. Each of the
following assertion implies the next one:

(i) V has order continuous norm and Q ̸= ∅.

(ii) V ′ has weak order units.

(iii) V has order continuous norm.
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Proof. Suppose that V has order continuous norm and Q is non empty. Let (x′
a) be

a maximal orthogonal system of V ′. We know that V ′ is a Banach lattice. Hence, we
only need to validate that (x′

a) is countable. Now, if B
′
a denotes the band generated

by {u′
a}⊥ in V ′, it follows, from Corollary 2.2.64, that there exists a band Ba ∈ V

with polar Bp
a = B′

a. Moreover, since
⋂

a B
p
a = {0}, it follows from Corollary 2.3.27,

that the convex closure of
⋃

aBa = V . This also implies that V is the band generated
by

⋃
a Ba. Hence, if u is quasi interior to V+ and if ua is the projection of u in Ba, we

obtain that u = supaua and (ua)a∈A is a maximal orthogonal system of V . But, we
know that V is Super Dedekind Complete, by Corollary 2.2.63. Therefore, so (ua)
and hence (u′

a) is countable.
Suppose that V ′ has weak order units and V has not order continuous norm.

Then, Theorem 2.2.73 results in the existence of a vector lattice isomorphism i :
l∞ → V with range a closed vector sublattice of V . Since order convergent filters in
V ′ are weakly convergent, it follows that the adjoint operator is an order continuous
positive surjection of V ′ onto the strong dual of l∞. Thus, by Proposition 2.3.19,
it follows that if w is a weak order unit of V ′. Then i′(w) is a weak order unit in
(l∞)′. It is easy to verify that the dual of l∞ has no weak order units. Moreover,
such elements should be contained in the band l1 ⊂ (l∞)′ and this is a contradiction.
Therefore, we obtain the desired implication.

Corollary 2.3.29. Suppose V is a reflexive Banach lattice. Then V+ has non-void
quasi-interior if and only if V ′ does.

Proof. Obviously, if V is reflexive and V+ has quasi interior points, then V ′ also has
quasi interior points. The reverse allocation results from the fact that the dual of a
reflexive Banach lattice is reflexive, as V has an order continuous norm by Theorem
2.2.76.





Chapter 3

AM-Spaces and AL-Spaces

3.1 AM-spaces

In this section we will discuss the space of all continuous real functions over a compact
space K. For that reason we will present a new norm and the respective normed
vector lattices will play a major role.

Definition 3.1.1. Let V be a vector lattice and ∥ · ∥ be a lattice norm. The lattice
norm ∥ · ∥ is called an M-norm, if the following holds:

∥x ∨ y∥ = ∥x∥ ∨ ∥y∥,

for all x, y ∈ V+. The space
(
V, ∥ · ∥

)
is called a M-norm space. Furthermore, if the

norm is complete, then
(
V, ∥ · ∥

)
is called briefly AM-space (abstract M-space).

Remark 3.1.2. An M-normed space V is a normed vector lattice on whose positive
cone V+ the norm commutes with the formation of finite suprema.

Remark 3.1.3. Let V be a M-normed space with unit e. Then the unit ball is the
order interval [−e, e]. The following proposition provides a converse statement.

Proposition 3.1.4. Let V be an Archimedean vector lattice, where e exists in V .
The gauge function of [−e, e], given by

ρe(x) = inf{λ ∈ R : x ≼ |λe|}

is an M-norm on (V, ρe), if and only if V is l1-relatively complete.

Proof. The Minkowski gauge ρe is well defined, as, in view of Proposition 2.1.30 and
Remark 3.1.3, the symmetric order interval is convex and absorbing. Moreover, it is
imminent that ρe is a lattice norm and the fact that V is Archimedean yields that
x = 0, when ρe(x) = 0. Since x ∈ V+, then |x| ≼ ρe(x)e comes as a consequence of the
Archimedean property. Hence, for all x, y, it holds that x ∨ y ≼

(
ρe(x) ∨ ρe(y)

)
. By

definition of the gauge, the previous inequality implies that ρe(x∨y) ≼
(
ρe(x)∨ρe(y)

)
.

Conversely, assume that x ∨ y ≼ λe holds, for all x, y. Then
(
ρe(x) ∨ ρe(y)

)
≼ λ, by

definition. This shows that ρe(x) ∨ ρe(y) ≼ ρe(x ∨ y). Therefore, ρe is an M-norm.

97
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Now, we want to prove that ρe is an M-norm, when (OS) is satisfied. Obviously,
if (V, ρe) is an AM-space, then for every xn, x ∈ V and (λn) ∈ l1, such that 0 ≼

xn ≼ λnx, we have that
∞∑
j=1

is order convergent. Conversely, suppose that (OS)

is satisfied in V . We need to prove that for every Cauchy sequence, there exists
a subsequence (xn)n∈N, such that

∑
n(xn+1 − xn) converges. This is equivalent to

the classic definition of norm completeness, as this utilizes the (OS) property. Let
(yn)n∈N ∈ (V, ρe) be a Cauchy sequence. Since (OS) is satisfied, there exists a
subsequence (xn)n∈N and a sequence of real numbers (λn)n∈N ∈ l1, such that |xn+1 −
xn| ≼ λne. Let λn =

1

2n
and choose a sequence vn, such that vn = (xn+1 − xn)

+

and un, such that un = (xn+1 − xn)
−. Hence 0 ≼ un ∨ vn ≼ λne. Since ρe(x) is the

norm, it suffices to prove that
∑

n xn converges. An alternative result of (OS) is that

supm

m∑
n=1

vn = v exists in V . Thus we obtain

v −
m∑

n=1

vn = sup
k

m+k∑
n=m+1

vn ≼

( ∞∑
n=m+1

λn

)
e.

Therefore, by definition of the norm,

ρe(v
m∑

m=1

vn) ≼
∞∑

n=m+1

λn

for all m. Since λn =
1

2n
, we obtain the desired result.

Corollary 3.1.5. Let V be a Banach lattice that has a unit e. Then the principal
ideal Ve, generated by e, is an AM-space and the symmetric order interval is the unit
ball in V . Moreover, the canonical embedding Ve 7→ V is continuous.

Proof. The principal ideal Ve =
∞⋃
i=1

n[−e, e] is generated by the symmetric order

interval where e is a unit. Hence, we can define a gauge as in Proposition 3.1.4 and
result in the fact that Ve is an AM-space, as any Banach lattice satisfies the (OS)
axiom. Since the unit ball in V is the symmetric order interval under the norm
endowed with V , then the embedding is continuous.

The previous corollary gives us a brief insight in the role of AM-spaces as Banach
lattices.

Examples 3.1.6. (i) Denote by µ(Vn) the Banach space of all bounded sequences
x = (xn), where xn ∈ Vn and Vn is an AM-space with unit en (n ∈ N). If
m(Vn) is endowed with the norm x 7→ ∥x∥ := sup ∥xn∥, then µ(Vn) is an
AM-space with unit e = en under the canonical ordering. It is easy to verify
that this norm is indeed an M-norm due to the distributivity of the lattice
supremum. Moreover, suppose that Vn = R. Then µ(R) is denoted by l∞,
which is not separable. We can easily verify this, due to the fact that the set
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of all characteristic functions of arbitrary subsets of N form an uncountable
subset of l∞, whose elements have mutual distance 1. We notice that every
real bounded sequence is convergent. Hence, the space c of all convergent real
sequences is a closed vector sublattice and as a consequence, a separable AM-
space with unit e = (1, 1, 1, 1, . . . ). Lastly, the space of all null convergent real
sequences is also an AM-space without unit.

(ii) Let X be a topological space. Then the vector space Cb(X) of all bounded real
valued functions on X endowed with the canonical ordering is an AM-space
with unit e, where e(x) = 1, for all x ∈ X. The supremum norm is an M-norm
due to the distributivity of the lattice supremum.

(iii) Let (X,Σ, µ) be a measure space, where µ is a positive countably additive
measure and Σ is a σ-algebra of subsets of X. Then the Banach lattice L∞(µ)
of all bounded Σ-measurable real functions is an AM-space with unit e = e(x)
for all x ∈ X endowed with the canonical ordering and the supremum norm
is an AM-space. Furthermore, the µ-null subset is a σ-ideal and hence, by
Proposition 2.2.19, is closed. Hence, the quotient L∞(µ)/N is an AM-space
and equal to L∞(µ).

Proposition 3.1.7. Let
(
V, ∥ · ∥

)
be an AM-space. The following properties hold:

(i) Each closed vector sublattice is an AM-space.

(ii) If I is a closed ideal and V an AM-space with unit, then the quotient V/I is
an AM-space.

(iii) The completion Ṽ of an M-normed space is an AM-space.

Proof. (i) Let V0 be a closed vector sublattice of V . Since V is norm complete, it
follows that V0 is norm complete either. Moreover, V0 is closed with respect to
the M-norm. Hence V0 is an AM-space.

(ii) The assertion follows from Proposition 2.2.32.

(iii) The assertion follows immediately from the uniform continuity of operations,
from Proposition 2.2.19 and Corollary 2.2.21.

Theorem 3.1.8 (Stone-Weierstrass, lattice version). Let K be a compact space and
F be a vector sublattice of C(K), where the constant function, equal to one, is in F .
If F separates the points of K, then F is dense in C(K).

Proof. Let s, t be points of K and α, β real numbers, such that α = β if s = t.
Suppose also that F separates the point of K. Thus there exists a function f ∈ F ,
such that f(s) = α and f(t) = β. This is clear, if s = t. Now, if s ̸= t, then there
exists g ∈ F , such that g(s) ̸= g(t). Set

f(t) = α
g − g(t)

g(s)− g(t)
+ β

g − g(s)

g(s)− g(t)
.
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Then f ∈ F , f(s) = α and f(t) = β. Let h ∈ C(K) and ϵ > 0. Since F separates the
points of K and F is a vector sublattice, we can find g ∈ F , such that ∥h− g∥ < ϵ.
For the proof, we will use the fact that K is compact. Let v be a fixed element in
K. For every t ∈ K, there exists ft ∈ F , such that ft(v) = h(v) and ft(t) = h(t).
Now, we denote by Ut the set of all r ∈ K, such that ft(r) > h(r)− ϵ. Since ft ∈ F ,
we can find an appropriate cf(t), such that B(h(r), cft) ⊂ Ut. Hence, Ut is open for
all r ∈ K. Thus K =

⋃
t∈K Ut. Hence K is compact, which implies the existence of

countable {ti}, i = 1, . . . , n, such that K =
n⋃

i=1

Uti . Denote gv =: supi fti . Since F is

closed, gv exists in F and we obtain that gv(t) > h(t) − ϵ, for all t ∈ K. Since ϵ is
arbitrary, it follows that gv(v) = h(v).

Now, suppose that gv is in F with the properties chosen for all v ∈ K. The set
Vv = {r ∈ K : gv(r) > h(r) + ϵ} is open and contains v. Respectively, since K is
compact, we get K =

⋃
v∈K Vv. Hence, there exists {v1, . . . , vm} ∈ K, such that

K =
m⋃
i=1

Vvi . Now, we denote g = infm gvm . Since F is a lattice, g ∈ F . Putting

all together, we obtain that h(r) − ϵ < g(r) < h(r) + ϵ, for all r ∈ K. Therefore,
∥h − g∥ < ϵ. So we proved that there exist an h-neighborhood for every y ∈ C(K)
such that B(h, ϵ) ∩ g ̸= ∅, where g ∈ F . Hence F is dense in C(K).

Theorem 3.1.9. Suppose V is an AM-space and e is the unit in V . Let K be the
σ(V ′, V )-compact set of real valued, lattice homomorphisms of norm 1 on V . Then
there exists an isomorphism of V onto C(K) through the evaluation map.

Proof. We want to prove that the set of all extreme points of X is identical with K.
It is easy to observe that the set X of all positive linear forms of norm 1 on V is
identical with

V
′

+ ∩
[
x′ : ⟨e, x′⟩ = 1

]
⊂ Up,

where e is the unit of V , by Remark 2.2.45. Since all linear forms are positive,
from the previous identification of X, we can assume that all elements of X are
lattice homomorphism. Recall that a point x is extreme, if there not exist discrete
elements y, z, such that x = λy + (1 − λ)z, for a scalar λ. Hence a point x′ ∈ X
is extreme if and only if for y′ ∈ V ′, such that 0 ≼ y′ ≼ x′ implies that y′ = µx′,
for a scalar µ or, equivalently, if Ix′ is minimal. Hence each x′ generates a minimal
ideal and as V ′ is an ideal in V ⋆, by Proposition 2.2.37, it follows from Proposition
2.1.16, that the set of all extreme points of K is identical with K. Actually K is the
Silov Boundary of V+, as Theorem 2.2.53 shows. Thus, for each x ∈ V , it follows
that ∥x∥ = ∥|x|∥ = sup{⟨|f |, t⟩ : t ∈ K} = sup{f(t) : t ∈ K}. Therefore, the
evaluation map is well defined and is a homomorphism. Furthermore, since each
lattice homeomorphism x′ of K generates a minimal ideal, then y′ = µx′, for some
scalar µ. Thus x 7→ ⟨x, t⟩, t ∈ K is an isomorphism with respect to the norm.
Because all t ∈ K have norm 1, the isomorphism is an isometry. In view of Theorem
3.1.8, since K is compact and closed, it satisfies the hypothesis and separates the
point of V . The unit of V is mapped onto the constant one function. Therefore the
isomorphism is surjective.

The next corollary is imminent.
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Corollary 3.1.10. Suppose K is the Silov boundary of V+. Then every AM-space
with unit is isomorphic to C(K).

Proof. An inspection of Theorem 3.1.9, indicates that each lattice homomorphism
attains its maximum value with respect to the norm in K. Moreover, since K is
σ(V ′, V ) closed, it follows that K is the Silov Boundary of V+ due to Theorem 3.1.9.
By assumption we obtain the desired assertion.

Corollary 3.1.11. Suppose C(K1) and C(K2) are isomorphic, for some compact
space K1 and K2. Then K1 and K2 are homeomorphic.

Proof. Since C(K1) and C(K2) are isomorphic, the respective M-norms are equiv-
alent. We can define such norms as per Proposition 3.1.4 with order units e1 and
e2 respectively. Moreover, X1 = {x′ ∈ V

′
+ : ⟨e1, x′⟩ = 1} and X2 = {x′ ∈ V

′
+ :

⟨e2, x′⟩ = 1}. We want to find a bijection that maps X1, homeomorphically to X2.
Let f : X1 → X2 such that x 7→ ⟨e2, x′⟩−1x′. This is a well defined map and f is a
bijection of X1 onto X2. Since the extreme points generate minimal ideals, it comes
as a consequence that f is a homeomorphism from K1 to K2.

Remark 3.1.12. Corollary 3.1.11 should be compared with the following well-known
Theorem of Banach and Stone.

Theorem 3.1.13 (Banach-Stone). Let X and Y be compact Hausdorff spaces and
let T : C(X) → C(Y ) be a surjective linear isometry. Then there exists a homeo-
morphism ϕ : Y → X and a function g ∈ C(Y ) where |g(y)| = 1, for all y ∈ Y , such
that

(Tf)(y) = g(y)f(ϕ(y))

for all y ∈ Y and f ∈ C(X).

Remark 3.1.14. From the aspect of Banach lattices, AM-spaces with unit, and
spaces C(K), where K is compact, are the same.

Proposition 3.1.15. Let K be a compact space. Then the Banach space C(K) is
separable if and only if K is metrizable.

Proof. Let V = C(K) be separable and denote by F a total subset of V . The
weak topology σ(V ′, F ) is metrizable, as the metric can be generated by countable
many semi-norms and agrees with the dual unit ball Up with σ(V ′, V ). Thus K is
metrizable, as it can be identified with a subspace of Up.

Conversely, suppose K is metrizable. Our target is to find a total subset F that
is dense in C(K). Now, we know that K ×K is metrizable and hence the diagonal
∆ := {(t, t) : t ∈ K} of K × K has a countable base {Un} of neighborhoods. Let

{G(n)
i : i = 1, . . . , kn} be a finite open cover ofK, such that

⋃kn
i=1 G

(n)
i ×G

(n)
i ⊂ Un, for

each n ∈ N and let {f (n)
i : i = 1, . . . , kn} be a partition of unity on K subordinated

to {G(n)
i }. The set Fn of all linear combinations of the functions f

(n)
i with rational

coefficients is countable and so is F :=
⋃

n Fn. Now, we claim that F is dense in
C(K). More specific, for a given f ∈ C(K) and 0 < ϵ ∈ R, there exists n ∈ N, such
that Un ⊂ {(s, t)|f(s)− f(t)| < ϵ/2}.
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Now for each i up to kn, we choose si ∈ G
(n)
i and a rational number αi, such

that |f(si)αi| < ϵ/2. By the definition of a partition of unity, we have that f
(n)
i ≽

0,
∑kn

i f
(n)
i (s) = 1 identically in K and f

(n)
i (s) = 0, if s ̸= U

(n)
i . Therefore,

|f(s)−
kn∑
i=1

αif
(n)
i (s)| ≼

kn∑
i=1

|f(s)− αi|f (n)
i (s) < ϵ,

for all s ∈ K. This shows F to be dense in C(K).

Examples 3.1.16. Let X be a non void set and V be the vector lattice of bounded,
real-valued functions on X containing the constant function equal to one, which
is complete under the supremum norm. It follows that V is an AM-space as the
norm is additive in bounded and real valued functions and, from hypothesis, V is
complete with respect to the supremum norm. Hence, there exists a compact K,
such that V ∼= C(K). Then, K(the Silov Boundary of V +) can be viewed as the
completion of the Hausdorff uniform space associated with (X,U), where U is the
coarsest uniformity on X, such that each f ∈ V is uniformly continuous.

(i) Suppose X is completely regular and V is the space of all bounded continuous
functions on X. Then K is homoemorphic to the Stone-Cech Compactification
of X.

(ii) Suppose Σ is the σ-algebra of subsets of X and V is the space of all bounded
Σ-measurable real functions. Then K is the Stone Representation space of Σ.

Definitions 3.1.17. (i) Let X be a compact space and A a subset of C(X). Then
A is called relatively compact if and only if A is equicontinuous.

(ii) A is called relatively compact it its closure is compact.

Definition 3.1.18. Let X be a compact space and A ⊂ C(X). Then A is called
relatively weakly compact if and only if each sequence (xn)n∈N ∈ A contains a subse-
quence converging pointwise to a function in C(K).

Relative compactness allows us to acquire the following result for AM-spaces.

Proposition 3.1.19. Suppose V is an AM-space and A is a non-void subset of V .
Denote by |A| the set of all absolute values of x ∈ A. If A is relatively compact, so
is |A|. Moreover, supA and inf A exist in V and respectively if A is relatively weakly
compact, then |A| is also. The mapping x 7→ x+, x 7→ x− and x 7→ |x| are weakly
sequentially continuous.

Proof. Let A be a relatively compact subset. By Definition 3.1.17, it suffices to prove
that |A| is equicontinuous. Since A is relatively compact, it follows that there exists
a finite open cover {Vi}, such that A ⊂

⋃
i Vi. Assume that there exists a positive ϵ

and {Ui} is a finite open cover for |A|, where each Ui, for all i, is given by Ui = (Vi)+.
It follows for all (s, t) ∈ Ui ×Ui that |f(s)− f(t)| < ϵ, by hypothesis. Therefore, |A|
is relatively compact.
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Assume that A is relatively compact. It follows that A is equicontinuous. Thus
for a non-void finite subset F of A, it follows that |g(s) − g(t)| ⩽ sup

f∈F
|f(s) − f(t)|,

for all (s, t) ∈ K. Therefore, the set of all suprema of finite subsets of A exists and is
equicontinuous assuming that A is relatively compact or equicontinuous. Moreover,
since supA exists, it follows that inf A exists.

Let A be a relatively weakly compact subset. This implies that there exists a
subsequence for every sequence (xn)b∈N converging pointwise in C(K). Assume that
we take the positive part of all sequences in A. Thus we obtain all the sequences in
|A|. Hence, the desired subsequences for each sequence can be obtained by taking
the positive part of every subsequence. By hypothesis, it follows that they converge
pointwise to a function in C(K). Therefore, |A| is relatively weakly compact.

It is easy to prove that the mappings, x 7→ x+, x 7→ x− and x 7→ |x| are weakly
sequentially continuous.

Definitions 3.1.20. Let X be a topological vector space. A subset A of X is called

(i) an Fσ set if it is the countable union of closed subsets of X.

(ii) an Gδ set if it is the countable intersection of open subsets of X.

Definition 3.1.21. Let X be a topological vector space. Then V is called normal, if
for any given disjoint subsets F,G there exist neighborhoods U, V respectively such
that U and V are also disjoint.

Lemma 3.1.22 (Urysohn). Let X be a normal topological vector space and U, V be
closed and district to each other subsets of X. Then there exits a continuous map
f : X → [0, 1], such that f |A = 0 for all x ∈ A and f |B = 1 for all x ∈ B.

Definitions 3.1.23. Let X be a topological vector space and f : X → R be a map.
Then f is called

(i) lower semi-continuous, if Oa is open or equivalently Ca is closed for all α ∈ R.

(ii) upper semi-continuous, if Oa is open or equivalently Ca is closed for all α ∈ R.

Remark 3.1.24. For convenience purposes we denote Oa by [h < a] and Oa by
[h > a].

Proposition 3.1.25. Let X be a topological vector space. Denote by Cb(X) the
space of all bounded, continuous functions from X to R and consider the following
assertions:

(i) Every open subset of X has open closure.

(ii) Every open Fσ-subset of X has open closure.

(iii) Cb(X) is order complete.

(iv) Cb(X) is countably order complete.
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Then (i) implies (iii) and (ii) implies (iv). Moreover, if X is normal, then the
respective reverses hold.

Proof. Recall that the upper limit function fu of a bounded real function f on X is
defined by

fu := inf
U(s)

sup
t∈U(s)

h(t),

where s ∈ X and U(s) runs through a neighborhood base of s.

(i) Let A be a directed majorized subset of Cb(X) and let g denote the numerical
supremum of A, which is the function g : X → R, where g(s) := sup

f∈A
f(s),

for all s ∈ X. Moreover, if k ∈ Cb(X) is any majorant of A, then clearly
f ≼ g ≼ k and more specifically, f ≼ gu ≼ k, for all f ∈ A. Thus we validated
the continuity of gu and it follows that gu = supA.

Now, we observe that gu is upper semi continuous. Indeed, the set [gu < a] is
open, since for g(s0) < a, there exists ϵ > 0 and a neighborhood U of s, such
that sup

t∈U
g(t) ≼ gu(s0) + ϵ < a. To validate that gu is lower semi continuous, if

(i) holds, we first observe that

[g > a] =
⋃
f∈A

[f > a] =
⋃

f∈A,n∈N

[f ≽ an−1]

is open (respectively an open Fσ set whenever A is countable). Furthermore,
we obtain for all α ∈ R that

[gu > a] =
⋃
n∈N

[gu ≽ a+ n−1] =
⋃
n∈N

[g ≽ a+ n−1]− =
⋃
n∈N

[g > a+ n−1]− (1)

The last equality holds, because [g > a+n−1] ⊂ [g ≽ a+m−1] ⊂ [g > a+m−1]
for m > n. Thus (i) (and respectively (ii) if A is countable), implies [gu > a]
to be open for all α ∈ R and hence gu to be continuous. Therefore, (ii) implies
(iv) by the preceeding, supposing that A is countable.

(ii) Now, suppose X is a normal topological vector space. Suppose that Cb(X) is
countably order complete. If V ̸= X is an open non-void Fσ-subset of X, such
that V =

⋃
n Fn, where (Fn)n∈N are closed, let f : X → [0, 1] be a continuous

function, such that fn(Fn) = {1}, fn(X/V ) = {0}. Denote A = {fn : n ∈ N}.
Then, it follows that A is a countable majorized subset of Cb(X). Hence
f := supA, exists in Cb(X). It is clear that f(V ) = {1} and f(X/V̄ ) = {0}
and since f is continuous, it follows that f(V̄ ) = {1}, which shows that f is
the characteristic function of V̄ . Hence V̄ is open. The respective proof that
(iii) implies (i) is similar, supposing that V is open.

Definition 3.1.26. [Tychonoff] Let X be a topological vector space. Then X is
called a completely regular space if any points of X can be separated from closed
sets via bounded, continuous real valued functions.
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Definitions 3.1.27. Suppose X is a completely regular space. Then X is called:

(i) totally disconnected, if there exists a basis of open and closed (clopen) subsets.

(ii) Stonian or extremely disconnected, if the closure of every open set is open.

(iii) quasi-Stonian or σ-Stonian, if the closure of every open Fσ set is open.

Corollaries 3.1.28. Let K be a compact space. Then, the AM-space C(K) is

(i) order complete, if and only if K is Stonian.

(ii) countably order complete if and only if K is quasi-Stonian.

Proof. In view of Definitions 3.1.27 and the proof of Proposition 3.1.25 the result is
imminent.

Remark 3.1.29. A Stonian space is different from a Stone representation space.
Stone represenation space of a Boolean Algebra is always totally disconnected, as it
possesses a base of clopen subsets, but it is not necessarily extremely disconnected.

Definition 3.1.30. The lower limit function gl of g : G → R is the continuous
function defined by

gl(s) := sup
U(s)

inf
t∈U(s)∩G

g(t),

where U(s) runs through a neighborhood base of s ∈ X.

The following proposition provides a twist of quasi-Stonian and Stonian spaces.

Proposition 3.1.31. Let X be a topological vector space. If in addition, X is Stonian
(respectively quasi-Stonian), then each bounded, continuous function f : G → R,
where G ∈ X is open and dense (respectively a dense open Fσ set) has a continuous
extension ḡ : X → R.

Proof. Now in view of Proposition 3.1.25, we can verify easily that gl is lower semi
continuous on X and obviously gl agrees with g on G. Analogously, we can show
that gl is upper semi continuous as well. For that reason, we observe that

[gl < a] =
⋃
n∈N

[gl ≼ a− n−1] =
⋃
n∈N

[g ≼ a− n−1]− =
⋃
n∈N

[g < a− n−1]− (2)

in reference to the corresponding relations in (1). Moreover, to prove that [gt < a]
is open in X, it suffices to prove, by (2), that the sets [g < a − n−1], as subsets of
G, are open Fσ in X. It is clear, that these sets are open Fσ-sets∈ G, since G is
an open Fσ-set itself in X. Thus, it follows that each set [g < a − n−1] is an open
Fσ ∈ X. Therefore, this proves that gt is continuous on X and hence we have the
desired assertion.

Remark 3.1.32. Let X be a completely regular topological space. The Stone-Cech
compactification βX of a completely regular topological space X is a compact space,
densely containing X. Also βX has the property that each bounded, continuous
f : X → R has a continuous extension f̄ : βX → R.
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The following corollary comes as a consequence of Proposition 3.1.31.

Corollary 3.1.33. Let K be a Stonian (quasi-Stonian) compact space and let G be
an open (an open Fσ) subspace of K. Then the closure Ḡ ∈ K is homeomorphic with
the Stone-Cech compactification of G.

Example 3.1.34. Suppose K to be a quasi-Stonian space. Since the order in-
terval [−1, 1] is homeomorphic to the two point compactification of R, denoted by
R̄ = [−∞,∞], it follows from Proposition 3.1.31 and Corollary 3.1.36, that each con-
tinuous function g : G → R, where G is a dense open Fσ set in K, has a continuous
extension ḡ : K → R̄.

Example 3.1.35. Let C∞(K) denote the set of all continuous function from K,
which are finite except on nowhere dense sets. We want to construct an open dense
Fσ set and find a function than can extend via Proposition 3.1.31. Let fi ∈ C∞(K)
and define the set G = {t ∈ K : |f1(t)| + |f2(t)| < ∞}. It follows that there exists
t ∈ K and ϵ > 0, such that B(fi, e) ∩G ̸= ∅. Moreover, since fi ∈ C∞(K) it follows
that there exist countable many closed sets Ui, such that G =

⋃n
1 Ui. Therefore, G

is an open dense Fσ set of K. By applying Proposition 3.1.31, it follows that the
function g : G → R defined as g = af1 + bf2, for some constants a, b ∈ R, has a
continuous extension K → R̄.

The following corollary comes as a consequence of Corollary 3.1.28 and Example
3.1.35.

Corollary 3.1.36. Suppose K is a quasi-Stonian (Stonian) compact space. Then
C∞(K) is a countably order complete (order complete) vector lattice containing C(K)
as an order dense ideal.

Definition 3.1.37. Let X be a real space and V a vector lattice. The function
ρ : X → V is called sublinear if

• ρ(x+ y) ≼ ρ(x) + ρ(y) for all x, y ∈ X.

• ρ(λx) = λρ(x), x ∈ X and λ ∈ R.

Theorem 3.1.38 (Generalized Hahn-Banach Theorem). Let X be a vector space
over R, V an order complete vector lattice and ρ a sublinear form X to V . If X0 is
a vector subspace of X, such that f(x) ≼ ρ(x) for a function f : X0 → V and for all
x ∈ X0, then there exits a linear extension F : X → V of f satisfying F (x) ≼ ρ(x),
for all x ∈ X.

Proof. Assume that X0 ̸= X. Thus there exists a x0 ∈ X\X. Now we will validate
that f has a linear extension to the linear span of X0 ∪ {x0}. Denote this span by
Z. Let f1 : Z → V be a linear map dominated by ρ. Hence for any u, v ∈ X0, we
have f(u)− f(v) = f(u)− f(v) + f(x0)− f(x0). Since f is linear, it follows that

f(u)− f(v) = f(u+ x0) + f(−x0 − v) ≼ ρ(u+ x0) + ρ(−x0 − v).
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Hence we obtain that

f(u)− ρ(u+ x0) ≼ f(v) + ρ(−x0 − v).

This shows that the element f(u) − ρ(u + x0) is majorized in V as both u, v are
arbitrary and V is order complete. Moreover, denote

τ := sup
u∈x0

(
f(u)− ρ(u+ x0)

)
.

This supremum exists in V , as V is order complete and we have that τ ≼ f(v) −
ρ(−x0 − v), for all x ∈ X0. Now, f1 : Z → V is an extension of f , such that
f1(x0) = −τ . To verify that ρ dominates f1 we take two cases:

• Let z ∈ Z, z = λx0 + x , x ∈ X0 and λ > 0. Since τ is the supremum above,
we choose u = λ−1x and because X0 is a subspace, it follows that u ∈ X0.
Hence f1(z) = f1(λ

−1x − x0) = f1(λ
−1x) − f1(x0) = f1(λ

−1x) − u. Therefore,
f1(λ

−1x)− u ≼ ρ(λ−1x+ x0) = ρ(z), whence f1(z) ≼ ρ(z).

• Let z ∈ Z, z = λx0 + x , x ∈ X0 and λ > 0. Since v = λ−1x ∈ X0 and τ is
the supremum cordinatewise, it follows that −f(λ−1x) + u ≼ ρ(−λ−1x − x0).
Therefore, f1(z) ≼ ρ(z).

To complete the proof we will make use of Zorn’s Lemma. Set Γ the set of all
pairs (Z, fz) where Z is of the formX0∪{0}, for some x0 ∈ X\X0 and fz be the linear
extension of f , such that fz(x) ≼ ρ(x), for all x ∈ Z. Obviously, Γ ̸= ∅, because
(X0, f) ∈ Γ. We endow Γ with a partial order ≺, such that (Z1, fz1) ≺ (Z.fz2), if
and only if Z1 ⊂ Z2 and fz2 be an extension of fz1 . Take ∆ = {(Zi, fzi) : i ∈ I} be
a total ordered subset of Γ. If K =

⋃
i∈I Zi , fk : K → V , such that fk(x) = fzi(x)

if x ∈ Zi, then K ∈ ∆ and K is an upper bound of ∆. Since V is order complete
by Zorn’s Lemma, it follows that ∆ has a maximal element. Suppose that (H, fH)
is the maximal element. We will show that H = X. Suppose H ≺ X. Since we
found f1(z) to be an extension of f , we set X0 = H. Then Z = H0 ∪ {x0} and thus
(Z, f1) ∈ Γ. Therefore, (H, fH) ≺ (Z, f1), which is a contradiction. Hence H = X
and F = fH .

Theorem 3.1.39. Suppose V0 is a normed vector subspace of a real Banach space
V and K be a Stonian space. Then any continuous linear map from T0 : V0 → C(K)
has a linear extension T to V , where ∥T0∥ = ∥T∥.

Proof. We want to apply the generalized Hahn-Banach Theorem. Hence, we need
to find proper T0 satisfying the hypothesis of Theorem 3.1.38. Let T0 : V0 → C(K),
where we assume that ∥T0∥ ⩽ 1. Define the sublinear form f0, such that f0 := ∥x∥e,
for all x ∈ V , where e is the unit of V . We obtain without loss of generality that
T0(x) ≼ ∥x∥e, for all x ∈ V0 and hence T0 satisfies the hypothesis of Theorem
3.1.38, as V = C(K) and C(K) is order complete. Therefore, there exists a positive
extension T : V → C(K) satisfying T (x) ≼ ∥x∥e. This also verifies that ∥T∥ =
∥T0∥ ⩽ 1.
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Corollary 3.1.40. Suppose G is a Banach space and G0 a Banach subspace of G. If
G0 is isometrically isomorphic to some order complete C(K), where K is compact,
then there exists a contractive projection map T such that R(T ) = G0.

Proof. In view of Theorem 3.1.39, let 1G0 : G0 → C(K) be the identity mapping. We
assume that 1G0 is a continuous isomorphism and hence we apply Theorem 3.1.39
and obtain that there exists a norm preserving linear extension to G with values in
G0.

Corollary 3.1.41. Suppose V is an order complete AM-space with unit e. If V0

is a closed, order complete lattice and a vector sublattice of V , then there exits a
contraction T such that R(T ) = V0.

Proof. Since any C(K), where K is compact, can be identified with an AM-space
with unit e, the existence of such contraction map is imminent, by Corollary 3.1.40.
We only need to prove that T is positive. For that reason, let v ∈ V+, such that
∥v∥ ⩽ 1, if and only if v = e − x for some x ∈ V , such that ∥x∥ ⩽ 1. Since e ∈ V ,
we can find such v. Let P : V → V0 be a projection band. Thus Pe = e since V0 is
a closed vector sublattice. Hence ∥v∥ ⩽ 1 implies that

Pv = P (e− x) = Pe− Px = e− Px,

which is positive because ∥Px∥ ⩽ ∥x∥ ⩽ 1.

Corollary 3.1.42. Let V be a Banach lattice and V0 a Banach sublattice. Denote by
E an order complete AM-space with unit. Then every positive linear map T0 : V0 → E
has a positive extension T : V → E such that ∥T0∥ = ∥T∥.

Proof. We notice that T0 is necessarily continuous, by Theorem 2.2.24. Now, in order
to satisfy the hypothesis of Corollary 3.1.41, we identify V with C(K), for some
compact Stonian space K, such that C(K) is contained in l∞. Thus, there exists a
positive contractive projection P : l∞ → C(K). Now, for each t ∈ K, the mapping
x 7→ Tx(t) is a positive linear form, whose norm is less or equal to the norm of T0 on
V0 and, as a consequence of Proposition 2.2.42, there exists a positive norm preserving
extension ρt ∈ V ′. By definition, it follows that the mapping x 7→

(
ρt(x)

)
t∈K is a

positive linear map T̃ : G → l∞, which extends T0 and that ∥T̃∥ = ∥T0∥. Therefore,
T := P ◦ T̃ is a norm preserving linear extension of T0 with values in C(K).

Proposition 3.1.43. Let K1 and K2 be compact spaces, where K2 is totally discon-
nected. Let T : C(K1) → C(K2) be a positive linear map satisfying the following:

(i) Te1 = e2 and T [0, f ] = [0, T f ] for all f ∈ C(K1), where ei are the respective
units.

(ii) The set {f : T |f | = 0} is a projection band of C(K1).

Proof. We will use the Boolean Algebras B1 and B2, where B1 = {f ∈ C(K1) :
f ∧ (e1 − f) = 0} and B2 = {g ∈ C(K2) : g ∧ (e2 − g) = 0}. Then, Proposition
1.2.64, indicates that B1 and B2 can be identified with the Boolean Algebra of all
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open and closed subsets of Ki. Suppose T is strictly positive (T ≫ 0), then ker |T |
is a maximal ideal and hence a projection band of C(K1), since C(K1) as a Banach
lattice is Archimedean. Therefore, (ii) is satisfied.

We now claim that T maps a Boolean subalgebra B′
1 to B2. If f ∈ [0, e1], then

for a g ∈ B2, by (i), we have that Tf = g. Since T is positive and linear, it follows

0 ≼ T (f ∧ (e− f)) ≼ g ∧ (e2 − g) = 0.

Therefore, f ∈ B1. Moreover, g is uniquely determined. Suppose that there exist

f1, f2 ∈ B1, such that Tf1 = Tf2 = g , f1 ̸= f2. Hence for h =
1

2
(f1∨f2)+

1

2
(f1∧f2),

it follows that Th = g. This also implies that h ∈ B1. But h is extreme in []0, e1],
hence f1 = f2.

Now, denote by B′
1 the subalgebra, where B′

1 = T−1(B2) ∩ [0, e1]. Obviously, B′
1

is well defined as T−1(B2) ⊂ [0.e1] or, equivalently, T
−1(B2) ⊃ [0, e1] both belong in

B1. To prove that B
′
1 is closed we need to check that g1, g2 ∈ B2, such that g1∧g2 = 0

implies f1 ∧ f2 = 0, where f1, f2 ∈ B′
1. This is imminent as T is strictly positive

and g1 ∧ g2 = Tf1 ∧ Tf2, for some f1, f2 ∈ B1. Hence T (f1 ∧ f2) ≼ Tf1 ∧ Tf2 = 0.
Therefore, f1 ∧ f2 = 0 and the restriction τ = T |B′

1
is an isomorphism onto B2.

Lastly, since τ is linear, it follows that τ−1 is also a Boolean isomorphism of B2 onto
B′

1.
Suppose that (ii) holds instead of (i) and thus T is not necessarily strictly positive.

Moreover, ker |T | := A is a projection band of C(K1). The restriction T0 = T |A⊥ is
strictly positive and satisfies (i). Moreover, A⊥ is minimal, because A is maximal
and hence only e1 ∈ A⊥. Thus T0(e1) = T |A⊥(e1) = e2, T0[0, f ] ∈ C(K2) and
T0[0, f ] = [0, T0]. Now, by applying the previous construction to T0, there exists
S : C(K1) → A⊥, such that S is a lattice isometry and T0 ◦ S(f) = T0(f), such
that f ∈ A⊥, because A⊥ is minimal. Therefore, T0 ◦ S = 1C(K1). Lastly, the map
j : A⊥ → C(K2) is a canonical injection and j ◦ s is the desired right inverse of T
and thus it follows

T0 ◦ (j ◦ S)(f) = T0 ◦ j(f) = T0(e2) = e2.
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3.2 AL-Spaces

To proceed further with Banach lattices it is necessary to introduce AL-spaces. As
we did with AM-spaces, we will discuss some basic properties and through this
paragraph we will be able to prove a similar injective property as we did with order
complete AM-spaces. Furthermore we will be able to state the Theorems of Vitali,
Radon and others.

Definition 3.2.1. Let V be a vector lattice and ∥ · ∥ be a lattice norm. The lattice
norm ∥ · ∥ is called an L-norm, if the following holds:

∥x+ y∥ = ∥x∥+ ∥y∥

for all x, y ∈ V+. The space
(
V, ∥ · ∥

)
is called a L-norm space. Furthermore, if the

norm is complete then
(
V, ∥ · ∥

)
is called briefly AL-space (abstract L-space).

Proposition 3.2.2. Let V be an L-normed space. The following hold for every
L-normed space:

(i) Every closed vector sublattice is an L-normed space.

(ii) The completion of V is an AM-space.

(iii) The quotient of an V over a closed ideal is an L-normed space.

Proof. (i) Let V0 be a closed vector sublattice of V . Since V is L-normed, it
follows that V0 is closed, with respect to the L-norm and the lattice operations.
Moreover, if V is L-norm complete, it follows by the Proposition 3.1.7 that V0

is an AL-space.

(ii) The assertion follows immediately due to the uniform continuity of operations
from Proposition 2.2.19 and Corollary 2.2.21.

(iii) Since I is a closed ideal in V , it is a projection band, by Proposition 3.2.4.
Thus it follows, from Proposition 2.2.32, that V/I is a an L-normed space.

Proposition 3.2.3. Let V be an L-normed space. Then each directed norm bounded
family is a Cauchy family. Furthermore, it is necessary and sufficient that every
directed norm bounded family has a supremum in order for V to be an AL-space.

Proof. Let {fn} be a directed family in V , such that ∥fn∥ ⩽ k for some constant k.
Now, suppose that {fn} is not bounded. Then there exist a number c > 0 and an
infinite subsequence (xn)n∈N ⊂ {fn}, such that ∥xn+1 − xn∥ > c, for all n ∈ N. By
Definition 3.2.1, this implies

nc ⩽
n+1∑
k=2

∥xk − xk−1∥ = ∥xn+1 − x+ n∥ ⩽ k,

for all n which is a contradiction.
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The condition is necessary due to Lemma 2.2.55. Conversely, suppose that V is an
L-normed space, such that every directed norm bounded sequence has a supremum.
What we need to validate is that given a Cauchy sequence, a subsequence converges.
For that reason, let (yn)n∈N be a subsequence of a given Cauchy sequence, such that
∥yn+1 − yn∥ < 2−2(n+1). Now, let vk = (yk+1 − yk)

+, for k ∈ N. We need to show
that

∑
k vk converges in V . Defining uk = 2kvk, for (k ∈ N) the choice of yn and the

hypothesis imply that both v := supn

∑n
k=1 vk , u := supn

∑n
k=1 vk exists in V . Thus

we obtain

0 ≼ v −
n∑

k=1

vk ≼ 2−nv,

which implies that ∥v −
∑n

k=1 vk∥ ⩽ 2−n∥u∥, for n ∈ N, and the proof is complete.

Proposition 3.2.4. Every AL-space V has the following properties:

(i) Every directed norm bounded family in V converges.

(ii) V is order complete and V ′ = V ⋆ = V ⋆
00.

(iii) Suppose I ∈ I(V ) is a closed ideal. Then I is a projection band.

(iv) Every weak order unit of V is a quasi interior point to V+.

(v) The evaluation map provides an isomorphism between V to the band of all order
continuous linear forms on V .

Proof. (i) Let (fn) be a directed norm bounded family. Then Proposition 3.2.3
indicates that this family is a Cauchy family necessarily having a supremum.
Thus the assertion is imminent.

(ii) We have seen, by Remark 2.1.6, that V ⋆
00 ⊂ V ⋆ ⊂ V ′ holds. Now in order

to prove the reverse inclusion, we notice that every norm bounded family in
V implies, by Theorem 2.2.62, that V is order complete and each continuous
linear form on V is order continuous. Hence the reverse is ominous.

(iii) Since each norm bounded family has a supremum, it follows from (i) that each
closed ideal in V is a band. Moreover, Theorem 1.2.53 implies that each band
is a projection band, as (ii) implies that V is order complete.

(iv) Let u be a weak order unit in V . We need to show that the principal ideal
generated by u is dense in V . It holds that x = supn(x ∧ nu), for all x ∈ V+

by Corollary 1.1.93. Then the sequence (xn) = x ∧ nu, where u is the weak
order unit norm converges to x. Thus Theorem 2.3.11 implies that u is quasi
interior.

(v) Let V be an order complete AL-space. Since (ii) holds, it follows from Theorem
2.1.56 that q(V ) is an order dense ideal of (V ′)⋆00, as V

′ is an ideal of V . We
want to prove that the range of q(V ) is all of (V ′)⋆00. Let (fn) be a norm
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bounded family in q(V ), then (fn) is convergent as (i) holds. Hence the proof
is complete.

Example 3.2.5. Let V be any vector lattice and let f be a positive linear form
on V . For convenience purposes, in order to show the desired relevance we denote
f by x′. If N is the absolute kernel of the dual, it is of the form {x : ⟨|x|, x′⟩}.
By Propositions 2.2.32 and 3.2.2, it follows that V/N is an L− normed space with
respect to the norm x̄ 7→ ⟨|x|, x′⟩, where x ∈ x̄ ∈ V/N .

Lemma 3.2.6. Let V be a Banach lattice having the principal projection property
with a weak order unit u. Then the representation Bu by its Stone representation
space Ku generates an isomorphism of the AM-space Vu onto C(Ku).

Proof. Theorem 3.1.9 states that Vu is isomorphic to C(K) for some compact space
K. Since V has the principal projection property so does Vu, which implies that K is
totally disconnected. Conversely, let τ induce an isomorphism between Vu and C(K).
We notice that τ maps Bu isomorphically onto the Boolean Algebra of characteristic
functions of all closed-and-open subsets of K. Since K is totally disconnected, it
follows that these sets form a base of the topology of K and the unicity of the Stone
space Ku.

Definition 3.2.7 (Radon Measure). Let (X,Σ, µ) be a Hausdorff topological space.
A Radon measure is a measure on the σ-algebra of Borel sets of X that is finite on
all compact sets, outer regular on all Borel, and inner regular on open sets.

Remark 3.2.8. An equivalent definition for Radon measure is the following: If X
is a compact space, then a Radon measure is every linear form, µ 7→ µ0(f), on the
space of all bounded, real valued and continuous functions.

Theorem 3.2.9 (Kakutani). Let V be an AL-space. Then for every V there exists
a locally compact space X and a strictly positive Radon measure µ on X, such that
V is isomorphic with L1(µ). Moreover, V possesses weak order units if and only if
X can be chosen to be compact, such that the isomorphism V → L1(µ) maps Vu onto
L∞(µ).

Proof. Suppose that V has a weak order unit. Now if V is isomorphic to L1(µ), for a
Radon measure µ, on the compact space X then, it follows that e ∈ V corresponding
to the constant-one function on X is a weak order unit in V . Conversely, if u is a
weak order unit of V it follows from Proposition 3.2.4 that Vu is a dense ideal of V .
Now Lemma 3.2.6 implies that Vu can be identified with C(Ku). To define a strictly
positive Radon measure on Ku, we notice that in view of µ(x) = ∥x+∥ − ∥x−∥, the
norm of V defines a strictly positive linear form µ on V such that ∥x∥ = µ(|x|) and
the restriction of µ to Vu defines a strictly positive Radon measure on Ku. Since
C(Ku) is dense in L1(µ) it follows that the isomorphism Vu → C(Ku) extends to an
isomorphism of Banach lattices V → L1(µ). Lastly since Vu is an ideal of V it follows
that C(Ku) is the ideal in L1 generated by the constant one function and hence can
be identified with L∞(µ).
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Suppose that V has no weak order units. Let U := {ua : a ∈ A} be a maximal
orthogonal system. It follows from Proposition 1.1.92 and Proposition 3.2.4, that
the ideal I generated by S is dense in V . On the other hand, since S is a maximal
orthogonal system, it follows that I is the algebraic direct sum ⊕aVua . Also the
principal ideal Vua is isomorphic to C(Ku), since Vu is an AM-space, by Corollary
3.1.5 and by Lemma 3.2.6, isomorphic to C(Ka), where Ka can be identified with
the Stone Representation space of the Boolean Algebra of Ba := {v ∈ V : v ∧
(ua − v) = 0}. Thus I can be identified with K(X), where the locally compact
space X is the direct sum of the family of compact spaces (Ka)a∈A. Now, in view of
µ(x) := ∥x+∥ − ∥x−∥, where x ∈ I, the norm of V defines a strictly positive Radon
measure µ on X, such that ∥x∥ =

∫
|x|dµ and the isomorphism I → K(X) can be

extended to an isomorphism of Banach lattices V → L1(µ).

Example 3.2.10. Let X be a locally compact space. Let V = K(X) be the vector
lattice of all continuous functions X → R with compact support. A linear form on K
satisfies the alternate definition given for a Radon Measure in Remark 3.2.8. Hence,
by Theorem 3.2.9, the AL-space (V, µ), where µ is a positive order bounded function,
is isomorphic to L1(µ).

Corollary 3.2.11. Let V be an AL-space. Then the following are equivalent:

(i) V is separable.

(ii) V has a weak order unit and the base Bu is separable.

Proof. (i) Suppose V is separable. It holds that V has a total and dense subset.
By Lemma 3.2.6, it follows that Bu is a total subset of V . Now, by Proposition
3.2.4, it follows that each weak order unit is a quasi interior point of V . Since
Bu is a Boolean Algebra, it follows that Bu is separable.

(ii) It follows from Lemma 3.2.6, that Bu is a total subset of V . Since each weak
order unit is a quasi interior point of V , it follows that V is separable.

Theorem 3.2.12 (Egorov). If U is a measurable subset of finite measure and if {fn}
is a sequence of a.e finite valued measurable functions, which converges a.e on V to
a finite valued measurable function f , then for every ϵ > 0, there exists a measurable
subset F of U , such that µ(F ) < ϵ, and such that the sequence {fn} converges to f
uniformly on U − F .

Remark 3.2.13. We consider the case where V has weak order unit. Then Lemma
3.2.6 indicates that Vu

∼= C(Ku) is a dense ideal of V . Hence. by Theorem 3.2.9, we
obtain that C(Ku) ∼= L∞(µ), for a positive Radon measure. By applying Egorov’s
Theorem, it follows that each class [f ] ∈ L1(µ,Ku) contains a finite continuous
function on a dense and open subset of Ku. Therefore, it follows from Corollary
3.1.28, that each class in L1(µ,Ku) contains a continuous extended real function f ,
which is unique by the strict positivity of µ.



114 Banach Lattices

Theorem 3.2.14 (Baire Category Theorem). Let (X, ρ) be a complete metric space
and let (Gn)n∈N be a countable family of open and dense subsets of X. Then the
intersection

⋂∞
n=1 is dense.

Definition 3.2.15. Let B be a Boolean Algebra. A function µ : B → R is called
additive if

µ(u ∨ v) + µ(u ∧ v) = µ(u) + µ(v)

holds for all u, v ∈ B, and if µ(0) = 0.

Theorem 3.2.16. Let V be a Banach lattice, v ∈ V+ and suppose (µn)n∈N is a
sequence of continuous, additive real functions on the Boolean algebra Bv = {u ∈ V :
u∧ (v− u) = 0}, such that (µn(u)) converges in R, for each u ∈ Bv. Then it follows
that (µn) is uniformly equicontinuous and hence, converges to a continuous, additive
function µ : Bv → R. In fact, it holds that lim

∥u∥→0
µn(u) = 0 uniformly for n ∈ N.

Proof. Let ϵ > 0 be a preassigned number and define

Bnm := {u ∈ Be : |µn(u)− µm(u)| ⩽ ϵ},

for n,m ∈ N. Since the real functions µn are continuous, it follows that Bnm is a
closed subset of Be and Bp :=

⋂
m,n⩾pBnm is also closed. Moreover, since Be is a

complete metric space, the Baire category theorem implies that some Bp, Bq contain
interior points. More specially, there exists δ > 0 and u0 ∈ Be, such that

|µn(u)− µm(u)| ⩽ ϵ,

whenever ∥u − u0∥ ⩽ δ and n,m ⩾ q. We notice that, for u ∈ Be, we have that
u0 − u0 ∧ v = (e− u0 ∧ v) ∧ u0 ∈ Be. Thus the additivity of µn implies that

µn(v) = µn(u0 ∨ v)− µn(u0 − u0 ∧ v),

for all v ∈ Be and n ∈ N and hence

µn(v) = µq(v) + [µn(u0 ∨ v)− µq(u0 ∨ v)]− [µn(u0 − u0 ∧ v)− µq(u0 − u0 ∧ v)].

Since ∥v∥ ⩽ δ, we have that ∥u0 ∨ v − u0∥ < δ and ∥u0 ∧ v∥ ⩽ δ. Thus we obtain
that

|µn(v)− µq(v)| ⩽ 2ϵ,

whenever ∥v∥ ⩽ δ and n ⩾ q. So the sequence (µn) is equicontinuous at 0 ∈
Be. Furthermore, the symmetric difference u∆u1 belongs in Be and hence from the
disjoint decompositions u = u∧u1+v and u1 = u∧u1+v1 we obtain, by the triangle
inequality and the addivity, that |µn(u)− µn(u1)| ⩽ |µn(v) + µn(v1)| and hence

|µn(u)µn(u1)| ⩽ 2 sup
v≼u∆u1

|µn(v)|.

This implies that
|µn(u)− µn(u1)| ⩽ 2ϵ+ sup

v≼u∆u1

|µq(v)|,

whenever n ⩾ q and ∥u − u1∥ ⩽ δ, where u, u1 ∈ Be. Therefore, the sequence
(µn) is uniformly equicontinuous, which implies the continuity of the limits function
u 7→ µ(u) := limn µn(u).
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Definition 3.2.17. Let X be a non void set. Then X is of σ-finite measure, when
X can be written as the union of countably many measurable sets of finite measure.

Corollary 3.2.18 (Vitali-Hahn-Sacks). Let (X,Σ, µ) be a σ-finite measure space,
and let (λn) be a sequence of finite (countably additive) measures on Σ, which are
absolutely continuous with respect to µ. If limn λn(S) =: λ(S) ∈ R, for each S ∈
Σ, then λ is a measure absolutely continuous with respect to µ and the countable
additivity of the measures λn is uniform with respect to n ∈ N.

Proof. First, we notice that L1(µ) contains weak order units u and the Boolean
Algebra Bu is isomorphic to Σ/N , where N denotes the µ-null sets in Σ. If the
mapping h : Σ → Σ/N is the canonical map, then λ 7→ λ′ ◦ h is a bijection of the
additive real function on Bu onto the set of additive real function on Σ, vanishing
on each Σ ∈ N . Furthermore, we observe that λ is continuous on Bu with respect to
the topology of V if and only if λ′ is countably additive on Σ. Theorem 3.2.16 states
that the family Γ of such functions on Bu is uniformly equicontinuous if and only if
the additivity of λ′ = λ ◦ h is uniform, for λ ∈ Λ.

Definition 3.2.19. Let ν be a signed measure and µ be a positive on (X.Σ). We
say that ν is absolutely continuous with respect to µ, if

ν(S) = 0 whenever S ∈ Σ and µ(S) = 0.

Theorem 3.2.20 (Radon-Nikodym). Let (X,Σ, µ) be a σ-finite measure space. Then
the mapping g 7→ ϕg, where

ϕg(f) =

∫
fgdµ,

is an isomorphism of the Banach lattice L∞(µ) onto the dual of L1(µ). Furthermore,
suppose that u is any weak order unit of L1(µ) and λ is an order bounded linear form
on L∞(µ). Then the following assertions are equivalent:

(i) λ is order continuous.

(ii) λ is sequentially order continuous.

(iii) The restriction of λ to the unit ball of L∞(µ) is continuous for the topology of
the uniform convergence on [−u, u] ⊂ L1(µ).

(iv) λ is σ(L∞, L1)-continuous.

Proof. Consider the measure u.µ instead of µ assuming that µ is finite and u to be
the constant function e, equal to one, on X. Then, the Hilbert space L2(µ) can be
viewed as a dense ideal of L1(µ) and hence the strong dual of L1(µ) can be identified
with a dense ideal of L2(µ)′, which is L2(µ), where the canonical bilinear form is
given by

(f, g) 7→
∫
S

fgdµ.

Under this identification, the unit ball of V ′ is clearly the order interval [−e, e], which
shows V ′ to be isomorphic to L∞(µ).
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(i) Let λ be a continuous order bounded linear form on L∞(µ). Since L1(µ) can be
identified under evaluation with the band of all order continuous linear forms
on L∞, by Proposition 3.2.4, it follows that λ is σ(L∞, L1)-continuous.

(ii) Suppose that λ is σ(L∞, L1)-continuous. In the unit ball of V namely [−e, e] ∈
L∞ we notice that the weak topology generated by the finite subsets of the
form [−e, e] ⊂ L1(µ) agrees with the σ(L∞, L1) as the former is a coarser
Hausdorff topology and the unit ball is weakly compact with respect to the
duality ⟨L∞, L1⟩. Hence (iv) implies (iii).

(iii) The uniform convergence topology T is the topology of L∞(µ) induced by L1

as L∞ is considered a subspace of L1. Hence, by Proposition 3.2.4, it follows
that every order convergent filter on V is T-convergent and the implication
follows.

(iv) Since µ defines a strictly positive linear form on L∞(µ), it follows from Corollary
2.1.47, that L∞(µ) is super Dedekind complete.

Corollary 3.2.21 (Radon-Nikodym). Let (X,Σ, µ) be a σ-finite measure space, and
let ν be a finite measure on (X,Σ), which is absolutely continuous, with respect to µ.
Then there exists a unique class [f ] of f ∈ L1(µ), such that for all S ∈ Σ

ν(S) =

∫
S

fdµ.

Proof. The absolute µ-continuity of ν implies that ν defines an order bounded linear
form on L∞(µ). Since each sequence in L∞ converges if and only if it is bounded and
converges a.e. (µ), it follows that ν is sequentially order continuous on L∞(µ)

Definition 3.2.22. Let µ be a measure and {Uk}nk=1 be any countable disjoint col-
lection of sets. Then µ is said to be countably additive, if it satisfies

µ
( ∞⋃
k=1

Uk

)
=

∞∑
k=1

µ(Uk).

Proposition 3.2.23. Let (X,Σ, µ) be a σ-finite measure space, and let V := L1(µ).
Then the following hold:

(i) V is weakly sequentially complete.

(ii) For a relatively weakly compact subset A of V , it is necessary and sufficient
that A be bounded and that the measures νf : S →

∫
S
fdµ, where (S ∈ Σ) be

uniformly countably additive for f ∈ U .

(iii) If A ⊂ V is relatively weakly compact, then so is the solid hull
⋃

f∈A[−|f |, |f |].
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Proof. (i) Let (fn) be a weak Cauchy sequence in V and consider the sequence
(νn) of finite measures on Σ defined by νn(S) :=

∫
S
fndµ. We observe that,

for each n, the measures νn are absolutely continuous with respect to µ. Since
νn(S) = ⟨fn, χS⟩, S ∈ Σ, where χS ∈ L∞(µ) is the characteristic function of
S. Then it follows from the Vitali-Hahn-Sacks Theorem, that S 7→ ν(S) :=
limn νn(S) is a measure absolutely continuous, with respect to µ. Hence by the
Radon-Nikodym theorem we have that ν(S) =

∫
S
fdµ, for a unique f ∈ L1(µ).

But, (fn) defines a bounded sequence of linear forms on L∞ convergent to f
on the total subset {χS : S ∈ Σ}. Therefore, limn fn = f weakly in V .

(ii) Let A be bounded subset of V . If A is relatively weakly compact, it follows
from Eberlein’s Theorem 3.2.24, that each sequence in A contains a weakly
convergent subsequence. Thus if the countable additivity of the measure νf
were not uniform in A, it would not be uniform on a weakly convergent sequence
in A, which is a contradiction to the Vitali-Hahn-Sacks Theorem 3.2.18.

Conversely suppose that νf are uniformly countably additive for f ∈ A. Since
A is bounded, it follows that A is relatively σ(V ′′, V ′)-compact as a subset of
V ′′. Let h be any point in σ(V ′′, V ′)-closure of Ā. Then νh(S) = ⟨h, χS⟩ defines
a measure on Σ, which is countably additive because of the uniform countable
additivity of νf (f ∈ A). Since νh is absolutely continuous with respect to µ, it
follows from the Radon-Nikodym Theorem that h ∈ L1(µ). Therefore, Ā ⊂ V
and thus A is relatively weakly compact.

(iii) Suppose A ⊂ V is relatively σ(V ′, V )-compact. To prove that the given solid
hull is relatively weakly compact, it is enough to prove that |A| := {|f | : f ∈ A}
is relatively weakly compact. If |A| is not relatively σ(V ′, V )-compact, then
there would exist a sequence (fn) ∈ A such that the sequence of measures
S 7→

∫
S
|fn|dµ is not uniformly countably additive. This implies that there

exists a decreasing sequence (Sn) ∈ Σ, such that ∩nSn ̸= ∅ and an c > 0, such
that

∫
S
|fn|dµ ⩾ c for infinitely many n ∈ N. Define S+

n := {t ∈ Sn : fn(t) ≽ 0}
and S−

n := {t ∈ Sn : fn(t) ≺ 0}. Then one of
( ∫

S+
n
fndµ

)
and

( ∫
S−
n
fndµ

)
can not be a null sequence. Indeed, we assume that

∫
S+
n
fndµ ⩾ ϵ/2, for all

n ∈ N. Now limn(Sn) = 0 implies lim(S+
n ) = 0 and this contradicts the uniform

countable additivity of measures νfn , (fn) being realtively σ(V, V ′)-compact.
Therefore, |A| is relatively σ(V ′, V )-compact, and it is now clear that the same
holds for the solid hull of A.

Theorem 3.2.24 (Eberlein). Let V be a Banach space. Then each weakly countably
compact subset is weakly compact and weakly sequentially compact.

Corollary 3.2.25. Every AL-space V is weakly sequentially complete. Furthermore,
suppose U ⊂ V is relatively weakly compact, then so is the solid hull

⋃
x∈A[−|x|, |x|].

Proof. We notice, by Eberlein’s Theorem 3.2.24, that weak compactness of subsets
of V is equivalent to weak sequential compactness. Although we observe that every
sequence (xn) ∈ V is contained in some AL-subspace possessing a weak order unit.
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For example, we can take (Vu), x :=
∑

|xn|/2n∥xn∥. Thus, Theorem 3.2.9 reduces
the proof to the case V = L1(µ), where µ is a Radon measure on a compact space
and the statement is imminent.

Proposition 3.2.26. Let V be an AL-space. Then every order interval is weakly
compact.

Proof. Since V is an AL-space, it follows from Theorem 3.2.9 that V ∼= L1(µ) for
a locally compact space X and a Radon measure µ. We denote the isomoprhism
map by i. Let x, y ∈ V , such that the order interval [−x, y] ⊂ V . It follows that
i|[−x,y] ∈ L1(µ). Thus, it suffices to prove that every order interval of the previous
form is indeed weakly compact in L1(µ).

Suppose that there exists a convergent sequence (xn) to x ∈ i|[−x,y] and kn, n ∈ N,
such that the subsequence (xkn) is not weakly convergent to a point in i|[−x,y]. This
implies that there exists a function f ∈ X⋆, such that ∥f(xkn)− f∥ does not tend to
0. This is a contradiction, as L1(µ) is complete with respect to the norm of L1(µ).
Therefore, i|[−x,y] ∈ L1(µ) is weakly compact and, as a consequence, the order interval
[−x, y] ∈ V .

Examples 3.2.27. (i) Let X be a locally compact space and µ a Radon measure
on X. Then the representation space V = L1(µ),from Theorem 3.2.9,is not in
general homeomorphic to X.

(ii) Let (X,Σ, µ) be a finite measure space. Denote by N the ideal of µ-null sets in
Σ. Then the Boolean Algebra (Σ/N, ρ) is a complete metric space under the
metric ρ defined as follows:

ρ(S1, S2) = µ(S1∆S2).

Suppose u is a weak order unit of V = L1(µ), then (Σ/N, ρ) induces a sequence
of measures µ for every pair of S1, S2 ∈ Σ/N , such that (µn)n∈N satisfies the
hypothesis of Theorem 3.2.16. Therefore, there exists an isomorphism from
(Σ/N, ρ) to Bu. It follows from Corollary 3.2.11, that V is separable if and
only if (Σ/N, ρ) is separable.

(iii) In Proposition 3.2.26 we showed that every order interval, in an AL-space, is
weakly compact. But in general, even norm compact subsets of V are not order
bounded. Suppose V = L1(µ), where µ is a Lebesque measure on R. Now let
(Un)n∈N be a sequence of disjoint Borel sets, such that µ(Un) = n−1. Taking
the sequence of the characteristics functions over these sets (Un), we observe
that is a null sequence, which is not order bounded, as there exists not real
compact interval containing the images of the characteristic functions.
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3.3 Duality of AM and AL spaces

We will conclude this chapter stating representation and extension theorems of AL-
spaces.

Proposition 3.3.1. The dual of each AM-space is an AL-space and the dual of each
AL-space is an AM-space with unit.

Proof. (i) Suppose first that V is an M-normed space. Then in view of Proposition
2.2.37, it suffices to show that ∥x′ + y′∥ ⩾ ∥x′∥ + ∥y′∥, for x′, y′ ∈ V ′

+. Now
given ϵ > 0, it follows, by Remark 2.2.45, that there exist elements x, y ∈ V+,
such that ∥x∥ = ∥y∥ ⩽ 1 and ⟨x, x′⟩ > ∥x′∥ − ϵ/2 , ⟨y, y′⟩ > ∥y′∥ − ϵ/2. If
z := x ∨ y, then ∥z∥ ⩽ 1, since V is M-normed and this implies

∥x′ + y′∥ ⩾ ⟨x′ + y′⟩ ⩾ ⟨x, x′⟩+ ⟨y, y′⟩ > ∥x′∥+ ∥y′∥ − ϵ

by triangle inequality. This verifies that the norm of V ′ is additive in V ′
+.

(ii) Conversely, if V is an L-normed space and if z = u1 − v1 = u2 − v2 are any
two decompositions of z ∈ V , into different elements, then the norm of V is
additive on V+. Furthermore, e(z) := ∥u1∥− ∥v1∥ or e(z) = ∥u2∥− ∥v2∥ yields
a positive linear form e on V , for which e(|z|) = ∥z∥, for z ∈ V . Evidently, e
is a continuous linear form f ∈ V ′ of norm equal or less than 1, which satisfies
|f(z)| ⩽ e(|z|) or, equivalently, −e ⩽ f ⩽ e. Now, it follows from Proposition
3.1.4, that V is an AM-space with unit e.

Remark 3.3.2. If V is an AL-space, then V ′ is an order complete AM-space with
unit and hence, by Theorem 3.1.9 and Corollary 3.1.28, isomorphic to some C(K),
for a compact Stonian space K.

Theorem 3.3.3 (Lotz). Let V be a Banach lattice and V0 a Banach sublattice.
Denote by E an AL-space. Then every positive linear map T0 : V0 → E, has a
positive extension T : V → E, such that ∥T0∥ = ∥T∥.

Proof. By Proposition 3.3.1, it follows that V ′ is an order complete AM-space with
unit e, where e′ ∈ V ′ is given by e(x) = ∥x+∥ − ∥x−∥. In fact, the unit [−e, e] is the
unit ball of V ′. Thus, the adjoint map T ′

0 : V
′ → V ′

0 carries V ′ into the ideal (V ′
0)e2 ,

where e2 := T ′e and ∥e2∥ = ∥T ′ e∥ = ∥T ′∥ = ∥T∥. It follows by Proposition 2.2.42,
that e2 has a norm preserving extension in V ′

+ namely e1, such that ∥e1∥ = ∥e2∥.
Now, consider the adjoint operator τ ′ of the canonical injection τ : V0 → V .

Then τ ′ is a positive linear map from V ′ onto V ′
0 , such that τ [0, x′] = [0, τx′] for

all x ∈ V ′. Moreover, since every directed, majorized subset A of V ′ converges to
supA for σ(V ′, V ), and τ ′ is continuous for σ(V ′, V ) and σ(V ′

0 , V0), it follows that
j(supA) = sup j(A).

The ideals (V ′)e2 and (V ′
0)e2 are order complete AM-spaces with respective units e1

and e2. Thus, they can be identified with C(K1) and C(K2) respectively, for suitable
compact Stonian spaces K1 and K2. Now, the restriction τ ′0 of τ ′ to (V ′)e1

∼= C(K1)
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satisfies the hypothesis of Theorem 3.1.43, as the order continuity of τ ′ implies that
the absolute kernel of τ ′0 is a projection band. As a consequence, Theorem 3.1.43
implies that there exists an isometric lattice homomorphism S : (V ′

0)e2 → (V ′)e1 ,
such that Se2 = e1 and τ ′0 ◦ S is the identity map of (V ′

0)e2 . The composition S ◦ T ′
0

maps V ′ into G′ is positive and has norm ∥S ◦T ′
0∥ = ∥T ′

0∥. Moreover j ◦S ◦T ′
0 = T ′

0.
This implies T

′′
0 = T

′′
0 ◦ S ′ ◦ j′ and if P denotes the band projection V ′′ → V , then

the restriction T of P ◦T ′′
0 ◦S ′ to G is a positive linear norm preserving extension of

T0.

Corollary 3.3.4. Let V be a Banach lattice and V0 a Banach sublattice of V iso-
morphic to an AL-space. Then there exits a contractive projection map T such that
R(T ) = V0.

Proof. Since V0 is a Banach sublattice isomorphic to an AL-space, it follows that V0

is closed in V and hence the identity mapping is a norm preserving projection.

Corollary 3.3.5. Let V be a Banach lattice and V0 a Banach sublattice isomorphic
to an AL-space. Then every continuous linear map T0 : V0 → E into a Banach space
E, has an extension T : V → E, such that ∥T0∥ = ∥T∥.
Proof. Suppose H is ordered and without loss of generality suppose that T0 ≽ 0.
Then T can be chosen positive, by Proposition 2.2.42. Therefore, by Theorem 3.3.3,
it follows that there exists such extension.

Definition 3.3.6. LetK be a compact Stonian space. ThenK is called hyperstonian,
if the band N of all order continuous Radon measures (normal measures) on K
separates C(K). Equivalently, one can state that K is hyperstonian, if the union of
the supports of all n ∈ N is dense in K.

We obtain the following Theorem of Dixmier concerning hyperstonian spaces.

Theorem 3.3.7 (Dixmier). C(K) is isomoprhic to the dual of an L-space if and
only if K is hyperstonian.

Proof. Let K be a compact and Stonian space. Suppose that V ′ = C(K). It follows
from Proposition 3.3.1 and Theorem 3.1.9, that V is an L-normed space. Moreover,
every element x defines, through the evaluation map, q : V → V ′′, an order contin-
uous Radon measure. Now, the set of all order continuous Radon measure, N is a
band, by Proposition 2.1.14. Thus, by Theorem 3.1.8, it follows that N separates
the points of C(K) and therefore K is hyperstonian.

Let K be a hyperstonian space. Suppose that V = N , where N is the normal
measures onK. It follows that V is a band in C(K) and hence a Banach Lattice itself.
Since V separates the points of C(K), by hypothesis, it follows, from Proposition
3.2.4 and Nakano’s Theorem 2.1.56, that C(K) is a dense ideal in V ′. Since the unit
of C(K) accounts for the unit of V ′, it follows that V ′ = C(K)

Theorem 3.3.8 (Mackey-Arens). Let ⟨F,G⟩ be a given duality. Suppose T is a
locally convex topology on F . Then T is consistent with ⟨F,G⟩ if and only if T is
the G-topology for a saturated class G, which covers G of σ(G,F )-relatively compact
subsets of G.
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Theorem 3.3.9. Let V be any AL-space. Then there exists a compact hyperstonian
space K, unique to isomorphism, such that V can be identified with the AL-space of
all order continuous Radon measures on K.

Proof. We notice, by Proposition 3.3.1, that V ′ can be identified with C(K) for some
compact Stonian space K. Moreover, Proposition 3.2.4, implies that V is mapped
onto the band of all order continuous Radon measures on K, through evaluation.
Now let K ′ be any hyperstonian space, such that there exists an isomorphism i :
V → N(K ′) onto the AL-space N(K ′) of order continuous Radon measures on K ′.
Moreover, since ⟨C(K ′), N⟩ is a separated duality by hypothesis, it follows from the
Mackey-Arens Theorem 3.3.8, that N(K ′) is a Banach predual to C(K ′). Thus,
the adjoint i is an isomorphism of C(K ′) to C(K) ∼= V ′, which shows that K ′ is
homeomorphic with K in view of Corollary 3.1.11.

Corollary 3.3.10. Every band in the dual of an AL-space is σ(V ′, V )-closed.

Proof. Let B be a band of V ′. Since V ′ = C(K) is order complete, it follows from
Theorem 1.2.53 that B is a projection band. Now, if PB denotes the associated band
projection and e denotes the unit of V ′, then B = PB(V ) and B is an AM-space with
unit e1 := PBe, where e1 is the characteristic function of an open-and-closed subset
of K. It follows that the adjoint P ′

B : M(K) → M(K) of PB is mapping µ 7→ e1.µ
and since e1.µ is an order continuous measure on K, whenever µ is continuous,
it follows that leaves V invariant. Therefore, PB is σ(V ′, V )-continuous and B is
σ(V ′, V )-closed.
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