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Περιληψη

Η μέθοδος πεπερασμένων στοιχείων είναι μια αριθμητική μέθοδος για τον υ-

πολογισμό προσεγγιστικών λύσεων μερικών διαφορικών εξισώσεων. Η μέθοδος

αυτή αποτελεί ισχυρό εργαλείο στη μελέτη διάφορων προβλημάτων και βρίσκει

μεγάλο αριθμό εφαρμογών. Εμείς εδώ θα επικεντρωθούμε στην εφαρμογή της

μεθόδου σε προβλήματα Ρευστομηχανικής. Η Ρευστομηχανική αποτελεί ιδιαί-

τερο κλάδο της κλασικής μηχανικής με κύριο αντικείμενο έρευνας και μελέτης

τη στατική και δυναμική συμπεριφορά των ρευστών. Ως ρευστό χαρακτηρίζεται

οποιαδήποτε ουσία παρουσιάζει ροή δηλαδή αναφέρεται σε υγρά και αέρια των

οποίων οι δυνάμεις συνοχής είναι ασθενείς, έτσι ώστε να λαμβάνουν κάθε φορά

το σχήμα του χώρου που καταλαμβάνουν ή του μέσου δια του οποίου κινούνται.

Στην παρούσα εργασία θα επιχειρήσουμε να επιλύσουμε τις μερικές διαφορικές

εξισώσεις που περιγράφουν την κίνηση των ρευστών. Επειδή όμως η λύση των

εξισώσεων αυτών δεν είναι πάντα εφικτή, όπως στην περίτωση των εξισώσεων

Navier–Stokes, είναι αναγκαίο να επεκταθούμε σε νεόυς τρόπους επίλυσης αυτών,

όπως την μέθοδο των Πεπερασμένων Στοιχείων. Αρχικά θα παρουσιάσουμε την

μέθοδο μαζί με τα βασικά θεωρήματα ύπαρξης και μοναδικότητας των λύσεων που

προκύπτουν.

Ακόμη θα αναλύσουμε τα a priori και a posteriori σφάλματα για γραμμικά

προβλήματα, καθώς υπάρχει έλλειψη των εννοιών αυτών σε πιο περίπλοκα και

μη–γραμμικά συστήματα. Θα αναφερθούμε επιπλέον στις συναρτήσεις βάσεις που

μας βοηθούν να διακριτοποιήσουμε το πρόβλημα μας και στα είδη στοιχείων που

προκύπτουν.

Θα ξεκινήσουμε την αριθμητική επίλυση με τη βαθμωτή εξίσωση Advection–
Diffusion, που παρουσιάζει δυσκολίες στην επίλυσή της. Για να προσπεράσουμε

το εμπόδιο αυτό θα παρουσιάσουμε κάποιες παραλλαγές της μεθόδου των Πεπε-

ρασμένων Στοιχείων όπως τη Stabilized Upwind Petrov–Galerkin (SUPG), την
Galerkin Least Squares (GLS) και την Unusual Stabilized FEM(USFEM).

Στο τέταρτο κεφάλαιο θα ασχοληθούμε με τις εξίσωσεις Navier–Stokes. Θα

παρουσιάσουμε τον φορμαλισμό της εξίσωσης με την κλασική μέθοδο των Πεπερα-
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σμένων Στοιχείων και τις επεκτάσεις SUPG και Variational Multiscale Scheme
(VMS). Επιπλέον θα αναφερθούμε στην Discontinuous Galerkin (DG).

Θα συνεχίσουμε παρουσιάζοντας ένα φάσμα προβλημάτων δοκιμής για τις εξι-

σώσεις αυτές, όπως εκείνα της κίνησης σε δοχείο με κινούμενο άνω άκρο (driven
cavity) και του backward step. Στόχος μας είναι να δείξουμε ότι η μέθοδος αυτή

μας παρέχει αξιόπιστα αποτελέσματα σε όλες τις περιπτώσεις.

Τέλος θα επικεντρωθούμε στις εφαρμογές της μεθόδου σε προβλήματα Εμβιο-

μηχανικής. Θα ασχοληθούμε με μία τρισδιάστατη δομή καρωτίδας που έχει προκύ-

ψει από αναδόμηση της πραγματικής δομής. Θα παρουσιάσουμε τα αποτελέσματα

που προέκυψαν από την αριθμητική λύση του προβλήματος χρησιμοποιώντας την

SUPG.

Τα αποτελέσματα και οι εικόνες προέκυψαν με την χρήση των προγραμμάτων

Matlab, FEniCS, SimVascular, Wolfram Mathematica, GeoGebra και

LATEX.
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Abstract

The finite element method is a numerical method for calculating appro-
ximate solutions of partial differential equations (PDE’s). This method is
a powerful tool in the study of various problems and finds a large number
of applications. We will concentrate here on applying the method to Fluid
Mechanics problems. Fluid Mechanics is a particular branch of classical me-
chanics which has as main object of research and study the static and dynamic
behavior of fluids. Fluid is characterized as any substance presenting a flow,
i.e. refers to liquids and gases whose cohesion forces are weak, so that they
each take the shape of the space they occupy or the medium through which
they move.

In this thesis, we will attempt to solve the differential equations describing
fluid movement. However, since the solution of these equations is not always
possible, as in the case of the Navier–Stokes equations, it is necessary to extend
to new ways of solving them, such as the Finite Element method. First we will
present the method along with the basic theorems of existence and uniqueness
of the solutions that arise.

We will also analyze the a priori and a posteriori errors for linear problems
only, as there is a lack of these concepts in more complex systems. We will
also refer to baseline functions that help us to distinguish the problem and the
types of data that arise.

We will begin the numerical solution with the Advection–Diffusion scalar
equation, which presents difficulties in solving it. To overcome this obstacle,
we will also present finite element method variants such as the Stabilized
Upwind Petrov–Galerkin (SUPG), Galerkin Least Squares (GLS) and Unusual
Stabilized FEM (USFEM).

In the fourth chapter we will deal with the Navier–Stokes equations. We
will present the formulation of the equation in the classical method of Finite
Element and the advancements of SUPG and Variational Multiscale Scheme.
In addition, we will discuss about the Discontinuous Galerkin (DG).
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We will continue by presenting a range of test problems for these equations,
such as the driven cavity and the backward step. Our goal is to show that these
methods provide reliable numerical results in all cases and extended ranges of
dimensionless numbers, such as the Reynolds number.

Finally, we will concentrate on the application of the method in a problem
of the biomedical field. We will deal with a three–dimensional patient–based
carotid structure and present the results obtained from the numerical solution
of the problem using the SUPG method.

The obtained results and images resulted from the use of the programs
Matlab, FEniCS, SimVascular, Wolfram Mathematica, GeoGebra and
LATEX.
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CHAPTER 1
Introduction

1.1 The Weighted Residual Method

The Weighted Residual Method or WRM is a generic class of numerical
methods. The WRM is illustrated on a simple one–dimensional problem. Let’s
assume that a mathematical problem is governed by the following differential
equation,

L(u) = 0,

and it is to be solved over a given domain, D, subject to the initial and
boundary conditions, respectively,

I(u) = 0, B(u) = 0,

where, L, I and B denote operators of the function u. An appropriate solution
û can be introduced in the above relations providing the following residuals or
errors,

L(û) = R 6= 0, I(û) = RI 6= 0, B(û) = RB 6= 0.

Then the approximate solution can be structured so that,

1. R = 0, then it is called a boundary method.

2. RB = 0, then it is called an interior method.

3. Else it is a mixed method.

Focusing on the interior in the following analysis of WRM, the approximate
solution is taken as,

û(x) = u0(x, t) +
J∑
j=1

aj(t)φj(x),

3



Chapter 1 1.2. The Finite Element Method

where aj(t) are unknown coefficients, φj(x) are called trial functions, and
u0(x, t) must satisfy the given initial and boundary conditions.

In WRM, the coefficient aj(t) are determined by setting the weighted av-
erage of the residual of the equation over the computational domain equal to
zero, such as in the following equation,∫

Ω

wk(x) Rdv = 0, for k = 1, ..., J.

Some variants of the Weighted Residual Methods are the following:

1. the Subdomain method, one example of this is the Finite Volume method.

2. the Collocation method, the residual is forced to be zero at specific
locations.

3. the Least–Square method.

4. the method of Moments.

5. the Galerkin and Ritz methods.

6. the Petrov–Galerkin method.

7. the Spectral methods.

In this dissertation, we mainly focus our attention on the Galerkin, Ritz
and Petrov–Galerkin methods. The Finite Element Method as an extension
of the WRM, has been based and developed from the aforementioned methods
[25, 26]. Studying or analyzing a phenomenon with FEM is often referred to
as finite element analysis (FEA).

1.2 The Finite Element Method

Finite element method (FEM) has gained substantial momentum in the last
decades. FEM was initially introduced as an answer to solid mechanics prob-
lems that were difficult to solve until then. Most of them would be encountered
in aeronautics or civil engineering due to the need of solving problems related
to the construction of complicated structures. The method was extended to
fluid mechanics applications where the convective terms play important role

4



Chapter 1 1.3. FEM in Fluid Mechanics

leading to a non–linear formulation of the problem. The progress in fluid me-
chanics was slower due to the non–linearities and instabilities of the solution
of these problems.

The basic principles of the FEM were developed by the German mathe-
matician Ritz in 1909. In 1915 Galerkin worked on the theoretical aspects of
the method. The absence of computers delayed further advancement of the
method. Later on, when computers were introduced, the method was fur-
ther developed. Hrenikoff, 1941, introduced the framework method, in which
a plain elastic medium could be replaced by an equivalent system of sticks
and rods. In 1943 Courant solved the torsion problem by using triangular
elements based on the principal of minimum potential energy introducing the
Rayleigh–Ritz method. Courant’s theory could not be implemented due to
the unavailability of computers at the time

Argyris, 1955, in the book “Energy Theorems and Structural Analysis” in-
troduced the principals of the finite element method [2, 59]. In 1956 Clough,
Turner, Martin and Top calculated the stiffness matrix of rod and other ele-
ments. Argyris and Kelsey, 1960, published their work which was based on the
finite element principles. In the same year, the term Finite Element Method
was introduced by Clough in his paper and the term has been used extensively
in the literature until today. Zienkiewicz and Chung wrote the first book on
finite elements method, in 1967. Zlámal, worked also on the finite element
method with very interesting results [67]. Other notable researchers in the
FEM field are Samuel Levy, Borje Langefors, Paul Denke, Baudoin Fraejis
De Veubeke, L. Brandeis Wehle Jr., Theodore Pian, Warner Lansing, Bertran
Klein, John Archer, Robert Melosh, John Przemieniecki, Ian Taig, Richard
Gallagher, Bruce Irons, and others.

1.3 FEM in Fluid Mechanics

As mentioned before the progress of FEM in fluid mechanics applications
had several drawbacks due to the non–linear convective terms and instabili-
ties of the solution based on the element selection. For these reasons many
researchers studied the advection–diffusion equation. The Galerkin method
was introduced as a natural extension of the weak formulation of the PDEs
under consideration. One of the reasons why finite elements have been less
popular in the past than other numerical techniques such as finite differences, is
the lack of upwind techniques. However, accurate upwind methods have been

5



Chapter 1 1.3. FEM in Fluid Mechanics

constructed. The most popular of these upwind approaches is the Streamline
Upwind Petrov–Galerkin method (SUPG) [63]. It can be shown that upwind-
ing may increase the quality of the solution considerably. Another important
aspect of upwinding is that it makes the systems of equations appropriate for
the utilization of iterative methods. As a consequence both the number of
iterations and the computation time substantially decrease.

The advection–diffusion equation represents diffusion of a scalar variable
while convected by a velocity field. In this respect, the equation by itself
applies in several physical phenomena and is a precursor to studying the non–
linear Navier–Stokes equations that represent in a simplifying manner the
transport of velocity itself. In any case, the development of accurate and stable
numerical formulations for the advection–diffusion equation is quite challeng-
ing. For example, the classical Galerkin method is known to perform poorly for
advection–dominated transport problems. Spurious oscillations emerge in the
solution due to the truncation error inherently introduced in the discretized
Galerkin approximation. The literature suggest numerous strategies to over-
come this problem. The addition of artificial diffusion is a standard strategy,
another is the employment of a non-centered discretization of the advection
operator, the so-called upwind schemes [32]. Other strategies involve mul-
tiscale models using bubble functions or wavelets [52], while in many cases,
these methods are equivalent [14]. In the relevant section of this chapter, more
information is provided regarding some of the strategies in the context of fi-
nite element methods that have been developed to address the problems that
standard discretizations face.

Studying the advection–diffusion equation helps in understanding more
complicated problems such as the Navier–Stokes equations. For the discretiza-
tion of the incompressible Navier–Stokes equations, since the pressure is an
unknown in the momentum but not in the continuity equation, the discretiza-
tion must satisfy some special requirements. In fact one is no longer free to
choose any combination of pressure and velocity approximation but the finite
elements must be constructed such that the Ladyzhenskaya–Brezzi–Babuska
(LBB) condition is satisfied. This condition provides a relation between pres-
sure and velocity approximation. In finite differences and finite volumes the
equivalent of the LBB condition is satisfied if staggered grids are applied.

The divergence free approach has been introduced where in this method,
the elements are constructed in such a way that the approximate divergence
freedom is satisfied explicitly. This method seems very attractive, however,
the extension to three-dimensional problems is a difficult task. Stabilized
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Chapter 1 1.3. FEM in Fluid Mechanics

and multiscale formulations are among the most fundamental methods for
fluid mechanics problems. The SUPG is one of the first finite element ap-
proaches for studying fluid mechanics applications. However, due to the ad-
vancement in research nowadays, new finite element approaches have emerged
such as the Variational Multiscale Method (VMS), the Characteristic Base
Split (CBS) method, the Gradient Smoothed Method (GSM) and the discon-
tinuous Galerkin (DG) and adaptive FEM.

In this dissertation we initially present the basic analysis of the Finite Ele-
ment Method focused on the Stokes problem providing error estimates. Fur-
ther three Finite Element approaches are presented and analysed, the Classical
Galerkin, the SUPG and the Galerkin Least Squares (GLS). The last two are
some of the oldest and more developed approaches. A comparative analysis
follows among these three approaches on a simple domain solving a Dirichlet
problem. A similar analysis follows for the non–linear Navier–Stokes equations
in which we focus on the Chorin splitting method and a stabilized method,
the SUPG. These advancements will help study two–dimensional test prob-
lems as well as a three–dimensional patient–based structure. We conclude
this dissertation with the final results and arguments for the Finite Element
Method.
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CHAPTER 2
Theory and Principals of
the Finite Elements

This chapter is dedicated to the basic principals of the finite element method.
In the beginning, we formulate basic definitions and theorems about the exis-
tence and uniqueness of the solution in these problems. More details can be
found in the textbooks by Brenner & Scott and Brezzi [13, 15].

The governing equation of most of the physical problems are usually rep-
resented by using partial differential equations (PDE). This along with the
boundary conditions together is called the strong form of the differential equa-
tion. The strong form in its original avatar imposes differentiability and conti-
nuity requirements on its solutions. Incorporating boundary conditions is al-
ways a challenging task with solving strong forms directly. The name ”strong
form” is probably because of the stronger requirements on the continuity of
field variables.

To counter these difficulties, weak formulations are preferred. The weak
form is a mathematical manipulation to relax the ”strong” requirements for
the solution of a PDE. The weak form reduces the continuity requirements
on the basis functions used for approximation which gives way to using lesser
degree polynomials. This is done by converting the differential equation into
an integral form which is usually easier to solve comparatively.

9



Chapter 2 2.1. Basic Theory

2.1 Basic Theory

Consider the following boundary value problem
−d

2u

dx2
= f, x ∈ (0, 1)

u(0) = 0

u′(1) = 0

(2.1)

We multiply both parts of the equations with function (test function) v with
v(0) = 0 and by integrating the result we obtain

∫ 1

0
f(x)v(x)dx =

∫ 1

0
−u′′(x)v(x)dx∫ 1

0
u′(x)v′(x)dx+ u′(x)v(x)

∣∣∣∣1
0

=

∫ 1

0
f(x)v(x)dx := (f, v)

The term u′(x)v(x)

∣∣∣∣1
0

is equal to zero because u′(1) = 0, v(0) = 0.

Thus,

(f, v) =

∫ 1

0
u′(x)v′(x)dx =: a(u, v)

where

a(u, v) =

∫ 1

0
u′(x)v′(x)dx (2.2)

is a bilinear form.

Let us define the function space

V =
{
v ∈ L2(0, 1) : a(v, v) <∞ and v(0) = 0

}
as the test space.

L2(0, 1) is the space of square integrable functions in [0, 1]. It can be
proved that these functions can create a Banach space (complete function
space with metric). In the case that is enforced with an inner product, then
the space is called Hilbert(and is the same as a H1 Sobolev space). The inner
product in L2 is defined as:

< f, g >L2=

∫ 1

0
f g dx.

10
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We need to find a u ∈ V such that

a(u, v) = (f, v), ∀v ∈ V. (2.3)

This form (2.3) is called the variational or weak form of the equation.

Definition 2.1.1. Let a(·, ·) be a bilinear form on a normed linear space, H.
The bilinear form is said to be bounded (or continuous) if there exists a
C <∞ such that,

| a(u, v) |≤ C ‖u‖H ‖v‖H ∀ u, v ∈ H,

and coercive on the subspace V =
{
v ∈ H1(0, 1) : v(0) = 0

}
, V ⊂ H if there

exists a δ > 0 such that,

a(v, v) ≥ δ ‖v‖2H , ∀ v ∈ V,

where ‖·‖H is the norm in the space H.

Focusing our attention on the non–symmetric variational problem, that is
more general, the following conditions are valid,



(H, (·, ·)) is a Hilbert space.

V is a (closed) subspace of H.

a(·, ·) is a bilinear form on V.

a(·, ·) is continuous (bounded) on V.

a(·, ·) is coercive on V.

Then the non–symmetric variational problem is the following, given F ∈ V ′,
find u ∈ V , such that,

a(u, v) = F (v),∀ v ∈ V, (2.4)

where V ′ is the dual space of V .

The discrete form or the Galerkin approximation, of this problem is the
following, given a finite dimensional subspace Vh ⊂ V and F ∈ V ′, find uh ∈ Vh
such that,

a(uh, v) = F (v), ∀ v ∈ Vh. (2.5)

Existence and uniqueness, of the solution for both the variational and the
approximation problems under the conditions mentioned previously, can be
proved with the following theorem [13, 15].

11
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Theorem 2.1.1. (Lax-Milgram) Given a Hilbert space (V, (·, ·)), a contin-
uous, coercive bilinear form a(·, ·) and a continuous linear functional F ∈ V ′,
there exists a unique solution u ∈ V , such that,

a(u, v) = F (v), ∀ v ∈ V. (2.6)

Before proving the theorem it is necessary to mention the following Lemma
and Theorem.

Lemma 2.1.2. (Contraction Mapping Principle) Given a Banach space
V and a mapping T : V → V satisfying

‖Tu1 − Tu2‖ ≤M ‖u1 − u2‖ (2.7)

for all u1, u2 ∈ V and fixed 0 ≤M < 1, there exists a unique u ∈ V such that

u = Tu. (2.8)

Thus the contraction mapping T has a unique fixed point u.

Theorem 2.1.3. (Riesz Representation Theorem) Any continuous linear
functional L on a Hilbert space H can be represented uniquely as

L(v) = (u, v) (2.9)

for some u ∈ H. Furthermore, we have

‖L‖H′ = ‖u‖H (2.10)

Remark. According to the Riesz Representation Theorem, there is a natural
isometry between H and H ′ (u ∈ H ←→ Lu ∈ H ′). For this reason, H and H ′

are often identified. For example, we can write Wm
2 (Ω) ∼= W−m2 (Ω)(although

they are completely different Hilbert spaces). We will use τ to represent the
isometry from H ′ onto H.

Proof. For any u ∈ V , define a functional Au by Au(v) = a(u, v), ∀v ∈ V . Au
is linear since

Au(γv1 + δv2) = a(u, γv1 + δv2)

= γa(u, v1) + δa(u, v2)

= γAu(v1) + δAu(v2), ∀v1, v2 ∈ V, γ, δ ∈ R.

12
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Au is also continuous since, for all v ∈ V,

|Au(v)|=|a(u, v)|≤ C ‖u‖ ‖v‖ ,

where C is the constant from the definition of continuity for a(·, ·). Therefore,

‖Au‖V ′ = sup
v 6=0

|Au(v)|
‖v‖

≤ C ‖u‖ <∞

Thus, Au ∈ V ′. Similarly, one can show that the mapping u → Au is a
linear map from V to V ′ which is continuous with ‖A‖L(V,V ′) ≤ C. Now, by the

Riesz Representation Theorem, for any φ ∈ V ′ there exists a unique τφ ∈ V
such that φ(v) = (τφ, v) for any v ∈ V . We must find a unique u such that

Au(v) = F (v) ∀v ∈ V

In other words, we want to find a unique u such that

Au = F (∈ V ′)

or

τAu = τF (∈ V )

since τ : V ′ −→ V is a one-to-one mapping. Based on the Contraction Map-
ping Principle we solve this last equation. We want to find ρ 6= 0 such that
the mapping T : V −→ V is a contraction mapping where T is defined by

Tv := v − ρ (τAv − τF ) ∀v ∈ V. (2.11)

If T is a contraction mapping then there exists a unique u ∈ V such that

Tu = u− ρ (τAu− τF ) = u, (2.12)

that is ρ (τAu− τF ) = 0, or τAu = τF. It remains to show that such a ρ 6= 0
exists. For any v1, v2 ∈ V , let v = v1 − v2. Then

13
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‖Tv1 − Tv2‖2 = ‖v1 − v2 − ρ (τAv1 − τAv2)‖2

= ‖v − ρ(τAv)‖2

= ‖v‖2 − 2ρ(τAv, v) + ρ2 ‖τAv‖2

= ‖v‖2 − 2ρAv(v) + ρ2Av(τAv)

= ‖v‖2 − 2ρa(v, v) + ρ2a(v, τAv)

≤ ‖v‖2 − 2ργ ‖v‖2 + ρ2C ‖v‖ ‖τAv‖
≤ (1− 2ργ + ρ2C2) ‖v‖2

= (1− 2ργ + ρ2C2) ‖v1 − v2‖2

= M2 ‖v1 − v2‖2

Here, γ is the constant in the definition of coercivity of a(·, ·). Note that
‖τ‖Av = ‖A‖ v ≤ C ‖v‖ was used in the last inequality. We thus need

1− 2ργ + ρ2C2 < 1

for some ρ, i.e, ρ(ρC2− 2γ) < 0. If we choose ρ ∈
(
0, 2γ/C2

)
then M < 1 and

the proof is complete.

Remark. The variational (2.4) as well as the approximation (2.5) problems
have a unique solution, under the conditions of the non–symmetrical problem.

If a(u, v) is bounded, symmetric and coercive on V then we can have the
symmetric variational problem


(H, (·, ·)) is a Hilbert space.

V is a (closed) subspace of H.

a(·, ·) is a bounded, symmetric and coercive bilinear form on V.

In higher dimensional problems the variational form becomes

a(u, v) =

∫
Ω
A(x)∇u(x) · ∇v(x) + (B(x) · ∇u(x)) v(x) + C(x)u(x)v(x) dx

(2.13)

where A,B, C are bounded and measurable functions on Ω ⊂ Rn and B is
a vector. According to Hölder’s inequality a(·, ·) is continuous on H1(Ω) with
the constant C depending only on the L∞(Ω) norms of the coefficients.

14
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The coercivity can be on the symmetric form, B ≡ 0 and the existence of a
constant γ > 0 such that,

A(x) ≥ γ and C(x) ≥ γ for a.a x ∈ Ω. (2.14)

In the case where B is nonzero Hölder’s inequality becomes

|
∫

Ω
(B(x) · ∇u(x))u(x)dx| ≤ ‖B‖L∞(Ω)‖u‖H1(Ω)‖u‖L2(Ω)

≤ ‖B‖L∞‖u‖2H1(Ω)/2

If (2.14) holds and

‖|B|‖L∞ ≤ 2γ (2.15)

then a(·, ·) is coercive on H1(Ω).

Thus uniqueness of the solution can be proved by the following theorem,

Theorem 2.1.4. If (2.14) and (2.15) hold, then there is a unique solution,
u, to the variational problem with a(·, ·) as above and V = H1(Ω).

2.1.1 Error Estimates

We define the energy norm, ‖·‖E as,

‖v‖E =
√
a(v, v), ∀ v ∈ V. (2.16)

Based on the above definition for the energy norm and with the use of the
Schwartz’ inequality the error estimate for the previous problem (2.6) is proven
to be,

‖u− uh‖E = inf{‖u− v‖E : v ∈ S}, (2.17)

where u is the solution and uh the approximate one and v ∈ S, S a finite
dimensional subspace of V . This is the basic error estimate and is optimal
in the energy norm. Moreover, in some cases it can be proved that we can
replace “infimum” with “minimum”, more details can be found elsewhere [13],

‖u− uh‖E = min{‖u− v‖E : v ∈ S}. (2.18)
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2.1.2 Shape Functions

Since we work in Sobolev spaces, there are functions that have discontinu-
ities. Thus we need to concentrate on Piecewise Polynomial Spaces. Let a
partition of [0, 1] with 0 = x0 < x1 < ... < xn = 1 and let Vh be a linear space
of functions v such that:

• v ∈ C0([0, 1])

• v |[xi−1,xi] is a linear polynomial and

• v(0) = 0

We can define φi for all i = 1, ..., n and φi(xj) = δij , Kronecker’s delta. The
purpose of this space is to construct an orthonormal basis {φi : 1 ≤ i ≤ n} for
the Vh space. This is called nodal basis and the points xi are called nodes.

The purpose of creating a basis is to help in describing the functions that
are used, in a discrete space.

There is also a need to find a more efficient way to make our calculations
simultaneously and as uniformly as possible due to the fact that sometimes
the coordinates of each element can make the problem more complex. Thus,
to overpass those difficulties, we introduce the following index,

i(e, j) = e+ j − 1,

which helps to transfer the location of each element into the interval of [0, 1].
In the following example we can observe the transition from the interval [2, 3]
to [0, 1]

i(e, 0) = 2

i(e, 1) = 3

Figure 2.1: Transition from the global to the local system
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As we work in discrete intervals we have to transform every function involved
to its discrete form. This could happen using the nodal basis. Thus we have

Definition 2.1.2. Given v ∈ C0([0, 1]), then vI ∈ Vh is the interpolant of v
and is determined by

vI :=
n∑
i=1

v(xi)φi.

Remark. If v ∈ Vh ⇒ v = vI . This happens because v − vI is linear on each
interval [xi−1, xi] and equal to zero at the endpoints.

We can also define the interpolant of f and is fI

fI :=
∑
e

1∑
j=0

f
(
xi(e,j)

)
φej (2.19)

where {φej : j = 0, 1} is the basis of the interval Ie = [xe−1, xe] :

φej(x) = φj((x− xe−1)/(xe − xe−1))

and

φ0(x) =

{
1− x, x ∈ [0, 1]

0, else
φ1(x) =

{
x, x ∈ [0, 1]

0, else

Figure 2.2: Basis

At last we have to convert the bilinear form a(u, v).

a(u, v) =
∑
e

ae(u, v)

where ae(u, v) is the local bilinear form in each element defined by the
following

17
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ae(u, v) :=
∫
Ie
u′v′ dx

= (xe − xe−1)−1
∫ 1

0

(∑
j ui(e,j)φj

)′ (∑
j vi(e,j)φj

)′
dx

= (xe − xe−1)−1

(
ui(e,0)

ui(e,1)

)t
K

(
vi(e,0)

vi(e,1)

)
,

where K is the local stiffness matrix

Ki,j :=

∫ 1

0
φ′i−1φ

′
j−1 dx, i, j = 1, 2.

The solution of the problem results by solving the above system.

Definition 2.1.3. Let

i K ⊆ Rn be a bounded closed set with nonempty interior and piecewise
smooth boundary (the element domain),

ii P be a finite-dimensional space of functions on K (the space of shape
functions) and

iii N = {N1, N2, ..., Nk} be a basis for P ′ (the set of nodal variables).

Then (K,P,N ) is called a finite element

Definition 2.1.4. Let (K,P,N ) be a finite element. The basis {φ1, φ2, ..., φk}
of P dual to N is called the nodal basis of P.

In FEniCS the element family and shape function space is determined by
the following
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Figure 2.3: Legend of the elements

The family of elements that is used in our algorithms is the PrΛk

This space consists of all the differential k−forms with polynomial coeffi-
cients of degree at most r and the dimension is

dimPrΛk(∆n) =

(
r + n
r + k

)(
r + k
k

)
. (2.20)

The elements that can be created in this space are the following
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Figure 2.4: The PrΛk family

We observe that in different dimensions we can have either an interval, a
triangle or a quadrilateral.

The simplest case is when k = 0 and n = 1 where we have an interval.

Figure 2.5: Interval element

In higher dimensions
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(a) Triangle P1
(b) Triangle P2

Figure 2.6: Triangular Elements

and

(a) Tetrahedron P1
(b) Tetrahedron P2

Figure 2.7: Tetrahedron Elements
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As for the quadrilaterals we have

(a) Quadrilateral P1 (b) Hexahedron P2

Figure 2.8: Square Elements

2.2 The Stokes Problem

Initially, we consider the stationary Stokes problem for incompressible flow.
Ω is a bounded open set of Rn (where n = 2, 3) with regular boundary and
f is a square integrable function on Ω. We seek a solution (u, p) ∈ H1

0 (Ω)2 ×
(L2(Ω)/R) of the problem,


−∆u +∇p = f in Ω,

div u = 0 in Ω,
u = 0 on ∂Ω.

Based on this problem, we will introduce the error estimates (a priori and a
posteriori) and we briefly discuss about the uniqueness of the solution for this
problem [8]. Our goal is to extend these arguments for the non–stationary case.

According to the finite element analysis we end up with the following weak
form.

{
a (u,v) + b (p,v) = (f ,v) , ∀ v ∈ H1

0 (Ω)n, u ∈ H1
0 (Ω)n,

b (u, q) = 0 ∀ q ∈ H1(Ω), p ∈ H1(Ω),
(2.21)
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where, a (u,v) =

∫
Ω
∇u ∇v dΩ and b (p,v) =

∫
Ω
p ∇v dΩ.

Given two finite dimensional subspaces Vh ⊂ H1(Ω)n and Qh ⊂ H1(Ω) the
corresponding discrete form is,

{
a (uh,vh) + b (ph,vh) = (f ,vh) , ∀ vh ∈ V0h, uh ∈ V0h,

b (uh, qh) = 0, ∀ qh ∈ Qh, ph ∈ Qh,
(2.22)

where, V0h = {vh ∈ Vh : vh |∂Ω= 0}.

Two cases are analyzed for both triangular and quadrilateral elements de-
pending on the number of nodes on each element [8]. We focus only on the
Taylor–Hood method (six node triangular elements), second order polynomi-
als for the velocity and first order polynomials for the pressure at each element
(P2 − P1).

After finding a solution, for the problem under consideration, it is impor-
tant to show that it is stable and how the input data affect it. This can be
done using the inf–sup condition, the Ladyzhenskaya–Babuska–Brezzi (LBB)
condition. This is a condition for saddle point problems i.e. problems aris-
ing in different types of discretization of equations. Convergence is ensured
for most discretization schemes for positive definite problems but for saddle
point problems there are still discretizations that are unstable, due to spuri-
ous oscillations [63]. In these cases a better approach is the adaptation of the
computational grid [55]. We further discuss for the BB condition, introducing
the following theorem.

Theorem 2.2.1. If Ω is polygonal and Ωh = Ω, Ωh =
⋃
i
Ti, where Ti are

the triangles and h denotes the length of greatest triangle side, if all triangles
have at least one vertex which is not on ∂Ω, if Vh, Qh are chosen as in the
Taylor–Hood method, then there exists a constant C, independent of h, such
that,

supvh∈V0h
(vh,∇qh)

(vh,vh)
1
2

≥ C (∇qh,∇qh)
1
2 , ∀qh ∈ Qh. (2.23)

This theorem follows the idea of the BB condition and the proof depends on
the choice of the elements and can be found in [8]. One of the most important
questions in solving such a problem is that of existence and uniqueness of the
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solution. In this case we focus on the discrete form of the problem under
consideration, (2.22) where we can ensure the previous with the following
Theorem.

Theorem 2.2.2. Under the conditions of theorem 2.2.1 the discrete form,
equation (2.22), has a unique solution (uh, ph) in V0h × (Qh/R) .

Additionally, we are interested in error estimates of the Stokes problem as
discussed in the next sections.

2.2.1 A priori error estimates

The a priori error estimates depend only on the exact solution, but not on
the approximated one. On the other hand, the a posteriori error estimates
require computation of the solution. A posteriori error estimates can also
provide results on which element size give a larger error contribution leading
to conclusions about grid adaptation [55]. A theorem that provides a priori
error estimates for the discrete form of the stationary Stokes problem using
Taylor–Hood elements (P2 − P1) is as follows.

Theorem 2.2.3. Let Ω be a polygon and Ωh = Ω for all h. We assume
that each element of Th (set of triangles) has at least one vertex not on the
boundary. Then the following inequalities are valid,

‖∇(u− uh)‖0 6 h2K
(
‖u‖H3(Ω)N + ‖p‖H2(Ω)/R

)
,

‖∇(p− ph)‖0 6 hK
(
‖u‖H3(Ω)N + ‖p‖H2(Ω)/R

)
.

(2.24)

Similar inequalities can be found in the case where we have quadrilater-
als [8].

Expanding previous arguments for the non stationary problem we find that
there are not as many studies as in the previous case. According to Kem-
mochi [41] for the non–stationary Stokes problem,


ut −∆u +∇p = f in Ω× [0, T ],

div u = 0 in Ω× [0, T ],
u = 0 on ∂Ω× [0, T ],

u(·, 0) = u0(·) in Ω,

(2.25)

the error estimates for the velocity u and pressure p are,
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‖u− uh‖H 6 Ch2t−1 ‖u0‖H ,
‖p− ph‖Q 6 Cht−1 ‖u0‖H .

(2.26)

Remark. The difference between the a priori error estimates for the stationary
and the non-stationary Stokes problem is the introduction of the time variable
in the results. Additional results can be obtained for the time derivative for
the non-stationary Stokes problem.

In many cases, of the classic finite element approach, the LBB condition
is not satisfied, thus its necessary to find a way to solve the problems and
also satisfy this condition. An effective way to overcome this problem is to
utilize the adaptive FEM. In the following, we analyze the method suggested
by Arnold, Brezzi and Fortin for the Stokes problem [4]. The discrete form is,

2∑
i,j=1

∫
Ω
εij(u)εij(v) dx−

∫
Ω
p ∇ · u dx =

∫
Ω
fv dx ∀v ∈ (H1

0 (Ω))2,∫
Ω
q ∇ · u dx = 0 ∀q ∈ L2(Ω)/R,

(2.27)

where εij(u) =
(∂iuj + ∂jui)

2
. This method is based on using the MINI

element as a way to satisfy the inf–sup condition introducing an operator
Πh : (H1

0 (Ω))2 → Vh. Thus the second equation can be written as,∫
Ω
qhdiv (Πhv − v) dx = 0, ∀qh ∈ Qh, ∀v ∈

(
H1

0

)2
(2.28)

and
‖Πhv‖1 ≤ c ‖v‖1 ∀v ∈

(
H1

0

)2
. (2.29)

For the MINI element the space is,

Vh =
(
M̊1

0

)2
⊕
(
B3
)2
, Qh = M1

0 , (2.30)

where,

Mk
0 (Th) =

{
v | v ∈ C0(Ω), v|T ∈ Pk(T ), ∀ T ∈ Th

}
, M̊k

0 (Th) = Mk
0 (Th)∩H1

0 (Ω)
(2.31)

for k ≥ 1 and

Bk(Th) =
{
v | v|T ∈ Pk(T ) ∩H1

0 (T ), ∀ T ∈ Th
}
, (2.32)

25



Chapter 2 2.2. The Stokes Problem

for k ≥ 3 and T the triangular elements of Th . For the problem based on the
MINI elements, the following argument is valid,

‖u− uh‖1+‖p+ ph‖0/R ≤ C inf
{
‖u− v‖1 + ‖p+ q‖0/R

}
≤ Ch ‖f‖0 , (2.33)

where C is independent of h. These spaces can be further extended leading
to other methods [4]. For example there is a case where it can be seen as an
enriched version of Taylor–Hood method where convergence is simpler than the
classical Taylor–Hood method. In other methods discontinuous approximation
of the pressure is used as mentioned in Crouzeix–Raviart [4, 20].

2.2.2 A posteriori error estimates

In this section we focus our attention on a posteriori estimates for the
approximation of time dependent Stokes equations. We introduce the notion of
the Stokes reconstruction operator and present the error equation that satisfies
the exact divergence–free condition described in detail in [39].

The energy technique for a posteriori error analysis of finite element dis-
cretizations of parabolic problems provides suboptimal rates in the L∞(0, T
;L2(Ω)) norm. Makridakis and Nochetto in their study combine energy tech-
niques with appropriate pointwise representation of the error based on an
elliptic reconstruction operator which restores optimal order and regularity
for piecewise polynomials of degree higher than one [48]. Additionally, Lakkis
and Makridakis based on the previous work derive a posteriori error estimates
for fully discrete approximations of the solutions of linear parabolic equa-
tions. The discretization uses finite element spaces that change in time [45].
Akrivis and collaborators presented a refined analysis for quasilinear parabolic
problems using FEM [1]. Let’s consider the non-stationary Stokes problem
for incompressible flow. These equations are discretized in space by the fi-
nite elements or the finite volumes method. This problem is still open and
directly related to Navier–Stokes equations. This is due to the fact that
the a posteriori error theory is still in progress as reported by several re-
searchers [9, 23, 39, 45, 48]. We assume the availability of a posteriori estima-
tor for the Stokes problem, expressed by the following assumption.

Assumption. Let (w, q) ∈ Z×Π and (wh, qh) ∈ Zh×Πh be the exact solution
and its finite element approximation. For the space X (equal to H = (L2(Ω))d,
V = (H1

0 (Ω))d, d = 2, 3 or V′ the dual space of V), we assume that there exists
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a posteriori estimator function, E((wh, qh) and Epres((wh, qh), which depend
on (wh, qh), g and the corresponding norm, such that,

‖w −wh‖X ≤ E((wh, qh),g; X) and ‖q − qh‖Π ≤ Epres((wh, qh),g; Π).
(2.34)

It can be shown that the discrete solution coincides with the continuous so-
lution [39]. In order to define the Stokes reconstruction as introduced by
Karakatsani and Makridakis, 2006, we provide the following definitions [39,
33],

Definition 2.2.1. (Stokes operator) Let ∆̄ : H2 ∩ Z ⊂ J→ J be the Stokes
operator, meaning, the L2-projection of the Laplace operator onto J. Then
introducing the discrete version of the Stokes operator ∆̄h : Zh → Zh by,〈

∆̄hv, χ
〉

= −α(v, χ), ∀χ ∈ Zh. (2.35)

Definition 2.2.2. (Stokes reconstruction) For fixed t ∈ [0, T ], let (U, P ) ∈
V ×Π be the solution of the stationary Stokes problem,{

a(U,v) + b(v, P ) = 〈gh(t),v〉 , ∀ v ∈ V,

b(v, P ) = 0, ∀ q ∈ Π,
(2.36)

where,
gh = −∆huh − fh + f . (2.37)

We call (U, P ) = (U(t), P (t)) the Stokes reconstruction of the discrete
velocity and pressure fields, (uh(t), ph(t)).

Based on the above definitions Karakatsani and Makridakis, 2006, introduce
the following theorem, which provides the error equations based on the a
posteriori estimator function introduced before [39].

Theorem 2.2.4. (Error equation) Let (U, P ) be the Stokes reconstruction and
(u, p) the solution of the Stokes problem which is assumed to be sufficiently
regular. If e = U− u and ε = P − p, then (e, ε) is the weak solution of the
problem, {

et −∆e +∇ε = (U− uh)t,

div e = 0.
(2.38)

Additionally, U− uh and (U− uh)t satisfy the following estimates,∥∥∥∂(j)
t (U− uh)

∥∥∥
X
≤ E((∂

(j)
t uh, ∂

(j)
t ph), ∂

(j)
t gh; X), j = 0, 1, (2.39)
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where X is one of the spaces, H, V or V′, discussed before and E is the a
posteriori estimator function defined in previous assumption. The proof of this
theorem can be found in [39].

Theorem 2.2.5. (L∞(H) and L2(V) norm error estimates) Let’s assume that
(u, p) is the solution of the time dependent Stokes problem, Eq. (2.25), and
(uh, ph) is the finite element approximation. Let (U, P ) be the solution of the
stationary Stokes problem and E is the a posteriori estimator function defined
previously. Then the following a posteriori error bounds hold for, 0 < t ≤ T ,

‖u(t)−U(t)‖2H +

∫ t

0
‖(u−U)(s)‖2V ds

6 ‖u(0)−U(0)‖2H +

∫ t

0
E((uh,t, ph,t),gh,t; V

′)2ds.

(2.40)

Additional inequalities and the proof of this theorem can be found in [39].

They additionally provide a theorem for L∞(V) norm error estimates and
at the same study they discuss about estimates using the parabolic duality
argument [23, 64]. In this study two related applications of the reconstruction
of the Stokes problem are discussed [39].

2.2.3 Crouzeix–Raviart finite element discretization and finite
volume scheme

An a posteriori bound for the time dependent Stokes problem under the
Crouzeix–Raviart finite element approximation is derived. However, further
detailed work is required related to the specific form of possible singularities
of the exact solution for this problem [39]. The finite volume (FV) scheme
approximations is the Crouzeix–Raviart couple Vh × Πh. The FV methods
rely on local conservation properties of the differential equations under con-
sideration over the “control volume”. Integrating over a region b ⊂ Ω and
utilizing the Green’s formula, we obtain the following system for the Stokes
problem in the discrete form,

∫
be

uh,t −
∫
∂be

∇uhn +

∫
∂be

phn =

∫
be

f , ∀ e ∈ Eh,∫
K
div uh = 0, ∀ K ∈ Th.

(2.41)
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where zK is an inner point of K ∈ Th, connecting the point with line seg-
mants to the vertices of the triangle K, we partition it into three segmants
Ke, where e ∈ Eh(K), then each side e is associated with a quadrilateral, be,
which is the union of the subregions Ke. Chatzipandelidis et al. have intro-
duced a priori and a posteriori error estimates for the FV methods and for
the stationary Stokes problem with the admition that FV scheme provides a
variational formulation similar to the FE scheme [17]. These studies highlight
the importance of a posteriori error estimates on a theoretical basis especially
for parabolic problems such as the Stokes equation [10, 17].

We highlight the main finding from Karakatsani and Makridakis study [?]
for the FV scheme that is the following theorem.

The driven cavity test problem for the Stokes equations

The Stokes equation, shown below,

−∆u +∇p = f ,

consists of the diffusion terms, −∆u, the pressure gradient, ∇p and the ex-
ternal forces, f . The problem we focus in, is the driven cavity. Driven cavity
is a benchmark problem for viscous incompressible fluid flow. We are dealing
with a square cavity consisting of three rigid walls with no-slip conditions and
a lid moving with a tangential unit velocity.

The Stokes problem in the strong form is,
−∆u +∇p = f in Ω,

div u = 0 in Ω,
u = 0 on ∂Ω

(2.42)

and the corresponding weak form will be,{
a (u, v) + b (p, v) = (f , v) , ∀v ∈ V =

{
H1

0 (Ω)d
}

b (u, q) = 0 ∀q ∈ Π =
{
q ∈ L2(Ω) :

∫
Ω q dx = 0

} (2.43)

where a (u, v) =
∫

Ω∇u ∇v dΩ and b (p, v) =
∫

Ω p ∇v dΩ.

a (u, v) + b (p, v) + b (u, q) = (f , v) (2.44)

The new weak form is,
Q(u, p; v, q) = (f , v) . (2.45)
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The results show the formation of a vortex near the center of the square for
the velocity field, Figure 2.10. The velocity approaches the maximum value
at the top of the cavity, where the fluid flow is being driven by the moving
wall. One can see that the fluid is pushed into the wall on the right, where
it flows downward before moving back up to the left side of the cavity. This
motion creates a large vortex in the center of the cavity [30]. The pressure
field solution reveals two discontinuous regions on the left and right corners of
the top moving lid. In finest meshes the obtained numerical solution is more
accurate. However, increasing the grid resolution would improve the results,
but since the boundary conditions are not smooth at the top corners, we will
always have discontinuous results for the pressure field, Figure 2.11.

Theorem 2.2.6. (Residual based L2(H1) and L∞(H1) norm error estimates)
Let’s assume that (u, p) is the solution of the time dependent Stokes problem
and (uh, ph) is the finite volume approximation. The following a posteriori
error bounds hold for, 0 < t ≤ T ,

‖∇(u− uh)(t)‖H ≤
∥∥u0 − u0

h

∥∥
V

+ C

(∫ t

0
η1(uh,t(s))

2ds

)1/2

+C η1 (uh(0)) + C η1(uh(t)),

(2.46)

Additional inequalities and the proof of this theorem can be found in [39].

Further, Larson and Malqvist derived a residual based a posteriori error es-
timates for parabolic problems on mixed form using Raviart-Thomas-Nedelec
(RTN) finite elements in space and backward Euler in time [46]. In their
study an a posteriori error estimate for the divergence of the flux in a weak
norm is derived. The consept of elliptic reconstruction has been used to de-
rive a posteriori error estimates for parabolic problems as briefly described
before [39, 48]. In this framework, Larson and Malqvist, use known a pos-
teriori error estimates for the corresponding elliptic problem to derive error
bounds for the parabolic problem [46]. However, the literature on FEM for
parabolic problems on mixed form is less extensive and the development of
the theory is still in progress [21, 64].
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(a) Mesh (50, 50) (b) Mesh (100, 100)

Figure 2.9: Meshes

(a) Velocity(50, 50) (b) Velocity (100, 100)

Figure 2.10: Velocity Results

(a) Pressure case a (50, 50) (b) Pressure case b (100, 100)

Figure 2.11: Pressure Results
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CHAPTER 3
Advection-Diffusion
Equation

3.1 The advection–diffusion equation

The steady–state advection and diffusion of a scalar field is described by
the partial differential equation (homogeneous Dirichlet boundary condition),

α · ∇u−∇ · (D∇u) = f in Ω , (3.1)

u = 0 on ∂Ω , (3.2)

where α is the velocity that the quantity, u, is moving with, which is consid-
ered to be divergent–free, ∇ · α = 0 [14]. For example, take as quantity the
concentration of a chemical species that diffuses in a river while moving with
its velocity α. The diffusion coefficient of the quantity is denoted with D and
f represents sources or sinks.

The advection–diffusion problems are frequently treated as the point of de-
parture for the study of the non-linear Navier–Stokes equations, at the level
of developing discretization methods. The Peclet number, defined as the ratio
of the advection and diffusion rates, Pe = |a|h/D, is a characteristic dimen-
sionless number for such problems. A small Peclet number (Pe� 1) indicates
diffusion-dominated flows while a large one (Pe � 1) indicates advection–
dominated flows. In the diffusion–dominated regime, the standard Galerkin
finite element method provides a good approximation of the solution [12].

The standard variational formulation arises by requesting the residual of
Eq. (3.1) to be orthogonal to a basis of the function space, H1

0 . The task is
to find u ∈ H1

0 (Ω) such that,
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Chapter 3 3.1. The advection–diffusion equation

(α · ∇u, v)− (∇ · (D∇u), v) = (f, v), (3.3)

is satisfied for any test function v ∈ H1
0 (Ω). The Sobolev space, H1

0 , consists
of functions that are one time weakly differentiable and also satisfy the zero
Dirichlet boundary condition. In this respect, the second order term of the
weak formulation can be integrated by parts, leading to,

(α · ∇u, v) + (D∇u,∇v) = (f, v). (3.4)

3.1.1 The Galerkin Formulation

To approximately solve Eq. (3.4) using the Finite Element method, Ω is
discretized in non–overlapping triangle element domains Ωe with boundaries
Γe, e = 1, 2...K, such that,

Ω =
K⋃
k=0

Ωk.

The standard Galerkin formulation is retrieved by searching a solution in a
finite-dimensional linear polynomial function space, Vh ⊂ H1

0 (Ω),

Vh = {vh ∈ H1
0 (Ω) | vh(Ωk) ∈ P1(Ωk), Ωk ∈ Ω}

The problem now states, find u ∈ Vh(Ω) such that,

(α · ∇uh, vh) + (D∇uh,∇vh) = (f, vh), ∀ vh ∈ Vh(Ω). (3.5)

3.1.2 The Stabilized Finite Element Methods, SUPG & GLS

It is well known that for advective–dominated flows, where the Peclet num-
ber is large, the solution involves non–physical oscillations [14]. To address the
deficiency of the standard polynomial finite element method for advection–
dominated flow problems, various approaches have been proposed, such as
the streamline upwind Petrov–Galerkin (SUPG) method [16], Galerkin least
squares (GLS) method [37], and the unusual stabilized FEM (USFEM) [27].
The common characteristic of the aforementioned methods is the introduction
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of artificial diffusion in the solution process while preserving the consistency
of the discretization. Such methods are commonly referred to as stabilized
finite element methods (SFEM).

The SFEM for the stationary advection–diffusion problem can be grouped
as follows: find uh ∈ Vh(Ω) such that,

B(uh, vh) = F (vh), ∀ vh ∈ Vh(Ω), (3.6)

where,

B(uh, vh) = (α · ∇uh, vh) + (D∇uh,∇vh) +Q(uh, vh), (3.7)

F (vh) = (f, vh), (3.8)

where Q(uh, vh) indicates the additional terms added to the standard varia-
tional formulation. These are added to preserve consistency and enhance nu-
merical stability. For instance, the stability term corresponding to the SUPG
method is,

QSUPGF (uh, vh) =
∑
K

τk(α · ∇uh −∇ · (k∇uh)− f, α · ∇uh)k, (3.9)

where (·, ·)k denotes element wise integration and τk is the stability coefficient
for the SUPG method, as defined in [28],



τk =
hk

2|α|p
ξ(Pek),

P ek =
mk|a|phk

2k
,

ξ(Pek) =

{
Pek, 0 ≤ Pek < 1

1, P ek ≥ 1

|α|p =

( N∑
i=1

|αi|p
) 1
p

, 1 ≤ p <∞,

mk = min

{
1

3
, 2Ck

}
,

Ck
∑
K

h2
k ‖∆vh‖

2
0,K 6 ‖∇vh‖20 , vh ∈ Vh.

(3.10)
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Accordingly, the stability terms added to the standard variational formula-
tion for the GLS and the USFEM methods are,



QGLS(uh, vh) =
∑
K

τk(α · ∇uh −∇ · (D∇uh)− f, α · ∇uh

−∇ · (D∇uh))k ,

QUSFEM (uh, vh) =
∑
K

τk(α · ∇uh −∇ · (D∇uh)− f, α · ∇uh

+∇ · (D∇uh))k .

(3.11)

The stability of the SUPG method for transient convection–diffusion equa-
tions is studied in [11]. In the work by Onate [56], it was proven that the
stabilization terms can be interpreted as a natural contribution to the govern-
ing differential equations of advection–diffusion problems. By considering the
concept of flow equilibrium, the stabilization terms emerging in methods such
as SUPG, Subgrid Scale (SS), GLS, Lax–Wendroff, Characteristic Galerkin,
Laplacian pressure operator etc., are not introduced as correction terms at
the discretization level but rather derive naturally. For a comprehensive anal-
ysis of SFEM for the stationary or non-stationary advection–diffusion–reaction
equation, the review by Codina [19] is recommended.

Writing the advection–diffusion equation in its first-order form via introduc-
tion of the flux of the scalar field as an additional unknown is suited for many
problems where higher accuracy of the flux is important such a flow in porous
media. Masud et al. studied the first-order form of the advection–diffusion
equation in the framework of SFEM [54].

Based on the partition of unity framework that is an instance of the Gen-
eralized Finite Element Method (GFEM), Turner et al. improved the per-
formance of the Galerkin formulation designing enrichment functions using a
priori knowledge about the qualitative behavior of solution to make better
choices for the local approximation space [65]. The proposed method differs
from the standard stabilization strategies as stability is not achieved by adding
terms but by multiplying the polynomial with the enrichment functions.
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Chapter 3 3.2. Test problem for the advection–diffusion equation

3.2 Test problem for the advection–diffusion equa-
tion

In this section we present a test problem for highlighting the capability
of FE methods in providing accurate numerical solutions when the Peclet
number is substantially large. It was described previously that the solution
involves non–physical oscillations in the classical Galerkin method for the case
of convective flows with large Peclet number [14]. A square domain, Ω =
[0, 1]× [0, 1] is assumed, and the partial differential equation (PDE)introduced
in eq. 3.1, the advection–diffusion equation is considered in Ω× [0, T ], T ∈ R,
with homogeneous boundary conditions u = 0 in Γ×[0, T ] and initial condition
u = u0 on Ω× 0.

For the initial condition we introduce a characteristic function given by the
expression,

u0(r̄) = (1− 25dist (r̄, [a, a])) XBβ (a,a)
,

where XBβ (a,a)
is a function of set X, Bβ (a,a) is a ball of radius β and cen-

ter (a, a). The dist (r̄1, r̄2]) is the Euclidean distance between points r̄1, r̄2.
In Figure 3.1 we present the initial u distribution for t = 0. The computa-
tional domain is composed of 2500 Lagrange crossed finite elements with three
degrees of freedom, for more details on the finite elements the reader could
visit Chapter 2. For the convective field in the advection–diffusion equation,
eq. 3.1, we assume a constant field, α = (0.4, 0.4). The total time considered
was, t = 1, with a time step of, dt = 0.1.

Figure 3.1: Initial u distribution for t = 0.

We apply the three FEMs, described before, the classical Galerkin FE
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method, the streamline upwind Petrov–Galerkin (SUPG) method [16], and
the Galerkin least squares (GLS) method [37].

Figure 3.2: Solving the advection–diffusion equation for small Peclet number,
Pe = 103, with three FE methods, the classical Galerkin, the streamline up-
wind Petrov–Galerkin (SUPG) method, and the Galerkin least squares (GLS).
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Figure 3.3: Solving the advection–diffusion equation for high Peclet number,
Pe = 1015, with three FE methods, the classical Galerkin, the streamline up-
wind Petrov–Galerkin (SUPG) method, and the Galerkin least squares (GLS).

We are using the θ-scheme discretization in time and arbitrary FE dis-
cretization in space. In the first case we assume a relative small Peclet num-
ber, Pe = |a|h/D = 103. We observe that all FE methods provide accurate
numerical solutions and all of them are very close to each other, as depicted
in Figure 3.2. On the other hand, when the Peclet number is much larger
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then the classical Galerkin method does not produce a smooth numerical so-
lution and the obtained one involves non–physical oscillations, as depicted in
Figure 3.3.

In conclusion, we are interested in the advection–diffusion problems be-
cause these problems are frequently treated as the point of departure for the
study of the non-linear Navier–Stokes equations, that we will study in the
next chapter, Chapter 4. The Peclet number, defined as the ratio of the ad-
vection and diffusion rates is a characteristic dimensionless number for such
problems. We showed with this study that with a small Peclet number, in
the diffusion–dominated regime, the standard Galerkin FE method provides a
good approximation of the solution. However, as the Peclet number increases,
advection–dominated regime, a stabilized method such as the SUPG and GLS
methods, provides much better results restricting non–physical oscillations.
In the next Chapter, we will focus our attention on the non-linear Navier–
Stokes equations, presenting the most interesting stabilized FE methodologies
for solving these equations.
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CHAPTER 4
Navier-Stokes Equations

The Navier–Stokes equations, named after Claude–Louis Navier and George
Gabriel Stokes, describe the motion of viscous fluids. These non–linear equa-
tions arise from applying first principles laws, such as the Newton’s second law
of motion and are coupled with the conservation of mass or continuity equa-
tion. The main difference between the Navier–Stokes and the Euler equations
for inviscid flows is that the former equations comprise a dissipative system
due to the inclusion of viscous terms (second order spatial derivatives of the
velocity field) and are not conservation equations such as Euler equations.
They describe a variety of physical problems such as the weather, ocean cur-
rents, flow in a pipe, airflow around a wing. The Navier–Stokes equations as
mathematical models can also be used for the study of blood flow, the de-
sign of power stations, the analysis of pollution, and many more flow related
applications.

In finite element formulation and computation of incompressible flows (flows
with constant density, ρ) there are two main sources of instabilities associated
with the classical Galerkin formulation of the Navier–Stokes problem. One
source of instabilities is due to the presence of advection terms leading to
spurious oscillations mainly in the velocity field, as discussed in the previous
section. The other source of instability is due to an inappropriate combination
of interpolation functions for the velocity and pressure field. These instabilities
usually appear as oscillations primarily in the pressure field [63]. Below, we
present the most interesting FE methodologies for solving the Navier–Stokes
problem.
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4.1 Streamline–Upwind/Petrov–Galerkin (SUPG)

The most popular stabilized method, the Streamline-Upwind/Petrov-Galerkin
(SUPG) formulation, was introduced in 1979 for the incompressible Navier–
Stokes equations [35, 7]. By augmenting the Galerkin formulation with residual–
based terms, the SUPG formulation addressed the instability of the Galerkin
technique for convection dominated flows, leading to a stable method with
optimal convergence properties. For compressible flows, the SUPG formula-
tion was initially introduced in 1982 [60], but a more thorough presentation of
the method with additional examples was published in [38]. The compressible
flow SUPG formulation was initially introduced for conservation variables,
and later for primitive variables. For more details on these developments,
the interested reader is referred to a recent paper on stabilized methods for
compressible flows [7].

The incompressible Navier–Stokes equations are written as,

v̇ + v · ∇v − 2 ν∇ · ε(v) +∇p = f , in Ω× [0,T],

div v = 0, in Ω× [0,T],

v = g, on Γg × [0,T],

σ · n = (2 ν∇sv − pI) · n = h, onΓh × [0,T],

v(x, 0) = v0(x), on Ω0,

(4.1)

where v is the velocity vector, p is the kinematic pressure, f is the body force
vector, ν is the kinematic viscosity, ∇sv is the symmetric part of the velocity
gradient, I is the identity tensor, and ε(v) is the strain rate tensor which is
defined as, ε(v) = 1

2(∇v + ∇vT). Eqs. (4.1) represent the momentum and
continuity equations, with the Dirichlet and Neumann boundary conditions,
and the initial condition, respectively.

The Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulation for the Navier
–Stokes equations of incompressible flows in the framework of residual–based
methods was introduced in [62, 63]. The interested reader can find more of the
method in the previous Chapter, Chapter 3, in Section 3.1.2 , pages 34–36.

This method allowed the use of equal–order interpolation functions for the
velocity and pressure variables and assured numerical stability and optimal
accuracy. An earlier version of the PSPG formulation for the Stokes problem
was introduced in [36]. The SUPG and PSPG stabilizations were combined
under a single name, the SUPS stabilization method [6, 7].
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4.2 Stabilized FEM and the Variational multiscale
method (VMS)

Stabilized and multiscale formulations are among the most fundamental
and important methodologies for finite element computations of complex fluid
mechanics problems. Tezduyar et al. have proposed certain stabilized for-
mulations with bilinear and linear equal–order–interpolation elements for the
computation of dynamic and steady incompressible flows [63]. In their study,
the stabilization procedure involves a modified Galerkin/least–squares formu-
lation of the steady–state equations. The results from the considered test
problems show that the Q1 − Q1 element is slightly less dissipative than the
P1 − P1 element. The solutions obtained with these elements are in a good
argument with the solutions obtained from others studies [61].

For the Navier–Stokes problem (non–linear PDEs with the appropriate
conditions), equations (4.1), the bounded domain Ω is descretized into non–
overlap-ping regions Ωe with boundaries Γe, e = 1, 2, ..., nel, such that Ω =
∪nele=1Ωe. The union of element interiors and element boundaries are, Ω′ =
nel∪
e=1

(int)Ωe and Γ′ =
nel∪
e=1

Γe, respectively. In Variational multiscale method

(VMS) the velocity field is decomposed into the sum of the coarse or resolved
scales and the fine or subgrid scales [50, 53],

v(x, t) = v̄(x, t) + v′(x, t), (4.2)

and the weight function is decomposed in its coarse and the fine scale compo-
nents indicated as w̄(x) and w′(x), respectively,

w(x) = w̄(x) + w′(x). (4.3)

Remark. The main goal of the VMS method is to solve the fine–scale problem,
defined over the sum of element interiors to obtain the fine scale solution.
This solution is then substituted in the coarse–scale problem, eliminating the
explicit appearance of the fine scales while still modeling their effects. Both
coarse and fine scale equations are nonlinear equations due to the convection
term, and to solve them a linearization is taking place [53].

The resulting equation is expressed in terms of the coarse scales and for the
sake of simplicity the superposed bars are dropped. So, the VMS residual–
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based stabilized form for the incompressible Navier–Stokes equations is,

(w, δvt) + (w, δv · ∇v(i) + v(i) · ∇δv) + β(w,v(i)∇ · δv + δv∇ · v(i))
+(∇Sw, 2ν∇Sδv)− (∇ · w, δp) + (q,∇ · δv)

+(v(i) · ∇w + 2ν∆w +∇q + (1− β)w∇ · v(i), τ r2)

−(1− β) (w, (τ r2) · ∇v(i)) + β((τ r2) · ∇w,v(i)),
(4.4)

where the last two lines of the equation correspond to the stabilization terms,
β ∈ [0, 1], r2, is the residual from the linearization of the non–linear fine–scale
problem, τ , is the fine–scale variational operator, and ∆ is the vector Laplacian
operator. A significant contribution of the VMS method is the systematic and
consistent derivation of the fine–scale variational operator, τ , termed as the
stabilization tensor that possesses the right order in the advective and diffusive
limits, and variationally projects the fine–scale solution on the coarse–scale
space [53]. The stabilization operator can be defined as [50],

τ = be
∫
bedΩ

×


∫

(be)2∇Tv(i)dΩ +
∫
bev(i) · ∇bedΩ I

+β
∫
bev(i) ⊗∇bedΩ + β

∫
be(∇ · v(i)) dΩ I

+ ν
∫
|∇be|2 dΩ I + ν

∫
∇be ⊗∇bedΩ

−1

,
(4.5)

where, be(ξ) is a bubble function over Ω′. More details on the derivation and
the obtained form of the VMS residual–based stabilized form and the fine–
scale variational operator, τ , for the incompressible Navier–Stokes equations
can be found in [50, 53]. Massud and collaborators have further extended
the VMS methodology for shear–rate dependent non–Newtonian fluids and
incompressible turbulent fluid flows [44, 51, ?].

4.3 Discontinuous and adaptive Galerkin method

In the last decades, discontinuous Galerkin (DG) methods form a class
of numerical methods that combine features of the finite element and the
finite volume framework, successfully applied to PDEs from a wide range of
applications. An overview to DG method for elliptic problems and research
directions can be found in [3, 18].

In order to use the equal order interpolation functions for velocity and
pressure, the Navier–Stokes equations can be decoupled to distinct equations

44



Chapter 4 4.3. Discontinuous and adaptive Galerkin method

through the split method. The obtained equations are nonlinear hyperbolic,
elliptic, and Helmholtz equations, respectively. The hybrid method combines
DG and FE methods. Therefore, DG method is concerned to accomplish spa-
tial discretization of the nonlinear hyperbolic equation to avoid using stabiliza-
tion approaches in FEM. The split methods due to their decoupled schemes, al-
lows choosing equal order basis functions for velocity and pressure [22, 29, 31].
Marchandise and Remacle used an implicit pressure stabilized FEM to solve
the Navier–Stokes equations, and DG method was employed to deal with the
level–set equation [49]. They calculated the velocity and pressure in the cou-
pled momentum equation together with adding stabilization terms for study-
ing two–phase flows. Pandare and Luo proposed a coupled reconstructed dis-
continuous Galerkin (rDG) method and continuous Galerkin method for the
solution of unsteady incompressible Navier–Stokes equations [57] .

In the paper by Gao et al., the main goal is to take full advantage of DG
method and FEM on the basis of a split method [24, 40] to deal with the in-
compressible Navier–Stokes equations [29]. For the spatial discretization, they
treat the nonlinear convection term through DG method, which can guaran-
tee stability, accuracy and also avoid stabilization techniques used in FEM.
Lomtev and Karniadakis in their study present a new DG method for simulat-
ing compressible viscous flows with shocks on standard unstructured grids [47].
This method is based on a discontinuous Galerkin formulation both for the
advective and the diffusive terms. High–order accuracy is achieved by using
a recently developed hierarchical spectral basis. This basis is formed by com-
bining Jacobi polynomials of high–order weights written in a new coordinate
system. It retains a tensor–product property, and provides accurate numerical
quadrature. Their formulation is conservative, and monotonicity is enforced by
appropriately lowering the basis order and performing hp–refinement around
discontinuities [47].

Bassi and Rebay introduce a high–order DG method for the numerical so-
lution of the compressible flows [5]. The method combines two main ideas,
the physics of wave propagation, accounted for by means of Riemann problems
and accuracy being obtained by high–order polynomial approximations within
elements. The method is suited to compute high–order accurate solution of
the Navier–Stokes equations on unstructured grids. Klaij et al. in their study
present a conservative arbitrary Lagrangian Eulerian (ALE) approach to deal
with deforming meshes utilizing DG method for optimal flexibility on the lo-
cal mesh refinement and adjustment of the polynomial order in each element
(hp-adaptation) [42]. The numerical method allows for local grid adaptation
as well as moving and deforming boundaries. Persson and colleagues intro-
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duced a method for computing time–dependent solutions to the compressible
Navier–Stokes equations on variable geometries [58]. The transport equations
are written as a conservation law for the independent variables in the refer-
ence configuration, the complexity introduced by variable geometry is reduced
to solving a transformed conservation law in a fixed reference configuration.
The spatial discretization is carried out using the DG method on unstruc-
tured meshes, while time integration is performed by a Runge–Kutta method.
The problem under consideration was altered by adding an equation for the
time evolution of the transformation Jacobian to the original conservation law
and correcting for the accumulated metric errors. Results are discussed to
present the capability of the approach to handle high–order approximations
on complex geometries [58].

4.4 Test problems and applications

4.4.1 The backward step test problem

In order to describe the effect of stabilized methods in the equations under
consideration, we present a test problem for the solution of Stokes equations.
The test problem is called the “backward step” and is a well established prob-
lem in fluid mechanics applications. We test two FE methods the Classical
Galerkin and the Stabilized FE method. We write the Stokes equations with
the continuity, in the strong form, as follows,{

−∇ · (∇u + pI) = f in Ω,

∇ · u = 0 in Ω.
(4.6)

The sign of the pressure has been flipped from the classical definition. This is
done in order to have a symmetric, but not positive–definite, system of equa-
tions rather than a non–symmetric, but positive–definite, system of equations.
A typical set of boundary conditions on the boundary ∂Ω = ΓD ∪ ΓN can be,

u = u0 on ΓD,

∇u · n+ p n = g on ΓN .

The Stokes equations can be formulated in a mixed variational form, a form
where the two variables, the velocity, u and the pressure, p, are approximated
simultaneously, where (u, p) ∈W . The space W should be a mixed (product)
function space, W = V × Q such that u ∈ V and p ∈ Q. The classical
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formulation, the Galerkin FEM, can be found in Chapter 2, section 2.2.3,
page 28. In this problem, we use first order elements in both velocity and

Figure 4.1: (a) The domain Ω and the dimensions of the backward step, (b) the
computational mesh composed of approximately 2500 finite elements.

pressure, which will lead to stability problems, spurious solution especially for
the pressure field. However, using a stabilized variational formulation we will
obtain a smooth solution for both fields, velocity and pressure. Therefore we
use a stabilized variational formulation, and we want to find (u, p) ∈ W , for
all (v, q) ∈W , such that,

a((u, p), (v, q)) = L((v, q)), (4.7)

where,

a ((u, p) , (v, q)) =

∫
Ω

(∇u · ∇v −∇ · vp+∇ · uq + δ∇q · ∇p) dx,

L ((v, q)) =

∫
Ω

f · v dx+ δ∇q · f ds,
(4.8)

where δ = ch2, c is a constant and h is the mesh cell size of the computational
mesh. The domain Ω and the computational mesh are shown in Figure 4.1,
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Figure 4.2: (a) Velocity magnitude and streamlines in the domain Ω for the
backward step, (b) pressure field for the backward step using the classical
Galerkin FEM, (c) pressure field for the backward step using the Stabilized
FEM.

where the main dimensions are, L = 6, W = 2, and the constants are, a = 0.5,
b = 0.25. The computational mesh is composed of approximately 2500 finite
elements.

Figure 4.2(a) shows the velocity field in the domain for the backward step.
We also present the streamlines in the domain in order to visualize the recir-
culation close to the step. It is observed that the maximum velocity is in the
entrance of the channel and the velocity drops rapidly as the domain expands.
In Subfigures 4.2(b) and (c) we visualize the pressure field with the classical
Galerkin and Stabilized FEM. It is observed that the pressure field is smooth in
Subfigures 4.2(c) even though we use first order elements in both velocity and
pressure, which expected to lead to stability problems and spurious solution
especially for the pressure field. However, the pressure field for the Stabilized
FEM is smoother than in the Galerkin FEM. This test problems highlights
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the importance of Stabilized FEM. In the next section we present a Stabilized
FEM for the solution of the Navier–Stokes equations in a three–dimensional
patient–based domain. The stabilized method (SUPG) is expected to provide
smooth solution for both velocity and pressure fields.

4.5 Application in Biomedical Engineering

In this subsection we present the dynamic numerical solution on a three–
dimensional patient–based carotid artery reconstructed from computed tomog-
raphy angiography (CTA) data. The data set of the CTA images were taken
in Larissa University Hospital or in Euromedica Medical Diagnostic Center of
Larissa.

4.5.1 Reconstruction of the carotid artery

The three–dimensional model of the carotid artery, including the three main
components, the common carotid artery (CCA), the internal carotid artery
(ICA) and the external carotid artery (ECA), was constructed using the CTA
data of a treated patient. The reconstruction of the DICOM images into a
three-dimensional model that preserves the geometry of the lumen postopera-
tively, was performed in the image processing and reconstruction open source
software, ITK–SNAP. Then, the model was smoothed with Materialise Mim-
ics (Materialise, Leuven, Belgium). The reconstructed geometry of the carotid
artery was subsequently meshed with tetrahedral elements.

4.5.2 Mathematical Formulation and boundary conditions

There is a strong correlation between atherosclerosis and shear stress. In
vitro studies concerning hemodynamic in adult carotid bifurcations have shown
that regions of atherosclerotic plaque formation and maximum intimal thick-
ening were related with low and oscillatory shear stress values, while the
marginally affected arterial lesions were exposed to high shear stress and high
flow velocities [43]. This suggests that low shear stress may promote athero-
genesis in the carotid bifurcation.

The equations describing the flow in the carotid artery are the Navier–
Stokes equations described in the previous sections (see above sections,
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Figure 4.3: The three–dimensional carotid bifurcation of the geometry under
consideration.

Streamline–Upwind/Petrov–Galerkin (SUPG) and Variational mul-
tiscale method (VMS) & stabilized FEM). We solve numerically these
equations with appropriate boundary conditions. Concerning boundary con-
ditions applied in the three–dimensional patient–based carotid geometry, we
follow the study by Hoi et al. 2010, and apply the corresponding dynamic flow
rates at the entrance of the CCA and at the exit of ICA [34]. Furthermore, a
resistance boundary condition was applied at ECA, describing the resistance
of blood to flow due to the downstream vasculature.

4.5.3 Sensitivity Analysis

Different meshes have been created with different elements dimensions. All
meshes are radial with tetrahedral elements. Steady state simulations have
been performed for each computational mesh with the sensitivity analysis
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Figure 4.4: The waveforms at the CCA, ICA and ECA as adopted by Hoi et
al. 2010 [34].

Table 4.1: Sensitivity analysis, comparison between finest and coarse grids, %
difference of average WSS magnitude.

Grid size WSS % difference

1.431 mil. —
0.488 mil. 8.8
0.204 mil. 13.0
0.121 mil. 16.6

or grid independence study presented in Table 4.1 and using the boundary
conditions discussed in the previous subsection.

The results of each simulation were referred to those obtained with the
finest mesh (1.431 million elements) and the percentage differences have been
calculated for averaged wall shear stress (WSS) of the studied carotid artery.
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Figure 4.5: Comparison between finest and coarse grids.

4.5.4 FEM unsteady simulations

Blood was considered as a Newtonian fluid. The physical properties of
blood, being imposed for the unsteady simulations as well as for the sensitivity
analysis, are blood density ρ = 1050 kg/m3 and viscosity µ = 0.0035 Pa s.
The flow was considered laminar during the entire cardiac cycle.

At the inflow section and at the ICA section it was imposed a time velocity
profile, according to the flow rate described by Hoi et al. 2010 [34], scaling the
velocity in accordance to the boundary area. The mathematical expression for
the velocity waveforms was obtained by interpolating samples given by Hoi et
al. 2010 [34] with the help of the Fourier series.

The governing partial differential equations of blood flow are discretized
with the SUPG method. The resulting coupled system of algebraic equations
is solved iteratively and convergence was achieved when residual error of each
equation was equal to 10−4. The cardiac cycle was considered to last 1s,
with a fixed time step of ∆t = 0.03s. The simulations were performed for
three cardiac cycles in two Intel Xeon processors (E5645, 2.40GHz, 12MB
Cache, 5.86GT/s Intel QPI) of a DellTM PrecisionTM T7500 workstation).
We exclusively utilized the results of the third cardiac cycle avoiding any
dynamic disturbances of the numerical solution in the initial cycles.

52



Chapter 4 4.6. Results and discussion

4.6 Results and discussion

Main findings and results. The numerical results from the simulations are
summarized in the Figures 4.6 and 4.7. In these figures, we present the velocity
and pressure fields in four different time instances during the entire cardiac cy-
cle. Three instances during the systolic phase and one at the diastolic phase of
the cycle revealing the fields under consideration for the patient–based carotid
artery. In the figures, above the field, we also highlight the point of the cardiac
cycle where the results were taken.

One can see that the highest values of the velocity field are in the CCA
and in the narrowest part of the ICA during the entire cardiac cycle. At the
beginning of the cardiac cycle, as the flow is accelerating, the velocity gradually
increases in the domain, as depicted in Fig. 4.6, subfigures 1 and 2. At the
deceleration phase, Fig. 4.6, subfigure 3, we observe that the velocity starts
gradually to decrease. Finally, at the last subfigure (subfigure 4), we observe
that during the diastolic phase the velocity takes small values and the velocity
field seems very disturbed, with several recirculation areas, as expected [66].

In such numerical cases where the pressure field plays important role, ad-
vanced numerical approaches should be used. In this thesis, in order to cap-
ture as accurate as possible the pressure field, we studied and implemented
advanced numerical FE approaches, such as the SUPG FE method. It is im-
perative to accurate capture the pressure field with smoothed areas of possible
discontinuities. To this extend, for the pressure results in the first two time in-
stances, Fig. 4.7, subfigures 1 and 2, in the start of the systolic phase, we have
higher pressure values in the entrance of the carotid artery (CCA) compared
to the two exits at the smaller arteries (ICA and ECA) after the bifurcation,
showing that the flow is strongly forward and the pressure drop is leading the
flow. At the other two time instances, Fig. 4.7, subfigures 3 and 4, at the de-
celeration of the systole and during the diastole, the pressure drop is reversed.
These results show that the fluid (blood) continually looses momentum, and
decelerates, until diastolic phase where has a small velocity with recirculating
areas and very small pressure drop as also revealed in other studies [66].

Discussion and future steps. Through the above analysis one can see that
FEM is a very useful numerical method for solving non–linear PDE’s in fluid
mechani. Other numerical methods are dealing with the governing differential
equation where the FEM is dealing with the weak formulation. The SUPG ad-
vancements can be very useful as it has been shown that handle effectively the
pressure field compared to the classical FE method. The stabilized methods
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are also more versatile in terms of complex and non–linear problems.

The obtained results are realistic and can be compared with measurements
taken form advanced imaging modalities, such as ultrasound, showing good
agreement. The presented results have several advancements beyond the nu-
merical approach used, the SUPG method. Other advancements of the study
are the altered boundary conditions we applied to solve the problem under
consideration and the fact that the structure we used is a patient–based ge-
ometry reconstructed from CTA data. This geometry represents in detail the
actual patient’s geometry. Additionally, we performed advanced time depen-
dent large scale simulations that require parallel processing of the computa-
tional grids. All these advancements show the difficulty to solve such problems
and provide accurate and realistic results. Due to the development of the nu-
merical methods in the last decades, we have the capability to numerically
solve very difficult and non–linear problems such the one presented here.

As future steps, we could propose to develop this methodology as a reliable
workflow for the carotid arteries and other biomedical applications. The evalu-
ation of several important indices could also be an interesting next step. Such
indices are the time averaged wall shear stress (TAWSS), the oscillatory shear
index (OSI) and the relative resistance time (RRT) that provide information
about the thrombogenic potential of the geometry under consideration.
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Figure 4.6: Velocity Results
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Figure 4.7: Pressure Results
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CHAPTER 5
Conclusions

Summarizing, in this thesis we analyzed the Finite Element Method, ini-
tially in a theoretical basis, presenting the most relevant theorems for existence
and uniqueness of the numerical solution of boundary value problems of PDE
systems. Main aim of this study is to apply the FEM in Fluid Mechanics
problems that are difficult or impossible to be solved analytically.

We further introduced a priori and a posteriori error estimates for linear
boundary value problems, such as the Stokes problem that is a well studied
problem of the literature. However, we are lacking these estimates for non-
linear problems, such as the Navier–Stokes problems. We present the notion
of the shape function used in FEM method and discussed several types of such
function and the various elements that can be used in FEM.

Before studying the more complex and non–linear problem, we focus on
the numerical solution of the advection–diffusion equation, this is a scalar
PDE that has many difficulties due to the advection terms. So, in the last
decades, there are several advancements for the solution of this equation. One
of these advancements is the stabilized or upwind method known as the SUPG
method. Other presented methodologies are the least squares FEM (GLS)and
the unusual stabilized FEM (USFEM).

The last chapter is dedicated to the numerical solution of the Navier–Stokes
(N–S) problem. At the beginning we present the strong formulation of the N–
S problem and the weak formulation for several advanced FE methods, which
can handle the non-linear problem for large Reynolds numbers. More precisely
we present the SUPG, variational multiscale method (VMS) and briefly the
discontinuous Galerkin.

We present a group of well established test problems, such as the driven
cavity and the backward step, to show that these FE methodologies provide
reliable numerical solutions for a wide range of Peclet and Reynolds numbers.
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Finally, we focus on a biomedical application, developing a 3D patient–based
mathematical model of a carotid artery. The results show that the SUPG
FEM can be used to describe the numerical solution in such 3D dynamical
problems with extensions from mathematics to the biomedical field.
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Miscellaneous Mathematical Concepts

Banach Space A normed linear space (V, ‖·‖) which is complete with
respect to the metric induced by the norm, ‖·‖.

Bilinear Form A bilinear form, b(·, ·), on a linear space V is a mapping
b : V × V −→ R such that each of the maps v 7→ b(v, w)
and w 7→ b(v, w) is a linear form on V .

Symmetric The bilinear form is symmetric if b(v, w) = b(w, v),
for all v, w ∈ V .

Boundary Conditions Are constraints necessary for the solution of a dif-
ferential equation (or system of differential equations),
known as boundary value problem, in a domain.

Dirichlet This condition specifies the value that the unknown
function needs to take on along the boundary of the
domain.

Neumann This condition specifies the values that the deriva-
tive of a solution is going to take on the boundary
of the domain.

Hilbert Space Let (V, (·, ·)) be an inner-product space. If it is complete
then (V, (·, ·)) is called Hilbert space.
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Strong Form Is the initial form of the equation.

Sobolev Space Is a vector space of functions equipped with a norm that
is a combination of Lp-norms of the function itself and its
derivatives up to a given order. We define the Soboleve
spaces via

W k
p (Ω) :=

{
f ∈ L1

?(Ω) : ‖f‖Wk
p (Ω) <∞

}
In the cases where p = 2 Sobolev spaces are a form of a
Hilbert space.

Inner Product A inner product on a linear space V satisfies the following

(a) (u+ v, w) = (u,w) + (v, w)

(b) (cu, v) = c(u, v), c ∈ R
(c) (v, v) ≥ 0, ∀v ∈ V and

(d) (v, v) = 0⇐⇒ v = 0.

Norm Given a linear (vector)space V , a norm, ‖·‖, is a function
on V with valuesnin the non-negative reals having the
following properties:

(a) ‖v‖ ≥ 0 ∀v ∈ V and
‖v‖ = 0⇐⇒ v = 0

(b) ‖c · v‖ = |c| · ‖v‖ ∀c ∈ R, v ∈ V , and

(c) ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀v, w ∈ V
(triangular inequality).
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Acronyms

Acronyms

ALE Arbitrary Lagrangian Eulerian

CBS Characteristic Base Split

CCA Common Carotid Artery

CTA Computed Tomography Angiography

DG Discontinuous Galerkin

DICOM Digital Imaging and Communications in Medicine,
(file type)

ECA External Carotid Artery

FEA Finite Element Analysis

FEM Finite Element Method

GLS Galerkin Least Squares

GSM Gradient Smoothed Method

ICA Internal Carotid Artery
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LBB Ladyzhenskaya–Brezzi–Babuska

ODE Ordinary Differential Equation

PDE Partial Differential Equation

RTN Raviart-Thomas-Nedelec

SUPG Streamline Upwind Petrov–Galerkin

VMS Variational Multiscale Scheme

WRM Weighted Residual Method

WSS Wall Shear Stress
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