
Data Structures for 2-Fault-Tolerant Strong
Connectivity

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Daniel Tsokaktsis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2023

Examining Committee:

• Loukas Georgiadis, Assoc. Professor, Department of Computer Science and
Engineering, University of Ioannina (Advisor)

• Leonidas Palios, Professor, Department of Computer Science and Engineering,
University of Ioannina

• Charis Papadopoulos, Assoc. Professor, Department of Mathematics, University
of Ioannina

DEDICATION

To my family.

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my supervisor Prof. Loukas
Georgiadis for all the support and guidance he provided throughout this dissertation
making our cooperation impeccable.

Also, I would like to thank PhD candidate Evangelos Kosinas for his contribution
in this study.

Last but not least, I would like to express my heartfelt appreciation and gratitude
to my parents Christos and Georgia, as well as to my beloved sister Maria for being
there for me from the beginning of this journey. Their unconditional love and support
encouraged me even more to pursue my goals and dreams.

TABLE OF CONTENTS

List of Figures iii

List of Tables iv

List of Algorithms vii

Abstract viii

Εκτεταμένη Περίληψη ix

1 Introduction 1
1.1 Motivation and objectives . 1
1.2 Related work . 2
1.3 Our contributions . 4
1.4 Thesis outline . 6

2 Preliminaries 7
2.1 Basic graph definitions . 7
2.2 Auxiliary data structures . 8

2.2.1 1-FT-SC-O . 8
2.2.2 2-FT-SSR-O . 9

2.3 Algorithms and heuristics used in our empirical analysis 9
2.3.1 Selecting split vertices for the SCC-Tree T 9
2.3.2 Trivial ways of answering queries 14

3 Our Contributions 19
3.1 Decomposition Tree . 19

3.1.1 Special Graph Classes . 24
3.2 Improved Data Structure for General Graphs 26

i

3.2.1 Choosing a good ∆ for a partial-SCC-Tree decomposition 29
3.3 BFS-Based Oracles . 31

4 Empirical Analysis 35
4.1 Datasets . 36
4.2 Height of the decomposition tree. 36
4.3 Answering queries . 38
4.4 An improved data structure: organizing the CH seeds on a decompo-

sition tree . 41

5 Concluding Remarks 45

Bibliography 46

A Additional Experimental Results 51
A.1 Random graphs experiments . 51
A.2 Worst-case queries decomposition tree 52
A.3 Relative performance of the BFS-based algorithms 53
A.4 Construction time of the SCC-Tree . 54

ii

LIST OF FIGURES

3.1 Two strongly connected digraphs (left) and corresponding SCC-Trees
T (right). Every node of T is associated with a subset of V (G) and the
underlined vertex is the corresponding split vertex. For example, for the
SCC-Tree of (b), the middle child of the root is N(h) and Sh = {h, i, j}.
Also note that Pf = ⟨N(a), N(c), N(d), N(f)⟩. 20

4.1 Relative SCC-Tree height of the graphs of Table 4.1 w.r.t. to the number
of vertices, resulting from the split vertex selection algorithms of Table 2.1. 39

A.1 Relative SCC-Tree height of the graphs of Table A.2 w.r.t. to the number
of vertices, resulting from the split vertex selection algorithms of Table 2.1. 54

iii

LIST OF TABLES

2.1 An overview of the algorithms considered for selecting split vertices of
the decomposition tree. The bounds refer to a digraph with n vertices
and m edges. The stated bounds for LabelPropagation and PageRank
assume that they run for a constant number of iterations. 10

4.1 Graph instances used in the experiments, taken from [1], [2] and [3].
n and m are the numbers of vertices and edges, respectively, na is the
number of strong articulation points (SAPs), and nsp is the number of
vertices that are SAPs or belong to a proper separation pair. 36

4.2 SCC-Tree height of the graphs of Table 4.1, resulting from the split
vertex selection algorithms of Table 2.1. The symbols † and ‡ refer to
decompositions that were not completed due to exceeding the RAM
memory of our system (> 128GB) or due to requiring more than 48

hours. 38
4.3 Characteristics of partial-SCC-Trees achieved by the algorithm of Sec-

tion 3.2. 40
4.4 Relative performance of the BFS-based algorithms on Rome99 (left)

and Google_small (right). 40
4.5 Results for 1M random queries using the SCC-Tree with split vertices

selected by MCN. 41
4.6 Comparing running times (avg. (s) per query after 1M random queries)

for various algorithms. 42

iv

4.7 Results for 1M random queries using simpleBFS and biBFS. Here is
shown the number of edges that we had to access on average per query,
as well as the total time for answering all queries on every graph. The
third column for every algorithm shows the time in nanoseconds that
is charged to every edge access. 43

4.8 The total time for answering 100M 2-FT-SSR queries using our imple-
mentation of Choudhary’s data structure. By comparing the times/query
with the times per edge access in Table 4.7, we can see that the time per
2-FT-SSR query is comparable to a few edge accesses. We report the
average over 10 different random choices of CH-seeds. We note that
the variance per graph is negligent. 43

4.9 Simulation for answering 10K queries with ChBFS and ChTree using
10 seeds that have high chance to give rise to a bad instance. This
experiment was repeated for 100 different selections of seeds. We see
that ChTree can answer at least 90% of those instances without resorting
to BFS. 44

A.1 Randomly generated strongly connected graphs. n and m are the num-
bers of vertices and edges, respectively, na is the number of strong ar-
ticulation points (SAPs), and nsp is the number of vertices that are SAPs
or belong to a proper separation pair 53

A.2 SCC-Tree height of the graphs of Table A.1, resulting from the split
vertex selection algorithms of Table 2.1. 53

A.3 Results for 1M random queries using the SCC-Tree with split vertices
selected by MCN. 54

A.4 Comparing running times (avg. (s) per query after 1M random queries)
for various algorithms . 55

A.5 Results for worst-case queries using the SCC-Tree with split vertices
selected by MCN. 55

A.6 Relative performance of the BFS-based algorithms on Twitter (left) and
Gnutella25 (right). 56

A.7 Relative performance of the BFS-based algorithms on Lastfm-asia (left)
and NotreDame (right). 56

v

A.8 Relative performance of the BFS-based algorithms on Stanford (left)
and Epinions1 (right). 57

A.9 Time in seconds for constructing SCC-Tree T using the heuristics from
Table 2.1. The symbols † and ‡ refer to decompositions that were not
completed due to exceeding the RAM memory of our system (> 128GB)
or due to requiring more than 48 hours. 57

vi

LIST OF ALGORITHMS

2.1 LabelPropagation . 11
2.2 PageRank . 12
2.3 MostCriticalNode . 14
2.4 qSep . 15
2.5 FindSeparator . 16
2.6 DFS . 16
2.7 BFS . 17
2.8 biBFS . 18
3.1 SCC-TreeDecomposition(G) . 21
3.2 2FTSC(x,y,f1,f2,T) . 25
3.3 2FTSC-partial-SCC-Tree . 30
3.4 2FTSC-sBFS . 33
3.5 2FTSC-ChBFS . 34

vii

ABSTRACT

Daniel Tsokaktsis, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2023.
Data Structures for 2-Fault-Tolerant Strong Connectivity.
Advisor: Loukas Georgiadis, Associate Professor.

In this thesis, we study the problem of efficiently answering strong connectivity queries
under two vertex or edge failures. Given a directed graph G with n vertices, we provide
a data structure with O(nh) space and O(h) query time, where h is the height of a
decomposition tree of G into strongly connected subgraphs. This immediately implies
data structures with O(n logn) space and O(logn) query time for graphs of constant
treewidth and O(n3/2) space and O(

√
n) query time for planar graphs. For general

directed graphs, we introduce a refined version of our data structure that achieves
O(n
√
m) space and O(

√
m) query time, where m is the number of edges. In our

experimental study, we first evaluate various methods to construct a decomposition
tree with small height h in practice. Then, we provide efficient implementations of our
data structures and evaluate their empirical performance by conducting an extensive
experimental study on real-world and artificial graphs. The results presented in this
thesis are partially included in [4].

viii

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Δανιήλ Τσοκακτσής, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2023.
Δομές Δεδομένων για Ισχυρή Συνεκτικότητα με Ανοχή 2 Σφαλμάτων.
Επιβλέπων: Λουκάς Γεωργιάδης, Αναπληρωτής Καθηγητής.

Οι θεμελιώδεις ιδιότητες της προσβασιμότητας και της ισχυρής συνεκτικότητας
έχουν μελετηθεί εκτενώς από τους επιστήμονες τόσο για τα κατευθυνόμενα όσο
και για τα μη κατευθυνόμενα γραφήματα. Η ανάγκη και η σπουδαιότητα μελέ-
της αυτών πηγάζει από το γεγονός πως εμφανίζονται σε πληθώρα θεωρητικών και
πρακτικών προβλημάτων.

Στην παρούσα μεταπτυχιακή εργασία θα ασχοληθούμε με ερωτήματα ισχυρής
συνεκτικότητας κορυφών στο fault-tolerant (ή αλλιώς sensitivity) μοντέλο. Στο εν
λόγω μοντέλο πραγματοποιούμε ένα σταθερό πλήθος ενημερώσεων στο αρχικό γρά-
φημα κι έπειτα απαντούμε τα ερωτήματα που μας ενδιαφέρουν. Οι ενημερώσεις
είναι παροδικές και αφορούν διαγραφές κορυφών (ή ακμών) και συνήθως υποθέ-
τουμε ότι το πλήθος τους είναι μικρό. Εμείς θα επικεντρωθούμε στην περίπτωση
όπου έχουμε δύο διαγραφές κορυφών. Συνεπώς, τα ερωτήματα θα είναι της μορ-
φής: “Είναι οι κορυφές x και y ισχυρά συνδεδεμένες στο γράφημα G δίχως τις f1

και f2;”
Προκειμένου κανείς να απαντήσει αποδοτικά ερωτήματα της άνωθεν μορφής θα

πρέπει να κατασκευάσει ιδιαίτερες δομές δεδομένων (oracles) οι οποίες, ιδανικά,
θα απαιτούν γραμμικό χώρο και θα απαντούν τα ερωτήματα σε σταθερό χρόνο.
Μέχρι στιγμής στη βιβλιογραφία, για γενικά κατευθυνόμενα γραφήματα και για
τουλάχιστον δύο σφάλματα οι δομές οι οποίες σχετίζονται με το Fault-Tolerant
μοντέλο και μπορούν να χρησιμοποιηθούν για ερωτήματα ισχυρής συνεκτικότητας

ix

απαιτούν Ω(n2) χώρο, με συνέπεια η χρήση τους να είναι σχεδόν απαγορευτική για
μεγάλα γραφήματα.

Εμείς, δοθέντος ενός γραφήματος G, παρουσιάζουμε μία δομή δεδομένων που
απαιτεί O(nh) χώρο και O(h) χρόνο, όπου h το ύψος του δένδρου διάσπασης (decom-
position tree) του G σε ισχυρά συνεκτικά υπογραφήματα. Άμεση απόρροια αυτού
είναι η κατασκευή δομών με O(n logn) χώρο και O(logn) χρόνο για γραφήματα
σταθερού treewidth, ενώ O(n3/2) χώρο και O(

√
n) χρόνο για επίπεδα γραφήματα.

Επιπλέον, για γενικά κατευθυνόμενα γραφήματα παρουσιάζουμε μία πιο προσε-
κτική εκδοχή του δένδρου διάσπασης μέσω της οποίας κατασκευάζουμε μία δομή
δεδομένων με O(n

√
m) χώρο και O(

√
m) χρόνο, όπου m είναι το πλήθος των ακμών.

Τέλος παρουσιάζουμε πειραματικά αποτελέσματα που αφορούν την κατασκευή
δένδρου διάσπασης χαμηλού ύψους και αξιολογούμε την δομή μας πραγματοποιώ-
ντας εκτενείς αναλύσεις σε πραγματικά και τεχνητά γραφήματα.

Ορισμένα αποτελέσματα αυτής της μεταπτυχιακής εργασίας περιλαμβάνονται
στην εργασία [4].

x

CHAPTER 1

INTRODUCTION

1.1 Motivation and objectives

1.2 Related work

1.3 Our contributions

1.4 Thesis outline

1.1 Motivation and objectives

Fundamental graph properties such as (strong) connectivity and reachability have
been extensively studied for both undirected and directed graphs. As real world
networks are prone to failures, which can be unpredictable, the fault-tolerant (or
sensitivity) model has drawn the attention of several researchers in the recent past
[5, 6, 7, 8, 9, 10, 11]. Instead of allowing for an arbitrary sequence of updates, the fault-
tolerant model only allows to apply batch updates of small size to the original input
data. In this work we focus on constructing a data structure (oracle) that can answer
strong connectivity queries between two vertices of given directed graph (digraph)
under any two vertex (or edge) failures.

A strongly connected component (SCC) of a directed graph G = (V,E) is a maximal
subgraph of G in which there is a directed path from each vertex to every other
vertex. The strongly connected components of G partition the vertices of G such
that two vertices x, y ∈ V are strongly connected (denoted by x ↔ y) if they belong
to the same strongly connected component of G. Computing the strongly connected

1

components of a directed graph is one of the most fundamental graph problems that
finds numerous applications in many diverse areas. As real-world networks are prone
to failures, we would like to be able to assess the effect of vertex or edge failures on
the connectivity of the network. Towards such a direction, we wish to compute a
small-size data structure for reporting efficiently whether two vertices are strongly
connected under the possibility of vertex (or edge) failures. Usually, the task is to
keep a data structure (oracle) that supports queries of the following form: for any
two vertices x, y and any set F of k vertices (or edges) determine whether x and
y are strongly connected in G − F . More formally, we aim to construct an efficient
fault-tolerant strong-connectivity oracle under possible (bounded) failures.

Definition 1.1 (Fault-Tolerant Strong Connectivity Oracle). Given a graph G = (V,E),
a k-fault-tolerant strong-connectivity oracle (k-FT-SC-O) is a data structure that, for
any two vertices x, y ∈ V and for any k failed vertices f1, . . . , fk ∈ V (or failed
edges f1, . . . , fk ∈ E), can determine (fast) whether x and y are strongly connected in
G− {f1, . . . , fk}.

To measure the efficiency of an oracle, two main aspects are concerned: the size
of the computed data structure and the running time for answering any requested
query. Ideally, we would aim for linear-size oracles with constant query time, but
this seems out of reach for many problems [9]. For instance, it is known that for a
single vertex/edge failure (i.e., k = 1) an oracle with O(n) space and O(1) query time
is achievable [12]. However, for a larger number of failures (i.e., k > 1) the situation
changes considerably. Even for k = 2, straightforward approaches would lead to an
O(n2)-size oracle with constant query time.

1.2 Related work

Maintaining the strongly connected components under edge updates has received
much of attention, both in the dynamic setting, where the updates are permanent,
and in the fault-tolerant model, where edge failures are part of the query.

Fault‐tolerant data structures. Baswana, Choudhary, and Roditty [13] presented
a data structure of size O(2kn2) that is computed in O(2kn2m) time, and outputs all
strongly connected components in O(2kn log2 n) time under at most k failures. For
k = 1, Georgiadis, Italiano, and Parotsidis [12] gave an O(n)-space single-fault strong

2

connectivity oracle (1-FT-SC-O) that can report all strongly connected components in
O(n) time, and test strong connectivity for any two vertices in O(1) time, under a single
vertex/edge failure. A closely related problem is to be able to maintain reachability
information under failures, either with respect to a fixed source vertex s (single-
source reachability) or with respect to a set of vertex pairs P ⊆ V × V (pairwise
reachability). Choudhary [6] presented a 2-fault-tolerant single-source reachability
oracle (2-FT-SSR-O) with O(n) space that answers in O(1) time whether a vertex v is
reachable from the source vertex s in G−{f1, f2}, where f1, f2 are two failed vertices.
Later, Chakraborty, Chatterjee, and Choudhary [14], gave a 2-fault-tolerant pairwise
reachability oracle with O(n

√
|P|) size that answers in O(1) time whether a vertex u

reaches a vertex v in G − {f1, f2}, for any pair (u, v) ∈ P. The above results imply
2-FT-SC oracles of O(n2) size and O(1) query time, either by storing a 1-FT-SC-O [12]
of G − v for all v ∈ V , or by storing a 2-FT-SSR-O for all v ∈ V as sources, or by
setting P = V × V in [14]. Recently, Van den Brand and Saranurak [11] presented a
Monte Carlo sensitive reachability oracle that preprocess a digraph with n vertices in
O(nω) time and stores O(n2 logn) bits. Given a set of k edge insertions/deletions and
vertex deletions, the data structure is updated in O(kω) time and stores additional
O(k2 logn) bits. Then, given two query vertices u and v, the oracle reports if there is
directed path from u to v in O(k2) time. For planar graphs, Italiano, Karczmarz, and
Parotsidis [15] show how to construct a 1-fault-tolerant all-pairs reachability oracle of
O(n logn)-space that answers in O(logn) time whether a vertex u reaches a vertex v

in G− f , where f is a failed vertex or edge. So, using this result in a straightforward
way, by constructing such a data structure for every G − v, v ∈ V , would yield a
2-FT-SC oracle for planar graphs with O(n2 logn) space and O(logn) time.

All the previous approaches yield data structures that require Ω(n2) space, which
is prohibitive for large networks. Thus, it is natural to explore the direction of trading-
off space with query time. Furthermore, within the fault-tolerant model, one may seek
to compute a sparse subgraph H of G (called preserver) that enables to answer (strong
connectivity or reachability) queries under failures in H instead of G, which can be
done more efficiently since H is sparse. Chakraborty and Choudhary [5] provided
the first sub-quadratic (i.e., O(n2−ϵ) for ϵ > 0) subgraph that preserves the strongly
connected components of G under k ≥ 2 edge failures, by showing the existence
of a preserver of size Õ(k2kn2−1/k) that is computed by a polynomial (randomized)
algorithm.

3

Dynamic data structures. An alternative approach for answering queries under
failures is via dynamic data structures. In our case, we can use data structures that
support vertex/edge updates (deletions and insertions) and can answer strong con-
nectivity queries. To answer a query of the form: “Are x and y strongly connected in
G−{f1, f2}?”, for two failed edges f1 and f2, we can first delete f1 and f2, by updating
the data structure, and then answer the query. To get ready to answer the next query
we have to reinsert the deleted edges. Typically, the situation is more complicated
when we have vertex failures, since we also have to take care of the edges adjacent
to the failed vertices. The main problem with this approach is that the update oper-
ation is often too time-consuming and leads to bad query time. Furthermore, there
is a conditional lower bound of Ω(m) update time for a single vertex (or edge) dele-
tion for general digraphs [16, 17]. For a planar digraph G, Charalampopoulos and
Karczmarz [18] gave an O(n logn)-space data structure maintaining G under edge
insertions and deletions with O(n4/5 log2 n) worst-case update time that can compute
the identifier of the strongly connected component of any v ∈ V (G) in O(log2 n) time.
The initialization time is O(n log2 n). Hence, this implies an O(n logn)-space data
structure that can answer strong connectivity queries between two vertices under two
edge failures in planar digraphs in O(n4/5 log2 n) time.

1.3 Our contributions

We provide a general framework for computing dual fault-tolerant strong connectivity
oracles based on a decomposition tree T of a digraph G into strongly connected
subgraphs. Following Łącki [19], we refer to T as an SCC-Tree of G. Informally, the
SCC-Tree is obtained from G by iteratively removing vertices in a specified order
and assigning on each node of the tree the strongly connected components of the
remaining graph. We analyze our oracle with respect to the height h of T , which
depends on the number of strongly connected components obtained in each level of
the tree and, thus, on the chosen order of the removed vertices. Then, by storing some
auxiliary data structures [6, 12] at each node of T , we obtain the following result:

Theorem 1.1. Let G = (V,E) be a digraph on n vertices and let h be the height of an
SCC-Tree of G. There is a polynomial-time algorithm that computes a 2-FT-SC oracle for
G of size O(nh) that answers strong connectivity queries between two vertices of G under

4

two vertex (or edge) failures in O(h) time.

Despite the fact that there are graphs for which h = Ω(n), our experimental study
reveals that the height of T is much smaller in practice. To that end, we evaluate var-
ious methods to construct a decomposition tree with small height h in practice. We
note that such SCC-Trees are useful in various decremental connectivity algorithms.
See, e.g., [20, 21, 19]. We also note that a corresponding notion in undirected graphs,
referred to as elimination trees, also have numerous applications. See e.g. [22, 23].
It is known that finding an elimination tree of minimum height is NP-hard for gen-
eral undirected graphs [24], hence the same holds for SCC-Trees in general directed
graphs. Therefore, our experimental study may be of independent interest.

Theorem 1.1 immediately implies the following results for special graph classes.

Corollary 1.1. Let G = (V,E) be a directed planar graph with n vertices. There is a
polynomial-time algorithm that computes a 2-FT-SC oracle of O(n

√
n) size with O(

√
n)

query time.

Corollary 1.2. Let G = (V,E) be a directed graph, whose underlying undirected graph
has treewidth bounded by a constant. There is a polynomial-time algorithm that computes a
2-FT-SC oracle of O(n logn) size with O(logn) query time.

For general directed graphs, we also provide a refined version of our data structure
that builds a partial-SCC-Tree, and achieves the following bounds.

Theorem 1.2. Let G = (V,E) be a digraph on n vertices and m edges, and let ∆ be
an integer parameter in {1, . . . ,m}. There is a polynomial-time algorithm that computes
a 2-FT-SC oracle of O(mn/∆) size that answers strong connectivity queries between two
vertices of G under two vertex (or edge) failures in O(m/∆ +∆) time.

Theorem 1.2 provides a trade-off between space and query time. To minimize the
query time, we set ∆ =

√
m which gives the following result.

Corollary 1.3. Let G = (V,E) be a digraph on n vertices and m edges, and let ∆ be
an integer parameter in {1, . . . ,m}. There is a polynomial-time algorithm that computes a
2-FT-SC oracle of O(n

√
m) size with O(

√
m) query time.

Thus, when m = o(n2), the oracle of Corollary 1.3 achieves o(n2) space and o(n)

query time. Furthermore, for sparse graphs, where m = O(n), we have an oracle of
O(n3/2) space and O(

√
n) query time.

5

Finally, we provide efficient implementations of our data structures and evaluate
their empirical performance by conducting an extensive experimental study on graphs
taken from real-world applications. We state our results in terms of vertex failures but
we note that they also hold for edge failures, as one can easily reduce edge failures
to vertex failures by splitting each edge using a new vertex.

1.4 Thesis outline

The rest of the thesis is structured as follows: Chapter 2 contains the necessary back-
ground information. Chapter 3 presents in-detail analysis of our contributions. Chap-
ter 4 demonstrates our empirical analysis and experimental results whereas Chapter 5
concludes our work.

6

CHAPTER 2

PRELIMINARIES

2.1 Basic graph definitions

2.2 Auxiliary data structures

2.3 Algorithms and heuristics used in our empirical analysis

2.1 Basic graph definitions

Let G = (V,E) be a directed graph (digraph). For any subgraph H of G, we denote
by V (H) ⊆ V the vertex set of H , and by E(H) ⊆ E the edge set of H. For S ⊆ V,

we denote by G[S] the subgraph of G induced by the vertices in S and by G− S its
subgraph that results after the removal of the vertices in S from G.

Given a path P in G and two vertices u, v ∈ V (P), we denote by P [u, v] the
subpath of P starting from u and ending at v. If P starts from s and ends at t

we say that P is a s → t path. Two vertices u, v ∈ V are strongly connected in G,
denoted by u ↔ v, if there exist a u → v path and a v → u path in G. The strongly
connected components (SCCs) of G are its maximal strongly connected subgraphs. Thus,
two vertices u, v ∈ V are strongly connected if and only if they belong to the same
strongly connected component of G. The size of a strongly connected component is
given by the number of its edges. It is well-known that the SCCs of G form a partition
of its vertices.

The reverse digraph of G, denoted by GR, is obtained from G by reversing the
direction of all edges.

7

The predecessors (resp., successors) of a vertex v in G, denoted by PredG(v) (resp.,
SuccG(v)), is the set of vertices that reach v (resp., are reached from v) in G.

A vertex of G is a strong articulation point (SAP) if its removal increases the num-
ber of strongly connected components. A strongly connected digraph G is 2-vertex-
connected if it has at least three vertices and no strong articulation points. Similarly,
two vertices f1, f2 ∈ V form a separation pair if their removal increases the number of
strongly connected components. A strongly connected digraph G is 3-vertex-connected
if it has at least four vertices and no separation pairs. Note that a SAP x of G forms a
separation pair with any other vertex, so we make the following distinction. We say
that a separation pair {f1, f2} is proper if f2 is a SAP of G− f1 or f1 is a SAP of G− f2

(or both).
A graph is called planar if there exists an embedding of the vertices and a mapping

of the edges to simple curves in the plane, such that no two curves intersect except
possibly at their endpoints.

In [25] Robertson and Seymour gave a definition of a decomposition tree and
treewidth. According to them, the width of a tree decomposition is the number of
vertices in the largest subgraph (node of the tree) and the treewidth of a graph is the
minimum of the widths of its tree decompositions.

2.2 Auxiliary data structures

Consider a digraph G with n vertices, and let s be a designated start vertex. Our
oracles make use of the following auxiliary data structures for G.

2.2.1 1‐FT‐SC‐O

Georgiadis, Italiano and Parotsidis [12] presented a linear-time algorithm that com-
putes a single-fault-tolerant strong-connectivity oracle (1-FT-SC-O) of O(n) size that
answers in O(1) time queries of the form “are vertices x and y strongly connected in
G − f? ”, where the vertices x, y ∈ V (G) and the failed vertex f ∈ V (G) are parts of
the query. We denote by 1FTSC(x, y, f) the answer to such a query.

8

2.2.2 2‐FT‐SSR‐O

Choudhary [6] showed that there is a polynomial-time algorithm that computes a
dual-fault-tolerant single-source reachability oracle (2-FT-SSR-O) of O(n) size that
answers in O(1) time reachability queries of the form “is vertex v reachable from s

in G − {f1, f2}?”, where the vertex v ∈ V (G) and the failed vertices f1, f2 ∈ V (G)

are parts of the query. We denote by 2FTRs(v, f1, f2) the answer to such a query.
Moreover, we use a similar 2-FT-SSR oracle for GR, i.e., an oracle of O(n) size that
answers in O(1) time reachability queries of the form “is vertex s reachable from v in
G− {f1, f2}? ”. We denote by 2FTRR

s (v, f1, f2) the answer to such a query.
We state a simple fact that will be useful in our query algorithms.

Observation 2.1. For any vertices x, y ∈ V (G)− s, we have x↔ y in G− {f1, f2} only
if 2FTRs(x, f1, f2) = 2FTRs(y, f1, f2) and 2FTRR

s (x, f1, f2) = 2FTRR
s (y, f1, f2).

2.3 Algorithms and heuristics used in our empirical analysis

In this section, we first consider various fast heuristics that aim at computing an
SCC-Tree of small height. Then, we also provide some simple-minded approaches for
answering strong connectivity queries under two failures.

2.3.1 Selecting split vertices for the SCC-Tree T

As stated in Section 1.3 in order to construct T we have to iteratively remove vertices
in a specified order. The selection of the vertices is crucial since once a vertex it is
removed the underlying structure of the graph may change significantly and as a
result the height of T will vary. In Łącki’s work [19] the selection of the vertex is
arbitrary since there are graphs for which any sequence of splitting vertices would give
an SCC-Tree of Ω(n) height. In practice, however, different methods for selecting split
vertices may result to vastly different SCC-Tree heights. Thus, we implemented and
tested some well-known algorithms used in finding the “important vertices” in graphs.
Table 2.1 briefly describes the algorithms and heuristics used for the construction of
the decomposition tree.

Label Propagation (LP) is an algorithm used in the community detection problem
and it is derived from the work of Raghavan, Albert, Kumara [27]. The main idea

9

Table 2.1: An overview of the algorithms considered for selecting split vertices of the
decomposition tree. The bounds refer to a digraph with n vertices and m edges. The
stated bounds for LabelPropagation and PageRank assume that they run for a constant
number of iterations.

Algorithm Technique Complexity Reference

Random Choose the split vertex uniformly at random O(1)

LabelPropagation
(LP)

Partition vertex set into communities and se-
lect vertex with maximum number of neigh-
bours in other communities

O(m) [26, 27]

PageRank (PR) Compute the Page Rank of all vertices and
return the one with maximum value

O(m) [28]

MostCriticalNode
(MCN)

Return the vertex whose deletion minimizes
the number of strongly connected pairs

O(m) [12, 29]

q-Separator
(qSep)

Compute a high-quality separator for a graph
with a high diameter (≥

√
n)

O(m) [20]

q-Separator and
MostCriticalNode
(qSep+MCN)

If the graph has high diameter then compute
a high-quality separator, otherwise compute
the MCN

O(m) [20, 12,
29]

Loop nesting
tree (LNT)

Use LNT as the decomposition tree O(m)1 [30]

of LP is to “spread” the labels across the network until either an equilibrium or a
maximum number of iterations has been reached. At the beginning of this algorithm
every vertex is associated with a unique label (community). During an iteration, every
vertex of the graph is processed in a random order and a new label is assigned to it
according to its neighbours’ labels. More specifically, it gets the label with the most
appearances between its neighbours. The previous procedure is repeated until there
is no changes in the labels of the graph or a maximum number of iterations has been
reached. The running time per iteration is O(m), where m is the number of the edges.
A simple pseudocode of this algorithm is provided in Algorithm 2.1.

In our case, after computing the vertex labels, we partition the vertices into com-
munities, and select as a split vertex the vertex that has the maximum number of
neighbors in other communities.

1LNT can compute all split vertices in O(m) time.

10

Algorithm 2.1 LabelPropagation
Require: max number of iteration K

1: Initialize the labels for all nodes in the graph. Cx(0) = x; /* For vertex x at time
0 assign label(x) = x */

2: i← 1;
3: while i ≤ K and [∃x ∈ V (G) : Cx(i− 1) ̸= Cx(i), i > 1] do
4: shuffle(V(G));
5: for x ∈ V (G) do
6: Cx(i) = mostFrequentLabel(); /* Get most frequent label according to x’s

neighbours */
7: end for
8: i← i+ 1;
9: end while

PageRank (PR) is a well-known algorithm used to rank websites. However, it
is also capable to find communities in a graph. It derived from the work of Page,
Brin, Motwani, Winograd [28] and the main idea is the following. A page (vertex x)
has a high page rank score if the sum of the scores of the pages (vertices) that link
(with out-edge) to the current page is also high. The algorithm starts by assigning
a random-value vector as the initial scores. Then until it achieves convergence or
reaches a predefined maximum number of iterations, the vector is updated based on
the following equation.

prk+1 = (1− α) · 1/n+ α · prk ·M,

where α is the teleporting constant, 1 the row vector with 1’s and M the random
transition matrix i.e. M = D−1A, where D the diagonal matrix of out-degrees and A

the adjacency matrix. The running time per iteration is O(m), where m is the number
of the edges. This algorithm is presented in Algorithm 2.2.

It is obvious to conclude that as split vertex we select the vertex with the highest
PageRank score, breaking ties arbitrary.

Loop Nesting Tree (LNT) derives from the work of Tarjan [30]. LNT is a hi-
erarchical representation of strongly connected subgraphs of G and is defined with
respect to some source vertex r and its corresponding DFS tree, Tr. If the graph is
not strongly connected then it is called Loop Nesting Forest (LNF). LNT can be con-
structed as follows. For any vertex u, the loop of u, denoted by loop(u), is the set of

11

Algorithm 2.2 PageRank
Require: max number of iteration K , teleporting constant α, threshold ϵ

1: pr(1) =randomInitialVector(); /* Assign random initial vector that sums to 1 */
2: i← 1;
3: pr(i+ 1) = (1− α) · 1/n+ α · pr(i) ·M ;
4: while i ≤ K and ∥pr(i+ 1)− pr(i)∥2 > ϵ do
5: pr(i+ 1) = (1− α) · 1/n+ α · pr(i) ·M ;
6: i← i+ 1;
7: end while

all descendants x of u in Tr such that there is a path from x to u in G containing
only descendants of u in Tr . Any two vertices in loop(u) are mutually reachable, thus
loop(u) induces a strongly connected subgraph of G. It is concluded that for any two
vertices u and v, loop(u) and loop(v) are either disjoint or nested. The loop nesting tree
H of G, with respect to Tr, is defined as the tree in which the parent of any vertex v,
denoted by h(v), is the nearest proper ancestor u of v in Tr such that v ∈ loop(u) if
there exists such a vertex u and null otherwise. LNT can be computed in linear time
O(m) [30, 31].

Based on the definition of LNT, it can be used as the decomposition tree T . In
contrast to the rest methods used in producing an SCC-Tree, LNT, can be computed
in a single pass of O(m) time (the other methods require O(hm) time, where h is the
height of the tree).

Most Critical Node (MCN) derives from the work of Georgiadis, Italiano, Paudel [29]
and is used for the critical node detection problem (CNDP). The main goal of this
problem is to find a subset S of at most k vertices such that the residual graph G \ S
has minimum pairwise strong connectivity. Given a digraph G and let C1, C2, . . . , Cz

be its strongly connected components they define the connectivity value of G as

f(G) =
z∑

i=1

(
|Ci|
2

)
.

Note that f(G) equals to the pairwise strong connectivity value, thus by minimizing
the above function (argminS⊆V f(G \ S))) the task is complete. [29] is restricted to
the case of finding a single most critical node, i.e., k = 1. They provide a linear time
algorithm finding the most critical node in O(m) time.

The output of the MCN algorithm is used as split vertex since we are sure that if

12

such a vertex exists (the graph is not 2-vertex-connected) then this vertex will cause
the greatest reduction in connectivity, hoping that the graph will be decomposed in
many SCCs, which may result to a decomposition tree T of small height.

Before we present a pseudocode for computing the MCN (Algorithm 2.3), we
provide some auxiliary definitions about it. Apart form strong articulation points
(SAPs) and loop nesting trees (LNT), they make heavy use of dominators and the
dominator trees of a flow graph. Given a flow graph Gr, a vertex v is a dominator of a
vertex w (v dominates w) in Gr if every path from r to w contains v. The dominator
relation in Gr can be represented by a tree rooted at r, called dominator tree. In this
tree, every vertex v dominates a vertex w if and only if v is an ancestor of w. A vertex
v ̸= r is called nontrivial dominator of Gr if v is the parent of some vertex w. Similarly,
a vertex v is a nontrivial dominator of w in Gr if v dominates w and v ̸∈ {r, w}. If
v is a nontrivial dominator of w in both flow graphs Gr, G

R
r then v is called common

nontrivial dominator of w. The dominator tree can be computed in linear time, that is,
O(m) [31, 32].

Lastly, they present a way of efficiently computing the connectivity value of f(G− v),
for each SAP v of G. In order to achieve this they proved the following equation.

f(G− v) = f(D̃(v)) + f(D̃R(v))− f(PCD(v)) + f(PCA(v))

Where D̃(v) (resp. D̃R(v)) is the set of proper descendants of vertex v in the dominator
tree D (resp. DR), PCD(v) = D̃(v) ∩ D̃R(v) and PCA(v) = V \

(
D̃(v) ∪ D̃R(v)

)
.

Q‐Separator (qSep) method is based on the following definition:

Definition 2.1. (q-separator [20]) Let G = (V,E) be a graph with n vertices, and let
q ≥ 1 be an integer. A q-separator for G is a non-empty set of vertices S ⊆ V , such
that each SCC of G \ S contains at most n− q · |S| vertices.

Chechik et al. [20] showed that a strongly connected graph G with n vertices
and m edges of diameter δ ≥

√
n has a q-separator with quality q =

√
n/(2 logn)

that can be computed in O(m) time. Hence, we apply qSep only if the current graph
has diameter at least

√
n. If this is the case, then we remove the |S| vertices of the

q-separator one at a time. Otherwise, we need to choose a split vertex by applying
some other method.

In our experiments, we combined qSep with the MostCriticalNode (MCN) algorithm
from [12, 29]. Note that we do not wish to compute the exact diameter of the graph,

13

Algorithm 2.3 MostCriticalNode
1: Compute the reverse digraph GR;
2: Select an arbitrary root vertex s ∈ V (G);
3: Compute the dominator trees D and DR w.r.t. s;
4: Compute the sets of non-trivial dominators N and NR;
5: SAPs← N ∪NR;
6: if G− s is not strongly connected then
7: SAPs← SAPs ∪ {s};
8: end if
9: if SAPs = ∅ then
10: return randomVertex(V);
11: end if
12: Compute the loop nesting trees H and HR;
13: cnode← 0, cvalue← f(G), value← 0;
14: for all strong articulation point v ∈ SAPs do
15: Compute f(D̃(v)), f(D̃R(v)), f(PCD(v)), f(PCA(v));
16: value← f(D̃(v)) + f(D̃R(v))− f(PCD(v)) + f(PCA(v));
17: if cvalue > value then
18: cnode← v;
19: cvalue← value;
20: end if
21: end for
22: return cnode;

as this will take O(mn) time. Hence, we relaxed this condition and thus we apply
qSep method if for a randomly selected vertex, say v, the longest bfs path either in G

or in GR is at least
√
n. During our experimentation we noticed that it didn’t affect

the overall height of the SCC-Tree. A pseudocode for this method is described in
Algorithms 2.4 and 2.5

2.3.2 Trivial ways of answering queries

The simplest way to answer strong connectivity queries of the form “Are x and y

strongly connected in G−{f1, f2}?” is by traversing the graph two times (paths of the

14

Algorithm 2.4 qSep
Require: digraph G

1: s← randomV ertex(V (G)); /* Select arbitrary vertex as root */
2: sep = ∅;
3: if FindSeparator(G,s) or FindSeparator(GR,s) then
4: return sep; /* Graph has diameter at-least

√
n */

5: end if
6: return ∅; /* Couldn’t find a separator */

form x→ y and y → x) while avoiding the failed vertices. This can be accomplished
by either using DFS, BFS or bidirectional-BFS. All referred methods require linear
space and time, that is, O(n) space and O(n+m) query time.

Depth first search DFS and breadth first search BFS are well-known algorithms
used for graph traversals. Both begin from a designated source vertex s and proceed
to some unvisited neighbour. In DFS we jump to the first unvisited neighbour from
where we repeat the procedure. If there is no-one left to explore, we backtrack to
its parent and continue the search as previously. On the other hand in BFS, initially,
we add all unvisited neighbours, of the source vertex, to a queue data structure and
continue the exploration from the first extracted vertex (from where we repeat the
same technique). This procedure continues until the queue is empty.

Bidirectional‐BFS A well-established improvement over the simple BFS is the
bidirectional-BFS [33]. This works by alternating the search from x to y in G with
a search from y to x in GR (in order to determine whether x reaches y). If either
traversal reaches a vertex that was discovered by the other, then both terminate, and
the answer is positive. If either search gets stuck and is unable to make progress, we
conclude that the answer is negative. We implemented the variant where the searches
alternate immediately after discovering a new edge.

In Algorithms 2.6, 2.7 and 2.8 we present some simple pseudocodes for the
mentioned algorithms. In case of DFS and BFS we assume that we explore the whole
graph, if possible. If we wanted to avoid some (failed) vertices, simply, we could add
the condition “and u (resp. w) is not a failed vertex” in lines 3 and 6 respectively.
The same condition can be applied for biBFS in lines 11 and 21.

15

Algorithm 2.5 FindSeparator
Require: digraph G, root s
1: BFS(G, s); /* Calculate BFS tree w.r.t root s */
2: if bfs_tree_depth <

√
n then

3: return false;
4: end if
5: for integer i ∈ {2, . . . , bfs_tree_depth− 1} do
6: if layer_size[i] ≤

√
n then

7: aboveLayers← SUM(layer_size, 1, i− 1);
8: belowLayers← SUM(layer_size, i+ 1, bfs_tree_depth);
9: larger ←MAX(aboveLayers, belowLayers);
10: smaller ←MIN(aboveLayers, belowLayers); /* We want the above and

below layers have similar size */
11: if smaller/larger ≥ 0.75 then
12: for all vertices, v, ∈ layer i do
13: sep = sep ∪ {v};
14: end for
15: return true;
16: end if
17: end if
18: end for
19: return false;

Algorithm 2.6 DFS
Require: source vertex s ∈ V (G)

1: mark s as visited;
2: for all out-going edges, e = (s, u), of s do
3: if v is not visited then
4: DFS(v); /* recursively call DFS with source the vertex v */
5: end if
6: end for

16

Algorithm 2.7 BFS
Require: source vertex s ∈ V (G), queue data structure Q

1: mark s as visited;
2: Q.insert(s);
3: while Q is not empty do
4: v ← Q.pop();
5: for all out-going edges, e = (v, w), of v do
6: if w is not visited then
7: visited[w]← true;
8: Q.insert(w);
9: end if
10: end for
11: end while

17

Algorithm 2.8 biBFS
Require: source vertex x, destination vertex y, queue data structures Qx, Qy, arrays

to store information visitedx, visitedy

1: mark x as visited for visitedx;
2: mark y as visited for visitedy;
3: Qx.insert(x);
4: Qy.insert(y)

5: while Qx and Qy are not empty do
6: v ← Qx.pop();
7: if visitedy[v] =true then
8: return true;
9: end if
10: for all out-going edges, e = (v, z), of v do
11: if z is not visitedx then
12: visitedx[z]← true;
13: Qx.insert(z);
14: end if
15: end for
16: w ← Qy.pop();
17: if visitedx[w] =true then
18: return true;
19: end if
20: for all out-going edges, e = (w, z), of w do
21: if z is not visitedy then
22: visitedy[z]← true;
23: Qy.insert(z);
24: end if
25: end for
26: end while
27: return false;

18

CHAPTER 3

OUR CONTRIBUTIONS

3.1 Decomposition Tree

3.2 Improved Data Structure for General Graphs

3.3 BFS‐Based Oracles

3.1 Decomposition Tree

We construct an SCC-Tree T of a strongly connected digraph G = (V,E) based on the
idea introduced by Łącki [19]. If the input digraph G is not strongly connected, then
we construct a separate SCC-Tree for each strongly connected component. Each node
N(t) of T corresponds to a vertex t of G, referred to as the split vertex of N(t). Also, a
node N(t) of T is associated with a subset of vertices St ⊆ V that contains t. For every
vertex x ∈ V , we define Px to be the set of nodes N(t) in T such that x ∈ St. We also
let Vx be the set of split vertices that correspond to Px, i.e., Vx = {t ∈ V : N(t) ∈ Px}.
Figure 3.1 gives two examples of SCC-Trees. The first one is for the complete directed
graph K4, while the second one is for a small planar digraph.

19

Figure 3.1: Two strongly connected digraphs (left) and corresponding SCC-Trees
T (right). Every node of T is associated with a subset of V (G) and the un-
derlined vertex is the corresponding split vertex. For example, for the SCC-Tree
of (b), the middle child of the root is N(h) and Sh = {h, i, j}. Also note that
Pf = ⟨N(a), N(c), N(d), N(f)⟩.

(a) K4

(b) Strongly connected digraph

An SCC-Tree of G is constructed as follows:

• We choose a split vertex r of G, and let N(r) be the root of T . We associate
N(r) with Sr = V (G).

• For a node N(t) ∈ T such that |St| ≥ 2, let H1, . . . , Hk be the SCCs of G − Vt.
For every i ∈ {1, . . . , k} we choose a split vertex ti ∈ V (Hi) and make the
corresponding node N(ti) a child of t. We set Sti = V (Hi), and recursively
compute an SCC-Tree for G[Sti] rooted at N(ti).

Algorithm 3.1 describes in-detail a straightforward way for computing an SCC-
Tree of a strongly connected graph G. Subroutine SelectSplitNode(G) is used to select

20

Algorithm 3.1 SCC-TreeDecomposition(G)
Require: G strongly connected graph /* Otherwise, apply same algorithm for every

SCC */
1: v ← SelectSplitNode(G); /* e.g., One of the algorithms of Section 2.3.1 */
2: Make v the root of T, set Sv = V (G) and mark v in Sv;
3: Compute the SCCs H1, . . . , Hk of G− v;
4: for i ∈ {1, . . . , k} do
5: Recursively compute Ti = SCC-TreeDecomposition(Hi);
6: Make the subtree Ti a child of v in T;
7: end for
8: return T;

a split node for the decomposition as we implemented and tested various algorithms
and heuristics described in Section 2.3.1.

Observe that the number of nodes of T is exactly |V | and every v ∈ V appears
exactly once as a split vertex in a node N(v) ∈ T . Thus there is a one-to-one corre-
spondence between the vertices of G and the nodes of T . For every node N(t) ∈ T , we
define Gt to be the strongly connected subgraph of G induced by St, i.e., Gt = G[St].
By construction, it follows that for every x ∈ V the nodes of Px form a path (starting
from the root) in T . Thus we can think of Px as an ordered set (where its elements are
ordered from the root to the node N(r) of T) and we denote by Px(i) its ith element
(if |Px| < i then Px(i) = null). For x, y ∈ V , we define their nearest common ancestor,
nca(x, y), in T to be the last common element of Px and Py. At each node N(t) ∈ T ,
we store the auxiliary data structures of Section 2.2, which we use to answer a query,
as we describe next.

Answering a query. Now we describe an algorithm, which given an SCC-Tree T
of a strongly connected graph G = (V,E), two query vertices x, y ∈ V and two failed
vertices f1, f2 ∈ V, answers the query 2FTSC(x, y, f1, f2) that asks whether x and y

are strongly connected in G − {f1, f2}. The algorithm begins at the root N(r) of T
and descends the path Pnca(x,y) = Px ∩Py. When we visit a node N(t) we perform the
following steps:

1. If t is a failed vertex, say t = f1, then we check if N(t) = nca(x, y). If this is
the case then we return FALSE. Otherwise, we return the result of the query
1FTSC(x, y, f2) for Gw, where N(w) is the child of N(t) containing x and y.

21

(N(w) is the next node on Pnca(x,y).)

2. If t is not a failed vertex, we test the condition (C): (2FTRt(x, f1, f2) ̸= 2FTRt(y, f1, f2))∨
(2FTRR

t (x, f1, f2) ̸= 2FTRR
t (y, f1, f2)) in Gt. If it is true, then we return FALSE.

3. If (C) is false and both 2FTRt(x, f1, f2) and 2FTRR
t (x, f1, f2) are true in Gt, then

we return TRUE. Otherwise, we proceed to the next node on Pnca(x,y).

The above procedure is presented more detailed in Algorithm 3.2.

Lemma 3.1. The query algorithm is correct.

Proof. First, we consider the correctness of the query algorithm. Consider a query
2FTSC(x, y, f1, f2) that asks if x and y are strongly connected in G − {f1, f2}. We
first argue that if our procedure returns TRUE, then x and y are strongly connected in
G− {f1, f2}. This happens in one of the following cases:

• One of the failing vertices, say f1, is the split vertex t in the currently visited
node N(t) of T . Let N(w) be the child of N(t) containing x and y. (This node
exists because otherwise, the query algorithm would return FALSE.) We have two
cases:

– The other failing vertex, f2 ∈ Sw. Then, we return the answer 1FTSC(x, y, f2)
for Gw, which is TRUE if and only if x↔ y in Gt − {f1, f2}. Hence, x and y

are strongly connected in G− {f1, f2}.

– Vertex f2 /∈ Sw. Then, we return TRUE since x and y are in the same SCC
of Gt − t, induced by the vertices of Sw, which does not contain any failed
vertices.

• The split vertex t of N(t) is not a failed vertex. The query algorithm returns
TRUE when we have 2FTRt(x, f1, f2) = 2FTRt(y, f1, f2) and 2FTRR

t (x, f1, f2) =

2FTRR
t (y, f1, f2), and also both 2FTRt(x, f1, f2) and 2FTRR

t (x, f1, f2) are true
in Gt. Then, by Observation 2.1, x and y are both strongly connected with
t in Gt − {f1, f2}. Thus, x and y are strongly connected in G − {f1, f2}. In
case that neither x nor y are strongly connected with t and 2FTRt(x, f1, f2) =

2FTRt(y, f1, f2) = 2FTRR
t (x, f1, f2) = 2FTRR

t (y, f1, f2) = FALSE we proceed with
the next node of the path P because the existence of t does not affect the
connectivity of x and y. See Lemma 3.2.

22

For the opposite direction, suppose that x and y are strongly connected in G −
{f1, f2}. Let C be the SCC of G − {f1, f2} that contains both x and y. We argue that
our procedure will return a positive answer. The vertices of C are contained in Sr,
where r is the split vertex of the root node N(r) of the SCC-Tree T (we remind
that Sr = V (G)), meaning that Px(1) = Py(1). Let k be the positive integer such that
nca(x, y) = Px(k) = Py(k). Assume that the query algorithm has visited the first i ≤ k

nodes of Pnca(x,y) without returning a positive answer. Then, C does not contain any of
the split vertices of the first i nodes of Pnca(x,y). Hence, if no positive answer has been
returned until step k− 1, then for every i ∈ {1, . . . k− 1}, C was entirely contained in
all sets Sti , where ti is the split vertex of N(ti) = Px(i) = Py(i). By the definition of
k, the next node t = tk considered by the algorithm has at least two distinct children
that contain x and y, respectively. This implies that t is a vertex of C. Then, we have
2FTRt(x, f1, f2) = 2FTRt(y, f1, f2) and 2FTRR

t (x, f1, f2) = 2FTRR
t (y, f1, f2), and also

both 2FTRt(x, f1, f2) and 2FTRR
t (x, f1, f2) are true in Gt. So the algorithm returns

TRUE.

Lemma 3.2. Let G = (V,E) be a digraph and let x, y, s ∈ V such that x↔ y and x ̸↔ s

in G. Then x↔ y in G− s.

Proof. Suppose, for the sake of contradiction, that x ̸↔ y in G− s. As x↔ y in G, it
must be that there is no x→ y path avoiding s or y → x path avoiding s (or both) in
G. Without loss of generality, we assume that every x→ y path in G contains s and
let P be such a path (it exists because x↔ y in G). Let also Q be a y → x path in G

(it exists because x↔ y in G). Then, P [x, s] is a x→ s path in G and P [s, y] ∪Q is a
s→ x path in G. Therefore, x↔ s in G, a contradiction.

Space and running time. Regarding the running time of the query, we observe
that the query algorithm makes at most O(h) queries to the auxiliary data structures,
where h is the height of the SCC-Tree T . As each auxiliary structure has constant
query time, the oracle provides the answer in O(h) time. Regarding space, note that
at each node N(t) ∈ T , we store the auxiliary data structures of Section 2.2, which
require O(|St|) space. Hence, our oracle occupies

∑
t∈V (G) O(|St|) = O(nh) space. This

concludes the proof of Theorem 1.1.
Implementation details. The oracle of Choudhary [6] computes detour paths with

respect to two divergent spanning trees [34] T1 and T2 of G. The spanning trees T1

and T2 are rooted at s and have the property that for any vertex v ̸= s, the only

23

common vertices on the two tree s-v paths are the dominators of v. Moreover, T1

and T2 can be computed in O(m) time [34]. To answer a query 2FTRs(x, f1, f2), [6]
uses a data structure for reporting minima on tree paths [35]. Specifically, Demaine
et al. [35] show that a tree T on n vertices and edge weights can be preprocessed
in O(n logn) time to build a data structure of O(n) size so that given any u, v ∈ T ,
the edge of smallest weight on the tree path from u to v can be reported in O(1)

time. The data structure of [35] is rather complicated, as it applies a micro-macro
decomposition of T which uses word-level parallelism. Here, we applied two simpler
methods. One is based on the work of Demaine [35] but it has worse preprocessing
time and the other is based on a heavy-path decomposition [36] of a tree. However,
from our experiments we noticed that both methods performed similarly.

3.1.1 Special Graph Classes

The space and query time of the oracle of Section 3.1 depends on the value of the
parameter h (the height of the SCC-Tree), which can be O(n). For restricted graph
classes, we can choose the split vertices in a way that guarantees better bounds for h.
Such classes are planar graphs and bounded treewidth graphs.

Definition 3.1. A vertex separator of an undirected graph G = (V,E) is a subset of
vertices, whose removal decomposes the graph into components of size at most α|V |,
for some constant 0 < α < 1. A family of graphs F is called f(n)-separable if

• for every F ∈ F , and every subgraph H ⊆ F, H ∈ F ,

• for every F ∈ F , such that n = |V (F)|, F has a vertex separator of size f(n).

Lemma 3.3 ([19]). Let G = (V,E) be a directed strongly connected graph, such that
G ∈ F is Cns-separable (s ≥ 0). Moreover, assume that the separators for every graph F
can be found in linear time. Then, we can build an SCC-decomposition tree for G of height
O(h(n)) in O(|E|h(n)) time, where h(n) = O(ns) for s > 0 and h(n) = O(logn) for
s = 0.

We next show the applicability of Lemma 3.3 by providing efficient 2-FT-SC
oracles on well-known graph classes with structured underlying properties.

Planar graphs. Here we assume that the underlying undirected graph is planar.
The following size of separators in planar graphs is well-known.

24

Algorithm 3.2 2FTSC(x,y,f1,f2,T)
Require: x, y, f1, f2 ∈ V (G), SCC-Tree T
1: i← 1;
2: while Px(i) = Py(i) do
3: t← split vertex of Px(i);
4: if t = f1 or t = f2 then
5: if N(t) = nca(x, y) then
6: return false; /* x, y ended up in different SCCs */
7: else
8: f ← {f1, f2} − t;
9: N(w)← P (i+ 1);
10: if f ̸∈ N(w) then
11: return true;
12: end if
13: return 1FTSC(x,y,f,Gw); /* Gw corresponds to the subgraph of N(w) */
14: end if
15: end if
16: if (2FTRt(x, f1, f2) ̸= 2FTRt(y, f1, f2)) ∨ (2FTRR

t (x, f1, f2) ̸= 2FTRR
t (y, f1, f2))

then
17: return false; /* Check condition (C) */
18: else if 2FTRt(x, f1, f2) = 2FTRR

t (x, f1, f2) = true then
19: return true;
20: else
21: i← i+ 1; /* Proceed with the next node */
22: end if
23: end while
24: return false; /* x, y ended up in different SCCs */

Theorem 3.1 ([37]). Planar graphs are
√
8n-separable and the separators can be found in

linear time.

Combined with Lemma 3.3, the previous result when G is planar yields the fol-
lowing:

Lemma 3.4. Let G = (V,E) be a directed strongly connected planar graph. Then, we can
build an SCC-decomposition tree for G of height O(

√
n) and O(n3/2) space.

25

Graphs of bounded treewidth. Here we consider graphs for which their under-
lying undirected graph has bounded treewidth.

Theorem 3.2 (Reed [38]). Graphs of treewidth at most k are k-separable. Assuming that
k is constant, the separators can be found in linear time.

It is known that graphs with constant treewidth have O(n) edges (see Reed [38]).
This fact combined with Theorem 3.2 and Lemma 3.3 implies that when G = (V,E)

is a directed graph, whose treewidth (of its underlying undirected graph) is bounded
by a constant k, then we can build an SCC-decomposition tree for G of height O(logn)
in O(n logn) time. Thus, we obtain the following result.

Theorem 3.3. Let G = (V,E) be a directed graph, whose treewidth of its underlying
undirected graph is bounded by a constant k. We can construct in polynomial time a data
structure of size O(n logn) that answers strong connectivity queries between two vertices of
G under two vertex (or edge) failures in O(logn) time.

3.2 Improved Data Structure for General Graphs

In this section, we present an improved data structure for general graphs. Our data
structure uses O(n

√
m) space and answers strong connectivity queries in O(

√
m) time.

The main idea of the improved oracle is that when we build the SCC-Tree T , we can
stop the decomposition of a subgraph Gt early if some appropriate conditions are
satisfied (e.g. when Gt is 3-vertex connected). We refer to such a decomposition tree
T of G as a partial-SCC-Tree. Let ∆ be an integer parameter in [1,m]. A subgraph G′

of G is “large” if it contains at least ∆ + 1 edges, and “small” otherwise. Next, we
define ∆−good graphs.

Definition 3.2 (∆−good). A strongly connected graph G is “∆−good” if it has the
following property: For every separation pair {f1, f2} of G, the graph G′ = G−{f1, f2}
satisfies the following:

1. It has at most one “large” strongly connected component C that contains at
least ∆+ 1 edges.

2. All the remaining strongly connected components have size (i.e., number of
edges) at most ∆.

26

3. For every node x of G′ not belonging to C (large SCC) it holds that either
G[PredG′(x) ∪ {f1, f2}] or G[SuccG′(x) ∪ {f1, f2}] contains at most ∆ edges.

Note that condition 2 in Definition 3.2 is actually implied by condition 3, but we
state it explicitly for clarity.

The following lemma shows that all 2-FT-SC queries in a ∆−good graph can be
answered in O(∆) time, by performing four local searches with threshold ∆.

Lemma 3.5. Let G be a ∆−good graph. Then, any 2-fault strong connectivity query can
be answered in O(∆) time.

Proof. Consider a query that asks if vertices x and y are strongly connected in G′ =

G − {f1, f2}. Note that x ↔ y in G′ if and only if y ∈ SuccG′(x) and x ∈ SuccG′(y),
which implies SuccG′(x) = SuccG′(y) (equivalently, PredG′(x) = PredG′(y)). To answer
the query, for z ∈ {x, y}, we run simultaneously searches from and to z (by executing
a BFS or DFS from z in G′ and (G′)R, respectively) in order to discover the sets
PredG′(z) and SuccG′(z). (To perform a search in G′, we execute a search in G but
without expanding the search from f1 or f2 if we happen to meet them.) We stop
such a search early, as soon as the number of traversed edges reaches ∆+ 1. If this
happens both during the search for PredG′(z) and for SuccG′(z), then we conclude
that z ∈ C (large SCC). Thus, if all the four searches for PredG′(z) and SuccG′(z), for
z ∈ {x, y}, are stopped early, we know that both x and y belong to C and so there
are strongly connected.

Now, suppose that the search for SuccG′(x) traversed at most ∆ edges. Then, x↔ y

in G′ only if the search for SuccG′(y) also traversed at most ∆ edges. Hence, if the
search for SuccG′(y) stopped early, we know that x and y are not strongly connected
in G′. Otherwise, we just need to check if y ∈ SuccG′(x) and x ∈ SuccG′(y). The case
where the search for PredG′(x) traversed at most ∆ edges is analogous.

So, in every case, we can test if x and y are strongly connected in G′ in O(∆)

time.

We call a separation pair {f1, f2} of G “good” if every strongly connected compo-
nent of G−{f1, f2} contains at most ∆ edges. Now, to build a partial-SCC-Tree T , we
distinguish the following cases.

1. G is “small”. We stop the decomposition here, because all queries in G can be
answered in O(∆) time.

27

2. G is 3‐vertex‐connected. Then, G does not contain any separation pairs, so all
queries are answered (in the affirmative) in O(1) time.

3. G contains a good separation pair {f1, f2}. Here, we choose {f1, f2} as the
next two split vertices of G, because all children of G in the decomposition tree
correspond to “small” graphs.

4. G is ∆−good. Then we stop the decomposition here, because all queries can be
answered in O(∆) time by Lemma 3.5.

5. None of the above applies. For this case, we prove that G has the following
property:

Lemma 3.6. (Case 5) There is at least one separation pair {f1, f2} of G such that every
SCC of G′ = G− {f1, f2} is either small, or contains fewer than m−∆ edges.

Proof. Since G is not 3-vertex-connected, there is at least one separation pair. Also,
since G is not ∆−good, there exists at least one separation pair {f1, f2} with the
property that either: (a) G − {f1, f2} contains more than one large SCC, or (b) G −
{f1, f2} contains only one large SCC, C , and for at least one vertex v of G′ that does
not belong to C , we have that both G′[PredG′(v)∪ {f1, f2}] and G′[SuccG′(v)∪ {f1, f2}]
contain at least ∆ edges.

If (a) is true, then the Lemma holds since all SCCs of G′ contain fewer than
m − ∆ edges. Now suppose that (b) is true. Since C is a SCC of G′, we either have
SuccG′(v)∩C = ∅ or C ⊂ SuccG′(v). If SuccG′(v) does not contain C , then C has fewer
than m−∆ edges, and all the other strongly connected components have size at most
∆. Hence, the Lemma holds. Otherwise, C ⊂ SuccG′(v), and since v ̸∈ C , we have
PredG′(v)∩C = ∅. Since G′[PredG′(v)∪ {f1, f2}] contains at least ∆ edges, C has fewer
than m−∆ edges. Hence, the Lemma holds in this case as well.

Obviously, only the last case may lead to repeated decompositions of G, but due to
Lemma 3.6 this occurs at most m/∆ times. Thus, the decomposition tree has height
O(m/∆), and so it requires O(mn/∆) space. Moreover, queries can be answered in
O(m/∆ + ∆) time. This proves Theorem 1.2. The running time is minimized for
∆ =

√
m, which gives Corollary 1.3.

Algorithm 3.3 is used for answering 2-fault tolerant queries given a partial-SCC-
Tree where a 2-FT-SSR and 1-FT-SC oracle are initialized for every node of the tree

28

which fell into case 3 or 5. The idea is similar with that on Algorithm 3.2 except
here we also check for the extra cases. Subroutine areStronglyConnected(x,y,f1,f2,

∆) performs the four biBFS traversals, with threshold ∆ + 1, in order to find the
sets of PredGw(x), SuccGw(x) (resp. for y) and answer the strong connectivity query as
described earlier.

3.2.1 Choosing a good ∆ for a partial‐SCC‐Tree decomposition

Although we may always set ∆ =
√
m in order to minimize both O(∆) and O(m/∆)

(the height of the decomposition tree), in practice we may have that a small enough
∆ may be able to provide a partial-SCC-Tree with height O(∆). For example, this is
definitely the case when G itself is ∆−good. Otherwise, it may be that after deleting
a few pairs of vertices, we arrive at subgraphs that are ∆−good.

Table 4.3 shows some examples of real graphs where we have computed a value
for ∆ such that the partial-SCC-Tree has height at most ∆. Thus, we get data structures
for those graphs that can answer 2-FT-SC queries in O(∆) time. We arrived at those
values for ∆ by essentially performing binary search, in order to find a ∆ that is as
small as possible and such that either the graph is ∆−good, or it has a partial-SCC-Tree
decomposition with height at most ∆.

The computationally demanding part here is to determine whether a graph is
∆−good, for a specific ∆. The straightforward method that is implied by the definition
takes O(n2(m+n∆)) time. (I.e., this simply checks the SCCs after removing every pair
of vertices, and it performs local searches with threshold ∆ + 1 starting from every
vertex.) Instead, we use a method that takes O(nm+ Σv∈V (G)SCCv(G)∆) time, where
SSCv(G) denotes the total number of strongly connected components of G\{v, u}, for
every vertex u ∈ G \ v. In practice, this works much better than the stated bound,
because SSCv(G) is approximately Θ(n), for every v ∈ G.

The idea is to check the SCCs after the removal of every vertex v ∈ G (this explains
the O(nm) part). If G \ v has at least three large SCCs, then we can immediately
determine that G is not ∆−good. Otherwise, we distinguish three cases, depending
of whether G \ v has 0, 1 or 2 large SCCs. In the first case, we can terminate the
computation, because all SCCs of G\v are small. In the other two cases, we essentially
rely on the work [39], with which we can compute in O(SCCv(G)) time all the strongly
connected components of G\{v, u}, for every vertex u ∈ G\v, by exploiting information

29

Algorithm 3.3 2FTSC-partial-SCC-Tree
Require: x, y, f1, f2 ∈ V (G), partial SCC-Tree
1: i← 1;
2: while Px(i) = Py(i) do
3: N(t)← Px(i); /* Current node of the path. */
4: Gt ← induced subgraph of St /* St is associated with the node N(t) */
5: if Gt is small or ∆−good then
6: return areStronglyConnected(x,y,f1,f2);
7: else if Gt is 3-vertex-connected then
8: return true;
9: end if
10: t← split vertex of Px(i); /* Gt contains a good separation pair or satisfies

Lemma 3.6 */
11: if t = f1 or t = f2 then
12: if N(t) = nca(x, y) then
13: return false; /* x, y ended up in different SCCs */
14: else
15: f ← {f1, f2} − t;
16: N(w)← P (i+ 1);
17: return 1FTSC(x,y,f,Gw); /* Gw corresponds to the subgraph of N(w) */
18: end if
19: end if
20: if (2FTRt(x, f1, f2) ̸= 2FTRt(y, f1, f2)) ∨ (2FTRR

t (x, f1, f2) ̸= 2FTRR
t (y, f1, f2))

then
21: return false; /* Check condition (C) */
22: else if 2FTRt(x, f1, f2) = 2FTRR

t (x, f1, f2) = true then
23: return true;
24: else
25: i← i+ 1; /* Proceed with the next node */
26: end if
27: end while
28: return false; /* x, y ended up in different SCCs */

30

from the dominator trees and the loop nesting forests of the SCCs of G \ v. For every
such small component, it suffices to select a representative vertex x, and perform the
two local searches from x in G and GR with threshold ∆+1 (and blocking vertices v
and u), in order to determine whether x either reaches at most ∆ edges, or is reached
by at most ∆ edges.

Still, our result on the partial-SCC-Tree decomposition (Corollary 1.3) is mainly of
theoretical interest, since the procedure for determining whether a graph is ∆−good
becomes very slow even in moderately large graphs. Thus, in Section 4 we suggest
much more efficient heuristics, that work remarkably well in practice.

3.3 BFS‐Based Oracles

As mentioned in Section 2.3.2 the straightforward way to determine whether two
vertices x and y remain strongly connected after the removal of f1, f2, is to perform
a graph traversal (e.g., BFS) in order to check whether x reaches y in G − {f1, f2},
and conversely. We call BFS algorithm as simpleBFS and bidirectional-BFS as biBFS.
For either algorithm we measure the work done by keeping track of the edges that
we had to access in order to arrive at the answer. As expected, biBFS has to do on
average less work than simpleBFS, and thus we use biBFS as the baseline.

One of our most important contributions is a heuristic that we call seeded BFS. This
precomputes some data structures on a few (random) vertices which we call seeds,
and we use during the BFS if we meet them.1 Specifically, we use every seed r in
order to expand a DFS tree DFSr of G with root r, and we maintain the preordering
of all vertices w.r.t. DFSr, as well as the number of descendants NDr(v) on DFSr for
every vertex v ∈ G. This information can be computed in linear time, and it can be
used in order to answer ancestry queries w.r.t. DFSr in O(1) time [41]. We do the
same on GR with the same seed vertices.

Now, in order to answer a SC-query for x and y in G− {f1, f2}, we first perform
a bidirectional BFS from x to y with the following twist: if we meet a seed r, then
we check whether either of f1, f2 is an ancestor of y on DFSr. If neither of f1, f2 is
an ancestor of y, then we can immediately conclude that x reaches y in G− {f1, f2}.

1In the literature, the vertices that support such functionality are commonly called supportive
vertices, or landmarks [33, 40].

31

Otherwise, we just continue the search. Then we use the same method in order to
determine the reachability from y to x in G− {f1, f2}. Furthermore, we can improve
over this idea a little more: even before starting the BFS, we perform this simple
check that we have described, in order to see if x reaches a seed, and then a seed
reaches y. If the number of seeds is very small (e.g., 10), then this initial scanning of
the seeds takes a negligible amount of time. What is remarkable, is that even with a
single random seed, there is a very high probability that a random 2-FT-SC query
will be answered even before the BFS begins! We call our implementation of this idea
sBFS. Here, the two measures of efficiency are, first, whether the answer was given
by a seed (before starting the BFS), and second, what is the total number of edges
that we had to access (in case that none of the seeds could provide immediately the
answer). We expect the average number of edges accessed to be much lower than in
biBFS, because we use the seeds to speed up the search in the process. If sBFS uses
k seeds, we denote the algorithm as sBFS(k).

Observe that the checks at the seeds may provide an inconclusive answer (i.e.,
if either f1 or f2 is an ancestor of the target vertex on the tree-path starting from
the seed). Thus, we may instead initialize a 2-FT-SSR data structure on every seed,
so that every reachability query provides immediately the real answer. In this case,
we can extract all the information that the seeds can provide before the BFS begins.
We do this by using the four reachability queries 2FTRr(x, f1, f2), 2FTRr(y, f1, f2),
2FTRR

r (x, f1, f2) and 2FTRR
r (y, f1, f2), as we did in Section 3.1. We call our imple-

mentation of this idea ChBFS (or ChBFS(k), to emphasize the use of k seeds). As
in sBFS, the two measures of efficiency here are whether one of the seeds provided
the answer, or, if not, what is the number of edges that we had to traverse with the
bidirectional BFS.

We consider the queries that force ChBFS to perform BFS in order to get the
answer, worst-case instances for this algorithm. In order to reduce the probability of
such events, we suggest organizing the seeds on a decomposition tree. This reduces
the possibility of the worst-case instances, and it may also provide some extra “free”
seeds on the intermediary levels of the decomposition tree. We elaborate on this idea
in Section 4.4.

Algorithms 3.4 and 3.5 describe how to answer a strong connectivity query for
the BFS-Based oracles.

32

Algorithm 3.4 2FTSC-sBFS
Require: x, y, f1, f2 from set V (G), DFS trees DFSr, DFSR

r for every seed r
1: for r ∈ Seeds do
2: flag_1 ← false;
3: flag_2 ← false;
4: if not(is_ancestor(f1, x,DFSR

r)) and not(is_ancestor(f2, x,DFSR
r)) then

5: if not(is_ancestor(f1, y,DFSr)) and not(is_ancestor(f2, y,DFSr)) then
6: flag_1 ← true; /* x→ y, through r */
7: end if
8: end if
9: if not(is_ancestor(f1, y,DFSR

r)) and not(is_ancestor(f2, y,DFSR
r)) then

10: if not(is_ancestor(f1, x,DFSr)) and not(is_ancestor(f2, x,DFSr)) then
11: flag_2 ← true; /* y → x, through r */
12: end if
13: end if
14: if flag_1=flag_2=true then
15: return true;
16: else if flag_1̸=flag_2 then
17: return false;
18: else
19: continue;
20: end if
21: end for
22: return biBFS(x,y,f1,f2) and biBFS(y,x,f1,f2) /* If the seeds failed to provide

an answer, perform two biBFS traversals */

33

Algorithm 3.5 2FTSC-ChBFS
Require: x, y, f1, f2 from set V (G), for every seed, r, initialized a 2-FT-SSR w.r.t r
1: for r ∈ Seeds do
2: if (2FTRr(x, f1, f2) ̸= 2FTRr(y, f1, f2)) ∨ (2FTRR

r (x, f1, f2) ̸= 2FTRR
r (y, f1, f2))

then
3: return false;
4: else if (2FTRt(x, f1, f2) = 2FTRR

t (x, f1, f2)) = true then
5: return true;
6: else
7: continue;
8: end if
9: end for
10: return biBFS(x,y,f1,f2) and biBFS(y,x,f1,f2) /* If the seeds failed to provide

an answer, perform two biBFS traversals */

34

CHAPTER 4

EMPIRICAL ANALYSIS

4.1 Datasets

4.2 Height of the decomposition tree.

4.3 Answering queries

4.4 An improved data structure: organizing the CH seeds on a decomposition tree

We implemented our algorithms in C++, using g++ v.7.4.0 with full optimization
(flag -O3) to compile the code.1 The reported running times were measured on a
GNU/Linux machine, with Ubuntu (18.04.5 LTS): a Dell PowerEdge R715 server 64-
bit NUMA machine with four AMD Opteron 6376 processors and 128GB of RAM
memory. Each processor has 8 cores sharing a 16MB L3 cache, and each core has
a 2MB private L2 cache and 2300MHz speed. In our experiments we did not use
any parallelization, and each algorithm ran on a single core. We report CPU times
measured with the high_resolution_clock function of the standard library chrono,
averaged over ten different runs.

1Our code, together with some sample input instances is available at https://github.com/dtsok/
2-FT-SC-O.

35

https://github.com/dtsok/2-FT-SC-O
https://github.com/dtsok/2-FT-SC-O

Table 4.1: Graph instances used in the experiments, taken from [1], [2] and [3]. n
and m are the numbers of vertices and edges, respectively, na is the number of strong
articulation points (SAPs), and nsp is the number of vertices that are SAPs or belong
to a proper separation pair.

Graph Type n m na nsp Reference

Google_small web graph 950 1,969 179 182 [1]
Twitter communication network 1,726 6,910 615 1,005 [1]
Rome road network 3,353 8,870 789 1,978 [2]
Gnutella25 p2p network 5,152 17,691 1,840 3,578 [3]
Lastfm-Asia social network 7,624 55,612 1,338 2,455 [3]
Epinions1 social network 32,220 442,768 8,194 11,460 [3]
NotreDame web graph 48,715 267,647 9,026 15,389 [3]
Stanford web graph 150,475 1,576,157 20,244 56,404 [3]
Amazon0302 co-purchase graph 241,761 1,131,217 69,616 131,120 [3]
USA-road-NY road network 264,346 733,846 46,476 120,823 [2]

4.1 Datasets

The real-world graphs we used in our experiments are reported in Table 4.1. From
each original graph, we extracted its largest SCC, except for Google_small for which we
use its second-largest SCC, hence the reported statistics refer to those SCC. Additional
results concerning the artificial graphs can be found in the Appendix A.1.

From Table 4.1 we observe that a significant fraction of the vertices belong to at
least one proper separation pair (value nsp in the table). Indeed, at least 19% of the
vertices, and 44% on average, belong to a proper separation pair.

4.2 Height of the decomposition tree.

As stated in Section 2.3, we consider various methods for constructing a decomposi-
tion tree T of G with small height h in practice. We note that such decomposition trees
are useful in various decremental connectivity algorithms (see, e.g., [20, 21, 19]), so
this experimental study may be of independent interest. We consider only fast meth-
ods for selecting split vertices, detailed in Table 2.1. Note that all methods require
O(m) time to select a split node x of G, except Random which selects a vertex in

36

constant time. Still, we need O(m+ n) time to compute the SCCs of G− x. Also note
that, LNT can find all split vertices in O(m) time.

The experimental results for the graphs of Table 4.1 are presented in Table 4.2,
and are plotted in Figure 4.1.We observe that MCN and qSep+MCN achieved overall
significantly smaller decomposition height compared to the other methods. In fact,
Random, LP, and PR did not manage to produce the decomposition tree for the
largest graphs (Amazon0302 and USA-road-NY) in our collection, due to memory
or running time restrictions. For the remaining (smaller) graphs in our collection,
Random performed very poorly, giving a decomposition height that was larger by a
factor of 11.9 on average compared to MCN. Also, on average, LP performed better
than PR. We see that MCN produced a tree height that, on average, was smaller
by a factor of 2.1 compared to LP and by a factor of 4.1 compared to PR. Finally,
MCN and qSep+MCN have similar performance in most graphs, but for the two
road networks (Rome and USA-road-NY), qSep+MCN produce a significantly smaller
decomposition height. Comparing the results of the above algorithms with these from
the loop nesting tree (LNT) we observe that on average for the small graphs (excluding
Amazon0302 and USA-road-NY), LP outperforms LNT by a factor of 1.4. PR has
similar performance and LNT outperforms Random by a factor of 5. Including the
graphs Amazon0302 and USA-road-NY, MCN and qSep+MCN outperforms LNT by
a factor of 2.5 and 3.2, respectively.

Table 4.3 reports the characteristics of partial-SCC-Trees achieved by the algorithm
of Section 3.2 for some input graphs. Specifically, we report the height of the partial-
SCC-Tree and the value of the parameter ∆ which gives the maximum number of
edges that need to be explored in order to answer a query. We were not able to
include results for the larger graphs in our collection due to high running times to
compute the partial-SCC-Tree. We observe that the results are very encouraging. For
example, we see that Epinions1 is a 60-good graph. Thus, we can answer every 2-FT-
SC query on Epinions1 after scanning at most 4× 60 + 4 edges. Note that Epinions1
has 442.768 edges. In NotreDame, we may have to reach a tree-node of depth 168 in
order to arrive at a 170-good subgraph, in which we can answer the 2-FT-SC query
after scanning at most 4× 170+ 4 edges. Before that, we will have to perform 4× 168

2-FT-SSR queries on the tree-nodes that we traverse. This is still much faster than
the scanning of ∼ 15000 edges that we have to perform on average with a single
bidirectional BFS on NotreDame, as shown in Table 4.7.

37

Table 4.2: SCC-Tree height of the graphs of Table 4.1, resulting from the split vertex
selection algorithms of Table 2.1. The symbols † and ‡ refer to decompositions that
were not completed due to exceeding the RAM memory of our system (> 128GB) or
due to requiring more than 48 hours.

Graph Random MCN LP PR qSep+MCN LNT
Google_small 214 9 14 128 9 16
Twitter 732 232 352 351 235 430
Rome 843 542 478 1125 380 1,417
Gnutella25 2,118 838 2,105 1,440 858 1,920
Lastfm-Asia 4,958 2,202 1,443 3,752 2,198 2,981
Epinions1 19,764 5,602 6,826 8,367 5,857 7,317
NotreDame 11,688 365 1,704 672 390 1,346
Stanford 42,383 1,617 5,738 12,694 1,638 4,161
Amazon0302 † 16,615 ‡ ‡ 16,606 47,484
USA-road-NY † 19,073 ‡ ‡ 7,829 82,098

4.3 Answering queries

First, we consider random queries. We create each query 2FTSC(x, y, f1, f2) by se-
lecting the vertices x, y and the failed vertices f1, f2 uniformly at random. The cor-
responding results for the (basic) SCC-Tree are reported in Table 4.5. Evidently, the
SCC-Tree is very effective, as almost all queries are answered at the root node of the
tree.

In Table 4.7 we see the time that is needed in order to answer 1M queries using
simpleBFS and biBFS. We can also see the average edge accesses per query. We note
that edge accesses is an accurate indicator of the total time of those algorithms.
biBFS charges every edge access a little higher, because every new edge discovery is
succeeded by an alteration to the direction of the BFS. From Table 4.7 we can see that
biBFS performs much better than simpleBFS, and thus we use biBFS as the baseline,
and as the last resort when all other heuristics fail to provide the answer.

Table 4.4 demonstrates the superiority of sBFS and ChBFS for the graphs Rome99
and Google_small. The tables for the rest graphs are in the Appendix A.3. We tested
those algorithms with a few number k of seeds, k ∈ {1, 2, 5, 10}. In those tables we
measure the two indicators of efficiency of the seeded BFS algorithms. That is, we

38

Figure 4.1: Relative SCC-Tree height of the graphs of Table 4.1 w.r.t. to the number
of vertices, resulting from the split vertex selection algorithms of Table 2.1.

0.000

0.200

0.400

0.600

Go
og
le_
sm
all

Tw
itte
r

Ro
me

Gn
ute
lla
25

La
stf
m-
As
ia

Ep
ini
on
s1

No
tre
Da
me

St
an
for
d

Am
az
on
03
02

US
A-
roa
d-N
Y

Random MCN LP PR qSep+MCN LNT

compute the percentage of the queries that are answered simply by querying the
seeds (let us call these “good” instances), and the average number of edges explored
per query, when we have to resort to BFS (in the “bad” instances).2

What is remarkable, is that most queries are answered by simply querying the
seeds, and very rarely do we have to resort to BFS. Observe that the higher the number
of seeds, the higher the probability that they will provide the answer. However, even
with a single seed we get very good chances in obtaining the answer. As expected, the
seeds in which we have initialized a 2-FT-SSR oracle (CH-seeds) have better chances
for providing the answer. (In some cases, we get 100% of the answers from the CH
seeds.) We note that these results essentially explain the very good times that we
observe in Table 4.5, since even a single seed can provide the answer to most queries

2To clarify, these tables do not show the average number of edges explored per bad instance, but
the average number of edges explored for all instances. Thus, the average number of edges reported
is a good indicator of the relative running times.

39

Table 4.3: Characteristics of partial-SCC-Trees achieved by the algorithm of Section 3.2.

Graph height ∆ m ⌊
√
m⌋

Google_small 3 5 1,969 44
Twitter 0 35 6,910 83
Rome99 0 46 8,870 94
Gnutella25 0 11 17,691 133
Lastfm_Asia 0 21 55,612 235
Epinions1 0 60 442,768 665
NotreDame 168 170 267,647 517

Table 4.4: Relative performance of the BFS-based algorithms on Rome99 (left) and
Google_small (right).

Rome99

Algorithm avg #edges explored % of answer by seed

simpleBFS 8,438.23
biBFS 3,672.39
sBFS(1) 100.81 96.09
sBFS(2) 11.25 99.47
sBFS(5) 1.87 99.86
sBFS(10) 0.61 99.92
ChBFS(1) 2.66 99.93
ChBFS(2) 0.00 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

Google_small

Algorithm avg #edges explored % of answer by seed

simpleBFS 1,527.02
biBFS 148.72
sBFS(1) 3.95 97.98
sBFS(2) 3.11 98.58
sBFS(5) 3.02 98.66
sBFS(10) 2.98 98.69
ChBFS(1) 1.67 99.07
ChBFS(2) 0.56 99.80
ChBFS(5) 0.05 99.95
ChBFS(10) 0.02 99.97

(and thus, only rarely do we have to descend to deeper level of the decomposition
tree). As we can see in Table 4.8, performing the 2-FT-SSR queries on the CH-seeds
is a very affordable operation, comparable to accessing a few edges.

Lastly, in Table 4.6 we present the average query time (in seconds) for various
methods. As we can see the methods 2-FT-SC-O, sBFS and ChBFS perform quite
similarly and, as expected, are far superior than the simple graph traversals DFS,
simpleBFS, biBFS.

40

Table 4.5: Results for 1M random queries using the SCC-Tree with split vertices
selected by MCN.

Graph
tree query depth query time query result avg. calls
depth min max avg. total (s) avg. (s) + − 2-FT-SSR-O 1-FT-SC-O

Google_small 9 0 5 0.0030 5.00e-2 5.00e-8 987,220 12,780 3.976 0.000181
Twitter 232 0 3 0.0010 6.18e-2 6.18e-8 998,083 1,917 3.990 0.001000
Rome99 542 0 1 0.0005 8.70e-2 8.70e-8 999,623 377 3.997 0.000575
Gnutella25 838 0 1 0.0004 6.70e-2 6.70e-8 999,501 499 3.998 0.000410
Lastfm-Asia 2,202 0 1 0.0002 5.40e-2 5.40e-8 999,851 149 3.999 0.000243
NotreDame 365 0 9 0.0001 7.24e-2 7.24e-8 999,760 240 4.000 0.000034
Stanford 1,617 0 1 0.0000 8.99e-2 8.99e-8 999,953 47 4.000 0.000016
Epinions1 5,602 0 1 0.0000 6.60e-2 6.60e-8 999,920 80 4.000 0.000047
Amazon0302 16,615 0 1 0.0000 9.90e-2 9.90e-8 999,979 21 4.000 0.000008
USA-NY 19,073 0 1 0.0000 3.23e-1 3.23e-7 999,993 7 4.000 0.000008

4.4 An improved data structure: organizing the CH seeds on a

decomposition tree

Although the algorithm ChBFS has the best performance, it has mainly two draw-
backs. First, initializing the 2-FT-SSR data structures on the seeds is very costly, and
thus we cannot afford to use a lot of seeds. And second, as noted in Section 3.3, there
are instances of queries where the seeds cannot provide the answer, and therefore we
have to resort to BFS.

We can make a more intelligent use of the CH-seeds by organizing them on a
decomposition tree. More precisely, we use the CH-seeds as split vertices in order to
produce an SCC-decomposition tree. This confers two advantages. (1) We may get
some extra “free” CH-seeds on the intermediary levels of the decomposition tree. (2)
We essentially maintain all the reachability information that can provided from the
seeds, as if we had initialized them on the whole graph.

Let us elaborate on points (1) and (2). First, initializing Choudhary’s data structure
for a single vertex takes O(mn) time. However, every level of the decomposition tree
has O(m) edges in total. Thus, we can afford to initialize as many Choudhary’s
data structures on every level as are the nodes in it, at the total cost of initializing
a single data structure. This explains (1). Furthermore, at the deepest level of the
decomposition tree we can afford to initialize a sBFS(1) data structure on every node
(as this is constructed in linear time and takes O(n) space). We call the resulting data
structure ChTree. The proof for (2) is essentially given by induction on the level of

41

Table 4.6: Comparing running times (avg. (s) per query after 1M random queries)
for various algorithms.

Graph 2-FT-SCO DFS simpleBFS biBFS sBFS(10) ChBFS(3)

Google_small 5.00e-08 5.62e-06 3.90e-06 8.31e-07 6.08e-08 5.18e-08
Twitter 6.18e-08 5.30e-05 2.77e-05 1.09e-06 4.57e-08 7.37e-08
Rome99 8.70e-08 7.04e-05 6.02e-05 3.32e-05 5.46e-08 1.11e-07
Gnutella25 6.70e-08 1.55e-04 7.67e-05 1.72e-06 4.64e-08 7.74e-08
Lastfm-Asia 5.40e-08 3.36e-04 1.46e-04 5.51e-06 4.35e-08 1.01e-07
NotreDame 7.24e-08 2.23e-03 5.91e-04 5.18e-05 7.25e-08 8.53e-08
Stanford 8.99e-08 1.10e-03 5.76e-03 4.32e-04 1.02e-07 9.93e-08
Espinions1 6.60e-08 9.90e-03 9.23e-04 1.35e-06 4.97e-08 1.53e-08
Amazon0302 9.90e-08 1.37e-02 7.06e-03 2.23e-04 7.71e-08 8.90e-08
USA-road-NY 3.23e-07 6.11e-03 5.58e-03 3.97e-03 2.81e-07 9.50e-08

the decomposition tree.
We have conducted an experiment in order to demonstrate the superiority of this

idea. Specifically, we first observe that the problem of the bad instances is caused
by separation pairs whose removal leaves all the seeds concentrated into small SCCs,
whereas the query vertices lie in larger components that are unreachable from the
seeds. In our experiments, we used 10 CH-seeds. However, from Table 4.4, we can
see that it is very rare to get bad instances from 10 random seeds. Thus, we have
to contrive a way to get seeds that have a high probability to give rise to a lot of
bad instances. To do this, we compute the SAPs of the graph, and we process some
of them randomly. If for a sap s the total number of vertices in the SCCs of G \ s,
except the largest one, is at least 10, then we select randomly 10 seeds from those
components. Then, we generate 10K random queries, where one of the failed vertices
is s, and the query vertices lie in SCCs that do not contain seeds.

On the one hand, we use ChBFS to answer the queries. As expected, the seeds
almost always fail to provide the answer, and so ChBFS can do no better than resort
to biBFS. (However, sometimes we manage to squeeze out a negative answer from
the seeds, due to Observation 2.1.) On the other hand, we use the SCC-decomposition
tree ChTree to answer the queries.

Since the data structures of Choudhary take a lot of time to be initialized, we could
perform a large number of those experiments by simulating the process of answering

42

Table 4.7: Results for 1M random queries using simpleBFS and biBFS. Here is shown
the number of edges that we had to access on average per query, as well as the total
time for answering all queries on every graph. The third column for every algorithm
shows the time in nanoseconds that is charged to every edge access.

Graph
simpleBFS biBFS

#edges/query time (s) edge access (ns) #edges/query time (s) edge access (ns)

Google_small 1,527.15 3.52 2.30 148.65 0.80 5.40
Twitter 4,777.29 24.88 5.21 179.02 1.13 6.31
Rome99 8,443.75 56.71 6.72 3,665.99 36.56 9.97
Gnutella25 9,749.95 66.58 6.83 302.92 1.82 6.01
Lastfm-Asia 40,162.93 142.29 3.54 997.71 6.03 6.04
NotreDame 220,197.49 590.06 2.68 15,003.47 59.36 3.96
Stanford 1,273,970.76 3,160.50 2.48 89,705.73 449.72 5.01
Epinions1 319,384.06 660.44 2.07 273.72 1.10 4.03

Table 4.8: The total time for answering 100M 2-FT-SSR queries using our imple-
mentation of Choudhary’s data structure. By comparing the times/query with the
times per edge access in Table 4.7, we can see that the time per 2-FT-SSR query is
comparable to a few edge accesses. We report the average over 10 different random
choices of CH-seeds. We note that the variance per graph is negligent.

100M CH QUERIES Google_small Twitter Rome99 Gnutella25 Lastfm-Asia NotreDame Stanford Epinions1

time (s) 1.170 1.412 1.988 1.535 2.277 1.477 1.766 1.532
time/query (ns) 11.699 14.116 19.883 15.345 22.768 14.770 17.663 15.325

the queries using a 2-FT-SSR oracle. That is, at every node of the decomposition tree,
we simply used biBFS in order to determine whether the split vertex that corresponds
to it reaches the query vertices. In this way, we can report the percentage of the queries
that can be answered without resorting to BFS. As we can see in Table 4.9, more
than 90% of those bad instances can be answered without performing BFS, by using
only the data structures on the decomposition tree (that has height at most 10).

43

Table 4.9: Simulation for answering 10K queries with ChBFS and ChTree using 10 seeds
that have high chance to give rise to a bad instance. This experiment was repeated
for 100 different selections of seeds. We see that ChTree can answer at least 90% of
those instances without resorting to BFS.

Graph avg # edges ChBFS avg # edges ChTree % of answer by seed in ChBFS % of answer by seed in ChTree

Google_small 145.06 5.88 0.07 95.37
Twitter 179.26 4.62 0.07 96.06
Gnutella25 302.91 0.86 0.02 99.47
Lastfm-Asia 1,007.88 62.81 0.00 91.32
NotreDame 14,989.20 51.06 0.01 99.39
Stanford 89,723.23 19.38 0.01 99.96
Epinions1 273.93 1.42 0.00 99.09
Amazon0302 19,462.16 2.19 0.00 99.98

44

CHAPTER 5

CONCLUDING REMARKS

Our experiments demonstrate that sBFS is a remarkably good heuristic for efficiently
answering 2-fault tolerant strong connectivity queries in practice and by relying on
the 2-FT-SSR oracle of Choudhary [6], we can improve the accuracy of this heuris-
tic for non-pathological queries (ChBFS). Moreover, the organization of the CH-seeds
into a decomposition tree minimizes the likelihood of bad instances (ChTree). It seems
that choosing the most critical nodes (MCN) [29] of a graph as split vertices, leads to
an SCC-Tree decomposition with few levels since these decompose the graph quickly
into SCCs and thus this is the best choice for applications as we increase the likelihood
of answering the queries fast, using a few O(1)-time calls to the auxiliary data struc-
tures. Lastly, partial-SCC-Tree is mainly of theoretical interest, since the procedure for
determining whether a graph is ∆−good is very slow.

45

BIBLIOGRAPHY

[1] R. A. Rossi and N. K. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in AAAI, 2015. [Online]. Available:
http://networkrepository.com

[2] C. Demetrescu, A. Goldberg, and D. Johnson, “9th DIMACS Implementation
Challenge: Shortest Paths,” 2007, http:// www.dis.uniroma1.it/~challenge9/.

[3] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset col-
lection,” http://snap.stanford.edu/data, Jun. 2014.

[4] L. Georgiadis, E. Kosinas, and D. Tsokaktsis, “2-fault-tolerant strong connectiv-
ity oracles,” in Proceedings of the SIAM Symposium on Algorithm Engineering and
Experiments (ALENEX 2024), 2024, to appear.

[5] D. Chakraborty and K. Choudhary, “New extremal bounds for reachability and
strong-connectivity preservers under failures,” in ICALP, 2020, pp. 25:1–25:20.

[6] K. Choudhary, “An Optimal Dual Fault Tolerant Reachability Oracle,” in 43rd
International Colloquium on Automata, Languages, and Programming (ICALP 2016),
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 55, 2016,
pp. 130:1–130:13. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/
2016/6265

[7] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran,
“Oracles for distances avoiding a failed node or link,” SIAM J. on
Computing, vol. 37, no. 5, pp. 1299–1318, Jan. 2008. [Online]. Available:
http://dx.doi.org/10.1137/S0097539705429847

[8] R. Duan and S. Pettie, “Dual-failure distance and connectivity oracles,” in Pro-
ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,

46

http://networkrepository.com
http://snap.stanford.edu/data
http://drops.dagstuhl.de/opus/volltexte/2016/6265
http://drops.dagstuhl.de/opus/volltexte/2016/6265
http://dx.doi.org/10.1137/S0097539705429847

SODA 2009, New York, NY, USA, January 4-6, 2009, C. Mathieu, Ed. SIAM,
2009, pp. 506–515.

[9] M. Henzinger, A. Lincoln, S. Neumann, and V. V. Williams, “Conditional
Hardness for Sensitivity Problems,” in 8th Innovations in Theoretical Computer
Science Conference (ITCS 2017), ser. Leibniz International Proceedings in
Informatics (LIPIcs), C. H. Papadimitriou, Ed., vol. 67. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 26:1–26:31.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2017/8178

[10] M. Parter and D. Peleg, “Sparse fault-tolerant BFS trees,” in ESA, 2013, pp.
779–790.

[11] J. van den Brand and T. Saranurak, “Sensitive distance and reachability oracles
for large batch updates,” in 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), 2019, pp. 424–435.

[12] L. Georgiadis, G. F. Italiano, and N. Parotsidis, “Strong connectivity in directed
graphs under failures, with applications,” SIAM J. Comput., vol. 49, no. 5, pp.
865–926, 2020.

[13] S. Baswana, K. Choudhary, and L. Roditty, “An efficient strongly connected
components algorithm in the fault tolerant model,” Algorithmica, vol. 81, no. 3,
pp. 967–985, 2019.

[14] D. Chakraborty, K. Chatterjee, and K. Choudhary, “Pairwise Reachability
Oracles and Preservers Under Failures,” in 49th International Colloquium on
Automata, Languages, and Programming (ICALP 2022), ser. Leibniz International
Proceedings in Informatics (LIPIcs), M. Bojańczyk, E. Merelli, and D. P.
Woodruff, Eds., vol. 229. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022, pp. 35:1–35:16. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2022/16376

[15] G. F. Italiano, A. Karczmarz, and N. Parotsidis, “Planar reachability under
single vertex or edge failures,” in Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2021, pp. 2739–2758. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.163

47

http://drops.dagstuhl.de/opus/volltexte/2017/8178
https://drops.dagstuhl.de/opus/volltexte/2022/16376
https://drops.dagstuhl.de/opus/volltexte/2022/16376
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.163

[16] A. Abboud and V. V. Williams, “Popular conjectures imply strong lower bounds
for dynamic problems,” in FOCS, 2014, pp. 434–443.

[17] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak, “Unifying and
strengthening hardness for dynamic problems via the online matrix-vector mul-
tiplication conjecture,” in STOC, 2015, pp. 21–30.

[18] P. Charalampopoulos and A. Karczmarz, “Single-source shortest paths and
strong connectivity in dynamic planar graphs,” in 28th Annual European
Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual
Conference), ser. LIPIcs, vol. 173, 2020, pp. 31:1–31:23. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ESA.2020.31

[19] J. Łącki, “Improved deterministic algorithms for decremental reachability and
strongly connected components,” ACM Transactions on Algorithms, vol. 9, no. 3,
p. 27, 2013.

[20] S. Chechik, T. D. Hansen, G. F. Italiano, J. Lacki, and N. Parotsidis, “Decremental
single-source reachability and strongly connected components in õ(m

√
n) total

update time,” in 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), 2016, pp. 315–324.

[21] L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parot-
sidis, “Decremental data structures for connectivity and dominators in directed
graphs,” in ICALP, 2017, pp. 42:1–42:15.

[22] B. A. Berendsohn and L. Kozma, “Splay trees on trees,” CoRR, vol.
abs/2010.00931, 2020. [Online]. Available: https://arxiv.org/abs/2010.00931

[23] P. Bose, J. Cardinal, J. Iacono, G. Koumoutsos, and S. Langerman, “Competitive
online search trees on trees,” 2019.

[24] A. Pothen, The Complexity of Optimal Elimination Trees, ser. Technical report.
Pennsylvania State University, Department of Computer Science, 1988. [Online].
Available: https://books.google.gr/books?id=PfyjtgAACAAJ

[25] N. Robertson and P. Seymour, “Graph minors. ii. algorithmic aspects of
tree-width,” Journal of Algorithms, vol. 7, no. 3, pp. 309–322, 1986. [Online].
Available: https://www.sciencedirect.com/science/article/pii/0196677486900234

48

https://doi.org/10.4230/LIPIcs.ESA.2020.31
https://arxiv.org/abs/2010.00931
https://books.google.gr/books?id=PfyjtgAACAAJ
https://www.sciencedirect.com/science/article/pii/0196677486900234

[26] P. Boldi, M. Rosa, and S. Vigna, “Robustness of social and web graphs to node
removal,” Social Network Analysis and Mining, vol. 3, no. 4, pp. 829–842, 2013.

[27] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect
community structures in large-scale networks,” Physical Review E, vol. 76, no. 3,
p. 036106, 2007.

[28] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Technical Report 1999-66,
November 1999. [Online]. Available: http://ilpubs.stanford.edu:8090/422/

[29] N. Paudel, L. Georgiadis, and G. F. Italiano, “Computing critical nodes in
directed graphs,” ACM Journal of Experimental Algorithmics, vol. 23, no. 2, pp.
2.2:1–2.2:24, Jul. 2018. [Online]. Available: http://doi.acm.org/10.1145/3228332

[30] R. E. Tarjan, “Edge-disjoint spanning trees and depth-first search,” Acta Infor-
matica, vol. 6, no. 2, pp. 171–85, 1976.

[31] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R.
Westbrook, “Linear-time algorithms for dominators and other path-evaluation
problems,” SIAM Journal on Computing, vol. 38, no. 4, pp. 1533–1573, 2008.

[32] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup, “Dominators in linear
time,” SIAM Journal on Computing, vol. 28, no. 6, pp. 2117–32, 1999.

[33] K. Hanauer, M. Henzinger, and C. Schulz, “Faster Fully Dynamic Transitive
Closure in Practice,” in 18th International Symposium on Experimental Algorithms
(SEA 2020), ser. Leibniz International Proceedings in Informatics (LIPIcs),
S. Faro and D. Cantone, Eds., vol. 160. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 14:1–14:14. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2020/12088

[34] L. Georgiadis and R. E. Tarjan, “Dominator tree certification and divergent
spanning trees,” ACM Transactions on Algorithms, vol. 12, no. 1, pp. 11:1–11:42,
Nov. 2015. [Online]. Available: http://doi.acm.org/10.1145/2764913

[35] E. D. Demaine, G. M. Landau, and O. Weimann, “On cartesian trees and range
minimum queries,” Algorithmica, vol. 68, p. 610–625, 2014.

49

http://ilpubs.stanford.edu:8090/422/
http://doi.acm.org/10.1145/3228332
https://drops.dagstuhl.de/opus/volltexte/2020/12088
http://doi.acm.org/10.1145/2764913

[36] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,” Journal of
Computer and System Sciences, vol. 26, pp. 362–391, 1983.

[37] R. J. Lipton and R. E. Tarjan, “A separator theorem for planar graphs,” SIAM
Journal on Applied Mathematics, vol. 36, no. 2, pp. 177–189, 1979.

[38] B. A. Reed, “Finding approximate separators and computing tree width quickly,”
in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May
4-6, 1992, Victoria, British Columbia, Canada, S. R. Kosaraju, M. Fellows,
A. Wigderson, and J. A. Ellis, Eds. ACM, 1992, pp. 221–228. [Online].
Available: https://doi.org/10.1145/129712.129734

[39] L. Georgiadis, G. F. Italiano, and N. Parotsidis, “Strong connectivity in directed
graphs under failures, with applications,” in SODA, 2017, pp. 1880–1899.

[40] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A search meets
graph theory,” in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, ser. SODA ’05. USA: Society for Industrial and Applied
Mathematics, 2005, p. 156–165.

[41] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146–160, 1972.

[42] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani,
“Kronecker graphs: An approach to modeling networks,” 2009.

50

https://doi.org/10.1145/129712.129734

APPENDIX A

ADDITIONAL EXPERIMENTAL RESULTS

A.1 Random graphs experiments

A.2 Worst‐case queries decomposition tree

A.3 Relative performance of the BFS‐based algorithms

A.4 Construction time of the SCC‐Tree

A.1 Random graphs experiments

Here, we present some additional results regarding the decomposition tree height for
some randomly generated strongly connected graphs described in Table A.1.

The kronecker graph belongs to the family of Kronecker graphs. From the work of
Leskovec et al. [42] it is shown that these artificial graphs obey common real-network
properties and that they can efficiently represent one. Additionally, they provide a
fast method for generating such graphs.

The graphs random_1 and random_2 were generated as follows. Firstly, we pre-
defined the number of the vertices of the graph and a fixed probability p. Then until
the graph was strongly connected we performed Bernoulli trials by comparing a ran-
domly generated value with the fixed probability p and added an arbitrary edge,
(u, v), if the trial succeeded.

Lastly, for the generation of the two planar graphs planar_1 and planar_2 we
performed the following. Firstly, we predefined the number, n, of the vertices of
the graph. Then we generated n random, non-intersecting points in the plane and

51

constructed a Voronoi diagram with these points as input. In this diagram, every
point lies in a region which does not intersect with other regions, except only with
its borders. We used the n points as the vertices of the graph and the common
neighbouring border between two regions as the edge that connects the corresponding
vertices that lie in those regions.

For the graphs random_1, random_2, planar_1 and planar_2, we observe that, in
contrast to the real graphs of Table 4.1, few vertices participates in a proper separation
pair or are a strong articulation point. For planar_1 and planar_2 this is somewhat
expected since they are undirected graphs. For the Kronecker graph, we see that a
significant amount of its vertices is a SAP or belong to a proper separation pair.

In Table A.2 the heights of the corresponding SCC-Trees are presented and they
are plotted in Figure A.1.

As in Section 4.2 we observe that for all the graphs MCN and qSep+MCN out-
perform all the other methods. In particular, on average, MCN outperforms Random,
LP and PR by a factor of 1.6, 1.4 and 1.6 respectively. Moreover, qSep+MCN method,
outperforms MCN by a factor of 3.1. Regarding the results of LNT, we observe that
every other method performed better, on average, than it. Specifically, LNT produced
a decomposition tree height that was larger by a factor of 1.8 compared to MCN, 3.1
compared to qSep+MCN, 1.5 compared to LP and 1.1 compare to PR.

We note that in contrast to the real graphs of Table 4.1, here, the methods perform
quite similar to each-other. However, the one that stands-out is qSep+MCN, which
produced the best results for the graphs planar_1 and planar_2.

Lastly, in Tables A.3 and A.4 we provide the results of answering 1M random
queries for the oracle of Section 3.1 and we compare it with various algorithms such
as DFS, simpleBFS, biBFS, sBFS(10), ChBFS(3).

A.2 Worst‐case queries decomposition tree

Table A.5 presents some results for queries that elicit worst-case response times for
the SCC-Tree oracle. We create each query 2FTSC(x, y, f1, f2) by selecting the vertices
x, y such that the depth of N(t) = nca(x, y) is large and the failed vertices f1, f2 are
located in St. In the last column of Table A.5 we also give the average query times
achieved by biBFS, which are remarkably good. Indeed, in most of these pathological

52

Table A.1: Randomly generated strongly connected graphs. n and m are the num-
bers of vertices and edges, respectively, na is the number of strong articulation points
(SAPs), and nsp is the number of vertices that are SAPs or belong to a proper sepa-
ration pair

Graph Type n m na nsp

kronecker Directed 729 2,398 285 561
random_1 Directed 1,000 6,476 17 131
random_2 Directed 4,998 46,479 8 65
planar_1 Undirected 1,896 5,588 4 159
planar_2 Undirected 19,646 58,586 12 561

Table A.2: SCC-Tree height of the graphs of Table A.1, resulting from the split vertex
selection algorithms of Table 2.1.

Graph Random MCN LP PR qSep+MCN LNT

kronecker 294 99 241 216 102 260
random_1 698 461 634 607 471 695
random_2 3,930 2,949 3,823 3,525 2,989 3,915
planar_1 565 540 404 721 131 1,040
planar_2 5,570 4,396 4,469 8,915 506 7,331

queries for SCC-Tree, biBFS needs to explore very few edges to provide an answer.

A.3 Relative performance of the BFS‐based algorithms

Tables A.6, A.7 and A.8 presents the relative performance of the BFS-based algo-
rithms for the rest graphs excluding Amazon0302 and USA-road-NY, since due to
their size, the initialization of the 2-FT-SSR-O’s were too time consuming. However,
based on the following results, we strongly believe that even for these two graphs the
results will be analogous.

As in Section 4.3, here, the results are similar. biBFS outperforms simpleBFS while
the seeded variants sBFS and ChBFS are far superior. By increasing the number of
the seeds, the probability of answering the query without traversing any edges also
increases dramatically.

53

Figure A.1: Relative SCC-Tree height of the graphs of Table A.2 w.r.t. to the number
of vertices, resulting from the split vertex selection algorithms of Table 2.1.

0.0

0.2

0.4

0.6

0.8

kronecker random_1 random_2 planar_1 planar_2

Random MCN LP PR qSep+MCN LNT

Table A.3: Results for 1M random queries using the SCC-Tree with split vertices
selected by MCN.

Graph
tree query depth query time query result avg. calls
depth min max avg. total (s) avg. (s) + − 2-FT-SSR-O 1-FT-SC-O

kronecker 99 0 44 0.0027 6.40e-02 6.40e-08 996,293 3,707 3.978 0.0025
random_1 461 0 1 0.002 6.12e-02 6.12e-08 999,927 73 3.992 0.002025
random_2 2,949 0 1 0.0004 8.97e-02 8.97e-08 999,999 1 3.998 0.000427
planar_1 540 0 1 0.001 1.20e-01 1.20e-07 999,994 6 3.995 0.001016
planar_2 4,396 0 1 0.0001 1.24e-01 1.24e-07 1,000,000 0 3.999 0.000117

A.4 Construction time of the SCC‐Tree

In Table A.9 are shown the time in seconds for constructing the SCC-Tree for the
different heuristics used. During the decomposition we did not initialize the auxiliary
data structures from 2.2.

It is obvious that the MCN heuristic used selecting the split vertices not only
produces the best results regarding tree-height but also in most experiments is the
fastest. For the qSep+MCN heuristic the results are similar to MCN except for some
instances (Rome99, USA-road-NY, planar_1, planar_2) in which is remarkable faster.
Note that for these exactly graphs, qSep+MCN provided the best decomposition tree
as previously mention in Tables 4.2 and A.2.

54

Table A.4: Comparing running times (avg. (s) per query after 1M random queries)
for various algorithms

Graph 2-FT-SCO DFS simpleBFS biBFS sBFS(10) ChBFS(3)

kronecker 6.40e-08 2.06e-05 8.53e-06 5.51e-07 4.57e-08 7.08e-08
random_1 6.12e-08 3.42e-05 1.01e-05 5.24e-07 4.37e-08 7.60e-08
random_2 8.97e-08 2.07e-04 4.94e-05 1.01e-06 4.54e-08 6.60e-08
planar_1 1.20e-07 3.57e-05 2.82e-05 2.10e-05 4.06e-08 1.45e-07
planar_2 1.24e-07 3.94e-04 3.07e-04 2.33e-04 5.90e-08 1.22e-07

Table A.5: Results for worst-case queries using the SCC-Tree with split vertices selected
by MCN.

Graph
number of tree query depth query time query result avg. calls biBFS avg.

queries depth min max avg. total (s) avg. (s) + − 2FT-SSR-O 1-FT-SC-O query time (s)

Google_small 107 9 5 6 5 2.80e-5 2.62e-7 35 72 16.67 0.018 4.67e-8
Twitter 5,168 232 158 231 178 1.91e-1 3.70e-5 950 4,218 709.34 0.003 2.32e-8
Rome99 3,641 542 401 542 464 8.98e-1 2.47e-4 89 3,552 1,855.16 0.002 1.59e-8
Gnutella25 11,688 838 609 838 712 3.49e+0 2.99e-4 0 11,688 2,848.92 0.000 2.52e-8
Lastfm-Asia 1,116 2,202 1,570 2,184 1,824 1.36e+0 1.22e-3 5 1,111 7,290.80 0.001 3.32e-8
NotreDame 100,000 365 327 361 337 1.04e+1 1.04e-4 27,716 72,284 1,345.98 0.000 2.42e-8
Stanford 100,000 1,617 1,325 1,565 1,400 6.88e+1 6.88e-4 5,694 94,306 5,598.76 0.000 2.24e-8

Lastly, as expected, the loop nesting tree can be constructed in the shortest time
however, the resulting tree may have excessive height.

55

Table A.6: Relative performance of the BFS-based algorithms on Twitter (left) and
Gnutella25 (right).

Twitter

Algorithm avg # edges explored % of answer by seed

simpleBFS 4,777.38
biBFS 179.05
sBFS(1) 2.39 97.89
sBFS(2) 0.48 99.39
sBFS(5) 0.17 99.68
sBFS(10) 0.10 99.74
ChBFS(1) 0.25 99.86
ChBFS(2) 0.00 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

Gnutella25

Algorithm avg # edges explored % of answer by seed

simpleBFS 9,747.45
biBFS 302.88
sBFS(1) 1.52 99.07
sBFS(2) 0.18 99.84
sBFS(5) 0.04 99.93
sBFS(10) 0.02 99.94
ChBFS(1) 0.24 99.93
ChBFS(2) 0.00 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

Table A.7: Relative performance of the BFS-based algorithms on Lastfm-asia (left)
and NotreDame (right).

Lasfm-Asia

Algorithm avg # edges explored % of answer by seed

simpleBFS 40,131.40
biBFS 997.50
sBFS(1) 2.09 99.75
sBFS(2) 0.29 99.95
sBFS(5) 0.12 99.97
sBFS(10) 0.06 99.98
ChBFS(1) 0.26 99.97
ChBFS(2) 0.00 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

NotreDame

Algorithm avg # edges explored % of answer by seed

simpleBFS 220,350.71
biBFS 14,929.37
sBFS(1) 13.13 99.87
sBFS(2) 6.16 99.94
sBFS(5) 4.85 99.95
sBFS(10) 3.71 99.96
ChBFS(1) 2.17 99.99
ChBFS(2) 0.00 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

56

Table A.8: Relative performance of the BFS-based algorithms on Stanford (left) and
Epinions1 (right).

Stanford

Algorithm avg # edges explored % of answer by seed

simpleBFS 1,267,171.57
biBFS 89,474.38
sBFS(1) 28.14 99.96
sBFS(2) 13.67 99.98
sBFS(5) 10.87 99.98
sBFS(10) 9.31 99.98
ChBFS(1) 3.67 100.00
ChBFS(2) 0.01 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

Epinions1

Algorithm avg # edges explored % of answer by seed

simpleBFS 320,355.93
biBFS 273.78
sBFS(1) 0.13 99.93
sBFS(2) 0.02 99.98
sBFS(5) 0.01 99.99
sBFS(10) 0.01 99.99
ChBFS(1) 0.03 99.99
ChBFS(2) 0.00 100.00
ChBFS(5) 0.00 100.00
ChBFS(10) 0.00 100.00

Table A.9: Time in seconds for constructing SCC-Tree T using the heuristics from
Table 2.1. The symbols † and ‡ refer to decompositions that were not completed due
to exceeding the RAM memory of our system (> 128GB) or due to requiring more
than 48 hours.

Graph Random MCN LP PR qSep+MCN LNT

Google_small 0.015 0.007 0.007 0.070 0.007 0.0035
Twitter 0.007 0.154 0.408 0.209 0.160 0.0018
Rome99 0.152 0.621 0.825 1.305 0.343 0.0020
Gnutella25 0.610 1.732 14.950 2.499 1.820 0.0035
Lastfm-asia 2.654 6.582 8.539 12.430 7.093 0.0043
Epinions1 204.290 102.872 239.00 113.00 106.920 0.0235
NotreDame 31.110 3.201 113.750 8.470 3.286 0.0068
Stanford 721.030 48.00 1,577.00 1,137.00 50.020 0.0635
Amazon0302 † 1,697.00 ‡ ‡ 1,787.810 0.1092
USA-road-NY † 1,190.00 ‡ ‡ 19.300 0.0392

kronecker 0.023 0.047 0.141 0.063 0.057 0.0006
random_1 0.065 0.248 0.442 0.230 0.241 0.0013
random_2 1.682 9.344 14.311 7.495 9.900 0.0047
planar_1 0.070 0.330 0.283 0.412 0.021 0.0011
planar_2 6.617 29.830 43.690 43.393 0.306 0.0048

57

SHORT BIOGRAPHY

Daniel Tsokaktsis was born in Arta, Greece, in 1998. In October 2016 he enrolled in
the undergraduate program of Mathematics of the University of Ioannina and gradu-
ated in February 2021. In October 2021 he enrolled in the post-graduate program of
the Department of Computer Science and Engineering of University of Ioannina. His
research interests focus on Graph Theory, Algorithms and Data Structures as well as
Data Mining.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Motivation and objectives
	Related work
	Our contributions
	Thesis outline

	Preliminaries
	Basic graph definitions
	Auxiliary data structures
	1-FT-SC-O
	2-FT-SSR-O

	Algorithms and heuristics used in our empirical analysis
	Selecting split vertices for the SCC-Tree
	Trivial ways of answering queries

	Our Contributions
	Decomposition Tree
	Special Graph Classes

	Improved Data Structure for General Graphs
	Choosing a good for a partial-SCC-Tree decomposition

	BFS-Based Oracles

	Empirical Analysis
	Datasets
	Height of the decomposition tree.
	Answering queries
	An improved data structure: organizing the CH seeds on a decomposition tree

	Concluding Remarks
	Bibliography
	Additional Experimental Results
	Random graphs experiments
	Worst-case queries decomposition tree
	Relative performance of the BFS-based algorithms
	Construction time of the SCC-Tree

	Short Biography

