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Περίληψη

Πολλά ρευστομηχανικά προβλήματα περιγράφουν τις μεταβολές της ροής υπό

την επίδραση καθολικών ή μαζικών ηλεκτρομαγνητικών δυνάμεων. Η παρούσα
μεταπτυχιακή διατριβή εξετάζει την συμπεριφορά της ροής ενός ηλεκτρικά αγώγι-

μου και Νευτώνιου ρευστού χρησιμοποιώντας αρχές της Μαγνητοϋδροδυναμικής

και της Φερροϋδροδυναμικής. Οι εξισώσεις που μοντελοποιούν τις ροές αυτές
είναι συζευμένα συστήματα διαφορικών εξισώσεων με μερικές παραγώγους, μη
γραμμικές, δεύτερης τάξης και προκύπτουν από νόμους του Ηλεκτρομαγνητισμού
όπως των Ampere, Faraday και Ohm. Η διακριτοποίηση επιτυγχάνεται μέσω
της μεθόδου των Πεπερασμένων ΄Ογκων, η οποία οδηγεί σε πεπλεγμένα σύστη-
ματα μη γραμμικών αλγεβρικών εξισώσεων. Ο αλγόριθμος που έχει γραφτεί
για αυτή την διατριβή συγκρίνεται αρχικά σε προβλήματα με αναλυτική λύση

όπως η ροή Poiseuille και η ροή Hartmann. Οι αμελητέες διαφορές μεταξύ των
αναλυτικών και αριθμητικών λύσεων, επιβεβαιώνουν τα αποτελέσματα του αλ-
γρίθμου. Οι περιπτώσεις της Μαγνητοϋδροδυναμικής καθώς και της Φερρουδρο-
δυναμικής, λόγω της ισχυρής μη γραμμικότητας, δεν έχουν αναλυτικές λύσεις και
τα αποτελέσματα θα συγκριθούν με αυτά από ήδη δημοσιευμένες εργασίες, όπου
τα αποτελέσματα είναι της ίδιας τάξης μεγέθους.
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Abstract

Many problems in Fluid Mechanics describe the change in the flow under
the effect of electromagnetic forces. The present thesis studies the behaviour
of an electric conducting, Newtonian fluid flow applying the Magnetohydro-
dynamics (MHD) and Ferrohydrodynamics (FHD) principles. The equations
that formulate such flows are the Navier-Stokes equations with the Conserva-
tion of Mass and Energy PDEs and compose non linear systems of Differential
equations, second order and are derived from Electromagnetic principles such
as Ampere’s, Faraday’s and Ohm’s laws. The discretization is achivied using
the Finite Volumes Method, from which, implicit non linear system of alge-
braic equations is obtained. The results using the numerical algorithm written
for this thesis are compared, to those of problems with analytical solution such
as the Poiseuille and Hartmann flow. The relative small differences between
the analytical and numerical solutions verify the results of the algorithm. The
cases of Magnetohydrodynamics as well as the case of Ferrohydrodynamic flow,
due to the dominant non linear terms, do not have analytical solutions. The
results are compared to those of already published numerical studies, where
the results are qualitatively the same.
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CHAPTER1
Introduction

For decades, various scientists try to give solutions to problems in the field
of Fluid Mechanics. The main concern of the scientific community is the lack
of analytical solutions to the majority of the problems.

The difficulty of this field lies in the characteristics of the mathematical
equations that describe the problem. In most cases, meaning real life prob-
lems these systems of equations are high order (usually 2nd order), non linear
systems of Partial Differential equations (PDEs).

These characteristics create a near impossible, to solve analytically, prob-
lem. In the chapters below we introduce several assumptions to simplify these
systems and in some cases analytical solutions exist whereas, in some others
there are no analytical ones.

These systems of equations can be very complicated as we dive deeper in
more interesting applications. Such examples are the study of a fluid flow
with Magnetohydrodynamic (MHD) and Ferrohydrodynamic (FHD) princi-
ples. These principles will be introduced later.

It is commonly used, in Computational Fluid Dynamics (CFD), to descritize
the governing system of PDEs to obtain, a new system of non linear Algebraic
equations, using a method called Finite Volumes Method (FVM). The new
system is larger in size than the governing one but can be solved numerically.

The FVM uses a partition in each axes which creates subdomains. Each
side of these shapes is called face, where the flux of the fluid is calculated
through these faces, resulting in the algebraic equations. For the calculation
of the flux, central differences will be used, as we will introduce in a chapter
bellow. This partition is called the computational mesh.

The concept of this study is to examine the behaviour of such flows using an
algorithm that solves, with direct numerical methods, the algebraic equations.
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Chapter 1

At first we will derive the non dimensional equations and the laws for the
general cases which will be descritized with the FVM.

Poiseuille flow: The first case studied in this thesis is the Poiseuille flow
which describes the flow of a fluid in a two dimensional channel. Using the
solution of the fluid velocity, the fluid temperature can be calculated. An
analytical solution exists, hence this will be a very good test problem for the
validation of the method, since we can compare the analytical solution with
the numerical one.

Hartmann flow : The second case studied is the Hartmann flow which de-
scribes the flow of a conducting fluid in a two dimensional channel, where an
external inducted magnetic field is vertically applied to the channel. The Hart-
mann flow also describes the change of the magnetic field inside the channel
due to the conducting fluid. An analytical solution can be found in this case,
introducing another test problem, where we can compare, again, the analytical
solution with the numerical one.

The Poiseuille and Hartmann flow are simplifications where assumptions
had to be made.

MHD and FHD flows: After the validation of the method, we can examine
more complicated problems. Such an example is the study of a conducting
fluid flowing through a channel while an external, uniform, inducted magnetic
field, constant in magnitude is applied with an angle. Similar to the Poiseuille
flow, the numerical solution of the fluid velocity will be used to calculate the
temperature and the change of it due to the induced magnetic field. This
problem is based on MHD principles. Another example, is the study of a fluid
that flows through a channel while an external magnetic pole, close to the
channel, generates a non uniform magnetic field, with constant in magnitude
but varying in directionality. This problem is based on FHD principles.

For the last two problems, there are no analytical solutions and the compar-
ison as the first two problems is not possible. A numerical solution, however,
can be obtained with the validated FVM and that solution will be compared
with solutions derived in previously published studies.
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Chapter 1 1.1. History and Applications of Magnetofluid Dynamics (MFD)

1.1 History and Applications of Magnetofluid Dy-
namics (MFD)

Magnetofluid Dynamics is the general category where the Magnetohydro-
dynamics is a subtopic of it. The MFD deals with an electrically conducting
fluid, whereas the MHD is specifically concerned with electrically conducting
liquids.

The first MFD effects were first demonstrated from Faraday’s and Ritchie’s
experiments. In 1832, Faraday studied mercury flow inside glass tubes with
magnetic poles placed around the tubes. He discovered an inducted voltage
across the tube due to the motion of the mercury across the magnetic field.
This voltage was perpendicular to the fluid flow as well as the magnetic field.
The inducted voltage generated a current which interacted with the magnetic
field resulting in the retard of the fluid motion. The electric current generated
is own magnetic field which obeyed Ampere’s right hand rule, resulting in
the distortion of the field of the magnet. Faraday suggested, based on the
experiments, that electrical power could be obtained in a load circuit using the
interaction between the flow of an electrically conducting fluid and a magnetic
field [3].

Some practical applications are those of Smith’s and Slepian’s inventions of
an instrument for the measurement of a ship’s velocity as well as Williams’
MFD flow meter which was based in the principle that the induced voltage is
commensurate to the flow rate. In 1920 Young, Gerrard and Jevons were the
first to study tidal motions with an induced-voltage device, a technique that
is widely used in oceanography. Fundamental work in this area was done by
Hartmann and Lazarus, where they also studied the channel flow of mercury.

Other experiments such as Ahlstrom’s, demonstrated that disturbances gen-
erated by an aerodynamic body could also create disturbances in the magnetic
field and the fluid, to produce both upstream and downstream wakes. Most
of the practical work has been done since 1950. At that era the interest was
in high-temperature gases, nuclear engineering as well as space technology.
Since 1960 the concept of MFD power generator has been an object of global
research and development [3].
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Chapter 1 1.1. History and Applications of Magnetofluid Dynamics (MFD)

The flow meter: When a conducting fluid flows through a channel with
insulating walls and a magnetic field is applied, a potential gradient (propor-
tional to the flow) is generated and can be measured by sensors inside the
walls. Using these, the flow rate can be measured without, for example, con-
taminating the fluid. This technique is used to measure the blood flow [18].

Direct conservation of energy: Electricity is usually produced from
the chemical energy of fuel such as coal or oil. The fuel is burnt and the
heat generated is used to create high pressure steam which turns a turbine
connected to a dynamo. Suppose that the gases are burnt at high temperatures
in a flame far from the walls, to prevent as much loss of strength as possible
from the walls due to high temperature. By applying a perpendicular to
the flow, magnetic field, the kinetic energy inside the hot ionized gas can be
directly converted into electric energy. A potential gradient, in a direction
perpendicular to the flow is then generated. The electric currents can be
collected by electrodes embedded in the gas [18].

Separation of the red blood cells from the whole blood: Certain
cancer treatments require clean separation of the white cells from the whole
blood for chemical treatment. The red blood cells, when oxygenated have the
characteristics of a diamagnetic material. Using this characteristic, a device
that uses a magnetic field for a more efficient separation method, developed
in [5]. The blood is collected in a device which is surrounded by a magnetic
field. The higher the magnitude of the magnetic field, the higher the drop
of the magnitude of the velocity resulting in a very slow process. A solution
is the increase of the susceptibility of the red blood cells using encapsulated
magnetic microspheres that are bound to the red blood cells. This create a
ferrofluid, where the low in magnitude magnetic field can achieve the same
results in the separation, in a less time consuming process.

Energy harvesting: Electromagnetic energy harvesting has become a very
interesting method, compared to other methods, due to the resource being
easily found in artificial environments. A device that uses this method is
studied in [29], which is based on Faraday’s law of induction, meaning relative
motions under a magnetic field causes a change of magnetic flux. As a result
a voltage and an electrical current is generated in a surrounding coil. The
device uses a ferrofluid which is inside a channel with a coil wrapped around
it and magnets outside the coil. A syringe is used to inject a uniform flow of
air inside the ferrofluid, which creates in air droplet. The magnetic field in
the ferrofluid is affected by the creation and the motion of the droplet which
leads to the induction of the electric voltage and current.

8



CHAPTER2
Mathematical formulation

2.1 The Induction equation

Magnetic fields can be found in nature where a ferromagnetic material such
as lodestone (natural magnets) can be used as a magnet to attract iron. A
magnetic field, however, can be formed from the flow of electric current in a
conductor, for example an axisymmetric field is created around a wire when
electrical current flows through it. We call that magnetic field H̄ [12]. This
analysis is applied on a domain A ⊆ R3, with a closed surface C. All in-
troduced functions are considered smooth, C∞. For the integral calculations
below Stokes’ Theorem was used [1].
Ampere’s Law. The integral of the magnetic field H̄, on a closed surface C
is equal to the flux of the electric current J̄ which flows through an area A
inside the surface C, in mathematical formulation:∫

C
H̄ · dr̄ =

∫
A

(
∇̄ × H̄

)
· n̄ dA =

∫
A
J̄ · n̄ dA, (2.1)

where n̄ is the unit vector perpendicular to the area, A. Since equation (2.1)
holds true for every closed surface C of area A we can conclude that:

∇̄ × H̄ = J̄ . (2.2)

Equation (2.2) is called Ampere’s Law in differential form. This law is valid
for slowly varying electromagnetic processes in which the occurring velocities
and related time scales are much smaller compared to the speed of light. The
divergence of Ampere’s Law is identically:

∇̄ ·
(
∇̄ × H̄

)
= 0 ⇒ ∇̄ · J̄ = 0, (2.3)

which equation (2.3) is called the Conservation of electric current, J̄ .
Faraday’s Law. A voltage is inducted in a wire loop which is penetrated

9



Chapter 2 2.1. The Induction equation

by a varying magnetic field. The variation of the magnetic flux, through the
loop of the wire, may occur in different ways. The loop conductor may move
through a spatially varying magnetic field. It can also change its orientation
with regard to the field, or the magnetic field may be time depended. In
mathematical formulation we have the following:

ϕ1 − ϕ2 =

∫
C
Ē · dr̄ = − ∂

∂t

(
µ

∫
A
H̄ · n̄ dA

)
. (2.4)

Due to the induced voltage, at the ends of the wire loop there is electrical
potential difference, ϕ1 − ϕ2. Ē is the electric field and µ is the magnetic
permeability of the material (µ ≈ µ0). The negative sign can be explained by
the fact that the inducted voltage will always force current flows counteracting
the magnetic flux variation. This phenomenon is called Lenz’s rule. Faraday’s
Law can be written as:∫

C
Ē · dr̄ =

∫
A

(
∇̄ × Ē

)
· n̄ dA =

∫
A
− ∂

∂t

(
µH̄
)
· n̄ dA. (2.5)

Since equation (2.5) holds true for every closed surface C and area A, we can
conclude that:

∇̄ × Ē = − ∂

∂t

(
µH̄
)
. (2.6)

The equation (2.6) is called differential form of Faraday’s Law. We define a
new magnetic parameter, the magnetic induction B̄ by the linear constitutive
equation:

B̄ = µH̄ (2.7)

providing a new equation by substituting in Equation (2.6):

∇̄ × Ē = − ∂

∂t
B̄ (2.8)

The divergence of Faraday’s Law is identically given as:

∇̄ ·
(
∇̄ × Ē

)
= ∇̄

(
− ∂

∂t
B̄

)
= − ∂

∂t

(
∇̄ · B̄

)
= 0 ⇒ ∇̄ · B̄ = constant.

The integration constant should be zero, because at an initial time we assume
that the current vanishes and there are no permanent magnets, therefore zero,
giving the following:

∇̄ · B̄ = 0. (2.9)

Using equation (2.7) in equation (2.2) we have:

∇̄ × B̄ = µJ̄. (2.10)
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Chapter 2 2.1. The Induction equation

The basic equations of electromagnetic induction are the Maxwell’s equa-
tions which are [18]:

∇̄ × B̄ = µJ̄, ∇̄ × Ē = − ∂

∂t
B̄, ∇̄ · B̄ = 0. (2.11)

An important factor in the study of Magnetohydrodynamics is the so called
Lorentz force. A given magnetic field acts on a slender conductor with electric
current flow for example a wire of length L, by the force:

F̄ = LĪ × B̄, (2.12)

where Ī is the current in the conductor and B̄ is the magnetic induction. The
current Ī is given by the flux of the electric current density J̄ through an area
dA as: Ī = J̄dA. Using that we can write the Lorentz force:

F̄ = LĪ × B̄ = L
(
J̄ dA

)
× B̄ = L dA J̄ × B̄ (2.13)

and since L dA provides us the volume, we divide with that quantity and we
get the Lorentz force per volume:

f̄ = J̄ × B̄. (2.14)

Since, in this study the conductor is the fluid that flows through a channel,
we introduce the Ohm’s Law for moving fluids.
Ohm’s Law. Any electric field in conductors generates an electric current of
density J̄ . If a conductor is moving with a velocity q̄, an observer moving with
the conductor, realizes a potential difference between two end points on the
conductor, which is generated by the electrical field Ē. The motion induced
field gives rise to an electric current. In mathematical prescription we have:

J̄ = σ
(
Ē + q̄ × B̄

)
, (2.15)

where σ is the electrical conductivity of the fluid and q̄ is the vector of velocity
of the conductor (fluid). Equation (2.15) holds true only under simplifying
conditions such as:

1. The magnitude of velocity should be way smaller than the speed of light
which is true in the case of the two dimensional channel.

2. The velocity of the charge carriers, such as electrons or ions, should be
smaller than the conductor’s (fluid) velocity, implying a velocity driven
flow.
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Chapter 2 2.1. The Induction equation

3. There is no resistance for the charge carriers and there are no thermo-
electric sources which is also true as we will assume that the inducted
magnetic field is externally applied to the flow.

We now apply the curl operator to the Equation (2.15) and we get:

∇̄ × J̄ = ∇̄ ×
(
σĒ
)
+ ∇̄ ×

(
σ
(
q̄ × B̄

))
, (2.16)

for this study, we assume that the conductivity of the fluid is constant. We
substitute the Equations (2.2) and (2.8) and we obtain:

∇̄ ×
(
∇̄ ×

(
1

µ
B̄

))
= −σ

∂

∂t
B̄ + ∇̄ ×

(
q̄ × B̄

)
. (2.17)

Using the identities for the ∇̄ operator and two random vectors X̄, Ȳ [28] we
can calculate:

∇̄ ×
(
q̄ × B̄

)
=
(
B̄ · ∇̄

)
q̄ −

(
q̄ · ∇̄

)
B̄ (2.18)

and

∇̄ ×
(
∇̄ × B̄

)
= −∇̄2B̄. (2.19)

Substitute to Equation (2.17) and we get:

∂

∂t
B̄ +

(
q̄ · ∇̄

)
B̄ =

1

µσ
∇̄2B̄ +

(
B̄ · ∇̄

)
q̄. (2.20)

Equation (2.20) is called the Induction Equation.

This equation describes the temporal evolution of the magnetic field, ∂B̄/∂t
due to advection

(
q̄ · ∇̄

)
B̄, although in this study we will examine steady

state problems, therefore the parameters will be time independent. The term
∇̄2B̄ describes diffusion and the term

(
B̄ · ∇̄

)
q̄ describes field intensity sources

generated by mechanical stretching of the field lines by the velocity field.

In some cases, it is easier to study the fluid mechanic equations in the di-
mensionless form. In this form, the depended and independent variables are
normalized and dimensionless quantities are introduced. With this change di-
mensionless parameters are applied, with whom the Fluid Mechanics problem
can be classified [22].

We now introduce the non-dimensional parameters as:

q̄′ =
q̄

u0
, ∇̄′ = L∇̄, B̄′ =

B̄

B0
, (2.21)
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Chapter 2 2.2. The Conservation of Mass and Navier-Stokes equations

where u0 is the characteristic velocity, L is the characteristic length of the flow
and B0 is the magnitude of the magnetic field. Applying these parameters in
the Induction equation we have:

B0 u0
L

(
q̄′ · ∇̄′) B̄′ =

1

µ σ

B0

L2
∇̄′2B̄′ +

B0 u0
L

(
B̄′ · ∇̄′) q̄ ⇒(

q̄′ · ∇̄′) B̄′ =
1

µ σ

1

L u0
∇̄′2B̄′ +

(
B̄′ · ∇̄′) q̄′ ⇒(

q̄′ · ∇̄′) B̄′ =
1

Rem
∇̄′2B̄′ +

(
B̄′ · ∇̄′) q̄′

(2.22)

Definition. Rem = µσL u0 is called the Magnetic Reynolds Number.

2.2 The Conservation of Mass and Navier-Stokes
equations

The equations that describe, the steady state flow of an incompressible fluid
that is disturbed by a magnetic field are:
The Conservation of Mass:

∇̄ · q̄ = 0. (2.23)

The Navier-Stokes Equations with the Lorentz forces:

ρ
(
q̄ · ∇̄

)
q̄ = −∇̄p+ µ∇̄2q̄ + J̄ × B̄. (2.24)

In order to write the non-dimensional form of the equations we introduce the
non-dimensional parameters:

q̄′ =
q̄

u0
, ∇̄′ = L∇̄, p′ =

p

ρ u20
, J̄ ′ =

J̄

σu0B0
, B̄′ =

B̄

B0
. (2.25)

Applying the dimensionless parameters we have for the Conservation of Mass:

L u0∇̄′ · q̄′ = 0 ⇒ ∇̄′ · q̄′ = 0, (2.26)

where we can see that retains the same form and for the Navier-Stokes Equa-
tions:

ρ
u20
L

(
q̄′ · ∇̄′) q̄′ = −ρ

u20
L
∇̄′p′ + µ

u0
L2

(
∇̄′2q̄′

)
+ σu0B0

(
J̄ ′ × B̄′)⇒(

q̄′ · ∇̄′) q̄′ = −∇̄′p′ +
µ

ρUL
∇̄′2q̄′ +

σLB2
0

ρu0

(
J̄ ′ × B̄′)⇒(

q̄′ · ∇̄′) q̄′ = −∇̄′p′ +
1

Re
∇̄′2q̄′ +N

(
J̄ ′ × B̄′) ,

(2.27)
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Chapter 2 2.3. The Energy equation

Definition. Re = (ρ u0L) /µ is called the Reynolds Number and it repre-
sents the ratio of the internal forces to the viscous forces.

Definition. N =
(
σLB2

0

)
/ (ρu0) is called the Stuart Number and it repre-

sents the ratio of the electromagnetic forces to the internal forces.

The product, NRe can also be found as NRe = Ha2, where Ha is called
Hartmann Number.

2.3 The Energy equation

The equation that describes the temperature of the fluid with the attributes
we mentioned above is the Energy equation with the Joule dissipation:

ρ cp
(
q̄ · ∇̄

)
T = k∇̄2T +

1

σ
J̄2 + µΦ. (2.28)

The main interest lies in the steady state problem therefore the temperature
is time independent. In order to write the dimensionless Energy equation we
introduce the dimensionless parameters as in (2.21) and (2.25) along with the
dimensionless dissipation function. We have that:

q̄′ =
q̄

u0
, ∇̄′ = L∇̄, T ′ =

T

T∞
, J̄ ′ =

J̄

σu0B0
, Φ′ = Φ

µL

ρ cpu0T∞
, (2.29)

where T∞ is the characteristic temperature of the fluid. Applying these pa-
rameters in the Energy equations we have:

ρ cp
u0

LT∞

(
q̄′ · ∇̄′)T ′ = k

T∞
L2

∇̄2T ′ +
1

σ

(
σ2u20B

2
0

)
J̄ ′2 + µΦ ⇒

(
q̄′ · ∇̄′)T ′ =

k

ρLu0cp
∇̄′2T ′ +

σLB2
0

ρ cpT∞
J̄ ′2 +Φ′ ⇒(

q̄′ · ∇̄′)T ′ =
1

RePr
∇̄′2T ′ +NEcJ̄

′2 +Φ′

(2.30)

Definition. Pr = (cpµ) /k is called the Prandtl Number and it represents
the ratio of the momentum diffusivity with the thermal diffusivity.

Definition. Ec = u20/ (cpT∞) is called the Eckert Number and it represents
the ratio of kinetic energy to the accumulated enthalpy.

The product, RePr can also be found as Pe which is a dimensionless number
called Peclet Number. N is Stuart Number which we introduced earlier.
The product, NEc describes the ratio of energy source due to Joule dissipation
to the accumulated enthalpy [12].
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CHAPTER3
The Finite Volume Method,
Newton’s method and the
Trust Region Method

3.1 The Finite Volume Method

The Finite Volume Method (FVM) is a method that transforms the partial
differential equations representing conservation laws over differential volumes
into discrete algebraic equations over finite volumes or control volumes. Sim-
ilarly to other discretization methods such as the finite difference or finite
element method, the first step in the solution process is the discretization
of the geometric domain, which in FVM, is discretized into finite volumes
as it can be seen in Figure 3.2. The partial differential equations are then
discretized (transformed) into many algebraic equations by integrating them
over each discrete element (volume, where a visual aspect of it can be seen
in Figure 3.3). In the FVM the term cell, usually, replace the term element
which mostly used in the finite elements method. The system of the algebraic
equations is then solved to compute the values of the dependent variable for
each of the elements.

In the FVM, the terms in the conservation equation represent the face fluxes
and evaluated at the finite volume faces. Because the flux entering a given
volume is similar to that leaving the adjacent volume, the FVM is conservative
or divergence free, ∇̄ · q̄ = 0. Finally in the FVM, it is quite easy to implement
a variety of boundary conditions in a non-invasive manner, since the unknown
variable are evaluated at the centroids of the volume elements, not at the
boundary faces [11].
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Chapter 3 3.1. The Finite Volume Method

Figure 3.1: The control volume (CV) or Finite Volume with the faces w, e, n, s
along with the flux through them.

After the discretization of the domain Ω into subdomains CVi ⊆ Ω, i =
1, . . . , N , we integrate the governing differential equations over each control
volume. The result is that the discretization equations, contain the values of
the unknown parameters of the problem, for example the velocity, the pressure,
the temperature and the magnetic field, for a group of grid points.

The most attractive feature of this method is that the resulting solution
would imply that the integral conservation of quantities such as mass (Con-
servation of Mass equation), momentum (Navier-Stokes equations) and energy
(Energy equation) are satisfied over any group of control volumes and as a re-
sult over the whole domain. This characteristic exists for any number of nodes,
not limited by the need of large number of them, meaning that even if do not
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Chapter 3 3.1. The Finite Volume Method

create a fine grid the conservation still exists, resulting in the exact integral
balance of the solution even on a small grid.

When the discretized equations are solved, we obtain the values of the
unknown parameters of the problem under consideration, on the grid points.
In the Finite Volume Method these values all together construct the numerical
solution, resulting in a more practical and easy to implement method [15].

Figure 3.2: The discritized domain (channel) with the FVM. This is a sim-
plified case where we have used square cells, meaning that: ∆x = ∆y. The
domain can be discritized by other shapes as well, for example rectangles e.g.
∆x > ∆y or ∆x < ∆y. Note that the smaller the values of ∆x and ∆y the
finer the computational grid.

The FVM accentuate the satisfaction of the physical laws of the governing
PDEs on finite sized control volumes. Imagine, we discretizing the large single
control volume into a set of smaller control volumes, and the same conservation
laws applied to all the smaller control volumes. The end result is a set of
coupled algebraic equations that may be solved conveniently on a computer
or by hand.

Since the smaller control volume is still of finite size and not infinitesimally
small, gives the method its finite character. The FVM originates from the
fluid dynamics analysis. The earliest example of using the FVM can be traced
around nineteen-sixties in the work of [6] as well as in the work of [15]. More
resent studies and textbooks on the FVM can be found in [20] and [23].
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Figure 3.3: Visualization of the control volume along with the neighbours in
a Cartesian Coordinates configuration [27].

With the growing realization that conservation of basic physical quantities,
that we mentioned above can be found in various cases on our planet, the
FVM became the method of choice for analysis of problems that involve fluid
flow and other transport phenomena, for example heat, radiation or chemical
agent transport. The conservation laws are easily understood by scientists and
engineers and since the FVM is capable to preserve these laws, the method is
easy to be implemented in a numerical code [9].
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3.2 Newton’s Method (advantages of the method)

3.2.1 Newton’s Method

The non linear system of algebraic equations came from the discretization
of the governing equations using the FVM. Assume a system of n non linear
equations and n unknowns:

f̄ (x̄) = 0̄ (3.1)

where f̄ = (f1, . . . , fn)
⊤, x̄ = (x1, . . . , xn)

⊤ and 0̄ = (0, . . . , 0)⊤. In order to
start the algorithm an initial guess is needed, x̄(0) which satisfies: f̄

(
x̄(0)

)
̸= 0.

We seek ∆x̄(0) so that: f̄
(
x̄(0) +∆x̄(0)

)
= 0 [2]. The first order Taylor series,

around x̄(0) gives:

f̄
(
x̄(0) +∆x̄(0)

)
= f̄

(
x̄(0)

)
+ ¯Jac

(0)
∆x̄(0), (3.2)

where Jac is the n× n Jacobian matrix:

Jac(0) =
(
∇̄f1

(
x̄(0)

)
, . . . , ∇̄fn

(
x̄(0)

))⊤
. (3.3)

Because of the relation f̄
(
x̄(0) +∆x̄(0)

)
= 0, we need the ∆x̄(0) to satisfy and

the first order Taylor approximation we get: ∆x̄(0) ≈
(
Jac(0)

)−1
f̄
(
x̄(0)

)
. or

in general:

∆x̄(ν) ≈
(
Jac(ν)

)−1
f̄
(
x̄(ν)

)
. (3.4)

Update the vector x̄ as x̄(1) = x̄(0) +∆x̄(0) or in general:

x̄(ν+1) = x̄(ν) +∆x̄(ν) = x̄(ν) +
(
Jac(ν)

)−1
f̄
(
x̄(ν)

)
, (3.5)

where ν is the Newton iteration [2]. The steps that the algorithm follows are:

1. Provide an initial value for the vector x̄: x̄(0).

2. Compute the Jacobian using equation (3.3).

3. Compute the new vector (updated) at the next iteration from equation
(3.5).

4. Check that the absolute difference of two consecutive iterations is less
than the specified tolerance ε:

∣∣∣∣x̄(ν+1) − x̄(ν)
∣∣∣∣ < ε. If this holds true,

the algorithm has found the solution and is the updated vector x̄(ν+1).
If not, increase the Newton iteration by one and repeat the process.

19



Chapter 3 3.2. Newton’s Method (advantages of the method)

The convergence however is not guaranteed in all cases which makes the
Newton’s method a locally convergent method. The cause is that the Jacobian
matrix may be singular at any iteration.

Definition. A matrix M is singular if and only if: det (M) = 0.

From this definition we conclude that when the matrix M is singular the in-
verse Jacobian matrix, (Jac)−1, does not exists. In order to solve this problem
we use trust region methods which are introduced in the next section.

3.2.2 The trust-region method

A trust region method generates steps with the help of a quadratic model
of the objective function. These methods create a region around the current
iteration within they trust the model to be a suitable approximation of the
objective function, and then choose the step to be the approximate minimizer
of the model in this region. A non acceptable step results in the reduce of the
region and a search for a new minimizer is now applied. An alteration of the
size of the trust region, changes the direction of the step.

The effectiveness of the step is affected by the size of the trust region. If
the region is too small the algorithm might not take a substantial step that
will move it to a better minimizer of the objective function. If the region is
too large the minimizer may be too far, forcing to reduce the region and apply
the algorithm again [13].

In practical algorithms the size of the region is chosen based on the perfor-
mance of the algorithm during the previous iterations. A consistently reliable
model, means that produces good steps and predicts the behaviour of the ob-
jective function during these steps, with accuracy, the size of the trust region
may be increased allowing to take longer steps to find a better minimizer.
Should the step fail is an indication that the model does not have the same
behaviour as the objective function, over the current trust region. After such
a step, we reduce the size of the region and try again.

Let’s assume that the model function: mk, that is used at each iteration k,
is quadratic and based in the Taylor series expansion of the objective function,
f around the point xk, meaning:

f(xk + p) = f (xk) + ∇̄T f (xk) p+
1

2
pT ∇̄2f (xk + tp) p, (3.6)
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where t ∈ (0, 1). By using an approximation Bk for the Hessian in the second-
order term, the model function mk is defined by:

mk(p) = f (xk) + ∇̄T f (xk) p+
1

2
pTBkp, (3.7)

where Bk is a symmetric matrix. The difference between the model and the
objective function is of order O

(
||p2||

)
, which is very small when ||p|| is very

small, giving a very small error. A special case is when Bk is equal to the true
Hessian ∇̄2f (xk), then the error is smaller because it is of order O

(
||p3||

)
,

providing even smaller errors for small ||p|| resulting in a more accurate model
function. This special case leads to the trust-region Newton method [13].

To obtain each step, we seek a solution to the subproblem:

min
p

mk (p) = min
p

(
f (xk) + ∇̄T f (xk) p+

1

2
pTBkp

)
, (3.8)

so that: ||p|| ≤ ∆k, where ∆k is the radius of the trust-region. Finding the
minimum of the objective function achieves the global unconstrained mini-
mization [14]. We define the magnitude to be expressed through the Euclidean
norm, so that the solution p∗k of equation (3.8) is the minimizer of mk, in the
ball of radius ∆k. The trust-region approach requires to solve a sequence of
sub problems (3.8) in which the objective function and constrain are both
quadratic.

Proposition. If the matrix Bk is positive defined and ||B−1
k ∇̄f (xk)|| ≤ ∆k

the solution of the sub problem (3.8) is p∗k = −B−1
k ∇̄f (xk). This step is called

full step.

Proof. The suggested solution satisfies: ||B−1
k ∇̄f (xk)|| ≤ ∆k. We only need

to show that minpmk (p
∗
k) < minpmk (p).

By definition we have:

Bk positive defined ⇔ xTBkx > 0 ⇔
(
BT

k x
)T

x > 0, ∀x ∈ Rn − {0} (3.9)

and the same holds true for the inverse matrix B−1
k . Using transpose matrix

properties we have:

mk (p
∗
k) = f (xk)−∇̄T f (xk)B

−1
k ∇̄f (xk)−

1

2

(
B−1

k

)T ∇̄T f (xk) ∇̄f (xk) (3.10)

and because of the definition (3.9) we have that: mk (p
∗
k) < f (xk) and

mk (p) > f (xk), concluding that: mk (p
∗
k) < mk (p) or the point p∗k is a

minimizer of the model function or a solution to the sub problem (3.8).
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A strategy for an efficient trust-region radius, ∆k is necessary. The choise
is based on the agreement between the model function mk and the objective
function f at previous iterations. Given a step pk we define the ratio:

ρk =
f (xk)− f (xk + pk)

mk(0)−mk (pk)
, (3.11)

where the enumerator is called the actual reduction, and the denominator
the predicted reduction, meaning the reduction in objective predicted by the
model function. Since the step pk is obtained by minimizing the model function
mk over a region that includes p = 0, we have that: mk(0) > mk (pk) or
mk −mk (pk) > 0.

Remark: For the different values of the ratio ρk we have that:
• If ρk < 0, for the difference of the new objective value f (xk + pk),
with the current value f (xk) we have that: f (xk + pk) > f (xk) which
implies that the step must be rejected.
• If ρk ≈ 1, then there is good agreement between the model and the
objective function, over this step, f (xk) ≈ f (xk + pk), implying that it
is safe to expand the trust region for the next iteration.
• If 0 < ρk ≪ 1, then we have, f (xk + pk) < f (xk), we do not alter
the trust region, but if it is close to zero, we shrink the trust region by
reducing the radius, at the next iteration.

An algorithm can be found explaining the process in [13].

3.2.3 The dogleg method

Our main concern in order to apply the method is the minimization of
equation (3.8). We seek numerical solutions, which achieve at least as much
reduction in mk as the reduction achieved by the so called Cauchy point.
This point is the minimizer of the model function along the steepest descent
direction: −∇̄f (xk). The approximate solutions can be found by the dogleg
method, which is suitable when the model Hessian Bk is positive definite
(equation (3.9)). The dogleg method calculate an approximate solution by
replacing the curved trajectory for the solution of the sub problem with radius
∆k, with a path consisting of two line segments. The first segment runs from
the origin to the minimizer of the model function along the steepest descent
direction, while the second runs from the minimizer to the (unconstrained)
minimizer of the model function which is found when the matrix Bk is positive
defined.
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3.2.4 Quadratic Convergence of Newton’s Method

Despite the convergence of the solution, for the obtained results to be con-
sistent we must examine the way the norm of the numerical solutions drop as
the grid becomes finer. Of course if it increases then the solution divergences.

Proposition. Quadratic Convergence of Newton’s Method:
Assume f̄ : Rn → Rn, a function in C1 in a convex open set D of Rn that
contains the exact solution of the problem f̄ (x̄) = 0̄ which we assume is x̄.
Suppose that the matrix Jac−1 (x̄) = Jac−1 exists and that there exist positive
constants R,C and L such that:∥∥Jac−1

∥∥ ≤ C (3.12)

and
∥Jac (x̄)− Jac (ȳ)∥ ≤ L ∥x̄− ȳ∥ , ∀x̄, ȳ ∈ B (x̄, R) . (3.13)

Then there exists r > 0 such that, for any x̄(0) ∈ B (x̄, r), the sequence which
is given by equations (3.4) and (3.5), is uniquely defined and converges to the
solution x̄ with the following ratio:∥∥∥x̄(ν+1) − x̄

∥∥∥ ≤ CL
∥∥∥x̄(ν) − x̄

∥∥∥2 . (3.14)

Proof. In order to calculate the correction x̄(1), we need to calculate ∆x̄(0),

which as can be seen from equation (3.4), the Jac−1
(
x̄(0)

)
=
(
Jac(0)

)−1
needs

to be known. In the general case we need to know the value of Jac
(
x̄(ν)

)
=(

Jac(ν)
)−1

so that the calculation of x̄(ν+1) is feasible. We proceed with

induction over the ν Newton iteration. First we prove that for any initial
guess x̄(0), close to the exact solution x̄, meaning that x̄(0) ∈ B (x̄, r), the

inverse matrix
(
J̄(0)

)−1
exists.∥∥∥Jac−1

(
Jac(0) − Jac

)∥∥∥ =
∥∥Jac−1

∥∥∥∥∥Jac(0) − Jac
∥∥∥⇒∥∥∥Jac−1

(
Jac(0) − Jac

)∥∥∥ ≤ CL
∥∥∥x̄(0) − x̄

∥∥∥ ≤ CLr ≤ 1

2
,

(3.15)

or ∥∥∥I − Jac−1Jac(0)
∥∥∥ ≤ 1

2
(3.16)

Using a theorem that can be found in [16], along with the proof of it, we have
that the matrix Jac−1Jac(0) is invertible for x̄(0) ∈ B (x̄, r). Assume that the
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matrix
(
Jac(0)

)−1
exist, which is a true statement as shown below:∥∥∥∥(Jac(0))−1

Jac

∥∥∥∥ ≤ 1

1−
∥∥∥Jac−1

(
Jac(0) − Jac

)∥∥∥ ≤ 1

1− 1
2

≤ 2 (3.17)

which is a result from the theorem in [16]. From equation (3.17) we can
conclude that: ∥∥∥∥(Jac(0))−1

∥∥∥∥ ≤ 2
∥∥Jac−1

∥∥ ≤ 2C < +∞ (3.18)

implying that the inverse matrix at the initial iteration exists. Subtracting
the exact solution, x̄ in each side of equation (3.5) gives:

x̄(1) − x̄ = x̄(0) − x̄+
(
Jac(0)

)−1
f̄
(
x̄(0)

)
⇒∥∥∥x̄(1) − x̄

∥∥∥ =

∥∥∥∥x̄(0) − x̄+
(
Jac(0)

)−1
f̄
(
x̄(0)

)∥∥∥∥ =∥∥∥∥(Jac(0))−1
∥∥∥∥∥∥∥Jac(0) (x̄(0) − x̄

)
+ f̄

(
x̄(0)

)∥∥∥
(3.19)

From the second order Taylor expansion of f̄ around the initial guess we get:

0̄ = f̄ (x̄) = f̄
(
x̄(0)

)
+ Jac(0)

(
x̄− x̄(0)

)
+O

(∥∥∥x̄− x̄(0)
∥∥∥2)⇒

f̄
(
x̄(0)

)
+ Jac(0)

(
x̄− x̄(0)

)
= O

(∥∥∥x̄− x̄(0)
∥∥∥2) =

L

2

∥∥∥x̄− x̄(0)
∥∥∥2 . (3.20)

Substituting the results of equation (3.20) into equation (3.19) results in:∥∥∥x̄(1) − x̄
∥∥∥ ≤ 2C

L

2

∥∥∥x̄(0) − x̄
∥∥∥2 ⇒ ∥∥∥x̄(1) − x̄

∥∥∥ ≤ CL
∥∥∥x̄(0) − x̄

∥∥∥2 (3.21)

which proves the case if ν = 0. Since x̄(0) ∈ B (x̄, r) we have that:∥∥∥x̄(1) − x̄
∥∥∥ ≤ CL

∥∥∥x̄(0) − x̄
∥∥∥2 ≤ CL

1

2CL

∥∥∥x̄(0) − x̄
∥∥∥ =

1

2

∥∥∥x̄(0) − x̄
∥∥∥ (3.22)

or ∥∥∥x̄(1) − x̄
∥∥∥ ≤ 1

2

∥∥∥x̄(0) − x̄
∥∥∥ ≤ 1

2
r < r (3.23)

meaning that x̄(1) ∈ B
(
x̄, 12r

)
⊆ B (x̄, r).

Similar proof can be used for the induction over the ν Newton iteration.
Assume that the equation (3.14) holds true, then the same inequality as in
equation (3.21) would be true for the ν + 1 Newton iteration.
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Remark: The Newton method convergences quadraticaly if
• The initial guess x̄(0) is sufficiently close to the exact solution x̄.
• The Jacobian matrix, Jac is non-singular.

Figure 3.4: Quadratic drop of the residuals using Newton’s method for the
Poiseuille flow (Chapter 4), as the grid gets finer. The solver stops at the
seventh iteration where it concludes that the residual is close to zero.

The main objective in the CFD algorithm developed in this study, is the
minimization of the functions that formulate the problems studied in Chapters
4, 5, 6 and 7 below. In table 3.1 we introduce the values of the function at
each iteration for the Poiseuille flow. At the final iteration the function is close
enough for the solver to stop the process as it has succeed in the minimization,
or in other words the solver was converged.

Iterations 50× 50 60× 60 70× 70 80× 80

0 4.7619 · 10−3 4.0073 · 10−3 3.4770 · 10−3 3.0678 · 10−3

1 2.8483 · 10−3 2.4568 · 10−3 2.1919 · 10−3 1.9833 · 10−3

2 2.4158 · 10−3 2.1551 · 10−3 1.9612 · 10−3 1.7989 · 10−3

3 1.5848 · 10−3 1.5291 · 10−3 1.4699 · 10−3 1.4016 · 10−3

4 3.0687 · 10−4 4.4706 · 10−4 5.5925 · 10−4 6.3306 · 10−4

5 2.9034 · 10−5 6.1307 · 10−5 9.7961 · 10−5 1.3142 · 10−4

6 2.9389 · 10−8 1.5591 · 10−7 4.0529 · 10−7 6.5905 · 10−7

7 4.4927 · 10−14 1.0838 · 10−12 7.2205 · 10−12 2.1865 · 10−11

Table 3.1: Residuals for the Poiseuille flow for various grid sizes.
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Chapter 3 3.3. Root Mean Square

3.3 Root Mean Square

As we will discuss in the Chapters 4 and 5, an analytical solution can be
obtained, therefore it is reasonable to compare it with the numerical one we
find from the algorithm. A close approximations to the analytical solution,
lay more robust foundation, for the FVM, which is applied in more complex
problems with no analytical one. RMS measures the difference of the numerical
and analytical results, in pairs, giving an average error. An RMS close to zero
indicates a good approximation.

RMS =

√√√√ 1

N

N∑
i=1

|x̄i − xi|2, (3.24)

where x̄i is the numerical solution and xi is the analytical solution at i. N is
the size of the data, in this case, the nodes of the partition.

3.4 Grid Independence

In CFD codes it is necessary to find an optimal grid size so that the algo-
rithm convergences to a solution that matches the theory behind the problem.
Creating a very fine grid increases the computational cost and the results
might not change drastically compared to a less finer grid. In the figure below
we present the results from the various grid sizes compared to the grid we
believe generates acceptable results for the velocity, pressure and temperature
for the Poiseuille flow on the next chapter.

Grid Size Velocity Pressure Temperature

20× 20 9.9775 · 10−1 2.5397 · 10−1 9.9988 · 10−1

30× 30 9.9897 · 10−1 2.5809 · 10−1 9.9995 · 10−1

40× 40 9.9942 · 10−1 2.6017 · 10−1 9.9997 · 10−1

50× 50 9.9963 · 10−1 2.6145 · 10−1 9.9998 · 10−1

60× 60 9.9957 · 10−1 2.6231 · 10−1 9.9999 · 10−1

Table 3.2: The infinity norm of each parameter changes as the grid becomes
finer. For the cases 40× 40 to 60× 60 we observe slight differences, less than
5%, which verifies the grid independence of the 40× 40 grid.

Remark: The Poiseuille numerical solution is also compared with the ana-
lytical solution (see Chapter 4).
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CHAPTER4
Poiseuille Flow

4.1 Introduction to the Poiseuille Flow

On this section we will study the two dimensional, steady and laminar flow
of a viscous, Newtonian and incompressible fluid between two parallel plates at
a height 2h. Using the Conservation of Mass and the Navier-Stokes Equations
we will calculate numerically the velocity and the pressure of the fluid using
the Finite Volumes Method. Using the, known, velocity field we will calculate
the temperature of the fluid using the Energy Equation.

A validation for the results is the conservation of the velocity and temper-
ature profiles at the channel outlet (fully developed flow).

Boundary Conditions: We provide a parabolic profile for the velocity
in the inlet of the channel and using Newmann boundary conditions at the
channel outlet. We assume no slip condition at both channel walls. For the
pressure we apply Newmann boundary condition at the channel inlet and we
assume the pressure to be equal to zero, at the channel outlet. For both
channel walls, we apply Newmann boundary conditions. Finally, for the fluid
temperature, we apply the higher order parabolic profile at the channel inlet
and we assume the temperature at the channel walls to be equal to zero.

Figure 4.1: The channel and the parabolic profile of the velocity.
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Chapter 4 4.1. Introduction to the Poiseuille Flow

4.1.1 Analytical Solution of the Poiseuille Flow

The non-dimensional Poiseuille Flow is a simplified case of the general non-
dimensional Conservation of Mass, Navier-Stokes and Energy equations in the
two dimensional case. We assume that the fluid is incompressible and the
flow is steady (time independent) and laminar. The boundary conditions that
formulate the Poiseuille flow are:

u = 0 and T = Tw = constant, at y = ±h,

∂u

∂y
= 0, at y = 0, and v = 0, ∀ (x, y) ∈ Ω.

(4.1)

The u = 0 implies the non-slip condition at the wall of the channel and the
constant temperature at the walls implies that the temperature is constant
along the horizontal axis, meaning T = T (y). The v = 0 condition, at any
point in the domain, implies that there is no vertical component for the veloc-
ity. We apply these boundary conditions at the non-dimensional Conservation
of Mass, Navier-Stokes and Energy equations which results in:
Conservation of Mass

∂u

∂x
+

∂v

∂y
= 0 ⇒ ∂u

∂x
= 0, (4.2)

x-momentum

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
⇒ 0 = −∂p

∂x
+

1

Re

∂2u

∂y2
, (4.3)

y-momentum

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
⇒ 0 = −∂p

∂y
, (4.4)

Energy

u
∂T

∂x
+ v

∂T

∂y
=

1

RePr

(
∂2T

∂x2
+

∂2T

∂y2

)
+Φ ⇒

0 =
1

RePr

∂2T

∂y2
+Φ,

(4.5)

where Φ = 2

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)

+

(
∂v

∂x
+

∂u

∂y

)2

⇒ Φ =

(
∂u

∂y

)2
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Chapter 4 4.1. Introduction to the Poiseuille Flow

The analytical velocity profile of the Poiseuille flow is a parabola of second
degree, the pressure drops linear and the analytical profile of the temperature
is a parabola of fourth degree.

Proof. For the equations (4.2) and (4.4), we can conclude for the u-velocity
and the pressure p that:

u = u(y) and p = p(x) (4.6)

and from equation (4.3) we have that:

∂p

∂x
=

1

Re

∂2u

∂y2
. (4.7)

Since the relation (4.6) holds true, the equation (4.7) must be equal to con-
stant, because the left part is a function of x and the right part is a function
of y:

∂p

∂x
= c1 and

1

Re

∂2u

∂y2
= c1, (4.8)

from which we can see that:

∂2u

∂y2
= Re c1 ⇒

∂u

∂y
= Re c1y + c2 ⇒ u = u(y) = Re c1

y2

2
+ c2y + c3. (4.9)

From the boundary conditions (4.1) for the u-velocity at y = ±h and y = 0
we have:

∂u

∂y

∣∣∣∣
y=0

= 0 = c2 ⇒ c2 = 0, (4.10)

respectively and

u(±h) = 0 = Re c1
(±h)2

2
+ c3 ⇒ c3 = −Re c1

h2

2
. (4.11)

We substitute the values of c2 and c3 in equation (4.9) and we get:

u(y) = Re c1
y2

2
−Re c1

h2

2
= Re

c1
2

(
y2 − h2

)
. (4.12)

Since the u-velocity has no variation with respect of y and from the no-slip
conditions at height y = ±h, we can conclude that at height y = 0 has
maximum value meaning that: u(0) = umax.
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Chapter 4 4.1. Introduction to the Poiseuille Flow

From equation (4.12) to obtain for c1:

u(0) = umax = −Re c1
h2

2
⇒ c1 = −2umax

Re h2
, (4.13)

which we substitute in equation (4.12) giving the solution of u-velocity in the
non-dimensional Poiseuille Flow:

u(y) = umax

(
1− y2

h2

)
, (4.14)

which is a second degree parabolic profile.

Despite the analytical solution for the u-velocity we have a very interesting
result for the variation of pressure along the x-axis. Because of the relation
(4.8) and the equation (4.13) we have:

∂p

∂x
= c1 = −2umax

Re h2
⇒ ∂p

∂x
< 0, (4.15)

since: Re > 0, umax > 0.

This means that the pressure drops as the fluid flows along the x-axis.

With the u-velocity known, we can calculate the temperature, T of the fluid
using the Energy equation (4.5):

1

RePr

∂2T

∂y2
= −

(
∂u

∂y

)2

= −4u2max

y2

h4
, (4.16)

from which we get:

∂2T

∂y2
= −4RePr u2max

y2

h4
⇒

∂T

∂y
= −4RePr u2max

1

h4
y3

3
+ c4 ⇒

T = T (y) = −RePr u2max

y4

3h4
+ c4y + c5

(4.17)

and applying the boundary conditions for the temperature from (4.1) at height
y = ±h we get:

T (h) = Tw = −RePr u2max

h4

3h4
+ c4h+ c5 ⇒

Tw = −1

3
RePr u2max + c4h+ c5,

T (−h) = Tw = −RePr u2max

(−h)4

3h4
− c4h+ c5 ⇒

Tw = −1

3
RePr u2max − c4h+ c5,

(4.18)
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Chapter 4 4.2. The Finite Volume Method on the Poiseuille Flow

since the left part are equal, the constant c4 must be equal to zero, meaning:
c4 = 0. We substitute in one of the equations (4.18) and we get for the constant
c5:

T (h) = Tw = −1

3
RePr u2max + c5 ⇒ c5 = Tw +

1

3
RePr u2max. (4.19)

We can now substitute the values of c4 and c5 in equation (4.17) resulting in:

T = T (y) = −RePr u2max

y4

3h4
+ Tw +

1

3
RePr u2max ⇒

T = T (y) = Tw +RePr u2max

1

3

(
1− y4

h4

)
,

(4.20)

which is a fourth degree parabolic profile.

The maximum value of temperature is at height y = 0 and is equal to:

T (0) = Tmax = Tw +
1

3
RePr u2max. (4.21)

Remark: The calculations and the assumptions for the boundary conditions
for the analytical solution are similar to that in [21].

4.2 The Finite Volume Method on the Poiseuille
Flow

In order to descritize the differential equations we apply the Finite Volume
method (FVM) in the Conservation of Mass, Navier-Stokes and Energy equa-
tions respectively, by integrating the equations over the control volume and
we get: ∫∫

CV

∂u

∂x
dxdy =

∫
∂u

∂x
dx

∫
1dy = u|ew∆y =(

uE + uP
2

− uP + uW
2

)
∆y =

1

2
(uE − uW )∆y∫∫

CV

∂v

∂y
dxdy =

∫
∂v

∂y
dy

∫
1dx = v|ns∆x =(

vN + vP
2

− vP + vS
2

)
∆x =

1

2
(vN − vS)∆x
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Chapter 4 4.2. The Finite Volume Method on the Poiseuille Flow

It is more convenient to apply the method in the closed form of the Navier-
Stokes equations and Energy equation.

Remark: The closed form allows to “break” the double integral over the
control volume into two integrals, independent from each other, where
the functions inside are evaluated over the direction of the variation
(flux).

For the convection terms for each equation, we have the following formu-
lations, respectively:
x-momentum∫∫

CV

∂u2

∂x
dxdy =

∫ e

w

∂u2

∂x
dx

∫ n

s
1dy = u2|ew∆y =(

u2E + u2P
2

−
u2P + u2W

2

)
∆y =

1

2

(
u2E − u2W

)
∆y∫∫

CV

∂(uv)

∂y
dxdy =

∫ n

s

∂(uv)

∂y
dy

∫ e

w
1dx = (uv)|ns∆x =(

(uv)N + (uv)P
2

− (uv)P + (uv)S
2

)
∆x =

1

2
(uNvN − uSvS)∆x,

y-momentum∫∫
CV

∂(uv)

∂x
dxdy =

∫ e

w

∂(uv)

∂x
dx

∫ n

s
1dy = (uv)|ew∆y =(

(uv)E + (uv)P
2

− (uv)P + (uv)W
2

)
∆y =

1

2
(uEvE − uW vW )∆y∫∫

CV

∂v2

∂y
dxdy =

∫ n

s

∂v2

∂y
dy

∫ e

w
1dx = v2|ns∆x =(

v2N + v2P
2

−
v2P + v2S

2

)
∆x =

1

2

(
v2N − v2S

)
∆x,

Energy equation∫∫
CV

∂ (uT )

∂x
dxdy =

∫ e

w

∂ (uT )

∂x
dx

∫ n

s
1dy = uT |ew ∆y =(

(uT )E + (uT )P
2

−
(uT )P + (uT )W

2

)
∆y =

1

2
(uETE − uWTW )∆y∫∫

CV

∂ (vT )

∂y
dxdy =

∫ n

s

∂ (vT )

∂y
dy

∫ e

w
1dx = vT |ns ∆x =(

(vT )N + (vT )P
2

−
(vT )P + (vT )W

2

)
∆x =

1

2
(vNTN − vSTS)∆x,
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Chapter 4 4.2. The Finite Volume Method on the Poiseuille Flow

For the diffusion terms for each equation, we have the following formula-
tions, respectively:
x-momentum∫∫

CV

∂p

∂x
dxdy =

∫ e

w

∂p

∂x
dx

∫ n

s
1dy = p|ep∆y = (pE − pP )∆y∫∫

CV

∂2u

∂x2
dxdy =

∫ e

w

∂2u

∂x2
dx

∫ n

s
1dy =

∂u

∂x

∣∣∣∣e
w

∆y =(
uE − uP

∆x
− uP − uW

∆x

)
∆y = (uE − 2uP + uW )

∆y

∆x∫∫
CV

∂2u

∂y2
dxdy =

∫ n

s

∂2u

∂y2
dy

∫ e

w
1dx =

∂u

∂y

∣∣∣∣n
s

∆x =(
uN − uP

∆y
− uP − uS

∆y

)
∆x = (uN − 2uP + uS)

∆x

∆y
,

y-momentum∫∫
CV

∂p

∂y
dxdy =

∫ n

s

∂p

∂y
dy

∫ e

w
1dx = p|np∆x = (pN − pP )∆x∫∫

CV

∂2v

∂x2
dxdy =

∫ e

w

∂2v

∂x2
dx

∫ n

s
1dy =

∂v

∂x

∣∣∣∣e
w

∆y =(
vE − vP

∆x
− vP − vW

∆x

)
∆y = (vE − 2vP + vW )

∆y

∆x∫∫
CV

∂2v

∂y2
dxdy =

∫ n

s

∂2v

∂y2
dy

∫ e

w
1dx =

∂v

∂y

∣∣∣∣n
s

∆x =(
vN − vP

∆y
− vP − vS

∆y

)
∆x = (vN − 2vP + vS)

∆x

∆y
,

Energy equation∫∫
CV

∂2T

∂x2
dxdy =

∫ e

w

∂2T

∂x2
dx

∫ n

s
1dy =

∫ e

w

∂2T

∂x2
dx∆y =

∂T

∂x

∣∣∣∣e
w

∆y =

(
TE − TP

∆x
− TP − TW

∆x

)
∆y = (TE − 2TP + TW )

∆y

∆x∫∫
CV

∂2T

∂y2
dxdy =

∫ n

s

∂2T

∂y2
dy

∫ e

w
1dx =

∫ n

s

∂2T

∂y2
dy ∆x =

∂T

∂y

∣∣∣∣n
s

∆x =

(
TN − TP

∆y
− TP − TS

∆y

)
∆x = (TN − 2TP + TS)

∆x

∆y
,
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Chapter 4 4.2. The Finite Volume Method on the Poiseuille Flow

The Dissipation function in the Energy equation is:

Φ =2

((
∂u

∂x

)2

+

(
∂v

∂y

)2
)

+

(
∂v

∂x
+

∂u

∂y

)2

= −4

(
∂u

∂x

∂v

∂y

)
+

(
∂v

∂x
+

∂u

∂y

)2

,

written as, due to the Conservation of Mass.
For the descretization of the Dissipation Function we have:∫∫

CV

∂u

∂x

∂v

∂y
dxdy =

∫ e

w

∂u

∂x
dx

∫ n

s

∂v

∂y
dy = u|ew v|ns=(

uE + uP
2

− uP + uW
2

)(
vN + vP

2
− vP + vS

2

)
=(

1

2
(uE − uW )

1

2
(vN − vS)

)
=

1

4
(uE − uW ) (vN − vS) .

For the quadratic terms in the Dissipation Function Φ, we apply a different
approach:∫∫

CV

(
∂v

∂x
+

∂u

∂y

)2

∆x∆y =

(
∂v

∂x
+

∂u

∂y

)2 ∣∣∣∣
P

∆x∆y =(
∂v

∂x

∣∣∣∣
P

+
∂u

∂y

∣∣∣∣
P

)2

∆x∆y =

(
vE − vW
2∆x

+
uN − uS
2∆y

)2

∆x∆y.

Remark: As discussed, the system of PDEs have turned into a system of non
linear algebraic equations through the FVM. For the evaluation of the
integrals on the control volume we mainly used central differences, expect
for the pressure flux, where we use forward differences. The reason is that
if we use central differences we might come across small fluctuations of
the numerical solution (spurious solution). This is a common approach,
where the pressure is evaluated utilizing the collocated point, P and
the upstream point, E (see figure 3.3), resulting in a forward differences
scheme (staggered approach). For the quadratic terms of the dissipation
function we approximate the quadratic term on the center of the control
volume and we use central differences for the descritization.
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Chapter 4 4.2. The Finite Volume Method on the Poiseuille Flow

4.2.1 Numerical results of the Poiseuille flow

In summary, the result of the Finite Volumes method (FVM) on the equa-
tions that formulate the Poiseuille flow are (discrete form - equations of dif-
ferences):
Conservation of Mass

1

2
(uE − uW )∆y +

1

2
(vN − vS)∆x = 0 (4.22)

x-momentum

1

2

(
u2E − u2W

)
∆y +

1

2
(uNvN − uSvS)∆x = − (pE − pP )∆y+

+
1

Re

(
(uE − 2uP + uW )

∆y

∆x
+ (uN − 2uP + uS)

∆x

∆y

)
,

(4.23)

y-momentum

1

2
(uEvE − uW vW )∆y +

1

2

(
v2N − v2S

)
∆x = − (pN − pP )∆x+

+
1

Re

(
(vE − 2vP + vW )

∆y

∆x
+ (vN − 2vP + vS)

∆x

∆y

)
,

(4.24)

Energy Equation

1

2
∆y (uETE − uWTW ) +

1

2
∆x (vNTN − vSTS) =

1

RePr

(
∆y

∆x
(TE − 2TP + TW ) +

∆x

∆y
(TN − 2TP + TS)

)
−

− (uE − uW ) (vN − vS) +

(
vE − vW
2∆x

+
uN − uS
2∆y

)2

∆x∆y.

(4.25)

Equations (4.22)-(4.25) are called discrete residuals equations where we bring
all terms to the left hand side resulting the right hand side to be equal to
zero. To successfully obtain the solution of the system means that the solver
successfully minimized the residual equations as close to zero as possible (min-
imization problem).
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To validate the solution of the non linear, coupled algebraic system, we
compare the numerical solution with the analytical one. In the table 4.1 we
present the Root Mean Square of the difference between the numerical and
the analytical solution as the grid becomes finer (see also Chapter 3).

The physical description of the solution must also be verified. We can
observe from figure 4.2, the contour plot of the velocity where the velocity has
maximum value in the channel core and it becomes zero at the channel walls.
The figure 4.3 shows the linear pressure drop as the theoretical analysis of the
problem has shown. Figure 4.4 shows the higher order parabolic profile of the
temperature in the channel, where, the maximum value is at the center of the
domain. Finally, figure 4.5 shows the velocity magnitude using vector plot.

Figures 4.6 and 4.7 depict the analytical and numerical profile of the velocity
and the temperature, respectively, where can be observed good agreement.
Increasing the number of nodes in each axis partition results in a finer grid.
The RMS reduces as the grid becomes finer.

We compare the analytical profiles at the inlet and the numerical solution
at the outlet of the channel. The Reynolds and Prandtl numbers are equal to
Re = 300 and Pr = 21 respectively. These values correspond to blood flow
according to [24].

Grid Area RMS Velocity RMS Temperature

100× 10 9.0009 · 10−3 1.1658 · 10−4 6.3435 · 10−4

100× 20 4.7147 · 10−3 1.1083 · 10−4 1.7758 · 10−4

100× 30 3.1938 · 10−3 1.1055 · 10−4 8.4221 · 10−5

100× 40 2.4148 · 10−3 1.1037 · 10−4 5.0700 · 10−5

100× 50 1.9413 · 10−3 1.1026 · 10−4 3.5106 · 10−5

100× 60 1.6231 · 10−3 1.1020 · 10−4 2.6710 · 10−5

100× 70 1.3954 · 10−3 1.1013 · 10−4 2.1741 · 10−5

100× 80 1.2223 · 10−3 1.1001 · 10−4 1.8020 · 10−5

100× 90 1.0880 · 10−3 1.0971 · 10−4 1.5011 · 10−5

100× 100 9.8029 · 10−4 1.0934 · 10−4 1.2542 · 10−5

Table 4.1: Comparison of the analytical and numerical solution of the velocity
and the temperature for Re = 300 and Pr = 21, for different number of grid
sizes.
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Figure 4.2: Contour plot of the numerical solution of the velocity.
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Figure 4.3: Contour plot of the numerical solution of the pressure.
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Figure 4.4: Contour plot of the numerical solution of the temperature.
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Figure 4.5: Contour and vector plot of the magnitude of the velocity.
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Figure 4.6: Second degree parabolic profile of the analytical (red) and the
numerical (blue) velocity at the channel outlet.
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Figure 4.7: Fourth degree parabolic profile of the analytical (red) and the
numerical (blue) temperature at the channel outlet.
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CHAPTER5
Hartmann Flow

5.1 Lorentz Force influence on fluid flow

The Hartmann flow studies the flow of an electrically conducting fluid while
a magnetic field is vertically applied to the bottom channel wall. It also studies
the disturbance of the magnetic field due to the electrically conducting fluid.
In order to study the influence of the magnetic field on the fluid flow, we must
introduce the Lorentz force applied to the fluid. As we described in Chapter
2 the Lorentz force can be mathematically modelled by the term:

f̄L = J̄ × B̄, (5.1)

along with the Hartmann number: Ha is a non-dimensional number defined
as: Ha =

√
NRe.

In this study, we assume that the electric current density J̄ , is equal to q̄×B̄
resulting in:

f̄L =
(
q̄ × B̄

)
× B̄, (5.2)

which after the calculations of the outer products, we have for the general case
of q̄ = (u, v, w) and B̄ = (Bx, By, Bz) for the Lorentz force f̄L:(

−uB2
z + wBxBz − uB2

y + vBxBy

)
ī

−
(
vB2

z − wByBz − uByBx + vB2
x

)
j̄

+
(
vBzBy − wB2

y + uBxBz − wB2
x

)
k̄

(5.3)

and since we study the two-dimensional case of the flow we have that: w =
Bz = 0, resulting to:

f̄L =
(
−uB2

y + vBxBy

)
ī−
(
uByBx + vB2

x

)
j̄ + 0k̄. (5.4)
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Chapter 5 5.2. Introduction to the Hartmann Flow

We also assume v = 0 as well as for the magnetic field Bx = 0 and By = c
giving for the Hartmann Flow:

f̄L = −uc2ī+ 0j̄ + 0k̄, (5.5)

in this formulation, we assume that the flow is laminar and the external mag-
netic field is constant in magnitude and vertical to the flow.

By calculating the norm of the Lorentz force, we obtain the effect of the
force on the flow field, ∥∥f̄L∥∥ =

√
c4u2 = c2u. (5.6)

This implies that the relation of the Lorentz force and the fluid velocity is
linear. Higher fluid velocity results in higher magnitude of the Lorentz force.

For the inducted magnetic field B̄ and Lorentz force f̄L we have that,

B̄ ⊥ f̄L. (5.7)

The electric current I, does not contribute in the two dimensional case. Using
the right hand rule (the electric current does not contribute in the two dimen-
sional case) we conclude that the Lorentz force retards the fluid velocity.

Remark: Let’s assume a parabolic profile in the inlet, no slip conditions on
the walls and Neumann conditions at the channel outlet. In Poiseuille
Flow we obtained zero velocity at the walls and maximum velocity at
the center of the tube (core flow). The Lorentz force will create thin
boundary layers which, in this case, are called Hartmann Layers, as well
as decrease of the fluid velocity, as the magnitude of the magnetic field
increases. This will also be proven by the analytical solution provided in
the next section where the greater the value of the Hartamann Number
is, the greater the drop of the velocity compared to the hydrodynamic
flow occurs.

5.2 Introduction to the Hartmann Flow

We consider a straight channel where an external magnetic field B̄ is verti-
cally applied, B̄ = bj̄ = b(y)j̄. The flow is driven by a uniform pressure gradi-
ent and the fluid flows vertically to the magnetic field, q̄ that: q̄ = uī = u(y)̄i.

The magnetic field is composed by two factors: The external magnetic field
and the magnetic field induced by the flow of the conducting fluid, resulting

40



Chapter 5 5.2. Introduction to the Hartmann Flow

to:

B̄ = 1j̄ +
Rem
Ha

b̄i =

(
Rem
Ha

b, 1

)
= (Bx, By) , (5.8)

where we have scaled the induced part by the term: Rem/Ha.

We substitute the results of equation (5.8) in the steady state Induction
Equation, therefore time independent. We assume that we have a fully de-
veloped flow meaning:

(
q̄ · ∇̄

)
· B̄ = 0̄ resulting in the x-momentum of the

Induction equation:

0 =
1

Rem

(
∂2Bx

∂x2
+

∂2Bx

∂y2

)
+

(
Bx

∂u

∂x
+By

∂u

∂y

)
(5.9)

and we substitute equation (5.8) in equation (5.9) giving:

1

Ha

∂2b

∂y2
+

∂u

∂y
= 0 ⇒ ∂2b

∂y2
+Ha

∂u

∂y
= 0. (5.10)

For the electric current density J̄ we assume that:

J̄ =
1

Ha

(
∂

∂x
ī+

∂

∂y
j̄ +

∂

∂z
k̄

)
×
(
Rem
Ha

b̄i+ 1j̄ + 0k̄

)
=

=
1

Ha

(
0̄i+

∂b

∂z
j̄ − ∂b

∂y
k̄

)
=

1

Ha

(
0,

∂b

∂z
,−∂b

∂y

)
,

(5.11)

resulting in the Lorentz force to be expressed with the inducted term b.

Using this assumption with equation (5.8) we have for the Lorentz force:

J̄ × B̄ =
1

Ha

(
∂b

∂y
, −Rem

Ha
b
∂b

∂y
,
Rem
Ha

b
∂b

∂z

)
. (5.12)

We assume fully developed flow,
(
q̄ · ∇̄

)
·q̄ = 0, resulting in the x-momentum

of the Navier-Stokes equation:

0 = −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
+

Ha2

Re

(
1

Ha

∂b

∂y

)
, (5.13)

where for convenience, we assume that: ∂p/∂x = (−ρ u0 µ)/(L
2 ρ) and from

the non-dimensional pressure (which is shown in the non-dimensionless Navier-
Stokes) from (2.25) we have that:

∂p′

∂x′
=

L

ρ u20

∂p

∂x
=

L

ρ u20

(
−ρ u0 µ

L2 ρ

)
= − µ

u0 L ρ
= − 1

Re
. (5.14)
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Substitution of equations (5.12) and (5.14) in equation (5.13) gives,

0 =
1

Re
+

1

Re

∂2u

∂y2
+

Ha2

Re

1

Ha

∂b

∂y
⇒ ∂2u

∂y2
+Ha

∂b

∂y
= −1. (5.15)

Equations (5.10) and (5.15) describe the two-dimensional Hartmann Flow
which will be discussed and studied in the next section.

5.2.1 Boundary Conditions for the Hartmann flow

Similarly to the Poiseuille Flow, we assume that the fluid satisfies the no-slip
condition at the walls of the channel,

q̄ = 0̄ ⇔ (u, v) = (0, 0), at the bottom and top walls. (5.16)

According to [12] in engineering piping systems channel walls, as shown in fig-
ure 5.1, frequently consist of metallic substance with a finite electric conduc-
tivity σw. In most cases the walls thickness tw is relative small in comparison
to the distance between the two walls L, tw ≪ L. In [12] we can see a relation
for the magnetic field for a surface with n̄, the vector inward unit normal to
the fluid wall interface, at the point P , as shown below:

1

µσ

∂b

∂n̄
=

1

µwσw

∂bw
∂n̄

, at a point P on the surface, (5.17)

where µ is the magnetic permeability. The directional derivative can be ap-
proximated by finite differences such as:

∂bw
∂n̄

=
bP − bP̄

tw
, at a point P on the surface, (5.18)

where P is a point on the surface inside the channel and P̃ is a point on the
surface outside the channel. As there are no currents in the insulating domain
outside the wall the, induced magnetic field is considered b(P̄ ) = 0. This
results, for non-ferromagnetic materials (µ = µw) in:

∂b

∂n̄
=

σ

σw

1

tw
b, at point P on the surface. (5.19)

We use the non-dimensional parameters: y′ = y/L and b′ = b/B0, we substi-
tute to equation (5.19) giving:

∂b

∂n̄
− 1

c
b = 0, at point P on the surface, (5.20)
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where c = (σwtw) / (σL) which is the wall conductance ratio. This parameter
describes the ratio of the electrical conductance of the wall and the fluid ma-
terial. The limit cases of c → 0 or c → ∞ mean that the walls are insulating
or perfectly conducting, respectively. We will examine the case of insulating,
parallel to the flow, walls or c → 0.

In the case of the Hartmann flow, this vector can be written as: n̄+ = (0, 1)
and n̄− = (0,−1) for the top and bottom wall respectively. The directional
derivative at a point on the walls of the channel can be calculated by,

∂b

∂n̄
= ∇̄b · n̄. (5.21)

Using equation (5.20) and (5.21) we get,

∂b

∂n̄+
+

1

c
b = 0 ⇒ ∇̄b · n̄+ +

1

c
b = 0 ⇒ ∂b

∂y
+

1

c
b = 0 (5.22)

and
∂b

∂n̄−
+

1

c
b = 0 ⇒ ∇̄b · n̄− +

1

c
b = 0 ⇒ −∂b

∂y
+

1

c
b = 0 (5.23)

at y = +1 and y = −1, respectively.

Figure 5.1: Part of the pipe with thickness tw. The point P on the inside the
channel and the point P̃ is outside the channel.

5.3 The Hartmann Flow

The Hartmann flow can be considered as a special magnetohydrodynamic
(MHD) case and an extension of Poiseuille flow, where, an electrical conduct-
ing fluid flows through a channel with conducting or non conducting walls at
distance 2h and an inducted magnetic field on the channel walls, the Lorentz
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forces causes the velocity to drop. Using higher values of the Hartmann num-
ber we are be able to apply stronger Lorentz forces. Using a simplification
of the Navier-Stokes and Induction equations we will calculate the velocity
as well as the magnetic field inside the channel which changes because of the
fluid, by descritizing the domain and the equations with the Finite Volume
Method. We apply a parabolic velocity profile, at the inlet of the channel
and Newmann boundary condition at the channel outlet. We assume zero
magnetic field at the channel inlet and outlet. We apply no slip boundary
conditions for the velocity and the boundary conditions we calculated above
for the magnetic field.

5.3.1 Analytical solution of the Hartmann Flow

Similar to the Poiseuille flow examined in the previous sections, we will
describe how the fluid flow changes by applying an external magnetic field.
In this case we will assume that the magnetic field is applied vertically to
the flow, meaning that the magnetic field b is a function of the variable y or
b = b(y). Similar assumption can be considered for the u-velocity, u = u(y).
Along with many applications of this flow, this is a test problem due to the
fact that with the known analytical solution we can test the Finite Volume
Method on different problems.

The system of PDEs that describe the Hartmann Flow is [12]:

Ha
∂b

∂y
+

∂2u

∂y2
= −1, for − 1 < y < 1, (5.24)

Ha
∂u

∂y
+

∂2b

∂y2
= 0, for − 1 < y < 1, (5.25)

with the boundary conditions:

u = 0, at y = ±1, ±∂b

∂y
+

1

c
b = 0, at y = ±1, (5.26)

which is a well defined second order, linear system with constant coefficients.
Here c → 0 implies that the walls are electrically insulated.

The analytical solution, of the system (5.24) and (5.25), that describes the
Hartmann Flow, with the boundary conditions (5.26) for the velocity u and
the magnetic field b are respectively:

u(y) = u

(
1− cosh (Hay)

cosh (Ha)

)
, b(y) = − y

Ha
+ u

sinh (Hay)

cosh (Ha)
(5.27)
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where u is the characteristic magnitude of velocity:

u =
1

Ha

(
c+ 1

c Ha+ tanh (Ha)

)
(5.28)

Proof. By differentiating equation (5.24) we get:

Ha
∂2b

∂y2
+

∂3u

∂y3
= 0 ⇒ ∂2b

∂y2
= − 1

Ha

∂3u

∂y3
, (5.29)

which we substitute in equation (5.25) resulting to:

Ha
∂u

∂y
− 1

Ha

∂3u

∂y3
= 0

u′=w
===⇒ w′′ −Ha2w = 0, (5.30)

where the solution is:

w(y) = c1e
Hay + c2e

−Hay ⇒ u(y) =
c1
Ha

eHay − c2
Ha

e−Hay + c̃1, (5.31)

where c̃1 is the integration constant. Applying the boundary conditions (5.26)
for the velocity we have,

c1 = −eHac̃1Ha

1 + e2Ha
, c2 =

eHac̃1Ha

1 + e2Ha
. (5.32)

We substitute in equation (5.31) and we simplify the exponential with the
hyperbolic functions,

u(y) = c̃1

(
1− cosh (Hay)

cosh (Ha)

)
. (5.33)

From equation (5.25), we can find the analytical solution of the magnetic field
by integrating:

b(y) = − y

Ha
+ c̃1Ha

sinh (Hay)

cosh (Ha)
+ c̃2, (5.34)

where c̃2 is the integration constant. Differentiating and applying the bound-
ary conditions (5.26) for the magnetic field we have:

c̃1 =
1

Ha

(
c+ 1

cHa+ tanh (Ha)

)
, c̃2 = 0. (5.35)

Finally, we substitute the values of the constants c̃1 and c̃2 in the analytical
solutions of the velocity and the magnetic field. The constant c̃1 is called the
characteristic magnitude of the velocity u [12]:

u(y) = u

(
1− cosh (Hay)

cosh (Ha)

)
, b(y) = − y

Ha
+ u

sinh (Hay)

cosh (Ha)
(5.36)
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Since we known the analytical solution, we can examine the cases where the
Hartmann Number approaches zero, Ha → 0 and the Hartmann Number is
way greater than 1, Ha ≫ 1.

Lemma. i) The velocity profile of the Hartmann flow approaches asymptot-
ically, the parabolic profile of the Hydrodynamic case for small values of the
Hartmann number. ii) High values of the Hartmann number create Hartmann
Layers and decrease the fluid velocity.

Proof. i) (Ha → 0) In the general case the Taylor Expansion of the hyperbolic
functions cosh (x) and tanh (x) as x → 0 (x approaches zero) are:

cosh(x) = 1 +
1

2
x2 +O

(
x4
)
, tanh(x) = x− 1

3
x3 +O

(
x5
)
. (5.37)

We substitute the value of tanh (Ha) as Ha → 0 in equation (5.28) and we
get:

u = − 3 (1 + c)

Ha2 (−3− 3c+Ha2)
(5.38)

and the value of cosh (Ha) as Ha → 0 in the analytical solution of velocity u
resulting in:

u(y) = −
3 (1 + c)

(
−1 + y2

)
(3 + 3c−Ha2) (2 +Ha2)

. (5.39)

Since we study the case of low Hartmann Number this implies that there is
no induced magnetic field b therefore, b = 0.

By taking the limit:

lim
Ha→0

u(y) = lim
Ha→0

−
3 (1 + c)

(
−1 + y2

)
(3 + 3c−Ha2) (2 +Ha2)

=
1

2

(
1− y2

)
, (5.40)

we can see that the analytical solution of the velocity is similar to that of the
Hydrodynamic case (parabolic profile) as well as:

lim
Ha→0

u(±1) =
1

2

(
1− (±1)2

)
= 0, (5.41)

meaning that it satisfies the boundary conditions (5.26).

ii) (Ha ≫ 1) A very useful definition for the hyperbolic functions cosh (x)
and tanh (x) is:

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, tanh(x) =

ex + e−x

ex − e−x
(5.42)
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and for x ≫ 1 we get asymptotically:

cosh(x) → 1

2
ex, sinh(x) → 1

2
ex, tanh(x) → 1. (5.43)

We substitute the values of tanh (Ha) for Ha ≫ 1 in equation (5.28) and we
get:

u → 1

Ha

c+ 1

cHa+ 1
⇒ u

Ha≫1−−−−→ 0 (5.44)

and the value of cosh (Ha) and sinh (Ha) for Ha ≫ 1 in the analytical solu-
tions of velocity and magnetic field respectively resulting to:

u(y) = u
(
1− eHa(y−1)

)
, b(y) = − y

Ha
+ u

(
eHa(y−1)

)
, |y| ≤ 1. (5.45)

Equations (5.45) must satisfy the boundary conditions (5.26), where for the
u-velocity we have:

u (1) = u
(
1− eHa(1−1)

)
= 0

Ha≫1−−−−→ 0,

u (−1) = u
(
1− e−2Ha

) Ha≫1−−−−→ u
Ha≫1−−−−→ 0.

(5.46)

For the magnetic field, after some simplifications, we have:

+ b′ (1) +
1

c
b (1) = 0

Ha≫1−−−−→ 0,

− b′ (−1) +
1

c
b (−1) = 0

Ha≫1−−−−→ 0

(5.47)

implying that the boundary conditions in (5.26) are satisfied for large Hart-
mann numbers.

From the asymptotic analytical solution of the velocity we can see exponen-
tially decreased profile where it maximizes in the core flow of the channel at
y = 0 and is equal to:

umax = u(0) = u
(
1− e−Ha

) Ha≫1−−−−→ u
Ha≫1−−−−→ 0, (5.48)

this exponentially velocity drop, according to [12], creates thin boundary layers
close to the walls of the channel with an order of thickness: δ = O

(
Ha−1

)
.

We will further verify this statement by comparing, the Hartmann layers in
the numerical solution.
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5.4 The Finite Volume Method for The Hartmann
Flow

Similar FVM formulation will be followed for the Hartmann flow:∫∫
CV

∂b

∂y
dxdy =

∫ n

s

∂b

∂y
dy

∫ e

w
1dx = b|ns∆x = (b|n−b|s)∆x =(

bN + bP
2

− bP + bS
2

)
∆x =

1

2
(bN − bs)∆x,∫∫

CV

∂2u

∂y2
dxdy =

∫ n

s

∂2u

∂y2
dy

∫ e

w
1dx =

∂u

∂y

∣∣∣∣n
s

∆x =

(
∂u

∂y

∣∣∣∣
n

− ∂u

∂y

∣∣∣∣
s

)
∆x =(

uN − uP
∆y

− uP − uS
∆y

)
∆x = (uN − 2uP + uS)

∆x

∆y
,∫∫

CV

∂u

∂y
dxdy =

∫ n

s

∂u

∂y
dy

∫ e

w
1dx = u|ns∆x = (u|n−u|s)∆x =(

uN + uP
2

− uP + uS
2

)
∆x =

1

2
(uN − uS)∆x,∫∫

CV

∂2b

∂y2
dxdy =

∫ n

s

∂2b

∂y2
dy

∫ e

w
1dx =

∂b

∂y

∣∣∣∣n
s

∆x =

(
∂b

∂y

∣∣∣∣
n

− ∂b

∂y

∣∣∣∣
s

)
∆x =(

bN − bP
∆y

− bP − bS
∆y

)
∆x = (bN − 2bP + bS)

∆x

∆y
,∫∫

CV
−dxdy = −

∫ e

w
dx

∫ n

s
dy = −∆x∆y.

5.4.1 Residual equations and numerical results of the descriti-
zation for the Hartmann Flow

x-momentum

1

2
Ha (bN − bS)∆x+ (uN − 2uP + uS)

∆x

∆y
+∆x∆y = 0, (5.49)

Induction x-momentum

1

2
Ha (uN − uS)∆x+ (bN − 2bP + bS)

∆x

∆y
= 0. (5.50)

Remark: These equations, (5.49) and (5.50) are the equations of difference
for the Hartmann problem. These equations hold for each computational
point in the domain and compose a linear algebraic system of equations.
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We validate the solution of the algebraic system of the Hartmann flow. In
the table 5.1 below observe, using as a golden standard the analytical solutions
in the inlet, the results by comparing the analytical to the numerical solution
at the channel outlet.

In figures 5.2 to 5.7, we observe the reduction of the velocity profile inside
the channel as we increase the Hartmann number, implying stronger magnetic
field. In the hydrodynamic case we observe that the maximum velocity is
umax = 0.5. Due to the Lorentz forces the maximum value drops and we
have: umax ≈ 0.48, 0.37, 0.25, 0.17, 0.12 and 0.1 for Ha = 1, 2, 4, 6, 8 and 10,
respectively. The Hartmann layers are more and more visible as the magnitude
of the magnetic field increases as shown in figure 5.8.

The magnetic field inside the channel, due to the insulating walls and the
conducting fluid, has a periodic form which can be seen in figures 5.9 to 5.14.
The increase of the Hartmann number creates a steeper profile of the magnetic
field as shown in figure 5.15.

RMS Velocity RMS Magnetic field

Area Ha = 1 Ha = 2 Ha = 1 Ha = 2

1.6529 · 10−2 8.6524 · 10−4 2.1329 · 10−3 2.2090 · 10−4 1.1121 · 10−3

4.5351 · 10−2 2.3122 · 10−4 5.6631 · 10−4 5.9014 · 10−5 2.9440 · 10−4

2.0812 · 10−2 1.0519 · 10−4 2.5792 · 10−4 2.6844 · 10−5 1.3365 · 10−4

1.1898 · 10−2 5.9878 · 10−5 1.4639 · 10−4 1.5279 · 10−5 7.6020 · 10−5

7.6894 · 10−3 3.8600 · 10−5 9.4345 · 10−5 9.8494 · 10−6 4.8987 · 10−5

Area Ha = 4 Ha = 6 Ha = 4 Ha = 6

1.6529 · 10−2 3.1142 · 10−3 3.8286 · 10−3 2.8555 · 10−3 3.8122 · 10−3

4.5351 · 10−2 8.1345 · 10−4 9.7631 · 10−4 7.4144 · 10−4 9.7069 · 10−4

2.0812 · 10−2 3.6810 · 10−4 4.3855 · 10−4 3.3505 · 10−4 4.3587 · 10−4

1.1898 · 10−2 2.0911 · 10−4 2.4841 · 10−4 1.9024 · 10−4 2.4685 · 10−4

7.6894 · 10−3 1.3467 · 10−4 1.5975 · 10−4 1.2249 · 10−4 1.5874 · 10−4

Area Ha = 8 Ha = 10 Ha = 8 Ha = 10

1.6529 · 10−2 4.5678 · 10−3 5.2448 · 10−3 4.5674 · 10−3 5.2448 · 10−3

4.5351 · 10−2 1.1441 · 10−3 1.3037 · 10−3 1.1438 · 10−3 1.3037 · 10−3

2.0812 · 10−2 5.0962 · 10−4 5.7592 · 10−4 5.0949 · 10−4 5.7591 · 10−4

1.1898 · 10−2 2.8760 · 10−4 3.2367 · 10−4 2.8752 · 10−4 3.2367 · 10−4

7.6894 · 10−3 1.8461 · 10−4 2.0730 · 10−4 1.8465 · 10−4 2.0730 · 10−4

Table 5.1: Root mean square of the velocity and the magnetic field as the
grid becomes finer for Ha = 1, 2, 4, 6, 8 and 10.
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Figure 5.2: Contour plot of the velocity for Ha = 1.
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Figure 5.3: Contour plot of the velocity for Ha = 2.
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Figure 5.4: Contour plot of the velocity for Ha = 4.
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Figure 5.5: Contour plot of the velocity for Ha = 6.

50



Chapter 5 5.4. The Finite Volume Method for The Hartmann Flow

Channel length

V
el
o
ci
ty

Figure 5.6: Contour plot of the velocity for Ha = 8.
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Figure 5.7: Contour plot of the velocity for Ha = 10.
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Figure 5.8: The velocity profiles of the Hartmann flow for different values of
the Hartmann number. The x-axis represents the diameter of the channel, L.
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Figure 5.9: Contour plot of the magnetic field for Ha = 1.
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Figure 5.10: Contour plot of the magnetic field for Ha = 2.
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Figure 5.11: Contour plot of the magnetic field for Ha = 4.
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Figure 5.12: Contour plot of the magnetic field for Ha = 6.
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Figure 5.13: Contour plot of the magnetic field for Ha = 8.
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Figure 5.14: Contour plot of the magnetic field for Ha = 10.
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Figure 5.15: The magnetic field profiles of the Hartmann flow for different val-
ues of the Hartmann number, multiplied with the respected Hartmann number
(bHa). The x-axis represents the diameter of the channel, L.
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What we know is a drop, what
we don’t know is an ocean.

Isaac Newton
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CHAPTER6
Magnetohydrodynamics

6.1 Introduction to the MHD Flow

Magnetohydrodynamics (MHD), is the study where an electrically conduct-
ing fluid flows with a velocity q̄ under the influence of a magnetic field B̄ [10].
This flow is usually described by an extended Navier-Stokes as well as Energy
model.

The additional terms in the Navier-Stokes and Energy equations are the
Lorentz force and Joule heating terms, respectively. The walls of the channel
are considered perfect insulators, such that any magnetically induced electric
currents in the fluid remain inside the flow [7].

In this chapter, the main focus lies in the flow of a electrically conducting
fluid, in the two-dimensional channel, while we apply a uniform, constant
in magnitude, magnetic field B0, for different angles, ϕ with respect to the
horizontal axis which can be depicted in figure 6.1.

Figure 6.1: The channel of the Magnetohydrodynamic case where the magnetic
field is constant in magnitude and applied with an angle, 0 ≤ ϕ ≤ π/2
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Chapter 6 6.1. Introduction to the MHD Flow

The MHD terms that formulate the system of equations are the Lorentz
force, J̄ × B̄, for the momentum equations and the Joule heating, J̄2, for the
Energy equation. The induced electric current and the Lorentz forces tend to
oppose the mechanisms which create them (fluid flow with the velocity field).
As a result, the Lorentz forces decreases the fluid flow [10].

It is convenient to simplify the system of equations and eliminate the electric
current density, J̄ . We assume for the density of the electric current that
J̄ = q̄ × B̄ and therefore the Lorentz force and the Joule heating terms can
be, respectively, written as [17]:

J̄ × B̄ =
(
q̄ × B̄

)
× B̄, J̄2 = J̄ · J̄ =

(
q̄ × B̄

)
·
(
q̄ × B̄

)
, (6.1)

where q̄ = (u, v, 0), and B̄ = (Bx, By, 0). We substitute and we get:

J̄ × B̄ =
(
−uB2

y + vBxBy,−vB2
x + uBxBy, 0

)
, J̄2 = (uBy − vBx)

2 (6.2)

As we mentioned above, we apply the magnetic field with an angle ϕ. Using
the definitions of the trigonometric functions we have for the magnetic field
components, Bx = B0 cosϕ and By = B0 sinϕ. Substituting the components
of the inducted magnetic field provides: B̄ = B0 (cos (ϕ) , sin (ϕ) , 0).

Since the magnetic field is independent from the spatial variables the In-
duction equation reduces to the Conservation of Mass. The Navier-Stokes
equations, in closed form, for each momentum are:

∂
(
u2
)

∂x
+

∂ (uv)

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
−

N
(
sin2 (ϕ)u− sin (ϕ) cos (ϕ) v

)
,

(6.3)

and

∂ (uv)

∂x
+

∂
(
v2
)

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
−

N
(
cos2 (ϕ) v − sin (ϕ) cos (ϕ)u

) (6.4)

and the Energy equation is:

∂ (uT )

∂x
+

∂ (vT )

∂y
=

1

Re Pr

(
∂2T

∂x2
+

∂2T

∂y2

)
+

EcN (u sinϕ− v cosϕ)2 +Φ,

(6.5)

where the dissipation function is,

Φ = 4

(
∂u

∂x

∂v

∂y

)
+

(
∂v

∂x
+

∂u

∂y

)2

. (6.6)
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6.2 The Finite Volume Method on the MHD Flow

The formulation for the conservative and diffusive terms remains the same
as introduced in Chapter 4. We present the formulation for the Lorentz force
and Joule heating in momentum and energy equations.
x momentum ∫∫

CV
sin2 ϕ u dxdy = sin2 ϕ uP ∆x∆y,∫∫

CV
sinϕ cosϕ v dxdy = cosϕ sinϕ vP ∆x∆y,

y momentum ∫∫
CV

cos2 ϕ v dxdy = cos2 ϕ vP ∆x∆y,∫∫
CV

sinϕ cosϕ u dxdy = cosϕ sinϕ uP ∆x∆y,

Energy equation∫∫
CV

(u sinϕ− v cosϕ)2 dxdy = (uP sinϕ− vP cosϕ)2∆x∆y.

6.2.1 Residual equations, numerical results of the descritiza-
tion for the MHD Flow

In summary, the residual equations discretized with the Finite Volumes
Method on the equations formulating the MHD Flow are:
Conservation of Mass

1

2
(uE − uW )∆y +

1

2
(vN − vS)∆x = 0, (6.7)

x momentum

1

2

(
u2E − u2W

)
∆y +

1

2
(uNvN − uSvS)∆x = − (pE − pP )∆y+

+
1

Re

(
(uE − 2uP + uW )

∆y

∆x
+ (uN − 2uP + uS)

∆x

∆y

)
−

−N
(
sin2 ϕ uP − sinϕ cosϕ vP

)
∆x∆y,

(6.8)
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y momentum

1

2
(uEvE − uW vW )∆y +

1

2

(
v2N − v2S

)
∆x = − (pN − pP )∆x+

+
1

Re

(
(vE − 2vP + vW )

∆y

∆x
+ (vN − 2vP + vS)

∆x

∆y

)
−

−N
(
cos2 ϕ vP − sinϕ cosϕ uP

)
∆x∆y,

(6.9)

Energy Equation

1

2
∆y (uETE − uWTW ) +

1

2
∆x (vNTN − vSTS) =

1

RePr

(
∆y

∆x
(TE − 2TP + TW ) +

∆x

∆y
(TN − 2TP + TS)

)
−

− EcN (uP sinϕ− vP cosϕ)2∆x∆y−

− (uE − uW ) (vN − vS) +

(
vE − vW
2∆x

+
uN − uS
2∆y

)2

∆x∆y.

(6.10)

For the boundary conditions of the velocity, we applied parabolic profile at
the channel inlet and Newmann boundary conditions at the channel outlet.
For the boundary conditions of the pressure, we applied Newmann bound-
ary conditions at the channel inlet and at the channel outlet we assume zero
pressure. For the boundary conditions of the temperature, we applied the
higher order parabolic profile obtained from the Poiseuille flow, at the inlet
and Newmann boundary conditions at the outlet.

A main objective is, due to the lack of the analytical solution, the com-
parison of the effect that the magnetic field on the flow, for different angles,
with already published research. In [17], the effects and the Lorentz force is
examined on an aneurysmal geometry which is a different geometry from the
straight channel. As we present below, the results are of similar order of mag-
nitude, which can be explained by the difference in the geometric domain and
numerical method. The area of the cell is equal to 6.8301 · 10−4.The Stuart
number, N is equal to, 6.7000·10−3, 2.6800·10−2, 6.0300·10−2 and 1.0730·10−1

for each magnetic field magnitude, respectively.

Table 6.1 presents the maximum percentages of the fluid acceleration and
deceleration as well as the maximum percentages of fluid temperature variation
(increased and decreased temperature), at the boundary layer and channel
core, respectively. We can also observe the maximum percentage increase for
the point with the higher and lower pressure at the channel entrance.
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Chapter 6 6.2. The Finite Volume Method on the MHD Flow

Table 6.2 depicts similarly the percentages as in table 6.1. The case of
ϕ = π/3 presents the maximum acceleration and heating effect on the fluid,
whereas, the fluid decelerates the most at the case of ϕ = π/2 and is cooled
at the case of ϕ = π/6. The maximum percentage increase for the point with
the higher and lower pressure at the channel entrance is observed at the case
of ϕ = π/2.

In figure 6.2 we show the difference between the MHD and the Hydro-
dynamic velocity profile for various magnetic field intensities. The velocity
decelerates at the core flow of the channel as expected also from the litera-
ture [17]. The velocity accelerates in the boundary layers formed close to the
walls. The case of the most intense magnetic field (16T) effects the flow more
than any other magnetic field magnitude, which is a predictable outcome due
to the Lorentz forces.

Figure 6.3 shows the difference between the MHD and the Hydrodynamic
velocity profile for various angles under constant magnetic field magnitude.
The magnetic field applied with an angle creates similar acceleration in the
boundary layer and deceleration in the core flow. In this case however, this
behaviour does not appear to have a certain pattern due to the angle variation.
The case of π/3 has the maximum fluid acceleration and the case of π/2 has
the maximum fluid deceleration .

Figure 6.4 depicts the difference between the MHD and Hydrodynamic tem-
perature profile for various magnetic field magnitudes. Due to the application
of the magnetic field the temperature increases as expected, around the chan-
nel walls as the magnitude of the magnetic field rises. At the channel core
the temperature remains almost the same as it happens for the hydrodynamic
case.

The difference between the MHD and Hydrodynamic temperature profile for
various angles under constant magnetic field magnitude is depicted at figure
6.5. The differences in this cases are very small. The case of π/3 has the
maximum increase of the temperature close to the top channel wall, whereas,
the case of π/6 appears to have the higher decrease of the temperature close
to the bottom channel wall.

In figures 6.6 to 6.9 we can see the increase of the pressure at the channel
and the almost linear drop of it. This increase is called MHD pressure increase
documented in literature in many applications [19]. In figures 6.10 to 6.13 we
can see the increase of the pressure at the channel as well as the change in the
angle. The simultaneously increase and decrease of the velocity is explained
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due to the fact that the fluid conserves mass.

Acceleration Maximum Heating

Magnitude Velocity Pressure Temperature

4T 6.5047 · 10−1 18.7490 · 10±0 3.8654 · 10−1

8T 2.5102 · 10±0 75.0793 · 10±0 1.4559 · 10±0

12T 5.3359 · 10±0 168.9040 · 10±0 2.9951 · 10±0

16T 8.7974 · 10±0 300.1889 · 10±0 4.7684 · 10±0

Deceleration Minimum Cooling

Magnitude Velocity Pressure Temperature

4T −8.0592 · 10−1 18.5507 · 10±0 −1.0343 · 10−2

8T −3.0744 · 10±0 74.2218 · 10±0 −3.4517 · 10−2

12T −6.4166 · 10±0 166.9528 · 10±0 −6.1856 · 10−2

16T −1.0333 · 10+1 296.6945 · 10±0 −8.3059 · 10−2

Table 6.1: Maximum percentage of acceleration and deceleration of the veloc-
ity, at the outlet, maximum percentage of the pressure increase at the inlet for
the maximum and minimum values of it respectively and maximum percent-
age of heating and cooling of the fluid at the outlet, respectively, for various
magnetic field magnitudes.

Acceleration Maximum Heating

Angle Velocity Pressure Temperature

π/6 rad 1.8387 · 10±0 19.9168 · 10±0 1.2357 · 10±0

π/4 rad 2.6323 · 10±0 38.6923 · 10±0 1.7024 · 10±0

π/3 rad 3.0535 · 10±0 56.9992 · 10±0 1.9087 · 10±0

π/2 rad 2.5102 · 10±0 75.0793 · 10±0 1.4559 · 10±0

Deceleration Minimum Cooling

Angle Velocity Pressure Temperature

π/6 rad −1.0254 · 10±0 17.0870 · 10±0 −4.6408 · 10−1

π/4 rad −1.7255 · 10±0 35.4184 · 10±0 −2.9339 · 10−1

π/3 rad −2.4109 · 10±0 54.2074 · 10±0 −1.2739 · 10−1

π/2 rad −3.0744 · 10±0 74.2218 · 10±0 −3.4517 · 10−2

Table 6.2: Maximum percentage of acceleration and deceleration of the veloc-
ity, at the outlet, maximum percentage of the pressure increase at the inlet for
the maximum and minimum values of it respectively and maximum percent-
age of heating and cooling of the fluid at the outlet, respectively, for various
magnetic field angles.
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Figure 6.2: Profile of the u velocity, for various magnetic field magnitudes,
compared with the hydrodynamic case. As the magnetic field magnitude rises
the Hartmann layers become more visible.
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Figure 6.3: Profile of the u velocity, for various magnetic field angles, com-
pared with the hydrodynamic case. As the magnetic field angle increases, the
Hartmann layers become more visible.
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Figure 6.4: Profile of the temperature T , for various magnetic field magnitudes,
compared with the hydrodynamic case. As the magnitude rises the Hartmann
layers become more visible.

Channel height

T
M
H
D
−

T
H
Y
D

Figure 6.5: Profile of the temperature T , for various magnetic field angles,
compared with the hydrodynamic case. As the magnetic field angles increases,
the Hartmann layers become more visible.
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Figure 6.6: Contour plot of the velocity for B0 = 4T and ϕ = π/2.
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Figure 6.7: Contour plot of the velocity for B0 = 8T and ϕ = π/2.
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Figure 6.8: Contour plot of the velocity for B0 = 12T and ϕ = π/2.
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Figure 6.9: Contour plot of the velocity for B0 = 16T and ϕ = π/2.
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Figure 6.10: Contour plot of the pressure for B0 = 8T and ϕ = π/6.
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Figure 6.11: Contour plot of the pressure for B0 = 8T and ϕ = π/4.
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Figure 6.12: Contour plot of the pressure for B0 = 8T and ϕ = π/3.
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Figure 6.13: Contour plot of the pressure for B0 = 8T and ϕ = π/2.
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CHAPTER7
Ferrohydrodynamics

7.1 Introduction to the FHD flow

In the previous chapters the main objective is to study the fluid flow in a
channel under various circumstances, such as the application of non uniform,
constant in magnitude, magnetic field, vertical to the flow. The FHD case
is slightly different problem. In FHD the magnetic field is generated from a
source (point) outside or inside the flow.

Let’s assume a three-dimensional model of a channel geometry. We place a
wire which is electrically conducting, at a distance, α, to the channel and at
a distance, β, from the inlet of the channel. We apply an electric current at
the wire which will create an axisymetric magnetic field. In a two-dimensional
model this implies that the wire, or in this case, the source has coordinates
(α, β) as seen in figure 7.1 [4].

The distance where the source is placed at, as well as the magnitude of
the magnetic field, will determine how much the parameters we study will
change. The greater the distance of the source from the walls the greater the
magnitude of the magnetic field must be, in order for the magnetic field to the
change velocity and pressure profile [24].

As we mentioned in previous chapters, to study such problem we must
first formulate it mathematically. Similar to the MHD case, we introduce a
new term in the Navier-Stokes and Energy equations. Due to the formulation
which we will present below, we will use a different approach to the system of
equations for the FVM.

As in the Lorentz force and Joule heating in the MHD case, the non uniform
magnetic field in the FHD case is formulated by new terms in the system of
equations, µ0M∇̄H where M is a magnetization property, which describes
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Chapter 7 7.1. Introduction to the FHD flow

the behaviour of the fluid when it is exposed to a magnetic field [26]. A
linear equation for isothermal case is: M = χH, where χ is a constant called
magnetic susceptibility [25] and is given as,

H = H (x, y) =
√
H2

x +H2
y =

γ

2π

1√
(x− α)2 + (y − β)2

, (7.1)

where H, is the magnitude of the magnetic field generated by the electric
current carrying wire, where γ, is the magnetic field strength at the current
point.

Figure 7.1: The source of the magnetic field (concentric circles with center
(α, β)) and the parabolic profile of the velocity at the inlet of the channel.

The vector components of the magnetic field H̄ = (Hx, Hy) are respectively:

Hx (x, y) = − γ

2π

x− α

(x− α)2 + (y − β)2
,

Hy (x, y) =
γ

2π

y − β

(x− α)2 + (y − β)2
.

(7.2)

As usual we want to study the non dimensional equations from the governing
system. We will introduce the same non dimensional parameters in (2.21) and
for the new terms we will use the following formulation,

H̄ ′ =
H̄

H0
⇒ H ′ =

H

H0
, (7.3)
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where H0 = H (α, 0), is the magnitude of the magnetic field at the bottom
wall. The dimensionless magnitude of the magnetic field is as shown in figure
7.2:

H ′ =
H

H0
= − β√

(x− α)2 + (y − β)2
. (7.4)

Figure 7.2: Contours of the dimensionless magnitude with the wire placed at:
(5,−0.55). The bottom wall is at: y = −0.5 and the top wall is at: y = 0.5.

The system of non dimensional equations that formulate the FHD flow is,
along the Conservation of Mass which remains identially the same:(

q̄′ · ∇̄′) q̄′ = −∇̄′p′ +
1

Re
∇̄′2q̄′ +MnFH

′∇̄′H ′, (7.5)

Definition. MnF =
(
µ0χH

2
0

)
/
(
ρu20
)
is the magnetic number for the FHD

flow.

We expand the vector form of the equation (7.5), into the equations in each
momentum as follows: the Navier-Stokes equations for each momentum,

∂
(
u2
)

∂x
+

∂ (uv)

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
+MnF

1

2

∂H2

∂x
,

∂ (uv)

∂x
+

∂
(
v2
)

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
+MnF

1

2

∂H2

∂y
.

(7.6)
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7.2 The Finite Volume Method on FHD Flow

The new terms introduced in this flow are the ones that formulate the non
uniform magnetic field generated by the source at (α, β). We present the
formulation for the FVM for these terms as the other remain the same.
x-momentum∫∫

CV

∂H2

∂x
dxdy =

∫ e

w

∂H2

∂x

∫ n

s
1dy =

(
H2

e −H2
w

)
∆y =(

H2
E +H2

P

2
−

H2
P +H2

W

2

)
∆y =

1

2

(
H2

E −H2
W

)
∆y,

y-momentum∫∫
CV

∂H2

∂y
dxdy =

∫ n

s

∂H2

∂y

∫ e

w
1dx =

(
H2

n −H2
s

)
∆x =(

H2
N +H2

P

2
−

H2
P +H2

S

2

)
∆x =

1

2

(
H2

N −H2
S

)
∆x.

7.2.1 Residual equations and numerical results of the descriti-
zation for the FHD Flow

Conservation of Mass

1

2
(uE − uW )∆y +

1

2
(vN − vS)∆x = 0, (7.7)

x-momentum

1

2

(
u2E − u2W

)
∆y +

1

2
(uNvN − uSvS)∆x = − (pE − pP )∆y+

+
1

Re

(
(uE − 2uP + uW )

∆y

∆x
+ (uN − 2uP + uS)

∆x

∆y

)
+

MnF
1

4

(
H2

E −H2
W

)
∆y,

(7.8)

y-momentum

1

2
(uEvE − uW vW )∆y +

1

2

(
v2N − v2S

)
∆x = − (pN − pP )∆x+

+
1

Re

(
(vE − 2vP + vW )

∆y

∆x
+ (vN − 2vP + vS)

∆x

∆y

)
+

MnF
1

4

(
H2

N −H2
S

)
∆x.

(7.9)
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where for the formulation for the components of the magnetic field as well as
the magnitude of it we use apply the formulation for these parameters into the
spatial variables x and y as shown below for the point P . Similar formulation
is followed for the rest of the points E,W,N and S.

HP = − β√
(xP − α)2 + (yP − β)2

. (7.10)

Remark: These equations of differences hold for all Finite Volume cells in the
computational domain. For example if we have a 10× 10 computational
grid the equations of differences for this domain will be 100 × 3 = 300
algebraic equations.

From a numerical perspective, the magnetization terms that enter the gov-
erning equations due to the principles of FHD constitute a “source term”,
which locally is of a greater order of magnitude than the other terms and gives
rise to extended disturbances in the flow field, such as the formation of vortices.
This could lead to a stif numerical problem to solve. Thus, particularly for
high values of the magnetic parameter combined with high gradient magnetic
fields, the calculation of the numerical solution is not a trivial task [24].

For the boundary conditions of the velocity, we applied the parabolic pro-
file at the channel inlet and Newmann boundary conditions at the channel
outlet. For the boundary conditions of the pressure, we applied Newmann
boundary conditions at the channel inlet and at the channel outlet we assume
zero pressure.

In table 7.1 we depict the numerical results for the velocity and pressure.
We apply various magnetic field magnitudes in the flow with a fixed position
wire. Due to the creation of the vortices it is reasonable to examine the
maximum and the minimum values of the parameters. The magnetic field
source is placed at (α, β) = (2.5,−0.6). The non dimensional numbers are
equal to: Re = 300, MnF = −0.1563,−0.2251,−0.3064 and −0.4002, for each
magnetic field magnitudes, 0.7, 0.85, 1.0 and 1.15, respectively.

In figures 7.3, we observe the local, steep, drop of pressure, which is at the
position of the magnetic source. Higher magnitudes results in steeper drops.
This can be explained by the flow recirculation (creation of vortices), implying
that the fluid flows in the opposite direction The creation of vortices can also
be seen in [8], [22], [24], [25], and [26]. The maximum value at the channel
inlet reduces as the magnitude rises, representing a local stenosis. In figures
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7.4 to 7.7, we observe the effect of the magnetic field source at the fluid flow.
The vortices are present even at the lower magnitude, due to the close distance
of the wire. For magnitudes of 0.7, 0.85, 1.0 the maximum value of the flow
remains the same as the hydrodynamic case whereas, for 1.15 we observe a
slight increase of it. In all the case the flow at the channel outlet has become
fully developed.

Maximum Values

Magnitude Velocity Pressure

0.00T 9.9961 · 10−1 2.6620 · 10−1

0.70T 9.9961 · 10−1 2.5408 · 10−1

0.85T 9.9961 · 10−1 2.4799 · 10−1

1.00T 9.9961 · 10−1 2.3993 · 10−1

1.15T 1.0062 · 10±0 2.2915 · 10−1

Minimum Values

Magnitude Velocity Pressure

0.00T 0.0000 · 10±0 0.0000 · 10±0

0.70T −1.0072 · 10−1 −2.0222 · 10±0

0.85T −1.8304 · 10−1 −2.9890 · 10±0

1.00T −2.7724 · 10−1 −4.1293 · 10±0

1.15T −3.6600 · 10−1 −5.4322 · 10±0

Table 7.1: Maximum and minimum values of the velocity and the pressure
for various magnetic field magnitudes. The cell area is equal to 3.9137 · 10−4.
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Figure 7.3: The profile of the pressure for fluid particle close to the bottom
channel wall.
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Figure 7.4: Contour plot of the velocity for B0 = 0.7T.
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Figure 7.5: Contour plot of the velocity for B0 = 0.85T.
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Figure 7.6: Contour plot of the velocity for B0 = 1.0T.
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Figure 7.7: Contour plot of the velocity for B0 = 1.15T.
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Figure 7.8: Vortex created at B0 = 0.7T
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Figure 7.9: Vortex created at B0 = 0.85T
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Figure 7.10: Vortex created at B0 = 1.0T
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Figure 7.11: Vortex created at B0 = 1.15T
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CHAPTER8
Discussion and conclusion

In this thesis, the main objective was the numerical study of fluid flows
under the effect of an externally inducted magnetic field, using the principles
of MHD and FHD. The numerical solution was obtained by descritizing the
governing fluid flow equations, resulting from a non linear PDEs system to
a larger in size, non linear Algebraic one. The system is then solved using
Newton’s method, and trust region implementation.

Poiseuille flow: The first fluid flow problem studied in this thesis is the
Poiseuille flow, which describes the flow of a fluid inside a two dimensional
channel. An analytical solution can be found applying simplifications to the
governing equations. The analytical solution implies that the fluid velocity
has a second degree parabolic profile and the pressure drops linearly. The
velocity is then substituted into the energy equation which results in the an-
alytical solution of the fluid temperature, a fourth degree parabolic profile.
The numerical solutions match very well the analytical ones, introducing a
test problem for the validation of the numerical procedure.

Hartmann flow: The second fluid flow studied in this thesis is the Hartmann
flow, which describes the flow of an electrically conducting fluid, between two
parallel plates-walls, as an external induced magnetic field is vertically applied
to the channel bottom wall. The application of the magnetic field results to
increase of the fluid drag due to the Lorentz force opposing the fluid flow. The
drop of velocity results in the creation of the Hartmann layers. The magnetic
field in the channel is also studied, where due to the electrical conducting
fluid, it is affected. Applying simplifications to the governing equations results
to the analytical solution for the velocity as well as the magnetic field in
the channel. The numerical solutions match very well the analytical ones,
introducing another test problem for the validation of the numerical procedure.

In the following problems, there are no known analytical solutions, due to
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the non-linearity of the problem, therefore the validation will be based on
the matching results of the Poisseuille and Hartmann flow as well as already
published research.

Classical MHD flow: The third fluid flow studied in this thesis is the fluid
flow based on MHD principles which describes the flow of an electrically con-
ducting fluid, while an external magnetic field is applied with an angle ϕ.
Firstly, we study the case where the magnetic field is vertically applied while
the magnitude changes. The application of the magnetic field results in areas
where the fluid is accelerating and decelerating. Near the walls, symmetrical,
boundary layers are created where the fluid accelerates, while near the channel
core, the fluid decelerates due to the Lorentz force. The pressure is increased
at the channel inlet and similar, to the velocity, results can be observed for the
fluid temperature due to Joule heating, meaning that near the boundary layers
the fluid is heated whereas, near the channel core is slightly cooled. Secondly,
we study the case where a fixed in magnitude magnetic field is applied with
an angle ϕ. This results in the creation of boundary layers where the same
phenomena, as above, are observed, but due to the change of angle the results
are not symmetrical as in the case of the vertically applied magnetic field. The
results are the of same order of magnitude, of already published research [17].

FHD flow: The fourth and final fluid flow studied in this thesis is the fluid
flow based in FHD principles, which describes the fluid flow with enhanced
fluid conductivity so that it can be effected by an external magnetic field point
source, constant in magnitude. The source is an electrically conducting wire
placed close to the bottom wall. By applying an electrical current through
the wire, a symmetrical magnetic field is created, affecting the fluid in the
channel. The results are the creation of a main vortex near the magnetic field
source, changing the direction of the fluid, by the recirculation of the flow close
to the magnetic source. The pressure near the source is drastically decreased,
explaining the creation of the vortex. These pressure changes are similar to the
stenosis case of a channel. The results are the same with previously published
studies [24].

In summary, this thesis is an introduction to Computational Fluid Dynamics
where various problems, based on MHD and FHD principles, are formulated
and solved using FV descritization and numerical methods. The numerical
results are based on CFD code, developed in MATLAB (Release 2022a, The
MathWorks, Inc., Natick, Massachusetts, United States). The complexity of
the numerical solution is increased as the the equations given under consider-
ation to solve are coupled all together. The user given nodes of the partition
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increases the number of equations to solve and the DOF (degrees of freedom),
meaning the size of the system. This increases the computational cost of the
method, but produces more consistent results, compared to analytical solu-
tions where available.
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The important thing is not to
stop questioning. Curiosity has
its own reason for existing.

Albert Einstein
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CHAPTER9
Appendix

9.1 Descritization in Matlab

In order to calculate the parameters of each problem we will assign these
values when we need to calculate them

East:(i+1, j),West:(i−1, j),Center:(i, j),North:(i, j+1), South:(i, j−1) (9.1)

along with:
∆x = dx, ∆y = dy. (9.2)

We will use the general parameter f to describe the method for the general
case, where we can substitute the unknown parameters of the dimensionless
equations of each problem as shown for the edges E,W,N,S:

fE = f(i+ 1, j), fW = f(i− 1, j), fN = f(i, j + 1), fS = f(i, j − 1)

and for the center P:
fP = f(i, j).

The parameters i and j obtain values from 1 toK+2 and 1 to J+2 respectively.
The values at the points: (1, 1), (1, J +2), (K +2, 1), (K +2, J +2) shown the
four corners of the tube, bottom left, top left, bottom right and top right
respectively. The greater the values of K and J are the finer the grid is due
to the fact that,

dx = L/(K + 1)
K→∞
====⇒ dx → 0,

dy = M/(J + 1)
J→∞
====⇒ dy → 0,

(9.3)

where L is the length of the tube and M is the distance between the two walls
(tube diameter). By bringing the wanted equations to the form of g(i, j) = 0
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we can use the FSOLVE numerical routine in Matlab to minimize the left
part of the equations close to zero giving a very good approximation. For the
Boundary Conditions on the Matlab, on the walls can be described via the
values of (i, j). The bottom wall can be described by i = 1, . . . ,K + 2 and
by fixing the value j = 1. The top wall can be described by i = 1, . . . ,K + 2
and by fixing the value of j = J + 2. The inlet can be described by fixing the
value of i = 1 and by j = 1, . . . , J + 2. The outlet can be described by fixing
the value of i = K + 2 and by j = 1, . . . , J + 2.
A Newmann Boundary Condition can be written in the following form in
Matlab. For the general case we will use a general flux parameter f , where f
is a scalar function,

∂f

∂x
= 0, at bottom wall ⇒ f(i, 2)− f(i, 1)

dx
= 0 ⇒

⇒ f(i, 2) = f(i, 1), where i = 1, . . . ,K + 2,

∂f

∂x
= 0, at top wall ⇒ f(i, J + 2)− f(i, J + 1)

dx
= 0 ⇒

⇒ f(i, J + 2) = f(i, J + 1) = 0, where i = 1, . . . ,K + 2.

(9.4)

Another example is the Neumann Boundary Conditions at the outlet of the
tube for the u, v velocities of the Poiseille Flow,

∂f

∂y
= 0, at the inlet ⇒ f(2, j)− f(1, j)

dy
= 0 ⇒

⇒ f(2, j) = f(1, j), where j = 1, . . . , J + 2,

∂f

∂y
= 0, at the outlet ⇒ f(K + 2, j)− f(K + 1, j)

dy
= 0 ⇒

⇒ f(K + 2, j) = f(K + 1, j), where j = 1, . . . , J + 2.

(9.5)

The no-slip condition for the general parameter f , on the walls of the tube
can be described as:

f(i, 1) = 0, at the bottom wall,

f(i, J + 2) = 0, at the top wall.
(9.6)
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Figure 9.1: Schematic of the Finite Volume discretization in Cartesian Coor-
dinates in Matlab

Figure 9.2: The coordinates of the four corners of the channel in Matlab
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9.2 Structure and performance of the code

The structure of the code is based on different functions, which are called
through a main one. In this function we input the fluid and geometry param-
eters such as the area of the grid, the length and the height of the channel, as
well as the non-dimensional numbers and fluid properties.

We create a new function where we supply the algebraic system of equations
which is called through the main function so that the solver minimizes the
residuals. In this function another one is called which sets the coordinates
for the channel-domain as well as the boundary conditions for the unknown
parameters at the inlet, outlet, top and bottom wall respectively.

After the solver successfully minimizes the residuals we have obtained the
numerical solution of the system, the main function displays the contour plots
and the fluid variables such as velocity and pressure, as well as the errors of
the method through a norm.

Building such a code helps the user to understand the implementation of
the method as well as different procedures in already developed CFD algo-
rithms. Another advantage of this structure is the convenient change of the
algebraic system and the boundary conditions, meaning that we can solve mul-
tiple problems by changing these two functions. This is the basic structure of
a CFD (Computational Fluid Dynamics) code developed in this thesis.

According to [11], we have a pre-processor which are the inputs of the
parameters, the coordinates of the domain as well as the boundary conditions,
a solver which is the function which solves the algebraic system of residual
equations and finally the post-processor where the visualization of the problem
is displayed through contour and vector plots. Our objective is to solve these
algebraic equations over fine grids which means that the values of K and J
are increased. This creates bigger loops, where more time is needed.

The appropriate options for the solver, in this case forward differences, the
correct structure of the code as the loops grow in size, in our case preallocating,
as well as the minimization of the numbers of the nested loops, when it is
allowed, give relative low evaluation time as the grid gets finer. In figure 9.3
below we can see the evaluation time the computer needed to calculate the
numerical solution as the grid becomes finer.

The time needed for a converged solution also depends on the nature of the
differential equations that formulate each problem, meaning that if a system
of equations is non linear, the algorithm needs more time for the convergence
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of the solution comparing with a linear system of equations.

In conclusion, for a CFD code to work effectively, meaning that the algo-
rithm can run in a relative small amount of time, a PC with good specifications
can contribute in the process but it is also necessary the appropriate structure
of the algorithm. The code developed in this study can achieve results that
can hold very well against already developed codes in the CFD market, and
results in a better understanding of these codes. More specifically the user can
understand the background work that such code functions utilizing the FVM.

9.3 Non dimensional numbers calculations

For the problems studied in this thesis, we applied specific values for the
non dimensional numbers. So, we introduce the following dimensionless pa-
rameters,

Re =
ρu0L

µ
, N =

σLB0

ρu0
, MnF =

µ0χH
2
0

ρu20

Pr =
cpµ

k
, Ec =

u20
cpTmean

.

(9.7)

In order to assign values to the dimensionless numbers above we will study
a realistic case, which is the blood flow in a channel [8]. For this case we
have: density ρ = 1050 kg m−3, dynamic viscosity µ = 3.2 · 10−3 kg m−1 s−1,
characteristic velocity u0 = 4.0 · 10−2 m s−1 and characteristic length of the
channel: L = 0.022 m. For the characteristic temperature we assumed that
is equal to the integral of the temperature profile at the inlet divided by the
number of nodes at y-axis (J = 120), or:

Tmean =
1

J

∫ 1
2

− 1
2

T (y) dy = 14 (9.8)

because we have a parabolic profile at the inlet. The electrical conductivity of
blood is σ = 0.8S/m, the thermal conductivity is k = 2.2 ·10−3J/ (m sK) and
the heat capacity is cp = 14.64J/kgK. The magnetic permeability of vacuum
is µ0 = 4π · 10−7 N/A2 and the magnetic susceptibility is χ = −6.6 · 10−7.

Substitute the values to equations (9.7) gives: Re ≈ 300, Pr ≈ 21, Ec =
7.8011 · 10−6. For the values of the non dimensional numbers N and MnF we
apply the values above and different magnetic field magnitudes depending on
the problem under consideration.
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9.4 Speed up and Residuals of the algorithm

As observed during the study, as the problems become more complicated,
additional computational power was needed for the correct convergence of the
numerical solution. This means that a finer grid creates a larger in size system
of equations for the solver to minimize. This task in many cases can be very
time consuming. For this cause, the usage of “parallel pool” is a helpful tool
to decrease the time needed. The parallel pool assigns work load in each
CPU the user allocates. Many last generation, or higher end CPUs have up
to 12 physical cores or more, to be used for such problems. The work load
of the algorithm was tested for a specific grid and specific parameters of the
Poiseuille flow. In the table below, we present the results after various parallel
evaluations. The evaluation time drops as the number of CPUs workers is
increased. The results below correspond to a grid of 100× 100 nodes for the x
and y axis respectively, or 10000 FVs and area of 9.8030 · 10−4 for Re = 300.

CPUs (cores) Evaluation time CPUs (cores) Evaluation time

1 1049.68s 0.00% 7 457.99s 56.37%

2 585.72s 42.20% 8 451.52s 56.98%

3 499.64s 52.40% 9 464.41s 55.76%

4 459.52s 56.22% 10 474.69s 54.78%

5 458.12s 56.36% 11 455.60s 56.60%

6 443.24s 57.77% 12 444.72s 57.63%

Table 9.1: CPUs used for the speed up test and the time evaluation. PC
specifications: Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz, 96GB RAM.

Figure 9.3: Percentage improvement for the parallel algorithm
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The main objective in the CFD algorithm developed in this study, is the
minimization of the functions that formulate the problems studied in Chapters
4, 5, 6 and 7. In table 9.2 we introduce the values of the function at each
iteration. At the final iteration the function is close enough for the solver to
stop the process as it has succeed in the minimization or in other words the
solver was converged.

Residuals for MHD flow

Iterations 4T 8T 12T 16T

0 2.1010 · 10−3 2.1010 · 10−3 2.1010 · 10−3 2.1010 · 10−3

1 1.4622 · 10−3 1.4622 · 10−3 1.4620 · 10−3 1.4618 · 10−3

2 1.3632 · 10−3 1.3653 · 10−3 1.3705 · 10−3 1.3789 · 10−3

3 1.1581 · 10−3 1.1652 · 10−3 1.1826 · 10−3 1.2113 · 10−3

4 7.3092 · 10−4 7.4642 · 10−4 7.8579 · 10−4 8.5353 · 10−4

5 9.8203 · 10−5 1.1117 · 10−4 1.4909 · 10−4 2.2985 · 10−4

6 5.5113 · 10−6 6.7946 · 10−6 1.1135 · 10−5 2.3244 · 10−5

7 7.4917 · 10−10 9.8746 · 10−10 2.0159 · 10−9 6.3107 · 10−9

Iterations π/6 rad π/4 rad π/3 rad π/2 rad

0 2.1010 · 10−3 2.1010 · 10−3 2.1010 · 10−3 2.1010 · 10−3

1 1.4622 · 10−3 1.4622 · 10−3 1.4622 · 10−3 1.4622 · 10−3

2 1.3632 · 10−3 1.3638 · 10−3 1.3645 · 10−3 1.3653 · 10−3

3 1.1581 · 10−3 1.1601 · 10−3 1.1625 · 10−3 1.1652 · 10−3

4 7.3073 · 10−4 7.3511 · 10−4 7.4036 · 10−4 7.4641 · 10−4

5 9.8095 · 10−5 1.0163 · 10−4 1.0599 · 10−4 1.1112 · 10−4

6 5.5075 · 10−6 5.8511 · 10−6 6.2788 · 10−6 6.7946 · 10−6

7 7.6566 · 10−10 8.3464 · 10−10 9.0963 · 10−10 9.8746 · 10−10

Residuals for FHD flow

Iterations 0.5T 0.6T 0.7T 0.8T

0 8.9581 · 10−3 1.1701 · 10−2 1.6235 · 10−2 2.3182 · 10−2

1 5.9864 · 10−3 8.3925 · 10−3 1.2431 · 10−2 1.8719 · 10−2

2 3.6604 · 10−3 5.3106 · 10−3 8.1462 · 10−3 1.2762 · 10−2

3 2.6500 · 10−3 3.8785 · 10−3 6.0391 · 10−3 9.2200 · 10−3

4 1.7130 · 10−3 2.5151 · 10−3 3.9141 · 10−3 5.8834 · 10−3

5 5.2198 · 10−4 7.7775 · 10−4 1.2342 · 10−3 1.8911 · 10−3

6 4.0361 · 10−5 4.8754 · 10−5 7.3189 · 10−5 1.2037 · 10−4

7 1.2546 · 10−9 7.6934 · 10−9 7.5592 · 10−8 5.6223 · 10−7

Table 9.2: Residuals reduction for the MHD and FHD flows respectively.
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9.5 List of symbols

B̄ : Magnetic field induction (flux),

B0 : Magnetic field magnitude.

M : Magnetization,

H̄ : Magnetic field intensity,

H : Magnetic field magnitude,

χ : Magnetic susceptibility of the fluid,

γ : Local magnetic field strength at point (α, β),

σ : Electrical conductivity,

µ0 : Magnetic permeability of vacuum,

Jac : Jacobian matrix,

J̄ : Electric current density,

Ī : Electric current,

Ē : Electric field.

ρ : Density,

cp : Specific heat under constant pressure,

k : Thermal conductivity

T : Temperature,

Φ : Dissipation Function,

µ : Viscosity,

q̄ : Velocity,

ϕ : Magnetic field angle,

p : Pressure,

ν : kinematic viscosity,

f̄L : Lorentz force,

J̄2 : Joule heating,

s : Seconds.
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