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ABSTRACT

The current thesis aims to address two common challenges encountered in network meta-

analysis (NMA), the evaluation of consistency and the handling of multi-component interven-

tions. Consistency assessment is vital as the validity of the NMA findings is primary affected

by the satisfaction of this assumption. Significant discrepancies between direct and indirect

evidence may lead to biased NMA estimates. In particular, a brief overview of (N)MA

and the standard method used to evaluate consistency is presented. Additionally, a novel

method for identifying inconsistencies is proposed that evaluates network consistency both

globally and locally. This was accomplished by integrating the Stochastic Search Variable

Selection method into the NMA framework and treating inconsistency factors as variables in

a generalized linear model. Historical evidence and differences between direct and indirect

evidence that are considered of practical significant, can be also incorporated into the incon-

sistency detection process. The performance of the proposed method was evaluated in two

published networks under various scenarios. Furthermore, to facilitate the implementation

of the method, the user-friendly R-package ssifs was developed and published on CRAN.

Concerning the handling of multi-component interventions, novel ways of visualizing NMA

results are proposed that allow for the easy identification of the most efficacious components,

exploration of the network’s geometry and examination of the components’ behaviour. To

implement these tools, the user-friendly R-package viscomp was developed and published on

CRAN. Lastly, some concluding remarks and suggestions for future research are provided.

iv



ΠΕΡΙΛΗΨΗ

H sugkekrimènh diatrib  stoqeÔei sthn antimet¸pish dÔo suqn¸n problhm�twn pou sunan-

t¸ntai sthn meta-an�lush diktÔou, thn axiolìghsh thc upìjeshc thc sunèpeiac kai ton qeirismì

paremb�sewn poll¸n sunistws¸n. H axiolìghsh thc upìjeshc thc sunèpeiac eÐnai kom-

bik c shmasÐac, kaj¸c h axiopistÐa twn apotelesm�twn thc meta-an�lushc diktÔou exart�-

tai se meg�lo bajmì apì aut  thn upìjesh. Meg�lec diaforèc metaxÔ �meshc kai èmmeshc

plhroforÐac mporeÐ na odhg sei se merolhptik� apotelèsmata. Sthn diatrib  arqik� gÐnetai

mia anaskìphsh thc meta-an�lushc kai thc meta-an�lushc diktÔou, kaj¸c kai twn suqn¸n

mejìdwn pou qrhsimopoioÔntai gia thn axiolìghsh thc upìjeshc thc sunèpeiac. 'Epeita

parousi�zetai mia kainotìma mèjodoc gia thn eÔresh asunepei¸n sto dÐktuo, h opoÐa èqei thn

dunatìthta na aniqneÔei topik� pou up�rqoun asunèpeiec kai na axiologeÐ genik� to dÐktuo

an plhreÐ thn upìjesh thc sunèpeiac. Autì epitugq�netai antimetwpÐzontac to montèlo thc

meta-an�lushc diktÔou wc èna montèlo palindrìmhshc kai qrhsimopoi¸ntac thn mèjodo sto-

qastik c anaz thshc epilog c metablht¸n. Shmantik� pleonekt mata pou prosfèrei h pro-

teinìmenh mèjodoc eÐnai h dunatìthta eÔreshc asunepei¸n qrhsimopoi¸ntac exwterik  plhro-

forÐa, kai h eÔresh asunepei¸n b�sei diafor¸n pou jewroÔntai praktik� shmantikèc. H

proteinìmenh mèjodoc axiolog jhke se dÔo dhmosieumèna dÐktua meta-an�lushc upì di�fora

sen�ria. Epiprìsjeta, gia thn eÔkolh qr sh thc mejìdou, kataskeu�sthke to statistikì

pakèto ssifs, to opoÐo eÐnai dhmosieumèno sto CRAN. Anaforik� me ton qeirismì paremb�sewn

poll¸n sunistws¸n, proteÐnontai nèoi trìpoi optikopoÐhshc twn apotelesm�twn thc meta-

an�lushc diktÔou, oi opoÐoi epitrèpoun thn eÔkolh eÔresh twn pio apotelesmatik¸n sunist-

ws¸n, thn diereÔnhsh tou diktÔou kai thc sumperifor�c twn sunistws¸n. Gia thn eÔkolh

qr sh twn proteinìmenwn ergaleÐwn optikopoÐhshc twn apotelesm�twn thc meta-an�lushc

diktÔou, kataskeu�sthke to statistikì pakèto viscomp, to opoÐo eÐnai dhmosieumèno sto

CRAN. Tèloc paratÐjentai orismènec katalhktikèc parathr seic kai prot�seic gia mellon-

tik  èreuna.
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Chapter 1

Network Meta-Analysis

In systematic reviews, meta-analyses are typically conducted when only two interventions

for a given indication are compared in the included studies (Nikolakopoulou et al., 2014b).

For example, if the study aims at comparing the efficacy of two paracetamol drugs for treat-

ing head-pain symptoms, then meta-analysis should be conducted using the studies that 1)

compare these drugs head-to-head and 2) include the pain level as an outcome. Meta-analysis

generally provides an improved level of precision for the summary effect estimates. Also, it

may provide insight into issues that cannot be addressed by single trials, since heterogeneity

can provide valuable insight into the population and conditions under which an intervention

is effective. However, it is not uncommon for a given indication to have several interventions

available. In this case, pair-wise meta-analysis cannot provide adequate answers to crucial

research questions, such as which interventions are the ”best”, under which conditions, and

which interventions have an optimal balance of benefits and harms. If for example, the re-

search question concerns the comparative effectiveness of the various paracetamol drugs in

reducing pain symptoms, pair-wise meta-analysis cannot be used to determine which drug

is the more effective.

The extension of pair-wise meta-analysis to multiple comparisons is termed Network

Meta-Analysis (NMA) (Seitidis et al., 2022a; Mavridis et al., 2015; Salanti et al., 2008; Lu

and Ades, 2004; Caldwell et al., 2005). It was firstly introduced by Lumley (2002) and

it is also referred in the literature as multiple-treatment meta-analysis or mixed-treatment

comparison (Druyts et al., 2013; Lu and Ades, 2006; Mills et al., 2011; Salanti, 2012). The

rationale behind NMA is that we synthesize jointly both sources of evidence, direct and

indirect. Suppose that we have a set of studies comparing treatments A versus B and A versus

C. It should be noted that that we do not have direct evidence for the comparison B versus

C since there are no studies comparing these two treatments (Figure 1.1a). However, the

comparisons AB and AC use treatment A as a common comparator. Hence, by subtracting
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the difference between AB and AC, we can indirectly infer about the comparison BC.

(a) Studies that compare B versus C are ab-
sent. Only indirect evidence for the compar-
ison BC is available.

(b) Studies that compare B versus C are
present. Both direct and indirect evidence
are available for the comparison BC.

Black solid lines denote the direct evidence, while red dashed line denotes the indirect evi-

dence.

Figure 1.1: Example of a ABC network.

Due to its efficiency, NMA has been used extensively for estimating the relative efficacy

of multiple interventions (Nikolakopoulou et al., 2014a). A systematic review showed an

increasing rate of published NMAs, with 456 NMAs of RCTs including at least four different

interventions published between 1999 and 2015 (Petropoulou et al., 2017). Moreover, inter-

national organizations like the World Health Organization (WHO), the National Institute

for Health and Care Excellence (NICE), the National Health Service (NHS) in the United

Kingdom, have established NMA as a powerful tool for evidence synthesis in order to pro-

vide useful insight for decision-making (Salanti, 2012). Advantages of NMA include more

precise estimates since all the relevant evidence, direct and indirect, is harvested jointly. As

a consequence, estimates of comparative efficacy between interventions that have never been

compared head-to-head can be obtained. Another important advantage is that it can pro-

vide information with respect to the relative ranking of interventions for a specific outcome

(e.g., efficacy or safety). To emphasize further the benefits of NMA compared to pairwise

meta-analysis, an empirical study showed that network estimates are more precise than their

pairwise counterparts and in 20% of the cases (10 out of 49) the network estimates showed

statistical significance that we wouldn’t have attained based on simple meta-analysis alone

2



(Nikolakopoulou et al., 2018).

The implementation of NMA can be performed using a variety of models in a frequentist

or a Bayesian setting. These include treating the NMA model as a weighted meta-regression

model (Lumley, 2002), a hierarchical model (Lu and Ades, 2004), a multivariate meta-

analysis (White, 2015), or an application of graph theory to electrical networks (Rücker,

2012), among other approaches.

1.1 Presentation of Network Meta-Analysis Results

The first step for the presentation of the NMA results is to visualize the geometry of the

network. The network plot is used to display how treatments are ”connected” with each

other. Interventions/treatments are denoted by nodes, where the size of the node is usually

proportional to the number of participants randomized in the corresponding node. Nodes

are connected with an edge, if there is at least one study that compares them directly. The

thickness of the edge could be used to demonstrate the number of studies that compares

the corresponding nodes or to reflect the standard error in the corresponding comparison.

A real example of a network plot is presented in Figure 1.2, which compares the relative

effects of no contact (reference), self-help, individual counseling and group counseling on

smoking cessation, reported by the Agency for Health Care Policy and Research smoking

cessation guideline panel (Lu and Ades, 2006). The network plot indicates that most of the

studies evaluates the effectiveness of individual counseling compared to no contact, and most

participants have been also randomized in these two nodes.
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Edge’s thickness and node’s size is analogous to the number of direct treatment comparisons

and participants, respectively.

Figure 1.2: Network plot for the smoking cessation example.

NMA results are typically presented through the forest plot. Forest plot displays the

treatments’ effect estimate with the corresponding confidence intervals, compared to a pre-

specified reference treatment. Usually, placebo or standard (usual) care is used as a reference.

Figure 1.3 presents a forest plot for the smoking cessation example. The plot indicates that

the interventions individual counseling and group counseling significantly increases the prob-

ability of smoking cessation, since the corresponding confidence intervals do not cross the

line of no-effect (red dashed line). Note also, that the intervention no-contact is used as a

reference category.
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The effectiveness of the interventions is measured by using the odds ratio as summary mea-

sure. Axis x is displayed on a logarithmic scale for a better representation of odds ratios

below 1.

Figure 1.3: Forest plot for the smoking cessation example.

A drawback of the forest plot is that in large networks with many nodes and comparisons,

the presentation of the NMA results may be challenging. For this reason, the league table

could be used instead, which displays all the available treatments’ effect estimates. Consider

a network with T nodes. The league table will be a T×T matrix which presents the available(
T
2

)
= T (T−1)

2
treatment effect estimates. Diagonal elements refer to the names of the nodes,

while off-diagonal elements refer to the comparison between the nodes of the underlying

column and row. The lower triangle of the league table is equivalent with the upper triangle,

with the only difference that the upper triangle is in the opposite direction. For example, if
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the element of the 1st row and 2nd row refer to the comparison A versus B, the corresponding

element of the 2nd row and 1st column will refer to the comparison B versus A. For that

reason, to simplify the league table we usually exclude the first upper triangle.

Table 1.1: League table displaying the odds ratio estimates with the corresponding 95%
confidence intervals, for the smoking cessation example.

No contact 1.52 [0.74, 3.12] 2.08 [1.36, 3.20] 2.47 [1.10, 5.52]

0.66 [0.32, 1.36] Self-help 1.37 [0.65, 2.89] 1.63 [0.67, 3.93]

0.48 [0.31, 0.74] 0.73 [0.35, 1.53] Individual counseling 1.18 [0.55, 2.55]

0.41 [0.18, 0.91] 0.62 [0.25, 1.49] 0.84 [0.39, 1.82] Group counseling

NMA provides a hierarchy of the interventions based on the effectiveness or the safety, by

using either the P-scores in the frequentist framework (Rücker and Schwarzer, 2015), or the

surface under the cumulative ranking (SUCRA) in the Bayesian framework (Salanti et al.,

2011); P-scores and SUCRAs range between 0-1. A value equal to 1 indicates that the certain

intervention is the best, while a value equal to zero indicates that is the worst (Rücker and

Schwarzer, 2015; Salanti et al., 2011). These two metrics can be also visualized through the

rankogram (Salanti et al., 2011; Rücker et al., 2022) . Mavridis et al. (2020) have extended

P-scores to multiple outcomes and to account for minimum clinical important differences.

Table 1.2 and Figure 1.4 indicate that the best intervention is the group counseling followed

by the individual counseling, since they associated with the largest P-scores and probabilities

to be ranked in the first places.
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Table 1.2: P-scores for the smoking cessation example.

Intervention P-score

Group counseling 0.8376

Individual-counseling 0.7103

Self-help 0.4042

No contact 0.0479
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Abbreviations: A = no contact, B = self-help, C = individual counseling, D = Group

counseling.

Figure 1.4: Rankogram for the smoking cessation example.
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1.2 Transitivity

The validity of any statistical method depends on the plausibility of the assumptions

made. The most fundamental assumption in NMA is that of transitivity, also known as

similarity assumption (Seitidis et al., 2022a; Salanti, 2012; Donegan et al., 2010; Jansen and

Naci, 2013), which refers to the ability to learn through the indirect evidence. We discuss

several manifestations of the transitivity assumption. To illustrate the concepts, we will

use a network of three interventions forming a closed ABC loop in the sense that all direct

comparisons are observed (see Figure 1.1b).

Firstly, the definition of the treatments (nodes) in the network must be similarly defined

across trials (Salanti, 2012). For example, in the ABC network of Figure 1.1b, we obtain

the indirect estimate of BC using treatment A as common comparator. Hence, treatment A

must be similarly defined in AB and AC trials. For example, if treatment A is given as a

pill to the participants of AB trials and as an injection to the participants of AC trials, it is

quite possible that transitivity is violated.

Secondly, the missing treatments in each trial must be missing at random (MAR) (Salanti,

2012). This implies that the probability of the treatment being missing is independent of the

outcome (Lu and Ades, 2006). In practice, it is difficult to defend this assumption, but there

are several reasons that indicate a violation. For example, when the purpose of comparing a

drug with placebo or other suboptimal interventions is to demonstrate its efficacy. Generally,

defending transitivity in sparse networks is more intensive. This is because in sparse net-

works where interventions are compared with only one common intervention (star networks)

or just a few, it requires a judgement whether the missing edges are due to chance or because

the trialist expected unwelcome results from them. A further consideration is whether the

chronological order of interventions overlaps. Consider a recent intervention. Clearly, it is

not possible to evaluate the efficacy of this intervention from past studies, whose results may

be affected by the year in which they were published (Mavridis et al., 2016). Transitivity

may be also violated in such a case for two potential reasons: 1) substantial changes in the

definition of treatments; i.e. changes in the standard of care; 2) studies previously indicated

exaggerated effect sizes as a result of low quality and publication bias (Seitidis et al., 2022a).

NMA assumes that all participants could have been randomized to any of the available

treatments and the assumption of transitivity is violated if this is not the case (Salanti,

2012). Suppose in our network that treatment A is a first-line treatment, and treatments B

and C could be either first or second-line treatments; second-line treatment implies that the

participant has received it as a ”stronger” treatment because the initial one failed to help
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him or had stopped working. Therefore, it is not plausible to assume that participants in

BC trials would have a similar treatment effect if they had been assigned to AC trials.

Treatment’s efficacy many times depends on several participants’ characteristics (effect

modifiers) such as age, gender, baseline risk or year of randomization. Transitivity assumes

that the distribution of effect modifiers is similar across treatment comparisons (Salanti,

2012; Jansen and Naci, 2013). For example, if age is an effect modifier and the mean age of

AC trials differs significantly from the mean age of AB trials, then transitivity assumption is

violated. It should be noted that if age differs within AC (or AB) trials, but the mean and

the variability of the participant’s age between AB and AC trials are similar, transitivity

assumption holds.

1.3 Inconsistency

A key assumption of NMA is that of consistency which implies that the direct evidence is

in agreement with the indirect evidence. Also, through this assumption we can statistically

evaluate the transitivity assumption.

Consider the simple case, where a network is created from studies comparing treatments

A, B and C; assume that only two-arm studies are available, and all possible direct com-

parisons (AB, AC, BC) are observed. Consistency implies that the direct evidence of BC

comparison is in agreement with the indirect evidence of BC. This is expressed mathemati-

cally as

µDIR
BC = µIND

BC = µDIR
AB − µDIR

AC (1.1)

where upper index ”DIR” and ”IND” refer to the direct and indirect evidence, respectively.

Inconsistency arises when direct and indirect evidence differ substantially. It is broadly split

in two categories, the loop and the design inconsistency (Higgins et al., 2012).

Loop inconsistency refer to inconsistencies in closed-loops such as the ABC loop of Figure

1.1b. Design inconsistency refer to inconsistencies among studies involving different sets of

treatments. Let assume that in the above ABC network there are also multi-arm studies

comparing the three treatments. If the effect size of BC comparison, obtained from the

multi-arm studies, differs substantially form the equivalent effect size from the BC studies

(studies comparing treatments B and C), then design inconsistency in the BC comparison

is present.
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1.4 Methods to Detect Inconsistency

A common practice for detecting inconsistencies in the NMAmodel is to use inconsistency

factors. For example, in the ABC example of Figure 1.1b we can evaluate the consistency

assumption by adding an extra term in the consistency equation (1.1). This expressed

mathematically as

µDIR
BC = µDIR

AB − µDIR
AC + w (1.2)

where w denotes the inconsistency factor for the ABC loop. By evaluating whether w = 0,

we can test the consistency assumption.

1.4.1 Global Methods

1.4.1.1 Lu & Ades

Lu and Ades (2006) proposed a global method for testing consistency in the network

by adding inconsistency factors to each treatment independent closed-loop; a closed-loop

is considered independent if it contains at least one edge which is not a part of any other

independent closed-loop (Seitidis et al., 2022b). Consistency is examined globally via a

chi-square test that evaluates if the sum of the inconsistency factors’ absolute values dif-

fers significantly from zero. The number of inconsistency factors, which is in addition the

number of inconsistency degrees of freedom (ICDF), is calculated as the number of the in-

dependent closed-loops. In the case where only two-arm studies are present, the number of

the independent closed-loops is specified using the following formula:

ICDF = K − T + 1,

where K denotes the total number of observed comparisons and T the total number of treat-

ments. In the case where multi-arm studies are also present, there is not any formula to

calculate the number of independent closed-loops.

A major drawback of the method is the fact the specification of the inconsistency fac-

tors is not unique and different parameterization may lead to different findings (Higgins

et al., 2012). The specification of inconsistency factor is performed manually by hand. This

could be a limitation of the method, because in complex network with many interventions

and comparisons, the specification of the inconsistency factor may be extremely challeng-

ing. Furthermore, the method accounts only for loop inconsistencies, ignoring the design

inconsistencies in the network.
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1.4.1.2 Design-by-Treatment Interaction Model

To free the issue of parameterization in the Lu & Ades model, Higgins et al. (2012)

proposed a method that accounts for both types of inconsistency, loop and design incon-

sistencies, namely design-by-treatment interaction model. Inconsistency factors are added

in the designs that includes a pair of treatments whose contrast can be estimated directly

from previous designs, or indirectly through the consistency assumption. The number of

inconsistency factors can be calculated from the following formula:

#IFDBT = dfDBT − dfNMA − T + 1,

where dfDBT denotes the degrees of freedom of the NMA model adjusted for inconsistencies

under the design-by-treatment method, dfNMA denotes the degree of freedom of the NMA

model and T denotes the total number of treatments included in the NMA model. The

specification of dfDBT is based on the following rationale:

� each design from two-arm studies contributes one point

� multi-arm designs with k arms contribute k-1 points

� dfDBT is calculated as the sum of the points from two-arm designs and multi-arm

designs.

After specifying the inconsistency factors, consistency is evaluated globally by using the

Wald statistic which follows a X2 distribution with #IFDBT degrees of freedom (White

et al., 2012).

1.4.1.3 Random-effects Implementation of the Design-by-Treatment Interac-

tion Model

A random-effects implementation of the design-by-treatment interaction model was pro-

posed by Jackson et al. (2014). It is an extension of the design-by-treatment model, in

which inconsistency factors are modelled by using random-effects, whereas fixed-effects are

used in the design-by-treatment model. The main advantage of the method is its ability to

incorporate study-level covariate effects that may mitigate the need for inconsistency factors

(Jackson et al., 2014). The method evaluates the consistency assumption in the Bayesian

framework using Markov Chain Monte Carlo (MCMC), by adding inconsistency factors to

each design. Inconsistency is evaluated by comparing the Deviance Information Criterion

(DIC) between the ”inconsistent” NMA model (model that includes inconsistency factors)

and the consistent NMA model (model without inconsistency factors).
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1.4.1.4 Q - Statistic

Heterogeneity in pairwise meta-analysis is usually assessed through the Cochran’s Q-

statistic (Higgins and Thompson, 2002). By decomposing the generalized Q-statistic consis-

tency in NMA can be evaluated globally (Krahn et al., 2013; König et al., 2013; Freeman

et al., 2019). More specifically, the overall variability in the network (Q) is split into two

sources. The variability due to within-design heterogeneity (denoted as Qhet), and between-

design heterogeneity (denoted as Qinc) which is also termed design inconsistency. Let assume

that θ̂ic and σ̂ic denote the treatment effect estimate and the standard error, respectively,

for the treatment comparison of design c where there are i studies available. Also, let θ̂c

and θ̂NMA
ic denote the summary direct and NMA estimate, respectively, for the treatment

comparison of design c. The overall Q-statistic is calculated using the following formula:

Q = Qhet +Qinc

where

Qhet =
∑
c

Qhet
c =

∑
c

∑
i

(
θ̂ic − θ̂c
σ̂ic

)2

Qinc =
∑
c

(
θ̂c − θ̂c

NMA

σ̂c

)2

.

Consistency is evaluated globally through the Qinc which follow a X2 distribution with

#IFDBT degrees of freedom. It should be noted that the use of the fixed-effects model within

designs may provide a more accurate way of identifying network inconsistencies (Krahn et al.,

2013).

1.4.1.5 Unrelated Mean Effects

Dias et al. (2013) proposed a method where the consistency assumption is evaluated

by comparing the NMA model with a NMA model that is not based on the consistency

assumption. More specifically, in NMA, estimates are derived by selecting one treatment

as reference. The comparisons between the reference treatment and the rest treatments are

termed basic parameters, while the rest comparisons are termed functional parameters. NMA

assumes that the basic parameters are normally distributed and calculates the functional

parameters as a linear combination of the basic parameters. For example, in the ABC

network of Figure 1.1, if we select treatment A as reference, the NMA model assumes

dAB ∼ N(0, σ2)
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dAC ∼ N(0, σ2)

where dAB and dAC denote the treatment effect of comparisons A versus B and A versus

C, respectively. The treatment effect for the comparison between treatments B and C is

calculated through the consistency assumption:

dBC = dAC − dAB.

In contrast, the unrelated mean effects (UME) model treats the functional parameters

as independent parameters and assumes that are normally distributed. Hence, in the ABC

network of Figure 1.1, the treatment effect of BC is derived by assuming dBC ∼ N(0, σ2). The

implementation of the method is performed in the Bayesian framework, and evaluation of

the consistency assumption could be performed either by comparing the DIC values between

the two models (NMA model and UME model), or by examining the contribution to the

posterior mean residual deviance (deviance contribution plot).

1.4.2 Local Methods

1.4.2.1 Loop Specific

Bucher et al. (1997) proposed a method for identifying inconsistencies in the network

by testing for each closed-loop whether the effect of the inconsistency factor is zero. In

addition, it is a two-stage method where at the first stage, the closed-loops where direct and

indirect evidence are available, are specified. At the second stage, differences between direct

and indirect evidence are identified, by adding an inconsistency factor w to the consistency

equation and testing via a Z-test whether w = 0. For example, in the ABC network of Figure

1.1, this expressed mathematically as

dDIR
BC = dIND

BC + w = dDIR
AC − dDIR

AB + w ⇔

w = dDIR
BC − dIND

BC = dDIR
BC − dDIR

AC + dDIR
AB ⇒

V ar(w) = V ar
(
dDIR
BC − dDIR

AC + dDIR
AB

)
= V ar

(
dDIR
BC

)
+ V ar

(
dDIR
AC

)
+ V ar

(
dDIR
AB

)
.

Consistency is evaluated by using the z-score of comparison BC zBC = w√
V ar(w)

, which follows

a standard normal distribution.

1.4.2.2 Separate Indirect from Direct Evidence (SIDE)

A Bayesian local method for identifying inconsistencies in NMA was proposed by Dias

et al. (2010), namely node-split method. The method separates the direct and the indirect
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evidence and tests whether there are substantial differences among these two sources of evi-

dence. More specifically, for any pair of treatments X and Y , inconsistency is identified by

comparing the posterior distribution of dDIR
XY and dIND

XY ; dDIR
XY is obtained from the studies

directly comparing treatments X and Y , while dIND
XY is calculated through the consistency

assumption.

The frequentist equivalent of the node-split method has been developed by White (2015),

termed side-splitting. A drawback of the model is that the selection of the reference treat-

ment in the NMA model may affect the conclusions about consistency; different parameter-

ization yield to different results. For that reason, the symmetric side-splitting method has

been developed, which addresses the issue of parameterization by symmetrically splitting

the inconsistency factor in multi-arm studies (White, 2015; Shih and Tu, 2021). Moreover,

Efthimiou et al. (2019) suggested a method that involves assessing direct and indirect evi-

dence separately. More specifically, for any pair of treatments X, Y that belong in at least

one closed-loop, the direct evidence (dDIR
XY ) is obtained by meta-analyzing the studies that

compare the corresponding treatments, while the indirect evidence (dIND
XY ) is obtained from

the NMA model by excluding the studies that compare directly the treatments X and Y .

Inconsistency is located by testing via a Z-test whether dDIR
XY − dIND

XY = 0.

Shih and Tu (2021) mention that the former ”node-split” models do not satisfy the

principle of independence between direct and indirect evidence; that is (1) changes in data

constituting the indirect evidence should not affect the direct evidence estimate (and its

standard error) (2) when the model implies no indirect evidence, the NMA estimate (and its

standard error) should be identical to the direct evidence estimate. Therefore, they proposed

a novel method based on the principle of independence, termed evidence-splitting approach,

which is implemented using structure equation modelling.

1.4.2.3 Back - Calculation

A two-phase method has been proposed by Dias et al. (2010) for checking inconsistency

in which the indirect evidence is back-calculated by considering the NMA estimates as a

weighted average of the direct and indirect evidence. These two sources of evidence are

considered independent, because they obtained from separate evidence sources. For any pair

of treatments X, Y included in the network, the indirect evidence of comparison X versus

Y (denoted as dIND
XY ) is obtained using the following formula:

d̂IND
XY =

(
d̂NMA
XY

V NMA
XY

− d̂DIR
XY

V DIR
XY

)
V IND
XY

14



1

V IND
XY

=
1

V NMA
XY

− 1

V DIR
XY

,

where d̂NMA
XY denotes the NMA estimate for the comparison between treatments X and Y ,

V NMA
XY the variance of d̂NMA

XY , d̂DIR
XY the treatment effect estimate of X versus Y obtained from

the studies comparing treatments X and Y , V DIR
XY the variance of d̂DIR

XY and V IND
XY denotes

the variance of d̂IND
XY . Consistency is evaluated by testing via a Z-test whether

wXY = dDIR
XY − dIND

XY = 0.

1.4.2.4 Net Heat Plot

Net heat plot developed by Krahn et al. (2013), is meant to visualize the sources of

inconsistency in the NMA model. It visualizes the Qinc statistic via a quadric-colored ma-

trix. Off-diagonal elements denote the change in inconsistency between direct and indirect

evidence in the NMA estimate of the corresponding row, when consistency in the design

of the corresponding column is relaxed (Rücker et al., 2022). Diagonal elements represent

the contribution of each design to the total inconsistency Qinc. The coloring of the boxes is

proportional to the evidence of inconsistency. A dark red color indicates strong evidence of

inconsistency, whereas a dark blue indicates that the evidence of the design in the column

supports the evidence in the row (consistency). As an additional feature, the contribution

of each design to the NMA relative effect estimate is displayed; the larger the size of the

grey box, the larger the contribution to the NMA estimate. Consequently, inconsistencies

are identified by locating those boxes with intense red colors and large contributions to the

NMA estimates. Although the net heat plot is an effective tool for identifying inconsistencies,

it may mask inconsistencies in large networks with numerous nodes and designs (Freeman

et al., 2019).

1.5 Inverse Variance NMA Model Adjusted for Incon-

sistency Factors

A commonly used model in NMA is the Inverse Variance (IV) NMA model (Salanti

et al., 2008). Let us consider that a systematic review resulted in a total of n studies, where

each study s = 1, . . . , n compares Ts treatments. From each study s, Ts − 1 comparisons

are included in the NMA model, because the rest can be obtained as a linear combination.

Hence, the NMA model ends up with a total of N =
∑n

s=1 (Ts − 1) comparisons. Let the

vector y = (y1, y2, . . . , yN)
′
contain the estimated contrasts across all studies, where each

yi denotes the uis ∈ 1, . . . , Ts − 1 contrast of study s ∈ 1, 2, . . . , n. The random-effects IV
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NMA model is described from the following equation:

y = Xµ+ β + ϵ, (1.3)

where XN×(T−1) denotes the design matrix and µ contains the basic contrasts (dimension

T −1). Vectors β and ϵ (dimension N) contain the normally distributed random-effects and

sampling errors, respectively, which are described from the following equations:

β ∼MNN(0,∆)

ϵ ∼MNN(0,Σ).

A common assumption in NMA is to assume common heterogeneity across different

treatment comparisons, which is reflected from the block diagonal structure of matrix ∆.

Covariance matrixΣ is assumed known and is obtained from the data (Franchini et al., 2012).

Design matrix X describes the observed treatment comparisons as a linear combina-

tion of the basic contrasts, embedding the consistency assumption. More specifically, the

columns and rows of the matrix reflect the basic contrasts and the treatments comparisons,

respectively. Hence, each comparison can be written as a combination of the basic contrast

by assigning values 1, 0, and -1 to the corresponding columns. For example, in the ABC

network of Figure 1.1b let assume that treatment A is used as reference; comparisons AB

and AC are considered as basic contrasts, while comparison BC as a functional comparison.

Let also assume that X1 and X2 corresponds to AB and AC, respectively . Comparisons

AB and AC are denoted in the design matrix by assigning 1 to the column that correspond

to the corresponding basic contrast and 0 elsewhere, while comparison BC is reflected by

setting X31 = −1 and X32 = 1. The design matrix ends up with the following form:

X =


AB AC

AB 1 0

AC 0 1

BC −1 1

.
The IV NMA model can be adjusted to include inconsistency factors, by adding an extra

term to the equation 1.3. In the case where p inconsistency factors are included in the NMA

model, it can be written as

y = Xµ+ β + Zb+ ϵ, (1.4)
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where ZN×p is an index matrix with elements values of 1, 0, -1 indicating in which com-

parisons inconsistency factors are added, and b = (b1, b2, . . . , bp)
′
denotes the inconsistency

factors’ coefficients.
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Chapter 2

Treating Inconsistency as a Variable

Selection Problem

In this chapter, we propose a novel method for detecting inconsistencies in NMA; differ-

ences between direct and indirect effect estimates. The method evaluates network consistency

both globally and locally, by treating the consistency assumption as a variable selection prob-

lem in a regression model. The chapter is structured as follows. We start by describing the

stochastic search variable selection method and the IV-NMA model. Then, we present our

novel method for identifying inconsistencies and evaluate its performance in two published

NMAs. Lastly, we discuss the benefits of the proposed method.

2.1 Stochastic Search Variable Selection

Stochastic search variable selection (SSVS), introduced by George and McCulloch (1993),

performs variable selection for linear regression models in the Bayesian framework, by re-

stricting the predictors’ coefficients close to zero according to their inclusion probabilities.

Due to its efficiency, it has been adapted for use in a broad range of modelling applications

(Dellaportas et al., 2000), including log-linear models (Ntzoufras et al., 2000), generalized

linear models (George and McCulloch, 1997; George et al., 1996), multivariate regression

(Brown et al., 1998), population pharmacokinetic models (Wakefield and Bennett, 1996),

factor analytic models (Mavridis and Ntzoufras, 2014; Dunson et al., 2006), building stock

portfolio in financial sector (George and McCulloch, 1996) and combining aggregate and

individual participant data (IPD) in component NMA (Efthimiou et al., 2022).

Let assume that we have set of n observations and a linear regression model that includes
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predictors X1, X2, . . . , Xp, as described in the equation bellow:

y = a+ b1X1 + b2X2 + . . .+ bpXp + ϵ, ϵ ∼ N(0, σ2) (2.1)

where y denotes the dependent variable, b = (b1, b2, . . . , bp) the coefficients of the candidate

predictors and ϵ the error term. Variable selection is performed by assigning to each predictor

an inclusion probability and assuming that predictors’ effects are described from a mixture

of two normal distributions. This is expressed mathematically as

bℓ | γℓ ∼ (1− γℓ)N(0, ψ2
ℓ ) + γℓN(0, c2ℓψ

2
ℓ ), ℓ = 1, . . . , p (2.2)

where γℓ operates as an indicator variable (taking values 0 or 1) that identifies whether the

predictor Xℓ is included in the model or not, cℓ and ψℓ are tuning parameters controlling the

mixing ability of the model. The first density (”spike”) denotes the effect of the predictor

when it is excluded from the model, while the second density (”slab”), when it is included.

Tuning parameters cℓ and ψℓ are defined in a manner that ensures that, when a predictor is

not included in the model (γℓ = 0), its effect is close to the area of zero, and far away from

this area when it is included (γℓ = 1). SSVS spike and slab prior setup are illustrated in

Figure 2.1, where spike’s density is high at values close to zero, while slab’s density is flatter,

supporting larger values.

Figure 2.1: Graphical representation of the SSVS spike and slab prior setup.
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The mixture of these two densities can be represented in a condensed matrix notation by

b | γ ∼ N(0,DγRDγ) (2.3)

where R is the prior correlation matrix of the elements in b, γ = (γ1, γ2, . . . , γp) is a latent

vector and

Dγ =


a1ψ1 0 . . . 0

0 a2ψ2 . . . 0
...

...
. . .

...

0 0 . . . apψp

 , aℓ =

1, γℓ = 0

cℓ, γℓ = 1
.

2.1.1 Prior Setup

The correlation between the predictors is reflected by the matrix R. If R = Ip, predictors

are assumed independent. In practice, this assumption may be implausible since predictors

are usually correlated with each other. An established prior setup for variable selection is

the Zellner’s g-prior (Zellner, 1986), in which prior correlation equals the design correlation

multiplied by a scalar. This is expressed mathematically as

R = g(X
′
X)−1σ2, π(σ2) ∝

1

σ2
(2.4)

where X = [X1,X2, . . . ,Xp] denotes the design matrix and σ2 the error variance term. This

prior setup has the advantage that the general correlation of b is encapsulated by the matrix

(X
′
X)

−1
while we only need to specify one variance parameter, as opposed to the standard

formulation which requires the specification of the whole matrix R. Parameter σ is assumed

to follow the Jeffreys scale-invariant prior. Alternatively, a proper choice is to assume a non-

informative inverse gamma distribution, with equal shape and scale parameters, typically

set to 10−3 or 10−4 (Perrakis and Ntzoufras, 2018). Furthermore, it is important to specify

parameter g with cautious to avoid triggering the Jeffreys-Lindley-Bartlett paradox (Lindley,

1957; Bartlett, 1957; Jeffreys, 1961), in which for proper large values of g the posterior odds

tend to favour the simplest model. To address this issue, it is recommended to assume g as

fixed (Kass and Wasserman, 1995) or specify it using hyper-prior (Liang et al., 2008; Zellner

and Siow, 1980).

Prior inclusion probabilities define the probability of including each predictor in the

model, a priori. George and McCulloch (1993) suggest that a reasonable choice is to assume
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that

γℓ ∼ Bernoulli(πℓ), ℓ = 1, . . . , p. (2.5)

In the case where πℓ = 0.5 ∀ ℓ = 1, . . . , p, each predictor is included/excluded from the

model with the same probability, yielding to a model that includes p/2 predictors.

2.1.2 Variable Selection

A common variable selection strategy in SSVS is to exclude the predictors that are associ-

ated with posterior inclusion probabilities smaller than 0.5 (median probability model). In a

Markov Chain Monte Carlo (MCMC) run ofM iterations, the posterior inclusion probability

of predictor ℓ is estimated as the average number of times the predictor was included in the

model (γℓ = 1) in M iterations of the MCMC algorithm, which is expressed mathematically

as

f̂(γℓ = 1 | y) = 1

M −B

M∑
t=B+1

I(γ
(t)
ℓ = 1), (2.6)

where B is the number of iterations considered as burn-in period, and γ
(t)
ℓ is the inclusion

value of predictor l at iteration t.

Alternatively, variable selection can be performed by estimating the posterior model odds

and identifying the maximum a posteriori model. Let assume that we are interested on the

comparison among two candidate models, m1 and m2. The posterior odds of m1 over m2 is

obtained as

POm1m2 =
f(m1 | y)
f(m2 | y)

=
f(y | m1)f(m1)

f(y | m2)f(m2)
= BFm1m2

f(m1)

f(m2)
,

where BFm1m2 is the Bayes Factor of m1 over m2 and f(m1) and f(m2) denote the prior

model probabilities of models m1 and m2, respectively. It should be noted that in the case

where the prior model probabilities are equal, the posterior model odds and the Bayes Factors

coincide. In a MCMC run of M iterations, posterior model odds can be also derived as the

ratio of the posterior model probabilities which in SSVS are estimated as

f̂(m | y) = 1

M −B

M∑
t=B+1

I(m(t) = m), (2.7)

where m(t) is the model indicator in t iteration which transform the γ to a unique decimal
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number and calculated as

m(γ) =

p∑
ℓ=1

γℓ2
ℓ−1. (2.8)

2.2 Stochastic Search Inconsistency Factor Selection

Let assume an NMA model as described in equation 1.4 that includes ℓ = 1, . . . , p incon-

sistency factors. Stochastic Search Inconsistency Factor Selection is a two-step method, in

which at the first step inconsistency factors are specified, and at the second step, SSVS is

applied to inconsistency factors.

2.2.1 Specification of Inconsistency Structure

Several models have been suggested for the specification of the inconsistency factors

(matrix Z). Lu and Ades (2006) introduced a model that considers only loop inconsistencies

and tests consistency in each independent closed-loop of the network (more details in section

1.4.1.1). Implementing the Lu & Ades method in complex networks is challenging because

the inconsistency factors are sequentially specified manually. To address this issue, we have

developed an algorithm that automatically locates in which comparisons inconsistency factors

should be added. Figure 2.2 presents the process flowchart of the algorithm.
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Figure 2.2: Process flowchart of the Lu & Ades algorithm.

The process flowchart can be summarised into the following steps:

- The algorithm firstly checks if the network is connected. In the case that it is not, the

algorithm keeps the largest of the two networks by excluding the nodes that do not

belong to it.

- Assume that inconsistency factors could be added in all functional parameters.

- Specify the closed-loops of the network by taking all the possible paths that start and

end in the same node.

- Check if multi-arm studies are present in the network. In the case where multi-arm

studies are present, inconsistency factors from functional parameters with one source

of evidence (presented only in one multi-arm trial) are excluded.

- Exclude the bridges of the network by locating which functional parameters are not

part of any closed-loop.

- Identify independent loops. Note: A loop is considered independent if it contains at

least one edge which is not a part of any other independent loop.
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- Exclude the functional parameters that do not belong to any independent loop. Also,

the number of inconsistency factors must be equal to the number of independent loops.

Thus, for each independent loop we keep only one functional parameter.

- The remaining functional parameters are the comparisons in which inconsistency factor

should be added.

It is important to note that the algorithm ignores the treatment ordering (Higgins et al.,

2012) and identifies a subset of viable Lu & Ades models. As a result, we suggest using the

design-by-treatment model (described in section 1.4.1.2) instead, which includes all of the Lu

& Ades models and addresses both sources of inconsistency, design and loop. Additionally,

the random-effects implementation of the design-by-treatment interaction (described in sec-

tion 1.4.1.3) model can be utilized, in which inconsistency factors are added in each design

of the network.

2.2.2 Prior Setup

After specifying the Z matrix, inconsistency factors are treated as predictors in a linear

regression model, and variable selection is performed by applying SSVS on them. The prior

setting is similar to the setting of equation 2.3 with the only difference that cℓ = c, ∀
ℓ = 1, . . . , p.

2.2.2.1 Correlation Matrix

Correlation matrix R describes the prior correlation between the inconsistency factors.

Assuming independence between the inconsistency factors (by setting R = Ip) would be

a convenient choice. Independence among inconsistency factors in SSIFS is translated as

the inclusion of an inconsistency factor does not affect the inclusion of another. This is a

strong assumption to defend and in practice it may be implausible. Instead, to describe the

correlation among the inconsistency factors, Zellner g-prior is used as described in equation

2.4. Also, to avoid triggering the Jeffreys-Lindley-Bartlett paradox, which is in our case

favouring the consistent NMA model, the unit-information criterion approach (Kass and

Wasserman, 1995) is used, which mathematically translates to g = N .

2.2.2.2 Prior Inclusion Probabilities

The probability of including inconsistency factors in the NMA model is defined a-priori

from the prior inclusion probabilities. These probabilities should be specified aptly to avoid

multiplicity issues. Assuming equal inclusion probability for each inconsistency factor is

considered as a näıve non-informative approach since it does not account for multiplicity
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(Scott and Berger, 2010). An established method for addressing these issues, is to use a

Beta-binomial distribution on the prior inclusion probabilities, as described in the equation:

γℓ ∼ Bernoulli(π)

π ∼ Beta(α, β).

This approach has the advantage that it accounts for multiplicity by automatically intro-

ducing a penalty that handles multiple testing (Scott and Berger, 2010, 2006). In the case

where π ∼ Beta(1, 1), this approach is equivalent to π ∼ U(0, 1). Although this setup may

seem enticing, it cannot be used in SSIFS due to its inappropriate favouring of inconsistent

NMA models. Consider the simple case where

γℓ ∼ Bernoulli(0.5), ℓ = 1, 2, . . . , p.

Let πℓ = P (γℓ = 1) denote the probability that the inconsistency factor is included in

the model and 1 − πℓ = P (γℓ = 0) the probability not included. The prior probability of

consistency in the NMA model (consistent NMA model) is calculated as

πcons =

p∏
ℓ=1

P (γℓ = 0) = 0.5p.

In this manner, SSIFS tends to favour NMA models that include p/2 inconsistency factors

and the probability of consistency decreases exponentially as the number of inconsistency

factors increases. A proper setting should maintain the probability of consistency constant,

irrespective of the number of inconsistency factors. For this purpose, the inclusion probability

π is obtain by the following formula:

πcons = P (γ1 = 0, . . . , γp = 0) ⇔
πcons = (1− π)p ⇔

π = 1− π1/p
cons.

An important feature of SSIFS is the ability to incorporate past knowledge concerning

network consistency. Parameter πcons reflects the researcher’s prior belief of having a con-

sistent network. In cases where expertise is available, an informative prior could be used,

while in the absent of expert opinion, our prior ignorance could be expressed by setting

πcons = 0.5. A systematic review revealed that among 201 published NMA networks, 44

found to be globally inconsistent (Veroniki et al., 2021). According to this study, we could

assume either that πcons = 0.78 or πcons ∼ Beta(157, 44); the latter setting assumes that the
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mean probability of network consistency is equal to 0.78 with a standard deviation of 0.03.

It should be mentioned that every case is unique, and if experts’ opinion or prior knowledge

is available, the parameter πcons should be informed accordingly. Furthermore, the prior

specification of parameter πcons could be performed by modelling the probability of network

consistency based on clinical criteria and network’s characteristics, such as the number of

studies, participants, nodes, etc.

The prior setting strategy for specifying the inclusion probabilities of the inconsistency

factors in SSIFS, is quite different compared to the standard approach that is used in Bayesian

variable selection. More specifically, prior inclusion probabilities in SSIFS are specified based

on the parameter πcons, whereas in the standard approach, they are specified based on the

parameter πℓ.

2.2.3 Tuning

Tuning in SSIFS is essential to assure the proper use of the method. Parameters c and ψℓ

should be defined in a such manner to ensure that the density of bℓ is similar to the density

described in Figure 2.1. Possible values of ψℓ could be the inconsistency factor’s standard

deviations obtained from a pilot MCMC run of the full NMA model (Seitidis et al., 2022b;

Ntzoufras, 2011). Parameter c reflects the prior odds of γℓ = 0 when bℓ ≈ 0. Therefore, the

larger the values of c, the less likely is to include inconsistency factors with minor effects.

As a general rule, values between 10 and 100 perform well in most cases, but heed is advised

according to the characteristics of the data (George and McCulloch, 1993; Perrakis and Nt-

zoufras, 2015).

Alternatively, tuning could be performed by assuming a value of practical significance for

the inconsistency factors. By assigning a minimum value of acceptance (say ω), inconsistency

factors with effect larger than ω in absolute values (| bℓ |> ω), are a-priori supported by the

NMA model. This can be achieved by specifying the intersection points among the consistent

and inconsistent NMA models; see Appendix for details. In the case where inconsistency

factors assumed independent, the inconsistent NMA model is supported by SSIFS when

| bℓ |> ψℓ

√
ξ(c), ξ(c) =

2c2 log c

c2 − 1
,

where ξ(c) indicates the number of standard deviations an inconsistency factor should be

beyond zero to be deemed significant. For example, let assume that a difference of 0.1

between direct and indirect evidence is deemed important. The tuning parameters of SSIFS
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are obtained by solving the equation

0.1 = ψℓ

√
ξ(c).

The solution of the equation is not unique. One possible solution is to set c = 10 and

calculate ψℓ as ψℓ =
0.1√
ξ(10)

≈ 0.05. In the case where a correlation between inconsistency

factors is assumed, tuning should be performed based on solving the following inequality:

b
′
[Dγ=0(Z

′
Z)−1Dγ=0]

−1
b ≤ gpσ2ξ(c), ξ(c) =

2c2 log c

c2 − 1
.

More details about tuning can be found in Ntzoufras et al. (2000) and in Mavridis and

Ntzoufras (2014).

2.2.4 Detection of Inconsistency

Inconsistency in SSIFS is detected by estimating the posterior odds or the posterior

inclusion probabilities as described in section 2.1.2. Using the posterior odds of the consistent

NMA model (m(γ) = 0) over the rest observed inconsistent NMA models (m(γ) ̸= 0),

network consistency is evaluated globally. Also, through the posterior odds we can identify

the local sources of inconsistency in the network. Let assume that the posterior odds of

a specific inconsistent NMA model over the consistent NMA model, is estimated as larger

than 1. The comparisons in which inconsistency factor are added, denote the local sources

of inconsistency, which causes global inconsistency to the network. The magnitude of the

evidence is based on the estimate of the posterior odds. Estimates close to 1, indicates trivial

evidence that the network is inconsistent. To determine whether the network is inconsistent,

the Jeffrey’s scale (Jeffreys, 1961) could be used in which the magnitude of the evidence is

summarized according to the following table.
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Table 2.1: Strength of evidence according to the Jeffrey’s scale for the comparison between
models m1 and m2.

Posterior Odds

m1 vs m2

Strength of evidence

(in favour of m1)

1 – 3.16 Barely worth mentioning

3.16 – 10 Substantial

10 – 31.6 Strong

31.6 – 100 Very strong

>100 Decisive

Another approach for identifying the local sources of inconsistency is by using the median

probability model, which includes inconsistency factors with f̂(γℓ = 1 | y) ≥ 0.5 in the NMA

model.

It has been observed that SSVS may not accurately estimate the posterior inclusion

probabilities when the model space is large (e.g more than 20 predictors) (Ntzoufras, 2011).

Therefore, in complex networks with more than 20 inconsistency factors, to avoid false

conclusions it is recommended to mitigate the dimension by excluding the inconsistency

factors that have posterior inclusion probability below 0.20 (Seitidis et al., 2022b; Fouskakis

et al., 2009).

2.3 Example

To demonstrate the applicability of the method we utilize two published NMAs, one

pertaining to the Agency for Health Care Policy and Research (AHCPR) recommendations

concerning smoking cessation (Lu and Ades, 2006), and the other regarding the comparative

effectiveness of oral phosphodiesterase type-5 inhibitors for erectile dysfunction (Veroniki

et al., 2021; Yuan et al., 2013). SSIFS was applied by taking into considerations all ap-

proaches concerning the specification of the inconsistency factors (matrix Z). Two scenarios

were assumed for the prior correlation matrix R, where at the first inconsistency factors

were assumed independent (R = I), and at the second that were correlated which descripted

by a Zellner g-prior by setting R = g(Z
′
Z)−1σ2. Parameters c and ψℓ were specified based

on the assumption that a value of ω = 0.2 on the log scale is considered as the minimum
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value of inconsistency that is of practical significance. Concerning the probability of having

a consistent network, we considered two different scenarios. In the first case, to describe

our ignorance concerning network consistency we assume that the probability of observing

a consistent network is 50%, by setting πcons = 0.5 (equivalent to uniform prior on model

space approach), while in the second case, an informative prior based on historical evidence

were assumed by setting πcons ∼ Beta(157, 44). To assess the robustness of our findings

further, we performed a sensitivity analysis in which inconsistency is supported a priori by

75% (πcons = 0.25). Results from the MCMC run were obtained by using a burn-in period

of 50K iterations, and a total of 300K iterations, while two chains were utilized to evaluate

convergence.

The implementation of SSIFS was conducted by using the R-package ssifs (Seitidis et al.,

2023a) which was developed as part of this research. The package is published on CRAN and

is also hosted on a GitHub repository (https://georgiosseitidis.github.io/ssifs/).

Details about the usage of the package are presented in the package’s vignette (https:

//georgiosseitidis.github.io/ssifs/articles/An_introduction_to_ssifs.html).

2.3.1 Smoking Cessation

The network includes 24 studies (22 two-arm studies and two three-arm studies), 4 nodes

and 28 pairwise comparisons, evaluating the effectiveness of no contact (reference), self-help,

individual counseling and group counseling on smoking cessation. Figure 1.2 illustrates the

geometry of the network.

According to SSIFS the network is globally and locally consistent. More specifically,

in each scenario employed the effects of inconsistency factors on the logarithmic scale and

the posterior inclusion probabilities estimated close to zero (for more details see Figure 2.3

and Table A1). As a result, the median probability model clearly indicates the absence of

significant design or loop inconsistencies in the network. Furthermore, the model without in-

consistency factors (consistent NMA model) estimated as the most probable with a posterior

probability around 0.56 in the case where prior ignorance concerning network consistency

was assumed, and 0.81 when historical evidence was used (for more details see Table 2.2).

Hence, the posterior odds favour the consistent NMA model compared to the rest inconsis-

tent NMA models. The hypothesis of network consistency according to Table 2.2 persists

favoured, even when the observed inconsistent NMA models are grouped and considered as

a single model, since the posterior odds of global consistency versus inconsistency shows

marginal evidence (posterior odds from 1.22 to 1.38) when πcons = 0.50 and substantial ev-

idence when πcons ∼ Beta(157, 44) (posterior odds from 4.26 to 4.88). Even in the extreme
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scenario of πcons = 0.25, the median probability model continues to imply that there are

no significant inconsistencies, and the consistent NMA model was estimated to be the most

dominant with a posterior model probability around 0.30 (for additional information, see

Figure 2.3 and Table 2.2). Also, the global consistency test shows marginal evidence against

the consistency hypothesis, with posterior odds ranging from 1/0.47 ≈ 2.13 to 1/0.43 ≈ 2.33

(see Table 2.2 for more details), which was expected given the high probability that it was

assigned to the inconsistent NMA models a-priori. Hence, we can confidently conclude that

the network is globally consistent without any important local inconsistency.
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Scenario: a) πcons = 0.5 & R = I, b) πcons = 0.5 & R = g(Z
′
Z)−1σ2, c)

πcons ∼ Beta(157, 44) & R = I, d) πcons ∼ Beta(157, 44) & R = g(Z
′
Z)−1σ2, e)

πcons = 0.25 & R = I, f) πcons = 0.25 & R = g(Z
′
Z)−1σ2.

Abbreviations: A = no contact, B = self-help, C = individual counselling, D = group

counselling.

Axis x denotes the comparisons in which inconsistency factors were added. For the Design

by Treatment and the Jackson model, parenthesis denotes the design of the comparison.

Figure 2.3: Posterior inclusion probabilities for the smoking cessation example for the three
different inconsistency models.
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Table 2.2: Posterior model odds (PO) of consistent NMA model vs inconsistent NMA models
and the corresponding probability of the consistent NMAmodel (m̂cons) for the three different
inconsistency modelling approaches.

Inconsistency

modelling

approach

πcons = 0.50 πcons ∼ Beta(157, 44) πcons = 0.25

R = I R = g(Z
′
Z)−1σ2 R = I R = g(Z

′
Z)−1σ2 R = I R = g(Z

′
Z)−1σ2

m̂cons PO m̂cons PO m̂cons PO m̂cons PO m̂cons PO m̂cons PO

Smoking cessation

DBT 0.56 1.27 0.56 1.27 0.81 4.26 0.82 4.56 0.31 0.45 0.31 0.45

Lu & Ades 0.56 1.27 0.58 1.38 0.82 4.56 0.83 4.88 0.31 0.45 0.32 0.47

Jackson 0.57 1.33 0.55 1.22 0.82 4.56 0.81 4.26 0.32 0.47 0.30 0.43

Erectile dysfunction

DBT

Lu & Ades
0.14 0.16 0.14 0.16 0.36 0.56 0.36 0.56 0.05 0.05 0.05 0.05

Abbreviations: DBT = Design-by-Treatment, PO = Posterior model odds, m̂cons =

posterior probability of the consistent NMA model.

Note that besides several scenarios employed assuming different prior inclusion proba-

bilities, the posterior model probability of the consistent NMA model is similar and robust,

irrespective of the correlation prior setup, ranging around 0.56 when πcons = 0.50, 0.81 when

πcons ∼ Beta(157, 44) and around 0.31 when πcons = 0.25. Also, the Lu & Ades model is

associated with larger posterior inclusions probabilities compared to rest methods employed

for the specification of the Z matrix, because it includes fewer inconsistency factors and the

posterior estimates are mainly driven by the prior set up; e.g when πcons = 0.50, the Lu &

Ades model includes three inconsistency factors with prior inclusion probability equal to

πℓ = 1− (0.50)1/3 ≈ 1− 0.79 ≈ 0.21,

while the design-by-treatment model includes seven inconsistency factors with prior inclusion

probability equal to

πℓ = 1− (0.50)1/7 ≈ 1− 0.91 ≈ 0.09.

The conclusions about network consistency are the same when consistency is evaluated by

using the standard methods. More specifically, the SIDE method suggests that there is not

any significant discrepancy between direct and indirect evidence (see Figure 2.4) and also,

the Q-statistic under the assumption of a full design-by-treatment interaction random-effects
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model, indicates that the network is globally consistent (Q = 4.66, df = 7, p−value = 0.70).

Moreover, the DIC values of the consistent NMA model (DIC = 333.10) and the UME model

(DIC = 333.00) are similar, indicating that the network is globally consistent. Previous work

also supports the absence of important local or global inconsistency in the network (Lu and

Ades, 2006; Dias et al., 2010). The authors report that we cannot guarantee that there is

no inconsistency in the network due to the high level of heterogeneity. SSIFS reflects this

statement as well, in the case where we employed a non-informative prior concerning network

consistency (πcons = 0.50), in which marginal evidence exists that the network is consistent.

Abbreviations: A = no contact, B = self-help, C = individual counselling, D = group

counselling.

Figure 2.4: Difference between direct and indirect evidence for the smoking cessation exam-
ple, using the SIDE method.
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2.3.2 Erectile Dysfunction

The network includes 69 two-arm studies, 7 nodes and 69 pairwise comparisons, eval-

uating the effectiveness of oral phosphodiesterase type-5 inhibitors (Avanafil, Mirodenafil,

Sildenafil, Tadalafil, Udenafil, Vardenafil) concerning erectile dysfunction. In the NMA

model, placebo was used as a reference node. Figure 2.5 illustrates the geometry of the

network.

Edge’s thickness and node’s size is analogous to the number of direct treatment comparisons

and participants, respectively.

Figure 2.5: Network geometry of oral phosphodiesterase type-5 inhibitors for erectile dys-
function.

In SSIFS, the design-by-treatment method for the specification of the inconsistency fac-

tors produces equivalent results with the Lu & Ades method, because the network includes
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only one closed loop and two-arm studies; only in the comparison between Sildenafil and

Vardenafil inconsistency factor can be added. Similarly, the Jackson’s model will be not

utilized for the evaluation of network consistency.

SSIFS indicates that the network is globally and locally inconsistent. More specifically,

in the case where πcons = 0.50 the posterior inclusion probability of the inconsistency factors

is 0.86 (see Figure 2.6), larger than 0.50, indicating major local inconsistency in the closed

loop between Sildanafil, placebo and Vardenafil. Also, because the network includes only

one inconsistency factor, the posterior model probability of the consistent NMA model is

calculated as 1− 0.86 = 0.14 (see Table 2.2) yielding to a posterior odds of

PO =
posterior model probability of the inconsistent NMA model

posterior model probability of the consistent NMA model
=

0.86

0.14
= 6.14

indicating substantial evidence in favour of the inconsistent NMA model. The evidence

against consistency is stronger when πcons = 0.25. In this case, the estimated posterior

inclusion probability is 0.95 (see Figure 2.6), which results in a posterior odds of 1/0.05 = 20

against consistency (see Table 2.2). Even in the case where πcons ∼ Beta(157, 44), which

assumes that the average probability of observing a consistent network is 0.78, the conclusions

are similar (see Table 2.2 and Figure 2.6 for more details). Therefore, we can safety conclude

that the network is globally inconsistent because of the loop inconsistency.
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Scenario: a) πcons = 0.5 & R = I, b) πcons = 0.5 & R = g(Z
′
Z)−1σ2, c) πcons ∼

Beta(157, 44) & R = I, d) πcons ∼ Beta(157, 44) & R = g(Z
′
Z)−1σ2, e) πcons = 0.25 &

R = I, f) πcons = 0.25 & R = g(Z
′
Z)−1σ2.

Figure 2.6: Posterior inclusion probabilities of the inconsistency factor added in the com-
parison between Sildenafil and Vardenafil for the erectile dysfunction example.

The conclusions about network consistency are the same when consistency is evaluated

by using the standard methods. More specifically, the SIDE method suggests that there

is considerable discrepancy between direct and indirect evidence in the closed loop of the

network (see Figure 2.7) and also, the Q-statistic under the assumption of a full design-by-

treatment interaction random-effects model, indicates that the network is globally inconsis-

tent (Q = 8.44, df = 1, p− value = 0.0037). It should be mentioned that the DIC criterion

falsely suggests that the network is globally consistent since the DIC value for the consistent

NMA model (DIC = 920.40) is much smaller compared to corresponding DIC value of the

UME model (DIC = 940.50).
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Figure 2.7: Difference between direct and indirect evidence for the erectile dysfunction ex-
ample, using the SIDE method.

2.4 Benefits of using Stochastic Search Inconsistency

Factor Selection

SSIFS is a Bayesian two-step method which evaluates the consistency assumption based

on the posterior inclusion probabilities and posterior odds. So far, global evaluation of

network consistency in the Bayesian framework, is performed by comparing the consistent

NMA model with inconsistent NMA model though the DIC (Daly et al., 2022). There are

several limitations associated with DIC (Celeux et al., 2006; Lunn et al., 2012; Millar, 2009;

Spiegelhalter et al., 2014), including concerns about discriminatory performance, invariance

to reparameterization, inconsistency, lack of a proper predictive criterion and strong theoret-

ical justification, and absence of a threshold for judging important differences among models.

Moreover, DIC based on conditional likelihood is invalid for hierarchical modelling (Millar,

2009). Despite its limitations, DIC is commonly used in NMA for model selection. Note

also that DIC can be used for evaluating network consistency by comparing each time two

competing models; consistent NMA model versus a full/partial inconsistent NMA model.

In contrast, SSIFS evaluates network consistency by comparing several inconsistent NMA

models at each time without multiplicity issues, and also by incorporating past knowledge
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concerning network consistency.

Another important advantage of SSIFS, is the ability to evaluate network consistency

based on a value that is of practical significance. This is incredibly helpful, in networks

where a pre-specified difference between direct and indirect evidence is considered important.

Lastly, SSIFS evaluates the network globally by identifying the local sources of inconsistency,

unlike the other methods in which consistency is evaluated either locally or globally.
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Chapter 3

Multi-component (Complex)

Interventions

In this chapter, strategies for handling multi-component (complex) interventions in NMA

are presented. The chapter is structured as follows. Firstly, a brief description of multi-

component (complex) intervention is presented. Secondly, standard methods for handling

complex interventions are outlined. The chapter ends by proposing novel ways of visualizing

NMA results with complex interventions. The applicability of the proposed tools is demon-

strated through two real-life networks, and by using the R package viscomp (Seitidis et al.,

2023b) which is published on CRAN.

3.1 Definition of Complex Intervention

Complex interventions in NMA refer to interventions that consist of multiple (interactive)

components (Seitidis et al., 2022c; Craig et al., 2008). These interventions are often multi-

faceted, and their effectiveness depends not only on the individual components, but also

on how these components interact with each other. Possible components of an intervention

could be the characteristics of the intervention, such as the frequency of the intervention,

the dosage, the method used for delivering the intervention (e.g. delivered as a pill or

as an injection), etc. Other potential components could be the type of encounter (e.g.

clinical visits, support sessions or self-guided), delivery mode (e.g. face-to-face or remotely),

time of communication (e.g. synchronous, asynchronous), type of recipient (e.g. group,

individually), provider (e.g. peers, lay person), location (e.g. hospital, home, community-

based care), or even other drugs that is used to treat a medical condition.
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3.2 How to Deal with Complex Interventions

When complex interventions are present, the interest usually lies on addressing the three

following research questions:

� Do the interventions work in general?

� Which intervention is the best in terms of efficacy?

� Which component(s) is/are working?

To address the first research question, interventions are usually lumped, and compared

with a control group (e.g. placebo, usual care) by using the standard meta-analytic model

(Nikolakopoulou et al., 2014b). In such cases, heterogeneity is often large since intervention

differences among the studies are ignored. The second research question is commonly an-

swered by using the NMA model (Seitidis et al., 2022a; Salanti, 2012; Mavridis et al., 2015),

while the third through the Component Network Meta-Analysis (CNMA) model (Rücker

et al., 2020; Welton et al., 2009; Tsokani et al., 2022; Veroniki et al., 2022).

Suppose we have a network that compares the effectiveness of 10 interventions (Figure

3.1). From the network plot we see that most interventions result as a combination of the

components A, B, C, D and E. The rational of CNMA lies on the decomposition of complex

interventions to estimate the effects of their components (Welton et al., 2009; Tsokani et al.,

2022). Therefore, by using UC as reference, CNMA will estimate the effectiveness of the five

components; assume that dA, dB, dC , dD and dE refer to the relative effect of components A,

B, C, D and E, respectively. The key assumption of CNMA implies that the effect of each

intervention is derived by summing the relevant component effects. For example, the effect

of the intervention A+B+C (denoted as dA+B+C) is calculated as

dA+B+C = dA + dB + dC . (3.1)

This assumption is often encountered in the literature as additivity assumption. Based on

this assumption, we can obtain the intervention effect for any combination of the five compo-

nents. Note also that we could obtain estimates for interventions (component combinations)

that are not observed in the network (e.g. dB+C+E).
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Figure 3.1: Network plot of complex interventions.

Additivity may be difficult to defend as it is a strong assumption, which sometimes

appears to be implausible in practice. This is because it does not account for potential inter-

actions between components; this issue could be mitigated by including interactions terms.

For example, if components A and B interact within each other, an extra term dAB should

be added in the equation 3.1. This procedure can be challenging in practice, as there could

be many different components interacting within each other. The hypothesis of additivity

is commonly tested by using a chi-square test of the overall heterogeneity/inconsistency in

the network between the NMA and CNMA models (Rücker et al., 2020). However, in dis-

connected networks it remains unclear how to evaluate additivity.

Defending additivity is more intense in cases where the network includes many multi-

component interventions (nodes) with few head-to-head comparisons, because transitivity

could be challenged due to the sparsity of the network. Furthermore, is quite possible to

observe NMA effect estimates that are mainly driven by the study effect estimates or con-

founded by the study characteristics. In such case, it is also harder to identify the most

efficacious interventions and component. Therefore, we have developed evidence synthesis
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tools to handle the former issues, that could help on identifying the most promising inter-

ventions and components more easily.

3.3 Visualize NMA results to Explore the Behaviour

of the Components

In this work, novel tools of visualizing the NMA results of complex interventions in

order to explore the behaviour of the components and identify the most promising ones, are

presented (Seitidis et al., 2022c).

3.3.1 Data

To demonstrate the usage of the proposed visualization tools two real-life networks are

utilized. Both networks compare the effectiveness of self-management interventions in pa-

tients with type-II diabetes. The first measures the levels of glycated hemoglobin (HbA1c)

which is considered as harmful outcome, while the second measures the improvement of self-

management behaviour (SMB) which is consider as beneficial outcome. The latter network

was used only to demonstrate the components rank-heat plot (see section 3.3.2.8). Data were

collected during the COMPAR-EU project, which aims to compare the effectiveness of self-

management interventions in four high priority chronic conditions (type-II diabetes, obesity,

heart failure, chronic obstructive pulmonary disease) for adults in Europe (Ballester et al.,

2020). Interventions are masked as the findings are about to be submitted to an epidemiolog-

ical journal and cannot be disclosed in advance (see Table 3.1 for components’ abbreviations).

The network for the reduction of HbA1c levels, consists of 461 studies (429 two-arm,

32 multi-arm), 97 nodes, 534 comparisons, 190 designs and 11 components. Interventions

are constructed as a combination of the 11 components, yielding to a complex and sparse

network since it includes many nodes but few head-to-head comparisons (see Figure 3.2).

Moreover, most comparisons involve node A which referred to control group and it was used

as reference node. It should be also noted that the NMA model suffers from high levels of

heterogeneity (τ 2 = 0.09, I2 = 86.50%). Figure 3.3 illustrates the geometry of the SMB

network. Details about the NMA model for both networks are presented in Table 3.2.
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Table 3.1: Components’ abbreviations.

Component Abbreviation

Usual Care A

1st characteristic B

Remote (mixed) C

Usual Care Plus D

2nd characteristic E

3rd characteristic F

Group G

4th characteristic H

Peers and lay persons I

5th characteristic J

6th characteristic K

Table 3.2: Description of the networks

Network Outcome Type Effect Size
Number of

Studies

Number of

Patients

Number of

Interventions

Number of

Components

HbA1c Continuous MD 461 79025* 97 11

SMB Continuous SMD 41 5585 30 11

*: 23 studies did not report sample size but were included in the NMA

Abbreviations: MD = Mean Difference, SMD = Standardized Mean Difference
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Nodes are proportional to the number of participants randomized to the nodes, while edges

to the number of studies involving the corresponding nodes.

Figure 3.2: Network plot of HbA1c example.
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Nodes are proportional to the number of participants randomized to the node, while edges to

the number of studies involving the corresponding nodes.

Figure 3.3: Network plot of SMB improvement.

3.3.2 Proposed Visualization Tools

The implementation of the following visualization tools could be performed by using the

R-package viscomp (Seitidis et al., 2023b). The package is available on CRAN and is also

hosted on a GitHub repository (https://github.com/georgiosseitidis/viscomp). The

highlight of the package is that it offers a friendly user toolkit aiming to identify the most

promising components. The major input that is required to use the package is the NMA
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model as obtained from the R-package netmeta (Rücker et al., 2022). The usage of the func-

tions will be briefly presented in the next sections. More details about the installation and the

usage of the package can be found at https://georgiosseitidis.github.io/viscomp/.

To illustrate the package’s functions, we will assume that m and m2 denote the NMA

model for the HbA1c and SMB networks, respectively, both obtained from the R package

netmeta.

3.3.2.1 Components Descriptive Analysis

Exploring the geometry of the network is essential, especially when dealing with large/sparse

networks. Components descriptive analysis can assist in achieving this goal. By visualiz-

ing the component frequency in a coloured cross-table the researcher can easily identify the

most frequent components (combinations). Elements on the diagonal pertain to components,

while outside the diagonal, to the combinations of components. Moreover, the parentheses

in the diagonal elements denote the proportion of the study arms in which the component

from the corresponding row is present, while in the off-diagonal elements, it denotes the

proportion of the study arm that includes both components out of those that include the

corresponding component in the row. To identify more easily the most frequent component

(combinations), each cell was coloured according to its absolute frequency; dark red colors

suggest large percentages, while white colors percentages close to zero.

Figure 3.4 displays the components’ cross-table for the HbA1c example. The most fre-

quent components are the E (565
957

= 59.04%), B (371
957

= 38.77%) and F (352
957

= 36.78%)

while the most frequent combination is between components E and F (included in 349 study

arms). Despite that this combination is the most frequent in the network, it does not have

the largest absolute frequency. For example, the element that corresponds to row E and

column F indicates that these components were observed in the 349
565

= 61.77% of the study

arms that include component E, while the off-diagonal elements of column E, indicate that

component E was almost always part of the intervention (percentages close to 100%) when

combined with the rest components. Note that components A and D were not combined

with any components since they refer to control groups.
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Figure 3.4: Components cross-table for the reduction of HbA1c.

Components descriptive analysis can be performed through the function compdesc, by

typing:

compdesc(model = m).

The function returns also as an output, a frequency table that provides some additional

information regarding the frequency of the components. More specifically, it presents the

number of studies in which the underlying component is included in all arms, in at least one

arm and not included in any arm. This information could be used on comprehending the

CNMA results. Table 3.3 presents the frequency table for the HbA1c example.
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Table 3.3: Components’ frequency for the HbA1c example.

Component Number of arms Nall Nall% N≥1 N≥1% Nnone Nnone%
Ratio of
Nall/N≥1

A 334.00 0.00 0.00 334.00 0.72 127.00 0.28 0.00

B 371.00 28.00 0.06 329.00 0.71 132.00 0.29 0.09

C 117.00 10.00 0.02 101.00 0.22 360.00 0.78 0.10

D 52.00 0.00 0.00 52.00 0.11 409.00 0.89 0.00

E 565.00 72.00 0.16 458.00 0.99 3.00 0.01 0.16

F 352.00 19.00 0.04 309.00 0.67 152.00 0.33 0.06

G 117.00 15.00 0.03 101.00 0.22 360.00 0.78 0.15

H 133.00 5.00 0.01 123.00 0.27 338.00 0.73 0.04

I 73.00 1.00 0.00 67.00 0.15 394.00 0.85 0.01

J 231.00 6.00 0.01 215.00 0.47 246.00 0.53 0.03

K 28.00 0.00 0.00 27.00 0.06 434.00 0.94 0.00

Abbreviations: Nall = Number of studies in which the underlying component is in-
cluded in all study arms, N≥1 = Number of studies in which the underlying component
is included in at least one study arm, Nnone = Number of studies in which the underlying
component is not included in any study arm.

3.3.2.2 Components Network Graph

Another visualization tool for exploring the frequency of the component combinations is

the components network graph. Nodes refer to components, while edges refer to different

component combinations that include the corresponding components. The thickness of the

edges is proportional to the frequency of the combinations. Figure 3.5 visualizes the seven

most common component combinations in the network. The thickest edges are the blue

and the orange, which correspond to the combination E+B (included in 52 study arms) and

E+B+F (included in 51 study arms), respectively.
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Figure 3.5: Components network graph for the HbA1c example, presenting the seven most
frequent combinations of components.

Components network graph can be performed through the function compGraph by typing:

compGraph(model = m).

It should be noted that in this example nodes A and D were excluded since they were not

combined with any component. This can be achieved by typing:

compGraph(model = m, excl = c(”A”, ”D”).
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3.3.2.3 Leaving One Component Combination Out Scatter Plot

The leaving one component combination out scatter plot provide valuable insight on ex-

ploring whether the inclusion of a specific component (combination) affect the efficacy of

the intervention. More specifically, it identifies pairs of interventions that vary by a certain

component (or at least one component) and visualizes their NMA relative effect estimates in

a scatter plot. Axis-x denotes the intervention’s effect estimate when the component is part

of the intervention, while axis-y when is not. Interventions’ effect estimates are obtained

by the NMA relative effect estimates. Dots close to the line of equality signify that the

inclusion/exclusion of the component do not impact on the outcome. The interpretation of

the direction depends on the nature of the outcome. In our example, which is considered as

a harmful outcome, if the dots are located above the equality line, it indicates that the inclu-

sion of the underlying component increases the efficacy of the intervention. In the case where

dots are located below the equality line, it indicates that the efficacy of the intervention is

hindered by the inclusion of the underlying component. The opposite holds for a beneficial

outcome. According to Figure 3.6, we may conclude that the inclusion of component E may

hamper the reduction of HbA1c since most dots are below the equality line. For the rest

components, it is unclear whether the inclusion of a component has a positive or negative

impact on the intervention’s efficacy.

The scatter plot can be also utilized as a visual method to assess additivity in CNMA.

The principle of additivity suggest that the effect of an intervention is derived by summing

its relevant components’ effects. Hence, it is anticipated that the impact of inclusion or

exclusion of a component would be the same in interventions that differentiate by this com-

ponent. Therefore, a line that runs parallel to the line of equality on the scatter plot indicates

visually the fulfilment of the additivity assumption. It is evident from our example that this

is not the case, suggesting potential violations of additivity in CNMA.

The leave one component combination out scatter plot can be easily extended to com-

ponent combinations and adjusted to use z-values instead of relative effects. In the latter

case, additivity assumption cannot be evaluated. It can be constructed through the function

loccos, which by default plots the pair of interventions that differ by one component. If we

are interested on a certain component or combination of components, we have to set appro-

priately the argument combination. For example, if we are interested on the interventions

that differ by the component B, we should type

loccos(model = m, combination = ”B”).
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Figure 3.6: Leaving one component combination out scatter plot for each component for
HbA1c example, using NMA relative effects.

3.3.2.4 Waterfall Plot

An alternative to the leave one component combination out scatter plot is the water-

fall plot, which also visualizes the set of interventions that differ by a specific component

(combination) but in a different manner. Axis-y displays the difference of the intervention

effects with and without the component (combination). Bars close to zero signify that the

inclusion or exclusion of the corresponding component (combination) has a trivial (or no)
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impact on the outcome, while bars above or below zero that the inclusion/exclusion impacts

on the intervention’s effect. The direction of the impact (positive or negative) depends on

the nature of the outcome (beneficial or harmful). For a beneficial outcome, a bar above

zero denotes that the intervention’s effect is larger when the component (combination) is

included in the intervention. Hence, the inclusion of the extra component (combination)

enhances intervention’s efficacy. Conversely, for a harmful outcome, a bar below zero indi-

cates that the intervention’s effect is larger (in absolute values) when the extra component

(combination) is included in the intervention. Consequently, a bar below zero signifies that

the inclusion of the extra component (combination) increases efficacy. Waterfall plot can be

also adjusted to use z-values instead of relative effects.

The waterfall plot can be constructed through the function watercomp. The rational of

the function is the same with the function loccos. By typing

watercomp(model = m, combination = ”K”),

we construct a waterfall plot for the interventions that differ by the component K (Figure

3.7).
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Figure 3.7: Waterfall plot for the comparisons that differ by K in the HbA1c example, using
NMA relative effects.

3.3.2.5 Components Heat Plot

Another visualization tool that could help on identifying the most promising components

is the components heat plot. By summarizing the intervention effects in a coloured square-

table, the analyst can easily identify which component (combination) is the most efficacious.

In addition, each cell summarizes the effect of the interventions that include the components

that denoted by the corresponding row and column of the table. Combinations that were not

observed in the network, are denoted in the heat plot with the letter ’X’. The interventions

effects are summarized by using the median (default choice), or the mean instead. To iden-

tify more easily whether the underlying component (combination) has a positive or negative

impact, the table is coloured according to the magnitude of the component’s (combination)

effect. Dark green color indicate a strong impact on the desired direction, while dark red
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color to the opposite direction; direction of the impact is subtracted by the nature of the

outcome (beneficial or harmful). Moreover, to increase the confidence around the summary

estimates, the number of interventions in which the corresponding component (combination)

was observed, is provided in the parenthesis of each cell, as well as the uncertainty around

the summary estimates, which is reflected by the size of the grey box. Large grey boxes

suggest considerable uncertainty around the summary estimate.

Component heat plot can be constructed through the function heatcomp. By typing

heatcomp(model = m)

the function produces a heat plot by using the NMA relative effect estimates and the median

as a summary measure; z-values can be also utilized instead of relative effects through the

argument z value. The nature of the outcome is automatically subtracted from the NMA

model m.

Figure 3.8 displays the components heat plot the reduction of HbA1c. From the figure

we can see that most of the elements are green, indicating that self-management interven-

tions reduce the levels of HbA1c in general. The most efficacious component combination is

between components C and G. However, we should be cautious with the interpretation of

this results since the summary estimate is based only in one NMA relative effect estimate.

Lastly, we should be moderate confident about the results due to the uncertainty in the

estimates, which is reflected by the medium size of the grey boxes.
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Figure 3.8: Components heat plot for the HbA1c example, using NMA relative effects and
the median as summary measure.

3.3.2.6 Component Combination Violin Plot

Identification of the most efficacious components can be also performed by combining the

kernel distribution and the boxplot for each component in a violin plot, based on the NMA

relative effect estimates. Such a plot can be easily constructed through the function specc

by typing

specc(model = m).

This approach can be easily extended to component combinations through the argument

combination, or adjusted to use z-values instead or relative effects though the argument

z value.
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Figure 3.9 visualizes the components violin plot for the HbA1c example, which indicates

that in general the components reduce the levels of HbA1c, but it remains unclear which

component is associated with largest effect due to overlap between the violins; some overlap

is expected, because each component within interventions that comprise multiple components

will produce the same relative effect estimate. It should be mentioned that the violin for

the component D cannot be constructed since there is only one NMA estimate that contains

D; D refers to a control group and was not combined with any other component (for more

details see Figure 3.4).

−0.44
−0.40

−0.02

−0.38 −0.38
−0.43 −0.42

−0.20

−0.36

−0.25

−1.5

−1.0

−0.5

0.0

0.5

B C D E F G H I J K
Components

In
te

rv
en

tio
n 

ef
fe

ct
s

B C D E F G H I J K

Dots are proportional to the precision of the NMA relative effect estimates.

Figure 3.9: Violin plots evaluating the effectiveness of the components used for the reduction
of HbA1c, using NMA relative effects.

By constructing the violins based on the number of components that are included in

the interventions, it can be visually explored whether the number of components affects the
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intervention’s efficacy. This can be easily performed by typing

specc(model = m, component number = TRUE).

In our example, there is a signal that as the number of components are increased, the efficacy

is also increased at some point and then it starts decreasing (Figure 3.10). However, the

results are not conclusive due to overlap between the violins.
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Figure 3.10: Violin plot based on the number of components included in the intervention for
the HbA1c example, using the NMA relative effect estimates.

3.3.2.7 Components Density Plot

Another visualization tool that could help on exploring the behaviour of the components is

the components density plot, which compares the density derived from the interventions that
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include the corresponding component (combination) with the density from the interventions

that do not include this component (combination). Therefore, we can explore whether a

specific component (combination) is associated with larger effects. Such a density plot can

be easily constructed through the function denscomp. By typing

denscomp(model = m, combination = ”B”)

we construct a density plot based on the interventions that 1) include component B and 2)

do not include component B. The function uses the NMA relative effect estimates, but it

can be also adjusted to use the z-values instead. The density plot for each component for

the HbA1c example is illustrated in Figure 3.11, which indicates that interventions without

component I or K exhibit larger efficacy compared to those that include them.
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Figure 3.11: Components density plot for the reduction of HbA1c, using NMA relative effect
estimates.
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3.3.2.8 Components Rank Heat Plot

When multiple outcomes are included in the analysis (for example various medical con-

ditions), the interest usually lies on identifying the intervention that overall performs best.

In such cases, the Hasse diagram (Carlsen and Bruggemann, 2014; Rücker and Schwarzer,

2017) or the rank-heat plot could be used on achieving this goal. The former represent a

finite partially ordered set by drawing curves between interventions (Seitidis et al., 2022c)

while the latter presents the p-scores for each intervention across outcomes (Veroniki et al.,

2016). However, there is lack of a visualization tool that could provide insight on identifying

which component overall work well across multiple outcomes. Therefore, we have extended

the rational of the rank-heat plot to components.

In the components rank-heat plot, components are denoted via rads and outcomes via

circles. Each sector denotes the median (or mean) p-score of the interventions that include

the corresponding component within the underlying outcome. To identify the ”best” com-

ponents more easily, the colouring of the sectors is proportional to the components’ p-scores.

Dark green colors indicate p-scores close to 100%, while yellow and dark red colors indicate

p-scores close to 50% and 0%, respectively. In the case where a sector is uncoloured, it

denotes that the corresponding component in the underlying outcome was not observed.

Components rank-heat plot can be constructed through the function rankheatplot. By

typing

rankheatplot(model = list(m,m2))

we construct the component rank-heat plot for the HbA1c and the SMB networks, using the

median for calculating the components p-scores (see Figure 3.12). From the figure we can

confidently conclude that the worst components are the components A and D as expected

since both components refer to control groups. Regarding which component is the best,

component B appears to be overall the best. However, the results are not conclusive as there

are several components with similar p-score estimates.
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Figure 3.12: Components rank-heat plot for the reduction of HbA1c and the SMB improve-
ment, using the median for calculating the components p-scores.
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Chapter 4

Software

In this chapter, we provide a comprehensive guide on the implementation of two essential

R packages, namely ssifs and viscomp, which are published on CRAN. They offer a wide array

of functionality to identify inconsistencies in NMA and to enhance the results of NMA when

it includes multi-component interventions. By exploring the documentation and leveraging

the capabilities of these packages, users can enhance their analysis and gain valuable insights.

4.1 Package ssifs

The package ”Stochastic Search Inconsistency Factor Selection” was published on CRAN

on the 5th of December, 2023. The scope of the package is to evaluate the consistency as-

sumption of NMA both locally and globally, by using variable selection techniques in the

Bayesian framework.

A vignette titled ”An Introduction to the Stochastic Search Inconsistency Factor Selection

method using the ssifs package” is provided alongside the R package. This vignette serves as

a comprehensive guide on how to utilize the ssifs package and its functionalities. It offers a

detailed explanation of the SSIFS method and demonstrates its practical application through

a published NMA example. You can access the vignette at https://georgiosseitidis.

github.io/ssifs/articles/An_introduction_to_ssifs.html.

4.1.1 Function ssifs()

The function ssifs (”Stochastic Search Inconsistency Factor Selection”) identifies incon-

sistencies in the NMA model by using the SSIFS method, as described in chapter 2. The

function uses the IV-NMA model, adjusted to include inconsistency factors (see equation
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1.4), and assumes common heterogeneity between different comparisons and no correlation

between different studies.

4.1.1.1 Arguments

As input, the function requires the specification of the network’s contrasts along with

the corresponding effect size estimates and standard errors. More specifically, the following

arguments must be specified:

� TE: Treatment effect (e.g. mean difference, log odds ratio)

� seTE: Standard error of treatment effect

� treat1: Treatment 1

� treat2: Treatment 2

� studlab: Study label

� ref : Reference treatment.

It is important to note that when a network is disconnected, the function automati-

cally uses the largest sub-network and ignores the comparisons that belong to smaller sub-

networks. Also, when multi-arm studies are present, the user must specify all feasible com-

parisons.

By default, the function uses the Design-by-Treatment method to specify the inconsis-

tency factors of the network (matrix Z). Argument method controls the method used for

specifying matrix Z. There are three options available to the user:

� ”LuAdes”: Lu & Ades model (see section 1.4.1.1)

� ”DBT”: Design-by-Treatment model, which is the default choice (see section 1.4.1.2)

� ”Jackson”: Jackson’s model (see section 1.4.1.3).

Inconsistency factors can be independent or dependent. The default choice of

zellner = TRUE

assumes dependency between inconsistency factors and describes this dependency through

a Zellner g-prior (see 2.2.2.1). In the case where

zellner = FALSE,
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inconsistency factors are assumed independent, and as a result, the inclusion or exclusion of

one does not affect the inclusion or exclusion of another.

Regarding the prior inclusion probabilities of the inconsistency factors, they are specified

with respect to the probability of observing a consistent network, denoted as πcons (see section

2.2.2.2 for more details). By default, the argument rpcons is set to TRUE, which implies

that

πcons ∼ Beta(157, 44).

This prior choice is quite informative and supports the consistency hypothesis a-priori by

78% on average. By setting

rpcons = FALSE,

we can express our prior ignorance concerning this probability, by assuming that the proba-

bility of network consistency is fixed and equal to 50%. This probability can also be modified

through the argument pcons. For example, if we set

rpcons = FALSE and pcons = 0.25,

the probability of network consistency would be 25%. In this case, we support a-priori net-

work inconsistency by 75%.

SSIFS assumes that the effects of the inconsistency factors are described from a mixture

of two normal distributions (see section 2.2.2). The mixing of the method is controlled

by the arguments c and psi. These arguments should be defined in such a manner as to

ensure a distribution similar to the distribution of Figure 2.1. Argument c reflects the

prior probability of including inconsistency factors in the model with trivial effects, while

argument psi denotes the standard deviations of the inconsistency factors (ψℓ) when they

are not included in the model. By default, the function assumes that c = 3 and specifies

ψℓ based on a pilot MCMC run of the full NMA model as the standard deviation of the

inconsistency factors. The user can also specify the parameters ψℓ manually, by setting the

argument psi equal to a vector of positive numbers. For example, if the network includes

five inconsistency factors, then by setting

psi = c(0.7, 0.5, 0.3, 0.6, 0.2)

the user assumes that

ψ1 = 0.7, ψ2 = 0.5, ψ3 = 0.3, ψ4 = 0.6 and ψ5 = 0.2.
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Furthermore, by properly setting arguments c and psi, the user can evaluate network con-

sistency based on a value that is considered of practical significance (see section 2.2.3). For

example, if we set c = 10 and psi = 0.09, the user assumes that a difference of 0.2 between

direct and indirect evidence, is of practical significance. Thus, inconsistency factors with

effect larger in absolute values than 0.2, are included in the model.

Lastly, through the arguments M , B, n thin and n chains the user can control the

iterations of the MCMC run, the burn-in period, the thinning interval, and the number of

chains, respectively. The default choice is to employ a burn-in period of 10000 iterations and

a total of 50000 iterations, using 2 unthinned chains to monitor convergence. These options

are also provided for the pilot MCMC run of the NMA model (arguments M pilot, B pilot,

n thin pilot and n chains pilot).

4.1.1.2 Output

The function returns as output the following objects:

� Posterior inclusion probabilities

� Posterior Odds

� Summary

� Bayes Factor

� Z matrix

� MCMC run

� disconnected studies

� n subnetworks

� subnetworks.

Object Posterior inclusion probabilities is a data.frame that contains the posterior in-

clusion probabilities of the inconsistency factors. Columns Comparison and Design denote

in which comparisons inconsistency factors were added, while column PIP denotes the cor-

responding posterior inclusion probabilities; values above 0.5 indicate that the corresponding

inconsistency factors should be included in the NMAmodel and signifies inconsistency. More-

over, the coefficients of the inconsistency factors along with the corresponding 95% credible

intervals are reflected by the columns b, b.lb, and b.ub, respectively. Inconsistency factors’
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coefficients can also be found in the object Summary, which contains the coefficients along

with the 95% credible intervals for the functional comparisons, heterogeneity parameter τ 2

and parameter πcons. Raw results of the MCMC run are provided in the objectMCMC run;

the user can check the convergence of the MCMC run using the classical diagnostics.

Object Posterior Odds is a data.frame that contains the posterior odds and the posterior

model probabilities. Column IFs denotes the observed NMA models, while columns Freq

and f(m|y) denote the frequency of the corresponding model and the posterior model prob-

abilities, respectively. Column PO IFCONS denotes the posterior odds of the consistent

NMA model (denoted as NO IFs) versus the inconsistent NMA model of the corresponding

row of column IFs. A value above one favours the consistency hypothesis, while below one

signifies inconsistency. In the latter case, the network is globally inconsistent, and the sources

of inconsistency are the comparisons in which inconsistency factors were added. Note also

that in the case where method = ”DBT” or method = ”Jackson”, the inconsistency factors

for multi-arm designs are denoted as

treatment comparison Design.

For example, if an inconsistency factor is added in the comparisons between treatments B

and C of the ABC design, the inconsistency factor’s name will be B;C ABC.

Object Bayes Factor contains a positive number which denotes the Bayes Factor of the

comparison between the consistent NMA model and the rest inconsistent NMA models; ob-

served inconsistent NMA models are grouped and their posterior model probabilities are

summed. A value above one indicates that the network is globally consistent, while below

one suggests that the network is globally inconsistent. In the latter case, the sources of incon-

sistency should be specified according to posterior odds and posterior inclusion probabilities.

Furthermore, the user can identify the comparisons where inconsistency factors have been

added via the object Z matrix. In addition, it is a data.frame where the comparisons be-

tween the treatments and the study labels are presented in the first three columns, while the

rest columns refer to matrix Z. Values of 1 or -1 indicate that an inconsistency factor was

added, whereas values of 0 indicate that was not.

Lastly, the function provides information concerning the sub-networks that were excluded

before SSIFS was applied. More specifically, the objects disconnected studies, n subnetworks,

subnetworks denote the studies that belong to the excluded sub-networks, the sub-networks,

and the number of sub-networks, respectively.
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4.1.2 Function spike.slab()

The function spike.slab (”Inconsistency Factors’ Spike and Slab”) visualizes the spike

and slab for each inconsistency factor. Thus, the user can check the model’s mixing ability.

Generally, good mixing indicates that the spike has a high density for values close to zero,

while the slab is flat.

4.1.2.1 Arguments

As input, the function requires an object of class ssifs.

4.1.2.2 Output

It returns objects of class ggplot. The number of objects equals the number of inconsis-

tency factors that were added to the NMA model.

4.1.3 Data

The package includes two datasets of two published NMAs that refer to smoking cessation

(Dias et al., 2013) and the effectiveness of brief alcohol interventions for preventing hazardous

drinking (Seitidis et al., 2022a).

4.2 Package viscomp

The package ”Visualize Multi-Component Interventions in Network Meta-Analysis” was

published on CRAN on the 16th of January, 2023. The scope of the package is to visualize

the results of NMA in order to explore the behaviour of the components and identify valuable

patterns between them.

A vignette titled ”An introduction to network meta-analysis using the viscomp package”

is provided alongside the R package. This vignette serves as a comprehensive guide on how

to utilize the viscomp package and its functionalities. It offers a detailed explanation of the

novel visualization tools and demonstrates their practical application through illustrative ex-

amples. You can access the vignette at https://georgiosseitidis.github.io/viscomp/

articles/viscomp.html.

The package’s functions, except for the function rankheatplot, require as input an object

of class netmeta (argument model). By default, they identify the components of the network

by using the symbol ” + ” as a separator. The spacing between the components does not
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affect the results. For example, if the network includes four interventions, namely ”A+B”,

”A +B”, ”C+ B”, ”A + B+C”, the function will identify the elements ”A”, ”B”, and ”C”,

as components of the network. The separator symbol can be modified through the argument

sep.

Furthermore, the functions utilize by default the NMA relative effects which are obtained

from the random-effects NMA model. By setting the argument

random = FALSE,

the common-effects NMA model is utilized instead, while by setting

z value = TRUE,

z-values are used instead of relative effects.

4.2.1 Function compGraph()

The function compGraph (”Components Network Graph”) displays the frequency of the

components’ combinations found in the network.

4.2.1.1 Arguments

By default, the function displays the five most frequent component combinations. The

user can change this number through the argument mostF . Additionally, the user can ex-

clude specific combinations from the plot through the argument excl (character vector). This

feature is particularly useful when there are components that pertain to control groups and

are not combined with other components.

The plot title can be customized using the argument title, which is set by default as

”Most frequent combinations of components”. The legend size can be adjusted using the

argument size legend. The legend can also be excluded by setting the argument

print legend = TRUE.

4.2.1.2 Output

An object of class qgraph.
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4.2.2 Function compdesc()

The function compdesc (”Components descriptive analysis”) performs a descriptive anal-

ysis concerning the frequency of the components.

4.2.2.1 Arguments

By default, the function produces a heat matrix using percentages instead of fraction

values; percentages are rounded up to two decimal places (argument digits = 2). By setting

the argument

percentage = FALSE,

fraction values are displayed instead of percentages. Also, the user has the option to not

plot the heat matrix by setting the argument

heatmap = FALSE.

4.2.2.2 Output

The function returns as output the following objects:

� crosstable

� frequency

� heatmap (if heatmap = TRUE).

Object crosstable is a cross-table that contains the frequency of two-by-two component

combinations. Each cell refers to the number of study arms that include the corresponding

component (combination). Diagonal elements refer to components, while off-diagonal ele-

ments refer to the combinations of components.

Object frequency is a data.frame that displays the frequency of the components. More

specifically, it includes the following columns:

� Component: it refers to the components of the network.

� Frequency: it refers to the number of arms that include the corresponding component.

� A: it refers to the number of studies in which the corresponding component was ob-

served in all arms.

� A percent: it refers to the percentage of studies in which the corresponding component

was observed in all arms.
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� B: it refers to the number of studies in which the corresponding component was

observed in at least one arm.

� B percent: it refers to the percentage of studies in which the corresponding component

was observed in at least one arm.

� C: it refers to the number of studies in which the corresponding component was not

included in any arm.

� C percent: it refers to the percentage of studies in which the corresponding component

was not included in any arm.

� A.B: it refers to the ratio of A/B.

Object heatmap is an object of class ggplot. It refers to the heat matrix which visualizes

the object crosstable. The percentage of arms that contain the corresponding component

(combination) is also displayed in the parenthesis of each cell. Diagonal elements refer to the

percentage of arms that contain the corresponding component, while non-diagonal elements

refer to the percentage of arms that include the corresponding component combination out of

those that include the component of the corresponding row. Moreover, each cell is coloured

according to relative frequency, so the user could identify the most frequent combinations

more easily; dark red indicates large percentages.

4.2.3 Function heatcomp()

The function heatcomp (”Components Heat Plot”) creates a heat plot that visualizes the

effect of the components (combinations) based on the NMA results.

4.2.3.1 Arguments

By default, the function summarises the NMA relative effect estimates (intervention ver-

sus reference) of the interventions that include the corresponding component (combination)

by using the median as a summary measure. Also, the number of nodes in which the under-

lying component (combination) was observed, is printed in the parenthesis of each cell; by

setting the argument freq = FALSE frequencies are not printed. Moreover, the uncertainty

around the relative effect estimates is reflected by the size of the grey boxes. The larger the

size of the box, the more imprecise the summary estimate. In the case where z-values are

used, uncertainty around the estimates is not displayed.
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The user can use the mean as a summary measure instead of the median by setting

median = FALSE,

and modify the legend title through the argument legend name.

4.2.3.2 Output

An object of class ggplot.

4.2.4 Function loccos()

The function loccos (”Leaving One Component Combination Out Scatter plot”) identifies

the set of interventions that differ by a specific set of components. Therefore, the user can

explore whether the inclusion or exclusion of a specific component (combination) impacts on

the outcome.

4.2.4.1 Arguments

By default, the function identifies sets of interventions that differ by one component.

Axis x displays the intervention effect when the component (combination) is included in the

intervention, while axis y when is not. Through the argument combination we can specify

the component (combination) of interest. For example, by setting

combination = ”A”

the function identifies the set of interventions that differ by the component A, and by setting

combination = ”A+B”,

identifies the set of interventions that differ by the components ”A” and ”B”. Dots close

to the y = x line indicate no impact on the outcome. Dots above the y = x line indi-

cate for a beneficial outcome that the inclusion of the component (combination) hampers

efficacy, while for a harmful outcome, that increases the intervention effect. Dots below

the y = x line suggest for a beneficial outcome that the inclusion of the component (combi-

nation) increases efficacy, while for a harmful outcome, that decreases the intervention effect.

The function can also be used to evaluate visually the additivity assumption. Additivity

implies that the intervention effect is obtained as the sum of the relative components’ effects.

Therefore, the inclusion or exclusion of a component (combination) should have the same

70



impact on the outcome. This is expressed by a line parallel to the y = x line. In the case

where z-values are used, additivity cannot be evaluated.

Along with the scatter plot, a histogram displaying the interventions’ effects is printed

on each axis. By setting histogram = FALSE the histogram is not printed, while through

the argument histogram.color the histogram color can be modified.

4.2.4.2 Output

An object of class ggplot.

4.2.5 Function specc()

The function specc (”Specific Component Combination violin plot”) visualizes the com-

ponents (combinations) effects through violin plots.

4.2.5.1 Arguments

By default, the function visualizes the distribution of interventions’ effects for each com-

ponent. The number of violins is equal to the number of components. Argument combination

is a character vector and defines the components (combinations) of interest. For example, if

combination = c(”A”, ”A+B”, ”A+B + C”),

the function will create three violins based on the:

� interventions that include component ”A”

� interventions that include components ”A” and ”B”

� interventions that include components ”A”, ”B” and ”C”.

The function can also be modified to construct violins based on the number of compo-

nents. By setting

components number = TRUE

the function visualizes the interventions’ effects based on the number of components that

are included in the interventions. For example, if the number of components included in the

interventions ranges between one and four, the function will create four violins based on the:

� interventions that include one component

� interventions that include two components
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� interventions that include three components

� interventions that include four components.

Through the argument group which is a character vector, the user can group the violins.

As input it requires integer numbers (e.g. 4 or ”4”), range values (e.g. ”1-3”) and ”XX+”

values (e.g. ”4+”). For example, if

components number = TRUE and group = c(”1− 2”, 2, ”3 + ”)

the function will construct three violins based on the interventions that include:

� one or two components

� two components

� more than three components.

Moreover, through the arguments fill violin, color violin, adj violin, and width violin,

the user can modify the fill color of the violin, the color of the violin, the width of the violin

and its adjustment, respectively. Also, by default, an additional boxplot is printed along

with the violin. The user can also modify the width of the boxplot and its errorbar through

the arguments width boxplot and errorbar type, respectively. The boxplot can be excluded

from the plot by setting the argument

boxplot = FALSE.

Median values are printed by default for each boxplot, and they can be excluded by set-

ting values = FALSE. Lastly, dots are displayed by default, visualizing interventions’

effects/z-values. The shape and position of the dots can be modified through the arguments

jitter shape and jitter position, respectively. The dots can be excluded from the plot by

setting

dots = FALSE.

It should be noted that in the case where intervention effects are used, by setting

prop size = TRUE

the size of the dots is proportional to the precision of the estimates.

4.2.5.2 Output

An object of class ggplot.
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4.2.6 Function watercomp()

The function watercomp (”Waterfall plot”) creates a waterfall plot for interventions that

differ by one (specific) component combination. A bar above or below the y = 0 line indicates

an impact on the outcome. Depending on the nature of the outcome (beneficial or harmful),

the direction of the impact (positive or negative) will differ.

4.2.6.1 Arguments

By default, the function identifies sets of interventions that differ by one component.

The user can identify sets of interventions that differ by a specific component combination

through the arguments combination, which behaves the same as in the function loccos (for

more details see 4.2.4).

4.2.6.2 Output

An object of class ggplot.

4.2.7 Function denscomp()

The function visualizes the density of the components (combinations).

4.2.7.1 Arguments

By default, the function visualizes the NMA relative effects based on:

� the interventions that include the underlying component (combination)

� the interventions that do not include the underlying component (combination).

The component (combination) of interest is defined by the argument combination. In

the case where the length of the argument combination is larger than one, then the number

of densities is equal to its length. For example, if

combination = c(”A”, ”A+B”, ”A+B + C”)

the function will produce three densities based on:

� the interventions that include component ”A”

� the interventions that include components ”A” and ”B”

� the interventions that include components ”A”, ”B” and ”C”.
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Also, if the argument violin = TRUE, the function will use violins instead of density

plots. The function can be also adjusted to utilize z-values instead of relative effects.

4.2.7.2 Output

An object of class ggplot.

4.2.8 Function rankheatplot()

The function rankheatplot (”Components Rank Heat Plot”) visualizes the components

p-scores for multiple outcomes.

4.2.8.1 Arguments

Argument model must be a list containing multiple netmeta objects. The length of

argument model must be at least two. By default, the function summarizes the p-scores

from the interventions that include the corresponding component, using the median as a

summary measure. It can also be modified to use the mean instead, by setting

median = FALSE.

Moreover, by default, p-score estimates are obtained from the random-effects NMA model.

By setting

random = FALSE,

p-score estimates are obtained for each outcome from the common-effects model. If it is

required to use the common-effects model for some outcomes and not for all, the argument

random must be a logical vector; the length of the vector must be equal to the length of the

argument model. For example, if three outcomes are included in the argument model and

the user needs to utilize the common-effects model for the first two outcomes, it must set

random = c(FALSE, FALSE, TRUE).

In this case, the names of the outcomes by default would be Outcome 1, Outcome 2 and

Outcome 3. The outcome’s names can be modified through the argument outcomeNames;

it is a character vector with length equal to the number of outcomes. Lastly, the font size

of the components, p-score estimates, and outcomes’ names can be modified through the

arguments cex components, cex values, cex outcomes, respectively.

74



4.2.8.2 Output

An invisible rank-heat plot.

4.2.9 Data

The package includes a fictional network of multi-component interventions that compares

the effectiveness of interventions on major adverse cardiovascular events.
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Chapter 5

Conclusions and Further Research

Evaluating network consistency and handling multi-component (complex) interventions

are two prevalent challenges encountered in the practice of NMA. In this work we center

on these two research topics, with an emphasis on providing potential solutions to address

them.

5.1 Conclusions

Transitivity is a fundamental assumption of NMA which is evaluated statistically through

the consistency assumption. The proper evaluation of consistency is vital as the validity of

the NMA findings are primarily affected by the satisfaction of the consistency assumption.

So far, consistency was mainly evaluated in the Bayesian framework through DIC, which

has several limitations and does not address adequately the consistency assumption. In this

work, we transform the inconsistency detection into a variable selection problem, by incor-

porating the SSVS method into the NMA model. Therefore, by treating the inconsistency

factors as variables in a generalized linear model, we can evaluate the network globally by

identifying the local sources of inconsistency. Advantages of the method include the abil-

ity to incorporate historical evidence, evaluation of consistency based on a value that is of

practical significance, avoid using improper information criteria such as the DIC, and si-

multaneously test network consistency both globally and locally. Also, it can be used to

evaluate consistency in Individual Participant Data (IPD) NMA by using the two-stage ap-

proach. The proposed method, namely SSIFS, was evaluated in two published networks and

demonstrated good performance on testing consistency. Implementation of SSIFS could be

performed though the R-package ssifs which was developed by the authors of this work.

In this work inconsistency factors (matrix Z) were specified using either the Lu & Ades

model (section 1.4.1.1), or the design-by-treatment interaction model (section 1.4.1.2), or
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the Jackson’s model (section 1.4.1.3). It is important to note that the matrix Z can also

be manually specified when necessary, for example, when inconsistency factors need to be

included in certain comparisons or when there are inconsistencies in the network. Thus, in

an inconsistent network where the sources of inconsistency are known, by adjusting matrix

Z appropriately, we can obtain NMA estimates adjusted for inconsistency. However, this

feature of SSIFS cannot be applied directly to the former methods used (Lu & Ades model,

design-by-treatment interaction model, Jackson’s model) for the specification of matrix Z,

since it is quite likely that the NMA estimates will be biased due to the inconsistency factors

terms that are placed to the consistent designs/loops.

Another important issue in NMA is the handling of multi-component (complex) inter-

ventions. So far, the identification of the best components is commonly assessed through the

CNMA model. In sparse networks with many nodes and few direct evidence, the results of

CNMA could be biased since additivity may be implausible. Moreover, NMA and CNMA

estimates could be primarily driven by the study estimates or study characteristics. To ad-

dress these issues and strengthen the NMA, we provide a series of visualization tools that

could be used on exploring the geometry of the network and explore the behaviour of the

components. Moreover, components (combinations) that are associated with a large impact

on the outcome can be visually detected. A drawback of these tools is that it can be applied

only in connected networks. Implementation of the visualization tools could be performed

though the R-package viscomp which was developed by the authors of this work.

Interpretation of the results concerning the effectiveness of the components (combina-

tions) should be treated with caution to avoid false conclusions. It is vital to firstly under-

stand the geometry of the network and then proceed on exploring the components’ effective-

ness. Suppose that there are two ineffective components in the network, which are observed

in a few multi-component interventions that have large effects and always appear together.

In such cases, the leave one component out combination scatter plot and the waterfall plot

will not illustrate these components due to missing comparators. Also, the component heat-

plot and the violin plot will suggest that these two components have a considerable impact

on the outcome. Despite the large effectiveness of these two components, the results are

misleading. This is because the large intervention effects are due to intervention complex-

ity rather than to the effectiveness of the two underlying components. It should be noted,

however, that if we had first examined the network geometry through the components cross-

table, we would have observed that these components were always observed together and

never apart. Lastly, it should be mentioned that both NMA and CNMA should be conducted

when complex interventions are present.
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5.2 Further Research

In terms of further research, there exist various intriguing research topics that could be

relevant to our work. One possibility is to broaden the scope of the SSIFS by exploring

alternative variable selection techniques such as the Gibbs Variable Selection (GVS) (Della-

portas et al., 2000, 2002), or the Bayesian Least Absolute Shrinkage and Selection Operator

(LASSO) (O’hara and Sillanpää, 2009). Also, as an alternative to the spike and slab ap-

proach, the horseshoe prior could be utilized (Carvalho et al., 2010), which mimics the spike

and slab approach and is particularly useful when there are many potential predictors but few

data (Piironen and Vehtari, 2017). Hence, it may be an efficient alternative for identifying

inconsistencies in networks that include many inconsistency factors but few studies (sparse

networks). Another potential direction is to tailor SSIFS to the network meta-regression

framework or to multivariate NMA, or modify SSIFS to evaluate consistency in networks

that incorporate both RCTs and non-RCTs. Finally, it is necessary to conduct a simulation

to confirm the method’s overall good performance.

Further research also includes the evaluation of consistency using posterior predictive

checks (Gelman et al., 1996), and the development of visualization tools that could provide

valuable insight concerning NMA and CNMA.
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Appendix A

Tuning based on assuming a-priori the

minimum value of inconsistency that

is of practical significance.

Tuning parameters ψℓ and c in order inconsistency factor to be included in the NMA

model when | bℓ | is larger than a threshold. In the case where the prior correlation matrix

is R = Ip we have that:

f(bℓ | γℓ = 0) = f(bℓ | γℓ = 1) ⇔

1

ψℓ

√
2π
e
− 1

2

(
bℓ
ψℓ

)2

=
1

cψℓ

√
2π
e
− 1

2

(
bℓ
cψℓ

)2

⇔

−1

2

(
bℓ
ψℓ

)2

= − log c− 1

2

(
bℓ
cψℓ

)2

⇔

c2b2ℓ = 2c2ψ2
ℓ log c+ b2ℓ ⇔

b2ℓ
(
c2 − 1

)
= 2c2ψ2

ℓ log c⇒

b2ℓ =
2c2ψ2

ℓ log c

c2 − 1
⇒

b2ℓ = ψ2
ℓ ξ(c), ξ(c) =

2c2 log c

c2 − 1
.

Inconsistency factors with coefficient | bℓ |> ψℓ

√
ξ(c) will have larger density to be included

in the NMA model. If we assume that the elements of b are correlated then,

f(b | γ = 0) = f(b | γ = 1) ⇔
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| 2πDγ=0RDγ=0 |−1/2e−
1
2
b
′
(Dγ=0RDγ=0)

−1b = | 2πDγ=1RDγ=1 |−1/2e−
1
2
b
′
(Dγ=1RDγ=1)

−1b.

We have

Dγ=1 =

cψ1

. . .

cψp

 = c

ψ1

. . .

ψp

 = cDγ=0.

Thus,

| Dγ=0RDγ=0 |−1/2e−
1
2
b
′
(Dγ=0RDγ=0)

−1b = (c2)
− p

2 | Dγ=0RDγ=0 |−1/2e−
1

2c2
b
′
(Dγ=0RDγ=0)

−1b ⇔

e−
1
2
b
′
(Dγ=0RDγ=0)

−1b = c−pe−
1

2c2
b
′
(Dγ=0RDγ=0)

−1b ⇔

−1

2
b

′
(Dγ=0RDγ=0)

−1b = −p log c− 1

2c2
b

′
(Dγ=0RDγ=0)

−1b ⇔

b
′
(Dγ=0RDγ=0)

−1b

(
1

c2
− 1

)
= −2p log c⇒

b
′
(Dγ=0RDγ=0)

−1b =
2pc2 log c

c2 − 1
.

Zellner g-prior is assumed for the prior correlation matrix R

R = g
(
Z

′
Z
)−1

σ2

Hence,

b
′
(
Dγ=0(Z

′
Z)

−1
Dγ=0

)−1

b =
2gpσ2c2 log c

c2 − 1
.

Thus, it is considered unsignificant when

b
′
(
Dγ=0(Z

′
Z)

−1
Dγ=0

)−1

b = gpσ2ξ(c).
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Appendix B

Tables
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Table A1: Smoking cessation example. Posterior inclusion probabilities (γℓ) and inconsistency factors’ coefficients (bℓ) with
the corresponding 95% credible interval (95% Cr.I) are calculated using the design-by-treatment, the Lu & Ades, and the
Jackson’s model for the specification of the inconsistency factors, and by assuming either that the inconsistency factors are

independent (R = Ip) or not (R = g(Z
′
Z)

−1
σ2). Probability to have a consistent network assumed either to be 0.5, or 0.25,

or πcons ∼ Beta(157, 44).

Comparison

(Design)

πcons = 0.5 πcons ∼ Beta(157, 44) πcons = 0.25

R = Ip R = g(Z
′
Z)−1σ2 R = Ip R = g(Z

′
Z)−1σ2 R = Ip R = g(Z

′
Z)−1σ2

γ̂ℓ
b̂ℓ

[95% Cr.I]
γ̂ℓ

b̂ℓ

[95% Cr.I]
γ̂ℓ

b̂ℓ

[95% Cr.I]
γ̂ℓ

b̂ℓ

[95% Cr.I]
γ̂ℓ

b̂ℓ

[95% Cr.I]
γ̂ℓ

b̂ℓ

[95% Cr.I]

Design by Treatment

BC

(BC)
0.08

0.01

[-0.21, 0.56]
0.08

0.00

[-0.31, 0.56]
0.03

0.01

[-0.19, 0.22]
0.03

0.00

[-0.33, 0.57]
0.14

0.01

[-0.32, 0.90]
0.16

0.00

[-0.31, 0.59]

BD

(BD)
0.08

-0.01

[-0.67, 0.21]
0.08

0.00

[-0.58, 0.31]
0.03

-0.01

[-0.23, 0.18]
0.03

0.00

[-0.59, 0.34]
0.16

-0.01

[-1.01, 0.33]
0.16

0.00

[-0.64, 0.31]

CD

(CD)
0.06

0.00

[-0.27, 0.23]
0.08

0.00

[-0.31, 0.30]
0.02

0.00

[-0.20, 0.19]
0.03

0.00

[-0.32, 0.33]
0.13

0.00

[-0.57, 0.47]
0.16

0.00

[-0.33, 0.32]

AC

(ACD)
0.08

-0.02

[-0.78, 0.18]
0.08

0.00

[-0.65, 0.24]
0.03

-0.02

[-0.26, 0.17]
0.03

0.00

[-0.64, 0.26]
0.16

-0.02

[-1.06, 0.22]
0.16

0.00

[-0.70, 0.24]

AD

(ACD)
0.12

0.03

[-0.18, 1.18]
0.09

0.00

[-0.21, 0.91]
0.04

0.02

[-0.17, 0.58]
0.03

0.00

[-0.23, 0.84]
0.21

0.04

[-0.20, 1.43]
0.18

0.00

[-0.21, 1.05]

CD

(BCD)
0.06

0.00

[-0.30, 0.22]
0.08

0.00

[-0.42, 0.38]
0.02

0.00

[-0.20, 0.19]
0.03

0.00

[-0.44, 0.41]
0.13

0.00

[-0.61, 0.42]
0.15

0.00

[-0.43, 0.39]

BD

(BCD)
0.07

0.01

[-0.21, 0.43]
0.08

0.00

[-0.32, 0.51]
0.02

0.01

[-0.19, 0.21]
0.03

0.00

[-0.33, 0.55]
0.13

0.01

[-0.35, 0.75]
0.15

0.00

[-0.32, 0.55]

Lu & Ades

BC

-
0.15

0.02

[-0.26, 0.84]
0.16

0.00

[-0.37, 0.78]
0.06

0.01

[-0.19, 0.43]
0.06

0.00

[-0.38, 0.79]
0.29

0.03

[-0.47, 1.05]
0.31

0.00

[-0.38, 0.80]

BD

-
0.16

-0.01

[-0.79, 0.48]
0.16

0.00

[-0.62, 0.84]
0.06

-0.01

[-0.32, 0.21]
0.06

0.00

[-0.59, 0.87]
0.30

-0.01

[-0.99, 0.85]
0.32

0.00

[-0.67, 0.90]

CD

-
0.21

0.03

[-0.22, 1.28]
0.19

0.00

[-0.26, 1.38]
0.08

0.02

[-0.18, 0.85]
0.07

0.00

[-0.27, 1.31]
0.37

0.05

[-0.38, 1.51]
0.35

0.00

[-0.28, 1.53]

Jackson

AC

(AC)
0.04

0.00

[-0.20, 0.21]
0.06

0.00

[-0.12, 0.13]
0.01

0.00

[-0.18, 0.19]
0.02

0.00

[-0.12, 0.13]
0.08

0.00

[-0.23, 0.29]
0.12

0.00

[-0.13, 0.14]

AB

(AB)
0.04

0.00

[-0.20, 0.23]
0.06

0.00

[-0.22, 0.28]
0.02

0.00

[-0.22, 0.28]
0.02

0.00

[-0.23, 0.29]
0.09

0.01

[-0.24, 0.46]
0.11

0.00

[-0.22, 0.29]

AD

(AD)
0.08

-0.01

[-1.02, 0.20]
0.07

0.00

[-1.03, 0.28]
0.03

-0.01

[-0.24, 0.18]
0.03

0.00

[-0.80, 0.29]
0.15

-0.02

[-1.43, 0.24]
0.14

0.00

[-1.31, 0.26]

BC

(BC)
0.05

0.01

[-0.20, 0.33]
0.05

0.00

[-0.31, 0.54]
0.02

0.01

[-0.18, 0.21]
0.02

0.00

[-0.32, 0.54]
0.10

0.01

[-0.25, 0.75]
0.11

0.00

[-0.30, 0.55]

BD

(BD)
0.06

-0.01

[-0.46, 0.19]
0.06

0.00

[-0.57, 0.31]
0.02

-0.01

[-0.21, 0.18]
0.02

0.00

[-0.21, 0.18]
0.11

-0.01

[-0.87, 0.23]
0.11

0.00

[-0.58, 0.29]

CD

(CD)
0.04

0.00

[-0.22, 0.21]
0.06

0.00

[-0.31, 0.30]
0.02

0.00

[-0.19, 0.19]
0.02

0.00

[-0.32, 0.31]
0.09

0.00

[-0.40, 0.29]
0.11

0.00

[-0.30, 0.28]

AC

(ACD)
0.06

-0.02

[-0.60, 0.18]
0.06

0.00

[-0.62, 0.25]
0.02

-0.01

[-0.23, 0.17]
0.02

0.00

[-0.61, 0.26]
0.12

-0.02

[-0.95, 0.20]
0.12

0.00

[-0.64, 0.23]

AD

(ACD)
0.08

0.02

[-0.18, 1.00]
0.07

0.00

[-0.22, 0.84]
0.03

0.02

[-0.17, 0.27]
0.02

0.00

[-0.23, 0.75]
0.16

0.03

[-0.19, 1.29]
0.13

0.00

[-0.21, 0.93]

CD

(BCD)
0.05

0.00

[-0.23, 0.20]
0.05

0.00

[-0.42, 0.38]
0.02

0.00

[-0.20, 0.19]
0.02

0.00

[-0.43, 0.39]
0.09

0.00

[-0.46, 0.28]
0.11

0.00

[-0.40, 0.35]

BD

(BCD)
0.05

0.01

[-0.20, 0.26]
0.05

0.00

[-0.33, 0.49]
0.02

0.00

[-0.18, 0.20]
0.02

0.00

[-0.35 0.51]
0.10

0.01

[-0.25, 0.61]
0.11

0.00

[-0.30, 0.49]
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Additional supplementary tables are available at https://github.com/georgiosseitidis/

Setidis-G.-Thesis/blob/main/Supplementary%20Tables.pdf.
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