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Abstract

CKM corrections in the Standard Model Effective Field Theory

by Dimitrios BEIS

In this thesis, we investigate the impact of New Physics (NP) on the global CKM fit
and propose a straightforward approach to constrain the CKM matrix. The theoretical
framework used in analyzing flavor data is the Standard Model Effective Field Theory
(SMEFT). SMEFT also contains the leading NP effects from the six-dimensional Wilson
coefficients and parameters present in the SM Lagrangian. In addition, SMEFT can be
used to account for correlations between different observables, such as Electroweak pre-
cision measurements, leptonic processes, and quark-flavor transitions.

Our approach uses a set of input observables and express the CKM parameters in
terms of Wilson coefficients that can be produced from these observables. We work with
this framework to match the LEFT (Low Energy Effective Field Theory)’s Wilson coeffi-
cients with those of SMEFT. Additionally, we use experimental data on the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix to verify its contribution to the
parameters of the CKM matrix.The resulting combinations of Wilson coefficients define
the corrected matrix elements of the CKM matrix and we apply these new parameters
in order to set limits on NP processes.
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Chapter 1

Introduction

1.1 The Standard Model of Particles physics

The Standard Model (SM) is a theoretical framework in particle physics that describes
the fundamental particles and their interactions. Several textbooks are available that
cover different aspects of SM, such as:[9],[41],[30]. To construct this theory, a math-
ematical framework known as Quantum Field Theory (QFT) is required. QFT is a
physical theory that combines Quantum Mechanics and Special Relativity into a sin-
gle theory and plays a crucial role in describing the physics of elementary particle.
Some of the most well-known textbooks regarding quantum field theory are the follow-
ing:[36],[38],[40]. Standard Model is a non-abelian gauge theory and the corresponding
group is:

GSM = SU(3)C × SU(2)L × U(1)Y , (1.1)

where C stands for color, Y for hypercharge and L for Left.The Higgs Mechanism is the
way in which particles acquire mass in the Standard Model. The general mathematical
concept of the Higgs mechanism can be found in [29] . Using Higgs mechanism we
break the Electroweak Symmetry in order to give masses to the Gauge bosons. We can
interpret the breaking symmetry as:

SUL(2)× UY(1) → UQED(1) . (1.2)

In the following sections we analyze in detail the Electroweak and Fermion Sector.

1.2 Electroweak Sector

The Electroweak theory unifies electromagnetic and weak interactions and was estab-
lished by Glashow, Weinberg, and Salam [42],[25]. The Kinetic term of the Lagrangian
that governed by the Electroweak Symmetry: SUL(2)× U(1)Y is:

Lkin = −1
4

Wµν
a Waµν − 1

4
BµνBµν +

∣∣Dµφ
∣∣2 , (1.3)

where Waµν (a = 1, 2, 3) and Bµν are the field strength tensors for the weak isospin and
weak hypercharge gauge fields. The covariant derivative of the Higgs doublet, φ, with
hypercharge Yφ = 1

2 , is given by:

Dµφ = (∂µ − igAa
µτa − ig′

2
Bµ)φ, (1.4)
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where Aaµ and Bµ are the SU(2) and U(1) gauge bosons respectively while τa = σa

2 .
where σa are the Pauli matrices. We define g and g′ to be the coupling constants of
SU(2) and U(1) respectively. The relevant potential of the EW theory is:

V(φ) = −µ2 |φ|2 + λφ4. (1.5)

Therefore the field φ acquires acquires a vacuum expectation value(Vev):

〈φ〉 = 1√
2

(
0
υ

)
, (1.6)

where υ =
√

µ2

λ .
We identify the mass terms of the weak gauge bosons in the term Lφ = |Dµφ|2 which

after the SSB is:

Lφ =
1
2
(
0 υ

) (
gAa

µτa +
1
2

g′Bµ

)
(gAbµτb +

1
2

g′Bµ)

(
0
υ,

)
(1.7)

after some straightforward calculations we find:

Lφ =
υ2

8

(
g2(A1µ)2 + g2(A2µ)2 +

(
g′Bµ − gA3µ

)2
)

. (1.8)

From equation 1.8 one can identify the masses of the following gauge bosons:

W±
µ =

1√
2

(
A1

µ + iA2
µ

)
with mass MW =

gυ

2

Z0
µ =

g′Bµ − gA3µ√
g2 + g′2

with mass MZ =
υ
√

g2 + g′2

2

There is also a fourth massless vector field, orthogonal to Z0
µ:

Aµ =
g′A3

µ + gBµ√
g2 + g′2

with mass MA = 0. (1.9)

Since we identify the gauge bosons we write the covariant derivative in terms of these
fields as follows:

Dµ =∂µ − igAa
µTa − ig′YBµ =

= ∂µ − i
g√
2

(
W+

µ T+ + W−
µ T−

)
−

iZµ√
g2 + g′2

(
g2T3 − g

′2Y
)
−

− igg′√
g2 + g′2

Aµ

(
T3 + Y

)
,

(1.10)
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we denote with T± = (T1 ± iT2), where Ta = σa

2 , for a = {1, 2}. We identify the electric
charge in the last term of eq.(2.10) to be:

e =
gg′√

g2 + g′2
(1.11)

and the electric charge number:
Q = T3 + Y. (1.12)

In order to simplify the covariant derivative we define the weak mixing angle θw in
order to rotate the fields as:(

Z0
A

)
=

(
cosθw − sinθw
sinθw cosθw

)(
A3

B

)
. (1.13)

From equation (2.12) we extract the relations:

sinθw =
g′√

g2 + g′2
, cosθw =

g√
g2 + g′2

. (1.14)

We can write now the covariant derivative as:

Dµ = ∂µ −
ig√

2

(
W+

µ T+ + W−
µ T−

)
− ig

cosθw
Zµ

(
T3 − sin2θwQ

)
− ieQAµ , (1.15)

where we used the relation g = e
sinθw

. We notice that the mass of gauge bosons are not
independent since the relation holds:

MZ =
MW

cosθw
. (1.16)

Therefore all interactions of W and Z boson can be written in terms of the parameters
{θw, υ, MW}. Experimental results for W and Z boson masses can be found in [35].

1.3 Higgs Sector

The Higgs boson’s mass and its interactions with the W and Z gauge fields arise from
the Higgs field’s coupling to these fields in the Lagrangian:

Lh =
∣∣Dµφ

∣∣2 − V(φ), (1.17)

which after the SSB(φ → h(x)+υ√
2

) can be writen as:

Lh =
1
2
(
∂µh
)2

+

[
M2

WWµ+Wµ− +
1
2

M2
ZZµZµ

] (
1 +

h
υ

)2

−

− µ2h2 − λυh3 − λh4

4
+

µ4

4λ
.

(1.18)

By using the relation υ =
√

µ2
√

λ
, we can identify the mass of the Higgs boson to be:
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mh =
√

2µ =
√

2λυ. (1.19)

The experimental value of Higgs boson is [35]:

mh = 125.18(16)GeV. (1.20)

1.4 Fermion sector

We continue with the issue of constructing mass terms for quarks and leptons. It is
worth noting that one cannot put ordinary mass terms into the Lagrangian. This is be-
cause the left and right-handed components of the fermion fields have distinct gauge
quantum numbers, therefore single mass terms would violate gauge invariance. In or-
der to give masses to quarks and leptons, we must use the mechanism of spontaneous
symmetry breaking. The left-handed fermion fields are represented as doublets in the
fundamental representation of SU(2) while the right-handed fields are represented as
singlets in the same group. We denote for the left-handed side:

l j
Lp =

(
νLp
eLp

)
(1.21)

and

qaj
Lp =

(
ua

Lp
da

Lp

)
. (1.22)

The indices j = {1, 2}, a = {1, 2, 3} and p = {1, 2, 3} correspond to isospin, color and
generation respectively. We note that for the right-handed fermion fields, i.e. eR, we
have T3 = 0, since they are singlets under SU(2). Therefore, according to equation 1.12,
it can be seen that the hypercharges of the right-fermion fields are the same as their
electric charges. For the left-handed fermion fields, we have to specify the value of T3

to compute the electric charge. Since we have defined left and right-fermion fields, we
can write the kinetic terms in the following Lagrangian:

L = l̄Li��Dl + ēRi��DeR + q̄Li��DqL + ūRi��DuR + d̄Ri��DdR, (1.23)

where for simplicity, we ignore the indices j, a, and p.We continue by expanding the
covariant derivative in the form of equation 1.15. Therefore the Lagrangian transforms
to:

L =l̄Li��∂l + ēRi��∂eR + q̄Li��∂q̄L + ūRi��∂uR + d̄Ri��∂dR

+ g(W+
µ Jµ+

W + W−
µ Jµ−

W + Z0
µ Jµ

Z) + eAµ Jµ
EM,

(1.24)
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where we define the currents:

Jµ+
W =

1√
2
(ν̄LγµeL + ūLγµdL)

Jµ−
W =

1√
2

(
ēLγµνL + d̄LγµuL

)
JZ
µ =

1
cosθw

(ν̄Lγµ

(
1
2

)
νL + ēLγµ

(
−1

2
+ sin2(θw)

)
eL+

ūLγµ

(
1
2
− 2

3
sin2(θw)

)
uL + d̄Lγµ

(
−1

2
+

1
3

sin2(θw)

)
dL

ēRγµeR sin2 θw − 2
3

sin2 θwūRγµuR +
sin2 θw

3
d̄RγµdR)

JEW
µ = (− ∑

i=L,R
ēiγ

µei +
2
3

ūiγ
µui −

1
3

d̄iγ
µdi),

(1.25)

where we used that Y = −1/2 for l j
L and Y = +1/6 for qj

L, while Y = +2/3 for the
right-handed u and Y = −1 for eR.

Next we generalize the Lagrangian of equation 1.23, writing a Lagrangian invariant
under SU(2):

Lmass = −λ
ij
d l̄i

L · φdj
R − λ

ij
u εab l̄i

La · φ†
b uj

R + h.c. (1.26)

Where λd and λu general complex-valued matrices. To obtain the physical masses of
the fields we will perform a rotation of the terms in the mass basis. To do this we define
unitary matrices Uuand Ku for which, the following relation holds:

λu = Uu MuK†
u (1.27)

From equation 1.27 can be proved that:

λuλ†
u = Uu M2

uU†
u,

λ†
uλu = Ku M2

uK†
u,

(1.28)

Where:
Mu = U†

uλuUu, (1.29)

is a diagonal matrix with real elements. In a similar way we define unitary matrices Ud
and Kd for which the relation holds:

λd = Ud MdK†
d , (1.30)

where:
Md = U†

d λdUd. (1.31)

is a diagonal matrix with real eigenvalues. Next we make the following change of vari-
ables in order to simplify the Lagrangian of equation 1.26:

uL → UuuL, uR → KuuR,
dL → UddL dR → KddR.

(1.32)
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Under these transformations we rewrite the Lagrangian of equation 1.26 as follows(after
SSB of the theory, where φ → h+υ√

2
):

Lmass = −mi
dd̄i

Ldi
R

(
1 +

h
υ

)
− mi

uūi
Lui

R(1 +
h
υ
) + h.c. (1.33)

Where we redefine the masses of quarks to be:

mi
u =

υMii
u√

2
, mi

d =
υMii

d√
2

. (1.34)

From relation 1.33, we can extract the usual Higgs couplings to quarks and the Higgs
mass. From the rescaling formulation in equation 1.32, we can find the transformation
of the currents that couple to the charged W± gauge boson, which is:

Jµ+ =
ūi

Lγµui
L√

2
→

ūi
L(V)ijd

j
L√

2
. (1.35)

Where we define as V = U†
uUd the Cabibbo-Kobayashi-Matrix (CKM)[6]. In an equiva-

lent manner, we can express the general coupling of three-generation neutrinos with a
Higgs boson as follows:

Lmass = −λ
ij
l li

L · φej
R + h.c. (1.36)

We make the redfinition of the coupling:

λl = Ul MlK†
l . (1.37)

Therefore we can eliminate the diagonal matrices Ul and Kl by rotating the fields as
follows:

eL → UleL, νl → Ulνl , eR → KleR. (1.38)

The introduction of this new set of variables for the fermion fields does not result in
any mixing between generations. This is due to the fact that the matrices in equation
1.38, which represent the change of variables commute with the SU(2) interactions in
the covariant derivative, and therefore cancel out from the theory. It should be noted
that this only holds true when neutrinos are massless in our theory.

Finally, we denote the particles that are contained in the SM, which describe their
behavior and interactions in Figure(1.1).
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FIGURE 1.1: The particle spectrum of the Standard Model.
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Chapter 2

Effective Field Theories

2.1 Introduction

The concept of Effective Field Theory (EFT) is discussed in many lecture notes, such as
[33],[14] , and for the sake of simplicity, we will limit ourselves to some basic concepts
that are useful for understanding its potential. It is important to note that an EFT is a
quantum theory, and like any other quantum field theory, it requires a regularization
and renormalization scheme to obtain finite matrix elements. S-matrix elements in an
EFT can be computed from the EFT Lagrangian in the same way as in QED, starting
from a QED Lagrangian.

The basic idea behind EFTs is that physics at different energy scales can be described
by different theories. This principle can be used to study low-energy phenomena with-
out the need for the full theory. In this context, we will procceed to two common ap-
proaches which can be used for the study of EFTs.

• Top-down Construction of an EFT: In this approach we have the knowledge of
the full theory. First we identify the relevant light fields and their symmetries that
belong in the physical domain that we want to study. The purpose of this ap-
proach is to exclude the fields that are heavier under this consideration. For this
we can choose a cutt-off energy level and integrate out field modes with momenta
above this level of cut-off point. To integrate out these heavy fields we have to
write down a general Lagragnian for the light fields, as a sum of all allowed opera-
tors. The operators that we need to keep can determined through power counting.
The resulting effective Lagrangian describes the low-energy dynamics of the light
fields, taking into account the effects of the heavy fields that have been integrated
out.

• Bottom-up Construction of an EFT: In this case, the UV theory is unknown, so we
have to work the other way around. We need to identify the degrees of freedom
and symmetries of the system at the low-energy level and then extend the theory.
All allowed terms in the Lagrangian can be written with no limitations on the
dimension of the operators. The coefficients in front of the operators need to be
determined by experiments. A bottom up theory is the Standard Model Effective
Field Theory (SMEFT) which is an EFT approach that we will focus on in the rest
of this thesis.

In order to combine the two different approaches, we define the effective Lagrangian
that describes the low-energy regime as follows:
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Le f f ective = Ld≤4 + ∑
i

Oi

Λdi−4 . (2.1)

Λ is the cutoff energy scale and Oi are higher dimensional operators that arise from the
removal of heavy degrees of freedom. Although an infinite number of higher dimen-
sional operators can be generated, each of them is suppressed by a power of Λ pro-
portional to its dimension di. Therefore their contributions to calculations will also be
suppressed by high powers of Λ. Introducing the concept of power counting becomes
crucial for developing the theory, based on this observation.

2.1.1 Power Counting

In order to avoid having to consider an infinite number of operators, a working crite-
rion is needed to determine which terms can be safely neglected before any calculations
are performed. Power counting methods provide a way to achieve this. We start by
considering the EFT functional integral to be:

Z =
∫

DφeiS. (2.2)

Where we assumed units: h̄ = 1, c = 1. Therefore the action S must be dimensionless:
[S] = 0. The EFT action S is the integral of the local Lagragnian density:

S =
∫

ddxL(x). (2.3)

If we assume that the dimensionality of the spacetime is d we have that: [ddx] = −d
therefore the Lagragnian density must have mass dimension d:

[L(x)] = d, (2.4)

and can be described by the sum of local, gauge and Lorentz invariant operators Oi with
coefficients ci:

L(x) = ∑
i

ciOi(x). (2.5)

Therefore if we denote the dimension of the operators as [D], the dimension of the
coefficient must be: [ci] = d − D. For example, if we assume a generic scalar field φ and
a spinor field ψ we can find the dimensionality to be:

[ψ] =
1
2
(d − 1), [φ] =

1
2
(d − 2). (2.6)

In the special case where d = 4 we have:

[ψ] =
3
2

, [φ] = 1, [Fµν] = 2, [Dµ] = 1 (2.7)

Where Fµν is the field strength tensor and Dµ = ∂µ + igAµ the covariant derivative.
In the following work we will try to find all the gauge invariant operators in 4 spacetime
dimension: d = 4 up to operator dimension: D = 6. We can write the general form of
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an operator in d = 4 as:
O = (ψ̄ψ)nψ(Fµν)nF(Dµ)

nD φnφ , (2.8)

from which the following equation arises:

D = nφ +
3
2

nψ + 2nF + nD , (2.9)

where we denote with ni, i = {φ, F, ψ, D} the number of fields we must use in order to
construct Lorentz invariant 6-dimension operators. We can see that the left hand side of
equation 2.9 is integer: D = 6 therefore the number of fermion fields must be even. The
possible values that nψ can take are the following: nψ = {0, 2, 4}. For nψ = 4 we have
that: nφ = nF = nD = 0. Therefore the only D = 6 operator is:

(ψ̄ψ)2 . (2.10)

For the case: nψ = 2, we have the equation:

nφ + 2nF + nD = 3. (2.11)

For nF = 1 we have that: (nφ, nD) = {(1, 0), (0, 1)}, which gives the operator:

iψ̄σµνψXµνφ . (2.12)

For the case: nF = 0 we have the possible values: (nD, nφ) = {(0, 3), (1, 2), (2, 1), (3, 0)}
which gives the possible D = 6 operators:

ψ̄ψ(φ)3, (ψ̄i��Dψ)φ2, (ψ̄i��D2)ψφ, ψ̄��DψD2 . (2.13)

For the subcase: nF ≥ 2 we do not have a possible solution. We continue with the case:
nψ = 0. Equation 2.9 gives:

6 = 2nF + nφ + nD. (2.14)

The nF take values: nF ≤ 3. The case nF = 3 can be rejected since we can not find a
Lorentz invariant operator. Therefore: nF < 3. For nF = 2 we have the possible values:
(nφ, nD) = {(2, 0), (1, 1), (0, 2)} which gives the two D = 6 operators:

F2φ2, D2F2 . (2.15)

For the subcase nF = 1 the possible numbers of the operators are:
(nφ, nD) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}. The only Lorentz invariant operator is:

D2DµDνFµν . (2.16)

Finally for the subcase: nF = 0, we have that: (nφ, nD) = {(0, 6), (2, 4), (4, 2)} (the
number of nD must be even since we want to construct Lorentz invariant operators).
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D Operators
1 φ

2 φ2

3 φ3, ψ̄ψ, D2φ

4 φ4, F2, (ψ̄ψ)φ, D2φ2, iψ̄��Dψ

5 φ5, (ψ̄ψ)φ2, F2φ, D2φ3, D4φ, ψ̄σµνψFµν, Dµψ̄Dµψ, φψ̄��Dψ, FµνDµDνφ

6
φ6, (ψ̄ψ)φ3, F2φ2, (ψ̄ψ)2, D2φ4, D4φ2, D2F2, ψ̄D3ψ,

φ2ψ̄i��Dψ, FµνDµDνφ2, φψ̄��D2ψ, iψ̄σµνψFµνφ

TABLE 2.1: Operator classes in d = 4 dimension up to D = 6.

The possible operators are three:

D4φ2, D2φ4, φ6 . (2.17)

We can work similarly for the less complex case: D = 5. We start with the equation:

5 = nφ +
3
2

nψ + 2nF + nD. (2.18)

The nψ can take the possible values (0, 2). For nψ = 2, nF can take the value 0 or 1.
For nF = 0 we have the possible pairs: (nF, nD) = {(0, 2), (2, 0), (1, 1)} from which we
construct the Lorentz invariant operators:

(ψ̄��Dψ)φ, Dµψ̄Dµψ, ψ̄ψφ2 . (2.19)

For nF = 1 we have the D = 5 operator:

ψ̄σµνψFµν . (2.20)

For nψ = 0, the possible values of nF = {0, 1, 2}. For nF = 0 we find the possible pairs:
(nD, nF) = {(0, 5), (2, 3), (4, 1)} since nD must be even. In this subcase we construct the
D = 5 operators:

φ5, D4φ, D2φ3 . (2.21)

For nF = 1 there is only one possibility: nD = 2, nφ = 1 and only one D = 5 operator:

FµνDµDνφ (2.22)

For nF = 2 we can construct only one D = 5 operator:

F2φ . (2.23)



2.1. Introduction 13

Working equivalent for the less complex cases: D = {1, 2, 3, 4} we can construct all
the operators in d = 4 dimensions up to operator dimension D = 6. The operators are
given in the table (2.1). Using the same method, we could construct operators of higher
dimension D > 6.

2.1.2 The Fermi Theory as an EFT approach

In order to understand better the two different approaches (bottom-up and top-down)
we can work the following example: A muon decaying into an electron and a pair of
neutrinos. Since the muon mass is much lower than the weak vector boson masses
(mµ− ≈ 105MeV), we can work with the bottom-up approach. With the knowledge of
the experimental results we can make the following hypothesis: We add in the QED
Lagragnian a term that contains interaction between four fermions, supressed by an
energy scale Λ:

L = − cW

Λ2 (ν̄µγαPLµ)(ēγαPLνe) + h.c., (2.24)

where we call cW a Wilson coefficient. We can calculate the decay rate of the process:

µ− → e−ν̄eνµ, (2.25)

to be:

Γ(µ− → e−ν̄eνµ) =
( c2

W
Λ2

)2 m5
µ

1536π3 . (2.26)

Therefore from the definition of the Fermi constant(in SM):

1
τµ

= G2
F

m5
µ

192π3 (1 + ∆q), (2.27)

where τµ the muon life-time, GF the Fermi constant and ∆q the quantity that includes the
phase space, QED and radiative corrections (which are relatively small). From equations
2.27 and 2.26 we find that:

cW

Λ2 =
4√
2

GF. (2.28)

Where the numerical value of GF is: GF = 1.1663787(6)× 10−5GeV−2[8]. Therefore from
this approach (bottom-up) one can relate low-energy phenomena with higher energy
theories. Someone could work in exactly the opposite way: The top-down approach.
First we compute the muon decay amplitude in the SM, where a muon decays into an
electron and two neutrinos through the exchange of a W boson. We find the amplitude
to be:

M =
g2

2(q2 − M2
W)

[ū(p1)γ
αPLυ(p2)][ū(p3)γαPLu(p4)], (2.29)

where p1, p2, p3, p4 are the 4-momentum of e−, νe, νµ, µ respectively and q is the momen-
tum of the W-propagator.

In the limit of low energies we can make the following approximation:

M = − g2

2M2
W
[ū(p1)γ

αPLυ(p2)][ū(p3)γαPLu(p4)]. (2.30)
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W−

µ−

νµ

νe

e−

FIGURE 2.1: Tree level process of: µ− → νµeνe

The top down approach imposes that in the limit of low energies the matrix elements of
the different theories must be the same. Therefore from equations 2.30 and 2.26 we have
the matching condition:

cW

Λ2 =
g2

2M2
W

. (2.31)

With this process we found the relation between the factor cW
Λ2 and the UV parameters

g, MW of the SM. We can see that the estimation of the mass of W boson is around 80GeV,
where we used the experimental result: GF = 1.1663787(6)× 10−5GeV−2 for the Fermi
constant. Therefore the prediction for the Fermi theory is valid. The top-down approach
is a technique which we will follow in the present work, in order to find the matching
conditions for the Wilsons coefficients, since the calculations in the low energies are
simpler than the high energy theory.

2.2 EFT Lagrangian

In general a Lagrangian in EFT can be written in the following form:

LEFT = ∑
D≥0,i

c(D)
i O(D)

i
ΛD−d , (2.32)

where O(D)
i represents the Lorentz and gauge invariant operators of dimension 0 <

D < d for the renormalizable part of operators while D > d for the non-renormalizable
part of operators. The scale Λ has been introduced to make the coefficients c(D)

i dimen-
sionless. A secondary use of Λ is to characterise the short-distance scale at which new
physics occur. For example in d = 4 space-time dimensions we can write the general
Lagrangian:

LEFT = LD<5 +
L5

Λ
+

L6

Λ2 + ..., (2.33)

where all operators of dimension D are combined into the Lagrangian LD. Therefore
the Lagrangian LEFT has to be treated as an expansion of 1

Λn , where n is an integer. We
should note that we cannot sum terms to all orders since, we would violate the EFT
power counting rule and the EFT would break down.

If we consider a scattering amplitude A in d = 4 dimensions, normalized to have
mass dimension zero, for a momentum scale p, the contribution to the amplitude order
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will be (by dimensional analysis):

A ∼
( p

Λ
)D−4, (2.34)

where we introduce the Λ, the characteristic scale of the system. Therefore the operator
has a coefficient of mass dimension 1

ΛD−4 . From this relation it is possible to divide into
three categories the operators:

• Irrelevant: Operators with dimension D > 4.

• Relevant: Operators with dimension D < 4.

• Marginal: Operators with dimension D = 4.

For the case of Irrelevant operators, the operators are non-renormalizabe. From equa-
tion 2.34 we see that the influence of these type of operators are less important the bigger
the dimension of the operator is. Relevant and Marginal operators constitute the SM,
and they are renormalizable operators. Equation 2.34 corresponds to a single insertion
of an operator of dimension D > 4. An insertion of a set of higher operators in d < D
dimensions leads to an amplitude:

A ∼
( p

Λ

)n
, (2.35)

where:

n =
k

∑
i
(Di − d) , (2.36)

where k the number of operators and Di corresponds to the mass dimension of the i-th
operator that we conclude in our theory. Equation 2.36 is the power counting formula
of EFT and it holds for any graph and not just tree graphs. From equation 2.35 we can
understand the difference between any renormalizable theories and EFT’s. For example
we can assume one insertion of a D = 5 operator in d = 4 spacetime dimensions. This
insertion will give a correction of the form:

A ∼ p
Λ

. (2.37)

With a single insertion of a D = 6 operator we obtain corrections p2

Λ2 . This case is similar
to the introduction of two D = 5 operators. If we have a loop graph, with the inser-
tion of the D = 6 operator, will be divergent. In order to eliminate the divergence we
will need a counterterm from L6. in order to cancel the divergence from four D = 5
operators or two insertions of D = 6 operators, we will need a counterterm which is
an L8 operator. Continuing in this way we can generate operators of arbitrarily high
dimension, in order to eliminate the UV divergences for the case: D > d. Thus the main
difference between renormalizable theories and EFT’s becomes apparent. In the case of
renormalizable theories: 0 ≤ D ≤ d (LD<5) we generate operators with D < 5 which
we have already included in LD<5 in order to eliminate the UV divergences. Therefore
the necessary counterterms have already been included in the Lagrangian. In order to
make EFT a renormalizable theory we will need an infinite number of higher dimension
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operators.Nevertheless, we can avoid this by choosing a maximum value of n in order
to obtain the correction of the amplitude of a process. In this case, only a finite number
of operators contribute.

2.3 LSZ Reduction Formula

In QFT, the LSZ formula provides a relation between correlation functions and S-matrix
elements. Therefore, it is a useful tool for calculating scattering amplitudes using Feyn-
man diagrams in field theory. In momentum space, correlation or Green’s functions are
defined by the relation:

G(p1, ...pm; q1, ...qn) =
n

∏
i=1

∫
d4yieipi ·yi

n

∏
j=1

d4xje−iqj·xj

× 〈0| T{φ(y1)...φ(ym)φ(x1)...φ(xn)} |0〉 .

(2.38)

where pi and qi corresponds to the outgoing and incoming momenta respectively. If we
assume a special case where p1 = q1 = p then we have the φ propagator

G(p) =
∫

d4xeip·x 〈0| T{φ(x)φ(0)} |0〉 . (2.39)

Therefore if the field φ(x) has the property to create a single particle state with in-
variant mass from vacuum then the propagator has a pole at p2 = m2:

D(p) ∼ i
√

Z
p2 − m2 + iε

, (2.40)

where Z is the renormalization factor. From Eq. 2.40 we can extract that the renormal-
ization factor is finite, since D(P) is also a finite quantity. Generalizing this result for n
incoming momenta and m outgoing momenta we take the result:

m

∏
i=1

(i
√

Zi)
n

∏
j=1

(i
√

Zj) 〈p1...pm| S |q1...qn〉 =

lim
q2

i →m2
lim

p2
j →m2

m

∏
i=1

(p2
i − m2)

n

∏
j=1

(q2
j − m2)G(p1, ...pm; q1, ...qn).

This result can be modified as:

〈p1...pm| S |q1...qn〉 =in+m
n

∏
i=1

∫
d4xieipi ·xi(−∂2

i + m2)
m

∏
j=1

∫
d4yje−iqj·yj(−∂2

j + m2)

× 〈0| T{φ(y1)...φ(ym)φ(x1)...φ(xn)} |0〉 .

(2.41)

From equation 2.41 we can conclude that correlation functions have a complete sep-
aration from physical particle states that enter the S-matrix. Additionally, equation 2.41
holds for composite operators, i.e., those that appear in EFT.
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2.3.1 Field Redefinitions

To demonstrate that fields redefinitions leave the S-matrix unchanged, we will prove
that the latter is not affected by the choice of field. To do so, we will begin with the
definition of the functional integral in the presence of a source J(x) as follows:

Z[J] =
∫

Dφei
∫

L[φ]+Jφ. (2.42)

The definition of the Green’s functions, in the path integral formulation is given by:

〈0| T{φ(x1)...φ(xm)} |0〉 =
∫
Dφφ(x1)φ(x2)...φ(xm)eiS(φ)∫

DφeiS(φ)
. (2.43)

We can rewrite equation 2.43 in the form:

〈0| T{φ(x1)...φ(xm)} |0〉 =
1

Z[J]
1
im

δ

δJ(x1)
...

δ

δJ(xm)
Z[J]

∣∣
J=0. (2.44)

If we assume a local field redefinition of φ(x):

φ(x) = F[φ′(x)], (2.45)

i.e. a transformation of the form:

φ(x) =
N1

∑
n=0

anφ′(x)n +
N2

∑
n=0

bn∂nφ′(x), (2.46)

where N1, N2 are finite, then the new Lagrangian defined by:

L[φ(x)] = L[F[φ′(x)]] = L′[φ′(x)]. (2.47)

We define a new functional integral with the field φ′(x) and the new Lagrangian L′ as

Z′[J] =
∫

Dφ′eL′[φ′]+Jφ′
=
∫

Dφei
∫

L′[φ]+Jφ. (2.48)

If we apply the same transformation to the functional integral that we started with, we
obtain:

Z[J] =
∫

Dφ

∣∣∣∣ δF
δφ′

∣∣∣∣ ei
∫

L′[φ′]+JF[φ′]. (2.49)

Therefore the functional Z produce Green’s functions of φ(x) computed using the La-
grangian L[φ(x)] or Green’s functions of F[φ(x)] computed using the Lagrangian L′[φ(x)].
The functional Z′ produce Green’s functions of φ(x) using the Lagrangian L′[φ(x)].
However, the S-matrix element is invariant under field redefinition as long as:

〈p| F[φ] |0〉 6= 0, (2.50)

since the LSZ formula is not affected by the choice of the field redefinition. In conclusion
in an EFT we have much more freedom to make field redefinition from renormalizable
theories(where only linear redefinitions are allowed) provided that we respect the EFT
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power counting.

2.3.2 Equations of Motion

A common problem we face when working with the bottom-up up approach is how
many operators to consider at a scale 1/Λ. To minimize the number of operators needed,
we will use the equation of motion in the path integral approach, as shown above. Let
E[φ] be the classical equation of motion:

E[φ] =
δS
δφ

. (2.51)

Also we define θ[φ] to be an operator with a factor of the classical equation of motion:

θ[φ] = F[φ]E[φ] = F[φ]
δS
δφ

(2.52)

and the functional integral of the form:

Z[J, J̃] =
∫

Dφei
∫

L[φ]+Jφ+ J̃θ[φ]. (2.53)

The correlation function 〈0| T{φ(x1)...φ(xm)θ(x)} |0〉, with one insertion of the operator
θ is given by the relation:

〈0| T{φ(x1)...φ(xm)θ(x)} |0〉 = Z[J, J̃]−1 1
im

δ

δJ(x1)
...

δ

δJ(xm)

δ

δ J̃(x)
|J= J̃=0. (2.54)

The change of variables:
φ → φ′ − J̃F[φ′] (2.55)

give us the transformed functional integral:

Z[J, J̃] =
∫

Dφ′
∣∣∣∣ δφ

δφ′

∣∣∣∣ eL[φ′]+Jφ′−J J̃F[φ′]+O( J̃2). (2.56)

Where we used the Taylor expansion:

θ[φ′ − J̃F[φ′]] = θ[φ′]− J̃F[φ′]θ(φ′) +O
(

J̃2) . (2.57)

Using that the jacobian:∣∣∣∣ δφ(x)
δφ′(x′)

∣∣∣∣ = det
[

δ(x − y)− J̃
δF[φ′(x)]
δφ′(x′)

]
(2.58)

is unity in DR we rewrite the functional integral as:

Z[J, J̃] =
∫

Dφei
∫

L[φ]+Jφ−J J̃F[φ]+O( J̃)2
, (2.59)
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where we make the replacement: φ′ → φ. Taking the derivative with respect to J̃, and
setting J̃ = 0 after the calculation we take:∫

Dφ(x)θ(x)ei
∫

L[φ]+Jφ = −
∫

Dφ(x)J(x)F[φ(x)]ei
∫

L[φ]+Jφ. (2.60)

We can prove by induction (or by differentiating n-times equation 2.60) the relation:

〈0| T{φ(x1)...φ(xn)θ(x)} |0〉 = i ∑
r

δ(x− xr) 〈0| T{φ(x1)...φ(xr)...φ(xn)θ(x)} |0〉 . (2.61)

The S-matrix element with an insertion of θ vanishes since if we work in momentum
space, the right-hand side of eq. 2.61 has no pole in pr at the rth place. Therefore the
RHS of 2.61 vanishes:

〈q1...qk| θ |qk+1...qn〉 = 0 . (2.62)

Equation 2.62 implies that the classical equations of motion can be dropped. This
means that we can shift the Lagrangian by equation of motion terms. We can work
more practically in the following example. We assume an EFT Lagragnian of the form:

L =
1
2

∂µφ∂µφ − 1
2

m2φ2 − 1
3!

gφ3 − 1
4!

λφ4 +
c1

Λ
φ2∂2φ +

c2

Λ
φ5, (2.63)

where φ a real scalar. We find the equation of motion:

E[φ] = −∂2φ − m2φ − 1
2

gφ2 − 1
3!

λφ3 +O(
1
Λ
), (2.64)

where terms of 1
Λ are dropped since they produce higher order operators. We redefine

the field φ as:
φ → φ +

c1

Λ
φ2. (2.65)

After the substitution, we take the new Lagrangian:

L′ = L+
c1

Λ
E[φ] (2.66)

which can be written in terms of φ:

L′ =
1
2

∂µφ∂µφ − 1
2

m2φ2 − 1
3!

g̃φ3 − 1
4

λ̃φ4 +
c̃2

Λ
φ5, (2.67)

where we make the substitution:

g̃
3!

=
g
3!

+ m2 c1

Λ
,

λ̃

4!
=

λ

4!
+

gc1

2Λ
m2,

c̃2

Λ
=

c̃2

Λ
− λc1

3!Λ
.
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Therefore, by using equation 2.67, we arrive at a simpler theory where the fac-
tor φ2∂2φ is extracted. Despite this difference, the two Lagrangian describe the same
physics. For example, if we consider the amplitude of the process φφ → φφ, in the case
of the second Lagrangian, the diagrams that contribute to the process are as follows:

φ

φ φ

φ

φ

φ

φ φ

We calculate the amplitude to be:

iMφφ→φφ = iλ̃ − i
g̃2

q2 − m2 , (2.68)

where q the 4-momentum of φ propagator. The Feynman diagrams that contribute to the
same process are different in the case of the first Lagrangian as it includes two additional
diagrams. These are shown below:

φ

φ φ

φ φ

φ φ

φ

where the crossed dot corresponds to the vertex from the term φ2∂2φ. Therefore the total
amplitude is:

iM′
φφ→φφ = iλ − ig2

q2 − m2 − 12
c1g
Λ

q2

q2 − m2 , (2.69)

which after some algebraic manipulation gives:

iM′
φφ→φφ = iMφφ→φφ = iλ̃ − i

g̃2

q2 − m2 (2.70)

Therefore we found the same amplitude we obtain from the previous Lagrangian. We
can use the same approach for more complicated theories where calculations become
difficult due to the presence of derivatives. We note that the use of equations of motion
and field redefinitions of operators at higher orders can be found in [4], [17] .

2.3.3 The SMEFT Lagrangian

The SMEFT which stands for Standard Model Effective Field Theory, is an EFT that is
built from the fields of the SM. It is commonly utilized in computations for Beyond
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Standard Model (BSM) scenarios. We can write the full gauge invariant Lagrangian of
SMEFT up to O(Λ−3) in the following form:

LSMEFT = L(4)
SM + CννQ(5)

νν + ∑
X

CXQ(6)
X + ∑

f
C

′ f Q(6)
f +O(

1
Λ3 ). (2.71)

Where L(4)
SM is the Standard Model Lagrangian and is renormalisable since it contains

only two and four dimensional operators .We denote with Q(6)
X the 6-dimensional oper-

ators that do not contain fermion fields, and with Q(6)
f the 6-dimension operators that

contain fermion fields. The only 5-dimension operator that contribute to the SMEFT
Lagrangian is Q(5)

νν which is a neutrino mass term, the lepton -number violating oper-
ator (Weibner operator) and violates the lepton number: ∆L = 2. In equation 2.71 we
made the following rescaling for the Wilson coefficients: Cνν → Cνν

Λ , and (CX, C
′ f ) →

(CX

Λ2 , C
′ f

Λ2 ). Since we have the definition of the Lagrangian of the theory we can proceed
to the spontaneous breaking of the gauge symmetry and after the appropriate rotations
of the fields, we can derive a physical mass basis of the SMEFT. The SSB of the theory,
the quantization in the SMEFT in the Warsaw basis and the Feynman rules that we are
going to use for the calculations was given in:[18].
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Chapter 3

Constraining the CKM Matrix in the
Presence of New Physics

In this thesis, we aim to investigate the impact of New Physics (NP) on the global
CKM fit and determine an effective and straightforward approach to constrain the CKM
matrix while incorporating the corrections arising from BSM physics. Our theoretical
framework, in order to analyze flavour data, is the Standard Model Effective Field The-
ory(SMEFT). By performing this analysis within the SMEFT, one can establish the rel-
evant Wilson coefficients, which can be applied to a wide range of New Physics mod-
els. Additionally, SMEFT allows the accounting of complex correlations between differ-
ent observables, such as EW precision measurements, leptonic processes, quark-flavour
transitions. As we refer, SMEFT is a extension of the SM Lagrangian with higher di-
mensional operators composed of SM fields. The leading NP effects are encoded in
the six-dimension Wilson coefficients and in the parameters that are already present in
the SM Lagrangian as the gauge and Yukawa couplings and vacuum expectation value.
Therefore in a consistent analysis we should consider the presence of those NP contri-
bution that affect the input observables used to extract the SM parameters. In contrast
Standard Model CKM fits necessitate multiple distinct observables which are measured
using experimental set-ups and hadronic inputs with big complexity. This results in the
use of more complex theoretical approaches that may not rely solely on the SM. Due to
this factor, the CKM fitting in a global scale requires a general BSM framework such as
SMEFT.

In the following work, we will apply a framework to select a set of input observables
and use them to express the CKM parameters in terms of Wilson coefficients that can be
deduced from these observable. Therefore, the new combinations of Wilson coefficients
will define the corrected matrix elements of the CKM matrix. The tilde Wolfenstein
parameters can be utilized to analyze various flavor processes in a coherent manner
and to establish constraints on the behaviour of the new physics.
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3.1 Fermion sector and Definition of the CKM Beyond SM

In the current thesis we will make use of the fact that we rotate the fermion sector from
the flavour to the mass basis. More specifically in order to diagonalize the mass matri-
ces:

M′
ν =− υ2C

′νν, M
′
e =

υ√
2

(
Γe − C

′eφ υ2

2

)
M′

u =
υ√
2

(
Γu − C

′uφ υ2

2

)
, M′

d =
υ√
2

(
Γd − C

′dφ υ2

2

)
,

(3.1)

which arise after the SSB, we perform the rotation of the fields by the unitary matrices:

ψ′
X = UψXψX, (3.2)

where ψ = {ν, e, u, d} and X = L, R are the indices for the chirality. The CKM matrix on
SMEFT and the PMNS matrix are defined as:

V = U†
uLUdL, UPMNS = U†

eLUνL. (3.3)

We note that the matrices that we used to rotate the fermionic fields are "absorbed" into
the redefinition of the Wilson coefficients, which can be found in [18] (in addition the
final Feynman rules have been written in terms of V and UPMNS matrices).

Therefore we can define the diagonalizable mass matrices as follows:

Me =U†
eL M′

eUeR = diag(me, mµ, mτ),

Mu =U†
eL M′

uUuR = diag(mu, mc, mt),

Md =U†
eL M′

dUdR = diag(md, ms, mb),

Mν =UT
νL M′

νUνR = diag(mν1 , mν2 , mν3).

(3.4)

Since we have defined the basis on which we will work, we define the Wolfenstein
parameterization of the CKM matrix in the SM:

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 1 − 1
2 λ2 − 1

8 λ4 λ Aλ3(1 + 1
2 λ2)(ρ̄ − iη̄)

−λ + A2λ5 ( 1
2 − ρ̄ − iη̄

)
1 − 1

2 λ2 − 1
8 λ4(1 + 4A2) Aλ2

Aλ3(1 − ρ̄ − iη̄) −Aλ2 + Aλ4( 1
2 − ρ̄ − iη̄) 1 − 1

2 A2λ4


+O(λ6).

(3.5)

The parameters Wi = {λ, A, ρ̄, η̄} are the Wolfenstein parameters in SM, while we re-
define the parameters Wi as W̃i in the SMEFT and we refer to these as tilde Wolfenstein
parameters. The parameters in SMEFT must contain the contribution of the Wilson co-
efficients(NP contributions). We also define the tilde CKM matrix elements in SMEFT
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to be: Ṽud = 1 − 1
2 λ̃2 − 1

8 λ̃4, Ṽus = λ̃ etc. In the following analysis, we will calculate the
contributions to SMEFT from flavor observables.

.

3.2 LEFT Operators

In this thesis we will work at low energy level, bellow the EW scale, where we integrate
out the particles in the EW theory which are heavy. To do this we will work with the
low energy field theory lagragnian (LEFT):

LLEFT = LQED+QCD + ∑
i

LiO(5,6)
i +O(Λ−4), (3.6)

where the Wilson coefficients, Li of 6-dimension operators in the LEFT lagragnian
can be related through a tree-level matching at the EW scale, with the Wilson coefficients
of the SMEFT. In order to fix the CKM matrix we will consider the operators that affect
semileptonic and ∆F = 2 transitions. The relevant ∆F = 2 operators are as follow:

[QVLL
dd ]ijij =(d̄L,iγ

µdL,j)(d̄L,iγ
µdL,j)

[QVRR
dd ]ijij =(d̄R,iγ

µdR,j)(d̄R,iγ
µdR,j)

[QV1LR
dd ]ijij =(d̄L,iγ

µdL,j)(d̄R,iγ
µdR,j)

[QV8LR
dd ]ijij =(d̄L,iγ

µTadL,j)(d̄R,iγ
µTadR,j)

[QS1RR
dd ]ijij =(d̄L,idR,j)(d̄L,idR,j)

[QS8RR
dd ]ijij =(d̄L,iTadR,j)(d̄L,iTadR,j),

(3.7)

where Ta are the SU(3)c colour generators of the fundamental representation. The
semileptonic operators are the following:

[QVLL
vedu]iijk =(ν̄L,iγ

µeL,i)(d̄L,jγ
µuL,k)

[QVLR
vedu ]iijk =(ν̄L,iγ

µeL,i)(d̄R,jγ
µuR,k)

[QSRR
vedu]iijk =(ν̄L,iγ

µeR,j)(d̄L,iγ
µuR,j)

[QTRR
vedu ]iijk =(ν̄L,iγ

µTaeR,j)(d̄L,iγ
µTauR,j)

[QSRL
vedu]iijk =(ν̄L,ieR,i)(d̄R,juL,k).

(3.8)

As we will see, we focus on these two cases since our choice of observables to calculate
the corrections of the CKM matrix are processes that contain semileptonic operators that
contribute to the transitions d → uµ−νµ, s → uµ−νµ, b → uτ−ντ, and ∆F = 2 operators
that contribute to the mass differences ∆Ms and ∆Md. We denote the full tree-level
matching condition for the LEFT Wilson coefficients with the SMEFT Wilson coefficients
in appendix D. The general relation after the tree-level matching can be written in the
following form :

Li = f SM(gi, mi) + ∑
X

fX(gi, mi)C(X,6), (3.9)
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where f SM(gi, mi) are function of the mass and couplings and they contribute at the
tree-level matching of the SM. With the function fX(gi, mi) we denote the contribu-
tion of SMEFT’s 6-dimension Wilson coefficients C(X,6). We note that in order to find
the matching of coefficients at the electroweak scale, one needs to use renormalization
group equations (RGEs). The RG evolution between the 6-dimensional coefficients and
the Low Energy Effective Field Theory (LEFT) Wilson coefficients can be written as:

Li(µ1) = ∑
j

η(µ1, µ2)j,XC(X,6)(µ2), (3.10)

where η(µ1, µ2) can be obtained using QCD+QED running. One-loop QED and
QCD running are known for the full set of LEFT operators [28],[1].

3.3 Flavour observables for the Extraction of the CKM in SMEFT

For the extraction of the numerical value of the CKM matrix in the SM (more specifically,
for the extraction of the numerical value of the non-tilde Wolfenstein parameters: Wi =
λ, A, ρ̄, η), the following experimental observables have been used (which are described
in detail in ref.[22] ): leptonic decays and semileptonic decays (∆F = 1 branching ratios),
CP-violating observables(∆F = 1), and neutral-meson mixing (∆F = 2 observables). For
completeness, we present them in the following table:

Observables SM-processes
Leptonic-
decays (∆F=1)

π → µν, K → eν, K → µν, τ → Kν, τ → πν,
D → µν, Ds → µν, Ds → τν, B → τν

Semileptonic-
decays(∆F=1)

K → πeν, D → πeν, D → Keν, B → πeν,
B → Deν, B → D∗eν

CP-
asymmetries

B → ππ, ρπ, ρρ, B → J/ψK(∗), (cc̄)K,
B → D(∗)K(∗), Bs → J/ψφ, ψ(2S)φ

Neutral-meson
mixing(∆F=2)

εK(KK̄), ∆Md(BdB̄d), ∆Ms(BsB̄s)

In contrast for the extraction of the CKM matrix in SMEFT we will need a shorter list
of experimental observables. More specifically we will choose the observables in order
to satisfy the following conditions:

• The set of observable must have a good sensitivity to all four Wolfenstein param-
eters,

• The set of observable must contain the minimum number of the Wilson coefficients
in order to minimize the number of correlated observables.

• Each observable must have the minimum experimental uncertainty and the theo-
retical framework of these observables must provide clear results.

From these three rules, we can reject many observables for extracting the CKM matrix
in the Standard Model (SM). For instance, the second rule leads us to exclude transitions
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such as b → clνl , where l = e, µ, since there is no clear evidence that new physics (NP)
could be responsible for the deviation of these decays. Thus, we cannot establish a clear
relation between the CKM parameters and the NP contribution (Wilson coefficients).
Additionally, based on the second condition, we can exclude D and Ds meson decays
compared to the ∆F = 2 decays. According to the third rule, non-leptonic decays of
ref.[22], which were used to extract the CKM matrix in the SM, cannot be used for cal-
culating the CKM Beyond the Standard Model, as SMEFT introduces hadronic matrix
elements that cannot be calculated or whose connection with the hadronic elements is
unknown. Moreover, the third condition suggests that semileptonic decays are often
more sensitive to a broader set of Beyond the Standard Model (BSM) operators than
leptonic decays. Hence, semileptonic decays may be disfavored.

One observable that is sensitive to the λ parameter of the CKM matrix is K decays.
However, it is worth noting that the form factor fK from the decay K− → µ−νµ has a
large experimental uncertainty. If fK does not rely in the experimental result of π → µν,
we cannot use K decays to calculate the CKM parameters in BSM. On the other hand, if
we assume that the decay constant fK relies in the experimental result of fπ, the calcu-
lation of the ratio fK

fπ
is much more accurate than in the former case. Therefore, instead

of using Γ(K → µν), we will use the ratio Γ(K→µν)
Γ(π→µν)

to calculate
∣∣Ṽus

∣∣∣∣Ṽud
∣∣ . Finally, decays that

are sensitive to the remaining Wolfenstein parameters are ∆Md, ∆Ms, and B → τν for
the calculation of Vtd, Vts, and Vub, respectively. Therefore, the flavor observables that
we will use for extracting the CKM matrix are as follows:

Γ(K → µν)/Γ(π → µν),
Γ(B → τν), ∆Md, ∆Ms.

(3.11)

We can observe the absence of the top quark from the choice of observables, althought
this is usual in the case of B-physics where we include leptons and quarks exept the top
quark, in contrast for EFT in lower energies we integrate out particles as b quark.

3.4 General Strategy for the Extraction of the CKM

In the SM theory in order to calculate the value of VEV, we have to measure the value of
the Fermi constant: GF in µ decay: µ− → e− + ν̄e + νµ. More specifically in the effective
theory, in a scale: µ ∼ mµ, we can define, similar to 2.24 the addition to the QED lagrag-
nian which describe the interaction between 4-fermions as the effective lagragnian:

Le f f = −2
√

2GF(ν̄µγαµL)(ēLγανe) + h.c. (3.12)

Therefore, by integrating out the heavy W field at tree level, we find the relation
GF = 1√

2υ2 . The corresponding numerical value of GF in the Standard Model is 1.1663787×
10−5GeV−2[8], using this we can find the numerical value of the Higgs Vev to be υ =
246.21965(6)GeV. However, in the case where we assume the SMEFT as the high energy
theory, we have to add the contribution of the LEFT Lagrangian, which contributes to
muon decay at the scale of the muon mass µ ∼ mµ.
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L = LVLL(ν̄LµγανLe)(ēLγαµL) + LVLR(ν̄LµγµνLe)(ēRγµµR), (3.13)

where for simplicity we used the following symbolism: [LVLL
ve ]µeeµ → LVLL. We proceed

to the computation of the muon decay rate and we find terms proportional to |LVLL|2,
|LVLR|2 and a term proportional of both the LEFT coefficients: Re(LVLLLVLR∗). Since the
SM has only left-handed charged currents the |LVLR|2 term, is of the order υ2

Λ2 and can
be dropped, while the third term is suppressed by a term of the order me

mµ
× υ2

Λ2 ≈ 1
200

υ2

Λ2 ,
and can be dropped. Therefore the only contribution in the µ decay comes from the
LVLL. Using the Fermi theory as above we find:

GF = −
√

2LVLL

4
. (3.14)

We proceed for the calculation of the tree level matching of the LEFT coefficients with
the Wilson coefficients (SMEFT). We find for LVLL:

LVLL = − 2
υ2 + Cll

µeeµ + Cll
eµµe − 2Cφl(3)

µµ − 2Cφl(3)
ee . (3.15)

The Fermi constant can be written as:

GF =
1√
2υ2

(
1 +

δGF

GF

)
, (3.16)

where:
δGF

GF
= −υ2(

1
2

Cll
µeeµ +

1
2

Cll
eµµe − Cφl(3)

µµ − Cφl(3)
ee ) +O(Λ−4), (3.17)

therefore the definition of the tilde VEV which contains SMEFT correction can be written
as:

υ̃ =
υ√

1 + δGF
GF

= υ
(
1 +

δυ

υ

)
, (3.18)

where: δυ
υ = − 1

2
δGF
GF

. From the definition 3.18 we can give υ̃ the value of the VEV of
the SM: υ̃ = 246.21965(6)GeV. We will use this redefinition of the Higgs VEV in order
to express the initial SMEFT parameters in terms of the "indirect" Wilson coefficients of
equation 3.18.

In section 3.1 we defined the tilde parameters of the CKM matrix in SMEFT as W̃i.
The relation between the parameters in SM can be written: W̃i = Wi + δWi, where δWi
are the linearized contribution from LEFT or SMEFT Wilson coefficient. In order to
constraining NP in SMEFT we will work as follows:

If we denote with Oa where a = {1, 2, 3, 4} the flavour observables of equation 3.11,
we can expand it in terms of the NP contribution as:

Oa = OSM,a(Wi)(1 + ∑ aiLi) = OSM,a(Wi)(1 + ∑ biC
(6)
i ) (3.19)

,where Li are the LEFT wilson coefficients and C(6)
i the SMEFT 6-dimension operators

while ai and bi are some complex numbers. From the mapping of the LEFT to SMEFT
we can find the relation between the parameters ai, bi. From the definition of the W̃i
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parameters we have that the flavour observables can be written in a form dependent
exclusively from the W̃i in a form similar to the SM:

Oa(Wi) = OSM,a(W̃i). (3.20)

Using equation 3.20 and the experimental inputs, we can extract numerical values for
the W̃i. With these numerical values, we can obtain the numerical result of the CKM
matrix in BSM. Once we have found the numerical result for the CKM matrix, we can
proceed to expanding the elements of the CKM matrix in terms of the linearized Wilson
coefficients. We can write a general form for the expansion of any flavor measurement
Oi in terms of NP contributions as follows

Oa = Oa,SM(W̃i) + δOindirect
a,NP + δOdirect

a,NP , (3.21)

where the term Odirect
a,NP denotes the Wilson coefficients that contribute directly to the

observable, while the indirect contribution is:

δOindirect
a,NP = −∂Oa,SM

∂Wi
δWi +

υ̃

2
δGF

GF

∂Oa,SM

∂υ̃
+O(Λ−4), (3.22)

where the second term is the indirect part from the redefinition of the Higgs VEV.
We note that the CKM matrix Ṽ = Ṽ(W̃i) is unitary by construction. This does

not result in any loss of generality since we do not define the nine different elements
of Ṽ as the elements extracted from nine different observables. In this approach, we
only need to "sacrifice" four measurements to fix the four elements of the CKM matrix.
Therefore, any additional observable can then serve as a probe of new physics. In the
next sections, we will apply this algorithm (equations 3.20-3.22) in order to find the
corrections in CKM for BSM.

3.5 Pl2 Decays

The decays P → lν, where P can be π, K, or B, and l = τ−, µ−, can provide accurate data
in hadronic weak decays and give information to test the CKM (Cabibbo-Kobayashi-
Maskawa) matrix in the Standard Model, as well as detect possible new physics (NP)
corrections. We note that a similar analysis for these types of processes has been con-
ducted in [26]. The decay rate for the process P− → l−ν̄l can be calculated as:

Γ(P− → l−ν̄l) = ∑
a
|Ulνa |2|Vuq|2

f 2
P±mP±m2

l
16πυ̃4

(
1 −

m2
l

m2
P±

)2

(1 + δPl)(1 + ∆Pl2), (3.23)

where q = d, s for P = π, K, respectively. The factor ∑a |Ulνa |2 comes from the sum over
all possible neutrino flavors, where U is the PMNS mixing matrix. The values of U have
been taken from [43].

UPMNS =

0.822 ± 0.010 0.547 ± 0.015 0.155 ± 0.008
0.451 ± 0.014 0.648 ± 0.013 0.614 ± 0.018
0.347 ± 0.015 0.529 ± 0.014 0.774 ± 0.013

 , (3.24)
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where the PMNS matrix has been calculated with great accuracy. We note that equation
3.24 corresponds to the magnitude of the elements of the UPMNS matrix. We define fP±

to be the QCD semileptonic decay constant of P through the relation:
〈0| q̄γαγ5u |P+(q)〉=iqµ fP± . The factor δPl corresponds to the electromagnetic correc-

tions in the SM and are given [37]:

1 + δPl = Sew

[
1 +

α

π

(
F(m2

l /m2
P) +

3
2

log
mP

mρ
− cP

1

)]
+O(e2 p4), (3.25)

where α is the structure constant, Sew = 1.0232(3)[34] encodes universal short distance
distance corrections to the semileptonic transitions in the SM at µ = mρ. The function
F(x) describes the leading universal long-distance radiative corrections to a point-like
meson [39]. The constant cP

1 encodes hadronic structure effects that can be calculated
in Chiral Perturbation Theory [21]. We note that the EM corrections are estimated to
be between 1 − 3%, with an uncertainty smaller than the current uncertainty of fP. We
define ∆pl2 to be the linearized NP contribution and they are given by the relation:

∆pl2 =

(
υ̃

υ

)4 ∣∣∣∣1 + ε
luq
A − m2

P
(mu + mq)ml

∣∣∣∣2 − 1 ≈

2Re(εluq
A )− 2m2

P
(mu + mq)ml

Re(εluq
P ) + 4

δυ

υ
+O(Λ−4).

(3.26)

Where we define ε
luq
A and ε

luq
P to be linearized in terms of the SMEFT’s Wilson coeffi-

cients, or the LEFT coefficients by the relations:

ε
luq
A =− 1 − υ2

2Vuq

(
[LVLL

vedu(µq)]
∗
llqu − [LVLR

vedu(µq)]
∗
llqu

)
,

ε
luq
P =− υ2

2Vuq

(
[LSRR

vedu(µq)]
∗
llqu − [LSRL

vedu(µq)]
∗
llqu − [LTRR

vedu(µq)]
∗
llqu

)
,

(3.27)

at hadronic scale where: µq = {2, 2, 4.3}GeV for q = {d, s, b} correspondingly. In the
case where we approach the EW scale, in order to relate the coefficients at this scales
with the matching conditions at the EW scale one needs to use RGEs. Using three-
loop plus one-loop QED running[2], [27], the parameters ε

luq
A,P of equation (7.16) can be

correlated with the LEFT operators as follows:
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ε
µud
A =− 1.0094 − υ2

2Vud
∑

a
Uµa

(
1.0094[LVLL

vedu(µEW)]∗µadu − 1.0047[LVLR
vedu(µEW)]∗µadu

)
,

ε
µud
P =− υ2

2Vud
∑

a
Uµa

(
1.73[LSRR

vedu(µq)]
∗
µadu − 1.73[LSRL

vedu(µq)]
∗
µadu − 0.0024[LTRR

vedu(µq)]
∗
µadu

)
,

ε
µus
A =− 1.0094 − υ2

2Vus
∑

a
Uµa

(
1.0094[LVLL

vedu(µEW)]∗µasu − 1.0047[LVLR
vedu(µEW)]∗µasu

)
,

ε
µus
P =− υ2

2Vus
∑

a
Uµa

(
1.73[LSRR

vedu(µs)]
∗
µasu − 1.73[LSRL

vedu(µq)]
∗
µasu − 0.0024[LTRR

vedu(µq)]
∗
µasu

)
ετub

A =1.0075 − υ2

2Vub
∑

a
Uτa

(
−1.0075[LVLL

vedu(µEW)]∗τabu − 1.0038[LVLR
vedu(µEW)]∗τabu

)
,

ετub
P =− υ2

2Vub
∑

a
Uτa

(
1.45[LSRR

vedu(τq)]
∗
τabu − 1.45[LSRL

vedu(τq)]
∗
τabu − 0.0024[LTRR

vedu(τq)]
∗
τabu

)
,

(3.28)

where a is the coefficient corresponding to a neutrino, namely a = {νe, νµ, ντ} since we
have summed over all possible neutrinos to compute the decay rate. The LEFT Wilson
coefficients of Equation 3.28 are related to the SMEFT Wilson coefficients in appendix
D. We will use the results of Equation 3.28 to calculate the corrections of CKM elements
in terms of the SMEFT Wilson coefficients.

3.6 Mass Differences

The Mass Differences ∆Md and ∆Ms of neutral mesons Bq, where: q = {d, s} are given
by the relation:

∆Mq = |VtbVtq|2(1 + ∆∆Mq)
mBq f 2

Bq
m2

W

12πυ̃2 Bq
1S1(mb), (3.29)

which is in agreement with [24] and [5],where Bq
i are the so-called bag-parameters, and

they are defined as the matrix elements: 〈B̄0
q | Qi |B0

q〉 up to a normalization factor. We
denote the parity-even components of operators in the SUSY basis as Qi (appendix D).
The numerical values of the bag parameters are given in [15] . We denote with ∆∆Mq the
quantity:

1 + ∆∆Mq =
υ̃4

υ4

∣∣∣∣∣∣C
(q)
1 + C̃(q)

1

C(q)
1,SM

+ RBq

 5

∑
i=2

CiB
(q)
i

B(q)
1

C(q)
i

C(q)
1,SM

+ ∑
i=2,3

CiB
(q)
i

B(q)
1

C̃(q)
i

C(q)
1,SM

∣∣∣∣∣∣
2

=

1 + 4
δυ

υ
+ Re

C(q)
1,NP + C̃(q)

1

C(q)
1,SM

+ RBq

 5

∑
i=2

CiB
(q)
i

B(q)
1

C(q)
i

C(q)
1,SM

+ ∑
i=2,3

CiB
(q)
i

B(q)
1

C̃(q)
i

C(q)
1,SM

+

O(
1

Λ4 )

(3.30)
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where the factors Ci = {1, −5
8 , 1

8 , 3
4 , 1

4} and RBq =
mBq

(mb+mq)2 while: C1,NP = C(q)
1 − C(q)

1,SM.
We note that the mass of b-quark mass had been taken at the scale of the b-quark mass
itself, µb ∼ 4.3GeV. Therefore the mass of b-quark in MS scheme had been calculated:

mb(mb, MS) = 4.29(12)GeV. (3.31)

The parameters Ci and C̃i express the contributions of the operators from the SUSY basis
as denoted in Appendix D. The parameter C1,SM is the exact calculation of the two-loop
contribution in the SM, as defined in the appendix. We define the ξ parameter to be:

ξ =
fBs

fBd

√
Bs

1

Bd
1

. (3.32)

This parameter can be calculated more explicitly in the case where we calculate the

SU(3)-breaking ratio B(d/s)
1 =

Bd
1

Bs
1

in the MS scheme instead of calculating Bs
1 or Bq

1 sepa-
rately. This occurs due to the correlations between the parameters. To take into account
these correlations, we rewrite equation 3.30 in terms of the parameter ξ in the case where
q = d as follows:

∆Md = |VtbVtd|2(1 + ∆∆Mq)
mBd f 2

Bs
Bs

1m2
W

12πυ̃2ξ2 S1(mb). (3.33)

Numerical values for the ξ parameter can be found in [31], [3]. In order to express the NP
contribution in terms of the SMEFT’s Wilson coefficients, we performed the tree-level
matching between the LEFT Wilson coefficients of the process and the SMEFT’s Wilson
coefficients in Appendix D. Additionally, to find the relation between the coefficients Ci
and C̃i with the LEFT Wilson coefficients at the electroweak scale, one should make use
of the NLO evolution matrix [13] . At a scale of µEW = MZ, the relations are as follows1:

C(q)
1 = 0.858[LVLL

dd (µEW)]qbqb,

C(q)
4 =− 0.755[LV1LR

dd (µEW)]qbqb − 1.940[LV8LR
dd (µEW)]qbqb,

C(q)
5 =− 1.856[LV1LR

dd (µEW)]qbqb + 0.237[LV8LR
dd (µEW)]qbqb,

C̃(q)
1 =0.858[LVRR

dd (µEW)]qbqb

(3.34)

Using the relations of equation 3.34 and (D.2) one can find the matching conditions
of Ci and C̃i coefficients with the SMEFT Wilson coefficients. We note that a matching at
higher order, O(1/Λ4) between the LEFT and SMEFT coefficients has been in ref.[10].

3.7 Numerical Values of Observables

We will use two of the four input observables: Γ(B− → ∑a τ−νa) and Γ(K−→∑a µ−νa)
Γ(π−→∑a τ−νa)

, in

order to find the numerical value of the CKM matrix element |Ṽub|2 and the ratio |Ṽus|2
|Vud|2

.

We define Ṽij as the CKM elements that absorb the NP contribution. For the decay

1We notice that we only took into account the coefficients Ci and C̃i up to order O( 1
Λ2 )
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Γ(B− → ∑a τ−νa), we define:

|Ṽub|2 ≡ |Vub|2(1 + ∆Bτ2). (3.35)

To calculate the numerical value of |Vub|2, we will use the input values in Table 2 of [23].
Using these values, we obtain:

|Ṽub| = 0.00425 ± 0.00049 , (3.36)

where we neglected electromagnetic corrections since they are practically negligible
compared to the experimental sensitivity.2 Additionally, we note that the factor ∑a |Uτ−νa |2 =
0.999326 ≈ 1, which does not affect the result of equation 3.36. We proceed to calculate
the ratio |Ṽus|2

|Vud|2 . One could determine the CKM matrix elements |Vus| and |Vud| sepa-

rately, but in these cases the element W1 = λ̃ would have large uncertainty, since the
form factor for Kaon, fK, does not rely on fπ and has been calculated with large uncer-
tainty [7]. Therefore, to compute the W1 parameter, we will use the ratio Γ(K−→∑a µ−νa)

Γ(π−→µ− ∑a νa)
,

which is calculated to be:

Γ(K− → µ− ∑a νa)

Γ(π− → µ− ∑a νa)
=

∣∣Ṽus
∣∣2∣∣Ṽud
∣∣2 f 2

K
f 2
π

mK

mπ

(
1 − m2

µ

m2
K

)2

(
1 − m2

µ

m2
π

)2 (1 + δK/π), (3.37)

We notice that the value of fK
fπ

had been taken from FLAG [3], which combines sev-
eral lattice determinations for this ratio of decay constants without introducing any un-
controllable dependence on NP via the pion leptonic width. The NP contribution is
encoded in the ratio: ∣∣Ṽus

∣∣∣∣Ṽud
∣∣ = |Vus|

|Vud|
(1 + ∆K/π), (3.38)

where we define:

1 + ∆K/π =
1 + ∆Kµ2

1 + ∆πµ2

, (3.39)

which can be calculated up to order O(Λ−4):

1 + ∆K/π =
1 + ∆Kµ2

1 + ∆πµ2

≈

(1 + ∆Kµ2)(1 − ∆πµ2) =

2Re(εµus
A − ε

µud
A )− 2

mµ−

(
m2

KRe(εµus
P )

mu + ms
−

m2
πRe(εµud

P )

mu + md

)
+O(Λ−4).

(3.40)

2We note that the decay constant f B± is independent of the experimental value of the QCD form factor
fπ .
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Using the numerical inputs of Table 2 of [23]we find the ratio to be:∣∣Ṽus
∣∣∣∣Ṽud
∣∣ = 0.23131 ± 0.00051 . (3.41)

The numerical error is completely dominated by the uncertainty of fK/π. Continuing
with the mass-difference transitions, we use Equation 3.33 to calculate the following
quantities:

|ṼtbṼtq|2 = |VtbVtd|2(1 + ∆∆Mq) (3.42)

Referring back to Table 2 in [23], we find:

|ṼtbṼtd| = 0.00851(25), |ṼtbṼts| = 0.0414(10) (3.43)

3.8 Numerical Results of CKM

We summarize the results from the above analysis to be:∣∣Ṽus
∣∣∣∣Ṽud
∣∣ = 0.23131 ± 0.000050,

∣∣Ṽub
∣∣ = 0.00426 ± 0.00048∣∣ṼtbṼtd

∣∣ = 0.00851 ± 0.00026
∣∣ṼtbṼts

∣∣ = 0.0414 ± 0.0010.
(3.44)

We found identical results compared to those of ref.[23]. In the following work, we will
use the numerical results of equation 3.44 to calculate the value of the tilde Wolfenstein
parameters. We start by writting the observable quantities as functions of the Wolfen-
stein parameters as follows:∣∣Ṽus

∣∣∣∣Ṽud
∣∣ = λ̄ +

1
2

λ̄3 +
3
8

λ̄5 +O(λ̄6)

∣∣Ṽub
∣∣ = (λ̃3 +

1
2

λ̃5 +O(λ̃6)

)
Ã
√

ρ̃2 + η̃2

∣∣ṼtbṼtd
∣∣ = λ̃3Ã

√
(1 − ρ̃)2 + η̃2 +O(λ̃6)∣∣ṼtbṼts

∣∣ = λ̄2Ã − 1
2

λ̃4Ã(1 − 2ρ̃) +O(λ̃6).

(3.45)

The other set of equations to calculate the numerical errors of the observable quantities
are the following:

δKa =

√(
∂Ka

∂ρ̃
δρ̃

)2

+

(
∂Ka

∂η̃
δη̃

)2

+

(
∂Ka

∂Ã
δÃ
)2

+

(
∂Ka

∂λ̃
δλ̃

)2

, (3.46)

where Ka = {
∣∣Ṽus

∣∣∣∣Ṽud
∣∣ , ∣∣Ṽub

∣∣ ,
∣∣ṼtbṼtd

∣∣ ,
∣∣ṼtbṼts

∣∣} and δKa corresponds to the numerical errors

of the observables quantities for a = {1, 2, 3, 4}. Solving these sets of equations, we find
the numerical values of tilde Wolfenstein parameters:



3.8. Numerical Results of CKM 35


λ̃ = λ + δλ
Ã = A + δA
ρ̃ = ρ̄ + δρ̄
η̃ = η̄ + δη̄

 =


0.22537 ± 0.00046

0.828 ± 0.020
0.194 ± 0.024
0.391 ± 0.056.

 . (3.47)

From our results, we can see that the smaller numerical error comes from the uncer-
tainty of λ̃. Therefore, our choice of keeping terms up to order O(λ̃6) was appropriate.
Secondly, we can tell that our decision to use a small number of observable quantities
to extract the CKM matrix results in a loss of accuracy in the limit where the coefficients
of NP are zero, in comparison to SM fits that use significantly larger sets of observ-
ables[16] . In addition, we have to remark that there is a third possible set of solutions
(λ, A, ρ,−η), obtained by replacing η with −η. This symmetry of equation 3.47 with re-
spect to η results in "mirror solutions" to the global fits. Although the CKM parameters
in these solutions may differ significantly from those in the SM fit, the total shift will be
cancelled out by a large number of Wilson coefficients. In the present thesis we will not
examine the case of "mirror solution" any further.

Since we found numerical values for the Wolfenstein parameters we can proceed
with calculating the CKM matrix for BSM. In the tilde Wolfenstein corrections δW =
{δλ̃, δρ̃, δη̃, δÃ} there are encoded the NP shifts. In order to relate the Wolfenstein cor-
rections with the Wilson Coefficients we have to solve a complicated non-linear equa-
tion that relates δW and δOa = {∆K/π, ∆Bτ2 , ∆∆Md , ∆∆Ms}. However we can simplify
this equation by working in the case where δOa are relatively small, therefore we can
keep terms up to order O( 1

Λ2 )(linear terms of Wilson coefficients). The relation of those
quantities can be written: 

δλ
δA
δρ̄
δη̄

 = M(λ̃, Ã, η̃, ρ̃)


∆K/π

∆Bτ2
∆∆Md

∆∆Ms .

 . (3.48)

The matrix M(λ̃, Ã, η̃, ρ̃) is defined throught the relation:

M(λ̃, Ã, η̃, ρ̃) ≡ (O′)−1O, (3.49)

where we define the diagonal matrix:

O = diag
(

Γ(K → µν)

Γ(π → µν)
, Γ(B → τν), ∆Md, ∆Ms

)
, (3.50)

whoose elements are the SM expressions of the input observables. The elements of O′

are defined by the relation:

O′
ij ≡

∂Oii

∂Wj
. (3.51)
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We can express the matrix M in terms of the tilde Wolfenstein parameters up to order
λ̃6 as follows:

M(λ̃, Ã, η̃, ρ̃) =


1
2 λ̃ − 1

2 λ̃3 0 0 0
−Ã + Ãλ̃2 + c ˜̃Aλ̃4 −ceÃ beÃ 1

2 Ã − aeÃ
a − bλ̃2 + cÃλ̃4 c(1 − 2ae) −b(1 − 2ae) a(1 − 2ae)

d
2η̃ + bρ̃

η̃ λ̃2 − c(2d+3(ρ̃−1))
2η̃

c
η̃ (1 − ρ̃ + de) b

η̃ (ρ̃ − de) − d
2η̃ (1 − 2ae)


(3.52)

, where we defined the quantities:

a =
1 − 2ρ̃

2
, b =

η̃2 + (1 − ρ̃)2

2
, c =

η̃2 + ρ̃2

2
,

d = η̃2 − ρ̃2 + ρ̃, e = λ̃2(1 − aλ̃2)

(3.53)

Using Eq 3.47 we calculate the numerical value of M matrix to be:

M(λ̃, Ã, η̃, ρ̃) =


0.1070 0 0 0
−0.786 −0.0039 0.0166 0.401
0.286 0.093 −0.390 0.298
−0.384 0.200 0.182 −0.382

 (3.54)

.
Since we have the numerical value of M, we can easily express the Wolfenstein cor-

rections in terms of the linearized Wilson coefficients. Continuing, we use equation 3.47
to calculate the numerical value of the tilde CKM matrix elements. The numerical value
of the CKM matrix, including the contributions of the Wilson coefficient, is:

Ṽ =

 0.97428(11) 0.22537(46) 0.00189(29)− i0.0038(66)
−0.22524(46)− i0.000156(31) 0.97340(15) 0.0421(11)

0.00764(3)− i0.00370(74) −0.0414(10)− i0.000083(13) 0.999115(49)

 .

(3.55)
The NP contributions are encoded in the numerical error of Ṽ.

Using equation 3.48 and the numerical value of Ṽ, we expressed the corrections δVij
in terms of the Wilson coefficients of the SMEFT. We note that δVij symbolizes the linear
combination of 6-dimensional Wilson coefficients. We assumed Uij = δij for the PMNS
matrix at the beginning, and the results in this case, where Uij = δij, are provided in the
Appendix F. Subsequently, we negated our initial condition and considered the general
PMNS matrix, which can be expressed in SMEFT as:

Uij = UPMNS + ∑
i

kiCi, (3.56)

where ki are some complex numbers and Ci are Wilson coefficients. The values of UPMNS
corresponds to the experimental results of [43]. Since δVij had been calculated up to or-
der O(Λ−2), it is efficient to neglect the second term in equation 3.56. Therefore, only
the UPMNS part was considered for the calculations. Comparing the two computations
leads us to conclude that when we assume Uij = δij, the contribution of SMEFT Wilson
coefficients is identical to that when we assume Uij = UPMNS. This can be shown by ex-
panding the sum over the Wilson coefficients algebraically in equation 3.28 (Appendix
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E). However, in the latter case, where Uij = UPMNS, additional components of SMEFT
Wilson coefficients appear, which may play a crucial role in determining the corrections
to the CKM matrix. We denote the contribution of those components as δUij. The cor-
rections of the CKM elements, δṼij, where:

δṼij = δVij + δUij, (3.57)

have been computed in the Appendix F 3.
In conclusion, we have computed the numerical values of δWi = {δλ, δA, δρ, δη}

with the assumption that we have concluded the PMNS matrix in our calculation (Equa-
tion 3.47). The numerical errors of the CKM matrix elements can be expressed as linear
combinations of δWi. Therefore, assuming Uij = δij would result in a loss of generality
since the linear combination δVij would not include non-diagonal Wilson coefficients.
It is possible that the linear combination δṼij of 6-dimensional Wilson coefficients pro-
vides a better fit for the numerical results of the corrections in Equation 3.55, considering
that it includes non-diagonal Wilson coefficients. Although it should be noted that the
numbers that multiply the Wilson coefficients in δUij are typically comparable to the
multiplication factors in the diagonal case. This implies that the contribution of the off-
diagonal Wilson coefficients would generally be small in comparison to the numerical
values of the correction in the diagonal case, in order for the numerical values of the
correction to be the same in both cases. We note that we cross-checked our numerical
results for the CKM corrections with those in [19].

3The numerical results of δUij correspond to a zero CP violation phase.
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Chapter 4

Applications

In this section we will use the tilde Wolfenstein parameters to investigate various flavour
processes in a systematic manner. We will go over a few examples (in tree-level) to il-
lustrate their application and also demonstrate how they can be used to place limits in
new physics.

4.1 Leptonic Decays

First we will assume the process: K− → µν. By comparing the branching fraction,
which has been measured with great accuracy, to the predictions of the Standard Model,
we aim to restrict the influence of effective interactions that exist beyond the SM. The
branching ratio of the process is proportional to |Vus| which obtained from the SM-fits.
Therefore to overcome the fact that these analyses may be influenced by NP, which could
have the same effective operators we will write the branching fraction in terms of the
tilde Wolfenstein parameters. Therefore the decay rate of the process can be written as:

Γ(K− → µ−ν̄l) =|Vus|2
f 2
K±mK±m2

µ

16πυ̃4

(
1 −

m2
µ

m2
K±

)2

(1 + δKµ)(1 + ∆Kµ2) =

|Ṽus|2
|Vus|2∣∣Ṽus

∣∣2 f 2
K±mK±m2

µ

16πυ̃4

(
1 −

m2
µ

m2
K±

)2

(1 + δKµ)(1 + ∆Kµ2) =

|λ̃|2 |λ|2

|λ + δλ|2
f 2
K±mK±m2

µ

16πυ̃4

(
1 −

m2
µ

m2
K±

)2

(1 + δKµ)(1 + ∆Kµ2) =

|λ̃|2 1∣∣1 + δλ
λ

∣∣2 f 2
K±mK±m2

µ

16πυ̃4

(
1 −

m2
µ

m2
K±

)2

(1 + δKµ)(1 + ∆Kµ2) ≈

|λ̃|2
f 2
K±mK±m2

µ

16πυ̃4

(
1 −

m2
µ

m2
K±

)2

(1 + δKµ)(1 −
2δλ

λ̃
+ ∆Kµ2),

(4.1)

where we used that
∣∣1 + δλ

λ

∣∣2 ≈ 1 − 2 δλ
λ̃

. In addition we define:

∆̃Kµ2 =

2Re
(
ε

µus
A

)
−

2m2
K±

(mu + ms)mµ
Re
(
ε

µus
P
)
+ 4

δυ

υ
− 2

δλ

λ̃
+O(Λ−4).

(4.2)
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We note that in quantities ε
µus
A , ε

µus
P , δλ are encoded NP terms as defined in equations

3.28, 3.47 correspondingly. Using equation 3.47 we can rewrite equation 4.2 as:

∆̃Kµ2 =0.1Re
(
ε

µus
A

)
− 0.1

m2
K±

(mu + ms)mµ
Re(εµus

P )+

1.9Re(εµud
A )− 1.9

m2
π

mµ(mu + md)
Re(εµud

P ) +
4δυ

υ
.

(4.3)

It is clear from Equation 4.3 that the insertion of δλ results in the correlation of the pro-
cess π → µν, as the terms ε

µud
A,P appear. We will use the value of fK± = 155.62(44) MeV

from FLAG and the numerical value of B(K → µν) from the Particle Data Group to
obtain the following constraints for Equation 4.3:

∆̃Kµ2 = 0.0091 ± 0.0002 . (4.4)

We assume that the electromagnetic radiative corrections for Kaon are negligible since
they are of the order: δKµ ∼ 10−2. The numerical error is dominated by the uncertainty
of fK± . Another constraint has been calculated for the process π → µν, in which we
found, using an equivalent method, that:

∆̃πµ2 = 0.004 ± 0.013 , (4.5)

where:

∆̃πµ2 = 2Re(εµud
A )−

2m2
π±

(mu + md)mµ
Re(εµud

P ) + 4
δυ

υ
+ 2λ̃(1 +

1
2

λ̃2)δλ +O(Λ−4) (4.6)

From equations 4.6 and 4.5 we can extract a third condition, for the quantity:

R+ 1 =
1 + ∆̃Kµ2

1 + ∆̃πµ2
≈

(1 + ∆̃Kµ2)(1 − ∆̃Kµ2) = 1 + ∆̃Kµ2 − ∆̃πµ2 =

1 + ∆Kµ2 − ∆πµ2 − 2
δλ

λ̃
− 2λ̃(1 +

1
2

λ̃2)δλ =

1 + ∆K/π − 2δλ

λ̃
− 2λ̃(1 +

1
2

λ̃2)δλ.

(4.7)

where the numerical value of R is:

R = 0.0050 ± 0.0129 . (4.8)
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Another possible process in order to isolate δλ in order to create a constraint would be
the following ratio of decays rates:

Γ(Ds → lν)
ΓSM(t → Wb)

=

|Vcs|2
f 2
Ds mDs m2

l
16πυ̃4

(
1 − m2

l
m2

K±

)2

(1 + δDs l)(1 + ∆Ds l2)

√
2GF |Vtb|2m3

t

(
1−m2

w
m2

t

)2(
1+ 2m2

w
m2

t

)
16π f (as)

, (4.9)

where we consider the decay width of the process t → Wb in the SM. We denote with:

f (as) = 1 − 2as

3π

(
2π2

3
− 5

2

)
. (4.10)

For a value of mt ≈ 173.3GeV and as ≈ 0.118 we find the decay Width of SM to be 1.35
GeV. Using that:∣∣∣∣Vcs

Vtb

∣∣∣∣ =
∣∣∣∣∣1 − 1

2 λ2 − 1
8 λ4(1 + 4A2)

1 − 1
2 A2λ4

∣∣∣∣∣ ≈
∣∣∣∣1 +

�
�

��1
2

A2λ4 − 1
2

λ2 − 1
8

λ4(1 +���4A2)

∣∣∣∣ =∣∣∣∣1 − 1
2

λ2 − 1
8

λ4
∣∣∣∣ .

(4.11)

Therefore the Ratio of equation 4.11 can be written as:

Γ(Ds → lν)
ΓSM(t → Wb)

=

∣∣1 − 1
2 λ2 − 1

8 λ4
∣∣2 f 2

Ds mDs m2
µ

16πυ̃4

(
1 − m2

µ

m2
K±

)2

(1 + δDs l)(1 + ∆̃Ds l2)

√
2GFm3

t

(
1−m2

w
m2

t

)2(
1+ 2m2

w
m2

t

)
16π f (as)

, (4.12)

where:

∆̃Ds l2 = 2Re(εlcs
A )−

2m2
Ds

(mc + ms)ml
Re(εlcs

P ) + 4
δυ

υ
+ 2λ̃(1 +

1
2

λ̃2)δλ +O(Λ−4) . (4.13)

The last Leptonic decay that we will consider in order to set contraints for all the correc-
tions δWi is: B− → τ−ν. We can rewrite the decay rate in the form:

Γ(B− → τ−ν) =|Aλ3
(

1 +
1
2

λ2
)
(ρ − iη̄) |2

f 2
B±mB±m2

τ

16πυ̃4

(
1 − m2

τ

m2
B±

)2

·

(1 + δBτ)(1 + ∆̃Bτ2),

(4.14)

where we define:

∆̃Bτ2 = 2Re(ετub
A )− 2m2

B
(mu + mb)mτ

Re(ετub
P ) + 4

δυ

υ
− δVub +O(Λ−4), (4.15)
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where:

δVub = δAλ3
(

1 +
1
2

λ2
)
(ρ̄ − iη̄) + Aδλ

(
3λ2 +

5
2

λ4
)
+ Aλ3 (δρ − iδη) . (4.16)

Using the experimental value of the decay rate Γ(B− → τ−ν) = 4.38(5) · 10−8eV [8] and
fB± = 184(4)MeV we get the constrain for ∆̃Bτ2 to be:

∆̃Bτ2 = −0.555 ± 0.009 . (4.17)

The error is totally dominated by the lattice uncertainty of fB± .

4.2 W Decays

We will consider the general process: W → u f1 d f2 ,where u f1 = {c, u} and d f2 = {d, s, b}.
The amplitude of this process can be written as follows:

iMµ
W→ud =ū(p1)(

−iḡ√
2

Vf1 f2 γµPL − 2υqνVf1g1 CdW
g1 f2

σµνPR − iḡυ2
√

2
Vf1g1 Cφq(3)g1 f2 γµPL−

iḡυ2

2
√

2
Cφud

f1 f2
γµPR − 2υqνVg1 f2 σµνPLCuW∗

g1 f1
)υ(p2),

(4.18)

ū f1(p1)

υ f2(p2)

Wµ = iMW→ud (4.19)

, where ū(p1) and υ(p2) the spinors of dk and uj respectively(additionally we consider
∑polarization εµεν → −gµν, where εµ the polarization vector of W gauge boson). The pur-
pose of this application is to compare the decay width of the process with exclusive
decay widths predicted in the SM. These exclusive decays predicted within the Stan-
dard Model depend on the CKM matrix Vf1 f2 , which may contain corrections from new
physics. Therefore, in order to understand how the tilde CKM matrix elements affect
the decay rate, we will consider the ratio:

Γ(W → ud)
ΓSM(W → ud)

≈ 1 + Re(
δg

Ṽf1 f2

−
2δVf1 f2

Ṽf1 f2

) , (4.20)

where ΓSM(W → ud) represents the SM prediction obtained by using the numerical
values of the tilde CKM elements and:

δg = −2
δυ

υ
Ṽf1 f2 − 2Vf1g1 Cφq(3)

g1 f2
+

3
√

2mu

MW
CuW∗

g1 f2
Vg1 f2 −

3
√

2md

MW
K f1g1 CdW

g1 f2
. (4.21)
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is a linear combination in terms of Wilson coefficients. Therefore the total shift of the
specific W decays is δg − 2δVf1 f2 ,where the terms δVf1 f2 , up to O(λ4)are as follows:

δVud =δVcs − λ̃δλ

δVus = δλ

δVud = −δλ

δVub = δAλ̃3
(

1 +
1
2

λ̃2
)
(ρ̄ − iη̄) + Ãδλ̃

(
3λ̃2 +

5
2

λ̃4
)
+ Aλ3 (δρ − iδη)

δVcb = 2Ãλ̃ + δAλ̃2.

(4.22)

One can use equation 3.48 to express δVf1 f2 in terms of linearized Wilson coefficients and
related quantities such as ∆K/π, for example: δVud ≈ −0.0247∆K/π, δVus = 0.107∆K/π,
etc.

4.3 Top-quark Decay

We will consider the top quark decay to a b quark and a W − boson, in this case the
leading contribution comes from:

b

Wµ±

t = iMt→bW . (4.23)

The decay rate of the process up to order O
(

m2
b

m2
t

)
is calculated to be:

Γ(t → bW) = |Vtb|2
ḡ( f 2

W − 1)
64π f 2

W

(
( f 2

W − 1)ḡ(1 + 2 f 2
W) +

δC
Vtb

)
+O(

m2
b

m2
t
), (4.24)

where:

δC = ( f 2
W − 1) f 2

W12
√

2CdW
g1b Vtg1(mtυ)+ 6

mb

mt
f 2
Wυ2 ḡCφud

tb + 12
√

2
mb

mt
(mtυ)(1+ f 2

W)CuW∗
g1b Vg1t,

(4.25)
where we denote with fW = MW

mt
. Working equivalent as equation 4.20 we find:

Γ(t → Wb)
ΓSM(t → Wb)

≈ 1 + Re
(

δC
Ṽtb

− 2δVtb

Ṽtb

)
, (4.26)

therefore the contribution of NP in t → bW decay has as a result the shift of the SM
value δh = δC − 2δVtb, where:

δVtb = −ÃδAλ4 − 2λ̃3Ã2δλ. (4.27)
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4.4 Setting bounds in Leptoquark Model

Our approach in this application involves using the results obtained in F to set con-
straints on specific Wilson coefficients that are commonly found in both ref.[20] and the
CKM matrix corrections. In ref.[20], a comprehensive matching onto the SMEFT of a
model with two scalar leptoquarks, weak isospin, and a doublet has been performed.
Our focus is on the tree-level matching scenario, and the following B-conserving Wilson
coefficients are of particular interest, as they also appear in the CKM matrix(equations
(3.13-3.14) in ref.[20]):

[Clq(3)]
(0)
prst =−

(λ1L
sp )

∗(λ1L
tr )

4M2
1

[Clequ(1)]
(0)
prst =

(λ1L
sp )

∗(λ1R
tr )

2M2
1

[Clequ(3)]
(0)
prst =−

(λ1L
sp )

∗(λ1R
tr )

8M2
1

.

(4.28)

Where M1 represents the mass of the Leptoquark in ref.[20]. We would like to empha-
size that, when going from the Green basis to the Warsaw basis, the Wilson coefficients
remain the same for the case presented in 4.28. We proceed to set constraints for the

3 × 3 matrices {M1,M2,M3} = { (λ1L
sp )

∗(λ1L
tr )

M2
1

,
(λ1L

sp )
∗(λ1R

tr )

M2
1

,
(λ1L

sp )
∗(λ1R

tr )

M2
1

}(we will set the in-
dices p and r to be fixed). Our initial approach to setting constraints on the matrices in
equation 4.28 will be based on the results presented in F. Specifically, we will impose
the constraint that every element of the corrections δVij has an upper bound of approx-
imately Π = 20% of the corresponding CKM elements. The following constraints are
our results for specific choices of the p and r indices(p = r = 2):

(M1)22st <

10−5, 6 · 10−5, ∗
3 · 10−6, 10−5, ∗

∗, ∗, ∗


st

. (4.29)

We utilized the linear combination of Wilson coefficients of δVus to establish bounds in
4.29. In addition, we use the symbol ∗ to denote cases in which we cannot establish
strict bounds or for which there are no such components. An example of this notation
is Clq(3)

2231 , where it should be noted that there is no corresponding Wilson coefficient in
CKM corrections. Working equivalently with 4.29, we obtain the following results for
Clequ(1)

2211 :

(M2)2211 =
(λ1L

12 )
∗(λ1R

12 )

M2
1

< 10−6,

(M2)2221 =
(λ1L

22 )
∗(λ1R

12 )

M2
1

< 7 · 10−8.
(4.30)



4.4. Setting bounds in Leptoquark Model 45

Working equivalently for [Clequ(3)]
(0)
prst we find:

(M3)2211 =
(λ1L

12 )
∗(λ1R

12 )

M2
1

< 2 · 10−5,

(M3)2221 =
(λ1L

22 )
∗(λ1R

12 )

M2
1

< 5 · 10−5.
(4.31)

It is worth noting that the same approach used in setting bounds for equation 4.28 can
be employed for the case where p = r = 3.
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Chapter 5

Conclusions

In this thesis, we have examined how the CKM matrix contributes to the search for
NP in the SMEFT. The dimension-6 operators of SMEFT can affect the determination of
the CKM parameters, and therefore we have limited the number of observables to the
minimum possible(3.11). It is important to note that the results from global fits, which
combine all available observations in the SM, cannot be directly applied to explore ad-
ditional flavor constraints related to the CKM matrix. Additionally, we have calculated
the NP corrections for these observables in LEFT at the weak scale, using a tree-level
matching process. Next, we used these observables to determine the numerical values
of the Wolfenstein parameters, W̃j (3.47), in order to derive the numerical result of the
CKM matrix in the context of SMEFT. Furthermore, we expanded all nine elements of
the CKM matrix in terms of linearized 6-dimensional Wilson coefficients, up to order
O(1/Λ2). This expansion was cross-checked with [19]. Additionally, we defined the
corrections to the CKM matrix, δṼij, under the assumption that the PMNS matrix is
non-diagonal. In this case, we found an additional contribution, δUij(3.57), caused by
the PMNS matrix, expressed in terms of the linearized Wilson coefficients. The contribu-
tion of these Wilson coefficients is presented in Appendix F. Our conclusion regarding
the Wilson coefficient that appears in δUij is that it must generally be small in order to
not significantly affect the numerical values of the CKM corrections.

We have also discussed applications concerning tree-level diagrams to see how the
CKM matrix in SMEFT affects those processes and how the matrix can be used to place
limits on new physics. In addition, we established bounds on some of the Wilson coef-
ficients that appear in the tree-level matching of the Leptoquark model in Ref. [20].

The method for determining CKM parameters in SMEFT analyses in this thesis con-
siders only a subset of possible flavor observables. While our current selection of input
observables may be considered valid, it is possible that this may change in the future
with advancements in theory or experimental measurements. In cases where the fit
includes all the measurements that are most sensitive to the CKM parameters, no ad-
ditional assumptions are needed for the selection of observables. This approach has
been demonstrated in studies of NP by UTfit[11] and CKMfitter[16], but only in simple
case of NP scenario. In the full SMEFT case this is not currently possible, since global
SMEFT analysis do not account for NP corrections that affect their extraction. Therefore
our current work provides an appropriate framework to consistently include such NP
effects and the uncertainty of the CKM parameters. Althought a global SMEFT deter-
mination of CKM parameters is crucial because it can offer valuable informations about
the nature of physics BSM at high energies.
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Appendix A

Notation and Conventions

We work in the natural (Planck) units where:

h̄ = c = 1, (A.1)

where in this system:

[length] = [time] = [energy]−1 = [mass]−1 = GeV−1 (A.2)

or:

[x] = [t] = −1, (A.3)
[pµ] = [∂µ] = 1. (A.4)

Therefore we can express every physical quantity in terms of the mass or energy dimen-
sion. For example the mass of electron can be written:

me = 0.511eV = (3.862 · 10−11)−1cm−1. (A.5)

Our convention for the metric is the following:

(gµν) = (gµν) = diag(1,−1,−1,−1), (A.6)

therefore a massive particle has: pµ pµ = p2 = E2 − |p|2 = m2. The displacement vector
xµ is "naturally raised", while the derivative operator:

∂µ =
∂

∂µ
=

(
∂

∂x0 ,∇
)

, (A.7)

is "naturally lowered". The convention for the 4-momentum follow the Shrödinger
wavefunction of single quantum-mechanics particle:

pµ = i∂µ. (A.8)

The gamma matrices satisfy the Dirac algebra:

{γµ, γν} = 2gµν. (A.9)

We also define:
σµν =

i
2
[γµ, γν]. (A.10)
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The γ5 matrix:

γ5 = iγ0γ1γ2γ3 =
−i
4!

εµνρσγµγνγργσ, (A.11)

which anti-commutes with a single γµ matrix:

{γµ, γ5} = 0. (A.12)

We also use the projection operators:

PL =
1 − γ5

2
, PR =

1 + γ5

2
, (A.13)

Finally the Feynman’s slash notation is:

�a = γµaµ. (A.14)



51

Appendix B

Computation of the Decay Rate for
P±

l2

For the computation of the decay rate we will consider the case where: l− = K−(Equa-
tion 3.23), therefore the diagrams that contribute to the process are the following:

W−

s

ū νa

µ−
(1)

s

µ−

u νa

(2) (B.1)

The amplitude for the first diagram can be written (in Rξ gauge) as:

iM(1) =qµ fπ

[
iḡ√

2
V12 +

iḡ√
2

V1g1 Cφq(3)
g12 − iḡυ2

2
√

2
Cφud

12

]
×(

−i
q2 − M2

W

(
ηµν − (1 − ξW)

qµqν

q2 − ξW M2
W

))
×

ū(3)
(
−iḡ√

2
U2aγνPL −

iḡυ2
√

2
Ug1aCφl(3)∗

2g1
γνPL

)
υ(2)

(B.2)

where u(3) and υ(2) are the spinors for the muon and the neutrino. We neglected terms
of σµν since they are O( 1

MW
). The contribution from the third diagram which contains a

goldstone boson is:

G−

s

ū νa

µ−
(3)
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iM(3) =q2 fπ

[
i
√

2
υ

V12 + i
√

2υV1g1 Cφq(3)
g12 − iυ√

2
Cφud

12

]
×

i
q2 − ξW M2

W

[
ū(3)

(
− i

√
2

υ
U2amaPL + i

√
2υ��qUg1aCψl(3)∗

2g1

)]
,

(B.3)

where we used the relation:

〈0| ūγ5s |P+(q)〉 = − q2

mu + ms
fπ, (B.4)

where mu, ms, mµ are the masses of up ,strange quarks and muon while u and s are the
spinors of up and strange quark respectively. If we denote the propagator of W particle
as Dµν in Rξ gauge we can rewrite it as the sum of two terms:

Dµν = Rµν + Kµν. (B.5)

The first term is independent of ξW :

Rµν =
−i
(

ηµν −
qµqν

M2
W

)
q2 − M2

W
, (B.6)

and the second term is:

Kµν =
iqµqν

(q2 − ξW M2
W)M2

W
. (B.7)

If we add the two amplitudes we have:

iM(1) + iM(3) =qµ fπ

[
iḡ√

2
V12 +

iḡ√
2

V1g1 Cφq(3)
g12 − iḡυ2

2
√

2
Cφud

12

]
·

−i
(

ηµν −
qµqν

M2
W

)
q2 − M2

W
·

ū(3)
(
−iḡ√

2
U2aγνPL −

iḡυ2
√

2
Ug1aCφl(3)∗

2g1
γνPL

)
υ(2).

(B.8)

Therefore we found the amplitude to be independent of ξW . In practise q2 is much
smaller than M2

W therefore we can safely write in the limit: q2 << M2
W , that:

−i
(

ηµν −
qµqν

M2
W

)
q2 − M2

W
→

igµν

M2
W

. (B.9)
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adding the contribution of the 4-vertex we have the total amplitude of the process:

iMtot =iM(1) + iM2 + iM(3) =

iqµ fπ

M2
W

(
ḡ2

2
V12U2a +

ḡ2υ2

2
V1g1Ug1aCφl(3)∗

2g1
+

ḡ2υ2

2
V1g1U2aCφq(3)

g12 − ḡ2υ2

4
U2αCφud∗

12

)
·

[ū(3)γµPLυ(2)]−

− 2iqµ fπV1g1Ug2aClq(3)
g222g1

[ū(3)γµPLυ(2)]−
iq2 fπ

mu + ms
V1g1Ug2aCledq∗

g222g1
[ū(3)PLυ(2)]−

+
iq2

mu + ms
Ug1aClequ(1)∗

g1221 [ū(3)PLυ(2)]−

iq2 fπ

4(q · p2)(mu + ms)
Ug1aClequ(3)∗

g1221 (qµ pν
2 − qν pµ

2 ) · [ū(3)[γµ, γν]PLυ(2)],

(B.10)

where we used: MW = ḡυ
2 and the relation:

〈0| ūσµνγ5s |P+(q)〉 = −i
2

· q2 fπ(qµ pν
2 − qν pµ

2 )

(q · p2)(mu + ms)
. (B.11)

This result arises as follows: Let A(q2) be a scalar quantity for which:

〈0| ūγµγνγ5s |P+(q)〉 = A(q2)qµ pν
2. (B.12)

This is the only possible choice in order for equation B.11 not to be zeroed. Using the
identities:

q = p1 + p4, ū��p1 = ūmu, ��p4s = mss, (B.13)

where p1, p4 are the 4-momentum of up quark and s quark, respectively, we found that:

A(q2) =
−q2 fπ

(q · p2)(mu + ms)
, (B.14)

from which equation B.11 follows.
Once we found the amplitude we can proceed to calculate the decay rate by working

at the C.M.(center of mass) as follows:

Γ =
|p2|

8πm2
K
< |Mtot|2 > , (B.15)

where: |p2| =
m2

K−m2
µ

2mK
and < |Mtot|2 >= 1

4 ∑spins |Mtot|2. Using the following equations
for the 4-momentum:

q = p2 + p3, q · p2 = p2 · p3, q · p3 = m2
µ− + p2 · p3, (B.16)

we find the decay rate to be:
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Γ(K− → µ−νa) =
f 2
Km2

µmK

16πυ̃4

(
1 −

m2
µ

m2
K

)2

∑
a
|U2νa |2|K12|2

(1 +
4δυ̃

υ
+ 2Re(−1 − υ2

2V∗
12
(− 2

υ2 V∗
12 + 2V∗

1g1 ∑
a

U∗
g2aU2a

∑a |U2νa |2
Clq(3)

g222g1
−

2V∗
12 ∑

a

U∗
g1aU2aCφl(3)

g12

∑a |U2νa |2
−

2V1g1 Cφq(3)∗
g12

∑a |U2νa |2
+ Cφud∗

12 ))+

2m2
K

(mu + ms)mµ
Re(

υ2

2V∗
13 ∑a |U2νa |2

(∑
a

U∗
g1aU2aClequ(1)

g1221 −

V∗
1g1 ∑

a
U∗

g1aU2aCledq
g222g1

− ∑
a

U∗
g1aU2aClequ(3)

g1221 )))

(B.17)

The corresponding decay rate for the case where: l− = π− is a completely propotional
expression, with the substitution: 2 → 1 in the Wilson Coefficients.



55

Appendix C

Mass Differences

If we consider the mass differences of neutral Bq mesons (q = {d, s}) in SMEFT, there
are the following Feynman diagrams that contribute (in tree-level) to the transition:

d̄

d

s s̄

(a)

g

s

d̄ s̄

d (b)

Z0

s

d̄ s̄

d (c)

G0

s

d̄ s̄

d (d)

(C.1)

The diagram (c) vanishes due to the GIM (or Glashow-Iliopoulos-Maiani) mecha-
nism, as described in ref. [32]. The diagrams (d) and (b) do not contribute to the process.
For example, if we consider the amplitude of diagram (d):

iMd =id̄(p1)

(
1
υ

δsdmdγ5 − υ

4
δsdCφDmdγ5 − υ��qPLCφq(1)

ds

)
s(p2)

× 1
q2 − ξW M2

W
s̄(p3)

(
1
υ

δsdmsγ
5 − υ

4
δsdCφDmsγ

5 − υ��qPLCφq(1)
sd

)
d(p4).

(C.2)

The δsd stands for delta kronecker, therefore is zero. It is straightforward to see that the
amplitude is of the order iMd ∼ O( 1

Λ4 ) and it can be dropped . Same result holds for
diagrams (b) therefore:

iMd = iMb = iMc = 0 . (C.3)

The diagram (a) gives the contribution:
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iMb =− 2iCqq(1)
dbdb [d̄(p1)(γ

µPL)b(p2)][d̄(p3)(γµPL)b(p4)]−

2iCqq(3)
dbdb [d̄(p1)γ

µPLb(p2)][d̄(p3)γµPLb(p4)]−
2iCdd

dbdb[d̄(p1)(γ
µPR)b(p2)][d̄(p3))γµPRb(p4)]−

2iCqd(1)
dbdb [d̄(p1)(γ

µPL)b(p2)][d̄(p3)(γµPL)b(p4)]+

4i
3

Cqd(8)
dbdb [d̄(p1)(γ

µPL)b(p2)][d̄(p3)(γµPR)b(p4)]

(C.4)
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Matching the LEFT to the SMEFT

The terms in the LEFT Lagrangian that contribute to semileptonic charged-current tran-
sitions at the EW scale are:

L =[LVLL
vedu(µEW)]iixk(ν̄L,iγ

µeL,i)(d̄L,xγµuL,k)+

[LSRR
vedu(µEW)]iixk(ν̄L,iγ

µeR,x)(d̄L,iγ
µuR,j) + [LVLR

vedu(µEW)]iixk(ν̄L,iγ
µeL,i)(d̄R,xγµuR,k)+

[LTRR
vedu(µEW)]iixk(ν̄L,iγ

µTaeR,x)(d̄L,iγ
µTauR,k) + [LSRL

vedu(µEW)]iixk(ν̄L,ieR,i)(d̄R,xuL,k)

(D.1)

We consider the matching conditions for the LEFT operators with the SMEFT operators
in the Mass basis as follows:

[LVLL
vedu(µEW)]iaxk = − 2

υ2 V∗
kxUia + 2V∗

kg1
U∗

g2aClq(3)
g2ixg1

− 2V∗
kxU∗

g1aCφl(3)
g1i − 2Vkg1 Cφq(3)∗

g1x ,

[LSRR
vedu(µEW)]iaxk = U∗

g1aClequ(1)
g1ixk , [LVLR

vedu(µEW)]iaxk = −Cφud∗
kx

[LTRR
vedu ]iaxk = U∗

g1aClequ(3)
g1ixk , [LSRL

vedu]iaxk = V∗
1g1

U∗
g2aCledq

g2ixg1
.

(D.2)

These matching conditions refer to the coefficients of the LEFT and SMEFT operators, in
the mass basis. We denote: x = {d, s, b}, i = {e, µ, τ}, a = {νe, νµ, ντ}, and k = {u, c}.

We continue with the matching conditions for the LEFT operators of B̄q − Bq mixing.
The tree-level matching conditions to the SMEFT are the following:

[LVLL
dd (µEW)]dbdb = [LVLL

dd ]SM
dbdb + Cqq(1)

dbdb + Cqq(3)
dbdb ,

[LVRR
dd (µEW)] = Cdd

dbdb, [LV1LR
dd (µEW)]dbdb = Cqd(1)

dbdb ,

[LV8LR
dd (µEW)] = Cqd(8)

dbdb ,

[LS1RR
dd (µEW)]dbdb = [LS1RR

dd (µEW)]bdbd = [LS8RR
dd (µEW)]dbdb = [LS8RR

dd (µEW)]dbdb = 0.
(D.3)

The same relation holds for Bs− Bs, with the replacement of d with s. The term
[
LVLL

dd (µEW)
]SM

dbdb
corresponds to the contribution at one-loop level in the SM-limit. This term is equal to:

C(q)
1,SM = [LVLL

dd (µEW)]SM
dbdb =

−M2
w

32π2υ4

(
VtqV∗

tb
)2 S1(µEW), (D.4)

where the function S1(µEW) ≈ 2.3124, and contains the NLO(two loop) QCD corrections
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to the SM matching [12] at an energy scale µEW = MZ. We note that we keep terms up to
order O(Λ−2), therefore the latter LEFT operators of equation D.3 can be dropped. Our
choice of basis in order to calculate the Mass-Differences is the SUSY basis for ∆F = 2.
This basis consists of the following operators:

Q1 = (d̄α
Lγµbα

L)(d̄
β
Lγµbβ

L),

Q2 = (d̄α
Rbα

L)(d̄
β
Rbβ

L),

Q3 = (d̄α
Rbβ

L)(d̄
β
Rbα

L),

Q4 = (d̄α
Rbα

L)(d̄
β
Lbβ

R)

Q5 = (d̄α
Rbβ

L)(d̄
β
Lbα

R).

(D.5)

Additionally, we have the Q̃1,2,3 operators, which are derived from the Q1,2,3 operators
by substituting L with R and R with L. We notice that α, β are colour indices. We notice
that the parity-even parts of the operators Qi and Q̃i are identical. Therefore due to
parity conservation, for the study of B̄q − Bq we will consider only the hadronic matrix
elements: 〈B̄q| Qi |Bq〉, where i = {1, 2, 3, 4, 5}. The matrix elements are defined from
the relations:

〈B̄q| Q1 |Bq〉 = C1Bq
1(µEW)m2

Bq
f 2
Bq

〈B̄q| Qi |Bq〉 = CiB
(q)
i (µEW)

(
m2

Bq
fBq

mb + mq

)2

, i = {2, 3, 4, 5},
(D.6)

where Ci = {8/3,−5/3, 1/3, 2, 2/3} and B(q)
i are the bag-parameters. The relation be-

tween the LEFT operators and operators in SUSY basis, in ref.[24], are given from the
following conditions:

[OVLL
dd ]dbdb = Q1 [OV1LR

dd ]dbdb = −2Q5

[OS1RR
dd ]dbdb = Q̃2 [OS8RR

dd ] = − Q̃2

2Nc
+

Q̃3

2

[OVRR
dd ] = Q̃1 [OV8LR

dd ]dbdb = −Q4 +
Q5

Nc

[OS1RR
dd ]†bdbd = Q2 [OS8RR

dd ]†bdbd =
−Q2

2Nc
+

Q3

2
,

(D.7)

where we used Fierz’s identities and the relation:

TA
αγTA

δκ =
δακδγδ

2
− δαγδδκ

2Nc
(D.8)

for the Gellman matrices.
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Appendix E

Corrections in terms of SMEFT’s
Wilson Coefficients

In the following work, we will expand the quantities in Equation 3.28 in terms of 6-
dimensional Wilson coefficients, as follows:

ε
µud∗
A =

υ2

2V∗
11
(2V∗

1g1 ∑
a

U∗
g2aU2aClq(3)

g221g1
− 2V∗

11 ∑
a

U∗
g1aU2aCφl(3)

g12 − 2V∗
1g1

Cφq(3)∗
g11 + Cφud∗

11 ) =

υ2

2V∗
11
(2V∗

1g1 ∑
a

U∗
2aU2aClq(3)

221g1
− 2V∗

11 ∑
a

U∗
2aU2aCφl(3)

22 − 2V∗
1g1

Cφq(3)∗
g11 + Cφud∗

11 )+

υ2

2V∗
11
(2V∗

1g1 ∑
a,g2 6=2

U∗
g2aU2aClq(3)

g221g1
− 2V∗

11 ∑
a,g1 6=2

U∗
g1aU2aCφl(3)

g12 ) =

υ2

2V∗
11
(2V∗

1g1
Clq(3)

221g1
− 2V∗

11Cφl(3)
22 − 2V∗

1g1
Cφq(3)∗

g11 + Cφud∗
11 )+

υ2

2V∗
11
(2V∗

1g1 ∑
a,g2 6=2

U∗
g2aU2aClq(3)

g221g1
− 2V∗

11 ∑
a,g1 6=2

U∗
g1aU2aCφl(3)

g12 ),

(E.1)

where we used that ∑a U∗
2aU2a ≈ 1(for simplicity, we will ignore the multiplication

factors from the three-loop plus one-loop QED running at the moment, although they
are needed to calculate the CKM corrections). Similarly, for ε

µud
P :

ε
µud∗
P =

υ2

2V∗
11
(Clequ(1)

2211 − V∗
1g1

Cledq
221g1

− Clequ(3)
2211 )+

υ2

2V∗
11
( ∑

a,g1 6=2
U2aU∗

g1aClequ(1)
g1211 − ∑

a,g2 6=2
U∗

g2aU2aV∗
1g1

Cledq
g221g1

− ∑
a,g1 6=2

U∗
g1aU2aClequ(3)

g1211 ).

(E.2)

Similar relations hold for the set of parameters {ε
µus
A , ε

µus
P , ετub

A , ετub
P }. Continuing, we

can write the corrections ∆K/π, ∆Bτ2 as:

∆K/π =F (V) + G (U, V) ,
∆Bτ2 =H (V) + K (U, V) .

(E.3)
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Here, F and H are independent of the U matrix, while G and K depend on the U matrix.
The analytical expressions for F, G, H, and K are as follows:

F (V) =2Re(
υ2

2V∗
12
(2V∗

1g1
Clq(3)

222g1
− 2V∗

12Cφl(3)
22 − 2V∗

1g1
Cφq(3)∗

g12 +

Cφud∗
12 )− υ2

2V∗
11
(2V∗

1g1
Clq(3)

221g1
− 2V∗

11Cφl(3)
22 − 2V∗

1g1
Cφq(3)∗

g11 + Cφud∗
11 )

− 2
mµ

(
m2

K
(mu + ms)

Re(
υ2

2V∗
12
(Clequ(1)

2221 −

V∗
1g1

Cledq
222g1

− Clequ(3)
2221 )− m2

π

(mu + md)
Re(

υ2

2V∗
11
(Clequ(1)

2211 − V∗
1g1

Cledq
221g1

− Clequ(3)
2211 ))),

G(U, V) =2Re(
υ2

2V∗
12
(2V∗

1g1 ∑
a,g2 6=2

U∗
g2aU2aClq(3)

g222g1
− 2V∗

12 ∑
a,g1 6=2

U∗
g1aU2aCφl(3)
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υ2

2V∗
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(2V∗

1g1 ∑
a,g2 6=2

U∗
g2aU2aClq(3)

g221g1
− 2V∗

11 ∑
a,g1 6=2

U∗
g1aU2aCφl(3)

g12 ))−

2
mµ

(
m2

K
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Re(
υ2

2V∗
12
( ∑

a,g1 6=2
U2aU∗

g1aClequ(1)
g1221 − ∑
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U∗
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g222g1

−
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U∗
g1aU2aClequ(3)
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( ∑
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g221g1
− ∑
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H(V) =2Re(
υ2

2V∗
13
(2V∗

1g1
Clq(3)

333g1
− 2V∗

13Cφl(3)
33 − 2V∗

1g1
Cφq(3)∗

g12 +

Cφud∗
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B

(mτ(mu + mb))
Re(

υ2

2V∗
13
(Clequ(1)

3331 − V∗
1g1

Cledq
333g1

− Clequ(3)
3331 )),

K(U, V) =2Re(
υ2

2V∗
13
(2V∗

1g1 ∑
a,g2 6=3

U∗
g2aU3aClq(3)

g233g1
− 2V∗

11 ∑
a,g1 6=3

U∗
g1aU3aCφl(3)

g13 ))−

2m2
B

(mu + mb)mτ
Re(

υ2

2V∗
13
( ∑

a,g1 6=3
U3aU∗

g1aClequ(1)
g1331 −

∑
a,g2 6=3

U∗
g2aU3aV∗

1g1
Cledq

g233g1
− ∑

a,g1 6=3
U∗

g1aU3aClequ(3)
g1331 )).

(E.4)

We can see that F(V) and H(V) correspond to the contribution, in the corrections of
CKM, when we set Uij = δij, while K(U, V) and G(U, V) correspond to the contribution
when the PMNS matrix is non-diagonal.
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Appendix F

Numerical Results

F.1 Corrections of CKM with Uij = δij

δVcb =6.263813592Re(Clq(3)
2221 ) + 0.326538864Re(Clq(3)

2212 ) + Re(Clq(3)
2213 (0.0027385 − 0.0055059i))−

1.4116721472Re(Cφq(3)∗
11 )− 0.326538864Re(Cφq(3)∗

21 )− Re(Cφq(3)∗
31 (0.0027385 − 0.0055059i))−

1.4116721472 ∗ Re(Cφl(3)
21 ) + 0.7210960848Re(Cφud∗

11 )− 127.2509149824Re(Clequ(1)
2221 )+

123.978017448Re(Cledq
2221) + 28.6785323712Re(Cledq

2222) + 1.4116721472Re(Clq(3)
2222 )+

Re(Cledq
2223(0.2405038 + 0.4835451i)) + 1.7653283856Re(Clequ(3)

2222 ) + 31.373106624Re(Clequ(1)
2211 )−

30.5661946032Re(Cledq
2211)− 7.0705525968Re(Cledq

2212)−

Re(Cledq
2213(0.0592868 − 0.119208i))− 0.7529540976Re(Clequ(3)

2212 )+

Re(Clq(3)
2223 (0.0126417 − 0.0237955i))− 6.1027010928Re(Cφq(3)∗

12 )−

1.4116721472Re(Cφq(3)∗
22 )− Re(Cφq(3)∗

32 (0.0118343 − 0.0237955i))−

1.4116721472Re(Cφl(3)
22 ) + 3.1173215472Re(Cφud∗

12 ) + 1.4489397936Re(Clq(3)
2211 )−

0.0002031Re(Clq(3)
3331 (−12511840 + 25156081i))+

0.0002031Re(Cledq
3331(33699787 − 67756187i))+

0.0002031Re(Cledq
3332(7795419 − 15673329i)) + 66.9506964Re(Cledq

3333)+

0.0002031Re(Clequ(3)
3331 (3458942 − 69544881i))+

0.0002031Re(Clq(3)
3332 (2894233 − 5819093i))+

24.8570028Re(Clq(3)
3333 )− 0.0002031Re(Cφq(3)∗

13 ∗ (12511840 − 25156081i))−

0.0002031Re(Cφq(3)∗
23 (2894233 − 5819093i))−

24.8570028Re(Cφq(3)∗
33 )− 24.8570028Re(Cφl(3)

33 )+

0.0002031Re(Cφud∗
13 (6391172 − 12849975i))−

0.0002031Re(Clequ(1)
3331 (34589427 − 69544881i))+

0.0008482Re(Cqd(1)
1313 (1528461088022 + 1934061094379i))+

0.0008482Re(Cqd(8)
1313 (1622594546434+

2053174273656i)) + 0.020418Re(Cqd(1)
2323 (104200229183 − 4179756811i))+

0.020418Re(Cqd(8)
2323 (104618244701 − 4196524559i))+

0.0008482Re((−574033456415 − 726361818188i)(Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313))+

0.020418Re((−38870709427 + 1559210702i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323)) + 1276.45

δυ̃

υ
,

(F.1)
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δVtd =(0.0038505 − 0.0018187i)Re[Cqd(1)
1313 (1528461088022 + 1934061094379i)+

Cqd(8)
1313 (1622594546434 + 2053174273656i)+

(−574033456415 − 726361818188i)(Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313)]+

(0.000903 + 0.00184i)Re[(Cqd(1)
2323 (104200229183 − 4179756811i)+

Cqd(8)
2323 (104618244701 − 4196524559i)+

(−38870709427 + 1559210702i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323)]−

(0.000927 + 0.001877i)Re[Clq(3)
3331 (−12511840 + 25156081i)−

Cledq
3331(33699787 − 67756187i)− Cledq

3332(7795419 − 15673329i)−

329644Cledq
3333 − Clequ(3)

3331 (3458942 − 69544881i)−

Clq(3)
3332 (2894233 − 5819093i)− 122388Clq(3)

3333 +

Cφq(3)∗
13 (12511840 − 25156081i) + Cφq(3)∗

23 (2894233 − 5819093i)+

122388 ∗ Cφq(3)∗
33 + 122388Cφl(3)

33 −

Cφud∗
13 (6391172 − 12849975i) + Clequ(1)

3331 (34589427 − 69544881i)]+

(0.0009183 + 0.001888i)Re[543055Clq(3)
2221 + 28310Clq(3)

2212 +

Clq(3)
2213 (237.42 − 477.35i)−

122388Cφq(3)∗
11 − 28310Cφq(3)∗

21 − Cφq(3)∗
31 (237.42 − 477.35i)−

122388Cφl(3)
21 +

62517Cφud∗
11 − 11032296Clequ(1)

2221 +

10748545Cledq
2221 + 2486348Cledq

2222 + 122388Clq(3)
2222 +

Cledq
2223(20851 + 41922i) + 153049Clequ(3)

2222 +

2719960Clequ(1)
2211 − 2650003Cledq

2211 − 612997Cledq
2212−

Cledq
2213(5140 − 10335i)− 65279Clequ(3)

2212 +

Clq(3)
2223 (1096 − 2063i)− 529087Cφq(3)∗

12 − 122388 ∗ Cφq(3)∗
22 −

Cφq(3)∗
32 (1026 − 2063i)− 122388Cφl(3)

22 + 270263Cφud∗
12 + 125619Clq(3)

2211 ]+

(231.94 − 112.52i)
δυ̃

υ
,

(F.2)
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δVtb =− 0.263428494022234Re(Clq(3)
2221 )− 0.0137327907224304Re(Clq(3)

2212 )−

0.0593687315767154Re(Cφq(3)∗
11 ) + 0.0137327907224304Re(Cφq(3)∗

21 )+

0.0593687315767154Re(Cφl(3)
21 )− 0.0303261348496708Re(Cφud∗

11 )+

5.35161469996136Re(Clequ(1)
2221 )− 5.21397100161164Re(Cledq

2221)−

1.20609313836571Re(Cledq
2222)− 0.0593687315767154Re(Clq(3)

2222 )−

0.0742419599885994Re(Clequ(3)
2222 )− 1.31941509902444Re(Clequ(1)

2211 )+

1.28547992274153Re(Cledq
2211) + 0.297356394011927Re(Cledq

2212)+

0.0316659429731379Re(Clequ(3)
2212 )+

0.256652809783064Re(Cφq(3)∗
12 ) + 0.0593687315767154Re(Cφq(3)∗

22 )+

0.0593687315767154Re(Cφl(3)
22 )− 0.131100855493331Re(Cφud∗

12 )−

0.0609360451346162Re(Clq(3)
2211 )+

Re(Clq(3)
3331 (−106.9044858 + 214.9402409i))−

Re(Cledq
3331(287.9399353 − 578.9268669i))−

Re(Cledq
3332(66.6061315 − 133.9170879i))−

2.81656593400983Re(Cledq
3333)− Re(Clequ(3)

3331 ∗ (29.5541196 − 594.2099438i))−

Re(Clq(3)
3332 (24.7290959 − 49.7198769i))− 1.04571559479801Re(Clq(3)

3333 )+

Re(Cφq(3)∗
13 (106.9044858 − 214.9402409i))+

Re(Cφq(3)∗
23 (24.7290959 − 49.7198769i))+

1.04571559479801Re(Cφq(3)∗
33 ) + 1.04571559479801Re(Cφl(3)

33 )−
Re((54.6078719 − 109.7936011i))+

Re(Clequ(1)
3331 (295.5412559 − 594.2099438i))−

3.56723094444038 × 10−5Re[Cqd(1)
1313 (1528461088022 + 1934061094379i)−

Cqd(8)
1313 (1622594546434 + 2053174273656i)]−

0.000858698706386247 ∗ Re[Cqd(1)
2323 ∗ (104200229183 − 4179756811i)−

Cqd(8)
2323 (104618244701 − 4196524559i)]−

Re[(−20477099.088677 − 25911003.547002i)(Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313)]−

Re[(−33378227.901281 + 1338892.212791i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323)]−

53.66
δυ̃

υ
,

(F.3)
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δVcs =− Re[13428.3842775327Clq(3)
2221 − 700.035095702922Clq(3)

2212 −

0.0247274848358503Clq(3)
2213 (237.42 − 477.35i)) + 3026.34741409005Cφq(3)∗

11 +

700.035095702922Cφq(3)∗
21 + 0.0247274848358503Cφq(3)∗

31 (237.42 − 477.35i)+

3026.34741409005Cφl(3)
21 − 1545.88816948285Cφud∗

11 +

272800.932044612Clequ(1)
2221 − 265784.483494955Cledq

2221−

61481.1324666467Cledq
2222 − 3026.34741409005Clq(3)

2222 −

0.0247274848358503Cledq
2223(20851 + 41922i)− 3784.51682664205Clequ(3)

2222 −

67257.7696541194Clequ(1)
2211 + 65527.9089974578Cledq

2211+

15157.8740219217Cledq
2212 + 0.0247274848358503Cledq

2213(5140 − 10335i)+

1614.18548259947Clequ(3)
2212 − 0.0247274848358503Clq(3)

2223 (1096 − 2063i)+

13082.9907693455Cφq(3)∗
12 + 3026.34741409005Cφq(3)∗

22 +

0.0247274848358503Cφq(3)∗
32 (1026 − 2063i) + 3026.34741409005Cφl(3)

22 −

6682.92423419141Cφud∗
12 − 3106.24191759468Clq(3)

2211 +

8.54426573518653 × 10−6Clq(3)
3331 (−12511840 + 25156081i)−

8.54426573518653 × 10−6Cledq
3331(33699787 − 67756187i)−

8.54426573518653 × 10−6Cledq
3332(7795419 − 15673329i)−

2.81656593400983Cledq
3333−

8.54426573518653 × 10−6Clequ(3)
3331 (3458942 − 69544881 ∗ I)−

8.54426573518653 × 10−6Clq(3)
3332 (2894233 − 5819093i)−

1.04571559479801Clq(3)
3333 +

8.54426573518653 × 10−6Cφq(3)∗
13 (12511840 − 25156081i)+

8.54426573518653 × 10−6Cφq(3)∗
23 (2894233 − 5819093i)+

1.04571559479801Cφq(3)∗
33 + 1.04571559479801Cφl(3)

22 −

8.54426573518653 × 10−6Cφud∗
13 (6391172 − 12849975i)+

8.54426573518653 × 10−6Clequ(1)
3331 (34589427 − 69544881i)−

3.56723094444038 × 10−5Cqd(1)
1313 (1528461088022 + 1934061094379i)−

3.56723094444038 × 10−5Cqd(8)
1313 (1622594546434 + 2053174273656i)−

0.000858698706386247Cqd(1)
2323 (104200229183 − 4179756811i)−

0.000858698706386247Cqd(8)
2323 (104618244701 − 4196524559i)−

3.56723094444038 × 10−5(−574033456415 − 726361818188i)(Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313)−

0.000858698706386247(−38870709427 + 1559210702i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323)] + 53.7

δυ̃

υ
,

(F.4)
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δVus = Re[58106.885Clq(3)
2221 + 3029.17Clq(3)

2212 +

0.107 ∗ Clq(3)
2213 (237.42 − 477.35 ∗ I)− 13095.516 ∗ Cφq(3)∗

11 −

3029.17 ∗ Cφq(3)∗
21 − 0.107Cφq(3)∗

31 (237.42 − 477.35i)−

13095.516Cφl(3)
21 + 6689.319Cφud∗

11 −

1180455.672Clequ(1)
2221 + 1150094.315Cledq

2221+

266039.236Cledq
2222 + 13095.516Clq(3)

2222 +

0.107Cledq
2223(20851 + 41922 ∗ I) + 16376.243Clequ(3)

2222 +

291035.72Clequ(1)
2211 − 283550.321 ∗ Cledq

2211−

65590.679Cledq
2212 − 0.107Cledq

2213(5140 − 10335i)−

6984.853Clequ(3)
2212 + 0.107Clq(3)

2223 (1096 − 2063i)−

56612.309Cφq(3)
12 − 13095.516Cφq(3)

22 −

0.107 ∗ Cφq(3)∗
32 ∗ (1026 − 2063i)− 13095.516Cφl(3)

22 +

28918.141Cφud∗
12 + 13441.233Clq(3)

2211 ],

(F.5)

δVud =Re[−13359.153Clq(3)
2221 − 696.426Clq(3)

2212 −

0.0246Clq(3)
2213 (237.42 − 477.35i) + 3010.7448Cφq(3)∗

11 +

696.426Cφq(3)∗
21 + 0.0246Cφq(3)∗

31 (237.42 − 477.35i)+

3010.7448Cφl(3)
21 − 1537.9182Cφud∗

11 + 271394.4816Clequ(1)
2221 −

264414.207Cledq
2221 − 61164.1608A19 − 3010.7448Clq(3)

2222 −

0.0246Cledq
2223(20851 + 41922i)− 3765.0054Clequ(3)

2222 −

66911.016Clequ(1)
2211 + 65190.0738Cledq

2211 + 15079.7262Cledq
2212+

0.123Cledq
2213(1028 − 2067i) + 1605.8634Clequ(3)

2212 −

0.0246Clq(3)
2223 (1096 − 2063i) + 13015.5402Cφq(3)∗

12 +

3010.7448Cφq(3)∗
22 + 0.0246Cφq(3)∗

32 (1026 − 2063i)+

3010.7448Cφl(3)
22 − 6648.4698Cφud∗

12 − 3090.2274Clq(3)
2211 ],

(F.6)
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δVub =− (0.003752 + 0.001864i)Re[(Cqd(1)
1313 (1528461088022 + 1934061094379i)+

Cqd(8)
1313 (1622594546434 + 2053174273656i)+

(−574033456415 − 726361818188i)(Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313))]+

(0.003792 + 0.001887i)Re[(Cqd(1)
2323 (104200229183 − 4179756811i)+

Cqd(8)
2323 (104618244701 − 4196524559i)+

(−38870709427 + 1559210702i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323))]+

(0.0009044 − 0.0019253i)Re[(Clq(3)
3331 (−12511840 + 25156081i)−

Cledq
3331(33699787 − 67756187i)− Cledq

3332(7795419 − 15673329i)−

329644Cledq
3333 − Clequ(3)

3331 (3458942 − 69544881i)−

Clq(3)
3332 (2894233 − 5819093i)− 122388Clq(3)

3333 +

Cφq(3)∗
13 (12511840 − 25156081i) + Cφq(3)∗

23 (2894233 − 5819093i)+

122388 ∗ Cφq(3)∗
33 + 122388 ∗ Cφl(3)

33 − Cφud∗
13 (6391172 − 12849975i)+

Clequ(1)
3331 (34589427 − 69544881i))]+

(0.003719 + 0.001847i)(543055Clq(3)
2221 + 28310Clq(3)

2212 +

Clq(3)
2213 (237.42 − 477.35i)− 122388Cφq(3)∗

11 −

28310Cφq(3)∗
21 − Cφq(3)∗

31 (237.42 − 477.35i)−

122388Cφl(3)
21 + 62517Cφud∗

11 − 11032296Clequ(1)
2221 +

10748545Cledq
2221 + 2486348Cledq

2222 + 122388Clq(3)
2222 +

Cledq
2223(20851 + 41922i) + 153049Clequ(3)

2222 + 2719960 ∗ Clequ(1)
2211 −

2650003Cledq
2211 − 612997Cledq

2212 − Cledq
2213(5140 − 10335i)−

65279Clequ(3)
2212 + Clq(3)

2223 (1096 − 2063i)−

529087Cφq(3)∗
12 − 122388Cφq(3)∗

22 − Cφq(3)∗
32 (1026 − 2063i)−

122388Cφl(3)
22 + 270263Cφud∗

12 + 125619Clq(3)
2211 )+

(57.25 − 115.32i)
δυ̃

υ
,

(F.7)
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δVts =(−0.0206874 + 0.0004114i)Re[(Cqd(1)
1313 (1528461088022 + 1934061094379i)+

Cqd(8)
1313 ∗ (1622594546434 + 2053174273656 ∗ I)+

(−574033456415 − 726361818188 ∗ I) ∗ (Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313))]+

(3.029039 · 10−6 − 0.0004055i) ∗ Re[(Cqd(1)
2323 (104200229183 − 4179756811i)+

Cqd(8)
2323 (104618244701 − 4196524559i)+

(−38870709427 + 1559210702i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323))]−

(3.6455162 · 10−6 + 0.0004232i)Re[(Clq(3)
3331 ∗ (−12511840 + 25156081i)−

Cledq
3331(33699787 − 67756187i)− Cledq

3332(7795419 − 15673329i)−

329644Cledq
3333 − Clequ(3)

3331 (3458942 − 69544881i)−

Clq(3)
3332 (2894233 − 5819093i)− 122388Clq(3)

3333 +

Cφq(3)∗
13 (12511840 − 25156081i) + Cφq(3)∗

23 (2894233 − 5819093i)+

122388 ∗ Cφq(3)∗
33 + 122388Cφl(3)

33 − Cφud∗
13 (6391172 − 12849975i)+

Clequ(1)
3331 (34589427 − 69544881i))]+

(−1.610031 · 10−6 + 2.695471 · 10−5i)Re[(543055Clq(3)
2221 + 28310Clq(3)

2212 +

Clq(3)
2213 (237.42 − 477.35i)− 122388Cφq(3)∗

11 − 28310Cφq(3)∗
21 −

Cφq(3)∗
31 (237.42 − 477.35i)− 122388Cφl(3)

21 +

62517Cφud∗
11 − 11032296Clequ(1)

2221 + 10748545Cledq
2221+

2486348Cledq
2222 + 122388Clq(3)

2222 + Cledq
2223(20851 + 41922i)+

153049Clequ(3)
2222 + 2719960Clequ(1)

2211 − 2650003Cledq
2211−

612997Cledq
2212 − Cledq

2213(5140 − 10335i)−

65279Clequ(3)
2212 + Clq(3)

2223 (1096 − 2063i)− 529087Cφq(3)∗
12 −

122388Cφq(3)∗
22 − Cφq(3)∗

32 (1026 − 2063i)−

122388Cφl(3)
22 + 270263Cφud∗

12 + 125619Clq(3)
2211 )]

(F.8)
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δVcd =(0.0001603 − 7.9629 × 10−5i)Re[(Cqd(1)
1313 (1528461088022 + 1934061094379i)+

Cqd(8)
1313 ∗ (1622594546434 + 2053174273656 ∗ I)+

(−574033456415 − 726361818188 ∗ I) ∗ (Cqq(1)
1313 + Cqq(3)

1313 + Cdd
1313))]+

(4.5059 × 10−7 + 1.7272 × 10−6 ∗ I) ∗ Re[(Cqd(1)
2323 (104200229183 − 4179756811i)+

Cqd(8)
2323 (104618244701 − 4196524559i)+

(−38870709427 + 1559210702i)(Cqq(1)
2323 + Cqq(3)

2323 + Cdd
2323))]−

(3.8647 × 10−5 + 7.8214 × 10−5i)Re[(Clq(3)
3331 ∗ (−12511840 + 25156081i)−

Cledq
3331(33699787 − 67756187i)− Cledq

3332(7795419 − 15673329i)−

329644Cledq
3333 − Clequ(3)

3331 (3458942 − 69544881i)−

Clq(3)
3332 (2894233 − 5819093i)− 122388Clq(3)

3333 +

Cφq(3)∗
13 (12511840 − 25156081i) + Cφq(3)∗

23 (2894233 − 5819093i)+

122388 ∗ Cφq(3)∗
33 + 122388Cφl(3)

33 − Cφud∗
13 (6391172 − 12849975i)+

Clequ(1)
3331 (34589427 − 69544881i))]+

(−0.10705 + 7.9381 × 10−5i)Re[(543055Clq(3)
2221 + 28310Clq(3)

2212 +

Clq(3)
2213 (237.42 − 477.35i)− 122388Cφq(3)∗

11 − 28310Cφq(3)∗
21 −

Cφq(3)∗
31 (237.42 − 477.35i)− 122388Cφl(3)

21 +

62517Cφud∗
11 − 11032296Clequ(1)

2221 + 10748545Cledq
2221+

2486348Cledq
2222 + 122388Clq(3)

2222 + Cledq
2223(20851 + 41922i)+

153049Clequ(3)
2222 + 2719960Clequ(1)

2211 − 2650003Cledq
2211−

612997Cledq
2212 − Cledq

2213(5140 − 10335i)−

65279Clequ(3)
2212 + Clq(3)

2223 (1096 − 2063i)− 529087Cφq(3)∗
12 −

122388Cφq(3)∗
22 − Cφq(3)∗

32 (1026 − 2063i)−

122388Cφl(3)
22 + 270263Cφud∗

12 + 125619Clq(3)
2211 )]+

(0.082 − 3.34i)
δυ̃

υ
,

(F.9)

where:
δυ̃

υ
= −Cll

2112 + Cφl(3)
22 . (F.10)

F.2 Corrections of CKM with Uij = UPMNS

In the case of non-diagonal PMNS matrix the corrections can be written as:

δṼij = δVij + δUij, (F.11)

where the corrections δUij are as follows:
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δUud =Re(−2482.46219446478Clq(3)
1211 + 2948.80599164299Clq(3)

3221 +

0.0247269997496362Clq(3)
3223 (999 + 2008.9i)+

58940.1000123245Clequ(1)
1211 + 70020.5405971337Clequ(1)

3211 − 57424.7453958676Cledq
1211−

13278.3939201547Cledq
1212 − 0.0247269997496362Cledq

1213(4504.1 + 9008.4i)−

68217.0348344945Cledq
3211 − 15778.8722066371Cledq

3212−

0.0247269997496362Cledq
3213(5346.7 + 10751.6i)− 574.022462987955Clq(3)

1212 −

817.67737312092Clequ(3)
1211 − 971.382876264633Clequ(3)

3211 −

228806.327001709Clequ(3)
1221 − 271817.340756617Clequ(1)

3221 + 222920.902956599Cledq
1221+

51546.2745830879Cledq
1222+

0.0247269997496362Cledq
1223(17484.6 + 34269.2i) + 264816.194919605Cledq

3221+

61253.0413146057Cledq
3222 + 0.0247269997496362Cledq

3223(20755.9 + 41737.4i)−

0.0247269997496362Clq(3)
1213 (194.7 + 38.9i) + 3174.19259436092Clequ(3)

2221 +

3770.87735261942Clequ(3)
3221 − 2949.01369844089Clq(3)

3211 − 682.116542393489Clq(3)
3212 −

0.0247269997496362Clq(3)
3213 (231.1 + 464.7i) + 10731.7429070398Clq(3)

1221 +

0.0247269997496362Clq(3)
1223 (841.6 + 168.1i) + 12748.6575137183Clq(3)

1223 +

4965.217290Cφl(3)
12 + 5786.8966307Cφl(3)

32 )

(F.12)

δUus =Re(10742.2436Clq(3)
1211 − 12760.2315Clq(3)

3221 − 0.107Clq(3)
3223 (999 + 2008.9i)−

255048.7631Clequ(1)
1211 − 302996.6401Clequ(1)

3211 + 248491.4393Cledq
1212+

57458.9786Cledq
1213 + 0.107Cledq

1213(4504.1 + 9008.4i) + 295192.4132Cledq
3211+

68279.1824Cledq
3212 + 0.107Cledq

3212(5346.7 + 10751.6i)+

2483.9408Clq(3)
1212 + 3538.2974Clequ(3)

1211 + 4203.4201Clequ(3)
3211 +

990103.0144Clequ(3)
1221 + 1176222.5808Clequ(1)

3221 − 964635.2917Cledq
1221 − 223053.805Cledq

1222−

0.107Cledq
1223(17484.6 + 34269.2i)− 1145926.8469Cledq

3221−

265057.4468Cledq
3222 − 0.107Cledq

3223(20755.9 + 41737.4i)+

0.107Clq(3)
1213 (194.7 + 38.9i)− 13735.5365Clequ(3)

2221 − 16317.5428Clequ(3)
3221 + 12761.1303Clq(3)

3211 +

2951.6913Clq(3)3212 + 0.107Clq(3)
3213 (231.1 + 464.7I)− 46438.9737Clq(3)

1221 −

0.107Clq(3)
1223 (841.6 + 168.1I)− 55166.6748Clq(3)

1223 − 21485.754657Cφl(3)
12 − 25041.3695860Cφl(3)

32 )

(F.13)
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δUcb =Re(1.157552044 · Clq(3)
1211 − 1.375004385 · Clq(3)

3221 −

1.153 · 10−5 · Clq(3)
3223 · (999 + 2008.9i)− 27.483291949 · Clequ(1)

1211 −

32.650011779 · Clequ(1)3211 + 26.776694347 · Cledq
1211+

6.191607694 · Cledq
1212+

1.153 · 10−5 · Cledq
1213 · (4504.1 + 9008.4i)+

31.809051628 · Cledq
3211 + 7.357560496 · Cledq

3212+

1.153 · 10−5 · Cledq
3212 · (5346.7 + 10751.6i)+

0.267662032 · Clq(3)
1212 + 0.381276346 · Clequ(3)

1211 +

0.452947979 · Clequ(3)
3211 + 106.690539776 · Clequ(3)

1221 +

126.746227632 · Clequ(1)3221 − 103.946214143 · Cledq
1221−

24.03561095 · Cledq
1222 − 1.153 · 10−5 · Cledq

1223 · (17484.6 + 34269.2i)−

123.481649951 · Cledq
3221 − 28.561797772 · Cledq

3222−

1.153 · 10−5 · Cledq
3223 · (20755.9 + 41737.4i) + 1.153 · 10−5 · Clq(3)

1213 · (194.7 + 38.9i)−

1.480100335 · Clequ(3)
2221 − 1.758329612 · Clequ(3)

3221 +

1.375101237 · Clq(3)3211 + 0.318065427 · Clq(3)
3212 +

1.153 · 10−5 · Clq(3)
3213 · (231.1 + 464.7i)−

5.004124923 · Clq(3)
1221 − 1.153 · 10−5 · Clq(3)

1223 · (841.6 + 168.1i)− 5.944595892 · Clq(3)
1223 )−

0.000203Re[Clq(3)
1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7) + Clq(3)

1333 (−84845.9 + i0.0057)+

Clq(3)
2331 (−12170139.7 + i24469068.3) + Clq(3)

2332 (−2815080.2 + i5669950.6)+

Clq(3)
2333 (−119045.3 + i0.0080) + Clequ(1)

1331 (24028352.5 − i48310973)+

Clequ(1)
2331 (33713588.5 − i67783934.3)− Cledq

1331(23410553.7 − i47068837.9)−

Cledq
1333(228995.2 + i0.0005)− Cledq

2331(32846636.1 − i66040855.2)−

Cledq
2332(7597769.4 − i15275938.5)− Cledq

2333(321297.6 + i0.00075)−

Cledq
1332(5415166.4 − i10887636.2)− Clequ(3)

1331 (298282.9 − i599722.4)−

Clequ(3)
2331 (418513.5 − i841455.7)] + Re[−2.316131Cφl(3)

12 +

Cφl(3)
1 3(−16.7260 + 6.75597i) + Cφl(3)

23 (−23.1793 − 5.404782i)− 2.699421Cφl(3)
32 ]

(F.14)
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δUtb =Re(−0.048691478 · Clq(3)
1211 + 0.0578384325 · Clq(3)

3221 +

4.85 · 10−7 · Clq(3)
3223 · (999 + 2008.9i) + 1.1560621505 · Clequ(1)

1211 +

1.3733959855 · Clequ(1)
3211 − 1.1263397015 · Cledq

1211−

0.260444903 · Cledq
1212 − 4.85 · 10−7 · Cledq

1213 · (4504.1 + 9008.4i)−

1.338021686 · Cledq
3211 − 0.309489752 · Cledq

3212−

4.85 · 10−7 · Cledq
3212 · (5346.7 + 10751.6i)− 0.011258984 · Clq(3)

1212 −

0.016038077 · Clequ(3)
1211 − 0.0190528855 · Clequ(3)

3211 −

4.487850112 · Clequ(3)
1221 − 5.331476184 · Clequ(1)

3221 +

4.3724123035 · Cledq
1221 + 1.011038275 · Cledq

1222+

4.85 · 10−7 · Cledq
1223 · (17484.6 + 34269.2i)+

5.1941543995 · Cledq
3221 + 1.201428614 · Cledq

3222+

4.85 · 10−7 · Cledq
3223 · (20755.9 + 41737.4i)−

4.85 · 10−7 · Clq(3)
1213 · (194.7 + 38.9i) + 0.0622592075 · Clequ(3)

2221 +

0.073962694 · Clequ(3)
3221 − 0.0578425065 · Clq(3)

3211 −

0.0133791615 · Clq(3)
3212 − 4.85 · 10−7 · Clq(3)

3213 · (231.1 + 464.7i)+

0.2104944135 · Clq(3)
1221 + 4.85 · 10−7 · Clq(3)

1223 · (841.6 + 168.1i) + 0.250054554 · Clq(3)
1223 )+

8.544 · 10−6Re[Clq(3)
1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7) + Clq(3)

1333 (−84845.9 + i0.0057)+

Clq(3)
2331 (−12170139.7 + i24469068.3) + Clq(3)

2332 (−2815080.2 + i5669950.6)+

Clq(3)
2333 (−119045.3 + i0.0080) + Clequ(1)

1331 (24028352.5 − i48310973)+

Clequ(1)
2331 (33713588.5 − i67783934.3)− Cledq

1331(23410553.7 − i47068837.9)−

Cledq
1333(228995.2 + i0.0005)− Cledq

2331(32846636.1 − i66040855.2)−

Cledq
2332(7597769.4 − i15275938.5)− Cledq

2333(321297.6 + i0.00075)−

Cledq
1332(5415166.4 − i10887636.2)− Clequ(3)

1331 (298282.9 − i599722.4)−

Clequ(3)
2331 (418513.5 − i841455.7)]+

Re[337.33004Cφl(3)
12 + Cφl(3)

13 (0.70342 − 2.84125i)+

Cφl(3)
23 (0.97481 + i2.27300) + 393.1538Cφl(3)

32 ]

(F.15)
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δUcs =− 2479.75156Clq(3)
1211 + 2945.58615Clq(3)

3221 +

0.0247Clq(3)
3223 (999 + 2008.9I) + 58875.74251Clequ(1)

1211 +

69944.08421Clequ(1)
3211 − 57362.04253Cledq

1211 − 13263.89506Cledq
1212−

0.0247Cledq
1213(4504.1 + 9008.4I)− 68142.54772Cledq

1221−

15761.64304Cledq
3212 − 0.0247Cledq

3213(5346.7 + 10751.6I)−

573.39568Clq(3)
1212 − 816.78454Clequ(3)

1211 − 970.32221Clequ(3)3211−

228556.49024Clequ(3)
1221 − 271520.53968Clequ(1)

3221 +

222677.49257Cledq
1221 + 51489.9905Cledq

1222+

0.0247Cledq
1223(17484.6 + 34269.2I) + 264527.03849Cledq

3221+

61186.15828Cledq
3222 + 0.0247Cledq

3223(20755.9 + 41737.4I)− 0.0247Clq(3)
1213 (194.7 + 38.9I)+

3170.72665Clequ(3)
2221 + 3766.75988Clequ(3)

3221 − 2945.79363Clq(3)
3211 −

681.37173Clq(3)
3212 − 0.0247Clq(3)

3213 (231.1 + 464.7I)+

10720.02477Clq(3)
1221 + 0.0247Clq(3)

1223 (841.6 + 168.1I)+

12734.73708Clq(3)
1223 + 8.544 · 10−6Re[Clq(3)

1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7) + Clq(3)

1333 (−84845.9 + i0.0057)+

Clq(3)
2331 (−12170139.7 + i24469068.3) + Clq(3)

2332 (−2815080.2 + i5669950.6)+

Clq(3)
2333 (−119045.3 + i0.0080) + Clequ(1)

1331 (24028352.5 − i48310973)+

Clequ(1)
2331 (33713588.5 − i67783934.3)− Cledq

1331(23410553.7 − i47068837.9)−

Cledq
1333(228995.2 + i0.0005)− Cledq

2331(32846636.1 − i66040855.2)−

Cledq
2332(7597769.4 − i15275938.5)− Cledq

2333(321297.6 + i0.00075)−

Cledq
1332(5415166.4 − i10887636.2)−

Clequ(3)
1331 (298282.9 − i599722.4)− Clequ(3)

2331 (418513.5 − i841455.7)]+

Re[4965.31469Cφl(3)
12 + Cφl(3)

13 (0.7034 − 2.84 · 10−17i)+

Cφl(3)
23 (0.974818 + 2.273 · 10−17i + 5787Cφl(3)

32 ]

(F.16)
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δUtd =(0.000918 + 0.001888i)Re[(100394.8Clq(3)
1211 − 119254.5Clq(3)

3221 −

Clq(3)
3223 (999 + 2008.9i)− 2383633.3Clequ(1)

1211 − 2831744.3Clequ(1)
3211 + 2322349.9Cledq

1211+

536999.8Cledq
1212 + Cledq

1213(4504.1 + 9008.4i)+

2758807.6Cledq
3211 + 638123.2Cledq

3212 + Cledq
3212(5346.7 + 10751.6I)+

23214.4Clq(3)
1212 + 33068.2Clequ(3)

1211 + 39284.3Clequ(3)
3211 +

9253299.2Clequ(3)
1221 + 10992734.4Clequ(1)

3221 − 9015283.1Cledq
1221−

2084615.0Cledq
1222 − Cledq

1223(17484.6 + 34269.2I)−

10709596.7Cledq
3221 − 2477172.4Cledq3222 − Cledq

3223(20755.9+

41737.4I) + Clq(3)
1213 (194.7 + 38.9I)− 128369.5Clequ(3)

2221 −

152500.4Clequ(3)
3221 + 119262.9Clq(3)

3211 + 27585.9Clq(3)
3212 +

Clq(3)3213(231.1 + 464.7I)− 434009.1Clq(3)
1221 − Clq(3)

1223 (841.6 + 168.1i)− 515576.4Clq(3)
1223 )]−

(0.000927 + 0.00187i)Re[Clq(3)
1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7) + Clq(3)

1333 (−84845.9 + i0.0057)+

Clq(3)
2331 (−12170139.7 + i24469068.3) + Clq(3)

2332 (−2815080.2 + i5669950.6)+

Clq(3)
2333 (−119045.3 + i0.0080) + Clequ(1)

1331 (24028352.5 − i48310973)+

Clequ(1)
2331 (33713588.5 − i67783934.3)− Cledq

1331(23410553.7 − i47068837.9)−

Cledq
1333(228995.2 + i0.0005)− Cledq

2331(32846636.1 − i66040855.2)−

Cledq
2332(7597769.4 − i15275938.5)− Cledq

2333(321297.6 + i0.00075)−

Cledq
1332(5415166.4 − i10887636.2)− Clequ(3)

1331 (298282.9 − i599722.4)−

Clequ(3)
2331 (418513.5 − i841455.7)]

(F.17)
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δUts =(1.15 · 10−6 + 2.69 · 10−5i)Re[(100394.8Clq(3)
1211 − 119254.5Clq(3)

3221 −

Clq(3)
3223 (999 + 2008.9i)− 2383633.3Clequ(1)

1211 − 2831744.3Clequ(1)
3211 + 2322349.9Cledq

1211+

536999.8Cledq
1212 + Cledq

1213(4504.1 + 9008.4i)+

2758807.6Cledq
3211 + 638123.2Cledq

3212 + Cledq
3212(5346.7 + 10751.6I)+

23214.4Clq(3)
1212 + 33068.2Clequ(3)

1211 + 39284.3Clequ(3)
3211 +

9253299.2Clequ(3)
1221 + 10992734.4Clequ(1)

3221 − 9015283.1Cledq
1221−

2084615.0 ∗ Cledq
1222 − Cledq

1223(17484.6 + 34269.2I)−

10709596.7Cledq
3221 − 2477172.4Cledq

3222 − Cledq
3223(20755.9+

41737.4I) + Clq(3)
1213 (194.7 + 38.9I)− 128369.5Clequ(3)

2221 −

152500.4Clequ(3)
3221 + 119262.9Clq(3)

3211 + 27585.9Clq(3)
3212 +

Clq(3)3213(231.1 + 464.7I)− 434009.1Clq(3)
1221 − Clq(3)

1223 (841.6 + 168.1i)− 515576.4Clq(3)
1223 )]−

(3.64 · 10−6 + 0.0004i)Re[Clq(3)
1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7) + Clq(3)

1333 (−84845.9 + i0.0057)+

Clq(3)
2331 (−12170139.7 + i24469068.3) + Clq(3)

2332 (−2815080.2 + i5669950.6)+

Clq(3)
2333 (−119045.3 + i0.0080) + Clequ(1)

1331 (24028352.5 − i48310973)+

Clequ(1)
2331 (33713588.5 − i67783934.3)− Cledq

1331(23410553.7 − i47068837.9)−

Cledq
1333(228995.2 + i0.0005)− Cledq

2331(32846636.1 − i66040855.2)−

Cledq
2332(7597769.4 − i15275938.5)− Cledq

2333(321297.6 + i0.00075)−

Cledq
1332(5415166.4 − i10887636.2)− Clequ(3)

1331 (298282.9 − i599722.4)−

Clequ(3)
2331 (418513.5 − i841455.7)]

(F.18)
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δUcd =(−0.1070 + 7.9381 · 10−5i)Re[(100394.8Clq(3)
1211 − 119254.5Clq(3)

3221 −

Clq(3)
3223 (999 + 2008.9i)− 2383633.3Clequ(1)

1211 − 2831744.3Clequ(1)
3211 + 2322349.9Cledq

1211+

536999.8Cledq
1212 + Cledq

1213(4504.1 + 9008.4i)+

2758807.6Cledq
3211 + 638123.2Cledq

3212 + Cledq
3212(5346.7 + 10751.6I)+

23214.4Clq(3)
1212 + 33068.2Clequ(3)

1211 + 39284.3Clequ(3)
3211 +

9253299.2 ∗ Clequ(3)
1221 + 10992734.4Clequ(1)

3221 − 9015283.1Cledq
1221−

2084615.0 ∗ Cledq
1222 − Cledq

1223(17484.6 + 34269.2I)−

10709596.7Cledq
3221 − 2477172.4Cledq

3222 − Cledq
3223(20755.9+

41737.4I) + Clq(3)
1213 (194.7 + 38.9I)− 128369.5Clequ(3)

2221 −

152500.4Clequ(3)
3221 + 119262.9Clq(3)

3211 + 27585.9Clq(3)
3212 +

Clq(3)3213(231.1 + 464.7I)− 434009.1Clq(3)
1221 − Clq(3)

1223 (841.6 + 168.1i)− 515576.4Clq(3)
1223 )]−

(3.864 · 10−5 + 7.821 · 10−5i)Re[Clq(3)
1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7) + Clq(3)

1333 (−84845.9 + i0.0057)+

Clq(3)
2331 (−12170139.7 + i24469068.3) + Clq(3)

2332 (−2815080.2 + i5669950.6)+

Clq(3)
2333 (−119045.3 + i0.0080) + Clequ(1)

1331 (24028352.5 − i48310973)+

Clequ(1)
2331 (33713588.5 − i67783934.3)− Cledq

1331(23410553.7 − i47068837.9)−

Cledq
1333(228995.2 + i0.0005)− Cledq

2331(32846636.1 − i66040855.2)−

Cledq
2332(7597769.4 − i15275938.5)− Cledq

2333(321297.6 + i0.00075)−

Cledq
1332(5415166.4 − i10887636.2)− Clequ(3)

1331 (298282.9 − i599722.4)−

Clequ(3)
2331 (418513.5 − i841455.7) + Cφl(3)

13 84437.537 + Cφl(3)
23 117015.7457]

(F.19)
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δUub =(0.00371 + 0.00184i)Re[(100394.8Clq(3)
1211 − 119254.5Clq(3)

3221 −

Clq(3)
3223 (999 + 2008.9i)− 2383633.3Clequ(1)

1211 − 2831744.3Clequ(1)
3211 + 2322349.9Cledq

1211+

536999.8Cledq
1212 + Cledq

1213(4504.1 + 9008.4i)+

2758807.6Cledq
3211 + 638123.2Cledq

3212 + Cledq
3212(5346.7 + 10751.6I)+

23214.4Clq(3)
1212 + 33068.2Clequ(3)

1211 + 39284.3Clequ(3)
3211 +

9253299.2Clequ(3)
1221 + 10992734.4Clequ(1)

3221 − 9015283.1Cledq
1221−

2084615.0Cledq
1222 − Cledq

1223(17484.6 + 34269.2I)−

10709596.7Cledq
3221 − 2477172.4Cledq

3222 − Cledq
3223(20755.9+

41737.4I) + Clq(3)
1213 (194.7 + 38.9I)− 128369.5Clequ(3)

2221 −

152500.4Clequ(3)
3221 + 119262.9Clq(3)

3211 + 27585.9Clq(3)
3212 +

Clq(3)
3213 (231.1 + 464.7I)− 434009.1Clq(3)

1221 − Clq(3)
1223 (841.6 + 168.1i)− 515576.4Clq(3)

1223 )]+

(0.000904 − i0.00192)Re[Clq(3)
1331 (−8673938.8 + i17439668.3)+

Clq(3)
1332 (−2006395.1 + i4034022.7)+

Clq(3)
1333 (−84845.9 + i0.0057) + Clq(3)

2331 (−12170139.7 + i24469068.3)+

Clq(3)
2332 (−2815080.2 + i5669950.6) + Clq(3)

2333 (−119045.3 + i0.0080)+

Clequ(1)
1331 (24028352.5 − I48310973) + Clequ(1)

2331 (33713588.5 − i67783934.3)−

Cledq
1331(23410553.7 − i47068837.9)− Cledq

1333(228995.2 + i0.0005)−

Cledq
2331(32846636.1 − i66040855.2)− Cledq

2332(7597769.4 − i15275938.5)−

Cledq
2333(321297.6 + i0.00075)− Cledq

1332(5415166.4 − i10887636.2)−

Clequ(3)
1331 (298282.9 − i599722.4)− Clequ(3)2331(418513.5 − i841455.7)]+

(0.003719 + 0.0018374i)Re[−200801.445Cφl(3)
12 − 234031.491Cφl(3)

13 ]+

(0.0008949 − 0.001925i)Re[84437.537Cφl(3)
13 + 117015.745Cφl(3)

23 ]

(F.20)
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