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Abstract

CKM corrections in the Standard Model Effective Field Theory

by Dimitrios BEIS

In this thesis, we investigate the impact of New Physics (NP) on the global CKM fit
and propose a straightforward approach to constrain the CKM matrix. The theoretical
framework used in analyzing flavor data is the Standard Model Effective Field Theory
(SMEFT). SMEFT also contains the leading NP effects from the six-dimensional Wilson
coefficients and parameters present in the SM Lagrangian. In addition, SMEFT can be
used to account for correlations between different observables, such as Electroweak pre-
cision measurements, leptonic processes, and quark-flavor transitions.

Our approach uses a set of input observables and express the CKM parameters in
terms of Wilson coefficients that can be produced from these observables. We work with
this framework to match the LEFT (Low Energy Effective Field Theory)’s Wilson coeffi-
cients with those of SMEFT. Additionally, we use experimental data on the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix to verify its contribution to the
parameters of the CKM matrix.The resulting combinations of Wilson coefficients define
the corrected matrix elements of the CKM matrix and we apply these new parameters
in order to set limits on NP processes.
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Chapter 1

Introduction

1.1 The Standard Model of Particles physics

The Standard Model (SM) is a theoretical framework in particle physics that describes
the fundamental particles and their interactions. Several textbooks are available that
cover different aspects of SM, such as:[9],[41],[30]. To construct this theory, a math-
ematical framework known as Quantum Field Theory (QFT) is required. QFT is a
physical theory that combines Quantum Mechanics and Special Relativity into a sin-
gle theory and plays a crucial role in describing the physics of elementary particle.
Some of the most well-known textbooks regarding quantum field theory are the follow-
ing:[36],[38],[40]. Standard Model is a non-abelian gauge theory and the corresponding
group is:

GSM = SU(3)C X SU(Z)L X U(1>y A (11)

where C stands for color, Y for hypercharge and L for Left. The Higgs Mechanism is the
way in which particles acquire mass in the Standard Model. The general mathematical
concept of the Higgs mechanism can be found in [29] . Using Higgs mechanism we
break the Electroweak Symmetry in order to give masses to the Gauge bosons. We can
interpret the breaking symmetry as:

In the following sections we analyze in detail the Electroweak and Fermion Sector.

1.2 Electroweak Sector

The Electroweak theory unifies electromagnetic and weak interactions and was estab-
lished by Glashow, Weinberg, and Salam [42],[25]. The Kinetic term of the Lagrangian
that governed by the Electroweak Symmetry: SUp(2) x U(1)y is:

1 1

Liin = —1W5VW”W - EBWBW + |Dy¢p ?

/ (1.3)
where W (a = 1,2,3) and B are the field strength tensors for the weak isospin and
weak hypercharge gauge fields. The covariant derivative of the Higgs doublet, ¢, with
hypercharge Y, = 1, is given by:

aa Qg
Dy = (3 — igALT" — %By)q), (1.4)
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where A and B" are the SU(2) and U(1) gauge bosons respectively while 7% = .
where ¢“ are the Pauli matrices. We define ¢ and g’ to be the coupling constants of
SU(2) and U(1) respectively. The relevant potential of the EW theory is:

V() = —1 |pI* + Ag™. (1.5)

Therefore the field ¢ acquires acquires a vacuum expectation value(Vev):

(¢) = \1@ (S) , (1.6)

2
where v = %

We identify the mass terms of the weak gauge bosons in the term £y = | D, ¢|? which
after the SSB is:

1 1 bub 1 0
Ly= 5 (0 ) (gA;iT“ + 2g'By) (A" + Eg/B”) (v,) (1.7)
after some straightforward calculations we find:
V2 (20 alin2 L 2 22 / 32
Ly = (AW + g2 (A) + (/B —ga™)’). (18)

From equation 1.8 one can identify the masses of the following gauge bosons:

1 . . v
Wﬁ‘ = \ﬁ (A;, + zAi) with mass My = %
'BH — o A3H /o2 7
Zgzig > g = with mass MZ:7U 8+
V& tsg 2
There is also a fourth massless vector field, orthogonal to Zg:
g’Af, + &By .
Ay = ————| with mass My = 0. (1.9)
# /e + ¢

Since we identify the gauge bosons we write the covariant derivative in terms of these
tields as follows:

Dy =9, — igAT" — ig'YB, =
iZ,

I 23 /2 o
2+ g2 <g g Y) (1.10)

=0, — ijj (w;T+ + w;;T*) .

ool
88 A, (T3+Y),

Vet
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we denote with T* = (T' £ iT?), where T* = %, for a = {1,2}. We identify the electric
charge in the last term of eq.(2.10) to be:

__ &

and the electric charge number:
Q=T3+Y. (1.12)

In order to simplify the covariant derivative we define the weak mixing angle 0;, in
order to rotate the fields as:

Zo\ _ (cosby,  —sinby A3
(A> o ( sinfy  cosfy ) (B ) ’ (1.13)

From equation (2.12) we extract the relations:

/
8 050y = ——S (1.14)

VeE+g? g +¢2

We can write now the covariant derivative as:

sinf, =

_ ig — - ig 3 win? :
Dy =3~ (WiTt+ w7 - cosg 2 (10 =sin®0uQ) —ieQAy |, (1.15)
e

where we used the relation ¢ = -
independent since the relation holds:

. We notice that the mass of gauge bosons are not

Mw
My = . 1.16
z cosby, ( )

Therefore all interactions of W and Z boson can be written in terms of the parameters
{6, v, My }. Experimental results for W and Z boson masses can be found in [35].

1.3 Higgs Sector

The Higgs boson’s mass and its interactions with the W and Z gauge fields arise from
the Higgs field’s coupling to these fields in the Lagrangian:

L, = |Dup|* = V(9), (117)

which after the SSB(¢ — h(f/);v) can be writen as:

1 1 n\?
Ly =5 (0,h)% + | M3 WHW,_ + 2M§zyz%’] (1 + U) -
(1.18)
)\h4 4
212 3_Mm B
wh® — Avh 1 + o

By using the relation v = %, we can identify the mass of the Higgs boson to be:
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my = \ny =2Av. (1.19)

The experimental value of Higgs boson is [35]:

my, = 125.18(16)GeV. (1.20)

1.4 Fermion sector

We continue with the issue of constructing mass terms for quarks and leptons. It is
worth noting that one cannot put ordinary mass terms into the Lagrangian. This is be-
cause the left and right-handed components of the fermion fields have distinct gauge
quantum numbers, therefore single mass terms would violate gauge invariance. In or-
der to give masses to quarks and leptons, we must use the mechanism of spontaneous
symmetry breaking. The left-handed fermion fields are represented as doublets in the
fundamental representation of SU(2) while the right-handed fields are represented as
singlets in the same group. We denote for the left-handed side:

I, = <Z§£> (1.21)

o _ (i (1.22)

Ly a ) .
The indices j = {1,2},a = {1,2,3} and p = {1,2,3} correspond to isospin, color and
generation respectively. We note that for the right-handed fermion fields, i.e. er, we
have T = 0, since they are singlets under SU(2). Therefore, according to equation 1.12,
it can be seen that the hypercharges of the right-fermion fields are the same as their
electric charges. For the left-handed fermion fields, we have to specify the value of T°

to compute the electric charge. Since we have defined left and right-fermion fields, we
can write the kinetic terms in the following Lagrangian:

L= l_LlD/l + ERi,D/ER + qLiD/qL + ﬁRi,D/MR + d_Ri,B/dR, (1.23)

and

where for simplicity, we ignore the indices j, a, and p.We continue by expanding the
covariant derivative in the form of equation 1.15. Therefore the Lagrangian transforms
to:

L =I;idl + erider + qLialﬁ + agidug + driddg

oo (1.24)
+8WITN + W Ty + Z01%) + eAuTky
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where we define the currents:

1
i Iﬁ (FpyVer +apytdr)

_ 1 -
iy = 7 (eLy"ve + dpytuy)

1
cosBy,

1 1 .
]5 = (TpyH <2> vy +epy” (—2 + sznz(Gw)> er+

(1.25)

1 2. - 1 1.
iyt <2 — 3sm2(6w)> ur +dpy* <—2 + 3sm2(6w)> dr

02
0, -
sin” 6y dR')"udR)

2
erY"er sin® 0, — 3 sin® 0, iRy R +

2 1.
Y= (=Y arte+ 3ty i — din'di),
i=LR

where we used that Y = —1/2 for l]L and Y = +1/6 for q]'L, while Y = +2/3 for the
right-handed u and Y = —1 for eg.

Next we generalize the Lagrangian of equation 1.23, writing a Lagrangian invariant
under SU(2):

Lonass = —AUL - pdly — AJe™TL, - phu, + hec. (1.26)

Where A; and A, general complex-valued matrices. To obtain the physical masses of
the fields we will perform a rotation of the terms in the mass basis. To do this we define
unitary matrices U,and K, for which, the following relation holds:

Ay = UMK} (1.27)
From equation 1.27 can be proved that:

AL =, M2U,

(1.28)
A A, = K,M2K,

Where:
M, = Uir,U,, (1.29)

is a diagonal matrix with real elements. In a similar way we define unitary matrices Uy
and K, for which the relation holds:

Ag = UyMyKY, (1.30)

where:
My = UjAqUy. (1.31)

is a diagonal matrix with real eigenvalues. Next we make the following change of vari-
ables in order to simplify the Lagrangian of equation 1.26:

up — UuLlL, Ur — KuuR,

(1.32)
dp — Uydy dr — Kydg.
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Under these transformations we rewrite the Lagrangian of equation 1.26 as follows(after
SSB of the theory, where ¢ — h%):

L I
ﬁm%s:——myﬁd%<l%—v>——mmﬁykﬂf+ﬁ)+h£. (1.33)

Where we redefine the masses of quarks to be:

i _ uMj vM]]
N V2
From relation 1.33, we can extract the usual Higgs couplings to quarks and the Higgs

mass. From the rescaling formulation in equation 1.32, we can find the transformation
of the currents that couple to the charged W* gauge boson, which is:

m my = (1.34)

o _ it (V)
V2 V2

Where we define as V = U} U, the Cabibbo-Kobayashi-Matrix (CKM)[6]. In an equiva-
lent manner, we can express the general coupling of three-generation neutrinos with a
Higgs boson as follows:

(1.35)

;Cmgss - _)\;]llL . ¢€]R + I’l.C. (1.36)

We make the redfinition of the coupling:
A = UMK (1.37)

Therefore we can eliminate the diagonal matrices U; and K; by rotating the fields as
follows:
er, — LIleL, vy — LIlvl, eérR — KleR. (138)

The introduction of this new set of variables for the fermion fields does not result in
any mixing between generations. This is due to the fact that the matrices in equation
1.38, which represent the change of variables commute with the SU(2) interactions in
the covariant derivative, and therefore cancel out from the theory. It should be noted
that this only holds true when neutrinos are massless in our theory.

Finally, we denote the particles that are contained in the SM, which describe their
behavior and interactions in Figure(1.1).
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FIGURE 1.1: The particle spectrum of the Standard Model.






Chapter 2

Effective Field Theories

2.1 Introduction

The concept of Effective Field Theory (EFT) is discussed in many lecture notes, such as
[33],[14] , and for the sake of simplicity, we will limit ourselves to some basic concepts
that are useful for understanding its potential. It is important to note that an EFT is a
quantum theory, and like any other quantum field theory, it requires a regularization
and renormalization scheme to obtain finite matrix elements. S-matrix elements in an
EFT can be computed from the EFT Lagrangian in the same way as in QED, starting
from a QED Lagrangian.

The basic idea behind EFTs is that physics at different energy scales can be described
by different theories. This principle can be used to study low-energy phenomena with-
out the need for the full theory. In this context, we will procceed to two common ap-
proaches which can be used for the study of EFTs.

* Top-down Construction of an EFT: In this approach we have the knowledge of
the full theory. First we identify the relevant light fields and their symmetries that
belong in the physical domain that we want to study. The purpose of this ap-
proach is to exclude the fields that are heavier under this consideration. For this
we can choose a cutt-off energy level and integrate out field modes with momenta
above this level of cut-off point. To integrate out these heavy fields we have to
write down a general Lagragnian for the light fields, as a sum of all allowed opera-
tors. The operators that we need to keep can determined through power counting.
The resulting effective Lagrangian describes the low-energy dynamics of the light
fields, taking into account the effects of the heavy fields that have been integrated
out.

¢ Bottom-up Construction of an EFT: In this case, the UV theory is unknown, so we
have to work the other way around. We need to identify the degrees of freedom
and symmetries of the system at the low-energy level and then extend the theory.
All allowed terms in the Lagrangian can be written with no limitations on the
dimension of the operators. The coefficients in front of the operators need to be
determined by experiments. A bottom up theory is the Standard Model Effective
Field Theory (SMEFT) which is an EFT approach that we will focus on in the rest
of this thesis.

In order to combine the two different approaches, we define the effective Lagrangian
that describes the low-energy regime as follows:
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O:
»Ceffective = »cd§4 + Z ATZ—AI (2.1)
i

A is the cutoff energy scale and O; are higher dimensional operators that arise from the
removal of heavy degrees of freedom. Although an infinite number of higher dimen-
sional operators can be generated, each of them is suppressed by a power of A pro-
portional to its dimension d;. Therefore their contributions to calculations will also be
suppressed by high powers of A. Introducing the concept of power counting becomes
crucial for developing the theory, based on this observation.

2.1.1 Power Counting

In order to avoid having to consider an infinite number of operators, a working crite-
rion is needed to determine which terms can be safely neglected before any calculations
are performed. Power counting methods provide a way to achieve this. We start by
considering the EFT functional integral to be:

Z= / Depe'S. (2.2)

Where we assumed units: i = 1,¢c = 1. Therefore the action S must be dimensionless:
[S] = 0. The EFT action S is the integral of the local Lagragnian density:

5= / dixL(x). 2.3)

If we assume that the dimensionality of the spacetime is d we have that: [d9x] = —d
therefore the Lagragnian density must have mass dimension d:

[L(x)] =d, (2.4)

and can be described by the sum of local, gauge and Lorentz invariant operators O; with
coefficients ¢;:

L(x) = ZciOi(x). (2.5)

Therefore if we denote the dimension of the operators as [D], the dimension of the
coefficient must be: [¢;] = d — D. For example, if we assume a generic scalar field ¢ and
a spinor field 1 we can find the dimensionality to be:

W= -1, lg]=5d~2). 26)

In the special case where d = 4 we have:
[y] = X ¢l =1 [Fu]=2 [Dy)=1 (2.7)
Where F,, is the field strength tensor and D, = 9, +igA, the covariant derivative.

In the following work we will try to find all the gauge invariant operators in 4 spacetime
dimension: d = 4 up to operator dimension: D = 6. We can write the general form of
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an operator ind = 4 as:
O = ()" (F")™ (Dy)"0 9", (2.8)

from which the following equation arises:

3
D= n¢+§n¢+2np+np , (2.9)

where we denote with n;, i = {¢, F, 9, D} the number of fields we must use in order to
construct Lorentz invariant 6-dimension operators. We can see that the left hand side of
equation 2.9 is integer: D = 6 therefore the number of fermion fields must be even. The
possible values that 7y can take are the following: ny = {0,2,4}. For ny = 4 we have
that: ny = np = np = 0. Therefore the only D = 6 operator is:

(P9)? . (2.10)

For the case: ny = 2, we have the equation:
ng +2np +np = 3. (2.11)

For np = 1 we have that: (n4,np) = {(1,0), (0,1)}, which gives the operator:

P X | (2.12)

For the case: nr = 0 we have the possible values: (np,ny) = {(0,3),(1,2),(2,1),(3,0)}
which gives the possible D = 6 operators:

PP(9)°, (PiDY)¢?, (PiD*) e, §PYD? | (2.13)

For the subcase: nr > 2 we do not have a possible solution. We continue with the case:
ny = 0. Equation 2.9 gives:
6 =2np +ny + np. (2.14)

The nr take values: nr < 3. The case nr = 3 can be rejected since we can not find a
Lorentz invariant operator. Therefore: nr < 3. For nr = 2 we have the possible values:
(ng,np) = {(2,0),(1,1),(0,2)} which gives the two D = 6 operators:

F*¢?, D*F?| (2.15)

For the subcase nr = 1 the possible numbers of the operators are:
(ng,np) = {(4,0),(3,1),(2,2),(1,3),(0,4) }. The only Lorentz invariant operator is:

D*D,D,F" | (2.16)

Finally for the subcase: np = 0, we have that: (ng,np) = {(0,6),(2,4),(4,2)} (the
number of np must be even since we want to construct Lorentz invariant operators).
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Operators

¢

€b2
¢3, oy, D¢
¢*, F2, (§y)p, D292, i Dy
¢°, (p)¢*, F2p, D*¢>, D*¢, 0" Y F,y, Dy DM, p§PY, Dy, Dygp
¢°, (pp)9°, F2¢?, (py)*, D*¢*, D*¢*, D*F?, § Dy,
P* i, Fuy DF D¢, pE* P, ipo

TABLE 2.1: Operator classes in d = 4 dimension up to D = 6.

U'IVPOJI\)H@

The possible operators are three:

D*¢?, D>¢*, ¢° | (2.17)

We can work similarly for the less complex case: D = 5. We start with the equation:

5=mnp+ §n¢+2nF+nD. (2.18)
The ny can take the possible values (0,2). For ny = 2, nr can take the value 0 or 1.
For nr = 0 we have the possible pairs: (nr,np) = {(0,2),(2,0),(1,1)} from which we
construct the Lorentz invariant operators:

($BY)p, D pDFp, Pipg* | (2.19)

For nr = 1 we have the D = 5 operator:

G pE, | (2.20)

For ny = 0, the possible values of np = {0,1,2}. For np = 0 we find the possible pairs:
(np,np) = {(0,5),(2,3),(4,1)} since np must be even. In this subcase we construct the
D = 5 operators:

¢°, D¢, D?¢°|. (2.21)

For np = 1 there is only one possibility: np = 2,14 = 1 and only one D = 5 operator:

F''D,D,¢ (2.22)

For npr = 2 we can construct only one D = 5 operator:

F¢| (2.23)
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Working equivalent for the less complex cases: D = {1,2,3,4} we can construct all
the operators in d = 4 dimensions up to operator dimension D = 6. The operators are
given in the table (2.1). Using the same method, we could construct operators of higher
dimension D > 6.

2.1.2 The Fermi Theory as an EFT approach

In order to understand better the two different approaches (bottom-up and top-down)
we can work the following example: A muon decaying into an electron and a pair of
neutrinos. Since the muon mass is much lower than the weak vector boson masses
(m,- ~ 105MeV), we can work with the bottom-up approach. With the knowledge of
the experimental results we can make the following hypothesis: We add in the QED
Lagragnian a term that contains interaction between four fermions, supressed by an
energy scale A:

c
L= —A—V;(ﬁy'y"‘PLy)(é’y“PLve) + h.c., (2.24)

where we call ciy a Wilson coefficient. We can calculate the decay rate of the process:

poo—e ey, (2.25)
to be: ) 5
— __ _Cw\2 Ty
C(p~ — e Ty) = (P) 5360 (2.26)
Therefore from the definition of the Fermi constant(in SM):
1_g g (1+Aq) (2.27)
T, F19273 4 ‘

where 7, the muon life-time, G the Fermi constant and Aq the quantity that includes the
phase space, QED and radiative corrections (which are relatively small). From equations
2.27 and 2.26 we find that:

cw 4

N2
Where the numerical value of Gr is: Gr = 1.1663787(6) x 107°GeV ~2[8]. Therefore from
this approach (bottom-up) one can relate low-energy phenomena with higher energy
theories. Someone could work in exactly the opposite way: The top-down approach.
First we compute the muon decay amplitude in the SM, where a muon decays into an
electron and two neutrinos through the exchange of a W boson. We find the amplitude
to be:

Gr. (2.28)

2

_ 8 7 y
M= M[”(Pl)VﬂPLU(Pz)][”(P:s)%PL”(m)]/ (2.29)
where p1, p2, p3, ps are the &-momentum of e~ v, v, 4 respectively and q is the momen-
tum of the W-propagator.
In the limit of low energies we can make the following approximation:

2

M = — o (1) oo (pa) 1) vPua(p) 230)
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FIGURE 2.1: Tree level process of: = — vyev,

The top down approach imposes that in the limit of low energies the matrix elements of
the different theories must be the same. Therefore from equations 2.30 and 2.26 we have

the matching condition:
w_ & (2.31)
A% 2M3,

With this process we found the relation between the factor 3§ and the UV parameters
g, My of the SM. We can see that the estimation of the mass of W boson is around 80GeV,
where we used the experimental result: Gr = 1.1663787(6) x 10>GeV 2 for the Fermi
constant. Therefore the prediction for the Fermi theory is valid. The top-down approach
is a technique which we will follow in the present work, in order to find the matching
conditions for the Wilsons coefficients, since the calculations in the low energies are
simpler than the high energy theory.

2.2 EFT Lagrangian

In general a Lagrangian in EFT can be written in the following form:

(D) (D)

C.

Lerr =Y, 51— Apfd , (2.32)
D>0,i

where 01@) represents the Lorentz and gauge invariant operators of dimension 0 <
D < d for the renormalizable part of operators while D > d for the non-renormalizable
part of operators. The scale A has been introduced to make the coefficients CED) dimen-
sionless. A secondary use of A is to characterise the short-distance scale at which new
physics occur. For example in d = 4 space-time dimensions we can write the general
Lagrangian:

Lerr = Lpes + % + % + ..., (2.33)
where all operators of dimension D are combined into the Lagrangian L£p. Therefore
the Lagrangian Lgrr has to be treated as an expansion of %, where # is an integer. We
should note that we cannot sum terms to all orders since, we would violate the EFT
power counting rule and the EFT would break down.

If we consider a scattering amplitude A in d = 4 dimensions, normalized to have

mass dimension zero, for a momentum scale p, the contribution to the amplitude order
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will be (by dimensional analysis):
P \D—4
A~ ( A) , (2.34)

where we introduce the A, the characteristic scale of the system. Therefore the operator
has a coefficient of mass dimension ﬁ From this relation it is possible to divide into

three categories the operators:

¢ Irrelevant: Operators with dimension D > 4.
¢ Relevant: Operators with dimension D < 4.
* Marginal: Operators with dimension D = 4.

For the case of Irrelevant operators, the operators are non-renormalizabe. From equa-
tion 2.34 we see that the influence of these type of operators are less important the bigger
the dimension of the operator is. Relevant and Marginal operators constitute the SM,
and they are renormalizable operators. Equation 2.34 corresponds to a single insertion
of an operator of dimension D > 4. An insertion of a set of higher operators in d < D
dimensions leads to an amplitude:

A~ (%) (2.35)

where:

k
n=Y(Di—d) (2.36)

i

where k the number of operators and D; corresponds to the mass dimension of the i-th
operator that we conclude in our theory. Equation 2.36 is the power counting formula
of EFT and it holds for any graph and not just tree graphs. From equation 2.35 we can
understand the difference between any renormalizable theories and EFT’s. For example
we can assume one insertion of a D = 5 operator in d = 4 spacetime dimensions. This
insertion will give a correction of the form:

P
A~ (2.37)

With a single insertion of a D = 6 operator we obtain corrections K—Zz. This case is similar
to the introduction of two D = 5 operators. If we have a loop graph, with the inser-
tion of the D = 6 operator, will be divergent. In order to eliminate the divergence we
will need a counterterm from L. in order to cancel the divergence from four D = 5
operators or two insertions of D = 6 operators, we will need a counterterm which is
an Lg operator. Continuing in this way we can generate operators of arbitrarily high
dimension, in order to eliminate the UV divergences for the case: D > d. Thus the main
difference between renormalizable theories and EFT’s becomes apparent. In the case of
renormalizable theories: 0 < D < d (Lp.s5) we generate operators with D < 5 which
we have already included in Lp.5 in order to eliminate the UV divergences. Therefore
the necessary counterterms have already been included in the Lagrangian. In order to
make EFT a renormalizable theory we will need an infinite number of higher dimension
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operators.Nevertheless, we can avoid this by choosing a maximum value of # in order
to obtain the correction of the amplitude of a process. In this case, only a finite number
of operators contribute.

2.3 LSZ Reduction Formula

In QFT, the LSZ formula provides a relation between correlation functions and S-matrix
elements. Therefore, it is a useful tool for calculating scattering amplitudes using Feyn-
man diagrams in field theory. In momentum space, correlation or Green’s functions are
defined by the relation:

n X n .
G(pll'"pm;EIl/-'-EIn) :H/d4yi€lpi.yiHd4Xje_qu'xf
i=1 j=1

X (O] T{Pp(y1)--P(ym)P(x1)--p(xn)} |0) -

where p; and g; corresponds to the outgoing and incoming momenta respectively. If we
assume a special case where p; = q; = p then we have the ¢ propagator

(2.38)

Glp) = [ dxe (0] T{9(x)9(0)}10). 2.39)

Therefore if the field ¢(x) has the property to create a single particle state with in-
variant mass from vacuum then the propagator has a pole at p> = m?:

ivZ

—_— 24
p? —m? +ie’ (240)

D(p) ~
where Z is the renormalization factor. From Eq. 2.40 we can extract that the renormal-
ization factor is finite, since D(P) is also a finite quantity. Generalizing this result for n
incoming momenta and m outgoing momenta we take the result:

ﬂ(i@) ﬁ(i@) (PPl S |1t} =
1= ]:

lim lim 1_[(;712 — m?) 1_[(q]2 — m?)G(P1, P G, - Gn)-

qi—m? pi—m? j=1

This result can be modified as:
n . m .
(p1--Pm| S |q1eegu) =" q/d4xielpf'xf(—8,2 + m?) 1_{/d4y]»e_l”7/'yf(—8]2 + m?)
i= j=

X (O] T{p(y1) P (Ym)P(x1)--p(xn) } 0) -

From equation 2.41 we can conclude that correlation functions have a complete sep-
aration from physical particle states that enter the S-matrix. Additionally, equation 2.41
holds for composite operators, i.e., those that appear in EFT.

(2.41)
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2.3.1 Field Redefinitions

To demonstrate that fields redefinitions leave the S-matrix unchanged, we will prove
that the latter is not affected by the choice of field. To do so, we will begin with the
definition of the functional integral in the presence of a source J(x) as follows:

1= / Depel [ LI#1+19. (2.42)
The definition of the Green’s functions, in the path integral formulation is given by:
_ I Dep(x1)(x2).. q>(xm>el'5<4’)
0|T m)}|0) . 2.43
(01 T{9(x1)--9(xm)}0) e .0
We can rewrite equation 2.43 in the form:
1 1 4 )
0| T{d(x1)...p(x) } |0y = — Z . 2.44
If we assume a local field redefinition of ¢(x):
¢(x) = Flo'(x)], (2.45)
i.e. a transformation of the form:
N; N,
=Y 0/ (1) + ) 00" (), (2:46)
n=0 n=0
where Ny, N, are finite, then the new Lagrangian defined by:
Llg(x)] = L[F[¢'(x)]] = L'[¢' (x)]. (2.47)

We define a new functional integral with the field ¢’ (x) and the new Lagrangian L’ as
/ D¢'e L'g']+]¢" / Dee'’ JLgl+Te. (2.48)

If we apply the same transformation to the functional integral that we started with, we

obtain:
=[5y

Therefore the functional Z produce Green’s functions of ¢(x) computed using the La-
grangian L]¢(x)] or Green's functions of F[¢(x)] computed using the Lagrangian L'[¢(x)].
The functional Z’' produce Green'’s functions of ¢(x) using the Lagrangian L'[¢(x)].
However, the S-matrix element is invariant under field redefinition as long as:

(p| Fl¢]10) #0, (2.50)

since the LSZ formula is not affected by the choice of the field redefinition. In conclusion
in an EFT we have much more freedom to make field redefinition from renormalizable
theories(where only linear redefinitions are allowed) provided that we respect the EFT

o S L 1+IFl¢'] (2.49)
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power counting.

2.3.2 Equations of Motion

A common problem we face when working with the bottom-up up approach is how
many operators to consider at a scale 1/ A. To minimize the number of operators needed,
we will use the equation of motion in the path integral approach, as shown above. Let
E[¢] be the classical equation of motion:

s
o

Also we define 6[¢] to be an operator with a factor of the classical equation of motion:

E[¢] (2.51)

6S

6l9) = FiglElg] = Figl 5y (252)
and the functional integral of the form:
711, 7] = / Depel I LgL+19+1019], (2.53)

The correlation function (0| T{¢(x1)...¢(x)0(x)} |0), with one insertion of the operator
6 is given by the relation:

B =11 6 ) ) N
O] T{p(x1)---¢p(xm)0(x)} [0) = Z[], J] " - EARIEBIE =70 (2.54)
The change of variables: )
¢— ¢ —JF[¢] (2.55)
give us the transformed functional integral:
M= [Dg'| 2P| Lo —ITF1+0(P)
Z1,7) = / DY | 5" +0(P), (2.56)
Where we used the Taylor expansion:
6l¢" — JFI¢']] = 0[¢'] = JF[¢'10(¢") + O () (257)
Using that the jacobian:
Sp(x) | _ FOF[¢"(x)]
‘54,/(x/> = det [5(96 —y) =] e (2.58)

is unity in DR we rewrite the functional integral as:

Z[],]] = /D4;eifL[¢]+]<P—ITF[<P]+O(T)2, (2.59)
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where we make the replacement: ¢/ — ¢. Taking the derivative with respect to J, and
setting | = 0 after the calculation we take:

[ Ppp()e Lo — — [ Do) j(x)Flp(le A 260)

We can prove by induction (or by differentiating n-times equation 2.60) the relation:

(O] T{(x1)...¢(xn)0(x) } [0) = i} S8 (x —x7) (O] T{p(x1)...p(xr)-..p(x)0(x) } [0) . (2.61)

The S-matrix element with an insertion of 6 vanishes since if we work in momentum
space, the right-hand side of eq. 2.61 has no pole in p, at the 7' place. Therefore the
RHS of 2.61 vanishes:

(q1--9k] 0 |qk11---9n) =0} (2.62)

Equation 2.62 implies that the classical equations of motion can be dropped. This
means that we can shift the Lagrangian by equation of motion terms. We can work
more practically in the following example. We assume an EFT Lagragnian of the form:

1 1 1 1 c c
_ 1 pp o202 L 3 L4 €1, €25
L= S0u90'p — SmPp? — 29’ — LAt + 1970 + 20, (2.63)
where ¢ a real scalar. We find the equation of motion:
Elg) = 29— ng — 589 — 379+ O() (2.64)
2 3! A ’

where terms of + are dropped since they produce higher order operators. We redefine
the field ¢ as:

»— 9+ 29" (2.65)
After the substitution, we take the new Lagrangian:
£ =L+ LE[g) (2.66)
= A ) .

which can be written in terms of ¢:
1 1 1 1- ¢
L0=50updlp — ™ — 21897 — TAP" + 597, (2.67)

where we make the substitution:

§_8, .20
TN
A A g,
TR N
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Therefore, by using equation 2.67, we arrive at a simpler theory where the fac-
tor ¢?9¢ is extracted. Despite this difference, the two Lagrangian describe the same
physics. For example, if we consider the amplitude of the process ¢¢ — ¢¢, in the case
of the second Lagrangian, the diagrams that contribute to the process are as follows:

¢
¢ ¢
¢ ¢
¢ ¢ ¢
We calculate the amplitude to be:
. P
ZM(P(P*)(P(P - ZA - lm, (2.68)

where g the 4-momentum of ¢ propagator. The Feynman diagrams that contribute to the
same process are different in the case of the first Lagrangian as it includes two additional
diagrams. These are shown below:

¢ ¢ ¢ ¢

¢ ¢ ¢ ¢

where the crossed dot corresponds to the vertex from the term ¢?9%¢. Therefore the total

amplitude is:

2 2

ig

A . c1g 9
which after some algebraic manipulation gives:
! -3 . 52

72— m?

Therefore we found the same amplitude we obtain from the previous Lagrangian. We
can use the same approach for more complicated theories where calculations become
difficult due to the presence of derivatives. We note that the use of equations of motion
and field redefinitions of operators at higher orders can be found in [4], [17] .

2.3.3 The SMEFT Lagrangian

The SMEFT which stands for Standard Model Effective Field Theory, is an EFT that is
built from the fields of the SM. It is commonly utilized in computations for Beyond
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Standard Model (BSM) scenarios. We can write the full gauge invariant Lagrangian of
SMEFT up to O(A~3) in the following form:

/ 1
Lomerr = LGy + QY + QY + X cQf + 0(3). @7
X f

Where E(S%\),I is the Standard Model Lagrangian and is renormalisable since it contains
only two and four dimensional operators .We denote with Qg?) the 6-dimensional oper-

ators that do not contain fermion fields, and with Qj((é) the 6-dimension operators that
contain fermion fields. The only 5-dimension operator that contribute to the SMEFT

Lagrangian is Q,S?,) which is a neutrino mass term, the lepton -number violating oper-
ator (Weibner operator) and violates the lepton number: AL = 2. In equation 2.71 we
made the following rescaling for the Wilson coefficients: C"" — CTW, and (CX, c'f ) —
(%, %) Since we have the definition of the Lagrangian of the theory we can proceed
to the spontaneous breaking of the gauge symmetry and after the appropriate rotations
of the fields, we can derive a physical mass basis of the SMEFT. The SSB of the theory,
the quantization in the SMEFT in the Warsaw basis and the Feynman rules that we are
going to use for the calculations was given in:[18].
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Chapter 3

Constraining the CKM Matrix in the
Presence of New Physics

In this thesis, we aim to investigate the impact of New Physics (NP) on the global
CKM fit and determine an effective and straightforward approach to constrain the CKM
matrix while incorporating the corrections arising from BSM physics. Our theoretical
framework, in order to analyze flavour data, is the Standard Model Effective Field The-
ory(SMEFT). By performing this analysis within the SMEFT, one can establish the rel-
evant Wilson coefficients, which can be applied to a wide range of New Physics mod-
els. Additionally, SMEFT allows the accounting of complex correlations between differ-
ent observables, such as EW precision measurements, leptonic processes, quark-flavour
transitions. As we refer, SMEFT is a extension of the SM Lagrangian with higher di-
mensional operators composed of SM fields. The leading NP effects are encoded in
the six-dimension Wilson coefficients and in the parameters that are already present in
the SM Lagrangian as the gauge and Yukawa couplings and vacuum expectation value.
Therefore in a consistent analysis we should consider the presence of those NP contri-
bution that affect the input observables used to extract the SM parameters. In contrast
Standard Model CKM fits necessitate multiple distinct observables which are measured
using experimental set-ups and hadronic inputs with big complexity. This results in the
use of more complex theoretical approaches that may not rely solely on the SM. Due to
this factor, the CKM fitting in a global scale requires a general BSM framework such as
SMEFT.

In the following work, we will apply a framework to select a set of input observables
and use them to express the CKM parameters in terms of Wilson coefficients that can be
deduced from these observable. Therefore, the new combinations of Wilson coefficients
will define the corrected matrix elements of the CKM matrix. The tilde Wolfenstein
parameters can be utilized to analyze various flavor processes in a coherent manner
and to establish constraints on the behaviour of the new physics.
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3.1 Fermion sector and Definition of the CKM Beyond SM

In the current thesis we will make use of the fact that we rotate the fermion sector from
the flavour to the mass basis. More specifically in order to diagonalize the mass matri-
ces:

/ 2 ~'vv ! v /C(PUZ
MV:—UC ’ Me:ﬁ FE—C ?
_v o v

M’ T, — c’“sf’li2 M r,— C’d4"i2
u \/E u 5 /7 d — \/E d 2]’

which arise after the SSB, we perform the rotation of the fields by the unitary matrices:

(3.1)

¥x = Upxyx, 3.2)

where p = {v,e,u,d} and X = L, R are the indices for the chirality. The CKM matrix on
SMEFT and the PMNS matrix are defined as:

V= U} Uy, Upmns = Ui Uyt (3.3)

We note that the matrices that we used to rotate the fermionic fields are "absorbed" into
the redefinition of the Wilson coefficients, which can be found in [18] (in addition the
final Feynman rules have been written in terms of V and Upyiys matrices).

Therefore we can define the diagonalizable mass matrices as follows:

M, =U]; M\U,g = diag(me, my, my),
M, =Ul M\ U, = diag(m,, m., m;),
My =Uf MhUyg = diag(mg, ms, my),
M, =UL, M\ U,g = diag(m,,, m,,, m,,).

(3.4)

Since we have defined the basis on which we will work, we define the Wolfenstein
parameterization of the CKM matrix in the SM:

Vud Vus Vub
V= Vcd Vs Vcb =

Ve Vis Vi
1—1a2 - Ipt A AN (14 JA%)(p — i)
—A+ AN (3 —p—iff)  1—3A%— fAH(1+442) AA?
AN (1 —p — iff) —AAZ+ AN (L —p—i7) 1-1A2)4
+ O(A%).
(3.5)

The parameters W; = {A, A,p, 77} are the Wolfenstein parameters in SM, while we re-
define the parameters W; as W; in the SMEFT and we refer to these as tilde Wolfenstein
parameters. The parameters in SMEFT must contain the contribution of the Wilson co-
efficients(NP contributions). We also define the tilde CKM matrix elements in SMEFT
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tobe: V,y=1-— %;\2 — %7\4, Vs = A ete. In the following analysis, we will calculate the
contributions to SMEFT from flavor observables.

3.2 LEFT Operators

In this thesis we will work at low energy level, bellow the EW scale, where we integrate
out the particles in the EW theory which are heavy. To do this we will work with the
low energy field theory lagragnian (LEFT):

Lrerr = LoED+0CD + Z Lioi(s'6) +0O(A™), (3.6)

where the Wilson coefficients, L; of 6-dimension operators in the LEFT lagragnian
can be related through a tree-level matching at the EW scale, with the Wilson coefficients
of the SMEFT. In order to fix the CKM matrix we will consider the operators that affect
semileptonic and AF = 2 transitions. The relevant AF = 2 operators are as follow:

[Qu i =(dpidpj) (dpivy*dy ;)

[QXdRR]ZJ <_Rz’)’VdR])(dR1’Y dr,j)

[QZ}LR]U =(dL Z'deL])(dR iv"'dR ;) (37)
[Quz N ijiy =(driy" TodL ;) (dr i T dg ) '
[Q5a™Rijij =(dLidr ) (dLidr,j)

[Q58 R iy =(dLi T dr ;) (dL,i T dR ),

where T” are the SU(3). colour generators of the fundamental representation. The
semileptonic operators are the following;:

[Queiiiije =(Triv"er,:) (drjy"ur )

[Quoinliiik = (L, eri) (dr jY"ur)

[Qoeliije =(FLiv"erj) (dLiv"ur ) (3.8)
[Qi Ktk = (UL, T er j) (AL, T ug )

[QotJiije = (VL ieri) (dR ju k)

As we will see, we focus on these two cases since our choice of observables to calculate
the corrections of the CKM matrix are processes that contain semileptonic operators that
contribute to the transitions d — up~vy, s — up~v,, b — ut v, and AF = 2 operators
that contribute to the mass differences AM; and AM,;. We denote the full tree-level
matching condition for the LEFT Wilson coefficients with the SMEFT Wilson coefficients
in appendix D. The general relation after the tree-level matching can be written in the
following form :

Li = fM(gi,m;) + ZX:fX(gi, m;)C X8, (3.9)
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where foM(g;, m;) are function of the mass and couplings and they contribute at the
tree-level matching of the SM. With the function fx(g;, m;) we denote the contribu-
tion of SMEFT’s 6-dimension Wilson coefficients C(X). We note that in order to find
the matching of coefficients at the electroweak scale, one needs to use renormalization
group equations (RGEs). The RG evolution between the 6-dimensional coefficients and
the Low Energy Effective Field Theory (LEFT) Wilson coefficients can be written as:

Li(p1) = Zﬂ(#lzﬂz)j,xc(x’@(ﬂz)z (3.10)
]

where #(11, 1t2) can be obtained using QCD+QED running. One-loop QED and
QCD running are known for the full set of LEFT operators [28],[1].

3.3 Flavour observables for the Extraction of the CKM in SMEFT

For the extraction of the numerical value of the CKM matrix in the SM (more specifically,
for the extraction of the numerical value of the non-tilde Wolfenstein parameters: W; =
A, A, p, 1), the following experimental observables have been used (which are described
in detail in ref.[22] ): leptonic decays and semileptonic decays (AF = 1 branching ratios),
CP-violating observables(AF = 1), and neutral-meson mixing (AF = 2 observables). For
completeness, we present them in the following table:

Observables SM-processes

Leptonic- m— uw,K—ev,K— uv, v — Kv, 7 — 110,
decays (AF=1) D — yv,Ds — uv,Ds — tv,B — TV
Semileptonic- K — mev,D — mev,D — Kev, B — 7tev,
decays(AF=1) B — Dev, B — D*ev

CP- B — nmT, pm, pp, B — ]/1,[:1((*), (co)K,
asymmetries B — DMK®) B, — 1/, p(2S)¢
(AP ex(KK), AM(B4By), AM; (B.B,)

In contrast for the extraction of the CKM matrix in SMEFT we will need a shorter list
of experimental observables. More specifically we will choose the observables in order
to satisfy the following conditions:

¢ The set of observable must have a good sensitivity to all four Wolfenstein param-
eters,

¢ The set of observable must contain the minimum number of the Wilson coefficients
in order to minimize the number of correlated observables.

¢ Each observable must have the minimum experimental uncertainty and the theo-
retical framework of these observables must provide clear results.

From these three rules, we can reject many observables for extracting the CKM matrix
in the Standard Model (SM). For instance, the second rule leads us to exclude transitions
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such as b — clv;, where | = e, j1, since there is no clear evidence that new physics (NP)
could be responsible for the deviation of these decays. Thus, we cannot establish a clear
relation between the CKM parameters and the NP contribution (Wilson coefficients).
Additionally, based on the second condition, we can exclude D and D; meson decays
compared to the AF = 2 decays. According to the third rule, non-leptonic decays of
ref.[22], which were used to extract the CKM matrix in the SM, cannot be used for cal-
culating the CKM Beyond the Standard Model, as SMEFT introduces hadronic matrix
elements that cannot be calculated or whose connection with the hadronic elements is
unknown. Moreover, the third condition suggests that semileptonic decays are often
more sensitive to a broader set of Beyond the Standard Model (BSM) operators than
leptonic decays. Hence, semileptonic decays may be disfavored.

One observable that is sensitive to the A parameter of the CKM matrix is K decays.
However, it is worth noting that the form factor fx from the decay K~ — pu~v, has a
large experimental uncertainty. If fx does not rely in the experimental result of T — uv,
we cannot use K decays to calculate the CKM parameters in BSM. On the other hand, if
we assume that the decay constant fx relies in the experimental result of f,, the calcu-

lation of the ratio {[—: is much more accurate than in the former case. Therefore, instead
T(K—puv) |Vus|
T(m—uv) |Vud|
are sensitive to the remaining Wolfenstein parameters are AM,;, AM;, and B — tv for
the calculation of V4, Vi, and Vy;, respectively. Therefore, the flavor observables that

we will use for extracting the CKM matrix are as follows:

of using I'(K — pv), we will use the ratio to calculate

. Finally, decays that

['(K— uv)/T(t — pv),

(3.11)
I'(B—tv), AM,; AM..

We can observe the absence of the top quark from the choice of observables, althought
this is usual in the case of B-physics where we include leptons and quarks exept the top
quark, in contrast for EFT in lower energies we integrate out particles as b quark.

3.4 General Strategy for the Extraction of the CKM

In the SM theory in order to calculate the value of VEV, we have to measure the value of
the Fermi constant: Gr in y decay: = — e~ + 7, + v,,. More specifically in the effective
theory, in a scale: p ~ m,,, we can define, similar to 2.24 the addition to the QED lagrag-
nian which describe the interaction between 4-fermions as the effective lagragnian:

Lerr = ~2V2G (77" ) (eL7ave) + hoc. (3.12)

Therefore, by integrating out the heavy W field at tree level, we find the relation

Gr = \/%UZ . The corresponding numerical value of Gr in the Standard Model is 1.1663787

10~°GeV ~2[8], using this we can find the numerical value of the Higgs Vev to be v =
246.21965(6) GeV. However, in the case where we assume the SMEFT as the high energy
theory, we have to add the contribution of the LEFT Lagrangian, which contributes to
muon decay at the scale of the muon mass y ~ m,,.
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L= LY"™ (0,7 vie) (@rvape) + LV (0nv™vie) (@R vupir), (3.13)

where for simplicity we used the following symbolism: [LY],ce;, — LYEE. We proceed
to the computation of the muon decay rate and we find terms proportional to |LVE|?,

|LYER|2 and a term proportional of both the LEFT coefficients: Re(LYEELVER*), Since the

2

SM has only left-handed charged currents the |LVER|2 term, is of the order 43 and can

be dropped, while the third term is suppressed by a term of the order ZZ—; X X—Zz ~ 21W X—Zz,

and can be dropped. Therefore the only contribution in the y decay comes from the
LVLL, Using the Fermi theory as above we find:

2LVLL
Gr = — \f4 . (3.14)

We proceed for the calculation of the tree level matching of the LEFT coefficients with
the Wilson coefficients (SMEFT). We find for LVl

2 1(3 1(3
LM = =55 4 Clty + Clye — 2017 — 28, (3.15)

The Fermi constant can be written as:

1 O0Gr

Gr = 1+ —), 3.16
FS o ( G ) (3.16)
where: 5G , 1
F 1(3 1(3 _

Gr - _Uz(icﬁeeﬂ + Ecélwe - ng( ) C?;( )) + O(A 4)/ (3.17)
therefore the definition of the tilde VEV which contains SMEFT correction can be written
as: 5

b= =1+ D), (3.18)
1+ % v
where: %” = —%%. From the definition 3.18 we can give ¢ the value of the VEV of

the SM: 0 = 246.21965(6)GeV. We will use this redefinition of the Higgs VEV in order
to express the initial SMEFT parameters in terms of the "indirect" Wilson coefficients of
equation 3.18.

In section 3.1 we defined the tilde parameters of the CKM matrix in SMEFT as W;.
The relation between the parameters in SM can be written: W; = W; + 6W;, where 6W;
are the linearized contribution from LEFT or SMEFT Wilson coefficient. In order to
constraining NP in SMEFT we will work as follows:

If we denote with O, where a = {1, 2, 3,4} the flavour observables of equation 3.11,
we can expand it in terms of the NP contribution as:

On = Osma(Wi) (14 Y aiLs) = Ospa(Wi) (1 + Y biC”) (3.19)
,where L; are the LEFT wilson coefficients and Cl.(6) the SMEFT 6-dimension operators
while 4; and b; are some complex numbers. From the mapping of the LEFT to SMEFT
we can find the relation between the parameters a;, b;. From the definition of the W;
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parameters we have that the flavour observables can be written in a form dependent
exclusively from the W; in a form similar to the SM:

Oa(Wi) = Osap,a(Wh). (3.20)

Using equation 3.20 and the experimental inputs, we can extract numerical values for
the W;. With these numerical values, we can obtain the numerical result of the CKM
matrix in BSM. Once we have found the numerical result for the CKM matrix, we can
proceed to expanding the elements of the CKM matrix in terms of the linearized Wilson
coefficients. We can write a general form for the expansion of any flavor measurement
O; in terms of NP contributions as follows

Ou = Ousm(Wi) + SO, F + 5O, (3.21)

where the term ng{\‘fff denotes the Wilson coefficients that contribute directly to the
observable, while the indirect contribution is:

~ 90,sm 00Gr 00, sm
W, 2Cr 90

SOt = SW; + +O(A™Y), (3.22)
where the second term is the indirect part from the redefinition of the Higgs VEV.

We note that the CKM matrix V = V(W;) is unitary by construction. This does
not result in any loss of generality since we do not define the nine different elements
of V as the elements extracted from nine different observables. In this approach, we
only need to "sacrifice" four measurements to fix the four elements of the CKM matrix.
Therefore, any additional observable can then serve as a probe of new physics. In the
next sections, we will apply this algorithm (equations 3.20-3.22) in order to find the

corrections in CKM for BSM.

3.5 P Decays

The decays P — Iv, where P canbe 77, K, or B,and [ = 7, u~, can provide accurate data
in hadronic weak decays and give information to test the CKM (Cabibbo-Kobayashi-
Maskawa) matrix in the Standard Model, as well as detect possible new physics (NP)
corrections. We note that a similar analysis for these types of processes has been con-
ducted in [26]. The decay rate for the process P~ — [~ 7l can be calculated as:

2
B B 2 Mpem? m?
T(P~ —1 171):Z|Ulva|2|qu|2fPi6;ﬁ4l (1— 5 ) (146p)(1+Apy,),  (323)
a mpi

where q = d, s for P = 7, K, respectively. The factor ), |Uj,, |2 comes from the sum over
all possible neutrino flavors, where U is the PMNS mixing matrix. The values of U have
been taken from [43].

0.822 £0.010 0.547 £0.015 0.155 £ 0.008
Upmns = | 0.451 £0.014 0.648 £0.013 0.614 £0.018 |, (3.24)
0.347 £0.015 0.529 £0.014 0.774+0.013
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where the PMNS matrix has been calculated with great accuracy. We note that equation
3.24 corresponds to the magnitude of the elements of the Upyns matrix. We define fp+
to be the QCD semileptonic decay constant of P through the relation:

(0] gy*ysu |P*(q))=ig" fp+. The factor dp; corresponds to the electromagnetic correc-
tions in the SM and are given [37]:

1+ 6p = Sew [1 +Z (F(m%/m%) + §log Me cfﬂ + O(e*pt), (3.25)
T 2 mp

where « is the structure constant, S, = 1.0232(3)[34] encodes universal short distance
distance corrections to the semileptonic transitions in the SM at y = m,. The function
F(x) describes the leading universal long-distance radiative corrections to a point-like
meson [39]. The constant Cf encodes hadronic structure effects that can be calculated
in Chiral Perturbation Theory [21]. We note that the EM corrections are estimated to
be between 1 — 3%, with an uncertainty smaller than the current uncertainty of fp. We
define Apj, to be the linearized NP contribution and they are given by the relation:

\4 i ma 2
Apu::<>)1+f;q—l)-—1&
v (my + my)m, (3.26)
2Re(e) — 2 R (“W)+4§34—O(A—%
4 (my 4 mg)my P v

Where we define ei’q and egm to be linearized in terms of the SMEFT’s Wilson coeffi-
cients, or the LEFT coefficients by the relations:

2
l U * *
et = 1= 5o IV )i — (LY ) i)
WV (3.27)
2 |
1 % * * *
e = gy (LR i = (LS8 )V = (L350 )

at hadronic scale where: p; = {2,2,4.3}GeV for g = {d,s, b} correspondingly. In the
case where we approach the EW scale, in order to relate the coefficients at this scales
with the matching conditions at the EW scale one needs to use RGEs. Using three-
loop plus one-loop QED running|[2], [27], the parameters eiﬁ, of equation (7.16) can be
correlated with the LEFT operators as follows:



3.6. Mass Differences 31

d
efflu = —1.0094 — 2Vu EUW (1 0094[Lvedu(VEW)]yudu 1L 0047[Lvedu (‘uEW)]yudu) ’
2
d 1%
egu - m Z u]m (1‘73[Lz§§i§(yq)]yadu - 173&‘551%{ (‘uq)]yadu - 0‘0024[L££§(Vq)]yadu) ’
a
eius = —1.0094 — Z u]/lll (1 0094[Lvedu (IuEW)]yasu 1. 0047[Lvedu(yEW)]yasu) ’

2
%
e;i“:—*zvuszuw (1.73[L§5d§<us>]m LZBIL38 (1) as — O-0024(LESE 1) s )
a

et =1.0075 — 5 Zum (—1.0075[L {5k (1w ), — 1-0038[LLEE () )
ub

== 50 Zum (1ASLERR (7)) st — LASILERE (70)] s, — 0.0024[LESE () 2 )
ub

(3.28)

where a is the coefficient corresponding to a neutrino, namely a = {v,, Vy, vz} since we
have summed over all possible neutrinos to compute the decay rate. The LEFT Wilson
coefficients of Equation 3.28 are related to the SMEFT Wilson coefficients in appendix
D. We will use the results of Equation 3.28 to calculate the corrections of CKM elements
in terms of the SMEFT Wilson coefficients.

3.6 Mass Differences

The Mass Differences AM,; and AM; of neutral mesons B;, where: g = {d,s} are given
by the relation:
qu Bq

127

which is in agreement with [24] and [5],where B! are the so-called bag-parameters, and
they are defined as the matrix elements: <Bg| Qi |B2) up to a normalization factor. We
denote the parity-even components of operators in the SUSY basis as Q; (appendix D).
The numerical values of the bag parameters are given in [15] . We denote with Apy,, the
quantity:

AMy = Vi Vig* (1 + Bam,) — 55— qul(mb) (3.29)

4 |~ A0 5 0@ c@ c.g@ @
L+ A, = = (qu)C Z <§ = || =
C1,5M i=2 By C1 sm =23 By Cl,SM
@ , &0 @) ~) @) &
v Ciap+C 5 C;B,7 C CB" C (3.30)
L4 "4 Re | =27 —— + Ry, {Z R e ) Wiy it ” +
C1,5M i=2 By Cisy =23 By Cigy
1
O(—+3)
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where the factors C; = {1, %5, %, %, %} and Rp, = (771171173;1# while: Cy nyp = CY’) — C%)M.
We note that the mass of b-quark mass had been taken at the scale of the b-quark mass
itself, 1, ~ 4.3GeV. Therefore the mass of b-quark in MS scheme had been calculated:

my(my, MS) = 4.29(12)GeV. (3.31)

The parameters C; and Ci express the contributions of the operators from the SUSY basis
as denoted in Appendix D. The parameter C; s) is the exact calculation of the two-loop
contribution in the SM, as defined in the appendix. We define the ¢ parameter to be:

BS
= ﬁ 5 (3.32)
d 1

This parameter can be calculated more explicitly in the case where we calculate the
d
SU(3)-breaking ratio Bgd/ o) = g% in the MS scheme instead of calculating B; or B} sepa-

rately. This occurs due to the correlations between the parameters. To take into account
these correlations, we rewrite equation 3.30 in terms of the parameter ¢ in the case where
q = d as follows:

2 NS ,,,2
dest Bymyy

1271'17252 Sl(mb). (333)

AMg = [VipVia*(1+ Aam,)

Numerical values for the { parameter can be found in [31], [3]. In order to express the NP
contribution in terms of the SMEFT’s Wilson coefficients, we performed the tree-level
matching between the LEFT Wilson coefficients of the process and the SMEFT’s Wilson
coefficients in Appendix D. Additionally, to find the relation between the coefficients C;
and Ci with the LEFT Wilson coefficients at the electroweak scale, one should make use
of the NLO evolution matrix [13] . At a scale of gy = Mz, the relations are as follows':

C\? = 0.858[LYF (jew) ] gbaps
Ciq) = — 0.755[Ly "R (1ew)]gogs — 1.940[LYT"R (1EW)] qoghs
C = — 1.856[LYIR (jpw) ] gogp + 0237 [LYSR (1ew) ] gogs
CW —0.858[LYRR (1ew)] b

(3.34)

Using the relations of equation 3.34 and (D.2) one can find the matching conditions
of C; and C; coefficients with the SMEFT Wilson coefficients. We note that a matching at
higher order, O(1/A*) between the LEFT and SMEFT coefficients has been in ref.[10].

3.7 Numerical Values of Observables

We will use two of the four input observables: T'(B~ — Y, T v,) and %::7%, in
~ 7 |2
order to find the numerical value of the CKM matrix element |V,;|? and the ratio Jg“jz

We define ‘71‘]‘ as the CKM elements that absorb the NP contribution. For the decay

1We notice that we only took into account the coefficients C; and C; up to order O(%)
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I['(B~ — Y, T v,), we define:
Vil* = Vi (1 + Apey). (3.35)

To calculate the numerical value of |V,;|?, we will use the input values in Table 2 of [23].
Using these values, we obtain:

V5| = 0.00425 - 0.00049 |, (3.36)

where we neglected electromagnetic corrections since they are practically negligible
compared to the experimental sensitivity.2 Additionally, we note that the factor }_, |U,-,,
0.999326 ~ 1, which does not affect the result of equation 3.36. We proceed to calculate
|Vus|?

[Vud|?* -
rately, but in these cases the element W; = A would have large uncertainty, since the
form factor for Kaon, fx, does not rely on f; and has been calculated with large uncer-
F(K7‘>Za f'{ivﬂ)

T(m=—p= Y,va)’

2=

the ratio One could determine the CKM matrix elements |V,s| and |V,4| sepa-

tainty [7]. Therefore, to compute the W; parameter, we will use the ratio
which is calculated to be:

_ _ ~ |2 - 7
T(K™ = p Lova) _ |[Vas|” fome \" % (14 6¢/2), (3.37)
L= = p= Lava)  |V," f2mn (1- mg,)z

We notice that the value of jﬁ—i had been taken from FLAG [3], which combines sev-
eral lattice determinations for this ratio of decay constants without introducing any un-
controllable dependence on NP via the pion leptonic width. The NP contribution is
encoded in the ratio:

[Vis| _ [V

= 1+ A , 3.38
|Vud‘ “/ud’( K/n) ( )
where we define: 1+ A
K}lz
14+ Ax/p=+——-, 3.39
K/m 1+ Aﬂyz ( )
which can be calculated up to order O(A~4):
1+ AKﬂz
1 + AK/ = =
T+ Mgy,
(14 Bkp, ) (1 = Drys,) = (3.40)
2 Hus 2 uud
2Re(el" — ") — 2 (myRe(ep ) _ mzRelep ) +O(A™Y).
my- my + mg my +mg

2We note that the decay constant fB* is independent of the experimental value of the QCD form factor

-
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Using the numerical inputs of Table 2 of [23]we find the ratio to be:

[ Vis|
| Viad|

= 0.23131 = 0.00051 |. (3.41)

The numerical error is completely dominated by the uncertainty of fx,,. Continuing
with the mass-difference transitions, we use Equation 3.33 to calculate the following
quantities:

Vi Vigl* = Vi Vial (14 Bam,) (342)

Referring back to Table 2 in [23], we find:

|Vip Via| = 0.00851(25), |V, Vis| = 0.0414(10) (3.43)

3.8 Numerical Results of CKM

We summarize the results from the above analysis to be:

Vsl _ 23131 2 0. 000050, | V5| = 0.00426 + 0.00048
|Vid| (3.44)
| Vip Via| = 0.00851 £ 0.00026 | VipVis| = 0.0414 £ 0.0010.

We found identical results compared to those of ref.[23]. In the following work, we will
use the numerical results of equation 3.44 to calculate the value of the tilde Wolfenstein
parameters. We start by writting the observable quantities as functions of the Wolfen-
stein parameters as follows:

A
N - 1- . ~
Vip| = (AP +A° OA6>A 02 + 772
|Vio| ( +SAFOW) ) AP+ (3.45)

The other set of equations to calculate the numerical errors of the observable quantities
are the following:

oK, \* (9K, ~)2 <a/ca )2 <8/Ca )
5K, = =45 =5 15A “A5A (3.46)
! \/<3ﬁ p) +<877 ")\ 3A T

! Vus

where K, = {13

of the observables quantities fora = {1,2,3,4}. Solving these sets of equations, we find
the numerical values of tilde Wolfenstein parameters:

Vis|} and 6K, corresponds to the numerical errors
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A=A+0A 0.22537 + 0.00046

A=A+6A| _ | 082840020 (3.47)
p=p+06p 0.194 + 0.024 '
=1+ 07 0.391 + 0.056.

From our results, we can see that the smaller numerical error comes from the uncer-
tainty of A. Therefore, our choice of keeping terms up to order O(A%) was appropriate.
Secondly, we can tell that our decision to use a small number of observable quantities
to extract the CKM matrix results in a loss of accuracy in the limit where the coefficients
of NP are zero, in comparison to SM fits that use significantly larger sets of observ-
ables[16] . In addition, we have to remark that there is a third possible set of solutions
(A, A, p, —17), obtained by replacing # with —#. This symmetry of equation 3.47 with re-
spect to 7 results in "mirror solutions" to the global fits. Although the CKM parameters
in these solutions may differ significantly from those in the SM fit, the total shift will be
cancelled out by a large number of Wilson coefficients. In the present thesis we will not
examine the case of "mirror solution" any further.

Since we found numerical values for the Wolfenstein parameters we can proceed
with calculating the CKM matrix for BSM. In the tilde Wolfenstein corrections 6W =
{6A,5p,67j,5A} there are encoded the NP shifts. In order to relate the Wolfenstein cor-
rections with the Wilson Coefficients we have to solve a complicated non-linear equa-
tion that relates W and 60, = {Ax/x, Apr, Aam,, Aam, }. However we can simplify
this equation by working in the case where O, are relatively small, therefore we can
keep terms up to order O(%)(linear terms of Wilson coefficients). The relation of those
quantities can be written:

SA N
oA T R

~ | =MA A7, : 3.48
5 AATO | A (3.48)
57f Anw,-

The matrix M(A, 4,7, p) is defined throught the relation:
M(A, A, 7,p) = (0)1O, (3.49)
where we define the diagonal matrix:

I['(K— uv)

O = diag (F(T[ - ;u/)'r<B — 1), AMy, AMS) , (3.50)

whoose elements are the SM expressions of the input observables. The elements of O’
are defined by the relation:

O = 90;i

i 9w

(3.51)
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We can express the matrix M in terms of the tilde Wolfenstein parameters up to order
A% as follows:

IA—3A3 ) 0 0 0
N —A+ AA2 4+ cAN* —ceA beA 1A —aeA
M(A, A,7,p) = a—bA% + cAA* c(1—2ae) —b(1—2ae) a(l—2ae)
bp § 2d+3(p—1 ~ ~
LR BT c(1—ptde) L(p—de) —4(1-2ae)
(3.52)
, where we defined the quantities:
1= P+ 01-p)? PP
2 B 2 ’ 2 (3.53)
d=7>—p*+p, e = A*(1—aA?)
Using Eq 3.47 we calculate the numerical value of M matrix to be:
0.1070 0 0 0
M}, 4,7, 5) = —0.786 —0.0039 0.0166 0.401 (3.54)

0.286 0.093 —0.390 0.298
—-0.384  0.200 0.182 —0.382

Since we have the numerical value of M, we can easily express the Wolfenstein cor-
rections in terms of the linearized Wilson coefficients. Continuing, we use equation 3.47
to calculate the numerical value of the tilde CKM matrix elements. The numerical value
of the CKM matrix, including the contributions of the Wilson coefficient, is:

0.97428(11) 0.22537(46) 0.00189(29) — i0.0038(66)
V = [ —0.22524(46) — i0.000156(31) 0.97340(15) 0.0421(11)
0.00764(3) — i0.00370(74) ~ —0.0414(10) — i0.000083(13) 0.999115(49)
(3.55)

The NP contributions are encoded in the numerical error of V.

Using equation 3.48 and the numerical value of V, we expressed the corrections 6V;;
in terms of the Wilson coefficients of the SMEFT. We note that 6V;; symbolizes the linear
combination of 6-dimensional Wilson coefficients. We assumed U;; = §;; for the PMNS
matrix at the beginning, and the results in this case, where U;; = §;;, are provided in the
Appendix F. Subsequently, we negated our initial condition and considered the general
PMNS matrix, which can be expressed in SMEFT as:

Uij = Uppns + Y_kiCi, (3.56)
i

where k; are some complex numbers and C; are Wilson coefficients. The values of Uppns
corresponds to the experimental results of [43]. Since 6V;; had been calculated up to or-
der O(A2), it is efficient to neglect the second term in equation 3.56. Therefore, only
the Uppins part was considered for the calculations. Comparing the two computations
leads us to conclude that when we assume U;; = §;;, the contribution of SMEFT Wilson
coefficients is identical to that when we assume U;; = Uppns. This can be shown by ex-
panding the sum over the Wilson coefficients algebraically in equation 3.28 (Appendix
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E). However, in the latter case, where U;; = Uppmns, additional components of SMEFT
Wilson coefficients appear, which may play a crucial role in determining the corrections
to the CKM matrix. We denote the contribution of those components as 6Ujj. The cor-
rections of the CKM elements, Vij/ where:

(5‘71‘]' = (SVz‘j + (SLIij, (3.57)

have been computed in the Appendix F °.

In conclusion, we have computed the numerical values of 6W; = {6A,A, dp, dn}
with the assumption that we have concluded the PMNS matrix in our calculation (Equa-
tion 3.47). The numerical errors of the CKM matrix elements can be expressed as linear
combinations of 6W;. Therefore, assuming U;; = J;; would result in a loss of generality
since the linear combination ¢Vj; would not include non-diagonal Wilson coefficients.
It is possible that the linear combination JVj; of 6-dimensional Wilson coefficients pro-
vides a better fit for the numerical results of the corrections in Equation 3.55, considering
that it includes non-diagonal Wilson coefficients. Although it should be noted that the
numbers that multiply the Wilson coefficients in 6U;; are typically comparable to the
multiplication factors in the diagonal case. This implies that the contribution of the off-
diagonal Wilson coefficients would generally be small in comparison to the numerical
values of the correction in the diagonal case, in order for the numerical values of the
correction to be the same in both cases. We note that we cross-checked our numerical
results for the CKM corrections with those in [19].

3The numerical results of Ujj correspond to a zero CP violation phase.
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Chapter 4

Applications

In this section we will use the tilde Wolfenstein parameters to investigate various flavour
processes in a systematic manner. We will go over a few examples (in tree-level) to il-
lustrate their application and also demonstrate how they can be used to place limits in
new physics.

4.1 Leptonic Decays

First we will assume the process: K~ — uv. By comparing the branching fraction,
which has been measured with great accuracy, to the predictions of the Standard Model,
we aim to restrict the influence of effective interactions that exist beyond the SM. The
branching ratio of the process is proportional to |V,s| which obtained from the SM-fits.
Therefore to overcome the fact that these analyses may be influenced by NP, which could
have the same effective operators we will write the branching fraction in terms of the
tilde Wolfenstein parameters. Therefore the decay rate of the process can be written as:

2
fKimKim m2
’2 1- m%i <1+‘5K14)(1+AK;12) =

F(Ki - Vﬁﬁl) :|Vus

|2 ’Vus| fKimKimi

m2 \?
v, \2 167104 <1_ 2 ) (1+ 0ku) (1 + Dkyy) =

| us

|us

2 2
|)1|2 |/\|2 fKimKimV

m2 \’
- — = 41
IA+6A)2  Lemot (1 2 ) (1+ 0kp) (1 + Dkyy) (4.1)

mKi

1 fﬁimKimi m,% 2
Al e (17 | (L) (14 Ag) =

149 M
2
framyms, s 260
AP 1674 1= mzyi (14 01)(1 - A k),
K

where we used that ]1 + % ‘2 ~1— 2%. In addition we define:

Agy, =

2Re () 2m? . Sv _SA (4.2)

e G V”S 27
(mu—i—ms)myR( )+4 2/\+(’)( Y.
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We note that in quantities €’} , €},"", 5A are encoded NP terms as defined in equations

3.28, 3.47 correspondingly. Using equation 3.47 we can rewrite equation 4.2 as:

2

m
Ak, =0.1Re (") — 01— K5 Re(™
K, =0. e( ) 0 (mu+ms)my e(ep )+
(4.3)
2 460
19Re(e"y 19— M pe(etdy 4 20V
(€a”) my (my, + my) (™) v

It is clear from Equation 4.3 that the insertion of /A results in the correlation of the pro-
cess 7T — uv, as the terms €/, A P appear. We will use the value of fx= = 155.62(44) MeV
from FLAG and the numerical value of B(K — uv) from the Particle Data Group to
obtain the following constraints for Equation 4.3:

Ak, = 0.0091 + 0.0002 | (4.4)

We assume that the electromagnetic radiative corrections for Kaon are negligible since
they are of the order: dg, ~ 10~2. The numerical error is dominated by the uncertainty
of fx+. Another constraint has been calculated for the process © — uv, in which we
found, using an equivalent method, that:

Ay, = 0.004 4 0.013), (4.5)

where:

2
2m it

el yud ov 1+,
(mu+md)m;,R( ) +4 +2A(1+ 53200+ O(A™Y) - (46)

Ay = 2Re (el —

From equations 4.6 and 4.5 we can extract a third condition, for the quantity:

1+A
R+1= N2
1+An;42
(1 + AI<;42)<1 - AK],tZ) =1+ AI<;42 - Anyz = 47)
oA ~ 1, )
1+ AI<;42 - AnyZ - 27 - 2/\(1 + E)\ )5/\ =

200~ 1.
R i 2A(1+ E/\z)M.

where the numerical value of R is:

R = 0.0050 £ 0.0129 . (4.8)
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Another possible process in order to isolate JA in order to create a constraint would be
the following ratio of decays rates:

2
2f2st5m2 mZ
I, o) |V D16”541< _miﬁ (1+0p)(1+ Ap.r)

= 2
Tsp(t — Wbh) \/EGFIVbeZM?< —*2’5> (”2%2)
o ~f(as)

where we consider the decay width of the process t — Wb in the SM. We denote with:

fla) =125 <2§2 _ i) . (4.10)

For a value of m; ~ 173.3GeV and as ~ 0.118 we find the decay Width of SM to be 1.35
GeV. Using that:

, (4.9)

1% 1—3A% — gA%(1+ 442 1 1 1
VCS _ 2 : 81A2(A4+ ) ~ ‘1+ A4—§/\2—§A4(1 +4A47)| =
t T2 4.11)
1 1
1— A2 — At
' 2 8
Therefore the Ratio of equation 4.11 can be written as:
1 2 fp.mp m2 2
11— 122 — 104 w<1_> (1+6pg)(1+Apy,)
2 167704 2 Dgl Dglyp
F(Ds — ll/) mK:E , (4.12)

Com(t — Wb) vacemd (1-%) " (1+24) f(as)
T6rt as

where:

. 2m? Sv 1.
Ap., = 2Re(e®) — — P __Re(els® 4 2X(1 + ZA2)5A AN @1
DI e(es’) (et mJm; (ep”) +4— +2A( +5 JOA+O(A™7) | (4.13)

S

The last Leptonic decay that we will consider in order to set contraints for all the correc-
tions 6W; is: B~ — 7~ v. We can rewrite the decay rate in the form:

2
0 - w0 =iar® (14 107 (o i) PLEEE <1_ m) |

2 1674 s, (4.14)
(1 + 531’)(1 + ABTZ)/
where we define:
2 2
Aper = 2Re(eb) — "B Re(eft) +4‘L — Vi + O(A™Y), (4.15)

(mu + mb)mr



42 Chapter 4. Applications

where:
OVip = 6AN3 <1 + ;)8) (p —iff) + ASA <3A2 + i)ﬁ*) + AA% (6p —idy).  (4.16)

Using the experimental value of the decay rate (B~ — 7~ v) = 4.38(5) - 10~ 8¢V [8] and
fpt = 184(4) MeV we get the constrain for Ag to be:

Apw = —0.555 + 0.009 |. (4.17)

The error is totally dominated by the lattice uncertainty of fg=.

4.2 W Decays

We will consider the general process: W — ug dy, whereuy = {c,u}anddy, = {d,s,b}.
The amplitude of this process can be written as follows:

. - 2
. _ —1 190 [
lM’IjV—md :“(P1>( gvf]fzfyﬂpL _ 2quVf1g1 de O'WPR _ g 5 Vﬁg] C¢q(3)g1fz’ﬂ P

7 81f2 V2
%Cﬁl}iv’% — 200y Ve, 0™ PLC ) 0(p2),
(4.18)
i (p1)
- My (4.19)
vp,(p2)

, where i (p1) and v(p2) the spinors of dy and u; respectively(additionally we consider
Ypolarization €p€v —> —8uv, where €, the polarization vector of W gauge boson). The pur-
pose of this application is to compare the decay width of the process with exclusive
decay widths predicted in the SM. These exclusive decays predicted within the Stan-
dard Model depend on the CKM matrix Vi which may contain corrections from new
physics. Therefore, in order to understand how the tilde CKM matrix elements affect
the decay rate, we will consider the ratio:

F(W — ud) ~14 Re( ~§g _ 2{Vf1fz

FSM(W - ud) Vflfz Vflfz

)l (4.20)

where T'spi(W — ud) represents the SM prediction obtained by using the numerical
values of the tilde CKM elements and:

ov - C¢‘7(3) 3\5”1“ uW 3\@
M

— mgq AW
09 = _Zjvflfz — 2Vf1g1 o fr + Cglfz qifs Moy Kflglcglfz‘ (4.21)
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is a linear combination in terms of Wilson coefficients. Therefore the total shift of the
specific W decays is §g — 26V}, 5, ,where the terms 6V}, 7, up to O(A*)are as follows:

5VMd :5VCS - )\5)\
5Vus — 5/\

6V,g = —0A w2)

L R4> + AA3 (6o — idn)

2
OV = 2AN 4+ 6AA2.

5

OV, = 6AA3 <1 - 58) (6 — i) + AdA <37\2 +5

One can use equation 3.48 to express 6V, , in terms of linearized Wilson coefficients and
related quantities such as Ak, for example: 0V, ; ~ —0.0247Ag /7, 0Vus = 0.107Ak /1,
etc.

4.3 Top-quark Decay

We will consider the top quark decay to a b quark and a W — boson, in this case the
leading contribution comes from:

t = iM, . pw. (4.23)
WHE

The decay rate of the process up to order O (Z—é) is calculated to be:
t

(2, —1) oC m?
rt—>bwzvzg(fw<2—1-1 2fA > o(=2), 4.24
(4= bw) = [VaPEEE S (- 080+ 270 + 0 ) +OC), @29
where:
m m
5C = (fiy — 1) f12V2CI Vig, (myv) +6ﬁi %Uzgcﬁud%—lbﬁﬁi(mv)(l + ) C Ve,
(4.25)
where we denote with fiy = Mm—VtV Working equivalent as equation 4.20 we find:
I'(t — Wb) <5C 2(5th)
———— R~ 1+Re| =— — —= , 4.26
Tsp(t — Wb) Vo Vi (420

therefore the contribution of NP in t — bW decay has as a result the shift of the SM
value 6h = 6C — 26V, where:

OV, = —ASAN* —2A3A%5A. (4.27)
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4.4 Setting bounds in Leptoquark Model

Our approach in this application involves using the results obtained in F to set con-
straints on specific Wilson coefficients that are commonly found in both ref.[20] and the
CKM matrix corrections. In ref.[20], a comprehensive matching onto the SMEFT of a
model with two scalar leptoquarks, weak isospin, and a doublet has been performed.
Our focus is on the tree-level matching scenario, and the following B-conserving Wilson
coefficients are of particular interest, as they also appear in the CKM matrix(equations
(3.13-3.14) in ref.[20]):

1L\* (1L
oo el (o)
prst 4M%
AlL)*(/\lR)
tequ(yy© _ (Asp)"(Air')
[C I )]prst - ZM% (4:28)
) Ae) ()

prst T 8M%

Where M; represents the mass of the Leptoquark in ref.[20]. We would like to empha-
size that, when going from the Green basis to the Warsaw basis, the Wilson coefficients
remain the same for the case presented in 4.28. We proceed to set constraints for the

1L+ (2 1L 1Ly* (1R 1Ly* (2 1R
3 x 3 matrices { M7, My, M3} = {(ASPI)VI%A” )r (/\Sp?v;?” )/ (ASP;,I?H
dices p and r to be fixed). Our initial approach to setting constraints on the matrices in
equation 4.28 will be based on the results presented in F. Specifically, we will impose
the constraint that every element of the corrections 0Vj; has an upper bound of approx-
imately I'T = 20% of the corresponding CKM elements. The following constraints are

our results for specific choices of the p and r indices(p = r = 2):

)}(we will set the in-

1075,6-1072, %
(Mi)yg < [3:1076,1075, % | . (4.29)

X X *

4 4 st

We utilized the linear combination of Wilson coefficients of Vs to establish bounds in
4.29. In addition, we use the symbol * to denote cases in which we cannot establish
strict bounds or for which there are no such components. An example of this notation

is Cég(;’l), where it should be noted that there is no corresponding Wilson coefficient in
CKM corrections. Working equivalently with 4.29, we obtain the following results for

Clequ(l).
2211 -
/\1L * /\1R
(M2)po1 :( 123\4(2 ) <107°,
1
(4.30)
/\1L * /\1R
(M2)2221 :( 22) ( 12) < 7.1078‘

Mz
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(0)

Working equivalently for [C/**(3)] prep we find:
ALY+ (A 1R
(M3)po11 :( 123\4(2 i) <2-107,
1
4.31)
AlL * /\1R
(M3)2221 :( 22) (2 12) <5. 1075'
Mj

It is worth noting that the same approach used in setting bounds for equation 4.28 can
be employed for the case where p = r = 3.
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Chapter 5

Conclusions

In this thesis, we have examined how the CKM matrix contributes to the search for
NP in the SMEFT. The dimension-6 operators of SMEFT can affect the determination of
the CKM parameters, and therefore we have limited the number of observables to the
minimum possible(3.11). It is important to note that the results from global fits, which
combine all available observations in the SM, cannot be directly applied to explore ad-
ditional flavor constraints related to the CKM matrix. Additionally, we have calculated
the NP corrections for these observables in LEFT at the weak scale, using a tree-level
matching process. Next, we used these observables to determine the numerical values
of the Wolfenstein parameters, W]- (3.47), in order to derive the numerical result of the
CKM matrix in the context of SMEFT. Furthermore, we expanded all nine elements of
the CKM matrix in terms of linearized 6-dimensional Wilson coefficients, up to order
O/ Az). This expansion was cross-checked with [19]. Additionally, we defined the
corrections to the CKM matrix, 5\71-]-, under the assumption that the PMNS matrix is
non-diagonal. In this case, we found an additional contribution, §U;;(3.57), caused by
the PMNS matrix, expressed in terms of the linearized Wilson coefficients. The contribu-
tion of these Wilson coefficients is presented in Appendix F. Our conclusion regarding
the Wilson coefficient that appears in 6U;; is that it must generally be small in order to
not significantly affect the numerical values of the CKM corrections.

We have also discussed applications concerning tree-level diagrams to see how the
CKM matrix in SMEFT affects those processes and how the matrix can be used to place
limits on new physics. In addition, we established bounds on some of the Wilson coef-
ficients that appear in the tree-level matching of the Leptoquark model in Ref. [20].

The method for determining CKM parameters in SMEFT analyses in this thesis con-
siders only a subset of possible flavor observables. While our current selection of input
observables may be considered valid, it is possible that this may change in the future
with advancements in theory or experimental measurements. In cases where the fit
includes all the measurements that are most sensitive to the CKM parameters, no ad-
ditional assumptions are needed for the selection of observables. This approach has
been demonstrated in studies of NP by UTfit[11] and CKMfitter[16], but only in simple
case of NP scenario. In the full SMEFT case this is not currently possible, since global
SMEFT analysis do not account for NP corrections that affect their extraction. Therefore
our current work provides an appropriate framework to consistently include such NP
effects and the uncertainty of the CKM parameters. Althought a global SMEFT deter-
mination of CKM parameters is crucial because it can offer valuable informations about
the nature of physics BSM at high energies.
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Chapter 5. Conclusions
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Appendix A

Notation and Conventions

We work in the natural (Planck) units where:

h=c=1, (A1)
where in this system:
[length] = [time] = [energy] ™" = [mass] ™" = GeV™! (A2)
or:
[x] =[t] = -1, (A.3)
[pu] = [0,] = 1. (A.4)

Therefore we can express every physical quantity in terms of the mass or energy dimen-
sion. For example the mass of electron can be written:

m, = 0.511eV = (3.862 - 10~ 1) "Lem 1. (A.5)
Our convention for the metric is the following:
(guw) = (8") = diag(1,-1,-1,-1), (A.6)

therefore a massive particle has: p,p# = p* = E? — |p|*> = m?. The displacement vector
x# is "naturally raised", while the derivative operator:

) )

is "naturally lowered". The convention for the 4-momentum follow the Shrodinger
wavefunction of single quantum-mechanics particle:

Pu = ioy. (A.8)
The gamma matrices satisfy the Dirac algebra:
{f)']/tr ’)’V} = zgyv- (A9)
We also define: ‘
o = 2yt ). (A.10)

2
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The 9 matrix:

v’ =iy’yly?y = e“”" VYo Yo Yo (A.11)

which anti-commutes with a single y# matrix:
{r"r}=o (A12)
We also use the projection operators:

_ b 5
. 1+ (A.13)

Finally the Feynman’s slash notation is:

d="a,. (A.14)
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For the computation of the decay rate we will consider the case where: [~ = K™ (Equa-

tion 3.23), therefore the diagrams that contribute to the process are the following;:

The amplitude for the first diagram can be written (in Rz gauge) as:

. - - 2
(1) _ 18 18 Ppq(3)  18V" ~pud
IM( ) _qf f7‘( |:\/§V12 + ﬁVlg] Cg12 — mClZ :| X
—i qudv
- — (1= S i L
(qZ—M%v (WV ( CW)qZ_CWM%\/>> .
igv?

_ _i_ v *
i(3) <\/§guzﬂ P — Wuglacg’f) 'yVPL) v(2)

(B.1)

(B.2)

where 1(3) and v(2) are the spinors for the muon and the neutrino. We neglected terms
of 0y, since they are O(MLW) The contribution from the third diagram which contains a

goldstone boson is:
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A3 2p V2 ' $q(3) ” d
iM® =" fr o V1o —I—l\fZUV1g]Cglq2 — \ﬁc U
_ /3 (B.3)
! Z ! PI(3)
¢ —iwMy !”m (W”Wﬂ’wf 0410 Ca )l ’
where we used the relation:
5.1 p+ ‘72
0|z P =——f, B.4
Olar’s[PT(q)) = = —— ~fx (B4)

where m,,, ms, m, are the masses of up ,strange quarks and muon while u and s are the
spinors of up and strange quark respectively. If we denote the propagator of W particle
as DHV in Ry gauge we can rewrite it as the sum of two terms:

Dyv = Ry + K. (B.5)

The first term is independent of {yy:

: quv
~i (e = %)

R - 7 (B'6)
N
and the second term is: )
"quqv
K = : (B.7)
" (P = SwMG ) MGy
If we add the two amplitudes we have:
50,2
(1) _ 8 ¢q(3) _ 18V” ~pud |
iMM +imC =q" fr [\@VH + \/Evlglcglz 2\@(:12
i _ ulv
i (77;41/ Mﬁ,) . (B.8)

q> — M

i —ig v i_vz 1(3)*x v
i(3) <\/§U2a’r P — (\g/iuglacg)gg ) 0% PL> v(2).

Therefore we found the amplitude to be independent of ¢. In practise 4> is much
smaller than M%N therefore we can safely write in the limit: q2 << M2, that:

. Juqv
! (77?“’ B AZI%) 8w
2 2 — 2
9= — My My




Appendix B. Computation of the Decay Rate for P, 53

adding the contribution of the 4-vertex we have the total amplitude of the process:

iMoot —im® o ip? - iMB) =
52

M%Vn <2V12u2a + Tvlgl Uglucg’gg ) + Tvlgl UZaCZfZ( ) _ TUZIXC;PZM .
[@(3)yuPLo(2)] -

. 1g(3 _
= 2ig" freVig, UgyaCyling, [1(3) 7, PLo(2)] —

2
19 f ledgx | _
m, _"_7;;15 V]gl ugzanZZZgl [u (3)PLU(2)] —

i 2 lequ(1)* —
U e 0(3) PLo(2)] -

my + Ms
)
1q°fr lequ(3)x( y v voly (o
4(‘] . PZ)(mu ¥ ms) Uglucglzﬂ (qVPZ —q pz) [ (3)[7}11 ')'V]PLU(Z)]/
(B.10)
where we used: My = %U and the relation:
o2 ( UV _ U .”)
0 110’7“/’)/55 pt — ! . q f7T 9P —9 P2 ) (B.11)
(0] [P7 () = (@ p2) (e & 112)
This result arises as follows: Let A(g?) be a scalar quantity for which:
(0l ay"y"9%s [P*(q)) = A(q%)q"ps- (B.12)

This is the only possible choice in order for equation B.11 not to be zeroed. Using the
identities:
q = p1+ P4, up( = umy, pas = mgs, (B.13)

where p1, p4 are the 4-momentum of up quark and s quark, respectively, we found that:

2y _ —4*fr
Al = (9 p2) (my +ms)’ (B.14)

from which equation B.11 follows.
Once we found the amplitude we can proceed to calculate the decay rate by working
at the C.M.(center of mass) as follows:

r— "’2’2 < M2 > | (B.15)
8rrmy
2 o
where: |py| = mgm;ﬂ’* and < [M™[2 >= 1 ¥ s IM"![2. Using the following equations

for the 4-momentum:

q=p2+ps, q-p2=pa-ps q-ps = +pa-ps, (B.16)

we find the decay rate to be:
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2
fomymx m 2|5 |2
K™ = uv)= 1-— E u K
( ]/l Vu) 16 U4 %( - | 2Vu| | 12|

460 V20 e v Yol )
(1+7+2R( 1—W(—§V12+2V1g122 Uy, [> 822281

* 1(3) (3)x
e T Uz o UaCllY 21, CJ T
12 ’uZVa ‘2 Za ’uzvu ‘2 12

a

2 2
2my

(my +m5)my <2V1*3 Y. ‘UZVaP Z &

ledq lequ 3)
Vlglz gﬂluzu 222291 Z glau2a 1221 )))

lequ(1)
uZanlzzl -

(B.17)

The corresponding decay rate for the case where: I~ = 7~ is a completely propotional
expression, with the substitution: 2 — 1 in the Wilson Coefficients.
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Mass Differences

If we consider the mass differences of neutral B; mesons (9 = {d,s}) in SMEFT, there
are the following Feynman diagrams that contribute (in tree-level) to the transition:

d
y d 5
i " " ’ >mu§mm<
g (@)  F 40 D
d 5 d 5
ZO > GO
s d(c)® 4 (d)

The diagram (c) vanishes due to the GIM (or Glashow-Iliopoulos-Maiani) mecha-
nism, as described in ref. [32]. The diagrams (d) and (b) do not contribute to the process.
For example, if we consider the amplitude of diagram (d):

. - 1 v
iMy =id(p1) (Uésdmd'y5 — Zéstq’Dmd'yS — ngLCfg(l)> s(p2)
1
7 — EwMiy

The 454 stands for delta kronecker, therefore is zero. It is straightforward to see that the
amplitude is of the order iM; ~ O(%) and it can be dropped . Same result holds for
diagrams (b) therefore:

1 v (C.2)
§(p3) <U‘55dms')/5 - Z‘sst(PDmsr)’S - UﬂPLC;P;(l)> d(p4)

[iMy = iM, = iM, =0}, (C.3)

The diagram (a) gives the contribution:
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iMy = — 203 [d(p1) (v PL)b(p2)] [d(p3) (7, PL)b(pa)] —
2iCH [d(p1) v Pub(p2)][d(ps) v PLb(pa)) —
2iC4 1 1d(p1) (V" Pr)b(p2)][d(p3))vuPrU(ps)] - (C4)

2iClyty [(p1) (1" PL)b(p2)][d(p3) (vuPr )b () +
2 (1) (0 Pu)b(pa)][d(p3) (1P ()]
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Appendix D

Matching the LEFT to the SMEFT

The terms in the LEFT Lagrangian that contribute to semileptonic charged-current tran-
sitions at the EW scale are:

L =[LYEE (uew) ik (v er i) (dp vy up x) +

(LSRR (uew )ik (P, er ) (dLiv" g j) + [Loess (ew) ik (Friver:) (dr vy ur )+

[LIRR () ik (PL,iv" T€r ) (dLiv* T*ur ) + [LoRE (uew) ik (V1i€R ) (R x L k)

(D.1)

We consider the matching conditions for the LEFT operators with the SMEFT operators
in the Mass basis as follows:

2 * * * 1(3
(LYot (W) iaxk = — 3 Vilia + 2V, U cl® _oyru C"’( ) _ oy, c;fﬂ o

820 ¢ zxg 814
SRR * lequ(1) VLR o pudsx
[Ledn (HEW)iak = UgyaCoyini s [LYER (ew)iaxk = —Cly (D2)
TRR x  ~lequ(3) SRL x  ~ledg
[Lvedu]lllxk uglacglzxk ’ [Lvedu]lﬂXk V1g1 ugZ’Zngl'Xgl .

These matching conditions refer to the coefficients of the LEFT and SMEFT operators, in
the mass basis. We denote: x = {d,s,b}, i = {e,u, 7}, a = {ve, vy, vz}, andk = {u,c}.

We continue with the matching conditions for the LEFT operators of B; — B; mixing.
The tree-level matching conditions to the SMEFT are the following:

1 3
[LYF (pew)]avas = [LYFHI5M, +ClG) 4 ci®),
d(1
[LyRR (uew)] = Clfapr LY (uew)avar = Cszglb)’
[ V
[

d(8
w)] = Clhy.

w)]avas = (L3R (uew) loava = [L35R (mew)avay = (L35S (ew) ] avap = O.
(D.3)

SLR(
LSlR (,ME

The same relation holds for Bs — B, with the replacement of d with s. The term [LYF (upw)]

corresponds to the contribution at one-loop level in the SM-limit. This term is equal to:

M2
Cii = (LG (uew)lithy = 33as (ViaVit)” S1(pew), (D.4)

where the function S;(ypw) = 2.3124, and contains the NLO(two loop) QCD corrections

SM
dbdb



58 Appendix D. Matching the LEFT to the SMEFT

to the SM matching [12] at an energy scale gy = Mz. We note that we keep terms up to
order O(A~2), therefore the latter LEFT operators of equation D.3 can be dropped. Our
choice of basis in order to calculate the Mass-Differences is the SUSY basis for AF = 2.
This basis consists of the following operators:

Q1 = (d5"b}) (d]7,bY),

Qx = (dyb}) (dRDY),

Qs = (dxbf) (dRpt), (D.5)
Qs = (d%b} ) (d7b)

Qs = (d%bf) (7).

Additionally, we have the Q1,2,3 operators, which are derived from the Q>3 operators
by substituting L with R and R with L. We notice that «, 8 are colour indices. We notice
that the parity-even parts of the operators Q; and Q; are identical. Therefore due to
parity conservation, for the study of B; — B, we will consider only the hadronic matrix
elements: (B,| Q;|B,), where i = {1,2,3,4,5}. The matrix elements are defined from
the relations:

(Byl Q11Bg) = C1B] (mew)m3, f3,
(D.6)

_ m% fp ?
(Bq| Qi[By) = CiB\" (pew) ( =i > . 1={2,345},

where C; = {8/3,-5/3,1/3,2,2/3} and qu) are the bag-parameters. The relation be-
tween the LEFT operators and operators in SUSY basis, in ref.[24], are given from the
following conditions:

(O vty = Q1 [0 R apar = —2Qs
(05 by = Q2 [O55F] = Z%C + %
3 (D.7)
O] =01 [O5 |apap = —Qa + %
-Q  Q
(O3 b = Q2 [OF R o = TNCZ + 73

where we used Fierz’s identities and the relation:

504;(57(5 . (Szx'y(S&K

> 2N, (D.8)

A A
Ta’yTJK -

for the Gellman matrices.
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Appendix E

Corrections in terms of SMEFT’s
Wilson Coefficients

In the following work, we will expand the quantities in Equation 3.28 in terms of 6-
dimensional Wilson coefficients, as follows:

puds _ U7 Pl(3 Pq3)x | ~pudey _
el Ve 2v1g12 Uy, Uz, C 221g ZVHZ glauycg]2 =2V, G+ Gy ) =

2
1(3 * dx
2V (2V7g, ZUZaUZﬂCZZ(lg) —2Vq ZUZQUMC%( : 2V1g1C§f( T+
v? . 19(3 . . 13
s @Vie, 1 U UzaCll, — 2V Y Ug Wl =
11 agz;éz a,glyéZ
v? 1 y 3)x d
(Vi O —avy el —avy, cl i)+
2V,
U2 * * * 1(3
2v* <2V1g1 Z ugzﬂuzacgzgl)gl 2V11 Z uglauzacglé ))’
11 agz#z Ll,g17é2

(E.1)

where we used that ), U, U, ~ 1(for simplicity, we will ignore the multiplication
factors from the three-loop plus one-loop QED running at the moment, although they

are needed to calculate the CKM corrections). Similarly, for ellﬁ”d

2
pudx U lequ(1) x ~ledq lequ(3)
€ = (Co1 = Vi, Coa1g, — Coomn )+

2V1*1
2
v x  ~lequ(1) ledg % lequ(3)
zv*( Z uzauglacg]211 o Z ngﬂuzavﬁglcgﬂlgl - Z ugmuZ“Cg]le )-
11 a,g1#2 0,872 a,8172

(E.2)

Similar relations hold for the set of parameters {ei”s,e;us, efq“b, ep“b}. Continuing, we

can write the corrections Ak, ABr; as:

Ak =F (V) +G(U,V),

AByp =H (V) +K(U,V). (E3)
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Here, F and H are independent of the U matrix, while G and K depend on the U matrix.
The analytical expressions for F, G, H, and K are as follows:

v 4(3) 91(3) o3
F (V) ZZRE( (2V1g1 szzg 2V12C22 2V1glc

2V;, $12
) - o= —(2V5, ) — 2vyy ) v I
2 2
Vi Gl — ) = o Rel (Y Vi, Cal, — i)
G(U, V) =2Re( 2v2* (@2Vie, ¥ Ub Gy —2Viy Y U Un oY)~
12 0,872 a,9172
2
2V1*1 (2Vlg1 agzzﬁ ugzaUZanzgl)gl - 2Vll aglz#z U;all C;fllé )))
2 2
by Rt E Ut COY — UtV it
2 2
p U lan G )) = (s Relg o) oL, 1)
L Ul ity — 1 UgalnCiy”)))
H(V) =2Re( 2“’/21* (23, Chiss — 2Vi5CH® —2vy, oy
ST Rl (CEY — Vi €Y, — )
K(U, V) =2Re( 2v* 2V181 Y, Ugols,C zss)gl 2V ), U;auaacg’ff)))—
13 0,873 a,9173
2
(my —karﬁb)mT Re (21‘)/1*3 (a ggﬂ Ha ugwcggg(ll) -
I UelhaVi G, — 1 Uit
(E.4)

We can see that F(V) and H(V) correspond to the contribution, in the corrections of

CKM, when we set U;; = ¢;;, while K(U, V) and G(U, V) correspond to the contribution

when the PMINS matrlx is non-diagonal.
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Appendix F

Numerical Results

E1 Corrections of CKM with U;; = §;;

5V, —6.263813592Re(Co)) 4 0.326538864Re(CH)) + Re(C2) (0.0027385 — 0.0055059:)) —
1.4116721472Re(C?15)%) — 0.326538864Re(C27)*) — Re(C21)* (0.0027385 — 0.0055059i)) —
14116721472  Re(CH®)) + 0.7210960848Re(C"*) — 127.2509149824Re(CL04 (1)) 4

123.978017448Re(CL ) + 28.6785323712Re(Chd ) + 1.4116721472Re(CaS) )+

Re(CX4 (0.2405038 + 0.48354511)) + 1.7653283856Re(Cols®)) 4 31.373106624Re (i) —
30.5661946032Re(Con) — 7.0705525968Re(Can) —

Re(Ci1(0.0592868 — 0.1192081)) — 0.7529540976Re( Cia4®)) 4

Re(CM) (0.0126417 — 0.02379554)) — 6.1027010928Re(CH1)*) —
1.4116721472Re(C2)*) — Re(C7™)*(0.0118343 — 0.02379551)) —
1.4116721472Re(C®)) + 3.1173215472Re (CH %) + 1.4489397936Re(CHA) ) -
0.0002031Re(CS) (—12511840 + 251560811) )+

0.0002031Re(Chal (33699787 — 67756187i) )+

0.0002031Re(Cil (7795419 — 156733291)) + 66.9506964Re(Chad ) 4
0.0002031Re(C ;g@ﬁ (3458942 — 69544881i))+

0.0002031Re(CAL) (2894233 — 5819093i)) +

24.8570028Re(CAS)) — 0.0002031Re(CHI®)* « (12511840 — 25156081i) ) —
0.0002031Re(C7™)* (2894233 — 5819093i) ) —

24.8570028Re(C®)") — 24.8570028Re(CH)) +

0.0002031Re(CP* (6391172 — 128499751) ) —

0.0002031Re(Co™) (34589427 — 69544881i))+

0.0008482Re(CI2\) (1528461088022 + 1934061094379i) )+
0.0008482Re(C74\Y) 1622594546434+

2053174273656i)) + 0.020418Re(CIL) (104200229183 — 4179756811i))+
0.020418Re(CIA) (104618244701 — 4196524559i) )+

0.0008482Re( (574033456415 — 726361818188i) (CH\Y) + CI'D) 4 cdd . y)+

. 50
0.020418Re( (—38870709427 + 1559210702i) (CHY) + 313 + cdd,.)) + 1276. 45—”

(E 1)
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§Vig =(0.0038505 — 0.0018187i) Re[CT41Y) (1528461088022 + 1934061094379i)+
CI1%) (1622594546434 + 20531742736561 ) +
(—574033456415 — 726361818188i) (1Y) 4+ 1% 1 cdd -y 4
(0.000903 + 0.001847) Re[ (CI4{Y) (104200229183 — 4179756811) +
CI98) (104618244701 — 41965245591 )+
(—38870709427 + 1559210702 ) (CI4Y) + 3 4 g4 )] —
(0.000927 + 0.001877i) Re[CAl) (12511840 + 251560817) —

Caa) (33699787 — 67756187i) — Cysh (7795419 — 15673329i) —

329644C14. — Cl013) (3458042 — 69544881i)—

1) (2894233 — 5819093i) — 122388C15) +

P19 (12511840 — 25156081) + CH )" (2894233 — 5819093i) +
122388 + CHI®)* + 12038891 —

CPi™* (6391172 — 12849975i) + Caghy ) (34589427 — 695448817)] + (F2)
(0.0009183 + 0.0018884) Re[543055C21" 4 28310CH03) +

Ca%) (237,42 — 477.351)

122388710 — 28310C97%)* — C216)* (23742 — 477.351)—
122388CH) +

62517CT 4" — 11032296C1 ) +

10748545CH1 4 2486348Canmy + 122388Ca) +

CIl (20851 + 41922i) + 153049CL ) 1

2719960CKI4 1) — 2650003C141 — 612997C11

I (5140 — 103357) — 65279CL403) 4

Ca) (1096 — 2063i) — 529087CH1Y* — 122388  CHI)* —

C21O)*(1026 — 2063i) — 122388CH> + 270263CT4"* + 125619C%)|+

(231.94 — 11252i) = o0
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Vi = — 0.263428494022234Re(C3)) — 0.0137327907224304Re(C21%) )
0.0593687315767154Re(C7)*) + 0.0137327907224304Re (C274)*) +
0.0593687315767154Re(CH ) — 0.0303261348496708Re (CT1"*) +
5.35161469996136Re(CoatM)) — 5.21397100161164Re(CL ) —
1.20609313836571Re(CL44 ) — 0.0593687315767154Re(Chtoy ) —
0.0742419599885994Re(Cidn(®)) — 1.31941509902444Re (CL ) +
1.28547992274153Re(C14 ) 1 0.297356394011927Re(Cot?) +
0.0316659429731379Re(CLl4)) -
0.256652809783064Re(C1)*) + 0.0593687315767154Re (CH1 ")+
0.0593687315767154Re(C>)) — 0.131100855493331Re(CH ") —
0.0609360451346162Re(C1) +
Re(CH3) (~106.9044858 + 214.9402409i)) —

Re(Cial (287.9399353 — 578.9268669i)) —

Re(C3 (66.6061315 — 133.9170879i)) —

2.81656593400983Re(Chol) — Re(CLI) & (295541196 — 594.2099438i) ) — 3
Re(CHC) (24.7290959 — 49.7198769i)) — 1.04571559479801 Re(Chls) ) +
Re(CP1¥* (106.9044858 — 214.94024091) ) +

Re(C10)* (24.7290959 — 49.7198769i) )+

1.04571559479801Re(C1 ") + 1.04571559479801Re(CHA > ) —
Re((54.6078719 — 109.7936011i) )+

Re(CX) (295 5412559 — 594.20994381)) —

3.56723094444038 x 10 5Re[C41Y) (1528461088022 + 1934061094379 ) —
C1®) (1622594546434 + 2053174273656 )| —

0.000858698706386247 * Re[CIeY) « (104200229183 — 4179756811 ) —
CI2®) (104618244701 — 41965245591 )] —

Re[(—20477099.088677 — 25911003.547002i) (CI\) 4 1) 4 cdd, )] —
Re[(—33378227.901281 + 1338892.2127914) (1Y) + C4%) + cdd )] —

53.665—1],
v
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§Ves = — Re[13428.3842775327C1) — 700.035095702922C31%) —
0.0247274848358503C13) (237.42 — 477.351) ) + 3026.34741409005CT7 %" +
700.035095702922C37%)* 4 0.0247274848358503CL1 %" (237.42 — 477.351) +
3026.34741409005C3; ¥ — 1545.88816948285CT1"" +

272800.932044612C20 ) _ 265784.483494955C107 —

61481.1324666467C — 3026.34741409005C143) —
2222 2222
0.0247274848358503 Cpyps (20851 + 41922i) — 3784.51682664205Casns ) —

67257.7696541194Cad4 (V) 1 65527.9089974578Cat +

15157.8740219217Con, + 0.0247274848358503Cam’y (5140 — 103351) +
1614.18548259947C114() — 0.0247274848358503CA15% (1096 — 2063) +
13082.9907693455C1 )" + 3026.34741409005C1 )" +
0.0247274848358503C27 )" (1026 — 20631) + 3026.34741409005CH )
6682.92423419141CT"* — 3106.24191759468C41>) +
8.54426573518653 x 10 6CA>) (—12511840 + 251560817) —
8.54426573518653 x 10~ 6Cya (33699787 — 67756187i)—
8.54426573518653 x 10~ 6Chd (7795419 — 15673329i) —
2.81656593400983Cha] —

8.54426573518653 x 10~ 6CII4(%) (3458942 — 69544881 x I)—
8.54426573518653 x 10~6CHS) (2894233 — 58190937) —
1.04571559479801C1%) +

8.54426573518653 x 10-6C*14)* (12511840 — 25156081i)+
8.54426573518653 x 106CH1 %" (2894233 — 5819093i) +
1.04571559479801CH1 )" 1 1.04571559479801CH ) —
8.54426573518653 x 10 6CT2" (6391172 — 128499751 )+
8.54426573518653 x 10-0Ci(V) (34589427 — 69544881i)—
3.56723094444038 x 10~5CY2\) (1528461088022 + 1934061094379i) —
3.56723094444038 x 10~5C1%) (1622594546434 + 2053174273656i) —
0.000858698706386247CI4Y) (104200229183 — 4179756811 —
0.000858698706386247CIe% (104618244701 — 4196524559i) —
3.56723094444038 x 1075 (—574033456415 — 726361818188) (CH\Y) + M) 1 cdd )~

0.000858698706386247 (—38870709427 + 1559210702i) (CILY) + CH®) + )] + 53.7%“,

(F4)
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6Vys = Re[58106.885CHS) + 3029.17CH%) 4
0.107  C13) (237.42 — 477.35 % I) — 13095516 % C1®)" —
3029.17 x CHIG)* — 0.107C$1%* (237.42 — 477.35)—
13095.516C1 %) + 6689.319CT""" —

1180455.672C 1" + 1150094.315C) 301 +

led
266039.236Cx44 + 13095.516CH5) +
0.107C22 (20851 + 41922 * ) + 16376.243C.®) 1 (E5)

291035.72C04 (1) — 283550321 % CL41 —

65590.679Ch? — 0.107Cd (5140 — 10335¢) —
6984.853C24) 4 0.107CHSY) (1096 — 2063)
56612.309C%) — 13095.516CH %) —

0.107 % C2®* & (1026 — 2063i) — 13095.516CH ) +

28918.141CT2"" + 13441.233C411)],

6V,q =Re[—13359.153C) — 696.426CH1) —
0.0246C1A%) (237.42 — 477.35i) + 3010.7448C710)" ¢
696.426C37%)* 1 0.0246C1104)* (237.42 — 477.35i)+
3010.7448C%%) — 1537.9182C7* + 271394.4816C104 1) —
264414.207Ch — 61164.1608A19 — 3010.7448Chl) —
0.0246C22H (20851 + 41922i) — 3765.0054Ca®) — (E6)

66911.016Cs11") + 65190.0738Cany’ + 15079.7262Chat +

0.123C1 (1028 — 2067i) + 1605.8634Chaln”)
0.0246C2) (1096 — 20637) + 13015.5402CH )" 4
3010.7448C21 " +0.0246C%1 " (1026 — 2063) +

3010.7448CH") — 6648.4698CT " — 3090.2274CH%)1,
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SVyp = — (0.003752 + 0.001864i) Re[(C14\2) (1528461088022 + 1934061094379 ) +
CI41%) (1622594546434 + 20531742736561 ) +
(—574033456415 — 7263618181881) (1Y) + 113 1 cdd 1))+
(0.003792 + 0.001887) Re[ (CIiY) (104200229183 — 41797568117)+
CI28) (104618244701 — 41965245591 )+
(—38870709427 + 1559210702) (CHY + c3() 4 g4 .))]+
(0.0009044 — 0.00192537) Re[(CHSY) (—12511840 + 25156081i) —
CIi (33699787 — 67756187i) — Coah (7795419 — 15673329i) —
320644Chell — Cl0(3) (3458942 — 69544881i)—
) (2894233 — 5819093i) — 122388C1) +
CP10)* (12511840 — 25156081i) + C7%* (2894233 — 58190931) +
122388  C2IG)* 4 122388+ C2) — P (6391172 — 128499751) +
Crean(V) (34589427 — 69544881i) )]+
(0.003719 + 0.001847i) (543055CA%) + 28310CH) +
Cil%) (237,42 — 477.351) — 122388C710) —
28310C37%)" — cf19* (237,42 — 477.35)—
1223882 %) + 62517 — 11032296C 1) +
10748545C 4 2486348Cid 4 122388CAIS) +
Ci (20851 + 41922i) + 153049C1In) 4 2719960 + CI (1) —
2650003Ca? — 612997Cond — C (5140 — 103351) —
65279CxI4) 1 CMB) (1096 — 2063i)—
529087C713)* — 122388 — 1% (1026 — 2063)—

122388CH %) + 270263C%* + 125619C13)) +

(E7)

5
(57.25 — 115.32i) 7”
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SVis =(—0.0206874 + 0.0004114) Re[(CI4Y) (1528461088022 + 19340610943791) +
C8) (1622594546434 + 2053174273656  I)+
(—574033456415 — 726361818188  I) + (CT1L) + C11%) 4 cdd 1))+
(3.029039 - 10~ — 0.00040557) * Re[(CIY) (104200229183 — 4179756811) +

d(8 .

CI4®) (104618244701 — 41965245591 )+
(—38870709427 + 15592107024 ) (CHS) + I3 4 Cdd,)))—
(3.6455162 - 106 4 0.0004232i) Re[(CHC) + (—12511840 + 25156081) —

Caa (33699787 — 67756187i) — Cayay (7795419 — 15673329i) —

329644Cil — Cl04(%) (3458942 — 69544881)—

Cl1%) (2894233 — 58190931) — 122388CLAS) +

100" (12511840 — 251560817) + CHI°)* (2894233 — 58190931)+

122388 + CH1¥" 4 122388C) — P (6391172 — 128499751) + (E8)
C1) (34589427 — 69544881) )]+

(—1.610031 - 10 + 2.695471 - 10~%) Re[(543055CLA5)) + 28310CH%) +

Ci3) (23742 — 477.351) — 122388C71)* — 28310C7%)* —

P10 (237 42 — 477.35i) — 122388CH %) +

62517CT"" — 11032296C.24™) 4 10748545C10 +

2486348Ci 1 122388CAIS) + CI (20851 + 41922i)+

153049Cyhs > +2719960Csh " — 2650003k,

612997Ch1 — Cil (5140 — 103351) —
65279C13) 1 1B (1096 — 20631) — 529087C)* —
122388C1 ) — 2950 (1026 — 2063) —

122388CH %) + 270263C71 +125619C13))]
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5V, =(0.0001603 — 7.9629 x 10~%)Re[(C12\Y) (1528461088022 + 19340610943791) +
C8) (1622594546434 + 2053174273656  T)+
(—574033456415 — 726361818188 = I) + (CI1\) + 1) 4 cdd 1))+
(45059 x 1077 + 1.7272 x 10~° # I) » Re[(CI%) (104200229183 — 4179756811i)+
CI4®) (104618244701 — 41965245591+
(—38870709427 + 1559210702 ) (CIAY) + 4% 4 44, )] —
(3.8647 x 1075 +7.8214 x 10~%)Re[(CS) « (12511840 + 25156081)—

Cay (33699787 — 67756187i) — Cayay (7795419 — 15673329i) —

329644Cilt — Cl04(%) (3458942 — 69544881i)—

Cl1%) (2894233 — 5819093i) — 122388C11%) +

C?10)* (12511840 — 25156081i) + CHI®)* (2894233 — 5819093i)+
122388  CHIG)* 4 122388CH) — P4 (6391172 — 128499751)+
Crea4(1) (34589427 — 69544881i))]+

(—0.10705 + 7.9381 x 10~57) Re[(543055ChL)) + 28310CH1>) +
Ci%) (237 42 — 477.351) — 122388CT1%)* — 28310027 —
1907 (237 42 — 477.351) — 122388C41) 1

62517CT""" — 11032296Chn") 4 10748545Chst +

2486348CH7 1 122388CAS) + CI (20851 + 41922i)+

153049Cy > +2719960C3h " — 2650003Cks,

612997Ci1 — Clel (5140 — 103351) —
65279C11%) 1 1O (1096 — 20631) — 529087C1)* -
122388C1 ) — 2950 (1026 — 2063) —

122388CH %) 4 270263C7* 1 125619CHY)] +

50
(0.082 — 3.341')?

(E9)
where: 55
% I
—=—Chn+t ch®, (F.10)
F2 Corrections of CKM with U;; = Uppins
In the case of non-diagonal PMINS matrix the corrections can be written as:
6Vij = 6Vy; + U, (F11)

where the corrections 6U;; are as follows:
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SU,q =Re(—2482.46219446478C\1") + 2948 80599164299CH5) +
0.0247269997496362C11) (999 -+ 2008.97) +

58940.1000123245C;5; " + 70020.5405971337Cy ") — 57424.7453958676C15;

13278.3939201547C' 5, — 0.0247269997496362C .0 (4504.1 + 9008.4i) —

68217.0348344945C11 — 15778.8722066371Cxash —

0.0247269997496362C11 (5346.7 + 10751.61) — 574.022462987955C'13) —

817.67737312092C. 1% _ 971.382876264633Cl3€2”’1”1(3) —

228806.327001709C. 4413 — 271817.340756617Cdn(!) 1 222920.902956599C % +

51546.2745830879C1 4 +

0.0247269997496362C. . (17484.6 + 34269.2i) + 264816.194919605C ] 4

61253.0413146057Chsl, + 0.0247269997496362C il (20755.9 + 41737 .4i) —

0.0247269997496362C13) (194.7 + 38.9i) + 3174.19259436092C10) 1
3770.87735261942C %) — 2949.01369844089CHL") — 682.116542393489CH) —
0.0247269997496362C1103) (231.1 + 464.7i) + 10731.7429070398C 10 +
0.0247269997496362C 115, (841.6 + 168.17) + 12748.6575137183C 335 +

4965.217290C* + 5786.8966307CH )
(F12)

SU,s =Re(10742.2436C111%) — 12760.2315CH) — 0.107CS) (999 + 2008.9i) —
255048.7631C1511 ") — 302996.6401C,1 ") + 248491.4393C 51} +

57458.9786C 0, + 0.107C; 7 (4504.1 4 9008.4i) + 295192.4132C10" +
68279.1824Cin?) 4 0.107Cin?, (5346.7 + 10751.61) +

3211
ledq
2483.9408C110) + 3538.2074C1 %) 1 4203.4201CL %) +

990103.0144C1503) + 1176222.5808Ca V) — 964635.2917C1 — 223053.805C1],
ledq ledq

0.107C}5 (17484.6 + 34269.2i) — 1145926.8469C rn —

265057.4468Cod — 0.107Co (20755.9 + 41737.4i)+

0.107C113) (194.7 + 38.9i) — 13735.5365Co'®) — 16317.5428C1%%) 4 12761.1303C2) +

11
2951.6913C113)3212 + 0.107CH\Y) (231.1 + 464.71) — 46438.9737C115) —

0.107C11) (841.6 + 168.1T) — 55166.6748C.1) — 21485.754657CT\") — 25041.3695860C% "))
(F.13)
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SU,;, =Re(1.157552044 - C!1) — 1.375004385 - Ca1>) —

1.153-107 - CA) . (999 + 2008.9i) — 27.483291949 - Cl(1) _

32650011779 - C*1“(1)3211 + 26.776694347 - Cigl +

6.191607694 - C.1 +

11531075 - C; . (4504.1 + 9008.4i)+

31.809051628 - Co + 7.357560496 - Conl +

1.153 - 1075 - Cio . (5346.7 + 10751.6i)+
0.267662032 - C11%) +0.381276346 - C141%) ¢

0.452947979 - C1%) 1 106.690539776 - C\94(%) 4+

126746227632 - Cl*1*(13221 — 103.946214143 - Ci0 —
24.03561095 - CI¥ — 11531075 - C'%%, . (17484.6 + 34269.2i) —

123.481649951 - Col — 28561797772 - Cooe —

1.153-1075 - CI4 . (20755.9 + 41737.4i) + 1153 - 10> - CI13) . (194.7 + 38.9i)
1.480100335 - Cii®) — 1.758329612 - CL4(3) 4
1.375101237 - C'13)3211 + 0.318065427 - C10) +
1.153-1075 - CH'%) . (231.1 + 464.7i)
5.004124923 - C11) — 11531077 - CYS) . (841.6 + 168.1i) — 5944595892 - C11)) —
0.000203Re[C10) (~8673938.8 -+ i17439668.3)+
Cl13) (—2006395.1 + i4034022.7) + C115) (—84845.9 + i0.0057)+
CH) (~12170139.7 + i24469068.3) + CHLS) (—2815080.2 + i5669950.6) +
CH)(—119045.3 4 10.0080) + Cia1) (240283525 — i48310973) +
Cleai(1) (33713588.5 — i67783934.3) — Ciet (23410553.7 — i47068837.9) —
Cl1 (228995.2 4 i0.0005) — Chat? (32846636.1 — i66040855.2) —

Coh (7597769.4 — i15275938.5) — Cayh (321297.6 + i0.00075) —

Cl (5415166.4 — 110887636.2) — 1) (298282.9 — 599722.4) —
Cl0) (4185135 — i841455.7)] + Re[—2.316131C1 %) +

Cf'®3(—16.7260 + 6.75597i) + Cy*) (~23.1793 — 5.404782i) — 2.699421C1 V]
(F14)
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SUy, =Re(—0.048691478 - 1) 1 00578384325 - CAS) +

485-1077 - C15) . (999 +2008.9i) + 1.1560621505 - C') 1

1.3733959855 - CL) _ 1.1263397015 - C'4%1 —

0.260444903 - C12 — 4.85-1077 - CL22%. - (4504.1 + 9008 4i) —

1.338021686 - Cayy — 0.309489752 - Choi? —

4.85-1077 - Ci4 . (5346.7 + 10751.6i) — 0011258984 - C1103) —

0.016038077 - C'474) — 00190528855 - Caal(®) —
4487850112 - C7“® _ 5331476184 - 1941 4

4.3724123035 - C ) + 1.011038275 - Cyyh +

4.85-1077 - Cl5 - (17484.6 + 34269.2i)+

5.1941543995 - Cypy) + 1.201428614 - Coyy +

4.85-1077 - Coall - (20755.9 + 41737.4i) —
4.85-1077 - CHB) . (194.7 + 38.9i) + 0.0622592075 - Ch®) 1
0.073962694 - C1a14®) _ 0,0578425065 - a1\ —
0.0133791615 - Co1l®) — 4.85.1077 - CIA%) - (231.1 4 464.71) +
0.2104944135 - 1) 14851077 - 1) . (841.6 + 168.1i) + 0.250054554 - Ci15) )+
8. 544 10 °Re[CH10) (~8673938.8 -+ i17439668.3)+

1332 3 (—2006395.1 + i4034022.7) + C110) (—84845.9 + i0.0057)+
2331 3 (—12170139.7 + i24469068.3) + CoL>) (—2815080.2 4 i5669950.6) +
C3) (~119045.3 + i0.0080) + C. 1) (24028352.5 — i48310973)+

1 ledg

C(1) (33713588.5 — i67783934.3) — C.4 (23410553.7 — i47068837.9) —
Clo0 (228995.2 4 0.0005) — Cort (32846636.1 — i66040855.2) —

Chd (7597769.4 — 115275938.5) — Cal (321297.6 + i0.00075) —

Cll7 (5415166.4 — i10887636.2) — C1a®) (298282.9 — i599722.4) -

C() (418513.5 — i841455.7)]+

Re[337.33004CT ) + C11) (070342 — 2.841251)+

CI®(0.97481 + i2.27300) + 393.1538C% )]
(F.15)
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SU,s = — 2479.75156CA%) + 2945.58615C10) +
0.0247CH%) (999 + 2008.91) + 58875.74251C1 )+

69944.08421C1(V) _ 57362.04253CI%1 — 13263.89506C57 —

0.0247C 5% (4504.1 + 9008.41) — 68142.54772C, 10t —

15761.64304C51 — 0.0247C (5346.7 4 10751.61) —

573.39568C11%) — 816.78454C14%) _ 97030221 Clea*(3)3211 —

228556.49024C) _ 271520.53968C 01 1

222677.49257C50h + 51489.9905C,3mh +

0.0247C\5a1 (17484.6 + 34269.21) + 264527.03849Cl +

61186.15828Chd +0.0247CHil (20755.9 + 41737.41) — 0.0247C13) (194.7 4 38.9T) +

3170.72665Cx %) 4 3766.75988C1>) — 2945.79363CH3) —

681.37173C1%) — 0.0247CH%) (231.1 + 464.71)+

10720.02477C11%) 4 0.0247C11) (841.6 + 168.11) +

12734.73708C11%) 4 8.544 - 10 6Re[CI1S) (—8673938.8 + 117439668.3) +
1332 3 (—2006395.1 + i4034022.7) + C11%) (—84845.9 + i0.0057) +

2331 2 (—12170139.7 + i24469068.3) + Cyl) (—2815080.2 + i5669950.6) +

C) (~119045.3 + i0.0080) + CL(!) (24028352.5 — i48310973)+

C1)(33713588.5 — i67783934.3) — C (23410553.7 — i47068837.9) —

14 (228995.2 + i0.0005) — Co (32846636.1 — i66040855.2) —

Cysy (75977694 — 115275938.5) — Cayas(321297.6 + i0.00075) —

C14 (5415166.4 — i10887636.2) —
Cre146)(298282.9 — i599722.4) — CXI41%) (418513.5 — i841455.7)]+
Re[4965.31469CT1% + C1® (0.7034 — 2.84- 107 "7i) +

2 (0.974818 + 2.273 - 10~ i + 5787C )]
(F.16)
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Appendix F. Numerical Results

5U,4 =(0.000918 + 0.001888i) Re[(100394.8C11">) — 119254.5CAS) —

221

CL5) (999 +2008.9i) — 2383633.3C 0" — 2831744.3C311") + 2322349.9C151 +
ledq

536999.8C; ] + Cionl (4504.1 + 9008.47)+
2758807.6Camt + 638123.2Cunt, + Col (5346.7 + 10751.61) +
23214.4C11°%) 1 33068.2C1%4) 4 39284 311 (3)

9253299.2C10%) 4 10992734.4CX04 ) — 9015283.1C1%0

1221
2084615.0C 8 — Clo (17484.6 + 34269.21) —

10709596.7Ci — 2477172.4C'*%13222 — Clo31 (20755.9+
41737.41) + C1) (194.7 + 38.91) — 128369.5Cot®) —
152500.4C2945) 4 119262.9C183) 4 27585.9C2%) 1
Cl13)3213231.1 4 464.71) — 434009.1C}35) — CJ2°) (841.6 + 168.1i) — 515576.4C105 )] -
(0.000927 + 0.00187i) Re[CL1S) (—8673938.8 + 117439668.3) +

Cl10) (—2006395.1 + 4034022.7) + C\13) (—-84845.9 + 0.0057)+

Ca®) (—12170139.7 + i24469068.3) + CoL>) (—2815080.2 + i5669950.6) +
CH)(~119045.3 + 10.0080) + C14(1) (240283525 — i48310973) +

Ce1i(1)(33713588.5 — i67783934.3) — Cie (23410553.7 — i47068837.9) —

ClM (228995.2 + i0.0005) — CL% (32846636.1 — 166040855.2) —
Chasy(7597769.4 — i15275938.5) — Cysy(321297.6 -+ 0.00075) —

Cl417 (5415166.4 — i10887636.2) — C14®) (298282.9 — i599722.4)

C14G) (418513.5 — i841455.7)]
(E17)



E2. Corrections of CKM with U;; = Uppns 75

SUs =(1.15-107° +2.69 - 10~%)Re[(100394.8C11%) — 119254.5C2) —

CLA5) (999 +2008.9i) — 2383633.3C 0" — 2831744.3C11" + 2322349.9C151 +
536999.8CI4 + Cl11 (4504.1 + 9008.41) +

2758807.6Cant + 638123.2Cunt, + Col (5346.7 + 10751.61) +

23214.4C110) + 33068.2C;504%) + 39284.3Ci1 %) +
9253299201557 +10092734.4CK5 Y — 9015283 1C51

2084615.0 % Cyanh — Cyank (17484.6 + 34269.21) —

10709596.7Csl — 2477172.4Ci0 — L2l (20755.9+
41737.41) + C13) (1947 + 38.9T) — 128369.5Ch®) —
152500.4C"™) 1 119262.9C11% 1 27585.9C19%) +
Cl1(3)3213231.1 + 464.71) — 434009.1C155) — C115) (841.6 + 168.1i) — 515576.4C 00 )] -
(3 64 106 + 0.0004i) Re[CI15) (—8673938.8 + 117439668.3) +

1332 2 (—2006395.1 + i4034022.7) + Ci1) (—84845.9 + 0.0057) +

2331 3 (—12170139.7 + i24469068.3) + CAL>) (—2815080.2 4 i5669950.6) +

CH3) (~119045.3 + i0.0080) + C.4 1) (240283525 — i48310973)+
C(1) (33713588.5 — i67783934.3) — C\4 (23410553.7 — i47068837.9) —

Clo0 (228995.2 4 0.0005) — Cort (32846636.1 — i66040855.2) —
Cit (7597769.4 — i15275938.5) — Chont, (321297.6 + 0.00075) —
Il (5415166.4 — i10887636.2) — C1a3) (298282.9 — i599722.4) -

CLe140) (4185135 — i841455.7)]
(F.18)
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Appendix F. Numerical Results

SULg =(—0.1070 4 7.9381 - 10~%) Re[(100394.8C11%) — 119254.5C) —

21

CJon (999 +2008.97) — 2383633.3C 5y, | — 2831744.3C511 ") + 2322349.9C 511 +

1211
536999.8C1a" + Cl0% (4504.1 + 9008 4i)+

2758807.6Cant + 638123.2Cunt, + Conl (5346.7 + 10751.61) +

23214.4C11%) + 33068.2C1501%) + 39284.3Ci%) 4
9253299.2  C%) 1 10992734.4C1% V) — 9015283.1C1%%

1221
2084615.0 % Cyanh — Cianl (17484.6 + 34269.21) —

10709596.7Cyl — 2477172.4C5d — Clo21 (20755.9+
41737.41) + ClI3) (1947 + 38.91) — 128369.5Ch® —
152500.4C2043) 4 119262.9C19%3) + 27585.9C43) 1
Cl13)3213231.1 + 464.71) — 434009.1C}%5) — 1) (841.6 + 168.1i) — 515576.4C10) )] —
(3.864- 1075 + 7.821 - 10 57) Re[CI15) (—8673938.8 + 117439668.3) +

Cl1) (—2006395.1 + 14034022.7) + C113) (~84845.9 + 0.0057)+

Ca) (—12170139.7 + i24469068.3) + CoLs) (—2815080.2 + i5669950.6) +

CH3) (~119045.3 + i0.0080) + C14(1) (240283525 — i48310973)+

Ceai(V) (33713588.5 — i67783934.3) — Ci (23410553.7 — i47068837.9) —

1% (228995.2 + i0.0005) — Co (32846636.1 — i66040855.2) —

Chiash (75977694 — 115275938.5) — Chysh(321297.6 -+ i0.00075) —

Clo% (5415166.4 — i10887636.2) — Cio (298282.9 — i599722.4)

Cl0) (4185135 — i841455.7) + C12%84437.537 + C22*117015.7457]
(F.19)
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5, =(0.00371 4 0.00184i) Re[(100394.8C1103) — 119254 5C110) —
C%) (999 +2008.9i) — 2383633.3C 1 ") — 2831744.3C, (" 4 2322349.9C;1 +

536999.8C; + CI11 (4504.1 + 9008.4i)+

2758807.6Canl + 638123.2Chd + Cild (5346.7 + 10751.61)+
23214.4C11%) + 33068.2C14) 4 39284.3C10() 1
9253299.2C1504) 1 10992734.4C274M) — 9015283.1C1%0 —
2084615.0C, 0 — Ciad (17484.6 + 34269.21) —
10709596.7Csl — 2477172.4C50 — Clo21 (20755.9+
41737.4T) + Cl1%)(194.7 + 38.91) — 128369.5C.) —
152500.4C"1) 1 119262.9C1% 4 27585.9C19%) +

Ca13) (231.1 + 464.71) — 434009.1C115) — Cl1) (841.6 + 168.11) — 515576.4C1 1))+
(0.000904 — 10.00192) Re[CL15) (—8673938.8 -+ i17439668.3) +

C113) (—2006395.1 + 14034022.7) +

C11°) (~84845.9 + i0.0057) 4 Coi) (—12170139.7 + i24469068.3) +
Cal3) (—2815080.2 + i5669950.6) + Chl) (—119045.3 + i0.0080) +

o2 (24028352.5 — 148310973) + Col(1) (33713588.5 — i67783934.3) —

Il (23410553.7 — i47068837.9) — C14 (228995.2 + 0.0005) —

Coyay (32846636.1 — i66040855.2) — Coyh (7597769.4 — i15275938.5)

Coyh (321297.6 + i0.00075) — Ciash (5415166.4 — i10887636.2) —
Clol®) (298282.9 — 599722.4) — Cle7(*)2331(418513.5 — i841455.7)] +
(0.003719 + 0.0018374i) Re[ ~200801.445C2*) — 234031.491C%5 )] +

(0.0008949 — 0.001925:) Re[84437.537C12"%) + 117015.745C |
(F.20)
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