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Περίληψη

Διάφορες γραμμικές απεικονίσεις γραφημάτων μπορούν να επιτευχθούν αξ-

ιοποιώντας γνωστές δομές δεδομένων, με τις διατάξεις στοίβας και ουράς να είναι
οι πλέον δημοφιλής. Στόχος μας είναι να καθορίσουμε μια διάταξη των κορυφών
και μια ανάθεση των ακμών σε σελίδες που επιτρέπουν στη δομή δεδομένων να

επεξεργαστεί τις κορυφές-άκρες των ακμών κατά την καθορισμένη διάταξη.

Η παρούσα διατριβή εξετάζει τις rique απεικονίσεις γραφημάτων, οι οποίες
προκύπτουν από την περιορισμένη-εισόδου διπλοουράς, γνωστή στην βιβλιογραφία
επίσης ως rique. Η έρευνά μας επικεντρώνεται σε πλήρη γραφήματα και πλήρη
διμερή γραφήματα, όπου παρουσιάζουμε φράγματα για τον ελάχιστο αριθμό σελίδων
που απαιτούνται για οποιαδήποτε γραμμική απεικόνιση rique ενός δεδομένου
γραφήματος. Στη μεταπτυχιακή αυτή διατριβή, βελτιώνουμε το υπάρχον άνω
φράγμα για το πλήρες γράφημα Kn από ⌈n3 ⌉ σε ⌊

n−1
3 ⌋, και παρουσιάζουμε ένα

νέο άνω φράγμα ⌊n−1
2 ⌋ − 1 για το πλήρες διμέρες γράφημα Kn,n.

Τέλος, εισαγάγουμε μια μοντελοποίηση βασισμένη σε SAT για τον υπολο-
γισμό γραμμικών απεικονίσεων rique για δοθέντα γραφήματα. Επιβεβαιώνουμε
την αποτελεσματικότητα της προσέγγισής μας υπολογίζοντας τον ελάχιστο αρι-

θμό σελίδων που απαιτούνται σε γραμμικές απεικονίσεις rique γραφημάτων που
είναι γνωστά στη βιβλιογραφία.
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Abstract

Various linear graph layouts can be achieved by leveraging familiar data
structures, with stack and queue layouts being the most prominent examples.
The objective in this context is to determine a vertex order and an edge-
partitioning into pages that allow the data structure to process the endpoints
of the edges in the specified order.

This thesis examines rique layouts of graphs, which are obtained by utilizing
the restricted-input double-ended queue, also known as rique. Our research
focuses on complete graphs and complete bipartite graphs, where we present
bounds on their rique numbers, where the rique number represents the min-
imum number of pages needed for any rique layout of a given graph. We
improve the existing upper bound for the complete graph Kn from ⌈n3 ⌉ to
⌊n−1

3 ⌋, and we introduce a new upper bound of ⌊n−1
2 ⌋ − 1 for the complete

bipartite graph Kn,n. Finally, we propose a SAT-based formulation to com-
pute the rique number of various graphs. We confirm the effectiveness of our
approach by implementing it and by calculating the rique number of various
graphs that are named in the literature.

ii





Contents

Περίληψη

Abstract

1 Introduction 3

1.1 Stack layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Queue layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Deque layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Rique layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Organization. . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 11

2.1 Complete and Bipartite Graphs . . . . . . . . . . . . . . . . . . 11

2.1.1 Complete Graphs . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . 12

2.2 A Short Introduction to SAT Formulations . . . . . . . . . . . 13

2.2.1 Linear Layouts and SAT Formulations . . . . . . . . . . 14

2.3 Matrix Representations of Linear Layouts . . . . . . . . . . . . 15

3 An Upper Bound on the Rique Number of Complete Graphs 17

4 An Upper Bound on the Rique Number of Complete Bipartite
Graphs 35

1



5 SAT Formulation and Named Graphs 57

5.1 Individual graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Strongly Regular Graphs . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Symmetric graphs . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Semi-symmetric graphs . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Fullerene graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 Platonic solids graphs . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Truncated solids graphs . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Snarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.9 Gallery of Named Graphs . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2



CHAPTER1
Introduction

Linear layouts of graphs form an important aspect in different contexts
including Graph Theory and Graph Drawing. In a linear layout, the vertices
of a graph are ordered based on a ≺. Typically, a vertex order ≺ of a graph
G is a total order of its vertices, such that for any two vertices u and v of G,
u ≺ v if and only if u precedes v in the order. To further ease a presentation,
we write [u1, . . . , uk] if and only if ui ≺ ui+1 for all 1 ≤ i ≤ k − 1. The linear
layouts that we consider in this thesis are of the following type.

Definition 1.1. Given a data structure D, a graph G admits a D-layout with
k-pages if and only if there is a linear order ≺ of the vertices of G and a
partition of its edges into k so-called pages such that the following hold. The
data structure D is processing each edge (u, v) of G in the same page, by
inserting (u, v) in D at u and removing it at v.

Adopting a particular data structure D, one seeks to find the minimum
number of pages required to construct a D-layout. In this aspect, D-layouts
have naturally been leveraged to estimate the power of the respective data
structures as a mean for representing graphs; in particular when D is a stack
or a queue (for a wealth of other applications, e.g., to VLSI design and Graph
Drawing, refer to [14]). In the linear layouts that we will consider, the data
structure D will be either stack, queue, deque, or rique.

1.1 Stack layouts

If in Definition 1.1 the data structure D is a stack then the corresponding
linear layouts are called stack layouts (also known as book embeddings). Stack
layouts were first introduced in 1973 by Ollman [27] and over the years several
remarkable results have been published in the literature [12, 22, 24, 25, 36].

3



Chapter 1 1.1. Stack layouts

In a stack, insertions, and removals occur only at the head of it. The stack
number of a graph (a.k.a. book thickness or page number in the literature)
is the minimum number of pages (called stacks) required in any of the stack
layouts of the graph.

One can equivalently define a stack in a stack layout as follows. Let F
be a set of k ≥ 2 pairwise independent edges (ui, vi) of G, that is, F =
{(ui, vi); i = 1, . . . , k}. The edges of F form a k-twist, if the order of the
vertices is [u1, . . . , uk, v1, . . . , vk]; see Fig. 1.1. Two independent edges (u1, v1)
and (u2, v2) that form a 2-twist are commonly referred to as crossing. In this
sense, a stack is a set of pairwise non-crossing edges in ≺.

u1 u2 u3 v1 v2 v3

Figure 1.1: Illustration of a 3-twist

The corresponding problems are classified into two categories based on
whether the graph is planar or non-planar. It is known that the stack num-
ber of the complete graph Kn is ⌈n2 ⌉ [9]. The stack number of outerplanar
graphs is exactly 1 [9]. If a graph is sub-Hamiltonian, its stack number is
at most 2 [9] while for non-sub-Hamiltonian planar graphs, Yannakakis has
proved that their stack number is at most 4 [35, 36] which was recently to be
worst case optimal [7, 37].

1

2 3

654

9 10

11

7 8

(a)

4 1 2 5 9 6 3 7 10 11 8

(b)

Figure 1.2: Illustration of: (a) the Goldner Harary graph, and (b) a stack
layout of its, where the first stack is formed by the red edges, the second stack
is formed by the blue edges and the third page consists of the green edge.
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Chapter 1 1.2. Queue layouts

Fig. 1.2 shows an example of a stack layout of the Goldner-Harary graph,
which is an undirected graph with 11 vertices and 27 edges. It is named
after A. Goldner and F. Harary, who proved in 1975 that this graph is the
smallest non-Hamiltonian maximal planar graph [20]. This implies that the
stack number of this graph is at least 3 while Fig. 1.2b shows that 3 stacks
are sufficient.

1.2 Queue layouts

If in Definition 1.1 the data structure D is a queue, then the corresponding
linear layouts are called queue layouts; recall that, in a queue, insertions occur
at the head and removals occur at the tail of it. Queue layouts were introduced
by Heath and Rosenberg in 1992 [9]. The queue number of a graph is the
minimum of pages (called queues) required in any of the queue layouts of the
graph.

Equivalently, we can define a queue in a queue layout as follows. Let F
be a set of k ≥ 2 pairwise independent edges (ui, vi) of G, that is, F =
{(ui, vi); i = 1, . . . , k}. If the order of F is [u1, . . . , uk, vk, . . . , v1], then we
say that the edges of F form a k-rainbow ; see Fig. 1.3. Two independent
edges (u1, v1) and (u2, v2) that form a 2-rainbow are commonly referred to as
nested. In this sense, a queue is a set of pairwise non-nested edges in ≺. For
an example of a queue layout, see Fig. 1.4, which shows that 2 queues are
sufficient for a queue layout of the Goldner Harary graph.

u1 u2 u3 v3 v2 v1

Figure 1.3: Illustration of a 3-rainbow

Applications of queue layouts include Graph Drawing [34, 19, 13], matrix
computations [28] etc. It has been proven that the queue number of the com-
plete graph Kn is ⌊n2 ⌋ [23]. Other known results are that the trees admit
1-queue layouts [22], outerplanar graphs admit 2-queue layouts [22], series-
paralleled graphs admit queue layouts with at most 3-queues [29], and pla-
nar 3-trees with at most 5 [1]. In relation to stack layouts, it was recently
shown that the stack number of a graph cannot always be bounded by its
corresponding queue number [11], resolving a long-standing open question by

5



Chapter 1 1.3. Deque layouts

1 4 5 9 2 6 3 10 7 8 11

Figure 1.4: Illustration of a queue layout of Fig. 1.2a, where the first page is
formed by the red edges and the second page is formed by the blue edges.

Heath, Leighton, and Rosenberg [22]; the other direction is still unknown.

1.3 Deque layouts

A data structure that generalizes both the stack and the queue is the so-
called double-ended queue or deque, for short. A deque allows insertions and
removals at both the head and the tail of the data structure. If in Definition 1.1
the data structureD is a deque, then the corresponding linear layouts are called
deque layouts. Even though there exist many results for both stack and queue
layouts, for deque layouts the corresponding literature is significantly reduced.
Deque layouts were first introduced by Auer et al [3], who proved that a graph
admits a 1-deque layout if and only if it is a spanning subgraph of a planar
graph with a Hamiltonian path. Note that the deque number of a graph (that
is, the minimum number of deques required by any of the deque layouts of
the graph) has not been explicitly studied so far in the literature as a graph
parameter. However, from the characterization by Auer et al. one can easily
deduce the following.

Observation 1.1 (Auer et al. [3]). The deque number of a graph is at most
half of its stack number.

Note that the queue number is also a trivial upper bound on the deque
number of a graph. Observation 1.1, however, immediately implies improved
upper bounds on the deque number of several graph classes, e.g., the deque-
number of the complete graph Kn is at most ⌈n4 ⌉ [9], of the complete bipartite

graph Kn.n is at most ⌈ ⌊2n/3⌋+1
2 ⌉ [16], while of the treewidth-k graphs is at

most ⌈k+1
2 ⌉ [18]. Also, since there exist maximal planar graphs that do not

6



Chapter 1 1.3. Deque layouts

have a Hamiltonian path (e.g., the n-vertex ones with an independent set of
size greater than n

2 + 2), it follows by a well-known result by Yannakakis [36]
that the deque number of planar graphs is 2; see also [7, 37].

Another consequence of Observation 1.1 is that deque layouts cannot be
characterized by means of forbidden patterns in the underlying linear order,
as it is the case, e.g., for stack and queue layouts [23, 27]; the former do not
allow two edges of the same page to cross, while in the latter no two edges
of the same page nest. The reason for the lack of such a characterization for
deque layouts is the fact that maximal planar graphs with a Hamiltonian path
are the maximal graphs that admit 2-stack layouts and these layouts do not
admit characterizations in terms of forbidden patterns in the underlying linear
order [32].

In the absence of a forbidden pattern, a single deque is more difficult to be
described. A relatively intuitive way to describe a deque is as follows; assume
that the vertices of a graph are arranged on a horizontal line ℓ from left to
right according to ≺ (say, w.l.o.g., equidistantly). Then, each edge (vi, vj)
with vi ≺ vj can be represented:

(i) either as a semi-circle that is completely above or completely below ℓ
connecting ui and uj ,

(ii) or as two semi-circles on opposite sides of ℓ, one that starts at ui and
ends at a point pij of ℓ to the right of the last vertex of ≺ and one that
starts at point pij and ends at uj .

With these in mind, a deque is a set of edges each of which can be rep-
resented with one of the two types (i) or (ii) that avoids crossings (such a
representation is called cylindric in [3]). For an example of a deque layout,
see Fig. 1.6, which shows that 1-deque is sufficient for a deque layout of the
Goldner Harary graph. Observe that, a deque further allows classifying the
edges into four categories: head-head, tail-tail, head-tail, and tail-head.

• A head-head (hh for short) edge is a type-(i) edge drawn above ℓ (see
the dark blue edge of Fig. 1.5).

• A tail-tail (tt for short) edge is a type-(i) edge drawn below ℓ (see the
light blue edge of Fig. 1.5).

• A head-tail (ht for short) edge is a type-(ii) edge whose first part is above
ℓ, while its second part is below ℓ (see the dark red edge of Fig. 1.5).

7



Chapter 1 1.4. Rique layouts

• A tail-head (th for short) edge is a type-(ii) edge whose first part is below
ℓ, while its second part is above ℓ (see the light red edge of Fig. 1.5).

Figure 1.5: Illustration of a deque, where hh edge refers to blue, tt refers to
light blue, ht refers to red, and th refers to light red

4 11 8 7 10 6 94 11 8 7 10 6 9 5 2 1 35 2 1 3

Figure 1.6: Illustration of a deque layout of the graph of Fig. 1.2a

1.4 Rique layouts

A special case of a deque is the so-called restricted-input double-ended queue
or rique for short, which allows insertions only at the head and removals at
both the head and tail of a data structure. Thus, if in Definition 1.1 the data
structure is a rique, then the corresponding linear layouts are called rique
layouts [4] and form a restricted case of the corresponding deque ones.

For a rique layout, a characterization in terms of forbidden patterns is
possible [4]. A graph admits a 1-rique layout if and only if it admits a
vertex order ≺ avoiding three edges (ua, va), (ub, vb) and (uc, vc) such that
ua ≺ ub ≺ uc ≺ vb ≺ {va, vc}; see Fig. 1.7. A rique can also be equivalently
defined as a deque without tail-tail and tail-head edges [4]. For an example of
a rique layout, see Fig. 1.6, which shows that 2-riques are sufficient for a rique
layout of the Goldner Harary graph.

8



Chapter 1 1.5. Thesis Organization.

ua ub uc vb vc va ua ub uc vb vcva

Figure 1.7: Illustration of the forbidden pattern of the rique layout

4 11 1 311 9 10 8 7 6 2 5

(a)

4 11 1 311 9 10 8 7 6 2 5

(b)

Figure 1.8: Illustration of a rique layout of the graph of Fig. 1.2a: (a) first
page, (b) second page

1.5 Thesis Organization.

In this thesis, we improve the bound of the rique number of the complete
graph Kn and present a new one for the complete bipartite graph Kn,n. More
specifically, for the complete graph Kn our improvement is from ⌈n3 ⌉ [4] to
⌊n−1

3 ⌋. For the complete bipartite graph Kn,n our upper bound is ⌊n−1
2 ⌋ − 1.

We complete our study by presenting the rique numbers of different graphs
that are named in the literature.

This thesis is structured as follows:

• Chapter 2 focuses on the theoretical background of this thesis.

9



Chapter 1 1.5. Thesis Organization.

• Chapter 3 is devoted to the study of the rique number of the complete
graph Kn.

• In Chapter 4 we study the rique number of the complete bipartite graph
Kn,n.

• In Chapter 5, we introduce a SAT formulation for the problem of finding
the rique number of a graph and we use an implementation of it to
compute the rique numbers of different graphs that are named in the
literature.

• Chapter 6 concludes this thesis with a discussion and a list of open
problems raised by this work.

10



CHAPTER2
Preliminaries

2.1 Complete and Bipartite Graphs

A graph G is defined as a pair of sets (V,E), where V is a finite set of
vertices and E is a finite set of edges with E ⊆ V × V . Every edge e of E
has two endpoints. If these two endpoints of edge e are the vertices u and v,
then we denote the edge e by (u, v). We further denote by V (G) the set of
vertices of G and by E(G) the set of edges of G. The number of vertices of
G is usually denoted by n while the number of its edges is usually denoted by
m, i.e. |V (G)| = n and |E(G)| = m.

v1

v2 v3

v4

v5v6

(a) A graph G

v1

v2 v3

v4

v5v6

(b) A graph H

Figure 2.1: Illustration of two graphs G and H.

Two edges ei, ej ∈ E(G) are called adjacent if they connect to the same
vertex u ∈ V (G). For a vertex u ∈ V (G) we denote by NG(u), the set of
the neighboring vertices of u. Correspondingly, two vertices ui, uj ∈ V (G)
are called adjacent or neighboring if they are the endpoints of the same edge
e ∈ E(G). Two edges that are not adjacent are called independent.

11



Chapter 2 2.1. Complete and Bipartite Graphs

2.1.1 Complete Graphs

Definition 2.1. Let G be a graph with n ≥ 1 vertices and m ≥ 1 edges. Graph
G is called complete if and only if each pair of its vertices is connected by an
edge.

The complete graph with n vertices is denoted by Kn and has exactly n(n−1)
2

edges. Examples of complete graphs with different numbers of vertices are
given in Fig. 2.2.

(a) K3 (b) K4 (c) K7

Figure 2.2: Illustration of complete graphs with different numbers of vertices.

2.1.2 Bipartite Graphs

Definition 2.2. Let G be a graph with n ≥ 1 vertices and m ≥ 1 edges. Graph
G is called bipartite if and only if its vertex set V (G) can be partitioned into
two disjoint sets A and B, called parts, such that V (G) = A ∪ B, A ∩ B = ∅
and E(G) ⊆ A × B. In other words, for every edge (u, v) ∈ E(G), we have
that u ∈ A and v ∈ B.

A bipartite graph G with parts A and B is denoted by G = (A,B,E). A
complete bipartite graph, also called complete bigraph, is a bipartite graph such
that every vertex of one part is connected to every vertex of its other part, i.e.,
for every vertex u ∈ A and for every vertex v ∈ B the edge (u, v) belongs to
E(G). The complete bipartite graph is denoted by Kn,m, where n = |A| and
m = |B|, and has exactly nm edges. In this thesis, we assume that n = m.
Examples of bipartite and complete bipartite graphs are given in Fig. 2.3.
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Chapter 2 2.2. A Short Introduction to SAT Formulations

(a) (b) K4,6 (c) K6,6

Figure 2.3: Illustration of different bipartite graphs. The one of (a) is not
complete, while the ones of (b) and (c) are.

2.2 A Short Introduction to SAT Formulations

A propositional logic formula, also called Boolean expression or SAT formula
for short, is an expression that consists of different variables and operators,
summarized in Table 2.1.

Function Operator

AND
∧

OR
∨

NOT ¬
implies →
equivalence ↔

Table 2.1: Different operators appeared in a SAT formula.

Let F be a SAT formula. If F can be made true by assigning appropri-
ate logic values to its variables, then F is said to be satisfiable. If no such
assignment exists (that is, the formula is false for all possible variables as-
signments), then the formula is called unsatisfiable.

13



Chapter 2 2.2. A Short Introduction to SAT Formulations

2.2.1 Linear Layouts and SAT Formulations

Bekos et al. [6] have already introduced and implemented SAT formulations
for different types of linear layouts that are based on the original work [8].
The source code is available at https://github.com/linear-layouts/SAT.
In the formulation, there exist three different types of variables, σ, ϕ, and χ
with the following meanings.

• for a pair of vertices u and v, σ(u, v) is true, if and only if u is to the
left of v

• for an edge e and a page p, ϕp(e) is true, if and only if edge e is assigned
to the page p , and

• for a pair of edges e and e′,χ(e, e′) is true, if and only if e and e′ are
assigned to the same page.

Therefore, the constructed formula has O(n2 +m2 + pm) variables; see [8]
for more details.

Especially, for the case where page p is a rique, Bekos et al. [4] introduce
the following clause for each triplet of edges (ua, va), (ub, vb) and (uc, vc) to
express that the forbidden pattern ua ≺ ub ≺ uc ≺ vb ≺ {va, vc} does not
occur at page p.

σ(ua, ub) ∧ σ(ub, uc) ∧ σ(uc, vb) ∧ σ(vb, va) ∧ σ(vb, vc) →

¬(ϕp(ua, va) ∧ ϕp(ub, vb) ∧ ϕp(uc, vc))

In practice, we observed that the formulation above was inefficient. Rieger [30]
also observed this issue for the more general case where p is a deque and in-
troduced 4m variables to resolve it. More precisely, for each edge e and each
x in {hh, ht, th, tt} variable τp(e, x) has the following meaning.

τp(e, x) is true, if and only if the type of edge e at page p is x.

Rieger ensures that each edge has at least one of the allowed types, by
introducing the following clause for each edge e:

∨p
i=1(τi(e, hh) ∨ τi(e, ht) ∨ τi(e, th) ∨ τi(e, tt))

14
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Chapter 2 2.3. Matrix Representations of Linear Layouts

Using the variables above, Rieger introduces O(m2) clauses for each deque p
to ensure that all edges in p form a cylindric layout. In Chapter 5 we describe
how to adjust the formulation by Rieger in the case in which p is a rique.

2.3 Matrix Representations of Linear Layouts

For convenience, we represent their linear layouts as in [26]. Let ≺ be
an order of the n vertices v1, . . . , vn of a graph G such that v1 ≺ · · · ≺ vn.
Then, each edge (vi, vj) of G with i < j is mapped to point (i, j) of the
n × n grid H = [1, n] × [1, n]. A set of head-head edges corresponds to a set
of monotonically decreasing paths on H [26], while a set of head-tail edges
corresponds to monotonically increasing paths on H [2].

1 2 3 4 5

1 2 3 4 5

1
2
3
4
5

Figure 2.4: A stack layout of K5 and its corresponding matrix representation.

15
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CHAPTER3
An Upper Bound on the
Rique Number of Complete
Graphs

In this section, we study the rique number of the complete graph Kn. To

show a lower bound of (1−
√
2
2 )(n−2), Bekos et al. [4] have used the following

lemma.

Lemma 3.1 (Bekos et al. [4]). A graph with n vertices admitting a rique
layout with k pages has at most (2n+ 2)k − k2 + (n− 3) edges.

The best-known upper bound on the rique number of Kn is ⌈n3 ⌉ [4]. In the
next theorem, we improve this bound to ⌊n−1

3 ⌋. Given a rique layout L and a
set of edges E, we write Ex to denote that all edges of E are of type-x in L,
where x ∈ {hh, ht}.

Theorem 3.1. The rique-number of Kn is at most ⌊n−1
3 ⌋.

Proof. For the proof, we assume three cases for Kn, namely, n mod 3 ∈ 0, 1, 2.
First, we assume n mod 3 = 0 and we prove that Kn admits a rique layout L
with n

3 − 1 riques.

17



Chapter 3

Page 1 of L contains the following 2n edges; see Fig. 3.1:

• {(v1, vj), j = 2, . . . , n}ht; dark red in Fig. 3.1,

• {(vi, vn), i = 2, . . . , n3 }ht; red in Fig. 3.1,

• {(vn
3
, vj), j =

n
3 + 1, . . . , 2n3 + 1}hh; light red in Fig. 3.1,

• {(v 2n
3
+1, vj), j =

2n
3 + 2, . . . , n}hh; blue in Fig. 3.1,

• {(vn−1, vn)}hh; light blue in Fig. 3.1 .

v1 vn
3

v 2n
3 +1 vn

Figure 3.1: Page 1 of L when n mod 3 = 0.
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Page 2 of L contains the following 2n− 7 edges:

• {(v2, vj), j = 3, . . . , n− 1}ht; dark red in Fig. 3.2,

• {(vi, vn−1), i = 3, . . . , n3 + 1}ht; red in Fig. 3.2,

• {(vn
3
+1, vn)}ht; orange in Fig. 3.2,

• {(vn
3
+1, vj), j =

n
3 + 2, . . . , 2n3 }hh; blue in Fig. 3.2,

• {(v 2n
3
, vj), j =

2n
3 + 1, . . . , n}hh; light blue in Fig. 3.2.

v2 vn
3 +1 v 2n

3
vn−1

Figure 3.2: Page 2 of L when n mod 3 = 0.
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Page 3 of L contains the following 2n− 5 edges:

• {(v3, vj), j = 4, . . . , n− 2}ht; dark red in Fig. 3.3,

• {(vi, vn−2), i = 4, . . . , n3 + 1}ht; red in Fig. 3.3,

• {(v 2n
3
+2, vj), j = n− 2, . . . , n}ht; orange in Fig. 3.3,

• {(vn
3
+1, v 2n

3
+1)}hh; blue in Fig. 3.3,

• {(vn
3
+2, vj), j =

2n
3 − 1, 2n3 , 2n3 + 1}hh; light blue in Fig. 3.3,

• {(vn
3
+3, vj), j =

n
3 + 4, . . . , 2n3 − 1}hh; pink in Fig. 3.3,

• {(v 2n
3
+2, vj), j =

2n
3 + 3, . . . , n− 3}hh; light red in Fig. 3.3,

• {(vn−3, vj), j = n− 2, n− 1, n}hh; light orange in Fig. 3.3.

vn−2v 2n
3 +1vn

3 +1v3 v 2n
3 −1

Figure 3.3: Page 3 of L when n mod 3 = 0.
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For p = 4, . . . , n3 − 4, page p of L contains the following n
3 − 2p+ 3 edges:

• {(vp, vj), j = p+ 1, . . . , n− p+ 1}ht; dark red in Fig. 3.4,

• {(vi, vj), i = p+ 1, . . . n3 + 1, j = n− p+ 1}ht; red in Fig. 3.4,

• {(vi, vj), i = n
3 + (p+ 1), j = n− p+ 1, . . . , n}ht; pink in Fig. 3.4,

• {(vi, vj), i = n
3 + (p+ 1), j = 2n

3 + (p− 2), . . . , n− p}hh; blue in Fig. 3.4,

• {(vi, vj), i = n− p+ 1, j = n− p, . . . , n}hh; light blue in Fig. 3.4,

• {(vi, vj), i = n
3 + (p + 2), j = n

3 + (p + 3), . . . , 2n3 + (p − 2)}hh; orange
in Fig. 3.4.

vn−(p−1)vp vn
3 +1

vn
3 +(p+1)

v 2n
3 +(p−3)

Figure 3.4: Page p = 4, . . . , n3 − 4 of L when n mod 3 = 0.
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Page n
3 − 3 of L contains the following 4n

3 + 6 edges:

• {(vn
3
−3, vj), j =

n
3 − 2, . . . , 2n3 + 4}ht; dark red in Fig. 3.5,

• {(vi, v 2n
3
+4), i =

n
3 − 2, . . . , n3 + 1}ht; red in Fig. 3.5,

• {(vn
3
+3, vj), j =

2n
3 + 4, . . . , n− 1}ht; light blue in Fig. 3.5,

• {(v 2n
3
+3, vj), j = n− 1, n}ht; pink in Fig. 3.5,

• {(vn
3
+3, vj), j =

2n
3 , . . . , 2n3 + 3}hh; dark blue in Fig. 3.5,

• {(vn
3
+4, vj), j =

n
3 + 5, . . . , 2n3 }hh; orange in Fig. 3.5,

• {(v 2n
3
+3, vj), j =

2n
3 + 3, . . . , n− 2}hh; red in Fig. 3.5,

• {(vn−2, vj), j = n− 1, n}hh; dark orange in Fig. 3.5.

vn−2vn
3 +1vn

3 −3 v 2n
3

v 2n
3 +3

Figure 3.5: Page n
3 − 3 of L when n mod 3 = 0.
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Page n
3 − 2 of L contains the following 4n

3 + 3 edges:

• {(vn
3
−2, vj), j =

n
3 − 1, . . . , 2n3 + 3}ht; dark red in Fig. 3.6,

• {(vi, v 2n
3
+3), i =

n
3 − 1, . . . , n3 + 1}ht; red in Fig. 3.6,

• {(vn
3
+2, vj), j =

2n
3 + 3, . . . , n}ht; light red in Fig. 3.6,

• {(vn
3
+3, vn)ht; pink in Fig. 3.6,

• {(vn
3
+4, vj), j =

2n
3 + 1, . . . , n}hh; dark orange in Fig. 3.6,

• {(vn
3
+5, vj), j =

n
3 + 6, . . . , 2n3 + 1}hh; orange in Fig. 3.6.

vn
3 −2 v 2n

3 +3vn
3 +1

Figure 3.6: Page n
3 − 2 of L when n mod 3 = 0.
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Page n
3 − 1 of L contains the following n+ 9 edges:

• {(vn
3
−1, vj), j =

n
3 , . . . ,

2n
3 + 2}ht; dark red in Fig. 3.7,

• {(vi, v 2n
3
+2), i =

n
3 , . . . ,

n
3 + 2}ht;red in Fig. 3.7,

• {(v 2n
3
−2, vj), j = n− 5, . . . , n}ht; light red in Fig. 3.7,

• {(vn
3
+2, vj), j =

n
3 + 3, . . . , 2n3 − 2}hh; orange in Fig. 3.7,

• {(v 2n
3
−1, vj), j =

2n
3 , . . . , n}hh; light orange in Fig. 3.7.

vn−5vn
3 −1 v 2n

3 +2vn
3 +2 v 2n

3 −2

Figure 3.7: Page n
3 − 1 of L when n mod 3 = 0.
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1 2 3 4 n− 1

n− 1
n

1
2
3
4

n
3
+ 1

2n
3

n
3

2n
3

Figure 3.8: Illustration of the grid representation of a rique layout of Kn with
n mod 3 = 0 in which paths of the same color correspond to the same rique.
The points of the grid that are covered by a solid (dashed) path are head-head
(head-tail, respectively). Here, the “special” edges are the first (blue), second
(red), third (light green), n

3 − 3 (green), n
3 − 2 (light blue) and n

3 − 1 (purple)
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Case 2: n mod 3 = 1. In this case, we show that the Kn admits a rique
layout with ⌊n3 ⌋ riques. As in Case 1, our construction contains again “special”
pages, namely, the ones in {1, 2, ⌊n−1

3 ⌋}; blue, red and purple in Fig. 3.13. The
remaining pages of L are uniform.

Page 1 of L contains the following 2n− 1 edges:

• {(u1, vj), j = 2, . . . , n}ht; dark red in Fig. 3.9,

• {(ui, vn), i = 2, . . . , n−1
3 + 1}ht; red in Fig. 3.9,

• {(un−1
3

+1, vj), j =
n−1
3 + 2, . . . , 2n−2

3 + 1}hh; light red in Fig. 3.9,

• {(u 2n−2
3

+1, vj), j =
2n−2

3 + 2, . . . , n}hh; blue in Fig. 3.9,

• {(un−1, vn)}hh; light blue in Fig. 3.9.

v 2n−2
3 +1vn−1

3 +1
v1 vn

Figure 3.9: Page 1 of L when n mod 3 = 1.
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Page 2 of L contains the following 2n− 4 edges:

• {(u2, vj), j = 3, . . . , n− 1}ht; dark red in Fig. 3.10,

• {(ui, vn−1), i = 3, . . . , n−1
3 + 1}ht; red in Fig. 3.10,

• {(un−1
3

+2, vj), j = n− 1, n}ht; light red in Fig. 3.10,

• {(un−1
3

+2, vj), j =
n−1
3 + 3 . . . , n− 2}hh; blue in Fig. 3.10,

• {(un−2, vj), j = n− 1, n}hh; light blue in Fig. 3.10.

vn−1
3 +1v2 vn−1

Figure 3.10: Page 2 of L when n mod 3 = 1.
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For p = 3, . . . , n−1
3 − 1, page p of L contains the following 2n− 3p+ 2 edges:

• {(up, vj), j = p+ 1, . . . , n− p+ 1}ht; dark red in Fig. 3.11,

• {(ui, vn−p+1), i = p+ 1, . . . , n−1
3 + 1}ht; red in Fig. 3.11,

• {(un−1
3

+p, vj), j = n− p+ 1, . . . , n}ht; orange in Fig. 3.11,

• {(un−1
3

+p, vj), j =
n−1
3 + (p+ 1), . . . , n− p}hh; blue in Fig. 3.11,

• {(un−p, vj), j = n− p+ 1, . . . , n}hh; light blue in Fig. 3.11.

vp vn−1
3 +1

vn−1
3 +p

vn−(p−1)

Figure 3.11: Page p = 3, . . . , n−1
3 − 1 of L when n mod 3 = 1.
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Page ⌊n−1
3 ⌋ of L contains the following 2(n−1

3 ) + 4 edges:

• {(un−1
3
, vj), j =

n−1
3 + 1, . . . , 2n−2

3 + 2)}ht; dark red in Fig. 3.12,

• {(un−1
3

+1, v 2n−2
3

+2), }ht; red in Fig. 3.12,

• {(u 2n−2
3

, vj), j =
2n−2

3 + 1, . . . , n}hh; orange in Fig. 3.12.

vn−1
3 v 2n−2

3 +2

Figure 3.12: Page ⌊n−1
3 ⌋ of L when n mod 3 = 1.

So, when n mod 3 = 1, L has 2n−1+2n−4+
∑n−1

3
−1

p=3 (2n−3p+2)+2(n−1
3 )+4 =

n(n−1)
2 edges. Since no two edges have been assigned to the same rique and

all edges in the same rique form a cylindric layout, it follows that the rique
number of Kn is at most n−1

3 when n mod 3 = 1.
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n
n− 1

⌊ 2n
3
⌋+ 2

⌊n
3
⌋+ 2

2
3
4

1

1 2 3 4 ⌊n
3
⌋+ 1 ⌊ 2n

3
⌋ n− 1

Figure 3.13: Illustration of the grid representation of a rique layout of Kn with
n mod 3 = 1 in which paths of the same color correspond to the same rique.
The points of the grid that are covered by a solid (dashed) path are head-head
(head-tail, respectively). Here, the “special” edges are the first (blue), second
(red), and the n−1

3 (purple).
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Case 3: n mod 3 = 2. We continue with the case n mod 3 = 2. In this case,
we show that the Kn admits a rique layout with ⌊n3 ⌋ riques. As with the
previous two cases, our construction contains again “special” pages, namely,
the ones in {1, 2}; blue and red in Fig. 3.17. The remaining pages of L are
uniform.

Page 1 of L contains the following 2n edges:

• {(u1, vj), j = 2, . . . , n}ht; dark red in Fig. 3.14,

• {(ui, vn), i = 2, . . . , n−2
3 + 1}ht; red in Fig. 3.14,

• {(un−2
3

+1, vj), j =
n−2
3 + 2, . . . , 2n−4

3 + 2}hh; light red in Fig. 3.14,

• {(u 2n−4
3

+2, vj), j =
2n−4

3 + 3, . . . , n}hh; blue in Fig. 3.14,

• {(un−1, vn)}hh; light blue in Fig. 3.14.

vn−2
3 +1

v1 vnv 2n−4
3 +2

Figure 3.14: Page 1 of L when n mod 3 = 2.

31



Chapter 3

Page 2 of L contains the following 2n− 4 edges:

• {(u2, vj), j = 3, . . . , n− 1}ht; dark red in Fig. 3.15,

• {(ui, vn−1), i = 3, . . . , n−2
3 + 2}ht; red in Fig. 3.15,

• {(un−2
3

+2, vj), j = n− 1, n}ht; light red in Fig. 3.15,

• {(un−2
3

+2, vj), j =
n−2
3 + 3 . . . , n− 2}hh; blue in Fig. 3.15,

• {(un−2, vj), j = n− 1, n}hh; light blue in Fig. 3.15.

v2 vn−1vn−2
3 +2

Figure 3.15: Page 2 of L when n mod 3 = 2.
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For p = 3, . . . , n−2
3 , page p of L contains the following 2n− 3p+ 2 edges:

• {(up, vj), j = p+ 1, . . . , n− p+ 1}ht; dark red in Fig. 3.16,

• {(ui, vn−p+1), i = p+ 1, . . . , n−2
3 + 1}ht; red in Fig. 3.16,

• {(un−2
3

+p, vj), j = n− p+ 1, . . . , n}ht;light red in Fig. 3.16,

• {(un−2
3

+p, vj), j =
n−2
3 + (p+ 1), . . . , n− p}hh; blue in Fig. 3.16,

• {(un−p, vj), j = n− p+ 1, . . . , n}hh; light blue in Fig. 3.16.

vp vn−1
3 +1

vn−1
3 +p

vn−(p−1)

Figure 3.16: Page p = 3, . . . , n−2
3 of L when n mod 3 = 2.

So, in total L has 2n + 2n − 4 +
∑n−2

3
p=3 (2n − 3p + 2) = n(n−1)

2 edges. Since
no two edges have been assigned to the same rique and all edges in the same
rique form a cylindric layout, it follows that the rique number of Kn is at most
n−2
3 when n mod 3 = 2.
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n− 1

n
n− 1

⌊ 2n
3
⌋+ 2

⌊n
3
⌋+ 2

⌊n
3
⌋+ 1 ⌊ 2n

3
⌋+ 11 2 3 4

2
3
4

1

Figure 3.17: Illustration of the grid representation of a rique layout of Kn with
n mod 3 = 2 in which paths of the same color correspond to the same rique.
The points of the grid that are covered by a solid (dashed) path are head-head
(head-tail, respectively). Here, the “special” edges are the first (blue), and
the second (red).
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CHAPTER4
An Upper Bound on the
Rique Number of Complete
Bipartite Graphs

In this section, we study the rique number of the complete bipartite graph
Kn,n. Let the two parts of Kn,n be A = {a1, . . . , an} and B = {b1, . . . , bn}
with |A| = |B| = n. W.l.o.g., we also assume that in the computed layouts
a1 ≺ . . . an and b1 ≺ · · · ≺ bn holds. As in Chapter 3, given a rique layout L
and a set of edges E, we write Ex to denote that all edges of E are of type-x
in L, where x ∈ {hh, ht}.

Theorem 4.1. The rique-number of the complete bipartite graph Kn,n is at
most ⌊n−1

2 ⌋ − 1.

Proof. For the proof, we assume two cases for Kn,n, one for the oss numbers
ade one for the even ones. Given a rique layout L and a set of edges E, we
write Ex to denote that all edges of E are of type-x in L, where x ∈ {hh, ht}.

First, we prove that Kn,n with n odd, admits a rique layout L with ⌊n2 ⌋− 1
riques. We assume that for the two parts A and B of Kn,n, a1 ≺ b1 ≺ a2 ≺
b2 ≺ · · · ≺ a⌊n

2
⌋ ≺ b⌊n

2
⌋ ≺ b⌈n

2
⌉ ≺ · · · ≺ bn ≺ a⌈n

2
⌉ ≺ · · · ≺ an holds in L.
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Page 1 of L contains the following 3n edges:

• {(a1, bj), j = 1, . . . , n}ht; dark red in Fig. 4.1,

• {(ai, b1), i = ⌈n2 ⌉, . . . , n}ht; red in Fig. 4.1,

• {(a⌊n
2
⌋, bj), j = 2, . . . , ⌊n2 ⌋}hh; gray in Fig. 4.1,

• {(ai, b2), i = ⌈n2 ⌉, . . . , n}hh; blue in Fig. 4.1,

• {(a⌈n
2
⌉, bj), j = ⌈n2 ⌉, . . . , n}hh; light blue in Fig. 4.1.

a⌈n
2 ⌉ ana⌊n

2 ⌋a1

b1 b2 b⌊n
2 ⌋ b⌈n

2 ⌉ bn

Figure 4.1: Page 1 of L when n is odd.
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Page 2 of L contains the following 5n−1
2 + 1 edges:

• {(ai, b1), i = 2, . . . , ⌊n2 ⌋}ht; dark red in Fig. 4.2,

• {(a2, b⌊n
2
⌋)}ht; yellow in Fig. 4.2,

• {(a2, bj), j = ⌈n2 ⌉, . . . , n}ht; light red in Fig. 4.2,

• {(a3, bn)}ht; red in Fig. 4.2,

• {(ai, b3), i = ⌈n2 ⌉, . . . , n}ht; dark blue in Fig. 4.2,

• {(an−3, bj), j = ⌊n2 ⌋ − 2, . . . , ⌈n2 ⌉+ 1}hh; light blue in Fig. 4.2,

• {(ai, b⌈n
2
⌉+1), i = ⌈n2 ⌉+ 1, . . . , n− 4}hh; blue in Fig. 4.2,

• {(a⌈n
2
⌉+1, bj), j = ⌈n2 ⌉+ 2, . . . , n}hh; gray in Fig. 4.2.

a⌊n
2 ⌋−2

an−3a3a2

b3b1 bn

a⌊n
2 ⌋

b⌊n
2 ⌋ b⌈n

2 ⌉

a⌈n
2 ⌉

Figure 4.2: Page 2 of L when n is odd.
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For p = 3, 4, 5, page p of L contains the following
(
5n−1

2

)
+ 1 edges

• {(ap−1, bj), j = 2, . . . , ⌊n2 ⌋ − p+ 2}ht; dark red in Fig. 4.3,

• {(ap, bj), j = ⌊n2 ⌋ − p+ 2, . . . , n− p+ 2}ht; red in Fig. 4.3,

• {(ap+1, bj), j = n− p+ 2, . . . , n}ht; light red in Fig. 4.3,

• {(ai, bp+1), i = ⌈n2 ⌉, . . . , n}ht; dark blue in Fig. 4.3,

• {(an+(p−5), bj), j = ⌊n2 ⌋ − 2, . . . , ⌈n2 ⌉+ (p− 1)}hh; gray in Fig. 4.3,

• {(ai, b⌈n
2
⌉+(p−1)), i = ⌈n2 ⌉+ (p− 1), . . . , n+ (p− 6)}hh; blue in Fig. 4.3,

• {(a⌈n
2
⌉+(p−1), bj), j = ⌈n2 ⌉+ p, . . . , n}hh; light blue in Fig. 4.3.

anan
2 −1

an+(p−5)

a⌈n
2 ⌉+(p−1)

b⌈n
2 ⌉+p−1

b⌊n
2 ⌋−p+2

b⌊n
2 ⌋−2

bp+1

ap
ap−1

b2

ap+1

bn−p+2

bn

a⌈n
2 ⌉

Figure 4.3: Page p = 3, 4, 5 of L when n is odd.
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Page 6 of L contains the following 5n−1
2 − 8 edges:

• {(a5, bj), j = 2, . . . , ⌊n2 ⌋ − 4}ht; dark red in Fig. 4.4,

• {(a6, bj), j = ⌊n2 ⌋ − 4, . . . , n− 4}ht; red in Fig. 4.4,

• {(a7, bj), j = n− 4, . . . , n}ht; light red in Fig. 4.4,

• {(ai, b7), i = ⌈n2 ⌉, . . . , n}ht; dark blue in Fig. 4.4,

• {(ai, b⌈n
2
⌉+5), i = ⌈n2 ⌉+ 5, . . . , n)}hh; blue in Fig. 4.4,

• {(a⌈n
2
⌉+5, bj), j = ⌈n2 ⌉+ 6, . . . , n}hh; light red in Fig. 4.4.

b⌈n
2 ⌉+5

a⌈n
2 ⌉+5 an

b⌊n
2 ⌋−4

b7

a7a5

b2

a6

bn−4

Figure 4.4: Page 6 of L when n is odd.
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Page 7 of L contains the following 3n+1
2 + 4 edges:

• {(a6, bj), j = 2, . . . , ⌊n2 ⌋ − 5}ht; dark red in Fig. 4.5,

• {(a7, bj), j = ⌊n2 ⌋ − 5, . . . , n− 5}ht; red in Fig. 4.5,

• {(a8, bj), j = n− 5, . . . , n}ht; light red in Fig. 4.5,

• {(ai, b8), i = ⌈n2 ⌉, . . . , n}ht; blue in Fig. 4.5,

• {(a⌊n
2
⌋, bj), j = ⌈n2 ⌉, . . . , ⌈

n
2 ⌉+ 2)}hh; light blue in Fig. 4.5.

a⌈n
2 ⌉ an

b8

a8a6

b2

a7

bn−5b⌊n
2 ⌋−5

a⌊n
2 ⌋

b⌈n
2 ⌉+2

Figure 4.5: Page 7 of L when n is odd.
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For p = 8, . . . , n−1
2 − 6, page p of L contains the following 5n+3

2 − 2p+4 edges:

• {(ap−1, bj), j = 2, . . . , ⌊n2 ⌋ − p+ 2}ht; dark red in Fig. 4.6,

• {(ap, bj), j = ⌊n2 ⌋ − p+ 2, . . . , n− p+ 2}ht; red in Fig. 4.6,

• {(ap+1, bj), j = n− p+ 2, . . . , n}ht; light red in Fig. 4.6,

• {(ai, bp+1), i = ⌈n2 ⌉, . . . , n}ht; dark blue in Fig. 4.6,

• {(ai, b⌈n
2
⌉+p−2), i = ⌈n2 ⌉+ p− 2, . . . , n)}hh; blue in Fig. 4.6,

• {(a⌈n
2
⌉+p−2, bj), j = ⌈n2 ⌉+ p− 1, . . . , n}hh; light blue in Fig. 4.6.

b⌈n
2 ⌉+p−2

an

b⌊n
2 ⌋−p+2

bp+1

ap+1ap−1

b2

ap

bn−p+2

a⌈n
2 ⌉+p−2

Figure 4.6: Page p = 8, . . . , n−1
2 − 6 of L when n is odd.
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Page n−1
2 − 5 of L contains the following 2n-3 edges:

• {(a⌊n
2
⌋−6, bj), j = 2, . . . , ⌊n2 ⌋ − 7}ht; dark red in Fig. 4.7,

• {(a(⌊n
2
⌋−5), bj), j = ⌊n2 ⌋ − 7, . . . , n− 7}ht; red in Fig. 4.7,

• {(a⌊n
2
⌋−4, bj), j = n− 7, . . . , n}ht; light red in Fig. 4.7,

• {(ai, b⌊n
2
⌋−4), i = ⌈n2 ⌉, . . . , n}ht; light blue in Fig. 4.7,

• {(ai, b⌊n
2
⌋−3), i = ⌈n2 ⌉+ 5, . . . , n)}hh; blue in Fig. 4.7.

a⌈n
2 ⌉+5 an

b⌊n
2 ⌋−4

a⌊n
2 ⌋−6

b2 bn−7

b⌊n
2 ⌋−3

a⌊n
2 ⌋−5

a⌊n
2 ⌋−4

b⌊n
2 ⌋−7

Figure 4.7: Page n−1
2 − 5 of L when n is odd.
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For p = n−1
2 − k, with k ∈ {4, 3, 2}, page p of L contains the following 3n−1

2 −
2k + 20 edges:

• {(ap−1, bj), j = 2, . . . , ⌊n2 ⌋ − p− 4}ht; dark red in Fig. 4.8,

• {(ap, bj), j = ⌊n2 ⌋ − p− 4, . . . , n− p− 4}ht; red in Fig. 4.8,

• {(ap+1, bj), j = n− p− 4, . . . , n}ht; light red in Fig. 4.8,

• {(ai, bp+1), i = ⌈n2 ⌉, . . . , ⌈
n
2 ⌉+ k}ht; dark pink in Fig. 4.8,

• {(ai, bp+2), i = ⌈n2 ⌉+ k, . . . , n− 8 + k}ht; light pink in Fig. 4.8,

• {(an−8+k, bj), j = ⌊n2 ⌋ − 2 + k, . . . , ⌈n2 ⌉}ht; pink in Fig. 4.8,

• {(ai, bn+(2k−9)), i = n+ (k − 8), . . . , n}ht; dark blue in Fig. 4.8,

• {(ai, bn+(2k−8)), i = n+ (k − 8), . . . , n)}hh; blue in Fig. 4.8,

• {(an+(k−8), bj), j = n+ (2k − 7), . . . , n)}hh; gray in Fig. 4.8.

b2

b⌊n
2 ⌋−p+2

bp+1

ap+1ap−1
ap

bp+2

b⌊n
2 ⌋−2+k

bn−p+2

bn+(2k−9)

an−8+k

a⌈n
2 ⌉+k

Figure 4.8: Page p = n−1
2 − k, with k ∈ {4, 3, 2} of L when n is odd.
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Page n−1
2 − 1 of L contains the following 3n+1

2 + 18 edges:

• {(a⌊n
2
⌋−1, bj), j = 2, . . . , ⌈n2 ⌉+ 3}ht; dark red in Fig. 4.9,

• {(a⌊n
2
⌋, bj), j = ⌈n2 ⌉+ 3, . . . , n}ht; red in Fig. 4.9,

• {(ai, b⌊n
2
⌋), i = ⌈n2 ⌉, ⌈

n
2 ⌉+ 1}ht; light red in Fig. 4.9,

• {(ai, b⌈n
2
⌉), i = ⌈n2 ⌉+ 1, . . . , n− 7}ht; dark pink in Fig. 4.9,

• {(ai, bn−7), i = ⌈n4 ⌉+ 1, . . . , n}ht; pink in Fig. 4.9,

• {(ai, bn−6), i = ⌊n4 ⌋+ 1, . . . , n}hh; dark blue in Fig. 4.9,

• {(a⌈n
4
⌉+1, bj), j = n− 5, . . . , n}hh; blue in Fig. 4.9,

• {(a⌊n
2
⌋−2, bj), j = 2, 3}hh; gray in Fig. 4.9.

b2 b3

a⌊n
2 ⌋−2 a⌈n

2 ⌉

b⌈n
2 ⌉

b⌈n
2 ⌉+3

bn−7

bn−6

a⌈n
4 ⌉+1

b⌊n
2 ⌋

a⌊n
2 ⌋−1
a⌊n

2 ⌋
a⌈n

2 ⌉+1

Figure 4.9: Page n−1
2 − 1 of L when n is odd.

So, in total L has 3n + 5n−1
2 + 1 + 3

(
5n−1

2 + 1
)
+ 5n−1

2 − 8 + 3n+1
2 + 4 +∑n−1

2
−6

p=8

(
5n+3

2 − 2p+ 4
)
+ 2n − 3 +

∑4
k=2(

3n−1
2 − 2k + 20) + (3n+1

2 + 18) =

n2 edges. Since no two edges in the same rique deviate from the properties of
cylindric layouts, it follows that the rique number of kn,n is at most ⌊n−1

2 ⌋− 1
when n is odd.
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a1

b1
a2

b2

a3

b3

a⌊n
2
⌋

bn

an

b⌊n
2
⌋

b⌈n
2
⌉

a⌈n
2
⌉

b1b2b3

an−1
an−2
an−3
an−4

a⌈n
2
⌉+5

b⌊n
2
⌋ bn

b⌊n
2
⌋−3 b⌈n

2
⌉+5 bn−7

b⌈n
2
⌉+2

Figure 4.10: Illustration of the grid representation of a rique layout of Kn,n

when n is odd in which paths of the same color correspond to the same rique.
The points of the grid that are covered by a solid (dashed) path are head-head
(head-tail, respectively). Here, the “special” pages are the first (blue), second
(violet), third (dark-purple), fourth (dark-green), fifth (yellow), sixth (dark-
gray), eighth (cyan), n−1

2 − 5 (green), n−1
2 − 4 (purple), n−1

2 − 3 (turquoise),
n−1
2 − 2 (brown), and n−1

2 − 1 (orange) when n is odd. When n is even, the
“special” pages are the first (blue), second (violet), third (dark-purple), fourth
(dark-green), fifth (yellow), sixth (dark-gray), eighth (cyan), n

2 − 6 (green),
n
2 − 5 (purple), n

2 − 4 (turquoise), n
2 − 3 (brown), and n

2 − 2 (orange).
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In the following, we discuss the case in which n is even and we prove that
Kn,n admits a rique layout L with n

2 − 2 riques. Let A = {a1, . . . , an} and
B = {b1, . . . , bn} be the two parts of Kn,n, such that a1 ≺ b1 ≺ a2 ≺ b2 ≺
· · · ≺ an

2
−1 ≺ bn

2
−1 ≺ bn

2
≺ · · · ≺ bn ≺ an

2
≺ · · · ≺ an holds in L. In L, there

exist 12 special riques, in particular, the ones in {1, 2, 3, 4, 5, 6, 7, n2 − 6, n2 −
5, n2 − 4, n2 − 3, n2 − 2}; see Fig. 4.20.

Page 1 of L contains the following 3n+ 1 edges:

• {(a1, bj), j = 1, . . . , n}ht; dark red in Fig. 4.11,

• {(ai, b1), i = n
2 , . . . , n}ht; red in Fig. 4.11,

• {(an
2
−1, bj), j = 2, . . . , n2 − 1}hh; light blue in Fig. 4.11,

• {(ai, b2), i = n
2 , . . . , n}hh; light red in Fig. 4.11,

• {(an
2
, bj), j =

n
2 , . . . , n}hh; blue in Fig. 4.11.

an
2

anan
2 −1a1

b1 b2 bn
2 −1 bn

2 bn

Figure 4.11: Page 1 of L when n is even.
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Page 2 of L contains the following 5n
2 + 2 edges:

• {(ai, b1), i = 2, . . . , n2 − 1}ht; dark red in Fig. 4.12,

• {(a2, bn
2
−1)}ht; orange in Fig. 4.12,

• {(a2, bj), j = n
2 , . . . , n}ht; red in Fig. 4.12,

• {(a3, bn)}ht; light red in Fig. 4.12,

• {(ai, b3), i = n
2 , . . . , n}ht;light blue in Fig. 4.12,

• {(an−3, bj), j =
n
2 − 3, . . . , n2 + 1}hh; blue in Fig. 4.12,

• {(ai, bn
2
+1), i =

n
2 + 1, . . . , n− 4}hh; dark blue in Fig. 4.12,

• {(an
2
+1, bj), j =

n
2 + 2, . . . , n}hh; gray in Fig. 4.12.

an−3an
2 +1a3a2

b3b1 bn
2 +1bn

2 −1 bn

Figure 4.12: Page 2 of L when n is even.
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For p = 3, 4, 5, page p of L contains the following 5n
2 + 2 edges

• {(ap−1, bj), j = 2, . . . , n2 − p+ 1}ht; dark red in Fig. 4.13,

• {(ap, bj), j = n
2 − p+ 1, . . . , n− p+ 2}ht; red in Fig. 4.13,

• {(ap+1, bj), j = n− p+ 2, . . . , n}ht; light red in Fig. 4.13,

• {(ai, bp+1), i =
n
2 , . . . , n}ht; dark blue in Fig. 4.13,

• {(an+p−6, bj), j =
n
2 − 3, . . . , n2 + p− 1}hh; light blue in Fig. 4.13,

• {(ai, bn
2
+(p−1)), i =

n
2 + (p− 1), . . . , n+ (p− 6)}hh; blue in Fig. 4.13,

• {(an
2
+(p−1), bj), j =

n
2 + p, . . . , n}hh; gray in Fig. 4.13.

anan
2 −1

an+(p−6)

an
2 +(p−1)

bn
2 +p

bn
2 −p+1

bn
2 −3bp+1

ap
ap−1

b2

ap+1 an
2

bn
2

bn−p+2

bn

Figure 4.13: Page p = 3, 4, 5 of L when n is even.
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Page 6 of L contains the following 5n
2 − 7 edges:

• {(a5, bj), j = 2, . . . , n2 − 5}ht; dark red in Fig. 4.14,

• {(a6, bj), j = n
2 − 5, . . . , n− 4}ht; red in Fig. 4.14,

• {(a7, bj), j = n− 4, . . . , n}ht; light red in Fig. 4.14,

• {(ai, b7), i = n
2 , . . . , n}ht; dark blue in Fig. 4.14,

• {(ai, bn
2
+5), i =

n
2 + 5, . . . , n)}hh; blue in Fig. 4.14,

• {(an
2
+5, bj), j =

n
2 + 6, . . . , n}hh; gray in Fig. 4.14.

bn
2 +5

an
2 +5an

2
an

bn
2 −1

bn
2 −5

b7

a7a5

b2

a6

bn−4

Figure 4.14: Page 6 of L when n is even.
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Page 7 of L contains the following 3n
2 + 23 edges:

• {(a6, bj), j = 2, . . . , n2 − 6}ht; dark red in Fig. 4.15,

• {(a7, bj), j = n
2 − 6, . . . , n− 5}ht; red in Fig. 4.15,

• {(a8, bj), j = n− 5, . . . , n}ht; light red in Fig. 4.15,

• {(ai, b8), i = n
2 , . . . , n}ht; dark blue in Fig. 4.15,

• {(an
2
−1, bj), j =

n
2 , . . . ,

n
2 + 3)}hh; gray in Fig. 4.15,

• {(an−8, bj), j = n− 8, . . . , n}hh; blue in Fig. 4.15,

• {(ai, bn−8), i = n− 7, . . . , n}hh; light blue in Fig. 4.15.

bn−8

an−8an
2

an

bn
2 −1

bn
2 −6

b8

a8a6

b2

a7

bn−5bn
2

bn
2 +3

an
2 −1

Figure 4.15: Page 7 of L when n is even.
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For p = 8, . . . , n2 − 7, page p of L contains the following 5n
2 − 2p+ 7 edges:

• {(ap−1, bj), j = 2, . . . , n2 − p+ 1}ht; dark red in Fig. 4.16,

• {(ap, bj), j = n
2 − p+ 1, . . . , n− p+ 2}ht; red in Fig. 4.16,

• {(ap+1, bj), j = n− p+ 2, . . . , n}ht; light red in Fig. 4.16,

• {(ai, bp+1), i =
n
2 , . . . , n}ht; dark blue in Fig. 4.16,

• {(ai, bn
2
+p−2), i =

n
2 + (p− 2), . . . , n)}hh; blue in Fig. 4.16,

• {(an
2
+(p−2), bj), j =

n
2 + (p− 1), . . . , n}hh; light blue in Fig. 4.16.

bn
2 +(p−2)

an
2 +(p−2)

an
2

an

bn
2 −1

bn
2 −p+1

bp+1

ap+1ap−1

b2

ap

bn−p+2

Figure 4.16: Page p = 8, . . . , n2 − 7 of L when n is even.
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Page n
2 − 6 of L contains the following 2n-2 edges:

• {(an
2
−7, bj), j = 2, . . . , n2 − 8}ht; dark red in Fig. 4.17,

• {(an
2
−6, bj), j =

n
2 − 8, . . . , n− 7}ht; red in Fig. 4.17,

• {(an
2
−5, bj), j = n− 7, . . . , n}ht; light red in Fig. 4.17,

• {(ai, bn
2
−5), i =

n
2 , . . . , n}ht; blue in Fig. 4.17,

• {(ai, bn
2
−4), i =

n
2 + 5, . . . , n)}hh; dark blue in Fig. 4.17.

an
2 +5an

2
an

bn
2 −1bn

2 −5

an
2 −7

b2 bn−7

an
2 −6

an
2 −5

bn
2 −4

Figure 4.17: Page n
2 − 6 of L when n is even.
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For p = n
2 −k, with k ∈ {5, 4, 3}, page p of L contains the following 3n

2 −2k+22
edges:

• {(ap−1, bj), j = 2, . . . , n2 − p+ 1)}ht; dark red in Fig. 4.18,

• {(ap, bj), j = n
2 − p+ 1, . . . , n− p+ 2)}ht; red in Fig. 4.18,

• {(ap+1, bj), j = n− p+ 2, . . . , n}ht; light red in Fig. 4.18,

• {(ai, bp+1), i =
n
2 , . . . ,

n
2 + (k − 1)}ht; pink in Fig. 4.18,

• {(ai, bp+2), i =
n
2 + (k − 1), . . . , n− 8 + k}ht; light pink in Fig. 4.18,

• {(an−8+k, bj), j =
n
2 − 3− k, . . . , n2 }ht; blue in Fig. 4.18,

• {(ai, bn+(2k−11)), i = n− 8 + k, . . . , n}ht; light blue in Fig. 4.18,

• {(ai, bn+(2k−10)), i = n− 8 + k, . . . , n}hh; dark blue in Fig. 4.18,

• {(an−8+k, bj), j = n+ (2k − 9), . . . , n}hh; gray in Fig. 4.18.

b2

bn
2 −p+1

bp+1

ap+1ap−1
ap

bp+2 bn
2

bn−p+2

bn+(2k−11)

an−7+k

an
2 +(k−1)

Figure 4.18: Page p = n
2 − k, with k ∈ {5, 4, 3} of L when n is even.
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Page n
2 − 2 of L contains the following 3n

2 + 19 edges:

• {(an
2
−2, bj), j = 2, . . . , n2 + 4}ht; dark red in Fig. 4.19,

• {(an
2
−1, bj), j =

n
2 + 4, . . . , n}ht; red in Fig. 4.19,

• {(ai, bn
2
−1), i =

n
2 ,

n
2 + 1}ht; light red in Fig. 4.19,

• {(ai, bn
2
), i = n

2 + 1, . . . , n− 7}ht; pink in Fig. 4.19,

• {(ai, bn−7), i =
n
4 + 1, . . . , n}ht; dark blue in Fig. 4.19,

• {(ai, bn−6), i =
n
4 + 1, . . . , n}hh; light blue in Fig. 4.19,

• {(an
4
+1, bj), j = n− 5, . . . , n}hh; gray in Fig. 4.19,

• {(an
2
−3, bj), j = 2, 3}hh; blue in Fig. 4.19.

b2 b3

an
2 −3

an
2 −2

an
2 −1

an
2 +1

bn
2

bn
2 +4

bn−7

bn−6

an
4 +1

bn
2 −1

Figure 4.19: Page p = n
2 − 2 of L when n is even.

So, in total L has n2 edges. Since no two edges in the same rique deviate from
the properties of cylindric layouts, it follows that the rique number of Kn,n is
at most n

2 − 2 when n is even.
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b1
b2
b3

bn

an

bn
2
−1

bn
2

an−1
an−2
an−3
an−4

bn
2
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2

an
2
+5

an
2
−1a1a2a3

b1b2b3
bn

2 bn
bn

2
−4 bn−7

bn
2
+4

Figure 4.20: Illustration of the grid representation of a rique layout of Kn,n

when n is even, in which paths of the same color correspond to the same rique.
The points of the grid that are covered by a solid (dashed) path are head-head
(head-tail, respectively). Here, the “special” pages are the first (blue), second
(violet), third (dark-purple), fourth (dark-green), fifth (yellow), sixth (dark-
gray), eighth (cyan), n−1

2 − 5 (green), n−1
2 − 4 (purple), n−1

2 − 3 (turquoise),
n−1
2 − 2 (brown), and n−1

2 − 1 (orange) when n is odd. When n is even, the
“special” pages are the first (blue), second (violet), third (dark-purple), fourth
(dark-green), fifth (yellow), sixth (dark-gray), eighth (cyan), n

2 − 6 (green),
n
2 − 5 (purple), n

2 − 4 (turquoise), n
2 − 3 (brown), and n

2 − 2 (orange).
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CHAPTER5
SAT Formulation and
Named Graphs

As part of this thesis, we implemented both SAT-based approaches for
testing whether a given graph admits a rique layout in a certain number of
riques described in Chapter 2. Our implementation has been incorporated
in [6] and the corresponding source code has become available at https:

//github.com/linear-layouts/SAT. Note that even though Rieger’s ap-
proach [30] is tailored for deque layouts, it is not difficult to be adjusted to
rique layouts. Recall that for each edge e and each x in {hh, ht, th, tt} in her
approach there exists a variable τp(e, x) with the following meaning.

τp(e, x) is true, if and only if the type of edge e at page p is x.

We adjusted her approach for the case where p is a rique, by introducing
for each edge e the following clause forbidding tail-head and tail-tail edges:

¬τp(e, th) ∧ ¬τp(e, tt)

We used our implementation to compute the rique number of different
graphs that are named in the literature. Our source was the following wikipedia
page:

https://en.wikipedia.org/wiki/List_of_graphs

In this wikipedia page the graphs are grouped into the following categories.
We present our findings on their rique numbers using this grouping (we omitted
groups containing very large graphs since these could not be tested).
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Chapter 5 5.1. Individual graphs

• Individual graphs; see Section 5.1

• Strongly regular graphs; see Section 5.2

• Symmetric graphs; see Section 5.3

• Semi-symmetric graphs; see Section 5.4

• Fullerene graphs; see Section 5.5

• Platonic solids; see Section 5.6

• Truncated solids; see Section 5.7

• Snarks; see Section 5.8

5.1 Individual graphs

Table 5.1: The rique number of individual graphs

Graph |V | |E| rn(G) Graph |V | |E| rn(G)

Ellingham–Horton 54 54 81 2 Meredith 70 140 2
Ellingham–Horton 78 78 117 2 Hoffman 16 32 2
Windmill Wd(5,4) 17 40 2 Herschel 11 18 1
Balaban 10-cage 70 105 2 Franklin 12 18 2
Balaban 11-cage 112 168 2 Chvátal 12 24 2
Tutte’s fragment 18 24 1 Golomb 10 18 1
Goldner–Harary 11 27 2 Poussin 15 39 1
Wiener–Araya 42 67 1 Wagner 8 12 2
Harries–Wong 70 105 2 Horton 96 144 2
Moser spindle 7 11 1 McGee 24 36 2
Bidiakis cube 12 18 1 Harries 70 105 2
Brinkmann 21 42 2 Frucht 12 18 1
Markström 24 36 1 Kittell 23 63 1
Robertson 19 38 2 Errera 17 45 1
Sousselier 16 27 2 Dürer 12 18 1
Butterfly 5 6 1 Tutte 46 69 1
Diamond 4 5 1 Wells 32 80 3
Sylvester 36 90 3 Holt 27 54 2
Grötzsch 11 20 2 Bull 5 5 1
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5.2 Strongly Regular Graphs

Table 5.2: The rique number of strongly regular graphs

Graph |V | |E| rn(G)

Shrikhande 16 48 2
Petersen 10 15 2
Clebsch 16 40 2
Paley 13 39 2

5.3 Symmetric graphs

Table 5.3: The rique number of symmetric graphs

Graph |V | |E| rn

Möbius–Kantor 16 24 2
Tutte–Coxeter 30 45 2
Biggs–Smith 102 153 3
Desargues 20 30 2
Heawood 14 21 2
Coxeter 28 42 2
Pappus 18 27 2
Foster 90 135 3
Nauru 24 36 2
Klein 56 84 2
Dyck 32 48 2
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5.4 Semi-symmetric graphs

Table 5.4: The rique number of semi-symmetric graphs

Graph |V | |E| rn(G)

Tutte 12-cage 126 189 3
Ljubljana 112 168 3
Folkman 20 40 2
Gray 54 81 2

5.5 Fullerene graphs

Table 5.5: The rique number of Fullerene graphs

Graph |V | |E| rn(G)

Hexagonal Truncated Trapezohedron 24 36 1
Truncated Tcosahedral 60 90 1
Dodecahedral 20 30 1
70-fullerene 70 105 1
26-fullerene 26 39 1
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5.6 Platonic solids graphs

Table 5.6: The rique number of platonic solids graphs

Graph |V | |E| rn

Dodecahedron 20 30 1
Icosahedron 12 30 1
Octahedron 6 12 1
Cube 8 12 1

5.7 Truncated solids graphs

Table 5.7: The rique number of truncated solids graphs

Graph |V | |E| rn(G)

Truncated cube 24 36 1
Dodecahedron 60 90 1
Tetrahedron 12 18 1
Octahedron 24 36 1
Icosahedron 60 90 1
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5.8 Snarks

Table 5.8: The rique number of snarks

Graph |V | |E| rn(G)

Loupekine (first) 22 33 2
Loupekine (second) 22 33 2
Blanuša (first) 18 27 2
Blanuša (second) 18 27 2
Flower (first) 20 30 2
Flower (second) 28 42 2
Double-star 30 45 2
Szekeres 50 75 2
Watkins 50 75 2
Tietze 12 18 2
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5.9 Gallery of Named Graphs
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Figure 5.1: Well’s graph where in the rique layout that follows the red edges
form the first page, the blue edges form the second page, and the green edges
form the third page.

63



Chapter 5 5.9. Gallery of Named Graphs
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Figure 5.2: Illustration of Page 1 of Well’s graph
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Figure 5.3: Illustration of Page 2 of Well’s graph
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Figure 5.4: Illustration of Page 3 of Well’s graph
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Figure 5.5: Illustration of Peterson’s graph where in the rique layout that
follows the red edges form the first page and the blue edges form the second
page.
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Figure 5.6: Illustration of (a) Page 1 and (b) Page 2 of Peterson’s graph.
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Figure 5.7: Errera’s graph
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Figure 5.8: Illustration of the rique layout of Errera’s graph
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Figure 5.9: Illustration of the Windmill(5, 4)
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Figure 5.10: Illustration of Page 1 of Windmill
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Figure 5.11: Illustration of Page 2 of Windmill
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CHAPTER6
Conclusions

In conclusion, the focus of this thesis was on rique layouts of graphs that uti-
lize the well-known restricted-input double-ended queue data structure to de-
termine which edges can exist in the same page. We examined complete graphs
and complete bipartite graphs and we presented improved upper bounds on
their rique numbers, where the later represents the minimum number of pages
required for any rique layout of them. In our research, we improved the upper
bound for complete graphs and introduced a new one for complete bipartite
graphs of equal parts.

By employing a SAT-based approach, we demonstrated that the first bound
is tight for all complete graphs with up to 30 vertices. To this end, we con-
jecture that our bound for complete graphs is tight. This might also hold for
our bound on the rique number of complete bipartite graphs, since we have
checked with our SAT implementation that the bound is tight for all complete
bipartite graphs (with equal parts) up to K21,21.

We deem important to mention that there exist several questions unan-
swered about the rique numbers of other graph families. As an example, we
mention the class of planar graphs. For this class of graphs, we know that
their rique number is at least 2 (e.g., the Golden-Harary graph is a graph re-
quiring two riques; see Chapter 5). However, it is still unknown if there exists
a planar graph with rique number of at least 3. Using our SAT formulation,
we tried to find one, but without success. At the point of writing this thesis,
parts ofthis thesis have been submited for publication at CCCG 2023.
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