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Περίληψη

Η παρούσα Μεταπτυχιακή Διπλωματική Εργασία έχει ως στόχο την μελέτη του Υβριδικού Πληθωριστικού

Σεναρίου της Κοσμολογίας, στα πλαίσια της Θεωρίας Χορδών.

Κοσμολογία είναι ο κλάδος της Αστροφυσικής που ασχολείται με τη μελέτη του σύμπαντος στην ολότητά του.

Συγκεκριμένα, εξετάζει τη δομή και τη δυναμική εξέλιξη του σύμπαντος, στη μεγαλύτερη δυνατή κλίμακα μήκους.

Η εξέταση αυτή πραγματοποιείται μέσω των κοσμολογικών παρατηρήσεων, καθώς και των κοσμολογικών μοντέλων,

τα οποία αποτελούν το μαθηματικό υπόβαθρο που αποσκοπεί στην περιγραφή των χαρακτηριστικών του σύμπαντος,

όπως αυτά γίνονται γνωστά μέσω των κοσμολογικών παρατηρησιακών δεδομένων.

Το επικρατέστερο μοντέλο για την περιγραφή του σύμπαντος, είναι το Καθιερωμένο Πρότυπο της Κοσμολο-

γίας (Standard Model of Cosmology), το οποίο βασίζεται στο Καθιερωμένο Πρότυπο των σωματιδίων (Standard
Model), τη Γενική Θεωρία της Σχετικότητας, και την Κοσμολογική Αρχή (Cosmological Principle). Σύμφωνα
με την Κοσμολογική Αρχή, σε επαρκώς μεγάλη κλίμακα, οι ιδιότητες του σύμπαντος είναι ίδιες για οποιονδήποτε

παρατηρητή σε οποιαδήποτε τοποθεσία του σύμπαντος. Οι δύο συνέπειες της αρχής αυτής ως προς τη δομή του

σύμπαντος, είναι η ομοιογένεια και η ισοτροπία. Ομοιογένεια σημαίνει ότι τα διαθέσιμα παρατηρήσιμα στοιχεία είναι

ίδια για παρατηρητές οι οποίοι βρίσκονται σε διαφορετικές περιοχές του σύμπαντος, ενώ ισοτροπία ότι είναι ίδια

προς οποιαδήποτε κατεύθυνση εξετάζεται το σύμπαν. Τα χαρακτηριστικά του ΚΠΚ όσον αφορά την εξέλιξη, και

τις μορφές ύλης και ενέργειας του σύμπαντος, είναι η διαστολή, και η ύπαρξη ορατής ύλης, σκοτεινή ύλης, δηλαδή

ύλης που αλληλεπιδρά πολύ ασθενώς με τη συνηθισμένη ύλη ώστε να μην είναι άμεσα παρατηρήσιμη, και σκοτεινής

ενέργειας, η οποία είναι μια άγνωστη μορφή ενέργειας, ομοιόμορφα κατανεμημένη σε όλο το σύμπαν, και στην ο-

ποία ευθύνεται η παρατηρούμενη επιταχυνόμενη διαστολή του. Συγκεκριμένα, η σκοτεινή ενέργεια αποδίδεται στην

ύπαρξη μιας θετικής κοσμολογικής σταθεράς (cosmological constant) ή αλλιώς, μιας ενέργειας κενού (vacuum
energy) με θετική τιμή.
Το Καθιερωμένο Κοσμολογικό Πρότυπο έρχεται να συμπληρώσει μία πολύ σημαντική υποτιθέμενη εποχή α-

πό την οποία πέρασε το σύμπαν στις πολύ νεαρές στιγμές του, η οποία ονομάζεται κοσμολογικός πληθωρισμός

(Cosmological Inflation). Κατά τη φάση του πληθωρισμού, το σύμπαν υφίσταται μια επιταχυνόμενη διαστολή, η
οποία διαρκεί αρκετά ώστε να οδηγηθούμε τελικά στην παρατηρούμενη σημερινή δομή του σύμπαντος (σμήνη και

υπερσμήνη γαλαξιών), τον παρατηρούμενο επίπεδο χώρο, την ισοτροπία της Κοσμικής Ακτινοβολίας Υποβάθρου

(Cosmic Microwave Background), και την απουσία μαγνητικών μονοπόλων. Υπάρχει μία μεγάλη ποικιλία μο-
ντέλων που περιγράφουν τον Κοσμολογικό Πληθωρισμό, με διαφορετικό θεωρητικό ενδιαφέρον και με διαφορετικές

παρατηρησιακές προβλέψεις. Στις πιο απλές περιπτώσεις, αυτό που προκαλεί την επιταχυνόμενη διαστολή είναι

ένα βαθμωτό πεδίο, το λεγόμενο inflaton πεδίο, που κυλάει αργά στο δυναμικό του, και όταν οι συνθήκες αυτής
της αργής κύλησης παύουν να ικανοποιούνται, τότε ο πληθωρισμός σταματά. Στα πλαίσια των διαφόρων θεωριών

υψηλών ενεργειών, όπως η Υπερβαρύτητα (Supergravity), και η Θεωρία Χορδών (String Theory), είναι σύνηθες να
μελετάται το σενάριο του Υβριδικού Πληθωρισμού, το οποίο ανήκει στην κατηγορία των πληθωριστικών μοντέλων

όπου παραπάνω από ένα πεδία συμμετέχουν στη δυναμική του πληθωρισμού, καθώς το μοντέλο αυτό είναι εύκολο

να ενταχθεί στη δομή αυτών των θεωριών.

Οι Ενεργές Κβαντικές Θεωρίες Πεδίου (Effective Quantum Field Theories), οι οποίες προσπαθούν να πε-
ριγράψουν τη φυσική χαμηλών ενεργειών και να κάνουν κοσμολογικές προβλέψεις, πρέπει να περιλαμβάνουν μια

θετική κοσμολογική σταθερά με τη σημερινή παρατηρούμενη πολύ μικρή τιμή της. Στη Θεωρία Χορδών με 10 ή 11

διαστάσεις, η οποία είναι η μόνη μέχρι στιγμής συνεπής κβαντική θεωρία για την βαρύτητα, δεν είναι βέβαιο ότι στο

ενεργό δυναμικό, που προκύπτει από τη συμπαγοποίηση των έξτρα διαστάσεων, υπάρχουν θετικά κενά (de-Sitter
vacua), δηλαδή ενέργειες κενού με θετική τιμή που αντιστοιχούν σε μια θετική κοσμολογική σταθερά. Μάλιστα,
υπάρχουν Ενεργές Θεωρίες Πεδίου, που δεν μπορούν να είναι συμβατές με τη Κβαντική Βαρύτητα, αποτελώντας

το λεγόμενο σύνολο Swampland, πράγμα που οφείλεται και στην αγνόηση των κβαντικών διορθώσεων στο προα-
ναφερθέν εξαγόμενο ενεργό δυναμικό, έχοντας τελικά διάφορα κοσμολογικά αντίκτυπα, όπως στην υπόθεση ότι η

κοσμολογική σταθερά αντιπροσωπεύει την σκοτεινή ενέργεια.

Σε αυτή την εργασία, μελετάται το προσφάτως προτεινόμενο μοντέλο του Υβριδικού Πληθωρισμού στο πλαίσιο

της Ενεργούς Θεωρίας Χορδών τύπου ΙΙΒ, παρουσία τεμνόμενων D7 βρανών, στο οποίο επιφέρονται λογαριθμικές
διορθώσεις στο ενεργό βαθμωτό δυναμικό. Το όρισμα του εσωτερικού όγκου μεταφράζεται ως το inflaton πεδίο,
το οποίο πέφτει σε ένα de-Sitter κενό, που όμως δεν μπορεί να είναι αληθινό, αφού η τιμή του είναι πολύ πιο



ψηλά από την παρατηρούμενη μικρή τιμή της κοσμολογικής σταθεράς. Τα λεγόμενα waterfall πεδία του Υβριδικού
Πληθωρισμού, που στη συγκεκριμένη θεωρία αντιστοιχούν σε κατάλληλες διεγέρσεις των ανοιχτών χορδών οι

οποίες καταλήγουν στις μαγνητικές D7 βράνες, είναι υπέυθυνα για το τέλος της πληθωριστικής φάσης, αλλά και
για την οδήγηση της θεωρίας στο αληθινό κενό, αφού μπορεί να καθοριστεί η αρνητική συνεισφορά τους στην τιμή

του κενού της θεωρίας, ώστε αυτή τελικά να μπορεί να πάρει την παρατηρούμενη μικρή τιμή της κοσμολογικής

σταθεράς.
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Abstract

In this thesis, we study the model of Hybrid Inflation recently proposed, in a framework of type IIB effective
string theory constructions and in the presence of intersecting D7-brane stacks. The inflaton is identified with
the internal volume modulus and falls down to a de-Sitter vacuum, (collecting most of the e-folds around it),
which turns out to be a false one, with a value high above the one of the observed cosmological constant. The
waterfall fields, which correspond to excitations of open strings that end on the magnetised D7-brane stacks,
introduce new low energy physics at a saddle point around the aforementioned minimum, driving both the
inflationary stage to an end and the system from the false vacuum to the true one, as one can control their
negative contributions to the effective scalar potential so that its vacuum reaches the tiny value of the observed
cosmological constant.
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Chapter 1

Standard Model of Cosmology

1.1 Robertson-Walker metric and Friedmann equations

According to the General Theory of Relativity, the infinitesimal seperation between two events in spacetime is
given by the invariant interval or line element or metric

ds2 = gµνdx
µdxν (1.1)

where gµν is the metric tensor or just metric [1], which contains all the information needed for the description
of the geometry of spacetime, xµ are coordinates of spacetime, and µ, ν, are the indices that take the values
0, 1, 2, 3. In general, the metric gµν is a function of the spacetime coordinates xµ, but taking into consideration
the Cosmological Principle, this dependence is simplified significantly.

By considering the Cosmological Principle, we accept that the universe is spatially homogeneous and
isotropic, while according to observations, we consider that it is time evolving. In General Relativity, these
assumptions mean that the universe can be thought that it consists of three-dimensional (spacelike) slices, each
of these being a maximally symmetric space (because of the assumed spatial homegeneity and isotropy) that
corresponds to a particular moment of time in the universe. Thus, we consider that the universe is described
by the spacetime R × Σ, where R is the time direction and Σ is a maximally symmetric three-manifold, and
the metric takes the form

ds2 = −dt2 + a2(t)dσ2 (1.2)

where t = x0 is the timelike coordinate or cosmic time, a(t) is a function of the timelike coordinate, which is
also named as cosmological scale factor, and dσ2 is the the 3-manifold Σ metric, which is defined as

dσ2 = γij(u)du
iduj (1.3)

where ui with i = 1, 2, 3 are the coordinates of Σ and γij is a maximally symmetric 3-dimensional metric,
which is a function of the coordinates ui only. The time dependence of the 3-dimensional space of the whole
(spacetime) metric (1.2), is included in the scale factor a(t).

Because of the maximal symmetry of the thee-fold Σ, its metric, dσ2, can be expanded using spherical
symmetry. Thus, it takes the general form that a static, sperically symmetric, 3-dimensional metric, can be
written in [1, 2]

dσ2 = e2β(r)dr2 + r2dΩ2 (1.4)

where dΩ2 = dθ2 + sin2 θdϕ2 is the 2-sphere (S2) metric, r is the radial coordinate, and β(r) is a function of
the radial coordinate. Because of the radial dependence of the above rr-coefficient in (1.4), Σ is considered in
general to be a curved space. The total spacetime metric has the form

ds2 = −dt2 + a2(t)
[
e2β(r)dr2 + r2dΩ2

]
(1.5)
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in which the function β(r) and the scale factor a(t), are to be determined.
Firstly, we are focusing on the metric of the 3-fold Σ, (1.4), whose unknown function is the β(r), and as

we have a general expression for the components of the metric, we can calculate the Christoffel connection
coefficients (or symbols), which are expressed as

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν) (1.6)

and for the metric (1.4), where g → γ, are

Γ̃r
rr = ∂rβ

Γ̃r
θθ = −re−2β

Γ̃r
ϕϕ = −re−2β sin2 θ

Γ̃θ
rθ = r−1

Γ̃θ
ϕϕ = − sin θ cos θ

Γ̃ϕ
rϕ = r−1

Γ̃ϕ
θϕ = cot θ (1.7)

where all all objects with a tilde, ∼, will refer to the quantities related to the γij metric, and the r, θ, ϕ indices
correspond to the values 1, 2, 3. Moreover, the Riemann tensor (or curvature tensor) components that are given
by the following expression in terms of the connection coefficients

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓρ

µσ + Γρ
µλΓ

λ
νσ − Γρ

νλΓ
λ
µσ (1.8)

for the (1.4) are found to be

R̃r
θrθ = re−2β∂rβ

R̃r
ϕrϕ = re−2β∂rβ sin

2 θ

R̃θ
ϕθϕ = (1− e−2β) sin2 θ (1.9)

and the Ricci tensor components, which are given by the contraction of two indices in the Riemann tensor,

Rµν = Rλ
µλν (1.10)

for the (1.4) metric are

R̃rr = 2r−1∂rβ

R̃θθ = e−2β(r∂rβ − 1) + 1

R̃ϕϕ = sin2 θR̃θθ (1.11)

As the 3-dimensional metric γij is considered to be maximally symmetric, its corresponding Riemann tensor
satisfies the following condition

4



R̃ijkl =
R̃

n(n− 1)
(γikγjl − γilγjk)

= k(γikγjl − γilγjk) (1.12)

where k = R̃/6 is a constant, which is referred as curvature parameter, and R̃ = R̃i
i, is the corresponding Ricci

scalar (or curvature scalar), that is generally the trace of the Ricci tensor,

R = Rµ
µ (1.13)

From the condition (1.12), it follows that the corresponding Ricci tensor takes the form

R̃jl = R̃m
jml = k(δmmγjl − δml γjm)

⇒ R̃jl = 2kγjl (1.14)

Equating the rr-components of the Ricci tensor, as given in the relations (1.11) and (1.14), we can solve for
β(r)

e−2βdβ = krdr

⇒ e2β(r) =
1

1− kr2

⇒ β(r) = −1

2
ln(1− kr2) (1.15)

Thus, the three-manifold Σ metric (1.4) becomes

dσ2 =
dr2

1− kr2
+ r2dΩ2 (1.16)

while the spacetime metric (1.5) has the form

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(1.17)

The invariant inerval of the form (1.17), is the Robertson-Walker (RW) metric, and describes a universe that
every moment of time is a generally curved 3-dimensional space, which is characterized by homogeneity and
isotropy. This space has the ability to expand or contract in time, depending on whether the scale factor
increases or decreases with time, while the exact form of the scale factor describes the particular way of this
evolution. The coordinates (t, r, θ, ϕ), in which the metric has the form (1.17), where the coefficient gtt does
not depend on the spatial coordinates ui, and there are no cross-terms of the type dtdui, are called comoving
coordinates [1, 2]. An observer who is in constant spatial coordinates ui is called comoving observer, its proper
time is the cosmic time t, and thinks that the space looks isotropic. Also, the scale factor a(t) is independent
of the ui, so different observers in the universe will measure the same scale factor, that is the same way of
evolution, as it is required by homogeneity. The physical distance between two comoving points (whose spatial
coordinates are not changing), is evolving as a(t). The Robertson-Walker metric is the most general form of a
metric, for the description of a universe which agrees with the Cosmological Principle.

Concerning the curvature of the 3-dimensional space of the spacetime metric (1.17) (RW) every particular
moment of time, this comes from the curvature of the 3-manifold Σ (which comes from the radial function
1/(1 − kr2)), since the metric of the whole 3-dimensional space is the dσ2 metric with a factor a2(t) which
is given at the particular moment and is constant. The value of the curvature parameter k determines the
curvature of Σ, and of the total 3-space as well, through the relation k = R̃/6, and it is a constant value, as the
curvature scalar R̃ is constant everywhere, something that is required from the maximal symmetry. Depending
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on the sign of R̃, or k, there are three types of curvature: when R̃ > 0 the space is positively curved and is
called closed, when R̃ = 0 space is not curved (the curvature is zero) and is called flat, and when R̃ < 0 the
space is negatively curved and is called open. All these cases correspond to the following types of space (all
with constant curvature): the sphere S3, the flat space R3 and the hyperboloid H3. As the spacetime metric
(1.17) remains invariant under the transformations

k → k/|k|

r →
√
|k|r

a→ a/
√
|k| (1.18)

we can normalize the curvature parameter to take the discrete values {k : +1, 0,−1}. Each of these values
corresponds to a hypersurface Σ [1, 2]: k = +1 corresponds to a Σ with positive curvature and the metric of
S3, k = 0 corresponds to a Σ with zero curvature and the Euclidean metric in R3, and k = −1 corresponds to
a Σ with negative curvature and the metric of H3. In the above normalization of the curvature parameter, the
scale factor a(t) has units of lenght ([length]1), while the radial coordinate (and the curvature parameter k) are
unitless. Otherwise, we can choose the scale factor to be dimensionless, and normalize its value conveniently,
for example at the present time to be a0 = a(t0) = 1, where t0 is the current era. In the last normalization,
the radial coordinate r has units of length, while the curvature parameter k has units [length]−2. Here, k is
a continuous parameter, so one distinguishes the following cases: k > 0, k = 0 or k < 0 (which correspond to
positive, zero, and negative curvature).

Moving on, we can calculate the Christoffel coefficients of the whole (spacetime) metric (1.17), in which the
only unknown function will be that of the scale factor a(t). From the relation (1.6), they are

Γt
rr =

aȧ

1− kr2

Γt
θθ = aȧr2

Γt
ϕϕ = aȧr2 sin2 θ

Γr
tr =

ȧ

a

Γr
rr =

kr

1− kr2

Γr
θθ = r(kr2 − 1)

Γr
ϕϕ = r sin θ(kr2 − 1)

Γθ
tθ =

ȧ

a

Γθ
rθ =

1

r

Γθ
ϕϕ = − sin θ cos θ

Γϕ
tϕ =

ȧ

a
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Γϕ
rϕ =

1

r

Γϕ
θϕ = cot θ (1.19)

where ȧ = da/dt is the derivative of the scale factor with respect to the cosmic time t, and the indices t, r, θ, ϕ
correspond to the values 0, 1, 2, 3. We can also find the Riemann tensor components, which from (1.8), are

Rt
rtr =

aä

1− kr2

Rt
θtθ = aär2

Rt
ϕtϕ = aär2 sin2 θ

Rr
ttr =

ä

a

Rr
θθr = −(ȧ2 + k)r2

Rr
ϕϕr = −(ȧ2 + k)r2 sin2 θ

Rθ
ttθ =

ä

a

Rθ
rθr =

ȧ2 + k

1− kr2

Rθ
ϕϕθ = −(ȧ2 + k)r2 sin2 θ

Rϕ
ttϕ =

ä

a

Rϕ
rϕr =

ȧ2 + k

1− kr2

Rϕ
θϕθ = (ȧ2 + k)r2 (1.20)

and the Ricci tensor components, which from (1.10) are

Rtt = −
3ä

a

Rrr =
äa+ 2ȧ2 + 2k

1− kr2

Rθθ = (äa+ 2ȧ2 + 2k)r2

Rϕϕ = (äa+ 2ȧ2 + 2k)r2 sin2 θ (1.21)

The corresponding Ricci scalar, from the relation (1.13), is

R =
6(äa+ ȧ2 + k)

a2
(1.22)
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In order to determine the behavior of the scale factor a(t), we have to study the Einstein’s field equation

Gµν = 8πGTµν (1.23)

where Gµν = Rµν−(1/2)Rgµν is the Enstein tensor, Tµν is the energy momentum tensor, and G is the Newton’s
gravitational constant. Einstein’s field equation (1.23) can also be written as

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
(1.24)

where T = Tµ
µ = −(1/8πG)R is the Einstein’s tensor trace. As Einstein’s equation determines the reaction

of the metric in the presence of energy and momentum (Tµν), we have to assume a model for the matter and
energy of the universe: we consider that they behave as a perfect fluid, for simplicity, and because of the fact
that it is consistent with much observed about the universe [5, 2]. The energy-momentum tensor of a perfect
fluid in General Relativity is defined as

Tµν = (ρ+ p)UµUν + pgµν (1.25)

where ρ and p are the energy density and the pressure of the fluid respectively, and Uµ is the 4-velocity of
the fluid. We choose the fluid elements to be in their rest frame in comoving coordinates of the RW metric,
and normalizing the timelike coordinate of the 4-velocity to unit, we have Uµ = (1, 0, 0, 0). After these, the
energy-momentum tensor (1.25) has the from

Tµ
ν = diag(−ρ, p, p, p) (1.26)

while its trace is

T = Tµ
µ = −ρ+ 3p (1.27)

The form (1.26) of the energy-momentum tensor of the perfect fluid in its rest frame, results also from the
symmetries of the RW metric (as a consequence of the Einstein’s field equations) [2].

Finally, substituting the Ricci tensor components (1.21) of the RW metric, together with (1.26) and (1.27),
into the Einstein’s field equation of the form (1.24), we get the following equations: the 00-equation

ä

a
= −4πG

3
(ρ+ 3p) (1.28)

and the ii-equation, which is only one because of the spatial isotropy

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) (1.29)

Puting (1.28) into (1.29), the latter becomes(
ȧ

a

)2

=
8πG

3
ρ− k

a2
(1.30)

Equations (1.28) and (1.29) are known as Friedmann equations and their solution for the scale factor describes the
dynamical evolution of the universe. Equation (1.30) is also known as Friedmann equation and determines the
change of the cosmological scale factor with time, in terms of the energy density ρ and the curvature parameter
k of the universe, while equation (1.28) is referred as acceleration equation. The models in which the universe
is described by a RW metric, that obeys the Friedmanns equations, are named as Friedmann-Robertson-Walker
(FRW) models of Cosmology.

Through the cosmological scale factor a(t), the following parameter is defined

H ≡ ȧ

a
(1.31)
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which is known as Hubble parameter, and is the rate of change of the scale factor. The Friedmann equation
(1.30), using the definiton (1.31), takes the form

H2 =
8πG

3
ρ− k

a2
(1.32)

where we see that the Friedmann equations relates the rate of change of the scale factor, as it is defined through
the Hubble parameter, and the total energy density ρ of the universe.

1.2 Cosmic expansion

From the RW metric we saw that the physical distance dph between two comoving points in the universe depends
on the scale factor as

dph(t) = a(t)dcom (1.33)

where dcom is the comoving distance between the two points, which does not change as the universe expands or
contracts with time. Differentiating (1.33) with respect to the cosmic time, we have the velocity

υ = ḋph = ȧdcom = Hdph (1.34)

In general, the Hubble parameter is a function of time, but in the present era t0 is considered to be a constant,
H0 = H(t0), named as Hubble constant. The Hubble constant, because of the uncertainty [20] of its value, is
usually parametrized as

H0 = 100h km s−1Mpc−1 (1.35)

where h is the reduced (dimensionless) Hubble parameter, which according to the most recent estimates of the
Planck mission is [15]

h = 0.6736± 0.0054 (1.36)

The value of the Hubble constant H0 is positive, as it is required from the definiton of the Hubble parameter
(1.31) for an expanding universe, that is the scale factor is increasing with time. The recession velocity between
two comoving points (e.g. galaxies) in the universe due to expansion, is given by (1.34) at present time

υ = H0dph (1.37)

for those comoving points that are relatively close to Earth (z ≪ 1 [2]). The relation (1.37) is also known as
Hubble law: the observed recession velocity of the not too far away galaxies, is proportional to their physical
distance, with H0 being the proportionality constant.

Through the Hubble constant H0, two quantities are defined in terms of which the cosmological scales of
time and distance are expressed: the Hubble time

tH =
1

H0
= 3.09× 1017h−1s = 9.78h−1 billion years

and the Hubble length or radius

dH =
1

H0
c = 9.26× 1027h−1cm = 3× 103h−1Mpc

where c is the speed of light.
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1.3 Energy density

To determine the scale factor a(t) through the solution of the Friedmann equation (1.30), we need to know the
energy density dependence on the scale factor, ρ(a). The energy density in (1.30) corresponds to the total energy
density of the universe, which consists of the different energy density contributions of the universe constituents

H2 =
8πG

3

∑
i

ρi −
k

a2
(1.38)

where the intex i corresponds to all the possible constituents of the universe.
We have considered above that the matter and energy in the universe are described by the perfect fluid.

Spatial homogeneity implies that the energy density and pressure of the perfect fluid are only functions of
time, ρ = ρ(t) and p = p(t). Then, by conservation of the energy-momentum tensor in General Relativity (the
vanishing of the covariant derivative of the tensor),

∇µT
µ
ν = 0 (1.39)

taking the ν = 0 component (∇µT
µ
0 = 0), results in the ’continuity equation’

ρ̇+ 3H(ρ+ p) = 0 (1.40)

which essentially describes the evolution of the energy density ρ with respect to the expansion of the universe,
as the latter is defined by the Hubble parameter. Only the ν = 0 component of (1.39) leads to a non-trivial
equation, as the ν = i equation is satisfied automatically due to spatial isotropy. Equation (1.40) can also be
derived from the Friedmann equations, if we differentiate (1.30) with respect to cosmic time and then substitute
(1.30) and (1.28) into it.

We consider further an equation of state for the perfect fluid, that relates the energy density and the pressure
of the fluid. The simplest equation of state is of the form p(ρ), where the pressure of the fluid is just a function
of its energy density. More specifically, we can assume the convenient linear relation

p = wρ (1.41)

where w is the equation of state parameter, and we will consider that it is constant, as the perfect fluids relevant
to Cosmology often obey that simple type of equation of state. Accepting (1.40), we can solve (1.40) for ρ(a)

dρ

dt
+ 3

ȧ

a
(1 + w)ρ = 0

⇒ dρ

ρ
= −3(1 + w)

da

a

⇒ ρ(a) =
C0

a(t)3(1+w)
, C0 = ρ0a

3(1+w)
0 = const. (1.42)

The (constant) value of the equation of state parameter w in (1.41) characterizes the type of the cosmological
fluid and its energy density in terms of the scale factor, from the relation (1.42). The w-values that correspond
to the most useful types of fluids, are:

1. The w = 0, corresponding to matter, or dust, that consists of non-interacting, non-relativistic particles,
such as the baryonic matter and dark matter. They have zero or negligible pressure, while their energy density
is evolving as

ρm ∝
1

a3
(1.43)

2. The w = 1/3, corresponding to the radiation, which consists of relativistic particles, e.g. photon, or
ulta-relativistic particles. Their pressure is the 1/3 of their energy density, which is evolving as
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ρr ∝
1

a4
(1.44)

3. The w = −1, corresponding to the cosmological constant Λ, as the latter can be considered as a cosmo-
logical perfect fluid type with the following energy density contribution

ρΛ ∝
1

a0
(1.45)

In particular, by the introduction of a cosmological constant in the Einstein equation (1.23), we have

Gµν = 8πGTµν − Λgµν

= 8πG

(
Tµν −

Λ

8πG
gµν

)
⇒ Gµν = 8πG

(
Tµν + T (Λ)

µν

)
(1.46)

with

T (Λ)
µν = − Λ

8πG
gµν (1.47)

From (1.46) we observe that the addition of Λ is equivalent to the addition of an energy-momentum tensor of
the form (1.47), that describes a perfect fluid with energy density

ρΛ =
Λ

8πG
(1.48)

and pressure

pΛ = −ρΛ = − Λ

8πG
(1.49)

and thus according to (1.41), the equation of state parameter is equal to -1. The energy-momentum tensor T
(Λ)
µν

(1.47) corresponds to a vacuum energy (energy in the absence of matter and radiation) with energy density
contribution given by (1.48), and thus the cosmological constant Λ is also called vacuum energy. We have not
considered from the begining the general Enstein’s equation Gµν + Λgµν = 8πGTµν where Λ is treated as the
vacuum energy, as it is equlavent to treat it as another different type of energy density in the universe.

4. The w = −1/3, corresponding to the non-vanishing curvature parameter k, which we are also able to
treat as another type of energy density, though fictitious, with contribution

ρk ∝
1

a2
(1.50)

The particular corresponding energy density term in the Friedmann equation is

ρk = − 3k

8πGa2
(1.51)

while the pressure term is

pk =
k

8πGa2
(1.52)

so, according to (1.41), the equation of state parameter equals -1/3.
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The different constituents of the universe belong to different types of energy, all of which contribute to the
total energy density. It is useful to write the Friedmann equation as

H2 =
8πG

3

(
ρ− 3k

8πGa2

)

⇒ H2 =
8πG

3

(
ρ+ ρk

)
⇒ 1 =

8πG

3H2

(
ρ+ ρk

)
(1.53)

where ρ is the contribution of the real energy sources, and ρk is the curvature parameter contribution, given by
(1.51). We define the density parameter Ω, as

Ω =
8πG

3H2
ρ (1.54)

and thus, any contribution in the energy density is expressed as a contribution to (1.54), given by

Ωi =
8πG

3H2
ρi (1.55)

where i denotes all the types of energy, including the curvature parameters’s fictitious energy, which is

Ωk =
8πG

3H2
ρk = − k

H2a2
(1.56)

Using (1.56), the Friedmann equation (1.53) is written as

Ω− 1 = −Ωk =
k

H2a2
(1.57)

where Ω corresponds to the total energy density of the universe, coming from the real energy components. We
conclude from (1.57) that the space curvature can be determined through the comparison of the aforementioned
parameter Ω and the unit. We observe that for a critical density ρc of the universe, we have a unit Ω parameter,
which happens when the space curvature is zero. From the definition (1.54) for Ω = 1, we find that the critical
density is

ρ = ρc =
3H2

8πG
(1.58)

Through (1.58), the contributions (1.55) are given by the useful relation

Ωi =
ρi
ρc

(1.59)

In conclusion, depending on the type of curvature of the 3-dimensional space of the RW metric, we have the
following cases for the values of Ω and ρ parameters of the total energy density of the universe:

1. Closed space: k > 0: Ω > 1: ρ > ρc

2. Flat space: k = 0: Ω = 1: ρ = ρc

2. Open space: k < 0: Ω < 1: ρ < ρc

According to observations, the Ω the parameter is very close to 1 in the current era [15, 16, 18], so we can
consider the universe to be spatially flat.
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1.4 Evolution of the scale factor

From the solution (1.42) for the energy density ρ(a), we see that the different types of energy are evolving at
different rates during the evolution of the universe,

ρΛ ∝ a0, ρk ∝ a−2, ρm ∝ a−3, ρr ∝ a−4 (1.60)

⇒ ρΛ ∝ ρka2 ∝ ρma3 ∝ ρra4 (1.61)

or through the Ω parameter,

ΩΛ ∝ Ωka
2 ∝ Ωma

3 ∝ Ωra
4 (1.62)

The above means that for long periods, one kind of energy will dominate the energy density. In a model of
the universe such as the Standard Cosmological Model, which includes all the above kinds of energy, and is
expanding (a is increasing with time), as we go back at small values of a (and t), the radiation will dominate in
the energy density among other sources, so we have the radiation-dominated era, and, as it increases, sometime
matter will dominate, in the so called matter-dominated era, then the curvature parameter, and for large values
of it, the cosmological constant, in the cosmological constant-dominated era, since the latter is considered either
to not change or change little with time [33].

With the domination in the energy density of only one type of energy among others, at different eras, the
Friedmann equations are simplified significantly. Below, we study all these seperate cases in a universe with flat
3-dimensional space (k = 0), considering an expanding universe, that is da/dt > 0: In the first two cases, the
universe is dominated by either matter (w = 0) or radiation (w = 1/3), and the Friedmann equation becomes(

ȧ

a

)2

=
8πG

3
C0a

−3(1+w) (1.63)

⇒ da

a
a

3
2 (1+w) =

√
8πGC0

3
dt (1.64)

which is solved by

a(t) ∝ t
2

3(1+w) =

{
t2/3, w = 0

t1/2, w = 1/3
(1.65)

The model (1.65) of the universe with the matter domination (w = 0), is called Einstein-de Sitter model. In
the last case, the universe is dominated by the cosmological constant (w = −1), and the Friedmann equation
becomes (substituting (1.48)) (

ȧ

a

)2

=
8πG

3
ρΛ =

Λ

3
= H2

0 (1.66)

⇒ da

a
= H0dt (1.67)

where Λ > 0 and H0 =
√
Λ/3, and is solved by

a(t) ∝ eH0t = e
√

Λ
3 t (1.68)

The corresponding spacetime of (1.68) is called de-Sitter (dS) space, and is related to the current era of the
universe and the inflationary era, which is mentioned below later.

The Friedmann equations are also solved in some other cases, such as those in which the curvature parameter
is non-zero (k ̸= 0) [5], so the 3-dimensional space is considered to be curved in general, and the universe is
dominated by one kind of energy source or none. The calculations in these cases are simplified defining the
conformal time τ through
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dt = a(τ)dτ (1.69)

and then the Friedmann equation becomes(
ȧ

a

)2

=
1

a2

(
da

dt

)2

=
1

a2

(
da

dτ

1

a(τ)

)2

=
1

a2

(
a′

a

)2

=
(a′)2

a4
=

8πG

3
ρ− k

a2
(1.70)

⇒
(
a′

a

)2

=
8πG

3
ρa2 − k (1.71)

where a′ = da/dτ is the derivative of the scale factor with respect to the conformal time. For w = 0 in (1.71)
we set (

a′

a

)2

=
8πG

3

C0

a
− k = ξ2 (1.72)

and the acceleration equation takes the following form

ä

a
=

1

a

dτ

dt

d

dτ

(
a′

a

)
=
ξ′

a2
= −4πG

3

C0

a3
(1.73)

⇒ ξ′

a2
= − 1

2a2
(ξ2 + k) (1.74)

⇒ dξ

ξ2 + k
= −1

2
dτ (1.75)

When k = +1, we set ξ = cot z and finally we have

−dz = −1

2
dτ (1.76)

⇒ z = cot−1 ξ =
τ

2
(1.77)

⇒ da

a
= cot

τ

2
dτ (1.78)

⇒ a(τ) ∝ sin2
τ

2
= 1− cos τ (1.79)

When k = 0, we have

dξ

ξ2
= −1

2
dτ (1.80)

⇒ ξ−1 =
τ

2
(1.81)

⇒ da

a
=

2

τ
dτ (1.82)

⇒ a(τ) ∝ τ2 (1.83)

where we recover the Einstein-de Sitter solution. When k = −1, we set ξ = coth z and finally have

−dz = −1

2
dτ (1.84)
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⇒ z = coth−1 ξ =
τ

2
(1.85)

⇒ da

a
= coth

τ

2
dτ (1.86)

⇒ a(τ) ∝ sinh2
τ

2
= cosh τ − 1 (1.87)

For w = 1/3 in (1.71), we set (
a′

a

)2

=
8πG

3

C0

a2
− k = ξ2 (1.88)

and the acceleration equation takes the form

ξ′

a2
= −4πG

3

2C0

a4
(1.89)

⇒ ξ′

a2
= − 1

a2
(ξ2 + k) (1.90)

⇒ dξ

ξ2 + k
= −dτ (1.91)

When k = +1, we set ξ = cot z and have

z = cot−1 ξ = τ (1.92)

⇒ a(τ) ∝ sin τ (1.93)

When k = 0, we have

ξ−1 = τ (1.94)

⇒ a(τ) ∝ τ (1.95)

where we recover the flat-space solution, and when k = −1, we set ξ = coth z and finally have

z = cot−1 ξ = τ (1.96)

⇒ a(τ) ∝ sinh τ (1.97)

When w = −1, using the cosmic time t, the Friedmann equation for Λ > 0, is(
ȧ

a

)2

=
Λ

3
− k

a2
(1.98)

⇒ da√
A2a2 − k

= dt (1.99)

where A =
√

Λ/3. When k = +1, we set Aa = cosh z and have

dz = Adt (1.100)

⇒ z = cosh−1(Aa) = At (1.101)
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⇒ a(t) ∝ cosh

(√
Λ

3
t

)
(1.102)

When k = 0 we have

da

Aa
= dt (1.103)

⇒ a(t) ∝ e
√

Λ
3 t (1.104)

where we recover the de-Sitter solution, and when k = −1 we set Aa = sinh z, and finally have

dz = Adt (1.105)

⇒ z = sinh−1(Aa) = At (1.106)

⇒ a(t) ∝ sinh

(√
Λ

3
t

)
(1.107)

The solutions (1.102), (1.104) and (1.107) all represent essentially the same spacetime, the de-Sitter space, in
different coordinate systems and in particular, the k = 0 and k = −1 solutions are coordinate patches that only
cover part of the de-Sitter space. For the case of a negative cosmological constant, Λ = −|Λ| < 0, the Friedmann
equation (1.98) becomes (

ȧ

a

)2

= −|Λ|
3
− k

a2
(1.108)

⇒ da√
−|A|2a2 − k

= dt (1.109)

where |A| =
√
|Λ|/3. The above equation is only solved for k = −1,

a(t) ∝ sin

(√
|Λ|
3
t

)
(1.110)

The spacetime in which (1.110) corresponds is called Anti-de Sitter (AdS) space, and again this solution does
not cover all of the Anti-de Sitter space [39].

Furthermore, in the case of an empty space with non-zero curvature parameter, the Friedmann equation
becomes

(ȧ)2 = −k (1.111)

and is only solved for k = {0,−1}, by a = const and

a(t) ∝ t (1.112)

respectively. The spacetime in which (1.112) (k = −1) corresponds is called Milne universe.
In the above solutions for the universe, we observe that we come across an anomaly when the scale factor

becomes zero, while the energy density ρ of the universe becomes infinite. In the cases where we the universe
starts with the anomaly, which it can be considered to be at t = 0, we call it Big Bang, while in the cases where
the universe ends with the anomaly, we call it Big Crunch. We have the following cases for a matter or radiation
dominated universe: when the space is flat or open, it starts with the Big Bang and continues to expand forever,
and when the space is closed, it starts with the Big Bang and results in the Big Crunch. We also see that a de
Sitter universe (w = −1, Λ > 0) expands exponentally in the limit t→∞, regardless its spatial curvature.

Exact solutions of the Friedmann equations can also be found in some other useful cases [7, 13], such as
the spatially flat, radiation and matter dominated era, and the specially flat, matter and cosmological constant
dominated era.
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1.5 Λ-CDM model

In the current era, the universe, which according to measurements is spatially flat, seems to have negligible
contributions in its energy density from radiation, while there are important contributions from matter and
dark energy, with the latter to greatly dominate. Thus, if it is to describe the real world now, we will have to
consider a model which includes radiation, matter and the cosmological constant, in which the dark energy is
considered to correspond to. In this case, the Friedmann equation takes the following form

H2 = H2
0

(
Ωr,0a

−4 +Ωm,0a
−3 +Ωk,0a

−2 +ΩΛ,0

)
(1.113)

where we normalized the today’s scale factor a0 to 1, and used the relations

Ωi,0 =
8πG

3H2
0

ρi,0, ρi =
ρi,0

a3(1+w)
(1.114)

where i = r,m, k,Λ which correspond to radiation (w = 1/3), matter (w = 0), curvature parameter (w = −1/3)
and cosmological constant (w = −1), respectively. Evaluating (1.113) today (t→ t0, a→ a0 = 1, H → H0), we
obtain the consistency relation

Ωr,0 +Ωm,0 +Ωk,0 +ΩΛ,0 = 1 (1.115)

The most possible scenario is that radiation is the contribution of photons but it is not clear yet, and we have
Ωr,0 ∼ 10−4 [15, 33]. Also, most contemporary methods for calculating the mass of the matter give Ωm,0 ∼ 0.31,
while best current estimates for the ordinary matter give Ωb,0 ∼ 0.05 [15, 33]. By ordinary matter we mean
anything made of atoms and their constituents, and we call it baryonic, too (made of baryons, that is strongly
interacting particles). According to the contribution of the total matter, we see that there is a remaing kind
of matter Ωdm,0 = Ωm,0 − Ωb,0, which is estimated to be Ωdm,0 ∼ 0.26 [15, 33], which is non-baryonic, known
as dark matter [22, 75, 76, 77], which we know that it must be cold (CDM) and very weakly-interacting with
ordinary matter, so that is has not been directly detected yet. Furthemore, analysis of the fine structure of the
anisotropies of the Cosmic Mikrowave Background (CMB) give Ωk,0 ∼ 0 [18, 15, 33], which means that the total
energy density filling the universe is very close to the critical one. Finally, from observations of redshifts of type
IA supernovae in distant galaxies, it is concluded that the universe is in an accelerating phase [5, 33], which is
well explained if we consider that the dark energy responsible for this acceleration is due to the existence of a
positive cosmological constant, with contribution ΩΛ,0 ∼ 0.69 [15, 33] (this corresponds to ρΛ ∼ 10−8erg/cm3).
The latter is in consistency with the CMB data. In general, dark energy is called whatever is responsible for
the accelerated expansion of the universe, either it is dynamical [33, 23] or a cosmological constant. What we
know is that it is relatively smoothly distributed through space, and that it is evolving slowly with time.

The Friedmann equation that takes into consideration all the non-zero contributions, the small amount of
radiation, the matter (baryonic and non-baryonic) and the cosmological constant, can be solved numerically,
though we can assume the very close approximation of existence only of matter and dark energy (since radiation
is not comparable to them), and get an analytic solution [2, 7, 13]. Considering Ωk,0 ∼ 0, ΩΛ,0 > Ωm,0 and
Ωr,0 ≪ Ωm,0 in (1.113), we have

H2 = H2
0

(
Ωm,0a

−3 +ΩΛ,0

)
→ H0dt =

a1/2da√
Ωm,0

√
1 + (ΩΛ,0/Ωm,0)a3

(1.116)

Setting u2 = ΩΛ,0/Ωm,0a
3, (1.116) becomes

H0dt =
2

3
√
ΩΛ,0

du√
1 + u2

(1.117)

and integrating, we obtain
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H0t =
2

3
√
ΩΛ,0

sinh−1 u =
2

3
√

ΩΛ,0

sinh−1

(√
ΩΛ,0

Ωm,0
a3/2

)
(1.118)

or

a(t) =

(
Ωm,0

ΩΛ,0

)1/3

sinh2/3
(
3
√
ΩΛ,0H0

2
t

)
(1.119)

We observe that for early times (small t) we recover the Enstein de-Sitter model with the Big Bang, while for
late times we recover the de-Sitter solution with the exponential expansion. From (1.118) we can calculate the
age of the universe in this model for a→ a0 = 1,

t =
2

3H0

√
ΩΛ,0

sinh−1

(√
ΩΛ,0

Ωm,0

)
(1.120)

where ΩΛ,0 = 1− Ωm,0, so for the estimated values of Ωm,0 and H0 ((1.35) and (1.36) for h), we find

t0 ≈ 13.9× 109yrs (1.121)

which is consinsent with the age of the oldest observed objects in the universe. The above cosmological model,
known as Λ-CDM (because of the cosmological constant and cold dark matter), is the current best description
of our universe, as it is able to fit a number of independent observations.

1.6 Redshift and Horizons

In General Relativity, for comoving observers with 4-velocity Uµ = (1, 0, 0, 0), there is the Killing tensor Kµν =
a2(gµν +UµUν), since the latter satisfies ∇(σKµν) = 0 [1]. Thus, for a particle that has 4-velocity V µ = dxµ/dλ,
the following quantity will be constant

K2 = KµνV
µV ν = a2

(
VµV

µ + (UV )2
)
= const (1.122)

For massless particles, such as photons, we have VµV
µ = 0, and thus (1.122) gives

K2 = a2(UV )2

→ UµV
µ =

K

a
(1.123)

But, ω = −UµV
µ is the frequency of the photon as measured by a comoving observer, so for the frequency that

the photon emitted and the frequency that the photon is observed, we have

ωo

ωe
=
ae
ao

< 1 (1.124)

The expansion of the universe results in a shift to a longer wavelength λ of the propagating photons in it, which
is called redshift and is defined as ze = (λo − λe)/λe. Thus, from (1.124) we have

ze =
ao
ae
− 1

→ ae =
1

1 + ze
(1.125)

if the photon is observed today, ao = a0 = 1. So, from the redshift of an object we are able to know the scale
factor when it was emitted, and often the redshift ze = z is used in place of the scale factor. Redshift also
explains the relation (1.44) for radiation: the energy density of a fixed number of photons in a fixed comoving
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volume decreases by an extra a−1 factor to the already a−3 (as for matter), so it scales as a−4, because the
expansion of the universe streches the wavelengths of light.

One more important aspect of light propagation in the FRW cosmological models, is the existence of cosmo-
logical horizons. Considering for simplicity, a flat 3-dimensional space (k = 0), for lightrays (with dθ = dϕ = 0)
emitted at re and te that are coming towards us and we observe them now at ro = 0 and to, from (1.17) we
have

ds2 = 0→ dt = a(t)dr2

→ r =

∫ to

te

dt

a(t)

→ r = τo − τe (1.126)

using the definition of the conformal time, (1.69). If the time of emittion is bounded from below due to the
Big Bang, according to (1.126) there is a maximum distance to which the observer can see, and with distances
further than this the observer could not have had any causal contact until today. This maximum distance is
called particle horizon distance, and is given by

rp.h.(τo) = τo − τe,b (1.127)

On the other hand, if the time of the observation is bounded from above, then there is a maximum distance in
which the lightrays (emitter) can influence the spacetime events and thus, there are regions of spacetime from
which the observer never had any information. This maximum distance is called event horizon distance and is
given by

re.h.(τe) = τo,b − τe (1.128)

One can also find the physical (proper) size of the particle and event horizon distances, through the relation

rp/e(t) = a(t)

∫ t/to

te/t

dt′

a(t′)
(1.129)

1.7 Early universe

We know that the universe is expanding, so going backwards in time means it is contracting. In particular, the
more we go back, the more it contracts, and the temperature and energy density become very large, so that
many particle species were kept in approximate thermal equilibrium by rapid interactions [5, 33, 22].

In general, the various particles in the early Universe can be characterized by whether they are in thermal
equilibrium or not, whether they are bosonic or fermionic, and whether they are relativistic (hot) or non-
relativistic (cold). A particle species is in thermal equilibrium with the thermal bath as soon as its interaction
rate is larger than the expansion rate of the universe, Γint ≫ H. Particles are squeezed together, they interact
so often that they are not influenced by the expansion, and any perturbation in their energy density is smoothed
out rapidly and equilibrium is achieved. In thermal equilibrium, the products of a reaction have the possibility
to recombine in the reverse reaction. When, Γint ≪ H, the particle species decouples from the rest of the
plasma, or it ”freezes out”. This happens because the number density of the particles became so low due to
expansion, interactions happen infrequently and cannot keep them in equilibrium.

In the very early universe, the expansion is so quick that particles cannot be in thermal equilibrium. However,
as the expansion rate is decreasing, equilibrium becomes possible. Finally, the number density of the particles
will become so low that thermal equilibrium could not be maintained any more. In the current universe, no
particle species is in thermal equilibrium with the background plasma, which are the photons of CMB. In the
case of the slow expansion, for particles in equilibrium, statistics says that their number density is
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ni =
gi

(2π)3

∫
fi(p⃗)d

3p (1.130)

where f is the destribution function

fi(p⃗) =
1

e(Ei−µi)/T ± 1
(1.131)

which in general is a function also of the position x⃗, but not here as we assumed homogeneity, ± corresponds
to fermions and bosons respectively, E2

i (p⃗) = m2
i + |p⃗|2 is the energy, T is the temperature, µi is the chemical

potential and gi is the number of spin states of the particles. Integrating for relativistic (T ≫ m) and for
non-relativistic particles (T ≪ m), and ignoring the chemical potential, we obtain

ni =


ζ(3)
π2 giT

3 (bosons), T ≫ m
3
4
ζ(3)
π2 giT

3 (fermions), T ≫ m

gi

(
miT
2π

)3/2

e−mi/T , T ≪ m

(1.132)

where ζ is the Riemann zeta function with ζ(3) ≈ 1.202 [56]. We observe that in thermal equilibrium, the
relativistic particles, whether bosons or fermions, remain in approximately equal abundances. This happens
because annihilations are balanced from pair products, for T ≫ m. When they become non-relativistic though,
their abundance drops rapidly, as production of particle-antiparticle pairs becomes harder for T ≪ m.

The energy density of the particles is

ρi =
gi

(2π)3

∫
Ei(p⃗)fi(p⃗)d

3p

=


π2

30 giT
4 (bosons), T ≫ m

7
8
π2

30 giT
4 (fermions), T ≫ m

mini, T ≪ m

(1.133)

We define the effective number of relativistic degrees of freedom for the energy as

geff =
∑
i=bos

gi

(
Ti
T

)4

+
7

8

∑
i=ferm

gi

(
Ti
T

)4

(1.134)

in which species that are not in thermal equilibrium with the rest of the plasma, Ti ̸= T , are also included.
Thus, the total energy density of all the relativistic particles (1.133), using (1.134) can be expressed as

ρ =
∑
i=bos

ρ+
∑

i=ferm

ρ

=
∑
i=bos

gi
π2

30
T 4
i +

∑
i=ferm

7

8
gi
π2

30
T 4
i

=
π2

30
geffT

4 (1.135)

Also, the pressure is

pi =
gi

(2π)3

∫
p2

3Ei(p⃗)
fi(p⃗)d

3p (1.136)

which for the relativistic particles is pi = (1/3)ρi. The rest-frame entropy density is

s =
ρ+ p

T
(1.137)
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and defining the effective number of the relativistic degrees of freedom for the entropy as

geff,s =
∑
i=bos

gi

(
Ti
T

)3

+
7

8

∑
i=ferm

gi

(
Ti
T

)3

(1.138)

the entropy density of the relativistic species is

s =
2π2

45
geff,sT

3 (1.139)

As the universe expands, the number and energy density of the particles are decreasing as n ∝ a−3 and
ρ ∝ a−4 (radiation-dominated era). From (1.132) and (1.133), we have n ∝ T 3 and ρ ∝ T 4, so we see that
T ∝ a−1. Thus, as the universe expands, the temperature is decreasing. A better approximation for the
evolution of temperature comes from the fact that the comoving entropy density S = sa3 is conserved under all
forms of adiabatic evolution

s ∝ a−3

→ T ∝ g−1/3
eff,sa

−1 (1.140)

From (1.140) we see that the temperature falls under adiabatic evolution in an expanding universe, but with a
lower rate when the effective number of relativistic degrees of freedom decreases.

When particles decouple from the plasma, they are either relativistic or non-relativistic and stay that way
afterwards, or relativistic and become non-relativistic sometime later. When particles freeze out, they obtain a
fixed abundance, which continues to decrease as n ∝ a−3 if they are stable, and we observe their relic abundance
today [33, 25]. Also, it is possible that there are significant relic abundances for particles that were never in
thermal equilibrium. We can calculate the abundace for hot and cold species at the time of decoupling, with the
latter being harder as their abundance is changing rapidly with respect to the background plasma. Primordial
abundances of the light elements are an important piece of evidence for the Standard Cosmological Model.

Below, we describe shortly some important events and eras of the universe, that finally lead to the universe
that we see today:

Planck scale: This is an energy scale of 1019 GeV, which is considered to be the upper limit that classical
theory of gravity holds. In scales larger than this, quantum gravity is expected to be important, and as there
is no such accepted theory yet, we know nothing about the very early eras of the universe.

Inflation: It is an accelerated expansion phase that the universe is considered to have undergone, in which
we will refer later in detail, at around 1016 GeV. At first, the inflationary phase was not included in the Stardand
Model of Cosmology, but now is part of it as it solves some important problems of the latter, making up the
extented version of it. At the inflationary era, the initial matter perturbations are formed and then stretched
by the accelerated expansion [30, 33, 11].

Baryogenesis: This is considered to be the process which generated the observed very specific baryon
asymmetry in the universe [78], that is the imbalance of matter (baryons) and antimatter, as the universe seems
to be composed almost entirely of matter with little or no primordial antimatter. The exact mechanism behind
baryogenesis is not known yet.

Electroweak phase transition: This phase transition corresponds to the breaking of the electroweak
symmetry to the electromagnetic one, SU(2)L ×U(1)Y → U(1)EM , and happens at around 100 GeV. Through
the Higgs mechanism, elementary fermions (quarks and leptons) and weak interaction bosons obtain their
masses.
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QCD phase transition: Below 150 MeV, strong interactions become important and quark and gluons,
which were free particles, are bound into composite particles, the hadrons, that is baryons and mesons. Until
130 MeV all hadrons are formed.

Neutrino decoupling: It is the decoupling of neutrinos from the plasma, which happens below 1 MeV,
while they are still relativistic, because the weak interaction rate becomes smaller than the expansion rate of
the universe. Since they are still hot, they form their own (relativistic) background, with temperature at the
time of decoupling and its expected evolution afterwards, the same as the plasma’s.

Electron-positron annihilation: Approximately at the same temperature as above, electrons and positrons
become non-relativistic and the pair production (e− + e+ ← γ + γ) is not possible any more, only annihilation
(e− + e+ → γ + γ), through which energy (and entropy) is released into the plasma, and as a result there
is a difference between the final photon background temperature and the neutrino background one, Tγ > Tν .
We can see this from (1.140), while annililation of electron/positron pairs is one of the events that change the
effective number of relativistic degrees of freedom, an thus, the temperature falls with a smaller rate.

Nucleosynthesis: Big Bang nucleosynthesis happens, at around 0.1 MeV (3 minutes), where nucleons form
the nuclei of the light elements, mostly 4He, but there are also traces of D,3He,7 Li. Nucleosynthesis did not
happen earlier at the energy scale of binding energy of nucleons because of the large number of photons per
nucleon, but under 0.1 MeV the photon energy is not enough to break the nuclear binding energy. Heavier
nuclei are formed later in the universe, from supernova explosions.

Matter-Radiation equality: This is the era when the energy density of radiation becomes equal to the
one of matter, at around 1 eV, and then, matter starts to dominate.

Recombination: At around 0.3 eV, the electrons combine gradually with nuclei and neutral atoms are
formed, mostly hydrogen. This did not happen earlier at the scale of the binding energy of the hydrogen, due
to the large number of photons per baryon, but here the formation of atoms is able to happen as the photon
energy is not enough to ionise them any more.

Photon decoupling: It is the photon decoupling from the plasma at around 0.3 eV, since the number
density of the free electrons drops after the formation of hydrogen, and Thomson scattering (e− + γ → e− + γ)
is inadequate. The scale factor at that time defines the last scattering surface, from which the photons that we
observe today as CMB (Cosmic Microwave Background) come from.

Dark ages: It is the long period that universe passes by after recombination until the present era, in which
galaxies are formed by highly complicated and non lear processes that are not yet well understood [1].

Current Era: After all the above significant eras that universe passes by, it finally becomes the present
universe that we observe, with the little amount of radiation, and both important contributions of matter,
baryonic and dark, and dark energy, where the latter essentially dominates, and the large scale structure, that
is, clusters and superclusters of galaxies.

1.8 GR formulation of field theory

Consider a field theory in which the dynamical variables are a set of fields Φi(x
µ) [1]. The Action S of the theory,

which is expressed as the integral over space of a Lagrange density L, in curved spacetime and n-dimensions, is

S =

∫
dnxL(Φi,∇µΦi) (1.141)
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We write

L =
√
−gL̃ (1.142)

where L̃ is a scalar, and g = det gµν is the determinant of the metric tensor. Varying with respect to the Φi,
we have

δS =

∫
dnx
√
−gδL̃

=

∫
dnx
√
−g

(
∂L̃
∂Φi

+
∂L̃

∂(∇µΦi)
δ∇µΦi

)
(1.143)

and considering the commutation of δ∇µ, ∇µδ, the above is written as

δS =

∫
dnx
√
−g

{
∂L̃
∂Φi

+∇µ

(
∂L̃

∂(∇µΦi)
δΦi

)
−∇µ

(
∂L̃

∂(∇µΦi)

)
δΦi

}
(1.144)

From the Stokes theorem ∫
Σ

∇µV
µ
√
|g|dnx =

∫
∂Σ

nµV
µ
√
|γ|dn−1x, (1.145)

(1.144) becomes

δS =

∫
∂Σ

dn−1x
√
|γ|nµ

∂L̃
∂(∇µΦi)

δΦi +

∫
dn
√
−g

{
∂L̃
∂Φi
−∇µ

(
∂L̃

∂(∇µΦi)

)}
δΦi (1.146)

But it is δΦi = 0 at the boundary surface ∂Σ (infinity), so the surface term vanishes. The classical solutions of
the theory are the critical points of the action S,

δS =

∫
δS

δΦi
δΦid

nx

→ 1√
−g

δS

δΦi
=

∂L̃
∂Φi
−∇µ

(
∂L̃

∂(∇µΦi)

)
= 0

→ ∂L̃
∂Φi

= ∇µ

(
∂L̃

∂(∇µΦi)

)
(1.147)

from which we finally found the associated Euler-Lagrange equations for Φi.
In the General theory of Relativity, the dynamical parameter is the metric tensor gµν . The action is

S =
1

16πG
SH + SM (1.148)

where the SM corresponds to the description of matter, and SH is the Einstein-Hilbert action corresponding to
the vacuum

SH =

∫
dnx
√
−g(R− 2Λ) (1.149)

where R is the Ricci scalar and Λ is the cosmological constant. Varying with respect to gµν , for the Hilbert
action we have

δSH =

∫
dnx

(√
−ggµνδRµν +

√
−gRµνδg

µν +Rδ
√
−g − 2δ

√
−gΛ

)
(1.150)

which after calculation of the variations of each term (A), leads to
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δSH =

∫
dnx
√
−g
(
Rµν −

1

2
Rgµν + Λgµν

)
δgµν (1.151)

and finally for the total action we have

1√
−g

δS

δgµν
=

1

16πG

(
Rµν −

1

2
Rgµν + Λgµν

)
+

1√
−g

δSM

δgµν
= 0 (1.152)

Defining

Tµν,M = −2 1√
−g

δSM

δgµν
(1.153)

then from (1.152) we have

Gµν + Λgµν = 8πGTµν,M (1.154)

where Gµν = Rµν−(1/2)Rgµν is the Einstein tensor, mentioned before. Equation (1.154) is the general Einstein
equation previously discussed, and going down to the 4-dimensions we can find the associated Friedmann
equations,

Gµν + Λgµν = 8πGTµν,M → Rµν = 8πG(Tµν −
1

2
gµνT ) + Λgµν :

00 :
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3

→ ä

a
= −4πG

3

(
ρ+ ρΛ + 3(p+ pΛ)

)
and (1.155)

ij :
ä

a
+ 2

ȧ2

a2
+ 2

k

a2
= 4πG(ρ− p) + Λ

→ ȧ2

a2
+ =

8πG

3
(ρ+ ρΛ)−

k

a2
(1.156)

which as we see consider that we already have included the cosmological type of energy, (1.48) and (1.49). The
cosmological models in which the universe is governed from the Friedmann equations that already consider Λ,
are called Friedmann-Lemaitre-Robertson-Walker (FLRW) models.
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Chapter 2

Cosmological Inflation

While the conventional Standard Model of Cosmology is able to describe to great accuracy the physical processes
that lead to the present day universe, there remain some very important cosmological issues to be solved and
described. Most of them led to an era in the early universe, in which an accelerated expansion is considered to
have taken place, named inflation [27, 28, 29], and was caused by a nearly constant energy density. Inflation
now is included in the Standard Cosmological Model, as a number of inflationary model predictions have been
confirmed by observations.

In this chapter, we study the inflationary scenario, firstly stating the more important problems of the
conventional Standard Cosmology and showing how they are solved if one considers an early period of accelerated
expansion in the universe, and then the dynamics of inflation, and finally, the outline of the various models that
have been built to describe it.

2.1 Inflationary solutions

In this section, we will try to put simply the most significant issues of the SMC and the solution that the
accelerated expansion, inflation, provided to them.

2.1.1 Flatness issue

In the previous chapter we showed that the Friedmann equation can be written as

Ω− 1 =
k

H2a2
(2.1)

Differentiating with respect to the scale factor, we have

dΩ

da
= − 2k

H3a3

(
dH

da
a+H

)
(2.2)

From the acceleration equation, for p = wρ, we have

ä

a
= −4πG

3
ρ(1 + 3w)

→ 1 +
Ḣ

H2
= −1

2

8πG

3H2
ρ(1 + 3w) = −Ω

2
(1 + 3w)

→ dH

da
=

1

ȧ

(
− Ω

2
(1 + 3w)− 1

)
H2 (2.3)

where we used the definition of the Ω parameter (1.54). Substituting into (2.2), we get
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dΩ

da
= (1 + 3w)

Ω(Ω− 1)

a
(2.4)

The value Ω = 1 that we observe today, which is a fixed point of this differential equation, is a repeller (unstable
fixed point), if one considers gravitational matter (ρ > 0) and 1+3w > 0→ w > −1/3 (which holds for matter,
and radiation). In order to observe Ω0 ∼ 1, a very tiny value of Ω − 1 is required in the early universe. In
particular, the deviation of parameter Ω from unity, from (2.1) can be expressed as

Ω− 1

Ω0 − 1
=
H2

0a
2
0

H2a2
=

(
ȧ0
ȧ

)2

→ Ω− 1 = (Ω0 − 1)

(
ȧ0
ȧ

)2

(2.5)

where Ω reffers to some earlier era, t. Using the fact that in the matter-radiation equality era, the scale factor
is either aeq ∝ t1/2 or aeq ∝ t2/3, we have that

ȧ0
ȧ

=
ȧeq
ȧ

ȧ0
ȧeq

=

(
teq
t

)−1/2(
t0
teq

)−1/3

→ Ω− 1 = (Ω0 − 1)
t

teq

(
teq
t0

)2/3

(2.6)

Calculating (2.6) for the BBN, which is the earliest era that we know Standard Model is true for sure [33], gives

ΩBBN − 1 ≲ 10−19 (2.7)

or, for the Planck era, which is the earliest era that we can go back according to the classical theory [33], (2.6)
gives

ΩPlanck − 1 ≲ 10−63 (2.8)

In the above it is considered that tBBN ∼ 3 min, teq ∼ 1012 sec, and t0 ∼ 13.9× 109 yrs. We see that (2.7) and
even more (2.8), is a high degree of precision, that is high degree of fine tuning, and there is no such mechanism
to describe it in the conventional Standard Cosmology. This is called the Flatness Problem. All these if one
does not impose this particular high degree of precision as initial condition in the universe, but searches for a
dynamical explanation.

However, we observe that the fixed point Ω = 1 of (2.4) becomes an attractor for 1 + 3w < 0→ w < −1/3,
and this is precisely the condition for accelerating expansion. More specifically, we see the latter from the
acceleration equation, which requires 1+3w < 0 for ä > 0. Considering for example w = −1, which corresponds
to an exponential expansion of the universe, a ∝ eH∆t, as we saw, from the Friedmann equation (2.1) we have
that

Ω− 1 ∝ a−2H∆t (2.9)

which means that if H∆t is big enough, that is if exponential expansion lasts long enough, the deviation of Ω
from unity will reach the aforementined tiny value, even if it starts with an arbirtary value, and today we will
observe Ω0 = 1.

2.1.2 Horizon issue

For a flat space, from (1.129) the particle horizon physical dinstance is

rp(t) = a(t)

∫ t

ti

dt′

a(t′)
(2.10)
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For either matter or radiation, we have a(t) ∝ t2/3(1+w) (1.65), so from (2.10) we have

rp(t) = t
2

3(1+w)

∫ t

ti

dt′

t′
2

3(1+w)

=
3(1 + w)

1 + 3w

(
t− ti

(
t

ti

) 2
3(1+w)

)
(2.11)

From the Big Bang (ti = 0) almost until the last scattering surface (t = tls), when radiation (w = 1/3)
dominated, (2.11) gives

rp(tls) = 2tls (2.12)

which expresses the maximum physical distance that the photons may have traveled during this period. From
t = tls until today t = t0, in which matter dominates (w = 0), (2.11) gives

rp = 3t
2/3
0

(
t
1/3
0 − t1/3ls

)
→ rp(t0) ≈ t0 (2.13)

ignoring tls ∼ 105 yrs in comparison to t0 ∼ 1010 yrs, which also shows the distance over which the photons
could have traveled during this period. However, during the above matter dominated era, a causal patch of
initial size rp,c(tls) has grown due to expansion today to be

rp,c(t0)

rp,c(tls)
=
a(t0)

a(tls)

→ rp,c(t0) ≈ t2/30 t
1/3
ls (2.14)

in which we used that the particle horizon distance is only a function of the scale factor, and (2.12). Comparing
the region of the last scattering surface from which we receive the CMB photons today, (2.13), to the causal
region (2.14), we see that

rp(t0)

rp,c(t0)
=

(
t0
tls

)1/3

≈ 105/3 (2.15)

or for the corresponding volumes of the universe,

V

Vc
=

(
rp(t0)

rp,c(t0)

)3

≈ 105 (2.16)

This means that the universe that we observe today with its isotropic CMB, actually comes from 105 different
regions that have never been in causal contact, and therefore the high degree of isotropy in CMB can not
be explained. In order for the seperate regions to know its others temperature, the causal structure of the
conventional FRW cosmologies must be modified. The problem becomes even larger the more we go back in
time, as the observed universe today comes from more and more regions that were never in causal contact. The
above issue is known as Horizon Problem.

Once again, an accelerated phase in the early universe before t = tls, could enlarge a causal patch from
t = ti until t = tls, enough, so that the observed isotropy of CMB today would be explained: We have showed
that rp(t0) ≫ rp,c(t0), which means that rp(tls) ≫ rp,c(tls). In order for the problem to be solved, we should
have that rp(tls) ≤ rp,c(tls). If ones assumes a(tf ) = a(ti)e

H∆t, with ∆t = tf − ti ≫ 0, a causal patch from ti
to tf would have become

rp,c(tf ) =
a(tf )

a(ti)
rp,c(ti) = rp,c(ti)e

H∆t (2.17)

which means that it could be rp,c(tf = tls) ≥ rp(tls), if inflation lasts long enough.
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Both the Flatness Problem and Horizon Problem solutions can be put together as follows: From the Fried-
mann equation (2.1),

Ω− 1 = k(aH)−2 (2.18)

we observe that Ω is driven to unity if (aH)−1 decreases. Moreover, from the particle horizon distance, starting
from the BB at ti = 0, the universe in causal contact is

τ =

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

H(a′)a′2
=

∫ a

0

d ln a′(a′H)−1 (2.19)

An increasing τ ((aH)−1) means that the comoving scales that enter the horizon today where out of it at the
time, for expample, of the photon decoupling, while a decreasing τ ((aH)−1) means they were in the horizon
before inflation and therefore in causal contact [8, 11]. The important quantity, (aH)−1, which we would like
to decrease, is called comoving Hubble radius, and it decreases when the universe is accelerating:

d

dt
(aH)−1 = −(aH)−2

(
Ḣa+Hȧ

)
= − ä

(aH)2

→ d

dt
(aH)−1 < 0→ ä > 0 (2.20)

since (aH)−2 > 0, in contrast to what it happens in the conventional Stardard Cosmology as there it increases,
which we can see from the Friedmann equation (1.63), using (1.54) and (1.42) for a0 = 1,

(aH)−1 = H−1
0 a

1
2 (1+3w) (2.21)

for matter or radiation dominated universe, since H−1
0 > 0.

Furthermore, inflation solves the predicted big relic abundance of monopoles in the Grand Unification The-
ories (GUT’s), as their density is diluted by the accelerated expansion (if the GUT phase transition happens
before inflation), and explains the origin of the initial fluctuations of matter density through the gravitational
instability of which, the largest scale structures in the universe today have been formed: quantum fluctua-
tions in the inflaton field during inflation are streched and become classical fluctuations, that we observe today
[30, 33, 11].

2.2 Physics of Inflation

In this section, we firstly describe the basic idea of accelerated expansion through classical field theory in which
acceleration is caused by a real scalar field, and secondly, we define more formally the physical conditions
required in order to have an inflationary phase.

2.2.1 General idea

Consider again a field theory with a classical set of fields Φi as in Section 1.8, and k = 0 for simplicity. For a
spacetime variation and variations of the fields,

δxµ = x′µ − xµ

δΦi = Φ′
i(x

′)− Φi(x), δoΦi = Φ′
i(x)− Φi(x) (2.22)

the variation of the action is

δS =

∫ (
δ(d4x)L+ d4xδL

)
(2.23)

But
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δ(d4x) = d4x′ − d4x =
(
det(∂νx

′µ)− 1
)
d4x (2.24)

with ∂νx
′µ = δµν + ∂νδx

µ, and we can say that

J = I+ Ξ ≈ eΞ → det J ≈ eTrΞ = 1 + TrΞ + ...

→ det J − 1 ≈ TrΞ (2.25)

for two matrices J and Ξ, so (2.24) becomes

δ(d4x) ≈ d4xTr∂νδxµ = d4x∂µδx
µ (2.26)

Also,

δΦi = Φ′
i(x

′)− Φi(x) = Φ′
i(x+ δx)− Φi(x) = Φ′

i(x) + δxµ∂µΦ
′
i(x) +O(δx2)− Φi(x)

→ δΦi = δoΦi + δxµ∂µΦi(x) (2.27)

in first order approximation. Using (2.26) and (2.27), (2.23) becomes

δS =

∫
d4x
(
∂µδx

µL+ δoL+ δxµ∂µL
)

=

∫
d4x

(
∂µ

(
Lδxµ +

∂L
∂∂µΦi

δoΦi

)
+

[
∂L
∂Φi
− ∂µ

(
∂L

∂∂µΦi

)]
δoΦi

)
(2.28)

Imposing the Euler-Lagrange equations (1.147) for a flat 3-space,

∂L
∂Φi

= ∂µ
∂L

∂∂µΦi
(2.29)

and using (2.27), we have

δS =

∫
d4x∂µ

(
Lδxµ +

∂L
∂∂µΦi

(
δΦi − δxν∂νΦi

))

=

∫
d4x∂µ

(
δxν
(
δµνL − ∂νΦi

∂L
∂∂µΦi

)
+ δΦi

∂L
∂∂µΦi

)

=

∫
d4x∂µj

µ (2.30)

where

jµ = δxν
(
δµνL − ∂νΦi

∂L
∂∂µΦi

)
+ δΦi

∂L
∂∂µΦi

(2.31)

For an invariant action (δS = 0), there is a conserved current jµ given by (2.31), ∂µj
µ = 0, the Noether current.

For the spacetime translation

δxµ = ϵµ = const, δΦi = 0 (2.32)

the Noether current is

jµ = ϵν
(
δµνL − ∂νΦi

∂L
∂∂µΦi

)
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= ϵνTµ
ν (2.33)

where

Tµ
ν = δµνL − ∂νΦi

∂L
∂∂µΦi

(2.34)

is the energy-momentum tensor, which is conserved for a conserved Noether current, δS = 0 → ∂µj
µ = 0 →

∂µT
µ
ν = 0, since ϵµ = const.
In the most simple case, inflation is considered to be caused by a real scalar field ϕ, with a Lagrangian of

the form

L = −1

2
∂µϕ∂

µϕ− V (ϕ) (2.35)

with a canonical kinetic term and the potential V (ϕ). For this Lagrangian, the energy-momentum tensor (2.33)
is

Tµν = ηµρT
ρ
ν = ηµρ

(
Lδρν − ∂νϕ

∂L
∂∂ρϕ

)

= −ηµν
(
1

2
∂κϕ∂

κϕ+ V (ϕ)

)
+ ∂νϕ∂µϕ (2.36)

replacing the Lagrangian and its partial derivatives. The energy density of the field ϕ is

T00 = ρϕ = V (ϕ) +
1

2
ηii(∂iϕ)

2 +
ϕ̇2

2
(2.37)

for the metric ds2 = −dt2 + a2(t)(dr2 + r2dΩ2), and for an almost homogeneous field during inflation [83]
becomes

ρϕ = V (ϕ) +
ϕ̇2

2
(2.38)

The pressure is found by

Tii = ηii

(
1

2
ϕ̇2 − V (ϕ)

)
= ηiip

→ pϕ =
ϕ̇2

2
− V (ϕ) (2.39)

and thus, considering p = wρ, the equation of state parameter corresponding to the field is

w =
pϕ
ρϕ

=
ϕ̇2

2 − V (ϕ)

ϕ̇2

2 + V (ϕ)
(2.40)

From (2.39) we observe that if V > ϕ̇2 we are able to reach w < 0, and in some cases even w < −1/3 which
corresponds to an accelerated expansion, for expample, especially if V ≫ ϕ̇2, which means that the field is
evolving very slowly and so is the potential, V (ϕ) ≈ V (ϕ0) = V0, we are led to w = −1 approximately, which
corresponds to the particular type of exponential accelerated expansion. In the latter case, the almost constant
potential plays the role of a cosmological constant, and thus from the Friedmann equation, as in (1.66), we have

H2
0 ≈

8πG

3
V0 → a(t) ∝ eH0t (2.41)

with H0 =
√

(8πG/3)V0 ≈ const.
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2.2.2 Dynamics

The dynamics of a single scalar field ϕ minimally coupled to gravity is governed by the action

S =

∫
d4x
√
−g
(

R

16πG
− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
= SH + Sϕ (2.42)

where SH is the Einstein-Hilbert action and Sϕ is action of the scalar field,

Sϕ =

∫
d4x
√
−g
(
− 1

2
∂µϕ∂

µϕ− V (ϕ)

)
=

∫
dx
√
−gL̃ϕ (2.43)

To find the energy-momentum tensor we use the simple type (1.153), as the expression (2.33) is not always
possible to be generalized to curved space,

T (ϕ)
µν = − 2√

−g
δSϕ

δgµν

= ∂µϕ∂νϕ− gµν
(
1

2
∂ρϕ∂

ρ + V (ϕ)

)
(2.44)

In the above we used the L̃ϕ definition of (2.42), and δ
√
−g/δgµν = −(1/2)

√
−ggµν (A.19). We observe that

(2.44) leads to the same ρϕ (2.38), pϕ (2.39) and w (2.40) as the (2.36) tensor (again with assumed homogeneity).
From the Euler-Lagrange equation in curved space (1.147), we have

∂L̃ϕ

∂ϕ
−∇µ

(
∂L̃ϕ

∂∂µϕ

)
= 0

→ −∂V (ϕ)

∂ϕ
+∇µ∂

µϕ = 0

−∂V (ϕ)

∂ϕ
+ ∂µ∂

µϕ+ Γµ
µλ∂

λϕ = 0 (2.45)

where we used the definition of the covariant derivative, ∇µA
ν = ∂µA

ν + Γν
µλA

λ, where Aµ is a vector field.
But, from the definition of the Christoffel symbols (1.6), we have

Γµ
µλ =

1

2
gµρ
(
∂µgλρ + ∂λgρµ − ∂ρgµλ

)
=

1

2
gµρ∂λgρµ (2.46)

Also,

1√
−g

∂λ
√
−g =

1√
−g

(
− 1

2
√
−g

)
∂λg

=
1

2
gµν∂λgµν = Γµ

µλ (2.47)

where we used ∂λg = ggµν∂λgµν . Substituting (2.47) into (2.45), we have

−V ′(ϕ) + ∂µ∂
µϕ+

1√
−g

∂λ
√
−g∂λϕ = 0

→ ϕ̈+
1√
−g

∂t
√
−gϕ̇+ V ′(ϕ) = 0 (2.48)

in which we assumed homogeneity. The factor of ϕ̇ in (2.48) is

31



1√
−g

∂t
√
−g =

1

2
gii∂tgii =

1

2
6
ȧ

a
= 3H (2.49)

for the RW metric (1.17) (assuming homogeneity), and finally the equation of motion for the field ϕ (2.48) is

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (2.50)

The equation (2.50) is the same equation of motion in Minkowski space (k = 0) but with a friction term 3Hϕ̇
due to expansion, which essentially slows down the evolution of ϕ.

Any matter and radiation contributions in the energy density, decrease fast in an accelerated phase (a−3,
a−4), and soon become negligible, so that the Friedmann equation is

H2 =
8πG

3
ρϕ =

8πG

3

(
ϕ̇2

2
+ V (ϕ)

)
(2.51)

The acceleration equation can be written as

ä

a
= −4πG

3
(ρϕ + 3pϕ) = −

4πG

3
ρϕ(1 + 3w)

= −H
2

2
(1 + 3w) = H2(1− ϵH) (2.52)

(assuming p = wρ), where

ϵH =
3

2
(1 + w) (2.53)

and since w is given by (2.40) again, the parameter (2.53) is also expressed as

ϵH = 4πG
ϕ̇2

H2
(2.54)

The parameter ϵH is called the first Hubble slow roll parameter, and we can also find its relation with the
evolution of the Hubble parameter,

ä

a
= Ḣ +H2 = H2(1− ϵH)

→ ϵH = − Ḣ

H2
(2.55)

In order to have an accelerating expansion, we need to have ä > 0, which from the above gives

ä

a
> 0→ Ḣ > −H2 → ϵH < 1 (2.56)

while especially for exponential expansion (w = −1) gives (from (2.52))

ϵH → 0 (2.57)

which is the ”de-Sitter limit”. In this limit the potential dominates the kinetic energy, as we saw before, V ≫ ϕ̇2.
But the condition for an accelerated expansion, ϵH < 1, has to also last long enough for the problems of

conventional SMC to be solved, so we need the second time derivative of the field ϕ to be small enough. We
define the second Hubble slow roll parameter

ηH = − ϕ̈

Hϕ̇
(2.58)

which according to the above assumption, has to be small enough. We can check how the first Hubble slow roll
parameter changes with time: From (2.55),
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ϵ̇H = − Ḧ

H2
+ 2Hϵ2H (2.59)

Also, from the acceleration equation, for the ρϕ (2.38) and pϕ (2.39),we have

ä

a
= Ḣ +H2 = −8πG

3
(ϕ̇2 − V )

→ Ḣ = −4πGϕ̇2 (2.60)

→ Ḧ = 2
ϕ̈

ϕ̇
Ḣ (2.61)

so, finally (2.59) becomes

ϵ̇H = 2HϵH

(
ϵH −

ϕ̈

ϕ̇H

)
= 2HϵH

(
ϵH + ηH

)
(2.62)

from which we see that the smallness of the second Hubble slow roll parameter ηH , quarantees the slow variation
of the first Hubble slow roll parameter ϵH .

2.2.3 Slow-roll approximation

The Friedmann equation (2.51) and the equation of motion (2.50) can be solved either by numerical integration or
within an approximation scheme. The most widely used approximation is the so called slow-roll approximation,
in which all the dynamical characteristics of the universe change little,

ϕ̇2 ≪ V (ϕ)

|ϕ̈| ≪ |3Hϕ̇|, |V ′(ϕ)| (2.63)

The necessary and sufficient conditions for this to happen (from (2.54) and (2.58)), are

ϵH , |ηH | ≪ 1 (2.64)

which are called slow-roll conditions. The first ensures that we can neglect the ϕ̇2 term in the Friedmann
equation, and the second that we can neglect the ϕ̈ term in the equation of motion, so that we finally have

H2
I ≈

8πG

3
V ∼ const, ϕ̇ ≈ − V ′

3HI
(2.65)

→ d ln a = HIdt→ a(tf ) = a(ti)e
HI∆t (2.66)

with ∆t = tf − ti. We can also define the potential slow-roll (PSR) parameters, which depend on the shape on
the potential,

ϵV (ϕ) ≡
M2

p

2

(
V ′(ϕ)

V (ϕ)

)2

ηV (ϕ) ≡M2
p

V ′′(ϕ)

V (ϕ)
(2.67)

where M2
p = 1/8πG, which in the slow-roll approximation satisfy ϵV , |ηV | ≪ 1 (These conditions alone are nec-

essary but not sufficient for the slow-rolling of the field ϕ). The relation between the HSR and PSR parameters,
in the slow-roll approximation, is: using (2.54), (2.65), and (2.58), (2.65) (for ϕ̈), respectively we find
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ϵH ≈ ϵV

ηH ≈ ηV − ϵH ≈ ηV − ϵV (2.68)

2.2.4 Hamilton-Jacobi equations

The most familiar form of equations that describe a homogenious scalar field ϕ that is evolving in a potential
V (ϕ) are (2.50) and (2.51). An alternative and more convenient form is: considering ϕ̇ > 0 without loss of
generality, from (2.60) we have

H ′(ϕ) = −4πGϕ̇→ ϕ̇ = −2H ′(ϕ)

8πG
(2.69)

and plugging this into (2.51) we have

H ′(ϕ) =
1

M2
p

3

2
H2 − 1

2

1

M4
p

V (2.70)

The equations (2.69) and (2.70) are called Hamilton-Jacobi equations [36, 98]. We can also express the HSR
parameters using the HJ equations, as

ϵH = − Ḣ

H2
= − ϕ̇H

′

H2
= 2M2

p

(
H ′

H

)2

ηH = − ϕ̈

Hϕ̇
= 2M2

p

H ′′

H
(2.71)

From (2.71) we see that the HSR parameters [30] are posing conditions with respect to the evolution of the
Hubble parameter during inflation, and from (2.67) we see that the PSR parameters are posing conditions with
respect to the shape of the potential. Thus, the slow-roll approximation with the PSR parameters (PSRA) is
suitable for studying inflation in which a particular potential has been defined, while slow-roll approximation
with HSR parameters (HSRA) can be used in the general case where the potential of the theory is not determined.
We can find the exact relation between the HSR and PSR parameters: From (2.71),

ϵV
ϵH

=
1

4

(V ′/V )2

(H ′/H)2
(2.72)

But, from (2.70), we have

V = 3M2
pH

2 − 2M4
pH

′2

→ V ′ = 6M2
pHH

′ − 4M4
pH

′H ′′ (2.73)

so,

V ′

V
=
H ′

H

6H − 4M2
pH

′′

3H − 2M2
pH

′2H−1
(2.74)

and finally, (2.72) gives

ϵV
ϵH

=

(
3− ηH
3− ϵH

)2

(2.75)

Also, from (2.73),

V ′′ = 6M2
p (H

′2 +HH ′′)− 4M4
p (H

′′2 +H ′H ′′′) (2.76)

34



so,

V ′′

V
= −

2H ′(2M2
pH

′′′/H)

3H − 2M2
pH

′2/H
+

6(H ′2 +HH ′′)− 4M2
pH

′′2

3H2 − 2M2
pH

′2 ±
2H ′(−2M2

pH
′′H ′/H2)

3H − 2M2
pH

′2/H
(2.77)

But from (2.71), we have

η′H = 2M2
p

(
− H ′′

H2
H ′ +

H ′′′

H

)
(2.78)

so (2.77) becomes

V ′′

V
= −

2
√
ϵHη

′
H√

2Mp(3− ϵH)
+

(3− ηH)(ϵH + ηH)

M2
p (3− ϵH)

(2.79)

if we use the expressions (2.71), too. Finally, from (2.67) we have

ηV =
√
2M2

p ϵH
η′H

(3− ϵH)
+

(
3− ηH
3− ϵH

)
(ϵH + ηH) (2.80)

2.2.5 Number of e-folds

From definition, the inflationary phase ends whenever the first HSR parameter reaches to unity, ϵH(ϕend) = 1,
or in the slow-roll approximation when ϵV (ϕend) ≃ 1. An expression that describes how long inflation lasted is
the number of e-folds, N , and is defined from the Friedmann equation (2.66) as

H(tend − t) = ln
a(tend)

a(t)
≡ N(t) (2.81)

We can calculate the number of e-folds from the shape of the potential V (ϕ) and the value of ϕ(t) at t, since

N(t) =

∫ tend

t

Hdt =

∫ ϕend

ϕ

H

ϕ̇
dϕ = N(ϕ)

→ N(ϕ) ≈ −
∫ ϕend

ϕ

3H2

V ′ dϕ =
1

M2
p

∫ ϕ

ϕend

V

V ′ dϕ (2.82)

(in which we used (2.65)), from a given value of ϕ untill its value at the end of inflation. We can also express
the number of e-folds using (2.67)

N(ϕ) ≈ 1

Mp

∫ ϕ

ϕend

dϕ√
2ϵV

(2.83)

It is found that the Flatness and Horizon problems are solved for an inflation that lasts around 60 e-folds. In
closing, the the first slow-roll parameter can be written in terms of number of e-folds as

ϵH = −d lnH
dN

(2.84)

using dN = Hdt.
The field ϕ that is responsible for the inflation in the early universe, is called the inflaton. The inflationary

stage ends whenever the slow-roll conditions are not satisfied any more, and in most models, the inflaton beggins
to fall towards the minimum of its potential. It oscillates at the bottom of the potential, and may decay into
other particles, such as radiation or massive particles, both fermionic and bosonic [81, 82], and through a
complicated process called reheating [86], finally the Standard Cosmology arises, and the universe continues to
evolve according to this (Figure 2.1).
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Figure 2.1: The inflaton field potential, where the inflationary stage is when its potential energy dominates its
kinetic energy, and reaches to an end with the inflaton falling down at the minimum, where through reheating,
its energy density is converted into radiation [11].

2.3 Models of Inflation

A wide variety of inflationary models has been proposed [101], with different theoretical motivations and ob-
servational predictions. In general, an inflationary model is defined by the specification of the kinetic term and
the potential in the action, and its coupling to gravity, as well.

In the simplest case among the existing models, a single-field slow-roll inflation is considered, in which
different choices of the potential define different inflationary models. The different models can be classified in a
useful way depending on whether the inflaton is moving over a small or large distance during inflation, measured
in Planck units: when the field is moving within a small, that is sub-Planckian, distance, ∆ϕ ≡ ϕi−ϕend < Mp,
inflation is called small-field, and when it is moving over a large, super-Planckian distance, ∆ϕ > Mp, inflation
is called large field. In general, the potential in small-field inflation models can be written approximately as

V (ϕ) = V0

(
1−

(
ϕ

µ

)p
)

+ ... (2.85)

with higher order terms becoming important near the end of inflation and during reheating. An example of
potential in small-field inflation, is the Higgs-like potential

V (ϕ) = V0

(
1−

(
ϕ

µ

)2
)2

(2.86)

and the famous Coleman-Weinberg potential [28, 29]

V (ϕ) = V0

((
ϕ

µ

)4[
ln

(
ϕ

µ

)
− 1

4

]
+

1

4

)
(2.87)

which arises as the potential for symmetry breaking in electroweak and grand unified theories. The prototype
large-field inflationary model is the chaotic inflation model, with potential

V (ϕ) = λpϕ
p (2.88)

where, when q is an integer, it is called monomial inflation. Another case is the natural inflation with the
following potential

V (ϕ) = V0

(
cos

(
ϕ

f

)
+ 1

)
(2.89)
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which, depending on the parameter f , corresponds to a small or large-field inflation, it is more attractive
however to be considered for large field variations. The potentials for small-field inflation arise in mechanisms of
spontaneous symmetry breaking, where the inflaton field falls from an unstable minimum to a displaced vacuum.
The small field models predict that the amplitude of the gravitational waves which are produced during inflation
is too small to be detected, while super-Planckian field models predict that gravitational waves from inflation
should be observed in the near future [11].

There are more complicated inflationary models that have been proposed, built in the following ways [50,
103, 104, 37]: With a non-minimal coupling to gravity, that is, between the inflaton and the metric, with
modified gravity, in which the Einstein-Hilbert action is modified in high energies, with a non-canonical kinetic
term, which is a function of the inflaton and its derivatives, and with more than one field being dynamically
relevant during inflation [43].

2.3.1 Hybrid Inflation

We are particularly interesting in hybrid models of inflation [44, 46, 79], which belong to a class of multi-
field models of inflation. The hybrid class of models is very promising as hybrid models are easily embedded
in various high energy frameworks like Supersymmetry and Supergravity [102], GUT’s and extra-dimensional
theories. Below we present briefly the original hybrid model, which is the Hybrid Inflation proposed by A. Linde
[46]. In this model, the effective potential is of the form

V (ϕ, σ) =
1

4λ
(M2 − λσ2)2 +

1

2
m2ϕ2 +

1

2
g2ϕ2σ2 (2.90)

where ϕ is the inflaton scalar field, σ is a second scalar field included in the theory, m is the mass of the
inflaton field, M is another scale mass, λ is the effective coupling constant that corresponds to σ, and g is the
coupling constant which parametrizes the strength of the interactions between ϕ and σ. The local extrema of
the potential (2.90) with respect to the scalar field σ, are:

dV

dσ
= 0→

σ = 0, and

σ = ±
√

1

λ
(M2 − g2ϕ2) = ±

√
−
m2

σ,eff

λ
or

σ = ±

√
g2

λ

(
M2

g2
− ϕ2

)
= ±

√
g2

λ

(
ϕ2c − ϕ2

)
(2.91)

where we define ϕc ≡ M/g as a critical value of ϕ, and express m2
σ,eff (ϕ) = −M2 + g2ϕ2 as an effective

squared-mass for σ. We observe that in this potential there are two different phases concerning the σ-direction:

• For values of ϕ above the critical, ϕ > ϕc, or for a positive effective squared-mass of σ, m2
σ,eff (ϕ) > 0,

the minimum in the σ-direction is only the σ = 0 (Figure 2.2) and the potential has the symmetry σ ↔ −σ.
From the form of the effective potential (2.90), we see that its curvature is larger in the σ-direction than in
the ϕ-direction, so, for large values of ϕ, the σ field rolles down to its minimum, σ = 0, while ϕ is still large.
Thus, we consider that the inflationary stage is at large values of ϕ and σ = 0 (this is the reason for the above
definition of m2

σ,eff ), and the only responsible field for this stage is the inflaton field, with potential

V (ϕ, 0) =
M2

4λ
+

1

2
m2ϕ2 (2.92)

which corresponds to a chaotic type of inflation. It is considered that m2ϕ2c ≪ M4/λ [46], or M2 ≫ λm2/g2,
and m2 ≪ H2, and the equation of motion of the field ϕ during inflation is
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3Hϕ̇+ V ′(ϕ, 0) = 0→ 3Hϕ̇ = −m2ϕ (2.93)

From (2.92) we see that inflation at its last stages is driven by the constant term

V (0, 0) =
M2

4λ
(2.94)

• At the moment when ϕ becomes lower than its critical value, ϕ < ϕc, or when the effective squared-mass of
σ becomes negative, m2

σ,eff (ϕ) < 0, a phase transition occurs by the symmetry breaking (Figure 2.2), and the
σ-direction aquires the non vanishing minimum, σ ̸= 0, given by (2.91). Exaclty when the value of the inflaton
becomes equal to its critical, we have

V (ϕc, 0) =
M2

4λ
+

1

2
m2ϕ2c (2.95)

and considering m2ϕ2c ≪M4/λ, this becomes

H2 =
2πM4

3λM̃2
p

(2.96)

where M̃2
p = 1/G is the reduced Planck mass, which also gives that m2 ≪ H2 → M2 ≫

√
(3λ/2π)mM̃2

p .

The time of the phase transition is expressed as ∆t = H−1 =
√
(3λ/2π)M̃p/M

2, and the change of the field

ϕ is given by ∆ϕ = (V ′/3H)∆t = λm2M̃2
p/2πgM

3. Furthemore, the absolute value of the negative effective
squared-mass of σ is

∣∣m2
σ,eff (ϕ)

∣∣ = λm2M̃2
p

πM2
=

2

3

m2M2

H2
(2.97)

and we have ∣∣m2
σ,eff (ϕ)

∣∣
H2

=
2

3π2

(
λmM̃p

M3

)2

(2.98)

which means that
∣∣m2

σ,eff (ϕ)
∣∣ ≫ H2 when M3 ≪ λmM̃2

p . In this case the scalar field σ falls down to its non-

vanishing minimum within the time ∆t = H−1. The inflaton field falls to its minimum in a time much smaller
than the latter if M3 ≪

√
λgmM̃2

p [46], so inflation ends almost instantly when ϕ reaches its critical value

(Figure 2.2). This is why the conditions M3 ≪ λmM̃2
p and M3 ≪

√
λgmM̃2

p are called waterfall conditions,
and the responsible field for the fast phase transition and thus the immediate ending of inflation, σ, is called
the waterfall field.

In general, in the models of inflation there is a problem according to how the inflationary stage ends. In
Hybrid Inflation, there is the waterfall field, which is a second additional field to the already existing inflaton
field, whose potential becomes steep and thus, drives infllation to an end. Moreover, the energy scale of hybrid
inflation can be low, so that one does not need super-Planckian field values. Finally, this scenario is also
interesting from the point of view of microwave background anisotropies and large scale structure, as it provides
natural models for tilted primordial spectra of density perturbations [105]. Extensions of the hybrid inflation
scenario are quite popular in the context of Supergravity and String Cosmology [11].

2.3.2 Inflation in String Theory

Below, we describe in brief the main interest for the study of Cosmological Inflation in String Theory, and
the most important feautures that a successful effective field theory must have. (More details can be found in
[61, 110, 111] and references therein).

String Theory in 10 or 11 dimensions is for now the only consistent quantum theory that unifies the four
fundamental interactions, that is, a theory for Quantum Gravity, so the only possible UV completion of Effective
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Figure 2.2: The hybrid potential, with firstly one minimum in the σ-deriection, an then the two new vacua
after the phase transition. The inflationary pase in the ϕ-direction ends almost immediately when the phase
transition happens [35].

Quantum Field Theories that describe the low-energy physics phenomena. The more than four extra dimensions
in String Theory must be compactified in order to attain a 4-dimensional effective field theory, and EQFTs in
general, should contain the observed positive tiny value for the cosmological constant or vacuum energy.

However, from deformations of the compactification manifold, massless scalar fields appear in the spectrum,
know as moduli, which may have some cosmological consequences. Also, it is not clear whether the resulting
effective potential from compactification of additional dimensions, has any de-Sitter vacua, that is, a positive
cosmological constant. Moreover, it is possible that not all consistent EQFTs can be embeded in the String
Theory landscape [112], which is the set of solutions of String Theory, making up the out of it set known as
Swampland [106, 107, 108, 113]. The latter may come from the fact that quantum string corrections are not
considered in the resulting effective potential after compactification. The Swampland criteria are inconsistent
with the cosmological constant representing the dark energy, and with slow roll inflation, as well [109]. To
summarize, in order to obtain a consistent and realistic effective field theory, one must at first ensure positive
square-masses for all the moduli fields, which is called moduli stabilization, and a de-Sitter minimum of the
resulting effective potential. This thesis focuses on the study of implementation of the Hybrid Inflation scenario
of Cosmology, in the context of type IIB Effective String Theory constructions.
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Chapter 3

Hybrid Inflation in String Theory from
D7-branes

In this work we are focusing on the model of hybrid infllation through the study of the proposed inflationary
scenario in [62], which is realized within type IIB effective string theory constructions [94, 66] and a geometric
configuration of intersecting D7 branes [63, 67].

The geometric set up in [62], consists of three magnetisedD7 brane stacks mutually orthogonal in the internal
6-dimensional space, with the magnetic fields turned on along U(1) directions on their internal worldvolumes
[63]. The effects of a new 4-dimensional Einstein-Hilbert term are considered, which is localized in the internal
space and is generated from higher derivative terms in the 10-dimensional string effective action [64, 65]. Turns
out that logarithmic dependend corrections are induced to the effective scalar potential [60, 63, 67, 99], and
slow-roll inflation is realized with the inflaton field being proportional to the logarithm of the internal volume
modulus (compactification volume) [60, 96]. Moreover, charged matter fields coming from the magnetic fluxes
and are located at an intersection of the D7 branes stacks [68, 69], play the role of waterfall fields, ending the
inflationary phase, and lowering the vacuum of the theory so that it finally can be tuned to have the observed
value of the cosmological constant.

In this chapter, we firstly study the effective scalar potential of the inflaton field seperately, in the Large
Volume Scenario [66], which is one of the moduli stabilization schemes, and then we are concentrating in the
prosposed hybrid potential with the inflaton and one waterfall field only, in the LVS, in order to study the new
vacuum of the theory, making use of the program Mathematica.

3.1 Inflaton scalar potential

In the configuration considered, there are the three mutually orthogonal D7 brane stacks, denoted as D7i, and
the three Kähler moduli Ti [72], with i = 1, 2, 3. Each D7 brane stack spans four compact dimensions while it
is localised at the remaining two [73, 74] (Table 3.1). The two basic ingredients at effective field theory level
are the superpotential of the moduli fields W and the Kähler potential K. In this section, we minimise the

D7i
4d Minkowski 6 Compact Dimensions
0 1 2 3 4 5 6 7 8 9

D71 ∗ ∗ ∗ . . ∗ ∗ ∗ ∗
D72 ∗ ∗ ∗ ∗ ∗ . . ∗ ∗
D73 ∗ ∗ ∗ ∗ ∗ ∗ ∗ . .

Table 3.1: D7-brane configuration of the model. For expample, D71 stack resides in ‘6’‘7’‘8’‘9’ internal (compact)
dimensions and intersects with D73 along ‘6’‘7’ and with D72 along ‘8’‘9’.
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resulting effective scalar potential of the inflaton field in the large volume limit to fix the ratios of the internal
wolrdvolumes of the three D7-brane stacks, τi (in string units), which are the imaginary parts of Ti (and become
interchangable with Ti). In the first subsection, we study the behavior of the local extrema of the model and
of the potential values at them, and investigate the existence of de-Sitter vacua. In the second subsection, we
study the potential with the required parameter values inserted for agreement with observations.

After the incorporation of the new type of radiative corrections in the Kähler potential, the latter takes the
form [62, 63, 67, 72]

K(τi) = −2 ln
(
√
τ1τ2τ3 + ξ +

3∑
i=1

γi ln τi

)
= −2 ln(V + ξ + γ lnV) (3.1)

(working in ℏ = c = 1) where V =
√
τ1τ2τ3 is the 6-dimensional internal volume, γi ≡ γ/2 (as the same tension

Ti ≡ T = e−ΦT0 for all the brane stacks is assumed for simplicity [62]), and γ and ξ are parameters given by
[67, 65]

γ = −1

2
gsT0ξ, (3.2)

ξ = −χ
4
×

{
π2

3 g
2
s for orbifolds

ζ(3) for smooth Calabi-Yau threefold
(3.3)

where χ is the Euler characteristic and gs is the string coupling.
These new corrections induce a non zero F-term in the effective scalar potential, which also recieves con-

tributions from D-terms associated with universal U(1) factors of the D7-brane stacks [60], and thus has the
form

Veff (V) = VF + VD (3.4)

The above effective potentials VF and VD in large volume limit, are [60, 95]

VF ≈
3W2

o

2κ4V3
(2γ(lnV − 4) + ξ) (3.5)

and

VD ≈
d1
κ4τ31

+
d2
κ4τ32

+
d3
κ4τ33

(3.6)

where Wo is a flux-dependent constant in which the superpotential has been reduced to [70, 71], κ =
√
8πGN is

the reduced Planck length, and di for i = 1, 2, 3 are model-dependent constants related to U(1) Fayet–Iliopoulos
(FI) terms [60].

Using V =
√
τ1τ2τ3, we express (3.6) as

VD ≈
d1
κ4τ31

+
d2
κ4τ32

+
d3τ

3
1 τ

3
2

κ4V6
(3.7)

and minimising with respect to τi, we get

dVD
dτ1

= 0⇒ τ31 =

(
d1
d3

)1/2 V3

τ
3/2
2

,

dVD
dτ2

= 0⇒ τ32 =

(
d2
d3

)1/2 V3

τ
3/2
1

(3.8)

Combining these two, we have
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τ31 =

(
d21
d2d3

)1/3

V2,

τ32 =

(
d22
d1d3

)1/3

V2 (3.9)

and plugging (3.9) into (3.7), we have

VD ≃ 3
(d1d2d3)

1/3

κ4V2
=

d

κ4V2
(3.10)

with d = 3(d1d2d3)
1/3. Finally, the effective scalar potential (3.4) in the large volume limit, after the minimiza-

tion of τi, is

Veff (V) = VF + VD

≃ 3W2
o

2κ4V3
(2γ(lnV − 4) + ξ) +

d

κ4V2

= −3W2
oγ

κ4

(
− lnV − 4

V3
− ξ

2γV3
− d

3W2
oγV2

)

=
C

κ4

(
− lnV − 4 + q

V3
− 3σ

2V2

)
(3.11)

with

C ≡ −3W2
oγ, q ≡ ξ

2γ
, σ ≡ 2d

9W2
oγ

= − 2d

3C
(3.12)

As we mentioned in the begining of this chapter, the role of the inflation field is being played by a proportional
to the logarithm of the internal volume V, quantity. The exact canonically normalized one is [62]

ϕ

κ
≡
√
6

3κ
lnV (3.13)

so replacing V = e
√

3
2ϕ in (3.11) results in the expression of the scalar potential in terms of the canonically

normalized field ϕ,

V (ϕ) ≃ − C
κ4
e−3
√

3
2ϕ

(√
3

2
ϕ− 4 + q +

3

2
σe
√

3
2ϕ

)
(3.14)

To ensure a de-Sitter vacuum of this potential [60, 94, 96], that is a positive potential minimum value, the
parameter γ must be negative, so as we see from the relations (3.12), the constant C is positive, and the
parameter q is negative. Also, the parameter d is always positive [61], so the parameter σ is negative and hence
is expected to uplift the minimum of this potential so that it becomes positive [95].

3.1.1 Local de-Sitter Minimum

Now we can study the effective scalar potential of the theory in order to search for any de-Sitter vacua. The
first and second derivatives of the potential (3.14) with respect to the canonically normalized field ϕ are

V ′(ϕ) ≃ −3
√

3

2

C

κ4
e−3
√

3
2ϕ

(
−
√

3

2
ϕ+

13

3
− q − σe

√
3
2ϕ

)
(3.15)

V ′′(ϕ) ≃ −27

2

C

κ4
e−3
√

3
2ϕ

(
+

√
3

2
ϕ− 14

3
+ q +

2

3
σe
√

3
2ϕ

)
(3.16)
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Taking (3.15) to equal zero, we have

e−
√

3
2ϕ

(√
3

2
ϕ+ q − 13

3

)
= −σ (3.17)

Setting the quantity of the above parenthesis as√
3

2
ϕ+ q − 13

3
≡ m→ e−

√
3
2ϕ = e−m+q− 13

3 (3.18)

equation (3.17) can be written as

me−m+q− 13
3 = −σ

⇒ −me−m = σe−q+ 13
3

⇒ −me−m = −eln(−σ)e−q+ 13
3 (3.19)

Equation (3.19) is of the form yey = z which for real y and z is only solved if z ≥ − 1
e ; we have y = W0(z) for

z ≥ 0, and y = W0(z) and y = W−1(z) for − 1
e ≤ z < 0, where W0,−1 are the two branches of the Lambert W

function (product logarithm) [57, 58, 59]. Defining

x ≡ q − 16

3
− ln(−σ)→ ln(−σ)− q + 13

3
= −1− x→ σ = −eq− 16

3 −x (3.20)

equation (3.19) becomes

−me−m = −e−x−1 (3.21)

and as −e−1 ≤ −e−x−1 < 0, is solved by

−m =W0(−e−x−1)

−m =W−1(−e−x−1) (3.22)

From (3.22), inserting (3.18), we find that the local extrema of the potential are at

ϕ− = −
√

2

3

(
q − 13

3
+W0(−e−x−1)

)
ϕ+ = −

√
2

3

(
q − 13

3
+W−1(−e−x−1)

)
(3.23)

where ϕ− and ϕ+ are the local minimum and local maximum, respectively, with ϕ− < ϕ+,:

V ′′(ϕ−) =
9C

2κ4
e3q−13+3W0(−e−x−1)

(
1 +W0(−e−x−1)

)
≥ 0

V ′′(ϕ+) =
9C

2κ4
e3q−13+3W−1(−e−x−1)

(
1 +W−1(−e−x−1)

)
≤ 0 (3.24)

In the above, we put (3.23) into (3.15) and (3.16). Equalities hold for x = 0, and in order to find the second
derivative of the potential at the local extrema we also used the identity [55]

e−Wk(z) =
Wk(z)

z
for k = 0,−1 (3.25)

From the relations (3.23) we observe that varying the parameter q while x is kept constant, just shifts the local
extrema ϕ−,+. In particular, by increasing the value of q, ϕ−,+ are driven towards lower values. Additionally,
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Figure 3.1: Local extrema (3.23) of the effective scalar potential in terms of x, for q = 0 and q = −1. We observe
that the minimum is in the W0-branch and the maximum in the W−1-branch, of the Lambert W function.

because of the fact that particularly −ϕ− and −ϕ+ lies in the W0 and W−1-branch, respectively, of the W
function, we see that an increasing value of the parameter x moves the local minimum and maximum, at lower
and higher values, respectively (Figure 3.1). Finally, from (3.14), for different values of the parameter q (and
x=constant) the potential is decreasing at different rates: for smaller q-values the potential becomes steeper. In
conclusion, the only true parameter of the model is the parameter x, while variation of the parameter q changes
the origin of the field, and constant C rescales the potential.

From (3.23) we can also find the useful expression of the local extrema through the volume V

V− = e
√

3
2ϕ− = e−qe

13
3 −W0(−e−x−1)

V+ = e
√

3
2ϕ+ = e−qe

13
3 −W−1(−e−x−1) (3.26)

from which it is also observed that for large negative values of the parameter q, large volumes are reached, for
a given value of x, and thus, from (3.2) into (3.12), the weak coupling and the large volume limit are related in
a natural way [60, 62].

Moving on, to the study of the potential at its local extrema, with the help of (3.25) again, we plug (3.23)
into (3.14), and have

V (ϕ−) = −
C

6κ4
e3q−13+3W0(−e−x−1)

(
2 + 3W0(−e−x−1)

)
V (ϕ+) = −

C

6κ4
e3q−13+3W−1(−e−x−1)

(
2 + 3W−1(−e−x−1)

)
(3.27)

From variation of the parameter x (and different values of the q), we find that the minimum value of the
potential, (3.27), while x is increasing, starts positive, then becomes zero and continues towards negative values
(Figure 3.2). The critical value of the parameter x where the minimum value of the potential is zero (same
critical value regardless the value of the q), using the program Mathematica, is found to be
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Figure 3.2: Minimum value (3.27) of the effective scalar potential in terms of x, for q = 0 and q = −1.

V (ϕ−) = 0→ xc ≃ 0.0721318 (3.28)

Taking for simplicity q = 0, since the parameter q does not affect the properties of the inflationary stage,
we can plot (in Mathematica) the behavior of the function V (ϕ) (3.14) in defferent regions of the parameter
x. We indeed see that for positive values of the x below the critical, 0 < x < xc, the potential has a positive
minumum value and thus the theory has a de-Sitter vacuum, which corresponds to a positive cosmological
constant (vacuum energy). At the critical value x = xc, the minimum of the potential is zero, so this case
corresponds to a model with a Minkowski vacuum (zero cosmological constant), and for values bigger than the
critical, x > xc, the potential has a negative minimum, so this case corresponds to an Anti-de-Sitter vacuum
(negative cosmological constant). For negative values, x ≤ 0, the potential exhibits no local extrema (the two
branches of the Lambert function join). All these cases are shown in Figure 3.3. Concerning the maximum
value of the potential, (3.27), it keeps decreasing while x is increasing.

3.1.2 Consistency with observations

Below, we find some useful and important quantities of the inflationary phase: the distance between the positions
of the local extrema, from (3.23), is

ϕ+ − ϕ− =

√
2

3

(
W0(−e−x−1)−W−1(−e−x−1)

)
(3.29)

The potential slow roll parameter η (with M2
p = 1) at the local extrema, using (3.24) and (3.27), is

η− =
V ′′(ϕ−)

V (ϕ−)
= −9 1 +W0(−e−x−1)

2
3 +W0(−e−x−1)

η+ =
V ′′(ϕ+)

V (ϕ+)
= −9 1 +W−1(−e−x−1)

2
3 +W−1(−e−x−1)

(3.30)

and the ratio of the potential value at the maximum towards the one at the minimum, using (3.27), and the
help of (3.25), is

V (ϕ+)

V (ϕ−)
=

2 + 3W−1(−e−x−1)

2 + 3W0(−e−x−1)

(
W0(−e−x−1)

W−1(−e−x−1)

)3

(3.31)

We observe that the above three quantities are all expressed in terms of the parameter x only [60].
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Figure 3.3: Effective scalar potential (3.14) of the inflaton field in terms of ϕ, for different values of x.
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It has been shown that some well known inflationary scenarios, cannot be realized in this model [60]. More
general inflationary scenarios have been studied, scaning the space of the parameter x: for a given value of
x, evolution equation for the Hubble parameter is solved and slow-roll parameters and number of e-folds are
computed. A new scenario appears, in which the inflaton field starts rolling down the potential from a point
near the maximum with η(ϕ+) < −0.02, and no initial speed (if one considers that this maximum has to do
with a symmetry restoration [60, 62]). It passes from the horizon exit point ϕ∗, where η(ϕ∗) = −0.02 in order
to to agree with the data [60], before the inflection point (where the second derivative of the potential changes
sign). Potential slow roll parameters satisfy ϵ ≪ |η| in the field space [ϕ−, ϕ+] [60]. The number of e-folds are
obtained from horizon exit point to the minimum of the potential, while most of them are obtained around
the minimum [60], in contrast with other inflationary scenarios. The required N ≃ 60 e-folds are achieved for
x ≃ 3.3 × 10−4 [60]. Futhermore, the distance between the two extrema is ϕ+ − ϕ− ≃ 0.042 and the inflaton
field displacement is ∆ϕ = ϕ∗ − ϕ− ≃ 0.02 [60] which corresponds to a small field inflation and therefore is
compatible with the validity of the effective field theory. The most significant problem that arises is that the
value of the potential at the minimum is of the same order of the inflation scale, V (ϕ−) ≃ V (ϕ∗) and therefore
is very shallow, and thus the aquired value of the vacuum of the theory [60, 61, 62] is high above the observed
value of the cosmological constant.

About this work, for the theory to be consistent with a de-Sitter vacuum, first of all we require 0 < x < xc,
as we showed before, which, using (3.20), gives us

0 < x < xc (3.32)

→ −3

2
e−

16
3 <

3

2
σ < −3

2
e−

16
3 −xc

→ −0.00724192 < s < −0.00673795 (3.33)

if we assume q = 0. The above s is a useful parameter defined by

s ≡ 3

2
σ (3.34)

Then, we are mostly interested in the value x ≃ 3.3 × 10−4, in order to be consistent with slow roll inflation
which is compatible with observations, as well. This particular value of x corresponds to s ≃ −0.00723954.
Also, the value of the constant C is fixed by observational constraints to be C ≃ e−3q7.81 × 10−4 [60, 62].
Taking the simple expression of the potential in terms of the volume V, (3.11),

V (V) = C

κ4

(
− lnV − 4 + q

V3
− 3σ

2V2

)

=
C

κ4

(
− lnV − 4 + q

V3
− s

V2

)
(3.35)

we can study its behavior for the above particular values of x and C. From the program Mathematica, taking
q = 0 and κ2 = 1, we find that its local extrema are at (Figure 3.4)

V ′ = 0→ V− ≃ 201.923 (ϕ− ≃ 4.33387),

V+ ≃ 212.559 (ϕ+ ≃ 4.37578) (3.36)

which correspond to the following potential values

V (V−) ≃ 1.46034× 10−11, V (V+) ≃ 1.46064× 10−11 (3.37)

The inflection point is at

V ′′ = 0→ Vinfl ≃ 206.923 (ϕinfl ≃ 4.35384) : V (Vinfl) ≃ 1.46048× 10−11 (3.38)
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Figure 3.4: Effective scalar potential (3.11) of the inflaton field in terms of V, when q = 0, for the desired values
x = 3.3× 10−4 and C = 7.81× 10−4.

and the distance between the extrema (3.36) is

∆V = V+ − V− ≃ 10.641 (or ∆ϕ = ϕ+ − ϕ− ≃ 0.04191) (3.39)

(the value of ∆ϕ = ϕ+ − ϕ− through the relation (3.29) is ∆ϕ =≃ 0.0419531, for x ≃ 3.3 × 10−4). Also, the
ratio of the potential extrema values (3.37) is

V (V+)
V (V−)

≃ 1.0002 (3.40)

(the same through (3.31), for x ≃ 3.3× 10−4). From the above, we see that the minimum value of the inflaton
potential is of the same order of its maximum value and not low enough to agree with the observed value of the
cosmological constant, which has to be

Λ ≈ 10−120M4
Pl = 10−120 1

κ4
(3.41)

Also, the parameters η are

η(ϕ−) ≃ 0.743867, η(ϕ+) ≃ −0.648478 < 0

(and η(ϕ−) ≃ 0.744613, η(ϕ+) ≃ −0.649136, if we find them directly from (3.30), for x ≃ 3.3× 10−4).

3.2 Hybrid potential

The proposed solution [62] to the above high value of the potential minimum is through the model of Hybrid
Inflation, which includes the posibility of having a second field in the theory, the waterfall field, that drives
inflation to an end, while it falls to another, lower than the inflaton’s potential minimum, and therefore may
help the vacuum to reach the value (3.41).

Possible candidates for the waterfall field in this theory are the aforementioned charged matter fields coming
from the introduction of magnetic fields on the D7 brane stacks. They correspond to excitations of open strings
that end on the D7-brane stacks or their intersections. The (squared) mass of a charged open string scalar field
can have two types of contributions, that may be able to differ in their signs and dependence on the internal
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volume V; this means that tachyonic fields are possible to appear, in different values of the volume V. In the
first constructed model in [62], the masses of all charged open string states are positive in the large volume
limit, and only one charged open string scalar, coming from the D72 brane stack, becomes tachyonic below a
critical value of V, which can be chosen to be around the minimum of the inflaton potential.

In this section, we minimise the resulting effective scalar potential of the inflaton and the waterfall field (in
the large volume limit) to fix the ratios of the internal areas moduli Ai, which are equivalent to the Kähler
moduli τi, and then, using the program Mathematica, we try to find the contributions of the two fields for which
the new vaccum takes the lower possible value.

3.2.1 Stabilization

In [62], a Z2 × Z2 orbifold on a factorized 6-torus into 2-tori T 6 = T 2 × T 2 × T 2 is considered. Ai is defined as

the unit cell area of the i-th torus T 2
i . The quantised magnetic fields H

(i)
a on the D7a brane stack in the i-th

internal plane, are described through the following D-term [62] in the effective scalar potential

VD =
∑
a

g2U(1)a

2

(
ξa +

∑
n

qna |φn
a |

2

)2

+ ... (3.42)

where g2U(1)a
are the gauge couplings, ξa the Fayet-Iliopoulos parameters, φa the charged scalar matter fields, and

qa are their charges. As we would like to study the waterfall direction, in the above we keep only the canonically
normalised tachyonic field φ− and its charge conjugate φ+, which have charges qa = ±2 respectively, and put
the other massive scalar fields to zero

VD =
∑
a=1,3

g2U(1)a

2
ξ2a +

g2U(1)2

2

(
ξ2 + 2 |φ+|2 − 2 |φ−|2 + ...

)2
+ ...

=
∑
a=1,3

g2U(1)a

2
ξ2a +

g2U(1)2

2
ξ22 + 2g2U(1)2

ξ2
(
|φ+|2 − |φ−|2

)
+ 2g2U(1)2

(
|φ+|2 − |φ−|2

)2
+ ... (3.43)

The magnetic field contribution to the mass of the matter fields in the large volume (small magnetic field)
limit is [62]

m2
H2
≡ 2g2U(1)2

ξ2 =
2
∣∣ζ(3)2

∣∣
α′ ≈

2
∣∣k(3)2

∣∣
πα′

α′

A3
≈

2
∣∣k(3)2

∣∣
π

g2s
κ2V

α′

A3
(3.44)

where ζ
(3)
2 is the oscillator shift, α′ is the string Regge slope [65], A3 is the unit cell area of the 3rd torus T 2

3 ,

and k
(3)
2 = n

(3)
2 /m

(3)
2 is the magnetic flux which is defined as the ratio of the flux number n

(3)
2 towards the

wrapping number m
(3)
2 of the D72 brane on the 3rd torus T 2

3 and comes from the quantisation of the magnetic

field. In the above, it is used that ζ
(3)
2 in the large volume limit is [62]

ζ
(3)
2 ≈ α′k

(3)
2

πA3
(3.45)

and also that [62]

1

κ2
=
V
α′g2s

(3.46)

The gauge couplings in the large volume limit are [62]

1

g2U(1)a

≈
∣∣m(j)

a m(k)
a

∣∣AjAk

gsα′2 =
∣∣m(j)

a m(k)
a

∣∣ V
gs

α′

Aa
, with α ̸= j ̸= k ̸= α (3.47)

Using the expression (3.44) and (3.47), the Fayet-Iliopoulos parameter ξ2 in terms of the volume V, is
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ξ2 =
m2

H2

2g2U(1)2

≈
∣∣k(3)2

∣∣gsα′2
∣∣m(1)

2 m
(3)
2

∣∣
πκ2A2A3

=
∣∣m(1)

2 m
(3)
2

∣∣gs∣∣k(3)2

∣∣
πκ2V

A1

α′ (3.48)

where in the last line we used [62]

V =
√
τ1τ2τ3 =

A1A2A3

α′3 (3.49)

We also have

m2
H1
≡ 2g2U(1)1

ξ1 ≈
2
∣∣k(2)1

∣∣
π

g2s
κ2V

α′

A2

m2
H3
≡ 2g2U(1)3

ξ3 ≈
2
∣∣k(1)3

∣∣
π

g2s
κ2V

α′

A1
(3.50)

which, with the use of the expressions for gU(1)1 and gU(1)3 from (3.47), lead to

ξ1 =
m2

H1

2g2U(1)1

≈
∣∣m(2)

1 m
(3)
1

∣∣gs∣∣k(2)1

∣∣
πκ2V

A3

α′

ξ3 =
m2

H3

2g2U(1)3

≈
∣∣m(1)

3 m
(2)
3

∣∣gs∣∣k(1)3

∣∣
πκ2V

A2

α′ (3.51)

in an analogous way with the derivation of ξ2. Taking the D-part (3.43) and inserting (3.48), (3.51), (3.44) and
(3.50) into it, we have

VD =
g2U(1)1

2
ξ21 +

g2U(1)3

2
ξ23 +

g2U(1)2

2
ξ22 +m2

H2

(
|φ+|2 − |φ−|2

)
+ 2g2U(1)2

(
|φ+|2 − |φ−|2

)2
+ ...

=
1

2
ξ1
m2

H1

2
+

1

2
ξ3
m2

H3

2
+

1

2
ξ2
m2

H2

2
+m2

H2

(
|φ+|2 − |φ−|2

)
+ 2g2U(1)2

(
|φ+|2 − |φ−|2

)2
+ ...

≈ 1

2

g3s
∣∣k(2)1

∣∣2∣∣m(2)
1 m

(3)
1

∣∣
π2κ4V2

A3

A2
+

1

2

g3s
∣∣k(1)3

∣∣2∣∣m(1)
3 m

(2)
3

∣∣
π2κ4V2

A2

A1
+

1

2

g3s
∣∣k(3)2

∣∣2∣∣m(1)
2 m

(3)
2

∣∣
π2κ4V2

A1

A3

+m2
H2

(
|φ+|2 − |φ−|2

)
+ 2g2U(1)2

(
|φ+|2 − |φ−|2

)2
=

1

κ4V2

(
d1
A3

A2
+ d3

A2

A1
+ d2

A1

A3

)
+m2

H2

(
|φ+|2 − |φ−|2

)
+ 2g2U(1)2

(
|φ+|2 − |φ−|2

)2
(3.52)

where the following Kähler moduli D-term parameters are defined

da ≡
g2U(1)a

2
ξ2a =

1

2
g3s
∣∣m(j)

a m(k)
a

∣∣(k(j)a

π

)2

(3.53)

When the canonically normalized scalar field φ2, which is associated with the D72 brane position x2, aquires
a non-zero vacuum expectation value (VEV), a mass is given to the tachyonic scalar fields φ− and φ+, through
the F-term [62]

VF ∋ m2
x2

(
|φ+|2 + |φ−|2

)
(3.54)
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where m2
x2

is the physical mass coming from the brane position x2 [62]

m2
x2

= y(U2)
g2s
κ2V
A2

α′ (3.55)

where y(U2) is the torus complex structure modulus dependence which is positive [62]. Furthermore, the leading
quartic contribution in the F-term scalar potential with regard to the tachyonic field is [62]

VF ∋ κ2m2
x2
|φ−|4 (3.56)

In addition, the F-term scalar potential for the volume modulus V is

VF ≈
3W2

o

2κ4V3
(2γ(lnV − 4) + ξ) (3.57)

Taking the sum of (3.57), (3.52), (3.54) and (3.56), we have the approximate new effective scalar potential
for the volume modulus V, the tori moduli Ai, and the tachyonic scalar fields φ−, φ+

V (Ai, φ±) ≈
3W2

o

2κ4V3
(2γ(lnV − 4) + ξ) +

1

κ4V2

(
d1
A3

A2
+ d3

A2

A1
+ d2

A1

A3

)
+m2

H2

(
|φ+|2 − |φ−|2

)
+ 2g2U(1)2

(
|φ+|2 − |φ−|2

)2
+m2

x2

(
|φ+|2 + |φ−|2

)
+ κ2m2

x2
|φ−|4 (3.58)

We define the ratios of the internal tori areas Ai as

u ≡ A3

A2
, υ ≡ A1

A3
,

1

uυ
=
A2

A1
(3.59)

and minimise the D-part of the effective scalar potential (3.58) with respect to them, neglecting the matter
fields: First of all, with the above definitions, this D-part takes the form

VD(Ai) = VD(V, u, υ) = 1

κ4V2

(
d1u+ d2υ + d3

1

uυ

)
(3.60)

Its derivatives with respect to u and υ are

dVD
du

= 0→ u2 =
d3
d1υ

dVD
du

= 0→ υ2 =
d3
d2u

(3.61)

Combining these two we find that

u = u0 ≡
(
d3d2
d21

)1/3

υ = υ0 ≡
(
d3d1
d22

)1/3

(3.62)

The minimised potential is then

VD(V, u0, υ0) =
1

κ4V2

(
3(d1d2d3)

1/3
)
=

d

κ4V2
(3.63)

with d ≡ 3(d1d2d3)
1/3, which now, from (3.53), reads
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d ≡ 3(d1d2d3)
1/3 =

3g3s
2π

∣∣∣∣∣m(3)
1 m

(1)
2 m

(2)
3

m
(2)
1 m

(3)
2 m

(1)
3

∣∣∣∣∣
1/3(

n
(2)
1 n

(3)
2 n

(1)
3

)2/3
(3.64)

For the derivation of (3.64) we used the relation k
(i)
a = n

(i)
a /m

(i)
a . In [62], is checked that the masses of the

canonically normalized fields which correspond to V, 1/(uυ) and u/υ (proportional to the logarithm of V, 1/(uυ)
and u/υ, in this setup), m2

ϕ, m
2
U andm2

V , respectively, satisfym
2
ϕ ≪ m2

U ,m
2
V (masses are larger than the volume

modulus mass) in the region [ϕ−, ϕ+] where inflation happens, so, the minimisation procedure is consistent).
After the stabilization of the moduli ratios u and υ, we can find the tori moduli Ai in terms of the parameters

da and the internal volume V: From (3.59), using (3.49), we have

u0 =
A3

A2
=

α′3V
A1A2

2

→ A1 =
α′3V
u0A2

2

υ0 =
A1

A3
=

α′3V
A2A2

3

→ A2 =
α′3V
υ0A2

3

1

u0υ0
=
A2

A1
=

α′3V
A2

1A3
→ A3 =

α′3V
A2

1

u0υ0 (3.65)

By combination of the above derived relations (replacing the A’s twice in each), we find that

A1 = α′(u0υ
2
0)

1/3V1/3

A2 = α′ 1

(u20υ0)
1/3
V1/3

A3 = α′
(
u0
υ0

)1/3

V1/3 (3.66)

From (3.62) we have

u0υ
2
0 =

d3
d2

u20υ0 =
d3
d1

u0
υ0

=
d2
d1

(3.67)

Finally, plugging (3.67) in (3.66), we get the following expression for the tori moduli Ai

A1 = α′
(
d3
d2

)1/3

V1/3

A2 = α′
(
d1
d3

)1/3

V1/3

A3 = α′
(
d2
d1

)1/3

V1/3 (3.68)

Further, from the condition for the elimination of other tachyons from different brane intersections, |ζ(2)1 | =
|ζ(3)2 | = |ζ

(1)
3 | [62], we find that ∣∣ζ(2)1

∣∣ = ∣∣ζ(3)2

∣∣ = ∣∣ζ(1)3

∣∣ (3.69)
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→
α′
∣∣k(2)1

∣∣
A2

=
α′
∣∣k(3)2

∣∣
A3

=
α′
∣∣k(1)3

∣∣
A1

→
∣∣k(2)1

∣∣(d3
d1

)1/3

=
∣∣k(3)2

∣∣(d1
d2

)1/3

=
∣∣k(1)3

∣∣(d2
d3

)1/3

→
∣∣k(2)1

∣∣∣∣k(1)3

∣∣2∣∣∣∣∣m(1)
3 m

(2)
3

m
(2)
1 m

(3)
1

∣∣∣∣∣ = ∣∣k(3)2

∣∣∣∣k(2)1

∣∣2∣∣∣∣∣m(2)
1 m

(3)
1

m
(1)
2 m

(3)
2

∣∣∣∣∣ = ∣∣k(1)3

∣∣∣∣k(3)2

∣∣2∣∣∣∣∣m(1)
2 m

(3)
2

m
(1)
3 m

(2)
3

∣∣∣∣∣
→ A

∣∣k(2)1

∣∣∣∣k(1)3

∣∣2 = B
∣∣k(3)2

∣∣∣∣k(2)1

∣∣2 = Γ
∣∣k(1)3

∣∣∣∣k(3)2

∣∣2 (3.70)

with

A ≡

∣∣∣∣∣m(1)
3 m

(2)
3

m
(2)
1 m

(3)
1

∣∣∣∣∣, B ≡

∣∣∣∣∣m(2)
1 m

(3)
1

m
(1)
2 m

(3)
2

∣∣∣∣∣, Γ ≡

∣∣∣∣∣m(1)
2 m

(3)
2

m
(1)
3 m

(2)
3

∣∣∣∣∣ (3.71)

In derivation of (3.70), we used (3.45) and the analogous relations for the other ζ
(i)
a (ζ

(2)
1 ≈ α′k

(2)
1 /πA2 and

ζ
(1)
3 ≈ α′k

(1)
3 /πA1), the moduli stabilization condition (3.68), and (3.53). Setting |k(2)1 | = x, |k(1)3 | = z and

|k(3)2 | = y, (3.70) becomes Axz2 = Byx2 = Γzy2, from which we have x3 = (Γ2/AB)y3 and z3 = (B2/AΓ)x3,
that is

∣∣k(2)1

∣∣ = ∣∣∣∣∣m(1)
2 m

(3)
2

m
(1)
3 m

(2)
3

∣∣∣∣∣∣∣k(3)2

∣∣→ n
(3)
2 =

∣∣∣∣∣m(1)
3 m

(2)
3

m
(1)
2 m

(2)
1

∣∣∣∣∣n(2)1

∣∣k(1)3

∣∣ = ∣∣∣∣∣m(2)
1 m

(3)
1

m
(1)
2 m

(3)
2

∣∣∣∣∣∣∣k(2)1

∣∣→ n
(1)
3 =

∣∣∣∣∣m(1)
3 m

(3)
1

m
(1)
2 m

(3)
2

∣∣∣∣∣n(2)1 (3.72)

if we use the relation k
(i)
a = n

(i)
a /m

(i)
a . Under the conditions (3.72), the parameter (3.64) simplifies to

d =
3

2
g3s

(
k

π

)2

(3.73)

with

k = n
(2)
1

∣∣∣∣∣m(3)
1 m

(1)
3 m

(2)
3

m
(2)
1 m

(1)
2 m

(3)
2

∣∣∣∣∣
1/2

(3.74)

We can express the masses (3.44), (3.55), and the coupling (3.47), using (3.68), as

m2
H2

= 2
√
2
∣∣m(1)

2 m
(3)
2

∣∣−1/2
√
gs

κ2V4/3
(d21d2)

1/6 (3.75)

g2U(1)2
=
∣∣m(1)

2 m
(3)
2

∣∣−1 gs
V2/3

(
d1
d3

)1/3

(3.76)

m2
x2

=
g2s

κ2V2/3
y(U2)

(
d1
d3

)1/3

(3.77)

where for the derivation of (3.75), we also used (3.53). Then, we can express the masses and the coupling in

terms of the parameters gs, y(U2), m
(i)
a , n

(2)
1 and V: Using (3.53), and (3.72) to replace the |k(3)2 |, (3.75) becomes

m2
H2

= 2
g2sk

πκ2V4/3

∣∣∣∣∣ 1∏
a̸=im

(i)
a

∣∣∣∣∣
1/6

(3.78)
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Using (3.53) again, and (3.72) to replace the |k(1)3 |, (3.76) becomes

g2U(1)2
=

gs
V2/3

∣∣∣∣∣ 1∏
a ̸=im

(i)
a

∣∣∣∣∣
1/3

(3.79)

and, finally, using (3.53) and (3.72) to replace the |k(1)3 |, (3.77) becomes

m2
x2

=
g2s

κ2V2/3
y(U2)

∣∣∣∣∣ m
(1)
2

2
m

(3)
2

2

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

(3.80)

The above effective scalar potential after minimization of the ratios of the internal areas moduli Ai, and
neglecting the massive charge conjugate of the tachyonic field, φ+, becomes

V (V, φ−) =
3W2

o

2κ4V3
(2γ(lnV − 4) + ξ) +

d

κ4V2

−m2
H2
|φ−|2 + 2g2U(1)2

|φ−|4 +m2
x2
|φ−|2 + κ2m2

x2
|φ−|4 (3.81)

The first line takes the form of (3.11) or (3.35), so we have

V (V, φ−) =
C

κ4

(
− lnV − 4 + q

V3
− s

V2

)
+

1

2
m2

Y (V) |φ−|2 +
1

4
λY (V) |φ−|4 (3.82)

with

C = −3W2
oγ, q =

ξ

2γ
, s =

3

2
σ =

d

3W2
oγ

= − d
C

=
3

2C
g3s

(
k

π

)2

,

m2
Y (V) = 2

(
m2

x2
−m2

H2

)
, λY (V) = 4

(
2g2U(1)2

+ κ2m2
x2

)
(3.83)

From the relations (3.80) and (3.78), we find that the mass of the tachyonic scalar field φ−, expressed through

the parameters gs, y(U2), m
(i)
a , n

(2)
1 and the volume V, is

m2
Y (V) = 2

(
m2

x2
−m2

H2

)

= 2
g2s

κ2V2/3
y(U2)
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(1)
2

2
m

(3)
2

2

m
(2)
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(3)
1 m

(1)
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(2)
3

∣∣∣∣∣
1/3(

1− 1
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πy(U2)

∣∣∣∣∣m(2)
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(3)
1 m

(1)
3 m

(2)
3

m
(1)
2

5
m

(3)
2

5

∣∣∣∣∣
1/6)

= 2
g2s

κ2V2/3
y(U2)

∣∣∣∣∣ m
(1)
2

2
m
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with

Vc2 ≡
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(3.85)

which is the critical value of the volume V that φ− becomes tachyonic, and k is given by (3.74). From the

relations (3.79) and (3.80), we find that the coupling is expressed through the parameters gs, y(U2), m
(i)
a and

the volume V as

λY (V) = 4
(
2g2U(1)2

+ κ2m2
x2

)
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We observe that the effective scalar potential coresponding to the inflaton and the tachyonic field φ−, (3.82),
has taken the form of the hybrid potential (Section 2.3.1), with φ− playing the role of the waterfall field. Both
the squared-mass of the waterfall field and the coupling depend on the volume V. Especially its squared-mass,
becomes negative below a critical value of the volume which is defined as Vc2. As we see from (3.85) and (3.74),

this critical value depends on the parameters m
(i)
a , n

(2)
1 and on the D72 brane position through y(U2), so it

could be possible, with an appropriate choice of the values of these parameters, that it has the value of local
minimum of the inflaton-part in the scalar potential.

3.2.2 The new vacuum

We can now minimise the obtained effective scalar potential (3.82), in which the waterfall field contributes
too, to find the new minimum. In this form of potential we have two seperate phases for the waterfall field,
depending on the sign of its effective squared-mass:

• For m2
Y (V) > 0, which holds for V > Vc2 as we see from (3.84) (since y(U2) > 0), the system is in its

symmetric phase and the waterfall field sits at its minimum which is vanishing, ⟨φ−⟩ = 0, possessing a large
mass [62]. The only contribution to the scalar potential is that of the inflaton field and thus, the inflationary
phase is equivalent to that with only one field in the model.

• For m2
Y (V) < 0, which holds for V < Vc2 as we see from (3.84) again, the system has undergone a phase

transition when the value of the volume became lower than the critical, somewhere near the minimum of the
inflaton scalar potential, and the waterfall field started rolling down to its new obtained non-vanishing VEV,
⟨φ−⟩ = ±υ2. If this waterfall direction is steep enough so that ϵ > 1, the inflationary phase reaches to an end.

We are interested in what happens in the waterfall direction, so we are focusing in the second above case of
the system. After the change in the sign of the squared-mass, the non-zero VEV that the waterfall field rolls
down to, is (Section 2.3.1)

⟨φ−⟩ = ±υ2 = ±|mY |√
λY

(3.87)

The effective scalar potential (3.82) at this new minimum, substituting the mass (3.84) and the coupling (3.86),
is expressed in terms of the volume V as

V (V, υ2) =
C
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(3.88)

with
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(3.89)

The coefficient (3.89) can be written in terms of the d and Vc2 as

C2 = β2
d

3V4/3
c2

(3.90)

with the definition

β2 ≡
2

2 + gsy(U2)
∣∣m(1)

2 m
(3)
2

∣∣ , (3.91)

We have the following values for the above including parameters: as we mentioned in the previous section, for
q = 0, C and s should have the values 7.81 × 10−4 and ≃ −0.00723954, respectively, from the observational
data. Further, from (3.83), we see that d must be ≃ 5.65408 × 10−6. For q = 0 also, in the previous section,
the local minimum of inflaton potential V− has been found to be ≃ 201.9. By numerical computation in [62], it
is found that the global minimum of the potential in (3.88) has an almost vanishing value for a certain value of
the coefficient C2, which finally from (3.90), gives the following value for β2

β2(Λ ∼ 0) ≃ 3.228 (3.92)

However, since y(U2) > 0, we see from (3.91) that the minimum value of the parameter β2 is 0, while its
maximum value is 1, the maximal tachyonic field contribution being that for β2 = 1. Thus, an almost vanishing
value of the vacuum cannot be achieved in this model, as the β2 ∈ [0, 1] of this theory is not consistent with
(3.92).

Below, we study the effective scalar potential (3.82) at its new non-vanishing VEV, with the help of the
program Mathematica:

We insert the form of the effective scalar potential (3.82) with

κ2 = 1, C = 7.81× 10−4, q = 0,

m2
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We minimize the potential with respect to φ−, and find its expression in terms of the internal volume V. To
begin our investigation, we choose some values for gs and y(U2), so that the product gsy(U2) is small and
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therefore corresponds to β2 ∼ 1. For example, at first, we choose gs = 2.596 × 10−3 and y(U2) = 3.85 (the
values given in [62]).

With these parameters fixed in general, we search for the combinations of a positive value of V and positive

integer values of m
(i)
a , n

(2)
1 , for which the potential minimum vanishes, V (V, υ2) = 0, and for which it owns a

positive value, 0 < V (V, υ2) ≲ 10−11. In both cases, the procedure is as follows: From the combinations that
give the required value of the potential, we choose those that give a resonable Vc2 (≃ 201.9), and among the
the latter, we choose those that give a critical value bigger than the potential minimum V, Vc2 ≥ V. Finally,

we calculate the parameter s for them. Combinations of {V,m(i)
a , n

(2)
1 } that give a value of s that satisfies the

constraint (3.33), −0.00724192 < s < −0.00673795, are studied in detail, modifying properly the values of gs
and y(U2) to aquire the exact required s (−0.00723954) and Vc2 (201.9), respectively.

For the fixed gs and y(U2) chosen in the begining, among the combinations {V,m(i)
a , n

(2)
1 } found, neither

from the two above cases, gives the appropriate value for Vc2, besides they give a tiny value for it and Vc2 < V.
Reducing the value of the parameter y(U2), for instance y = 0.09, with the expectation to uplift the value of Vc2
(as we see from (3.93)), we repeat the above procedure for different values of gs. We indeed find bigger Vc2’s in
both cases, and Vc2 > V, while accepted values for s (that correspond to a dS minimum-(3.33)) are found only
in the second case (where we search for a positive minimum value, not vanishing). Moreover, the value for s
closest to the desired −0.00723954, is found for gs ∼ 2.751× 10−3.

Lastly, with the appropriate modification mentioned before of the above gs (and y(U2)), we find the combi-
nation

gs = 2.770653× 10−3, y(U2) = 0.0908187, n
(2)
1 = 17,

m
(2)
1 = 29, m

(3)
1 = 31, m

(1)
2 = 42, m

(3)
2 = 5, m

(1)
3 = 41, m

(2)
3 = 29 (3.94)

which gives s ≃ −0.00723954, Vc2 ≃ 201.9 and β2 ∼ 1, with a potential minimum at

Vmin ≃ 163.235→ V (Vmin, υ2) ≃ 1.43381× 10−11 (3.95)

The pontential minimum value in terms of the volume V with the (3.94) parameters incorporated is shown in
the Figure 3.5. The resulting value of the potential at the minimum, (3.95), is in agreement with [62]. We can
see seperately the contribution of the inflaton and the waterfall field to the potential (3.88), for the combination
(3.94) (and κ2 = 1, C = 7.81× 10−4 and q = 0),

V (V, υ2) = 1.55413× 10−11 − 1.2032× 10−12 (3.96)

from which we observe that the waterfall contribution is not big enough to cancel the inflaton contribution so
that it gives the desired almost vanishing value of V . This was expected from above, where we saw through
the parameter β2 that the tachyonic contribution in this model is not enough for the vacuum to almost vanish.
In Figure 3.6 though, we see that a waterfall direction indeed appears, with a maximum near ≃ 201.9. This
waterfall direction increases the slow roll parameters and hence, ends the inflationary phase [62]. Finally, in
Figure 3.7 we see the 3-dimensional version of the effective potential for the (3.94) parameter values, which has
the form of a hybrid potential (2.2).

To conclude, from (3.93) we have
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(3.97)

from which we see that the VEV depends on the values of the product gsy(U2), on the critical value Vc2, and
the integer wrapping numbers m

(i)
2 as well. Thus, according to the combination (3.94) found, the range of the

VEV in κ units is
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Figure 3.5: Minimum value of the effective scalar potential of the inflaton and the waterfall field in terms of V,
when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (3.94).

κυ2 ∈ [0,≃ 0.0457201] (3.98)

which is small, so the quartic expansion in (3.43) holds. It has to be stated also, that the parameters m
(i)
a and

n
(2)
1 of the model are constrained as they are subject to tadpole cancellation conditions [62], but this is beyond

the purpose of this work.
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Figure 3.6: Waterfall direction in the effective scalar potential of the inflaton and the waterfall field in terms of
V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (3.94).
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Figure 3.7: Effective scalar potential with the inflaton-direction (V) and the waterfall-direction (here ϕ− = φ−)
(orange, blue), when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (3.94).
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Chapter 4

Additional waterfall fields

As we mentioned in the previous chapter, the value of the global minimum cannot almost-vanish, neither in the
case of the inflaton only nor in the case with the introduction of a waterfall field. In this chapter, we study the
case proposed in [62] with more than one waterfall fields in the theory, that are possible to deepen further the
vacuum of the theory.

Before the addition of other waterfall fields, a possible solution by the parameters q, γ and ξ of the potential,
is studied in [62]: As it turns out, the potential minimum value (3.89), does not depend explicitly on q so this
parameter cannot help in its lowering, and quantum corrections in the squared mass and quartic term coming
from γ and ξ factors previously neglected, stay small in the large volume limit, so they cannot contribute
significanlty in its reduction. The proposed extra waterfall (tachyonic) fields are coming from the other D7
brane stacks (D73, D71) and are expected to open new waterfall directions which along with the previous one
will provide bigger negative contribution to the minimum of the potential. Their squared masses also depend on
the volume V and under certain critical values of it they become tachyonic, while this can be chosen to happen
successively.

In the first section of this chapter, we add a second tachyonic field to the already existing one, coming from
the D73 brane stack, and study the total negative waterfall contribution to the vacuum. In the second section,
we do the same thing by adding a third tachyonic field coming from the last one D7 brane stack, D71.

4.1 Second waterfall field

In this theory, we have one more tachyonic field that it is not eliminated [62] any more, the one coming from the
D73 brane, and is denoted as ψ−. Below, we firstly derive the new effective scalar potential of all three interested
fields, the inflaton field, the waterfall field φ−, and the second tachyonic field ψ−, in the large volume limit, and
secondly, using the program Mathematica, we investigate their contributions to the potential minimum.

The D-term part in the effective scalar potential that describes the magnetic fields, now, is

VD =
g2U(1)1

2
ξ21 +

g2U(1)3

2

(
ξ3 + 2 |ψ+|2 − 2 |ψ−|2 + ...

)2
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2

(
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=
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2
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2
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(
|φ+|2 − |φ−|2

)2
+ ... (4.1)

if we keep only the canonically normalised tachyonic fields φ−, ψ− (with charge q− = +2) and their charge
conjugates φ+, ψ+ (with charge q+ = −2). The magnetic field contribution to the mass of the second tachyon,
m2

H3
, in the large volume limit, is given by (3.50). Also, the gauge coupling gU(1)3 in the large volume limit is
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given by (3.47). Substituting the expressions for all magnetic field mass contributions, m2
H1

, m2
H2

, m2
H3

, and
Fayet-Iliopoulos parameters, ξ1, ξ2, ξ3, given by (3.44),(3.50), (3.48) and (3.51), in (4.1), we have
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with
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a definition which is also made in the previous case.
The D-term (4.2) without the matter fields is exactly of the form (3.60), and after minimisation of the moduli

ratios, it becomes (3.63). Using the moduli stabilization condition (3.68), the magnetic field contribution to the
mass of the tachyon ψ− becomes
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(where we also use (4.3) to replace the flux k
(1)
3 ), and the gauge coupling becomes
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(4.5)

We also have the following F-term contributions in the scalar potential, as in the previous case, with regard to
the tachyonic field ψ−: The mass contribution

VF ∋ m2
x3

(
|ψ+|2 + |ψ−|2

)
(4.6)

where m2
x3

is the physical mass coming from the brane position x3

m2
x3

= z(U3)
g2s
κ2V
A3

α′ (4.7)
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with z(U3) being the analogous quantity to y(U2) of the previous case, and the leading quartic contribution

VF ∋ κ2m2
x3
|ψ−|4 (4.8)

The mass contribution (4.7), again using (3.68), becomes
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We express m2
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in terms of the parameters gs, z(U3), m
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1 and V, as before: Using
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Using (4.3) again, and (3.72) to replace k
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2 , (4.5) becomes
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Finally, using (4.3) and (3.72) to replace k
(3)
2 , (4.9) becomes
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expression similar to the one of m2
x2

in (3.80), but with the corresponding quantities for the D73 brane.
The approximate new effective scalar potential for the volume modulus V and the tachyonic scalar fields φ−,

ψ−, is the sum of the F-part for the volume modulus (3.57), the D-part (4.2) and the F-parts (3.54), (3.56),
(4.6) and (4.8), negleting their charge conjugates,
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k

π

)2

,

m2
Y (V) = 2

(
m2
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)
, λY (V) = 4

(
2g2U(1)2

+ κ2m2
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)
,

m2
Z(V) = 2

(
m2

x3
−m2

H3

)
, λZ(V) = 4

(
2g2U(1)3

+ κ2m2
x3

)
(4.14)
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The expressions for the mass and the coupling of the tachyonic field φ−, with the explicit dependence on V,
(4.14), have already been found in the previous chapter and are given by (3.84), (3.85) and (3.86). The mass of

the tachyonic field ψ− in terms of gs, z(U3), m
(i)
a , n

(2)
1 and the volume V, is, using (4.12) and (4.10),

m2
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(4.15)

with

Vc3 ≡
(
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(4.16)

which is the critical value of the volume V that ψ− becomes tachyonic, and k is given by (3.74). Also, from the

relations (4.11) and (4.12), we find that its coupling is expressed through the parameters gs, z(U3), m
(i)
a and

the volume V, as

λZ(V) = 4
(
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)

=
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3 m
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3

∣∣) (4.17)

From the above, we see that the expressions for the mass and the coupling of the second tachyonic field ψ−,
are similar to ones for the first tachyonic field φ−. We observe that now, the effective scalar potential (4.13),
has taken the form of a hybrid potential with two waterfall fields: the φ− and ψ−. The squared masses of
these two waterfall fields become negative below a critical value of the volume, which is defined as Vc2 and Vc3,
respectively. As mentioned in the previous case, the critical value Vc2 can be chosen to have the value of the

minimum of the inflation potential, with an appropriate combination of its parameter values {m(i)
a , n

(2)
1 , y(U2)}.

Furthermore, as we see from (4.16) and (3.74), the critical value Vc3 depends on the parameters m
(i)
a , n

(2)
1 and

z(U3), so with an appropriate choice of their values, Vc3 can have a value around and somewhat lower than the
Vc2 (which is something we want, as explained later). This means that exaclty after φ− becomes tachyonic at
the local minimum of the inflaton potential, ψ− becomes tachyonic, too.

Thus, in the potential of the form (4.13), we have the following phases:

• For V > Vc2, where we have m2
Y (V) > 0 (as y(U2) > 0) and m2

Z(V) > 0 (as z(U3) > 0 and Vc3 < Vc2 < V),
both waterfall fields sit at their vanishing minima, ⟨φ−⟩ = ⟨ψ−⟩ = 0. Only the inflaton field contributes to the
scalar potential, as in the first phase of the previous model.

• For Vc3 < V ≲ Vc2, where we have m2
Y (V) < 0 (as y(U2) > 0) and m2

Z(V) > 0 (as z(U3) > 0), the first
phase transition occurs and the waterfall field φ− falls to its new non-vanishing VEV, ⟨φ−⟩ = ±υ2, while the
second waterfall field, ψ−, still sits at ⟨ψ−⟩ = 0. The system is in the previously studied case, with the scalar
potential rechieving contributions from the inflaton and one waterfall field only, and its minimum is at ±υ2,
given by (3.87). The first waterfall field, φ−, is also responsible for the end of the inflationary stage again.
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• For V ≲ Vc3, where we have m2
Y (V) < 0 (as y(U2) > 0) and m2

Z(V) < 0 (as z(U3) > 0), the second phase
transition occurs and the waterfall field ψ− also falls to its new non-vanishing VEV, ⟨ψ−⟩ = ±υ3. Now, there
is the inflaton and two waterfall fields in the theory, and the potential minimum is at ±υ2, ±υ3, and aquires a
lower value than in the phase above.

We are concentrating on the last phase above, where both waterfall directions are included in the theory.
The first waterfall field is already at ⟨φ−⟩ = ±υ2 = ±|mY |/

√
λY and now the second waterfall field falls to its

new VEV, which is of the same form,

⟨ψ−⟩ = ±υ3 = ±|mZ |√
λZ

(4.18)

The potential (4.13) at the new minimum, substituting the masses and the couplings of the waterfall fields,
(3.84), (3.86), (4.15) and (4.17), is

V (V, υ2, υ3) =
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(4.19)

with
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(4.20)

The coefficients (4.20) are written in terms of the parameter d and their respective critical volume values, as

C2 = β2
d

3V4/3
c2

,

C3 = β3
d

3V4/3
c3

(4.21)

with the following definitions

β2 ≡
2

2 + gsy(U2)
∣∣m(1)

2 m
(3)
2

∣∣ ,
β3 ≡

2

2 + gsz(U3)
∣∣m(1)

3 m
(2)
3

∣∣ (4.22)

We observe that the parameter β3 is in the region β3 ∈ [0, 1] too, as the parameter β2, so the maximum negative
contribution of the tachyonic fields to the potential minimum value (4.19), with respect to the β parameters,
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is for β2 = β3 = 1. Also, the largest possible contribution of the second tachyon, that is not restricted to
happen at small volumes only (because if we increase the value of the coefficient C3, the critical volume Vc3 is
driven towards lower values), is for Vc3 ≈ Vc2 (that is C3 ≈ C2 from (4.21)). Then, if we imagine the double
tachyonic contribution in (4.19) as a single contribution with effective tachyonic coeficient Ctot = C2 + C3, the
corresponding effective β parameter would be βtot = β2 + β3 = 2, always smaller than the required value (3.92)
(≃ 3.228) for an almost vanishing vacuum of the theory, that is, it cannot be low enough again.

Although it is expected that the vacuum cannot almost vanish, we study the effective scalar potential (4.13)
at its new non-vanishing VEV, using the program Mathematica, aiming to find how deep these two waterfall
directions together, can be:

We insert the effective scalar potential (4.13) with the relations (3.93) found in the previous chapter, plus
the mass and the coupling that corresponds to the second tachyon of this section
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Then, we minimise the pontential with respect to φ− and ψ−, and repeat the procedure of the previous chapter:
for different values of gs, y(U2) and z(U3) that always give small products gsy(U2) and gsz(U3) (so that β2, β3 ≈
1), we search for the combinations {V,m(i)

a , n
(2)
1 } that give firstly a vanishing minimum, V (V, υ2, υ3) = 0, and

secondly, a positive minimum, 0 < V (V, υ2, υ3) ≲ 10−11. From these we choose those combinations that give a
reasonable Vc2 (≃ 201.9), and resonable Vc3, that is Vc3 ≲ Vc2 and Vc3 ≥ V, and investigate the parameter s for
them.

It is found that in the case of the vanishing minimum, the parameter s generally does not approach the
required range (3.33) for a de-Sitter minimum. On the other hand, positive minimum values of order∼ 10−12 and
10−11 give values of s closer to the region (3.33). In the case of these positive minima, values of {gs, y(U2), z(U3)}
that finally give an s closer to the range (3.33), are studied in detail by modifying them properly in order to
get the desired values of s, Vc2 and Vc3.

We find the combination

gs = 3.92611× 10−3, y(U2) = 0.0771281, z(U3) = 0.107312, n
(2)
1 = 56,

m
(2)
1 = 44, m

(3)
1 = 12, m

(1)
2 = 8, m

(3)
2 = 8, m

(1)
3 = 23, m

(2)
3 = 2 (4.24)

which gives s ≃ −0.00723953, Vc2 ≃ 201.9, Vc3 ≃ 201.89 and β2, β3 ∼ 1, with a potential minimum at

Vmin ≃ 137.5→ V (Vmin, υ2, υ3) ≃ 1.14958× 10−11 (4.25)

The potential minimum value in terms of the volume V, with the (4.24) parameter values incorporated, is
shown in the Figure 4.1. The seperate contributions of the inflaton and of the two waterfal fields to the potential
(4.19) does not cancel enough in this model either

V (V, υ2, υ3) = 2.15743× 10−11 − 1.00785× 10−11

and as it is also explained above, the resulting value of the vacuum is not close to the desired almost vanishing
one. Besides that, we observe that two waterfall fields provide a bigger negative contribution and thus, the
minimum of the potential in this model is lower than the one of the previous case with one waterfall field,
(3.95). In Figure 4.2, we can see the two waterfall contributions together in terms of V, with a maximum near
≃ 201.9.
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Figure 4.1: Minimum value of the effective scalar potential of the inflaton and the two waterfall fields in terms
of V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (4.24).
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Figure 4.2: Waterfall direction in the effective scalar potential of the inflaton and the two waterfall fields in
terms of V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (4.24).
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Moreover, from (4.23) we have
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(4.26)

from which we see that the υ3 VEV depends on the values of the product gsz(U3), the critical value Vc3 and

the integer values m
(i)
3 as well. From the combination (4.24) found, the range of this VEV in κ units is

κυ3 ∈ [0,≃ 0.0374224] (4.27)

Also, the expression for the first VEV (3.96)
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gives for the combination (4.24), the following range (in κ units),

κυ2 ∈ [0,≃ 0.0374245] (4.28)

so the two VEV’s of the theory stay small, and the quartic expansions in (4.1) hold.

4.2 Third waterfall field

We now have another one field in the theory that becomes tachyonic, the one coming from the last one brane,
D71, and is denoted as χ−. We firstly find the effective potential of the four fields in the large volume limit:
the inflaton field and the three tachyonic fields φ−, ψ−, χ−. Then, we investigate again their contributions to
the potential minimum, using Mathematica.

Exaclty as for
(
g2U(1)3

ξ23
)
/2 in the previous section, the term

(
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)
/2 of the D-term part in the effective
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where χ+ is the charge conjugate of χ−. Substituting again all the mass contributions mH1
, mH2

, mH3
as given

in the relations (3.44), (3.50), and the Fayet-Iliopoulos parameters ξ1, ξ2, ξ3 as given in (3.48), (3.51) into the
D-term part, the D71-contribution (4.29) will be
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with the definition (4.3) for d1, so the D-term part is exaclty as before, (4.2), but with the extra last two terms
of (4.30).

After the minimisation of the moduli ratios, using the moduli stabilization condition (3.68), the magnetic
field contribution to the mass of the tachyon χ−, becomes
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(where we also use (4.3) to replace the flux k
(2)
1 ), and the gauge coupling becomes
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We also have the following F-term contributions as before, with regard to the tachyonic field χ−: The mass
contribution

VF ∋ m2
x1

(
|χ+|2 + |χ−|2

)
(4.33)

where m2
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is the physical mass coming from the brane position x1
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with x(U1) being the analogous quantity to y(U2) and z(U3), and the leading quartic contribution
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The mass contribution (4.34), using (3.68), becomes
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As before, we express m2
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Using (4.3) again, and (3.72) to replace k
(1)
3 and k

(3)
2 , (4.32) becomes
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Finally, using (4.3), and (3.72) to replace k
(1)
3 and k

(3)
2 , (4.36) becomes
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(4.39)

expression similar to the ones for m2
x3

and m2
x2
, but with the corresponding quantities for the D71 brane.

The approximate new effective scalar potential of the volume modulus V and the tachyonic scalar fields φ−,
ψ−, χ− is the sum of the F-part for the volume modulus (3.57), the D-part in the previous section with the
extra last two terms of (4.30), and the F-parts (3.54), (3.56), (4.6), (4.8), (4.33) and (4.35), negleting their
charge conjugates,
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The expressions for the mass and the coupling of the tachyonic fields φ−, ψ−, with the explicit dependence on
V, (4.41), are given by (3.84), (3.85) and (3.86), and (4.15), (4.16) and (4.17), respectively. The mass of the

tachyonic field χ− in terms of gs, x(U1), m
(i)
a , n

(2)
1 and the volume V, is, using (4.37) and (4.39),
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(4.42)

with

Vc1 ≡
(

2k

πx(U1)

)3/2
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(4.43)

which is the critical value of the volume V that χ− becomes tachyonic, and k is given by (3.74). Also, from the

relations (4.38) and (4.39), we find that its coupling is expressed through the parameters gs, x(U1), m
(i)
a and

the volume V, as

λX(V) = 4
(
2g2U(1)1

+ κ2m2
x1

)
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The above expressions for the mass of the tachyon χ− and the coupling, are similar to the ones for the two
previous tachyons. The effective scalar potential (4.40) has taken the form of a hybrid potential with three
waterfall fields: the φ−, the ψ− and the χ−. The squared mass of the third tachyon also becomes tachyonic

below a critical value of V which is defined as Vc1, and depends on the parameters m
(i)
a , n

(2)
1 and x(U1), so with

an appropriate choice of these parameter values the critical volume Vc1 can have a value near and below Vc3,
so that the third tachyon χ− becomes tachyonic exactly after the second tachyon ψ− becomes tachyonic.

Thus, in the potential of the form (4.40), we have the following phases:

• For V > Vc2, where we have m2
Y (V) > 0, m2

Z(V) > 0 and m2
X(V) > 0 (as y(U2) > 0, z(U3) > 0, x(U1) > 0

and Vc1 < Vc3 < Vc2 < V), the three waterfall fields sit at their vanishing minima, ⟨φ−⟩ = ⟨ψ−⟩ = ⟨χ−⟩ = 0,
and only the inflaton field contributes to the scalar potential.

• For Vc3 < V ≲ Vc2, where we have m2
Y (V) < 0, m2

Z(V) > 0 and m2
X(V) > 0 (as y(U2) > 0, z(U3) > 0 and

x(U1) > 0), a phase transition occurs and the waterfall field φ− falls to its new non-vanishing VEV, ⟨φ−⟩ = ±υ2,
ending the inflationary stage, while the other waterfall fields still sit at ⟨ψ−⟩ = ⟨χ−⟩ = 0. The system is in the
case studied in the previous chapter, where the scalar potential gets contributions from the inflaton and one
waterfall field only, and its minimum is at ±υ2, given by (3.87).

• For Vc1 < V ≲ Vc3, where we have m2
Y (V) < 0, m2

Z(V) < 0 and m2
X(V) > 0 (as y(U2) > 0, z(U3) > 0

and x(U1) > 0), another phase transition occurs and the waterfall field ψ− also falls to its new non-vanishing
VEV, ⟨ψ−⟩ = ±υ3, while the third field is still at ⟨χ−⟩ = 0. The system is in the case studied in the previous
section, with the inflaton field and two waterfall fields in the theory. The potential minimum is at ±υ2, ±υ3,
and aquires a lower value than in the phase above.

• For V ≲ Vc1, where we have m2
Y (V) < 0, m2

Z(V) < 0 and m2
X(V) < 0 (as y(U2) > 0, z(U3) > 0 and

x(U1) > 0), the third phase transition occurs and the waterfall field χ− is driven to its new non-vanishing VEV,
⟨χ−⟩ = ±υ1. Now, there is the inflaton field and three waterfall fields in the theory, and the potential minimum
is at ±υ2, ±υ3, ±υ1 aquiring a lower value than before.

We are concentrating again on the last phase above, where now three waterfall directions are included in
the theory. The first and second waterfall fields are already at ⟨φ−⟩ = ±υ2 = ±|mY |/

√
λY and ⟨ψ−⟩ = ±υ3 =

±|mZ |/
√
λZ , respectively, and now the third waterfall field falls to its new VEV, which is

⟨χ−⟩ = ±υ1 = ±|mX |√
λX

(4.45)

The potential (4.40) at the new minimum, substituting the masses and the couplings of the waterfall fields,
(3.84), (3.86), (4.15), (4.17), (4.42) and (4.44), is

V (V, υ2, υ3, υ1)

=
C

κ4

(
− lnV − 4 + q

V3
− s

V2

)
− 1

4

m4
Y (V)

λY (V)
− 1

4

m4
Z(V)

λZ(V)
− 1

4

m4
X(V)

λX(V)
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with
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(4.47)

The coefficients (4.47) are written in terms of the parameter d and their respective critical volume values, as

C2 = β2
d

3V4/3
c2

,

C3 = β3
d

3V4/3
c3

,

C1 = β1
d

3V4/3
c1

(4.48)

with the following definitions

β2 ≡
2

2 + gsy(U2)
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β1 ≡

2

2 + gsx(U1)
∣∣m(2)

1 m
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∣∣ (4.49)

We observe that the parameter β1 is in the region β1 ∈ [0, 1] too, as the parameters β2 and β3, so the maximum
negative contribution of the tachyonic fields to the potential minimum value (4.46), with respect to the β
parameters, is for β2 = β3 = β1 = 1. Also, the largest possible contribution of the third tachyon, that is not
restricted to happen at small volumes only, is for Vc1 ≈ Vc3 ≈ Vc2 (that is C1 ≈ C3 ≈ C2 from (4.48)). Then, if
we imagine the three tachyonic contributions in (4.46) as a single contribution with effective tachyonic coeficient
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Ctot = C2 +C3 +C1, the corresponding effective β parameter would be βtot = β2 + β3 + β1 = 3, always smaller
than the required value (3.92) (≃ 3.228) for an almost vanishing vacuum of the theory.

We study again the derived effective scalar potential (4.40) at its new non-vanishing VEV, using the program
Mathematica:

We instert the potential (4.40) with the relations (3.93) and (4.23), plus the mass and the coupling that
corresponds to the third tachyon
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Then, we minimise the pontential with respect to φ−, ψ− and χ−, and repeat the procedure of the previous
section: for different values of gs, y(U2), z(U3) and x(U1), that always give small products gsy(U2), gsz(U3)

and gsx(U1) (so that β2, β3, β1 ≈ 1), we search for the combinations {V,m(i)
a , n

(2)
1 } that give firstly a vanishing

minimum, V (V, υ2, υ3, υ1) = 0, and secondly, a positive minimum, 0 < V (V, υ2, υ3, υ1) ≲ 10−11. From these
combinations we would like to choose those that give a reasonable Vc2 (≃ 201.9), Vc1 ≲ Vc3 ≲ Vc2 and Vc1 ≥ V,
and then investigate the parameter s for them.

However, this procedure did not find any solutions {V,m(i)
a , n

(2)
1 } in either case that satisfy all the above

constraints, so for different values of gs, y(U2), z(U3) and x(U1), we only searched for vanishing and positive
minimum solutions in general, and concentrated on the s parameter that they give, regardless the values of their
critical volumes. It is found that for positive minimum values of order ∼ 10−12 and 10−11, the gs ∼ 3.9× 10−3

gives an s closer to the range (3.33) for a dS minimum. These values of gs among with their y(U2)’s, z(U3)’s
and x(U1)

′s, are modified properly in order to get the desired values of s, Vc2, Vc3 and Vc1.
We find the combination

gs = 3.91452× 10−3, y(U2) = 0.013852, z(U3) = 0.0218498, x(U1) = 0.0153587, n
(2)
1 = 25,

m
(2)
1 = 23, m

(3)
1 = 36, m

(1)
2 = 18, m

(3)
2 = 51, m

(1)
3 = 97, m

(2)
3 = 6 (4.51)

which gives s ≃ −0.00723954, Vc2 ≃ 201.901, Vc3 ≃ 201.89, Vc1 ≃ 201.88 and β2, β3, β1 ∼ 1, with a potential
minimum at

Vmin ≃ 119.44→ V (Vmin, υ2, υ3, υ1) ≃ 3.81356× 10−12 (4.52)

The potential minimum value in terms of the volume V with the (4.51) parameter values incorporated, is
shown in the Figure 4.3. The seperate contributions of the inflaton and of the three waterfall fields to the
potential (4.46) are

V (V, υ2, υ3, υ1) = 3.75285× 10−11 − 3.3715× 10−11

and as it is also explained above through the βi parameters, the value of the vacuum in this model cannot
almost vanish as required, even though it is closer to, than the previously studied cases. In Figure 4.4, we see
the three waterfall directions together in terms of V, with a maximum near ≃ 201.9 again. Finally, in Figure
4.5, we also show the potential minimum value in terms of V, in the three already studied cases, together. We
observe that each time we add a waterfall field indeed the vacuum gets a lower value, which is displaced towards
lower values of the volume V.

From (4.50) we have
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Figure 4.3: Minimum value of the effective scalar potential of the inflaton and the three waterfall fields in terms
of V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (4.51).
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Figure 4.4: Waterfall direction in the effective scalar potential of the inflaton and the three waterfall fields in
terms of V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (4.51).
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Figure 4.5: Minimum value of the effective scalar potential of the inflaton field only (blue), and of the inflaton
with one (orange), two (green), and three waterfall fields (red), in terms of V, when κ2 = 1, q = 0 and
C = 7.81× 10−4, for the different combinations of parameter values found in each case.
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(4.53)

from which we see that the υ1 VEV depends on the values of the product gsx(U1), the critical value Vc1 and

the integer values of m
(i)
1 . From the combination (4.51) found, the range of this VEV in κ units is

κυ1 ∈ [0,≃ 0.071324] (4.54)

Also, from (3.96)
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for the combination (4.51), the range of the υ2 VEV in κ units, is

κυ2 ∈ [0,≃ 0.07133] (4.55)

and from (4.26)
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for the combination (4.51), the range of the υ3 VEV in κ units, is

κυ3 ∈ [0,≃ 0.0713269] (4.56)

so, the three VEV’s of the theory stay small and the quartic expansions in (4.1) and (4.29) hold.
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Chapter 5

Fourth D7-brane stack

In the above chapters, we have shown through the program Mathematica, that the more waterfall fields we
add in the theory the deeper the minimum of the potential becomes by choosing appropriate values for its
parameters, we could not reach though the dark energy observational value yet. In this chapter, we study
also the case proposed in [62] with an additional D7 brane stack included in the model, from which additional
waterfall fields make their appearance, and together with the previous existing waterfall fields may be able to
contribute negatively enough to the vacuum.

In fact, from the discussions in the previous cases about the parameters βi, which essentially count the
contribution of each tachyonic field in the potential minimum, we see that the addition of a fourth tachyonic
field in the potential could possibly solve the problem, as the effective parameter β could reach the desired value
(3.92). In [62], a fourth D7 brane stack is added in the theory and is parallel to the already existing D72 brane
stack. This induces not only one, but two extra tachyonic fields which provide two new waterfall directions that
are expected to deepen maybe more than enough the previously studied vacuum cases. We have the ability to
choose the waterfall fields to become tachyonic successively, as before.

In the first section of this chapter, we describe all the D- and F-term parts in the effective scalar potential
in this theory. In the second section, we derive the new relations between the fluxes using the new condition
for the elimination of tachyonic fields from different brane intersections. In the third section, we study the
resulting effective scalar potential of the inflaton and the tachyonic fields, and in the fourth section, the negative
contribution of the latter in the potential minimum.

5.1 D- and F-term contributions

In the model we study now, we have an extra D7 brane stack, which is denoted as D72b, and is parallel to the
previous D72 brane stack, which now is denoted as D72a. We name their corresponding tachyonic fields as yb−
and ya−, respectively.

The new D-term contribution from the magnetic fields in the effective scalar potential, neglecting the charge
conjugates of the fields, becomes [62]

VD =
∑
k=3,1

g2U(1)k

2

(
ξk − 2|φk−|2 + ...

)2
+
g2U(1)2a

2

(
ξ2a − 2|φ2a−|2 − |φ2ab−|2 + ...

)2
+
g2U(1)2b

2

(
ξ2b − 2|φ2b−|2 − |φ2ab−|2 + ...

)2
+ ... (5.1)

where φ2a− ≡ ya− and φ2b− ≡ yb−, the term that corresponds to the D73 and D71 tachyonic fields* is of this
form because they are not eliminated, as in the previous chapter, with φ3− ≡ ψ− and φ1− ≡ χ−, and the
extra φab− ≡ yab− field comes from contributions that D72a −D72b states receive from their relative distance,
x2ab = x2a − x2b [62]. Expanding (5.1) as in the previous cases, we have
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(5.2)

The magnetic field contributions to the masses of the matter fields, in the large volume limit, have the same
form as in the previous cases
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with the gauge couplings in the large volume limit given by (3.47). Furthemore, the condition for eliminating
the tachyonic fields from mixed-states, is [62]∣∣ζ(2)1

∣∣ = ∣∣ζ(3)2a

∣∣ = ∣∣ζ(3)2b

∣∣ = ∣∣ζ(1)3

∣∣ (5.4)

Substituting the definitions for all magnetic field mass contributions (5.3) into (5.2) and taking for simplicity

m
(i)
2a = m

(i)
2b , from which we have that g2U(1)2a

= g2U(1)2b
((3.47)) since the two stacks are parallel [62] and then,

ξ2a = ξ2b ((5.3) and (5.4)), we have

VD =

=
g2U(1)3

2
ξ23 −m2

H3
|ψ−|2 + 2g2U(1)3

|ψ−|4 +
g2U(1)1

2
ξ21 −m2

H1
|χ−|2 + 2g2U(1)1

|χ−|4

+g2U(1)2a
ξ22a −m2

H2a
|ya−|2 + 2g2U(1)2a

|ya−|4

−m2
H2b
|yb−|2 + 2g2U(1)2a

|yb−|4

−m2
H2a
|yab−|2 + g2U(1)2a

|yab−|4 (5.5)
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where we have ignored the |yl−|2|yab−|2 terms, with l = a, b. We can substitute all the expressions for the mass
contributions (5.3) and the Fayet-Iliopoulos parameters, ξ2a, ξ2b, ξ3, ξ1, which we found in the same way as
(3.48) and (3.51), into (5.5), and we get

VD =

=
1

2
ξ3
m2

H3

2
+

1

2
ξ1
m2

H1

2
+ ξ2a

m2
H2a

2
−m2

H3
|ψ−|2 + 2g2U(1)3

|ψ−|4 −m2
H1
|χ−|2 + 2g2U(1)1

|χ−|4

−m2
H2a
|ya−|2 + 2g2U(1)2a

|ya−|4 −m2
H2b
|yb−|2 + 2g2U(1)2a

|yb−|4

−m2
H2a
|yab−|2 + g2U(1)2a

|yab−|4

≈ 1

2

g3s
∣∣k(1)3

∣∣2∣∣m(1)
3 m

(2)
3

∣∣
π2κ4V2

A2

A1
+

1

2

g3s
∣∣k(2)1

∣∣2∣∣m(2)
1 m

(3)
1

∣∣
π2κ4V2

A3

A2
+
g3s
∣∣k(3)2a

∣∣2∣∣m(1)
2am

(3)
2a

∣∣
π2κ4V2

A1

A3

−m2
H3
|ψ−|2 + 2g2U(1)3

|ψ−|4 −m2
H1
|χ−|2 + 2g2U(1)1

|χ−|4

−m2
H2a
|ya−|2 + 2g2U(1)2a

|ya−|4 −m2
H2b
|yb−|2 + 2g2U(1)2a

|yb−|4

−m2
H2a
|yab−|2 + g2U(1)2a

|yab−|4

=
1

κ4V2

(
d3
A2

A1
+ d1

A3

A2
+ d2

A1

A3

)
−m2

H3
|ψ−|2 + 2g2U(1)3

|ψ−|4 −m2
H1
|χ−|2 + 2g2U(1)1

|χ−|4

−m2
H2a
|ya−|2 + 2g2U(1)2a

|ya−|4 −m2
H2b
|yb−|2 + 2g2U(1)2a

|yb−|4

−m2
H2a
|yab−|2 + g2U(1)2a

|yab−|4 (5.6)

with the following definitions being made

dl ≡
g2U(1)l

2
ξ2l =

1

2
g3s
∣∣m(j)

l m
(k)
l

∣∣(k(j)l

π

)2

, for l = 3, 1,

d2 ≡ g2U(1)2a
ξ22a = g2U(1)2b

ξ22b = g3s
∣∣m(1)

2am
(3)
2a

∣∣(k(3)2a

π

)2

= g3s
∣∣m(1)

2b m
(3)
2b

∣∣(k(3)2b

π

)2

(5.7)

The D-term (5.6) without the matter fields is exactly of the form (3.60) and after minimisation of the ratios
becomes (3.63) again. The only difference is in the definiton of the di parameters as the d2 parameter now lacks

a 1/2 factor. From the latter, we also have k
(3)
2a = k

(3)
2b and from this, n

(3)
2a = n

(3)
2b , since we chose m

(3)
2a = m

(3)
2b .

Beyond the D-terms contributions in the effective scalar potential, we also take into consideration the follow-
ing F-term contributions again, that correspond to the tachyonic fields: the already mentioned contributions of
the ϕ− field, (4.6) and (4.8), and the ones of the χ− field, (4.33) and (4.35), while we also have the contributions
of the ya−, yb− fields, which, neglecting their charge conjugates, are

VF ∋ m2
x2a
|ya−|2 +m2

x2b
|yb−|2 (5.8)

where
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m2
x2a

= ya(U2)
g2s
κ2V
A2

α′ ,

m2
x2b

= yb(U2)
g2s
κ2V
A2

α′ (5.9)

are the physical masses coming from the corresponding brane positions x2a and x2b, with yj(U2) playing the
same role as z(U3) and x(U1), and

VF ∋ κ2m2
x2a
|ya−|4 + κ2m2

x2b
|yb−|4 (5.10)

Moreover, there are F-term contributions with respect to the aformentioned relative brane distance x2ab, which
are

VF ∋ m2
x2ab
|yab−|2 (5.11)

where

m2
x2ab

= yab(U2)
g2s
κ2V
A2

α′ (5.12)

and

VF ∋ κ2m2
x2ab
|yab−|4 (5.13)

We can now express all the above mass contributions in terms of the parameters di: using the stabilization
condition (3.68) of the moduli ratios and (5.7) to replace the fluxes, the relations (5.3) become

m2
H2a

= m2
H2b
≈

2
∣∣k(3)2a

∣∣
πκ2

g2s
V
α′

A3
= 2
∣∣m(1)

2am
(3)
2b

∣∣−1/2
√
gs

κ2V4/3
(d21d2)

1/6

m2
H3
≈

2
∣∣k(1)3

∣∣
π

g2s
κ2V

α′

A1
= 2
√
2
∣∣m(1)

3 m
(2)
3

∣∣−1/2
√
gs

κ2V4/3
(d22d3)

1/6

m2
H1
≈

2
∣∣k(2)1

∣∣
π

g2s
κ2V

α′

A2
= 2
√
2
∣∣m(2)

1 m
(3)
1

∣∣−1/2
√
gs

κ2V4/3
(d23d1)

1/6 (5.14)

and using (3.68), the relations (5.9), (5.12), (4.7) and (4.34) become

m2
x2a

= ya(U2)
g2s

κ2V2/3

(
d1
d3

)1/3

m2
x2b

= yb(U2)
g2s

κ2V2/3

(
d1
d3

)1/3

m2
x2ab

= yab(U2)
g2s

κ2V2/3

(
d1
d3

)1/3

m2
x3

= z(U3)
g2s

κ2V2/3

(
d2
d1

)1/3

m2
x1

= x(U1)
g2s

κ2V2/3

(
d3
d2

)1/3

(5.15)

We also express the gauge couplings (3.47) in terms of the parameters di, using (3.68),
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g2U(1)2a
= g2U(1)2b

=
∣∣m(1)

2am
(3)
2a

∣∣−1 gs
V2/3

(
d1
d3

)1/3

g2U(1)3
=
∣∣m(1)

3 m
(2)
3

∣∣−1 gs
V2/3

(
d2
d1

)1/3

g2U(1)1
=
∣∣m(2)

1 m
(3)
1

∣∣−1 gs
V2/3

(
d3
d2

)1/3

(5.16)

5.2 Elimination condition

Starting from the condition for the elimination of mixed-state tachyons in this case, (5.4), we can follow the
same procedure as in Section 3.2.1, and extract the new relations between the fluxes:∣∣ζ(2)1

∣∣ = ∣∣ζ(3)2a

∣∣ = ∣∣ζ(3)2b

∣∣ = ∣∣ζ(1)3

∣∣
→

α′
∣∣k(2)1

∣∣
A2

=
α′
∣∣k(3)2a

∣∣
A3

=
α′
∣∣k(3)2b

∣∣
A3

=
α′
∣∣k(1)3

∣∣
A1

→
∣∣k(2)1

∣∣(d3
d1

)1/3

=
∣∣k(3)2a

∣∣(d1
d2

)1/3

=
∣∣k(1)3

∣∣(d2
d3

)1/3

→
∣∣k(2)1

∣∣∣∣k(1)3

∣∣2∣∣∣∣∣m(1)
3 m

(2)
3

m
(2)
1 m

(3)
1

∣∣∣∣∣ = ∣∣k(3)2a

∣∣∣∣k(2)1

∣∣2∣∣∣∣∣12m
(2)
1 m

(3)
1

m
(1)
2am

(3)
2a

∣∣∣∣∣ = ∣∣k(1)3

∣∣∣∣k(3)2a

∣∣2∣∣∣∣∣2m(1)
2am

(3)
2a

m
(1)
3 m

(2)
3

∣∣∣∣∣
→ A

∣∣k(2)1

∣∣∣∣k(1)3

∣∣2 = B
∣∣k(3)2a

∣∣∣∣k(2)1

∣∣2 = Γ
∣∣k(1)3

∣∣∣∣k(3)2a

∣∣2 (5.17)

with

A ≡

∣∣∣∣∣m(1)
3 m

(2)
3

m
(2)
1 m

(3)
1

∣∣∣∣∣, B ≡

∣∣∣∣∣12m
(2)
1 m

(3)
1

m
(1)
2am

(3)
2a

∣∣∣∣∣, Γ ≡

∣∣∣∣∣2m(1)
2am

(3)
2a

m
(1)
3 m

(2)
3

∣∣∣∣∣ (5.18)

where we used the general expression of (3.45) for the ζ
(i)
j with j = 1, 2a = 2b, 3, |k(3)2a | = |k

(3)
2b |, the moduli

stabilization condition (3.68), and (5.7). Setting |k(2)1 | = x, |k(1)3 | = z and |k(3)2a | = y, (5.17) takes the form
Axz2 = Byax

2 = Γzy2a, from which we have x3 = (Γ2/AB)y3 and z3 = (B2/AΓ)x3. Replacing all the definitions
in the latter, we get

∣∣k(2)1

∣∣ = 2

∣∣∣∣∣m(1)
2am

(3)
2a

m
(1)
3 m

(2)
3

∣∣∣∣∣∣∣k(3)2a

∣∣→ n
(3)
2a =

1

2

∣∣∣∣∣m(1)
3 m

(2)
3

m
(1)
2am

(2)
1

∣∣∣∣∣n(2)1

∣∣k(1)3

∣∣ = 1

2

∣∣∣∣∣m(2)
1 m

(3)
1

m
(1)
2am

(3)
2a

∣∣∣∣∣∣∣k(2)1

∣∣→ n
(1)
3 =

1

2

∣∣∣∣∣m(1)
3 m

(3)
1

m
(1)
2am

(3)
2a

∣∣∣∣∣n(2)1 (5.19)

where we used the relation k
(i)
j = n

(i)
j /m

(i)
j , too.

The parameter d, using the definitions (5.7), and the conditions (5.19) that fluxes now satisfy, is

d = 3
(
d1d2d3

)1/3
=

3g3s
22/3π

∣∣∣∣∣m(3)
1 m

(1)
2am

(2)
3

m
(2)
1 m

(3)
2am

(1)
3

∣∣∣∣∣
1/3(

n
(2)
1 n

(3)
2a n

(1)
3

)2/3
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=
3

4
g3s

(
k

π

)2

(5.20)

with

k = n
(2)
1

∣∣∣∣∣m(3)
1 m

(1)
3 m

(2)
3

m
(2)
1 m

(1)
2am

(3)
2a

∣∣∣∣∣
1/2

(5.21)

We can further express the mass contributions (5.14) and (5.15), and the gauge couplings (5.16), in terms

of the integer parameters m
(i)
j with j = 1, 2a, 3 and n

(2)
1 , as in the previous cases, using (5.7), and (5.19) where

fluxes appear,

m2
H2a

= m2
H2b

= m2
H3

= m2
H1

= 21/3
g2sk

πκ2V4/3

∣∣∣∣∣ 1∏
j ̸=im

(i)
j

∣∣∣∣∣
1/6

(5.22)

m2
x2a

= 22/3
g2s

κ2V2/3
ya(U2)

∣∣∣∣∣ m
(1)
2a

2
m

(3)
2a

2

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

m2
x2b

= 22/3
g2s

κ2V2/3
yb(U2)

∣∣∣∣∣ m
(1)
2a

2
m

(3)
2a

2

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

m2
x2ab

= 22/3
g2s

κ2V2/3
yab(U2)

∣∣∣∣∣ m
(1)
2a

2
m

(3)
2a

2

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

m2
x3

= 2−1/3 g2s
κ2V2/3

z(U3)

∣∣∣∣∣ m
(1)
3

2
m

(2)
3

2

m
(2)
1 m

(3)
1 m

(1)
2am

(3)
2a

∣∣∣∣∣
1/3

m2
x1

= 2−1/3 g2s
κ2V2/3

x(U1)

∣∣∣∣∣ m
(2)
1

2
m

(3)
1

2

m
(1)
2am

(3)
2b m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

(5.23)

g2U(1)2a
= g2U(1)2b

= 22/3
gs
V2/3

∣∣∣∣∣ 1∏
j ̸=im

(i)
j

∣∣∣∣∣
1/3

g2U(1)3
= g2U(1)1

= 2−1/3 gs
V2/3

∣∣∣∣∣ 1∏
j ̸=im

(i)
j

∣∣∣∣∣
1/3

(5.24)

We see that the expressions for the mass and coupling contributions in the present case are similiar to the ones
of the previous cases, with a small difference in their coefficients, which comes from

5.3 Hybrid potential

The effective scalar potential for the volume modulus V, and the tachyonic fields ya−, ψ−, χ−, yb−, and yab−,
after minimisation of the moduli ratios, in the large volume limit, is the sum of the F-part for V, (3.57), the
D-part (5.6) and the F-parts (4.6), (4.8), (4.33), (4.35), (5.8), (5.10), (5.11) and (5.13),

V (V, ya−, ψ−, χ−, yb−, yab−) =

=
C

κ4

(
− lnV − 4 + q

V3
− s

V2

)
−m2

H2a
|ya−|2 + 2g2U(1)2a

|ya−|4 +m2
x2a
|ya−|2 + κ2m2

x2a
|ya−|4
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−m2
H3
|ψ−|2 + 2g2U(1)3

|ψ−|4 +m2
x3
|ψ−|2 + κ2m2

x3
|ψ−|4

−m2
H1
|χ−|2 + 2g2U(1)1

|χ−|4 +m2
x1
|χ−|2 + κ2m2

x1
|χ−|4

−m2
H2a
|yb−|2 + 2g2U(1)2a

|yb−|4 +m2
x2b
|yb−|2 + κ2m2

x2b
|yb−|4

−m2
H2a
|yab−|2 + g2U(1)2a

|yab−|4 +m2
x2ab
|yab−|2 + κ2m2

x2ab
|yab−|4

=
C

κ4

(
− lnV − 4 + q

V3
− s

V2

)
+

1

2
m2

Ya
(V) |ya−|2 +

1

4
λYa

(V) |ya−|4

+
1

2
m2

Z(V) |ψ−|2 +
1

4
λZ(V) |ψ−|4 +

1

2
m2

X(V) |χ−|2 +
1

4
λX(V) |χ−|4

+
1

2
m2

Yb
(V) |yb−|2 +

1

4
λYb

(V) |yb−|4 +
1

2
m2

Yab
(V) |yab−|2 +

1

4
λYab

(V) |yab−|4 (5.25)

with

C = −3W2
oγ, q =

ξ

2γ
, s =

3

2
σ =

d

3W2
oγ

= − d
C

=
3

4C
g3s

(
k

π

)2

,

m2
Ya
(V) = 2

(
m2

x2a
−m2

H2a

)
, λYa

(V) = 4
(
2g2U(1)2a

+ κ2m2
x2a

)
,

m2
Z(V) = 2

(
m2

x3
−m2

H3

)
, λZ(V) = 4

(
2g2U(1)3

+ κ2m2
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)
,

m2
X(V) = 2

(
m2
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−m2
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)
, λX(V) = 4
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+ κ2m2
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,

m2
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(V) = 2
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(V) = 2
(
m2
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−m2

H2a

)
, λYab

(V) = 4
(
g2U(1)2a

+ κ2m2
x2ab

)
(5.26)

The above expressions for the masses and the couplings of the tachyonic fields in terms of the volume V, and the

parameters gs, yl(U2), l = a, b, ab, z(U3), x(U1), m
(i)
j , j = 1, 2a, 3 and n

(2)
1 , are found to be (using (5.22)-(5.24)):

• For ya−:

m2
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(V) = 2
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(5.27)

with
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1√
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(5.28)

and

λYa
(V) = 4
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• For ψ−:
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with
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• For χ−:
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and
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• For yb−:
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with
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and
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• For yab−:
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with
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and

λYab
(V) = 4

(
g2U(1)2a

+ κ2m2
x2ab

)
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= 28/3
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From the above we see that the effective potential (5.25) has the form of a hybrid potential with five waterfall
fields: the ya− which essentially is the one studied in the first case, the ψ− of the second case, the χ− of the
third case, the additional yb− in this theory, and the extra yab− from the D72a−D72b state. All squared masses
become negative below their respective critical values of the volume, Vci, with i = 2a, 3, 1, 2b, 2ab, and according
to the parameters each of these depends on, we can choose them to satisfy Vc2a ≳ Vc3 ≳ Vc1 ≳ Vc2b ≳ Vc2ab, so
that the waterfall fields become tachyonic one after the other.

5.4 The new vacuum

So, in this model, we distinguish the following phases, in which we consider that the parameters yl(U2) with l =
a, b, ab, z(U3) and x(U1), are all positive and that the critical volumes satisfy Vc2a ≳ Vc3 ≳ Vc1 ≳ Vc2b ≳ Vc2ab:

• For V > Vc2a, where we have m2
Ya
(V) > 0, m2

Z(V) > 0, m2
X(V) > 0, m2

Yb
(V) > 0 and m2

Yab
(V) > 0, the five

waterfall fields sit at their vanishing minima, ⟨ya−⟩ = ⟨ψ−⟩ = ⟨χ−⟩ = ⟨yb−⟩ = ⟨yab−⟩ = 0, and the inflationary
stage is equivalent to that of one field only (the inflaton field).

• For Vc3 < V ≲ Vc2a, where we have m2
Ya
(V) < 0, m2

Z(V) > 0, m2
X(V) > 0, m2

Yb
(V) > 0 and m2

Yab
(V) > 0,

a phase transition occurs and the waterfall field ya− falls to its new non-vanishing VEV, ⟨ya−⟩ = ±υ2a, ending
the inflationary phase, while the other waterfall fields sit at ⟨ψ−⟩ = ⟨χ−⟩ = ⟨yb−⟩ = ⟨yab−⟩ = 0. The system is
equivalent to the first case studied, in section 3.2, with one waterfall field only in the effective scalar potential,
and its minimum is at ±υ2a, which is lower than the above inflaton’s potential minimum.

• For Vc1 < V ≲ Vc3, where we have m2
Ya
(V) < 0, m2

Z(V) < 0, m2
X(V) > 0, m2

Yb
(V) > 0 and m2

Yab
(V) > 0, a

second phase transition occurs and the waterfall field ψ− also falls to its new non-vanishing VEV, ⟨ψ−⟩ = ±υ3,
while the other fields sit at ⟨χ−⟩ = ⟨yb−⟩ = ⟨yab−⟩ = 0. The system is equivalent to the second case studied, in
section 4.1, with two waterfall fields contributing to the effective scalar potential, whose minimum is at ±υ2a,
±υ3, and aquires an even lower value than in the phase above.

• For Vc2b < V ≲ Vc1, where we have m2
Ya
(V) < 0, m2

Z(V) < 0, m2
X(V) < 0, m2

Yb
(V) > 0 and m2

Yab
(V) > 0, a

third phase transition occurs and the waterfall field χ− is driven to its new non-vanishing VEV, ⟨χ−⟩ = ±υ1,
while ⟨yb−⟩ = ⟨yab−⟩ = 0. The system is equivalent to the third case studied, in section 4.2, with three waterfall
fields in the theory, and the potential minimum is at ±υ2a, ±υ3, ±υ1, with an even lower value than before.

• For Vc2ab < V ≲ Vc2b, where we have m2
Ya
(V) < 0, m2

Z(V) < 0, m2
X(V) < 0, m2

Yb
(V) < 0 and m2

Yab
(V) > 0,

another phase transition occurs and the waterfall field yb− is driven to its new non-vanishing VEV, ⟨yb−⟩ = ±υ2b,
while ⟨yab−⟩ = 0. Now, there are four waterfall fields in the theory, and the potential minimum is at ±υ2a, ±υ3,
±υ1, ±υ2b, with a lower value than above.

• For V ≲ Vc2ab, where we have m2
Ya
(V) < 0, m2

Z(V) < 0, m2
X(V) < 0, m2

Yb
(V) < 0 and m2

Yab
(V) < 0,

the fifth phase transition occurs and the waterfall field yab− is also driven to its new non-vanishing VEV,
⟨yab−⟩ = ±υ2ab. Now, the effective scalar potential recieves contributions from the inflaton and five waterfall
fields, and its minimum is at ±υ2a, ±υ3, ±υ1, ±υ2b,±υ2ab, with an even smaller value than above.

We are focusing on the last phase above, where all the waterfall directions are included in the theory. The
non-vanishing VEV’s of the five tachyonic fields have the form
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⟨yj−⟩ = ±υ2j = ±
|mYj

|√
λYj

, j = a, b, ab, ⟨ψ−⟩ = ±υ3 = ±|mZ |√
λZ

, ⟨χ−⟩ = ±υ1 = ±|mX |√
λX

(5.42)

The effective scalar potential (5.25) at the υi, with i = 2a, 3, 1, 2b, 2ab, substituting the masses and the couplings
of the waterfall fields, (5.27), (5.29), (5.30), (5.32), (5.33), (5.35), (5.36), (5.38), (5.39), (5.41), is
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with

k = 2 ≡ 2a, k = 4 ≡ 2b, k = 5 ≡ 2ab,
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1

4

22/3g3sy
2
a(U2)

2 + gsya(U2)
∣∣m(1)

2am
(3)
2a

∣∣
∣∣∣∣∣ m

(1)
2a

5
m

(3)
2a

5

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

,

C3 ≡
1

4

1

21/3
g3sz

2(U3)

2 + gsz(U3)
∣∣m(1)

3 m
(2)
3

∣∣
∣∣∣∣∣ m

(1)
3

5
m

(2)
3

5

m
(2)
1 m

(3)
1 m

(1)
2 m

(3)
2

∣∣∣∣∣
1/3

,

C1 ≡
1

4

1

21/3
g3sx

2(U1)

2 + gsx(U1)
∣∣m(2)

1 m
(3)
1

∣∣
∣∣∣∣∣ m

(2)
1

5
m

(3)
1

5

m
(1)
2 m

(3)
2 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

,

85



C4 ≡ C2b =
1

4

22/3g3sy
2
b (U2)

2 + gsyb(U2)
∣∣m(1)

2am
(3)
2a

∣∣
∣∣∣∣∣ m

(1)
2a

5
m

(3)
2a

5

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3

,

C5 ≡ C2ab =
1

4

22/3g3sy
2
ab(U2)

1 + gsyab(U2)
∣∣m(1)

2am
(3)
2a

∣∣
∣∣∣∣∣ m

(1)
2a

5
m

(3)
2a

5

m
(2)
1 m

(3)
1 m

(1)
3 m

(2)
3

∣∣∣∣∣
1/3
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All the above coefficients Ck can be written in terms of the parameter d, (5.20), and their respective critical
volumes, as in the previous cases,

C2j =
1

2
β2j

d

3V4/3
c2j

, with j = a, b,

Cl = βl
d

3V4/3
cl

, with l = 3, 1, 2ab (5.45)

with the following definitions being made
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From the above, we observe that the tachyonic coefficients of the ya and yb fields in (5.45), aquire an extra
1/2 factor, which is coming from the addition of the parallel to D72a, brane stack D72b. Also, as we see from
(5.45), this factor is missing from the tachyonic coefficient of the yab− field, because of the fact that the factor
2 is missing from the term g2U(1)2a

in the definition of the coupling of yab− in (5.26), and we do not have to

include it in (5.45) for the definition of its β parameter, β2ab, as we see in (5.46). The maximum tachyonic
contribution to the potential minimum (5.43), that is not restricted to happen at small volumes only, is for
Vc2ab ≈ Vc2b ≈ Vc1 ≈ Vc3 ≈ Vc2a and β2ab = β2b = β1 = β3 = β2a = 1. This means that if we count the tachyonic
contributions in (5.43) as a single one, with effective tachyonic coeficient Ctot = C2a + C3 + C1 + C2b + C2ab,
the corresponding effective β parameter will be

βtot =
1

2
β2a + β3 + β1 +

1

2
β2b + β2ab =

1

2
1 + 1 + 1 +

1

2
1 + 1 = 4 (5.47)

larger than the desired value (3.92) (≃ 3.228), that is we expect to obtain a vacuum lower than the particular
small positive one that we desire. This can be solved by [62] either lowering the βi parameters or the critical
volume values, except for the one of the first waterfall field, which is responsible for the end of the inflationary
phase.

Below, we study the effective scalar potential (5.25) at the new minimum in a similar way as in the previous
chapters, using the program Mathematica:

We insert the potential (5.25) with the expressions for the masses, the critical volumes and the couplings,
(5.27)-(5.41), and the expression for k, (5.21), with

κ2 = 1, C = 7.81× 10−4, q = 0, (5.48)
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and also the new relation for the parameter s, since the parameter d has changed,

s =
3

2
σ = − d

C
= − 3

4C
g3s

(
k

π

)2

(5.49)

We minimise the potential with respect to ya−, ψ−, χ−, yb− and yab−, and then, for different values of gs,
ya(U2), z(U3), x(U1), yb(U2) and yab(U2), that always give small products gsya(U2), gsz(U3), gsx(U1), gsyb(U2)

and gsyab(U2) (so that β2a, β3, β1, β2b, β2ab ≈ 1), we search for combinations of {V,m(i)
j , n

(2)
1 } with j = 1, 2a, 3,

that give a vanishing minimum, V (V, υi) = 0, and a positive minimum, 0 < V (V, υi) ≲ 10−11, with i =
2a, 3, 1, 2b, 2ab, and finally, we investigate only the parameter s for the resulting cases.

It is found that positive minimum values of order ∼ 10−12, give an s closer to the required range (3.33) for a
dS minimum. Among them, the parameters gs that give the closest s values to the range (3.33), are studied in
detail by modifying appropriately the values of gs, ya(U2), z(U3), x(U1), yb(U2) and yab(U2) in order to get the
desired values of s, Vc2a, Vc3, Vc1, Vc2b and Vc2ab. However, from the latter, only negative potential minimum
values are obtained (Anti-de Sitter), as in [62]. Lowering the values of the critical volumes Vc3, Vc1, Vc2b and
Vc2ab, as proposed in [62], the potential minimum values are indeed uplifted to small positive ones (de-Sitter).

We find the combination

gs = 1.52874× 10−3, ya(U2) = 0.00654901, z(U3) = 0.017, x(U1) = 1.15,

yb(U2) = 0.00663, yab(U2) = 0.0066, n
(2)
1 = 57,

m
(2)
1 = 3, m

(3)
1 = 22, m

(1)
2 = 81, m

(3)
2 = 70, m

(1)
3 = 59, m

(2)
3 = 84 (5.50)

which gives s ≃ −0.00723954, Vc2a ≃ 201.9, Vc3 ≃ 167.089, Vc1 ≃ 195.414, Vc2b ≃ 198.212, Vc2ab ≃ 199.565 and
β2a, β3, β1, β2b, β2ab ∼ 1, with a potential minimum at

Vmin ≃ 115.878→ V (Vmin, υi) ≃ 7.13283× 10−13 (5.51)

The potential minimum value in terms of the volume V with the (5.50) parameter values incorporated, is shown
in Figure 5.1. The resulting value of the vacuum for the above combination of parameters is in agreement with
[62]. The seperate contributions of the inflaton and the five waterfall fields to the potential (5.43), are

V (Vmin, υi) ≃ 4.33497× 10−11 − 4.26365× 10−11 (5.52)

from which we see that the two terms are closer to cancel each other than in the other cases. The total waterfall
direction has a maximum near V ≃ 188, and is shown in Figure 5.2. Also, in the combination (5.50) of the
parameters, which is induced after we lower the critical volume values so that the minimum becomes positive,
we see from the resulting critical values, that the waterfall fields become tachyonic with the following order:
ya−, yab−, yb−, χ− and ψ−. The potential minimum value in terms of the volume V, for the four cases studied
altogether, is also shown in Figure 5.3. We observe that as before, the addition of two more waterfall fields
lowered the vacuum more and shifted it towards lower values of the volume V.

We can also calculate the effective parameter βtot for the combination (5.50), considering Vck ≈ Vc2a ∼ 201.9
for all the tachyonic fields, at the potential minimum V ∼ 115.878: From (5.43), we find

−
5∑
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Vck
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)2

≃ −4.26365× 10−11

→ − 1

κ4V2/3
βtot

d

3V4/3
ck

(
1−

(
Vck
V

)2/3
)2∣∣∣∣∣

V∼115.878,Vck∼201.9

≃ −4.26365× 10−11

→ βtot ≈ 3.17607 (5.53)
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Figure 5.1: Minimum value of the effective scalar potential of the inflaton and the five waterfall fields in terms
of V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (5.50).
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Figure 5.2: Waterfall direction in the effective scalar potential of the inflaton and the five waterfall fields in
terms of V, when κ2 = 1, q = 0 and C = 7.81× 10−4, for the combination (5.50).
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which we see that it is very close to the desired (3.92). Thus, by requiring lower critical volumes values of the
four tachyons (expect for the first which is responsible for the end of inflation) in the theory with the additional
fourth D7-brane stack, we can end up with a de-Sitter minimum that can reach the desired value. This could
be done also by choosing lower β parameters for the five tachyons. In principle, one can tune the coefficients
of the two final contributions in (5.52), or add more tachyonic fields in the theory and then lower their critical
volume values or β parameters, so that the vacuum aquires the exact large accuracy of the observational value
of the cosmological constant.

In closing, we can calculate the range of the values of the VEV’s (in κ units): From (5.27) and (5.29), we
have

m2
Ya

λYa

=
1

2κ2
gsya(U2)

∣∣m(1)
2am

(3)
2a

∣∣
2 + gsya(U2)

∣∣m(1)
2am

(3)
2a

∣∣
(
1−

(
Vc2a
V

)2/3
)

→ ⟨ya−⟩ = ±υ2a = ±
∣∣mYa

∣∣√
λYa

= ± 1√
2κ

√√√√ gsya(U2)
∣∣m(1)

2am
(3)
2a

∣∣
2 + gsya(U2)

∣∣m(1)
2am

(3)
2a

∣∣
∣∣∣∣∣1−

(
Vc2a
V

)2/3
∣∣∣∣∣
1/2

(5.54)

which for the combination (5.50), gives the range

κυ2a ∈ [0,≃ 0.0786247] (5.55)

From (5.30) and (5.32), we have

⟨ψ−⟩ = ±υ3 = ±
∣∣mZ

∣∣
√
λZ

= ± 1√
2κ

√√√√ gsz(U3)
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3 m
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∣∣∣∣∣
1/2

(5.56)

which for (5.50) gives

κυ3 ∈ [0,≃ 0.0914307] (5.57)

From (5.33) and (5.35), we get

⟨χ−⟩ = ±υ1 = ±
∣∣mX

∣∣
√
λX

= ± 1√
2κ
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(5.58)

which for (5.50) gives

κυ1 ∈ [0,≃ 0.106897] (5.59)

From (5.36) and (5.38),

⟨yb−⟩ = ±υ2b = ±
∣∣mYb
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= ± 1√
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(5.60)

which for (5.50) gives

κυ2b ∈ [0,≃ 0.0775186] (5.61)

and finally, from (5.39) and (5.41),

⟨yab−⟩ = ±υ2ab = ±
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(5.62)

which for (5.50) gives
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Figure 5.3: Minimum value of the effective scalar potential of the inflaton field only (blue), and of the inflaton
with one (orange), two (green), three (red) and five waterfall fields (purple), in terms of V, when κ2 = 1, q = 0
and C = 7.81× 10−4, for the different combinations of parameter values found in each case.

κυ2ab ∈ [0,≃ 0.108709] (5.63)

From the ranges (5.55), (5.57), (5.59), (5.61) and (5.63), we see that the five VEV values stay small, so the
quartic expansions in (5.1) hold.
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Conclusions

In this work, we have studied the inflationary scenario proposed in [62], which is realized in the framework of
type IIB String Theory considering a geometric configuration of intersecting D7-brane stacks. In this context,
logarithmic pertubative corrections where investigated in [60], which come from the dimensional reduction of
the effective 10-dimensional action, in the weak coupling and large volume limit (LVS). This set up ensures
Kähler moduli stabilization and metastable de-Sitter vacua.

Concerning the inflationary phase in the above model, it can be realized by identifying a proportional to
the logarithm of the internal (compactification) volume V quantity, as the inflaton field. It is shown that there
is only one effective (free) parameter, x, that determines the shape of the resulting effective scalar potential
(inflaton’s potential), and hence the measurable parameters related to inflation. A de-Sitter minimum value of
the effective potential, restricts the x parameter to the range 0 < x < xc, where xc ≃ 0.0721318; below this
range, the potential loses its local extrema as the two branches of the Lambert W-function join, while above this
range the potential aquires an Anti-de Sitter minimum, with xc being the critical value that corresponds to a
vanishing minimum value and therefore to the Minskowki vacuum. Through the minimization of the potential,
the free parameter x can be related to an equivalent, more useful parameter for the calculations which we call
s, and then the range required for a de-Sitter minimum is expressed as −0.00724192 < s < −0.00673795.

In particular, the parameter x must be fixed to the value x ≃ 3.3×10−4 in order to realize slow-roll inflation
compatible with observations and the required number of the 60 e-folds, which corresponds to s ≃ −0.00723954.
Most of the e-folds are obtained at the vicinity of the minimum, in contrast to other inflationary scenarios,
such as hiltop inflation. Demanding the above value for the free parameter in the effective scalar potential, we
see that the inflaton field displacement is ∆ϕ ≃ 0.04, which is small compared to the Planck scale (small-field
inflation) and thus compatible with the validity of the effective field theory. Also, the minimum value of the
potential is of order of the inflation energy scale, which means that is very shallow. More specifically, by fixing
the overall constant of the potential (which plays no role in the minimisation and in the inflationary dynamics,
but is related to the observed spectral amplitude [60]) as required by observational constraints, we see that the
metastable minimum is high above the observational value of the cosmological constant, and in conclusion, it
cannot be the true vacuum of the theory.

Subsequently, we studied the proposed solution in [62] through the model of hybrid inflation, which can be
realized if one identifies the waterfall fields as excitations of open strings with endpoints on the D7-brane stacks.
The latter correspond to tachyonic states that can appear in the spectrum when magnetic fields are introduced
on the D7 branes, as their squared-masses may receive negative together with their positive contributions [62].
The waterfall field squared-masses depend on the value of the inflaton, and by choosing appropriate values
for the integers corresponding to magnetic fluxes and for the other string parameters that squared-masses are
expressed in terms of, they become tachyonic under certain (critical) inflaton values, successively, with the first
waterfall field responsible for the end of inflation becoming tachyonic at the inflaton’s minimum as desired.
In this way, apart from the ending of the inflationary stage, the waterfall directions generated can deepen the
vacuum of the theory.

More specifically, in the first studied case, where all charged open string states are chosen to have positive
squared-masses, except for one tachyonic state which corresponds to one waterfall field, with the help of the
program Mathematica, we minimised the effective scalar potential and obtained a volume-depended vacuum
which is expressed in terms of the aforementioned integers relevant to magnetic fluxes, and the other parameters.
We found a new combination for these paramaters of the vacuum, from the one proposed in the initial work
[62], which gives the lowest value that the vacuum can take in this theory. This value found is in agreement
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with the one given by the proposed combination in [62]. Although the waterfall direction lowered the vacuum of
the theory with the appropriate combination of the parameter values, turns out that it has a much higher value
than the one of the cosmological constant. In fact, there is a parameter which essentially expresses the amount
of contribution of the waterfall part in the vacuum, and its specific value required for an almost vanishing value
has been calculated in [62]. Indeed, one waterfall field in the effective potential does not contribute negatively
enough to the vacuum according to the above parameter.

In the second and third studied cases, where practically another one and two respectively tachyonic states
are not eliminated any more, so we have two and three waterfall fields respectively in the hybrid potential,
we showed that one can work in a similar way as in the first case, and find a suitable combination of the
vacua parameter-values, so that they possess (in each case) the lowest possible value. With the appropriate
combinations found in this work, the waterfall fields indeed provide deeper total waterfall directions in the
potential, but even with three waterfall fields the vacuum is not low enough to correspond to the observed
cosmological constant, in agreement with [62]. Again, this can be predicted by the relevant parameter that
measures the contribution of the waterfall part. All in all, we see that there are appropriate combinations of
the parameter values under which indeed the more waterfall fields we add in the hybrid model, the lower the
vacuum becomes, as the positive contribution of the inflaton and the negative contribution of the waterfall part
of the vacuum are closer to cancel each other. Also, the vacuum is displaced towards lower values of the inflaton
field, and in all three cases, the local maximum of the potential is near the minimum of the inflaton’s potential.

Finally, we tried the proposed solution of the addition of a fourth D7-brane stack, parallel to one of the
already existing D7-brane stacks [62], from which two more tachyonic states appear in the spectrum, so we
totally have five waterfall fields in the hybrid potential. We have shown that the waterfall part in the vacuum
contributes more than enough, as it was anticipated from the parameter that measures the waterfall contribution
in the vacuum, and one obtains an Anti-de Sitter minimum value, as in [62]. Accepting a bit lower critical volume
values for the waterfall fields, except for the one responsible for the end of inflation, we showed that the value
of the vacuum can be uplifted to positive values, so it can become de-Sitter again, as in [62]. We found an
appropriate new combination of the vacuum parameter-values, from the one proposed in the initial work [62],
so that it aquires the lowest possible value. The value found is in agreement with the one given by the proposed
combination in [62], and the parameter that measures the waterfall contribution in the vacuum is very close to
the one required for the exact almost vanishing value of the minimum.

The value of the vacuum with the appropriate combination of its parameters in the above configuration, is
even lower than in the other cases, as the contributions of the inflaton and the waterfall part in the vacuum are
even closer to cancel each other, and also the vacuum is displaced towards lower values of the inflaton, with the
maximum being very close to the minimum of the inflaton’s potential, as in the other cases and as desired. We
have to mention that in the cases of three and five waterfall fields in the hybrid potential, the program could
not find solutions (combinations) that satisfy all the desired constraints together, and we searched firstly for
the coupling constants that result in combinations which give a value for the parameter s closer to the desired
by the observational restrictions, then for the best combinations found we fixed the other parameters to give
the desired critical volume values (this is where we required lower critical volume values in the last case), and
finally we chose the combination that gives the best positive minimum.

We see that the addition of the D7-brane stack is sufficient to reach the desired amount of waterfall contri-
bution to the vacuum of the theory. In principle, one can fine tune the contributions of the inflaton and the
waterfall part so that they cancel in the exact large accurary, or add more waterfall fields in the hybrid potential
and then lower their critical volume values or the parameter that counts their contribution to the vacuum [62].
In fact, more phase transitions from new low-energy physics are expected to affect the scalar potential anyway.
In summary, this String Theory construction offers an implementation for the scenario of Hybrid Inflation, from
which we finally aquire a tunable vacuum that can reach the observational value of the cosmological constant,
which is thought to account for the present observed dark energy in the universe.
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Appendix A

Variation of the Hilbert Action in GR

The Einstein-Hilbert action in General Relativity is

SH =

∫ √
−gRdnx = SH =

∫ √
−ggµνRµνd

nx (A.1)

For variation of this action, we have

δSH =

∫
dnx

(√
−ggµνδRµν +

√
−gRµνδg

µν + δ
√
−g(R− 2Λ)

)
→ δSH = δS1 + δS2 + δS3 (A.2)

with

δS1 =

∫
dnx
√
−ggµνδRµν , δS2 =

∫
dnx
√
−gRµνδg

µν , δS3 =

∫
dnxδ

√
−g(R− 2Λ) (A.3)

For arbitrary variations, from the Christoffel coefficients we have

Γρ
νµ → Γρ

νµ + δΓρ
νµ (A.4)

and we keep in mind the covariant derivative of δΓρ
νµ [1], which is

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γρ

λσδΓ
σ
νµ − Γσ

λνδΓ
ρ
σµ − Γσ

λµδΓ
ρ
νσ (A.5)

The variation of the Riemann tensor (1.8) is

δRρ
µλν = ∂λ(δΓ

ρ
νµ) + Γρ

λσδΓ
σ
νµ + Γσ

νµδΓ
ρ
λσ

−∂ν(δΓρ
νµ)− Γρ

νσδΓ
σ
λµ − Γσ

λµδΓ
ρ
νσ (A.6)

keeping only first order δΓ-terms. Using (A.5), this becomes

δRρ
µλν = ∇λ(δΓ

ρ
νµ) + Γσ

λνδΓ
ρ
σν −

(
∇ν(δΓ

ρ
λµ) + Γσ

νλδΓ
ρ
σµ

)
(A.7)

and as Γσ
λν = Γσ

νλ, (A.7) is

δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ) (A.8)

Thus, the variation of the Ricci tensor is

δRµν = δRλ
µλν = ∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ) (A.9)
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and finally δS1 (A.3) is

δS1 =

∫
dnx
√
−ggµν

(
∇λ(δΓ

λ
νµ)−∇ν(δΓ

λ
λµ)
)

=

∫
dnx
√
−g∇σ

(
gµν(δΓσ

µν)− gµσ(δΓλ
λµ)
)

(A.10)

using metric compatibility ∇σg
µν = 0. Then, from the definition of the Christoffel coefficients (1.6), we have

δΓσ
µν =

1

2
δgσρ

(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
+
1

2
gσρ
(
∂µδgνρ + ∂νδgρµ − ∂ρδgµν

)
(A.11)

But,

δΓσ
µν = −1

2

(
gλµ∇ν(δg

λσ) + gλν∇µ(δg
λσ)− gµagνβ∇σ(δgaβ)

)
= (A.11) (A.12)

using δgµν = −gµρgνσδgρσ and

∇ρ(δgµν) = ∂ρ(δgµν)− Γλ
ρµ(δgλν)− Γλ

ρν(δgµλ) (A.13)

Plugging (A.12) into (A.10), we finally have

δS1 =

∫
dnx
√
−g∇σ

(
gµν∇σ(δgµν)−∇λ(δg

σλ)
)

(A.14)

which from the Stoke’s theorem (1.145), assuming δgµν = 0 at the boundary, vanishes, δS1 = 0.
Moreover, for any square matrix M with non-vanishing determinant, it is

ln(detM) = Tr(lnM) (A.15)

for elnM =M . Varying this identity, we get

1

detM
δ(detM) = Tr(M−1δM) (A.16)

If M = gµν , from (A.16) we have

1

g
δg = Tr(g−1δg) = gµνδgµν

→ δg = g(gµνδgµν) (A.17)

and using δgµν = −gµρgνσδgρσ, (A.17) becomes

δg = −g(gµνδgµν) (A.18)

From the above, we find that

δ
√
−g = −1

2

1√
−g

δg = −1

2

1√
−g

(−g(gµνδgµν))

= −1

2

√
−ggµνδgµν (A.19)

and inserting this in (A.3), we finally have
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δS3 = −
∫
dnx

(
R

2
− Λ

)√
−ggµνδgµν (A.20)

Substituting into (A.2), the variation of the action takes the form (1.151),

δSH =

∫
dnx
√
−g
(
Rµν −

1

2
Rgµν + Λgµν

)
δgµν (A.21)
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