
Solving Inventory Management
Problems Using Metaheuristic

Optimization Algorithms

Grigorios Piperagkas

MASTER THESIS

loannina, June 2012

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF IOANNINA

Επίλυση Προβλημάτων Διαχείρισης Αποθεμάτων με Χρήση
Μεταευρετικών Αλγορίθμων Βελτιστοποίησης

Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ

υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από τον

Γρηγόριο Πιπεράγκα

ως μέρος των Υποχρεώσεων για τη λήψη του

ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΜΕ ΕΞΕΙΔΙΚΕΥΣΗ

ΣΤΟΥΣ ΕΠΙΣΤΗΜΟΝΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ

Ιούνιος 2012

Ευχαριστίες

Με την ολοκλήρωση της παρούσας εργασίας θα ήθελα να ευχαριστήσω ιδιαίτερα τον επιβλέπο-
ντά μου κ. Κωνσταντίνο Παρσόπουλο για τη στήριξη και την πολύτιμη βοήθεια του στην
εκπόνησή της αλλά και σε ολόκληρη την πορεία των μεταπτυχιακών μου σπουδών.

Θα ήθελα επίσης να ευχαριστήσω τον κ. Ισαάκ Λαγαρή και την κ. Κωνσταντίνα
Σκούρη, καθώς και τον κ. Ιωάννη Κωνσταντάρα για τις πολύτιμες συμβουλές τους και
τις εποικοδομητικές συζητήσεις μας.

Επίσης ευχαριστώ τους κ. Κωνσταντίνο Βόγκλη, Δημήτριο Παπαγεωργίου και Αριστείδη
Λύκα για τις εποικοδομητικές συζητήσεις και τη συνεργασία μας, καθώς και τον κ. Χρυσό­
στομο Στύλιο για τη συνεργασία και τη μερική χρηματική υποστήριξη των μεταπτυχιακών
μου σπουδών.

Τέλος, να ευχαριστήσω την οικογένειά μου για την ηθική και υλική στήριξη της και
τους καλούς μου φίλους για τις ωραίες στιγμές.

Contents

1 Introduction 9
1.1 Multi-item inventory model with supplier selection... 9
1.2 The stochastic dynamic lot-sizing problem.. 11
1.3 Thesis organization.. 12

2 Employed algorithms 13
2.1 Particle Swarm Optimization 13

2.1.1 Main scheme ... 13
2.1.2 Unified Particle Swarm Optimization... 16

2.2 Differential Evolution.. 16
2.3 Harmony search.. 18
2.4 Synopsis.. 19

3 The investigated problems 20
3d Multi-item inventory problem with supplier selection: problem formulation 20

3.1.1 Original model... 22
3.1.2 Simplified model.. 23
3.1.3 Penalty function ... 23

3.2 The stochastic dynamic lot-sizing problem.. 24
3.2.1 The Wagner-Whitin model .. 24
3.2.2 Stochastic model: problem formulation.. 26

3.3 Synopsis.. 29

4 Experimental settings and results 30
4.1 Settings for the multi-item inventory model with supplier selection............. 30
4.2 Results and discussion... 32

4.2.1 Results for the original model... 34
4.2.2 Results for the simplified model.. 38

4.3 Stochastic dynamic lot-sizing model.. 43
4.3.1 Solution representation... 43
4.3.2 The case of normally distributed demand.. 44
4.3.3 Test problems.. 44
4.3.4 Experimental setup... 45

4.3.5 Presentation of results and discussion.. 47
4.4 Synopsis..-... 54

5 Conclusions 57

List of Figures

2.1 The ring (left) and star (right) neighborhood topologies of PSO................... Γ4

3.1 Diagram of the proposed inventory model............................. 21

4.1 Statistical significance tests. The algorithms are indexed as in Table 4.6. . 35
4.2 Performance of DE3^ and DE3^ under iteration number scaling............... 36
4.3 Statistical significance tests. The algorithms are indexed as in Table 4.7. . 36
4.4 Performance of DE3^ and DE3^ under population size scaling................. 37
4.5 Statistical significance tests. The algorithms are indexed as in Table 4.7. . 37
4.6 Statistical significance tests. The algorithms are indexed as in Table 4.9. . 40
4.7 Performance of DE3^ and DE3^ under iteration scaling............................. 41
4.8 Statistical significance tests. The algorithms are indexed as in Table 4.7. . 41
4.9 Performance of DE3^ and DE3^ under population size scaling................. 42
4.10 Statistical significance tests. The algorithms are indexed as in Table 4.10. . 43
4.11 Success rate for each algorithm. Different colors denote the different prob­

lem instances.. 49
4.12 The required running time per algorithm and problem instance.................... 50
4.13 Boxplots of the mean number of function evaluations required for each

algorithm in 100 independent experiments for the 12-dimensional problem
instance... 50

4.14 Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 18-dimensional problem
instance... 51

4.15 Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 24-dimensional problem
instance... 51

4.16 Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 30-dimensional problem
instance... 52

4.17 Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 36-dimensional problem
instance... 52

4.18 Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 42-dimensional problem
instance... 53

4.19 Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 48-dimensional problem
instance.. 53

List of Tables

4.1 Demand of the three products over a planning horizon of four periods. ... 31
4.2 Prices of the three products supplied by the three suppliers and the corre­

sponding transaction costs.. 31
4.3 Parameter sets for UPSO.. 31
4.4 Parameter sets for DE.......................................-.. 31
4.5 Results for the original (48-dimensional) model... 33
4.6 Indices of the algorithms reported in the statistical test of Fig. 4.1.................. 34
4.7 Indices of the algorithms reported in the statistical test of Fig. 4.3.................. 35
4.8 Results for the simplified (36-dimensional) model... 39
4.9 Indices of the algorithms reported in the statistical test of Fig. 4.6.............. 40
4.10 Indices of the algorithms reported in the statistical test of Fig. 4.8.................. 42
4.11 Setup cost and cumulative demand (/*(?)) used in the test problems. ... 46
4.12 Total number of sequences and run-time required for the exhaustive search

per problem instance. The symbol stands for “order of” and “>”
denotes “higher than”.. 47

4.13 Maximum function evaluations (Tmax) and swarm/population/harmony mem­
ory size (N) per problem instance.. 47

4.14 Results for all algorithms and problem instances... 55
4.15 Wilcoxon rank-sum tests between the algorithms.. 56

Abstract

Piperagkas, Grigorios, Department of Computer Science,
University of loannina, Greece, June 2012,
Solving Inventory Management Problems Using Metaheuristic Optimization Algorithms
Thesis Supervisor: Konstantinos E. Parsopoulos

We investigate the solution of inventory management problems through metaheuristic
optimization algorithms. More specifically, we focus on multi-item inventory problems
with limited capacity, as well as on the dynamic lot-sizing problem with stochastic de­
mand. Three quite popular optimization algorithms were selected, namely Particle Swarm
Optimization (PSO), Differential Evolution (DE) and Harmony Search (HS).

Initially the multi-item inventory problem with supplier selection, limited capacity
and defective items is presented. The model includes specific transaction and storage
cost. The objective is the determination of a replenishment policy, given the demand over
a planning horizon, while the problem is defined from a set of constraints and is formed as
a mixed-integer optimization problem. The PSO and DE algorithms are used for solving
the model, with appropriate modifications and assumptions for the specific model. At
the next stage, the model is simplified in order to obtain the solution-easier. Results are
presented and analyzed statistically.

At the second part of the thesis, we examine the dynamic lot sizing problem under
stochastic and non-stationary demand over a predefined finite planning horizon. The
model is based on the dynamic Wagner-Whitin model, which was proposed in 1958 and
was recently extended with stochastic demand. Here the solution is examined with three
algorithms, namely PSO, DE and HS. It is the first attempt to solve this kind of problem
with metaheuristic optimization algorithms. The methods are modified appropriately to
accomodate the model’s specificities. Their efficiency is reported regarding the time and
solution quality, for various problem instances. The algorithms performance is statistically
analyzed along with their proper modifications. The results support the claim that they
can be successfully considered as an alternative for the solution of the specific problems.

ΕΡΙΛΗΨΗ

Γρηγόριος Σ. Πιπεράγκας
Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Ιούνιος 2012.
Επίλυση Προβλημάτων Διαχείρισης Αποθεμάτων με Χρήση Μεταευρετικών Αλγορίθμων
Βελτιστοποίησης.
Επιβλέπων: Κωνσταντίνος Ε. Παρσόπουλος

Στην παρούσα εργασία μελετάται η επίλυση προβλημάτων διαχείρισης αποθεμάτων με
χρήση μεταευρετικών αλγορίθμων βελτιστοποίησης. Συγκεκριμένα, επικεντρώσαμε σε προ­
βλήματα με πολλούς προμηθευτές και προϊόντα με περιορισμένο αποθηκευτικό χώρο, καθώς
και στο δυναμικό πρόβλημα με στοχαστική ζήτηση. Επιλέχθηκαν τρεις ιδιαίτερα δημοφιλείς
αλγόριθμοι για την επίλυσή τους, οι Particle Swarm Optimization (PSO), Differential
Evolution (DE) και Harmony Search (HS).

Αρχικά παρουσιάζεται το πρόβλημα διαχείρισης αποθεμάτων με πολλά προϊόντα και
πολλούς προμηθευτές, περιορισμένη αποθηκευτικό χώρο και ελαττωματικά προϊόντα. Το
μοντέλο περιλαμβάνει συγκεκριμένο κόστος συναλλαγής αλλά και κόστος αποθήκευσης.
Στόχος είναι ο καθορισμός του μεγέθους παραγγελιών, δεδομένης της ζήτησης για ένα
συγκεκριμένο χρονικό ορίζοντα, ενώ το πρόβλημα καθορίζεται από μεγάλο πλήθος περιορι­
σμών και διαμορφώνεται ως πρόβλημα μεικτού ακέραιου προγραμματισμού. Για την επίλυση
χρησιμοποιούνται οι αλγόριθμοι PSO και DE, με κατάλληλες τροποποιήσεις και εκδοχές
για το συγκεκριμένο είδος μοντέλου. Σε επόμενο στάδιο, το μοντέλο απλοποιείται για
ευκολότερη επίλυση. Τα αποτελέσματα παρουσιάζονται και αναλύονται στατιστικά.

'Στο δεύτερο μέρος της εργασίας, εξετάζεται ένα σύστημα προγραμματισμού και ελέγχου
αποθεμάτων με ένα προϊόν και πεπερασμένο ορίζοντα σχεδιασμού, με στοχαστική μη στάσιμητ
ζήτηση. Το μοντέλο είναι βασισμένο στο δυναμικό μοντέλο των Wagner-Whitin που
προτάθηκε το 1958 και επεκτάθηκε πρόσφατα για στοχαστική ζήτηση. Εδώ η επίλυση
γίνεται με τρεις αλγορίθμους, τις μεθόδους PSO, DE και HS. Πρόκειται για την πρώτη
απόπειρα επίλυσης του προβλήματος αυτού με μεταευρετικούς αλγόριθμους βελτιστοποίησης.
Οι μέθοδοι τροποποιούνται κατάλληλα για να προσαρμοστούν στις απαιτήσεις του μοντέλου
και καταγράφεται η επίδοσή τους, ως προς το χρόνο και την ποιότητα λύσης, για διαφορετι­
κές εκδοχές και συνθήκες του προβλήματος. Η απόδοση των αλγορίθμων αναλύεται στατι­
στικά. Τα αποτελέσματα υποστηρίζουν την πεποίθηση ότι οι συγκεκριμένοι αλγόριθμοι
μπορούν να θεωρηθούν ως εναλλακτικές μέθοδοι για την επίλυση αυτών των προβλημάτων.

Chapter 1

Introduction

Operations Research (OR) has offered a rich ground for application of Evolutionary Al­
gorithms (EAs). Numerous works verified the effectiveness of EAs in solving various
problems, including scheduling, routing [6], production planning, management and eco­
nomic administration [5].

In the current thesis, three well studied algorithms have been employed to solve two
interesting inventory management problems: Particle Swarm Optimization (PSO), Dif­
ferential Evolution (DE) and Harmony Search (HS). PSO [23], DE [37] and HS [15] are
three of the most popular metaheuristic optimization algorithms. Their popularity can be
attributed to the combination of high efficiency with minor implementation effort, which
renders them accessible to researchers in diverse scientific fields.

PSO and DE have apparent structural and operational similarities such as the use of
an iteratively updated population of potential solutions. The updating process is based
on combinations of difference vectors among existing population members. Selection of
the best-performing solutions produces the necessary probabilistic pressure for sampling
in the most promising regions of the search space. Their development was inspired by
the evolution and self-organization properties of living entities. PSO roughly resembles
the swarming behavior observed in bird-flocks or fish schools, which is also intimately
related to physical laws that characterize more fundamental systems such as gases in Par­
ticle Physics. On the other hand, DE is closely associated with evolutionary algorithms,
resembling recombination and mutation procedures.

HS performs a procedure similar to the musical improvisation process, although its
structure and operation have many commons with state-of-the-art evolutionary algo­
rithms such as Evolution Strategies.

1.1 Multi-item inventory model with supplier selection

Among others, supplier selection combined with inventory management is a central prob­
lem with a remarkable amount of relative work in business management literature. Sup­

plier selection problems are usually formulated as mixed-integer optimization problems,
incorporating purchasing, transportation and inventory costs over multiple periods, under
the conditions of multiple sourcing, criteria and constraints. Extensions on lot-sizing with
supplier selection for multi-period and multi-product cases have been studied, along with
cases with limited capacities on suppliers [2, 18].

In many research works, the products are considered to be of perfect quality. How­
ever, in realistic production environments there is often a (usually small) probability of
imperfect quality. It is important for the optimal policy to take into account the rela­
tionship between quality imperfection and lot sizing. Such a model was studied in [35],
where a probability that production goes out of control was considered. Further models
have been considered, incorporating inspection policy [36]. The issue of non-shortages
in models with proportional imperfect quality was evoked in [27], where the proportion
of imperfect items was assumed to be a random variable. Other models considered the
rework of defective products [19], flexible production processes [11], as well as multi-stage
lot sizing for imperfect production processes [3].

Recently, a new model was proposed by Rezaei and Davoodi [34], This model refers
to the problem of lot sizing with supplier selection, considering crucial concepts such as
imperfect items and limited storage capacity. The problem was formulated as a highly
constrained mixed-integer optimization task and it was solved by using two different
approaches: a deterministic one using the Lindo software \ and a stochastic one, based
on Genetic Algorithms (GAs). The latter approach was shown to be very promising
and triggered our interest in applying PSO and DE on the specific model, since both
algorithms have proved to be very competitive to GAs.

Also, the proposed model involves intimately related integer and real-valued variables.
In simple words, the integer variables represent the decision of ordering a product from a
specific supplier or not, while the real variables specify the exact quantity. However, the
decision of not ordering can be equivalently represented solely by assuming a zero value
of the corresponding real variable. This way, the model can be simplified by dropping
all integer parameters, thereby reducing its dimension. However, the application of PSO
and DE on the simplified problem requires some caution, as it will be analyzed in a later
section. Finally, the constraints can be handled by using a penalty function approach,
which has shown to offer a straightforward solution in constrained optimization eases [31].

In our study, we considered the Unified PSO (UPSO) [30] algorithm as well as the
five standard DE operators [37]. UPSO generalizes the standard PSO, producing highly
competitive schemes that combine its exploration/exploitation properties as reported in
previous works [28, 31]. For both algorithms, initialization in feasible points was not
required.

1http://www.lindo.com

1http://www.lindo.com

1.2 The stochastic dynamic lot-sizing problem

The dynamic lot-size (DLS) problem consists of determining the quantity of products to
order or produce in each time period over a finite discrete planning horizon, in order to
satisfy the demand for each period while minimizing the summation of setup and inventory
holding costs. This model was first introduced by Wagner and Whitin in 1958 [43], who
developed an O(H2) forward algorithm for a general dynamic version of the uncapacitated
economic lot-sizing model, where H stands for the number of time periods.

DLS is embedded within many practical production planning problems. The zero­
inventory ordering principle, which imposes that no production is undertaken if inventory
is available, constitutes a key contribution for the uncapacitated cases. Zangwill [44]
extended the Wagner-Whitin model by allowing complete backlogging of unsatisfied de­
mand. This was the first work to highlight the importance of using networks to represent
some production planning problems. More specifically, the problem was represented as a
minimum cost flow problem in a network with concave arcs costs and a single source.

Although many alternative algorithms have been proposed, the dynamic programming
method still remains the major analytical tool for solving lot-sizing problems. Federgruen
and Tzur [10] presented a simple forward algorithm which solves the general dynamic lot­
sizing model in O(HlogH) time or in 0(H) under some assumptions on the cost data.
This was the key improvement over the previously recommended well-known shortest
path algorithm solution, which required O(H2) time.

Wagelmans et al. [42] extended the range of allowable cost data to permit coefficients
with unrestricted signs. They developed an alternative algorithm to solve the resulting
problem in O(HlogH) time. Aggarwal and Park [1] developed an algorithm with com­
plexity O(HlogH), which solved the problem of H periods by solving two sub-problems
of H/2 periods. Two recent review papers on the dynamic lot-sizing problem are those by
Karimi et al. [21] and Jans and Degraeve [20]. The first one reviews single-level lot-sizing
problems, their variants and solution approaches. The second one presents an overview
of recent developments on the deterministic dynamic lot-sizing problem, focusing on the
modeling of various industrial extensions rather than solution approaches.

All the above models assume that relevant data, such as the demand, are known
and deterministic. However, this assumption is unrealistic in many situations. Guan
and Miller [17] studied the stochastic version of the deterministic lot-sizing problem and
proposed a polynomial time algorithm to obtain the optimal solution. Guan [16] studied
a more general setting of the stochastic lot-sizing problem, assuming varying capacities
and backlogging of unsatisfied demand.

Recently, Vargas [41] investigated the problem of planning dynamic order quanti­
ties, extending the Wagner-Whitin algorithm to the case of stochastic, time-varying de­
mand with known density function. Safety stock requirements were implicitly included
in planned order quantities whereby the objective was to minimize the sum of expected
setup, backorder and inventory holding costs. A particularly elegant solution procedure
was developed for the case of normally distributed periodic demands. In his analysis,

Vargas [41] stated that his work:

“...may serve as a basis for the development of improved production scheduling heuris­
tics for the stochastic case and new heuristics can be directly incorporated in production
scheduling systems. ”

Motivated by this proposal, we selected three metaheuristic optimization algorithms, still
unstudied on the specific problem. The algorithms were selected on the basis of popular­
ity, number of interdisciplinary applications, easy implementation and verified efficiency,
which imply a prevailing position among similar approaches. (PSO) [23], DE [37] and
HS [15] are three algorithms that perfectly matched our criteria. Although they were not
the only candidate approaches, the ongoing interest of the research community on their
properties and applications was the motive for our choice in the present study.

The aforementioned algorithms have been successfully applied also in other OR prob­
lems. For instance, we can refer to flow shop and machine scheduling problems [26, 29, 39],
optimal scheduling of multiple dam systems and fluid-transport network design [13, 14],
inventory optimization [28], dynamic lot-sizing problems [12] etc.

1.3 Thesis organization

The rest of this thesis is organized as follows: in Chapter 2, the three employed algorithms
are presented and analyzed thoroughly, as well as their variants that were used in each
model, in Chapter 3, the multi-item inventory model with supplier selection and the
stochastic dynamic lot-sizing model with an introduction to the Wagner-whitin algorithm
are presented. In Chapter 4 we present the experimental settings and all the results for
both problems and all the instances that were examined. Finally, an epilogue is presented
in Chapter 5.

Chapter 2

Employed algorithms

The main features of the employed algorithms, namely PSO, DE and HS, are presented.
In our presentation, we assume that the optimization problem under consideration is
defined as:

min
seXcRn (2.1)

where X is the search space. No additional assumptions on the objective function f(x)
are required, except of the availability of its value at any given point in X.

2.1 Particle Swarm Optimization

We present the PSO algorithm in its standard formation, as well as the recently proposed
unified scheme.

2.1.1 Main scheme

The original PSO algorithm was introduced in 1995 by Eberhart and Kennedy [23]. The
method utilizes a swarm, i.e., a population of search points that iteratively probe the
search space for the global minimizer. The search points are called particles, and they
concurrently move with an adaptable velocity (position shift) to new positions.

Moreover, each particle has a memory where it retains the best position it has ever
visited, i.e., the position with the lowest function value. This can be considered as expe­
rience storage for the particle, which exploits this information to guide its search towards
the most promising regions of the search space. The search stops as soon as a stopping
criterion is achieved, usually related to the quality of the best solution found so far or to
the number of function evaluations spent by the algorithm.

Apart from the personal memory, each particle has a neighborhood, i.e., a set of indices
of other particles that share their memories (best positions) with it. Thus, the particle
decides on its next move by aggregating its own discoveries with the best findings of its
neighboring mates.

Figure 2.1: The ring (left) and star (right) neighborhood topologies of PSO.

Based on the concept- of neighborhood, two main PSO schemes were proposed. The
first one-is called the global PSO (also known as gbest) model on account of the underlying
global information-sharing scheme. According to this, all particles assume the whole
swarm as their neighborhood and each particle takes into consideration its own memory
as well as the overall best memory, i.e., the best position ever discovered by the whole
swarm.

The second model is the local PSO (also known as Ibest), where each particle is as­
signed a neighborhood usually consisting of a few particles. The organization of particles
in neighborhoods rises the concept of neighborhood topologies, which refers to abstract
representations of information-flow channels among the particles. Usually, the topologies
are represented as graphs consisting of nodes (particles) and interconnections (communi­
cation channels) among them. The most common topology is the ring, where all particles
are assumed to lie on a ring ordered according to their indices, such that each parti­
cle has two immediate neighbors with adjacent indices. Then, for a given particle, its
neighborhood is completely defined by determining a radius, i.e., the number of particles
with adjacent indices that constitute the neighborhood. More information on the effect
of neighborhoods can be gained in [22, 38]. Figure 2.1 illustrates the aforementioned ring
topology (left) as well as another popular scheme called star (right).

In general, the search procedure of heuristic algorithms such as PSO consists of two
phases, namely exploration and exploitation. In the first, the swarm attempts to detect
the most promising regions of the search space. In the latter, it promotes the faster
convergence to the most promising regions detected so far. It has been experimentally
verified that the neighborhood topology can influence the swarm’s convergence dynamic.
As can be easily inferred, the gbest model promotes the search around the overall best
position in favor of exploitation. On the other hand, the Ibest model with its regional
and gradual information transmission between particles, leans effectively to exploration.

To put it formally, let:
S = {X1,X2,. ■

be a swarm of N particles, r, € X C Rn, i = 1,2,..., N. The i-th particle has a velocity
(position shift), Vi, and retains in memory the best position, pi G X, it has ever visited.
A ring neighborhood of radius m for the particle Xi, is defined as the set of indices:

Bi = {i - m, i - m + 1,..., i,..., i + m — 1, i + m} .

The ring is assumed to recycle at its end, i.e., the particles xN and x2 are the immediate
neighbors of aq.

Assume that gi is the index of the best position found so far in the neighborhood of
Xi, i.e.,

gi = arg min

and let t denote the iteration counter. Then, according to the constriction coefficient
version of PSO [8], the swarm is updated as follows:

4Γ4’ = x $ + w (?2 -4?) ’ <2·2)

= *!?+<”· (2.3)

where i = 1,2,..., N, and j = 1,2,..., n. The parameter χ is the constriction coefficient
and it is used as a means to control the magnitude of the velocities. The other two
parameters are defined as:

^i = cin, ^2 = c2r2,

where Ci and c2 are positive constants, also called the cognitive and the social parameter,
respectively, and r^, r2, are random variables uniformly distributed in [0,1], assuming
different values for each i, j and t.

The constriction coefficient is needed to restrict the magnitude of the velocities, pro­
moting convergence and alleviating the “swarm explosion” effect that has been shown to
be detrimental for the search procedure [8]. In early PSO versions, the parameters were
empirically determined based on trial runs. In more recent versions, the PSO stability
analyses by Clerc and Kennedy [8] and Trelea [40] imply that parameters are selected
such that the following equation holds:

12 --φ - vV2 —4^1

where φ > 4 and φ = c\+ c2. Following this result, the values χ = 0.729, ci = c2 = 2.05,
are considered as the default parameter set.

A full iteration of PSO is completed with the best positions update:

_ < Xi ’ 11 7 J < J \Pi J ,
p^\ otherwise.

PSO was primarily designed to operate in continuous search spaces. However, experimen­
tal evidence have shown signs of efficiency also in integer and mixed-integer problems,
without the need of radical modifications in the algorithm [29, 24], The most straight­
forward approach to achieve this, is the use of its standard form with the particles been
rounded to the closest integer prior to each function evaluation, while their position up­
dates are performed in the continuous domain. This is the approach adopted also in the
present paper. A typical example is provided in a later section.

2.1.2 Unified Particle Swarm Optimization

UPSO was proposed as an alternative PSO scheme that combines the different explo-
ration/exploitation properties of the gbest and Ibest PSO models [30]. The original UPSO
scheme is based on the constriction coefficient PSO variant definedin Eqs. (2.2) and (2.3),
although it can be straightforwardly defined also for other variants. Putting it formally,
let and denote the velocity update of the z-th particle for the gbest and Ibest
PSO, respectively:

Γ W , ((0 (Ολ (((0 (*)Y-X |4 + \Pij ~ χα) + ~ 4)
rO+i)_ v Γ,,ω + Od - 4-
Lij + J ' \P9ij Xij J

(2.5)

(2-6)

where t denotes the iteration counter; g is the index of the overall best particle in swarm;
and gi is the index of the best particle in the neighborhood of x^. Then, UPSO updates
the particle’s position according to the scheme [30]:

+ uG^
(i+l) _ I Γ/Ο+Ρ

xij — ϋ V ’

(2-7)

(2-8)

where the parameter u is called the unification factor and balances the influence (trade­
off) of the global and local search directions. Note that the Ibest and gbest PSO models
can be obtained for u = 0 and u = 1, respectively.

The standard UPSO scheme was further extended by introducing a stochastic parame­
ter to imitate mutation in EAs. Mutation can help towards the preservation of population
diversity, which has a crucial impact on swarm’s exploration capability. Thus, depending
on the variant of UPSO under consideration, Eq. (2.7) can be written either as:

yin-» = (1 + r3«G!‘+1), (2-9)

which is mostly based on the Ibest PSO, or as:

= r3 (1 - u) + u Gy1’, (2.10)

which is mostly based on the gbest PSO. The mutation parameter, is a normally
distributed variable. The convergence properties of these variants were studied in [30]
and the superiority of UPSO against the standard PSO was experimentally verified in
various problems [31].

2.2 Differential Evolution

The DE algorithm was introduced by Storn and Price [37] as a population-based, stochas­
tic optimization algorithm for numerical optimization problems. Similarly to PSO, DE
employs a population, S = {xi,X2, ··· ,xn}, of individuals to probe the search space.

The population is randomly initialized, usually following a uniform distribution over the
search space. At each iteration, N competitions are held to determine the members of the
population for the next iteration. This is achieved by iteratively applying three operations
on each individual: mutation, crossover and selection.

The mutation operator produces a new vector, Vi, for each individual, Xi,i = 1,2,... ,N,
by combining it with some of the rest. Different operators have been proposed for this
task. The following five operators are among the most common DE mutation schemes:

DEI : oA1’ = x^+F (x^-x^), (2.11)
DE2 : = x® + F(x®-x®), (2.12)

DE3 : = xW -u F (x^ - τ(ί) + -(t) - (2-13)

DE4 : „(>«> - x^ + F (^ -x^+x^- x%), (2.14)
DE5 : = x% + F (x® - x® + x% - x%) , (2-15)

where t denotes the iteration counter; F is a fixed user-defined parameter; g denotes the
index of the best individual in the population, i.e.:

9 =

and ri € {1,2,..., N}, i = 1,2,..., 5, are mutually different, randomly selected indices
that differ also from the index i. Obviously, in order to enable all mutation operators,
it must hold that N > 5. All vector operations in Eqs. (2.11)—(2.15), are performed
componentwise.

After mutation, the recombination operator is applied on the generated vector, Vi,

producing a trial vector.
Ui — (un, Ui2, · · · , Uin) ,

which is defined as follows:

(t+i) = i ^+1), if Rj < CR or j = RI (ή,
u x^ , otherwise, (2.16)

where j = 1, 2,... ,n; Rj is the j-th evaluation of a uniform random number generator
in the range [0,1]; CR G [0,1] is a user-defined crossover constant; and RI(i) is an index
randomly selected from the set {1,2,..., n}.

Finally, the produced trial vector, u^, is compared against the corresponding individual
and the best between them is included in the population of the next generation, i.e.:

/«TA if / («‘*+1’) < / (4”)

x^, otherwise.
(2.17)

Apparently, DE does not require a separate memory as PSO, since it operates directly on
the best solutions found so far (the corresponding best positions in PSO). This renders

DE a greedier algorithm than PSO. Also, there is no sound theoretical evidence on the
proper parameter setting of the algorithm. Several different settings have been used in
the literature [9] but their performance appears to be strongly dependent on the operator
and problem at hand. Nevertheless, by their nature, the mutation operators that involve
the best individual of the population are expected to be more exploitation-oriented than
those that use randomly selected individuals.

2.3 Harmony search

HS was proposed by Geem, Kim and Longanthan in 2001 [15]. Inspiration was drawn
from musical performance processes that occur when a musician searches for a better
state of harmony, improvising the instrument pitches towards a better aesthetic outcome.
In a similar manner, the algorithm seeks for the global optimum, maintaining and iter­
atively updating a memory, called the Harmony Memory (HM), of candidate solutions
(harmonies). HM contains the best harmonies considered so far, i.e., candidate solutions
with the smallest objective function values.

HM consists of N randomly initialized vectors (memory size is user-defined) along
with their function values [25]:

HM =

’ Xn ■

X21 ■

Xin

X2n

fM ’

(2.18)

. XN1 ■ XNn {(χν) .

The harmonies in HM are ordered in ascending order with respect to their values, i.e.:

/(^i) < /(^).

Also, two additional parameters must be defined. The first one is the Harmony Memory
Considering Rate (HMCR), which stands for the probability of selecting a vector compo­
nent value among those already stored in HM. The second parameter is called the Pitch
Adjusting Rate (PAR) and it defines the mutation probability of a selected value from
HM. The role of these parameters is clarified below.

The algorithm works iteratively, exploiting the stored information in HM for the pro­
duction of one or many new solutions at each iteration. The new solutions are built
component by component, selecting at each step either a stored component or a random
value. More specifically, let x = (zi,z2, · · · ,zn)T be a new solution to be built, with
components:

Xj £ Xj·) j 1) 2,..., n,
where Xj C 1 is the subspace of the search space X that corresponds to the j-th com­
ponent. Then, Xj is probabilistically selected according to the scheme:

i ^sj € {•Djj x^j) · · · > XNj] j if rj HMCR, . .
| y G Xj, otherwise,

where Tj is a random variable uniformly distributed in [0,1]; s is an index selected from
the set {1,2,..., N}; and y is a random value in Xj.

The selection of s is probabilistic and can be either uniform over the set of indices or it
can be a linear ranking selection scheme [7] of the stored harmonies in HM. In the latter,
high selective pressure can impose strong selection bias towards the indices of the best
solutions, in contrast to uniform selection which assigns equal selection probabilities to
all indices. Consequently, uniform selection is expected to be more diversity-preserving
in the produced harmonies.

After the construction of the new solution, x = x^ ..., Xn)1, each component is
mutated as follows:

Xi + q w, if Ri < PAR,
X) = < J , 3 7 ’ (2.201

r Xj, otherwise,

where Rj is a uniformly distributed random variable in [0,1]; q is a uniformly distributed
random variable in [—1,1]; and w is a user-defined mutation magnitude.

The aforementioned operations can be repeated to produce a number, Mprod, of new
harmonies. Each new harmony is evaluated with the objective function, and the best
Mrep Mprod of them replace the worst Mrep harmonies stored in HM, if they improve
them. Both parameters Mrep and Mprod are user defined. In the simplest case, MTep =
Afprod = 1 is used.

In contrast to PSO and DE, the HS operators with proper parameter setting can
directly handle integer and mixed-integer problems without any modification. Also, we
shall notice that HS has shown many structural similarities with the established Evolution
Strategies (ES) approaches [4], In fact, HS can be considered as an alternative ES variant,
although with a different motivation and inspiration source. In view of this similarities, it
is anticipated that the performance of HS can provide evidence also on the performance
of standard ES variants.

2.4 Synopsis

We have thoroughly presented the three main algorithms used to solve-the inventory
management problems, namely PSO, DE and HS, as well as their variants that were used.
In the following chapter the models that were solved are presented and analyzed.

Chapter 3

The investigated problems

We present the model of multi-item inventory problem with supllier selection, limited
capacity and defective items, with known demand over a planning horizon, along with
the model of dynamic lot-sizing with stochastic demand.

3.1 Multi-item inventory problem with supplier selection: problem
formulation

In this chapter, we describe the original model [34] as well as the simplified one, along
with the penalty function used in our study. Prior to the descriptions, we shall state the
following assumptions [34]:

(1) The transaction cost, Oj, for supplier j is independent of the variety and quantity
of the ordered products.

(2) The holding cost, hi, of product i is product-dependent.
(3) The demand, dit, for product i at time period t is known over a planning horizon.
(4) Items of imperfect quality are kept in stock and sold prior to the next period in a

single batch.
(5) Each lot of product i received from supplier j contains a percentage Pij of defective

items.
(6) Purchasing price of product i from supplier j is bij. Good quality items are sold in

price sgi per unit, while defective items are sold in a single batch at a discounted
price, Sdi-

(7) A screening process of the lot is conducted with a unit screening cost, c,, for product
i.

(8) Each supplier has a limited capacity.
(9) All requirements must be fulfilled in the period in which they occur. Backordering

and shortage is not allowed.
(10) Product i needs a storage space, Wi, and the total storage capacity is W.

tl

Supplier 1

Supplier?

Supplier i

Supplier π

Product m

Product 1

good items
from period t-1

ale good items

good items
to period t+1

good items
■om period t-1

Product 2 ->sale good items

sale imperfect items

ood items
to period t+1

good items
from period t-1

Product i

sale imperfect items

good items
to period t+1

good items
from period t-1

sale good items—

sale imperfect items

good items
to period t+1

Figure 3.1: Diagram of the proposed inventory model

3.1.1 Original model

Following the above assumptions, Rezaei and Davoodi [34] developed a mathematical
model that refers to the scenario of supply chain with multiple products and multiple
suppliers, all of which have limited capacity. The demand over a finite planning horizon
is also known and an optimal procurement strategy for this multi-period horizon is to be
determined.

Each of the products can be sourced from a number of approved suppliers. However,
a supplier-dependent transaction cost applies whenever an order is placed. A product­
dependent holding cost per period applies for each product in the inventory that is carried
across a period in the planning horizon. Also a maximum storage space at each period
is considered. In order to maximize the total profit, the decision maker needs to decide
what products to order, in what quantities, by which suppliers, and at which time periods.
Assuming that i denotes the product, j denotes the supplier and t denotes the time period,
the required quantity is denoted as Xijt.

The objective function is defined as follows and henceforth it will be called the original
model [34]:

max f (xijt,yjt} = ΣΣΣxijt (1 Pij} sgi +ΣΣΣxijtPij ^di
. i j t i j t

y2 ς yz+y> y? °jyit+yz y? y^
i j t j t i j t

(
t t \ 'Γ F xijk (1 — Pij} — , dik j

k=l j k=l /.
(3-1)

It consists of the sum of the revenues of selling good quality products and imperfect
quality products, subtracting the purchase cost of the products, the transaction cost for
the suppliers, the screening cost of the products and the holding cost forthe remaining
inventory at each time period. Obviously, since the problem is defined, as maximization,
the negative of the objective function defines the corresponding minimization task. The
parameters yjt are binary and they are defined as yjt = 1, if an order is placed to supplier
j at time period t, otherwise yjt = 0· Also, the problem is highly constrained. More
specifically, there are four types of constraints [34]:

Type I: Ci(i, j, t} = xijk (1 ~ Pij} ~ ELi dik °, for alH and i.

Type II: Cn(i,j, t} = (Ef=i dik) yjt ~ χνΡ ί1 ~ Pa} > °’ for a11 ^3 and

Type III: Cui(i,j, t} = Wi ^Efc=i Ej xijk (1 — Pij} — Et=i dik^ IT, for all t.

Type IV: 0 xijt Kj, for all i,j and t,

where k^ is the capacity of supplier j for product i. The following interpretations can be

stated for the four types of constraints [34]:

(1) All requirements must be fulfilled in the period in which they occur.
(2) Backordering and shortage are not allowed (Type I).
(3) All orders are accompanied by the appropriate transaction cost (Type II).
(4) The- total storage space is limited by W (Type III).
(5) Suppliers have limited capacities (Type IV).

If I, J and T denote the number of products, suppliers and time periods, respectively,
then the number of constraints is equal to MC(I, J,T) = (I x T) + (I x JxT) + T + 2 x
(I x J xT), while the number of variables yjt and Xijt (problem dimension) is equal to
MV(J, J,T) = (J x T) + (I x J x T). Obviously, even for small values of I, J and T, the
corresponding problem constitutes a challenging task due to the large number of variables
and constraints.

yjt =

3.1.2 Simplified model

The original model can be simplified by eliminating the integer parameters, thereby re­
ducing its dimension. Indeed, based on the definition of the parameters yjt, we can infer
a dependence between them and Xijt, as follows:

1, if Xm > 0 for at least one i, .
J (3.2)

0, otherwise. ' 7

Thus, the variables yjt are set to 1 if an order is placed on supplier j at time period t,
otherwise they are set to 0. If an order is not placed, i.e., yjt = 0, then the quantities,
Xijt, of all products ordered from supplier j at time period t, shall also be equal to zero.
In practice, we consider that Xijt is equal to zero if it is actually smaller than a predefined
small threshold, i.e., 0 < x^t εζ.

Therefore, we may drop the integer parameters, yjt, from our optimization problem
and retain only Xijt. It is not required to modify the form of the objective function in
Eq. (3.9), as far as we determine the parameters yjt by using Eq. (3.2) whenever a function
evaluation is conducted. We will call this formulation the simplified model.

The gain of removing the variables yjt is twofold. On the one hand, the problem’s
dimension is reduced by J x T. On the other hand, the integer part of the problem is
removed, hence it can be tackled as a pure real-valued optimization problem. Neverthe­
less, for both the original and the simplified model, the number of constraints remains
unchanged.

3.1.3 Penalty function

In our approach, the constraints were handled by using a multi-stage penalty function.
Assume that:

|Cs(i,j,t)|, if Cfii,j,t) is violated,
0, otherwise,

Cs(i,j,t) = <

where s € {I, II, III}, i = 1, 2,..., I, j = 1, 2,..., J, and t = 1, 2,..., T. Also, let Ppen
be a fixed positive parameter. Then, the penalty function for the minimization problem
is defined as follows:

IF ^ijti Ujt} — f(xijt,yjt) + / y Cs(i, j,t^Ppen, (3-3)

i.e., a penalty that depends on the degree of violation is added to the objective value for
each violated constraint. Usually, in order to avoid.false penalization due to approximation
errors, a violated constraint is penalized only if its value exceeds a predefined violation
tolerance, i.e.:

Cs(i,j,t) ec > 0.

Also, we shall note that it is not required to include Type IV constraints in the penalty
function, as they simply define the ranges of the variables and they can be explicitly
handled by restricting the populations within these box constraints. If an individual
violates such a constraint, it is either blocked on the violated limit or bounces back inside
the search space.

3.2 The stochastic dynamic lot-sizing problem

We present the Wagner-Whitin model that was proposed in 1958, along with the recently
proposed model that incorporates stochastic demand over the planning horizon.

3.2.1 The Wagner-Whitin model

The formula for an economic lot size under the assumption of a steady state demand
is well studied and the calculation is based on the balance between the cost of holding
inventory and placing an order. However, it is becoming more complicated when the
demand in each period is known but with different value.

The mathematical model proposed by Wagner and Whitin [43] is an ’’one-way feasi­
bility” problem, meaning that an order can be placed in period t for period t + i but not
vice versa.

Mathematical model

We assume that, similarly to the standard lot size formulation, the buying or manufac­
turing costs and the selling price of an item are constant for all time periods and only the
costs of the inventory management are varying. For period i = 1,2,..., N, we define the
following quantities:

dt : amount demanded

it : interest charge per unit of inventory carried forward to period t + 1

st : setup cost

xt : amount ordered or manufactured

It is obvious that all demands and costs are non-negative. The aim is to find a sequence
of orders such that all demands are met at a minimum total cost. Such a sequence, unique
or not, is called optimal.

A detrimental method to solve the problem is by exhaustive search on the sequences
of possible solutions, the 2jV~1 combinations of ordering or not in each period (for N total
periods), assuming that we place an order in the first period.

Let K the inventory entering a period and Ko the initial inventory. Therefore, for
period t the inventory follows:

t-i t-i

K = Ko+ XiΘ. (3.4)
t=l i=l

The minimal cost policy then can be expressed as:

9t(K)= min {i^K + u^St + gt+i(K + xt - dt)} , (33)
~}~Xf ^dt)

where,
, . 0, if xt = 0, . ,^Ηι;^>ο: <3·6’

For the last period N we have

gN(K) = min {iN^K + u(xN)sN}, (3.7)

Computation of gt starts at t = N, as a function of K, which is specified for period 1.
Thus g^ can be finally derived.

Complementary to the main equations of the model, the following theorems are pre­
sented (for each, the proof is stated extensively in [43]):

THEOREM 3.1. There exists an optimal sequence such that Kxt — O^t (where K is
the inventory entering period t).

THEOREM 3.2. There exists an optimal sequence such that for all t, = 0 or xt =
Σί=ί for some k and t < k < N

THEOREM 3.3. There exists an optimal sequence such that if a demand df is satisfied
by some xt", t" < t', then dt,t = t" + 1,..., t' — 1 is also satisfied by Xf.

THEOREM 3.4. If K = 0 for a period t, it is optimal to solve the problem for periods
1 to t — 1 without considering the following periods.

THEOREM 3.5. If for a period t' the minimum of equation 3.5 occurs for i = t" < t'
then in periods t > t' we can only consider t" < i < t. In the specific case where t' = t"
it is sufficient to consider only sequences with xt> > 0.

The Wagner—Whitin algorithm

As stated in [43], the algorithm steps can be listed as follows, for a period, t' = 1,2,...,TV:

Step 1 Consider the policies of ordering at period t", t" = 1,2, ...t’ satisfying the demands
dt, t = t", t" + 1,..., t', with this order.

Step 2 Determine the total cost of these t' different policies by adding the ordering and
holding costs associated with placing an order at period t", and the cost of acting
optimally for periods 1 through t" - 1. This cost has been determined previously in
computations for the periods t = 1, 2,..., T — 1

Step 3 From ail the T alternatives, select the minimum cost policy for periods 1 through t'
considered independently.

Step 4 Proceed to period t' + 1 or stop if t' = N

3.2.2 Stochastic model: problem formulation

The mathematical description of the stochastic lot-size problem is deployed in the follow­
ing paragraphs, closely following the presentation of Vargas [41],

Assumptions and notation

The formal representation of the problem requires the following assumptions for the
stochastic version of the Wagner-Whitin lot-size problem:

(1) The planning horizon is composed of H time periods.

(2) Demand in each period, t, is non-negative, independent and stochastic with known
density.

(3) The production capacity is unlimited.

(4) Unsatisfied demand is fully backlogged and a backlogging cost is assessed at the end
of each period per unit backlogged.

(5) A fixed lead time, L, is assumed and no disposal of inventory is allowed.

(6) At the conclusion of the horizon, holding or backlogging costs are assessed and any
backlogged demand is left unfilled.

(7) An order must be placed in the first period, which arrives at the start of this period,
and there are no pipeline lots.

Additional notation used in the problem formulation, follows below:

dt: demand in period t = 1, 2,..., H, with known density function, g^x).

ht: holding cost assessed at the end of period t per unit.

bt: backlogging cost assessed at the end of period t per unit, assumed to be proportional
to the holding cost, i.e., bt = pht.

At: fixed production set up for each time period.

St'· cumulative sum of all production lots to arrive up to and including period t (initially
So = 0).

k(x): binary decision variable defined as:

1, x 0,
0, x = 0.

Now we can give the general mathematical formulation of the problem, in the following
section.

Mathematical model and objective function

The expected cost incurred in period t = 1, 2,..., H, is given by the following expression:

£?t(Si,S2,...,St) = At-Lk(St-St-0
fSt

+ ht (St - q) ft(q) dq
Jo

poo
+ btl (q - St) ft(q) dq, (3.8)

Jst

where ft(q) is the convolution of demand for periods 1 — L to t. The corresponding
optimization problem is to specify the cumulative production amounts, St, t = 1,2,..., H,
that produce the minimum total expected set-up, holding and backlogging costs [41], i.e.:

H

0<,™<s p·9)

Actually, the problem is solved in two stages. At first the optimal replenishment quan­
tities for any sequence of epochs is determined and, afterwards, the optimal sequence of
replenishment epochs is identified.

More specifically, if S is the cumulative production quantity received up to period i,
then the expected cost incurred in periods i, i + 1,..., j — 1, is computed as:

l-1 pS
Ai-L A ht (S-q)ft(q)dq

t=i
1 POO

+ / (Q-s)ft(q)dq,
t=i Js

(3.10)

where i and j are periods in which a production lot is available, with:

1 < i < j H + 1,

while no replenishment occurs for j = H + 1.
As stated in [41], Eq. (3.10) is differentiable and’convex in S so that we obtain the

optimal solution by setting its derivative equal to zero. Consequently, if:
Ft(x) = [ft^dq^

Jo

then,
j-l j-i

t=l k=i

which can be extended as:
(ht + bt) , I _ Y^t=j _ P

d J Σ£*(Λ< + ί>.) (i+p)'

The first optimization stage is completed by computing the root, of Eq. (3.11),
which represents the optimal cumulative production amount to be received up to period i
while no subsequent production lot is received before period j, and p is the parameter for
which, bt = pht, holds.

The second optimization stage consists of the computation of the optimal sequence of
replenishment epochs, i.e., the sequence that gives the minimum value of the objective
function defined in Eq. (3.9). This can be done by using different techniques and it con­
stitutes the point of our interference in the solution process with the heuristic algorithms.

Exhaustive search is the most trivial algorithm for solving the problem and may even
be effective in small problem instances. However, it becomes exponentially laborious with
the number of time periods, since the number of all possible sequences becomes very large,
requiring prohibitive computation time for their assessment. Nevertheless, it is still used
by many practitioners for small problem instances.

Vargas [41] proposed a sophisticated technique that builds a tree-like structure and
translates the problem to an equivalent one of finding the shortest path of the resulting
acyclic network. The corresponding arcs of-the network represent the options of replen­
ishment occurring in period i with no subsequent replenishment until period j, and they
are labeled with non-negative arc costs:

= K(s\i, j),i,ή, 1 i < j H + 1. (3.12)

Further analysis on this technique can be found in [41].

LEMMA 3.1. For any i < j < k, it holds that S*(j, k) S*(i,j).

The proof of Lemma 3.1 can be found in [41]. The specific lemma presents that for any
sequence of replenishment epochs, the cumulative production amounts are non-decreasing,
meaning that the individual lot sizes are non-negative.

In the current work, we propose the solution of the second optimization stage by using
the heuristic optimization algorithms mentioned in the previous chapter.

3.3 Synopsis

We have presented the two problems that were investigated: the multi-item inventory
problem with supplier selection, defective items and limited capacity, along with the
dynamic lot-sizing problem with stochastic demand. In the next chapter we present the
experimental settings and the results for both problems.

Chapter 4

Experimental settings and results

In the following sections we present the experimental settings for the two models and the
corresponding results and analysis.

4.1 Settings for the multi-item inventory model with supplier se­
lection

In our experimental setting, we considered the problem instance defined in [34] with 3
products, 3 suppliers and 4 time periods. Thus, following the notation used in the previous
sections, we have:

1 = 3, J =3, T = 4.

The demands and the prices of the products considered in out experiments are reported
in Tables 4.1 and 4^, respectively. The dimension of the corresponding mixed-integer
original model, as defined in Eq. (3.9), is equal to ^(3,3,4) = 48. The corresponding
real-valued simplified problem has dimension 714^(3,3,4) = 36. In both cases, the num­
ber of constraints is equal to Mc(3, 3,4) = 124. In this number there are included 12
constraints of Type I, 36 of Type II, 4 of Type III, and the remaining are of Type IV.
Regarding the penalty function, the parameters:

ec = 10~6, Ρρθη = 103,

were used as violation tolerance and fixed penalty, respectively. Also, the parameter
ez = io~6 was used to identify a zero component in a solution vector.

Regarding the employed algorthms, different parameter settings and operators were
considered. Specifically, UPSO was considered for the unification factor values u = 0.0
(Ibest), 0.1, 0.5, 0.9 and 1.0 (gbest). These choices aimed at investigating the behavior
of both Ibest—oriented and gbest—oriented UPSO variants. The cases of u = 0.1, 0.5
and 0.9, were also considered in their mutated variants defined in Eqs. (2.9) and (2.10).
Henceforth, we will denote the UPSO variants as UPSO^, UPSO.l, UPSO.lm, UPSO.5,

Table 4.1: Demand of the three products over a planning horizon of four periods.

Products
Planning horizon (four periods)

1 2 3 4
1 170 155 160- Ί40
2 85 90 80 105
3 280 255 290 300

Price (supplied from three suppliers)

Table 4.2: Prices of the three products supplied by the three suppliers and the corre­
sponding transaction costs.

Products 1 2 3
1 25 27 24
2 30 32 33
a 54 50 49

Transaction cost 1000 900 1500

Table 4.3: Parameter sets for UPSO.

X

UPSO Parameter Sets

ABC
0.729 0.6 0.721

C1,C2 2.05 2.83 1.654

Table 4.4: Parameter sets for DE.

DE Parameter Sets
ABCDEFGHI

F 0.3 0.3 0.3 0.5 0.5 0.5 0.7 0.7 0.7
CR 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

UPSO.5m, UPSO.9, UPSO.9m, and UPSOg, respectively, where “m” denotes a variant
with mutation. All mutated variants assumed a normally distributed mutation term,

A7(0,1). Regarding the parameters χ, cq and c2, the three parameter sets defined in
Eq. (2.4) were tested with all the aforementioned UPSO variants.

Regarding DE, the five basic operators defined in Eqs. (2.11)—(2.15) were considered.
Due to their sensitivity on the parameters F and CR, we tested all possible combinations
with F,CR G {0.3,0.5,0.7}. The parameter settings for both algorithms are summarized
in Tables 4.3 and 4.4. The specific parameter set that is used with an algorithm will be
denoted with a corresponding superscript. For example, UPSO.l^ denotes UPSO with
unification factor u-= 0.1 and the parameter set B, i.e., χ = 0.6, ci = c2 = 2.83, while
DE3*h1 denotes the DE3 operator using the parameter set H, i.e., F = 0.7, CR = 0.5.

Both UPSO and DE were originally designed to tackle real-valued variables. For this
reason, the integer variables in the original problem were assumed to take real values in
the range [0,1] for the swarm/population update, while they were rounded to the nearest
integer (either 0 or 1) for the function evaluation. Contrary to this, the simplified model
does not require such assumptions, since all the independent decision parameters are
real-valued.

The populations in both algorithms were randomly initialized in the search space,
based on the variables’ ranges reported in [34]. In the original model, uniform initialization
within the ranges is adequate. However, the simplified model raises a crucial initialization
issue. Specifically, in the original model an integer parameter has equal probability of
being initialized either to 0 or 1, since the algorithms uniformly sample real numbers
within [0,1]. On the other hand, the simplified model samples only within the ranges of
the real parameters xijt, and then computes the corresponding yjt by using Eq. (3.2) and
the relaxation parameter εζ. Yet, this initialization almost surely assigns values xijt > εζ,
which correspond to yjt = 1, since the volume (Lebesque measure) of the fraction of the
search space that corresponds to Xijt < εζ for all i (and hence yjt = 0) is very small,
compared to the whole search space.

Therefore, a completely random initialization for the simplified model would be heavily
biased towards values yjt = 1 that correspond to solutions where all suppliers are getting
product orders. In order to alleviate this deficiency, initialization in the simplified model
was conducted as follows:

_ f rijti Rijt > θ·5, </. . ,
Xijt — Ία 4.U ’ t,J 1 0, otherwise,

where R^ is a random value, uniformly distributed in [0,1]. Thus, each component of the
initial population had equal probability of being initialized to zero or a non-zero value.

4.2 Results and discussion

The performance of all UPSO and DE variants under all parameter sets, was tested
on both the original and the simplified model. For each algorithm, 100 independent
experiments were performed. At each experiment, the algorithm was allowed to perform

Table 4.5: Results for the original (48-dimensional) model.

Par. Set Algorithm Sue. Mean St.D. Min Max Mean-NF StD-NF
A UPSOZ 100 15421.64 1914.48 8951.05 20971.63 — —

UPSO.l 100 15212.12 2127.72 10375.01 20151.81 — —
UPSO.lm 100 15668.70 2659.13 10428.47 24292.16 — —
UPSO.5 91 14500.79 2438.09 8607.04 21344.48 9468.36 8710.50
UPSO^m 99 15045.86 2799.24 9358.54r 23203.40 243.50 0.00
UPSO.9 56 13859.20 2223.46 8478.83 22280.95 85763.78 73177.19
UPSO.9m 57 13993.B2 1934.43 9927.13 18307.67 92979.01 70864.78
UPSOg 45 13415.84 1418.20 9323.64 16255.25 79836.19 72462.18

B UPSOZ 100 16038.85 2304.36 11812.53 22502:33 — —
UPSO.l 100 16532.74 2448.75 12141.43 24239.41 — —
UPSO.lm 100 15803.60 2294.03 11113.09 22856.12 — —
UPSO.5 93 14503.87 2787.31 9234.30 24330.26 67315.30 78975.54
UPSO.om 100 14840.61 2564.40 10085.19 22944.63 — —
UPSO.9 67 14431.56 2133.04 9961.11 21332.90 81346.06 74831.47
UPSO.9m 50 14918.88 2000. T3 10641.39 20022.54 96290.43 73952.45
UPSOg 46 14020.47 1873.16 10122.79 18485.73 107048.28 72468.41

C UPSOZ 100 15921.00 2231.32 10566.48 24651.15 — —
UPSO.l 100 15451.92 2324.91 11211.14 2093417 — —
UPSO.lm 100 16074.32 2818.37 10819.31 23621.70 — —
UPSO.5 91 -13597.54 2302.49 9018.64 19260.53 23579.52 55674.28
UPSO.5m 100 14953.93 3005.48 8621.36 22315.34 — —
UPSO.9 70 13698.67 2211.16 7510.87 19705.86 82698.38 79657.03
UPSO.9m 57 14085.24 2091.52 8457.35 18474.54 58001.63 63954.17
UPSOg 62 13906.82 2309.39 9486.54 20520.18 57271.92 66923.11

A DEI 75 14559.15 2542.46 9594.67 24221.82 50181.80 58648.24
DE2 95 12608.52 1941.84 6755.38 15970.42 2544.27 1511.81
DE3 100 16397.80 2336.46 12002.27 23445.69 — —
DE4 86 15115.88 2496.64 7882.80 22409.93 58598.11 69066.23
DE5 60 10385.70 2528.90 5754.32 15056.00 3814.12 2402.44

B DEI 53 13963.80 2266.26 10670.87 20347.21 92550.63 76565.95
DE2 95 13659.89 1745.42 6669.91 17712.97 14713.47 6589.16
DE3 100 16488.09 2782.94 10939.02 24328.46 — —
DE4 79 15109.43 2789.85 8940.14 22365.54 115492.95 63699.07
DE5 85 12030.76 2329.54 5351.02 18058.41 2083.88 2790.76

C DEI 8 12970.13 1324.98 10904.66 14656.34 131506.73 95750.99
DE2 94 14366.92 1545.68 10937.93 18795.41 10366.81 6519.84
DE3 100 16131.38 2543.41 12047.10 23310.21 — —
DE4 63 15248.52 3029.65 10118.01 22890.32 131123.72 61536.85
DE5 100 13959.04 2394.37 8472.37 23030.60 — —

D DEI 95 13220.86 3149.01 7136.59 23544.69 37328.77 49425.27
DE2 35 6156.90 2293.36 1579.34 11442.20 3321.93 2930.96
DE3 100 14589.90 2614.71 8152.96 21897.24 — —
DE4 100 11264.49 3995.33 3628.60 23101.00 — —
DE5 19 7024.98 2793.20 3143.21 14145.63 5307.43 3158.89

E DEI 95 12690.39 3539.93 6073.78 21095.05 52324.84 50566.85
DE2 35 6124.32 2169.77 3052.99 13021.80 3913.89 2691.21
DE3 100 18866.74 2742.57 9234.27 23780.44 — —
DE4 100 10795.47 3174.45 5136.31 20503.74 — —
DE5 2 7307.34 1123.77 6512.72 8101.97 11858.66 5825.67

F DEI 91 14624.70 4093.28 4924.90 23278.21 86100.71 62665.31
DE2 92 8516.30 2349.54 3624.98 15511.66 1978.72 1095.68
DE3 100 20142.90 1658.85 11280.75 22690.86 — —
DE4 100 12999.85 3619.56 5792.37 22410.83 — —
DE5 3 7233.88 2969.75 5078.29 10621.32 11953.12 6506.82

G DEI 95 14335.34 1129.22 11682.55 19402.85 17865.-09 8237.40
DE2 9 10176.90 1519.37 8160.27 12993.36 8032.20 5857.71
DE3 100 14280.57 2095.88 9204.23 23947:20 — —
DE4 38 11651.67 2168.63 6064.30 16483.25 4950.78 5303.61
DE5 1 8584.26 0.00 8584.26 8584.26 13651.09 7355.91

H DEI 79 14007.59 1246.80 10574.54 17376.06 31555.15 43556.65
DE2 9 11267.39 2482.72 6995.72 14284.34 12981.05 7790.02
DE3 100 14504.43 1819.04 9950.94 21836.79 — —
DE4 33 12550.27 1876.63 8305.99 17126.70 10283.64 7914.71
DE5 0 — — — — 30932.03 11213.42

I DEI 80 14095.89 1622.62 10159.60 17604.50 38442.86 50921.62
DE2 28 10365.33 2622.55 5851.03 14971.19 10284.19 6590.51
DE3 100 15057.91 2315.43 10441.52 21595.31 — —
DE4 53 11534.51 2694.72 4193.69 16363.93 11097.23 9136.05
DE5 0 — — — — 38481.31 12186.73

103 iterations using a swarm/population size of N = 50. The best solution detected
throughout each experiment was recorded for each algorithm along with its feasibility.
If a solution was infeasible, the corresponding penalty term was recorded to reveal the

Table 4.6: Indices of the algorithms reported in the statistical test of Fig. 4.1.

l-UPSOZlAJ, a-UPSO.lM, 3-UPSO.lm(Al, 4-UPSO<iBl, 5-upso.i(b1, 6-UPSO.lml®), 7-UPSO.5mIBl, 8-UPSO^C\

9-UPSO.llcl, 10-UPSO.lm[cl, ll-UPSO.Sm^, 12-DE3'A|, 13-DE3^B\ 14—DE3^k 15-DE5tcl, 16-DE3i-°l,

17- DE4[d1, 18—DES^, 19-DE4[e1, 20-DE3|Fl, 21-DE4(f1, 22-DE3[Gl, 23-DE3lBl, 24-DE3[/),

degree of violation per case. All experiments were conducted using the data provided
in [34],

4.2.1 Results for the original model

The results for the original (48-dimensional) model are reported in Table 4.5 (notice
that higher function values correspond to better solutions since the problem is defined as
maximization). The first two columns of the table report the corresponding parameter
set and algorithm, followed by seven columns that refer to the results. The first one
(labeled as “Sue.”) reports the percentage of success in detecting a feasible solution in
100 experiments. The next four columns expose the mean, standard deviation, minimum
and maximum of the obtained solution’s value only for the successful runs. For the
infeasible cases, the last two columns (labeled as “Mean-NF” and “StD-NF”) report the
mean and standard deviation of the corresponding penalties of the final solutions. Finally,
the best performing algorithms that achieved success of 100% are boldfaced.

The reported results draw a clear picture of the algorithms’ performances. Regarding
the PSO-based approaches, there is an evident superiority of exploration-oriented variants
for all parameter sets. UPSO£, UPSO.l and its mutated counterpart UPSO.lm, shown a
remarkable consistency regardless of the selected parameter values. The UPSO.5m variant
was also very promising but with marginally inferior average performance than the rest
in the case of parameter set A. Finally, no clear correlation of specific parameter set and
best performing UPSO variant is revealed by the reported values.

Regarding the DE variants, DE3 was clearly the less sensitive variant with respect
to the different parameter settings, since it was completely successful in all cases. Less
robust behavior was obtained for DE4 and DE5, which attained complete success only for
a few parameter settings. The sensitivity of DE5 was remarkable since it was downgrading
from 100% for DE5^, to 0% for DE5^ and DE5^. Also, we shall notice that DE3tU
achieved the best average performance among all the algorithms for the original model.
We must underline that the three best performing DE operators are all defined using
two difference vectors (see Eqs. (2.13), (2.14) and (2.15)), while two of them (including
DE3) take advantage of the best member, xg, of the population. Especially for DE3, its
structural similarities with PSO are more than obvious.

Despite the undoubted dominance of the aforementioned UPSO and DE variants over
the rest, no sound comparisons can be straightforwardly inferred among them due to

Figure 4.1: Statistical significance tests. The algorithms are indexed as in Table 4.6.

Table 4.7: Indices of the algorithms reported in the statistical test of Fig. 4.3.

Index 1 2 3 4 5 6

Algorithm DE3l£l DE3lE> DE3lEl DES^' DE3iFl DE3>FI

Iterations 1 x 103 2 x 103 3ΓΧ 103 1 x 103 2 x 103 3 x 103

frequent overlapping of the obtained data statistics reported in Table 4.5. To this end, the
24 completely successful variants that are boldfaced in the table, were compared through
statistical significance tests. More specifically, pairwise comparisons of the performances
of all 24 variants were conducted using the non-parametric Wilcoxon rank-sum test at
99% significance level. For each algorithm, we recorded the number of cases where it
was better or worse with statistical significance, as well as the number of cases where its
performance difference was statistically insignificant from the rest of the algorithms.

The results of these tests are graphically illustrated in Fig. 4.1, where the algorithms
are indexed in order of appearance, as reported in Table 4.6. More specifically, for each
algorithm there is a corresponding bar in Fig. 4.1. The bar is divided in three parts,
colored with white, black and gray. The white part shows the number of other algorithms
(out of 23) with which the algorithm was positively compared, i.e., it was dominant with
statistical significance. The black part of the bar shows the number of other algorithms
(out of 23) with which the algorithm was negatively compared, i.e., it was outperformed
with statistical significance. Finally, the gray part shows the number of other algorithms
with which there was no statistically significant difference in performance. Obviously, the
larger the white part is, the better is the algorithm with respect to the rest of the tested
variants.

The white parts of the bargraph in Fig. 4.1, clearly implies the superiority of DE3^
(indexed as 18) and DE3^1 (indexed as 20), which can be fairly characterized as the best
approaches for the original model. Nevertheless, this conclusion is based only on the
specific setting of population size (N = 50) and 103 iterations, raising questions regarding

Figure 4.2: Performance of DE3lE' and DE3lF! under iteration numberscaling.

Figure 4.3: Statistical significance tests. The algorithms are indexed as in Table 4.7

their behavior under different settings.
For this reason further experiments were conducted for these two algorithms in order

to discover additional evidence regarding their performance scaling. Thus, our experi­
mentation was extended in two directions: firstly, we kept the population size fixed to 50

Figure 4.4: Performance of DE3^ and DE3^ under population size scaling.

Figure 4.5: Statistical significance tests. The algorithms are indexed as in Table 4.7.

and linearly increased the available iterations to k x 103 for k = 2,3. This setting would
help us to discover whether the attained behavior and relative performance of the most
successful algorithms for the case of 103 iterations could be counterbalanced by additional
computational budget. Secondly, we kept the number of iterations fixed to an adequately

high value, namely 3 x 103, and tested again the algorithms under population size scaling,
i.e., N — k x 50, k = 1,1.5,2.

The results for the experiments with iteration number scaling are graphically illus­
trated in Fig. 4.2, with respect to the value of the final solution found after 100 experi­
ments. The corresponding statistical comparisons are illustrated in Fig. 4.3. From these
figures, it is easily derived that both algorithms improved their performance, with DE3
being marginally ahead of DE3^. Yet, there is a clear tendency of the boxplots in Fig. 4.2
for both algorithms to get narrower as the number of iterations increases, t his verifies
the general feeling that increasing the computational budget does not necessarily produce
the same trend in performance.

The outcome for the experiments with population size scaling are graphically illus­
trated in Fig. 4.4, with respect to the value of the final solution found after 100 experi­
ments, while the corresponding statistical comparisons are illustrated in Fig. 4.5. As we
observe, the roles are reversed for the two algorithms in this case, with DE3^ 1 taking head
as population size increases. This is derived by the white parts of the bars in Fig. 4.5. A
possible explanation of this effect could be the different parameter sets used by the two
variants. Indeed, DE3^ has the same value, F = 0.5, with its mate variant, but differs
at CR, which is higher for DE3^ than DE3^ (see Table 4.4). Thus, DE3^ 1 has higher
probability of accepting components from newly produced vectors than retaining the ex­
isting components, as can be seen in Eq. (2.13), thereby favoring exploration. Remember
that exploration-oriented variants were superior also for UPSO in our initial experiments.
As expected, increasing the population size strengthens this effect further.

As a final comment for the original model, we shall mention that the best feasible
solution obtained with the GA approach in [34] has objective value 15266.8. In the next
section, the results for the simplified model are presented.

4.2.2 Results for the simplified model
The results for the simplified (36-dimensional) model are reported in Table 4.8, follow­
ing the presentation motif of the previous section. A first inspection of the table offers
some immediate conclusions. More specifically, the successful UPSO variants remarkably
improved their performance, while the same is observed also for the most efficient DE
approaches. However, we can see considerable differences for DE with parameter sets A,
B and C. Indeed, the dominant DE3 for these cases was outperformed by other variants

in the simplified model.
Also, there is a noticeable performance improvement for DE variants with one rather

than two difference vectors, i.e., DEI and DE2. This can be interpreted as a consequence
of the reduced dimensionality of the simplified model. This can also account for the
reduced penalty terms (violation magnitude) observed for the variants that retained their
inferior performance also in the simplified model.

Further analysis of the results reveals a complete dominance of UPSO.l against the
rest PSO-based variants (mutated or not). Obviously, the reduced problem dimension-

Table 4.8: Results for the simplified (36-dimensional) model.

Par. Set Algorithm Sue. Mean St.D. Min Max Mean-NF StD-NF
A UPSOZ 100 16759.17 3278.01 7509.59 24417.35 — —

UPSO.l 100 18859.93 2238.09 11760.49 21770.91 — —
UPSO.Im 100 16473.78 2618.19 8485.52 20836.61 — —
UPSO.5 87 16455.72 3125.58 7345.19 23142.99 5351.26 5928.03
UPSO.5m 86 15294.78 2772,99 6973.88 20877.98 8886.35 11535.16
UPSO.9 45 15088.82 2780.00 10010.74 20087.92 54858.49 67414.87
UPSO.9m 53 14991.10 3460.81 7498.16 23208.42 78242.57 74742.21
UPSOg 40 14908.15 2973.21 10283.91 22636.29 78306.92 97846.59

B UPSOZ 100 17136.33 2503.24 9955.92 22171.36 — —
UPSO.l 100 19804.36 1385.60 14157.15 21712.73 — —
UPSO.lm 100 17260.02 2537.20 10722.93 22125.78 — —
UPSO.5 89 15757.12 2717.69 7908.57 20426.22 2152.33 3937.44
UPSO. 5m 89 15872.29 2732.52 9283.88 21427.43 13363.53 17319.03
UPSO.9 67 16177.61 3362.40 8911.48 23527.84 41020.65 61171.56
UPSO.9m 58 16558.38 3865.34 8265.28 23977.88 40028.42 64368.63
UPSOg 59 14896.71 3240.53 8082.66 21081.66 58381.39 66775.30

C UPSOZ 100 17510.62 2470.74 11599.80 22487.18 — —
UPSO.l 100 19075.84 2148.43 10947.89 22189.06 — —
UPSO.lm 100 17755.93 2010.20 10889.56 21172.55 — —
UPSO.5 82 13508.11 3067.00 4299.81 20145.10 20308.60 58711.26
UPSO.5m 40 13302.91 2315.85 8220.24 17000.62 23315.20 25042.97
UPSO.9 47 14052.46 2765.54 7727.73 20750.58 61369.61 69703.66
UPSO.9m 49 13707.07 3450.26 7459.08 21551.97 54792.29 97782.37
UPSOg 37 16114.44 3432.76 8707.23 23744.53 76744.08 79459.57

A DEI 100 15984.49 2765.95 9388.31 21822.34 — —
DE2 100 11780.78 1901.86 7210.81 16944.50 — —
DE3 88- 16395.45 2164.90 10860.46 20440.12 9954.55 12194.72
DE4 100 16623.82 2470.09 9655.99 20927.67 — —
DE5 93 10670.92 2182,30 5702.02 15630.71 1974.37 1870.77

B DEI 70 13922.19 3133.28 5303.14 20277.95 18126.23 25327.49
DE2 100 12125.32 1634.36 6514.34 15649.21 — —
DE3 6 13744.13 2388.96 11402.06 18206.90 75883.24 52511.67
DE4 100 18356.69 2360.10 11851.68 21870.83 — —
DE5 65 10410.58 1661.34 7111.17 13532.27 2270.85 1484.78

C DEI 3 10430.29 4537.52 7041.52 15585.35 143482.71 104973.00
DE2 100 16990.51 1677.95 12388.14 20902.19 — —
DE3 0 — — — — 206190.39 94357.79
DE4 81 17329.37 3094.78 9567.92 22213.98 16762.81 22898.26
DE5 100 14064.60 1403.47 9223.34 17726.10 — —

D DEI 100 15793.91 2830.30 7556.60 22701.53 — —
DE2 61 9599.96 2397.13 3359.51 15859.96 2293.09 1521.34
DE3 100 18296.31 1219.76 13717.56 20497.22 — —
DE4 94 11703.96 1903.15 7686.59 16444.87 1588.12 1611.85
DE5 7 8879.81 1826.91 6147.96 11762.54 5542.72 3598.24

E DEI 100 16904.64 3160.43 8519.29 22453.12 — —
DE2 24 9095.77 2038.00 5916.90 13040.64 3237.87 2210.46
DE3 100 20579.86 702.24 17821.38 22004.01 — —
DE4 96 1T834.47 2385.84 6192.86 17526.98 1075.11 1136.44
DE5 1 9501.12 0.00 9501.12 9501.12 14446.91 6224.22

F DEI 96 18651.37 2720.45 10802.69 23491.00 5751.31 6651.73
DE2 96 11995.80 1764.43 6495.59 14921.55 1314.26 378.57
DE3 100 20191.47 1307.50 13530.06 22064.48 — —
DE4 100 14869.66 2134.99 8000.83 19298.33 — —
DE5 4 8706.46 1121.83 7967.51 10378.10 14405.69 6870.72

G DEI 95 12402.31 3112.72 5370.04 18704.73 3794.68 3848.22
DE2 6 7975.03 1770.66 5912.67 10151.68 6373.32 4466.43
DE3 100 14096.14 1615.40 10410.08 17182.87 — —
DE4 1 8467.92 0.00 8467.92 8467.92 8831.10 5161.54
DE5 0 — — — — 21111,12 9222.42

H DEI 96 12601.53 2838.62 6667.11 17973.07 3576.89 6110.49
DE2 0 — — — — 15438.37 6267.39
DE3 100 14202.29 1867.94 9269.24 17993.76 — —
DE4 0 — — — — 24633.79 9047.56
DE5 0 — — — — 53013.67 14042.80

I DEI 100 16521.72 2903.66 9958.85 23138.23 — —
DE2 2 10714.10 953.53 10039.85 11388.34 13369.71 6866.40
DE3 100 17779.32 1499.10 14035.22 20761.56 — —
DE4 1 6645.59 0.00 6645.59 6645.59 23390.84 10251.23
DE5 0 — — — — 86763.25 21377.91

ality along with the adequate search diversification attained by UPSO, offers a properly
balanced search capability to the algorithm. On the other hand we can observe an ex­
ceptionally high failure rate of some DE variants, especially for the parameter sets G,

Table 4.9: Indices of the algorithms reported in the statistical test of Fig. 4.6.

l-UPSO/iAl, 2-UPSO.1!a1, 3-UPSO.lm(A1, 4-UPSO/tB], 5-UPSO.l[B|, 6-UPSO.lmlBl, T-UPSO/1^, 8-UPSO.lIct

9-UPSO.lnJcl, 10-DEliAl, 11-DE2>A1, 12-DE4'A', 13-DE2(b1, 14-DE4lBl, 15-DE2icl, 16-DE5lcl,

17-DE1(d1, 18-DE31d1, 19-DE1IE1, 20—DES^, 21-DE3^, 22-DE4lFt 23-DE3|Gl, 24-DE3lBt

25-DE1IU, 26-DE3Iil, ____________ —

H and I, which correspond to the parameter value F 0.7. Even the successful DE
variants (e.g. DE3) exhibited inferior performance for these cases, compared to the other
parameter sets.

Similarly to the analysis in the previous section, the completely successful variants
that are boldfaced in Table 48 were compared through statistical significance tests. Thus,
pairwise comparisons of the performances of all 26 variants were conducted using the non
parametric Wilcoxon rank-sum test and the obtained results are graphically illustrated
in Fig. 4.6, where the algorithms are indexed in order of appearance, as reported in
Table 4.9. Again, the white part of each bar shows the number of other algorithms (out
of 25) with which the algorithm was positively compared. On the other hand, the black­
part of the bar shows the number of algorithms (out of 25) with which it was negatively
compared. Finally, the gray part shows the number of algorithms with which there was
no statistically significant difference.

Despite the fact that UPSO^A] achieved the best maximum value in all experiments,
the better average performance with statistical significance was achieved by the same
DE variants that prevailed also in the original model, namely DE3^ (indexed as 20) and
DE3lFl (indexed as 21), verifying their merit for the specific application. As in the previous
model, we further expanded our experimental analysis by considering linearly increased
number of iterations (k x 103 for k = 2,3) and population size scaling (N = k x 50,

fc = l,1.5,2).
All the obtained results and statistics are graphically illustrated in Figs. 4.7-4.10.

Figure 4.7: Performance of DE3^1 and DE3^ under iteration scaling.

Figure 4.8: Statistical significance tests. The algorithms are indexed as in Table 4.7.

The results are completely aligned with these of the original model. More specifically,
in the case of iteration scaling both algorithms improved their performance, with DE3
being significantly superior than the rest as the number of iterations increases, as derived

Table 4.10: Indices of the algorithms reported in the statistical test of Fig. 4.8.

Index 1 2 3 4 5 6

Algorithm DE3l£l ϋΕ3ίβ1 DE3l£l DE3iFl DE31f1 DE3lFl

Iterations 1 x 103 2 x 103 3 x 103 1 x 103 2 x 103 3 x 103

Figure 4.9: Performance of DE3^ and DE3^ under population size scaling.

from Figs. 4.7 and 4.8. On the other hand, under population size scaling, DE3^ was
particularly efficient, especially for higher values of the population size as derived from
Figs 4.9 and 4.10. From these observations, we can infer that the simplified model does
not modify the general performance profile and trend of the most successful algorithms
in the specific problem. This is a significant property, since it allows the generalization of
conclusions regarding the observed performances from the one model to the other.

ALGORITHM VARIANT

Figure 4.10: Statistical significance tests. The algorithms are indexed as in Table 4.10.

4.3 Stochastic dynamic lot-sizing model

In this section, we expose the exact settings used in our experiments as well as the obtained
results, followed by the corresponding discussion.

4.3.1 Solution representation

As mentioned in Section 3.2.2, a production schedule for the entire planning horizon that
minimizes the total cost defined in Eq. (3.9) can be determined through a two-stage
optimization procedure. In the first stage, the optimal replenishment quantities for any
sequence of replenishment epochs are analytically computed using Eq. (3.11) [41].

The second stage, consists of a binary optimization problem that aims at identifying
the optimal sequence of replenishment epochs. For each epoch, a decision of placing an
order (corresponding to 1) or not (corresponding to 0) must be made. If the decision is
to place an order then the optimal quantity is already known from the first optimization
stage and it is directly used for the computation of the total cost.

For a problem of H epochs, the employed algorithms need to work on the n-dimensional
binary space X = {0,1}" with η = H. However, as we already mentioned, the employed
algorithms are primarily destined to work on real variables (with the exception of HS,
which can alleviate this problem). For this reason, the tried-and-true rounding technique
was adopted in the present study. More specifically, the algorithms were let to operate
on the real search space X = [0, l]n but, whenever the function evaluation of a particle
(or individual) was required, its components were rounded to the nearest integer (0 or 1)
without substituting the real components with the integers in the vectors. For example,
the candidate solution:

x = (0.31, 0.74, 0.56, 0.91, 0.22)T,

would be mapped to the binary vector:

x = (0, 1, 1, 1, 0)T,

and:
/(ΐ) = f(x).

This approach imposes only minimal intervention in the algorithms’ dynamics. Only for
the case of HS, the real components of the harmonies were replaced by their nearest
integers both in HM and in the new harmonies produced by mutation.

4.3.2 The case of normally distributed demand

Without restricting the applicability of the considered algorithms, stochastic demand was
assumed to follow a normal distribution in our study, in accordance to the case study
reported in [41]. Under this assumption, Eqs. (3.10) and (3.11) can be simplified to
avoid multiple numerical integrations for determining the optimal cumulative production
quantities.

In this manner, two functions are involved, namely the cumulative normal distribution
and the standard normal loss integral. Let 07 and μι denote the mean and standard
deviation of cumulative demand in period t, with density function /fix'). Let also φ(χ)
denotes the standard normal density function with cumulative distribution function Φ(τ),
and let:

lM = {ζ-χ^φ^άζ,
J z—x

be the normal loss integral.

THEOREM 4.1. With normally distributed demand, Eq. (3.10) is simplified as follows:

j-1
K(S,i,j) = Ai-L^^ht [zt + (1 +p) I^(zt)], (4.1)

t=i

where: aS - μί
zt =-------- ■

vt

The proof of Lemma 4.1 can be directly derived, based on the following lemmas.

LEMMA 4.1. It holds that $f\q - S)f^dq = σΙΝ^)

LEMMA 4.2. It holds that - q)f^d(l = ^ +

The proofs of Lemmas 4.1 and 4.2 are extensively presented in [41].

4.3.3 Test problems
Our aim in the present study was the investigation of the employed algorithms on various
instances of the problem with respect to its dimension. The main interest behind this, is
the scaling of the run-time required to find the optimal sequence of replenishment epochs.
As we already mentioned in previous sections, the exhaustive inspection of all possible

combinations requires exponentially increasing time with the problem dimension (number
of epochs), which becomes prohibitive even for modern computer systems. Therefore,
efficiency with respect to both solution accuracy and run-time was in the center of our
investigation.

For consistency, the test problems used in our experiments were based on the 12-
dimensional problem presented in [41]. The data provided in this source includes the
setup cost and cumulative demand for 12 epochs. We used this data and extended them
for up to 48 epochs. For this purpose, we fitted a Gaussian-distribution on the provided
data and generated new setup cost and cumulative demand values by sampling the fitted
distribution. The obtained values are reported in Table 4.11.

We considered the problem for dimensions 12, 18, 24, 30, 36, 42 and 48. The optimal
sequence of the replenishment epochs for each instance was initially determined through
exhaustive search. The total number of binary sequences per case as well as the .required
run-time1 for their evaluation are reported in Table 4.12. As we can see, problem instances
with more than 36 epochs need excessive computation time due to the huge number of
sequences, which becomes larger than 1010.

It must be stressed out that the actual number of binary variables for a problem
instance of H epochs is equal to H — 1, due to the model assumption that there is always
an order decision in the first epoch [41], which implies that the corresponding binary
variable is always fixed to 1. Thus, a problem with H epochs corresponds to 211-1 binary
sequences.

4.3.4 Experimental setup

We performed extensive experiments with the three employed algorithms under differ­
ent parameter settings and variants. PSO was considered in both its global and local
variant with ring neighborhoods of radius 1 and the default parameter set given in Sec­
tion 2.1.1. DE was considered in its five basic operators and all possible combinations of
its parameters, F,CR e {0.3,0.5,0.7}. HS was considered under various harmony mem­
ory sizes and for both the uniform and the linear ranking selection schemes. Preliminary
experiments provided clear evidence that Tor harmony memory size equal to N, the val­
ues Afproj = N/2 and Mrep = N/5 for the produced and replaced, new harmonies (see
Section 2.3), respectively, constitute appropriate choices.

The swarm size in PSO (equivalently the population size in DE and harmony memory
size in HS) was set to 10 x n for all problem instances, where n is the corresponding prob­
lem dimension. For each algorithm, 100 independent experiments were performed per
problem instance. The stopping condition was the determination of the optimal sequence
of replenishment epochs within a prescribed maximum number of function evaluations.
For the smallest problem instances, this number was equal to the total number of se­
quences. For larger instances, it was limited to the value Tm^ = 5 x 106 as reported in

xThe time refers to an Intel 17 machine with 8GB of memory.

Table 4.11: Setup cost and cumulative demand (Λ(?)) used in the test problems.

Time
period

Setup
cost

Cumulative demand

Mean St.D.

1 85 69 7.7

2 102 98 8.3

3 102 134 9.2

4 101 195 11.4

5 98 256— 13.3

6 114 282 13.6

7 105 316 14.1’

8 86 383 16.0

9 119 428 16.7

10 110 495 18.3

11 98 574 20.3

12 . 114 630 21.2

13 108 657 25.1

14 122 718 25.6

15 79 767 26.8

16 111 816 27.7

17 106 894 28.6

18 89 952 29.9

19 98 1008 30.9

20 106 1089 31.7

21 140 1127 33.0

22 132 1192 33.6

23 89 1259 34.5

24- 135 1307 35.5

25 110 1363 36.2

26 102 1395 36.9

27 110 1427 37.3

28 101 1481 37.8

29 102 1546 38.5

30 119 1644 39.3

31 118 1685 40.5

32 118 1741 41.0

33 110 1792 41.7

34 90- 1810 42.3

35 110 1855 42.5

36 120 1876 43.1

37 108 1943 43.3

38 114 1980 44.1

39 110 2034 44.5

40 100 2077 45.1

41 106 2135 45.6

42 95 2177 46.2

43 112 2238 46.6

44 91 2304 47.3

45 92 2387 48.0

46 94 2436 48.9

47 72 2450 49.4

48 118 2488 49.5

Table 4.12: Total number of sequences and run-time required for the exhaustive search
per problem instance. The symbol stands for “order of” and “>” denotes “higher
than”.

Dim. Sequences Time
12 2048 0.1 sec.
18 131072 0.5 sec.

.24 ~ 106 ~ 5 sec.
30 ~ 108 ~ 312 sec.
36 > 1010 > 7 hrs.
42 > 1010 > 2 days
48 > 1010 > 5 days

Table 4.13: Maximum function evaluations (Tmax) and swarm/population/harmony mem­
ory size (AT) per problem instance.

Dim. Tmax N
12 2048 120
18 131072 180
24 5 x 106 240
30 5 x 106 300
36 5 x 106 360
42 5 x 106 420
48 5 x 106 480

Table 4.13.
All variants were extensively tested. The total number of independent experiments for

all problem instances was higher than 26000. For each algorithm, variant, parameter set
and problem instance, we recorded the success rate, i.e., the number of experiments (out
of 100) where it succeeded to reach the optimal solution within the maximum number of
function evaluations. Also, the mean, standard deviation, minimum and maximum value
of the expected number of function evaluations, as well as the average required run-time
(in seconds) were recorded per algorithm and problem instance.

4.3.5 Presentation of results and discussion

In view of the huge amount of the obtained results, it was necessary to make a selection of
only the most interesting cases to report in our presentation. For this reason, we identified
the most promising variant of each algorithm. For PSO, the Ibest model was far the most

successful variant. The gbest model was prone to get stuck in suboptimal solutions, even
for the low-dimensional problem instances. This can be attributed to its exploitation
orientation in combination with the rounding scheme. Very often, the particles in the
gbest model were rapidly clustered in very small ranges around the best solutions, also
assuming very small velocities. This effect, combined with the fact that components in
the range [0, 0.5] were mapped to 0 while components in (0.5,1] were mapped to 1, offers
a reasonable explanation for the low efficiency of gbest PSO. On the other hand, Ibest
PSO is clearly more exploration-oriented than gbest. Thus, the particles were able to
retain sufficiently higher velocities that allowed them to move from the one half of the
search space to the other, thereby exploring a higher number of binary sequences.

Regarding the DE algorithm, two operators were clearly distinguished among the five
presented in Section 2.2, namely DE2 and DE5, while the most successful parameter
values were F = 0.7 and CR = 0.3. A closer look at these two operators reveals that they
both use only randomly selected individuals from the population, in contrast to the rest
operators that exploit the best individual. This can be interpreted as an evidence that,
on average, operators with higher diversity-preserving properties are related to the best
observed performance. This is aligned with our observations reported above for the PSO
algorithm.

Finally, for the HS algorithm, the uniform selection scheme was more efficient than the
linear ranking scheme. It must be underlined that, since uniform selection represents the
most fair scheme (equal selection probability for all vectors stored in memory), the linear
ranking scheme was assigned high selective pressure, representing the completely biased
selection towards the best harmonies. Obviously, uniform selection is more diversity­
preserving than the linear ranking. Hence, its superiority aligns with the observations for
the previous two algorithms, i.e., diversity-preserving variants are more successful in the
specific problem.

In fact, this is the first interesting conclusion of the present work and it can be at­
tributed to the nature of the binary optimization problem, with local minimizers that
differ slightly (in one or two components) from the global one while their function values
differ less than 0.6% from the global minimum.

Table 4.14 reports the detailed results for the aforementioned most successful algorith­
mic variants. More specifically, for each algorithm and problem instance, the success rate
(successful experiments out of 100), mean, standard deviation, minimum, and maximum
value of the required function evaluations for the successful experiments, as well as the
required run-time (in seconds) are reported. The column that corresponds to the best
algorithm is boldfaced. As best algorithm, we considered the one that primarily had the
largest success rate and the smallest mean, and secondarily the smallest run-time.

In addition to Table 4.14, the results are also graphically illustrated in Figs. 4.11-4.12
to provide intuitive evidence of their performance and facilitate visual comparisons among
them. Figure 4.11 illustrates the success rate per algorithm, with different colors denoting
the different problem instances in ascending dimension order. In Figs. 4.13-4.19 boxplots

Figure 4.11: Success rate for each algorithm. Different colors denote the different problem
instances.

are used to illustrate the distribution of the number of function evaluations required
for each algorithm in the 100 independent experiments. On each box, the central mark
is the median, the edges of the box are the 25-th and 75-th percentiles, the whiskers
extend to the most extreme values, and the outliers are plotted individually (denoted
with crosses). The notches define comparison intervals between medians. Two medians
are significantly different at the 5% level if the corresponding intervals do not overlap.
The interval endpoints are the extremes of the notches. Finally, Fig. 4.12 illustrates the
scaling of the required run-time per algorithm as dimension increases.

A first inspection of Table 4.14 provides some immediate conclusions. Firstly, there is
an undoubtful superiority of the DE variants against PSO and HS. Evidently, DE2 is the
overall best performing variant, followed by DE5, PSO and HS. Secondly, the performance
differences among them exhibit an increasing pattern with the problem’s dimension. As
we observe, even DE5 grows an exponentially increasing difference with DE2, although
it has a slightly better mean in the 12-dimensional case. However, the latter problem
instance needs special attention. A closer inspection of the reported data reveals that,
despite the slightly lower mean of DE5, DE2 has slightly smaller standard deviation, which
may suggest statistical insignificance between them. This is also visible in Fig. 4.13 with
the overlapping comparison intervals between their medians in the boxplots. Also, we
can observe that HS had also very satisfactory performance. In fact, it had the smallest
mean in the successful experiments but with a slightly worse success rate, which is the
reason for not considering it as the best algorithm in the 12-dimensional case. The same
question as previously for the DE variants rises also here, i.e., how (statistically) crucial
is the observed difference.

In order to answer this question, we performed a statistical significance test for each
pair of algorithms. For this purpose, the non-parametric Wilcoxon rank-sum test was
used. Each pair was tested against the null hypothesis that the samples have the same

Figure 4.12: The required running time per algorithm and problem instance.

2000 -

1800 -

D

1600 -
co
O 1400 -

400 -

200

PSO

Figure 4.13: Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 12-dimensional problem instance.

Figure 4.14: Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 18-dimensional problem instance.

Figure 4.15: Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 24-dimensional problem instance.

Figure 4.16: Boxplots of the mean number of function evaluations required for each
algorithm in 100 mdependent experiments for the OMimensional problem mstance.

Figure 4.17: Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 36-dimensronal problem mstance.

Figure 4.18: Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 42-dimensional problem instance.

Figure 4.19: Boxplots of the mean number of function evaluations required for each
algorithm in 100 independent experiments for the 48-dimensional problem instance.

median in a 95% level of significance. The outcome of the tests is reported in Table 4.15
where the existence of statistical significance is denoted with the symbol and the lack

is denoted with the symbol .
The statistical tests revealed that, as anticipated, the two DE algorithms had essen­

tially the same performance in the dimensional problem. Also, the visual evidence f.om
Fig. 4.13, which suggests that HS has noteworthy performance in the specific problem in­
stance, is verified by the statistical significance of HS-against the rest of the algonthms.
However, the performance of HS exhibits a rapid decline as dimension increases Γ e
picture becomes clearer in higher-dimensional instances, where all algorithms are statis­
tically different, with a single exception between PSO and HS in the 18-d.mensional case,

which can be attributed to their large standard deviations.
Regarding the running time illustrated in Fig. 4.12, we observe an anticipated supe­

riority of the computationally cheapest approach, i.e., the DE2 vanant, whde P.O an
DES had virtually the same run-time requirements. HS remained the more computa­
tionally demanding algorithm, evidently due to the excessive required number of function
evaluations and its reduced success rate in the higher dimensiona case

As a closing remark, we must underline that notwithstanding their differences, the em­
ployed heuristic algorithms offered immense improvement against the exhaustive searc ,
which is the trivial baseline for addressing such problems.

4.4 Synopsis
We have extensively presented the experimental settings for the specific problems and the
algorithms used for both models, along with the results and the state .cal analysis for
the algorithms performance. They were part of the work published as [32] and [33], In
the next chapter, the concluding remarks of the current thesis are presented.

Dim. Stat. PSO HS JDE2 DE5
12 Succ. 86 99 100 100

Mean 911.16 556.36 823.20 778.80
StD 454.33 291.81 363.19 373.54
Min 240 180 240 240
Max 2040 1740 1800 1800
Time 0.00023 0.00000 0.00000 0.00010

18 Succ. 100 100 100 100
Mean 7524.00 10693.80 3556.80 3997.80
StD 6736.47 9927.87 1277.40 1417.39
Min 540 540 360 720
Max 46440 53730 7560 8100
Time 0.007 0.014 0.005 0.007

24 Succ. 100 100 100 100
Mean 20846.40 29565.60 10022.40 11714.40
StD 16223.65 23897.46 2440.96 3581.99
Min 4080 1920 3840 3600
Max 92160 126600 16560 20880
Time 0.026 0.063 0.036 0.053

30 Succ. 100 100 100 100
Mean 61653.00 63703.5a 25302.00 31272.00
StD 92675.79 33648.22 6189.35 8393.15
Min 8100 7200 10800 4800
Max 899700 219600 37800 52500
Time 0.119 0.191 0.123 0.152

36 Succ. 100 99 100 100
Mean 122878.80 198676.36 41648.40 56170.80
StD 79122.15 159591.75 8280.73 11729.42
Min 11160 21780 19440 29880
Max 383040 801360 63000 84960
Time 0.274 0.756 0.245 0.354

42 Succ. 100 99 100 100
Mean 277708.20 607986.06 74991.00 103286.40
StD 198676.70 308601.75 14390.06 21287.47-
Min 16380 28560 44520 53760
Max 1086120 1339380 106680 156660.
Time 0.756 2.772 0.562 0.735

48- Succ. 100 88 100 100
Mean 607920.00 1199640.00 130032.00 203716.80
StD 387796.66 452624.87 21837.47 36113.55
Min 63360 105360 72480 98880
Max 1770240 2167440 189120 291360
Time 1.913 6.611 1.149 1.835

Table 4.15: Wilcoxon rank-sum tests between the algorithms.

Dim. PSO HS DE2 DE5
12 PSO _ * * *

HS * *
DE2

DE5
18 PSO * *

HS _ * *

DE2 - *
DE5

24 PSO _ * * *
HS _ * *

DE2 - *
DE5

30 PSO - * * *
HS _ * *

DE2 - *
DE5

36 PSO * * *
HS _ * *

DE2 - *
DE5

42 PSO * * *
HS * *
DE2 - *
DE5

48 PSO * * *
HS * *
DE2 - *
DE5

Chapter 5

Conclusions

The first part of the thesis constitutes an experimental investigation of the PSO and
DE algorithms on a recently proposed model for supply chain with multiple items and
suppliers, where the goal is the determination of an optimal procurement strategy given
the demand for a finite planning horizon. In its original formulation, the problem was
modeled as a highly-constrained mixed-integer optimization task. Besides the application
of the two algorithms on the original model, a simplified model that reduces it to a real-
valued optimization task was also proposed ancL tackled with the same algorithms. The
obtained results suggest that the simplified model can be more advantageous for the
successful algorithms than the original one. Also, it was shown that UPSO and DE are
highly competitive to the GA-based approaches reported in the literature, constituting
promising alternatives solutions.

The Wagner-Whitin dynamic lot-size problem has been widely studied in literature.
The original deterministic model recently has been extended by considering stochastic de­
mand. This was the main problem tackled in the present thesis. Our approach was based
on PSO, DE and HS, three established algorithms with an ongoing increasing popularity
in research community. Proper modifications were introduced in the algorithms to ad­
dress the most controversial part of problem, which consists of a binary optimization task.
Special attention was paid to avoid radical modifications of the algorithms’ dynamics.

Experimental results on a previously used test case with normally distributed demand
manifest that the employed algorithms, especially DE and PSO, can be very efficient even
in high-dimensional problems, with respect to both solution accuracy and time efficiency.
The next step in our research will consider problems with different distributions of demand
as well as different heuristic optimization approaches.

Bibliography

[1] A. Aggarwal and J. K. Park. Improved algorithms for economic lot size problems.

Operations Research, 41:549-571, May 19»3.

[2] C. Basnet and J. Μ. Y. Leung. Inventory lot-sizing with supplier selection. Com-

puters & Operations Research, 32(1):1-14, 2005.

[3] M. Ben-Daya. Multi-stage lot sizing models with imperfect processes and inspection
errors. Production Planning and Control, 10.118 126, 1989.

[4] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: A comprehensive introduction.

Natural Computing, 1(1):3—52, 2002.

[5] J. Biethahn and V. Nissen. Evolutionary Algorithms in Management Applications.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1995.

(6] O. Braysy, W. Dullaert, and M. Gendreau. Evolutionary algorithms for the vehicle
routing problem with time windows. Journal of Heuristics, 10:587-611, 2004.

[7] U. K. Chakraborty, K. Deb, and M. Chakraborty. Analysis of selection algorithms:
A markov chain approach. Evolutionary Computation, 4.133 16 ,

[8] M. Clerc and J. Kennedy. The particle swarm-explosion, stability, and convergence
. IEEE Trans. Evol. Comput., 6(l):58-73, 200z.in a multidimensional complex space

[9] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and Μ. N. Vra-
hatis. Enhancing differential evolution utilizing proximity-based mutation operator .

IEEE Trans. Evol. Comput., 15(1):99-119, 2011.

[10] A. Federgruen and M. Tznr. A simple forward algorithm to solve general dynamic
' ■ ' (n) time. Management Science,periods in o(nlogn) or olot sizing models with n

37:909-925, 1991.
[11] K.-N. Francis Leung. A generalized geometric-programming solution to an ^onormc

production quantity model with flexibility and reliability consrierat.ons. European

Journal of Operational Research, 176(l):240-251, 2007.

[12] L. K. Gaafar and A. S. Aly. Applying particle swarm optimisation to dynamic lot siz­
ing with batch ordering. International Journal of Production Research, 47(12):3345-
3361, 2009.

[13] Z. Geem. Optimal scheduling of multiple dam system using harmony search algo­
rithm. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 4507 LNCS:316-323,
2007.

[14] Z. Geem. Novel derivative of harmony search algorithm for discrete design variables.
Applied Mathematics and Computation, 199(1):223-230, 2008.

[15] Z. W. Geem, J. H. Kim, and G. Loganathan. A new heuristic optimization algorithm:
Harmony search. Simulation, 76(2):60-68, 2001.

[16] Y. Guan. Stochastic lot-sizing with backlogging: computational complexity analysis.
Journal of Global Optimization, pages 1-28, 2010.

[17] Y. Guan and A. J. Miller. Polynomial-time algorithms for stochastic incapacitated
lot-sizing problems. Operations Research, 56:1172-1183, 2008.

[18] E. Hassini. Order lot sizing with multiple capacitated suppliers offering leadtime-
dependent capacity reservation and unit price discounts. Production Planning and
Control, 19(2):142-149, 2008.

[19] P. A. Hayek and Μ. K. Salameh. Production lot sizing with the reworking of imperfect
quality items produced. Production Planning and Control, 12:584-590, 2001.

[20] R. Jans and Z. Degraeve. Modeling industrial lot sizing problems: a review. Inter­
national Journal of Production Research, 46:1619-1643, 2008.

[21] B. Karimi, S. Μ. T. F. Ghomi, and J. M. Wilson. The capacitated lot sizing problem:
a review of models and algorithms. Omega, The International Journal of Management
Science, 31:365-378, 2003.

[22] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on
particle swarm performance. In Proc. IEEE Congr. Evol. Comput., pages 1931-1938,
Washington, D.C., USA, 1999. IEEE Press.

[23] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. IEEE Int.
Conf. Neural Networks, volume IV, pages 1942-1948, Piscataway, NJ, 1995. IEEE
Service Center.

[24] E. C. Laskari, K. E. Parsopoulos, and Μ. N. Vrahatis. Particle swarm optimization
for integer programming. In Proceedings of the IEEE 2002 Congress on Evolutionary
Computation, pages 1582-1587, Hawaii (HI), USA, 2002. IEEE Press.

[25] K. S. Lee and Z. W. Geem. A new meta-heuristic algorithm
optimization; harmony search theory and practice. Computer Methode Apphed

Mechanics and Engineering, 194:3902-3933, 2005.

Π K Pan M F Taseetiren and Y.-C. Liang. A discrete particle swarm optimization
algorithm for the no-wait flowshop scheduling problem. Computers and Operations

Research, 35(9):2807 - 2839, 2008.
[27] S. Papachristos and I. Konstantaras. Economic ordering quantity models foriitems

with imperfect quality. International Journal of Production Economies, 1W(1).148

154, 2006.
[28] K. Parsopoulos, K. Skouri, and M. Vrahatis. Particle swarm “

continuous review inventory models. In Lecture Notes m Computer Science (LNCS),

volume 4974, pages 103-112. Springer, 2008.

[29] K. E. Parsopoulos and Μ. N. Vrahatis. Studying the
swarm optimization on the single machine total we.ghted “
A. Sattar and B. H. Kang, editors, Leeture Notes m Artificial Intelligence (LNAI),

volume 4304, pages 760-769. Springer, 2006.
[30] K. E. Parsopoulos and Μ. N. Vrahatis. Parameter selection and adaptationm. unified

particle swarm optimization. and Computer Modelling, 46(1 2J.198

213, 2007.
r , katie Particle Swarm Optimization and Intelligence:
31 K. E. Parsopoulos and Μ. N. Vrahatis. Particle ow p

Advances and Applications. Information Science Pubhshmg (IGI Global), 2010.

[32] G. Piperagkas, I. Konstantaras, K. Skouri, and
tic dynamic lot-sizing problem through nature-inspired heunstics. L

Operations Research, 39(7):1555 - 1565, 2012.

[33] G. Piperagkas, C. Voglis, V. Tatsis, K. P—
and de on multi-item inventory problem >■- . PP
the 9th Metaheuristics International Conference, Udine, Italy, ·

• · 4-ir» multi—item inventory model with supplier
[34] J. Rezaei and M. Davoodi. A determmis i , 32'10)-2106-2116,

, . , . p , niin1itv Annlied Mathematical Modelling, 32ν1ψ.ζιυο mu,selection and imperfect quality. Appuea
2008.

[35] M J. Rosenblat and H. L. Lee. Economic production cycles with imperfect production

processes. HE Transactions, 18.48 55, 1986.

[36] Μ. K. Salameh and Μ. Y
with imperfect quality. Internationa ou

[37] R. Storn and K. Price. Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optimization, 11:341-359, 1997.

[38] P. N. Suganthan. Particle swarm optimizer with neighborhood operator. In Proc.
IEEE Congr. Evol. Comput., pages 1958-1961, Washington, D.C., USA, 19’99.

[39] M. Tasgetiren, Y.-C. Liang, and Q.-K. Pan. A discrete differential evolution algo­
rithm for the permutation flowshop scheduling problem. Computers and Industrial
Engineering, 55(4):795-816, 2008.

[40] I. C. Trelea. The particle swarm optimization algorithm: Convergence analysis and
parameter selection. Information Processing Letters, 85:317-325, 2003.

[41] V. Vargas. An optimal solution for the stochastic version of the wagner-whitin dy­
namic lot-size model. European Journal of Operational Research, 198(2):447 - 451,
2009.

[42] A. Wagelmans, S. Van Hoesel, and A. Kolen. Economic lot sizing: An o(n log n)
algorithm that runs in linear time in the wagner-whitin case. Operations Research,
40:145-156, 1992.

[43] Η. M. Wagner and T. M. Whitin. Dynamic version of the economic lot size model.
Management Science, 5:89-96, 1958.

[44] W. Zangwill. A backlogging model and a multi-echelon model of a dynamic economic
lot size production system - a network approach. Management Science, 15:506-527,
1969.

Publications

Journal papers:

1· G.S. Piperagkas, I. Konstantaras, K. Skouri, K.E.Parsopoulos, “Solving the stochas­
tic dynamic lot-sizing problem through nature-inspired heuristics”, Computers &
Operations Research, Elsevier, Volume 39, Issue 7, July 2012, Pages 1555-1565,

2. G.S. Piperagkas, A.G. Anastasiadis and N.D. Hatziargyriou, “Stochastic PSO-based
heat and power dispatch under environmental constraints incorporating CHP and
wind power units”, Electric Power Systems Research, Elsevier, vol. 81,-(2011) pp.
209-218.

Conference papers:

1· G.S. Piperagkas, G. Georgoulas, K.E. Parsopoulos, C.D. Stylios, A. Likas, “Inte­
grating Particle Swarm Optimization and Reinforcement Learning in noisy prob­
lems”, Genetic and Evolutionary Computation Conference (GECCO Ί2), July 2012,
Philadelphia, USA

2. C. Voglis, G.S. Piperagkas, K.E. Parsopoulos, D.G. Papageorgiou, I.E. Lagaris,
MEMPSODE: Comparing Particle Swarm Optimization and Differential Evolu­

tion Within a Hybrid Memetic Global Optimization Framework”, BBOB work­
shop, Genetic and Evolutionary Computation Conference (GECCO Ί2), July 2012,
Philadelphia, USA

3. C. Voglis, G.S. Piperagkas, K.E. Parsopoulos, D.G. Papageorgiou, I.E. Lagaris,
“MEMPSODE: An Empirical Assessment of Local Search Algorithm Impact on a
Memetic Algorithm Using Noiseless Testbed”, BBOB workshop, Genetic and Evo­
lutionary Computation Conference (GECCO Ί2), July 2012, Philadelphia, USA

4- LS. Kotsireas, K.E. Parsopoulos, G.S. Piperagkas, M.N. Vrahatis “Ant-based ap­
proaches for solving autocorrelation problems”, The 8th international conference in
Swarm Intelligence (ANTS Ί2), LNCS, September 2012, Brussels, Belgium

5. G.S. Piperagkas, C. Voglis, V.A. Tatsis, K.E. Parsopoulos, K. Skouri, “Applying
PSO and DE on multi-item inventory problem with supplier selection”, The 9th
Metaheuristics International Conference, July 2011, Udine, Italy

Curriculum Vitae

Grigoris Piperagkas received his Diploma in Electrical and Computer Engineering from
the National Technical University of Athens in October 2009, with specialization in En
ergy, Power Systems and Industrial Applications. He worked towards his diploma thesis in
Electric Power Systems Laboratory of NTUA. He is now finishing his MSc studies in Com
puter Science at the Department of Computer Science, University of loannina, Greece. His
work for the diploma and master thesis was publiched in international scientific journals
and conference proceedings. His main research interests are computational optimization,
simulation of stochastic systems, operations research and power systems with renewable

power sources.

