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Abstract 
Stochastic processes have been widely employed in the literature to value a variety of 

stock market assets, forecast their prices, and even determine and forecast their risk. 

In this thesis, I first discuss and simulate the most fundamental stochastic processes, 

Wiener and Poisson, and the characteristics that contribute to the explanation of a 

variety of stock market phenomena using a high-level programming language. In the 

empirical analysis Black-Scholes-Merton and Heston SV models are analyzed using 

Total Energies’ stock price and options. The empirical evidence suggests that there are 

arbitrage opportunities as TTE’s option price in the market is not equal to the Black-

Sholes-Merton fair price. The sensitivity analysis suggests that TTE’s option prices are 

not that sensitive to interest rate and dividend yield increases. Alongside, Heston SV 

specification is undoubtedly better to explain the fluctuations of TTE’s stock price over 

the constant volatility framework. Finally, Heston SV predicting capabilities typically 

yield modest errors and accurately approximate the real price of the market. 

Keywords: Stochastic processes, Wiener process, Poisson process, Geometric 

Brownian Motion, Option pricing, Forecasting Stochastic Volatility  
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1. Introduction 
In the literature, stochastic processes have been extensively employed to estimate risk 

and uncertainty as well as to price different securities. Stochastic processes have been 

a part of economic theory since 1900, thus they are not new to the literature. The 

Wiener process, often known as Brownian Motion, is the most well-known stochastic 

process and is currently essential for producing stochastic volatility models. 

Investors and portfolio managers need to be aware of the risk they are taking in their 

investments, let alone be able to predict it with relative accuracy. In the past literature 

there is a great deal of reference to AR, MA, ARMA, ARIMA, ARCH, GARCH etc. models 

which, however, cannot predict volatility with such high accuracy. The introduction of 

stochastic processes in financial models and mathematical finance models, has given 

a huge advantage to the mentioned for better management of their investments. 

On the stock exchange, the prices of securities fluctuate erratically in either direction. 

Using the Wiener process, Black and Scholes (1973) were able to offer a closed-form 

solution for the precise pricing of securities. Their model was so precise that it is still 

employed as a benchmark in several studies today. Of course, their model had some 

shortcomings, most of which had been "fixed" by the literature. We now refer to 

stochastic variance utilizing stochastic processes. Stochastic variance is a concept used 

in every model that scholars have developed recently that involves the pricing of 

assets. 

Consequently, we recognize the significance of stochastic process understanding 

because it currently serves as the basis for any new venture in the development of 

existing theory. 

In this thesis, an extensive and in-depth analysis of the basic stochastic processes and 

their various applications is presented. The aim of the thesis is to present the 

elementary stochastic processes now used in the literature, and to highlight the ease 

of computing them through high-level programming languages (e.g., Python). At the 

same time, some models involving stochastic processes are used to study their 

capability in pricing and valuing securities. The Heston SV model seems to offer a valid 

and accurate pricing method, as well as a prediction. 

Specifically, chapter 2 presents the literature review that discusses stochastic 

processes, their application in securities pricing and their evolution within various 

models that are now considered fundamental. Indicatively, the Black and Scholes 

(1973) model which was originally used for pricing European put, call options, the key 

Stochastic Volatility model of Heston (1993) where it is now used as a basis for other 

models, the Bates (1996) model combining Heston SV with Merton Jump Diffusion 

(Merton, 1976), etc. 
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Chapter 3 explains in mathematical terms the most important stochastic processes 

used to build the above models. These processes are the Wiener and Poisson 

processes. Indicatively, it is discussed how a Wiener process is built from scratch, 

properties, Quadratic Variation, etc. as well as a Poisson process. We conclude with 

several other forms that these processes take which are a step closer to reality. (e.g., 

Geometric Brownian Motion, Compound Poisson). In the fourth section, the process 

of simulating the above processes with a high-level language is carried out. In the fifth 

section, the models of Black and Scholes (1973) and Heston (1993) are analyzed and 

simulated for Total Energies (TTE) Stock price and Options. A sensitivity analysis for 

Black-Scholes is given. Calibration for the Heston (1993) variables with stock market 

data is also performed. Furthermore, a comprehensive forecast procedure is 

conducted and evaluated. Finally, a conclusion section is provided. 

2. Literature Review 
At the beginning of the 20th century, Bachelier (1900) in his thesis "Theory of 

Speculation" showed that financial markets are dominated by the laws of probabilities 

and statistics. In particular, he observed that the behavior of securities on the stock 

market is similar to the movement of particles in a fluid. This observation by Bachelier 

(1900) was the clue to link Brownian motion of particles to economic theory. We 

reflect that the motion of particles, which is random, in a fluid has quite similar 

properties to the stock market. Therefore, we could build models based on the 

randomness of variables to simulate the stock market. This is how Brownian motion 

began to be applied in finance. Fifty years later Wiener studied the properties of this 

Brownian motion in one dimension, and from then on, the Brownian motion got the 

name Wiener process in honor of Nobert Wiener. To this day the Wiener process is 

the building block in finance. 

Later, the need to make the pricing of securities in the stock market more accurate, 

the Brownian motion or Wiener process was further developed into the geometric 

Brownian motion. It is otherwise called Brownian motion with drift. In this stochastic 

process, the logarithm of a random variable follows the Brownian motion with drift. 

Geometric Brownian motion is this stochastic process used in the model of Black and 

Scholes (1973). 

Black and Scholes (1973) develop a mathematical model for the dynamics of the 

financial markets containing derivative instruments. This parabolic differential 

equation of Black and Scholes (1973) gives a closed-form solution to the pricing of 

European-style options. Although the Black and Scholes formula is still used today, it 

has been criticized for its biases (Rubinstein, 1985).  

The Black and Scholes model assumes that the price of the asset can move upwards 

or downwards by the same probability. Yalincak (2012) states that this assumption 

does not reflect the reality, as stock prices are influenced by many factors that cannot 
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be assigned the same probability in the way they will affect the movement of stock 

prices. Black and Scholes (1973) assume that asset returns are normally distributed. 

Hull (2018) empirically disproves that assumption showing that returns are leptokurtic 

that is, they tend to have outliers. Another imperfect assumption is that volatility is 

constant, so as the interest rate. Cox, Ingersoll and Ross (1985) derive a model with 

stochastic interest rate but still the volatility term is not stochastic in nature. The CIR 

model was an extension of the Vasicek’s (1977) model. Finally, Heston (1993) provides 

a closed-form solution for options with stochastic volatility and stochastic interest 

rates. The correlation between volatility and spot-asset returns can be arbitrary in his 

model. When the spot asset is connected with volatility, it offers a closed-form 

solution for the price of a European call option and updates the model to include 

stochastic interest rates. As a result, both bond options and currency options can be 

used with the model, in contrast to the Black and Scholes’ (1973) model that tends to 

underperform with the latter. 

In addition to Brownian motion and geometric Brownian motion, jump processes are 

needed to accurately describe the stock market. We have so far been able to 

reproduce the market using Brownian motion, but we are aware that stocks and 

derivatives can experience unpredictable jumps. The Poisson process adds the 

jumping element to this endeavor while Brownian motion builds the fundamental 

tools for discovering more accurate models. Such a model is Merton’s (1976) which 

incorporates random jumps. This paper's major goal was to expand the Black-Scholes 

model to include more sensible presumptions that cope with the reality that empirical 

studies of market returns do not follow a constant variance log-normal distribution. 

Even though the Black and Scholes (1973) model has been a benchmark model in 

finance and derivatives pricing, stochastic volatility has been developing from 1960. 

Early comments for stochastic volatility can be found in the work of Mandelbrot (1963) 

and Fama (1965). The SV technique uses the model's structure to specify the predicted 

distribution of returns rather than doing it explicitly. This predictive distribution can 

be explicitly estimated for a limited subset of SV models, but it must always be 

numerically computed for empirically accurate depictions. There are certain benefits 

to moving away from one-step predictions directly. Particularly in continuous time, 

modeling asset price volatility as possessing its own stochastic process is more 

practical and perhaps more natural without having to be concerned about the implied 

one-step-ahead distribution of returns recorded over an arbitrary frequency such as a 

daily or monthly data. Another important aspect of SV is its ability to account for an 

asymmetric return-volatility relationship, which is frequently referred to as a leverage 

effect (Black, 1976), despite the fact that it is generally acknowledged that the 

asymmetry has little to do with any underlying financial leverage. 

The first stochastic volatility model was made by Hull and White (1987). They analyze 

European call options on a stock price subject to stochastic volatility. Using Taylor 
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series expansion they derive an accurate formula for call options, though it was a semi-

closed solution without any correlation between returns and volatility. A few years 

later, Stein and Stein (1991) come up with another stochastic volatility model using a 

mean reverting process. They used the Olhestein-Ulhbeck (OU) process to model 

variance, but like the Hull and White (1987) there is no correlation between returns 

and volatility. After the Hull-White model, Heston (1993) comes up with a stochastic 

volatility model that incorporated a square root process of variance. As mentioned 

above, the Heston SV model was a closed form solution model that does require 

numerical integration, the variance is always positive, and it incorporates the leverage 

effect of Black (1976). 

Furthermore, Dupire (1994) proposed a local volatility model. In this local volatility 

model, market prices were used to determine a local volatility surface in terms of time 

and strike. This deterministic surface could be used to value other options. At the same 

time Derman and Kani (1998)1 were working on a similar model. Later this decade, 

Bates (1996) combines Heston’s (1993) stochastic volatility model along with Merton’s 

(1976) log-normal jump diffusion into the Stochastic Volatility with Jump (SVJ) model. 

Bates tests his model into Deutsche Mark options and finds that jump fears can explain 

the volatility smile. 

The latest development in stochastic volatility literature is the work of Christoffersen, 

Heston and Jacobs (2009), also known as Double-Heston model. Through the use of 

multiple stochastic volatility variables, their paper employs an easy method to include 

a stochastic correlation. They show that the level and slope of the smirk can be 

controlled significantly more easily in two-factor models. Two-factor models also offer 

greater modeling flexibility for the volatility term structure, which is an additional 

benefit. They conduct a thorough investigation into the dimensions along which the 

estimated two-factor model differs from the one-factor model in order to shed 

additional light on the variations in pricing performance. They discover that the two-

factor model significantly outperforms the one-factor model in both the term 

structure and moneyness dimensions. Additionally, they show that the typical one-

factor model's modeling of conditional skewness and kurtosis is very constrained and 

that the estimated conditional higher moments have a strong correlation with the 

estimated conditional variance. The two-factor model, on the other hand, allows for 

more modeling freedom when describing conditional skewness and kurtosis at specific 

degrees of conditional variance, which is in line with the result that the slope of the 

smirk evolves substantially independently of the magnitude of volatility. 

Nowadays, there is an index for measuring volatility that is used by financial analysts, 

investors, traders, etc. Utilizing the S&P 500 index, Cboe's Volatility Index (VIX) gauges 

 
1 Their work was being done at the same time as Dupire’s (1994) but their paper was published in 
1998. 
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the 30-day market's anticipated volatility. Investors use the VIX to evaluate the level 

of risk in the market. Because of this, it moves in the opposite direction of stock prices 

when they rise, suggesting low stress, and the other direction when they fall, 

indicating high stress. Options on the S&P 500 that are posted on Cboe make up VIX 

(SPX Options). 

The most recent option literature uses both the Double-Heston model and the VIX 

index to price different types of derivatives, such as variance Swaps. Yoon and Kim 

(2021) provide a closed form solution for pricing variance swaps under the Double 

Heston model. In order to reduce the number of model parameters and to explicitly 

derive a closed form analytic solution formula for variance swaps, they rescale the 

double Heston model. They demonstrate that the rescaled double Heston model can 

match the VIX market data as well as the original double Heston model in a stable 

environment while taking substantially less time to compute than the double Heston 

model did. However, we agree that even the double Heston model falls short in a 

chaotic circumstance following the commencement of the COVID-19 pandemic. 

3. Wiener, Poisson, and Lévy Processes 
Nobert Wiener was the first to define and produce Brownian motion using a strict 

mathematical methodology. In his honor, this stochastic process is known as Wiener's 

process. Though, the first application of Brownian motion was in Bachelier (1900) 

controversial Thesis. The proof that such a process occurs, satisfies all the 

requirements, and is not a physical model termed Brownian motion as was previously 

believed and which one can approach with other models was one of Wiener's greatest 

discoveries. 

3.1 Wiener Process 

3.1.1 Random Walk and Binomial Distribution 

The derivation of the Wiener Process or Brownian Motion arises from a random walk 

process (Vasiliou, 2001). Let’s say we have the following binomial experiment:  

𝑋1 = {
1, 𝑇ℎ𝑒 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔
0, 𝑇ℎ𝑒 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔

 

The fluctuation of the Asset Price comes with a probability (P) in case of success (The 

price goes up) and (1-P) in case of failure (The price goes down). 

ℙ{𝑋1 = 1} = 𝑃 

ℙ{𝑋1 = 0} = 1 − 𝑃 

Assuming that St is the Price of the Asset at time 𝑡 then we have the following 

contingencies: At time 𝑡 = 0 there is a probability 𝑃 that the price will increase and a 

probability 1 − 𝑃 that the price will decrease. So 𝑆1 either equals 𝛼𝑆0 with probability 
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𝑃, or 𝛽𝑆0 with probability 1 − 𝑃, where α and β are positive multipliers on either 

event, 𝛼 > 1, 𝛽 ∈ (0,1).  

𝑆0
𝑃
→ 𝑆1 = 𝛼𝑆0 

𝑆0
1−𝑃
→  𝑆1 = 𝛽𝑆0 

Although we have independence of the contingencies 𝑋1 = 1, 𝑋2 = 0, the 

probabilities 𝑃 and 1 − 𝑃 remain constant and time-independent. So, in the next time 

period we will again have: 

(Success, Success, or Success, Failure) {
𝑆1

𝑃2

→ 𝑆2(11)

𝑆1
𝑃(1−𝑃)
→    𝑆2(10)

 

 

(Failure, Success, or Failure, Failure) {
𝑆1

𝑃(1−𝑃)
→    𝑆2(01)

𝑆1
(1−𝑃)2

→    𝑆2(00)
 

𝑆𝑡=2(11): If a successful event occurs after a successful event in the first period. 

𝑆𝑡=2(10): If a failed event occurs after a successful event in the first period. 𝑆𝑡=2(01): 

If a successful event occurs after a failed event in the first period. 𝑆𝑡=2(00): If a failed 

event occurs after a failed event in the first period. 

This procedure continues for t periods. The stochastic process {𝑋𝑡}𝑡=0 is also called 

random walk and it’s a stochastic process in discrete time and space. It is clear that 

such process must be studied in continuous time and space. As a result, we take into 

account the time interval [0, 𝑇] from the continuum and a very subtle partition of this 

interval that has a step: 

0 = 𝑡0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 < . . . < 𝑡𝑛 = 𝑇, 

 𝑡𝑘 = 𝑡0 + 𝑘𝛥𝑡, 𝑘 = 0,1, … , 𝑛 

3.1.2 Symmetric Random Walk 

Now we assume a “coin toss” example of the above process in order to construct a 

symmetric random walk. This process has two different outcomes 𝜔𝑗 =

{𝐻𝑒𝑎𝑑𝑠, 𝑇𝑎𝑖𝑙𝑠} and the probability of getting “Heads” or “Tails” in each toss is 𝑝 =
1

2
: 

𝑋𝑗 = {
1, 𝑖𝑓 𝜔𝑗 = 𝐻𝑒𝑎𝑑𝑠

−1, 𝑖𝑓 𝜔𝑗 = 𝑇𝑎𝑖𝑙𝑠
 

If we assume that the initial value of this process equals 𝑄0 = 0, the summation of the 

(k) outcomes would be 𝑄𝑘 = ∑ 𝑋𝑗
𝑘
𝑗=1 . This is a symmetric random walk process. 
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A symmetric random walk process comes with the property of independent 

increments between time periods. This increment can be shown as: 

𝑄𝑡1 = (𝑄𝑡1 − 𝑄𝑡0), (𝑄𝑡2 − 𝑄𝑡1), . . . , (𝑄𝑡𝑛 − 𝑄𝑡𝑛−1) 

Its increment has an expected value of 𝔼(𝑄𝑡𝑗+1 − 𝑄𝑡𝑗) = 0 and variance 

𝑉𝑎𝑟 (𝑄𝑡𝑗+1 − 𝑄𝑡𝑗) = 𝑡𝑗+1 − 𝑡𝑗. As a result, the variance equals the difference in time 

or, the distance in time. 

A symmetric random walk process also comes with the properties of a martingale. To 

observe that a symmetric random walk is a martingale, we choose nonnegative 

integers 𝑘 < 𝑙 within [0, 𝑇]. So, in the time period 0 < 𝑘 < 𝑙 < 𝑇 the conditional 

expectation of 𝑄𝑙 based on information up to time k is 𝔼[𝑄𝑙|ℱ𝑡], where ℱ𝑡 is a 

filtration, the 𝜎-algebra information corresponding to first k coin tosses. This 

conditional expectation equals to  

𝔼[𝑄𝑙|ℱ𝑡] = 𝔼[(𝑄𝑙 − 𝑄𝑡) + 𝑄𝑡|ℱ𝑡] = 𝔼[(𝑄𝑙 − 𝑄𝑡)|ℱ𝑡] + 𝔼[𝑄𝑡|ℱ𝑡]

= 𝔼[(𝑄𝑙 − 𝑄𝑡)|ℱ𝑡] + 𝑀𝑡 = 𝑀𝑡 

as the 𝔼[𝑀𝑙] = 0.  

3.1.3 Scaled Symmetric Random Walk and Log-Normal Distribution 

Shreve (2008) states that in order to approximate a Brownian motion we scale down 

the step size of a symmetric random walk while accelerating time. The scaled 

symmetric random walk is defined as 

𝑊(𝑛)(𝑡) =
1

√𝑛
𝑀𝑛𝑡 

We obtain the Brownian motion in the limit as 𝑛 → ∞.  Like the random walk, the 

scaled random walk has independent increments. Also, he states that as we increase 

the number of the processes (n) we tend to get more precise approximations of the 

normal distribution. This approximation is valid according to the central limit theorem.  

Additionally, the limit of a properly scaled binomial asset-pricing model leads to a 

stock price with a log-normal distribution, according to the Central Limit Theorem. 

These findings demonstrate that the geometric Brownian motion model, which serves 

as the foundation for the Black-Scholes option-pricing formula, is a discrete-time 

equivalent of the binomial model. Shreve (2008) constructs a formula by a binomial 

example of a stock price with two factors, the up factor, which is denoted by 𝑢𝑛 = 1 +
𝜎

√𝑛
, and the down factor denoted by 𝑑𝑛 = 1 −

𝜎

√𝑛
. The process of the stock price with 

𝑆(0) being the initial price, converges to the distribution of 𝑆(𝑡) = 𝑆(0)𝑒𝜎𝑊
(𝑡)−

1

2
𝜎2𝑡as 

𝑛 → ∞. 𝑊(𝑡) is the Wiener process with mean zero and variance t.  
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The distribution of 𝑆(𝑡) is referred to as log-normal. In a broader sense, a log-normal 

distribution is defined as any random variable with the form 𝑐𝑒𝑥, where c is a constant 

and x is normally distributed. With a mean of −
1

2
𝜎2𝑡 and a variance of 𝜎2𝑡, 𝑋 =

𝜎𝑊(𝑡) −
1

2
𝜎2𝑡 in this instance is normal. Shreve (2008) concludes that as 𝑛 → ∞, the 

distribution of log 𝑆(𝑡) approaches the distribution of log 𝑆(0) −
1

2
𝜎2𝑡 + 𝜎𝑊(𝑡).  

3.1.4 Brownian Motion 

As previously said, we obtain Brownian Motion as the limit of scaled random walks 

𝑊(𝑛)(𝑡) approach infinity (𝑛 → ∞). The Brownian Motion, as scaled random walk, has 

similar properties. That is, independent increments but normally distributed, zero 

mean and 𝑡𝑗+1 − 𝑡𝑗 variance. The definition of Brownian Motion is given below. 

Definition of Brownian Motion (Shreve, 2008; Karatzas and Shreve, 1998): 

Let (𝛺, ℱ, ℙ) be a probability space. For each 𝜔 ∈ 𝛺, suppose there is a continuous 

function 𝑊(𝑡) of 𝑡 ≥ 0 that satisfies 𝑊(0) = 0 and that depends on ω. Then 

𝑊(𝑡), 𝑡 ≥ 0, is a Brownian motion if for all 0 = 𝑡0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑘 < . . . < 𝑡𝑛 

𝑊(𝑡1) = 𝑊(𝑡1) −𝑊(𝑡0),𝑊(𝑡2) −𝑊(𝑡1),… ,𝑊(𝑡𝑚) −𝑊(𝑡𝑚−1) 

are independent and each of these increments is normally distributed with 

𝔼[𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)] = 0, 

𝑉𝑎𝑟[𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)] = 𝑡𝑖+1 − 𝑡𝑖. 

A scaled random walk, such as 𝑊(100)(𝑡), and a Brownian motion, 𝑊(𝑡), differ in that 

the latter has no linear components while the former has a natural time step and is 

linear between these time steps. The Brownian motion is exactly normal, in contrast 

to the scaled random walk 𝑊(100)(𝑡), which is only approximately normal for each t. 

It follows from the Central Limit Theorem that this is the case. The increments 𝑊(𝑡) −

𝑊(𝑠) are normally distributed for all 0 ≤ 𝑠 ≤ 𝑡, and 𝑊(𝑡) = 𝑊(𝑡) −𝑊(0) is 

normally distributed for each t. 

In the definition given above, there are two ways to conceptualize ω. To put it another 

way, one should consider to be the Brownian motion's path. The value of this path at 

time 𝑡 is therefore represented by 𝑊(𝑡), and it apparently depends on whatever path 

emerged from the random experiment. Alternately, one can consider as something 

more fundamental than the path itself, comparable to the result of a series of faster-

moving coin tosses. The course of the Brownian motion can be depicted after the 

series of coin tosses has been completed and the outcome has been determined. A 

different path will be drawn if the tossing is repeated and a different is achieved. 

In either scenario, the sample space 𝛺 is the set of all outcomes that could result from 

a random experiment, ℱ is the 𝜎-algebra of subsets of 𝛺 whose probabilities are 
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defined, and ℙ is a probability measure. The probability of A is a number ℙ(𝐴) 

between zero and one for each 𝐴 ∈ ℱ. The Brownian motion distributional statements 

apply to ℙ. 

Furthermore, we have to investigate the covariances matrix of the Brownian motion. 

As previously said, the increment of the Brownian motion 𝑊(𝑡1) −𝑊(𝑡0),𝑊(𝑡2) −

𝑊(𝑡1),… ,𝑊(𝑡𝑚) −𝑊(𝑡𝑚−1) are independent and normally distributed, so the 

random variables 𝑊(𝑡1),… ,𝑊(𝑡𝑚) are jointly normally distributed as well. From the 

properties of Brownian motion, the expected value of 𝑊(𝑡𝑖) is zero and the 

covariance between two times 𝑠 < 𝑡 is 𝔼[𝑊(𝑠)𝑊(𝑡)] = 𝔼[𝑊(𝑠)(𝑊(𝑡) −𝑊(𝑠)) +

𝑊2(𝑠)] = 𝑉𝑎𝑟[𝑊(𝑠)] = 𝑠. The variance-covariance matrix would be: 

[
 
 
 

𝔼[𝑊2(𝑡1)] 𝔼[𝑊(𝑡1)𝑊(𝑡2)] ⋯ 𝔼[𝑊(𝑡1)𝑊(𝑡𝑚)]

𝔼[𝑊(𝑡2)𝑊(𝑡1)] 𝔼[𝑊2(𝑡2)] ⋯ 𝔼[𝑊(𝑡2)𝑊(𝑡𝑚)]
⋮ ⋮ . ⋮

𝔼[𝑊(𝑡𝑚)𝑊(𝑡1)] 𝔼[𝑊(𝑡𝑚)𝑊(𝑡2)] ⋯ 𝔼[𝑊2(𝑡𝑚)] ]
 
 
 
= [

𝑡1 𝑡1 ⋯ 𝑡1
𝑡1 𝑡2 ⋯ 𝑡2
⋮ ⋮ ⋱ ⋮
𝑡1 𝑡2 ⋯ 𝑡𝑚

] 

By specifying the joint density2 or the joint moment-generating function of the 

random variables, 𝑊(𝑡1),𝑊(𝑡2),… ,𝑊(𝑡𝑚) one can determine the distribution of 

Brownian increments. 

Another key element of the Brown motion is that it accumulates quadratic variation 

at rate one per unit time. To exhibit this fact, we have to define quadratic variation: 

[𝑊,𝑊](𝑇) = lim
‖𝛱‖→0

∑[𝑊(𝑡𝑗+1) −𝑊(𝑡𝑗)]
2

𝑛−1

𝑗=0

 

The above equation demonstrates quadratic variation with 𝑓(𝑡) being a function of 

the time step, 0 ≤ 𝑡 ≤ 𝑇, 𝛱 = {𝑡0, 𝑡1, … , 𝑡𝑛} is the set of time steps which they belong 

in [0, 𝑇] and ‖𝛱‖ is the Euclidean norm of 𝛱. Shreve (2008) proves that quadratic 

variation of Brownian motion is almost surely 𝑇 for all 𝑇 ≥ 0. Also, the mean from a 

squared increment of Brownian motion equal 𝑡𝑗+1 − 𝑡𝑗  and the variance is 

2(𝑡𝑗+1 − 𝑡𝑗)
2. By definition 𝑡𝑗+1 − 𝑡𝑗 is a very small number, so the square of this 

number would be even smaller. Hence, the squared increment of Brownian motion 

from 𝑗 to 𝑗 + 1 is with high probability near its mean. Consequently, we argue that 

[𝑊(𝑡𝑗+1) −𝑊(𝑡𝑗)]
2 ≈ 𝑡𝑗+1 − 𝑡𝑗. Since both sides of this approximation are close to 

zero when 𝑡𝑗+1 − 𝑡𝑗  is small, it is trivially true. It would also hold true if we changed or 

significantly altered 𝑡𝑗+1 − 𝑡𝑗. In other words, the above approximation is of no 

content. It makes more sense if we subtract both sides with the right-hand-side. This 

would give 
[𝑊(𝑡𝑗+1)−𝑊(𝑡𝑗)]

2

𝑡𝑗+1−𝑡𝑗
≈ 1. 

 

2 Normal distribution density function: 𝑓(𝑥) =
1

√2𝜋𝑡
𝑒−

𝑥2

2𝑡  
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If we compute the quadratic variation of Brownian motion over the time interval 

[0, 𝑇1], we get [𝑊,𝑊](𝑇1). Similarly, if we compute quadratic variation over [0, 𝑇2], 

𝑇1 < 𝑇2, we get [𝑊,𝑊](𝑇2) = 𝑇2. Hence, if we separate the interval [𝑇1, 𝑇2] into 

subintervals, square the increments of the subintervals, then sum them and take the 

limit as the maximal step size approaches zero, we will get the limit [𝑊,𝑊](𝑇2) −

[𝑊,𝑊](𝑇1) = 𝑇2 − 𝑇1. Then, Brownian motion accumulates 𝑇2 − 𝑇1 units of 

quadratic variation over the interval [𝑇1, 𝑇2]. So Brownian motion accumulates 

quadratic variation at rate one per unit time. 

3.1.5 Geometric Brownian Motion 

The stochastic differential equation that yields the Geometric Brownian Motion is 

𝑑𝑆𝑡 = 𝜇𝑑𝑡𝑆𝑡 + 𝜎𝑑𝑊𝑡𝑆𝑡,  t∈ [0, 𝑇] 

The first part of the right-hand side contains the drift term, and the second part 

contains the diffusion term. In order to use this SDE to price various assets we have to 

solve it. A solution can be derived from combining the log-transformation of the stock 

price with Itô’s lemma.  

Itô’s lemma where 𝑦(𝑡, 𝑋𝑡) represents a time-dependent function of a stochastic 

process  

𝑑𝑦(𝑡, 𝑋𝑡) =
𝜕𝑦

𝜕𝑡
𝑑𝑡 +

𝜕𝑦

𝜕𝑋𝑡
𝑑𝑋𝑡 +

1

2

𝜕2𝜑

𝜕𝑋𝑡
2 𝑑𝑋𝑡

2 

Now consider the following log-transformation of the stock price: 𝜑(𝑆𝑡) = ln(𝑆𝑡). We 

can apply Itô’s lemma to the log-transformation function 

𝑑𝜑(𝑆𝑡) =
𝜕𝑦

𝜕𝑡
𝑑𝑡 +

𝜕𝜑

𝜕𝑆𝑡
𝑑𝑆𝑡 +

1

2

𝜕2𝜑

𝜕𝑆𝑡
2 𝑑𝑆𝑡

2 

The differentiation of 𝑔 with respect to 𝑡 yields zero. Similarly, the first derivative of 

𝜑 with respect to the stock price gives 
1

𝑆𝑡
 and the second derivative −

1

𝑆𝑡
2, 

mathematically: 

𝜕𝜑

𝜕𝑡
= 0,

𝜕𝜑

𝜕𝑆𝑡
=
1

𝑆𝑡
,
𝜕2𝜑

𝜕𝑆𝑡
2 = −

1

𝑆𝑡
2 

𝑑𝑆𝑡
2 = 𝜎2𝑆𝑡

2(𝑑𝑊𝑡)
2 = 𝜎2𝑆𝑡

2𝑑𝑡 

Substituting those results into 𝑑𝜑(𝑆𝑡): 

𝑑𝜑(𝑆𝑡) = 0 +
1

𝑆𝑡
(𝜇𝑑𝑡𝑆𝑡 + 𝜎𝑑𝑊𝑡𝑆𝑡) +

1

2
(
−1

𝑆𝑡
2 )𝜎

2𝑆𝑡
2𝑑𝑡 ⟺ 

𝑑𝜑(𝑆𝑡) = (𝜇 −
1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 
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We integrate both sides from 𝑡0 to T: 

∫ 𝑑𝜑(𝑆𝑡)
𝑇

𝑡0

= ∫ (𝜇 −
1

2
𝜎2) 𝑑𝑡

𝑇

𝑡0

+∫ 𝜎𝑑𝑊𝑡

𝑇

𝑡0

⟺ 

𝜑(𝑆𝑡) − 𝜑(𝑆0) = (𝜇 −
1

2
𝜎2) (𝑇 − 𝑡0) + 𝜎(𝑊𝑇 −𝑊𝑡0) 

We substitute 𝜑(𝑆𝑡) = ln(𝑆𝑡) to the above equation: 

ln(𝑆𝑡) − ln(𝑆0) = (𝜇 −
1

2
𝜎2) (𝑇 − 𝑡0) + 𝜎(𝑊𝑇 −𝑊𝑡0) ⟺ 

ln
𝑆𝑡
𝑆0
= (𝜇 −

1

2
𝜎2) (𝑇 − 𝑡0) + 𝜎(𝑊𝑇 −𝑊𝑡0) ⟺ 

𝑒
ln
𝑆𝑡
𝑆0 = 𝑒(𝜇−

1
2
𝜎2)(𝑇−𝑡0)+𝜎(𝑊𝑇−𝑊𝑡0)⟺ 

𝑆𝑡
𝑆0
= 𝑒(𝜇−

1
2
𝜎2)(𝑇−𝑡0)+𝜎(𝑊𝑇−𝑊𝑡0)⟺ 

𝑆𝑡 = 𝑆𝑡0𝑒
(𝜇−

1

2
𝜎2)(𝑇−𝑡0)+𝜎(𝑊𝑇−𝑊𝑡0), 

Substituting 𝑡0 = 0 and 𝑊𝑡0 = 0 in the equation above yields the equation of 

geometric Brownian motion used empirically, which is used in the next chapter of this 

thesis. 

𝑆𝑡 = 𝑆(0)𝑒
(𝜇−

1
2
𝜎2)𝑇+𝜎𝑊𝑇 

The volatility of geometric Brownian motion is 𝜎 which is called realized volatility and 

it can be computed by calculating the sum of squares of log returns. 

∑ (ln
𝑆(𝑡𝑗+1)

𝑆(𝑡𝑗)
)

2𝑚−1

𝑗=0

= [(𝜇 −
1

2
𝜎2) (𝑇 − 𝑡0) + 𝜎(𝑊𝑇 −𝑊𝑡0)]

𝟐

 

Shreve (2008) proves that when the maximum step size is small, the realized volatility 

of geometric Brownian motion approximates 𝜎2(𝛵2 − 𝛵1) in any interval [𝑇1, 𝑇2]. 

Therefore, 

 ∑ (ln
𝑆(𝑡𝑗+1)

𝑆(𝑡𝑗)
)

2
1

𝛵2 − 𝛵1

𝑚−1

𝑗=0

≈ 𝜎2 

As a result, when the asset price exhibits a geometric Brownian motion, we calculate 

the realized volatility by taking the square root of the left hand side of the equation 

above. We can produce a more accurate approximation for realized volatility if we 

reduce the step size. 
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3.2 Poisson Process 
To effectively model the stock market, we also require jump processes in addition to 

Brownian motion and geometric Brownian motion. Brownian motion has allowed us 

to replicate the market up to this point, but we are aware that stocks and derivatives 

are capable of having uncontrollable jumps. While Brownian motion and the Poisson 

process build the fundamental instruments for finding more accurate models, the 

Poisson process introduces the jumping component in this endeavor. 

We cannot have random jumps in the time interval with the Poisson process, just as 

with the Brownian motion, where the drift term was the difficulty and that is why the 

geometric Brownian motion was invented. We therefore employ the Compound 

Poisson process, which enables us to have arbitrary jumps in either direction, up or 

down. To set the stage for the investigation in the next chapters, we will first examine 

the standard Poisson process. 

3.2.1 Poisson Process 

We assume the random variable 𝜏 with density  

𝑓(𝑡) = {𝜆𝑒
−𝜆𝑡, 𝑡 ≥ 0

0, 𝑡 < 0
 

with 𝜆 being a positive constant. The expected value of 𝜏 is 𝔼𝜏 =
1

𝜆
, as 𝜏 is an 

exponential random variable. In addition, ℙ{𝜏 ≤ 𝑡} = 𝐹(𝑡) = ∫ 𝜆𝑒−𝜆𝑣𝑑𝑣 = 1 −
𝑡

0

𝑒−𝜆𝑡. So, the probability of ℙ{𝜏 > 𝑡} = 1 − ℙ{𝜏 ≤ 𝑡} = 𝑒−𝜆𝑡. 

A major property for exponential distribution is memorylessness. This can be shown 

by calculating the following probability: ℙ{𝜏 > 𝑡 + 𝑠 |𝜏 > 𝑠} =
ℙ{𝜏>𝑡+𝑠 𝑎𝑛𝑑 𝜏>𝑠}

ℙ{𝜏>𝑠}
=

𝑒−𝜆(𝑡+𝑠)

𝑒−𝜆𝑠
= 𝑒−𝜆𝑡.  

An intuitive example of this property could be the waiting time of an investor. Suppose 

he has been waiting for a stock to reach his desired price and he knows that the 

distribution of the time of this event is exponential with mean 𝔼𝜏 =
1

𝜆
. Consider the 

case where he has already waited 𝑠 time units and is interested in the probability that 

he will need to wait 𝑡 more time units. In other words, the likelihood that he would 

have to wait an additional 𝑡 time units after waiting s time units is the same as the 

likelihood that he would have to wait 𝑡 time units had he started at time zero. The 

distribution of the remaining time is unchanged by the fact that he has already waited 

𝑠 time units. 

The construction of a Poisson process begins with a sequence of independent 

exponential random variables with mean 
1

𝜆
, that is 𝜏1, 𝜏2, … , 𝜏𝑛. In this process, the 

first jump occurs at 𝜏1, the second at 𝜏2, etc. 
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𝑆𝑛 =∑𝜏𝑘

𝑛

𝑘=1

 

The 𝜏𝑘 exponential random variables are called interarrival times and 𝑆𝑛 are the arrival 

times, where the index 𝑛 indicates the 𝑛𝑡ℎ jump. The number of jumps that take place 

at or before time 𝑡 is counted by the Poisson process 𝑁(𝑡). The jumps are happening 

on average at a rate of 𝜆 per unit time since the predicted duration between jumps is 
1

𝜆
. The Poisson process 𝑁(𝑡) has intensity 𝜆. 

Additionally, we must determine the Poisson process increments’ distribution. To 

accomplish that, we must ascertain the distribution of 𝑆𝑘 jumps first. Shreve (2008), 

Embrechts, Frey and Furrer (2001) support that the random variable 𝑆𝑘 has the 

gamma density. The Poisson process 𝑁(𝑡) with 𝜆 intensity has distribution 

ℙ{𝑁(𝑡) = 𝑘} =
𝜆𝑡𝑘

𝑘!
𝑒−𝜆𝑡, 𝑘 = 0,1,2, … 

Furthermore, the increments of the Poisson process are stationary. Let 𝑠 be the 

present time and 𝑡 + 𝑠 > 𝑠 be the time after 𝑠. We are interested in 𝑁(𝑡 + 𝑠) − 𝑁(𝑠). 

As we assert the property of memorylessness of exponential variables, it turns out 

that the information about what happened up to and including time s is irrelevant. To 

compute the distribution of the jump from time 𝑠 to time 𝑡 + 𝑠, we are interested in 

time of the next jump after 𝑠. The time between 𝑠 and the subsequent jump does not 

depend on the time between 𝑠 and the previous jump, which we know at time 𝑠. 

Indeed, regardless of whatever that has occurred up to time 𝑠, the interval between 𝑠 

and the first jump after 𝑠 has an exponential distribution with mean 
1

𝜆
, as well as the 

succeeding jumps. Therefore, 𝑁(𝑡 + 𝑠) − 𝑁(𝑠) is independent of the filtration of 𝑠. 

The distribution of increments in a process is considered to be stationary when it has 

the property that it depends solely on the time interval between the two time points. 

Thus, the increments of Poisson process are stationary and independent with 

probability 

ℙ{𝑁(𝑡𝑗+1) − 𝑁(𝑡𝑗) = 𝑘} =
𝜆𝑘(𝑡𝑗+1 − 𝑡𝑗)

𝑘

𝑘!
𝑒−𝜆(𝑡𝑗+1−𝑡𝑗), 𝑘 = 0,1,2, … 

The mean and of the increments of Poisson process equal 𝜆(𝑡 − 𝑠). More specifically, 

we know the distribution of the increments and recalling the exponential power series 

the expected value of the increment is 𝔼[𝑁(𝑡) − 𝑁(𝑠)] = ∑ 𝑘
𝜆𝑘(𝑡−𝑠)𝑘

𝑘!
𝑒−𝜆(𝑡−𝑠)∞

𝑘=0  

which is equal to 𝜆(𝑡 − 𝑠). 

The variance is a product of the second moment. 𝔼[(𝑁(𝑡) − 𝑁(𝑠))2] =

∑ 𝑘2
𝜆𝑘(𝑡−𝑠)𝑘

𝑘!
𝑒−𝜆(𝑡−𝑠)∞

𝑘=0 = 𝜆2(𝑡 − 𝑠)2 + 𝜆(𝑡 − 𝑠). So, taking the formula for variance 

we derive 𝑉𝑎𝑟[𝑁(𝑡) − 𝑁(𝑠)] = 𝜆(𝑡 − 𝑠). 
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3.2.2 Compound Poisson Process 

A Compound Poisson process is a continuous time stochastic process which builds on 

the standard Poisson process. Let 𝑁(𝑡) be a Poisson process with intensity 𝜆, and 

𝑌1, 𝑌2, … a sequence of identical and independently distributed random variables with 

mean 𝔼𝑌𝑖 = 𝛽. We assume those random variables are independent of the Poisson 

process 𝑁(𝑡). 

In the Poisson process the size of the jump was fixes. The Compound Poisson process 

has random size jumps and those are occurring the same time as the 𝑁(𝑡). The first 

jump is 𝑌1, the second 𝑌2 and goes on till 𝑁(𝑡) forming a path. Hence, the Compound 

Poisson process is given by 

𝑄(𝑡) = ∑ 𝑌𝑖

𝑁(𝑡)

𝑖=1

,     𝑡 ≥ 0 

Also, the increments of the Compound Poisson process are independent and have the 

same distribution with 𝑄(𝑡 − 𝑠), as a consequence of 𝑁(𝑡 − 𝑠) having the same 

distribution with 𝑁(𝑡) − 𝑁(𝑠). The increment of Compound Poisson is specified as 

follows 𝑄(𝑡) − 𝑄(𝑠) = ∑ 𝑌𝑖
𝑁(𝑡)
𝑖=1+𝑁(𝑡) . 

The mean of this process is 𝔼𝑄(𝑡) = 𝛽𝜆𝑡 as there are 𝜆𝑡 jumps in the interval [0, 𝑡] 

and the average jump size is 𝛽. 

Lastly, there are two equally valid perspectives on a Compound Poisson process with 

a finite number of potential leap sizes, according to Shreve (2008). It may be compared 

to a single Poisson process with random-sized leaps in place of the one-sized jumps. 

Alternately, it may be thought of as a collection of separate Poisson processes, each 

of which has leaps of a defined size in place of the size one jumps. 

As a consequence, if {𝑦1, … , 𝑦𝑀} is a set of non-zero numbers, and the probability for 

each element of the set is {𝑝(𝑦1),… , 𝑝(𝑦𝑀)},𝑚 = 1,… ,𝑀 with sum 1, we define the 

Compound Poisson process as  

𝑄(𝑡) = ∑ 𝑌𝑖

𝛮(𝑡)

𝑖=1

 

with 𝑌𝑖 being a sequence of i.i.d. random variables with probability ℙ{𝑌𝑖 = 𝑦𝑚} =

𝑝(𝑦𝑚). If 𝑁𝑚(𝑡) denotes the number of jumps in 𝑄, then  

𝑁(𝑡) = ∑ 𝑁𝑚(𝑡)

𝑀

𝑚=1

 , 𝑄(𝑡) = ∑ 𝑦𝑚𝑁𝑚(𝑡)

𝑀

𝑚=1

 

This way, the Poisson processes 𝑁𝑚 are independent and have 𝜆𝑝(𝑦𝑚) intensity. 
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3.3 Lévy Processes 
The above studied processes (Wiener, Poisson) belong to a larger group of stochastic 

processes called Lévy processes (Satō, 2013; Bertoin, 1996; Eberlein, 2009). Those 

processes have the following properties: First of all, the initial value in the time interval 

is, almost surely, zero i.e., 𝑋0 = 0. Then, the increments of those processes are 

mutually independent, (see Brownian motion where the time steps were 0 = 𝑡0 <

𝑡1 < 𝑡2 < . . . < 𝑡𝑘 < . . . < 𝑡𝑛 and the increments 𝑊(𝑡1) = 𝑊(𝑡1) −𝑊(𝑡0),𝑊(𝑡2) −

𝑊(𝑡1),… ,𝑊(𝑡𝑚) −𝑊(𝑡𝑚−1)). Next, Lévy processes have stationary increments 

which means that for any 𝑠 < 𝑡 the distribution of 𝑋𝑡 − 𝑋𝑠 is equal to 𝑋𝑡−𝑠. Lastly, 

there is continuity in probability, i.e., for any number 휀 > 0 and time 𝑡 ≥ 0, 

lim
𝑡→𝑠
𝑃(|𝑋𝑡 − 𝑋𝑠| > 휀) = 0. In the case where all conditions apply (namely, 𝑋 is a Lévy 

process) then lim
𝑡↓0
𝑃(|𝑋(𝑡)| > 휀) = 0, (Applebaum, 2005). 

3.3.1 Normal and rare events 

There are two types of events in the stock market, the so called “normal” and “rare” 

events. According to Hirsa and Neftci (2014), the size of the events and the likelihood 

that they will occur are the primary distinctions between "normal" and "rare" events. 

Since this interval tends to be zero, it becomes irrelevant when the observation 

interval shrinks along with the size of "normal" events. There is always a non-zero 

chance that some unnoticeable news may come in, even over a brief period of time. 

In contrast to "regular" events, "rare" events (such as shocks) can cause a considerable 

shift in the random variable's value in a short amount of time. For example, a market 

crash is considered to be a “rare” event. Put differently, the chance of a "rare" event 

moves to zero as the interval of observations tends toward zero, but its size may not 

change. 

In the case that markets are driven by “normal” events, Brownian motion can be used 

to price a derivative. But this Lévy process by itself is not able to describe the stock 

market as a whole. For this reason, further models must be used, such as Merton’s 

jump diffusion model (Merton, 1976). This model uses Brownian motion along with 

Poisson process and allows for both “normal” events and “rare” event to occur. 

3.3.2 Infinite divisibility and characteristic exponents 

A Lévy process is a Markov process by default due to the characteristics of stationary 

and independent increments. Lévy processes can also be demonstrated to be robust 

Markov processes. We need to introduce the concept of an infinitely divisible 

distribution in order to better grasp Lévy processes. A random variable 𝛩 does have 

an infinitely divisible distribution if a series of identical random variables exist that: 

𝛩 = 𝛩1,𝑛 +⋯+ 𝛩𝑛,𝑛. 

As an alternative, characteristic exponents can be used to express this relation 

(Schoutens, 2005). If 𝛩 has a characteristic exponent 𝜓(𝑢) = − log𝔼(𝑒𝑖𝑢⋅𝛩) then 𝛩 is 

infinitely divisible if and only if for all 𝑛 ≥ 1 there exist a characteristic component of 
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a probability distribution 𝜓𝑛 such that 𝜓𝑢 = 𝑛𝜓𝑛 for all 𝑢 ∈ ℝ𝑑 (Kyprianou, 2014). 

That random variable 𝛩 has an infinitely divisible distribution if there exists a triplet 

(𝛼, 𝛴, 𝛱), 𝛼 ∈ ℝ𝑑 and its characteristic function satisfies the Lévy - Khintchine formula 

which is: 

𝜓(𝑢) = 𝑖𝑎 ⋅ 𝑢 +
1

2
𝑢 ⋅ 𝛴𝑢 + ∫ (1 − 𝑒𝑖𝑢⋅𝑥 + 𝑖𝑢 ⋅ 𝑥𝟏(‖𝒙‖<𝟏))𝛱(𝑑𝑥)

.

ℝ𝑑
, 

where 𝛱 is the Lévy measure and 𝛴 is a 𝑑 × 𝑑 matrix whose eigenvalues are 

nonnegative. The operator (⋅) is used to characterize the inner product between two 

matrices. 

Brownian motion and Compound Poisson process have been analyzed in section 2.2. 

Those processes are the foundations for any other Lévy process. To be more precise, 

Brownian motion is the Lévy process with characteristic exponent 𝜓(𝑢) =
1

2
𝑢 ⋅ 𝛴𝑢 

and as a result has increments with Gaussian distribution across time periods of length 

𝑡, together with a covariance matrix 𝛴𝑡. On the other hand, the Compound Poisson 

process has characteristic exponent 𝜓(𝑢) = ∫ (1 − 𝑒𝑖𝑢⋅𝑥)𝜆𝐹(𝑑𝑥)
.

ℝ𝑑
, where 𝜆 > 0 is 

the Poisson’s process intensity and 𝐹 a probability distribution. 

A measurably infinite sum of Lévy processes can be demonstrated to converge 

appropriately to a Lévy process under specific circumstances. Any finite number of 

independent Lévy processes added together also constitutes a Lévy process. The Lévy-

Itô decomposition, covered in the following section, is based on this concept. Either a 

Brownian motion with drift or a Compound Poisson process with drift make up the 

Lévy processes that are added. 

3.3.3 Lévy – Itô decomposition 

The path of a certain Lévy process is represented in the Lévy-Khintchine formula. Every 

sample path of a Lévy process can be represented as the sum of two independent 

processes according to the Lévy-Itô decomposition. One is a continuous Lévy process, 

which is the Brownian motion (Kyprianou, 2014), and the other is a compensated sum 

of independent jumps, which is a Compound Poisson process with drift (Matsuda, 

2006).  

To be more precise, a Lévy process can be decomposed in four parts as seen in Satō 

(2013). The first part is a deterministic linear drift, the second is a continuous Lévy 

process, i.e., the Brownian motion, a Compound Poisson process and a square 

integrable martingale, known as pure jump process. So, the characteristic exponent 

of a Lévy process consists of four individual characteristic exponents. The 

decomposition of Lévy processes devised by Lévy (1934;1954) and proved by Itô 

(1942). 
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4. Simulation of Stochastic Processes3 

4.1 Wiener Process 
A random walk process serves as the foundation for the Wiener Process or Brownian 

Motion. Because of this, we will begin expanding upon the random walk, to eventually 

obtain the Wiener process and the geometric Brownian motion. In order to perform 

the simulations of the processes mentioned in the previous chapter, Python 3.0 and 

some packages such as matplotlib, scipy, pandas etc. 

The symmetric random walk is derived from the binomial problem in the second 

chapter of this thesis. This random walk can go either up or down by one. I start by 

initializing the parameters that is, the number of simulations and the time period. I 

start by creating a list that has two values in it, -1 and 1 and that’s because along the 

path we can go up or down (i.e., +1 going up or -1 going down). Using numpy, I 

randomly select for t=10 years a value from the list [-1,1]. Then I initialize a vector with  

zeros with size 10 (i.e., the number of simulations). Then I join the two arrays along 

the same axis using numpy.concatenate and sum the values with numpy.cumsum. 

Figure 1 depicts the simulation of a symmetric random walk. 

 

Figure 1: Simulation of Symmetric Random Walk Process using Python 

 

 
3 The code that has been used to derive the Figures is given in the Appendix. 
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The quadratic variation estimation follows. The quadratic variation is computed path 

by path and it’s the square sum of the independent increments. That sum of the 

squared increments is the actual distance between the time steps. To prove that I 

create a function called quadratic variation and a function called variance. I am also 

using python’s lambda function be able to sum across all the time steps and to better 

manage the code. The result of the code is that quadratic variation equals to the time 

step. On the other hand, variance equals to the current time step (i.e., at the first time 

step the variance is one, at the second time step the variance is two, …). To get a better 

estimate of the variance I ran the code for ten million simulations. As I increase the 

number of simulations, I get a better estimate (as we approach infinity, we get 

convergence).  

The next step in order to get Brownian motion and Geometric Brownian motion is 

Scaled symmetric random walk. The equation I am trying to simulate is 𝑊(𝑛)(𝑡) =
1

√𝑛
𝑀𝑛𝑡. Similarly to Symmetric random walk I set the parameters that is, the number 

of simulations, the time and (𝑛) which is the steps for every year. So, for ten years we 

will have (𝑛𝑡) steps. The code is similar to that of scaled random walk, but the time 

vector now is more “concentrated” in time. Scaled symmetric random walk still holds 

the same properties. Variance at a particular point along all those paths are equal to 

the time period and the quadratic variation along those paths is exactly the time, even 

though there are (𝑛𝑡) time steps. Figure 2 shows the simulated process and can 

observe that the movement of a particular path deviates from the rest, which is 

completely random. 

 

Figure 2: Simulation of Scaled Symmetric Random Walk using Python  
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In chapters 2.1.3 and 2.1.4 it has been stated that as we increase the number of the 

processes n, we are able to get Brownian motion, and this is valid according to central 

limit theorem. Also, as 𝑛 increases the binomial distribution converges to the normal 

distribution with variance 𝑡.  

In terms of binomial distribution, we can look at the possible permutations that these 

values take on given the amount of time steps that we are using. I am using the 

combinations formula in python to work out the binomial probabilities for each 

outcome. The combination formula determines the coefficient for each outcome. The 

permutations are the coefficient stated above times a half to the power of time steps 

(i.e., if we have ten years and ten steps over a year for all those years, the time steps 

are ten times ten equals a hundred). Next, I am using a lambda function to get each of 

these probabilistic outcomes. After the computation of 𝑊(𝑛)(𝑡) I am using a 

histogram to plot both the probabilistic outcomes and the normal distribution in 

Figure 3. 

 

Figure 3: 10 Scaled Random Walks under the Normal Distribution 

What we can conclude of this Figure is that as we increase 𝑛, we are getting closer to 

the normal distribution with a variance of 𝑡. So, if I increase 𝑛 to 100 I should get a 

proper approximation of normal distribution. 
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We can fairly infer from Figure 4 that as 𝑛 is increased, the normal distribution 

becomes more closely approximated. Of course, the issue that arose in this specific 

area was that the program's memory issues occurred as I increased 𝑛 above 100 to 

detect convergence. Because it would take a considerable number of resources and 

capital, a model like this could not be used to accurately depict, for instance, the price 

of a stock. We therefore require a more practical and affordable approach. Thus, we 

can now reach the topic of studying the Wiener process. 

After obtaining the Figures 3 and 4, having shown that the dual distribution converges 

to the normal distribution as we increase n, it follows that we need to show the 

derivation of the Brownian motion. Following (Shreve, 2008; Karatzas and Shreve, 

1998) definition, the properties of the Brownian motion are 𝔼[𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)] = 0 

and 𝑉𝑎𝑟[𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)] = 𝑡𝑖+1 − 𝑡𝑖. 

 

Figure 4: 100 Scaled Random Walks under the Normal Distribution 

I am going to sample from the normal distribution with mean zero and variance the 

time difference at a particular time period. First of all, I set the parameters which are 

the number of simulations, the time, the steps that we want to see and the time step. 

I am using numpy.random.normal transposed to be able to sample this process. Then 

I am using an array containing zeros which is the initial values of the process, and 

setting the Brownian motion paths as I join the steps with the initial values and 

summating along axis x, using numpy.concatenate and numpy.cumsum. Then again, I 
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set the time array using linspace and shaping the time array in order to have the same 

length as the process array. The result of this process is shown in Figure 5. 

We can see the Brownian motion paths that are non-differentiable for each time 

period, which is an extremely important case and stochastic in nature. The quadratic 

variation is exactly the time, same as random walk and symmetric random walk. This 

is shows as the time-steps value is set to ten million. Variance along these paths for 

one hundred simulations is the step itself. The problem is that Brownian motion can 

take negative values, so we need something closer to the real stock market in order 

to use it in models like the famous Black-Scholes model.  

 

Figure 5: Simulation of the Wiener Process using Python  

Geometric Brownian motion is the tool when developing various models. In the 

Geometric Brownian motion, we're trying to estimate the following stochastic 

differential equation: 𝑑𝑆𝑡 = 𝜇𝑑𝑡𝑆𝑡 + 𝜎𝑑𝑊𝑡𝑆𝑡. In Geometric Brownian motion we 

have an initial price which is greater than zero, 𝜇 is the drift term, 𝜎 is the constant 

term for volatility as a percentage point and 𝜎𝑑𝑊𝑡𝑆𝑡 is the stochastic integral 

component. The log of the stock price follows the normal distribution, and it has a 

variance that is defined by 𝜎2𝑡. The explicit expression of geometric Brownian motion 

is 𝑆𝑡 = 𝑆(0)𝑒
(𝜇−

1

2
𝜎2)𝑇+𝜎𝑊𝑇  and this is what we are trying to simulate. 

I am employing the following methodology. I start by importing the python libraries 

that I am going to use. That is, numpy and matplotlib. The next step is to define the 
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parameters. So, I define the drift coefficient, the number of steps, time in years, the 

number of simulations, the initial stock price which has to be greater than zero and 

the volatility in terms of standard deviation. 

The next step of the process is to simulate the Geometric Brownian Motion paths. First 

of we need to calculate each time step because we want to return a vector for all these 

paths for all these time steps. After that, I am using numpy to write the explicit form 

of the Geometric Brownian motion equation, and I use np.random.normal get a 

random number from the normal distribution with mean zero and variance the square 

root of the time step 𝑑𝑡. The size of the vector is going to be the number of simulations 

by the number of the time steps, thus 𝑀 × 𝑛. This random component of the equation 

is going to be transposed in order to get the simulation for each time step. After that, 

I am going to include an array of ones. The dimension of this array will be the number 

of simulations and I am combining this vector with the equation 𝑆𝑡. In order to derive 

the simulation path, I need to get the cumulative product of 𝑆𝑡 along axis zero and 

multiply it by the initial stock price. 

The last step to get paths of Geometric Brownian motion is to define the interval in 

years and for this purpose I am using numpy’s linspace. The reason I am doing that is 

that I have the time defined at one year, but I have 𝑛 evenly spaced time steps. The 

length is now 𝑛 + 1 because we added the array of ones. To plot the Geometric 

Brownian Motion we need the time vector to be the same as the 𝑆𝑡 equation, and for 

this reason I am going to use numpy.full to get the same shape of 𝑆𝑡. The Figure 6 of 

Geometric Brownian Motion is given bellow. 

 

Figure 6: Simulation of Geometric Brownian Motion with Initial Stock price of 100, 
drift term 0.1 and Volatility 0.3 
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4.2 Poisson Process 
To simulate the Poisson process, I use the inverse Cumulative Distribution Function4. 

This technique is called inverse transform sampling and we can use it to generate 

random numbers from any probability distribution using its inverse cumulative 

distribution. As a result, we are provided with the corresponding inter-arrival times 

for the distinct probabilities. 

So, to simulate this process we need the inverse Cumulative Distribution Function 

feeding it with values from the 𝑼(𝟎, 𝟏). The inverse Cumulative Distribution Function 

is given by the following formula, where 𝝀 is the Poisson intensity: 

𝐹𝑋
−1(𝑡) = −

𝑙𝑛 1 − 𝑡

𝜆
 

First, I defined the parameters utilized in both the Poisson and the Compound Poisson 

processes after importing the necessary libraries into Python. Instead of using a 

for/while loop, I defined the function that generates the process to speed up and 

simplify the code. I utilized the inverse CDF, which provides the time intervals, in this 

function. The total events are the cumulative sum. I then used Pandas to store the 

quantity of events in a data frame and plotted the function for a given Poisson 

intensity factor 𝜆 and the number of events to simulate. Figure 7 shows the Poisson 

process. 

 

Figure 7: Simulation of Poisson Process with 𝝀 = 𝟏𝟓 and 50 events 

 
4 CDF of X returns the probability that the interval of time between consecutive arrivals will be less 
than or equal to some value t. 
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To confirm that this is a Poisson process, I generate a hundred thousand loops and 

compare the generated Poisson process to the generated variates from the Poisson 

distribution. I plot the histogram for both the simulated process and the generated 

values from the Poisson distribution.  

 

Figure 8: Poisson distributed variables and simulated Poisson process 

Figure 8 demonstrates the histogram mentioned above. We may observe that the 

simulated process appears to fit the Poisson distributed variables fairly well.  

 

Figure 9: Simulation of Compound Poisson Process 
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The Compound Poisson process is an extension of the Poisson process as 

acknowledged in the previous Chapter. So as to simulate the Compound Poisson 

process we need to know a secondary distribution and generate variables distributed 

according to it. In this case I generated a Compound Poisson process using a binomial 

distribution with 20 trials and a half probability of success, 𝑩(𝟐𝟎, 𝟎. 𝟓). 

First, I defined the binomial generator function which returns values according to 

𝑩(𝟐𝟎, 𝟎. 𝟓). Then I defined the Compound Poisson process function which is similar 

to the Poisson process above. Plotting the process gives Figure 9. 

 

5. Empirical Analysis 

5.1 Stylized facts of the returns 
By choosing a common factor among the characteristics noted in research of many 

markets and instruments, stylized facts can be obtained. The generality gained by 

doing this is obvious, but the generalizations one can make regarding asset returns 

tend to be less precise. In fact, stylized facts may not be precise enough to distinguish 

between various parametric models because they are frequently expressed in terms 

of qualitative aspects of asset returns according to Cont (2001).  

The first stylized fact is the heavy tails of the returns. Compared to the normal 

distribution, the unconditional distribution of returns has fatter tails. Also, the returns 

are subscribed of asymmetry. Because of the negatively skewed distribution of the 

returns, it is more likely to come up with extreme negative values. Another fact is that 

we have absence of serial autocorrelations for non-high frequency data. Moreover, 

we have volatility clustering - over several days, various volatility indices show a 

positive autocorrelation, which quantifies the tendency of high-volatility occurrences 

to cluster over time. 

5.2 Implied Volatility 
An indicator that measures the market's perception of the possibility of price 

movements for a specific security is known as implied volatility. Investors can use 

implied volatility to predict future movements, supply, and demand, and it is widely 

used to price option contracts. Implied Volatility is entirely based on probability, 

meaning that it reflects an estimate of future prices. 

Implied Volatility does not help predict the direction of prices. A high IV simply means 

that a stock is more likely to have a large price swing. This could mean very low or very 

high or both, low volatility on the other hand just means the price is not likely to make 

violent unpredictable moves in either direction. Although many investors will use 

Implied Volatility as a tool when making investment decisions, it is important to note 

that there is no guarantee an option’s price will follow the predicted pattern modeled 
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by Implied Volatility. At the same time, it helps in understanding market opinion which 

in turn shapes option pricing, something that Implied Volatility represents fairly well.  

When the market is doing well and prices are moving up, Implied Volatility is usually 

lower, however when prices decline, and the market is bearish Implied Volatility 

increases. This is largely due to a standard belief by investors that bearish markets are 

riskier than bullish markets.  

There are many variables affecting this measure. The two major ones are demand and 

time value. When demand for a particular stock or security is high, its Implied Volatility 

tends to increase with it. higher prices because of demand cause risk to rise as well as 

premiums. The inverse is true when demand is low, Implied Volatility falls and the 

option’s price becomes cheaper. The time value of options, or the amount of time left 

until the options expire is another major influence. An option expiring relatively 

quickly will have low Implied Volatility, while the one expiring well into the future will 

have high Implied Volatility because there is more time baked into the option’s price 

leaving it exposed longer to time, giving it a higher chance to experience changes and 

react to market events. 

The Black-Scholes formula can be used to estimate implied volatility. With the Black-

Scholes model, we can accurately price a call or put option based on market sentiment 

given a stock price, the strike price, the risk-free rate, the time to expiration, and a 

constant measure of volatility in standard deviation. We can therefore work 

backwards and determine what the market believes the volatility to be by using the 

call price formatted by the transaction in the market and all the variables in the Black-

Scholes model. 

5.3 Black and Scholes Model 
The price of any derivative reliant on a non-dividend paying stock must satisfy the 

Black and Scholes (1973) differential equation. The model's justifications call for 

creating a riskless portfolio with positions in both stocks and derivatives. The returns 

from the portfolio must be the risk-free interest rate in the absence of arbitrage 

opportunities. The Black-Scholes differential equation results from this. 

Since both the stock price and the derivative price are influenced by the same 

fundamental source of uncertainty—stock price fluctuations—a riskless portfolio can 

be created. The price of the derivative has a perfect short-term correlation with the 

price of the underlying stock. The entire value of the portfolio at the end of the short 

period of time is known with certainty when a suitable portfolio of the stock and the 

derivative is constructed. This is because the gain or loss from the stock position 

invariably offsets the gain or loss from the derivative position. 

According to Hull (2018), the assumptions of the Black-Scholes model are the 

following. First of all, the stock price follows the Geometric Brownian Motion (see 
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Chapter 3) with both mean and volatility being constant. Second, it is acceptable to 

sell securities short with a full utilization of the proceeds, and there are no taxes or 

transaction fees, the division of all securities is perfect. Also, there are no dividends 

during the life of the derivative and no riskless arbitrage opportunities. Lastly, security 

trading is continuous, and the risk-free interest rate is constant and the same for all 

maturities. 

5.3.1 Black – Scholes differential equation  

As stated above, the stock price follows the Geometric Brownian motion. The 

differential equation of the stock price is  

𝑑𝑆 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑧 

Assuming that 𝑓 is the call option price of the stock and that 𝑓 is a function of the stock 

price and time 𝑡, then by applying the Itô’s lemma (see chapter 3) we should get the 

following formula: 

𝑑𝑓 = (
𝜕𝑓

𝜕𝑆
𝜇𝑆 + 

𝜕𝑓

𝜕𝑡
+ 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 + 

𝜕𝑓

𝜕𝑆
𝜎𝑆𝑑𝑧  

The discretization of the above formulas for a small-time interval 𝛿𝑡: 

𝛿𝑆 = 𝜇𝑆𝛿𝑡 + 𝜎𝑆𝛿𝑧, 

𝛿𝑓 = (
𝜕𝑓

𝜕𝑆
𝜇𝑆 + 

𝜕𝑓

𝜕𝑡
+ 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝛿𝑡 + 

𝜕𝑓

𝜕𝑆
𝜎𝑆𝛿𝑧 

We define 𝑉 as the value of the portfolio: 

𝑉 =  −𝑓 + 
𝜕𝑓

𝜕𝑆
𝑆 

The investor is short one derivative and long 
𝜕𝑓

𝜕𝑆
 shares. If we differentiate both sides 

of the equation in discrete time we should get: 

𝛿𝑉 =  −𝛿𝑓 + 
𝜕𝑓

𝜕𝑆
𝛿𝑆 

Then substituting 𝛿𝑓 and δ𝑆 in the above equation we get: 

𝛿𝑉 =  −(
𝜕𝑓

𝜕𝑆
𝜇𝑆 + 

𝜕𝑓

𝜕𝑡
+ 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝛿𝑡 − 

𝜕𝑓

𝜕𝑆
𝜎𝑆𝛿𝑧 + 

𝜕𝑓

𝜕𝑆
(𝜇𝑆𝛿𝑡 + 𝜎𝑆𝛿𝑧)  ⇔ 

𝛿𝑉 =  −
𝜕𝑓

𝜕𝑆
𝜇𝑆𝛿𝑡 − 

𝜕𝑓

𝜕𝑡
𝛿𝑡 − 

1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2𝛿𝑡 − 

𝜕𝑓

𝜕𝑆
𝜎𝑆𝛿𝑧 + 

𝜕𝑓

𝜕𝑆
𝜇𝑆𝛿𝑡 + 

𝜕𝑓

𝜕𝑆
𝜎𝑆𝛿𝑧 ⇔ 

𝛿𝑉 =  − 
𝜕𝑓

𝜕𝑡
𝛿𝑡 − 

1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2𝛿𝑡 ⇔ 
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𝛿𝑉 = −(
𝜕𝑓

𝜕𝑡
+ 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝛿𝑡 

Νote that the above equation does not include the stochastic variance term, so we 

could say that the investor's portfolio is risk-free in discrete time. 

According to the assumptions outlined previously, the portfolio must instantly 

generate the same rate of return as other short-term risk-free securities. Arbitrageurs 

could not make a risk-free profit by lending money to the portfolio if it earned more 

than this return, but they could do so by shorting the portfolio and investing in risk-

free securities if it earned less. Thus: 

𝛿𝑉 = 𝑟𝑉𝛿𝑡 

Substituting 𝑉 and 𝛿𝑉 in the above equation, gives: 

−(
𝜕𝑓

𝜕𝑡
+ 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝛿𝑡 = 𝑟 (−𝑓 + 

𝜕𝑓

𝜕𝑆
𝑆) 𝛿𝑡 ⇔ 

−(
𝜕𝑓

𝜕𝑡
+ 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2) = 𝑟 (−𝑓 + 

𝜕𝑓

𝜕𝑆
𝑆)  ⇔ 

− 
𝜕𝑓

𝜕𝑡
 − 
1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2 = −𝑟𝑓 + 𝑟

𝜕𝑓

𝜕𝑆
𝑆 ⇔ 

𝜕𝑓

𝜕𝑡
+ 
𝜕𝑓

𝜕𝑆
𝑟𝑆 +  

1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2 = 𝑟𝑓 

The above equation is the Black-Scholes-Merton partial differential equation, where 

𝑟 is the risk-free rate. The boundary conditions for a European call option imply that 

the payoff is max (𝑆𝑇 − 𝐾, 0). if 𝑆𝑇 > 𝐾 then the payoff is bigger than zero. If the 

opposite is true, then the payoff is zero. Similarly, the put option payoff is max (𝐾 −

 𝑆𝑇 , 0). 𝐾 is the exercise price of the option. 

The call and put option pricing formulas of the Black-Scholes model are: 

𝑐 =  𝑆𝑡𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2) 

𝑝 = 𝐾𝑒−𝑟𝑇𝑁(𝑑2) − 𝑆𝑡𝑁(−𝑑1) 

Where 𝑁(𝑥) is the cumulative probability function for a standardized normal 

distribution. 𝑑1, 𝑑2 are 

𝑑1 = 
ln (
𝑆𝑡
𝐾) +

(𝑟 + 
𝜎2

2
) (𝛵 − 𝑡) 

𝜎√(𝛵 − 𝑡)
 

𝑑2 = 
ln (
𝑆𝑡
𝐾) +

(𝑟 − 
𝜎2

2
) (𝛵 − 𝑡) 

𝜎√(𝛵 − 𝑡)
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The likelihood that the stock price at expiration will be higher than the strike price (for 

out-of-the-money options) or continue above it is represented by 𝑁(𝑑2) (for In-the-

Money options). In other words, for a call option holder, 𝑁(𝑑2) is the probability of 

exercising the option, whereas for a put option holder, who anticipates that the stock 

will be below K at expiration, 𝑁(𝑑2) or 1 − 𝑑2 is the likelihood of exercising the 

option. 

5.3.2 Total Energies (TTE) Option Pricing  

In this section I will demonstrate a call/put option pricing for TTE, which is a company 

operating in integrated gas, Renewables and power, exploration and production, 

refining and chemicals and marketing and services.  

The implementation of the Black and Scholes formula gives the call and put option 

price of TTE. The data5 put into the code are given below along with the results. 

 3-month maturity 1-month maturity 

Stock Price $60.26 $60.60 

Strike Price $62.50 $60 

Time to expiry 

(Current date: 

16/11/2022) 

 

93 Days 

(Expiration Date: 

17/02/2023) 

30 Days 

(Expiration Date: 

16/12/2023) 

Interest rate 4.31% 3.77% 

Implied Volatility 33.11% 31.28% 

Dividend Yield 4.79% 4.79% 

Last call option price $2.46 $2.40 

Black-Scholes Call price $2.99 $2.43 

Black-Scholes Put price $5.28 $1.88 

Table 1: Black and Scholes Call/Put prices for Total Energies (TTE) 

In table 1 we can see the stock price of the asset, the strike price, the time to expiry, 

the interest rate, volatility, dividend payment, the last call option price, and the results 

from the Black-Scholes formula. The first column refers to one-month maturity of the 

option.  

The stock price used to derive the Black-Scholes prices was $60.26 and the strike price 

was $62.50. in this case the call option is "Out-of-the-Money” and the put option is 

“In-the-Money”. In the code I needed the annualized time, so I divided 93 days with 

365 days. The interest rate is the three-month treasury bill, which was 4.31% at 

16/11/2022. Lastly, the dividend payment was 4.79% and the last call price was $2.46. 

The call option price according to the Black and Scholes model has to be $2.99 but the 

 
5 The code used to produce the prices of the options is given in the Appendix. All the 
data used for this section was provided by Yahoo Finance. 
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observed price was $2.46. This could mean one of two things: first, the Black and 

Scholes model did not accurately approximate the realistic price. Due to the maturity 

being far later than the current date, this could be a miscalculation. The call option's 

lower value than expected is the second matter. This could be a buy signal to take 

advantage of the lower price.  

In the case that the maturity of the option is one month, the stock price is $60.60, and 

the strike price of the option is $60. In this case the call option is “In-the-Money” and 

the put option is “Out-of-the-Money”. The one-month treasury bill is 3.77% and the 

implied volatility of the option is 31.28%. The dividend payment remains the same as 

the previous case, and the last call option price was $2.40. In this case we observe that 

the Black and Scholes formula approximated better the last seen call option price. This 

may have happened because the time to expiration is far less than the previous case, 

so we can get a more realistic approximation.  

5.3.3 Sensitivity Analysis for Total Energies (TTE) Derivatives 

In this part of the analysis, we are also interested in seeing how the derivative values 

vary when the input variables for the Black-Scholes equation change. To accomplish 

that, I run a sensitivity analysis changing the stock price, strike price, time, interest 

rate, volatility, and dividend yield in a ceteris paribus context. The initial data used to 

simulate the figures bellow are those in Table 1 with 1-month maturity. The code used 

to generate the Figures is given in the Appendix. 

 

Figure 10: Stock Price Change and Black-Scholes Call Value 
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To generate the slope of the curve in Figure 10, I started with the price being $55 i.e., 

$5.6 below the true price to check the call’s value “Near-the-Money”. Then I added an 

$1 increase until the price hits $80, ceteris paribus. We can see in Figure 10 that as the 

value of the asset rises, so does the value of the call option. This makes intuitive sense 

because when we have a long position on a call option, we are making an estimate 

that the value of the underlying asset will rise, and we want that to happen, if we are 

just buying the call option by itself. Also, we can see that in the range [$55, $60] there 

is a different slope than the one in ($60, $80). This happens because the call option is 

“Near-the-Money”. Options contracts that are at or near the money often cost more 

than those that are out-of-the-money, where the price of the underlying instrument 

is much higher or lower than the strike price. If near-the-money options are slightly 

out of the money, they have intrinsic value; however, if they are slightly in the money, 

they have both intrinsic and extrinsic value. 

 

Figure 11: Stock Price Change and Black-Scholes Put Value 

The negative slope of put option value in Figure 11 makes intuitive sense as well. A 

put allows us to sell the underlying asset, as the price of TTE rises, the value of our put 

falls. But as the TTE stock price falls in value, then the value of our put option will 

increase because we can sell it at a given price and avoid having these losses. That’s 

also why put options are used as insurance in case the value of the stock does start to 

fall. 
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Figure 12: Strike Price Change and Black-Scholes Put, Call Value 

In Figure 12 the strike price for the call option is $60. Again, I started the price at $55 

and put in a $1 increment. As we start to increase the strike price for a call option, the 

value of the call option is falling. Given strike price is the point at which we can buy 

Total Energies’ stock. If TTE shares were trading at $55 but the call option that we hold 

is $60, we would not exercise it because we can just buy it in the spot market, and the 

call option would expire worthless. However, if the TTE’s share is trading at $58 and 

we have a call option with a strike price $55, we would just purchase shares at $55 

and sell at $55, making $3/share profit. 

For the put option, as the strike price increases the value of the option increases as 

well (Figure 12). E.g., TTE’s stock is trading at $65 but I bought a put option that allows 

me to sell TTE’s shares at $75. If that is the case, I would sell the shares I am holding 

making a $10 profit per share. 

Volatility is a very intriguing input since we cannot actually see it in the market. Figure 

13 shows that as volatility rises, both the value of a call option and the value of a put 

option rise as well. In both situations, the value of the derivative rises as volatility does. 

There is a rationale for that. Our option could end considerably above the current 

strike price or well below the current strike price and could generate a big return for 

a trader, making it more desirable if there is increased volatility. The volatility term I 

used to generate the Black-Scholes values, is the implied volatility, which was 31.28%. 

the starting value of the volatility is 1% and the increment I apply is also 1% till 50%.  
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Figure 13: Volatility Change and Black-Scholes Put, Call Value 

 

Figure 14: Time Change in Years and Black-Scholes Put, Call Value 
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The next input to change in a ceteris paribus context6 is time to expiry. In order to 

generate Figure 14, I expressed the time to expire in annualized terms. That is, the 

derivatives’ expiration was 30 calendar days, so 𝑇 =
30

365
= 0.08219 years. The 

starting time is the first month, where the call’s price is higher than the put’s, and the 

increment is 0.1 or 1.2 months or 36 days. The call option is “In-The-Money” and the 

put option “Out-Of-The-Money”.  

These curves both have positive slopes. This makes sense as, with longer time, the 

price can move more favorably up or down in the direction we wanted. However, it is 

very unlikely that the price of TTE will move widely in a very limited time frame, which 

is why time in general is more valuable. 

The next parameter to change is interest rate. For interest rate I used the 1-month 

treasury bill because the option’s time to expiry was 1 month. The interest rate in 

16/11/2022 was 3.77% but in Figure 15 the starting value is 0.1% with 1% increment.  

 

Figure 15: Interest rate Change and Black-Scholes Put, Call Value 

As the interest rate increase we can see that the value of the call option increases 

because in this case, holding a call option is akin to being short bonds and as interest 

rates increase bond values decrease. On the other side we have put options 

 
6 This indicates that the research also assumes that there are no dividend payments. The Figure would 
be different if dividend payments were made. (Hull, 2018) 
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decreasing as the interest rates increase since going long a put is similar to going long 

a bond. Though the slope of the curves is very elastic – almost perfectly elastic – so 

we cannot certainly say that interest rates are affecting much TTE’s derivatives. 

The last parameter to change is dividend yield. The dividend yield of the stock is 4.79%, 

though in Figure 16 it starts from 0.0% and a 1% increment is applied until it reaches 

7.5%. The value of a call option declines as dividend values rise. This is due to the fact 

that following a dividend payment, the stock's value will drop or will likely drop. The 

same is true of a put value. The value of the put will rise because we anticipate a 

decline in the share price once it goes ex-dividend. 

 

Figure 16: Dividend Yield Change and Black-Scholes Put, Call Value 

5.4 Heston SV 
The most significant stochastic model, which served as the basis for a number of 

versions in contemporary literature, is that of Heston (1993). When the underlying is 

correlated with volatility, Heston suggests a stochastic volatility model that is not 

dependent on the Black and Scholes (1973) model. He also further adjusts his model 

to take into consideration stochastic interest rates. Heston specifically makes the 

assumption that returns are produced by the following relationship in order to explain 

the dynamics of variance using a square root technique. 
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For the price of a European call option when the underlying assets are correlated with 

a volatility stochastic process, Heston has suggested a stochastic volatility model with 

a closed-form solution. 

The first differential equation of the model describes the stock price. We can think of 

this equation as a random walk with heteroskedastic variance term. Suppose that the 

price of a stock in the spot market is 𝑆𝑡, where 𝑡 is the specific time period. 𝜇 is the 

rate of return and 𝑣𝑡 is the instantaneous variance at a specific time period. The 

process followed by the stock price is as follows: 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑𝑊𝑡
1  

The second differential equation of the model describes the variance process which is 

also embedded in the first differential equation. The variance equation utilizes the 

logic of mean reversion – Ornstein-Uhlenbeck process. 𝜃 is the long-run average price 

variance and 𝜅 is the rate at which variance reverts to the long-run average price 

variance. 𝜉 is the volatility of volatility 𝑣𝑡. The variance process is as follows: 

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊𝑡
2 

𝑊𝑡
1,𝑊𝑡

2 are the Wiener processes whose properties are discussed in Chapter 3. 𝑊𝑡
1 is 

the Wiener process of the first differential equation and 𝑊𝑡
2 is the Wiener process of 

the second differential equation. The model requires that the two distinct Weiner 

processes that comprise the randomness be correlated, with instantaneous constant 

correlation. Hence, 

𝔼[𝑑𝑊𝑡
1𝑑𝑊𝑡

2] = 𝜌𝑑𝑡  

The dynamics of the model under a risk-neutral measure is as follows: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + √𝑣𝑡𝑆𝑡𝑑𝑊𝑡
1 

𝑑𝑣𝑡 = 𝜅(𝜃 − 𝑣𝑡)𝑑𝑡 + 𝜉√𝑣𝑡𝑑𝑊𝑡
2 

Where the only change is in the stock price process. 𝑟 is the risk-free rate which 

replaces 𝜇. 

Heston (1993) derives a closed form solution for European option pricing, using the 

characteristic functions. Those characteristic functions offer positive variances as 

opposed to Ornstein – Uhlenbeck process where we can get negative variances. 

5.4.1 Simulation of the Heston SV 

As discussed above, Heston SV offers a closed form solution using the characteristic 

functions for European Option pricing, so there is no need to discretize the model in 

order to get the option prices in a certain time frame. Though, there are certain cases 

where we would like to use Monte-Carlo simulation. In these cases, we should 

discretize our model to obtain outputs and one way to discretize the model is the 
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Euler’s discretization. The other one is Milstein’s discretization. For this purpose, I will 

use the Euler’s discretization (not Log-Euler) as described in Broadie and Kaya (2006), 

Van Haastrecht and Pelsser (2010), and Rouah (2013). So, the discretized model is: 

𝑑𝑆𝑖+1 = 𝑆𝑖𝑒
(𝑟− 

𝑣𝑖
2
)𝛥𝑡 + √𝑣𝑖𝛥𝑡𝑊𝑖+1

1

 

𝑣𝑖+1 = 𝑣𝑖 + 𝜅(𝜃 − 𝑣𝑡)𝛥𝑡 + 𝜉√𝑣𝑖𝛥𝑡𝑊𝑖+1
2  

The downside of Euler’s discretization is that we can get negative variances, so we will 

need to keep only the positive in the algorithm. 

Initial Asset Price (𝑺𝟎) 100 

Time in Years (𝑻) 1 

Number of Steps (𝑵) 252 

Number of Simulations (𝑴) 1000 

Risk-free rate (𝒓) 5% 

Mean reversion of variance (𝜿) 3 

Long-term mean of variance (𝜽) 4% 

Initial variance (𝒗𝟎) 6.25% 

Correlation between returns and asset 

prices (𝝆) 

 

0.7 

Volatility of volatility (ξ) 60% 

Table 2: Heston SV Simulation Parameters 

The methodology is straightforward. Using linear algebra, we are able to get the 

results much faster. First, we need to define a function in python that takes the inputs 

of the table 2 and outputs the stock price and the variance.  

The first sub step is to initialize three parameters, 𝑑𝑡, 𝜇, 𝜌. 𝑑𝑡 is the time in years over 

the number of the steps. The number of the steps is 252 because those are the stock 

market trading days, though the simulation will not change dramatically if we just 

substitute it with 365 days. Because we need to simulate a random multivariate 

process between two Wiener processes, we need to set: 

𝜇 =  [
0
0
] 

𝛴 = [
1 0.7
0.7 1

] 

Where 𝜇 is a vector with the expectations of the two processes which are zero, and 𝛴 

which is the Variance-Covariance matrix describing the relationship between these 

two processes. The main diagonal is the variance of those two processes and the 

correlation is 0.7 from table 2.  

The second sub step is to make two arrays that store the asset prices and variances 

and sample correlated wiener processes with size (𝑁 + 1 ×𝑀).  
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Figure 17: Heston SV Simulation with 𝝆 = 𝟎, 𝟗𝟖 
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Figure 18: Heston SV Simulation with 𝝆 = −𝟎, 𝟗𝟖 
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To sample correlated Wiener processes, we are using the multivariate normal 

distribution with mean 𝜇 and covariance 𝛴 with size (𝑁 ×𝑀).  

Lastly, we apply the recursive function with a simple loop from 1 to 𝑁 + 1. The Asset 

price and the variance functions are lists and the formula applied is the Euler 

discretization. For the variance recursion we need to use a maximum because, as 

previously mentioned, the Euler discretization may give negative variances, which is 

something we need to avoid.  

For visualization purposes I have got two cases for the correlation. A very positive one, 

𝜌 = 0,98 and a very negative one, 𝜌 = −0,98. Figures 17, 18 show the simulated 

Heston SV for each scenario. Figure 19 shows the asset price density 

 

Figure 19: Asset Price Density under different correlations in Heston SV 

The red curve shows the almost perfect correlation between returns and volatility and 

as we can see it has a very long tail. The leverage effect captured by Black (1976) was 

the opposite effect. This is where high volatility led to negative asset price returns. We 

can see that here in the negatively skewed distribution of 𝜌 = −0,98. So the Heston 

SV model can capture the leverage effect of Black (1976) and that is a really desired 

property of the model. 

  



41 

 

5.4.2 Heston SV Calibration – Total Energies (TTE) Stock 

In order to calibrate the Heston SV model, we need data from the financial markets7. 

Once the model is calibrated can be used to describe the market’s characteristics, but 

also be used for predictions. 

 TTE returns 
Observations 251 
Mean 0.118336 
Max 7.783977 
Min -7.929653 
Standard Deviation 2.193419 
Skewness -0,3801763 
Kurtosis 3,986263 
Jarque – Bera p-value 0,0041 
Shapiro – Wilk p-value 0,00914 

Table 3: TTE Returns – Descriptive Statistics 

Table 3 represents the descriptive statistics of TTE’s stock price. The observations are 

251 for the period December 1, 2021 – November 30, 2022 (one year of data). 

The mean return is approximately 11.83%. The Jarque – Bera test for normality of the 

returns indicates that are not normally distributed. Though, the sample is not 

sufficient for Jarque – Bera test to be precise. To avoid any statistical mistake, I 

performed the Shapiro – Wilk test, which also indicates that returns are not normally 

distributed. The value of kurtosis indicate that we have a very heavy tail as it is greater 

than 3. Skewness indicates a distribution skewed to the left as it is less than 0. 

Figure 20 shows the Stock price time series and returns. The trend of the stock cannot 

be identified immediately, as there are periods with positive linear trend (December 

2021 – March 2022) and periods with negative linear trend (June 2022 – July 2022). 

This would easily be tested with Chow’s test for structural breaks, but it would be out 

of the scope of this chapter. Looking at the returns graph in Figure 20, we cannot seem 

to find any volatility clustering effects, except March 2022.  

The calibration process8 of Heston SV model is conducted in two phases. The first 

phase of the process is to calculate the returns, residuals, realized variance, expected 

variance and the log likelihood function. The returns are calculated by log-differencing 

the stock price. Then the mean of the returns is calculated, and that is the drift term 

𝜇 of our model. The residuals of the model are calculated taking the difference 

between the return and the mean (drift term). Realized variance is calculated by 

 
7 The data are derived from Yahoo Finance. The descriptive statistics (Table 3) is produced using Stata 
14. Figure 20 is produced by Stata 14 as well. 
8 The calibration process is conducted in Microsoft excel using Solver and non-linear gradient descent 
algorithm. 
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squaring the residuals. The expected variance is calculated. The first value of expected 

variance is just the long run variance. The next day and so on, the variance will change 

given kappa and theta (𝜅, 𝜃). So, the expected variance at time 𝑡 is the realized 

variance plus kappa multiplied by the difference between theta and the realized 

variance of the previous day. So: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑡 = 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑡−1 + 𝜅(𝜃 − 𝑅𝑒𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑡−1) 

 

Figure 20: TTE Price and Returns 

Finally, before the optimization phase Log-Likelihood must be calculated. Log-

Likelihood is estimated using the joint probability density: 

𝑓(𝑥, 𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦√1 − 𝜌2
𝑒
−

(
𝑥−𝜇𝜒
𝜎𝑥

)
2

−2𝜌(
𝑥−𝜇𝜒
𝜎𝑥

)(
𝑦−𝜇𝑦
𝜎𝑦

)+(
𝑦−𝜇𝑦
𝜎𝑦

)
2

2(1−𝜌2)  

After estimating the log-likelihood values, I sum them up. At the same time, I use the 

IFERROR function in excel to speed up convergence and relax constraints on variables, 

so I do not need to put them manually in Solver. So, if there is an error, the function 

will give me a very large negative value that would teach the Solver to not venture to 

domains where we have errors, or not well-behaved functions. 

So, the starting phase parameters that will later be calibrated are shown in table 4: 
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Long-run Variance (𝜽) 4,811089 

Variance mean-reversion (𝜿) 1 

Volatility of volatility (𝝃) 8,362627 

Correlation (𝝆) 0 

Starting Variance (𝒗𝟎) 4,811089 

Drift (𝝁) 0,118334 

Starting Log-likelihood -1439,5593519793 

Table 4: Heston SV Pre-Calibration Values 

The long-run variance equals to the sample variance of the residuals. The pre-

calibration value of kappa is assumed to be 1. The starting specification assumes 

constant variance, which means that we have perfect mean reversion. No matter what 

happens, the next day variance reverts to the long run value. If 𝜅 < 1 that would imply 

that the mean reversion process is not perfect – variance reverts to the long run value 

after many days or even weeks. The volatility of volatility is calculated by taking the 

sample standard deviation of realized variance. Also, the correlation between returns 

and variance is assumed to be zero – variance shocks are independent. The starting 

variance of the specification is equal to the long run variance. The drift term is just the 

mean of the returns. The starting log-likelihood value of the specification is -1439.56. 

As the specification gets optimized, we manage to increase the log-likelihood. 

As the specification of the model assumes kappa to be 1, the expected variance will 

be the same for each time step. Changing it, gives us a stochastic specification of the 

model, as variance changes randomly. 

The second phase of the calibration is the optimization of log-likelihood with respect 

to the parameters in Table 4.  

Long-run Variance (𝜽) 4,711798009 

Variance mean-reversion (𝜿) 0,85645659 

Volatility of volatility (𝝃) 8,25773478 

Correlation (𝝆) -0,263081559 

Starting Variance (𝒗𝟎) 13,72501634 

Drift (𝝁) 0,18 

Optimized Log-likelihood -1426,9898203758 

Table 5: Heston SV Calibrated Parameters 

Because I used the IFERROR function there is no need to manually put the constraints 

in Solver. The optimization problem we are facing can be written as follows: 

max 𝐿𝑜𝑔 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑠. 𝑡. 

{
𝜃, 𝑣0, 𝜉, 𝜇 > 0
0 < 𝜅 < 1
−1 ≤ 𝜌 ≤ 1
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Solver using Non-Linear Gradient Descent gives the optimized values in table 5. The 

results are quite interesting. The correlation between returns and variance is negative, 

meaning that innovations to mean and variance is inversely related. This is somewhat 

expected as the underlying is a stock, which holds higher risk than e.g., bonds. That 

could also represent flight-to-quality or shocks to overall certainty that represents 

investors discouraged from holding a risky asset which is a stock and preferring a 

riskless asset such as a bond. The drift is almost 63% larger than the uncalibrated mean 

and the mean reversion is very high, meaning that almost instantly the variance 

returns to its long-run level. The long-run variance is quite the same as the 

uncalibrated one, but the starting variance is much bigger from the corresponding 

uncalibrated, almost 185% higher. Lastly, the log-likelihood has been increased by 

almost 12.58 units. 

However, we have to test if this increase in Log-likelihood is statistically significant. To 

answer this question, I apply a Likelihood ratio test: 

𝐿𝐿 = 2(𝐿𝐿0 − 𝐿𝐿1) ~𝜒6
2  

Where 𝐿𝐿0 is the uncalibrated Log-likelihood and 𝐿𝐿1 is the calibrated Log-likelihood. 

The distribution following this statistical test is chi-squared with six degrees of 

freedom. 

Starting Log-likelihood -1439,5593519793 

Optimized Log-likelihood -1426,9898203758 

Likelihood ratio 25,13906321 

p-value 0,000 

Table 6: Heston SV Calibration Evaluation 

The p-value of the test shows strong statistical significance at 1% significance level. 

This means that the Heston model adds explanatory power over the constant variance 

specification. So, the stochastic volatility can explain more accurately the variation of 

Total Energies’ Stock price at the given time period than the constant volatility models. 

Though accurate, Heston SV cannot be used to explain prices for all assets in the 

financial markets. The same analysis has been used for NASDAQ Composite for the 

same time period, but Heston SV was rejected over the constant volatility 

specification. Though the calibration process has given no errors, the Likelihood ratio 

test indicated that the constant volatility model has better fit over the data with a p-

value of 0.99.  

5.4.3 Heston SV – Forecasting Total Energies (TTE) Stock Price 

In order to forecast the stock price of Total Energies, we need the calibrated 

parameters of the previous section (see table 5). The prediction is conducted for the 

next day, 1/12/2022. The formula used for this purpose is the Euler discretization of 

the previous section and the whole process is performed in python. 
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In order to get a good approximation, I simulate the process 1000 times. Therefore, 

the predicted stock price is a (1000 × 1) matrix containing different prices for 

different Wiener process values. 

Stock pricet (30/11/2022) $62.42 

Actual closing price (01/12/2022) $61.70 

1-year Treasury Bill 4.66% 

Realized variancet (30/11/2022) 4.563114037 

Mean predicted closing price 

(01/12/2022) 

 

$61.98 

Mean Absolute Percentage Error 

(MAPE) 

0.7748% 

Root Mean Square Error (RMSE) 0.6015 

Jarque – Bera (predicted price) 0.05611 

Jarque – Bera p-value (predicted price) 0.97233 

Table 7: Data and Results from Heston SV Forecast 

The process from which I got the predicted price is similar to that on the simulations 

section. The mean matrix is filled with the calibrated drift terms, as the data showed 

that the calibrated drift term performs better than the specification with zero mean. 

The covariance array is the same as the simulations’ section, but the covariance values 

are the calibrated rho.  

Then I fill two particular arrays (Stock price and variance) with the starting values. The 

size of those matrices is (252 × 1000) as we have a thousand simulations of the 

closing price the next day and 252 trading days. The stock price array is filled with the 

closing price of 30/11/2022 that is, $62.42.  The variance array is filled with the 

calibrated starting variance of table 5.  

Next, I sample correlated Wiener processes from the multivariate normal distribution 

with mean the matrix of the calibrated drift terms and covariance, the calibrated 

covariance matrix. The size of the Wiener array is (252 × 1000) to be able to calculate 

the Euler discretization.  

Then I calculate the predicted prices and variances arrays given the realized variance 

of the previous day, the 1-year interest rate and the closing price of the previous day. 

So, the prediction for (01/12/2022) is an array with a thousand values, all with respect 

to (01/12/2022). The predicted values are distributed as shown in Figure 21.  

As we can see, the predicted price is slightly bigger than the real price. The difference 

between the predicted price and the mean predicted price is about 28 cents. MAPE is 

0.77% which is a desired value. It demonstrates that the difference between the real 

price and the predicted price is below the 1% on average. The root mean square error 

is also significantly low.  



46 

 

Figure 21: Frequency Distribution of Heston SV predicted Price 

What we can see from Figure 21 is that the kernel density of the predicted price seems 

to be close to normal distribution. For this reason, I conducted a normality test via 

Jarque – Bera test. The p-value of the test indicates that we can safely not reject the 

null hypothesis. The predicted price is normally distributed. The result of this Figure is 

that the predicted price is normally distributed. The predicted price is ±1𝜎 around the 

mean as well as the real price, as seen in the figure.  

6. Conclusion 
In the literature, stochastic processes have been used extensively to price various 

stock market assets, to predict their prices or even to calculate and predict their risk. 

In this thesis, Ι first present the most basic stochastic processes and the properties 

they exhibit that help explain various stock market phenomena (e.g., high volatility); 

the Wiener process is used to describe the variance of an underlying, while the Poisson 

process is used to model jumps in volatility.  

The above processes are then simulated using Python. In this thesis an attempt is 

made to implement the above processes, their statistics, distributions etc. The 

difficulty of simulating these processes lies in the difficulty of coding them in a 

programming language, having been the biggest obstacle of this Thesis.  

Then, the empirical analysis is presented. In this section, two models were analyzed. 

The most basic model in the literature, the Black-Scholes-Merton and then the Heston 
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SV, which implements the feature of random variance, that is missing in the former. 

In Black-Scholes-Merton, Total Energies’ derivatives were used to achieve fair pricing. 

Total Energies' call option with a three-month expiration and an exercise price of 

$62.50 is overpriced according to Black-Scholes-Merton. The fair price of the option is 

$2.99 while the market is trading at $2.46. The same is true for the call option with a 

one-month expiration as the fair price is $2.43 while the market price is $2.40. This 

finding indicates that arbitrage opportunities exist in the market, and we expect 

option traders to buy en masse as the market price is less than the fair price. The 

second finding of the Black-Scholes-Merton analysis is that the effect of the interest 

rate and dividend yield does not affect the price of both the call option and the put 

option as much. The relationship between Total Energies' options to an increase in 

interest rates or dividend yields is almost completely elastic over the period studied.  

In Heston SV, I used the stock price of Total Energies to calibrate the parameters of 

the model. The necessary tests performed showed that the specification with 

stochastic volatility is clearly better than fixed volatility. The calibrated parameters are 

then used to predict the stock price. The forecasting methodology used in this thesis 

appears to provide valid and accurate results. The prediction error is infinitesimal. 

However, the Heston SV may not always be the most reliable model as comparison 

with a corresponding fixed-variance specification showed that the latter is clearly 

better. 

Finally, it would be quite interesting for future literature to examine the strength of 

stochastic variability models trained by intelligent methods such as neural networks. 

Large Silicon Valley companies such as Google and Microsoft have developed APIs that 

could be used to train stochastic volatility models (Tensorflow, Keras, Microsoft Azure 

etc) and optimize their predictive capability.   
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Bertoin, J. (1996). Lévy Processes. Cambridge University Press. 

Black, F. (1976). Studies of stock price volatility changes. Proceedings of the Business 

and Economic Statistics Section, American Statistical Association, 177–181. 

Black, F. and Scholes, M. (1973). The Pricing of Options and Corporate 

Liabilities. Journal of Political Economy, 81(3), pp.637–654. 

Broadie, M. and Kaya, Ö. (2006). Exact Simulation of Stochastic Volatility and Other 

Affine Jump Diffusion Processes. Operations Research, 54(2), pp.217–231. 

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical 

issues. Quantitative Finance, 1(2), pp.223–236. 

Cox, J.C., Ingersoll, J.E. and Ross, S.A. (1985). A Theory of the Term Structure of Interest 

Rates. Econometrica, 53(2), p.385. 

Christoffersen, P., Heston, S. and Jacobs, K. (2009). The shape and term structure of 

the index option smirk: Why multifactor stochastic volatility models work so 

well. Management Science, 55(12), pp.1914-1932. 

Derman, E. and Kani, I. (1998) Stochastic implied trees: Arbitrage pricing with 

stochastic term and strike structure of volatility, International Journal of 

Theoretical and Applied Finance, 1 (1), pp.61–110. 

Dupire, B. (1994) Pricing with a smile. Risk Magazine, 7 (1), pp.18–20. 

Eberlein, E. (2009). Jump–Type Lévy Processes. Handbook of Financial Time Series, 

pp.439–455. 

Embrechts, P., Frey, R. and Furrer, H. (2001). Stochastic processes in insurance and 

finance. Handbook of Statistics, pp.365–412. 

Fama, E.F. (1965). The Behavior of Stock-Market Prices. The Journal of Business, 38(1), 

pp.34–105. 

Hirsa, A. and Neftci, S.N. (2014). An introduction to the mathematics of financial 

derivatives. Amsterdam: Academic Press. 



49 

Hull, J. and A. White (1987). The pricing of options on assets with stochastic volatilities. 

Journal of Finance 42, 281–300. 

Hull, J.C. (2018). Options, Futures, and Other Derivatives. 9th ed. Harlow Etc.: Pearson 

Educational Limited. 

Itô, K. (1942). On stochastic processes (I) Infinitely divisible laws of probability. 

In Japanese journal of mathematics: transactions and abstracts, 18, pp.261-

301. The Mathematical Society of Japan. 

Karatzas, I. and Shreve, S.E. (1998). Brownian motion and stochastic calculus. New 

York: Springer, Cop. 
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Appendix 
  

The code written below simulates the Figures 1-5. First of all, the symmetric random 

walk using Numpy. I set a list of two numbers [-1,1] so the path goes up by one or 

down by one, then I simulate the steps of the paths for the number of simulations and 

make use of Numpy’s Concatenate and Cumsum to be able to plot the paths into one 

single graph. I also show the quadratic variation and variance for this process. Second, 

I simulate the scaled symmetric random walk with the same methodology and plot 

the graph. Third, I show the limit of the binomial distribution making use of the nCr 

and a for loop in python. I ran the code 3 times, the first time I was able to get Figure 

3, the second time Figure 4, and the last time I ran the code for 1000 permutations, 

but I was unable to get a result due to memory errors. Lastly, I simulate the Brownian 

Motion by implementing the formula. The code exports Figure 5. 
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# Imports 

import math 

import itertools 

import numpy as np 

import scipy.stats as stats 

import matplotlib.pyplot as plt 

 

# SYMMETRIC RANDOM WALK 

 

# Parameters 

M = 10 # number of simulations 

t = 10 # Time 

 

random_walk = [-1, 1] 

steps = np.random.choice(random_walk, size=(M,t)).T 

origin = np.zeros((1,M)) 

rwPaths = np.concatenate([origin, steps]).cumsum(axis=0) 

 

plt.plot(rwPaths) 

plt.xlabel("Years (t)") 

plt.ylabel("Move") 

plt.show() 

 

# Quadratic Variation and Variance Functions 

# Create Quadratic variation and Variance functions 

quadratic_variation = lambda x: round(np.square(x[:-1]-

x[1:]).sum(),3) 

variance = lambda x: round(np.var(x, axis=0), 3) 

[quadratic_variation(path) for path in rwPaths.T[:4]] 

 

[variance(path) for path in rwPaths[1:11]] 

 

# SCALED SYMMETRIC RANDOM WALK 

# Parameters 

M = 10 # number of simulations 

t = 10 # Time 

n = 10 

random_walk = [-1, 1] 
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steps = (1/np.sqrt(n)) * np.random.choice(random_walk, 

size=(M,t*n)).T 

origin = np.zeros((1,M)) 

srwPaths = np.concatenate([origin, steps]).cumsum(axis=0) 

time = np.linspace(0,t,t*n+1) 

ttime = np.full(shape=(M, t*n+1), fill_value=time) 

ttime = ttime.T 

 

plt.plot(ttime,srwPaths) 

plt.xlabel("Years (t)") 

plt.ylabel("Move") 

plt.title("Scaled Symmetric Random Walk") 

plt.show() 

 

# Create Quadratic variation and Variance functions 

quadratic_variation = lambda x: round(np.square(x[:-1]-

x[1:]).sum(),3) 

variance = lambda x: round(np.var(x,axis=0),3) 

[quadratic_variation(path) for path in rwPaths.T[:4]] 

 

[variance(path) for path in rwPaths[1:11]] 

 

 

# LIMIT OF BINOMIAL DISTRIBUTION 

 

 

# As I change (n), I tend to get more precise approximation of 

Normal Distribution 

n = 10 

t = 10 

 

# Combinations 

def nCr(n,k): 

    f = math.factorial 

    return f(n) / (f(k) * f(n-k)) 

 

permutations = [nCr(n*t,k)*(0.5)**(n*t) for k in 

range(int(n*t)+1)] 

 

W_nt = lambda n,t: 1/np.sqrt(n) * np.arange(-n*t,n*t+1,2) 

 

outcomes = W_nt(n,t) 

plt.bar(outcomes,[perm/(outcomes[1]-outcomes[0]) for perm in 

permutations],outcomes[1]-outcomes[0], 

        label='{0} scaled RW'.format(n)) 

 

x = np.linspace(-3*np.sqrt(t), 3*np.sqrt(t), 100) 

plt.plot(x, stats.norm.pdf(x, 0, np.sqrt(t)), 'k-',label='normal 

dist') 

 

plt.xlim(-3*np.sqrt(t),3*np.sqrt(t)) 

plt.title("10 Scaled Random Walk processes under normal 

distribution") 

plt.ylabel("Probability") 

plt.xlabel("Move") 

plt.legend() 
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plt.show() 

 

 

# BROWNIAN MOTION 

 

# Parameters 

M = 100 # number of simulations 

t = 10 # Time 

n = 100 # steps we want to see 

dt = t/n # time step 

 

steps = np.random.normal(0, np.sqrt(dt), size=(M, n)).T 

origin = np.zeros((1,M)) 

bmPaths = np.concatenate([origin, steps]).cumsum(axis=0) 

 

time = np.linspace(0,t,n+1) 

ttime = np.full(shape=(M, n+1), fill_value=time) 

ttime = ttime.T 

plt.plot(ttime,bmPaths) 

plt.xlabel("Years (t)") 

plt.ylabel("Move") 

plt.show() 

 

[quadratic_variation(path) for path in bmPaths.T[:4]] 

 

[variance(path) for path in bmPaths[1:11]] 

  

The code bellow simulates the Geometric Brownian Motion and exports Figure 6. First 

of all, I set the values to the parameters and simulate the Geometric Brownian Motion 

paths. The formula that I use to simulate the stock price is given in Chapter 3.1.5. Then 

I define the time interval correctly and giving the arrays the same size in order to get 

Figure 6. 
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import numpy as np 

import matplotlib.pyplot as plt 

 

# PARAMETERS 

 

# drift coefficient 

mu = 0.1 

# number of steps 

n = 100 

# time in years 

T = 1 

# number of simulations 

M = 100 

# initial stock price 

S0 = 100 

# volatility in terms of standard deviation 

sigma = 0.3 

 

 

# SIMULATING GBM PATHS 
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# calc each time step 

dt = T/n 

 

# simulation using numpy arrays 

St = np.exp( 

    (mu - sigma ** 2 / 2) * dt 

    + sigma * np.random.normal(0, np.sqrt(dt), size=(M, n)).T # 

Transposed in order to get the simulation for each time step 

) 

 

# include array of ones 

St = np.vstack([np.ones(M), St]) 

 

St = S0 * St.cumprod(axis=0) 

 

# CONSIDER TIME INTERVALS IN YEARS 

 

# Define time interval correctly 

time = np.linspace(0, T, n+1) 

 

# Require numpy array that is the same shape as St 

ttime = np.full(shape=(M, n+1), fill_value=time).T 

 

plt.plot(ttime, St) 

plt.xlabel("Years $(t)$") 

plt.ylabel("Stock Price $(S_t)$") 

plt.title( 

    "Simulation of Geometric Brownian Motion\n $dS_t = \mu S_t dt 

+ \sigma S_t dW_t$\n $S_0 = {0}, \mu = {1}, \sigma = 

{2}$".format(S0, mu, sigma) 

) 

plt.show() 

  

  

The code below simulates Poisson and Compound Poisson process. The first part of 

the code is the Poisson process. To simulate that process, I define a function in python 

with two arguments, the Poisson intensity which is mu9 and the number of events to 

simulate. To get the simulated Poisson values I used the inverse cumulative 

distribution function (Chapter 4.2). The code exports Figure 7. The Second part of the 

code is the Histogram of the Poisson process to make sure the simulated process is 

correct. I make a hundred thousand iterations and store them to a variable. Then I 

used Scipy’s stats package to give me the same amount of Poisson random distributed 

variables. I plot both of the variables into one single plot to check if they match. The 

result is Figure 8. The last part of the code is the simulation of the Compound Poisson 

process. To simulate the Compound Poisson, we need a secondary distribution and 

generate variables according to it. I used the binomial distribution with 20 trials and 

probability 0.5. Plotting the process gives Figure 9. 

 
9 I did not use “Lambda” to make sure that the reader does not get confused by Python’s lambda 
function. 
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# POISSON PROCESS 

 

# Imports 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.stats import poisson 

 

# Parameters 

mu = 15 

event_sims = 50 

 

# Poisson process 

def gen_poisson_proc(mu, num_events): 

    time_intervals = -np.log(np.random.random(num_events)) / mu 

    total_events = time_intervals.cumsum() 

    events = pd.DataFrame(np.ones(num_events), 

index=total_events) 

    events[0] = events[0].cumsum() 

 

    return events 

 

# Poisson process plot 

plt.plot(gen_poisson_proc(mu, event_sims), marker='o', 

linestyle='none') 

plt.title("Simulation of Poisson Process") 

plt.xlabel("Time") 

plt.ylabel("Events") 

plt.show() 

 

# Histogram of the Poisson process 

results = [] 

for x in range(100000): 

    process = gen_poisson_proc(mu, event_sims) 

    results.append(process[:1][0].iloc[-1]) 

 

plt.hist(results, bins=np.linspace(0, 35, 36), alpha=0.5, 

label='Simulated poisson', ec='black') 

# Generating Poisson random variates and plotting both the 

process and the random variates in the same histogram 

r = poisson.rvs(mu, size=100000) 

plt.hist(r, bins=np.linspace(0, 35, 36), alpha=0.5, 

label='Poisson random variates', ec='black') 

plt.title("Poisson-Distributed Variables") 

plt.ylabel("Count") 

plt.xlabel("X") 

plt.legend() 

plt.show() 

 

# COMPOUND POISSON 

def binomial_gen(num_events): 

    return np.random.binomial(20, 0.5, num_events) 

 

def gen_Compound_poisson_proc(mu, num_events, generator): 

    time_intervals = -np.log(np.random.random(num_events)) / mu 

    total_events = time_intervals.cumsum() 
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    events = pd.DataFrame(generator(num_events), 

index=total_events) 

    events[0] = events[0].cumsum() 

 

    return events 

 

plt.plot(gen_Compound_poisson_proc(mu, event_sims, binomial_gen), 

marker='o', drawstyle='steps-post') 

plt.title("Simulation of Compound Poisson Process") 

plt.xlabel("time") 

plt.ylabel("events") 

plt.show() 

  

The code below uses the Stock price, the Strike Price, the interest rate, the days to 

expiry, the volatility (implied volatility), and the dividend payment in order to simulate 

the call and put option prices in Table 1. To simulate the prices with Black and Scholes 

formula, I define a function in Python which takes the above as inputs and returns the 

call and put price. The first part of the function calculates 𝑑1 and 𝑑2 as shown in the 

5th chapter. Then, it calculates the call and put prices using the cumulative distribution 

function. In the end of the code, I calculate the prices for given data. 
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import numpy as np 

from scipy import stats 

import matplotlib.pyplot as plt 

 

# Definitions 

 

# Current Stock Price 

S = 60.60 

# Strike Price 

K = 60 

# Interest rate 

int_rate = 0.0377 

# Days till expiration - annualized (16-11-2022 : 17-2-2023) 

T = 30 / 365 

# Volatility 

sigma = 0.3128 

# Dividend 

dividend = 0.0479 

 

 

# Black and Scholes Function 

def black_scholes(S, K, int_rate, T, sigma, dividend): 

    # Calculation of d1, d2 

    d1 = (np.log(S / K) + (int_rate - dividend + sigma ** 2 / 2) 

* T) / (sigma * np.sqrt(T)) 

    d2 = d1 - sigma * np.sqrt(T) 

 

    # Call, Put prices calculation 

    call = stats.norm.cdf(d1) * S * np.exp(1) ** (-dividend * T) 

- stats.norm.cdf(d2) * K * np.exp(1) ** (-int_rate * T) 

    put = stats.norm.cdf(-d2) * K * np.exp(1) ** (-int_rate * T) 

- stats.norm.cdf(-d1) * S * np.exp(1) ** ( 
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                -dividend * T) 

 

    return print('The call price is:', call, '. The put value 

is:', put) 

 

 

black_scholes(S, K, int_rate, T, sigma, dividend) 

 

# Three-month 

black_scholes(60.26, 62.50, 0.0431, 93/365, 0.3311, 0.0479) 

# The call price is: 2.998730525746865 . The put value is: 

5.287115560748681 

 

# One-month 

black_scholes(60.60, 60, 0.0377, 30/365, 0.3128, 0.0479) 

# The call price is: 2.4338242126586813 . The put value is: 

1.8863064922104549 

  

The following code outputs Figures 10-16. First of all, I make sure I define every input 

of the Black-Scholes function so I do not have to write down values every time I have 

to call a plot. Those values are the one-month data described at Table 1. Then I use 

the define utility of Python to create a function called “black_scholes”, which uses 𝑑1 

and 𝑑2 to calculate the call and put prices. The function returns a list with two values. 

The first value [0] gives the call price and the second value [1] gives the put price.  

Then I start changing the parameters. First of all, TTE’s share price. The starting value 

is 55 and the ending value is 80. Within the plt.plot command I use a for loop to start 

changing the Stock price, but all other parameters remain the same (ceteris paribus). 

I am doing the same for the put price and get Figures 10, 11. 

Then I start changing the strike price. The starting value is 55 and the ending value is 

80. Similar to the previous case, I use a for loop within the plt.plot command which 

changes only the value of the Strike price, ceteris paribus. I apply the same 

methodology for the put option and run the two pieces of code together to get Figures 

12, 13.  

I am using the same methodology for all parameters. The resulting Figures are 14-16. 
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 12 

import numpy as np 

from scipy import stats 

import matplotlib.pyplot as plt 

 

# Definitions 

 

# Current Stock Price 

S = 60.60 

# Strike Price 

K = 60 

# Interest rate 

int_rate = 0.0377 
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# Days till expiration - annualized (16-11-2022 : 17-2-2023) 

T = 30 / 365 

# Volatility 

sigma = 0.3128 

# Dividend 

dividend = 0.0479 

 

 

# Black and Scholes Function 

def black_scholes(S, K, int_rate, T, sigma, dividend): 

    # Calculation of d1, d2 

    d1 = (np.log(S / K) + (int_rate - dividend + sigma ** 2 / 2) 

* T) / (sigma * np.sqrt(T)) 

    d2 = d1 - sigma * np.sqrt(T) 

 

    # Call, Put prices calculation 

    call = stats.norm.cdf(d1) * S * np.exp(1) ** (-dividend * T) 

- stats.norm.cdf(d2) * K * np.exp(1) ** (-int_rate * T) 

    put = stats.norm.cdf(-d2) * K * np.exp(1) ** (-int_rate * T) 

- stats.norm.cdf(-d1) * S * np.exp(1) ** ( 

                -dividend * T) 

 

    return [call, put] 

# In order to visualize the prices of the call and the put 

option, I had to return a list on the function 

 

black_scholes(S, K, int_rate, T, sigma, dividend) 

 

# ------------------Parameter changes------------------ 

 

# Underlying Asset Price - CALL 

plt.plot(range(55, 80), [black_scholes(x, K, int_rate, T, sigma, 

dividend)[0] for x in range(55, 80)], lw=2.5, label='Call') 

plt.yticks(range(5, 30, 5), ['$'+str(i) for i in range(5, 30, 

5)]) 

plt.xticks(range(55, 90, 5), ['$'+str(i) for i in range(55, 90, 

5)]) 

plt.xlabel('TTE Stock Price') 

plt.ylabel('Black-Scholes Call Value') 

plt.title("Stock Price Change") 

plt.grid() 

 

# Underlying Asset Price - PUT 

plt.plot(range(55, 75), [black_scholes(x, K, int_rate, T, sigma, 

dividend)[1] for x in range(55, 75)], lw=2.5, color='red', 

label='Put') 

plt.yticks(range(0, 10), ['$'+str(i) for i in range(0, 10)]) 

plt.xticks(range(55, 75, 5), ['$'+str(i) for i in range(55, 75, 

5)]) 

plt.xlabel('TTE Stock Price') 

plt.ylabel('Black-Scholes Put Value') 

plt.title("Stock Price Change") 

plt.grid() 

 

# Strike Price - CALL 
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plt.plot(range(55, 80), [black_scholes(S, x, int_rate, T, sigma, 

dividend)[0] for x in range(55, 80)], lw=2.5, label='Call') 

plt.yticks(range(0, 8), ['$'+str(i) for i in range(0, 8)]) 

plt.xticks(range(50, 90, 5), ['$'+str(i) for i in range(50, 90, 

5)]) 

plt.xlabel('Strike Price') 

plt.ylabel('Black-Scholes Value') 

plt.title("Strike Price Change") 

plt.legend() 

 

# Strike Price - PUT 

plt.plot(range(55, 80), [black_scholes(S, x, int_rate, T, sigma, 

dividend)[1] for x in range(55, 80)], lw=2.5, color='red', 

label='Put') 

plt.yticks(range(0, 25, 5), ['$'+str(i) for i in range(0, 25, 

5)]) 

plt.xticks(range(50, 90, 5), ['$'+str(i) for i in range(50, 90, 

5)]) 

plt.xlabel('Strike Price') 

plt.ylabel('Black-Scholes Value') 

plt.title("Strike Price Change") 

plt.legend() 

plt.grid() 

 

# Volatility - CALL 

plt.plot(np.arange(0.01, 0.5, 0.01), [black_scholes(S, K, 

int_rate, T, x, dividend)[0] for x in np.arange(0.01, 0.5, 

0.01)], lw=2.5, label='Call') 

plt.yticks(range(0, 5), ['$'+str(i) for i in range(0, 5)]) 

plt.xlabel('Volatility') 

plt.ylabel('Black-Scholes Value') 

plt.title("Volatility Change") 

plt.legend() 

 

# Volatility - PUT 

plt.plot(np.arange(0.01, 0.5, 0.01), [black_scholes(S, K, 

int_rate, T, x, dividend)[1] for x in np.arange(0.01, 0.5, 

0.01)], lw=2.5, color='red', label='Put') 

plt.yticks(range(0, 5), ['$'+str(i) for i in range(0, 5)]) 

plt.xlabel('Volatility') 

plt.ylabel('Black-Scholes Value') 

plt.title("Volatility Change") 

plt.legend() 

plt.grid() 

 

# Time - CALL 

plt.plot(np.arange(0.08, 3, 0.1),[black_scholes(S, K, int_rate, 

x, sigma, dividend)[0] for x in np.arange(0.08, 3, 0.1)], 

lw=2.5, label='Call') 

plt.yticks(range(0, 15, 3), ['$'+str(i) for i in range(0, 15, 

3)]) 

plt.xlabel('Time (in Years)') 

plt.ylabel('Black-Scholes Value') 

plt.title("Time Change in Years") 

plt.legend() 
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# Time - PUT 

plt.plot(np.arange(0.08, 3, 0.1), [black_scholes(S, K, int_rate, 

x, sigma, dividend)[1] for x in np.arange(0.08, 3, 0.1)], 

lw=2.5, color='red', label='Put') 

plt.yticks(range(0, 15, 3), ['$'+str(i) for i in range(0, 15, 

3)]) 

plt.xlabel('Time (in Years)') 

plt.ylabel('Black-Scholes Value') 

plt.title("Time Change in Years") 

plt.legend() 

plt.grid() 

 

# Interest Rates - CALL 

plt.plot(np.arange(0.001, 0.075, 0.01), [black_scholes(S, K, x, 

T, sigma, dividend)[0] for x in np.arange(0.001, 0.075, 0.01)], 

lw=2.5, label='Call') 

plt.yticks(range(0, 5), ['$'+str(i) for i in range(0, 5)]) 

plt.xlabel('US 1-Month Treasury Bill') 

plt.ylabel('Black-Scholes Value') 

plt.title("Interest rate Change") 

plt.legend() 

 

# Interest Rates - PUT 

plt.plot(np.arange(0.001, 0.075, 0.01), [black_scholes(S, K, x, 

T, sigma, dividend)[1] for x in np.arange(0.001, 0.075, 0.01)], 

lw=2.5, color='red', label='Put') 

plt.yticks(range(0, 5), ['$'+str(i) for i in range(0, 5)]) 

plt.xlabel('US 1-Month Treasury Bill') 

plt.ylabel('Black-Scholes Value') 

plt.title("Interest rate Change") 

plt.legend() 

plt.grid() 

 

# Dividend Yield - CALL 

plt.plot(np.arange(0.0, 0.075, 0.01), [black_scholes(S, K, 

int_rate, T, sigma, x)[0] for x in np.arange(0.0, 0.075, 0.01)], 

lw=2.5, label='Call') 

plt.yticks(range(0, 5), ['$'+str(i) for i in range(0, 5)]) 

plt.xlabel('Dividend Yield Change') 

plt.ylabel('BSM Euro Call Value') 

plt.title("Dividend Yield Change") 

plt.legend() 

 

# Dividend Yield - PUT 

plt.plot(np.arange(0.0, 0.075, 0.01), [black_scholes(S, K, 

int_rate, T, sigma, x)[1] for x in np.arange(0.0, 0.075, 0.01)], 

lw=2.5, color='red', label='Put') 

plt.yticks(range(0, 5), ['$'+str(i) for i in range(0, 5)]) 

plt.xlabel('Dividend Yield Change') 

plt.ylabel('Black-Scholes Value') 

plt.title("Dividend Yield Change") 

plt.legend() 

plt.grid() 
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The following python code generates Figures 17-19. First of all, I set the parameters 

for the Heston SV model simulation. Then I use a python function in order to produce 

the simulation using Euler’s discretization. The time difference is the time in years over 

the steps. I am using a year’s trading days for 𝑁. Then I construct a numpy array 

containing the expected values of the Wiener processes, which are zero. The 

covariance matrix is a 2𝑥2 matrix with variance 1 and covariance 𝜌. Then I make an 

empty numpy array for the asset price and the variance with (𝛮 + 1 × 𝑀) shape. We 

need this shape because we are taking into account the initial value of the asset price 

and variance. Then I sample the Wiener processes from multivariate normal 

distribution and the inputs of this function are the expected value and the covariance 

matrices I constructed before. The shape we need is (𝑁 × 𝑀). Then I simply apply the 

recursion from 1 to 𝑁 + 1, because again, we are taking into account the initial value 

of the process. The recursion stores in the empty lists of asset price and variance the 

values according to Euler’s discretization. Lastly, the function I made outputs the asset 

price and variance. The visualization technique for this simulation starts from row 45 

and ends in row 67. The output is Figures 17-18. 

In order to show the asset price densities, I have taken two distinct cases. The first one 

is an almost perfect positive correlation between returns and variance, and the second 

one is an almost perfect negative correlation between these two. I receive the 

simulation for asset price and variance according to those two different cases and 

visualize the result using seaborn and matplotlib. The code for visualization begins 

from row 68 and ends in row 82, generating Figure 19. 
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import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Parameters 

S0 = 100.0 

T = 1.0 

N = 252 

M = 1000 

r = 0.05 

kappa = 3 

theta = 0.20**2 

v0 = 0.30**2 

ksi = 0.5 

rho = 0.8 

 

def heston_SV(S0, v0, rho, kappa, theta, ksi, T, N, M): 

    dt = T/N 

    mu = np.array([0, 0]) 

    cov = np.array([[1, rho], 

                    [rho, 1]]) 

 

    S = np.full(shape=(N+1, M), fill_value=S0) 

    v = np.full(shape=(N+1, M), fill_value=v0) 

 

    Wiener = np.random.multivariate_normal(mu, cov, (N, M)) 
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    for i in range(1, N+1): 

        S[i] = S[i-1] * np.exp((r - 0.5 * v[i-1]) * dt +    

np.sqrt(v[i-1] * dt) * Wiener[i-1, :, 0]) 

        v[i] = np.maximum(v[i-1] + kappa * (theta - v[i-1]) * dt 

+ ksi * np.sqrt(v[i-1] * dt) * Wiener[i-1, :, 1], 

                          0) 

    return S, v 

 

positive_rho = 0.98 

S_positive, v_positive = heston_SV(S0, v0, positive_rho, kappa, 

theta, ksi, T, N, M) 

 

negative_rho = -0.98 

S_negative, v_negative = heston_SV(S0, v0, negative_rho, kappa, 

theta, ksi, T, N, M) 

 

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) 

time = np.linspace(0, T, N+1) 

ax1.plot(time, S_positive) 

ax1.set_title(r'Heston Model Asset Prices, positive $\rho$') 

ax1.set_xlabel('Time') 

ax1.set_ylabel('Asset Prices') 

ax2.plot(time, v_positive) 

ax2.set_title(r'Heston Model Variance Process, positive $\rho$') 

ax2.set_xlabel('Time') 

ax2.set_ylabel('Variance') 

plt.show() 

 

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,5)) 

time = np.linspace(0, T, N+1) 

ax1.plot(time, S_negative) 

ax1.set_title(r'Heston Model Asset Prices, negative $\rho$') 

ax1.set_xlabel('Time') 

ax1.set_ylabel('Asset Prices') 

ax2.plot(time, v_negative) 

ax2.set_title(r'Heston Model Variance Process, negative $\rho$') 

ax2.set_xlabel('Time') 

ax2.set_ylabel('Variance') 

plt.show() 

 

# GBM simulation at T 

gbm = S0 * np.exp((r - theta ** 2 / 2) * T + np.sqrt(theta) * 

np.sqrt(T) * np.random.normal(0, 1, M)) 

fig, ax = plt.subplots() 

ax = sns.kdeplot(S_positive[-1], label=r"$\rho= 0.98$", ax=ax, 

color='red') 

ax = sns.kdeplot(S_negative[-1], label=r"$\rho= -0.98$", ax=ax, 

color='green') 

ax = sns.kdeplot(gbm, label="GBM", ax=ax, color='blue') 

plt.title(r'Asset Price Density') 

plt.xlim([20, 180]) 

plt.xlabel('$S_T$') 

plt.ylabel('Density') 

plt.legend() 

plt.show() 
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The following python code generates the figures and tables of chapter 5.4.3. First of 

all, I import the dependencies and set the calibrated parameter values. Then I have to 

calculate the time step which is one year over 252 trading days. The mu matrix 

contains the calibrated drift terms and cov is the calibrated variance – covariance 

matrix. Then I fill S1 and v matrices with the starting values. Then using numpy I sample 

correlated Wiener processes utilizing mu and cov matrices. S1 is the predicted value 

through Euler discretization and v is the variance prediction. Next I use seaborn and 

matplotlib to figure out the frequency distribution of the predicted price. lastly I define 

two functions, the mean absolute percentage error and the root mean square error, 

and output the result. Also, I make use of scipy dependency to perform the Jarque – 

Bera normality test for the predicted price. 

1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from scipy import stats 

 

# Parameters - Calibrated 

S0 = 62.42 

T = 1.0 

N = 252 

M = 1000 

r = 0.0466 

kappa = 0.85645659 

theta = 4.711798009 

v0 = 13.72501634 

ksi = 8.25773478 

rho = -0.263081559 

drift = 0.18 

realized_var_prev = 4.563114037 

 

# Heston SV Forecast 

dt = T/N 

mu = np.array([drift, drift]) 

cov = np.array([[1, rho], 

                [rho, 1]]) 

 

S1 = np.full(shape=(N, M), fill_value=S0) 

v = np.full(shape=(N, M), fill_value=v0) 

 

Wiener = np.random.multivariate_normal(mu, cov, (N, M)) 

 

S1 = S0 * np.exp((r - 0.5 * realized_var_prev) * dt + 

np.sqrt(realized_var_prev) * dt * Wiener[0, :, 0]) 

v = np.maximum(realized_var_prev + kappa * (theta - 

realized_var_prev) * dt + ksi * np.sqrt(realized_var_prev * dt) * 

Wiener[0, :, 1], 0) 

 

# Plot 

fig, ax = plt.subplots() 

ax = sns.histplot(S1, kde=True) 

ax.vlines(x=61.7, ymin=0, ymax=100, colors='red', 

linestyles='dashdot', label="Real price (61.7)") 
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ax.vlines(x=61.98, ymin=0, ymax=100, colors='green', 

linestyles='dotted', label="Mean Predicted Price (61.98)") 

plt.title("Frequency Distribution of Predicted Price") 

plt.xlabel("Price") 

plt.ylabel("Percentage") 

plt.yticks(range(0, 105, 10)) 

plt.xlim([60, 64]) 

plt.legend() 

plt.grid(axis='y') 

 

# Mean Absolute Percentage Error 

S_actual = np.full(shape=M, fill_value=61.7) 

 

def Mean_Absolute_Percentage_Error(S1, S_actual): 

    mape = np.mean(np.abs((S_actual - S1) / S1)) * 100 

    return mape 

 

# Root Mean Square Error 

def RMSE(S1, S_actual): 

    MSE = np.mean(np.square(S1 - S_actual)) 

    RMSE = np.sqrt(MSE) 

    return RMSE 

 

S1 

S_actual 

v 

Mean_Absolute_Percentage_Error(S1, S_actual) 

RMSE(S1, S_actual) 

 

jb = stats.jarque_bera(S1) 

jb 
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