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Abstract

In this thesis, we study the extension of the Standard Model (SM) of elementary particle
physics in the framework of the Effective Field Theory (EFT) description. This modern-era
approach aims to augment the well-established theory of the SM in a way that is, under
mild assumptions, as generic as possible. The resulting theory, abbreviated as SMEFT,
can be utilised to improve the theoretical predictions of the SM in a systematic manner,
without specifying the new physics that will appear at higher energy scales (the bottom-up
EFT approach), or to simplify the description of a more complete theory by matching it
to the SM (the top-down EFT approach). In this thesis we are mainly concerned with
the bottom-up SMEFT. In particular, we focus on the theoretical and phenomenological
aspects of the leading non-trivial EFT order by working out in detail two processes of high
complexity: the Higgs di-photon decay and the Higgs decay to a Z boson and a photon,
both at one-loop order in the A expansion. These calculations serve as a benchmark for
resolving technical issues in loop EFT calculations, such as consistency with gauge invariance
and renormalisation of the amplitudes, as well as providing bounds for the unspecified
parameters of the model in phenomenological analyses. Additional technical details about
the calculations are collected in the appendices to be useful for future reference. Furthermore,
due to recent developments in the literature, we are also concerned with the extension of the
SMEFT formalism to higher orders in the EFT expansion, providing the relevant analytic
formulae up to any possible EFT order. Finally, because of the high-complexity of the
calculations in the SMEFT, we also focus our attention on the development of efficient
computer codes that will hopefully serve the physics community by providing a platform
capable of performing consistent (semi-)automatised calculations up-to the next-to-leading
EFT order.
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(Abstract in Greek)

H napoloa dwboxtopint| dwatelf3n mpoypatedeton tny enéxtacy tou Kodicpwuévou Ilpotinou
(Standard Model 1; SM) twv oT0tyEldhY cwpatdiny oto Thaiota TNe Teptypopic ToL we wia
Evepy?| Ocwpla Iediou (Effective Field Theory 1y EFT). H o0y ypovn awth npocéyyion otoyele
TNV YeVixeuon tTng xaAd edponwuévne Yewploc Tou SM ue évay 1pdT0 0 omolog elvar, LTO ATLEG
mpolnovéoelc, 660 To duvatoy Yevixotepog. H Jewplo auty|, mou ev cuvtouta xoieiton SMEFT,
unopet va ypnowonondel yia tnv cuotnuatixt] Bertinon twv Yewpentixey tpoliédewy tou SM
ywelc va mpoodloplletan 1 véa puonr| mou eugavileton oTic uhniotepee evépyeieg (n EFT autol
ToL TUTOU Xoheltan bottom-up), ¥ wote vo amhomomdel 1 teprypopy| uiog Thnpéotepne Vewplog
avunapofdiiovide ty pe o SM (n EFT autol tou tinou xodeiton top-down). e auth T
otate3r) Yo aoyohnioiue xuplwg pe Ty bottom-up SMEFT. Yuyxexpyéva, Ya eotidoouye oTig
VEWENTIXES AL POUVOUEVOROYIXEC TTTUYES TwV SLopUOCENY TNG TEMOTNG UN-TETEIIUEVNS TEENG OTO
avantuypa tng EFT, avolbovtag oe Bddog 600 mohdmhoxeg puoixéc diepyacies: TNy SLdoTaoT)
Tou pmoloviou Higgs e 800 pwtdviar xat TNy BIdoTacY| TOL O €V PuTOVIo xau Eva unoldvio Z ot
eninedo evog Pedyou. Ou unoloylouol autol Yo anoTeEAEGoUY oNUEla avapopds Yiar TNV ERiAUGCT)
TEYVIX®Y {NTNUAT®Y oL 0popoLY LTOAOYIGHOUE ETMEBOL Bpodyou ota mhaloto plac EFT, 6nwg
elvol 1) CUVETELA TV ATOTEAECUATWY UE T1) CUUMETEIO Porduldag xan 1) ETAUVOXAYOVIXOTIOINGT] TV
oTolyelwy uhteas, xou Ya yenowponoindoly eniong yio Ty eTBOAT aptdUnTixmy TEQLOPLOUMDY OTIG
eheVlepeg TOPUUETEOUS TOU UOVTENOU oG OF QavoUeVOROYWXES avalloels. Tlepoutépw yproweg
TEYVIXEC AETTOUEPEIEC TWV UTOAOYLOUWY €YOUY GUAAEYVEl OTal TOPUETAUOTA Yia UEANOVTIXT)
avapopd. Emmiéov, AMoyw npdopatwy egeilewy otn diedvy BiBAoypapia, Yo aoyorndolue pe
NV avantugn Tou gopuaiiopol tng SMEFT oe udmidtepeg tééeic Tou avantiyuatog tne EFT,
TOEEYOVTOC TIC GYETIXES EXPEACELS GE AVORUTIXY Lop®T| Yiat xde Tdovi| TEEn Tou AvamTOYUATOG.
Téhog, e€autlog TNE YEYIANE TOALTAOXOTNTOG TwV LToAoyiouwy oty SMEFT, Yo ectidcouue
TNV TEOCOYN LA OTNY oVATTUEN LoYURMOY TOXETWY AOYLOUX0U, Tar oTtola EVEATLOTOUNE TIeg Vo
ATOTEAEGOUY [0l TAATPORUAL LXAVT] VO GUVELGPEREL GTNY TEOCTIVELN TNG EPEVVNTIXTC XOWVOTNTAS
vl (nui-)outopatonoinon twv urnokoyiouwyv oty SMEFT éw¢ xaw otny deltepn té&n tou

avartoypatog oty EFT.
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Preface

The question “What are the building blocks of our Universe, and how do they interact?”,
seems to have puzzled the greatest minds of human history from the ancient times through
present. Nowadays, we call these building blocks elementary particles, and we have reasons
to believe that our understanding about elementary particles and their interactions has
reached a remarkable level, since the physicists have devised a theory, called the Standard
Model (SM) of elementary particle physics, which explains and predicts physical phenomena
with (most of the time) very good experimental accuracy. Of course, SM is not a final theory
of nature. There are numerous open problems that may be solved when we finally come up
with a more general theory which gives us back the SM as a limiting case.

The elementary particle physics community is therefore assigned a new task: we have to
construct new, more sophisticated theories, able to describe nature even more accurately
and provide solutions to (some of) the open problems of the scientific field of high energy
physics. These physical theories are generally known as Beyond the Standard Model (BSM)
theories. It seems that the SM works almost perfectly in the energy scales reached by the
modern experiments, so a BSM theory should probably be a physical theory that is defined
in a higher energy scale (usually referred to as the ultraviolet (UV) theory), and when we
take the low energy limit the SM should be the lowest-order approximation. Furthermore,
a fundamental theory that would describe nature as a whole, including the gravitational
force, generally known as the Theory of Everything, is the Holy Grail of Theoretical Physics
(though, it is questionable how would we know that a theory is the final step in our journey
of understanding the universe as a whole; such a pursuit should, therefore, be mostly viewed
as an overarching ideal in our ongoing attempts to mathematically model and understand
nature more accurately).

Each BSM theory can be defined by devising a self-consistent mathematical framework
which is required to respect some postulates dictated by experimental and observational
data. But there is a problem in this simple statement: even if we have some clues pointing
towards the right direction of what the UV theory should look like, the paths that may
lead there can in practice be numerous. Therefore, it requires excellent skill and intuition

for one to not get lost on the endless possibilities and stay on the right track. One way

Xix



XX Preface

out of that problem is to avoid specifying a high energy theory and instead use a general
model which introduces a set of corrections to the SM. This approach of constructing an
Effective Field Theory (EFT) is justified by a very important feature of nature, which is the
non-interference of the physics at different energy scales. To elaborate, physical phenomena
at a given energy scale do not have a direct effect on the physics at much lower energy scales,
in the sense that we can model the low energy physics and make predictions without needing
to resort to the higher energy physics. The advantage with this approach is that we can
construct a theory even without explicit knowledge of the underlying UV physics, and then
use this theory in order to systematically improve our theoretical predictions. The price we
have to pay, however, is that we introduce a lot of undetermined parameters in our model.

This is indeed the main idea behind the theoretical structure known as the Standard
Model Effective Field Theory (SMEFT). We start by considering the well-known SM spectrum
and gauge symmetry as the underpinning upon which we wish to build a more capable
theory for the description of elementary particle physics. To accomplish this, we construct
all possible gauge invariant operators that are omitted in the SM framework and then we add
them to the SM Lagrangian. These operators have dimension higher than 4 and each one
is accompanied by an undetermined coefficient. The effective operators are suppressed by
inverse powers of a single UV energy scale and therefore act as small corrections to the SM
Lagrangian. By categorising the EFT corrections according to their UV scale dependence,
we are able to construct a power series expansion of the SMEFT Lagrangian where the SM
is recovered as the zeroth-order term and the contribution from each new expansion order is
less dominant than from the previous one. Therefore, one can improve the accuracy of the
theoretical calculations in a systematic manner.

For the first part of this thesis, starting with the leading non-trivial order EFT corrections,
we consider two technically challenging processes of great physical interest: the Higgs boson
decay to two photons and its decay to a photon and a Z-boson, both at one-loop order in the
h expansion. These highly non-trivial calculations are presented in detail, and we focus our
attention on several technical issues of interest for the theoretical and physical consistency
of the calculation. Specifically, we prove analytically the gauge invariance of our results, we
develop a concise renormalisation framework for the EF'T amplitudes and, consequently, we
prove the cancellation of the infinities in the physical results. Finally, we are also concerned
with the phenomenological analysis of the results, by using the experimental data provided
by the Large Hadron Collider (LHC) in order to place bounds in the unspecified parameters
of the model.

As emphasised above, calculations within the SMEFT framework tend to be remarkably
lengthy and demanding, firstly because of the mere number of the added effective operators

and secondly because of the added complexity of these operators in comparison to the SM
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ones. Furthermore, as the recent literature starts delving into the next-to-leading EFT
order, this problem will only grow exponentially in the future. The above indicate the
increasing demand for software tools in order to minimise the physical labour and to increase
the efficiency of calculations within the SMEFT. For the second part of this thesis we,
therefore, focus our attention on the development of a code that provides the user with the
manipulations necessary to derive the physical basis of the SMEFT for a given set of effective
operators and produces the full set of Feynman rules with outputs that can be used as inputs
in other high-energy physics software for analytic and/or numeric calculations. This code
will hopefully extend the range of much-needed tools in our effort to perform consistent
(semi-)automatised calculations up-to the next-to-leading EFT order. Additionally, in the
appendices we provide an extension of the SMEFT formalism to any possible order in the
bosonic EFT expansion, explaining in detail the methodology of obtaining the results. These
results are presented in compact analytic formulae and can be readily used as a basis for
future SMEFT studies in which the theoretical calculations will need to be of even higher

accuracy to match the new and improved experimental data of the LHC and future colliders.
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(Preface in Greek)

H epddynon “Iloiof efvar o1 Oeprélior Ailor tov oUumavtog kai e mowy tpdmo aAAniemdpolv;”,
alvetan g €xel mpoflAnuatiost xdmola omd T GTOUBAUOTEQN ATOU TNG TOYXOOULASG
dlavonone 1Mon omd Toug apyoloug YEOVouC.  XTNV ONUERVH ETOYT XAAOUUE ouToOC TOUG
oouxolg AlJoug OTOLYEWWDN CwpdTial XoL €YOUUE XohoUC AOYOUC Vo VEWEOUUE TS 1
XATOVONOT) LS YL TOL OTOLYEWWMOT COUATIOW Xl TS AAANAETOPAOELC TOUG EYEL PTACEL OE €Val
a&locéBacto eninedo, B16TL oL puool €youy xataoxeudoel plo Jewpla, v omola xaholue TO
Kabdepwpévo Ipdtuno (Standard Model ¥ SM) twv otoiyeiwdoy copatdiwy, to onoio
e&nyel xou mpoBrénel ta Quoxd pouvoueva UE TOAD XY (TIC TEPIOCOTERES POPES) GUUPWVINL
ue ta melpopatind dedouéva. Hapdha autd, To SM Bev etvor 1 tehixn] Vewpio mou Teplypdpel T
pLom. Trdpyouv TOAAG avolyTd TeoBAruata Tou mhavedg vor AvJoly GTaY XATUACKEUGCOUUE
plo o yevix Yewpla 1 omolo Yo pog emoteégel 1o SM w¢ ula oploxy) Teplntwon.

Emouéveg, ol guotxol Twv oToLYELwdmY CWwUATIOMWY Yo TEETEL VAL XATAGKEVICOUV VEES, TLO
TApelC Vewpleg, eaveg va teplypdlpouy T @lom ue axdur UEYUADTERT axplBElar xaL VoL TopEYouY
AOOT| o€ xdmoLoL o TaL AvoLyY T TEOBAAUTA TOU TEBlOL TNG YUOXAC TwV UPNAGOY evepyelwmy. Ot
puoég auTég Vewpleg elvan ev Yével YVmoTég we Yewpleg mépav Tou Kadiepwuévou Ilpotinou
(Beyond the SM ¥ BSM dewpiec). To SM goiveton o cupnepipépetar oyeddv ddoyo otic
evepyeloaxég xhipoxec mou ayyilouue ue ta odyypova TElpduata, cuvenmg wio BSM dewpta Yo
TEEMEL Xatd Tdoa mdavoTnTo Vo etvan ol puoxr Yewplo oplopévn oe pla uPnhoTeeT evepyelomn
xhpaxa — o avagepbuaote oe authy W TNV utepundn (ultraviolet ¥ UV) Jewpio — xou
otav madpvouye to dpto g UV dewplac otic younhéc evépyeteg to SM Yo mpénel var mpoxOmTet
¢ 1) TEOGEYYIOT YounhoTteene Tééng. EmnAiéov, ula Yeuyehinddng Yewmplo mou Yo neprypdpel T
(pLOM 6T0 GUVORG TN, 1 BOcwpla TV Ildviwy, arnotekel To Iepd Aloxondtneo Tng Yewentnhc
puoxhc (BéBoua, M epwtnom Yo To €8y Vo unopovoope vo yvwpiloupe 6t pio Yewpla amotehel
TOV TEAMXO 0Todud 6To Tadibl YOG Yot TNV XATOVONOT TOU GUUTAVTOC GTO GUVOAG TOU BEV €YEL
olyovpn amdvtnon n avalAtnoy pog, Aowtdy, yio uio tehixn Yewpla Yo npénet va tedel und To
Tplopa Tng ouveyolg mpoondielog var BEATUOCOUUE To hadnuotixny) poviehonolnon e @oong

X0 TNV XAUTAVONOT| OGS Yo AUTHY).
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XXiv IToddoyoc (Preface in Greek)

Kdénle BSM Yewpla propel va teptypagel uéoo amd €vo auTooUVETES pardnuatixd Thaicto, uto
TNV anoltnor 6Tt To Teheutaio Yo oEBeTon xdmota a€LOUATA TTOU TEOXVOTTOLY AT TOL TELQOUOTIXG.
xou ToporTnenotaxd dedopéva. Trdpyel Gume éva TEOBANUN UE QUTOV TOV TEOTO OXEPNC: axdun
xau €av €youpe xdmota ototyelo yioo TV popen e UV dewplog, miovede vo undpyet ueydio
TAfi0og amd YOVOTdTIoL ToL 081 YOLY Ot aUTY. LUVETKOC, amouteiton €var uPNASG eninedo TeYVIXAC
XATEETIONG o1 PUOLXNC SLlodaUNOTNE ETOL WGTE VoL UNY TOREXXAIVOLUE amd TNV owoTh xatebuvon.
‘Evog tpémog yia vor dtaplyouye amd autéd T0o TeoBAnua eival Vo amo@OYOUUE TEYVNEVIWS TOV
axpyB31) tpocdlopioud e UV dewploc xou avt’ autod va Y enoUloTotcouUE Vol YEVIXO LOVTENO
T0 omolo Yo eloaydyet €va cLvoro and dlopdvoelc 6to SM.

H npocéyyion auth, mou euniéxel Ty xataoxeun ploc evepyol Yewploc nediou (Effective
Field Theory # EFT), ompiletan oe pio mohd onupovtind idtnta tne @long, Tov dlaywplogd
NS QUOIXAC OF BLUPOPETIXEC evepYetaxés xAluaxes. o cuyxexpwéva, Quoxd Govoueva Tou
AoBAvouy ywpea o€ Lol 0pLoPEVT EVERYELOXY| XA{Uoxa OEV €youV dUECT) ETOPACT OT QUOLXT)
TOU TEPLYPAPEL TOND YUUNAOTERES EVEQYELUXES AUOXES, UTO TNV €vvold OTL UTOPOLUE Vol
HOVTEAOTIOLCOUPE TNV QUOLXY| OTIC YUUNAEC EVERYEIEC Xou Vo xdvoupe TpofBiéelc ywpls va
yeetaloyas e YVWoT Yo T Quotxt| Tou hauBdvel yopa oTic udniéc evépyeteg. To dgelog ue
auTH TNV TEOoEYYIoT elval 6Tl UTopoLUE va xataoxeudoouue Wio Jewplo ywplc TAHeN Yvoon
e mo Yepehiwdoug UV dewplag xou €meitar vor yenowlonotiooue Tt dewplo auth WoTe
cuoTNUATXXE Vo BehTiwooupe Tic Yewpentnés pag npoliédel. To xéotog Tou xaholuacTE Vo
TANPWOOUUE, WOTOCO, EVOL OTL ELCUYAYOUUE €V UEYAAO TAYOC ATPOCBLOPIO TWY TURUUETEWY
GTO HOVTENO [AG.

Avty etvor 1 xOpta 6o Tlow amd To Yewpnuind oxodounua Yvwoto we Standard Model
Effective Field Theory 7, ev cuvtouia, SMEFT. Q¢ ne®to Brua, aviuetowmilovye tny supéwe
YVwoth cupueteio Baduidog xar to cwpatidloxd @doua Tou SM we To Yepéhio v oto omolo
TeocdoxoUUE va yTioovue plo Yewplor To v TNV TEPLYRAPY| TN PUOIXAC TWV CTOLYELOOWY
copotdlwy. T'o va to tetdyouue autd, xotaoxeudlouye OAOUC TOUC BuUVATOUC TEAEGTES OL
omolol elvon avodlolwTtol xdtw and TN cuppeteio Boduidoc xou dev eugavilovtar ota TAloL
Tou SM, xau €nerta Toug TpooVétoupe oty Aayxpoavliavy Tou SM. Ot tekectéc autol €youv
otdotaon peyahOTepn Tou 4 xan xdle €vag GUVOBEDETAL OO EVOY ATPOCOLOPLOTO GUVTEAECTH).
Ou evepyol autol tehectéc elvon Blanpeuévol pe duvdpels evépyetag piog xowvhc UV xluaxog
X0l CLUVETWE ATOTEAOUY Wixpég Bloptwoelg otnv Aayxpavliavr Tou SM. Katnyoplomolidhvtog Tic
evepYég dlopinoelg avdhoya pe Ty e€dptnoy| toug and v UV xhipoxa, eluacte o 9éon vo
onuovpyoouue pla duvopooeled yioe Ty Aoyxeavliavy tng SMEFT, and 6nou unopolue va
expoueloovue 10 SM w¢ v Bopdwon undevixhc T8ENg, ue xdde enduevn TAn vo EYEL OAO xou
TO ULXQPT] CUVELGQORG. XUVETKS, luacte oe Yéon va Behtiwoouue cuotnuatixd Ty oxp{Bela
TV YE0ENTIXOV HUC UTOAOYIOUOY.

Y10 mpwto pépog NG OIMAWPATIXAC oUTAC gpyociog, Zexvavtag and TNy et
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unFtetewuévn téEn tou avantidypatog e EFT, dewpolue 800 @uowés diepyaoieg mou
ToEOLGLALoUY UEYERO QUOIXG EVBLAPEROY Xal €youv LINAY TEY VXY Buoxolla: TNV SLdoToo
Tou unoloviou Higgs oe 6V0 pwtdvior xou TNy BIAOTACT) TOU GE EVOL PWTOVIO Xoi €val UTolovio
Z. O un-tetpipuévol autol utoloylouol tapoucidlovtal Ue TATer AenTopépela Xl €6 TIALOUNE
NV TpocoyYY pag ot Sudgopa TEYVIXE (NTAUATH TOU ToEOoLCLILOUV EVOLUPECOY  YioL TNV
VEWENTIXTH X0 PUOLXY| CUVETEL TWV UTOAOYICUMY. DUYXEXPWEVA, OTOOEXVUOUUE AVOhUTIXG
TNV AVOAROLOTNTAL TWV ATOTEAECUATWY Uog %dTe and T cuupeTelo Baduidag, avantiocouue
EVoL OmAG XL TEPLEXTIXG OY MU0 ETOVOXAVOVIXOTIOMONG Yol Tl EVEQYA G ToLyElo UATEaC Mo
ATOOEVVOUUE TOV UNOEVICUO TV OpWV TOU EUTAEXOUV ATEIRLOUSO GTA (PUOIXE ATOTEAECUATA.
Téhog, aoyohoLUaCTE ETONG UE TNV  QOUUVOUEVOAOYIXY AVAIAUCY) TWV OTOTEAECUATW®Y,
YENOWOTOLOVTAG TELpopoTixd dedopéva arnd tov Meydho ABpovind Emtayuvty| (Large Hadron
Collider # LHC) tou CERN éto1 wote va 9€ooupe TEPLOPLoPoUC OTIC OmpOoOlOpLo TES
TOUEUUETEOUS TOU HOVTENOU.

‘Onwe TovioTnxe Tponyoupévns, oL UTohoylouol eviog tou mhaictou tng SMEFT tetvouv
va ebvo agloomueiwta paxpooxekelc xan amoutnTixol, TEOTOV AdYw Tou PeYdAou apLiuol Tev
TEOCUETOV  EVERYWV TEAEGTHOV Xal OEUTEQOV AOY® TNC TOAUTAOXOTNTOC TOU  auTOl
mopouctdlouv oe oyéon pe Toug TeleoTég Tou SM. Emnpdoleta, xadde n olyypovn
BBhoypagla xivelton Tpog TNV e€epelivnor NS emOuEVNS TéEng Tou avantdypatog oty EFT,
T0 TEOPANUa autd avopéveton vo augniel exdetind oto eyylg uélhov.  Ta mopomdve
avadevOouy TNV aLEavOpEVY ovayxn Yo yeNon ToxETwV  AOYIoWxoU, €TolL WOTE Vo
ehaylotomoinlel o @opTog cpyaotac xou vo oawiniel N amodoTiXdTNTY GTOUE LUTOAOYIGUOUS
evtog e SMEFT. 1o 8eltepo uépoc tng SImAwuatixric oauthc epyaoiag oTdloude TiC
TEOOTAVEIES YOC OTNY AVATTUEY EVOS UTOAOYLO TIXOU) TOXETOU TOU EQOBLELEL TOV YENOTN UE TIS
amapoitnteg Siepyaoies yioo TNy e€aywyn e @uownc Pdone e SMEFT vy évo 8o0év
OUVOAO EVERY(YV TEAECTOV XOL OTY CUVEYELL XUTUOXEVALEL TO TAHPES GUVOAO TWV XAVOVWY
Feynman, nopdyovtag apyeio mou umopolyv €netta vo elooydoly oe dAAo AOYLoUXS ToxETaL Yot
TNV TEAEOT AVOAUTIXOVY 1) aptdunTix®y uTohoylopwy. Euvekmiotolue nwe n mpootxn autol
TOU AOYLOUIXOU TXETOU 0T UTOAOYIO TG €pyolelar TNC QUOWAC LPMA®Y evepyeldy do
OUVELOWEREL OTNY  TPOOTAYELd HOC Ylot TNV TENECT GUVETHOV  (7Ml-)UTOUOTOTONUEVHV
UTIOAOYIOUOY €0¢ X0t TNV BeVTEEN UN-TETEIUUEVN TaEn Tou avantdypoatog tne EFT. Emniéov,
OO TOPUPTHUOTA  €YOUUE OULAAECEL Ty avdmtuln Tou goppoiiopol g SMEFT oe
onoldfmote T4EN TOu avamtOyUotog Tou pmolovixol uépouc Ttou EFT  avamtiyupatoc,
avohbovtag oe [ddoc v uedodohoylor TOU  YENOWOTOWOVUE YLl VO TUEAYOUUE  Tol
amoteréopata.  To amoteréopato mapoucidlovial oe GUUTAYEIC AVOAUTIXEC EXPEACELS TTOU
umopolV va yenoylonotnioly arevieiag o perloviixég epyaocieg ndvew otnv SMEFT, 6mou ou
Yewentixol utoloyilopol Yo meénel va elvon axdun mo oxeiBeic dote va ayyi&ouv Ty axplBela

Z 7 Z 7, 7 7
TWV VEOV TELpaoTixmy 0edopévmy Tou LHC ot twv UEANOVTIXGDY ETTOUYUVTOV COUATIOIOV.






CHAPTER 1

Introduction

1.1 Units, Notation and Conventions

The fundamental physical constants of a theory that respects Quantum Mechanics and
Special Relativity would be Planck’s constant, i, and the speed of light in vacuum, c,
respectively. These constants have experimental values (all experimental data used in this

thesis are taken from the Particle Data group [1])

i = 6.582 x 10722 MeV s, (1.1)
c=2998 x 108m s, (1.2)

Through this thesis we are going to use natural units, in which

h=c=1, (1.3)
with the electron’s absolute charge defined as in the Heaviside-Lorentz system of units,

e =Vira, (1.4)

where o = 1/137.036 is the fine-structure Constamﬂ One can always restore the missing
factors of f and ¢ in any formula be using dimensional analysis. A convenient unit of energy
in elementary particle physics is the giga-electronvolt, GeV (roughly equal to the proton’s
rest energy). Having fixed h = ¢ = 1, we can express every quantity in terms of units of

energy, as follows:

[energy] = [mass] = [momentum] = [time] ' = [lenght] ™! = GeV . (1.5)

!Evaluated at Q2 = 0.
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The Minkowski metric we are going to adopt here is the “mostly-minus” one, i.e.
(9uv) = diag(1, -1, -1, -1). (1.6)

All four vectors will be symbolised with lower-case Latin letters, and we will often use index

: _ _ _ .2
free notation, e.g. z, Yt =2 -y, xpat =x-x =7

, ete.

When calculating Feynman diagrams we will be referring to one-particle-irreducible (1PI)
diagrams, which are graphs that stay connected if an internal line is removed by them. A
connected diagram is a graph that one can trace completely by continuously following its

lines. For a scattering amplitude, M, we define
iM = sum of the connected Feynman diagrams. (1.7)

For loop Feynman diagram calculations we will use Dimensional Regularisation (DR) and
Passarino-Veltman (PV) functions (for our definitions of PV functions and further discussion,
see appendix . The space-time dimensionality in which the loop-integrals are calculated is
symbolised by d, and at the end of the calculations we take the formal limit ¢ — 0, where
e=d—4.

The gamma-matrices are 4 x 4 matrices defined by the Dirac-Clifford algebra

Yt =29 - (1.8)

The 7° matrix anti-commutes with every y* matrix, i.e.

{7“,75} =0. (1.9)

We also use Feynman’s slash notation, where

d = o, (1.10)

1.2 Elementary Particle Physics

An elementary particle is loosely defined as a fundamental physical particle (i.e. not having
a substructure, in which case it would be a composite particle). Of course, we don’t always
know with certainty if a particle is composite or elementary — in fact the history of high
energy physics has examples where particles that once physicists believed to be elementary
turned out to be composite (e.g. the atoms and later the nuclei). What physicists can do,

however, is to expand the region in which the particles that we consider to be elementary
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don’t appear to have any substructure, by means of lower length bounds that we get from

experimental data, and making the experimental measurements increasingly more accurate.

There are four known forces in nature, the electromagnetic force, the weak and strong
nuclear forces and the gravitational force. At the microscopic level the gravitational force is
much weaker than the three other forces (by an enormous factor of around 10°). Therefore,
it is clear that at a very good approximation one can completely ignore the gravitational
interactions when trying to construct a theory capable of describing elementary particles and
their interactions at the energies reached in the modern era particle colliders. On the other
hand the gravitational force, which dominates at very large length scales, is described very
accurately by Einstein’s theory of General Relativity, and in this case it suffices to completely
ignore the microscopic structure of the objects. It is at very small length scales, comparable
to the Planck length Ip = \/W ~ 10735 m, with G being Newton’s gravitational constant,
that the quantum fluctuations of space-time are expected to be important. At such scales

General Relativity will have to be replaced with a quantum description of gravity.

As of today we know of a collection of particles which don’t have a composite structure
(or don’t appear to in the energy scales reached by our experiments). These particles
synthesise the spectrum of the Standard Model (SM). We may divide the spectrum into
“matter” particles (charged leptons, neutrinos and quarks) and mediators of forces (photons,
gluons, the W+ and Z° bosons and the Higgs boson). More on that on section For

some pedagogical textbooks on elementary particle physics, see refs. [2-4].

1.3 The Mathematical Framework: Quantum Field Theory

To be successful in our study of Elementary Particle physics, abandoning all biases infused
to us by our everyday life experience (the physical laws of which fall into the territory
of Classical Mechanics) is a critical step. There are two reasons for that. An elementary
particle is, by definition, a microscopic object, and therefore we need to use Quantum
Mechanics (QM) to describe its dynamics. As a further complication, elementary particles
often travel with speeds comparable to the speed of light, and therefore their kinematics
are to be described in terms of Einstein’s Special theory of Relativity (SR). Both theories
are well-known, but simply trying to fuse them together gives rise to a plethora of serious
problems. The mathematical framework that combines the two theories with success is
known as Quantum Field Theory, and in this section we will briefly review some of its

features.
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1.3.1 General aspects of a QFT

A detailed analysis of the mathematical framework needed to describe elementary particles
lies far beyond the scope of this introduction, but we are going to give an intuitive hint
towards the right direction. As we know, the basic geometric idea behind SR is that space
and time are not to be seen as different entities, but rather as components of a more general
entity, the space-time four-vector z# = (¢,x). Here lies the problem: in QM, space is
promoted to an operator acting on an abstract Hilbert space of state vectors, while time
remains simply a label on the Hamiltonian. Clearly, this distinction between time and space
is not how a relativistic theory should behave. Therefore, we have to find a way to modify

our description so that time and space are on equal footing.

One solution would be to promote time to an operator and, in turn, describe the space-
time four-vector by an operator as well. It turns out that this approach is technically much
more difficult than the second one which we will consider here. The second solution is to
demote the space three-vector from an operator to just a label (as it originally was in Classical
Mechanics). Then we could follow the SR paradigm and construct the space-time four-vector,
use that covariant label as an argument on a function, say ¢(x), and use functions of that
type to construct our action. These functions are classical fields spanning all space-time, and

the final step is to quantise these classical fields to make the transition to a quantum theory.

That is the starting point of the mathematical theory we use to describe the physics of
elementary particles, which is known as Quantum Field Theory (QFT). Some of the most
well-known QFT textbooks can be found at refs. [5-13].

1.3.2 Formulating a QFT

As in Classical Field Theory, the starting point of formulating our model is to postulate an

S:/dtL:/d4x£, (1.11)

where L is the Lagrangian and £ is the Lagrangian density, which is a function of the fields

action functional,

and their space-time derivativesf’] That functional is still written in terms of classical fields.
Then, Hamilton’s principle states that the action should be stationary. This principle, also

known as the principal of stationary action, can be elegantly expressed as

58 =0. (1.12)

2In the rest of this thesis we are only going to use Lagrangian densities, and, as is customary in the
literature, we are going to drop the prefix ‘density’.
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Focusing on a Lagrangian that depends on a field ¢ and its first space-time derivative,
L=L(¢,09), (1.13)

we apply the stationary-action principle for small variations of the field ¢ in a closed region,
and by assuming that the variation of the field vanishes in the boundary of the region we

end up with the Euler-Lagrange equations for the field:

oL oL
%~ (50,9) " .

This is the Equation of Motion (EoM) for the field ¢. As an example, for the Klein-Gordon

Lagrangian for a real scalar field ¢,
L= 1(0,0)(0"¢) — Im*¢*, (1.15)

the EoM turns out to be
(@ +m*o=0. (1.16)

In the models used in this thesis we are going to assume that the fields vanish at spatial
infinity, and therefore surface terms in the action (or, equivalently, total derivatives in the
Lagrangian) can be dropped. In our Klein-Gordon example we can for instance integrate by

parts in the kinetic term and write our new Lagrangian as:
L=-16(0"+m?)o. (1.17)

We now have introduced higher derivative terms and the Euler-Lagrange equations should

be modified accordingly. The generalisation is simple:

oL oL oL
% “9“(a<aﬂ¢>> *aﬂ‘%(w) —-=0 (1.18)

where the dots represent the terms that would correspond to higher orders of derivatives in
our Lagrangian. It is clear that the equation of motion for our field remains the same, as

expected.

Using methods similar to the ones used to derive the Euler-Lagrange equations, let us
study what happens when a set of continuous transformations ;¢ leave the Lagrangian of
the system invariant. In this case, using the equations of motion derived above, we are left
with

. . oL
Oug" =0, where jt= <W5i¢>> . (1.19)
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The above result is known as Noether’s theorem [14] and it states that continuous symmetries
of the theory lead to conserved quantities. The final step to go from the classical to the
quantum theory, is to quantise our fields, which is done either by canonical quantisation
or by using the path integral formulation. This analysis if far beyond the scope of this
introduction; the reader is referred to the QFT textbooks [5-10} (12, 13].

The action that serves as a postulation of a QFT should be the most general functional
with the following properties: it is invariant under Poincare transformations (or under a local
Lorentz symmetry if want to incorporate gravity as well, since the translation invariance
included in the Poincare group is a special feature of the Minkowski space-time), it is real
(so probabilities are conserved in the quantum level), it comes from a Lagrangian that is
local and at most bilinear in the derivatives of the fields (for EoMs to be at most second
order differential equations), and finally it is left invariant under all transformations which

are symmetries of the physical system at hand (the internal symmetries of the system).

Speaking of internal symmetries, we take the opportunity to discuss the consequences
of a specific type of internal symmetry which plays a crucial role in the field theories that
describe elementary particles. The consequences of this symmetry — though it isn’t a
physical symmetry as we are going to discuss below — play a crucial role in the algebraic
manipulations of amplitude calculations, and will be thoroughly examined in part [[] of this
thesis which is dedicated to the theoretical and phenomenological analysis of the Higgs
boson decays to two photons (chapter [2)) and to one photon and a Z boson (chapter [3). This

internal symmetry is non other than gauge invariance.

1.3.3 Gauge symmetries and gauge fixing

To construct a QFT able to describe a system of elementary particles, we usually have to
impose in the action a continuous symmetry, described by a Lie group, with the purpose
of reflecting the actual symmetries of the physical system under consideration. That is
what we call a global symmetry. Then, using only the matter fields (i.e. fermions and scalar
bosons) that we want to be part of the spectrum of the theory, we write down the most
general Lagrangian that respects that global symmetry. As an example in this subsection
we study the theory of Quantum Electrodynamics (QED), the theory that describes the

electromagnetic interactions. The starting point is the Dirac Lagrangian,

LDirac = @(107 - mw)l/f ) (120)

where 9 is a Dirac field describing a charged fermion with mass my, @ = v,0* and ¢ = 140,
The Lagrangian ([1.20]), which describes a free fermion field, is invariant under a global U(1)
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symmetry,
Y- e, Pl el (1.21)

where « is a real constant.

The next step is to promote the global symmetry to a local symmetry, i.e. a symmetry
which depends on the space-time argument, x. In the literature local symmetries are more
usually called gauge symmetries. Then, we demand invariance of the Lagrangian under
the gauge symmetry. Here is where a remarkable thing happens: for the Lagrangian to be
invariant under the local symmetry, we need to introduce some vector fields with specific
transformation properties, and these fields turn out to be the mediators of forces of our
theory! That is the elegance of a gauge theory: the symmetries of the system give us the
forces without having to introduce them by hand. For the Dirac Lagrangian, we replace
a — e f(x), where e is a real constant, so we make the global U(1) symmetry a gauge
symmetry. For the Lagrangian to be invariant under the gauge symmetry, we have to

substitute the ordinary derivative with a gauge covariant derivative,

D, =0, —ieA,, (1.22)
where the gauge field A, should transform as

Ay — Ay —0uf. (1.23)

Finally, we need to add a gauge invariant kinetic term for that gauge field. Defining the field
strength tensor as F),, = 0, A, — 0, A, the kinetic term turns out to be equal to —%FWF“”.

Finally, the complete QED Lagrangian (still at the classical level) becomes
LqEp = —3Fu FM + % (i) — my)1). (1.24)

The massless gauge field A, is identified with the photon field, and the real constant e plays

the role of the electric charge.

When we take the path integral to quantise a gauge theory (we use the path integral
language for convenience; the same things happen with every quantisation method), it is
going to sum over all gauge field configurations, even the ones that are connected by the
gauge symmetry. This is a bit problematic. We are going to get multiple copies of the
physical result, so the integration will left as with a non-enumerable infinite constant to
multiply our result, the volume of the total gauge group. In fact that problem is not a
serious one, since we can absorb that infinite multiplication constant in the normalisation of

the path integral measure. But there is another far more troublesome complication when we
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want to use perturbative methods with our theory. Due to the gauge symmetry, quadratic
terms of the gauge field acquire zero modes, thus we cannot inverse these expressions to get
the propagators of the theory.

A solution to that problem is to integrate over only the physically distinct gauge field
configurations (that is, the ones that are not connected via gauge transformations). We
glimpse the details and we just declare that this particular solution can be achieved by

adding to the Lagrangian a gauge fizing term. For QED the gauge fixing term is
2
Lar = —5(9,4")7, (1.25)

and it should be added in the QED Lagrangian .

Notice the parameter £ in eq. . The gauge invariance of the physical results dictate
that this parameter is not a physical one; it is just a real constant appearing on the gauge
fixing term. Therefore, one can fix that parameter to any value she finds convenient; this is
equivalent to choosing a gauge. Due to , these gauges are called linear R¢-gauges. Some of

the most popular choices for £ include:
e ¢ =1, the ‘t Hooft-Feynman gauge,
e ¢ =0, the Landau gauge,
e £ — 00, the unitary gauge.

The unitary gauge is somewhat special, in the sense that for spontaneously broken
theories only the physical particles and the physical polarisations of the gauge bosons appear
in that gauge. There is an interesting implication of that: the purely ¢-dependent part of
a calculation, which we define to be equal to the full R¢ result minus the unitary gauge
result, doesn’t contain any physical information and should therefore add to zero. This
independence of the physical results on the gauge fixing parameter £, which is a consequence
of gauge invariance, can serve as a non-trivial check for theoretical calculations. For example,
one may check that the results obtained with different £s are equivalent. But the most strict
check is to calculate everything leaving £ as an undetermined parameter and show that, at
the end of the calculation, all £&-dependent terms exactly cancel. That is precisely what we

are going to do for the calculations presented in part [[] thesis.

1.4 The Standard Model of Elementary Particle Physics

As a model describing elementary particle physics, SM is embodied in the mathematical

framework of Quantum Field Theory. From that viewpoint, particles are the excitations of
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quantum fields that exist in space-time. The SM, also known as the Glashow-Weinberg-Salam
model [15H17], reflects for almost half a century now humanity’s best understanding of high
energy physics. A historical time-line, both from an experimental and theoretical point
of view, of the fascinating story of how the SM was established, can be found in most
elementary particle textbooks. Here we are going to adopt a modern, mostly axiomatic,

viewpoint to briefly review its basic concepts.

SM is based on a non-abelian gauge theory. More precisely, the corresponding gauge
group is
Gsm = SU3)c @ SU(2), ® U(1)y, (1.26)

where indices C, L, and Y stand for colour, left and hypercharge, respectively. Fermion fields
are represented by left-handed Weyl fields in the representation (see ref. [18] for a review

article about constructing fermionic theories)
(L2,-3) @ (1,1,-1) & (3,2,+¢) ® (3. 1,+3) & (3,1,—3) (1.27)

of Ggm, where the fields are (from left to right): a lepton SU(2), doublet (containing a
left-handed neutrino and a left-handed electron), a right-handed electron, a quark SU(2)r,
doublet (containing a left-handed up-type and a left-handed down-type quark), an up-type
right-handed quark and a down-type right-handed quark (there are three generations of

fermions, each of which is assigned to a distinct copy of the above representation).

In order to introduce masses for the various SM massive particles in a gauge invariant
way, one has to make use of the Higgs mechanism [19-26]. The SU(2);, ® U(1)y part of
eq. (the electroweak part of the SM) is considered as an exact symmetry of nature
at very high energies. We introduce a scalar field ¢ in the (1, 2, +%) representation of the
gauge group Ggy. That field is known as the Higgs field, and it acquires a non-zero vacuum
expectation value (VEV) at around 246 GeV. The VEV triggers the spontaneous symmetry
breaking of the electroweak sector of the SM:

SU(2), ® U(1)y = U(1)qED - (1.28)

What we are left with is the gauge symmetry of Quantum Electrodynamics, which remains
as an exact symmetry. A prediction of the SM is that a component of the Higgs doublet
remains as a massive, neutral particle, known as the Higgs boson. Its discovery |27, 28| is
one of the greatest indications in favour of the SM. A great survey for the SM Higgs boson
can be found at refs. |29, |30]. In figure we present the spectrum of the SM. For a modern
summary of the SM as a gauge theory accompanied by the complete set of Feynman rules

for it, see ref. [31].
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Figure 1.1: Particle spectrum of the Standard Model of elementary particle physics.

As we pointed out many times thus far, SM is clearly not a final theory of nature and
therefore we have to come up with ways to generalise it. The rest of that introduction is
dedicated to discuss the theory that we are going to use in this thesis, and which tries to
shed light on what lies beyond the SM.

1.5 Effective Field Theories

A very important feature of Nature is the fact that the physics at a given energy scale
aren’t directly affected by the physics at much higher energy scales. This statement becomes

obvious by simply examining well-established physical theories. For example, Classical
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Mechanics is a theory perfectly capable of making predictions about everyday life phenomena
without any reference to quantum physics or relativistic effects. That is not to say that
the underlying physics is completely irrelevant. For example, we may be perfectly satisfied
with just measuring the temperature of an object, but that doesn’t change the fact that
the physical quantity known as temperature is actually an aftermath of the motion of the
particles that compose the object. In this example a macroscopic phenomenon, described by
Thermodynamics, is clearly the remnant of a microscopic phenomenon, which is described
by Statistical Mechanics, but the important thing is that one can actually use the laws
of thermodynamics and make accurate predictions about the temperature of this object

practically without taking into account all these microscopic effects.

It should come as no surprise that this very powerful feature of Nature is already utilised
in the study of elementary particle physics. The classic example here is Fermi’s theory [32,
33|, which was originally proposed as an explanation for the beta decay. This simple QFT
model assumes contact 4-fermion interactions through which processes like the beta decay or
the muon decay are possible. Each vertex should be multiplied with an unknown dimensionful
coefficient, but the simplicity of this theory makes it very easy to make some interesting
predictions. Using the muon decay, u — ev, Ve, as our example, one can compute the decay
width of the muon and compare with the experimental data in order to estimate that the
scale of the new physics is of order 100 GeV. From the modern viewpoint, Fermi’s theory for
the muon decay can be considered as an approximation of the SM where the mediator in the
muon decay diagram, the charged electroweak gauge boson, has been integrated out. Since
the mass of this heavy degree of freedom is about 80 GeV, we can see that the prediction of

Fermi’s theory is remarkably successful.

To generalise the above, let us assume that we are running an experiment at an energy
scale Fiow. When we try to construct a theory that will be able to explain the results of
the experiment, we are usually not interested on what the physics look like on energy scales
FEhigh, where Eyigr, > Ejoy, but instead we make use of a more suitable ‘effective’ description,
i.e. an approximation that neglects effects of the order O(Fjow/Enign). This is the essence of
an effective theory. In this thesis we are interested in the physics of elementary particles, and
since the use of field theory dominates this sub-area of physics, we are going to specialise
in the effective theory description of a field theory, which is known in the literature as an
Effective Field Theory (EFT) description. There are two general approaches on EFTs: the
top-down and the bottom-up approach. They differ on many aspects, so let us briefly discuss

them in turns.

11
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1.5.1 Top-down EFTs

Most of the times in physics it is much simpler to use convenient approximations when we try
to perform explicit calculations. For example, even if we have a well-constructed theory for
the microscopic regime, in that case QM, we are not going to use it to calculate quantities in
the macroscopic region, where Classical Mechanics is accurate. The same principle is applied
in elementary particle physics: when we want to describe a low-energy phenomenon, even if
we have a high-energy theory that works perfectly fine it is sometimes more convenient to
simplify our analysis by considering limiting of the high-energy theory before we proceed to
the actual calculation.

The example used above, Fermi’s theory, is nowadays used in a top-down fashion. The
SM, which is the UV completion of Fermi’s theory, may be too complicated to use for
some complex low-energy fermionic processes, for example in nuclear physics. Therefore,
we integrate out the heavy degrees of freedom from the SM spectrum and we are left with
simple effective 4-fermion contact terms for the diagrammatic calculations. By performing
the matching of the UV theory to the EFT, the parameters of the UV theory are used
to derive the coefficients of the effective operators (the Wilson coefficients). In this case
the Wilsons aren’t undetermined parameters, since they are known functions of the UV
parameters.

The top-down EFT approach and the matching is beyond the scope of this thesis. For
the interested reader, we are just going to refer here to the leptoquark extension of the SM
[34]. Since the matching of this physically interesting UV extension to the SMEFT has been
performed in the literature using traditional Feynman diagrammatic techniques [35] and by

using modern functional matching [36], it may serve as a showcase for the technical details.

1.5.2 Bottom-up EFTs

This thesis is focused around the second type of EFTs mentioned above, the bottom-up
EFTs. Whilst in the top-down EFT approach we have knowledge of the high-energy theory
and we just use convenient approximations to simplify our calculational tasks, the bottom-up
EFT approach works the opposite way: it serves as an educated guess, by using a known
low-energy theory as a stable foundation, and then extending it in a systematic manner
to accommodate the finer details of the physics that the model describes. These small
corrections enter this low-energy regime as the remnants of an (unknown) UV theory.

Lets say that we are ignorant about the high-energy theory, but at lower energies, where
our experiments take place, we have a theory that works pretty well at explaining and
predicting the physical phenomena. In fact, this is exactly the situation that we experience

today: on one hand, the SM works very well at the energy scales that we can currently reach
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Dimensionality Renormalisation Relevance
D <d super-renormalisable | relevant
D=d renormalisable marginal
D>d non-renormalisable | irrelevant

Table 1.1: Categorising operators according to their dimensionality, D, for a d-dimensional
space-time.

with the Large Hadron Collider (LHC), the state of the art experiment for modern high
energy physicsﬂ but on the other hand, the SM lies far from being a candidate for the final
theory of nature. The bottom-up approach starts from the low-energy theory and extents it
by simply adding new terms as a power series on a small parameter, say €. For example,
it is common to use the ratio of the high- and low-energy scales, Eioy/FEhigh, as this small
parameter. The very important aspect of an EFT is that we can expand in the parameter €
systematically,

Of course the extra terms add to the calculational work, making it even more laborious
than before, but now we get to see how these new terms, which interpret new physics effects,
affect our calculations. Furthermore, we can cross-check our theoretical results against the
experimental ones, and that (hopefully) will give us some hints about the new physics,
extending our understanding about the high energy regime. For the rest of this introduction,
we are going to focus on the EFT of the SM, known as the SMEFT, which will be the model
under consideration for the rest of this thesis. We have already discussed the SM at section

but now we will get to see its extension under the prism of a bottom-up EFT.

1.6 The Standard Model Effective Field Theory

The SM is a gauge QFT, with the gauge group Gsym = SU(3)¢c ® SU(2)p, ® U(1)y dictating
the symmetries and interactions of the model (see section . As a QFT, the SM is
postulated by defining its Lagrangian, which should be taken to be the most general one
with the requirement that its operators are invariant under the gauge group Ggy. There
is one additional assumption when constructing the SM Lagrangian, however. We further
restrict the allowed operators that are to be added to the Lagrangian by demanding them

to have mass-dimension (we will usually call it simply dimension in the rest of the text) less

3With the current LHC run-2 data we are pretty positive that, excluding the possibility of particles that
may be extremely weekly coupled, there are no new particles up-to around 800 GeV.

13
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than or equal to 4. Before moving further, let us pose here to briefly explain what this new
nomenclature means, and also introduce some more terms we will need for our discussion.
In units where A = ¢ = 1 all physical units can be re-expressed as units of mass to some
power (see section|1.1)), e.g. a particle’s mass, energy and momentum all have mass-dimension
+1, [m] = [E] = [p] = 1, its wavelength has mass-dimension —1, [I] = —1, etc. Since i =1,
the action functional is dimensionless, [S] = 0. Assuming that d is the dimensionality of
space-time, and since [d%x] = —d, the Lagrangian must have dimension [£] = d for the
action to be dimensionless. Every Lagrangian term consists of the product of an operator
and a coeflicient. With arguments similar to the above we can find the dimensionality of
any operator in the Lagrangian. For example, considering the mass term for a real scalar
field, %m2¢>2, it’s trivial to conclude that [¢] = %. Repeating this procedure, we find the
dimensions for a generic scalar field ¢, a generic fermion field ¢ and a field strength tensor

F', to be
Wl =452, Wl=d3, [Fl=4. (1.29)

With this information we are able to calculate the dimension of every operator, @, in the
Lagrangian and, since [£] = d, the dimension of the operators’ accompanying coefficient, C,
will be [C] = d — [Q)].

The above leads us to the important conclusion that the operators with dimension
greater than d must be multiplied with coefficients with negative mass-dimension. These
dimensionful coefficients can be re-expressed as dimensionless ones divided by appropriate
powers of an energy scale A. It is convenient to identify this energy scale with a physical
quantity, the energy scale where new physics effects take place. We generally refer to that
as the UV energy scale. Therefore, these operators are suppressed by a UV energy scale
and thus have increasingly less impact as we decrease the energy scales we examine (we say
that operators of that type are irrelevant at the macroscopic (i.e. low-energy) regime). The
opposite is true for operators with dimension less than d (so these are relevant operators),
whilst operators of dimension d need further examination to reveal their behaviour (we
call them marginal operators, for living on the border of the two regions, and under the
circumstances they can be either marginally relevant or marginally irrelevant). To sum up,

there are three different types of operators:
e Relevant operators, with dimension < d,
e Marginal operators, with dimension = d,
o Irrelevant operators, with dimension > d.

Irrelevant operators are usually called non-renormalisable in the literature. In table

we present a synopsis of the categorisation of the operators according to their relevance and
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Table 1.2: Dimension 6 operators in Warsaw basis other than the four-fermion ones [37].

their renormalisation properties as a function of their dimensionality. The SM, containing
only relevant and marginal operators (in four space-time dimensions), consists what in
the literature is called a renormalisable theory (for a review of renormalisation in the SM,
see ref. [38]). This categorisation of operators based on their ‘renormalisability’ may be
somewhat misleading. Let us see where this term come from. To renormalise a theory
that consists only of relevant and marginal operators, we can define a finite number of
counterterms and then use only this set of counterterms to do the renormalisation of the
theory to each order in the loop-expansion. The higher-dimension operators complicate this
procedure. Even if we include only one effective operator in our renormalisable theory, with
a coefficient C such that [C] = A™!, it is easy to see the problem that arises. Using a double
insertion of this operator in a divergent diagram, we need a counterterm of dimension A2
to cancel the infinities. By adding more and more insertions we need higher and higher
orders of counterterms to make the theory finite. These counterterms indicate that one
cannot omit the higher-dimensional operators by which they are derived. We are therefore
facing a disaster here: if we try to renormalise our theory, the insertion of a single effective

operator generates an infinite number of new operators and counterterms.

There is a trivial solution to this problem. As we discussed above, the effective operators

are suppressed by the UV energy scale. Therefore, the inverse of this scale serves as a

15



1.

INTRODUCTION

16

(LL)(LL) (RR)(RR) (LL)(RR)
Qu (Lpvule) (L™ 1y) Qee (€pyuer)(esyer) Qe (Lpvulr) (Esy'er)
Wl @)@ ) | Que | @e)(@atu) | Qo | (vl (@)
& @)@ ) | Qua | (dud)(datd) | Q| Grde)(deytdy)
Ql(ql) Loyl ) (@5 ) Qeu (Epyper) (Usyus) Qqe (@pYuar) (€7 er)
Ql(g) (v )@ qe) | Qea (epyper) (dsydy) r(ﬁt) (GpYur) (Tsy )
QLW | () (diydy) | @nT ) (@ TAuy)
QW | (@ TAu)(doy TAdy) | QY | (@) (daydy)
QW | @4 a)(dsy" TAdy)
(LR)(RL) and (LR)(LR) B-violating
Qtedq (e )(deq)) Quuq P4 [(d2)T Cul] [(g37)T CIE]
Quna | @u)ep@d) | Qugu e [(g59)T CqP*] [(u]) T Cey]
Qr(ﬁt)qd (quAuT)EJk( $T4dy) | Quaq *Pejnerm [(%?J)ch ][( )Tcln]
Ql(el;u (LDer)en(qhur) Qduu P [(d)TCul | [(u)) T Cey]
Qlequ (Zgauver)‘fjk( ot uy)

Table 1.3: Four-fermion dimension 6 operators in Warsaw basis [37].

perturbation parameter in our model and, as such, it can be truncated at some order that
we choose. This order is usually chosen to be the one which allows for the theoretical
calculations to reach the accuracy of the experimental results we want to compare with. By
restricting ourselves to keeping only terms up to a maximum order, say A~", we achieve
to stay within a finite set of new operators and counterterms that have to be added in our
model, and the new extended model can be proven to be as renormalisable as its non-effective
starting point (see sections and for an in-depth analysis of applying renormalisation
in the SMEFT). This is, in a nutshell, the correct way to approach an EFT: an EFT is just
a regular QFT, further equipped with an expansion parameter. Every renormalisable QFT
ever used is just a special case of its EF'T counterpart, where the expansion parameter is
taken to infinity. Since we have reasons to believe that all QFTs we have constructed as of
today aren’t candidates for a final theory of Nature up to the Planck scale, and therefore
there is a UV scale on which the predictions of these QFTs will break down, we could go
as far as to say that a bottom-up EFT is not a generalisation of its corresponding QFT,
but it is actually the correct model from which we can extract the ‘renormalisable’ QFT as
the zeroth order approximation. We will therefore try to restrain ourselves from using the
misleading terminology of ‘non-renormalisable’ operators, and we are going to refer to these

operators appropriately as higher-dimension and/or effective operators.
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Let us finally focus on the definition and the construction of the SMEFT. If we assume that
new physics lies not too far from the electroweak (EW) scale, to be capable of meaningfully

affecting the lower energy physics, we could write an effective Lagrangian of the SM as
c (4
Lsverr = Lsm + ZZ sz ) (1.30)

In this formal expression, Lgy is the usual SM Lagrangian (which is renormalisable in
the sense described above), A is a UV energy scale, the symbols ¢,; denote the Wilson
coefficients of the effective higher-dimensional operators and the sum over i runs over all

Q§4+p ). The dimensionality of the operator and the

possible operators of dimension 4 + p,
power of the scale A in its coefficient is in one-to-one correspondence, and for the rest of
this section we are going to absorb the powers of A to new capitalised Wilson coefficients,
cp,iAN"P — C); to simplify the notation. We are going to use this shorthand notation also in
other parts of this thesis, and we are not going to bother with using lower-case Wilsons to
distinguish them since it is clear by the context if powers of A are absorbed or not.

Clearly, having an infinite power series is not that practical for explicit calculations. As
explained above, to define an EFT we also need to appropriately truncate the power series to
a desired order. Guided by the experiment, we are going to make the reasonable assumption
that new physics also lies not too close to the EW scale. Therefore, keeping only the first few
terms of the power series in eq. should make for a good approximation. For example,
assuming (conservatively) that the UV scale is around 1 TeV, and keeping in mind that the
SM energy scale, as dictated by its VEV, is around 250 GeV, we have an EFT expansion
parameter of order € = Egy/Eyy ~ 1/ 4E| This is of order of the electron charge e ~ 1/3 in
natural units, which is regarded as a very good expansion parameter in QED. The similarity
is even more striking if we consider that the first non-trivial order in the SMEFT expansion
is, as we are going to discuss below, the €2 order, which is the lowest order which affects the
bosonic sector of the theory. This is usually considered to be the leading SMEFT order, and
in this thesis we are often going to use this nomenclature by calling the €2 SMEFT as the
leading order, and the next order that affects the bosonic sector, i.e. the ¢* SMEFT, as the
next-to-leading order.

As should be apparent from our discussion in the previous paragraph, the genuine first
order corrections in the SMEFT, i.e. the dimension 5 operators, will only affect the fermionic
sector of the theory (not only pure fermion interactions, but at least two fermions should

appear in the operators). Actually, due to the hypercharge U(1) symmetry of the SM, there

40f course the SMEFT expansion parameter may be driven by the low-energy momentum transfer, i.e.
€ = p/FEuyy. In this case one should stay within the EFT validity region, where the momentum should be
much smaller than the UV scale.
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is only one way to get an odd-dimension operator at 4 space-time dimensions, and this is
to introduce pairs of fermion fields. Therefore, every odd-dimension expansion order will
be tied to the fermionic sector, and we’ll need to consider the next order to affect the pure
bosonic sectors again. There is only one effective operator at dimension 5, the Weinberg
operator

Eé?\)/IEFT = Q) (1.31)

vy )

which is simply a neutrino mass term (absent in the SM). This operator won’t be of much

interest in this thesis, so we move on to discuss the dimension 6 operators.

As the first non-trivial SMEFT order, the dimension 6 operators are expected to bring
interesting changes in the SM. This order is also already complicated enough in the con-
struction of the operators. Surely it is easy enough to write down a gauge invariant operator
using the SM fields, and make sure that its ingredients make it a dimension 6 operator. But
to construct a Lagrangian one has to make sure that the operators used are independent,
i.e. they create a basis. This, in a QFT, means that they should obviously be linearly
independent, and that they are not equivalent to each other when using field redefinitions
and integration by parts. This is a very technical discussion, and the reader is referred to
appendix [G] for a detailed technical analysis about the construction of bases of operators in
EFTs. Also, in appendix [F] where we are attempting to construct the SMEFT up to any
arbitrary order in the EFT expansion, we provide some insights about the construction of
bases in the bosonic SMEFT.

There is a plethora of dimension 6 operators, which we formally depict here as

LQyppr = > CXQP) + > CngcG) ; (1.32)
X !

where Qg?) denotes the dimension 6 operators that do not involve fermion fields, and those
that involve fermions are written as QEP). The full list of the dimension 6 operators was first
given in ref. [39], but many of the operators presented there were redundant. A complete set
of all the inequivalent dimension 6 operators is given in ref. [37]; this complete set is known
as the Warsaw basis. There are 59 baryon conserving operators and 4 baryon violating
ones (not counting different flavour structures and Hermitian conjugations). In table we
give the full list of the dimension 6 operators, except for the four-fermion ones which are
presented separately in table both tables are taken from ref. |37].

The next step is to go to the broken phase of the theory, after the spontaneous breaking
of the gauge symmetry, and make the necessary transformations to derive a physical mass
basis of the SMEFT. After that, one has to properly quantise the theory by introducing
the gauge-fixing terms in the Lagrangian, as explained in section [I.3.3] Delving deep into



1.6. The Standard Model Effective Field Theory

the algebraic manipulations of going to the physical mass basis in the SMEFT is beyond
the scope of this introduction, partly to avoid getting too technical, and also to avoid a big
overlap with the analysis of appendix [F] There, the whole procedure is presented in great
detail, and also it is generalised to account for any arbitrary order in the bosonic SMEFT
expansion. We are instead going to conclude this section by presenting a number of useful
references. The quantisation of the SMEFT in the Warsaw basis and the complete set of
Feynman rules in linear R¢-gauges was given in ref. [40]. We are going to use these Feynman
rules for all of our calculations in part [[ of in this thesis. These calculations are restricted
in the dimension 6 SMEFT. For a discussion about higher (SM)EFT orders we point the
reader to the appendices [F] and [G] For discussions about higher dimensional operators in the
literature, see: refs. [41-43] for dimension 7 operators, refs. |44, 45| for dimension 8 operators,
and ref. [46] for a discussion of operators up to dimension 12. A series of pedagogical lectures

on the SMEFT can be found in ref. [47], and a recent review can be found in ref. [48].
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CHAPTER 2

The decay h — ~v in the Standard
Model Effective Field Theory

Assuming that new physics effects are parameterised by the Standard Model Effective Field
Theory (SMEFT) written in a complete basis of up to dimension 6 operators, in this chapter
we calculate the CP-conserving one-loop amplitude for the decay h — 7 in general R¢-
gauges. We employ a simple renormalisation scheme that is a hybrid between on-shell SM-like
renormalised parameters and running MS Wilson coefficients. The resulting amplitude is
then finite, renormalisation scale invariant, independent of the gauge choice and respects the
SM Ward identities. Remarkably, the S-matrix amplitude calculation resembles very closely
the one usually known from renormalisable theories and can be automatised to a high degree.
We use this gauge invariant amplitude and recent LHC data to check upon sensitivity to
various Wilson coefficients entering from a more complete theory at the matching energy
scale. We present a closed expression for the ratio of the Beyond the SM versus the SM
contributions, Rp—s~~, as appeared in the LHC searches for the Higgs di-photon decay. The
most important contributions arise at tree-level from the operators Q,p, @,w and Q,w B,
and at one-loop level from the dipole operators Q.5 and Q.. Our calculation shows also
that, for operators that appear at tree-level in SMEFT, one-loop corrections can modify their
contributions by less than 10%. Wilson coefficients corresponding to these five operators are
bounded from current LHC h — ~~v data with the bounds being, in some cases, an order of

magnitude stronger than from other searches. This chapter is based on ref. [49].

23



2.

THE DECAY h — v IN THE STANDARD MODEL EFFECTIVE FIELD THEORY

24

2.1 Introduction

The discovery of the Higgs boson |19} 22, 23] in year 2012 was made possible mainly because
of its decay into two photons |27} |28]. The current outcome for this decay channel from
LHC (Run-2) with centre-of-mass energy /s = 13 TeV, integrated luminosity of 36.1fb~*
and Higgs boson mass my = 125.09 4+ 0.24 GeV, is summarised as the ratio between the
experimentally measured value (which may include contributions from new physics scenarios)
relative to the Standard Model (SM) predicted value 50, 51]

[(EXP,h — v7v)
T(SM, h — vy)

Ry = (2.1)
The most recent measurements are presented by ATLAS [52] and CMS [53] experiments of
LHC,

CMS:  Rppy = 1187017 (2.2)

and are consistent with the SM prediction, with the error margin expected to be reduced in

the near future.

If we consider the SM as a complete theory of electroweak (EW) and strong interactions
up to the Planck scale, with no other scale involved in between, then the decay amplitude
h — ~~ arises purely from dimension d < 4 (renormalisable) interactions. In this case the
amplitude is finite, calculable and, since all relevant parameters are experimentally known, it
is a certain prediction of the SM. It is this prediction entering the denominator in eq. .
If however, there is New Physics beyond the SM already at a scale A which is above, but not
far from, the EW scale, say A ~ O(1 — 10) TeV, then its effects can be parameterised by the
presence of effective operators with dimension d > 4 at scale A. These operators together
with various parameters (or Wilson coefficients) will then run down to the EW scale and

feed the on-shell scattering S-matrix amplitude together with d < 4 interactions.

All dimension d < 6 effective operators among SM particles that obey the SM gauge
symmetry have been classified in refs. [37, 39]. The SM augmented with these effective
operators — remnants of the unknown heavy particles’ decoupling |54] — is called the SM
Effective Field Theory (or SMEFT for short). The quantisation of SMEFT has recently
been undertaken in ref. [40] in linear R¢-gauges with explicit proof of BRST symmetry and

where all relevant primitive interaction vertices have been collected.

Within SM, numerous calculations for the A — v+ amplitude exist. The first calculation

was performed in ref. [50] in the limit of light Higgs mass (my, < myy), using dimensional
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regularisation in the 't Hooft-Feynman gauge. Since then, there are other works completing
this calculation in linear and non-linear gauges [51} 55| [56], with different regularisation
schemes [57-63]. To our knowledge the complete SM one-loop h — v+ amplitude in linear
Re¢-gauges is performed in ref. [64].

In SMEFTEl there is already a number of papers that calculate the h — ~+ amplitude
[65768|E|3E| The current, state of the art calculation, has been presented by Hartmann and
Trott in refs. [72, [73]. The analysis was carried out using the Background Field Method
(BFM) [74]H consistent with minimal subtraction renormalisation scheme (MS) and included
all relevant (CP-conserving) dimension d < 6 operators in calculating finite, non-log parts of
the diagrams. Our work here is complementary but incorporates some additional features of

importance:
e a simple calculational treatment in linear R¢-gauges based on Feynman rules of ref. [40],

e an analytical proof of gauge invariance (independence on the gauge choice parameters

€) of the S-matrix element,

e a simple renormalisation framework which leads to a finite and renormalisation scale

invariant amplitude,

e a compact semi-analytical expression highlighting the effect of new operators in the

ratio Ry~ and corresponding bounds on Wilson coefficients,

e a field content of simple, perturbative, high energy models valid at the energy scale A,

which, under gentle assumptions, can affect the ratio Ry_,,.

There are quite a few papers addressing a global fit to the Higgs data from LHC Run-1 and
Run-2 in the SMEFT framework [76-78]. Our work provides a simple semi-analytic one-loop
formula for the ratio Ry~ in eq. that can be used by these (usually tree-level) fits or
by analogous experimental analysis at LHC for Higgs boson searches.

This chapter is organised as follows. In section we list operators contributing to
the decay h — vy in SMEFT. Next, in section [2.3] we develop, in a pedagogical fashion,
the renormalisation scheme for calculating the h — ~+ amplitude. In section we give
analytical expressions for all types of SM and SMEFT contributions to the h — ~+ amplitude
and to the ratio Rj—,~. A semi-analytical formula for Rj_,,,, depending on the running

Wilson coefficients and renormalisation scale u, is presented in section [2.5] and supplied

'For a recent review see ref. [48] and for pedagogical lectures see ref. [47].

For earlier attempts see refs. |69} [70].

3Also, recently, the one-loop calculation for h — ZZ and h — Zv decay in SMEFT has appeared in
ref. [71].

“For a more recent approach on BEM-SMEFT see ref.|75].
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with a discussion on numerical constraints of these coefficients. We conclude in section
2.6l Finally, in appendix we collect analytical expressions for the relevant one-loop

self-energies and, relevant to h — ~y, three-point one-loop corrections in general R¢-gauges.

2.2 Relevant Operators

In EFT, an effect from the decoupling of heavy particles with masses of order A is captured by
the running parameters of the low energy theory influenced by higher dimensional operators
added to SM renormalisable Lagrangian ﬁ(séi\)/[' The full effective Lagrangian we consider here

can be expressed as

L=rLa+> %R +3 7@, (2.3)

X f

where Qg?) denotes dimension 6 operators that do not involve fermion fields, while Qgﬁ)
denotes operators that contain fermion fields. All Wilson coefficients should be rescaled by
A2, for example C* — CX /A2. In this chapter we shall restore 1/A? only in section and
thereafter. The prime in C’/, denotes a coefficient in the flavour basis of ref. [37] (known
as the Warsaw basis) while we use unprimed coefficients in fermion mass basis defined in
ref. [40].

The operators involved in the calculation of decay h — 7+ are collected in table
They can easily be identified when drawing the Feynman diagrams for h — 7 looking
at the primitive vertices listed in ref. [40]. There are 8 classes of such operators X2, 5,
©*D?, o3, X202, Y2 X, )% p?D,* where X represents a gauge field strength tensor, ¢
the Higgs doublet, D a covariant derivative and 1 a generic fermion field. Not counting
flavour multiplicities and hermitian conjugation, in general, there are 1642 CP-conserving
operatorsEl Actually, not all operators in table contribute in the final result for the
h — ~~ amplitude. The operator (), cancels out completely after adding all contributions.
This leaves 17 CP-conserving operators (or Wilson coefficients) relevant to the h — v

amplitude.

Another classification of various d = 6 operators can be devised alongside with their
strength |79, 80]. The division is between operators that are potentially tree-level generated
(PTG operators) and those that are loop generated (LG operators) by the more fundamental
theory at high energies (UV theory) under the assumption that the latter is perturbatively

SIncorporating the CP-violating operators will not create any problem in the procedure of renormalisation
or elsewhere in our analysis (however, these operators are usually strongly suppressed by CP-violating type
of observables such as particles’ Electric Dipole Moments). At the dimension 6 SMEFT considered here,
however, the CP violating part cancels out since the SM is CP-even.
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X3 S06 and S041)2 7/12(,03
Qw | Ewhrwlew e Q, (¢fp)? Qe (PTo) (L erp)
Qo0 (PTe)Olete) Qug (¢T0)(@ur?)
Qep | ('D"0)" (¢'Dpp) | Qu (PTo) (@dr )
X2p? W2 X o W2 ?D
Qun o' By, B" Qw | (Torve)rloWl, | QY (w*iBJ @) (LI )
Qew PloWiWiw | Qe | (Lo"e.)pBu,
Qew B il W, B Quw | (o™ u)T' oW,
Qup (@o"uy )P By
Qaw | (g0 d,)TTe W],
QaB (q,o"”dy ) By

w4
Qu (Uyuly) (UAy1h)

Table 2.1: A set of d = 6 operators in Warsaw basis that contribute to the h — vy
decay amplitude, directly or indirectly, in R¢-gauges. We consider only CP-conserving

operators in our analysis. The operator ), cancels out completely in the h — «~ amplitude.

The operators @ and ij) present themselves indirectly through the translation of the
renormalised vacuum expectation value (vev) into the well measured Fermi coupling constant,
cf. eq. . The notation is the same as in refs. |37} 40]. For brevity we suppress fermion
chiral indices L, R.

| pi¢ | LG |
% and p*D? | X3
23 X242
Vi?D | PP X
¢4

Table 2.2: PTG and LG classes of operators shown in table

decoupled. Under this classification, operators relevant for h — ~+ amplitude are arranged
as follows:

LG operators are suppressed by 1/(47)? factors for each loop and may be thought to be
sub-dominant corrections with respect to PTG operators. In table we list the PTG and
LG classes of operators relevant to the A — v decay. On the other hand, a perturbative
decoupling of the UV theory may not necessarily be the case that Nature has chosen. In
this work, although we do not assume any distinction amongst the d = 6 operators involved

in h — ~v amplitude, we shall be referring to table as our analysis progresses.
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2.3 Renormalisation

2.3.1 Parameter initialisation in SMEFT

There is a set of very well measured quantities, to which we rely upon, in relating our

calculation for R, to the LHC data. This set of experimental values is [81]

Gr = 1.1663787(6) x 107> GeV 2,
Qem = 1/137.035999139(31), at Q> =0,
my = 80.385(15) GeV,

my = 91.1876(21) GeV ,

mp, = 125.09 + 0.24 GeV ,

my =173.1+ 0.6 GeV . (2.4)

We identify these input values with the ones obtained in SMEFT consistent with the given
accuracy of up to 1/A? expansion terms. Consequently, following ref. [40] for the gauge and

Higgs boson masses at tree-level, it is enough to set my -, mz and my, respectively, equal to

1_
mwy = 591}7
1 aad C¥WBy2 1
mz = AVE (14 B o),
2 92 _|_g/2 4
A
mi = \? — (30@0 —20C¥H ¢ zcsoD) vt (2.5)

where ) is the Higgs quartic coupling, g, g are, respectively, the U(1)y and SU(2), gauge
couplings (redefined to obtain canonical form of the gauge kinetic terms, see ref. [40]) and
the C-coefficients correspond to operators defined in table Moreover, the fine-structure
constant is identified through the Thomson limit (Q? = 0) as ., = €2/47 where € is given

at tree-level by

— p—
e=—9__(1- 5 __coWB2), (2.6)
NN AN

Similarly, the experimental values for lepton and quark masses, taken as pole masses from
ref. [81], are equal to egs. (3.27) and (3.29) of ref. [40].

The Fermi coupling constant, G, is identified through the muon decay process. In
addition to the W-boson exchange which is modified in SMEFT by the PMNS matrix that
is now a non-unitary matrix containing the coefficient CS)
operators like Q. or by new diagrams with Z- or Higgs-boson exchange. However, the

, G is also affected by dipole
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Figure 2.1: The sum of three types of diagrams (left to right): the SMEFT tree-level
contribution, the 1PI vertex corrections from all operators (effective or not) and the vertex
counterterms containing 0C' and dv. These corrections should be self-explained in eq. (2.16)).

expression for G is simplified by making the approximation of zero neutrino masses and
also by assuming that
Cy ’U2 > Covmy , (2.7)

for any generic C; and Cy coefficients entering the muon-decay amplitude and m; being a
charged lepton mass. Only then we identify the Fermi coupling constant of eq. (2.4]), within
tree-level in SMEFT, as

Gr Gr 2/ ~ol(3) I(3) .. Gr 7 1

— = — |1 +2*(CY Cs. —v2Cl }, ith —= —— = —. 2.8

NCERRNG) +u (O 4+ C5) 1221 w V2 osmd (2.8)
All Wilson coefficients entering in eq. (2.8|) are real since they are diagonal elements of
Hermitian matrices. In fact, and as a side test of the approximations assumed in eq. (2.7),
we have checked that, at tree-level in SMEFT, the full S-matrix element for the process
- — e ey, is gauge invariant independently of lepton-number conservation. The formula
(2.8]) agrees with the corresponding one from refs. [48] |71].

2.3.2 Renormalisation framework

We ultimately want to bring the expression for the amplitude M(h — ~7) into a form that
contains only renormalised parameters that are most closely related to observable quantities,
the relevant ones given in eq. . At tree-level in SMEFT, the hvyvy-vertex appears only
in association with the unrenormalised (bare) Wilson coefficients, C¢7, ¢V and ¢2"'7
and these are multiplied by the bare vev parameter vy (in what follows bare parameters are
always denoted with a subscript zero). In order to set the stage, let us for example consider
from table the d = 6, CP-invariant operator of the form X?p?,

ce? ol B, B™, (2.9)
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where ¢ is the scalar Higgs doublet and B,,, is the U(1)y hypercharge gauge field strength
tensor. All fields and coupling constants are unrenormalised quantities in this expression. In
what follows, and in order to keep the expressions as simple as possible, we keep working
with unrenormalised fields, i.e. no usual field redefinition is performed. This is justified,
because we are interested in calculating only an on-shell S-matrix amplitude rather than a
Green function
After Spontaneous Symmetry Breaking (SSB) in SMEFT (see ref. |[40] for details), the
expression in eq. (2.9)) contains the following term describing the interaction of the Higgs
field and two “photons”,
¢ voh B, B™ (2.10)

where h is the Higgs field. We split these bare quantities into renormalised parameters

v, 0¥ and counterterms, dv, SC?P respectively, as
vg =v — v, CépB:C"PB—(sC“DB. (2.11)

We follow the steps of a simple on-shell renormalisation scheme, first described in SM by Sirlin

[85], and introduce new unrenormalised fields A, and Z,, through the linear combinations

B, =cA,—sZ,, (2.12)
Wi =sA,+cZ,, (2.13)

with ¢ = cosfy and s = sin 0y defined as a ratio of the physical masses of W and Z bosons,
like

¢* = cos® Oy = m—gv . (2.14)
mz

Therefore, the Lagrangian term for the considered operator, Q,p, describing (part of) the
h~y7v interaction, reads,

5C¥B 5
o ﬂ h Fy F™ (2.15)

v CeB [1 —

Note that the vev counterterm arises from pure SM contributions because it multiplies C¥Z,
while 6C¥® cancels infinities that arise only from pure SMEFT diagrams i.e. in general,
diagrams proportional to other C-coefficients, not necessarily only C¥5.

Besides operator QQ,p, counterterms for operators Q,w and Q,wp need to be added,

too. Because all these three operators are proportional to the Higgs bilinear combination,

5This is more important than, as it sounds, just a calculational scheme. Certain operators vanish when
using equations of motion. Green functions are affected by these operators whereas their S-matrix elements
vanish [8284].
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Figure 2.2: Z~ mixing contributions with their associated counterterms. Cross denotes the
SM 5m2Z7 counterterm and the black boxes indicate pure d = 6 operator insertions. The
contributions to the other external photon leg contribute an overall factor of 2 in these
diagrams.

¢t they all contain the vev counterterm as a universal contribution to h — ~~ amplitude.
The contributions discussed so far are depicted and explained in figure By making use

of the Feynman rules of ref. [40], their sum is written in momentum space, as

. 14 v 5C@B 61}
4i [ pY py — (p1 - p2) 9" ] {cva‘pB [1 4+ I¥B _ coF v}
5CPW v
2p0¢W oW _ _
+s*vC [1 +T e - }

SCPWB sy
_ oW B eWB _ _ -
scv(C {1 + I WD » ]
1 _
+ MY weX FX} . (2.16)
mw XA oB oW oW B

One-loop, 1PI vertex contributions proportional to C*Z, C¥W and C¥"'B are denoted (up
to pre-factors) with T2, T¥W and I'¥"5 in the first three lines of the above equation. The
SM contribution, fSM, is just the SM-famous result of ref. [50] but with the SM parameters
replaced by the SMEFT ones (that is why we use a bar over I'), taken from refs. [40,
86]. Furthermore, there are additional one-loop corrections, I', proportional to Wilson
coefficients CX, like for instance C", which are collected in the last line, last term of
eq. ([£16).

There are additional diagrams participating in the h — ~+ amputated amplitude. These
are shown in figure The two diagrams in figure represent the Z~v-self energy at
¢ =0, Az,(0), plus its counterterm, 5m2Z7. The expression for the counterterm 5mQZ7

(given below) is gauge invariant independently of the renormalisation condition for the Higgs

"We omit the Higgs tadpole and its counterterm contribution diagrams since, following the renormalisation
scheme of ref. [87], the Higgs tadpole counterterm is adjusted to cancel the 1PI Higgs tadpole diagrams. This
guarantees that the vev is unchanged to one-loop order.
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h h .
piainty —To = —ill(g?),
‘flu ‘/‘21/ Ry 2 . 2 . 2
q = illy;y, (¢7) = iAviv, (a7) 9" + iBviv, (¢°)d"q”

Figure 2.3: Definitions for the 1PI Higgs self-energy and vector boson (V = ~,Z, W)
self-energies and mixing.

tadpole. This is practically very useful for proving the gauge invariance of the h — ~v

amplitude.

Finally, as usual, by multiplying the amputated graph with the LSZ-factors 88| (see for
instance section 7.2 of textbook [7]) for the external Higgs and photon fields,

1
Vi Zopy = 1 5T (m3) = Ty (0), (2.17)

the reduced S-matrix amplitude for our process,

((p1); v(p2)| S [h(q)) = (2m)* 8 (g — p1 = p2) [IM™ (h = yy)] €5 (p1)es(p2) - (2.18)
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can be written as:

iMHY (b — yy) =4i [p] ph — (p1 - p2) 9" ] %

{02 vC¥B

+ s2v 0PV

Az (0) 4+ dm?
14+ X% 4 2tan by, 2,(0) 5 Z'Y]

my

1+ X% —

2 AZ’y (O) + (377122,y
tan Oy m2Z

—scvCPWB |1 4 x¥WB _

2 AZ'y(O) + (5m2Zﬂ/
tan 260y mQZ

1 —
+ MY X FX} . (2.19)
mw XppB, oW, oW B

Eq. (2.19) is our master formula for the renormalised amplitude M*”(h — 7). For brevity,
we have defined the quantity

;. 8t v 1
X =r- o —7+§th(m2)—nw(o), (2.20)

where ¢ = B, oW, oW B. The definitions for the various self—energiesﬁ are stated in figure

2.3l and S ()
q
(i) = =5 An(@) = @ T (¢) +Oe,) . (221)

212
=mj

q
where I1,,(¢?) is regular at ¢> = 0. All self-energies in eq. (2.19) should arise purely from
SM diagrams because we are including terms up to 1/A? in SMEFT. As noted earlier, the

SM counterterm, 5m227, is gauge invariant and is given by [85]:

(57’)”62Z,7 _ 1 Azz(mQZ) _ AWW(m‘Q;V) (2 22)
m?% 2 tan Oy m? mé, '

The quantity dv/v is not gauge invariant. Following standard on-shell renormalisation

conditions of refs. |85l 87], we write

ou [Aww(m%v)] by

2.23
| = (223)

8We follow closely the notation of ref. [85].
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where the counterterm dg of the SU(2) gauge coupling is gauge invariant and reads as

g _de 1 dmy,

- 2
g e tanfy my

(2.24)
Here de is the electromagnetic charge renormalisation counterterm which is also gauge
invariant. This is given by eq. (26) of ref. [85]

) 1 1 7e? [ /(2 2 2
% — _Zqriept(g) — qrhad () 4 [( — 7+ log 47r> —log ’Lgv + = (2.25)
e € W

2 2 3272 21’

where 4 is the renormalisation scale parameter and € = 4 — d. Leptonic and hadronic
contributions, Hlf}y)t(O) and Hg%d(O), to the photon vacuum polarisation are gauge invariant
and the infinite part in the squared brackets should be gauge invariant too. The hadronic
contribution from light quarks, Hgi‘/d(()), is in principle non-calculable due to strong interaction
at zero momenta. A dispersive or other non-perturbative methods should be in order. There
is no such problem of course with ILP*(0).

SM vector boson self-energy contributions can be found in ref. [89]. The Higgs self-energy
contribution can be found in refs. |73 87]. These results have been obtained in the particular
case of the 't Hooft-Feynman gauge where ¢ = 1. Thanks to the set of SMEFT Feynman
rules in general R¢-gauges [40], we present in appendix all contributions needed in
eq. (2.19) with the explicit {-dependence. This is necessary for checking the gauge invariance
of the amplitude. Finally, the counterterms §C?5,§C*" and §C¥WE can be read from
refs. |66, (72, |73, 186, 90, 91] where they have been calculated again in 't Hooft-Feynman
(¢ = 1) gauge. However, in MS renormalisation scheme and at one-loop, cancellation of

infinities should be independent on the gauge choice as we confirm below.

2.3.3 ¢&-independence

Knowing the gauge invariant and non-invariant parts of various contributions, as described
above, is particularly useful for proving the £-independence of the amplitude. We first prove
gauge invariance by means of £-independence for the infinite parts proportional to &y or €.
We find that the combination of dv/v and IT}, (m3?) in eq. (2.19) is &-independent. For the
C¥B contribution in eq. (2.19), the {w-dependent terms inside I, (0) and Az, (0) cancel
among each other, as they should since the infinite part of I'?Z is ¢é-independent by itself.
For contributions proportional to C*"W (C‘pWB ), the &y cancellations take place throughout
the self-energy contributions and T'*W (I'*W5). Furthermore, diagrams proportional to CX
with X # B, oW, oW B, contributing to the last term of eq. , are gauge invariant on

. =SM . . . . .. . .
their own. Of course I is finite and gauge invariant as it is known from a direct calculation
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in R¢-gauges with dimensional regularisation |64]E|

We then prove analytically the cancellation of all é-dependent finite parts. This was
done by first performing a maximal reduction on the related Passarino-Veltman functions
[92] and then analytically checking for {-dependence among the parametric integrals. This
is a highly non-trivial check of the validity of our calculation because the gauge parameter &
appears everywhere in both the SM and SMEFT contributions which are directly related
to the h — ~+ amplitude. Moreover, this should be also considered as a direct proof for
the validity of the expressions for vertices given in ref. [40] in general Re-gauges. Most
importantly, the {-cancellation shows that the amplitude M*”(h — ~7) given in eq.
is gauge tnvariant, as it should be. Needless to say, this is a very encouraging indication
towards the correctness of our final result.

As an additional non-trivial check of our calculation, we have also proved gauge invariance
for our amplitude before adopting any renormalisation scheme. We confirm that the
regularised but yet unrenormalised S-matrix amplitude for A — 7, written in terms of bare

parameters, is gauge invariant.

2.3.4 MS scheme for Wilson coefficients

All renormalised coefficients, say C, and the counterterms, §C, in eq. (2.19)), can be readily

written in terms of the MS-scheme running C-coefficients as
C —0C=C(u)—6C, (2.26)

where p is the renormalisation (or subtraction) scale that lays somewhere between the EW
scale and the scale A, while 6C' is a counterterm that subtracts only terms proportional to
E=-—vy+logdnr, with e=4-d, (2.27)

in the loop corrections for the Wilson C-coefficients. In MS scheme and at one-loop, these
counterterms are independent of the choice of the gauge fixing and can be read directly from
refs. [86, 90, 91] to be

- E 9 85 3
»B _ _ay J_2 OJ_p eB 2 _—1~WB
5C 16772{( BN-Y + 8"~ 1od )C S99'C

3 5 1
_ |:2§/ Tr(cleBFl) N 6—/NC TI'(C/MBFL) + gngc TI‘(C/dBF:;) + HC:| } s (228)

For a strict four-dimensional calculation in unitary gauge, see ref. [61).
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- FE 53 3 1 15
W _ . . o0 2 Q-2 oW L1 nWDB Y3~ W
oC 16772{< 3\ Y+12g +4g )C 2ggC +2gC’

1 1 1
+ [29 Tr(C"*WTT) + 59 Ne Tr(C™WT)) + 59 Ne Tr(C"MWTh) + H.c.] } ., (2.29)

o=

1672

2 19 3
{ (_)\ I VN §§2 _ 6§/2) C@WB _ ggl(C@B + Cch) _ §§/§20W

1 1 1
+ [QQ Tr(C"*Pr) — 59 N.Tr(C™BT!) + 59 N, Tr(C"Br})

1
_;gl Tr(CleWFD _ %Q/Nc TI'(C/UWFL) B églNc Tr(C/dWFIl) + H.C.] } , (2.30)

where Iy, g . is our notation [37, 40| for the usual Yukawa couplings in SM, and using table 4
from ref. [40], the coefficients C’/ are rotated to the fermion mass basis (denoted now as

unprimed ones), and

V2

v

Y

3

2

EZ(m; +Nemi + Nemi ),  Te(C"PT)) = “=CPme,, ete (2.31)
=1

N, = 3 is the number of colours and my, a mass of the SM fermion belonging to the

i-th generation. All C-coefficients have been taken real. We have checked explicitly and

analytically that the counterterms of egs. (2.28]), (2.29) and (2.30)) render the amplitude for
h — v of eq. (2.19)) finite, at one-loop and up to 1/A% in EFT expansion.

2.3.5 The amplitude

The remaining part of M* (h — vv) in eq. (2.19) is, at one-loop and up to 1/A? terms,
renormalisation scale invariant: the renormalisation group running of C (1) coefficients
cancels the explicit pu-dependence within various contributions in the RHS of eq. .
Therefore, the amplitude, to be squared in finding the h — 7 decay width, is

iMMY (b — yy) = [ pY ph — (p1 - p2) 9" ) Mhosyy s (2.32)



2.4. Anatomy of the effective amplitude

where
M = {C%Cw(“) 1o = 0 ) < T (0) + 2tan 0 2 5m2m]
Z
+ 520 CW () |14+ T — (571) + 2Hhh(mh) IL,,(0) — tan20W AZW(O:);; 6m2Z7]
—scoCP () |14 TPWE — iv + 1H p(mi,) =T, (0) — tan22(9W AZV(Ov)ng —
+ —TSM + Z vCX (u) TX } . (2.33)
mw X+#¢BoW,eW B finite

The subscript “finite” in the final parenthesis means that infinities proportional to E have
been subtracted from all contributions in eq. such as I', IT} , , IIyy, Ayv, etc. The
My in eq. is finite, gauge and renormalisation scale invarianﬂ as a physical
amplitude must be. In eq. , B, 19" and TYWE are given in appendix in
eqs. (2.69), (2.70) and ([2.71)). The quantities dv/v and (5mQZ7 /m? are presented in egs.
and , respectively. All vector boson self-energies in general R¢-gauges as well as the
quantity II}, (m?) are also given in appendix

Although all C(u) coefficients in eq. (2.33]) are MS parameters, the weak mixing angle

Ow and the vev v that appear explicitly to multiply Wilson coefficients are defined in terms
of physical quantities through egs. and [see also eq. below|. This is a
virtue of our hybrid renormalisation scheme: SM on-shell parameters appear together with
MS SMEFT parameters (Wilson coefficients) in the renormalised amplitude. This scheme
can easily be applied to every process at one-loop in SMEFT.

From now on, all Wilson coefficients should be considered as running MS quantities,
C = C(p). We remove the “bar” over the MS-coefficients letting the argument to denote, or
to implicitly imply, the difference.

2.4 Anatomy of the effective amplitude

In this section we present explicit expressions for the SM contribution, and, contributions
proportional to all Wilson coeflicients entering the h — ~+ amplitude in eq. , and in
table These coefficients are taken to be real. For clarity, we reinstate explicitly 1/A?
factors in the expressions appeared in this and subsequent sections, so they are no longer

incorporated into the definition of C’s. Our EFT expansion stops at the order 1/A? and is

Tn the sense that ./\/lh_yw( )=0.

|
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one-loop at the h-expansion. In our conventions, we denote electromagnetic fermion charges

and the third component of the weak isospin, respectively, as

0, for f=ve, vy, vy

-1, for f=eu,7

Qf = (2.34)
2/3, for f=wu,c,t

—1/3, for f=d,s,b

and
1/2, for = Ve, Vpy, Vr, U, C, t
77 = / J=ve v : (2.35)
—1/2, for f=e,u,1,d,s,b
The colour factors are N.. = 1 and N., = N.q = 3. It is useful to note, when reading

the expressions below, that the actual dimensionless EFT expansion parameter is ﬁ

To get a quantitative feeling of its numerical magnitude and to compare with standard
1
Gpm‘%v

~ ﬁ, for A = 10 TeV one has ﬁ ~ g and, finally, for

loop expansion in the EW gauge couplings, we simply note that it is ~ 47, while

_ 1
for A = 1TeV one has GoR?

A =100 TeV one has ﬁ ~ a%”.

™

2.4.1 SM and C¥WVB, C¥G) Cl

The famous “SM” contributions from W and fermion triangle loops are represented by the
penultimate term in eq. (2.33). This is

SM

r-1 gg® g

mw  64n2 (?72 + glz) mw L (2:36)

with
Ly = Ly (rporw) = Y QFNe s Ay a(ry) — Ar(rw), (2.37)

!

and
A1/2(Tf) = 27“f[1 +(1— Tf)f(?“f)] , (2.38)
Ar(rw) =2+ 3rw 1+ (2 —rw) f(rw)] - (2.39)
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Here Qs and m are the fermion charge (in the units of proton charge), and mass, respectively,

N,y is the colour factor for fermions (3 for quarks, 1 for leptons) and

4Am?2 Am2
rF= —Qf, rw = m;/V : (2.40)
my, my,

The result is of course finite and is governed by a single function f(r), which reads

arcsin? (%) , r>1,

_ VT
Tt fes(2=) ] 21 .

It is useful for order of magnitude calculations to state that Aj(rw) =~ 8.33, Ay /9(r) ~ 1.38
and I,y ~ —6.56 with a negligible imaginary part.

The expression given in eq. is not exactly the SM contribution for it is written in
terms of SMEFT parameters and not in terms of measurable quantities like those listed in
eq. . We therefore rewrite eq. in terms of physical quantities using the expression
for € from eq. and G from eq. that bring in the new coefficients C¥" % and

Cfll(g), 03021(3), 0{1221, respectively,

Y e (8GF\Y? U oewn V3 el U
— = 16 ( \/i > I’Y'Y |:1 + 2sc EC“’ — w(cll + 022 ) + w01221 . (242)
Note that the piece before the square brackets on the RHS is the SM contribution to
amplitude [up to a Lorentz factor in eq. (2.32))], as it would be calculated in the absence of
any higher order operators. Inside the square brackets there are contributions from SMEFT

i.e. running Wilson coefficients evaluated at a scale p. Hence, the precise determination of
the Ry in eq. (2.1) is

['(SMEFT, h — v7)
L(SM,h — v7)

Ry = =14 0Rp s (2.43)

where the SM decay width reads, in accordance with standard refs. [29, 30, [64], as

2 3
GF Qe My,

D(SM, h — yy) = —L—em —h
( YY) 12825

PN (2.44)

with I, given in eq. (2.37). The SMEFT contributions of eq. (2.42)) are encoded in a part
of 0Rp—+~ of eq. (2.43), in terms of measurable quantities s,c and Gp, as

1 _4dsc 1 wp 1 1 ol(3) | ~l(3) L1 g
ORp 2y = V2 G2 = V3 GrA? (CH™ +C™) + ﬁwcmm ; (2.45)
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where ¢ = 1 — §2

eq. ([2.45), corrections of O(1/A*) have been consistently ignored.

= m%v /mQZ Following our EFT expansion assumption, in obtaining

2.4.2 (9P, CH, C¥

A direct calculation shows that the contribution from operators C¥2 and C?P is simply

2 2
(1 + %C@D - Z5\2(]@) (M) = Z L (i MM | (2.46)

where Zj, is the field redefinition factor for making the kinetic term of the Higgs field
canonical in going from SM to SMEFT (see eq. (3.5) of ref. [40]) and iM5M is the full SM
contribution to h — ~+ amplitude. There is an explanation for this result based on the
quantisation of SMEFT presented in ref. [40]. In unitary gauge these operators appear in
Higgs boson vertices (hRWW and hff) with exactly the same Lorentz structure as in the
corresponding SM vertices. On the other hand, in “renormalisable” gauges these operators
appear in a complicated way, e.g. there are contributions from Goldstone bosons hG°G? that
have a non-trivial, non-SM Lorentz structure [40] and eq. is not easily seen without
performing the actual calculation. However, the result should be independent on the gauge
choice as we explicitly confirm. We can view eq. in a different way starting from the
SM amplitude and perform the redefinition H = 7, 'h on the single external Higgs boson
leg.

As we already mentioned in section 2.2} the coefficient C'* does not contribute explicitly
to the h — 7+ amplitude in unitary gauge. Although there are apparent non-trivial
contributions from it to vertices in R¢-gauges, once again, gauge invariance implies that the

amplitude is explicitly independent of C¥. Again, we explicitly verify this situation as well.

In summary, the contribution of operators discussed in this subsection to the ratio ([2.43))
reads trivially, up to ~ 1/A? terms, as
V2 1

@ 1 o V2
‘mhﬁw_ﬁcfﬂmcw 4 GpA2

c#P (2.47)

2.4.3 (O, Cw, O

The relevant diagrams for these operators contain a fermion circulating in the loop. They
contribute a ¢-independent piece in the last term of eq. (2.33]) which takes the form

_mgQ + §/2

vmy,

V2mj,

e —

Ne,1QF L4+ (L =rp) frs)]- (2.48)
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The contribution runs over all charged fermions f = e, u,d with their generation flavours
denoted as ¢ = 1,2,3, i.e. u1 = u,us = c,u3 = t etc. The electromagnetic charges Q;
and colour factors N, are given in and below eq. . The function f(r) is defined
in eq. . Turning all parameters into measurable ones in eq. we obtain for the

Rh—~~ ratio of eq. (2.43))

23/4

(3)
ORp 2y

Aipplre) | 1
s > chQfZR e GFAQC¢’ (2.49)

GFm f=eu.d Lyyry,

with A;/o(r) being a function defined in eq. (2.38) and I, defined in eq. (2.37). The
function inside the square parenthesis peaks at the charm mass and as we shall see below

(cf. eq. (2.62))) this is the most important contribution in 673552 oy

All operators we have examined thus far are of PTG type. These operators create only
finite contributions in the h — v+ amplitude. On contrary, operators that will be examined

next will need to be renormalised.

2.4.4 (C?B, C¥W, C¥WB

The amplitude in eq. (2.33) contains contributions from Q.p,Qu,w, QewB Operatorﬂ
appearing already at tree-level in SMEFT. These are collected in the first three lines of

eq. , but still contain the renormalised vev v. This parameter needs to be turned into
Fermi coupling constant, G, that is a measurable quantity with experimental value given
in eq. . We only need the SM one loop corrections to Ar, which appear through the
expression ~

GFr 1 1

V2 2 (1-Ar)
Note that Ar is a gauge invariant quantity and its form can be found in ref. [85]. This
is consistent with our remark in section that the pre-factors of C¥B, C¥W C?W5E in
eq. (2.33)) are respectively gauge invariant quantities and therefore the whole amplitude is
gauge invariant. We then use eq. to order 1/A? i.e. set Gr — Gp in eq. and
apply the result in eq. . We find that Ar nicely cancels out when using an alternative

(2.50)

expression for dv/v derived in ref. [87] in Feynman gauge £ = 1,

v _1 ALW()+A - E| (2.51)
v

miy e=1

"There is an additional contribution from the operator Q,w 5, arising from eq. (2.42)), which must be
added in the final amplitude, cf. eq. (2.62).
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where the parameter E is given in ref. [87]

2

~ o m logc? (7
Eeoy = 27:; 2E — 2log TZ’Z +— < - 352> + 3} . (2.52)

The quantity Ay (0) is presented in ref. [89] in 't Hooft-Feynman gauge and is recalculated

here for completeness in eq. (2.80). By putting egs. (2.50) and (2.51)) in eq. (2.33), the

relevant finite contributions from operators Q,p, Q,w and Q,wp to the physical amplitude

My~ read:

¢t C*B(p) [1res_ Al0), B
(V2G)1/2\2 2mi, 2
1 Az-(0) + dm?,
+ §H’hh(m%) —IL,,(0) + 2 tan Oy ! -~ q .
Z finite

52 C?W () [1 LTV _ Aww (0) + E
(V2Gp)1/2\2 2m3, 2

1
~11,,,(m3?) — I, (0) —
+ M () — 145(0) tan O mZ

 scCFVB() [1 L pews _ Aww(0) | E

(V3Gr)1/2A? omt, 2

2 Az (0) + WZV]
finite

1
+ §H§Lh(m%) —11,,(0)

Az (0) + m2
2 Az(0) Z”] . (2.53)
finite

 tan 20w m2Z

This expression takes this particular form only in £ = 1 gauge and replaces the first three
lines in eq. . It is important for the reader to notice, that numerically big corrections
from Ar have been cancelled out in eq. . The quantities 'Y,V = B, W, W B are fairly
lengthy and are given in the appendix together with the self-energies, all in general
R¢-gauges. Nevertheless, following our tactic here, we can write down a clear formula for the
relevant corrections to the ratio R\, in eq. (2.43), as (recall that tanfy = s/c = g'/g)

h—=vyy
87[‘2 C‘pB 1 B C(‘DW 1 w
SR~ Re( =2 tan2 0 Re( =2
h—yy GFmIQ/V tan? Oy | GpA2 ¢ I, +tan WGFA2 ¢ I,
CchB T WB
— tan Oy Re( L4 >] , (2.54)
GriA? Iy finite

where I,p, I,w, I,wp represent the expressions in corresponding squared brackets of

eq. (2.53).
As we already mentioned in the discussion below eq. ([2.25)), the photon self-energy,
I1,,(0), contains hadronic contributions from five light quarks, that is all quarks but the
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top quark. Therefore, for the related part, Hhad( ), the perturbative formula (2.72)) is not

reliable. We use instead,

a 5 a
I24(0) = —Aay), (m) + T (m), (2.55)

where now, thanks to asymptotic freedom, Hgiﬁd(m%) is a reliable perturbative one-loop

calculation for the light quark contributions (see (2.82))) while Aalga)d(mz) Hhad( m%) —
Hg%d(()) is finite and is computed via a dispersion relation that involves experimental
data for the ratio o(ete™ — hadrons)/o(ete™ — putp™). A recent analysis [81] gives
Aaf®) (m%) = 0.02764 + 0.00013,

The form for 572( )

hosyy 1 €. ([2.54) is given semi-analytically below (cf. eq. (2.62)). Since

these corrections appear at tree-level in SMEFT they are generically the biggest ones from

all operators involved in h — ~vy amplitude.

2.4.5 CW

The contribution from W-loops gives rise to terms proportional to CV in eq. (2.33). The

relevant expression is é-independent, and is written as

= 1672 (2 + 72 )[3E Bl (2:36)

where F is the infinite piece [see eq. (2.27))] formed as usual in dimensional regularisation, of

course removed from eq. (2.33)). The integral function B is
m2
B = B(rw) =2—rwf(rw) + 2J2(rw) — 3log MZV : (2.57)

where the functions f(r), Jo(r) are given in eqgs. (2.41]) and (2.78)), respectively, and p is the
renormalisation scale. The contribution from the operator @y in the ratio (2.43) is

2
G) GFmW B(rw) 1 W
573,1_}77 244/ /2 Re { T, GrA2 cv o, (2.58)

with I, defined in eq. (2.37).

2.4.6 CeB, CeW, CuB’ CuW, CdB’ CdW

These are again contributions from operators affecting fermion loops and, as such, they
are ¢-independent. They are, however, infinite since they involve dipole operators (as

one can easily see from ref. [40] there is an extra momentum in the numerator of their
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corresponding Feynman rules expressions). We obtain the following contribution in the last
term of eq. (2.33):

=241

1 g“g mr,

/= 27 N ~2FE + D(ry,

7 47T2 g? + §/2 c,fo \/QU[ + (sz)] )

=/

w 9 fB

r{" = o1} 7 r/8, (2.59)
where the function D(ry,) is defined as
m2

D(ry,) = —2log — + 1 =17, f(ry,) + Jo(rs,) (2.60)

112
Here again f stands for a fermion type, f = e,u,d, and i = 1,2,3 runs over its flavour

eigenstates. The relevant contribution from the operators Qsp and @ s to the ratio Rp—~

of eq. (2.43) is

2my,

R L — N,
Rh—>w my tan Oy f—cZu . JQr

3 1/2
e “D(rg,) 1
fi fi
X Re (

CLP + 2173 tan 0y C1Y). (2.61)

Functions I, f(r) and Ja(r) are defined in egs. (2.37), (2.41) and (2.78), respectively.

The expression 573261)77 in eq. (2.61)) has few interesting features. It is proportional to

the mass of the fermion circulated in the loop and also proportional to O(1) loop functions
ratio. Comparing 57252}77, which arises from LG operators, with, for example, 572;13_)>W of
eq. (2.49) which arises from PTG operators and recall table we see that there is a huge
enhancement of the former by a factor of O(10) in particular for the top-quark. Hence, for
the top quark in the loop and for u = myy, this is the biggest correction from all one-loop

contributions in SMEFT as we shall see shortly in section [2.5

2.5 Results

2.5.1 Semi-numerical expression for the ratio R,

In this section, we sum all contributions to Rj_.~ found in section leaving as unknowns,
the renormalisation group running Wilson coefficients, C' = C'(u), the renormalisation scale
i divided by the W-boson mass and the energy scale A. Everything we have discussed
so far is within the perturbative renormalisation framework explained in section For

EFT expansion to be valid, this means that the maximum value of a generic coefficient,
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C/A?, is at most O(1). Experimentally, it is suggested from eq. that the corrections to
ORh—~~ should be at most 15%. Being conservative, and in order to display all (potentially)
important contributions from operators in §Rj,_,~, we present below semi-numerical results
for 6Rp—~ that are up to 1% x C/A2.

With the energy scale A written in TeV units, we obtain (in Warsaw basis)m

©l(3) el(3) e — LoeD
ORh—syy = Z(SR,HW ~ 0.06 (le CXQ ~ % ) +0.12 <A24>

=1

ool <c§;’ +4C58 + 5055 + 2055 — 30;;)

A2
r 2 B 2 w
pe | C¥ pe|e
r 2 ©WB
+ [26.62 — 0.5210g Lo }C .
i my | A
- oW
+0.16 - 0.221og 15 | =
L myy |
r 2 7 uB r uW
p” | Oy w1 C
2.11 — 0.84log 1.13 — 0.451
+ I & mé, | A2 082 m?, | A2
2 7 uB r 2 7 uW
pe | Co O
- 003+00110gm%[/ A~ |001+0.00log 5 %V 2
r 2 7 CdB r 2 ] CdW
+ {0.08+0.01log £5- | =5 — 10024 0.0110g L5 | =5
L w wd
r 2 7 CeB 2 7 CeW
+10.02 4+ 0.00log Lo | =35 — 0.01+0.001og - [ =35 4 ... (2.62)
A2 A2
L myy | L W_

where the ellipses denote contributions from the operators @ in table that are less
than 1% x C/A%. Terms in the first three parentheses arise from finite loop contributions,
572;11’_3,’2 in eqs. , and , while all the rest arise from “infinite” diagrams; for
these the renormalisation scale p appears explicitly. All coefficients are running quantities,
C = C(u), and R+ should be RGE invariant up to one-loop and up to 1/A? expansion
terms. This can be checked numerically already from the explicit p-dependence in eq.
and the S-functions for the C-coefficients calculated in refs. |86, |90, 91]E| Furthermore, we
remark that in eq. and for p = 1TeV, the logarithmic parts are of the same order of

magnitude as the finite, constant, parts. Interestingly, for the coefficients in the last three

12Unlike refs. |72} 73] we have made no rescaling of Wilson coefficients with gauge couplings. Of course,
the coefficients-C7Z#W are the rotated coefficients in the quark or lepton mass basis adopted in ref. [40] as
already noted in section

13For this purpose, one can use the numerical codes of refs. [93, |94] or can exploit analytic techniques
appeared recently in ref. [95].
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lines of eq. , the two parts constructively interfere, while for the rest of coefficients
they partially cancel.

At the end of the day, only five operators in eq. can be bounded by the LHC
experimental measurement of the ratio Rj,_,.~. Taking p = my,, we find

[C¥P| 0002 |C#W] _ 0.007 [CFW B 0.004

Az~ (1TeV)?’ A2~ (1TeV)?’ A2~ (1TeV)?’
O3 . 0.047 C35V] . 0.088 ‘ (2.63)
A2 ™ (1TeV)?’ A2~ (1TeV)?

All bounded coefficients above are associated with LG operators in table[2.2]in a perturbative
decoupled UV theory. Eq. seems to be consistent with this observation and A ~ 1 TeV.
On the other hand, assuming |C?V| (|C5“"|) ~ 1 we obtain A > 10 (3) TeV, outside but
close to the near-future LHC region. Other operators in eq. may contribute at most
15% only when C' =1 and A = 1 TeV so their effects are less likely to be observed at present
in LHC searches for the h — ~ process.

Operators Q,p, Quw and Q, wp contribute already at tree-level in SMEFT and this
explains the large value of their coefficients in eq. . As our calculation shows, taking
also into account one-loop corrections, modify their respective tree-level contributions to
the ratio 0Rj_, by 1.3% for C¥B, by 7.5% for C*"5 and by 8.7% for C¥W at the
renormalisation scale p = myy, in agreement with the commonly expected magnitude of
the SM-like electroweak one-loop corrections. What is surprising however, is the large
loop contribution of dipole operators i%vuw. This is basically due to the largeness of the

top-quark mass and other features already noted in the discussion below eq. (2.60)).

2.5.2 Other constraints

In the section above, we found that the dominant coefficients in Ry, are those given in
eq. (2.63). These coefficients maybe also bounded by observables other than h — ~~. It has
been noted in refs. [96, 97] that the coefficient C*"# contributes directly to the electroweak

S-parameter, one of the parameters that fits Z-pole observables. Its contribution reads

C*WEB  Graem
= AS. 2.64
A2 2v/2s¢ ( )

jcev |
2

With AS € [—0.06,0.07] [78] we obtain “—5— < 0.005 TeV~2 which is of the same order
of magnitude as the upper bound we find here in eq. (2.63)) from h — vy measurement.

The coefficients C¥" and C¥? are constrained by LHC Higgs data (giving upper limits on

deviations from the SM predictions) or electroweak fits to EW observables. The respective
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bounds, as they read from refs. [78] 98], are also about the same order of magnitude as in
eq. (2.63)).

The other two operators in eq. (2.63)), Qﬁ’g and Qi:{’,[,, are constrained from the ttZ
production and the latter also by the single top production measurements at LHC. Bounds
quoted in ref. [99] are |C%P|/A? < 7.1TeV~2 and |CHY|/A? < 2.5TeV~2. Here, bounds
from h — 7y derived in eq. are more than an order of magnitude stronger.

Restrictions to all other coefficients appeared in eq. can be found in various
articles in the literature. For example, following ref. [78], Q,p contributes to the T-
electroweak parameter and the corresponding bound is, |C?P|/A? < 0.03 TeV~2. This makes
its contribution in A — 7 negligible. However, the coefficients C¥*™ and C" are not really
constrained by fitting the LHC Higgs data. It is obvious from eq. that these two
coefficients can give O(10)% contributions to Ry, only when one is in the vicinity of EFT

validity.

2.5.3 h — vy relevant UV-models

The question we want to address here is related to possible UV-field theories connected
with the Wilson coefficients of eq. contributing to the h — 7+ amplitude. A possible
UV-theory, which could be a renormalizable theory or yet another EFT, is considered to be
valid in and above the neighborhood of the energy scale A and contains heavy (w.r.t. the EW
scale) fields. When these fields are integrated out a subset of SMEFT operators appears in
the low-energy theory. In a recent analysis [100], based on power counting rules it has been
shown that in UV-completions of SMEFT the heavy fields are restricted to have definite
quantum numbers and spins 0, 1/2, 1. This result, which we will follow here, assumes that
the candidate UV-theory is invariant under the linearly realised SM-gauge group, that it
is chirally non-anomalous, and that it contains a multiplet with the SM Higgs field in the
representation (SU(3)c, SU(2)L)v)y = (1, 2)%

We divide the Wilson coefficients appeared in eq. into PTG and LG operators
[79] as in Table Then, following the tables in Appendix C of ref. [100], we check which
coefficients can originate from integrating out fields with certain quantum numbers. Our
results are shown in Tables and There are 5 spin-0 scalars, 13 Weyl fermions with
vector-like masses, and 5 spin-1 gauge bosons, that can possibly appear in a UV-theory
and affect the h — v amplitude through eq. . Remarkably, the LG coefficients in
Table are only a small subset of the PTG ones shown in Table In addition, the
CW -coefficient is absent from both Tables [2.3] and [2.4]

Tables and which in connection with Appendix D of ref. [100] relate the Wilson

coefficient to the actual couplings of heavy fields, can be used to put bounds on the latter.
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Potentially Tree Generated (PTG) Operators involved in h — 77
Spin Field cl | cet®) | ged | ceD | cue | gdv | Cev
Spin-0 S(1,1)g v v v v

S(1,1); v

o(1, 2)% v v v

=(1,3)o v v v v v

=1(1,3) v v v v v v
Spin-1/2 | N(1,1) v

E(1,1)4 v v

Aq(1, 2)7% v

As(1, 2)7% v

¥(1,3)0 v v

¥1(1,3)-1 v v

U3, 1)% v

D(3, 1)_% v

Q1(3, 2)% v v

Q5(3,2) s v

Q7(3,2): v

T (3, 3)_% v v

T5(3, 3)§ v v
Spin-1 B(1,1) v v v v v v

Bi(1,1); v v v v v

W(1,3) v |V v v v v v

Wi(1,3); v v v v v

L£4(1, 2)% v v v v v v

Table 2.3: Dictionary for possible UV-completions with fields that, upon their “integration
out”, lead to PTG operators affecting the h — v amplitude in eq. (2.62). Flavour indices
are suppressed. The field notation follows ref. |100].

We illustrate it by presenting an example. Imagine a triplet scalar, Z(1, 3), that is directly
found or implied by an experiment with mass M in the TeV-range. According to Tables
and at low energies there are contributions from “integrating out” = in PTG coefficients
C¥H, PP cuwr 0% % and in a LG coefficient C*WE. From eq. we obtain that
C?Y and C¥WB are multiplied by the biggest pre-factors and therefore play more important
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Loop Generated (LG) Operators involved in h — vy

Spin Field CeB | 0V | ceWB | oW | quB | cuW | ¢dB | gdW | (eB

Spin-0 S(1,1) v v

=(1,3)o v

Spin-1/2 | E(1,1)_;
Ar(1,2)

Y1(1,3)

U(3,1)

win

D(3,1)_
Ql(ga 2)
T1(3,3)

ol

1
6

W=

T2(3,3):

Wi
N

Spin-1 L£1(1,2)

N|=

Table 2.4: Dictionary for possible UV-completions with fields that, upon their “integration
out”, lead to LG operators affecting the h — v amplitude in eq. (2.62)). Again, flavour
indices are suppressed. The field notation follows ref. |100].

role in h — vy amplitude. The UV—LagrangianE which originates these coefficients, is [100]
- - Tt — 1.
L= Lsyv + (DM:I)T(D“:I) — M2ENE! — gplalrlp - ?Iﬁ} :IWL{VBW , (2.65)

where D, is the covariant derivative acting on the triplet =, Tl

are Pauli matrices and f is
an energy scale with A < 47 f. Upon integrating out the field =, or simply reading from the

Appendix D of ref. [100] we identify (at tree level for the UV-theory)
Cc¥H K> CcewB 1 kR

o AR 2,
A2 oM A P (2.66)

'4This could be any Lagrangian that consists of fields arranged in Tables and portal to SM and
partly responsible for Dark Mattter or other phenomena beyond the SM.
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and using our eq. (2.62)) we arrive very easily at the bounds

M? KR M 2
<1.6——m R < 0.06 . 2.67
PR Tev o <1TeV) (2.67)

If k takes on its maximal value then &/f < 0.004 TeV~!. Of course one can advance a
similar analysis in every case of an observable, not necessarily h — =+, that is needed to be
explained by a subset of fields affecting eq. .

We note in passing that Tables and do not include operators that are induced at
one-loop in the UV-theory. Trivial examples comprise of heavy electromagnetically charged
fermions that obtain part of their masses through the SM Higgs field or heavy charged
scalars that are coupled to it. A nice and non-trivial example illustrating this case can be
found in ref. [101].

2.5.4 Comparison with literature

As we mentioned in the introduction, the calculation for h — v in SMEFT was first
performed several years ago in refs. |72, [73] and to our knowledge these are the only complete
studies prior to ours here. Our check shows that there are two, numerically important
differences. First, all corresponding 0R}—~ in ref. |[72] are smaller by exactly a factor of
four. We think that this is due to a mistake in eq. (26) of ref. [72][arXiv v3]. Second, our
eq. (2.49) is not in agreement with the corresponding expression of ref. |[72]. We believe there
is a Yukawa coupling missing for each generation and flavour in the corresponding expression

of ref. |72]. Up to the aforementioned differences, we found agreement with 57?,2135;5’6)

As far as 572241 o is concerned, a direct comparison of our formulae in eq. (2.53|) with the
corresponding one in ref. |[73] is very difficult. Checking individually quantities appearing
in both works, for example, dv/v or II}, , is meaningless since the calculations in refs. |72,

73] were performed in background field gauges while ours in linear R¢-gauges. Comparing
(4)

h—~yy?
based on refs. [72, 73], we find, upon fixing the factor of four mentioned above, a maximal

numerically the correction, 6R appearing in our eq. (2.62) with a corresponding ratio

difference of 5% for ju = myy, originating from what multiplies the coefficient C?5.

2.6 Conclusions

In our analysis we have calculated the one-loop decay width of the h — ~7 process in
the SM extended by all CP-conserving gauge invariant operators up to dimension 6 in
Warsaw basis. We performed the calculations using the general R¢-gauges and a hybrid

renormalisation scheme, where we assumed the on-shell conditions for the SM parameters
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and MS subtraction for the running Wilson coefficients of the higher order operators. We
explicitly checked the gauge &-parameter cancellation, which provides the very strict test of
correctness of our calculations. In addition, we also explicitly proven that at the one-loop
and 1/A? order, the calculated amplitude is independent of the renormalisation scale . Our
work is complementary to previous analyses [72, 73] of this process using the Background
Field Method and comparisons of our results with theirs were made whenever possible. Our
master formula for the S-matrix amplitude is given by egs. and .

We give a complete set of analytical formulae for all classes of SM and SMEFT contri-
butions to h — vy decay rate, normalised to the SM result as in published LHC searches
[see eq. ] We also present them in a form of simple and compact semi-analytical
expressions depending only on running Wilson coefficients and renormalisation scale u.
Eq. summarises all dominant contributions. Such formula can be readily used as
additional constraint in experimental or theoretical analyses considering other observables
in SMEFT.

We show that numerically largest corrections to the SM prediction can arise from @,
Q.w and Quwp operators, contributing already at the tree-level, and from ‘:’33, Z%V
operators arising at the loop level. Only Wilson coefficients of these operators can be
meaningfully constrained using the current precision of the LHC measurements for the
h — ~v decay width. In some cases, like C’é‘f and Cg?)w , such constraints are already
stronger than those from other measurements, in this case for instance from top-quark
LHC-physics.

It would be useful to connect our main outcome, the expression eq. , with a
particular UV-model. One may follow ref. |[100] in integrating out heavy fields, which under
reasonable assumptions but limited to perturbative decoupling at tree-level, results in a
subset of operators arranged in table Interestingly, one can arrange a finite number of
heavy fields with renormalisable (or not) interactions that affect both PTG and LG operators
in table Another possibility may be a direct model like the one of ref. [L01] where the
operators, Qup, Qow and Q. wp, are generated. In general however, it is quite difficult, if
possible in any way, to find a model with appreciable, O(1), coefficients for these operators.
Possibly, some examples will be found in the future.

A general look of our SMEFT calculational framework does not differ from common
frameworks calculating electroweak one-loop corrections, like in the renormalisable SM for
example. Our work can easily be automatised although we performed as many manual
calculations we could for comparisons and cross-checks. For example, one can use the
SMEFT Feynman rules, given also in a Mathematica code, from ref. [40], and existed codes
to calculate Feynman diagrams, employ a “traditional” renormalisation prescription from

80’s described also here and, checking gauge invariance at every step, present a concise form
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of an amplitude in a useful semi-numeric form, as in eq. (2.62)). It is worth for pursuing this
SMEFT framework further.

2.A  SMEFT amplitudes and SM self-energies in R¢,-gauges

We append here the one-loop corrections in general renormalisable gauges for the three-point
1PI functions, T'?EB, T¥W and I'*W B as well as for the SM vector boson self-energies that
are needed for eqgs. (2.33) and (2.53). The first, {-independent, terms of the equations below
refer always to a part in unitary gauge. The Mathematica package FeynCalc (102, 103]

was used for most of our Feynman diagram calculations. To bring Feynman integrals into
analytic forms we used the Mathematica package Package-X [104, 105]. In what follows, we

use the mass-ratios

4m? 4m?
rx = m2X and rxy = mQX. (2.68)
mp, my

For the SMEFT one-loop corrections we have

- m? m3
reB {3<E +2— T log ,u,?h> + 2<E +2— logu—gv — log &w + Jz(fwrw)>

T 3272 V3
2
+E+2—log % —logéz + J2(§Z7“Z)} ; (2.69)
oW —1 T m% 9
P — e (B2 T 1o ) lorw (1 = rw fw)) 1001 = ) )
2
+2(A = g*(éw +3)) (E — log %V — log§W>
)
+4X — g7 (6w +5) + 09 log &w + 2AJ2 (Ewrw)
Sw—1
2
+)\<E+2—10gTZZZ —10g€Z+J2(fzrz)>}, (2.70)
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1 m2, 2 2525 (35% + 2\
F”WB:{ )\<E+2+\[7T—log )—1—69( —logmgv> g9 (g )
1

3271'2 )\(gZ _|_§/2)
m? G%(35%9" + 205 — 47g"?)
— 3Alog b 2 +2(g — 20)J
0g %/V )\(g +g ) TWf(TW) (g ) Z(TW)
16 gg
2 +g,22mechf[ (L=r)f(rp)]

2
+ A <E +2—1log M—QZ —logé&z + J2(§ZTZ)>

2
+ (2 — G (Ew + 3)) (E —log n;—gv — log §W>
2 )

g g
Ew—1

+4>\—§(fw+5)+

log&w + 2>\J2(§Wrw)} . (2.71)

The SM self-energies are presented (to our knowledge for the first time) also in ref. [106],
for general renormalisable gauges, and in ref. [89] for £ = 1. We have recalculated them here

for consistency. The results are:

m2
21( ~log W )+2 4ZchQf< —log2f>]
12 [

1 =2=12 2 5 f 19
3272 % [2(5”’ +3) <E log W> tow 5+ VMW) log Ew] :
(2.72)

1 g g?
H'Y'Y(O) = 48772 _|_ g/2

) +éw +5+ 25”{(?2; 2 1og gw] . (2.73)
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2
Agzz(m%) = Y {(5994 —365°g% — 11g")E

7682
N 2(2787° + 295" 5" — 140g%g™ — 2422(g% + g'*) + 36A(g* + §'*)* — 355'°)
3(9° +37)
32)\2 m?
—|—>\<__ — 48\ + 36 §2 —1—57'2 )logh
g2 +g/2 ( ) 'u2

—16)3 P PR m?
+2 <§2+§’2 + 2402 — 18M (g% + §?) + 5(5* + 9'2)2> log /TZ)Z

+ (—69g" + 165°5* + §"*) log WZEV
(35> — 3*)(339" + 225°5" + g")
g2 _|_g/2
— 16[4) — 4A(7* + §°) + 3(5% + §*)*] 1 (r2)
+16(3° +39?Y_ Ney

7

2 3 mfc 5
X 9Af §rfz—1 E—log? +2er_§+(er_1)J2(er)

_|_

Jo(rwz)

m3 5 /1
_ g%/’f [E — log M—Qf +rpz+ 3 + <2rfz + 1> JQ(T’fZ):| }
2,2 | 12 m%/v
—66wg (9" +9 )<E+1—10g£w—10g 2 )

2
— 3¢(7 +g/2)2<E—|—1—log§Z—log7ZZZ>}, (2.74)

where the axial-vector and vector couplings are defined as g4 5 = %T})’ and gy, ; = %T})’ —

sin? Oy Q #, respectively. The neutrino term in Azz(m?%) is contained in the fermionic part,
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and can readily be obtained by taking the limit my — 0.

2
1
Aww (m¥,) = v { 3°(599° — 95°)E + - (5563" — 75g°g"* — 35" + 72\g* — 48)?)

76872 3

AN ?
+ =2 (8A% — 12072 + 95*) log 1L
g H

2

1 m
+ ﬁ(_69§6 _ 53g4gl2 + 17§2§/4 + g/G) log 72Z

1

2
—_[49° + g*(721 — T15) + g>(179"* — 96)) + g° + 64)7] log .
29 %

4(9956 + 3gg4g/2 _ 19g2gl4 _ gIG)
+ =2 =12
g°+g

_ 3 m?2 r2 1
+2g4 Z {<4Tgw — 2) (E — log ,L52€> + f—‘g[ + Srew

ZIE,IU,,T
10 (rjy 3 mé,
(2 2 ) log(1 - —&
3+<64 4”W+)Og< m3

8g°N,
+29 CZ|KQ6|2{(3mZﬂ+3mia—Zm%,V)E

—16(3g" — 45°\ + 42?) J1 (rw) Ji(rwz)

2
R
(mg, —m3,) 10
Ty 2mi, my,) —
w
[(m2 —m2 )3 2
| — 5 (mi, mi,) + miy | log —g
w
[(m3, —mj,)° y
+ Sl T = S (md, +mi,) +miy | log u;
[(m7, —m; )?  (mg, +mi)
+ b 1 “ + 5 2 ¢ -2 Jg(mua,mdﬁ)}
| My My
2
— 6Ew gt <E +1—log&y — log mgV>
W
2
m
—3¢25%(5° +g’2)<E+ 1 —logéy —log Mf)}, (2.75)
where
my, = diag(may, me, my) , mg = diag(mg, ms, mp) , (2.76)

K,p is the CKM matrix, and the summation indices in the hadronic contribution run over
all the quark generations. The infinite quantity E' is given by eq. (2.27)), and the functions
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J1(z), Jo(x) and J3(x) are defined through

Iz jog(vlr) | o< <,
Ji(z) = og( Ve ) r= (2.77)

2\/7 arctan<1/+\7) r>1,

T z|log(Z2=2VI=z) 4y irl  O0<az<]1,
ey = YT los (5 1 )+ir. 0<e< 278)
_2\/marctan(m> . or>1,
and
J3(my, mg) = \/[(md —my)? — m%v] [(md +my)? — m%v}

x log d W \/[ 4 ] [(ma ) (2.79)

For completeness we also add here the W-boson one-loop self-energy at zero external

momentum, evaluated in Feynman gauge, needed in the master formula (2.53)). It reads

~4,2 12 A 7—/2 27 3\ 2
Aww(0) = 25 {(1—9>E+— g +——7log%

6472 2

g 2g> 832 8 (g —4\)
175> 35> 1 m? 176> g% 5 m2
+< 2 T — 5 Jlog =t — (= — S5+ ) log—F
497 A(g* —4N) 2 I 497  g* 4 I
2
Mg
32 5 Z]KQBP[(m? +m? > <E—1ogu25>
m2_ + mdﬁ mi | mflﬂ
2 + m2 —m2 e m2
u dﬁ U
_9 2
g m 1
+ 3573 > m%[(E—logﬂg> +2]. (2.80)
l=e,p,T
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Moreover, the derivative of the Higgs self-energy reads:

~ m? 6 _
IT,, (m?) = T {(1292 —16)) (E —log lg’) - X(g‘l + 252\ — 4)?)
163 — 20g%)2 + 4g*\ + 335
NS 2(rw)

P m? 30, P
+ [6(3% +3?) — 8] (E —log Mf) +5 (3% +52)% + 220G + §%) — 407

N 16)\3 . 20)\2(92 +g/2) +4)\(§2 +§’2)2 + 3(§2 +g/2)3

2)\(92 + g/? _ )\) JQ(TZ) -+ 4)\(9 — 2\/571')

me\ 2 m2 r
- 16‘2];Nc,f(vf) E— log/TQf + 147+ (1 - ;)JQ(W)]
2
+4(4)\ — 3%w) (E — log %V — log 5W> +4(8) — g2Ew) + 16A L (Ewrw)

2
+2[4) — (3° + §°)¢7] (E — log % — log 52) +2[8)\ — (3% + §°)¢z] + 8>\J2(€ZTZ)} ,

(2.81)
and the light quark contribution needed in eq. ([2.55) is
=2 12 2
had/, 2\ _ 99 2 my rqz 5
I (m7) = 1272(32 + g?) ZNCQq - logﬁ + <1 + 7) Jo(rqz) + 19z + 3
q
(2.82)

o7






CHAPTER 3

The decay h — Z~ in the Standard
Model Effective Field Theory

In this chapter we calculate the S-matrix element for the Higgs boson decay to a Z-boson
and a photon, h — Z~, at one-loop in the Standard Model Effective Field Theory (SMEFT)
framework and in linear R¢-gauges. Our SMEFT expansion includes all relevant operators
up to dimension 6 considered in Warsaw basis without resorting to any flavour or CP-
conservation assumptions. Within this approximation there are 23 dimension 6 operators
affecting the amplitude, not including flavour and hermitian conjugation. The result for
the on-shell h — Zv amplitude is gauge invariant, renormalisation-scale invariant and
gauge-fixing parameter independent. The calculated ratio of the SMEFT versus the SM
expectation for the h — Zv decay width is then written in a semi-numerical form which is
useful for further comparisons with related processes. For example, the h — Z~ amplitude
contains 16 operators in common with the A — v+ amplitude and one can draw useful results
about its feasibility at current and future LHC data. This chapter is based on ref. [107].
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3.1 Introduction

The Higgs boson decay processes h — vy and h — Z= are extremely important probes for
physics beyond the Standard Model (SM) and are under intensive research ever since the
Higgs boson discovery at LHC |27, |28]. Experimental bounds for both h — vy and h — Z~
decays were set by the CMS and ATLAS collaborations at LHC [108-111]. Although the
h — ~~ decay width has been observed to within 15% w.r.t. the SM prediction, the situation
is not the same for h — Z~. An upper bound for h — Z~ given by ATLAS [111], with
centre-of-mass energy /s = 13 TeV proton-proton collisions, integrated luminosity 36.1 fb=1,
and Higgs boson mass m;, = 125.09 GeV, finds that o(pp — h) x B(h — Z7) is 6.6 times
the SM prediction with 95% confidence level. More specifically, it is

o(pp — h) x Br(h — Z~)
o(pp — h)sm x Br(h = Zv)sm

<6.6. (3.1)

~

Bh—zy =
If physics beyond the SM does not affect the Higgs productionE which mainly goes via the
gluon fusion process, gg — h, then the bound of (3.1)) is translated to a bound on a ratio

I'(EXP, h — Z7)
T(SM,h — Z7)

Rz, = (3.2)
The decay h — Z~ has been calculated for the first time in the SM in refs. [112-114]. To our
knowledge, in the Standard Model Effective Field Theory (SMEFT) this process has been
studied using a partial list of d = 6 operators in refs. [67, 68, |115], while an analysis with a
complete set of d = 6 operators has recently been performed in ref. |[71]. Here, we advance
the current status of the SMEFT one-loop calculation for Ry, z, in eq. by presenting

e a clear and concise renormalisation framework in general R¢-gauges,

e a gauge invariant master formula for the amplitude which self-explains several issues

even for the SM-amplitude,
e a semi-analytic formula for R, 7,
e correlations between the ratios Rj— 7z, and Rj_.

Obviously there are many similarities in the calculation with the h — vy decay worked out
at one loop in SMEFT in ref. [49]E| and we follow faithfully the renormalisation framework
and the results found in there. We shall only focus on technical aspects that arise strictly

in calculating the h — Z~ amplitude. This involves some subtle issues regarding gauge

We shall comment upon this issue at the end of section
*For similar studies see also refs. |72, [73] [116].



3.2. Operators

X3 s06 and s04D2 1/)24,03
Q.0 (to)D(ete) Qe (eT o) (lenep)
Qw | eVEWI'WIrwEr | Qup | (D" e)" (¢TDue) | Quy (¥To)(@urp)
Qayp (eTo)( pdi» )
X2902 ’(/JQX(,D w2 2D
Quw | eleW Wi | Quyv | (Iorvepr'ow], | QY) wmu ) THLL)
Qu5 o' By, BH Qs | @o™el)eBu, | QY (soTzD’ ) (I rIy)
Qewn ‘pTTI‘PW;{uBW Quw (%UMVUDTI‘ZW;{V Qe ( )( 7“6)
Qus | (@o"™u)@Bu | Q% 0 9) (@5l
Quw | (Go™d)r e W], | Q%) (so*sz o) (@, v )
QaB (cj]’go“”d’r)goBm, Qou (“PTZ ‘P)(U YHay.)
Qpd (@“D o) (dy*d;)
w4
Qu | @) (1)

Table 3.1: Dimension 6 operators contributing to h — Z~ decay. For brevity we suppress
fermion chiral indices L, R. We follow here the notation of refs. |37, |40]. The operator class
2¢2D does not enter the h — vy amplitude.

invariance which we address in section The operators relevant for h — Z+ are discussed
in section and their effects in Ry, z, in section We conclude in section

3.2 Operators

Let the lightest of the heavy-particle masses be of order A. Following the decoupling theorem
[54], their effects at low energies can be encoded in the renormalisation group running of the
SM parameters in addition to the appearance of local higher-dimensional operators. The

later are parameterised at low energies by a SMEFT Lagrangian, which takes the form

£=ci+3 c¥Q¢ + > Q. (3.3)
X !

Eq. contains the, renormalisable, SM Lagrangian Cé%\)/[, the dimension 6 operators
Qg?) that do not involve fermion fields, and the dimension 6 operators Q}G) which are
operators that contain fermion ﬁeldsﬂ All Wilson coefficients should be rescaled by A2,
for instance CX — C*X/A2. We shall restore 1/A? explicitly in section later on. The

3The single d = 5 lepton number violating operator does not affect h — Z~ at one-loop.
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primed coefficients C'f are written in the gauge invariant Warsaw basis of ref. [37], while

the unprimed coefficients C/ in fermion mass basis are defined in ref. [40].

The operators contributing to the h — Z~ decay are collected in table [3.1] They are
classified into 8 different classes according to the notation of ref. [37]. There are in total 23
relevant operators, not counting flavour structure and Hermitian conjugation. In unitary
gauge, the coefficient C¥ associated with the operator Q, = (ofp)3 does not appear in
the calculation at O(A~2) and therefore does not contribute in the final amplitudeﬁ The
four-fermion operator )y enters indirectly into the calculation through the relation between
the vacuum expectation value (VEV) and the Fermi coupling constant Gg. There are no
contributions from CP-violating operators up to 1/A? terms in the EFT expansion. This is
based upon the fact that the SM amplitude is CP-invariant (symmetric in particle momenta
interchange) and all interference terms with CP-violating coefficients (antisymmetric in

particle momenta interchange) of O(1/A?%), vanish identically.

The 16 out of 23 operators affecting h — Zv are identical with those affecting the
h — ~v amplitudeﬂ The 7 operators that appear only in h — Z+ (those belonging to
category 122D of table may provide assistance in disentangling models for new physics
in case of a h — Zv experimental discovery. This is interesting because, if perturbative
decoupling of the UV theory is assumed, the operators in ¥?¢?D category are potentially
tree-level generated [79) 80]. If the two amplitudes, h — Z~ and h — v, are calculated in
the same renormalisation input scheme, we can compare the relative strengths of the various
contributions assuming dominance of one operator at a time. Within EFT we should be
able to pose predictions on possible sensitivity at LHC and future colliders for the h — Z~

decay rate.

3.3 Renormalisation of the h — Z+ Amplitude

Our renormalisation procedure follows an old but clear description invented by A. Sirlin [85].
This procedure has already been applied successfully in a SMEFT calculation for h — ~+ in
ref. [49] and is quickly repeated here for completeness before applying it to the calculation

of the h — Z~ on-shell matrix element.

4On the contrary, in the Re¢-gauges C¥ enters in individual diagrams, but it cancels out completely in
the final sum. This adds to a list of several checks we performed in the final amplitude (cf. eq. )

5The operator Qfl) does in fact enters in the h — v amplitude, as well as in h — Z~, but only through
the Fermi coupling constant redefinition, and not directly to h — 7y one-loop amplitude.
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3.3.1 Counterterms

We first start with the part of SMEFT Lagrangian bilinear in gauge fields in gauge basis given
in eq. (3.14) of ref. [40], and write all bare parameters as differences between renormalised
parameters and corresponding counterterms, for example gg = g — d¢g. Then, mass diagonali-
sation for vector fields is performed by the matrix X given in eq. (3.19) of ref. [40]. As we are
only interested in an S-matrix element, we keep all fields unrenormalised but multiplying
the h — Z~ one-particle irreducible (1PI) amplitude by proper LSZ constants [88] for
the external fields of h, v and Z. In this way and after some algebra, counterterms are
generated and connected to self-energy corrections for vector bosons. We work at one-loop

in h-expansion, and at 1/A? in EFT expansion according to our discussion below eq. (3.3)).

The definition of 2- and 3-point 1PI correlation functions contains all information we
need to calculate the amplitude. Our definitions and conventions follow directly those of
refs. [85] and [49]. We introduce the unrenormalised (but regularised) self-energies, that is

1PI diagrams for scalars s1 2 = h, and vector bosons V; o = W=+, Z,~,

S1 52
@ =i (@), (3.4

Vi Vi v 2 2 2
0 =iy, (67) = iAviv, (¢°)g" +iBvivy (¢°)d"q” (3.5)
M ;ouv s, 2 s v s(q),,,2
-~ =ig"’omy,y, +iq"'q" 6\ V' mizy, . (3.6)

We also include the definition (3.6]) for the vector boson counterterms since these are needed
in the final amplitude. Physical masses for vector bosons, myy and my, are defined to keep
their tree-level form in SMEFT, (cf. the first two lines of eq. (2.5)) in chapter [2)) by choosing

the corresponding counterterms such that
omy, = Re Aww (m¥y), and dm% = ReAzz(m%). (3.7)

The physical masses my and my for the W+ and Z vector bosons are inputs in our
calculation. In general, tadpole and tadpole-counterterm diagrams also appear in the right-

hand side of (3.7)). However, one can arrange a renormalisation condition where the tree-level
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VEV, v, is the exact one up to one-loop order or beyond. Such a condition implies that
tadpole plus tadpole-counterterm diagrams vanish identically [87]. In addition, we define

the weak mixing angle, 0y, through

2
m
L4 s2=1-¢2 t

2 )
my

2 = cos? Oy =

Il
olw

(3.8)

3.3.2 The Amplitude

The on-shell S-matrix element for the h — Z~ amplitude can be written as

(v(p1), Z(p2)| S 10(0)) = N ZuN/ 2y Z2 [iA" (h = Z7)] €(p1) €, (p2) . (3.9)

where ¢ = p1 + ps is the incoming Higgs boson momentum, and p; (p2) is the outgoing four-
momentum of photon (Z-boson) along with the polarisation four-vector €(p1) (e(p2)). Similar
to the mass counterterms (5m%, of , the LSZ factors Zj,, Z, and Zz are calculated by the
requirement for the full propagators to look like those of free particle states asymptotically.
Diagrammatically, the amputated diagrams needed to sum up in eq. are given in terms
of 2- and 3-point 1PI Feynman diagrams calculated on the mass shell, p? = 0, p2 = mZZ and

p1-p2 = (mj —m%)/2,

,
iAM (h = Z7)e(p1) €,(p2) = "‘h"< +
Z

A square (“W”) in a vertex stands for a vertex generated by only d = 6 operators. Shaded
blobs in the second line denote, as before, 1PI 3-point hZ~y-vertex and 2-point Z~- or
vZ-mixing at one-loop, while diagrams with “®” symbol denote counterterms generated

following the procedure described above.

Before deriving the master formula for the h — Z~ decay amplitude, it is worth noting
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a cancellation between some gauge non-invariant parts of the counterterms. For this reason,
let us focus on the third line of the diagrams in (3.10]) and collect the terms of the diagrams

proportional to the gauge invariant quantity

A" (p1,p2) = Py ph — (p1- p2)g"” . (3.11)

Then, the gauge non-invariant leftovers are proportional to g"” (“pure-metric” terms). For

example, the hZ~-vertex counterterm expands diagrammatically as,

+ === . (3.12)

and similarly for the diagram containing the Zy-mixing counterterm. We can then prove

that the sum of the “pure-metric” contributions from the first and the third diagram of

Vanishesﬁ

=0. (3.13)

As a result, only the gauge invariant parts of these two counterterm diagrams make it into
the master formula for the amplitude below. Note that these counterterm contributions
exist even in the pure SM amplitude but usually not discussed in the literature. One can of
course exploit gauge invariance to start with, as it was done for example in the first h — Z~
complete calculation of ref. [113], but it is really a nice cross-check of the calculation to
see how contributions turn out to be gauge-invariant, respecting the usual Ward identities.
Finally, note that the second diagram in the third line of is gauge invariant by itself.

We are now ready to present the on-shell reduced matrix element defined as

(v(p1), Z(p2)| S [h(q)) = (2)*6 (g = p1 — p2) [IM* (h = Zy)] €:(p1)es(p2) . (3.14)

SWe remark here that the counterterm for the hyy-vertex is gauge-invariant by itself and, of course, zero
in the SM.

65



3.

THE DECAY h — Z~ IN THE STANDARD MODEL EFFECTIVE FIELD THEORY

66

Adding the diagrams in (3.10|) together and by comparing egs. (3.9)) and (3.14)) we obtain

iIMM (h — Z7) = 4i A" (p1,p2)

1 Azy(mZ) +0my, Az, (0) +om3,
X { — ceBl14 a¥B - = Tt 7
{ scv + P mQZ + mQZ
Az (m%) +0m%., 1 Az,(0)+dm%
W1+ xPW 41220 1 -2 7
+ scw + + m2Z p m2z
. §2 — 2 D CAVB | L e 9sc  Azy(m%) + Az, (0) + 2(5mQZ7
2 s2 — 2 m?,

. -
+ I 3 UC'ZFZ}

mw i oB oW W B
4 Ly(a 4 gV 4 0200 4 32090 4 960020V B Az4(0)
g sv(g® +g )[ +v + qv + 2scv ] 3
z

) 1
— 4i(p1 - p2)g"” [
m

7?51“ +Y weir|. (3.15)
i

Eq. (3.15)) is the master formula for the h — Z~v on-shell amplitude. The gauge-invariant
quantity A" (p1, p2) has been defined in (3.11)) while the self-energies and the counterterm

5m2Z7 in egs. (3.5) and (3.6, respectively. Moreover, in (3.15) and for brevity, we defined
the quantity

5Ct v

X' =T"— ot S (mi) + 3 A% ,(m%) + AL (0), (3.16)

where i = B, oW, oW B. In :3.16|h, I'* stands for 1PI contributions from the first diagram
in the 2nd line of (3.10). M is the SM contribution from triangle diagrams with W-

bosons and fermions. In addition, §C* and dv are counterterms for the Wilson coefficients

with i = B, oW, W B and the VEV, respectively. The dv/v counterterm is specified in
egs. (3.18)—(3.20) of ref. [49] after following the renormalisation scheme of refs. [85] [87].
The coefficients C* (and in fact all Wilson coefficients in ) can be readily transformed
in MS-scheme, C' — 6C — C(u) — 6C. As usual, in this scheme the counterterms 5C°
subtract infinite parts proportional to (4%,1 — v + log47) and can be read directly from
egs. (3.23)—(3.25) of ref. [49] as they have been adapted from refs. [86, (90, |91]. We confirm,
even analytically, that these counterterms are capable of subtracting all infinities arising
from the one-loop diagrams. The last three terms in the right-hand side arise from the
product of the square roots of the LSZ factors in where the prime denotes derivative

with respect to ¢2, for example IT}, (¢%) = dlln,(¢%)/dg®. Finally, note that the hadronic
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contributions from light quarks in A”_(0), as given in eq. (4.21) of ref. [49], have been taken
into account since they have an important contribution (one order of magnitude) in the

non-logarithmic parts of the one-loop amplitude.

Note that eq. is divided in two parts: the first part is proportional to the gauge-
invariant quantity A*”, while the second part (last two lines of eq. ) is proportional
to g and, therefore, is not gauge-invariant and violates the Ward-identity for charge
conservation. We have proved that for every gauge-fixing choice these contributions vanish.
To be more specific, we have checked explicitly that in unitary gauge Az,(0) = 0 and that
there are no leftover corrections proportional to g””, i.e. fsM = Fg = 0. What happens in
Re¢-gauges is discussed at the end of subsection [3.3.3]

We are now ready to write the h — Z~ amplitude at one-loop and at 1/A% in EFT
expansion. After removing the last two lines in (3.15) and checking that infinities cancel

when applying the counterterms §C*, we arrive at the matrix element

iMMV(h — Z"}/) =41 Auy(p17p2)

1Az, (m%) +0m%, Az, (0) + 6m?
X _ SC?}C‘PB 1 _i_XgoB L Z"/( Z)2 Z~y Lt Z’y( ) ' 7y
t m2 mZ
Azy(m) +0m%, 1 Az,(0) + dm3
+scvC?W |1+ XV 4+t 8 TZn)2 ZV_? ! 7)n2 Zy
Z A
+ ﬂ v C(PWB 1+ X%"WB . 2sc AZ'y(m2Z) + AZ’y(O) + 26m2Z’y
2 2 _ 2 mQZ
1 = o
+—rM Y o PZ} : (3.17)
mw i#pB,pW,oW B finite

which is gauge invariant and renormalisation scale u-independent, in a sense that p dMH* /dy =
0. The subscript “finite” means that infinities proportional to (ﬁ — v+ log 4m) have been
removed from expressions such as Ay, Ay, I, etc, with counterterms 6C* removed from
the quantity X of as well. All self-energies but Az, (m%) and A%, ,(m?%) appearing
in are given analytically in general R¢-gauges, in appendix A of ref. [49] (see also [89]
for formulae in £ = 1). It is obvious from that self-energies for the Higgs or vector
bosons should be calculated only in the SM, not (necessarily) in SMEFT. The three-point

vertex functions IV are in general too lengthy and is not really illuminating to be given here.

Although we leave the expression (3.17) for the matrix element in a slightly involved
form, it can be reduced further by noting the following. As in the case of the h — ~~

amplitude, there is a remarkable relation between factors multiplying the coefficients C¥?

67



3.

THE DECAY h — Z~ IN THE STANDARD MODEL EFFECTIVE FIELD THEORY

68

and C?W when replacing
1

tan Oy

tan Oy — — (3.18)

while on the other hand, factors multiplying C¥*"? in (3.17) remain invariant. In addition,
elementary trigonometric relations may reduce eq. (3.17) further. For example, by using
tan @y — 1/tanfy = —2cot?(20y,) one may factor out (5m227/m22 terms. We believe,
however, that eq. (3.17)) is more transparent and easily understood when read in conjunction
with the list of diagrams and counterterms of eq. (3.10)).

Finally, some words about calculating the diagrams appearing in the shaded blobs of
(3.10). We used the Feynman Rules of ref. [40], given in general R¢-gauges, and passed
them manually to the Mathematica package FeynCalc [102, |103]. The Feynman integrals
are regulated with dimensional regularisation [117] with the Dirac algebra performed in
d-dimensions. The result is reduced to basic Passarino-Veltman functions [92]. We then
checked expressions for analytic functions, some of them presented in ref. [49], against the
numerical library LoopTools [118,119]. The most crucial (and time consuming) test is the

gauge-fixing parameter independence of the amplitude ([3.15)).

3.3.3 Gauge-fixing parameters cancellation

Since the cancellation in the amplitude of the gauge-fixing parameters, collectively denoted
as £, is a very involved and important cross-check of the validity of our calculation, let us give
here some insight on this particular computational task. In general, there are two different
ways of how &-dependent contributions arise in SMEFT. Let us call the result one finds
by subtracting the unitary gauge result from the full result in R¢-gauges the -dependent
result. For an operator C? there are explicit £-dependent contributions, coming from the
&-dependent result which is proportional to the Wilson coefficient C*. There are also implicit
contributions, coming from the £-dependent SM-like result by Taylor-expanding the masses

with C" as an expansion parameter.

In the h — Z~ process there are two independent gauge-fixing parameters, &y and
£7. We therefore prove the £-cancellation in the amplitude for each of these parameters
independently. Interchanging between gauge-fixing parameters is a great advantage of the
Feynman rules written in general R¢-gauges in ref. [40]. We also checked gauge-invariance
without any renormalisation scheme. In this case, one has to add a Higgs tadpole diagram
in the “hhAZ” vertex. As explained in eq. , the last two lines do not appear in the
unitary gauge at all. On the other hand, each of the terms in these lines contributes in
the £-dependent part, so one has to prove that they add to zero. Note that there are

explicit contribution from the SMEFT I's in the last line as well as from the vertex and the
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Z~-mixing in the penultimate line, and also implicit contributions from the Z-boson mass

and the Z+-mixing in the penultimate line and the ¢&-dependent SM result in the last line.

It is important to stress here the analytic result of the Z~-mixing in SMEFT with d = 6

operators. One can prove that the result is simply given by
APIFET(0) = (1 + $02C#P) AZNN(0) (3.19)

where A%\V/I(O) is the SM-like value at ¢> = 0, given analytically in eq. (2.73)) of chapter
Note that A%l\,f (0) is a function of the SMEFT couplings, the VEV and the W boson mass.
Therefore, the SM-like and the SM values coincide. We believe that (3.19)) has interesting

consequences in the general SMEFT renormalisation program.

Each coefficient has its own unique way of how the £-cancellation occurs. As an example,
let us discuss here the C¥W 5 coefficient. Since A%\W/{EFT doesn’t depend on this coefficient
(either explicitly or implicitly) and the vertex contribution cancels that of the Z-boson

W B

mass, C cancels trivially in the penultimate line. Therefore, the implicit and explicit

contributions from the last line should cancel among each other, which we have proved that

this is exactly the case.

3.4 Results

3.4.1 h — Z~ in the Standard Model and the input parameters scheme

As it is well known, the h — Z+ SM contribution, fSM/mW, in eq. (3.17) is a sum of
one-loop diagrams with only W+ bosons and charged fermions, f, circulating in the loop.
In terms of the SMEFT parameters {g, g’, v}, defined in ref. [40], we find that

fSM ggl 3 gl2 52
— > NesQy(T7 —2Qfg2 )t 2 _/2>IW , (3.20)
!

mw 16720 g 3>+3

where the electromagnetic fermion charges and the third component of the weak isospin are
given, respectively, by

0, for f=ve, vy, vy

-1, for f=eu,7

Qf = (3.21)
2/3, for f=u,c,t

\—1/3, for f=d,s,b
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and
1/2, for = Ve, Vy, Vr U, C,t
Ti = / J = Ve v vr : (3.22)
—1/2, for f=-e,u,7,d sb
The colour factor IV, y is equal to 1 for leptons and 3 for quarks. In (3.20) I; and Iy contain
the contribution from the fermionic and the bosonic sector respectively. Explicitly, these

quantities are given in terms of PV functions asﬂ

2
my

B 2 2 2 2 2 2 02
Iy = (m%_m%y{%z [ Bo(mp, my, m§) — Bo(mz, mp, my)]

- (m% - mQZ) [(m% - m2Z - 4m?”)CO(O7 m%m m2Z7 m?a m?“a m?‘) - 2] } ) (323)

and

1 m?
Iy = 7 [mi (mZ — 2miy) + 2miy (m — 6miy)
meratd |
X [BO(m%7 m%{/, m12/V) - BO(m2Z7 mIZ/Va m%/V)]
2 2
my —m
+ T i (my — 2miy) + 2miy (m — 6miy)
w

+ 2miy [mj (6miy, — m3) — 12myy, — 6miymy + 2m%)

x Co(0,m3, m%, m%/v,m%/v,m%/v)} } . (3.24)

We have proved explicitly that the SM matrix element is finite, gauge invariant and gauge-

fixing parameter independent.

We can express the SM-like result of eq. , or for that matter any other contribution
in , in terms of well-measured quantities that will be taken as inputs in evaluating the
h — Z~ amplitude. The set of well-measured quantities we have chosen, contains Gg, myy
and myz. The relevant formulae for expressing the parameters g§’, g and v as functions of the

Fermi coupling constant G, the physical W-boson mass, myy, and the physical Z-boson

"Our notation for PV-functions is identical to those of LoopTools in ref. [118].
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mass, mz, are given in appendix [E] section [E.I] We repeat them here for convenience:

1 0@1(3) C‘Pl(3) Cll
9/225/4 /mQZ*m%V /Gr < 11 22~ Y1221

1 —
202G\ A2 AZ A2

- m C7 g [ mw CTEN g o)

4/2GF(m% —m¥,) \ A2 myz m% A2 T

1 C‘Pl(?’) C‘Pl(3) Cll
~ _ 95/4 11 22 1221
g =2 my/Gr |1 - QﬂGF< A2 ICE , (3.26)
(3 (3

S S PO S e - e o

214Gy 2v2GFr \ A2 A? A2 '

Finally we can express the parameters in eq. as a function of the experimental
quantities G g, myy and my taken from PDG [120]. The reason for choosing the input scheme
{GF,mw,mz} is twofold: first, it has natural implementatiorﬂ into our renormalisation
prescription discussed already in section [3.3] and especially into the simple definition of the
weak mixing angle in eq. and second it is a scheme that is becoming increasingly
popular after refs. [71}, |116] with whom we would like to compare our results. Other
advantages of this scheme have also been put forward by ref. [121].

After replacing g, g and v in eq. (3.20) with eqs. (3.25))—(3.27), it is rather more instructive

to present also the numerical result here. This reads

fSM
—— = (143 x107° — 1.11 x 107 %)
my
. OB _5.,C¥P
+ (1.07 + 1.38 x 10 41)7 + (0.64 + 8.28 x 107%4) X
. C<Pl(3) C@l(3) Cvll
+ (1.30 — 1.00 x 10734) 1A12 + j@ - 115221 (3.28)

As one can see, the imaginary part of the SM-like amplitude is more than three orders
of magnitude smaller than the real part and can be safely ignored in the following. Our
result agrees with ref. [30] and partially with refs. [29, 113”'_U| The pure SM contribution,

8At least more natural than the scheme with the input set {cem, Gr,mz}.
9Note that the expression for g’ in eq. (3.25) becomes much simpler upon substitution of the weak mixing
angle definition of (3.8). Then the second line of ([3.25) reads:

1 CoP Ll
— + .
42 s2Gp < o >

A2 A2

19We have a minus sign difference in the term before the last parenthesis of eq. (4) of ref. [113]. Furthermore,
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M /m, can be factored out in the amplitude of (3.17) and after squaring and integrating
over the phase space of the final state particles, v and Z, one can easily find the decay rate
for h = Z~ in the SM and in SMEFT. It is then useful to express our results in terms of

the quantity
I'(SMEFT,h — Z~)

T(SM, h — Z7)

Rhszy = =1+ 0Rn-2z, (3.29)

and compare with the experimental bound of eq. (3.2]). In the next subsection we present
corrections for Rz, from new physics in the form of running Wilson coefficients of the
operators listed in table 3] In addition, we search for correlations with an analogous

expression arising from the h — y~ decay.

3.4.2 Semi-numerical expression for the ratio R;_,z,

In this section we finally present our results for 6Ry—,z,. As in ref. [49], we shall separate
constant and renormalisation scale u-dependent logarithmic parts which multiply RGE
running Wilson coefficients, C'(x). In “Warsaw” mass-basis of ref. [40], by exploiting the
input parameters scheme {Gr, my, mz} with the new-physics scale A written in TeV units,
we find 1]

o Cwl(?a) _ 0@1(3) Coe0 _ ceD
Rz = 0182 ——1 E— 02—
d 1) (3
-0 Olw +0.02 Cép; + 0;)03(1( — Cépfﬂq )
. " . v
[ 2 10v¥B 2 10w
+ 114.99 — 0.35log “2} LA [14.88 —0.151og "2] .
L myy A miy A
[ 2 1 0eWB 2 10w
+ 19.44 — 0.26log “—2 —F [0.10 —0.20log “T ——
L myy | A miy
i 2 CuB 2 CuW
— (011 — 0.0410g L | =35 4 [0.71 —0.281og ’“LQ] 33
L myy | A miy A
r 2 uW 2 dW
M Cy I C33
—10.0140.001 —10.01 4 0.00log —— 3.30
_ + ogm%% A2 [ + ogm%y] A2 +...,  (3.30)

where the ellipses denote contributions from operators that are less than 0.01 x C//A2. Note
that the VEV appearing at tree-level introduces one-loop corrections when exchanged for
the Fermi constant through G = 1/[v/2v?(1 — Ar)]. We follow here the same procedure as

our SM result agrees with ref. [29] only if the branches of the piecewise function ¢g(7) in eq. (2.56) are reversed.
" Our result is in agreement with the revised (arXiv v3) version of ref. |71].
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in ref. [49] below eq. (4.16). Formula should be renormalisation scale (¢) independent
at one-loop and up to terms with 1/A% in EFT expansion. Assuming that Higgs boson
production is not affected by the operators listed in table the current experimental
bound of sets rather weak constraints on tree-level SMEFT Wilson coefficients. As an

example, for u = my, we obtain

[C¥P 04 [CW] 04 CPW B _ 07
A2~ (1TeV)2’ A2~ (1TeV)2’ A2~ (1TeV)2’

(3.31)

For loop-induced operators, the logarithmic part is of the same order of magnitude as of the
constant part. Contributions in the first and second line of arise from finite fermionic
triangle diagrams that just rescale the SM result. Wilson coefficients C4y’, Cépgq(l), gDSq(B)
are the new operators appearing now in h — Z~ decay relative to h — v (see table .
Interestingly, out of many operators only three made a contribution for more than 1% and

in fact they are just barely pass that thresholdﬂ

How to use eq. ? First, decouple heavy particles from a more fundamental theory.
Match to Warsaw-basis operators relevant for h — Z~, listed in table Set the coefficients,
C(p) at a scale p = A. Use RGEs to run the parameters down to the Higgs mass scale —
one could use dedicated codes for this purpose like those in refs. [93, |94]. Plug in the results
for C(u = my,) coefficients in eq. and obtain R, z-. As long as discussing the same

physical process in the same input parameter scheme, the result should be unambiguous.

Keeping in mind the current experimental sensitivity for h — Z=, eq. (3.30) is not
of much use. It is however, quite interesting to check for a h — Zv projective reach by
comparing 0R,—z~ of eq. (3.30) with 0R}_,,, taken from ref. [49] but translated into the

12We consider 1% of corrections as an indicative limit that LHC can reach for §Rn— 2z~ at later stages of
its run.
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{Gp,mw,mz} input scheme. We have,

C C‘Pl(3) _ Csﬁl(?’) Cgo[] _ QC@D
SRp—spry =~ 0.18 1221 1&2 2 4 0.12——5——
e e U d; U

001 Csy +4C58 + 5058 + 2057 — 3047

. 2

r 2 ©B 2 oW
— 148.04 — 1.07log “2} C—Q - [14.29 —0.12log - ] C—2

i my, | A myy | A

r 12 ©WB 12 w
+ _26.17 — 0.521og m%j VI + {0.16 —0.221og - } 12

r 2 7 CuB r 2 7 CuW
{211 - 0.8410g F5- | S 4 113 — 045 log Ly |

i m2, | A2 | m2, | A

r CuB r 2 7 CuW
—~ |0.03+0.011og “—2 2 — |0.01+0.00log 1o | =22

i m2, | A2 | m2, | A

r 2 CdB r 2 1 CdW
+10.03 +0.01log - [ 25— 10.02 4 0.011og 1 [ =2

i 2 A2 | 2 ] 7A

2 7 CeB 2 7 CeW
+ 002+00010g P =38 _ 001+00010g 1= 0 (332)
W- A W- A

One can draw interesting remarks by comparing eqgs. and . Wilson coeflicients
in the first line of both equations are dominated from input scheme dependenciesH The
only “real” difference is a factor of 2 enhancement in front of the coefficient C¥? in the case
of h — . Another issue is the surprisingly large loop enhancement of the C%? coefficient
(top-quark inside the loop) in 6Rj—~~ as shown and discussed in ref. [49]. This enhancement
has been reduced by a factor of 20 in R,z in . The reason seems to be an accidental
cancellation. In the h — v case we have an overall factor 16sc¢? ~ 6, while in the h — Z~v
case we have an overall factor 3¢® — 13cs? ~ —0.5. It is this factor of (—10) that gives
such a big difference in the relevant results. This suppression may be used to disentangle
new-physics effects between the two observables. Interestingly, however, the coefficient C§L3W
does not suffer by similar accidental suppression.

In comparing eqgs. and , even the dominant contributions from the operators
C?B and C¥WPB are smaller in h — Z~ by factor of 3 and only the coefficient of C¥" is
similar in both dR}_. 7z, and 0Rj—~,. This is very interesting for disentangling among the

three operators in case new physics enters through those. For example, one may envisage a

13The large scheme dependence can be understood by comparing (3.32) with the first line of eq. (5.1) of
ref. [49].
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new-physics scenario, like the one of ref. |[122], with a heavy hypercharged SU(2)-singlet
scalar, which is decoupled from the theory at the TeV scale. Since this will only make C¥%
non-zero, and say positive in A — 7, it will only make a suppressed reduction in case of
h — Z~. However, there are Wilson coefficients like the prefactor of C" that are similar in
both cases.

The real power, however, of EFT, is when using experimental data to constrain Wilson
coefficients of various operators and therefore making estimates for projective reach of
observables. For example, bounds have been set in some of the coefficients appearing in
ORh—~~ in refs. [49,116]. We easily see that, if we consider one coupling at a time, bounds
from h — 7 on these coefficients kill any possible excess arising from these operators in
the h — Z~ process. In addition to the already mentioned cancellation in top-quark loop
for h — Z~, the relevant operators bounded from h — 7 are now numerically completely
irrelevant for h — Z~.

That is quite a lot one can infer by just comparing only two observables! One may
use best fit values to EW observables to check upon other coefficients, such as C', Clb,,,
celB) e, 0ea13) 0eD that enter similarly in 6Rp—zy and 6Rp— of eqgs. and
, respectively. By taking, for instance, the best fit values from the 4th column of table
6 in ref. [121]E| we obtain that it is unlikely to discover any possible new-physics effect
through h — Z~ decay in current LHC data before seeing a h — ~v anomaly. Of course
this statement weakens if one allows for more operators to be present at the same time.

As we already mentioned in Introduction, below eq. , in deriving bounds from
0R -z we implicitly assumed that at least the dominant Higgs-boson production mechanism
(gluon fusion) is not affected by the operators involved in the h — Z~ decay. Indeed, for the
same reason we explained in section only CP-invariant operators contribute to gg — h
process. The main, i.e. tree-level in SMEFT, gluon-Higgs operator, Q,q, as well as the ones
affecting the one-loop diagrams, Q,g, Q4c, do not interfere with the list of operators in
table relevant to h — Zv. However, operators (0, and Qg, enter in both h — Z+v and
h — gg but their associated Wilson coefficients are multiplied by small numbers in dR—, 7~
of eq. (3-30). Finally, the combination (C¥" + 1/4C¥P) enters only multiplicative in all
three observables, h — gg, h — Z~ and h — ~7 which is just a rescale effect. From these
two coefficients, C¥P is a custodial violating parameter and therefore highly suppressed. Of
course the safest is to calculate h — gg at one-loop in SMEFT. The reader is referred to
refs. [115] 123, 124]

What about future h — Zv sensitivity? Only at later stages of high luminosity of

3000 fb~! at LHC, ATLAS will have enough significance (~ 50) for the h — Z~ mode [125].

Assuming SM Higgs production and decay, the signal strength is expected to be measured

YSimilar results one can draw from other tree-level studies, see refs. |76} [78].
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with 0Rjy—, 7y ~ £0.24 uncertainty. On the other hand for h — 7y, and the same projective
reach, ATLAS expects 6Rp,—, = £0.04 for a SM Higgs boson produced from gluon fusion
process and decaying dominantly to bb. By comparing, our EFT calculations for éRj,_, Zy
and 0R - in eqgs. (3.30) and (3.32), we obtain that any new-physics signal for h — Z~ is
unlikely to be seen at near future LHC upgrades without seeing new physics first at h — ~~
data.

3.5 Conclusions

We have performed a one-loop calculation for the Higgs-boson decay to a Z-boson and a
photon, h — Zv, in SMEFT with d = 6 operators written in Warsaw basis. We find a
general formula for the amplitude which is finite, it respects the Ward-identities, and
is gauge-fixing parameter independent. We present our result in terms of the ratio dRj—, 7~
in eq. (3.30) and compare this with the previously calculated ratio dR}_. We find that,
for most Wilson-coefficients, 6Rj,—, 7z is less sensitive to new physics than dRj_.-~. Some of
the operators entering in h — Z, but not in h — 7, can modify dR}_,z, at a rate hardly

noticeable, currently or in the near future, at the LHC.
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CHAPTER 4

SmeftFR — Feynman rules generator for
the Standard Model Effective Field
Theory

In this chapter we present the Mathematica package SmeftFR, a software tool dedicated
to the generation of the Feynman rules for the Standard Model Effective Field Theory
(SMEFT). In its current development version, the SmeftFR code includes the complete set of
the dimension 5 and 6 SMEFT operators in Warsaw basis, as well as the complete bosonic
subset of the dimension 8 operators in a basis that extends Warsaw basis. The package can
be used to produce the Feynman rules for the SMEFT consistently up to 1/A* order in
the EFT expansion, including the interference terms, for any chosen subset of the effective
operators. The Feynman rules, generated through the Mathematica package FeynRules,
are produced in the physical mass basis for all the fields. For versatility, the Feynman rules
can be produced in either unitary or linear R¢-gauges. Additionally, the user is given the
choice of producing the result in terms of the SMEFT couplings or in terms of physical
parameters, in which case two different convenient physical input schemes are provided. The
mass basis Lagrangian produced by SmeftFR can be exported in various formats supported
by FeynRules, such as UFQ, FeynArts, etc, while a dedicated LaTeX generator is used to
print the results up to 1/A? order in human-readable format. The numerical initialisation
for the Wilson coefficients is interfaced to WCxf format. The open source code can be
downloaded from the address www.fuw.edu.pl/smeft. This chapter is based on refs. [126,
127].
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4.1 Introduction

During the last years, the extension of the Standard Model (SM) of particle physics |15}
17] within an Effective Field Theory (EFT) framework [128-130] has become increasingly
popular. The resulting theory, abbreviated as SMEFTE parameterises the, beyond the
SM, New Physics (NP) effects by extending the SM with a complete set of gauge invariant
operators, constructed out of the SM fields spectrum. These NP effects are assumed to take
place at and above an indicative energy scale A, which is considered to be large with the
respect to the masses of the SM particles. The new effective operators can be categorised
according to their mass dimension, with their accompaning couplings, the Wilson coefficients,
being suppressed by suitable inverse powers of the scale A.

The lowest SMEFT order contains only one dimension 5 operator, known as the Weinberg
operator, which can be interpreted as a Majorana neutrino mass term. The first non-trivial
SMEFT order is consisted of the operators at dimension 6. A complete set of the gauge
invariant operators up to dimension 6 was first presented in ref. [39], and more recently put
in a non-redundant form in ref. |[37]. This independent, non-redundant basis, is referred
to the literature as the Warsaw basis. Suppressing the flavour indices of the fields and not
counting hermitian conjugated operators, Warsaw basis contains 59 + 1 baryon-number
conserving and 4 baryon-number violating operators.

Beyond the dimension 6, explicit operator bases where constructed for the dimension 7
operators in ref. [41] |43]. Dimension 8 bosonic operators basese where given in refs. [131-133]
and, more recently, the complete dimension 8 basis was presented in ref. [45], using a
minimal-derivative basis, similar to the Warsaw basis.

The SMEFT can be in general a very complex model, simply due to the mere number
of the effective operators that are included. Even at dimension 6, without applying any
restrictions regarding CP-conservation, flavour-violation etc, the Wilson coefficients add
up to 2499. In addition to the large number of free parameters, the complicated structure
of the effective operators results in even more complicated interaction terms. Therefore,
theoretical calculations of physical processes within the SMEFT can be very challenging
— it is enough to notice that the number of primary vertices when SMEFT is quantised in
R¢-gauges, printed for the first time in ref. [40], is almost 400 without counting the hermitian
conjugates. As the recent direction of the literature flows towards the use of the SMEFT
beyond the linear approximation, with the inclusion of interference of mulitple d = 6 terms
and/or the inclusion of higher-dimensional operators, the calculational complexity makes
old-fashioned, hand-made calculations almost not realistic.

It is, therefore, important to develop technical methods and tools facilitating such

!For a recent review and pedagogical lectures, see refs. [47 48], respectively.
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calculations, starting from developing the universal set of the Feynman rules for propagators
and vertices for physical fields, after spontaneous symmetry breaking (SSB) of the full
effective theory. The initial version of relevant package, SmeftFR v1.0, was announced and
briefly described for the first time in appendix B of ref. [40] and later expanded and refined
in ref. [126]. Here we present the current development version v3.0 [127] of the code SmeftFR,
a Mathematica symbolic language package generating Feynman rules in several formats. Let

us briefly list here some of the main features of the package:

e SmeftFR is able to generate interactions in the most general form of the SMEFT
Lagrangian, without any restrictions on the structure of flavour violating terms and on
CP-, lepton- or baryon-number conservationﬂ Feynman rules are expressed in terms of
physical SM fields and canonically normalised Goldstone and ghost fields. Expressions
for interaction vertices are analytically expanded in powers of inverse New Physics
scale 1/A, with the option to truncate the EFT series to the chosen order, up-to 1/A% .

e SmeftFR is written as an overlay to FeynRules package [134], used as the engine to

generate Feynman rules.

e Including the full set of SMEFT parameters in model files for FeynRules may lead
to very slow computations. SmeftFR can generate FeynRules model files dynamically,
including only the user defined subset of higher dimension operators. It significantly
speeds up the calculations and produces simpler final result, containing only the Wilson

coefficients relevant for a process chosen to analyse.

e Feynman rules can be generated in the unitary or in linear R¢-gauges by exploiting
four different gauge-fixing parameters &, £z, w, {g for thorough amplitude checks. In

the latter case also all relevant ghost vertices are obtained.

e Feynman rules are calculated first in Mathematica/FeynRules format. They can be
further exported in other formats: UFO [135] (importable to Monte Carlo generators
like MadGraph5_aMCONLO 5 [136], Sherpa [137], CalcHEP [13§], Whizard [139, 140]),
FeynArts [141] which generates inputs for loop amplitude calculators like FeynCalc

[103], or FormCalc [142], and others output types supported by FeynRules.

e SmeftFR provides a dedicated Latex generator, allowing to display vertices and ana-
lytical expressions for Feynman rules in clear human readable form, best suited for

hand-made calculations.

2However, we do restrict ourselves to linear realisations of the SSB.
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e SmeftFR is interfaced to the WCxf format [143] of Wilson coefficients. Numerical
values of SMEFT parameters in model files can be read from WCxf JSON-type input
produced by other computer packages written for SMEFT. Alternatively, SmeftFR can
translate FeynRules model files to the WCxf format.

e Further package options allow to treat neutrino fields as massless Weyl or (in the case
of non-vanishing dimension 5 operator) massive Majorana fermions, to correct signs
in 4-fermion interactions not yet fully supported by FeynRules and to perform some

additional operations as described later in this manual.

Feynman rules derived in ref. [40] using the SmeftFR package have been used successfully
in many articles including refs. [49 68, (71}, 107, 116, {144-149] and have passed certain
non-trivial tests, such as gauge-fixing parameter independence of the S-matrix elements,
validity of Ward identities, cancellation of infinities in loop calculations, etc.

We note here in passing, that there is a growing number of publicly available codes
performing computations related to SMEFT. These include, Wilson [94], DSixTools [93],
MatchingTools [150], which are codes for running and matching Wilson coefficients, SMEFTsim
[151], a package for calculating tree-level observables, CoDEx [152] or a version of SARAH code
[153], that calculate Wilson Coefficients after the decoupling of a more fundamental theory,
and finally, DirectDM [154], a code for dark matter EFT. To a degree, these codes (especially
the ones supporting WCxf format) can be used in conjunction with SmeftFR. For example,
some of them can provide the numerical input for Wilson coefficients of higher dimensional
operators at scale A, while others, the running of these coefficients from that scale down to
the EW one. Alternatively, Feynman rules evaluated by SmeftFR can be used with Monte
Carlo generators to test the predictions of other packages.

This chapter is organised as follows. After this Introduction, in section [£.3] we define
the notation and conventions, listing for reference the operator set in Warsaw basis and
the formulae for transition to the mass basis. In section [£.2] we provide a brief chronology
of the previous versions of the code. In section [£.4] we present the structure of the code,

installation procedure and available functions.

4.2 Chronology of SmeftFR versions

Before delving deeper into the details of the most current version of the code, let us present
here in brief the chronology of the previous versions of the SmeftFR package. The initial
development phase of SmeftFR took place alongside ref. [40]. There, the package was used
by the authors to produce the full set of Feynman rules for the dimension 6 SMEFT, and
the LaTeX generator of the code provided the printed version of the, rather lengthy, list of
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the Feynman rules in clear human-readable format. This list can be found in appendix A of
ref. [40]. A short synopsis of how to install and run this legacy v1.0 version of the code was
presented in appendix B of the same paper, but an extended manual wasn’t provided at the
time.

The first fully-fledged version of the code for the dimension 6 SMEFT was presented
some years later in ref. [126], expanding on the original v1.0 version. This v2.0 version
augmented the previous one by providing many user options and integration with other
software packages, as well as CPU time optimisation. In a nutshell, WCxf format [143]
was used for the numerical initialisation of the Wilson coefficients, and the model files in
FeynRules were generated dynamically for any chosen subset of the dimension 6 operators.
The output of SmeftFR could be interfaced to other dedicated software tools like UFO and
FeynArts, which greatly extended the usefulness of the code in practical calculations.

The output of v1.0 and v2.0 versions of SmeftFR was tested in many physical calculations,
for example in the Higgs decay calculations [49] and [107] which we presented in part [I, in
refs. (68|71} |116, [144-149] and even in an extension of the code with a subset of dimension 8
operators relevant for vector boson scattering in the SMEFT [155]. The current development
version of the code, v3.0, expands upon the polished v2.0 version, by including also the full
bosonic subset of the dimension 8 SMEFT operators from ref. [45]. The computations can
be performed consistently up to 1/A* order in the EFT expansion, including any interference
terms from the dimension 6 operators. The user has the option to reduce the EFT expansion
order to 1/A?, which in essence reproduces the linearly expanded dimension 6 SMEFT,
or even reproduce the SM by setting the EFT expansion order to 1/A%, while still taking
advantage of the newly added features. The model files are dynamically generated for any
chosen subset of the included operators, and further CPU optimisation has been provided
to reduce computation times. New in this version is also the addition of two convenient
physical input parameter schemes, which can be chosen instead of the standard SMEFT

couplings for the expression of the results in the output files.

4.3 SMEFT Lagrangian in Warsaw and mass basis

The first step of defining an EFT is the classification of the higher order effective opera-
tors. These operators are the ones that are constructed out of the spectrum of the model
under consideration, with the additional requirement of being invariant under the internal
symmetries of said model. In the case of the SMEFT, one should include every possible
operator constructed out of the SM fields that is invariant under the Lorentz group and the
SM gauge group. The initial construction of the operators is performed, as usual, in the

electroweak (flavour) basis, before the SSB. We call this generic set of operators the Green
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basis. There is a caveat, however: many of these new effective operators will be connected
with other operators of the Green basis by field redefinitions and/or integration by parts.
Operators connected in this manner would therefore represent the same physical effect in
S-matrix elements, and are therefore considered redundant. A subset of the Green basis
which contains a full set of independent (non-redundant) operators is therefore a suitable
basis for an EFT. There may be, of course, many possible non-redundant bases, and all can
be connected to each other by the use of field redefinitions and integration by parts. Here
we will use a specific basis which eliminates as many higher-derivative operators as possible.
We will call this basis “Warsaw basis”, which is the commonly used name in the literature
for this specific dimension 6 basis [37], even when using the dimension 8 extension of the
basis [45].

Starting from the lowest possible SMEFT order, the dimension 5, there is only a single

lepton flavour violating operator:
QV’/ = Sjkgmnsojsom(llllfp)T (Cl/l?r = (@Tl/Lp)T C (CO/TZILT) ’ (41)

where C is the charge conjugation matrix. This operator, known as the Weinberg operator,
can be interpreted as a Majorana neutrino mass term.

The first non-trivial SMEFT order emerges at dimension 6. The non-redundant basis
which we use here is, as mentioned, the very-well known Warsaw basis of ref. |[37]. The full
list of the independent dimension 6 SMEFT operators in Warsaw basis was presented in
ref. [37], and is reproduced here for convenience in table [4.1°| In this work, we also consider
the complete bosonic subset of the dimension 8 operators (all operators that do not contain
fermionic fields). The dimension 8 bosonic SMEFT operators are presented in tables
and All three tables follow the ones from the latest version (arXiv v6 as of this
writting) of ref. [45], and are reproduced here for convenience and easy or reference. They
are also slightly modified here to reflect our notation. Before moving further, let us make
some additional comments about the content of each table, and explain possible changes in
notation with respect to ref. [45].

Table collects the pure Higgs operators, i.e. operators constructed only out of the
Higgs doublet, ¢, and covariant derivatives. There, we performed a change of basis in the
operators of the ¢%D? class so that they have immediate connection with the Warsaw basis.

The original operators where defined in [45] as

QU = (¢ (D D),
Q% = (p') (eI ) (Dupl ! DPg) (4.2)

*We do not list here all details of conventions used — they are identical to these listed in refs. [37, 40].
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and here we use instead the set

Quen = (¢1)’D(ele),
Quop2 = (1) (0" Dyp)* (0" D*o), (4.3)

which naturally extends the definition of the dimension 6 operators Q.o and Q,p from
table This change of basis is consistent with the rest of the basis from ref. [45]. A proof
of this result can be found in section of appendix [F] for any order in the EFT expansion.
Additionally, we added the number of covariant derivatives in the naming of the operators

that belong in the third class, ¢*D?, to avoid confusion with the SM quartic Higgs operator,

ot

Table collects the operators that are constructed purely from gauge field strengths.
Therefore, each operator there contains exactly four field strengths, and the operator classes
are further divided as X*, where only one of the field strengths of the B, W or G gauge
fields appears in the operator, X?X’, where the G field strength appears thrice together
with a B field strength in the operator, and finally X?X'?, where the operators are consisted
of two pairs of different field strengths. The notation in this table follows exactly ref. [45].
Finally, table collects the operators that are constructed from a combination of Higgs
doublets, ¢, and gauge field strengths.

Having defined the operators that we wish to include in our analysis, we are in place to

construct the SMEFT Lagrangian. We organise the terms by their EFT order, as
L) 1 © , 1 x o© , 1 X )
L= Loy +507Q0 + 150 CYQY + 5 D CRQY + 1 Do O0ReY . (44
f X X

where we have included, from left to right, the SM terms, the dimension 5 Weinberg operator,

the fermionic and bosonic dimension 6 terms and, finally, the bosonic dimension 8 terms.

This Lagrangian, as mentioned above, is written in the electroweak (flavour) basis, before
the SSB. To re-express the Lagrangian in terms of the physical fields we have to rotate
everything in the mass basis, after the SSB mechanism takes place. To achieve this, we
extend the prescription of ref. [40], by generalising the results up to O(1/A%) to incorporate
the effects of the dimension 8 operators and dual insertion of dimension 6 terms. In the
gauge and Higgs sectors physical and Goldstone fields (h, G°, G*, W/fc, Zg, A,,) are related

to the initial Warsaw basis fields (¢, Wﬁ, B,, G’;‘) by introducing normalisation constants,
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as follows:

ot 1 V2Z5.G*
oY V2 U—I—Z,Z%—l—iZé&Go
w3 Z
g = ZAZ : )
B, A,
7-1

1_ ZwW + -
W =5 WL+ W),

> _ 12w e -
Wi= " Wi =W,
Go =259 . (4.5)

In addition, the Feynman rules for the physical fields are expressed in terms of effective

gauge couplings, defined by
g = Zgga g/ = Zg’g/y gs = nggs . (4‘6)

In dimension 6 SMEFT, the SU(2) and SU(3) gauge field and gauge normalisation constants
are equal, Z, = Zy, Z,, = Zg. We will keep the definitions from eq. also for the
dimension 8 SMEFT. A genuine new type of contribution to the bilinears which arises at
dimension 8 comes from the operator Qg’/)gw = (pITlp) (T 7! @)WJVWJ # . In the broken
phase of the theory this operator introduces an asymmetry between the W3 gauge field and
the W and W? fields. By setting Z, = Zy, which is also the definition used in ref. [45], all
the information from this new contribution is absorbed the rotation and rescaling matrix
Z Az, and therefore the notation resembles closely the one developed for the dimension 6 in
ref. [40].

The charged Goldstone boson normalisation in our Warsaw-like basis for the dimension
8 operators is the same as in the dimension 6 case, Z5+ = 1. The complete expressions for
all the field normalisation constants, Zx, for the corrected Higgs field VEV, v, and for the
gauge and Higgs boson masses, mz, my and my, can be extracted from appendix [F] These
expressions are dynamically computed by SmeftFR, with only the subset of the dimension 6
and 8 Wilson coefficients that are chosen by the user being taken into account, as described
in section .4l

Since we don’t include any fermionic operators beyond the dimension 6 SMEFT, the

rotation of the fermionic sector from the flavour to the mass basis follows the prescription of
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refs. [40] and [126]. In particular, we perform the following unitary rotation in the flavour
space,
Py = Upytx (4.7)

where ¥ = v,e,u,d and X = L, R denotes the chirality. The unitary rotations are chosen in
such a way that the mass eigenstates 1 x correspond to real, non-negative eigenvalues of the

3 x 3 fermion mass matrices:

2

M, = —2C" M, = 3 (T - g,
(4.8)

M = 25 (T = geme), My= 2 (Ta— oo,
The fermion flavour rotations can be adsorbed in redefinitions of the Wilson coefficients.
The CKM and PMNS matrices, denoted by K and U, respectively, will appear in Feynman

rules, are defined here as:

K=U} Uy, U=UlU,. (4.9)

€L

The complete list of the redefinitions of the flavour-dependent Wilson coefficients can be
found in table 4 of ref. |[40]. After rotations, they are defined in the Warsaw mass basis (as
also described in WCxf [143]). The SmeftFR package assumes that the numerical values of
Wilson coefficients are given in this particular basis.

The Feynman rules that are generated by the SmeftFR package, describe interactions of
the physical SMEFT fields in the mass basis, with numerical values of Wilson coefficients
defined within the same (Warsaw) mass basis. It is also important to stress that in the general
case of lepton number flavour violation, with non-vanishing Weinberg operator of eq. ,
neutrinos are described by massive Majorana spinors, whereas under the assumption of
L-conservation they can be regarded as massless Weyl spinors. SmeftFR provides the choice
of selecting between the two cases before generating the Feynman rules for the neutrino

interactions. One should take into consideration that the treatment of neutrinos as Majorana

particles requires a special set of rules for propagators, vertices and diagram combinatorics.

We follow here the treatment of refs. [40, [156-15§].

4.4 Deriving SMEFT Feynman rules with SmeftFR package

4.4.1 Installation

SmeftFR package works using the FeynRules system, so both need to be properly installed

first. A recent version and installation instructions for the FeynRules package can be
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downloaded from the address:
https://feynrules.irmp.ucl.ac.be

SmeftFR has been tested with FeynRules version 2.3.

Standard FeynRules installation assumes that the new models description is put into

Model subdirectory of its main tree. We follow this convention, so that SmeftFR archive

should be unpacked into
Models/SMEFT_N_NN

catalogue, where N_NN denotes the package version.

Before running the package, one needs to set properly the main FeynRules installation
directory, defining the $FeynRulesPath variable at the beginning of smeft_init.m and

smeft_outputs.m files. For non-standard installations (not advised!), also the variable

SMEFT$Path has to be updated accordingly.

4.4.2 Code structure

The most general version of SMEFT, including all possible flavour violating couplings, is
very complicated. Symbolic operations on the full SMEFT Lagrangian, including complete
set of dimension 5 and 6 and bosonic set of dimension 8 operators and with numerical values
of all Wilson coefficients assigned are time consuming and can take hours or even days on a

standard personal computer. For most of the physical applications it is sufficient to derive

interactions only for a subset of operatorsﬁ

To speed up the calculations, SmeftFR can evaluate Feynman rules for a chosen sub-
set of operators only, generating dynamically the proper FeynRules “model files”. The
calculations are divided in two stages, as illustrated in flowchart of figure First, the
SMEFT Lagrangian is initialised in Warsaw basis and transformed to mass eigenstates basis

analytically, truncating all terms higher than the chosen EFT order, which can be set to

1

be tensors with indices without assigned numerical values (they are “Internal” parameters
in FeynRules notation). The resulting mass basis Lagrangian and Feynman rules written
in Mathematica format are stored on disk. In the second stage, the previously generated
output can be used together with new “model file”, this time containing numerical values of
(“External”) parameters, to export mass basis SMEFT interactions in various commonly

used external formats such as Latex, WCxf and standard FeynRules supported interfaces —

UFO, FeynArts and others.

“Eventually, operators must be selected with care as in general they may mix under renormalisation |86}

90} [91].

Az Or ﬁ.To speed up the program, at this stage all flavour parameters are considered to
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Figure 4.1: Structure of the SmeftFR code |126].

4.4.3 Model initialisation
In the first step, the relevant FeynRules model files must be generated. This is done by
calling the function:

SMEFTInitializeModel[Optionl — Valuel, Option2 — Value2, ...]

with the allowed options listed in table

Names of operators used in SmeftFR are derived from the subscript indices of operators
listed in table with obvious transcriptions of “tilde” symbol and Greek letters to Latin
alphabet.
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SmeftFR is fully integrated with the WCxf standard. Apart from numerically editing
Wilson coefficients in FeynRules model files, reading them from the WCxf input is the
only way of automatic initialisation of their numerical values. Such an input format is

exchangeable between a larger set of SMEFT-related public packages [143] and may help to

compare their results.

An additional advantage of using WCxf input format comes in the flavour sector of
the theory. Here, Wilson coefficients are in general tensors with flavour indices, in many
cases symmetric under various permutations. WCxf input requires initialisation of only

the minimal set of flavour dependent Wilson coeflicients, those which could be derived by

permutations are also automatically properly setﬂ

Further comments concern MajoranaNeutrino and Correct4Fermion options. They
are used to modify the analytical expressions only for the Feynman rules, not at the level
of the mass basis Lagrangian from which the rules are derived. This is because some
FeynRules interfaces, like UFO, intentionally leave the relative sign of 4-fermion interactions
uncorrectedﬂ as it is later changed by Monte Carlo generators like MadGraph5. Correcting
the sign before generating UFO output would therefore lead to wrong final result. Similarly,
treatment of neutrinos as Majorana fields could not be compatible with hard coded quantum
number definitions in various packages. On the other hand, in the manual or symbolic

computations it is convenient to have from the start the correct form of Feynman rules, as

done by SmeftFR when both options are set to their default values.

SMEFTInitializeModel routine does not require prior loading of FeynRules package.
After execution, it creates in the output subdirectory three model files listed in table
Parameter files generated by SMEFTInitializeModel contain also definitions of SM param-
eters, copied from templates smeft_par head WB.fr and smeft_par_head MB.fr located in
definitions subdirectory. The values of SM parameters can be best updated directly by

editing the template files and the header of the code/smeft _variables.m file, otherwise

they will be overwritten in each rerun of SmeftFR initialisation routines.

As mentioned above, in all analytical calculations performed by SmeftFR, terms that are
of higher order than the chosen EFT order are always truncated. Therefore, the resulting
Feynman rules can be consistently used to calculate physical observables, symbolically or
numerically by Monte Carlo generators, up to the linear order in dimension 6 operators,
or up to quadratic order in the dimension 6 operators and linear order in the dimension 8
operators operators operators operators operators operators operators operators operators.

This information is encoded in FeynRules SMEFT model files by assigning the “interaction

5We would like to thank D. Straub for supplying us with a code for symmetrisation of flavour-dependent

Wilson coefficients.
SB. Fuks, private communication.



4.4. Deriving SMEFT Feynman rules with SmeftFR package

order” parameter NP=1 (NP=2) to each dimension 6 (8) Wilson coefficients and setting in
smeft field WB.fr and smeft field MB.fr the limits:

An additional remark concerns the value of neutrino masses. In mass basis, the neutrino
masses are equal to —v2C!! [see eq. (.8)]. Thus, the numerical values of C}/ coefficients
should be real and negative. If positive or complex values of CZI are given in the WCxf input

file, then the SMEFTInitializeModel routine evaluates neutrino masses as M, = v?|CZIL].

4.4.4 Calculation of mass basis Lagrangian and Feynman rules

By loading the FeynRules model files the derivation of SMEFT Lagrangian in mass basis is

performed by calling the following sequence of routines:

SMEFTLoadModel [ ] Loads output/smeft_par_WB.par model file and calculates
SMEFT Lagrangian in Warsaw basis for chosen subset of

operators

SMEFTFindMassBasis[ ] Finds field bilinears and analytical transformations diagonal-

izing mass matrices up to the chosen EFT order

SMEFTFeynmanRules [ ] Evaluates analytically SMEFT Lagrangian and Feynman rules
in the mass basis, again truncating consistently all terms higher
than the chosen EFT order.

The calculation time may vary considerably depending on the choice of operator (sub-)set
and gauge fixing conditions chosen. For example, the full list of SMEFT d =5 and d = 6
operators and in R¢-gauges, one can expect CPU time necessary to evaluate all Feynman
rules, from about an hour to many hours on a typical personal computer, depending on its
speed capabilities.

One should note that when neutrinos are treated as Majorana particles, (as necessary
in case of non-vanishing Wilson coefficient of d = 5 Weinberg operator), their interactions
involve lepton number non-conservation. When FeynRules is dealing with them it produces

warnings of the form:

QN::NonConserv: Warning: non quantum number conserving vertex encountered!

Quantum number LeptonNumber not conserved in vertex . ..

Obviously such warnings should be ignored.
Evaluation of Feynman rules for vertices involving more than two fermions is not

fully implemented yet in FeynRules. To our experience, apart from the issue of relative
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sign of four fermion diagrams mentioned earlier, particularly problematic was the correct
automatic derivation of quartic interactions with four Majorana neutrinos and similar vertices

which violate B- and L-quantum numbers. For these special cases, SmeftFR overwrites the

FeynRules result with manually calculated formulae encoded in Mathematica format.

Another remark concerns the hermicity property of the SMEFT Lagrangian. For some
types of interactions, e.g. four-fermion vertices involving two-quarks and two-leptons, the func-
tion CheckHermicity provided by FeynRules reports non-Hermitian terms in the Lagrangian.
However, such terms are actually Hermitian if permutation symmetries of indices of relevant
Wilson coefficients are taken into account. Such symmetries are automatically imposed if

numerical values of Wilson coefficients are initialized with the use of SMEFTInitializeMB

or SMEFTToWCXF routines (see sections and [4.4.5)).

Results of the calculations are collected in file output/smeft_feynman rules.m. The

Feynman rules and pieces of the mass basis Lagrangian for various classes of interactions are

stored in the variables with self-explanatory names listed in table [£.7}

File output/smeft_feynman rules.m contains also expressions for the normalisation
factors relating Higgs and gauge fields and couplings in the Warsaw and mass basis. Namely,
variables Hnorm, GOnorm, GPnorm, AZnorm[i,j], Wnorm, Gnorm, correspond to, respec-
tively, Zh_l, Z4 Z_i Zgé, Zv_Vl and Zél in eq. . In addition, formulae for tree-level

GV @

corrections to SM mass parameters and Yukawa couplings are stored in variables SMEFT$vev,
SMEFT$MH2, SMEFT$MW2, SMEFT$MZ2, SMEFT$YL [i,j], SMEFT$YD[i,j] and SMEFT$YU[i, j].

It is important to note that although at this point the Feynman rules for the mass basis
Lagrangian are already calculated, definitions for fields and parameters used to initialise the
SMEFT model in FeynRules are still given in Warsaw basis. To avoid inconsistencies, it is
strongly advised to quit the current Mathematica kernel and start new one reloading the
mass basis Lagrangian together with the compatible model files with fields defined also in
mass basis, as described next in section All further calculations should be performed

within this new kernel.

4.4.5 Interfaces

SmeftFR output in some of portable formats must be generated from the SMEFT Lagrangian
transformed to mass basis, with all numerical values of parameters initialised. As FeynRules
does not allow for two different model files loaded within a single Mathematica session, one
needs to quit the kernel used to run routines necessary to obtain Feynman rules and, as

described in previous section, start a new Mathematica kernel. Within it, the user must

reload FeynRules and SmeftFR packages and call the following routine:

SMEFTInitializeMB[ Options ]
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Allowed options are given in table After call to SMEFTInitializeMB, mass basis model
files are read and the mass basis Lagrangian is stored in a global variable SMEFTMBLagrangian

for further use by interface routines.

WCxf input and output

Translation between FeynRules model files and WCxf format is done by the functions
SMEFTToWCXF and WCXFToSMEFT. They can be used standalone and do not require loading
FeynRules and calling first SMEFTInitializeMB routine to work properly.

Exporting numerical values of Wilson coefficients of operators in the WCxf format is

done by the function:
SMEFTToWCXF[ SMEFT_Parameter_File, WCXF_File ]

where the arguments SMEFT_Parameter File, WCXF_File define the input model parameter

file in the FeynRules format and the output file in the WCxf JSON format, respectively.

The created JSON file can be used to transfer numerical values of Wilson coefficients to
other codes supporting WCxf format. Note that in general, the FeynRules model files may
contain different classes of parameters, according to the Value property defined to be a
number (real or complex), a formula or even not defined at all. Only the Wilson coefficients
with Value defined to be a number are transferred to the output file in WCxf format.

Conversely, files in WCxf format can be translated to FeynRules parameter files using:
WCXFToSMEFT[ WCXF_File, SMEFT Parameter File Opttons]

with the allowed options defined in table

Latex output

SmeftFR provides a dedicated Latex generator (not using the generic FeynRules Latex

export routine). Its output has the following structure:

e For each interaction vertex, the diagram is drawn, using the axodraw style [159].

Expressions for Feynman rules are displayed next to corresponding diagrams.

e In analytical expressions, all terms multiplying a given Wilson coefficient are collected

together and simplified.

e Long analytical expressions are automatically broken into many lines using breakn

style (this does not always work perfectly but the printout is sufficiently readable).
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Latex output is generated by the function:
SMEFTToLatex[ Options ]

with the allowed options listed in table The function SMEFTToLatex assumes that the
variables listed in table [£.7] are initialised. It can be called either after executing relevant
commands, described in section [4.4.4] or after reloading the mass basis Lagrangian with the
SMEFTInitializeMB routine, see section [£.4.5]

Latex output is stored in output/latex subdirectory, split into smaller files each
containing one primary vertex. The main file is named smeft_feynman rules.tex. The
style files necessary to compile Latex output are supplied with the SmeftFR distribution.

Note that the correct compilation of documents using “axodraw.sty” style requires
creating intermediate Postscript file. Programs like pdfiatez producing directly PDF output

will not work properly. One should instead use e.g.:

latex smeft_feynman rules.tex
dvips smeft_feynman rules.dvi

ps2pdf smeft_feynman rules.ps

The smeft_feynman rules.tex does not contain analytical expressions for five and six
gluon vertices. Such formulae are very long (multiple pages, hard to even compile properly)
and not useful for hand-made calculations. If such vertices are needed, they should be rather
directly exported in some other formats as described in the next subsection.

Other details not printed in the Latex output, such as, the form of field propagators,
conventions for parameters and momenta flow in vertices (always incoming), manipulation of
four-fermion vertices with Majorana fermions etc, are explained thoroughly in the appendices
A1-A3 of ref. [40].

Standard FeynRules interfaces

After calling the initialisation routine SMEFTInitializeMB, the output to UFO, FeynArts
and other formats supported by FeynRules interfaces, can be generated using FeynRules
commands and options from the mass basis Lagrangian stored in the SMEFTMBLagrangian

variable. For instance, one could call:

WriteUFO[ SMEFTMBLagrangian, Output — "output/UF0", AddDecays — False, ...]

WriteFeynArtsOutput [ SMEFTMBLagrangian, Output — "output/FeyndArts”, ...]

and similarly for other formats.



4.5. Summary

It is important to note that FeynRules interfaces like UFO or FeynArts generate their
output starting from the level of SMEFT mass basis Lagrangian. Thus, options of the
function SMEFTInitializeModel, like MajoranaNeutrino and Correct4Fermion (see table
, have no effect on output generated by the interface routines. As explained in section
[4:43] they affect only the expressions for Feynman rules.

If four-fermion vertices are included in SMEFT Lagrangian, UFO produces warning

messages of the form:
Warning: Multi-Fermion operators are not yet fully supported!

Therefore, the output for four-fermion interactions in UFO or other formats must
be treated with care and limited trust — performing appropriate checks are left to users’
responsibility. To our experience, implementation in FeynRules of baryon and lepton number
violating four-fermion interactions, with charge conjugation matrix appearing explicitly in
vertices, is even more problematic. Thus, for safety in current SmeftFR version (2.00) such
terms are never included in SMEFTMBLagrangian variable, eventually they can be passed to
interface routines separately via the BLViolatingLagrangian variable.

Exporting to UFO or other formats can take a long time, even several hours for R¢-gauges
and complete SMEFT Lagrangian with fully general flavour structure and all numerical
values of parameters initialised. Finally, it is important to stress here that our Feynman

rules communicate properly with MadGraph5 and FeynArts. In particular, we ran without

errors test simulations in MadGraphb using UFO model files produced by SmeftFR v3.0.

Similar tests were performed with amplitude generation for sample processes using SmeftFR

v3.0 FeynArts output.

4.5 Summary

The high-complexity of the calculations within the SMEFT framework creates a need for
computer software dedicated to the task. This need grews even stronger when considering
EFT analyses beyond the leading non-trivial order. Aiming in this direction, we present
here the Mathematica package SmeftFR, a code dedicated to the generation of the Feynman
rules in SMEFT, after the computation of the mass basis Lagrangian. The code of SmeftFR
is written as an overlay upon the Mathematica package FeynRules. In its current version,
the code includes the effects of the full set of dimension 5 and 6 operators given in the
Warsaw basis of ref. [37], as well as the complete bosonic subset of the bosonic dimension 8
operators written in a Warsaw-like basis, that follows ref. [45]. No restrictions are applied

about the flavour structure, or about CP-, B- and L-number conservation. The quantisation
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of SMEFT with this set of operators was performed in unitary and R¢-gauges by generalising
the procedure followed in ref. [40].

In this chapter, we described the general use the SmeftFR package, in order to produce
the Feynman rules for a chosen subset of operators of interest. The package output can be
interfaced to other software tools supported by FeynRules, such as UFO (which can then be
imported to Monte Carlo generators), FeynArts (which can then be used for tree and loop
calculations with packages like FeynCalc and FormCalc), etc. A dedicated LaTeX generator
is also provided for printing the output in human-readable form, which can be used for
handmade calculations. The numerical initialisation of the Wilson coefficients is interfaced to
WCxf format. Additionally, the Feynman rules can be generated in unitary gauge or in linear
R¢-gauges, and the SMEFT parameters can be exchanged with physical, well-measured,
input parameters. The most recent public version of the SmeftFR code, together with the

most up-to-date user manual, can be downloaded from the webpage www.fuw.edu.pl/smeftl
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Table 4.1: The full set of dimension 6 operators in Warsaw basis [37]. The subtables in
the two upper rows collect all operators except the four-fermion ones, which are collected
separately in the subtables of the two bottom rows.
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Table 4.2: Dimension 8 operators containing only the Higgs field. Table taken (and modified
according to our notation) from ref. [45].
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Table 4.3: Dimension 8 operators containing only gauge field strengths. Table taken from
ref. [45].
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Table 4.4: Dimension 8 operators containing both gauge field strengths and the Higgs field.
Table taken (and modified according to our notation) from ref. [45].
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Option Allowed values Description

Operators default: all opera- List with subset of SMEFT operators included
tors in calculations.

Gauge Unitary, Rxi Choice of gauge fixing conditions

WCXFInitFile ”» Name of file with numerical values of Wilson

coefficients in the WCxf format. If this option
is not set or the file does not exist, all Wilson
coefficients are set to 0.

MajoranaNeutrino False, True Neutrino fields are treated as Majorana spinors
if ()., is included in the operator list, massless
Weyl spinors otherwise. Setting this option to
True allows one to use Majorana spinors also
in the massless case.

Correct4Fermion False, True Corrects relative sign of some 4-fermion inter-
actions, fixing results produced by FeynRules.

WBFirstLetter ”c” Customisable first letter of Wilson coefficient
names in Warsaw basis (default cg,...). Can
be used to avoid convention clashes when com-
paring with other SMEFT bases.

MBFirstLetter »C” Customisable first letter of Wilson coefficient
names in mass basis (default Cg, .. .).

Table 4.5: The allowed options of SMEFTInitializeModel routine. If an option is not
specified, the default value (marked above in boldface) is assumed.

smeft_par WB.par SMEFT parameter file with Wilson coefficients in Warsaw basis
(defined as “Internal”, with no numerical values assigned).

smeft_par_MB.par SMEFT parameter file with Wilson coefficients in mass basis
(defined as “External”, numerical values imported from the
input file in WCxf format).

smeft_par MB real.par as smeft_par MB.par, but only real values of Wilson coeflicients
given in WCxf file are included in SMEFT parameter file, as
required by many event generators.

Table 4.6: Model files generated by the SMEFTInitializeModel routine.
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LeptonGaugeVertices
LeptonHiggsGaugeVertices
QuarkGluonVertices
GaugeSelfVertices
GluonSelfVertices
GhostVertices
FourLeptonVertices
TwoQuarkTwoLeptonVertices

DeltalLTwoVertices

QuarkGaugeVertices

QuarkHiggsGaugeVertices

GaugeHiggsVertices

GluonHiggsVertices

FourQuarkVertices

BLViolatingVertices

Table 4.7: Names of variables defined in the file output/smeft_feynman rules.m containing
expressions for Feynman rules. Parts of mass basis Lagrangian are stored in equivalent
set of variables, with “Vertices” replaced by “Lagrangian” in part of their names (i.e.
LeptonGaugeVertices — LeptonGaugelLagrangian, etc.).

Option Allowed values

Description

RealParameters  False, True

Include4Fermion False, True

Default initialisation is done using
output/smeft_par MB.par file, which may con-
tain complex parameters, not compatible with matrix
element generators. Setting RealParameters — True
forces loading of output/smeft_par MB real.par
file where imaginary parts of all Wilson coefficients
are set to 0. Imaginary phases of CKM and PMNS
matrices, if present, are also set to zero after loading
this file.

4-fermion vertices are not fully implemented in
FeynRules and by default not included in SMEFT
interactions. Set this option to True to include such
terms.

Table 4.8: Options of SMEFTInitializeMB routine, with default values marked in boldface.
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Option Allowed values

Description

Operators default: all

RealParameters  False, True

OverwriteTarget False, True

Silent False, True

FirstLetter »C”

List with subset of Wilson coefficients to be included
in the SMEFT parameter file

Decides if only real values of Wilson coefficients given
in WCxf file are included in SMEFT parameter file

If set to True, target file is overwritten without warn-
ing

Debug option, suppresses screen comments

Customisable first letter of Wilson coefficient names
in mass basis (default Cg,...).

Table 4.9: Options of WCXFToSMEFT routine. Default values are marked in boldface.

Option name  Allowed values

Description

FullDocument False, True

ScreenOutput  False, True

By default a complete document is generated, with all
headers necessary for compilation. If set to False, head-
ers are stripped off and the output file can, without
modifications, be included into other Latex documents.

For debugging purposes, if set to True the Latex output
is printed also to the screen.

Table 4.10: Options of SMEFTToLatex routine, with default values marked in boldface.
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CHAPTER 5

Conclusions and future directions

The discovery of the Higgs boson at the LHC in 2012 indicated the end of an era for
the elementary particle physics community. Four decades after the independent efforts of
Glashow, Weinberg and Salam (GWS) to construct a theory in order to describe the known
subatomic particles and their interactions, this discovery served as the verification of a main
prediction of the theory. The Higgs mechanism, which plays a central role in the GWS
theory, predicts the existence of the Higgs boson, a massive scalar particle with zero electric
charge. In fact, with the exception of the quarks which appear only in bound states, it was
the only part of the spectrum left to be directly observed in an experiment. The remarkable
agreement with the experimental data, however, had led the GWS theory to be known in
the literature as the Standard Model (SM) of elementary particle physics long before the
actual discovery of the Higgs boson. Putting this final piece together completed the puzzle,

and served as an even stronger indication in favour of the SM.

In the meantime, while the theoretical predictions of the SM were thoroughly studied,
many extensions of the theory were proposed in an attempt to fill the gaps still left unexplained
by the SM. Most of these beyond the SM (BSM) theories predicted new particles whose
discovery would strongly suggest their validity. For better or worse, the search for a direct
discovery of new subatomic particles didn’t prove to be fruitful as of today. In addition,
the ongoing efforts of explaining the discrepancies between the theory predictions and the
experimental data through the indirect effects of the proposed BSM theories at lower energies
haven’t led to any strong conclusions in favour of one of the BSM theories. Therefore, we
find ourselves in a situation where our benchmark theory, the SM, is studied ad nauseam,
with the theoretical SM predictions reaching a great level of accuracy, while the existing
anomalies in the SM predictions cannot be dealt with by using the existing theoretical
framework or a well-defined UV extension of it. Therefore, using an approach that avoids

hard assumptions about the specifics of the BSM physics at the energy scale we wish to
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examine, while at the same time allowing for the effects of the unknown new physics to
trickle down and affect our predictions, is a very promising alternative. The best way to
achieve this generic approach is to embed the SM into an Effective Field Theory (EFT)

framework.

In this thesis we utilised this generic method, by extending the SM inside the framework
of a bottom-up EFT. There, the new physics effects are methodically incorporated in our
effective Lagrangian as terms of a power series. The expansion parameter of this series is
the inverse of an indicative energy scale, A, in which the BSM physics is assumed to take
place. The very important advantage of this EFT approach is that it not only captures
the remnants of the new physics effects, but we can now expand in the small parameter
1/A systematically, until our theoretical calculations reach the level of accuracy needed to
be on equal footing with the accuracy achieved experimentally. Since this EFT extension
of the SM, abbreviated as SMEFT, is a relatively new framework, there are still many
open questions about the computational details and techniques when using it in involved
calculations, even at the leading EFT order. Furthermore, the pressing need for even more
accurate and divergent theoretical results creates the need for more SMEFT calculations,
sometimes even beyond the leading EFT order. Therefore, automatising the computations
at a high degree is a necessity in order to minimise potential human errors and to reduce

the physical labour involved. These are the issues which we addressed in this study.

For the first part of this thesis we focused our efforts on the analysis of the calculational
challenges and the phenomenological implications of two important physical processes
involving the Higgs boson. The processes we chose had to do with the decay modes of the
Higgs boson into a pair of photons and into a photon and a massive Z-boson, within the
leading non-trivial EFT order (with operators up to dimension 6) and at one-loop in the &
expansion. These computations, being highly non-trivial, served as test-cases for technical
issues regarding the validity of loop EFT calculations. We presented every aspect of the
calculations in detail, and we focused our efforts in shedding some light on these technical
issues. In particular, special emphasis was given in the detailed construction of a simple
renormalisation framework for the EFT amplitudes. By taking into account the running of
the Wilson coefficients, which were treated as MS parameters in our renormalisation scheme,
we proved the cancellation of the infinities in the physical amplitude, and that the later is
also independent of the renormalisation scale u. All calculations were performed in linear
Re-gauges, with independent § parameters. Therefore, we were able to prove analytically
the gauge invariance of our results, before and after the application of our renormalisation
framework. Finally, we also performed a phenomenological analysis of our results, by placing
bounds in the unspecified Wilson coefficients of the model using the most recent experimental
data provided by the LHC.



The second part of this thesis was dedicated to the effort of streamlining the diagrammatic
computations in the SMEFT, while at the same time addressing the need of developing
the theory beyond the dimension 6 order. It should be clear that the main disadvantage
of using such a generic theoretical framework is the introduction of a huge set of unknown
parameters, in the form of Wilson coefficients, to our model. In addition, the new effective
operators add heavily to the complexity of the Feynman diagrammatic computations. These
complications make calculations within the SMEFT quite lengthy and technically demanding
even at the leading EFT order. As a further complication, the SMEFT community is
interested in formulating the model beyond the leading EFT order and applying it for

the calculation of physical observables, making handmade calculations virtually impossible.

The above indicates the increasing demand for the introduction of powerful software tools
in order to minimise the physical labour and to increase the efficiency of calculations in
the SMEFT. We addressed these issues by the development of software tools specifically
designed to handle the construction of the SMEFT Feynman rules in the physical mass
basis and to provide extensive integration with existing software for further automatising
the diagrammatic amplitude calculations. The software package SmeftFR, a Feynman rules
generator for the SMEFT written in Mathematica, was initially developed to include the
full dimension 6 SMEFT and very recently extended to include the complete bosonic sector
at dimension 8, to consistently expand the EFT up to 1/A* order, and to provide the user

with the ability to express the final results in a convenient physical input scheme.

The theoretical development of the theory beyond the leading order was of special interest.

We systematically included all possible effects from the bosonic sector of the model up to
any arbitrary EFT expansion order, and explained in detail the methodology of deriving
the physical mass basis of the theory. This reformulation of the SMEFT to any order was
presented in compact analytic formulae in the appendices, using a concise formalism. The
results there can be readily used in future works that would involve calculations of even
higher SMEFT orders, or in the construction of new and more sophisticated computer
software. This covers the potential need of further advancing the accuracy of the theoretical
calculations in order to interpret the experimental data of the next LHC runs and of future
colliders. Summarising our conclusions, let us state here that especially in this era of heavy
automatisation, the SMEFT approach goes hand-in-hand with the needs of the physics
community for theories that are able to provide state of the art predictions, able to catch
up with the accuracy of the current and future experiments which are driven by the rapid
technological advancement. The self-consistent and well-defined theoretical framework of
the SMEFT is a modern and, in our opinion, future-proof way of approaching the study of

the quantum microcosmos of the elementary particle physics.
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APPENDIX A

Calculating Loop Diagrams
Step-by-Step

In this appendix we will present the steps one should follow to calculate loop diagrams
without making use of the automated procedure of Passarino-Veltman functions, which is
the topic of appendix [Bl We will post the steps of the algorithmic procedure and give all

needed formulae in their most general form.

A.1 Dimensional Regularisation

Feynman diagrams that contain closed loops produce, due to the superposition principle of
QM, integrals over the momentum running in the loop (the loop momentum). There are
many different methods for formally calculating such integrals, but in this thesis we use the
method of Dimensional Regularisation (DR), introduced in refs. [160, [L61]. DR is known
to respect the gauge and Lorentz invariance of a theory. Regularisation of the integrals is
needed since most of the times we face ultraviolet divergences when calculating the diagrams
(see the comment below eq. (A.20)).

DR consists on evaluating the corresponding integrals in d space-time dimensions and,
at the end of the calculation, one should take the formal limit d — 4. To do so, we define an
infinitesimal number € such that

e=4—d, (A1)
and, therefore, infinities will appear as % DR respects the following three postulates:

1. Linearity,

/ddk (a f(k)+bg(k)) = a/ddkf(k:) +b/ddk:g(k:);
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2. Scaling,

/ddk f(ak) = a_d/ddk; Fk);

3. Translation invariance,

/ddkf(k+q) = /ddkf(k).

In the above set of axioms k and ¢ are momenta, f and g are functions of the momenta and

a and b are complex numbers.

A.2 Feynman Parameterisation

To begin with, we are going to present Feynman’s trick for simplifying the denominator of
the loop-momentum integrals. This is accomplished by making use of Feynman parameters.
The scope of this trick is to make the d-momentum integral spherically symmetric, to be

easier to manipulate. The general Feynman parameterisation formula reads:

1

b = | @Dyt D) (A2)

where we defined the Feynman integration measure to be

nool
/an:(n—l)!<H/0 da:i> i+ +a,—1). (A.3)
i=1

That way, Feynman’s measure is normalised to unit, i.e.

/an-1:1. (A.4)

In fact, let us give Feynman’s formula in its most general form, for the denominators to be

raised in different powers. Then,

1 > ai) 1 / il ,
_ S V.5 dF, —Lt oy, A5
DF D3 L Lan) T ) P (5, Dy (45)

where with I'(x) we symbolise the Euler gamma function. The definition and some useful

identities of the gamma function are given at the end of section [A.4] One could also make
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use of the Dirac delta function to write
1 1
/anf(x) =(n— 1)!/ dx, / depo(r1+ - +x, — 1) f(x)
0 0

1 1—x1
=(n— 1)!/ dxy / dx
0 0

l—x1——xp_2
- / drn—1 f(z) (A.6)
0 Tpn=1—-21——Tp_1
After Feynman parameterisation, each diagram can be written schematically as
d’k N
M= | —=5 | dFnZs AT

where N is the numerator, D the denominator and d = 4 — € the dimensionality of space-time.

Now that we established notation, let us be more concrete and give specific formulae in

a convenient form. We start with a general amplitude

d’k N(k,p)
IM = / 27)a Do Dy D3’ (A.8)

where N (k,p) is a function of k£ and the p;s, and
Dy = k* —m; Di=(k+p)*—m?, i=1,...,N—1. (A.9)

For N denominators we introduce N Feynman parameters, x;, and write

1 1
DoDi---Dy-y (K2 =md)((k+p1)? —md) - ((k+pn1)2 = mi )
N1 -N
= /dFN $N(k2 — mg) + Z l‘l((k +pi)2 - mf) , (AlO)
where . .
dFN:F(N)/ d.%'l/ de(S(.%'l—l—---—l-xN—l) (A.ll)
0 0

is the Feynman integration measure and I'(N) = (N — 1)! since N is a non-negative integer.

Now we use the delta function to replace xny with 1 —z1 —--- — z_1 in the integrand, and
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then by defining a reduced Feynman integration measure, dﬁN, such that

/dif($i):F(N)/old$1 /leldm

1—g1——TN_2
s / de—l f(xz) y (A.12)
0 cny=1l—-x1——TN_1
we have
! —~ /dﬁN(z%V —An) V. (A.13)
DoDy---Dy-
In the last equation we defined a shifted momentum
N-1
In=k+ inpi (A.14)
i=1

and a function

N—-1 N—-1
Ay == w(l—z)pi+>_ > (wz;pi-pj)
=1

j#i i=1

N-1 N-1
+m2<1—2m>+2$-m2 (A.15)
0 ) o Mg . .
i=1 =1

Thus far we brought the denominator in a spherically symmetric form and we know the
appropriate shifting in the integration variable needed to do so. The next thing to do is to
apply the momentum shifting in the numerator and, by taking advantage of the symmetric

form of the integral, simplify it as much as possible.

A.3 Numerator Simplification

To simplify the numerator, we shift the integration variable in it according to eq. (A.14)) and
make use of the spherical symmetry of the momentum integrals. This symmetry implies

that products with an odd number of [ vanish and the even products can be re-expressed as

l2

I — =g, (A.16)
IHIVIPIE — (l2)2 < BV gPT 1 ghP Vo 4 gHo Vp) (A 17)
d(d + 2) g9 99 g9 ) :



A.4. Loop Momentum Integrals

or in general, for n pairs of momenta [,

)"
[PV P ( X
dd+2)---(d+2(n—-1))
(g’“”l -« g"¥" 4+ non-redundant permutations) , (A.18)

where as redundant permutations we consider these that give equal terms after using the

symmetry properties of the metric.

After these relations are applied, we expect the numerator A to be a polynomial in [?,

namely

N=3"e(?). (A.19)
=0

The upper limit of the summation is different for each application.

A.4 Loop Momentum Integrals

The momentum integrals that will occur after all these steps are concluded behave differently
for different powers of the shifted momentum [ in the numerator. The general formula for

these loop-momentum integrals is

ddl lza . _aI‘b—a—ldFa—l—ld

(2m)d (12— A
By naive power counting, when a — b > —d/2 the integral will diverge.

The Euler gamma function appeared many times thus far in our discussion, so we should
give some basic formulae needed in loop calculations. The gamma function has many

equivalent definitions. It can be defined by Euler’s integral,
[e.e] o0 9
() = / dtet1 = 2 / dte P2 Re(z) >0, (A.21)
0 0

or by
1
'(z) = /0 dt [log(%)]z_l, Re(z) >0, (A.22)

etc. In our calculations we are going to need the following identities for the Euler gamma
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function:

I(n+1)=nl, (A.23)

(2n)!
L(n+ 3) o VT, (A.24)

(=1 1
T(e—n)="— E—7+Z%+O(e) : (A.25)
k=1

where n is a non-negative integer, € < 1, and < is the Euler-Mascheroni constant, defined by

"1
= lim (; - —log n) ~ 0.577215665 . (A.26)

Notice that in DR, where all loop integrals are given by eq. (A.20]), divergences make their
appearance only through identity (A.25)). This means that every diagram in DR can be split
into a finite and an infinite part, where the infinite part is proportional to %, and this makes

tracking of infinities in calculations using the DR scheme much simpler.



APPENDIX B

Passarino-Veltman Functions

In this appendix we will present a general formula for translating each scalar Passarino-
Veltman function (PV function for short) into an integral over Feynman parameters (see
appendix . PV functions were first defined in ref. [92]. For the methodology of PV
reduction, see ref. [162]. See also refs. [163] |164] for some interesting recursive relations for
the PV functions. We consider only scalar integrals since modern computer algorithms can
automatically reduce all PV functions into scalar ones (when, of course, this reduction is
permissible). Therefore, the final result will most likely contain only scalar PV functions, so
it will prove useful to have exact integral expressions for clarity or in order to solve these

integrals in terms of analytic functions, if this is possible.

B.1 General definitions

We start with the general definition of the PV integral:

(2mp)*?

im2

ddq Quq " qNP (Bl)

TN e s DN—1;M0, -, MN—_1) = ,
m..,up(Pl PN-1;T0 N-1) DoD; - Dys

where d is the dimension of space-time, p is a parameter with mass dimension +1, known as

‘t Hooft’s renormalisation scale, and

Dy=q¢*-mi; Di=(q+p)?—-mi, i=1,...,N—1. (B.2)
In these equations the index N stands for an N-point integral, i.e. the momentum integral
coming from a Feynman loop diagram with N vertices attached to the loop (and therefore
with N propagators in the loop). The nomenclature is as follows: starting with N = 1, TN
stands for the Nth letter of the alphabet, e.g. Tt = A, 72 = B, and so on.

Now for the scalar integrals, where the integrand’s numerator is equal to one, the
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definition (B.1)) is simplified to

@rp)*=" [ g 1
—_— . B.
7:7'(2 d qDQDl'“DN_l ( 3)

Using the formulae and algorithmic procedure of appendix [A] we write the denominator as

T =

1 ~ -N
= [ dFy (1% - A B4
DoDy---Dn_1 /d N(ZN N) ) (B.4)
where
N-1
In=q+ Z X Pi s (B.5)

=1

N—
Z (1 —a;) pl—i-zz l’z%pz Py

j#i 1=1
—1 N-1
+m(2)<1— le> —I—szimz?7 (B.6)
1=1 =1

and the reduced Feynman integration measure is defined by

/dFNfl'Z— /dml/lxl

l—z1——xN_2
/ deyn—1 f(zi) |
0

The general formula for the loop-momentum integrals without momentum in the numerator

d I'(N - 1d N—d/2
(2m)d (12 — A)N (4m)4/2I'(N) \ A
Using all of the above, we conclude that

1 N—d/2
7 = 2T i () (B9)

(B.7)

zN=l-z1——TN_1 "

simplifies to

It is clear that infinities come only from the first two scalar PV functions, namely Ag
and By. From the identity

F(G/Q—n):%vl(i—’y—i-zn:]l{—i-(’)(e)), ek 1, (B.10)
’ k=1
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where v is the Euler-Mascheroni constant, defined in eq. (A.26]), we have that

2
Bo(q%, m?, m> == B.11
O(q ek m2) infinite € ’ ( )

2
Ao (m? =m?2. B.12
O(m infinite €m ( )

In fact, Ay can always be re-expressed in terms of the By function, as

Ao (m2) = m? [Bo (0, m?, m2) +1]. (B.13)

The infinite parts are always accompanied by the same constants, so it is sometimes useful

to define a quantity
2
= — — v+ log(4rm), (B.14)
€

as we did in the calculation in chapter

B.2 Useful formulae

Let us present here two PV reduction formulae that proved useful (in addition to the standard
reduction of tensor to scalar integrals) in our attempts to analytically demonstrate the gauge
invariance of the h — v+ and h — Z~ matrix elements in chapters 2] and [3] respectively.
The first reduces the B; function with light-like external momenta, ¢> = 0, to the scalar B

function and its derivative:
B1(0,a,b) = (b —a)B((0,a,b) — £ Bo(0,a,b) (B.15)

where Bj(z, a,b) = (0/0t)By(t,a,b) ‘ 1. » and the other identity ‘symmetrises’ the arguments

on the By function with light-like external momenta, ¢> = 0,
1
By(0,a,b) =1+ m[bBO(O, b,b) — aBy(0,a,a)]. (B.16)

These two identities for the special values a = m%V, b= fm%v are used in our calculations in
chapters 2] and

To conclude this appendix, we give some formulae that express scalar PV functions to
analytic functions. We give a detailed example of how to solve such integrals in appendix [C]

were we solve a frequently encountered Cy function in terms of analytic functions. For the
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By function, some useful identities are

By(0,a,a) = E —log(a/p?), (B.17)
By(a,a,a) =E+2— % —log(a/p?) , (B.18)
By(0,a,b) = E+1— - i ; [alog(a/;ﬂ) - blog(b/uQ)] , (B.19)
By(a,b,b) =FE+2— log(b/,uQ) —2vr—1 arctan(\/frlfl) , T= %b , (B.20)
B{(0,a,a) = 671a’ (B.21)
Bi(a,a,a) = i(;\% - 1> , (B.22)
B)(0,a,b) = (a—1b)5 B( 2_5) —ab log(Z)} : (B.23)
Bj(a,b,b) = (11[\/7%1 arctan(ﬁ) — 1} , r=%, (B.24)

Finally, let us give here the result for a commonly encountered Cy PV function which also

appears in the h — vy decay (chapter , namely
2
00(07 07 a; ba ba b) = —7f(’l") ’ (B25)
a
where r = %b, and f(r) is given by

arcsin? (#) , r>1,

—%[log(}tﬁ) —iﬂr, r<1.

fr) = (B.26)

For details about solving this non-trivial PV function in terms of analytic functions, see

appendix [C]



APPENDIX C

Dilogarithms and Analytic Functions

In this appendix, we give a detailed example of how to solve the integrals appearing in
a diagrammatic calculation, using a non-trivial scalar PV function as a showcase for the
analysisEHﬂ The result for h — 7 in chapter |2 contains the following linear combination of

polylogarithms of order 2 (also known as dilogarithms or Spence’s functions):

f(@) =3[t (2= ) + Lie(=4=) ] - (C.1)
The function f(z) enters in our calculation through the scalar PV function
2
Co(0,0,a:b,b,b) = == f(x). (C:2)
where z = 4b/a.

A dilogarithm is defined by the integral

Lia(z) = / ’ dthg(lt_t) , (C.3)

or, by re-scaling ¢ — xt and flipping the limits of integration,

1 —x
Lig(z) = — /0 dtlog(ltt). (C.4)

!The calculations in this appendix were performed in collaboration with Kristaq Suxho.

2In practice, calculating PV functions in terms of analytic functions can be a very laborious task (if such
an analytic function even exists). The reader is referred to Package-X [104} [105|, a Mathematica package
which contains an extensive library dedicated to the translation of PV functions in terms of analytic functions.
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Now, using the definition (C.4) we write f(x) as

f) = 3L (=) + L3 )|

Lat 44(1—1)
[ (s - ). o

In this appendix we show how to calculate the integral (C.5|) by following the methods
of ref. [165]. We start by differentiating f(z) with respect to z. We have:

df (x)
/ _
-t 1t
2y —t+2
-1 [ 1-2
S— dy——Y_ (C.6)

To get the last line we defined a new variable y =t — 1/2. Now the integral (C.6)) can be
further simplified by making use of its reflection symmetry y — —y, to

rw=p [ gy )
x)=— —_ :
4z J_q9 yy2+xT_1

The integral ((C.7) can be evaluated in terms of analytic functions.

We begin by considering the region x > 1. There we can define a real parameter A as
A=LVz -1, for z>1. (C.8)
The integral that occurs is well-known:

Py L[
4x _1/2 y2 + A2
_ 1/2
= WA arctan(%)‘

y=-1/2
= —— arctan| ——
vz —1 V-l

= l‘\/% arcsin(ﬁ) . (C.9)
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Now let

u= arcsin(%) , (C.10)
—dz
du = —F—. C.11
B 2zv/x — 1 ( )
Then,
f(z) = /dx f'(x) = u* + C = arcsin® (ﬁ) +C, (C.12)

where C' is the constant of integration. Since x > 1, we fix C' by taking the limit * — oo, or

lim arcsin%%) + C = lim -1 /1 %log(l — @) ,
0

T—00 z—oo 2

which results in

C=0. (C.13)

Consider now the region x < 1. Here we define a real parameter B as

B:%\/l—m, for z<1, (C.14)
and, once again, the integral is well-known:
-1 (Y2 dy
filz) = 4 S
dx ) 1py°— B
-1 ¥ lo(1 4 1/2
= goplos(l = %) ~los(+ H)]|

_ ;T;[log(l - ﬂl_—g) *10g(1+ «f—*x)]

_ [ log (A7) + log (L) — i

221 — 1z vi v
_ 1 1+/I=z\
= T [10g<1—\/ﬂ> m} ) (C.15)
where we used the identity
log(a) = log(|a]) + ¢ arg(a), (C.16)

where by log and arg we denote the principal value and the principal argument of the

complex logarithm, respectively, in the term

10g(1 - \/11_7> = 10g(\/%7 - 1) —am, (C.17)

which is true for 0 < x < 1. Note that for x < 0 all logarithms have positive arguments, and
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the integral takes the form:

f(z) = 5 Elog(\/—vtii) , for x<O0. (C.18)
z/1—2x

That region can be combined with the 0 < z < 1 region in the final expression.
Now, for 0 < z < 1, let

u= log(}t\/—vti) — i, (C.19)
O (C.20)

Then,

flx) = /dx fllo)y=-24+C=-1 [mg(gg) - mr +C, (C.21)

where C is the constant of integration. We fix C' by requiring f(x) to be a continuous
function at x = 1, which results in
C=0. (C.22)

Therefore, we conclude that

arcsin’ (i) , x>1,

flx) = (C.23)

The interested reader is referred to appendix D of ref. |166], where the authors provide a

plethora of loop integrals with three propagators expressed in terms of analytic functions.



APPENDIX D

Global fits in SMEFT

The correct approach to place bounds on the Wilson coefficients of the SMEFT is to make a
global fit of various processes (for global fit analyses in the leading order SMEFT see for
example refs. [76H78| [167-169]). A major problem that can arise in global fit scenarios is the
occurrence of flat directions in the space of the Wilson coefficients, leaving the constraints
along these directions lacking. A recent paper, ref. [170], describes a method used to solve
this issue through the use of principle-component analysis. Though a global fit analysis is
beyond the scope of this thesis, we use this machinery to perform the global fit for a small
subset of the results derived in this work. The reader can refer to ref. [170] for the technical
details of the method. In particular, we use our results for the Higgs decays derived in part
[ of this thesis together with the formula for the tree-level Peskin-Takeuchi S parameter [97]
at the dimension 6 SMEFT[]

D.1 Relevant formulae

For the analysis in this appendix we use our result for the h — vy and h — Z~ decays
at one-loop for the dimension 6 SMEFT. For simplicity, we use only the dominant Wilson
coefficients in these processes that appear already at the tree-level, namely the C*W, C¥B
and C*"WB Wilson coefficients. Setting the EFT scale at A = 1 TeV and the renormalisation
scale at the W boson mass, © = myy, the numerical ratios of the SMEFT vs the SM

contributions become:

SRy = —48.04C¥P — 14.29C*W 1 26.17C¥VE
SRp_z, = +14.99C%8 —14.88C°W 1+ 9.44C¥WE (D.1)

'This analysis was performed in collaboration with Konstantinos Mantzaropoulos.
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The above quantities are calculated in the {Gp, my, mz} input scheme. The experimental

values for this input scheme are given by

Gp = 1.1663787(6) x 1075 GeV 2,
mw = 80.385(15) GeV
my = 91.1876(21) GeV . (D.2)

We also use the tree-level result for the EFT contributions to the Peskin-Takeuchi parameter

S at dimension 6, which are simply given by

AS =225 CeWB, (D.3)

F Qem

where, since we work at dimension 6 accuracy, ¢ = my /mz, s = V1 — c2 and aen, = €%/ (47)
with e = gg'// g% + ¢’*>. Expressed numerically in the {Gg, my,mz} schern with A =
1TeV, the parameter AS reads:

AS =13.35C¢VE . (D.4)
We collect all of the above results together in the vector
OsMEFT = (1 + (SRh_wfy, 1+ (5Rh_>z'y, AS) . (D.5)

The vector containing the experimental results used in this analysis for the three observ-

ables 1+ 0Ry -y, 1 + Rz, and AS, respectively, is given by

Oexp = (1.10, 2.05, 0.02) , (D.6)
together with the uncertainties

Texp = (0.10, 0.95, 0.10) . (D.7)

We take the observables to be uncorrelated, that is

1 00
Pexp =10 1 0> (D 8)
0 0 1

2For the relation between couplings and the input parameters, see appendix



D.2. Results

and then the 62 quantity from ref. [170] reads:

001 0 0
&= 0 o090 o |- (D.9)
0 0 001

Finally, we are able to derive the function y?, whose minimisation will give as the best fit

for the Wilsons. This function is defined as

X = (OsMEFT — Oexp) (5'2)71 - (OsMEFT — Ocxp) ™ - (D.10)

D.2 Results

After performing the principal component analysis, we find that the best fit Wilsons, together

with the uncertainties, are given by

C¥B = 0.015 £ 0.030,
C*" = —0.055 £ 0.100,
C*WB = 0.001 £ 0.015. (D.11)

Comparing with the upper bounds from chapter |2| for the ratio R},

©B oW oW B
C#B| _ 0.002 CeW| _ 0,007 [CPWE| _ 0.004

D.12
A2~ (1TeV)?’ A2~ (1TevV)?’ A2~ (1TeV)?’ (D-12)

and the (updated for the experimental value used here) bounds for the ratio R,z from
chapter [3]

©B oW oW B
C#B| _ 0137 ceV] _ 0138 [CPWE| _ 0.217

D.1
A2 S 1Tev) A2 N (ITev? A2 N ATev)? (D-13)

which were placed by considering only one Wilson at a time, we see that in the first case for
h — 7~ the bounds are sometimes even stricter than the optimal values suggested by the
global fit, while in the case of h — Z= the bounds are much weaker than the optimal values
by one or even two orders or magnitude.

This change in the coeflicient values is also driven by the fact that the Wilson coefficients
in this simple example are highly correlated. To get a quantitative view on this phenomenon,

we have derived the correlation matrix for the vector {C¥5, C*W C¥W5B} of the Wilson
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Figure D.1: From top-left to bottom: contour plots in the (C¥W-C¥WB) (C¥B-C?WE)
and (C¥B-C¥W) plane, with C¥B, C¥W and C¥*W B respectively, set to the best fit value.
The dot depicts the minimising value for the x? function and the ellipses correspond to the
lo—40 regions.

coeflicients, which is given by

1.00 —0.95 0.14
Peoelf = | —0.95 1.00 0.14 | - (D.14)

0.14 0.14 1.00

This matrix suggests a very strong anti-correlation between the Wilsons C¥? and C¥" is
clearly radically different than the unit matrix, in which case a one-at-a-time fit for the
Wilson coeflicients would be valid.

For completeness, we present also the contour plots seen in figure For these plots,
we keep one Wilson coefficient set to the best fit value, given in egs. , and we plot the

sigma contours with respect to the two remaining Wilson coefficients.



APPENDIX E

Input schemes in SMEFT

In this appendix we present the expressions for the couplings of the gauge sector of the
SMEFT in terms of measurable quantities. Several choices for the input parameters are
considered and we briefly comment on the use of the input schemes in real-world applicationsﬂ
The results are given explicitly for the dimension 6 SMEFT and we comment on higher-order
generalisations. In what follows, the Higgs mass is always considered as an input parameter

and therefore we won’t add it explicitly in the input parameters list to simplify the notationﬂ

E.1 The {Gpg,my,mz} scheme

This scheme is used in our analysis of the h — Z~ decay in chapter |3| and is also used to
re-express the results for the h — v calculation in the same chapter. Starting with the
VEV, which is defined through muon decay (see chapter [2[ for details), we solve for g from
the my definition. We have:

1(3 I3
v = 1 14 1 Cfl( : 0302( ) . Cil221 (E 1)
21/4/Gr W26\ A2 A2 A2 ’ ‘
1 C‘Pl(3) 0@1(3) Cll
=~ __ 0ob5/4 11 22 1221
g=2"/"My/Gp |1 - 2\/§GF< A2 + A2 A2 . (E.2)

!See also ref. [121] for additional details about SMEFT input schemes.
2The calculations in this appendix were performed in collaboration with Kristaq Suxho.
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After that we use the myz definition and solve for g’ to get

(3 (3
gl — 25/4 /M% o M‘%V /GF 1 (Cfl( : C;Q( : o C?QQI)

]_ —
212G\ A2 AZ A2

M3 CceP LM Mg, CPWE
AW2Gp(MZ — ME) \ A? My M2 A2

Finally, starting from the definition of the Higgs mass and using the formula we derived for
v = f(GF) we have:

(3 (3
\ = V3G pm? {1 ! (Cﬁ( b oon® ci%)

. (E.3)

CV2GE A2 A2 A2
1 c¥ L, (C¥D  10¥D

Since A isn’t needed in any other derivation, we won’t mention it again until the last section

where we need to redefine it since we also redefine the VEV there as well.

E.2 The {Gp,mwy, aen} scheme
From the previous scheme we already have the expressions for

v=[f(Gr),  g=[f(mw,GF). (E.5)
After that, we use the definition of € = \/4mae,, and we solve for g'. We obtain:

g = 25/4mW\/7raemGF 14+ 1 o
\/21/2GFm12/V e 2G (\/iGFm%/V — Traem)

raon (CFO 8O cu cevs
[\@ ( AT T AT T Al +m\/21/2GFm%V_7memT

} . (E.6)

E.3 The {Gp,mz,acn} scheme

The difference here is that we don’t make use of the my definition. Instead we try to solve

g and g’ in terms of Gr and aep,. The VEV is once more defined through Gg. For g and g
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we have:

4o
g =2""my/Gp |1+ /1 - —_x
g Z F \@Gszz

[ 1(3 1(3
cf® g™ oy

1 1
R P (
_ _Amcem A2 2 A2
I S 1 ceP 1 T Clom cvWB} )
AT Qo 2 3/2 _ _4maem 2 ? :

4o
9 A F \/iGmeZ
[ i 13 I(3
-1 | 1 ci® og®
442G W A2 A2 A2
L Fm7y |
D ©WB
B 8\/%G 1- 14Tl'aem C;XQ + 3/4 ]i;>/2 1 _Wiirgem OA2 } . (ES)
F i m_ 2 GF my ﬁGFmQZ

E.4 The {aen, my, myz} scheme
Until now we used the Fermi constant to express the VEV. In this scheme we will not make

use of G and, therefore, we will redefine both the VEV and the quartic Higgs coupling A.

The results are:

2 2 4 D 3 WB
_mw [my —miy, B 1 my C¥ _ 1 myy, 2 9 c¥
v= 1 2 A2 5\ My —my—5— s (E9)
my TQem daem my A TQlem M7, A

_ TQlem, 1 m%v ceb 1 m%v \/ﬁC‘pWB
=2 ——5<1 — —», (E.10
§=emz m% —m? { + AT Qem m% A2 + TQem Mm%, Mz =MW TR ( )

B 1 m? c¥b
g = W\/@{1 VQV(mQZ—m%V)—A2 } (E.11)
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2,2 4 (2 2 2 2 0
o Cemmimy 14 3my, (m3, —mdy,)” C¥ 2 myy (m2 2 )C’“"
 miy(m% —m3)) 202, m2mi A2 mae, m% V2 WJoA2
W\t Z w em'"*h'"Z em vZ
m%v c#b 2 m%v 2 2 CcPWB
+ 5 + 5\ My — My —5— (- (E.12)

T T e, M
2Taem A em My A

As expected, each choice for the input scheme is valid and the physics isn’t affected by
this choice. In practice, though, in the SMEFT framework different Wilson coefficients will
be introduced through different schemes, and it is useful to have the EFT definitions for
the masses identified with physical parameters, making the schemes {Gp, my,mz} and
{aem, mw, mz} more convenient. By identifying the masses as input parameters, we avoid
introducing explicit Wilson coefficients in the denominators of Feynman propagators (or,
equivalently, as arguments in the Passarino-Veltman functions), which would complicate the
calculations further since then we would have to expand these expressions to the relevant
EFT orderPl

E.5 Input schemes at higher orders

The same methodology can be used to derive the input schemes up to any desired order in
the EFT expansion. The expressions for the translation between couplings and measurable
quantities in this case will, of course, be very lengthy. We have derived the expressions for
the two most useful input schemes, namely the {Gp, my, mz} and {aem, mw, mz} schemes,
for the dimension 8 case (including the interference of dual dimension 6 insertions). These
expressions are used in the new iteration of the smeftFR code [127] and are included in the

open source code.

3There are exceptions to this rule, however. For example, in the h — ++ amplitude in chapter [2] the Z
boson mass appears only through the Z+-mixing contributions. This mixing enters the amplitude multiplied
overall by the effective hZ~-vertex. Therefore, at the dimension 6 SMEFT considered there, the Z~v-mixing
should be calculated in the SM and there are no EFT corrections in the Z mass. That made it possible to
express the h — v amplitude in chapter [2]in the {@em, Gr, mw } scheme without unnecessary complications.
This amplitude was also re-expressed in the {Gp, mw,mz} scheme in chapter



APPENDIX F

Exact Reformulation of SMEFT

In this appendix we construct the effective Lagrangian for the Standard Model (SM) up
to an arbitrary (but fixed) order in the effective field theory (EFT) expansion. We limit
ourselves in the bosonic sector of the theory which presents a high level of complexity due
to the mixing of the neutral electroweak gauge bosons. After constructing a non-redundant
basis for every distinct order of the SMEFT, one should make the necessary manipulations
to derive the physical mass basis of the theory after the spontaneous electroweak symmetry
breaking. The most important operators for this analysis are those that affect the bilinears
of the theory. In this appendix we show exactly which operators are capable of affecting
the bilinears, and then we proceed to systematically demonstrate the derivation of the mass

basis of the theory and to derive all the results up-to any order in the EFT expansion.

F.1 Introduction

The analysis of a generic EFT in R¢-gauges up to any arbitrary fixed order in the EFT
expansion has already been accomplished in ref. [171|E| There, the bilinears were derived and
emphasis was given in the gauge-fixing of the theory. Here, we perform a similar analysis
with the difference that we focus solely on the SMEFT and we derive the exact expressions
for the field redefinitions, masses, diagonalisation of the EW gauge sector etc up to any
possible order in the SMEFT expansion, creating a framework by which on can derive the

Feynman rules of the theory [127].

Following the analysis of section 2 of ref. [171] we arrive to the conclusion that the only

operators that affect the bilinears up to an arbitrary but fixed order N in the EFT expansion,

!The reader is also referred to the GeoSMEFT [172] formulation, where similar conclusions are derived.
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i.e. up to order 1/A", are operators of the type:
n n M2 n y 2
¢, "D, "X (F.1)

where @ is the Higgs field, D is the covariant derivative and X stands for a field strength
tensor &

F.2 Scalar potential and the Higgs mass

Due to hypercharge restrictions the operators should have the same number of ¢ and T

fields. Furthermore, using the Pauli matrices completeness relation,
Ll = 264a6be — Sabd F.2
TabTed ad%bc ab9cd> ( . )

the only way to contract the Higgs fields is like (T¢) (also, attempts to contract triplets
anti-symmetrically will give vanishing results since the objects we contract are identical).

)"*3 can appear in the Higgs potential, where

Thus, only operators of the type Q¥™ = (¢l
n = —2 and n = —1 correspond to the SM-like Higgs mass term and quartic interaction,
respectively, and values n € INy correspond to the effective operators.

To fix our notation, the Higgs potential reads

V(p) = m(ele) - 5 (e + 30 Pl (F.3)
n=0

Here and in what follows we extend the Warsaw basis notation for the Wilson coefficients
and effective operators, with the understanding that D = 6 Wilsons/operators correspond
to the value n = 0, i.e. C¥? = C¥ etc. We leave the upper limit of the summation symbol
empty, implying that all our results are valid up-to an arbitrary but fixed order IV in the EFT
expansion. We also absorb the EFT scale A in the Wilson coefficients in order to unclatter
our notation; to bring back the scale A the Wilson coefficient C*™ should be replaced
by C%"/A?"+2. Minimising the potential and setting the Higgs field to a non-vanishing
expectation value (VEV) as pfo — v?/2 we get

2
2:)\11

m
2

—S (n+3)cHn (“22)%2. (F.4)

n=0

Let us clarify here why the dual tensors do not appear in the bilinears as stated in ref. [171]: for two dual
tensors the operator reduces to the one without duals after contractions when bilinears are concerned; for one
dual tensor, and again focusing only on the bilinears, many simplifications happen due to the antisymmetry
of Levi-Civita, and we are only left with a total derivative which we neglect.



F.3. Scalar sector kinetic bilinears

Let us now collect the Lagrangian terms proportional to H2. From (¢fp)™ we could have
n terms containing a single H? insertion and n(n — 1)/2 terms containing twice a 2vH

insertion. Thus:

n+2
LD —%H2 [Z’AUQ —m® = (n+3)(2n+5)C"" <”22> ] : (F.5)

n=0

The physical Higgs mass, after canonicalisation of the kinetic term through h = Z, H (see

section [F.3)), reads:

02 n+2
M® =2 (n+2)(n+3)CP" <2> ] (F.6)

2 _
mh—?
h n=0

Eq. (F.6) allows us to exchange the parameter A for the physical Higgs mass and Wilson

coefficients to any order in the EFT expansion.

F.3 Scalar sector kinetic bilinears

In this section we are interested in operators that may affect the kinetic terms and/or mixing
of the Higgs and the would-be Goldstone bosons. Therefore, we consider only operators of
the class 2("t2) D2, with n € Ny for the effective operators and n = —1 for the SM. Due to

hypercharge restrictions the operators will contain exactly (n + 2) of each ¢ and ol fields.

Also, using integration by parts and ignoring terms that can be re-expressed in terms of lower
derivative operators by using equations of motion (EoMs)El we consider only the case were
one derivative acts on ¢ and the other acts on @TH For n = —1 we find the SM kinetic term,
(DlL(p)T(D"ap) Moving up to dimension six (n = 0) there are two possible ways to contract
the weak isospin indices: using the triplet or the singlet representation (anti-symmetric
contraction will always involve at least two identical objects, and will therefore vanish). The

operators are:

QP = (4irls) [(Dup)tr (D) (£.7)

QP = (¢le) |(Dup) (D). (£:8)

Following the Warsaw basis construction [37] we use the completeness relation for the

3More correctly, we have to use field redefinitions (cf. appendix |G)), and operators of this type (belonging
to the more general Green basis) will affect the Higgs mass parameter in the bilinears.

4This can be seen qualitatively the group theory relation for the su2 algebra, 2®2=1® 3

SEach (covariant) derivative acts only to the first object to the right.
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Pauli matrices (F.2)) to re-express the triplet operator as
QPO =2(o D) (D)) — () | (Du) (D45)]
=2Q7" - Q*PW, (F.9)

where Q¥P = }goTDMap’Q.

To simplify the singlet operator we utilise integration by parts (IBP) and the Leibniz
rule for the covariant derivative. To simplify the notation we use the symbol ~ for the steps
we use IBP and simultaneously we drop total derivative terms and all terms that can be cast

into lower-derivative operators using the EoMs. Defining Q*" = (¢T¢)0(¢T¢) we have:
QP ~ —on («p%) {(Duso)%]
~ (soTsO) 0 (w*w) + O (s@*@) (soTDusO)
= Q7 + (@TDust + (soTD”so) ((Duso*)w)
~ Q¥ ¢ (‘PTDMSO)Q —QvP) _ (QPTDMLP)2
_ ¢0 _ geD), (F.10)

and therefore Q¥P(1) ~ 1 /2 Q%Y. Thus, we can use the operators Q¥~ and Q¥” instead of
QsoD(l) and Q¥PG).

This identity can be easily generalised up to any order in the EFT expansion. Starting

from the operators

QPO = (41e)" (1710 [(Due)tr (D29)], (F.11)

n
QP — (1) (o) [(Du) (D). (F.12)
we re-write the triplet using the Pauli matrices completeness relation (F.2) as
QwD(3),n = 2Q¥DPn — QwD(l),n’ (F.13)

where Q¥P" = (nggo)n|<pTDug0’2. To simplify the singlet we define Q¥-" = (nggo)m_lD(cpTgo)



F.3. Scalar sector kinetic bilinears

and we have:
QPO o —(n+1)(o10) "0 (1) [ (Du) ]
~(n+1) (90%)”8“ (w*w) (w*Duw) +(n+1)Qe"
+n(n+1) (¢! )n(au(soTw))Q
= (1 + 1" +n(n +1)(4'e)" (9u(610))’
+(n+1) (@Tso)n [(@TDMD)Q + (¢ ((DMT)@)]
~ (n+1)[QF = QPPN fnn + DK, (F.14)

where K appears for D > 8 operators and can be simplified as

K= ( f )n [(a,xﬁ@)z - (@TDW)O“(@%)]

~ Q@D(l),n o Qaplj,n —nKk.

Therefore,
QPPN L 1/2 QPP W n e No. (F.15)

and we can use the generalisation of the Warsaw basis operators Q¥ and Q¥ instead of
Q#PMm and Q¥PB)m. Note that this means that the charged Goldstone bosons are already
canonically normalised, and therefore Zo+ = 1 up to any orderEI We list here the rescaling

for the fields of the scalar sector:
h= ZyH, GY = Z;0®Y, Gt = Zo: 0%, (F.16)

where the rescaling factors are given by

Zh =1,
vQ n+1
2y =1+ (2> D,
n=0
UQ n+1
Zp=1+4) (2) [CPPm — 40¥En]. (F.17)
n=0

5Since O = 92 only C¥P™ from the operator class <p2("+2)D2 can affect the gauge bilinears, not C¥2".
The same is true for the bilinear gauge-Goldstone mixing terms, which will affect the gauge fixing procedure.
This is an advantage of choosing Q*P" and Q¥P" instead of Q¥PM" and Q¥P®)™ for the Warsaw basis.
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F.4 Gauge sector kinetic bilinears

In this section we are interested in operators that may affect the kinetic terms and/or mixing
of the gauge bosons. Therefore, we consider only operators of the class ?(™t1) X2 with
n € INg for the effective operators and n = —1 for the SM. X here stands for a field strength
tensor (the arguments we are going to use are valid also for the dual tensors). Hypercharge
restricts the operators to contain exactly (n + 1) of each ¢ and @' fields. For n = —1 we
find the usual SM gauge boson kinetic terms.

We can only create scalar products of the Higgs fields using the singlet and triplet
representations, i.e. pl¢ and o7y, and we contract the two field strength tensors like
XY . We discuss each case in turn, by counting the weak isospin SU(2),, indices in the
X2 product. Note that we cannot contract the SU(2),, indices anti-symmetrically, since at
least two objects in the product would have to be identical. We also make use of the Pauli
matrices completeness relation, eq. , to reduce products of two scalar-field triplets into

singlets.
e 0 indices, i.e. By, B*". Only combination is Q¥5" = (¢Tp)"*1B,, B,

e 1 index, i.e. W/f,/B’“’. Only combination is Q¥WB" = ((pTgo)”(cpTTIcp)W}fVBW, which
is the gauge kinetic term mixing that appears for the first time at D = 6 SMEFT.

o 2 indices, i.e. WJVWJ"“’.

One possibility is to contract with §; 7, resulting in the operator Q¥ = (ingp)”HWF{,/WI Y
For D > 8 we have another possibility, and that is to contract each W/ with a triplet
of the Higgs fields, resulting in Q¥W®)n = (@Tcp)”_l(ngTIgo)(goTTJgo)W/fVWJ’ . We

will discuss the new effects arising from this operator below.

This concludes the possible bilinears for the gauge sector.

" appearing for the first time at dimension

Let us now focus on the operator Q¢ ®):
8 (see ref. |132] for a discussion of dimension 8 (D8) operators, where the effects of this
particular operator are also discussed). To contribute to the bilinears we reduce the Higgs
fields to VEVs by ¢ — v/+/2 (0,1)T. This configuration for the VEV allows only the I = 3
Pauli matrix in (goTTI ©) to contribute, and therefore these operators only affect the kinetic
term of the W3 boson.

Therefore, the re-canonicalisation of B, and the gluons Gﬁ (nothing changes for the

gluons other than the addition of Q¥&" = (¢T@)"+1GﬁVGA’ MY operators) is simply given by

By,=ZyB,, §=2,'¢,
Gﬁ = ngGZ‘7 gs = Zg_51937 (F'18)
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with the rescaling factors

1)2 n+1
2 _ B,
Zg,_1—4z<2> ceen,
n=0
UQ n+1
Z; =1-4) <2> ceen, (F.19)
n=0

For the SU(2),, gauge fields W' the rescaling now reads:
v — iyl
wl=zlw!, (F.20)

where the rescaling factors are compactly written as

2\ n+1
N2 _ 2 I3 v W(3),n
(212 = (2,2 45 2(2) O, (F.21)

so that
1)2 n+1
(Zg)?=1-4)_ <2> CceWn (F.22)
n=0

is the rescaling factor for the W12 fields, i.e. Zglzl’2 = Z,4. From now on we will also define
Z§:3 = Z3. We choose not to include the extra Z3 contributions in the normalisation of the

SU(2), coupling in accordance with ref. |132]:

g=21g. (F.23)

This coupling non-universality after the canonical normalisation of the kinetics terms
has an important consequence: the covariant derivative in the “barred” basis isn’t equal to

the “unbarred” one, as was the case in the dimension 6 (D6) SMEFT. Now it reads:
Dy =Dy +igZy(Z3" — Z; YWST?. (F.24)

An immediate effect of this extra term is that the Higgs kinetic term will now introduce

extra contributions to the EW sector mass matrix. Defining § = Z,(Z5 l_z g 1g we have:

(D) (D) = | Dyl + 3| T*Wie|?
+ig(Dro) (TP*Wie) — ig(T*Wie) T (DHe). (F.25)

Setting both of the Higgs fields to the VEV we get extra contributions to the gauge sector
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bilinears as follows:

2 2

vt = N3, 1TT73
9(g +29)WHW, —

[Dyspl® = [Dypl* o g (F.26)
Wilsons C¥P+" also contribute in the same manner, therefore they just sum with the SM-like
contributions to give Zéo, exactly like in the D6 case. The Higgs kinetic term also affects
the gauge-Goldstone mixing in the theory, which is related to our choice of gauge fixing. We

discuss this in section [F.6l

F.5 EW bilinear Lagrangian

We are now in position to write down the bilinear Lagrangian for SMEFT up to any order

in the EFT expansion. It is a simple generalisation of eq. (3.14) of ref. |4OHZ|

. 1 - _ _ _
E%lé{l/near _ _E(ijwle + W/EVWQ[LV)

T
1 WBZ, 1 € W3k
B/w e 1 B
g o 27772
+ 3 (WMW“—FW W=H)
T
v? v 7> —ad W3k
+ §Zé0 _M B 9 <F27)
B/L _ggl g12 BH
where we defined
G=275'7,5 (F.28)
and
v 2N e F.29
‘= 732, 72(2) ' (£.29)

Note that the EW bilinear Lagrangian has the same form as the D6 one, with the difference
that g appears in the W mass but now § = Zs 1Zgg appears in the W3-B mass matrix.
This effect appears for the first time at D8, and no new types of effects appear at higher
orders. Every higher order effect is just an existing one augmented by powers of v2, and can

be ‘resumed’ in Z factors.

"Note that the strength-energy tensors here denote only the abelian part in order to create bilinears.



F.6. Gauge fixing

Let us define a matrix

a b cosf sinf X111 Xqo
X = = (F.30)

b a —sinf cosf Xo1 X9

such that the fields Z and A,

w3 Z
“l=x| "], (F.31)
B, A,

are in the mass-basis and canonically normalised. To achieve that we choose the parameters
to be

RN N = Y e

b= —;{\/17 ”1__6262 (F.32)

and the mixing angle is defined by

= G +2e37 +7* - V1—-€(g*—7")

tanf = — — — F.33
299 + €(3* + 3% (F:35)
After diagonalisation, the masses of the Z and A gauge bosons are given by
72 5! /2
v g° +2eq9' + g
myg = 2ZGO\/ 1_ 62 s <F34)
ma = 0. (F.35)

F.6 Gauge fixing

F.6.1 Gauge-Goldstone mixing

Since the covariant derivative only redefines the W3 coupling from g to § with respect to
the D6 case, it is trivial to prove that eq. (3.25) from ref. [40] still holds in the same form if

we use our new definition for the Z mass, i.e.
Lo_gw = imW(Wj(?“G‘ — W;&“G*) - mZZuaﬂGO. (F.36)
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F.6.2 Gauge fixing

The D6 SMEFT has the special feature that changing naively every coupling and field from
the Warsaw (unbarred) basis to the canonically normalised bar basis doesn’t affect the form
of the Lagrangian; barring everything acts like a re-parameterisation in the Lagrangian.
Therefore, the gauge-fixing of the theory could be performed in the unbar or the bar basis.
The BRST transformations can be taken from the SM case, by simply putting bars in the
fields and couplings if one chooses to start from the bar basis. This was the method applied
in ref. [40].

When adding D8 or higher operators, this useful feature of the effective Lagrangian isn’t
true any more, since the Wlf fields may not scale like the inverse of the gauge coupling g. In
our formalism we choose WS to scale differently. Therefore, the easiest approach to gauge
fixing the theory is to start from the Warsaw basis Lagrangian, the unbar basis, and use
the SM BRST transformations. Later, we simply use the appropriate rescaling factors to

translate everything to our bar basis.

F.7 EW couplings

Let us define here the EW Lagrangian using the electric charge and the Z coupling

=/

99
VP +2655 + g%

e =

B a2 + 2¢4d + 72
gz=\/g —— (F.37)
—€
We could also define the photon and Z couplings by
ga = gX12— g Xp =0,
gz = X1 — g Xa1. (F.38)

F.8 Utilising the Warsaw basis

In this section we describe how one can go directly from the Warsaw (unbar) basis to
the physical basis, without making use of the intermediate “bar” basis were the fields are
canonically normalised. We use the normalising Z factors that we derived before. We draw
the attention of the reader to the fact our notation about the X matrix in this section
is different than the rest of the appendiz. This section introduces the notation that’s in

accordance with the gauge fixing procedure in the new version of the smeftFR code [127].



F.8. Utilising the Warsaw basis

Let us introduce a new X matrix, such that

3
Wil _x| P , (F.39)
B, A,

were the fields Z and A are the mass basis fields. This X matrix is connected to the old one

(which didn’t include the normalisation factors) via

Xold /Zg Xold /Z3
X9/ Zy X8/ Zy

Of course the charged gauge fields in the mass basis are defined as

Z ,
Wi = 7%(W,} FiW3). (F.41)

With this new X matrix the couplings proportional to the Z and A mass read simply:
gz = gX11 — ¢'Xo1 and g4 = gX12 — g'X22 = 0.

The unwanted gauge-Goldstone mixing terms, written in terms of the physical masses
and fields in eq. (3.24) of ref. [40] is still exact. We now try and generalise the gauge fixing
procedure to cancel this unwanted term. We follow section 5 of ref. [40], but we now start

from the Warsaw basis D4 Lagrangian.

The gauge fixing Lagrangian is still defined as
[
Lor = _§F & F, (F.42)
where the gauge fixing functionals are now defined in terms of unbared couplings and fields:

Fl 8MW1“ P i

—ig T
F2 o, T2k - g<I>++<I>*

F= . — % V2 . (F.43)
F3 0, W3H —9Z%0®o
FO 8, B" 9 2200
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To compensate for this change, we have to redefine the symmetric 4 x 4 matrix é as follows:

Ew/Z3 Taxo O2x2

¢ . (F.44)
O2x2 X xT

£a

o
Il

(Note that, equivalently, we could define a 4 x 4 matrix, say X4, that would include also
the factor Zg_l, and then é = Xy diag(&w, &w, €2,€4) XI. This is the procedure followed in

ref. |[171]. Here we choose to follow a formalism more easily adapted in the smeftFR code.)

Using these adaptations, we can prove that the unwanted gauge-Goldstone mixing terms

cancel.

We now move on to the ghost Lagrangian. Like before, the definition of the ghost

Lagrangian remains the same,
Lrp = NTE(MFN) (F.45)
and the symmetric 4 x 4 matrix E is redefined:

R Z3 Lax2 O2x2
E= . (F.46)

®2><2 (XT)_lel

Using these new definitions, and using the SM BRST transformations (taken from
eq. (5.9) of [40] by unbarring fields and couplings), we can prove that eq. (5.10) of [40] has

the same form and the only change is that we have to unbar every field and coupling there.

Like we did in the charged gauge sector, the charged ghosts should explicitly contain the

normalisation factor Z, for their kinetic terms to be canonically normalised:

Z
+ g9 1 -T2
= 29 (N 7iN?),
n \/5( FiN®)
Zy _
7t = 2L (Nt +iN?). (F.47)

V2

while the definitions for the Z and A ghosts remain unaffected if we use the new X matrix.

The last change in section 5 of [40] is that the N! ghost BRST transformations in
eq. (5.13) are now proportional to the unbarred coupling ¢ in order to satisfy the nilpotency

of the BRST transformation in s?F}, and everything else in this section remains the same.



F.9. Comparisons

F.9 Comparisons

Let us collect here some reference formulae for comparison with the results of ref. [171] that
relate to the SMEFT (see appendix D of ref. [171]). The J matrix elements used in that

paper are given by

Jy =271,
Jy =272 —1,
Jy =23 —1,
J3 = eZ37,, (F.48)
and for the K matrix of |[171] we have
Ky=27%—1,
Ky =72% —1,
Ky =Z7; — 1,
K3 = Z¢o (F.49)

Using these expressions and by direct comparison we find agreement in the gauge fixing
procedure and in the final results for the gauge boson masses presented in appendix D of
ref. [171].

In this appendix we have proven that there is no kinetic mixing between the H and
®° components of the Higgs doublet to all orders in the EFT expansion. Furthermore, we
proved that the charged component is already canonically normalised up to any order. This

means that the first equation in (D.13) of ref. [171], namely
K, =Ks;=0, (F.50)

should be true to all orders in SMEFT.
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APPENDIX G

Field redefinitions in effective field
theories

In effective field theories (EFTSs) it is common practice to use the equations of motion (EoMs)
to reduce operators containing higher derivatives. This procedure, however, is erroneous
if one is interested in EFT terms beyond the leading order. The correct approach is to
make use of local field redefinitions. A detailed analysis of this approach is outlined in
ref. [173]. In this appendix we give the field redefinitions that are necessary in order to get
rid of the terms containing higher derivatives in two simple toy model EFTs and discuss the

complications related with higher order EFT corrections.

G.1 Introduction
Let us formally define the EFT action as a power series

Slel =) _e'silel, (G-1)
where ¢ is a placeholder for various quantum fields, /N is an arbitrary but finite integer
number, ¢ is a dimensionful expansion parameter, usually the inverse of a UV scale (for
example in our toy models here, as well as in the bosonic SMEFT, we have that e =1 = A2,

with A representing the unknown scale of the UV physics). Then one can use a local

perturbative field redefinition of the form

N
¢ ¢ =¢+> eFi(9), (G2)
=1
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and this will affect the EFT action as follows:

(6] = 510!
65
= Salo] + | Sule] + F(0) 50
) ) 52
+2|Si] + FEO) ot + RO o0 + R OF 0 o05] + 06, (63)

where repeated indices denote a sum over the various fields ¢; and the corresponding functions
F; and an integral over the space-time argument.
The functional derivatives of the action can be evaluated straightforwardly using the

definition of the functional derivative:

/d:z: p(z) 6S[f ()] — S[f(y) +ep(y)] — S[f(y)] .

5f(y) e e

(G.4)

The single functional derivative of the renormalisable action .Sy is by definition equivalent to

the lowest EF'T order classical EoM. For example, using an action

sofé) = [ dtalb(06) - 1ra], (@5)
we find that the first functional derivative gives
05
9l _ g2 2= —E(9), (G.6)
00
where FE(¢) = 0 is the classical EoM for this Lagrangian,the second functional derivative of
Solo] gives
82 Sol¢] 2 21 54
— = |—0" = 3Xp7 |0 (x — y), G.7
)0 | 7 =) (G0
and so on.

G.2 Real scalar field

G.2.1 Leading EFT order
Formal derivation

This is the simplest toy model possible, containing only a single real scalar ﬁeldEl For

simplicity we ignore the mass term and we assume that our theory is invariant under ¢ — —¢.

"We follow the example given in page 458 of ref. [11] (the reader should be aware of a typo in the quartic
coupling there).



G.2. Real scalar field

Then, the most general renormalisable Lagrangian (we are assuming a 4-dimensional space-

time, so that means that we only include operators up to dimension 4) is given by:
L4=100)° - 1rg". (G.8)

The classical EoM for this Lagrangian, which is also the lowest order classical EoM in the

EFT expansion, can be written as F(¢) = 0, where we defined
E(¢) = 0%¢ + M. (G.9)

After using integration by parts (IBP) and assuming that the surface terms in the action

vanish, we find that the most general Lagrangian at dimension 6 is given by
L = 5 [acd’ + bs0°0%¢ + c(0°¢)?] . (G.10)

These operators consist, as is often called in the literature, the Green basis at dimension 6.

For completeness, we list here the IBP relations of the operators that don’t appear in
our chosen Green basis. For the operator class ¢?0* each IBP trivially introduces an overall
minus sign since we only have two fields. For the operator class ¢p*0? there are two choices
for the placement of the derivatives. We use the symbol “~” to indicate that the equality is

up-to surface terms in the action and we find

¢*(09)* ~ —5¢°0%¢. (G.11)

Let us now perform a perturbative field redefinition of the form

¢ = ¢+ 12 F(9), (G.12)

which takes £4 — L4+ 0Lg + - - -, where the ellipses stand for higher order terms and the

leading order correction is

6Le = —=F(9)[0°0 + \¢’| = = F(¢)E(¢). (G.13)

Notice that the full contribution at dimension 6 (D6) comes from the renormalisable
Lagrangian and is proportional to the lowest order classical EoM. Beyond the leading

order, however, this simple behaviour ceases to exist; see for example the second functional
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derivative given in eq. (G.7)). Using the locaﬂ function

F(¢) = pe¢” + qs0%0, (G.14)

we see that the choice gg = cg cancels the (82¢)2 and then the choice pg = bg — Acg cancels
the $20%¢ term. The effect of this field redefinition at D6 is that the Wilson coefficient of
the term ¢° is modified like ag — ag = ag — Abg + A2cg. The higher order terms of the theory
would be modified as well.

Every result we derive by using the field redefinitions explicitly in the Lagrangian, as
we did in this section and in the rest of the text, can be reproduced by using the Taylor
series expansion of the action and calculating the functional derivatives as explained
in section Therefore, from now on we are not going to mention this fact explicitly and

we are just going to use the redefinitions in the level of the Lagrangian.

Using naively the EoMs

One could reproduce this result by using naively the EoM for the scalar field in the lowest
order in the EFT expansion. Using the fact that insertions of EoM in the D6 operators
won't affect the S-matrix to this order (a fact that can be deduced from eq. (G.13)), we
proceed to replace the terms 9%¢ with —\¢> in the D6 terms. This has the effect that the

only D6 operator left is ¢%, with its new Wilson coefficient reading
ag = ag — \bg + Ncg (G.15)

which is the same result as using the field redefinition, even for the double insertion of 9%¢.
Therefore, the leading order EFT Lagrangian (which in this case is D6) after IBP and

EoM reduction reads

Lo = 1za50° . (G.16)

We call this basis of operators Warsaw basis to connect our findings with the SMEFT
case. Of course both the Green and the Warsaw basis aren’t always unique, since we may
have the freedom to perform IBP and different field redefinitions to re-shuffle the terms.
This Lagrangian, combined with the renormalisable Lagrangian , contains the full
information of the theory up-to D6 without containing any redundant operator when we are
interested in on-shell results. This is because field redefinitions affect the Green’s functions
but don’t affect the S-matrix.

2A local function of the field ¢ is defined formally as F(¢) = f(¢, 04, ...,0" ¢), where N is an arbitrary
but finite non-negative integer. If N is infinite then this would be a shifting operator acting on the field ¢,
resulting in a non-local term.
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G.2.2 Next-to-Leading EFT order

At dimension 8 the Green basis Lagrangian is found to be (again, we use IBP to arrive in
the Green basis):

Ls = 41 [ase® + bsd’ ¢ + cs(0°)(9'9)
+dg(99)"! + esp(979)(09)* + fsd”(0°9)?] . (G.17)

As before, we list here the IBP relations of the operators that don’t appear in our chosen
Green basis. For the operator class ¢?0% each IBP trivially introduces an overall minus sign
since we only have two fields. For the other operators we use the symbol “~” to indicate

that the equality is up-to surface terms in the action and we find

¢*(00)* ~ —19°0%¢,
$*0'¢ ~ 3¢%(0°9)” + 69(0°$)(99)?,
¢*(0,0,9) (010" ¢) ~ (09)* + ¢°(0°¢)” + 39(8%¢)(09)*
3(8,.9)(0,9)(9"0" 9) = —5(09)" — 36(9°9)(99)?,
$*(0u9) (04 0%¢) ~ —¢°(0°9)* — 26(9%¢)(0¢)* . (G.18)

We should now follow the same procedure as we did for the D6 Lagrangian and perform

a field redefinition

¢ — o+ 2G(9). (G.19)

This redefinition will modify the dimension 8 (D8) and higher order terms in the La-
grangian. Like before, the leading order contribution (which now is D8) comes solely from

the renormalisable part of the Lagrangian. For our field redefinition we use the local function

G(¢) = ps® + qs0* ¢ + 159 (99)* + 55¢20%¢ . (G.20)

We then try to cancel the contracted higher derivative terms one by one (see section
for our definition of “contracted” higher derivative terms). Choosing gs = cg we cancel
the (0%¢)(0*¢) term and also get the modifications fg — fs — 3A\gs and eg — eg — 6Ags.
Then, choosing sg = fg — 3A\gs we cancel the ¢?(9%¢)? term and modify bg — bg — Asg. Then,
choosing 73 = eg —6Agg we cancel the ¢(9%¢)(0¢)? term and get bg — Asg — bg — Asg + Arg /5.
Finally, setting pg = bg — Asg 4+ Arg/5 cancels the ¢°0%¢ term and modifies

ag — ag — )\pg . (G21)
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Again, it is trivial to check that one could derive the same result by using naively the
lowest order classical EoM, E(¢) = 0. Therefore in a purely bottom-up EFT approach,
where the Wilsons are unknown parameters, it is enough to use the classical EoM to zeroth
order in the EFT expansion (i.e. the classical EoMs for the renormalisable Lagrangian)
to cancel the contracted higher derivative terms. But if one wants to use the EFT in a
top-down fashion, e.g. matching a UV model in the EFT, then the modifications in the
parameters ag g that we derived so far are important, since parameters of the theory that
produce operators which are later simplified using the EoM may still be relevant for the
determination of Wilsons of other operators that survive. For the leading term, having
specified ag is enough, but beyond the leading term there are complications that cannot be

fixed in the framework of “EoM redundancy”.

If we want to work consistently up to D8 we need to take into account also the double
insertions at D6; we will call these contributions D62. These contributions will appear from
double insertion of F'(¢) in the renormalisable Lagrangian and single insertion in the D6
Lagrangian. Therefore the D8 Wilsons we posted in eq. should be modified to include
these D62 contributions. Of course, the D6 field redefinitions will produce D8 operators of
the D8 Green basis (after utilising IBPs as explained above), since the redefinitions respect

the symmetries of the theory.

These expressions are in general complicated linear combinations of the Wilsons, even

for this very simple toy model. We find,

ag — ag + 6(16b6 - (6(1666 + %b%))\ + 3b666)\2 - %C%)\g s
bg — bg + %bg + 6agce — Gbgeg A + %C%)\Q ,

cg — cg + %cg ,

dg — dg R

eg — eg + 12bgcg — 66%/\,

fs = fs + 9bges — D2 (G.22)

Now these expressions should be used to redefine the Wilsons in addition to the replacements

that we derive when we reduce the Green basis at DS.

Using primes to denote Warsaw basis Wilson coefficients we conclude that the D8

Lagrangian in Warsaw basis can be written as

Ls = q1[agd® + dg(99)*] (G.23)
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with the Wilson coefficients related to the ones in the Green basis like d = dg and

a’s = ag + 6agbg — (bg + 12agcg + %b%))\
+ (fs — tes + Bbgeg) A* — 2 (9cs + 48¢3) A° . (G.24)

G.2.3 Choices for the non-redundant basis

Let us comment here that the most useful thing about having the freedom to use field
redefinitions in EFTs is that one can get rid of contracted higher derivative terms. Here by
“contracted” we mean the terms with derivatives that appear in the lowest order classical
EoM, like 9%¢ for scalar fields, 9, WH for gauge fields and @i for fermionic fields. This is
very useful for avoiding consistency problems in the EFT, like Ostrogradsky instabilities
[174], that happen because of the higher derivative terms in the EOMSEI Getting rid of these
operators allows us to write the propagators in the same form as in the renormalisable theory.
As we discussed, in a bottom-up EFT approach where we treat the Wilsons as independent
numbers one could use the lowest order classical EoM to cancel these problematic operators

recursively to every EFT order.

Let us try here to see formally what freedom we are given when we are constructing a
non-redundant basis. We revisit the real scalar field example at D6, and once again perform
the field redefinition

o= o+ 2F(9). (G.25)

Since we restrict ourselves in the subset of perturbative field redefinitions where the EFT
expansion parameter plays the role of the perturbation parameter, it is trivial to see that
the mass dimension of the function F(¢) is 3. Therefore, the most general Lorentz invariant
form of F' that includes only the scalar field ¢ of our spectrum and derivatives of that field

reads
F(¢) = ped” + ¢60°¢, (G.26)

where pg and ¢g are free parameters. This means that in our toy model, where the Green
basis contains three independent parameters, we are free to apply two constraints when using

field redefinitions. Therefore, the non-redundant basis contains exactly one free parameter.

We present here the three different but equivalentEl non-redundant Lagrangians one can

30strogradsky’s theorem states that, in classical mechanics, a non-degenerate Lagrangian which contains
time derivatives higher than the first, produces a Hamiltonian which is unbounded from below.

4In classical mechanics the term “equivalent Lagrangians” is used for two Lagrangians that produce the
same EoM. Here each Lagrangian produces a qualitatively different EoM since the number of derivatives
acting on ¢ changes. In EFTs we use this term loosely for Lagrangians that are built from non-redundant
bases and give us on-shell equivalence.

153



G. FIELD REDEFINITIONS IN EFFECTIVE FIELD THEORIES

derive:

FO(¢) = (b — Aes)® + 0%,
£ = & (ag — Abg + Neq)¢°, (G.27)

FO(¢) = Lagd® + ¢69°9,
L = & (b — tag — Aes) 6°0%, (G.28)

F(S) (¢) — %a6¢3 + (%bﬁ — $a6)82¢a
Eég) = 4 (c6 — 3b6 + %aﬁ)(a%y . (G-29)

G.3 Complex scalar field

G.3.1 Green basis

Let us now repeat the procedure in the case of a complex scalar field, with an action invariant
under the global symmetry ¢ — e‘®¢. Keeping the mass term this time, the renormalisable
Lagrangian reads:

Ly =106 —=m?|g” — 30" (G.30)

The classical EoM for the field ¢ is given by E(¢) = 0, where
E(¢) = 8¢ +m’¢+ N el*0, (G-31)

and similarly for ¢*. Using IBP to reduce the number of operators, our choice for the Green

basis Lagrangian at dimension 6 reads:
Lo = 1 |ag|6|® + b6| 62|00 + c6|0%6|” + (do|¢?¢* 0% + c.c.) | , (G.32)
A

where c.c. stands for the complex conjugate term and ag, bg and cg are real numbers. To
derive this particular Green basis we used the fact that the operator class $20* has trivial

IBP relations, and within the class ¢*0? we have omitted the operator
(6")%(99)* ~ —21¢I*|99]" — |¢|*¢"0%¢ (G-33)

and its complex conjugate.

Let us also derive the Green basis at D8. For the operator class ¢%0% we use the IBP
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relation

6(6")3(99)* ~ —L|¢|'¢* 8¢ — Lio|"|0¢| (G.34)

and its complex conjugate. The operator class ¢*0* is much more complicated. We introduce
a compact notation for this class, where we use indices that denote the number of derivatives
acting on each field, e.g. Q(30y(10) = (O, 02¢)p(0"¢*)p*. To avoid double counting we place
the unstarred fields to the left of the starred ones, and we move the higher derivative terms
to the left. When there is ambiguity about the contractions of the Lorentz indices we use a
hat symbol to indicate contraction inside a “2” subscript index or inside two “1” indices that
belong to the same subscript parenthesis. For example @ (31)(10) = = (0%¢)(0"9)(0,9%)¢* and
Qi) = (0u0)(0")(0,¢*)(0"¢*). If no hat is used the contractions take place between
a starred and an unstarred field or between two different “2” indices. When there is no
ambiguity hats are omitted to unclatter the notation. The IBP relations can then be written

as:

Q0)(00) & +C33)(00) T 2€30)20) T 4Q(21)(10) T 2@ 20)11) >
Q31)(00) & —Q(Qﬁ)(oo) - 2Q(21)(10) ?
Q(30)(10) ® —Q (20)(20) Q(QO)(H) - Q(?l)(lo)’
Q22)(00) ® +@33)(00) T 2Q@31)10) T @y T @ o) -
Q20)(11) & +%Q(Qo)(11) + %Q(ﬂ)(ﬂ) — Qanay — Q(IO)(il) ’
Qenao ~ ~3Q) ~ 2@ @) -
Q(20)(20) = +Q30)(30) T @a1)(10) T @a0)31)
+ %Q(QO)(H) + %Q(n)(io) +Quana - (G.35)

The corresponding identities for the conjugated operators can be derived by simply swapping

the parentheses in every term.

For the operator class ¢?0% IBP identities are trivial, and, for our convenience later on,

we choose to keep the combination of operators

7s[(0%9)(9%¢") + (9%9)(9%¢")] | (G.36)

where the common Wilson coefficient, jg, should be a real number.
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Therefore, the Green basis Lagrangian at D8 is given by

Ls = as|g[* + bs| 61001 + cs(106]%)? + ds(99)%(9¢*)? + es|¢|*|0%0|”
+[fs0* |01 (9%0) + g30"|09[* (9%¢) + hsp(Dd™)*(9¢)
+is(6)2(0%0)? + js(629)(8"¢*) + c.c.] (G.37)

with the Wilsons in the first line being real numbers and those inside the square parentheses
(second and third line) being complex numbers (with the exception of jg, as discussed above).
It is interesting to notice that every operator inside the square parentheses (and the last
operator from the first line) is “EoM redundant”. To be more accurate in our terminology,
these operators are going to be cancelled after our choice of field redefinitions — their Wilson
coeflicients, however, will intermingle with those of the first four operators that will end up
being our Warsaw basis. Since these Warsaw basis operators are real, each complex Wilson
C from the second line will contribute like C'+ C* =2 Re C.

G.3.2 Field redefinitions

Let us now derive the field redefinitions to derive a Warsaw basis out of the Green basis
at D6 and D8. As before, we are going to use perturbative field redefinitions with the

perturbation parameter being the EFT expansion parameter 1/A.

For the D6 field redefinitions we use the local function
F(9) = psl¢|*6" + q60%¢" . (C.38)
and the renormalisable Lagrangian will contribute at D6
0Ls = —%[F(QS)E(QZ)) +c.cl, (G.39)

where

E(¢) = 00 + m?p + No[*¢, (G.40)

and setting F(¢) = 0 gives us the classical EoM at lowest order for the field ¢.

In order to cancel the term ‘(9%5‘2 we have to set Regs = ¢6/2. In order to cancel
the term |¢|2¢*82¢ and its charge conjugate we have to set Reps = Reds — Acg/2 and
Impg = Imdg + AImgg. For simplicity, we define our parameters to be

1
g6 = fcﬁa

Pe = dﬁ — %)\CG . (G.41)
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This field redefinition will affect the Wilson coefficient of the sextic scalar interaction term
like
ag = ag — 2\ Re dg + Ncq (G.42)

whilst b = bg.

In this example we kept the mass term in the model, and the dimensionful parameter
m messes with our power counting since it effectively reduces the dimensionality of our
operators in the field redefinition by a factor of 2. Therefore, our D6 perturbative field

redefinitions will now produce terms of dimension 4, and specifically:
8Ls D —+5 |m?(2 Reds — Aeg)|¢]* — mPcg|0g)? | . (G.43)

Of course this is formally consistent with the EFT expansion, we just have to keep track of
these contributions to the renormalisable couplings along the way, but the conclusion is that
mass terms mess up with the naive EFT power counting.

This time the counting of the free parameters in the redefinition is a bit more complicated
since we now have to take into account the complex conjugate term in §Lg. The function F(¢)
should be constructed in such a way that (i) is Lorentz invariant, (ii) it has mass dimension 3,
and (iii) when multiplied with E(¢) produces terms invariant under the symmetry ¢ — e*®¢.
Therefore, the most general F(¢) depends on the coefficients pg and ¢g, and these are in
general complex numbers. If we expand dLg, however, we will see that it is only affected by
Repg, Re gs and Im(ps — Ags). Therefore, we are left with three free parameters instead of
four for our redefinition. Thus, the D6 Warsaw basis Lagrangian has exactly two degrees of
freedom, as can be seen by our results. In general, the operator Bg (the one with Wilson
coefficient bg) isn’t modified by our field redefinitions and therefore is always present in the
Warsaw basis. The second degree of freedom can be chosen to be one of the operators Ag or
Cs, or the linear combination (Dg + Dg).

To derive the D8 Warsaw basis we start with the most generaﬂ D8 local function for the

field redefinition, i.e.

G(¢) = ps|o|'¢" + qs0*[06]° + rsp(09")?
+ 58]¢|20%0" + t3(9*)%0%¢ + ugdie* . (G.44)

If every parameter was complex then we would have twelve free parameters to choose, and
therefore we could restrict our Lagrangian beyond cancelling the ten operators containing
contracted higher derivatives in eq. (G.37). Let us ignore for a moment the D62 effects,

since these will only redefine our Wilsons, and concentrate on how our field redefinitions will

SHere we consider the most general function without taking into account the massive parameter m?2.
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affect the Lagrangian to first order, i.e. through the EoMs. We will see that, without loss of
generality, we can take the parameters sg and ug to be real, which brings us down to the
ten degrees of freedom that are dictated by the nature of the problem. Denoting with X,

the operator multiplied by the Wilson z,,, the genuine D8 contribution reads:

—A*0Ls D ps[Fs +m*Ag + Mg
+ qs [Gg +m?Bg + )\Bg]
+ rg | Hy — m*(2B5 + D}) = $A(Bs + F)|
+ 55| Bs + m2D + AF]
+ tg[Is + m*Dg + \F]
+ ug [Jg + m2Cs + \2Es + 4G + 20 + 1} )} . (G.45)

We see a major problem here. From the outset we decided to use perturbative field
redefinitions so that we can fix our Lagrangian order by order, without affecting the lower
order terms. But the mass-square term in the Lagrangian reduces the dimensionality of
the operators by a degree of two. Therefore our D8 redefinitions, which should affect only
D8 and higher terms change our D6 terms and actually introduce again “redundant” D6
operators, suppressed by an extra factor of m?/A?. To fix this, we must include suitable
terms in the field redefinitions by taking into account this m? term. Therefore, our full

redefinition function would be:

G () = ps|o|"d* + qsd*|00|” + r3p(9p*)?
+ 53|02 020" + ts(¢*)20%} + ugd* o
+ vgm?|¢|2¢* + wsm?8%¢* . (G.46)

These new Wilsons, the complex vg and the real wsg, will be utilised to cancel these unwanted
contributions to D6. Of course now the redefinition at D8 will introduce D4 terms proportional
to those in eq. , but this will be taken care off when we do the canonicalisation of the
kinetic term with a (this time constant) field redefinition. Following the procedure we used
for the D6 case and taking into account the extra minus sign this time, we choose wg = —ug
and vg = —tg — 5§ + v3 + Aug.

This phenomenon happens iteratively for every subsequent higher order redefinition. For
example a purely D10 (with only genuine D10 operators included) redefinition would introduce
D8 Green operators. Therefore, we should include redefinitions with m?/A? suppression
(therefore D8 operators), which in turn would introduce D6 Green operators, and these

should be cancelled by introducing m*/A* suppressed D6 operators in our redefinition.



G.3. Complex scalar field

Ultimately, for any EFT order, this complicated procedure results in (i) contributions in
the Warsaw basis to lower orders, and (ii) changes in the D4 terms of our renormalisable
Lagrangian, which will be dealt with later when we canonically normalise our fields to define
the mass basis.

The methodology explained in this appendix may prove useful in the future to augment
the top-down applications of the SMEFT beyond the leading EFT order, in which case
simply ignoring the EoM redundant operators would lead to erroneous results. This project

is left for future work.
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