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Abstract

According to a beautiful result of Gromov [10] any symplectomorphism of CP?
can be deformed into a biholomorphic isometry of CP?. Medos and Wang [22]
applied the mean curvature flow (MCF) method to deform a symplectomorphism
of CP™ with m > 2. Roughly speaking they proved that if f : CP™ — CP™
is a symplectomorphism which is close to a biholomorphic isometry, then the
MCF will smoothly deform f into a biholomorphic isometry. The purpose of
this Master Thesis is to analyse the work of Medo§ and Wang [22] and prove the
following:

Main Theorem: There exists a number £(m) > 1, which depends only on the
dimension m € N, such that if f is a symplectomorphism of CP", with the
property

e(m) < |df* < &*(m),

then the (MCF) smoothly deforms [ into a biholomorphic isometry of CP™.
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MNEPIAHVH

X€ 0T TN LETOTTUYLOKN €pYacio B d0VE Twg Umopel vo ypnotporondei n pon
UEOTG KOUTVAOTNTAG Y10, TNV ATOOEIEN TOTOAOYIK®V amoTeAespatv. Ewkaletot
oti kdbe ovuTlEKTOUOPPIOUSS TOD UIY0dIKOD TEpoflotikoDd ywpov CP™ ddvarar
va wopopoppwbei pe ovveyn tpomo oe oAopopen ioouetpio oo CP™. Twom =
1 ko yuo m = 2 n mopandve ewocio Exel oamoderydel amd Tovg Smale [31] ko
Gromov [10], avtictotrya. Xt0 kevrpikd Oempnua tng doTpinig o avarivcovpe
pa epyacio tov Medos kot Wang [22] 6mov amodeikvoetot T0 €E1G OMOTEAEGLOL:

Kevipwé Osdpnpa: Yraapyer opibuos €(m) > 1, mov elaptérar povo amé
owdgotaon m € N, étor wote eav [ : CP" — CP™ eivau ovunlextopoppiouog
e

e (m) < |df* < *(m),
T0TE 1] PON UEOHS KOUTVDAOTHTAS TOPOUOPPOVEL UE Aglo Tpomo v [ oe ua
0A0u0pPN 100UETPIO TOV ULYadLKOD TTpofotikod ywpov CP™.
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CHAPTER 1

CoMPLEX DIFFERENTIAL GEOMETRY

In this section we set up the notation and will quickly review some basic facts
from Riemannian, K&hlerian, and submanifold geometry. We closely follow the
exposition in [2], [5], [6], [7], [17] and [46].

1.1 Connections and curvature

1.1.1 Riemannian manifolds. Let M/ be a smooth connected without boundary
manifold of dimension m. We denote the tangent space of M at a point x € M
by T, M and the space of smooth functions of M by C'*°(M). It is well-known
that any manifold admits a Riemannian metric g. When there is no possibility of
confusion, we denote the metric g simply by (-, -). To the metric g we can assign
a unique linear connection V which is torsion free and compatible with g, i.e.

ViY — Vy X = [X,Y]

and

X(Y,Z) = (VxY, Z) + (Y,VxZ),

forany X,Y,Z € X(M), where X(M) denotes the set of all smooth vector
fields on M. The associated connection V is called the Levi-Civita connection
and is given explicitly by the Koszul formula

2AVyX,Z) = XY, 2)+Y(Z,X) — Z(X,Y)
_<[X7Y]7Z>_<[X’Z]>Y>_<[Y7Z]’X>7 (1~1)

forany X, Y, Z € X(M).
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Chapter 1 1.1. Connections and curvature

The curvature tensor R of a Riemannian manifold M is a correspondence that
associates to every pair X, Y € X(M) a mapping R(X,Y) : X(M) — X(M)
given by

R(X,Y)Z =VxVyZ -VyVxZ —Vxy|Z,

where V is the Levi-Civita connection of M. Multiplying with g we get a 4-
tensor which, for simplicity, we denote with the same symbol, i.e.

R(X,Y,Z,W) = —(R(X,Y)Z,W).

Let X, Y be two linearly independent tangent vectors at a point z on M. The
sectional curvature K, for the plane spanned by X and Y, is defined by

R(X,Y, X,Y)
KX, Y) = .
&) = RpvE=(x.v)

Suppose that {ey, . .., e, } isalocal orthonormal frame defined on an open neigh-
bourhood of M. Then,

RiC(X, Y) = Z R(Xy €i, }/7 ei)

=1

defines a symmetric 2-tensor, which is called the Ricci tensor. We say that M is
FEinstein, if
Ric = kg,

for some constant k. Taking the trace of the Ricci tensor we obtain the scalar
curvature Sc by

Sc = zm:Ric(ei, e).
i=1
Let f € C*°(M). The gradient V f is defined to be the vector field given by
(Vf, X) =df(X),
for every X € X(M). The Hessian V?f is given by
VF(X,Y) =(VxVLY),
forevery X,Y € X(M), and the Laplacian A f is defined by

Af=> Vfleier).
=1
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Chapter 1 1.1. Connections and curvature

1.1.2. Vector bundles. Often we will need to explore how tensorial quantities
vary along a manifold. The best way to formulate the concept of derivatives of
tensorial quantities is through the theory of vector bundles. Roughly speaking, a
vector bundle is a geometric construction that makes precise the idea of a family
of vector spaces parametrised by a manifold M such that to every point x € M
we attach a vector space £, so that these vector spaces fit together to form another
manifold. The precise definition of a vector bundle is the following.

Definition 1.1.1. Let E/ and M be smooth manifolds and 7 : EE — M a smooth
surjective map. The triple (E,m, M) is a smooth real vector bundle of rank
k, or simply a vector bundle, if for each x € M, the following conditions are
satisfied:

(a) For any point v € M, the set E, = 7 '(x) possesses the structure of a
k-dimensional real vector space. The space E., is called the fiber of E
over the point .

(b) For any point x € M, there exists an open neighbourhood U of x in M
and a diffeomorphism

0:UxRF = 77 H(U),

with the property ¢(y,&) € E,, for any (y,€) € U x R, The map  is
called a local trivialisation of E.

(c) For any point x € U, the map ¢, : R* — E, given by
pa(§) = ()

is a R-linear isomorphism.

The space FE is called the total space of the bundle, M is called its base, and
7 its projection. For simplicity, we usually denote a vector bundle only by E.

Definition 1.1.2. Let E be a vector bundle over a manifold M. A n-dimensional
submanifold ' C E is called subbundle of rank n over M if (F,m|,, M) is
a vector bundle of rank n over M. Here 7, denotes the restriction of the
projectionmap 7w : . — M on F.

Let us now introduce the notion of a section that, roughly speaking, might be
considered as a generalisation of a smooth vector field on the tangent bundle of
a manifold.

17



Chapter 1 1.1. Connections and curvature

Definition 1.1.3. 4 section on a vector bundle (E, 7, M) is a smooth map o :
M — E such that

moo =1,

where [ is the identity map. We often denote the value o(x) simply by o,.

The set of sections of a vector bundle is an infinite-dimensional vector space
under point-wise addition and multiplication by constants, whose zero element
is the zero section. This set is denoted by I'(E). More precisely, ['(E) is a
module over C*°(M). There exists a natural way of differentiation on vector
bundles.

The investigation of geometric properties of vector bundles requires the notion
of the differentiation. Here we shall give the basic facts about metrics and con-
nections associated to them.

Definition 1.1.4. Let E be a vector bundle over M. A linear connection on £
is a map
VP X(M) x T(E) = I'(E),

denoted by

satisfying the following properties:
(a) Forevery XY € X(M) and o € T'(E), it holds
V&.yo=V%o+ Vio.
(b) Forevery f € C*(M), X € X(M) and o € I'(E), it holds
V}EXU = fV¥o.
(c) Forevery X € X(M) and 01,09 € I'(E), it holds
VE(oy + 03) = VEo, + VEos.
(d) Forevery f € C*(M), X € X(M) and o € I'(E), it holds
VE(fo) = (Xflo + fVEo,

18



Chapter 1 1.1. Connections and curvature

The usual directional derivative in the euclidean space R is a connection. Con-
cerning this connection, any constant vector field on the euclidean space R™ is
parallel. Hence, we give the following general definition.

Definition 1.1.5. 4 section o € I'(E) is said to be parallel with respect to the

connection V¥ if
VEs =0,

for any vector field X on M.

Definition 1.1.6. Suppose that M is a smooth manifold and (E,w, M) a vector
bundle over M. Let V™ be a connection of TM and V¥ a connection on E.
For any pair of vector fields X,Y € X(M), the map

Viy :T(E) = T(E)

defined by,

2 ExvFE E

is called the second covariant derivative of o with respect to the directions
X,Y. By coupling the connections V* and V¥, one may define similarly,
the k-th derivative V* of a section o in T'(E).

To each connection, we associate an important operator which measures the non-
commutativity of the second covariant derivative.

Definition 1.1.7. The operator RV : X(M) x X(M) xT'(E) — T'(E), defined
by the formula
RY(X,Y)o = Vi yo — Vi xo0,

Jorany XY € X(M) and o € T'(E), is called the curvature operator of the
connection V.
Now we give the definition of a Riemannian metric on a vector bundle.

Definition 1.1.8. 4 Riemannian metric on the vector bundle (E, 7, M) over
the manifold M is a map

g, T(E) x D(E) — C®(M)

such that its restriction to the fibers is a positive definite inner product. As
usual, we occasionally denote Riemannian metrics by (- , ).
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Chapter 1 1.1. Connections and curvature

It is well-known that any vector bundle admits a Riemannian metric. The proof
uses the partition of unity to glue local Riemannian metrics on each fiber. A
connection V is called compatible with the Riemannian metric if it satisfies the
product rule

Xgp(w,0) = gg(Vxw,0) + gg(w, Vxo),
forany X € X(M) and w,0 € I'(E). A vector bundle equipped with both

these structures is called Riemannian vector bundle endowed with a compatible
linear connection.

The most simple vector bundle over a given manifold M is the trivial vector
bundle M x R*. However, there is a plethora of non-trivial vector bundles. As
a matter of fact, one can use the operations of Linear Algebra to produce new
vector bundles from given ones. Let us briefly see the most important examples
of vector bundles that we will need in this thesis.

Example 1.1.9 (The direct product). Let (E,m, M) and (F, 7, N) be two

vector bundles over the manifolds M and V.

* The direct product £/ ® F' is the vector bundle over the manifold M x N
whose total space the manifold £/ x F' and projection map 7 given by

(o, w) = (m1(0), me(w)) € M x N.

Note that
(E (29 F)(x’y) = Ex X Fy,

forany (z,y) € M x N. Giveno € I'(E) and w € I'(F), the map 0 ® w
given by
(0- ® W)(.T,y) = (0_1‘7("')1/)

is clearly a section of &/ & F'.

« If V¥ is a connection on the bundle E and V¥ a connection on the bundle
F, then the map VE®! given by

Vi (o @w) = (Vio) @w + 0 ® (Viw),

where X € X(M), o0 € I'(F) and w € I'(F), consist a connection of the
product £ ® F'.
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Chapter 1 1.1. Connections and curvature

+ The curvature operator RE®F of the linear connection VZ®¥ is given by
the formula

RPEF(X,Y)o®w = (R"(X,Y)o) ®w + 0 ® (R (X,Y)w),

where RF and R*" are the curvature operators associated with V¥ and V7',
respectively.

* If gr and gr are Riemannian metrics that are compatible with ' and F',
respectively, then

Jeer(01 @ wr, 0y @ W) = gp(01,02) - gr(wr, wa),

where 01,09 € I'(E) and wy,ws € I'(F), forms a Riemannian metric
compatible with the linear connection VF®F

Example 1.1.10 (The Whitney sum). Let (E, 7, M) and (F, 7o, M) be two

vector bundles over the same manifold M.

» The Whitney sum I/ @ F' is the vector bundle over the manifold M whose
total space is the set

E@F={(o,w) € EXF:m(o0)=m(w)} CEXF,
and with projection 7 given by
m(o,w) = m(0) = m(w).

Observe that for any point x € M, we have that (E & F), = E, & F,.
We denote sections of the bundle £ & F by 0 & w, where 0 € ['(E)
and w € I'(F). Note that the total space of the direct sum certainly is not
E ® F. The latter consists of all pairs (o, w) such thato € E, andw € F,
for any (x,y) € M x M, while (0,w) € E® F ifand only if z = y, i.e.
o and w are in fibers over the same point of the base.

« If E and F are endowed with linear connections V¥ and V', respectively,
then the map V@ given by

V(o ®w) = (Vxo) & (Vxw),
is the natural connection of the Whitney sum £ & F'.
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Chapter 1 1.1. Connections and curvature

+ The curvature operator associated with VEP' is given by
RPF(X,Y)o dw = (R*(X,Y)o) & (R"(X,Y)w),

where RY and R*" are the curvature operators associated with V¥ and V',
respectively.

* If g is a Riemannian metric of £ and g is a Riemannian metric of F’,
then the map grqp given by

9rar((01,w1), (02,w2)) = gr(01,02) + gr(wr, w2)
is a Riemannian metric of the vector bundle £ @ F'.

« Ifin addition V¥ is a connection compatible with gz and V" is compatible
with gp, then VF® is compatible with JEGF-

Example 1.1.11 (The dual bundle). Let (£, 7, M) be a vector bundle of rank

k over a manifold M endowed with a linear connection V.

 The dual bundle E* is the vector bundle over M with total space
E* — UJZEME; 5
and with projection the map 7 given by

™ (x,0) = x.

+ A natural connection VZ" on E* is given by
(VX L)o == X{L(0)} — L(VX0),
forany X € X(M), L € I'(E*) and 0 € '(E).

+ Suppose that £ is endowed with a metric g5 that is compatible with V¥
and ¢ is a Riemannian metric on M. Define gg- : B X £ — R given by

k
gE* (L:m Tm) = ZLm(Ui) ) Tr<0i)7

=1

where {071, ..., 0} is a local orthonormal frame of £, with respect to gg.
One can easily check that g gives rise to a Riemannian metric on the dual
bundle that is compatible with V.
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Chapter 1 1.1. Connections and curvature

Example 1.1.12 (The homomorphism bundle). Let (£, 7, M) be a vector bun-
dle of rank k and (V, o, M) a vector bundle of rank [ over the manifold M
endowed with linear connections V¥ and V"', respectively.

* The homomorphism bundle Hom(E"; V'), of r-copies E” = E X --- x E
of F to V/, is the vector bundle with total space
Hom(E"; V) = Uzepr Hom(E”; RY.
The projection map is given by

m(z,0) = .

* A natural connection VH°™ on the homomorphism bundle is given by
(VT (o, ..., 0,) = Vi T(oy,...,0,)}
~T(V&oy,...,0.) = =T(oq,...,VE0,),
forany X € X(M),T € I'(Hom(E",V)) and 04, ...,0, € ['(E).

* Let gp and gy be Riemannian metrics which are compatible with the con-
nections VZ and VV. Then a natural metric on Hom that is compatible
with VH°™ is given by

k
giom(Te, Po) = Y gv(T(os,,...,03,), Poy,,...,03,)),

i1 peein=1
where {071, ..., 0} is an orthonormal basis at = with respect to gg.

Example 1.1.13 (The pull-back bundle). Let M and N be two manifolds, let
(E, 7, N) be a vector bundle of rank k over N and f : M — N a smooth map.
The map f induces a new vector bundle of rank k over M.

* Take as total space the set
FE={(z,§):x€Mand € Ey},
and as projection the map 7y : f*E — M given by
r(x, &) = x.

The space f*E contains all sections of £ with base point at f(M).
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Chapter 1 1.1. Connections and curvature

+ Let VM and V¥ be linear connections on 7'M and F, respectively. Let
{¢1, ..., ¢r} be aframe field of F in a neighborhood of f(z) € N. Then,
any sectiono € I ( f *E) can be written in the form

( Za Yoo f)(z ) ZU )(@a o f)(),

where 0%, a € {1,...,k}, are the components of o with respect to the
given frame field. These functions are defined in a neighborhood of M
and they are smooth. Define now,

k

k
Vio = Z(X0a>90a of+ ZUQ(VC%"(X)S%) o f,

a=1 a=1

for any X € X(M). One can easily verify that the above definition of the
pull-back connection is independent of the choice of the frame field.

« The curvature operator R/ of the pull-back bundle is given by
RI(X,Y)o = RP(df(X),df (Y))o,
forany X, Y € T,M and o € T'(f*E).
* In the case ¥ = T'N, the following formula holds
VEdf(Y) = V] df(X) = df (X, Y]),
forany X,Y € X(M).

Example 1.1.14 (Time dependent metric on vector bundles). Let / be an open
interval of R. Suppose that {g; };cr, is a smooth family of Riemannian metrics
on a manifold M. More precisely, for any (z,t) € M x I we have an inner
product g, 4 on 13 M. We can regard each g; as a metric g acting on the spatial
tangent bundle

H={veT(M xR):dm(v) =0},

where the map 75 is the projection on the second component. Observe that each
gt is a metric on H since H ;) is isomorphic to T, M via the map 7. We can
extend g into a metric on M x I, for which we have the orthogonal decomposition

T(M x I) = H @RI,
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Chapter 1 1.2. Kaéhlerian manifolds

Since H is a subbundle of T'(M x I), any section of H is a section of T'(M x I).
Sections of H are called spatial vector fields. There is a natural connection V on
M x I. Namely, define V by

VXy = V‘QY, Vxé)t = O, Vatat =0 and VQtX == [8t,X], (1.2)

forany X,Y € I'(H), where V¥ denotes the Levi-Civita connection of g;. It is
easy to see that V is compatible with g, i.e.

forany X € X(M x R),and Y,Z € I'(H). Moreover, the connection V is
spatially torsion free, i.e

VxY -VyZ=[X,Y],
forany X,Y € I'(H).

Example 1.1.15. We complete this subsection with an important example, where
the situation we discussed above occurs. Let N be a manifold equipped with a
Riemannian metric gn. Suppose that /' : M x I — N is a family of immersions.
Then, F* gy defines a time-dependent family of Riemannian metrics on M. If
we equip M x I with the above natural connection V, for any X € X(M), we
get

VET™NAR(X) — VY TNAF(0,) = dF([0;, X]) = dF (V5 X).

1.2 Kihlerian manifolds

Let M be a 2m-dimensional manifold endowed with a Riemannian metric g and
associated connection Levi-Civita V. An almost complex structure on M is a
tensor field J of type (1, 1), satisfying

J2=JoJ =1

where [ stands for the identity bundle map on 7'M, i.e. for any x € M the map
I, : T,M — T,M is the identity. The pair (M, J) is called an almost complex
manifold. Each tangent space 1), M of an almost complex manifold has a basis
of the form {ey, Jeq, ..., en, Je, }. Such a base is called J-base. It turns out
that any such two bases differ by an isomorphism with positive determinant. This
means that any almost complex manifold is orientable.
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Chapter 1 1.2. Kaéhlerian manifolds

Definition 1.2.1. The triple (M, g, J) is called a Kihler manifold if:

(a) The almost complex structure J is an isometry with respect to g, that is
g(JX,JY) = g(X,Y),
Sforany X,Y € X(M).
(b) The almost complex structure J is parallel with respect to V, that is
(VxJ)Y =VxJY —JVxY =0,
SJorany XY € X(M).

It turns out that on a Kéhler manifold the 2-form w, given by
w(X,Y)=g(JX,Y),

forany X,Y € X(M), is closed. We call w the associated Kdhler form on M.
The Ricci form R is defined by

R(X,Y)=Ric(JX,Y).
Theorem 1.2.2 (Kihler identities). Let (M, g, J) be a Kihler manifold. Then:

(a) The curvature operator R satisfies the identities
R(X,Y)JZ =JR(X,Y)Z and R(JX,JY)Z = R(X,Y)Z,
forany X,Y, 7 € X(M).
(b) The Ricci tensor Ric satisfies the relation

1 m
Ric(X,Y) = Ric(JX, JY) = == Y " R(JX,Y, e, Jey),
k=1

l\D

where X, Y € X(M)and{es, ..., ean} is orthonormal frame with respect
to the metric g.

(¢) The Ricci form R is given by the formula
R(X,Y) =Ric(JX,Y) = Y R(X,Y,ex, Jey),
k=1

where XY € X(M)and{es, ..., e} is orthonormal frame with respect
to the metric g.
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Chapter 1 1.3. Immersions and submersions

A 2-plane is said to be complex if it is invariant by the complex structure J. The
restriction of the sectional curvature to a complex plane is called the holomorphic
sectional curvature and will be denoted by Hol. That is

Hol(X) = K(X, JX),
for any non-zero vector field X € X(M).

Theorem 1.2.3. Let (M, g,w) be a Kéhler manifold with constant holomorphic
sectional curvature o. Then,

RIX.Y.ZW) = Z(g(X.2) g(Y, W) = g(X. W) g(V. 2)
+w(X, Z2)w(Y, W) —w(X,W)w(Y, Z)
12u(X,Y)w(Z, W)),

Sforany X,Y, Z W € X(M).

1.3 Immersions and submersions

1.3.1 The second fundamental form. Let f: M — N be an immersion, i.e. f
smooth whose differential df,, is injective for any x in M. If N has a Riemannian
metric gy, then the immersion f induces a Riemannian metric on M given by

(f*gn)(X.Y) = gn(df (X), df (Y)),

forall X,Y € X(M). When M is already equipped with a Riemannian metric
g, then the map f is called an isometric immersion if the induced metric f*gy
coincides with the metric ¢g. In this case, we say that f(M) is an immersed
submanifold of N. Atany x € M, the ambient space T, N splits as

Ty N = dfo(T.M) & Ny M, (1.3)

where Ny, M is the orthogonal complement of df, (7, M) with respect to the

metric gn. The space
NfM = UmeMNf(x)M;

is a vector bundle over M, it is called the normal bundle of f with rank equal to
dim N —dim M. The restriction of g on Ny M gives a Riemannian metric on the
normal bundle. Then the splitting given in equation (1.3) becomes orthogonal.
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Chapter 1 1.3. Immersions and submersions

From now on let us assume that f : M — N is an isometric immersion, denote
by ¢ the Riemannian metric on M, by V the Levi-Civita connection associated
with g, and by gy is the Riemannian metric on N. Any section V' € I'(f*T'N)
can be uniquely decomposed in a unique way as

V=v"I4+Vvt

where {-} T stands for the orthogonal projection on the tangent bundle and {-}*
denotes the orthogonal projection on the normal bundle of the submanifold. Then,
the natural connection on the normal bundle is given by

V&= (VETNO
and its associated curvature tensor R' is
RY(X,Y)¢ = VxVyé — VyVxé — Vixyié,

where X, Y € X(M) and £ € NyM. Multiplying with the Riemannian metric
on the normal bundle, we can form from R+ a C°°( M )-valued tensor which, by
abuse of notation, we denote again by R, i.e. we set

RH(X,Y, &) = —(RH(X,Y)8, 1),
forany X,Y € X(M)and {,n € NyM. It is a well-known fact in submanifold
geometry that, for any X, Y € X(M), we have the decomposition
VTN (Y) = df (VxY) + A(X,Y),

where A is the second fundamental form of f. Note that A is a symmetric tensor
which takes values on the normal bundle of the submanifold. If ¢ is a normal
vector, then the symmetric 2-tensor A¢ given by

ANXY) = (A(X,Y),€),

for any tangent vector fields X, Y, is called the shape operator with respect to
the direction . The Weingarten operator A, associated with & is defined by

(AeX,Y) = AS(X,Y) = (A(X,Y),9),

forany X,Y € X(M). Finally, the trace H of A with respect to the metric g, is
called the mean curvature vector field. A submanifold with zero mean curvature
is called minimal.

The curvature tensor R of M, the curvature tensor R of the manifold N , and
the normal curvature R are related to the second fundamental form through the
Gauss-Codazzi-Ricci equations:
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(a) Gauss equation:

R(X,Y, Z,W)=R(df(X),df (Y),df (Z),df (W))
HA(X, Z), A(Y,W)) — (A(Y, Z), A(X, W), (1.4)

(b) Codazzi equation:
(VXA)Y, Z) = (V$A) (X, Z2) = {R(df(X), df (V))df(2)} ", (1.5)
(c) Ricci equation:
RH(X,Y,&,n) = R(df(X),df(Y),€,n)

+ Xm: (Aﬁ(X’ €k)An(Y, €k> - (AW(X’ €k)A£(K ek)), (16)

where X, Y, Z, W € X(M),&,n € NM and {ey, ..., e,} is a local orthonor-
mal frame field on M with respect to g.

1.3.2 Riemannian submersions. Let M/ and N be two smooth manifolds with
dimensions
m=dmM >dimN = n.

A smooth and surjective map f : M — N is called submersion if, for any
x € M, the differential of f has constant rank n. According to the Rank Theorem
[20, Theorem 4.12], for each xy € M there exist charts (U, ) around xo and
(V, %)) around f(z0) in which f has a coordinate representation F' = 1)o fop™?
of the form

F(zy,...,T0Tps1 - Tm) = (1, ..., Ty).

In particular, forany p € N, each fiber F, = f~(p) is an (m — n)-dimensional
submanifold of M. Let us suppose in the sequel that the manifolds M and NV
are equipped with Riemannian metrics. Denote by V = ker(df) the kernel of the
differential of f and by H its orthogonal complement. The space ) is called the
vertical bundle and ‘H is called the horizontal bundle of the submersion. The
restriction of the Riemannian metric of M gives rise to Riemannian metrics on
the vertical and horizontal bundle of the submersion. Now we may decompose
the tangent bundle of M in the form

TM =Y ®H.
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Therefore any vector field X € X(M) can be uniquely decomposed in the form
X =XV+Xx"

where {-}V denotes the orthogonal projection on the vertical bundle V and {-}*
the orthogonal projection on the horizontal bundle . The vertical bundle V is
integrable. As a matter of fact, )/, is the tangent space of the fiber Fy,) C M
at z € M. However, in general, the horizontal bundle H of the submersion is
not integrable. There are six interesting categories of vector fields on M and V.
Namely:

(A) A vector field X € X(M) is called vertical if X € T'(V).

(B) A vector field X € X(M) is called horizontal if X € T'(H).

(C) A vector field X € X(M) is called projectable if

dfa:(Xz) = dfy(Xy)7

for any x, y along a fiber 7, C M. This means that df (X) is a well-defined
smooth vector field on V.

(D) A vector field X € X(M) is called basic if it is horizontal and projectable.

(E) The vector fields X € X(M) and Y € X(N) are called f-related if

forany x € M.

(F) Using the Rank Theorem [20], one can show that for any X € X(NN), there

exist a unique f-related with X vector field X € T'(), which we call the
horizontal lift of X.

Lemma 1.3.1. Let V' € I'(V) be a vertical vector field, X,Y € X(N) and

X ) Y € ['(H) be their horizontal lifts, respectively. Then, the following facts
hold:

[V, X] eT(V) and [X,Y]"=[X,Y]€T(H),

where [ X, Y| is the horizontal lift of [ X,Y].
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Proof. Consider h € C*°(N) and set ¢ = X (h). Since V' is a vertical vector
field, we have that df (V') = 0. Moreover, for any fixed x € M, we obtain

df.([V,X])(h) = [V, X] (ho f) = Vi(X(ho f)) = X,(V(ho f))
Va(X(R) o f) = V(g o f) = dgsey (df (V)
0.

Furthermore,

This completes the proof. 0

Let us restrict ourselves to a special class of smooth maps between Riemannian
manifolds. A submersion f is called Riemannian submersion if, forany x € M,
the differential

dfy : H, C T, M — Tf(x)N
is an isometry.

Theorem 1.3.2 (O’Neill’s formulas [23]). Let f : (M, grr, VM) — (N, gn, VV)
be a Riemannian submersion.

(@) If X,Y € X(N), the following formula holds

VMY = VY + 1[X,Y]".

(b) If X, Y € X(N) is a local orthonormal frame, then
S o S o1V
Kn(X,Y) = Kn(X,Y) + 3| [X, Y]],
where Ky and K are the sectional curvatures of M and N, respectively.
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Proof. Let V € I'(V) be a vertical vector field, Z € X(N) and Z € X(M) be
its horizontal lift.

(a) Since by assumption f is a Riemannian submersion, we have
Xgu(Y,Z) = X(gn(df(Y),df(Z)) o ) = X(gn (Y, Z) o f)
Xyawan (Y, Z).

Moreover, by Lemma 1.3.1, we get that

—_——

a([X.Y].Z) = gn(df([X.Y]).df(2)) o f = gn(df ([X,Y]). Z) o f
= gN([X7Y]7Z) Of'
By Koszul’s formula (1.1), we obtain that
o (VY. Z) = gn (VY. Z) o f = g (VY. Z) o /. (17)
Again by Koszul’s formula, Lemma 1.3.1 and
V(g (X,Y)) = V(gn(X,Y) o f) = df (V) (gn(X,Y)) = 0,
it follows that
29u (VY V) = gur ([X, Y], V). (18)
The desired result follows immediately from (1.7) and (1.8).
(b) From part (a), we see that
200 (VY V.Y) = =2 (V. VYY) = —gu (V. [X, YT).

Moreover,

VUMYX = VY (UNX + L[V, X]Y) = VAVIX + L[X, Vi x]”
= VYIS

and

g (VIVYXY) = g (VYVEX,Y) — Lon (VY [X, V]V, Y)
= gn (VYVYX,Y) + Lou([X,Y]", VYY)
= gn(VAVIX,Y) + 2ou ([X, 7], VY +1[X, 7]
= gn (VAVYX,Y) + 1| [X, Y]
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Furthermore,

g (VEVYXY) = gu (VEVYX,Y) = gn (VY VAX,Y),
and
= gv (VX Y) = 3| vV

M
[X.Y]Y

As a matter of fact
Ru(X.V,X.Y) = Ry(X.Y. X, V) + 3| [X.7]"]",

and this completes the proof. 0

1.3.3. The complex projective space. We will now present an important example
of'a complex manifold. Let

([jm“:{z:(zo,...,zm):zk:xk—i—iykECforallk:O,...,m}

be the (m + 1)-dimensional complex euclidean space. We say that two points
z,w € C™ — {0} are equivalent, and we write 2z ~ w, if there exists a com-
plex number )\ such that z = Aw. Namely, two non-zero points of C"™*! are
equivalent if and only if they lie on the same complex line. We denote by [z] the
equivalence class of a point z € C™ ™! — {0}. The set of all such classes is called
the complex projective space, and it is denoted by CP™.

Theorem 1.3.3. Let CP™ be the complex projective space. Then the following
Statements hold:
(a) CP™ can be equipped with a natural smooth structure of a m-dimensional

complex manifold.

(b) CP' is diffeomorphic to the sphere S?; but CP™ is not diffeomorphic to
S?™ for dimensions m > 1.

(c) CP™ carries a Kdhler-Einstein metric with positive constant holomor-
phic curvature.
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Proof. The standard hermitian product (-, -) of C™"! can be written in the form
(Z7w) - Zow_0+ +ZmM7

where z = (29,...,2y,) and w = (wy, ..., w,,). Let S*™T1 C C™*! be the
unit sphere. Then,

St =1z e C™M : (2,2) = 1}

(a) Define the canonical projection map 7 : S*" ! — CP™ givenby 7(z) = [2],
for any z € S?™F1,

(1) Topology: We equip CP™ with the induced by 7 : S*™*! — CP™ quotient
topology, i.e. we say that a set U C CP™ is open if and only if 7! (U) is
open in S?*1. Since the quotient map is open and S>*"*! is second count-
able, a classical result from point set topology ensures that the quotient space
is also second countable; see for example [37, Corollary 7.10]. Moreover,
note that CP™ is compact. It remains to show that the quotient topology is
Hausdorff. Indeed, let [z] and [w] be two distinct points in CP™. Then,

6 =7"Y2]) = {eiez € St 9 e 0,27}

and ‘
l =7 ([w]) = {"’w e S : 0 € [0,27]}

are two disjoint great circles in the unit sphere S>™ 1. Let
r=min {|e"”z — e®w]| : (61,0,) € [0,27] x [0,27] }.

In some sense r measures the distance between the circles ¢; and ¢5. Since
0, 2] x [0, 27] is compact and £; N ¢y = &, it follows that » > 0. Consider
the open disjoint subsets of the sphere S>”*! given by

Up={peS™":|e”p—ez| <r/2 forall (61,0,) € [0,27]x[0, 2]}
and
Upy={p e S*" : |e”p—ew| < r/2 forall (61,0,) € [0,27]x[0, 2] }.

Observe that for any 6 € [0, 271 we have that ¢*’U; = U, and €U, = Us.
Hence, 7! (w(U,)) = Uy and 7 (7 (U,)) = U,. Consequently, 7w(U;) and
7(Us) are open disjoint subsets in CP"" and so CP"™ is Hausdorff.
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(2) Smooth structure: Consider the open covering of CP"™ given by
Uj = {[Zo, I B R R S DI Zm] e CP™ : Zj 7& O},

where j € {0,...,m}, and define the family {(Uj, ¢;)}ic(1,....m}, Where
the maps ¢; : U; — C™ are given by

(pj([Zo, ce 7Zm]) = (Zo/Zj, .. .,ijl/Zj,Zj+1/Zj, .. .,Zm/Zj).

Clearly each pair (Uj;, ;) forms a chart on CP™. Moreover, the transition
maps
pioer'  er(UnNU;) = 93 (U N T;),

are given by

2 090121<217"‘7zm)
= (Zl/Zj,...,Zifl/Zj,1/2]',2“,1/2']',...,ijl/Zj,Zj+1/Zj,...,Zm/Zj),

and are biholomorphic. Thus CP™ can be equipped with a smooth structure
of a complex manifold with complex dimension m.

(b) We will show now that CPP" is diffeomorphic to S?. To achieve this recall that
the differentiable structure of S? is described by the charts (S* — {(0,0,1)}, v)
and (S* — {(0,0, —1)},%») given by

T1 + 1T
1-[)33

T1 + 12

and wg(flfl,.fg,xg): 1—|—J} .
3

¢1($179€2,I3) =

For CP' we consider the charts (U1, 6,) and (U, 6,) given by
U, = {[zo,zl] € CP' : 2, # O} & Uy = {[zo,zl] € CP': 2 # O}

and

91([2’0721}) = 21/20 & 92([20721]) = ZO/Z1~
It turns out that
6’2091_1 :¢2077/)1_1.

Thus the diffeomorphisms ;o #; and 1, ' o 6, agree on the intersection of
their domains of definition, and together they define a global diffeomorphism
of CP* onto S2. For a proof that CP™ is not diffeomorphic to S>™ we refer to
[46, Proposition 5.1.3].
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(c) With the above differentiable structure, the map 7 : S?"*! — CP™ becomes
a smooth submersion. We denote by V and H the vertical and the horizontal
bundles of 7, respectively. Fix now an arbitrary point p = [z]. Then the fiber

F,=7"(p) = {2, 0< 0 < 21}

is great circle of S?™!. Let us now define the 1-parameter family of smooth
maps { fo}oepon € C®(S*™T1;S?™ 1) given by fy = €I, where I is the
identity map on S*™*1. Note that:

(M

» The vectors z and &, = 4z are orthogonal with respect to the euclidean
inner product of C"™**. Hence, for any fixed 2 € S?™*!, the curve

[0,27] 3 0 — fo(z) € S*™*!
is a great circle passing through z with unit tangent the vector 2z. Therefore,
V, = span{¢, = iz}.
¢ is called the Hopf vector field and its integral curves are great circles.
* Let z,w € F, and € [0, 27] such that w = fy(z) = 2. Then,
dfs(V) = eV € H,,

for any V' € H,. Consequently, dfy : H, — H,, is a linear isometry.
Moreover, from the identity 7 o fy = 7, we deduce that

dr, (V) = dr(e?V).

« Let X be a tangent vector of CP™ at the point p and w = €?z two points
on the fiber /. Then we have that

X, =eX,. (1.9)

The Riemannian metric: Let z € S*™ %1 Let X, Y, be tangent vectors of
the complex projective space CPP"* at p. Define the metric 2-tensor grg on
CP™ given by o

gFS(Xpay;?) = <Xw7Yw>7 (110)

for any w € F,. From (1.9) it follows that the metric grs does not depend
on the choice of the point w € F,. The Riemannian metric gpg is called
the Fubini-Study metric of the complex projective space. We conclude that
with respect to these Riemannian metrics the projection 7 : S***1 — CP™
becomes a Riemannian submersion.
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(2) The complex structure: Let X € X(CP™). Recall from Lemma 1.3.1 that
(€, X] € T'(V). Since the integral curves of £ are geodesics we get,

V§2m+1€ _ O, (V§2m+1)z)v — 0= (Vi;mHS)V and [6, )?] =0.

(1.11)
* Define now the (1, 1)-tensor field J on CP™ given by
JX = dn(VE" T X) = dn(VE"€). (1.12)
From the last identity and (1.11), we see that

JX =V e =vETX. (1.13)

According to (1.11), (1.12), (1.13), we deduce that

2m+1" ", 2m-41 2m+41 ~
JX =dn(VE"IX) =dn(VET VLT €) = dn(R(E, X)E)
= —X,

where R stands for the curvature tensor of the sphere. Hence, J is an
almost complex structure.

* Let{eq,...,e9,} be alocal orthonormal frame field on CP™. Since 7
is a Riemannian submersion, we have

grs(Jei,e;) = (Veei, €5) = §(€i,€5) — (65, Ve€;) = —grs(ei, Jej),
forany i,j € {1,...,2m}. This implies that
gFS(JXv JY) = _gFS(Xa JQY) - QFS(X»Y>»

forany X,Y € X(CP™). Therefore, .J is an isometry.

« Let V" be the Levi-Civita connection of the Fubini-Study metric.
Then, taking into account Theorem 1.3.2(a) and (1.13), we obtain

(VE )Y =VvE Ty - avETY
2m+1 T 2m+1 2m+1
=dr(VE"JY) —dn(VETVETTY)
= dr(VEVETTY —vETTVETTY)
= dr(R(X,€),Y))
= 0.
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Hence J is parallel and gpg is a Kéhler metric.

(3) Curvature: Let us now compute the sectional curvature, the holomorphic,
and the Ricci curvature of the complex projective space. We have:

XY = (VETTY) - (vETTX)”
= (V™Y ) — (VE"X )¢

<V§~f’" X)e—(VE"e Y )e

(JY > — (JX,Y)¢

gr <JYX>—ng<JX Y)

= 2gr5(JY, X).

* According to Proposition 1.3.2(b), the sectional curvature K of CP™
satisfies
K(X,Y)=1+3grs(JX,Y)?

where { X, Y'} is an arbitrary local orthonormal frame field with respect
to the Fubini-Study metric grg. As a matter of fact (CP™, gpg) is a
symmetric space. If m = 1, then K = 4. On the other hand, if m > 1,
then the sectional curvature of CIP™ is non-constant and satisfy

1<K <4,

Let us remind here that for m > 1 the complex projective space CP™
is not diffeomorphic with the sphere S?™.

* The Ricci curvature Ric of the complex projective space is
Ric = 2(m + 1)grs.

Therefore, CP™ is Kihler-Einstein manifold.

 If X is a unit vector field on the complex projective space, then
Hol(X) = K(X,JX) = 4.

Hence the Fubini-Study metric grg has constant holomorphic curvature
equal to 4.

This completes the proof of the theorem. U
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1.4 Index notation

In the following chapters of the thesis, we will perform computations regarding
tensorial quantities with respect to orthonormal frames. Let {e;,...,e,,} be a
local tangent frame field on a m-dimensional Riemannian manifold M. If S :
TM — TM is a(1,1)-tensor then we set

SZ' = S(ei),

foranyi € {1,...,m}. If S : TM xTM — C*(R) isabilinear form, then we
may represent the coefficients of its matrix with respect to the basis {e1, ..., e, }
by S;;, that is we set

Sij = S(ei, ej).

On the other hand, if S : TM x --- x TM — C*°(R) is an (r, 0)-tensor, then
its coefficients with respect to the frame {ey, . . ., €,, } will be denoted by S;, ;.,
that is

Si :S<€i1>-'~7€ir)-

Suppose now that /' : M — N is an isometric immersion, where here M
is an m-dimensional and NV is an n-dimensional Riemannian manifold. Let
{e1,...,em} be alocal tangent frame on M and let {&,,11, .. .,&,} be a local
frame of the normal bundle N M. We will use Latin indices to denote compo-
nents of tensorial quantities on the tangent bundle 7'M and Greek indices for
components on the normal bundle of the submanifold. Then the set of vector
fields

1--~i7‘

{e1, - vem;&mity - Ent

is called adapted frame along the submanifold. According to the aforementioned
setup, we decide to use the following notation throughout this thesis:

Fy=dF(e;), Aij = Ales, €5), h?j = (Aij,6a) and H® = (H,&,).

Moreover,

Eijsl - E(FH ‘Fjj?FSrZ?Z) and éljaﬂ = E(E’ FJ7§Q7§B>
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CHAPTER

SINGULAR VALUE DECOMPOSITION

In this chapter we discuss a factorisation of the differential of a smooth map which
generalises the eigendecomposition of a symmetric bilinear form.

2.1 Algebraic facts

Let (M, gar) and (N, gn) be smooth Riemannian manifolds of dimensions m
and n, respectively, and f : M — N a smooth map. Consider the pull-back
tensor S given by

S(X,Y) = gn (df (X),df (Y)),
forany X,Y € X(M). Observe that S is non-negative definite and symmetric.
Hence, we can diagonalise S with respect to g,;. More precisely, at a fixed point
x € M, there exists an orthonormal basis {«, ..., a,,} of T,, M, with respect

to gy, such that
S(Oé,’, Oéj) = /\1251];

forany i,j € {1,...,m}. The eigenvalues are arranged such that
A< <A
The numbers 0 < A\; < --- < )\, are called the singular values of df atx € M.

Let now r = rank(df,) < min{m,n}. At f(x) € N consider the orthonormal
basis {51, .., Bnr; Buri1, - - -, Bn ), With respect to g, such that

df(az) = Aiﬁn—m—l—i’

forany ¢ € {m — r + 1,...,m}. This process is known as the singular value
decomposition of df .
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2.2 Symplectomorphisms

We will define in this section the notion of a symplectomorphism and will show
that such maps form an infinite group. Let start by recalling some definitions.
Let QF(M) be the space of differentiable k-forms on M. If X is a vector field
on M, then

ix : QF(M) — QF1(M)

is the map given by
(ixw)(Xl, .. ,Xk_l) = W(X, Xl, c. ,Xk_l),

for any vector fields X7, ..., X;_;. The map ¢x is called the interior product.
Another common notation for the interior product is X Jw. According to Cartan’s
formula, we have

Lx =dix +ixd,

where L x is the Lie derivative and d the exterior derivative.

A symplectic form w on a m-dimensional manifold M is non-degenerate closed
2-form. Non-degenerate means that the mapping given by

TM> X —ixweT"M,

is an isomorphism. The requirement that w is non-degenerate forces M to be
even dimensional and oriented. In this case the pair (M, w) is called a symplectic
manifold.

One can easily verify that any Kdhler manifold is a symplectic manifold. The
classical example of a symplectic manifold is the euclidean space R*™ with
Cartesian coordinates (1, Y1, . . ., Tm, Ym ) and symplectic form

=1

The first important theorem in symplectic geometry is due to Darboux, which
says that locally all symplectic manifolds look like (R*™, wy). More precisely,
the following result hold:

Theorem 2.2.1. Let (M, w) be a 2m-dimensional symplectic smooth manifold.
For each point x € M, there is a local chart (U,p) where U is an open
neigborhood of x, and a diffeomorphism ¢ : U — R*™ such that o*wy = w|y,
where wy is the standard symplectic form of R*™ given in (2.1).
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Therefore there are no symplectic local invariants. In particular, all symplectic
invariant are of a global nature.

Definition 2.2.2. Let (M,w) be a symplectic manifold. A smooth map | :
(M,w) — (M,w) is called a symplectomorphism if and only if f*w = w.

The set of all symplectomorphisms form a group with the law of composition of
mappings. We denote the symplectomorphism group by Sympl(M, w). It turns
out that any smooth function with compact support on (M, w) gives rise to a
symplectomorphism. Let u : M — IR be a smooth function and X the vector
field defined uniquely by the equation

ixw = du.

The vector field X is called the Hamiltonian vector field associated with w.
Suppose now that either © has compact support or, more generally, that X" is
complete. Denote by ¢ : M x R — M the flow which is generated by the
vector field X, i.e. let © be the solution of the system

APz, (Or) = Xop(a,t),
o(z,0) =1,
forany x € M, where [ : M — M is the identity map. For each x € M, the

curve
t— p(x,t)

is an integral curve of X passing through the point = and, for each fixed ¢t € R,
the map

r = @) = p(,t)
is a diffeomorphism. We claim that the 1-parameter family of diffeomorphisms
wy : M — M is a symplectomorphism. Indeed, from Cartan’s formula we get

Lxw=dixw+ixdw = d(du) = 0.
Fix now two (time-independent) vector fields V, W € X(M). Then,
A AL

O{piw(V, W)} = li

i (P3w — @)(dpn(V), dipi (W)
= (Lxw)(dpe(V), dpi(W))
= 0.
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Thus we have shown the following result:

Theorem 2.2.3. The symplectomorphism group of a symplectic manifold is
infinite.

Suppose now that (M, g, J,w) is a Kéhler manifold and let f : M — M be a
symplectomorphism. Then, we can easily see that

df* Jdf = J, (2.2)

where df* is the adjoint operator of df with respect to the metric g. Define the
bundle map F, given by

E = df(df*df)~V2. (2.3)
Since for any x € M the differential df,, is an isomorphism, it follows that df *df

is a positive definite self-adjoint automorphism of 7'M and the square root of
df*df is well defined.

Lemma 2.2.4. Let f : M — M be a symplectic map. Then the following facts
hold:

(@) Themap E : M — M is an isometry. Equivalently, F satisfies EE* = I.
(b) The map E : M — M is a symplectic isometry. Equivalently, F satisfies
E*JE = J.
Proof. (a) We compute
EE" = df(df*df)™"*(df (df*df)~"/*)"

= df (df*df) =" (dfdf) " df*

= df(df*df) " df* = dfdf ' (df*) " df*

=TI
(b) We will show at first that

(= J(df*df)~"/2))* = df*df.
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Indeed! Using the symplectic condition (2.2), we have that

(—J(df*df)=20)% = (J(df*df)~2T) (T (df*df) /2 T)
= J(df*df)" V2R (dfrdf) V2
= —J(df*df)"VA(dfdf) VAT = —J(df*df) T
= —df*de(df*df)*ldf*de = —df*JQdf

df*df.
Since both (df*df)'/? and —.J (df*df)~'/2.J are positive definite, it follows that
—J(df*df)=2 T = (df*df)". 24)

Using (2.2) and (2.4), we obtain that
E*JE = EYJE = E7Ydf*)" ' J(df) ' E = (df*E)"'J(df)'E
= (df*df(df*df)="/*)"" J(df) = df (dfdf) ="/
= (df*df)~""*J(df*df) "2
= J(df*df)"/>(df*df) '/
= J.

Hence E is a symplectic isometry and this completes the proof. 0

Let {aq, ..., a9, } be an orthonormal basis of T,,M that diagonalises df*df.
Then df*df is the positive definite and it has a matrix representation of the form

2 o0 ... 0
X o0

df*df = oo .
0 0 ... A,

in terms of the singular values of df,. Then
(df*df)(cu) = Moy and  (df*df)"* (i) = N,
From the last identity we deduce that
ai = Ni(dfdf) 2 (ay).

Therefore,

df (i) = Ndf (df*df) (i) = NE(y).
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Chapter 2 2.2. Symplectomorphisms

Consequently, df has a matrix representation of the form

A0 .0
0 X ... O
af=1{. . . :
0 0 ... Aoy

withrespect to the basis {1, . . ., aop, f and {1 = E(v), ..., fam = E(com)}.
Lemma 2.2.5. The following formula holds

(AiN; — Dg(Jay, ) =0,
foranyi,j €{1,...,2m}.

Proof. By the symplectic condition and Lemma 2.2.4, we have

9(Jas, ) = w(ag, ;) = frfw(a, a;) = g(Jdf (), df (o))
= \NiNjg(JE(i), E(ay)) = Midjg(EJ (i), E(a))
= \\ig(Jay, o).

This completes the proof. 0

Lemma 2.2.6. Let f : M — M be a symplectomorphism, x an arbitrary point
in M and {ay,...,an}, {P1,. .., Bm} orthonormal bases of the singular de-
composition of df .. Then, the following facts hold:

(a) If X is a singular value of df at x € M, then 1/ is also a singular value.
Hence, the singular values can be split into pairs whose product is 1.
(b) If V() denotes the eigenspace associated to the singular value )\, then
dimV(\) =dim V(1/A).

Moreover, the restriction of J on the eigenspace V (\) gives rise to an
isometry between the eigenspaces V(\) and V (1/\).

(¢) The tangent space T, M splits as the direct sum
T.M=V(0)™aVAN)"aV(1/AM)™@- - dV(A)™ BV (1/A)™,

where the singular values are in ascending order and the superscripts
mo > 0and m; > 0, j = {1,...,s}, denotes the dimension of each
corresponding eigenspace.
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Chapter 2 2.2. Symplectomorphisms

(d) Let us rearrange the order of the vectors of the frame {a, ..., a,} to
become compatible with the decomposition given in part (c). Then, the
complex structure J has the following representation

0 -1 0

1 0 ... 0
J=1: = .. . (2.5)

0 0 -1

0 1 0
Proof. (a) Let{ay, ..., ag,} be the basis of the singular decomposition. Fix an
index ¢ € {1,...,2m}. Then, since Jo; is a unit vector, there exists an index

j € {1,...,2m} such that

g<Jai7 aj) 7£ 0.
By Lemma 2.2.5, it follows that \; = 1/\,.

(b) The statement is trivial if A = 1. So let us suppose from now on that A # 1.
Furthermore, assume that

dimV(A) =k and dimV(1/)\) =1
Let {c,, ..., } be a frame that spans V' (\). Then,

Aiy = =X, = A,

11

We claim now that the vectors {Jav,, ..., Ja;, } are orthonormal and belong to
V(1/A). Indeed! From Lemma 2.2.5, it follows that if A\; and \; are singular
values such that \;\; # 1, then

g(Jau, o) = 0.

In other words, the vector Jq; is orthogonal to each singular vector corresponding
to a singular value not equal to 1/);. But

T,M =V(1/\) @V,

where V' is the orthogonal complement of V' (1/);). Because Ja; is orthogonal
to V, it follows that Jo; € V(1/);). Since J is an isometry, it follows that
{Ja,, ..., oy, } is an orthonormal basis. Therefore, we conclude that k£ < /.
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Chapter 2 2.3. Holomorphic maps

We may apply the same argument to V/(1/)\) as well. Namely, if {c,, ..., a5}
span V'(1/A), then the vectors {Ja;,, ..., Ja;, } are orthonormal and belong to
the eigenspace V(). This implies that & > [. So we conclude that £ = [ and
that J : V/(\) — V(1/A) is an isometry. Observe now that necessarily ./ maps
V(1) onto V (1).

The parts (¢) and (d) of the lemma are immediate consequences of the above
observations.

This completes the proof. U

2.3 Holomorphic maps

Let (M, g, J) be a Kdhler manifold of real dimension 2m. Amap f : M — M
is called holomorphic if it satisfies

df J = Jdf. (2.6)

Let{ai,...,asy}and {f,. .., Bam} be two orthonormal bases with respect to
g arising from the singular decomposition of df. Suppose that \; is a singular
value with corresponding eigendirections the vectors a; and ;. Then, from the
condition (2.6) we see that

Hence, we see that if «; and ; are eigendirections corresponding to the singular
value )\;, then the vectors Jo; and J3; are again eigenvectors corresponding to
the same singular value. As a conclusion we see that each eigenspace V'(\;) has
even dimension 2m; and contains an orthonormal J-basis.

A holomorphic map f : M — M is called bi-holomorphic if it is 1-1 and its
inverse is also holomorphic. It is a well-known fact in Algebraic Geometry that
any biholomorphic map f : CP™ ! — CP™ ! can be written in the form

21 aix - Qim 21 21
f : = : : : : | ,wherea;; € C, | : e Ccp !

Zm Am1  **°  Qmm Zm Zm

for more details we refer to [9, pp. 170-171].
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CHAPTER

MEAN CURVATURE FLow

In this chapter we introduce the notion of the mean curvature flow, following the
exposition in [35]. Let N be a Riemannian manifold. We say that a family of
immersions F' : M x [0,T) — N evolves by mean curvature flow (MCF for
short) with initial data the immersion Fy : M — N if it satisfies the initial value
problem

dF(24)(0r) = Hp(a ), (MCF)
F(z,0) = Fy(z),

for any (x,t) € M X

[0,7T"), where Hp(, ) denotes the mean curvature vector
of the immersion F'(-, )

: M — N at the point F'(z, ).

3.1 Ecxistence of the flow

Writing the mean curvature flow in local coordinates one can see that we have to
deal with a degenerate system of parabolic equations. Therefore, the existence of
the mean curvature flow is not a simple consequence from the available classical
theorems of partial differential equations. Short-time existence and uniqueness of
the mean curvature flow was originally proven using results of Hamilton [13,14]
based on the Nash-Moser iteration method. However, it is possible to give a
shorter proof of the short time existence of the mean curvature flow adapting a
variant of the so called DeTurck’s trick [8] which was first used in Ricci flow;
for more details we refer to [4,25,38]. It is well-known that in general, long-
time existence of the mean curvature flow cannot be expected. For example, the
maximal time of existence of (MCF) in the euclidean space is always finite. On
the other hand, if the ambient space is a Riemannian manifold there are situations
where it is possible to get long-time existence and convergence of the flow.
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Let us collect the most important facts about the existence and the maximal time
of the existence of (MCF) in the following theorem.

Theorem 3.1.1. Let M be a compact manifold and Fy: M — N an immersion
into a complete Riemannian manifold N. Then, the following facts hold:

(a) The mean curvature flow with initial data the immersion Fy admits a
unique up to diffeomorphisms, smooth solution on a maximal time interval
[0, Thax ), where 0 < Thay < 00.

(b) If the Riemannian metric of N is real analytic, then the mean curvature
flow is real analytic in M X (0, Ty ), i.e. the evolved submanifolds have
real analytic Riemannian metrics.

Let us mention here that part (b) of the above theorem follows from the standard
regularity theory of systems of quasilinear parabolic equations; see [19].

A powerful tool to study the behaviour of solutions of the flow is the maximum
principle. More specifically, in the analysis of singularities, a crucial step is to
obtain a priori, integral, or point-wise, estimates. Let us recall here, the parabolic
maximum principle for solutions of parabolic equations of second order; for the
proofs see for example [2, Chapter 7].

Theorem 3.1.2. Let {g;}icjo,r) be a smooth family of Riemannian metrics on
a compact manifold M and suppose that | € C>®(M x [0,T)) is a solution
of the differential inequality

ft - Agtf 2 g(v7 vgtf) + Q(f’ t)7

where here V9 is the Levi-Civita connection associated with g,, A,, is the
Laplacian operator associated with g;, V' is a bounded time-dependent vector
field and Q) is continuous in time and locally Lipschitz in space. If ¢ : [0,T) —
R is the solution of the associated ODE

¢'(t) = Qo(t),1),
¢(0) = miny f(-,0),

then
[z, t) = o),
for every x € M and t in the definition domain of ¢.
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An analogous result holds for the behaviour of maximum. More precisely, the
following result holds.

Theorem 3.1.3. Let {g; }icjo,r) be a smooth family of Riemannian metrics on
a compact manifold M and suppose that f € C>®(M x [0,T)) is a solution
of the differential inequality

Jo= B f < g(V.Vf) + Q(f, 1),

where here V9 is the Levi-Civita connection associated with g,, A,, is the
Laplacian operator associated with g;, V' is a bounded time-dependent vector
field and Q) is continuous in time and locally Lipschitz in space. If0 : [0,T) —
R is the solution of the associated ODE

0'(t) = Q(O(t), 1),
0(0) = maxy f(-,0),

then
fla,t) <0(t),
for every x € M and t in the definition domain of 0.

In the next theorem, we give a characterisation of the maximal time of solutions
of the mean curvature flow.

Theorem 3.1.4. Let M be a compact manifold and Fy: M — N a smooth
immersion into a complete Riemannian manifold N. Then, the maximal time

Trnax Of the solution of the mean curvature flow, with initial data the immersion
Ey, is finite if and only if

lim sup, - (maxysxpo4|Al%) = oc.

Equivalently, if F' : M x [0,T) — N is solution of the mean curvature flow
with initial data the immersion Fy, and the second fundamental forms of the
evolved submanifolds are uniformly bounded in time, then there exist ¢ > 0
such that the flow smoothly extends in the interval [0,T + ¢).

The characterisation of the maximal time of the solution has been done by Huisken
[15,16] and is based on the parabolic maximum principle. The key observation
is that all higher derivatives V¥ A, k € N, of the second fundamental tensor are
uniformly bounded, once A is uniformly bounded.
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Chapter 3 3.2. Evolution equations

3.2 Evolution equations

We will compute in this section the evolution equations of several important
quantities. In order to simplify the notation, we omit upper or lower indices on
connections and Laplacians which identify the corresponding bundles where they
are defined. Most of these computations can be found in [3,26-29,35,41,42].
We follow the index notation introduced in Subsection 1.4.

Lemma 3.2.1. Suppose that F' : M x [0,T) — N is a solution of the mean
curvature flow. Then, the following facts are true:

(a) The induced metrics g evolve in time under the equation
(Vag9)(X,Y) = —2(H, A(X,Y)) = —24"(X,Y).
(b) There exists a local smooth time-dependent tangent orthonormal frame

field and a local smooth time-dependent orthonormal frame field along
the normal bundle of the evolving submanifolds.

(¢) The induced volume form dy on (M, g) evolves according to the equation
Vodp = —|H|*dp.

Moreover, the volumes Vol(M, g;) of the evolved submanifolds satisfy
OVol(M, ) = — / \H|2dp.

Proof. (a) Letwvy, ..., v, be time-independent tangent vector fields. Keeping in
mind the notation introduced in Example 1.1.14, we have

vatﬂ = vviFt + dF([@t,vz]) = VviH,
forany i € {1,...,m}. Therefore, for any i, j € {1,...,m}, we deduce that

(Va.9)i; = 0(g(vi,v;)) — 9(Va,vi,v5) — g(vi, Va,vy)
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Chapter 3 3.2. Evolution equations

(b) The associated adjoint operator P: (T'M, g;) — (T'M, g;) of A satisfies
AT(X)Y) = ¢(PX,Y) = g,(X, PY). (3.1)
Consider the family U, : (T'M, go) — (T'M, g,), given as the solution of

Vo Up = PolU,
Up=1.

We claim that U;"g; = go. Indeed! Choose a local coordinate basis {01, . .., 0n}
around a point . Using the result in part (a) and that [0;, 0;] = 0, we have

0(U; (0, 0;)) = 0y(g:(Us3:, U,0;))
= (Vo,9:)(U0;, Ui 0;) + 9:(V,U10;, Ui 0;) + ¢+(UL0;, Vo, Uy 0;)
= 2A"(U,0;,U,0;) + 9:((Vo,U1) 04, Us0;) + 9:(Us0i, (V,Up)0;)
= —2A"(U,0;,U,0;) + g:(PU;, Up0;) + g:(U;0;, PU;).

From (3.1) we deduce that U} g; = Upgo = go. Hence, if {e1(0),...,e,(0)} is

orthonormal with respect to gy, then

{e1 = Uier(0),. .., em = Uren(0)}

is orthonormal with respect to g;. In fact,

Vaei = Pe; =Y H*he;. (3.2)

By taking the orthogonal complement of {ey, ..., e,,}, we get a time-dependent
frame field on the normal bundles of the evolving submanifolds.

(c) Consider a time-dependent orthonormal frame field {eq, ..., e,, } satisfying
(3.2) and denote by {wy, . . ., wy, } the corresponding dual frame. Then,
Vow; = Z Hhfiwy — -+ = Y Hh,wn,

forany ¢ € {1,2}. Hence,
Vodp =V (Wi A ANwp) = —|HPwr A+ Aw,, = —|H|*dp.
By integrating we get
O Vol(M, g:) = / [H *dy,
and this completes the proof. U
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Lemma 3.2.2. The time-derivative of the second fundamental form is given by

Vs Ao = (V2H)! Hﬁhﬁ hg, — Y HRgja,
t i ik Bij

where the indices are with respect to a local orthonormal frame.

Proof. Suppose that {ey, ..., emn;&mit,---,&n} s alocal adapted orthonormal
frame field around a fixed point (z, ). Recall that

V0, =0, Vo0, =0 and [9,,e;] = Va,e; = ZH% (3.3)

In order to simplify the computations, we may assume that the frame {ey, ..., e, }
is a normal frame at (¢, o). Under these considerations, we have that at (o, t¢)

(VatA)ij = VatveiFj — VatdF(Veiej) — A(Vatei, €j) — A(el-, Vatej)
= V..V, Fj+ R(H, F)F; + Vy,..F}
—dF(VatVeiej) - A(Vatei, €j) - A(ei, Vatej).

Hence,

(Vo,A)i; = Ve, (VGJH +dF(Vae;)) + R(H, F)F,
+Vyye dF(VatV ) — A(Va,ei,ej) — Alei, Va,e;)

= V.. H+ R(H F)Fj + V., dF(Va,e;)
+Vv,,eF dF(VatVeiej) — A(Va,ei,ej) — Alei, Va,e;)

and so
(Vo A)ij = Ve, H + R(H, F,)F; — dF (R (8;, ¢;)e;),

where RY is the curvature operator of V on T'(M x (0,T)). Hence, at (g, o)
we have

(VoA = > (V545 8a)a =D (Va,A)ij, €a)ba
= (Ve Ve H £)éa — Y H Rpjjala.
[e% a,B
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On the other hand,
(VeVe,H &) = (Ve (VEH + ) (Ve H F)Fy), Ea)
k

= (V> H)3 = > H)\ b,
k.

Combining the last two equalities we obtain the result. ([l

Lemma 3.2.3. The mean curvature H evolves in time under the equation
(Vo H)™ = Z HPRgiio + Y HhOhS,.
0,3,
Moreover,
ONH[? = A|H? = 2]V H* + 2| A2 — 23" HOHP Royig,
i,a,0

where the indices are with respect to a local orthonormal frame.

Proof. Let (xo,tg) € M x (0,T) and {e1,...,€m;Ent1,---, &} be alocal
orthonormal frame field around of (z,?y). From (3.3) and Lemma 3.2.2, we
have

(VaH)"= Y (V5A:)" = (VaA)5 + QZAO‘ Va.ei, €;)

% %

= (AH)*+ > HRgiia — Y Hﬁhgh;; +2)  HhhS,
i,8 1,5,8 1,5,

from where we deduce the evolution equation for /. Moreover

Oi|H|* = 0,(H, H) = 2(V4 H, H) = 2 Z(vaﬁﬂ)am

- 22 (AH)*H* =2 H*HRuug+2 Y  H"H°hgh.

17" 71)
i, 1,J,0,8

On the other hand
S OAHY? =2) (AH)*H* +2)  |VH"|*.
Combining the last two identities we obtain the desired identity. U
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Lemma 3.2.4 (Simons’ formula). The Laplacian of the second fundamental
form satisfies the following equation

(A A5 = (VEH) =3 (Ve R)kija — O (Ve R)kjra

k k

-2 Z h? Riipa — 2 Z h]kszﬁa + 2 Z Iy R

_ Z hkaﬁka + Z huRk]kl + Z hlezklk - Z H” Rﬂ’é]a

B B B
+ Z h( hkjhg - hfjhgz ) + Z hjl hgkhil - hikhgl)
kB k.8

+ > g (hiahiy — highyy),
kLB

where the indices are with respect to a local orthonormal frame.

Proof. Since the formula is tensorial, all computations can be made at a fixed
point x(, where we may suppose that we have an orhonormal frame such that
Ve, e; = 0. Consequently, at this point, we get

Aij = Ve, dF(e;) — dF(Ve,e;) = Ve, dF (e;).

From the Codazzi equation (1.5), we have

(VLA = (VEA) = > Rijjaba

Differentiating once more, we obtain

(VL VL A) VL ((VL A))
_ VJ_ (VJ_Ak] A(veiek’ ej) — A(@k, Veiej))

- Z €k Rkija §a — Z Ekijavl’f
Note that

ViVEiA, = Zh R (er, €1)a + VEVE Ay,
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Denote by
wii(X) = (Vxei,ej) and  wap(X) = (Vx&a,&p)

the connection forms. By Weingarten’s Formula, we have
Vela ==Y e+ ) wasler)és. (3.4)
l B

Using equation (3.4), we compute

ZR €k, €, €5, ekgoz 504 - thlezjlga +ZR €k, €i, €5, é_kga)fa'

Observe that

Z E(ek, €, 6]7 VJ- Z szgavekga

«

Therefore,
(V;V;A) = R* (ek, €;)Ax; + VLVL A — A(Ve, Veer, e5)
—A(eg, Ve, Ve,e5) — Za(%eké)kijafa - Zaﬁhfkéb’ijaﬁa
_Zaﬁhgiékﬁjaga - Zaﬁhgjékzﬂafu
D, i Briga. (3.5)
Using again the Codazzi equation (1.5), we get that

VLVL Akj = VL ((V;A)ky) + Vé‘l (A(Vekej, ek) + A(ej, Vekek))
= VEVE A = 2A(Ve Veerer) = Y (Ve R)ijraba
—Zaﬂhiéﬁjkaga - Zaﬁhfjﬁkﬁkaga - Zaﬁhiﬁkékjﬁaga

+Zl,ah3§kjka£a + A(veivekej’ ek)
+A(ej7 veivek ek)' (3.6)

From Ricci equation (1.6), we have

Z h kza - = Z hgjﬁkiﬂcxga + Z hgjh?;Akl - Z hgjhglAil' (37)
a,B Lo Il
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Plugging (3.6) and (3.7) into (3.5), we deduce
(VALVLA); = VEVE A, = 2A(V., Ve en, ex) + A(Rigg, €) + ARy ex)
-2 Z hk] szﬁaga + Z hgj hzOzAkl Z h hgl il

- Z er kijaé-a - Z hkkRBijafa - Z hkiRk,Bjaga
o, o,
+ Z hk[sz]lé-a - Z(ﬁeiﬁ)k]’kaé—a - Z hiiﬁﬂjkaga

a,p

o Z hZJ Rkﬂka&a Z hszkJBOtga + Z hlle]klga

Differentiating and estimating at the point z(, we have

VeiVejek: E eiwkl(ej)el
l

Therefore,
Z A(Veivejek, ek) = Z eiwkl(ej)Akl + Z eiwkl(ej)Akl = 0.
k k>l k<l
Taking a trace and using the Gauss equation (1.4), we get

ALA Z VL H Z ek kwafa - Z( )kjkagoc

C!

- Z hkiRﬁjkafa - Z hinkﬂkafa - Z hikRkjﬁafa

k7a7/8 k',CV,B k,a,,B
D B n B n
— Y HRgijaba = ) Wy Ripjaba =2 Y hi;Riipata
a,B k,a,f k,a,B
+ Z hi Rijki€a + Z by RyijiSa — Z i Rikki&o
kL« kLo kLo
— > hgRGRLE+ Y hEHP G =Y b Rigiéa
A kolo,3 kLo
R 71NN S TV T AN R S T TN
kol B kol B kolo,3
B 1B pa
- Z hkjhklhu a-
kol B
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From the 1% Bianchi identity it follows that
Y MiRsimaba + ) WiRisjaba = ) MiBijpabo.
k8 ko8 ko8

Now, we deduce that

(A4 = (V2H)] =3 (Ve R)iijo — O (Ve Rijia
k k

—2 Z hlkRkjga 2 Z h]kszBa +2 Z hszkml

_ Z h”Rkﬁka Z hde]kl + Z h]leklk - Z H” Rﬂwa

B 1B ﬁ 5 B 1B B 38
+ Z hiw (higshia — highigy) + Z hjl PPy — hikhkzl)
kLB kLB

+ > 1 (hiyhl — hghiy).
k,l,B

This completes the proof. U

Lemma 3.2.5. The second fundamental form evolves in time under the equa-
tion

(Vé_tA - AJ_A)% = Z ek kl]a + Z kjka
k
+2) "B Rijpo +2) B Riipa — 2 h Ry
k

+> i Rigka — Y hiRigi — > By R
k.8 kil k.l

= > b (higghiy = highia) = > RSy (higehiy = hiyhia)

k.l.B kB
B B B B
- Z hjk;( glhil - 5}%1) - Z Hﬁhjkh‘?;w
kB kB

where the indices are with respect to a local orthonormal frame.

Proof. The result is a direct consequense of Lemma 3.2.2 and Lemma 3.2.4. [
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3.3 Evolution equations of parallel forms

Let F': M x [0,T) — N be a solution of the mean curvature flow and suppose
that @ is a parallel k-tensor on N. Then, the pullback via F' of @ gives rise to
a time-dependent k-form on M. As we will see in the next section, interesting
situations occurs when N is a K&hler manifold and we consider as ¢ the Kdhler
form of N, or when V is the Riemannian product N; X N, and we consider
the volume forms €2; and €25 of the manifolds /N; and N5, respectively. These
evolution equations will be used extensively to examine if the mean curvature
flow preserves the Lagrangian or the graphical condition of initial data.

Lemma 3.3.1. The covariant derivative of the tensor S = F*® is given by

(Ve.S)iy.ip, = Z (h?h@aig...ik +-+ h?ik@il...ik,la)y

«

for any adapted local orthonormal frame field {e1, . .., €,; Emi, - - -, &n } along
the submanifold.

Proof. By a direct computation, we get that

(Vess)h...ik = esé(El,Fiz, Ce ,sz)
- @(VBSFi17E27' . 7sz) + o _'_@(Epﬂza s 7vesFik)

:qj(AsipF’i F’Zk)—i_—i_@(FluFlzaaAs%k)

27

Since, for any 7, j we have that

Ay = h%ka,
a7i7j

we obtain that

(ves‘s)ilmik - Z (h?ilgpai}uik + e+ h?ikdsil...ik,la)-

This completes the proof. U

By a direct computation we can derive the expression for the Laplacian of the
pullback of a parallel k-tensor on V.
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Lemma 3.3.2. The Laplacian of the k-tensor S = F*® is given by

AS“ Zk_z eiy aa’LQ g "'+ZVLH&@Z& Ag—1Q

+2 Z h?ll hf@z O‘ﬂi&nlk + 2 Z hSZk 1hf’Lk i1...c8

s,a,f3 s,a, 0
E e
- si1 sl@ll2 Zk c+ hszk Sl¢ll --ik—1l)
s,l,a

- E 50457,1 azg...ik +---+ Rsozsikgpil...ik_la)a

for any adapted orthonormal frame field {e1, ..., em; Emity- - Ent-

Proof. Let {ey,...,emn;&nt1, - - -, &} be an adapted orthonormal frame which
is normal at the point (o, ty). We compute,

(vesvess)h...ik = 65{¢ Asn;Eg, cee 7Ek) + (‘b(Flp E27 s 7Ak’lk)}
- @<(V69A)Si17 (PRI 7Fik) et ¢(FZ17 FZ27 SRR (VSSA)Sik>

+2¢(A5117A5127E37 cee 7Ek) + -+ 2@(E17F127 s 7Asik,17Asik)-

Making use of the Codazzi equation we obtain that
(VESA)Si = (vL A) <veé Asm E>E (ViA)zs - <Asia vesF})E
(VLA> - Rsaszgoz — hy, F1l

si' Vsl

Combining the last two identities we get the result. 0

Lemma 3.3.3. Suppose that F' : M x [0,T) — N is a solution of the mean
curvature flow and let ¢ be a parallel m-tensor on N. Then, ¢ = *(F*®),
where x is the Hodge star operator with respect to the induced Riemannian
metric g, evolves in time under the equation

Op —Ap = =2 Z h%hgz@aﬁ&--m - =2 Z P — 1hkm@1.--a5
ko, ko8
+ Z My Do m + -+ A R P (me1y1)
k)l
+ Z (EkakldSaZ..m +ee Ekakm¢1...(m—l)a)7
k,a

for any adapted orthonormal frame field {e, ... en;Emit, - &}
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Chapter 3 3.3. Evolution equations of parallel forms

Proof. Let us make our computations again, with respect to a time-dependent
orthonormal frame field as in Lemma 3.2.1. We compute,

atu = 3t(F*95)1m
=&V, F1,....,Fp)+ -+ P(F1,...,Va,Fp).

Taking into account the formulas (3.3), we have

Vo, F; = Ve, dF(0;) + dF (Vg,e;)

=V.H+Y HWF,
k.8

from where we see that

Vo F; = V. H,
forany i € {1,..., m}. Hence, putting everything together, we deduce that
Ou=0(ViH, .. ,Fp)+-+®(F,...,V. H).
Combining with Lemma 3.3.2 we obtain the result. 0

Lemma 3.3.4. Suppose that F' : M x [0,T) — N is a solution of the mean
curvature flow and let ) be a parallel m-form on N. Then,

u=x(F*Q),

where x is the Hodge star operator with respect to the induced Riemannian
metric g, evolves in time under the equation

uy = Au+ u|A?

o Z (2h?kh§k9a,83...m +-ot 2h((1m—1)khf@k91m(m*2)a5)
a,f,k

- Z (QaQ...mRakk‘l +oe A+ Ql.,.(n—l)aRak‘km)a
o,k

for any adapted orthonormal frame field {e1, . . ., en; Emits - - -, En ) along the
evolved submanifolds.
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Chapter 3 3.4. Formation of singularities

3.4 Formation of singularities

Let F' : M x[0,T) — N beasolution of the (MCF) and assume that a singularity
is formed in finite time. By Nash’s Theorem, there exists an isometric embedding
i : N — R into a euclidean space. Consider ' =io F : M x [0,T) — R".
We denote by A and H the second fundamental form and the mean curvature of
the immersions {F (-, ) }1c[0,7), and by Ay the second fundamental form of the
Nash isometric embedding. Then

A(X,Y) = An(dF(X), dF(Y)) + di(A(X, )
forany X,Y € X(M). Consequently,
H — di(H) = trace,(Ay) = —V.

where ¢ is the induced by F’ (time-dependent) metric on M. Observe that V' is a
bounded lower order term and F’ evolves under

dF(9,) = di(H) = H + V. (MMCF)

A solution of the form (MMCF), where V' is a bounded lower-order term, is called
solution of the mean curvature flow with bounded additional force.

To investigate the singularity formation along the mean curvature flow, let us
introduce two important notions: the density, and the parabolic dilation.

3.4.1. Gaussian densities. Let us start by giving the definition of the density.

Definition 3.4.1. Let F' : M x [0,ty) — N < R be a solution of the (MCF)
where M is compact and ty < oo is the maximal time of existence of the flow.

(a) For every point (y,t) € RN x (R — {to}) the function

1 —ly—ygl?

= ———— 4(t0_t)
47T(t0 - t)7

is called the backward heat kernel of R™ at (yo,to) € RY x R.

P(yo,to) (ya t)

(b) The function ©,, : [0,ty) — R given by

@yo (t) = /p(yoﬂfo)(Fv t)d:u
is called the density function.
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Chapter 3 3.4. Formation of singularities

The following result is essentially due to Huisken [16] and is known as Huisken s
monotonicity formula.

Theorem 3.4.2. Let M be a compact m-dimensional smooth manifold and let
F: M x[0,T) — RY be a solution of (MMCF). Then

d/ (F.t)du < C /(H+ B (o)
dt Mtp(yo,to) )OI = My Q(to—t) 9 Plyo.to) L' ) QR

where C' is a time-independent constant, dy denotes the volume element of
the evolved submanifold M, C RY and F* is the normal component of the
position vector F'.

Proof. Without loss of generality we assume that 7/ is the origin of R". For
simplicity let us introduce the function

1 —|F(x,t)|2

xr,t) = F(x,t),t) = — e %1 |
p:1) = oot (Fa,0).0) =

By straightforward computation, we have

dp (2( m F?  (FH+ v>)

to—1t)  4(tg —t)? 2(tg — t) 38)

%:P

We will compute now the Laplacian of p. Let D be the Levi-Civita on R" and
{e1,...,emn} be alocal tangent frame which is normal at a fixed point z € M.
At x we have

p
ei(p) = —mw’Fi%
and
ciilp) =~ s () = P (BB + (P D)
_ mmmy - ﬁu +(F, A)).

Summing over ¢, we obtain that

LAl - nY 59)

Br=r (4(to —1? 2Ate—1) 2to—1)
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Chapter 3 3.4. Formation of singularities

By (3.8) and (3.9) we deduce that

d
—p+Ap=—p<

(3.10)

[FL2 (F H) <Fav>>
dt '

4(ty — t)? to—1 2(to — t)
Following the same steps as in the proof of Lemma 3.2.1(c), we can show

W — (w11 4y (3.11)

Integrating, and using the formulas (3.10) and (3.11), we get
d dp

L pdu = (— “(H H+V )d

W / o L H+Vp)dy

V]2 (FH V) / Ft 4

- - dyt — \ i H+T

/(4 Ao —t)) " -1 T3

Because (tg — t)‘l p is uniformly bounded as ¢ — ¢, we deduce that there exists
a time-independent constant C' such that

2
pdp.

d Ft V2
— dp < C — ‘— H+ —| pdpu.
at | PH = /2(%—75)Jr Tl edn
This completes the proof. U

Corollary 3.4.3. Let F' be a solution of the (MMCF) as in Theorem 3.4.2. Then

limt%to /p(yo,to) <F7 t)d/JJ < 0.

Hence, the density function has a limit as we are approaching the maximal
time of existence.

From the result of Corollary 3.4.3 we are led to the following definition.

Definition 3.4.4. Let F’ be a solution of the (MMCF) as in Theorem 3.4.2. Then
the number

O (o, to) = limy_y, /P(yo,to)d# < 00,
is called density at the point (1o, to).
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Chapter 3 3.4. Formation of singularities

3.4.2. Parabolic rescalings. Now we will introduce a scaling method to model
the formed singularities.

Definition 3.4.5. Let F' : M x [0,ty) — N — R be a solution of the (MCF)
defined in a maximal time interval [0,ty) and yo € RY. Then:

(a) The point vy is called a singular or a blow-up point of the flow, if there
exist x € M such that

lim; 4, F'(z,t) =yo and limsup,_,, |A(z,t)| = oco.

In this case, a sequence {(x;,1;) }ien is called blow-up sequence if

(w5, t;) = (x,t0), F(xi,t:) = yo and |A|(x;, t;) = maxprxjos,]| Al — oo.

(b) The point yy is called a regular point of (MCF), if there is x € M such
that
limy_, F(2,t) = yo and limsup, ,, |A(z,t)] < oo.

(c) We say that a singular point vy, is a Type-1 singularity if there exists a
blow-up sequence such that

C

0o—t;

| AP (24, 1) < "
for some constant C. Otherwise, we say that yq is a Type-1l singularity.

So if yy 1s a singular point then for ¢ — ¢ a singularity of Type-I or Type-II will
form at yy € N (and perhaps at other points as well).

Definition 3.4.6. Let ' : M x [0,ty) — N — R be a solution of the (MCF)
defined in a maximal time interval [0, ty).

(@) The image M of the map F' x I : M x [0,ty) — N x R given by
(F x I)(a,t) = (F(r,£),1)

is called the space-time track of the flow. Since N is isometrically embed-
ded into RN we can regard I as subspace of RN x R.

(b) The map D, : RN x R — RY x R, v > 0 given by
Du(y7t> = (V<y - y0)7V2(t - tO))

is called parabolic dilation of scale v at (yqo, to).

66



Chapter 3 3.4. Formation of singularities

The following general theorem is well-known and shows how one can analyse
forming singularities of the MCF by parabolic dilations around points where the
norm of the second fundamental form attains its maximum; for details see [16].

Theorem 3.4.7. Let F : M x [0,ty) — N < R¥ be a solution of the (MCF)
defined in a maximal time interval [0, ty) and yo a singular point of the flow.
For v > 0, consider the immersion F* : M x [—v2ty,0) — RY given by

F¥(z,s) = v(F(z,to+v7%s) — yo). (3.12)

Hence,
M! = v(Mgyp-25 —y0) CRY, s € [-1t,0),

where MY are the scaled submanifolds. Then the following facts hold:

(@) If{es, ..., en}isalocal tangent orthonormal frame along M, ,, >, then
{e¥ = vley, ... e, = vle,} is a local tangent orthonormal frame

along M. Moreover, the volume form dy.%, the second fundamental form
A" and the mean curvature H” of MY are given by the formulas:

* dpg = vmdp,

. Al(lm,s) — (A + AN)(x,t0+1/_25)7

° Hé/%s) —_= V*l(H — V)(x,to+y*2s)7

* |AV|2(:E7 S) = V_2|A + ANP(SL‘,tO + y_QS)’
where Ay stands for the second fundamental form of the Nash s isometric
embedding N — R and

V=> " An(el€).

(b) The family { M} sc(—,—24,,0) €volves by a mean curvature flow with bounded
additional force. More precisely,
dF(Vm,s) (as> = H(V:B,s) + V_l‘/(m,to—o—zz*ls)-
(c) If the point vy, is a Type-I singularity, then for fixed s < 0, the sequence
{M? };en converge subsequentially and smoothly to a submanifold M$® C

RN as v — oo. Additionally, { M°}se(—oo0) evolves by the standard mean
curvature flow.
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Chapter 3 3.4. Formation of singularities

From Theorem 3.4.7, we immediately see that the following result holds.

Theorem 3.4.8. Let ' : M x [0,tg) — N — R be a solution of the (MCF)
defined in a maximal time interval [0,ty) and yo a singular point of the flow.

Then the density function is invariant under parabolic dilations of the form
(3.12). That is

/ p(yo:to)(th)th:/ po,0)(F”, s)dpy,
Mt Méj

where dp? is the volume form of M.

Let us emphasise here that if in the above Theorem 3.4.7 the point ¥ is a Type-II
singularity of the flow, then the sequence { M },~( of the parabolic rescalings
converge to a limiting flow but in a weak sense. That being said the limiting
object is no longer smooth. To overcome this problem, the trick is to take a
blow-up sequence of space-time points {(x;,t;) };en and then perform appropri-
ate parabolic rescalings with factors v; = |A|(x;,t;). More precisely, we have
the following result:

Theorem 3.4.9. Let M, C N — RN, 0 < t < ty, be a family evolving by
(MCF) and suppose that vy, is a singular point of Type-II. Let {t;};cn be a
sequence of times in [0, to — 1/i| and points {z;};en C M, such that x; — yo
and

(to—1/i — t;)| AP (s t;) = max  ((to — 1/i — t)|A* (2, 1)).

Mx[0,to—1/i]
Furthermore, set
v; = |A|(xi, 1), a; = —vit; and by = v (tg — 1/i — t;)
and form the rescalings
M! = ui(Mt#V;zs —z;), S € ;b (3.13)
Then the following facts hold:

(a) We have that t; — ty, v; — 00, a; — —o0 and b; — 00. Moreover, the
second fundamental form at time t; is maximised at x;.

(b) We can choose a subsequence of {(x;,t;) }ien, which for simplicity we
denote with the same symbol, such that
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Chapter 3 3.4. Formation of singularities

* T — Yo-
* |A|(z4,t;) — 0o monotonically.
* |A|(l‘z,tl)(t0—1/l—tl) — OQ.

Then the rescalings (3.13) will converge locally smoothly to a limiting mean
curvature flow { M} ¢ (—co.00) C RY.

3.4.3. White’s regularity theorem. A deep theorem of Allard [1,33] provides a
criterion for whether a point on a stationary integral varifold YV C R" is regular.
Let B,.(p) C R” the ball of radius 7 centered at ta point p and w,, the area of the
unit ball in R™. Roughly speaking, according to Allard’s Theorem, if the density

)  tim YLV O B ()

r—0 wWpr™

9

at a point p € V is sufficiently close to 1, then V is regular near p. White’s
Regularity Theorem [44] essentially says that the Gaussian density plays the same
role also in the mean curvature flow. More precisely, the following result hold.

Theorem 3.4.10. Let F' : M x [0,ty) — RY be a solution of the (MMCF) and
(Yo, to) be a point in the space-track of the flow. If

©(yo, to) = limy_yy, /P(yo,to)(Fa t)dp < 1,

then yq is a regular point of the flow.
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CHAPTER

LAGRANGIAN MEAN CURVATURE FLOW

In this chapter, we will introduce the central object of our study: the Lagrangian
mean curvature flow, which will be abbreviated by LMCF. The name LMCF
is given because of a beautiful result proved by Smoczyk in [36], according to
which compact Lagrangian submanifolds in a Kéhler-Einstein manifold remain
Lagrangian under the evolution by MCF. This phenomenon is very surprising
because the MCF is a concept of Riemannian submanifold geometry, rather than
one of symplectic geometry. Since Chapter 5 of this thesis is concerned with the
evolution of symplectomorphisms by LMCF, we will present a detailed proof of
Smoczyk’s theorem.

4.1 Lagrangian submanifolds

Let /' : M — N be an isometric immersion of an m-dimensional Riemannian
manifold into an 2m-dimensional K&hler manifold with complex structure ./ and
corresponding Kéhler form w. We say that [ is Lagrangian if [*w = 0 or,
equivalently, if

W(dF(X),dF(Y)) = (JAF(X),dF(Y)) = 0,

forevery X, Y € X(M). Note thatif ' : M — N is a Lagrangian submanifold,
then the complex structure of the ambient space maps the tangent bundle of /'
onto the normal bundle. Hence, we may associate to the map F' the trilinear form

C: X(M) x X(M) x X(M) — C=(M), given by
C(X,Y,Z) = (A(X,Y), JdF(Z)),

where A is the second fundamental form of F'. The trilinear form C is called the
fundamental cubic of the Lagrangian submanifold.
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Chapter 4 4.1. Lagrangian submanifolds

Lemma 4.1.1. The fundamental cubic C of a Lagrangian submanifold is fully
symmetric. If, in addition, the Lagrangian is minimal, then C'is traceless.

Proof. By the definition of the second fundamental form, C' is symmetric in the
first two indices. Moreover

C(X,Y,Z) = (A(X,Y), JAF(Z)) = (VydF(X), JAF(Z))
= (dF(X),=VyJdF(Z)) = (dF(X), = JVydF(Z))
= (JdF(X),VydF(Z)) = {(JdF(X), A(Y, Z))
=C(2,Y,X),

forany X,Y, Z € X(M). This completes the proof. O

Lemma 4.1.2. The fundamental cubic C' satisfies the identity
(VxO)NY, Z, W) = (VyC)(X, Z, W)
~R(AF(X),dF(Y),dF(Z), JAF(W)),
forany X,Y,Z. W € X(M), where R is the curvature tensor on N.
Proof. Without loss of generality, we may assume that { X, Y, Z} is part of the

normal frame at a fixed point x € M. Differentiating and estimating at x, we
have

(VxC)WY,Z,W) = XC(Y,Z,W)
= X(A(Y, Z), JAdF(W))
= (VY A(Y, 2), JAF(W)) + (A(Y, Z),Vx JAF (W))
= ((VxA)Y, Z), JdF(W)).

By Codazzi equation we deduce

(VxCO)Y, Z,W) — (VyCO)(Y, Z, W)
= (VxA)(Y, 2) = (V¥ A)(X, Z), JdF (W))
= —R(dF(X),dF(Y),dF(Z), JAF(W)).

This completes the proof. U
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4.2 Lagrangian MCF

In this section, we prove the result of Smoczyk [36] about the preservation of the
Lagrangian property under the mean curvature flow. Before stating and proving
the result let us introduce a definition and two important tensors.

Definition 4.2.1. A submanifold F : M — N of a Kédhler manifold N is called
totally real if
J(dF(T,M)) N dF(T,M) = {0},

forany x € M.

For example, every Lagrangian submanifold of /V is totally real. Consider the

bundle morphisms K : T'"M — NM and II : M — T M given by
K(X)=(JAF(X))* and II(X)= (JdF(X))'.

In a totally real submanifold, both these tensors are isomorphisms. Suppose now
that {e1, ..., em;&mat, - - -5 Eom } is a local adapted orthonormal frame along the
submanifold. Then,

K(F) =) (JF;,{)a Zwmga @.1)
and
I(F,) =Y (JF, F;)F. wa (4.2)
J
Moreover, forany ¢ € {1,...,m}, we have
L= |[JE[ = [H(F)] + |K(F Zwm + | K(F
Setting

a; = [I(F)]* =) w},
J

1

forany i € {1,..., m}. Additionally, the set of vectors

{FlFm—m—m} (4.3)

forms a local orthonormal frame on the normal bundle N M.

it follows that

| K(F)| =
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Chapter 4 4.2. Lagrangian MCF

Theorem 4.2.2 (Smoczyk). Let N be a complete Kdihler-Einstein manifold and
Fy : M — N a Lagrangian immersion, where M is a compact manifold. Then
the mean curvature flow with initial data the immersion F, will preserve the
Lagrangian condition.

Proof. Let F*w be the pull-back via F' on M of the Kéhler form w of N. Without
loss of generality we may work locally along the images

M, =F(,t)(M), tel0,T),
and regard S as the restriction of w on M,;. Define the function

f =3P

The goal is to show that satisfies a differential inequality of the form
af—Af<Cy,

so that we may apply the maximum principle.

Step 1: We compute the evolution equation of the function f. Let

{61, e 7em;§m+17 e 752771}

be a local adapted frame along the evolved submanifolds. Following the index
notation introduced in Subsection 1.4 we denote the components of w by

Wi :W(E7}7j>, Waj :w(goij) and Wap :w(§a>€ﬁ>'
Then, with respect to such a frame, the function f can be written in the form
f= %w%

According to Lemma 3.3.2 and keeping in mind the fact that w is skew-symmetric,
we obtain that

Af > QZwijwaj(V;H)a —2 Z Wij (Wajékika + Wiaékzjka)

o1, a,i,j,k
a 1,8 N
+2 E wijWashyly; — 2 E wijwijhigi i -
a7ﬁ7i7j7k a7i7j7k7l

On the other hand, proceeding as in Lemma 3.3.3, we can show that
8tf = Z wijat(wij) =2 Z wijwaj(veiH)a.
ij ij
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Consequently,
Of = AF < 2> wywhishiy =2 > wijwashiihy,
a,i,g,k,l a,B,i,7,k
+2 Z wij (Waj Rkika + Wia Rkjka)- 4.4)
a,i, g,k

Step 2: Now we estimate the first two terms of (4.4). Let T},.x be the maxi-
mal time of solution of the mean curvature flow. Since our initial submanifold
is Lagrangian, there exists 0 < 7' < T, so that the evolving submanifolds
{M,}1ejo,ry are totally real, i.e.

J(T. M) NT, M, = {0},

for any x € M,. This means that for any time ¢ € [0, 7] the bundle morphisms
K :TMy — NM;and Il : T'My; — T M, given by

K(X)=(JX)" and II(X)=(JX)"

are isomorphisms. Hence, for fixed normal vectors & and 7 along M, there are
tangent vectors v and w such that

E=Kw)=(Jv)" and n=K(w)=(Jw)".
Observe that

w(&,n) = w(Jv = (v), Jw— I (w))
= w(Jv, Jw) —w(II(v), Jw) —w(Jv, [I(w)) + w(II(v), I1(w))
= w(v,w) = (Jo,w) + (v, Jw) + w(I (v), [T (w)
= w((v), (w)) — w(v, w).
This means that the quantity w| v s, depends on values of the form w|7y,. There-
fore, there exists a constant C'; such that

B
2 Z wijwighi; hiy — 2 Z wijwaphiihi; < CLf.
a,i,j,k,l a:67i7j7k

Step 3: Now we claim that the last two terms in the differential inequality (4.4)
can be also bounded by a term of the form C5 f, where C is a constant. Indeed!

Let {ey,..., e} be alocal orthonormal tangent frame on M. Then,
Bz’jk = Za (Wajékika + Wiaékjka) = —w(éﬁm E]) - W(Fi, E;f]k)
= —w(Ryix — Ry, F}) — w(F, ékjk - E;Ijk)- 4.5)
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For our purpose, we need to investigate the behaviour of the terms
—(Rig, Fy) = w(Fy, Rigr) = R(Fy, Fy, Fr, TF),

where the last identity follows using the first Bianchi identity and the Kéhler
identities of Theorem 1.2.2. More precisely, it suffices to investigate only the
behaviour of the terms

Cij =Y R(F, Fj, Fy, JF). (4.6)
k

Set for simplicity X = F; and Y = J I and denote the Einstein constant of the
Riemannian metric of NV by k. Using the Kéhler identities of Theorem 1.2.2, we
see that

kw(Fj, F) = Rie(X,Y)

= SR Y )+ Y R(X K(R), Y, K(F)

L R(X, K(F), JY, JK (Fy)

- ;R(X, Fy, JY, JF) + ; 1—a,

= R(X,F, JY,K(F)) + > R(X, Fy, JY, II(Fy))

1—6Lk

+3° R K(F), JY, JK(F)) + Y R(X, K(F), JY, JK (F))

=Y R(X,F., JY,K(F)) + > R(X, Fy, JY, II(F}))

Qe ~
E X, K(F Y, JK(F)

+3 R(X,K(Fy), JY, J(JF, — II(Fy)))

=S R(X,F, JY.K(F)) - Y R(X,K(F), JY, Fy)

+y % R(X,K(F),JY, JK(Fo)+ > R(X, Fy, JY, II(F}))

1—CLk

+ > R(X,K(Fy), JY, JI(Fy)).
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Using the Bianchi identity in the first two terms of the last equality we see that

> R(X,JY, Fy, JF,) = kw; + Y R(X,K(Fy), JY, JII(Fy))
k k

+ ; 1 ikakﬁ(x’ K(F),JY, JK(F)) + g R(X, Fy, JY, II(Fy)).

From (4.1), (4.2) and the fact that a; < f, we deduce that

Z w;;Ci; < Caof,
4,J

where (5 is a constant. Consequently, there exists a constant C' such that f :
M x [0, T] — R satisfies the inequality
af—Af<Cf.

From the maximum principle in Theorem 3.1.3 it follows that f = 0. This
completes the proof. 0
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CHAPTER

THE MAIN THEOREM

5.1 Statement of the main result

According to a beautiful result of Gromov [10], any symplectomorphism of CP?
can be continuously deformed into a biholomorphic isometry. It is not known
whether the same result holds in any dimension. Medos and Wang [22] applied
the Lagrangian mean curvature flow to smoothly deform a symplectomorphism f
of CP™. They proved that if f is sufficiently close to a biholomorphic isometry,
then LMCF will smoothly deform f into a biholomorphic isometry. To explicitly
state Medos and Wang’s theorem, we need the following:

Definition 5.1.1. The map f is called A-pinched if

A7%g < frg < A%y, (5.1)
for some constant number A > 1.
Main Theorem. Given m € N, there exists a constant A(m) > 1, such that if

f: CP™ — CP™ is an A-pinched symplectomorphism with 1 < A < A(m),
then the following facts hold:

(a) There exists a family of symplectomorphisms f, : CP" — CP™, t €
[0,00), fo = f, such that the corresponding graphs ¥, of f; move by
Lagrangian mean curvature flow in CP™ x CP™.

(b) The family { fi}ic0,00) 0f symplectomorphisms converges smoothly to a
biholomorphic isometry of CP™, as t — oo.

As a corollary of the above Main Theorem one immediately obtains the following
topological result.
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Corollary 5.1.2. For any m € N, there exists a constant A(m) > 1, such that
any N-pinched symplectomorphism f : CP™ — CP™ with 1 < A < A(m), is
symplectically isotopic to a biholomorhic isometry.

We would like to point out that this theorem generalises a previous theorem of
Smale [31] and Wang [43] for symplectomorphisms of CP' = S? in which no
pinching condition is required. It would be interesting to prove the conclusion of
Corollary 5.1.2 without any hypothesis. It would be also very interesting to study
the behaviour of the LMCF generated by symplectomorphisms between Kéhler
manifolds with constant non-positive holomorphic curvature.

We will divide the proof of the Main Theorem into the following 6 steps:

Step 1: Consider the graph of f in the Riemannian product CP™ x CP™. It turns
out that the graph of f gives rise to a Lagrangian submanifold of the product.

Step 2: Consider the mean curvature flow of the graph generated by the initial
symplectomorphism f. According to the result of Smoczyk [36], the flow will
preserve the Lagrangian property.

Step 3: The graphical property is preserved under the LMCF. This fact follows
from the parabolic maximum principle. Then the LMCF gives rise to a smooth
family of symplectomorphisms which are isotopic to the given initial one.

Step 4: The LMCEF exist for all times. To prove this result one needs to prove
that the second fundamental forms of the evolved submanifolds stay uniformly
bounded. Unfortunately, a-priori, such curvature estimates are not yet available.
To overcome the problem, White’s Regularity Theorem [44] is employed to show
that there are no finite time singularities.

Step 5: From the fact that the LMCF exists for all times, the maximum principle
implies that the pinching condition is improved; in particular the singular values
of the evolved symplectomorphisms are approaching the value 1. Also this fact
can be used now to show that the norms of the second fundamental forms are
uniformly bounded.

Step 6: Smooth convergence is now achieved using a very deep general result
of Simon [32] which ensures that the LMCF smoothly converges into a unique
minimal limiting map. In this step the analytic structure of CP™ is required.
Moreover, from the parabolic maximum principle we can show that the limiting
map is actually a biholomorphic isometry.

80



Chapter 5 5.2. Symplectomorphisms and Lagrangians

5.2 Symplectomorphisms and Lagrangians

Let (M, gps) be a Riemannian manifold and M x M be the product manifold.
Denote by m; : M x M — M and 5 : M X M — M the natural projections
given by
m(z,y) =z and m(z,y) =y.
Clearly 7, and 7, are submersions. We can use the differentials dm; and dms to
define a canonical isomorphism
H(Ly) : T(w,y)(M X M) — TIM X TyM
given by
Nz (V) = (dm V), dma(V)),

forany V' € T, (M x M). The 2-tensor gasx v given by
IMxM = T gu + Togum

gives rise to a Riemannian metric on M x M. With respect to gy« and gy
both projections becomes Riemannian submersions. The Levi-Civita connection
Virmxm agsociated to the Riemannian metric gpy. s on M x M is related to the
Levi-Civita connection V on M by

v = (prvM apv ).

Moreover, the corresponding curvature operator ;. s on M X M with respect
to the metric gy« is related to the curvature operators 2, on M

RMXM = (WTRM,W;RM) (5.2)

Suppose that M has a complex structure Jj; with associated Kahler form w;.
One can easily verify that

JMXM: (WTJM,—W;JM) (53)

forms a natural complex structure on the product whose associated Kihler form
is

* *
WMxM = TiWp — TiWpy.

Consequently, the product of two Kédhler manifolds is again a Kéhler manifold.
In particular, if M is Kéhler-Einstein then also the Riemannian product M x M
is Kéhler-Einstein.
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Chapter 5 5.3. Evolution of symplectomorphisms

Suppose now that f : M — M is a smooth map. The graph of f is defined to
be the submanifold

Y={(z,f(x)) e M xM: xe M}

of the Riemannian product M x M. The graph can be globally parametrized via
the embedding F' : M — M x M given by

F=(If),

where [ : M — M is the identity map. Since F' is an embedding, it induces
another Riemannian metric

9=Fguxm = gu+ f9m-
on M. The following elementary observation will be very crucial.

Lemma 5.2.1. Let f : (M, g, Jv) — (M, gur, Jur) be a diffeomorphism of
a Kdhler manifold. Then f is a symplectomorphism if and only if its graph is
a Lagrangian submanifold of (M x M, gnrsars I )-

Proof. Let X, Y € X(M). Then, by a direct computation we see that

= gu(JuX,Y) = g (Judf (X), df (Y'))
= wy(X,Y) = frou(X,Y).

Thus F*wpr«pr = 0 if and only if f*wy; = wyy and this completes the proof. [J

5.3 Evolution of symplectomorphisms

Let M be a compact Kéhler-Einstein manifold, assume that f : M — M is
a symplectomorphism and let 3. be its graph in the product manifold M x M.
According to Lemma 5.2.1, the submanifold > C M x M is Lagrangian, and
the mean curvature flow will preserve this property. Denote by {3 };c(0,1) the
evolved by the LMCF submanifolds, where 7" is the maximal time of the flow,
thatis ¥y = F(M x[0,T)), where F' : M x[0,T) — M x M is the solution of
the LMCEF. Since M is compact, the evolving submanifolds will stay graphical
at least on some time maximal interval [0, 7, ), with 0 < T, < T
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Chapter 5 5.3. Evolution of symplectomorphisms

Let now €2, be the volume form on M. We can extend €2, to a parallel form on
the product manifold M x M by pulling it back via the projection map 7. That
is, consider the parallel form

Q= 7T19M

and define the smooth functions
u=*(F*Q) = «{(m o F)*Q} = x(I"Q),

where *x stands for the Hodge star operator with respect to the induced metric
g. Note that u is the Jacobian of the projection map from >; to the first factor
of M x M. Therefore, the evolving submanifolds stay graphical as long as u
is positive. In this case, there exists an 1-parameter family of diffeomorphisms
¢ » M — M and maps f; : M — M such that

F(th(x)vt) = (:L‘,ft(l')), x € M.

In order to decide whether the graphical property is preserved under the flow we
need to compute the evolution equation of the function u. For technical reasons,
it is better to estimate quantities using the special frames of the singular value
decomposition of df, given in Chapter 2. Consider the isometry £ given by

E = df,(df;df.) ™.

Let {Oél, Qg = JMOél, ey o1, JMOCQm_l} and {E(Oél), ey E(Oégm)} be
the special orthonormal basis of 77, M and 7',y M with respect to gy, given
in Lemma 2.2.6. Then, the vectors

e; = ;(ozi,dfx(ai)) = !

RV 1+ N2

form an orthonormal tangent basis with respect to g and
Com+i = JMxMCi = \/ﬁ

1

S

form an orthonormal basis of the normal bundle. In terms of this basis we have

(i, NiE(y)), 1 <i<2m, (5.4)

(JMOéi, —JM)\iE(Oéi))

u = Q(dm(el) d’/Tl 62m

Hm

83



Chapter 5 5.3. Evolution of symplectomorphisms

Because of the Lagrangian property, the second fundamental form A of ¥, is
characterised by coefficients

hijk = Cles €5, ex) = gusnr (V" Mes, Tarsner).

Recall from Lemma4.1.1 that ;. is fully symmetric. Therefore, the information
concerning the components of the second fundamental form is encoded in the
vector h whose elements are formed by the “different” terms

h”z, hu] with ¢ <j and h”k with ¢ < j < k.

That is
h = (hm, hasa, ... hii2, hiis, - .5 hios, hioa, . .. ) (5.6)
Observe that
|h|2 Z hm + Z hnj + Z hzyk and ‘AP Z hzgk}
1<J 1,7,k 1,9,k

Let us also introduce the singular value vector
0= (A1, Aam)- (5.7)
Following the index notation in Section 1.4, we have
Riju = R(o, aj, 0, 0;) and Eijkl = (E"R) (v, aj, o, ).
Additionally, for any index i € {1,...,2m}, we set
i =i+ (—1)"
For instance, 1’ = 2 and 2 =

Lemma 5.3.1. The function u satisfies the evolution equation

zk:zk: - )\ Rzkzk’)
:Au—l—u( QU h) +Z L+ A1+ 22 ),

where
= hl -2 Z D (1NN (hiwhgje = higehga). (5.8)
1,5,k 1<J
and h and { are defined in (5.6) and (5.7), respectively. If M = CP™ then
= Au—l—u(@(€, h+ ) %) (5.9)
(14 A3)?

k=odd

where the indices are with respect to the special bases given in (5.4) and (5.5).
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Chapter 5 5.3. Evolution of symplectomorphisms

Proof. For simplicity let us set J = Jj;« . By Lemma 3.3.4, we have
t —_— Au + u Z h’L_]k‘

7]7
—2229 €1,--+, (]Gp?..., Jeq 7"'7€2m>hpikhqjk
p,g:k i<y

ith—position  jth—position

- ZQ(el, vy Jep oo eam) Ry (Jep, ex, ex, €;).
—

Pk ith—position
Let
2
A:UE hz’jk_Q E E Q(@l,...,Jep,...,J6q7...,€2m)hpikhqjk
N p,q,k 1<j
b T ith—position  j—position
and

B=- ZQ(el, vy Jep oo eam) Ry (Jep, ek, €k, €:).

ith —position

From (5.5) we have that

1
m(Jey) = —=Ja,.
1+ N
14
Hence,
—u Z G
.5,k
v/ (1HX) (1+2%)
—2’u, Z Z 1+)\2 1+)\2) (Ckl, Cey JOép [ Jaq e ,agm)hpikhqjk.
p,qk 1<j ’

ih—position  jth—position

By the convention we use for the indices we deduce that Ja, = (—1)P" ey,
Hence,

— i+7
Q(Oél, ce JOép sy Jaq s ,agm) = (—1) j(épi/(;qj/ — 5pj’5qi’>>
~— ~—
ith—position  jth—position

since only non-zero terms are those for which p = i’ and ¢ = 7' or p = j' and
q = 1'. Observe that

1 2
P i and (L+A) =\
Ai (1+A2)
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Chapter 5 5.3. Evolution of symplectomorphisms

Putting everything together, it follows that
A=uQ(l,h).

Similarly as above, using (5.2) and the skew-symmetry of the curvature tensor
Ry« we derive

—UZ )\RMxM<J€Z/7€]€7€Z7ek)

Moreover,
(=1)'\;

A+ A1+ )\z)(Rikik — i Rikir),

RMXM(Jei’7 €k, €4, ek‘) =
from where we deduce that

22 _
B = E - Rigi —>\2Rii .
uik (1+A§)(1+Az)( kit = A ivir)

Suppose now that M is the complex projective space CP™. By the formula of
Theorem 1.2.3 and direct straightforward computations, it follows that

1—/\2
_UZ (1+A2)2
k= dd

This completes the proof. U

It will be very important in our analysis to understand the nature of the quadratic
term

given in equation (5.8). Observe at first that we can write this term in the form
Q=> h (5.10)
1,5,k
=23 > (hiachiin = hip)
k i=odd

=2) > { = N XA g+ o g+ Nidj) ikl }

k i=odd<j=odd

=23 Y (= M) = A)haichg.

k i=odd<j=odd
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Chapter 5 5.3. Evolution of symplectomorphisms

Lemma 5.3.2. For{ = {y = (1,...,1), we have that

Q = Q(ly,h) > (3 —V5)|h,

Proof. Denote by A, B and C' the three first summands of Q. Since we assume
that £y = (1,...,1) we get that

A= Zh111+3 Z h?z’z’—i_h?m

1=odd
2 2 2 2 2 2
+3 Z hm + hw g hi i T hi gt T hjw - h] rii T hﬂ ir h]’z’z )

1=o0dd<j=odd
2 2 2
+6 E : ii'j +h”] +hm + hwy )
i=odd<j=odd

+6 > (M Wl + g+ Wiy + B+ Bl + g + B )
i=o0dd<j=odd<k=odd

and
B = -2 Z Piiihiriri + 2 Z hiyy — 2 Z Pgiirhiririr + 2 Z Ri
i=odd i=odd i=odd i=odd
—2 > (hiizhiss = By + hajrhiry — hy)
i1=o0dd <j=odd
=2 > (hgjihgigrs — B+ hyjihgirs — W) -
i=o0dd< j=odd
Moreover,

C= 4 g (hirjihjrii — higilrirs + i Brse — hijirhriv)
i=odd<j=odd
+4 Y (higihgig = higihgog + haggrhgrg — gyl
i=o0dd<j=odd
+4 E (hirjkhjrie — hijihjrine + arjir hjrie — Rigjir Rjrig)

i=o0dd<j=odd<k=odd

+4 Z (hjrihrji — Pgrihierjrs + Pk P jir — P i jrar)

i=o0dd<j=odd<k=odd

+4 Z (hirkjhuwi; — hirihiriry + Ry — Riggrhagi ) -

i1=odd<j=odd<k=odd
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Chapter 5 5.3. Evolution of symplectomorphisms

Therefore, we may write the crucial terms Q in the form

Q=0+ Qs+ O3

where Q; contain terms which depends only on 7, that is

Ql = Z {h,?” + hz%i’i’ + 5(}%21/1/ -+ h?/“) — Qhuzhz’z’z — thii’hi’i/i’} s

i=odd

the term Q5 contain quantities depending on iand j with ¢ < j, namely

_ 2 2 2 2 2 2 2 2

i—odd<j—odd
§ 2 2 2 2 §
i1=odd<j=odd i1=odd<j=odd
— 23 (hygihyyi+ hyjohgge) + 4 (hagihy — higibs)
i1=odd<j=odd i=odd<j=odd
+ 4 (hagihgin = higphgae) +4 ) (hagihyi; — hijihy;)
i=odd<j=odd i1=odd<j=odd
+ 4 (haggrhgg— hgyhgy),
i=odd<j=odd

and finally Q3 contain terms with three different indices (4, j, k), that is
2 2 2 2 2 2 2 2
Q3 =6 Z (hijk + hijr + i + Mg + higge + Rirjpr + higjoy, + o)
i=0dd< j=odd<k=odd

+4 Z (Pjrwihsgi — kil jrs + R P jir — ijis By jar)
i=0dd<j=o0dd<k=odd
+4 Z(hi/kjhk/ij — higjhwrirs + i e — D Prinjr)
i=o0dd<j=odd<k=odd
+4 Z (harjehgrie — Pigihgrin + hijrBgrigr — higr B ) -
i=o0dd<j=odd<k=odd

Observe that:

(1) Q; is the sum of two identical quadratic forms with 2-variables, each of
which having 3 — v/5 as the smallest eigenvalue. Hence,

i=odd

88



Chapter 5 5.3. Evolution of symplectomorphisms

(2) Qs is the sum of the quadratic forms of 3-variables, each having the number
2 as smallest eigenvalue. Consequently,

2 2 2 2 2 2 2
Qs > 2 (R Wy by + B+ B+ B+
i=odd<j=odd
2 2 2 2 2
+h + s 4+ hZ + B+ hi )

(3) Qs can written as the sum of two identical quadratic forms of 4-variables,
each having smallest eigenvalue 4. Hence,

Q>4 (W2 + hlp + bl + Wi + Wiy + Wy + B, + M)

i=o0dd<j=o0dd<k=odd

Therefore,

Q> (3~ V5)hf?
and this completes the proof. 0
Lemma 5.3.3. The following statements hold:
(@) In each dimension m € N, there exists a number Ao(m) such that the
quadratic term Q({, h) is non-negative whenever
Ag?(m) < A7 < AG(m),
Sforany index i € {1,...,2m}.

(b) Forany 1 < Ay < Ag(m), there exists a positive number § such that

QL) =6 hiy,

(N

whenever
AP SN S A

Sforany index i € {1,...,2m}.

(c) If M = CP™ and the singular values satisfy the pinching condition of
part (b), then u evolves in time under the equation

)22
— Au > SulA|* +u Z (1= )

NS 7 (5.11)
k=odd (1 + )\z)Q

where 0 is the constant given in part (b).
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Chapter 5 5.4. Preservation of the initial conditions

Proof. Since

IS Sl

i7j7k i7j7k

from Lemma 5.3.2, it follows that

Q1. 1) h) > > _6\/5 SR

.5,k

Since being a positive definite bilinear form is an open condition, it follows that
there is an open subset U around (1,...,1) such that ¢ = (Ay,...,\,) € U
implies that ) = Q(¢, h) is positive definite. Let d; be the smallest eigenvalue
of () at . Note that d, depends continuously on /. For fixed A > 1, set

Sa=min{dy: £ = (Ap,..., Apm)and A2 < AT < - < A2 < A%
The constant A defined by
Ao =sup{A: A >1and oy >0}

has the desired property. Now the claims of the lemma are clear. This completes
the proof. 0

5.4 Preservation of the initial conditions

We will show in this section that the LMCF will preserve the initial conditions
under the assumptions of the main theorem. We start our investigation with some
preliminary algebraic observations.

Lemma 5.4.1. Let A > 1 be a constant so that ™2 < \3 < --- < A3 < A%
Then

L—ESUZH;SL

2" SV T
where
S
e

Note that w = 27™ if and only if all the singular values are equal to 1.
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Chapter 5 5.4. Preservation of the initial conditions

Proof. We may write u equivalently in the form

1 1
uzl?[ V(14 A2) :Zl_OL (Ao + )

Since \;\;; = 1, we have that \; + \;; > 2. Therefore, the above expression has
always an upper bound. As a matter of fact,

1

1
u= — < — (5.12)
1:[ V(LAY 2
and the equality holds if and only if Ay = --- = Ay,, = 1. On the other hand,
the function 4 : (1, 00) — R given by
1
h(x) = -
() =2+ .
is increasing. Therefore, if A=t < \; < -+ < Ay, < A, then
1 1
i+ Ay = y+A; = h(X;) < h(A) = A+ (5.13)
from where we deduce that
i — & S H ; S i7
2" CVLEA) 2
where
1 1
£=— — o
2m (A4 1)
This completes the proof. U

We will see now that the converse of the above lemma is also true. Namely, if u
has a lower positive bound, then each singular value is bounded from above.

Lemma 5.4.2. Assume that there exists a constant € € (0,27™) such that

1 1
v =l ey
Then,
A2< N < <A <A
where




Chapter 5 5.4. Preservation of the initial conditions

Proof. By assumption,

1

1 1
2m £= H V(1422 il_o!d (A + )

Hence,
m

2
” ) V< 2
A +4) = 1—2mg’

i=odd
from where it follows that

2m
)\i/ - )\z S H m ’
tiimogg (L= 2mE) (A 4 4y)

Since \; + \;; > 2, the above inequality implies

A+ A < 2 _y_ 2"
TS (= gmeygmt T T L

Using the fact that \;\; = 1, we obtain
A2 <A <<, S A2

where

This completes the proof. U

Lemma 54.3. Let f : CP" — CP™ be a Ay-pinched symplectomorphism,

where Ay > 1 is the constant characterised in Lemma 5.3.3. Then:

(a) The mean curvature flow with initial data the graph ¥ of f stays graphical
as long as it exists.

(b) The function Inu satisfies

Inu—1In2™™ > cpe Y,

where
8

co = minxecpm(lnu(x, 0) — In 2”") and ¢, = m
0T X
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Chapter 5 5.4. Preservation of the initial conditions

Proof. From Lemma 5.4.1 we have that

u(x,0)>2"" —e >0,

1 1 2
e=— 11— .
2m Ao+ 5

From Lemma 5.3.1, the function In u satisfies the differential inequality

for any x € CP™, where

u—Au | Vul? (1—A2)°
Oy — A)lnu = + > -, 5.14
(O ) u u? k:zodd (1+)\2)2 6-14)

Fix k € {1,...,2m} and set
xr = (/\k + )\k/)Q.
Then, keeping in mind that A\, \pr = 1, we see that

g =22 e= M) w4
S+ w2z

Moreover, by (5.13) we get that

1\2
(/\k: + /\k’)Q =x < (AO + —) . (5.15)
Ao
We claim now that
—4 8 |
T2 ~ (E —ln2> . (5.16)
T (AO 4 Alo) 2

To prove the claim, let us define the functions

r—4 8 Inx
f(z) = . and g(x)—m<——ln2).

Then, from (5.15) we see that

=2 )=
f'(z) , g'(x) (ot L)

8=
o
=]
o
Il
V
—_
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Chapter 5 5.4. Preservation of the initial conditions

Because,
f4)=9(4)=0 and [f'(z)=g'(2),
for every
1.2
4 <z <(A —
ST > ( 0 + AO) 9

we see that f > ¢, which proves our claim. Therefore, from (5.16), we deduce
that

(1—x2)° (e — M)’ > 8
A=X)" _ > In(A + A) — In2
Z (1+ )\@2 k;d (A + )\k’)2 (AO + ALo) k;d ( )

k=odd
8
=———(lnu—1n27").
(Ao + ) ( )
Therefore (5.14) becomes
8
(0, —A) (Inu —In27™) > ——2<lnu — ln2*m).
(Ao + 1)

From the parabolic maximum principle, we see that

Inu—1n2""™ > cye” Y,

where

8

o = minsecn (Inu(z,0) —I027") and &1 = .
0T Ao

Consequently, In u cannot approach —oo or, equivalently, the function u cannot
tend to 0. Therefore, the LMCF will preserve the graphical property as long as it
exists. Additionally, we see that

u(z,t) > 2™ —¢ forall (z,t) € M x (0,T).

Hence, from Lemma 5.4.2 it follows that the Ay-pinching condition is preserved
under the flow. In particular, if the flow exists for all times, then

lim v > 27"
t—o0

which implies that the singular values of the evolved symplectomorphisms would
tend to 1. This completes the proof. 0]
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5.5 Long-time existence of MCF

The goal of this section is to prove the long-time existence of the LMCF under the
conditions of the Main Theorem. At first let us isometrically embed the product
CP™ x CP™ into a euclidean space RY. Then, following the strategy developed
in Section 3.4, the graphical LMCF gives rise to a MCF F' : M = CP™ — R¥

dF(3,)=H+V

with a bounded additional force V. Suppose now to the contrary that the flow
reach at F'(zg,t0) = (yo,t0) € RY x R a finite time singularity. We will arrive
to a contradiction. Let p(y, 1) be the backward heat kernel

1 —ly—yol?

p(ymto)(yat) = me a(to—1)

in RY x R. As usual we abbreviate by p the function given by

plz,t) = p(yo,to)(F<$’ t)> t),
for any (z,t) in space-time.

Lemma 5.5.1. Under the assumptions of the Main Theorem, the limit

lim [ (1 —w)pdu

t—to

exists Cll’ld, moreover,

d

G Ja-wpdn<c—s [uplapan

for some positive constant C > Q.

Proof. By equations (3.10) and (3.11), we have

d FL? FLoHY (FLV
dp_ _p,_, | |2+< ), (FLV)
dt Atg—t)?  to—t  2(to—1)

and g
% =—(H,H + V)dpu.
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Chapter 5 5.5. Long-time existence of MCF

Taking into account (5.9) and Green’s identity, we deduce that

d
— (1=
o (1—wu)pdu

g/{Au—uyﬂmmﬁp@k_/a_uxHJ¥+vw@L
[FHP (P H) | (FY)

_/(1_“) Ap+p<4(t0—t)2 to—1 2(t0—t)>
:/(pA(l—u)—(1—u)Ap)du—/5u|A|2pdu
(o |FL* (L EY  (FLV)

/(1 we <4(t0—t)2 to =1 +2(t0—t)
:—/5u|A|2pd,u—/(1—u)p‘%%—f]—i—%
v [y

dp.
By Huisken’s monotonicity formula 3.4.2, the limit lim;_,,, f p dp exists. Thus

dp

dp

) +|H|?* 4+ (H,V)

2
dp

/(1—U)pdu§ /pdu< 00.

Since V is bounded, it follows that

d
& Ja=weduzc=s [uiappan,

for some constant C'. Observe that the function
h(t) = /(1 —u)pdu — Ct

is non-increasing in the interval [0, ¢y), which implies that lim;_ h(t) exists.
Thus,

limy ¢, /(1 —u)pdp

exists and this completes the proof. U
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Lemma 5.5.2. Consider the parabolic rescalings described in (3.12). Then,
forany T > 0and v > 0, it holds that

-1
lim </ |A”|2p(070)dug) ds = 0.
LA S MY

Proof. Since both u and py,, +,)dj are invariant such dilations, we have
/ (1= w)pyo,to)dpie = / (1 —u)po,0)dps.- (5.17)
My My
From the fact ¢t = ¢, + v 25 and the equation (5.17), we have that

d

14 14 — d
7 [ A= u)peodp =v 2 (1= )iy o) -

dt Jy,
Then, by Lemma 5.5.1, we have

d B B
- | (A =wpeodui < Cv 2 — v 2/ ul AP pyo 1) dpis
My M,

for some constant C'. From the conclusions of Theorem 3.4.7, we have that
v’ / ul AP pyo o) dpte = / ulA” — An [ pooydpss
My MY

since the norm of the second fundamental form scales like the inverse of the
distance. Thus

d — v 1%
I (1 —u)podul < Cv? — 5/ ul A — An|*po.oydpt.
5y My

Fix 7 > 0 and let us integrate the above inequality from —1 — 7 to —1 with
respect to s. Then we get

-1
5/ (/ u|A” — AN|2p(070)d,uZ> ds
—1-7 MYy

< - /(1 — u)poydp’y + /(1 — u)p.oydp’_, +Cv=2.

Letting v — 00, using the fact that u is bounded, that Ay is of bounded norm
and that

t—to

lim /(1 - u)ﬂ(yo,to)du

exists, we obtain the desired result. ]
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Take a blow-up sequence (z;,t;) converging to the singular point and then set
v; = |A|(x;,t;). Then from Theorem 3.4.7 the second fundamental forms of
{M?};en stay uniformly bounded. By Arzela-Ascoli theorem, MY — M for
all s € (—00,0). Hence

—1
/ (/ v; |AU|2p(070)dNZi> ds < ¢,
—1—7 MY

where ¢; — 0 as i — oco. We first choose 7; — 0 such that ¢;/7; — 0 and then
choose s; € [—1 — 7;, —1] such that

/ y ’AVF,O(Q,())d,u: S Ci/Ti — 0.
M,

Suppose that M is the image of F = F"i(-,s;) : M — RN Then

» 1 ,‘F;Z_z“Q
PoolFih ) = Fgyme

Let B,(0) C RY be the radius r ball centered at the origin of R". Since each s;
is bounded and |F/| < r on ¥%7 N B,(0), we have

/ A% P pogydpt > / | A
Myt M.*NB;(0)

Si
2 I
>ce? | | A Pdpit,
M NB,(0)

where ¢ > 0. Hence, on any compact set K of RY, we have that

lim / |AY:
170 S MIN B, (0)

Since the convergence MY — M2 is smooth we deduce that the submanifold
M®S and consequently each M is flat in R, But then

li dp = li dpgt = dp>, = 1.
o /M : Plyo to) Bt = 1M /M P0,0) 0L, /N . P0,0)0H—1

White’s Theorem [44] asserts (yo, to) is a regular point which contradicts the
assumption that we made in the beginning of the section. Consequently, there is
no space-time singularity of the mean curvature flow.

*po.0)dit

2du§§ =0.
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5.6 Convergence to a biholomorphic isometry

To complete the proof of the Main Theorem it remains to show that the family
of the evolving symplectomorphisms { f; };c[0,.c) converges to a biholomorphic
isometry. Let € > (0 and define the functions

Ne=u—2""+e.
Recall from Lemma 5.4.3 that the function

(t) = i (2,1
0:(t) = min 7 (z,1)

1s non-decreasing and that
Jim 0:(t) — €.
Let 7. > 0 be a large enough time such that 7.(x,t) > 0, for all the points
(x,t) € CP™ x (T, 00). Then,
dneul Al?
D > A + Sul AP = A, 4 AL

€

Since CP™ x CP™ is a symmetric space its curvature tensor is parallel. Hence
| A|? satisfies the inequality

QA2 < AJA]2 — 2[VAP + K1 |A[* + K| A]%,

where K| and K are positive constants that depend only on the dimension m.
Taking into account the last two inequalities, we get

(n'AP)e < —n | AP (Ane + 6ulA?)
+n. (A|A]? = 2|VAP + Ki|A|* + K| A]?)
= A (n ' AP) = 2(Vn Y, VIAPR) = 20 Vi P IAP
=2 VAP + 02 (nekSy — du) [A]* + 0. K| AP,
Note that
—2(Vn L VIAP) = 20 Vi ' PIAP = =20 (Vi V(i HAP)).

Since the minimum of u is increasing and 7. < ¢, the function ¢ = n | A|?
satisfies

oo < Ap = 20(Vn ', V) + (nKy — du) ¢° + Ko
< Ap = 2n(Vn. ", V) + (eK1 — dco) * + Koo,
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where ¢ denotes the min,ccpm u(x,0). We can chose € small enough so that
eK; — 6Cy < 0. Then by the parabolic principle ¢ < y(t) for all t > T, where
y is the solution of the ODE

Yy = —(6Cy — eKy) y? + Koy
y (T.) = max,ecpm o(x, T:).

It is easy to see that y(t) is given by

5C;Ein’ if y(jz):: 50;51K&’
y(t) = KQK@KQt h .
(3Co—eka)KeF2?i—17 otherwise,
where the constant K is positive if
Ky
Te) > ———
y< ) 6Cb-—€l<1
and negative if
Ky
T) < ————.
y< ) 6Cb-€f(1

It follows that
|APP (2, 1) < ney(t) < ey(t),

for all (z,t) € CP™ x (T.,00). Sending ¢ — oo and then ¢ — 0 we conclude
that
max |A]*> — 0.
zeCP™

Because the Fubini-Study metric, the induced metrics and the volume functional
have analytic dependence on F', a deep theorem of Simon [32] implies that the
flow converges smoothly to a unique limit f.,. Since each singular value tends
uniformly to 1 as time goes to infinity, it follows that the map f., is an isometry.
Being symplectic is a closed property, thus f., is symplectic, which implies that
the map f., is a biholomorpic isometry. This completes the proof. 0
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