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Abstract 

 

The reduced quality and the increased structural and conceptual heterogeneity of the 

clinical databases combined with the presence of data silos obscure the sharing and 

analysis of medical data. These open issues in healthcare leverage the development and 

secure deployment of robust and unbiased AI (Artificial Intelligence) workflows to 

address clinical unmet needs, including: (i) the development of robust disease 

classification and risk stratification models, (ii) the detection of new biomarkers, and 

(iii) the discovery of targeted therapies, among others. In this thesis, we aim to address 

the open issues and unmet needs in healthcare through the development of beyond the 

state of the art methods which are built on top of four main innovation areas: (i) 

Innovation Area 1 - data curation, where we propose a fully automated, efficient and 

scalable medical data curation workflow to enhance the quality of the diverse medical 

data including clinical and genetic data across multiple time-points, (ii) Innovation Area 

2 - data harmonization, where we propose a hybrid, fully automated data harmonization 

workflow combining lexical and semantic analysis based on word embeddings which 

is built on top of external knowledge bases to overcome structural heterogeneities 

across clinical databases, (iii) Innovation Area 3 - synthetic data generation, where we 

propose a large-scale synthetic data generator to significantly enhance the statistical 

power of clinical databases with insufficient population size in order to enable the 

simulation of clinical trials, as well as, to enhance the classification performance of the 

existing AI models through data augmentation, and (iv) Innovation Area 4 – 

federated/distributed learning, where we propose a federated AI deployment framework 

which removes the need for the installation of local servers or any type of software in 

each site through the adoption of a federated AI modeling engine supporting a large 

family of federated AI algorithms yielding interpretable and explainable AI models. 

The proposed four stage workflow was evaluated across six different clinical domains, 

including autoimmune diseases (AD) and particularly in primary Sjogren’s Syndrome 

(pSS), hypertrophic cardiomyopathy (HCM), cardiovascular diseases (CVD), mental 

disorders (MD), systemic autoinflammatory diseases (SAIDs), and particularly 

Kawasaki disease (KD), and Coronavirus disease (COVID-19). The applicability of the 

proposed workflow was successfully demonstrated by: (i) enhancing the quality of the 
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clinical and laboratory data in pSS, HCM, COVID-19, CVD, MD, KD, (ii) reducing 

the levels of structural and conceptual heterogeneity among the clinical and laboratory 

data in pSS, CVD, MD and at the same time enabling the evaluation of cross-domain 

data harmonization, (iii) producing high quality and large scale synthetic data for in 

silico clinical trials in HCM, (iv) augmenting the existing lymphoma classification 

models in pSS and HCM risk stratification models, and (v) producing robust AI models 

for lymphoma classification in pSS, the detection of biomarkers for lymphomagenesis, 

the detection of biomarkers for Kawasaki disease, HCM risk stratification, ICU 

admission and mortality classification in COVID-19.  
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Περίληψη 

 

Η μειωμένη ποιότητα και η αυξημένη δομική και εννοιολογική ετερογένεια των 

κλινικών βάσεων δεδομένων παγκοσμίως σε συνδυασμό με την παρουσία silo 

δεδομένων δυσκολεύουν τον διαμοιρασμό, την διασύνδεση και την επικείμενη 

ανάλυση των ιατρικών δεδομένων. Αυτά τα ανοιχτά ζητήματα στον τομέα της υγείας 

αναδεικνύουν την ανάγκη τον σχεδιασμό και την ανάπτυξη ασφαλών και αμερόληπτων 

ροών εργασίας AI (Τεχνητή Νοημοσύνη) για την αντιμετώπιση κλινικών 

ανεκπλήρωτων αναγκών, όπως: (i) η ανάπτυξη ισχυρών μοντέλων ταξινόμησης 

ασθενειών και διαστρωμάτωσης κινδύνου, (ii) η ανίχνευση νέων βιοδεικτών, και (iii) 

η ανακάλυψη στοχευμένων θεραπειών, μεταξύ άλλων. Σε αυτή τη διατριβή, 

στοχεύουμε να αντιμετωπίσουμε τα ανοιχτά ζητήματα και τις ανεκπλήρωτες ανάγκες 

στον τομέα της υγείας μέσω της ανάπτυξης καινοτόμων μεθόδων και ροών εργασίας, 

οι οποίες δομήθηκαν γύρω από τέσσερις κύριους τομείς καινοτομίας: (i) Περιοχή 

Καινοτομίας 1 - Εξυγίανση δεδομένων (data curation), όπου προτείνουμε μια πλήρως 

αυτοματοποιημένη, αποτελεσματική και επεκτάσιμη ροή εργασιών εξυγίανσης των 

ιατρικών δεδομένων για τη βελτίωση της ποιότητας των ιατρικών δεδομένων, 

συμπεριλαμβανομένων των κλινικών και γενετικών δεδομένων σε πολλαπλά χρονικά 

σημεία, (ii) Τομέας Καινοτομίας 2 - εναρμόνιση δεδομένων (data harmonization), όπου 

προτείνουμε μια υβριδική και πλήρως αυτοματοποιημένη μέθοδο εναρμόνισης 

δεδομένων που συνδυάζει την λεκτική και την σημασιολογική ανάλυση βασισμένη σε 

ενσωματώσεις λέξεων, η οποία δομήθηκε γύρω από εξωτερικές βάσεις γνώσεων για να 

ξεπεραστούν οι δομικές και εννοιολογικές ετερογένειες σε κλινικές βάσεις δεδομένων, 

(iii) Τομέας Καινοτομίας 3 - παραγωγή συνθετικών δεδομένων (synthetic data 

generation), όπου προτείνουμε μια γεννήτρια μεγάλης κλίμακας συνθετικών 

δεδομένων με στόχο να ενισχύσει σημαντικά τη στατιστική ισχύ των κλινικών βάσεων 

δεδομένων με ανεπαρκές μέγεθος πληθυσμού, προκειμένου να καταστεί δυνατή η 

προσομοίωση κλινικών δοκιμών, καθώς και για τη βελτίωση της απόδοσης της 

ταξινόμησης των υφιστάμενων μοντέλων τεχνητής νοημοσύνης μέσω της επαύξησης 

δεδομένων και (iv) Τομέας Καινοτομίας 4 – κατανεμημένη μάθηση εντός και εκτός 

του νέφους (Federated/distributed learning), όπου προτείνουμε ένα πλαίσιο ανάπτυξης 

κατανεμημένων μοντέλων τεχνητής νοημοσύνης που καταργεί την ανάγκη 
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εγκατάστασης τοπικών διακομιστών και την εγκατάσταση οποιουδήποτε είδους 

λογισμικού σε κάθε silo δεδομένων μέσω της υιοθέτησης μιας κατανεμημένης μηχανής 

μοντελοποίησης AI που υποστηρίζει μια μεγάλη οικογένεια κατανεμημένων 

αλγορίθμων τεχνητής νοημοσύνης που παράγουν ερμηνεύσιμα και επεξηγήσιμα 

μοντέλα τεχνητής νοημοσύνης. Η προτεινόμενη μεθοδολογία τεσσάρων σταδίων 

αξιολογήθηκε σε έξι διαφορετικούς κλινικούς τομείς, συμπεριλαμβανομένων των 

αυτοάνοσων νοσημάτων (AD) και συγκεκριμένα στο πρωτοπαθές σύνδρομο Sjögren 

(pSS), την υπερτροφική μυοκαρδιοπάθεια (HCM), τις καρδιαγγειακές παθήσεις 

(CVD), τις ψυχικές διαταραχές (MD), τις συστημικές αυτοφλεγμονώδεις νόσους 

(SAIDs) και συγκεκριμένα της νόσου Kawasaki (KD) και τέλος του COVID-19. Η 

κλινική και τεχνική απήχηση της προτεινόμενης μεθοδολογίας αποδείχθηκε επιτυχής 

δεδομένου ότι οδήγησε: (i) στην βελτίωση της ποιότητας των κλινικών και 

εργαστηριακών δεδομένων στις ασθένειες pSS, HCM, COVID-19, CVD, MD, KD, (ii) 

στην μείωση των επιπέδων δομικής και εννοιολογικής ετερογένειας μεταξύ κλινικών 

και εργαστηριακών δεδομένα στις ασθένειες pSS, CVD, MD και ταυτόχρονα 

επιτρέποντας την αξιολόγηση της εναρμόνισης δεδομένων μεταξύ τομέων, (iii) στην 

παραγωγή συνθετικών δεδομένων υψηλής ποιότητας και μεγάλης κλίμακας για 

κλινικές δοκιμές πυριτίου στην HCM, (iv) στην βελτίωση της απόδοσης των 

υπαρχόντων μοντέλων ταξινόμησης λεμφώματος και διαστρωμάτωσης κινδύνου στις 

ασθένειες pSS και HCM μέσω της τεχνικής επαύξησης των δεδομένων, και (v) στην 

παραγωγή ισχυρών μοντέλων AI για ταξινόμηση λεμφώματος σε ασθενείς με pSS, 

ανίχνευση βιοδεικτών για λεμφογένεση σε ασθενείς με pSS, στην ανίχνευση 

βιοδεικτών για τη νόσο Kawasaki, στην διαστρωμάτωση κινδύνου σε ασθενείς με 

HCM, στην πρόβλεψη εισαγωγής ασθενών με COVID-19 στη ΜΕΘ και στην 

πρόβλεψη της θνησιμότητας αυτών. 
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1.1. Big data in healthcare 

In our rapidly advancing technological area, the large volumes of accumulated data, on 

a daily basis, yield many benefits in different areas of our everyday lives including 

finance, medicine, and industry, among others [1]–[3]. These large-scale datasets are 

referred to as big data. The big data are characterized by four dimensions, namely the 

volume, the velocity, the veracity, and the variety [4]–[6]. The speed of the daily 

generated data, the amounts of collected data, the different types of collected data, and 

the biases which are introduced during the data collection process are the fundamental 

characteristics of the big data against the traditional datasets, which are only 

characterized by one dimension, i.e., their volume. 

The big data in medicine can improve the patient care through the enhancement of the 

clinical decision-making process, as well as, enhance the statistical power of the clinical 

research studies yielding more accurate outcomes and powerful prediction models [1]–

[6]. Furthermore, the big data can further enhance the development of effective patient 

stratification methods towards the identification of sensitive population subgroups, as 

well as, to provide better insights on large population groups towards the development 

of new public health policies and targeted therapeutic treatments. 
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According to Figure 1 there are many types of big data in medicine. These types of data 

vary from biosignals and medical images to laboratory tests and omics data. The 

biosignals are produced by the electrical activity that arises from the biological function 

of the organs in the human body. Examples of the most common types of biosignals 

include the Electrocardiogram (ECG) [7] which records the electrical activity as a result 

of the heart’s depolarization and repolarization function, the Electroencephalogram 

(EEG) [8] which records the changes in the electrical activity as a result of the neural 

activation (i.e., the electrical field from the extracellular currents), along with the 

Magnetoencephalogram (MEG) [9] which measures the changes in the ensuing 

magnetic field (from the intracellular currents), the Electromyogram (EMG) [10] which 

records the changes in the electrical activity as a result of the muscles contraction, the 

Electrooculogram (EOG) [11] which records the corneo-retinal potential as a result of 

the eye movement, etc. The biosignals yield high temporal information regarding a 

disease’s onset and progress, with numerous applications in medical conditions and 

diseases that vary from cognitive deficiencies, schizophrenia, to heart failure, and 

Parkinson’s disease [12]–[15]. 

The medical images comprise another type of medical data with significant importance 

in clinical diagnosis and screening procedures. Computerized tomography (CT) [16] 

scans, and magnetic resonance imaging (MRI) [17] scans, can provide detailed insight 

on the anatomic and tissue characteristics of different body parts, yielding high spatial 

information, and are useful in the detection of malignancies and other disorders. 

Furthermore, the positron emission tomography (PET) [18] scans, the single-photon 

emission computerized tomography (SPECT) [19] scans, and the functional magnetic 

resonance imaging (fMRI) [20] scans provide additional information regarding the 

biological and physiological operations, i.e., the metabolic processes, at a molecular 

level, as well as, the brain activations under specific physical and mental tasks. 

Furthermore, ultrasound [21] and photoacoustic [22] images are fast, non-ionizing, 

real-time methods which are based on acoustic properties, having numerous 

applications in echocardiography, obstetric ultrasonography, intravascular 

ultrasonography, and duplex ultrasonography, among others. Spectroscopy-based 

methods, such as, the functional near-infrared spectroscopy (fNIRS) [23] can shed light 

into the measurement of the metabolic rate of oxygen consumption which indicates a 

neural activation, like the fMRI. 
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Figure 1. Big data in healthcare and related factors. 

The field of omics constitutes another vast domain of medical data with numerous sub-

fields, such as, the fields of genomics [24], lipidomics [25], proteomics [26], 

metabolomics [27], microbiomics, epigenomics [28], [29], and transcriptomics [30], 

among others. The omics data can be generated from high-throughput next-generation 

(NGS) technologies [31], such as, RNA-sequence analysis [32], mass spectrometry 

(MS) [25], [27], and thin layer chromatography (TLC) [33], which are able to analyze 

the proteins, the lipids, the transcriptomes, the metabolic profiles of the biological cells, 

the microorganisms in the tissues, pathological factors, and even the whole human 

genome. The RNA-sequence analyzers are able to capture all the single cell-based (or 

even group-based) RNA molecules (i.e., the whole transcriptome). In addition, the mass 

spectrometry technology is able to reveal the structural and functional characteristics 

of proteins, as well as, identify the lipids and their involvements in cell functionality. 

Omics can be used to study a variety of molecular-level functions, including the 

examination of bacteria and fungi on the tissues and organs, the interactions between 

the proteins, the detection of pathological factors and metabolic effects in degenerative 

and chronic diseases, gene expression analysis, among others. 

The laboratory tests along with the medical claims and the subscribed medications can 

offer a powerful basis for understanding the underlying mechanisms of a virus and 

detecting various pathological conditions in tissue specimens. The most common 

laboratory tests include the hematological tests, the serological tests, the skin tests, the 

histopathological tests, the immunological tests, the endocrine function tests, and the 

coagulation tests, among others. Straightforward methods, such as, microscopic 
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analysis [34], fluoroscopy [35], immunocytochemistry [36], and 

immunohistochemistry [37], are used to analyze the tissue and blood samples. Each test 

offers a unique insight on a medical condition or a disease towards the detection of 

blood clotting disorders, tumors, anemia, diabetes, fungal infections, autoimmune 

disorders, skin cancer, allergies, inflammatory disorders, and endocrine dysfunctions, 

among many others. 

The sources of medical data are many. With the growing number of large volumes of 

daily generated data from health sensors, medical images, laboratory tests, electronic 

patient records, patient registries, clinical and pharmaceutical claims, genome 

registries, the estimated amount of data is expected to overcome the zettabyte (1021 

gigabytes) and even the yottabyte (1024 gigabytes) [38], [39]. The medical data 

acquisition process is often conducted according to international standards and 

protocols for each type of medical data. For example, in signal acquisition, well-known 

international standards are used for the placement of surface electrodes, such as, the 12-

lead placement [40] for ECG signal acquisition, and the International “10-20” system 

(and “10-5” system) [41] for EEG signal acquisition. In laboratory tests, hemodynamic, 

coagulation, serological, and immunoassay analyzers are most commonly used for 

measuring biochemical (e.g., blood pressure, blood clotting time) and pathological 

factors (e.g., the presence of antigens in the antibodies), as well as, analyzing tissue 

specimens (e.g., for skin cancer, endocrine disorders), under different measurement 

units.  

Medical image acquisition protocols are also used for the reconstruction of MRI, CT, 

fMRI, PET, and SPECT images, such as, the filtered backprojection (FBP) algorithm 

[42], and the family of the iterative reconstruction algorithms, such as, the algebraic 

reconstruction algorithm [43], and the iterative sparse asymptotic minimum variance 

(SAMV) algorithm [44], as well as, the universal backprojection algorithm [45] for 

photoacoustic imaging reconstruction, towards the examination of tissues and organs 

for tumors and other disorders. In the field of omics, standard methods, such as, the 

microscopic analysis [34], the RNA-sequencing analysis [32], the mass spectrometry 

(MS) [25], [27], the thin layer chromatography (TLC) [33], along with the high 

throughput next generation sequencing (NGS) technology [31], are widely used in 

omics to study the proteins interactions, the genetic profiles and metabolic effects of 
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different viruses, the lipids, the whole transcriptome, the genetic profiles of the human 

microbiome, among many others. 

A research-oriented source of medical data with high clinical significance are the 

cohorts. Cohort studies are special types of observational studies [46] which are used 

to examine a disease’s origins and the effects of the population characteristics. The 

longitudinal cohort studies are observational studies that involve the repetitive 

collection of patient data over long (or short) periods of time and are able to provide 

deeper insight on the disease progress over time with increased accuracy, overcoming 

recall biases [47]. In general, a cohort study can either use retrospective or prospective 

data. The retrospective cohort studies make use of data that have been already collected 

with the purpose of identifying the association between the causes (symptoms) and the 

disease’s outcomes.  

On the other hand, the temporal dimension that is introduced by the prospective cohort 

studies (i.e., the follow-up data) can reveal significant associations between the 

disease’s outcomes and the causes of the disease, as well as, the effects of various 

prognostic factors on the outcomes, over time. The risk ratio and the hazard ratio are 

mainly used to quantify the associations between the drug exposure and the outcomes, 

as well as, the frequency of death, as a ratio between the exposed group and reference 

(or control) group [48], [49]. The former includes the subjects that are exposed on a 

specific drug whereas the latter consists of healthy individuals. Cohort studies are able 

to overcome several limitations that are present in traditional clinical trial studies by: 

(i) measuring patient-specific outcomes from large population groups, (ii) keeping track 

of follow-up patient data, and (iii) being less-expensive that large-scale clinical trials 

[50]. An example of the clinical importance of a cohort study lies on the fact that it can 

address the unmet needs in the special case where the exposure is a rare condition, such 

as, an autoimmune disease. In practice, a well-designed cohort study can provide deep 

insight into the underlying mechanisms of a disease’s onset and progress. 

1.2. Types and sources of big medical data 

In medical research, cohort, case-control, and cross-sectional studies are three special 

types of observational studies (Figure 2) [51]. A clinical cohort study is comprised of 

data from a group of people that share common disease occurrences, medical conditions 
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(e.g., experience a common type of a chronic disease) and are useful for measuring the 

disease occurrence and progress [51]. A cohort study design can be either prospective 

or retrospective. In a prospective study, the cohort data are expected to be updated 

within the duration of the study whereas in a retrospective study, the patient data are 

predefined. In prospective studies, the existence of individual follow-up time points is 

necessary to keep track of the upcoming data. On the other hand, cross-sectional studies 

measure the disease occurrence at one time point and thus are not able to capture the 

relationship between the occurrence and the progress of a disease. To understand the 

meaning of a cohort it is necessary to understand the fundamental types and sources of 

medical data. 

 

Figure 2. The fundamental types of observational studies [52]. 

According to Figure 3 sources of medical data are many. Laboratory results comprise 

a widely known source of medical data. Laboratory tests include a large number of 

biochemical tests [53], such as, (i) hematological tests which measure the oxygen levels 

in the blood flow, urine tests which are usually used to detect kidney, liver disease and 

diabetes, (ii) serological tests which are blood tests that seek for antibodies (e.g., to 

detect rubella, fungal infections), (iii) coagulation tests which are used to detect 

thrombophilia and hemophilia, (iv) histological tests which are employed in order to 

examine different types of tissues (e.g., muscle, nervous, epithelial), etc. Laboratory 

results combined with valuable information from medical conditions and medications 

can offer a powerful basis for: (i) understanding the progress of a disease, (ii) dividing 

sensitive populations into sub-groups (i.e., patient stratification), and (iii) evaluating 

existing and/or proposing new treatments, in large scale population studies. Other 
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common parameters that can often be found in clinical datasets include demographic 

information (e.g., age, gender, socioeconomic factors), vital parameters (e.g., heart rate, 

blood pressure), medications (e.g., antibiotics, antiseptics) and medical conditions (e.g., 

Alzheimer, Parkinson), physical and mental conditions, nutrition habits, environmental 

and lifestyle factors [54], among others. 

Other sources of medical data include medical images which are obtained by a variety 

of diagnostic imaging modalities or systems, such as, computed tomography, magnetic 

resonance, optical topography, ultrasound, positron emission tomography, single-

photon emission computed tomography, etc. Advances in surface-rendering and 

volume-rendering methods have led to 3D medical image visualization which has 

significantly improved the quality of image interpretation. Moreover, the rapidly 

increasing spatial resolution of such systems combined with the technical advances in 

medical image processing (e.g., reconstruction, fusion) can significantly enhance the 

diagnostic accuracy and the consistency of the image interpretation by doctors in a 

variety of diseases ranging from heart failure, osteoporosis and diabetes to Alzheimer’s 

disease and cancer [55]. Undoubtedly, computer-aided diagnosis is one of the major 

computer-assisted technologies for medical diagnostics. 

Biosignals comprise another domain of medical data including a variety of biomedical 

signals, such as, (i) electroencephalography (EEG) and (iii) electrocorticography 

(ECoG) which capture the electrical fields that are produced by the activity of the brain 

cells, (ii) magnetoencephalography (MEG) which captures the magnetic fields that are 

produced by the electrical activity of the brain cells, (iv) electrocardiography (ECG) 

which records the electrical activity that arises from the depolarization and 

repolarization activity of the heart, (v) electromyography (EMG) which records the 

electric potential that is generated by the muscle cells, (vi) electrooculography (EOG) 

which records the electric potential generated by the cornea and the retinal activity, etc. 

Biosignals provide high temporal information about a disease’s onset and progress and 

have been employed in a variety of diseases ranging from epilepsy, schizophrenia, to 

heart failure and muscle atrophy [56]–[58]. Biomedical signals are usually combined 

with medical imaging systems (e.g., EEG and MRI) to provide both high spatial and 

temporal information for more effective diagnosis and treatment. The advances in 

biomedical signal processing have made signal manipulation much easier. 
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Figure 3. Sources of big medical data [52]. 

The field of genetics constitutes a vast domain of medical data. Genetic data can be 

generated from high-throughput (next-generation) DNA and RNA sequences. The 

outrageous number of these sequences has created the well-known field of genomics. 

Genetic data are generally of more complex form than the types of medical data since 

they require the use of multiple processing pipelines with unique input. This complexity 

arises from the different formats of the genetic data, such as, the fastq files used for 

RNA sequence analysis, the haplotypes for haplotype analysis, etc. In the last decade, 

genetic data generated from genome-wide association studies (GWAS) have led to 

thousands of robust associations between common single-nucleotide polymorphisms 

(SNPs) and common diseases ranging from auto-immune diseases to psychiatric 

disorders, quantitative traits, genomic traits [59]. 

The recent advances in omics technologies [60], [61], such as, genomics (the study of 

genomic information), transcriptomics (the study of all the RNA transcripts of an 

organism), proteomics (the study of proteins and their interactions), lipidomics (the 

study of lipids, i.e., biomolecules with structural diversity and complexity), and 

metabolomics (the study of the multitude of metabolites) has increased the demand for 

properly annotated and well-preserved biospecimens, which has led to the development 

of the biobanks . Biobanking involves the: (i) collection, (ii) processing, (iii) storage, 

and (iv) quality control of the biological samples along with their associated clinical 

information [62]. Biobanks have been widely used for meeting scientific goals in 

genetic and molecular biology due to their long-term sustainability [62]. 
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1.3. Big data is about sharing 

Why is medical data sharing so important? Imagine what you could do in a medical 

area if you had access to almost all the medical data in this area. To answer this question 

in a realistic way, we will focus on presenting four clinical needs which have been 

identified as of great importance in several cohort studies: (i) patient stratification, (ii) 

identification of new biomarkers and/or validation of existing ones, (iii) new therapy 

treatments, and (iv) development of new health policies. Each of these needs highlights 

the necessity of medical data sharing in promoting research worldwide. As it was 

already mentioned in 1.2, cohort studies can resolve crucial scientific questions related 

to the predictive modelling of a disease’s onset and progress, the clinical significance 

of genetic variants, and the adequate identification of high-risk individuals. Although 

data sharing is valuable for the public, the ignorance of knowing what the denominators 

and the requirements are in a study, leads to contradictory findings. 

Medical data sharing involves all those mechanisms concerning the protection of 

patient’s rights and privacy. It comprises the core of a federated platform since it 

enables the interlinking of medical cohorts worldwide [52], [63]. A data sharing 

framework is responsible for two major functionalities: (i) the assessment of whether 

the data origin and acquisition, as well as, the processes that are undertaken in a 

federated platform fulfill the guidelines posed by the corresponding data protection 

regulations (i.e., the legal aspect), and (ii) the assessment of the quality and 

completeness of medical data (i.e., the data quality aspect) by taking into consideration 

existing clinical domain knowledge and related public health policies. The latter is 

usually referred to as data governance and is related to: (i) the evaluation of data quality 

metrics, (ii) the inspection of the data organizational structure, and (iii) the overall 

information management [64]. 

The data sharing framework constitutes the primary stage prior to the development and 

application of the federated data analytics services. From a legal point of view, a clinical 

center that wishes to share clinical data to a federated platform must provide all the 

necessary ethical and legal documents, prior to any further data manipulation. These 

documents depend on the data protection regulations posed by each party (e.g., 

according to the GDPR guidelines in Europe or the HIPAA guidelines in USA) and 

usually include: (i) precise definition of legitimate interests, (ii) complete data 
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protection impact assessments, (iii) exact purposes of processing, (iv) signed consent 

forms for the processing of personal data from the data subjects, (v) purposes of 

transferring to third parties, (vi) data protection guarantees, and (vii) notifications to the 

data subject about the processing, among many others.  

A federated platform that is responsible for data sharing must first provide complete 

definitions for the primary data collectors and the secondary analysts. Informed consent 

forms for pooled data analysis are also necessary for data analysis through a process 

which is currently referred to as “handshaking” [65]. Ethical issues for data collection 

introduced by different countries inside and outside the EU must also be taken into 

consideration. Moreover, the fear for data abuse and losing the control of the data is a 

crucial barrier towards data sharing. Secure data management and data de-identification 

is thus mandatory for privacy preserving to enable the sharing of sensitive data. 

From the data quality point of view, under the data governance part of the data sharing 

framework lies a fundamental procedure, known as data quality assessment [66]–[70], 

which aims to improve the quality of the data in terms of consistency, accuracy, 

relevance, completeness, etc. Data cleansing [71], [72], also referred to as data curation, 

is a multidisciplinary process which comprises the core of the data quality assessment 

procedure and deals with duplicate fields, outliers, compatibility issues, missing values, 

etc., within a raw clinical dataset. Nowadays, automated data curation is a crucial 

technical challenge for data analysts and researchers worldwide who wish to manage 

and clean huge amounts of data.  

For this reason, emphasis must be given on the development of tools for realizing such 

a concept. In addition, it is important to define a common format for the clinical 

datasets, i.e., a template of pre-defined variables, data ranges, and types, for a specific 

domain, which serves as a model that can be used to develop rules for: (i) matching 

variables across heterogeneous datasets, and (ii) normalizing them where necessary. 

The former is an intermediate step of data harmonization [52], [73], [74] and the latter 

is known as data standardization [75] (CHAPTER 4). 

Several data sharing initiatives have been launched towards the integrity of clinical 

research data [76]–[79]. These initiatives aim at providing frameworks and guidelines 

for sharing medical and other related data. They mainly focus on the transparency of 
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the data collection protocols and the patients’ de-identification process to promote 

medical research worldwide. Most of these initiatives develop publicly available 

gateways in the form of data warehouses, which host data from thousands of highly 

qualified clinical studies worldwide, including prospective and retrospective data from 

clinical trials, case-studies, genome-wide association studies, etc., with the purpose of 

providing access to large amounts of data for scientific purposes. Powerful cloud-based 

systems have been launched, with all the processes (registration, de-identification, 

quality control) being conducted automatically through the web. Thus, the meaningful 

interpretation of the outcomes of studies that make use of such data is reassured due to 

the increased statistical power they offer. Centralized patient databases, however, are 

often prone to data breach and sometimes unable to comply with data protection 

regulations [80]. 

A promising solution to this can be accomplished using multisite databases which serve 

as remote data warehouses that communicate in a distributed manner, giving emphasis 

on the “sharing of information from the data instead of sharing the data themselves” 

[52], [80], [81]. This approach overcomes several data sharing barriers discussed 

previously since the fear for data abuse can be controlled through distributed firewalls 

and individual data monitoring mechanisms. Moreover, the need to transfer sensitive 

data is nullified since an individual researcher can work independently on each site 

through coordinating systems that distribute the commands per site. 

A federated platform should take into consideration several technical challenges. 

Treating patients with respect is a key-factor towards its establishment. Emphasis must 

also be given to the cost scalability over security which is a crucial trade-off, as well 

as, on software and copyright licenses for all the tools that will be employed in the 

platform. Big data monitoring, validation, storage, multidimensional interoperability 

(legal, regulatory) are a few examples of such challenges. 

1.4. Open issues and unmet needs in healthcare 

Under the ages of our rapidly advancing technological era, the vast amount of daily 

generated digital data has led to a scientific breakthrough with huge benefits in many 

fields of our everyday lives including finance, medicine, and industry [4], [82]–[87]. 

The term “big data” has been extensively used to characterize these massively 
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accumulated data sets which are mainly characterized by the four-V’s [4], [82]–[87]: 

(i) volume, (ii) velocity, (iii) veracity, and (iv) variety, where each dimension has a 

unique scope. The “volume” dimension refers to the massive amounts of collected data 

elements whereas the “velocity” refers to the speed of the continuously generated data 

flows. The “veracity” dimension refers to the biases that are introduced during the data 

collection process and the “variety” refers to the different types of data sources (e.g., 

different formats, structural differences). The definition of big data overcomes the 

classic definition of the ordinary datasets, which is only limited to their size (i.e., 

volume). Big data is a promising tool that provides broader and more comprehensive 

insight from large data elements, a fact that greatly enhances their impact in various 

scientific and research areas, especially in healthcare. However, the size of the collected 

data and the speed of the data generation process, combined with the different types 

and the complexity of the big data are crucial challenges that still need to be addressed 

by the scientific community. 

Currently, there are many types of big data in healthcare. More specifically, medical 

big data can be found in the medical imaging domain, where the thin-slice technology 

that has already been adopted by the modern diagnostic imaging scanners (e.g., CT, 

MRI, OCT) is able to capture thousands (>2000 slices) of high-quality (in terms of 

spatial and temporal resolution) slices of different body parts, in a very small amount 

of time. In addition, in the field of genomic analysis, the advances in high-throughput 

sequencing (HTS) technology has led to the next-generation or second-generation 

sequencing (NGS) technology which is able to capture the entire human genome (which 

consists of 30000 to 35000 genes), producing millions of DNA and RNA sequences. 

Moreover, in the field of biomedical signal analysis, the continuous, high-resolution, 

monitoring (e.g., for days or even weeks) of a patient’s physiological, mental, or 

physical activity produces large amounts of recorded waveforms which consist of 

thousands of samples per second. 

The application of big data in healthcare is promising and with many benefits. The vast 

amount of generated data can improve the statistical power of the conventional methods 

for data analytics including data mining and predictive modeling. Furthermore, the big 

data can boost the clinical decision-making process and yield clinical outcomes with 

higher statistical power (i.e., higher scientific impact due to the large number of 
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participating subjects) and improved accuracy [4], [82]–[87]. As a result, the patient 

care will be greatly improved since the patients will avoid the risk of unnecessary 

surgery operations, as well as, the negative implications of unnecessary (or even false) 

drug administration.  

Big data can enhance the performance of the conventional machine learning methods 

and workflows, giving rise to a field that is known in computer science as deep learning 

[1-6] ˙ a modern technique that makes use of multi-layer neural networks that are able 

to capture valuable patterns and associations that are hidden between the large data 

elements, such as, in multi-slice medical images, omics, biomedical signals, etc. For 

example, the high-resolution, multi-dimensional, four-dimensional (4D) medical 

images, such as, the PET images which can capture additional information regarding 

the metabolic effects of a radioisotope apart from the anatomic structure, or the fMRI 

images which can depict the brain activations under a specific physical activity, can 

greatly enhance the accuracy of clinical diagnosis. 

The application of big data in medicine can also enhance the patient stratification 

process according to which straightforward machine learning methods can be applied 

to identify and discriminate high-risk individuals from large populations [4], [82]–[87], 

i.e., groups of patients having high-risk for the development of a type of malignancy, 

such as, lymphoma. This will also yield significant improvements in personalized 

medicine for the selection of appropriate therapies by taking into consideration 

molecular-level health information. Furthermore, the multivariate analysis of large 

population groups can also reveal significant statistical associations between the 

disease’s manifestations and different demographic factors, such as, age, gender, etc., 

and other medication related factors. Moreover, the outcomes from large-scale clinical 

trials and clinical research studies that make use of big data from large populations can 

enable the development of new, low-cost, targeted therapies for chronic and rare 

diseases, as well as, the development of new public health policies towards a global and 

sustainable healthcare system. 

The software advancements towards the development of methods for big data analytics 

is an emerging field. The current software advancements in neuroimaging have led to 

the voxel-wise analysis of hundreds of thousands of voxels (>100000) within the human 

brain yielding large-scale similarity matrices, i.e., brain networks, which are able to 
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simulate the brain activations across different regions of interest (ROIs), yielding 

millions of connections between the voxels [88], [89]. These large-scale networks have 

been widely used to study the brain activation patterns during resting-state or under 

specific physical, as well as, mental tasks [90].  

Furthermore, the analysis of omics big data using high-computing resources can reveal 

important clinical information concerning the genetic variants and cellular 

functionalities in different types of diseases, as well as, assist the development of 

effective drugs with reduced implications in the participating subjects. A great example 

can be found in the field of interactomics [91], where the protein-protein interaction 

(PPI) networks are constructed, on a cellular basis, to study the stable and transient 

interactions among proteins [92]. In addition, in biosignal analysis, the applications of 

deep learning methods for the prediction of disease outcomes have shown significant 

performance yielding high sensitivity and specificity scores in numerous cases, such as, 

the prediction of epileptic events [56]. 

Understanding big data is a difficult and demanding task for researchers and data 

analysts. With the growing number of large volumes of daily generated data from health 

sensors, social media posts, medical images, laboratory tests, electronic patient records, 

blogs, and web pages, the estimated amount of data is expected to overcome the 

zettabyte (1021 gigabytes) and even the yottabyte (1024 gigabytes) [38], [39]. 

Therefore, the development of straightforward software architectures along with 

hardware components and computer-aided tools and systems towards the efficient 

storage, management, quality assessment, high-performance computing analysis, and 

visualization of big data, is a constant and increasing demand. For example, in medical 

imaging, emphasis must be given to the development of methods for big data 

compression (e.g., image compression), registration and mapping of thousands of 

slices, and methods for segmentation of anatomical structures across these slices.  

A scientific researcher who can understand the nature (e.g., the patterns) of big data can 

discover new opportunities for the development of new methods for big data analytics. 

There is no doubt that the benefits of big data in healthcare are many. However, there 

are several technical and clinical challenges that still need to be addressed. The main 

challenge is the fact that the sources of big data are disparate, heterogeneous, and costly, 

a fact that increases the computational complexity of handling large volumes of data, 
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as well as, hampers the application of traditional statistical and machine learning 

methods for big data analytics. In addition, the big data are often incomplete with 

several discrepancies due to the lack of a global protocol for big data acquisition.  As a 

result, data standardization methods need to be adopted to overcome this structural 

heterogeneity. Moreover, the big data are difficult to manage due to their size and 

structural complexity. Furthermore, the risk of data misuse is increased in big data with 

the data quality assessment process being a significant challenge along with the lack of 

the researcher’s skills that might hamper the quality of the data yielding unreliable 

outcomes. The big data are often prone to the existence of missing values and 

measurement errors throughout their context which pose significant obstacles towards 

their effective analysis. As a result, the irrational use of machine learning methods for 

predictive modeling in large datasets might lead to false outcomes, with no clinical 

importance at all. 

There are also privacy issues that lurk behind the use of big data [38], [80]. Ethical and 

legal issues must be carefully taken into consideration during the collection and 

processing of big medical data from multiple data sources. Since the big data are large 

collections of patient data, it is difficult and even impossible to obtain signed informed 

consent forms from every single patient. In addition, the large volume of medical data 

shall not be stored in centralized databases since the risk for data abuse is greatly 

increased. Therefore, the data should be stored in cloud environments which are 

compliant with data protection regulations and should be collected under appropriate 

data protection agreements based on international privacy and protection standards. The 

researchers and data analysts must be fully aware of the data protection regulations 

during the collection and processing of the data. Furthermore, there is an increased 

necessity towards the development of machine learning methods for analyzing data that 

are distributed in multiple sites, a fact that remains a great challenge (see CHAPTER 6 

for methods that deal with data analysis across federated databases). 

1.4.1. Data security and data protection 

1.4.1.1. Legal and ethical barriers 

The backbone of data governance lies on the legal and ethical compliance (with the 

requirements that are posed by the existing data protection legislation) that any entity 
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(e.g., an organization), which wishes to get involved in the processing of personal data, 

must meet. A federated platform however faces significant ethical and legal compliance 

challenges which directly affect the privacy of personal data. Towards this direction, 

strict legal and ethical requirements [93]–[98] must be adopted by the data protection 

laws to ensure the privacy during the inner (i.e., within the entities of a country) and 

outer (i.e., between the entities of a country and the entities of a third country) personal 

data flows, including the following: 

▪ The individuals’ personal data must be processed with respect to the individual’s 

rights and freedoms. 

▪ Individual consent forms must be obtained by anyone who wishes to process 

personal data according to the purposes of processing. 

▪ The individual must be informed about all types of processing which involve his/her 

personal data and provide his/her informed consent according to the consequences 

(i.e., the risks) that might arise because of the processing of his/her personal data. 

▪ This comprises a strict requirement which involves the participation of the 

individuals in the processing of their data. 

▪ The individuals must be given the right to: (i) access, rectify, and erase their 

personal data, (ii) object and restrict the processing of their data, and (iii) request to 

obtain their data when they wish to do so. 

▪ The risks behind the processing of the individual data (i.e., risk assessment) must 

be clearly stated. 

▪ Any cross-border data flows involving sensitive data must be subject to 

international legal requirements and data protection principles which require the co-

operation of international supervised authorities. 

▪ The sensitive data must not be transferred to third countries (parties) without the 

fulfillment of adequate data protection requirements and principles under the 

international data protection regulations. 
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▪ The existence of any third parties must be clearly defined in the related contracts 

and rules of conduct, along with any natural or legal person who is authorized to 

collect the data and further manipulate them. 

All the entities must describe any measures to be taken to comply with the above 

requirements. In any other case, strict legal sanctions and ethical ramifications will be 

issued against such entities. 

1.4.1.2. Patient privacy issues 

The term personal data includes a variety of personal identifiers that can either directly 

or indirectly lead to the identification of the individual by any processing entity. 

Nowadays, the number of personal identifiers has been greatly increased due to the 

rapid digital advancements.  

These personal identifies not only include, names, telephone numbers, license numbers 

and social security numbers but also email addresses, biometric identifiers, bank 

account numbers, Internet Protocol addresses and other unique digital identifiers [93]–

[100]. The following privacy issues [93]–[98] shall be considered to protect the 

individual’s identity: 

▪ Personal data must be de-identified by either pseudonymizing or anonymizing 

them. Anonymization involves the complete removal of any information that can 

lead to the identification of the individual whereas pseudonymization involves the 

partial removal of the individual data with an additional storage of information that 

can indirectly lead to the identification of the individual (e.g., an identifier). 

▪ Only a small portion of the individuals’ data must be processed according to the 

purposes of processing. 

▪ Common international standards and definitions must be introduced for the terms 

data anonymization and data pseudonymization to avoid any confusion during data 

collection and data processing. 

▪ It must be clearly defined who is responsible for data collection (i.e., the primary 

data collectors) and data processing (i.e., the secondary analysts), as well as, the 

existence of any involved third parties. 
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▪ Researchers and analysts must be well-qualified with appropriate expertise in data 

protection to avoid data embezzlement and data misuse that might harm the 

individual. 

▪ Audit trails are necessary so that the individuals can see who accessed their medical 

records. In the case of a patient privacy breach, the involved patients must be 

directly informed by the related authorities. 

▪ All the data processing operations must be transparent and fair according to the 

individuals’ rights. 

▪ Strict data protection protocols are needed to avoid unauthorized surveillance and 

prevent data breach. 

▪ Law enforcement agencies need to be involved in the out-of-border tracking of 

personal data flows. 

1.4.1.3. Technical limitations 

The technical limitations are like the technical challenges of a federated platform in the 

basis of data sharing and data protection [101], [102]. Those limitations include the 

following: 

▪ Secure mechanisms for user access management and multiple-factor user 

authentication services. 

▪ Secure and encrypted communication mechanisms for the collection and 

transmission of personal data. 

▪ Secure private data layers within the cloud for the storage of personal data (in 

remote private spaces). 

▪ Effective de-identification mechanisms through the construction of unique 

identifiers per patient. 

▪ Efficient methods for reducing the information that is needed during the processing 

of personal data. 
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▪ The “bring the analysis to the data” design where the sensitive data are stored in 

remote private spaces. 

▪ Batch-based processing mechanisms (i.e., distributed methods for data analytics), 

especially when the personal data are stored in de-centralized databases where 

secure communication is necessary. 

▪ The data shall be made always available which is a fundamental principle of data 

sharing in federated platforms. 

▪ Data availability, i.e., the reuse of personal data, promotes scientific research, 

worldwide. 

▪ Automated error recovery mechanisms when the operating system fails to respond 

to any kind of functionality and especially when the operating system loses the 

control of the data, e.g., in the case of a data breach. In the latter case, supervised 

government authorities must be properly informed. 

▪ Automated mechanisms for assessing and crosschecking the quality of the data (i.e., 

data curation). The data must be accurate, up-to-date, relevant, adequate, complete 

and in a readable form. 

▪ Digital forms to upload personal consent forms through highly remote secure 

systems. 

▪ Continuous monitoring of the data input and export processes along with the 

logging and processing. 

▪ Scalability and interoperability of the federated platform that accounts for data 

sharing and international data protection regulations.  

o The interoperability factor includes legal, regulatory and application issues. 

The scalability factor involves efficient resource management (e.g., IT 

infrastructure).  

o Pooled (centralized) analysis must be supported only when informed 

consent forms are employed. 
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1.4.1.4. Other aspects 

The significant challenges that a federated platform can face towards its compliance 

with the data protection regulations involves additional multidimensional aspects, 

including: 

• The heterogeneity of the data protection laws across different countries, i.e., the 

existence of legal and ethical inequalities across developed and developing 

countries, as well as, ethical issues during the data collection process which is 

introduced by different countries. 

• The heterogeneity of the data protection protocols across international laboratories 

and institutions. Different entities have different legal and ethical regulations 

regarding the data collection process. 

• Additional bioethical regulations in the case of genome-wide studies must be taken 

into consideration. The health policies regarding the processing of genetic data are 

usually stricter and harder to follow. 

• The negative implications of big data in privacy protection (e.g., the use of big data 

for the identification of individuals using information from the social media or any 

other information from the internet). 

• The negative effect of centralized data warehouses in the case of data breach. It is 

easier for the hackers to breach centralized data repositories instead of distributed 

data repositories where the access to the rest of the repositories can be blocked in 

the case of data breach in a specific repository. On the other hand, distributed data 

repositories pose significant computational challenges. 

• The existence of potential data obscuration/aggregation mechanisms in the form of 

malicious software. These mechanisms can be uploaded in the form of an ordinary 

software and cause serious leaks. 

• The early-detection and prevention of personal data information leaks in large-scale 

platforms. Large-scale platforms might be hard to breach but a successful attempt 

can have serious consequences. 
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Ineffective tracking of entities which falsely claim to be compliant with the data 

protection regulations. This is a serious issue which led to the repeal of the Safe Harbor 

[103] data protection agreement between the EU-U.S., in 2016, regarding the existence 

of secret unauthorized surveillance programs and the lack of data protection during the 

transatlantic data flows from the EU to the entities that lie within the U.S. 

1.4.2. Lack of data quality 

Data quality assessment has been characterized as a key factor for achieving sustainable 

data of great quality in various domains varying from finance to healthcare [66], [67], 

[69], [71], [104], [105]. Lacking data quality results in bad data manipulation which 

makes data useless and has numerous negative effects on further processing. Thus, 

emphasis must be given on the development of proper mechanisms for data quality 

assessment. The latter lies under the well-known data governance part of a data sharing 

system. Data cleansing, also referred to as data curation [66], [67], [69], [71], [104], 

[105], comprises the core of the data quality assessment procedure. It aims to transform 

a dataset into a new one that meets specific criteria according to pre-defined quality 

measures. Examples of data quality measures include: (i) accuracy, (ii) completeness, 

(iii) consistency, (iv) interpretability, (v) relevancy, and (vi) ease of manipulation, 

among many others [106]. Data curation can be also used as a diagnostic tool for 

marking problematic attributes that exhibit incompatibilities (e.g., unknown data types, 

missing values, outliers). In this way, data curation can guide the clinician for fixing 

missing clinical misinterpretations which are not easy to be automatically detected, 

especially when fixing missing values. 

Automated data curation overcomes the complexity of processing huge amounts of 

medical data and can be easily scalable in contrast with traditional manual data curation 

which is not feasible in the case of big data management. However, clinical evaluation 

is necessary to ensure the reliability and applicability of automation. Data curation can 

be seen as a sequential process, i.e., a series of methodological steps, which involves 

functionalities for curating both prospective and retrospective data. Mechanisms for 

curating retrospective data include: (i) the detection and elimination of duplicate fields 

(i.e., de-duplication), (ii) the characterization of data according to their context (i.e., 

data annotation), (iii) the identification of duplicate fields with highly similar 

distributions (i.e., similarity detection), (iv) the transformation of data into standardized 



22 

 

formats (i.e., standardization), (v) dealing with missing values (i.e., data imputation), 

and (vi) outlier detection for detecting values that deviate from the standard data range. 

Mechanisms for curating prospective data can be incorporated in the form of check 

constraints. 

So far, it is clear that data sharing is indeed a benefit for the public good since it enables 

the interlinking of out-of-border medical and other related data, as well as, the reuse of 

these data and thus promotes scientific research worldwide. The strong demand for 

biomedical research and innovation, as well as, the existence of a smart healthcare 

system for disease surveillance and prevention are a few of the clinical unmet needs 

that data sharing has been proven to fulfill. However, apart from the fear for data abuse 

and the privacy laws, which constitute the two main significant barriers towards data 

sharing, there is still one significant concern that can make data sharing harmful; and 

that is data misuse [107]. The misuse of shared data has bad consequences and is many-

sided. In this section, we will discuss the reasons behind the misuse of shared data, as 

well as, propose solutions for overcoming the fear regarding the misuse of shared data. 

• Absence of real evidence: The researcher must make clear the reason behind data 

sharing, as well as, state the ensuing opportunities. The absence of real evidence 

hampers the data sharing process and produces the exact opposite outcomes. Thus, 

emphasis must be given to the purpose of data sharing. 

• Lack of data quality control: Prior to the analysis of the data, it is of primary concern 

to assess the quality of the data, i.e., to curate the data. However, the misuse of 

methods for data curation introduces biases during the analysis which yields false 

outcomes. Two of data curation’s important functionalities are the outlier detection 

and the data imputation. If a researcher performs data imputation prior to outlier 

detection, the dataset is very likely to be contaminated with false values (outliers) 

and thus will become useless. On the other hand, the outlier detection methods 

might identify mathematically correct extreme values but without any clinical 

interpretation. Therefore, the clinician’s guidance is necessary not only to validate 

these findings but also to deal with missing values so as to avoid data contamination. 

• Lack of the researcher’s skills: The lack of knowledge regarding the hypothesis of 

a study makes the study pointless. A researcher must first state the hypothesis under 
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examination and then develop tools towards this direction. In addition, the 

researcher must be well aware of the scientific advances in the domain of interest, 

as well as, the software and tools that meet the specifications set by the hypothesis. 

Only high-quality researchers who are aware of data quality problems and causal 

inference methodologies are more likely to produce reliable outcomes [108]. In 

addition, the public health policy makers and decision makers might be too 

credulous sometimes, especially when the outcomes of a study involve large 

databases. As a matter of fact, the availability of big data does not always guarantee 

correct study outcomes, which yields another question here: Is bigger data always 

better? 

• Ignorance of the data collection protocols: Not knowing the population 

characteristics of a study introduces many biases during the analysis procedure and 

produces false outcomes. In general, there are three types of biases which affect 

observational studies: (i) the selection bias, (ii) the confounding bias, and (iii) the 

measurement bias. The selection bias appears when the selected group of 

individuals for a particular study is not representative of the overall patient 

population [107]. Another appearance of this bias can be met in causal-effect 

studies, i.e., studies that involve the validation of a drug’s treatment (benefit or harm 

effect on individuals). In this type of study, if a variable has a common effect on 

both the treatment/exposure factor and the outcome factor, it is considered as a 

collider-bias, which is also known as “M-bias” [107]. An example of this type of 

bias occurs when a patient’s follow-up data is lost either because the patient’s 

treatment is harmful (treatment factor) or because the patient’s treatment is good 

(outcome factor). The lack of such information yields false statistical associations 

between these two factors and introduces distortions on the true causal effect [107]. 

Selection bias introduces distortions (e.g., false positives) in the outcome measures 

which hampers the disease prevalence and the risk exposure yielding false data 

models for patient stratification. It is, thus, important to appropriately adjust these 

types of variables during statistical analyses for obtaining true causal estimations. 

Confounding bias, which is also met in causal-effect studies, is even worse than 

selection bias. A confounding variable is a variable which has a common cause on both 

the treatment/exposure and the outcome rather than a common effect [107]. A typical 
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example of confounding occurs when a clinician’s decision is affected by a patient’s 

disease severity or duration which in turn affects the treatment’s outcome. Patients at 

an earlier stage of a disease receive different treatment than those in a later stage of the 

same disease whereas sicker patients may have worse treatment outcomes than the 

healthy ones. In this example, the confounding variable is the degree of sickness that is 

exhibited by the patients that receive different treatments. Such types of variables must 

be identified and properly adjusted. 

Finally, the measurement bias is a widely known bias which arises from errors during 

the data measurement and collection process. The main reasons behind measurement 

bias are the following: (i) improper calibration of the measurement systems, (ii) lack of 

the measurement system’s sensitivity, (iii) lack of the physician’s expertise during the 

data measurement process, (iv) lack of a patient’s trust and confidence during a 

questionnaire competence, and (v) patient’s medical state (e.g., dementia). 

• Ignorance of the privacy laws and ethics policies: The lack of knowledge regarding 

the data protection legislations has severe consequences concerning the patients’ 

privacy and obscures data sharing. This factor has nothing to do with the biases in 

the outcomes of a study or the strategy used for data analytics rather than the privacy 

legislations breached by the study. The patient data must be first de-identified and 

qualified by appropriate scientific advisory boards. The de-identified data must be 

maintained in secure databases with private networks undergoing strict 

authorization procedures. 

• Poor use of the available data: This has to do again with the skills and expertise of 

the researcher. The lack of data management and domain knowledge from the 

researcher’s point of view results to misconceived analyses with extremely harmful 

results for the public. 

• Different interpretations of the same outcome: This is a common mistake which 

underestimates the findings of a study. Clinical centers and laboratories worldwide, 

make use of different measurement systems and units for characterizing a patient’s 

laboratory test. For example, a typical hemoglobin test may be recorded by a clinical 

center A in “mg/mL” whereas a clinical center B might record it in “g/dL”. 

Moreover, the thresholds for characterizing the test’s outcome might vary, e.g., the 



25 

 

clinical center A may consider a hemoglobin value of 15.5 “g/dL” as the threshold 

above which the hemoglobin levels are abnormal whereas clinical center B may 

consider a value of 17.5 “g/dL”. A solution to this is to include a new variable which 

states whether the hemoglobin levels are normal or abnormal. Standardization is 

thus important for the normalization of common terms across heterogeneous data. 

1.4.3. Heterogeneity across medical data 

The heterogeneity of data among biobanks, cohorts, and other sources of medical data 

is a critical scientific limitation which poses significant obstacles in the effective 

analysis of such data, yielding clinical studies with poor statistical power and, thus, 

inaccurate disease outcomes [52], [73], [109]–[111]. In computer science, data 

harmonization is an emerging technique which aims to overcome the structural 

heterogeneities that are present among the medical data derived from multiple sources 

by producing homogenized versions of the heterogeneous data that share a common 

medical domain (context). The overall idea of data harmonization is to transform the 

heterogeneous data into a common format with the exact same parameters and range 

values, using data-driven, and other computational approaches, such as, lexical, and 

semantic matching, to enable the integrative analysis of the heterogeneous data and 

therefore, enhance the statistical power of the clinical studies which make use of such 

data. To this end, data harmonization can enable the interlinking and subsequent 

integration of clinical data to deal with the unmet needs in various diseases. 

The lack of a standard reference model often obscures the harmonization process, 

making the adoption of most of the data harmonization methods difficult to be 

implemented. In addition, the medical terms and the acronyms that are often adopted 

by the majority of the clinical centers during the data collection process are difficult to 

be parsed and sometimes unable to be matched with standard medical terms and indices 

(e.g., the use of the acronym “HGB” instead of “hemoglobin” or “haemoglobin” or any 

other use of acronyms during the definition of the attributes), a fact that obscures the 

accuracy of the harmonization process due to the underlying information loss. A 

solution to this would involve the clinician’s effort during the terminology mapping 

process so that he/she would be able to verify the validity of the terms that were marked 

as homogeneous. On the other hand, the absence of timestamps during the collection of 

prospective data, as well as, the existence of erroneously parsed fields during the data 
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collection process are additional factors that obscure the structural alignment process. 

Therefore, the application of a data curation workflow is an important pre-

harmonization requirement to fix problematic fields (e.g., outliers, incompatibilities, 

unknown symbols) that are present within the original data. 

The lack of terminology descriptions along with the absence of information regarding 

the meaning of the range values on each attribute, especially in the case of attributes 

with categorical values, hamper the data standardization process. For example, a 

clinical center may record the state of a medical condition using the coding term 

“normal” or “abnormal”. Another clinical center can record the same condition using 

the binary values 0 and 1, respectively. This knowledge should be clearly indicated 

prior to the harmonization process. A similar example occurs when a clinical center 

records the levels of a laboratory measure as “low”, “normal” or “high”, whereas 

another center may use the values 1, 2 and 3, respectively, to indicate these 

measurement levels and another one may use the terms “low”, or “high”, skipping the 

“normal” level. These again are important factors that should be taken into 

consideration prior to the harmonization process. As for the attributes with continuous 

values, the measurement units (or normalized units) should be clearly stated. For 

example, a clinical center may record a laboratory measure in “mg/mL” whereas 

another clinical center may record the same value in “mg/dL”, “μmol/L” or “g/L”. 

So, what if the parameters which are present in the standard template are not 

representative or limited to only a small portion of the domain’s knowledge? This is a 

critical limitation that enhances the loss of information during the harmonization 

process and specifically during the terminology mapping process. For example, a 

retrospective dataset may include a set of 100 attributes whereas the standard model 

may only include a set of 50 related parameters, where the relevance of an attribute is 

trivial since a medical condition (e.g., cryoglobulinemia) can be followed by a set of 

related symptomatology (e.g., fever, weight loss). One way to reduce this type of 

information loss is to define a semantic representation of the standard model, where 

each parameter is assigned to a category (or class). In the previous example, the 

parameters “fever” and “weight loss” can be assigned to the category 

“symptomatology”. A similar example occurs in the case where a clinical dataset 

includes more than one demographic-related parameters (e.g., education level) and/or 
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laboratory tests (e.g., blood tests) that could be parsed in the categories “Demographics” 

and “Laboratory tests”, respectively. If any detected symptomatology is assigned in the 

homonymous category, instead of being ignored, then the overall information loss 

would be greatly reduced. 

The majority of these barriers can be overcome in the case of the prospective data 

collection process where the prospective data can be recorded through appropriate 

digital data entry forms that already include these standard measurement units and 

range values, as well as, the terminologies for each type of attribute. The data entry 

form can be used as a standard template like the one which is used in the case of the 

retrospective data harmonization process. In all cases, the scope of harmonization 

should be well-defined. However, apart from the technical challenges that are met 

during data harmonization, the most prominent factor that facilitates data 

harmonization is the establishment of a legitimate environment that enables the sharing 

of data from multiple data sources. Data harmonization is in line with data sharing and, 

thus, the lack of a legitimate data sharing mechanism would make data harmonization 

pointless. 

The platform must support efficient web communication for faster data transfer. Most 

importantly, the platform must offer effective de-identification mechanisms through the 

construction of unique identifiers per patient (e.g., hash keys). In addition, the metadata 

must be followed by an expiration date for security reasons. The data must be stored in 

secure private repositories and the access should be controller through multiple-factor 

authentication systems. Informed consent forms must be requested in the case of pooled 

data analysis in order to overcome the fear for data abuse. Any data transfer within the 

platform must be tracked down by proper system monitoring and log mechanisms 

including audit tables which record the date, the time, and additional information 

regarding the user’s access to the stored data. 

All operations within the cloud must take place in secure virtual private networks for 

ensuring the confidentiality during the transfer of sensitive data. Data security 

comprises the biggest barrier of cloud computing. The lack of data security results to 

data leakage, data abuse, loss of data integrity and control over the hosted data and the 

cloud applications. To deal with such issues, OAUTH-type authorization frameworks 

must be adopted to ensure secure user authentication and access management and 



28 

 

secure access to the information and services of the platform. The flow of sensitive 

information outside the platform (e.g., user credentials) must be encrypted and 

decrypted through Secure Sockets Layer (SSL)/Transport Layer Security (TLS) 

protocols using public decryption keys and private encryption keys. The inner 

information flows are performed through secure firewalls and virtual private networks 

which enhance the reliability of the platform and ensure a highly secure information 

transfer. 

1.4.4. Lack of population size 

Nowadays, the lack of access to open, secure, interoperable, and transparent health data 

hubs poses significant obstacles to researchers and innovators, such as, SMEs, and 

healthcare stakeholders towards the deployment of trustworthy data analytics 

workflows for synthetic data generation, data anonymization and AI modeling to 

promote wellbeing, diagnosis, disease prevention, progression, and treatment. This has 

led to an emerging need for the development of high-quality synthetic data generators. 

The reduced amount of available training data [112], particularly in rare diseases (e.g., 

primary Sjögren’s Syndrome), where the population size is inadequate and the quality 

of data is low [113] highlights the emerging need for the development of high-quality 

synthetic data and robust generative models to address the challenges of today, such as, 

data confidentiality and data augmentation. Moreover, the financial burden of 

expensive drugs leverages the orchestration of viable Phase II/III clinical trials (CTs) 

[114]–[116], as well as, the identification of predictors for disease prevention, 

diagnosis, progression, treatment, decision-making in common diseases, such as, type-

2 diabetes and Alzheimer's disease.  

Furthermore, the in-applicability of secure, cryptographic techniques [117] that can 

facilitate the interconnection of decentralized clinical data registries and cohorts 

obscure the successful deployment of (AI)-powered workflows. As a matter of fact, the 

aforementioned factors have a significant negative impact in the capacity of the existing 

healthcare systems, where the costs and delays for treatment and re-admission are 

already high. In addition, although the existing data anonymization algorithms incur 

high levels of information loss, patient privacy is not guaranteed given that the 

protection of sensitive patient data is considered a fundamental right [118]. Moreover, 

since the most common strategy for knowledge distillation is based on integrative data 
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analysis from multiple dispersed clinical registries and cohorts [119], the collection of 

sensitive data out of premises is not feasible, due to GDPR (General Data Protection 

Regulation) violations during the sharing of patient data [120]. 

1.4.5. Data silos undermining the deployment of AI models 

Centralized databases are less complex and convenient. The data management and 

maintenance process are easier since the data are gathered in a unified form. However, 

centralized databases are not reliable since all the data can be compromised and abused 

in the case of an attack and thus lacks crucial security measures. This security issue is 

reduced in distributed databases, since an attack to a specific local DBMS node can 

cause the rest of the local DBMS nodes to lock down the access to their connected 

databases and, thus, provide a moderate data security level. This is also present in de-

centralized databases, where a malicious attack on a single node does not compromise 

any of the rest nodes and thus accomplishes high security levels. In addition, in the case 

of an error in a single node, the data can be removed from the problematic node to 

another node, for safety purposes. This can be also applied in distributed databases but 

at a higher level since the data from the single nodes can only be moved through their 

corresponding local DBMS nodes.  

Furthermore, the recovery rate in a centralized database is small since a query (e.g., a 

search operation) must be executed on the whole database whereas in distributed 

networks, the query is distributed to smaller portions of data (subsets or batches) where 

the execution is faster. In addition, a centralized database cannot be easily expanded 

due to their low scalability whereas the distributed and de-centralized databases can be 

easily expanded due to the high scalability they offer. On the other hand, distributed 

databases are more complex than centralized databases since the former require 

continuous communication with the local DBMS nodes to send the queries and receive 

the results. This complexity is largely increased in de-centralized networks where the 

communication needs grow exponentially. 

1.4.6. AI model explainability and interpretability 

Nowadays, there is an emerging need to provide explainable and trustworthy AI models 

which envisage to shed light into the backbone of the decision-making process and the 

interpretability of the identified risk factors rather than focusing only on the 
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classification performance of the AI models in terms of accuracy, sensitivity, 

specificity, and area under the curve, among others.  

An AI model must be designed to fulfill a set of seven fundamental requirements to 

prove its trustworthiness in terms of compliance with the four ethical principles of 

[121]–[123]: (i) respect for human autonomy (the AI systems should be designed to 

empower human congestive and social skills), (ii) prevention of harm (the AI systems 

should be designed to protect the human dignity by being safe and secure), (iii) fairness 

(the AI systems must be developed and deployed in such a way to increase societal 

fairness), and (iv) explicability (the processes that are implemented by the AI system 

must be transparent in terms of traceability and auditability). The seven requirements 

include the following [121]–[123]: (i) accountability, (ii) privacy and data governance, 

(iii) societal and environmental wellbeing, (iv) technical robustness and safety, (v) 

human agency and oversight, (vi) diversity, non-discrimination and fairness, and (vii) 

transparency. These principles are further explained below. 

▪ Accountability has to do with the responsibility of the outcomes of the AI system 

during their development and after their deployment in terms of auditability, risk 

minimization and respect to the fundamental rights. 

▪ Privacy and data governance has to do with the quality of the data in terms of 

relevance, completeness, integrity, as well as, the fulfillment of the data protection 

legal and ethical requirements for data sharing.  

▪ Societal and environmental wellbeing involves the development of a sustainable 

and environmentally friendly AI system.  

▪ Technical robustness and safety involve the prevention or risks and the 

minimization of any unacceptable harm.  

▪ Human agency and oversight involve the support of the human autonomy and 

oversight through decision-making.  

▪ Diversity, non-discrimination, and fairness involves the avoidance of biases and 

the adoption of a global design for accessibility.  

▪ Transparency ensures the traceability, explainability and human interaction of the 

AI system. The current thesis considers all the relevant advances in AI model 

explainability. The SHapley Additive exPlanations (SHAP) method [124] is widely 

used to quantify the contribution of each feature to the classification outcome.  
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The Shapley values provide contrastive explanations of the classification outcomes 

which can be utilized to reveal local interpretations for the given features. These 

explanations are based on the classification outcomes from specific training and testing 

instances. Moreover, the Shapley values preserve the properties of efficiency, 

symmetry, and additivity which are the fundamental properties during the evaluation of 

any feature importance score. 

1.5. Contribution of the thesis 

The current dissertation is dedicated to the design, development, and deployment of 

beyond the state-of-the-art workflows that can be used to address open issues and unmet 

needs in healthcare. Examples of open issues in healthcare, include: 

▪ the lack of data quality, 

▪ the underlying data heterogeneity and complexity, 

▪ the development of semantic data models that can reflect the domain knowledge, 

▪ the lack of sufficient population for disease modeling, particularly in rare diseases, 

▪ the inability to integrate data into a centralized repository for AI modeling, and 

▪ the design of federated AI workflows for AI modeling across multiple databases. 

Examples of unmet needs in healthcare, include: 

▪ the early detection of high-risk patients, 

▪ the accurate prediction of an event (e.g., a disease or a condition), 

▪ the discovery of new digital biomarkers, 

▪ the explainability of the identified digital biomarkers, 

▪ the explainability of the AI models in healthcare. 

By taking into consideration these issues and needs in healthcare, the current thesis has 

been built on top of four fundamental pillars which shift the current state of the art in 

data curation, data harmonization, synthetic data generation and federated/distributed 

learning, as presented next. 

▪ Pillar 1: Data sharing and data curation. We propose a fully automated 

framework for medical data curation to enhance the quality of the data in terms of 

completeness and conformity. The framework serves as a diagnostic tool for 
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managing incomplete terminologies, irrelevant terms, outliers, missing values, data 

categorization, and duplicated terms. We developed a “smart” data imputation 

approach based on optimal virtual profile matching to address data incompleteness 

across complex clinical data structures. In this work, we extend data standardization 

as a pre-harmonization process to make data harmonization easier and faster. More 

specifically, we use lexical matching combined with model-based rules and external 

sources, i.e., vocabularies, to match and classify terms according to a pre-defined 

reference model which is a set of parameters which describe the requirements 

(variables with their types and ranges) of the clinical domain of interest. Through 

this procedure, we attempt to produce semantic relations between the fields of the 

raw dataset with those from a reference model and therefore enhance the semantic 

matching process for data harmonization. The proposed framework accounts also 

for data standardization since it can produce a set of semantic relations through a 

rule-driven approach that is developed based on a pre-defined reference model and 

captures important semantic relations which enable faster data harmonization. In 

addition, the framework can be easily adjusted with new rules according to a 

provided reference model that describes the clinical domain of interest. 

▪ Pillar 2: Data harmonization. We propose a hybrid data harmonization workflow 

which adopts an automated strategy that combines lexical analysis with semantic 

models (ontologies) to identify terminologies with lexical and conceptual overlap. 

The proposed approach is based on the definition of a reference semantic data model 

(reference ontology) for the domain of interest. A medical corpus is then defined by 

interlinking FHIR compliant terminologies from the SNOMED-CT and the ICD-

10/11 under the OHDSI Athena vocabulary. Synonyms of the reference ontology 

are also harnessed by the NLTK toolkit to further enhance the medical corpus with 

ontology-oriented terminologies. The lexical and semantic analyzers are applied on 

top of the medical corpus to automatically align the terminologies of the raw data 

with those from medical corpus, at a metadata level. The coherence is calculated to 

quantify the lexical and semantic overlap of the identified terminologies. 

▪ Pillar 3: Synthetic data generation. We propose a hybrid synthetic data generator 

which focuses on the optimal estimation of the Gaussian components in the BGMM 

algorithm to yield concrete estimations of the VI at reduced computational 

complexity for large-scale synthetic data generation (we refer to this approach as 

BGMM with Optimal Components Estimation: BGMM-OCE). To do so, we first 
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apply spectral clustering based on the Locally Optimal Block Preconditioned 

Conjugate Gradient (LOBPCG) method to identify the best clustering solution as 

the one with the highest Davies Bouldin score (DBS) at small complexity. Then, 

we set the optimal number of clusters as the number of Gaussian components, and 

we define an exponentially decaying gamma value. 

▪ Pillar 4: Development and deployment of machine learning workflows across 

distributed/federated environments. We propose a federated AI model 

deployment framework to ensure the trustworthiness of the AI modeling process 

across federated databases. We extended conventional supervised machine learning 

implementations to support federated learning, such as, the federated multinomial 

naïve bayes (FMNB), the federated stochastic gradient descent-based algorithms 

(FSGD) (e.g., logistic regression, support vector machines), and the federated 

gradient boosting trees (FGBT) with dropout rates (FDART). We developed the 

federated hybrid boosted forests (FHBF) algorithm which implements a hybrid 

weight update approach to deal with ill-posed problems that arise from overfitting 

effects during the training across complex and highly imbalance data in federated 

databases. A scale parameter is introduced to control the shape of the hybrid loss 

function based on the dropout rate to avoid overfitting effects. The FHBF currently 

supports both the hybrid FGBT (HFGBT) and the hybrid FDART (HFDART) as 

boosters. Class imbalance handling functionalities are incorporated to develop 

clusters of HFDARTs, where each cluster is formulated based on a random subset 

of the federated training instances. Then, a log loss score is used to isolate the weak 

sets of regression trees to further boost the classification performance of the 

algorithm and increase its resilience against weak decisions. We placed particular 

emphasis on SHAP analysis to yield explainable outcomes. Distributed 

implementations of these algorithms are also supported. 

Data sharing, data curation and data harmonization are three fundamental pillars that 

envisage to break down data silos and promote data interoperability. One of the aims 

of the current dissertation is to shed light into these pillars to understand the clinical 

need for medical data sharing, data curation and harmonization along with the related 

technical challenges lurking around it. Resolving privacy issues is an important part of 

this effort which emphasizes the need to safeguard patients' rights before any data 

manipulation. In addition, the present dissertation presents beyond the state-of-the-art 
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methods to enhance the quality of raw data and overcome data heterogeneity between 

complex clinical data structures. Data sharing, combined with data harmonization, is a 

powerful tool that provides the ability to collect and harness knowledge from 

heterogeneous data across different clinical databases to extract homogeneous data 

structures that can increase the statistical power of the clinical studies that make use of 

such data. The lack of population size combined with the lack of open data and the 

reduced predictive performance of the existing AI models can be addressed using high-

quality syntenic data with increased convergence with the real data under the aegis of 

data augmentation.  

Furthermore, the recent technological advances in federated/distributed learning 

algorithms in conjunction with existing data mining algorithms will provide the 

scientific community with the opportunity to better understand the fundamental basis, 

clinical needs, and functionalities of a federated architecture to break down data silos 

and promote research. These unmet needs are related to patient stratification for the 

early identification of high-risk individuals considering various clinical laboratory 

factors, as well as, the identification of risk factors that can serve as potential predictors 

for disease progression. 

To this end, the current dissertation aims to answer the following eight research 

questions. These questions have been thoroughly investigated across six core case 

studies, in six different domains: (i) in autoimmune diseases (AD) for the primary 

Sjogren’s Syndrome, (ii) in hypertrophic cardiomyopathy (HCM), (iii) in systemic 

autoinflammatory diseases (SAIDs) for the Kawasaki disease, (iv) in COVID-19, (v) in 

cardiovascular diseases (CVD), and (vi) in mental disorders (MD), to promote the 

technical and clinical impact of this thesis. 

Q1. How can we share sensitive patient data from multiple dispersed databases? 

A1. Related Pillar(s): 1. Case Study: AD. 

Q2. How can we automatically improve the quality of medical data? 

A2. Related Pillar(s): 1. Case Studies: AD, HCM, COVID-19, SAIDs, CVD, MD. 

Q3. How can we sufficiently describe the domain knowledge of a disease of interest? 
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A3. Related Pillar(s): 2. Case Studies: AD, CVD, MD. 

Q4. How can we automatically deal with data heterogeneity across diverse databases? 

A4. Related Pillar(s): 1, 2. Case Studies: AD, CVD, MD. 

Q5. How can we enhance the population size of a database? 

A5. Related Pillar(s): 3. Case Studies: AD, HCM. 

Q6. Is data augmentation effective in disease modeling? 

A6. Related Pillar(s): 3. Case Studies: AD, HCM. 

Q7. How can we apply federated learning with resilience against overfitting effects? 

A7. Related Pillar(s): 4. Case Study: AD. 

Q8. How can we enhance the explainability of the AI models and identify high-risk 

subgroups? 

A8. Related Pillar(s): 4. Case Studies: AD, SAIDs, COVID-19. 

1.6. Structure 

The thesis is structured as follows: 

Chapter 1 is an introductory chapter which aims to familiarize the reader with the 

fundamental principles and concepts behind the value of big data in healthcare, the 

types and sources of big data and the importance of data sharing in healthcare. In 

addition, the chapter places particular emphasis on the open issues and unmet needs in 

healthcare, including the lack of data quality, data heterogeneity, and lack of statistical 

power, among others. The chapter concludes with the contribution of the current thesis. 

Chapter 2 presents the proposed workflow to address the unmet needs in six different 

thematic areas (clinical domains) along with the current technical and clinical state of 

the art regarding data curation, harmonization, synthetic data generation and 

federated/distributed learning. The six thematic areas include: (i) the autoimmune 

diseases, (ii) the hypertrophic cardiomyopathy, (iii) the systemic autoinflammatory 
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diseases, (iv) the coronavirus disease, (v) the cardiovascular diseases, and (vi) the 

mental disorders. 

Chapter 3 provides a concrete view on the functionalities of the beyond the state-of-

the-art data curation service which has been developed under the aegis of this thesis. 

The functionalities of the data curator involve metadata extraction and data annotation, 

outlier detection, de-duplication, and data imputation using a variety of univariate, 

multivariate and advanced machine learning based methods. Emphasis is also given on 

the description of the primary outcomes of the data curation workflow, including the 

data evaluation report, the curated dataset, and the clean curated dataset. 

Chapter 4 presents the proposed data harmonization workflow and its’ beyond the 

state-of-the-art functionalities to overcome the structural heterogeneity across complex 

clinical data structures. Lexical matching methods are fist described including the 

Levenshtein distance, the Jaro distance and the Jaro Winkler distance. Then, emphasis 

is given on the rationale of semantic matching including a complete view on data 

modelling, varying from relational modeling, and ontologies to HL7-standards and web 

ontology languages. The concept of word embeddings is introduced to be incorporated 

into a hybrid data harmonizer combining lexical and semantic matching methods with 

knowledge bases with international medical indices and word embeddings to identify 

terminology overlaps across heterogeneous clinical data. 

Chapter 5 focuses on the description of the proposed large scale, computationally 

efficient and high-quality synthetic data generator and it’s beyond the state-of-the-art 

functionalities in the context of in silico clinical trials to promote drug research. For 

comparison purposes, both statistical and machine learning based generators are also 

presented. Then, the proposed method for the robust initialization of the Gaussian 

components in the Bayesian Gaussian Mixture Model (BGMM) algorithm is presented 

along with additional hyperparameters, like the weight concentration parameter. The 

model training and sampling process is described along with widely used synthetic data 

quality metrics. Emphasis is given on data augmentation and its vision towards the 

improvement of the existing AI models’ predictive performance. 

Chapter 6 offers the basis for understanding the issues with centralized data analysis 

and the rationale of federated/distributed learning. The main learning schemas are first 
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presented, including online learning, meta-learning, and incremental learning. Then, 

the proposed federated AI framework is presented followed by federated 

implementations of popular supervised learning algorithms. Emphasis is given on the 

proposed federated hybrid boosted forests classifier for solving intensive supervised 

learning problems across highly imbalanced data structures in the cloud. Additional 

emphasis is given on distributed implementations and the design of hybrid loss 

functions to avoid overfitting effects. The chapter concludes with the importance of 

explainability analysis and its clinical impact on the decision-making process. 

Chapter 7 is dedicated to the detailed evaluation of the proposed data curation, data 

harmonization, synthetic data generation, and federated AI modeling workflows which 

are presented in Chapters 3-6, respectively, across the six clinical domains from 

Chapter 2. 

Chapter 8 summarizes the key points of the previous chapters and presents the latest 

trends in the rapidly evolving fields of data curation, data harmonization, synthetic data 

generation and federated learning. 

Chapter 9 summarizes the major points of this thesis and the future work. 

  



38 

 

CHAPTER 2. STATE OF THE ART 

 

 

2.1. An overview of the proposed workflow 

2.2. Technical point of view 

2.3. Clinical point of view 

 

 

2.1. An overview of the proposed workflow 

The proposed workflow to address the existing open issues and unmet needs in 

healthcare (Section 1.4) is depicted in Figure 4. 

 

Figure 4. An illustration of the proposed workflow (the contribution in each innovation area – 

functionality is highlighted with green color). 

According to Figure 4, the current thesis aims at delineating the open issues and clinical 

unmet needs in healthcare by offering beyond the state-of-the-art methods which have 

been developed around four innovation areas that are described next. 

▪ Innovation Area 1 - Data curation (Chapter 3): Unlike conventional approaches 

which focus on the application of semi-automated or qualitative methods for data 
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curation, we focused on the design and successful development of a fully automated 

and highly scalable medical data curation service, which offers a suite of 

functionalities for: 

o the precise detection of outliers (anomalies) across structured data using 

both univariate and multivariate methods, 

o the accurate detection of highly correlated pairs of features, 

o the robust detection of lexically similar pairs of features as potential 

duplicates, 

o the effective application of a “smart” data imputer which utilizes a profile 

matching score to identify the best matching virtual patients for each real 

patient, 

o the generation of re-usable data quality report highlighting important 

metadata along with descriptive statistics and feature-level quality status, 

o the generation of a diagnostic report (often referred to as curated dataset) 

where the data incompatibilities are highlighted using proper color coding, 

and 

o the efficient initialization of the memory requirements across complex gene 

expression microarray datasets. 

Core publications: [66], [125]. 

▪ Innovation Area 2 - Data harmonization (Chapter 4): Unlike conventional 

approaches which focus on the application of semi-automated methods like lexical 

matching or on the manual definition of pairing rules for semantic matching, we 

focused on the development of a hybrid data harmonization workflow which 

utilizes both lexical and semantic matching methods on top of a medical corpus 

harnessing knowledge from word embeddings, reference ontologies and 

international knowledge bases to automatically identify terminologies with lexical 

and semantic overlap. The hybrid data harmonizer offers a suite of straightforward 

functionalities for: 

o the automated extraction of semantic information from reference ontologies, 

o the extraction of word embeddings for a given set of terminologies, 

o the extraction of NLTK-based synonyms for a given set of terminologies, 

o the extraction of FHIR-compliant terminologies from SNOMED-CT, 

LOINC, etc., 
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o the application of string-matching methods aiming to solve the edit distance 

problem (e.g., Levenshtein distance) between two strings (terminologies), 

o the definition of a complete medical corpus, 

o the inclusion of semantic knowledge in the corpus, and 

o the generation of a re-usable data harmonization report including the 

matched terminologies along with a coherence score and the most frequent 

terminologies. 

Core publications: [126]–[129]. 

▪ Innovation Area 3 - Synthetic data generation and augmentation (Chapter 5): 

Unlike conventional approaches which focus on the application of statistical or less-

efficient, large-scale machine learning based synthetic data generators, we focused 

on the development of cost-effective, large-scale synthetic data generator named 

Bayesian Gaussian Mixture Models with Optimal Components Estimation 

(BGMM-OCE) algorithm which supports: 

o the robust estimation of the number of Gaussian components, 

o the unbiased definition of the weight concentration parameter (or gamma), 

o the generation of high-quality synthetic data in terms of reduced goodness 

of fit, Kullback-Leibler divergence, coefficient of variation and correlation 

difference, 

o the generation of large-scale synthetic data with small computational 

complexity. 

A computational workflow for data augmentation was also developed to: 

o populate clinical databases with small population size (e.g., in rare diseases), 

o aggregate high-quality synthetic data with real data, 

o to train AI algorithms on the aggregated (real and virtual) data, 

o to evaluate the classification performance of the AI model on real subsets, 

o to compare the classification performance of the AI models trained on the 

real and on the aggregated data (to evaluate the impact of augmentation). 

Core publications: [130]–[134]. 

▪ Innovation Area 4 - Federated/distributed learning (Chapter 6): Unlike 

conventional approaches which focus on the deployment of local nodes on the 

premises of each hospital, we proposed a federated AI model deployment system, 

on the cloud, where the nodes are replaced with private cloud spaces. In addition, 

we propose a hybrid federated learning algorithm named federated hybrid boosted 
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forest (FHBF) which is resilient against overfitting effects during the training across 

federated databases with increased class imbalance. To this end, the proposed FHBF 

approach offering: 

o an adjustable hybrid loss topology based on the dropout rate, 

o resilience against overfitting effects through a hybrid loss function, 

o two types of hybrid boosters for training, 

o explainability analysis, and 

o confound-based class imbalance handling. 

Core publications: [65], [128], [129], [135]. 

2.2. Technical point of view 

2.2.1. Data curation 

Table 1 presents the objectives, methods, and outcomes of the current state of the art 

studies focusing on data quality control in healthcare. More specifically, in [136] a data 

quality assessment framework is proposed to enhance the completeness, correctness, 

concordance, plausibility and currency of medical data by computing the percentage of 

matched variables across records, and matched records across patients, as well as, the 

type of records per patient, the presence of selected variables, and the frequency of 

records per patient over time. In addition, in [137] a draft set of harmonized terms is 

presented. The set of terms was defined by the experts and was organized into three 

quality categories (i.e., conformance, completeness, and plausibility) to be compared 

with ten existing data quality terminologies in the context of electronic health record 

data, where the comparison was based in terms of coverage in the EHR domain. 

Furthermore, in [138] a framework that deals with the completeness, consistency, 

correctness, non-redundancy, and timeliness of medical data in a semi-automated way 

where the user defines the quality mapping criteria (e.g., completeness) and the data 

quality levels (e.g., acceptable) for each data source. Moreover, in [139] a multi-

dimensional data storage solution in a semi-structured data curation engine, which 

provides foundational support for archiving heterogeneous medical data and achieving 

partial data interoperability in the healthcare domain. The ExeTera software [70] 

provides functionality that enables a data curation pipeline incorporating data curation 

methods for COVID-19. The pipeline includes preliminary data cleaning and filtering 
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using semantic information, and generation of meta-analytics for daily assessment. 

Finally, in [140] the raw data are curated to a common data model (C-Surv). The C-

Surv ontology was designed to simplify the analytic challenge of working across 

multiple datasets and multiple modalities by providing standard structure, variable 

naming, and value labelling conventions. 

Table 1. Current state-of-the-art methods, tools, and frameworks for data curation. 

Study Objective Method Outcomes 

[136] 

Assess the quality of 

electronic medical 

records (EMR) 

A data quality assessment 

framework that aims to deal 

with the following data quality 

dimensions: (i) completeness, 

(ii) correctness, (iii) 

concordance, (iv) plausibility 

and (v) currency. 

A conceptual data 

quality assessment 

framework based on 

six qualitative 

metrics. 

[137] 

Assess the quality of 

electronic health record 

(EHR) data 

A draft set of harmonized terms 

organized into three quality 

categories to be compared with 

ten existing data quality 

terminologies in the context of 

EHRs. 

A set of harmonized 

terms for EHR 

quality assessment. 

[138] 

Present a framework 

for data quality 

management in health 

care institutions 

Α semi-automated framework 

that deals with the 

completeness, consistency, 

correctness, non-redundancy, 

and timeliness of medical data. 

A semi-automated 

framework for data 

quality management 

in health care 

institutions. 

[139] 

Crate data curation 

services for storing 

healthcare data, 

creating, and storing 

the semantic 

reconciliation 

knowledge base. 

A multi-dimensional data 

storage solution in a semi-

structured data curation engine 

to archive heterogeneous 

medical data in the healthcare 

domain. 

An interoperable 

data storage 

framework in the 

form of a semantic 

knowledge 

repository for quality 

control. 

[70] 

To present an open-

source data curation 

software designed to 

The ExeTera software provides 

functionality that enables a data 

curation pipeline incorporating 

A data curation 

software with 

qualitative methods 
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Study Objective Method Outcomes 

address scalability 

across the COVID 

Symptom Study 

dataset. 

data curation methods for 

COVID-19. 

mainly for data 

quality control based 

on pre-defined 

semantic knowledge. 

[140] 

Present a platform for 

data curation, data 

discovery, access 

brokerage, data analysis 

and knowledge 

preservation 

The raw data are curated to a 

common data model (C-Surv) 

which is designed to simplify 

the analytic challenge of 

working across multiple 

datasets. 

A platform that 

considers data 

quality criteria 

which are manually 

defined for each 

individual data 

source. 

 

2.2.2. Data harmonization 

According to the literature, a variety of computational methods for medical data 

harmonization has been proposed so far [141]–[146]. A robust data harmonization 

method involves the application of lexical and semantic matching algorithms. A lexical 

matching algorithm uses string similarity techniques [52], [143], [146] to identify 

common terminologies (i.e., exact sequences or similar block sequences) that are 

present between the terms of the standard model and those of the original dataset. 

External vocabularies can also be used to enrich the clinical domain knowledge and 

thus enhance the accuracy of the overall lexical matching process through the 

identification of homonyms or synonyms.  

On the other hand, the semantic matching method [52], [142], [144], [145] uses 

semantic relationships that exist between the terminologies, apart from the lexical 

matching process that is already included, to reduce the information loss and enhance 

the overall data harmonization process. This can be accomplished through the 

construction of ontologies which represent the clinical domain knowledge of interest in 

the form of entities (e.g., classes), and object properties (e.g., “includes”, “has”, 

“consists of”). Semantic matching uses a standard (or reference) model which is usually 

expressed in the form of an ontology, where the classes are considered as categories, 

e.g., “Clinical tests”, that might consist of further sub-classes, e.g., “Blood Tests”, etc. 

Each class can include a set of variables which are related to the class they belong to in 

terms of common meaning or concept. For example, the class “Blood tests” includes 
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the variables “age”, “gender”, “hemoglobin levels”, etc. This can lead to the semantic 

matching of the variables which might not be lexically identical but share a common 

concept. According to Table 2 several data harmonization frameworks have been 

launched to enable the integrative data analysis of heterogeneous medical data, such as, 

clinical, and genomic data, the majority of which is presented below, including the 

DataSHaPER (DataSchema and Harmonization Platform for Epidemiological 

Research) [141], [147] framework, the SORTA (System for Ontology-based Re-coding 

and Technical Annotation of biomedical phenotype data) tool [142], the 

BiobankConnect software tool [143], the S-match semantic matching framework [144], 

and the FOAM (framework for ontology alignment and matching) [145]. 

Table 2. A summary of the fundamental frameworks for data harmonization. 

Tool Data harmonization strategy Application 

DataSHaPER 

[141] 

Uses a DataSchema as a 

reference model to harmonize 

heterogeneous data schemas 

according to the user-defined 

DataSchema through the 

development of pairing rules. 

A 36% compatibility for creating a 

harmonized database across 53 of 

the world’s largest longitudinal 

population-based epidemiological 

studies [147]. 

SORTA [142] 

Uses lexical matching to align 

phenotype data from 

heterogeneous biobanks 

according to international coding 

systems. 

Matched 5,210 entries in the 

LifeLines biobank [148] (97% 

recall) and 315 entries in the 

DUMR (58% recall) [142]. 

BiobankConnect 

software [143] 

Uses lexical and semantic 

matching to align heterogeneous 

biobanks according to a desired 

set of pre-defined elements. 

An average precision 74.5% 

towards the harmonization of data 

across six biobanks (7,461 terms) 

with 32 desired elements [143]. 

S-Match [144] 

Uses semantic matching to 

quantify the semantic relations 

that exist between the elements 

of two light-weight ontologies 

into 4 different categories. 

A 46% precision on the correct 

identification of semantic matches 

in the TaxMe2 dataset [149] as part 

of the Ontology Alignment 

Evaluation Initiative [150]. 

FOAM [145] 
Trains HMMs on sequence 

profiles that exist in international 

A functional ontology that includes 

a set of more than 70,000 trained 
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Tool Data harmonization strategy Application 

registries to align heterogeneous 

sequence profiles. 

HMMs targeting 2,870 different 

KOs [145]. 

BiobankUniverse 

[146] 

Integrates lexical comparison, 

Unified Medical Language 

System ontology tagging and 

semantic query expansion. 

A fast matchmaking service for 

biobanks and researchers, where 

Users can quickly explore 

matching potential and search for 

biobanks/data elements matching 

their research. 

 

The DataSHaPER (DataSchema and Harmonization Platform for Epidemiological 

Research) framework [141], [147] was developed under the BioSHaRE project [151] 

to enable the harmonization of heterogeneous biobanks. The DataSHaPER uses a 

DataSchema (which is also referred to as “Generic DataSchema”) as a reference model 

which consists of a core set of more than 180 variables that belong to 45 domains and 

13 themes [151]. The DataSchema also includes 3 modules which are more abstract 

entities that include the domains, the themes, and the variables. The DataSHaPER 

framework supports the harmonization of both prospective and retrospective studies 

only when the reference model is exclusively defined in a DataSchema format. The 

harmonization strategy involves the execution of a three-step procedure which involves 

[141], [147], [151]: 

▪ the development of pairing rules that quantify the ability of each variable in the 

study to generate the variables of the “DataSchema”, 

▪ the application of the pairing rules to classify each variable in the study into 

“complete”, “partial”, or “impossible” according to its ability to generate the 

variables of the “Generic DataSchema”, and 

▪ the development of a processing algorithm that can automatically generate the 

variables of the “DataSchema” from the variables that have been marked as 

potentially matched. 

The processing algorithm that enables data harmonization is executed through the Opal 

software [152] as soon as the harmonized DataSchema is constructed and distributed to 

the biobanks. The harmonized DataSchema includes a core set of variables which is 
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related with the domain of interest and are selected according to seven criteria [141], 

[147]. The biobank data are stored in dedicated Opal servers [152] which process the 

data to compute the harmonized DataSchema specifications. Then, the harmonized 

DataSchema specifications from each individual study are converted to the variables in 

the DataSchema format. The individual harmonized datasets are stored in the Opal 

servers of each biobank and delivered in remote clients through the Mica web portal 

[152]. The overall procedure takes place under a secure cloud infrastructure known as 

DataSHIELD (Data Aggregation Through Anonymous Summary-statistics from 

Harmonized Individual-levEL Databases) [153], [154]. The DataSHaPER approach has 

been applied in [151] to harmonize eight retrospective cohort studies with more than 

200,000 individuals under the Healthy Obese Project (HOP), yielding a 70% 

harmonization accuracy towards the identification of variables with shared 

terminology. 

The BiobankConnect software [143] was launched under the aegis of the BioSHaRE 

EU-funded project [151] to enable the integration of heterogeneous biobanks. The 

software uses lexical matching combined with semantic matching to enable the 

semiautomated harmonization of terms in heterogeneous biobanks. The software 

quantifies the potential of harmonizing the terms among the heterogeneous data with 

the desired elements that are defined by the user by searching for lexical matches 

between the terms of the raw data with existing terms along with semantic information 

which is derived by the subclasses and the object properties of the ontologies. The user 

annotates the desired elements, i.e., the core set of elements, through the Bio-portal 

[143] which serves as a widely used repository for biomedical ontologies. The software 

then seeks for lexical matches between the terms of the raw data with those from the 

existing ontologies and provides a matching score that reflects the percentage of 

relevant matches. The BiobankConnect software tool has been used to harmonize data 

across six biobanks including 7,461 terms based on a schema of 32 desired elements 

yielding 0.74 and 0.75 precision rates in two ranks that were defined by the experts 

[143]. 

The System for ontology-based re-coding and technical annotation of biomedical 

phenotype data (SORTA) tool [142] is an example of another tool that was developed 

under the BioSHaRE EU-funded project [151], towards the integration of phenotypes 
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across heterogeneous biobanks. While the BiobankConnect software involves the 

mapping of the heterogeneous data structures (elements) into a target schema, the 

SORTA tool deals with the heterogeneity of the data in a more high-level manner 

through the coding (or recoding) of the data values into international coding systems, 

such as, the SNOMED-CT [155], the ICD-11 [156] and the Human Phenotype 

Ontology (HPO) [157]. More specifically, the SORTA tool seeks for matches between 

the data values and a target, user-specified, coding system. The coding system can be 

defined in terms of an ontology or a .csv document. The SORTA tool then uses lexical 

matching algorithms, such as, the 𝑛-gram, to quantify the lexical similarity between the 

data values to provide a sorted list of candidate elements per data value. SORTA has 

been used to match 5210 unique entries in the LifeLines biobank [142], [148] and 315 

unique entries in the Dutch Uniform Multicenter Registration system for genetic 

disorders and malformation syndromes [7, 60] in line with the HPO, yielding 97% and 

58% recall ratios, respectively. 

The S-Match tool [144] is an open-source semantic matching framework which 

provides a rigorous solution for the semantic interoperability problem using lightweight 

ontologies. A lightweight ontology is defined as a taxonomy, where the natural 

elements are described in a formal way using formal expressions in the form of tree like 

structures, where each node in the tree has a specific meaning or concept [144]. The S-

Match tool uses semantic matching algorithms that quantify the semantic relations 

between the elements (nodes) of two lightweight ontologies into four categories, 

namely: (i) equivalent, (ii) less general, (iv) more general, and (v) disjointless. First, the 

algorithm computes the concepts and the meaning of each label and then it computes 

the relations between the concepts of the labels and the nodes. The nodes are 

constructed in the form of trees and the meaning of each “child” node is related with 

the meaning of its “parent” node. Once a new ontology is given as input the algorithm 

seeks for an existing conceptual relation between the concepts of the labels. If no 

semantic relations exist, the algorithm uses syntactic level matchers, like the Edit 

distance, to seek for lexical matches. The algorithm outputs a file with the identified 

semantic and syntactic relations between the concepts of the labels of the two 

lightweight ontologies. The performance of the tool was tested on the TaxMe2 dataset 

[149] which is a benchmark under the Ontology Alignment Evaluation Initiative, 

yielding 46% precision towards the correct identification of the semantic relations. 
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The Functional Ontology Assignments for Metagenomes (FOAM) [145] is an example 

of a computational framework that focuses on the classification of gene functions which 

are related with microorganisms using Hidden Markov Models (HMMs). The HMMs 

are trained on the sequence profiles that exist on the Kyoto Encyclopedia of Genes and 

Genomes (KOGG) orthologs (KOs), which are part of the Gene Ontology [158], to 

enhance the accuracy of the classification process towards the successful alignment of 

the sequence profiles with the targeted KOs. In fact, the KOGG is used as an external 

vocabulary to enrich the existing information from the sequence profiles. The whole 

process is semiautomated since the user needs to first define the target space for the 

alignment. FOAM also provides a functional ontology that describes the hierarchy of 

the groups during the training of the HMMs. 

Another family of data harmonization methods is statistical harmonization which 

involves the application of linear and non-linear statistical models to investigate the 

effect of different latent factors on a set of one or more items [159]–[162]. In statistical 

theory, the items can be considered as all types of informative variables (e.g., 

depression) that are observed and the latent factors as variables that are not directly 

observed but are rather inferred by the items. The purpose of statistical data 

harmonization is to homogenize scales that measure the same item and transform them 

into a common metric of the same scale, where the types of the items might vary from 

discrete and ordinal to continuous [159]–[162]. Statistical approaches, such as, 

multiparameter logistic Item Response Theory (IRT) analysis were deployed in [159]–

[162] to examine how a set of items (e.g., psychiatric phenotypes) is affected by other 

factors for scale homogenization. 

For example, a clinical center might record the cholesterol levels using the scale low, 

medium, high, whereas another clinical center may record the same levels using the 

scale 0, 1, and 2. Thus, statistical harmonization tries to recode the variables that belong 

to the same construct so that they are commensurately scaled at the end [159]–[162]. 

Of course, the detection of variables that express different (or common) scales and 

belong to the same construct is challenging since there is no prior knowledge regarding 

the names of the items like in lexical or semantic matching [159]–[162]. Even if two 

variables (items) describe the same construct, it is not always proper to match these two 
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variables since there might be differences in the population characteristics between the 

clinical studies, e.g., differences in the education level, ethnicity, gender, etc. 

Such differences need to be controlled during the statistical analysis process and thus 

the complexity of the harmonization process is greatly enhanced. Moreover, the types 

of the items directly affect the type of the statistical model to be used. Towards this 

direction, a variety of statistical methods has been proposed so far, especially for the 

harmonization of psychometric and cognitive items with different measurement scales 

across clinical data, including [159]–[162]: (i) simple linear factor analysis (LFA) for 

continuous items, (ii) 2-parameter and multi-parameter logistic Item Response Theory 

(IRT) analysis for binary items, (iii) generalized linear factor analysis (GLFA) for 

mixtures of continuous and discrete items, and (iv) moderated non-linear factor analysis 

(MNFA) for mixtures of continuous and discrete items with non-linear dependencies, 

among others. 

2.2.3. Synthetic data generation 

The current state-of-the-art methods for virtual population/synthetic data generation 

can be classified into two major categories; the parametric methods which resample 

instances and generate new feature combinations from an existing clinical dataset, and 

the non-parametric methods where virtual patients are produced by randomly selecting 

patients from a clinical dataset. Examples of parametric methods include the 

multivariate normal distribution (MVND) and its variant the multivariate log-normal 

distribution originally proposed in [163] towards the generation of virtual patients 

based on real clinical data. The MVND was also deployed in [164] to create plausible 

virtual populations. A similar approach has been also introduced in [165], where the 

generated cohort data were able to match the observed data without the need for feature 

weighting. In [155], multinomial logistic models to model sequence count data with 

complex covariance structure. The fundamental assumption of the MVND though is 

that it assumes that the real data are normally distributed and thus poses significant 

biases in the synthetic data distribution although alternatives like the log-MVND have 

been proposed in the literature to better simulate the normality of the distribution [167]. 

Apart from the conventional statistical methods though, machine learning based 

methods have been also proposed. In [168] a package named “deal” was developed in 
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R, which includes Bayesian networks for virtual population generation by taking into 

consideration the conditional probabilities among the features, supporting both discrete 

and continuous type of data. Bayesian networks (BN) have been used in [169], [170] 

for the generation of virtual distributions based on the modeling of conditional 

probabilities across diverse network topologies. Bayesian resampling techniques were 

also described in [171] for the generation of virtual populations in the context of 

Pharmacokinetic (PPBK) and pharmacokinetic modeling. In the BN-based approaches, 

however, the conditional probabilities are modeled using assumptions on the prior 

distribution of the features, where the network topology is not pre-defined. 

To this end, ML based generators like the artificial neural networks (ANNs) with radial 

basis functions, the supervised tree ensembles (STE), the unsupervised tree ensembles 

(UTE), have been proposed in the literature, yielding favorable performance against the 

probabilistic approaches. More specifically, Robnik-Šikonja [172], [173] utilized tree 

ensembles and artificial neural networks with radial basis functions (RBFs) as 

activation functions to detect hidden patterns among the features in the real data by 

either including or excluding a target feature yielding virtual data with decreased 

divergence with the real one. However, a major weakness of these data generators is 

that they are not computationally efficient since they require increased training and 

testing time, as well as, a target feature which introduces biases in the correlation 

patterns among the synthetic data. 

Thus, there is an emerging need for the development of computationally efficient and 

unbiased virtual data generators remains a technical challenge, particularly in the case 

of large-scale clinical trials, where the computational complexity is important. Gaussian 

Mixture Models (GMM) were used to generate virtual data (imaging, omics and 

clinical) based on Dirichlet processes in [174]–[176] as an efficient data generator. 

Since GMM maximizes only the likelihood based on the expectation maximization 

(EM) approach, it might yield specific structures that might or might not apply to the 

data. A solution to this is to use variational inference (VI) [177]–[179] which 

maximizes a lower bound on the model evidence instead of the data likelihood like in 

the EM to reduce the computational complexity compared against the MVND, BN, 

UTE, STE, and ANN algorithms. 
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Table 3. A summary of the state-of-the-art methods and related applications for synthetic 

data/virtual population generation. 

Study Strategy Application 

[163] 

Continuous and 

categorical covariate 

distribution modeling 

using multivariate 

statistical functions. 

Their findings demonstrate that the MVND generates 

covariate correlations that are realistic and 

representative of the general population. The 

simulations included cohorts with 3500, 1000 and 100. 

The covariates presented in the matrix are respectively: 

smoking status, gender, disease severity, weight, 

height, and age. 

[164] 

Multivariate and 

discrete re-sampling 

techniques to account 

for covariate effects 

within the target 

population during the 

generation of virtual 

data. 

This work presents a mechanism for quickly creating 

and selecting virtual patients to match clinical 

population-level statistics, which advances earlier 

methodologies. With all virtual patients weighted 

equally, the final fitted populations closely resemble 

empirical data, avoiding the possibility of 

overweighting specific solutions and distorting 

simulation outcomes present in some prior algorithms. 

[165] 

A technique for 

efficiently generating 

virtual patients that best 

fit the observed data 

using multivariate log-

normal distribution (log-

MVND). 

Both evaluation techniques correctly produced the 

target population's proportions and summary data. In 

general, the Continuous method outperformed the 

Discrete method, apart from the few clinically relevant 

examples where the subgroups, defined by categorical 

value, had significantly different continuous covariate 

means. Instead of analyzing various subgroups, the 

Continuous technique permits examination of the 

entire population, which lowers the number of 

analyses required and boosts efficiency. 

[155] 

Application of 

multinomial logistic 

normal models for 

virtual population 

generation. 

Through application to multinomial logistic-normal 

(MLN) models, the authors demonstrate that their 

inference scheme is both highly accurate and often 4-5 

orders of magnitude faster than Markov Chain Monte 

Carlo (MCMC) methods. 
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Study Strategy Application 

[158]  

The authors propose the 

PCHC as a new 

Bayesian network 

learning approach that 

may be used with 

categorical or 

continuous data. 

Max-Min Hill Climbing (MMHC) is far slower than 

PC Hill Climbing (PCHC), which can handle millions 

of observations in just a few minutes while 

maintaining accuracy levels that are on par with or 

better than MMHC. Additionally, PCHC has the 

excellent scalability attribute that its computing cost 

scales well with the size of the data sample. 

[159] 

The combination with 

deep learning 

techniques, specifically 

autoencoder networks, 

to reduce the 

dimensionality of our 

data. It further enables 

the application of BN 

structure learning to 

data of realistic sample 

size at reasonable 

computational cost. 

Using this approach, the authors demonstrate that their 

simulated Alzheimer’s (AD) and Parkinson’s Disease 

(PD) VCs cannot be reliably discriminated from real 

patients in ADNI and PPMI. Furthermore, their 

method can be used to simulate a VC for a situation 

that has not been observed in the real data, e.g. a less 

cognitively impaired AD cohort. 

[161]  

The proposed generator 

is based on radial basis 

function networks, 

which learn sets of 

Gaussian kernels. 

A large-scale empirical evaluation was performed 

using 51 data sets from UCI repository with great 

variability in the number of attributes, types of 

attributes, and number of class values. The results 

show a considerable similarity between the original 

and generated data and indicate that the method can be 

useful in several development and simulation 

scenarios. 

[162] 

Introduces the 

supervised and the 

unsupervised tree 

ensembles as high-

quality synthetic data 

generators. 

The proposed workflows were evaluated on random 

splits of several datasets and by comparing original 

datasets with datasets produced by a generator of semi-

artificial data. The results show that the proposed 

workflows can reveal relevant similarity information 

about datasets needed in many data mining scenarios. 
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2.2.4. Federated/distributed learning 

2.2.4.1. Algorithms 

The conventional data integration strategy, where patients’ data from different clinical 

centers are integrated into a centralized database is not always feasible either viable due 

to legal violations or security compromise attempts that will expose the patient data. A 

more technical and rather legal and ethical challenge in federated environments lies on 

the training of federated ML workflows across diverse data which are stored in 

federated databases [81], [112], [180]. Towards this direction, batch processing 

methods, such as, online learning and meta-learning [181], [182] have been proposed, 

where the former [170] uses stochastic optimization to update an existing estimator on 

upcoming training batches, whereas the latter [171] focuses on the aggregation of 

outcomes from models which are trained on each federated database. Meta-learning 

methods, however, limit the “horizon” of the training process since the individual ML 

models are trained on individual subsets [52]. Online learning methods, on the other 

hand, are restricted to the additive update of the weights of an existing ML model on 

new “online” training instances. 

A solution to this is to use incremental learning [52], [129], [135], [183]–[185] which 

trains a classifier on an initial database, and then incrementally adjusts the weights of 

the classifier on a series of existing databases. Towards this direction, many incremental 

learning algorithms have been proposed including the family of the multiple additive 

regression trees (MART) [129], [186], the Support Vector Machines (SVM) [135], 

[187], the Multinomial Naïve Bayes (MNB) [129], [135], [188], [189], and additional 

stochastic gradient descent (SGD) based implementations [190]–[192]. In this case, the 

databases must have the same structure along with a common set of variables (features). 

A common problem with the MART family of algorithms, however, is the fact that 

trees added early in the ensemble, at a particular stage, tend to have a higher impact 

during the decision-making process than those added later [193]. To this end, dropouts 

have been used [193] to deal with this issue, by scaling the most prominent trees in the 

ensemble, with a specific rate of rejected trees. A summary of the advantages and 

disadvantages of the above incremental learning algorithms is presented in Table 4. 

According to Table 4, the SGD-based approaches are computationally efficient but with 
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less classification performance and are prone to overfitting. In a similar, the MNB is 

also computationally efficient but also immune to overfitting.  

Table 4. A summary of incremental learning implementations of existing ML schemas. 

Incremental ML 

schema 
Advantages Disadvantages 

SGD-based (SVM, 

regression) 

Low computational complexity, 

simple to implement and deploy in 

federated environments 

During federated training, 

poor classification 

performance and a tendency 

to overfit 

Multinomial Naïve 

Bayes (MNB) 

Low computational complexity, 

immune to overfitting, and simple 

to deploy in federated setups 

Biases are introduced into 

the outcomes of a 

probabilistic approach due to 

a number of assumptions 

made about the 

independence of the 

collection of input features 

Multiple additive 

regression trees 

(MART) 

Favorable classification 

performance due to boosting's 

ability to reduce error, easy 

deployment in federated setups, 

scalability, and depth-first 

approach's ability to start pruning 

trees backward 

Low to medium 

computational complexity, 

particularly with more 

boosting rounds 

Multiple additive 

regression trees with 

dropout rates 

(DART) 

Favorable classification 

performance because of the error 

reduction provided by boosting, 

simple deployment in federated 

setups, scalability, and the ability 

to use dropout rates, which can 

greatly improve the performance 

Arbitrarily defined dropout 

rates and low to medium 

computational complexity, 

particularly with more 

boosting steps, can cause 

overfitting and cause the 

model's performance to be 

neglected 

 

On the other hand, the independence assumptions introduce biases in the model. The 

MART algorithm incorporates a boosting stage which reduces errors and thus increases 

its classification performance particularly in demanding tasks. On the other hand, the 
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MART is more computationally complex especially in the cases of multiple boosting 

stages (rounds). It is important to note that the DART schema can further improve the 

classification performance of the MART due to the dropout rate which further boosts 

the decision-making process but on the other hand the dropout rate is arbitrarily defined 

and can yield significant overfitting effects during the training process. 

2.2.4.2. Frameworks/platforms 

Several distributed/federated learning platforms have been proposed in the literature 

[180], [194]–[205]. The euroCAT platform [202], [204] offers a distributed learning 

framework for the development of multi-centric models through the installation of local 

servers on the hospital’s premises. The local databases and local learning connection 

are hosted on a server that is dedicated to the euroCAT network by a particular 

institution (a site) (Varian Medical Systems, Palo Alto, USA). The universal learning 

environment (Varian Learning Portal) connects the learning connections inside the sites 

to a central server (the master) outside the sites' IT architecture. Asynchronous 

messaging that is file-based connects the master and sites. Through a web browser-

based interface, the user interacts with the learning environment and can upload 

learning applications (MATLAB, MathWorks, Natick, MA, USA) and start machine 

learning runs. Every learning application consists of two components: a site algorithm 

that operates inside the infrastructure of the sites and communicates with the learning 

connector, and a master algorithm that operates in the overall learning environment and 

can communicate with the site algorithms. A technical expert visited each premise to 

ensure the quality of the data in terms of inconsistencies and mistakes. The data stored 

at several sites is processed simultaneously and individually during each iteration. 

Then, each site transmits updated model parameters to the master. An algorithm at the 

master compares the model parameters and makes additional modifications. The 

algorithm also determines if the learning process has adequately converged (according 

to pre-set convergence criteria). The master sends the parameters back to each of the 

sites if the convergence criteria have not yet been satisfied. This completes one cycle 

of iterations. Up until the convergence conditions are met, the learning iterations are 

continued. 

The Personal Health Train (PHT) platform [203] adopts a similar methodology for 

distributed analysis through the training of distributed logistic regression models with 
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adequate performance. With the help of the PHT, which connects FAIR (Findable, 

Accessible, Interoperable, Reusable) data sources, distributed data analysis and 

machine learning are made possible. A healthcare facility never loses access to patient 

data. Cohort discovery is the goal of the first application group. To determine and 

disseminate general statistics (counts) of the data that are available in the FAIR data 

station, an application is issued to each site. A SPARQL Protocol and RDF Query 

Language (SPARQL) query that may be run against the graph database is included in 

this cohort discovery application. A master application running at the VLP receives 

reports from each site application on its site statistics, which are subsequently 

forwarded to the researcher who created the application. This application group was 

used in a variety of ways to produce summary data for patient subgroups. A logistic 

regression (LR) model is intended to be trained by the second application group. Given 

a SPARQL query, each LR site application can train an LR model using the local 

dataset. The master application then iteratively comes to a consensus using the 

regression coefficients of each site LR model and patient counts. A particular LR model 

is validated on the sites by the third application group. To calculate model performance 

metrics (RMSE, ROC curve, AUC, calibration plots), an application is sent to each site. 

These metrics are then transferred back to the master application, which combines them 

and sends them to the researcher. 

The Open Federated Learning (OpenFL) [205] is a software platform for federated 

learning (FL) that was first created as a component of a joint research project between 

Intel Labs and the University of Pennsylvania on FL for healthcare. Intel and the open-

source community in GitHub continue to develop OpenFL for general-purpose real-

world applications. Although healthcare was the initial use case, the OpenFL project is 

made to be independent of use cases, industries, and ML frameworks. The open-source 

code, which is primarily written in Python, is delivered through pip, conda, and Docker 

packages. The solution enables programmers to train ML models on remote data 

owners' nodes (aka collaborators). On the hardware at the collaborator node, the ML 

model is trained. Artificial neural networks trained using either TensorFlow [199] or 

PyTorch [206] are current examples. Through an extendable methodology, additional 

ML model libraries and neural network training frameworks can be supported. Only 

the model weight updates and metrics are communicated to the model owner via the 

aggregator node; the training data is always kept at the collaborator node. The setup 
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and workflow are described in a FL plan. All nodes in the federation share this FL plan, 

which outlines the federation's regulations. The OpenFL design, which was first created 

in the Intel Labs Security and Privacy Research lab, prioritizes important security ideas 

like limited interfaces, code reuse, open-source code, streamlined information security 

reviews, and code design suitable for running on trusted computer hardware, like a 

trusted execution environment (TEE). The Federated Tumor Segmentation (FeTS) 

initiative is a current project of the largest international federation of healthcare 

organizations with the goal of learning about tumor boundary identification from vast 

and varied patient populations without disclosing any patient data. A dedicated open-

source platform with an intuitive graphical user interface was created to support this 

initiative. Its goals are to: I bring cutting-edge pre-trained segmentation models of 

numerous algorithms and label fusion approaches closer to clinical experts and 

researchers, enabling easy quantification of new radiologic scans and comparative 

evaluation of new algorithms; and ii) enable multi-institutional collaborations via FL 

by level. FeTS has been originally used to segment brain tumor sub-regions across n = 

56 clinical locations located all over the world. 

PySyft [201] is an open-source multilingual library that enables safe and private 

machine learning by transparently wrapping and expanding well-known deep learning 

frameworks like PyTorch. Its goals are to be extensible so that new Federated Learning 

(FL), Multi-Party Computation, or Differential Privacy methods can be flexibly and 

easily implemented and integrated, as well as to help make privacy-preserving 

techniques in machine learning as accessible as possible via Python bindings and 

common tools familiar to researchers and data scientists. The methods offered by the 

PySyft library will be introduced in this chapter, along with details on how they are 

implemented. Then, using a convolutional neural network training example, we will 

present a proof-of-concept demonstration of a FL procedure. The application of PySyft 

in academic literature is then reviewed, and prospective use cases and development 

strategies are covered. We highlight Duet, a solution for simpler FL for scientists and 

data owners. 

FedML [200] is an open research library and benchmark that makes it easier to create 

FL algorithms and compare their performances fairly. Three computing paradigms are 

supported by FedML: distributed computing, single-machine simulation, and on-device 
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training for edge devices. Additionally, FedML encourages a variety of algorithmic 

research through the architecture of flexible, generic APIs and thorough 

implementations of reference baselines (optimizer, models, and datasets). We are 

hopeful that FedML will offer a productive and repeatable way for FL researchers to 

create and assess FL algorithms. We look after the user community, documents, and 

source code. 

Paddle Federated Learning (PFL) [197] is an Apache 2.0-licensed FL framework that 

is available as open source. It makes use of the deep learning (DL) platform 

PaddlePaddle [207]. PFL can handle both vertically and horizontally partitioned data. 

Each type of data splitting has its own set of implemented algorithms. Use the MPC 

package for processing vertical data partitions and the paddle fl package for processing 

horizontal data partitions. The NN and LR models are part of the paddle fl package. To 

construct them, PFL employs the FedAvg [208], SecAgg [209], and differentially 

private stochastic gradient descent (DPSGD) methods. A differentially private method 

called DPSGD protects the privacy of data. Processing of horizontal data partitions is 

carried out using a centralized system. PFL supports both simulation and federated 

deployment modes, and it is advised that Docker containers be used in both cases. PFL 

needs at least 6 GB of RAM and 100 GB of HDD space to function effectively. The 

use of PFL in IoT systems is constrained by these criteria. 

A deep learning framework for decentralized data called TensorFlow Federated (TFF) 

is open source [199]. The most recent version of TFF (0.17.0) learns, estimates, and 

uses NNs using TensorFlow (TF) of version 2.3. The use of GPUs is not supported, 

nevertheless. It is made available using the Apache 2.0 license. TFF implements base 

classes for the FedAvg and FedSGD algorithms [210], a straightforward federated 

evaluation implementation, and federated personalized evaluation. TFF includes a core 

API for the development of new federated algorithms. It is made up of classes that 

define templates for stateful activities such as value aggregation, estimate computation, 

and metric production. Using them, an analyst may create their own custom analytical 

procedures. The current TFF 0.17.0 version is incomplete and still needs key crucial 

components needed for the framework to be used in real applications: Only a 

differential privacy method is employed; the federated mode of operation is not 
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implemented; vertical and hybrid data splitting is not supported; the decentralized 

architecture of the system is not supported. 

A smoother transition from experimental study in simulation to system research on a 

large cohort of actual edge devices is made possible by Flower, a revolutionary end-to-

end federated learning platform [195]. In terms of simulation and real-world devices, 

Flower offers individual strengths in both areas. It also provides the flexibility for 

experimental implementations to move between the two extremes as needed during 

exploration and development. Flower is a cutting-edge FL framework that allows large-

cohort training and assessment on single-node or multi-node compute clusters as well 

as on actual edge devices. As a result, scalable algorithmic investigation of real-world 

system conditions, such as constrained computational resources that are typical for FL 

workloads, becomes possible. 

LEAF, a framework for measuring modular learning in federated environments [194]. 

A collection of open-source federated datasets, a stringent evaluation system, and 

several reference implementations are all included in LEAF with the goal of capturing 

the complexities and challenges of real-world federated contexts. It comprises of a set 

of reference implementations, a collection of open-source datasets, and a range of 

statistical and system metrics. LEAF's modular construction enables these three 

elements to be quickly added to a variety of experimental pipelines. 

Table 5. Description of the existing frameworks/platforms for federated learning. 

Framework/ 

platform 
Description Application 

euroCAT 

[202], [204] 

A distributed learning framework 

for the development of multi-

centric models through the 

installation of local servers on the 

hospital’s premises. 

Bayesian networks and Support 

Vector Machines which were trained 

across 3 centers to predict dyspnea 

yielding modest prediction 

performance. 

PHT [203] 

Adopts a similar methodology for 

distributed analysis through the 

training of distributed logistic 

regression models. 

A distributed logistic regression 

model was trained across 8 sites to 

predict post-treatment with adequate 

performance. 
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Framework/ 

platform 
Description Application 

OpenFL 

[205] 

A software platform for federated 

learning (FL) supporting ANNs for 

demanding applications like image 

segmentation tasks based on deep 

learning. 

Enabled multi-institutional 

collaborations via FL by leveraging 

OpenFL to improve these pre-trained 

models without sharing patient data, 

thereby overcoming legal, privacy, 

and data-ownership challenges, FeTS 

has been initially deployed towards 

the task of brain tumor sub-region 

segmentation by partnering with n = 

56 clinical sites spread all around the 

world. 

PySyft [201] 

An open-source multilingual 

library that enables safe and private 

machine learning by transparently 

wrapping and expanding well-

known deep learning frameworks 

like PyTorch. 

FL system designers can make good 

use of our performance 

model to analyze the performance 

under their FL scenarios and 

establish an efficient and balanced 

FL system without trial-n error cost. 

FedML 

[200] 

An open research library and 

benchmark that makes it easier to 

create FL algorithms and compare 

their performances fairly. 

The obtained accuracy at round R 

was equal to 0.77. The accuracy of 

the model increases linearly as 

defined by linear interpolation. The 

strategy was able to get an accuracy 

of 0.68 in 10 rounds, increasing the 

number of epochs from round 8 in 

the Fashion-MNIST dataset. 

PFL [197] 

An Apache 2.0-licensed FL 

framework that is available as open 

source. It makes use of the deep 

learning (DL) platform 

PaddlePaddle [15] and can handle 

both vertically and horizontally 

partitioned data. 

Not reported. Using elastic 

scheduling of training job on 

Kubernetes and large-scale 

distributed training of 

PaddlePaddle’s, paddle FL can be 

easily deployed on 

full stack open sourced software. 

TFF [199] 
An open-source deep learning 

framework for decentralized data. 

On a 5-client distributed dataset, the 

best character accuracy is achieved 
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Framework/ 

platform 
Description Application 

The most recent version of TFF 

(0.17.0) learns, estimates, and uses 

NNs using TensorFlow (TF). 

by TFF at 49.20%. Extensive 

experiments are also conducted to 

evaluate the effect of distributed data 

storage over the performance of 

trained models. TFF again achieved a 

maximum character precision of 

54.33% with non-distributed dataset. 

Flower [195] 

A cutting-edge FL framework that 

allows large-cohort training and 

assessment on single-node or 

multi-node compute clusters as 

well as on actual edge devices. 

Flower was deployed on 10 Android 

clients to train a model with 2 

convolutional layers and 3 fully-

connected layers (Flower, 2021) on 

the CIFAR10 dataset achieving 0.67 

accuracy in 80.32 ms. w Flower can 

perform FL experiments up to 15M 

in client size using only a pair of 

high-end GPUs. 

LEAF [194] 

LEAF, a framework for measuring 

modular learning in federated 

environments. 

LEAF’s modularity was assessed 

across three datasets yielding 

accuracy 89.64% in CelebA, 71.89% 

in Synthetic, and 74.72% in 

FEMNIST. 

 

2.3. Clinical point of view 

In this section we will present the current clinical state of the art regarding the existing 

open issues and unmet needs across the six clinical domains which will be investigated 

under the aegis of this thesis: (i) the autoimmune diseases (AD), (ii) the hypertrophic 

cardiomyopathy (HCM), (iii) the systemic autoinflammatory diseases (SAIDs), (iv) the 

coronavirus disease (COVID-19), (v) the cardiovascular diseases (CVD), and (vi) the 

mental disorders (MD). 

2.3.1. Autoimmune diseases (AD) 

The lack of data quality is a major threat in the domain of autoimmune diseases, where 

the rarity of the endogenous disease subtypes poses significant obstacles in the 
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application of AI-based approaches towards the development of robust patient risk 

stratification models, and the identification of biomarkers, among others. Examples of 

subtypes of autoimmune diseases along with classification/prediction applications, 

include: (i) multiple sclerosis [211], [212] for diagnosis and prognosis, (ii) rheumatoid 

arthritis [213] for risk assessment, (iii) systemic lupus erythematosus [214] for 

variations of prognosis, (iv) psoriasis [215] for diagnosis and disease severity, (v) 

systemic sclerosis [216] for diagnosis, treatment and prognosis, (vi) thyroid diseases 

for diagnosis [217], and (vii) autoimmune liver diseases for prognosis [218], among 

others, containing no more than 600 samples. Indicative data types that were used in 

the previous domains include clinical, survey, gene expression, gait, proteomic, 

microbiome, and peptide, among others. This emerging need for data quality has been 

extensively highlighted in [125].  

Furthermore, the underlying data heterogeneity obscures the co-analysis of diverse 

autoimmune diseases data sources and therefore the existing studies in the field focus 

on the analysis of low-quality datasets with small statistical power and significant 

assumptions regarding the independence of the variables in the conventional 

multivariate regression analysis (these issues have been highlighted in [129]). On the 

other hand, the lack of sufficient population size in the domain of autoimmune diseases 

is emerging and poses a significant barrier which affects the statistical power of the 

outcomes from the analysis of small populations [129]. Moreover, the existing data 

silos hamper the application of AI-empowered workflows since they leverage the 

sharing and interlinking of data across multiple centers [219], [220] and consequently 

have a negative effect on the explainability of the AI models for disease progression 

and treatment in all the above subtypes of autoimmune diseases. In addition, they 

undermine efforts to characterize, predict, and mitigate missing person incidents [221]. 

Primary Sjögrens Syndrome (pSS) is one of the most common chronic systemic 

autoimmune diseases, affecting the lacrimal, salivary glands and other exocrine glands, 

such as, the larynx, trachea, skin, and vagina [222]–[224]. In fact, pSS is unique not 

only due to its clinical impact but also as one of the few disease “models” linking 

autoimmunity with cancer and especially lymphoproliferative disorders. Its main 

difference with the secondary Sjögren Syndrome (sSS) lies on the fact that in the latter, 

the patient also exhibits other rheumatic diseases, such as, rheumatoid arthritis (RA), 
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and systemic lupus erythematosus (SLE) [222]–[224]. The annual incidence of 

Sjögren’s Syndrome (SS) among North and South European populations has been 

estimated from 200 - 3000 per 100000 individuals, with the corresponding figures for 

RA and SLE being 200 - 900 and 20-70 individuals, respectively [225]. 

According to the literature [226]–[230], pSS has the most unbalanced gender ratio with 

almost 10 females affected per 1 male while the development of B-cell non-Hodgkin 

lymphoma (NHL) complicates about 5% of patients during the disease course [226]–

[230]. Female preponderance, peri-epithelial lymphocytic infiltration of the affected 

organs, B-cell hyperactivity manifested as hypergammaglobulinemia, as well as, 

activation of interferon and B-cell activating factor pathways are considered hallmarks 

of the disease. Although the cause of pSS remains unknown, the disease develops in 

the context of genetic, environmental, and immune factors. Previously suggested 

histopathological, as well as, clinical laboratory risk factors for lymphoma development 

in terms of prognostic and diagnostic purposes include the salivary gland enlargement 

(SGE), the rheumatoid factor (RF), the cryoglobulinemia, the germinal centers that are 

present during salivary gland biopsy, the C4 hypocomplementemia, and the purpura, 

among others [223], [224], [231]–[234]. 

Additional risk factors that have been extensively reported in several clinical studies 

[235]–[240], as prominent determinants for various phenotypic infiltrations related to 

lymphoma development, include the anti-Ro/SSA and/or anti-La/SSB autoantibodies, 

the lymphadenopathy, the monoclonal gammopathy, and the Raynaud phenomenon. As 

in other systemic autoimmune or neoplastic diseases, the lack of patient stratification 

models: (i) increases the risk of producing unsatisfactory or sub-optimal results in 

clinical trials employing novel and expensive drugs, and (ii) hampers the definition of 

evidence-based health policies. These two issues are related with the unmet needs in 

pSS which involve the development of robust lymphoma classification models and the 

extraction of biomarkers. The clinical unmet needs in pSS include the development of 

lymphoma classification and lymphomagenesis models, as well as, the extraction of 

prominent indicators for lymphoma development. Besides, the challenge of 

harmonization and integration of cohorts in pSS has been highlighted in [241] along 

with the necessity of the validation of the existing biomarkers and the discovery of new 

biomarkers in large-scale cohort studies in [242]. 
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Only a few relevant studies have been reported in the literature concerning the design 

and application of lymphoma classification models, as well as, the discovery of 

biomarkers for lymphoma development and progression. Most of these studies adopt 

univariate and multivariate statistical methods (including time-to-event models) [235], 

[243]–[247] to identify independent risk factors for lymphoma development which in 

turn are utilized as independent variables for regression analysis with the dependent 

variable usually being set to lymphoma. A more straightforward method for the 

detection of risk factors was presented in [233], where the fast correlation-based filter 

selection (FCBF) method was deployed to identify robust independent factors for 

lymphoma development, following a logistic regression analysis. Furthermore, 

supervised machine learning methods [129], [135], [248]–[250], such as, the supervised 

tree ensembles, the Support Vector Machines (SVMs), and the artificial neural 

networks (ANNs) have been utilized in the literature for the development of robust 

lymphoma classification models in pSS with adequate performance. However, these 

studies have poor statistical power due to the reduced population size, since they adopt 

either a single cohort analysis approach in [226], [234]–[239], [241] or a small-scale 

but straightforward analysis involving no more than four cohorts in [129]. The reduced 

quality, and the structural heterogeneity of the existing cohorts along with the lack of 

data curation pipelines obscure the development of robust AI models and the detection 

of biomarkers. 

2.3.2. Hypertrophic cardiomyopathy (HCM) 

The leading cause of death worldwide is cardiovascular disease (CVD) [251], [252]. 

One in 500 people in the general population have hypertrophic cardiomyopathy (HCM), 

a frequent subtype of cardiovascular illness [253]–[256]. HCM is an inherited illness 

since it has a genetic component. The most prevalent hereditary cardiovascular 

condition is this one [257], [258]. It can result from any one of 1,400 mutations in 11 

or more genes that code for cardiac sarcomere-related proteins [259]. Due to the lack 

of any noticeable symptoms, HCM is one of the most common causes of sudden cardiac 

death among young people and sports [260]. Most patients with the illness are unaware 

that they have it [261]. 

Only 15 nations are involved in the execution of clinical studies with an average 

duration of 3 years for hypertrophic cardiomyopathy (HCM), despite 122 of the 191 



65 

 

countries in the world showing a disease burden [262]. In fact, the creation of cost-

effective treatments is hampered by the small population size mixed with the poor data 

quality. The necessity for drug development for in silico clinical trials is growing 

because they are expensive and necessitate a large enough population. Where the urgent 

need for the creation of risk stratification models and biomarkers for the development 

and progression of HCM is pressing, [262], [263] have highlighted the lack of 

population size. 

Pharmacological therapy hasn't progressed beyond its initial goals of straightforward 

symptom relief and functional capacity improvement, despite major advancements in 

the management of the condition with interventional procedures, device installation, 

and surgery [264]. In fact, only 45 trials (i.e., less than 1 per year) with a total of 2,121 

HCM patients were found in a recent review of all literature relevant to any 

pharmaceutical regimen ever used to treat HCM [265]. No pharmaceutical (medical) 

intervention has so far been shown to lower the risk of sudden cardiac death or increase 

patient survival [264]. The development of novel therapy regimens is essential for 

improving survival outcomes, clinical outcomes, and clinical benefits. The 

development of novel therapy regimens is essential for improving survival outcomes, 

clinical outcomes, and clinical benefits. Therefore, it is crucial to conduct clinical trials 

to examine and assess new treatments and to give HCM patients the chance to take part 

in those trials. By doing this, we will be able to produce important data about HCM 

management and cut back on spending on unproductive management strategies. 

2.3.3. Systemic autoinflammatory diseases (SAIDs) 

Systemic autoinflammatory diseases (SAIDs) are a set of evolving groups of conditions 

sharing a core of phenotypical similarities [266], [267]. They encompass several rare 

disorders which have been characterized by extensive clinical and biological 

inflammation, with no specific age or gender distribution in the human population. 

Genetic mutations that may cause dysregulation of the innate immune system underlie 

the etiology of some SAIDs. Although they were proposed to constitute a continuum 

of disorders with potential overlap, SAIDs should not be confused with the autoimmune 

family of diseases, related to adaptive immune system dysfunction and response to self-

antigen(s) [268]. Primary physical manifestations of SAIDs typically involve fever, 

rash, joint involvement, lymphadenopathy, and musculoskeletal symptoms. Due to the 
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numerous symptoms observed in the different SAID-related conditions and their lack 

of specificity, diagnosis is challenging. Unlike autoimmune diseases whose 

autoantibodies are a tool for ascertaining the diagnosis, there is no known constitutive 

and disease-defining biomarker for SAIDs. Although inflammasome activation is 

thought to be a common pathophysiological pathway, the complex network of cytokine 

cascades together with multiple cell type activation makes difficult the use of these 

features as diagnostic or classification markers for SAIDs. 

2.3.4. Coronavirus disease 2019 (COVID-19) 

Among the infected individuals with SARS-CoV-2 [269], it is estimated that 1/3 of 

them never develop symptoms [270], [271] and those who will develop symptoms may 

have a mild to moderate self-limiting disease [271]. In contrary, the severity of 

symptomatic infection ranges from mild to critical, and most individuals will develop 

a non-severe illness [272]. The progression of the disease and the risk of severe illness 

varies by age, underlying comorbidities, and risk factors for disease progression, such 

as, cardiovascular diseases (CVD), diabetes mellitus (DM), chronic obstructive 

pulmonary disease (COPD), cancer (e.g., hematologic malignancies, lung 

cancer), chronic kidney disease, solid organ or hematopoietic stem cell transplantation, 

obesity, and smoking [273]. According to the official report of the Centers for Disease 

Control and Prevention (CDC) in the US, among 1.3 million confirmed COVID-19 

cases, 14% of patients were hospitalized, 2% were admitted in the intensive care unit 

(ICU), and 5% died [274]. In addition, the risk of critical or fatal disease is high among 

hospitalized COVID-19 patients [275], [276]. 

The increased need for intensive care units and ventilators due to the unprecedented 

number of confirmed COVID-19 cases has surpassed the capacity of international 

healthcare systems. As a result, the World Health Organization (WHO) highlighted the 

importance of artificial intelligence (AI) as a prominent solution to manage the crisis 

caused by the virus [277]. AI is a constructive, non-medical intervention approach with 

a strong potential to overcome the current global health crisis, build next-generation 

epidemic preparedness, and move towards a resilient recovery [277]. Moreover, AI can 

shed light into the clinical unmet needs in COVID-19, including the development of 

robust models for: (i) the prediction of ICU admission, mortality, and the need 

for mechanical ventilation, (ii) the extraction of prominent risk factors for ICU 
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admission and mortality, (iii) the early suggestion of targeted interventions/therapeutic 

treatments, and (iv) the definition of better disease severity indices. Although AI is a 

promising tool to unveil the underlying mechanisms of COVID-19, the risk of bias and 

discrimination in its design and deployment must be taken into consideration. 

2.3.5. Cardiovascular diseases (CVD) 

There are still problems that need to be addressed and resolved despite the employment 

of sophisticated statistical tools, as was already noted. Big data research may present a 

distinct perspective, however there may be some discrepancies between the results of 

small, well-conducted studies and randomized controlled clinical trials. Such 

differences could be a result of the particular characteristics of the database utilized in 

the study, as each cardiological database notably differs in terms of the techniques 

employed to gather and capture data and the population(s) it specifically represents 

[278]. Data quality may also be impacted by the database's structure (organized vs. 

unstructured). For example, Hernandez-Boussard et al. [279] mined a dataset 

containing 10,840 clinical notes and discovered lower recall and precision rates (51.7% 

and 98.3%, respectively) for structured electronic health records (EHR) compared to 

unstructured EHRs (95.5% and 95.3%, respectively), which justifies routinely 

measuring recall for each database/registry before moving forward with data processing 

and analysis. 

2.3.6. Mental disorders (MD) 

One of the most significant issues currently facing public health is mental illness [280], 

[281]. These illnesses affect hundreds of millions of individuals globally and are linked 

to significant transgenerational transmission [282], [283], to huge economic costs 

[284], to elevated rates of physical morbidity and mortality [285], and profound 

personal suffering for patients and their families. However, it is still unclear exactly 

what these illnesses are. There are no definite cutoff points for when a patient has a 

disorder and when they do not, nor are there any objective tests or measurements to 

determine the presence of a mental disorder. The Diagnostic and Statistical Manual of 

Mental Diseases (DSM) and the International Classification of Diseases (ICD) have 

been the two main classification and definition systems for mental disorders in recent 

decades (ICD). The various variants of these systems have been used in the majority of 
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the existing studies on mental disorders during the past few decades, although they have 

drawn heavy criticism. 

There is evidence, for instance, that the majority of mental diseases should not be 

viewed as distinct entities but rather as a set of qualities, on which some individuals 

score well and others poorly [286]. Additionally, significant degrees of comorbidity are 

more often than not [287]. Some contend that the diagnostic classifications in the DSM 

and ICD have a narrow range of applicability [288]. Additionally, most treatments are 

beneficial for several illnesses rather than just one, as is the case with cognitive behavior 

therapy (CBT) for the majority of mental disorders and pharmacotherapies for mood 

and anxiety disorders. Therefore, what should be the targets of treatments and how can 

their effectiveness be measured if we do not yet fully understand what these disorders 

are and how they should be defined? Treatments' overarching objectives are, of course, 

to improve patients' conditions or assist them in coping with their issues. But it's not 

entirely apparent what this entails or when it can be said to have been completed. Not 

only are the nature and origins of the disorders unknown, but the response also varies 

on who is asked: the patient, the doctor, the patient's family, the health insurance 

industry, or society at large. 

The prevalence of depression, anxiety, eating disorders, and other mental problems 

among college students has increased recently. The need for counseling services has 

also been steadily increasing at the same time. Some people have interpreted these 

patterns as a mental health emergency that demands immediate examination and the 

development of potential remedies to meet the requirements of pupils. The prevalence 

of personal computer technologies, such as social media, and the subsequent growth in 

symptomatology have been connected in several studies, and it has been hypothesized 

that time spent using these devices is directly associated to poor mental health. 

Although the use of personal computing technology has altered how college students 

interact with one another and may have some negative effects on mental health, these 

same technologies also have several advantages for improving mental health and 

treating mental disease. Here, we discuss the difficulties and possibilities that personal 

computer devices present for the mental health of college students. We emphasize 

chances for new research in this field as well as chances for people and organizations 

to use these technologies in more beneficial and health-promoting ways. 
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Depressive disorders are widespread, expensive, significantly reduce quality of life, and 

are linked to high rates of morbidity and mortality. Antidepressant drugs and talking 

therapy are listed as first-line treatments in most guidelines because they are effective 

treatments for depression. These treatments have improved the lives of countless 

patients around the world and will do so for many years to come. Although some 

patients respond well to therapies, there is still much potential for improvement. This 

Comment presents ten significant data points about the limitations of depression 

treatment outcomes that, in our opinion, demand more focus. We cannot blame our 

ignorance on a lack of research into accepted medical practices. Over the past few 

decades, more than 600 randomized trials have looked at the effectiveness of depression 

psychotherapies and more than 500 have looked at the effects of antidepressant 

medicines (although comparatively few are conducted for early-onset depression). 

The results are questionable since less than 20% of medication studies and less than 

30% of therapy trials have minimal risk of bias. Such trials typically lack the statistical 

power to determine who a treatment is helpful for, leaving no solid proof of who will 

benefit from which treatment the most. Additionally, because there are so many distinct 

outcome measures utilized in treatment research, it is impossible to combine trial results 

without adding noise. Additionally, most trials do not look at long-term impacts. 

Despite more than a thousand trials, there are still many fundamental questions that 

affect both persons who are depressed and those who are trying to help them in real life. 
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CHAPTER 3. DATA CURATION 

 

 

3.1. Overview 

3.2. Beyond the state of the art 

3.3. The proposed automated framework for medical data curation 

3.4. Summary 

 

 

3.1. Overview 

The technological advances of our era have dramatically increased the amount of 

generated digital data [2], [4], [83], [119]. The overwhelming need to improve the 

quality of complex data structures in multiple disciplines varying from the industrial 

and financial sector to the healthcare sector is more important than ever [66], [68], 

[104], [125], [136], [137]. This need has led to an emerging demand for the 

development of automated methods for the quality assessment of big data structures 

since poor data quality results in data poisoning which makes data useless and hampers 

further processing yielding poor scientific results. As a result, the design, development, 

and deployment of automated computational methods for data quality assessment is a 

great technical challenge. 

The data quality assessment process can be considered as a core operation prior to the 

application of any data analytics workflow. Data curation [66], [70], [71], [104], [106], 

lies on the core of the data quality assessment process. Its primary focus is to enhance 

the quality of raw complex data structures by transforming them into high-quality data 

that fulfill certain data quality indices. According to the literature, a set of qualitative 

metrics is usually defined to quantify the quality of the data. Examples of such quality 

metrics include the [52], [66], [106]: (i) consistency, (ii) completeness, (iii) accuracy, 

(iv) auditability, (v) orderliness, (vi) uniqueness, and (vii) timeliness, among others. 
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More specifically, consistency refers to the lack of contradictions in the data. Accuracy 

refers to the percentage of reasonable information in the data. Completeness refers to 

the extent at which missing values are present in the data whereas auditability refers to 

whether any changes in the data can be traced or not. Orderliness refers to whether the 

data conform to a pre-defined format or structure. Uniqueness refers to the extent of the 

duplicated entries in the data and timeliness refers to the extent at which the data follow 

a correct timeliness. Data curation can be used as guidance for fixing recording errors 

which are not easy to be detected, especially when dealing with large scale and highly 

complex data structures. 

In healthcare, the prospects of developing automated data curation workflows are 

many: (i) they can overcome the complexity of processing medical data, especially big 

data, where the conventional manual data curation is not feasible, and (ii) they can 

ensure the reliability and applicability of automation by offering reusable and clinician-

friendly data quality reports that can be used for data diagnostics. A data curation 

workflow consists of a series of steps, including: (i) the development of memory 

efficient data parsing methods in the case of big data structures, (ii) the detection and 

elimination of duplicate fields (de-duplication) and fields with highly similar 

distributions (similarity detection), (ii) the characterization of data according to their 

context (data annotation), (iii) the identification of data inconsistencies, (iv) the 

management of missing values (data imputation), and (v) the detection of data 

anomalies, i.e., values that deviate from the standard data range. 

3.2. Beyond the state of the art 

According to Table 1, the existing quality metrics, however, are mostly qualitative and 

not quantitative enough to be considered as part of a computational workflow for data 

curation. Besides, most of the existing studies from Table 1 focus on providing general 

guidelines for data quality assessment [136], [289], [290] and methodological steps 

towards data curation, without, however, focusing on the development and evaluation 

of a computational framework for data quality assessment on medical data. While the 

variety of the proposed univariate and multivariate methodologies towards outlier 

detection [291], [292] lack of an integrated approach that manages to combine both 

methodologies into a single framework, the presented framework offers an integrated 

service that includes outlier detection as part of its data quality control strategy. 
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Meanwhile, most of the clinical studies for data quality assessment [136]–[140] aim to 

construct a gold standard model (a set of terms which describe the knowledge of a 

clinical domain) and then use this model to manually or semi-automatically classify the 

terms of a raw clinical dataset based on their accuracy, relevance, consistency, etc., with 

the terms of the gold standard model. In addition, most of the proposed methods (Table 

6) are not fully automated and are qualitative rather than quantitative to be considered 

sustainable and viable in terms of their integration into computational workflows for 

data analytics purposes. Moreover, they provide a series of arbitrary methodological 

steps which are constrained by predefined semantic representation models for semi-

automated quality control and manual data entry, such as, the ExeTera tool [70] and the 

universal C-Surv model [140]. All in all, the existing frameworks (Table 6): (i) do not 

use any automated methods towards outlier detection and de-duplication, (ii) focus only 

on assessing the quality of the terms that are relevant with those from the gold standard 

model, and (iii) do not provide re-useable data quality assessment reports. 

To address these needs, we propose an integrated framework for medical data curation 

in terms of data quality assessment. The framework consists of a three-layer 

architecture and serves as a diagnostic tool for managing incomplete terminologies, 

irrelevant terms, outliers, missing values, data categorization, and duplicated terms. In 

this work, we extend data standardization as a pre-harmonization process to make data 

harmonization easier and faster. More specifically, we use lexical matching combined 

with model-based rules and external sources, i.e., vocabularies, to match and classify 

terms according to a pre-defined reference model which is a set of parameters which 

describe the requirements (variables with their types and ranges) of the clinical domain 

of interest. Through this procedure, we attempt to produce semantic relations between 

the fields of the raw dataset with those from a reference model and therefore enhance 

the semantic matching process for data harmonization. The proposed framework 

accounts also for data standardization since it can produce a set of semantic relations 

through a rule-driven approach that is developed based on a pre-defined reference 

model and captures important semantic relations which enable faster data 

harmonization. In addition, the framework can be easily adjusted with new rules 

according to a provided reference model that describes the clinical domain of interest. 
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Table 6. Open issues in the studies from Table 1 and how they are addressed by the proposed 

framework for medical data curation. 

Study Issues Proposed framework 

[136] 

• Lack of quantitative methods for data quality 

control (e.g., outlier detection, similarity 

detection). 

• Conceptual presentation of the methodology 

for matching terms across patients/records. 

• Provides a set of 

quantitative 

functionalities to 

enhance the 

completeness, 

relevance, and accuracy 

of clinical data 

• Includes functionalities 

for metadata extraction, 

outlier detection, de-

duplication, and data 

standardization (based 

on a set of terms that 

are lexically matched 

with those from a 

standard reference 

model). 

• Produces re-usable data 

quality reports that can 

be used to fix outliers, 

duplicates, missing 

values, and 

inconsistencies. 

• Can be iteratively 

executed until the data 

quality criteria are met. 

• Web-based (REST 

service). 

• Data standardization in 

terms of data 

harmonization. 

[137] 

• Lack of case studies to prove the superiority 

of the proposed set of terms against similar 

ones 

• Only qualitative measures are defined for 

quality improvement. 

• Lack of quantitative methods for data quality 

control. 

• Lack of re-usable quality reports. 

[138] 

• The quality assessment process is exclusively 

based on quality criteria that are manually 

defined for each individual data source. 

• Lack of quantitative methods for data 

curation. 

[139] 

• Lack of quantitative methods for data quality 

control 

• Conceptual presentation of the methodology 

for matching terms across patients/records 

[70] 

• Lack of quantitative methods for data quality 

control. 

• Lack of re-usable quality reports. 

• Focuses on a particular data schema for 

semantic matching of existing information. 

[140] 

• The quality assessment process is exclusively 

based on quality criteria that are manually 

defined for each individual data source. 

• Lack of quantitative methods for data 

curation. 
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3.3. The proposed automated framework for medical data curation 

The proposed framework for data curation consists of a three-layer architecture which 

receives as input a raw dataset and outputs the data evaluation report which provides 

information related to the data quality and the data standardization outcomes, and the 

curated dataset (Figure 5). The architecture is comprised of three modules: (i) the data 

evaluation module, (ii) the data quality control module, and (iii) the data standardization 

module which serves as a pre-harmonization step. 

 

Figure 5. The proposed data curation workflow. 

3.3.1. Metadata extraction and data annotation 

The data evaluation stage aims to annotate each feature according to its variable and 

data type, as well as, provide summary metadata and descriptive statistics. During the 

data annotation, each feature is handled separately in order to determine its variable 

type (i.e., integer, float, string, date, or unknown) and data type (i.e., numeric or 

categorical), as well. The variable type of a feature is determined by taking into 

consideration the range values of that feature. In addition, the value range of each 

feature varies according to the types of variable types that are present in that feature. 

For example, if a feature includes only values that are integers, its variable type is set 

to “int”, and if a feature includes values that are integers and floats, its variable type is 

set to “float”. However, if a feature contains values with mixed types, e.g., integer and 

string data types, as well as, unknown data types, such as, symbols (e.g., “+”), the 

variable type is set to unknown. The categorical features are defined as those having 
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two possible values (e.g., the binary features), whereas the numeric features are defined 

as those having more than two possible values. In case where the feature contains values 

with unknown variable type, the data type is set to unknown like before. A numeric 

feature is further characterized as continuous whereas a categorical feature is 

characterized as discrete. Descriptive statistics can be also computed only on those 

features that have integer, date, and float variable types, where the mean, kurtosis, 

skewness, median, maximum, and minimum values are computed on a feature-basis. 

3.3.2. Descriptive statistics 

Useful descriptive statistics are calculated, on a feature basis, including the mean, 

median, standard deviation, variance, skewness, and kurtosis. Features with unknown 

data types are excluded from this process. A table that summarizes these measures is 

presented in Table 7. 

Table 7. Conventional descriptive statistic measures. 

Measure Abbreviation 
Mathematical 

formulation 
Short description 

samples 𝒙 - - 

sample 

size 

𝑁 - - 

mean 𝜇𝑥 - 
measures the central tendency of a 

probability distribution 

median 𝑚𝑥 - 

the “middle” value of a sorted set 

of samples that separates the upper 

half from the lower half 

standard 

deviation 
𝜎𝑥 √

1

𝑁 − 1
(𝒙 − 𝜇2𝑥)/𝜎𝑥 

measures the statistical dispersion 

of a set of samples around the 

mean 

variance 𝜎2𝑥 

1

𝑁 − 1
(𝒙

− 𝜇2𝑥)/𝜎𝑥 

measures the average of the 

squared difference of the samples 

from the mean 

skewness 𝑠𝑥 𝐸 [(
𝒙 − 𝜇𝑥
𝜎𝑥

)
3

] 

measures the “tailedness” of a 

probability distribution (third 

standardized moment) 



76 

 

Measure Abbreviation 
Mathematical 

formulation 
Short description 

kurtosis 𝜅𝑥 𝐸 [(
𝒙 − 𝜇𝑥
𝜎𝑥

)
4

] 

measures the asymmetry of a 

probability distribution (fourth 

standardized moment) 

 

3.3.3. Outlier detection 

Outlier detection, also referred to as anomaly detection, aims at separating a core of 

regular observations from some polluting ones, known as the outliers, which vary from 

the majority. According to the literature, a large variety of both univariate and 

multivariate methods have been proposed so far, some of which are discussed in the 

sequel. Most of these methods are standard approaches applied by clinical laboratories. 

3.3.3.1. Statistical approaches 

3.3.3.1.1. z-score and modified z-score 

Another widely used statistical univariate measure for outlier detection, is the z-score, 

which quantifies the distance between a feature’s value and its mean value [293]. It is 

defined as in: 

𝑧 =
𝒙 − �̂�

𝜎𝑥
 , (3.1) 

where 𝒙 is the feature vector, 𝑥 is its mean value, and 𝜎𝑥 is its standard deviation. In 

practice, features with z-values larger than 3 or smaller than -3 are considered as outliers 

[52]. However, the z-score might lead to misidentified outliers since the maximum 

score is equal to (𝑛 − 1)/√𝑛, yielding small values due to the non-robustness of the 

standard deviation that is used in the denominator, especially in small size data. For this 

purpose, a modified version has been proposed [293]: 

𝑧𝑚𝑜𝑑 =
𝒙 − �̃�

𝑀𝐴𝐷
= 𝑏

𝒙 − �̃�

𝑚𝑒𝑑𝑖𝑎𝑛(|𝒙 − �̃�|)
 , (3.2) 

where MAD stands for the Median Absolute Deviation and �̃� is the median. The 

constant 0.6745 comes from the fact that MAD is multiplied with the constant 1.483 

which is a correction factor that makes the MAD unbiased at the normal distribution (𝑏 
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= 1/1.483 = 0.6745) [52]. The modified z-score yields more robust results due to the 

scale and location factors which are introduced by MAD in (3.2). 

3.3.3.1.2. Interquartile range (IQR) 

The Interquartile Range (IQR) is a widely used approach which measures the statistical 

dispersion using the 1st and 3rd quartiles of an attribute’s range [52], [294]. It is defined 

as the difference between the upper (Q3) and lower (Q1) quartiles of the data. Q1 is 

defined as the 25th percentile (lower quartile) whereas Q3 is the 75th percentile (upper 

quartile). Values lower than the first quartile or larger than the third quartile are outliers 

[52], [294]. The IQR multiplied by 0.7413 yields the normalized IQR. The term 0.7413 

comes from the inverse of the width of the standard normal distribution (1/1.3498). 

3.3.3.1.3. Grubb’s test 

The Grubb’s statistical test is a univariate statistical measure which tests for the 

hypothesis that there are outliers in the data [52], [295]. The test statistics is given as: 

𝐺 =
𝑚𝑎𝑥 (|𝒙 − �̂�|)

𝜎𝑥
 . (3.3) 

In fact, the Grubb’s test statistics is defined as the largest absolute deviation from the 

sample mean in units of the sample standard deviation. Here, we are interested in testing 

whether the minimum value or the maximum value of 𝒙 is an outlier, i.e., a two-sided 

test. A value is an outlier if the null hypothesis is rejected at the .05 significance level. 

Another test statistics is the Hampel’s test which is defined as the difference of each 

sample from its population median value (median deviation). A sample is an outlier if 

its absolute Hampel value is 4.5 times larger than (or equal to) the median deviation 

[52], [66], [296], [297]. 

3.3.3.2. Machine learning approaches 

3.3.3.2.1. Local outlier factor (LOF) 

The Local Outlier Factor (LOF) [65], [298], [299] is a density-based approach which 

measures the local density of a given data point with respect to its neighboring points, 

where the number of nearest neighbors determines the accuracy of the model. The LOF 

uses the density of a point against its neighbors to determine the degree of the whether 
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the point is an outlier. For a point 𝑥, the local reachability density (lrd) of 𝑥, 𝑙𝑟𝑑(𝑥), is 

defined as [65], [298], [299]: 

𝑟𝑑(𝑥) =
‖𝑁𝑘(𝑥)‖

∑ 𝑟(𝑥, 𝑥′)𝑥′∈𝑁𝑘(𝑥)
 , (3.4) 

where 𝛮𝑘(𝑥) is the set of 𝑘-nearest neighbors for 𝒙, 𝑟(𝑥, 𝑥′) is the reachability distance 

which is defined as the distance between 𝑥 and its 𝑘-nearest neighbor. The reachability 

distance is the true distance between two points. The LOF is given by [65], [298], [299]: 

𝐿𝑂𝐹(𝑥) =
∑ (𝑙𝑟𝑑(𝑥′)/𝑙𝑟𝑑(𝑥))𝑥′∈𝑁𝑘(𝑥)

‖𝑁𝑘(𝑥)‖

=∑ 𝑙𝑟𝑑(𝑥′)
𝑥′∈𝑁𝑘(𝑥)

∑ 𝑟(𝑥, 𝑥′)
𝑥′∈𝑁𝑘(𝑥)

 , 

(3.5) 

which is equal to the average local reachability density of the neighbors divided by the 

point’s own local reachability density. The lower the local reachability density of 𝑥 the 

higher the local reachability density of the kNN of 𝑥 and thus the higher the LOF. The 

higher the LOF the more likely the point is an outlier. 

3.3.3.2.2. Isolation forests 

Isolation forests [52], [298], [300], [301] is a collection of isolation trees which: (i) 

enable the exploitation of subsampling data to precisely detect outliers, (ii) does not 

make use of distance or density measures to detect anomalies, (iii) achieves linear time 

complexity, and (iv) is scalable. The term “isolation” stands for the separation of an 

instance (a polluting one) from the rest of the instances (the inliers). Isolation trees are 

binary trees where instances are recursively partitioned and produce noticeable shorter 

paths for anomalies since: (i) in the regions occupied by anomalies, less anomalies 

result in a smaller number of partitions – shorter paths in a tree structure, and (ii) 

instances with distinguishable attribute-values are more likely to be separated early in 

the partitioning process [52], [298], [300], [301]. Thus, when a forest of random trees 

collectively produces shorter path lengths for some particular points, they are highly 

likely to be anomalies [52], [298], [300], [301]. 

The subsample size controls the training data size and affects the reliability of outlier 

detection whereas the number of trees controls the size of the ensemble trees [52], 
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[298], [300], [301]. In practice, 𝑀 is set to 28 and 𝑁 is set to 100. The anomaly score 

is finally defined as, as follows: 

𝑠(𝑥,𝑀) = 2
−
𝐸(ℎ(𝑥))
𝑐(𝑀)  , (3.6) 

where 𝑐(𝑀) the average path length of unsuccessful searches, ℎ(𝑥) is a harmonic 

number which is defined as 𝑙𝑛(𝑥) plus the Euler’s constant and 𝐸(ℎ(𝑥)) is the average 

of ℎ(𝑥) from a collection of isolation forests [52], [298], [300], [301]. Scores close to 

1 indicate anomalies, scores much smaller than 0.5 are inliers and scores close (or 

equal) to 0.5 are safe instances. 

3.3.3.2.3. Gaussian elliptic envelopes 

A common distance measure, which is widely used for anomaly detection in properly 

scaled datasets, is the Euclidean distance. In multivariate datasets however, the 

Euclidean distance suffers from the covariance that exists between the variables [52], 

[302]. A distance measure that accounts for such effects, in multivariate datasets, is the 

Mahalanobis distance which uses the eigenvalues to transform the original space into 

the eigenspace, so as to neglect the correlation among the variables of the dataset [303] 

and is defined as: 

𝐷(𝒙) = √(𝒙 − 𝝁)𝜮−𝟏(𝒙 − 𝝁) , (3.7) 

where 𝒙 is an 𝑛-dimensional feature vector where the observations are stacked in 

columns, 𝝁 is the mean vector across the observations, and 𝜮−𝟏 is the inverse 

covariance matrix. Note that if the covariance matrix is the identity matrix, (3.7) yields 

the Euclidean distance, whereas if the covariance matrix is diagonal, (3.7) yields the 

normalized Euclidean distance. A way to visualize the result of (3.7), is to use an 

Elliptic envelope. Data within the ellipse surface are inliers, whereas data outside of the 

ellipse are outliers. The Elliptic envelope (also referred to as elliptical envelope), 

models the data as high-dimensional Gaussian distributions that consider for the 

covariance between the observations. The FAST-Minimum Covariance Determinant 

[304] is widely used to estimate the size and the shape of the ellipsis. The algorithm 

conducts initial estimations of the mean vector 𝜇 and the covariance matrix 𝛴 (3.7) 

using non-overlapping subsamples of the feature vector. Then the algorithm proceeds 

with new subsamples until the determinant of the covariance matrix converges. 
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3.3.4. De-duplication 

3.3.4.1. Similarity detection 

The data curation service offers additional capabilities for detecting highly correlated 

and duplicated features. The highly correlated features are identified by first computing 

the Spearman’s correlation coefficient between each possible pair of features. The 

Spearman correlation coefficient is defined as follows: 

𝑟ℎ𝑜 = 1 −
6 ∙ ∑𝑑2𝑖

𝑁 ∙ (𝑁2 − 1)
  , (3.8) 

where 𝑑𝑖 is the difference between the ranks of the values between two features and 𝑁 

is the number of samples per feature. An example of the correlation matrix is depicted 

in Figure 6. 

 

Figure 6. An illustration of the square Spearman correlation matrix for detecting highly 

correlated pairs of features across the raw input data (those depicted with high intensities). 

3.3.4.2. Context based de-duplication 

In addition, string similarity metrics, such as, the Jaro distance [52], [305], are also used 

to detect features with lexical similarities by computing the Jaro distance between each 

possible pair of features labels. For two strings, 𝑥 and 𝑦, the Jaro string similarity 

measure,  𝑠𝑖𝑚𝐽, is equal to: 
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𝑠𝑖𝑚𝐽 = {

                    0                   ,         𝑐 = 0   

1

3
∙ (
𝑐

|𝑥|
+
𝑐

|𝑦|
+
𝑐 − 𝑡

𝑐
) , 𝑜/𝑤     

, (3.9) 

where 𝑐 is the number of matching (coincident) characters, and 𝑡 is half the number of 

transpositions. Finally, the pairs of features having more than 95% correlation are 

highlighted for further evaluation by the data providers including the features that 

express lexical similarities (e.g., the ‘’Lymphadenopathy” and the “Lymphadenopathy 

(fixed)”). An example of the lexical matrix is depicted in Figure 7. 

 

Figure 7. An illustration of the lexical distance matrix for detecting lexically similar (or 

identical) terms across the raw input data (those depicted with high intensities). 

3.3.5. Data imputation 

The features are classified according to the number of missing values into three 

categories, namely the: (i) “bad” features, (ii) “good” features, and (iii) “fair” features. 

The “bad” features are those having more than 50% of missing values. The “fair” 

features are those having less than 50% missing values where data imputation can be 

applied to improve the quality of the dataset. Finally, the “good” features are those 

without any missing values. The data imputation process is semi-automated and is 

performed with the support of the data providers. It consists of two options for replacing 

missing values, namely the average/most frequent (or median) and the mean value for 

the discrete and continuous features, respectively.  
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The “bad” features are excluded from the data imputation process since any attempt to 

replace the missing values would be pointless. In fact, the data imputation process can 

be performed only for the features that are classified as “fair”, with integer, float, or 

date data types, and only when the data provider agrees to do so. The “fair” features 

with unknown data types are excluded from the data imputation process. Features with 

detected outliers and/or unknown data types are also excluded from the data imputation 

process since any attempt to impute them would further spread the contaminated values 

within the dataset. 

3.3.5.1. Average/Most frequent 

The average/most frequent method is a univariate method according to which the 

missing values in the continuous features are replaced with the average value of the 

remaining (non-missing) values in each individual feature whereas the missing values 

in the discrete features are replaced with the most frequent value of the non-missing 

values [52], [66]. This approach however might introduce critical biases which often 

lead to data poisoning and make data useless. For instance, assume that we have two 

discrete features, say “gender” with values {“male”, “female”, “other”} and 

“pregnancy_status” with values {“yes”, “no”}. Our goal is to impute the missing values 

in the discrete feature “pregnancy_status”. For the sake of easiness, let’s assume that 

the most frequent value in the feature “pregnancy_status” is “yes”. Thus, all missing 

values in “pregnancy_status” will be set to “yes”. In that case, however, a patient who 

is “male” will have a “pregnancy_status” set to “yes” which is invalid; thus introducing 

significant biases in the dataset. 

3.3.5.2. Random imputation 

As its name implies, random imputation is a univariate approach which draws a random 

value from the distribution of each individual features to replace the missing ones [52], 

[66]. Random imputation can also lead to data poisoning since the randomness is highly 

likely to yield values with no practical reasoning (like in the previous example). 

3.3.5.3. k-nearest neighbors (kNN) 

The k-nearest neighbors (kNN) method is a multivariate and more straightforward 

approach where the samples with missing values in a patient are imputed according to 
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the values of the 𝑘-nearest neighboring samples [306]. The imputed values are equal as 

the weighted average of the neighboring samples, where the weights of all neighboring 

samples can be either: (i) uniform and thus have equal influence on the missing value 

of the sample, or (ii) equal to the inverse of the Euclidean distance (or any type of 

distance measure, e.g., the Mahalanobis distance) of the neighboring samples, where 

neighboring samples with smaller distance have a greater influence on the missing 

value of the sample.  

As a result, the number of neighbors is proportionate to the computational complexity 

of the imputation process, where higher number of neighbors (𝑘-valeus) lead to higher 

computational complexity. In addition, the 𝑘-NN approach is mostly useful in time-

series data rather than in clinical data where each feature represents a unique 

information. In that case, large number of neighbors can lead to the definition of 

incompatible values for each individual feature and thus to data poisoning. 

3.3.5.4.  “Smart” imputation 

3.3.5.4.1. Workflow 

The proposed “smart” imputation workflow (Figure 8) consists of four stages, namely 

the: (i) data pre-processing stage, (ii) generation of virtual patient profiles stage, (iii) 

“smart” imputation stage, and (iv) nested validation stage. A data pre-processing 

pipeline is first applied on the raw data to resolve data inconsistencies, such as, outliers 

and duplicated fields. Four state-of-the art data generators (tree ensembles, Bayesian 

Networks, Bayesian Gaussian Mixture Models, Artificial Neural Networks) are trained 

on the curated data to produce virtual distributions with low dispersity.  

A search algorithm is then applied to seek for a set of virtual patients having common 

clinical profiles with the real patients though the definition of a profile matching score 

(PMS) which quantifies the distance between the non-missing values of a real patient 

profile against those from the pool of virtual (synthetic) patient profiles. The virtual 

patient profiles with the smallest PMS are then used for imputation. Nested validation 

is applied to assess the accuracy of the imputed values by computing the average 

correlation difference (CD) and scaled squared absolute difference (SSAD) among the 

original and the imputed data. The validation process is repeated ten times for five 

different contamination ratios (i.e., 10% to 50%). 
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Figure 8. An illustration of the proposed workflow. 

3.3.5.4.2. Smart imputation 

In this work, the “smart” imputation process is based on the identification of a set of 𝑁-

candidate virtual patient profiles, say {𝑉1, 𝑉2, … , 𝑉𝑁}, which will be used to impute the 

missing values in a set of 𝑁-real patient profiles {𝑅1, 𝑅2, … , 𝑅𝑁}. To do so, a search 

algorithm was developed to identify the candidate virtual patient profiles as those 

having the smallest profile matching score (PMS) which is defined as in: 

𝑃𝑀𝑆𝑣 = 𝑒
−|𝑥𝑣,1−𝑥𝑟,1|

2
+ 𝑒−|𝑥𝑣,2−𝑥𝑟,2|

2
+⋯+ 𝑒−|𝑥𝑣,𝑛−𝑥𝑟,𝑛|

2
, (3.10) 

where 𝑣 is the index of the virtual data generator,  𝑥𝑣,𝑖 is the 𝑖-th virtual feature and 𝑥𝑟,𝑖 

is the corresponding real feature, 𝑖 ∈ [0, 𝑛] and 𝑛 is the number of features in the 

dataset. Since the Euclidean and similar linear distance measures are not able to model 

the distance between diverse features in the cartesian grid, the exponential function was 

used to provide a non-linear relationship between them. A high-level pseudocode of the 

“smart” imputation workflow is presented in Algorithm 1. The input parameters include 

the curated clinical dataset, the number of features, the virtual population algorithmic 

specifications and the empty virtual population algorithmic objects. Each virtual data 

generator is trained on the curated clinical dataset based on the provided specifications. 

Then, the profile matching score is calculated based on the virtual data. The smallest 
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profile matching score is then extracted, and the suggested imputed values are returned 

in the output. 

Algorithm 1. A pseudocode of the “smart” imputation process. 

1 Input parameters 

2 D_cur = curated clinical dataset 

3 N = number of features 

4 specs = virtual population algorithmic specifications 

5 vpops = empty virtual population algorithmic objects 

6 def smart_imputation(D_cur): 

7 for vpop in vpops: 

8 Vpop_m = vpop(D_cur, specs[vpop]) 

9 pms = PMS(Vpop_m) 

10 S = search(pms) 

11 imputed_S = extrac_set(S) 

12 return imputed_S 

 

3.3.5.4.3. Synthetic data generation 

Gaussian Mixture Models (GMM) with variational Bayesian inference (BGMM) focus 

on the estimation of a set of hyper-parameter(s) 𝜽 in a search function, say 𝑞(𝒙; 𝜽), so 

that the Kullback-Leibler (KL) divergence with the posterior distribution, say 𝑝(𝒙), is 

minimized [130]. In this case, the minimization of the logarithm of the evidence yields: 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∫ 𝑞(𝒙; 𝜽)(𝑅(𝒙) + 𝑙𝑜𝑔(�̃�(𝑖|𝒙)))𝑑𝒙
𝒙

+ 𝐻(𝑞)], (3.11) 

where 𝑅(𝒙) refers to the logarithm of the posterior distribution, 𝐻(𝑞) is the entropy of 

𝑞(𝒙; 𝜽), and �̃�(𝑖|𝒙) is a multivariate normal distribution. Since the number of Gaussian 

components in the BGMM is arbitrary, we applied k-means clustering to derive robust 

estimations on the number of Gaussian components, where the Davies-Bouldin index 

was used to estimate the optimal number of clusters, say 𝐾. Then, the number of 

Gaussian components was set equal to 𝐾 to initialize the BGMM. The Bayesian 

networks are modeled as a directed acyclic graph (DAG), where each node 𝑣 ∈ 𝑽 is 

assigned to a random variable, say 𝑥𝑣, according to [168]: 

𝑝𝑣 =∏𝑝(𝑥𝑐|𝑥𝑝𝑎(𝑐))

𝑐∈𝑪

∏𝑝(𝑥𝑑|𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑))

𝑑∈𝑫

. (3.12) 
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where, 𝑝(𝑥𝑑|𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑)) is the probability of 𝑥𝑐 given the parents of the discrete and 

continuous variables, 𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑), and 𝑝(𝑥𝑐|𝑥𝑝𝑎(𝑐)) is the probability of 𝑥𝑐 given the 

parents of the continuous nodes, 𝑥𝑝𝑎(𝑐). Tree ensembles were trained on a portion of 

the real data (e.g., 50%) as described in [131], [173], by estimating a set of density trees. 

Artificial neural networks (ANNs) were also utilized as described in [131], [172] using 

Gaussian radial basis functions (RBFs) as activation functions. 

3.3.5.4.4. Synthetic data quality evaluation 

Synthetic data quality metrics [130], [134] were used to quantify the: (i) similarity (i.e., 

the average correlation difference; small value indicate reduced dissimilarity), (ii) level 

of dispersity (i.e., the variance to mean ratio – VMR; values less than 1 denote reduced 

dispersity) which is also referred to as coefficient of variation, and (iii) convergence 

(i.e., the Kullback Leibler-divergence or KL-divergence; values close to 0 denote 

reduced entropy variation) among the real and the virtual patient profiles. 

3.3.5.4.5. Validation 

A nested validation method was developed to demonstrate the effectiveness of the 

proposed “smart” imputation process. According to the proposed method, each feature 

in the real patient dataset is randomly contaminated with different ratios. The process 

is repeated ten times to avoid biases. In each iteration, the scaled squared absolute 

difference (SSAD) between the original and the proposed imputed values is computed 

along with the average correlation difference (CD) between the features in the original 

and imputed datasets. 

3.3.6. The data evaluation report 

An instance of the data evaluation report is depicted in Figure 9. As it is already 

mentioned, the data evaluation report summarizes the contents of the “Info” panel and 

the “Quality assessment” panel, in a tabular format, thus providing an offline, concise 

view on the structure and vocabulary of the data. For the sample dataset, the total 

number of features was equal to 166 and the number of patients was equal to 250. In 

this example, out of 166 features, 60 were characterized as discrete and 78 as 

continuous. The number of unknown features was equal to 28 and the total number of 

missing values was equal to 44.58%. The names of the features are the labels that exist 
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in the first row of the file “raw_dataset” under the path “raw_data” of the data 

provider’s private cloud space. The value ranges in each feature include the minimum 

and the maximum values that exist on each feature’s space. In the case where the feature 

has unknown or string data type, the complete set of unique values is presented in the 

value range. For example, the feature “First visit (year)” has a variable type of date in 

the range [1983, 2018]. On the other hand, the feature “comorbidities” has a variable 

type string and thus all the unique string values are recorded (e.g., “HEART 

ARRHYTHMIAS”, “HASHIMOTO”). In the same feature, the outlier detection 

method is not applicable since it has a string data type. The same occurs for the features 

“First Symptom”, and “Year of first symptom”. The outlier detection method is also 

not applicable for the bad features with unknown data types, such as, for: (i) “Rose-

Bengal Stain(0-1)”, which includes an unknown symbol “+” that probably denotes 

positivity instead of the value “1”, (ii) “Positive ocular stain score”, which includes 

values that are recorded as fractions (e.g., “1/9”), and (iii) “Dry-mouth-Objective (ml 

of saliva in 15 min)”, which includes an incompatible value “<1.5”. 

 

Figure 9. An indicative instance of the data evaluation report. 

3.3.7. The curated dataset 

An instance of the automatically generated curated dataset, for the same dataset, is 

depicted in Figure 10. The fact that the features “Ro/La”, “RF+”, “monocloncal 

gammopathy”, “LOW C4(<20)”, and “Lymphoma score” are filled with light green 

color denotes that they have less than 50% missing values, whereas the features 

“Lymphadenopathy (fixed) date(-yr)”, “Type of monoclonal gammopathy”, “Time of 
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2st MSG biopsy”, “Code 2nd MSG Biopsy”, and “MSG 2nd bx Focus Score (no/4 

mm2), xx, x” have more than 50% missing values and are depicted with light red color. 

The missing values are recorded with the symbol “?”, in a gray background for easier 

tracking. According to Figure 10, a contaminated value 5 was successfully detected for 

the feature “LOW C4(<20)” and marked with yellow color since this feature is expected 

to have binary values (i.e., “1” for C4 values lower than 20 or “0” otherwise). In 

addition, two incompatible values, namely “Π/Φ 1254” and “0,22” are successfully 

marked with red color for the features “Code 2nd MSG biopsy”, and “MSG 2nd bx 

Focus Score (no4/mm2), xx, x”, respectively. The former value contains a combination 

of unknown characters (i.e., “Π/Φ”) with numbers, whereas the latter value has 

incompatible format (i.e., “0,22” instead of “0.22”). 

 

Figure 10. An indicative instance of the curated dataset with an incompatible value, an 

unknown value, and an outlier. 

Another instance of the same curated dataset is depicted in Figure 11, where the same 

incompatible value (i.e., “κ.φ”) has been detected by the service for the features “wbc 

baseline (absolute number)”, “NEUTROPHIL NUMBER (absolute number)”, 

“LYMPHOCYTE NUMBER (absolute number)”, “PLT (absolute number)” which is 

the number of platelets, and “ESR” which stands for the erythrocyte sedimentation rate. 

An abnormal value 43.5 was detected by the service as an outlier for the feature “HGB 

(absolute number)” which stands for hemoglobin. In this instance, a good feature is also 

depicted with light blue color, namely the “Esophagus involvmt GER (0-1)”. The rest 

of the features are “fair” and thus depicted with light green color except from the “bad” 

features “Esophagus involvmt” and “MONOCYTE NUMBER (absolute number)”. 



89 

 

 

Figure 11. An instance of the curated dataset with four unknown values and one outlier. 

A final instance of the same curated dataset is depicted in Figure 12, where an outlier 

value 11997 has been detected by the service for the feature “Date of first biopsy” along 

with an incompatible value “>1” for the feature “FS 1st biopsy”.  

The former value implicates an erroneously parsed year whereas the former value 

denotes a value which might be larger than 1 but it is not properly recorded. 

 

Figure 12. An indicative instance of the curated dataset with erroneously parsed values; one 

incompatible value and one outlier. 

To demonstrate the application of the data imputation process, a second experiment was 

conducted on the same dataset, where the data imputation method has been set to 

“Average/most frequent” instead of “None”. 
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Figure 13. An indicative instance of the curated dataset after data imputation is applied. 

An instance of the curated dataset after data imputation is depicted in Figure 13, where 

the “bad” features “SGE Dates”, “Raynaud’s phen, date(-yr)”, and “Lymphadenopathy 

(fixed) date(-yr)” have been correctly ignored from the imputation process whereas the 

missing values on the “fair” features “Raynaud”, “Lymphadenopathy”, “Ro/La”, 

“RF+”, “monoclonal gammopathy”, and “Lymphoma score” have been replaced with 

the median value. Note that the feature “LOW C4(<20)” has not been replaced since it 

has outliers (Figure 10) and any attempt to replace the missing values would further 

contaminate that feature. In fact, the content of the “Quality Assessment” panel along 

with the content of the upper panel with metadata is summarized within the 

homonymous document (i.e., the data evaluation report).  

An instance of the data evaluation report is depicted in Figure 14. 

 

Figure 14. An instance of the automatically generated data evaluation report. 
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The data evaluation report is automatically generated and is stored inside the private 

cloud space of a data provider (in the case where the data curation service is executed 

in a secure cloud computing environment, where each data provider has his/her own 

private cloud space where their data are stored – the cloud computing environment must 

fulfill all the necessary GDPR regulations for data sharing and data protection). The 

same occurs for the curated dataset in the context of the data diagnostics procedure. 

Thus, the data provider has easy access to them through the private cloud space. 

Another instance of the data evaluation report is depicted in Figure 15 whereas an 

instance of the curated dataset is depicted in Figure 17. The curated dataset is 

automatically generated and is stored inside the private cloud space of the data provider. 

According to Figure 17, the features “WB<3000 (repeatedly)” (White Blood Cell - 

repeatedly), “wbc baseline” (White Blood Cell at baseline) are “good”, the features 

“Neutrophil number”, “Lymphocyte number”, “PLT (absolute number)” (Number of 

platelets in the blood), “HGB (absolute number)” (Hemoglobin), “ESR” (Eryhtrocyte 

Sedimentation Rate), “CRP (0,1)” (C-reactive protein), “γ-globulins” are “fair”, and the 

features “Monocyte number” is “bad”. 

 

Figure 15. A second instance of the automatically generated data evaluation report. 

A final instance of the data quality evaluation report is depicted in Figure 16. This figure 

includes 3 fields were marked as outliers, and 16 as missing values followed by a 

question mark in the case where the features are “bad” and/or have incompatibilities 

and with the imputed value otherwise (e.g., for the features “Lymphocyte number”, 

“CRP”, “γ-globulins” the missing values have been imputed since they are “fair” 

features without incompatibilities). 



92 

 

 

Figure 16. A final instance of the automatically generated data evaluation report. 

The values “10400”, “8008”, and “9” of the features “wbc baseline”, “Nutrophil 

number”, and “HGB (absolute number)”, respectively, are marked as outliers since they 

deviate from the standard distribution of each corresponding feature. The Imputation of 

the missing values takes place only for the “fair” features without any incompatibilities 

(e.g., outliers, inconsistent data types) to avoid any further data contamination in the 

curated dataset. 

 

Figure 17. An instance of the automatically generated curated dataset. 

A second instance of the curated dataset is depicted in Figure 18. According to Figure 

18, the features “ANA (titer-1)” and “C3 (mg/mL)” are “fair” and the features “Anti-

HIV I/II (0-1)”, “IgG”, “IgM”, “IgA”, “AMA(titer-1)”, “Anti-TPO (0,1)”, “Anti-TG 

(titer)” are “bad”. In addition, 1 field is marked as outlier, 29 as inconsistent and 127 as 

missing values where 118 are followed by a question mark since they are “bad” features 

and 9 fields are imputed for the feature “LDH” since it is a “fair” feature without any 

incompatibilities. The value “797” of the feature “IgM” is marked as outlier since it is 

a value that deviates from the standard distribution. The values in the feature “ANA 

(titer-1)” are filled with red color since they are inconsistent (i.e., fractions). 
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Figure 18. A second instance of the automatically generated curated dataset. 

3.3.8. The “clean” curated dataset 

The clean curated dataset is the pure version of the diagnostics dataset from the REST 

service of the data curator, where the “bad” features are automatically removed from 

the data. 

3.3.9. An instance of the REST API service of the data curator 

An instance of the main screen of the REST API service of the data curator which was 

developed under the aegis of this thesis is depicted in Figure 19. From there, the end-

user can select: (i) a method for outlier detection, (ii) a method for similarity detection 

(de-duplication), and (iii) a method for data imputation. 

 

Figure 19. The main screen of the REST API data curation service. 
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According to Figure 20, the REST API service currently supports both univariate and 

multivariate methods for outlier detection, including the z-score, the interquartile range 

(IQR), the Grubb’s test, the local outlier factor (LOF), the isolation forests, and the 

modified version of the isolation forests. 

 

Figure 20. The outlier detection methods of the REST API data curation service. 

According to Figure 21, the REST API service currently supports four methods for 

pairwise similarity detection among the features, including the Spearman rank-order 

correlation coefficient, the Pearson’s correlation coefficient, the Kendall’s tau, and the 

covariance (in the case of a gene expression dataset as the input dataset). 

 

Figure 21. The similarity detection methods of the REST API data curation service. 
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According to Figure 22, the REST API service currently supports three methods for 

data imputation, including the average/most frequent, the random and the imputation 

with zeros which is a special case in the case of gene expression data with missing gene 

counts. 

 

Figure 22. The data imputation methods of the REST API data curation service. 

3.3.10. Alternative color coding 

An instance of the data assessment report for an indicative SILICOFCM dataset is 

depicted in Figure 23. For each feature, the value range, data type, variable type, 

number of missing values, mean/median value, state, presence of outliers and 

incompatibilities is recorded along with useful metadata at the top row (number of 

features, number of instances, number of discrete and continuous features, number of 

unknown features, missing values). 

 

Figure 23. An instance of the data assessment report. 



96 

 

An instance of the curated dataset is depicted in Figure 24 using updated color coding. 

 

Figure 24. An instance of the curated dataset with appropriate color coding for data quality 

control. 

A second instance of the curated dataset is depicted in Figure 25 presenting the 

successful identification of two potential outliers in the features “systolic” and 

“diastolic” pressures. More specifically, a value 260 has been recorded for the systolic 

pressure and a value 140 for the systolic pressure regarding the same patient. These 

values deviate from the standard population distribution, in each case, and thus they 

have been highlighted with orange color for easier inspection by the clinical experts. 

 

Figure 25. An instance of the curated dataset with the presence of two outliers. 

3.4. Summary 

Data quality has been recognized as a key factor in all operating processes both in the 

public and private sectors. It has been characterized as a multidisciplinary process since 

it reflects the needs for sustainable data of high quality in several domains varying from 
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business to healthcare. The technological advances of our era combined with the fact 

that the structure of the current information systems is network-based, have 

dramatically increased the amount of digital data. A crucial consequence of this 

evolution is that data management has become more complex and controversial. This 

need has increased the necessity for automated methods and rules that are able to deal 

with the quality assessment of big data. Lack of data quality results in bad data 

manipulation which makes data useless and has numerous negative effects on further 

processing. Thus, emphasis must be given on the development of new methods for 

dealing with insufficient data sources. 

The most important process of a data management system is the data quality 

assessment. The data quality assessment process is related to: (i) the evaluation of data 

protection metrics (e.g., data protection impact assessment), (ii) the organizational 

structure of the data, and (iii) the overall information management. Several studies [66], 

[125], [136], [138]–[140] were launched highlighting the leading role of data quality 

assessment in improving the information quality especially in the medical domain. To 

assess the quality of the data, one must first define the quality requirements and metrics. 

Examples of common data quality requirements include the: (i) accuracy, (ii) 

completeness, (iii) consistency, (iv) interpretability, (v) timeliness, (vi) relevancy, and 

(vii) ease of manipulation, among many others. In general, multiple metrics can be 

associated with each quality requirement. For example, completeness, in the field of 

data science, can be defined as the degree to which a given dataset meets the pre-defined 

requirements of an optimal dataset. In this case, completeness is a quality requirement 

that can be quantified from data-driven (quality) metrics, such as, the number of missing 

values, incomplete terminology, etc. 

It has been long proven that the quality of data mining results and related applications 

highly depend on the quality of the data. For example, a clinician who wishes to apply 

a simple regression model on a contaminated clinical dataset (in the presence of outliers 

and/or incompatible values) to identify independent factors for a particular disease or 

develop a prediction model for the disease progress, will end up with a distorted model 

with no clinical value. In addition, the structural heterogeneity of the clinical data across 

different clinical centers introduces biases during the analysis of medical data. The 

heterogeneity and non-canonical form of medical data resulting from either the bad 
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quality of the medical data or the lack of a standard clinical vocabulary hampers data 

mining and other processing tasks.  

Data standardization is a promising solution for transforming the data into a common 

format [52], [73], [75] and interoperability standards and modeling annotations in turn 

are key factors towards the success of data standardization. Standardization is usually 

performed according to a gold standard model which serves as a reference model, i.e., 

a set of parameters which describes the requirements (e.g., variables, types, 

descriptions) of a disease of interest [52], [73], [109], [129], [141]. Most of the studies 

make use of gold standard models to assess the quality of different types of clinical data 

based on various data quality measures, such as, the accuracy, the completeness, etc. 

Data standardization has many similarities with data harmonization. The latter is of 

great importance since it aims to overcome the heterogeneity of medical data worldwide 

by converting the heterogeneous data into homogeneous ones (e.g., with similar 

structure and terminologies). Data harmonization [52], [73], [109], [129], [141] 

involves several mechanisms including data transformation to a common format, data 

annotation, terminology detection and alignment, most of which are part of the data 

curation framework and especially of the data standardization process. It is, therefore, 

important to consider data standardization as a crucial part of a data quality assessment 

framework and a key part of data harmonization.  

According to Table 6, most of the studies on data curation mainly focus on providing 

general guidelines for data quality assessment, methodological steps towards data 

curation and standardization, without, however, focusing on the development and 

evaluation of a computational framework for data quality assessment on medical data. 

To address this need, we presented the objectives, functionalities, and methodological 

advances of an integrated framework for medical data curation in terms of data quality 

assessment. The proposed framework consists of a three-layer architecture and serves 

as a diagnostic tool for managing incomplete terminologies, irrelevant terms, outliers, 

missing values, data categorization, and duplicated terms. In the core of this framework 

lies data standardization. 

In this thesis, we extend data standardization as a pre-harmonization process to make 

data harmonization easier and faster. More specifically, we use lexical matching 
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combined with model-based rules and external sources, i.e., vocabularies, to match and 

classify terms according to a pre-defined reference model which is a set of parameters 

which describe the requirements (variables with their types and ranges) of the clinical 

domain of interest. Through this procedure, we attempt to produce semantic relations 

between the fields of the raw dataset with those from a reference model and therefore 

enhance the semantic matching process for data harmonization. To our knowledge, this 

is the first fully automated, highly scalable, and efficient data curation framework with 

a REST API service for medical data quality assessment. 
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CHAPTER 4. DATA HARMONIZATION 

 

 

4.1. Overview 
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4.5. A hybrid method for data harmonization 

4.6. Summary 

 

 

4.1. Overview 

The lack of standardized data (data heterogeneity) among biobanks, cohorts, and other 

sources of medical data is a crucial scientific challenge which obscures the effective 

analysis of such data, yielding clinical studies with poor statistical power [52], [73], 

[129], [147]. Data harmonization is an emerging research field which aims to overcome 

the existing heterogeneities across multiple medical data sources [52], [73], [74], [109], 

[129], [147], [160], [161]. The heterogeneity of data among biobanks, cohorts, and 

other sources of medical data is a critical scientific limitation which poses significant 

obstacles in the effective analysis of such data, yielding clinical studies with poor 

statistical power and, thus, inaccurate disease outcomes [52], [73], [74], [109], [129], 

[147], [160], [161]. In computer science, data harmonization is an emerging technique 

which aims to overcome the structural heterogeneities that are present among the 

medical data derived from multiple sources by producing homogenized versions of the 

heterogeneous data that share a common medical domain (context). The overall idea of 

data harmonization is to transform the heterogeneous data into a common format with 

the exact same parameters and range values, using data-driven, and other computational 

approaches, such as, lexical, and semantic matching, to enable the integrative analysis 

of the heterogeneous data and therefore, enhance the statistical power of the clinical 
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studies which make use of such data. Based on the above concept, data harmonization 

can enable the interlinking and subsequent integration of clinical data to deal with the 

unmet needs in various diseases. 

4.1.1. The value of data harmonization in healthcare 

The prospects of data harmonization in the medical domain are many. Harmonization 

can overcome the lack of common (standard) data collection protocols, a fact that 

introduces biases during the collection of medical data among multiple sources of 

medical data (e.g., clinical centers), especially during the recording of the measurement 

units of various laboratory-related attributes. This can be accomplished by either 

normalizing the measurement units according to a pre-defined range that is already 

defined in the standard model or based on statistical approaches, through a procedure 

which is known as data standardization. In contrast to data standardization, data 

harmonization is a more generalized strategy which aims to first align the structure of 

the datasets and then apply data standardization as part of the normalization process.  

In fact, data harmonization involves: (i) the identification of terminology matches 

among the heterogeneous data through a procedure which is known as terminology 

mapping, and (ii) the application of data standardization to normalize the measurement 

scales across the matched terms through a procedure which is known as terminology 

alignment. The fact that the data harmonization process can be performed in a 

semiautomated manner reduces the time effort that is needed by the clinicians to 

manually homogenize their clinical data, which is rather impossible in the case of large 

datasets, where the number of parameters is vast, like in omics data [307]–[310]. The 

clinician’s involvement can be further reduced by constructing machine learning 

algorithms which are able to learn from external sources, such as, medical index 

vocabularies, through the development of semantic interlinking mechanisms which are 

able to speed up the data harmonization process.  

The fact that data harmonization allows the integration of heterogeneous data can 

provide great insight on the assessment of the unmet needs in various diseases [52], 

[73] through: (i) the development of more robust risk stratification models for the early 

identification of high-risk individuals, (ii) the identification of new prominent 
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biomarkers for the prediction of disease outcomes, and (iii) the development of new, 

targeted, therapeutic treatments and health policies. 

Why is it necessary to harmonize the data? As it has been already mentioned, data 

harmonization can enable the integration of clinical data from cohorts, and other similar 

sources of medical data, that coexist under a specific clinical domain (e.g., that describe 

a common disease of interest) which can reveal valuable clinical information regarding 

a disease’s onset and progress over time. Indeed, the integration of harmonized data 

from multiple data sources can significantly enhance the population subgroups that 

participate in the clinical studies and thus yield more powerful patient stratification 

models which are able to precisely identify groups of individuals (subjects) that are 

more prone to the development of a disease outcome [311]–[314]. These individuals 

are referred to as high-risk individuals who belong to specific subgroups and, thus, the 

early diagnosis of such subgroups is of great importance for enhancing the quality of 

the existing healthcare systems. Since data harmonization can transform the clinical 

data into standardized formats, it can enable the interlinking of electronic health records 

with electronic health record systems worldwide [311]–[314]. 

The integration of harmonized data can also lead to the identification of prominent 

clinical factors having significant contribution in the prediction of one or more disease 

outcomes, as well as, the confirmation of the existing prominent clinical predictors, 

especially in the case where the type of the disease under investigation is rare and/or 

chronic [52], [73]. These clinical predictors are referred to as biomarkers and can reveal 

the underlying mechanisms of various diseases. The clinical importance of biomarkers 

is high in the case of genetic data, where phenotypes and genetic variants are present 

[315]. Moreover, the outcomes of clinical studies that make use of integrated, 

harmonized data enable the development of more targeted therapeutic treatments for 

the different population subgroups that can greatly enhance or replace the existing 

treatments and thus shed light into the progress of a disease over time, as well as, 

promote the establishment of new healthcare policies by the healthcare stakeholders. 

Apart from the integration of harmonized data into centralized databases, another 

important advantage lies on the interlinking of harmonized data that are stored in 

distributed clinical databases which can enable the development of data analytics tools 

for analyzing the data in distributed environments. In general, a centralized data 
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repository is more vulnerable to security threats and privacy breach and thus it is not 

always feasible to maintain the data under a common database [80]. A solution to this, 

is to store the data in distributed databases and then interlink them with multiple 

authentication levels for increased security. So, the only way to analyze the data that 

are stored in distributed sites is to develop new machine learning models or extend the 

existing ones so that they can incrementally process the individual data on each site. 

For example, assume that a researcher wishes to compute population characteristics 

(e.g., descriptive statistics) across the distributed data or, in a more demanding case, 

assume that the researcher wishes to run a risk stratification model for predicting 

disease outcomes across distributed data. These two scenarios can only be feasible in 

the case where the individual data, on each site, have a common format, i.e., a common 

set of parameters and standardized values. It is obvious now that this limitation can be 

effectively addressed by harmonizing the individual datasets on each site so that the 

data model can be able to adapt on the same set of parameters. 

4.1.2. Types of data harmonization methods 

In general, there are two conceptual approaches/strategies to accomplish data 

harmonization, namely the stringent and the flexible strategy [52], [316], [317]. The 

former limits the harmonization process only on data that will be (or have been) 

collected under common measurement procedures (standards) whereas the latter 

approach extends the harmonization process to include data that have been already 

collected under different measurement procedures or protocols [52], [316], [317]. Here, 

emphasis is given on flexible methods that enable the harmonization of retrospective 

clinical data due to its underlying complexity and its clinical importance. 

4.1.2.1. The stringent approach 

The stringent approach is an ideal strategy which constrains the harmonization process 

to clinical data that have been collected under common collection criteria and operating 

procedures [52], [316], [317], where the common data collection criteria refer to the 

adoption of identical study specifications (uniform measures) between the clinical 

studies that participate in the data harmonization process. These specifications, include 

[52], [316], [317]: (i) common inclusion and exclusion criteria for the definition of the 

population subgroups, (ii) common follow-up time periods, and (iii) a common set of 
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qualitative and quantitative measures (e.g., therapies), among others. These 

specifications together constitute a data collection protocol and are exclusively 

designed by domain experts who can identify: (i) the domain of the field of interest 

(type of study), (ii) the set of measures that should be collected for the specified study, 

and (iii) the standardized measurement units for the recommended set of measures for 

the particular type of study. The range of diseases that can be covered by the stringent 

approach can be vast as long as the data follow the same standard operating procedures. 

According to the stringent approach, the clinical studies that participate in the data 

harmonization process must be initially designed to meet these specifications to be 

harmonized and finally synthesized, otherwise the data harmonization process will fail. 

It is obvious that these requirements are strict and limited to only a small portion of 

clinical centers and other similar sources of clinical data that adopt common data 

collection criteria and standard procedures. Of course, most of the clinical centers do 

not follow identical procedures for the data generation process and thus stringent 

harmonization remains a conceptual and ideal strategy for the scientific community. 

This is highly present in the case of retrospective data harmonization, where the 

stringent approach is useless since the data have been collected in the past, where a 

standard data collection protocol is usually absent. The stringent approach would be 

meaningful in the case of a prospective study of perhaps in a cross-sectional study 

which focuses on data that have been obtained at a specific time point although it would 

require a substantial amount of time to be prosperous. 

4.1.2.2. The flexible approach 

The stringent method is a strict and a rather ideal approach that significantly limits the 

statistical power of the data harmonization process since it obscures the integrity of the 

produced harmonized data through the underlying information loss and limits the 

harmonization to a small portion of data that have been collected under the same 

standard operating procedure. An alternative approach that aims to deal with the 

limitations that are posed by the stringent approach is flexible harmonization [52], 

[316]. As its name implies, the flexible approach allows a certain level of heterogeneity 

between the data which participate in the harmonization process instead of the stringent 

case where the complete absence of heterogeneity among the individual data is 

required. Therefore, the flexible approach can support the harmonization of both 
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prospective and retrospective data as far as the level of compatibility between them is 

well-defined. Through this manner, the flexible methodology envisages to enable the 

harmonization of data that do not necessarily need to be homogeneous or obtained 

under a common data collection protocol criteria with equal-sized populations. 

In flexible harmonization, the level of heterogeneity of the data directly affects the 

percentage of harmonized variables across them. This implies that the amount of 

flexibility is constrained to a specific set of requirements that need to be defined. That 

is, the set of clinically relevant parameters (factors) that will be common among the 

heterogeneous data. Of course, the clinical domain where the data that participate in 

flexible harmonization belong to, must be common. To facilitate flexible 

harmonization, the clinical experts must first define a set parameter (variables) that will 

serve as the core set for the domain of interest allowing for a specific level of flexibility 

regarding the data collection protocol and the standard operating procedures [52], [316]. 

Therefore, flexible harmonization is constrained to specific outcomes that are defined 

by the clinical experts. In the prospective case, the core set of variables is defined and 

agreed to by the experts to allow a specific level of flexibility during the recording of 

the follow-up data. In the retrospective case, the core parameters are combined with 

pairing rules to identify potential associations and thus quantify the harmonization 

accuracy. 

The flexible strategy is far more realistic and has a much higher clinical value and 

overall applicability than the stringent approach, although, in both cases, certain 

compatibility criteria must be carefully defined so that harmonization can be feasible. 

The compatibility criteria are expressed in the form of a set of standard variables, i.e., 

a core set of variables, that describes the requirements of the clinical domain of interest. 

In both cases, however, the standard model is defined by the clinical experts in the field 

in such a way to: (i) be in line with the majority of the parameters within the data that 

are collected by different clinical centers, and (ii) explicitly describe the domain 

knowledge of the disease under investigation. This means that the clinical experts select 

the variables of the standard model by taking into consideration: (i) the contribution of 

each variable towards the efficient description of the disease’s domain knowledge, and 

(ii) the extent to which these variables are present in the majority of the data that exist 

under each clinical center. Additional information regarding the format (and the type) 
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of the medical data that will be involved in the harmonization process, along with the 

ethical and legal concerns, the quality of the data, as well as, the precise definition of 

the objectives, i.e., the reason behind data harmonization, should also be taken into 

consideration for the realization of the flexible strategy [52], [316]. 

The level of heterogeneity and diversity between the data is more or less trivial and can 

be reflected by the structure of the core set of variables. For example, the clinical 

experts of a specific domain might consider that a set of 𝑁-variables is enough to 

describe the knowledge of the domain under investigation whereas another group of 

experts, on the same field, might consider the need to add more (or less) variables in 

the core set. Therefore, the experts must agree on a core set of variables that overlaps 

with most of the data to increase the harmonization accuracy. This can be extremely 

difficult especially in the case of retrospective flexible harmonization where the data 

might have been collected under diverse protocols and might exist under different 

identifiers, as well. The same stands for the objectives of the data harmonization 

process. The data providers must clarify the scope of data harmonization, as well as, 

provide any kind of information regarding the study design and the specifications that 

were used for the data collection process which are valuable for the definition of a more 

accurate core set of variables. 

According to the literature, a variety of computational methods for medical data 

harmonization has been proposed so far [52], [73], [111], [141]–[143], [145], [146], 

[151], [160], [316], [317]. A robust data harmonization method involves the application 

of lexical and semantic matching algorithms. A lexical matching algorithm [52], [143] 

uses string similarity techniques to identify common terminologies (i.e., exact 

sequences or similar block sequences) that are present between the terms of the standard 

model and those of the original dataset. External vocabularies can also be used to enrich 

the clinical domain knowledge and thus enhance the accuracy of the overall lexical 

matching process through the identification of homonyms or synonyms. On the other 

hand, the semantic matching method [52], [73], [142], [145] uses semantic relationships 

that exist between the terminologies, apart from the lexical matching process that is 

already included, to reduce the information loss and enhance the overall data 

harmonization process. This can be accomplished through the construction of 

ontologies which represent the clinical domain knowledge of interest in the form of 
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entities (e.g., classes), and object properties (e.g., “includes”, “has”, “consists of”) [52], 

[73], [142], [145]. Semantic matching uses a standard (or reference) model which is 

usually expressed in the form of an ontology, where the classes are considered as 

categories, e.g., “Clinical tests”, that might consist of further sub-classes, e.g., “Blood 

Tests”, etc. Each class can include a set of variables which are related to the class they 

belong to in terms of common meaning or concept [52], [73], [142], [145]. For example, 

the class “Blood tests” includes the variables “age”, “gender”, “hemoglobin levels”, 

etc. This can lead to the semantic interoperability of the variables which might not be 

lexically identical but share a common concept. 

Towards this direction, semi-automated data harmonization frameworks have been 

proposed to co-analyze heterogeneous data in biobanks and other related registries, 

including the DataSHaPER [141], [147] which was used to harmonize 53 databases on 

epidemiology with 36% compatibility, the SORTA tool [142] which was used to match 

5120 entries in a single biobank with 97% recall, and the BiobankConnect software 

[143] which was used to harmonize data across 6 biobanks with 74% precision. In [318] 

an open-source editor was also developed to provide standardized HL7 data formats 

and in [319] a semi-automated lexical matcher was used to map 78.48% of 1,492 

biobank terms. Statistical approaches, such as, multiparameter logistic Item Response 

Theory (IRT) analysis were deployed in [160]–[162] to examine how a set of items 

(e.g., psychiatric phenotypes) is affected by other factors for scale homogenization. 

Another family of data harmonization methods is statistical harmonization which 

involves the application of linear and non-linear statistical models to investigate the 

effect of different latent factors on a set of one or more items [160]–[162]. In statistical 

theory, the items can be considered as all types of informative variables (e.g., 

depression) that are observed and the latent factors as variables that are not directly 

observed but are rather inferred by the items [160]–[162]. The purpose of statistical 

data harmonization is to homogenize scales that measure the same item and transform 

them into a common metric of the same scale, where the types of the items might vary 

from discrete and ordinal to continuous [160]–[162]. 

For example, a clinical center might record the cholesterol levels using the scale low, 

medium, high, whereas another clinical center may record the same levels using the 

scale 0, 1, and 2. Thus, statistical harmonization tries to recode the variables that belong 
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to the same construct so that they are commensurately scaled at the end [160]–[162]. 

Of course, the detection of variables that express different (or common) scales and 

belong to the same construct is challenging since there is no prior knowledge regarding 

the names of the items like in lexical or semantic matching [160]–[162]. Even if two 

variables (items) describe the same construct, it is not always proper to match these two 

variables since there might be differences in the population characteristics between the 

clinical studies, e.g., differences in the education level, ethnicity, gender, etc. Such 

differences need to be controlled during the statistical analysis process and thus the 

complexity of the harmonization process is greatly enhanced.  

Moreover, the types of the items directly affect the type of the statistical model to be 

used. Towards this direction, a variety of statistical methods has been proposed so far, 

especially for the harmonization of psychometric and cognitive items with different 

measurement scales across clinical data, including [160]–[162]: (i) simple linear factor 

analysis (LFA) for continuous items, (ii) 2-parameter and multi-parameter logistic Item 

Response Theory (IRT) analysis for binary items, (iii) generalized linear factor analysis 

(GLFA) for mixtures of continuous and discrete items, and (iv) moderated non-linear 

factor analysis (MNFA) for mixtures of continuous and discrete items with non-linear 

dependencies, among others. 

4.2. Beyond the state of the art 

Most of the current computational efforts towards semi-automated data harmonization 

involve the definition of a global standard (common) procedure for data collection 

which is ideal in the case of prospective data (i.e., data that will be updated in the 

future). The difficult and most challenging part though, is the need to harmonize 

retrospective data (i.e., data that have been already collected in the past with the absence 

of a pre-defined standard data collection protocol). A fundamental drawback of these 

methods, however, lies on the fact that they are not easily generalizable to other clinical 

domains. Moreover, they adopt a semi-automated strategy which is based on the 

extensive collaboration between the clinical and the technical experts to define pairing 

rules, i.e., a pre-defined set of rules for lexical matching. The performance of the 

existing frameworks is low in several cases due to the complexity of the clinical field 

under investigation, such as, in [141], [143], [147] but also due to the lack of 

straightforward computational methods to enable automated terminology matching 
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[141], [142], [145], [147]. To address these needs, we propose an automated data 

harmonization workflow which adopts a hybrid strategy that combines lexical analysis 

with semantic models (ontologies) to identify terminologies with lexical and conceptual 

overlap. 

4.3. Lexical matching 

4.3.1. The edit distance problem 

The most common method for lexical matching involves the computation of the edit 

distance between two strings, assume 𝑥 and 𝑦 which is defined as: 

𝑑𝑥,𝑦(𝑖, 𝑗) =

{
  
 

  
 

             𝑖                     ,                         𝑖 = 0

             𝑗                     ,                        𝑗 = 0 

            𝑑[𝑖 − 1, 𝑖 − 1]          ,           𝑖, 𝑗 > 0 𝑎𝑛𝑑 𝑥𝑖 = 𝑦𝑗

𝑚𝑖𝑛 {

𝑑[𝑖 − 1, 𝑗 − 1] + 1

𝑑[𝑖 − 1, 𝑗] + 1

𝑑[𝑖, 𝑗 − 1 + 1]
} ,                         𝑜. 𝑤.               

 , (4.1) 

where 𝑑𝑥,𝑦(𝑖, 𝑗) is the distance between the first 𝑖-characters of 𝑥 and the first 𝑗-

characters of 𝑦. In fact, the edit distance aims to transform 𝑥 into 𝑦 by performing three 

possible types of operations, namely: (i) insertion, (ii) deletion, and (iii) substitution. 

Assume a string 𝑥 = “abc” with size 3. Insertion involves the addition of a new 

character, assume 𝑑, into 𝑥, so that 𝑥 = “abcd”. Deletion involves the removal of an 

existing character from the string, assume 𝑐, so that 𝑥 = “abd”. Substitution involves 

the replacement of an existing character, assume 𝑑, by 𝑐, so that 𝑥 = “abd” becomes 

𝑥 = “abc”. The Jaro (and Jaro-Wrinkler) distance [320] and the Levenshtein distance 

scores [321] are the most common methods for calculating the edit distance although 

the latter is much closer to the definition of the edit distance against the former method 

which takes into consideration the number of transpositions between two strings. 

The latter is defined as half the number of matching characters between 𝑥 and 𝑦. In fact, 

the Jaro distance first computes the number of matching characters, between 𝑥 and 𝑦, 

assume 𝑚, as well as, the number of transpositions, assume 𝑡. Then, according to (4.1), 

the Jaro distance measures the edit distance between 𝑥 and 𝑦 by computing the average 

of the percentage of matched characters in each string with the percentage of the 
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transpositions in the number of matching characters. Thus, the higher the Jaro distance 

(i.e., the closer to 1) the more similar the two strings are. 

The algorithm generates a distance matrix where each cell corresponds to a distance 

score. An example of the edit distance matrix for the strings 𝑥 = “lymphadenopathy” 

and 𝑦 = “lymphoma” is presented in Table 8. The edit distance value is expected to be 

8 and the number of operations is expected to be the following: 

1. lymphadenopathy -> lymphdenopathy (delete “a”) 

2. lymphdenopathy -> lymphenopathy (delete “d”) 

3. lymphenopathy -> lymphnopathy (delete “e”) 

4. lymphnopathy -> lymphopathy (delete “n”) 

5. lymphopathy -> lymphomathy (substitute “p” with “m”) 

6. lymphomathy -> lymphomahy (delete “t”) 

7. lymphomahy -> lymphomay (delete “h”) 

8. lymphomay -> lymphoma (delete “y”) 

Note that in this example, no insertions are needed. The resulting distance matrix is 

presented in Table 8. The desired distance is the value in the last cell of the table, i.e., 

cell (15,8) which is 8 (as expected). This denotes that the total number of operations 

that is needed to transform 𝑥 into 𝑦 is 8. The values which are depicted in bold are equal 

to the consecutive costs of the operations. More specifically, the zeros in the cells (1,1), 

(2,2), (3,3), (4,4), and (5,5) denote that the first five characters in both strings, i.e., the 

characters “l”, “y”, “m”, “p”, “h”, are equal, and thus the cost is 0 since neither of the 

three types of operations (insertion, deletion, substitution) is applied. The values 1, 2, 

3, and 4 in the cells (6,5), (7,5), (8,5), and (9,5), respectively, denote that the four 

characters “a”, “d”, “e”, “n” in 𝑥 shall be deleted with a total cost of 4. 

The value 4 in cell (10,5) denotes that the character “o” is equal in both strings and thus 

it is the same as before since the operation has a 0 cost (4+0). The value 5 in cell (11,6) 

denotes that “p” shall be replaced by “m” and thus a substitution operation is applied 

adding an extra one in the cost (4+1). The value 5 in cell (11,7) denotes that “a” is equal 

and thus the cost remains the same. The values 6, 7, and 8 in the cells (12,8), (13,8), 

(14,8), and (15,8) denote that the characters “t”, “h”, and “y” should be removed and 

thus 3 deletions are applied yielding a final cost 8 (5+3). 
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Table 8. The edit distance table for the terminologies “lymphadenopathy” and “Lymphoma”. 

 - L y m p h o m a 

- 0 1 2 3 4 5 6 7 8 

l 1 0 1 2 3 4 5 6 7 

y 2 1 0 1 2 3 4 5 6 

m 3 2 1 0 1 2 3 4 5 

p 4 3 2 1 0 1 2 3 4 

h 5 4 3 2 1 0 1 2 3 

a 6 5 4 3 2 1 2 3 2 

d 7 6 5 4 3 2 3 4 3 

e 8 7 6 5 4 3 3 4 4 

n 9 8 7 6 5 4 4 4 5 

o 10 9 8 7 6 5 4 5 5 

p 11 10 9 8 7 6 5 5 6 

a 12 11 10 9 8 7 6 6 5 

t 13 12 11 10 9 8 7 7 6 

h 14 13 12 11 10 9 8 8 7 

y 15 14 13 12 11 10 9 9 8 

 

4.3.2. Levenshtein distance 

Another popular metric for sequence matching is the Levenhstein distance [321] which 

measures the similarity between two strings, assume 𝑎 and 𝑏, in terms of the number 

of deletions, insertions, or substitutions that are required to transform 𝑎 into 𝑏: 

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{
 
 

 
 𝑚𝑎𝑥

(𝑖, 𝑗)                                                  ,     𝑚𝑖𝑛(𝑖, 𝑗) = 0 

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, , 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

  ,      𝑜. 𝑤.                
 , (4.2) 

where a Levenhstein distance of zero denotes identical strings. 

4.3.3. Jaro distance 

The Jaro distance [305], [320] is another widely-used string similarity measure which 

quantifies the similarity between two strings. For two given strings, 𝑎 and 𝑏, the Jaro 

string similarity measure, 𝑠𝑖𝑚𝐽, is defined as: 
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𝑠𝑖𝑚𝐽 = {

                    0                   ,         𝑥 = 0   

1

3
∙ (
𝑥

|𝑎|
+
𝑥

|𝑏|
+
𝑥 − 𝑦

𝑥
) , 𝑜. 𝑤.     

, (4.3) 

 

where 𝑥 is the number of coincident characters and 𝑦 is half the number of 

transpositions. The Jaro distance is useful for quantifying the similarity between two 

strings in the interval [0, 1] against the Levenshtein distance, which measures the total 

number of different characters and thus is preferred in the design of pairing rules for 

lexical matching. For example, in the case where 𝑥 = “lymphadenopathy” and 𝑦 = 

“lymphoma”, the Jaro distance is equal to 0.7329 whereas the Levenshtein distance is 

equal to 8 and thus is less informative. 

4.3.4. Jaro-Winkler distance 

The Jaro-Winkler distance measure is a modification of the Jaro distance measure that 

uses an additional prefix scale 𝑐 to give more weight to strings with common prefix of 

a specific length. It is defined as follows: 

𝑠𝑖𝑚𝐽𝑊 = 𝑠𝑖𝑚𝐽 + (𝑙𝑐(1 − 𝑠𝑖𝑚𝐽)) , (4.4) 

where 𝑙 is the length of common prefix at the start of the string up to a maximum of 

four characters. The prefix weight is the inverse of the 𝑙 that is needed to consider both 

strings as identical. For example, the Jaro Winkler distance between the terms 

“lymphocyte number” and “lymphoma score”, is equal to 0.89 whereas the Jaro 

distance is equal to 0.73. In the same example, the Levenhstein distance is equal to 9, 

which denotes the number of the operations that are needed to match the two strings. 

Lexical matching does not consider for semantic relations but instead focuses more on 

matching variables with identical patterns whereas semantic matching further seeks for 

semantic relations.  

The Jaro-Winkler distance [320] is a weighted version of the Jaro distance which uses 

a prefix scale 𝑝 to give more weight to strings that match from the beginning for a 

length 𝑙. This property, however, is statistically weak since, in most cases, it yields 

falsified pairs. For example, in the previous example, the Jaro-Winkler distance would 

be 0.8664 since the subsequence “lymph” is common from the beginning and thus is 

given more weight due to its large length. The Jaro-Winkler distance would be useful 
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in the case where two strings differ in the spelling near the end, e.g., when 𝑥 =

 “Raynaud” and 𝑦 = “Raynaud's”, where, in that case, the Jaro-Winkler distance is 

0.977 whereas the Jaro distance is equal to 0.926, thus giving more emphasis to the 

length of the common prefix. 

4.4. Semantic matching 

The lexical matching method can sometimes ignore terminologies that share a common 

meaning or relationship. For instance, the terms “Blood tests” and “Hematological 

tests” are lexically heterogeneous but share a common basis since they describe the 

exact same type of laboratory test. The accuracy of the lexical matching process, 

however, can be reduced by using external vocabularies which include medical 

dictionaries that can be used to identify and match synonymous or homonymous 

terminologies. However, in the case where a dataset, assume 𝐴, includes the blood test-

related variables hemoglobin, white blood cell count, and number of platelets, and 

another dataset, assume 𝐵, includes the blood test-related variables erythrocyte 

sedimentation rate, and cholesterol levels, there is no lexical matching algorithm that is 

capable of capturing the lexical similarity between these terms although they might 

express the same concept (i.e., they are both related to blood tests). As a result, the 

absence of knowledge regarding the relationships between the variables reduces the 

percentage of the matched terms and thus the harmonization performance. 

4.4.1. Relational modeling 

What if we could somehow use this knowledge to distil the relationships between the 

variables that share same context? This can be accomplished by constructing a 

hierarchical data presentation model or a semantic presentation of the data, where the 

relationships (i.e., the object properties) between the variables will be well-defined and 

then use these relations to match the semantic presentations of the data instead of 

matching the variables of the data themselves. 

4.4.2. Ontologies 

One way to construct a semantic presentation of the data this is to construct an ontology 

[322]–[325]. In an ontology [322]–[325], the data are described in the form of entities 

and object properties, where the entities are classes and sub-classes, and the object 
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properties are the relationships between them. An example of the format of an ontology 

is presented in Figure 26. The main class in the ontology is the “Patient”. The “Patient” 

is connected to the sub-class “Laboratory tests” through the object property “has”, i.e., 

the patient has laboratory tests. A sub-class can also consist of further sub-classes. For 

example, the sub-class “Laboratory tests” consists of the sub-classes “Blood tests”, 

“Oral tests”, “Urine tests”, and “Ocular tests”, where the object property “consist of” is 

used to denote this relationship. 

A sub-class can also include variables where the relationship between the sub-classes 

and the variables are denoted by the object property “include”. In this example, the sub-

class “Blood tests” includes the variables “hemoglobin” and “white blood cell”. In a 

similar manner, the sub-class “Urine tests” includes the variables “urine pH” and “urine 

gravity flow”, and the sub-class “Ocular tests” includes the variables “Rose Bengal 

score” and the “ocular staining score (OSS)”.  To demonstrate the structural complexity 

that an ontology might have, the sub-class “Schirmer’s test” has been added under the 

sub-class “Oral tests” which is part of the sub-class “Laboratory tests”. The sub-class 

“Schirmer’s test” includes two variables, namely the “date” when the test was 

conducted along with the test’s “score”. In general, the levels of an ontology can be 

larger, especially in disease-oriented ontologies where the domain knowledge is vast.  

 

Figure 26. The fundamental components of an ontology [52]. 

Semantic web technologies [326], [327] provide a rigorous solution to automatically 

integrate disparate information sources and database schemas. The World Wide Web 

Consortium (W3C) [328] provides solutions to the expression of both data and rules for 
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reasoning. The semantic models can be expressed in different formats including: (i) the 

Resource Description Framework (RDF) [329], (ii) the Web Ontology Language 

(OWL) [330], and (iii) the Extensible Markup Language (XML) [331], among others. 

4.4.3. Reference ontologies as data quality standards 

In order to enable the harmonization of individual cohort data it is necessary first to 

develop a standard model which will describe the minimum requirements that are 

needed to exclusively describe the domain knowledge of the disease of interest. In the 

case where only associations need to be computed between the individual cohort data, 

one cohort dataset can be used as a standard model that can be aligned (harmonized) 

with each one of the remaining cohort datasets. These minimum requirements consist 

of a set of medical parameters, value ranges and descriptions that can effectively 

describe the related domain. This set of parameters is used as a reference template 

according to which the data will be harmonized. Therefore, the third requirement is the 

existence of a reference model for the disease under investigation. Data analytics 

workflows can then be applied on the harmonized data to extract valuable information 

regarding the disease’s onset and progress. Finally, the transparency of the workflows 

and any related operations that are performed during the data harmonization and the 

data analytics procedures needs to be reassured.  

The reference model is usually expressed in a semantic form through an ontology which 

provides a hierarchical representation of a specific clinical domain based on a set of 

entities (i.e., classes and subclasses) and object properties (i.e., parameters) that 

explicitly describe the knowledge of a particular clinical domain [52], [73], [109], 

[141], [147]. Most of the methods for retrospective data harmonization make use of a 

pre-defined, standardized model which describes the requirements of a particular 

clinical domain and serves as a common template (i.e., a gold standard) for 

harmonization [52], [73], [109], [141], [147]. This standard template includes a set of 

clinical variables (parameters) that can describe the domain knowledge of a disease of 

interest. Of course, the existence of a standard template is not always necessary 

especially in the case when the scope of data harmonization is to seek for variable 

associations between two (or more) heterogeneous datasets which are clinically 

relevant. In that case, one dataset can be considered as the reference model. 
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4.4.4. HL7-standards 

No matter how healthcare data is kept in the various computer systems, it may be 

transferred between them according to the HL7® FHIR® (Fast Healthcare 

Interoperability Resources) [332] standard. It makes it possible for clinical and 

administrative data related to healthcare to be securely accessible to those who require 

it and to those who have the right to do so on behalf of a patient receiving care. 

Collaboration is used by the standards-setting body HL7® (Health Level Seven®3) to 

create and improve FHIR. The creation of FHIR started in 2012 in response to consumer 

demands for quicker, simpler, and more effective ways to share the vastly increasing 

volume of health data. The requirement for physicians and consumers to be able to 

share data in a lightweight, real-time manner using contemporary internet technology 

and standards was brought on by the growth in the availability of new health data and 

the developing "app" economy. 

FHIR is built on internet standards that are often used in sectors other than healthcare. 

These in especially include the REST technique, which explains how discrete packets 

of data (referred to as Resources) can be easily transferred. FHIR considerably lowers 

the entry barriers for new software developers to address healthcare needs by adopting 

current standards and technologies that are already familiar to software developers. The 

FHIR standard also offers software developers the following benefits: A heavy 

emphasis on quick and simple implementation; developers have noted that they were 

able to implement straightforward interfaces in just one day. 

Free to use without any limitations. Assistance from well-known companies including 

Apple, Microsoft, Google, Epic, Cerner, and the majority of EHR manufacturers. There 

are lots of free downloads, online resources, and implementation libraries, as well as 

reference servers. Numerous publicly accessible examples are available to jump-start 

the creation of new apps. Out-of-the-box interoperability: base resources can be utilized 

as is or modified to meet local needs (the process of Profiling). An evolutionary 

development path from Version 2 and Clinical Document Architecture (CDA®) [333], 

prior HL7 healthcare standards, allowing them to coexist and benefit from one another. 

A solid base of XML, JSON, HTTP, and OAuth web standards. Clear and 

understandable online specifications. A serialization format that is easy for humans to 

read for developers. A worldwide network to support implementers. 
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4.4.5. Types of medical index terminologies 

4.4.5.1. ICD-10 and ICD-11 

The ICD-11's structure [142] is more complex than the ICD-10's. The ICD-11 provides 

a high degree of detail in the coding of these conditions, with about 55,000 codes that 

can be used to describe diseases, syndromes, injuries, and reasons of death. On June 18, 

2018, a draft version of the new ICD was made available. Beginning on January 1, 

2022, member nations will adopt it as the official reporting method. It was formally 

introduced at the World Health Assembly in May 2019. The ICD-11 provides 

translations into 43 different languages as well as instructions for using it with various 

cultural contexts. By offering a universal coding language that can be utilized by 

researchers and healthcare practitioners everywhere, the redesigned method facilitates 

utilization and international comparisons. 

4.4.5.2. SNOMED-CT 

SNOMED CT [155] is among a group of standards that have been designated for use 

in U.S. Federal Government systems for the electronic exchange of clinical health 

information. It is also a standard that is required by the interoperability requirements of 

the U.S. Healthcare Information Technology Standards Panel. The SNOMED 

International owns and maintains the medical jargon. The National Library of Medicine 

(NLM) offers SNOMED CT information and resources to NLM UMLS Metathesaurus 

licenses in its capacity as the United States National Release Center for SNOMED CT. 

An EHR can employ the structured clinical vocabulary known as SNOMED CT which 

is the world's most complete and accurate clinical health terminology package. To 

ensure that data is captured consistently and accurately across the NHS, SNOMED CT 

is used as a vocabulary for patient clinical information. This makes it easier to transfer 

clinical data between systems. Without requiring a care worker to manually enter the 

data again, clinical information from a discharge summary, for instance, can be 

instantly added to a patient record, saving time, and reducing human error. 

4.4.5.3. ATC 

The active substances are categorized using the Anatomical Therapeutic Chemical 

(ATC) classification system [334] based on the organ or system they affect as well as 
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their therapeutic, pharmacological, and chemical characteristics. There are five main 

levels of classification for drugs. When pharmacological subgroups are thought to be 

more appropriate than therapeutic or chemical subgroups, the second, third, and fourth 

levels are frequently utilized to identify them. The International Nonproprietary Name 

(INN) is preferred for the chemical compound. Usually, USAN (United States Adopted 

Name) or BAN (British Approved Name) names are selected if INN names are not 

assigned. For epidemiological research to yield accurate results, coding is crucial. 

According to the study's objectives, comparisons can be made at various levels thanks 

to the five different levels. 

▪ ATC 1st level: The system has 14 main anatomical or pharmacological groups. 

▪ ATC 2nd level: Pharmacological or Therapeutic subgroup. 

▪ ATC 3rd and 4th levels: Chemical, Pharmacological or Therapeutic subgroup. 

▪ ATC 5th level: Chemical substance. 

4.4.5.4. LOINC 

The common denominator used globally to identify health measures, observations, and 

records [335]. To identify health measurements, observations, and documents, LOINC 

is a common language (IDs, names, and codes). If you consider an observation to be a 

"question" and the value of the observation as the "answer," Today, most clinical and 

laboratory systems use the HL7 version 2 messaging standard to transmit data. You can 

see how a SNOMED CT code reflects the response and a LOINC code identifies the 

query by looking at an example of where the test results appear in an HL7 message. 

4.4.5.5. OHDSI Athena 

For all instances of an OMOP CDM [336], there is a web application for distributing 

and reading the Standardized Vocabularies. Different observational databases can be 

systematically analyzed using the OMOP Common Data Model. The idea behind this 

method is to convert the data present in those databases into a standard format (data 

model) as well as a standard representation (terminologies, vocabularies, coding 

schemes), and then perform systematic analyses using a library of common analytic 

routines that have been created based on the standard format. A unique solution is 

provided by the Observational Medical Outcomes Partnership (OMOP) CDM, which 

is now at version 6.0. According to OMOP, diverse coding systems can be harmonized 
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to a common vocabulary with little information loss. Utilizing standardized analytics 

tools, evidence can be produced after a database has been transformed to the OMOP 

CDM. There are other sources of such tools, some of them commercial, but we at 

OHDSI are currently developing Open-Source tools for data quality and 

characterization, medical product safety surveillance, comparative effectiveness, 

quality of care, and patient-level predictive modeling. 

4.5. A hybrid method for data harmonization 

4.5.1. Overview 

The data harmonization workflow is depicted in Figure 27 and consists of 4 stages, 

including the: (i) metadata extraction and relational modeling, (ii) construction of 

reference ontologies for the CVD and mental disorders, (iii) development of medical 

dictionaries by interlinking the word embeddings from the ontologies with external 

knowledge repositories, such as, the OHDSI (Observational Health Data Sciences and 

Informatics) [337], and (iv) lexical and semantic analysis. The latter are built on top of 

the dictionaries to identify terminologies with lexical and conceptual basis. The output 

is a data harmonization report which includes the matching scores for each identified 

terminology along with useful metadata. 

 

Figure 27. An illustration of the proposed hybrid data harmonization workflow. 
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4.5.2. Medical corpus definition and interlinking with external medical index 

repositories 

Metadata collection is a crucial step prior to the definition of the reference semantic 

data models and involves the construction of a reference data template including: (i) 

the terminologies in the input data, (ii) the value ranges, and (iii) any relational 

information. The template is transformed into an ontology which consists of classes, 

subclasses and object properties that hierarchically represent the relationships among 

the terminologies. Object properties, such as, “include”, and “has” are used to represent 

the relationships. Each ontology is expressed into .RDF (Resource Description 

Framework) format for compatibility with international knowledge bases, such as, the 

ICD-11 [1], and SNOMED-CT [155]. 

The terminologies of each ontology are first extracted and then are enriched with 

medical terminologies from external knowledge bases to define a dictionary, assume 𝐽, 

in the form: 

𝐽 = {𝑡, 𝑐, 𝑟}, (4.4) 

where 𝑡 is the list of the extracted terminologies from the reference ontology, 𝑐 is the 

list of the classes where the terminologies in 𝑡 belong to, and 𝑟 is the list with the value 

ranges of these terminologies. Each domain’s dictionary is enriched with ICD-10 and 

SNOMED CT related terminologies from the OHDSI [337] using the Natural Language 

Processing Toolkit (NLTK) [338]. Latent Semantic Analysis (LSA) [339], [340] was 

also used to enrich each dictionary through the extraction of word embeddings, i.e., 

vector space model representations for each terminology. LSA learns latent topics by 

performing a matrix decomposition on a matrix with terminologies using Singular 

Value Decomposition (SVD) [341]. 

4.5.3. Latent Semantic Analysis (LSA) 

Latent Semantic Analysis (LSA) [339], [340] was used to extract vector space model 

representations of terminologies. LSA learns latent topics by performing a matrix 

decomposition on the document-term matrix using Singular value decomposition 

(SVD). Given a matrix, say 𝑋 ∈ 𝑅𝑚𝑥𝑛, where the 𝑖-th row, 𝑡𝑖, is a vector that represents 

a term and the 𝑖-th column, 𝑑𝑖, represents a document, the SVD is defined as: 



121 

 

𝑋 = 𝑈𝛴𝑉𝑇, (4.5) 

where 𝑈 is a left singular matrix, 𝑆 is a diagonal matrix with the eigenvalues, and 𝑉 is 

a right singular matrix. SVD can be used to quantify the relation between two 

documents, say 𝑑𝑖 and 𝑑𝑗, and/or two terminologies, say 𝑡𝑖 and 𝑡𝑗  by comparing 𝛴𝑑𝑖 

and 𝛴𝑑𝑗 and/or 𝛴𝑡𝑖 and 𝛴𝑡𝑗  based on a distance measure, such as, the cosine or the 

Euclidean distance. 

4.5.4. Lexical and semantic matching 

The idea behind lexical analysis lies on the fact the higher the similarity score between 

two terminologies, the higher their overlap in terms of lexical relevance. Towards this 

direction, string similarity metrics, including the Jaro distance [52], [305], [320], and 

the Levenshtein distance [52], [342], were used to extract common terminologies 

among the input data and the dictionaries. The most common method for lexical 

matching is to calculate the edit distance between two terminologies, assume 𝑥 and 𝑦, 

as in (4.1). In fact, the edit distance aims to transform 𝑥 into 𝑦 by performing three 

types of operations, namely: (i) insertion, (ii) deletion, and (iii) substitution. Here, the 

Levenshtein distance is used to measure the similarity among 𝑥 and 𝑦, in terms of the 

number of operations needed to transform 𝑥 into 𝑦, as in (4.2). The Jaro distance, 

𝐽𝑥,𝑦(𝑎, 𝑏), is also used to provide a more explainable similarity score as in (4.3). The 

Jaro-Winkler distance is used as a strict modification of (2) based on a scale factor 

which assigns higher weights to terminologies with common prefix [320]. 

A fundamental issue in lexical analysis is the fact that the lexical matches of an input 

terminology might be more than one. To deal with this, we utilize semantic analysis to 

extract the most prominent match by taking into consideration the semantic overlap of 

the related object properties. For example, if a laboratory-related terminology, assume 

𝑥, is lexically similar with terminologies 𝑦1 and 𝑦2, where 𝑦1 is blood test-related and 

𝑦2 is demographic-related, then 𝑦1 will be the best match. A pseudocode of the 

harmonization process is presented in Algorithm 2. The object properties are first 

extracted from the reference ontologies along with the classes and subclasses. Word 

embeddings are computed for the terminologies and entities of the ontologies and fused 

into a large dictionary which is interlinked with terms from the OHDSI [337]. Lexical 
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and semantic analysis is recursively applied to identify the most prominent matches for 

the given terminologies. 

Algorithm 2. A pseudocode of the hybrid data harmonizer. 

1 def semantic_matching(ontology, terms): 

2 obj_prop = ontology.object_properties; 

3 var = [obj_prop[i] for i, x in obj_prop if x == “include”]; 

4 class = [obj_prop[i] for i, x in obj_prop if x == “has”]; 

5 we = embedding_analysis(terms,var,class); 

6 terms = dictionary_fusion(OHDSI, we); 

7 for (i,j) in zip(terms, var): 

8 if (match(i, var[i], emb) == 1)): 

9 matched_vars[k] = list([var_A[i],]); 

10 return matched_vars; 

11 end 

 

4.6. Summary 

The lack of standardized data (data heterogeneity) among biobanks, cohorts, and other 

sources of medical data is a crucial scientific challenge which obscures the effective 

analysis of such data, yielding clinical studies with poor statistical power [52], [73], 

[74], [109], [129], [147], [160], [161]. Data harmonization is an emerging research field 

which aims to overcome the existing heterogeneities across multiple medical data 

sources. The rationale of data harmonization is to transform the heterogeneous data into 

a standardized format with common parameters and range values to enable the 

integrative analysis of such data and thus enhance the statistical power of the outcomes.  

Hence, data harmonization can deal with the clinical unmet needs in various diseases. 

Although notable data harmonization approaches have been proposed, they mainly 

focus on prospective data based on the definition of standardized data collection 

procedures. The most challenging field in data harmonization though is retrospective 

data harmonization, where standardized protocols are absent. Two main types of 

harmonization exist: the “stringent” and the “flexible”, where the former one is based 

on the harmonization of data which have been already collected in standardized formats 
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whereas the latter one expands the harmonization concept to analyze heterogeneous 

data which have been collected without common data collection protocols. 

Medical data harmonization overcomes the structural heterogeneities through the 

identification of lexically or conceptually similar terminologies between two or more 

heterogeneous clinical datasets. This is most commonly achieved by lexically and/or 

semantically matching the terms of the heterogeneous datasets using a reference model 

which serves as a gold standard. The reference model is defined as a set of terminologies 

which describe the domain knowledge of a disease of interest and is usually expressed 

in the form of an ontology using classes, sub-classes and object properties describing 

the relationship between the terms. This set of terms is usually defined by the clinical 

experts in the field and includes various clinical parameters which are related to 

laboratory tests, biopsies, treatments, etc. The terminology matching process, however, 

is not always enough since the values of the matched terminologies need to be 

transformed according to the pre-defined range values in the reference model. 

Towards this direction, semi-automated data harmonization frameworks have been 

proposed to co-analyze heterogeneous data in biobanks and other related registries, 

including the DataSHaPER [141], [147] which was used to harmonize 53 databases on 

epidemiology with 36% compatibility, the SORTA tool [142] which was used to match 

5120 entries in a single biobank with 97% recall, and the BiobankConnect software 

[143] which was used to harmonize data across 6 biobanks with 74% precision. In [318] 

an open-source editor was also developed to provide standardized HL7 data formats 

and in [319] a semi-automated lexical matcher was used to map 78.48% of 1,492 

biobank terms. Statistical approaches, such as, multiparameter logistic Item Response 

Theory (IRT) analysis were deployed in [160]–[162] to examine how a set of items 

(e.g., psychiatric phenotypes) is affected by other factors for scale homogenization.  

A fundamental drawback of these methods, however, lies on the fact that they are not 

easily generalizable to other clinical domains. Moreover, they adopt a semi-automated 

strategy which is based on the extensive collaboration between the clinical and the 

technical experts to define pairing rules, i.e., a pre-defined set of rules for lexical 

matching. The performance of the existing frameworks is low in several cases due to 

the complexity of the clinical field under investigation, such as, in [141]–[143], [145], 

[147] but also due to the lack of computational methods in [141], [142], [145], [147], 
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[318], [319] to enable automated terminology matching. To address these needs, we 

proposed an automated data harmonization workflow which adopts a hybrid strategy 

that combines lexical analysis with ontologies to identify terminologies with lexical and 

conceptual overlap. 

Data harmonization differs a lot from simply putting the data together. During manual 

data integration, several variables must be removed due to the differences and 

incompatibilities in the measurement units, the different type of data collection 

protocols, etc. As a result, there is a limited exploitation due to the small subset of 

original data which limits the potential of new scientific discoveries. In addition, the 

fact that the data integration process is manual along with the nomenclature impose a 

high risk for mistakes and obscure the definition of the data sharing principles since 

data integration requires direct data access. On the other hand, data harmonization 

involves processes that transform the variables into compatible ones to make them 

compatible. The legal and ethical issues are well defined in advance through data 

governance mechanisms. Data harmonization limits the direct access to the data since 

only the data schema is required to transform the variables. Moreover, the fact that the 

data harmonization procedure is semiautomated in most of the existing tools and 

frameworks reduces the risk for manual mistakes. Besides, the fact that it uses 

interoperable data schemas can overcome the nomenclature factor during the analysis. 

As we have already mentioned, data harmonization can address the unmet needs in 

chronic and rare diseases by enabling the interlinking and subsequent co-analysis of 

heterogeneous cohort data. An example of a promising initiative that deals with the 

harmonization of longitudinal cohorts of patients with chronic and rare diseases is the 

HarmonicSS project [343]. HarmonicSS envisages to harmonize and coanalyze more 

than 20 longitudinal cohorts of patients that have been diagnosed with a rare 

autoimmune disease known as primary Sjögren’s Syndrome (pSS). In short, pSS is a 

chronic autoimmune disease causing severe salivary gland dysfunction yielding clinical 

manifestations which vary from dry eyes and dry mouth to severe rheumatoid disorders 

and lymphoma development [241]. We adopted a semi-automated semantic matching 

approach to align heterogeneous pSS-related terms with the terms of a pSS reference 

model which was developed in co-operation with the clinical experts of the project.  
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The pSS reference model consists of a set of parameters that efficiently describe the 

pSS domain knowledge including seven classes (i.e., laboratory tests, medical 

conditions, demographics, lifestyle, SS disease activity indices, and interventions), 

where each class includes additional subclasses, e.g., the class laboratory tests includes 

blood tests, oral tests, ocular tests, urine tests, biopsies, and even further subclasses, 

e.g., the subclass blood tests consists of the lipid tests, hematological tests, serum 

protein tests, complement tests, etc [127]. The semantic matching process is applied 

through a user-friendly interface, where the clinical and the technical experts can align 

terms that share similar concepts by defining mapping scenarios (e.g., a Lab-test 

outcome yes/no scenario) along with the related value mappings (e.g., set “0” to “no” 

and “1” to “yes”) and evaluate suggested terminology mappings and finally extract the 

mapping rules. The terminologies in the pSS reference ontology are FHIR compliant 

using ICD-10 and SNOMED-CT terminologies. 

With the majority of the existing data harmonization tools and frameworks being 

semiautomated, emphasis must be given on the development of new strategies to 

eliminate the “semi-” term. A promising solution would be to create a repository with 

a collection of biomedical ontologies that lie under a specific medical domain. This 

would greatly increase the interoperability of the harmonization process since the 

available core set of terms would cover a much larger portion of the domain. Another 

idea that is more straightforward would be to enrich this repository with information 

regarding the mapping of heterogeneous data schemas with the ontologies to introduce 

the “smart” repositories. A fundamental objective of the “smart” repository is the fact 

that it could be used to train a proper machine learning algorithm that could learn from 

the existing knowledge to automatically align the data schema of an upcoming 

heterogeneous dataset. This would greatly reduce the time effort needed for 

semiautomated harmonization and enhance the applicability of such an approach across 

different domains by including the mapping information of the related ontologies. 

There is no doubt that data harmonization has a leading role in the co-analysis of 

heterogeneous medical data. Harmonization is the “key” factor that can enable the 

integrative analysis of data from heterogeneous data sources and thus envisages to make 

the sharing of data meaningful by distilling the power of data sharing into the 

construction of a set of interoperable and homogeneous data schemas that can be used 
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to deal with the unmet needs in rare and chronic diseases, as well as, in biobanks, omics 

registries, and cohorts. The success of data harmonization towards this direction has 

been proven by the existence of several initiatives which have demonstrated promising 

results towards the harmonization of biobanks, electronic health records, and cohorts, 

in various medical domains worldwide. Practices and actions need to be taken from 

healthcare stakeholders to invoke the inclusion of biomedical ontologies from rare 

diseases, as well as, the update of the existing ones in the international repositories to 

enable the development of data harmonization tools that will be able to make the 

interlinking of clinical centers worthy for the public. 
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CHAPTER 5. SYNTHETIC DATA GENERATION AND 

DATA AUGMENTATION 

 

 

5.1. Overview 

5.2. Beyond the state of the art 

5.3. Methods for synthetic data generation 

5.4. Robust initialization of Gaussian components 

5.5. BGMM training 

5.6. Synthetic data quality metrics 

5.7. Data augmentation 

5.8. Summary 

 

 

5.1. Overview 

Virtual population generation has gained a lot of attention in the healthcare sector due 

to the overwhelming need to overcome the significant lack of sufficient population size, 

particularly for in silico clinical trials (ISCTs), where the financial burden of expensive 

drugs leverages the orchestration of viable Phase II/III CTs by pharmaceutical 

companies worldwide [115], [344], [345]. Furthermore, the lack of medical databases 

with increased statistical power (e.g., in rare diseases) obscures the deployment of 

machine learning pipelines that can identify risk factors for disease progression and 

treatment due to the reduced amount of available training data. As a matter of fact, all 

these factors have a significant negative impact in the capacity of the existing healthcare 

systems, where the costs and delays for treatment and re-admission are already high. 

Virtual population generation envisages to address these needs through the 

development of virtual data generators which are trained on the real data to produce 

virtual (or synthetic) distributions which can “mimic” the real ones in terms of reduced 

divergence and dispersion with the real data. Since the virtual data quality is directly 



128 

 

affected by the quality of the real data, it is first necessary to enhance the quality of the 

real data including the data completeness and conformity. 

The current advances in data science have led to the development of an emerging 

branch of applications which focuses on the augmentation of medical data. Its aim is to 

shed light into the underlying structure of clinical problems towards the development 

of robust machine learning models for predicting disease outcomes and their risk levels. 

Virtual population generation [115], [130], [131], [165], [344]–[346] refers to the 

development of computational methods that can be used to generate artificial (or 

synthetic) patient data by producing virtual distributions like those in the real world. Its 

desired usage is to enhance the statistical power of clinical research databases with 

significant lack of population size. Data augmentation [134], [347] refers to the 

aggregation of the real with the virtual patient data to yield AI (artificial intelligence) 

models with increased performance for classification tasks. For example, in medical 

imaging, data augmentation refers to the application of data mirroring and data cropping 

methods to enhance the performance of the existing deep learning models for image 

segmentation by increasing the size of the input training data with virtual training data. 

Clinical data augmentation refers to the aggregation of the real with the high-quality 

virtual clinical data to address various clinical unmet needs including the development 

of robust risk stratification and disease classification models, as well as, the detection 

of biomarkers, among others. 

As a result, the clinical value of data augmentation lies on the quality of the virtually 

generated data. Indeed, the aggregation of the real data with poor quality virtual data 

(i.e., virtual data with increased divergence and reduced similarity with the real data) is 

expected to have a negative impact on the performance of the AI models. As a matter 

of fact, particular emphasis must be given on the development of robust virtual 

population generators. In addition, prior the development of the virtual population 

generators it is crucial to apply data curation methods towards the detection and 

removal of data recording errors, inconsistent data types and problematic fields that are 

present in the input clinical data. This step is important since the application of the 

virtual population generators on contaminated data might produce virtual data with poor 

performance and reduced statistical power of downstream applications. Thus, data 
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curation must be applied to meet standard data quality criteria in terms of data 

completeness and conformity [52], [66]–[69], [106], among others. 

Several studies have been launched towards the design of efficient synthetic medical 

data generators based on both probabilistic and machine learning approaches as already 

described in Section 2.2.3. In [164], [167] the multivariate normal distribution (MVND) 

was applied to generate virtual data given the mean vector and the covariance matrix of 

the real data. Bayesian networks (BN) have been also used in [166], [168]–[171], [348] 

for the generation of virtual distributions based on the modeling of conditional 

probabilities across diverse network topologies. The BN and the MVND, however, 

suffer from mathematical assumptions; the MVND algorithm assumes that the real data 

are normally distributed whereas in the BNs the conditional probabilities are modeled 

using assumptions on the prior distribution of the features, where the network topology 

is not pre-defined. Towards this direction, machine learning based generators have been 

applied in several studies [131], [172], [173], such as, the artificial neural networks 

(ANNs) with radial basis functions, the supervised tree ensembles (STE), the 

unsupervised tree ensembles (UTE), and yielding favorable performance against the 

probabilistic approaches. However, they are not computationally efficient since they 

require increased training and testing time. In addition, the STE, and the ANN require 

a target feature which influences the associations of the virtual features and introduces 

biases in the generated data. Moreover, in the case of Bayesian networks, the number 

of all possible permutations of edges in one topology is infinite. 

5.2. Beyond the state of the art 

The emerging need for the development of computationally efficient and unbiased 

synthetic data generators remains a technical challenge, particularly in the case of large-

scale clinical trials, where the computational complexity is important. A 

computationally efficient data generator has been introduced in [174], [176], where 

Gaussian Mixture Models (GMMs) were used to generate virtual data based on 

Dirichlet processes. Since GMM maximizes only the likelihood based on the 

expectation maximization (EM) approach, it might yield specific structures that might 

or might not apply to the data. A solution to this is to use variational inference (VI) as 

in [130], [177], [178] which maximizes a lower bound on the model evidence instead 

of the data likelihood like in the EM to reduce the computational complexity compared 
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against the MVND, BN, UTE, STE, and ANN. However, none of these studies has 

investigated the optimal selection of the number of Gaussian components for the model 

training process, where the number of Gaussian components is arbitrary. In addition, 

the number of Gaussian components has a direct effect on the estimation of the weight 

concentration (or gamma) parameter which is the most important hyperparameter of the 

BGMM since it affects the log-likelihood of the model. In this thesis, we focused on 

the optimal estimation of the Gaussian components in the BGMM algorithm to yield 

concrete estimations of the VI at reduced computational complexity for large-scale 

synthetic data generation (we refer to this approach as BGMM with Optimal 

Components Estimation: BGMM-OCE) [133]. To do so, we first apply spectral 

clustering based on the Locally Optimal Block Preconditioned Conjugate Gradient 

(LOBPCG) method to identify the best clustering solution as the one with the highest 

Davies Bouldin score (DBS) at small complexity. Then, we set the optimal number of 

clusters as the number of Gaussian components, and we define an exponentially 

decaying gamma value. The BGMM-OCE’s performance was compared against state-

of-the-art synthetic data generators (BN, UTE, STE, ANNs) in the context of in silico 

clinical trials for HCM. 

In addition, none of the above virtual population/synthetic data generation studies has 

investigated the effectiveness of clinical data augmentation in terms of not only 

enhancing the size of the real patient data but also aggregating the virtually generated 

patient data with the real data to enhance the performance of disease classification and 

risk stratification models. In this thesis, we proposed a fully automated, highly scalable, 

data augmentation pipeline to enrich patient databases with insufficient population size 

and statistical power [134]. Data augmentation yields hybrid and robust ML models for 

risk stratification and disease prediction. To this end, we deployed five state-of-the art 

virtual data generation methods to produce high-quality virtual patient data for 1,000 

patients with an increased level of similarity to the real patients across two clinical 

domains; the primary Sjögren’s Syndrome (pSS) and the hypertrophic cardiomyopathy 

(HCM). The number of virtually generated patients is relatively large for both clinical 

domains especially in pSS considering that it is a rare systemic autoimmune disease. 

The novelty of the proposed computational pipeline lies on the fact that it: (i) enhances 

the quality of the input clinical data through the precise detection and elimination of 

outliers and data inconsistencies using data curation workflows, (ii) augments the 
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curated clinical data with high-quality virtual data that enhance the population size of 

two rare clinical research databases through the development of high-performance 

virtual data generators, including both supervised and unsupervised tree ensembles, as 

well as, artificial neural networks (ANNs) with Gaussian kernels, which are extended 

to resolve overfitting effects during the generation stage, and (ii) builds supervised 

machine learning models on the aggregated real and virtual data for the robust 

classification of lymphoma pSS patients and for the risk stratification in HCM. 

5.3. Methods for synthetic data generation 

5.3.1. Statistical methods 

5.3.1.1. Multivariate normal distribution (MVND) 

Given a univariate feature, 𝑿 ∈ 𝑅𝑝𝑥𝑛, the multivariate normal distribution (MVND) can 

be defined as an extension of the normal distribution as in: 

𝑓(𝑿) =
1

(2𝜋)𝑝/2|𝚺|1/2
𝑒−(𝑿−𝝁)𝚺

−1(𝑿−𝝁)/2, (5.1) 

where 𝑝 is the dimension, 𝝁 is the mean vector of 𝑿, 𝚺 is the covariance matrix of 𝑿, 

and 𝚺−1 is the pseudoinverse of 𝚺. A multi-dimensional normal distribution is 

constructed from the mean vector and the covariance matrix of the input data.  

5.3.1.2. Multivariate log-normal distribution (MVND) 

To ease the assumption of normality within the data, the log-normal distribution is 

defined, where the logarithm of the exponential term in (4) fulfills the condition: 

𝑙𝑛(𝒆𝒇(𝒙))~𝑁(𝝁, 𝚺). (5.2) 

5.3.2. Machine learning methods 

5.3.2.1. Supervised tree ensembles (STE) 

A more advanced approach to virtual population generation is to train a tree ensemble 

[172], [173] for a given set of training features and a target feature. During the training 

phase of the generator, we build an ensemble similar to random forests with some 

additional data needed for data generation phase [172], [173]. In each interior tree node, 
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we store the generator for the splitting feature based on its univariate empirical 

cumulative distribution function (ECDF). In each leaf node, we store ECDF-based 

generators for all variables not encountered on a path from the root to that leaf. To avoid 

overfitting effects which are introduced in the training process during the construction 

of the tree ensemble we introduce a new approach according to which one of the trees 

from the ensemble is randomly chosen when producing a new instance which is passed 

down the tree starting in the root node. The ensemble, as the generator, approximates 

the probability density function of the regions where features are assumed to be 

independent (the dependencies are likely to be resolved on the path from the root to the 

leaves). As the ensemble contains a sufficient number of different trees, the probability 

density function of the original feature space is reasonable well approximated with the 

generated instances. During the training process, the Gini impurity index [52] is used 

to measure the probability of a variable, 𝐼, being classified in the wrong class: 

𝐼 = 1 −∑𝑝𝑖
2

𝑛

𝑖=1

, (5.3) 

where 𝑝𝑖 is the probability of a sample falling in class 𝑖 ∈ {1,2, … , 𝑘}, and 𝑘 is the 

number of classes. 

5.3.2.2. Unsupervised tree ensembles (UTE) 

The unsupervised tree ensemble generator is built in a similar way as the supervised 

tree ensemble, but instead of random forests ensemble, this generator builds a density 

forest ensemble [131], [173]. Here, the ensemble members are density trees built with 

a similar top-down manner as decision trees but using the variance of the features as 

the criterion for selection of the splitting feature. To avoid overfitting effects which are 

introduced during the construction of the density forest ensemble, each density tree in 

the ensemble is randomly selected as the one with the smallest convergence rate. Any 

information regarding the target feature is not necessary. Other components are 

identical to the supervised tree ensemble both in the learning and generation phase. 

Density forest ensembles were used as high-quality virtual data generators [131], [173] 

instead of the conventional probabilistic methods which are restricted to oversampling 

with biased assumptions. Density trees are built in a top-down way, where the splitting 
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process is based on the variance of each feature. A density forest is as a mixture of 

Gaussian densities [131], [173]: 

𝑝(𝑣) =
1

𝛭
∑𝑝𝑘(𝑣)

𝛭

𝑘=1

=
1

𝛭
∑𝑔𝑞(𝑣)𝑁 (𝑣; 𝜇𝑞(𝑣), 𝛴𝑞(𝑣))

𝑘,𝑞

, (5.4) 

where 𝑣 ∈ 𝑉 is a tree node, 𝑁(𝑣; 𝜇𝑞(𝑣), 𝛴𝑞(𝑣)) is a multivariate Gaussian distribution 

with mean 𝜇𝑞(𝑣) equal to the mean of all points reaching the leaf 𝑞 ∈ 𝑄, 𝛴𝑞(𝑣) is the 

covariance and 𝑔𝑞(𝑣) is the proportion of all points reaching 𝑞. 

5.3.2.3. RBF-based ANNs 

Robnik-Šikonja [1]  has proposed an approach for virtual population generation with 

artificial neural networks (ANNs), that uses radial base functions (RBFs) as activation 

functions. The RBF-based ANN’s output is defined as in: 

𝑦(𝒒) =∑𝑤𝑖 𝑒𝑥𝑝 (−𝛽||𝒒 − 𝒒𝒊||
2
) ,

𝑁

𝑖=1

 (5.5) 

where 𝑦(𝒒) is the output of the ANN, 𝑤𝑖 is the weight of the 𝑖-th neuron, 𝒒𝒊 is the center 

vector of the 𝑖-th neuron, ||𝒒 − 𝒒𝒊|| is the distance of each sample in 𝒒 from the center 

vector 𝒒𝒊 in the 𝑖-th neuron, and 𝛽 is a standard Gaussian parameter. The RBF generator 

is created with a standard training algorithm which estimates the Gaussian parameters 

in the neurons. In the generation phase, the RBF generator uses Gaussian kernels as 

multivariate generators to deal with overfitting effects and produce new instances from 

each one in proportion to their presence in the training set. 

5.3.2.4. Bayesian networks (BN) 

Bayesian networks [133], [166], [168], [169] are based on the definition of a directed 

acyclic graph (DAG), say 𝑫 = (𝑽, 𝑬), where 𝑽 is a set of nodes and 𝑬 is a set of directed 

edges between the nodes in 𝑽. Each node 𝑣 ∈ 𝑽 is assigned to a random variable, say 

𝑥𝑣, with parents, say 𝑥𝑝𝑎(𝑣), with a probability distribution: 

𝑝𝑣 = 𝑝(𝑥𝑣|𝑥𝑝𝑎(𝑣)). (5.6) 
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Assuming conditional independencies among the random variables, (1) can be re-

written as: 

𝑝𝑣 =∏𝑝(𝑥𝑐|𝑥𝑝𝑎(𝑐))

𝑐∈𝑪

∏𝑝(𝑥𝑑|𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑))

𝑑∈𝑫

. (5.7) 

where, 𝑝(𝑥𝑑|𝑥𝑝𝑎(𝑐), 𝑥𝑝𝑎(𝑑)) is the conditional probability of 𝑥𝑐 given the parents of 

both the discrete (𝑥𝑝𝑎(𝑐), set 𝑪) and the continuous (𝑥𝑝𝑎(𝑑), set 𝑫) variables, and 

𝑝(𝑥𝑐|𝑥𝑝𝑎(𝑐)) is the conditional probability of 𝑥𝑐 given 𝑥𝑝𝑎(𝑐). The DAG structure is 

used to generate new instances consistent with causal dependencies between the 

features. If the node is discrete, the probability distribution in (1) is uniform, otherwise 

a mean and a variance is attached per discrete parent configuration. 

5.3.3. Probabilistic methods 

5.3.3.1. Gaussian Mixture Models (GMM) 

A Gaussian mixture model (GMM) is a probabilistic model which assumes that the 

samples are generated from a mixture of a finite number of Gaussian distributions with 

unknown parameters [130], [133], [174]. A GMM approximation is defined as: 

𝑞(𝒙; 𝜽) =∑𝑞(𝑖; 𝜽)𝑞(𝒙|𝑖; 𝜽)

𝑁

𝑖=1

, (5.8) 

where 𝑖 is the mixture component, 𝜽 is the set of hyper-parameters, 𝑞(𝑖; 𝜽) are the 

mixture weights, and 𝑞(𝒙|𝑖; 𝜽) is a multivariate normal distribution (MVND) with 

mean 𝝁𝒐 and covariance matrix 𝜮𝝄, 𝑁(𝒙|𝝁𝒐, 𝜮𝝄). Α common approach for estimating 𝜽 

is based on the expectation-maximization algorithm which maximizes the data 

likelihood. 

5.3.3.2. Bayesian Gaussian Mixture Models (BGMM) 

The EM, however, might yield GMMs with topologies that might not fit well to the 

underlying data structures. A solution to this is provided by variational inference (VI), 

which seeks for a lower bound on the model evidence instead of the likelihood. The 

goal of the GMM with variational Bayesian inference (BGMM) is to estimate the hyper-
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parameter(s) 𝜽 in 𝑞(𝒙; 𝜽), so that the Kullback-Leibler (KL) divergence with the 

posterior distribution 𝑝(𝒙) is minimized. 

The KL-divergence [349] is defined as: 

𝐾𝐿(𝑞(𝒙; 𝜽)||𝑝(𝒙)) = ∫ 𝑞(𝒙; 𝜽) 𝑙𝑜𝑔 (
𝑞(𝒙; 𝜽)

𝑝(𝒙)
) 𝑑𝒙

𝒙

, (5.9) 

where the quotient of the search model over the posterior is the logarithm of the 

evidence, 𝐿(𝜽). Minimizing (5.9) is the same as maximizing a lower bound on 𝐿(𝜽): 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∫ 𝑞(𝒙; 𝜽)(𝑙𝑜𝑔(𝑝(𝒙)) − 𝑙𝑜𝑔(𝑞(𝒙; 𝜽)))𝑑𝒙
𝒙

], (5.10) 

which refers to as the Evidence Lower Bound Objective (ELBO) [350]. In the case of 

GMM, where the search model is a multivariate normal distribution, (5.10) becomes: 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∫ 𝑞(𝒙; 𝜽)(𝑅(𝒙) + 𝑙𝑜𝑔(�̃�(𝑖|𝒙)))𝑑𝒙
𝒙

+ 𝐻(𝑞)], (5.11) 

where 𝑅(𝒙) is equal to 𝑙𝑜𝑔(𝑝(𝑥)) and 𝐻(𝑞) = 𝐻(𝑞(𝑥|𝑖)) =

−∫ 𝑞(𝒙; 𝜽) 𝑙𝑜𝑔(𝑞(𝒙; 𝜽))𝑑𝒙
𝒙

 is the entropy of 𝑞(𝒙; 𝜽). 

5.3.3.3. BGMM with optimal component estimation (BGMM-OCE) 

5.4. Robust initialization of Gaussian components 

5.4.1. Fast estimation of the eigenvalues and the eigenvectors though the LOBPCG 

approach 

A scaling approach robust to “hidden” outliers was applied to standardize the input 

data, where the scaling and centering process was conducted independently for each 

feature according to the median and the interquartile range. In this work, the eigensolver 

is based on the Locally Optimal Block Preconditioned Conjugate Gradient Method 

(LOBPCG) which is ideal for large symmetric positive definite (SPD) generalized 

eigenproblems [351], [352]. Given the set of 𝑛-input features, assume 𝒙, spectral 

clustering was applied to project the original data into a different dimensional space, 

where the separation is easier. This is done by first computing the affinity matrix of the 
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original data, say 𝑸 ∈ 𝑅𝑛𝑥𝑛, where the element 𝑞𝑖𝑗 is the similarity between the input 

features 𝑖 and 𝑗, and then transforming the affinity matrix into its Laplacian form. Once 

the affinity matrix is constructed, its Laplacian matrix is defined [353]: 

𝑳 = 𝑫 − 𝑸, (5.12) 

where 𝑫 is an 𝑛𝑥𝑛 diagonal matrix. The next step is to apply eigenvalue decomposition 

on 𝑳. The Laplacian matrix is expressed in the form of a symmetric-definite pencil 

(𝑨, 𝑩), where 𝑨 is an Hermitian matrix and 𝑩 is Hermitian positive definite with 

eigenvectors, say 𝑈 = {𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌} and eigenvalues, say 𝑷 = 𝑑𝑖𝑎𝑔{𝑝1, 𝑝2, … , 𝑝𝑘}. 

The eigenvectors 𝑼 can be estimated by solving the trace-minimization objective [133], 

[351], [352]: 

𝑚𝑖𝑛𝑼𝑻𝑩𝑼=𝑰 𝑡𝑟𝑎𝑐𝑒(𝑼
𝑻𝑨𝑼). (5.13) 

According to the LOBPCG algorithm the eigen vector at step 𝑖, 𝑼(𝑖), is defined as a 

block [𝑊(𝑖), 𝑄(𝑖)], where 𝑊(𝑖), 𝑄(𝑖) are the preconditioned gradient of the Lagrangian 

and the aggregated update direction of the previous searches [133], [351], [352]: 

𝑾(𝑖) = 𝑲−1 (𝑨𝑼(𝑖) − 𝑩𝑼(𝑖)𝑼(𝑖)
𝑇
𝑨𝑼(𝑖)), (5.14) 

and  

𝑸(𝑖+1) = 𝑼⊥
(𝑖)𝑪(𝑖+1), (5.15) 

with 𝑪 denoting the coefficient matrix. Once the matrix 𝑼 is estimated, the 𝑘-means 

algorithm is applied on the 𝑘-largest eigenvectors, say 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌 of 𝑼, to assign 

each row say 𝒖𝟏
𝒌, 𝒖𝟐

𝒌, … , 𝒖𝒎
𝒌 into a cluster 𝐶𝑗, 𝑗 = 2, … , 𝑘. 

5.4.2. Clustering evaluation based on the DB score (DBS) 

For a given clustering set 𝐶, the Davies-Bouldin score (DBS) [354], is defined as: 

𝐷𝐵𝑆(𝐶) =
1

𝑘
∑𝑚𝑎𝑥(𝑅𝑖𝑗)

𝑘

𝑖=2

=
1

𝑘
∑𝑚𝑎𝑥 (

𝑑𝑖 + 𝑑𝑗

𝑑𝑖𝑗
)

𝑘

𝑖=2

, (5.16) 

where 𝑘 is the number of clusters, 𝑅𝑖𝑗 is the similarity score between cluster 𝐶𝑖 and 

cluster 𝐶𝑗, where 𝑗 ≠ 𝑖, 𝑑𝑖 is the average distance between the observations in cluster 
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𝐶𝑖 from its centroid, 𝑑𝑗 is the average distance between the observations in cluster 𝐶𝑗 

from its centroid, and 𝑑𝑖𝑗 is the distance between the centroids in clusters 𝐶𝑖 and 𝐶𝑗. DB 

values close to 1 indicate a good clustering performance since. 

5.4.3. Extraction of the optimal number of clusters 

The DBS was evaluated on a pre-defined number of clusters, say 2,… , 𝑘, and the 

clustering number that achieves the lowest DB score is the one that yields well-

separated clusters in terms of large distance between the clustering centroids. 

5.5. BGMM training 

5.5.1. Gaussian Mixture Models with Variational Inference 

A Gaussian mixture model (GMM) is a probabilistic model which assumes that the 

samples are generated from a mixture of a finite number of Gaussian distributions with 

unknown parameters [130], [133], [178]. A GMM approximation is defined as: 

𝑞(𝒙; 𝜽) =∑𝑞(𝑖; 𝜽)𝑞(𝒙|𝑖; 𝜽)

𝑁

𝑖=1

 (5.17) 

where 𝑖 is the mixture component, 𝜽 is the set of hyper-parameters, 𝑞(𝑖; 𝜽) are the 

mixture weights, and 𝑞(𝒙|𝑖; 𝜽) is a multivariate normal distribution (MVND) with 

mean 𝝁𝒐 and covariance matrix 𝜮𝝄, 𝑁(𝒙|𝝁𝒐, 𝜮𝝄). Α common approach for estimating 𝜽 

is based on the expectation-maximization algorithm which maximizes the data 

likelihood. However, EM might yield GMMs with structural topologies that might not 

fit to the underlying data structures. A solution to this is provided by variational 

inference (VI), which seeks for a lower bound on the model evidence instead of the 

likelihood. In variational inference, the goal of the variational Bayesian Gaussian 

Mixture Models (BGMM) is to estimate the hyper-parameter(s) 𝜽 in 𝑞(𝒙; 𝜽), so that its 

Kullback-Leibler (KL) divergence with the posterior distribution 𝑝(𝒙) is minimized. In 

the GMM, the search model is a multivariate normal distribution, and the search 

function becomes: 

𝑎𝑟𝑔𝑚𝑎𝑥𝜃 [∫ 𝑞(𝒙; 𝜽)(𝑅(𝒙) + 𝑙𝑜𝑔(�̃�(𝑖|𝒙)))𝑑𝒙
𝒙

+ 𝐻(𝑞)], (5.18) 
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where 𝑅(𝒙) is equal to 𝑙𝑜𝑔(𝑝(𝑥)) and 𝐻(𝑞) = 𝐻(𝑞(𝑥|𝑖)) =

−∫ 𝑞(𝒙; 𝜽) 𝑙𝑜𝑔(𝑞(𝒙; 𝜽))𝑑𝒙
𝒙

 is the entropy of 𝑞(𝒙; 𝜽). For the BGMM training 

process, the prior distribution was set to the Dirichlet processes. The Dirichlet 

distribution is a multivariate generalization of the beta distribution. More specifically, 

given a set of multinomial distributions with probability outcomes, say 𝜽 =

{𝜃1, 𝜃2, … , 𝜃𝑚}, and a set of equal-sized parameters, say 𝒂 = {𝑎1, 𝑎2, … , 𝑎𝑚}, the 

Dirichlet distribution is defined as [355]: 

𝐷𝑖𝑟(𝜽|𝜶)~
𝛤(∑ 𝛼𝑘𝑘 )

𝛱𝑘𝛤(𝛼𝑘)
∏𝜃𝑘

𝑎𝑘−1

𝑚

𝑘=1

, (5.19) 

which is considered as a distribution of distributions. The Dirichlet process (DP) is 

simply a generalization of the Dirichlet distribution, where a process, say 𝐻, is said to 

be a DP with a base distribution 𝐺 over a probability space 𝜽, a concentration parameter 

𝛼, say 𝐻~𝐷𝑃(𝒂, 𝐺), given the following condition: 

(𝐻(𝜃1), 𝐻(𝜃2), … , 𝐻(𝜃𝑚)) = 𝐷𝑖𝑟(𝒂𝐺(𝜃1), 𝒂𝐺(𝜃2), … , 𝒂𝐺(𝜃𝑚)). (5.20) 

5.5.2. Weight concentration parameter estimation 

The precise definition of the weight concentration parameter is challenging since a low 

value makes the model put most of the weight on few components whereas large values 

might lead to poor performance. In practice, the weight concentration parameter is 

defined as the inverse of the number of components. However, this approach introduces 

biases since it assumes a linear relationship between them. To deal with this, we use an 

exponential function during the evaluation on multiple number of components to 

capture non-linear effects among them, as exp (−𝑜𝑝𝑡). Through this way, the BGMM 

yields better local minima in the variational inference and thus more stable number of 

components across virtual populations. 

5.5.3. Model implementation, training, and random sampling 

A pseudocode of the BGMM-OCΕ algorithm is described in Algorithm 3. The input 

includes the curated dataset, the number of virtual patients and the initial parameters of 

the BGMM model. The BGMM-OCΕ approach applies a sequential spectral clustering 

process, for a set of 𝑘 clusters under evaluation, based on the LOBPCG method and 
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extracts the best clustering solution, i.e., the one having the highest DBS, say 𝑘𝐷𝐵𝑆. 

Then, the BGMM training process is initialized, where the number of Gaussian 

components is set equal to 𝑘𝐷𝐵𝑆 and the weight concentration parameter is set equal to 

𝑒𝑥𝑝 (−𝑘𝐷𝐵𝑆). Random sampling is then applied on the trained model based on Dirichlet 

distributions to yield the virtual samples. Quality evaluation metrics are then applied to 

compare the real with the virtual distributions. 

Algorithm 3. A pseudocode of the BGMM-OCΕ algorithm. 

1 Input 

2 X: curated and transformed dataset; 

3 N: number of virtual patients; 

4 params: initial model parameters; 

5 def get_clustering_score(X, k, params): 

6 labels = LOBPCG(k, params).fit(X).labels; 

7 DBS = DB(X, labels); 

8 return DBS; 

10 def BGMM-OCE(X, N, k, params): 

11       DBS = get_clustering_score(X, 2:k, params[0]); 

12 model = train_BGMM(max(DBS), exp(-DBS), params[1]); 

13       VP = model.sample(N); 

14        eval(VP); 

15 return VP; 

 

5.6. Synthetic data quality metrics 

5.6.1. Kolmogorov-Smirnov Goodness of fit (gof) 

More specifically, the gof test statistics, say 𝐷, is given by: 

𝐷 = 𝑚𝑎𝑥 (|𝐹𝑜(𝑥) − 𝐹𝑣(𝑥)|), (5.21) 

where 𝐹𝑜(𝑥) and 𝐹𝑣(𝑥) are the empirical distribution functions (EDFs) of the original 

and virtual populations, respectively. In fact, the gof measures whether 𝐹𝑜(𝑥) and 𝐹𝑣(𝑥) 

are similar by calculating the largest distance, 𝐷, between the two EDFs. If 𝐷 is larger 

than a critical value then the null hypothesis is rejected at the given confidence level. 

As a matter of fact, a large gof value between 𝐹𝑜(𝑥) and 𝐹𝑣(𝑥) denotes distributions 
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with large vertical distance and thus the null hypothesis is rejected, whereas small gof 

values denote similar distributions. 

5.6.2. Inter-correlation difference 

To calculate the inter-correlation difference, we first estimate the correlation matrix of 

the real and the virtual data, say 𝑋 ∈ 𝑅𝑀𝑥𝑁 and 𝑉 ∈ 𝑅𝑀
′𝑥𝑁, respectively, where 𝑀 

corresponds to the number of real patients, 𝑀′ to the number of virtual patients, and 𝑁 

to the number of features. To do so, we estimate the Pearson correlation coefficient 

between each pair of features in matrices 𝑋 and 𝑉 resulting to the 3D correlation 

matrices 𝐶𝑋 ∈ 𝑅
𝑁𝑥𝑁 and 𝐶𝑉 ∈ 𝑅

𝑁𝑥𝑁𝑥𝑄, respectively, where 𝑄 refers to the index 

number of the virtual patients (e.g., index 𝑄=1 corresponds to the 𝐶𝑉 for 1000 virtual 

patients). Finally, the average correlation matrices are extracted 𝐸[𝐶𝑋] ∈ 𝑅
𝑁𝑥𝑁 and 

𝐸[𝐶𝑉] ∈ 𝑅
𝑁𝑥𝑁, and averaged over the pairs of features yielding a scalar score 

representing the inter-correlation difference. 

5.6.3. Intra-correlation difference 

As far as the intra-correlation difference is concerned, we follow a more complex, 

patient wise procedure this time, according to which we first estimate the Pearson 

correlation coefficient between each pair of features in matrices 𝑋 and 𝑉 for every 

individual patient resulting to a 3D real correlation matrix 𝐶′𝑋 ∈ 𝑅
𝑁𝑥𝑁𝑥𝑀 and a 4D 

virtual correlation matrix 𝐶′𝑉 ∈ 𝑅
𝑄𝑥𝑁𝑥𝑁𝑥𝑀′

, where 𝑄 refers to the index of the number 

of virtual patients, 𝑀 corresponds to the number of real patients, and 𝑀′ to the number 

of virtual patients for the corresponding 𝑄 index. The average correlation matrices, say 

𝐸[𝐶′𝑋] ∈ 𝑅
𝑁𝑥𝑁 and 𝐸[𝐸[𝐶′

𝑉
]] ∈ 𝑅𝑁𝑥𝑁, are extracted as the average correlation matrix 

over the possible pairs of features and patients yielding a scalar score representing the 

intra-correlation difference. 

5.6.4. Kullback-Leibler (KL) divergence 

For two features, 𝒙𝒓 and 𝒙𝒗, from the real and virtual data, respectively, with probability 

distributions, 𝒑𝒙𝒓 and 𝒑𝒙𝒗 defined on the same probability space, 𝑲, the Kullback-

Leibler (KL) divergence [349] quantifies the divergence between the two distributions, 

in an asymmetric manner, as in: 
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𝐾𝐿(𝒑𝒙𝒓||𝒑𝒙𝒗) = ∑𝒑𝒙𝒓(𝑘𝑖) 𝑙𝑜𝑔 (
𝒑𝒙𝒓(𝑘𝑖)

𝒑𝒙𝒗(𝑘𝑖)
)

𝒌∈𝐾

, (5.22) 

where KL values close to 0 denote that the probability distributions 𝒑𝒙𝒓 and 𝒑𝒙𝒗 are 

almost identical in terms of highly reduced divergence or highly increased convergence. 

5.6.5. Coefficient of variation (or variance to mean ratio) 

The coefficient of variation (cV) [356] is a quantitative metric which is defined as the 

ratio of the standard deviation over the mean of a distribution. In fact, the cV score 

quantifies the variability of a given population with respect to the population mean and 

thus can be used to quantify the level of dispersity in the virtual distributions. Here, the 

cV is calculated for each real and virtual distribution per feature. 

5.7. Data augmentation 

The proposed pipeline for data augmentation is depicted in Figure 28, which consists 

of three modules, namely the: (i) data quality control module for assessing the quality 

of the data, (ii) virtual population generation module for producing high-quality virtual 

data, and (iii) the “hybrid” machine learning module for the development of disease 

classification and risk stratification models on the aggregated real and virtual patient 

data. The outcomes of the proposed pipeline include curated clinical data, high-quality 

virtual data and enhanced disease classification and risk stratification models. 

 

Figure 28. An illustration of the proposed computational pipeline. 
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A data quality control pipeline presented in a previous study [66] was utilized to 

automatically resolve problematic fields within the input clinical data, including 

outliers, data inconsistencies, and missing values. The curated clinical data are 

introduced into the virtual population generation module to yield virtual distributions 

that “mimic” the real ones. Towards this direction, state-of-the art machine-learning 

and statistical methods were developed to ensure the high-quality of the virtually 

generated data, including: (i) the supervised tree ensembles, where in each tree node, 

the generator for each feature is captured during the node splitting process based on its 

univariate empirical cumulative distribution function (ECDF), (ii) the unsupervised tree 

ensembles, where density forest ensembles are built in a top-down manner using the 

variance of the features as the criterion for the node splitting process, (iii) the artificial 

neural networks (ANNs), where radial basis functions (RBFs), such as, the Gaussian 

kernels are used as multivariate generators of virtual data instances, (iv) the Bayesian 

networks, where diverse network topologies are evaluated based on the causal 

relationships between the features (i.e., nodes in the network), and (v) the Log-MVND 

(multivariate log-normal distribution), where multivariate normal distributions are 

applied on the log transformed data. For each virtual population generation method, 

similarity scores, such as, the Kolmogorov-Smirnoff goodness of fit (GOF), the 

Kullback-Leibler (KL) divergence and the correlation coefficient are used to evaluate 

the level of agreement among the real and virtual distributions. 

In the “hybrid” machine learning module, the virtual data from each generator are 

aggregated with the real data to assess whether the performance of the machine learning 

algorithms that are trained on the aggregated data is better than in the case where the 

algorithms are trained on the real data. Two case studies were conducted towards the 

development of robust lymphoma classification models in pSS and risk stratification 

models in HCM. Class imbalance handling was utilized to deal with the population 

imbalance among the control and target groups through the application of random 

downsampling with replacement on the control group. The XGBoost was deployed as 

a robust tree ensemble algorithm [357], [358] which was trained on aggregated data 

instances along with the Adaptive Boosting (AdaBoost) [359] and the Random Forests 

[360] which were also deployed to evaluate the overall impact of data augmentation. 

An adjusted stratified 10-fold cross validation procedure was utilized to train the 

algorithms on aggregated data and evaluate them on testing subsets of real patients. 
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To better understand the adjusted cross-validation process, lets denote the real dataset 

as 𝑻, and the virtual datasets that were generated by the methods from 5.3 as 𝑨 for the 

unsupervised tree ensembles, 𝑩 for the supervised tree ensembles, 𝑪 for the supervised 

RBF-based neural networks, 𝑫 for the Bayesian networks, and 𝑬 for the multivariate 

log-normal distribution. A 10-fold cross validation process is applied to 𝑻, yielding a 

training subset 𝑻𝒕𝒓𝒂𝒊𝒏 and a testing subset 𝑻𝒕𝒆𝒔𝒕, on each iteration. On each round, each 

virtual dataset is aggregated with 𝑻𝒕𝒓𝒂𝒊𝒏, yielding new instances, say, 𝑨′, 𝑩′, 𝑪′, 𝑫′, 𝑬′, 

where 𝑨′ = 𝑨 ∪ 𝑻𝒕𝒓𝒂𝒊𝒏, 𝑩
′ = 𝑩 ∪ 𝑻𝒕𝒓𝒂𝒊𝒏, 𝑪

′ = 𝑪 ∪ 𝑻𝒕𝒓𝒂𝒊𝒏, 𝑫
′ = 𝑫 ∪ 𝑻𝒕𝒓𝒂𝒊𝒏, 𝑬

′ = 𝑬 ∪

𝑻𝒕𝒓𝒂𝒊𝒏. Each supervised machine learning algorithm from 5.3 is trained on the training 

instances 𝑨′, 𝑩′, 𝑪′, 𝑫′, 𝑬′ and tested on the corresponding testing instance 𝑻𝒕𝒆𝒔𝒕 where 

the accuracy, specificity, sensitivity, and area under the curve (AUC) scores are 

computed and averaged across the folds. In this way, the training instances of 𝑻 are 

augmented with the virtual data. 

5.8. Summary 

Virtual population generation has gained a lot of attention in the healthcare sector due 

to the overwhelming need to overcome the significant lack of sufficient population size, 

particularly for in silico clinical trials (ISCTs), where the financial burden of expensive 

drugs leverages the orchestration of viable Phase II/III CTs by pharmaceutical 

companies worldwide. Furthermore, the lack of medical databases with increased 

statistical power (e.g., in rare diseases) obscures the deployment of machine learning 

pipelines that can identify risk factors for disease progression and treatment due to the 

reduced amount of available training data. As a matter of fact, all these factors have a 

significant negative impact in the capacity of the existing healthcare systems, where the 

costs and delays for treatment and re-admission are already high. Virtual population 

generation envisages to address these needs through the development of virtual data 

generators which are trained on the real data to produce virtual (or synthetic) 

distributions which can “mimic” the real ones in terms of reduced divergence and 

dispersion with the real data. Since the virtual data quality is directly affected by the 

quality of the real data, it is first necessary to enhance the quality of the real data 

including the data completeness and conformity. So far, virtual population generation 

has multiple applications in ISCTs specifically in drug testing and development, as well 

as, in pharmacokinetics. 
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The emerging need for the development of computationally efficient virtual data 

generators yielding virtual data with reduced inter- and intra- correlation with the real 

data remains a technical challenge. The state-of-the-art virtual generators yield high-

quality virtual data with reduced gof values, like the UTE. The gof, however, assumes 

that the distributions belong to a particular set of distributions which introduces biases 

in the outcomes. In addition, the STE, and the ANN require a target feature which 

affects the associations of the features in the virtual data. Furthermore, in the case of 

Bayesian networks, the number of all possible permutations of the edges within the 

network is infinite. Moreover, most of these methods are computationally demanding 

due to the increased training time. 

Towards this direction, Gaussian Mixture Models (GMMs) with variational Bayesian 

inference (BGMM) were developed to generate large-scale virtual populations. The 

first method utilizes Dirichlet process mixtures as the BGMM’s prior structure, where 

the concentration of each component on the weight distribution is an exponential 

function of the number of Gaussian components. We then extended the BGMM to 

reduce the biases which were introduced during the arbitrary selection of the number 

of Gaussian components by seeking the optimal number of components (BGMMOCE). 

To do so, we applied spectral clustering to get a first view on the number of clusters in 

the data. Then we extracted the optimal number of clusters based on the Davies Bouldin 

index and utilized it as the number of Gaussian components. In addition, we defined 

the weight concentration (gamma) parameter as the inverse of the number of Gaussian 

components. 

The BGMMOCE algorithm is an extension of the conventional BGMM which aims to 

address open issues regarding hyperparameter estimation in BGMM which is a crucial 

technical challenge. BGMMOCE introduces a highly efficient spectral clustering stage 

based on the LOBPCG method to cluster patients with similar profiles within the input 

data towards the estimation of the optimal number of Gaussian components. In addition, 

the BGMMOCE is highly sustainable since it can be applied in any clinical domain. 

The need for large-scale synthetic data generation is more important than ever not only 

due to the COVID-19 crisis a few years ago but also because they are expensive and 

lengthy. 
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CHAPTER 6. FEDERATED/DISTRIBUTED LEARNING 

AND DATA ANALYTICS 

 

 

6.1. Overview 

6.2. Types of learning 

6.3. Beyond the state of the art – The proposed federated AI framework 

6.4. AI model explainability 

6.5. Summary 

 

 

6.1. Overview 

So, how can we enable the co-analysis of disparate sources to deal with the unmet needs 

for various medical diseases and conditions? The answer to this question has been the 

core of discussion from the first chapter of this book. Everything begins from data 

sharing. The sources and types of big medical data are many and thus data sharing is a 

primary step to interlink disparate sources of medical data, such as, cohorts and omics 

registries to increase the population size and enhance the scientific impact of the clinical 

studies that make use of such data to provide outcomes with significant statistical 

power. The interlinked data might share a common medical domain but often exhibit 

structural heterogeneities due to the different data collection protocols and data 

recording schemas that are adopted by the data providers. So, once the interlinking 

mechanisms for data sharing are established, the next step is to overcome the structural 

heterogeneities that are present in the shared data. Towards this direction, data 

harmonization using lexical, semantic, and statistical matching based on reference 

schemas has been proven to be a powerful strategy that can enable the homogenization 

of the heterogeneously structured, interlinked medical data. Once the medical data are 

harmonized at the highest level of available information, the next step is to co-analyze 

the harmonized datasets using machine learning and data analytics. 
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Prior to the application of any data analytics strategy for distilling knowledge from 

medical data it is first necessary to apply a pre-processing pipeline on the medical data. 

Conventional computational approaches for data pre-processing include: (i) data 

curation [66] for enhancing the quality of the medical data, such as, the methods that 

have been already presented in 2.2.1, and (ii) data discretization [361] for dealing with 

recording errors during the data collection process, where the continuous data are 

discretized into an equal number of bins or bins with equal frequency or into a specific 

number of bins that minimizes the information entropy or maximizes the overall 

information gain, such as, the Entropy-MDL approach, among others. Feature selection 

and feature ranking approaches [52] are also useful for reducing the dimensionality of 

the input features by highlighting a subset of prominent features based on a target one, 

which is usually a disease outcome.  

Once the quality of the data is ensured, a data analytics pipeline can be applied to mine 

knowledge from the medical data. Regarding the application of machine learning in 

healthcare, a notable progress has been made over the past years towards the extensive 

analysis of large amounts of clinical, laboratory, histological, and omics data to develop 

machine learning models for: (i) the prediction of disease outcomes, (ii) the detection 

of biomarkers, (iii) the effective treatment monitoring, and (iv) the development of 

patient stratification models, among others [129]. The capabilities of machine learning 

in medical data analytics are tremendous [4], [72] with increased impact towards the 

clinical decision-making process. 

6.1.1. Machine learning in healthcare 

Machine learning can shed light into complex data structures to reveal hidden patterns 

and associations between the variables that can lead to the detection of prominent 

variables with high contribution towards the prediction of a specific disease outcome 

[362], [363]. Towards this direction, machine learning algorithms have been 

extensively applied in omics data and clinical data for the development of supervised 

learning models that are able to predict disease outcomes given a specific subset of 

annotated data for training.  

Popular supervised learning algorithms, such as, regression, support vector machines, 

the decision trees, the Naïve Bayes and the artificial neural networks have been utilized 
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on large subsets of clinical data to develop robust patient stratification models towards 

the identification of groups of individuals with high risk for the development of a 

disease outcome [52]. In addition, machine learning has been also applied on clinical 

and genetics data to develop unsupervised learning models for grouping (clustering) 

complex data structures with similar patterns [364]. Unsupervised learning algorithms, 

such as, the hierarchical clustering and the 𝑘-means [365], along with more complex 

ones, such as, the spectral clustering [366] and the hierarchical clustering [367] have 

been extensively employed for the categorization of highly associated features.  

The fundamental difference between a supervised and an unsupervised learning 

algorithm lies on the fact that the former is trained on a set of input features (variables), 

where one feature is set as the target feature, whereas the latter is directly applied on 

the set of features without any prior knowledge regarding the existence of a target 

feature. As far as the development of prediction models is concerned, a supervised 

learning algorithm is usually trained on a set of training features where the feature that 

represents the disease outcome is specified as the target feature. The performance of 

the supervised learning model is then evaluated using conventional methods, such as, 

the 𝑘-fold cross-validation and train/test split ratio. 

6.1.2. Problems with centralized analysis 

It is obvious now that the adoption of a proper machine learning algorithm depends on 

the type of application study and the definition of the scientific problem that needs to 

be addressed by the study. Apart from the variety of the existing machine learning 

algorithms for data analytics in healthcare, emphasis must be given on the data storage 

environment. The most common way for storing medical data is through the adoption 

of a centralized database where all the medical data are stored into a common physical 

environment. Mining knowledge from large amounts of medical data requires the 

application of deep learning algorithms [368], such as, multi-layer neural networks with 

error propagation (e.g., the Long short-term memory neural network [369]) and 

convolutional neural networks (CNNs) [370]which are capable of detecting hidden 

motifs within the complex big data structures and dealing with the development of 

supervised learning models for predicting disease outcomes with multiple applications 

in medical imaging segmentation [55], [371] and bio-signal analysis [372]. Several 

methods have been proposed towards the effective analysis of big medical data in 



148 

 

centralized databases, such as, the batch processing method according to which the data 

are divided into smaller subsets, i.e., batches, and the ML algorithm is sequentially 

applied on the batches until all the batches are parsed. 

Keeping the data in a common, centralized database, however, poses significant 

security threats in the case of a data breach, as well as, obscures the efficient analysis 

of big data, especially of omics data, where the amount of generated data is so huge that 

it significantly hampers the application of any machine learning algorithm due to the 

lack of sufficient memory units and the demand of high computational power [80], 

[373]. A prominent solution to this is to use the distributed database schema. ΅ 

Distributed healthcare environments [202], [204], [374] have gained a lot of attention 

these days due to the need to process massive amounts of accumulated medical data. In 

distributed databases, the medical data are stored in multiple sites (or locations). An 

overwhelming scientific challenge, however, in distributed databases, is the need to 

develop prediction models across the data that are stored in multiple databases, without 

the data to leave these databases at all. Another challenge lies on the fact that the 

application of the existing machine learning algorithms is not always feasible due to 

the non-convex optimization problem that the majority of these algorithms try to solve 

[375]. 

6.2. Types of learning 

6.2.1. Online learning 

Towards this direction, batch processing methods have been proposed to provide an 

adequate solution for the development of machine learning models in distributed 

environments [170]. Online learning [181] is such an approach which updates an 

existing machine learning model according to a global cost function that is sequentially 

adapted on upcoming data streams. In fact, online learning uses stochastic gradient 

descent optimization methods to update the existing machine learning model on 

upcoming training samples by minimizing a global cost function, where the model is 

continuously updated on new data points or on a series of accumulated data points, over 

time. Existing machine learning implementations that support online learning include, 

linear SVM [376], hybrid online learning attempts using non-linear kernels [377], as 

well as, gradient descent approaches for convex optimization [378]. 
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6.2.2. Incremental learning 

A similar strategy that shares a common basis with the former one, is the incremental 

learning [135], [184], [185], [187]. In contrast to online learning, incremental learning 

tries to adapt an existing machine learning model on upcoming data streams without 

the burden of being applied only on upcoming data streams, i.e., in an “online” manner 

but also on existing data streams or batches. More specifically, incremental learning 

uses a batch processing method to train a machine learning model on an initial batch 

and then adjust the model on a series of upcoming batches, by solving additive 

optimization tasks [135], [184], [185], [187]. This makes incremental learning ideal in 

the case of out-of-core learning, where the large-scale data do not even fit into the 

memory and thus need to be processed sequentially, as well as, when the batches are 

treated as harmonized data which are stored in multiple locations. Existing methods 

that support incremental learning include methods for convex optimization [183], 

[379], [380], gradient boosting trees [381], [382], and Naïve Bayes [188]. Meanwhile, 

stacked generalization techniques [383], [384] have been also proposed for combining 

individual classification outcomes. Such parallelized methods, however, suffer from 

biases introduced by the assembly stage [385]. 

6.2.3. Meta-learning 

Meta learning [182] is a rigorous category of machine learning strategies where 

individual classification outcomes (metadata) are collected from the training of multiple 

classifiers on the same data and are finally combined to reduce the computational 

complexity of the incremental learning or online learning process offering some kind 

of parallel execution. Such methods, however, suffer from biases that are introduced 

during the assembly stage where the classification outcomes from different classifiers 

are combined. 

6.2.4. Instance based learning 

Perhaps the simpler of the two approaches is instance-based learning [386]. It is based 

on the solutions of previous instances (problems) to provide outcomes for new inputs. 

This is achieved by producing predictions based on the similarity (distance) of a new 

input to its nearest neighbors in the training dataset. This in turn implies that all known 

instances are stored in memory for use. In this approach the generalization is explicit, 
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no abstract models are involved in the process. This can lead to more adaptive 

generalizations, given that the implementation can simply store a previously unknown 

instance for future use. On the other hand, instance-based learning may lead to 

increased computational complexity due to the need of storing in memory large datasets 

of instances. A learner of this category may prove susceptible to data noise and 

overfitting. 

6.2.5. Model based learning 

This approach aims to create internal knowledge representations (abstractions) based 

on raw inputs [387]. A model-based learner attempts to construct and consequently 

refine its model of the environment it operates into to deduce a set of underlying 

properties which in turn are to be used for producing predictions when new/unknown 

data are inserted. In this scenario, direct interaction with the environment 

(fundamentally represented by the set of inserted raw inputs) is minimized in 

comparison to instance-based learning. This may lead to faster learning sessions in 

some cases and may also produce more robust learning paradigms. Robustness is 

demonstrated particularly when the Machine Learning implementation operates under 

lack of prior knowledge. Data noise issues may also be overcome by a valid knowledge 

representation. On the other hand, an invalid model will inevitably produce invalid 

predictions in all cases. 

6.3. Beyond the state of the art - The proposed federated AI framework 

6.3.1. Overview 

Federated learning lies on the additive adjustment of a single estimator across multiple 

data structures [65], [81], [112], [135]. Given a set of 𝑀-distributed nodes (or databases 

in a federated environment), say 𝑫𝑵𝟏, 𝑫𝑵𝟐, … , 𝑫𝑵𝑴, we train a machine learning 

algorithm on the dataset 𝑿𝟏 in node 𝑫𝑵𝟏, yielding an ML model, say 𝜧𝑳𝑫𝑵𝟏, and then 

update the model through the following function: 

𝐹(𝑥) = 𝐹(𝑥 − 1) + 𝛽ℎ(𝑥), (6.1) 

where 𝐹(𝑥) corresponds to the estimated mapper that is trained on the dataset 𝑿𝒊, in 

database 𝑫𝑵𝒊, 𝐹(𝑥 − 1) corresponds to the estimated mapper that was trained on the 
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dataset in the database 𝑫𝑵𝒊−𝟏, where 𝑖 ≤ 𝑀, and 𝛽ℎ(𝑥) is the learner function on 𝑫𝑵𝒊. 

To achieve this, we update the weights of the estimator through the stochastic gradient 

descent (SGD) method which seeks for a loss function, ℎ(𝐹(𝑥𝑖), 𝑦𝑖), that minimizes 

[129], [388]: 

𝐿(𝒘) = 𝑎𝑟𝑔𝑚𝑖𝑛 (
1

𝑁
∑ℎ(𝐹(𝑥𝑖), 𝑦𝑖) + 𝑎𝑟(𝒘)

𝑁

𝑖=1

) (6.2) 

where, 𝑥𝑖 is the 𝑖-th instance, 𝑦𝑖 is the target, 𝒘 is a weight vector, ℎ(. ) is a loss 

function, a is a hyperparameter, 𝑟(𝒘) is a regularizer, 𝐿(. ) is the objective, and 𝐹(𝑥𝑖) 

is a linear score function. Solving (6.2) yields the weight update formula: 

𝑤𝑖 = 𝑤𝑖−1 − 𝜂𝑡(∇𝑤ℎ(𝐹(𝑥𝑖), 𝑦𝑖) + 𝑎∇𝑤𝑟(𝑤)) (6.3) 

where, 𝑖 is the stage, 𝑤𝑖−1 is the weight estimation at stage 𝑖 − 1, 𝜂𝑡 is a non-negative 

learning rate parameter, and  ∇𝑤ℎ(𝐹(𝒙𝒊), 𝒚𝒊) is the gradient of the loss function ℎ(. ). 

A pseudocode that summarizes the backbone of federated learning is presented in 

Algorithm 4. An ML algorithm is trained on the first dataset yielding the initial weights 

which are additively updated across the rest of the datasets through (6.3) using the 

weights of the previous ones. 

Algorithm 4. A pseudocode for federated learning. 

1 def distributed_learning(F, 𝑻 = {𝑻𝟎, 𝑻𝟏, 𝑻𝟐… , 𝑻𝑴}, 𝒘𝟎): 

2 fit an estimator 𝑭𝒐 on the dataset 𝑻𝒐 yielding 𝒘𝟎 

3 for 𝑖 = 0:𝑀 do: 

4 retrieve weight vector 𝑤𝑖−1 from the previous execution 

5 solve 𝑤𝑖 = 𝑤𝑖−1 − 𝜂𝑡(∇𝑤ℎ(𝐹(𝑥𝑖), 𝑦𝑖) + 𝑎∇𝑤𝑟(𝑤)) 

6 update the weights based on (6.3) 

7 return [𝑤𝑖 , 𝐹𝑖] 

 

6.3.2. Federated learning algorithms 

6.3.2.1. Federated Stochastic Gradient Descent (FSGD) based algorithms 

The incremental strategy which is adopted by the federated AI modeling process 

(Algorithm 4) offers a unique scalability which allows us to extend conventional 

supervised machine learning classifiers for federated learning tasks. More specifically, 

the loss function, 𝐿(𝑓(𝒅𝒊), 𝒚𝒊), in (5) can be adjusted to build supervised machine 
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learning classifiers for federated training and testing. To develop the federated logistic 

regression (FLR) classifier we can replace the regularization term in (6.2) with the 

logistic loss function: 

𝐿(𝑓(𝒅𝒊), 𝒚𝒊) = 𝑙 𝑛(1 + 𝑒𝑥 𝑝(−𝒚𝒊𝑓(𝒅𝒊))). (6.4) 

6.3.2.2. Federated Support Vector Machines (FSVM) 

In a similar manner, we can develop the federated SVM (FSVM) algorithm using the 

hinge loss function: 

𝐿(𝑓(𝒅𝒊), 𝒚𝒊) = 𝑚𝑎𝑥 (0, 1 − 𝒚𝒊𝑓(𝒅𝒊)). (6.5) 

6.3.2.3. Federated Multinomial Naïve Bayes (FMNB) 

In the case of discrete features, the multinomial Naïve Bayes (MNB) is preferred. Given 

an 𝑁-dimensional input vector, assume 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑁), where 𝑑𝑖 is the frequency 

of an event 𝑒𝑖, and the class, say 𝑐𝑘, with the highest probability or the maximum 𝑎-

posterior (MAP) class, can be solved as a linear function [389] using the logarithm 

expression as follows: 

𝑐𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑘 [𝑙𝑜𝑔(𝑃(𝑐𝑘)) +∑𝑙𝑜𝑔(𝑃(𝑒𝑖|𝑐𝑘))

𝑁

𝑖=1

]. (6.6) 

where 𝑃(𝑒𝑖|𝑐𝑘) is the conditional probability of the event 𝑒𝑖 given the class 𝑐𝑘, and 𝑘 

is the class index. 

6.3.2.4. Federated Multilayer Perceptron (FMLP) 

If we replace the loss function with the Perceptron loss: 

𝐿(𝑓(𝒅𝒊), 𝒚𝒊) = 𝑚𝑎𝑥 (0, −𝒚𝒊𝑓(𝒅𝒊)), (6.7) 

we can develop the federated Perceptron classifier, as well as, the federated Multi-layer 

Perceptron (FMLP). 

6.3.2.5. Federated Gradient Boosting Trees (FGBT) 

In the case of the gradient boosting trees (GBTs) schema, regression trees ensembles 

are used as weak learners to minimize the expected value of the loss function. In the 
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case of the GBTs, we incrementally seek for the mapper 𝐹(𝒙) at a stage 𝑚, 𝐹𝑚(𝑥), as 

in [129], [357], [381]: 

𝐹𝑚(𝒅𝒊) = 𝐹𝑚−1(𝒅𝒊) + 𝑝𝑚 ∙ ℎ(𝒅𝒊; 𝒂𝒎), (6.8) 

where 𝑝𝑚 is the line search function, and ℎ(𝒙; 𝒂𝒎) is a regression tree learner with 

parameters 𝒂𝒎. 

6.3.2.6. Federated Gradient Boosting Trees with dropout (FDART) 

A crucial problem in GBTs though is the fact that the trees added early in the ensemble 

tend to become more significant in the decision-making process than those added later. 

A solution to this issue is to use dropout rates [193], where the dropped trees and the 

newly added tree are scaled by a factor which ensures that the combination of the 

dropped trees and the new trees have the same effect on the outcome. To do so, the 

DART is trained on random subsets to prevent the definition of trivial trees. For a 

model, say 𝑄, where 𝑄(𝑑) is the prediction for sample 𝑑, and 𝐿(𝑄(𝑑)) is the loss 

function DART creates the random subset [193]: 

{(𝑑,−∇𝑡𝐿(𝑄(𝑑)))}, (6.9) 

where, a new label with values −∇𝑑𝐿(𝑄(𝑑)) is assigned for each sample 𝑑 in the 

training dataset. 

6.3.2.7. Federated Hybrid Boosted Forests (FHBF) 

6.3.2.7.1. Issues with FGBT and FDART implementations 

A common problem with FGBT, however, is the fact that trees added early in the 

ensemble, at a particular stage, tend to have a higher impact during the decision-making 

process those added later [193]. Dropouts have been recently adopted by the deep 

learning community to deal with this issue by scaling the most prominent trees in the 

ensemble with a specific rate of rejected trees. On the other hand, a main problem in 

FGBT with dropout rates is to account for overfitting effects in the selection of the 

dropout rate which is arbitrary. Besides, the data consistency in each database combined 

with increased class imbalance can leverage the weight update process yielding zero or 

infinite weights. On the other hand, even though federated implementations of 



154 

 

conventional supervised learning algorithms, like the support vector machines and 

logistic regression are easy to be implemented and deployed in federated environments 

they are often prone to overfitting effects since they suffer by linearity assumptions and 

thus fail to capture complex data structures.  

On the other hand, Naïve Bayes approaches, such as, the multinomial Naïve Bayes are 

partially affected by overfitting they are often less flexible since they assume feature 

independence. Besides, although the GBT (with and without dropouts) algorithm has 

been widely used in the literature as a state-of-the art classifier with advanced 

implementations both in centralized and federated environments [65], [250], [389] none 

of these studies have investigated the loss during the training and testing across multiple 

and highly imbalanced data structures within federated environments. 

6.3.2.7.2. Architecture 

The FHBF architecture (Figure 29) is comprised of three individual layers: (i) the 

weight update layer, (ii) the separation layer, and (iii) the decision-making layer. In the 

weight update layer, the FHBF algorithm is utilized and recursively applied across the 

federated databases. The weight update process is repeated 𝐾-times by applying 

random downsampling with replacement with respect to a set of pre-defined confound 

factors among the control group and the target group in each federated database.  

The weight update process is orchestrated by the central node (CN) which 

communicates with the federated AI model handler and the federated AI model 

collector. The former is responsible for the transmission and storage of the individual 

model weights from one database to another whereas the federated AI model collector 

is responsible for gathering the individual hybrid FDART (HFDART) models to 

formulate a set of clusters with the HFDARTs from each round. This set is referred to 

as a forest of HFDARTs.  

In the separation layer, the “weak” HFDARTs models in the forest are identified by a 

log loss score and eliminated. The remaining HFDARTs are used for the final decision 

making based on majority voting. The output stage includes the final predictions along 

with explainable AI scores. 
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Figure 29. An illustration of the FHBF architecture. 

6.3.2.7.3. Information flow 

The information flow which reflects the core operations in the FHBF is depicted in 

Figure 30. According to Figure 30, the FHBF core parameters, including the number of 

rounds (𝐾), the number of training databases (𝑁), and the number of testing databases 

(𝑀), are first defined. In each round, say 𝑗 ∈ [1, 𝐾], the algorithm gets sequential access 

to each training database, say 𝑖 ∈ [1, 𝑁], in the federated system. Random 

downsampling with replacement is applied on the training database to match the target 

group with the control group according to a predefined downsampling ratio (usually 

1:1). The matching process is applied with respect to confound factors, such as, the age, 

gender, and the disease duration, to avoid biases during population matching. The 

hybrid loss function is then defined by the scale parameter with respect to the dropout 

rate. The first and the second order gradient of the loss function are then computed and 

utilized for the weight update process.  

The updated weights are entered in a boosting process consisting of 𝑘 rounds. In each 

boosting round, the weights of the model are updated to minimize the prediction loss. 

When the boosting process ends, the central node (CN) is invoked, and the weights of 

the model are stored. These weights are used for the training process in the next training 

database until all training databases participate in the analysis (i.e., until 𝑗 = 𝑁). Once 

the training process is terminated, a cluster of federated models is created (i.e., a 

federated hybrid boosting forest - FHBF). Each cluster is evaluated in each testing 
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database, say 𝑚 ∈ [1,𝑀] and the binary cross entropy loss (or log loss) is then 

estimated for each cluster.  

As soon as the testing process is terminated, the “weak” clusters (i.e., those with log 

loss score less than the average log loss of the forest) are eliminated from the final 

decision-making process. Shapley additive explanation analysis is finally applied on 

the strong clusters to derive explainable scores for each input feature that participated 

in the workflow with respect to the target outcome. 

 

Figure 30. An illustration of the FHBF information flow. 

6.3.2.7.4. Development of a hybrid loss function 

A main problem in FDART is to account for overfitting effects in the selection of the 

dropout rate, say 𝑟. The fact that the algorithm combines many regression trees with a 

small learning rate and thus trees that are added early in the ensemble are more 

significant than trees added late. To solve this we propose a hybrid loss function which 

combines the logcosh loss [390], [391], say 𝑓, with the Huber loss [390], [391], say 𝑔, 

where the topology of the loss function is controlled by a parameter 𝛿 value. The 

logcosh loss 𝑓 is defined as: 

𝑓(𝑦, �̂�) = 𝑙𝑜𝑔 (𝑐𝑜𝑠ℎ(𝑦 − �̂�)),   (6.10) 

where 𝑦 is the target vector and �̂� is the vector with the estimations. On the other hand, 

the modified Huber loss, say 𝑔(𝑦, �̂�, 𝛿) is defined as: 



157 

 

𝑔(𝑦, �̂�, 𝛿) = {

1

2
|𝑦 − �̂�|2,                        |𝑦 − �̂�| ≤ 𝛿

𝛿 (|𝑦 − �̂�| −
1

2
𝛿) , |𝑦 − �̂�| > 𝛿

,   (6.11) 

where 𝛿 is a scaling parameter that corresponds to the point where the Huber loss 

transitions from a quadratic to linear shape. Then, 𝑓 and 𝑔 are combined into a hybrid 

loss function, say ℎ = 𝑓 ∗ 𝑔 that is calculated based on the product rule yielding the 

first-order gradient: 

𝛻ℎ = 𝑙𝑜𝑔 (𝑐𝑜𝑠ℎ(𝑦 − �̂�))((𝑦 − �̂�)/√𝑠) + 𝑔(𝑦, �̂�, 𝛿) 𝑡𝑎𝑛ℎ(𝑦 − �̂�), (6.12) 

and the second-order gradient: 

𝛻2ℎ = (
1

𝑐𝑜𝑠ℎ2(𝑦−�̂�)
) 𝑔(𝑦, �̂�, 𝛿) + 2 (𝑡𝑎𝑛ℎ(𝑦 − �̂�) (

𝑦−�̂�

√𝑠
)) + 𝑡𝑎𝑛ℎ(𝑦 −

�̂�) (
1

𝑠√𝑠
), 

(6.13) 

where 𝑠 is an approximation factor defined as 1 + ((𝑦 − �̂�)/𝛿)2 [392], [393]. The 

dropout rate 𝑟𝑑 was finally set equal to the scaling parameter 𝛿 so that the shape of the 

loss function would be steeper around 0 to avoid weight overfitting for large 𝑟. 

6.3.2.7.5. Weight update function 

The rationale of the gradient boosting process lies on the transformation of a set of weak 

learners into much a stronger one by additively updating the weights of the model until 

the prediction error is minimized. The error minimization process is usually based on 

the stochastic gradient approach (SGD). Given a set of 𝑁-observations {(𝒙𝟏,𝑦1), 

(𝒙𝟐,𝑦2), …, (𝒙𝑵,𝑦𝑁)}, where 𝒙𝒊 ∈ 𝑹
𝑵, the objective is to obtain an estimated function, 

�̃�(𝒙), mapping 𝒙 to 𝑦, that minimizes the expected value of a loss function, assume 

𝐿(𝑦, 𝐹(𝒙)). Recall from Section 6.3.2.5 that the gradient boosting process 

incrementally seeks for estimations of a mapper at a stage 𝑚 ∈ 𝑀, assume 𝐹𝑚(𝑥) as in: 

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) + 𝛾𝑖𝑓𝑖(𝑥)𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) − 𝛾𝑖∑∇𝐹𝑖−1𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗)

𝑛

𝑗=1

), (6.14) 

where the regularization objective can be approximated according to Taylor’s theorem 

[357] as follows: 
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𝐸(𝑡) ≈∑[𝐿(𝑦𝑖 , �̃�𝑖,𝑡−1) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝑟

𝑁

𝑖=1

, (6.15) 

where 𝑙(. ) is the loss function at step 𝑡, �̃�𝑖,𝑡−1 is the estimated target at step 𝑡 − 1, 𝑦𝑖 is 

the real target and 𝑟 is a regularization function: 

𝑟 = 𝛾𝐿 +
1

2
𝜆∑𝑤2

𝑗

𝐿

𝑗=1

, (6.16) 

where 𝑤 is the weight on the leaves, 𝛾 is a constant value, and 𝐿 is the total number of 

leaves in each tree. Here, the first and second order gradients are used in (6.15), yielding 

the FHBF regularization objective: 

𝐸(𝑡) ≈∑[𝑙(𝑦𝑖 , �̃�𝑖,𝑡−1) + (𝑙𝑜𝑔 (𝑐𝑜𝑠ℎ(𝑦 − �̂�)) (
𝑦 − �̂�

√𝑠
)

𝑁

𝑖=1

+ 𝑔(𝑦, �̂�, 𝛿) 𝑡𝑎𝑛ℎ(𝑦 − �̂�))𝑓𝑡(𝑥𝑖)

+
1

2
((

1

𝑐𝑜𝑠ℎ2(𝑦 − �̂�)
) 𝑔(𝑦, �̂�, 𝛿)

+ 2(𝑡𝑎𝑛ℎ(𝑦 − �̂�) (
𝑦 − �̂�

√𝑠
))

+ 𝑡𝑎𝑛ℎ(𝑦 − �̂�) (
1

𝑠√𝑠
))𝑓𝑡

2(𝑥𝑖)] + 𝑟. 

(6.17) 

6.3.2.7.6. Confound based class imbalance handling 

A crucial challenge that is introduced during the training across federated databases is 

the increased class imbalance among the control and the target groups in each database. 

To solve this, random downsampling with replacement was applied to extract a 

balanced set of training instances, in each database. The downsampling process is based 

on a pre-defined ratio, say 𝑑𝑟, which determines the population size of the control group 

with respect to the target group. The downsampling process was applied on each 

database separately and was finally repeated 𝐾-times to obtain an unbiased estimation 

of the model performance. In each iteration, confound factors were taken into 

consideration to ensure subgroup matching without statistically significant differences. 
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More specifically, given a set of 𝑁-profound factors (features), say {𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵}, we 

seek for a random control subgroup where the patients’ clinical profiles do not 

statistically deviate from those in the target group. To do so, the non-parametric 

Wilcoxon rank sum test (or Student’s t-test in the case of normality upon a Shapiro-

Wilk test) was applied on the continuous confound factors and the chi-square 

test/Fisher’s exact test in the case of the discrete factors to evaluate whether the target 

subgroup and a randomly selected control subgroup, in each database, does not 

significantly deviate at a 95% confidence level. 

6.3.2.7.7. Assembly stage and scoring procedure 

In the assembly stage, the 𝐾 individual HFGBT models are collected to formulate a set 

of HFGBTs in the form of a forest, say 𝐶, as in: 

𝐶 = {𝐻𝐹𝐺𝐵𝑇1, 𝐻𝐹𝐺𝐵𝑇2, … , 𝐻𝐹𝐺𝐵𝑇𝐾}, (6.18) 

where 𝐻𝐹𝐺𝐵𝑇𝑖 corresponds to the HFGBT from the 𝑖-th federated training round. In 

the case where the HFDART is used as a booster, then (16) is updated accordingly. The 

binary cross entropy (log loss) score is estimated for each model in the forest 𝐶 as in: 

𝐻(𝐶𝑗) = −
1

𝑁
∑𝑦𝑖𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑝(𝑦𝑖))

𝑁

𝑖=1

, (6.19) 

where 𝐶𝑗 corresponds to the model 𝐻𝐹𝐺𝐵𝑇𝑗, 𝑗 = 1, … , 𝐾, 𝑦𝑖 is the target of the 𝑖 −th 

instance in the testing database, and 𝑝(𝑦𝑖) is the probability of the target class. 

6.3.2.7.8. Collecting the final survivors 

Clusters of HFGBTs (or HFDARTs in the case where the HFDART is used as a booster 

in the FHBF) with log loss score below the average log loss score in the forest 𝐶 are 

marked as “weak” candidates and are discarded from the final decision-making process. 

6.3.2.7.9. Decision making 

As a final step, majority voting is applied on the “survivors” to derive the final 

predictions from a testing database. To this end, the decision-making process is 

formulated as follows: 
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�̃�𝑖 = {
1,                     𝑖𝑓 ∑ �̃�𝑖,𝑗

𝐾

𝑗=1

> 𝐾/2

0,                                𝑜. 𝑤.             

, (6.20) 

where �̃�𝑖 is the predicted value for the 𝑖 −th instance. Weighted voting is also 

supported. 

6.3.2.7.10. The FHBF pseudocode 

A pseudocode of the FHBF is presented in Algorithm 5. The input parameters of the 

FHBF include the: (i) ‘K’ which refers to the number of HFGBTs or HFDARTs in the 

forest, (ii) ‘N’ which refers to the number of training databases, (iii) ‘M’ which refers 

to the number of testing database(s), (iv) ‘train_databases’ which refer to the locations 

of the training databases for the WebDAV API function, (v) ‘test_databases’ which 

refer to the locations of the testing databases for the WebDAV API function, (vi) 

‘matching’ which refers to whether the user wants to apply population matching or not 

during the downsampling phase in each database, (vii) ‘booster’ which refers to the 

type of booster (either HFGBT or HFDART), (viii) ‘rate_drop’ which refers to the 

dropout rate, (ix) ‘delta’ which refers to the scale of the hybrid loss (by default equal 

to ‘rate_drop’), (x) ‘loss_score’ which refers to the scoring function, and (xi) ‘voting’ 

which refers to the voting approach (majority or weighted). Then, the FHBF estimates 

the weight of the model in the first federated database and stores them in the CN. The 

scaling parameter is determined along with the first and second order gradients based 

on (6.12), (6.13). The weights of the model are sequentially updated according to (6.17) 

and stored in the CN. The final model, say 𝑀𝑁 is then retrieved and evaluated on a set 

of one or more testing databases. The weights of 𝑀𝑁 and the predictions are stored in 

cluster 𝐶𝑗. The process is repeated 𝐾 times and the collected clusters are aggregated 

into the forest 𝐶. Majority voting is applied to derive the final predictions 𝑦 which are 

returned in the output. 

Algorithm 5. A pseudocode of the FHBF algorithm. 

Input parameters 

K: number of HFGBTs or HFDARTs in the forest 

N: number of training databases 

M: number of testing databases 
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train_databases: locations of the training databases for access 

test_databases: locations of the testing database(s) for access 

matching: whether to apply triple confound based downsampling or not 

booster: hybrid FGBT (HFGBT) or hybrid FDART (HFDART) 

rate_drop: the dropout rate 

delta: scaling hyperparameter of the hybrid loss function 

loss score: the scoring function that determines the percentage of dumped trees in the forest 

voting: whether to apply majority voting or weighted voting on the remaining trees 

def FHBF (K, M, N, train_databases, test_databases, matching, delta, loss score, voting): 

for 𝑗 in range(0, 𝑲) do: 

for 𝑖 in range(0, 𝑵) do: 

determine the scaling parameter 𝛿 based on the dropout rate 𝑟𝑑 

compute first and second order gradients of the hybrid loss function according to 

(6.12), (6.13) 

update the weights of 𝑀𝑖 on federated database 𝑖 + 1 according to (6.17) 

store the weights of the federated model 𝑀𝑖+1 in the CN 

retrieve the final federated model 𝑀𝑁 from the training stage 

evaluate the performance of 𝑀𝑁 on the testing databases as in test_databases 

store the weights of the 𝑀𝑁 in cluster 𝐶𝑗 along with the predictions 

estimate the log loss to drop the “weak” clusters in 𝐶 having the highest loss 

apply voting to derive the final predictions, say 𝑦, from the survivors in 𝐶 

return 𝑦; 

 

6.4. AI model explainability 

The SHapley Additive explanation analysis (SHAP) is a novel method from coalition 

game theory which can shed light into an AI model’s decision-making process [124]. 

To do so, SHAP utilizes explanation models that yield interpretable and explainable 

classification outcomes. Given a subset of input features, say 𝑃∁{𝑑1, 𝑑2, … , 𝑑𝑍}, from 

a larger set of 𝐾-features {𝑑1, 𝑑2, … , 𝑑𝐾}, where 𝑍 ≤ 𝐾, the SHAP value of a feature 

𝑑𝑗 ∈ 𝐷, say 𝑆𝑗, is defined as the overall contribution of this feature to the outcome [124]: 

𝑆𝑗 =∑
|𝐷|! (𝑃 − |𝐷| − 1)!

𝑃!
(𝑓𝑑(𝐷 ∪ {𝑑}) − 𝑓𝑑(𝐷)), (6.21) 
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where, 𝐾 is the set of all input features, |𝐷| is the number of features in 𝐷, and 𝑓𝑑(𝐷) 

is the expected value of the function conditioned on 𝑃. To deal with the computational 

burden introduced in (6.21), we adopt an estimation process [394] which reduces the 

complexity from 𝑂(𝑇𝐿2𝑍) to 𝑂(𝑆𝐿𝐷2), where 𝑇 is the number of trees, 𝐿 is the total 

number of leaves, 𝑍 is the number of features, and 𝐷 is the tree depth. The cover metric 

was also used to measure the number of observations which are related to a particular 

feature. For each feature, the relative number of observations is calculated as the 

number of splits that this feature participated across each ensemble and averaged across 

the training instances on each distributed database. 

6.5. Summary 

Big data in healthcare can provide broader and more comprehensive insight on the 

optimization of the existing healthcare services to leverage the financial burden of 

unnecessary patient readmission, enable cost effective treatment, and improve the 

patient’s quality of life (QoL). There is no doubt that the sharing of diverse clinical data 

from multiple data sources can enhance the statistical power of the studies that make 

use of such data. Towards this direction, the conventional strategy for knowledge 

mining across complex big data structures from multiple data sources is based on the 

co-analysis of the shared data which is usually referred to as centralized analysis. This 

type of analysis, however, is not always feasible either viable due to GDPR (General 

Data Protection Regulation) violations and increased risk for data breach, as well as, 

due to heavy computational burdens which are introduced during the training of 

demanding machine learning (ML) workloads across complex data structures. A 

solution to this critical issue is to deploy federated environments, where the diverse data 

from multiple sources are shared and stored under federated databases which are 

orchestrated by a federated data management system. 

The technical advancements towards the application of data analytics in healthcare has 

made a significant progress over the past years. Data analytics is more useful and more 

powerful than even before yielding high performance machine learning and deep 

learning models for mining knowledge across massive amount of medical data. In 

general, a data analytics pipeline consists of three fundamental steps, namely: (i) data 

curation for enhancing the quality of the medical data by removing outliers, 

incompatibilities and inconsistencies, (ii) data mining using machine learning methods 
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for mining useful knowledge across the medical data through the development of 

patient stratification models, and the detection of biomarkers, among others and (iii) 

evaluation of the performance of such models using various performance indicators.  

Then, we have gone one step further in order to examine how can we apply supervised 

and unsupervised learning algorithms across clinical data that are distributed across 

multiple sites. A solution to this can be given by the incremental learning and stacked 

generalization strategies. Incremental learning focuses on updating an existing machine 

learning model on upcoming data streams or batches, similar to online learning, 

although the former one can also support the offline processing of medical data. This 

means that incremental learning can be used to train machine learning models on 

massive amounts of medical data by diving them into subsets (batches), training the 

model on the first batch and sequentially updating the initial model on the remaining 

batches. 

Indeed, if we replace the batches with harmonized datasets which are stored in multiple 

sets and use a central engine that will coordinate the communication between the sites 

then we can use incremental learning to sequentially update a machine learning model 

on these sites. Apart from incremental learning, someone would adopt the stacked 

generalization strategy and instead apply an individual machine learning model on each 

harmonized dataset and simply combine the classification outcomes using a meta-

learner or a majority voting rule (e.g., weighted average) to yield the final ones. This 

approach, however, is prone to biases that are introduced during the assembly stage and 

limits the “horizon” of the training process since the individual models are trained on 

individual subsets. 

Once the data are harmonized they need to be co-analyzed. The conventional approach 

is to integrate the harmonized data under a common database and apply machine 

learning to deal with the unmet needs in various medical domains, such as, the 

development of disease prediction models. A centralized database, however, is prone 

to privacy breach and computationally inefficient in the case of big data, where the 

memory and processing requirements are demanding. Towards this direction, batch 

processing methods have been proposed to deal with the analysis of big data by 

sequentially fetching the data into smaller subsets, where the machine learning 

algorithms are applied on an initial batch and then updated on the upcoming batches 
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until all the batches are being processed. Examples of batch processing methods include 

online learning and incremental learning. The main difference between them is the fact 

that the latter does not expect the data to arrive “online” in the form of data streams. 

Conventional implementations include the SVM with linear kernel stochastic gradient 

boosting based on ensemble classifiers, Naïve Bayes, etc. 

So, we have come to a final question: Can machine learning (and artificial intelligence 

in general) be used to predict the future? Undoubtedly, machine learning can shed light 

into hard and complex scientific problems varying from the prediction of rare disease 

outcomes and the detection of biomarkers and therapy treatment to the prediction of 

environmental disasters and economic breakthroughs. The existing technology offers 

the basis for distilling knowledge across huge amounts of generated data including 

built-in hyperparameter optimization methods, parallelized computing units and high 

throughput technologies. Although the benefits of artificial intelligence are vast, so are 

the dangers of misusing it. 
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CHAPTER 7. CASE STUDIES 

 

 

7.1. Autoimmune diseases 

7.2. Hypertrophic cardiomyopathy 

7.3. Cardiovascular diseases 

7.4. Mental disorders 

7.5. Systemic autoinflammatory diseases 

7.6. COVID-19 

 

 

7.1. Autoimmune diseases 

This case study involves the application of the beyond the state-of-the-art methods that 

were developed for data curation (CHAPTER 3), data harmonization (CHAPTER 4), 

synthetic data generation and augmentation (CHAPTER 5) and federated learning 

(CHAPTER 6) to address open issues and clinical unmet needs (Section 1.4) in the 

domain of the autoimmune diseases (Section 2.3.1) and particularly in patients who 

have been diagnosed with primary Sjögren’s Syndrome (pSS). 

7.1.1. Data curation 

7.1.1.1. Case Study 1 – Demonstration and benchmarking of the proposed medical 

data curation workflow 

The scope of this case study is to present the objectives, functionalities, and 

methodological advances of an integrated framework for medical data curation in terms 

of data quality assessment and validate the framework across two cohort studies. The 

developed framework was evaluated on two cohorts with anonymized data from 

patients that have been diagnosed with primary Sjögren’s Syndrome (pSS). The 

anonymized data from the first cohort include 200 patients from the University of 
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Athens (UoA), whereas the second includes 100 patients from the Harokopio 

University of Athens (HUA). The cohort data were obtained under the data protection 

agreement version 3.7 as of August 2018 according to the Article 35 (3) (b) of the 

GDPR fulfilling all the necessary ethical and legal requirements for data sharing. 

The UoA dataset consists of 162 features (58 discrete, 73 continuous, 31 unknown) and 

440 instances with 44.56% missing values in total (Table 9). Out of 162 features, 91 

were characterized as problematic; 60 features with more than 50% missing values and 

31 features with unknown data type. The HUA dataset consists of 204 features (104 

discrete and 94 continuous) and 100 instances with 33.61% missing values (Table 9). 

Out of 204 features, 69 were characterized as problematic; 63 features with more than 

50% missing values and 6 features with unknown data types. 

Table 9. Cohorts’ metadata. 

Cohort UoA HUA 

Number of features 162 204 

Number of instances 440 100 

Discrete features 58 104 

Continuous features 73 94 

Problematic features 91 69 

Missing values (%) 44.56 33.61 

 

An example of the boxplot for four random features is depicted in Figure 31 (A), where 

values higher than 75% or lower than 25% of the value range are considered as outliers. 

The overall LOF distribution is depicted in Figure 31 (B), where values close to 1 are 

considered as outliers. Since the LOF is a multivariate method, its application is 

constrained to features with equal number of samples (and no missing values) and thus 

the LOF was computed only for the “good” features, i.e., those without any missing 

values.  

According to Figure 31 (B), the LOF distribution does not indicate the existence of 

outliers due to the small number of “good” features. As for the rest of the methods, the 

missing values were ignored during the outlier detection process since they are 

univariate. The z-scores have also been computed for each feature. The z-score 

distributions of the four features of Figure 31 (A) are depicted in Figure 32, where the 
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features with values larger than 3 or lower than -3 are considered as outliers. The 

identified outliers were derived by four randomly selected features from the UoA 

cohort. 

 
Figure 31. Results of two methods for outlier detection: (A) A boxplot for outlier detection 

based on the Interquartile Range (IQR) method for four randomly selected features, and (B) the 

overall Local Outlier Factor (LOF) distribution across a specific group of features of the dataset, 

where the density is the normalized frequency and the density curve is a smooth distribution 

over the histogram. 

 
Figure 32. Z-score distributions for the four features of Figure 31 (A). Values that lie outside 

the red vertical lines are considered as outliers: (A) Tarpley, (B) Lymphoma score, (C) Urine 

pH at first visit, and (D) HGB (absolute number), where HGB stands for hemoglobin. In each 

plot, the density is the normalized frequency, and the density curve is a smooth distribution 

over the histogram. 
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The Spearman coefficient was computed for each pair of features resulting in a 

162𝑥162 adjacency matrix for the UoA cohort and an 204𝑥204 matrix for the HUA 

cohort, with correlation values in the range (-1, 1), where 0 implies no correlation and 

+1 implies strong correlation (Figure 33 (A), (C)). In each adjacency matrix, the field 

(𝑖, 𝑗) corresponds to the Spearman correlation between the features 𝑖 and 𝑗. Each pair 

is also accompanied by a p-value which denotes the statistical significance of the 

correlation value (the confidence interval was set to 99%). Then, the pairs (𝑖, 𝑗) having 

similarity value larger than 90% and p < 0.01, are highlighted as highly significant and 

correlated features. The Jaro distance has been also computed between each pair of 

feature labels to seek for potential duplicate features yielding a 162𝑥162 lexical 

distance matrix for the UoA cohort and an 204𝑥204 lexical distance matrix for the 

HUA cohort, where 0 implies no string matching and +1 implies features have the exact 

same labels (Figure 33 (B), (D)). 

 

Figure 33. Correlation and lexical distance matrices for detecting highly-correlated and 

duplicated terms. (A) The 162x162 correlation matrix for the UoA dataset along with (B) the 

lexical distance matrix, (C) the 204x204 correlation matrix for the HUA dataset along with (D) 

the corresponding lexical distance matrix. The colorbars in the correlation and the lexical 

distance matrices is used to quantify the importance of the Spearman correlation and the lexical 
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similarity between each pair of features, respectively. A cell (𝑖, 𝑗) that is depicted in black color 

denotes the absence of correlation (or lexical similarity) among the distribution of features 𝑖 

and 𝑗, whereas the light orange color denotes a strong correlation (> 0.9) between them. 

The following pairs of features were highlighted for clinical evaluation from the UoA 

cohort; as highly-correlated:  (i) {“Raynaud’s phen (0-1)”, “Rayanud”} with (rho=0.93, 

p<0.01), (ii) {“Ro/La”, “Anti-Ro (0-1)”} with (rho=0.95, p<0.01), and (iii) {“Date of 

first biopsy”, “Year of disease diagnosis”} with (rho=0.93, p<0.01), and as duplicate 

names: (i) “Lymphoma score” and “Lymphoma (0-1)” with s=0.95, (iv) 

“Lymphadenopathy (0-1) (fixed)” and “Lymphadenopathy” with s=1, (v) “Rose-

Bengal Stain (0-1)” and “Rose-Bengal Stain” with s=0.98. As for the HUA cohort, the 

following pairs of features were highlighted as highly-correlated for clinical evaluation: 

(i) {“Antibodies to Ro(SSA) or La(SSB) antigens, or both at diagnosis or during follow-

up”, “Anti-Ro positive at diagnosis or during follow-up”} with (rho=1, p<0.01), (ii) 

{“Muscle biopsy”, “Myopathy at diagnosis or during follow-up related to disease”} 

with (rho=1, p<0.01), and (iii) {“Elevated serum Creatinine”, “Kidney Interstitial 

disease at diagnosis or during follow-up related to disease”} with (rho=0.91, p<0.01). 

In this case, no duplicate names were detected. 

The data quality assessment report is one major output of the data curator which 

summarizes useful information regarding the value range of each feature, the type of 

each feature, the number of missing values, the state of each feature (based on the 

missing values), whether outliers were detected or not, and finally compatibility issues. 

An instance of the data quality assessment report can be seen in Table 10 for the UoA 

cohort and in Table 11 for the HUA cohort. 

 
Table 10. An instance of the data quality assessment report for the UoA cohort. 

Feature 
Value 

range 
Type 

Var. 

type 

Missing 

values 
State Outliers1 

Compatibility 

issues 

SEX (female=1) [0, 1] categorical int 2 fair no no 

First visit (year) [1981, 2018] numeric date 0 good yes no 

Year of disease 

diagnosis 
[1982, 2018] numeric date 1 fair no no 

Age at SS 

diagnosis 
[14, 81] numeric int 1 fair no no 

Whole salivary 

flow Date 
[1985, 2018] numeric date 178 bad no 

yes, bad 

feature 
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Feature 
Value 

range 
Type 

Var. 

type 

Missing 

values 
State Outliers1 

Compatibility 

issues 

Dry eyes subj [0, 1] categorical int 1 fair no no 

Dry eyes, subjctiv  

Date 
[1970, 2018] numeric date 39 fair yes no 

Rose-Bengal Stain 

(0-1) 
[+, 0, 1] unknown unknown 259 bad 

not-

applicable 

yes, unknown 

type of data 

Positive ocular 

stain score 

[1/9, 5/9, 

6/9, 8/9, 9/9] 
categorical string 429 bad 

not-

applicable 

yes, bad 

feature 

Abnormal 

Shirmer's 
[0, 1] categorical int 96 fair no no 

ANA+ [0, 1] numeric int 16 fair no no 

RF (<20=0, 

>20=1) IU/ml 
[0, 1] categorical int 52 fair no no 

Anti-Ro (0-1) [0, 1] categorical int 5 fair no no 

Anti-La (0-1) [0, 1] categorical int 10 fair no no 

Date of first 

biopsy 
[801, 19997] numeric date 16 fair yes no 

Fat score [0, 5] numeric int 345 bad no 
yes, bad 

feature 

Germinal centers [0, 1] categorical int 222 bad no 
yes, bad 

feature 

MALT in MSG 1 [0, 1] categorical int 40 fair no no 

SGE [0, 1] categorical int 6 fair no no 

Raynaud [0, 1] categorical int 3 fair no no 

Lymphadenopathy [0, 1994] numeric int 5 fair yes no 

Ro/La [0, 1] categorical int 7 fair no no 

RF+ [0, 1] categorical int 51 fair no no 

LOW C4 (<20) [0, 5] numeric int 38 fair yes no 

Lymphoma score [0, 7] numeric int 133 fair yes no 

Type of 

monoclonal 

gammopathy 

[IgA(κ), 

IgGk, IgGλ, 

IgMλ] 

categorical string 436 bad 
not-

applicable 

yes, bad 

feature 

MSG 2nd 

bxClonality Bx (0-

1) 

[0, 1, 1?] unknown unknown 416 bad 
not-

applicable 

yes, unknown 

type of data 

Urine pH at last 

visit 

[0, 5, 5.5, 6, 

6.5, 7, 8, 

8.5, oj] 

unknown unknown 236 bad 
not-

applicable 

yes, unknown 

type of data 

Monocyte number [42, 7540] numeric int 233 bad yes 
yes, bad 

feature 

HGB (absolute 

number) 
[6.2, 16] numeric float 76 fair no no 

CRP (0,1) [0, 1] categorical int 34 fair no no 
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Feature 
Value 

range 
Type 

Var. 

type 

Missing 

values 
State Outliers1 

Compatibility 

issues 

Anti-HCV (0-1) [0, 1] categorical int 237 bad no 
yes, bad 

feature 

Anti-HTLV-1 (0-

1) 
[0, 0] numeric int 465 bad no 

yes, bad 

feature 

ANA (titer-1) 

[0, 1/80, 1, 

11280, 

<1/160, 

>1/640] 

unknown unknown 24 fair 
not-

applicable 

yes, unknown 

type of data 

IgG [27.3, 5580] numeric float 291 bad yes 
yes, bad 

feature 

IgM [1.5, 1711] numeric float 294 bad yes 
yes, bad 

feature 

LDH [113, 495] numeric int 82 fair no no 

AMA (titer-1) 
[0, 1, 1/160, 

164] 
unknown unknown 297 bad 

not-

applicable 

yes, unknown 

type of data 

Anti-TPO (0,1) [0, 1] categorical int 211 fair no no 

Anti-TG (titer) [0, 1] categorical int 226 bad no 
yes, bad 

feature 

Lymphoma (0-1) [0, 1] categorical int 1 fair no no 

1The z-score was used as the outlier detection method. 

Note: The highlighted rows correspond to features where outlier detection was not-applicable (either empty 

features or features with unknown type of data). 

 
Table 11. An instance of the data quality assessment report for the HUA cohort. 

Feature 
Value 

range 
Type 

Var. 

type 

Missing 

values 
State Outliers1 

Compatibility 

issues 

Ethnicity [6, 6] numeric int 0 good no no 

Gender (0:F, 1:M) [0, 1] categorical int 1 fair yes no 

Year of Birth 
[1927, 

1988] 
numeric date 0 good no no 

Year of diagnosis 
[1987, 

2018] 
numeric date 0 good no no 

Year of first 

symptom 

[1980, 

2017] 
numeric date 0 good yes no 

Year of first visit 
[1991, 

2018] 
numeric date 0 good no no 

Year of last 

follow-up 

[1999, 

2018] 
numeric date 0 good yes no 

Disease Duration 

Years 
[0, 37] numeric date 0 good yes no 
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Feature 
Value 

range 
Type 

Var. 

type 

Missing 

values 
State Outliers1 

Compatibility 

issues 

SS CRITERIA 

2002 
[1, 5] numeric int 0 good no no 

Oral Dryness [0, 1] categorical int 1 fair no no 

Ocular Dryness [0, 1] categorical int 1 fair no no 

Abnormal 

Schirmer Test 
[0, 1] categorical int 37 fair no no 

Abnormal Rose-

Bengal 
[0, 1] categorical int 46 fair no no 

Abnormal BUT [0, 1] categorical int 54 bad no yes, bad feature 

Abnormal Shirmer 

OR_Rose Bengal 
[0, 1] categorical int 1 fair no no 

Lymphoma 
[1, 2, 

NHL] 
unknown 

unkn

own 
0 good 

not-

applicable 

yes, unknown 

type of data 

Year of 

Lymphoma 

development 

[2000, 

2017] 
numeric date 93 bad no yes, bad feature 

WBC baseline 

(absolute number) 

[2940, 

10693] 
numeric int 3 fair no no 

NEU baseline (%) [12, 87] numeric int 18 fair yes no 

LY baseline (%) [9, 73] numeric int 19 fair yes no 

PLT baseline 

(absolute number) 

[20400, 

3370000] 
numeric int 3 fair yes no 

ESR [5, 117] numeric int 9 fair yes no 

Elevated 

CRP>10mg/l 
[0, 1] categorical int 4 fair no no 

CRYO positive [0, 1] categorical int 68 bad no yes, bad feature 

Elevated serum 

Creatinine 
[0, 1] categorical int 3 fair yes no 

Elevated 

SGOT>40IU/L 
[0, 1] categorical int 2 fair yes no 

Elevated 

SGPT>40IU/L 
[0, 1] categorical int 3 fair yes no 

Elevated γ-

GT>30IU/L 
[0, 1] categorical int 8 fair yes no 

Elevated 

ALP>140IU/L 
[0, 1] categorical int 2 fair yes no 

Elevated 

LDH>230IU/L 
[0, 1] categorical int 2 fair yes no 

C3(mg/dL) 

baseline 
[31, 202] numeric int 11 fair yes no 

C4(mg/dL) 

baseline 
[0, 85] numeric float 11 fair yes no 
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Feature 
Value 

range 
Type 

Var. 

type 

Missing 

values 
State Outliers1 

Compatibility 

issues 

Urinalysis pH at 

last visit 
[5, 7] numeric float 28 fair no no 

urinalysis/Pyuria 

(value WBC/hpf) 
[0, 0] numeric int 97 bad no yes, bad feature 

Microscopichemat

uria 
[0, 1] categorical int 12 fair yes no 

HBsAg positive 

1=positive, 

2=negative 

[0, 2] numeric int 59 bad yes yes, bad feature 

Other biopsies-

sites: 0=no, 

1=lymph node, 

2=skin, 3=kidney, 

4=Lung, 

5=peripheral 

nerve, 6=bone 

marrow, 

7=thyroid, 

8=stomach, 

9=small intestine 

[3, 6, 3.0, 

6.0, 8.0] 
unknown 

unkn

own 
90 bad 

not-

applicable 

yes, unknown 

type of data 

HCV positive 

1=positive, 

2=negative 

[0, 2] numeric int 62 bad yes yes, bad feature 

1The z-score was used as the outlier detection method. 

Note: The highlighted rows correspond to features where outlier detection was not-applicable (either empty 

features or features with unknown type of data). 

 

Each variable (feature) is categorized into four different types of groups, namely: 

integer, float, date, and string. Moreover, there is an extra characterization into 

categorical and numeric. Categorical variables are those with binary values where the 

rest of the variables are denoted as numeric. This extra characterization can help the 

clinician to identify cases where categorical variables take values larger than 1 although 

such cases will be already detected as outliers. The state of each variable is denoted as 

good, fair, or bad, according to the number of missing values (see 3.3.6). For illustration 

purposes, we selected the z-score as a measure to detect outliers. Outlier detection is 

not applicable in cases where the features have unknown or string data type, as well as, 

in cases where the features are completely empty. For good features, outlier detection 

is normally applied whereas for fair or bad features, outlier detection is applied on the 
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non-missing values for maximizing the impact of detecting extreme values in such 

intensive data quality assessment cases. 

Examples of features with unknown type of data for the UoA cohort, include the “Rose-

Bengal Stain (0-1)”, where the range of the values include a symbol “+” which is 

unknown and probably denotes positivity, the “Urine pH at last visit” which includes a 

value “oj” that is probably erroneously parsed, among others. These unknown symbols 

are also highlighted in the curated dataset with red color as incompatibilities.  

An example of an outlier for the UoA cohort can be seen in the variable “Date of first 

biopsy”, where the value range includes a minimum value of 801 and a maximum value 

of 19997, which denotes a discrepancy since it does not correspond to an ordinary year. 

A similar example occurs for the variable “Lymphadenopathy”, where the normal range 

is “[0, 1]” but there exists a maximum value of 1994 which probably denotes a year 

that has been erroneously filled. In total, 13 features were characterized as problematic 

due to several discrepancies that were automatically detected (as described above) and 

43 features were highlighted for the existence of potential outliers. 

As for HUA, examples of features with unknown type of data, include “Lymphoma” 

where the normal range is “[0, 1]” but a string “NHL” exists which is unknown. Another 

example includes the variable “Other biopsies-sites” which takes values in the range 

“[0, 8]” but there are cases with patients having more than one values which denote that 

these patients have conducted biopsies in more than one sites, a fact that confuses the 

processing of data and the application of data analytics workflows.  

An example of an outlier can be seen in the variable “HBsAg” where although the 

defined range is “1” for positive and “2” for negative, there are several zero values. The 

same applies for the variable “HCV”. In total, 6 features were characterized as 

problematic due to several discrepancies and 82 features were highlighted for the 

existence of potential outliers (mathematically) that could lead to data contamination. 

The results of the data curator REST service are depicted in Figure 34 for a pSS-related 

dataset. Through the REST settings, the user can define a local or global method for 

outlier detection (z-score, Interquartile range, Grubb’s test, Local Outlier Factor). An 

example of the data quality assessment panel (similar to those that are presented in 

Table 10, Table 11) can be displayed in Figure 34 (C). 
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Figure 34. The results of the data curator REST service execution on the UoA cohort dataset 

that lies in a secure private cloud space: (A) An instance of the returned .JSON structure of the 

REST service call, (B) an instance of the curated dataset, and (C) an instance of the data quality 

assessment report. 

An example of the produced curated dataset is displayed in Figure 34 (C), where: (i) 

the outliers are highlighted with gold color, (ii) the problematic fields are highlighted 

with red color, (iii) missing values with gray, (iv) fair features with green, good features 

with blue and bad features with rose. The XML schema of the reference model has been 

incorporated in the service, as well as, the NLTK language toolkit for data 

standardization purposes. In fact, the majority of the returned parameters from the 

.JSON structure are already summarized in the produced data quality assessment report 

for easiness. 

We used an updated version of a reference model that was developed in a previous 

study [127], where a chart describing all the necessary requirements for defining the 

domain knowledge of the pSS (i.e., attributes descriptions and values) was provided by 

the clinical experts. The updated chart includes information regarding the ranges of the 

attributes and the class (category) where each attribute belongs to. Using this chart, a 

complete reference model was developed to reflect the meaning and range of each field. 

This common template includes a variety of patient-related information, such as, 

demographics, clinical tests, therapies. The types and ranges of each specified variable 
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within the template were determined during the development process according to the 

guidelines we received from the clinical experts. 

Figure 35 depicts an example of the standardization process. The reference model is 

depicted as an XML schema (i.e., a semantic representation or an ontology) which 

describes the reference model using classes, sub-classes, and object properties. Each 

class consists of variables where each variable has a range which serves as a set of 

mapping values, a type, and its parent. Thus, the ontology can be seen as a three-level 

hierarchical model. In the first level lies the main class “Patient” which consists of 

four subclasses, i.e., (i) the “Demographics”, (ii) the “Clinical tests”, (iii) the 

“Therapies”, and (iv) the “ESSDAI domain scores” (that belong to Level 2). Each class 

in Level 2 has further sub-classes (i.e., “Ocular tests”, “Oral tests”, “Laboratory tests”) 

or variables (e.g., “C4 (mg/dL)”) that belong to Level 3. For illustration purposes, the 

depicted schema describes only an instance of the pSS domain knowledge. 

 

Figure 35. An illustration of the data standardization process. 

A vocabulary was created using the pSS reference model. The terms of the reference 

model have been incorporated into an XML schema, so that the algorithm can 

automatically extract these terms and create the vocabulary. The classes denoted in 

Level 2 (Figure 35) were also specified by the clinical experts. The vocabulary consists 

of pairs (𝑥, 𝑦) where x is the term of the reference model (e.g., “C3 (mg/dL)”) and y is 

the class it belongs to (e.g., “Clinical tests”). The NLTK's WordNet corpus reader was 

used to enrich the existing vocabulary by computing synonymous/homonymous terms 

for each term. For example, “gender”, and “sexual relations”, are indicative examples 
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of synonymous sets (also referred to as synsets) for the term “sex”. The Jaro distance 

measure was used to calculate the similarity between each term of the raw dataset with 

those from the vocabulary. Matching block methods were used to match blocks among 

the terms and rules were developed according to standard value descriptions. The result 

of the standardization procedure is a tuple (xraw, xref, v, c), where xraw is the term of 

the raw dataset, xref is the matching term from the reference model, v is the matching 

score, and c is the class where xraw belongs to. 

An illustration of the data standardization procedure is depicted in Figure 35, for a 

random instance of the UoA cohort dataset. According to Figure 35, the data 

standardization module receives as input the raw dataset. Then, it matches the term 

“SEX (female = 1)” of the input dataset with the homonymous term “gender” of the 

reference model and finally classifies it into the class “Demographics”. An example 

that involves the set of mapping values (i.e., the standard range) is depicted for the rest 

of the terms. The algorithm not only matches the term “Abnormal Shirmer's” with the 

term “Schirmer's test” and classifies it into the parent class “Clinical tests”, but also 

captures information related to the conversion of its value range from “0” and “1” to 

“1” and “2”, respectively. In addition, the term “ANA+” is matched with the term 

“ANA” and classified into the class “Clinical Tests” with additional information 

regarding the mapping of the “0” and “1” values to “yes” and “no”. Another example 

is shown for the term “RF (<20=0, >20 = 1) IU/mL” which is first matched with the 

term “RF” (Clinical Tests) and the mapping involves the conversion of the “0” and “1” 

values to “normal” and “high”. In a similar way, the “interstitial renal disease” and 

“Lymphadenopathy” terms are matched with the terms “Renal domain” and 

“Lymphadenopathy and Lymphoma domain” of the class “ESSDAI domain”, 

respectively, where the mapping involves the conversion of the values “0” and “1” to 

“yes” and “no”. Finally, the term “C4 (mg/mL)” is matched with the term “C4 (mg/dL)” 

along with additional information regarding the conversion of its measurement units 

from “mg/mL” into “mg/dL”. 

The data standardization report provides useful information that can be used for data 

harmonization, such as, matching terms with similarity scores, final range of values and 

the classes of the ontology where the matched terms belong to. At this point, it is 

important to note that not all terms of the dataset are pSS-relevant. The pSS reference 
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model consists of pSS-related variables that are grouped into categories and describe 

the minimum requirements of the pSS domain and belong to different sub-domains, 

such as, demographics, laboratory tests, therapies, and ESSDAI domains. An example 

of a category is the salivary gland biopsy which consists of 10 variables (e.g., year of 

biopsy, age of patient at year of biopsy, focus score, etc.), the ESSDAI domain which 

consists of 12 sub-domains, including the constitutional domain, the lymphadenopathy 

domain, the glandular domain, the articular domain, etc. In total, there are 71 categories 

most of which involve more than one variable. According to the pSS minimum criteria 

that were posed by the clinical experts, the number of relevant terms for the UoA cohort 

was 81 out of 162 (Table 12) and for the HUA cohort, the number of relevant terms 

was 60 out of 204 (Table 13). Note that the HUA cohort is a rich clinical-oriented 

database (with detailed symptomatology) instead of a research-oriented one (UoA). 

Regarding the UoA cohort, the data standardization module was able to successfully 

match and classify 73 out of 82 (89.02%) pSS-related terms (Table 12). As far as the 

HUA cohort is concerned, the data standardization module was able to successfully 

match and classify 52 out of 60 (86.6%) pSS-related terms (Table 13). In both tables, 

the matching terms are stated along with their similarity (matching) score, the final 

range of values and the class they belong to (1 = “Demographics”, 2 = “Clinical tests”, 

3 = “Therapies”, 4 = “ESSDAI domain”). Similarity scores were computed using the 

Jaro distance as a string-matching metric and the sequence matcher algorithm to 

identify matching blocks (patterns) among the terms of the input dataset with those 

from the reference model. Exact matches are those due to identical matching or due to 

synonymous matching and the similarity score is always equal to 1.  

The rest of the matches are considered as partial. Partial matches are those that either 

achieve similarity score larger than 0.9 and/or when the sequence matcher detects 

matching blocks between the terms. If the sequence matcher identifies exact matching 

blocks among two terms, the similarity score is set to 1. The small number of pSS 

parameters that are observed in both cohorts comes from the fact that there exists a 

large group of variables which is related to the symptomatology of the different 

ESSDAI domains, including the “arthralgia” in the arterial domain, the “lung 

involvement” in the pulmonary domain, the “myositis” in the muscular domain, the 

“palpable purpura” and “non-palpable purpura” in the cutaneous domain, the “weight-
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loss” and “fever” symptoms in the constitutional domain, the “kidney involvement” in 

the renal domain, etc. In fact, there are 41 ESSDAI-related symptoms in the HUA 

cohort and 31 in the UoA cohort that are not listed in the reference model, with the 

purpose of creating a more research-oriented data model. 

Table 12. An instance of the data standardization report for the UoA cohort. 

Feature 

Matched term or 

category from 

the reference 

model 

Score 

Type 

of 

match1 

Captured range 

or measurement 

unit 

Class2 

First visit (year) Age at inclusion 1 partial [1981, 2018] 1 

Last visit (year) 
Age at last follow-

up 
1 partial [1991, 2018] 1 

Year of birth Year of birth 1 exact [1918, 1995] 1 

SEX (female=1) Gender 1 exact [0, 1] 1 

Year of first symptom 
Age at onset of 

first symptom 
1 partial [1971, 2016] 1 

Year of disease diagnosis 
Age at diagnosis 

of pSS 
1 partial [1983, 2018] 1 

Age at SS diagnosis 
Age at diagnosis 

of pSS 
1 partial [17, 84] 1 

Dry mouth-subjective Oral dryness 1 partial [yes, no] 2 

Dry-mouth, subjictiv Date Oral dryness 1 partial [1977, 2017] 2 

Dry mouth-Objective (ml of 

saliva in 15 min) 
Oral dryness 1 partial [0, 2.5] 2 

Whole salivary flow Date 
Unstimulated 

whole saliva 
1 partial [1985, 2018] 2 

Dry eyes subj Ocular dryness 1 partial [yes, no] 2 

Dry eyes, subjctiv Date Ocular dryness 1 partial [1976, 2017] 2 

Rose-Bengal Stain(0-1) Rose-Bengal 1 partial  [0, 1, +] 2 

Positive ocular stain score 
Ocular staining 

score 
1 partial 

[1/9, 5/9, 6/9, 8/9, 

9/9] 
2 

Abnormal Shirmer's Schirmer's test 1 partial [1, 2] 2 

ANA+ ANA 1 partial [yes, no] 2 

RF(<20=0, >20=1) IU/ml RF 1 partial [normal, high] 2 

Anti-La (0-1) Anti-La 1 partial [yes, no] 2 
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Feature 

Matched term or 

category from 

the reference 

model 

Score 

Type 

of 

match1 

Captured range 

or measurement 

unit 

Class2 

Monoclonality in MSG 

tissue 

Serum 

monoclonal M 

component 

1 partial [yes, no] 2 

MALT in MSG 1 
Minor salivary 

gland biopsy 
1 partial [0, 1] 2 

RF+ Rheumatoid factor 1 partial [normal, high] 2 

monoclonal gammopathy 

(blood) 

Serum 

monoclonal M 

component 

1 partial [yes, no] 2 

LOW C4 (<20) C4 1 partial mg/dL 2 

Lymphoma score 

Lymphadenopathy 

and lymphoma 

domain 

1 partial [0, 7] 4 

Type of monoclonal 

gammopathy 

Serum 

monoclonal M 

component 

1 partial [yes, no] 2 

Time of 2st MSG biopsy 

(mm/yr) 

Minor salivary 

gland biopsy 
1 

partial 
[1985, 2017] 2 

Code 2nd MSG Biopsy 
Minor salivary 

gland biopsy 
1 

partial 
[1231, …, parotid] 2 

MSG 2nd bx Focus Score 
Minor salivary 

gland biopsy 
1 

partial 
[0.22, 12] 2 

Time of 3st MSG biopsy 

(mm/yr) 

Minor salivary 

gland biopsy 
1 

partial 
[2006, 2017] 2 

MSG 3nd bx Focus Score 
Minor salivary 

gland biopsy 
1 

partial 
[1.54, 22.84] 2 

Time of 4th MSG biopsy 

(mm/yr) 

Minor salivary 

gland biopsy 
1 

partial 
[2013, 2015] 2 

MSG 4th bx Focus Score 
Minor salivary 

gland biopsy 
1 

partial 
[1, 12] 2 

Dyspareunia, subjctiv (0-1) 
Dyspareunia VAS 

domain 
1 

partial 
[0, 1] 4 

Dyspareunia, subjctiv Date 
Dyspareunia VAS 

domain 
1 

partial 
[1985, 2016] 4 
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Feature 

Matched term or 

category from 

the reference 

model 

Score 

Type 

of 

match1 

Captured range 

or measurement 

unit 

Class2 

Abnormal Schirmer’s test 

(0-1) 
Schirmer's test 1 

partial 
[1, 2] 2 

Schirmer’s test date Schirmer's test 1 partial [1983, 19984] 2 

Rose-Bengal Stain(0-1) 2 Rose-Bengal 1 partial [0, 1] 2 

Rose-Bengal Stain Date Rose-Bengal 1 partial [1987, 2018] 2 

Rose-Bengal Stain Score Rose-Bengal 1 partial 
[3/9, 5/9, 6/9, 7/9, 

8/9] 
2 

Chronic Fatigue (0-1) 
Fatigue VAS 

domain 
1 partial [yes, no] 4 

Chronic Fatigue date 
Fatigue VAS 

domain 
1 partial [1988, 2017] 4 

Vasculitic ulcer 
Cryoglobulinemic 

vasculitis 
1 partial [yes, no] 2 

Vasculitic ulcer date(-yr) 
Cryoglobulinemic 

vasculitis 
1 partial [1985, 1985] 2 

PNS-entrapment (0-1) PNS domain 1 partial [yes, no] 4 

PNS-entrapment date PNS domain 1 partial [1975, 2011] 4 

PNS-vasculitic (0-1) PNS domain 1 partial [yes, no] 4 

PNS-vasculitic date(-yr) PNS domain 1 partial [1994, 2010] 4 

CNS involvmt (0-1) CNS domain 1 partial [yes, no] 4 

CNS involvmt date(-yr) CNS domain 1 partial [nan, nan] 4 

Lymphadenopathy (0-1) 

(fixed) 

Lymphadenopathy 

and lymphoma 

domain 

1 exact [yes, no] 4 

Lymphadenopathy(fixed) 

date(-yr) 

Lymphadenopathy 

and lymphoma 

domain 

1 partial [1992, 2013] 4 

URINE SPECIFIC 

GRAVITY AT 

DIAGNOSIS 

Urinalysis 1 partial 
[normal, 

abnormal] 
2 

interstitial renal disease(0-1) Renal domain 1 partial [yes, no] 4 

URINE PH AT FIRST 

VISIT 
Urinalysis 1 partial 

[normal, 

abnormal] 
2 

URINE PH AT LAST 

VISIT 
Urinalysis 1 partial 

[normal, 

abnormal] 
2 
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Feature 

Matched term or 

category from 

the reference 

model 

Score 

Type 

of 

match1 

Captured range 

or measurement 

unit 

Class2 

γ-globulins(11-

18=0,>18=1,<11=2) 

Serum 

immunoglobulins 
1 partial [normal, high] 2 

Anti-HCV (0-1) 
anti-HCV 

antibody 
1 exact [yes, no] 2 

ANA(titer-1) ANA titer 1 partial 

[0,1,1/1250, 

1/1280, 1/160, 

1/2560, 1/320, 

1/5120, 1/640, 

1/80, <1/160] 

2 

IgG IgG 1 exact [338, 7700] 2 

IgM IgM 1 exact [59, 1370] 2 

IgA IgA 1 exact [70, 1273] 2 

LDH LDH 1 exact [113, 495] 2 

C3 (mg/mL) C3 1 exact mg/dL 2 

C4 (mg/mL) C4 1 exact mg/dL 2 

Cryo (0,1) Cryoglobulinemia 1 partial [yes, no] 2 

Cryo (type-II, IgMk) (0,1) Cryoglobulinemia 1 partial [yes, no] 2 

Lymphoma (0-1) 

Lymphadenopathy 

and lymphoma 

domain 

1 exact [yes, no] 4 

Lymphoma diagnosis date 

Lymphadenopathy 

and lymphoma 

domain 

1 partial [1986, 2018] 4 

Anti-Ro (0-1) Anti-Ro 1 partial [1, ro] 2 

TREATMENT EVER Therapies 1 partial 

[rituximab, 

azathioprine, 

pilocarpine, anti-

TNFa, …] 

3 

TREATMENT last follow 

up 
Therapies 1 partial 

[naturale tears, 

corticosteroids, 

pilocarpine, 

rituximab, …] 

3 

Highlighted rows correspond to features with discrepancies (i.e., outliers and/or inconsistent). 

1Class: 1 = “Demographics”, 2 = “Clinical tests”, 3 = “Therapies”, 4 = “ESSDAI domain”. 

2Type of match: exact = identical terms, partial = highly-similar terms/terms with matching blocks. 
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Table 13. An instance of the data standardization report for the HUA cohort. 

Feature 

Matched term 

or category 

from the 

reference model 

Score 
Type of 

match1 

Captured range or 

measurement unit 
Class2 

Ethnicity Ethnicity 1 exact [1, 6] 1 

Gender (0:F, 1:M) Gender 1 exact [0, 1] 1 

Year of Birth Year of birth 1 exact [1927, 1988] 1 

Year of diagnosis 
Age at diagnosis 

of pSS 
1 partial [1987, 2018] 1 

Year of first symptom 
Age at onset of 

first symptom 
1 partial [1980, 2017] 1 

Year of first visit Age at inclusion 1 partial [1991,2018] 1 

Year of last follow-up 
Age at last 

follow-up 
1 partial [1999, 2018] 1 

Oral Dryness Oral dryness 1 exact [yes, no] 2 

Ocular Dryness Ocular dryness 1 exact [yes, no] 2 

Abnormal Schirmer Test Schirmer’s test 1 partial [1, 2] 2 

Abnormal Rose-Bengal Rose-Bengal 1 partial [0, 1] 2 

Abnormal Shirmer 

OR_Rose Bengal 
Schirmer’s test 1 partial [1, 2] 2 

Objective Evidence of 

Salivary Gland 

Involvement_Oral Tests 

Oral tests 1 partial [nan, nan] 2 

Unstimulated whole 

salivary flow (<1.5 ml in 

15 minutes) 

Unstimulated 

whole saliva 
1 partial [nan, nan] 2 

Site of FIRST salivary 

gland biopsy (1:lip, 

2:parotid, 

3:submandibular) 

Salivary gland 

biopsy 
1 partial [1, 1] 2 

FIRST MSGB Focus 

Score (no/4mm2) 

Minor salivary 

gland biopsy 
1 partial [0, 13] 2 

FIRST MSGB Focus 

Score ≥1 

Minor salivary 

gland biopsy 
1 partial [0, 1] 2 

FIRST MSGB B cell 

monoclonality 

Serum 

monoclonal M 

component 

1 partial [yes, no] 2 
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Feature 

Matched term 

or category 

from the 

reference model 

Score 
Type of 

match1 

Captured range or 

measurement unit 
Class2 

SECOND MSGB Focus 

Score (no/4mm2) 

Minor salivary 

gland biopsy 
1 partial [3.45, 11] 2 

SECOND MSGB Focus 

Score ≥1 

Minor salivary 

gland biopsy 
1 partial [1, 1] 2 

SECOND MSGB B cell 

monoclonality 

Serum 

monoclonal M 

component 

1 partial [yes, no] 2 

ANA positive ANA 1 partial [yes, no] 2 

ANA title ANA titer 0.93 partial [160, 2560] 2 

ANA pattern ANA pattern 1 exact [1, 7] 2 

Anti-Ro positive at 

diagnosis or during 

follow-up 

Anti-Ro 

(autoantibodies) 
1 partial [yes, no] 2 

Anti-Ro60 positive at 

diagnosis or during 

follow-up 

Anti-Ro 

(autoantibodies) 
0.93 partial [yes, no] 2 

Anti-Ro52 positive at 

diagnosis or during 

follow-up 

Anti-Ro 

(autoantibodies) 
0.93 partial [yes, no] 2 

Anti-La positive at 

diagnosis or during 

follow-up 

Anti-La 

(autoantibodies) 
1 partial [yes, no] 2 

RF positive >35IU/ml 
Rheumatoid 

factor 
1 partial [normal, high] 2 

Chronic Fatigue at 

diagnosis or during 

follow-up related to 

disease 

Fatigue VAS 

domain 
1 partial [0, 1] 4 

Lymphadenopathy at 

diagnosis or during 

follow-up related to 

disease 

Lymphadenopath

y and lymphoma 

domain 

1 partial [0, 1] 4 

Vasculitic ulcer at 

diagnosis or during 

Cryoglobulinemi

c vasculitis 
1 partial [yes, no] 2 
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Feature 

Matched term 

or category 

from the 

reference model 

Score 
Type of 

match1 

Captured range or 

measurement unit 
Class2 

follow-up related to 

disease 

Renal Tubular Acidosis at 

diagnosis or during 

follow-up related to 

disease 

Renal domain 1 partial [0, 1] 4 

Renal insufficiency at 

diagnosis or during 

follow-up related to 

disease 

Renal domain 1 partial [0, 1] 4 

Peripheral neuropathy at 

diagnosis or during 

follow-up related to 

disease 

PNS domain 1 partial [0, 1] 4 

CNS involvement at 

diagnosis or during 

follow-up related to 

disease 

CNS domain 1 partial [yes, no] 4 

Lymphoma 

Lymphadenopath

y and lymphoma 

domain 

1 partial [1, 2, NHL] 4 

Year of Lymphoma 

development 

Lymphadenopath

y and lymphoma 

domain 

1 partial [2000, 2017] 4 

Elevated CRP>10mg/l 
Increased C-

reactive protein 
1 partial [yes, no] 2 

CRYO positive 
Cryoglobulinemi

a 
1 partial [yes, no] 2 

Elevated serum 

Creatinine 
Creatinine 1 partial [normal, high] 2 

Elevated SGOT>40IU/L AST 1 partial [normal, high] 2 

Elevated SGPT>40IU/L ALT 1 partial [normal, high] 2 

Elevated γ-GT>30IU/L γ-GT 1 partial [normal, high] 2 

Elevated ALP>140IU/L ALP 1 partial [normal, high] 2 

Elevated LDH>230IU/L LDH 1 partial [normal, high] 2 
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Feature 

Matched term 

or category 

from the 

reference model 

Score 
Type of 

match1 

Captured range or 

measurement unit 
Class2 

C3(mg/dL) baseline C3 1 partial mg/dL 2 

C4(mg/dL) baseline C4 1 partial mg/dL 2 

Urinalysis Specific 

Gravity at last visit 
Urinalysis 1 partial [normal, abnormal] 2 

Urinalysis pH at last visit Urinalysis 1 partial [normal, abnormal] 2 

urinalysis/Pyuria (value 

WBC/hpf) 
Urinalysis 1 partial [normal, abnormal] 2 

urineprotein/24h(mg/24h) Urinalysis 1 partial [normal, abnormal]  

GLUCOCORTICOIDS Glucocorticoids 0.98 exact [yes, no] 3 

Note: The highlighted rows correspond to features with discrepancies (i.e., outliers and/or 

inconsistent). 

1Class: 1 = “Demographics”, 2 = “Clinical tests”, 3 = “Therapies”, 4 = “ESSDAI domain”. 

2Type of match: exact = identical or synonymous terms, partial = highly-similar terms or terms with 

exact matching blocks. 

 

The REST service was implemented in Python 3.6 and was executed twice, one for 

each cohort through a secure virtual private network (VPN). The average execution 

time of the web service for the UoA cohort was 3.79 sec whereas for the HUA cohort 

the execution time was equal to 1.9 sec (Figure 36). More specifically, the time for 

fetching data was almost equal for both cohorts (< 1 sec). The average execution time 

for the application of the service including, data annotation and evaluation, outlier 

detection, similarity detection, and standardization, was 1.1 sec for the UoA cohort and 

1.3 sec for the HUA cohort. The average execution time for constructing the data 

evaluation and data standardization reports along with the curated dataset was equal to 

9 sec for the UoA cohort and 4 sec for the HUA cohort. According to Figure 36, the 

execution time for the data quality operations is affected by the number of features (for 

the HUA cohort the number of features is larger than the number of features from the 

UoA cohort) whereas the time for constructing the reports (data quality assessment and 

standardization) and the curated dataset is affected by the number of patients (for the 

UoA cohort the number of patients is 4.4 times larger than the number of patients from 

the HUA cohort). The small execution time demonstrates the dominance of automated 

data curation against traditional manual data curation where the time for identifying the 

outliers, and inconsistencies by both clinicians was large enough due to the size and 
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complexity of the datasets. The curated dataset was able to highlight all the cases with 

unknown data types, outliers and missing values, informing the clinicians that these 

cases would need their attention in just a few seconds. The data evaluation report was 

able to summarize the metadata information in the same amount of time. 

 

Figure 36. Execution time (in seconds) for the different stages (i.e., fetching data, application, 

reports and curated dataset) of the data curator’s web service. The average execution times are 

depicted in horizontal lines (blue color: UoA cohort, green color: HUA cohort). 

Our results confirm the validity of the proposed framework towards the precise 

identification of outliers, inconsistencies (unknown data types), and highly correlated 

and duplicated terms in both cohorts, as well as, the clinical usefulness and guidance of 

the data quality assessment report and the curated dataset towards the improvement of 

the overall accuracy, consistency, and relevance of the examined clinical data. The data 

standardization process was able to successfully capture more than 85% of the pSS-

relevant terms in both datasets using lexical matching techniques combined with rules 

that use knowledge from a reference model. The framework uses an XML 

representation of the reference model which increases its overall scalability and thus 

can be generalized for different types of diseases, introducing the ontologies as a 

preliminary step for medical data harmonization. The fact that all the computational 

tasks were executed in a few seconds, demonstrates the dominance of automated data 

curation against traditional manual data curation. 
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7.1.1.2. Case Study 2 – Small-scale data curation 

The scope of this study is to enhance the quality of 10 European cohorts in pSS. We 

acquired anonymized clinical data were collected from 10 databases with patients who 

have been diagnosed with primary Sjögren’s Syndrome (pSS) under the HarmonicSS 

Project [343]. The 10 databases included 316 lymphoma patients (targets) and 4692 

non-lymphoma patients (controls). According to the data quality diagnostics (Figure 

37), a large portion of anomalies was detected in demographic- and laboratory-related 

measures, on each dataset, which were marked with orange color and removed from the 

analysis. All features were ranked based on their quality. Instances with green color 

have adequate quality whereas those with red color have poor quality and fields with 

black color denote missing values (Figure 37). A small portion (5%) of features with 

joint variability was identified between biopsy-related features. The flexible data 

harmonization approach yielded 41 features with more than 80% overlap across the 10 

datasets. 

 

Figure 37. An instance of a selected dataset with quality diagnostics. 

The data curator was able to enhance the quality in terms of accuracy, relevance, 

completeness, and conformity. 
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7.1.1.3. Case Study 3 – Large-scale data curation 

The scope of this study is to enhance the quality of 21 European cohorts in pSS. A 

summary of the overall demographic information from the 21 European databases on 

pSS is presented in Table 14. The total number of eligible patients who fulfilled the 

inclusion criteria was 7,156, where the gender information was recorded for 7,000 

patients (6,512 females, 488 males with a female to male ratio 13.34%). The average 

age at SS diagnosis in the female group was 51.82 (±13.96) years whereas in the male 

group the average age was 54.24 (±13.77) years. 

Table 14. Demographic information. 

Demographics Females Males 

Gender 6,512 488 

Age at SS diagnosis (mean±std) 51.82 (±13.96) years 54.24 (±13.77) years 

Disease duration (mean) 7.08 years 5.59 years 

Female to male ratio 13.34% 

 

Data curation was applied on each individual cohort database to automatically remove 

outliers, data inconsistencies and duplicated fields. The LOF algorithm was combined 

with the Isolation Forests to track down and remove outliers with 90% accuracy and 

the Spearman correlation coefficient was combined with the Jaro distance score to 

detect duplicated features. Data imputation was applied only to features with less than 

30% missing values upon approval from the clinical experts. The automated data 

curation workflow enhanced the quality of the raw cohort data at a great extent. 

7.1.2. Data harmonization 

7.1.2.1. Case Study 1 – A reference model for pSS 

The scope of this study is to develop a “gold” reference model for pSS. Metadata 

(feature/variable names, value ranges, short description) were extracted from 21 cohorts 

in pSS. A chart describing all the necessary requirements for defining the domain 

knowledge of the pSS (i.e., attributes descriptions and values) was provided by the 

clinical experts. Using this chart, a complete reference model was developed in order 

to reflect the meaning and range of each field. This common template includes a variety 

of patient-related information, such as, demographic, laboratory tests (e.g., oral, ocular, 
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OSS, etc.), therapies, etc. The types and ranges of each specified variable within the 

template have been determined during the development process according to the 

guidelines we received from the clinical experts, based on international measurement 

systems. Ontology mechanisms were recruited in order to represent the fundamental 

domains of the pSS, based on the reference model. The classes, sub-classes, and data 

properties between all the domains of the reference model were defined using Protégé 

[395]. Figure 38 presents the main class hierarchy along with indicative data properties 

that belong to the related subclasses. In addition, Figure 39 clearly depicts the graph 

model of the pSS ontology. The main class (or superclass) “Patient” is connected with 

its (sub-) classes, namely “Demographic”, “Tests”, “ESSDAI”, and “Therapies”, 

through the “has” object property (e.g., a patient has laboratory tests measures). 

▪ Demographics: This class includes data properties related to the patient’s 

demographic information, such as, ethnicity, gender, age of patient at pSS 

diagnosis, age of the onset of first symptoms of pSS, pregnancy (concerning the 

female population: outcome, number of twins, twin type, SS concordant), education 

level (i.e., none, elementary, intermediate, high school, university). 

▪ EULAR Sjögren's syndrome disease activity index (ESSDAI) domains The 

European League Against Rheumatism (EULAR) Sjogren's syndrome disease 

activity index (ESSDAI) [396] is a disease activity index developed by the EULAR 

for patients with pSS. In this ontology, the ESSDAI is evaluated in twelve domains, 

namely the glandular, articular, cutaneous, renal, pulmonary muscular, 

constitutional, lymphadenopathy and lymphoma, hematological, central, and 

peripheral nervous system and biological. Each domain is described by its level of 

impact (i.e., no, low, moderate, high) as well as the corresponding weights/values 

which are necessary for the computation of the ESSDAI score. 

▪ Clinical tests: This class consists of further subclasses, including (a) “Biopsies”, (b) 

“Laboratory”, (c) “Ocular”, (d) “Oral”, and (f) “Others”. The former includes 

mainly salivary gland biopsy measures (e.g., year of biopsy, type of salivary gland, 

number of foci, focus score). In the case of other tissue biopsies, (i) the site, (ii) 

diagnosis, and (iii) the reason (for the assessment of SS or lymphoma) are required. 

▪ Laboratory: The subclass “Laboratory” includes results and values for a variety of 

pathogenic clinical factors, such as, leukopenia, lymphopenia, anemia, neutropenia, 
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thrombocytopenia, LDH, C3, C4, CD3, CD4, CD8, CD19, serum albumin, 

proteinuria, cryoglobulinemia, cryocit, etc. 

▪ Ultrasound: includes status indicators (positive/negative) related to the collection 

of parotid and submandibular ultrasound images according to the local radiologist 

or the scoring system in use. The subclass “Oral” tests is mainly comprised of 

results (i.e., positive/negative) and values for well-known oral tests, such as, 

salivary scintigraphy, sialography, (un-) stimulated saliva flow. In a similar way, 

the subclass “Ocular” tests includes results and values for three international ocular 

tests; (i) Schrimer’s, (ii) van Bjisterveld’s, and (iii) sicca occular staining score 

(OSS). 

 

Figure 38. Visualization of the Patient’s class hierarchy with a few indicative data 

properties from Protégé [395]. 
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▪ Others: includes other types of tests and clinical related information, such as, the 

ESSPRI (EULAR Sjogren's Syndrome Patient Reported Index) [397], SSDI (Social 

Security Disability Index), oral/ocular/vaginal sicca visual analogue scale (VAS), 

smoking status, cancer history (not only for the patient but for his/her relatives as 

well), age-adjusted Charlston Comorbidity Indices (with 20 subfields, including 

dementia, rheumatic disease, myocardial infraction, peripheral vascular and 

cerebrovascular disease, Acquired Immunodeficiency Syndrome, hemiplegia, 

leukemia, lymphoma, mild and moderate liver disease, among others), five EQ-5D-

3L items (i.e., mobility, self-care, usual activities, anxiety/depression, 

pain/discomfort), etc. 

 

Figure 39. Graph representation of the pSS ontology using Protégé’s OntoGraf [398]. 

▪ WPAI Questionnaire: The Work Productivity and Activity Impairment (WPAI) 

questionnaire [399] consists of six questions which are related to employment 

status, hours missed due to health problems or other reasons, working hours as well 

as the level of health affected productivity in regular activities and during working. 

WPAI provides useful information regarding the impairments in paid work and 

physical activities. Other related measures include the rheumatoid Arthritis Specific 

Work Productivity Survey (WPS-RA), as well as the Work Instability Scale for 

Rheumatoid Arthritis (RA-WIS) [400] among others. Here, the answers to the six 

WPAI questions have been included in the ontology as data properties of the 

“Patient” (super-) class. 
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▪ Past/current therapies: The class “Therapies” aims to collect and provide clinical 

information related to past/current therapies including the name of the therapy, the 

start date, the administration, the dosage and in some cases whether the drug was 

administered due to pSS or not. Examples of the therapies domain include various 

types of prescribed drugs, such as, biological disease-modifying antirheumatic 

drugs (bDMARDs), conventional disease-modifying antirheumatic drugs 

(cDMARDs), targeted synthetic disease-modifying antirheumatic drugs 

(tsDMARDs), glucocorticoids. In the case of chemotherapy, the regimens are 

recorded as well as the reason (due to pSS or not). The same stands for radiotherapy. 

Finally, the patient’s participation in surgeries and other pSS clinical trials is also 

recorded with appropriate fields. 

After finalizing with the classes, sub-classes, object and data properties definition 

process, the ontology has been published in the form of an .owl file on the following 

link: https://github.com/vpz4/PSS-Ontology. Each variable within the ontology is yet 

to be linked with international vocabularies with the purpose of enriching the ontology 

with information from external sources. We presented a first, complete, schematic 

representation of the pSS domain knowledge based on a predefined reference model 

provided by the clinical experts. The reference model was analyzed and transformed to 

a final version which allows the definition of the main pSS ontology. The innovation 

of this ontology lies on the fact that (a) it is a first hierarchical model that covers a large 

part of the pSS domain knowledge and (b) it serves as a common model for mapping 

heterogeneous pSS ontologies into a common one and thus enables medical data 

harmonization and integration. The latter enhance the statistical power of the 

participating cohort datasets leading to more accurate statistical models and effective 

outcomes. The ontology has been finally published for promoting research in the SS 

medical field in general. Since pSS is relevant not only due to its clinical impact but 

also as one of the few diseases to link autoimmunity, cancer development, as well as 

the pathogenetic role of infection, its examination can establish research in many areas 

of medicine. 

7.1.2.2. Case Study 2 – Small-scale data harmonization 

The scope of this study is to harmonize 4 European cohorts in pSS. We acquired 

anonymized clinical data from four European cohorts on primary Sjögren’s Syndrome 

https://github.com/vpz4/PSS-Ontology
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(University of Athens (UoA); Harokopion University (HUA); University of Pisa 

(UNIPI); University of Udine (AOUD)). The cohort data (Table 15) were shared with 

the platform under the data protection agreement version 3.7 as of August 2018 

according to the Article 35 (3) (b) of the GDPR fulfilling all the necessary ethical and 

legal requirements for data sharing. 

Table 15. Demographic information. 

 UoA HUA UNIPI AOUD 

Age at diagnosis 53.5±13.5 47.5±12.3 51.4±14 52.4±13.9 

Gender ratio 

(females/males) 
415/25 96/3 693/25 274/23 

Lymphoma/Non-

lymphoma (%) 
76/364 (20.87%) 6/93 (6.45%) 

31/687 

(4.51%) 
26/271 (9.59%) 

Total number of 

patients 
440 99 718 297 

 

The extracted cohort metadata are presented in Table 16. In total, 31 features were 

inconsistent in the UoA cohort, 6 in the HUA cohort and 1 in the AOUD cohort, where 

the UoA and HUA cohorts had the highest number of bad features. The total percentage 

of missing values was 44.8% for the UoA cohort, 33.61% for the HUA cohort, 21.98% 

for the UNIPI cohort and 17.15% for the AOUD cohort. No outliers were detected. 

Table 16. Extracted cohort metadata. 

 UoA HUA UNIPI AOUD 

Number of features 167 204 102 82 

Number of instances (cases) 440 100 718 297 

Categorical features 76 146 85 75 

Numeric features 60 52 17 6 

Good features 27 62 37 51 

Fair features 59 74 50 17 

Bad features* 81 68 15 14 

Features with outliers 0 0 0 0 

Features with inconsistencies 31 6 0 1 

Total % of missing values 44.8% 33.61% 21.98% 17.15% 

*these features were discarded from further analysis. 

 

The cohort data harmonization workflow was applied on the curated cohort data. The 

pSS ontology was used as a gold standard to enable the terminology alignment of each 
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cohort dataset. The number of relevant terms with the pSS reference model was initially 

identified by the clinical experts. According to Table 17, the data harmonization process 

was able to match more than 85% of the reference model terms in all four cohorts (UoA: 

92.3%; HUA: 90.47%; UNIPI: 88.88%; AOUD: 89.13%) yielding harmonized data 

with increased statistical power. Moreover, the number of terms requiring data 

standardization was significant in the AOUD cohort (14 terms) whereas in the 

remaining cohorts the terms were already in line with the pre-defined range values in 

the reference ontology. 

Table 17. Cohort data harmonization results. 

 Cohorts 

 UoA HUA UNIPI AOUD 

Number of terms * 82 136 87 67 

Relevant terms with the pSS reference model ** 39 42 54 46 

Lexically similar terms with those from the ontology 36 38 48 41 

Percentage of harmonized terms 92.3% 90.47% 88.88% 89.13% 

Number of terms requiring data standardization *** 2 3 1 14 

Common number of terms **** 19 

* after the removal of terms having more than 50% missing values (through data curation). 

** the number of pSS-relevant terms for each cohort was identified by the clinical experts (after 

evaluation). 

*** the number of terms for data transformation according to the range values in the ontology. 

**** the number of common harmonized terms (not individual terms) across the cohorts. 

 

To demonstrate the consistency of the harmonized cohort data we applied Principal 

Component Analysis (PCA) on each harmonized cohort dataset, separately, as well as, 

on the integrated dataset and extracted the first two principal components (PCs) as those 

that describe the largest portion of variance within the data. The distributions of the two 

PCs from each harmonized cohort against those from the integrated cohort, are depicted 

in Figure 40 and Figure 41, respectively. To offer a quantitative way to demonstrate the 

consistency of the data after the data harmonization process, we applied the Wilcoxon 

rank-sum statistical test to examine the null hypothesis that the distributions of the two 

PCs between the individual, harmonized cohort data and the integrated cohort data are 

common. In all cases, the p-values were larger than 0.05 which denotes that the 

distributions of the PCs between the individual harmonized cohort data and the 

integrated cohort data are not significantly different. 
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Figure 40. The distribution of the first principal component for each harmonized cohort 

dataset against the integrated dataset. 

 

Figure 41. The distribution of the second principal component for each harmonized 

cohort dataset against the integrated dataset. 

The data harmonization strategy is semi-automated and requires a reference model as 

input. This strategy is in line with the majority of the state-of-the-art data harmonization 
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tools, such as, the BiobankConnect software [143], the SORTA [142] and the 

DataSHaPER [141], [147] which require the definition of a common set of parameters 

for the domain of interest prior to the harmonization process. The consistency of the 

harmonized cohort data was demonstrated by the qualitative and quantitative 

comparison of the principal components between each harmonized cohort dataset and 

the integrated harmonized dataset, which suggest an increased homogeneity among the 

harmonized cohort data. The importance of the proposed approach, however, lies on 

the fact that it is more clinical-oriented and it is based on the definition of a disease-

oriented ontology for the purposes of pSS which is a rare, autoimmune disease with a 

reported lack of domain knowledge instead of the genome-oriented tools, like the 

DataSHaPER and the BiobankConnect software which are used for the harmonization 

of genomic data. 

7.1.2.3. Case Study 3 – Large-scale data harmonization 

The scope of this study is to harmonize 21 European cohorts in pSS. A summary of the 

overall demographic information from the 21 European databases on pSS is presented 

in Table 18. The total number of eligible patients who fulfilled the inclusion criteria 

was 7,156, where the gender information was recorded for 7,000 patients (6,512 

females, 488 males with a female to male ratio 13.34%). The average age at SS 

diagnosis in the female group was 51.82 (±13.96) years whereas in the male group the 

average age was 54.24 (±13.77) years. 

Table 18. Demographic information. 

Demographics Females Males 

Gender 6,512 488 

Age at SS diagnosis (mean±std) 51.82 (±13.96) years 54.24 (±13.77) years 

Disease duration (mean) 7.08 years 5.59 years 

Female to male ratio 13.34% 

 

Ontologies were constructed for each curated cohort database based on the extracted 

metadata. Semantic mapping rules were defined between the individual ontologies and 

the pSS reference ontology. As shown on Table 19, the cohort data harmonization 

process resulted in 48 common concepts (or terminological concepts) which constitute 

the pSS minimal criteria (minimal common data elements) across the 21 federated 

cohort databases. 
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Table 19. The common set of terminologies. 

Feature 
Presence/ 

Abnormal 

Absence/ 

Normal 
Mean Median 

Gender 6879 (females) 513 (males) - 1 

Age at SS diagnosis - - 51,95 53 

Disease duration - - 7,23 6 

Dry Mouth (aka Xerostomia) 6101 699 - 1 

Dry Eyes 6046 748 - 1 

Parotid or Submandibular swelling 1897 3186 - 0 

Parotid Gland swelling 1616 2227 - 0 

Submandibular salivary gland swelling 139 2648 - 0 

Raynaud’s Phenomenon 1577 4365 - 0 

Fatigue 2840 2416 - 1 

Arthritis 993 5006 - 0 

Renal Disease 162 6021 - 0 

Tubulointerstitial Nephritis 66 4663 - 0 

Glomerulopathy 37 4293 - 0 

Membranoproliferative Glomerulonephritis (MPGN) 15 4309 - 0 

Membranous Glomerulonephritis (MGN) 3 4163 - 0 

Mesangioproliferative Glomerulonephritis (MPGN) 9 4157 - 0 

Other Glomerulonephritis 4 4501 - 0 

Pulmonary Disease 415 5421 - 0 

Small Airway Disease 157 5012 - 0 

Lymphocytic Interstitial Pneumonia (LIP) 47 4414 - 0 

Nonspecific Interstitial Pneumonia (NSIP) 34 4034 - 0 

Usual Interstitial Pneumonia (UIP) 31 4041 - 0 

Cryptogenic Organizing Pneumonia (COP) 0 4077 - 0 

Liver Disease 131 5300 - 0 

Autoimmune Hepatitis (AIH) 40 4682 - 0 

Primary Biliary Cholangitis (PBC) 81 5535 - 0 

Sclerosing cholangitis 11 4639 - 0 

Nervous System Disease 560 5577 - 0 

Peripheral Nervous System Disease 267 4712 - 0 

Central Nervous System Disease (CNS) 125 4487 - 0 

PalpablePurpura 396 5257 - 0 

CutaneousDisease 458 4158 - 0 

Muscular System Disease 357 4633 - 0 
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Feature 
Presence/ 

Abnormal 

Absence/ 

Normal 
Mean Median 

IdiopathicInflammatoryMyopathy (IIM) 10 3842 - 0 

Inclusion Body Myositis (IBM) documented with 

Biopsy 150 4429 
- 

0 

B-cell Mucosa-associated Lymphoid Tissue (MALT) 

Lymphoma 245 5324 - 0 

Diffuse Large B-cell Lymphoma (DLBCL) 45 5326 - 0 

B-cell Nodal Marginal Zone Lymphoma (NMZL) 24 5346 - 0 

B-cell Splenic Marginal Zone Lymphoma (SMZL) 6 4789 - 0 

Other mature B-cell neoplasms 21 5305  0 

Anti-La-SSB [presence] 2670 3499 - 0 

Anti-Ro-SSA [presence] 4565 1703 - 1 

Rheumatoid Factor (RF) [Units-volume] 2282 2362 - 0 

Antinuclear Antibodies (ANA) [presence] 4354 1096 - 1 

C4 levels (Serum complement) [Mass-volume] 2485 1725 - 1 

Cryoglobulins [presence] 266 4409 - 0 

Lymphoma* 354 5653 - 0 

* The records of patients with missing lymphoma status were ignored from the analysis. 

 

The data harmonization workflow uses lexical and semantic matching to identify 

terminologies with common lexical and conceptual basis, where the pSS reference 

model is expressed into a .RDF/.OWL format. The harmonization process yielded 48 

common concepts (or terminological concepts) which constitute the pSS minimal 

criteria (minimal common data elements) across the 21 federated cohort databases. 

7.1.3. Data augmentation 

7.1.3.1. Case Study 1 – Small-scale data augmentation 

The scope of this study is to enhance the performance of the existing lymphoma 

classification models in pSS through data augmentation on a single European cohort. 

To this end, we acquired an anonymized dataset which consists of 449 patients who 

have been diagnosed with primary Sjögren’s Syndrome (pSS) at the University of 

Athens (UoA) cohort. Τhe number of lymphoma pSS patients was 70 with an average 

age 48.77 (±12.54) whereas the number of controls was 140 with an average age 52.47 

(±13.86). There were 162 features, including demographics, medical conditions (e.g., 
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dry eyes), and laboratory measures (e.g., C3), among others. All clinical data were 

shared according to the EU GDPR requirements. 

The performance of the virtual data generators in the UOA cohort is presented in Table 

20 for the tree ensembles and the RBF-based ANNs, while in Table 21 for the Bayesian 

networks and the log-MVND. The performance of the virtual generation methods was 

favorable. According to Table 20, the average GOF was 0.021 for the unsupervised tree 

ensembles, 0.022 for the supervised tree ensembles, 0.068 for the RBF-based ANNs, 

0.37 for the Bayesian networks and 0.133 for the Log-MVND. In addition, the average 

KL-divergence was 0.0289 for the unsupervised tree ensembles, 0.034 for the 

supervised tree ensembles, 0.033 for the RBF-based ANNs, 5e-05 for the Bayesian 

networks and 0.085 for the Log-MVND. The unsupervised tree ensembles generated 

virtual distributions with high similarity and convergence with the real data. 

Table 20. Summary of the average performance evaluation measures for assessing the quality 

of the virtual data generated by each virtual population generation method for the pSS domain. 

Virtual population generation 

method 

Quality of the virtual data 

GOF KL-divergence 
Correlation  

coefficient 

Unsupervised tree ensembles 0.021 0.0289 0.1±0.22 

Supervised tree ensembles 0.022 0.034 0.102±0.23 

Supervised RBF-based ANNs 0.068 0.033 0.103±0.23 

Bayesian networks 0.37 0.000005 0.06±0.07 

Log-MVND 0.133 0.085 0.5±0.47 

 

The absolute correlation difference between the real and virtual data by the 

unsupervised tree ensembles is depicted in Figure 42, with an average correlation 

difference 0.1±0.22. The white horizontal and vertical lines in the features “Renal 

disease” and “Kidney infiltrates” denote the existence of strong correlation differences. 

This occurs because only 4 patients had positive Renal disease while only 7 patients 

had positive kidney infiltrates among the 449 patients and thus the virtual distributions 

included only negative samples. The average correlation difference was 0.102±0.23 for 

the supervised tree ensembles, 0.103±0.23 for the RBF-based ANNs, 0.5±0.47 for the 

Log-MVND, and 0.06±0.07 for the Bayesian networks. The latter had the smallest 

correlation difference but lower GOF values than the unsupervised tree ensembles. 



201 

 

 

Figure 42. The absolute difference between the real and virtual correlation matrices for the 

UoA dataset, in the case of the unsupervised tree ensembles generator. The features are ordered 

according to their appearance in Supplementary Table 1. Values with dark and purple color 

denote low variations among the real and virtual data whereas values with orange/white color 

denote otherwise. 

The application of the XGBoost on the real data yielded: accuracy 0.724; sensitivity 

0.679; specificity 0.814; AUC 0.802. On the other hand, according to Table 21, the 

average performance of the XGBoost on the aggregated real and virtual data from the 

unsupervised tree ensembles achieved the best classification performance, yielding 

accuracy 0.833, sensitivity 0.786, specificity 0.929, and AUC 0.924. The performance 

of the XGBoost using the augmented data from the supervised tree ensembles, and the 

supervised RBF-based ANNs come next. Finally, the performance of the XGBoost 

using the augmented data from the Log-MVND, and the Bayesian networks was lower 

than in the previous case (using the real data only). 

In a similar manner, the performance of the lymphoma classification models from the 

AdaBoost and Random Forests using the augmented data from the tree ensembles was 

higher than in the case of the real data. The application of the AdaBoost on the real data 

yielded accuracy 0.719, sensitivity 0.675, specificity 0.807, AUC 0.749. On the other 
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hand, according to Table 21, the average performance of the AdaBoost on the 

aggregated real and virtual data from the unsupervised tree ensembles achieved better 

classification performance, yielding accuracy 0.79, sensitivity 0.732, specificity 0.907, 

and AUC 0.814. In the case of the Random Forests, the application on the real data 

yielded: accuracy 0.729, sensitivity 0.657, specificity 0.871, AUC 0.81. On the other 

hand, according to Table 21, the average performance of the Random Forests on the 

aggregated real and virtual data from the unsupervised tree ensembles achieved better 

classification performance, yielding accuracy 0.824, sensitivity 0.746, specificity 

0.979, and AUC 0.922. 

Table 21. A summary of the lymphoma classification results from the XGBoost, AdaBoost and 

Random Forests before and after data augmentation using the virtual data from each generator. 

Virtual population generation 

method for data augmentation 

Lymphoma classification performance 

accuracy sensitivity specificity AUC 

XGBoost 

Before data augmentation 0.724 0.679 0.814 0.802 

Unsupervised tree ensembles 0.833 0.786 0.929 0.924 

Supervised tree ensembles 0.814 0.757 0.929 0.912 

Supervised RBF-based ANNs 0.819 0.764 0.929 0.914 

Bayesian networks 0.752 0.707 0.843 0.787 

Log-MVND 0.8 0.754 0.893 0.824 

AdaBoost 

Before data augmentation 0.719 0.675 0.807 0.749 

Unsupervised tree ensembles 0.79 0.732 0.907 0.814 

Supervised tree ensembles 0.79 0.725 0.921 0.82 

Supervised RBF-based ANNs 0.824 0.764 0.943 0.87 

Bayesian networks 0.69 0.593 0.886 0.76 

Log-MVND 0.767 0.696 0.907 0.784 

Random Forests 

Before data augmentation 0.729 0.657 0.871 0.81 

Unsupervised tree ensembles 0.824 0.746 0.979 0.922 

Supervised tree ensembles 0.767 0.661 0.979 0.877 

Supervised RBF-based ANNs 0.757 0.636 1 0.901 

Bayesian networks 0.762 0.661 0.964 0.839 

Log-MVND 0.757 0.668 0.936 0.852 
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The ROC curves are shown in Figure 43, highlighting the performance of the 

unsupervised tree ensembles (increase by 10.9% in the accuracy, 10.7% in sensitivity, 

11.5% in specificity, and 12.2% in AUC) in the case of the XGBoost which suggests a 

notable performance enhancement. A similar increase is also observed in the case of 

the AdaBoost (7.1% in the accuracy, 5.7% in sensitivity, 10% in specificity, and 6.5% 

in AUC), as well as, in the case of the Random Forests (9.5% in the accuracy, 8.9% 

sensitivity, 10.8% in specificity, and 11.2% in AUC). 

 

Figure 43. ROC curves depicting the classification performance of the XGBoost, the AdaBoost 

and the Random Forests for lymphoma classification with and without data augmentation. 

Our results highlight the favorable performance of the tree ensembles towards the 

generation of high-quality virtual data with goodness-of-fit (GOF) 0.021 and Kullback 

Leibler (KL)-divergence 0.029 in the pSS domain. The aggregation of the real and the 

virtual data from the tree ensembles revealed a notable increase in the classification 

accuracy, sensitivity, and specificity for lymphoma classification, where the XGBoost 

yielded an increase by 10.9% in accuracy, 10.7% in sensitivity, and 11.5% in 

specificity. A similar increase is also observed in the case of the AdaBoost for 

lymphoma classification (5.5% in the accuracy, 5.3% in sensitivity, 6.3% in specificity, 

and 10.1% in AUC), as well as, in the case of the Random Forests for lymphoma 

classification (9.4% in accuracy, 10.1% in sensitivity, 7.2% in specificity, and 12.2% 

in AUC). The outcomes of the proposed pipeline are promising since the existing lack 

of population size in pSS obscures the development of robust disease classification and 
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risk stratification models. To our knowledge, this is the first computational pipeline 

which aggregates high-quality virtual with real curated clinical data to address crucial 

clinical unmet needs in pSS. 

7.1.3.2. Case Study 2 – Large-scale data augmentation 

To enhance the performance of the existing lymphoma classification models in pSS 

through data augmentation across 10 European cohorts. Anonymized clinical data were 

collected from 10 databases with patients who have been diagnosed with primary 

Sjögren’s Syndrome (pSS) under the HarmonicSS Project [343]. The 10 databases 

included 316 lymphoma patients (targets) and 4692 non-lymphoma patients (controls). 

The density forest ensembles were applied on each dataset to augment the real 

population yielding 10,016 high-quality virtual patients (586 targets, 9430 controls), in 

total, with average gof 0.01, KL divergence less than 0.001, and correlation difference 

0.02. The distributed learning pipeline was then utilized, using the hybrid loss function 

(Figure 44), where the steepness of the logcosh and the wideness of the modified Huber 

loss were combined for different values. The value was defined as in the proposed 

distributed MART with dropouts, where 𝑟 is the dropout rate. 

 

Figure 44. Distribution of the hybrid loss function compared to the modified Huber 

loss and the logcosh for different δ values. 
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In the real case, the 9 datasets having the highest number of targets were used for 

distributed training (300 targets and 4,411 controls, in total), whereas in the data 

augmentation case, the 9 training datasets included 9,422 patients (546 targets, 8,876 

controls), in total. In both cases, the remaining (real) dataset was used for testing (16 

targets, 281 controls). Random down-sampling with replacement was also applied on 

each case for class imbalance handling.  

The overall performance of the distributed algorithms was better on the augmented data, 

where the distributed MART achieved accuracy 0.852, sensitivity 0.833 and specificity 

0.854 against the one trained on the real data with accuracy 0.808, sensitivity 0.722 and 

specificity 0.818. A notable increase was observed in the case of the proposed 

distributed MART with 𝛿 = 0.4 (𝑟 = 0.3) which achieved accuracy 0.865, sensitivity 

0.84, and specificity 0.868 whereas in the real case the algorithm achieved accuracy 

0.791, sensitivity 0.772, and specificity 0.794. 

 

Figure 45. Receiver Operating Characteristic (ROC) curves for distributed classification with 

and without augmentation. 

A similar increase occurs for 𝛿 = 0.6 (𝑟 = 0.4) with accuracy 0.862, sensitivity 0.868, 

and specificity 0.861 against the real case where the algorithm achieved accuracy 0.835, 

sensitivity 0.854, and specificity 0.833. According to Figure 45, the area under the 

curve scores in the distributed MART yielded an average increase by 5.2%, as well as, 

by 1.4% in the proposed distributed MART with 𝛿 = 0.4 and 2.1% with 𝛿 = 0.6. The 
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positive impact of data augmentation is also reflected by the detection error tradeoff 

(DET) curves which are depicted in Figure 46 in logarithmic scale. The DET score was 

defined as the median absolute ratio of the false positive rate over the false negative 

rate. According to Figure 46, an average decrease by 2.6% in the DET score is observed 

in the proposed distributed MART with δ = 0.4 (𝑟 = 0.3) and 4.5% with δ = 0.6 (𝑟 = 

0.4). In this work, we presented a pipeline for additive training across augmented and 

harmonized clinical data in distributed environments through the utilization of 

distributed multiple additive regression trees (MART) with a hybrid loss. The pipeline 

includes data pre-processing routines for the precise detection of data anomalies, as 

well as, features with joint variability. Both flexible and stringent lexical analysis were 

applied to detect terminologies with increased coherence among the distributed data. 

Density forest ensembles were finally developed for the generation of high-quality 

virtual distributions which were used for data augmentation. 

 

Figure 46. Detection error tradeoff (DET) curves for distributed classification with and without 

augmentation. 

The density forest ensembles were able to generate virtual data for data augmentation 

with decreased divergence with the real data (average gof 0.01, KL divergence less than 

0.001, and correlation difference 0.02). The proposed pipeline was able to yield robust 

distributed learning models from the augmented data with an average increase by 6.8% 

in sensitivity, and 10.4% in specificity for 𝛿 = 0.4. The proposed loss function avoids 
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overfitting effects which are caused by the early inclusion of regression trees in the 

ensemble. To our knowledge, this is the first case study which combines data 

augmentation and distributed regression tree ensembles with hybrid loss yielding robust 

disease classification models through a case study in autoimmune diseases. 

7.1.4. Federated/distributed learning 

7.1.4.1. Case Study 1 – Incremental learning 

The scope of this study is to validate an incremental learning framework across multiple 

distributed subsets of a single cohort in pSS towards lymphoma classification. To 

demonstrate the efficacy of the presented framework we acquired anonymized clinical 

data from the University of Athens (UoA) cohort which consists of patients that have 

been diagnosed with primary Sjögren’s Syndrome (pSS), with the purpose of 

developing a binary lymphoma prediction model. Three datasets, assume, 𝐴, 𝐵, and 𝐶, 

were used for training purposes and four datasets, assume, 𝑇1, 𝑇2, 𝑇3, and 𝑇4 were 

used for validation.  

Each training dataset consists of 70 pSS patients (50 non-lymphoma; 20 lymphoma) 

whereas each testing dataset consists of 24 pSS patients (20 non-lymphoma; 4 

lymphoma). Each dataset includes a set of 68 pSS-related features [135]. For 

demonstration purposes and considering the imbalance between the two groups, we 

worked on the extreme gradient boosting [357] classifier to construct an optimized, 

distributed supervised learning model for predicting binary lymphoma outcomes (i.e., 

“0”: no lymphoma, “1”: lymphoma) based on tree ensembles. The simple regression 

models (Section 6.3.2.1), the Multinomial Naïve Bayes (Section 6.3.2.3) and the neural 

networks (Section 6.3.2.4) were also constructed for comparison purposes. Regarding 

the gradient boosting trees, the maximum depth was set to 6 levels using a step size 

value of 0.3 to prevent overfitting along with a binary logistic loss function as the 

learning objective. The simple regression models, the neural networks, and the 

Multinomial Naïve Bayes, were developed based on the specifications that have been 

described in 6.3.2.1, 6.3.2.3 and 6.3.2.2, respectively.  

The initial prediction model was trained on dataset 𝐴, updated on 𝐵, and re-updated on 

𝐶, yielding the final one. For each supervised learning configuration, the lymphoma 

prediction model was evaluated on each testing dataset. 
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According to Figure 47, the gradient boosting trees exhibit the highest performance 

with an average AUC score 0.94 across the four testing datasets along with an accuracy 

0.916 and sensitivity 0.875. The performance of the SGD-based methods of Section 

6.3.2.1 and 6.3.2.2 was poor (< 60% accuracy) since these methods are unable to deal 

with the class imbalance and the associations between the features during the training 

stage. The same issue was observed for the neural networks (due to the small-scale 

datasets) and the NB model. 

 

Figure 47. Prediction performance across the four testing datasets using the GBT. 

We took advantage of the mathematical basis of incremental learning to deploy a 

computationally efficient and secure strategy for disease prediction modeling across 

data that are stored in multiple sites by assuming that: (i) the clinical data are stored in 

private cloud spaces and are harmonized through semantic interlinking methods, and 

(ii) the model for predicting disease outcomes is continuously adjusted to the data that 

lie across private cloud spaces. A case study is conducted to highlight the applicability 

of the framework by constructing a distributed binary lymphoma prediction model 

across private cloud spaces consisting of clinical data from patients with primary 

Sjögren’s Syndrome (pSS); a chronic autoimmune disease that exhibits salivary gland 

dysfunction, with 5% of the pSS patients being prone to lymphoma development. Our 

results demonstrate the superiority of the distributed trees towards the precise 
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discrimination of lymphoma cases, against the conventional methods, with an average 

accuracy 91.6%, area under the curve score 94%, and sensitivity 87.5%. 

7.1.4.2. Case Study 2 – Distributed learning 

The scope of this study is to validate a distributed learning framework across four 

European cohorts in pSS towards lymphoma classification. We acquired anonymized 

clinical data from four European cohorts on primary Sjögren’s Syndrome (University 

of Athens (UoA); Harokopion University (HUA); University of Pisa (UNIPI); 

University of Udine (AOUD)). The cohort data (Table 22) were shared with the 

platform under the data protection agreement version 3.7 as of August 2018 according 

to the Article 35 (3) (b) of the GDPR fulfilling all the necessary ethical and legal 

requirements for data sharing. To deal with the high imbalance between the lymphoma 

and non-lymphoma groups (Table 22), the number of controls was set as twice the 

number of lymphoma cases per training cohort by downsampling the majority class so 

that a 1:2 ratio, with age and sex matched controls, is maintained between the case 

group and the control group (Table 22). 

Table 22. Demographic information. 

Features UoA HUA UNIPI AOUD 

Age at diagnosis 53.5±13.5 47.5±12.3 51.4±14 52.4±13.9 

Gender ratio (females/males) 415/25 96/3 693/25 274/23 

Lymphoma/Non-lymphoma 76/364 6/93 31/687 26/271 

Total number of patients 440 99 718 297 

 

Due to the small population and to take advantage of the statistical power of the whole 

population on each cohort, the incremental learning process was repeated 5 times using 

different subsets of controls for the training process each time. 

Table 23. Overall population characteristics for distributed lymphoma prediction. 

Descriptive statistics 

Cohorts 

Set of training cohorts Testing cohort 

 AOUD  UoA  UNIPI  HUA 

Number of lymphoma cases 26 76 31 6 

Number of controls * 52 152 62 93 

Total population 78 228 93 99 

* the number of controls was randomly selected 5 times to “cover” each cohort’s population. 
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The incremental learning workflow was applied on the harmonized cohort data to 

develop a distributed lymphoma prediction model using three cohorts for training and 

one cohort for testing. In order to make the analysis complete, each cohort was included 

in the testing process by repeating the process four times. For each combination, the 

XGBoost, Support Vector Machines, Logistic regression, Multinomial Naïve Bayes, 

and Multi-layer Perceptron algorithms were applied in an incremental manner. Then, 

the optimal combination, i.e., the one with the highest performance in all five 

algorithms was selected for demonstration purposes, according to which the AOUD, 

UoA, and UNIPI cohorts were used for training and the HUA cohort for testing. The 

results are depicted in Table 24. The lymphoma presence was set as the target to solve 

a binary classification problem. 

 

Figure 48. ROC curves for each incremental learning algorithm. 

The performance evaluation measures include the accuracy, sensitivity, specificity, and 

AUC scores, which are depicted in Table 24, averaged across 5 runs. According to 

Table 24, the XGBoost algorithm (AUC 0.871, accuracy 0.859, sensitivity 0.833, 

specificity 0.86) outperforms the rest of the incremental learning algorithms. The 

Multinomial Naïve Bayes has the second-best performance along with the Multi-layer 

Perceptron. The performance of the Logistic regression and the Support Vector 
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Machines was significantly low in terms of sensitivity. The ROC curves per incremental 

learning algorithm are depicted in Figure 49, which confirm XGBoost’s superiority. 

Table 24. Performance evaluation scores per incremental learning algorithm and testing cohort 

combination. 

Algorithm 
Testing 

cohort 
Accuracy Sensitivity Specificity AUC 

XGBoost 

AOUD 0.835 0.692 0.849 0.849 

UoA 0.834 0.526 0.898 0.898 

UNIPI 0.872 0.484 0.889 0.889 

HUA 0.859 0.833 0.860 0.871 

Logistic 

regression 

AOUD 0.926 0.462 0.970 0.970 

UoA 0.805 0.184 0.934 0.934 

UNIPI 0.85 0.290 0.875 0.875 

HUA 0.899 0.167 0.946 0.556 

Support Vector 

Machines 

AOUD 0.902 0.692 0.923 0.923 

UoA 0.714 0.684 0.720 0.720 

UNIPI 0.948 0.032 0.990 0.990 

HUA 0.768 0.667 0.774 0.720 

Multinomial 

Naïve Bayes 

AOUD 0.869 0.846 0.871 0.871 

UoA 0.823 0.500 0.890 0.890 

UNIPI 0.799 0.484 0.814 0.814 

HUA 0.828 0.833 0.828 0.831 

Multilayer 

Perceptron 

AOUD 0.875 0.808 0.882 0.882 

UoA 0.839 0.263 0.959 0.959 

UNIPI 0.879 0.387 0.901 0.901 

HUA 0.747 0.833 0.742 0.788 

 

To further enhance the clinical findings of the case study we have induced the decision 

tree from the XGBoost schema which includes the features that highly participated in 

the decision-making process (Figure 49). The features with the highest contribution 

across the splits are represented by a node along with the decision rules, and the rule 

outcomes (i.e., “yes/no”) are depicted as branches. At the first level lies the “C4” as the 

root node. The features “lymphadenopathy” and “salivary gland swelling” come next 

along with the “Anti-La”, and “gender”. The leaf values on each branch denote the 

conditional probability of a data point falling in class 1 on that branch. We extended 

two previous studies [135], [250] through the curation, subsequent harmonization and 
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federated analysis of three European cohort data (instead of a single cohort dataset) to 

deal with open issues and clinical unmet needs in the domain of primary Sjögren’s 

Syndrome (pSS). We combine lexical and ontology matching to detect common terms 

among the cohort data according to a pre-defined reference ontology. Then, we apply a 

federated learning pipeline to develop a lymphomagenesis prediction model across the 

cohort data to avoid physical data integration by storing the data in private cloud 

databases. Our results confirm the dominance of the federated XGBoost schema with 

accuracy 0.848, sensitivity 0.833, specificity 0.849, and area under the curve 0.868, 

along with a prominent pathway that is induced by the decision tree highlighting four 

prominent features and one prominent combination for decision-making. 

 

Figure 49. The decision tree that is induced by the XGBoost schema. 

 

7.1.4.3. Case Study 3 – Federated learning across 21 European cohorts 

The scope of this study is to validate a federated learning framework across 21 

European cohorts in pSS to address the unmet needs (lymphomagenesis modeling, 

biomarkers). A summary of the overall demographic information from the 21 European 

databases on pSS is presented in Table 25. The total number of eligible patients who 

fulfilled the inclusion criteria was 7,156, where the gender information was recorded 
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for 7,000 patients (6,512 females, 488 males with a female to male ratio 13.34%). The 

average age at SS diagnosis in the female group was 51.82 (±13.96) years whereas in 

the male group the average age was 54.24 (±13.77) years. 

Table 25. Demographic information. 

Demographics Females Males 

Gender 6,512 488 

Age at SS diagnosis (mean±std) 51.82 (±13.96) years 54.24 (±13.77) years 

Disease duration (mean) 7.08 years 5.59 years 

Female to male ratio 13.34% 

 

The lymphoma types include the B-cell Mucosa-associated Lymphoid Tissue (MALT) 

Lymphoma, the Diffuse Large B-cell Lymphoma (DLBCL), the B-cell Nodal Marginal 

Zone Lymphoma (NMZL), the B-cell Splenic Marginal Zone Lymphoma (SMZL), and 

other mature B-cell neoplasms. These lymphoma types were merged into a single 

lymphoma type with 354 positive lymphoma patients and 6,802 non-lymphoma (or 

missing) patients (lymphoma to non-lymphoma ratio 5.2%). The lymphoma 

distribution per cohort is summarized in Table 26. 

Table 26. Distribution of lymphoma and non-lymphoma patients per cohort. 

Cohort  

acronym 
Cohort full name 

Number of 

lymphoma 

patients 

Number of non-

lymphoma (or 

missing) patients 

IDIBAPS 
Consorci Institut D’Investigacions Biomediques 

August Pi I Sunyer 
0 300 

UNIPG Università degli Studi di Perugia 10 166 

UPSUd PARIS Université Paris-Sud (database 1) 24 483 

UoB University of Birmingham 3 156 

UNIVAQ Università degli Studi dell'Aquila 3 97 

ULB Université libre de Bruxelles 1 726 

HUA Harokopion University of Athens 8 151 

UMCG University Medical Center Groningen 20 166 

UiB University of Bergen 3 138 

UOI University of Ioannina 7 279 

UU Utrecht University 14 108 

UNIRO Universita' Degli Studi Di Roma La Sapienza 14 532 
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Cohort  

acronym 
Cohort full name 

Number of 

lymphoma 

patients 

Number of non-

lymphoma (or 

missing) patients 

QMUL Queen Mary University of London 1 47 

UMCU Universitair Medisch Centrum Utrecht 27 313 

MHH Medizinische Hochschule Hannover 5 178 

UNIPI Universita di Pisa 31 687 

CUMB Charité – Universitätsmedizin Berlin 0 71 

UBO Université de Bretagne Occidentale 4 77 

UOA National and Kapodistrian University of Athens 101 488 

AOUD 
Azienda Sanitaria Universitaria Integrata di 

Udine 
16 281 

UNEW University of Newcastle 62 1358 

 

Data curation was applied on each individual cohort database to automatically remove 

outliers, data inconsistencies and duplicated fields. The LOF algorithm was combined 

with the Isolation Forests to track down and remove outliers with 90% accuracy and 

the Spearman correlation coefficient was combined with the Jaro distance score to 

detect duplicated features. Data imputation was applied only to features with less than 

30% missing values upon approval from the clinical experts. Upon the completion of 

the cohort data curation process, ontologies were constructed for each curated cohort 

database based on the extracted metadata. Semantic mapping rules were defined 

between the individual ontologies and the pSS reference ontology. As shown on Table 

27, the cohort data harmonization process resulted in 48 common concepts (or 

terminological concepts) which constitute the pSS minimal criteria (minimal common 

data elements) across the 21 federated cohort databases. 

Table 27. Set of features which represent the minimal criteria of the pSS domain knowledge. 

Feature 
Presence/ 

Abnormal 

Absence/ 

Normal 
Mean Median 

Gender 
6879  

(females) 

513 

(males) 
- 1 

Age at SS diagnosis - - 51,95 53 

Disease duration - - 7,23 6 

Dry Mouth (aka Xerostomia) 6101 699 - 1 

Dry Eyes 6046 748 - 1 

Parotid or Submandibular swelling 1897 3186 - 0 
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Feature 
Presence/ 

Abnormal 

Absence/ 

Normal 
Mean Median 

Parotid Gland swelling 1616 2227 - 0 

Submandibular salivary gland swelling 139 2648 - 0 

Raynaud’s Phenomenon 1577 4365 - 0 

Fatigue 2840 2416 - 1 

Arthritis 993 5006 - 0 

Renal Disease 162 6021 - 0 

Tubulointerstitial Nephritis 66 4663 - 0 

Glomerulopathy 37 4293 - 0 

Membranoproliferative Glomerulonephritis (MPGN) 15 4309 - 0 

Membranous Glomerulonephritis (MGN) 3 4163 - 0 

Mesangioproliferative Glomerulonephritis (MPGN) 9 4157 - 0 

Other Glomerulonephritis 4 4501 - 0 

Pulmonary Disease 415 5421 - 0 

Small Airway Disease 157 5012 - 0 

Lymphocytic Interstitial Pneumonia (LIP) 47 4414 - 0 

Nonspecific Interstitial Pneumonia (NSIP) 34 4034 - 0 

Usual Interstitial Pneumonia (UIP) 31 4041 - 0 

Cryptogenic Organizing Pneumonia (COP) 0 4077 - 0 

Liver Disease 131 5300 - 0 

Autoimmune Hepatitis (AIH) 40 4682 - 0 

Primary Biliary Cholangitis (PBC) 81 5535 - 0 

Sclerosing cholangitis 11 4639 - 0 

Nervous System Disease 560 5577 - 0 

Peripheral Nervous System Disease 267 4712 - 0 

Central Nervous System Disease (CNS) 125 4487 - 0 

PalpablePurpura 396 5257 - 0 

CutaneousDisease 458 4158 - 0 

Muscular System Disease 357 4633 - 0 

IdiopathicInflammatoryMyopathy (IIM) 10 3842 - 0 

Inclusion Body Myositis (IBM) documented with Biopsy 150 4429 - 0 

B-cell Mucosa-associated Lymphoid Tissue (MALT) Lymphoma 245 5324 - 0 

Diffuse Large B-cell Lymphoma (DLBCL) 45 5326 - 0 

B-cell Nodal Marginal Zone Lymphoma (NMZL) 24 5346 - 0 

B-cell Splenic Marginal Zone Lymphoma (SMZL) 6 4789 - 0 

Other mature B-cell neoplasms 21 5305  0 
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Feature 
Presence/ 

Abnormal 

Absence/ 

Normal 
Mean Median 

Anti-La-SSB [presence] 2670 3499 -- 0 

Anti-Ro-SSA [presence] 4565 1703 - 1 

Rheumatoid Factor (RF) [Units-volume] 2282 2362 - 0 

Antinuclear Antibodies (ANA) [presence] 4354 1096 - 1 

C4 levels (Serum complement) [Mass-volume] 2485 1725 - 1 

Cryoglobulins [presence] 266 4409 - 0 

Lymphoma* 354 5653 - 0 

* The records of patients with missing lymphoma status were ignored from the analysis. 

 

According to Table 26, the lymphoma over non-lymphoma ratio was 5.2% which 

implies a significant population imbalance. To deal with this, random downsampling 

with replacement was applied on each individual training cohort database among the 

lymphoma (target group) and the non-lymphoma (control group) patients. The process 

was repeated ten times to avoid biases during the downsampling process. On each 

iteration, the downsampled control group was matched with the target group according 

to the age, gender, and disease duration using a ratio 1:1 to yield equally balanced 

populations. The Wilcoxon Mann-Whitney rank-sum test was used to evaluate whether 

the distributions of the age and disease duration did not significantly deviate between 

the target group and the downsampled control group whereas the chi-square test was 

used for gender matching. The classification performance of the federated AI models 

was assessed based on the accuracy, sensitivity, specificity, and area under the ROC 

curve (AUC). 

Four large scale federated lymphoma classification scenarios were conducted; three 

scenarios including a common set of training harmonized cohort databases and three 

different testing databases, as well as, one scenario with a different set of training 

databases and a single testing database. The training set in federated scenarios 1-3 is 

{UOA, UNIPI, UNEW, UNIPG, PARIS, UoB, UNIVAQ, HUA, UOI, UU, UNIRO, 

UMCU, MHH, UBO} and the testing set is {AOUD (scenario 1), UNIPG (scenario 2), 

HUA (scenario 3)} whereas the training set in federated scenario 4 is {AOUD, UOA, 

UNIPI, UNIPG, UNEW, PARIS, UoB, UNIVAQ, UOI, UU, UNIRO, UMCU, MHH, 

UBO, UMCU} and the testing set is HUA. According to Table 28, the federated tree 

ensembles achieved better performance against the FSGD-based methods, such as, the 
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FMNB and the FMLP, since the latter focus on the direct update of the weights of a 

linear loss function, without controlling for overfitting effects, their performance tends 

to be lower than in the case of the federated tree ensembles which utilize boosting to 

avoid overfitting. 

Table 28. A summary of the performance evaluation results across the four federated scenarios. 

Federated learning 

schema 

Performance evaluation metrics 

Accuracy Sensitivity Specificity AUC 

Federated scenario 1 

FGBT 0.84 0.81 0.85 0.89 

FDART, rd = 0.1 0.86 0.75 0.87 0.87 

FDART, rd = 0.2 0.84 0.62 0.85 0.86 

FDART, rd = 0.3 0.83 0.81 0.84 0.89 

FDART, rd = 0.4* 0.85 0.81 0.85 0.89 

FDART, rd = 0.5 0.83 0.87 0.83 0.88 

FMNB 0.51 0.94 0.49 0.71 

FMLP 0.64 0.75 0.63 0.69 

Federated scenario 2 

FGBT 0.71 0.70 0.71 0.73 

FDART, rd = 0.1 0.69 0.70 0.69 0.76 

FDART, rd = 0.2* 0.74 0.80 0.73 0.79 

FDART, rd = 0.3 0.71 0.70 0.71 0.71 

FDART, rd = 0.4 0.71 0.70 0.71 0.75 

FDART, rd = 0.5 0.71 0.70 0.71 0.76 

FMNB 0.63 0.70 0.63 0.66 

FMLP 0.68 0.70 0.68 0.69 

Federated scenario 3 

FGBT 0.75 0.99 0.74 0.89 

FDART, rd = 0.1* 0.78 0.99 0.76 0.90 

FDART, rd = 0.2* 0.78 0.99 0.76 0.91 

FDART, rd = 0.3 0.76 0.99 0.74 0.90 

FDART, rd = 0.4 0.71 0.87 0.69 0.86 

FDART, rd = 0.5 0.74 0.75 0.74 0.86 

FMNB 0.71 0.87 0.70 0.79 

FMLP 0.85 0.62 0.87 0.74 

Federated scenario 4 

FGBT 0.81 0.75 0.81 0.91 

FDART, rd = 0.1 0.78 0.87 0.78 0.92 
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Federated learning 

schema 

Performance evaluation metrics 

Accuracy Sensitivity Specificity AUC 

FDART, rd = 0.2 0.80 0.75 0.80 0.91 

FDART, rd = 0.3* 0.80 0.87 0.79 0.91 

FDART, rd = 0.4 0.80 0.87 0.80 0.90 

FDART, rd = 0.5 0.78 0.75 0.78 0.91 

FMNB 0.62 0.87 0.61 0.74 

FMLP 0.85 0.62 0.86 0.74 

* With light blue color: The federated schema with the best performance, rd: dropout rate. 

 

According to Figure 50, the ROC curves confirm the favorable performance of the 

FDART along with the FGBTs, in all cases, where the FDART with dropout rate 0.4 

achieved the best performance in federated scenario 1 (accuracy 0.85, sensitivity 0.81, 

specificity 0.85). Regarding federated scenario 2, the FDART with dropout rate 0.2 

achieved the best performance (accuracy 0.74, sensitivity 0.8, specificity 0.73). In 

federated scenario 4, the FDART with dropout rates 0.1 and 0.2 achieved the best 

performance (accuracy 0.78, sensitivity1, specificity 0.76) like the FGBT (accuracy 

0.75, sensitivity 1, specificity 0.74). In the final scenario, the FDART with dropout rate 

0.3 achieved the best performance (accuracy 0.8, sensitivity 0.87, specificity 0.79) 

yielding better sensitivity than the FGBTs, where the average execution time was 30 

seconds for data access and training/testing on each harmonized cohort database. The 

results of the Shapley additive explanation analysis are depicted in Figure 51 for the 

FGBT classifier and in Figure 52 for the FDART classifier with dropout rates 0.1-0.5, 

where the features are ranked based on their positive or negative impact on lymphoma 

development. Each panel in Figure 51 reflects the mean Shapley value (i.e., the average 

of the marginal contributions across all permutations) for a feature, in descending order, 

as well as, whether the impact of a feature has a positive (left) or a negative (right) value 

for lymphoma development. 

In Figure 51, Figure 52, the color in the distribution plots denotes whether the 

importance of the Shapley value is either low or high and the vertical line corresponds 

to the base score of the AI model centered around zero. According to Figure 51 and 

Figure 52, the feature “Parotid or Submandibular swelling” has the highest impact in 

lymphoma classification, where its absence has a negative predictive value and thus 

decreases the risk for lymphoma development whereas its presence has a positive 

predictive value on lymphoma development (i.e., the positive samples shift the ground 
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truth to the right). Features “Rheumatoid factor”, “Fatigue”, “Age of SS diagnosis”, 

“Cryoglobulinemia”, and “Disease duration” come next with favorable impact on 

lymphoma classification. Features “Low C4”, “Palpable purpura”, “Raynaud's 

phenomenon”, “Arthritis” also appear to be significant in the decision-making process. 

The importance of these features is also confirmed by the average coverage of each 

federated tree ensemble algorithm during the lymphoma decision-making process 

(Supplementary Figure 1). 

 

Figure 50. Receiver Operating Characteristic (ROC) curves for each federated algorithm across 

the two federated scenarios. From top to bottom: on the left for federated scenario 1 with testing 

cohorts AOUD, UNIPG, HUA and for federated scenario 2 testing cohort HUA. 

The Shapley explanation analysis results for the federated learning scenarios 2, 3, and 

4 are depicted in Supplementary Figure 2, Supplementary Figure 3, Supplementary 

Figure 4, Supplementary Figure 5, Supplementary Figure 6, and Supplementary Figure 

7 for the FDART and FGBT, respectively. According to Figure 51 and Figure 52, the 

features “Parotid or Submandibular swelling”, “Rheumatoid factor”, 
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“Cryoglobulinemia”, “Age at SS diagnosis”, “Fatigue”, and “Low C4” appear to be 

prominent for lymphoma classification. In all cases, patients with parotid or 

submandibular swelling, rheumatoid factor, cryoglobulinemia, fatigue and Low C4 

tend to have higher impact for lymphoma development since the positive samples shift 

the ground truth to the right, thus yielding a positive contribution to lymphoma 

development. The same effect occurs in the case where the pSS patients exhibit 

palpable purpura, Raynaud’s phenomenon, and arthritis, as well (Figure 51). 

 

Figure 51. An illustration of the SHAP plot in federated scenario 1 for the FGBT. 

Τhe platform which was used for the purposes of the study was developed under the 

HarmonicSS EU funded project (HARMONIzation and integrative analysis of regional, 

national and international Cohorts on primary Sjögren’s Syndrome (pSS) towards 

improved stratification, treatment and health policy making) [343] and removes the 

need for the installation of local servers or any type of software in each site through the 

adoption of a federated data management platform which supports a large family of 

federated AI algorithms yielding interpretable and explainable AI models. The 

biomarkers for lymphoma development include parotid or submandibular swelling, 

cryoglobulinemia, rheumatoid factor, and low C4 levels, among others, which have 

been validated in previous studies [228], [240] highlighting the significance of parotid 

or submandibular gland swelling, low C4, rheumatoid factor and cryoglobulinemia for 

lymphoma development. The FDART outperformed the rest of the algorithms yielding 

lymphoma classification models with average AUC 0.87 across the scenarios. The 

dropout rates introduced by the FDART yielded slightly better performance than the 

FGBT which confirms that the dropout elimination can enhance the decision-making 

process. The execution time of the federated AI workflows was 30 seconds (in average) 

per database which confirms the small execution time complexity. 
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Figure 52. An illustration of the SHAP plot in federated scenario 1 for the FDART schemas. 

7.1.4.4. Case Study 4 - Evaluation of the proposed FHBF algorithm 

The scope of this study is to validate the classification performance and resilience 

against overfitting effects of a proposed federated learning algorithm across 21 

European cohorts in pSS. To evaluate the performance of the FHBF against the existing 
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high-performance federated learning schemas (i.e., the FGBT and FDART as already 

reported in [65], [389]), we gained access to a Pan-European data hub on rare 

autoimmune diseases including 21 databases as part of the HarmonicSS Project [343]. 

The patient data were shared, curated, and harmonized as described in [65] and 

distributed in private spaces within a cloud environment. Socio-demographic 

information was present only in 6060 patient records which were used for the analysis. 

Different training and testing sequences were evaluated, involving either two or more 

cohorts for the training process and either one or more cohorts for testing. Two 

experimental phases were conducted to examine the behavior of the FHBF across 

highly imbalanced data structures.  

To do so, the target feature in experimental design phase 1 was set to lymphoma which 

has a 5% occurrence in the overall population. To this end, the final number of eligible 

databases was reduced to 18 databases, since 5 databases had no reported lymphoma 

patients and thus were discarded from the experiment. The final number of harmonized 

patients was reduced to 4905 with 32 overlapping features (Table 27). In experimental 

design phase 2, the classification problem was more difficult with lower-class 

imbalance, where the target feature was set to MALT (mucosa-associated lymphoid 

tissue) lymphoma which is a lymphoma subtype with occurrence less than 3%. In this 

case, the final number of eligible databases was 17 (databases with no MALT patients 

were excluded from the analysis) with 4805 patients. 

Eight case studies were defined in experimental phases 1 and 2 with random training 

order and different testing databases to extensively evaluate the classification 

performance and the average training loss of the FHBF compared to the FGBT and 

FDART implementations. In the first experimental phase: (i) case 1 involves the 

federated training across 18 databases and testing in a single database, (ii) case 2 

involves the federated training in a different combination and testing in the same 

database as in case 1, (iii) case 3 involves the training across 18 databases and testing 

in a different database than in cases 1 and 2, and (iv) case 4 involves the training across 

18 databases and testing in a different database than cases 1, 2 and 3. In the second 

experimental phase: (i) case 5 involves the federated training across 18 databases and 

testing in a single database ('AOUD'), (ii) case 6 involves the federated training in a 

different combination and testing in a different database, (iii) case 7 involves the 
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training across 18 databases and testing in a different database, and (iv) case 8 involves 

the training across 18 databases and testing in a different database than cases 5, 6 and 

7. The consistency of each harmonized database was first evaluated prior to the 

application of the FHBF to avoid biases during the incremental weight update process. 

To this end, Principal Component Analysis (PCA) was applied on each individual 

harmonized database to extract the first four principal components as those that describe 

most of the variance in each database.  

 

Figure 53. Distribution of the first four principal components (A-D) per database along with 

the first four incremental principal components (IPCs) across all databases (shaded area). 

To compare the consistency of the four PCs from each individual database with the PCs 

across the total databases, we extended the PCA algorithm, where an empty PCA object 

was first fitted on a federated database A to yield a low rank approximation which was 

incrementally adjusted on the rest of the databases yielding the incremental PCs (IPCs) 

1-4. The IPCs 1-4 were compared against PCs 1-4 from each individual database using 

either the Student’s t-test or the Wilcoxon rank-sum test based on the normality 

estimations that were obtained by the Shapiro-Wilk test for normality. According to 

Figure 53, no statistically significant differences were observed between IPC1 and PC1 

per database which confirms the consistency of the harmonized data. The same stands 

for IPC3 and PC3. Only one statistically significant difference was observed between 

PC2 and IPC2 and between IPC4 and PC4 in the PARIS (p < 0.05) and UMCU (p < 

0.05) databases, respectively. The topology of the proposed hybrid loss function for 
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different δ values (i.e., δ ∈ [0.1, 0.3]) is depicted in Figure 54. For comparison 

purposes, the topologies of the logcosh loss and the Modified Huber loss (for the same 

𝛿 values) are also presented. For demonstration purposes, the horizontal axis was set to 

the range (-10, 10). According to Figure 54, the hybrid loss function combines the 

steepness of the Modified Huber loss (Figure 54 (A)) and the wideness of the logcosh 

loss (Figure 54 (B)) into a new loss with a smoother topology (Figure 54 (C)), where 

the scale of the topology is controlled by the 𝛿 value to control for overfitting effects. 

Since the 𝛿 value is directly linked to the dropout rate, larger dropout rates lead to a 

steeper loss topology thus yielding higher penalties during the weight update function. 

 

Figure 54. Topology of (A) the logcosh loss, (B) the modified Huber loss for 𝛿 values in the 

range 0.1 to 0.3, and (C) the proposed hybrid loss function for 𝛿 values in the same value range. 

The FHBF, FGBT and FDART with dropout rates 0.1 and 0.2 were used to solve a 

sequence of intensive supervised learning problems across the eight cases from 

experimental phases 1, 2.  In the FGBT, the booster was set to the ‘gbtree’, the objective 

to ‘binary:logistic’ and the ‘eval_metric’ to logloss. The parameters were updated in an 

incremental way, where the model that was trained in database 𝑁 was updated in 

database 𝑁 + 1. In the FDART, the booster was set to ‘dart’, the objective to 

‘binary:logistic’, the ‘eval_metric’ to logloss, and the dropout rate to 0.1 and 0.2, 

respectively. Regarding thee FHBF, the hybrid loss scale was set to 0.1 (same as the 

dropout rate), the number of rounds to 20 (for evaluation purposes), and the booster to 

the ‘HFDART’ which corresponds to the FDART (with the ‘dart’ booster) but with the 

customized hybrid loss. According to Table 29, the FHBF yielded similar or better 

performance in both experimental phases 1 and 2 against the FGBT and the FDART. 
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Even in cases where the FDART with 𝑟𝑑 = 0.1 yielded poor performance (e.g., in cases 

1, 5, 7), the FHBF yielded improved performance (sensitivity 0.938, specificity 0.732 

in case 1; sensitivity 0.786, specificity 0.714 in case 5; sensitivity 0.833, specificity 

0.659 in case 7). In other cases, the performance was similar (e.g., in cases 4, 8). It is 

notable that the increased performance of the FHBF is preserved in experimental phase 

2 where the class imbalance ratio was even smaller, where in case 5 the FGBT weight 

update process is affected by the ratio yielding poor specificity. The same occurs in 

case 7 regarding the FDART with 𝑟𝑑 = 0.1, where the FHBF manages to prevent the 

weight update process from yielding zero or infinite weights. 

Table 29. Performance evaluation results in experimental phases 1 and 2. 

Experimental  

Phase 
Case Algorithm Accuracy Sensitivity Specificity AUC 

Phase 1 

1 

FGBT 0.689 0.625 0.693 0.679 

FDART (𝑟𝑑 = 0.1) 0.547 0.875 0.529 0.768 

FDART (𝑟𝑑 = 0.2) 0.693 0.625 0.696 0.745 

FHBF 0.743 0.938 0.732 0.871 

2 

FGBT 0.645 0.875 0.632 0.774 

FDART (𝑟𝑑 = 0.1) 0.649 0.750 0.643 0.737 

FDART (𝑟𝑑 = 0.2) 0.645 0.875 0.632 0.846 

FHBF 0.743 0.938 0.732 0.892 

3 

FGBT 0.656 0.750 0.651 0.778 

FDART (𝑟𝑑 = 0.1) 0.631 0.750 0.624 0.727 

FDART (𝑟𝑑 = 0.2) 0.707 1.000 0.691 0.869 

FHBF 0.707 0.875 0.698 0.885 

4 

FGBT 0.637 0.750 0.631 0.829 

FDART (𝑟𝑑 = 0.1) 0.745 0.875 0.738 0.839 

FDART (𝑟𝑑 = 0.2) 0.656 1.000 0.638 0.839 

FHBF 0.758 0.875 0.752 0.916 

Phase 2 

5 

FGBT 0.497 0.857 0.479 0.693 

FDART (𝑟𝑑 = 0.1) 0.599 0.643 0.596 0.737 

FDART (𝑟𝑑 = 0.2) 0.667 0.786 0.661 0.796 

FHBF 0.718 0.786 0.714 0.831 

6 

FGBT 0.638 0.625 0.639 0.705 

FDART (𝑟𝑑 = 0.1) 0.733 0.750 0.731 0.746 

FDART (𝑟𝑑 = 0.2) 0.724 0.750 0.722 0.757 

FHBF 0.750 0.875 0.741 0.786 
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Experimental  

Phase 
Case Algorithm Accuracy Sensitivity Specificity AUC 

7 

FGBT 0.682 0.667 0.683 0.804 

FDART (𝑟𝑑 = 0.1) 0.565 0.833 0.555 0.855 

FDART (𝑟𝑑 = 0.2) 0.671 0.667 0.671 0.778 

FHBF 0.665 0.833 0.659 0.812 

8 

FGBT 0.545 1.000 0.530 0.827 

FDART (𝑟𝑑 = 0.1) 0.649 1.000 0.638 0.817 

FDART (𝑟𝑑 = 0.2) 0.630 1.000 0.617 0.913 

FHBF 0.675 1.000 0.664 0.914 

* with bold color: The algorithm with the best classification performance. 

 

The distribution of the average log loss during the training and testing procedures across 

the cases 1-4 in experimental phase 1 and cases 5-8 in experimental phase 2 is depicted 

in Figure 55 (A) and in Figure 55 (C), respectively. In both phases, the FHBF had the 

lowest average training loss across cases 1-8 which highlights its resilience against 

overfitting. To have a concrete view of the overall loss distribution, the training and 

testing loss was extracted by each database and averaged across the cases in 

experimental phase 1 (Figure 55 (B)) and experimental phase 2 (Figure 55 (D)). Once 

more, the average loss of the FHBF was either lower or similar to the FGBT and 

FDART. The increased loss that appears in the ‘UoB’, ‘UOI’, ‘MHH’, and ‘UBO’ 

databases from phase 1 is leveraged by the FDART and FHBF (Figure 55 (B)). The 

same occurs for databases ‘UNIVAQ’, and ‘UOI’ in phase 2 (Figure 55 (D)). 

 

Figure 55. Average training and testing loss distribution across (A) cases 1-4, (B) cases 5-8, 

(C) training and testing databases involved in cases 1-4, (D) training and testing databases 

involved in cases 5-8. 
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The increased performance of the FHBF is also confirmed by the increased AUC in the 

ROC curves which are depicted in Figure 56. 

 

Figure 56. ROC curves for the FHBF, FGBT, and FDART (with 𝑟𝑑 ∈ [0.1, 0.2]) across cases 

1-4 from experimental phase 1 (A-D) and cases 5-8 from experimental phase 2 (E-H). 
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Although SHAP (SHapley Additive exPlanations) analysis does not currently support 

the ‘dart’ booster [401], we applied the FHBF algorithm on the best case from 

experimental phase 2 using the HFGBT as a booster to obtain explainable outcomes 

and evaluate their clinical impact.  

 

Figure 57. SHAP analysis results on a randomly selected case from experimental phase 2. (A) 

Global importance of each feature. (B) The population substructure is clustered by their 

explanations. (C) Distribution of importance for each variable. (D) Explanations for individual 

predictions. 

More specifically, the FHBF provides: (i) global importance plots, where the global 

importance of each feature is expressed as the mean absolute value for that feature over 

all the given samples (Figure 57 (A)), (ii) heatmaps to display the population 

substructure of a database where data points are clustered by their explanations and not 

by the original feature values (Figure 57 (B)), (iii) violin plots which display the 

distribution of importance for each variable (Figure 57 (C)), and (iv) waterfall plots 

which display explanations for individual predictions (Figure 57 (D)). The bottom of a 

waterfall plot starts as the expected value of the model output, and then each row shows 

how the positive (red) or negative (blue) contribution of each feature moves the value 

from the expected model output over the background database to the model output for 

this prediction. According to Figure 57, all identified risk factors are in complete line 

with literature findings reported in previous study [65]. 
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According to Figure 62(A), the average execution time of the FHBF was comparable 

to the FDART (and lower than the FGBT) although the total execution time (Figure 62 

(B)) of the FHBF is directly affected by the number of trees in the forest. More 

specifically, the execution time was 59.11 sec for 20 trees, 143.09 sec for 50 trees, 

315.73 sec for 100 trees, 430.16 sec for 150 trees, and 499.43 sec for 200 trees. A 

detailed distribution of the time execution is also presented in Figure 62(C). The runs 

were performed on a central node with Intel(R) Core (TM) i7-10750H CPU @ 

2.60GHz. 

 

Figure 58. Computational performance in terms of execution time (sec). (A) The execution 

time (sec) of the FGBT and the FDART and the average execution time (sec) for the FHBF 

with 20, 50, 100, 150 and 200 trees. (B) The total execution time (sec) of the FHBF with 20, 

50, 100, 150 and 200 trees. (C) The distribution of the individual execution times (sec) of the 

FHBF with 20, 50, 100, 150 and 200 trees. 

The FHBF algorithm implements a hybrid weight update approach to deal with ill-

posed problems that arise from overfitting effects during the training across complex 

and highly imbalance data in federated databases. A scale parameter is introduced to 

control the shape of the hybrid loss function based on the dropout rate to avoid 

overfitting effects. The FHBF currently supports both the hybrid FGBT (HFGBT) and 

the hybrid FDART (HFDART) as boosters. Class imbalance handling functionalities 

are incorporated to develop clusters of HFDARTs, where each cluster is formulated 

based on a random subset of the federated training instances. 
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Then, a log loss score is used to isolate the weak sets of regression trees for the 

classification task under investigation to further boost the classification performance of 

the algorithm and increase its resilience against weak decisions. SHAP analysis is 

applied as a final step to yield explainable outcomes. Eight case studies were conducted 

to demonstrate the superiority of the FHBF to solve demanding classifications tasks 

involving 18 federated databases against existing federated learning implementation. 

Our results highlight the robustness and resilience of the FHBF against overfitting 

effects during training and testing, yielding an average loss 0.527 across the eight cases 

compared to the FGBT (0.611) and the FDART (0.65 for 𝑟𝑑 0.1, 0.582 for 𝑟𝑑 0.2) 

along with increased classification performance which reached 0.938 sensitivity and 

0.732 specificity supporting explainable outcomes based on the HFGBT booster. 

7.2. Hypertrophic cardiomyopathy 

This case study involves the application of the beyond the state-of-the-art methods that 

were developed for data curation (CHAPTER 3), synthetic data generation and 

augmentation (CHAPTER 5) to address open issues and clinical unmet needs (Section 

1.4) in the domain of the hypertrophic cardiomyopathy (Section 2.3.2). 

7.2.1. Data curation 

7.2.1.1. Case Study 1 – Curation across two timepoints 

The scope of this study is to enhance the quality of a single database in HCM across 

two timepoints. Anonymized clinical data were obtained from 2454 patients under the 

SILICOFCM project which included 69 features in total [402]. 

An instance of the curated clinical dataset is depicted in Figure 59. According to Figure 

59, features having less than 50% missing values are depicted in blue color, features 

with no missing values are depicted in green color and features with more than 50% 

missing values are depicted in red color and are characterized as “bad” feature. The 

missing values are depicted in black color using the “NaN” flag and the outliers are 

depicted in orange. All “bad” features along with the outliers were automatically 

removed from further analysis and the missing values were replaced according to the 

mean/most frequent approach yielding the final dataset to be used for the virtual 

population generation. 
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Anonymized data were obtained from 1227 patients at two timepoints (2454 records in 

total) under the SILICOFCM project [402]. The dataset included 29 features (17 

discrete, 12 continuous) related to demographic (e.g., age, gender), laboratory measures 

(e.g., diastolic pressure), and gene-related information (e.g., ACTC1, CSRP3). All the 

data came from the same center, the Cardiomyopathies Unit at Careggi Hospital, 

Florence, and were collected by a very limited number of clinicians over more than 20 

years. 

 

Figure 59. An instance of the curated dataset. 

The total number of missing values within the data was 10.12% (13 features had less 

than 50% missing values and 16 features had no missing values at all). Neither outliers 

nor duplicated features or inconsistent fields were detected in the anonymized data. The 

data curator was able to enhance the quality of the single database in HCM. 

7.2.1.2. Case Study 2 – Evaluation of the proposed “smart” data imputer 

The scope of this study is to address data completeness in HCM. Anonymized clinical 

data were acquired from 648 patients with HCM from the Cardiomyopathies Unit at 

Careggi Hospital, Florence under the SILICOFCM project [402]. The total number of 

features was 192 (quality state: 31 “good”, 51 “fair”, 110 “bad”). Out of 192 features, 

54 were discrete, 133 were continuous and 5 were unknown (i.e., mixed data types). 

Features with “bad” quality state (i.e., 110), missing records and anomalies were 

removed from the analysis yielding a final dataset with 82 features and 290 instances. 

Out of the remaining 82 features, 20 were selected by the clinical experts as critical for 

HCM development, including the “age”, “sex”, “nyhaClass” (New York Heart 
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Association) class, “systolicPressure”, “diastolicPressure”, “syncope”, “heart 

murmur”, “eflv” (ejection fraction left ventricle), “lvids” (left ventricle internal 

diameter end systole, “lvidd” (left ventricle internal diameter end diastole), “ivsd” 

(interventricular septal end diastole), “plwd” (posterior wall thickness at end diastole), 

“svlv” (systolic volume of left ventricle), “lvot” (left ventricular outflow tract), 

“lvotMaxPg” (maximal instantaneous pressure gradient), “ee” (Early diastolic mitral 

annular tissue velocity), “BMI” (body mass index), “la” (left atrium), “alt” (alanine 

aminotransferase), “ao” (aortic root diameter), and “aorticValve”. 

In total 10000 virtual patient profiles were produced by each generator to enhance the 

number of candidate virtual profiles for the “smart” imputation process. The BGMM 

generator achieved the smallest average correlation difference (0.04) among the real 

and the virtual patient profiles with 0.02 KL divergence and VMR smaller than 1. The 

tree ensembles, the RBF-based ANNs and the BN come next with 0.06, 0.08, and 0.14 

average correlation difference. The BN and RBF-based ANNs did not have acceptable 

VMR (larger than 1). The real dataset was randomly contaminated with missing values 

ratios, say 𝑟 ∈ [0.1, 0.5], where 0.1 and 0.5 denote 10% and 50% missing values, 

respectively. For each ratio, the search algorithm was applied on every set of 10000 

virtual profiles from the four generators to identify the most prominent matches. The 

PMS was estimated for each virtual patient in each set through (3.10).  

According to Table 30, the BGMM generator achieved the smallest dissimilarity 

between the proposed values for imputation and the original ones, in all cases, yielding 

average correlation difference 0.02, 0.04, 0.04, 0.05, and 0.05 for 0.1 ≤ 𝑟 ≤ 0.5 (the 

average SSAD values were 0.77, 1.7, 3.79, 5.78, 6.87). This is also confirmed in Figure 

60 (C), (D) by the black patterns in the heatmaps of the average CD and SSAD values 

(for 𝑟 =  0.2). According to Figure 60 (A), the kurtosis of the PMS distribution was 

lower for 0.1 ≤ r ≤ 0.4. This implies that the search algorithm was able to identify the 

best virtual profiles across a relatively large set of candidate virtual profiles. On the 

other hand, in the case r = 0.5, the PMS distribution had higher kurtosis due to the 

increased ratio of missing values per patient (i.e., 50%) and thus the reduced number of 

candidate virtual profiles. This is also confirmed by the 290x10000 heatmap of the PMS 

values for r =  0.2 (Figure 60 (B)) which provide explainable scores (the best matching 

profiles are depicted with intense colors). 



233 

 

 

Figure 60. PMS distributions and heatmaps from the BGMM generator. (A) The PMS 

distribution for 0.1 ≤ 𝑟 ≤ 0.5. (B) The 290 (real patients) x 10000 (virtual patients) heatmap 

of the PMS values for 𝑟=0.2. (C) The heatmap with the average SSAD between the real and the 

“smart” imputed patients for 𝑟=0.2. (D) The corresponding heatmap with average CD. 

The remaining generators achieved favorable performance, where the tree ensembles 

achieved similar results to the BGMM but at a lesser extent (average CD: 0.03, 0.04, 

0.05, 0.05, and 0.05 for ratios 0.1, 0.2, 0.3, 0.4, 0.5, respectively; average SSAD: 0.84, 

1.84, 3.85, 5.75, and 6.86) (Table 30). 

Table 30. Average correlation difference (CD) and average scaled squared absolute differences 

(SSAD) between the real and the randomly imputed values per virtual data generator across 

different ratios of missing values. 

Metric 

Virtual profile generation schemas 

BGMM 
Bayesian 

Network 
Tree ensembles RBF-based ANN 

Contamination ratio: 10% missing values (𝒓 = 𝟎. 𝟏) * 

Avg. CD 0.02 0.03 0.03 0.02 

Avg. SSAD 0.77 1.10 0.84 0.98 
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Contamination ratio: 20% missing values (𝒓 = 𝟎. 𝟐) * 

Avg. CD 0.04 0.05 0.04 0.04 

Avg. SSAD 1.70 2.43 1.84 2.09 

Contamination ratio: 30% missing values (𝒓 = 𝟎. 𝟑) * 

Avg. CD 0.04 0.06 0.05 0.05 

Avg. SSAD 3.79 4.83 3.85 4.54 

Contamination ratio: 40% missing values (𝒓 = 𝟎. 𝟒) * 

Avg. CD 0.05 0.07 0.05 0.06 

Avg. SSAD 5.78 6.84 5.75 6.84 

Contamination ratio: 50% missing values (𝒓 = 𝟎. 𝟓) * 

Avg. CD 0.05 0.09 0.05 0.05 

Avg. SSAD 6.87 8.39 6.86 8.51 

* Results were averaged across ten iterations. 

 

To address this demanding challenge, we propose a “smart” imputation workflow that 

effectively deals with missing data across complex clinical data structures. The 

workflow utilizes virtual population generators to produce high-quality virtual patient 

profiles. A profile matching score (PMS) was used to find the optimal virtual patient 

profiles for imputing the real ones through a search algorithm.  

A case study was conducted to evaluate the performance of the proposed method 

towards data imputation for in silico clinical trials in the domain of hypertrophic 

cardiomyopathy (HCM). To this end, the real dataset was randomly contaminated with 

missing values for multiple ratios (e.g., from 10% to 50%). 

Four state-of-the art data generators (i.e., Bayesian networks, tree ensembles, Gaussian 

Mixture Models with variational inference and artificial neural networks) were used to 

produce 10000 virtual patient profiles with 0.02 Kullback-Leibler divergence. The PMS 

distribution was utilized in the search algorithm to extract the optimal virtual patient 

profiles with explainable heatmaps. The BGMM generator provided imputed values 

with the lowest average squared absolute difference (0.4) and average correlation 

difference (0.02) with the real dataset. To our knowledge, this is the first “smart” 

approach that provides explainable virtual patients profiles for real data imputation. 

In this work, we developed a “smart” imputation workflow to address missing data 

across complex clinical data structures. The proposed workflow utilizes virtual 

population generators to produce high-quality virtual patient profiles.  



235 

 

The profile matching score (PMS) is then estimated to quantify the similarity of the 

virtual patient profiles with the real ones. A search algorithm is finally applied to seek 

for optimal virtual patient profiles that match with the real patient profiles and thus to 

provide imputed values with reduced correlation difference and squared absolute 

difference. 

A case study was conducted in the context of in silico clinical trials for the HCM 

domain, where the real patient dataset was randomly contaminated with missing values 

for multiple ratios varying from 10% to 50%. The BGMM generator yielded 10000 

virtual patient profiles compared against the rest of the generators with less than 0.02 

KL divergence and average correlation difference. The PMS was calculated for each 

virtual patient profile and the best matching profiles were extracted as those with the 

smallest dissimilarity between the proposed values for imputation and the original ones. 

The BGMM generator provided imputed values with the lowest average SSAD (0.4) 

and average CD (0.02) with the real dataset which can be confirmed by the extracted 

heatmaps since the optimal profiles are separated by intense color coding. To our 

knowledge, this is the first “smart” method that offers explainable heatmaps compared 

against the existing frameworks [67], [68], [70], [136], [139], [140] which provide 

either manual or semi-automated workflows based on pre-defined semantic data models 

to address data completeness. 

7.2.2. Synthetic data generation 

7.2.2.1. Case Study 1 – Statistically optimized synthetic data generation 

The scope of this study is to generate synthetic data for in silico clinical trials in HCM 

using a statistically optimized synthetic data generator. Anonymized clinical data were 

obtained from 2454 patients under the SILICOFCM project [402] which included 69 

features in total. The clinical experts examined the resulting curated dataset and selected 

a subset of 10 features for generating 300 virtual patients.  

The subset of features includes the “BMI” (Body Mass Index), “age”, “sex”, “syncope”, 

“NYHA class”, “systolic”, “diastolic”, “heart murmur”, “LVIDs (Left Ventricle 

Internal Diameter in systole phase)”, and “LVIDd (Left Ventricle Internal Diameter in 

dystole phase)”. The mean vector and the covariance matrix of the original population 

were then estimated and provided as input into the MVND formula. 
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Figure 61. The covariance matrix of the real population. 

The level of agreement between the multi-dimensional real distribution and the virtual 

one was controlled by the gof value. The 10x10 covariance matrix of the real dataset is 

depicted in Figure 61, where the non-diagonal cell (𝑖, 𝑗) corresponds to the covariance 

between features 𝑖 and 𝑗 and the diagonal elements correspond to the variance of each 

feature. The pairs of features with high covariance are depicted in orange color whereas 

the pairs of features with dark color correspond to features which are independent. The 

results of the virtual population generation are depicted in Figure 62. In all cases, the 

gof values were less than (or equal to) 0.2 yielding virtual distributions similar to the 

real ones. The number of executions needed for the virtual population generation was 

approximately 5000 requiring a short amount of time (~5 sec) considering the number 

of virtual patients. 
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Figure 62. The histogram distribution between the features of the real (blue) and the virtual 

(red) populations. 

The proposed method is based on a recursive execution of the MVND formula using 

the gof measure to control for the randomness of the virtual distributions, where the 

number of iterations required to control it in the previous case was equal to 5000 runs. 

To demonstrate the value of the proposed approach towards the generation of high-

quality virtual data, the proposed method was evaluated against 10 random executions 

of the MVND without the gof factor as a criteria. According to Table 31, the average 

gof values across 10 random runs are larger than 0.2 for the systolic, diastolic, and 

LVIDs (Left Ventricle Internal Diameter in systole phase) features and increased for 

the BMI and LVIDd (Left Ventricle Internal Diameter in dystole phase). Furthermore, 

in these cases, the deviation of the mean values is larger than in the original population. 

Table 31. Comparison results between the proposed method and 10 random executions of the 

MVND. 

Features 

Mean/median Goodness-of-fit 

Real 
MVND with 

gof opt. 
random runs 

MVND with 

gof opt. 
random runs 

BMI 27.35 27.22 27.36 0.131 0.16 

Age 55.68 54.51 56.43 0.078 0.082 

Sex 0 0 0 0.092 0.078 

Syncope 0 0 0 0.017 0.017 

NYHA class 1 1 1 0.109 0.119 

Systolic blood 

pressure* 
126.24 124.36 125.56 0.178 0.255 
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Features 

Mean/median Goodness-of-fit 

Real 
MVND with 

gof opt. 
random runs 

MVND with 

gof opt. 
random runs 

Diastolic blood 

pressure* 
76.97 75.63 76.22 0.182 0.2 

Heart murmur 0 0 0 0.044 0.06 

LVIDs* 28.26 28.11 28.93 0.2 0.271 

LVIDd 47.39 47.19 47.43 0.147 0.193 

* features with significant differences between the two cases. 

 

All in all, we presented a virtual population generator from a real clinical dataset based 

on the parametric MVND methodology optimized by an iterative process through the 

Kolmogorov-Smirnov goodness-of-fit test. The developed VP generator is integrated 

into the multi-repository virtual population model of SILICOFCM [402] which is an 

advanced cloud based in silico platform offering simulation capabilities and advanced 

tools for testing and development of drugs targeting the familial cardiomyopathies 

(FCM). 

7.2.2.2. Case Study 2 - ML-based synthetic data generation 

The scope of this case study is to generate high-quality synthetic data for in silico 

clinical trials in HCM using machine learning based synthetic data generators. 

Anonymized data were obtained from 1227 patients at two timepoints (2454 records in 

total) under the SILICOFCM project [402]. The dataset included 29 features (17 

discrete, 12 continuous) related to demographic (e.g., age, gender), laboratory measures 

(e.g., diastolic pressure), and gene-related information (e.g., ACTC1, CSRP3). All the 

data came from the same centre, the Cardiomyopathies Unit at Careggi Hospital, 

Florence, and were collected by a very limited number of clinicans over more than 20 

years. The clinical experts examined the resulting curated dataset and selected a subset 

of 10 features for generating 1000 virtual patients. The subset of features consists of 

the following features: “LVOTO_Rest” (Left ventricular outflow tract obstruction 

during resting state) (mean = 19.79, std = 21.79), “Evel” (E wave velocity) (mean = 

74.8, std = 22.46), “lat_Eprime” (lateral e’ wave) (mean = 9.8, std = 3.02), 

“sep_Eprime” (septal e’ wave) (mean = 6.86, std = 2.14), “LA” (Left Atrium) (mean = 

44.23, std = 7.39), “LVEF” (Left Ventricular Ejection Fraction) (mean = 64.25, std = 

8.6), “Max_LVT” (maximum Left Ventricular Thickness) (mean = 19.24, std = 5.88), 
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“PW” (mean = 10.68, std = 2.08), “NYHA” (New York Heart Association class) (mean 

= 1.65, std = 0.71) and “Age” (mean = 51.33, std = 18.19). The performance evaluation 

results for each type of virtual population generation method are presented in Table 32, 

where the gof values where the smallest for “Max_LVT” and “Age” in the log-MVND, 

for the features “sep_Eprime”, “LA”, “PW”, and “Age” in the supervised tree 

ensembles and for the remaining features in the unsupervised tree ensembles. 

Table 32. Performance evaluation results for each type of virtual population generation method. 

Feature 
Performance evaluation measures 

mean std gof* 

Multivariate log-normal distribution 

LVOTO_Rest 22.93 16.76 0.28 

Evel 75.10 22.36 0.18 

lat_Eprime 9.79 3.04 0.25 

sep_Eprime 6.89 2.09 0.24 

LA 43.89 7.30 0.10 

LVEF 64.08 8.69 0.18 

Max_LVT 19.08 6.00 0.10 

PW 10.51 1.99 0.19 

NYHA 1.63 0.76 0.27 

Age 51.49 18.36 0.04 

Supervised tree ensembles 

LVOTO_Rest 18.67 24.50 0.20 

Evel 78.54 34.06 0.16 

lat_Eprime 9.38 3.56 0.23 

sep_Eprime 6.64 2.59 0.18 

LA 43.60 7.26 0.09 

LVEF 65.25 6.09 0.14 

Max_LVT 17.60 5.00 0.14 

PW 10.48 2.25 0.16 

NYHA 1.53 0.68 0.09 

Age 52.30 17.55 0.04 

Unsupervised tree ensembles 

LVOTO_Rest 19.85 26.52 0.19 

Evel 78.25 31.71 0.15 

lat_Eprime 9.63 3.64 0.19 

sep_Eprime 6.56 2.74 0.24 

LA 42.97 7.26 0.14 
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LVEF 64.28 7.54 0.07 

Max_LVT 17.70 4.73 0.13 

PW 10.39 2.03 0.17 

NYHA 1.51 0.62 0.07 

Age 52.03 17.59 0.06 

*The smallest gof values on each method are filled with gray color. 

 

The distribution of the gof values for each type of virtual population generation method 

is depicted in Figure 63 for the set of features which is presented in Table 32. 

 

 

Figure 63. Distribution plots for the real (upper panel; blue color) and the virtual data (lower 

panel; light blue: log-MVND, green: supervised tree ensembles, orange: unsupervised tree 

ensembles). 
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The correlation matrix of the real data is depicted in Figure 64 whereas the correlation 

matrix for the virtual data that were derived by the unsupervised tree ensembles (as the 

method that achieved the highest number of “optimal” gof values) is depicted in Figure 

65, showing similar association patterns within the data. High correlation values are 

depicted in deep blue color whereas low correlation values are depicted in yellow.  

 

Figure 64. Correlation matrix of the real data. 

Since this is a qualitative way to view the correlation between the features in the real 

and the virtual populations, we have also computed the absolute value of the difference 

between the average correlation values from the upper (or lower) triangular part of the 

matrices, for quantitative purposes. The difference in the average correlation values was 

4.45% for the log-MVND, 8.28% for the supervised tree ensembles and 2.71% for the 

unsupervised tree ensembles. In this work, we deployed three computational methods 

to generate virtual patient data from real clinical data. We extend a previous study 

[132], where the MVND method was used to generate 300 virtual patients by 

comparing the multivariate log-normal distribution with the tree ensembles to generate 

1000 virtual patients for in-silico clinical trials targeting the drug development for 

familiar cardiomyopathies (FCM). 
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Figure 65. Correlation matrix of the virtual data from the “unsupervised” tree ensembles. 

These methods have been integrated into the in-silico clinical trial SILICOFCM cloud-

based platform [402]. The latter incorporates straightforward simulation tools for FCM 

drug development. Our results confirm the dominance of the tree ensembles as a 

prominent method for virtual population generation yielding an increased level of 

agreement between the real and the virtual data with average gof values less than 0.2 

and correlation patterns like the real data (2.71% difference in the average correlation 

values). We compared three computational methods towards the generation of 1000 

high-quality, virtual patient data for in silico clinical trials in cardiomyopathies drug 

development using the goodness of fit (gof) and the correlation matrix for performance 

evaluation purposes. Our results suggest the dominance of the tree ensembles for virtual 

population generation yielding virtual patient data with an increased level of agreement 

(distributions with less than 0.2 gof) and at the same time maintaining the correlation 

patterns (associations) among the features in the real clinical data. 

More specifically, the “unsupervised” tree ensembles achieved the lowest goodness-of-

fit values for five out of ten features according to Table 32 and Figure 63 (i.e., for the 

clinical features “LVOTO_Rest”, “Evel”, “lat_Eprime”, “LVEF”, and “NYHA”), the 

supervised tree ensembles for four out of ten features (i.e., the “sep_Eprime”, “LA”, 
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“PW”, and “Age”) using “NYHA” as the target feature and finally the log-MVND for 

only two out of ten features (i.e., the “Max_LVT”, and “Age”). The correlation matrix 

that was generated by the “unsupervised” tree ensembles was close to the original one, 

a fact that enhances the level of agreement between the virtual and the real data. For 

example, the strong association between the lateral e` wave (“latEprime”) and the septal 

e` wave (“sepEprime”) (Figure 64) which is high (more than 75%) is clearly preserved 

in the virtual population (Figure 65). The proposed methods could potentially provide 

significant insight in the field of virtual population generation to re-adjust the 

perspective of Clinical Trials (CTs) in other domains. As a future work, we also plan to 

deploy artificial neural networks (ANNs) that make use of radial basis functions (RBFs) 

as activation functions towards the generation of even more robust clinical data for in-

silico clinical trials. 

7.2.2.3. Case Study 3 - Evaluation of the BGMM with robust priors 

The scope of this case study is to generate high-quality synthetic data for in silico 

clinical trials in HCM using Bayesian Gaussian Mixtures with robust Dirichlet priors 

and weight concentration values. Anonymized data were obtained from 776 patients 

under the SILICOFCM project [402]. The dataset included 20 features related to 

demographic and echocardiographic measurements. A data curation pipeline presented 

in a previous study [66] was applied on the clinical data to remove outliers, duplicated 

fields, and inconsistent data types using both univariate and multivariate methods. All 

detected outliers and duplicated fields, as well as, features with high number of missing 

records were removed from further analysis. The final curated dataset included 11 

features, namely the: (i) “Ech_Echo_LA” (Left Atrium), (ii) “Ech_Echo_LVIDs” (Left 

ventricular internal dimension), “ABNORMAL_HOLTER” (Abnormal Holter 

indicator), “Ech_Echo_Aortic_Root”, “NYHA” (New York Heart Association class), 

“ARRHYTHMIA_NSVT” (Non sustained ventricular tachycardia), “Ech_Echo_PW” 

(Pulse Wave Doppler), “BMI” (Body Mass Index), “BSA” (Body Surface Area), 

“Height”, “High_Risk”. These features were used to evaluate the generators across 

multiple virtual patients in the range [1000, 20000] with a step 1000. The average 

goodness of fit and inter-correlation values are depicted in Figure 66 for components in 

the interval [1, 30]. For illustration purposes, the number of virtual patients has been 

restricted in the interval [1000, 10000]. 
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Figure 66. Performance evaluation of the proposed BGMM across multiple virtual patients in 

range [1000,10000]. 

According to Figure 66, the average gof value was less than 0.1 for more than 5 

Gaussian components. The average inter-correlation difference was less than 0.04 

across the multiple virtual populations’ and in some executions even less than 0.03.  

 

Figure 67. Performance evaluation of the proposed BGMM for the four best components across 

multiple virtual patients. 
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The average goodness of fit and correlation values from the four most prominent 

Gaussian components of Figure 66 (i.e., for 19, 20, 24, and 25 components) are depicted 

in Figure 67, along with the corresponding KL divergence and log-likelihood scores 

(which are referred to as BGMM scores). According to Figure 67, the number of 

components that yielded virtual data with the smallest goodness of fit, KL divergence 

scores, correlation values, and the highest BGMM scores, across all executions, was 

24. This number was combined with the Dirichlet concentration (gamma) value to 

generate multiple virtual patients.  

For comparison purposes, the number of virtual patients was set to 20000. According 

to Table 33, the proposed BGMM approach achieved the lowest gof (less than 0.1) 

along with the UTE and the STE compared to the RBF-based ANN and the Bayesian 

networks. In addition, the proposed BGMM method yielded the lowest inter- and intra-

correlation differences between the features in the virtual data (0.0133 inter-correlation 

and 0.0121 intra-correlation). In all cases, the average KL divergence was less than 

0.001 highlighting the increased similarity of the synthetic with the real dsitributions. 

Table 33. Performance evaluation results. 

Method 

Average performance evaluation measures 

Goodness of fit 
Inter-correlation 

difference 

Intra-correlation 

difference 
KL divergence 

BGMM 0.0667 0.0133 0.0121 <0.001 

UTE 0.0211 0.0309 0.0281 <0.001 

STE 0.0261 0.0433 0.0393 <0.001 

ANN 0.1872 0.0829 0.0753 <0.001 

Bayesian 0.1864 0.0824 0.0749 <0.001 

 

According to Figure 68, the average execution time of the proposed BGMM approach 

was faster than the UTE and the STE methods, yielding multiple virtual populations in 

4.321 sec against the UTE and the STE which required 46.537, and 34.096 sec, 

respectively. The gap in the proposed BGMM during the generation of 10000 patients 

is related to the fast convergence of the BGMM. The average execution times of the 

ANNs and the Bayesian methods were ignored due to their reduced performance 

against the previous methods. Gaussian Mixture Models (GMMs) with variational 

Bayesian inference (BGMM) were developed to generate large-scale virtual 

populations. The proposed method utilizes Dirichlet process mixtures as the BGMM’s 



246 

 

prior structure, where the concentration of each component on the weight distribution 

is an exponential function of the number of components. Our approach was compared 

against state-of-the-art virtual data generators, including the Bayesian networks, the 

STE, the UTE, and the ANN for the generation of 20000 virtual patients for in-silico 

clinical trials in HCM yielding the lowest inter- and intra-correlation differences (0.013 

and 0.012), in lower execution time (4.321) than the STE (46.537 sec) which had the 

second-best performance. 

 

Figure 68. Execution time (sec) per virtual data generator. 

We utilized probabilistic Gaussian Mixture Models with variational Bayesian inference 

(BGMM) for the generation of large-scale virtual populations for in-silico clinical trials 

in HCM. The proposed approach uses weight concentration values for variational 

inference which are based on an exponentially decaying transformation of the number 

of Gaussian components. The proposed approach was compared against state-of-the-

art virtual data generators, including, the Bayesian networks, the supervised tree 

ensembles (STE), the unsupervised tree ensembles (UTE), and the ANN yielding better 

inter- and intra- correlation differences in less execution time than the UTE which 

achieved the second-best performance. The proposed method for the estimation of the 
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Dirichlet concentration of each component on the weight distribution yielded a stable 

number of components (24 components) across multiple virtual populations executions, 

where the prior structure of the GMM was defined according to the Dirichlet process 

mixture. The proposed BGMM with the optimal number of Gaussian components 

achieved the lowest goodness of fit values (less than 0.1) along with the UTE and the 

STE compared to the RBF-based ANN and the Bayesian networks (with average gof 

value larger than 0.15). 

In addition, the proposed BGMM method yielded the lowest inter- and intra-correlation 

differences between the features in the virtual data (almost 0.01), in less execution time 

(0.4319 sec) than the STE (46.5373 sec), which had the second-best performance. This 

confirms the computational efficiency of the proposed BGMM approach towards the 

generation of large-scale virtual populations for in-silico clinical trials in HCM. 

7.2.2.4. Case Study 4 - Evaluation of the BGMM-OCE 

The scope of this case study is to generate high-quality synthetic data for in silico 

clinical trials in HCM using a computationally efficient, large scale synthetic data 

generator. Anonymized clinical data were obtained from 648 patients who have been 

diagnosed with hypertrophic cardiomyopathy under the SILICOFCM project [402]. 

The dataset included 188 features (71 discrete, 116 continuous, 1 unknown). Out of 188 

features 85 were automatically annotated as “eligible”, whereas the remaining 103 

features as “non-eligible”. Outliers were detected in 61 “eligible” features and were 

resolved. Imputation was applied in the “eligible” features based on the kNN approach. 

The non-eligible features were removed from further analysis. 

The following set of 20 features was included in the analysis, upon clinical inspection 

as potential risk factors for HCM: age, sex, NYHA class, systolic pressure, diastolic 

pressure, syncope, heart murmurs, left ventricular ejection fraction (LVEF or EFLV), 

left ventricular internal dimension at end-diastole (LVIDd), left ventricular internal 

dimension at end systole (LVIDs), intraventricular septal thickness at end-diastole 

(IVSd), posterior wall thickness at end-diastole (PLWd), end-systolic volume of left 

ventricle (SVLV), left ventricular outflow tract maximum pressure gradient 

(maxLVOTPG), Doppler E/E’ ratio (EE), body to mass index (BMI), left atrium size 

(LA), Alanine aminotransferase (ALT), aorta size (AO), and aortic valve (AV). 
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Spectral clustering was first applied to estimate the number of clusters using the 

LOBPCG eigensolver with the gamma ratio set to 𝑒𝑥𝑝(−𝑜𝑝𝑡), where 𝑜𝑝𝑡 refers to the 

number of clusters and varies between 2 and 20. The DBS was computed for each 

cluster to quantify the consistency of the resulting clusters. According to Figure 69 (A), 

the number of clusters having the highest DBS was 10. The process was repeated for 

multiple virtual populations varying from 1000 to 30000 virtual patients with a step 

1000. In each case, the BGMM-OCE algorithm was trained using 10 Gaussian 

components to estimate the covariance matrix and the mean vector of the Gaussian 

distribution. The latter were used for the training process, where the weight 

concentration prior was set to exp(−𝑜𝑝𝑡), with 𝑜𝑝𝑡 10. According to Figure 69 (B) the 

distribution of the average intra-correlation differences appears to be decaying over the 

increasing number of virtual patients, with differences less than 0.018 for more than 

14000 virtually generated patients. 

 

Figure 69. BGMM-OCE testing across 20 components/clusters. (A) The DBS distribution, (B) 

average intra-correlation difference between the real and the virtual data for multiple virtual 

patients. 

The virtual data quality results for each data generator are depicted in Figure 70 across 

multiple virtual patient scenarios varying from small case population generation (i.e., 

1000 virtual patients) to large-scale virtual population generation (i.e., 30000 virtual 

patients). According to Figure 70, the BGMM-OCE achieved the best performance 

yielding the lowest average intra-and inter-correlation difference, the lowest GOF and 

the lowest cV with non-significant variations in the average KL divergence difference 

(less than 0.05). 



249 

 

 

Figure 70. Virtual data quality results. (A) Average intra-correlation, (B) GOF, (C) KL-

divergence, and (D) cV differences across multiple virtual patients per data generator. 

Gaussian kernel density estimation was applied to estimate the density of the real and 

virtual data (Figure 71). According to Figure 71, the KL values were less than 0.1 in all 

cases except for the diastolic pressure due to its increase heterogeneity with the rest of 

the features. 

Table 34. Data quality evaluation results for N = 1000, 10000, 20000, 30000 virtual patients. 

 BGMM-OCE BN 
RBF-based 

ANNs 
UTE STE 

N = 1000 

KL-divergence 0.057 0.034 0.036 0.036 0.036 

GOF 0.186 0.265 0.253 0.232 0.238 

Inter-corr. diff 0.032 0.110 0.085 0.096 0.084 

Intra-corr. diff 0.030 0.105 0.081 0.091 0.080 

cV diff. 0.049 0.186 0.328 0.330 0.324 

N = 5000 

KL-divergence 0.035 0.034 0.036 0.035 0.035 

GOF 0.186 0.259 0.257 0.235 0.238 

Inter-corr. diff 0.019 0.108 0.084 0.091 0.078 

Intra-corr. diff 0.018 0.102 0.079 0.091 0.074 

cV diff. 0.046 0.181 0.300 0.314 0.324 

N = 10000 

KL-divergence 0.047 0.034 0.036 0.035 0.035 

GOF 0.192 0.259 0.255 0.239 0.238 
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 BGMM-OCE BN 
RBF-based 

ANNs 
UTE STE 

Inter-corr. diff 0.019 0.107 0.082 0.092 0.078 

Intra-corr. diff 0.018 0.102 0.078 0.087 0.074 

cV diff. 0.045 0.182 0.306 0.325 0.320 

N = 20000 

KL-divergence 0.035 0.034 0.036 0.035 0.035 

GOF 0.191 0.26 0.256 0.238 0.238 

Inter-corr. diff 0.017 0.108 0.082 0.090 0.078 

Intra-corr. diff 0.016 0.102 0.078 0.085 0.074 

cV diff. 0.046 0.181 0.297 0.324 0.315 

N = 30000 

KL-divergence 0.049 0.034 0.036 0.035 0.035 

GOF 0.191 0.26 0.256 0.239 0.237 

Inter-corr. diff 0.017 0.108 0.081 0.089 0.078 

Intra-corr. diff 0.016 0.103 0.077 0.085 0.074 

cV diff. 0.046 0.181 0.300 0.322 0.319 

 

The densities of the best data generator (i.e., the BGMM-OCE) for 1000 virtual patients 

are depicted in Figure 71 along with the average coefficient of variation (cV) difference 

between the real and the virtual distributions. In all cases, the average cV difference 

was less than 0.1 highlighting the reduced dispersity of the virtually generated data. 

 

Figure 71. Real (black) and virtual (magenta) distributions for the 20 features under evaluation, 

where the number of virtual patients was set to 1000. The cV values refer to the absolute 

coefficient of variation difference between the real and the virtual ones. 
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According to Figure 72, the BGMM-OCE required 23 seconds on average for the 

optimal component initialization step, including the sequential application of spectral 

clustering for 2, 3, …, 20 clusters, the estimation of the DBS, the extraction of the best 

clustering solution and the BGMM training procedure. In the case where the sequential 

application of spectral clustering involved 2, 3, ..., 10 clusters, the execution time was 

reduced to 16 sec. However, the execution time for random sampling (upon BGMM 

training) across different virtual populations (1000, 2000, …, 30000 virtual patients) 

was less than 1 second (0.031 sec on average). On the other hand, the TE, BN, and UTE 

had the largest average execution time (53 sec, 63 sec, and 75 sec, respectively). It is 

interesting to note that the RBF-based ANNs achieved the lowest average execution 

time (approximately 16 sec), but its increased computational tendency for virtual 

populations beyond 23000 (or 17000 in the cases where the BGMM-OCE is applied 

across 2, 3,…, 10 clusters under evaluation) indicates a higher computational 

complexity than BGMM-OCE. 

 

Figure 72. Execution time comparison results. 

We focused on the optimal estimation of the number of Gaussian components in the 

conventional BGMM algorithm to yield concrete (non-arbitrary) estimations of the VI 

and at the same time reduced computational complexity towards large-scale virtual 
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population generation (we refer to this new approach as Bayesian Gaussian Mixture 

Models with optimal component estimation - BGMM-OCE). To do so, we first apply 

spectral clustering on curated and transformed input data based on the LOBPCG 

method to identify the best clustering solution as the one with the highest Davies 

Bouldin (DB) score at small computational complexity. Then, we utilize the optimal 

number of clusters as the number of Gaussian components in the BGMM. Since low 

gamma values make the model put most of the weight on few components and set the 

remaining weights close to zero, we define an exponential relationship between the 

optimal number of components to yield gamma values with smooth decay over 

increasing number of components. A case study was conducted to demonstrate the 

robustness of the proposed approach, where the BGMM-OCE was compared against 

state-of-the-art virtual data generators (BN, UTE, STE, ANNs) for the generation of 

diverse virtual populations (from 1000 to even 30000 virtual patients) in the context of 

in in silico clinical trials for hypertrophic cardiomyopathy (HCM). According to our 

results, the BGMM-OCE was able to generate 30000 virtual patients with the lowest 

coefficient of variation (0.046), goodness of fit (0.191), KL divergence (0.049), and 

inter- and intra- correlation differences (0.017, 0.016) at stable execution time (16.12 

sec) for increased virtual populations. 

7.2.3. Data augmentation 

7.2.3.1. Case Study 1 – Augmentation in a single database 

The scope of this case study is to enhance the performance of the existing HCM risk 

stratification models through data augmentation. To this end, we required an 

anonymized dataset which includes 2,454 records of patients who have been diagnosed 

with hypertrophic cardiomyopathy (HCM), at two timepoints, from the 

Cardiomyopathies Unit at Careggi Hospital, Florence (UNIFI cohort) [402]. The 

number of high-risk patients was 300 with an average age 50.13 (±17.67) and the 

number of low-risk patients was 476 with an average age 43.95 (±18.42). There were 

123 features, including demographics, laboratory measures (e.g., Left ventricular 

internal diameter end systole), and physical measures (e.g., systolic pressure), among 

others. All clinical data were shared according to the EU GDPR requirements. The 

performance evaluation outcomes of the five virtual population generators in the HCM 

dataset are presented in Table 35 for the unsupervised and supervised tree ensembles, 
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and for the supervised RBF-based ANNs, while the Bayesian networks and the Log-

MVND are shown in Table 36. According to Table 37, the average GOF was 0.029 for 

the unsupervised tree ensembles, 0.031 for the supervised tree ensembles, 0.23 for the 

RBF-based ANNs, 0.32 for the Bayesian networks and 0.198 for the Log-MVND. The 

average KL-divergence was 0.027 for the unsupervised tree ensembles, 0.031 for the 

supervised tree ensembles, 0.02 for the RBF-based ANNs, 0.00047 for the BN and 

0.121 for the Log-MVND. The unsupervised tree ensembles generated virtual 

distributions with the highest similarity and reduced divergence with the real data. 

Table 35. Performance evaluation of the virtually generated data for the unsupervised tree 

ensembles, the supervised tree ensembles, and the supervised RBF-based neural networks. 

Feature 
Real 

Unsupervised tree 

ensembles 
Supervised tree 

ensembles 
Supervised RBF 

Mean Mean gof KL Mean gof KL Mean gof KL 

Age 46.32 45.16 0.05 
5.03

E-06 
46.47 0.03 

3.98E

-06 
47.69 0.09 

1.77E

-05 

Ech_Echo_LA 44.03 43.95 0.03 
5.60

E-05 
43.75 0.03 

5.19E

-06 
43.68 0.25 

3.47E

-03 

Ech_Echo_IVS 19.13 19.38 0.03 
7.04

E-07 
19.21 0.02 

6.29E

-07 
20.09 0.21 

4.64E

-06 

Ech_Echo_Max_LVT 20.85 21.15 0.03 
9.44

E-06 
21.21 0.04 

7.44E

-06 
21.33 0.18 

1.96E

-05 

Ech_Echo_LVIDs 28.68 28.75 0.03 
1.39

E-03 
28.54 0.03 

1.40E

-03 
29.36 0.31 

3.85E

-05 

Past_Abnormal_Holter 0.07 0.07 0.01 
1.68

E-09 
0.06 0.02 

6.02E

-09 
0.11 0.03 

1.45E

-08 

Ech_ Aortic_Root 30.91 31.11 0.02 
1.39

E-04 
31 0.03 

7.19E

-05 
31.27 0.27 

2.34E

-04 

NYHA 1.72 1.77 0.06 
1.12

E-08 
1.76 0.03 

7.47E

-09 
1.95 0.11 

3.70E

-07 
Past_Arrthythmia_NSV

T 
0.08 0.06 0.01 

4.55

E-09 
0.08 0.00 

3.82E

-10 
0.11 0.03 

1.56E

-08 

Ech_Echo_LVIDd 46.53 46.62 0.03 
1.49

E-03 
46.06 0.05 

7.61E

-05 
45.55 0.24 

2.12E

-03 

Ech_Echo_PW 10.57 10.71 0.03 
1.21

E-06 
10.58 0.04 

5.28E

-07 
11.72 0.38 

1.72E

-03 

Ech_Echo_LA_Vol 88.37 87.84 0.02 
1.01

E-01 
87.51 0.04 

2.17E

-01 
92.56 0.35 

6.90E

-02 

Ech_Echo_LVEF 65.01 65.14 0.02 
3.24

E-04 
64.88 0.02 

9.18E

-03 
62.71 0.31 

5.41E

-03 

Mitral_Valve_E_DT 
202.2

3 
198.3

2 
0.04 

3.32

E-01 
198.7

6 
0.05 

2.76E

-01 
215.4

0 
0.36 

1.89E

-01 

BP_Systolic 
123.3

8 
123.4

7 
0.04 

1.75

E-02 
123.0

6 
0.04 

3.61E

-02 
128.9

9 
0.32 

5.44E

-02 

LVOTO_Rest 14.33 13.86 0.04 
8.27

E-02 
13.30 0.06 

8.29E

-02 
33.61 0.58 

4.57E

-02 

BMI 25.75 25.92 0.05 
2.80

E-04 
25.75 0.02 

3.50E

-04 
25.51 0.20 

2.18E

-04 

BSA 1.86 1.87 0.02 
7.31

E-10 
1.87 0.02 

1.12E

-08 
1.86 0.21 

6.23E

-08 

Height 
169.3

4 
169.4

4 
0.02 

3.33

E-06 
169.1

7 
0.03 

3.02E

-06 
168.5

7 
0.19 

1.31E

-02 

LABEL__High_Risk 0.39 0.38 0.01 
4.33

E-11 
0.36 0.03 

1.09E

-09 
0.39 0.00 

2.22E

-13 
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Table 36. Performance evaluation of the virtual data from the Bayesian networks and the Log-MVND. 

Feature 
Real Bayesian Networks Log MVND 

Mean Mean gof KL Mean gof KL 

Age 46.32 45.75 0.03 3.16E-06 45.66 0.07 0.07 

Ech_Echo_LA 44.03 42.70 0.25 3.30E-05 43.86 0.22 0.01 

Ech_Echo_IVS 19.13 23.25 0.32 1.47E-05 19.09 0.20 0.00 

Ech_Echo_Max_LVT 20.85 23.41 0.26 1.25E-05 20.82 0.15 0.00 

Ech_Echo_LVIDs 28.68 31.79 0.42 2.74E-05 28.58 0.24 0.01 

Past_Abnormal_Holter 0.07 0.49 0.42 5.02E-07 0.07 0.01 0.00 

Ech_ Aortic_Root 30.91 33.15 0.36 1.48E-05 30.94 0.25 0.00 

NYHA 1.72 2.47 0.37 2.63E-06 1.74 0.03 0.00 

Past_Arrthythmia_NSVT 0.08 0.50 0.43 5.05E-07 0.08 0.01 0.00 

Ech_Echo_LVIDd 46.53 42.02 0.28 3.93E-05 46.69 0.20 0.01 

Ech_Echo_PW 10.57 15.53 0.46 1.58E-05 10.65 0.28 0.00 

Ech_Echo_LA_Vol 88.37 96.44 0.37 5.67E-03 86.55 0.35 1.41 

Ech_Echo_LVEF 65.01 64.29 0.27 8.10E-05 65.09 0.26 0.05 

Mitral_Valve_E_DT 202.23 216.84 0.39 2.12E-03 202.34 0.35 0.44 

BP_Systolic 123.38 130.55 0.32 4.11E-04 123.26 0.27 0.08 

LVOTO_Rest 14.33 50.58 0.63 9.74E-04 20.65 0.43 0.32 

BMI 25.75 26.10 0.25 3.91E-06 25.80 0.23 0.00 

BSA 1.86 1.87 0.22 1.50E-07 1.86 0.20 0.00 

Height 169.34 168.69 0.20 2.72E-05 169.21 0.17 0.02 

LABEL__High_Risk 0.39 0.50 0.11 1.47E-08 0.43 0.04 0.00 

 
Table 37. Summary of the average performance evaluation measures for assessing the quality of the 

virtual data generated by each virtual population generation method for the HCM domain. 

Virtual population generation 

method 

Quality of the virtual data 

GOF 
KL-

divergence 
Correlation coefficient 

Unsupervised tree ensembles 0.029 0.027 0.041±0.033 

Supervised tree ensembles 0.031 0.031 0.064±0.076 

Supervised RBF-based ANNs 0.23 0.02 0.078±0.085 

Bayesian networks 0.32 0.0047 0.117±0.127 

Log-MVND 0.198 0.121 0.031±0.03 

 

The absolute correlation difference between the real and virtual data that were 

generated by the unsupervised tree ensembles is depicted in Figure 73, where the 

average difference was 0.041±0.033. Regarding the rest of the algorithms, the average 

correlation difference was 0.064±0.076 for the supervised tree ensembles, 
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0.078±0.085 for the RBF-based ANNs, 0.117±0.127 for the Bayesian networks, and 

0.031±0.03 for the Log-MVND. 

  

Figure 73. The absolute difference between the real and virtual correlation matrices for the 

HCM dataset, in the case of the unsupervised tree ensembles generator. The features are ordered 

based on their appearance in Supplementary Table 1. 

Although the Log-MVND schema achieved the smallest inter-correlation difference 

from the virtual population generators, it yielded significantly higher GOF and KL 

values than the unsupervised tree ensembles. The dark color pattern in Figure 73 

denotes the absence of significant correlation differences between the real and the 

virtual data which suggests that in this case the unsupervised tree ensembles schema 

was able to generate virtual distributions with increased similarity (i.e., with highly 

similar correlation patterns) with the real distributions. 

In this case, class imbalance handling is not required since the ratio of the patients with 

low and high risk for HCM (Table 38) is adequate. The application of the XGBoost on 

the real data using a 10-fold cross validation process yielded accuracy 0.597, sensitivity 

0.564, specificity 0.708, and AUC 0.628. According to Table 39, the average 
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performance of the XGBoost on the aggregated real and virtual data from the 

unsupervised tree ensembles achieved better classification performance, yielding 

accuracy 0.758, sensitivity 0.733, specificity 0.845, and AUC 0.829. The performance 

of the XGBoost on the augmented data from the supervised tree ensembles comes next 

along with the RBF-based ANNs, the Bayesian networks and the Log-MVND which 

achieved slightly better performance than before but with less than 0.6 sensitivity and 

thus are excluded from Table 39. 

Table 38. A summary of the data quality report. 

Metadata UoA cohort UNIFI cohort 

Number of features 162 123 

Number of records (instances) 449 2454 

Number of discrete features 58 37 

Number of continuous features 73 86 

Number of unknown features 31 0 

Number of features with outliers 16 0 

Number of features with inconsistencies 19 0 

Number of bad quality features 77 36 

Number of fair quality features 57 42 

Number of good quality features 26 45 

Class imbalance ratio 1:6.4 1:1.58 

Final number of patients after class imbalance handling 210 776 

Final number of acceptable features 65 20 

 

The performance of the HCM risk stratification models from the AdaBoost and 

Random Forests using the augmented data from the tree ensembles was also higher than 

in the case of the real data. The application of the AdaBoost on the real data yielded 

accuracy 0.61, sensitivity 0.569, specificity 0.748, and AUC 0.611.  According to Table 

39, the average performance of the AdaBoost on the aggregated data from the 

unsupervised tree ensembles achieved better classification performance, yielding 

accuracy 0.665, sensitivity 0.622, specificity 0.811, and AUC 0.712.  

As for the Random Forests, their application on the real data yielded accuracy 0.629, 

sensitivity 0.563, specificity 0.853, AUC 0.641, whereas the average performance on 

the aggregated real and virtual data from the unsupervised tree ensembles achieved 

better performance, yielding accuracy 0.723, sensitivity 0.664, specificity 0.925, and 

AUC 0.763. 
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Table 39. A summary of the HCM risk stratification results from the XGBoost, AdaBoost and 

Random Forests before and after data augmentation using the virtual data from each virtual 

population generator. 

Virtual population generation 

method for data augmentation 

HCM risk stratification performance 

accuracy sensitivity specificity AUC 

XGBoost 

Before data augmentation 0.597 0.564 0.708 0.628 

Unsupervised tree ensembles 0.758 0.733 0.845 0.829 

Supervised tree ensembles 0.705 0.672 0.817 0.753 

AdaBoost 

Before data augmentation 0.61 0.569 0.748 0.611 

Unsupervised tree ensembles 0.665 0.622 0.811 0.712 

Supervised tree ensembles 0.653 0.606 0.816 0.672 

Random Forests 

Before data augmentation 0.629 0.563 0.853 0.641 

Unsupervised tree ensembles 0.723 0.664 0.925 0.763 

Supervised tree ensembles 0.686 0.621 0.908 0.705 

 

The ROC curves are summarized in Figure 74, highlighting the classification 

performance of the unsupervised tree ensembles which yielded an increase by 16.1% 

in the accuracy, 16.9% in sensitivity, 13.7% in specificity, and 20.1% in AUC compared 

with the XGBoost trained on the real data.  

 

Figure 74. ROC curves depicting the classification performance of the XGBoost, the AdaBoost 

and the Random Forests for HCM risk stratification with and without data augmentation. 
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A similar increase is also observed in the case of the AdaBoost (5.5% in accuracy, 5.3% 

in sensitivity, 6.3% in specificity, and 10.1% in AUC), as well as, in the Random 

Forests (9.4% in accuracy, 10.1% in sensitivity, 7.2% in specificity, and 12.2% in 

AUC). Although the classification performance is significantly smaller than in pSS, 

data augmentation was still able to enhance the performance of the HCM risk 

stratification models. All in all, we examined the effectiveness of data augmentation in 

terms of enhancing the real clinical research databases with high-quality virtual data to 

enhance the performance of the disease classification and risk stratification models in 

hypertrophic cardiomyopathy. To do so, a computational pipeline was developed, 

where high-quality virtual data are aggregated with the real data to yield robust HCM 

risk stratification models, where the performance of each model was evaluated on 

testing instances of the real data to avoid any biases. The proposed pipeline was able to 

generate virtual distributions with increased similarity, correlation, and reduced 

divergence with the real distributions.  

The aggregation of the real with the virtual patient data in both clinical domains yielded 

a notable increase in the classification accuracy, sensitivity, specificity, and area under 

the curve scores of the supervised machine learning models which were trained on the 

augmented clinical data compared to those trained on real data instances. Moreover, the 

performance of the HCM risk stratification model showed an increase by accuracy, 

16.9% in sensitivity, 13.7% in specificity, and 20.1% in area under the curve against 

the one trained on the real HCM data (Table 39, Figure 74). A similar increase is also 

observed in the case of the AdaBoost (5.5% in accuracy, 5.3% in sensitivity, 6.3% in 

specificity, and 10.1% in AUC), as well as, in the case of the Random Forests (9.4% in 

accuracy, 10.1% in sensitivity, 7.2% in specificity, and 12.2% in AUC). The 

aggregation of the virtual data from the supervised tree ensembles with the real patient 

data yielded enhanced classification models at a similar extent (see Table 39, Figure 74 

for HCM risk stratification).  

The aggregation of the virtual data from the supervised RBF-based ANNs, the Bayesian 

networks and the Log-MVND with the real one yielded supervised machine learning 

models with partially enhanced performance while maintaining the increased 

performance than in the case of training on the real data only. All in all, our results 

validate the scientific and technical impact of data augmentation in the classification 
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accuracy, sensitivity, and specificity for HCM risk stratification models. To our 

knowledge, this is the first study that builds a computational pipeline which uses the 

high-quality semi-artificial patient data which are generated by machine learning-based 

approaches to enhance the performance of risk stratification models in HCM. 

7.3. Cardiovascular diseases 

This case study involves the application of the beyond the state of the art methods that 

were developed for data harmonization (CHAPTER 4) to address open issues and 

unmet needs (Section 1.4) in the domain of the cardiovascular diseases (Section 2.3.5). 

7.3.1. Data harmonization 

7.3.1.1. Case Study 1 – A reference model for CVD 

The scope of this case study is to develop a “gold” reference ontology for the CVD 

domain. Metadata were obtained from 3 clinical centers on CVD, namely the TAUH 

(Tampere University Hospital), UMCU (University Medical Center Utrecht), and 

LURIC (LUdwigshafen RIsk and Cardiovascular Health). The number of terminologies 

was 6408 in TAUH, 1545 in LURIC, and 137 in UMC. The large number of 

terminologies in TAUH and LURIC included metanalysis results and data from 

multiple timepoints. The entity graph for the CVD ontology is depicted in Figure 75 

and was organized according to the available information in datasets TAUH (6408 

terminologies), UHEI_LURIC (1545 terminologies) and UMC (137 terminologies).  

According to the entity graph, the hierarchy of the ontology is designed as follows: 

▪ The main class is the class “Patient” who “has” the following subclasses: 

• The subclass “Demographics” which “includes”: 

o The subclass “Basic information” describing urine related information. 

o The subclass “Alcohol consumption” describing blood test repeated 

information. 

o The subclass “Smoking status” describing MD related information. 

• The subclass “Laboratory tests” which describes various laboratory measures. 
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Figure 75. An instance of the entity graph for the CVD ontology from WebProtégé  [403]. 

 

• The subclass “Conditions” which describes various medical conditions. 

• The subclass “Therapies” which describes various medications. 

• The subclass “History” which describes family history. 

• The subclass “Other” which describes any other related information. 

Another illustration of the CVD’s entity graph is presented in Figure 76 using 

WebVOWL [404]. All in all, this is a first implementation of an FHIR-compliant, 

reference ontology for the domain of cardiovascular diseases based on a large number 

of terminologies from the TAUH center. The ontology is open and can be found in the 

following link: GitHub - vpz4/TO_AITION: [TO_AITION] Preliminary versions of the 

CVD and Mental Disorders' ontologies. 

 

Figure 76. The first-degree hierarchy in the CVD reference ontology from WebVOWL [404]. 

https://github.com/vpz4/TO_AITION
https://github.com/vpz4/TO_AITION
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7.3.1.2. Case Study 2 – Harmonization across 3 European centers 

The scope of this case study is to harmonize three European cohorts in the domain of 

CVD using the proposed hybrid data harmonizer (Section 4.5) using the reference 

model for the CVD which has been developed in the previous section. Metadata were 

obtained from 3 clinical centers on CVD, namely the TAUH (Tampere University 

Hospital), UMCU (University Medical Center Utrecht), and LURIC (LUdwigshafen 

RIsk and Cardiovascular Health). The number of terminologies was 6408 in TAUH, 

1545 in LURIC, and 137 in UMC. The large number of terminologies in TAUH and 

LURIC, included metanalysis results and data from multiple timepoints.  

The proposed method was able to identify 85% (in average) of the relevant 

terminologies within the reference ontologies, on each domain, against simple lexical 

analysis which yielded 10% less precision. Regarding the individual analysis (Table 

40), the hybrid approach identified 435 matches in LURIC, and 71 in UMCU yielding 

15% more terminologies (in average) than lexical analysis only. Any identified 

prominent match in the range [0.6, 0.8) is considered as partially matched, whereas a 

match in the range [0.8, 1) is considered highly similar (Table 40). 

Table 40. A summary of the individual and cross-domain analysis results using the proposed 

method for data harmonization. 

Pair 
Matched 

terminologies 
Exact Partial Highly-similar 

(OCVD, LURIC)* 435 6 332 103 

(OCVD, UMCU)* 71 4 25 46 

* CVD domain, OCVD = reference Ontology for CVD. 

 

The results of the lexical matching algorithm are summarized in Supplementary Table 

2, Table 41, and Table 42 for the pairs (OCVD, UHEI_LURIC), (OCVD, UMC), and 

(UHEI_LURIC, UMC). The number of terminologies in TAUH was 6408 whereas in 

LURIC_UHEI the number of terminologies was 1545, including metanalysis results 

and information across multiple time points. Regarding UMC, the number of 

terminologies was 137. Since the CVD ontology was developed according to the 

structure of TAUH, the intersection of the pairwise lexical matches between (OCVD, 

UHEI_LURIC) and (TAUH, UMC) are the final matched terminologies. 
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According to Supplementary Table 2, our approach was able to identify 435 potential 

lexical matches between TAUH and UHEI_LURIC with more than 75% coherence. 

More specifically, the lexical matcher was able to identify 6 terminologies with exact 

similarity (i.e., matching score 1), as well as, 28 terminologies with matching score 

larger than (or equal to) 0.9, and 103 terminologies with matching score larger than (or 

equal to) 0.8. The 332 terminologies with scores in the range [0.6, 0.8) are considered 

as partially matched whereas the remaining 103 terminologies with scores in the range 

[0.8, 1) are considered as highly similar. 

According to Table 41, the proposed approach was able to identify 71 potential lexical 

matches between OCVD and UMC with more than 75% coherence (overlap). More 

specifically, the lexical matcher was able to identify 4 terminologies with exact 

similarity (i.e., matching score 1), as well as, 25 terminologies with matching score 

larger than (or equal to) 0.9, and 46 terminologies with matching score larger than (or 

equal to) 0.8. The 25 terminologies with scores in the range [0.6, 0.8) are considered as 

partially matched whereas the remaining 46 terminologies with scores in the range 

[0.8,1) are considered as highly similar. 

Table 41. A summary of the potentially matched terminologies between OCVD and UMC. 

Terminologies from OCVD Terminologies from UMC Score 

Interleukin-6 Interleukin 6 0.949 

Father: myocardial infarction, I1, 191, 1 = no, 2 = 

yes 
Myocardial infarction 0.647 

Uncle or aunt diagnosed with other cardiovascular 

disease 

Vascular endothelial growth factor 

A 
0.646 

Body Mass Index body mass index 0.867 

body-mass index body mass index 0.896 

Interleukin-9 Interleukin 9 0.949 

Apo Apolipoprotein B 0.729 

Myocardial infarction, 0 = no, 1 = yes Myocardial infarction 0.851 

Apolipoprotein B; g/l Apolipoprotein B 0.921 

triglyceride Triglycerides [mg/dL] 0.813 

Stroke, including TIA, excl. all haemorrhages Stroke 0.711 

Monokine induced by interferon-gamma 
Monokine induced by interferon-

gamma 
1.000 

Monocyte chemotactic protein-1 Monocyte chemotactic protein 1 0.978 
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Terminologies from OCVD Terminologies from UMC Score 

Body mass indexi body mass index 0.936 

Body mass index; weight/ body mass index 0.839 

Interleukin-8 Interleukin 8 0.949 

Stroke, including TIA Stroke 0.762 

Mother: myocardial infarction, 1 = no, 2 = yes Myocardial infarction 0.668 

Vascular endothelial growth factor 
Vascular endothelial growth factor 

A 
0.981 

Pulse pressure pulse pressure 0.875 

LDL-cholesterol LDL-cholesterol [mg/dL] 0.884 

Father: myocardial infarction, I1,, 1 = no, 2 = yes Myocardial infarction 0.657 

Apolipoprotein B Apolipoprotein B 1.000 

Myocardial infarction - Year when first time 

diagnosed 
Myocardial infarction 0.796 

Interferon gamma-induced protein 10 Interferon gamma 0.819 

Interleukin-5 Interleukin 5 0.949 

Stroke, including SAH Stroke 0.762 

Glucose; mmol/l Glucose [mmol/L] 0.893 

P –Osteopontin; ng/ml. Limit of detection is 8. 

Values below this were measured by diluting the 

sample. 

Osteopontin 0.702 

Father: myocardial infarction, 1 = no, 2 = yes Myocardial infarction 0.671 

Apolipoprotein A-1 Apolipoprotein B 0.924 

Creatinine value upon hospital admission 
Composite cardiovascular 

endpoints 
0.669 

Body mass index at final measurements body mass index 0.771 

Gender, 1 = female, 2 = male gender 0.671 

Hematocrit; Osuus Hematocrit 0.863 

Number of myocardial infarctions Myocardial infarction 0.701 

Myocardial infarction Myocardial infarction 1.000 

Body mass index at initial measurements body mass index 0.764 

Homocysteine; µmol/l Homocysteine [umol/L] 0.887 

Triglyceride; mmol/l Triglycerides [mmol/L] 0.906 

Coronary artery disease - Year when first time 

diagnosed 
Coronary artery disease 0.804 

Interleukin-16 Interleukin 6 0.927 

Major Adverse Cardiovascular Event Major cardiovascular events 0.781 

Stroke, including SAH and TIA Stroke 0.736 

Interleukin-4 Interleukin 4 0.949 
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Terminologies from OCVD Terminologies from UMC Score 

Lipoprotein Apolipoprotein B 0.761 

Apolipoprotein E Apolipoprotein B 0.958 

Myocardial infarction, without ST-evelation Myocardial infarction 0.829 

Glucose Glucose [mmol/L] 0.813 

Interleukin-10 Interleukin 10 0.952 

Body mass index weight/ body mass index 0.847 

Interleukin-18 Interleukin 8 0.927 

Interleukin-3 Interleukin 13 0.927 

Myocardial infarction, strict Myocardial infarction 0.908 

Body mass index; kg/m2 body mass index 0.857 

Total cholesterol Total cholesterol [mg/dL] 0.893 

Interleukin-2 Interleukin 2 0.949 

Interleukin-13 Interleukin 13 0.952 

Mother: myocardial infarction, I1,, 1 = no, 2 = yes Myocardial infarction 0.653 

Triglyceride Triglycerides [mg/dL] 0.857 

Interleukin-15 Interleukin 5 0.927 

Stroke, excluding SAH Stroke 0.762 

Myocardial infarction, unclassifiable Myocardial infarction 0.856 

Diabetes type 2 type 2 diabetes status 0.608 

HDL-cholesterol HDL-cholesterol [mg/dL] 0.884 

Myocardial infarction, with ST-evelation Myocardial infarction 0.842 

Mother: myocardial infarction, I1, 190, 1 = no, 2 = 

yes 
Myocardial infarction 0.643 

stroke volume Stroke 0.739 

Interleukin-17 Interleukin 10 0.905 

Macrophage migration inhibitory factor 
Macrophage migration inhibitory 

factor 
1.000 

Stroke - Year when first time diagnosed Stroke 0.718 

 

According to Table 42, the proposed approach was able to identify 46 potential lexical 

matches between UHEI_LURIC and UMC with more than 75% coherence (overlap). 

More specifically, the lexical matcher was able to identify 1 terminology with exact 

similarity (i.e., matching score 1), as well as, 18 terminologies with matching score 

larger than (or equal to) 0.9, and 32 terminologies with matching score larger than (or 

equal to) 0.8. The 14 terminologies with scores in the range [0.6, 0.8) are considered as 

partially matched whereas the remaining 32 terminologies with scores in the range 

[0.8,1) are considered as highly similar. 
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Table 42. A summary of the potentially matched terminologies between UHEI and UMC. 

Terminologies from UHEI_LURIC Terminologies from UMC Score 

apolipoprotein A-I Apolipoprotein B 0.884 

fasting glucose age at inclusion 0.655 

interleukin 1ß Interleukin 10 0.905 

Creatin [µmol/L] Creatinin [umol/L] 0.924 

interleukin 1 Interleukin 10 0.927 

interleukin 6 Interleukin 6 0.949 

total cholesterol Total cholesterol [mg/dL] 0.840 

myeloperoxidase Myeloperoxidase in citrate plasma [ng/ml] 0.758 

LDL apolipoprotein B Apolipoprotein B 0.896 

cholesterol LDL-cholesterol [mg/dL] 0.826 

enddiastolic lv pressure Composite cardiovascular endpoints 0.634 

interleukin 2 Interleukin 2 0.949 

interleukin 12 Interleukin 12 0.952 

body mass index body mass index 1.000 

vitamin B12 Vitamin B12 [pmol/L] 0.803 

Creatinin [µmol/L] Creatinin [umol/L] 0.963 

Stroke/PRIND/TIA Stroke 0.792 

aldosterone Aldosteron 0.906 

interleukin 8 Interleukin 8 0.949 

homocysteine Homocysteine [umol/L] 0.813 

cystatin C clearance Cystatin C 0.783 

interleukin 10 Interleukin 10 0.952 

lipoprotein Apolipoprotein B 0.805 

creatinin Creatinin [umol/L] 0.778 

cysteine Homocysteine [umol/L] 0.794 

Cystatin clearance 100/cystatin C Cystatin C 0.724 

stenosis of carotid artery Coronary artery disease 0.631 

age age at inclusion 0.729 

interleukin 9 Interleukin 9 0.949 

renin Renine 0.822 

vitamin B1 Vitamin B12 [pmol/L] 0.783 

interleukin 4 Interleukin 4 0.949 

apolipoprotein E Apolipoprotein B 0.917 

apolipoprotein A-II Apolipoprotein B 0.871 

hematocrit Hematocrit 0.933 

HDL-cholesterol HDL-cholesterol [mg/dL] 0.884 
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Terminologies from UHEI_LURIC Terminologies from UMC Score 

cystatin C Cystatin C 0.933 

triglycerides Triglycerides [mg/dL] 0.832 

total protein Apolipoprotein B 0.622 

hemoglobin Hemoglobin [mmol/L] 0.791 

VLDL apolipoprotein B Apolipoprotein B 0.884 

LDL-cholesterol LDL-cholesterol [mg/dL] 0.884 

myocardial infarction Myocardial infarction 0.968 

apolipoprotein C-II Apolipoprotein B 0.871 

apolipoprotein B Apolipoprotein B 0.958 

Platelets anti-platelets use 0.685 

 

The terminology in OCVD having the highest frequency in UHEI_LURIC is related to 

“cholesterol” with 47 occurrences, in total. The terminology “triglycerides” comes next 

with 35 occurrences, along with the terminologies “cholesterol ester”, “free 

cholesterol” (with 28 occurrences) and myocardial infarction (16 occurrences). Other 

terminologies with an adequate number of occurrences, include the “age”, “heart rate”, 

and “phospholipid”, among others. The terminology in OCVD having the highest 

frequency in UHEI_LURIC is related to “Myocardial infarction” with 14 occurrences, 

in total. The terminology “body mass index” comes next with 8 occurrences, along with 

the terminologies “Stroke” (7 occurrences) and “Apolipoprotein B” (6 occurrences). 

Other terminologies with an adequate number of occurrences, include the “Interleukin 

5”, “Interleukin 10”, and “Interleukin 13”, among others. The terminology in 

UHEI_LURIC having the highest frequency in UMC is related to “Apolipoprotein B” 

with 9 occurrences, in total. The terminologies “Interleukin 5”, “Creatinin [umol/L]”, 

and “Cystatin C” come next with 3 occurrences, along with the terminologies “LDL-

cholesterol [mg/dL]”, “Vitamin B12 [pmol/L]” and “Homocysteine [umol/L]” with 2 

occurrences each. 

We proposed an automated data harmonization workflow which adopts a hybrid 

strategy that combines lexical analysis with semantic models (ontologies) to identify 

terminologies with lexical and conceptual overlap. The proposed method was used to 

match terminologies in cardiovascular disease (CVD), yielding matched terminologies 

with 85% overlap and 10% higher performance than conventional lexical analysis, as 

well as, in favorable execution time against manual terminology mapping. The hybrid 

data harmonization workflow combines lexical analysis with relational modeling to 
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overcome structural heterogeneities that obscure the interlinking of retrospective data 

from multiple clinical databases without standardized data collection protocols. The 

proposed method uses a hybrid approach which utilizes lexical and semantic analysis 

to identify terminologies with common conceptual and lexical basis. Our method was 

compared against the application of conventional lexical analysis and manual mapping 

across 8090 terminologies from the CVD domain. The computational complexity of the 

method was proportional to the number of input terminologies. In some cases, the 

number of matched terminologies was high (e.g., 435 in LURIC) enough. In addition, 

the proposed method for data harmonization can be applied to any clinical domain given 

a reference ontology as input. The overall value of the proposed method lies on the fact 

that it can be used to deal with open issues and unmet needs in various clinical domains 

which enhances its scientific and clinical impact. As a future work, we plan to apply 

the proposed method across multiple datasets in other domains, as well as, evaluate the 

consistency of the harmonized data after the execution of the data harmonizer. 

7.4. Mental disorders 

This case study involves the application of the beyond the state of the art methods that 

were developed for data harmonization (CHAPTER 4) to address open issues and 

clinical unmet needs (Section 1.4) in the domain of the mental disorders (Section 2.3.6). 

7.4.1. Data harmonization 

7.4.1.1. Case Study 1 – A reference model for mental disorders 

The scope of this case study is to develop a “gold” reference model for mental disorders. 

Metadata were obtained from 3 clinical centers on mental disorders, namely the LODZ 

(Medical University of Łódź), NESDA (Netherlands Study of Depression and Anxiety), 

and UVA (Universiteit van Amsterdam). The number of terminologies was 43 in 

LODZ, 49 in NESDA, and 906 in UVA. The large number of terminologies in UVA 

included metanalysis results and data from multiple timepoints. The entity graph for 

the mental disorders’ ontology is depicted in Figure 77 and was organized according to 

the available information in datasets LODZ (43 terminologies), NESDA (49 

terminologies) and UVA (906 terminologies. According to the entity graph, the 

hierarchy of the ontology has been designed as follows: 
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▪ The main class is the class “Patient” who “has” the following subclasses: 

• The subclass “Demographics” describing demographic related information. 

• The subclass “Laboratory tests” which “includes”: 

o The subclass “Urine tests” describing urine related information. 

o The subclass “Blood tests” describing blood test repeated information. 

o The subclass “Mental tests” describing MD related information. 

• The subclass “Medical Conditions” describing various medical conditions. 

• The subclass “Medications” which describes various medications. 

• The subclass “Other” which describes any other related information. 

 

Figure 77. An instance of the entity graph for the MD ontology from WebProtégé [403]. 

An illustration of the MD entity graph is depicted in Figure 78 using WebVOWL [404]. 

 

Figure 78. The first-degree hierarchy in the MD ontology from WebVOWL [404]. 
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This is a first implementation of an ontology for mental disorders. The ontology can be 

found in the following link: GitHub - vpz4/TO_AITION: [TO_AITION] Preliminary 

versions of the CVD and Mental Disorders' ontologies. 

7.4.1.2. Case Study 2 – Individual and cross-domain data harmonization 

The scope of this case study is to harmonize 3 European cohorts in MD using the 

proposed hybrid data harmonizer. Metadata were obtained from 3 clinical centers on 

mental disorders, namely the LODZ (Medical University of Łódź), NESDA 

(Netherlands Study of Depression and Anxiety), and UVA (Universiteit van 

Amsterdam). The number of terminologies was 43 in LODZ, 49 in NESDA, and 906 

in UVA. The large number of terminologies in UVA included metanalysis results and 

data from multiple timepoints. The proposed method was able to identify 85% (in 

average) of the relevant terminologies within the reference ontologies, on each domain, 

against simple lexical analysis which yielded 10% less precision.  

Regarding the individual analysis (Table 43), the hybrid approach identified 435 

matches in LURIC, and 71 in UMCU yielding 15% more terminologies (in average) 

than lexical analysis only. In the mental disorders’ domain, the number of matches was 

25 for NESDA and 14 for LODZ, where the small number of matches reflects the 

presence of CVD-oriented information in the mental disorders’ centers. To deal with 

this issue, the hybrid approach was applied in a cross-domain manner, yielding 81 

matches in LODZ (4 exact, 16 partially matched, 16 highly similar), 139 in NESDA (4 

exact, 90 partially matched, 49 highly similar), and 288 in UVA (6 exact, 222 partially 

matched, 66 highly similar). Any identified prominent match in the range [0.6, 0.8) is 

considered as partially matched, whereas a match in the range [0.8, 1) is considered 

highly similar (Table 43). 

Table 43. A summary of the individual and cross-domain analysis results. 

Pair Matched terms Exact Partial Highly-similar 

(OMD, NESDA)** 25 2 9 7 

(OMD, LODZ)** 14 1 2 9 

(OCVD, LODZ)*** 81 4 65 16 

(OCVD, NESDA)*** 139 4 90 49 

(OCVD, OMD)*** 288 6 222 66 

** mental disorders domain, *** cross-domain, OCVD = Ontology for CVD, OMD = Ontology for 

the mental disorders’ domain. 

https://github.com/vpz4/TO_AITION
https://github.com/vpz4/TO_AITION


270 

 

The results are summarized in Table 44, Table 45 and Table 46 for the pairs (LODZ, 

OMD), (NESDA, LODZ), and (NESDA, OMD). The number of terminologies in 

LODZ was 43 whereas in NESDA the number of terminologies was 49. Regarding 

UVA, the number of terminologies was 906, including metanalysis results and 

information across multiple time points. Since the mental disorders’ ontology (7.4.1.1) 

was developed according to the structure of LODZ, the intersection of the pairwise 

lexical matches between (LODZ, OMD) and (NESDA, LODZ) are the final matched 

terminologies. 

According to Table 44, the proposed approach was able to identify 14 potential lexical 

matches between LODZ and OMD with more than 75% coherence (overlap). More 

specifically, the lexical matcher was able to identify 1 terminology with exact similarity 

(i.e., matching score 1), as well as, 3 terminologies with matching score larger than (or 

equal to) 0.9, and 9 terminologies with matching score larger than (or equal to) 0.8. The 

3 terminologies with scores less than 0.6 are considered as lexically non-similar, 

whereas the 2 terminologies with scores in the range [0.6, 0.8) are considered as 

partially matched whereas the remaining 9 terminologies with scores in the range 

[0.8,1) are considered as highly similar. 

Table 44. A summary of the potentially matched terminologies between LODZ and UVA. 

Terminologies from LODZ Terminologies from OMD Score 

Creatinine creatinine 0.864 

NYHA Heart failure, NYHA stages 0.428 

sRAGE Age 0.511 

Hypertension hypertension 0.883 

The degree of severity of ischemic heart disease 

and heart failure 

Diagnostics / medical history of 

cardiovascular risk 
0.633 

Age Age 1.000 

Gender gender 0.889 

Urea urea 0.833 

Education Participation in patient education 0.503 

Pacemaker Pacemaker 0.917 

Height height 0.889 

Diabetes diabetes 0.837 

Weight Weight 0.952 

Atrial fibrillation atrial fibrillation 0.792 
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According to Table 45, the proposed approach was able to identify 7 potential lexical 

matches between NESDA and LODZ with more than 75% coherence (overlap). More 

specifically, the lexical matcher was able to identify 2 terminologies with exact 

similarity (i.e., matching score 1), as well as, 4 terminologies with matching score larger 

than (or equal to) 0.9, and 5 terminologies with matching score larger than (or equal to) 

0.8. The terminology “Sex” in NESDA has a score 0.5 with the terminology “Gender” 

in LODZ which validates the lexical dissimilarity but they have been correctly 

identified as matched by the lexical matcher since they are synonyms. The 1 

terminology (“smoking”) with score in the range [0.6, 0.8) is considered as partially 

matched whereas the remaining 5 terminologies with scores in the range [0.8,1) are 

considered as highly similar. 

Table 45. A summary of the potentially matched terminologies between NESDA and LODZ 

using the proposed approach. 

Terminologies from NESDA Terminologies from LODZ Score 

education Education 0.926 

Height Height 1.000 

Weight Weight 0.952 

Sex Gender 0.500 

Diabetes Type 2 Diabetes 0.844 

Hypertension Hypertension 1.000 

smoking Smoking tobacco 0.752 

 

According to Table 46, the proposed approach was able to identify 25 potential lexical 

matches between NESDA and OMD with more than 75% coherence (overlap). More 

specifically, the lexical matcher was able to identify 2 terminologies with exact 

similarity (i.e., matching score 1), as well as, 4 terminologies with matching score larger 

than (or equal to) 0.9, and 7 terminologies with matching score larger than (or equal to) 

0.8. The 9 terminologies with scores less than 0.6 are considered as lexically non-

similar apart from the terminologies “Sex” and “gender” which might be lexically non-

similar, but they have been correctly identified by the lexical matcher as synonyms. 

Finally, the 9 terminologies with lexical matching scores in the range [0.6, 0.8) are 

considered as partially matched whereas the remaining 7 terminologies with scores in 

the range [0.8,1) are considered as highly similar. 
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Table 46. A summary of the potentially matched terminologies between NESDA and OMD. 

Terminologies from NESDA Terminologies from OMD Score 

Heart rate variability heart rate 0.770 

Cardiovascular disease last RR value diastolic 0.530 

education Participation in patient education 0.503 

Heart rate heart rate 0.933 

Systolic blood pressure Target systolic blood pressure 0.708 

Total cholesterol levels Total cholesterol 0.903 

Triglyceride levels triglycerides 0.794 

Antidepressant use antidepressants 0.721 

sleep sleep disorders 0.759 

Use of oral anti-diabetic medication or insulin medication 0.412 

physical activity physical activity 1.000 

Use of antihypertensive medication medication 0.453 

Height height 0.889 

Weight Weight 1.000 

Sex gender 0.500 

Diabetes Type 2 diabetes type 0.683 

Metabolic Syndrome metabolic syndrome 0.790 

Diastolic blood pressure Target diastolic blood pressure 0.719 

Other psychotropic medication use medication 0.382 

Anti-inflammatory medication use medication 0.385 

Angina pectoris stable angina pectoris 0.439 

Use of cholesterol-lowering medication medication 0.349 

Hypertension hypertension 0.883 

Glucose levels glucose 0.762 

smoking smoking status 0.833 

 

The terminology in LODZ having the highest frequency in OMD is related to “Age” 

with 2 occurrences. The terminologies “creatinine”, “Heart failure, NYHA stages”, 

“hypertension”, “diabetes”, and “atrial fibrillation” come next having the same 

frequency with the rest of the terminologies. The terminologies in NESDA having the 

same frequency in LODZ are related to the terminologies “Height”, “Weight”, 

“Gender”, “Diabetes”, “Hypertension”, and “Smoking tobacco” in NESDA. The 

terminology in NESDA having the highest frequency in OMD is related to 

“medication” with 5 occurrences. The terminology “heart rate” comes next (with 2 

occurrences). The rest of the terminologies had the same frequency, including the “last 
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RR value diastolic”, “Participation in patient education”, “Target systolic blood 

pressure”, “Total cholesterol”, “triglycerides”, “hypertension”, and “antidepressants”, 

among others. Most of the terminologies are related to CVD oriented terminologies, a 

fact which has been further investigated in the next Section through the application of 

cross domain matches. 

By taking into consideration the fact that the number of occurrences was low in the 

pairs of datasets regarding the mental disorders’ domain, as well as, the fact that the 

majority of the terminologies in UVA and NESDA include multiple CVD-related 

terminologies (e.g., “systolic blood pressure”, “cholesterol”, “triglycerides”, 

“hypertension”), cross domain matches were also applied. The results of the potentially 

matched terminologies between the pairs of cross domain datasets (TAUH, LODZ), 

(TAUH, NESDA), and (TAUH, UVA) are summarized in Table 47, Table 48 and 

Supplementary Table 3, respectively. 

According to Table 47, the proposed approach was able to identify 81 potential lexical 

matches between TAUH and LODZ with more than 75% coherence (overlap). More 

specifically, the lexical matcher was able to identify 4 terminologies with exact 

similarity, as well as, 16 terminologies with matching score larger than (or equal to) 

0.8. The 65 terminologies with scores in the range [0.6, 0.8) are considered as partially 

matched whereas the remaining 16 terminologies with scores in the range [0.8,1) are 

considered as highly similar. 

Table 47. A summary of the potentially matched terminologies between TAUH and LODZ 

using the proposed approach. 

Terminologies from TAUH Terminologies from LODZ Score 

Age of youngest child in the family, I2, 93 Age 0.690 

Age-adjusted expected maximum HR Age 0.698 

Age of starting habitual smoking Age 0.698 

Diabetes -  Year when first time diagnosed Diabetes 0.730 

Participates in some instructed physical activity 
Chronic obstructive pulmonary 

disease 
0.631 

Age of starting regular sports training Age 0.692 

Diabetes; father, I1, 218, 1 = no, 2 = yes, 9 = 

mother is missing from family 
Diabetes 0.701 

Age of youngest child in the family, I2, 49 Age 0.690 
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Terminologies from TAUH Terminologies from LODZ Score 

Chronic obstructory pulmonary disease 
Chronic obstructive pulmonary 

disease 
0.868 

Age when first trying alcohol, I2, 810, 99 = has 

never tried 
Age 0.683 

Indication for the test, evaluation of arrhythmia 
Other diseases of the central nervous 

system 
0.651 

Age when first trying smoking, I2, 780, 99 = has 

never smoked 
Age 0.683 

Asthma; father, I1, 214 Asthma 0.754 

Age of oldest child in the family, I2, 51 Age 0.691 

Asthma, I1, 77, 1 = no, 2 = yes Asthma 0.731 

Age at death of uncle or aunt died of myocardial 

infarction 
Age 0.684 

Age at time of action Age 0.714 

Diabetes type 2 Diabetes 0.844 

Diabetes, type 1 Diabetes 0.833 

Education years of parents, Education years have 

been created by using information of years 1980, 

1983 and 1986 measurements. Variable vkoulv is 

the maximum of parent’s school years from 

those years. 

Education 0.682 

Creatinine in different unit. Creatinine 0.782 

Hypertension - Year when first time diagnosed Hypertension 0.756 

? Age when celiac disease observed Age 0.696 

Height Height [cm] 0.848 

Age of starting habitual use of alcohol, I2, 812, 

98 = does not use alcohol habitually, 99 = has 

never tried 

Age 0.676 

Diabetes; mother, I1, 217, 1 = no, 2 = yes, 9 = 

mother is missing from family 
Diabetes 0.701 

age in 2007 Age 0.616 

Mothers daily consumption of bread 
Chronic obstructive pulmonary 

disease 
0.711 

Fathers daily consumption of bread 
Chronic obstructive pulmonary 

disease 
0.693 

Age of starting habitual use of alcohol Age 0.692 
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Terminologies from TAUH Terminologies from LODZ Score 

Any other significant heart disease that may have 

caused sudden death eg aortic stenosis, HCM, 

DCM 

The degree of severity of ischemic 

heart disease and heart failure 
0.654 

TIMI classification of the second PCI session in 

the target vessel of the first PCI after the 

procedure 

The degree of severity of ischemic 

heart disease and heart failure 
0.604 

TIMI classification in the target vessel of the 

second PCI after the procedure 

The degree of severity of ischemic 

heart disease and heart failure 
0.701 

Atrial fibrillation Atrial fibrillation 1.000 

Creatinine. Same procedure as in 2001; µmol/l Creatinine 0.741 

Age of starting regular sports training, I2,1021 Age 0.688 

Age when first trying alcohol Age 0.701 

Hypertension/Hypertonia Hypertension 0.841 

People have recommended that I should tell 

more about my feelings 

The degree of severity of ischemic 

heart disease and heart failure 
0.649 

diabetes diet , 0 = no, 1 = yes Diabetes 0.700 

Age at DEATH Age 0.750 

Lives abroad, so the accuracy of death data may 

be incomplete 
Lives 0.694 

TIMI classification in the third PCI target vessel 

after the procedure 

The degree of severity of ischemic 

heart disease and heart failure 
0.703 

Hypertension, 0 = no, 1 = yes Hypertension 0.805 

Mother: age of diagnosis of other cardiovascular 

disease 

The degree of severity of ischemic 

heart disease and heart failure 
0.695 

age in 2011 Age 0.616 

Asthma diagnosed by doctor, I1, 142, 1 = no, 2 = 

yes 
Asthma 0.705 

Diabetes, type 2 Diabetes 0.833 

Creatinine value upon hospital admission Creatinine 0.750 

Gender, 1 = female, 2 = male Gender 0.738 

Other 
Other diseases of the central nervous 

system 
0.705 

height Height [cm] 0.763 

Creatinine; µmol/l Creatinine 0.852 

Age Age 1.000 

Age 1986 Age 0.792 

Age at baseline Age 0.733 

Weight Weight [kg] 0.848 
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Terminologies from TAUH Terminologies from LODZ Score 

Asthma Asthma 1.000 

Asthma; mother, I1, 213 Asthma 0.754 

Creatinine; mg/dl Creatinine 0.863 

Carotid diameter in the end of systole, average 

measure; mm 

The degree of severity of ischemic 

heart disease and heart failure 
0.673 

age in 1980 Age 0.616 

It’s hard for me to reveal my innermost feelings 

even to close friends 

The degree of severity of ischemic 

heart disease and heart failure 
0.680 

Diabetes treated with insulin, 0 = no, 1 = yes Diabetes 0.725 

Diabetes diagnosed by doctor, I1, 134, 1 = no, 2 

= yes 
Diabetes 0.716 

The pleasure disappears from movies or plays if 

you try to find deep meanings from them 

The degree of severity of ischemic 

heart disease and heart failure 
0.705 

Hypotensive or hemodynamically unstable 
Chronic obstructive pulmonary 

disease 
0.682 

weight Weight [kg] 0.763 

Age when first trying smoking, I2, 647, 99 = has 

never smoked 
Age 0.683 

Diabetes mellitus, tyype 2 Diabetes 0.769 

Diabetes type 1 Diabetes 0.844 

RVP A; signal detection measure of sensitivity to 

the target 

The degree of severity of ischemic 

heart disease and heart failure 
0.637 

other 
Other diseases of the central nervous 

system 
0.630 

Age when ovariectomy for both ovary? Age 0.694 

Education level of parents in 1983 Education 0.755 

Diabetes Diabetes 1.000 

Creatinine upn arrival or mean value from 

hospitalization or before hospitalization 
Creatinine 0.707 

Atrial fibrillation, 0 = no, 1 = yes Atrial fibrillation 0.843 

Indication for the test, evaluation after 

myocardial infraction 

Vascular diseases of the central 

nervous system 
0.634 

Diabetes mellitus, tyype 1 Diabetes 0.769 

TIMI classification in the first PCI target vessel 

after the procedure 

The degree of severity of ischemic 

heart disease and heart failure 
0.696 

 

According to Table 48, the proposed approach was able to identify 139 potential lexical 

matches between TAUH and NESDA with more than 75% coherence (overlap). More 
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specifically, the lexical matcher was able to identify 4 terminologies with exact 

similarity, 13 terminologies with matching score larger than (or equal to) 0.9, as well 

as, 49 terminologies with matching score larger than (or equal to) 0.8. The 90 

terminologies with scores in the range [0.6, 0.8) are considered as partially matched 

whereas the remaining 49 terminologies with scores in the range [0.8,1) are considered 

as highly similar. 

Table 48. A summary of the potentially matched terminologies between TAUH and NESDA 

using the proposed approach. 

Terminologies from TAUH Terminologies from NESDA Score 

Other chronic disease Coronary heart disease 0.676 

Systolic blood pressure average, F6.2, 970 Systolic blood pressure 0.849 

Metabolic syndrome according IDF criterion , 0 = no, 

1 = yes , 
Metabolic Syndrome 0.740 

Weight of father in 1986; kg Weight 0.738 

Carotid intima-media thickness, 3rd measure point; 

mm 
Intima-media thickness 0.688 

Systolic blood pressure 1st measurement Systolic blood pressure 0.863 

Waist circumference; cm Waist circumference 0.942 

Metabolic syndrome according to the 2001 NCEP 

definition 
Metabolic Syndrome 0.749 

Weight of mother in 1980; kg Weight 0.738 

Carotid intima-media thickness, 2nd measure point; 

mm 
Intima-media thickness 0.688 

The metabolic syndrome by the Harmonizing 

definition, 0 = ei ole, 1 = on 
Metabolic Syndrome 0.620 

Heart rate Heart rate 1.000 

Diastolic blood pressure average when sitting, from 

the status form; mmHg 
Diastolic blood pressure 0.776 

Height of father; cm. Average from values collected 

between 1980 and 1989. 
Height 0.694 

Sleep time in hours/day in 1986 sleep 0.643 

smoking score, 0 = currently smoking, 1 = never 

smoked or has quit or is on a break 
smoking 0.695 

Systolic Blood Pressure Systolic blood pressure 0.942 

What other cardiovascular disease Cardiovascular disease 0.721 

Index of physical activity 1986. physical activity 0.756 
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Terminologies from TAUH Terminologies from NESDA Score 

Metabolic syndrome according to the 2005 NCEP 

definition. , 0 = no, 1 = yes , 
Metabolic Syndrome 0.722 

smoking score, 0 = adult currently smoking /, child 

smoked at least one cigarette, 1 = adult never smoked 

or has quit or is on a break / , child never smoked 

smoking 0.682 

Smoking at age 18-24. Has the participant smoked 

daily at least in some point of his/her youth age 
smoking 0.639 

Systolic blood pressure, 3rd measurement Systolic blood pressure 0.858 

Weight of father in 1983; kg Weight 0.738 

Diabetes type 2 Diabetes Type 2 0.956 

Diabetes, type 1 Diabetes Type 2 0.893 

Father: coronary heart disease, 1 = no, 2 = yes Coronary heart disease 0.658 

Metabolic syndrome by harmonizing definition, 0 = 

no, 1 = yes 
Metabolic Syndrome 0.741 

Metabolic syndrome according to year 2001 NCEP 

criterion., 0 = no, 1 = yes 
Metabolic Syndrome 0.725 

Heart rate on arrival, GRACEdataset patient only Heart rate 0.736 

Education years of parents, Education years have been 

created by using information of years 1980, 1983 and 

1986 measurements. Variable vkoulv is the maximum 

of parent’s school years from those years. 

education 0.643 

Smoking during the past week or during the week 

before attempting to quit, I3, 803, 
smoking 0.643 

Father: coronary heart disease, I1,, 1 = no, 2 = yes Coronary heart disease 0.643 

Hypertension - Year when first time diagnosed Hypertension 0.756 

Systolic blood pressure 3rd measurement, F3.0, 776 Systolic blood pressure 0.820 

Metabolic syndrome according to the IDF definition Metabolic Syndrome 0.761 

Index of physical activity 2011. physical activity 0.756 

Heart rate/min 3rd measurement Heart rate 0.778 

Height Height 1.000 

Weight of father in 1989; kg Weight 0.738 

triglyceride Triglyceride levels 0.832 

Sex, I2, 686, 1 = girl, 2 = boy Sex 0.699 

Diastolic blood pressure, 2nd measure; mmHg Diastolic blood pressure 0.853 

Cardiovascular diseases Cardiovascular disease 0.986 

Weight of mother in 1983; kg Weight 0.738 

Systolic blood pressure, 1st measure; mmHg Systolic blood pressure 0.849 

Waist-hip ratio waist07/hip07 Waist-hip ratio 0.839 
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Terminologies from TAUH Terminologies from NESDA Score 

Systolic blood pressure 3rd measurement Systolic blood pressure 0.863 

Systolic blood pressure average, F6.2, 779 Systolic blood pressure 0.849 

Heart rate/min 2nd measurement Heart rate 0.778 

Systolic blood pressure, 1st measurement Systolic blood pressure 0.858 

Alcohol alcohol intake 0.762 

Metabolic syndrome according to the IDF definition., 

0 = no, 1 = yes , 
Metabolic Syndrome 0.729 

Actual systolic blood pressure, 3rd measurement Systolic blood pressure 0.672 

Heart rate/min 1st measurement Heart rate 0.778 

Weight of the participant; kg Weight 0.736 

Systolic blood pressure 2nd measurement Systolic blood pressure 0.863 

Metabolic syndrome according to year 2005 NCEP 

criterion. , 0 = no, 1 = yes , 
Metabolic Syndrome 0.722 

Systolic blood pressure 1st measurement, F3.0, 961 Systolic blood pressure 0.820 

smoking score, 0 = current smoking, 1 = never 

smoked or has quit or is on a break 
smoking 0.695 

Mother: coronary heart disease, 1 = no, 2 = yes Coronary heart disease 0.642 

Hypertension/Hypertonia Hypertension 0.841 

Smoking at age 12-18. Has the participant smoked 

daily at least in some point of his/her youth age 
smoking 0.639 

Index of physical activity 1980. physical activity 0.756 

Index of physical activity 1989. physical activity 0.756 

Diastolic blood pressure, 1st measure; mmHg Diastolic blood pressure 0.853 

Triglyceride Triglyceride levels 0.877 

Actual systolic blood pressure, 2nd measurement Systolic blood pressure 0.672 

Mother: coronary heart disease, I1,, 1 = no, 2 = yes Coronary heart disease 0.627 

Hypertension, 0 = no, 1 = yes Hypertension 0.805 

Systolic blood pressure upon arrival Systolic blood pressure 0.880 

Index of physical activity 1983. physical activity 0.756 

Major coronary heart disease event excluding 

revascularizations 
Coronary heart disease 0.620 

I am fairly self-confident 
Anti-inflammatory medication 

use 
0.626 

Heart rate mean value, from the status form Heart rate 0.744 

Weight at birth; g Weight 0.778 

Metabolic syndrome according to the EGIR 

definition., 0 = no, 1 = yes , 
Metabolic Syndrome 0.728 

Diabetes, type 2 Diabetes Type 2 0.936 
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Terminologies from TAUH Terminologies from NESDA Score 

Father: other cardiovascular disease Cardiovascular disease 0.611 

Height of the participant; cm Height 0.736 

Sex: 1 = male, 2 = female Sex 0.707 

Metabolic syndrome according to EGIR criterion, 0 = 

no, 1 = yes , 
Metabolic Syndrome 0.735 

Weight of mother in 1989; kg Weight 0.738 

Systolic blood pressure, 2nd measure; mmHg Systolic blood pressure 0.849 

Heart rate upon arrival Heart rate 0.812 

Cardiovascular disease, including CHD, STR, SAH & 

TIA 
Cardiovascular disease 0.805 

Other Other inflammatory markers 0.731 

height Height 0.889 

Coronary heart disease, 0=no, 1=yes, FC3 needs 

confirmation! 
Coronary heart disease 0.789 

Metabolic syndrome according to the 2001 NCEP 

definition., 0 = no, 1 = yes 
Metabolic Syndrome 0.725 

Weight Weight 1.000 

Systolic blood pressure average, from the status form; 

mmHg 
Systolic blood pressure 0.797 

Waist-hip ratio waist11/hip11 Waist-hip ratio 0.839 

Glucose Glucose levels 0.833 

Systolic blood pressure 2nd measurement, F3.0, 773 Systolic blood pressure 0.820 

Total cholestrerol Total cholesterol levels 0.865 

Heart Rate Heart rate 0.933 

Index of physical activity. The higher the value, the 

more active the participant is. 
physical activity 0.645 

Total cholesterol Total cholesterol levels 0.903 

Diastolic blood pressure on entry, GRACEdataset 

patient only 
Diastolic blood pressure 0.800 

Systolic blood pressure 1st measurement, F3.0, 770 Systolic blood pressure 0.820 

Heart rate on arrival, only for MI dataset patient Heart rate 0.733 

Systolic blood pressure average Circmon, from the 

status form; mmHg 
Systolic blood pressure 0.781 

Index of physical activity 1992. physical activity 0.756 

Metabolic syndrome according to the 2005 NCEP 

definition 
Metabolic Syndrome 0.749 

Waist circumference Waist circumference 1.000 

Major coronary heart disease event Coronary heart disease 0.715 
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Terminologies from TAUH Terminologies from NESDA Score 

weight Weight 0.889 

Waist circumference average measurement; cm Waist circumference 0.814 

Coronary artery induced chest pain 
Other psychotropic medication 

use 
0.658 

Sex, I2, 863 Sex 0.750 

Diabetes type 1 Diabetes Type 2 0.911 

Diastolic blood pressure average Circmon, from the 

status form; mmHg 
Diastolic blood pressure 0.784 

Index of physical activity 2001. physical activity 0.756 

other Other inflammatory markers 0.651 

Insulin Insulin levels 0.833 

Weight of mother in 1986; kg Weight 0.738 

Heart rate mean value when sitting, from the status 

form; Heart rate/min 
Heart rate 0.713 

Systolic blood pressure average when sitting, from the 

status form; mmHg 
Systolic blood pressure 0.773 

Index of physical activity 2007. physical activity 0.756 

Actual systolic blood pressure, 1st measurement Systolic blood pressure 0.672 

Carotid intima-media thickness, 4th measure point; 

mm 
Intima-media thickness 0.688 

Education level of parents in 1983 education 0.708 

Carotid intima-media thickness, 1st measure point; 

mm 
Intima-media thickness 0.688 

Diabetes Diabetes Type 2 0.844 

recorded baseline mortality Metabolic Syndrome 0.611 

Systolic blood pressure, 2nd measurement Systolic blood pressure 0.858 

Metabolic syndrome according to harmonized 

definition , 0 = no, 1 = yes 
Metabolic Syndrome 0.728 

Metabolic syndrome according to the EGIR definition Metabolic Syndrome 0.759 

Systolic blood pressure 2nd measurement, F3.0, 964 Systolic blood pressure 0.820 

Systolic blood pressure 3rd measurement, F3.0, 967 Systolic blood pressure 0.820 

Systolic blood pressure on entry, GRACEdataset 

patient only 
Systolic blood pressure 0.797 

Smoking during the past week or during the week 

before attempting to quit, I3, 666, 
smoking 0.643 

Smoking, 0=no, 1=yes. This variable should be used 

for contemporary smoking. 
smoking 0.645 
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Terminologies from TAUH Terminologies from NESDA Score 

How often the participant consumes mild-strength 

beer 

Use of cholesterol-lowering 

medication 
0.619 

Diastolic Blood Pressure Diastolic blood pressure 0.944 

Height at birth; cm, Height 0.767 

Weight of father in 1980; kg Weight 0.738 

Height of mother; cm. Average from values collected 

between 1980 and 1989. 
Height 0.694 

 

According to Supplementary Table 3, the proposed approach was able to identify 288 

potential lexical matches between TAUH and UVA with more than 75% coherence 

(overlap). More specifically, the lexical matcher was able to identify 6 terminologies 

with exact similarity, 25 terminologies with matching score larger than (or equal to) 

0.9, as well as, 66 terminologies with matching score larger than (or equal to) 0.8. The 

222 terminologies with scores in the range [0.6, 0.8) are considered as partially matched 

whereas the remaining 66 terminologies with scores in the range [0.8,1) are considered 

as highly similar. The frequencies of the uniquely matched terminologies from TAUH 

in LODZ, as well as, from TAUH in NESDA and from TAUH in UVA are summarized 

Table 49, Table 50, and Table 51, respectively. Recall that since the number of 

occurrences was low in the pairs of datasets regarding the mental disorders’ domain, 

cross domain matches were applied based on TAUH and the number of occurrences are 

described in the current section. According to Table 49, the terminology in TAUH 

having the highest frequency in LODZ is related to “Age” with 24 occurrences. The 

terminologies “Diabetes”, “The degree of severity of ischemic heart disease and heart 

failure”, come next with 13 and 11 occurrences, respectively. Terminologies with a 

relatively high number of occurrences include the “Creatinine”, “Asthma”, and 

“Chronic obstructive pulmonary disease”, among others. The rest of the terminologies 

include the “Other diseases of the central nervous system”, “Atrial fibrillation”, 

“Weight [kg]” and “Hypertension” with a frequency 2, as well as, the terminologies 

“Gender”, and “Vascular diseases of the central nervous system”, with a frequency 1. 

Table 49. The frequencies of the uniquely matched terminologies from LODZ in TAUH. 

Matched terminology from LODZ 
Frequency (number of 

occurrences) in TAUH 

Age 24 
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Matched terminology from LODZ 
Frequency (number of 

occurrences) in TAUH 

Diabetes 13 

Chronic obstructive pulmonary disease 5 

Other diseases of the central nervous system 3 

Asthma 5 

Education 2 

Creatinine 6 

Hypertension 3 

Height [cm] 2 

The degree of severity of ischemic heart disease and heart failure 11 

Atrial fibrillation 2 

Lives 1 

Gender 1 

Weight [kg] 2 

Vascular diseases of the central nervous system 1 

 

According to Table 50, the terminology in TAUH having the highest frequency in 

NESDA is related to “Systolic blood pressure” with 25 occurrences. The terminologies 

“Metabolic Syndrome”, “Weight”, and “Heart rate” come next with 16, 12 and 10 

occurrences, respectively. Terminologies with a relatively high number of occurrences 

include the “physical activity”, “Coronary heart disease”, “smoking”, “Height”, and 

“Diastolic blood pressure” among others. The rest of the terminologies include the 

“Intima-media thickness”, “Waist-hip ratio”, “Total cholesterol levels”, and “Insulin 

levels”, either with frequency 2 or 1, among others. 

Table 50. The frequencies of the uniquely matched terminologies from NESDA in TAUH. 

Matched terminology from NESDA Frequency (number of occurrences) in TAUH 

Coronary heart disease 8 

Systolic blood pressure 25 

Metabolic Syndrome 16 

Weight 12 

Intima-media thickness 4 

Waist circumference 3 

Heart rate 10 

Diastolic blood pressure 6 

Height 6 
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Matched terminology from NESDA Frequency (number of occurrences) in TAUH 

sleep 1 

smoking 8 

Cardiovascular disease 4 

physical activity 9 

Diabetes Type 2 5 

education 2 

Hypertension 3 

Triglyceride levels 2 

Sex 3 

Waist-hip ratio 2 

alcohol intake 1 

Anti-inflammatory medication use 1 

Other inflammatory markers 2 

Glucose levels 1 

Total cholesterol levels 2 

Other psychotropic medication use 1 

Insulin levels 1 

Use of cholesterol-lowering medication 1 

 

According to Table 51, the terminology in TAUH having the highest frequency in UVA 

is related to “Total cholesterol” with 38 occurrences, as well as, to “triglycerides” with 

35 occurrences. The terminologies “Age”, “Lipoprotein”, and “Weight” come next with 

24, 13 and 12 occurrences, respectively. Terminologies with a relatively high number 

of occurrences include the “physical activity”, “HDL cholesterol”, “glucose”, “height”, 

“C-reactive protein”, “LDL cholesterol”, and “Total cholesterol in mg/dl”, among 

others. The rest of the terminologies include the “Depression found”, “medication”, 

“diabetes type”, “Type I diabetes”, “hematocrit”, “Myocardial infarction, first time”, 

and “leukocytes”, with a smaller frequency, among others. 

Table 51. The frequencies of the uniquely matched terminologies from UVA in TAUH. 

Matched terminology from UVA 
Frequency (number of 

occurrences) in TAUH 

chronic disease 1 

Pain disappear, remain when standing or walking slowly 3 

HDL cholesterol 7 

triglycerides 35 
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Matched terminology from UVA 
Frequency (number of 

occurrences) in TAUH 

Depression found 1 

medication 3 

Mean cellular hemoglobin concentration of erythrocytes 2 

Total cholesterol 38 

heart failure 1 

Weight 12 

Lipoprotein 13 

Age 24 

C-reactive protein 5 

marital status 7 

date 8 

glucose 7 

 When complaints for the first time occurred in the life 10 

almost never, things develop according to my ideas 4 

size 12 

myocardial infarction 1 

heart rate 10 

height 6 

   Target systolic blood pressure 1 

physical activity 9 

I rarely count that happens to me something good 2 

Total cholesterol in mg/dl 4 

leukocytes 1 

Myocardial infarction, first time 1 

Long nitrates 1 

diabetes type 2 

when in a hurry or during physical exertion 2 

Oral glucose tolerance test 1 

among my friends I feel comfortable 3 

hyperlipidemia 1 

Difficulty concentrating / decision problems 3 

LDL cholesterol 4 

with acute coronary syndrome 1 

Alcohol consumption in last 12 months 1 

before how many months last determined by the doctor 3 

atrial fibrillation 1 

Total cholesterol in mmol/l 7 
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Matched terminology from UVA 
Frequency (number of 

occurrences) in TAUH 

erythrocytes 1 

Date of birth 2 

Myocardial infarction, Number 1 

Type I diabetes 1 

current setting and compliance 3 

testosterone 1 

more diagnoses 1 

master stressful situations 1 

more alcohol drinking justifiable as health 1 

gender 1 

Other 1 

homocysteine 1 

Number of almost daily Drinks 1 

Mean cellular hemoglobin content of erythrocytes 1 

Diagnostic status hypertension 1 

against elevated blood lipids 1 

other 1 

insulin 1 

uric acid 1 

hematocrit 1 

diabetes 1 

 Number of days 1 

metabolic syndrome 1 

Carotid stenosis 1 

Target diastolic blood pressure 1 

morning 1 

Fasting blood sugar 1 

 

Our method was compared against the application of conventional lexical analysis and 

manual mapping across 998 terminologies from the mental disorders’ domain, yielding 

a set of individual and cross domain matched terminologies with 85% precision (in 

average) and 10% higher performance than conventional lexical analysis. The proposed 

method yielded an increased number of cross-domain matched terminologies in less 

execution time and with higher overlap than conventional lexical analysis and manual 

mapping of terminologies which is extremely time consuming. The computational 

complexity of the method was proportional to the number of input terminologies. In 
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some cases, the number of matched terminologies was high (e.g., 435 in LURIC) 

enough, whereas in other cases, like in the mental disorders’, the number was adequate. 

Considering the small number of matched terminologies in the mental disorders’ 

domain and the fact that most of these terminologies were CVD-oriented, such as, 

“cholesterol”, and “hypertension”, cross-domain matches were investigated for the first 

time in the literature. 

7.5. Systemic autoinflammatory diseases 

This case study involves the application of the beyond the state of the art methods that 

were developed for data curation (CHAPTER 3) and a local training and testing 

scenario under federated learning (CHAPTER 6) to address open issues and clinical 

unmet needs (Section 1.4) in the domain of the systemic autoinflammatory diseases 

(Section 2.3.3) and particularly in patients who have been diagnosed with Kawasaki 

disease (KD). 

7.5.1. Data curation 

7.5.1.1. Case Study 1 – Curation across 8 open-source datasets from GEO 

The scope of this case study is to enhance the quality of 8 gene expression datasets from 

GEO in SAIDs. To this end, microarray data were collected from the Gene Expression 

Omnibus (GEO) public functional genomics data repository [405] for: (i) common 

platform analysis, where diagnostic biomarkers for KD are extracted from time-series 

gene expression data across three different KD phases followed by a validation of the 

extracted biomarkers against the known ones in the literature, and (ii) cross-platform 

analysis, where the proposed diagnostic biomarkers are further compared against the 

known KD genes through the integration of six more datasets. The genetic samples 

were tested for joint variabilities by calculating the covariance matrix and discarding 

genes with significantly high covariance. Any missing genetic samples were replaced 

with zero. Any incompatible fields and outliers were removed from the computational 

workflow to prior to the imputation process to avoid data contamination yielding high-

quality genetic data. 

Due to the variation of the range of values across the microarray data which were 

obtained from the two datasets in the GPL6271 (Table 52), as well as, from the six 
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datasets across the GPL570 and GPL10558 platforms (Table 53), a meta-analysis 

procedure was performed on each individual dataset based on the quantile 

normalization approach [406]. Specifically, the average of each quantile across the 

proposed KD genes was used as the reference to transform (adjust) their distributions. 

The same process was applied on the known KD genes. Since one gene might have 

more than one probes, the median of the probes was extracted per gene, prior to the 

quantile normalization process. 

 

Figure 79. Quantile normalization is used to align the distributions of the proposed and known 

genes for KD diagnosis. 

Table 52. A summary of the datasets which participated in the common platform analysis. 

Platform Dataset Disorder Values Patient samples 

GPL6271 GSE9863 [407] Kawasaki Log2 median ratio 
20 KD (at three 

phases) 

GPL6271 GSE47683 [408] 
Renal 

transplantation 
Normalized log ratio 

67 Non-KD (8 

healthy subjects) 

 

Table 53. A summary of the datasets which participated in the cross-platform analysis. 

Platform Dataset Disease Values Patient samples 

GPL570 

GSE80060 

[409] 
SJIA 

Linear scale RMA normalized 

relative expression values 

206 Non-KD (22 

healthy) 

GSE61635 SLE 
RMA signal intensity in log2 

scale 

129 Non-KD (30 

healthy) 
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Platform Dataset Disease Values Patient samples 

GPL10558 

GSE73461 

[410] 

KD, other 

inflammatory, 

bacterial/viral 

infections 

Illumina calculated signal 

intensity 

78 KD, 381 Non-

KD (55 healthy) 

GSE63881 

[411] 
KD Z-score normalization 

171 KD (10 

healthy) 

GSE68004 

[412] 

KD, HAdV, 

GAS 
Average normalization 

76 KD, 73 Non-

KD (37 heathy) 

GSE73463 

[410] 
KD 

Illumina calculated signal 

intensity 
233 KD 

 

All in all, the quality of the Gene expression microarray data was significantly enhanced 

through the quantile standardization process. 

7.5.2. Federated/distributed learning (local case) 

7.5.2.1. Case Study 1 – A new set of biomarkers for Kawasaki disease 

The scope of this case study is to identify a new set of genetic biomarkers for Kawasaki. 

To this end, we used the data presented in Section 7.5.1.1. The rectangular grid of the 

second stage (intra-phase) SOM is depicted in the left-hand side of Figure 80. The SOM 

consists of five clusters (prototypes), where, cluster 1 consists of six patients (KD3004, 

KD3014, KD3033, KD3037, KD3047, KD3054), cluster 3 consists of five patients 

(KD1502, KD1505, KD3016, KD3019, KD3038), cluster 7 consists of two patients 

(KD3027, KD3028), cluster 8 consists of one patient (KD3049), and cluster 9 consists 

of six patients (KD1506, KD3007, KD3046, KD3058, KD3059, KD3064).  

 

Figure 80. An illustration of the second stage SOM along with the detected super-clusters. 
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It is interesting to note that the clusters 2, 4, 5, and 6 of the 3x3 SOM were empty since 

no samples were projected in those grid cells. To merge prototypes with similar 

patterns, the five clusters were aggregated into super-clusters by applying hierarchical 

clustering on the Euclidean distances between them yielding the four prototypes (super-

clusters) which are depicted in the right-hand side of Figure 80. More specifically, the 

dendrogram which was generated by hierarchical clustering was partitioned into four 

super-clusters, where, super-cluster 1 consists of the patients in cluster 1, super-cluster 

2 consists of the six patients in cluster 3, super-cluster 3 consists of the two patients in 

cluster 7 and super-cluster 4 is the union of clusters 8 and 9. The labels of the super-

clusters were used subsequently to identify the proposed genes. 

The FDR-based feature selection schema was able to identify the following gene 

reference IDs as significant (p < 0.01, Benjamini-Hochberg adjusted) across all three 

phases: 15658, 15660, 22055, 26049, and 35359. The proposed genes for KD diagnosis 

are presented in Table 54.  It should be noted that in order to map the gene IDs to the 

available gene probes and since the employed KD dataset does not provide any 

information on the utilized genes (ID, name or description) we performed a BLAST 

(Basic Local Alignment Search Tool) search on GenBank [42], to detect the most 

homolog sequence and subsequently the corresponding gene. The gene CASD1 

achieved the highest score in phase A (F-score = 19.93), the gene TNFRSF13C in phase 

SA (F-score = 15.74), and the gene CASD1 again for phase C (F-score = 12.12). 

Table 54. The proposed set of genes for KD diagnosis. 

ID_REF Gene ID 
ANOVA F-scores (with p<0.01, BH-adjusted) 

A SA C 

15658 HLA-DQB1 9.79 10.05 10.51 

15660 HLA-DRA 11.12 9.95 9.03 

22055 ZBTB48 13.74 11.25 11 

26049 TNFRSF13C 12.22 15.74 11.59 

35359 CASD1 19.93 9.37 12.12 

 

The known KD genes from the literature are presented in Table 55 along with the 

corresponding ID_REF and a short description. Based on the work in [408], [413], 

[414] and the associated genes which are listed, we detected those that are also listed in 

[415] which, as already mentioned, uses the same experimental platform with the 

employed KD dataset but also provides the corresponding gene IDs.  Probes with IDs 
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253, 29567 belong to the TLR6 (Toll-like receptor 6) family which is related with 

pathogen recognition and activation of innate immunity. Probes with IDs 9368, 34805 

correspond to the COPB2 gene (COPI Coat Complex Subunit Beta 2) family which is 

part of the Golgi coatomer complex [414] that constitutes the coat of nonclathrin-coated 

vesicles and is essential for Golgi budding and vesicular trafficking. Probe ID 12792 

corresponds to the FCGR2A (Fc Fragment Of IgG Receptor IIa) which belongs to the 

family of immunoglobulin Fc receptor genes that exist on the surface of many immune 

response cells. The probe with ID 26786 is the CD40 molecule which is essential for 

mediating a broad variety of immune and inflammatory responses [414]. Probe IDs 

33880, 37136 belong to the BLK Proto-Oncogene family whose protein is involved in 

B-cell receptor signaling and development and finally the gene with ID 34697 is the 

Caspase 3 (CASP3) which is highly involved in the execution-phase of cell apoptosis 

[414]. 

Table 55. Known genes for KD diagnosis. 

ID_REF Gene ID Description 

253 
TLR6 

Toll-like receptor 6 as plays a fundamental role in pathogen recognition 

and activation of innate immunity. 29567 

9368 

COPB2 

COPI Coat Complex Subunit Beta 2 constitutes the coat of nonclathrin-

coated vesicles and is essential for Golgi budding and vesicular 

trafficking. 
34805 

12792 FCGR2A 

Fc Fragment Of IgG Receptor IIa encodes a family member of 

immunoglobulin Fc receptor genes found on the surface of many 

immune response cells. 

26186 CD40 

The CD40 molecule belongs to the TNF-receptor superfamily and is a 

receptor on antigen-presenting cells of the immune system which is 

essential for mediating a broad variety of immune and inflammatory 

responses. 

33880 
BLK 

BLK Proto-Oncogene is a protein which has a functional role in B-cell 

receptor signaling and B-cell development. 37136 

34697 CASP3 
Caspase 3 is a gene whose encoded protein is a cysteine-aspartic acid 

protease that plays a central role in the execution-phase of cell apoptosis. 

 

Each gene expression dataset from Table 52 and Table 53 was adjusted based on the 

quantile normalization process. No outliers or genes with joint variability were detected 

in the two datasets. The performance evaluation results of the XGBoost on both the 

proposed and the known genes are presented in Table 56. The procedure was repeated 
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using the AdaBoost algorithm as a second boosting classifier to further compare the 

classification outcomes among the two cases (Table 56). A repeated stratified 10-fold 

cross validation procedure was applied for the performance evaluation of both boosting 

schemas, where four measures were averaged across the folds, namely, the accuracy, 

sensitivity, specificity, and AUC. Through the stratified strategy, the number of KD 

patients is the same across each fold. The corresponding ROC curves of the XGBoost 

and the AdaBoost are depicted in Figure 81 for phases A, SA, and C and for each 

training case (case 1: on the dataset with the proposed genes and case 2: on the dataset 

with the known KD genes). In both boosting schemas, the proposed set of genes yielded 

a notable performance on the Acute and Subacute phases which is reflected by the high-

performance evaluation results in Table 56. 

Table 56. Performance evaluation results for the XGBoost and the AdaBoost across the three 

phases for both the known and the proposed set of genes. 

XGBoost 

Set of genes 
Accuracy Sensitivity Specificity AUC 

A SA C A SA C A SA C A SA C 

Known 0.956 0.989 0.989 0.918 0.975 0.975 0.986 1 1 0.981 0.988 0.995 

Proposed 1 1 0.978 1 1 0.986 1 1 0.971 0.995 0.995 0.995 

AdaBoost 

Set of genes 
Accuracy Sensitivity Specificity AUC 

A SA C A SA C A SA C A SA C 

Known 0.944 0.911 0.954 0.929 0.925 0.970 0.957 0.9 0.940 0.950 0.947 0.967 

Proposed 1 0.976 0.989 1 0.968 0.993 1 0.986 0.986 0.995 0.995 0.995 

 

Regarding the XGBoost algorithm (Table 56), the classification outcomes using the 

known set of genes yielded accuracy 0.956 for phase A, 0.989 for phase SA, and 0.989 

for phase C, and the AUC scores were 0.981, 0.988, and 0.995, respectively (Figure 

81). On the other hand, the performance of the XGBoost on the proposed set of genes 

was higher in phases A and SA, yielding accuracy 1.0 for phase A and SA, and 0.978 

for phase C, where the AUC scores were 0.995 across all phases (with a standard 

deviation ± 0.1). Although in phase C the sensitivity of the XGBoost on the proposed 

set of genes was 1.1% higher than the one on the known set of genes, the specificity 

was smaller thus yielding a slightly reduced performance. 

As far as the AdaBoost algorithm is concerned, the increased performance of the 

proposed set of genes against the known ones is preserved, however, with an increased 



293 

 

performance across all three phases. According to Table 56, the known set of genes 

yielded accuracy 0.944 for phase A, 0.911 for phase SA, and 0.954 for phase C, where 

the AUC scores were 0.950, 0.947, and 0.967, respectively. On the other hand, the 

performance of the AdaBoost algorithm on the proposed set of genes was higher in all 

phases, yielding accuracy 1.0 for phase A, 0.976 for phase SA, and 0.989 for phase C. 

The sensitivity values were 1, 0.968, 0.993 and the specificity values were 1, 0.986, and 

0.986, respectively, yielding increased AUC scores across all phases. 

 

Figure 81. A comparison of the Receiver Operating Characteristic (ROC) curves (the true 

positive rate against the false positive rate) between the GBT (XGBoost) algorithm which was 

trained on the dataset with the proposed genes (red line) and the known KD genes (blue line), 

for phases A, SA, and C. 

In total, the classifiers yielded an average increase by 4.40% in the accuracy, 5.52% in 

sensitivity, and 3.57% in specificity compared with the known set of genes in phases A 
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and SA. The contribution of the proposed set of genes appears to be significantly higher 

in phase A and SA, a fact which is also present in the AdaBoost schema. This implies 

that the high tendency of the proposed genes against the known genes is preserved in 

these two phases apart from the boosting schema. Regarding phase C, the high 

performance is maintained in the AdaBoost whereas in the GBT the reduced specificity 

results in a slightly smaller performance. Each gene expression dataset (GSE80060, 

GSE61635, GSE73461, GSE63881, GSE68004, GSE73463) from Table 53 was 

individually transformed (adjusted) using the quantile normalization process. No 

outliers or genes with joint variability were detected. The median of the probes was 

extracted in the case of genes with more than one probes. The transformed data were 

then integrated into two different data structures which included the proposed 

biomarkers and the known diagnostic biomarkers, respectively. 

The non-KD patients (including patients who have been diagnosed with SLE, SJIA or 

other inflammatory diseases, bacterial or viral infections, HAdV and GAS) were 

annotated with a value 0 whereas the KD patients were annotated with a value 1 to 

solve a binary classification problem using the XGBoost and the AdaBoost classifiers. 

Regarding the XGBoost algorithm (Figure 81), the classification outcomes using the 

known set of genes yielded accuracy 0.847, sensitivity 0.845, specificity 0.894, and 

AUC 0.906, respectively. On the other hand, the performance of the XGBoost 

algorithm on the proposed set of genes was higher (Figure 81), yielding accuracy 0.872, 

sensitivity 0.869, specificity 0.939, and AUC 0.927.  

 

Figure 82. A comparison of the Receiver Operating Characteristic (ROC) curves (the true 

positive rate against the false positive rate) between the GBT (XGBoost) algorithm (on the left-
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hand side) and the AdaBoost algorithm (on the right-hand side) which were trained on the 

proposed genes (red line) and the known KD genes (blue line) across the cross-platform data. 

As for the AdaBoost algorithm (Figure 81), the increased performance of the proposed 

set of genes against the known ones is once more preserved, however, with a reduced 

performance than the XGBoost, like in the common platform analysis. The 

classification outcomes from the known set of genes yielded accuracy 0.848, sensitivity 

0.846, specificity 0.892, and AUC 0.905. On the other hand, the performance of the 

AdaBoost algorithm on the proposed set of genes was higher (Figure 82), yielding 

accuracy 0.868, sensitivity 0.865, specificity 0.94, and AUC 0.919. In total, both 

classifiers yielded an average increase by 2.30% in the accuracy, 2.20% in sensitivity, 

4.70% in specificity, and in 1.70% in AUC. 

To address the need for KD diagnosis, we proposed a computational pipeline which 

clusters KD patients with similar gene expression profiles across the three different KD 

phases, namely, the Acute (A), Subacute (SA) and Convalescent (C), and uses the 

resulting clustermap to detect prominent genes as biomarkers for KD diagnosis. To do 

so, we construct Self-Organizing Maps (SOMs) to group patients with similar gene 

expressions into homogeneous clusters across the three phases. Then, we apply FDR-

based feature selection to detect genes that significantly deviate across the clusters on 

each phase. As a last step, we extract the final set of proposed genes as those that are 

present across all phases and compare their performance against known KD genes in 

the literature by training two ML algorithms for KD classification.  

According to the results, five prominent genes for KD diagnosis are proposed for the 

first time, namely the HLA-DQB1, HLA-DRA, ZBTB48, TNFRSF13C, and CASD1. 

These genes were used to develop a KD boosting classifier which yielded better 

performance against the one trained on the known KD genes in terms of increased 

accuracy, sensitivity, specificity, and AUC.  

To our knowledge, this is the first ML-based computational workflow using intra-phase 

and inter-phase clustering for KD genomic data analysis towards the discovery of 

biomarkers for KD diagnosis. Further examination of the proposed genes in terms of 

functional analysis, as well as, clinical validation may unveil new insights concerning 

the pathogenesis of KD and the underlying genetic mechanisms. 
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7.6. COVID-19 

This case study involves the application of the beyond the state-of-the-art methods that 

were developed for data curation (CHAPTER 3) and a local training and testing 

scenario under federated learning (CHAPTER 6) to address open issues and clinical 

unmet needs (Section 1.4) in the domain of COVID-19 (Section 2.3.4). 

7.6.1. Data curation 

7.6.1.1. Case Study 1 – Sotiria Hospital 

The scope of this case study is to enhance the quality of a medium size clinical database 

across 3 timepoints with hospitalized COVID-19 patients in Greece. Anonymized 

patient data were collected from 324 hospitalized patients with average age 60.65 

(±14.44) who were diagnosed with COVID-19 from the 21st Department of Pulmonary 

Medicine, National and Kapodistrian University of Athens, in “Sotiria” Hospital for the 

diseases of the chest, as described in [416]. According to Table 57, the data include 

demographic information, comorbidities, laboratory tests (e.g., C-reactive protein), 

therapies (corticosteroids and antiviral agents) as well as cytokines and interleukins 

measurements at four time intervals. Patient records having at least one missing value 

in the admission ICU date or in mortality were ignored from the analysis (110 patients).  

Thus, the final population included 214 patients with average age 60.93 (±15.38). 

Patients were categorized into four groups based on their admission in the ICU and/or 

mortality, where Group A included those who survived without ICU admission (131 

patients, average age 55.99 (±15.1)), Group B included patients who were not admitted 

to the ICU but died (4 patients, average age 81 (±6.52)), Group C included those who 

were admitted to the ICU and survived (43 patients, average age 63.79 (±11.62)), and 

Group D included patients who were admitted to the ICU and died (36 patients, average 

age 73.81 (±9.62)). 

The initial dataset included 110 features with 324 instances. Out of 324 features, 36 

were discrete, 57 were continuous and 17 features had unknown data type (i.e., mixed 

data types). The total number of missing values was 54.53%. After the end of the first 

stage of the data curation process (Stage I), the total number of features was 57 with 

214 instances. Out of 57 features, 20 were discrete and 37 were continuous with a total 
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of 35.38% missing values (Stage II). In the final stage (Stage III), the k-NN approach 

was applied for data imputation only on features with an acceptable percentage of 

missing values (≤40%) to increase the completeness of the data before the application 

of the classification models. In addition, highly associated features with the target 

feature, such as, the days in the ICU and the hospitalization time were removed from 

the analysis. 

 

Figure 83. An indicative instance of the anonymized data before (on top) and after (on bottom) 

data curation. The acronyms of the features are described in Table 57. 

Table 57. A summary of the features that participated in the analysis (after data curation). 

Feature Description Value range 

Age - [18, 91] 

Gender - [0, 2] 

Comorbidities 

(presence) 
- [0, 1] 

Diabetes type I - [0, 1] 

Diabetes type II - [0, 1] 

Dyslipidemia - [0, 1] 
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Feature Description Value range 

Hypertension - [0, 1] 

Thyroidism - [0, 1] 

COPD Chronic obstructive pulmonary disease [0, 1] 

Atrial fibrillation - [0, 1] 

Allergic rhinitis - [0, 1] 

Asthma - [0, 1] 

Others Presence of any other comorbidities [0, 1] 

APACHE II - [0, 20] 

Vaccination - [0, 1] 

Smoking - [0, 2] 

LOSYMBHOSP 
Day interval from the first symptom until the 

admission to the hospital 
[1, 29] 

WBC White blood cell count [2.53, 20] 

NEUT Neutrophils [0.97, 17.32] 

LYM Lymphocytes [0.14, 3.09] 

MONO Monocytes [0.04, 1.35] 

EOS Eosinophils [0, 0.71] 

PLT Platelets [52, 560] 

Hb Hemoglobin [8, 73] 

Cr Creatinine [0.5, 3.2] 

CRP C-reactive protein [0.11, 29] 

AST Aspartate Aminotransferase [15, 380] 

ALT Alanine Aminotransferase [8, 223] 

LDH Lactate Dehydrogenase [38, 1394] 

Oxygen type 

0: No oxygen, 1: Ventilator, 2: Oxygen (Mask, 

nasal Canula), 3: None of the above, 4: 

NonInvasive (CPAP, BIPAP), 5: High flow 

[0, 5] 

IL1b_days_0_2 
Interleukin 1 beta in time interval 1 – INT1 

(averaged across days 0 – 2) 
[0.028, 1.82] 

IL6_days_0_2 
Interleukin 6 in time interval 1 – INT1 (averaged 

across days 0 – 2) 
[0.137, 60.891] 

IL8_days_0_2 
Interleukin 8 in time interval 1 – INT1 (averaged 

across days 0 – 2) 
[0.287, 90.426] 

TNF_days_0_2 (or 

TNFa_days_0_2) 

Tumor necrosis factor (alpha) in time interval 1 – 

INT1 (averaged across days 0 – 2) 
[0.963, 17.23] 

IL1b_days_3_5 
Interleukin 1 beta in time interval 2 – INT2 

(averaged across days 3 – 5) 
[0.107, 1.58] 

IL6_days_3_5 
Interleukin 6 in time interval 2 – INT2 (averaged 

across days 3 – 5) 
[0.06, 58.841] 

IL8_days_3_5 
Interleukin 8 in time interval 2 – INT2 (averaged 

across days 3 – 5) 
[1.635, 111.816] 

TNF_days_3_5 (or 

TNFa_days_3_5) 

Tumor necrosis factor (alpha) in time interval 2 – 

INT2 (averaged across days 3 – 5) 
[1.191, 21.086] 

IL1b_days_6_8 
Interleukin 1 beta in time interval 3 – INT3 

(averaged across days 6 – 8) 
[0.246, 0.968] 

IL6_days_6_8 
Interleukin 6 in time interval 3 – INT3 (averaged 

across days 6 – 8) 
[0.248, 17.788] 
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Feature Description Value range 

IL8_days_6_8 
Interleukin 8 in time interval 3 – INT3 (averaged 

across days 6 – 8) 
[2.519, 115.776] 

TNF_days_6_8 (or 

TNFa_days_6_8) 

Tumor necrosis factor (alpha) in time interval 3 – 

INT3 (averaged across days 6 – 8) 
[1.297, 10.018] 

IL1b_days_9_11 
Interleukin 1 beta in time interval 4 – INT4 

(averaged across days 9 – 11) 
[0.055, 2.291] 

IL6_days_9_11 
Interleukin 6 in time interval 4 – INT4 (averaged 

across days 9 – 11) 
[0.0002, 176.207] 

IL8_days_9_11 
Interleukin 8 in time interval 4 – INT4 (averaged 

across days 9 – 11) 
[0.652, 56.1] 

TNF_days_9_11 (or 

TNFa_days_9_11) 

Tumor necrosis factor (alpha) in time interval 4 – 

INT4 (averaged across days 9 – 11) 
[1.202, 9.408] 

Group* 0: Group A, 1: Group B, 2: Group C, 3: Group D [0, 3] 

* Group A: patients who were not admitted to the ICU and survived, Group B: patients who were not 

admitted to the ICU but died, Group C: patients who were admitted to the ICU but survived, Group 

D: patients who were admitted to the ICU and died. 

 

All in all, the quality of the time-series data from the “Sotiria” hospital was significantly 

enhanced across the available timepoints. 

7.6.1.2. Case Study 2 – University Hospital of Ioannina 

The scope of this case study is to enhance the quality of a large size clinical database 

across 7 timepoints with hospitalized COVID-19 patients in Greece [417]. Anonymized 

baseline and follow up clinical data were acquired from the Dept. of Internal Medicine 

at the University Hospital of Ioannina. In total, 422 hospitalized COVID-19 patients 

were included in the analysis with an average age of 64.28 (±16.72) years. The time-

series data consisted of 51 clinical features across 7 timepoints: 1, 3, 5, 7, 9, 11, and 15 

days after hospitalization. Out of 422 patients, 25 patients (5.92%) were admitted in the 

ICU and 49 patients died (11.61%). Out of the 49 patients who died, 18 were admitted 

in the ICU. The classification tasks are formulated as follows: (i) in the first case, the 

target group consists of the patients who were admitted in the ICU (25 patients), and 

(ii) in the second case, the target group consists of the patients who died (49 patients). 

In each case, the remaining patients are assigned to the control group. 

The number of features with either good or fair quality status was 70 in timepoint 1, 66 

in timepoints 1-2, 55 in timepoints 1-3, 51 in timepoints 1-4, 48 in timepoints 1-5, 28 

in timepoints 1-6, and 20 in timepoints 1-7, where the time-points refer to 

hospitalization days. Consequently, only the 51 features having either fair or good 

quality status in timepoints 1-4 were considered as eligible for the analysis since the 
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inclusion of information from additional timepoints would result in information loss 

due to the bad quality status. The quality status for each one of the 51 eligible features 

(32 continuous, 19 discrete) is summarized in Supplementary Table 4, where an overall 

description of the quality of the eligible features across the seven time-points is 

presented in Supplementary Table 4. Out of the 32 continuous features (Figure 84), 

9.37% was good, 65.18% was fair and 25.45% was bad whereas out of 19 discrete 

features (Figure 84), 15.78% were good, 57.9% were fair and 26.32% were bad, on 

average, across the available time-points. Data imputation based on the kNN approach 

was only applied for the features with fair quality. The abbreviations for the input 

features are presented in Supplementary Table 4. 

 

Figure 84. Quality status across the time-points for the continuous and the discrete features. 

According to Table 58, the number of discrete features was 19 whereas the number of 

continuous features was 32. In both cases, the quality of the features is considered as 

adequate for the analysis until the 4th day of hospitalization. 

Table 58. Quality of the features across the seven time-points upon hospitalization. 

Time 

interval 

Continuous features = 32/51 (63%) Discrete features = 19/51 (37%) 

Good (%) Fair (%) Bad (%) Good (%) Fair (%) Bad (%) 

day 1 
3/32 

(9.37%) 

29/32 

(90.63%) 
0 

3/19 

(15.78%) 

16/19 

(84.22%) 
0 

day 3 
3/32 

(9.37%) 

29/32 

(90.63%) 
0 

3/19 

(15.78%) 

16/19 

(84.22%) 
0 
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Time 

interval 

Continuous features = 32/51 (63%) Discrete features = 19/51 (37%) 

Good (%) Fair (%) Bad (%) Good (%) Fair (%) Bad (%) 

day 5 
3/32 

(9.37%) 

29/32 

(90.63%) 
0 

3/19 

(15.78%) 

16/19 

(84.22%) 
0 

day 7 
3/32 

(9.37%) 

29/32 

(90.63%) 
0 

3/19 

(15.78%) 

16/19 

(84.22%) 
0 

day 9 
3/32 

(9.37%) 

26/32 

(81.26%) 
3/32 (9.37%) 

3/19 

(15.78%) 

13/19 

(68.44%) 

3/19 

(15.78%) 

day 11 
3/32 

(9.37%) 
4/32 (12.5%) 

25/32 

(78.13%) 

3/19 

(15.78%) 
0 

16/19 

(84.22%) 

day 15 
3/32 

(9.37%) 
0 

29/32 

(90.63%) 

3/19 

(15.78%) 
0 

16/19 

(84.22%) 

Total 9.37% 65.18% 25.45% 15.78% 57.9% 26.32% 

 

All in all, the quality of the time-series data from the “University Hospital of Ioannina” 

was significantly enhanced across the multiple timepoints. 

7.6.2. Federated/distributed learning (local case) 

7.6.2.1. Case Study 1 – ICU admission and mortality prediction across 3 

timepoints 

The scope of this case study is to evaluate a multimodal AI-based approach which 

combines explainable AI models with dynamic modeling methods to shed light into the 

clinical features of COVID-19. We used the data from Section 7.6.1.1. The performance 

evaluation results on Groups A, C and D are summarized in Table 59 while the ROC 

curves for the time interval 1 are depicted in Figure 85. Due to the increased class 

imbalance in Groups C (43 targets over 171 controls) and D (36 targets over 178 

controls), random downsampling with replacement was applied to yield equally 

numbered patients across the corresponding control and target groups. More 

specifically, the downsampled controls were matched according to age and gender, 

where the downsampling ratio was set to 1:1. The overall process was repeated ten 

times to avoid biases during the downsampling stage. A stratified 10-fold cross 

validation process was applied on each round and the performance evaluation results 

were averaged. According to Table 59, the performance of the GBT classifier was 

favorable, specifically in Groups A and D. The performance of the AI model in Group 

A yielded an AUC 0.84 in time interval INT1, 0.84 in time intervals INT1-INT2, 0.83 

in time intervals INT1-INT3, and 0.81 in time intervals INT1-INT4 towards the 

classification of the patients who were not admitted in the ICU and survived. The AI 

model in Group C was able to classify the patients who were admitted in the ICU and 
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survived with an AUC 0.77 in INT1, 0.76 in INT1-INT2, 0.81 in INT1-INT3, and 0.8 

in INT1-INT4. Finally, the AI model in Group D classified the patients who were not 

admitted in the ICU and died with an AUC 0.84 in time interval 1, 0.84 in INT1-INT2, 

0.83 in INT1-INT3, and 0.81 in INT1-INT4. It should be noted that the missing values 

in INT3 and INT4 affected the performance of the AI models against those trained in 

INT1. 

Table 59. Performance evaluation results across sequential time intervals for Groups A, C, and 

D. Group B was ignored due to the small number of patients (INT1: days 0 to 2, INT2: days 3 

to 5, INT3: 6 to 8 and INT4: days 9 to 11). 

INT1 

Groups Accuracy Sensitivity Specificity AUC 

Group A* 0.77 0.77 0.71 0.84 

Group C** 0.73 0.73 0.75 0.77 

Group D** 0.77 0.77 0.78 0.83 

INT1-INT2 

Groups Accuracy Sensitivity Specificity AUC 

Group A* 0.79 0.79 0.71 0.84 

Group C** 0.72 0.72 0.72 0.76 

Group D** 0.77 0.77 0.77 0.84 

INT1-INT3 

Groups Accuracy Sensitivity Specificity AUC 

Group A* 0.77 0.77 0.70 0.83 

Group C** 0.78 0.77 0.80 0.81 

Group D** 0.79 0.78 0.81 0.86 

INT1-INT4 

Groups Accuracy Sensitivity Specificity AUC 

Group A* 0.77 0.77 0.69 0.82 

Group C** 0.77 0.77 0.77 0.80 

Group D** 0.81 0.80 0.82 0.85 

* a stratified 10-fold cross validation procedure was used. 

** random downsampling with replacement was applied to match the control group with the target 

group due to the increased class imbalance. 

 

According to Figure 85, the classification performance was favorable in all groups (in 

terms of the true positive rate versus the false positive rate), where the AUC score was 

0.87, 0.79, and 0.88, for Groups A, C, and D, respectively. 
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Figure 85. ROC curves of the GBT classifier on Groups A, C, and D in time interval 1. 

The mean absolute Shapley values which quantify the average impact of each feature 

on the model’s output magnitude are depicted in Figure 86 (on the left subpanel) along 

with the Shapley values that quantify the impact of the corresponding feature on the 

model output (on the right subpanel). 

 

Figure 86. Prominent features across (A) Group A, (B) Group C, and (C) Group D, using the 

baseline data along with the cytokines from time interval 1 (INT1).  
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Since the objective function of the GBT classifier is set to the logistic loss, the Shapley 

values correspond to the log-odds. Thus, features that significantly affect the model’s 

output from the base value (i.e., the average model output) to higher log-odds are 

depicted in red whereas features that affect the average model’s output to lower log-

odds are depicted in blue. 

 

Figure 87. Prominent features across (A) Group A, (B) Group C, and (C) Group D, using the 

baseline data along with the cytokines from time intervals 1-2. 

The average absolute Shapley values for Group A are depicted in Figure 86 (A) in a 

descending order (on the left subpanel) along with the Shapley values (on the right) 

which quantify the positive or negative impact of the 10 most prominent features on the 
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model’s output. According to Figure 86 (A), WBC had the highest contribution to the 

decision-making process by affecting the model’s output to higher log-odds for low 

white blood cell (WBC) values along with Lactate Dehydrogenase (LDH), age, C-

reactive protein (CRP), Aspartate Aminotransferase (AST), number of platelets (PLT), 

and IL-6. Other features include the number of lymphocytes which affect the model’s 

output to higher log-odds but for higher values. 

 

Figure 88. Prominent features across (A) Group A, (B) Group C, and (C) Group D, using the 

baseline data along with the cytokines from time intervals 1- 3. 

Regarding Group C, (Figure 86 (B)) creatinine (Cr) and LDH had the highest 

contribution in the classification outcome, along with the IL-8, number of monocytes 

(MONO), oxygen type and TNF, where on one hand both low and high values of these 

features affect the model’s output to higher log-odds but on the other hand small LDH, 
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IL-6, number of lymphocytes (LYM), WBC values affect the model’s output to lower 

log-odds. Finally, according to Figure 86 (C), LDH had the highest impact during 

decision-making in Group D, along with age, CRP, Cr, and WBC, among others, where 

large values for age and WBC affect the model’s output to higher log-odds but for 

higher values. 

 

Figure 89. Prominent features across (A) Group A, (B) Group C, and (C) Group D, using the 

baseline data along with the cytokines from all time intervals. 

According to Figure 87, the overall importance in Group A using the cytokines from 

INT2 is preserved, where the LDH, WBC, age, and CRP continue to appear as 

prominent, as well as, IL-6 but on INT2. Regarding Group B, the features LDH, IL-8, 

MONO, Cr and LYM have the highest contribution to the model’s output. As far as 

Group D is concerned, the contribution of LDH, age, CRP, and Cr is also dominant. 
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According to Figure 88, the overall importance in Groups A and B using the cytokines 

from INT1-INT3 is preserved. Regarding Group D, the contribution of LDH, IL-6 in 

INT3 and IL-8 in INT2 and INT3 appear to be important affecting the model’s output 

to higher log-odds but for higher values. Finally, according to Figure 89, the overall 

importance in Groups A and B using the cytokines from all time intervals is preserved 

with updates in the ranking order. As for Group D, the contribution of the LDH, IL-6 

in INT3 and INT4 and IL-8 in INT2 and INT3 appear to be important. 

To better understand the similarities among the Shapley values of each prominent 

feature, heatmaps were also derived (Figure 90), where the horizontal axis depicts the 

instances in ascending order, the vertical axis depicts the features ranked in descending 

order based on their classification importance, and the color coding corresponds to the 

Shapley explanation value levels across the instances in the whole dataset. Hierarchical 

clustering was then applied based on the explanation similarity of the most prominent 

features to identify activation patterns among the patients. 

 

Figure 90. Heatmaps for Groups A, C and D, using the baseline data along with the cytokines 

from time interval 1 (INT1). 

According to Figure 90, the instances that exhibit increased explanation values using 

the cytokines from INT1, include the WBC, LDH, and oxygen type, which implies that 

these features can be used to derive homogeneous clusters and are in concordance with 

the feature importance plots in Figure 86. A similar pattern is observed in Group C for 

LDH along with IL-8, oxygen type, and TNF which are also reported in Figure 86.  
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Regarding Group D, the LDH is an important factor for hierarchical clustering, along 

with the age which exhibits strong explanation similarities with the outcome. A similar 

behavior regarding the contribution of the prominent features from the Shapley 

explanation analysis to the patterns across the derived hierarchical clusters was 

observed in the case where the cytokine measurements from INT1-INT2, INT1-INT3, 

and INT1- INT4 are used. 

Decision trees were induced to further enhance the interpretability of the groupwise AI 

models by capturing the decision pathways which are involved in the decision-making 

process (Figure 91). Towards this direction, the CART algorithm [416] was applied on 

the baseline and cytokine data from each individual group and across sequential time 

intervals to identify critical thresholds for the prominent features, i.e., the features 

which are highly involved in the decision-making process; excluding Group B due to 

the small number of patients (Section 7.6.1.1). 

According to Figure 91, the decision-making process in Group A, using the baseline 

data and the cytokines from INT1, is based on WBC since it is the root of the induced 

decision tree. The threshold 7.58 in WBC indicates a critical value that determines 

whether the decision will be based on CRP in case it is less than (or equal to) 7.58, 

where additional emphasis is given on Cr (with a critical threshold at 1.5; values less 

than or equal to 1.5 are classified as positive) and PLT (with a critical threshold at 

243.5; instances with values larger than 243.5 are classified as positive). Otherwise, the 

decision-making process follows the right pathway which is based on the lymphocyte 

count with a critical threshold at 1.405, where in the case that this is lower than or equal 

to 1.405 the decision is based on AST (values less than or equal to 22 are classified as 

positive) or on age (values less than or equal to 82.5 are classified as positive) in the 

case where the lymphocyte count is higher than 1.405. It is interesting that in the case 

where CRP is less than (or equal to) 3.637 and Cr is less than (or equal to) 1.5, the 

instance is classified as positive (i.e., no admission in the ICU and survival).  

When CRP is larger than 3.637 and PLT is higher than 243.5, the instance is also 

classified as positive. In the case where WBC is higher than 7.56 the instance is 

classified as positive either when LYM is lower than (or equal to) 1.405 and AST is 

less than (or equal to) 22 or when LYM is higher than 1.404 and the age is less than (or 

equal to) 82.5. 
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As far as Group C is concerned (Figure 91), the decision-making process is based on 

LDH. The threshold 278 in LDH indicates a critical value that determines whether the 

decision will be based on IL-8 in time interval 1 with a threshold at 6.355, where 

emphasis is given on MONO (values less than or equal to 0.635 are classified as 

positive) in the case where IL-8 is less than or equal to 6.355 or again on MONO (values 

less than or equal to 0.305 are classified as positive) otherwise. Otherwise, the decision-

making process follows the right pathway where emphasis is given on LYM with a 

critical threshold at 1.094 where in the case it is lower than 1.094 emphasis is given on 

IL6 at INT1 (values larger than 9.447 are classified as positive) otherwise on WBC 

(values less than or equal to 5.418 are classified as positive).  

 

Figure 91. Induced decision trees across (A) Group A, (B) Group C, and (C) Group D using 

the baseline data along with the cytokines from the time interval 1 (INT1; days 0 to 2). In each 

case, blue color gradings denote instances which are classified as positive (i.e., outcome = “1”) 

whereas orange color gradings denote otherwise (i.e., outcome = “0”). 

It is interesting that in the case where LDH is less than (or equal to) 278 and IL-8 is less 

than (or equal to) 6.355, and MONO is less than (or equal to) 0.635 the instance is 

classified as positive (i.e., admission in the ICU and survival). The same occurs in the 

case where IL6 is larger than 6.355 and MONO is less than 0.305. However, when LDH 

is larger than 278 and LYM is larger than 1.094 and WBC is larger than 5.418 the 

instance is classified as positive. The same occurs when LYM is less than (or equal to) 

1.094 and IL-6 is larger than 9.447. 
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Regarding Group D (Figure 91), the decision-making process is once more based on 

the LDH. The threshold 357 in LDH indicates a critical value which determines whether 

the decision will be based on CRP (with a critical threshold at 18.465; values larger 

than 18.465 are classified as positive) in the case where the LDH is less than (or equal 

to) 357, where emphasis is given on Cr (values larger than 1.341 are classified as 

positive). Otherwise, the decision-making process follows the right pathway where the 

decision is based on age with a critical threshold at 63.5 years, where in the case it is 

larger than 63.5 emphasis is given on PLT (values larger than 319.15 are classified as 

positive) or on Cr (values larger than 1.093 are classified as positive) otherwise. The 

acronyms of the features which participate in the decision-making process (Figure 91) 

are described in Table 57. 

We described a multimodal AI approach based on an anonymized dataset of 324 

hospitalized patients who have been diagnosed with COVID-19, in Greece, that 

includes laboratory and clinical information, as well as, biological information across 

four time intervals. The pipeline utilizes explainable and interpretable AI models along 

with dynamic modeling methods to support decision making for ICU admission and/or 

mortality and shed light into the pathogenesis and clinical features of COVID-19. Data 

curation is first applied to overcome data incompatibilities and inconsistencies. 

Subgroup analysis is performed by dividing the curated data into four subclasses of 

interest based on the ICU admission and/or mortality. Gradient Boosting Trees (GBT) 

are trained on each subgroup to develop explainable AI models using concepts from 

coalition game theory to detect risk predictors for ICU admission and mortality, as well 

as, to evaluate the predictors across four time intervals. 

Our results highlight the importance of LDH, IL-6, IL-8, Cr, number of monocytes, 

lymphocyte count, and TNF as risk predictors for ICU admission and survival, as well 

as, LDH, age, CRP, Cr, WBC, and lymphocyte count for mortality after ICU admission. 

These predictors were combined with those from the dynamic analysis of the biological 

data using Dynamic Bayesian Networks (DBNs) to formulate an ICU scoring index 

based on APACHE II [416], where the DBNs revealed notable dependencies between 

TNF and IL-6. To our knowledge, this is the first study that explores the interpretability 

of AI models and risk predictors for ICU admission and mortality of hospitalized 

COVID-19 patients with dynamically associated biological markers. 
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7.6.2.2. Case Study 2 – ICU admission and mortality prediction across 6 

timepoints 

The scope of this case study is to enrich time-series clinical and laboratory data with 

meta information from SOMs towards the improvement of the ICU admission and 

mortality classifiers in COVID-19. We used the data from Section 7.6.1.2. A 7x7 grid 

was utilized for the neuron training process. The latter was applied on the 32 continuous 

features with “fair” or “good” quality status at timepoints 1-4 like in the DBN analysis. 

Clusters with common patterns were further grouped into four super-clusters through 

hierarchical clustering. The distribution of the patients in each super-cluster is presented 

in Table 60, where the average number of patients is 117 (27.72%), 108 (25.6%), 88 

(20.85%), and 109 (25.83%) in super-clusters 1, 2, 3, and 4, respectively. Statistically 

significant differences were identified in the patient distribution for features “Hct”, 

“Lymph_abs_number”, “Lymph_percent”, “Neut_abs_number”, “Neut_percent”, 

“PO2_FiO2_ratio” regarding ICU admission and mortality. Additional differences 

among the patient subgroups were found in “AST” for ICU admission and in “ALP” 

and “LDH” for mortality. 

Table 60. Number of patients assigned in each SOMs super-cluster for the most important 

features from the DBNs (p-values in bold denote significant differences among the distributions 

of the ICU against the non-ICU patients and the patients who survived against those who died). 

Feature Patient distribution in each super-cluster p-value* 

 C1 C2 C3 C4 ICU mortality 

ALP 88 223 83 28 0.732 0.04 

AST 173 71 92 86 0.005 0.285 

cardiac_frequency 86 68 145 123 0.905 0.103 

Hct 107 167 44 104 <0.001 0.0001 

LDH 80 61 101 180 0.061 0.005 

Lymph_abs_number 82 82 84 174 0.015 0.033 

Lymph_percent 102 105 79 136 0.024 0.0007 

Neut_abs_number 130 148 95 49 0.016 0.005 

Neut_percent 148 95 74 105 0.0008 0.0003 

PO2_FiO2_ratio 132 74 87 129 <0.001 0.004 

Tbil 166 89 79 88 1 0.319 

Average patient distribution 117 108 88 109  

* A Fisher’s exact test was applied where the confidence level was set to 95%. 
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Three case studies were investigated which involve the classification of patients for 

ICU admission and mortality (Table 61) based on: (i) the 51 time-series clinical data 

across the first 4 timepoints with and without the inclusion of the 32 features with the 

clustering labels from the SOMs, (ii) the 11 features from the DBNs analysis with and 

without the clustering labels from the SOMs, and (iii) only with the clustering labels 

from the SOMs. In case study 1, the contribution of the clustering labels from the SOMs 

enhanced the sensitivity by 1% and the specificity by 2% of the classifier for ICU 

admission against the use of the time-series data only. In case study 2, the contribution 

of the clustering labels from the SOMs enhanced the sensitivity and specificity of the 

classifier for ICU admission by 4% compared against the use of the best features from 

the DBNs, as well as, by 3% in sensitivity and 2% in specificity for mortality (Table 

61). In case study 3, the use of the clustering labels from the SOMs yielded favorable 

classification performance. According to Table 61, the performance of the classifiers 

was higher using the clustering labels from the SOMs for both mortality (in case study 

1) and ICU admission (in case study 2), thus highlighting the positive impact of the 

DBNs and the SOMs during the training process. This can be also confirmed even in 

the case where no class imbalance handling is applied, where the performance of the 

classifiers remains higher using the clustering labels from the SOMs for both mortality 

(in case study 1) and ICU admission (in case study 3). 

Table 61. Performance evaluation results from the GBT for ICU and mortality classification 

across different cases with donwsampling using the SOMs clustering labels from all the 32 

continuous features (with blue color: specifications with the best or equal classification 

performance). 

Case Outcome SOMs accuracy sensitivity specificity AUC 

Case study 1*: 51 features 

across 4 timepoints with 

and without the clustering 

labels from the SOMs 

death no 0.74 0.74 0.76 0.83 

death yes 0.74 0.74 0.76 0.83 

ICU no 0.78 0.79 0.79 0.88 

ICU yes 0.79 0.80 0.82 0.89 

Case study 2*: 11 features 

from DBNs across 4 

timepoints with and 

without the clustering 

labels from the SOMs 

death no 0.67 0.67 0.70 0.74 

death yes 0.70 0.70 0.72 0.76 

ICU no 0.78 0.79 0.78 0.87 

ICU yes 0.83 0.83 0.82 0.91 
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Case Outcome SOMs accuracy sensitivity specificity AUC 

Case study 3*: Only with 

the clustering labels from 

the SOMs 

death yes 0.67 0.67 0.68 0.74 

ICU yes 0.80 0.80 0.82 0.86 

*Random downsampling with replacement was applied to deal with the underlying class imbalance. 

 

The corresponding ROC curves are depicted in Figure 92 for ICU and mortality 

classification across the three case studies from Table 61. Regarding the performance 

of the classifier for ICU admission, the average ROC was 0.89 for case 1, 0.91 for case 

2, and 0.86 for case 3. As far as mortality classification is concerned, the average ROC 

was 0.83 for case 1, 0.76 for case 2, and 0.74 for case study 3. 

 

Figure 92. Performance evaluation results for the GBT with the clustering labels from the 

SOMs. The line in bold denotes the average ROC across 100 iterations of the downsampling 

process. 



314 

 

According to Figure 93, the risk factor analysis highlighted the following features as 

important (i.e., the top five features) for ICU admission in case study 1 (with the 

clustering labels from the SOMs): O2_supply_type_day5”, “O2_supply_type_SOM”, 

“SatO2_day7”, “tachypnea_day5”, and “SBP_day7”. The rest of the features include 

“temperature_day7”, “secondary_O2_supply_lit_SOM”, “PCO2_day3”, “K_day3”, 

and “DBP_day3”. Regarding mortality, the most informative features for decision 

making, include the: “Lymph_percent_day7”, “Urea_day5, “ALP_day1”, 

“Neut_percent_day7”, and “Hb_day1”. Additional features include the 

“tachypnea_day_3”, “INR_day1”, “PO2_FiO2_ratio_day5”, “hs_TPN_day1”, and 

“FiO2_day5”. The important features with the “SOM” tag denote the features with the 

clustering labels. 

 

Figure 93. Feature importance for ICU admission (on top) and mortality (on bottom) from case 

study 1 with the clustering labels from the SOMs. 

According to Figure 94, the risk factor analysis indicated the following features as 

important for ICU admission in case study 2 (with the clustering labels from the SOMs): 

“PO2_FiO2_ratio_day5”, “Lymph_abs_number_day5”, “O2_supply_type_SOM”, 

“PO2_FiO2_ratio_day7”, and “Lymph_percent_day3”, among others. Regarding 

mortality, the most important features for decision making include the: 

“PO2_FiO2_ratio_day5”, “Hct_day1”, “ALP_day1”, “LDH_day5”, and 

“Neut_abs_number_day7”, among others. 
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Figure 94. Feature importance for ICU admission (on top) and mortality (on bottom) from 

case study 2 with the clustering labels from the SOMs. 

According to Figure 95, the analysis highlighted the following features as important for 

ICU admission in the case study 3: “O2_supply_type_SOM”, “temperature_SOM”, 

“secondary_O2_supply_lit_SOM”, “SatO2_SOM”, and “cardiac_frequency_SOM”, 

among others. Regarding mortality classification, the most important features include 

the: “SatO2_SOM”, “secondary_O2_supply_lit_SOM”, “Na_SOM”, “ALP_SOM, and 

“Creatinine_SOM”, among others. 

 

Figure 95. Feature importance for ICU admission (on top) and mortality (on bottom) from 

case study 3 with the clustering labels from the SOMs. 
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In all cases, the clustering labels from the SOMs regarding the O2 supply type and the 

feature “ALP” were prominent for ICU admission and mortality, respectively (these 

features have been denoted with asterisks in Figure 93, Figure 94, and Figure 95. An 

additional experiment was conducted to evaluate the contribution of baseline data 

including demographics (e.g., age, gender, patient history), clinical (e.g., fever, fatigue, 

dyspnea), and treatments (e.g., administration of various therapeutic treatments, such 

as, statin, betablocker, corticosteroids) in the case study where the GBTs achieved the 

best performance in case study 2. According to Table 62, the inclusion of 

demographics, clinical, and treatments did not yield any improvement in the 

performance of the classifier for ICU admission. On the other hand, the sensitivity of 

the classifier for mortality was improved by 4% using the demographic data. The 

specificity was improved by 4% in the case where the demographics are included and 

by 1% in the case where the baseline clinical data and the treatments were included. 

Table 62. Performance evaluation results for case study 2 before and after the inclusion of 

demographics, clinical data, and treatments (with blue color: specifications with the best or 

equal classification performance). 

Outcome Accuracy Sensitivity Specificity AUC 

ICU admission 

Before 0.83 0.83 0.82 0.91 

After adding demographic 

data 
0.83 0.83 0.81 0.90 

After adding clinical data 0.81 0.81 0.80 0.89 

After adding treatments 0.83 0.83 0.82 0.91 

Mortality 

Before 0.70 0.70 0.72 0.76 

With demographic data 0.74 0.74 0.76 0.82 

With clinical data 0.70 0.70 0.73 0.76 

With treatments 0.70 0.70 0.73 0.76 

 

Three case studies were conducted to evaluate the performance improvement in 

classifying the patient subgroups derived from the SOMs. Our results highlight the 

contribution of the extracted patient subgroups in the improvement of the classification 

performance for ICU admission up to sensitivity 0.83 and specificity 0.83, and for 

mortality up to sensitivity 0.74 and specificity 0.76. Additional baseline data were 

included in the input space to improve the performance of the classifiers, yielding an 
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increase of 4% in sensitivity and specificity for ICU admission and 3% in sensitivity 

and 2% in specificity. The risk factor analysis highlighted the number of lymphocytes, 

SatO2, PO2/FiO2, and O2 supply type as risk factors for ICU admission and the 

percentage of neutrophils and lymphocytes, PO2/FiO2, LDH, and ALP for mortality. 
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CHAPTER 8. Discussion 

 

 

8.1. Technical impact 

8.2. Clinical impact 

 

 

8.1. Technical impact 

8.1.1. Curation 

The absence of data quality control often leads to studies with inaccurate and 

incomplete data which are characterized by small statistical power. On the other hand, 

curation methods shall be used with caution since it is more likely to make things worse. 

In this thesis, we proposed an automated framework for medical data curation 

supporting clinical and genetic data across multiple time-points. Furthermore, we 

extended data standardization as a pre-harmonization process to make data 

harmonization, which follows, easier and faster. Through this procedure, we produced 

semantic relations between the fields of the raw dataset with those from a reference 

dataset and therefore enhance the semantic matching process for data harmonization.  

The proposed framework consists of a three-layer architecture which is scalable and 

able to deal with incomplete terminologies, irrelevant terms, outliers, missing values, 

data categorization, and duplicated terms. In the core of this framework lies data 

standardization. The framework was evaluated on two anonymized clinical datasets 

from two cohorts of patients with pSS, highlighting the importance of the proposed 

framework for data quality assessment and data harmonization. The source code of the 

data curator has been made publicly available under the following github repository: 

https://github.com/vpz4/Data-curator, along with a brief user manual to further promote 

technical advancements in the field of data quality and control. The fact that the 

standardization procedure can use an XML representation of the reference model as 

https://github.com/vpz4/Data-curator
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input, increases its overall performance and introduces the ontologies and semantics as 

a preliminary step for achieving medical data harmonization. Having two ontologies 

and seeking for a way to match these two ontologies is a typical semantic matching 

problem which is one way to achieve data harmonization.  

Semantics have gained a lot of attention nowadays especially in computer science and 

linguistics for schema and ontology merging, data migration, query translation, agent 

communication, etc.. Currently, the data standardization module supports the basic 

XML format (the basis of almost all types of ontologies and markup languages) for the 

semantic representation of the reference model. The outcomes of this module are 

capable of assisting the semantic matching process which requires these matching pairs 

in order to semantically match each term of the input dataset with those from the 

reference model and thus enable data harmonization. The problem of harmonizing one 

dataset based on a standard one can be reduced to the standardization of the semantic 

representations of these two datasets so as to approximate the semantic matching 

problem. 

8.1.2. Harmonization 

Most of the current efforts towards data harmonization involve the definition of a global 

standard (common) procedure for data collection which is ideal in the case of 

prospective data (i.e., data that will be collected in the future). Moreover, they adopt a 

semi-automated strategy which is based on the extensive collaboration between the 

clinical and the technical experts to define pairing rules, i.e., a pre-defined set of rules 

for lexical matching, and focus on fast matchmaking services for biobanks and 

researchers. To this end, we focused on the development of a fully automated, hybrid 

terminology interlinking pipeline which utilizes both lexical and semantic analyzers on 

top of a knowledge base on obesity, including word embeddings, NLTK (Natural 

Language Toolkit) synonyms and FHIR related terminologies from international 

medical index repositories to automatically match terminologies across a variety of 

clinical data.  

A complete medical corpus is constructed, and the hybrid data harmonizer was 

developed on top of the medical corpus to identify terminologies with both lexical and 

semantic overlap. The medical corpus was enriched with: (i) synonyms from Python’s 
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NLTK toolkit, (ii) word embeddings from Latent Semantic Analysis (LSA), and (iii) 

international terminologies from external repositories under the aegis of the OHDSI 

Athena vocabulary, including ICD-10/11/12, SNOMED-CT, LOINC, ICPC, ATC, and 

OMOP terminologies to ensure FHIR compliance. 

8.1.3. Synthetic data generation 

Regarding the proposed MVND approach which is resilient against randomness, our 

results demonstrate the robustness and accuracy of the proposed method towards the 

generation of virtual clinical data for in silico clinical trials with high level of agreement 

between the densities and the distributions of the virtual and the real clinical datasets. 

The gof values of the proposed method were less than 0.2 compared to the average gof 

values obtained across 10 random executions (> 0.2 in some cases). Although the 

number of iterations needed to control for the randomness of the generated virtual 

distribution was large enough (~5000), the execution time was small considering the 

number of virtual patients and the number of iterations needed to assess for the 

“randomness” factor. The lack of significant computational complexity followed by an 

increase in the quality of the virtual data is an advantage of the proposed methodology, 

especially in the case of large-scale in silico clinical trials where the number of virtual 

patients to be generated is significantly larger. As a future work additional methods for 

virtual population generation, such as the Bayesian networks [348], [418] and the 

modified genetic function [419], along with neural network-based strategies [173] will 

be employed for comparison. 

Regarding the application of tree ensembles for synthetic data generation in the domain 

of HCM, our results reveal the favorable performance of the unsupervised tree 

ensembles for virtual population generation which outperformed the rest of the virtual 

population generation methods having the smallest goodness of fit and Kullback-

Leibler divergence values in both experimental case studies (Table 32). The histograms 

of the virtual data that were generated by the unsupervised tree ensembles can be found 

in Figure 63 for the HCM dataset. The histograms reflect a highly qualitative similarity 

between the real and the virtual distributions. The supervised tree ensembles had the 

second-best performance (Table 32). The results from the supervised RBF-based 

artificial neural networks (ANNs) are close to the two previous methods, with the 

Bayesian networks and the log-MVND trailing behind. 
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Regarding data augmentation, the performance of the HCM risk stratification model 

showed an increase by accuracy, 16.9% in sensitivity, 13.7% in specificity, and 20.1% 

in area under the curve against the one trained on the real HCM data (Table 39, Figure 

74). A similar increase is also observed in the case of the AdaBoost (5.5% in accuracy, 

5.3% in sensitivity, 6.3% in specificity, and 10.1% in AUC), as well as, in the case of 

the Random Forests (9.4% in accuracy, 10.1% in sensitivity, 7.2% in specificity, and 

12.2% in AUC). In addition, the aggregation of the virtual data from the supervised tree 

ensembles with the real patient data yielded enhanced classification models at a similar 

extent (Table 39, Figure 74). Finally, the aggregation of the virtual data from the 

supervised RBF-based ANNs, the Bayesian networks and the Log-MVND with the real 

one yielded supervised machine learning models with partially enhanced performance 

while maintaining the increased performance than in the case of training on the real 

data only. Our study builds on principles from existing studies (Table 3) to develop a 

beyond the state-of-the art computational pipeline for clinical data augmentation. We 

extended the conventional statistical approaches, such as, the MVND and the Log-

MVND, as well as, multivariate functions, such as, Bayesian methods, discrete re-

sampling techniques, through machine learning based generators, such as, the tree 

ensembles, the RBF-based ANNs and the Bayesian networks to produce high-quality 

virtual patient data with increased similarity and decreased divergence with the real 

patient data. 

As far as “smart” imputation is concerned, a case study was conducted in the context 

of in silico clinical trials for the HCM domain, where the real patient dataset was 

randomly contaminated with missing values for multiple ratios varying from 10% to 

50%. The BGMM generator yielded 10000 virtual patient profiles compared against 

the rest of the generators with less than 0.02 KL divergence and average correlation 

difference. The PMS was calculated for each virtual patient profile and the best 

matching profiles were extracted as those with the smallest dissimilarity between the 

proposed values for imputation and the original ones. The BGMM generator provided 

imputed values with the lowest average SSAD (0.4) and average CD (0.02) with the 

real dataset which can be confirmed by the extracted heatmaps since the optimal 

profiles are separated by intense color coding. To our knowledge, this is the first 

“smart” method that offers explainable heatmaps compared against the existing 

frameworks [67], [69], [70], [136], [137], [139], [140] which provide either manual or 
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semi-automated workflows based on pre-defined semantic data models to address data 

completeness. 

The proposed method for the estimation of the Dirichlet concentration of each 

component on the weight distribution yielded a stable number of components (24 

components) across multiple virtual populations executions, where the prior structure 

of the GMM was defined according to the Dirichlet process mixture. The proposed 

BGMM with the optimal number of Gaussian components achieved the lowest 

goodness of fit values (less than 0.1) along with the UTE and the STE compared to the 

RBF-based ANN and the Bayesian networks (with average gof larger than 0.15). In 

addition, the proposed BGMM method yielded the lowest inter- and intra-correlation 

differences between the features in the virtual data (almost 0.01), in less execution time 

(0.4319 sec) than the STE (46.5373 sec), which had the second-best performance. This 

confirms the computational efficiency of the proposed BGMM approach towards the 

generation of large-scale virtual populations for in-silico clinical trials in HCM. 

We also designed a robust and computationally efficient large scale virtual data 

generator to overcome the lack of sufficient population size and leverage the increased 

costs for patient recruitment for in silico clinical trials. Our intention was to resolve 

significant biases which are introduced by the estimation of the hyperparameters during 

the conventional BGMM training process. To do so, we introduced the BGMM-OCE, 

a computationally efficient and robust extension of the BGMM which was designed to: 

(i) avoid the use of an arbitrary number of Gaussian components through a 

computationally efficient spectral clustering stage based on the LOBPCG eigensolver, 

(ii) provide non-linear estimation of the gamma parameter through an exponential 

relationship with the optimal number of Gaussian components.  

Through this way, the BGMM-OCE yields non-arbitrary estimations of the VI at 

reduced computational complexity. A case study was conducted to generate diverse 

virtual populations varying from small scale (e.g., 1000 virtual patients) to large scale 

(e.g., 30000 virtual patients), where the BGMM-OCE outperformed state-of-the art data 

generators, yielding the lowest coefficient of variation (0.046), goodness of fit (0.191), 

KL divergence (0.049), and inter- and intra- correlation differences (0.017, 0.016) at 

stable execution time (16.12 sec) for increased virtual populations. In addition, we have 

uploaded the BGMM-OCE script in a public GitHub repository: 
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https://github.com/vpz4/BGMM-OCE to increase the impact of our work and promote 

the development of a Python package. 

In practice, spectral clustering is computationally demanding and particularly during 

the extensive evaluation of an increasing number of clusters (e.g., 2 to 30 or 50 clusters). 

To overcome this limitation, we used the LOBPCG method to extract fast estimations 

of the eigenvectors and eigenvalues by solving the minimum trace problem, rather than 

using the conventional ARPACK (ARnoldi PACKage) [420] and AMG (algebraic 

multigrid) [421] methods which are computationally demanding. Regarding the optimal 

component estimation process, the DBS was estimated for each clustering solution and 

the one with the highest DBS was extracted as the final one. To further reduce the 

complexity of the clustering evaluation process, we store the local maxima of the DBS 

and if there are no reported maxima after 5 clusters under evaluation, the process is 

terminated thus avoiding additional unnecessary clustering evaluations.  

The cluster with the highest DBS is then extracted to define the number of Gaussian 

components in the BGMM training stage. In addition, the gamma parameter was 

exponentially related (non-linear) with the number of components, rather than inverse 

related (linear), to avoid linear assumptions. The BGMM-OCE places particular 

emphasis on the quality of the input data since lack of data quality makes data useless 

and reduces the statistical power of the outcomes. Thus, the quality of the real data is 

reflected on the virtually generated data. In this work, we extend a fully automated data 

curation pipeline presented in [66] to avoid data contamination by separating the 

features in the input space into two states; the “eligible” and the “non eligible”, based 

on the detected outliers and missing values. This separation provides a comprehensive 

view into the quality of the input data. Advanced outlier detection methods like the 

Isolation Forests were used to identify outliers with more than 80% accuracy and string-

matching methods were applied to detect duplicated features. Imputation based on the 

kNN method was applied only on the “eligible” features, where applicable. 

According to Table 63, the MVND and the log-MVND algorithms are fast and require 

only the mean vector and the covariance matrix as input but they are based on critical 

assumptions (e.g., normality). In the case of the Bayesian networks, although they 

provide explainable presentations of the conditional probabilities through the network, 

the number of all possible permutations of edges in one topology is infinite, the quality 

https://github.com/vpz4/BGMM-OCE
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of the virtual data is reduced, and the computational complexity is large. On the other 

hand, the STE and UTE yield virtual data with better quality, but they still have 

increased computational complexity for training and testing. In addition, they require a 

target feature which influences the associations of the virtual features and introduces 

biases in the generated data. The same stands for the ANN but it has reduced 

computational complexity. The UTE, STE, and ANN are unable to capture the inter- 

and intra- correlation differences like the GMM and the BGMM. As far as the GMM 

algorithm is concerned, it is more computationally efficient but requires multiple 

hyperparameters (number of Gaussian components, weight concentration parameter) 

which are arbitrarily defined and thus introduce biases.  

However, the definition of the optimal number of Gaussian components and the 

estimation of the weight concentration parameter is a technical challenge. The BGMM-

OCE overcomes this limitation by introducing a clustering stage based on the LOBPCG 

method prior to the BGMM training to estimate the optimal number of clusters as the 

one with the highest DBS across a set of predefined clusters. The best clustering 

solution is then set equal to the number of Gaussian components, and the weight 

concentration parameter is exponentially related to the number of Gaussian components 

instead of assuming linear dependencies. 

Table 63. Comparison with the state-of-the-art virtual data generators. 

Algorithm Study Advantages Issues 

MVND, 

log-MVDN 

[164]–

[166] 

▪ fast execution time, 

▪ requires only the mean 

vector and the 

covariance matrix of 

the real data. 

▪ assumes that data are normally 

distributed, 

▪ moderate virtual data quality 

(high GOF values). 

Bayesian 

Networks 

[166], 

[169], 

[171] 

▪ explainable 

presentation of the 

conditional 

probabilities through 

the network, 

▪ increased computational 

complexity, 

▪ the conditional probabilities 

are modeled based on 

assumptions on the prior 
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Algorithm Study Advantages Issues 

▪ accounts for 

conditional 

dependencies among 

the features. 

distribution of the features 

(nodes), 

▪ infinite number of topologies, 

▪ bad virtual data quality 

(increased inter- and intra- 

correlation differences, KL-

divergence, GOF, cV). 

Supervised 

tree 

ensembles 

[131], 

[173] 

▪ robust training based on 

random forests, 

▪ reduced GOF and KL-

divergence. 

▪ exponentially increasing 

computational complexity 

especially for large scale 

virtual population generation, 

▪ moderate virtual data quality 

(increased intra- and inter- 

correlation differences, cV 

scores), 

▪ requires a target feature, 

▪ increased time for model 

validation. 

Unsupervise

d tree 

ensembles 

[131], 

[173] 

▪ robust training based on 

density forests, 

▪ reduced GOF and KL-

divergence, 

▪ resilient against 

outliers. 

 

▪ exponentially increasing 

computational complexity 

especially for large scale 

virtual population generation, 

▪ moderate virtual data quality 

(increased cV, inter- and intra- 

correlations), 

▪ increased time for model 

validation. 
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Algorithm Study Advantages Issues 

Artificial 

Neural 

Networks 

with RBF-

based 

kernels 

[131], 

[172], 

[173] 

▪ medium to high 

computational 

complexity, 

▪ reduced KL-

divergence. 

▪ increased computational 

complexity for large scale 

virtual population generation, 

▪ requires a target feature, 

▪ moderate virtual data quality 

(increased cV, inter- and intra- 

correlation differences), 

▪ increased time for model 

validation. 

Gaussian 

Mixture 

Models 

[174] 

▪ good virtual data 

quality (reduced KL-

divergence, inter- and 

intra- correlation 

differences), 

▪ moderate execution 

time (maximizes the 

data likelihood), 

▪ medium to high 

computational 

complexity. 

▪ biases during the selection of 

the number of Gaussian 

components, 

▪ increased GOF, 

▪ biases in the weight 

concentration parameter, 

▪ might yield specific structures 

that might or might not apply 

to the data maximizes the 

likelihood based on the 

expectation maximization 

(EM) approach. 

Gaussian 

Mixture 

Models with 

variational 

inference 

[130], 

[178] 

▪ good virtual data 

quality (reduced KL-

divergence, inter- and 

intra- correlation 

differences), 

▪ fast execution time, 

▪ increased GOF, 

▪ biases from the arbitrary 

selection of the number of 

Gaussian components, 

▪ biases from the arbitrary 

weight concentration 

parameter estimation. 
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Algorithm Study Advantages Issues 

▪ uses variational 

inference (VI) which 

maximizes a lower 

bound on the model 

evidence to reduce the 

computational 

complexity. 

BGMM-

OCE 
[133] 

▪ excellent data quality 

(reduced GOF, cV, KL-

divergence, inter- and 

intra- correlation 

differences), 

▪ optimal selection of the 

number of Gaussian 

components, 

▪ robust estimation of the 

weight concentration 

parameter, 

▪ fast execution time and 

stability across large 

scale virtual 

populations. 

▪ non-significant variations in 

KL-divergence (but less than 

0.05), 

▪ moderate clustering evaluation 

execution time - especially for 

multiple clusters (can be 

leveraged using local maxima). 

 

8.1.4. Federated/distributed learning 

The problem of supervised learning towards predictive modeling for effective disease 

management in distributed environments was examined in the context of incremental 

learning by considering the problem of adjusting an initial data model on data that lie 

across multiple sites. The stochastic gradient descent approaches along with the 

gradient boosting schema yield an increased prediction performance for binary 

classification problems that are apt to the prediction of disease-oriented outcomes 

across distributed clinical data against conventional methods, such as, regression 
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models, neural networks, and Naïve Bayes. The proposed framework uses additive 

learning to incrementally develop binary prediction models across clinical data that are 

stored in private spaces in contrast to the meta-learning schema, where the classification 

algorithm runs individually on each site and the prediction outcomes of the separate 

classifiers are combined, a fact that yields inaccurate results due to the biases that are 

introduced by the integration stage. Moreover, the framework is cloud-based, a fact that 

overcomes the need to install any kind of software on premises and thus overcomes any 

potential threats for malicious attacks and privacy breach (in contrast to [202]–[205]). 

The fact that the current incremental learning strategies are based on non-linear 

classifiers hampers the incorporation of more complex classifiers, such as, the 

convolutional neural networks, for deep learning, although the batch normalization 

technique has been recently proposed for dealing with the nonlinearities on each layer. 

Furthermore, the data on each site need to be harmonized otherwise the distributed 

learning schema will fail. In addition, the overall execution time for incremental 

learning is affected by the number of sites, due to the large number of communication 

links that need to be established between the central processing node and the sites 

(including the “handshaking” process for data access). This issue however can be 

reduced by the development of efficient network links within the platform. 

The euroCAT platform [202]–[204] requires the installation of local servers on each 

hospital’s premises, where the distributed learning algorithms include Bayesian 

networks and Support Vector Machines which were trained across 3 centers to predict 

dyspnea yielding modest prediction performance. In the PHT platform  [203], a 

distributed logistic regression model was trained across 8 sites to predict post-treatment 

with adequate performance. In other studies, lymphoma classification models were 

trained across 4 pSS cohorts for federated lymphoma classification [129] and single 

cohorts were used to develop lymphoma classification models with reduced statistical 

power [244], [250].  

Moreover, the existing federated learning frameworks like the Open Federated 

Learning (OpenFL) [205],  the PySyft [201], the Open Federated Learning (OpenFL) 

[205], the FedML [200], the Paddle Federated Learning (PFL) [197], the TensorFlow 

Federated (TFF) is open source [199],  the Flower [195] and the LEAF [194] are 

software frameworks which focus mainly on the installation of local servers on each 
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site and require the installation of a series of libraries on each premise. The proposed 

federated AI framework removes the need for the installation of any local servers or 

any type of software on premises through the development of a federated data 

management system that supports a large family of federated AI algorithms with small 

execution time complexity yielding robust and explainable AI models for lymphoma 

classification. In addition, the framework is cloud agnostic and thus can be adapted to 

any cloud infrastructure. 

The proposed federated AI framework overcomes significant security threats that are 

posed by centralized analysis and deals with the development of accurate predictive 

models for disease management in distributed environments. The case study on pSS 

reveals promising results regarding the applicability of the framework towards the 

precise identification of pSS patients with lymphoma for effective patient stratification, 

where the class imbalance is large. Additional applications on multiple dispersed 

datasets are necessary to validate the applicability of the framework.  

The federated AI framework can be used for the accurate risk prediction of lymphoma 

and thus contribute to the early lymphoma diagnosis in patients who have been 

diagnosed with pSS avoiding additional costs for biopsies. In addition, the AI model 

provides explainable scores which can be used by the clinician to assess the contribution 

of critical risk factors for lymphoma development and thus support the clinical 

decision-making process. The impaired 10-year survival of SS patients with MALT 

lymphomas and the association of lymphoma stage with the overall prognosis, point 

out the necessity for early lymphoma diagnosis and thus the development for lymphoma 

prediction models. 

We also presented the FHBF algorithm to address critical overfitting effects during 

supervised learning tasks across heterogeneous clinical data with increased class 

imbalance in federated environments. To do so, a scaling parameter was first defined 

to adjust the shape of a hybrid loss function (based on the pre-defined dropout rate 

value) to avoid weight overfitting during the error reduction (boosting) process. 

Confound-based random downsampling with replacement was applied to yield 1:1 

matched control and target populations in each federated database based on three 

confound factors. The downsampling process was repeated multiple times to avoid 

biases yielding an aggregated hybrid federated GBT (HFGBT) model on each iteration. 
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The HFGBTs from all downsampling iterations were then collected to formulate 

clusters of trees, where the weak clusters (i.e., those with log loss score less than the 

average) were discarded to enhance the classification performance by increasing its 

resilience against weak decisions. Explainability analysis was finally applied based on 

the SHAP approach to yield explainable outcomes. According to Table 64, the 

federated implementations of the conventional supervised learning algorithms which 

rely on SGD are easy to be implemented and deployed in federated environments, but 

they are prone to overfitting effects since they suffer by linearity assumptions (i.e., the 

data can be explained by linear relations of the features) and thus fail to capture complex 

data structures (i.e., the weights of the model tend to zero or infinity). The same stands 

for similar approaches like the logistic regression and the federated multi-layer 

perceptron which are based on linear functions.  

Table 64. Comparison of the FHBF with federated implementations of existing supervised 

learning algorithms. 

Algorithm Advantages Weaknesses 

Federated SGD-based 

(e.g., Support Vector 

Machines, Logistic 

regression) 

Easy to be implemented and 

deployed in federated 

environments, low 

computational complexity. 

Poor classification 

performance, prone to 

overfitting during federated 

training. 

Federated Multinomial 

Naïve Bayes (FMNB) 

Easy to be implemented and 

deployed in federated 

environments, low 

computational complexity, 

immune against overfitting. 

Probabilistic approach, 

biases are introduced in the 

results from several 

assumptions regarding the 

independence of the set of 

input features. 

Federated Gradient 

Boosting Trees (FGBT) 

Favorable classification 

performance due to the error 

reduction through boosting, easy 

deployment in federated 

environments, scalable, starts 

Low to medium 

computational complexity 

especially with increasing 

number of boosting rounds. 
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Algorithm Advantages Weaknesses 

pruning trees backward based on 

the depth-first approach. 

Federated Gradient 

Boosting Trees with 

dropout rates (FDART) 

Favorable classification 

performance due to the error 

reduction through boosting, easy 

deployment in federated 

environments, scalable, allows 

for the use of dropout rates 

which can significantly enhance 

the performance. 

Low to medium 

computational complexity 

especially with increasing 

number of boosting stages, 

arbitrarily defined dropout 

rates can lead to overfitting 

and neglect the performance 

of the model. 

Federated hybrid 

boosted forests (FHBF) 

Increased classification 

performance, ideal in federated 

cases with increased class 

imbalance, allows for the use of 

dropout rates which can 

significantly enhance the 

performance, adjusted hybrid 

loss topology which avoids 

overfitting considering the 

dropout rate. 

Medium to high 

computational complexity 

which can be affected by the 

number of iterations. 

 

On the other hand, overfitting is less likely to occur in the federated multinomial Naïve 

Bayes (FMNB) algorithm since its hypothesis regarding the feature independence is 

strong. However, this assumption makes the FMNB more biased and less flexible and 

thus fails to capture complex data structures. Contrarily, more advanced algorithms like 

the federated gradient boosting tree methods have been proposed which combine 

sequentially connected weak tree learners (in the form of an ensemble) to create a strong 

learner, where each tree in the ensemble minimizes the prediction error of the previous 

tree. However, these methods tend to be biased since the trees that are added early in 

the ensemble have higher impact in the decision-making process than those added later 

in the ensemble. 
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The federated gradient boosting trees with dropouts solve this by introducing a dropout 

rate which accounts for an additional set “dropped” trees in the decision-making 

process. An arbitrary definition of this rate, however, can neglect the model’s 

performance since a higher rate will include weak trees in the decision and thus lower 

the performance of the model by causing overfitting effects whereas a low rate might 

not yield any positive impact in the model’s performance. To control for this effect, the 

FHBF utilizes a hybrid loss function with a scalable topology which can be adjusted 

according to the dropout rate to reduce overfitting.  

In addition, the FHBF accounts for biases during the downsampling process by 

introducing a separation layer and a decision layer, where the former collects multiple 

instances of HFDARTs and drops instances with reduced score, whereas the decision 

layer includes only the “survivors” in the decision-making process. Although the 

performance of FHBF was higher in all cases, the execution time was higher which, 

however, can be leveraged by reducing the number of rounds. In each round, the 

computational complexity was similar to the FDART and FGBT algorithms. 

The FHBF can be easily integrated in federated learning frameworks through a typical 

Python environment requiring no more than conventional libraries, such as, the 

‘numpy’, ‘scipy’, ‘xgboost’, and ‘pandas’. The fact that the algorithm was tested in a 

federated AI model deployment engine which was built under the open-source 

Nextcloud infrastructure supporting the WEBDAV (as defined in RFC 4918 by a 

working group of the Internet Engineering Task Force (IETF)) API [422] makes it 

compatible with Python and simplifies its integration to similar frameworks. To 

demonstrate the explainability and the clinical relevance of the model outcomes, we 

used the HFGBTs as learners in the FHBF algorithm, instead of HFDARTs, to 

overcome the fact that the SHAP package [401] does not support the ‘dart’ type of 

booster. In this case, the FHBF yielded explainable outcomes which are in line with 

similar findings in the literature [65], [224], [228], [233], [234], [238], [240], [241]. 

The FHBF is highly scalable since it can support both the FGBT and the FDART (using 

the xgboost ‘gbtree’ and ‘dart’ boosters) as base learners. In addition, the hybrid loss 

function can be used as an alternative to the existing loss functions that are used for 

binary classification tasks and are reported in the xgboost documentation [423], such 

as, the ‘logistic’, ‘logitraw’ and ‘hinge’ [423]. The selection of the hybrid loss function 
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is highly recommended to avoid overfitting effects that are introduced by the arbitrary 

definition of the dropouts. The dominance of the FHBF algorithm was demonstrated in 

two experimental phases involving the development of data intensive AI models for 

lymphoma classification across complex clinical data structures with increased class 

imbalance. In the second experimental phase, the class imbalance was even smaller to 

stress the performance of the algorithms.  

To this end, and by taking into consideration the results from the two experimental 

phases, the FHBF algorithm showed the lowest average log loss distribution in the 

training and testing across all cases (Table 29, Figure 56, Figure 55), as well as, the best 

classification performance (Table 29, Figure 55), where the FDART with dropout rate 

0.2 achieved the second-best performance in cases 1-8 (Table 29, Figure 55). On the 

other hand, in cases 1, 5 and 7 (Table 29, Figure 56, Figure 55), the FGBT and FDART 

had poor performance compared to the FHBF. Moreover, cases 5 and 7 (Table 29, 

Figure 56, Figure 55) demonstrated how the FHBF deals with overfitting effects against 

the FDART and FGBT implementations. In these cases, the existing state of the art 

implementations yielded specificity values close to 0.5 which is an indicator of biases 

during the weight update process. Through its straightforward decision layer, the FHBF 

was able to eliminate these “bad” clusters with the biased trees and thus prevented them 

from neglecting the model’s performance. Although the federated AI model 

deployment time of the FHBF algorithm was larger than the FGBT and the FDART 

schemas, without however any significant differences, the number of rounds can be 

reduced to leverage the computational complexity. 

8.2. Clinical impact 

8.2.1. AD (pSS) 

The data evaluation module was able to capture a first look into the dataset’s structure 

and vocabulary. The data quality control module was able to identify outliers and 

missing values, as well as, detect fields with similar context and duplicated terms. The 

ability to choose among different outlier detection methods (z-scores, Grubb’s test, 

IQR, LOF) increases the statistical power of the outcomes. The clinicians successfully 

validated the accuracy of the problematic fields which were correctly identified in both 

cohorts. In addition, the detected outliers helped the clinicians fix several discrepancies 
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or remove them where necessary, with a validity index of more than 90%. A large 

portion of the outliers in both cohorts were detected in features with binary values.  

In most of the cases, binary outliers do not have any clinical importance (e.g., in 

“Gender” the majority of values is zero which denotes females so values with one 

(males) are highlighted). The largest portion of the missing values was physically 

explained by the data providers. Most of them had to do with follow-up calculations or 

records that have been lost in the past. Undoubtedly, the data evaluation report 

combined with the curated dataset have been proven useful for the clinicians during the 

data quality assessment process, reducing the time effort needed for manual data 

curation. 

The data standardization module was able to identify and properly classify more than 

85% of pSS-related terms for the UoA and HUA cohorts, based on knowledge from the 

reference model. This highlights the importance of the reference model which stands 

as a gold standard for matching similar terminologies across heterogeneous data and 

thus enables data harmonization. However, the percentage of matching terms can be 

greatly enhanced if the data standardization module receives as input the semantic 

representation of the raw dataset instead of (only) the clinical one. In addition, a 

semantic representation of the raw dataset can reduce information loss. An example of 

how an ontology can reduce information loss and improve the overall matching 

percentage can be seen in the HUA cohort.  

The HUA cohort includes nine variables which are not stated in the reference model 

and are related to the various therapeutic prescriptions, such as, Methotrexate (MTX), 

Leflunomide, Cyslosporine, Azathiprine, Hydroxychloroquine (HCQ), Mycophenolate 

mofetil (MMF), Anti-TNFs, Rituximab (RTX), and Belimumab. These variables could 

be grouped into the class “Therapies” and then the semantic matching process would 

be able to match this class with the homonymous class of the reference model and thus 

reduce the information loss by 4% with an additional increase in the matching 

performance by 2%. As a matter of fact, the vocabulary could be enriched by adding 

the detailed (sub-)symptomatology related to the different ESSDAI domains so as to 

increase the matching percentage, as well as, include medical acronyms related to 

popular laboratory tests, such as, the “HBsAg” which stands for Hepatitis B, the 

“WBC” which stands for white blood cells, etc. 
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Sjögren’s syndrome exists as a field with DOID: 12894 in the generalized disease 

ontology [424]. More specifically, it is a special case of the hypersensitivity reaction 

type II immune system disease and is registered with three exact synonyms, i.e., 

xerodermosteosis, Sicca syndrome, Sjögren syndrome. However, (a) no related 

domains exist and (b) there is no discrimination between primary and secondary 

Sjögren’s syndrome. The current ontology is not based on the classic BFO (Basic 

Formal Ontology) type which is a high-level generic disease ontology type but rather 

is a disease-specific one, aiming to cover the knowledge domain of the pSS. Hence, it 

is a low-level, context-specific, biomedical ontology focusing on the domains of the 

syndrome. The proposed pSS reference model defines a set of minimum criteria 

necessary at diagnosis/follow-up including pathologic ocular involvement disease 

indicators, such as, Schrimer’s, as well as several laboratory measures, such as, 

leukopenia, cryoglobulinemia, lip or parotid biopsy, ESSPRI and ESSDAI scores, etc., 

for improving data inclusion and quality. These will be further combined with existing 

reports of missing information (e.g., SNPs, etc.) from clinical partners, also by taking 

into consideration useful recommendations from the European League Against 

Rheumatism (EULAR) [397]. 

The presented ontology is the first biomedical ontology that covers a large portion of 

the pSS domain knowledge. It is primarily based on a pre-defined reference model (i.e., 

a set of variables and descriptions) that fulfills all the necessary requirements for the 

definition of a complete schema which is then evolved into an ontology. The ensuing 

ontology is an hierarchical model which consists of properly defined classes, data and 

object properties that are organized in a simple manner. According to the defined 

ontology, a pSS patient has demographic data, various laboratory measures, ESSDAI 

scores, and therapies, which are treated as subclasses of the main class patient. Each 

subclass includes further data properties (e.g., the laboratory tests include oral, ocular, 

OSS tests, etc.). This hierarchy is easier to follow and better to comprehend since its’ 

context is more data driven (i.e., a low-level ontology), instead of the high-level BFO 

type. To this end, the pSS ontology has been published in the form of an .owl file on 

the following link: https://github.com/vpz4/PSS-Ontology. 

The main reason behind the development of a general pSS ontology is to enable the 

mapping of existing pSS ontologies into a common ontology that will enable the 

https://github.com/vpz4/PSS-Ontology
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analysis of big heterogeneous medical data. As a matter of fact, future data 

harmonization and data integration procedures are going to be applied on such 

heterogeneous datasets, through ontology mapping (i.e., schematic interlinking) 

mechanisms. Therefore, the development of a common pSS ontology is a crucial step 

prior to the implementation of these mechanisms, in order to apply harmonization, 

integration and federated analysis on cohort data. Meanwhile, ontology mapping is a 

complex field since it does not only involve the transformation of one schema into a 

common one but also needs to comply with crucial data sharing regulations (e.g., the 

General Data Protection Regulation in Europe), especially when the involved 

ontologies originate from medical cohorts across different countries all over the world. 

Our results reveal the favorable performance of the unsupervised tree ensembles for 

virtual population generation which outperformed the rest of the virtual population 

generation methods having the smallest goodness of fit and Kullback-Leibler 

divergence values in both experimental case studies (Section 7.1.3.1). The histograms 

of the virtual data that were generated by the unsupervised tree ensembles can be found 

in Section 7.1.3.1 for the pSS dataset. In both cases, the histograms reflect a highly 

qualitative similarity between the real and the virtual distributions. The supervised tree 

ensembles had the second-best performance (Section 7.1.3.1). The results from the 

supervised RBF-based artificial neural networks (ANNs) are close to the two previous 

methods, with the Bayesian networks and the log-MVND trailing behind. The 

dominance of the tree ensembles as a method for generating virtual data with increased 

level of agreement with the real data is in line with a recent study [131] which focuses 

on the generation of virtual data for in-silico cardiomyopathies drug development. 

Our results also highlight the positive impact of augmenting the real with the virtual 

patient data which were generated by the “unsupervised” tree ensembles through data 

augmentation towards the development of robust disease classification and risk 

stratification models. The XGBoost algorithm was selected as a state-of-the art tree 

ensemble approach the value of which was demonstrated in previous studies [129], 

[250] for lymphoma classification in pSS. The performance of the lymphoma 

classification model in the pSS domain showed an increase by 10.9% in the 

classification accuracy, 10.7% in sensitivity, 11.5% in specificity, and 12.2% in area 

under a curve for lymphoma classification (Table 21, Figure 43) against the one trained 
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only on the real data. A similar increase is also observed in the case of the AdaBoost 

(7.1% in accuracy, 5.7% in sensitivity, 10% in specificity, and 6.5% in AUC), as well 

as, in the case of the Random Forests (9.5% in the accuracy, 8.9% sensitivity, 10.8% in 

specificity, and 11.2% in AUC). 

In this thesis, we extended: (i) a previous study [250] by applying federated learning to 

develop disease prediction models across cohort data that are stored in private cloud 

databases instead of mining knowledge from an integrative database, and (ii) a second 

study [135] by recruiting two additional European cohorts on pSS (for the first time) 

towards the development of a preliminary federated lymphomagenesis progression 

model, and the discovery of prominent factors for lymphomagenesis progression. Our 

results reveal a 90% average overlap among the cohort data and confirm the dominance 

of the federated XGBoost schema for predicting lymphomagenesis with accuracy 

0.848, sensitivity 0.833, specificity 0.849, area under the curve 0.868 along with the 

identification of lymphadenopathy, salivary gland enlargement, C4, and age at SS 

diagnosis as prominent factors for lymphomagenesis progression. 

These risk factors are in line with previous findings [228], [233], [234], [240], which 

confirm the importance of C4, salivary gland enlargement and lymphadenopathy for 

lymphoma progression. Furthermore, the data curator was able to automatically identify 

inconsistent fields and provide adequate reports regarding the conformity and 

completeness of each feature, a fact that assisted the clinical experts during the 

inspection of the curated data and the data quality evaluation reports. Moreover, the 

combination of lexical matching with ontology matching was able to detect overlapping 

terminologies among the curated cohort data based on the FHIR-compliant, pSS 

reference ontology, overcoming significant computational barriers that are posed 

during the co-analysis of the harmonized cohort data and thus enhancing the statistical 

power of the clinical findings. 

The biomarkers for lymphoma development include parotid or submandibular swelling, 

cryoglobulinemia, rheumatoid factor, and low C4 levels, among others, which have 

been validated in previous studies [238], [425], [426] highlighting the significance of 

parotid or submandibular gland swelling, low C4, rheumatoid factor and 

cryoglobulinemia for lymphoma development. In [425], [426] salivary gland swelling 

and cryoglobulinemia appear to be significantly higher in pSS patients evolving into 
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lymphoma compared to pSS controls. In fact, cryoglobulinemia can affect many 

extraglandular organs, such as, the kidney, the skin, and the peripheral nerves, leading 

to permanent damage. The impact of age of SS diagnosis was also highlighted as a 

prominent factor in [233], [234], where the time interval from pSS diagnosis to 

lymphoma has been stated as a biomarker for lymphoma prediction. Furthermore, 

patients with the presence of parotid or submandibular swelling, rheumatoid factor 

(RF), cryoglobulinemia, and low C4 tend to have higher impact for lymphoma 

development. This can be confirmed by the distribution of the samples in Figure 51 and 

Figure 52 which shift the ground truth to the right direction and thus have a positive 

predictive value for lymphoma development. 

8.2.2. HCM 

In this thesis, we examined the effectiveness of data augmentation in terms of 

enhancing the real clinical research databases with high-quality virtual data to enhance 

the performance of the HCM risk stratification models. To do so, a computational 

pipeline was developed, where high-quality virtual data are aggregated with the real 

data to yield robust lymphoma classification models, where the performance of each 

model was evaluated on testing instances of the real data to avoid any biases. The 

proposed pipeline was able to generate virtual distributions with increased similarity, 

correlation, and reduced divergence with the real distributions. The aggregation of the 

real with the virtual patient data yielded a notable increase in the classification 

accuracy, sensitivity, specificity, and area under the curve scores of the supervised 

machine learning models which were trained on the augmented clinical data compared 

to those trained on real data instances. The proposed methods could potentially provide 

significant insight in the field of virtual population generation to re-adjust the 

perspective of Clinical Trials (CTs) in other domains. 

8.2.3. CVD 

The presented CVD ontology is a first, hierarchical data model that covers a large 

portion of the CVD clinical domain knowledge. The ontology is based on a pre-defined 

reference model which was developed under the aegis of the TO_AITION project by 

harnessing knowledge from the Tampere University Hospital. The proposed CVD 

ontology fulfills all the necessary requirements for the CVD domain knowledge. This 
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hierarchy is easier to follow and better to comprehend since its’ context is more data 

driven. The hybrid data harmonization process was able to utilize the CVD ontology as 

a reference ontology to enrich the current medical corpus and harmonize terminologies 

across two large European clinical centers. The proposed ontology was published in the 

following github repository to promote research in CVD: 

https://github.com/vpz4/TO_AITION/blob/main/urn_webprotege_ontology_3b32db4

6-2123-4003-ba85-2923003cfd0c.owl. 

8.2.4. MD 

The MD ontology is a first, hierarchical data model that covers a large portion of the 

MD clinical domain knowledge, which is a rather unmapped domain. The ontology is 

based on a pre-defined reference model which was developed under the aegis of the 

TO_AITION project by harnessing knowledge from the University of Amsterdam. The 

proposed MD ontology fulfills all the necessary requirements for the MD domain 

knowledge. This hierarchy is easier to follow and better to comprehend since its’ 

context is more data driven. The hybrid data harmonization process was able to utilize 

the MD ontology as a reference ontology to enrich the current medical corpus and 

harmonize terminologies across two large European clinical centers. In addition, the 

hybrid data harmonization process was able to identify cross-matches among the CVD 

and MD domains since the MD domain is a more complex domain compared to the 

CVD and the majority of the MD-related terminologies in the two European centers 

were highly associated with CVD-oriented terminologies. The proposed ontology was 

published in the following github repository to further promote research in MD and 

better understand the underlying clinical associations and phenotypes among CVD and 

MD:https://github.com/vpz4/TO_AITION/blob/main/urn_webprotege_ontology_692f

e63d-ca65-47e8-8a51-6ff347eaea3a.owl. 

8.2.5. SAIDs (Kawasaki) 

Our results reveal five prominent genes for KD diagnosis which are proposed for the 

first time, namely the HLA-DQB1, HLA-DRA, ZBTB48, TNFRSF13C, and CASD1. 

The KD classifiers which were trained on the proposed genes yielded better 

performance against those trained on the known ones, in terms of increased accuracy, 

sensitivity, specificity, and AUC. In the common platform analysis, the sample size in 

https://github.com/vpz4/TO_AITION/blob/main/urn_webprotege_ontology_3b32db46-2123-4003-ba85-2923003cfd0c.owl
https://github.com/vpz4/TO_AITION/blob/main/urn_webprotege_ontology_3b32db46-2123-4003-ba85-2923003cfd0c.owl
https://github.com/vpz4/TO_AITION/blob/main/urn_webprotege_ontology_692fe63d-ca65-47e8-8a51-6ff347eaea3a.owl
https://github.com/vpz4/TO_AITION/blob/main/urn_webprotege_ontology_692fe63d-ca65-47e8-8a51-6ff347eaea3a.owl
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GPL6271 was considered as adequate for the application of the proposed computational 

workflow due to the significant lack of available KD patients, in terms of time-series 

expression profiling. To further test the discrimination performance of the proposed set 

of diagnostic biomarkers across other types of similar diseases, a cross-platform 

analysis was also conducted through the transformation and subsequent integration of 

six datasets from two different platforms (GPL570, GPL10558). The integrated dataset 

included 1,347 patient samples, where the non-KD group included patients with SJIA 

and SLE, which are characterized by certain clinical similarities with the KD patients. 

To our knowledge, this is the first data-driven workflow which constructs SOMs on the 

three clinical phases of KD based on time-series gene expression data towards the 

discovery of five candidate diagnostic biomarkers for KD with increased discrimination 

performance against other analogous diseases. The Self-Organizing Maps were 

constructed in a straightforward way to enable the clustering of the KD patients across 

the three clinical phases of KD, in a two-stage manner; the inter-phase and the intra-

phase clustering. The two-stage clustering process yielded homogeneous and concise 

clusters of patients which were subsequently merged to identify four super-clusters. 

The derived super-clusters were able to categorize the available KD patients into four 

subgroups with similar genetic profiles across the whole duration of the disease and not 

on a single clinical phase to better comprehend the mechanisms of KD onset. The super-

clusters were utilized, in a data-driven way, to extract the most prominent genes through 

FDR-based feature selection yielding statistically significant genes for KD diagnosis. 

Both the boosting classifiers highlighted the impact of the proposed genes against the 

known KD genes, specifically in the Acute and Subacute phases, yielding an average 

increase by 4.40% in the accuracy, 5.52% in sensitivity, 3.57% in specificity, and 

2.85% in the AUC. The performance of the AdaBoost on the proposed set of genes is 

significantly higher in all clinical phases of Kawasaki compared against the known set 

of genes. This increase, however, is not observed in the Convalescent phase for the 

GBT schema. These imply that the proposed set of genes can be used to shed light into 

the underlying pathogenic mechanisms and genetic basis of the KD onset with 

favorable precision in the first two phases of the disease. On the other hand, the known 

KD genes can be used to understand the evolvement of KD in the second clinical phase, 

where the patients already start to exhibit clinical manifestations and thus the 

pathophysiology is already observed.  
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Regarding the cross-platform analysis, the boosting classifiers yielded an average 

increase by 2.30% in the accuracy, 2.20% in sensitivity, 4.70% specificity, and 1.70% 

in AUC, across the two boosting classifiers. This suggests that the proposed diagnostic 

biomarkers for KD present a notable discrimination performance of KD patients even 

in cases where the control group consists of patients that exhibit clinical similarities 

with KD. Finally, in both types of analyses, the gene expression data in the acute phase 

contribute most to KD prediction than those in the sub-acute and convalescent phases 

(Table 54, Table 56) which is in line with the fact that early identification and timely 

IVIG (intravenous immunoglobulin) treatment is the best policy to treat KD. 

The potential relation of the proposed genes with KD according to previous works 

reported in the literature is presented in Table 65. Specifically, for the HLA class II 

genes, like HLA-DQB1 and HLA-DRA, certain Single Nucleotide Polymorphisms 

have been associated with KD diagnosis in Genome Wide Association Studies (GWAS) 

reports [45]. Moreover, zinc finger proteins, like the ZBTB48, have been found to be 

down-regulated in KD patients [46], while increased TNFRSF13C gene expression has 

been associated with induced inflammation in RAW 264.7 cells [47]. Finally, several 

studies have indicated the role of CASD1 in the immune system [48-50]. These five 

genes are reported as biomarkers for KD diagnosis for the first time in the literature 

using data-driven analysis instead of the conventional laboratory analysis. 

Table 65. Relation of the proposed set of genes with KD studies in the literature. 

ID_REF GB_LIST Gene ID Description 

15658 AI431505 HLA-DQB1 Association of the SNPs in HLA class II 

genes were documented as susceptibility 

genes of KD in GWAS reports [427] 15660 AI434629 HLA-DRA 

22055 AA810410 ZBTB48 

Zinc finger protein 124 (circZNF124) has 

been found to be significantly down-regulated 

in untreated patients with Kawasaki disease 

[428] 
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ID_REF GB_LIST Gene ID Description 

26049 AA864899 TNFRSF13C 

TNFRSF13C is a target gene of miR-122 in 

RAW 264.7 cells’ inflammatory responses 

[429] 

35359 AI250844 CASD1 

The role of CAS1 protein has been associated 

with the immune system in various works 

[430]–[432] 

 

8.2.6. COVID-19 

In this work, we developed a multimodal data analytics pipeline which utilizes 

explainable and interpretable AI models along with dynamic modeling methods on 

curated clinical data to understand the pathogenesis and risk factors of COVID-19 

regarding ICU admission and mortality. The extracted risk factors for ICU admission 

and/or mortality were combined with the APACHE-II score, which has been reported 

in [433], [434] as one of the most contributory variables for the risk prediction of 

COVID-19, to develop an ICU scoring index with accuracy 0.9 based on IL-6, IL-8, 

IL-1b and TNF and thus quantify the severity of the disease. Our results highlight the 

importance of LDH, age, CRP, WBC, IL-6, IL-8, Cr, number of monocytes, 

lymphocyte count, and TNF as risk predictors for ICU admission (and survival) and 

mortality in the ICU, among others. A similar picture is observed in the case of time 

intervals INT1-INT2, INT1-INT3, and INT1-INT4 with updates in the ranking order. 

The proposed method focuses on the detection of explainable risk predictors for ICU 

admission and/or mortality, as well as, to the identification of an ICU scoring index 

which complements the APACHE-II score compared to the workflows that are 

presented in [435], [436] and focus only on the extraction of risk factors. Furthermore, 

the proposed approach avoids the application of conventional multivariate regression 

analysis like in [437]–[441] since these types of methods are based on statistical 

assumptions regarding the independence of the input factors and thus reduce the 

statistical power of the outcomes. In addition, the AI model validation process is not 

based on random splits of the data as in [441], [442] nor on the application of bagging 
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methods as in [435], [442], [443] which introduce biases during the assembly stage and 

the performance evaluation of the AI models. 

The classification performance of the AI model in Group A regarding the patients who 

were not admitted in the ICU and survived was favorable, where the classification 

performance in time intervals INT3 and INT4 was less than INT1 since patients in 

Group A did not remain in the hospital for many days and thus most of the cytokine 

measures in the future time intervals were missing. Regarding Group C, the 

performance of the AI model in INT2 was lower than INT1 due to the higher percentage 

of missing cytokines in INT2. The same occurred in INT4 when compared against 

INT3. The AI model in Group D was not affected by the missing cytokine 

measurements, as in the previous groups, since the number of patients who were 

submitted in the ICU and died was small and easily separable thus the impact of the 

missing cytokines in future time intervals was irrelevant in this case.  

To further highlight the prediction performance of the proposed AI model we compared 

it against four other machine learning schemas, including the Logistic Regression (LR), 

the Support Vector Machines (SVM), the AdaBoost and the Naïve Bayes (NB). The 

prediction performance results are summarized in Table 59. According to Table 59, the 

GBT had the best performance in all cases and for all groups under investigation. 

Table 66. Comparison with existing state-of-the-art studies. 

Study Dataset Method Outcomes 

[437] 

Electronic 

medical records 

with symptoms, 

signs, and 

laboratory 

findings from 

244 hospitalized 

COVID-19 

patients in China. 

Multivariate 

logistic regression 

analysis was used 

to identify risk 

factors for 

mortality. 

Risk factors: Disease severity, 

gender, white blood cell count 

and age as risk factors, C 

reactive protein (CRP). 
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Study Dataset Method Outcomes 

[438] 

Clinical data 

from 663 

COVID-19 

patients in China. 

Multivariate 

logistic regression 

analysis to model 

the disease 

severity. 

Risk factors: Sex, disease 

severity, expectoration, muscle 

ache, and decreased albumin. 

[439] 

Clinical data 

from 3,894 

COVID-19 

patients in Italy. 

Machine learning 

(random forest) 

and Cox survival 

analysis were used 

to identify risk 

factors for 

mortality in the 

hospital. 

Risk factors: Impaired renal 

function, elevated C-reactive 

protein, and advanced age. 

[440] 

Medical records 

from 4,404 

COVID-19 

patients in China. 

Exploratory 

multivariate 

analysis was 

applied to identify 

predictors of ICU 

care and 

mechanical 

ventilation. 

Lower oxygen saturations were 

associated with need for ICU 

and invasive mechanical 

ventilation, and with death. High 

respiratory rates were associated 

with the need for ICU care. 

[441] 

Medical records 

from 4,997 

COVID-19 

patients in the 

U.S. 

Multivariate 

logistic regression 

was applied to 

predict ICU 

admission and 

death. 

Risk factors for ICU admission: 

lactate dehydrogenase, 

procalcitonin, pulse oxygen 

saturation, smoking history, 

lymphocyte count. 

Risk factors for mortality: heart 

failure, procalcitonin, lactate 

dehydrogenase, chronic 

obstructive pulmonary disease, 
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Study Dataset Method Outcomes 

pulse oxygen saturation, heart 

rate, age. 

The risk score model yielded 

good accuracy with an AUC of 

0.74 for predicting ICU 

admission and 0.83 for 

predicting mortality with a train 

test split method. 

[442] 

1,270 COVID-19 

patients in the 

U.S. 

Multi-tree extreme 

gradient boosting 

(XGBoost) was 

used to detect 

prominent features 

for COVID-19 

mortality. 

Risk factors: disease severity, 

age, levels of high-sensitivity C-

reactive protein (hs-CRP), 

lactate dehydrogenase (LDH), 

ferritin, and interleukin-10 (IL-

10). 

XGBoost model predicted death 

risk accurately with >0.9 

precision and >0.85 sensitivity 

with a train test split method. 

[443] 

Clinical and 

laboratory data 

from 214 

COVID-19 

patients in China. 

Random forest 

(RF) algorithm to 

differentiate severe 

and no severe 

COVID-19 clinical 

types based on 

multiple medical 

features and 

provide reliable 

predictions of the 

clinical type of the 

disease. 

Risk factors: age, hypertension, 

cardiovascular disease, gender, 

diabetes, absolute neutrophil 

count, IL-6, LDH with 0.97 

predictive accuracy using a train 

test split method. 
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Study Dataset Method Outcomes 

[444] 

Clinical data 

from 162 

hospitalized 

COVID-19 

patients. 

Artificial neural 

networks (ANNs) 

and bagging 

methods to predict 

the risk for critical 

COVID-19. 

Risk factors: white blood cell 

count, time from symptoms to 

admission, oxygen saturation 

and blood lymphocytes count, 

APACHE II. 

[435] 

Clinical and 

laboratory data 

from 635 

COVID-19 

patients. 

Multivariate and 

machine learning 

algorithms, such 

as, the decision 

trees, RF, GBT 

and ANNs were 

applied to predict 

risk factors for 

ICU admission and 

mortality. 

Risk factors for mortality: age, 

procalcitonin, C-creative 

protein, lactate dehydrogenase, 

D-dimer, and lymphocytes. 

Risk factors for ICU admission: 

procalcitonin, lactate 

dehydrogenase, C-creative 

protein, pulse oxygen saturation, 

temperature, and ferritin. 

[436] 

Clinical data 

from 516 

COVID-19 

patients. 

To produce models 

of mortality or 

criticality 

(mortality or ICU 

admission) in a 

development 

cohort using 

machine learning 

algorithms (e.g., 

XGBoost, Random 

Forests). 

Risk factors for mortality: Age, 

diastolic pressure, O2 Sat, BMI, 

AST, creatinine, CRP, ferritin, 

platelet, RDW, WBC. 

Risk factors for criticality: Age, 

O2 Sat, ALT, AST, creatinine, 

CRP, ferritin, platelet, RDW, 

WBC, neutrophil/lymphocyte 

ratio. Prediction of mortality 

with 0.89 AUC and ICU 

admission with 0.79 AUC. 

[416] 

Clinical and 

biological data 

across four time 

points from 324 

A multimodal data 

analytics pipeline 

which utilizes 

explainable and 

interpretable AI 

Risk factors for mortality: LDH, 

IL-6, IL-8, Cr, number of 

monocytes, lymphocyte count, 

and TNF. 
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Study Dataset Method Outcomes 

COVID-19 

patients 

models along with 

dynamic modeling 

methods to identify 

risk factors of 

COVID-19 

regarding ICU 

admission and 

mortality and 

develop an ICU 

scoring index. 

Risk factors for ICU admission 

and survival: LDH, age, CRP, 

Cr, WBC, lymphocyte count for 

mortality in the ICU, with 

prediction accuracy 0.79 and 

0.81, respectively. 

These risk factors were 

combined with dynamically 

associated biological markers to 

develop an ICU scoring index 

with accuracy 0.9. 

 

Regarding the findings of the explainability analysis (Figure 86, Figure 87, Figure 88, 

Figure 89, Figure 90), the importance of LDH has been confirmed in [434], [445], 

[446], [447]–[449] as an independent risk factor for the severity and mortality of 

COVID-19. In addition, IL-6 has been linked to severity and duration of hospitalization 

in [450]. Furthermore, IL-6 has been identified in [451] as a disease severity predictor 

for COVID-19 and in [452] as a key factor, among numerous cytokines and 

chemokines, the treatment of which can reduce mortality in COVID-19 patients. The 

importance of IL-8 has been highlighted in [453] along with other circulating cytokines, 

including IP-10 (CXCL10), MCP1 (CCL2), and RANTES (CCL5). CRP levels have 

been positively associated with the severity of COVID-19 in [454], [455], [456], [457]–

[459], [460], where the elevated levels of CRP and IL-6 have been proposed as 

predictors for mechanical ventilation in COVID-19 [457].  

Age is a major predictor of mortality especially in older patients and has been 

considered as a key factor for the definition of various scoring systems for COVID-19 

[458], [459]. The importance of IL-6 and IL-8 has been also stated in [460] in which 

the profiling of serum cytokines IL-6 and IL-8 have been identified as disease severity 

predictors for COVID-19. Increased cytokine levels, including TNF and IL-6 have been 

also reported in [450], [461] as risk factors for severity and mortality in COVID-19. 

Creatinine has been identified as an independent risk factor for predicting adverse 

outcomes in COVID-19 patients [462] but has been reported only on a few case studies 
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in the literature. The diagnostic and predictive role of the lymphocyte-to-monocyte 

ratio, the neutrophil-to-lymphocyte ratio, and the platelet-to-lymphocyte ratio in 

COVID-19 patients has been reported in [463]. 

The induced decision trees (Figure 91) confirm the importance of LDH and WBC 

counts in the decision-making process across Groups A, C, and D. Furthermore, the 

decision trees have highlighted the importance of CRP [464] and number of 

lymphocytes [463] as prominent factors for mortality in COVID-19. The clinical 

significance of the WBC morphology has been noted in [465] and its diagnostic and 

prognostic value in COVID-19 patients has been highlighted in [466]. The profiling of 

cytokines has also revealed IL-8 (apart from IL-6) as a disease severity predictor which 

is in line with the findings reported in [467]–[469]. Regarding the number of 

neutrophils (NEUT), the neutrophil-to-lymphocyte ratio has been found as an 

independent risk factor for mortality in hospitalized patients with COVID-19 [470]. 

The AST and ALT levels have been also associated with the mortality in COVID-19 

patients [471]. In addition, the PLT count is related with the prediction of severe illness 

in COVID-19 [472]. 

Critical thresholds of the above risk predictors were identified by the induced decision 

trees using the baseline data and the cytokines from INT1 (Figure 91). More 

specifically, in Group A, the threshold 7.58 in WBC counts determines whether the 

decision will be based on CRP in case it is less than (or equal to) 7.58, where emphasis 

is given to Cr and PLT or LYM count, AST and age. Regarding Group C, the threshold 

278 in the LDH determines whether the decision will be based on IL-6, and the number 

of monocytes in case it is less than (or equal to) 278 or on LYM, IL-6 and WBC, 

otherwise. As for Group D, the threshold 357 in LDH indicates a critical value which 

determines whether the decision will be based on CRP and Cr in case it is lower than 

(or equal to) 257, or on age, Cr and PLT count otherwise. 

To capture an overall picture of the prominent risk factors for ICU admission and 

mortality a multiclass problem was also investigated using a Random Forests classifier 

which was trained on the 214 patients to solve a four-class classification problem, 

where class “0” denotes the patients who belong in Group A, class “1” those in Group 

B, class “2” those in Group C, and class “3” those in Group D. Feature ranking was 

measured based on the Gini index across the total number of instances. The obtained 
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classification performance was 0.71. The set of prominent features include the CRP, 

WBC, LDH, IL-6 in INT2 and INT3, AST and age, which are in line with the findings 

in the subgroup analysis, along with NEUT (number of neutrophils) and ALT (Alanine 

transaminase) which appear to be important, as well. 

The ICU scoring index analysis which was conducted in Groups C and D using only 

the cytokines that were identified as important from the DBN analysis and the 

explainability analysis, yielded significant risk predictors for ICU admission and 

mortality. More specifically, the proposed method was able to recursively identify the 

APACHE-II, IL-1b, and IL-8 as those contributing most to the classification accuracy 

in Group C and for INT1, which suggests that these features can be used as disease 

severity predictors for ICU scoring and thus can determine the admission of 

hospitalized patients with COVID-19 in the ICU. In addition, the APACHE-II, IL-1b, 

and IL-6 were also highlighted as risk predictors for ICU admission and mortality in 

Group D. Regarding the rest of the time interval combinations in Group C, it is 

interesting to note that cytokines measured in previous time intervals continue to remain 

prominent in future time intervals as well (e.g., IL-6 from INT1 remains important in 

INT1-INT2, IL-6 from INT2 preserves its importance in INT1-INT3, and TNF from 

INT2 in INT1-INT4). As for Group D, a similar pattern is observed, where IL-6 from 

INT1 remains important even when the cytokines from INT1-INT2 and INT1-INT3 are 

used, TNF from INT1 remains important when using INT1-INT3, and IL-8 from INT2 

remains prominent in the analysis even when using INT1-INT4 along with IL-1b 

measured in INT3. 

Altogether, our results from the baseline data and cytokines from INT1 highlight the 

importance of LDH, IL-6, IL-8, Cr, number of monocytes, lymphocyte count, and TNF 

as risk predictors for ICU admission and survival, as well as, LDH, age, CRP, Cr, WBC, 

and lymphocyte count as risk predictors for mortality after ICU admission, among 

others. Based on DBN modeling the prediction of probable and reasonable trajectories 

was provided over time, considering the measurement of the four cytokines in discrete 

time points. Moreover, the model revealed the probabilistic relationships among risk 

factors of COVID-19 regarding ICU admission and mortality. For instance, we found 

that IL-6 influences the levels of TNF in the last time point and more dependencies 

were evidenced over time between TNF and IL-8. The most important features from 
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the DBN analysis were finally combined with the risk predictors from Shapley 

explanation analysis to extend the clinical impact of the APACHE-II score towards the 

development of a scoring index based on IL-6, IL-8, IL-1b and TNF during the 

admission of hospitalized COVID-19 patients in the ICU across different time intervals 

of the disease. 

In addition, we presented a straightforward workflow which uses SOMs to derive 

homogeneous clusters of patients with COVID-19 based on a subset of features that 

have the highest degree and connectivity across multiple timepoints. The clustering 

labels from the SOMs were used to enrich the existing time-series clinical and 

laboratory data with meta information yielding an increase in the performance of 

classification models for ICU admission and mortality. Our results highlight the 

contribution of the extracted patient subgroups from the SOMs along with the 

dynamically associated features with increased connectivity from the DBNs towards 

the improvement of the classification performance for ICU admission (sensitivity 0.83; 

specificity 0.83) and mortality (sensitivity 0.74; specificity 0.76). The number of 

lymphocytes, SatO2, PO2/FiO2, and O2 supply type were highlighted as prominent risk 

factors for ICU admission and the percentage of neutrophils and lymphocytes, 

PO2/FiO2, LDH, and ALP for mortality, among others. 

Significant differences were identified in the patient distribution across the four super-

clusters from the SOMs analysis and particularly for the features “Hct”, 

“Lymph_abs_number”, “Lymph_percent”, “Neut_abs_number”, “Neut_percent” and 

“PO2_FiO2_ratio”, regarding ICU admission and mortality. Additional significant 

differences were detected in “AST” for ICU admission and in “ALP” and “LDH” for 

mortality. The most important features were utilized in the SOMs to extract 

homogeneous clusters of COVID-19 patients with common clinical profiles. 

Subsequently, MARTs were trained on the aggregated features from the DBNs and the 

new features from the SOMs yielding robust classifiers for ICU admission and 

mortality with an increase by 1% in sensitivity and 2% in specificity for ICU admission 

in case study 1, as well as an increase by 4% in sensitivity and specificity for ICU 

admission and by 3% in sensitivity and 2% in specificity in case study 2, compared to 

the classifiers trained with the clustering labels from the SOMs. The contribution of 

demographics-related data yielded an increase in accuracy by 4% and in AUC by 6% 
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for mortality (Table 62) which suggests that age has a high impact on mortality in 

hospitalized COVID-19 patients. 

The number of lymphocytes, SatO2, PO2/FiO2 and O2 supply type were highlighted 

as major risk factors for ICU admission and the percentage of neutrophils and 

lymphocytes, PO2/FiO2, LDH, and ALP for mortality. According to Table 4, our 

findings are in line with related risk factors that were reported in the literature. More 

specifically, the neutrophils infiltration has been found to drive necroinflammation 

during coronavirus in [473] whereas in [474] the neutrophil to lymphocyte ratio has 

been highlighted as a risk factor for the severity of COVID-19. Additional risk factors 

for mortality include the “Hb” which has been highlighted also in [475] as an 

independent risk factor for the mortality in COVID-19 patients and the “INR” which 

has been linked with COVID-19 severity in [476].  

The prognostic value of troponin elevation has been identified in [477] and particularly 

in patients with underlying cardiovascular diseases. The “PO2_FiO2_ratio” along with 

the “FiO2” have been identified as independent risk factors for in-hospital mortality in 

patients with COVID-19 [478]. Likewise, LDH has been found as an independent risk 

factor of severe COVID-19 in [434] while tachypnea and low SBP have been strongly 

associated with in-hospital mortality in COVID-19 [479]. Additional risk factors for 

ICU admission include the supply oxygen type which is highly associated with COVID-

19 severity, and SatO2 which serves as a predictor of mortality in adult patients with 

COVID-19 [480]. The relationship between mortality and ALP has also been 

demonstrated in [481], [482] which underline the clinical need for further investigation 

of elevated serum alkaline phosphatase levels as a mechanism of liver injury in COVID-

19. In addition, this study goes beyond the state of the art by combining DBNs with 

SOMs and trajectories to derive homogeneous clusters of patients with COVID-19 

based on a subset of features that have the highest degree and connectivity across 

multiple timepoints. 

Unlike the existing studies (Table 67) which focus on the direct application of machine 

learning algorithms for the development of ICU admission and mortality classifiers and 

the detection of related risk factors, the proposed approach places particular emphasis 

on the dynamic modeling of features across multiple time-points to extract the most 

informative ones. The latter are utilized to derive homogeneous clusters of COVID-19 
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patients with similar clinical profiles based on the SOMs and the trajectory analysis. 

The extracted clustering information is then combined with the input data to enhance 

the robustness of the classifiers for ICU admission and mortality. 

Table 67. Comparison with the state-of-the-art studies for ICU admission and mortality in 

COVID-19. 

Study Method Risk factors 

[483] 

Ensemble-based algorithms to 

predict ICU admission and mortality 

across 3597 COVID-19 patients. 

Risk factors: CRP, LDH, O2 

saturation for ICU admission and 

neutrophil and lymphocytes for 

mortality. 

[484] 

Random forests for risk 

stratification based on time-series 

data across 1987 unique patients 

diagnosed with COVID-19. 

A risk prioritization tool that 

predicts the need for ICU 

admission within 24h to optimize 

the flow of operations within the 

hospitals. 

[485] 

Ensemble learning to objectively 

identify an optimal combination of 

factors that predicts ICU admissions 

across 733 COVID-19 patients. 

The number of lymphocytes was 

involved in all prediction tasks 

with the highest AUC score. 

[486] 

Multipurpose algorithms (boosting 

ensembles, artificial neural 

networks) to estimate the risk of 

ICU admission or mortality among 

3623 patients with COVID-19. 

The final model achieved good 

discrimination for the external 

validation set (AUC 0.821). A 

cut-off of 0.4 yields sensitivity 

and specificity 0.71 and 0.78, 

respectively. 

[487] 

Predict the risk for COVID-19 

severity by training multipurpose 

algorithms across 3280 patients. 

High predictive performance 

(average ROC 0.92) with the 

following risk factors: 

lymphocytes, C-reactive protein, 

and Braden Scale. 



353 

 

Study Method Risk factors 

[488] 

GBTs were trained on 1270 

COVID-19 patients from Wuhan to 

detect risk factors. 

Age, CRP, and LDH were 

identified as prominent features 

for COVID-19 mortality. 

[443] 

Bagging methods were applied on 

clinical data from 362 patients with 

confirmed COVID-19. 

Age, hypertension, gender, 

diabetes, absolute neutrophil 

count, IL-6, and LDH were 

identified as risk factors for 

COVID-19 severity. 

[417] 

DBNs combined with SOMs to 

derive homogeneous clusters of 

patients with COVID-19 which 

were used to enrich the existing 

time-series clinical and laboratory 

data with meta information to 

increase the performance of 

classification models for ICU 

admission and mortality. 

Risk factors: number of 

lymphocytes, SatO2, PO2/FiO2, 

and O2 supply type as risk factors 

for ICU admission and the 

percentage of neutrophils and 

lymphocytes, PO2/FiO2, LDH, 

and ALP for mortality. 

Classification performance for 

ICU admission with sensitivity: 

0.83 and specificity: 0.83 (AUC 

0.91), and mortality with 

sensitivity: 0.74 and specificity: 

0.76 (AUC 0.83). 

 

Moreover, the scope of the proposed framework can be extended to include genome 

wide association studies (GWAS), where data curation methods can be used to enhance 

the quality of genomic data. Since the proposed framework is easily scalable, it can be 

updated to include functionalities for outlier detection, de-duplication, and imputation 

in genetic data, including DNA and RNA sequencing data, among others, where the 

existence of missing values, outliers, and similarities can lead to falsified associations 

between genetic variants (e.g., single-nucleotide polymorphisms (SNPs)) and traits 

(e.g., diseases). This is present in case-control studies, where common variants are 

examined between a case group (a group of individuals under a common disease or 

condition) and a control group (a group of healthy individuals). However, important 

genetic-related information needs to be added as a next step in the near future in order 
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to provide a much more detailed and accurate biomedical ontology with pSS genetic 

associations. Such an ontology not only will be able to completely describe the pSS 

domain knowledge but also lead to the creation of a much more effective schematic 

interlinking mechanism for conducting genetic analysis on integrated data across 

various genetic databases. 
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

 

 

9.1. Conclusions 

9.2. Future work 

 

 

9.1. Conclusions 

The proposed automated framework for medical data curation is an integrated, web-

based data quality assessment strategy which offers a fully automated REST API 

service that combines both univariate and multivariate methods for outlier detection, 

“smart” imputation, and de-duplication, as well as, terminology-based data 

standardization, yielding clinician-friendly data quality assessment reports that promote 

the use and re-use of high-quality data. The framework is easily scalable and can be 

incorporated into any medical platform that deals with big data analytics, as part of their 

data quality assessment strategy. For this reason, the source code of the data curator has 

been made publicly available under the following github repository: 

https://github.com/vpz4/Data-curator, along with a brief user manual. Additional 

applications on clinical databases are necessary to further evaluate the framework’s 

efficacy and reliability, as well as, include more functionalities for outlier and similarity 

detection. Until now, the framework is executed in the form of a REST API service and 

efforts are needed to publish the service in the form of a user-friendly front-end web 

interface. The fact that the proposed framework introduces a reference model as a 

standard model for data standardization can be generalized for different types of 

diseases due to the scalability it offers and its increased FAIRification potential. The 

results of this framework can be also combined with semantic matching algorithms to 

enable data harmonization in different domains varying from autoimmune diseases to 

cardiovascular diseases and genomics. To this end, the data standardization report can 

be presented in the form of a drop-down menu, where the clinician will be able to select 

https://github.com/vpz4/Data-curator


356 

 

the best match with the standard term(s) according to the Health Level-7 (HL7) 

standards, such as, the FHIR protocol. According to our findings from the case studies 

(CHAPTER 7), the proposed data curation framework enhanced the data quality in all 

clinical domains under investigation (pSS, HCM, CVD, MD, SAIDs, COVID-19) 

highlighting its increased clinical impact towards the effective quality control across 

complex clinical data structures. 

The proposed hybrid data harmonization method was compared against the application 

of conventional lexical analysis and manual mapping (definition of pairing rules) across 

8090 terminologies from the CVD domain and 998 terminologies from the mental 

disorders’ domain, yielding a set of individual and cross domain matched terminologies 

with 85% precision (in average) and 10% higher performance than conventional lexical 

analysis. In addition, the proposed method is highly scalable and can be applied to any 

clinical domain given a reference ontology as input. The overall value of the proposed 

method lies on the fact that it can be used to deal with open issues and unmet needs in 

various clinical domains which enhances its scientific and clinical impact. The hybrid 

data harmonization method can be generalized to any clinical domain, as long as, a 

reference ontology is provided as input towards the construction of a medical corpus 

which will in turn enable the application of lexical and semantic matching algorithms. 

As a future work, we are planning to include more harmonized cohort data on the 

private cloud spaces to further enhance the statistical power of the lymphoma prediction 

models in the pSS domain, as well as, interlink the corpus with other medical index 

repositories and include deep learning algorithms in the distributed data analytics 

module to enhance the robustness of the disease prediction models. According to our 

findings from the case studies (CHAPTER 7), the proposed hybrid data harmonization 

workflow was able to diminish the underlying data heterogeneity across three diverse 

clinical domains (pSS, CVD, MD) highlighting its performance towards the accurate 

harmonization of complex clinical data structures across multiple clinical domains 

through its ability to be applied in a cross-domain manner. 

The BGMM-OCE algorithm is an extension of the conventional BGMM which aims to 

address open issues regarding hyperparameter estimation in BGMM which is a crucial 

technical challenge. BGMM-OCE introduces a highly efficient spectral clustering stage 

based on the LOBPCG method to cluster patients with similar profiles within the input 
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data towards the estimation of the optimal number of Gaussian components. To do so, 

the algorithm estimates the DBS across a set of clusters under evaluation. To avoid 

computational burden during the clustering evaluation stage, we store the local maxima 

of the DBS and if there are no reported maxima after 5 clusters under evaluation, the 

process is terminated. The cluster with the highest DBS is then extracted to define the 

number of Gaussian components in the BGMM training stage and the gamma parameter 

was exponentially related (non-linear) with the number of components to avoid linear 

assumptions. The robustness of the BGMM-OCE was demonstrated through a large-

scale study in the context of in silico clinical trials for HCM towards the generation of 

30000 virtual patients. The proposed method yielded the lowest average inter- and intra-

correlation differences and average coefficient of variation which suggests that it can 

capture hidden similarity patterns among the real and the virtual data with reduced 

dispersity. The outcomes of the proposed pipeline are promising since the existing lack 

of population size in HCM obscure the development of robust disease classification and 

risk stratification models.  

In addition, the BGMM-OCE is highly sustainable since it can be applied in any clinical 

domain. As a future work, we plan to apply the BGMM-OCE across other clinical 

domains to populate medical databases with insufficient population size and make in 

silico clinical trials feasible, as well as, to test its accuracy for data imputation across 

highly complex clinical data structures and test its effectiveness in combining in silico 

and in vivo data into augmented clinical trials [489]. According to our findings from 

the case studies (CHAPTER 7), the proposed synthetic data generator was able generate 

high-quality synthetic data for in silico clinical trials in HCM, where the cost for drug 

testing is high and the population size is small, highlighting its reduced computational 

complexity and robustness towards large-scale, high-quality synthetic data generation. 

Regarding data augmentation, we focused on the generation of high-quality synthetic 

data to enhance the performance of the conventional supervised machine learning 

models for lymphoma classification and HCM risk stratification in two rare clinical 

domains. The proposed computational pipeline can be deployed for the augmentation 

of clinical data although medical imaging features extracted from radiomics analysis 

can also be used as input. To our knowledge, this is the first computational pipeline 

which aggregates high-quality virtual data with real data to deal with clinical unmet 
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needs in two rare clinical domains, including the development of robust lymphoma 

classification and HCM risk stratification models. The data quality control module 

enhanced the quality of the raw clinical data through the removal of outliers and 

duplicated fields. The virtual population generation module provided straightforward 

virtual data generators, where the tree ensemble generators were extended to avoid 

overfitting effects during the generation stage yielding virtual data with increased 

quality in terms of increased convergence with the real data. A similar strategy was 

developed for the ANNs using Gaussian kernels as activation functions to deal with 

overfitting during the training stage.  

The “hybrid” machine learning module utilizes supervised machine learning algorithms 

on the aggregated real and high-quality virtual data to enhance the performance of the 

lymphoma classification and HCM risk stratification models. Although the application 

of the proposed pipeline has a strong potential towards the improvement of the existing 

disease classification and risk stratification models in other clinical domains, emphasis 

must be given on its concise application in each clinical domain of interest. Although 

the virtual population generators and specifically the tree ensembles and the ANNs have 

been adjusted to resolve overfitting effects during the training stage, emphasis should 

be given on the precise definition of the data types of the input features to avoid the 

generation of virtual data with heterogeneous data structure. Finally, the statistical 

power of the augmented clinical data must be sufficient for the application of the hybrid 

machine learning module to yield robust disease classification and risk stratification 

models. According to our findings from the case studies (CHAPTER 7), the proposed 

data augmentation pipeline enhanced the performance of the existing lymphoma 

classification models in pSS and HCM risk stratification models in the homonymous 

domains, highlighting its increased predictive value towards the improvement of the 

disease classification and risk stratification models. 

In this thesis, we also presented the FHBF algorithm as a new paradigm towards the 

design, development, and deployment of robust and unbiased supervised machine 

learning models across federated databases with highly imbalanced clinical data 

structures, where the arbitrary selection of dropout rates (in FDART) combined with 

the increased class imbalance can cause overfitting effects. To this end, we first defined 

a hybrid loss with a configurable topology which accounts for overfitting effects. The 
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customized loss function was then introduced into the FDART schema by estimating 

the gradient and hessian vectors. Confound-based random downsampling with 

replacement was applied on each federated database to match the target population with 

the controls with respect to three confound factors (age at disease diagnosis, gender, 

disease duration). The process was repeated 𝐾 times, where the HFGBTs from each 

round are assembled to formulate a cluster of trees in the form of a forest. The log loss 

score was computed for each cluster of HFGBTs to identify and discard “weak” 

clusters, where the final decision-making process was based on a majority voting 

schema based on the predictions of the trees across the most dominant clusters. The 

FHBF dominated the existing state of the art federated learning schemas in terms of 

classification accuracy and reduced log loss during training and testing under two 

experimental cases involving the development of six federated AI models for the 

classification of rare lymphoma types across a Pan-European data hub with rare 

autoimmune diseases with increased class imbalance.  

According to our findings from the case studies (CHAPTER 7), the proposed federated 

AI modeling framework is highly scalable and generalizable since it can support 

federated learning through a central node which communicates with private nodes (in 

the cloud) or distributed nodes (in the case of local distributed database management 

system). The proposed federated AI framework was successfully utilized towards the 

development of lymphomagenesis models in pSS, where the proposed FHBF algorithm 

yielded highly-robust supervised learning models resilient against overfitting effects 

along with explainable risk factors for lymphomagenesis compared to existing state-of-

the art implementations. 

We also focused on the development of a straightforward, multimodal, and explainable 

AI model to predict the risk of intensive care and mortality across multiple timepoints 

with accuracy 0.79 and 0.81, respectively. The extracted biomarkers were combined 

with the APACHE-II score to formulate a highly robust ICU scoring index with 

accuracy up to 0.9. In addition, we identified major factors for ICU admission and 

mortality, including the number of lymphocytes, PO2/FiO2, percentage of neutrophils 

and lymphocytes, LDH, and ALP at the baseline or during the follow-up as prominent 

for ICU admission and mortality in COVID-19. The contribution of the extracted 

clusters yielded an improved classification performance both for ICU admission 
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(sensitivity 0.83, specificity 0.83) and mortality (sensitivity 0.74, specificity 0.76). 

Thorough investigation of the derived patient subgroups (i.e., clusters and trajectories) 

would permit the identification of major factors at the baseline or during the follow-up 

period that contribute to risk stratification of COVID-19 patients. The sensitivity of the 

classifier for mortality was improved by 4% using demographic-related data while the 

specificity was improved by 4% in the case where the baseline clinical data are included 

and by 3% in the case where the demographics and the therapies-related data were 

incorporated. The features “number of lymphocytes”, “SatO2”, “PO2/FiO2” and “O2 

supply type” were highlighted as risk factors for ICU admission and the percentage of 

neutrophils and lymphocytes, PO2/FiO2, LDH and ALP for mortality, among others.  

Although most of the existing studies (Table 66, Table 67) focus on the development 

of ICU admission and mortality classifiers without taking into consideration the 

underlying dynamic associations among the data, the proposed method combines 

dynamic modeling with clustering analysis to identify subgroups of COVID-19 patients 

with common clinical profiles which are in turn utilized for the development of robust 

classifiers for ICU admission and mortality. According to our findings from the case 

studies (CHAPTER 7), the proposed multimodal AI modeling pipeline was able to 

identify hidden patterns among diverse COVID-19 patient subgroups. This information 

was used to enrich the performance of the classifiers for ICU admission and mortality 

yielding not only classifiers with improved performance but also explainable risk 

factors for ICU admission and mortality followed by an enhanced ICU scoring index 

complementing the APACHE-II score. 

9.2. Future work 

As a future work, we plan to extend the functionalities of the medical data curation 

service by integrating the proposed “smart” data imputer in the existing REST API 

service of the data curator. In addition, we plan to apply the hybrid data harmonizer 

across multiple databases in other domains, such as, cancer, as well as, in other medical 

data types (e.g., omics) to further evaluate the consistency of the produced harmonized 

data after the execution of the data harmonization process. Although a preliminary 

version of the hybrid data harmonization service is available, we plan to develop a front-

end user interface so that anyone will be able to apply the data harmonization REST 

API service in a pre-defined reference ontology for the disease of interest. The proposed 
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BGGM-OCE algorithm could potentially provide significant insight in the field of 

virtual population generation to re-adjust the perspective of in silico Clinical Trials 

(CTs) in other rare diseases, as well as, to evaluate the approach in time-series data, 

including gene expression microarray data. To this end, we also plan to deploy artificial 

neural networks (ANNs) with multiple hidden layers towards the generation of even 

more robust clinical data for in-silico clinical trials. Furthermore, we plan to apply the 

proposed data augmentation pipeline in other clinical domains to enhance the 

population size of clinical research databases with reduced statistical power. 

In addition, we plan to expand the hybrid machine learning module of the proposed 

computational pipeline for data augmentation using deep learning algorithms to support 

the extraction of biomarkers from time-series gene expression data, as well as, to 

enhance the applicability of the data quality control module to support the curation of 

complex genetic data structures. As far as federated/distributed learning is concerned, 

we plan to include additional cohort data for the application of the federated AI 

modeling framework towards the development of even more robust federated learning 

classifiers, which, however, would not only be restricted to the domain of autoimmune 

diseases but also to other domains, such as, cancer, cardiovascular diseases, etc. In 

addition, we plan to further enhance the performance of the federated AI models by 

including genetic data (e.g., FMS-like tyrosine kinase 3 ligand). Although the proposed 

classifiers do not exist in distributed libraries like Apache Spark’s MLlib [490] we plan 

to conduct a comparison study in the future.  

Moreover, we plan to extend the explainability of the classifiers by measuring the 

impact of each ensemble in the decision-making process and explore new utilities to 

avoid biases during the training stage. We also plan to test the performance of the FHBF 

in extreme data mining applications under the PRECIOUS (MIS: 5047133) hyper 

convergence infrastructure. The proposed federated/distributed learning framework 

could be also applied on more SAIDs-oriented genetic data to provide new insights on 

the underlying pathogenic mechanisms and biomarkers of SAIDs, such as, the 

Cryopyrin-Associated Autoinflammatory Syndromes (CAPS), the 

Hyperimmunoglobulinemia D syndrome (HIDS), and the Pharyngitis and cervical 

Adenitis (PFAPA), among others. We plan to utilize the proposed multimodal AI-based 

data analysis pipeline across a larger sample of hospitalized COVID-19 patients in the 
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future and analyze follow-up data across more time points, further enhancing the 

statistical power of the outcomes. We also plan to explore the fusion of the available 

clinical and laboratory related data with RNA-sequencing (transcriptomic) data and/or 

imaging-based features to shed light into the genetic mechanisms and underlying 

associations of the existing risk prediction factors of COVID-19 for ICU admission and 

mortality. 
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Appendix 

Supplementary Table 1. Performance evaluation of the virtually generated data in pSS for the 

UTE, STE and supervised RBF-based ANNs. 

 

Feature 
Real Unsupervised tree ensembles Supervised tree ensembles Supervised RBF 

Mean Mean GOF KL Mean GOF KL Mean GOF KL 

Sex 0.95 0.94 0.01 1.13E-10 0.95 0.01 3.25E-11 0.94 0.01 5.43E-11 

Dry_mouth 0.95 0.96 0.01 2.16E-10 0.96 0.01 8.50E-11 0.91 0.03 1.23E-09 

Dry_eyes 0.92 0.93 0.00 8.56E-12 0.92 0.01 4.53E-11 0.91 0.01 1.73E-10 

Abnormal_Shirmer 0.86 0.87 0.01 2.35E-10 0.86 0.00 5.87E-14 0.86 0.00 1.53E-11 

ANA 0.86 0.86 0.00 3.13E-13 0.87 0.01 1.98E-10 0.83 0.03 1.06E-09 

RF 0.64 0.66 0.02 3.98E-10 0.68 0.04 1.59E-09 0.67 0.03 7.79E-10 

Anti_Ro 0.73 0.71 0.02 3.42E-10 0.77 0.03 1.19E-09 0.70 0.03 1.06E-09 

Anti_La 0.40 0.36 0.04 2.12E-09 0.39 0.01 1.96E-10 0.37 0.03 1.24E-09 

FS_1st_biopsy 2.04 2.00 0.06 3.91E-04 1.99 0.05 3.91E-04 2.03 0.27 3.88E-04 

Tarpley 2.34 2.36 0.03 5.11E-09 2.33 0.02 3.81E-09 2.32 0.11 1.50E-07 

SGE 0.33 0.34 0.01 3.58E-10 0.35 0.02 9.85E-10 0.33 0.00 4.65E-14 

Raynaud 0.26 0.24 0.02 1.35E-09 0.25 0.02 7.44E-10 0.25 0.01 3.21E-10 

Ro_La 0.74 0.71 0.03 8.22E-10 0.76 0.02 4.16E-10 0.70 0.04 1.91E-09 

RF 0.63 0.61 0.02 3.44E-10 0.63 0.00 6.32E-12 0.64 0.00 2.00E-11 

Monoc_gammopathy 0.06 0.07 0.01 2.98E-09 0.07 0.01 3.50E-09 0.07 0.01 2.49E-09 

LOW_C4 0.41 0.40 0.01 2.22E-10 0.39 0.03 9.72E-10 0.34 0.07 6.74E-09 

Dyspareunia 0.06 0.07 0.01 1.10E-09 0.07 0.01 1.10E-09 0.06 0.01 1.67E-09 

Dry_skin 0.04 0.03 0.02 2.73E-08 0.02 0.02 4.17E-08 0.03 0.01 6.21E-09 

Dry_upper_resp 0.13 0.08 0.05 2.44E-08 0.10 0.03 9.07E-09 0.11 0.02 3.82E-09 

Abnormal_Schirmer 0.89 0.89 0.00 1.25E-11 0.85 0.03 1.31E-09 0.87 0.02 3.43E-10 

Abnormal_BUT 0.87 0.84 0.06 6.94E-06 0.84 0.04 6.93E-06 0.77 0.45 7.32E-06 

Chronic_Fatigue 0.22 0.21 0.01 1.19E-10 0.19 0.03 2.44E-09 0.24 0.02 1.18E-09 

Arthralgias_myalgias 0.66 0.68 0.02 2.46E-10 0.69 0.03 7.08E-10 0.65 0.01 6.75E-11 

Arthritis 0.11 0.15 0.04 1.22E-08 0.13 0.02 3.62E-09 0.14 0.03 6.15E-09 

Raynaud_phen 0.28 0.27 0.01 3.82E-10 0.27 0.01 1.86E-10 0.26 0.02 9.95E-10 

Palpable_purpura 0.12 0.13 0.00 9.48E-11 0.12 0.00 1.77E-11 0.14 0.02 2.39E-09 

Vasculitic_ulcer 0.01 0.00 0.01 8.23E-08 0.01 0.00 8.35E-12 0.02 0.01 7.94E-08 

Other_rash 0.12 0.10 0.02 4.86E-09 0.11 0.01 1.35E-09 0.13 0.00 1.77E-10 

Myositis 0.01 0.01 0.00 6.91E-09 0.01 0.00 2.49E-09 0.02 0.01 7.28E-08 

PNS_entrapment 0.04 0.04 0.00 1.02E-10 0.07 0.02 2.08E-08 0.07 0.03 3.15E-08 

PNS_vasculitic 0.02 0.02 0.00 8.10E-10 0.02 0.00 1.77E-09 0.04 0.02 3.98E-08 

CNS_involvmt 0.01 0.01 0.00 4.53E-09 0.01 0.00 2.49E-08 0.02 0.01 7.94E-08 

Psychiatric 0.03 0.02 0.02 5.09E-08 0.01 0.02 1.12E-07 0.02 0.01 2.07E-08 

Lymphadenopathy 0.11 0.11 0.00 6.42E-11 0.11 0.00 5.33E-11 0.12 0.01 8.11E-10 

Splenomegaly 0.01 0.01 0.00 1.89E-10 0.01 0.00 3.23E-09 0.02 0.01 2.69E-08 

Liver_cholangitis 0.03 0.03 0.00 1.00E-11 0.03 0.01 3.17E-09 0.04 0.01 1.62E-08 

Liver_hepatitis 0.01 0.01 0.00 1.28E-08 0.02 0.01 6.33E-08 0.03 0.02 1.99E-07 

Liver_PBC 0.01 0.01 0.00 3.23E-09 0.00 0.01 2.47E-07 0.04 0.02 9.82E-08 

Lung_interstitial_Type 0.04 0.02 0.02 3.01E-08 0.03 0.01 1.85E-08 0.04 0.00 6.49E-10 

Lung_bronchocentric 0.03 0.02 0.01 7.93E-09 0.03 0.00 1.30E-09 0.04 0.01 1.23E-08 

Lung_pleurisy 0.01 0.02 0.01 3.59E-08 0.02 0.01 2.52E-08 0.04 0.03 1.35E-07 

nephrocalcinosis 0.01 0.01 0.00 1.09E-09 0.02 0.01 6.44E-08 0.03 0.02 1.41E-07 

Urine_gravity 1014.76 1017.1 0.04 5.65E-01 1017.54 0.04 5.65E-01 1017.3 0.20 5.65E-01 

Renal_disease 0.02 0.00 0.02 2.62E-05 0.00 0.02 2.62E-05 0.00 0.02 2.62E-05 

Urine_pH 5.91 5.90 0.06 8.74E-09 5.88 0.04 5.86E-09 5.90 0.29 6.80E-07 

Kidney_infiltrates 0.01 0.00 0.01 2.53E-05 0.00 0.01 2.53E-05 0.00 0.01 2.53E-05 

Kidney_GN_biopsy 0.02 0.01 0.01 2.03E-08 0.01 0.01 2.88E-08 0.03 0.01 1.93E-08 

Heart_valvular 0.02 0.04 0.01 2.25E-08 0.04 0.02 4.28E-08 0.05 0.02 5.55E-08 

Heart_pericardial 0.00 0.01 0.01 6.22E-08 0.02 0.01 1.30E-07 0.03 0.02 2.47E-07 

Heart_CMR 0.00 0.00 0.00 1.19E-07 0.01 0.00 6.24E-09 0.02 0.02 2.22E-07 

Esophagus_GER 0.03 0.04 0.01 4.22E-09 0.05 0.02 2.18E-08 0.06 0.03 4.17E-08 

WB 0.02 0.01 0.01 3.99E-08 0.02 0.00 2.00E-10 0.03 0.01 1.34E-08 

wbc_baseline 5610.23 5603.2 0.03 5.83E-06 5450.39 0.06 5.83E-06 5659.8 0.16 5.83E-06 

Neutro_Number 3318.41 3264.6 0.06 6.38E-01 3121.11 0.08 6.38E-01 3366.7 0.20 6.38E-01 

Lympho_Number 1695.40 1771.4 0.07 4.47E-01 1695.95 0.06 8.71E-01 1759.6 0.14 8.71E-01 

PLT 247874 243238 0.07 -1.1E-16 242138 0.06 -7.30E-17 322854 0.31 -5.04E-17 

HGB 13.26 13.38 0.04 6.66E-04 13.38 0.04 6.23E-04 14.09 0.27 9.09E-04 

ESR 32.37 35.67 0.09 1.40E-03 33.93 0.09 1.36E-03 37.37 0.17 1.91E-03 

CRP 0.14 0.13 0.01 7.29E-10 0.10 0.04 1.30E-08 0.13 0.02 2.61E-09 

g_globulins 0.74 0.76 0.04 5.67E-08 0.78 0.04 1.13E-09 0.76 0.07 1.73E-07 

Anti_TPO 0.14 0.13 0.01 1.20E-09 0.15 0.01 6.65E-10 0.14 0.00 1.08E-11 

C3 111.57 121.09 0.04 1.48E-01 121.57 0.05 4.18E-02 145.27 0.31 1.17E-02 

C4 21.66 22.63 0.05 5.06E-03 22.59 0.05 6.01E-03 25.08 0.22 1.21E-02 

Cryo 0.72 0.53 0.04 7.40E-02 0.54 0.03 7.44E-02 2.34 0.40 7.50E-02 

Lymphoma 0.17 0.16 0.01 1.82E-10 0.16 0.01 1.82E-10 0.15 0.02 1.13E-09 



411 

 

Supplementary Table 2. A summary of the potentially matched terminologies between OCVD 

and UHEI_LURIC. 

Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Triglycerides in very small VLDL; mmol/l triglycerides 0.741 

Calcium channel blocker agent calcium 0.605 

Cholesterol esters to total lipids ratio in 

chylomicrons and extremely large VLDL; % 
cholesterol ester 0.711 

Heart failure NYHA heart failure classification 0.734 

Diastolic KV blood pressure 3rd measurement diastolic blood pressure measurement 3 0.847 

Carotid compliance oral contraception treatment 0.640 

Waist circumference; cm waist circumference 0.910 

Date of laboratory sample date of … 0.699 

Triglycerides in very large HDL; mmol/l triglycerides 0.744 

Myocardial infarction myocardial infarction 0.968 

Free cholesterol in IDL; mmol/l free cholesterol 0.807 

Diabetes; father, I1, 218, 1 = no, 2 = yes, 9 = 

mother is missing from family 
Diabetes 0.701 

Mother: coronary angioplasty, 1 = no, 2 = yes coronary angioplasty 0.698 

Length of breastfeeding no of fathers siblings 0.672 

Interleukin-18 interleukin 1 0.877 

Total cholesterol to total lipids ratio in small 

LDL; % 
total cholesterol 0.723 

Interleukin-15 interleukin 1 0.877 

Triglycerides to total lipids ratio in very large 

VLDL; % 
triglycerides 0.711 

Diabetes type 2 Diabetes 0.844 

Diuretic agent diuretic 0.792 

Diabetes, type 1 Diabetes 0.833 

Triglycerides in small LDL; mmol/l triglycerides 0.759 

ACE inhibitors, 0=no, 1=yes ACE 0.704 

calcium channel, voltage-dependent, beta 2 calcium 0.722 

Height height 0.889 

Vitamin C mg, F6.2,1275 vitamin C 0.746 

Total cholesterol average, F5.2,1154 total cholesterol 0.774 

Father: myocardial infarction, 1 = no, 2 = yes myocardial infarction 0.692 

Actual systolic blood pressure, 3rd 

measurement 
systolic blood pressure measurement 3 0.762 

Cholesterol esters in small HDL; mmol/l cholesterol ester 0.784 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Phospholipids in medium VLDL; mmol/l phospholipid 0.604 

Interleukin-4 interleukin 4 0.897 

Triglysceride, triglycerides 0.830 

Magnesium mg magnesium 0.852 

Sodium intake residual value from regression 

model standardized by energy in 2007 
sodium 0.632 

Free testosterone counted by Nanjee-

Wheelerin formula, pmol/L:, ftn07= 
Testosteron 0.601 

Free testosterone counted by Vermeulen´ 

formula; pmol/L: 
Testosteron 0.613 

HDL-cholesterol HDL-cholesterol 1.000 

Sodium mg, F7.2,1463 sodium 0.694 

Sodium intake residual value from regression 

model standardized by energy in 1986 
sodium 0.632 

Triglycerides in large HDL; mmol/l triglycerides 0.759 

Interleukin-6 interleukin 6 0.897 

Calcium mg, F8.2, 590 calcium 0.631 

Father: coronary angioplasty, I1,, 1 = no, 2 = 

yes 
coronary angioplasty 0.658 

Body mass index; weight/ body mass index 0.839 

Total cholesterol to total lipids ratio in very 

large HDL; % 
total cholesterol 0.715 

Left main body stenosis abdominal obesity 0.610 

Diastolic KV blood pressure, 1st 

measurement 
diastolic blood pressure measurement 1 0.790 

Cholesterol esters in chylomicrons and 

extremely large VLDL; mmol/l 
cholesterol ester 0.727 

Phospholipids in small HDL; mmol/l phospholipid 0.610 

Triglycerides to total lipids ratio in small 

VLDL; % 
triglycerides 0.718 

Potassium mg, F4.2,1335 potassium 0.746 

LDL cholesterol, direct; mmol/l LDL cholesterol 0.828 

Iron mg/1000kcal iron 0.646 

Free cholesterol in very large VLDL; mmol/l free cholesterol 0.762 

Apolipoprotein A-1 apolipoprotein A-I 0.926 

usage of wine or an equivalent in the past 

week 
age 0.688 

Creatinine value upon hospital admission creatinin 0.696 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Potassium mg potassium 0.852 

Triglycerides to total lipids ratio in medium 

LDL; % 
triglycerides 0.718 

Total cholesterol in small HDL; mmol/l total cholesterol 0.767 

Other other med. 0.733 

height height 1.000 

total cholesterol score, 0 = total cholesterol at 

least 5.172 or under medication for 

hypercholesterolemia, 1 = total cholesterol 

under 5.172 and not under medication for 

hypercholesterolemia 

total cholesterol 0.696 

Cholesterol esters to total lipids ratio in large 

HDL; % 
cholesterol ester 0.742 

Lipoprotein lipoprotein 0.939 

Total cholesterol in very small VLDL; mmol/l total cholesterol 0.747 

Myocardial infarction, without ST-evelation myocardial infarction 0.806 

Cause of death Cause of death 1.000 

Glucose glucose 1h post oGT 0.724 

Body mass index weight/ body mass index 0.847 

Diabetes treated with insulin, 0 = no, 1 = yes Diabetes 0.725 

Total cholesterol total cholesterol 0.940 

blood pressure score, 0 = adult systolic at 

least 120 or diastolic at least 80 /, child 

systolic or diastolic over 90 percentile, 1 = 

adult systolic under 120 and diastolic under80 

/, child systolic and diastolic under 90 

percentile 

blood pressure 0.687 

Mother: myocardial infarction, I1,, 1 = no, 2 = 

yes 
myocardial infarction 0.645 

Heart rate on arrival, only for MI dataset 

patient 
heart rate 0.693 

Cholesterol esters in large HDL; mmol/l cholesterol ester 0.784 

CAD_SCA & lt; 1h CAD 0.729 

Waist circumference waist circumference 0.965 

Blood pressure measurers code, I2, 768, 10 = 

Helsinki, 20 = Turku, 30 = Tampere, 40 = 

Kuopio, 50 = Oulu 

blood pressure 0.685 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Father: myocardial infarction year of 

diagnosis yy, I2, 301, 98 = ei ole todettu, 99 = 

isä puuttuu perheestä 

myocardial infarction 0.604 

LDL-cholesterol LDL-cholesterol 1.000 

Diabetes type 1 Diabetes 0.844 

Free cholesterol to total lipids ratio in very 

large HDL; % 
free cholesterol 0.731 

Calcium mg/1000kcal calcium 0.641 

Number of myocardial infarctions myocardial infarction 0.735 

Copper mg copper 0.796 

Comments brought up during the ultrasound 

test 
Endogenous thrombin potential 0.605 

Atrial fibrillation, 0 = no, 1 = yes atrial fibrillation 0.686 

Blood pressure measurers code, I2, 959 blood pressure 0.757 

Free cholesterol to total lipids ratio in large 

VLDL; % 
free cholesterol 0.737 

Arrhythmia arrhythmia 0.933 

Hip circumference; cm hip circumference 0.901 

Zinc mg, F6.3, 214 zinc 0.639 

Triglycerides in medium HDL; mmol/l triglycerides 0.755 

Protein g protein C 0.852 

Interleukin-13 interleukin 1 0.877 

For menopause, years? menopause 0.735 

Diastolic Blood Pressure diastolic blood pressure measurement 1 0.809 

Total cholesterol in HDL3; mmol/l total cholesterol 0.788 

Hemoglobin ; g/l hemoglobin 0.821 

usage of cider etc in the past week age 0.695 

Free cholesterol to total lipids ratio in small 

HDL; % 
free cholesterol 0.738 

Father: myocardial infarction, I1, 191, 1 = no, 

2 = yes 
myocardial infarction 0.667 

Copper mg, F6.2,1369 copper 0.694 

Father: myocardial infarction, I1, 300, 1 = no, 

2 = yes, 9 = father is missing from family 
myocardial infarction 0.617 

Free cholesterol in medium VLDL; mmol/l free cholesterol 0.774 

Free cholesterol to total lipids ratio in small 

VLDL; % 
free cholesterol 0.737 

Diabetes -  Year when first time diagnosed Diabetes 0.730 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Weight of mother in 1980; kg weight 0.671 

Phospholipids in small LDL; mmol/l phospholipid 0.610 

Age of starting regular sports training age at first use of insulin 0.689 

Total cholesterol 1 measurement; mmol/l total cholesterol 0.763 

Cholesterol mg, F7.2, 530 cholesterol 0.770 

Date of blood sampling date of blood sampling 0.970 

Internal organs and blood irregular antibodies 0.622 

Body mass index at initial measurements body mass index 0.764 

Free cholesterol to total lipids ratio in medium 

VLDL; % 
free cholesterol 0.735 

Heart rate heart rate 0.933 

GRACE-score for 2015-2016 subpopulation ACE 0.692 

Height of father; cm. Average from values 

collected between 1980 and 1989. 
height 0.634 

Systolic Blood Pressure systolic lv pressure 0.843 

Chronic obstructory pulmonary disease mean systolic blood pressure 0.662 

Magnesium mg, F8.2, 598 magnesium 0.746 

Hemoglobin, F3.0,1201 hemoglobin 0.776 

Sodium intake residual value from regression 

model standardized by energy in 2001 
sodium 0.632 

Total cholesterol revised average; mmol/l, 

F5.2, 862 
total cholesterol 0.729 

Myocardial infarction, strict myocardial infarction 0.881 

Systolic blood pressure, 3rd measurement systolic blood pressure measurement 3 0.796 

The date of the ICD procedure. No FC3! date of 0.609 

Miscarriage or abortion, 1 = no , 2 = yes miscarriage 0.718 

Heart rate on arrival, GRACEdataset patient 

only 
heart rate 0.696 

Cholesterol esters to total lipids ratio in 

medium HDL; % 
cholesterol ester 0.741 

Creatinine in different unit. creatinin 0.722 

Free cholesterol in large VLDL; mmol/l free cholesterol 0.777 

Smoking during the past week or during the 

week before attempting to quit, I3, 803, 
smoking 0.643 

Cholesterol esters in very small VLDL; 

mmol/l 
cholesterol ester 0.766 

Hip circumference hip circumference 0.961 

triglyceride triglycerides 0.974 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Vitamin C mg, F6.2, 524 vitamin C 0.746 

Free cholesterol to total lipids ratio in small 

LDL; % 
free cholesterol 0.738 

Apolipoprotein E-113 genotype apolipoprotein E 0.818 

LDL cholesterol; mmol/l NOTE! Estimated 

LDL cholesterol. Ldlkol01 values has not 

been calculated for those participants with 

trigly01 

LDL cholesterol 0.704 

Systolic blood pressure 3rd measurement systolic blood pressure measurement 3 0.803 

Cholesterol esters to total lipids ratio in large 

VLDL; % 
cholesterol ester 0.741 

Total cholesterol to total lipids ratio in very 

large VLDL; % 
total cholesterol 0.714 

Acute Coronary Syndrome acute coronary syndrome 0.830 

Heart rate/min 2nd measurement heart rate 0.733 

Waist/hip circumference ratio hip circumference 0.803 

Copper mg, F6.2, 624 copper 0.694 

Heart rate/min 1st measurement heart rate 0.733 

Triglycerides in IDL; mmol/l triglycerides 0.784 

Triglycerides to total lipids ratio in small 

LDL; % 
triglycerides 0.719 

Weight of the participant; kg weight 0.669 

Vitamin C mg vitamin C 0.852 

Triglycerides in medium LDL; mmol/l triglycerides 0.755 

Erythrocytes; E12/l erythrocytes 0.832 

Coronary angiopasty coronary angioplasty 0.949 

lipoprotein lipase precursor, Ter*474S lipoprotein 0.763 

diabetes diet , 0 = no, 1 = yes Diabetes 0.700 

Age at DEATH age 0.611 

Free cholesterol in small LDL; mmol/l free cholesterol 0.781 

Free cholesterol to total lipids ratio in very 

small VLDL; % 
free cholesterol 0.729 

Triglycerides in large LDL; mmol/l triglycerides 0.759 

Triglyceride triglycerides 0.921 

Total cholesterol to total lipids ratio in IDL; 

% 
total cholesterol 0.735 

Total cholesterol to total lipids ratio in large 

LDL; % 
total cholesterol 0.723 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Iron mg, F6.2, 618 iron 0.639 

Triglycerides in small VLDL; mmol/l triglycerides 0.755 

Body mass indexi body mass index 0.936 

Serum testosterone Testosteron 0.738 

Total cholesterol in very large VLDL; mmol/l total cholesterol 0.747 

Potassium mg, F6.3, 584 potassium 0.746 

age in 2011 age 0.758 

Weight at birth; g weight 0.704 

Diabetes, type 2 Diabetes 0.833 

Cholesterol esters to total lipids ratio in 

medium LDL; % 
cholesterol ester 0.741 

Height of the participant; cm height 0.669 

HDL cholesterol 2 meas.; mmol/l HDL cholesterol 0.828 

Weight of mother in 1989; kg weight 0.671 

Total cholesterol in medium VLDL; mmol/l total cholesterol 0.760 

Interleukin 1-beta interleukin 1 0.863 

MCV; fl MCV 0.810 

Creatinine; µmol/l Creatinin [µmol/L] 0.889 

Weight weight 0.889 

Total cholesterol to total lipids ratio in 

chylomicrons and extremely large VLDL; % 
total cholesterol 0.690 

lipoprotein, Lp lipoprotein 0.911 

Total cholesterol 2 measurement; mmol/l total cholesterol 0.763 

Fibrinogen, gamma chain fibrinogen 0.764 

Cholesterol esters in medium LDL; mmol/l cholesterol ester 0.780 

Free cholesterol in very large HDL; mmol/l free cholesterol 0.765 

Inducible T-cell co-stimulator precursor mean diastolic blood pressure 0.630 

Zinc mg, F6.2, 636 zinc 0.639 

Total cholestrerol total cholesterol 0.902 

blood pressure score, 0 = systolic at least 120 

or diastolic at least 80 or under medication for 

hypertension, 1 = systolic under 120 and 

diastolic under 80 and not under medication 

for hypertension 

blood pressure 0.690 

Lp LpPLA2 activity 0.711 

Triglycerides to total lipids ratio in small 

HDL; % 
triglycerides 0.719 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Mother: coronary angioplasty, I1,, 1 = no, 2 = 

yes 
coronary angioplasty 0.683 

IDL-cholesterol HDL-cholesterol 0.956 

Triglycerides in very large VLDL; mmol/l triglycerides 0.741 

Triglycerides to total lipids ratio in IDL; % triglycerides 0.730 

1st medically diagnosed permanent injury or 

disability 
systolic blood pressure measurement 1 0.610 

cholesterol score, 0 = adult total cholesterol at 

least 5.17 /, child total cholesterol at least 

4.40, 1 = adult total cholesterol under 5.17 /, 

child total cholesterol under 4.40 

cholesterol 0.687 

Cholesterol esters in medium HDL; mmol/l cholesterol ester 0.780 

weight weight 1.000 

Cholesterol esters in IDL; mmol/l cholesterol ester 0.809 

HDL cholesterol; mmol/l. HDL cholesterol 0.875 

Weight of mother in 1986; kg weight 0.671 

Date of installation of the ICD date of 0.684 

Phospholipids in medium LDL; mmol/l phospholipid 0.607 

Date of testing date of 0.752 

Systolic blood pressure, 2nd measurement systolic blood pressure measurement 2 0.796 

Free cholesterol in small VLDL; mmol/l free cholesterol 0.777 

date of birth date of 0.846 

Total cholesterol to total lipids ratio in large 

VLDL; % 
total cholesterol 0.721 

Triglycerides to total lipids ratio in 

chylomicrons and extremely large VLDL; % 
triglycerides 0.692 

Iron mg, F6.3, 198 iron 0.639 

Sodium mg, F8.2, 722 sodium 0.694 

Smoking, 0=no, 1=yes. This variable should 

be used for contemporary smoking. 
smoking 0.645 

Fasting fasting leptin 0.762 

Diabetes mellitus, tyype 1 Diabetes 0.769 

Free cholesterol in chylomicrons and 

extremely large VLDL; mmol/l 
free cholesterol 0.723 

Weight of father in 1980; kg weight 0.671 

Total cholesterol to total lipids ratio in 

medium VLDL; % 
total cholesterol 0.720 

HDL cholesterol; mmol/l HDL cholesterol 0.884 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Cholesterol esters in very large HDL; mmol/l cholesterol ester 0.768 

Zinc mg, F6.2,1381 zinc 0.639 

Total cholesterol to total lipids ratio in 

medium LDL; % 
total cholesterol 0.721 

Free testosterone counted by Sartorius 

formula; pmol/L:, ftz07= 
Testosteron 0.606 

body-mass index body mass index 0.896 

Weight of father in 1986; kg weight 0.671 

CAD that really contributed CAD 0.704 

Myocardial infarction, 0 = no, 1 = yes myocardial infarction 0.826 

Interleukin-8 interleukin 8 0.897 

Total cholesterol to total lipids ratio in large 

HDL; % 
total cholesterol 0.723 

HDL mediated cholesterol efflux capacity; % Cholesterol efflux capacity 0.696 

Spironolactone for use when returning home 

or switching to follow-up treatment 
iron 0.684 

Triglyserides triglycerides 0.807 

Cholesterol esters to total lipids ratio in small 

HDL;% 
cholesterol ester 0.744 

Magnesium mg,F6.2,1346 magnesium 0.751 

smoking score, 0 = currently smoking, 1 = 

never smoked or has quit or is on a break 
smoking 0.695 

Free cholesterol to total lipids ratio in 

chylomicrons and extremely large VLDL; % 
free cholesterol 0.707 

Chest pain in rest heparin test 0.752 

Total cholesterol in large HDL; mmol/l total cholesterol 0.767 

Free cholesterol to total lipids ratio in large 

HDL; % 
free cholesterol 0.738 

Weight of father in 1983; kg weight 0.671 

Free cholesterol to total lipids ratio in medium 

LDL; % 
free cholesterol 0.737 

Interleukin-17 interleukin 1 0.877 

Cholesterol esters in small VLDL; mmol/l cholesterol ester 0.780 

Mean glucose measurements oral glucose tolerance test 0.657 

Zinc mg zinc 0.726 

Heart rate/min 3rd measurement heart rate 0.733 

Weight of father in 1989; kg weight 0.671 

Apolipoprotein A-I; g/l apolipoprotein A-I 0.895 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Cholesterol mg, F6.2,1281 cholesterol 0.770 

Diastolic KV blood pressure 2nd 

measurement 
diastolic blood pressure measurement 2 0.847 

Diabetes; mother, I1, 217, 1 = no, 2 = yes, 9 = 

mother is missing from family 
Diabetes 0.701 

Blood pressure meters code, I2, 766 blood pressure 0.767 

Triglycerides in LDL; mmol/l triglycerides 0.784 

Systolic blood pressure, 1st measurement systolic blood pressure measurement 1 0.813 

Mitral valve disease valve disease 0.768 

Apolipoprotein E-219 promoottorigenotype apolipoprotein E 0.771 

Total cholesterol; mmol/l total cholesterol 0.840 

Fibrinogen, gamma chain , 0 = genotyping did 

not succeed, 1=T, 2=TC, 3=C, rs number: 

rs1800792 

fibrinogen 0.665 

Interleukin 1-beta, numeric interleukin 1 0.789 

Phospholipids in IDL; mmol/l phospholipid 0.633 

Apolipoprotein E, 0 = genotyping did not 

succeed, 1=G, 2=AG, 3=A 
apolipoprotein E 0.724 

Cholesterol mg cholesterol 0.874 

Diastolic KIV blood pressure 3rd 

measurement 
diastolic blood pressure measurement 3 0.841 

Mother: myocardial infarction, 1 = no, 2 = yes myocardial infarction 0.660 

Interleukin 1 beta , 1=G, 2=AG, 3=A interleukin 1 0.755 

Iron mg, F6.2,1363 iron 0.639 

Cholesterol esters in small LDL; mmol/l cholesterol ester 0.784 

Age 1986 age 0.639 

Cholesterol esters in medium VLDL; mmol/l cholesterol ester 0.777 

id number in study study number 0.620 

age in 1980 age 0.758 

Heart Rate heart rate 0.867 

Total cholesterol in small LDL; mmol/l total cholesterol 0.767 

Body mass index; kg/m2 body mass index 0.857 

Cholesterol esters to total lipids ratio in IDL; 

% 
cholesterol ester 0.754 

Beta blockers, 0=no, 1=yes beta blocker 0.704 

Phospholipids in medium HDL; mmol/l phospholipid 0.607 

Date of ultrasound test, according to blood 

pressure listing 
date of 0.652 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Body Mass Index body mass index 0.867 

usage of wine or an equivalent in the past 

week, I2, 
age 0.686 

usage of medium age 0.733 

Apo ApoA-IV 0.810 

Total cholesterol; mmol/l, NOTE! 

tutkno80=728: abnormally high total 

cholesterol value =10.2 mmol/l. Delete the 

value in question if needed as an outlier. 

total cholesterol 0.661 

Cholesterol esters in very large VLDL; 

mmol/l 
cholesterol ester 0.766 

Waist circumference average measurement; 

cm 
waist circumference 0.789 

Diabetes mellitus, tyype 2 Diabetes 0.769 

Father: myocardial infarction, I1,, 1 = no, 2 = 

yes 
myocardial infarction 0.677 

Insulin insulin treatment 0.737 

Calcium mg, F7.2,1339 calcium 0.631 

Actual systolic blood pressure, 1st 

measurement 
systolic blood pressure measurement 1 0.767 

Diabetes Diabetes 1.000 

Creatinine upn arrival or mean value from 

hospitalization or before hospitalization 
creatinin 0.662 

Free cholesterol to total lipids ratio in medium 

HDL; % 
free cholesterol 0.737 

Diastolic KIV blood pressure 2nd 

measurement 
diastolic blood pressure measurement 2 0.841 

Total cholesterol in very large HDL; mmol/l total cholesterol 0.750 

Date of angiography date of 0.724 

Diastolic KV blood pressure 1st measurement diastolic blood pressure measurement 1 0.796 

Total cholesterol 2nd measurement, 

F5.2,1129 
total cholesterol 0.747 

Iron mg iron 0.726 

Triglycerides to total lipids ratio in large 

LDL; % 
triglycerides 0.719 

Free testosterone counted by Nanjee-

Wheelerin formula, pmol/L:, ftn01= 
Testosteron 0.601 

Total cholesterol in large LDL; mmol/l total cholesterol 0.767 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Triglycerides to total lipids ratio in large 

VLDL; % 
triglycerides 0.718 

Cholesterol esters to total lipids ratio in very 

large HDL; % 
cholesterol ester 0.734 

HDL cholesterol. Same procedure as in 2001; 

mmol/l. , NOTE! In 2007 samples, limit of 

detection for HDL is 0.5. 

HDL cholesterol 0.712 

Magnesium mg, F7.3, 191 magnesium 0.746 

Free cholesterol to total lipids ratio in very 

large VLDL; % 
free cholesterol 0.729 

Total cholesterol in chylomicrons and 

extremely large VLDL; mmol/l 
total cholesterol 0.707 

MACE or PAD ACE 0.758 

Apolipoprotein B apolipoprotein B 0.958 

Phospholipids in large HDL; mmol/l phospholipid 0.610 

Digitalis, 0=no, 1=yes digitalis 0.751 

Systolic blood pressure 1st measurement systolic blood pressure measurement 1 0.821 

HDL cholesterol average.; mmol/l HDL cholesterol 0.823 

usage of spirits/liqueurs in the past week age 0.690 

Cholesterol esters to total lipids ratio in very 

small VLDL; % 
cholesterol ester 0.733 

Date of ultrasound testing date of 0.696 

, 0 = Total cholesterol at least 5.172 or 

medication for hypercholesterolemia , 1 = 

Total cholesterol less than 5.172 and no 

medication for hypercholesterolemia 

total cholesterol 0.639 

Calcium mg, F8.3, 183 calcium 0.631 

Free cholesterol in small HDL; mmol/l free cholesterol 0.781 

Free cholesterol in medium HDL; mmol/l free cholesterol 0.777 

notice cotinine 0.722 

HDL-kolesteroli HDL-cholesterol 0.911 

Total cholesterol to total lipids ratio in small 

HDL; % 
total cholesterol 0.723 

smoking score, 0 = adult currently smoking /, 

child smoked at least one cigarette, 1 = adult 

never smoked or has quit or is on a break / , 

child never smoked 

smoking 0.682 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Cholesterol esters to total lipids ratio in small 

VLDL; % 
cholesterol ester 0.741 

Free cholesterol in very small VLDL; mmol/l free cholesterol 0.762 

Smoking at age 18-24. Has the participant 

smoked daily at least in some point of his/her 

youth age 

smoking 0.639 

Triglycerides in medium VLDL; mmol/l triglycerides 0.752 

Triglycerides to total lipids ratio in medium 

VLDL; % 
triglycerides 0.716 

Total cholesterol in large VLDL; mmol/l total cholesterol 0.763 

Phospholipids in small VLDL; mmol/l phospholipid 0.607 

Myocardial infarction, with ST-evelation myocardial infarction 0.817 

Free testosterone counted by Sartorius 

formula; pmol/L:, ftz01= 
Testosteron 0.606 

Cholesterol esters to total lipids ratio in 

medium VLDL; % 
cholesterol ester 0.739 

Apolipoprotein B; g/l apolipoprotein B 0.884 

Total cholesterol in medium LDL; mmol/l total cholesterol 0.763 

sodium score, 0 = sodium proportion of whole 

energy intake at least 1.15 mg/ Kcal, 1 = 

sodium proportion of whole energy intake 

under 1.15 mg/ Kcal 

sodium 0.680 

Weight of mother in 1983; kg weight 0.671 

Cholesterol esters to total lipids ratio in very 

large VLDL; % 
cholesterol ester 0.733 

age in 2007 age 0.758 

Free cholesterol in large HDL; mmol/l free cholesterol 0.781 

Atrial fibrillation atrial fibrillation 0.835 

Total cholesterol 1st measurement, F5.2,1124 total cholesterol 0.747 

Cardiomyopathy, 0=no, 1=yes cardiomyopathy 0.803 

Blood pressure meters code, F2.0, 957 blood pressure 0.760 

LDL cholesterol, direct LDL cholesterol 0.884 

Creatinine. Same procedure as in 2001; 

µmol/l 
creatinin 0.689 

proprotein convertase subtilisin/kexin type 9, 

L46R 
protein C 0.682 

Nitric oxide synthase 1 nitric oxide 0.798 

zinc finger protein 652 zinc 0.725 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Systolic blood pressure 2nd measurement systolic blood pressure measurement 2 0.803 

smoking score, 0 = current smoking, 1 = 

never smoked or has quit or is on a break 
smoking 0.695 

usage of spirits/liqueurs in the past week, I2,, age 0.688 

Smoking at age 12-18. Has the participant 

smoked daily at least in some point of his/her 

youth age 

smoking 0.639 

GRACE-score for 2015-2016 subpopulation 

with missing values imputed 
ACE 0.681 

Triglycerides to total lipids ratio in very large 

HDL; % 
triglycerides 0.712 

Total cholesterol in VLDL; mmol/l total cholesterol 0.788 

Triglycerides to total lipids ratio in large 

HDL; % 
triglycerides 0.719 

Triglycerides in VLDL; mmol/l triglycerides 0.779 

Actual systolic blood pressure, 2nd 

measurement 
systolic blood pressure measurement 2 0.762 

Myocardial infarction, unclassifiable myocardial infarction 0.831 

Total cholesterol average; mmol/l total cholesterol 0.788 

Mother: myocardial infarction, I1, 190, 1 = 

no, 2 = yes 
myocardial infarction 0.635 

Free cholesterol to total lipids ratio in large 

LDL; % 
free cholesterol 0.738 

Interleukin-9 interleukin 9 0.897 

Heart rate mean value, from the status form heart rate 0.703 

Hip circumference average measurement; cm hip circumference 0.777 

HDL cholesterol 1 meas.; mmol/l HDL cholesterol 0.828 

Lpa = lipoprotein lipoprotein 0.807 

Body mass index at final measurements body mass index 0.771 

Heart rate upon arrival heart rate 0.764 

apolipoprotein E precursor apolipoprotein E 0.872 

Homocysteine; µmol/l homocysteine 0.822 

Cholesterol esters in large VLDL; mmol/l cholesterol ester 0.780 

Age age 0.778 

Calcium mg calcium 0.736 

Beta Blocker used when returning home or 

switching to follow-up treatment 
beta blocker 0.657 

Interleukin-16 interleukin 1 0.877 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Total cholesterol in medium HDL; mmol/l total cholesterol 0.763 

Phospholipids in large LDL; mmol/l phospholipid 0.610 

Creatinine; mg/dl Creatinin [mg/dL] 0.882 

Interleukin-10 interleukin 10 0.905 

Total cholesterol in HDL2; mmol/l total cholesterol 0.788 

Total cholesterol. correction factor 1.000; 

mmol/l 
total cholesterol 0.733 

Triglycerides to total lipids ratio in very small 

VLDL; % 
triglycerides 0.711 

Diabetes diagnosed by doctor, I1, 134, 1 = no, 

2 = yes 
Diabetes 0.716 

usage of cider etc in the past week, I2,, age 0.691 

cotinine in 1980; ng/ml cotinine 0.783 

The date of the exercise test date of 0.628 

Interleukin-2 interleukin 2 0.897 

Father: coronary angioplasty, 1 = no, 2 = yes coronary angioplasty 0.673 

Cholesterol esters in large LDL; mmol/l cholesterol ester 0.784 

Triglycerides in HDL; mmol/l triglycerides 0.784 

Total cholesterol to total lipids ratio in very 

small VLDL; % 
total cholesterol 0.714 

Triglycerides in small HDL; mmol/l triglycerides 0.759 

Diastolic KIV blood pressure 1st 

measurement 
diastolic blood pressure measurement 1 0.790 

MCH; pg MCH 0.810 

Triglycerides in chylomicrons and extremely 

large VLDL;mmol/l 
triglycerides 0.707 

cholesterol medication when returning home 

or switching to follow-up treatment 
cholesterol 0.714 

Free cholesterol in large LDL; mmol/l free cholesterol 0.781 

Myocardial infarction - Year when first time 

diagnosed 
myocardial infarction 0.774 

Total cholesterol in HDL; mmol/l total cholesterol 0.793 

GRACE score for MI-ECG subpopulation ACE 0.694 

Total cholesterol to total lipids ratio in 

medium HDL; % 
total cholesterol 0.721 

other other med. 0.833 

Type of physical exercise Cholesterol efflux capacity 0.603 
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Terminologies from TAUH Terminologies from UHEI_LURIC Score 

Heart rate mean value when sitting, from the 

status form; Heart rate/min 
heart rate 0.675 

ACE inhibitor or ATR blocker used when 

returning home or switching to follow-up care 
ACE 0.679 

Free cholesterol in medium LDL; mmol/l free cholesterol 0.777 

Sodium mg sodium 0.796 

Triglycerides to total lipids ratio in medium 

HDL; % 
triglycerides 0.718 

Hematocrit; Osuus hematocrit 0.810 

usage of strong age 0.733 

Total cholesterol in LDL; mmol/l total cholesterol 0.793 

Cholesterol esters to total lipids ratio in large 

LDL; % 
cholesterol ester 0.742 

Total cholesterol in IDL; mmol/l total cholesterol 0.793 

Free cholesterol to total lipids ratio in IDL; % free cholesterol 0.750 

Apolipoprotein E apolipoprotein E 0.958 

Phospholipids in large VLDL; mmol/l phospholipid 0.607 

Calcium mg. DO NOT USE. calcium 0.623 

Smoking during the past week or during the 

week before attempting to quit, I3, 666, 
smoking 0.643 

Copper mg, F5.3, 204 copper 0.694 

Cholesterol esters to total lipids ratio in small 

LDL; % 
cholesterol ester 0.742 

Total cholesterol to total lipids ratio in small 

VLDL; % 
total cholesterol 0.721 

Height at birth; cm, height 0.694 

Triglycerides in large VLDL; mmol/l triglycerides 0.755 

Height of mother; cm. Average from values 

collected between 1980 and 1989. 
height 0.634 

Total cholesterol in small VLDL; mmol/l total cholesterol 0.763 

 
Supplementary Table 3. A summary of the potentially matched terminologies between TAUH 

and UVA using the proposed approach. 

Terminologies from OCVD Terminologies from OMD Score 

Other chronic disease chronic disease 0.859 

How many hours spends on moderately heavy yard 

and housework in a month, on average 

Pain disappear, remain when 

standing or walking slowly 
0.622 
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Terminologies from OCVD Terminologies from OMD Score 

HDL cholesterol. Same procedure as in 2001; 

mmol/l. , NOTE! In 2007 samples, limit of 

detection for HDL is 0.5. 

HDL cholesterol 0.712 

Triglycerides in very small VLDL; mmol/l triglycerides 0.741 

Depression Depression found 0.875 

medication for hypercholesterolemia, 0 = other 

cholesterol lowering medication, 1 = statin, 2 = 

statin and other cholesterol lowering medication 

medication 0.690 

Reason for termination, difficulty in breathing 
Mean cellular hemoglobin 

concentration of erythrocytes 
0.663 

Total cholesterol to total lipids ratio in medium 

LDL; % 
Total cholesterol 0.768 

Heart failure heart failure 0.822 

Weight of father in 1986; kg Weight 0.738 

Total cholesterol in chylomicrons and extremely 

large VLDL; mmol/l 
Total cholesterol 0.753 

Apolipoprotein B Lipoprotein 0.761 

Age-adjusted expected maximum HR Age 0.698 

Age of youngest child in the family, I2, 93 Age 0.690 

Total cholesterol to total lipids ratio in large HDL; 

% 
Total cholesterol 0.770 

Age of starting habitual smoking Age 0.698 

C-reactive protein gene C-reactive protein 0.928 

HDL cholesterol average.; mmol/l HDL cholesterol 0.823 

Marital status since year ?, I4,, marital status 0.774 

Date of laboratory sample date 0.623 

Glucose; mmol/l glucose 0.752 

Weight of mother in 1980; kg Weight 0.738 

C-reactive protein, C-reactive protein 0.982 

The death was later performed in cardiac surgery 
When complaints for the first time 

occurred in the life 
0.620 

Left side, technical level of angiography 
almost never, things develop 

according to my ideas 
0.657 

Triglyserides triglycerides 0.807 

Age of starting regular sports training Age 0.692 

Size, LAD DG I size 0.655 

Glucose g, F5.2,1579 glucose 0.719 

Total cholesterol 1 measurement; mmol/l Total cholesterol 0.812 
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Terminologies from OCVD Terminologies from OMD Score 

Triglycerides in very large HDL; mmol/l triglycerides 0.744 

, 0 = Total cholesterol at least 5.172 or medication 

for hypercholesterolemia , 1 = Total cholesterol less 

than 5.172 and no medication for 

hypercholesterolemia 

Total cholesterol 0.643 

Date of ultrasound testing date 0.622 

C-reactive protein C-reactive protein 1.000 

Date of blood sampling date 0.629 

Myocardial infarction   myocardial infarction 0.857 

Heart rate heart rate 0.933 

Mothers weight before possible current pregnancy 
Mean cellular hemoglobin 

concentration of erythrocytes 
0.653 

Age of youngest child in the family, I2, 49 Age 0.690 

Height of father; cm. Average from values 

collected between 1980 and 1989. 
height 0.634 

Does the participant attempt to select low salt 

products 

When complaints for the first time 

occurred in the life 
0.627 

Size, RCA RPL size 0.660 

Size, LCx LOM II size 0.646 

Systolic Blood Pressure Target systolic blood pressure 0.659 

Age when first trying alcohol, I2, 810, 99 = has 

never tried 
Age 0.683 

How many hours spends on light yard and 

housework in a month, on average 

Pain disappear, remain when 

standing or walking slowly 
0.656 

Index of physical activity 1986. physical activity 0.756 

Fathers daily consumption of whole milk 
When complaints for the first time 

occurred in the life 
0.623 

How many hours spends daily working on the 

computer 

I rarely count that happens to me 

something good 
0.655 

Total cholesterol revised average; mmol/l, F5.2, 

862 
Total cholesterol 0.776 

Age when first trying smoking, I2, 780, 99 = has 

never smoked 
Age 0.683 

Total cholesterol in large HDL; mmol/l Total cholesterol in mg/dl 0.853 

Total cholesterol to total lipids ratio in small HDL; 

% 
Total cholesterol 0.770 

Leukocytes; E9/l leukocytes 0.821 

Myocardial infarction, strict Myocardial infarction, first time 0.754 
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Terminologies from OCVD Terminologies from OMD Score 

Age of oldest child in the family, I2, 51 Age 0.691 

Total cholesterol to total lipids ratio in small LDL; 

% 
Total cholesterol 0.770 

Medication, I1, 836, 1 = has consumed drugs, 2 = 

has not consumed drugs 
medication 0.676 

Triglycerides in medium VLDL; mmol/l triglycerides 0.752 

Triglycerides to total lipids ratio in medium VLDL; 

% 
triglycerides 0.716 

Total cholesterol in large VLDL; mmol/l Total cholesterol 0.812 

Longest RR interval Long nitrates 0.678 

Triglycerides to total lipids ratio in very large 

VLDL; % 
triglycerides 0.711 

Age at death of uncle or aunt died of myocardial 

infarction 
Age 0.684 

Weight of father in 1983; kg Weight 0.738 

Age at time of action Age 0.714 

Size, RCA size 0.694 

Diabetes type 2 diabetes type 0.726 

How often performs physical exercise during spare 

time 

when in a hurry or during physical 

exertion 
0.664 

Triglycerides in small LDL; mmol/l triglycerides 0.759 

Heart rate on arrival, GRACEdataset patient only heart rate 0.696 

Mean glucose measurements Oral glucose tolerance test 0.644 

? Age when celiac disease observed Age 0.696 

Metabolic syndrome according to the IDF 

definition 

among my friends I feel 

comfortable 
0.614 

Index of physical activity 2011. physical activity 0.756 

Hyperlipidemia hyperlipidemia 0.898 

Heart rate/min 3rd measurement heart rate 0.733 

Height height 0.889 

Apolipoprotein B; g/l Lipoprotein 0.712 

Weight of father in 1989; kg Weight 0.738 

triglyceride triglycerides 0.974 

Apolipoprotein A-I; g/l Lipoprotein 0.698 

Age of starting habitual use of alcohol, I2, 812, 98 

= does not use alcohol habitually, 99 = has never 

tried 

Age 0.676 

Total cholesterol in medium LDL; mmol/l Total cholesterol 0.812 
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Terminologies from OCVD Terminologies from OMD Score 

Childs movement or activity when playing 

compared to other children 

almost never, things develop 

according to my ideas 
0.707 

Fathers date of birth ddmm, I4, 14 date 0.613 

Weight of mother in 1983; kg Weight 0.738 

Amount of cigars/cigarillos smoked per day at 

present 

Difficulty concentrating / decision 

problems 
0.645 

Apolipoprotein E-113 genotype Lipoprotein 0.668 

Total cholesterol average, F5.2,1154 Total cholesterol 0.824 

age in 2007 Age 0.616 

LDL cholesterol; mmol/l NOTE! Estimated LDL 

cholesterol. Ldlkol01 values has not been 

calculated for those participants with trigly01 

LDL cholesterol 0.704 

Total cholesterol to total lipids ratio in very large 

VLDL; % 
Total cholesterol 0.760 

Triglycerides in LDL; mmol/l triglycerides 0.784 

Acute Coronary Syndrome with acute coronary syndrome 0.738 

Heart rate/min 2nd measurement heart rate 0.733 

Age of starting habitual use of alcohol Age 0.692 

Alcohol 
Alcohol consumption in last 12 

months 
0.730 

I have a hard time finding the right words to 

describe my feelings 

before how many months last 

determined by the doctor 
0.696 

Size, RCA RV size 0.667 

How many hours spends daily watching TV, on 

average 

almost never, things develop 

according to my ideas 
0.671 

Atrial fibrillation atrial fibrillation 0.792 

Total cholesterol 1st measurement, F5.2,1124 Total cholesterol 0.795 

Heart rate/min 1st measurement heart rate 0.733 

Systolic arterial pressure when standing 
when in a hurry or during physical 

exertion 
0.609 

Triglycerides in IDL; mmol/l triglycerides 0.784 

Apolipoprotein E-219 promoottorigenotype Lipoprotein 0.636 

LDL cholesterol, direct LDL cholesterol 0.884 

Total cholesterol; mmol/l Total cholesterol in mmol/l 0.950 

Triglycerides to total lipids ratio in small LDL; % triglycerides 0.719 

Weight of the participant; kg Weight 0.736 

Triglysceride, triglycerides 0.830 

Age of starting regular sports training, I2,1021 Age 0.688 
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Terminologies from OCVD Terminologies from OMD Score 

Triglycerides in medium LDL; mmol/l triglycerides 0.755 

Age when first trying alcohol Age 0.701 

Erythrocytes; E12/l erythrocytes 0.832 

Triglycerides to total lipids ratio in very large HDL; 

% 
triglycerides 0.712 

Total cholesterol in VLDL; mmol/l Total cholesterol in mmol/l 0.939 

lipoprotein lipase precursor, Ter*474S Lipoprotein 0.724 

Age at DEATH Age 0.750 

Index of physical activity 1980. physical activity 0.756 

Triglycerides to total lipids ratio in large HDL; % triglycerides 0.719 

Marital status since year ? marital status 0.803 

Mothers daily consumption of whole milk 
When complaints for the first time 

occurred in the life 
0.618 

Index of physical activity 1989. physical activity 0.756 

Childs date of birth ddmm, I4, 5. Date of birth 0.637 

Triglycerides in large LDL; mmol/l triglycerides 0.759 

glucose score, 0 = glucose at least 5.55 or diabetes, 

1 = glucose at least 5.55 and not diabetes 
glucose 0.691 

Triglycerides in VLDL; mmol/l triglycerides 0.779 

Triglyceride triglycerides 0.921 

Myocardial infarction, unclassifiable Myocardial infarction, Number 0.691 

Total cholesterol average; mmol/l Total cholesterol 0.838 

HDL-cholesterol HDL cholesterol 0.956 

Marital status of the spouse, I1,, 1 = unmarried, 2 = 

married, 3 = engaged, 4 = cohabiting, 5 = 

divorced/legally separated, 6 = widow 

marital status 0.675 

Total cholesterol to total lipids ratio in IDL; % Total cholesterol 0.782 

Triglycerides in large HDL; mmol/l triglycerides 0.759 

Index of physical activity 1983. physical activity 0.756 

Apolipoprotein E, 0 = genotyping did not succeed, 

1=G, 2=AG, 3=A 
Lipoprotein 0.605 

Total cholesterol to total lipids ratio in large LDL; 

% 
Total cholesterol 0.770 

Type 1 diabetes Type I diabetes 0.956 

Heart rate mean value, from the status form heart rate 0.703 

Triglycerides in small VLDL; mmol/l triglycerides 0.755 

Total cholesterol to total lipids ratio in very large 

HDL; % 
Total cholesterol 0.761 
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Terminologies from OCVD Terminologies from OMD Score 

milk products and milk glasses current setting and compliance 0.650 

Serum testosterone testosterone 0.722 

Margarine and oils more diagnoses 0.623 

Total cholesterol in very large VLDL; mmol/l Total cholesterol 0.795 

age in 2011 Age 0.616 

Time of ultrasound test master stressful situations 0.628 

Weight at birth; g Weight 0.778 

Teacher makes me feel I am not good enough 
more alcohol drinking justifiable as 

health 
0.628 

Previous heart failure or now decompensation. 
When complaints for the first time 

occurred in the life 
0.632 

Triglycerides to total lipids ratio in small VLDL; % triglycerides 0.718 

LDL cholesterol, direct; mmol/l LDL cholesterol 0.828 

Oral medication as a treatment for diabetes, 0=no, 

1=yes 
medication 0.626 

Height of the participant; cm height 0.669 

SWM Double errors; number of errors that may be 

classified as both between and within errors 

before how many months last 

determined by the doctor 
0.636 

Size, LAD SEPT I size 0.646 

HDL cholesterol 1 meas.; mmol/l HDL cholesterol 0.828 

Marital status of the participant, I1, , 1 = unmarried, 

2 = married, 3 = engaged, 4 = cohabiting, 5 = 

divorced/legally separated, 6 = widow 

marital status 0.674 

Apolipoprotein A-1 Lipoprotein 0.738 

Room temperature in degrees celcius current setting and compliance 0.636 

It’s easy for me to describe my feelings 
among my friends I feel 

comfortable 
0.652 

HDL cholesterol 2 meas.; mmol/l HDL cholesterol 0.828 

Lpa = lipoprotein Lipoprotein 0.822 

Weight of mother in 1989; kg Weight 0.738 

Total cholesterol in medium VLDL; mmol/l Total cholesterol 0.808 

Heart rate upon arrival heart rate 0.764 

Gender, 1 = female, 2 = male gender 0.671 

apolipoprotein E precursor Lipoprotein 0.681 

Marital status of the participant, 1 = unmarried , 2 = 

married , 3 = in a registered relationship , 4 = 

cohabiting , 5 = divorced/legally separated , 6 = 

widow 

marital status 0.670 
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Terminologies from OCVD Terminologies from OMD Score 

Triglycerides to total lipids ratio in medium LDL; 

% 
triglycerides 0.718 

Total cholesterol in small HDL; mmol/l Total cholesterol 0.816 

Other  Other 0.875 

height height 1.000 

Homocysteine; µmol/l homocysteine 0.822 

total cholesterol score, 0 = total cholesterol at least 

5.172 or under medication for 

hypercholesterolemia, 1 = total cholesterol under 

5.172 and not under medication for 

hypercholesterolemia 

Total cholesterol 0.654 

Age Age 1.000 

Age 1986 Age 0.792 

Age at baseline Age 0.733 

Weight Weight 1.000 

Total cholesterol to total lipids ratio in 

chylomicrons and extremely large VLDL; % 
Total cholesterol 0.735 

lipoprotein, Lp Lipoprotein 0.859 

Total cholesterol 2 measurement; mmol/l Total cholesterol 0.812 

Size, LCx LOM I size 0.650 

Lipoprotein Lipoprotein 1.000 

Total cholesterol in medium HDL; mmol/l Total cholesterol 0.812 

Total cholesterol in very small VLDL; mmol/l Total cholesterol 0.795 

Glucose glucose 0.905 

Femur neck bone density at final measurements Number of almost daily Drinks 0.612 

Total cholesterol in HDL2; mmol/l Total cholesterol in mmol/l 0.939 

age in 1980 Age 0.616 

Total cholestrerol Total cholesterol 0.962 

glucose score, 0 = glucose at least 5.55 or under 

medication for diabetes, 1 = glucose at least 5.55 

and not under medication for diabetes 

glucose 0.684 

Heart Rate heart rate 0.867 

Index of physical activity. The higher the value, the 

more active the participant is. 
physical activity 0.645 

Total cholesterol in small LDL; mmol/l Total cholesterol 0.816 

Total cholesterol. correction factor 1.000; mmol/l Total cholesterol 0.780 

Right side, technical level of angiography 
almost never, things develop 

according to my ideas 
0.679 
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Terminologies from OCVD Terminologies from OMD Score 

Triglycerides to total lipids ratio in small HDL; % triglycerides 0.719 

C-reactive protein from 2001 C-reactive protein 0.881 

Triglycerides to total lipids ratio in very small 

VLDL; % 
triglycerides 0.711 

Total cholesterol Total cholesterol 1.000 

Glucose g, F5.2,1511 glucose 0.719 

Cholesterol esters in large LDL; mmol/l Total cholesterol in mg/dl 0.611 

Triglycerides in very large VLDL; mmol/l triglycerides 0.741 

date from the search Feb 2007; additional coronary 

angiographies 
date 0.688 

Triglycerides in HDL; mmol/l triglycerides 0.784 

Triglycerides to total lipids ratio in IDL; % triglycerides 0.730 

Heart rate on arrival, only for MI dataset patient heart rate 0.693 

Cholesterol esters in large HDL; mmol/l Total cholesterol in mg/dl 0.611 

Total cholesterol to total lipids ratio in very small 

VLDL; % 
Total cholesterol 0.760 

Index of physical activity 1992. physical activity 0.756 

Triglycerides in small HDL; mmol/l triglycerides 0.759 

Has the participant used nutrient products or food 

supplements 

When complaints for the first time 

occurred in the life 
0.645 

Does the participant attempt to select products with 

added nutrients 

When complaints for the first time 

occurred in the life 
0.650 

Triglycerides in chylomicrons and extremely large 

VLDL;mmol/l 
triglycerides 0.707 

Clopidogrel is used when you return home or 

switch to further treatment 

When complaints for the first time 

occurred in the life 
0.661 

weight Weight 0.889 

I often lose my courage at school 
Mean cellular hemoglobin content 

of erythrocytes 
0.606 

cholesterol medication when returning home or 

switching to follow-up treatment 

When complaints for the first time 

occurred in the life 
0.671 

Size, LCx size 0.694 

Total cholesterol; mmol/l, NOTE! tutkno80=728: 

abnormally high total cholesterol value =10.2 

mmol/l. Delete the value in question if needed as an 

outlier. 

Total cholesterol 0.703 

Age when first trying smoking, I2, 647, 99 = has 

never smoked 
Age 0.683 
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Terminologies from OCVD Terminologies from OMD Score 

Hours spent daily playing outside during the 

summer 

I rarely count that happens to me 

something good 
0.642 

Absences from school or work or days stayed 

indoors due to illness 

before how many months last 

determined by the doctor 
0.667 

LDL-cholesterol LDL cholesterol 0.956 

Coronary artery induced chest pain Diagnostic status hypertension 0.622 

Potato and vegetables against elevated blood lipids 0.623 

HDL cholesterol; mmol/l. HDL cholesterol 0.875 

Diabetes type 1 diabetes type 0.726 

Total cholesterol in HDL; mmol/l Total cholesterol in mmol/l 0.948 

Total cholesterol to total lipids ratio in medium 

HDL; % 
Total cholesterol 0.768 

Index of physical activity 2001. physical activity 0.756 

other other 0.905 

Insulin insulin 0.680 

Weight of mother in 1986; kg Weight 0.738 

Heart rate mean value when sitting, from the status 

form; Heart rate/min 
heart rate 0.675 

Age when ovariectomy for both ovary? Age 0.694 

Index of physical activity 2007. physical activity 0.756 

Size, LCx PD size 0.667 

Date of installation of the ICD date 0.616 

Lauric acid C12 g uric acid 0.732 

Marital status since the year marital status 0.792 

Triglycerides to total lipids ratio in medium HDL; 

% 
triglycerides 0.718 

Hematocrit; Osuus hematocrit 0.810 

Diabetes diabetes 0.837 

Number of study years Number of days 0.710 

recorded baseline mortality metabolic syndrome 0.618 

Date of testing date 0.650 

Total cholesterol in LDL; mmol/l Total cholesterol in mmol/l 0.948 

glucose score, 0 = glucose at least 5.6 or diabetes, 1 

= glucose at least 5.6 and not diabetes 
glucose 0.691 

date of birth Date of birth 0.949 

Total cholesterol to total lipids ratio in large VLDL; 

% 
Total cholesterol 0.768 

Total cholesterol in IDL; mmol/l Total cholesterol in mmol/l 0.948 
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Terminologies from OCVD Terminologies from OMD Score 

Stenosis, RCA dist Carotid stenosis 0.639 

Metabolic syndrome according to the EGIR 

definition 

among my friends I feel 

comfortable 
0.611 

Size, LIM size 0.694 

I don’t know what really is happening in the 

innermost me 

Pain disappear, remain when 

standing or walking slowly 
0.647 

Total cholesterol in very large HDL; mmol/l Total cholesterol 0.798 

Date of angiography date 0.636 

ASA used when returning home or switching to 

follow-up care 

When complaints for the first time 

occurred in the life 
0.642 

Apolipoprotein E Lipoprotein 0.761 

Marital status of the participant, 1 = unmarried, 2 = 

married, 3 = cohabiting, 4 = divorced/legally 

separated, 5 = widow 

marital status 0.679 

Triglycerides to total lipids ratio in chylomicrons 

and extremely large VLDL; % 
triglycerides 0.692 

Delay of STEMI patients from ECG to arterial 

puncture 

Difficulty concentrating / decision 

problems 
0.618 

Amount of cigars/cigarillos smoked per day 
Difficulty concentrating / decision 

problems 
0.633 

Room temperature in degrees celsius current setting and compliance 0.608 

Triglycerides in medium HDL; mmol/l triglycerides 0.755 

Size, RCA PD size 0.667 

C-reactive protein from 1980 C-reactive protein 0.881 

Total cholesterol 2nd measurement, F5.2,1129 Total cholesterol 0.795 

Diastolic Blood Pressure Target diastolic blood pressure 0.672 

Iron mg morning 0.680 

Total cholesterol to total lipids ratio in small 

VLDL; % 
Total cholesterol 0.768 

Height at birth; cm, height 0.694 

Fasting Fasting blood sugar 0.773 

Triglycerides to total lipids ratio in large LDL; % triglycerides 0.719 

Triglycerides in large VLDL; mmol/l triglycerides 0.755 

Weight of father in 1980; kg Weight 0.738 

Total cholesterol to total lipids ratio in medium 

VLDL; % 
Total cholesterol 0.766 

Height of mother; cm. Average from values 

collected between 1980 and 1989. 
height 0.634 
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Terminologies from OCVD Terminologies from OMD Score 

Total cholesterol in small VLDL; mmol/l Total cholesterol 0.812 

Total cholesterol in HDL3; mmol/l Total cholesterol in mmol/l 0.939 

Total cholesterol in large LDL; mmol/l Total cholesterol in mg/dl 0.853 

Triglycerides to total lipids ratio in large VLDL; % triglycerides 0.718 

HDL cholesterol; mmol/l HDL cholesterol 0.884 

Size, LAD DG II size 0.650 

 
Supplementary Table 4. A summary of the input features (and their corresponding 

abbreviations) including those having either good or fair quality within any time point between 

time-points 1 and 4 and in the baseline. 

Time-series clinical data 

No. Feature Abbreviation 

1 SBP Systolic Blood Pressure 

2 DBP Diastolic Blood Pressure 

3 temperature - 

4 dyspnea - 

5 tachypnea - 

6 SatO2 Oxygen saturation 

7 cardiac_frequency - 

8 WBC White Blood Cell Count 

9 Neut_percent Percentage of neutrophils 

10 Neut_abs_number Absolute number of neutrophils 

11 Lymph_percent Percentage of lymphocytes 

12 Lymph_abs_number Absolute number of lymphocytes 

13 Hb Hemoglobin 

14 Hct Hematocrit 

15 MCV Mean Corpuscular Volume (red blood cells) 

16 PLT Number of platelets 

17 Glu  

18 Urea - 

19 Creatinine - 

20 Tbil Total Bilirubin 

21 AST Aspartate Aminotransferase 

22 ALT Alanine Aminotransferase 

23 ALP Alkaline Phosphatase Level 

24 LDH Lactate Dehydrogenase 
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Time-series clinical data 

No. Feature Abbreviation 

25 CK Creatinine Kinase 

26 Na Natrium 

27 K Kalium 

28 CRP C-reactive protein 

29 med_chloroquine Chloroquine administration 

30 med_hydroxychloroquine Hydroxychloroquine administration 

31 med_azithromycin Azithromycin administration 

32 med_colchiquine Colchicine administration 

33 med_CAP_antibiotics Community-acquired pneumonia antibiotics administration 

34 med_O2_supply Oxygen supply 

35 O2_supply_type Oxygen supply type 

36 O2_supply_lit Oxygen supply in liters 

37 secondary_O2_supply_lit Secondary Oxygen supply in liters 

38 FiO2 Fraction of inspired oxygen 

39 

PO2_FiO2_ratio 

Ratio of arterial oxygen partial pressure (PaO2 in mmHg) to 

fractional inspired oxygen (FiO2 expressed as a fraction, not 

a percentage) 

40 PO2 Partial pressure of oxygen 

41 med_tocilizumab Tocilizumab administration 

42 med_low_dose_steroids Systemic corticosteroid administration (low dose) 

43 Biguanides Biguanides administration 

44 TZDs Thiazolidinediones administration 

45 GLP1_RAs Glucagon-like peptide 1 receptor agonists administration 

46 DPP4i Dipeptidyl Peptidase-4 Inhibitor administration 

47 SGLT2i Sodium-glucose cotransporter 2 inhibitors administration 

48 Insulin_long_acting Long-acting insulin administration 

49 Insulin_long_acting_dose Long-acting insulin administration dose 

50 Insulin_short_acting Short-acting insulin administration 

51 Insulin_short_acting_dose Short-acting insulin administration dose 

52 d_dimers D-Dimer test 

53 hs_TPN Troponin 

54 ABD A (ABO1), B (ABO2) and D (RH1) antigens on red blood 

cells 

55 AMS Amylase 

56 APTT Activated Partial Thromboplastin Time 
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Time-series clinical data 

No. Feature Abbreviation 

57 CTchest Computer tomography of the chest 

58 CXR Chest X-Ray 

59 Cl Chloride 

60 Dbil Direct bilirubin 

61 FER Ferritin 

62 HCO3 Bicarbonates 

63 LAC Lupus Anticoagulant Testing 

64 Mg Magnesium 

65 Mono Mononucleosis 

66 PCO2 Partial Pressure of Carbon Dioxide (arterial) 

67 Ph pH (arterial) 

68 Sulfonylureas - 

69 TCA Tricyclic Antidepressant 

70 fibrogen Fibrinogen 

71 gGT Gamma-glutamyl Transferase 

72 INR International Normalized Ratio 

Demographics 

No. Feature Abbreviation 

1 Age - 

2 Weight - 

3 Height - 

4 risk_factor_obesity - 

5 risk_factor_age50 Age above 50 years (yes/no) 

6 risk_factor_DM Diabetes mellitus (yes/no) 

7 risk_factor_Hypertension Hypertension (yes/no) 

8 risk_factor_COPD Chronic Obstructive Pulmonary Disease (yes/no) 

9 risk_factor_Dyslipidemia Dyslipidemia status (yes/no) 

10 risk_factor_Smoking Smoking status (yes/no) 

11 risk_factor_CKD Chronic Kidney Disease (yes/no) 

12 risk_factor_immunosupression Immunosupression (yes/no) 

Baseline clinical data (symptoms) 

No. Feature Abbreviation 

1 symptom_fever Fever (yes/no) 

2 symptom_dry_cough Dey cough (yes/no) 

3 symptom_fatigue Fatigue(yes/no) 



440 

 

Time-series clinical data 

No. Feature Abbreviation 

4 symptom_anorexia Anorexia (yes/no) 

5 symptom_myalgias Myalgias (yes/no) 

6 symptom_dyspnea Dyspnea (yes/no) 

7 symptom_sputum_production Sputum production (yes/no) 

8 symptom_anosmia Lack of smell (yes/no) 

9 symptom_dysgeusia Lack of taste (yes/no) 

10 symptom_GI_tract Gastrointestinal tract abnormalities (yes/no) 

11 symptom_headache Headache (yes/no) 

12 symptom_sore_throat Sore throat (yes/no) 

13 symptom_rhinorrhea Runny nose (yes/no) 

14 duration_of_symptoms Time duration of the symptoms (in days) 

Treatments 

No. Feature Abbreviation 

1 Statin Statins (yes/no) 

2 ACEi Angiotensin-converting-enzyme inhibitors (yes/no) 

3 Sartan Angiotensin-II-receptor antagonists (yes/no) 

4 CaBlocker Calcium channel blockers (yes/no) 

5 Diuretic Diuretics (yes/no) 

6 Betablocker Beta blockers (yes/no) 

7 Biguanides Biguanides (yes/no) 

8 Sulfonylureas Sulfonylureas (yes/no) 

9 TZDs Thiazolidinediones (yes/no) 

10 GLP1_RAs 
Contemporary classification of glucagon-like peptide 1 

receptor agonists (yes/no) 

11 DPP4i Dipeptidyl peptidase-4 inhibitors (yes/no) 

12 SGLT2i Sodium-glucose Cotransporter 2 Inhibitors (yes/no) 

13 Insulin_long_acting Long-acting insulin (yes/no) 

14 Insulin_long_acting_dose Long-acting insulin dose 

15 Insulin_short_acting Short-acting insulin (yes/no) 

16 Insulin_short_acting_dose Short-acting insulin dose 

17 PPI Proton pump inhibitors (yes/no) 

18 Corticosteroids - 

19 other_immunomodulators Other immunomodulators (yes/no) 

20 AntiXa Anti-Xa heparin (yes/no) 

21 Coumarin - 
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Supplementary Figure 1. The average coverage for each federated tree ensemble algorithm in 

federated scenario 1 which quantifies the average number of observations that passed through 

this feature (node) during the node splitting process. 
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Supplementary Figure 2. An illustration of the SHAP plot in federated scenario 2 for the 

FDART schemas. 
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Supplementary Figure 3. An illustration of the SHAP plot in federated scenario 2 for the 

FDART schemas. 
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Supplementary Figure 4. An illustration of the SHAP plot in federated scenario 3 for the 

FDART schemas. 
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Supplementary Figure 5. An illustration of the SHAP plot in federated scenario 3 for the 

FDART schemas. 
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Supplementary Figure 6. An illustration of the SHAP plot in federated scenario 4 for the 

FDART schemas. 
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Supplementary Figure 7. An illustration of the SHAP plot in federated scenario 4 for the 

FDART schemas. 
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