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ABSTRACT

Michail Papatsimpas, M.Sc. in Data Science and Engineering, Department of Computer
Science and Engineering, School of Engineering, University of Ioannina, Greece, 2022.
Optimized FOREX Trading System Based on Empirical Mode Decomposition and
Neural Networks.
Advisor: Konstantinos Parsopoulos, Professor

The financial market is a complex and dynamical system, which is influenced by
many factors subject to uncertainty. In order to raise the limited chances of beating
the market, investors usually rely on diverse techniques that attempt to determine the
underlying trading signal, and hopefully predict future market entry and exit points.

The present thesis proposes a new trading system for the Foreign Exchange Mar-
ket (FOREX). The system consists of a hybrid algorithm that combines empirical
mode decomposition (EMD), long short-term memory neural network (LSTM) and
particle swarm optimization algorithm (PSO) (i.e., EMD-LSTM-PSO) to develop a
prediction model for the daily closing prices of exchange rates. The EMD method is
employed to decompose the initial signal to several intrinsic mode functions (IMFs)
and residual. Then, for each IMF an LSTM neural network is constructed, and the
final forecast is the aggregation of all the forecasts produced by the LSTM neural
networks, optimized by the PSO algorithm. We measured our system’s performance
against three currency pairs, namely EUR/USD, EUR/CHF and USD/CHF. Numerical
testing demonstrates that the EMD-LSTM-PSO method can accurately predict the
three currency pairs.

The proposed system is fully automated, and it is able to handle all the trading
requests (open/close positions), using the MetaTrader platform. In addition, it notifies
the investor via push notifications using the Telegram application, about the produced
trading signal.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Μιχαήλ Παπατσίμπας, Δ.Μ.Σ. στην Επιστήμη και Μηχανική Δεδομένων, Τμήμα Μη-
χανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο Ιωαννίνων, 2022.
Optimized FOREX Trading System Based on Empirical Mode Decomposition and
Neural Networks.
Επιβλέπων: Κωνσταντίνος Παρσόπουλος, Καθηγητής

Η αγορά συναλλάγματος (FOREX) είναι η μεγαλύτερη παγκόσμια αγορά. Για τους
επενδυτές αποτελεί συνεχή πρόκληση η πρόβλεψη των τιμών ή της τάσης της αγοράς.
Στην πραγματικότητα πρόκειται για μια σύνθετη και περίπλοκη αγορά, όπου οι
παράγοντες που την επηρεάζουν είναι πολλοί και συχνά απρόβλεπτοι (εκλογές,
δημοψηφίσματα, γεωπολιτικά γεγονότα κ.α.). Αυτό μπορεί να επιφέρει απότομες
διακύμανσεις και συνεπώς απώλεια ιδιωτικών κεφαλαίων και όχι μόνο. Προκειμένου
να μπορέσουν οι επενδυτές να ανταπεξέλθουν στις ξαφνικές αλλαγές, αλλά και
να εντοπίσουν πιθανά σημεία εισόδου/εξόδου της αγοράς, αναπτύσσουν σύνθετα
υπολογιστικά μοντέλα με αυξημένη ικανότητα πρόβλεψης. Τέτοια τα συστήματα
είναι κατεξοχήν υπεύθυνα για τη συμπεριφορά των επενδυτών στην αγορά.

Στην παρούσα μεταπτυχιακή διπλωματική εργασία μελετάται ακριβώς το πρό-
βλημα πρόβλεψης μελλοντικών τιμών ενος συναλλάγματος. Πιο συγκεκριμένα, προ-
τείνεται ένα αυτοματοποιημένο σύστημα συναλλαγών για την αγορά συναλλάγμα-
τος. Για το σύστημα κατασκευάστηκε ένα υβριδικό μοντέλο που ενσωματώνει τρείς
διαφορετικές μεθόδους, δηλαδή τη μέθοδο empirical mode decomposition (EMD), τα
ανατροφοδοτούμενα νευρωνικά δίκτυα, LSTM (Long-Short Term Memory), καθώς
και τον αλγόριθμο εξελικτικής βελτιστοποίησης PSO. Η μέθοδος EMD αποσυνθέτει
την αρχική χρονοσειρά, παράγοντας τα intrinsic mode functions (IMF), καθώς και το
υπόλοιπο (residual). Έπειτα, για κάθε IMF κατασκεύαζουμε ένα LSTM νευρωνικό
δίκτυο και προβλέπουμε την επόμενη τιμή. Η τελική πρόβλεψη προκύπτει από το
σταθμισμένο άθροισμα των προβλέψεων των LSTM δικτύων. Στο τελευταίο αυτό
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βήμα, για την εύρεση των καταλληλότερων βαρών του σταθμισμένου αθροίσματος,
εφαρμόζουμε τον αλγόριθμο βελτιστοποίησης PSO. Στη συνέχεια, λαμβάνοντας υπό-
ψιν την πρόβλεψη του μοντέλου και την στρατηγική μας παράγεται ένα σήμα (BUY,
SELL ή HOLD) το οποίο στέλνεται στην πλατφόρμα, όπου εκτελούνται οι ανάλογες
οδηγίες. Με την ολοκλήρωση της κίνησης, ο επενδυτής ενημερώνεται για την κίνηση
του συστήματος μέσω της εφαρμογής Telegram.

Το προτεινόμενο μοντέλο πρόβλεψης εφαρμόσθηκε σε τρία ζεύγη νομισματικών
ισοτιμιών EUR/USD, EUR/CHF και USD/CHF. Εκτενή πειράματα έδειξαν ότι μπορεί
να παράγει αποτελέσματα ανώτερης ποιότητας από άλλα μοντέλα πρόβλεψης.
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CHAPTER 1

INTRODUCTION

1.1 Aims and objectives

1.2 Structure of the thesis

1.1 Aims and objectives

Foreign exchange (FOREX) dates back to ancient times, when traders first began
exchanging coins of different countries. However, FOREX is itself the newest of the
financial markets. In the last hundred years, the FOREX market has undergone
radical transformations. The basic concept behind FOREX market is the trading of
currencies, one currency against another. According to the triennial central bank
survey [1] conducted by the Bank for International Settlements (BIS) at September
2019, trading in FOREX markets reached $6.6 trillions per day in April 2019, up
from $5.1 trillions three years earlier. This renders the currency market the largest
financial market in the world. Moreover, the FOREX market consists of multiple
international participants, including professionals as well as individuals, who invest
and speculate for profit due to its nature of robust liquidity. Picking up patterns in
financial time series is difficult but if you are good at it, the reward is huge. In the
quest for a trading algorithm, artificial intelligence (AI) methods have been employed
to construct systems that perform better or at least equivalently to human traders
regarding the timing trade entry and exit opportunities.

Machine learning (ML) is a branch of AI that focuses on the use of data and
algorithms in order to imitate human learning positions [2]. Thus, it has become an
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important component of the growing field of data science. Based on diverse mathe-
matical methods, ML algorithms use training to make accurate classifications or pre-
dictions, thereby discovering knowledge in data mining projects. Neural networks,
also known as artificial neural networks (ANN), constitute part of ML artillery, gain-
ing increasing popularity due to deep learning algorithms. A neural network is a
model that endeavors to recognize underlying relationships in datasets through a
process that mimics the way the human brain operates [3]. In this sense, neural net-
works refer to systems of neurons, either organic or artificial in nature. Thus, they can
be reasonably considered as the next step in algorithmic trading, as they can directly
learn market patterns and behaviors from historical trading data and transform this
knowledge into trading decisions.

Algorithmic trading refers to the use of algorithms to make better trade decisions.
Usually, human traders build mathematical models that monitor the market in real-
time [4]. Such models are able to detect any factors that can possibly force security
prices to rise or fall. Unlike human traders, algorithmic trading can simultaneously
analyze huge volume of data and make thousands of trading decisions every day.
ML methods lie in the basis of such systems, which give human traders an advantage
over the market average. In addition, a great advantage of algorithmic trading is that
it does not make trading decisions based on emotions, which is a common limitation
among human traders whose judgment may be affected by emotions or personal
aspirations. However, determining the appropriate structure of a neural network is a
difficult task, often resulting in suboptimal solutions.

Another methodology that can prove to be useful is the EMD method, which
facilitates the determination of characteristics of complex nonlinear or non-stationary
time series, i.e., it can divide the singular values into separated IMFs and determine
the general trend of the real time series. This can effectively reduce the unnecessary
interactions among singular values and improve the performance when a single kernel
function is used in forecasting.

The aim of the present thesis is to introduce a new automated trading system that
is able to predict future prices of different securities and trade them on behalf of the
trader. The proposed approach combines signal processing, ML methods, and a meta-
heuristic optimization algorithm, in order to improve the system’s performance. Also,
the proposed system handles all trading requests through the MetaTrader platform
[5], and notifies the investor for all of its actions via the Telegram application.

2



1.2 Structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 offers the necessary back-
ground information. This includes the FOREX market, EMD algorithm, the LSTM
neural network and the PSO algorithm. Chapter 3 presents the proposed approach,
while Chapter 4 is devoted to the experimental analysis. Chapter 5 concludes the
thesis. Appendix A reports the complete set of experimental results cases as well as
the requirements needed for the system.

3





CHAPTER 2

BACKGROUND INFORMATION

2.1 Foreign exchange market

2.2 Empirical mode decomposition

2.3 Machine learning

2.4 Deep learning

2.5 Recurrent neural networks

2.6 Particle swarm optimization

2.1 Foreign exchange market

The FOREX market is one of the most complex dynamic markets with the character-
istics of high volatility, nonlinearity, and irregularity. The market is open 24 hours
a day, five days a week. It opens in Australasia, followed by Far East, Middle East,
Europe, and finally America. Upon the close of America, Australasia returns to the
market and initiates the next 24-hour cycle. The implication of time-zone differences
to forecasting is that, under certain circumstances, investors need to consider which
data and subsequent time lags to embrace.

One could say that the foreign exchange market has been derived from the dis-
solve of Bretton Woods System [6] in the early 1970s when President Richard M.
Nixon announced that the U.S. would no longer exchange gold for U.S. currency.
The Bretton Woods Agreement was negotiated in July 1944 in order to establish a
new international monetary system, called the Bretton Woods System. During that
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time gold was the basis for the U.S. Dollar; other currencies were pegged to the U.S.
Dollar’s value. Along with the Bretton Woods Agreement, two important organiza-
tions also emerged, namely the International Monetary Fund (IMF) and the World
Bank.

The FOREX market is a market where participants can buy, sell, exchange, and
speculate on currencies. The market is made up of banks, commercial companies,
central banks, investment management firms, hedge funds, and retail FOREX brokers
and investors.

Furthermore, some important factors, such as economic growth, trade develop-
ment, interest rates, and inflation rates have significant impact on the exchange rate
fluctuation. These characteristics also make it extremely difficult to predict foreign
exchange rates. Therefore, exchange rates forecasting has become a very important
and challenging task for both academic and industrial communities.

2.2 Empirical mode decomposition

Empirical Mode Decomposition [7] is an adaptive approach that is used to analyze
nonlinear and non-stationary signals. Its novelty lies in the fact that it does not as-
sume a fixed basis for decomposition, like Fourier or Wavelet Transforms. Instead,
the resulting IMFs are represented by purely oscillatory functions that can be both
frequency and amplitude modulated. The ability to resolve these frequency and am-
plitude variations in a signal across a small subset of modes is what makes EMD
applicable to non-linear data such as those encountered in financial markets. Beside
its ability to extract signal features, EMD has also the advantage of locally decom-
posing the signals, as well as it applicability when the signal varies with time. Figure
2.1 illustrates the flowchart of the EMD algorithm.

2.2.1 Sifting procedure

The sifting procedure is an iterative scheme of removing the dissymmetry between
the upper and lower envelopes in order to transform the original signal into an AM
signal.
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Figure 2.1: Flowchart of the EMD algorithm.

It decomposes a dataset x(t) into IMFs xn(t) and a residual r(t), such that the signal
can be represented as:

x̂ = T (t) +
M∑
i=1

IMFi(t) (2.1)

where, x̂(t) is the reconstructed signal, T (t) is the trend of x(t) (or residual) and M
is the number of sifted IMFs.
The sifting process can be summarized in the following algorithm.

1. Initialize the input r(t) as x(t) (the residue signal).

2. Identify extrema points of r(t): maxima and minima.

6



3. Interpolate maxima and minima points to form the upper and lower envelopes
emax(t) and emin(t) respectively.

4. Evaluate the mean: m(t) = emin(t)+emax(t)
2

.

5. Extract the detailed signal: h(t) = r(t)−m(t).

6. If h(t) does not satisfy the stopping criteria, then the procedure is repeated and
h(t) becomes the input in Step 2.

7. If h(t) satisfies the stopping criteria, then h(t) is the j-th IMF. The residue is
x(t) = r(t) − IMFj(t). If the number of zero crossings of the residue is less
than two, then break the process and keep the last collected signal as a trend.
Otherwise, go back to Step 1, using the residue as the input.

The sifting process serves two main purposes: (a) eliminate riding waves and (b)
make the wave profiles more symmetric with respect to zero. Although it is required
that the mean value of the upper and lower envelopes is zero when giving definition to
IMF component in EMD, in fact, the average of the envelopes of the IMF components
separated from the actual signal has no possibility to be zero. Of course, the more
times sifting is taken, the closer to zero the average will be. Thus, on the one hand,
in order to eliminate the riding waves and enforce a local zero, sifting as many times
as possible is needed. On the other hand, too many sifting steps reduce the IMF to
be a constant-amplitude frequency-modulated function, which would obliterate the
intrinsic amplitude variations and render the results less meaningful physically.

In order to keep the natural amplitude variations of the oscillations, sifting must
be limited to as few steps as possible; careful selection is required. Hence, the IMF
criterion problem is brought forward: how to estimate in the sifting process whether
the decomposed result satisfies the IMF condition? How to determine the sifting times
to obtain one IMF component? What exactly the stopping criterion should be is a
difficult decision. Other than the stopping criterion, the choice of the appropriate
interpolation function is also important.

Stopping criteria is suggested to halt the sifting process at a point that ensures
the physical meaning for the extracted IMF. In [8] Huang et al. proposed a stopping
criteria called S-number. In their approach, S-number is a pre-defined parameter that
is used to stop the sifting process whenever the total number of zero-crossings and
extrema remains the same or almost differ by one after S-consecutive times. From
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their experiments, they concluded that the S-number should be set between 4 and
8. Rilling et al. [9] introduced a new criterion based on three thresholds, (θ1, θ2, α)
aiming at guaranteeing globally small fluctuations in the mean, while taking into
account locally large excursions. According to their approach, for the (1−α) fraction
of the data, sifting will be continued when σ(t) < θ1 while, for the remaining fraction,
when σ(t) < θ2, where:

σ(t) =

∣∣∣∣m(t)

a(t)

∣∣∣∣ (2.2)

with a(t) = emax(t)−emin(t)
2

, m(t) = emax(t)+emin(t)
2

and e being an envelope. Rato et al.
[10] defined a resolution factor by the ratio between the energy of the signal at the
beginning of the sifting, x(t), and the energy of average of the envelopes, e(t). If
this ratio grows above the allowed resolution, then the IMF computation must stop.
This criterion gives a scale independent stopping way, as opposed to criteria based
on iteration count. A useful property of the RF is that it enables the researcher to set
the number of IMFs. Reducing the resolution factor reduces the number of obtained
IMFs.

Interpolation is used in EMD as the process of connecting the identified extrema
(maxima/minima) to form the upper and lower envelopes, respectively. In [7], Huang
et al. used cubic spline interpolation to fit all maxima (minima) data points. Using
parabolic interpolation, each extremum is estimated from only the above defined
three samples. A new interpolated extremum sample is obtained, usually without an
integer abscissa, and this new sample is fed into the EMD algorithm, replacing the
integer abscissa extremum sample as an envelope defining point.

2.2.2 Intrinsic mode functions

By the nature of the decomposition procedure, the data is decomposed into funda-
mental components each with distinct time scale. More specifically, the first compo-
nent corresponds to the smallest time scale, which stands for the fastest time variation
of the data. As the decomposition process proceeds, the time scale, increases and,
hence, the mean frequency of the mode decreases. In addition, all IMFs must meet
the following conditions:

• For a set of data sequences, the number of extremal points must be equal to
the number of zero crossings or, at most, differ by one.
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• For any point, the mean value of the envelope of the local maxima and local
minima must be zero.

Therefore, the EMD essentially is a decomposition of the original signal into a set of
AM/FM modulated signals. It can be easily perceived that the envelopes cannot vary
as fast as the signal x(t). In spectral terms, we can say that the bandwidth of the
envelopes must be a fraction of the central frequency (normally called carrier). This
means that sifting eliminates the low frequency components, leaving a high frequency
signal. This explains why the IMFs appear in a high-to-low frequency order, as well
as why the EMD is essentially a time-frequency decomposition.

2.3 Machine learning

Over the past two decades ML has become one of the mainstays of information
technology and with that, a rather central, albeit usually hidden, part of our life. We
can define ML as the field of computer science that aims, as its name implies, to create
intelligent machines that automatically improve with experience gained through data.

Figure 2.2: Rosenblatt’s Perceptron

The work of McCulloch and Pitts [11] introduced one of the first biologically in-
spired cognitive models. This approach was novel and powerful as it was able to
emulate a wide variety of boolean functions by combining simple binary computa-
tional units. However, its architecture lacked several characteristics of biological net-
works such as complex connectivity patterns, processing of continuous values (rather
than just binary), and learning procedures. Furthermore, the fact that brain activity
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tends to be noisy and seemingly stochastic did not fit well with the consistency and
predictability required by the McCulloch and Pitts model.

Taking into consideration the aforementioned limitations of early neural network
models, Frank Rosenblatt introduced the so-called “Perceptron” in 1958 [12]. This
machine used both analog and discrete signals, including also a threshold element
that converted analog signals into discrete ones. A perceptron can also be called a
single-layer neural network as it is the part of the only layer in the neural network
where computation occurs. The computation takes place on the summation of input
data that is fed into it. In this model, we have n inputs (usually given as a vector)
and exactly the same number of weights W1, ...,Wn. We multiply these together and
sum them up. The output is denoted as z, and called the pre-activation:

z =
n∑

i=1

Wixi = W Tx (2.3)

There is another term, called the bias, that is just a constant factor added to z:

z =
n∑

i=1

Wixi = W Tx+ b0 (2.4)

After calculating the weighted sum, we apply an activation function, σ, and produce
an activation α.

σ(q) =

 1 q ≥ 0

0 q < 0
(2.5)

α = σ(W Tx) (2.6)

The activation function for perceptrons is frequently called a step function because,
if we were to plot it, it would look like stairs. In other words, if the input is greater
than or equal to 0, then we produce an output of 1. Otherwise, we produce an output
of 0. This is the mathematical model for a single neuron, the most fundamental unit
for a neural networks. In Fig. 2.2 we show the architecture of Perceptron, and Alg.
2.1 shows the corresponding training algorithm.

2.4 Deep learning

We are living in the era of big data where all scientific and industrial applications
generate massive amounts of data. This confronts us with unprecedented challenges

10



Algorithm 2.1 Perceptron Algorithm.
Require: P ← inputs of label 1
Require: N ← inputs of label 0
Require: η > 0 learning rate
Ensure: w initialized randomly
1: while not converge do
2: x← random(), x ∈ P ∪N

3: if x ∈ P and wTx < 0 then
4: w ← w + ηx

5: end if
6: if x ∈ N and wTx ≥ 0 then
7: w ← w − ηx

8: end if
9: end while
10: return w

regarding their analysis and interpretation. For this reason, there is an urgent need
for novel ML and AI methods that can help in utilizing these data. Deep learning (DL)
is such a novel methodology currently receiving much attention [13]. DL describes a
family of learning algorithms rather than a single method that can be used to learn
complex prediction models, e.g., multi-layer neural networks with many hidden units
[14]. A common characteristic of the many variations of supervised and unsupervised
deep learning models is that these models have many layers of hidden neurons. In
order to build neural networks (NNs), the neurons need to be connected with each
other. The simplest architecture of an NN is a feedforward structure. In Fig. 2.3, we
show an example for a deep architecture.
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Figure 2.3: A Deep FeedForward Neural Network

ML and DL models are capable of different types of learning as well, which are
usually categorized as supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning utilizes labeled datasets to categorize or make predic-
tions; this requires some kind of human intervention to label input data correctly. In
contrast, unsupervised learning does not require labeled datasets. Instead, it detects
patterns in the data, clustering them according to various distinguishing character-
istics. Reinforcement learning is a process where a model learns to become more
accurate for performing an action in an environment based on feedback in order to
maximize its reward.

2.5 Recurrent neural networks

The recurrent NN (RNN) was first developed in the 1980s [15]. Its structure consists
of an input layer, one or more hidden layers, and an output layer. RNNs have chain-
like structures of repeating modules, which are used as a memory to store important
information from previous processing steps. Unlike feedforward neural networks,
RNNs include a feedback loop that allows the neural network to accept a sequence
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of inputs. This means that the output from step t−1 is fed back into the network
to influence the outcome of step t, for each subsequent step. Therefore, RNNs have
been successfully applied in learning sequences. Figure 2.4 illustrates the sequential
processing in RNNs.

Figure 2.4: Sequential processing in a Recurrent Neural Network (RNN).

Another distinguishing characteristic of RNNs is the parameters sharing across
each layer of the network. While feedforward networks have different weights across
each node, RNNs share the same weight parameter within each layer of the network.

RNNs leverage the backpropagation through time (BPTT) algorithm to determine
the gradients, which is slightly different from traditional backpropagation as it is
specific to sequence data. The principles of BPTT are the same as traditional back-
propagation, where the model trains itself by calculating errors from its output layer
to its input layer. These calculations allow us to appropriately adjust and fit the pa-
rameters of the model. BPTT differs from the traditional approach as it sums errors
at each time step, while feedforward networks do not need to sum errors as they do
not share parameters across each layer.

Following the training procedure above, RNNs tend to run into two problems
known as exploding gradients and vanishing gradients. These issues are related to the
size of the gradient, which is the slope of the loss function along the error curve.
On the one hand, when the gradient is too small, it recursively continues to become
smaller, updating the weight parameters until they become near 0. When that occurs,
the algorithm can no longer learn. On the other hand, exploding gradients occur
when the gradient is too large, thereby creating an unstable model. In this case, the
weights will grow too large, becoming computationally intractable (represented as
NaN). A possible solution to those issues is to reduce the number of hidden layers
within the neural network, hence reducing the complexity in the RNN model.
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Figure 2.5: Long-short term memory unit.

2.5.1 Long short term memory neural networks

The LSTM model [16] is a powerful recurrent neural system specially designed to
overcome the exploding/vanishing gradient problems that typically arise when learn-
ing long-term dependencies, even when the minimal time lags are very long [17].
Overall, this problem can be prevented by using a constant error carousel (CEC),
which maintains the error signal within each unit’s cell. In practice, such cells are
also recurrent networks with an interesting architecture. More specifically, in the way
that the CEC is extended with additional features, namely the input gate and output
gate, forming the memory cell. The self-recurrent connections indicate feedback with
a lag of one time step. In Fig. 2.5, the basic structure of an LSTM unit is illustrated.

2.6 Particle swarm optimization

PSO is a population-based search algorithm inspired by the swarming behavior of
particles, which is also met in different hierarchically organized populations. It was
initially introduced in the pioneering works of Eberhart and Kennedy in 1995 [18].
In PSO, individuals referred to as particles are “flown” through the search space. Each
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particle determines its move by stochasticaly combining some aspect of the history
of its own current and best locations, with those of a group of other members of the
swarm. The next iteration takes place after all particles have moved to a new position.
The search behavior of a particle is hence affected by that of other particles within
the swarm.

Let xi denote the i-th particle, S = (x1, . . . , xn) be the swarm consisting of n

particles, and X ∈ Rn be the search space in which the particles’ position change. Also,
let the index set I = {1, 2, . . . , n}, and d be the optimization problem’s dimension.
The position of each particle is an d-dimensional vector:

xi = (xi1, xi2, . . . , xid)
⊤ ∈ X , ∀i ∈ I (2.7)

The velocity of the particle is also a d-dimensional vector:

vi = (vi1, vi2, . . . , vid)
⊤, ∀i ∈ I (2.8)

The best previous position encountered by the i-th particle is denoted as:

pi = (pi1, pi2, . . . , pid)
⊤ ∈ X , ∀i ∈ I (2.9)

Then, the swarm is manipulated as follows:

vij(t+ 1) = χ[vij(t) + c1r1(pij(t)− xij(t)) + c2r2(pgij(t)− xij(t))] (2.10)

xij(t+ 1) = xij(t) + vij(t+ 1) (2.11)

where i ∈ I, j = 1, 2, . . . , d, gi is the index of the particle that attained the best previous
position among all the particles in the (local or global) neighborhood of xi, χ is a
parameter called constriction factor, c1 and c2 are positive acceleration constants used to
scale the contribution of the cognitive and social components, respectively, and r1, r2 ∼
U(0,1) are uniform random variables that introduce stochasticity to the algorithm.

The constriction factor is a mechanism for controlling the magnitude of the ve-
locities. The stability analysis of Clerk and Kennedy [19] suggests that:

χ =
2k∣∣∣2− ϕ−
√
ϕ2 − 4ϕ

∣∣∣ (2.12)

where ϕ = c1+ c2. The values received for ϕ > 4 and k = 1 are considered the default
setting due to their good average performance.

For minimization problems, the best positions pi(t) is updated as :
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pi(t+ 1) =

xi(t+ 1), if f(xi(t+ 1)) ≤ f(pi(t))

pi(t), otherwise.
(2.13)
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CHAPTER 3

PROPOSED APPROACH

3.1 Proposed forecasting model

3.2 Trading strategy

3.3 Profit calculation

3.1 Proposed forecasting model

Forecasting financial data (e.g., exchange rates, stocks) is a challenging task that
requires advanced models in order to attain high accuracy. In the present thesis, a
new forecasting model was developed and applied to the FOREX market, although
its applicability can be extended to any other financial instrument (such as stocks,
cryptocurrencies, etc).

The proposed forecasting model comprises a number of discrete steps. Firstly, the
closing prices of a currency are received from the MetaTrader platform. Secondly, the
EMD decomposition is applied on the data and the IMF components are produced.
As mentioned before, the use of the EMD algorithm aims at receiving smoothed
components, which contain only the important information of the signal and remove
much of the noise. Thus, the produced components are easier to predict and render
the trading outcome more robust to noise. Next, each IMF is preprocessed to scale and
split the data into train, validation, and test sets and, then, it is ‘’fed” into an LSTM
model. Then, we start the LSTM training phase and, after its completion, each LSTM
predicts the future value of the corresponding IMF. In the next step, the applied
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transform of each IMF is inverted. Finally, the forecasted value is given as follows:

ŷN+1 =
k∑

j=1

wj ŷ
(j)
N+1 (3.1)

where wj is the weight of the j-th IMF, and ŷ
(j)
N+1 is the corresponding unscaled

prediction at time N + 1. Moreover, in order to increase accuracy, the PSO algorithm
is used, in order to detect a (sub-) optimal w that minimizes the prediction error. In
Fig. 3.1 a visual representation of all the above steps is presented.

Putting it formally, let m be the number of past observations that will be used to
predict yN+1. Let A = {yN−m+1, yN−m+2, . . . , yN} be the set of these observations, i.e.,
the time-window under consideration. Then, for each yi ∈ A the forecasted values
ŷ
(j)
i , j = 1, 2, . . . , k, are calculated by aggregating the forecasts of each LSTM. These
values are combined as in Eq. (3.1) using an arbitrary initial weight vector, thereby
producing an aggregate forecast ŷi of yi. Thus, for the whole set A, a set of aggregate
forecasts F = {ŷN−m+1, . . . , ŷN} is received. These values correspond to the specific
weight vector W that was used in Eq. (3.1). Assuming that the selected optimization
criterion is the minimization of the mean absolute error between the forecasted values
and the real ones, an optimization algorithm 3.1 is employed to minimize the objective
function:

E(W ) =

∑N
l=N−m+1{el}

m
, (3.2)

where:
el = |ŷl − yl|, l = N −m+ 1, . . . , N (3.3)

are the absolute errors. In other words, the optimization algorithm tries to find the
specific weight vector that minimizes the selected criterion (i.e., the mean absolute
error in our example) for the whole window of past observations.

Let W ∗ = (w∗
1, . . . , w

∗
k) be the best weight vector detected by the optimization algo-

rithm. Then, the aggregate forecast for the yN+1 observation is eventually computed
as:

ŷN+1 =
k∑

j=1

w∗
j ŷ

(j)
N+1 (3.4)

where ŷ
(j)
N+1 is the forecasted value of yN+1 by the j-th LSTM. Thus, the proposed

model aggregates the k LSTMs using weights that provide the best possible aggregate
predictions in the past m moves defined by the sliding window. When the actual
value yN+1 is available, the whole process is repeated anew, because a new data value
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modifies the corresponding IMFs. Moreover, the sliding window may have dynamic
size. In the most trivial case, the user may use all past observations as the employed
window. In the conducted experiments the PSO algorithm was the selected optimizer,
because it is a simple and efficient algorithm requiring only minor implementation
effort. Also, it can be applied on both differentiable and non-differentiable error func-
tions.

Algorithm 3.1 Particle Optimization Algorithm.
Require: Max_It← Maximum number of iterations
Require: N ← Swarm size
1: τ ← 0

2: for i = 1 to N do
3: W

(τ)
i ← U

(
[1, 1.5]k

)
4: f

(τ)
i ← E

(
W

(τ)
i

)
[ use Algorithm 3.2]

5: return w

6: end for
7: S(τ) ←

{
W

(τ)
1 , . . . ,W

(τ)
N

}
// swarm

8: P (τ) ← S(τ) // best positions

9: g∗ ← argmin
i=1...N

{
f
(
P

(τ)
i

)}
10: /* evolve swarm */

11: while τ < τmax do
12: τ ← τ + 1

13: S(τ) ← update‐swarm
(
S(τ−1)

)
14: for i = 1 to N do
15: f

(τ)
i ← E

(
W

(τ)
i

)
[ use Algorithm 3.2]

16: end for
17: P (τ) ← update‐best‐positions

(
S(τ), P (τ−1)

)
18: g∗ ← argmin

i=1...N

{
f
(
P

(τ)
i

)}
19: end while
20: W ∗ ← P

(τ)
g∗

21: return W ∗ // Optimal weight vector
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Figure 3.1: Flowchart of the proposed model
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Algorithm 3.2 Pseusocode for the evaluation of E(W ) for a given weight vector W .
Require: W = (w1, . . . , wk), // weight vector

Require: Y = {y1, . . . , yt} // time series

Require: I = {I1, . . . , Ik} // set of IMFs

Require: m // window size
1: for i = t−m+ 1 to t do
2: for j = 1 to k do
3: ŷ

(j)
i ← Ij (y1, y2, . . . , yi−1)

4: end for
5: end for
6: for i = t−m+ 1 to t do
7: ŷi ← 0

8: for j = 1 to k do
9: ŷi ← ŷi + wj ŷ

(j)
i

10: end for
11: εi ← |ŷi − yi|
12: end for
13: /* objective value */

14: E(W )← εt−m+1+εt−m+2+...+εt
t

15: return E(W )

3.2 Trading strategy

The primary contribution of the proposed model is the sophisticated aggregation
forecasting scheme presented in the previous section. Nevertheless, such a scheme
is only a part of a complete trading system. Technical analysis always offers critical
information that can be used to the benefit of the trader along with the accurately
forecasted values. For this reason, a strategy for the proposed FOREX trading model
was developed based on indices used in technical analysis.

In a currency pair such as EUR/USD, the enumerator (EUR) and the denominator
(USD) are called the base and the quote currency, respectively. Also, the exchange rate
represents how much of the quote currency is needed in order to get one unit of the
base currency.
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At each step, the proposed model produces one of the following three trading
signals:

1. Buy signal

The “Buy signal” occurs when the model forecasts that, in the next step, the
base currency will increase in value against the quote currency. Thus, the system
shall open a “Buy position” by buying and selling the base and quote currency
at time t, respectively. For instance, suppose that the exchange rate of EUR/USD
is equal to 1.5, which means that traders need $1.5 US to buy 1 Euro. If the
exchange rate increases from 1.5 to 1.7, and the traders have bought Euro at
the price of $1.5, they can Sell them back at the price of $1.7. As a result, they
won that trade and made a profit.

2. Sell signal

The “Sell signal” is the exact opposite of a Buy signal. In this case, the model
predicts that, in the next step, the base currency will decrease in value against
the quote currency. Therefore, a Sell position is opened by selling and buying
the base and quote currency at time t, respectively.

A trading signal indicates the position a trader should open. There are three position
types:

1. Buy position

A “Buy position” is opened when the model produces a Buy signal.

2. Sell position

A “Sell position” is opened when the model produces a Sell signal.

3. Hold position

A “Hold position” is opened when the same signal as the one in the previous
step appears. For instance, if the signal at time t− 1 was “Buy”, and the same
signal is received at time t, then the already opened Buy position is retained
without opening a second one.

Based on the different trading signals, two trading rules are created. On the one hand,
if the actual value of the exchange rate at time t is lower than the forecasted value at
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t+1, a “Buy” signal is created. On the other hand, if the actual value of the exchange
rate at time t is greater than the forecasted value at t + 1, we have a “Sell” signal is
created. The trading rules can be summarized as follows:

1. If Actualt < Forecastt+1 then Signalt ← Buy

2. If Actualt > Forecastt+1 then Signalt ← Sell

Also, before opening a new position, it shall be checked if it is a “Hold” position:

If Signalt−1 == Signalt then Positiont ← Hold

Finally, our model selects one of the above rules and, if there is no “Hold” position,
it opens the corresponding position.

3.3 Profit calculation

A position opens when a “Buy” (“Sell”) signal is encountered, and closes when a
“Sell” (“Buy”) signal occurs. When we have a “Hold” position the profit remains
constant. The total profit of the model is calculated as follows:

1. Position was opened as “Buy”at time topen but now the new signal is “Sell”:

profittnow
= 10000(Actualtnow − Actualtopen) (3.5)

2. Position was opened as “Buy” at time topen but now the new signal is “Buy”:

profitnow = profittopen (3.6)

3. Position was opened as “Sell” at time topen but now the new signal is “Buy”:

profitnow = 10000(Actualtopen − Actualtnow) (3.7)

4. Position was opened as “Sell” at time topen but now the new signal is “Sell”:

profitnow = profittopen (3.8)

In the relations above, the profit calculation requires multiplication with 10000. The
reason is that the profit is calculated in pips. A pip expresses the smallest change
in value between two currencies and is defined as the fourth decimal point in most
currencies (1 pip = 0.0001 of a cent), thus the result shall be multiplied by 10000.
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CHAPTER 4

EXPERIMENTAL ANALYSIS

4.1 MetaTrader platform

4.2 Data preparation

4.3 Parameter configuration

4.4 Performance metrics

4.5 Experimental results

4.6 Simulation

4.1 MetaTrader platform

MT5 is a free application for traders, allowing them to perform technical analysis
and trading operations in FOREX and exchange markets. All of the trades in our
experiments are executed through the MT5 platform. Figure 4.1 shows a glimpse of
the platform.
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Figure 4.1: MetaTrader platform

4.2 Data preparation

For the needs of the proposed trading system datasets consisting of 5000 daily past
observations are considered. For the EUR/USD pair the dates range from 2003/07/07
to 2022/10/03, for the USD/CHF pair, the dates range from 2003/07/04 to 2022/10/03,
and for the EUR/CHF pair the dates range from 2003/06/20 to 2022/10/03. In Figs.
4.2a, 4.2b, 4.2c the investigated time series are shown.

Next, for each dataset the EMD method is applied and the IMF components are
being displayed in Figs. 4.3, 4.4 and 4.5 are generated. Secondly, each IMF component
is normalized as follows:

xscaled =
x− xmin

xmax − xmin

, (4.1)

where x is the corresponding IMF component. The main reason for normaliza-
tion/standardization is that variables measured at different scales do not contribute
equally to the model fitting and model learned function. Thus, they might end up
creating a bias. This potential problem can be addressed through feature-wise nor-
malization, such as MinMax Scaling, prior to the model fitting procedure.
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(a) The EUR/USD currency pair. (b) The USD/CHF currency pair.

(c) The EUR/CHF currency pair.

Figure 4.2: The investigated currency pairs.

(a) IMF1 (b) IMF2

(c) IMF3 (d) IMF4
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(e) IMF5 (f) IMF6

(g) IMF7 (h) IMF8

(i) IMF9

Figure 4.3: EUR/USD IMF Components.

(a) IMF1 (b) IMF2
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(c) IMF3 (d) IMF4

(e) IMF5 (f) IMF6

(g) IMF7 (h) IMF8

(i) IMF9

Figure 4.4: USD/CHF IMF Components.
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(a) IMF1 (b) IMF2

(c) IMF3 (d) IMF4

(e) IMF5 (f) IMF6

(g) IMF7 (h) IMF8

(i) IMF9 (j) IMF10

Figure 4.5: EUR/CHF IMF Components.
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Table 4.1: Statistical analysis.

(a) EUR/USD IMF statistical analysis.

IMF min max mean median std

IMF1 -0.01945 0.02073 -2e-05 -6e-05 0.00363

IMF2 -0.01981 0.01709 -2e-05 -5e-05 0.004

IMF3 -0.03382 0.03292 -3e-05 -5e-05 0.00638

IMF4 -0.02612 0.02591 -0.00016 -0.00014 0.00776

IMF5 -0.05392 0.06034 0.00054 0.00057 0.01457

IMF6 -0.05216 0.0494 0.00014 -0.00016 0.0194

IMF7 -0.10966 0.12397 -0.00979 -0.01639 0.05699

IMF8 -0.08729 0.08793 -0.00051 0.00041 0.04992

IMF9 1.10191 1.398 1.25612 1.28024 0.10682

(b) EUR/CHF IMF statistical analysis.

IMF min max mean median std

IMF1 -0.05683 0.04977 -0.0 0.0 0.00335

IMF2 -0.07253 0.07378 3e-05 -1e-05 0.0049

IMF3 -0.04769 0.05204 -3e-05 -1e-05 0.00521

IMF4 -0.04221 0.0412 0.00024 2e-05 0.00666

IMF5 -0.03722 0.04707 0.00029 -4e-05 0.00915

IMF6 -0.04488 0.05088 -0.00059 -0.0002 0.01151

IMF7 -0.04633 0.05275 0.00258 0.00085 0.01992

IMF8 -0.18591 0.08098 -0.02033 -0.00332 0.07062

IMF9 -0.06837 0.06322 -0.00243 -0.00156 0.03408

IMF10 1.06115 1.72894 1.31394 1.20539 0.24687

(c) USD/CHF IMF statistical analysis.

IMF min max mean median std

IMF1 -0.03875 0.03447 1e-05 0.0 0.00356

IMF2 -0.05685 0.04981 -1e-05 -2e-05 0.00451

IMF3 -0.03312 0.04227 8e-05 -0.0 0.00631

IMF4 -0.05253 0.05314 -6e-05 -0.00019 0.01091

IMF5 -0.03963 0.03729 0.0002 0.00013 0.01209

IMF6 -0.07453 0.1008 0.0016 0.00083 0.02517

IMF7 -0.07461 0.09302 0.00368 0.00391 0.03429

IMF8 -0.07211 0.10405 0.01752 0.02023 0.0545

IMF9 0.88022 1.27725 1.01366 0.94226 0.14087
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Table 4.2: Augmented Dickey-Fuller test

(a) EUR/USD IMFs Augmented Dickey-Fuller

test.

IMF ADF Statistic p-value 1% 5% 10%

IMF1 -23.0731 0.0 -3.4317 -2.8621 -2.5671

IMF2 -22.6184 0.0 -3.4317 -2.8621 -2.5671

IMF3 -15.6429 0.0 -3.4317 -2.8621 -2.5671

IMF4 -16.7469 0.0 -3.4317 -2.8621 -2.5671

IMF5 -12.2946 0.0 -3.4317 -2.8621 -2.5671

IMF6 -10.3696 0.0 -3.4317 -2.8621 -2.5671

IMF7 -4.387 0.0003 -3.4317 -2.8621 -2.5671

IMF8 -0.3379 0.92 -3.4317 -2.8621 -2.5671

IMF9 -6.0722 0.0 -3.4317 -2.8621 -2.5671

(b) EUR/CHF IMFs Augmented Dickey-Fuller

test.

IMF ADF Statistic p-value 1% 5% 10%

IMF1 -16.6737 0.0 -3.4317 -2.8621 -2.5671

IMF2 -12.4855 0.0 -3.4317 -2.8621 -2.5671

IMF3 -24.8993 0.0 -3.4317 -2.8621 -2.5671

IMF4 -14.5824 0.0 -3.4317 -2.8621 -2.5671

IMF5 -10.0124 0.0 -3.4317 -2.8621 -2.5671

IMF6 -8.811 0.0 -3.4317 -2.8621 -2.5671

IMF7 -4.3768 0.0003 -3.4317 -2.8621 -2.5671

IMF8 -2.3904 0.1445 -3.4317 -2.8621 -2.5671

IMF9 -1.0023 0.7524 -3.4317 -2.8621 -2.5671

IMF10 -5.1755 0.0 -3.4317 -2.8621 -2.5671

(c) USD/CHF IMFs Augmented Dickey-Fuller

test.

IMF ADF Statistic p-value 1% 5% 10%

IMF1 -36.511 0.0 -3.4317 -2.8621 -2.5671

IMF2 -20.6102 0.0 -3.4317 -2.8621 -2.5671

IMF3 -15.6381 0.0 -3.4317 -2.8621 -2.5671

IMF4 -15.2507 0.0 -3.4317 -2.8621 -2.5671

IMF5 -15.4237 0.0 -3.4317 -2.8621 -2.5671

IMF6 -7.2072 0.0 -3.4317 -2.8621 -2.5671

IMF7 -5.5054 0.0 -3.4317 -2.8621 -2.5671

IMF8 -0.8995 0.7881 -3.4317 -2.8621 -2.5671

IMF9 -15.7164 0.0 -3.4317 -2.8621 -2.5671

Furthermore, Tables 4.1a, 4.1b, and 4.1c report the statistical properties of the
corresponding IMFs. In addition, in order to verify that the generated IMF compo-
nents are stationary, the ADF (Augmented Dickey-Fuller) test [20] was applied. This
is a statistical significance test, regarding the stationarity of the time series, which
provides a p-value that allows relevant inferences.

The obtained p-values are reported in Tables 4.2a, 4.2b, and 4.2c, which reveal
that all IMF components except IMF8 of each currency pair, are stationary (p-value
≤ 0.05). On the other hand, the initial time series (Figs 4.2a, 4.2c, 4.2b) are clearly
non- stationary, as there are different trend levels and big reversals throughout the
dataset.
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4.3 Parameter configuration

The parameter configuration of the proposed system is reported in Tables 4.3 - 4.4.
Regarding the train_test split, the common approach of using 70% for training, 10%
for validation, and the remaining 20% for testing was adopted. Regarding the sliding
window size, the value of 30 was selected, because daily trading requires a time
interval is needed that is neither too big nor too small. Note that the proposed system
differs from those trading stocks, where the market moves much slower, but the
system shall take into consideration possible huge changes that may have happened
in the short term. Therefore, a window of size 30 is a wise choice as we show later
in the results. Regarding the LSTM architecture, different set-ups were tested before
deciding the one that was eventually preferred.

Table 4.3: Parameter details.

Scaler Scale range train_set (%) test_set (%) validation_set (%) Sliding window size

MinMaxScaler (-1, 1) 70 20 10 30

Swarm size Neighborhood radius Maximum iterations wlb wrb χ c1 c2

50 10 30000 1.0 1.5 0.729 2.05 2.05

Epochs Optimizer loss batch_size

300 Adam MAE 10

Table 4.4: LSTM architecture.

LSTM (units=128)

LSTM (units=256)

Dropout (rate = 0.1)

LSTM (units=128)

Dense (units=1, activation = linear)

4.4 Performance metrics

The accuracy of the proposed system was assessed according to three accuracy metrics,
namely the Mean Absolute Error (MAE), the Mean Squared Error (MSE), and the
Mean Absolute Percentage Error (MAPE).
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MAE =
n∑

i=1

|ŷi − yi|
n

(4.2)

MSE =
n∑

i=1

(ŷi − yi)
2

n
(4.3)

MAPE =
1

n

n∑
i=1

| ŷi − yi
yi
| (4.4)

In addition, the following four trading metrics were used in order to asses the
system’s trading performance. First of all, the success rate which is also denoted
as winning rate (%), was considered. Secondly, there is the Profit/Loss ratio, which
measures how well a trading system is performing. Obviously, the higher the ratio
the better the better the system is. For example, if a system achieved a winning
average of $750 per trade and an average loss (over the same time) of $250 per
trade, then the profit/loss ratio would be 3:1. Next, the system takes into account the
profit, which refers to gains, and losses. These quantities are measured in pips. The
pips are then converted to the base currency’s value. For instance, let the EUR/USD
exchange rate be 1.1130. Suppose, a buy position is opened at 1.1130 and, after a
day, the price goes to 1.1160. Let a sell signal occurs, and the trade is closed. Then,
the profit is 30 pips (=1.1160 - 1.1130). Let the trader’s account balance be 350000
EUR. Then, the conversion of profit from pips to EUR is as follows:

Value of pip in US Dollars: 350000 ∗ 0.0001 = $35 USD

Value of pip in Euro: 35
1.1130

= 31.45 EUR

Trade Profit: 30 ∗ 31.45 = 943.4 EUR
Lastly, theMaximum DrawDown (MDD) is a specific measure that looks for the greatest
movement from a high point to a low point, before a new peak is achieved. It is
measured in pips and takes only negative values. Evidently, this measure shows the
maximum loss the trade has reached, while it was open.

4.5 Experimental results

In this section the obtained results from the experimental analysis are presented. The
amount of the obtained results was quite large. For this reason, only the EUR/USD
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results are presented in the present section with the other two pairs. EUR/CHF and
USD/CHF, reported in Appendix A.2.1, A.2.2 respectively.

(a) Training set comparison. (b) Training prediction error.

(c) Validation set comparison. (d) Validation prediction error.

(e) Test set comparison. (f) Test prediction error.

Figure 4.6: EUR/USD, LSTM comparison between real (green) and forecasted(red)
prices and prediction errors.

The reported results include comparison of our findings against LSTM, EMD-
LSTM, as well as a previously published work based on moving average aggregation
and metaheuristic optimization (MA-PSO) [21]. It shall be mentioned that the pro-
posed system’s trading performance is compared against MA-PSO, despite the fact
that they refer to different time periods. The reported results clearly show that the
proposed approach outperforms the LSTM and EMD-LSTM implementations.
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Table 4.5: EUR/USD, LSTM prediction errors

Set MAE MSE MAPE

Train 6.72e-03 3.13e-05 5.24

Validation 4.39e-03 3.13e-05 3.71e-03

Test 5.97e-03 8.84e-05 5.51e-03

As it can be seen from Fig. 4.6 during the training and validation process the
LSTM model seems to perform well. On the other hand, that does not seem to be the
case for the test set. In the test set, while the model seemed to perform well throughout
the dataset, in the last 100 steps its forecasting ability was drastically decreased. This
can also be observed in Table 4.5, where the LSTM’s accuracy is being shown. As a
result, the system cannot rely on the LSTM model, since its performance is not stable
throughout the testing period.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.
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(e) Test set comparison. (f) Test set prediction error.

Figure 4.7: EURUSD - IMF1 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.8: EURUSD - IMF2 real (green) vs predicted (red) and prediction errors.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.9: EURUSD - IMF3 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.
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(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.10: EURUSD - IMF4 real (green) vs predicted (red) and prediction errors.

Next, in Figs. 4.7 - 4.15 and in Tables 4.6a - 4.6c the obtained results for all
the generated IMFs are shown. We can clearly see that the EMD-LSTM model pre-
dicts the respective IMFs with high accuracy such that one cannot easily distinguish
the real (green) from the predicted (red). In addition, the model’s performance re-
mains constant throughout the sets (training, validation and test), which is of great
significance.

Furthermore, the obtained forecasted prices of the EUR/USD currency pair are
computed by adding the IMF components. As it can be seen in Table 4.7 and in Fig.
4.16, the EMD-LSTM model is able to accurately predict the EUR/USD currency pair.
The difficult part when predicting exchange rates is to identify the big reversals. These
reversals can act like entry or exit points from the market. By accurately identifying
these points, the investor expects two things, i.e. (a) enter the market when the trend
has changed, which can yield high profits, and (b) exit the market when the trend has
changed to the opposite direction. In this situation, the investor’s capital is protected
and minimizes the risk of loss.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.11: EURUSD - IMF5 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.
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(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.12: EURUSD - IMF6 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.
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(e) Test set comparison. (f) Test set prediction error.

Figure 4.13: EURUSD - IMF7 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.14: EURUSD - IMF8 real (green) vs predicted (red) and prediction errors.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure 4.15: EURUSD - IMF9 real (green) vs predicted (red) and prediction errors.
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Table 4.6: EUR/USD, IMF results

(a) Train set prediction error.

IMF MAE MSE MAPE

IMF1 1.92e-03 7.75e-06 1.74

IMF2 6.7e-04 9.69e-07 4593192111.74

IMF3 2.96e-04 1.89e-07 4593192111.74

IMF4 1.26e-04 3.59e-08 4593192111.74

IMF5 1.99e-04 9.19e-08 4593192111.74

IMF6 1.23e-03 3.33e-06 100949277.32

IMF7 1.28e-03 3.04e-06 3.57e-02

IMF8 1.13e-03 2.02e-06 3.57e-02

IMF9 3.48e-03 1.64e-05 3.57e-02

(b) Validation set prediction error.

IMF MAE MSE MAPE

IMF1 1.79e-03 6.30e-06 1.3221

IMF2 6.33e-04 7.20e-07 1.3221

IMF3 2.04e-04 8.55e-08 1.3221

IMF4 8.26e-05 1.38e-08 1.3221

IMF5 6.86e-05 7.96e-09 1.3221

IMF6 4.67e-04 4.06e-07 1.3221

IMF7 4.17e-04 3.40e-07 1.3221

IMF8 6.87e-04 6.80e-07 1.3221

IMF9 1.05e-03 1.50e-06 1.3221

(c) Test set prediction error.

IMF MAE MSE MAPE

IMF1 1.51e-03 4.63e-06 1.3221

IMF2 6.22e-04 8.47e-07 1.3221

IMF3 2.06e-04 8.03e-08 1.3221

IMF4 9.80e-05 1.79e-08 1.3221

IMF5 1.12e-04 2.33e-08 1.3221

IMF6 5.36e-04 4.63e-07 1.3221

IMF7 1.25e-03 2.34e-06 1.3221

IMF8 1.37e-03 2.96e-06 1.3221

IMF9 3.75e-03 2.08e-05 1.3221
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(a) Training set comparison. (b) Training prediction error.

(c) Validation set comparison. (d) Validation prediction error.

(e) Test set comparison. (f) Ttest prediction error.

Figure 4.16: EUR/USD, EMD-LSTM comparison between real (green) and fore-
casted(red) prices and prediction errors.

Table 4.7: EUR/USD, EMD-LSTM prediction errors

Set MAE MSE MAPE

Train 3.77e-03 2.25e-05 2.92e-03

Validation 2.35e-03 9.42e-06 1.19e-03

Test 3.89e-03 2.32e-05 3.45e-03

Table 4.8: EUR/USD, EMD-LSTM-PSO prediction errors

Set MAE MSE MAPE

Test 2.34e‐03 1.00e‐05 2.10e‐03
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(a) Test set comparison. (b) Test set prediction error.

Figure 4.17: EMD-LSTM-PSO, EUR/USD comparison

Next, it was investigated if it was possible to further improve the system’s fore-
casting ability. For that reason, as mentioned in Chapter 3 the PSO algorithm was
used. As seen in Fig. 4.17 and Table 4.8, the implementation of the PSO algorithm
had successfully minimized the prediction error. In addition, as described in Section
4.6, the EMD-LSTM-PSO model is characterized for its increased profits.

4.6 Simulation

In order to measure the system’s actual performance, a simulation environment was
implemented, in which the proposed system was tested for three months (64 actual
trading days), starting from 06/07/2022 to 03/10/2022. As mentioned before, each
IMF has equal length with the initial time series, equal to 5000. The last ws (window
size) observations are used to predict the next closing price. The reason for this
approach was to verify two things, i.e., (a) how the change of IMFs at every step
(day) affects the system and (b) the different vector of weights generated by the
PSO algorithm in every run. Thus, the goal was to verify if such a technique is
profitable. Let D = {d1, d2, . . . , d64} be the set of the aforementioned dates. For each
di ∈ D, i = 1, 2, . . . , 64, a set consisting of the past 5000 observations of day i is
considered. The created set has the following form:

s1 = {cp1, cp2, . . . , cp5000}
s2 = {cp2, cp3, . . . , cp5001}
s3 = {cp3, cp4, . . . , cp5002}

...
s64 = {cp64, cp65, . . . , cp5064},
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where cp is the close price of the day i. Next, each si is given as input to the system,
which produces a forecast f̂i for the closing price of day i + 1. The produced vector
containing the forecasts has the following form:

f =
(
f̂5001, f̂5002, . . . , f̂5065

)
. (4.5)

Furthermore, the simulation for the EMD-LSTM-PSO was applied, as it is the model
with the best forecasting accuracy. For the analysis, the EUR/USD currency pair was
selected, since is the most traded currency pair in the market. As shown in Figs.
4.18a and 4.18b, the proposed approach accurately follows the trend of the real
prices even in the big reversals. As a result, the system yields high profits as reported
in Table 4.10. In addition, it is obvious that the proposed model outperforms by far
the MA-PSO model.

Table 4.9: EUR/USD, EMD-LSTM-PSO, MA-PSO simulation error

Model MAE MSE MAPE

MA-PSO 6.24e-03 5.03e-03 4.36e-03
EMD‐LSTM‐PSO 5.07e‐03 4.05e‐05 5.24e‐03

Table 4.10: Trading performance of the proposed and competing models.

Model Trades Winning Trades Winning Rate (%) P/L Ratio Profit(in pips) MDD(in pips)

MA-PSO 22 16 72.8 2.469614 737.3 -183.5
EMD‐LSTM‐PSO 36 31 86.11 3.35 2197.7 ‐95.9

As being shown in Table 4.9 during that period the system achieved a MAE =

5e − 3, which can be translated to average deviation of 50 pips. Taking into account
that EUR/USD for the last several years moves between 70 to 100 pips daily [22], the
proposed model exhibits limited risk in addition to its great trading performance. We
need to clarify in this point that the considered work was tested during the second
term of 2018(06/2018− 12/2018).
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(a) Simulation comparison between real (green) and predicted (red).

(b) Mean absolute error during the simulation period.

Figure 4.18: EMD-LSTM-PSO EUR/USD simulation results.
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CHAPTER 5

EPILOGUE

5.1 Conclusions

5.2 Future work

5.1 Conclusions

Nowadays, the necessity to perform human tasks with the minimum cost and at
higher speed, along with the need to process voluminous data, justifies the expan-
sion of computational intelligent models in various scientific fields such as finance.
In addition, financial forecasting is inherently connected with the high degree of un-
certainty ruling the modern world, thereby computational intelligent models can be
efficient alternatives to traditional models.

The present thesis introduced an automated trading system based on signal de-
composition and deep learning. The aggregate forecast was optimized by the particle
swarm optimization algorithm. Proper parameters were identified and reported. The
proposed trading system led to high profit on the tested cased, with the minimum
risk of loss. In terms of statistical performance, the proposed model outperforms the
LSTM, EMD-LSTM, and also relevant previous work with moving averages aggrega-
tion.

In addition, in order to test the developed system, three different FOREX currency
pairs were selected, EUR/USD, EUR/CHF and USD/CHF. The proposed system is
capable of accurately predicting the time series. Even for the simulation performed
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for the EUR/USD currency pair it was found that the system yielded increased profits,
with minimum loss (5 lost trades).

To conclude, traders should experiment beyond the boundaries of traditional mod-
els. Their trading decisions should be based on forward-looking expectations from
models and strategies optimized withing the framework of a hybrid trading and sta-
tistical approach. Nonetheless, there are still many paths to be taken in the search
of efficient calibration of computational intelligent models for financial and economic
forecasting tasks.

5.2 Future work

As a follow-up to the presented work, a series of distinct directions can be explored
in order to try to improve the developed system. Some of the most relevant are the
following:

• Improve system’s execution time, in order to experiment with smaller time-
frame.

• Take into account technical analysis indicators.

• Introduction of a leverage mechanism. This would be interesting in order to
evaluate how the system addresses inherent potential risks.

• Explore the usage of NLP methods, in order to process all the latest political
and economical factors, which can greatly affect the market.
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APPENDIX A

APPENDIX

A.1 Software requirements

A.2 Detailed results

A.1 Software requirements

The thesis code was written in the Python (3.7.9) [63] and the C [23] program-
ming languages. Regarding the Python code the following libraries have been used
to implement the program:

• MetaTrader5 [24] is a package for Python is designed for convenient and fast
obtaining of exchange data via interprocessor communication directly from the
MetaTrader 5 terminal.

• Keras [24] is an open-source machine learning framework. Keras is an excep-
tionally useful and flexible libraries for the constructing and training of artificial
neural network architecture.

• Numpy [25] library is fundamental package for scientific computing with Python.
Numpy is essential for scientific computations and matrices’ creation and ma-
nipulation.

• Scikit-learn [26] is a simple and efficient library that contains tools for machine
learning, data analysis, and scientific computations.
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• Pandas [27] is a fast, powerful, flexible, and easy to use open-source data analysis
and manipulation tool.

• Matplotlib [28] is a comprehensive library for creating static, animated, and
interactive visualizations.

• Requests [29] is an elegant and simple HTTP library for Python.

• PyCryptodome [30] is a self-contained Python package of low-level crypto-
graphic primitives.

• PyEMD [31] is a Python implementation of Empirical Mode Decomposition
(EMD) and its variations.

• Telegram [32] is a messaging app with a focus on speed and security, it’s super-
fast, simple and free.

• Plotly [33] is graph library which makes interactive, publication-quality graphs.

A.2 Detailed results

In this section and more specifically in subsections A.2.1, A.2.2 the detailed results for
both EUR/CHF and USD/CHF currency pairs are shown. As it can be seen below, the
proposed system accurately predicts currency pairs other than the EUR/USD currency
pair. As a result, it can be used as a general trading system for any currency pair.

A.2.1 EUR/CHF

In this section the results for the EUR/CHF currency pair are presented. In this case
too, the proposed approach is compared against the standard LSTM, the EMD-LSTM
implementations.

To begin with, the LSTM model behaves as in the EUR/USD case, where it per-
formed well in the training and the validation set. However, during the testing period
its generalization ability was unstable. In Fig. A.1 and in Table A.1 it can be observed
what was just described.
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(a) Training set comparison. (b) LSTM, training prediction error.

(c) Validation set comparison. (d) Validation prediction error.

(e) Test set comparison. (f) test prediction error.

Figure A.1: EUR/CHF, LSTM comparison between real (green) and forecasted(red)
prices and prediction errors.

Table A.1: EUR/CHF, LSTM prediction errors

Set MAE MSE MAPE

Train 4.10e-3 5.37e-05 3.11e-03

Validation 3.27e-03 2.03e-05 2.84e-03

Test 6.66e-03 1.05e-04 6.46e-03

Next, in Figs. A.2 - A.11 and in Tables A.2a - A.2c the proposed model’s results
for each IMF are shown. We can clearly see that the EMD-LSTM approach accurately
predicts the IMF components. In addition, for the case of EUR/CHF the number of
the generated IMFs differs from the one of the EUR/USD currency pair. As mentioned
in Section 2.2, the number of IMFs depends on the input signal.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.2: EURCHF - IMF1 real (green) vs predicted (red) and prediction errors.

Furthermore, although that the currency pair has changed, the model’s behavior
remains the same. In the first IMF components, which are the high frequency compo-
nents, the prediction error can easily be seen. On the other hand, in the low frequency
components we can see that someone cannot easily distinguish the difference between
the forecasted (red) and the real (green) values.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.3: EURCHF - IMF2 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.
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(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.4: EURCHF - IMF3 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.
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(e) Test set comparison. (f) Test set prediction error.

Figure A.5: EURCHF - IMF4 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.6: EURCHF - IMF5 real (green) vs predicted (red) and prediction errors.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.7: EURCHF - IMF6 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.
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(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.8: EURCHF - IMF7 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.
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(e) Test set comparison. (f) Test set prediction error.

Figure A.9: EURCHF - IMF8 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.10: EURCHF - IMF9 real (green) vs predicted (red) and prediction errors.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.11: EURCHF - IMF10 real (green) vs predicted (red) and prediction errors.
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Table A.2: EUR/CHF, IMF results

(a) Train set prediction error.

IMF MAE MSE MAPE

IMF1 1.57e-03 7.49e-06 2258740078.2121

IMF2 7.87e-04 2.01e-06 2258740078.2121

IMF3 2.37e-04 2.13e-07 2258740078.2121

IMF4 1.72e-04 1.26e-07 2258740078.2121

IMF5 2.07e-04 1.13e-07 2258740078.2121

IMF6 4.20e-04 4.45e-07 2258740078.2121

IMF7 4.20e-04 3.80e-07 2258740078.2121

IMF8 1.36e-03 5.36e-06 2258740078.2121

IMF9 8.89e-04 1.01e-06 2258740078.2121

IMF10 2.69e-03 1.46e-05 2258740078.2121

(b) Validation set prediction error.

IMF MAE MSE MAPE

IMF1 1.14e-03 3.50e-06 2258740078.2121

IMF2 1.14e-03 4.96e-07 7933170076.9416

IMF3 1.84e-04 7.82e-08 7933170076.9416

IMF4 1.02e-04 2.05e-08 7933170076.9416

IMF5 1.23e-04 2.40e-08 7933170076.9416

IMF6 2.37e-04 7.10e-08 7933170076.9416

IMF7 1.26e-04 2.30e-08 7933170076.9416

IMF8 4.40e-04 2.79e-07 7933170076.9416

IMF9 4.82e-04 2.33e-07 7933170076.9416

IMF10 5.69e-04 4.93e-07 7933170076.9416

(c) Test set prediction error.

IMF MAE MSE MAPE

IMF1 1.15e-03 2.74e-06 7933170076.9416

IMF2 4.69e-04 4.37e-07 7933170076.9416

IMF3 8.77e-05 1.62e-08 7933170076.9416

IMF4 1.02e-04 2.05e-08 7933170076.9416

IMF5 1.31e-04 3.19e-08 7933170076.9416

IMF6 2.91e-04 1.84e-07 7933170076.9416

IMF7 7.07e-05 7.76e-09 7933170076.9416

IMF8 4.18e-04 2.31e-07 2742129804.1685

IMF9 1.07e-03 1.19e-06 2742129804.1685

IMF10 2.76e-03 9.24e-06 2.58e-03

As it can been seen in the Tables A.2a - A.2c the MAPE metric, which was used
to measure the models’ performance, produces large numbers due to the near zero
values that the IMFs have. As result, more attention is given in the rest of the metrics,
MAE and MSE respectively.

Next, Fig. A.12 and Table A.3 show the EMD-LSTM results. In this case, the
EMD-LSTM approach outperforms the standard LSTM approach, but still from the
obtained results in the test set we can clearly see that there is still for improvement.
Thus, the EMD-LSTM-PSO implementation was tested on the EUR/CHF currency
too, in order to verify its superiority against the other implementations. Figure A.13a
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and Table A.4 show that the proposed approach outperformed by far the standard
LSTM and the EMD-LSTM approaches.

(a) Training set comparison. (b) Training prediction error.

(c) Validation set comparison. (d) Validation prediction error.

(e) Test set comparison. (f) Test prediction error.

Figure A.12: EUR/CHF, EMD-LSTM comparison between real (green) and fore-
casted(red) prices and prediction errors.

Table A.3: EUR/CHF, EMD-LSTM prediction errors.

Set MAE MSE MAPE

Train 4.23e-03 3.58-05 3.00e-03

Validation 1.78e-03 5.13e-06 1.55e-03

Test 4.50e-03 2.53e-05 4.24e-03
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(a) Test set comparison. (b) Test set prediction error.

Figure A.13: EURCHF, EMD-LSTM-PSO real (green) vs predicted (red) and predic-
tion errors.

Table A.4: EUR/CHF, EMD-LSTM-PSO prediction errors.

Set MAE MSE MAPE

Test 2.52e‐03 1.06e‐05 2.35e‐03

A.2.2 USD/CHF

In this Section, the results for the USD/CHF currency pair are shown. As with the
other two currency pairs, the proposed model behaves almost the same. Their main
difference lies in the performance of the standard LSTM approach, which in this
currency pair seems to perform well even in the testing period. However, that does
not mean that performs better than the EMD-LSTM and the EMD-LSTM-PSO imple-
mentations. Comparing the EMD-LSTM results presented in Fig. A.24 and in Table
A.7 with the respective results from the LSTM model shown in Fig. A.14 and A.5,
the EMD-LSTM approach outperforms the standard LSTM approach. Moreover, the
obtained results from the proposed approach shown in Fig. A.25a and in Table A.8
verify that its superiority against the other two implementations.
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(a) Training set comparison. (b) Training prediction error.

(c) Validation set comparison. (d) Validation prediction error.

(e) Test set comparison. (f) Test prediction error.

Figure A.14: LSTM, USD/CHF comparison between real (green) and forecasted(red)
prices and prediction errors.

Table A.5: USD/CHF, LSTM prediction errors

Set MAE MSE MAPE

Train 8.93-03 1.50e-05 8.02e-03

Validation 3.57e-03 2.13e-05 3.68e-03

Test 3.97e-03 2.71e-05 4.20e-03

68



(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.15: USDCHF - IMF1 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.
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(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.16: USDCHF - IMF2 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.18: USDCHF - IMF4 real (green) vs predicted (red) and prediction errors.

(e) Test set comparison. (f) Test set prediction error.

Figure A.17: USDCHF - IMF3 real (green) vs predicted (red) and prediction errors.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.19: USDCHF - IMF5 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.
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(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.20: USDCHF - IMF6 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.
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(e) Test set comparison. (f) Test set prediction error.

Figure A.21: USDCHF - IMF7 real (green) vs predicted (red) and prediction errors.

(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.22: USDCHF - IMF8 real (green) vs predicted (red) and prediction errors.
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(a) Training set comparison. (b) Training set prediction error.

(c) Validation set comparison. (d) Validation set prediction error.

(e) Test set comparison. (f) Test set prediction error.

Figure A.23: USDCHF - IMF9 real (green) vs predicted (red) and prediction errors.
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Table A.6: USD/CHF, IMF results

(a) Train set prediction error.

IMF MAE MSE MAPE

IMF1 1.98e-03 8.26e-06 2.58e-03

IMF2 9.97e-04 2.04e-06 2.58e-03

IMF3 3.76e-04 3.05e-07 2.58e-03

IMF4 3.04e-04 2.78e-07 555221024.4754

IMF5 1.27e-04 3.97e-08 555221024.4754

IMF6 1.17e-03 2.24e-06 555221024.4754

IMF7 3.99e-04 2.54e-07 4.81e-02

IMF8 1.03e-03 1.77e-06 1.52e-01

IMF9 7.86e-04 1.20e-06 1.52e-01

(b) Validation set prediction error.

IMF MAE MSE MAPE

IMF1 1.31e-03 3.50e-06 1.52e-01

IMF2 6.15e-04 7.13e-07 1.52e-01

IMF3 2.13e-04 9.00e-08 9.00e-08

IMF4 1.50e-04 3.56e-08 9.00e-08

IMF5 8.60e-05 1.47e-08 9.00e-08

IMF6 6.13e-04 6.46e-07 9.00e-08

IMF7 3.12e-04 1.23e-07 9.00e-08

IMF8 5.63e-04 3.98e-07 9.00e-08

IMF9 1.00e-03 1.03e-06 9.00e-08

(c) Test set prediction error.

IMF MAE MSE MAPE

IMF1 1.37e-03 3.91e-06 4089956319.7622

IMF2 7.39e-04 9.73e-07 4089956319.7622

IMF3 2.76e-04 1.82e-07 1.91e-01

IMF4 1.49e-04 3.82e-08 1.03e-01

IMF5 5.56e-05 4.57e-09 3.30e-02

IMF6 5.41e-04 3.90e-07 3.30e-02

IMF7 2.53e-04 7.63e-08 4.55e-02

IMF8 2.23e-03 5.11e-06 4.55e-02

IMF9 1.18e-03 2.02e-06 1.31e-03
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(a) Training set comparison. (b) Prediction error (train set).

(c) Validation set comparison. (d) Prediction error (val set).

(e) Test set comparison. (f) Prediction error on (test set).

Figure A.24: USD/CHF, EMD-LSTM comparison between real (green) and fore-
casted(red) prices.

Table A.7: USD/CHF, EMD-LSTM prediction errors.

Set MAE MSE MAPE

Train 3.08e-03 1.59e-05 2.91e-03

Validation 1.88e-03 5.66e-06 1.93e-03

Test 2.39e-03 8.69e-06 2.52e-03
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(a) Test set comparison. (b) Test set prediction error.

Figure A.25: USD/CHF, EMD-LSTM-PSO comparison between real (green) and fore-
casted(red) prices.

Table A.8: USD/CHF, EMD-LSTM-PSO prediction errors.

Set MAE MSE MAPE

Test 2.30e‐03 8.71e‐06 2.42e‐03
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