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Περίληψη

Η μέθοδος των πεπερασμένων στοιχείων είναι μια ευρέως γνωστή αριθμητική

μέθοδος για τον υπολογισμό προσεγγιστικών λύσεων συνήθων διαφορικών εξι-

σώσεων (Σ.Δ.Ε.) και μερικών διαφορικών εξισώσεων (Μ.Δ.Ε.). Η μέθοδος είναι

ένα πολύ ισχυρό εργαλείο στη μελέτη διαφόρων μαθηματικών μη-γραμμικών προ-

βλημάτων και έχει πολλές εφαρμογές, όπως η δομική ανάλυση και η μηχανική των

ρευστών. Σε αυτή τη διατριβή επικεντρωνόμαστε στην εφαρμογή της μεθόδου

κυρίως σε προβλήματα Ρευστομηχανικής. Αρχικά παρουσιάζουμε τη μέθοδο μαζί

με τα βασικά θεωρήματα και παραδείγματα. Αναλύουμε τα εκ των προτέρων (a
priori) σφάλματα για γραμμικά προβλήματα και παρουσιάζουμε τις συναρτήσεις
βάσης που εφαρμόζονται στα υπό εξέταση προβλήματα που μελετάμε.

Παρουσιάζουμε την αριθμητική λύση της μονοδιάστατης μη-γραμμικής εξίσω-

σης του Duffing. Επιπλέον, επικεντρωνόμαστε στο δισδιάστατο πρόβλημα του
Stokes. Στην εργασία αυτή παρουσιάζουμε νεότερες παραλλαγές των μεθόδων
πεπερασμένων στοιχείων, όπως είναι η ασυνεχής μέθοδος του Galerkin. Παρου-
σιάζεται επίσης η έννοια του τοπικά εκλεπτυσμένου πλέγματος (adaptive mesh).
Τέλος, μελετάμε τις δισδιάστατες μη-γραμμικές εξισώσεις των Navier–Stokes ε-
φαρμόζοντας τη κλασική μέθοδο του Galerkin. Αυτές οι προηγμένες μέθοδοι
παρέχουν αξιόπιστα αριθμητικά αποτελέσματα σε όλες τις περιπτώσεις που με-

λετήθηκαν. Αυτό επιτυγχάνεται με την εφαρμογή των μεθόδων Πεπερασμένων

Στοιχείων σε κατάλληλα ‘προβλήματα δοκιμής’, όπως είναι η οπίσθια κατάβαση

(σκαλί) της ροής (backward facing step). ΄Ολα τα αριθμητικά πειράματα έχουν
πραγματοποιηθεί με κώδικά που αναπτύχθηκε στα προγράμματα Matlab και FE-
niCS.
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Abstract

The finite element method is a widely known numerical method for calcu-
lating approximate solutions of ordinary differential equations (ODEs) and
partial differential equations (PDEs). This method is a powerful tool in the
study of various nonlinear problems and has many applications, such as stru-
ctural analysis and fluid mechanics. In this thesis we concentrate on applying
the method mainly to Fluid Mechanics problems. Initially, we present the
method along with the basic theorems and examples. We analyze the a priori
errors for linear problems and the base functions that distinguish the problem
under consideration.

We further present the numerical solution of the one–dimensional nonlinear
Duffing equation. Additionally, we concentrate on the two–dimensional Stokes
problem. We focus on presenting novel finite element method variants, such
as the Discontinuous Galerkin method. The notion of adaptive mesh is al-
so discussed. Lastly, we study the two–dimensional Navier–Stokes equations.
We present the formulation of the equations in the classical Galerkin method.
These advanced methods provide reliable numerical results in all studied ca-
ses. This is achieved with the application of the Finite Element methods to
appropriate “test problems”, such as the backward facing step. We obtain all
the numerical results utilizing the software programs Matlab and FEniCS.
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CHAPTER1
Introduction

Nonlinear differential equations govern a plethora of biological, mechanical
and physical phenomena. In practice, all PDEs aren’t analytically solvable,
hence numerical methods are utilized. The finite element method (FEM) is a
widely known numerical method providing approximate solutions to differen-
tial equations. A large domain divides into smaller discrete cells, called finite
elements, being simple polygonal shapes, forming the computational mesh of
this domain. The method excels in its accurate representation of complex
geometries, the finite elements of which are approximated by polynomials.
Nowadays, FEM is arguably one of the most well established and convenient
computational techniques. There is a variety of applications in many fields,
such as mechanical design, structural analysis, fluid flow, heat transfer and
electromagnetism to computer programming aspects.

Origins of the FEM are found in the early approximation of π by consid-
ering a sequence of inscribed polygons, although the method was formally
introduced in 1960 by Clough [28]. In terms of the present day notation, each
side of the polygon represented an element and as their number increases, the
approximate values converge to the true one. Solving complex elasticity and
structural analysis problems in civil and aeronautical engineering, for exam-
ple wings and fuselages are treated as assemblies of stringers, skins and sear
panels, further developed the method.

In 1851 Schellback in order to obtain a differential equation of a surface of
a minimum area bounded by a specific closed curve, divided the surface into
several triangles and used a finite difference expression to find the total dis-
cretized area. The equation was replaced by a set of algebraic equations. Until
the 1900’s the behaviour of structural frameworks, composed of several bars
arranged in a regular pattern, has been approximated by one of an Isotropic
elastic body.
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Chapter 1

In 1909 Ritz developed an effective method to find the approximate solu-
tion to problems of deformable solid mechanics. His approach referred to an
approximation of an energy functional by known functions multiplied with
unknown coefficients. Minimizing the functional in relation to each unknown
leads to a system determining those coefficients. The functions used are re-
stricted in satisfying the given boundary conditions.

In 1915, Boris Grigoryevich Galerkin formulated a general method for solv-
ing differential equations. His method with piecewise polynomial spaces is
known as the finite element method. Technological advancements, further
developed Galerkin’s method. The approach traces back to variational prin-
ciples of Leibniz, Euler, Lagrange, Dirichlet, Hamilton, Castigliano, Rayleigh
and Ritz. Hrenikoff, in 1941, introduced the framework method, replacing a
plain elastic medium with an equivalent system of sticks and rods.

The FEM was introduced in the 50s by structural engineers, especially in
the aircraft industry, predicting stresses induced in aircraft wings, despite
being independently proposed by Courant in 1943 [24]. He introduced special
linear functions over triangular regions, obtained by dividing the cross region
and applying the method for the solution of torsional rigidity and hallow shaft.
The latter introduced the Rayleigh–Ritz method. Ritz functions didn’t need to
satisfy the boundary conditions. Courant’s theory could not be implemented
due to the current absence of computers. More significant contributions to
FEM, were made by Turner in 1956.

FEM obtained its real impetus in the 60s and 70s through developments of,
among others, J. H. Argyris and collaborators. Clough in 1960 introduced the
term “finite element” in [4]. The first book on FEM was published in 1967
by Zienkiewicz and Cheung [27]. The main motive behind the wide spread of
FEM was the handling of big volume of numerical solution by computers [23].

In this dissertation, focus is set on the Galerkin FEM. As previously men-
tioned, any progress to FEM, regarding fluid mechanics applications, was sig-
nificantly delayed due to nonlinear convection and solution instability orig-
inating from the element selection. In this section, we are analysing basic
principals of FEM, where more details can be found in the textbooks by Bren-
ner & Scott [6]. In the next section we discuss about the FEM for the Stokes
and Navier–Stokes problems. Finally, we introduce the Discontinuous Galerkin
(DG) method and the adaptive mesh refinement approach.
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CHAPTER2
Basic Principles of Finite
Elements

2.1 Finite Element Theory

It is important to understand the basics of the finite element theory. Ana-
lyzing the following simple example helps the reader to understand the intro-
duction of the weak form, as well as the path needed to be followed in order to
create the weak form. Consider an one–dimensional boundary value problem,−d2u

dx2
= f(x), x ∈ (0, 1)

u(0) = 0, u(1) = 0
(2.1)

Multiplying both parts of the equation with a function v with v(0) = v(1) = 0
and integrating by parts, we get,

(f, v) :=

∫ 1

0
f(x)v(x) dx =

∫ 1

0
−u′′(x)v(x) dx = −[u′(x)v(x)] 10 +

∫ 1

0
u′(x)v′(x) dx

=

∫ 1

0
u′(x)v′(x) dx := α(u, v),

where α(u, v) is a bilinear form.

Definition 2.1.1 (Bilinear form). A bilinear form is a function B : V ×V →
K where V is a vector space and K is the field of scalars, that is linear in each
argument separately,

1. B(u+ v, w) = B(u,w) +B(v, w) and B(λu, v) = λB(u, v)

2. B(u, v + w) = B(u,w) +B(u,w) and B(u, λv) = λB(u, v)

5



Chapter 2 2.1. Finite Element Theory

Definition 2.1.2 (Square–integrable function). A square–integrable func-
tion or a quadratically integrable function is denoted as L2 function and is de-
fined as: f : [a, b] → R, square–integrable on [a,b] ⇐⇒

∫ b
a |f(x)|2 dx < ∞

Taking into consideration the above informations a function space can be
defined as a test space:

V =
{
v ∈ L2(0, 1) : α(u, v) < ∞ and v(0) = v(1) = 0

}
(2.2)

and

u ∈ V such that a(u, v) = (f, v), ∀v ∈ V, (2.3)

where L2(0, 1) is the space of square integrable functions in [0, 1].

In general, the function v which multiplies the PDE is referred as a test
function. The unknown function u that needs to be approximated is called a
trial function.

The function v is an arbitrary function. For the linear case it has been
shown that: If the weak form is a(u, v) = (f, v), where a(·, ·) is bilinear, and
u ∈ C2[0, 1] and f ∈ C0[0, 1] satisfy the weak form, then u also satisfies the
strong form with the appropriate initial conditions [6].

According to the Ritz–Galerkin approximation we have that if S ⊂ V is
any finite dimensional subspace and we consider that (2.3) with V is replaced
by S, we get,

uS ∈ S such that a(uS , vS) = (f, vS), ∀vS ∈ S. (2.4)

With the above we can define a discrete scheme for approximating (2.1) and
it has been proven that given f ∈ L2(0, 1), the equation has a unique solution.

2.1.1 Error Estimates

Definition 2.1.3 (L2(0, 1) norm).

∥v∥ = (v, v)
1
2 =

(∫ 1

0
v(x)2dx

) 1
2

(2.5)
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Chapter 2 2.1. Finite Element Theory

2.1.2 Piecewise Polynomial Spaces

We introduce linear polynomials to construct the Galerkin FEM and for
that purpose we should introduce a partition of our domain. We consider
0 = x0 < x1 < ... < xN = 1, be a partition of [0, 1], and S be the linear space
of functions v such that,
S = {v : [0, 1] → R : v is continuous, v ∈ [xi, xi+1] is linear polynomial for
i = 1, ..., N and v(0) = v(1) = 0}

For each i = 1, ..., N we can define ϕi and ϕi(xj) = δij = the Kronecker
delta i.e: 

ϕi(x) =
x− xi−1

xi − xi−1
, x ∈ [xi−1, xi]

ϕi(x) =
xi+1 − x

xi+1 − xi
, x ∈ [xi, xi+1]

ϕi(x) = 0, otherwise

(2.6)

Theorem 2.1.1. The functions {ϕi}Ni=1 are the basis functions of S, [21].

Proof. Showing that

1. {ϕi}Ni=1 are linear independent

2. they produce S

proves the above theorem. We consider a linear combination of the functions
ϕi which is zero at [0, 1].

N∑
i=1

λiϕi(x) = 0 ,∀x ∈ [0, 1].

Then, because ϕi(xi) = 0 for i ̸= j and ϕi(xi) = 1 for i = j, we have
that λi = 0, i = 1, ..., N . Therefore, {ϕi}Ni=1 are linearly independent. In
addition, if v ∈ S, we see that v(x) =

∑N
i=1 v(xi)ϕi(x) , ∀x ∈ [0, 1], because

v and
∑N

i=1 v(xi)ϕi, are linear polynomials in any interval [xi, xi+1] and are
identical at its edges. Since 1. and 2. hold, {ϕi}Ni=1 are the basis functions
of S.
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Chapter 2 2.1. Finite Element Theory

� {ϕi : 1≤ i ≤ N } is a nodal basis from S and it’s called the nodal basis
of S. The set {ϕi} is used in order to define the functions of a discrete
space.

� {u(xi)} are the nodal values of function u

� {xi} are the nodes

� uh =
∑n

i=1 u(xi)ϕi, for u ∈ C0([0, 1]) and uh ∈ S , is the approximate
solution of u

Remark. If u ∈ S =⇒ u = uh since u − uh is linear on each [xi−1, xi] and
zero at the endpoints, hence must be identically zero.

Writing (2.1) in terms of a basis {ϕi : 1 ≤ i ≤ n} of S with uS =
∑N

i=1 uiϕj ,
Kij = a (ϕj , ϕi) , Fi = (f, ϕi) for i, j = 1, . . . , N . Setting U = (ui) ,K = (Kij)
and F = (Fi). Then, equation (2.1) is equivalent to solving the following
algebraic system,

KU = F (2.7)

The matrix K is symmetric and positive-definite. In addition, the matrix
is sparse and tridiagonal, so the system in equation (2.7) can be solved.

2.1.3 An Application to the Duffing equation

In this subsection, we present an example of solving the Duffing equation
using the Galerkin FEM method. The Duffing equation arguably serves as the
simplest mathematical model for describing the chaotic behaviour of a system.
It describes a periodically forced oscillator of a second order non-linear ODE
with constant coefficients.


d2u

dt2
+ δ

du

dt
+ αu− βu3 = γ cos(ωt), u = u(t), t ∈ [0, L]

u(0) = 0 and u′(L) = 0.
(2.8)

The parameter α, is the linear stiffness coefficient, β controls the amount
of nonlinearity in the restoring force (if β = 0, the equation describes simple
harmonic oscillation). In physical terms the equation represents a nonlinear
spring whose stiffness does not exactly obey Hooke’s law. The term γ cos(ωt)
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Chapter 2 2.1. Finite Element Theory

is the external force. At first, we will demonstrate the steps of utilizing FEM
in this equation and then we will obtain numerical results [16, 20].

Initially, we discretize the domain of the equation into a number of elements
to highlight the numerical approach. We start this procedure by diving the
function into elements in the domain [0, L], e.g. 0 = t0 < t1 < ... < tN = L,
be a uniform partition. Let ϕ = ϕ(x) be the basis or test function. For each
element, we have two nodes ti and ti+1.∫ ti+1

ti

(
u′′ + δu′ + αu− βu3

)
ϕdt−

∫ ti+1

ti

γϕ cos(ωt) dt = 0, (2.9)

where ϕi are given as,


ϕi(t) =

t− ti−1

ti − ti−1
, t ∈ [ti−1, ti]

ϕi(t) =
ti+1 − t

ti+1 − ti
, t ∈ [ti, ti+1]

ϕi(t) = 0, otherwise

Because of the Neumann boundary condition for i = N , we also introduce
the following basis function,

ϕN (t) =
t− tN−1

tN − tN−1
, t ∈ [tN−1, tN ]

ϕN (t) = 0, otherwise

Substituting the basis functions into equation (2.9) where,

h = ti+1 − ti, (2.10)

we obtain keij , for each element and it is given as,

keij =

∫ ti+1

ti

(
−ϕ′

i, ϕ
′
j + δϕiϕj + αϕiϕj − βϕ3

iϕj

)
dt

and also gei is given as,

gei = γ

∫ ti+1

ti

ϕj cos(ωt)dt− ϕju
′|ti+1

ti

9



Chapter 2 2.1. Finite Element Theory

We finally obtain the system,

KU = F+G, where U =


u1
u2
u3
...
uN


Where K is the coefficient matrix, U is the vector of the unknowns, and

F + G is the right hand side of the system under consideration. Due to the
essential boundary conditions, we know that u(0) = u1 = 0. We should not
forget that the approximate solution is, uh =

∑N
i=1 u(ti)ϕi, where u(ti) = ui

and ϕi(t) = ϕi.

The corresponding numerical solution for u(0) = u′(L) = 0, f(t) = 0.2 cos t,
δ = 0, α = 0.06, γ = 0.2, ω = 1 and β = 0.0001 is shown for N = 160 nodes,
and it is compared with the finite difference method (FDM) and the Runge–
Kutta shooting methods until satisfy the boundary condition u′(L) = 0, where
L = 15, as depicted in Figure 2.1 [16].

Figure 2.1: Duffing equation with three methods, FEM, FDM and Runge–
Kutta shooting method, for u(0) = 0, u′(L) = 0, f(t) = 0.2 cos(ωt), δ = 0,
α = 0.06, γ = 0.2, ω = 1 and β = 0.0001.

10



Chapter 2 2.1. Finite Element Theory

Table 2.1: Local error estimates for the three methods, FEM, FDM and RK-
shooting.

i FEM FDM |δ(FEM−FDM)| RK-s |δ(FEM−RK−s)|
1 0 0 0 0 0
20 0.5888 0.5840 0.0048 0.5815 0.0073
40 0.9677 0.9502 0.0174 0.9492 0.0184
60 0.7029 0.6758 0.0271 0.6850 0.0179
80 0.6647 0.6464 0.0183 0.6608 0.0038
100 0.7094 0.6819 0.0276 0.6979 0.0115
120 0.1033 0.0625 0.0408 0.0854 0.0179
140 0.4427 0.4526 0.0098 0.4290 0.0138
160 0.4414 0.4339 0.0075 0.4214 0.02

Table 2.2: L2 error estimates for the three methods, FEM, FDM and RK-
shooting.

||uFEM − uFDM ||L2 ||uFEM − uRK−s||L2

0.0867 0.0563

Additionally, we compare the numerical solution obtained from the FEM
with the analytical solution of the problem under consideration. More pre-
cisely, solving analytically equation (2.8) with boundary conditions, u(0) = 1,
u′(L) = −0.244, zero forcing term, f(t) = 0 and all the other parameters as
described above, we show the comparison between the obtained exact solution,

u′(t) = ±
√

E − αu2 − β

2
u4, (2.11)

and the corresponding numerical solution. Where E, is the energy of the
system and we use the positive solution (positive velocity) of equation (2.11)
for the comparison between the analytical and the numerical solution. The
maximum error obtained from the comparison is, ||δ||∞ = 1.4× 10−3.

11



Chapter 2 2.1. Finite Element Theory

Figure 2.2: Comparing exact and numerical solution for the Duffing equation
for u(0) = 1, u′(L) = −0.244, f(t) = 0, δ = 0, α = 0.06, and β = 0.0001.

All the numerical results of this section were obtained with the help of
Matlab and Mathematica software packages. The Matlab code can be found
in the Appendix.

2.1.4 Two–Dimensional finite elements

Let’s consider a two–dimensional problem (Dirichlet problem) for the Pois-
son equation,

uxx(x, y) + uyy(x, y) = f(x, y), inΩ, u = 0, on ∂Ω (2.12)

Where Ω is a connected open region in the (x, y), ∂Ω is the boundary of Ω.
The weak form of this problem is,

(f, v) :=

∫
Ω
fv dΩ = −

∫
Ω
∇u · ∇v dΩ := −α(u, v), (2.13)

where, ∇ denotes the gradient operator and · denotes the dot or inner product
in the two–dimensional space.

The procedure to construct a basis function for two-dimensional finite el-
ements has similarities with the one-dimensional case. We denote as u(x, y)
and v(x, y) the components of the velocity. In two-dimensional, triangular and
quadrilateral elements are the most commonly used ones.

12



Chapter 2 2.1. Finite Element Theory

� Ni(x, y) are the nodal basis and
∑n

i=1Ni(x, y) = 1

� (xi, yi) are the nodes

� ui(x, y) and vi(x, y) are the nodal values

� uh(x, y) =
∑n

i=1 ui(x, y)Ni(x, y) and vh(x, y) =
∑n

i=1 vh(x, y)Ni(x, y)

2.1.5 Triangular elements

In determining the shape functions Ni(i = 1, 2, 3) we assume that the shape
functions are linear functions of x and y.

By mapping the physical coordinates (x, y) of triangular element to the
local natural coordinates (ξ, η) i.e. (0, 0), (1, 0) and (0, 1) we can use the
above general form: N = A+Bξ + Cη

N1 = 1− ξ − η

N2 = ξ

N3 = η

2.1.6 Quadrilateral elements

The dimension of the element is defined here as 2a × 2b. A local natural
coordinate system (ξ, η) with its origin located at the centre of the rectangular
element is defined. The relationship between the physical coordinate (x, y) and
the local natural coordinate system (ξ, η) is given by

ξ = x/a, η = y/b

Master element coordinates, ξ and η, vary between -1 and 1. Local node num-
bering starts from the lower left corner and goes CCW.
General form: N = A+Bξ + Cη +Dξη

N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1− ξ)(1 + η)

13



Chapter 2 2.1. Finite Element Theory

Shape functions can be determined by considering the general form and using
the Kronecker–delta property. In two-dimensional (x, y) coordinates can be
written in terms of (ξ, η) coordinates by using the previously defined 2D shape
functions as follows:

x =
4∑

i=1

Ni(ξ, η)xi

y =
4∑

i=1

Ni(ξ, η)yi

We are now able to express ξ and η derivatives of the ith shape function in
terms of derivatives with respect to x and y as follows

[
∂Ni/∂ξ
∂Ni/∂η

]
= J

[
∂Ni/∂x
∂Ni/∂y

]
where J is the Jacobian matrix defined by

J =

[
∂x/∂ξ ∂y/∂ξ
∂x/∂η ∂y/∂η

]
Substituting the interpolation of the coordinates into the above equation, and
after manipulations we conclude:[

∂Ni/∂x
∂Ni/∂y

]
= J−1

[
∂Ni/∂ξ
∂Ni/∂η

]
which gives the relationship between the differentials of the shape functions
with respect to x and y with those with respect to ξ and η.

Next, we will apply the finite elements method to the Poisson equa-
tion (2.12) with quadrilateral elements. The procedure for trilingual elements
is similar [13].

−∆u = f in Ω

u = uD on ΓD

∇u · n = g on ΓN

(2.14)

where, n = (nx, ny) is the unit normal vector on the boundary ΓN, and

uD =

{
1, x = 0

0, x = 1
, g = sin(5x) for y = 0, 1 ,

f(x, y) = c exp

(
−(x− α)2 + (y − b)2

d

)
, (2.15)
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Chapter 2 2.1. Finite Element Theory

where, c = 10., α = b = 0.5 and d = 0.02. We know that,

−
∫
Ω
(∆u)v dΩ =

∫
Ω
∇u · ∇v dΩ−

∫
∂Ω

(∇u · n) v ds,

Figure 2.3: We visualize four quadrilateral elements on a simplified FEM grid.

Expressing equation (2.14) in the standard notation a(u, v) = L(v), is rela-
tively easy to do and is given as,

a(u, v) =

∫
Ω
∇u · ∇v dΩ

L(v) =

∫
Ω
fv dΩ +

∫
ΓN

(∇u · n) v ds,

where, uS =
∑N

j=1 ujNj(x, y), and N denotes the number of nodes, v =
Ni(x, y) where Ni denotes the nodal basis.

�

∫
Ω∇u · ∇v dΩ =

∫
Ω

(
∂v

∂x

∂u

∂x
+

∂v

∂y

∂u

∂y

)
dΩ

�

∫
Γ v(n · ∇u)ds =

∫
Ω

(
nx

∂u

∂x
+ ny

∂u

∂y

)
Nids

�

∫
Ω vf dΩ =

∫
ΩNif dΩ

15



Chapter 2 2.1. Finite Element Theory

Where, Ke
ij integral can be written in terms of the generalized element

coordinates ξ and η as follows,

Ke
ij =

∫
Ωe

[(
J−1
11

∂Ni

∂ξ
+ J−1

12

∂Ni

∂η

)(
J−1
11

∂Nj

∂ξ
+ J−1

12

∂Nj

∂η

)
+

(
J−1
21

∂Ni

∂ξ
+ J−1

22

∂Ni

∂η

)(
J−1
21

∂Nj

∂ξ
+ J−1

22

∂Nj

∂η

)]
|Je| dξdη,

where, |Je| is the determinant of the Jacobian of the transformation from
physical space to the normalized one, and the terms J−1

ij , i, j = 1, 2 are the
metrics of the transformation. In Figure 2.4, we present the results obtained
from the problem and boundary conditions discussed above, equation (2.14),
with a number of cells 128 and 81 nodes, respectively.

Figure 2.4: Numerical solution of the Poisson equation with FEM, solution of
the problem under consideration, equation (2.14)

In next chapters, we are going to study the Stokes and Navier-Stokes
equations with higher order elements with more nodes, as shown below. For
quadrilateral elements we have a general form,

N = A+Bξ + Cη +Dξη + Eξ2 + Fη2 +Gξ2η +Hξη2 + Iξ2η2

For triangular elements we have a general form,

N = A+Bξ + Cη +Dξη + Eξ2η + Fξη2
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Chapter 2 2.1. Finite Element Theory

For the triangular Taylor Hood (P2 − P1) elements, that we are going
to use later, it has been proven that [12],



N1

N2

N3

N4

N5

N6

 =



L1 (2L1 − 1)
L2 (2L2 − 1)
L3 (2L3 − 1)

4L1L2

4L2L3

4L3L1


for both of the components of the velocity and linear polynomials for the
pressure,  ϕ1

ϕ2

ϕ3

 =

 L1

L2

L3

 ,

where,
Li = ai + bix+ ciy, i = 1, 2, 3

In this section, we are analysing basic FEM principals and discussing about
shape functions for quadrilateral and triangular elements. In the next chapter,
we discuss about the FEM for the Stokes and Navier–Stokes problems.
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CHAPTER3
The Stokes and
Navier–Stokes Problem

3.1 The Stokes Problem

The linear Stokes equations are the limiting case of zero Reynolds number
for the Navier–Stokes equations. The Stokes equations have attracted a sub-
stantial attention from researchers because of its close relation with the nonlin-
ear Navier–Stokes equations. Initially, we consider the stationary Stokes prob-
lem for incompressible flow. Ω is a bounded open set of Rn (where n = 2, 3)
with regular boundary and f is a square integrable function on Ω. We seek a
solution (u, p) ∈ H1

0 (Ω)
2 × (L2(Ω)/R) of the problem [17, 23],

−ν∆u+∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω.
(3.1)

Here, u = (ux, uy) denotes the velocity vector, whereas f = (fx, fy) stands
for the body force vector and v =(vx, vy), finally ν is the fluid kinematic
viscosity, considered constant in the domain Ω. Based on this problem, we
will introduce error estimates and we will briefly discuss about the uniqueness
of the solution for this problem [5]. According to the finite element analysis,
we end up with the following weak form.

{
a (u,v) + b (p,v) = (f ,v) , ∀ v ∈ H1

0 (Ω)
n, u ∈ H1

0 (Ω)
n,

b (u, q) =
∫
Ω(∇ · u)q dΩ = 0, ∀ q ∈ H1(Ω), p ∈ H1(Ω),

(3.2)

where, a (u,v) = ν

∫
Ω
∇u · ∇v dΩ and b (p,v) =

∫
Ω
p (∇ · v) dΩ. The kine-
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Chapter 3 3.1. The Stokes Problem

matic viscosity ν =
µ

ρ
is considered constant, where µ is the dynamic viscosity

and ρ is the fluid density.

The trial and test spaces V and V0 are defined as,

V =
{
v ∈ H1(Ω) : v = u0 on ∂Ω

}
,

V0 =
{
v ∈ H1

0 (Ω) : v = 0 on ∂Ω
}
.

where H1(Ω) is a Hilbert space. More details can also be found in the Ap-
pendix.

Given two finite dimensional subspaces, Vh ⊂ H1(Ω)n and Qh ⊂ H1(Ω) the
corresponding discrete form is,{

a (uh,vh) + b (ph,vh) = (f ,vh) , ∀ vh ∈ V0h, uh ∈ V0h,

b (uh, qh) = 0, ∀ qh ∈ Qh, ph ∈ Qh,
(3.3)

where, V0h = {vh ∈ Vh : vh |∂Ω= 0}.

Definition 3.1.1 (Hilbert space). A Hilbert space is a vector space whose
topology is defined using an inner–product. One example of a Hilbert space is
L2(0, 1) with inner-product (·, ·). Hilbert spaces are complete metric spaces.

Definition 3.1.2 (Sobolev space). A Sobolev space is a vector space of
functions equipped with a norm that is a combination of Lp–norms of the
function itself and its derivatives up to a given order. We define the Sobolev
spaces as,

Hk(Ω) = W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), ∀ |α| ⩽ k} ,

where k is a non–negative integer and Dαu are the weak derivatives of the
function u. We define the Sobolev norm as follows,

∥u∥Wk,p(Ω) :=


(∑

|α|⩽k ∥Dαu∥pLp(Ω)

) 1
p

1 ⩽ p < ∞
max|α|⩽k ∥Dαu∥L∞(Ω) p = ∞

In the cases where p = 2 Sobolev space is a Hilbert space. The Sobolev space
W 1,2(Ω) is also denoted by H1(Ω) with norm

∥u∥H1 =

(∫
Ω
|u|2 + |∇u|2

) 1
2
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Chapter 3 3.1. The Stokes Problem

Two cases are analyzed for both triangular and quadrilateral elements de-
pending on the number of nodes on each element [5]. We focus only on the
Taylor–Hood method (six node triangular elements), second order polynomi-
als for the velocity and first order polynomials for the pressure at each element
(P2 − P1).

After finding a solution, for the problem under consideration, it is impor-
tant to show that it is stable and how the input data affect it. This can be
done using the inf–sup condition, the Ladyzhenskaya–Babuska–Brezzi (LBB)
condition. This is a condition for saddle point problems i.e. problems aris-
ing in different types of discretization of equations. Convergence is ensured
for most discretization schemes for positive definite problems but for saddle
point problems there are still discretizations that are unstable, due to spuri-
ous oscillations [25]. In these cases a better approach is the adaptation of the
computational grid [18]. We further discuss for the BB condition, introducing
the following theorem.

Theorem 3.1.1. If Ω is polygonal and Ωh = Ω, Ωh =
⋃
i
Ti, where Ti are

the triangles and h denotes the length of greatest triangle side, if all triangles
have at least one vertex which is not on ∂Ω, if Vh, Qh are chosen as in the
Taylor–Hood method, then there exists a constant C, independent of h, such
that,

supvh∈V0h

(vh,∇qh)

(vh,vh)
1
2

≥ C (∇qh,∇qh)
1
2 , ∀qh ∈ Qh. (3.4)

Where the Sobolev spaces used in the theorem are defined above (3.3). This
theorem follows the idea of the BB condition and the proof depends on the
choice of the elements and can be found in [5]. One of the most important
questions in solving such a problem is that of existence and uniqueness of the
solution. In this case we focus on the discrete form of the problem under con-
sideration, equation (3.3) where we can ensure the previous with the following
theorem [5].

Theorem 3.1.2. Under the conditions of theorem 3.1.1 the discrete form,
equation 3.3, has a unique solution (uh, ph) in V0h × (Qh/R) .

Additionally, we are interested in error estimates of the Stokes problem as
discussed in the next section.
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Chapter 3 3.1. The Stokes Problem

3.1.1 A Priori Error Estimates

A priori error estimates express the error in terms of the regularity of the
exact unknown solution and may give important information about the order
of convergence of a finite element method. A posteriori error estimates express
the error in terms of computable quantities such as the residual error and
possibly the solution of an auxiliary dual problem and contribute to the grid
adaptation, as described in next chapter [18]. A theorem that provides a priori
error estimates for the discrete form of the stationary Stokes problem using
Taylor-Hood elements (P2 − P1) is as follows.

Theorem 3.1.3. Let Ω be a polygon and Ωh = Ω for all h. We assume
that each element of Th (set of triangles) has at least one vertex not on the
boundary. Then the following inequalities are valid,

∥∇ (u− uh)∥ ⩽ h2K
(
∥u∥H3(Ω)N + ∥p∥H2(Ω)/R

)
∥∇ (p− ph)∥ ⩽ hK

(
∥u∥H3(Ω)N + ∥p∥H2(Ω)/R

)
Similar inequalities can be found in the case where we have quadrilaterals [5].

3.1.2 The Backward Facing Step Problem

The backward facing step (BFS) is a “test problem” widely known for its
application on internal flows. In this problem, flow separation is caused due
to sudden changes in the geometry. This creates a recirculation zone close to
the step wall, and downstream a reattachment point. In a two–dimensional
BFS geometry, the fluid flow can be distinguished into three regions, the shear
layer, the separation bubble and the reattachment zone [1, 22].

Due to the adverse pressure gradient that develops in the thin shear layer,
the characteristics of a BFS flow begin with an upstream boundary layer that
separates at the edge of the backward facing step. The region where the shear
layer develops is referred to as the shear layer region. This flow causes the
formation of a recirculation zone, which is located between the shear layer and
the adjacent wall. Eventually, the shear layer curves down towards the wall
and reattaches at the so called reattachment point. The horizontal distance
between the step and the reattachment point is defined as the “reattachment
length”. Due to the oscillatory motion of the shear layer, the reattachment
length is unsteady. Consequently, the reattachment point spreads within a
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zone, called reattachment zone [1, 22]. In this problem the flow parameters of
interest are,

u= horizontal velocity component, v= vertical velocity component,

L= length, h= the step height, H= the whole height,

µ = viscosity, ρ = density,

with a typical set of boundary conditions,

u = u0 on ΓD

∇u · n+ pn = g on ΓN

where,

� ΓD is referred to the Dirichlet or essential boundary conditions

� ΓN is referred to the Neumann or natural boundary conditions

where n is the associated normal vector. For further computations, it is easier
to write equations (3.1) to the following form for finding (u, p) ∈ W such that,

a((u, p), (v, q)) = L(v, q),

for all (v, q) ∈ W , where

a((u, p), (v, q)) =

∫
Ω
[∇u · ∇v − (∇ · v)p+ (∇ · u) q] dΩ,

L(v, q) =

∫
Ω
f · v dΩ+

∫
ΓN

g · v ds.

The space W should be a mixed (product) function space W = V × Q, such
that u ∈ V and q ∈ Q. We will use the Galerkin FEM to analyse the velocity
and pressure on this test problem.

The obtained numerical results are shown in the following figures. Figure 3.3
shows the velocity field in the domain for the backward step. We also present
the streamlines in the domain in order to visualize the recirculation close to
the step. It is observed that the maximum velocity is at the entrance of the
channel and the velocity drops rapidly as the domain expands. In Figure 3.4
we visualize the pressure field with the classical Galerkin FEM. It is observed
that the pressure field is smooth even with the Taylor-Hood elements.
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Figure 3.1: The domain Ω and the dimensions of the backward step.

Figure 3.2: the computational mesh composed of approximately 6060 finite
elements.

3.2 The Navier–Stokes Problem

Most of every real situation in fluid flows is characterized by the Navier–
Stokes equations that are the model of nonlinear PDEs, so it is recognizable
the importance to solve this particular equation. Because of the nonlinearity
of the problems that are described by the Navier–Stokes equations, an exact
solution is impossible to be obtained. However, it is very useful to describe and
analyse the physics of fluid flow problems and also more complex materials
if these equations can be solved. The finite element method constitutes an
effective way to find an approximate solution to these equations.
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Figure 3.3: The velocity profile of the Stokes equation on the backward step
problem.

Figure 3.4: The pressure profile of the Stokes equation on the backward step
problem.

In general the time–dependent, incompressible Navier–Stokes equations are:

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = f in Ω× (0, T )

∇ · u = 0 in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u(·, 0) = u0 in Ω

(3.5)
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Here, u represents the velocity vector, p the zero–mean pressure, f an exter-
nal force, and ν the kinematic viscosity (considered constant). These equations
describe the motion of an incompressible fluid in the domain Ω. Compared
to the Stokes equations we have to deal with an additional nonlinearity and a
time derivative. The weak formulation of these equations are obtained by mul-
tiplying the momentum equation with a test function v, defined in a suitable
space V , and integrating both members with respect to the domain Ω.

Integrating by parts and using the Gauss’ theorem, the formulation in equa-
tion (3.5) can be written as,∫

Ω

∂u

∂t
· v dΩ + ν

∫
Ω
∇u · ∇v dΩ +

∫
Ω
(u · ∇)u · v dΩ−

∫
Ω
p∇ · v dΩ =

=

∫
Ω
f · v dΩ +

∫
∂Ω

(
ν
∂u

∂n
− pn

)
· v ds, ∀ v ∈ V,

(3.6)

where n is the unit normal vector. In a similar manner, the continuity equation
is multiplied with a test function q belonging to a space Q and integrated in
the domain Ω, ∫

Ω
q(∇ · u) dΩ = 0, ∀ q ∈ Q.

The space functions are chosen as follows,

V =
[
H1

0 (Ω)
]d

=
{
v ∈

[
H1(Ω)

]d
: v = 0 on ΓD

}
Q = L2(Ω)

Because of the set of boundary conditions,

u = 0 on ΓD

∇u · n+ pn = g on ΓN

the integral on the boundary can be written as,

∫
∂Ω

(
ν
∂u

∂n
− pn

)
·v ds =

∫
ΓD

(
ν
∂u

∂n
− pn

)
·v ds+

∫
ΓN

(
ν
∂u

∂n
− pn

)
·v ds =

∫
ΓN

g·v ds

where,

�

∫
ΓD

(
ν
∂u

∂n
− pn

)
· v ds = 0
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�

∫
ΓN

(
ν
∂u

∂n
− pn

)
· v ds = −g · v

Finally, the weak formulation of the Navier–Stokes equations is,∫
Ω

∂u

∂t
· v dΩ + ν

∫
Ω
∇u · ∇v dΩ +

∫
Ω
(u · ∇)u · v dΩ−

∫
Ω
p∇ · v dΩ =∫

Ω
f · v dΩ +

∫
ΓN

g · v ds, ∀ v ∈ V,∫
Ω
q∇ · u dΩ = 0, ∀ q ∈ Q.

The existence and uniqueness of the solution will be discussed by the fol-
lowing theorem,

Theorem 3.2.1. [2] If f ∈
[
L2 (0, T ;V ′)

]d
and u0 ∈ H, there exists a weak

solution to the Navier–Stokes equations (3.5) that satisfies,

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H)

where,

V =
{
v ∈

[
H1

0 (Ω)
]d

: div v = 0
}

H =
{
v ∈

[
L2
0(Ω)

]d
: div v = 0

}
In the case of space dimension d = 2 this solution is unique and

u ∈ C(0, T ;H)
u′ ∈ L2 (0, T ;V ′)

In three dimensions (d = 3) uniqueness is an open question. In this section,
we discussed about the time–dependent Navier–Stokes and continuity equa-
tions, where is the most general problem under consideration. In the next
section, we focus on the steady–state form of the equations.

3.2.1 An Application to the Poiseuille flow

We study the two–dimensional incompressible flow between two long parallel
plates (Poiseuille flow) with no–slip condition on both walls which are spaced
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apart in height 2h, Figure 3.5. We assume constant flow, with constant density
ρ and viscosity µ. Fluid is introduced with a parabolic velocity profile at the
inlet of the domain, given by the expression ux(y) = (4 y (y − 1)), for the
ux–velocity component, where the uy–velocity is considered zero, at the inlet.

The two–dimensional Navier–Stokes and continuity equations in Cartesian
coordinates, (x, y) are,

ρ

(
∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

)
= −∂p

∂x
+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
+ Fx,

ρ

(
∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

)
= −∂p

∂y
+ µ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
+ Fy,

∂ux
∂x

+
∂uy
∂y

= 0.

(3.7)

Considering that there is no external force field, F̄ = (Fx, Fy), the boundary
conditions of this problem are written as,{

If y = −h or y = +h, then ux(x, y) = 0, and uy(x, y) = 0,

Fx = Fy = 0.

Providing appropriate assumptions, steady–state flow

(
∂ux
∂t

=
∂uy
∂t

= 0

)
,

and utilizing the boundary conditions in (3.7), we get the following system of
equations,

∂ux
∂x

= 0, i.e ux = ux(y). (3.8)

ρux
∂ux
∂x

= −∂p

∂x
+ µ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
(3.9)

0 = −∂p

∂y
, i.e p = p(x). (3.10)

Thus, we obtain,
dp

dx
= c = µ

d2ux
dy2

(3.11)

Solving the differential equation (3.9) and applying the boundary conditions
yields to the analytical solution of the problem under consideration, that is a
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parabolic profile as expected,

ux(y) = − c

2µ
(h2 − y2). (3.12)

The velocity has a parabolic profile, as shown in equation (3.12). If c > 0
the maximum velocity value is at the centre of the domain, for y = 0 and

uxmax = −ch2

2µ
, that indicates a favorable pressure drop within this region,

given by
dp

dx
= c = −2µ

h2
uxmax.

So, we obtained the analytical solution for the Poiseuille problem. Addition-
ally, solving the same problem with the help of FEM and the software package
FEniCS we obtained the same parabolic profile, as shown in Figure 3.6. The
FEM results were obtained for a computational mesh of 2754 triangular ele-
ments. The maximum velocity is at the centerline of the domain as discussed
above with the analytical solution.

Figure 3.5: Poiseuille flow, the fluid flow between two parallel plates.
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Chapter 3 3.2. The Navier–Stokes Problem

Figure 3.6: The numerical solution of the Poiseuille flow, using FEM and the
software package FEniCS.
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CHAPTER4
Modifications of the
classical Galerkin method

4.1 The Disconitinuous Galerkin Method

The discontinuous Galerkin (DG) methods are used in the numerical analy-
sis of differential equations. It is a different method to both the finite element
and finite volume methods and all these methods apply to a plethora of prob-
lems in fluid dynamics. The basis functions used, are discontinuous. These
methods, allowing discontinuities, apply with great flexibility and benefits,
handling complex geometries, irregular meshes, and polynomial approxima-
tions of different degree in each element [7]. The discontinuous methods are
distinguished from the continuous ones in integrating flux terms over interior
faces.

The DG methods first arose in solving PDEs in the early 70s, with con-
tinuous improvements on elliptic problems, through out the decade [3, 14].
Extensions of the methods, in the 90s, dealt with nonlinear hyperbolic con-
servation laws, as well as compressible flow. The analysis and development of
such methods, is a topic of active research [8].

The following example, finds an approximate solution uh of an ODE using
the Discontinuous Galerkin (DG) method. Consider the initial–value prob-
lem [7]:


d

dt
u(t) = f(t)u(t), t ∈ (0, T ),

u(0) = u0.
(4.1)
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Chapter 4 4.1. The Disconitinuous Galerkin Method

Initially, we divide the interval I := (0, T ), into subintervals Ii := (ti, ti+1),
for i = 0, 1, ..., N − 1. Next, we seek for the approximate solution uh, which
on the interval Ii, is a polynomial of degree at most ki, requiring that,

−
∫
Ii

uh(s)
d

ds
v(s) ds+ ûhv

∣∣ti+1

ti
=

∫
I
u(s)f(s)v(s) ds, (4.2)

for polynomials v of degree at most ki, where the quantity ûh is ,

ûh :=

{
u0, if , ti = 0

limε→0 uh(ti − ε), otherwise.

The goal is to find a suitable definition of the numerical trace, ûh, using dis-
continuous approximations, uh and applying the Galerkin weak formulation.
The DG FEMs are consistent methods. So, when we replace the approximate
solution uh with the exact solution u, in the weak formulation of the equation
(4.2), the equation is satisfied. That can be applied if û = u.

Multiplying the ODE by u and integrating over (0, T ), we get,

1

2
u2(T )− 1

2
u20 =

∫ T

0
f(s)u2(s)ds.

Substituting v = uh in the weak formulation, equation (4.2), and integrating
by parts we obtain the following,

N−1∑
i=0

(
−1

2
u2h + ûhuh

)∣∣∣∣∣
ti+1

ti

=
1

2
u2h
(
T−)+Θh

(
T ′)− 1

2
u20 =

∫ T

0
f(s)u2h(s)ds,

where,

Θh(T ) = −1

2
u2h
(
T−)+ N−1∑

i=0

(
−1

2
u2h + ûhuh

)∣∣∣∣∣
ti+1

ti

+
1

2
u20.

The stability is gained when Θh(T ) ≥ 0, so we set,

uh(t) = u0, t < 0

We further introduce the following definitions,

Definition 4.1.1. We define the average quantity of the discrete function uh
as, {uh} = 1

2

(
u−h + u+h

)
. Additionally, we define the difference of the discrete

function uh on the faces of each element as, [uh] = u−h − u+h .
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Chapter 4 4.1. The Disconitinuous Galerkin Method

Definition 4.1.2. We define the limit of the discrete function uh at the faces
as, u±h (t) = limε→0 uh(t± ε).

Remark. The above definitions yields to the following equation,[
u2h
]
= 2 {uh} [uh] .

Taking into consideration the above definitions,

Θh(T ) =− 1

2
u2h
(
T−)+ (−1

2
u2h
(
T−)+ ûh(T )uh

(
T−))+

N−1∑
i=1

(
−1

2

[
u2h
]
+ ûh [uh]

)
(ti)

−
(
−1

2
u2h
(
0+
)
+ ûh(0)uh

(
0+
))

+
1

2
u20

=
(
ûh(T )− uh

(
T−))uh (T−)+ N−1∑

i=1

((ûh − {uh}) [uh]) (ti)

− (ûh(0)− u0)uh
(
0+
)
+

1

2
[uh]

2 (0)

Based on the above, we have for the ûh,

ûh (ti) =


u0, if ti = 0(
{uh}+ Ci [uh]

)
(ti) , if ti ∈ (0, T )

uh(T−), if ti = T

Ci ≥ 0 and C0 = 1/2,

Θh(T ) =

N−1∑
i=0

Ci [uh]
2 (ti) ≥ 0.

The accuracy of the method depends on the choice of Ci. It can be proven
that if we take Ci = 1/2, the order of the method at the points ti is 2k+1 and
for Ci = 0, the order is 2k + 2 [10, 14]. However, for Ci ≡ 1/2 DG methods
are consistent and stable. As a consequence, we can easily handle different
types of approximations in different elements.

For higher order problems, the first step is the discretization of the domain
of interest in triangles, denoting by T such triangulation. Then we seek a
discontinuous approximate solution uh, that in each element K of the trian-
gulation T , belongs to the space V (K) [10, 14].
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Chapter 4 4.1. The Disconitinuous Galerkin Method

4.1.1 Application to the Poisson and Stokes Equations

Next, we show the methodology of applying the Discontinuous Galerkin to
the Poisson and the Stokes equations [19]. We consider a DG method for the
Poisson equation with Dirichlet boundary conditions for simplicity.

−∆u = f in Ω

u = uD on ∂Ω

Next, we rewrite the Poisson equation to the weak form,

−
∫
Ω
∆u v dΩ =

∫
Ω
fv dΩ

Assume that we have a mesh T of Ω with cells {K} and split the left integral
into sum over cell integrals:

−
∑
K∈T

∫
K
∆u v dK =

∫
Ω
fv dΩ

Integrating by parts,∑
K∈T

∫
K
∇u · ∇v dK −

∑
K∈T

∫
∂K

(∇u · n⃗)v ds =

∫
Ω
fv dΩ.

where n⃗ is the outward unit normal vector. Before introducing the DGmethod,
it is necessary to point out the definitions relevant to this method,

Definition 4.1.3 (Average and Jump operator). We define the average quan-
tity of the function v as, ⟨v⟩ = 1

2 (v
+ + v−). We also define the difference

(jump) of the function v on the element faces as, [vn⃗] = v+n⃗−v−n⃗ inΩ and
[vn⃗] = vn⃗ on ∂Ω, where n⃗ is the facet outward unit normal.

Definition 4.1.4 (Jump identity). We define the jump identity of a functions
u, v as, [uv] = [u]⟨v⟩+ ⟨u⟩[v] inΩ.

We consider a DG formulation to approximate the problem. For this for-
mulation, the approximation space is made of discontinuous piecewise poly-
nomials, namely,

V =
{
v ∈ L2(Ω) : v|K ∈ Qp(K) for all K ∈ T

}
,

34



Chapter 4 4.1. The Disconitinuous Galerkin Method

where T is the set of all cells K of the mesh, and Qp(K) is a polynomial
space of degree–p defined on a cell K. In order to write the weak form of
the problem, we need to introduce appropriate notation. The sets of interior
and boundary facets associated with the mesh T are denoted here as Fi and
Fe, respectively. With v+, and v− being the restrictions of v ∈ V to the cells
K+,K− that share the same interior facet in Fi and n⃗+, n⃗− the facet outward
unit normals from either the perspective of K+ and K−, respectively.

With this notation, the weak form associated with the interior penalty for-
mulation for the Poisson equation is presented as follows,

a(v, u) =
∑
K∈T

∫
K
∇v · ∇u dK

−
∑
K∈Fe

∫
K
v(∇u · n⃗)ds−

∑
K∈Fe

∫
K
(∇v · n⃗)u ds+

∑
K∈Fe

α

h

∫
K
v · u ds

−
∑
K∈Fi

∫
K
[vn⃗] · ⟨∇u⟩ds−

∑
K∈Fi

∫
K
⟨∇v⟩ · [un⃗]ds+

∑
K∈Fi

α

h

∫
K
[vn⃗] · [un⃗]ds,

and the right–hand side is presented as,

L(v) =

∫
Ω
vf dΩ.

Remark. We provide the following equation for the element boundary,∑
K∈T

∫
∂K

(∇u · n⃗) v ds =
∑
K∈Fe

∫
K
(∇u · n⃗) vds

+
∑
K∈Fi

∫
K

[
(∇u+ · n⃗+) v+ + (∇u− · n⃗−) v−

]
ds

(4.3)

The first line of the weak formulation for Poisson equation is similar with
the classical Galerkin formulation. The next two lines are associated with
the exterior an interior facets, respectively, combining (4.3) and the operators
mentioned before to construct a DG formulation [11].

Remark. The terms,
∑
K∈Fe

α

h

∫
K
v · u ds and

∑
K∈Fi

α

h

∫
K
[vn⃗] · [un⃗]ds, are artifi-

cially added in the formulation. The constant α, is a stabilization parameter
that should be chosen large enough such that the bilinear form a(·, ·) is stable
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and continuous. Where, h is a measure for the average of the mesh size defined
as h = (h++h−)/2, for the two neighbouring cells K+ and K−, with the given
interior facet.

When applying the above formulation, e.g. the DG FEM, using the software
program FeniCS for the Poisson equation, we obtain the results shown in
Figure 4.2. In the square domain we apply homogeneous Dirichlet conditions
on the boundary and internally a Gaussian distribution is applied for the
source term, defined by the function f on the right–hand side of the Poisson
equation, given by the expression,

f(x, y) = c exp

(
−(x− α)2 + (y − b)2

d

)
, (4.4)

where, c = 10., α = b = 0.5 and d = 0.02.

Figure 4.1: Poisson equation with DG FEM and homogeneous Dirichlet con-
ditions.

Additionally, utilizing the DG method to the Poisson problem with a func-
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tion, f(x, y) = 2π2 sin(πx) sin(πy), we can compare the numerical solution
with the analytical solution of the problem under consideration, using the L2

norm of the approximate and analytical solution which is, u(x, y) = sin(πx) sin(πy).

Figure 4.2: Poisson equation with DG FEM, the L2 norm between the numer-
ical and the analytical solution is, 2.4× 10−3.

Following the same methodology as before, we use DG methods for the
Stokes problem,

{
−ν∆u+∇p = f in Ω,

u = 0 on ∂Ω.

Consider the function spaces V , equipped with discontinuous functions and
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Q, with continuous ones,

V =
{
v ∈

(
L2(Ω)

)d
: vi ∈ Pk(K)∀K ∈ T , 1 ≤ i ≤ d

}
,

Q =
{
q ∈ H1(Ω) : q ∈ Pj(K)∀K ∈ T

}
.

We presented earlier the weak formulation,

a((u, p), (v, q)) = L(v, q),

for all (v, q) ∈ W , where

a((u, p), (v, q)) =

∫
Ω
(ν∇u · ∇v −∇p · v +∇q · u) dx,

L((v, q)) =

∫
Ω
f · v dx+

∫
∂ΩN

g · v ds.

The space W , should be a mixed (product) function space W = V × Q,
such that u ∈ V and q ∈ Q.

We consider the Stokes equations with both discontinuous functions, as well
as, basis functions with possibly varying polynomial orders. The particular
bilinear and linear forms for the Stokes equation with DG method can be
formulated as,

a(v, q;u, p) =∑
K∈T

∫
K
ν∇v · ∇u dK +

∑
K∈T

∫
K
v · ∇p dK −

∑
K∈T

∫
K
∇q · u dK

+
∑
K∈Fi

∫
K
q[u · n⃗] ds−

∑
K∈Fi

∫
K
ν[v] · ⟨∇u⟩ ds

−
∑
K∈Fi

∫
K
ν⟨∇v⟩ · [u] ds+

∑
K∈Fi

∫
K
ν
α

h
[v] · [u] ds

+
∑
K∈Fe

∫
K
qu · n⃗ ds−

∑
K∈Fe

∫
K
νv · ∇u ds

−
∑
K∈Fe

∫
K
ν∇v · u ds+

∑
K∈Fe

∫
K
ν
α

h
v · u ds
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and the right–hand side of the Stokes problem is given as,

L(v, q) =

∫
Ω
v · f dΩ.

Remark. The above formulation is constructed in a same manner as the Pois-

son equation with the terms
∑
K∈Fi

∫
K
ν
α

h
[v] · [u] ds and

∑
K∈Fe

∫
K
ν
α

h
v · u ds

being artificially added for the stability of the equation [9].

4.2 Adaptive Mesh Refinement

The adaptive mesh refinement (AMR) is an approach for increasing the
accuracy of the numerical solution in certain sensitive regions of the discretized
domain. Numerical solutions, sometimes reveal accuracy problems to specific
regions of the grid or mesh. However, some problems would be better suited
if specific computational areas which needed precision could be refined only
in the regions requiring the added precision rather than a uniform region.
There are widely used methods that omit this problem, called Adaptive Finite
Element Mesh Refinement methods (AFEM) with a range of applications to
engineering problems. AFEM can be classified into three categories [26].

� In the h-refinement AFEM, we use the same type of finite elements, but
their sizes are continuously divided according to a geometric parameter
such as the element length or diameter. Among the three categories
referred, this is the simplest and more common one to use.

� In the p-refinement AFEM, we increase the order of the polynomial basis
functions, but the mesh element size is kept the same.

� In r-refinement AFEM, we keep the number of mesh nodes and elements
the same, but the nodes are relocated to problematic areas needed to be
optimized.

These methods can also be combined, such as hp–refinement method. We
can use the AFEM to obtain a solution of the desired accuracy, but with less
computing time, as relatively low degrees of freedom (DOFs) are needed. For
the h–type AFEM, the key issue is to determine the regions, where needed,
to insert the nodes to balance or evenly distribute the numerical errors of the
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FEM solution through a local a posteriori error estimate procedure. The a
posteriori error estimation is to obtain an estimated numerical error for each
element, which plays an important role in guiding the refinement procedures
for AFEM.

The process consists of calculating the error indicators for each element of
the mesh. Then, a selected number of elements in the domain, e.g. the el-
ements with the largest error indicators, are finally refined. This process is
repeated several times until the termination conditions are satisfied. Such con-
ditions could be the maximum refinement number or maximum nodes number
in the mesh. The elements can be refined with several methods, such as by
bisection, trisection, regular refinement or any combinations of these meth-
ods [26].

More precisely, let’s consider an a posteriori estimator for the Stokes prob-
lem. It can be shown that the discrete solution coincides with the continuous
one. A posteriori error estimates express the error in terms of important
quantities, such as the residual error equations and the solution of an aux-
iliary dual problem [15]. By using the classical Galerkin method, the finite
element approximation uh ∈ V h is the solution of,

a (uh, v) = L(v), ∀v ∈ V h.

The numerical error in the approximation uh of u is naturally defined as the
function e ∈ V such that,

e = |u− uh|.

The residual errors are denoted as r(v) where,

r(v) = L(v)− a (uh, v) = a(u, v)− a (uh, v) =

a (u− uh, v) ⩽ C ∥u− uh∥V ∥v∥V , v ∈ V.
(4.5)

Furthermore,
α ∥u− uh∥2V ⩽ a (u− uh, u− uh) =

a (u, u− uh)− a (uh, u− uh) =

L (u− uh)− a (uh, u− uh) = r (u− uh) .

(4.6)

Remark. We notice that the residual error r(v) vanishes for all v ∈ V h, i.e.,

r(v) = 0, ∀v ∈ V h.

This yields to the following orthogonality property,

a(e, v) = 0, ∀v ∈ V h

40



Chapter 4 4.2. Adaptive Mesh Refinement

Combining (4.5), (4.6) yields to:

α ∥u− uh∥V ⩽ ∥r∥V ′ ⩽ C ∥u− uh∥V (4.7)

where ∥r∥V ′ = supv∈V,v ̸=0 r(v)/∥v∥V .

The a posteriori error estimates, equation (4.7) relate the numerical error
with the residuals.

The object of Goal–oriented error estimation [15] is to assess the accuracy
of finite element solutions in measures other than the classical energy norm.
In numerical applications, it is often necessary to control the error in a certain
output functional M : V → R of the computed solution to within some given
tolerance ε > 0. Typical functionals are the quantities we are intrested in.
In these situations, one would ideally like to choose the finite element space
Vh ⊂ V , such that, the finite element solution uh satisfies,

η ≡ |M(u)−M (uh)| ⩽ ε,

with minimal computational work. We assume that both the output functional
and the variational problem are linear, but the analysis may be easily extended
to the full nonlinear case. To estimate the error in the output functional M,
we introduce an auxiliary dual problem: find z ∈ V ∗ such that,

a∗(z, v) = M(v), ∀v ∈ V̂ ∗.

We note here that the functional M enters as data in the dual problem. The
dual (adjoint) bilinear form, a∗ : V ∗ × V̂ ∗ → R is defined by,

a∗(v, w) = a(w, v), ∀(v, w) ∈ V ∗ × V̂ ∗.

The dual trial and test spaces are given by,

V ∗ = V̂ ,

V̂ ∗ = V0 = {v − w : v, w ∈ V },

The definition of the dual problem leads to the following error representation,

M(u)−M (uh) = M (u− uh)

= a∗ (z, u− uh)

= a (u− uh, z)

= L(z)− a (uh, z)

= r(z) = r(z − zh).
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So, the error is exactly represented by the residual of the dual solution,

M(u)−M (uh) = r(z).

An adaptive algorithm seeks to determine a mesh size, h = h(x), in a specific
tolerance starting from an initial coarse mesh, and refine in those cells where
the error indicator remains large.

For the Poisson equation, we take the goal functional to be defined as,

M(u) =

∫
Ω
u dx. (4.8)

Figure 4.3: (A) Computational mesh and results for the Poisson equation,
(B) Computational mesh and results for the Poisson equation after grid local
refinement.

In Figure 4.3, we present the solution of Poisson equation with zero Dirichlet
condition. At the middle of the domain, we apply a two–dimensional Gaussian
distribution, given by the expression described in equation (4.4). We observe
that locally refining the computational grid with the AFEM described above,
and introducing the goal functional of equation (4.8), the results in the domain
of interest are appropriate, capturing in detail the numerical solution of the
Poisson equation. The given tolerance is 10−5 and the number of cells are
increased to 1052 from the initial number of cells which was 128, provide with
more accurate results for the problem under consideration.
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For the Stokes problem, defining as goal functional the following,

M(u) =

∫
Ω
u2 dx, (4.9)

and we obtain the results depicted in Figure 4.4.

Figure 4.4: (A) Computational mesh and results for the Stokes equation,
(B) Computational mesh and results for the Stokes equation after grid local
refinement.

In this figure, Figure 4.4, we exhibit the solution of the Stokes equation
in the backward facing step problem defining the goal function as in equa-
tion (4.9), providing more accurate results than the initial problem. The
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given tolerance is 10−7 and the number of cells are increased to 7464 from the
initial number of cells, which was 890.

4.3 Conclusions

In this dissertation, the finite element method is utilized for ordinary dif-
ferential equations (ODEs) and partial differential equations (PDEs). We
mainly focus on applying the method to fluid mechanics problems. Initially,
we present the method along with the basic theorems and examples. We
analyse the error estimates for linear problems and the base functions to dis-
tinguish the problem under consideration. We further present the numerical
solution of the one–dimensional Duffing equation and compare with the ana-
lytical solution. We further concentrate on the two–dimensional Stokes and
Navier–Stokes problems. We finally focus on presenting novel finite element
method variants such as the Discontinuous Galerkin (DG) method and adap-
tive methodologies (AFEM). These advanced methods provide reliable numer-
ical results in all studied cases. This is achieved with the application of the
FEM to “test problems”, such as the backward facing step. We obtain all the
numerical results utilizing the software programs MATLAB and FEniCS.
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In the following sections we present the main codes in Matlab For the duff-
ing equation and FEniCS for the problems discussed in this thesis. The first
problem is the numerical solution of the Duffing equation with three methods,
FEM, FDM and RK-Shooting 4th order explicit. The second problem is the
Poisson equation (the scalar problem) and the third one is the Stokes problem
(the vector problem). The Poisson problem presented is for the Discintinuous
Galerkin FEM (DG). The Stokes problem presented in this appendix is for
the Adaptive mesh refinement FEM (AFEM).

Duffing equation with FEM in matlab:

1 % ==================================================

2 % Int e g r a t i on o f the equat ion with three methods ,
3 % FEM, FDM, RK=Shooting
4 %
5 % u ’ ’ + a * u ’ + b * u + c * uˆ3 = g * cos (w * t ) = 0
6 % u = u( t )
7 % ==================================================

8

9 f unc t i on DuffingFD
10 c l e a r ; c l c ;
11

12 a = 0 ;
13 b = 0 . 0 6 ;
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14 c = 0 . 0001 ;
15 g = 0 . 2 ;
16 w = 1 . 0 ;
17

18 N1 = 160 ;
19 timeend = 15 . 0 ;
20

21 dt1 = timeend /(N1=1) ;
22

23 t1 (1 ) =0;
24 f o r i = 2 : N1
25 t1 ( i ) = dt1 * ( i =1) ;
26 x1 ( i ) = 0 . 1 ;
27 end
28

29 opt ions = opt imopt ions ( ’ f s o l v e ’ , ’ Display ’ , ’ t e s t i n g ’ , ’
MaxIter ’ , 1000 , ’MaxFunEvals ’ ,5000000)

30 x1 = f s o l v e (@testFD , x1 , opt ions , N1 , a , b , c , g , w, dt1
, t1 ) ;

31

32 % ====== Figures f o r u =====================

33 f o r i = 2 : N1=1
34 u( i ) = x1 ( i =1) ;
35 end
36

37 u (1) = 0 . 0 ;
38 u(N1) = u(N1=1) ;
39 s i z e (u) ;
40 f i g u r e
41 p lo t ( t1 , u , ’=*b ’ )
42

43 i =1;k=1;
44 j 1 =0;
45 whi le i<=160
46 newsol1 ( k )=u( i ) ;
47 j 1=j1 +20;
48 i=j1 ;
49 k=k+1;
50 end
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51 newsol1 ;
52

53 % ========= FEM =============

54 N = 161 ;
55 dt = timeend /(N=1) ;
56 t = 0 : dt : timeend ;
57 td = l i n s p a c e (0 , timeend , N) ;
58

59 % as s i gn the shape func t i on s
60 Phi0 = f0 (N, dt , t , td , 1) ;
61 Phip0 = fp0 (N, dt , t , td , 1) ;
62

63 PhiN = fN (N, dt , t , td , N=1) ;
64 PhipN = fpN(N, dt , t , td , N=1) ;
65

66 Ph i a l l ( 1 , : ) = Phi0 ;
67 Ph ip a l l ( 1 , : ) = Phip0 ;
68

69 Ph i a l l (N, : ) = PhiN ;
70 Ph ip a l l (N, : ) = PhipN ;
71

72 f o r i = 2 : N=1
73 Phi = f (N, dt , t , td , i ) ;
74 Phip = fp (N, dt , t , td , i ) ;
75

76 Ph i a l l ( i , : ) = Phi ;
77 Ph ip a l l ( i , : ) = Phip ;
78 end
79

80 % crea t e the s t i f f n e s s matrix and RHS vecto r
81

82 Int1 = ze ro s (N=1, N=1) ;
83

84 f o r i = 1 : N=1
85 f o r j = 1 : N=1
86 Int = in t1 (N, dt , t , Ph i a l l , Ph ip a l l , i , j , a ,

b , c ) ;
87 Int1 ( i , j ) = Int ;
88 end
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89 end
90

91 Int1 ;
92

93 f o r c e = g * cos (w * t ) ;
94

95 f o r i = 1 : N=1
96 Int2 = in t2 (N, dt , t , Ph i a l l , f o r c e , i ) ;
97 Int3 ( i , 1 ) = Int2 ;
98 end
99

100 Int3 ;
101

102 % so l v e the l i n e a r system
103

104 x = Int1 \ Int3 ;
105 s i z e ( x ) ;
106

107 % p l o t t i n g the s o l u t i o n
108 tplotnew = l i n s p a c e (0 , timeend , (N=1) ) ;
109

110 x so l (1 ) = 0 . 0 ;
111

112 f o r i = 2 : N=1
113 x so l ( i ) = x ( i ) ;
114 end
115

116 f i g u r e
117 p lo t ( tplotnew , xso l , ’=*r ’ )
118 t i t l e ( ’FEM Duff ing ’ ) ;
119 x l ab e l ( ’Time t ’ ) ;
120 y l ab e l ( ’ So lu t i on u( t ) ’ ) ;
121 s i z e ( x s o l ) ;
122

123 i =1;k=1;
124 j 1 =0;
125 whi le i<=160
126 newsol ( k )=xso l ( i ) ;
127 j 1=j1 +20;
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128 i=j1 ;
129 k=k+1;
130 end
131 newsol ;
132

133 % ========= RK=shoot ing ========

134 a1 = 0 . 0 ; b1 = 15 . 0 ;
135 h=(b1=a1 ) /(N=1) ;
136

137 y1 = ze ro s (1 , l ength ( t1 ) ) ;
138 y2 = ze ro s (1 , l ength ( t1 ) ) ;
139

140 y1 (1 ) = 0 . 0 ;
141

142 Der = = 0 . 0 1 ;
143

144 F1 = @( t1 , y1 , y2 ) y2 ;
145 F2 = @( t1 , y1 , y2 ) = b * y1 + c * y1ˆ3 + g * cos (w* t1 ) ;
146

147 f o r j = 1 : 26
148

149 f o r i = 1 : ( l ength ( t1 )=1)
150 k1 1 = F1( t1 ( i ) , y1 ( i ) , y2 ( i ) ) ;
151 k2 1 = F2( t1 ( i ) , y1 ( i ) , y2 ( i ) ) ;
152

153 k1 2 = F1( t1 ( i ) +0.5*h , y1 ( i ) +0.5*h * k1 1 , y2 ( i )
+0.5*h * k2 1 ) ;

154 k2 2 = F2( t1 ( i ) +0.5*h , y1 ( i ) +0.5*h * k1 1 , y2 ( i )
+0.5*h * k2 1 ) ;

155

156 k1 3 = F1 ( ( t1 ( i ) +0.5*h) , ( y1 ( i ) +0.5*h * k1 2 ) , ( y2 ( i
) +0.5*h * k2 2 ) ) ;

157 k2 3 = F2 ( ( t1 ( i ) +0.5*h) , ( y1 ( i ) +0.5*h * k1 2 ) , ( y2 ( i
) +0.5*h * k2 2 ) ) ;

158

159 k1 4 = F1 ( ( t1 ( i )+h) , ( y1 ( i )+h * k1 3 ) , ( y2 ( i )+h *

k2 3 ) ) ;
160 k2 4 = F2 ( ( t1 ( i )+h) , ( y1 ( i )+h * k1 3 ) , ( y2 ( i )+h *

k2 3 ) ) ;
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161

162 y1 ( i +1) = y1 ( i ) + h * (1/6) *( k1 1 + 2 * k1 2 + 2 *

k1 3 + k1 4 ) ;
163 y2 ( i +1) = y2 ( i ) + h * (1/6) *( k2 1 + 2 * k2 2 + 2 *

k2 3 + k2 4 ) ;
164

165 end
166

167 s = length ( t1 ) ;
168 Der = y2 ( s ) = 0 .0
169 y2 (1 ) = y2 (1) + 0 . 0 0 8 ;
170

171 end
172

173 f i g u r e
174 p lo t ( t1 , y1 , ’=*g ’ )
175

176 y1 ;
177

178 i =1;k=1;
179 j 1 =0;
180 whi le i<=160
181 newsol2 ( k )=y1 ( i ) ;
182 j 1=j1 +20;
183 i=j1 ;
184 k=k+1;
185 end
186 newsol2 ;
187

188

189 % ======== Plot ing the r e s u l t s ============

190 f i g u r e
191 p lo t ( tplotnew , xso l , ’=k ’ , t1 , u , ’==k ’ , t1 , y1 , ’ : k ’ , ’

LineWidth ’ , 1 . 5 )
192 ax i s ( [ 0 . 0 15 .0 =0.5 1 . 0 ] )
193 t i t l e ( ’FEM, FDM, RK=Shooting ’ ) ;
194 x l ab e l ( ’Time t ’ ) ;
195 y l ab e l ( ’ So lu t i on u( t ) ’ ) ;
196
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197 e r r1=abs ( newsol=newsol1 ) ;
198 e r r2=abs ( newsol=newsol2 ) ;
199

200 % ==== Table
201

202 f i g u r e ( ’Name ’ , ’ Table o f e r r o r s FEM=FDM’ , ’ NumberTitle ’ , ’
o f f ’ , ’ Color ’ , [ . 8 . 8 . 8 ] )

203 tab=u i t ab l e ( ’Data ’ , err1 ’ ) ;
204 tab .RowName={ ’ i=1 ’ , ’ i =20 ’ , ’ i =40 ’ , ’ i =60 ’ , ’ i =80 ’ , ’ i =100 ’ ,

’ i =120 ’ , ’ i =140 ’ , ’ i =160 ’ } ;
205 tab .ColumnName={ ’ Values ’ } ;
206 tab . ColumnWidth={100};
207

208 tab . Pos i t i on (3 ) = tab . Extent (3 ) ;
209 tab . Pos i t i on (4 ) = tab . Extent (4 ) ;
210

211 % ==== Table
212

213 f i g u r e ( ’Name ’ , ’ Table o f e r r o r s FEM=RK’ , ’ NumberTitle ’ , ’
o f f ’ , ’ Color ’ , [ . 8 . 8 . 8 ] )

214 tab=u i t ab l e ( ’Data ’ , err2 ’ ) ;
215 tab .RowName={ ’ i=1 ’ , ’ i =20 ’ , ’ i =40 ’ , ’ i =60 ’ , ’ i =80 ’ , ’ i =100 ’ ,

’ i =120 ’ , ’ i =140 ’ , ’ i =160 ’ } ;
216 tab .ColumnName={ ’ Values ’ } ;
217 tab . ColumnWidth={100};
218

219 tab . Pos i t i on (3 ) = tab . Extent (3 ) ;
220 tab . Pos i t i on (4 ) = tab . Extent (4 ) ;
221

222 t rapz=0;
223 trapz1=0;
224 f o r i 1 = 1 : N1=1
225 t rapz = trapz + dt1* ( ( x s o l ( i 1 )=u( i 1 ) ) ˆ2+( x so l ( i 1+1)

=u( i 1+1) ) ˆ2) /2 ;
226 trapz1 = trapz1 + dt1* ( ( x s o l ( i 1 )=y1 ( i 1 ) ) ˆ2+( x so l ( i 1

+1)=y1 ( i 1+1) ) ˆ2) /2 ;
227 end
228

229 L2 FDM=sqr t ( t rapz )
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230 L2 RK=sqr t ( trapz1 )
231

232 % ====== Functions f o r a l l codes ================

233

234 % ====== Function t e s t FD ==========

235 f unc t i on [ f , x1 ] = testFD (x1 , N1 , a , b , c , g , w, dt1 , t1
)

236

237 f o r i = 2 : N1=1
238 u( i ) = x1 ( i =1) ;
239 end
240

241 % boundary cond i t i on s
242 u (1) = 0 . 0 ;
243 u(N1) = u(N1=1) ; % f o r the d e r i v a t i v e
244

245 f o r i = 2 : N1=1
246 % ======================================

247 % Note : s imp l i f i e d ve r s i on f o r a = 0
248 coe f 1 ( i ) = (1/ dt1 ˆ2) ;
249 coe f 2 ( i ) = =(2/dt1 ˆ2) + b + c * u( i ) ˆ2 ;
250 coe f 3 ( i ) = (1/ dt1 ˆ2) ;
251 f o r c e ( i ) = g * cos (w * t1 ( i ) ) ;
252

253 f ( i =1) = coe f 1 ( i ) * u( i +1) + coe f 2 ( i ) * u( i ) +
coe f 3 ( i ) * u( i =1) = . . .

254 f o r c e ( i ) ;
255 end
256 % =========== f un c t i on s f o r fem ==========

257

258 f unc t i on Phi = f (N, dt , t , td , i )
259 % =====================================

260 Phi ( t > td ( i =1) & t <= td ( i ) ) = . . .
261 ( t ( t > td ( i =1) & t <= td ( i ) ) = td (

i =1) ) / dt ;
262 Phi ( t > td ( i ) & t <= td ( i +1) ) = . . .
263 ( td ( i +1) = t ( t > td ( i ) & t <= td (

i +1) ) ) / dt ;
264 Phi ( t > td ( i +1) ) = 0 . 0 ;
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265 % ==========================================

266

267 f unc t i on Phip = fp (N, dt , t , td , i )
268 % ==========================================

269 Phip ( t > td ( i =1) & t <= td ( i ) ) = 1 / dt ;
270 Phip ( t > td ( i ) & t <= td ( i +1) ) = = 1 / dt ;
271 Phip ( t > td ( i +1) ) = 0 . 0 ;
272 % ==========================================

273

274 f unc t i on Phi0 = f0 (N, dt , t , td , i )
275 % ==========================================

276 Phi0 ( t >= td ( i ) & t <= td ( i +1) ) = . . .
277 0 .0 * ( td ( i +1) = t ( t >= td ( i ) & t

<= td ( i +1) ) ) / dt ;
278 Phi0 ( t > td ( i +1) ) = 0 . 0 ;
279 % ==========================================

280

281 f unc t i on Phip0 = fp0 (N, dt , t , td , i )
282 % ===========================================

283 Phip0 ( t >= td ( i ) & t <= td ( i +1) ) = = 0 .0 * 1 / dt
;

284 Phip0 ( t > td ( i +1) ) = 0 . 0 ;
285

286 % ===========================================

287

288 f unc t i on PhiN = fN (N, dt , t , td , i )
289 % ============================================

290 PhiN( t >= td ( i ) & t <= td ( i +1) ) = . . .
291 ( t ( t >= td ( i ) & t <= td ( i +1) ) =

td ( i +1) ) / dt ;
292 PhiN( t < td ( i +1) ) = 0 . 0 ;
293

294 % ==========================================

295

296 f unc t i on PhipN = fpN(N, dt , t , td , i )
297 % ==========================================

298 PhipN( t >= td ( i ) & t <= td ( i +1) ) = 0 .0 * 1 / dt ;
299 PhipN( t < td ( i +1) ) = 0 . 0 ;
300
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301 % ==========================================

302

303 f unc t i on [ Int ] = in t1 (N, dt , t , Ph i a l l , Ph ip a l l , i , j
, a , b , c )

304 % ==========================================

305 Int = 0 . 0 ;
306

307 f o r k = 1 : N=2
308 Int = Int + 0 .5 * ( Ph i p a l l ( j , k ) *Ph ip a l l ( i , k ) + . . .
309 Ph ip a l l ( j , k+1)*Ph ip a l l ( i , k+1) )

* ( t ( k+1)=t ( k ) ) . . .
310 = b * 0 .5 * ( Ph i a l l ( j , k ) * Ph i a l l ( i , k ) +

. . .
311 Ph i a l l ( j , k+1)* Ph i a l l ( i , k+1)

) * ( t ( k+1)=t ( k ) ) . . .
312 + c * 0 .5 * ( Ph i a l l ( j , k ) ˆ3 * Ph i a l l ( i , k )

+ . . .
313 Ph i a l l ( j , k+1)ˆ3 * Ph i a l l ( i ,

k+1) ) * ( t ( k+1)=t ( k ) ) ;
314 end
315

316 % ===========================================

317

318 f unc t i on [ Int2 ] = in t2 (N, dt , t , Ph i a l l , f o r c e , i )
319 % ===========================================

320 Int2 = 0 . 0 ;
321

322 f o r k = 1 : N=2
323 Int2 = Int2 = 0 .5 * ( Ph i a l l ( i , k ) * f o r c e ( k ) + . . .
324 Ph i a l l ( i , k+1)* f o r c e ( k+1) ) * ( t

( k+1)=t ( k ) ) ;
325 end
326 % =========== end o f f unc t i on s ===========
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Discontinuous Galerkin code in Fenics for the Poisson equation:

from dolfin import *

# Create mesh
mesh = UnitSquareMesh(24, 24)

plot(mesh)
interactive( )

#define function space
V = FunctionSpace(mesh, ”DG”, 1)

# Define boundary condition
# Boundaries
toll = 1E − 14 # tolerance for coordinate comparisons
def right(x, on-boundary): return near(x[0], 6, toll)
def left(x, on-boundary): return near(x[0], 0, toll)

# Define test and trial functions
u = TrialFunction(V)
v = TestFunction(V)

# Define normal component, mesh size
n = FacetNormal(mesh)
h = CellSize(mesh)

havg = (h(’+’) + h(’-’))/2

f = Expression(“exp( -(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)”, de-
gree=1)
g = Expression(“sin(5 ∗ x[0])”, degree = 1)

# Inflow boundary condition for velocity
inflow = Constant(1.0)
bc0 = DirichletBC(V, inflow, left)
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#outflow boundary condition for velocity
outflow = Constant(0.0)
bc1 = DirichletBC(V, outflow, right)

# Collect boundary conditions
bcs = [bc0, bc1]

# Define parameters
alpha = 4.0

# Define bilinear form
a = dot(grad(v), grad(u))*dx
- dot(avg(grad(v)), jump(u, n))*dS
- dot(jump(v, n), avg(grad(u)))*dS
+ alpha/havg * dot(jump(v, n), jump(u, n)) * dS
- dot(grad(v), u*n) * ds
- dot(v * n, grad(u)) * ds
+ alpha / h * v * u * ds

# Define linear form
L = v * f * dx

# Compute solution
u = Function(V)
solve(a == L, u)

# Project solution to piecewise linears
P1 = FunctionSpace(mesh, ”CG”, 1)
uproj = project(u, P1)

# Save solution to file
file = File(“poissondg/solution.pvd”)
file ¡¡ u-proj

# Plot solution
plot(u-proj, interactive = True)
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Discontinuous Galerkin code 2 in Fenics for the Poisson equa-
tion:

# from dolfin import *

# Create mesh
mesh = UnitSquareMesh(24, 24)

plot(mesh)
interactive()

# define function space
V = FunctionSpace(mesh, ”DG”, 1)

# Define boundary condition

# Boundaries
toll = 1E − 14 # tolerance for coordinate comparisons
def right(x, onboundary): return near(x[0], 1, toll)
def left(x, onboundary): return near(x[0], 0, toll)

# Define test and trial functions
u = TrialFunction(V)
v = TestFunction(V)

# Define normal component, mesh size
n = FacetNormal(mesh)
h = CellSize(mesh)

havg = (h(’+’) + h(’-’))/2

f = Expression(”2*pi*pi*sin(pi*x[0])*sin(pi*x[1])”, degree=1)
ue = Expression(”sin(pi*x[0])*sin(pi*x[1])”, degree=2)

g = Expression(”sin(5*x[0])”, degree=1)

59



Appendix

# Inflow boundary condition for velocity
inflow = Constant(1.0)
bc0 = DirichletBC(V, inflow, left)

# outflow boundary condition for velocity
outflow = Constant(0.0)
bc1 = DirichletBC(V, outflow, right)

# Collect boundary conditions
bcs = [bc0, bc1]

# Define parameters
alpha = 4

# Define bilinear form
a = dot(grad(v), grad(u))*dx
- dot(avg(grad(v)), jump(u, n))*dS
- dot(jump(v, n), avg(grad(u)))*dS
+ alpha/havg*dot(jump(v, n), jump(u, n))*dS
- dot(grad(v), u*n)*ds
- dot(v*n, grad(u))*ds
+ alpha/h*v*u*ds

# Define linear form
L = v*f*dx

# Compute solution
u=Function(V)
solve(a == L, u)

# Project solution to piecewise linears
P1 = FunctionSpace(mesh, ”CG”, 1)
uproj = project(u, P1)
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# Save solution to file
file = File(”poissondg1/solution.pvd”)
file ¡¡ uproj

# Plot solution
plot(uproj, interactive=True)

# Compute error in L2 norm
errorL2 = errornorm(ue, uproj, ’L2’)

# Print errors
print(’errorL2 =’, errorL2)

# Hold plot
interactive()
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Adaptive mesh refinement in Fenics for the Stokes problem:

from dolfin import *
from mshr import *
import numpy as np
from dolfin.cpp import LinearVariationalSolver, NonlinearVariationalSolver
from dolfin.fem.adaptivesolving import AdaptiveLinearVariationalSolver
from dolfin.fem.adaptivesolving import AdaptiveNonlinearVariationalSolver

# Create mesh
channel = Rectangle(Point(0,0), Point(6,2))
step = Rectangle(Point(0,0), Point(2,1))
domain = channel - step
mesh = generate mesh(domain, 24)
inletlength = float(1)*float(6)

plot(mesh)
interactive( )

# Define function spaces (Taylor Hood element)
V = VectorElement(“Lagrange”, mesh.ufl cell( ), 2)
Q = FiniteElement(“Lagrange”, mesh.ufl cell( ), 1)
TH = V * Q
W = FunctionSpace(mesh, TH)
toll = 1.E − 14 # tolerance for coordinate comparisons

# Boundaries
def right(x, on-boundary): return near(x[0], 6, tol)
def left(x, on-boundary): return near(x[0], 0, tol)
def top-bottom(x, on-boundary): return near(x[1], 2, tol) or near(x[1], 0, tol)
def step(x, on-boundary): return near(x[0], 2, tol) or near(x[0], 2, tol) and
near(x[1], 1, tol) or near(x[1], 1, tol)

# No-slip boundary condition for velocity
noslip = Constant((0, 0))
bc0 = DirichletBC(W.sub(0), noslip, topbottom)
bc1 = DirichletBC(W.sub(0), noslip, step)
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# Inflow boundary condition for velocity
inflow = Expression((“- 0.1 * x[1] * (x[1]-)”.format(inlet length), “0.0”), de-
gree = 2)
bc2 = DirichletBC(W.sub(0), inflow, left)

# Boundary condition for pressure at outflow
zero = Constant(0)
bc3 = DirichletBC(W.sub(1), zero, right)

# Collect boundary conditions
bcs = [bc0, bc1, bc2, bc3]

# Define variational problem
ni = Constant(0.2)
(u, p) = TrialFunctions(W)
(v, q) = TestFunctions(W)
f = Constant((0.0, 0.0))
a = ni * inner(grad(u), grad(v))*dx - div(v) * p * dx + q * div(u) * dx
L = inner(f, v) * dx

# Compute solution
w = Function(W)

# Define goal functional (quantity of interest)
(uu, pp) = (as vector((w[0], w[1])), w[2])

M = inner(uu[0], uu[0]) * dx( )

# Define error tolerance
tol = 1.E-7

# Solve equation a = L with respect to u and the given boundary
# conditions, such that the estimated error (measured in M) is less
# than tol

63



Appendix

solve(a == L, w, bcs, tol = tol, M = M)

# Split the mixed solution using deepcopy
# (needed for further computation on coefficient vector)

print(’w1:’, w.leaf node().vector().array())
print(’w:’, w.vector().array())
R = w.leaf node()#.function space()

(u1, p1) = R.split(True)
(u, p) = w.split(True)

# Split the mixed solution using a shallow copy
(u1, p1) = R.split()
(u, p) = w.split()

# Save solution to file
ufile pvd = File(“adstokes/solution1.pvd”)
ufile pvd ¡¡ u1
ufile pvd = File(“adstokes/solution.pvd”)
ufile pvd ¡¡ u

# Plot solution(s)
plot(u1, title = “Solution on final mesh”)
plot(u, title = “Solution on intial mesh”)

interactive( )
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Classical Galerkin FEM for the Stokes equation in Cartesian
coordinates:

In this subsection, we present the classical Galerking FEM analysis of
the Stokes problem in the two–dimensional Cartesian coordinates, (x, y) =
(x1, x2). This analysis follows the initial steps in Chapter 3 of this thesis.
Where u = (ux, uy) = (u1, u2) and v = (vx, vy) = (v1, v2). We also consider
that the kinematic viscosity, ν, of the fluid is constant.

Remark. We note that the notation in the term,

∫
Ω
∇u · ∇v dΩ, can be also

found in the literature written as,

∫
Ω
∇u : ∇v dΩ. Where, ∇u·∇v = ∇u : ∇v

=
n∑

i,j=1

∂ui
∂xj

∂vi
∂xj

, where n = 2 for the two–dimensional case.

We obtain that,

a (u,v) = ν

∫
Ω
∇u · ∇v dΩ = ν

∫
Ω

n=2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dΩ =

= ν

∫∫
Ω

n=2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx1 dx2 =

= ν
∑
K∈T

∫∫
K

n=2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

dx1 dx2,

where K is each element of the triangulation, T , of the Ω domain. Similarly
we obtain,

b (p,v) =

∫
Ω
p (∇·v) dΩ =

∫∫
Ω
p

(
n=2∑
i=1

∂ui
∂xi

)
dx1dx2 =

∑
K∈T

∫∫
K
p

(
n=2∑
i=1

∂ui
∂xi

)
dx1dx2.
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