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ABSTRACT

Iro Spyrou, M.Sc. in Data and Computer Systems Engineering, Department of Com-
puter Science and Engineering, School of Engineering, University of Ioannina, Greece,
2022.
Team Formation with Mutual Respect.
Advisor: Panayiotis Tsaparas, Associate Professor.

The Team Formation problem in Social Networks [1], asks for a team of experts
that covers the skill requirements of a collaborative task, while having low commu-
nication cost, as this is computed over the social network that connects the experts.
The communication cost captures the quality of the team, that is, the ability of the
experts to work together. Several extensions of this work have been considered, with
different team quality measures, or different team design criteria.

In this work, we consider an extension of the Team Formation problem, where
team quality is measured as the respect between the team members. Given a directed
graph for each skill, which captures the respect relationships between experts, we
want to create a team where each skill is assigned an expert and the overall respect
that the assigned experts receive from the team members is maximized. The respect
maximization problem is NP-hard, and a variety of Greedy heuristics have been pro-
posed for solving it [2]. In our work, we propose an Integer Quadratic Programming
(IQP) formulation, and we provide an alternative heuristic algorithm for the respect
maximization problem.

We then consider a variation of the aforementioned problem, where respect is
antisymmetric. This means that if there is positive respect from expert u to expert v
for some skill, then there is equal but negative disrespect from expert v to expert u. If
expert u is assigned to this skill, adding expert v to the team will impact negatively
the quality of the team.
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We first consider a special case of this problem, where the antisymmetric respect
values are derived by a scored ranking of the experts. In this case, we show that
the respect maximization problem can be reduced to the maximum weight matching
problem, which can be solved optimally (using the Hungarian algorithm), or approx-
imately (using a Greedy algorithm) in polynomial time. Building on this observation,
we propose a landmark-based algorithm for the general case that reduces to the
ranking case.

We implemented and evaluated our algorithms on real datasets against existing
baselines. For the general respect maximization problem, our IQP heuristic produces
teams with higher respect, albeit with higher computational cost. For the antisymmet-
ric case, for the ranking case, the Greedy algorithm produces solutions very close to
the optimal Hungarian algorithm. For the general case, the landmark heuristics per-
form comparably with the IQP solution and other Greedy approaches, while having
lower computational cost.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Ηρώ Σπύρου, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημάτων,
Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο Ιωαν-
νίνων, 2022.
Δημιουργία Ομάδων με Αμοιβαίο Σεβασμό.
Επιβλέπων: Παναγιώτης Τσαπάρας, Αναπληρωτής Καθηγητής.

Η συγκρότηση ομάδων είναι ένα πρόβλημα που αντιμετωπίζεται σε διάφορα
περιβάλλοντα (π.χ. εκπαίδευση, εργασία, άθληση, παιχνίδια) για την επίτευξη ενός
κοινού στόχου. Είναι όμως σημαντικό τα μέλη μιας ομάδας να μπορούν να συ-
νεργαστούν το καλύτερο δυνατό. Συνεπώς, τίθεται το πρόβλημα της Δημιουργίας
Ομάδων σε Κοινωνικά Δίκτυα [1], το οποίο λαμβάνει υπόψη τις κοινωνικές σχέ-
σεις των υποψήφιων μελών κατά την δημιουργία τους. Πιο συγκεκριμένα, δοθέντος
ενός κοινωνικού δικτύου εργαζόμενων, το οποίο απεικονίζει τις κοινωνικές σχέσεις
τους, των δεξιοτήτων τους και ενός συλλογικού έργου, το οποίο απαιτεί ένα σύνολο
δεξιοτήτων για την διεκπεραίωσή του, στόχος είναι η δημιουργία μίας ομάδας ερ-
γαζόμενων, τα μέλη της οποίας θα καλύπτουν τις απαιτήσεις δεξιοτήτων του έργου
και θα έχουν χαμηλό κόστος επικοινωνίας. Το κόστος επικοινωνίας υπολογίζεται
βάσει του κοινωνικού δικτύου και δηλώνει την ποιότητα της ομάδας, δηλαδή την
ικανότητα των μελών να συνεργαστούν. Έκτοτε έχουν εξεταστεί πολλές επεκτάσεις
του προκειμένου προβλήματος, με διαφορετικές μετρικές της ποιότητας των ομάδων
ή διαφορετικά κριτήρια σχεδιασμού των ομάδων.

Στην παρούσα εργασία μελετάμε μία επέκταση του προβλήματος Δημιουργίας
Ομάδων, όπου η ποιότητα των ομάδων μετράται ως προς τον σεβασμό μεταξύ
των μελών μιας ομάδας. Δοθέντος ενός συλλογικού έργου, για την ολοκλήρωση του
οποίου απαιτούνται συγκεκριμένες δεξιότητες, και ενός κατευθυνόμενου γράφου
για κάθε απαιτούμενη δεξιότητα, ο οποίος απεικονίζει τις σχέσεις σεβασμού με-
ταξύ των εργαζόμενων, στόχος μας είναι η δημιουργία μίας ομάδας, όπου σε κάθε
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δεξιότητα ανατίθεται ένας εργαζόμενος, μεγιστοποιώντας τον συνολικό σεβασμό
που λαμβάνουν οι εργαζόμουν που έχουν ανατεθεί σε κάθε δεξιότητα από τα υπό-
λοιπα μέλη της ομάδας. Οι διαφορές του προβλήματος μεγιστοποίησης σεβασμού
με το γενικό πρόβλημα Δημιουργίας Ομάδων είναι πως το πρόβλημα εξετάζεται
ως πρόβλημα ανάθεσης και όχι ως πρόβλημα κάλυψης, δηλαδή απαιτείται ακριβως
ένας εργαζόμενος για μία δεξιότητα και ένας εργαζόμενος μπορεί να αναλάβει μόνο
μία δεξιότητα του έργου. Εκτός αυτού, το κοινωνικό δίκτυο που χρησιμοποιείται
για την εξαγωγή των σχέσεων είναι κατευθυνόμενο, το οποίο σημαίνει ότι οι σχέ-
σεις δεν είναι απαραίτητα αμοιβαιες, και είναι διαφορετικό για κάθε δεξιότητα,
δηλώνοντας πως οι σχέσεις σεβασμού εξαρτώνται και από την δεξιότητα την οποία
αφορά. Το πρόβλημα της μεγιστοποίησης σεβασμού έχει οριστεί στο [2], όπου απο-
δεικνύεται ότι η πολυπλοκότητα του είναι NP-Hard και προτείνεται μια ποικιλία
ευριστικών αλγορίθμων για την επίλυσή του. Επιπλέον, ορίζουν και επιλύουν μία
υποπερίπτωση του προβλήματος μεγιστοποίησης σεβασμού, δοθέντος μιας κατάτα-
ξης των εργαζόμενων για κάθε δεξιότητα, αντί ενός κοινωνικού δικτύου. Στην δική
μας εργασία προτείνουμε μία διατύπωση Integer Quadratic Programming (IQP) και
παρέχουμε έναν εναλλακτικό ευριστικό αλγόριθμο για το πρόβλημα της μεγιστο-
ποίησης σεβασμού.

Έπειτα θεωρούμε μια παραλλαγή το προαναφερθέντος προβλήματος, όπου ο
σεβασμός είναι αντισυμμετρικός. Αυτό σημαίνει πως εάν υπάρχει θετικός σεβασμός
από τον εργαζόμενο u προς τον εργαζόμενο v για κάποια δεξιότητα, τότε υπάρχει
ίση αλλά αρνητική ασέβεια ή έλλειψη σεβασμού από τον εργαζόμενο v προς τον
εργαζόμενο u. Αν ο εργαζόμενος u ανατεθεί σε αυτήν την δεξιότητα, τότε η προσθήκη
του v στην ομάδα, σε κάποια άλλη δεξιότητα, θα επηρεάσει αρνητικά την ποιότητα
της ομάδας.

Αρχικά θεωρούμε μία ειδική περίπτωση του προβλήματος, όπου οι αντισυμμετρι-
κές τιμές σεβασμού εξάγονται από μία βαθμολογημένη κατάταξη των εργαζόμενων.
Σε αυτήν την περίπτωση, δείχνουμε ότι το πρόβλημα της μεγιστοποίησης σεβασμού
μπορεί να αναχθεί σε πρόβλημα maximum weight matching, το οποίο μπορεί να
λυθεί βέλτιστα (με την χρήση του Hungarian αλγορίθμου), ή προσεγγιστικά (με την
χρήση ενός Greedy αλγορίθμου) σε πολυωνυμικό χρόνο. Βάσει αυτής της παρατή-
ρησης προτείνουμε αλγόριθμο με ορόσημα, ύστερα από μελέτη διάφορων τρόπων
για την βέλτιστη επιλογή ορόσημων, για την γενική περίπτωση του προβλήματος, το
οποίο ανάγεται στην περίπτωση της κατάταξης. Επιπροσθέτως, προτείνουμε πα-
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ραλλαγές κάποιων ευριστικών αλγορίθμων οι οποίοι έχουν προταθεί στο [2] για
την επίλυση του νέου προβλήματος με αντισυμμετρικό σεβασμό. Τέλος, εξετάσαμε
την εφαρμογή του ευριστικού αλγορίθμου βάσει της διατύπωσης IQP, τον οποίο
προτείνουμε για το γενικό πρόβλημα μεγιστοποίησης σεβασμού.

Υλοποιήσαμε και αξιολογήσαμε τους αλγορίθμους μας σε πραγματικά σύνολα
δεδομένων έναντι υπαρχόντων μελετών ή αλγορίθμων. Για το γενικό πρόβλημα μεγι-
στοποίησης σεβασμού, ο ευριστικός αλγόριθμος IQP παράγει ομάδες με υψηλότερο
σεβασμό, έχοντας όμως μεγαλύτερο υπολογιστικό κόστος. Για την αντισυμμετρική
περίπτωση, για την περίπτωση με την κατάταξη, παρατηρούμε πως ο Greedy αλ-
γόριθμος παράγει λύσεις πολύ κοντά σε αυτές του Hungarian αλγορίθμου. Για την
γενική περίπτωση με γράφο, οι ευριστικοί αλγόριθμοι με τα ορόσημα αποδίδουν
παρόμοια με την λύση του IQP και των άλλων ευριστικών προσεγγίσεων, έχοντας
χαμηλότερο υπολογιστικό κόστος.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Contributions

1.2 Thesis Roadmap

Team formation is a problem faced in varying settings for the accomplishment of a
common goal. Typically, a good team is one that employs the best experts for the
skills required for the task at hand [3, 4]. However teams should not be created
based solely on the expertise of the people involved, but also take into account their
personal relations (often referred to as “team chemistry”), as both are important to
ensure that the team will work efficiently.

The problem of Team Formation in Social Networks was defined in [1] in order
to combine the importance of expertise and personal relations of the team members
during the creation of a team. More specifically, given a collaborative task, requiring
a certain skill-set to be completed, an undirected weighted social network of workers,
that captures their social relations, and their skills, the goal is the creation of a team of
workers covering the skills required for the task while minimizing the communication
cost among team members. The communication cost is calculated on the induced
subgraph of the chosen workers and measures the ability of the workers to cooperate
effectively. Several extensions of this work have been considered, with different team
quality measures [5, 6, 7, 8, 9, 10], or different team design criteria [11, 12, 13, 14].

The Team Formation problem, as defined above, extracts all personal relations over
a single undirected graph and assumes tasks that don’t require a specific structure
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for the team. But the reality is, that personal relations aren’t always reciprocal and
depend on different criteria, while teams cooperate better if each member has specific
responsibilities. The work in [2] considered an alternative setting where skills are
assigned to workers and there are respect relationships between the workers rather
than compatibility relations. They defined theMaxMutualRespect problem, where given
a task with specific skill requirements and a directed social network capturing the
respect relations between the workers for each of the required skills, we want to create
a team by assigning each skill to a single worker, such that we maximize the respect
the workers receive from the remaining team members with respect to the skill they
have been assigned to. Having a graph for every skill shows that while one worker
may be highly respected in a certain field, doesn’t mean that he enjoys the same
amount of respect in a different field. The fact that the edges in these graphs are
directed depicts that relationships are not necessarily mutual. They also define the
MaxRankingRespect problem, a special case of the MaxMutualRespect problem, where
the respect relations are derived over rankings. The MaxMutualRespect problem has
been proven to be NP-hard, while the complexity of the MaxRankingRespect problem
is unresolved.

This thesis extends the work of [2] in two ways. First, we propose an Integer
Quadratic Programming (IQP) formulation for the MaxMutualRespect problem, pro-
viding an alternative heuristic algorithm. Our formulation is general enough to be
used for all variants of the problem.

Subsequently, we consider a variation of the MaxMutualRespect problem, where
respect is antisymmetric. This means that if a worker v has respect for worker u in a
skill, then worker u will have equal but negative disrespect for worker v. If worker u
is assigned to the skill, then adding worker v to the team has a negative effect on the
team. For example, this could be the case when a v is senior, or more experienced
on the skill than worker u. We define MaxMutualAntisymmetricRespect to denote this
variant of the problem.

We first consider theMaxRankingAntisymmetricRespect problem, a special case, where
the antisymmetric respect values are derived over a ranking, and show that it can
be reduced to the maximum weight matching problem. This problem can now be
solved optimally with the use of the Hungarian algorithm, or approximately with
the use of a Greedy algorithm in polynomial time. Note that the complexity of the
corresponding problem in [2] was left unresolved.
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We then consider the general case where the antisymmetric respect values are de-
rived over a general respect graph. Inspired by the work on landmark-based distance
estimation (e.g., see [15]), we propose a landmark-based algorithm for this case, and
we show that the algorithm reduces to solving the MaxRankingAntisymmetricRespect
problem. We consider different strategies for selecting landmarks, and we evaluate
them experimentally. We also propose variations of some of the heuristic algorithms
defined in [2] and examine the application of the IQP heuristic algorithm for this
case.

Our proposed algorithms have been implemented and evaluated using real datasets
against existing baselines. For the MaxMutualRespect problem, the heuristic IQP algo-
rithm assigns teams with higher respect score, while for the MaxRankingRespect prob-
lem solutions with maximum respect are found, though in both cases with higher
computational cost. We thus confirm that our formulation can compute a higher
respect score than the current heuristics.

For the asymmetric respect case, for the MaxRankingAntisymmetricRespect prob-
lem we observe that the Greedy algorithm creates teams very close to those of the
Hungarian algorithm, while having smaller cost. For the general MaxMutualAntisym-
metricRespect problem we observe that our landmark-based algorithm’s performance
is close to that of the IQP heuristic algorithm’s and that of the other heuristics, while
having lower computational cost.

1.1 Thesis Contributions

In summary in this thesis we make the following contributions:

• We present a novel Integer Quadratic Programming formulation for the Max-
MutualRespect problem. We evaluate it experimentally, and we demonstrate that
it achieves higher score than existing heuristics, albeit at a higher cost.

• We propose a novel variant of the MaxMutualRespect problem where respect is
antisymmetric. We show that for the ranking case of our problem we can find
the optimal solution in polynomial time.

• We propose a landmark-based algorithm for the general antisymmetric case,
which utilizes the algorithms for the ranking case to find a solution. We evaluate

3



different approaches for selecting the landmarks.

• We evaluate our algorithms on real datasets, and we compare against existing
baselines.

1.2 Thesis Roadmap

The outline of this thesis is as follows:

• In Chapter 1 we introduced the problem we study in the thesis.

• In Chapter 2 we present previous work related to the problem we examine

• In Chapter 3 we define our problem, and we propose an IQP heuristic algorithm.
We evaluate our algorithm against existing heuristics.

• In Chapter 4 we define the antisymmetric respect problem, and we propose
algorithms for the different cases of the problem. We evaluate our algorithms
experimentally.

• Chapter 5 contains our conclusions on this work.

4



CHAPTER 2

RELATED WORK

The Team Formation problem in Social Networks was first defined in [1], where given
a set of workers, a task and an undirected graph depicting the compatibility between
the workers, the goal is to find a subset of workers that covers the skills required for
the task, while inducing a subgraph with low communication cost. They examine two
variations for the communication cost function, one being the diameter of the induced
subgraph, the other being the minimum spanning tree on the induced subgraph.

Since then, the Team Formation problem has been studied, examining more vari-
ations of the communication cost formulation and introducing new requirements.
In [5] and [6] density-based measures are proposed as communication cost func-
tions, while in [7] the computational complexity of different measures is evaluated.

The existence of personnel cost besides communication cost is considered in var-
ious works. In [8] and [9] combined cost functions are proposed, while the authors
of [10] apply a budget to the personnel cost and strive to create teams that can cover
multiple tasks.

Even distribution of the task among the team members, meaning no one is over-
loaded or singled-out, is studied in [11], [12] and [13]. At the same time [12] and [13]
examine online Team Formation, as does [14]. Online Team Formation means that
the tasks arrive successively, instead of them all being available from the beginning,
and upon each task arrival a team fulfilling the requirements is created.

More variations of the requirements are studied, such as the inclusion of a des-
ignated team leader in [16] and [17], the diversity of the team members in [18],
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and a combination of several design criteria in [19] where a submodular function is
proposed.

In [20] the Team Formation problem is studied on signed social networks, where
workers can also have negative relationships, making them non-compatible. The goal
here is to create compatible teams, covering the skill requirements and minimizing
communication cost.

The Team Formation problem is also examined in different setting, such as online
games in [21] and [22]. Both works propose different evaluation criteria for the teams,
with respect to the setting.

In the aforementioned publications the Team Formation problem is a set-cover
problem, though our work focuses on the Team Formation problem as an assignment
problem. Previous works studying the Team Formation problem as an assignment
problem include [23] and [2]. In [23] the teams created must have a certain structure
based on a given template in the form of a graph. This structure ensures hierarchies
among the team members. The objective is to assign workers to the roles of the
template while minimizing the communication cost along the template edges.

Our work is an extension of the work presented in [2]. In this case a social net-
work in the form of a directed graph is provided for each skill of the task, denoting
the respect relationships of the workers for the specified skill. Note that the graphs
in this case are directed, meaning that respect relations are not necessarily mutual.
Each skill of the given task gets assigned one worker, forming a team, where instead
of minimizing communication cost, the objective is to maximize respect score among
the workers across the different skills. To solve the problem various heuristic algo-
rithms are proposed. The authors also define a special case of the problem, based
on an ordered ranking of the workers instead of a graph, and propose a polynomial
algorithm which finds teams of maximum respect if such a team exists, as well as ap-
proximation algorithms. In our work we propose an Integer Quadratic Programming
formulation to solve this problem and define a variation of it.
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CHAPTER 3

INTEGER QUADRATIC PROGRAMMING

3.1 Problem Definition

3.2 An Integer Quadratic Programming Formulation

3.3 Experiments

In this Chapter we formally define the Respect Maximization problem that was fist
considered in [2]. We then show how the optimization problem can be formulated
as an Integer Quadratic Program. We provide experiments comparing our algorithm
with those in [2].

3.1 Problem Definition

We now define two variants of the respect maximization problem defined in [2].
We are given directed graph Gs = (X,Es), for each skill s, where X denotes the

set of workers and the graph denotes the respect relationships between the workers.
Every directed edge (xi, xj) ∈ Es denotes that xj respects xi for skill s. Our goal is
to create teams of workers F ⊆ X where each skill is assigned to one worker and
a worker can occupy only one skill. The team F produced should have maximum
respect possible.

Specifically, a skill assignment is defined as an injective function f : S → X , where
f(i) is the worker assigned to skill i ∈ S. F = f(S) denotes the selected team of experts
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covering set of skills S. The respect Ri(f) that worker f(i) receives is computed by
the number of outgoing edges in graph Gi to the other workers in the assignment
and is defined as:

Ri(f) = |{(f(i), u) ∈ Ei : u ∈ F, u ̸= f(i)}| (3.1)

The total respect for an assignment is given by the sum of the respect values of
each of the workers assigned and defined as:

R(f) =
∑
i∈S

Ri(f) (3.2)

The RespectMaximization problem can now be defined.

Problem 1 (RespectMaximization). Given a set of workers X, a set of skills S and respect
graphs Gi = (X,Ei), ∀i ∈ S, find an assignment f : S → X, that maximizes R(f).

A natural way to derive respect relationships between the workers for a skill is
via a ranking of the workers. The ranking defines a pecking order where those lower
in the ranking respect those higher in the ranking.

The ranking case can be easily captured by our general definition. Given a ranking,
we can create a respect graph as follows. Let P i denote the ranking for skill i ∈ S.
For every worker, the value P i[x] is the position of worker x in the ranking of skill
i. The lower the value of P i[x] the higher the worker is in the ranking. A worker in
a ranking P i respects all workers above him in the ranking. The graph Gi produced
by P i places an edge (v, u) for all pairs of nodes where P i[u] > P i[v].

We use MaxRankingRespect to refer to this special case of RespectMaximization. We
will consider this problem separately in our algorithms and experiments.

3.2 An Integer Quadratic Programming Formulation

The goal of this section is to formulate algorithms to solve the RespectMaximization
and MaxRankingRespect problems using Quadratic Programming (QP) [24]. A QP
optimizes a quadratic function using equality, inequality and bound constraints. An
Integer Quadratic Program (IQP) only has discrete variables in the model.

We have n workers X and k skills S. For each skill s we have a graph Gs that
denotes the respect relationships between the workers. We assume that a directed
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edge (xi, xj) between two workers denotes that xj respects xi (or, xi commands the
respect of xj).

Our goal is to find an assignment f : S → X that maximizes the respect of the
team. The respect is defined as the sum over all skills, of the outgoing edges from
the worker assigned to the skill to the remaining members of the team. Let F be the
team of assigned workers. Without loss of generality we assume that f(j) = xj. Let
Aj denote the adjacency matrix of graph Gj. The respect for skill j is now computed
as:

Rj(f) =
∑
xi∈F

Aj[xj, xi], (3.3)

where Aj[xj, xi] = 1 means that an edge (xj, xi) exist in Gj , thus xi respects xj for
skill j.

The total respect is defined as:

R(f) =
k∑

j=1

Rj(f) (3.4)

Let f denote an n-dimensional binary vector that defines the set F , where fi = 1

if xi ∈ F and zero otherwise. Then we can write:

Rj(f) = Aj[xj, :]f, (3.5)

where Aj[xj, :] denotes the xj-row of the matrix Aj. Since f denotes the position
∀xi ∈ F , the inner product of Equation 3.5 gives the sum of the existing edges
(xj, xi), ∀xi ∈ F in Gj , as does Equation 3.3.

Also let fj be an n-dimensional one-hot vector that defines the assignment of f
for skill j, where fj(i) = 1 when f(j) = xi and zero everywhere else. Note that:

Rj(f) = fjTAjf =
k∑

i=1

fjTAjfi, (3.6)

where the inner product fjTAj gives Aj[xj, :], and Equation 3.6 follows directly from
Equation 3.5.

Therefore:

R(f) =
k∑

j=1

k∑
i=1

fjTAjfi (3.7)

We can write this in a standard quadratic form. We use x = [f1; f2; · · · ; fk] to denote
the (n × k)-dimensional vector that is defined as the stacking of the fj vectors. Also
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we define the (n× k)× (n× k) matrix M as follows:

M =



A1 A1 · · · A1

A2 A2 · · · A2

... ... ...

Ak Ak · · · Ak


(3.8)

We can see that:
R(f) = xTMx, (3.9)

Note that xTM = [f1TA1 + f2TA2 + · · · + fkTAk; · · · ; f1TA1 + f2TA2 + · · · + fkTAk], and
each section of the vector is equal to the sum of fjTAj∀j ∈ S. Accordingly, xTMx
gives the sum of respect over the complete assignment as defined in 3.7.

We observe that xTMx = xTMTx, as shown below:

xTMx = [f1TA1 + f2TA2 + · · ·+ fkTAk; f1TA1 + f2TA2 + · · ·+ fkTAk;

· · · ; f1TA1 + f2TA2 + · · ·+ fkTAk]x

= [A1[x1, :] + A2[x2, :] + · · ·+ Ak[xk, :];A
1[x1, :] + A2[x2, :]+

· · ·+ Ak[xk, :]; · · · ;A1[x1, :] + A2[x2, :] + · · ·+ Ak[xk, :]]x

= [A1[x1, x1] + A2[x2, x1] + · · ·+ Ak[xk, x1] + A1[x1, x2] + A2[x2, x2]+

· · ·+ Ak[xk, x2] + · · ·+ A1[x1, xk] + A2[x2, xk] + · · ·+ Ak[xk, xk]], (3.10)

and:

xTMTx = [f1TA1T + f2TA1T + · · ·+ fkTA1T ; f1TA2T + f2TA2T + · · ·+ fkTA2T ;

· · · ; f1TAkT + f2TAkT + · · ·+ fkTAkT ]x

= [A1T [x1, :] + A1T [x2, :] + · · ·+ A1T [xk, :];A
2T [x1, :] + A2T [x2, :] + · · ·+ A2T [xk, :];

· · · ;AkT [x1, :] + AkT [x2, :] + · · ·+ AkT [xk, :]]x

= [A1T [x1, x1] + A1T [x2, x1] + · · ·+ A1T [xk, x1] + A2T [x1, x2] + A2T [x2, x2]+

· · ·+ A2T [xk, x2] + · · ·+ AkT [x1, xk] + AkT [x2, xk] + · · ·+ AkT [xk, xk]],

(3.11)

where we can see that xTMx and xTMTx are sums over the same values, as Aj[xj, xi] =

AjT [xi, xj].
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We can now define a symmetric matrix P as follows:

P = M +MT =



A1 + (A1)T A1 + (A2)T · · · A1 + (Ak)T

A2 + (A1)T A2 + (A2)T · · · A2 + (Ak)T

... ... ...

Ak + (A1)T Ak + (A2)T · · · Ak + (Ak)T


(3.12)

Since xTMx = xTMTx, we know that xTPx = 2R(f), and can now define our
integer quadratic program satisfying the symmetry requirements.

We thus have the following integer quadratic program:

maximize
x

xTPx

subject to xi ∈ {0, 1}, i = 1, . . . , n× k
n∑

i=1

xi+j = 1, j = 1, . . . , k (Every skill is assigned a worker)

k∑
j=1

xi+j ≤ 1, i = 1, . . . , n (Every worker is assigned to at most one skill)

(3.13)

3.3 Experiments

3.3.1 Datasets

Dataset for RespectMaximization problem

As in [2], we study the RespectMaximization problem on real data generated from
academic citation networks. In this setting the workers are scientists, and the skills
are scientific fields. The respect graph for each scientific field is based on citations. An
edge (xi, yi) ∈ Ei means that author xi has published a paper in field i and author yi
has a publication citing that paper.

Specifically, the following scientific fields on Compute Science are considered: Ar-
tificial Intelligence (AI), Neural Networks (NN), Natural Language Processing (NLP),
Robotics, Data Mining (DM), Algorithms, Data Bases (DB), Theory, Signal Processing
(SP), Computer Networking (CN), Information Retrieval (IR), Wireless Networks and
Mobile Computing (Wireless), Software Engineering (SE), High-Performance Comput-
ing (HPC), Distributed and Parallel Computing (DPC) and Operating Systems (OS).
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With the use of publicly available resources 1 the top-tier conferences for each field are
found. Then the DBLP dataset2 is used to extract the set of publications and authors
belonging to these conferences, and the citation networks for the different fields are
created. For noise-reduction purposes, all self-loops were removed from the graphs,
and authors with less than 5 incoming or outgoing edges were iteratively pruned.

The following six teams are considered:

1. Team 1 is an AI & Applications team requiring scientists from the fields AI, NN,
NLP and Robotics

2. Team 2 is a Data & Analysis team requiring scientists from the fields DM,
Algorithms, DB and Theory

3. Team 3 requires scientists from all fields in Teams 1 and 2

4. Team 4 is a Systems team requiring scientists from the fields SE, HPC, DPC and
OS

5. Team 5 is a Networks team requiring scientists from the fields SP, CN, IR and
Wireless

6. Team 6 requires scientists for all fields in Teams 4 and 5

Dataset for MaxRankingRespect problem

The MaxRankingRespect problem is studied using the NBA dataset3, as in [2], which
contains individual basketball player statistics for different NBA seasons, for a range
of basic statistics such as points, assists rebounds etc., to more advanced performance
metrics such as value over replacement. The same data for the seasons 2010 - 2017
is used, as are the same 11 performance metrics that they consider important in
assembling a basketball team: STL, AST, FT, BLK, FG, TRB, 2P, 3P, DBPM, OBPM
and VORP, whose description can be read in4. In our setting these performance metrics
correspond to skills, while the players correspond to workers. The set of players is
pruned so as to keep the ones that have payed in at least one third of the games
of the season, and have played at least 15 minutes per game. A ranking over these

1https://dl.acm.org/ccs/ccs_flat.cfm
2https://www.aminer.cn/data/?nav=openData#Citation
3https://www.kaggle.com/datasets/drgilermo/nba-players-stats
4https://www.basketball-reference.com/about/glossary.html
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performance metrics is created by sorting the players in decreasing order of the metric
value.

In this case we consider every season 2010 - 2017 as a team, each of them having
as skills the 11 performance metrics mentioned above.

3.3.2 Algorithms

As our problems have been previously defined and solved in [2], we will evaluate
our IQP formulation against the best performing algorithms presented there. For the
RespectMaximization problem we will compare with the RandGreedy algorithm, while
for the MaxRankingRespect problem will compare to the AllCandidates algorithm. We
describe these two algorithms in detail below.

RandGreedy

The RandGreedy algorithm computes an initial score value for each skill-worker pair
as:

s(i, x) = deg+
Gi(x) +

1

k − 1

∑
j∈S:j ̸=i

deg−
Gj(x), (3.14)

where deg+
Gi(x) denotes the outgoing edges of worker x in graph Gi and deg−

Gi(x)

denotes his incoming edges. The intuition is that high out-degree deg+
Gi(x) in graph

Gi means that worker x is highly respected for skill i, while high average in-degree
deg−

Gj(x) for the remaining skills means that worker x has on average high respect
for the other workers in the other skills.

It then selects a skill uniformly at random and makes the assignment of the
skill-worker pair with the highest score value. RandGreedy proceeds in an iterative
manner, computing an updated score value for each skill-worker pair given the partial
assignment F as follows:

sF (i, x) = deg+
Gi[F∪{x}](x) + |{(x, f(j)) ∈ Ej : f(j) ̸= ∅}|

+
1

k − |F |
∑

j:f(j)=∅

deg−
Gj [V \F ]

(x),
(3.15)

where f(j) = ∅ denotes an unassigned skill and G[F ] denotes the induced subgraph
of the set F ⊆ V . A skill-worker pair (i, x) receives high score if worker x is highly
respected by the assigned workers in F for skill i, worker x has high respect for the
workers assigned to other skills, and has high average respect for the unassigned
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workers in the unassigned skills. The terms in the above values are normalized to be
in the same scale. At each iteration, a skill is selected uniformly at random, and the
skill-worker pair with the highest score value is assigned. This iterative selection step
is repeated until all skills have been assigned a worker. The RandGreedy algorithm is
repeated t = 50 times and the assignment with the highest score is reported.

AllCandidates

The AllCandidates algorithm is an algorithm for theMaxRankingRespect problem. Given
the set of rankings for each skill, it exhaustively considers each possible skill-worker
pair (i, x) ∈ S × X as a first assignment. For each of the first assignments, it then
proceeds by selecting a skill uniformly at random and assigning the highest ranked
worker that has not been assigned. The assignment with the highest score is reported.

If a solution with maximum respect score exists, the AllCandidates algorithm has
been shown in [2] to always find it. Consequently, we examine if our IQP_MaxRespect
algorithm will also be able to find such a solution.

IQP_MaxRespect

To bring our IQP formulation to algorithm form we used the CVXPY open source
Python-embedded modeling language, combined with the GUROBI solver. We refer
to this algorithm as the IQP_MaxRespect algorithm.

3.3.3 Results

Results for RespectMaximization problem

Figure 3.1a shows the score of the IQP_MaxRespect algorithm with the DBLP dataset
next to the score achieved by the RandGreedy algorithm. We can see that in most cases
the IQP_MaxRespect algorithm outperforms the RandGreedy algorithm, and in the other
cases it achieves the same score. We can therefore conclude that the IQP_MaxRespect
algorithm does offer an advantage.

In Figure 3.1b the execution times of the IQP_MaxRespect algorithm and the Rand-
Greedy algorithm are shown side by side. We observe that whilst IQP_MaxRespect
performs greatly in regards to the score, the efficiency is substantially worse than the
RandGreedy algorithm in regards of the execution time. A time limit of 6 hours had to
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(a) Respect score (b) Runtime analysis

Figure 3.1: Respect score and runtime analysis comparison of IQP_MaxRespect and
RandGreedy algorithms.

be applied in order to obtain results for Teams 1 - 4 for the IQP_MaxRespect algorithm,
otherwise the algorithm terminated unexpectedly without returning results.

Figures 3.2a and 3.2b show the average respect score and runtime values over
all teams for each algorithm. We can see that our IQP_MaxRespect algorithm per-
forms better overall with respect to the score, while with respect to the runtime the
RandGreedy algorithm is much more efficient.

The workers selected for each team by the IQP_MaxRespect algorithm with the
DBLP dataset can be seen in Table 3.1 in comparison to the experts selected by the
RandGreedy algorithm. Rows 2 and 10 denoted as Top contain the scientists with the
highest number of citations in each field, presented for calibration. We observe that
for Teams 1, 2, 4 and 5, in most cases IQP_MaxRespect assigns different experts than
RandGreedy does, and also that it never assigns the most cited author in any field. An
interesting case is Team 2 where the IQP_MaxRespect algorithm produces a team that
seems intuitively more appropriate than that of RandGreedy. However, for Team 6 the
assignments of IQP_MaxRespect and RandGreedy have most experts in common, but
assigned to different fields, the same goes for Team 3 where the two algorithms have
some assignments in common and a few of the same experts assigned to different
fields.
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(a) Average respect score (b) Average runtime analysis

Figure 3.2: Average respect score and runtime analysis comparison of
IQP_MaxRespect and RandGreedy algorithms.

Table 3.1: Teams produced by the IQP_MaxRespect algorithm with the DBLP dataset.

AI NN NLP Robotics DM Algorithms DB Theory
Top J.Lafferty G.Hinton E.Hovy V.Kumar C.Aggarwal A.Goldberg R.Agrawal M.Szegedy

Team1
RandGreedy W.Burgard A.Ng J.Pineau S.Thrun - - - -

IQP_MaxRespect H.Lee A.Ng C.Manning D.Fox - - - -

Team2
RandGreedy - - - - D.Srivastava S.Muthukrishnan M.Hadjieleftheriou N.Koudas

IQP_MaxRespect - - - - P.S.Yu S.Muthukrishnan A.Gionis P.Indyk

Team3
RandGreedy M.Jordan B.Mirzasoleiman Q.Yang W.Wang A.Krause A.Badanidiyuru C.Guestrin A.Karbasi

IQP_MaxRespect A.Krause B.Mirzasoleiman A.Singla J.Vondrk C.Guestrin A.Badanidiyuru T.Joachims A.Karbasi

SE HPC DPC OS SP CN IR Wireless
Top G.Rothermel I.Foster L.Ni M.Kaashoek G.Giannakis D.Towsley C.Buckley J.Polastre

Team4
RandGreedy R.Gupta D.Panda Q.Gao Y.Zhou - - - -

IQP_MaxRespect R.Iyer W.Kramer Z.Kalbarczyk A.Arpaci-Dusseau - - - -

Team5
RandGreedy - - - - C.Zhang R.Zhang B.Li Q.Zhang

IQP_MaxRespect - - - - R.Zhang Y.Chen J.Zhang Q.Zhang

Team6
RandGreedy B.Li J.Wu Y.Liu Z.Yang J.Han M.Li J.Cao X.Li

IQP_MaxRespect Z.Yang J.Wu M.Li J.Liu Z.Li X.Li J.Han Y.Liu

Results for MaxRankingRespect problem

In Figure 3.3a the respect score achieved by the IQP_MaxRespect algorithm with the
NBA dataset is compared to the score achieved by the AllCandidates algorithm. It is
easily observed that the IQP_MaxRespect algorithm produces teams with the same
respect score as the AllCandidates algorithm, which is the maximum score possible,
despite assigning different workers.

Figure 3.3b shows the comparison of the execution time of the IQP_MaxRespect
algorithm and the AllCandidates algorithm for the NBA dataset. We can see that the
IQP_MaxRespect algorithm has a very long execution time compared to the AllCandi-
dates algorithm. In this case, too, a time limit of 6 hours had to be applied in order
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(a) Respect score (b) Runtime analysis

Figure 3.3: Respect score and runtime analysis comparison of IQP_MaxRespect and
AllCandidates algorithms.

Table 3.2: Teams produced by the IQP_MaxRespect algorithm with the NBA dataset
for seasons 2010 - 2013.

2010 2011 2012 2013
IQP_MaxRespect AllCandidates IQP_MaxRespect AllCandidates IQP_MaxRespect AllCandidates IQP_MaxRespect AllCandidates

STL C.J.Watson E.Watson O.J.Mayo D.Fisher C.Delfino M.Conley C.Brewer T.Allen

AST J.Calderon J.Calderon E.Watson J.Calderon B.Udrih S.Nash J.Tinsley E.Turner

FT C.Landry K.Lowry M.Williams R.Sessions J.Crawford K.Bryant T.Hansbrough D.DeRozan

BLK C.Andersen C.Andersen W.Chandler J.McGee K.Seraphin S.Ibaka B.Biyombo R.Hibbert

FG O.J.Mayo K.Martin C.Villanueva M.Beasley T.Prince R.Westbrook A.Afflalo J.Smith

TRB E.Okafor J.Noah K.Brown K.Humphries U.Haslem D.Howard R.Evans O.Asik

2P A.Bargnani N.Krstic S.Young D.DeRozan G.Henderson B.Griffin J.Thompson C.Boozer

3P R.Butler Q.Richardson G.Neal M.Belinelli R.Foye J.Terry C.Butler B.Gordon

DBPM T.Thomas M.Camby A.McDyess K.Thomas B.Wallace M.Camby A.Bogut A.Bogut

OBPM G.Arenas G.Arenas B.Miller L.Williams J.Bayless D.Wade W.Chandler A.J.Price

VORP A.Kirilenko B.Wallace M.Dunleavy S.Jackson R.Allen J.Noah J.Butler T.Duncan

to obtain an assignment for every season with the IQP_MaxRespect algorithm.
In Figures 3.4a and 3.4b the average respect score and runtime over all teams is

shown. We can see that with respect to the score the difference between the algorithms
is minimal, while with respect to the runtime the difference is substantial.

Tables 3.2 and 3.3 show the teams assigned by the IQP_MaxRespect algorithm
for the NBA dataset next to the teams produced by the AllCandidates algorithm. We
observe that the teams assigned by each algorithm differ vastly for every season.
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(a) Average respect score (b) Average runtime analysis

Figure 3.4: Average respect score and runtime analysis comparison of
IQP_MaxRespect and AllCandidates algorithms.

Table 3.3: Teams produced by the IQP_MaxRespect algorithm with the NBA dataset
for seasons 2014 - 2017.

2014 2015 2016 2017
IQP_MaxRespect AllCandidates IQP_MaxRespect AllCandidates IQP_MaxRespect AllCandidates IQP_MaxRespect AllCandidates

STL K.Caldwell-Pope R.Rubio B.Knight T.Ariza C.Brewer R.Rubio K.Caldwell-Pope P.Beverley

AST A.Rivers J.Wall D.Schroder J.Wall S.Mack R.Rondo D.Collison R.Rondo

FT D.Williams J.Harden J.Green D.Cousins A.Goodwin D.DeRozan D.Gallinari J.Embiid

BLK R.Kelly S.Ibaka D.Cunningham R.Gobert D.Cunningham H.Whiteside K.Porzingis K.O’Quinn)

FG O.J.Mayo C.Anthony G.Green L.Aldridge G.Henderson C.J.McCollum C.J.McCollum E.Turner

TRB Z.Pachulia D.Jordan L.Scola D.Jordan B.Portis A.Drummond C.Capela B.Biyombo

2P C.Kaman B.Griffin M.Speights N.Vucevic T.J.Warren K.A.Towns H.Barnes K.Faried

3P M.Teletovic K.Thompson T.Ross K.Thompson B.McLemore J.R.Smith K.Thompson W.Ellington

DBPM A.Kirilenko A.Bogut K.Bazemore A.Bogut L.Nance A.Bogut M.Muscala L.Nogueira

OBPM N.Robinson C.Paul J.Clarkson K.Lowry C.Landry C.Anthony B.Beal J.Lin

VORP C.J.Watson J.Noah M.Dunleavy M.Gasol C.Frye D.Green B.Griffin A.Iguodala
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CHAPTER 4

ANTISYMMETRIC RESPECT

4.1 Problem Definition

4.2 The Ranking Case

4.3 The General Case

4.4 Experiments

4.1 Problem Definition

In this chapter we define a variation of the RespectMaximization problem, based on
having antisymmetric respect Rij = −Rji, where Rij denotes the amount of respect
worker j has for worker i. The concept of antisymmetric respect is based on the idea
that if worker j has respect for worker i, then a hierarchy exists between them, in
which i is higher than j, and worker i will have negative respect for worker j, since
he is beneath him in the hierarchy.

We define this variation of the problem as follows. Given a set of n workers X ,
a task requiring a set of k skills S and an antisymmetric respect matrix T , for each
skill s, create a team of workers F ⊆ X , where each skill is assigned a worker and
the total respect of the team is maximized.

An antisymmetric matrix T has the property that T T = −T , and T [x, y] = −T [y, x]
for each x, y in the bounds of T . More specifically, a respect matrix T i for skill i
is of size n × n and contains the respect values for each pair of workers, such that
T i[x, y] = Rxy.

19



For this variation too, we define a skill assignment as an injective function f :

S → X , where f(i) = xi is the worker assigned to skill i. We let F = f(S) denote the
selected team of experts. The respect Ri(f) that worker f(i) receives from his team
members is defined as:

Ri(f) =
∑
xj∈F

Rxixj
(4.1)

Therefore, the total respect for an assignment is:

R(f) =
k∑

j=1

Rj(f) (4.2)

The problem can be broken into two cases based on the input on which the respect
matrix is derived from, a ranking case and a general case.

4.2 The Ranking Case

In the ranking case, we assume that for each skill i, every worker x has a weight
W i

x. The weights give a partial or full order of the workers. We define the amount of
respect that worker y has for worker x with respect to skill i as:

Ri
xy = W i

x −W i
y (4.3)

If instead of weights we are given a ranked order of the nodes for skill i, then we
derive these weights as a decreasing function of the position of x in the ranking of i,
W i

x = n − ranki(x). We refer to this problem as the MaxRankingAntisymmetricRespect
problem.

We observe that in this case the respect for skill j is computed as:

Rj(f) =
∑
xi∈F

[
W j

xj
−W j

xi

]
= kW j

xj
−

∑
xi∈F

W j
xi

(4.4)
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Consequently, the total respect of an assignment f is computed as:

R(f) =
k∑

j=1

Rj(f) (4.5)

=
k∑

j=1

kW j
xj
−

k∑
j=1

∑
xi∈F

W j
xi

(4.6)

=
k∑

j=1

kW j
xj
−

∑
xi∈F

k∑
j=1

W j
xi

(4.7)

=
∑
xi∈F

kW i
xi
−

∑
xi∈F

k∑
j=1

W j
xi

(4.8)

=
∑
xi∈F

[
kW i

xi
−

k∑
j=1

W j
xi

]
(4.9)

=
∑
xi∈F

V (i, xi) (4.10)

The value V (i, xi) =
[
kW i

xi
−

∑k
j=1 W

j
xi

]
is the contribution to the respect value

of f for assigning xi to skill i. Note that the function V (i, x) is independent of the
rest of the assignment, and depends only on the pair (i, x). Therefore, we can now
approach the problem as a Maximum Weight Bipartite Matching problem [25].

In a Maximum Weight Bipartite Matching problem, given a bipartite graph G =

(V,E) and a weight function w : E → R, we are called to find a matching of maximum
weight where the weight of matching M is given by w(M) =

∑
e∈M w(e).

For our problem, given a bipartite graph G = (N,E), where N = (X + S), with
bipartition (X,S), the weight function is w(i, xi) = V (i, xi), where i is a skill in S and
xi is a worker in X. Our goal is to find a matching M with maximum weight, which
is given by: w(M) =

∑
(i,xi)∈M w(i, xi).

The maximum weight bipartite matching problem can be solved optimally in poly-
nomial time using the Hungarian method, or approximately using a greedy approach.
We now describe these two algorithms below.

4.2.1 Algorithms

Hungarian

The Hungarian method is commonly used to solve linear assignment problems op-
timally. For this method we created the Hungarian based on [26]. The Hungarian
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receives as input the weights derived over the ranking and computes the score values
V (i, xi) for each skill-worker pair. Given these values the Hungarian creates a matrix
P of size n × k, where each row represents a worker x, each column a skill i, and
each cell contains the value V (i, xi), which is the benefit of assigning worker x to skill
i. The Hungarian method can only be applied to square matrices, thus matrix P is
modified by adding rows or columns as needed and the empty cells are filled with
the minimum value of matrix P . Now matrix P contains the benefit of assigning any
worker to any skill and is called a profit matrix. The Hungarian method, though,
works by minimizing the cost of an assignment, therefore Hungarian creates a cost
matrix C. Matrix C is of size n × n and is a product of matrix P , C = max(P ) − P .
The Hungarian proceeds by modifying matrix C according to the following steps, as
described in [27]:

1. Subtract minimum of each row from all elements in respective row and subtract
minimum of each column from all elements in respective column.

2. Draw minimum number of horizontal and vertical lines to cover all zeros in the
matrix.

(a) Let N denote the number of lines needed and n denote the order of matrix
C. If N = n, an optimal assignment can be made. Continue to step 5.

(b) If N < n, continue with next step.

3. Find the smallest element x in C , that is not covered by lines, and subtract it
from all elements not covered and add it to elements at intersection points of
lines.

4. Repeat steps 2 & 3 until N = n.

5. Examine rows successively and find row containing a single zero element and
mark the zero. Examine the column of marked zero and cross any zero found.
Repeat until all rows have been examined, then repeat for all columns.

(a) If no unmarked or uncrossed zero is left, an optimal solution has been
found and corresponds to the workers and skills at the rows and columns
of the marked zeros.

(b) If unmarked or uncrossed zeros are left, continue with next step.
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6. Randomly mark an unmarked and uncrossed zero and cross remaining zeros
in its row and column.

(a) If no unmarked or uncrossed zero is left, an optimal solution has been
found and corresponds to the workers and skills at the rows and columns
of the marked zeros.

(b) If unmarked or uncrossed zeros are left, repeat current step until no more
zeros are left.

MatchingGreedy

For the greedy approach we created the MatchingGreedy algorithm, whose outline can
be seen in Algorithm 4.1. MatchingGreedy receives as input the weights derived by
the ranking, computes the score values V (i, xi) for each skill i and each worker x,
stores them in a list B as tuples in the form of (score, worker, skill), and sorts them
in a descending order based on the score value. The MatchingGreedy algorithm keeps
a dictionary F that stores the assignments of workers to skills it makes, and lists W
and S containing the workers and skills assigned respectively. The first assignment
of the algorithm is the first value V (i, xi) in the sorted list. For each following value
V (i, xi) in the list we examine if skill i has already been assigned a worker and if
worker x has already been assigned a skill. If both of those statements are false,
MatchingGreedy assigns worker x to skill i and moves on to the next value. If any of
those statements is true, it moves on to the next value without making an assignment.
The algorithm terminates when each skill has been assigned a worker or when the
end of the list has been reached. The greedy approach may not always accomplish an
optimal assignment due to assigning workers to skills as it encounters them without
being able to change them later on if they find a better assignment later on.

4.3 The General Case

We now consider a more general case where the respect matrix is computed as follows.
The input is, again, a directed graph Gi, for each skill. We define the respect for a
pair of workers x, y for a skill i as:

Ri
xy = di(x, y)− di(y, x), (4.11)
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Algorithm 4.1 MatchingGreedy

Input: A dictionary W containing the weight of each worker in each skill.
Output: Assignment F .

1: B ← compute_score(W)
2: sort B in descending order (key: score)
3: F ← {}
4: W ← []

5: S ← []

6: for tuple(score, worker, skill) in B do
7: if worker not in W and skill not in S then
8: add tuple to F

9: add worker to W

10: add skill to S

11: end if
12: if length of F = number of skills then
13: break
14: end if
15: end for
16: return F

where function di denotes the shortest-path distance between the two workers in the
graph. Intuitively, a large distance from x to y implies that x is “higher” than y and
thus commands more respect. If there is no path from x to y in the graph, then the
distance is zero. To define the respect between the two nodes, we take the difference of
their distances in the graph. If the distance from worker x to worker y is greater than
the distance from worker y to worker x for skill i, then x commands more respect
from y than y demands from x, and thus Ri

xy is positive, while Ri
yx is negative.

We refer to this problem as the MaxMutualAntisymmetricRespect problem.
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4.3.1 Algorithms

Landmark Algorithms

In this section, we propose a landmark-based method for the MaxMutualAntisymmet-
ricRespect problem, aiming to reduce the general case to the MaxRankingAntisymmet-
ricRespect problem.

Landmarks have been used to estimate distances between nodes in a graph (e.g.,
see [15]). The idea is that given a landmark node ℓ, we precompute the distance
from ℓ to all other nodes in the graph, and we estimate the distance between two
nodes x, y as d(x, y) = d(x, ℓ)+d(ℓ, y). Multiple landmarks are used for more accurate
estimation.

In our problem, if for a pair of nodes x, y we had a perfect landmark, such that,
di(x, y) = di(x, ℓ) + di(ℓ, y) and di(y, x) = di(y, ℓ) + di(ℓ, x), then it would hold that
Ri

xy = Ri
xℓ − Ri

yℓ. If this idealized landmark worked for all pairs of nodes in the
graph, then we could assign to each node a weight W i

x = Ri
xℓ and our problem would

reduce to the MaxRankingAntisymmetricRespect problem.
This idealized landmark does not exist, but we build on this idea to propose the

following landmark-based heuristic algorithm. First, select a landmark ℓi for each
skill i. Use this landmark to compute the respect Ri

xℓi of the landmark ℓi to all nodes
in the graph. Use these values as the weights W i

x = Ri
xℓi and apply the MatchingGreedy

and Hungarian algorithms.
We examine three different ways of choosing the landmark.

1. LowLandmark: the worker with the lowest out-degree is assigned as landmark
ℓ. Choosing the worker that is least respected by others for a skill as landmark
is based on the idea that in a ranked order of the workers with regard to their
incoming respect, such a worker would be placed at the bottom of the ranking.
Then the distance from other workers to the landmark looks similar to the
weight assigned to workers in the case where we are given a ranked order, as
described in 4.2.

2. RandomLandmark: a worker is chosen uniformly at random to be assigned as
landmark ℓ. The RandomLandmark variation is repeated t = 100 times and the
assignment with the highest score is reported.

3. AverageRandomLandmark: initially a set L of t = 100 landmarks are chosen uni-

25



formly at random and W i
x =

∑
ℓ∈L Ri

xℓ

t
. This is a more efficient variant of the

random landmark selection, since we need to run the algorithm only once.

IQP_MaxRespect

For the MaxMutualAntisymmetricRespect problem, the IQP_MaxRespect algorithm de-
fined in 3.3.2 can be applied, by replacing adjacency matrix A, with respect matrix
T .

Greedy

Additionally, based on the algorithms developed in [2] for their definition of the
MaxMutualRespect problem, we created our version of the Greedy and RandGreedy
algorithms. The Greedy algorithm initially assigns a score to every skill-worker pair,
and makes the assignment with the highest score. For each next assignment an
updated score value is computed, based on the already assigned workers, and the
assignment with the highest score is made. The initial score value for a skill i and a
worker x is computed as follows:

s(i, x) =
∑

y∈X:y ̸=x

Ri
xy +

1

k − 1

∑
j∈S:j ̸=i

∑
y∈X:y ̸=x

Rj
yx, (4.12)

where a high value in the first part of the above equation means that worker x is
highly respected for skill i, and a high value in the second part of the equation means
that worker x has high average respect for the remaining workers in the remaining
skills. After the initial assignment is made, the updated score value for a skill i and
a worker x is computed as:

sF (i, x) =
∑

y=f(j)∈F

Ri
xy +

∑
y=f(j)∈F,j∈S

Rj
yx +

1

k − |F |
∑

j:f(j)=∅,j ̸=i,j∈S,y=f(j)

Rj
yx, (4.13)

where a high value in the first part of the equation means that worker x is highly
respected for skill i by the workers already assigned to team F , a high value in the
second part that worker x highly respects the workers assigned to team F for their
corresponding skills, and a high value in the third part means worker x has high
average respect for the unassigned workers in the unassigned skills. The terms in the
above values are normalized to be in the same scale.

26



(a) Score comparison between Matching-

Greedy and Hungarian.

(b) Runtime comparison between Match-

ingGreedy and Hungarian.

Figure 4.1: Comparison of algorithms for the MaxRankingAntisymmetricRespect
problem.

RandGreedy

The RandGreedy algorithm computes the score the same way as Greedy, but instead of
selecting the pair (i, x) with the highest score for each assignment, it selects a skill
i ∈ S : f(i) = ∅ uniformly at random, and then assigns the pair (i, x) with the highest
score value. RandGreedy is repeated t = 50 times and the assignment with the highest
score is reported.

4.4 Experiments

4.4.1 Experiments for MaxRankingAntisymmetricRespect

To solve the MaxRankingAntisymmetricRespect problem, the same dataset as in 3.3.3 is
being used.

Figure 4.1a shows the performance of the MatchingGreedy and the Hungarian al-
gorithms. We observe that in most cases the assignment given by MatchingGreedy
achieves the same score as the Hungarian assignment, which is the maximum score,
except for the seasons 2010 and 2017.

In Figure 4.1b we compare the performance of MatchingGreedy and Hungarian
regarding their running time. As expected, MatchingGreedy is more efficient achieving
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(a) Average score comparison between

MatchingGreedy and Hungarian.

(b) Average runtime comparison between

MatchingGreedy and Hungarian.

Figure 4.2: Comparison of the average values of the algorithms for the
MaxRankingAntisymmetricRespect problem.

Table 4.1: Teams produced by the Hungarian algorithm.

2010 2011 2012 2013 2014 2015 2016 2017

STL C.J.Watson D.Fisher C.Singleton R.Rubio P.Pressey S.Larkin T.J.McConnell T.J.McConnell

AST C.Duhon J.Flynn B.Udrih J.Tinsley K.Marshall S.Blake S.Blake S.Rodriguezl

FT J.Bayless C.Maggette C.Magette T.Hansbrough R.Stuckey N.Young S.Muhammad S.Muhammad

BLK J.Anthony E.Udoh B.Biyombo B.Biyombo E.Udoh B.Biyombo J.Henson J.Grant

FG C.Kaman D.DeRozan D.DeRozan D.DeRozan C.Boozer T.Parker D.Rose Z.Randolph

TRB U.Haslem R.Evans U.Haslem R.Evans O.Asik O.Asik O.Asik T.Chandler

2P T.Parker J.J.Hickson L.Scola K.Seraphin E.Kanter C.Boozer J.Okafor D.Rose

3P P.Stojakovic J.Jones S.Novak S.Novak M.Teletovik T.Hardaway H.Thompson T.Daniels

DBPM T.Ratliff E.Dampier A.Biedrins A.Bogut R.Turiaf S.Dalembert J.Noah I.Mahinmi

OBPM N.Robinson B.Davis J.Bayless J.Calderon J.J.Redick S.Muhammad C.Landryl J.J.Barea

VORP B.Wallace J.Anthony M.Ginobili J.Kidd A.Bogut A.Bogut A.Bogut L.Nogueira

a running time of 1ms, while Hungarian is noticeably slower.
Figures 4.2a and 4.2b show the average respect score value and the average

runtime value over all teams respectively. We can see that with respect to the score the
two algorithms perform very closely, while with respect to the runtimeMatchingGreedy
is much more efficient than Hungarian.

Tables 4.1 and 4.2 show the assignments created by the Hungarian and Match-
ingGreedy algorithms respectively. We can observe that for the years 2011 - 2016 the
assignments made by each algorithm are identical, while for the years 2010 and 2017
they differ for the roles FG and 2P, which we have highlighted in yellow for easier
recognition.
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Table 4.2: Teams produced by the MatchingGreedy algorithm.

2010 2011 2012 2013 2014 2015 2016 2017

STL C.J.Watson D.Fisher C.Singleton R.Rubio P.Pressey S.Larkin T.J.McConnell T.J.McConnell

AST C.Duhon J.Flynn B.Udrih J.Tinsley K.Marshall S.Blake S.Blake S.Rodriguezl

FT J.Bayless C.Maggette C.Magette T.Hansbrough R.Stuckey N.Young S.Muhammad S.Muhammad

BLK J.Anthony E.Udoh B.Biyombo B.Biyombo E.Udoh B.Biyombo J.Henson J.Grant

FG A.Stoudemire D.DeRozan D.DeRozan D.DeRozan C.Boozer T.Parker D.Rose D.Rose

TRB U.Haslem R.Evans U.Haslem R.Evans O.Asik O.Asik O.Asik T.Chandler

2P C.Kaman J.J.Hickson L.Scola K.Seraphin E.Kanter C.Boozer J.Okafor Z.Randolph

3P P.Stojakovic J.Jones S.Novak S.Novak M.Teletovik T.Hardaway H.Thompson T.Daniels

DBPM T.Ratliff E.Dampier A.Biedrins A.Bogut R.Turiaf S.Dalembert J.Noah I.Mahinmi

OBPM N.Robinson B.Davis J.Bayless J.Calderon J.J.Redick S.Muhammad C.Landryl J.J.Barea

VORP B.Wallace J.Anthony M.Ginobili J.Kidd A.Bogut A.Bogut A.Bogut L.Nogueira

4.4.2 Experiments for MaxMutualAntisymmetricRespect

To solve the MaxMutualAntisymmetricRespect problem, we use the same dataset as
in 3.3.3.

For the MaxMutualAntisymmetricRespect problem we first compare the LowLand-
mark, RandomLandmark and AverageRandomLandmark variations using the Matching-
Greedy and Hungarian algorithms. Table 4.3 shows the assignments made by the land-
mark variations paired with the algorithms for the MaxRankingAntisymmetricRespect
problem. We observe that MatchingGreedy and Hungarian make vary similar assign-
ments for each variation. We also observe that often the same worker is assigned to a
specific skill across different landmark variations, especially for the RandomLandmark
and AverageRandomLandmark variations.

In Figure 4.3a the performance of all variation-algorithm pairs is shown. It is easily
noticeable that the RandomLandmark variation performs best, for both algorithms used.
Between the two algorithms though, it might seem surprising that the MatchingGreedy
algorithm performs slightly better, since one would expect it to perform worse than
Hungarian, due to its greedy nature. This happens because these algorithms use an
approximation of the score to give an assignment, and given the assignment, the real
score is computed, based on which they are evaluated. The AverageRandomLandmark
variation performs slightly worse for both algorithms used, even though in some
cases it gets very close to the performance of the RandomLandmark variation, while the
LowLandmark variation performs poorly compared to the others.

Figure 4.3b shows the runtime analysis comparison for the LowLandmark, Ran-
domLandmark and AverageRandomLandmark variations using the MatchingGreedy and
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(a) Score comparison between landmark

variations.

(b) Runtime comparison between land-

mark variations.

Figure 4.3: Comparison of landmarks variations using the MatchingGreedy and Hun-
garian algorithms.

Hungarian algorithms. We observe that overall all landmark variations paired with
the MatchingGreedy algorithm perform better than the Hungarian algorithm. Specif-
ically, the LowLandmark and AverageRandomLandmark variations combined with the
MatchingGreedy algorithm are very efficient, having execution times of less than a sec-
ond. The longer execution time of the RandomLandmark variation is explained by the
number of t = 100 times the algorithm is repeated.

In Figures 4.4a and 4.4b the average respect score and runtime over all teams for
each variation is shown. We observe that with respect to the score overall the Ran-
domLandmark variation performs best, paired either with the MatchingGreedy or the
Hungarian algorithm. Between, the two algorithms MatchingGreedy performs slightly
better in this case. With respect to the runtime, we can see that overall the Matching-
Greedy algorithm performs more efficiently.

Next we compare the best performing landmark variation-algorithm pair with the
other algorithms for the MaxMutualAntisymmetricRespect problem. In Table 4.4 the as-
signments made by the RandomLandmark variation combined with the MatchingGreedy
algorithm are shown, along with the assignments made by the IQP_MaxRespect, Greedy
and RandGreedy algorithms. We observe that the assignments by the IQP_MaxRespect
algorithm and the RandGreedy algorithm are very similar and even identical in the
case of Team 2, Team 4 and Team 5. The assignments made by the RandomLandmark
variation paired with the MatchingGreedy algorithm have some skill-worker pairs in
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(a) Average score comparison between

landmark variations.

(b) Average runtime comparison between

landmark variations.

Figure 4.4: Comparison of the average values of the landmarks variations using the
MatchingGreedy and Hungarian algorithms.

common with the assignments made by the IQP_MaxRespect algorithm, while the
assignments made by the Greedy algorithm are the most different from the others.

In Figure 4.5a the performance of the RandomLandmark variation paired with
MatchingGreedy algorithm is shown compared to the IQP_MaxRespect, Greedy and
RandGreedy algorithms. The results show that the IQP_MaxRespect algorithm per-
forms best, slightly surpassing the RandGreedy algorithm, which also performs very
good. The combination of the RandomLandmark variation with the MatchingGreedy al-
gorithm performs quite close to the RandGreedy algorithm, while the Greedy algorithm
performs slightly worse overall.

In Figure 4.5b the runtime analysis of the RandomLandmark variation combined
with MatchingGreedy algorithm is shown compared to the IQP_MaxRespect, Greedy and
RandGreedy algorithms. The Greedy algorithm and the pairing of the RandomLandmark
variation with MatchingGreedy algorithm perform the best, followed by the RandGreedy
algorithm. The IQP_MaxRespect algorithm performs quite poorly regarding the exe-
cution time, reaching the time limit of six hours that was applied in most cases.

Figures 4.6a and 4.6b show the average respect score and runtime over all teams
respectively. We observe that with respect to the score, the algorithms perform quite
closely, with the IQP_MaxRespect performing the best. With respect to the runtime
we see that the differences between the algorithms are more prominent, with the
combination of RandomLandmark and MatchingGreedyhaving the lowest runtime.
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Table 4.3: Teams produced by the landmark variations combined with the algorithms
for the MaxRankingAntisymmetricRespect problem.

AI NN NLP Robotics DM Algorithms DB Theory

Team1

MatchingGreedy
LowLandmarks L.Chen M.Wang Y.Chen Y.Zhang - - - -

RandomLandmarks A.I.Rudnicky J.Wang C.Cerisara T.Chen - - - -
AverageRandomLandmarks Y.Wang J.Wang C.Cerisara I.Noda - - - -

Hungarian
LowLandmarks L.Chen J.Wang Y.Chen G.Z.Grudic - - - -

RandomLandmarks A.I.Rudnicky J.Wang C.Cerisara T.Chen - - - -
AverageRandomLandmarks Y.Wang J.Wang C.Cerisara I.Noda - - - -

Team2

MatchingGreedy
LowLandmarks - - - - S.Zilles M.Purohit M.Tang A.Nichterlein

RandomLandmarks - - - - D.P.Miranker B.D.Sullivan Y.Shavitt R.Bredereck
AverageRandomLandmarks - - - - D.P.Miranker M.Karppa D.S.Papailiopoulos R.Bredereck

Hungarian
LowLandmarks - - - - K.M.Hammouda A.Zelikovsky A.Faria A.Nichterlein

RandomLandmarks - - - - D.P.Miranker B.D.Sullivan A.Stupar A.Nichterlein
AverageRandomLandmarks - - - - D.P.Miranker Y.Kohonen D.S.Papailiopoulos R.Bredereck

Team3

MatchingGreedy
LowLandmarks S.Parthasarathy H.Cheng R.Liu R.Motwani W.K.Wong Y.Wang K.Sun A.Das

RandomLandmarks Y.Cheng S.Pandey X.Li T.Jebara W.K.Wong D.Agarwal H.Zhang J.Langford
AverageRandomLandmarks T.Roughgarden S.Pandey Qiang Li Qian Li Y.Aumann X.Li H.Zhang A.Das

Hungarian
LowLandmarks S.Parthasarathy H.Cheng J.Chen R.Motwani W.K.Wong C.V.Jawahar K.Sun A.Das

RandomLandmarks Y.Cheng S.Pandey X.Li K.P.Sycara W.K.Wong D.Agarwal H.Zhang J.Langford
AverageRandomLandmarks T.Roughgarden S.Pandey Qiang Li Qian Li Y.Aumann X.Li H.Zhang A.Das

SE HPC DPC OS SP CN IR Wireless

Team4

MatchingGreedy
LowLandmarks K.Razavi R.Prodan Z.Li W.Dong - - - -

RandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -
AverageRandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -

Hungarian
LowLandmarks J.Li R.Prodan Z.Prodan W.Dong - - - -

RandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -
AverageRandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -

Team5

MatchingGreedy
LowLandmarks - - - - Y.Gao J.Li Q.Zheng L.M.Kaplan

RandomLandmarks - - - - Y.Chen Y.Li Y.Zhang R.Zhang
AverageRandomLandmarks - - - - J.Liu H.Li Y.Zhang L.M.Kaplan

Hungarian
LowLandmarks - - - - J.Liu J.Li Q.Zheng L.M.Kaplan

RandomLandmarks - - - - Y.Chen Y.Li Y.Zhang R.Zhang
AverageRandomLandmarks - - - - J.Liu H.Li Y.Zhang L.M.Kaplan

Team6

MatchingGreedy
LowLandmarks C.Wang Y.Li Yu.Zhang Q.Yang W.Zhang Yi.Zhang B.Zhang W.Li

RandomLandmarks C.Wang Y.Li L.Zhang X.Li R.Zhang Yi.Zhang Ya.Zhang W.Li
AverageRandomLandmarks C.Wang Yu.Zhang L.Zhang Q.Yang R.Zhang Yi.Zhang Y.Li Y.Yang

Hungarian
LowLandmarks C.Wang Y.Li Yu.Zhang Q.Yang W.Zhang Yi.Zhang B.Zhang W.Li

RandomLandmarks Y.Li Ya.Zhang L.Zhang X.Li R.Zhang Yi.Zhang C.Wang W.Li
AverageRandomLandmarks C.Wang Y.Li L.Zhang Q.Yang R.Zhang Yi.Zhang Yu.Zhang Y.Yang
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(a) Score comparison between algorithms

for MaxMutualAntisymmetricRespect.

(b) Runtime comparison between algo-

rithms for MaxMutualAntisymmetricRe-

spect.

Figure 4.5: Comparison of algorithms for the MaxMutualAntisymmetricRespect prob-
lem.

(a) Avrege score comparison between

algorithms for MaxMutualAntisymmetri-

cRespect.

(b) Average runtime comparison between

algorithms for MaxMutualAntisymmetri-

cRespect.

Figure 4.6: Comparison of the average values of the algorithms for the MaxMutu-
alAntisymmetricRespect problem.
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Table 4.4: Teams produced by the algorithms for the MaxMutualAntisymmetricRe-
spect problem.

AI NN NLP Robotics DM Algorithms DB Theory

Team1

RandomLandmarks + MatchingGreedy A.I.Rudnicky J.Wang C.Cerisara T.Chen - - - -
RespectMaximization A.I.Rudnicky D.Wu C.Cerisara W.Wei - - - -

Greedy Y.Wang Y.Zhao C.Cerisara T.Chen - - - -
RandGreedy K.Komatani D.Wu C.Cerisara W.Wei - - - -

Team2

RandomLandmarks + MatchingGreedy - - - - D.P.Miranker B.D.Sullivan Y.Shavitt R.Bredereck
RespectMaximization - - - - D.P.Miranker B.D.Sullivan J.Liu A.Nichterlein

Greedy - - - - Q.He J.Kohonen A.Stupar R.Bredereck
RandGreedy - - - - D.P.Miranker B.D.Sullivan J.Liu A.Nichterlein

Team3

RandomLandmarks + MatchingGreedy Y.Cheng S.Pandey X.Li T.Jebara W.K.Wong D.Agarwal H.Zhang J.Langford
RespectMaximization T.Roughgarden Y.Li M.I.Jordan L.Zhang C.Chen D.Agarwal H.Zhang J.Langford

Greedy S.Mannor S.Pandey T.Huang T.Jebara G.Li YWang J.Vondrk A.Karbasi
RandGreedy A.K.Jain Y.Li Q.Li T.Roughgarden Y.Aumann D.Agarwal Y.Chen J.Langford

SE HPC DPC OS SP CN IR Wireless

Team4

RandomLandmarks + MatchingGreedy F.Zhang R.Prodan Z.Li W.Dong - - - -
RespectMaximization F.Zhang R.Prodan B.Balasubramanian W.Dong - - - -

Greedy F.Zhang R.Prodan B.Balasubramanian W.Dong - - - -
RandGreedy F.Zhang R.Prodan B.Balasubramanian W.Dong - - - -

Team5

RandomLandmarks + MatchingGreedy - - - - Y.Chen Y.Li Y.Zhang R.Zhang
RespectMaximization - - - - K.Wang Y.Li Y.Zhang D.Wang

Greedy - - - - H.Chen H.V.Poor Y.Zhang L.M.Kaplan
RandGreedy - - - - K.Wang Y.Li Y.Zhang D.Wang

Team6

RandomLandmarks + MatchingGreedy C.Wang Y.Li L.Zhang X.Li R.Zhang Yi.Zhang Ya.Zhang W.Li
RespectMaximization Ya.Zhang J.Wang L.Zhang Y.Li R.Zhang Yi.Zhang Yu.Zhang W.Li

Greedy Ya.Zhang H.Wang L.Zhang Y.Li R.Zhang Yi.Zhang Yu.Zhang Y.Yang
RandGreedy Ya.Zhang H.Wang L.Zhang Y.Li R.Zhang Yi.Zhang Yu.Zhang W.Li
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CHAPTER 5

CONCLUSION

5.1 Future Work

In this thesis we studied and extended a variation of the Team Formation prob-
lem [1], the RespectMaximization problem, that has been previously defined in [2]. The
RespectMaximization problem takes into consideration the fact that social relations are
not always reciprocal and may vary depending on the criteria. It also incorporates
the concept of respect between workers, which is to be maximized in the assigned
teams.

Our contribution to that work is the proposition of an IQP formulation of the
RespectMaximization problem, and the heuristic algorithm that solves it. We showed
that our algorithm achieves the assignment of teams with higher respect score than
previous algorithms, albeit with much higher computational cost. Our heuristic algo-
rithm was also applied to the MaxRankingRespect problem, where the assigned teams
were of maximum respect, but the high computational cost renders our algorithm
unnecessary in this case, since we do not gain in any aspect.

Thereafter, we introduce a variation of the RespectMaximization problem, with anti-
symmetric respect, and implement polynomial algorithms to solve it. For the ranking
case we showed that our MatchingGreedy algorithm performs very close to the Hungar-
ian algorithm. For the general case we showed that our heuristic landmark algorithm
performs very efficiently compared to the IQP and other heuristic algorithms, as-
signing teams with respect score close to that of the other algorithms, with lower
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computational cost.

5.1 Future Work

In the future it would be interesting to explore the IQP formulation with respect to
the ranking case more deeply, in order to obtain a more efficient IQP program that
does not have such high computational cost.

Additionally, studying more variations of landmark selection in a graph for the
MaxMutualAntisymmetricRespect problem, could lead to improving the effectiveness of
this approximation approach. The incorporation of more than one landmark could
also improve the ability to approximate the true respect score value.

An extension of the RespectMaximization problem worth considering is the intro-
duction of the concept of respect to the Template-Driven Team Formation (TDTF)
problem defined in [23]. In the TDTF problem, the teams wanted to accomplish a
task have a certain structure with a hierarchy among the workers. Incorporating the
concept of respect so that the workers lower in the hierarchy respect those above
them would make the problem even more realistic.

Lastly, we suggest the examination of a case, where given a task, the subgraph
induced over the assigned workers should be a Directed Acyclic Graph (DAG). Such
a DAG creates a hierarchy among the workers based on their respect relationships.
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