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ZUvoyn

H 61atp18r) autr] emKeVIpOVETAL YUP® ATIO TNV H1EPEVUVN O TOV EMITIHOCEMV TOV TIIPOBANHAT®OV NG
otabepag tou Hubble kat tou Sy oto koopoAoyiko poviédo A - Cold Dark Matter (ACDM) kat
rpoteivel Evav rmoavo Tporo emiAuor|g ToUG. EEKIVANE EKTEADVIAG H11A AVAOKOT 01 HEPIKMOV ATIO
TV IT0 BA0IK®OV KAl anapaitniov nuyxev g ouyxpovng ACDM KoopoAoyiag, kaBwg ertiong kat
TRV IpoavapepBEVIaV MPoBANPATOV Kal ouvexidoupe ota enopeva Kedpdldala mpoteivoviag eva
véo poviedo petdafaong wg mbavr) Auon toug. Asiyvoupe ot eival Suvatn n Xprjon EVOG EYYEVOUG
eK(PUALOPOU Tou H() KAl g rmapap£rpou KAtdotaong w g KATAOTATIKYG £§1000NG TNG OKOTEIVNS
EVEPYELAG TTOU UTTAPXEL OTO0 TMTAAi010 ToU aopatog 1oxuog CMB, npokeiévou va KataoKeuaotet
Hld ITaPAPETPOITOIN 0T W(2Z) ITOU PIOPEL VA AVIIIETOITIOE! erudavelakd 1o ipoBAnpa Hy au§avov-
tag v Ty ou Hy. Zin ouvéxela npoteivoupe €va Late w-M Transition LwMT poviédo mou
Baoietatl os pa petafaon g MAPAPEIPOU w, KABKOG KAl TNG MTAPAPETIPOU ATIOAUTOU peyESoug
M ya v tautdxpovn emniduorn v npoBAnpateov Hubble kat Sg. 'Emetta, pedetdpe povieda
ITOU XPNOIHOITO0UV OPaAT) apapdpdeon tou pubuou diaotodng Hubble H (z) ota mAaioa tov
best-fit tou Planck18/ACDM ywa va au§roouv v tur tou Hjy datnpwviag mapdAinda
ouvénelwa pe tig CMB petprioeig tou Planck. Avakadumtoupe o0t auta ta poviéda oxt povo dev
HItopouv va ermAvoouv 1o 1pdRAnpa Ss, addd 1o xelpotepevouv. OAOKANPOVOURE avadntoviag
otoxeia piag Baputukng petdfaong n oroia propei va ouoxetotel pe ) petaPaon M mou
ripoBAérietat aro to poviedo LwMT. Twa va 1o metuxoupe auto s§etaloupe tv e§EAEN v
dedopévav Tully-Fisher kat emiyeipoupe va neplopicoupe v Paputiky petdfaon pe xapn-
AN epubpng petatorong 6edopéva yadadiov. Alarmot@voupe Otl Kat otg U0 IMEPUTIVOELS
urnapyxouv evbei§elg yia pia Paputiky PetdBaoct Pe T0 avapevopevo HEyebog KAl OtV O®OTH)
epubpr) petatodron, av Kat dev kata@épvoupe va e§ayoupe KAO0UG OAQElg TIEPLOPIOI0UG Yia
aut.



Abstract

This thesis is centered around the ideas of exploring the impact of the Hubble and Sy ten-
sions on the A - Cold Dark Matter (ACDM) cosmological model and suggesting a possible
resolution to both of them. We start by performing a review of some of the most basic and
necessary aspects of modern ACDM Cosmology as well as the aforementioned tensions, and
in the following chapters we proceed by proposing a novel transition model as their possible
solution. We show that it is possible to exploit an inherent degeneracy of H, and the dark
energy equation of state parameter w that exists in the context of the CMB power spectrum,
in order to construct a w(z) parametrization that can superficially address the H, tension by
raising the value of H,. We then propose a Late w-M Transition LwM T model that relies on
a transition of the w parameter, as well as the absolute magnitude M parameter to resolve
both the Hubble and Sg tensions simultaneously. Next, we study models that use smooth
deformation of the Hubble expansion rate H(z) of the Planck18/ACDM best fit to raise the
value of Hj, while keeping consistency with the Planck CMB measurements. In doing so we
discover that not only they are unable to resolve the Sg, they in fact worsen it. We conclude
by searching for hints of the gravitational transition that can be associated with the M tran-
sition predicted by the Lw M7 model. We do that by considering the evolution of Tully-Fisher
data and by attempting to constrain the gravitational transition with low-z galaxy data. We
find that in both cases hints for a transition of the expected magnitude and redshift appear,
although no effective constraints can be derived.



[IpoAoyog

H ouyxpovn Koopoloyia eivat cuvupacpévn pe v évvola tou KoopoAoyikou poviedou A Cold
Dark Matter (ACDM). Auto 1o poviédo Baciletat oe 6U0 Baoikég 16éeg mou KUPLAPXOUV Ot
oUYXPOVI AOTPOPUOIKY, TG €VVOleg TG ZKotewvng Evépyelag kat g Zrotevng YANG. ZKOTEWVEG
etvat 1o eniBeto ou meprypddet kat tig 6Uo yla dUo kKadoug Aoyoug, npatov ernetdr) dev addn-
Aeudpouv nAektpopayvnTikd Kat Seutepov emeldn) Hev £xoupie 16€a T eival otnv MPAyPATIKOTTA.
Ta ovopata eruvondnkav amno tov Fritz Zwicky (Exotewvn) 'YAn) kat tov Michael Turner (Exotewv)
Evépyela), tv dekaetia tou 1930 kat 1o 1998 avtiotoxa. Katd pia évvola Sa priopovoe va
emwBbel otl n Zxotewn YAn kat np Zxotewr] Evépyela pag Supidouv tov ABépa, kabog eivat
eCAIPETIKA EEWTIKEG €VVOleg TIOU €Xouv SnpoupynOet anod v avaykn va e§nynbouv opilopéva
aPATNPOUHEVA PAVOPEVA Kal §1aB£touv povadikeég 1610TTEG KAl XAPAKINPEIOTIKA 18avikd yia
Vv €§NyNOo1N TOV €V AOY® QAIVOPEVRV, EVE S1aPeUYyOUV KAde avixveuong.

Eve n évvola tou ABépa emvorOnke KaAtd v mpo Ing ZXEUKOntag eroyxr wg Koo-
poloyiag and v avaykn va e§nynbei n @aivopevikn kavotnta t1ou eatog va Siadibetar H1-
APECH TOV TEPACTIOV KEVAOV EKTACE®V TOU dldotnpatog, n Zkotewvn YAn kat n Zkotewr Evépyela
dlatunwdnkav ya va e§nyrnoouv avappoBiinta mo depedindn koopodoyika {nuipata. To
IPAOTO TETO10 {NTnpa 1tav auvto tou eAAeipatog UANG kat yévvnoe tn Xxrotewvr) 'YAn. ITwo ouy-
KEKPIPIEVA, EYIVE PAVEPO PEOR S1aPOpKV MapATNPHoe®V o1l oAdoil yadadieg oto Zupmnav pag
dev 9a émperne va oupnepipépovial Onwg napatnpoupe Aapbdavoviag uroyn v nocotnta g
0opatG/mapatnProng UAnNG toug, autr) 1 S1adopd PEPIKES POPES £lval TOOO PEYAAT ITOU ITOA-
Aol ano toug yadagieg rmou €xoupe rapatnprjoet Sev Sa €mnpere Kav va €xouv oxnuatiotet. Meta
ano pa mokidia dAA®V apatnEnoemV OneS Td EAVOPEVA PBAPUTIKGOV PAKOV KAl T0 Koopiko
Yri68abpo Mikpokupdatewv (CMB) kataAn§ape oto cuprnépaocpa Ot 1) mAE1ovotnta tg UANG oto
Zupnav aAAnAemdpd povo Baputika Kat emopéveg eivatl adpatn. I'a va eipaote o akpiPeig,
urtodoyidetat ot n Trotewvry 'YAn anotedei 85% tng ouvodikng padag tou TUpnaviog.

21 ouvEyela £Xoupe v £vvold tng ZKotewrg Evépyelag, n onoia yevvhOnke amo v avaykn
va eEnynOel n mapatnPoUPEVH EMTAXUVOUEVH 61A0TOAT TOU ZUUIAVIOG. XLTO MAAiC10 TOU HOV-
tédou ACDM rnapouctiadetal pe ) PHop@n g KOopoAoyikng otabepdg A. O o6pog ng Koo-
PoAoykng otafepdg mpotdOnKe yia mpatn @opd aro tov AApnept Atvotay g £vag Pnxaviopog
rou 9a propovoe va SNoUPYTOet £va OTAaTIKO CUPIAV HE0K NG £§010100NG apvnTIK®V palmv
OP010YEVMG KATAVEPNHEVAV OTOV S1a0TP1KO X®OPo. Qotoco, Hedopévou 0Tl £va TET010 OTATIKO CU-
av 1edika anodeixd9nke aotabég kat oe ouvbuaopod pe 1o yeyovog ott o Edwin Hubble ékave
TV 10TOPIKY ApATHPnon g S1a0T0ANg ToU ZUNIIAVIOg, 1) £vvold TG KOOPOAOYIKNG otafepdg
ratapyndnke nmpoowpiva. Enavnide oty erukaipomta katda ) diapkela g dekaetiag tou 90,
OTavV avakaAU@INKe 1) EMITAXUVOHEVT §100TOAT TOU ZUNIAVIOS PEO® TTAPATNPHOE®V TUTTOU Su-
pernova Ia (Snla), to A éywve Aowtdv yia GAAn pia @opd arnapaitnto yia v §ynon autrg
G pvnuewdoug mapatrpnong. Autr n unobstikn Zxrotewvn Evépyela ektipdratl ot anoteAet to
68% tng evépyelag Tou onuePIVoU ZUPIIAVIOS.



Eve to ACDM mapapével 10 1o akpiBEég Kat armdd KOOPOAOYIKO HOVIEAO TIOU MEPTYPAPEL
10 ZUpnav pag paoctidetal ano moAdd {ninupata rmou anceldouv v Kuplapyxia tou. e autr
m SratpiPn) ermAéyoupe va aoxoAndoupe pe ta duo 1mo onpaviukda "aykada ota rmieupd” tou
ACDM , ta mpoPAnpuata tg otadepdg Hubble kat tou Sz. To mpwto agopd thv acup@avia
HeTady v Tpev g otadepdg Hubble rou divovtat aro tg petproelg tou "Tlpdopatou” kat
tou "Tlpodpou” ZUupnaviog Kat cUP@ova Pe 11§ TeAsutaieg mapatnpnoelg €Xel PTAoEl OTO TTOAU
onuavuko eninedo v H5o. To poBAnua tou Sy, eivat éva Atyotepo epgavég impa tou ACDM
IOV a@opd Vv dtagopda ot erinedo 2-30 petady v MEPIOPIOPROV OtV 10XV g opadortoinong
NG UANG, 0nwg autég opiovral aro 11§ avicotportieg tou CMB kat 1oV aviyveutov PETATOIONG
P0G 10 £pUYPO, OIS 0 Baputikog pakog. Eotialoupe oe piia mpotetvopevn Avorn kat yia ta §uo
autd npoPAfjpata pe Bdon pa moAu npooeatn petdfaon tou artvAutou peyédoug Snla M.

Bexkivape Siepeuvaviag pia pédodo yia v avinon tng tpng mg otabepag Hubble péow
EVOG EKPUAIOPOU HETASU g IAapapEétpou w tng e§10mong KAataotaong thg OKOTEWVHG EVEPYELAS
Kat tou Hjy mou undpyet eyyeveg oto gdopa oxuog tou CMB. Aeiyxvoupe 6tt mapdAo mou autr)
n pedododoyia eival KaAd TEKPNPIOPEVI] KAl EMITPETIEL P1A QAIVOUEVIKI] £TIAUOT] TOU TTPOBAT-
patog tng otabepdg tou Hubble erukalodviag anmdog €éva PovieAo okotewvrg evépyelag wCDM
, AIOTUYXAVEL VA AVIIHEIRINIOoET T0 TIpORAnpa Sy Kat oty rnpaypaukomta to ermdswvovetl. Ta
v akpifela, anodeikvuoupe apyotepa OTL OTIOI0O6ATIOTE TETO10 POVIEAO TIpoortabel va ermAvoet
10 PoPAnpa g otabepdg tou Hubble aufavoviag amdeg tnv tpn Hy, ndvia ermbevovel 1o
upa Ss.

Metd aro autd, rapouotdloupie 1o poviedo Late w-M Transition (LwMT), 1o ortoio Bacile-
1Al 010 YEYOVOG OT1 otnv Kapdid tou npoBAnpatog g otabepag tou Hubble Bpioketal n anok-
Alon petady TV POV TV aroAutev peyebov Snla énwg urnodoyidoviatl ard to CMB kat toug
Keipn)deg mrou maiouv tov poAo tormkev Babpovouniev (Kpion M). Auto, oe ouvbuaopo pe
10 YEYOVOG OTL I XAPAKINPIOTIKY "Tipdogatn” pétpnon tou Hy and i ouvepyacia SHOES &ev
HEIPA otnv mpaypatkounta wmyv napapetpo Hubble oto mapov, addd ouvayet v 1y g
napekteivovtag ano ) pérpnon 0,023 < z < 0,15 tou H(z), pag emrpénet va e§epeuvrjocoupe
) duvatonta vraping véag @uotkng otnv ernoxn 2 < 0, 023. Autr) i véa guowkn Sa propovoe
va €xel ®G arotédeopa 1 petapaon tou aroAutou peyedoug M mou eivatl kavr] va ermAUoet
Vv rpoavapepbeioa kpion M. H vnapdn piag petaaong oto Geg 9a priopouoe va £€xel autd
10 ermbupntd arotédeopa, eve tautoxpova da peiove kat to erinedo tou mpoBArpatog Ss.
Ernopéveg, avalntoupe kat Bpiokoupe evdei§elg piag térolag Baputikig petapaong oty e§€AEN
s Bapuovikrg Tully-Fisher oxéong, eve mpoortaBoupe emiong va replopicovpe v enidpaot)
g Xpnotporoiaviag cUAAoyeg debopévav yadadiov xapning epubpng petatoriong 6dFGS kat
2MRS.

Ev® 1o poviédo LwM'T ntapouotdlel and KAtaokeUAg Pia oAU KaAr) Tipocappoyr] oe d1a-
(opa KoopoAoyika dsdopéva kat eivai, Touddylotov Kat’ apxny, 1Kavo va ermAuvosl 1000 10
rpoPAnua tng otabepdg tou Hubble 6co kat tou Sg, paoctidetat ano dépata fine-tuning. H
aio9non o1l autég o1 KOOMOAOYIKEG evidoelg da sivat padi pag yla Kaipo akopd TTapapPEVEL.
Aev Seixvouv onpadia PeAtimong kat epelyouv 0A0 Kal MEPIOCOTEPO ATO TV TEMO0idnon ot
etvatl anotedéopata CUCTNHATIKOV OQAAPATOV TTIoU dev £xouv AndOet uroy emg topa. Mropet
KAAAwota va eivat kaipog yua to ACDM va napadooet ) 9€orn tou oe éva vEo Kal IO 1KAvVO
KOOPOAOY1IKO poviedo. '‘O,11 Kal av oKOorevel va @épet 1o péAdov ya v Koopoloyia 1o povo
BéPato eival 61 Sa eival cuvapractiko.
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Preface

Modern Cosmology is intertwined with the concept of the standard cosmological A Cold Dark
Matter (ACDM) model. This cosmological concordance model is based on two core ideas that
dominate modern astrophysics, the concepts of Dark Energy and Dark Matter. Dark being
the adjective that describes both of them for two good reasons, firstly because they do not
interact electromagnetically and secondly because we have no idea what what they actually
are. The names were coined by Fritz Zwicky (Dark Matter) and Michael Turner (Dark Energy),
in the 1930s and 1998 respectively. In a sense it could be said that Dark Matter and Dark
Energy remind us of luminiferous Aether, since they are extremely exotic concepts conceived
out of the need to explain certain observed phenomena and they possess unique capabilities
and characteristics ideal for the explanation of said phenomena, whilst they elude any and
all observational detection.

While the concept of luminiferous Aether was conceived during the pre-Relativity era of
Cosmology out of the need to explain the apparent ability of light to propagate through the
vast stretches of vacuum in space, Dark Matter and Dark Energy were formulated in order
to explain arguably more fundamental cosmological issues. The first such issue was that of
the missing matter and it gave birth to Dark Matter. More specifically, it became apparent
via various observations that many galaxies in our Universe should behave the way they do
considering the amount of their visible/observable matter, this difference could sometimes
be so great that many of the galaxies we have observed should not even have formed. After
a variety of other types of observations such as gravitational lensing phenomena and the
Cosmic Microwave Background (CMB) we have reached the conclusion that majority of the
matter in the Universe interacts only gravitationaly and is therefore invisible. To be more
precise it is calculated that dark matter constitutes 85% of the total mass of the Universe.

Next we have the concept of Dark Energy, which was born out of the necessity to explain
the observed accelerated expansion of the Universe. In the context of the ACDM model it
is presented in the form of the cosmological constant A. The cosmological constant term
was first proposed by Albert Einstein as a fine-tuning mechanism that could create a static
universe via the emulation of gravitating negative masses homogeneously distributed in
interstellar space. However, since such a static universe ultimately proved to be unstable
combined with the fact that Edwin Hubble made the historic observation of the expansion of
the Universe the concept of the cosmological constant was scrapped for a time. It resurfaced
during the 90s when the accelerated expansion of the Universe was reported via Supernova
type Ia (Snla) observations, A became once more essential in explaining this monumental
observation. This hypothetical Dark Energy is estimated that constitutes 68% of the energy
of the present-day Universe.

While ACDM remains the most accurate and simple cosmological models that describes
our Universe is plagued by many tensions and issues that threaten its dominance. In this



thesis we choose to concern ourselves with the two most prominent thorns in ACDM ’s
side, the Hubble and Sy tensions. The first concerns the discrepancy between the values of
the Hubble constant given by "Late" and "Early" Universe measurements and according to
the latest observations it has reached an incredible 50 level. The Ss or growth tension as
it is more plainly known, is a less prominent issue of ACDM that concerns the 2-30 level
discrepancy between the constraints on the matter clustering strength as they are set by the
primary anisotropies of the CMB and the lower redshift probes such as gravitational lensing.
We focus on proposing a solution for both these tensions based on very late time transition
of the Snla absolute magnitude M.

We start by exploring a method to raise the value of the Hubble constant via a degeneracy
between the equation of state parameter w and H, which is inherently present in the CMB
power spectrum. We show that although this methodology is well documented and allows
for an apparent resolution of the Hubble tension simply by invoking a phantom dark energy
wCDM model, it fails to address the Ss tension and in fact it actually worsens it. As a matter
of fact, we prove later on that any such model that tries to resolve the Hubble tension by
simply elevating the H, value, always worsens the Sg tension.

Following that, we present the Late w-M Transition (Lw M T) model, which is based on the
fact that at the heart of the Hubble tension lies a discrepancy between the values of the Snla
absolute magnitudes as they are calculated by the CMB and the local Cepheid calibrators
(M crisis). This, combined with the fact that the quintessential "late" Universe measurement
of Hy by the SHOES collaboration does not actually measure the Hubble parameter in the
present, rather infer its value by extrapolating from the 0.023 < z < 0.15 measurement of
H(z), allows us to explore the possibility of new physics in the z < 0.023 era. This new
physics could have as a result the absolute magnitude transition that is able to resolve the
aforementioned M crisis. The existence of a transition in the G.g could have this desired
effect, while at the same time easing the Sg tension as well. We therefore search and find
hints of such a gravitational transition in the evolution of the Baryonic Tully-Fisher relation,
while we also attempt to constrain its effect using compilations of low-z 6dFGS and 2MRS
galaxy data.

While the LwM'T model presents by construction a very good fit to various cosmological
data and is, at least in principle, able to resolve both the Hubble and Sy tensions is itself
plagued by fine-tuning issues. The feeling that these cosmological tensions will be with us for
some time still remains. They show no signs of improvement and they are straying further
and further from the belief that they are results of unaccounted for systematic errors. It
might very well be the case that it is time for ACDM to relinquish its position to a new and
more capable concordance model. Whatever the future may bring for Cosmology only the
certainty that it will be exciting exists.
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CHAPTER

Introduction

1.1 Modern Cosmology

nly but a handful of theories in Physics have had such an impact on the way

we view the world, as the theory of General Relativity [1] formulated by Albert

Einstein in the beginning of the 20" century. Einstein stepped on the shoulders
%S\ g 2) of such giants as the likes of Sir Isaac Newton [2] and James C. Maxwell [3],
)\f—/“ ~ shaping our understanding of the Universe. He did that by giving us a unique
theory of Gravity, one that weaves time and space into a single entity and succeeds at making
accurate and precise predictions that have been tested time and time again in the span of a
century.

The theory of General Relativity is essential in the study of Cosmology. Among other
reasons, that is because it provides the necessary tools for the construction of the standard
cosmological model A Cold Dark Matter (ACDM). In the following sections we will start by
providing some important mathematical formulation necessary for understanding ACDM, we
will talk about the most important challenges it faces and last but not least we will attempt
to make a few small predictions about the future of Cosmology as a whole.

z'mr *?g

(e

1.1.1 The Cosmological Principle

At any particular time our Universe looks the same_from all positions in space, thus all directions
at any point are equivalent. This principle has been the cornerstone of modern Cosmology
and to put it plainly it states that we are not special. More so than that, it states that no
point in our Universe, at any time since its creation till now, has been more special than any
other.

The above statement is one that drives us somewhat against the layman’s understanding
of our world. After all if one travels to a rural area, away from the pollution of the city lights,
one can clearly observe during the night sky that most of the stars are concentrated in a large
group that we call the Milky Way Galaxy. So clearly this place must be more special than
any other. That would be the layman’s logical conclusion and has been for many millennia,
from the moment that our species begun observing the night sky until the previous century.
However, for better or worst, when viewed on a sufficiently large scale the properties of our
Universe are the same for all observers. Going back to the Milky Way example, if we were to
observe it from a large enough distance we would see that it belongs to a small galaxy group
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called the Local Group, which in turn when viewed from far enough reveals that it is a part
of the Virgo constellation of galaxies. Increasing the scale of our observations, significantly
increases the uniformity.

This cosmological principle is essential since if it was not correct, we would not be able
to extend our physics beyond our immediate surroundings and our mathematical formulas
could never hope to map the workings of the entire Universe. Thankfully, we have very good
evidence that our Universe is the same (isotropic) on large scales, mainly by the constancy
of the Cosmic Microwave Background (CMB) in different directions on the sky. Therefore,
we also characterize it as homogeneous, since it has no preferred center. At this point, we
should note that even though isotropy implies homogeneity, the reverse is not always the
case. We could i.e. consider of a universe filled with an homogeneous large-scale magnetic
field pointed in a single direction that would obviously not be be isotropic.

1.1.2 The Friedmann-Lemaitre-Robertson-Walker Metric

If we take into account the homogeneity and isotropy of the Universe we are left with some
constraints on the nature of the three-dimensional, spacelike hypersurfaces that replace
the ambiguity of the "moment in time" in General Relativity terms. The introduction of these
hypersurfaces allow us to accurately define a globally valid time parameter ¢. This parameter
enables us to define a universal time by considering that each hypersurface exists at a
particular ¢ = const. time.

The isotropy postulate demands that all points on a particular hypersurface are equiva-
lent, while the homogeneity one demands that they are equivalent considering fundamental
observers. A metric constrained in this way can only take the form,

ds® = Adt* — Sz(t)hijdxidmj (1.1)

where h;; are functions of the spatial coordinates (x', 2% z*) and S(t) is a time-dependent
scale factor. We proceed by considering that the 3 dimensional space we will concern our-
selves with is maximally symmetric and therefore requires the least amount of functions in
order to describe its geometric properties.

More specifically, in our case the Riemann curvature tensor R;;;; has only 6 indepen-
dent elements. Since we consider our space to be maximally symmetric, a single scalar is
enough to characterize its constant curvature. We call it K, and it is of course coordinate
independent. The simplest way to define the Riemann tensor with regards to K is,

Riji = K (991 — 9a9jk) (1.2)

where g;; is the metric tensor. Applying simple tensor contractions we arrive at the forms for
the Ricci tensor,
Rjk = _2ngk (13]

and the curvature scalar

R=—-6K (1.4)

with the latter, of course, only depending on K.
In spherical polar coordinates (7, 6, ¢) the line element of this space takes the form of the
spatial part of a general, static and isotropic metric,

do® = B(r)dr? + r*d6* + r? sin® d¢? (1.5)

2
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where B(r) is arbitrary and will be defined with the help of the Ricci tensor. If we consider
the general definition of the Ricci tensor in terms of Christoffel symbols,

Rij = ;T — 0,Tf; + T Iy — TLTY, (1.6)

7

and calculate the non-zero connection coefficients with regard to Eq. (1.5) as [4, 5],

1
rf, = Ff¢ = FZ¢ = —sinfcos ¥, Fie = cotd,
. 1 dB(r) ., 7 sin® 0 ., r
L, = ) b — T DN 00 — T N
2B(r) dr B(r) B(r)
we find that,
1 dB(r)
R, = — 1.7
rB(r) dr (1.7)
1 r  dB(r)
R,=———1-— 1.8
B(r) 2B(r)?2 dr (1.8
R,, = —Rygsin? 6. (1.9)
These results, in tandem with Eq. (1.3) allow us to obtain,
Bir)=— (1.10)
"= 1— Kr2 '

using simple algebra. Therefore, we see that B(r) is dependent upon the spatial curvature
scalar K and the spatial line element (1.5) takes the form

dr?

do? = ————
4 1— Kr2

+ 7r2df* + r*sin® do?*. (1.11)
There are two main take-away points from Eq. (1.11). Firstly, the fact that if we consider
scales on which the spatial curvature plays a small role then it regresses back to the well-
known, equivalent Euclidean one. Secondly, that this line element describes a 3-sphere
embedded in a four-dimensional Euclidean space with no real center.

In essence, we have succeeded in defining the spatial part of the general metric given by
Eq. (1.1) obtaining

dr?

2 2 342 2

+ 72(d6* + sin® d¢2)} ) (1.12)

Now with a simple rescaling of the scale factor S(t) to a(t), we have,

dr?
1 —kr?

ds* = Adt* — o*(t) [ + 72(df* + sin® dng)} (1.13)
where k = K/|K| supposing that K # 0 and takes the values —1,0, 1 depending on the type
of spatial curvature we concern ourselves with. This the standard form of the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric and as we have shown it has deep cosmological
roots, since it is derived from the geometric properties of homogeneity and isotropy of the
Universe.
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1.1.3 Hubble Law

The main part of this thesis revolves around the cosmological issue of the present day value
of the Hubble parameter. But what is the Hubble parameter? In the context of the FLRW
metric given by Eq. (1.13) it is naturally defined as [4, 5],

H(t) = &lh) (1.14)

aft)
where the dot denotes differentiation with regard to the cosmic time ¢, and its present day
value is denoted as H (tg) = Hy.
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Figure 1.1: This plot shows the velocity-distance relation among extra-galactic nebulae, and
served as the first observational recording of the Hubble law. Adopted from the historic
Ref. [6].

The logic leading to the above definition becomes apparent if we consider a galaxy emitting
a photon at a time ¢, then a standard power series expansion of the scale factor «(t¢) around
the present cosmic time ¢y when we receive this photon will take the form

a(t) = alto — (ty — 1)

= afty) — aulto)(tg — t) + ato) (to —t)> — ...
2 G (to)a(to) 2

Therefore, it is obvious from Eq. (1.14) that the Hubble parameter H (¢) provides us with the
ratio of the rate of the scale factor’s @ change with regard to cosmic time, over its current
value. The quantity ¢y — ¢ is defined as the look-back time and for z << 1 it is given by

1
to—t:Hglz—Hgl(lJr§q0)z2+.... (1.16)
In a similar fashion we can define the quantity [4, 5]
a(t)a(t)
)= —————+- 1.17
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which appears in Eq. (1.15), as the deceleration parameter. If we write the redshift z in
regards to the look-back time ¢ — ¢y we will then have

- 1—(t0—t)H0—%(to—tf}[g—...] ~1. (1.18)

If we combine Eqgs. (1.14) (1.15) and (1.16) we will find that for small redshift the Hubble
parameter H (z) varies as

H(z)=Ho[1+ (14 q)z—..]. (1.19)

Now considering that for the FLRW metric the proper distance d of a nearby galaxy
emitting photons at an epoch t is d =~ c(ty — t), and that Eq. (1.18) reduces to z =~ (ty —t)H,
for small z, we get

v = cz = Hyd. (1.20)

The above equation is the well-known Hubble law and connects the recession velocity v of a
nearby galaxy emitting photons towards us, with the cosmological redshift 2, allowing us to
interpret the latter as a Doppler shift. It therefore, allows us to deduce that all galaxies move
away from us with a speed that is relative to their distance. This law implies a linearity in
the relation of the galaxies recession velocities and their distances, as is also apparent in Fig.
(1.1), and characterizes the dimensionality of the Hubble parameter as inverse time. This
inverse time dimensionality hints towards the fact that the quantity 1/H, is the approximate
age of our Universe.

Edwin Hubble’s calculation for the parameter H, which characterizes this law was ap-
proximately 500 km s~! Mpc™. A number of subsequent estimations were made in the
following decades, with the most prominent one reported by R. Brent Tully [7] in late 80s.
His estimation placed the value of H, between 50 and 100 km s~' Mpc™!, a far cry from
the ~ 70 km s~' Mpc™' value reported in modern surveys. The ambiguity that still exists
regarding the exact value of this constant will be one of the major points of interest of this
thesis.

1.1.4 Luminosity and Angular Diameter Distances

Since we have established that our Universe is expanding we must now consider a way to
appropriately define the measurement of distance inside it, at large redshifts. It is well-
known [4, 8] that the apparent luminosity of a source is given in relation to its absolute one
by the expression,

L
" 4md?
where d is its distance from the observer. However, this formula is not correct when consid-
ering large distances. If we consider a luminous object that acts as a source at a coordinate
distance r; from us, then by ¢, when its light will have reached us it will have also reached a
spherical area 4mr?a?(t,) (supposing an FLRW metric). This means that our telescope, which
will be observing, will receive a A/4rria?(ty) fraction of the source’s light, supposing that A is
its aperture. Therefore, [ should be proportional to 1/r?a?(ty) instead of 1/d?. Furthermore,
due to the expansion of the universe the rate of the photon’s emission from the source is

{ (1.21)

5
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larger that their rate of arrival at the observer. The same is true, of course, for the energy of
the photons. The photon emission/arrival rates and their energies differ by the same exact
redshift factor 1/(1 + z).

These differences allow us to define a new expression for the apparent luminosity of a
source,

[ = L (1.22)
- drd? )
where d;, is the luminosity distance, given by
dp = afto)r1(1 + 2). (1.23)

For objects with z << 1 the luminosity distance can be re-written as a power series, relating
it with the Hubble constant as

dp = Hy' z+%(1—qo)z2+... (1.24)
which enables the possibility of estimating Hy and ¢, diretly from the measurement of d;,.
Among the other distances that are of value to Cosmology we will discuss about the
angular diameter distance d4, since it plays a very important role when comparing the
angular sizes of objects. For a source located at a co-moving radial coordinate r; that emits
light at time ¢4, it is defined as
da = a(ty)r. (1.25)

This means that for the case of the FLRW metric, the ratio of the angular diameter distance
over the luminosity distance is given by the Etherington distance-duality relation
da

A _ (14 2)72 (1.26)
dr

which is dependent only on redshift.

1.1.5 The Friedmann-Lemaitre Equations

Moving on, we will define the two characteristic differential cosmological equations that
determine the evolution of the scale factor «(t¢) within the context of the cosmic time ¢. In
order to do so we will start from the gravitational field equations,

1
Ry = —k(Tw — §T9;w> + Aguw (1.27)
where A is the non-zero cosmological constant, 7' = T}/ and k = 87G/ c*. We assume that
the matter in the toy universe we are studying is described by the energy-momentum tensor
belonging to a perfect fluid

™ = (p+ %)u“u” — pg"” (1.28)
c

where p, p are its pressure and proper density in the instantaneous rest frame and v* is
its 4-velocity. Therefore, we proceed by calculating the non-zero Christoffel symbols of the
FLRW metric given by Eq. (1.13). In order to calculate the surviving coefficients we use the
relation

ag 1 g
I, = 59 P(0yGpp + OuGpy — 0pGun) (1.29)

6
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and find [4, 5],

t ad t 9272 t 9 . 279 ro_ kr

Frr—m, F@@-O&O&T /C, F¢¢—O£OZ7” sin 9/0, Frr_l——kTQ’

T T : T a

o = —1(1 — kr?), oy =—r sin? (1 — kr?), FtT:F%:FZ): o F&zcot@,
1

F%:Ff¢:— Fz)d):—sin@ cos @,

T

where of course the dot symbolizes differentiation with respect to t. We are now ready to
calculate the elements of the Ricci tensor which are given by the Eq. (1.6). The only Ricci
elements that are non-zero are the diagonal ones [4, 5],

Ry = 3d/«,

R, = —(adé + 267 + 2¢%k)c 2 /(1 — kr?),
Rop = —(aéi + 2% + 2¢%k) e 2,

Ryp = —(ad + 26* + 2¢%k)c?r? sin” 6.

We have now calculated the left-hand side terms of Egs. (1.27). In order to proceed with

the right-hand side we have to consider that the covariant components of the 4-velocity

in our coordinate system are v, = 025L and vy, = c?. It is now easy to show that the

energy-momentum tensor takes the form,
T, = (pc* + p)025z5i — DY (1.30)
and that its contraction 7' is equal to,
T:p02—3p. (1.31)

Therefore, we can show that the surviving right-hand elements of Egs. (1.27) take the forms,

1 1
—k(Tie — 5T gu) + Mg = —§k’(PCQ + 3]7)02 + ACQ,

2
1 1 1
_k(Trr - §Tgr7”) + Agrr - = 5]{?(,062 _p) + A &2/<1 - k’T’Q),
1 1 :
—k(Tyo — §T999) + Agoo = — §k(,002 —p)+A| P,
1 1 : ,
—k(Too = 5T900) + Mgy = — | Sh(pc” —p) + A| a®r?sin® 6.

It is straightforward to combine the equations above with those of the Ricci tensor compo-
nents, to arrive at two independent equations that act as analytic solutions to the gravita-
tional field Egs. (1.27) [4, 5],

4 1
o= —WTGQ + %)a + §A0204, (1.32)
1
a2 = %poﬁ + gAcQoz2 — k. (1.33)

7
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These are the famous Friedmann-Lemaitre cosmological field differential equations. With the
help of the previously defined (see Eq. (1.14)) Hubble parameter // and by assuming c = 1
we re-write the above equations as,

.. 4G 1
H+H2:—%(p+3p)+§A, (1.34)
TG 1 k
H2=" 4 A — = 1.35

which is their most usual form. Until now we have used the cosmological term A without
giving much thought into its importance. The next subsection is devoted to doing exactly
that.

1.1.6 The Standard Cosmological Model ACDM

In order to better explain the importance of the cosmological constant A in modern Cosmol-
ogy, we must dive into a historical recounting of the reason that lead to its original insertion
in the equations of GR. It all started with the hypothesis that our Universe is static and eter-
nal. Even though we know now that this proposition is false, that was not the consensus of
the scientific community around the time when Einstein formulated the theory of General
Relativity. Originally his theory did not account for such a static universe and that becomes
quite obvious if someone takes a look at the first iteration of the gravitational field equations

Gy = 87GT),. (1.36)

These equations do not account for a static universe and cannot lead to any such solutions.
That is because they offer no "antidote" for the constant gravitational attraction of matter
and would, no-doubt, eventually lead to a collapse of the universe. This problem was coun-
teracted by Einstein with the strategic inclusion of a constant A in Egs. (1.36) coupled with
the metric tensor giving them the form [4, 5],

G — Mg = 87GT,. (1.37)

This small inclusion managed to both preserve the invariance and symmetry of the theory,
and simultaneously account for a static universe. The latter was accomplished by showing
that a constant like A was enough to counter the attractive gravitational force of matter in
the universe. However, what Einstein had no way of knowing was that almost a decade after
his theory was published, Edwin Hubble was going to shatter the static universe hypothesis
with an observation of great importance. More specifically Hubble discovered that the red-
shift of the galaxies he managed to observe was directly proportional to their distance from
Earth. This observation of an expanding universe was subsequently named the Hubble law
and it was quantified using Eq. (1.20), described in greater detail in the relevant previous
subsection.

For many decades the scientific community, and Einstein himself, championed the idea
of the expanding universe. A fact that rendered the notion of a cosmological constant ir-
relevant and useless. That was about to change in 1998, when observations of Type Ia
Supernovae (Snla) from the High-Redshift Supernova Research Team and the Supernova
Cosmology Project showed that our universe is not only expanding, but it is expanding with

8
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an accelerated rate [9]. This accelerated expansion was attributed to an elusive quantity aptly
named Dark Energy, that seems to act as a sort of "anti-gravity", opposing the attraction of
matter in the universe.

Up to the point of the 1998 Snla observations, Cosmology was dominated by various
iterations of Cold Dark Matter (CDM) models [10-12]. Dark Matter is a hypothetical, unseen
form of matter that seems to comprise the majority of matter in our universe. Its inclusion in
Cosmology became essential due to the fact that various astrophysical observations showed
that the matter in our universe in very large scales did not seem to behave as it should
have, according to GR. That would mean that either GR is incomplete, or that the amount
of matter that we observe and account for in our calculations for gravitational effects due to
GR is wrong. After observing Einstein’s theory triumphing over experimental tests again and
again, while making astounding predictions, the scientific community (mostly) opted for the
latter option. Specifically, they included a type of non-baryonic matter that interacts only
gravitationaly and not electromagnetically, making it invisible. Cold Dark Matter, especially,
represents a flavour of Dark Matter comprising of particles with non-relativistic energies.

With the observation of the accelerated expansion came the return of the cosmological
constant and its addition to the CDM model. The new standard cosmological model of our
universe was named ACDM and it quickly became accepted in the scientific community as the
"best-fit CDM model". The energy density and pressure of the cosmological constant in the
context of ACDM are related via the equation py = —p,, making the model obey a constant
equation of state w = —1. ACDM assumes the existence of Dark Energy, Dark Matter, GR
at cosmological scales and the existence of an inflation phase that is essential to overcome
the horizon, flatness and magnetic monopole problems [4, 13-17]; while it has the extremely
important advantage of remaining very successful in fitting a variety of cosmological data
[18-36].

Parameter Name Value
Qb h? Baryon Density 0.02237 4 0.00015
Qe o b? Cold Dark Matter Density 0.1200 + 0.0012
Ng Spectral Index 0.9649 £ 0.0042
T Optical Depth 0.0544 4+ 0.0073
100 0yc Angular Size of the Sound Horizon at Recombination | 1.04092 £ 0.00031
In(10' A,) | Amplitude of Curvature Primordial Perturbations 3.044 +0.014

Table 1.1: The values of the six independent parameters of ACDM as they are constrained
by the Planck 2018 mission [20] using the TT,TE,EE+lowE+lensing likelihood data.

The inviting simplicity of ACDM is further apparent if one considers the fact that it is
depended only on six essential parameters. These are presented in table 1.1, along with
their Planck 2018 [20] values. Using these six basic parameters in the context of ACDM
one can indirectly obtain every other cosmological parameter. However, despite the fact that
ACDM has been the standard cosmological model for more than two decades and that it has
been lauded for its observational success, having predicted among others the properties of
the power spectrum of the Cosmic Microwave Background (CMB) [18, 20], it faces a large
number of challenges in the form of theoretical and observational tensions. These tensions
are causing serious cracks in the model and the theories that underpin it. The following two
sections are dedicated to discussing arguably the two most important such tensions.

9
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Mukherjee et al. (2022), GW170817+GWTC-3: 67‘:3-%
Abbott et al. (2021), GWTC-3: 6817

Palmese et al. (2021), GW170817: 72.77+
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Figure 1.2: Various cosmological probes and their 68% CL constraint on f, (based on
Refs. [37, 38] and adopted from Ref. [39]).
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1.2 The Hubble Tension

More so than others, a spectre is haunting the standard cosmological model-the spectre of
the so called Hubble tension. Even though almost all the powers of observational and theo-
retical Cosmology have entered into a holy alliance to exorcise this spectre, it still persists. It
predominantly involves the 50 level disagreement between the values of the Hubble constant
Hy, as they are reported by the Planck and SHOES collaborations. Specifically, the Planck
collaboration obtained their H, = 67.27 + 0.60 km s* Mp(f1 [40] model dependent mea-
surement using CMB data while assuming a ACDM cosmological background, in contrast
to the direct local distance ladder methodology followed by the SHOES group that produces
an Hy = 73.04 £ 1.04 km s~ Mpc™! [41] value. Along with the two aforementioned key
measurements there is a multitude of other, direct and indirect, cosmological probes [42-54]
that stand on various levels of confidence in regards to their [, best-fit values. The majority
of them are illustrated in Fig. 1.2.

In what follows we present the distance ladder methodology that was used by the SHOES
collaboration in order to derive their value of the H, parameter and we also present a va-
riety of other measurements that contribute to the tension. We separate them into two
groups, model-dependent (early time) and model-independent (late time) measurements,
judging mainly whether they are depended on the standard ACDM scenario.

1.2.1 Distance Ladder Methodology

The direct distance ladder methodology that was used by the SHOES collaboration is based
on Type Ia Supernovae (Snla) data, as they are calibrated using Cepheid variables [41]. More
specifically the present value of the Hubble parameter H is measured by the Hubble law
using a complicated process that involves calculating and optimizing a y? fit that constrains
the values of the relevant parameters. These are the fiducial luminosity of the Snla and
Cepheids, two parameters standardizing Cepheid luminosities, H, and the host galaxies
distances. This fit is calculated simultaneously among geometric distance measurements to
standardized Cepheid variables, Cepheid variables and Snla in nearby galaxies and lastly
Snla in the Hubble flow region.

Assuming that a correction for the effect of the interstellar dust has been made then the
form of the distance modulus u of a source is given by,

pw=m—M =5logdy + 25 (1.38)

where m is the apparent magnitude, M is the absolute magnitude and d;, is the luminosity
distance of the source. When a Cepheid and a Snla calibrator belong to the same ¢-th host
galaxy they are connected via the equation,

my; = po; + Mp (1.39)

where M}, is the fiducial luminosity of the Snla and m%ji is their standardized maximum-
light apparent magnitude. In order to estimate the [, parameter, one should consider the
intercept ap of the Hubble law (see Fig. 1.3) which takes the form

1 1
ag =logcz |1+ 5(1 —qo)z — 6(1 —qo — 3¢5 + jo)2* + O(z*) | — 0.2mY (1.40)
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for z > 0 regardless of the expansion history assumed, g, is the deceleration parameter that
we defined in subsection 1.1.3 and jj is the jerk parameter. After the ap value is acquired
one is able to calculate the H, using the equation

log H :O.2Mg+0¢3+5. (1.41)

In order to avoid systematic errors as much as possible it is imperative that the optimization
of Eq. (1.40) is done simultaneously with that of Eq. (1.39), since the covariance of Snla
data is non-trivial.

In this approach it is assumed that the Cepheid Wesenheit magnitudes which describe
their dependence on a variety of observed characteristics are described by the relation [55],

mII/{Vij = i + MISVI + bw(log Py — 1) + Zw|[O/ H];; (1.42)

where the j index identifies the Cepheid magnitude and the ¢ characterizes the host. There-
fore, P,; is the source’s period in days and [O/H|;; is their metallicity. Furthermore, M}, is
the fiducial absolute magnitude of a Cepheid with solar metallicity, log P = 10 days, and the
~ parameters by, and Zy define the empirical relation between Cepheid period, metallicity,
and luminosity.

4.5

40F

0.2mg (mag)

A 0.2mg (mag)

3.5 4.0 4.5 5.0
log (ez[1+0.5(1-qy)z-(1/6)(1-q4-3q,+1)Z’])

Figure 1.3: The Hubble diagram of the data [56] used in the determination of the intercept
ap, which in turn allows for the estimation of the Hubble constant. Th ap parameter was
measured using data within the 0.023 < z < 0.15 redshift range. Adopted from Ref. [57]).

The distance ladder methodology with the implementation of Snla and Cepheid data, has
become the most precise tool of measuring the Hubble constant. This is highlighted by the
fact that its certainty has now reached the 1% level [41]. Until the arrival of new data from
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gravitational waves observations or from new facilities such as the JWST [58], it is very likely
that this precision will not be surpassed. However, we have to mention that this methodology
has a blind-spot that we will take advantage of in the next chapters. Specifically, this blind-
spot is embedded on the fact that the value of H this methodology reports, is not calculated
at z = 0 as it should, rather it is inferred from an extrapolation of the Hubble diagram.
Therefore, it can be argued that this method does not provide the "true" value of Hj in
the event that a change in physics has happened during the extrapolated behaviour. Such
change in physics is at the heart of the model that will be thoroughly discussed in Chapter
3.

1.2.2 Model-Dependent /, Probes

As model-depended measurements of H, we consider those that depend on some basic
assumptions that come with the fact that most of them are based on ACDM cosmology.
This means that these probes are susceptible to various elements, such as the existence of
inflation, the properties of Dark Matter and Dark Energy, etc..

This type of measurements of H, generally produce lower values, which are in agreement
with the Planck18/ACDM one. In what follows we will catalogue some of these measure-
ments. First of all, we have ground based telescope data such as the Atacama Cosmology
Telescope (ACT-DR4) which give an Hy = 67.9 + 1.5 km 71 Mpc_1 [44] value and the South
Pole Telescope (SPT-3G) with Hy = 68.8 = 1.5 km s~} Mp(f1 [54]. Combining these ground
based measurements with the well-known Wilkinson Microwave Anisotropy Probe (WMAP)
space based one we have Hy = 67.6 & 1.1 km s~' Mpc™' [44]. Another important model-
depended probe of the H, constant are the Baryon Acoustic Oscillations (BAO) data. These
are the fluctuations in the density of the visible, normal baryonic matter of the Universe and
are caused by acoustic density waves of the primordial plasma at early times. A compilation
of BAO measurements from various sources produces an Hy = 67.3540.97 km s~! Mpcf1 [59]
value.

Using an inverse distance ladder methodology via the radiation matter equality horizon,
as it is calibrated by the CMB power spectrum, one can also employ galaxy power spectra
in order to derive H(. In this regard, the combined Baryon Oscillation Spectroscopic Survey
(BOSS) full-shape data along with the Big Bang Nucleosynthesis (BBN) constraint derived
from the measurements of the primordial deuterium and the BAO data gives an H, = 68.6 =
1.1 km s~ Mpc™! [60] value.

1.2.3 Model-Independent /) Probes

In contrast to the model-depended measurements of H, mentioned in the previous subsection
here we present some of the measurements that disregard the ACDM cosmological model
in their assumptions. In doing so these measurements are effectively model-independent
and as such generally produce values of f; that are in tension with the one reported by
Planck18/ACDM.

In general the most well-known representative of the measurements which belong in this
category is the one by the SHOES collaboration mentioned above. As we have already said,
this is the characteristic measurement on which the H, tension was built upon. It was
based on the direct distance ladder geometric process which was described with some detail

13



Chapter 1. Introduction

in subsection 1.2.1, and at the moment this thesis was written reports a 50 discrepancy
with the equivalent CMB model-dependent measurement. Even though there has been a
lot of talk about possible systematic errors that could plague the SHOES measurement,
through thorough re-examination of the results the possible effect of these errors has been
constrained to very low levels (=~ 1%). Combining this with the fact that all the studies which
independently tried to re-analyze the SHOES result concluded similar H, values, as shown in
Table 1.2, we have almost irrefutable evidence that the SHOES methodology and subsequent
result is robust.

Methodologies Hy (kms™! Mpc’l] References
Bayesian hyper-parameters 73.75 £ 2.11 [61]
Cosmographic Expansion of the Luminosity Distance 74.30 &+ 1.45 [62]
Near-Infrared (NIR) Standard Candles 72.8 £ 2.7 [63]
Bayesian Hierarchical Model of the Distance Ladder 73.15 £ 1.78 [64]
Second Gaia Data Release (GDR2) Cepheids 73.0+1.9 [65]

Table 1.2: The values of H| as reported by selected studies that tried to repeat the SHOES
collaboration analysis, using some variations in their methodologies.

Other model-independent methodologies that can be used to measure the Hubble con-
stant include the Surface Brightness Fluctuations (SBF) method. This methodology is based
on the fact that the variance in a galaxy’s light distribution is analogous to the luminosi-
ties and numbers fluctuations of its individual stars, per resolution element. Using the
Cepheids from the GW170817 host galaxy to calibrate this SBF methodology, one can find
an Hy =71.94+ 7.1 km s~' Mpc ™! [66] value.

Furthermore, the Tip of the Red Giant Branch (TRGB), which uses the luminosity of th
brightest red giant star in a galaxy as a primary distance indicator, has also been used to
calibrate Snla producing various H, values. Among them are Hy = 69.8 + 1.6 km s~! Mpc ™!
[67] and Hy = 72.4 4+ 3.3 km s~ ! Mpc*1 [68] etc.. If we calibrate the previously mentioned
SBF using TRGB data we get an Hy = 73.3 £ 2.4 km 7! Mpc_1 [51] value. There have also
been observations of water Megamasers, found in the accretion disks of supermassive black
holes residing in active galactic nuclei (AGN). These observations can be used to measure
galactic distances. Specifically, one can obtain the Hubble constant from Megamaser data by
using the angular diameter distance measurements, which are independent of the distance
ladder methodology or the CMB. The leading collaboration in this field called the Megamaser
Cosmology Project (MCP) [69] have predicted an Hy = 73.9 & 3.0 km s~ ! Mpc_1 [49] value.

1.3 The Ss Tension

With the term Sy tension we refer to the fact that the Planck18/ACDM parameter values in
the context of General Relativity prefer stronger a growth of the cosmological perturbations
than that indicated by the cosmological data [44,70-78]. The Sg parameter is a combination
of the parameters og and ), given by the relation Sy = (€),,/0.3)", where in the literature
n is given usually the value 1/2. In what follows we will assume this value as well.
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Data Sg Qom o3 Refs.
CMB Planck TT,TE,EE+lowE 0.834 % 0.016 | 0.3166 & 0.0084 | 0.812+0.007 |  [20]
CMB Planck TT,TE,EE+lowE+lens. 0.832+0.013 | 0.3153 +0.0073 | 0.811 +0.006 |  [20]
CMB ACT+WMAP 0.832+0.013 | 0.3153 +£0.0073 | 0.840 +0.030 |  [44]
WL KiDS-1000 0.75970 051 - - [70]
WL KiDS + VIKING + DES-Y1 0.755+9:919 - - [79]
WL KiDS + VIKING + DES-Y1 0.762199%3 - - (73]
WL KiDS+VIKING-450 0.71610 058 - - [80]
WL KiDS+VIKING-450 0.73710:040 - - [81]
WL KiDS-450 0.651 4 0.058 - - (82]
WL KiDS-450 0.745 4 0.039 - - [71]

WL DES-Y3 0.7591902 0.29079039 0.78310:005 | [83.84]
WL DES-Y1 0.78210057 - - [85]
WL HSC-TPCF 0.8047 03z 0.34610.052 0.76670 558 (86]
WL KiDS-1000 pseudo-C; 0.7541 0058 - - (87]
WL HSC-pseudo-C) 0.78010 059 - - [88]
WL CFHTLenS 0.74010 058 - - (89]
WL+CMB lensing DES-Y3+SPT+Planck 0.73+5:54 0.2510:03 0.8210:08 [90]
WLAGC® 0.79575:5%9 0.383+0:023 0.7180 031 [91]
WL+GC+CMB lensing” 0.7781 £ 0.0094 |  0.3050 021 0.77440.033 | [92]
WL+GC KiDS-1000 3 x 2pt 0.76615:0% 0.3050:018 0.7610 030 (93]
WL+GC KiDS-450 3 x 2pt 0.742 + 0.035 0.24379:02 0.832+9:059 [94]
WL+GC KiDS+GAMA 3 X 2pt 0.8007902 0.3310:00 0.7810:0¢ [95]
WL+GC DES-Y3 3 x 2pt 0.77670.017 0.33970. 032 0.733%0:0% [96]
WL+GC DES-Y1 3 x 2pt 0.77310:026 0.26710:039 0.8170:5% [97]
WL+GC KiDS+VIKING-450+BOSS 0.728 4 0.026 0.32370012 1 0.7024£0.029 | [98]
GC BOSS DRI12 bispectrum 0.751 % 0.039 0.32+5:01 0.72210:0% [99]
GC BOSS+eBOSS 0.72 4 0.042 - - [100]
GC BOSS galaxy power spectrum 0.703 & 0.045 0.293 +£0.012 | 0.713 £ 0.045 [60]
GC BOSS power spectra 0.736 4+ 0.051 | 0.303 & 0.0082 | 0.733 +0.047 | [101]
GC BOSS DR12 0.729 4 0.048 0.31770515 1 0.7104£0.049 | [98]
GC+CMB lensing DESI+Plank 0.73+£0.03 - - [102]
GC+CMB lensing unWISE+Plank 0.784 £ 0.015 0.307 £ 0.018 | 0.775 £ 0.029 [103]
CC AMICO KiDS-DR3 0.78 4 0.04 0.247003 0.86 4+ 0.07 [104]
CC SDSS-DR8 0.7975:9% 0.2275:98 0.91% 01 [36]
CC ROSAT (WtG) 0.77 +0.05 0.26 +0.03 0.83 +0.04 [105]
CC DES-Y1 0.657004 0.1797905 0.8570:04 [106]
CC XMM-XXL 0.8340.11 0.40 £ 0.09 0.7240.07 | [107]
CC SPT-tSZ 0.749 + 0.055 | 0.27640.047 | 0.781+0.037 | [108]
CC Planck tSZ 0.785 + 0.038 0.32 +0.02 0.76 +0.03 [35]
CC Planck tSZ 0.792 + 0.056 0.31 4+ 0.04 0.78 +0.04 [34]
RSD+BAO+Pantheon+CC 0.777+9:02 0.288 £ 0.008 | 0.79375:918 [109]
RSD+BAO+Pantheon 0.76210 050 0.286 4 0.008 | 0.7808709% [109]
RSD 0.73970:058 0.25410:038 0.80470:048 [109]
RSD 0.7001005% 0.201+905¢ 0.857100%5 [110]
RSD 0.747+0.029 | 0.279+0.028 | 0.775+0.018 | [111]

Table 1.3: The value of the growth parameter combination Ss, the matter density parameter
Qo and the the power spectrum amplitude og at 68% CL through direct and indirect mea-
surements. The first three are separated from the rest because they are calculated via CMB
data. Adopted from Ref. [38].

THSC-Y1+SDSSS-11I/BOSS DR11
bRiDS+DES+eBOSS+Planck
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Most of the observations seem to indicate a value of Sg that is at a 2— 30 level smaller than
the Sg = 0.834+£0.016 value given by the Planck CMB measurement of Ref. [78]. Although this
tension does not reach the level of the Hubble tension mentioned in the previous section, it
still constitutes a very important cosmological challenge to ACDM. In the following subsection
we will talk briefly about some of the more characteristic measurements.

1.3.1 CMB and Weak Gravitational Lensing Measurements

We include the values of the Sg and (), parameters in the context of various data combina-
tions in Table 1.3, however there are two types of measurements worth discussing further.
One of the most important Sg measurement is derived from the amplitude CMB Power Spec-
trum and the CMB lensing data. Even though these CMB estimates are model depended and
vary with regards to the data compilation used, with each generation of observations they
converge more and more on some central values for the parameters Sg and €),),.

The fact that the CMB Sg measurements are model-depended carries some weight in
the possibility of the existence of systematic errors. More specifically, they are based upon
the hypothesis of ACDM Cosmology as the background. In this context the fact that the
Ss measurements are depended on the 7 parameter, which symbolizes the optical depth
to the reionization, is a very likely source of systematics. That is because the value of
the 7 parameter is estimated with great uncertainty in the case of the ACDM model, in
fact larger than any other parameter. Furthermore, we should consider the fact that the
Planck18/ACDM data show indications of a higher amount of matter clustering than other
analyses [44, 112]. This lensing amplitude anomaly that is displayed in the Planck data
could be a systematic error that leads to an overestimation of the Sg value.

The next important source of Sy measurements we are going to discuss is the weak
gravitational lensing data. Weak gravitational lensing is the phenomenon of image distortion
of Large Scale Structures (LSS), due to the numerous deflections of the light-path as it travels
from its source to the observer. Ever since the first Sy measurement from the Canada-France-
Hawaii Telescope Wide Synoptic Legacy Survey (CFHTWLenS) [113] which set the tension
level with the then Planck/CMB one at 20, there have been a plethora of others such as the
Kilo Degree Survey (KiDS) [87], the Dark Energy Survey (DES) [36], the VISTA Kilo-degree
Infrared Galaxy (VIKING) Survey [114] and the Subaru Hyper Suprime Cam (HSC) [88] Survey
to name a few. The joint characteristic of all these measurements performed by independent
groups, was that all of them predicted smaller Sg values at early times than those reported
by the CMB estimates.

1.4 A Forecast on the Future of Cosmology

When it comes to the field of Cosmology it is fair to say that we are entering in an exciting
decade. It is becoming more and more clear that the emergence of tensions in the standard
cosmological model ACDM will lead to its eventual demise, much as the discovery of the
accelerated expansion of the Universe lead to the demise of the flat sSCDM model. We have
discussed about the Hubble and Sg tensions that are arguably in the spearhead of the
revolution against ACDMhowever there are a plethora of other, perhaps lesser known ones
posing a threat as well. For example we have the lensing anomaly [115, 116], the quadrupole-
octopole alignement [117-122], the CMB cold spot [123-126], the hints for an open Universe
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from the BAO in contrast to those for a closed one by the CMB data (CMB vs BAO) [127-129],
the Lithium problem [130-132] etc.

In the next decade there will be a plethora of new data from long awaited scientific mis-
sions. For example we will see the deployment of both the third generation ground and space
based gravitational wave interferometers [133-136]. This will have a tremendous impact on
Cosmology in general and especially the Hubble tension, since GWs are an extremely direct
and precise cosmological probe for the determination of the f, parameter. That is because
their amplitudes are inversely related to the luminosity distance from their sources, allowing
for a model-independent determination of H, from the Hubble law, without any distance
ladder techniques.

Furthermore, we will also have the deployment of the Euclid satellite [137, 138], an ESA
mission operating from the L2 Lagrange point for a minimum of six years, which will have
the goal of understanding the physical origin of the accelerated expansion of the Universe.
As such, it will provide us with detailed maps of the Universe which will help us measure its
expansion and growth history from the evolution of large scale cosmic structures. It will do
so with the help of a 1.2m telescope and three imaging/spectroscopic instruments working
in the visible and near-infrared wavelength domains. Specifically it is expected to perform a
reconstruction of the pattern of light distortion from weak lensing to 2 = 3 and the clustering
of galaxies out to z = 2.

However, even though there is a lot to be expected from new data and scientific missions
that aim to enrich our understanding of the Universe via a better understanding of Dark
Matter and Dark Energy, there are still those in the scientific community that look towards a
different path. They consider the possibility that the assumptions of Dark Energy and Dark
Matter which lie at the heart of ACDM are wrong, and that the observations that lead to their
establishment could be indications of a much needed modification to GR. Modified Gravity
theories have always been a part of modern Cosmology, albeit a small one, and now with
the much anticipated fall of ACDM around the corner they are here once again. Significant
examples of such theories include the f(R) [139-163], f(T) [164-173] and scalar-tensor
theories [174-185]. Although it is true that GR has been proven correct time and time
again it still has weaknesses that the modifications proposed in the above theories attempt
to eradicate. Moving on and breaking new ground in Cosmology with the help of General
Relativity never fails to leave us pondering the following question "Sir Isaac Newton forged his
Universe out of order via divine intervention and it held true for a little more than two centuries,
how long will Einstein’s Universe survive?".
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| 2
CHAPTER

Phantom Dark Energy and Cosmological
Parameter Degeneracies

g his chapter is dedicated to the analytical and numerical exploration of the de-
) (&’@Q generacies that arise when we consider different cosmological parameter com-
/er f/c\.% binations, and are inherent in the CMB power spectrum. In doing so, we study
|| the consequences of varying the dark energy equation of state parameter w(z)
on various cosmological parameters. In particular we focus on the Hubble pa-
rameter H,, that is associated with the Hubble tension, and the matter density parameter
Qom. It is becoming clear that the consideration of new dark energy properties plays a sig-
nificant role both in the case of the resolution of the Hubble and S tensions. In particular,
if one considers the key to solving the Hubble tension to be a higher value of the Hubble
parameter H, within the context of the CMB data, then it can be shown [186-191, 191, 192]
that a mildly phantom dark energy with an equation of state parameter evolving slightly
below w = —1 has the power to achieve that.

The usual approaches followed by most of the previous works in the literature utilize
evolving equation of state parameters with sophisticated functional forms. This methodology
suffers from, at least, two major issues. The first is that the forms of w(z) that are most
commonly used exhibit a worse fit to various cosmological data and the Planck CMB TT
power spectrum than ACDM (Ax? > 0) and the second is that they are most of the times
very complex employing a multitude of extra parameters, a fact that goes against the notion
that a good physical theory should strive to beauty via simplicity. It is therefore plain for
everyone to see that these parametrizations would be heavily penalised and disfavored [193]
in the event that they would be judged using an information criterion like the Akaike one
against the ACDM . Therefore, following this logic it is obvious that by constructing a model
with no new parameters that can potentially resolve both the Hubble and growth tensions
just by modifying the dark energy properties would be akin to finding the holy grail.

In the context of the analysis that will be presented in this chapter we will attempt to
address the following questions:

e What are the properties of the new phantom degree of freedom required in order to
increase the best fit value of Hj, in the context of the CMB data, to the level required
for consistency with local measurements and the apparent resolution of the H, tension?

e What are the corresponding best fit values of cosmological parameters that emerge in
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Dependence

the context this type of phantom dark energy and can they lead to the improvement or
the resolution of the growth tension?

e What is the quality of fit of these extended models to the CMB Planck and other cosmo-
logical data and how does it compare with the corresponding quality of fit of ACDM?

This will be done in part by using an approximate analytical method that will make use of
the degeneracies that are present within the cosmological parameters when considering the
CMB power spectrum. Furthermore, we will utilize accurate numerical estimates of best fit
cosmological parameters using Markov Chain Monte Carlo (MCMC) and Boltzmann codes.

2.1 CMB Spectrum Degeneracies and the Hj(w)
Dependence

It has been shown [194, 195] that one can uniquely describe the CMB temperature power
spectrum by fixing a number of parameter combinations. Specifically, these parameter
combinations are the matter density parameter combination w,, = Qo,,/?, the baryon density
parameter combination w;, = €y, h?, the radiation density parameter combination w, = ), h?,
the primordial fluctuation spectrum and the curvature parameter wy = Qokh? where h =
%E—) km sec™! Mpc=t, Qg is the present day baryon density parameter and ), is the present
day radiation density parameter. Considering also that the flat universe co-moving angular

diameter distance to the recombination surface

odz
d (W, Wr, wy, h,w(z)) = — 2.1)
Al b, b, w(2)) A

where z, ~ 1100 is the redshift of recombination provided to better accuracy as [196]

z = 1048(1 + 0.00124w;, “™*) (1 + gw?) 2.2)
g = 0.0783w; "*¥ /(1 + 39.5wp %)
g2 = 0.560/(1+ 211w %).

and H(z) is the Hubble parameter at redshift z. We see that the Hubble parameter can be
written as

H (2, oy s B w0(2)) = Ho/ QL4 2 + QoL+ 2)% + Qoaee i & (HHul)/(1+) (2.5

where w(z) is the dark energy equation of state parameter at redshift z and Qpge = 1 — Qo —
Qo is the present day value of the dark energy density parameter. The product ,/w,, - d4 is
independent of H, and constitutes the well known shift parameter defined as [194, 197]

odz
R = \/wmA m (24)
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

The observed values of the above parameter combinations as determined by the
Planck18/ACDM CMB temperature power spectrum are the following [40]

©Om = 0.1430 £ 0.0011 (2.5)
w, = 0.02237 4 0.00015 (2.6)
w, = (4.644+0.3)107° 2.7)
@, = —0.0047 £ 0.0029 (2.8)
da = (100 km sec™t Mpc™')~1(4.62 4+ 0.08) (2.9)

where for the radiation density we have assumed three relativistic neutrino species.

0.85—

0.80} .

0.75¢ h N % wCDM: CMB consistent with Local Measurements b

N
~

0.70 § ﬁ\\\ ACDM: CMB in tension with Local Measurements
0.65¢ ! | . ]
0.60} i 3 .

0.5} : ]

14 “12 10 08 ~0.6
Figure 2.1: The predicted value of 1 as a function of the fixed w for the one parameter dark
energy (wCDM) model. The orange line corresponds to the theoretically predicted best fit
values of h for different values of w in the case of the wCDM model, whereas the dashed
blue line corresponds to the linear fitting that has been made. The red points display the
actual best fit values, including the errorbars, of h for specific values of w obtained by fitting
these models to the CMB TT anisotropy via the MGCosmoMC (see Table 2.2). Adopted from
Ref. [198].

We use the above combinations in order to express and exploit the degeneracy of the CMB
with respect to various specific cosmological parameters. By exploiting this degeneracy it is
straightforward to create an h(wy, wy, ...) function that gives, semi-analytically, the predicted
best fit value of h given a specific form of the dark energy equation of state w(z). This is done
by using Eqgs. (2.1), (2.3), (2.5) and (2.9). To show an example of how one could analytically
predict the best fit value of the Hubble parameter given the dark energy equation of state
parameter w(wy, w1, ..., ) where wy, wy, ... are the parameters entering the w(z) parametriza-
tion!, all we have to do is consider the fact that if we fix the first four parameter combinations

In the present analysis we assume a flat universe and fix @y, = 0.
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to the values given by Egs. (2.5) - (2.8), then the fifth given by Eq. (2.9) would allow us to
constrain Hy. The predicted h(wy, w1, ...) function is derived by solving the following equation
with respect to h

d A (O, @y wp, h = 0.674,w = —1) = da(Wp,, Oy, Oy, b, w(2)) (2.10)

6000

=1.2,h=0.74
=0.67 (A\CDM) ——
Planck Data ——

w=-1,

5000

4000

3000

T I(+1)/2m

2000

1000 -

I I I
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Figure 2.2: The CMB power spectrum for ACDM (blue line) and w = —1.2 (green line). We
also show the binned high-/ and low-/ Planck data (red points). Adopted from Ref. [198].

Following this approach for the case of a one parameter parametrization where w(z)
remains constant in time and redshift (wCDM model), it is simple enough to derive the
degeneracy function h(w) shown in Fig. 2.1 (continuous orange line) by solving Eq. (2.10)
considering that Eq. (2.3) takes the form

H (2, Wi, wr, we, h,w(2)) = Ho\/QOm(l +2)3 + Qoe(1 4+ 2) + (1 = Qom — Qo) (1 + 2)30+w)
(2.11)
We can show then, with the help of Fig. 2.1, that the degeneracy function can be approxi-
mated as a straight line (dashed blue line) in the range w € [—1.5, —1]

h(w) ~ —0.3093w + 0.3647. 2.12)

The points with the errorbars were obtained by numerical fitting to the Planck/CMB power
spectrum using the corresponding wCDM models with fixed w. This analysis is discussed
in more detail in the next section. Next we show in Fig. 2.2 the predicted form of the CMB
TT anisotropy spectrum for the parameter values w = —1 (h = 0.67, Q,, = 0.314) (ACDM )
and w = —1.2 (h = 0.74, Qp,, = 0.263). This effectively demonstrates the invariance of the
CMB power spectrum as the cosmological parameters are allowed to vary with consideration
to the above described degeneracy.

According to Eq. (2.12) the value of w that is required in order to achieve a h(w) = 0.74 is
w ~ —1.217, a fact that is very consistent with previous studies in the literature [186, 187].
In Ref. [186], in particular, the author attempts a similar analysis where he reports that
fixing the dark energy equation of state w ~ —1.3 or the effective number of relativistic
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

species N sy ~ 3.95 may ease of the [, tension. However the novelty of the methodology
presented here lies on the fact that it uses analytical methods to identify the qualitative
features required for any form of w(z) to attempt to relax the H, tension.

The use of this methodology for the derivation of the predicted dark energy properties
required to seemingly resolve the H| tension is not confined simply on the case of the wCDM
model, on the contrary it may be extended to more parametrizations of w(z). For example it
can be used in the case of the two parameter CPL parametrization [199, 200] expansion of
w(z)

w=wy+wi(l—a)=wy+wz/(1+2) (2.13)

where Eq. (2.3) is written as

H(z) = Ho\/ Qom(1 + 2) + Qor(1+ 2)4 + (1 — Qo — Qor) (1 + 2)30+worene 52 (2.14)
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Figure 2.3: The degeneracy with respect to the CMB spectrum in the parameter space

(wp — w1 ). The dashed lines correspond to h = 0.674 (ACDM value) and to h = 0.74 (the value
of Ref. [201]). Adopted from Ref. [198].

Using now Eqgs. (2.1), (2.5), (2.9) and (2.12) and the above described methodology in
the context of the CPL parametrization, the derivation of the relevant degeneracy function
h(wg,w, ), by solving Eq. (2.10) is quite simple. Similarly to Fig. 2.1 for wCDM we can
construct Fig. 2.3, where the dashed lines correspond to the parameter values that satisfy
both h(wp,w;) = 0.674, with the ACDM value going through the point (wp, w;) = (—1,0) as
expected, and the local distance ladder measurements value h(wg, w;) = 0.74. The constant
h contour lines shown in Fig. 2.3 are approximately straight in the range of the wy — w;
parameter space shown. In particular, for the case of the value h = (.74, which attempts to
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Figure 2.4: The evolution of w(z) for various values of (wg, w;) along the degeneracy h = 0.74
line of Fig. 2.3. All these parameter values lead to a best fit value A = 0.74 in the context
of the CMB power spectrum. However, they do not have the same quality of fit to other
cosmological data which can be used to break this model degeneracy. The common (z, w)
point of intersection of all the w(z) plots is (0.31, —1.22). Adopted from Ref. [198].

ease the Hj tension, we can approximate the relevant line by the equation,
wy ~ —4.1Twg — 5.08 (2.15)

The preference for a phantom-like behaviour in some redshift ranges is apparent in Fig.
2.3 when we attempt to approach the local measurement of /. This is also demonstrated
in Fig. 2.4 where we show four forms of w(z) based on the CPL parametrization that can
resolve the H, tension by providing a best fit value of h = 0.74 from the CMB data. The
corresponding wCDM value of w = —1.22 is also shown. Clearly all degenerate forms of
CPL w(z) that relax the H, tension go through the same point at z = 0.31 crossing the
w = —1.22 line. This type of degeneracy in particular redshifts for cosmological parameters
has been discussed in Ref. [202]. Also degenerate w(z) curves with wy < 1.22 are increasing
functions of z, while those with w, > 1.22 are decreasing functions of z. This appears to be
a general feature of all w(z) parametrizations that can relax the H, tension. For example
the PEDE parametrization [191] and the late dark energy transition hypothesis [203] with
w(z ~ 0) > —1.22 are decreasing functions of the redshift z as predicted by the above
degeneracy analysis. The identification of these properties opens up the possibility of a very
late type phase transition at z ~ 0.01 from a phantom phase to a ACDM phase with a sharply
increasing rather than decreasing function of w(z).

It is expected that even in the case of some w(z) parametrization that has the potential to
lead to an apparent alleviation of the H tension we would also have to consider its quality of
fit to the actual CMB spectrum and to other cosmological data is significantly with regards
to ACDM (w = —1). Therefore, it is of the out-most importance that we consider the quality
of fit of the preferred degenerate forms of w(z) to other cosmological data like Snla, BAO and
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

growth of perturbations data (Redshift Space Distortion fog(z) and weak lensing data) as
well as to actual CMB power spectrum data which may not fully respect the above exploited
approximate degeneracy (especially at low /). Thus, we set the following questions for the
next section:

e What is the quality of fit of the forms of w(z) that are predicted to resolve the H tension,
on cosmological data involving Snla, BAO, growth Redshift Space Distortion data and
the actual Planck CMB TT power spectrum data? Is this quality of fit (y?) similar to
the corresponding quality for ACDM?

e Is the Hj tension actually alleviated when the full CMB spectrum data are used in the
context of a model with fixed w(z) to its predicted form (e.g. w = —1.22 in the context
of a constant w)?

e Is the growth tension partially relaxed in the context of the above preferred w(z) found?

These questions will be addressed mainly in the context of a redshift independent w (wCDM)
but it is straightforward to generalize the analysis for more general forms of w(z).

2.2 Numerical Analysis of Dark Energy Models

We use the numerical package MGCosmoMC [204-206] (see Appendix B.2 for the modified
MGCAMB core files) in order to test the quality of the semi-analytic results that were pre-
sented in the previous section against the CMB and other cosmological data. Specifically, we
use the Planck TT and lowP dataset, i.e. the TT likelihood for high-1 multipoles (I > 30) as
well as the Planck temperature and polarization data for low multipoles (I < 30). The priors
that have been used as input can be seen in Table 2.1.

Parameters Priors
Qh? [0.005,0.1]
Q.h? [0.001,0.99]

1000,¢ (0.5, 10]
T [0.06,0.8]
In(101°A4,) | [1.61,3.91]
N [0.8,1.2]

Table 2.1: The MGCosmoMC priors that have been used in Figs. 2.5 and 2.7. We also set
Alens =1 and Qk =0.

By fixing w to the values of the points shown in Fig. 2.1 (w = —1.0, -1.1, —1.2, —1.3) and
subsequently constructing the likelihood contours (Fig. 2.5) for the cosmological parameters
for each case, we find the best fit values of i which are shown in Table 2.2 (see also Fig. 2.1).
We therefore conclude that they are in excellent agreement with the expectations based on
our previous degeneracy analysis (see orange continuous line of Fig. 2.1). It is once again
clear that the likelihood contours for the Hubble parameter shift to higher best fit values as
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Figure 2.5: The contour plots constructed with MGCosmoMC using the PlanckTT and lowP
likelihoods for ACDM and wCDM models. The gray contours correspond to the ACDM model.

The green contours correspond to w = —1.1, the red ones to w = —1.2, while the blue to
w = —1.3. For w = —1.1, the best fit value of H, is close to that of the Planck18/ACDM
measurement [72], while the w = —1.2 and w = —1.3 values shift h closer to the local

distance ladder measurements [201]. Adopted from Ref. [198].

w decreases in the phantom regime (w < —1) and that at the same time the best fit values
of the matter density parameter )y, decrease in accordance with the degenerate parameter
combination gy, h>.

th obs 2 2
w Qo hun Qo Poobs XcMmB AXCus

—1.0 | 0.316 | 0.674 | 0.315+0.013 | 0.673 £ 0.010 | 11266.516 -
—1.1 [ 0.289 | 0.704 | 0.288 +0.013 | 0.704 +0.011 | 11266.530 | 0.014
—1.2 10265 | 0.735 | 0.26375015 | 0.736 £0.013 | 11267.132 | 0.616
—1.3 | 0.244 | 0.766 | 0.24275015 | 0.768 = 0.014 | 11266.520 | 0.004

Table 2.2: The analytically predicted CMB best fit values of h and (2, for fixed w, obtained
by using the CMB parameter degeneracy arguments, as well as the ones obtained by the
actual fit of the corresponding w model to the Planck TT CMB anisotropy power spectrum.
The quality of fit for each model compared to ACDM is also indicated by the value of Ay?2.
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Figure 2.6: The 10 — 40 contours in the parametric space )y, — 0s. The blue contours
correspond to the best fit growth compilation of Ref. [207], while the red to the 1o — 4o
confidence contours for w = —1 (left panel) and w = —1.2 (right panel) obtained from the
Planck data. Adopted from Ref. [198].

This reduced value of the best fit {2y, would naively imply reduced growth of cosmological
perturbations and thus resolution of the growth tension. However, the reduced best fit value
of the matter density parameter {)y, matter density is not enough to soften the growth
tension, since the best fit value of the parameter og (the present day rms matter fluctuations
variance on scales of 82 'Mpc) appears to increase more rapidly, as w decreases in the
phantom regime. Since this parameter is proportional to the initial amplitude of the matter
perturbations power spectrum, its increase amplifies the growth of perturbations and tends
to cancel the effect of the decrease of the best fit (), in the context of perturbations growth.
This is demonstrated in Fig. 2.6 where we show the oy likelihood contours obtained by
fitting the models w = —1 (ACDM) and w = —1.2 to the growth fog data (we have used the
conservative robust dataset of Table 2 of Ref. [207], a subset of an up to date compilation
presented in [208]). Superimposed we also show the corresponding likelihood contours
obtained from the Planck CMB TT power spectrum obtained for each value of fixed w. Clearly,
the tension between the RSD fog data and the Planck data increases in the context of the
phantom model w = —1.2 compared to ACDM (w = —1).

In addition to the growth data we also fit the models w = —1 and w = —1.2 to a cosmolog-
ical data combination including the Pantheon Snla [22], BAO data [209-211], CMB data [72],
as well as the prior of the Hubble constant published by Riess et al. [201] and obtain for
ACDM x? = 12319.2, while for w = —1.2 we obtain x? = 12332.7. We thus find Ax? = 13.5.
This difference of Ax? = 13.5 for the phantom model, indicates a significantly reduced quality
of fit compared to ACDM in agreement with previous studies [212]. The corresponding like-
lihood contours are shown in Fig. 2.7. It is therefore clear that the particular fixed w models
considered here lead to an apparent resolution of the Hubble tension since they increase the
best fit value of Hj in the context of the CMB data but the resolution is not viable since the
growth tension gets worse while the quality of fit of these models to the Snla and BAO data
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2.3. In Brief

is not as good as for ACDM. This result is consistent with previous studies [187], where it
has been demonstrated that non-CMB data, such as BAO and SNIa favour lower values of
H, which are more consistent with the CMB value, while also disfavouring w < —1 in the
context of flat and non-flat untilted inflation models [213]. It is, however, worth mentioning
that for the combination of the CMB Planck data and the Riess Hubble constant prior the
quality of the fit improves drastically for w = —1.2, with Ay? = —10.7 in respect to w = —1.
The exploitation of the CMB spectrum degeneracy of more complicated forms of w(z) however
may lead to better fits to growth, Snla and BAO cosmological data.
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Figure 2.7: The likelihood contours constructed with MGCosmoMC using the cosmological
data combination of Pantheon Snla [22], BAO data [209-211], CMB data [72], as well as the
prior of the Hubble constant [201] for ACDM (gray contours) and wCDM with w = —1.2 (red
contours). Adopted from Ref. [198].

2.3 In Brief

Summing-up, in this chapter we have shown how one can use inherent analytical degeneracy
relations among cosmological parameters and numerical fits to cosmological data, in order
to identify the qualitative and quantitative features of dark energy models that have the
potential to relax the H, tension of the ACDM model. We have found that mildly phantom
models with mean equation of state parameter w ~ —1.2 can show signs of easing this
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

tension. The models may be constructed in such a way that there are no extra parameters
compared to ACDM by using fixed parametrizations of w(z). In practice however they involve
more fine tuning compared to ACDM and are clearly less natural. In addition the quality of
fit of the simplest of such models to cosmological data beyond the CMB is not as good as the
corresponding quality of fit of ACDM. However, it is straightforward to construct physical
models involving either phantom scalar field with non-canonical kinetic terms or modified
gravity models that naturally produce the required phantom behavior of dark energy. Despite
the usual stability issues of such models it can be shown that it is possible to construct ghost
free versions [183]. For example, physical models described by scalar field Lagrangians can
reproduce an effective dark energy with a constant equation of state parameter w in the
context of both quintessence (w > —1) [214-216] and phantom dark energy w < —1 [217].

In particular, a dynamical dark energy scalar field with an inverse power law potential
of the form V(¢) = MU+®) ¢~ (where M and a > 0 are free parameters), corresponds to a
physically interesting model where the dark energy equation of state parameter w is constant
and takes the form [216],

%U} B — 1
W= —- (2.16)
I+ 35

where wp is the equation of state parameter of the dominant background. Clearly, for a
matter dominated epoch (wp = 0), and o > 0, we can obtain a constant w and a quintessence
like behaviour (w > —1).

Similarly, a phantom like behaviour (w < —1) with constant w, may be obtained [217] in
the context of a scalar field with non-canonical kinetic terms with an action of the form

S = /d433\/—_g (2%21% + p(o, V(b)) + Sp (2.17)

where x? = 87( and Sp is the action of the background. The Lagrangian may be assumed to
depend only on the scalar field ¢ and its derivative squared X = —gww,@. In the case of
a slowly varying field X the pressure p and energy density p of the field take the form [217]

p=f(®)(—X + X?), 2.18)
p= 2X§—§ —p=f(¢)(—X +3X?) (2.19)

For f(¢) < ¢~, Egs. (2.18) and (2.19) lead to an equation of state parameter of the form

(1 + U)B>Oé _

5 1. (2.20)

w =
For a matter dominated epoch (wp = () an appropriate value of « can lead to either a
quintessence or a phantom behavior. In particular for a < 2 we obtain w > —1 (quintessence
behavior), while for a < 0 we obtain a physical model with w < —1 (phantom equation of
state).

However, the constant w behavior of both of the above physical models described by Egs.
(2.16) and (2.20) is a good approximation only in the context of a dominant background fluid
with constant equation of state wg. In our universe this would occur for example only well
in the matter dominated epoch. These equation of state parameters would cease to have a
constant form near the end of the matter era and in the present transition cosmological era.
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Thus, the constancy of w in the context of these physical models is a good approximation
only on high redshifts (z > 2).

The analytical approach for the Hy-w(z) degeneracy pointed out in this chapter offers a
new method to systematically search and design w(z) forms that can combine some of the
proper features that are seemingly required to relax the Hubble tension while keeping a good
fit to cosmological data. Our goal here was only to introduce this methodology and apply it to
the simplest cases while also pointing out the difficulties in resolving the tensions discussed.
Using a smooth H(z) deformation model and exploiting a parameter degeneracy like the one
presented here, in order to elevate the value of Hj, has significant disadvantages. As we will
show in the following chapters this approach manages to "solve" the Hubble tension only
superficially.
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CHAPTER

Proposing a w-M Transition at z; < 0.1

s we have seen both in the previous chapter and generally in the literature [186,
187,191, 198,218-220], attempts to consider smooth deformations of H(z) at
z ~ O(1) have been successful in matching 7(z,..) with 7(z = 0) but have been
unable to match the value of 7(z ~ O(1)) which is strongly constrained by BAO
and Snla data to be close to the form indicated by Planck18/ACDM.

In this chapter we consider the possibility of an abrupt deformation of H(z) at z < 0.1
(H(z) transition). However, even though this type of deformation has been considered for a
long time in the literature [221-223] it has been constrained by both the comoving distance
r(z) at z > 0.1 as well as by the measured Snla magnitudes which are not consistent with a
large step-like discontinuity. Specifically, if this deformation were to occur below the redshift
when Hubble flow begins, it would mean that it would be observationaly undetectable [222]
and thus it would not have contributed to the measured decreased value of r(z) at low z.
In the event that this deformation occurred at 0.01 < z; < 0.1 with the proper amplitude to
reduce r(z) to the required level, it would have to produce a step-like feature in the Snla
Hubble diagram which would have an amplitude Am = (.2 and it would be inconsistent with
the Pantheon data.

Our main goal in this chapter is to show that the latter problem can be avoided. The
way to avoid it is by assuming a assuming a transition of the Snla absolute magnitude M
at z; € [0.01,0.1]. By combining both a transition in the transition of the Snla absolute
magnitude accompanied and a transition of the equation dark energy of state parameter
w(z) = pae(2)/pae(z) 1224, 225] we show that it is possible to overcome the issue of the
required step-like feature of the apparent magnitudes while being consistent with value of
the absolute magnitude implied by local Cepheid calibrators.

In particular, we express these transitions as follows starting with the transition in the
dark energy equation of state w(z)

w(z) = —14+ Aw O(z — z) (3.1)
and subsequently the transition in the Snla absolute magnitude M with the form
M(z) = Mc+ AM O(z — z;) (3.2)

where O is the Heaviside step function, M- = —19.24 is the Snla absolute magnitude cali-
brated by Cepheids [62,226] at z < 0.01 and AM, Aw are parameters to be fit by the data.
Therefore, we have defined the Late w — M Transition (LwMT) model.
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3.1. Introducing the LwMT Model

It is straightforward to show, using the energy momentum conservation d(pg.a®) =
—pded(a?’), that the evolution of dark energy density p,. is obtained as

142 3(1+w)
1+ 2,

dz’'
142

panl®) = puciy) [ 150D = pale) ( .9
#p

where in the last equality a constant w was assumed and z), is a pivot redshift which may be

assumed equal to the present time or equal to the transition time z;. Then, Eqgs. (3.1) and

(3.3) imply a continuous Hubble expansion rate h(z) = H(z)/100km/(sec - Mpc) of the form

142\° 2"
Pw(2)? = W (1 + 2)% + w.(1+ 2)* 4+ (B — wm — wy) (1+ ) z < z
2t

how(2)? = win(1+ 2)* + w, (1 + 2)* + (h? — W — w,) z >z

(3.4)

where w,, = Qo,,h% w, = Qp,.h? are the matter and radiation density parameters assumed
fixed to their Planck18/ACDM values in the next section and h is a parameter distinct
from the rescaled measurable Hubble parameter h,(z = 0)'. In what follows we define
hiocar = 0.74 and hepp = 0.674, by assuming 0.01 < z; < 0.1, which correspond to the Hubble
constant values obtained with local standard candle measurements of r(z) (Hy = Héﬂg) and
sound horizon standard ruler measurements (H, = HéD 18 calibrated by Planck18/ACDM)
respectively.

The questions we will occupy ourselves with in the next parts of this chapter are the
following:

e What is the functional form of Aw(z;) so that h,(z = 0) = hj,.u as implied by local
measurements while maintaining the required Planck18/ACDM form of r(z) for z > z?

e How closely does the LwMT model reproduce the form of the Planck18/ACDM comov-
ing distance r(z) for z > z? How does this form of (z) compare with the corresponding
form of the H(z) transition?

e How does the quality of fit of the LwM T model to cosmological data (CMB, Snla, BAO
and SHOES) compare with the corresponding quality of fit of typical models that utilize
smooth deformations of H(z) to address the H, tension?

e What are the favored values of Aw, AM and what are the implications for general
relativity and for the future evolution of the universe?

3.1 Introducing the Lw)M T Model

Our first goal is to constrain the values of the w,,, w,, h and Aw parameters that are present in
the LwM'T ansatz (see Egs. 3.4). In order to do that we impose two conditions. The first one
is that the ansatz should reproduce the comoving distance corresponding to Planck18/ACDM
ra for z > 2, where

z dZ/
/0 wn(1+ 2P +w.(1+ 24+ (h? — wy — w,)

!The parameter / would be equal to the measured rescaled Hubble parameter /.,(z = 0) in the limit z; — 0.

rA(z) = (3.5)
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Figure 3.1: The equation of state shift Aw required for h,,(z = 0) = hj,eq as a function of the

transition redshift z;. Notice the strongly phantom behavior of the dark energy equation of
state w = —1 — Aw for z < z;. Adopted from Ref. [227].

and w,, = Qo,h? = 0.143, w, = Qy,h?> = 4.64 x 107° and h = heyp = 0.674. This condition
fixes the parameters w,,, w, and h to their Planck18/ACDM best fit values. Since we consider
2zt < 0.1 < 1 it is straightforward to obtain an upper bound for the relative difference

A _ _
Ay = Tul®) =rale) Mo = hous 4 (3.6)
r ra(2) heus

where 7,(z) = fOZ #é,) is the comoving distance corresponding to the LwMT model (3.4).

%(z) is maximum at z = 0 and decreases rapidly as z increases as demonstrated below.
The second constrain is that it should reproduce the local measurements of the Hubble
parameter

hw(z = 0) = hlocal = 0.74. (3.7]

This means that we will have a relation between Aw and z; of the form (here we neglect w,
as it has practically no effect on Aw)
_ log (h* — wy,) —log (h} Win)

Aw — local
v 3log(1 + z)

(3.8)

where h = heyp = 0.674 and w,, = Qo,uh? = 0.143 as implied by the first condition and for
consistency with the CMB anisotropy spectrum. These types of models imply a very strong
phantom dark energy behaviour in the present, a fact that is shown also in Fig. 3.1 via a
plot of Aw(z;).

In Fig. 3.2 we compare the forms of the comoving distance 7(z) of some of the proposed
H(z) deformations for the resolution of the Hubble tension, against the one predicted in
the context of the LwMT model r,(z). More specifically, we show a plot of the function
f(2) = z/r(2) (whose z — 0 limit is the Hubble constant) for the LwM7T model, the H(z)
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Figure 3.2: The function f(z) = z/r(z) where r(z) is the comoving distance to redshift z
for the cosmological models Planck18/ACDM (black continuous line), wCDM with w = —1.2
(magenta dotted line), H(z) transition (3.9) with z; = 0.05 and % = (hocat — hcmB)/hems
(red dot-dashed line), LwMT with z; = 0.05 and w(z < z;) = —1 — Aw = —2.78 as indicated
by Eq. (3.8) (green dashed line) and LwMT with z; = 0.1 and w(z < z;) = —1 — Aw = —1.91
as indicated by Eq. (3.8) (blue continuous line). Notice that even though all three models ap-
proach r,(z) asymptotically, the two LwMT models remain closest to the Planck18/ACDM
comoving distance r,(z) while at the same time they are consistent with the local measure-
ment of the Hubble constant since h,,(z = 0) = 0.74. Adopted from Ref. [227].

transition model and the wCDM with fixed w = —1.22 model [186, 187, 198]. The H(z)
transition model is defined as
oh
hs(2)? = (1 + - Oz — 2))? [wm(1+ 2)° + W, (1 + 2)* + (B* — Wy — ;)] (3.9)

where ‘Z‘ = M h = heyp and w,,, w, are assumed fixed to their Planck18/ACDM

best fit values. The ﬁxed w (wCDM) smooth H ( ) deformation model is defined as
Pwf(2)? = win(1 + 2)* +w, (14 2)* + (B — wn — w,) (1 4 2)30F) (3.10)

where w = —1.22, h = hjpeq and w,,, w, are assumed fixed to their Planck18/ACDM best
fit values [198]. All three models that address the [, tension shown in Fig. 3.2 satisfy by
construction two necessary conditions

h(Z = 0) = hlocal (3.11]
r(z) = ra(z) for z 2 O(1). (3.12)
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Figure 3.3: The residuals AY? plotted against the values of the transition redshift z, for the
LwMT (blue dots) and wCDM (black dotted line) with w = —1.22. The LwMT model seems

to achieve a significantly better fit for small z; values. Adopted from Ref. [227].
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Figure 3.4: The forms of the comoving Hubble parameter H(z)/(1+ z) for two LwMT models
with z; < 0.1, the best fit wCDM and uACDM. Adopted from Ref. [227].

These conditions along with the fact that we fix the parameters w,, and w, to their best

fit ACDM values secure the fact that all three models produce the same CMB anisotropy

spectrum as Planck18/ACDM while at the same time they predict a Hubble parameter equal
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3.2. Fitting LwMT to Cosmological Data

to its locally measured value h(z = 0) = hje;- However, the three models do not approach
the Planck18/ACDM comoving distance r,(z) with the same efficiency as z increases. As
is clearly seen in Fig. 3.2, the LwMT model with both z; = 0.1 and z; = 0.05 approaches
ra(z) faster than the other two models. Since Planck18/ACDM provides an excellent fit to
most geometric cosmological probes at z > 0.1 it is anticipated that LwMT will produce
a better fit to cosmological data than the smooth deformations of H(z) like wCDM or the
discontinuous H(z) transition model which produces an unnatural step in r(z) and moves
away from r,(z) for z < z; as z increases. This improved quality of fit is also demonstrated
in the next section.

A fact which lies at the heart of the Hubble tension is that a deformation of H(z) model
that claims to ease it should not only be preoccupied with being consistent with the locally
measured value of the Hubble parameter H, and with the
Planck18/ACDM form of H(z), but it should also be consistent with the value of the absolute
magnitude of Snla as determined by Cepheid calibrators Mq [62,226]. This may be seen by
considering the equation that connects the Snla measured apparent magnitudes at redshift
z; with the Hubble free luminosity distance and the Hubble parameter which may be written
as

m(z;) = M — 5log,, [Ho - Mpc/c] + 5log,o(Dr(2:)) + 25 (3.13)

where Dy (z) = Hydy(z)/c is the Hubble free luminosity distance. Given the measured m(z;)
datapoints the best fit Hubble parameter in the context of local measurements can decrease
to become consistent with the sound horizon calibrator by either decreasing Dy (z) (deforming
H(z)) or by decreasing the absolute magnitude M. Such a decrease of M can be achieved
either by discovering a systematic effect of the Cepheid calibrators or by assuming an M
transition at z > 0.01 due to an abrupt change of fundamental physics. The deformation of
Dy (z) is severely constrained by the standard ruler constraints based on the sound horizon
(CMB and BAO) and even though it is most efficient in the context of very late transitions as
the one discussed in the present analysis it may still not be enough to compensate with the
decrease of H, while keeping M fixed to its Cepheid calibrated value M = M. A common
error made in late time approached of the Hubble tension is to either marginalize over M
with a flat prior or allow it to vary along with the cosmological parameters in the context of
the maximum likelihood method. This may lead to a best fit value of M that is inconsistent
with the Cepheid measured value )M thus invalidating the results of such analysis.

In order to overcome this issue, in the next section we allow the absolute magnitude M to
vary along with the cosmological parameters and as we have already said we will hypothesize
that both the M and w transitions happen simultaneously. However, let us not be oblivious

to the fact that for AM = —5log,, [%] ~ —0.2 the M transition may be sufficient for the
0

resolution of the H, tension, meaning that there will no longer be a need for the simultaneous
w transition.

3.2 Fitting LwMT to Cosmological Data

It is now time to use a wide variety of robust cosmological data in order to estimate the quality
of fit and the best fit parameter values of the LwMT and two other classes of cosmological
models. For the LwM'T' model we remove the constraint w. = —1 for z > z; as well as the
constraint w,, = 0.143. Thus the model is now allowed to have three free parameters for each
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Chapter 3. Proposing a w-M Transition at z; < 0.1

fixed value of z;: w~, w. = ws + Aw and w,,. However, as discussed below, the additional
free parameters end up constrained by the data very close to the values considered fixed in
the previous section. The second model we use is wCDM (3.10) which possesses two free
parameters, w and w,,. For both these models the constraint h(z = 0) = Ay is imposed
as a prior in the analysis. Lastly, we consider the well-known ACDM model. In order to
maximize its quality of fit to the data no constraint for A(z = 0) is imposed on this model.
This enables us to also use it as a benchmark in comparison to the other models that address
the H, tension. Thus we use the term uACDM ("u" for "unconstrained") to denote it. We
assume identical best fit parameter values (£2,, = 0.312 £ 0.006, Hy, = 67.579 + 0.397) to
Planck18/ACDMand we therefore use it as a baseline to compute residuals of x? to compare
the other two representative models. We use the following data to identify the quality of fit
of these models

e The Pantheon Snla dataset [22] consisting of 1048 distance modulus datapoints in the
redshift range z € [0.01, 2.3].

e A compilation of 9 BAO datapoints in the redshift range z € [0.1,2.34]. The compilation
is shown in the Appendix.

e The latest Planck18/ACDM CMB distance prior data (shift parameter R [195] and
the acoustic scale [, [228]). These are highly constraining datapoints based on the
observation of the sound horizon standard ruler at the last scattering surface z ~ 1100.
The covariance matrix of these datapoints and their values are shown in the Appendix.

e A compilation of 41 Cosmic Chronometer (CC) datapoints in the redshift range z €
[0.1,2.36]. These datapoints are shown in the Appendix and have much less constrain-
ing power than the other data we use.

Taking that into account the total y? is defined as

X = Xemp + Xbao + Xec + Xanth- (3.14)

As we have said above the residual Ay? of the LwMT (as a function of z,) and the wCDM
models are calculated with respect to the uACDM model. Since the CMB data are the most
constraining, for wCDM we have used the best fits w,, ~ 0.143 and w = —1.22 [198] that
were found using the methodology of Chapter 2.

These residuals sz for the best fit Lw M T models as a function of z; (blue points) and the
corresponding residual Ay? for the best fit wCDM model (horizontal black line) are shown
in Fig. 3.3. It is obvious from the figure that the LwMT models massively improve their fit
as the z; parameter decreases below z; ~ (.15 in contrast to wCDM. The best fit parameter
values for w. (¢ < 2;) and w~ (¢ > 2z are shown in Table 3.1. In parenthesis next to each
w< best fit we show the predicted value in the context of the analysis of the previous section
(Eq. (8.8)) which assumes w~ = —1.

In Fig. 3.4 by displaying the forms of the comoving Hubble parameter H(z)/(1 + z) for
two LwM'T models with z; < 0.1, the best fit wCDM and uACDM , we show the efficiency of
the LwMT of approaching the fit of the uACDM model. This is very important because the
LwMT model claims to address the Hubble tension by reaching h(z = 0) = hj,eq as well.
This characteristic is not very easily achievable, a fact that is demonstrated by the failure of
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Figure 3.5: Left panel: BAO data residuals ADy X Tfid from the best fit uACDM (orange

dashed line) superimposed with the best fit residual curves corresponding to wCDM (dotted
black line), LwMT with z; = 0.005 (blue dot dashed line) and LwMT with 2z, = 0.02 (green
dashed line). Notice the difficulty of smooth H(z) deformation of wCDM to fit the data
due to the constraint imposed by the local measurements of Hubble constant. Right panel:
The Pantheon Snla distance modulus residuals Am from the best fit uACDM. The predicted
distance modulus residual curves for wCDM (black dashed line), the LwMT (z, = 0.005) (blue
dot dashed line) and the LwMT (z; = 0.02) (green dashed line) are also shown. Adopted from

Ref. [227].
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Figure 3.6: Left panel: The 150 point moving average of the Pantheon Snla standardized
residual absolute magnitudes with respect to the best fit ACDM (Am50(2) of eqs (3.16-
3.17)). Notice the sharp and peculiar drop at z < 0.1 (unlikely at more than 30 level).
Right panel: The 150 point moving average of the Pantheon Snla standardized residuals
with respect to the best fit LwMT (z; = 0.02). The sharp drop shown in the left panel
has disappeared while the mean and the standard deviation of the moving average points
have dropped significantly indicating that the LwMT is a more natural pivot model than
Planck18/ACDM. Adopted from Ref. [227].

the wCDM, which employs a smoother approach and is therefore much less able to mimic
the behaviour of Planck18/ACDM , this is also shown in in Fig. 3.3.

The difficulty of the smooth H(z) deformation models that address the Hubble tension
in fitting the BAO and Snla data is also demonstrated in Fig. 3.5 where we show the BAO
and Snla data (residuals from the best fit uACDM) along with the best fit residuals for the
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2 Ax? Qom we (2 < zp) ws (2 > z)
0.005 | -1.9 | 0.2609 | —18.44 (—18.4) | -1.005
0.01 0.8 | 0.2608 —-9.93 (—9.7) -1.001
0.02 | 9.7 | 0.2607 | —528(-5.3) | -1.011
0.04 | 23.1 | 0.2606 —2.93 (—3.2) -1.037
0.05 | 27.6|0.2607 | —2.48(—2.8) | -1.049
0.06 |31.3|0.2607 | —2.19(-25) | -1.059
0.08 37.9 | 0.2608 —1.81 (—2 1) -1.085

0.1 43.3 | 0.2611 —1.58 (—1.9) -1.115
0.2 50.1 | 0.2622 —1.22 (—1.4) -1.230

Table 3.1: The values of the LwMT model best fit parameters €),,, w- (z < z) and w-
(2 > z) corresponding to different indicative values of the transition redshift z;, along with
each case’s Ay? with respect to uACDM. In parenthesis we show the analytically predicted
values of w. which were obtained from Eq. (3.8) (i.e. assuming w~ = —1 and imposing the
constraint h(z = 0) = hjeeqr 00 the LwM T ansatz (3.4)). Notice that the best fit values of €,
are consistent with the CMB spectrum requirement of w,, = 0.143 in view of the constraint
h(z = 0) = hipeq; imposed in all cases.
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Figure 3.7: The growth factors §(«) of the linear perturbations, for both the LwMT, with
2z = 0.02 and Aw = —4.39 (red line), and Planck18/ACDM (blue line) models. Clearly, the
effect of the w transition on the growth factor is negligible at it occurs at a; ~ 0.98. Adopted
from Ref. [227].

wCDM and LwM'T models. The right panel of Fig. 3.5 indicates that the LwMT model with
z¢ = 0.02 which can resolve the Hubble tension, closely mimics the apparent magnitudes
of uACDM for z > z; but for z < z; it predicts a small reduction of the residual apparent
magnitudes. The question therefore to address is the following: Is there a hint for such a
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3.2. Fitting LwMT to Cosmological Data

statistically significant reduction of the measured absolute magnitudes in redshifts close to the
transition redshift z; ~ 0.02? Interestingly, this is indeed the case!

The left panel of Fig. 3.6 shows the N = 150 point moving average of the standard-
ized residual absolute magnitudes with respect to the best fit ACDM model. The ACDM
standardized residual apparent magnitudes are defined as

Mobs (Zz) — MthACDM (Zz‘, be7 Qombf)

Oi—tot

Am(z) =

(3.15)

where 0;_, is the total error (statistical+systematic), M; = —19.23 and Qg5 = 0.30 are the
best fit parameter values of ACDM in the context of the Pantheon data and m,acpys are the
corresponding theoretically predicted apparent magnitudes. The N point moving average
corresponding to the residual standardized datapoint point j (j € [1,1048 — N]) is defined as

' TIEARN
Amiy(2) = + > Am(z) (3.16)
i=j
and the corresponding redshift is
A | N
i=j

For N = 150 the left panel of Fig. 3.6 shows the form of Amy(Z). Since the points are
standardized and ignoring their correlations, we expect that the 1o region will approximately
correspond to o ~ 1/ VN ~ 0.08 which is also indicated in Fig. 3.6 up to the 3¢ level.
Interesting features of the binned Pantheon data have been identified in previous studies
[229, 230]. Related to such features is a clear abrupt drop of the moving average of the
standardized residuals from the 420 region to the —30 region and beyond clearly seen in
the left panel of Fig. 3.6. The deepest part of this drop is at a redshift of about 0.02. This
is precisely the type of signature anticipated in the context of the LwMT model. Once
we consider the residuals with respect not to the best fit ACDM but to the best fit LwMT
model with z; = 0.02, this peculiar feature disappears (Fig. 3.6 right panel). In addition,
the standard deviation of the points of the moving average of residuals decreases by about
20% (from 0.1 to 0.8) while their mean value shown in Fig. 3.6 drops sharply from 0.03 to
0.001. This is also a hint that the best fit LwMT with z; = 0.02 is a more natural pivot model
than the best fit ACDM. This observation supports the consideration of a combined w — M
transition for the resolution of the Hubble tension instead of using simply an M transition.

In contrast to smooth H(z) deformations that in general tend to worsen the growth
tension by increasing the growth rate of cosmological perturbations at early times [231] the
proposed ultra-late w transitions have negligible effect on the growth rate of cosmological
perturbations. At z; = 0.02 most structures have already gone nonlinear during the w =
—1 era and have decoupled from the effects of the background expansion. Even those
fluctuations that are still linear do not have the time to respond to the change of w since
it occurs at very low z (¢ ~ 0.02). In addition, the emerging strongly phantom background
could only lead to a suppression of the growth due the super accelerating expansion which
prevents the growth of perturbations. We demonstrate this minor suppressing effect on the
growth in Fig. 3.7, where we have solved numerically the equation for the growth of linear
perturbations for the LwMT model for z; = 0.02 and for the required Aw = —4.39 showing

39



Chapter 3. Proposing a w-M Transition at z; < 0.1

that the effect on the growth factor is negligible compared to the Planck18/ACDM growth
factor. If the effect of a possible gravitational transition inducing the change of M were to be
taken into account, the decrease of the growth factor may be shown to be large enough to
resolve also the growth tension [232].
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Figure 3.8: The best fit absolute magnitude M, (blue points) for various transitions z; for
the LwMT model. The dashed line corresponds to the M value indicated by Refs. [62,226],
while the dot dashed lines correspond its 1o error. Notice that if M is considered to be
constant, the majority of the best fit values of M;; are more than 20 away from the Mg
value. This difference reduces as z; increases. Adopted from Ref. [227].
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Figure 3.9: Left panel: The absolute magnitude M as a function of redshift z. The straight
dashed line corresponds to the fixed My value [62,226] from local Cepheid calibrators of
Snla while the dot dashed lines correspond to its 1o error. Clearly Pantheon binned absolute
magnitudes M; (blue points) corresponding to the best fit LwMT model (z; = 0.02) are
approximately 20 away from M. However, in the context of an abrupt transition of M with
AM ~ —0.1 at z; = 0.02, the inconsistency disappears. Right panel: The form of 1 = G¢g/Gx
required to induce he M transition shown on the left panel. Clearly, for z > 0.02 Geg < 1
hinting towards weaker gravity [233-235] as indicated by other studies discussing the growth
tension [71,77,94,97,208,229]. Adopted from Ref. [227].
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In order to identify the magnitude of the required M transition we evaluate the best fit
value of the absolute magnitude M,s(z;) for z[0.01,0.15] (Fig. 3.8). Notice that AM =
Mc — My is maximum at z; = 0.01 and approaches the 1o distance from M¢ at 2z > 0.15.
For such high values of z, however the BAO data are poorly fit and the value of x? increases
to the level of wCDM. The type of the required M transition for z; = 0.02 is shown in the
left panel of Fig. 3.9 where we also show the absolute magnitudes of the binned Pantheon
datapoints obtained from Eq. (3.13) by solving with respect to M for each datapoint and
using the best fit form of Dj(z) for z; = 0.02. Clearly, the derived absolute magnitudes
are not consistent with the Cepheid calibrated value of M but in the context of an M
transition with AM ~ —0.1 the inconsistency disappears. The right panel of Fig. 3.9 shows
the required evolution of an effective Newton’s constant that is required to produce the M
transition obtained under the assumption that the Snla absolute luminosity is proportional
to the Chandrasekhar mass which varies as L ~ G%; with b = —3/2.? This assumption leads
to the variation of the Snla absolute magnitude M with p = %—f (G is the locally measured
Newton’s constant) as [77,237,238]

15
AM = Zlogm (1) (3.18)

which implies that for AM ~ —0.1 we have a 6% reduction of j.

Notice that if the Snla data analysis assumes a fixed value of M = M then the existing
m(z;) data lead to a value of Hy = 74km/(sec- Mpc) while if the transitions (3.1) and (3.2) are
assumed with z; = 0.02, Aw = —4.3 and AM = —0.1 then the data analysis would lead to a
value Hy = 67.5km/(sec - Mpc) (consistent with CMB-BAO calibration) while the true value
of Hy would be Hy = 74km/(sec - Mpc) due to the H, prior imposed on the w transition Aw.

3.3 In Brief

In this chapter we have demonstrated using both an analytical approach and a fit to cos-
mological data that a Late w — M Transition (LwMT) can lead to a resolution of the Hubble
tension in a more efficient manner than smooth deformations of the Hubble tension and
other types of late time transitions (the Hubble expansion rate transition). The moving aver-
age statistic of the standardized residual Pantheon absolute magnitude Snla data indicates
the presence of a peculiar feature at z < 0.1 which is consistent with the anticipated signa-
tures of the LwM'T' model. Such a transition leads in general to a best fit value of the Snla
absolute magnitude that is not consistent with the value implied by local Cepheid calibra-
tors of Snla [62]. Therefore late time transitions can only constitute successful resolutions of
the Hubble tension if they are accompanied by a transition of the Snla absolute magnitude
due to evolving fundamental constants. We have shown that a transition of the effective
gravitational constant to a value lower by about 6% is sufficient to induce the required AM
transition. This weakening of gravity may also justify the observed reduced growth of per-
turbations which is supported by Weak Lensing [71, 94, 97] and Redshift Space Distortion
data [77,208, 229] (growth tension). Therefore, this model simultaneously addresses both
the Hubble and the growth tensions. Another basic advantage of such a late time model

2If b # —3/2 and especially if b > 0 as indicated in [236] under a wide range of assumptions, then the ability
of the LwMT model to resolve the growth tension could be negatively affected.
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Chapter 3. Proposing a w-M Transition at z; < 0.1

that can fully resolve the Hubble tension is that it can fit the local distance data (BAO and
Snla) in a very effective manner. This is due to the fact that by construction it has the same
quality of fit to the BAO, Snla and CMB data as Planck18/ACDM, in contrast to the usual
late time smooth deformations of H(z).

Moreover, there is a physical theoretical basis of the model since it can be realized in the
context of modified gravity theory with a rapid gravitational transition. The rapid nature of
the transition is a generic feature and can be made consistent with solar system tests with
no need for screening as in other modified theories. Such models include the following:

e The most natural model that can induce a LwMT involves a non-minimally coupled
phantom scalar field initially frozen at ¢ = ¢, due to cosmic friction close to the zero
point of its potential which could be assumed to be of the form V (¢) = s ¢". Such a field
would initially have a dark energy equation of state w = —1 mimicking a cosmological
constant. Once Hubble friction becomes smaller than the field dynamical (mass) scale,
the field becomes free to roll up its potential (phantom fields move up their potential in
contrast to quintessence fields [239, 240]) and develops a rapidly changing equation of
state parameter w < —1 and shifted G.¢. Thus the universe enters a ghost instability
phase which will end in a Big Rip singularity in less than a Hubble time. Such a
scenario for the simple (but also generic) case of linear potential (n = 1) has been
investigated in Ref. [239]. For a general phantom potential we anticipate a redshift
dependence of the equation of state w. = w<(z) after the transition (z < z;). In fact
the phantom field potential could be reconstructed by demanding a form of w_(z) that
further optimizes the quality of fit to the low 2z data or by simply demanding that w. is
constant.

e A scalar-tensor modified gravity theory field initially frozen due to Hubble friction, mim-
icking general relativity and a cosmological constant. Once Hubble friction becomes
smaller than the field mass scale, the field becomes free to roll down its potential
inducing deviations from general relativity on cosmological scales and a phantom de-
parture from the cosmological constant. Note that scalar tensor theories can induce
phantom behavior without instabilities in contrast to a simple minimally coupled scalar
field [183].

The detailed investigation of the above described dynamical scalar field evolution that can
reproduce the LwMT is an interesting extension of the analysis presented in this chapter.

If the phantom LwMT is realized in Nature it would imply the existence of a rapidly
approaching Big Rip singularity [241, 242] which may be avoided due to quantum effects
[243]. Given the value of w. which emerges at approximately the present time %y, it is
straightforward to calculate the time ¢, of the Big Rip singularity assuming that w = w. < —1
at the present time ¢y. The result is [242]

t*_ W<
to a ].+U}<

(3.19)

For example for z; = 0.02 we have w. ~ —5 which implies that the universe will end in a
Big Rip singularity in less than 3.5 billion years (for t, = 13.8 x 10%yrs). This implies that
there may be observational effects of such coming singularity on the largest bound systems
like the Virgo cluster, the Coma Cluster or the Virgo supercluster. A detailed investigation of

42



3.3. In Brief

the observational effects on bound systems of the LwMT is an interesting extension of the
present analysis.

The detailed comparison of the quality of fit of the LwM'T (or similar) models with a
variety of smooth H(z) deformation models addressing the Hubble tension would also be a
useful extension. The use of full CMB spectrum data and possibly other cosmological data
sensitive to the dynamics of galaxies in clusters and superclusters could also be included.

The late time sudden deformation of the luminosity distance Dy, (z) induced through the w
transition helps to decrease the required magnitude of the M transition from AM ~ —0.2 to
AM ~ —0.1. In the absence of the w transition the Hubble tension could still be resolved via
an M transition with AM ~ —0.2 and no deformation of Dy (z). Even though this approach
would be simpler it would require a larger amplitude of the A M transition at z; ~ 0.01 while it
would not address the abrupt feature in the Pantheon data shown in Fig. 3.6. Nevertheless,
the simplicity of such an approach in an attractive feature and thus this model deserves a
detailed investigation by comparing its predictions with current and future data.
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CHAPTER

Smooth Deformations of H(z) and the Sy
Tension

mongst the vast number of proposed late time solutions to the Hubble tension a
great deal of them uses late time smooth deformations of the Hubble expansion
rate H(z) of the Planck18/ACDM best fit to match the locally measured value
of Hy, while effectively keeping the comoving distance to the last scattering sur-
face and €),,h? fixed to maintain consistency with Planck CMB measurements.

Although this approach is common it suffers from a number of issues.

The most well-known problem of these models is that they worsen the fit to low z distance
probes. In this chapter we show that another problem of these parametrizations is that they
significantly worsen the level of the (), — s growth tension. As we will discuss with greater
in the following sections, we show this by using the paradigm of the generic CPL [199,
200] model. This parametrization corresponds to an evolving dark energy equation of state
parameter of the form given by Eq. (2.13) with local measurements /| prior and we identify
the pairs (wp,w;) that satisfy the condition mentioned above. The CPL parametrization is
one of the most generic and well known classes of smooth deformations of H(z) that are
designed to address the Hubble tension. We show that for this type of models the growth
tension between dynamical probe data and CMB constraints is worse than the corresponding
tension of the standard Planck18/ACDM model. We justify this feature using a two-fold
methodology, on one hand we explore an approximate analytic approach, and on the other
hand we also provide a full numerical solution of the growth equation and subsequently
fit to the data. However, it is very important to mention that this issue does not affect
the proposed solution of the Hubble crisis involving a Snla absolute magnitude transition
at z; ~ 0.01 that is explored in Chapter 3. Therefore, in the context of this chapter we
focus on the following question: ‘Can this class of smooth deformation models improve the
growth tension by decreasing the growth rate of cosmological perturbations compared to the
Planck18/ACDM model?’

The analytic part of our study is being done by considering a generic CPL parametriza-
tion which in redshift space is expressed via Eq. 2.13. We impose consistency with
the Planck anisotropy spectrum and local measurements of H(z) by using the methodol-
ogy of Ref. [198] that is described in Chapter 2. More specifically, we fix w,, = Qo,,h>
(h = Hy/100km s~! Mpc™') to the Planck18/ACDM value w,, = &,, = 0.143. Then we fix the

comoving distance to recombination (flat space) r(zmc) = foz””c gfz to its Planck18/ACDM
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4.1. Approximate Analytic Solutions to the Evolution of
the Matter Density Perturbations

value and, lastly, we fix the value of H to its locally measured value H*.

These three conditions lead to the numerical evaluation of the function wy,(wy) such that
for any given value of w, we obtain the corresponding value of w; = wy;, that can potentially
address the Hubble problem by fitting local measurements of H, while being consistent
with the CMB anisotropy spectrum [198]. We then focus on pairs (wg, w,(wp)), evaluate the
predicted growth factor of perturbations in the context of general relativity ggrzog and compare
it with the corresponding growth factor predicted by the best fit Planck18/ACDM H (z). We
thus address the question: Are there wy,w; pairs that can potentially address the Hubble
problem while having lower predicted growth of perturbations than the Planck18/ACDM form
of H(z) which is already in tension with RSD and weak lensing data?

In Chapter 2 we showed that in the case of wCDM with wy ~ —1.22, even though the model
claims to address the Hubble tension (at least superficially), it fails to address the S tension
and at the same time does not fit well the low z distance data (BAO and Snla) as it has been
demonstrated in previous studies [189, 198,219]. In fact, focusing on the growth tension,
we see that it worsens it and as we will show by generalizing this analysis to more general
cases of smooth deformations of H(z), this constitutes a key characteristic for all of them. In
order to do that, we calculate the growth factor for various values in the wy, — w; parameter
space that have the ability to superficially address the Hubble tension and we continue by
constructing the og — ), likelihood contours for representative (wy, w1, (wp)) pairs via the
use of a robust RSD fog data compilation [76,207]. By comparing these contours with the
corresponding Planck likelihood ones, we are able to estimate the tension level for each case
of (wg, wip(wp)) pairs.

The next part of this chapter revolves around the numerical confirmation of our results.
To achieve that, we fitted these smooth deformations of H(z) models to compilations of Snla,
BAO and CMB data and showed that the received fit in each case is much worse than that
of the Planck18/ACDM model. We anticipated this issue since, as we mentioned before
these models are expected to have a poor fit with respect to BAO and Snla data. However,
we will not occupy ourselves with this aspect of the study, since we are interested on their
consistency with the growth fog data. Lastly, we will focus on the absolute magnitude M of
the Snla. Using the relevant Pantheon data we will identify the best fit values of M for these
H(z) deformations and we will compare these best fits with the corresponding range of M
that is implied by the Cepheid calibrators. This approach could hint towards a new issue of
the H (z) deformation models, known as the M tension [62, 226] which is discussed also in
Chapter 3.

4.1 Approximate Analytic Solutions to the Evolution of
the Matter Density Perturbations

As mentioned with greater detail in Chapter 2, a deformation of the Hubble expansion rate
from its Planck18/ACDM form may be expressed as

H(z, W, wr, hy,w(z)) = Hy \/ Qom (1 4 2)% + Qo (1 4 2)* + Qogee® Jo = THeE/0H) - (4.)

where w(z) is the dark energy equation of state parameter at redshift z, ., {,, are the
present day radiation and matter density parameters and Qy;. = 1 — g, — (2o, is the present
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Chapter 4. Smooth Deformations of H(z) and the Ss Tension

day value of the dark energy density parameter assuming spatial flatness. We also define
w, = Qo,.h%. This deformed Hubble expansion can become simultaneously consistent with
local measurements of Hy = H, §20 as well as with the CMB anisotropy spectrum. Reiterating
the results displayed in Chapter 2 if we consider that [194, 195, 198]

e The matter and radiation density parameter combinations w,, and w, are fixed to their
Planck18/ACDM best fit value w,, = 0.1430 + 0.0011 and @, = (4.64 £ 0.3) 107°.

e The cosmological comoving distance to the recombination redshift

(2, Winy wr, w(2)) = Zri—/ld—a/ (4.2)
TyWmy Wy - 0 H(Z) - o CL’2H(CL,) .

(a is the cosmic scale factor, z, ~ 1091 is the redshift of recombination) is fixed to the
Planck18/ACDM best fit value 7 = (100 km sec™! Mpc=')~1(4.62 £ 0.08).

e The Hubble parameter Hy is fixed to its locally measured value HZI*.

then for the typical case of the CPL [see Eq. (2.13)] H(z) deformation model we would have
an H(z) of the form

H(z) = Ho\/ Qo (1+ 2)3 + Qor (1 + 2)4 + (1 — Qo — Qo) (1 4 2)30Hwote)eSEE (4.3)

while the corresponding constraint in the dark energy equation of state will be approximately
expressed as [198]

wlh(wo) >~ —4.1711)0 — 5.08. (4.4)

This equation defines a multitude of points in the wy — wy; parameter space that could claim
to address the Hubble tension according to the theory described in Chapter 2. The above
equation however is an approximation and as such more accurate values for the wy,(wy)
dependence could be found via the numerical solution of the equation (2, Wy, W, w(2)) =
4.62. In the subsequent parts of this chapter, the latter will be the go to method of obtaining
the wy — w, pairs we require, even though we will still refer to Eq. (4.4).

As we have mentioned in the start of this chapter the models that employ late deforma-
tions of H (z) are susceptible to poor fits to local distance measurements at z < 2 by Snla [22]
and BAO [209-211] data. In the case that the asymptotic value of w(z) at early times which
in the CPL case is

Woo = Wy + W1 (4.5)

increases to values w,, > —0.5 while the best possible fit to BAO-Snla is obtained for
Ws =~ —1.2 the fit to these datasets becomes even worse. Far more worse than that of
the Planck18/ACDM.

In the next parts we investigate the level of the Sg tension and the growth of perturbations
for the H(z) deformations in questions, while assuming the validity of Eq. (4.4). In partic-
ular we compare the growth factor of these models with the corresponding growth factor of
Planck18/ACDM and identify the tension level in the (), — os parameter space between
RSD growth data and Planck18/ACDM likelihoods contours.
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4.1. Approximate Analytic Solutions to the Evolution of
the Matter Density Perturbations

4.1.1 Evolution of the Growth Factor of Cosmological Matter
Perturbations
The evolution of the growth factor of cosmological matter perturbations d(a) = %(a) in

terms of the cosmic scale factor a is determined in sub-horizon scales by the equation
[76,155,244-247]

) 000 = s 80 =0, “.6)

7"(a) + (E T H@ )Y T H)

where the primes denote differentiation with respect to the scale factor a and H(a) = ¢ is
the Hubble expansion rate. The initial conditions for the solution of Eq. (4.6) are usually
taken deep in the matter era (e.g. for a; = 0.001) where it is easy to show that (a;) ~ a;.
The growth factor §(a)/d(a;) indicated by this equation in the context of Planck18/ACDM
best fit parameters is higher than the growth favored by dynamical probe data like weak
lensing [85, 94, 248-253], cluster counts [32, 254-256] and redshift space distortions [75,
76,111,257,258] at a 2 — 30 level. This is known as the growth tension or (), — og
tension where oy is defined as the matter density rms fluctuations within spheres of radius
8h~! Mpc at the present time z = 0 and is connected with the amplitude of the primordial
fluctuation spectrum. In particular the best fit value of the matter density parameter favored
by Planck18/ACDM is higher than the value favored by the dynamical probes. This indicates
that dynamical probes prefer a weaker growth of perturbations since the matter density
parameter effectively ‘drives’ the growth of density perturbations.
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Figure 4.1: Left panel:The relative growth factor 6(1)“7%/§(1)2“PM (red line), the best fit ratio
6

oPL Joh¢PM (green line, fixed w,, = 0.143) and the ratio w), /w4 (orange dot-dashed line)
all have similar dependence on w.,. The five thick dots correspond to the CPL parameter
values (wy, wy) pairs, (—1,—0.93), (—1.1,—-0.497), (—1.22,0), (—1.5,1.05) and (—1.73,1.72) of
the five panels of Fig. 4.3 (the sixth corresponds to ACDM ). Right panel: The quality of fit to
the CMB shift parameters, Pantheon and BAO data compared to ACDM is significantly worse
than ACDM for the CPL models that address the Hubble tension. In all cases Ax? > 50. The
minimum (Ax? ~ 54) occurs at about w,, ~ —1.2 corresponding to wCDM. Adopted from
Ref. [231].

A useful bias-free statistic probed by RSD data is the product fog:

fO'g(a) = % a 5’(@, QOm) s (47]
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where f = 311;‘2 is the growth rate of matter density perturbations. Notice that for a given
measured value of fog(a), weaker growth (smaller 6(a = 1)) implies a lower value of og
(assuming that ¢’(a) does not change significantly for a given value of a). This is demonstrated
in Fig. 4.1 where we show the properly normalized best fit value of og (green line) obtained
by fitting the solution of Eq. (4.6) to the robust fog dataset of Ref. [76] ! for various values
of w, under the assumption of w,, = 0.143, h = 0.74 and Eq. (4.4), conditions required
for consistency of local measurements of Hy and Planck18/ACDM anisotropy spectrum.
Clearly og(wy,)/ol® (of18" denotes the best fit value in the context of Planck18/ACDM )
has the same monotonicity and differs by less than 2% from §(1, w.,)/5(1)718* (red line) thus
justifying that the best fit 0s and §(a = 1) are approximately proportional.

4.1.2 Approximate Analytic Solutions

An approximate solution to Eq. (4.6) can be found [259] by utilizing a growth index ~y, which
is used to parameterize the linear growing mode of models with time varying equations of
state, such as Eq. (2.13). Using v and ignoring the effects of radiation, the growth factor

solution A(a) = 6&?;) of (4.6) may be approximated as [259, 260]

A(a) = exp [/ Q;Y”T(,a)da’} (4.8)

where A(a) is the normalized growth factor d(a)/d(a;), a; = 0.001 is an initial redshift deep
in the matter era when d(a) ~ a and
QOmHga_g W a3

H(a)?  h(a)?

Qp(a)

(4.9)

with h(a)? = wpa™ + (h? —wy) fo(a) (fa(a) denotes the evolution of the dark energy density).
The growth index is approximated by [259]
6 — 3(1 + weo)

T 6(1 + we) (.10

where w,, is defined in Eq. (4.5). For ACDM (w = —1) we have v = 6/11 ~ 0.55. From Eq.
(4.8) it is easy to obtain the well known approximate expression for the growth rate f(a) of

density perturbations
dIn A
fla) = dlna

which may also be used as a definition of the growth index ~.
Using Eqgs. (4.8), (4.9) it is easy to express the growth factor as

d(a) “ da
Aa) = 5a) — P {w]n /a vy (a/)zv] (4.12)

Since 7 € [0.45,0.65] in most physically interesting cases, the integral in the exponential of
Eq. (4.12) is very similar to the integral of the comoving distance (4.2) [260]. Since the dark

~ O(a) (4.11)

!This dataset is optimized for independence of datapoints but it involves significanty less datapoints than
the more complete compilation of Ref. [208].
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energy parameter values (e.g. pairs of wy — w; in the CPL case) that can address the Hubble
tension have approximately fixed comoving distance to recombination they should also have
approximately fixed growth integral in Eq. (4.12) for a = 1. Therefore, the growth factor
A(a = 1) is expected to have approximately similar behavior as w%(w“). This is demonstrated
in Fig. 4.1 where we show the growth factor 6(1)“"L/§(1)F*®* as obtained by a numerical
solution of Eq. (4.6) using the Planck18/ACDM best fit parameter values (5(1)7'#}) and the
CPL parameter values (4.4) that address the Hubble problem (§ (1)CP Ly, In both case we fixed
Wy = 0.143 for consistency with the CMB anisotropy spectrum while we set h = (0.74 for
§(1)°PL and h = 0.67 for 6(1)7'3A in Eq. (4.6). Superimposed is the ratio wil“> jwpl>=""

for w,, = 0.143 and y(w,, = —1) = % corresponding to the ACDM growth index. The two

quantities (Wi /wi=="" and §(1)°F~/5(1)P*8) have similar monotonicities and differ by
less than 4% in the range w., € [—2, —0.5]. This validates the approximation that the growth
integral of Eq. (4.12) varies slowly with w,, when Eq. (4.4) is obeyed.

As shown in Fig. 4.1 (red curve) the H(z) CPL deformations that can address the Hubble
tension induce a growth factor that is larger than the one implied by a Planck18/ACDM
background for all w,, < —0.5. This range of w, includes all the values of parameters which
are consistent with Snla, BAO and CMB data. This is demonstrated in Fig. 4.1 (right panel)
where we show the excess value of y? with respect to Planck18/ACDM as a function of w.
using the Pantheon Snla data along with a compilation of 9 BAO datapoints and two CMB
effective distance/shift parameters [227]. Clearly, the best fit is obtained for w,, ~ —1.1+0.2,

while the value w,, = —0.5 is more than 30 away from the best fit value.
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Figure 4.2: The Planck18/ACDM form of H(z)/(1 + z) (blue dot-dashed line) is compared
with the same function obtained with various pairs of CPL parameters that address the
Hubble tension. Some BAO data are also shown. Adopted from Ref. [231].

The strong deformation of H (z) implied by models with high values of w,, is also shown in
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Fig. 4.2 where the Planck18/ACDM form of H(z)/(1 + z) (blue dot-dashed line) is compared
with the same function obtained with various pairs of CPL parameters that address the
Hubble tension. Clearly the strongest deformation at low z occurs for models with w., < —0.5
which implies also inconsistency with BAO and Snla data at redshifts of O(1).

4.2 Numerical Fit Using fog Data
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Figure 4.3: The cyan and the red contours correspond to the Growth and the Plank 18
CMB data respectively, for the ACDM and various (wy, w;) pairs of the CPL model. The Ao
differences between the best fit values produced by the two contours in each case, are shown
in Tab. 4.1. It is clear that the tension does not ease in the case of the CPL model despite
the fact that it appears to solve the H, tension for the same wy and w; values used. Adopted
from Ref. [231].

The increased tension level between CMB data and RSD growth data in the context of late
time H(z) deformations addressing the Hubble tension is demonstrated in Fig. 4.3 where we
show the CMB data likelihood contours (Planck18 chains) in the parameter space (), — 03
superimposed with the corresponding contours obtained from a robust compilation of RSD
fog data [76,207] for ACDM (upper left panel), and five CPL w,, w; parameter pairs that can
address the Hubble problem with 4 = 0.74. These five pairs (thick dots in Fig. 4.1) in addition
to being disfavored by low z geometric probes (BAO and Snla) by ¢ X2 > 50 (see Tab. 4.1), also
lead to increased tension between CMB and growth data compared to ACDM as shown in
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wo wq AM | Ax? | Ao

-1 0 -0.19 - 2

-1 -0.93 | -0.02 | 63 | 2.9
-1.1 | -0.50 | -0.03 | 57 | 3.0
-1.22 | 0.0 |-0.05| 54 | 3.1
-1.50 | 1.05 | -0.09 | 65 | 3.4
-1.73 | 1.72 | -0.12 | 279 | 3.4

Table 4.1: The three problems of H(z) deformations addressing the Hubble crisis (columns
1,2). Column 3: The deviation of the best fit value of the absolute magnitude M for each
deformation, from the Cepheid calibrated value of Refs. [62,226] shown in Fig. 4.4. Column
4: The AX2 differences with respect to Planck18/ACDM shown also in Fig. 4.1 (right panel)
for each (wy,w,) pair that addresses the Hubble tension. Column 5: The Ac differences
between the best fit values of the Growth and CMB data contours depicted in Fig. 4.3.

Fig. 4.3 and Tab. 4.1 even for parameter values where the growth factor is less than that of
Planck18/ACDM (lower right panel corresponding to w., < —0.5). In constructing Fig. 4.3
and Tab. 4.1 we have only fixed the parameters wy, w; in each panel as indicated so that
the Hubble tension is addressed (in the 5 panels) but have left free (), and oy to be fitted
by the data. Notice that in all panels the CMB data favor a value of w,, ~ 0.143 as expected.
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Figure 4.4: The best fit values of the absolute magnitude M, for the (wg, wl) pairs displayed
in Tab. 4.1. These values are consistently lower than the corresponding value of M implied
by local Cepheid calibrators (upper dashed line) even though this tension is not as large as
for the best fit value of M obtained in the context of the standard Planck18/ACDM model
(lower dashed line). Adopted from Ref. [231].

In addition to the reduced quality of fit to low 2 geometric probes and the increased growth
tension, the H(z) deformation models addressing the Hubble tension face another challenge:
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They lead to a best fit value of the Snla absolute magnitude M that is consistently lower than
the corresponding value implied by the Cepheid calibrators at z < 0.01 M = —19.24 £ 0.04.
This difference is indicated in Fig. 4.4 and in Tab. 4.1. In Fig. 4.5 we show the values of the
absolute magnitude in the context of a CPL model that attempts to address the H, tension
with the use of an H| prior. It is clear that the mean value of these absolute magnitudes is
in tension with the Cepheid calibrated M best fit (M), while the values themselves display
a downwards evolution for z > 0.1 instead of being constant.
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Figure 4.5: The values of the absolute magnitude corresponding to the binned Snla data in
the context of the CPL model (wy = —1.22,w; = 0) that addresses the H, tension via an H
prior, shown to be in tension with the Cepheid calibrated M range. Adopted from Ref. [231].

4.3 In Brief

In this chapter we have demonstrated by analysing the typical CPL parameterization and
subsequently generalizing our results to all the late time deformations of H(z) that aim to
superficially address the Hubble tension, that they consistently worsen the Sg tension. This
effect adds to the fact that they display a worse fit to low z geometric probes like Snla and
BAO data in comparison to Planck18/ACDM. Early time approaches to the Hubble tension
also display similar issues as reported by Ref. [261]. Furthermore, we have considered the
aspect of the M tension that is also discussed in the Chapter 3. To that end, we have shown
that these models exhibit a tendency for lower best fit values of the Snla absolute magnitude
than the Cepheid calibrator one.

It may seem like a bold move to consider the CPL model as the quintessential paradigm in
our study, and in fact this point has been made before in the literature [262, 263]. However,
we still expect that the results presented in this chapter are general and generic for all similar
parametrizations. That is because the issues of the generality of CPL become prevalent due
to it being a linear expansion on w around the present and thus only being accurate around
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the present as well. The aspect that ultimately makes the CPL a good representative of the
smooth H(z) deformation models is most eloquently shown in Fig. 5.3. With its help it is
straightforward to see that the parameters that claim to solve the Hubble tension correspond
to a wide range of shapes for H(z).

In order to fully test our hypothesis we would need to consider a larger variety of cos-
mological data and a full MCMC analysis. That would mean the inclusion of the full CMB,
the Pantheon and the growth data, as well as the BAO measurements. As we have said
before, a similar analysis has been performed in [198] and described in Chapter 2. There we
showed that the best-fit values of (wg,w;) that were produced, are approximately equal to
those derived via the semi-analytic methodology. This was in the case where an an H, prior
was implemented, alternatively we have demonstrated that the best fit values of (wg, w;) end
up close to the Planck18/ACDM model. This effect most probably is due to the domination
of the CMB - BAO data. Thus, such an MCMC extended analysis probably would require the
inclusion of an H prior along with the marginalization over other parameters demonstrating
the growth tension level after such marginalization.

Concluding this chapter we are tempted to once again turn our attention to the LwMT
model that was proposed in the previous one. We remind the reader that this model is
partially based on a rapid transition of Snla absolute luminosity at z ~ 0.01. This transition
could be explained if one considers an equally rapid change of the value of the gravitational
constant G.¢ by about 10%. This type of ultra late time transition model has the advantages
of fully resolving the Hubble tension while also simultaneously addressing the Ss tension
[227,232] (two birds with one stone) and providing an equally good or even better fit to
the low z data (BAO and Snla) with the Planck18/ACDM model. Although this model is
accompanied by w transition as well, it has been demonstrated that an M transition by itself
(LMT model) would suffice. It is obvious that these models have very interesting theoretical
implications with respect to fundamental physics and finally they are testable with the aid
of upcoming data, especially those from standard sirens.
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Observational Hints for a Late M Transition

n this chapter we attempt to provide some observational support to the ex-
istence of a Late time w — M transition LwMT like the one postulated in
Chapter 3. This type of model has the capabilities of resolving both the Hubble
and Sy tensions, while maintaining a quality of fit to the data equal to that of
Planck18/ACDM. Therefore, we proceed by searching for observational indica-
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tions of a sharp late transition in the Snla absolute magnitude M, expressed in the form of
an analogous gravitational constant transition.

Firstly, we have utilized an up-to-date compilation of galaxy data in order to probe for
transitions in the evolution of the Baryonic Tully-Fisher (BTFR) relation [264]. As we will
demonstrate in greater detail below, we find hints for a transition in the BTFR evolution at
two citical distances, D, >~ 9 Mpc and D, ~ 17 Mpc, at an ~ 3¢ level of confidence. In
brief this analysis was conducted by splitting the entire dataset in two subsets, according to
the measured galaxy distance with respect to splitting distance D., and then proceeding to
calculate the likelihood of the best-fit slope and intercept of one subset with respect to the
best-fit corresponding values of the other subset. We have also demonstrated that these re-
sults are robust and not subject to major random systematic and statistical variations of the
galactic distance data. The latter was shown with the help of a homogeneous mock dataset
that was created using Monte Carlo simulations, and did not produce any discontinuities in
the evolution of the BTFR.

Secondly, we attempted to impose constrains on the gravitational transition that would
correspond to a transition in the Absolute Magnitude M [265]. To that effect we used two
robust low-z redshift survey datasets (¢ < 0.01), taken from the Six-degree Field Galaxy
Survey (6dFGS) as well as the 2MASS Redshift Survey (2MRS). Our goal was to observe and
constrain a peak in the distribution of galaxies, as such an effect would be, among else,
indicative of an ultra late-time gravitational transition. As we will demonstrate further on,
we observed such a feature near a distance of approximately 20 Mpc, however this could
be attributed to alternative causes such as the coherent peculiar velocities of galaxies or
galactic density fluctuations. Thus a conclusion was reached that although a gravitational
transition cannot be thoroughly constrained, it remains plausible and cannot be excluded
by redshift survey data at z < 0.01.

54



5.1. Searching for Hints of a Gravitational Transition in Tully-Fisher Data

5.1 Searching for Hints of a Gravitational Transition in
Tully-Fisher Data

5.1.1 The Baryonic Tully-Fisher Relation as a Probe of Gravitational
Dynamics

The classic Tully-Fisher relation (TFR) [266] is an empirical relation that has been proposed
to serve as a connection between the observed maximum velocity v, of spiral galaxies in the
rotation curve and their intrinsic optical luminosity L. It has the following form,

L = Av?

rot

(5.1)

where s ~ 4 is the slope in a logarithmic plot of (5.1), A is a constant and (log(A) is the zero
point or intercept). The constants s and A have a very weak dependence on galactic prop-
erties such as the mass to light ratio, the galactic profiles, the observed surface brightness,
HI gas content, size, etc. [267]. They depend, however, on the fundamental properties of
gravitational interactions.

The Baryonic Tully-Fisher relation (BTFR), on the other hand, is very similar to Eq. (5.1)
but it differentiates by connecting the galaxies rotation velocity with their total baryonic mass
(the sum of mass in stars and H gas) Mpg. This connection takes the form,

Mp = Apvyy (5.2)
where A ~ 50M; km~* s* [268]. This more generalized Tully-Fisher relation benefits
significantly from including gas-rich dwarf galaxies that appear in groups and have stellar
masses below 10° M.

We can derive the the BTFR relation if we consider a star in a circular orbit of radius R
around a galactic mass M rotating with velocity v [269]. Then, we can show that,

v’ = GegM/R = v* = (GegM/R)* ~ M S G%; (5.3)

where G, is the effective Newton’s constant involved in gravitational interactions and S the
surface density S = M / R?, which is expected to be constant [270]. Moving on, from Egs.
(5.2) and (5.3), the following is anticipated:

Ap ~ G g5 (5.4)

Therefore, the BTFR can, in principle, probe both galaxy formation dynamics (through, e.g.
S) and possible fundamental constant dynamics (through G.g). An interesting feature of the
BTFR is that despite the above heuristic derivation, it appears to be robust, even in cases
when the galaxy sample includes low S and/or varying S galaxies [271,272]. In fact, no
other parameter appears to be significant in the BTFR.

The BTFR has been shown to have lower scatter [267,273, 274] than the classic stellar
TFR and also to be applicable for galaxies with stellar masses lower than 10°M,,. It is also
more robust than the classic TFR [275-278] since the parameters Ag (intercept) and s (slope)
are very weakly dependent on galactic properties, such as size and surface brightness [267].
The low scatter of the BTFR and its robustness make it useful as a distance indicator for
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Method AGL;H g—zg (yr_l] time scale (yr) | References
Lunar ranging 1.47 x 10713 24 [280]

Solar system 4.6 x 10714 50 [281,282]
Pulsar timing 3.1 x 10712 1.5 [283]
Strong Lensing 1072 0.6 [284]
Orbits of binary pulsar 1.0 x 10712 22 [285]
Ephemeris of Mercury 4x 10714 7 [286]
Exoplanetary motion 1076 4 [287]
Hubble diagram Snla 0.1 1x 1071 ~ 108 [288]
Pulsating white-dwarfs 1.8 x 10710 0 [289]
Viking lander ranging 4 x 10712 6 [290]
Helioseismology 1.6 x 10712 4 x 107 [291]
Gravitational waves 8 5x 1078 1.3 x 108 [292]
Paleontology 0.1 2 x 10711 4 x 10° [293]
Globular clusters 35 x 10712 ~1010 [294]
Binary pulsar masses 4.8 x 10712 ~1010 [295]
Gravitochemical heating 4 x 10712 ~108 [296]
Strong lensing 3x 107t ~1010 [284]
Big Bang Nucleosynthesis * 0.05 4.5 x 10712 1.4 x 1010 [297]
Anisotropies in CMB * 0.095 1.75 x 10712 1.4 x 100 [298]

Table 5.1: Solar system, astrophysical and cosmological constraints on the evolution of the
gravitational constant. Methods with star () constrain (- y while the rest constrain G.g. The
latest and strongest constraints are shown for each method.

the measurement of the Hubble constant /{,. A calibration of the BTFR using Cepheid and
TRGB distances leads to a value of Hy = 75+ 3.8 km s~ Mpc ™' [48].

The weak evolution and scatter of the BTFR can be used as a probe of galaxy formation
models as well as a probe of possible transitions of fundamental properties of gravitational
dynamics since the zero point constant Ap is inversely proportional to the square of the
gravitational constant (. Previous studies investigating the evolution of the best-fit zero
point log Ag and slope s of the BTFR have found a mildly high z evolution of the zero point
from 2z ~ 0.9 to z ~ 2.3 [279], which was attributed to the galactic evolution inducing a lower
gas fraction at low redshifts after comparing with the corresponding evolution of the stellar
TFR (STFR), which ignores the contribution of gas in the galactic masses.

Ref. [279] and other similar studies assumed a fixed strength of fundamental gravita-
tional interactions and made no attempt to search for sharp features in the evolution of the
zero point. In addition, they focused on the comparison of high redshift with low redshift
effects without searching for possible transitions within the low z spiral galaxy data. Such
transitions, if present, would be washed out and hidden from these studies, due to averag-
ing effects. In the present analysis, we search for transition effects in the BTFR at z < 0.01
(distances D < 40 Mpc), which may be due to either astrophysical mechanisms or to a rapid
transition in the strength of the gravitational interactions G.¢, due to fundamental physics.

In many modified gravity theories, including scalar tensor theories, the strength of grav-
itational interactions G measured in Cavendish-type experiments measuring force /' be-
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tween masses (F' = Geg m;;”Q), is distinct from the Planck mass corresponding to GG that
determines the cosmological background expansion rate (H? = @ Dtot)-

For example, in scalar tensor theories involving a scalar field ¢ and a non-minimal cou-
pling F'(¢) of the scalar field to the Ricci scalar in the Lagrangian, the gravitational interaction

strength is as follows [299]:

1 2F 4+ 4F ,é
T F2F 1 3F2 (5.5)
while the Planck mass related G is as follows:
Gy = l (5.6)
F

Most current astrophysical and cosmological constraints on Newton’s constant constrain
the time derivative of Gt at specific times, assume a smooth power-law evolution of G.g,
or constrain changes of the Planck mass-related GGy instead of G.¢ (CMB and nucleosyn-
thesis constraints [297]. Therefore, these studies are less sensitive in the detection of rapid
transitions of G.g at low z.

The current constraints on the evolution of G.g and (G are summarized in Table 5.1,
where we review the experimental constraints from local and cosmological time scales on
the time variation of the gravitational constant. The methods are based on very diverse
physics, and the resulting upper bounds differ by several orders of magnitude. Most con-
straints are obtained from systems in which gravity is non-negligible, such as the motion of
the bodies of the solar system, and the astrophysical and cosmological systems. They are
mainly related in the comparison of a gravitational time scale, e.g. period of orbits, with a
non-gravitational time scale. One can distinguish between two types of constraints, from ob-
servations on cosmological scales and on local (inner galactic or astrophysical) scales. The
strongest constraints to date come from lunar ranging experiments.

In the first column of Table 5.1, we list the used method. The second column contains the
upper bound ‘A—G? !maz of the fractional change of G during the corresponding timescale. Most
of these bounds assume a smooth evolution of G. In the third column, we present the upper
bound on the normalized time derivative ‘g‘mm The fourth column is an approximate
time scale over which each experiment is averaging each variation, and the fifth column
refers to the corresponding study where the bound appears. Entries with a star (x) indicate
constraints on G, while the rest of the constraints refer to the gravitational interaction
constant Gg.

In this chapter, we will partially focus on the search for a transition of the BTFR best-
fit parameter values (intercept and slope) between data subsamples at low and high dis-
tances. We consider sample dividing distances D, € [2,60] Mpc, using a robust BTFR
dataset [277, 300-302], which consists of 118 carefully selected BTFR datapoints, provid-
ing distance, rotation velocity baryonic mass (D, V;, Mpg) as well as other observables with
their 1o errorbars. We focus on the gravitational strength Newton constant G.¢ and address
the following questions:

e Are there hints for a transition in the evolution of the BTFR?
e What constraints can be imposed on a possible G¢ transition, using BTFR data?

e Are these constraints consistent with the level of G¢ required to address the Hub-
ble tension?
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5.1.2 Transitions in the Evolution of the BTFR

The logarithmic form of the BTFR (Eq. (5.2)) is as follows:
y=logMp = s logv,s +1logAp=sz+0b (5.7)

and a similar form for the TFR. Due to Eq. (5.4), the intercept b = log Ag depends on both
the galaxy formation mechanisms through the surface density S and on the strength of
gravitational interactions through G.g-.

A controversial issue in the literature is the type of possible evolution of the slope and
intercept of the TFR and the BTFR. Most studies have searched for possible evolution in
high redshifts (redshift range 2z & [0, 3]) with controversial results. For example, several
studies found no statistically significant evolution of the intercept of the TFR up to red-
shifts of z ~ 1.7 [303-309], while other studies found a negative evolution of the intercept
up to redshift z ~ 3 [310-317]. Similar controversial results in high z appeared for the
BTFR, where [311] found no significant evolution of the intercept since z ~ 0.6, while [315]
found a positive evolution of the intercept between low-z galaxies and a z ~ 2 sample.
In addition, cosmological simulations of disc galaxy formation based on cosmological N-
body/hydrodynamical simulations have indicated no evolution of the TFR based on stellar
masses in the range z € [0.1] [318], indicating also that any observed evolution of the TFR is
an artifact of the luminosity evolution.

These studies have focused mainly on comparing high-z with low-z samples, making no
attempt to scan low redshift samples for abrupt transitions of the intercept and slope. Such
transitions would be hard to explain in the context of known galaxy formation mechanisms
but are well motivated in the context of fundamental gravitational constant transitions, which
may be used to address the Hubble tension [227,232]. Thus, in this section, we attempt to
fill this gap in the literature.

We consider the BTFR dataset shown in Appendix A.2 based on the data from [277, 300-
302] of the flat rotation velocity of galaxies vs the baryonic mass (stars plus gas) consisting
of 118 datapoints, shown in Table A.4. The sample is restricted to those objects for which
both quantities are measured to better than 20% accuracy and includes galaxies in the
approximate distance range D € [1,130] Mpc. This is a robust low z dataset (z < 0.1) with
low scatter showing no evolution of velocity residuals as a function of the central surface
density of the stellar disks.

Our analysis is distinct from previous studies in two aspects:

e We use an exclusively low z sample to search for BTFR evolution.
e We focus on a particular type of evolution: sharp transitions of the intercept and slope.

In this context, we use the dataset shown in Table A.4 of Appendix A.2 [277,300-302],
consisting of the distance D, the logarithm of the baryonic mass log M and the logarithm of
the asymptotically flat rotation velocity log v,.,; of 118 galaxies along with 1o errors. We fix a
critical distance D, and split this sample in two subsamples >.; (galaxies with D < D) and .5
(galaxies with D > D,.). For each subsample, we use the maximum likelihood method [319]
and perform a linear fit to the data setting y; = log(M3p);, x; = log(v,ct);, while the parameters
to fit are the slope s and the intercept b of Eq. (5.7). Thus, for each sample j (j = 0, 1, 2 with
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j = 0 corresponding to the full sample and 7 = 1, 2 corresponding to the two subsamples ¥;;
and >.y), we minimize the following:

N;j

i +0;
Cb =3 Y ”, (55 2+ by (5.8)

= sjont oy tor

with respect to the slope s; and intercept b;. We fix the scatter to o, = 0.077, obtained by

demanding that ~%m XO min — 1, where g ,,,;, is the minimized value of x* for the full sample and

Ny is the number of datapoints of the full sample. We thus find the best fit values of the
parameters s; and b;, (j = 0, 1, 2) and also construct the 10 —30 likelihood contours in the s—b
parameter space for each sample (full, >; and X.,) for a given value of D.. We then evaluate the
Ax3,(D.) of the best fit of each subsample k, best fit with respect to the likelihood contours
of the other subsample [. Using these values, we also evaluate the o-distances (dg,kz(DC) and
dy1(D.)) and conservatively define the minimum of these o-distances as follows:

dg(Dc> = Min [dle(DC), d0’21 (DC)] (59]

For example, for the o-distance of the best fit of >;; with respect to the likelihood contours of
Y9, we have the following:

AxTy(De) = X5(51,01)(De) = X3 min (52, b2) (D) (5.10)
and d, ;2 is obtained as a solution of the following equation [319]:

%, 1— Erf(d”’m)
2 V2

Ax}, =2Q7! (5.11)

where Q! is the inverse regularized incomplete Gamma function, M is the number of pa-
rameters to fit (M = 2 in our case) and Erf is the error function.

Fig.5.1 shows the o distance d,(D,) in the parameter space (b, s) as a function of the split
sample distance D.. There are two peaks indicating larger than 3o difference between the
two subsamples at D, =9 Mpc and D, = 17 Mpc. In addition, a transition of the ¢ distance
d,(D,.) at D, ~ 20 Mpc is apparent. This Monte Carlo simulation is used to construct Fig. 5.2
(right panel green line range), where we show the mean and standard deviation range of the
o-distances obtained by the above-described 100 Monte Carlo samples. Clearly, the random
variation in the galactic distances cannot change the qualitative features (high double peak
at low D,.) of Fig. 5.1 corresponding to the real sample. The o-distances obtained from such
a typical Monte Carlo sample is shown in Fig. 5.2 (left panel green line).
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Figure 5.1: The o-distance between the various X.; and X, datasets as a function of the split
distances D.. There are 2 clear peaks at D, = 9 Mpc and D, = 17 Mpc and a transition
seems to have been completed at D. ~ 20 Mpc. The anticipated plot would be a o-distance
that consistently varies in the range up to about 2o for all values of D.. The observed peaks
indicate either the presence of systematics or the presence of interesting physics. Adopted
from Ref. [264].
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Figure 5.2: Left panel: The o-distances as a function of the split distances D, for a sample
dataset with random distance values, normally distributed inside their individual 1 — o range
(green line), versus the o-distances as a function of the split distances D, for a homogeneous
Monte Carlo sample constructed using the best-fit BTFR (orange line). Right panel: The
68% range of the o-distances versus the split distances D. produced by a Monte Carlo
simulation of 100 sample datasets obtained by randomly varying galaxy distance values
with a Gaussian probability distribution (green band). Superimposed is the 68% range of
the o-distances versus the split distances D. obtained from 100 homogeneous Monte Carlo
samples constructed using the best-fit BTFR (orange band). Evidently, the characteristic
two-peak form of the plot remains practically unchanged, even after the random variation
in the distances (green band), whereas no significant tension is present in the case of the
homogeneous Monte Carlo samples for any value of D, (orange band). Adopted from Ref.

[264].
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| D. (Mpc) | intercept | slope | A, ]
- 2.2874+0.18 3.7+£0.08 -
<9 2.461 £+ 0.407 | 3.586 +0.216 | 23.7 (4.50)
>9 2.854 +£0.379 | 3.46 £0.204 | 23.7 (4.50)
<17 2.467£0.38 | 3.5924+0.17 | 17.0 (3.70)
>17 2.677 £ 0.368 | 3.548 +0.166 | 17.0 (3.70)
<40 2.327 £ 0.987 | 3.681 +0.419 | 2.9 (1.20)
>40 3.318 £ 0.816 | 3.283 £0.349 | 2.9 (1.20)

Table 5.2: The best-fit values of the intercept and slope parameters corresponding to the
likelihood contours of Fig.5.3 alongside with their 1o errors. The minimum A? between the
best fits of the two samples is also shown. The corresponding o-tension in parenthesis is
obtained in the context of two free parameters from Eq. (5.11). Notice that, even though the
parameter values appear to be consistent, the value of Ay? between the subsamples reveals
the tension at D, = 9 Mpc and D, = 17 Mpc.

The typical qualitative feature of d,(D,) corresponding to the real sample disappears if
we homogenize the sample by randomizing both the velocities and the galactic masses, using
the measured values of the velocities and the estimated values of the galactic masses in the
context of the best-fit BTFR. In order to construct such a homogenized BTFR sample from
the real sample, we use the following steps:

e We assign to each galaxy a randomly chosen distance obtained from a Gaussian distri-
bution with mean equal to the measured distance and standard deviation equal to the
lo error of the measured distance.

e We assign to each galaxy a randomly chosen [ogv,,; obtained from a Gaussian distri-
bution with mean equal to the measured logv,.,; and standard deviation equal to the 1o
error of the measured [0gv,;.

e For each galaxy, we use the random [ogv,,; obtained in the previous step to calculate
the corresponding BTFR [ogMp, using the best-fit slope and intercept of the real full
dataset (first row of Table 5.2). We then obtain a random logM g for each galaxy from
a Gaussian distribution with mean equal to the BTFR calculated logM g and standard
deviation equal to the 1o error of the measured logMp.

e We repeat the above process 100 times, thereby generating 100 homogeneous Monte
Carlo samples (HMCS) based on the SPARC dataset.

e For each HMCS, we find the ¢ distances d,(D,.) and for each D,, we find the mean o
distance and its standard deviation over the 100 HMCS. We thus construct the orange
region in Fig. 5.2 (right panel). A typical form of d,(D.) is shown as the orange line of
Fig. 5.2 (left panel) selected from the 100 HMCS.

Clearly, the forms of d,(D.) generated from the homogenized Monte Carlo samples have
the expected property to be confined mainly between 0o and 20 in contrast to the real mea-
sured sample, where d,(D,) extends up to 40 or more. Thus, the real dataset is statistically
distinct from a homogeneous BTFR dataset.
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Figure 5.3: The best-fit contours of the slope and intercept for the entire dataset, as well
for 3 different cases of split distance (I).). The red contours correspond to the dataset with
galaxies that have a distance below D., whereas the cyan contours correspond to galaxies
with distances above D.. Adopted from Ref. [264].

The two maxima of d, are more clearly illustrated in Fig. 5.3, where the likelihood
contours are shown in the parameter space s (slope)-b (intercept) for the full sample (upper
left panel) and for three pairs of subsamples Y};, including those corresponding to the peaks
shown in Fig. 5.1 (D, = 17 and D, = 9). For both d, maxima, the tension between the
two best-fit points is mainly due to the different intercepts, while the values of the slope are
very similar for the two subsamples. In contrast, for D. = 40 Mpc, where the o distance is
much lower (about 1o, lower right panel), both the slope and the intercept differ significantly
in magnitude but the statistical significance of this difference is low. Notice that the use of
different statistics, such as the 1o range of the best-fit intercept and slope shown in Table 5.2,
or the level of likelihood contour overlap in Fig. 5.3 would not reveal the tension between
far and nearby subsamples. In contrast, the o-distance statistic demonstrates the effect and
the Monte Carlo results of Fig. 5.2 verify the fact that such a large o-distance would be rare
in the context of a homogeneous sample.

The statistical significance of the different Tully-Fisher properties between near and far
galaxies, which abruptly disappears for dividing distance D. 2 20 Mpc, could be an unlikely
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statistical fluctuation, a hint for systematics in the Tully-Fisher data'!, an indication for an
abrupt change in the galaxy evolution or a hint for a transition in the values of fundamental
constants and, in particular, the strength of gravitational interactions Get. The best-fit
values of the intercept and the slope for the cases shown in Fig. 5.3 are displayed in
Table 5.2 along with their 1o errors.
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Figure 5.4: The best-fit lines corresponding to the best fit slope and intercept parameters
of the whole galaxy dataset as well as each of the 2 datasets produced for 4 different split
distances (D.). The red dashed line and datapoints correspond to the data below D,., and the
cyan ones belong to the data over D, for each case. Adopted from Ref. [264].

The best-fit log Mp — log v, lines corresponding to Eq. (5.7) for the near-far galactic
subsamples are shown in Fig. 5.4, superimposed with the datapoints (red/blue correspond
to near/far galaxies). The full dataset corresponds to the upper-left panel. The difference
between the two lines for D. = 9 Mpc and D. = 17 Mpc is evident, even though their slopes
are very similar. The statistical significance of this difference disappears for larger values of
the splitting distance (e.g. D. = 40 Mpc), even though the slopes of the two lines become
significantly different in this case.

The Hubble diagram of the considered dataset along with the best-fit line (black dot-
dashed line) and the Hubble blue dashed line (z = %Ho) corresponding to Hy = 73km s~ !
Mpc~! is shown in Fig.5.5. The distances to galaxies beyond 20 Mpc are determined using
the Hubble flow with Hy = 73 km/sec Mpc, and thus, there is no effect of their peculiar

A possible source of systematics is the Malmquist bias, which would imply that the detected more distant
galaxies are also more massive and may, therefore, display different slopes and intercepts in different mass
bins [320, 321].
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Figure 5.5: The distances alongside their errorbars versus the redshifts of each galaxy in our
compilation. The blue dashed line corresponds to the best fit line, and the black dot-dashed
one is produced by Eq. (5.1.2) for Hy = 73 km s~ Mpc~!. Adopted from Ref. [264].

velocities. Galaxies closer than about D ~ 20 Mpc are clearly not in the Hubble flow and
their redshift is affected significantly by their in-falling peculiar velocities, which tend to
reduce their cosmological redshifts. The detected transitions at about 9 Mpc and 17 Mpc
correspond to cosmological redshifts of z < 0.005, which is lower than the transition redshift
required for the resolution of the Hubble tension (z; >~ 0.07 is the upper redshift of Snla-
Cepheid host galaxies).

In the context of the above-described analysis, we have ignored the possible systematic
uncertainties induced on the estimated baryonic masses Mp, due to systematic uncertain-
ties in the measurement of galactic distances. In particular, different sub-samples of galaxies
in the SPARC database are affected by different systematic uncertainties. The SPARC sam-
ple includes galaxies with both direct and indirect distance measurements. Direct distance
measurements are based on standard candles (Cepheids and Tip of Red Giant stars), while
indirect measurements are based on the Hubble flow with Virgocentric infall correction.
Systematic uncertainties of indirectly measured distances affecting mainly galaxies beyond
15 Mpc are due to uncertainties in the Hubble constant H, and in the a Virgocentric infall
model. Hy = 73km/s/Mpc is assumed in estimating the distances of the Hubble flow sub-
sample of the SPARC sample along with the Virgocentric infall model used to correct the
Hubble flow distances. The anticipated shift in log M due to an incorrect assumption of
the H, value and/or the Virgocentric infall model is anticipated to be of the order of 0.1 dex,
assuming a 5% change in H, and a scaling of the estimated value of Mg with distance D as
Mp D2,

Thus, the identified mismatch of the Tully-Fisher parameters between low- and high-
distance subsamples could, in principle, be due to such a systematic uncertainty of the
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Figure 5.6: The 68% range of the o-distances versus the split distances D. produced
by a Monte Carlo simulation of 100 sample datasets. The simulations are performed
for different values of the shift Alog Mg, which represents the possible systematic errors
present in the datapoints whose distances are calculated using the Hubble flow, assum-
ing Hy = 73kms™! Mpc™!, and correcting for Virgo-centric infall. The same characteristic
two-peak structure remains for all shifts considered, indicating the robust nature of the
identified effect. Adopted from Ref. [264].

galactic baryonic masses of Hubble flow galaxies. In order to examine this possibility, we have
constructed new Monte Carlo samples where we not only vary randomly the distances but
also add a fixed shift of A log Mg along the vertical axis (mass) for all the datapoints where the
mass is estimated using the Hubble flow with Hy = 73km s~ Mpc~!. The distances of these
points are calculated using the Hubble flow, assuming Hy = 73km s~ Mpc™!, and correcting
for Virgo-centric infall. We have considered four cases of systematic shifts (fixed values of
Alog Mp):—0.1 dex, —0.05 dex, +0.05 dex and +0.1 dex. The results for the o-distance ranges
in terms of the splitting distance D, for each one of the above four cases are shown in Fig.
5.6. The corresponding likelihood contours for the subsamples corresponding to D. = 9 Mpc
(maximum mismatch) are shown in Fig. 5.7. Clearly, the mismatch features at D. = 9 Mpc
and D, = 17 Mpc remain in all four cases that explore this type of systematic uncertainty.
In particular, the 9 Mpc peak height varies from about 40 for Alog Mg = 0.1 dex to about
3o for Alog Mg = —0.1 dex. We thus conclude that this type of systematic uncertainty is
unable to wash out the mismatch effect we have identified.

If the intercepts’ transitions are interpreted as being due to a transition in Geg, we can
use Eq. (5.4) along with the observed intercept transition amplitude shown in Table 5.2 to
identify the magnitude and sign of the corresponding G ¢ transition. The intercept transition
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at D. = 17Mpc indicated in Table 5.2 corresponds to the following:
Alog Ag = log Az —log Aj ~ 0.2 (5.12)

Since Apg is found to be higher at larger distances (early times), G.¢ should be lower, due to
Eq. (5.4). The corresponding fractional change in Gg is easily obtained by differentiating
the logarithmic form of Eq. (5.4) as follows:

AAp _ _ZAGeff N AGeg

A Ap =
log A == Gon Gon

~ —0.1 (5.13)

This sign (weaker gravity at early times) and magnitude of the G.g transition is consistent
with the gravitational transition required for the resolution of the Hubble and growth tensions
in the context of the mechanism of Ref. [232].

AlogM = 0.05 dex \ AlogM = —0.05 dex
\

AlogMy = 0.1 dex N AlogM = —0.1 dex

slope
S

26 28 30 32 34 20 22 24 26 28 30 32 34
intercept intercept

20

Figure 5.7: The likelihood contours of the slope and intercept for a sample splitting distance
D. = 9 Mpc corresponding to the different values of the systematic shift Alog Mz shown in
Fig. 5.6. The red contours correspond to the dataset with galaxies that have distance below
9 Mpc, whereas the cyan contours correspond to galaxies with distances above 9 Mpc. The o
distance between the two best fits varies between 30 and 40. Adopted from Ref. [264].
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5.2 Constraining a Late Time Transition of GG,z Using Low-z
Galaxy Survey Data

5.2.1 Effects of a gravitational transition on redshift survey data

As mentioned above, it is very likely that a transition of the G4 at redshifts z < 0.01 would
cause an analogous shift in the Hubble expansion rate. Although such a shift might be hard
to detect directly considering how low the expected redshifts are, it could be detectable indi-
rectly as a signal in the observed number of galaxies per redshift bin at z < 0.01. Therefore,
we proceed by attempting to search for this gravitational transition in galaxy survey data,
quantify and constrain it.

In the context of the scalar-tensor modified gravity theories the gravitational constant
acquires dynamical properties and thus the Friedman equation in redshift space may be
expressed as

%&E(Z)Ptot (5.14)
where p;,; refers to the total energy density including matter and an effective geometric
dark energy component induced eg by the non-minimally coupled scalar field. Also, G.g
is the dynamical gravitational constant which is proportional to the inverse non-minimal
coupling function F(®(z)) of the scalar-tensor theory. The dynamical evolution of G is
severely constrained by a wide range of experiments and astronomical observations which

H(z)? =

constrain the time and redshift derivative of G.g to Gef ! < 107'2 at various specific time
ranges [281, 293, 322] including the present time constrained mainly using solar system
tests. Abrupt transitions of G.x however can not be constrained by local constraints of the
time derivative of G.¢ since by definition, in the context of an abrupt transition G.¢ would
remain constant at (almost) all times. The overall change of G.¢ between the present time
and nucleosynthesis is weakly constrained to be less than about 10% [2971.

Based on the generalized Friedman Eq. (5.14) an abrupt change of G.¢ at z = 2; would
also lead to a corresponding abrupt change of H(z) such that

AGog 2AH
Gt  H
In the Hubble flow z; > 0.01 such a transition is well constrained by detailed Hubble diagram
data based on Type Ia Supernovae (Snla) [238]. For z; < 0.01 the Hubble diagram involves
significant contributions from galactic density inhomogeneities and peculiar velocity effects
and thus similar constraints are expected to be significantly weaker.
Using galaxy redshift surveys at z < 0.01 it is possible to bin the observed galaxies in
redshift bins of width Az such that there are AN(z;) galaxies in the 7 bin. In the presence
of random peculiar velocities the measured redshift of a given galaxy may be written as

(5.15)

cz = Hys + cAz, (5.16)

where H, is the Hubble expansion rate at the galactic distance s and cAz, is a perturbation
due to peculiar velocity effects and may be approximated to have random Gaussian distri-
bution (1 = 0, 0 = 300kms™!). The number of galaxies that exist in a spherical shell with

radius s is given by,

4
N(s) = ?ﬁsgp( z) (5.17)
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where we approximate the density at the redshift p(z) = po(1 + 2)® ~ py as homogeneous.
The number of galaxies in the 7 redshift bin may be easily obtained from Eq. (5.17) as

3
AN (z;) = 4mpo (h%) (zi — Az)? Az (5.18)

where Az; is width of the ¢ redshift bin assumed to be the same for all bins. Thus the
predicted number of galaxies in the i bin AN(z;) is related to the number of galaxies in the

j = 1bin as
2 3
AN(z) = AN(z) <CZZ' - CAZT) (H(”) (5.19)

cz1 — cAz, Hy;

Violation of Eq. (5.19) may be induced by either large density fluctuations of galaxies or
coherent velocity flows. Eq. (5.19) however allows for a transition in the Hubble diagram
slope H, at some redshift z;. Such a transition could be expressed as

HOi = H01 - A}[()G)(Zz - Zt) (520)
In this case Eq. (5.19) takes the form

2
AN(A, 8,2, %) = A (ﬂ) [1— 06z —2)]° (5.21)

cz1 — cAz,

where A ~ AN(z;) and 0 = A}g(’ are parameters to be fitted by survey data.

5.2.2 Analysis of the 6dF and 2MASS Galaxy Survey 2z < (.01 Subsets

It is straightforward to implement the maximum likelihood method by minimizing y? with
respect to the parameters A, § = A—fgo and z;. Thus we minimize

Niot

X*(A,8,2) = Z

i=1

[AN(Zi)dat — AN(A7 57 Zty Zi)]z

2 2
o7 + 0%

(5.22)

where N, is the total number of bins, 07 = N;,;/AN(2;)44: is the Poisson distribution error
for each bin and o, is the scatter error fixed such that the minimum Y2, per degree of
freedom is equal to one. Also AN (z;)44 is the number of galaxies in each redshift bin after
a random perturbation Az, is imposed on each measured galaxy redshift cz; to account for
the random component Az, in the parametrization (5.21).

We use the 6dFGS [209,323-329] focusing on the galaxies with z < 0.01 (= 2800 galaxies).
The peculiar velocity sample consists of 8885 galaxies in the Southern Hemisphere with
z < 0.055. The sky distribution of our low z galaxy subsample is shown in Fig. 5.8 split
in 4 redshift bins of Az = 0.0025 increments. The corresponding distribution of the galaxy
sample in redshift space is shown in Fig. 5.9 where we split the sample in 25 redshift bins.

As shown in Fig. 5.9, there is a peak/dip feature in the redshift space number den-
sity of galaxies around 1500 — 2000kms~! (21 — 28 Mpc for a conservative value of H, =
70kms~! Mpc~!). This abrupt break in the redshift density is most probably due to density
fluctuations of galaxies and/or coherent peculiar velocity flows. However, it may also be
induced by a step-like transition of the Newton’s constant G occurring for cz; in the above
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Figure 5.8: The sky coverage of our collection of low-z 6dF data (z < 0.01) plotted in a
Mollweide projection, using galactic coordinates. The data is split in four bins, of Az = 0.0025
increments. It is evident that data homogeneity is present when considering the different
redshift increments. Adopted from Ref. [265].

range. Such gravitational transition would induce a similar transition in H(z) ~ Hj in ac-
cordance with eqs (5.14) and (5.15). This type of transition has been discussed in Chapter 3
with the introduction of the LwMT model and could be expressed as [227],

Ge
pa(z) = =2

= =1+ Aug O(z — z)] (5.23)
Gn

where Gy is the locally measured Newton’s constant, and O(z) is the Heaviside step-function.
This ansatz has been thoroughly explored in Refs. [232, 330], where it is proposed that it
would have the dual effect of solving both the Hubble and growth tensions. There have
also been observational hints for such a transition at ~ 20 Mpc in Cepheid [331, 332] and
Tully-Fisher data [264].

Assuming that the gravitational transition is the only cause of the observed dip in the
AN (z) distribution we may use Eq. (5.21) to minimize y? (Eq. (5.22)) and thus obtain the
best fit parameters A, § and z;. Such a fit for § = AHy/H, should be interpreted as an
upper bound for the transition amplitude 6 and therefore also for the gravitational transition
amplitude as obtained from Eq. (5.15).

We thus obtain the best fit parameter values as cz; ~ 1810 £ 150kms™!, A = 20.940.5
and 0 = ATP(I)O = —0.275 £ 0.01 for a fixed value of o =~ 3.7. In the left panel of Fig. 5.10 we
show the likelihood contours corresponding from inner to outer to the 68%, 95% and 99.7%
confidence level (C.L.) intervals in the parameter space A — §, while in the right panel we
show the best fit (blue curve) form of Eq. (5.21) (with its 68% C.L. error-band shown as cyan
area) superposed with the AN (zl) datapoints (red errorbars). In the context of the fit we
have included the random gaussian perturbations of redshifts with (¢ = 0, 0 = 300kms™)
due to the effects of peculiar velocities in the data and have set Az, = 0 in the ansatz (5.19),
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Figure 5.9: The AN — cz histogram plot corresponding to the data of the 6dFGS dataset. It

is evident that a large peak in the distribution of galaxies exists at cz = 1500 — 2000 kms™'.
Adopted from Ref. [265].
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Figure 5.10: Left panel: The AH,/H, - A likelihood contours corresponding from inner to
outer to the 68%, 95% and 99.7% C.L. intervals. The best-fit value is at the center (black
bullet). The projected contours are taken at the best-fit value of the transition redshift z;.
Right panel: The AN - cz plot of the best-fit (blue curve) of Eq. (5.21) corresponding to the
best-fit values of the parameters 06 = AH,/H,, A and z; along with the 68% C.L. (cyan area).
The binned numbers of galaxies in each redshift bin and their Poisson error are also shown
(red errorbars). Adopted from Ref. [265].

(5.21). ?
We may therefore conclude that a possible transition of the Hubble diagram slope H
has to be smaller than the best fit value § = AT’ZO < —0.275 £ 0.01. This upper bound for

2This approach is equivalent to keeping the galaxy redshifts in their original form while including the random
redshift perturbation in the ansatz (5.19).
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a Hubble diagram slope transition may be translated to an upper bound for an underlying

gravitational transition using Eq. (5.15) which leads to G ;ff < 0.6. Such an upper bound

can easily accommodate the gravitational transition amplitude AG(i;ff ~ (.1 which has been
proposed for the resolution of the Hubble and growth tensions [232] which implies that this
scenario remains viable in the context of the 6dFGS data.

We have repeated the analysis, in the same manner, using this time the larger and
more recent 2MRS [333-337] dataset. This survey provides an almost full coverage of the
sky (~70%) including more data points than the 6dFGS peculiar velocity sample with a
total number of 44599 spectroscopically observed sources at z < (.15 (the subsample with
z < 0.01 consists of ~ 3200 galaxies). We simulate the peculiar velocities in the data as
described previously, for the case of the 6dFGS dataset. The sky distribution of these galaxies
are shown in Fig. 5.11 in four redshift bins up to z = 0.01.
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Figure 5.11: The sky coverage of our collection of low-z 2MRS data (z < 0.01) plotted
in a Mollweide projection, using galactic coordinates. The data is split into four bins, of
Az = 0.0025 increments. Adopted from Ref. [265].

The galaxy distribution in redshift space is shown in Fig. 5.12 where a similar dip may
be seen at cz &~ 1500 kms™!. As in the case of the 6dFGS dataset, this feature is most likely
due to density variations of the galaxy distribution and to peculiar velocity flows. If however
we assume that it is due to a gravitational transition of the form (5.23) leading to a transition
of the Hubble parameter, then we can derive an upper bound on AGGCH

In this case, the best fit parameter values are similar as in the 6dFGS and take the form
A=175+0.5,0 = AHF(I)O = —0.28 £0.01 and cz ~ 1783 + 150 kms~! for o, ~ 3.4. We have
plotted the confidence contours in the A — § parameter subspace (left panel) as well as the
best-fit form of AN(z) based on Eq. (5.21) (right panel), in Fig. 5.13.

In order to see how commonly, if at all, would the abrupt peak/dip in the galaxy distri-
bution appear also in the simulated data based on a standard ACDM cosmology, we have
used the Cosmological Lofty Realizations (CoLoRe) [338] software package that supports log-
normal fields to generate synthetic realizations for the 2MRS galaxy survey. We opted to
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Figure 5.12: The AN — cz histogram plot corresponding to the data of the 2MRS dataset.

The same peak/dip feature in the distribution of galaxies as in the 6dFGS dataset exists at
cz = 1500 — 2000 km s~ !, albeit it is less prominent. Adopted from Ref. [265].
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Figure 5.13: Left panel: Same as Left panel of FIG. 5.10 but for the 2MRS sample. Right
panel: Same as Right panel of FIG. 5.10 but for the 2MRS sample. Adopted from Ref. [265].

generate mock catalogs for this survey since as we saw previously, it is more complete than
the 6dFGS peculiar velocity sample. In particular, for the simulated catalogs on top of the
assumed standard ACDM model for the input Gaussianised matter power spectrum P(k)
at z = 0, we also included a constant galaxy bias with redshift b(z) = 1.3 (a value found to
be a good approximation at non-linear scales) and the approximated fitting function for the
redshift distribution of the 2MRS found by [339] that reads:

e (2) e [‘ (‘)ﬁ] 29
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Figure 5.14: The AN — ¢z histogram plot corresponding to the data of two random simulated
datasets based on ACDM . Features like the one shown in the real data appear to be common
due to galactic number density inhomogeneities. Adopted from Ref. [265].

with 8 = 1.64, zp = 0.0266, m = 1.31 and the total number of sources N, = 44599, see Fig.
5.15.

Then we set up 500 simulations with the aim to clarify if the peak/dip feature in AN(z)
would occur naturally in them in the context of a standard ACDM cosmology. In this case
the best fit value of J derived in the context of our analysis can only be viewed as an upper
bound.
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Figure 5.15: The number of galaxies in each redshift bin for the entire 2MRS sample (lightgray
histogram), as well as for our subsample with z < 0.01 (magenta histogram), superimposed
with the fitting function Eq. (5.24). Adopted from Ref. [265].

As expected, the simulated data indicate that peaks and dips like those found in the real
data occur commonly in the corresponding simulated datasets based on standard ACDM
cosmology due to density and peculiar velocity effects. This is demonstrated in the two
simulated 2MRS datasets shown in Fig. 5.14 randomly chosen from the 500 mock catalogs
to showcase here. The magnitude of these features overwhelms any possibility of interpreting
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the observed peak/dip feature in the real AN(z) data as a signature of the presence of a
AHy/H, transition and only allows the interpretation of the best fit value of AH,/H, as a
bound on the magnitude of a possible corresponding Hubble and gravitational transition.
An assumption used in the analysis of the low-z galaxy survey data is that of uncorrelated
Gaussian random peculiar velocity field which was superposed in the Hubble velocity flow.
This assumption ignores the local bulk flows and the possible correlation among the redshift
bins in estimating the uncertainties. The use of a diagonal covariance matrix, instead of
using the full covariance matrix is a simplification which we had to implement, since the
detailed form of the velocity flows on the considered scales is not precisely known and
thus we do not have access to a reliable and detailed form of the full covariance matrix.
However, it is clear that the use of the full covariance matrix would weaken the constraint
on G derived here. We have verified this result using toy covariance matrices that fully
correlates only neighboring redshift bins. Following this approach, we have observed a very
small (few percent) increase in the uncertainties of the best-fit parameters. This indicates
that even after the inclusion of velocity correlations and the full covariance matrix, the
constraint would remain consistent with a 10% gravitational transition at z < 0.01. Thus
our approach can indeed lead to new constraints on a gravitational transition at redshifts
z < 0.01 (last 150 Myrs) but these constraints are not powerful enough to rule out the
gravitational transition class of models for the resolution to the Hubble tension.

5.3 In Brief

In this chapter we have used a two-sided approach in order to identify and constrain a pos-
sible late z gravitational transition. First of all, we employed a specific statistic on a robust
dataset of 118 Tully-Fisher datapoints to demonstrate the existence of evidence for a tran-
sition in the evolution of BTFR. This evidence was verified by a wide range of Monte Carlo
simulations that compare the real dataset with corresponding homogenized datasets con-
structed using the BTFR. It indicates a transition of the best-fit values of BTFR parameters,
which is small in magnitude but appears at a level of statistical significance of more than
30. It corresponds to a transition of the intercept of the BTFR at a distance of D, ~ 9 Mpc
and/or at D, ~ 17 Mpc (about 80 million years ago or less). Such a transition could be
interpreted as a systematic effect or as a transition of the effective Newton constant with a
10% lower value at early times, with the transition taking place about 80 million years ago
or less. The amplitude and sign of the gravitational transition are consistent with a recently
proposed mechanism for the resolution of the Hubble and growth tensions [227,232]. How-
ever, the time of the transition is about 60 million years later than the time suggested by
the above mechanism (100-150 million years ago corresponding to D, ~ 30-40 Mpc and z ~
0.007-0.01).

The effect shown in our analysis could be attributed to causes other than a gravitational
transition. One such possible cause would be the presence of systematic errors affecting the
estimate of galactic masses or rotation velocities for particular distance ranges. Even if this
is the case, it is important to point out these inhomogeneities, which may require further
analysis to identify their origin. Alternatively, if the causes of the detected mismatch are
physical, they could also be due to variation of conventional galaxy formation mechanisms,
which may involve other types of modifications of gravitational physics (e.g. effects of MOND
gravity). The BTFR is an observationally tight empirical correlation and has therefore been
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used as a test of various modified gravity models (Refs. [156, 340, 341] offer comprehensive
reviews on the cosmological implications of such models), including modified Newtonian
dynamics (MOND) [342, 343] and Grumiller modified gravity [344].These models have been
shown to be consistent with BTFR for specific values of their acceleration parameters. The
BTFR has also been used as a test of the properties of Cold Dark Matter and galaxy formation
mechanisms in the context of ACDM [345, 346].

An interesting effect in the direction of the one observed in the analysis described in this
chapter was also reported in Ref. [332]. There, the authors found a transition of the Cepheid
magnitude behavior in the range of 10-20 Mpc, which could explain the Hubble tension (see
Fig.4 of Ref. [332]). The authors claimed that this transition is probably due to dust property
variation, but there is currently a debate on the actual cause of this mismatch.

An important extension of this analysis is the search for similar transition signals and
constraints in other types of astrophysical and geophysical-climatological data of Earth pale-
ontology. For example, a wide range of solar system anomalies were discussed in Ref. [347],
which could be revisited in the context of the gravitational transition hypothesis. Of par-
ticular interest, for example, is the 'Faint young Sun paradox’ [348], which involves an
inconsistency between geological findings and solar models about the temperature of the
Earth about 4 billion years ago. Another interesting extension of this study would be the use
of alternative methods for the identification of transition-like features in the data, e.g. the
use of a Bayesian analysis tool, such as the internal robustness described in Refs. [349,350].

Alternatively, other astrophysical relations that involve gravitational physics, such as
the Faber-Jackson relation between intrinsic luminosity and velocity dispersion of elliptical
galaxies or the Cepheid star period-luminosity relation, could also be screened for similar
types of transitions as in the case of BTFR. For example, the question to address in the
Cepheid case would be the following: ‘What constraints can be imposed on a transition-type
evolution of the absolute magnitude () ,)-period (P) relation of Population I Cepheid stars?’
This relation may be written as follows:

M, =s (logP —1)+b (5.25)

where s = —2.43 +0.12 and b = —4.05 £ 0.02 [351, 352].

We also analysed the low z distribution (¢ < 0.01) of galaxies in the 6dFGS peculiar
velocity sample and the complete 2MRS galaxy survey searching for a signal consistent
with a gravitational abrupt transition. We have identified such a signal consistent with a
gravitational transition AGL;“ ~ (0.6. Such a signal however is degenerate with corresponding
expected features emerging due to density fluctuations in the number density of galaxies
and peculiar velocity flows. This was demonstrated by simulating the expected redshift
distribution of the galaxies for the more complete 2MRS catalog in the context of standard
ACDM without gravitational transition. Thus the detected signal can only be interpreted
as an upper bound on the magnitude of such a gravitational transition. Even though this
bound is weaker than corresponding bounds obtained using nucleosynthesis and CMB power

spectrum data implying %ﬁf < 0.1 it remains interesting for two reasons:
e It is based on a novel method for constraining a gravitational transition.
e It focuses on a very specific ultra-late redshift range.
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e It indicates that the proposed magnitude of a gravitational transition AGL;“ ~ (.1 for the
resolution of the Hubble and growth tension is consistent with current galaxy survey
data.

Interesting extensions of the analysis presented in this chapter include the following:

e The identification of actual distances and peculiar velocities of the galaxies included
in the surveys considered so that it can be estimated to what extend is the identified
feature in AN(z) due to galactic density variations and/or peculiar velocity flows. If
this feature can not be fully explained as a density and peculiar velocity effect then it
is possible that at least part of it may be due to a gravitational transition.

e The identification of additional astrophysical datasets beyond galaxy surveys, Tully-
Fisher data and solar system history which may lead to constraints on the magnitude
of such a profound effect like an ultra-late gravitational transition.

e The simulation of the solar system evolution (and in particular of the Oort cloud) to
identify the change of impactor rate in the context of a late gravitational transition.
In this context, the solar system history could become a useful laboratory for the
constraint of such a transition.

In conclusion, we can deduce that the hypothesis of a low z gravitational transition is
weakly constrained in the context of current studies but it could lead to the resolution of
important cosmological tensions of the standard ACDM model. We have, however, demon-
strated that it is possible to extract hints for the existence of such a transition both in the
evolution of the Tully-Fisher relation and in the low z (¢ < 0.01) distribution of galaxies.
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CHAPTER

Final Remarks

=] € are currently living during an exciting era of modern Cosmology. That is
% i\\?&‘ ;7) because there is insurmountable evidence that the single most successful cos-

R]Lek mological model in history is wrong. Never before since its formulation on
1998, when the observational discovery of the accelerated expansion of the
Universe took place, has there been a more heated debate regarding the via-
bility of the ACDM concordance model. Arguably the largest thorns on ACDM ’s side are
the so-called Hubble and Sg tensions which have reached the 5 and ~ 30 levels respectively.
The impact and possible resolution of these very significant tensions were the main focus of
this dissertation.

In what follows we present a brief summary of the most crucial points that are discussed
in each chapter. Furthermore, we comment on some unanswered questions and subsequent
limitations of the work that this thesis is based on.

6.1 Summary

In order to fully understand the nature of the aforementioned tensions and the characteristics
of the proposed solutions, we have dedicated the first chapter of this thesis to a quick review of
the most basic aspects of modern Cosmology. We started by reviewing the General Relativity
essentials for formulating the AC DM model, including the Friedmann-Lemaitre-Roberson-
Walker metric and the Friedmann-Lemaitre equations. Subsequently, we discussed the
current status of both the Hubble and growth tensions and offered a forecast in the future
of the field.

In the second chapter, we demonstrated how the exploitation of a degeneracy between the
equation of state parameter w and the Hubble parameter H, could enable us to construct a
number of parametrizations that could serve as apparent solutions to the Hubble tension.
More specifically we have shown that the relation of the w parameter best fit of the H, in the
context of the CMB power spectrum follows the approximate linear equation

Hy +30.93w — 36.47 = 0. 6.1)

Solving this equation we find that for w = —1.22 the best fit value of H in the context of CMB
is 74 km sec™* Mpc~!, while of course for w = —1 the predicted value of H, is consisted with
the one given in the context of Planck18/ACDM. Fitting the wCDM model for various values
of the w parameter with the Planck TT power spectrum we provide statistical evidence in the
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form of the x? quality of fit, that the w = —1.22 parametrization is not statistically inferior to
ACDM. This is very important because this parametrization has the advantage of providing
an apparent resolution to the Hubble tension.

However, we also demonstrated that if one includes the Pantheon Snla, BAO or RSD data,
the x? quality of fit worsens as we cross the phantom divide. While this w — H, degeneracy
can be generalized to the C'PL parametrization, it is unfortunate that it only provides a
superficial solution of the Hubble tension. That is because it does not take into account the
Supernovae absolute magnitude aspect of the tension which is more accurately explained in
Chapter 3.

The next three chapters were devoted to the formulation of a joint w - absolute magnitude
M transition (LwMT) and its impact on resolving both the H, and Ss tensions simultane-
ously, the study of the inability of smooth H(z) deformations to resolve the growth tension
and the observational hints in favour of LwM'T', in this order. Therefore, the third chapter
builds upon the idea of the w — H, degeneracy by introducing the LwM T’ model which also
deals with the problem of the difference in the values of the Snla absolute magnitude pre-
dicted by the Planck18/ACDM and local Cepheid calibrators. As stated above this model
consists of two parts, the first involves an abrupt transition of the dark energy equation of
state parameter at an ultra-late transition redshift z; < 0.1. This transition is capable of
leading to a value of H, while mimicking a Planck18/ACDM form of the comoving distance
r(z) = [y H'(z')d? for z > z. The second part of this model is what allows it to over-
come the Snla absolute magnitude aspect of the tension, since it involves a similarly abrupt
transition of M.

We show that this type of M transition could be achieved by a reduction in the value of
the effective Newton constant G.g. This is made possible by the fact that the Snla absolute
luminosity is proportional to the Chandrasekhar mass which varies as L ~ G~/2. Further-
more, we provide a statistical analysis of the LwMT model showing that it provides a better
fit to cosmological data than the smooth late time deformations of H(z) that also claim to
solve the H| tension. It does so by also while also providing a satisfactory resolution of the
growth tension, since it predicts a lower value of ;1 = Gg /Gy for z > z.

Subsequently, we use the paradigm of the well-known CPL model in order to categorically
show something that we have eluded to in the previous chapters. That any parametrization
claiming to resolve the Hubble tension by using late time smooth deformations of the Hubble
expansion rate H(z) of the Planck18/ACDM best fit to match the locally measured value of
Hy, while effectively keeping the comoving distance to the last scattering surface and g, h?
fixed to maintain consistency with Planck CMB measurements fails to address the Sg tension.
This is shown both by using an analytic approach and by using statistical analysis involving
a numerical solution of the growth equation and then fitting to cosmological data.

Lastly, we search for observational hints of possible a gravitational transition and try to
constrain its effect. We do so by, firstly, considering a compilation of galaxy data and probing
for transitions in the evolution of the baryonic Tully-Fisher relation

MB = ABviot' (62]
We indeed show that there are ~ 30 level hints for a gravitational transition at distances of 17
Mpc and 9 Mpc. Using Monte Carlo simulations to create homogeneous "mock" Tully-Fisher
data, we show that our result is unaffected by random systematic and statistical variations
of the galactic distances. Next, we consider the fact that a gravitational transition could lead
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to a sharp change in the form of the Hubble diagram. This fact should theoretically enable
us to search for such a transition and constrain it. In order to do that, use two low-z robust
galaxy survey data compilations. Even though we observe a possible transition at a distance
of 20 Mpc using both compilations, we report that this effect could also be attributed to either
coherent peculiar galactic velocities or galactic density fluctuations. However, in any event
the possibility of a gravitational transition can not be excluded by low-z galaxy survey data.

6.2 Open Questions and Limitations

Even though the LwMT model presents us with an excellent fit to the data and is able to
address both the Hubble and the Sy tensions it remains an artificial solution. Artificial in the
sense that it is not supported by a natural underpinning physical theory. The easiest way
to interpret the proposed M transition is by considering it to be an equivalent gravitational
one. This means that the proposed model must be accountable and consistent with solar
system constraints in a similar fashion to other modified gravity theories. Due to its nature,
the transition predicts a significant shift in the planet trajectories almost 100 Myrs. ago.

Such a trajectory modification would have a lot of observable impact, visible in the current
solar system movements. No amount of echo of these type of monumental changes in the
solar system have been observed thus far. Therefore, a study encompassing geological,
astrophysical and solar system data could shed some more light in that direction categorically
ruling out or in such a prospect. Another important open question of this study is whether
it is possible to create a simple and intuitive modified gravity model, that could naturally
induce the gravitational transition predicted by LwMT'. This would, in all probability, resolve
the fine-tuning issues that the model experiences.

Other than attributing the Snla absolute magnitude transition to a gravitational transition
and trying to deal with the plethora of issues this assumption creates, perhaps it would be a
better idea to search for alternative mechanisms that could explain it. This approach could
in principle lead to a more natural physical theory that will, ad principia, be free of the
limitations imposed by the gravitational transition.

Despite its limitations, the ultimate goal of the LwM'T" parametrization was to show that,
in principle, the idea of a transition in the Snla absolute magnitude is able to resolve the
Hubble tension and at the same time ease the Sg one as well. To that end it was successful
and its approach is quite inviting since it is the simplest possible model of this type. Another
aspect of this study was an effort to sort of "dislodge" the focus of the Hubble from the H
constant itself and shift it to the M parameter. The reasoning behind this, as it is discussed
in more detail in Chapters 1 and 3, is that the SHOES collaboration does not measure H(z) at
z = () directly, rather they infer its value by extrapolating from the value of H, they measure
in the 0.023 < z < 0.15 interval. This creates a blind-spot at 0.023 < z which is the very fact
that enables us to conceive of a late M transition. If such a transition were to exist then it
would imply that the value of Hj reported by the SHOES is not the "true" value, in the sense
that the one given by the CMB is. Therefore, focusing on M would mean that we are focusing
both on the mismatch that exists in the values of the Snla absolute magnitude that one gets
from the CMB+BAO measurements and the demarginalization method of Ref. [226], without
the added issues that follow from the "recipe" of simply trying to raise the H, value.
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APPENDIX

Data Used in the Analysis

A.1 The Cosmological Data Compilations of Chapter 3

The covariance matrix which corresponds to the latest Planck18/ACDM CMB distance prior
data (shift parameter R and the acoustic scale [,), for a flat universe has the following
form [228]

17112.007 811208.45

where the corresponding Planck18/ACDM values for R and [, are presented in Table A.1.
Furthermore, we present the full dataset of the BAO and CC likelihoods used in the Mathe-
matica analysis in Tables A.2 and A.3 respectively.

O =107 x (1598.9554 17112.007)

Table A.1: The CMB Distance Prior data for a flat
Universe used in our analysis.

Index | CMB Observable | CMB Value | Reference
1 R 1.74963 [228]
2 l, 301.80845 [228]

Table A.2: The BAO data that have been used in the analysis along with the
corresponding references.

Index | =z Da/rs Mpe) | Dy /rs(km/sec- Mpc) | Dy/rs (Mpc) | Ref.
1 0.106 - - 298 =£0.13 [209]
2 0.44 - - 13.69 £5.82 | [353]
3 0.6 - - 13.77 £ 3.11 | [353]
4 0.73 - - 16.89 £ 5.28 | [353]
5 234 | 11.28 £0.65 - - [354]
6 2.34 - 9.18 = 0.28 - [354]
7 0.15 - - 4.465 + 0.168 | [210]
8 0.32 - - 8.62 £ 0.15 [355]
9 0.57 - - 13.7£0.12 [355]
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Table A.3: The Cosmic Chronometer data that
have been used in the analysis.

Index z H(z)(km/sec- Mpc) | Ref.
1 0.09 69 £ 12 [356]
2 0.17 83£8 [357]
3 0.179 7+ 4 [358]
4 0.199 (GE=2) [358]
5 0.27 77+ 14 [357]
6 0.352 83 £ 14 [358]
7 0.3802 83 +£13.5 [359]
8 0.4 95+ 17 [357]
9 0.4004 77+ 10.2 [359]
10 | 0.4247 87.1+11.2 [359]
11 0.4497 92.8 +£12.9 [359]
12 | 0.4783 80.9£9 [359]
13 0.48 97 £ 62 [360]
14 0.593 104 £ 13 [358]
15 0.68 92+ 8 [358]
16 0.781 105 £ 12 [358]
17 0.875 125 £ 17 [361]
18 0.88 90 + 40 [360]
19 0.9 117 £ 23 [357]

20 1.037 154 £ 20 [358]
21 1.3 168 £ 17 [357]
22 1.363 160 £ 33.6 [362]
23 1.43 177 £ 18 [357]
24 1.53 140 £ 14 [357]
25 1.75 202 440 [357]
26 1.965 186.5 & 50.4 [362]
27 0.35 82.7+ 84 [363]
28 0.44 82.6 £7.8 [364]
29 0.57 96.8 + 3.4 [355]
30 0.6 87.9+£6.1 [364]
31 0.73 9737 [364]
32 2.34 22247 [365]
33 0.07 69 + 19.6 [361]
34 0.12 68.6 = 26.2 [361]
35 0.2 72.94+29.6 [361]
36 0.24 79.69 £+ 2.65 [288]
37 0.28 88.8 + 36.6 [361]
38 0.43 86.45 £ 3.68 [288]
39 0.57 92.4+£45 [366]
40 2.3 224 + 8 [367]
41 2.36 226 £8 [368]
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A.2 The Tully-Fisher Data Compilation of Chapter 5

Table A.4: The robust compilation of galaxy data found in Refs. [277,
300-302].

Galaxy Name | 10g Vot | Tlogu,o; | 108 Mp | Ologniy | D op
(km/s) | (km/s) | (M) (M) (Mpc) | (Mpc)
D631-7 1.76 0.03 8.68 0.05 7.72 0.39
DDO154 1.67 0.02 8.59 0.06 4.04 0.2
DDO161 1.82 0.03 9.32 0.26 7.5 2.25
DDO168 1.73 0.03 8.81 0.06 4.25 0.21
DDO170 1.78 0.03 9.1 0.26 15.4 4.62
ESO079-G014 | 2.24 0.01 10.48 0.24 28.7 7.17
ESO116-G012 | 2.04 0.02 9.55 0.27 13. 3.9
ESO563-G021 | 2.5 0.02 11.27 0.16 60.8 9.1
F568-V1 2.05 0.11 9.72 0.1 80.6 8.06
F571-8 2.15 0.02 9.87 0.19 53.3 10.7
F574-1 1.99 0.04 9.9 0.1 96.8 9.68
F583-1 1.93 0.04 9.52 0.22 35.4 8.85
IC2574 1.82 0.04 9.28 0.06 3.91 0.2
1C4202 2.38 0.02 11.03 0.13 100.4 | 10.
KK98-251 1.53 0.03 8.29 0.26 6.8 2.04
NGCO0024 2.03 0.04 9.45 0.09 7.3 0.36
NGCO0055 1.93 0.03 9.64 0.08 2.11 0.11
NGCO0100 1.94 0.04 9.63 0.27 18.45 | 0.2
NGCO0247 2.02 0.04 9.78 0.08 3.7 0.19
NGC0289 2.21 0.05 10.86 0.22 20.8 5.2
NGCO0300 1.97 0.09 9.43 0.08 2.08 0.1
NGCO0801 2.34 0.01 11.27 0.13 80.7 8.07
NGCO0891 2.33 0.01 10.88 0.11 9.91 0.5
NGC1003 2.04 0.02 10.05 0.26 11.4 3.42
NGC1090 2.22 0.02 10.68 0.23 37. 9.25
NGC2403 2.12 0.02 9.97 0.08 3.16 0.16
NGC2683 2.19 0.03 10.62 0.11 9.81 0.49
NGC2841 2.45 0.02 11.03 0.13 14.1 1.4
NGC2903 2.27 0.02 10.65 0.28 6.6 1.98
NGC2915 1.92 0.04 9. 0.06 4.06 0.2
NGC2976 1.93 0.05 9.28 0.11 3.58 0.18
NGC2998 2.32 0.02 11.03 0.15 68.1 10.2
NGC3109 1.82 0.03 8.86 0.06 1.33 0.07
NGC3198 2.18 0.01 10.53 0.11 13.8 1.4
NGC3521 2.33 0.03 10.68 0.28 7.7 2.3
NGC3726 2.23 0.03 10.64 0.15 18. 2.5
NGC3741 1.7 0.03 8.41 0.06 3.21 0.17
NGC3769 2.07 0.04 10.22 0.14 18. 2.5
NGC3877 2.23 0.02 10.58 0.16 18. 2.5
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NGC3893
NGC3917
NGC3949
NGC3953
NGC3972
NGC3992
NGC4010
NGC4013
NGC4051
NGC4085
NGC4088
NGC4100
NGC4138
NGC4157
NGC4183
NGC4217
NGC4559
NGC5005
NGC5033
NGC5055
NGC5371
NGC5585
NGC5907
NGC5985
NGC6015
NGC6195
NGC6503
NGC6674
NGC6946
NGC7331
NGC7814
UGC00128
UGCO00731
UGCO01281
UGC02259
uUGC02487
UGC02885
UGC02916
UGC02953
UGC03205
UGC03546
UGC03580
UGC04278
UGC04325
UGC04499
UGC05253

2.25
2.13
2.21
2.34
2.12
2.38
2.1

2.24
2.2

2.12
2.24
2.2

2.17
2.27
2.04
2.26
2.08
2.42
2.29
2.26
2.32
1.96
2.33
2.47
2.19
2.40
2.07
2.38
2.20
2.38
2.34
2.12
1.87
1.75
1.94
2.52
2.46
2.26
2.42
2.34
2.29
2.10
1.96
1.96
1.86
2.33

0.04
0.02
0.04
0.02
0.02
0.02
0.02
0.02
0.03
0.02
0.02
0.02
0.05
0.02
0.03
0.02
0.02
0.04
0.01
0.03
0.02
0.02
0.01
0.02
0.02
0.03
0.01
0.03
0.04
0.01
0.01
0.05
0.02
0.03
0.03
0.05
0.02
0.04
0.03
0.02
0.03
0.02
0.03
0.03
0.03
0.04

10.57
10.13
10.37
10.87
9.94
11.13
10.09
10.64
10.71
10.1
10.81
10.53
10.38
10.8
10.
10.66
10.24
10.96
10.85
10.96
11.27
9.57
11.06
11.08
10.38
11.35
9.94
11.18
10.61
11.15
10.59
10.2
9.41
8.75
9.18
11.43
11.41
10.97
11.15
10.84
10.73
10.09
9.33
9.28
9.35
11.03

0.15
0.15
0.15
0.16
0.15
0.13
0.14
0.16
0.16
0.15
0.15
0.15
0.16
0.15
0.14
0.16
0.27
0.13
0.27
0.1

0.24
0.27
0.1

0.24
0.27
0.13
0.09
0.19
0.28
0.13
0.11
0.14
0.26
0.06
0.26
0.16
0.12
0.15
0.28
0.2

0.24
0.23
0.26
0.27
0.26
0.23
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18.
18.
18.
18.
18.
23.7
18.
18.
18.
18.
18.
18.
18.
18.
18.
18.
7.31
16.9
15.7
9.9
39.7
7.06
17.3
50.35
17.
127.8
6.26
51.2
5.52
14.7
14.4
64.5
12.5
5.27
10.5
69.1
80.6
65.4
16.5
50.
28.7
20.7
12.59
9.6
12.5
22.9

2.5
2.5
2.5
2.5
2.5
2.3
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
0.2
1.5
4.7
0.5
9.92
2.12
0.9
0.2
5.1
12.8
0.31
10.2
1.66
1.5
0.72
9.7
3.75
0.1
3.1
10.4
8.06
9.8
4.95
10.
7.2
5.2
0.2
2.88
3.75
5.72
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UGCO05716 1.87 0.06 9.24 0.22 21.3 |53
UGCO05721 1.9 0.04 9.01 0.26 6.18 1.85
UGC05986 2.05 0.02 9.77 0.27 8.63 | 2.59
UGC06399 1.93 0.03 9.31 0.14 18. 2.5
UGC06446 1.92 0.04 9.37 0.26 12. 3.6
UGC06614 2.3 0.11 10.96 | 0.12 88.7 | 8.87
UGC06667 1.92 0.02 9.25 0.13 18. 2.5
UGCO06786 2.34 0.02 10.64 | 0.24 29.3 | 7.32
UGC06787 2.4 0.01 10.75 | 0.24 21.3 | 5.32
UGCO06818 1.85 0.04 9.35 0.13 18. 2.5
UGC06917 2.04 0.03 9.79 0.14 18. 2.5
UGC06923 1.90 0.03 9.4 0.14 18. 2.5
UGC06930 2.03 0.07 9.94 0.13 18. 2.5
UGC06983 2.04 0.03 9.82 0.13 18. 2.5
UGC07125 1.81 0.03 9.88 0.26 19.8 | 5.9
UGCO07151 1.87 0.02 9.29 0.08 6.87 | 0.34
UGCO07399 2.01 0.03 9.2 0.27 8.43 | 2.53
UGCO07524 1.9 0.03 9.55 0.06 4.74 | 0.24
UGC07603 1.79 0.02 8.73 0.26 4.7 1.41
UGC07690 1.76 0.06 8.98 0.27 8.11 2.43
UGCO08286 1.92 0.01 9.17 0.06 6.5 0.33
UGC08490 1.9 0.03 9.17 0.11 4.65 | 0.53
UGCO08550 1.76 0.02 8.72 0.26 6.7 2.
UGC08699 2.26 0.03 10.48 | 0.24 39.3 | 9.82
UGC09037 2.18 0.04 10.78 | 0.11 83.6 | 8.4
UGCO09133 2.36 0.04 11.27 | 0.19 57.1 11.4
UGC10310 1.85 0.08 9.39 0.27 15.2 | 4.6
UGC11455 2.43 0.01 11.31 | O0.16 78.6 11.8
UGC11914 2.46 0.07 10.88 | 0.28 16.9 | 5.1
UGC12506 2.37 0.03 11.07 | 0.11 100.6 | 10.1
UGC12632 1.86 0.03 9.47 0.26 9.77 | 2.93
UGCA442 1.75 0.03 8.62 0.06 4.35 | 0.22
UGCA444 1.57 0.07 7.98 0.06 0.98 | 0.05
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Numerical Calculations

B.1 Maximum Likelihood Analysis

We present the Mathematica code that was used in the data analysis of cosmological models
in the context of the CMB-shift, Cosmic Chronometers, BAO and Pantheon datasets. The
code is written using the nCPL parametrization as an example. First we define some theoret-
ical quantities and subsequently we calculate the y* expressions in each case, before using
them to define the total x? for our example.

B.1.1 Essential Theoretical Expressions

(» nCPL Dark Energy Model x)
weplla_, wO_, wa_, n_] := wO + wa (1 - a)’n

fcplla_, wO_, wa_, n_] a’~ (-3 (1 + wO + wa)) E~ (-3 wa

HarmonicNumber[n] + 3 a n wa HypergeometricPFQI[{1l, 1, 1 - n}, {2, 2},
al)

Hcpl[a_?NumberQ, om_?NumberQ, wO_?NumberQ, wa_?NumberQ, n_7?NumberQ,
h_?NumberQ] := 100 h Sgrt[a"-3 om (1 + aeql[om, h]/a) + (1 - om (1 +
aeqglom, h])) fcplla, w0, wa, n]]

(# Comoving sound horizon at drag redshift x)
rscpl[ze_, om_?NumberQ, obh2_ ?NumberQ, wO_?NumberQ, wa_?NumberQ,
n_?NumberQ, h_?NumberQ] := NIntegrate[cs[x, obh2]/( x"2 Hcpl[x, om,
w0, wa, n, hl), {x, 10°-11, 1/(1 + ze[om, obh2, h])}]

Clear[DLsolcpl, DLcpl, dLcpl]
DLsolcpl [om_?NumberQ, wO_?NumberQ, wa_?NumberQ, n_?NumberQ,

h_?NumberQ] := (DLsolcpl[om, w0, wa, n, h] =
NDSolve [{D[dLcpl[zz]/ (1 + zz), zz] == 1/(Hcpl[l/(1 + zz), om, w0, wa,
n, h]/(100 h)), dLcpl[0] == 0}, dLcpl, {zz, 0, 1300}, MaxSteps ->
Infinity])

DLcpl [z_?NumberQ, om_7?NumberQ, wO_?NumberQ, wa_?NumberQ, n_?NumberQ,
h_?NumberQ] := (c/ (100 h) dLcpl[z] /. DLsolcpl[om, w0, wa, n,
h]) [[1]] // Chop
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B.1. Maximum Likelihood Analysis

(# Angular diameter distance with curvature, see arxiv:0803.0547 )
DAcpl [z_?NumberQ, om_?NumberQ, wO_?NumberQ, wa_?NumberQ, n_?NumberQ,
h_?NumberQ] := 1/(1 + z)"2 DLcpl[z, om, wO, wa, n, h]

baodacpl(z_, om_, wO_, wa_, n_, h_] := DAcpl[z, om, wO, wa, n, h]
(rscpl[zdrag, omOpl, obh2pl, -1, 0, 1, hOpl]/rscpl[zdrag, om, obh2pl,
w0, wa, n, hl);

( Dilation scale x)

Dvcpl[zbao_, om_?NumberQ, wO_?NumberQ, wa_?NumberQ, n_7?NumberQ,
h_?NumberQ] := ((DLcpl[zbao, om, wO, wa, n, h] /(1 + zbao)) 2
(cxzbao) /Hcpl[1l/ (1 + zbao), om, wO, wa, n, h])”"(1/3)

(» BAO dz ratio =)
dzcpl[zbao_, om_, obh2_, wO_, wa_, n_, h_] := rscpl[zdrag, om, obh2, w0,
wa, n, h]/Dvcpl[zbao, om, w0, wa, n, h]

(x DH "distance" x)
DHcpl [z_?NumberQ, om_7?NumberQ, wO_?NumberQ, wa_7?NumberQ, n_?NumberQ,

h_?NumberQ] := c¢/Hcpl[1l/(1 + z), om, w0, wa, n, h]
hzcpl[z_, om_, wO_, wa_, n_, h_] := Hcpl[l/(1 + z), om, wO, wa, n, h]
baodvcpl(z_, om_, wO_, wa_, n_, h_] := rscpllzdrag, omOpl, obh2pl, -1,

0, 1, hOpl]/ dzcpl[z, om, obh2pl, w0, wa, n, h];

( Scaled distance at recombination =)
Rcpl[om_, obh2_, wO_, wa_, n_, h_] := Sgrt[om (100 h) 2] DAcpl[zcmb[om,
obh2, h], om, wO, wa, n, h] (1 + zcmb[om, obh2, hl)/c

(» Angular scale of sound horizon at recombination x)

lacpl[om_, obh2_, wO_, wa_, n_, h_] := \[Pi] (DAcpl[zcmb[om, obh2, h],
om, w0, wa, n, h] (1 + zcmb[om, obh2, h]))/(rscpl[zcmb, om, obh2, w0,
wa, n, h])

B.1.2 Calculation of y? for CMB-shift Data

veccpl[om_, obh2_, wO_, wa_, n_, h_] := {Rcpllom, obh2, wO, wa, n, h] -
datacmb[[1]], lacpl[om, obh2, w0, wa, n, h] - datacmb[[2]], obh2 -
datacmb[[3]11]};

chi2Rcpl[om_, obh2_, wO_, wa_, n_, h_] := veccpl[om, obh2, w0, wa, n,

h].invcovcmb.veccpl[om, obh2, w0, wa, n, h]

87




o

~

Appendix B. Numerical Calculations

B.1.3 Calculation of y? for Cosmic Chronometer Data

chi2cccpl [om_?NumberQ, wO_7?NumberQ, wa_?NumberQ, n_?NumberQ, h_?NumberQ]
:= Sum|[ (1/dataHz[[i,3]] (dataHz[[i, 2]] - hzcpl|[dataHz[[i, 1]], om,
w0, wa, n, hl))~2, {i, 1, Length[dataHz]}];

B.1.4 Calculation of \? for BAO Data

Here the covariance matrices are tailored to the specific data compilation mentioned in the
comments.

(x 6dFGs and WiggleZ BAO data, see arxiv:1605.02702 x)

vecbaocpl[om_, obh2_, wO_, wa_, n_, h_] := Table[ (databaol[[i, 2]] -
dzcpl [databao[[i, 111, om, obh2, w0, wa, n, hl), {i, 1,
Length[databaol }];

(» BAO measurements from Lya are {Da/rs, DH/rs} - arxiv:1904.03400 =)
vecLyacpl[om_, obh2_, wO_, wa_, n_, h_] := {datalyalll, 2]] -
DAcpl [datalLyal[[l, 1]], om, w0, wa, n, h]/rscpll[zdrag, om, obh2, w0,
wa, n, h], datalyal[[2, 2]] - DHcpl[datalyal[2, 1]], om, wO, wa, n,
h]/rscpl[zdrag, om, obh2, w0, wa, n, hl};

( Total BAO chi”™2 «)

chi2baocplom_, obh2 , wO_, wa_, n_, h_] := vecbaocpl[om, obh2, w0, wa,
n, h].Cijbaoinv.vecbaocpl[om, obh2, w0, wa, n, h] + Sum[ (dataSDSS[[1i,
2]] - 1/dzcpl[dataSDSS[[i, 1]], om, obh2, w0, wa, n, h])"2/

dataSDSS[[i, 31172, {i, 1, Length[dataSDSS]}] + wveclLyacpl[om, obh2,
w0, wa, n, h].CijlLyainv.vecLyacpl[om, obh2, w0, wa, n, h]

B.1.5 Calculation of X2 for Snla (Pantheon) Data

chi2Panthcpl [M_7?NumberQ, om_?NumberQ, wO_?NumberQ, wa_?NumberQ,
n_?NumberQ] := Module[{Dm}, Dm = Table[dataPanth[[1l + i, 5]] - (M + 5
LoglO[ (1 + dataPanth[[1 + i, 3]]1)/(1 + dataPanth[[1l + 1, 2]1])
DLcpl [dataPanth([[1 + i, 2]], om, wO, wa, n, hO]] + 25), {i, 1,
ndatPanth}]; Dm.InvCovTotal.Dm]

B.1.6 Total \°

(x The total chi"2 is the sum of the individuals calculated abovex)

chi2totalcpl[M_7?NumberQ, om_?NumberQ, wO_?NumberQ, wa_?NumberQ,
h_?NumberQ] := chi2Rcpl[om, obh2, w0, wa, 1, h] + chi2baocpl [om,
obh2, w0, wa, 1, h] + chi2cccplom, w0, wa, 1, h] + chi2Panthcpl[V,
om, w0, wa, 1]
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B.2 Modifications in MGCAMB: Analysis of Chapter 2

We present, as an example, the modifications done in the MGCAMB core files params_MG.ini

26

27

28

29

39

and params.ini for the case of the wCDM model with w = —1.2.

B.2.1 Modified params_MG.ini File

###### Part 1.
# MG_flag = 0
# MG _flag = 1
# MG_flag = 2
# MG_flag = 3

MG _flag = 1

Choose the Modified Growth flag
default GR
pure MG models
alternative MG models
OSA models

# Choose at which time to turn on MG
GRtrans = 0.001d0

###### Part 2

.1 - Pure MG models

# pure MG _flag = 1 : mu, gamma parametrization
# pure MG flag = 2 : mu, sigma parametrization

# pure MG_flag

Il
W

Q, R parametrization

pure MG _flag = 1

#H#H### Part 2
# alt_MG flag

.2 — Alternative MG models

= 1 : Linder Gamma parametrization ( introduced in

arXiv:0507263 )

alt_ MG _flag =

###### Part 2

1

.3 — OSA models

# QOSA _flag = 1 f(R)

# QOSA _flag = 2 Symmetron

# OSA flag = 3 Dilaton

# OSA flag = 4 Hu-Sawicki f(R)

QSA flag = 4

###### Part 3
# mugamma_par

arXiv:0809
# mugamma_par
# mugamma_par

.1.1. - mu, gamma functions

= 1 : BZ parametrization ( introduced in
.3791 )

= 2 : Planck parametrization

= 3 : Effective Newton’s constant
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10 |mugamma_par = 3
41

1w | #BZ parameters:

15 | BI = 1.333

1w | lambdal 2 = 1000
a5 | B2 = 0.5

16 | lambdaZ_2 = 1000
a7 | S8 = 4

19 | #P1lanck parameters
so |E11 = 1
51 |E22 = 1

s3 | # Effective Newtons constant

sa |lga = 0

s5 |nn = 1

56

57

ss | ###### Part 3.1.2. - mu, Sigma functions
so | # musigma_par = 1 : DES parametrization
60

61 |musigma_par = 1

62

63 |mul = -1

61 | sigmal = 0

65

66

67 | ###### Part 3.1.3. - Q,R functions

s |# OR par = 1 : (O,R) ( introduced in arXiv:1002.4197 )

60 |# OR par = 2 : (Q0,R0,s) ( introduced in arXiv:1002.4197 )
71 |OQR _par = 1

73 | #Bean parameters

| #(0,R)

75 | MGOfix=1

7% |MGRfix=1

s | # (00, R0, s)

79 | Qnot=1.
so | Rnot=1.
s1 | ss5=0

82
83
sa | ##### Part 3.2.1 - Linder Gamma
ss |# Linder’s gamma

s6 | Linder._gamma = 0.545
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so | ##### Part 3.3.1 — QOSA f(R) model
o0 |BO = 1.d-3

91
92
9 | ##### Part 3.3.2 - QSA Symmetron model
9 | beta_star = 1.0d0

% |a _star = 0.5d0

% |x1_star = 0.001d0

97
98
v | ##### Part 3.3.3 — QOSA Dilaton model
0 | betal = 1.d0

o1 |x10 = 0.0001

w2 |Dil1S = 0.24d0

s |[DilR = 1.d0

04 A2 = 1e3

w7 | ##### Part 3.3.4 - QOSA Hu-Sawicki f(R)
s |F_RO = 0.0001d0
09 |FRn = 1.d0

110

2 | ##### Part 4. Parameters for the DE model
113 | # Note that the modification of the background works only for pure MG

models.
114 #
15 | # DE_model = 0 LCDM
6 | # DE_model = 1 wCDM
nz | # DE_model = 2 : (w0, wa)CDM
s | # DE_model = 3 user defined

119

120 | DE_model = 1

122 | # DE model 1 (choose wODE) 2 (choose both)
123 | wODE = —-1.2d0
124 |waDE = 0.d0

B.2.2 Modified params.ini File

This is the MGCAMB model selection file.

\ | DEFAULT (params_MG.ini)
#Parameters for CAMB

s | #output_root is prefixed to output file names
s |output_root = mg_wnegllZ
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#What to do
get_scalar_cls =
get_vector_cls =
get_tensor_cls =
get_transfer

CRCRUS

#if do_lensing then lens_potential_ output_file contains the unlensed CMB
and lensing potential power spectra

#and lensed CMB Cls (without tensors) are in lensed output_file, total
in lensed total_ output_file.

do_lensing =T

# 0: linear, 1: non-linear matter power (HALOFIT), Z2: non—-linear CMB
lensing (HALOFIT),

# 3: both non—-linear matter power and CMB lensing (HALOFIT)

do_nonlinear = 1

#Maximum multipole and k#*eta.

# Note that C_1ls near 1_max are inaccurate (about 5%), go to 50 more
than you need

# Lensed power spectra are computed to 1_max_scalar-100

# To get accurate lensed BB need to have 1_max_scalar>2000,
k_eta _max_scalar > 10000

# To get accurate lensing potential you also need k_eta _max_scalar >
10000

# Otherwise k_eta max_scalar=2+1_max_scalar usually suffices, or don’t
set to use default

1_max scalar = 2600

k _eta max_scalar = 5000

# Tensor settings should be less than or equal to the above
1_max_tensor = 1500
k_eta max _tensor = 3000

#Main cosmological parameters, neutrino masses are assumed degenerate
# If use_phyical set physical densities in baryons, CDM and neutrinos +

Omega_k
use_physical T
ombh2 = 0.02226
omchZ2 = 0.1195
omnuh2 = 0.00064
omk = 0
hubble = 73.6

#effective equation of state parameter for dark energy

w = -1

#constant comoving sound speed of the dark energy (l=quintessence)
cs2_lam =7
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64

66

67

68

69

70

71

72

73

74

76

77

78

80

81

82
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#varying w 1s not supported by default, compile with
EQUATIONS=equations_ppf to use crossing PPF w-wa model:

#wa =0

##1f use tabulated w read (a,w) from the following user-supplied file
instead of above

#use tabulated w = F

#wafile = wa.dat

#1if use _physical = F set parameters as here
#omega_baryon = 0.0462

#omega_ cdm = 0.2538

#omega_ lambda = 0.7

#omega_neutrino = 0

temp_cmb = 2.7255

0.24

helium fraction

#for share_delta neff = T, the fractional part of massless neutrinos
gives the change in the effective number

#(for QED + non-instantaneous decoupling) i.e. the increase 1in neutrino
temperature,

#so0o Neff = massless_neutrinos + sum(massive_neutrinos)

#For full neutrino parameter details see
http://cosmologist.info/notes/CAMB. pdf

massless_neutrinos = 2.046

#number of distinct mass eigenstates

nu_mass_eigenstates = 1

#array of the integer number of physical neutrinos per eigenstate, e.g.
massive _neutrinos = 2 1

massive _neutrinos = 1

#specify whether all neutrinos should have the same temperature,
specified from fractional part of massless neutrinos

share _delta neff = T

#nu_mass_fractions specifies how Omeganu_hZ2 is shared between the
eigenstates

#i.e. to indirectly specify the mass of each state; e.g.
nu_mass_factions= 0.75 0.25

nu_mass_fractions = 1

#1f share_delta neff = F, specify explicitly the degeneracy for each
state (e.g. for sterile with different temperature to active)

#(massless_neutrinos must be set to degeneracy for massless, 1.e.
massless_neutrinos does then not include Deleta Neff from massive)

#if share delta_neff=T then degeneracies is not given and set internally

#e.g. for massive_neutrinos = 2 1, this gives equal temperature to 4
neutrinos: nu_mass_degeneracies = 2.030 1.015, massless neutrinos =
1.015

nu_mass_degeneracies =
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#Initial power spectrum, amplitude, spectral index and running. Pivot k
in Mpc {-1}.

initial_ power._num =

pivot_scalar =

pivot_tensor =

.05
.05
.1e-9
.9626

scalar._amp (1) =

scalar._spectral_index (1) =

scalar_nrun (1) =

scalar_nrunrun (1)

tensor._spectral_index (1)

tensor_nrun (1) =

#Three parameterizations (1,2,3) for tensors, see
http://cosmologist.info/notes/CAMB. pdf

tensor._parameterization =1

#ratio is that of the initial tens/scal power spectrum amplitudes,
depending on parameterization

SO O OO Nh O O~

S

#for tensor._parameterization == 1, P_T =
initial_ratioxscalar_amp+* (k/pivot_tensor) “tensor_spectral_index
#for tensor_parameterization == 2, P_T =

initial_ratio#P_s (pivot_tensor) * (k/pivot_tensor) “tensor_spectral_index
#Note that for general pivot scales and indices,
tensor _parameterization==2 has P_T depending on n_s
initial_ratio(1) =1
#tensor_amp 1is used instead if tensor parameterization == 3, P T =
tensor._amp #*(k/pivot_tensor) “tensor_spectral_index
#tensor_amp (1) = 4e-10

#note vector modes use the scalar settings above
#Reionization, ignored unless reionization = T, re redshift measures
where x _e=0.5

reionization =T

re_use_optical_depth = F

re optical_ depth = 0.09
#If re use optical depth = F then use following, otherwise ignored
re _redshift = 7.5

#width of reionization transition. CMBFAST model was similar to
re delta _redshift0.5.

re _delta_redshift = 1.5

#re_ionization frac=-1 sets it to become fully ionized using Yhe to get
helium contribution

#Otherwise x_e varies from 0 to re ionization_ frac

re _ilonization_ frac = -1

#Parameters for second reionization of helium
re _helium redshift = 3.5
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re _helium delta redshift = 0.5

#RECFAST 1.5.x recombination parameters;
RECFAST fudge = 1.14

RECFAST fudge He = 0.86

RECFAST _Heswitch 6

RECFAST Hswitch = T

# CosmoMC parameters — compile with RECOMBINATION=cosmorec and link to
CosmoMC to use these

cosmorec_runmode== 0: CosmoMC run with diffusion
1: CosmoMC run without diffusion
2: RECFAST++ run (equivalent of the original

H H W H

RECFAST version)
# 3: RECFAST++ run with correction function of
Calumba & Thomas, 2010

# For ’‘cosmorec_accuracy’ and ’cosmorec_fdm’ see CosmoMC for explanation

#cosmorec_runmode = 0
#cosmorec_accuracy = 0
#cosmorec_fdm =0

#Initial scalar perturbation mode (adiabatic=1, CDM iso=2, Baryon 1so=3,

# neutrino density iso =4, neutrino velocity iso = 5)

initial condition = 7

#If above is zero, use modes in the following (totally correlated)
proportions

#Note: we assume all modes have the same initial power spectrum

initial vector = -1 0 0 0 0

#For vector modes: 0 for regular (neutrino vorticity mode), 1 for
magnetic
vector_mode = 0

#Normalization

COBE_normalize = F

##CMB_outputscale scales the output Culs

#To get MuK"2 set realistic initial amplitude (e.g. scalar_amp(l) =
2.3e-9 above) and

#otherwise for dimensionless transfer functions set scalar_amp(l)=1 and
use

#CMB_outputscale = 1

CMB_outputscale = 7.42835025el12

#Transfer function settings, transfer. kmax=0.5 is enough for sigma_8

#transfer_k_per logint=0 sets sensible non-even sampling;
#transfer._k _per._logint=5 samples fixed spacing in log-k
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#transfer_interp_matterpower =T produces matter power in regular
interpolated grid in log k;

# use transfer_interp _matterpower =F to output calculated values (e.g.
for later interpolation)

transfer._high precision = F

transfer kmax = 2

transfer_k per._logint = 0

transfer_num redshifts = 1

transfer_interp_matterpower = T

transfer _redshift (1) =0

transfer.filename (1) = transfer_out.dat

#Matter power spectrum output against k/h in units of h"{-3} Mpc~3
transfer._matterpower (1) = matterpower.dat

#which variable to use for defining the matter power spectrum and sigma8

#main choices are 2: CDM, 7: CDM+baryon+neutrino, 8: CDM+baryon, 9:
CDM+baryon+neutrino+de perts

transfer._power_var = 7

#Output files not produced if blank. make camb_fits to use the FITS

setting.
scalar._output_file = scalCls.dat
vector_output_file = vecCls.dat
tensor._output_file = tensCls.dat
total_ output_file = totCls.dat

lensed output_file = lensedCls.dat

lensed total_output_file =lensedtotCls.dat
lens_potential_output_file = lenspotentialCls.dat
FITS filename = scalCls.fits

#Bispectrum parameters 1f required; primordial is currently only local
model (fnl=1)

#lensing is fairly quick, primordial takes several minutes on quad core

do _lensing bispectrum = F

do_primordial_ bispectrum = F

#1 for just temperature, 2 with E

bispectrum nfields = 1
#set slice non-zero to output slice b_{bispectrum slice base L L L+delta}
bispectrum slice base L = 0

bispectrum ndelta=3

bispectrum delta (1)=0

bispectrum delta (2)=2

bispectrum _delta (3)=4

#bispectrum do_fisher estimates errors and correlations between bispectra

#note you need to compile with LAPACK and FISHER defined to use get the
Fisher info

bispectrum do_fisher= F

#Noise is in muK"2, e.g. 2e—-4 roughly for Planck temperature
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208 | bispectrum fisher noise=0

200 | bispectrum fisher. noise pol=0

210 |bispectrum fisher. fwhm arcmin=7

o | #Filename 1f you want to write full reduced bispectrum (at sampled
values of 1_1)

212 |bispectrum full_ output_file=

213 |bispectrum full output_sparse=F

214 | #Export alpha_1(r), beta_1(r) for local non-Gaussianity

215 | bispectrum export_alpha beta=F

216
217 | ##Optional parameters to control the computation speed,accuracy and
feedback

218
210 | #If feedback level > 0 print out useful information computed about the
model

w0 | feedback level = 1

221
20 | #whether to start output files with comment describing columns
203 |output_file headers = T

224
25 | #write out various derived parameters
26 |derived _parameters = T

227
28 |# 1: curved correlation function, 2: flat correlation function, 3:
inaccurate harmonic method

29 | lensing_method = 1

230 |accurate BB = F

231
232
233 | #massive_nu_approx: 0 — integrate distribution function

234 | # 1 - switch to series in velocity welight once
non-relativistic

235 |massive_nu_approx = 1

237 | #Whether you are bothered about polarization.
238 |@accurate polarization =T

239
210 | #Whether you are bothered about percent accuracy on EE from reionization
241 | @accurate_reionization =T

242
23 | #whether or not to include neutrinos in the tensor evolution equations
244 | do_tensor_neutrinos =T

245
ue | #whether you care about accuracy of the neutrino transfers themselves
217 |@ccurate_massive _neutrino transfers = F

248
219 | #Whether to turn off small-scale late time radiation hierarchies (save
time,v. accurate)

250 | do_late rad truncation =T
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#Which version of Halofit approximation to use (default currently
Takahashi) :

#1. Original Smith et al. (2003; arXiv:astro-ph/0207664) HALOFIT

#2. Bird et al. (arXiv:1109.4416) updated HALOFIT

#3. Original plus fudge from http://www.roe.ac.uk/jap/haloes/,

#4. Takahashi (2012; arXiv:1208.2701) HALOFIT update

#5. HMcode (Mead et al. 2016; arXiv 1602.02154)

#6. A standard (inaccurate) halo model power spectrum calcultion

#7. PRKequal (Casarini et al. arXiv:0810.0190, arXiv:1601.07230)

#8. HMcode (Mead et al. 2015; arXiv 1505.07833)

halofit_version=

#Computation parameters
#1f number. of threads=0 assigned automatically
number_ of threads =

#Default scalar accuracy is about 0.3% (except lensed BB) if
high accuracy_default=F

#If high _accuracy_default=T the default target accuracy is 0.1% at L>600
(with boost parameter=1 below)

#Try accuracy_boost=2, 1_accuracy_boost=2 if you want to check
stability/even higher accuracy

#Note increasing accuracy_boost parameters 1s very inefficient if you
want higher accuracy,

#but high_accuracy_default is efficient

high accuracy_default=T

#Increase accuracy_boost to decrease time steps, use more k values, etc.
#Decrease to speed up at cost of worse accuracy. Suggest 0.8 to 3.
accuracy_boost =1

#Larger to keep more terms in the hierarchy evolution.
1 _accuracy_boost =1

#Increase to use more C_1 values for interpolation.

#Increasing a bit will improve the polarization accuracy at 1 up to 200 -
#interpolation errors may be up to 3%

#Decrease to speed up non-flat models a bit

1 _sample boost =1
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