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Σύνοψη

Η διατριβή αυτή επικεντρώνεται γύϱω από την διεϱεύνηση των επιπτώσεων των προβληµάτων της

σταθεράς του Hubble και του S8 στο κοσµολογικό µοντέλο Λ - Cold Dark Matter (ΛCDM) και

προτείνει έναν πιθανό τϱόπο επίλυσής τους. Ξεκινάµε εκτελώντας µια ανασκόπηση µεϱικών από

των πιο ϐασικών και απαϱαίτητων πτυχών της σύγχϱονης ΛCDM Κοσµολογίας, καθώς επίσης και

των προαναφερθέντων προβληµάτων και συνεχίζουµε στα επόµενα κεφάλαια προτείνοντας ενα

νέο µοντέλο µετάϐασης ως πιθανή λύση τους. ∆είχνουµε ότι είναι δυνατή η χϱήση ενός εγγενούς

εκφυλισµού του H0 και της παϱαµέτϱου κατάστασης w της καταστατικής εξίσωσης της σκοτεινής

ενέϱγειας που υπάρχει στο πλαίσιο του ϕάσµατος ισχύος CMB, προκειµένου να κατασκευαστεί

µια παϱαµετϱοποίηση w(z) που µποϱεί να αντιµετωπίσει επιφανειακά το πϱόϐληµα H0 αυξάνον-

τας την τιµή του H0. Στη συνέχεια προτείνουµε ένα Late w-M Transition LwMT µοντέλο που

ϐασίζεται σε µια µετάϐαση της παϱαµέτϱου w, καθώς και της παϱαµέτϱου απόλυτου µεγέϑους

M για την ταυτόχϱονη επίλυση των προβληµάτων Hubble και S8. ΄Επειτα, µελετάµε µοντέλα

που χρησιµοποιούν οµαλή παραµόρφωση του ϱυθµού διαστολής Hubble H(z) στα πλαίσια των

best-fit του Planck18/ΛCDM για να αυξήσουν την τιµή του H0 διατηρώντας παϱάλληλα τη

συνέπεια µε τις CMB µετρήσεις του Planck. Ανακαλύπτουµε ότι αυτα τα µοντέλα όχι µόνο δεν

µποϱούν να επιλύσουν το πϱόϐληµα S8, αλλά το χειϱοτεϱεύουν. Ολοκληρώνουµε αναζητώντας

στοιχεία µιας ϐαρυτικής µετάϐασης η οποία µποϱεί να συσχετιστεί µε τη µετάϐαση M που

προβλέπεται από το µοντέλο LwMT . Για να το πετύχουµε αυτό εξετάζουµε την εξέλιξη των

δεδοµένων Tully-Fisher και επιχειϱούµε να περιορίσουµε την ϐαρυτική µετάϐαση µε χαµη-

λής ερυθρής µετατόπισης δεδοµένα γαλαξιών. ∆ιαπιστώνουµε ότι και στις δύο περιπτώσεις

υπάρχουν ενδείξεις για µια ϐαρυτική µετάϐαση µε το αναµενόµενο µέγεθος και στην σωστή

ερυθρή µετατόπιση, αν και δεν καταϕέϱνουµε να εξάγουµε κάποιους σαϕείς περιορισµούς για

αυτή.
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Abstract

This thesis is centered around the ideas of exploring the impact of the Hubble and S8 ten-

sions on the Λ - Cold Dark Matter (ΛCDM) cosmological model and suggesting a possible

resolution to both of them. We start by performing a review of some of the most basic and

necessary aspects of modern ΛCDM Cosmology as well as the aforementioned tensions, and

in the following chapters we proceed by proposing a novel transition model as their possible

solution. We show that it is possible to exploit an inherent degeneracy of H0 and the dark

energy equation of state parameter w that exists in the context of the CMB power spectrum,

in order to construct a w(z) parametrization that can superficially address the H0 tension by

raising the value of H0. We then propose a Late w-M Transition LwMT model that relies on

a transition of the w parameter, as well as the absolute magnitude M parameter to resolve

both the Hubble and S8 tensions simultaneously. Next, we study models that use smooth

deformation of the Hubble expansion rate H(z) of the Planck18/ΛCDM best fit to raise the

value of H0 while keeping consistency with the Planck CMB measurements. In doing so we

discover that not only they are unable to resolve the S8, they in fact worsen it. We conclude

by searching for hints of the gravitational transition that can be associated with the M tran-

sition predicted by the LwMT model. We do that by considering the evolution of Tully-Fisher

data and by attempting to constrain the gravitational transition with low-z galaxy data. We

find that in both cases hints for a transition of the expected magnitude and redshift appear,

although no effective constraints can be derived.

xi



Πϱόλογος

Η σύγχϱονη Κοσµολογία είναι συνυφασµένη µε την έννοια του κοσµολογικού µοντέλου Λ Cold

Dark Matter (ΛCDM). Αυτό το µοντέλο ϐασίζεται σε δύο ϐασικές ιδέες που κυριαρχούν στη

σύγχϱονη αστροφυσική, τις έννοιες της Σκοτεινής Ενέϱγειας και της Σκοτεινής ΄Υλης. Σκοτεινές

είναι το επίθετο που περιγράφει και τις δύο για δύο καλούς λόγους, πρώτον επειδή δεν αλλη-

λεπιδρούν ηλεκτροµαγνητικά και δεύτεϱον επειδή δεν έχουµε ιδέα τι είναι στην πραγµατικότητα.

Τα ονόµατα επινοήϑηκαν από τον Fritz Zwicky (Σκοτεινή ΄Υλη) και τον Michael Turner (Σκοτεινή

Ενέϱγεια), την δεκαετία του 1930 και το 1998 αντίστοιχα. Κατά µία έννοια ϑα µποϱούσε να

ειπωθεί ότι η Σκοτεινή ΄Υλη και η Σκοτεινή Ενέϱγεια µας ϑυµίζουν τον Αιθέρα, καθώς είναι

εξαιρετικά εξωτικές έννοιες που έχουν δηµιουργηθεί από την ανάγκη να εξηγηθούν ορισµένα

παρατηρούµενα ϕαινόµενα και διαθέτουν µοναδικές ιδιοτητες και χαρακτηριστικά ιδανικά για

την εξήγηση των εν λόγω ϕαινοµένων, ενώ διαφεύγουν κάϑε ανίχνευσης.

Ενώ η έννοια του Αιθέρα επινοήϑηκε κατά την πϱο της Σχετικότητας εποχή της Κοσ-

µολογίας από την ανάγκη να εξηγηθεί η ϕαινοµενική ικανότητα του ϕωτός να διαδίδεται δι-

αµέσω των τεϱάστιων κενών εκτάσεων του διάστηµατος, η Σκοτεινή ΄Υλη και η Σκοτεινή Ενέϱγεια

διατυπώϑηκαν για να εξηγήσουν αναµφισβήτητα πιο ϑεµελιώδη κοσµολογικά Ϲητήµατα. Το

πϱώτο τέτοιο Ϲήτηµα ήταν αυτό του ελλείµατος ύλης και γέννησε τη Σκοτεινή ΄Υλη. Πιο συγ-

κεκριµένα, έγινε ϕανερό µέσω διαφόρων παϱατηϱήσεων ότι πολλοί γαλαξίες στο Σύµπαν µας

δεν ϑα έπϱεπε να συµπεριφέρονται όπως παϱατηϱούµε λαµβάνοντας υπόψη την ποσότητα της

οϱατής/παϱατηϱήσιµης ύλης τους, αυτή η διαφορά µεϱικές ϕοϱές είναι τόσο µεγάλη που πολ-

λοί από τους γαλαξίες που έχουµε παρατηρήσει δεν ϑα έπϱεπε καν να έχουν σχηµατιστεί. Μετά

από µια ποικιλία άλλων παϱατηϱήσεων όπως τα ϕαινόµενα ϐαρυτικών ϕακών και το Κοσµικό

Υπόβαθρο Μικϱοκυµάτων (CMB) καταλήξαµε στο συµπέϱασµα ότι η πλειονότητα της ύλης στο

Σύµπαν αλληλεπιδρά µόνο ϐαρυτικά και εποµένως είναι αόϱατη. Για να είµαστε πιο ακϱιϐείς,

υπολογίζεται ότι η Σκοτεινή ΄Υλη αποτελεί 85% της συνολικής µάϹας του Σύµπαντος.

Στη συνέχεια έχουµε την έννοια της Σκοτεινής Ενέϱγειας, η οποία γεννήθηκε από την ανάγκη

να εξηγηθεί η παρατηρούµενη επιταχυνόµενη διαστολή του Σύµπαντος. Στο πλαίσιο του µον-

τέλου ΛCDM παρουσιάζεται µε τη µοϱϕή της κοσµολογικής σταθεράς Λ. Ο όϱος της κοσ-

µολογικής σταθεράς προτάθηκε για πϱώτη ϕοϱά από τον ΄Αλµπερτ Αϊνστάιν ως ένας µηχανισµός

που ϑα µποϱούσε να δηµιουργήσει ένα στατικό σύµπαν µέσω της εξοµοίωσης αρνητικών µαϹών

οµοιογενώς κατανεµηµένων στον διαστρικό χώϱο. Ωστόσο, δεδοµένου ότι ένα τέτοιο στατικό σύµ-

παν τελικά αποδείχϑηκε ασταθές και σε συνδυασµό µε το γεγονός ότι ο Edwin Hubble έκανε

την ιστορική παϱατήϱηση της διαστολής του Σύµπαντος, η έννοια της κοσµολογικής σταθεράς

καταϱγήϑηκε πϱοσωϱινά. Επανήλϑε στην επικαιϱότητα κατά τη διάϱκεια της δεκαετίας του ’90,

όταν ανακαλύϕϑηκε η επιταχυνόµενη διαστολή του Σύµπαντος µέσω παϱατηϱήσεων τύπου Su-

pernova Ia (SnIa), το Λ έγινε λοιπόν για άλλη µια ϕοϱά απαϱαίτητο για την εξήγηση αυτής

της µνηµειώδους παϱατήϱησης. Αυτή η υποθετική Σκοτεινή Ενέϱγεια εκτιµάται ότι αποτελεί το

68% της ενέϱγειας του σηµερινού Σύµπαντος.
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Ενώ το ΛCDM παϱαµένει το πιο ακϱιϐές και απλό κοσµολογικό µοντέλο που πεϱιγϱάϕει

το Σύµπαν µας µαστίϹεται από πολλά Ϲητήµατα που απειλούν την κυϱιαϱχία του. Σε αυτή

τη διατϱιϐή επιλέγουµε να ασχοληϑούµε µε τα δύο πιο σηµαντικά "αγκάϑια στα πλευϱά" του

ΛCDM , τα πϱοϐλήµατα της σταϑεϱάς Hubble και του S8. Το πϱώτο αϕοϱά την ασυµϕωνία

µεταξύ των τιµών της σταϑεϱάς Hubble που δίνονται από τις µετϱήσεις του "Πϱόσϕατου" και

του "Πϱώιµου" Σύµπαντος και σύµϕωνα µε τις τελευταίες παϱατηϱήσεις έχει ϕτάσει στο πολύ

σηµαντικό επίπεδο των 5σ. Το πϱόϐληµα του S8, είναι ένα λιγότεϱο εµϕανές Ϲήτηµα του ΛCDM

που αϕοϱά την διαϕοϱά σε επίπεδο 2-3σ µεταξύ των πεϱιοϱισµών στην ισχύ της οµαδοποίησης

της ύλης, όπως αυτές οϱίϹονται από τις ανισοτϱοπίες του CMB και των ανιχνευτών µετατόπισης

πϱος το εϱυϑϱό, όπως ο ϐαϱυτικός ϕακός. ΕστιάϹουµε σε µια πϱοτεινόµενη λύση και για τα δύο

αυτά πϱοϐλήµατα µε ϐάση µια πολύ πϱόσϕατη µετάϐαση του απόλυτου µεγέϑους SnIa M .

Ξεκινάµε διερευνώντας µια µέϑοδο για την αύξηση της τιµής της σταθεράς Hubble µέσω

ενός εκφυλισµού µεταξύ της παϱαµέτϱου w της εξίσωσης κατάστασης της σκοτεινής ενέϱγειας

και του H0 που υπάρχει εγγενώς στο ϕάσµα ισχύος του CMB. ∆είχνουµε ότι παϱόλο που αυτή

η µεϑοδολογία είναι καλά τεκµηριωµένη και επιτϱέπει µια ϕαινοµενική επίλυση του προβλή-

µατος της σταθεράς του Hubble επικαλώντας απλώς ένα µοντέλο σκοτεινής ενέϱγειας wCDM

, αποτυγχάνει να αντιµετωπίσει το πϱόϐληµα S8 και στην πραγµατικότητα το επιδεινώνει. Για

την ακϱίϐεια, αποδεικνύουµε αϱγότεϱα ότι οποιοδήποτε τέτοιο µοντέλο προσπαθεί να επιλύσει

το πϱόϐληµα της σταθεράς του Hubble αυξάνοντας απλώς την τιµή H0, πάντα επιδεινώνει το

Ϲήτηµα S8.

Μετά από αυτό, παρουσιάζουµε το µοντέλο Late w-M Transition (LwMT ), το οποίο ϐασίζε-

ται στο γεγονός ότι στην καϱδιά του προβλήµατος της σταθεράς του Hubble ϐρίσκεται η απόκ-

λιση µεταξύ των τιµών των απόλυτων µεγεθών SnIa όπως υπολογίζονται από το CMB και τους

Κειϕήδες που παίζουν τον ϱόλο τοπικών ϐαθµονοµητών (Κϱίση Μ). Αυτό, σε συνδυασµό µε

το γεγονός ότι η χαρακτηριστική "πρόσφατη" µέτϱηση του H0 από τη συνεργασία SH0ES δεν

µετϱά στην πραγµατικότητα την παϱάµετϱο Hubble στο παϱόν, αλλά συνάγει την τιµή της

παρεκτείνοντας από τη µέτϱηση 0, 023 < z < 0, 15 του H(z), µας επιτϱέπει να εξερευνήσουµε

τη δυνατότητα ύπαϱξης νέας ϕυσικής στην εποχή z < 0, 023. Αυτή η νέα ϕυσική ϑα µποϱούσε

να έχει ως αποτέλεσµα τη µετάϐαση του απόλυτου µεγέϑους M που είναι ικανή να επιλύσει

την προαναφερθείσα κϱίση Μ. Η ύπαϱξη µιας µετάϐασης στο Geff ϑα µποϱούσε να έχει αυτό

το επιθυµητό αποτέλεσµα, ενώ ταυτόχϱονα ϑα µείωνε και το επίπεδο του προβλήµατος S8.

Εποµένως, αναζητούµε και ϐρίσκουµε ενδείξεις µιας τέτοιας ϐαρυτικής µετάϐασης στην εξέλιξη

της Βαϱυονικής Tully-Fisher σχέσης, ενώ προσπαθούµε επίσης να περιορίσουµε την επίδρασή

της χρησιµοποιώντας συλλογές δεδοµένων γαλαξιών χαµηλής ερυθρής µετατόπισης 6dFGS και

2MRS.

Ενώ το µοντέλο LwMT παϱουσιάϹει από κατασκευής µια πολύ καλή προσαρµογή σε διά-

ϕορα κοσµολογικά δεδοµένα και είναι, τουλάχιστον κατ’ αρχήν, ικανό να επιλύσει τόσο το

πϱόϐληµα της σταθεράς του Hubble όσο και του S8, µαστίζεται από ϑέµατα fine-tuning. Η

αίσϑηση ότι αυτές οι κοσµολογικές εντάσεις ϑα είναι µαϹί µας για καιϱό ακόµα παϱαµένει.

∆εν δείχνουν σηµάδια ϐελτίωσης και ξεφεύγουν όλο και περισσότερο από την πεποίθηση ότι

είναι αποτελέσµατα συστηµατικών σϕαλµάτων που δεν έχουν ληφθεί υπόψιν εως τώϱα. Μποϱεί

κάλλιστα να είναι καιϱός για το ΛCDM να παραδώσει τη ϑέση του σε ένα νέο και πιο ικανό

κοσµολογικό µοντέλο. ΄Ο,τι και αν σκοπεύει να ϕέϱει το µέλλον για την Κοσµολογία το µόνο

ϐέϐαιο είναι ότι ϑα είναι συναϱπαστικό.
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Preface

Modern Cosmology is intertwined with the concept of the standard cosmological Λ Cold Dark

Matter (ΛCDM) model. This cosmological concordance model is based on two core ideas that

dominate modern astrophysics, the concepts of Dark Energy and Dark Matter. Dark being

the adjective that describes both of them for two good reasons, firstly because they do not

interact electromagnetically and secondly because we have no idea what what they actually

are. The names were coined by Fritz Zwicky (Dark Matter) and Michael Turner (Dark Energy),

in the 1930s and 1998 respectively. In a sense it could be said that Dark Matter and Dark

Energy remind us of luminiferous Aether, since they are extremely exotic concepts conceived

out of the need to explain certain observed phenomena and they possess unique capabilities

and characteristics ideal for the explanation of said phenomena, whilst they elude any and

all observational detection.

While the concept of luminiferous Aether was conceived during the pre-Relativity era of

Cosmology out of the need to explain the apparent ability of light to propagate through the

vast stretches of vacuum in space, Dark Matter and Dark Energy were formulated in order

to explain arguably more fundamental cosmological issues. The first such issue was that of

the missing matter and it gave birth to Dark Matter. More specifically, it became apparent

via various observations that many galaxies in our Universe should behave the way they do

considering the amount of their visible/observable matter, this difference could sometimes

be so great that many of the galaxies we have observed should not even have formed. After

a variety of other types of observations such as gravitational lensing phenomena and the

Cosmic Microwave Background (CMB) we have reached the conclusion that majority of the

matter in the Universe interacts only gravitationaly and is therefore invisible. To be more

precise it is calculated that dark matter constitutes 85% of the total mass of the Universe.

Next we have the concept of Dark Energy, which was born out of the necessity to explain

the observed accelerated expansion of the Universe. In the context of the ΛCDM model it

is presented in the form of the cosmological constant Λ. The cosmological constant term

was first proposed by Albert Einstein as a fine-tuning mechanism that could create a static

universe via the emulation of gravitating negative masses homogeneously distributed in

interstellar space. However, since such a static universe ultimately proved to be unstable

combined with the fact that Edwin Hubble made the historic observation of the expansion of

the Universe the concept of the cosmological constant was scrapped for a time. It resurfaced

during the 90s when the accelerated expansion of the Universe was reported via Supernova

type Ia (SnIa) observations, Λ became once more essential in explaining this monumental

observation. This hypothetical Dark Energy is estimated that constitutes 68% of the energy

of the present-day Universe.

While ΛCDM remains the most accurate and simple cosmological models that describes

our Universe is plagued by many tensions and issues that threaten its dominance. In this
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thesis we choose to concern ourselves with the two most prominent thorns in ΛCDM ’s

side, the Hubble and S8 tensions. The first concerns the discrepancy between the values of

the Hubble constant given by "Late" and "Early" Universe measurements and according to

the latest observations it has reached an incredible 5σ level. The S8 or growth tension as

it is more plainly known, is a less prominent issue of ΛCDM that concerns the 2-3σ level

discrepancy between the constraints on the matter clustering strength as they are set by the

primary anisotropies of the CMB and the lower redshift probes such as gravitational lensing.

We focus on proposing a solution for both these tensions based on very late time transition

of the SnIa absolute magnitude M .

We start by exploring a method to raise the value of the Hubble constant via a degeneracy

between the equation of state parameter w and H0 which is inherently present in the CMB

power spectrum. We show that although this methodology is well documented and allows

for an apparent resolution of the Hubble tension simply by invoking a phantom dark energy

wCDM model, it fails to address the S8 tension and in fact it actually worsens it. As a matter

of fact, we prove later on that any such model that tries to resolve the Hubble tension by

simply elevating the H0 value, always worsens the S8 tension.

Following that, we present the Late w-M Transition (LwMT ) model, which is based on the

fact that at the heart of the Hubble tension lies a discrepancy between the values of the SnIa

absolute magnitudes as they are calculated by the CMB and the local Cepheid calibrators

(M crisis). This, combined with the fact that the quintessential "late" Universe measurement

of H0 by the SH0ES collaboration does not actually measure the Hubble parameter in the

present, rather infer its value by extrapolating from the 0.023 < z < 0.15 measurement of

H(z), allows us to explore the possibility of new physics in the z < 0.023 era. This new

physics could have as a result the absolute magnitude transition that is able to resolve the

aforementioned M crisis. The existence of a transition in the Geff could have this desired

effect, while at the same time easing the S8 tension as well. We therefore search and find

hints of such a gravitational transition in the evolution of the Baryonic Tully-Fisher relation,

while we also attempt to constrain its effect using compilations of low-z 6dFGS and 2MRS

galaxy data.

While the LwMT model presents by construction a very good fit to various cosmological

data and is, at least in principle, able to resolve both the Hubble and S8 tensions is itself

plagued by fine-tuning issues. The feeling that these cosmological tensions will be with us for

some time still remains. They show no signs of improvement and they are straying further

and further from the belief that they are results of unaccounted for systematic errors. It

might very well be the case that it is time for ΛCDM to relinquish its position to a new and

more capable concordance model. Whatever the future may bring for Cosmology only the

certainty that it will be exciting exists.
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CHAPTER 1
Introduction

1.1 Modern Cosmology

O
nly but a handful of theories in Physics have had such an impact on the way

we view the world, as the theory of General Relativity [1] formulated by Albert

Einstein in the beginning of the 20th century. Einstein stepped on the shoulders

of such giants as the likes of Sir Isaac Newton [2] and James C. Maxwell [3],

shaping our understanding of the Universe. He did that by giving us a unique

theory of Gravity, one that weaves time and space into a single entity and succeeds at making

accurate and precise predictions that have been tested time and time again in the span of a

century.

The theory of General Relativity is essential in the study of Cosmology. Among other

reasons, that is because it provides the necessary tools for the construction of the standard

cosmological model Λ Cold Dark Matter (ΛCDM). In the following sections we will start by

providing some important mathematical formulation necessary for understanding ΛCDM, we

will talk about the most important challenges it faces and last but not least we will attempt

to make a few small predictions about the future of Cosmology as a whole.

1.1.1 The Cosmological Principle

At any particular time our Universe looks the same from all positions in space, thus all directions
at any point are equivalent. This principle has been the cornerstone of modern Cosmology

and to put it plainly it states that we are not special. More so than that, it states that no

point in our Universe, at any time since its creation till now, has been more special than any

other.

The above statement is one that drives us somewhat against the layman’s understanding

of our world. After all if one travels to a rural area, away from the pollution of the city lights,

one can clearly observe during the night sky that most of the stars are concentrated in a large

group that we call the Milky Way Galaxy. So clearly this place must be more special than

any other. That would be the layman’s logical conclusion and has been for many millennia,

from the moment that our species begun observing the night sky until the previous century.

However, for better or worst, when viewed on a sufficiently large scale the properties of our

Universe are the same for all observers. Going back to the Milky Way example, if we were to

observe it from a large enough distance we would see that it belongs to a small galaxy group
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Chapter 1. Introduction

called the Local Group, which in turn when viewed from far enough reveals that it is a part

of the Virgo constellation of galaxies. Increasing the scale of our observations, significantly

increases the uniformity.

This cosmological principle is essential since if it was not correct, we would not be able

to extend our physics beyond our immediate surroundings and our mathematical formulas

could never hope to map the workings of the entire Universe. Thankfully, we have very good

evidence that our Universe is the same (isotropic) on large scales, mainly by the constancy

of the Cosmic Microwave Background (CMB) in different directions on the sky. Therefore,

we also characterize it as homogeneous, since it has no preferred center. At this point, we

should note that even though isotropy implies homogeneity, the reverse is not always the

case. We could i.e. consider of a universe filled with an homogeneous large-scale magnetic

field pointed in a single direction that would obviously not be be isotropic.

1.1.2 The Friedmann-Lemaître-Robertson-Walker Metric

If we take into account the homogeneity and isotropy of the Universe we are left with some

constraints on the nature of the three-dimensional, spacelike hypersurfaces that replace

the ambiguity of the "moment in time" in General Relativity terms. The introduction of these

hypersurfaces allow us to accurately define a globally valid time parameter t. This parameter

enables us to define a universal time by considering that each hypersurface exists at a

particular t = const. time.

The isotropy postulate demands that all points on a particular hypersurface are equiva-

lent, while the homogeneity one demands that they are equivalent considering fundamental

observers. A metric constrained in this way can only take the form,

ds2 = c2dt2 − S2(t)hijdx
idxj

(1.1)

where hij are functions of the spatial coordinates (x1, x2, x3) and S(t) is a time-dependent

scale factor. We proceed by considering that the 3 dimensional space we will concern our-

selves with is maximally symmetric and therefore requires the least amount of functions in

order to describe its geometric properties.

More specifically, in our case the Riemann curvature tensor Rijkl has only 6 indepen-

dent elements. Since we consider our space to be maximally symmetric, a single scalar is

enough to characterize its constant curvature. We call it K, and it is of course coordinate

independent. The simplest way to define the Riemann tensor with regards to K is,

Rijkl = K(gikgjl − gilgjk) (1.2)

where gij is the metric tensor. Applying simple tensor contractions we arrive at the forms for

the Ricci tensor,

Rjk = −2Kgjk (1.3)

and the curvature scalar

R = −6K (1.4)

with the latter, of course, only depending on K.

In spherical polar coordinates (r, θ, ϕ) the line element of this space takes the form of the

spatial part of a general, static and isotropic metric,

dσ2 = B(r)dr2 + r2dθ2 + r2 sin2 dϕ2
(1.5)
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1.1. Modern Cosmology

where B(r) is arbitrary and will be defined with the help of the Ricci tensor. If we consider

the general definition of the Ricci tensor in terms of Christoffel symbols,

Rij = ∂jΓ
k
ik − ∂kΓ

k
ij + Γl

ikΓ
k
lj − Γl

ijΓ
k
lk (1.6)

and calculate the non-zero connection coefficients with regard to Eq. (1.5) as [4,5],

Γθ
rθ = Γϕ

rϕ =
1

r
, Γθ

ϕϕ = − sin θ cos θ, Γϕ
ϕθ = cot θ ,

Γr
rr =

1

2B(r)

dB(r)

dr
, Γr

ϕϕ = −r sin2 θ

B(r)
, Γr

θθ = − r

B(r)
,

we find that,

Rrr = − 1

rB(r)

dB(r)

dr
(1.7)

Rrr = − 1

B(r)
− 1− r

2B(r)2
dB(r)

dr
(1.8)

Rrr = −Rθθ sin
2 θ. (1.9)

These results, in tandem with Eq. (1.3) allow us to obtain,

B(r) =
1

1−Kr2
(1.10)

using simple algebra. Therefore, we see that B(r) is dependent upon the spatial curvature

scalar K and the spatial line element (1.5) takes the form

dσ2 =
dr2

1−Kr2
+ r2dθ2 + r2 sin2 dϕ2. (1.11)

There are two main take-away points from Eq. (1.11). Firstly, the fact that if we consider

scales on which the spatial curvature plays a small role then it regresses back to the well-

known, equivalent Euclidean one. Secondly, that this line element describes a 3-sphere

embedded in a four-dimensional Euclidean space with no real center.

In essence, we have succeeded in defining the spatial part of the general metric given by

Eq. (1.1) obtaining

ds2 = c2dt2 − S2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 dϕ2)

]
. (1.12)

Now with a simple rescaling of the scale factor S(t) to α(t), we have,

ds2 = c2dt2 − α2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 dϕ2)

]
(1.13)

where k = K/|K| supposing that K ̸= 0 and takes the values −1, 0, 1 depending on the type

of spatial curvature we concern ourselves with. This the standard form of the Friedmann-

Lemaître-Robertson-Walker (FLRW) metric and as we have shown it has deep cosmological

roots, since it is derived from the geometric properties of homogeneity and isotropy of the

Universe.

3
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1.1.3 Hubble Law

The main part of this thesis revolves around the cosmological issue of the present day value

of the Hubble parameter. But what is the Hubble parameter? In the context of the FLRW

metric given by Eq. (1.13) it is naturally defined as [4,5],

H(t) ≡ α̇(t)

α(t)
. (1.14)

where the dot denotes differentiation with regard to the cosmic time t, and its present day

value is denoted as H(t0) ≡ H0.

Figure 1.1: This plot shows the velocity-distance relation among extra-galactic nebulae, and

served as the first observational recording of the Hubble law. Adopted from the historic

Ref. [6].

The logic leading to the above definition becomes apparent if we consider a galaxy emitting

a photon at a time t, then a standard power series expansion of the scale factor α(t) around

the present cosmic time t0 when we receive this photon will take the form

α(t) = α[t0 − (t0 − t)]

= α(t0)− α̇(t0)(t0 − t) +
α̈(t0)

2
(t0 − t)2 − ...

= α(t0)

[
1−H0(t0 − t)−H2

0

α̈(t0)α(t0)

2α̇2(t0)
(t0 − t)2 − ...

]
. (1.15)

Therefore, it is obvious from Eq. (1.14) that the Hubble parameter H(t) provides us with the

ratio of the rate of the scale factor’s α change with regard to cosmic time, over its current

value. The quantity t0 − t is defined as the look-back time and for z << 1 it is given by

t0 − t = H−1
0 z −H−1

0 (1 +
1

2
q0)z

2 + .... (1.16)

In a similar fashion we can define the quantity [4,5]

q(t) ≡ − α̈(t)α(t)

α̇2(t)
(1.17)
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which appears in Eq. (1.15), as the deceleration parameter. If we write the redshift z in

regards to the look-back time t− t0 we will then have

z =
α(t0)

α(t)
− 1

=
[
1− (t0 − t)H0 −

q0
2
(t0 − t)2H2

0 − ...
]−1

− 1. (1.18)

If we combine Eqs. (1.14) (1.15) and (1.16) we will find that for small redshift the Hubble

parameter H(z) varies as

H(z) = H0 [1 + (1 + q0)z − ...] . (1.19)

Now considering that for the FLRW metric the proper distance d of a nearby galaxy

emitting photons at an epoch t0 is d ≈ c(t0− t), and that Eq. (1.18) reduces to z ≈ (t0− t)H0

for small z, we get

v = cz = H0d. (1.20)

The above equation is the well-known Hubble law and connects the recession velocity v of a

nearby galaxy emitting photons towards us, with the cosmological redshift z, allowing us to

interpret the latter as a Doppler shift. It therefore, allows us to deduce that all galaxies move

away from us with a speed that is relative to their distance. This law implies a linearity in

the relation of the galaxies recession velocities and their distances, as is also apparent in Fig.

(1.1), and characterizes the dimensionality of the Hubble parameter as inverse time. This

inverse time dimensionality hints towards the fact that the quantity 1/H0 is the approximate

age of our Universe.

Edwin Hubble’s calculation for the parameter H0 which characterizes this law was ap-

proximately 500 km s−1 Mpc−1
. A number of subsequent estimations were made in the

following decades, with the most prominent one reported by R. Brent Tully [7] in late 80s.

His estimation placed the value of H0 between 50 and 100 km s−1 Mpc−1
, a far cry from

the ≈ 70 km s−1 Mpc−1
value reported in modern surveys. The ambiguity that still exists

regarding the exact value of this constant will be one of the major points of interest of this

thesis.

1.1.4 Luminosity and Angular Diameter Distances

Since we have established that our Universe is expanding we must now consider a way to

appropriately define the measurement of distance inside it, at large redshifts. It is well-

known [4,8] that the apparent luminosity of a source is given in relation to its absolute one

by the expression,

l =
L

4πd2
(1.21)

where d is its distance from the observer. However, this formula is not correct when consid-

ering large distances. If we consider a luminous object that acts as a source at a coordinate

distance r1 from us, then by t0 when its light will have reached us it will have also reached a

spherical area 4πr21α
2(t0) (supposing an FLRW metric). This means that our telescope, which

will be observing, will receive a A/4πr21α
2(t0) fraction of the source’s light, supposing that A is

its aperture. Therefore, l should be proportional to 1/r21α
2(t0) instead of 1/d2. Furthermore,

due to the expansion of the universe the rate of the photon’s emission from the source is
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larger that their rate of arrival at the observer. The same is true, of course, for the energy of

the photons. The photon emission/arrival rates and their energies differ by the same exact

redshift factor 1/(1 + z).
These differences allow us to define a new expression for the apparent luminosity of a

source,

l =
L

4πd2L
(1.22)

where dL is the luminosity distance, given by

dL = α(t0)r1(1 + z). (1.23)

For objects with z << 1 the luminosity distance can be re-written as a power series, relating

it with the Hubble constant as

dL = H−1
0

[
z +

1

2
(1− q0)z

2 + ...

]
(1.24)

which enables the possibility of estimating H0 and q0 diretly from the measurement of dL.

Among the other distances that are of value to Cosmology we will discuss about the

angular diameter distance dA, since it plays a very important role when comparing the

angular sizes of objects. For a source located at a co-moving radial coordinate r1 that emits

light at time t1, it is defined as

dA = α(t1)r1. (1.25)

This means that for the case of the FLRW metric, the ratio of the angular diameter distance

over the luminosity distance is given by the Etherington distance-duality relation

dA
dL

= (1 + z)−2, (1.26)

which is dependent only on redshift.

1.1.5 The Friedmann-Lemaître Equations

Moving on, we will define the two characteristic differential cosmological equations that

determine the evolution of the scale factor α(t) within the context of the cosmic time t. In

order to do so we will start from the gravitational field equations,

Rµν = −k(Tµν −
1

2
Tgµν) + Λgµν (1.27)

where Λ is the non-zero cosmological constant, T = T µ
µ and k = 8πG/c4. We assume that

the matter in the toy universe we are studying is described by the energy-momentum tensor

belonging to a perfect fluid

T µν = (ρ+
p

c2
)uµuν − pgµν (1.28)

where p, ρ are its pressure and proper density in the instantaneous rest frame and vµ is

its 4-velocity. Therefore, we proceed by calculating the non-zero Christoffel symbols of the

FLRW metric given by Eq. (1.13). In order to calculate the surviving coefficients we use the

relation

Γσ
µν =

1

2
gσρ(∂νgρµ + ∂µgρν − ∂ρgµν) (1.29)
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1.1. Modern Cosmology

and find [4,5],

Γt
rr =

αα̇

c2(1− kr2)
, Γt

θθ = αα̇r2/c2, Γt
ϕϕ = αα̇r2 sin2 θ/c2, Γr

rr =
kr

1− kr2
,

Γr
θθ = −r(1− kr2), Γr

ϕϕ = −r sin2 θ(1− kr2), Γr
tr = Γθ

tθ = Γϕ
tϕ =

α̇

α
, Γϕ

θϕ = cot θ ,

Γθ
rθ = Γϕ

rϕ =
1

r
Γθ
ϕϕ = − sin θ cos θ ,

where of course the dot symbolizes differentiation with respect to t. We are now ready to

calculate the elements of the Ricci tensor which are given by the Eq. (1.6). The only Ricci

elements that are non-zero are the diagonal ones [4,5],

Rtt = 3α̈/α,

Rrr = −(αα̈ + 2α̇2 + 2c2k)c−2/(1− kr2),

Rθθ = −(αα̈ + 2α̇2 + 2c2k)c−2r2,

Rϕϕ = −(αα̈ + 2α̇2 + 2c2k)c−2r2 sin2 θ.

We have now calculated the left-hand side terms of Eqs. (1.27). In order to proceed with

the right-hand side we have to consider that the covariant components of the 4-velocity

in our coordinate system are vµ = c2δtµ and vµvµ = c2. It is now easy to show that the

energy-momentum tensor takes the form,

Tµν = (ρc2 + p)c2δtµδ
t
ν − pgµν (1.30)

and that its contraction T is equal to,

T = ρc2 − 3p. (1.31)

Therefore, we can show that the surviving right-hand elements of Eqs. (1.27) take the forms,

−k(Ttt −
1

2
Tgtt) + Λgtt = −1

2
k(ρc2 + 3p)c2 + Λc2,

−k(Trr −
1

2
Tgrr) + Λgrr = −

[
1

2
k(ρc2 − p) + Λ

]
α2/(1− kr2),

−k(Tθθ −
1

2
Tgθθ) + Λgθθ = −

[
1

2
k(ρc2 − p) + Λ

]
α2r2,

−k(Tϕϕ −
1

2
Tgϕϕ) + Λgϕϕ = −

[
1

2
k(ρc2 − p) + Λ

]
α2r2 sin2 θ.

It is straightforward to combine the equations above with those of the Ricci tensor compo-

nents, to arrive at two independent equations that act as analytic solutions to the gravita-

tional field Eqs. (1.27) [4,5],

α̈ = −4πG

3
(ρ+

3p

c2
)α +

1

3
Λc2α, (1.32)

α̇2 =
8πG

3
ρα2 +

1

3
Λc2α2 − c2k. (1.33)
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Chapter 1. Introduction

These are the famous Friedmann-Lemaître cosmological field differential equations. With the

help of the previously defined (see Eq. (1.14)) Hubble parameter H and by assuming c = 1
we re-write the above equations as,

Ḧ +H2 = −4πG

3
(ρ+ 3p) +

1

3
Λ, (1.34)

H2 =
8πG

3
ρ+

1

3
Λ− k

α2
, (1.35)

which is their most usual form. Until now we have used the cosmological term Λ without

giving much thought into its importance. The next subsection is devoted to doing exactly

that.

1.1.6 The Standard Cosmological Model ΛCDM

In order to better explain the importance of the cosmological constant Λ in modern Cosmol-

ogy, we must dive into a historical recounting of the reason that lead to its original insertion

in the equations of GR. It all started with the hypothesis that our Universe is static and eter-
nal. Even though we know now that this proposition is false, that was not the consensus of

the scientific community around the time when Einstein formulated the theory of General

Relativity. Originally his theory did not account for such a static universe and that becomes

quite obvious if someone takes a look at the first iteration of the gravitational field equations

Gµν = 8πGTµν . (1.36)

These equations do not account for a static universe and cannot lead to any such solutions.

That is because they offer no "antidote" for the constant gravitational attraction of matter

and would, no-doubt, eventually lead to a collapse of the universe. This problem was coun-

teracted by Einstein with the strategic inclusion of a constant Λ in Eqs. (1.36) coupled with

the metric tensor giving them the form [4,5],

Gµν − Λgµν = 8πGTµν . (1.37)

This small inclusion managed to both preserve the invariance and symmetry of the theory,

and simultaneously account for a static universe. The latter was accomplished by showing

that a constant like Λ was enough to counter the attractive gravitational force of matter in

the universe. However, what Einstein had no way of knowing was that almost a decade after

his theory was published, Edwin Hubble was going to shatter the static universe hypothesis

with an observation of great importance. More specifically Hubble discovered that the red-

shift of the galaxies he managed to observe was directly proportional to their distance from

Earth. This observation of an expanding universe was subsequently named the Hubble law

and it was quantified using Eq. (1.20), described in greater detail in the relevant previous

subsection.

For many decades the scientific community, and Einstein himself, championed the idea

of the expanding universe. A fact that rendered the notion of a cosmological constant ir-

relevant and useless. That was about to change in 1998, when observations of Type Ia

Supernovae (SnIa) from the High-Redshift Supernova Research Team and the Supernova

Cosmology Project showed that our universe is not only expanding, but it is expanding with
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1.1. Modern Cosmology

an accelerated rate [9]. This accelerated expansion was attributed to an elusive quantity aptly

named Dark Energy, that seems to act as a sort of "anti-gravity", opposing the attraction of

matter in the universe.

Up to the point of the 1998 SnIa observations, Cosmology was dominated by various

iterations of Cold Dark Matter (CDM) models [10–12]. Dark Matter is a hypothetical, unseen

form of matter that seems to comprise the majority of matter in our universe. Its inclusion in

Cosmology became essential due to the fact that various astrophysical observations showed

that the matter in our universe in very large scales did not seem to behave as it should

have, according to GR. That would mean that either GR is incomplete, or that the amount

of matter that we observe and account for in our calculations for gravitational effects due to

GR is wrong. After observing Einstein’s theory triumphing over experimental tests again and

again, while making astounding predictions, the scientific community (mostly) opted for the

latter option. Specifically, they included a type of non-baryonic matter that interacts only

gravitationaly and not electromagnetically, making it invisible. Cold Dark Matter, especially,

represents a flavour of Dark Matter comprising of particles with non-relativistic energies.

With the observation of the accelerated expansion came the return of the cosmological

constant and its addition to the CDM model. The new standard cosmological model of our

universe was named ΛCDM and it quickly became accepted in the scientific community as the

"best-fit CDM model". The energy density and pressure of the cosmological constant in the

context of ΛCDM are related via the equation ρΛ = −pΛ, making the model obey a constant

equation of state w = −1. ΛCDM assumes the existence of Dark Energy, Dark Matter, GR

at cosmological scales and the existence of an inflation phase that is essential to overcome

the horizon, flatness and magnetic monopole problems [4,13–17]; while it has the extremely

important advantage of remaining very successful in fitting a variety of cosmological data

[18–36].

Parameter Name Value

Ωb,0 h
2

Baryon Density 0.02237± 0.00015
Ωc,0 h

2
Cold Dark Matter Density 0.1200± 0.0012

ns Spectral Index 0.9649± 0.0042
τ Optical Depth 0.0544± 0.0073

100 θMC Angular Size of the Sound Horizon at Recombination 1.04092± 0.00031
ln(1010As) Amplitude of Curvature Primordial Perturbations 3.044± 0.014

Table 1.1: The values of the six independent parameters of ΛCDM as they are constrained

by the Planck 2018 mission [20] using the TT,TE,EE+lowE+lensing likelihood data.

The inviting simplicity of ΛCDM is further apparent if one considers the fact that it is

depended only on six essential parameters. These are presented in table 1.1, along with

their Planck 2018 [20] values. Using these six basic parameters in the context of ΛCDM

one can indirectly obtain every other cosmological parameter. However, despite the fact that

ΛCDM has been the standard cosmological model for more than two decades and that it has

been lauded for its observational success, having predicted among others the properties of

the power spectrum of the Cosmic Microwave Background (CMB) [18, 20], it faces a large

number of challenges in the form of theoretical and observational tensions. These tensions

are causing serious cracks in the model and the theories that underpin it. The following two

sections are dedicated to discussing arguably the two most important such tensions.
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Moresco et al. (2022), open wCDM with systematics: 67.8-7.2
+8.7

Moresco et al. (2022), flat ΛCDM with systematics: 66.5 ± 5.4

Hotokezaka et al. (2019): 70.3-5.0
+5.3

Mukherjee et al. (2019), GW170817+VLBI: 68.3-4.5
+4.6

Mukherjee et al. (2020), GW170817+ZTF: 67.6-4.2
+4.3

Gayathri et al. (2020), GW190521+GW170817: 73.4-10.7
+6.9

Palmese et al. (2021), GW170817: 72.77-7.55
+11

Abbott et al. (2021), GWTC–3: 68-8.0
+12.0

Mukherjee et al. (2022), GW170817+GWTC–3: 67-3.8
+6.3

Wong et al. (2019), H0LiCOW 2019: 73.3-1.8
+1.7

Shajib et al. (2019), STRIDES: 74.2-3.0
+2.7

Liao et al. (2019): 72.2 ± 2.1
Liao et al. (2020): 72.8-1.7

+1.6
Qi et al. (2020): 73.6-1.6

+1.8
Millon et al. (2020), TDCOSMO: 74.2 ± 1.6

Yang, Birrer, Hu (2020): 73.65-2.26
+1.95

Birrer et al. (2020), TDCOSMO+SLACS: 67.4-3.2
+4.1

Birrer et al. (2020), TDCOSMO: 74.5-6.1
+5.6

Denzel et al. (2021): 71.8-3.3
+3.9

Wang, Meng (2017): 76.12-3.44
+3.47

Fernandez Arenas et al. (2018): 71.0 ± 3.5

Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8
Kourkchi et al. (2020): 76.0 ± 2.6

Pesce et al. (2020): 73.9 ± 3.0

de Jaeger et al. (2020): 75.8-4.9
+5.2

de Jaeger et al. (2022): 75.4-3.7
+3.8

Cantiello et al. (2018): 71.9 ± 7.1
Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1

Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5

Huang et al. (2019): 73.3 ± 4.0

Yuan et al. (2019): 72.4 ± 2.0
Reid, Pesce, Riess (2019), SH0ES: 71.1 ± 1.99

Freedman et al. (2020): 69.6 ± 1.9
Soltis, Casertano, Riess (2020): 72.1 ± 2.0
Kim, Kang, Lee, Jang (2021): 69.5 ± 4.2

Freedman (2021): 69.8 ± 1.7
Anand, Tully, Rizzi, Riess, Yuan (2021): 71.5 ± 1.8

Jones et al. (2022): 72.4 ± 3.3
Dhawan et al. (2022): 76.94 ± 6.4

Camarena, Marra (2019): 75.4 ± 1.7
Riess et al. (2019), R19: 74.03 ± 1.42

Breuval et al. (2020): 72.8 ± 2.7
Riess et al. (2020), R20: 73.2 ± 1.3

Camarena, Marra (2021): 74.30 ± 1.45
Riess et al. (2022), R22: 73.04 ± 1.04

Farren et al. (2021): 69.5-3.5
+3.0

Philcox et al. (2020), Pl (k)+CMB lensing: 70.6-5.0
+3.7

Baxter et al. (2020): 73.5 ± 5.3

Alam et al. (2020), BOSS+eBOSS+BBN: 67.35 ± 0.97
Ivanov et al. (2020), BOSS+BBN: 67.9 ± 1.1

Colas et al. (2020), BOSS DR12+BBN: 68.7 ± 1.5
D' Amico et al. (2020), BOSS DR12+BBN: 68.5 ± 2.2

Philcox et al. (2021), P+Bispectrum+BAO+BBN: 68.31-0.86
+0.83

Chen et al. (2021), P+BAO+BBN: 69.23±0.77
Zhang et al. (2021), BOSS correlation function+BAO+BBN: 68.19±0.99

Hinshaw et al. (2013), WMAP9: 70.0 ± 2.2
Henning et al. (2018), SPT: 71.3 ± 2.1

Zhang, Huang (2019), WMAP9+BAO: 68.36-0.52
+0.53

Aiola et al. (2020), WMAP9+ACT: 67.6 ± 1.1
Aiola et al. (2020), ACT: 67.9 ± 1.5
Dutcher et al. (2021), SPT: 68.8 ± 1.5

Ade et al. (2016), Planck 2015, H0 = 67.27 ± 0.66
Aghanim et al. (2020), Planck 2018+CMB lensing: 67.36 ± 0.54

Aghanim et al. (2020), Planck 2018: 67.27 ± 0.60
Pogosian et al. (2020), eBOSS+Planck mH2: 69.6 ± 1.8

Balkenhol et al. (2021), Planck 2018+SPT+ACT : 67.49 ± 0.5

Cosmic chronometers

GW relatedGW related

Lensing related,mass model dependent

HII galaxy

Tully Fisher

Masers

SNII

SBF

SNIa-Miras

SNIa-TRGBSNIa-TRGB

SNIa-Cepheid

LSS teq standard ruler

CMB lensing

No CMB, with BBN

CMB without Planck

CMB with Planck

H0 km s
-1 Mpc-1

Indirect

Direct

60 65 70 75 80 85

Figure 1.2: Various cosmological probes and their 68% CL constraint on H0 (based on

Refs. [37,38] and adopted from Ref. [39]).
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1.2. The Hubble Tension

1.2 The Hubble Tension

More so than others, a spectre is haunting the standard cosmological model-the spectre of

the so called Hubble tension. Even though almost all the powers of observational and theo-

retical Cosmology have entered into a holy alliance to exorcise this spectre, it still persists. It

predominantly involves the 5σ level disagreement between the values of the Hubble constant

H0, as they are reported by the Planck and SH0ES collaborations. Specifically, the Planck

collaboration obtained their H0 = 67.27 ± 0.60 km s−1 Mpc−1
[40] model dependent mea-

surement using CMB data while assuming a ΛCDM cosmological background, in contrast

to the direct local distance ladder methodology followed by the SH0ES group that produces

an H0 = 73.04 ± 1.04 km s−1 Mpc−1
[41] value. Along with the two aforementioned key

measurements there is a multitude of other, direct and indirect, cosmological probes [42–54]

that stand on various levels of confidence in regards to their H0 best-fit values. The majority

of them are illustrated in Fig. 1.2.

In what follows we present the distance ladder methodology that was used by the SH0ES

collaboration in order to derive their value of the H0 parameter and we also present a va-

riety of other measurements that contribute to the tension. We separate them into two

groups, model-dependent (early time) and model-independent (late time) measurements,

judging mainly whether they are depended on the standard ΛCDM scenario.

1.2.1 Distance Ladder Methodology

The direct distance ladder methodology that was used by the SH0ES collaboration is based

on Type Ia Supernovae (SnIa) data, as they are calibrated using Cepheid variables [41]. More

specifically the present value of the Hubble parameter H0 is measured by the Hubble law

using a complicated process that involves calculating and optimizing a χ2
fit that constrains

the values of the relevant parameters. These are the fiducial luminosity of the SnIa and

Cepheids, two parameters standardizing Cepheid luminosities, H0 and the host galaxies

distances. This fit is calculated simultaneously among geometric distance measurements to

standardized Cepheid variables, Cepheid variables and SnIa in nearby galaxies and lastly

SnIa in the Hubble flow region.

Assuming that a correction for the effect of the interstellar dust has been made then the

form of the distance modulus µ of a source is given by,

µ = m−M = 5 log dL + 25 (1.38)

where m is the apparent magnitude, M is the absolute magnitude and dL is the luminosity

distance of the source. When a Cepheid and a SnIa calibrator belong to the same i-th host

galaxy they are connected via the equation,

m0
B,i = µ0,i +M0

B (1.39)

where M0
B is the fiducial luminosity of the SnIa and m0

B,i is their standardized maximum-

light apparent magnitude. In order to estimate the H0 parameter, one should consider the

intercept αB of the Hubble law (see Fig. 1.3) which takes the form

αB = log cz

[
1 +

1

2
(1− q0)z −

1

6
(1− q0 − 3q20 + j0)z

2 +O(z3)

]
− 0.2m0

B (1.40)

11



Chapter 1. Introduction

for z > 0 regardless of the expansion history assumed, q0 is the deceleration parameter that

we defined in subsection 1.1.3 and j0 is the jerk parameter. After the αB value is acquired

one is able to calculate the H0 using the equation

logH0 = 0.2M0
B + αB + 5. (1.41)

In order to avoid systematic errors as much as possible it is imperative that the optimization

of Eq. (1.40) is done simultaneously with that of Eq. (1.39), since the covariance of SnIa

data is non-trivial.

In this approach it is assumed that the Cepheid Wesenheit magnitudes which describe

their dependence on a variety of observed characteristics are described by the relation [55],

mW
Hij = µi +MW

H1 + bW (logPij − 1) + ZW [O/H]ij (1.42)

where the j index identifies the Cepheid magnitude and the i characterizes the host. There-

fore, Pij is the source’s period in days and [O/H]ij is their metallicity. Furthermore, MW
H1 is

the fiducial absolute magnitude of a Cepheid with solar metallicity, logP = 10 days, and the

γ parameters bW and ZW define the empirical relation between Cepheid period, metallicity,

and luminosity.

Figure 1.3: The Hubble diagram of the data [56] used in the determination of the intercept

αB, which in turn allows for the estimation of the Hubble constant. Th αB parameter was

measured using data within the 0.023 < z < 0.15 redshift range. Adopted from Ref. [57]).

The distance ladder methodology with the implementation of SnIa and Cepheid data, has

become the most precise tool of measuring the Hubble constant. This is highlighted by the

fact that its certainty has now reached the 1% level [41]. Until the arrival of new data from
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gravitational waves observations or from new facilities such as the JWST [58], it is very likely

that this precision will not be surpassed. However, we have to mention that this methodology

has a blind-spot that we will take advantage of in the next chapters. Specifically, this blind-

spot is embedded on the fact that the value of H0 this methodology reports, is not calculated

at z = 0 as it should, rather it is inferred from an extrapolation of the Hubble diagram.

Therefore, it can be argued that this method does not provide the "true" value of H0 in

the event that a change in physics has happened during the extrapolated behaviour. Such

change in physics is at the heart of the model that will be thoroughly discussed in Chapter

3.

1.2.2 Model-Dependent H0 Probes

As model-depended measurements of H0 we consider those that depend on some basic

assumptions that come with the fact that most of them are based on ΛCDM cosmology.

This means that these probes are susceptible to various elements, such as the existence of

inflation, the properties of Dark Matter and Dark Energy, etc..
This type of measurements of H0 generally produce lower values, which are in agreement

with the Planck18/ΛCDM one. In what follows we will catalogue some of these measure-

ments. First of all, we have ground based telescope data such as the Atacama Cosmology

Telescope (ACT-DR4) which give an H0 = 67.9 ± 1.5 km s−1 Mpc−1
[44] value and the South

Pole Telescope (SPT-3G) with H0 = 68.8 ± 1.5 km s−1 Mpc−1
[54]. Combining these ground

based measurements with the well-known Wilkinson Microwave Anisotropy Probe (WMAP)

space based one we have H0 = 67.6 ± 1.1 km s−1 Mpc−1
[44]. Another important model-

depended probe of the H0 constant are the Baryon Acoustic Oscillations (BAO) data. These

are the fluctuations in the density of the visible, normal baryonic matter of the Universe and

are caused by acoustic density waves of the primordial plasma at early times. A compilation

of BAO measurements from various sources produces an H0 = 67.35±0.97 km s−1 Mpc−1
[59]

value.

Using an inverse distance ladder methodology via the radiation matter equality horizon,

as it is calibrated by the CMB power spectrum, one can also employ galaxy power spectra

in order to derive H0. In this regard, the combined Baryon Oscillation Spectroscopic Survey

(BOSS) full-shape data along with the Big Bang Nucleosynthesis (BBN) constraint derived

from the measurements of the primordial deuterium and the BAO data gives an H0 = 68.6±
1.1 km s−1 Mpc−1

[60] value.

1.2.3 Model-Independent H0 Probes

In contrast to the model-depended measurements of H0 mentioned in the previous subsection

here we present some of the measurements that disregard the ΛCDM cosmological model

in their assumptions. In doing so these measurements are effectively model-independent

and as such generally produce values of H0 that are in tension with the one reported by

Planck18/ΛCDM.

In general the most well-known representative of the measurements which belong in this

category is the one by the SH0ES collaboration mentioned above. As we have already said,

this is the characteristic measurement on which the H0 tension was built upon. It was

based on the direct distance ladder geometric process which was described with some detail
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in subsection 1.2.1, and at the moment this thesis was written reports a 5σ discrepancy

with the equivalent CMB model-dependent measurement. Even though there has been a

lot of talk about possible systematic errors that could plague the SH0ES measurement,

through thorough re-examination of the results the possible effect of these errors has been

constrained to very low levels (≈ 1%). Combining this with the fact that all the studies which

independently tried to re-analyze the SH0ES result concluded similar H0 values, as shown in

Table 1.2, we have almost irrefutable evidence that the SH0ES methodology and subsequent

result is robust.

Methodologies H0 ( km s−1 Mpc−1
) References

Bayesian hyper-parameters 73.75± 2.11 [61]

Cosmographic Expansion of the Luminosity Distance 74.30± 1.45 [62]

Near-Infrared (NIR) Standard Candles 72.8± 2.7 [63]

Bayesian Hierarchical Model of the Distance Ladder 73.15± 1.78 [64]

Second Gaia Data Release (GDR2) Cepheids 73.0± 1.9 [65]

Table 1.2: The values of H0 as reported by selected studies that tried to repeat the SH0ES

collaboration analysis, using some variations in their methodologies.

Other model-independent methodologies that can be used to measure the Hubble con-

stant include the Surface Brightness Fluctuations (SBF) method. This methodology is based

on the fact that the variance in a galaxy’s light distribution is analogous to the luminosi-

ties and numbers fluctuations of its individual stars, per resolution element. Using the

Cepheids from the GW170817 host galaxy to calibrate this SBF methodology, one can find

an H0 = 71.9± 7.1 km s−1 Mpc−1
[66] value.

Furthermore, the Tip of the Red Giant Branch (TRGB), which uses the luminosity of th

brightest red giant star in a galaxy as a primary distance indicator, has also been used to

calibrate SnIa producing various H0 values. Among them are H0 = 69.8± 1.6 km s−1 Mpc−1

[67] and H0 = 72.4 ± 3.3 km s−1 Mpc−1
[68] etc.. If we calibrate the previously mentioned

SBF using TRGB data we get an H0 = 73.3 ± 2.4 km s−1 Mpc−1
[51] value. There have also

been observations of water Μegamasers, found in the accretion disks of supermassive black

holes residing in active galactic nuclei (AGN). These observations can be used to measure

galactic distances. Specifically, one can obtain the Hubble constant from Μegamaser data by

using the angular diameter distance measurements, which are independent of the distance

ladder methodology or the CMB. The leading collaboration in this field called the Megamaser

Cosmology Project (MCP) [69] have predicted an H0 = 73.9± 3.0 km s−1 Mpc−1
[49] value.

1.3 The S8 Tension

With the term S8 tension we refer to the fact that the Planck18/ΛCDM parameter values in

the context of General Relativity prefer stronger a growth of the cosmological perturbations

than that indicated by the cosmological data [44,70–78]. The S8 parameter is a combination

of the parameters σ8 and Ω0m given by the relation S8 ≡ (Ω0m/0.3)
n
, where in the literature

n is given usually the value 1/2. In what follows we will assume this value as well.
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Data S8 Ω0m σ8 Refs.

CMB Planck TT,TE,EE+lowE 0.834± 0.016 0.3166± 0.0084 0.812± 0.007 [20]

CMB Planck TT,TE,EE+lowE+lens. 0.832± 0.013 0.3153± 0.0073 0.811± 0.006 [20]

CMB ACT+WMAP 0.832± 0.013 0.3153± 0.0073 0.840± 0.030 [44]

WL KiDS-1000 0.759+0.024
−0.021 - - [70]

WL KiDS + VIKING + DES-Y1 0.755+0.019
−0.021 - - [79]

WL KiDS + VIKING + DES-Y1 0.762+0.025
−0.024 - - [73]

WL KiDS+VIKING-450 0.716+0.043
−0.038 - - [80]

WL KiDS+VIKING-450 0.737+0.040
−0.036 - - [81]

WL KiDS-450 0.651± 0.058 - - [82]

WL KiDS-450 0.745± 0.039 - - [71]

WL DES-Y3 0.759+0.025
−0.023 0.290+0.039

−0.063 0.783+0.073
−0.092 [83,84]

WL DES-Y1 0.782+0.027
−0.027 - - [85]

WL HSC-TPCF 0.804+0.032
−0.029 0.346+0.052

−0.100 0.766+0.110
−0.098 [86]

WL KiDS-1000 pseudo-Cl 0.754+0.027
−0.029 - - [87]

WL HSC-pseudo-Cl 0.780+0.030
−0.033 - - [88]

WL CFHTLenS 0.740+0.033
−0.038 - - [89]

WL+CMB lensing DES-Y3+SPT+Planck 0.73+0.04
−0.03 0.25+0.03

−0.04 0.82+0.08
−0.07 [90]

WL+GC
a 0.795+0.049

−0.042 0.383+0.028
−0.053 0.718+0.044

−0.031 [91]

WL+GC+CMB lensing
b 0.7781± 0.0094 0.305+0.021

−0.025 0.774± 0.033 [92]

WL+GC KiDS-1000 3× 2pt 0.766+0.020
−0.014 0.305+0.010

−0.015 0.76+0.025
−0.020 [93]

WL+GC KiDS-450 3× 2pt 0.742± 0.035 0.243+0.026
−0.045 0.832+0.080

−0.079 [94]

WL+GC KiDS+GAMA 3× 2pt 0.800+0.029
−0.027 0.33+0.05

−0.06 0.78+0.06
−0.08 [95]

WL+GC DES-Y3 3× 2pt 0.776+0.017
−0.017 0.339+0.032

−0.031 0.733+0.039
−0.049 [96]

WL+GC DES-Y1 3× 2pt 0.773+0.026
−0.020 0.267+0.030

−0.017 0.817+0.045
−0.056 [97]

WL+GC KiDS+VIKING-450+BOSS 0.728± 0.026 0.323+0.014
−0.017 0.702± 0.029 [98]

GC BOSS DR12 bispectrum 0.751± 0.039 0.32+0.01
−0.01 0.722+0.032

−0.036 [99]

GC BOSS+eBOSS 0.72± 0.042 - - [100]

GC BOSS galaxy power spectrum 0.703± 0.045 0.293± 0.012 0.713± 0.045 [60]

GC BOSS power spectra 0.736± 0.051 0.303± 0.0082 0.733± 0.047 [101]

GC BOSS DR12 0.729± 0.048 0.317+0.015
−0.019 0.710± 0.049 [98]

GC+CMB lensing DESI+Plank 0.73± 0.03 - - [102]

GC+CMB lensing unWISE+Plank 0.784± 0.015 0.307± 0.018 0.775± 0.029 [103]

CC AMICO KiDS-DR3 0.78± 0.04 0.24+0.03
−0.04 0.86± 0.07 [104]

CC SDSS-DR8 0.79+0.05
−0.04 0.22+0.05

−0.04 0.91+0.11
−0.10 [36]

CC ROSAT (WtG) 0.77± 0.05 0.26± 0.03 0.83± 0.04 [105]

CC DES-Y1 0.65+0.04
−0.04 0.179+0.031

−0.038 0.85+0.04
−0.06 [106]

CC XMM-XXL 0.83± 0.11 0.40± 0.09 0.72± 0.07 [107]

CC SPT-tSZ 0.749± 0.055 0.276± 0.047 0.781± 0.037 [108]

CC Planck tSZ 0.785± 0.038 0.32± 0.02 0.76± 0.03 [35]

CC Planck tSZ 0.792± 0.056 0.31± 0.04 0.78± 0.04 [34]

RSD+BAO+Pantheon+CC 0.777+0.026
−0.027 0.288± 0.008 0.793+0.018

−0.020 [109]

RSD+BAO+Pantheon 0.762+0.030
−0.025 0.286± 0.008 0.7808+0.021

−0.019 [109]

RSD 0.739+0.036
−0.040 0.254+0.038

−0.058 0.804+0.048
−0.071 [109]

RSD 0.700+0.038
−0.037 0.201+0.036

−0.033 0.857+0.044
−0.042 [110]

RSD 0.747± 0.029 0.279± 0.028 0.775± 0.018 [111]

Table 1.3: The value of the growth parameter combination S8, the matter density parameter

Ω0m and the the power spectrum amplitude σ8 at 68% CL through direct and indirect mea-

surements. The first three are separated from the rest because they are calculated via CMB

data. Adopted from Ref. [38].

a
HSC-Y1+SDSSS-III/BOSS DR11

b
KiDS+DES+eBOSS+Planck
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Chapter 1. Introduction

Most of the observations seem to indicate a value of S8 that is at a 2−3σ level smaller than

the S8 = 0.834±0.016 value given by the Planck CMB measurement of Ref. [78]. Although this

tension does not reach the level of the Hubble tension mentioned in the previous section, it

still constitutes a very important cosmological challenge to ΛCDM. In the following subsection

we will talk briefly about some of the more characteristic measurements.

1.3.1 CMB and Weak Gravitational Lensing Measurements

We include the values of the S8 and Ω0m parameters in the context of various data combina-

tions in Table 1.3, however there are two types of measurements worth discussing further.

One of the most important S8 measurement is derived from the amplitude CMB Power Spec-

trum and the CMB lensing data. Even though these CMB estimates are model depended and

vary with regards to the data compilation used, with each generation of observations they

converge more and more on some central values for the parameters S8 and Ω0m.

The fact that the CMB S8 measurements are model-depended carries some weight in

the possibility of the existence of systematic errors. More specifically, they are based upon

the hypothesis of ΛCDM Cosmology as the background. In this context the fact that the

S8 measurements are depended on the τ parameter, which symbolizes the optical depth

to the reionization, is a very likely source of systematics. That is because the value of

the τ parameter is estimated with great uncertainty in the case of the ΛCDM model, in

fact larger than any other parameter. Furthermore, we should consider the fact that the

Planck18/ΛCDM data show indications of a higher amount of matter clustering than other

analyses [44, 112]. This lensing amplitude anomaly that is displayed in the Planck data

could be a systematic error that leads to an overestimation of the S8 value.

The next important source of S8 measurements we are going to discuss is the weak

gravitational lensing data. Weak gravitational lensing is the phenomenon of image distortion

of Large Scale Structures (LSS), due to the numerous deflections of the light-path as it travels

from its source to the observer. Ever since the first S8 measurement from the Canada-France-

Hawaii Telescope Wide Synoptic Legacy Survey (CFHTWLenS) [113] which set the tension

level with the then Planck/CMB one at 2σ, there have been a plethora of others such as the

Kilo Degree Survey (KiDS) [87], the Dark Energy Survey (DES) [36], the VISTA Kilo-degree

Infrared Galaxy (VIKING) Survey [114] and the Subaru Hyper Suprime Cam (HSC) [88] Survey

to name a few. The joint characteristic of all these measurements performed by independent

groups, was that all of them predicted smaller S8 values at early times than those reported

by the CMB estimates.

1.4 A Forecast on the Future of Cosmology

When it comes to the field of Cosmology it is fair to say that we are entering in an exciting

decade. It is becoming more and more clear that the emergence of tensions in the standard

cosmological model ΛCDM will lead to its eventual demise, much as the discovery of the

accelerated expansion of the Universe lead to the demise of the flat sCDM model. We have

discussed about the Hubble and S8 tensions that are arguably in the spearhead of the

revolution against ΛCDMhowever there are a plethora of other, perhaps lesser known ones

posing a threat as well. For example we have the lensing anomaly [115,116], the quadrupole-

octopole alignement [117–122], the CMB cold spot [123–126], the hints for an open Universe
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1.4. A Forecast on the Future of Cosmology

from the BAO in contrast to those for a closed one by the CMB data (CMB vs BAO) [127–129],

the Lithium problem [130–132] etc.
In the next decade there will be a plethora of new data from long awaited scientific mis-

sions. For example we will see the deployment of both the third generation ground and space

based gravitational wave interferometers [133–136]. This will have a tremendous impact on

Cosmology in general and especially the Hubble tension, since GWs are an extremely direct

and precise cosmological probe for the determination of the H0 parameter. That is because

their amplitudes are inversely related to the luminosity distance from their sources, allowing

for a model-independent determination of H0 from the Hubble law, without any distance

ladder techniques.

Furthermore, we will also have the deployment of the Euclid satellite [137,138], an ESA

mission operating from the L2 Lagrange point for a minimum of six years, which will have

the goal of understanding the physical origin of the accelerated expansion of the Universe.

As such, it will provide us with detailed maps of the Universe which will help us measure its

expansion and growth history from the evolution of large scale cosmic structures. It will do

so with the help of a 1.2m telescope and three imaging/spectroscopic instruments working

in the visible and near-infrared wavelength domains. Specifically it is expected to perform a

reconstruction of the pattern of light distortion from weak lensing to z = 3 and the clustering

of galaxies out to z = 2.

However, even though there is a lot to be expected from new data and scientific missions

that aim to enrich our understanding of the Universe via a better understanding of Dark

Matter and Dark Energy, there are still those in the scientific community that look towards a

different path. They consider the possibility that the assumptions of Dark Energy and Dark

Matter which lie at the heart of ΛCDM are wrong, and that the observations that lead to their

establishment could be indications of a much needed modification to GR. Modified Gravity

theories have always been a part of modern Cosmology, albeit a small one, and now with

the much anticipated fall of ΛCDM around the corner they are here once again. Significant

examples of such theories include the f(R) [139–163], f(T ) [164–173] and scalar-tensor

theories [174–185]. Although it is true that GR has been proven correct time and time

again it still has weaknesses that the modifications proposed in the above theories attempt

to eradicate. Moving on and breaking new ground in Cosmology with the help of General

Relativity never fails to leave us pondering the following question "Sir Isaac Newton forged his
Universe out of order via divine intervention and it held true for a little more than two centuries,
how long will Einstein’s Universe survive?".
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CHAPTER 2
Phantom Dark Energy and Cosmological

Parameter Degeneracies

T
his chapter is dedicated to the analytical and numerical exploration of the de-

generacies that arise when we consider different cosmological parameter com-

binations, and are inherent in the CMB power spectrum. In doing so, we study

the consequences of varying the dark energy equation of state parameter w(z)
on various cosmological parameters. In particular we focus on the Hubble pa-

rameter H0, that is associated with the Hubble tension, and the matter density parameter

Ω0m. It is becoming clear that the consideration of new dark energy properties plays a sig-

nificant role both in the case of the resolution of the Hubble and S8 tensions. In particular,

if one considers the key to solving the Hubble tension to be a higher value of the Hubble

parameter H0 within the context of the CMB data, then it can be shown [186–191,191,192]

that a mildly phantom dark energy with an equation of state parameter evolving slightly

below w = −1 has the power to achieve that.

The usual approaches followed by most of the previous works in the literature utilize

evolving equation of state parameters with sophisticated functional forms. This methodology

suffers from, at least, two major issues. The first is that the forms of w(z) that are most

commonly used exhibit a worse fit to various cosmological data and the Planck CMB TT

power spectrum than ΛCDM (∆χ2 > 0) and the second is that they are most of the times

very complex employing a multitude of extra parameters, a fact that goes against the notion

that a good physical theory should strive to beauty via simplicity. It is therefore plain for

everyone to see that these parametrizations would be heavily penalised and disfavored [193]

in the event that they would be judged using an information criterion like the Akaike one

against the ΛCDM . Therefore, following this logic it is obvious that by constructing a model

with no new parameters that can potentially resolve both the Hubble and growth tensions

just by modifying the dark energy properties would be akin to finding the holy grail.

In the context of the analysis that will be presented in this chapter we will attempt to

address the following questions:

• What are the properties of the new phantom degree of freedom required in order to

increase the best fit value of H0, in the context of the CMB data, to the level required

for consistency with local measurements and the apparent resolution of the H0 tension?

• What are the corresponding best fit values of cosmological parameters that emerge in
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2.1. CMB Spectrum Degeneracies and the H0(w)
Dependence

the context this type of phantom dark energy and can they lead to the improvement or

the resolution of the growth tension?

• What is the quality of fit of these extended models to the CMB Planck and other cosmo-

logical data and how does it compare with the corresponding quality of fit of ΛCDM?

This will be done in part by using an approximate analytical method that will make use of

the degeneracies that are present within the cosmological parameters when considering the

CMB power spectrum. Furthermore, we will utilize accurate numerical estimates of best fit

cosmological parameters using Markov Chain Monte Carlo (MCMC) and Boltzmann codes.

2.1 CMB Spectrum Degeneracies and the H0(w)

Dependence

It has been shown [194, 195] that one can uniquely describe the CMB temperature power

spectrum by fixing a number of parameter combinations. Specifically, these parameter

combinations are the matter density parameter combination ωm ≡ Ω0mh
2
, the baryon density

parameter combination ωb ≡ Ω0bh
2
, the radiation density parameter combination ωr ≡ Ω0rh

2
,

the primordial fluctuation spectrum and the curvature parameter ωk = Ω0kh
2

where h =
H0

100
km sec−1 Mpc−1

, Ω0b is the present day baryon density parameter and Ω0r is the present

day radiation density parameter. Considering also that the flat universe co-moving angular

diameter distance to the recombination surface

dA(ωm, ωr, ωb, h, w(z)) =

∫ zr

0

dz

H(z)
(2.1)

where zr ≃ 1100 is the redshift of recombination provided to better accuracy as [196]

zr = 1048(1 + 0.00124ω−0.738
b )(1 + g1ω

g2
m ) (2.2)

g1 = 0.0783ω−0.238
b /(1 + 39.5ω0.763

b )

g2 = 0.560/(1 + 21.1ω1.81
b ).

and H(z) is the Hubble parameter at redshift z. We see that the Hubble parameter can be

written as

H(z, ωm, ωr, ωb, h, w(z)) = H0

√
Ω0m(1 + z)3 + Ω0r(1 + z)4 + Ω0dee

3
∫ z
0 dz′ (1+w(z′))/(1+z′)

(2.3)

where w(z) is the dark energy equation of state parameter at redshift z and Ω0de = 1−Ω0m−
Ω0r is the present day value of the dark energy density parameter. The product

√
ωm · dA is

independent of H0 and constitutes the well known shift parameter defined as [194,197]

R =
√
ωm

∫ zr

0

dz

H(z)
(2.4)
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

The observed values of the above parameter combinations as determined by the

Planck18/ΛCDM CMB temperature power spectrum are the following [40]

ω̄m = 0.1430± 0.0011 (2.5)

ω̄b = 0.02237± 0.00015 (2.6)

ω̄r = (4.64± 0.3) 10−5
(2.7)

ω̄k = −0.0047± 0.0029 (2.8)

d̄A = (100 km sec−1 Mpc−1)−1(4.62± 0.08) (2.9)

where for the radiation density we have assumed three relativistic neutrino species.

ΛCDM: CMB in tension with Local Measurements

wCDM: CMB consistent with Local Measurements
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Figure 2.1: The predicted value of h as a function of the fixed w for the one parameter dark

energy (wCDM) model. The orange line corresponds to the theoretically predicted best fit

values of h for different values of w in the case of the wCDM model, whereas the dashed

blue line corresponds to the linear fitting that has been made. The red points display the

actual best fit values, including the errorbars, of h for specific values of w obtained by fitting

these models to the CMB TT anisotropy via the MGCosmoMC (see Table 2.2). Adopted from

Ref. [198].

We use the above combinations in order to express and exploit the degeneracy of the CMB

with respect to various specific cosmological parameters. By exploiting this degeneracy it is

straightforward to create an h(w0, w1, ...) function that gives, semi-analytically, the predicted

best fit value of h given a specific form of the dark energy equation of state w(z). This is done

by using Eqs. (2.1), (2.3), (2.5) and (2.9). To show an example of how one could analytically

predict the best fit value of the Hubble parameter given the dark energy equation of state

parameter w(w0, w1, ..., z) where w0, w1, ... are the parameters entering the w(z) parametriza-

tion
1
, all we have to do is consider the fact that if we fix the first four parameter combinations

1
In the present analysis we assume a flat universe and fix ω̄k = 0.
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2.1. CMB Spectrum Degeneracies and the H0(w)
Dependence

to the values given by Eqs. (2.5) - (2.8), then the fifth given by Eq. (2.9) would allow us to

constrain H0. The predicted h(w0, w1, ...) function is derived by solving the following equation

with respect to h

dA(ω̄m, ω̄r, ω̄b, h = 0.674, w = −1) = dA(ω̄m, ω̄r, ω̄b, h, w(z)) (2.10)

	0
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w=-1.2,	h=0.74
w=-1,	h=0.67	(ΛCDM)

Planck	Data

Figure 2.2: The CMB power spectrum for ΛCDM (blue line) and w = −1.2 (green line). We

also show the binned high-l and low-l Planck data (red points). Adopted from Ref. [198].

Following this approach for the case of a one parameter parametrization where w(z)
remains constant in time and redshift (wCDM model), it is simple enough to derive the

degeneracy function h(w) shown in Fig. 2.1 (continuous orange line) by solving Eq. (2.10)

considering that Eq. (2.3) takes the form

H(z, ωm, ωr, ωb, h, w(z)) = H0

√
Ω0m(1 + z)3 + Ω0r(1 + z)4 + (1− Ω0m − Ω0r) (1 + z)3(1+w)

(2.11)

We can show then, with the help of Fig. 2.1, that the degeneracy function can be approxi-

mated as a straight line (dashed blue line) in the range w ∈ [−1.5,−1]

h(w) ≈ −0.3093w + 0.3647. (2.12)

The points with the errorbars were obtained by numerical fitting to the Planck/CMB power

spectrum using the corresponding wCDM models with fixed w. This analysis is discussed

in more detail in the next section. Next we show in Fig. 2.2 the predicted form of the CMB

TT anisotropy spectrum for the parameter values w = −1 (h = 0.67, Ω0m = 0.314) (ΛCDM )

and w = −1.2 (h = 0.74, Ω0m = 0.263). This effectively demonstrates the invariance of the

CMB power spectrum as the cosmological parameters are allowed to vary with consideration

to the above described degeneracy.

According to Eq. (2.12) the value of w that is required in order to achieve a h(w) = 0.74 is

w ≈ −1.217, a fact that is very consistent with previous studies in the literature [186,187].

In Ref. [186], in particular, the author attempts a similar analysis where he reports that

fixing the dark energy equation of state w ≈ −1.3 or the effective number of relativistic
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

species Neff ≈ 3.95 may ease of the H0 tension. However the novelty of the methodology

presented here lies on the fact that it uses analytical methods to identify the qualitative

features required for any form of w(z) to attempt to relax the H0 tension.

The use of this methodology for the derivation of the predicted dark energy properties

required to seemingly resolve the H0 tension is not confined simply on the case of the wCDM

model, on the contrary it may be extended to more parametrizations of w(z). For example it

can be used in the case of the two parameter CPL parametrization [199,200] expansion of

w(z)

w = w0 + w1(1− a) = w0 + w1z/(1 + z) (2.13)

where Eq. (2.3) is written as

H(z) = H0

√
Ω0m(1 + z)3 + Ω0r(1 + z)4 + (1− Ω0m − Ω0r) (1 + z)3(1+w0+w1)e−3

w1z
1+z (2.14)

h = 0.674

h = 0.74
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Figure 2.3: The degeneracy with respect to the CMB spectrum in the parameter space

(w0−w1). The dashed lines correspond to h = 0.674 (ΛCDM value) and to h = 0.74 (the value

of Ref. [201]). Adopted from Ref. [198].

Using now Eqs. (2.1), (2.5), (2.9) and (2.12) and the above described methodology in

the context of the CPL parametrization, the derivation of the relevant degeneracy function

h(w0, w1), by solving Eq. (2.10) is quite simple. Similarly to Fig. 2.1 for wCDM we can

construct Fig. 2.3, where the dashed lines correspond to the parameter values that satisfy

both h(w0, w1) = 0.674, with the ΛCDM value going through the point (w0, w1) = (−1, 0) as

expected, and the local distance ladder measurements value h(w0, w1) = 0.74. The constant

h contour lines shown in Fig. 2.3 are approximately straight in the range of the w0 − w1

parameter space shown. In particular, for the case of the value h = 0.74, which attempts to
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Figure 2.4: The evolution of w(z) for various values of (w0, w1) along the degeneracy h = 0.74
line of Fig. 2.3. All these parameter values lead to a best fit value h = 0.74 in the context

of the CMB power spectrum. However, they do not have the same quality of fit to other

cosmological data which can be used to break this model degeneracy. The common (z, w)
point of intersection of all the w(z) plots is (0.31,−1.22). Adopted from Ref. [198].

ease the H0 tension, we can approximate the relevant line by the equation,

w1 ≈ −4.17w0 − 5.08 (2.15)

The preference for a phantom-like behaviour in some redshift ranges is apparent in Fig.

2.3 when we attempt to approach the local measurement of h. This is also demonstrated

in Fig. 2.4 where we show four forms of w(z) based on the CPL parametrization that can

resolve the H0 tension by providing a best fit value of h = 0.74 from the CMB data. The

corresponding wCDM value of w = −1.22 is also shown. Clearly all degenerate forms of

CPL w(z) that relax the H0 tension go through the same point at z = 0.31 crossing the

w = −1.22 line. This type of degeneracy in particular redshifts for cosmological parameters

has been discussed in Ref. [202]. Also degenerate w(z) curves with w0 < 1.22 are increasing

functions of z, while those with w0 > 1.22 are decreasing functions of z. This appears to be

a general feature of all w(z) parametrizations that can relax the H0 tension. For example

the PEDE parametrization [191] and the late dark energy transition hypothesis [203] with

w(z ≃ 0) > −1.22 are decreasing functions of the redshift z as predicted by the above

degeneracy analysis. The identification of these properties opens up the possibility of a very

late type phase transition at z ≃ 0.01 from a phantom phase to a ΛCDM phase with a sharply

increasing rather than decreasing function of w(z).
It is expected that even in the case of some w(z) parametrization that has the potential to

lead to an apparent alleviation of the H0 tension we would also have to consider its quality of

fit to the actual CMB spectrum and to other cosmological data is significantly with regards

to ΛCDM (w = −1). Therefore, it is of the out-most importance that we consider the quality

of fit of the preferred degenerate forms of w(z) to other cosmological data like SnIa, BAO and
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growth of perturbations data (Redshift Space Distortion fσ8(z) and weak lensing data) as

well as to actual CMB power spectrum data which may not fully respect the above exploited

approximate degeneracy (especially at low l). Thus, we set the following questions for the

next section:

• What is the quality of fit of the forms of w(z) that are predicted to resolve the H0 tension,

on cosmological data involving SnIa, BAO, growth Redshift Space Distortion data and

the actual Planck CMB TT power spectrum data? Is this quality of fit (χ2) similar to

the corresponding quality for ΛCDM?

• Is the H0 tension actually alleviated when the full CMB spectrum data are used in the

context of a model with fixed w(z) to its predicted form (e.g. w = −1.22 in the context

of a constant w)?

• Is the growth tension partially relaxed in the context of the above preferred w(z) found?

These questions will be addressed mainly in the context of a redshift independent w (wCDM)

but it is straightforward to generalize the analysis for more general forms of w(z).

2.2 Numerical Analysis of Dark Energy Models

We use the numerical package MGCosmoMC [204–206] (see Appendix B.2 for the modified

MGCAMB core files) in order to test the quality of the semi-analytic results that were pre-

sented in the previous section against the CMB and other cosmological data. Specifically, we

use the Planck TT and lowP dataset, i.e. the TT likelihood for high-l multipoles (l > 30) as

well as the Planck temperature and polarization data for low multipoles (l < 30). The priors

that have been used as input can be seen in Table 2.1.

Parameters Priors

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.001, 0.99]

100θMC [0.5, 10]

τ [0.06, 0.8]

ln (1010As) [1.61, 3.91]

ns [0.8, 1.2]

Table 2.1: The MGCosmoMC priors that have been used in Figs. 2.5 and 2.7. We also set

Alens = 1 and Ωk = 0.

By fixing w to the values of the points shown in Fig. 2.1 (w = −1.0,−1.1,−1.2,−1.3) and

subsequently constructing the likelihood contours (Fig. 2.5) for the cosmological parameters

for each case, we find the best fit values of h which are shown in Table 2.2 (see also Fig. 2.1).

We therefore conclude that they are in excellent agreement with the expectations based on

our previous degeneracy analysis (see orange continuous line of Fig. 2.1). It is once again

clear that the likelihood contours for the Hubble parameter shift to higher best fit values as
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2.2. Numerical Analysis of Dark Energy Models

Figure 2.5: The contour plots constructed with MGCosmoMC using the PlanckTT and lowP

likelihoods for ΛCDM and wCDM models. The gray contours correspond to the ΛCDM model.

The green contours correspond to w = −1.1, the red ones to w = −1.2, while the blue to

w = −1.3. For w = −1.1, the best fit value of H0 is close to that of the Planck18/ΛCDM

measurement [72], while the w = −1.2 and w = −1.3 values shift h closer to the local

distance ladder measurements [201]. Adopted from Ref. [198].

w decreases in the phantom regime (w < −1) and that at the same time the best fit values

of the matter density parameter Ω0m decrease in accordance with the degenerate parameter

combination Ω0mh
2
.

w Ωth
0m hth Ωobs

0m hobs χ2
CMB ∆χ2

CMB

−1.0 0.316 0.674 0.315± 0.013 0.673± 0.010 11266.516 −
−1.1 0.289 0.704 0.288± 0.013 0.704± 0.011 11266.530 0.014
−1.2 0.265 0.735 0.263+0.012

−0.014 0.736± 0.013 11267.132 0.616
−1.3 0.244 0.766 0.242+0.012

−0.013 0.768± 0.014 11266.520 0.004

Table 2.2: The analytically predicted CMB best fit values of h and Ω0m for fixed w, obtained

by using the CMB parameter degeneracy arguments, as well as the ones obtained by the

actual fit of the corresponding w model to the Planck TT CMB anisotropy power spectrum.

The quality of fit for each model compared to ΛCDM is also indicated by the value of ∆χ2
.
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Figure 2.6: The 1σ − 4σ contours in the parametric space Ω0m − σ8. The blue contours

correspond to the best fit growth compilation of Ref. [207], while the red to the 1σ − 4σ
confidence contours for w = −1 (left panel) and w = −1.2 (right panel) obtained from the

Planck data. Adopted from Ref. [198].

This reduced value of the best fit Ω0m would naively imply reduced growth of cosmological

perturbations and thus resolution of the growth tension. However, the reduced best fit value

of the matter density parameter Ω0m matter density is not enough to soften the growth

tension, since the best fit value of the parameter σ8 (the present day rms matter fluctuations

variance on scales of 8h−1Mpc) appears to increase more rapidly, as w decreases in the

phantom regime. Since this parameter is proportional to the initial amplitude of the matter

perturbations power spectrum, its increase amplifies the growth of perturbations and tends

to cancel the effect of the decrease of the best fit Ω0m in the context of perturbations growth.

This is demonstrated in Fig. 2.6 where we show the σ8 likelihood contours obtained by

fitting the models w = −1 (ΛCDM) and w = −1.2 to the growth fσ8 data (we have used the

conservative robust dataset of Table 2 of Ref. [207], a subset of an up to date compilation

presented in [208]). Superimposed we also show the corresponding likelihood contours

obtained from the Planck CMB TT power spectrum obtained for each value of fixed w. Clearly,

the tension between the RSD fσ8 data and the Planck data increases in the context of the

phantom model w = −1.2 compared to ΛCDM (w = −1).

In addition to the growth data we also fit the models w = −1 and w = −1.2 to a cosmolog-

ical data combination including the Pantheon SnIa [22], BAO data [209–211], CMB data [72],

as well as the prior of the Hubble constant published by Riess et al. [201] and obtain for

ΛCDM χ2 = 12319.2, while for w = −1.2 we obtain χ2 = 12332.7. We thus find ∆χ2 = 13.5.

This difference of ∆χ2 = 13.5 for the phantom model, indicates a significantly reduced quality

of fit compared to ΛCDM in agreement with previous studies [212]. The corresponding like-

lihood contours are shown in Fig. 2.7. It is therefore clear that the particular fixed w models

considered here lead to an apparent resolution of the Hubble tension since they increase the

best fit value of H0 in the context of the CMB data but the resolution is not viable since the

growth tension gets worse while the quality of fit of these models to the SnIa and BAO data
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2.3. In Brief

is not as good as for ΛCDM. This result is consistent with previous studies [187], where it

has been demonstrated that non-CMB data, such as BAO and SNIa favour lower values of

H0 which are more consistent with the CMB value, while also disfavouring w < −1 in the

context of flat and non-flat untilted inflation models [213]. It is, however, worth mentioning

that for the combination of the CMB Planck data and the Riess Hubble constant prior the

quality of the fit improves drastically for w = −1.2, with ∆χ2 = −10.7 in respect to w = −1.

The exploitation of the CMB spectrum degeneracy of more complicated forms of w(z) however

may lead to better fits to growth, SnIa and BAO cosmological data.

Figure 2.7: The likelihood contours constructed with MGCosmoMC using the cosmological

data combination of Pantheon SnIa [22], BAO data [209–211], CMB data [72], as well as the

prior of the Hubble constant [201] for ΛCDM (gray contours) and wCDM with w = −1.2 (red

contours). Adopted from Ref. [198].

2.3 In Brief

Summing-up, in this chapter we have shown how one can use inherent analytical degeneracy

relations among cosmological parameters and numerical fits to cosmological data, in order

to identify the qualitative and quantitative features of dark energy models that have the

potential to relax the H0 tension of the ΛCDM model. We have found that mildly phantom

models with mean equation of state parameter w ≃ −1.2 can show signs of easing this
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Chapter 2. Phantom Dark Energy and Cosmological Parameter Degeneracies

tension. The models may be constructed in such a way that there are no extra parameters

compared to ΛCDM by using fixed parametrizations of w(z). In practice however they involve

more fine tuning compared to ΛCDM and are clearly less natural. In addition the quality of

fit of the simplest of such models to cosmological data beyond the CMB is not as good as the

corresponding quality of fit of ΛCDM. However, it is straightforward to construct physical

models involving either phantom scalar field with non-canonical kinetic terms or modified

gravity models that naturally produce the required phantom behavior of dark energy. Despite

the usual stability issues of such models it can be shown that it is possible to construct ghost

free versions [183]. For example, physical models described by scalar field Lagrangians can

reproduce an effective dark energy with a constant equation of state parameter w in the

context of both quintessence (w > −1) [214–216] and phantom dark energy w < −1 [217].

In particular, a dynamical dark energy scalar field with an inverse power law potential

of the form V (ϕ) = M (4+α) ϕ−α
(where M and α > 0 are free parameters), corresponds to a

physically interesting model where the dark energy equation of state parameter w is constant

and takes the form [216],

w =
α
2
wB − 1

1 + α
2

(2.16)

where wB is the equation of state parameter of the dominant background. Clearly, for a

matter dominated epoch (wB = 0), and α > 0, we can obtain a constant w and a quintessence

like behaviour (w > −1).
Similarly, a phantom like behaviour (w < −1) with constant w, may be obtained [217] in

the context of a scalar field with non-canonical kinetic terms with an action of the form

S =

∫
d4x

√
−g

(
1

2κ2
R + p(ϕ,∇ϕ)

)
+ SB (2.17)

where κ2 = 8πG and SB is the action of the background. The Lagrangian may be assumed to

depend only on the scalar field ϕ and its derivative squared X = −1
2
∇µϕ∇µϕ. In the case of

a slowly varying field X the pressure p and energy density ρ of the field take the form [217]

p = f(ϕ)(−X +X2), (2.18)

ρ = 2X
∂p

∂X
− p = f(ϕ)(−X + 3X2) (2.19)

For f(ϕ) ∝ ϕ−α
, Eqs. (2.18) and (2.19) lead to an equation of state parameter of the form

w =
(1 + wB)α

2
− 1. (2.20)

For a matter dominated epoch (wB = 0) an appropriate value of α can lead to either a

quintessence or a phantom behavior. In particular for α < 2 we obtain w > −1 (quintessence

behavior), while for a < 0 we obtain a physical model with w < −1 (phantom equation of

state).

However, the constant w behavior of both of the above physical models described by Eqs.

(2.16) and (2.20) is a good approximation only in the context of a dominant background fluid

with constant equation of state wB. In our universe this would occur for example only well

in the matter dominated epoch. These equation of state parameters would cease to have a

constant form near the end of the matter era and in the present transition cosmological era.
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2.3. In Brief

Thus, the constancy of w in the context of these physical models is a good approximation

only on high redshifts (z > 2).

The analytical approach for the H0-w(z) degeneracy pointed out in this chapter offers a

new method to systematically search and design w(z) forms that can combine some of the

proper features that are seemingly required to relax the Hubble tension while keeping a good

fit to cosmological data. Our goal here was only to introduce this methodology and apply it to

the simplest cases while also pointing out the difficulties in resolving the tensions discussed.

Using a smooth H(z) deformation model and exploiting a parameter degeneracy like the one

presented here, in order to elevate the value of H0, has significant disadvantages. As we will

show in the following chapters this approach manages to "solve" the Hubble tension only

superficially.
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CHAPTER 3
Proposing a w-M Transition at zt < 0.1

A
s we have seen both in the previous chapter and generally in the literature [186,

187,191,198,218–220], attempts to consider smooth deformations of H(z) at

z ≃ O(1) have been successful in matching r(zrec) with r(z = 0) but have been

unable to match the value of r(z ≃ O(1)) which is strongly constrained by BAO

and SnIa data to be close to the form indicated by Planck18/ΛCDM.

In this chapter we consider the possibility of an abrupt deformation of H(z) at z ≲ 0.1
(H(z) transition). However, even though this type of deformation has been considered for a

long time in the literature [221–223] it has been constrained by both the comoving distance

r(z) at z > 0.1 as well as by the measured SnIa magnitudes which are not consistent with a

large step-like discontinuity. Specifically, if this deformation were to occur below the redshift

when Hubble flow begins, it would mean that it would be observationaly undetectable [222]

and thus it would not have contributed to the measured decreased value of r(z) at low z.

In the event that this deformation occurred at 0.01 < zt < 0.1 with the proper amplitude to

reduce r(z) to the required level, it would have to produce a step-like feature in the SnIa

Hubble diagram which would have an amplitude ∆m = 0.2 and it would be inconsistent with

the Pantheon data.

Our main goal in this chapter is to show that the latter problem can be avoided. The

way to avoid it is by assuming a assuming a transition of the SnIa absolute magnitude M
at zt ∈ [0.01, 0.1]. By combining both a transition in the transition of the SnIa absolute

magnitude accompanied and a transition of the equation dark energy of state parameter

w(z) ≡ pde(z)/ρde(z) [224, 225] we show that it is possible to overcome the issue of the

required step-like feature of the apparent magnitudes while being consistent with value of

the absolute magnitude implied by local Cepheid calibrators.

In particular, we express these transitions as follows starting with the transition in the

dark energy equation of state w(z)

w(z) = −1 + ∆w Θ(zt − z) (3.1)

and subsequently the transition in the SnIa absolute magnitude M with the form

M(z) = MC +∆M Θ(z − zt) (3.2)

where Θ is the Heaviside step function, MC = −19.24 is the SnIa absolute magnitude cali-

brated by Cepheids [62,226] at z < 0.01 and ∆M , ∆w are parameters to be fit by the data.

Therefore, we have defined the Late w −M Transition (LwMT ) model.
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3.1. Introducing the LwMT Model

It is straightforward to show, using the energy momentum conservation d(ρdea
3) =

−pded(a
3), that the evolution of dark energy density ρde is obtained as

ρde(z) = ρde(zp)

∫ z

zp

dz′

1 + z′
(1 + w(z′)) = ρde(zp)

(
1 + z

1 + zp

)3(1+w)

(3.3)

where in the last equality a constant w was assumed and zp is a pivot redshift which may be

assumed equal to the present time or equal to the transition time zt. Then, Eqs. (3.1) and

(3.3) imply a continuous Hubble expansion rate h(z) ≡ H(z)/100km/(sec ·Mpc) of the form

hw(z)
2 ≡ ωm(1 + z)3 + ωr(1 + z)4 + (h2 − ωm − ωr)

(
1 + z

1 + zt

)3 ∆w

z < zt

hw(z)
2 ≡ ωm(1 + z)3 + ωr(1 + z)4 + (h2 − ωm − ωr) z > zt

(3.4)

where ωm ≡ Ω0mh
2
, ωr ≡ Ω0rh

2
are the matter and radiation density parameters assumed

fixed to their Planck18/ΛCDM values in the next section and h is a parameter distinct

from the rescaled measurable Hubble parameter hw(z = 0)1
. In what follows we define

hlocal ≡ 0.74 and hCMB ≡ 0.674, by assuming 0.01 < zt < 0.1, which correspond to the Hubble

constant values obtained with local standard candle measurements of r(z) (H0 = HR19
0 ) and

sound horizon standard ruler measurements (H0 = HP18
0 calibrated by Planck18/ΛCDM)

respectively.

The questions we will occupy ourselves with in the next parts of this chapter are the

following:

• What is the functional form of ∆w(zt) so that hw(z = 0) = hlocal as implied by local

measurements while maintaining the required Planck18/ΛCDM form of r(z) for z ≫ zt?

• How closely does the LwMT model reproduce the form of the Planck18/ΛCDM comov-

ing distance r(z) for z > zt? How does this form of r(z) compare with the corresponding

form of the H(z) transition?

• How does the quality of fit of the LwMT model to cosmological data (CMB, SnIa, BAO

and SH0ES) compare with the corresponding quality of fit of typical models that utilize

smooth deformations of H(z) to address the H0 tension?

• What are the favored values of ∆w, ∆M and what are the implications for general

relativity and for the future evolution of the universe?

3.1 Introducing the LwMT Model

Our first goal is to constrain the values of the ωm, ωr, h and ∆w parameters that are present in

the LwMT ansatz (see Eqs. 3.4). In order to do that we impose two conditions. The first one

is that the ansatz should reproduce the comoving distance corresponding to Planck18/ΛCDM

rΛ for z ≫ zt where

rΛ(z) ≡
∫ z

0

dz′

ωm(1 + z′)3 + ωr(1 + z′)4 + (h2 − ωm − ωr)
(3.5)

1
The parameter h would be equal to the measured rescaled Hubble parameter hw(z = 0) in the limit zt → 0.
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Figure 3.1: The equation of state shift ∆w required for hw(z = 0) = hlocal as a function of the

transition redshift zt. Notice the strongly phantom behavior of the dark energy equation of

state w = −1−∆w for z < zt. Adopted from Ref. [227].

and ωm ≡ Ω0mh
2 = 0.143, ωr ≡ Ω0rh

2 = 4.64 × 10−5
and h = hCMB = 0.674. This condition

fixes the parameters ωm, ωr and h to their Planck18/ΛCDM best fit values. Since we consider

zt < 0.1 ≪ 1 it is straightforward to obtain an upper bound for the relative difference

∆r

r
(z) ≡ rw(z)− rΛ(z)

rΛ(z)
<

hlocal − hCMB

hCMB

≃ 0.1 (3.6)

where rw(z) ≡
∫ z

0
dz′

hw(z′)
is the comoving distance corresponding to the LwMT model (3.4).

∆r
r
(z) is maximum at z = 0 and decreases rapidly as z increases as demonstrated below.

The second constrain is that it should reproduce the local measurements of the Hubble

parameter

hw(z = 0) = hlocal = 0.74. (3.7)

This means that we will have a relation between ∆w and zt of the form (here we neglect ωr

as it has practically no effect on ∆w)

∆w =
log (h2 − ωm)− log (h2

local − ωm)

3 log(1 + zt)
(3.8)

where h = hCMB = 0.674 and ωm = Ω0mh
2 = 0.143 as implied by the first condition and for

consistency with the CMB anisotropy spectrum. These types of models imply a very strong

phantom dark energy behaviour in the present, a fact that is shown also in Fig. 3.1 via a

plot of ∆w(zt).
In Fig. 3.2 we compare the forms of the comoving distance r(z) of some of the proposed

H(z) deformations for the resolution of the Hubble tension, against the one predicted in

the context of the LwMT model rw(z). More specifically, we show a plot of the function

f(z) ≡ z/r(z) (whose z → 0 limit is the Hubble constant) for the LwMT model, the H(z)
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Figure 3.2: The function f(z) = z/r(z) where r(z) is the comoving distance to redshift z
for the cosmological models Planck18/ΛCDM (black continuous line), wCDM with w = −1.2
(magenta dotted line), H(z) transition (3.9) with zt = 0.05 and

δh
h

= (hlocal − hCMB)/hCMB

(red dot-dashed line), LwMT with zt = 0.05 and w(z < zt) = −1−∆w = −2.78 as indicated

by Eq. (3.8) (green dashed line) and LwMT with zt = 0.1 and w(z < zt) = −1−∆w = −1.91
as indicated by Eq. (3.8) (blue continuous line). Notice that even though all three models ap-

proach rΛ(z) asymptotically, the two LwMT models remain closest to the Planck18/ΛCDM

comoving distance rΛ(z) while at the same time they are consistent with the local measure-

ment of the Hubble constant since hw(z = 0) = 0.74. Adopted from Ref. [227].

transition model and the wCDM with fixed w = −1.22 model [186, 187, 198]. The H(z)
transition model is defined as

hδ(z)
2 ≡ (1 +

δh

h
Θ(zt − z))2

[
ωm(1 + z)3 + ωr(1 + z)4 + (h2 − ωm − ωr)

]
(3.9)

where
δh
h

= hlocal−hCMB

hCMB
, h = hCMB and ωm, ωr are assumed fixed to their Planck18/ΛCDM

best fit values. The fixed w (wCDM) smooth H(z) deformation model is defined as

hwf (z)
2 ≡ ωm(1 + z)3 + ωr(1 + z)4 + (h2 − ωm − ωr)(1 + z)3(1+w)

(3.10)

where w = −1.22, h = hlocal and ωm, ωr are assumed fixed to their Planck18/ΛCDM best

fit values [198]. All three models that address the H0 tension shown in Fig. 3.2 satisfy by

construction two necessary conditions

h(z = 0) = hlocal (3.11)

r(z) → rΛ(z) for z ≳ O(1). (3.12)
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Figure 3.3: The residuals ∆χ2
plotted against the values of the transition redshift zt for the

LwMT (blue dots) and wCDM (black dotted line) with w = −1.22. The LwMT model seems

to achieve a significantly better fit for small zt values. Adopted from Ref. [227].
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Figure 3.4: The forms of the comoving Hubble parameter H(z)/(1+z) for two LwMT models

with zt < 0.1, the best fit wCDM and uΛCDM. Adopted from Ref. [227].

These conditions along with the fact that we fix the parameters ωm and ωr to their best

fit ΛCDM values secure the fact that all three models produce the same CMB anisotropy

spectrum as Planck18/ΛCDM while at the same time they predict a Hubble parameter equal
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3.2. Fitting LwMT to Cosmological Data

to its locally measured value h(z = 0) = hlocal. However, the three models do not approach

the Planck18/ΛCDM comoving distance rΛ(z) with the same efficiency as z increases. As

is clearly seen in Fig. 3.2, the LwMT model with both zt = 0.1 and zt = 0.05 approaches

rΛ(z) faster than the other two models. Since Planck18/ΛCDM provides an excellent fit to

most geometric cosmological probes at z > 0.1 it is anticipated that LwMT will produce

a better fit to cosmological data than the smooth deformations of H(z) like wCDM or the

discontinuous H(z) transition model which produces an unnatural step in r(z) and moves

away from rΛ(z) for z < zt as z increases. This improved quality of fit is also demonstrated

in the next section.

A fact which lies at the heart of the Hubble tension is that a deformation of H(z) model

that claims to ease it should not only be preoccupied with being consistent with the locally

measured value of the Hubble parameter H0 and with the

Planck18/ΛCDM form of H(z), but it should also be consistent with the value of the absolute

magnitude of SnIa as determined by Cepheid calibrators MC [62,226]. This may be seen by

considering the equation that connects the SnIa measured apparent magnitudes at redshift

zi with the Hubble free luminosity distance and the Hubble parameter which may be written

as

m(zi) = M − 5 log10 [H0 · Mpc/c] + 5 log10(DL(zi)) + 25 (3.13)

where DL(z) = H0 dL(z)/c is the Hubble free luminosity distance. Given the measured m(zi)
datapoints the best fit Hubble parameter in the context of local measurements can decrease

to become consistent with the sound horizon calibrator by either decreasing DL(z) (deforming

H(z)) or by decreasing the absolute magnitude M . Such a decrease of M can be achieved

either by discovering a systematic effect of the Cepheid calibrators or by assuming an M
transition at z ≥ 0.01 due to an abrupt change of fundamental physics. The deformation of

DL(z) is severely constrained by the standard ruler constraints based on the sound horizon

(CMB and BAO) and even though it is most efficient in the context of very late transitions as

the one discussed in the present analysis it may still not be enough to compensate with the

decrease of H0 while keeping M fixed to its Cepheid calibrated value M = MC . A common

error made in late time approached of the Hubble tension is to either marginalize over M
with a flat prior or allow it to vary along with the cosmological parameters in the context of

the maximum likelihood method. This may lead to a best fit value of M that is inconsistent

with the Cepheid measured value MC thus invalidating the results of such analysis.

In order to overcome this issue, in the next section we allow the absolute magnitude M to

vary along with the cosmological parameters and as we have already said we will hypothesize

that both the M and w transitions happen simultaneously. However, let us not be oblivious

to the fact that for ∆M = −5 log10

[
HR19

0

HP18
0

]
≃ −0.2 the M transition may be sufficient for the

resolution of the H0 tension, meaning that there will no longer be a need for the simultaneous

w transition.

3.2 Fitting LwMT to Cosmological Data

It is now time to use a wide variety of robust cosmological data in order to estimate the quality

of fit and the best fit parameter values of the LwMT and two other classes of cosmological

models. For the LwMT model we remove the constraint w> = −1 for z > zt as well as the

constraint ωm = 0.143. Thus the model is now allowed to have three free parameters for each
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fixed value of zt: w>, w< ≡ w> + ∆w and ωm. However, as discussed below, the additional

free parameters end up constrained by the data very close to the values considered fixed in

the previous section. The second model we use is wCDM (3.10) which possesses two free

parameters, w and ωm. For both these models the constraint h(z = 0) = hlocal is imposed

as a prior in the analysis. Lastly, we consider the well-known ΛCDM model. In order to

maximize its quality of fit to the data no constraint for h(z = 0) is imposed on this model.

This enables us to also use it as a benchmark in comparison to the other models that address

the H0 tension. Thus we use the term uΛCDM ("u" for "unconstrained") to denote it. We

assume identical best fit parameter values (Ω0m = 0.312 ± 0.006, H0 = 67.579 ± 0.397) to

Planck18/ΛCDMand we therefore use it as a baseline to compute residuals of χ2
to compare

the other two representative models. We use the following data to identify the quality of fit

of these models

• The Pantheon SnIa dataset [22] consisting of 1048 distance modulus datapoints in the

redshift range z ∈ [0.01, 2.3].

• A compilation of 9 BAO datapoints in the redshift range z ∈ [0.1, 2.34]. The compilation

is shown in the Appendix.

• The latest Planck18/ΛCDM CMB distance prior data (shift parameter R [195] and

the acoustic scale la [228]). These are highly constraining datapoints based on the

observation of the sound horizon standard ruler at the last scattering surface z ≃ 1100.

The covariance matrix of these datapoints and their values are shown in the Appendix.

• A compilation of 41 Cosmic Chronometer (CC) datapoints in the redshift range z ∈
[0.1, 2.36]. These datapoints are shown in the Appendix and have much less constrain-

ing power than the other data we use.

Taking that into account the total χ2
is defined as

χ2 = χ2
CMB + χ2

BAO + χ2
CC + χ2

Panth. (3.14)

As we have said above the residual ∆χ2
of the LwMT (as a function of zt) and the wCDM

models are calculated with respect to the uΛCDM model. Since the CMB data are the most

constraining, for wCDM we have used the best fits ωm ≃ 0.143 and w = −1.22 [198] that

were found using the methodology of Chapter 2.

These residuals ∆χ2
for the best fit LwMT models as a function of zt (blue points) and the

corresponding residual ∆χ2
for the best fit wCDM model (horizontal black line) are shown

in Fig. 3.3. It is obvious from the figure that the LwMT models massively improve their fit

as the zt parameter decreases below zt ≃ 0.15 in contrast to wCDM. The best fit parameter

values for w< (z < zt) and w> (z > zt) are shown in Table 3.1. In parenthesis next to each

w< best fit we show the predicted value in the context of the analysis of the previous section

(Eq. (3.8)) which assumes w> = −1.

In Fig. 3.4 by displaying the forms of the comoving Hubble parameter H(z)/(1 + z) for

two LwMT models with zt < 0.1, the best fit wCDM and uΛCDM , we show the efficiency of

the LwMT of approaching the fit of the uΛCDM model. This is very important because the

LwMT model claims to address the Hubble tension by reaching h(z = 0) = hlocal as well.

This characteristic is not very easily achievable, a fact that is demonstrated by the failure of
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3.2. Fitting LwMT to Cosmological Data

wCDMModel (H0=74.03, w=-1.22)

LwMPT Model (Ω0m=0.261±0.001, H0=74.03, zt=0.02)
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Figure 3.5: Left panel: BAO data residuals ∆DV × rfids

rs
from the best fit uΛCDM (orange

dashed line) superimposed with the best fit residual curves corresponding to wCDM (dotted

black line), LwMT with zt = 0.005 (blue dot dashed line) and LwMT with zt = 0.02 (green

dashed line). Notice the difficulty of smooth H(z) deformation of wCDM to fit the data

due to the constraint imposed by the local measurements of Hubble constant. Right panel:
The Pantheon SnIa distance modulus residuals ∆m from the best fit uΛCDM. The predicted

distance modulus residual curves for wCDM (black dashed line), the LwMT (zt = 0.005) (blue

dot dashed line) and the LwMT (zt = 0.02) (green dashed line) are also shown. Adopted from

Ref. [227].
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Figure 3.6: Left panel: The 150 point moving average of the Pantheon SnIa standardized

residual absolute magnitudes with respect to the best fit ΛCDM (∆m̄150(z̄) of eqs (3.16-

3.17)). Notice the sharp and peculiar drop at z ≲ 0.1 (unlikely at more than 3σ level).

Right panel: The 150 point moving average of the Pantheon SnIa standardized residuals

with respect to the best fit LwMT (zt = 0.02). The sharp drop shown in the left panel

has disappeared while the mean and the standard deviation of the moving average points

have dropped significantly indicating that the LwMT is a more natural pivot model than

Planck18/ΛCDM. Adopted from Ref. [227].

the wCDM, which employs a smoother approach and is therefore much less able to mimic

the behaviour of Planck18/ΛCDM , this is also shown in in Fig. 3.3.

The difficulty of the smooth H(z) deformation models that address the Hubble tension

in fitting the BAO and SnIa data is also demonstrated in Fig. 3.5 where we show the BAO

and SnIa data (residuals from the best fit uΛCDM) along with the best fit residuals for the
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Chapter 3. Proposing a w-M Transition at zt < 0.1

zt ∆χ2 Ω0m w< (z < zt) w> (z > zt)

0.005 -1.9 0.2609 −18.44 (−18.4) -1.005

0.01 0.8 0.2608 −9.93 (−9.7) -1.001

0.02 9.7 0.2607 −5.28 (−5.3) -1.011

0.04 23.1 0.2606 −2.93 (−3.2) -1.037

0.05 27.6 0.2607 −2.48 (−2.8) -1.049

0.06 31.3 0.2607 −2.19 (−2.5) -1.059

0.08 37.9 0.2608 −1.81 (−2.1) -1.085

0.1 43.3 0.2611 −1.58 (−1.9) -1.115

0.2 50.1 0.2622 −1.22 (−1.4) -1.230

Table 3.1: The values of the LwMT model best fit parameters Ω0m, w< (z < zt) and w>

(z > zt) corresponding to different indicative values of the transition redshift zt, along with

each case’s ∆χ2
with respect to uΛCDM. In parenthesis we show the analytically predicted

values of w< which were obtained from Eq. (3.8) (i.e. assuming w> = −1 and imposing the

constraint h(z = 0) = hlocal on the LwMT ansatz (3.4)). Notice that the best fit values of Ω0m

are consistent with the CMB spectrum requirement of ωm = 0.143 in view of the constraint

h(z = 0) = hlocal imposed in all cases.

Planck18/ΛCDM Model

LwMPT Model (zt=0.02, Δw=-4.39, Ω0m=0.31)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

α

δ(
α)

0.980 0.985 0.990 0.995 1.000
0.776

0.778

0.780

0.782

0.784

α

δ(
α)

Figure 3.7: The growth factors δ(α) of the linear perturbations, for both the LwMT , with

zt = 0.02 and ∆w = −4.39 (red line), and Planck18/ΛCDM (blue line) models. Clearly, the

effect of the w transition on the growth factor is negligible at it occurs at at ≃ 0.98. Adopted

from Ref. [227].

wCDM and LwMT models. The right panel of Fig. 3.5 indicates that the LwMT model with

zt = 0.02 which can resolve the Hubble tension, closely mimics the apparent magnitudes

of uΛCDM for z > zt but for z < zt it predicts a small reduction of the residual apparent

magnitudes. The question therefore to address is the following: Is there a hint for such a
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3.2. Fitting LwMT to Cosmological Data

statistically significant reduction of the measured absolute magnitudes in redshifts close to the
transition redshift zt ≃ 0.02? Interestingly, this is indeed the case!

The left panel of Fig. 3.6 shows the N = 150 point moving average of the standard-

ized residual absolute magnitudes with respect to the best fit ΛCDM model. The ΛCDM

standardized residual apparent magnitudes are defined as

∆m̄(zi) ≡
mobs(zi)−mthΛCDM(zi,Mbf ,Ω0mbf )

σi−tot

(3.15)

where σi−tot is the total error (statistical+systematic), Mbf = −19.23 and Ω0mbf = 0.30 are the

best fit parameter values of ΛCDM in the context of the Pantheon data and mthΛCDM are the

corresponding theoretically predicted apparent magnitudes. The N point moving average

corresponding to the residual standardized datapoint point j (j ∈ [1, 1048−N ]) is defined as

∆m̄j
N(z̄) ≡

1

N

j+N∑
i=j

∆m̄(zi) (3.16)

and the corresponding redshift is

z̄jN ≡ 1

N

j+N∑
i=j

zi (3.17)

For N = 150 the left panel of Fig. 3.6 shows the form of ∆m̄N(z̄). Since the points are

standardized and ignoring their correlations, we expect that the 1σ region will approximately

correspond to σ ≃ 1/
√
N ≃ 0.08 which is also indicated in Fig. 3.6 up to the 3σ level.

Interesting features of the binned Pantheon data have been identified in previous studies

[229, 230]. Related to such features is a clear abrupt drop of the moving average of the

standardized residuals from the +2σ region to the −3σ region and beyond clearly seen in

the left panel of Fig. 3.6. The deepest part of this drop is at a redshift of about 0.02. This

is precisely the type of signature anticipated in the context of the LwMT model. Once

we consider the residuals with respect not to the best fit ΛCDM but to the best fit LwMT
model with zt = 0.02, this peculiar feature disappears (Fig. 3.6 right panel). In addition,

the standard deviation of the points of the moving average of residuals decreases by about

20% (from 0.1 to 0.8) while their mean value shown in Fig. 3.6 drops sharply from 0.03 to

0.001. This is also a hint that the best fit LwMT with zt = 0.02 is a more natural pivot model

than the best fit ΛCDM. This observation supports the consideration of a combined w −M
transition for the resolution of the Hubble tension instead of using simply an M transition.

In contrast to smooth H(z) deformations that in general tend to worsen the growth

tension by increasing the growth rate of cosmological perturbations at early times [231] the

proposed ultra-late w transitions have negligible effect on the growth rate of cosmological

perturbations. At zt = 0.02 most structures have already gone nonlinear during the w =
−1 era and have decoupled from the effects of the background expansion. Even those

fluctuations that are still linear do not have the time to respond to the change of w since

it occurs at very low z (z ≃ 0.02). In addition, the emerging strongly phantom background

could only lead to a suppression of the growth due the super accelerating expansion which

prevents the growth of perturbations. We demonstrate this minor suppressing effect on the

growth in Fig. 3.7, where we have solved numerically the equation for the growth of linear

perturbations for the LwMT model for zt = 0.02 and for the required ∆w = −4.39 showing
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Chapter 3. Proposing a w-M Transition at zt < 0.1

that the effect on the growth factor is negligible compared to the Planck18/ΛCDM growth

factor. If the effect of a possible gravitational transition inducing the change of M were to be

taken into account, the decrease of the growth factor may be shown to be large enough to

resolve also the growth tension [232].
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Figure 3.8: The best fit absolute magnitude Mbf (blue points) for various transitions zt for

the LwMT model. The dashed line corresponds to the MC value indicated by Refs. [62,226],

while the dot dashed lines correspond its 1σ error. Notice that if MC is considered to be

constant, the majority of the best fit values of Mbf are more than 2σ away from the MC

value. This difference reduces as zt increases. Adopted from Ref. [227].
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Figure 3.9: Left panel: The absolute magnitude M as a function of redshift z. The straight

dashed line corresponds to the fixed MC value [62, 226] from local Cepheid calibrators of

SnIa while the dot dashed lines correspond to its 1σ error. Clearly Pantheon binned absolute

magnitudes Mi (blue points) corresponding to the best fit LwMT model (zt = 0.02) are

approximately 2σ away from MC . However, in the context of an abrupt transition of M with

∆M ≃ −0.1 at zt = 0.02, the inconsistency disappears. Right panel: The form of µ = Geff/GN

required to induce he M transition shown on the left panel. Clearly, for z > 0.02 Geff < 1
hinting towards weaker gravity [233–235] as indicated by other studies discussing the growth

tension [71,77,94,97,208,229]. Adopted from Ref. [227].
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3.3. In Brief

In order to identify the magnitude of the required M transition we evaluate the best fit

value of the absolute magnitude Mbf (zt) for zt[0 .01 , 0 .15 ] (Fig. 3.8). Notice that ∆M ≡
MC −Mbf is maximum at zt = 0.01 and approaches the 1σ distance from MC at zt > 0.15.

For such high values of zt however the BAO data are poorly fit and the value of χ2
increases

to the level of wCDM. The type of the required M transition for zt = 0.02 is shown in the

left panel of Fig. 3.9 where we also show the absolute magnitudes of the binned Pantheon

datapoints obtained from Eq. (3.13) by solving with respect to M for each datapoint and

using the best fit form of DL(z) for zt = 0.02. Clearly, the derived absolute magnitudes

are not consistent with the Cepheid calibrated value of MC but in the context of an M
transition with ∆M ≃ −0.1 the inconsistency disappears. The right panel of Fig. 3.9 shows

the required evolution of an effective Newton’s constant that is required to produce the M
transition obtained under the assumption that the SnIa absolute luminosity is proportional

to the Chandrasekhar mass which varies as L ∼ Gb
eff with b = −3/2.

2
This assumption leads

to the variation of the SnIa absolute magnitude M with µ ≡ Geff

GN
(GN is the locally measured

Newton’s constant) as [77,237,238]

∆M =
15

4
log10 (µ) (3.18)

which implies that for ∆M ≃ −0.1 we have a 6% reduction of µ.

Notice that if the SnIa data analysis assumes a fixed value of M = MC then the existing

m(zi) data lead to a value of H0 = 74km/(sec ·Mpc) while if the transitions (3.1) and (3.2) are

assumed with zt = 0.02, ∆w = −4.3 and ∆M = −0.1 then the data analysis would lead to a

value H0 = 67.5km/(sec ·Mpc) (consistent with CMB-BAO calibration) while the true value

of H0 would be H0 = 74km/(sec ·Mpc) due to the H0 prior imposed on the w transition ∆w.

3.3 In Brief

In this chapter we have demonstrated using both an analytical approach and a fit to cos-

mological data that a Late w −M Transition (LwMT ) can lead to a resolution of the Hubble

tension in a more efficient manner than smooth deformations of the Hubble tension and

other types of late time transitions (the Hubble expansion rate transition). The moving aver-

age statistic of the standardized residual Pantheon absolute magnitude SnIa data indicates

the presence of a peculiar feature at z < 0.1 which is consistent with the anticipated signa-

tures of the LwMT model. Such a transition leads in general to a best fit value of the SnIa

absolute magnitude that is not consistent with the value implied by local Cepheid calibra-

tors of SnIa [62]. Therefore late time transitions can only constitute successful resolutions of

the Hubble tension if they are accompanied by a transition of the SnIa absolute magnitude

due to evolving fundamental constants. We have shown that a transition of the effective

gravitational constant to a value lower by about 6% is sufficient to induce the required ∆M
transition. This weakening of gravity may also justify the observed reduced growth of per-

turbations which is supported by Weak Lensing [71, 94, 97] and Redshift Space Distortion

data [77, 208, 229] (growth tension). Therefore, this model simultaneously addresses both

the Hubble and the growth tensions. Another basic advantage of such a late time model

2
If b ̸= −3/2 and especially if b > 0 as indicated in [236] under a wide range of assumptions, then the ability

of the LwMT model to resolve the growth tension could be negatively affected.
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Chapter 3. Proposing a w-M Transition at zt < 0.1

that can fully resolve the Hubble tension is that it can fit the local distance data (BAO and

SnIa) in a very effective manner. This is due to the fact that by construction it has the same

quality of fit to the BAO, SnIa and CMB data as Planck18/ΛCDM, in contrast to the usual

late time smooth deformations of H(z).
Moreover, there is a physical theoretical basis of the model since it can be realized in the

context of modified gravity theory with a rapid gravitational transition. The rapid nature of

the transition is a generic feature and can be made consistent with solar system tests with

no need for screening as in other modified theories. Such models include the following:

• The most natural model that can induce a LwMT involves a non-minimally coupled

phantom scalar field initially frozen at ϕ = ϕ0 due to cosmic friction close to the zero

point of its potential which could be assumed to be of the form V (ϕ) = s ϕn
. Such a field

would initially have a dark energy equation of state w = −1 mimicking a cosmological

constant. Once Hubble friction becomes smaller than the field dynamical (mass) scale,

the field becomes free to roll up its potential (phantom fields move up their potential in

contrast to quintessence fields [239,240]) and develops a rapidly changing equation of

state parameter w < −1 and shifted Geff . Thus the universe enters a ghost instability

phase which will end in a Big Rip singularity in less than a Hubble time. Such a

scenario for the simple (but also generic) case of linear potential (n = 1) has been

investigated in Ref. [239]. For a general phantom potential we anticipate a redshift

dependence of the equation of state w< = w<(z) after the transition (z < zt). In fact

the phantom field potential could be reconstructed by demanding a form of w<(z) that

further optimizes the quality of fit to the low z data or by simply demanding that w< is

constant.

• A scalar-tensor modified gravity theory field initially frozen due to Hubble friction, mim-

icking general relativity and a cosmological constant. Once Hubble friction becomes

smaller than the field mass scale, the field becomes free to roll down its potential

inducing deviations from general relativity on cosmological scales and a phantom de-

parture from the cosmological constant. Note that scalar tensor theories can induce

phantom behavior without instabilities in contrast to a simple minimally coupled scalar

field [183].

The detailed investigation of the above described dynamical scalar field evolution that can

reproduce the LwMT is an interesting extension of the analysis presented in this chapter.

If the phantom LwMT is realized in Nature it would imply the existence of a rapidly

approaching Big Rip singularity [241, 242] which may be avoided due to quantum effects

[243]. Given the value of w< which emerges at approximately the present time t0, it is

straightforward to calculate the time t∗ of the Big Rip singularity assuming that w = w< < −1
at the present time t0. The result is [242]

t∗
t0

=
w<

1 + w<

(3.19)

For example for zt = 0.02 we have w< ≃ −5 which implies that the universe will end in a

Big Rip singularity in less than 3.5 billion years (for t0 = 13.8 × 109yrs). This implies that

there may be observational effects of such coming singularity on the largest bound systems

like the Virgo cluster, the Coma Cluster or the Virgo supercluster. A detailed investigation of
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3.3. In Brief

the observational effects on bound systems of the LwMT is an interesting extension of the

present analysis.

The detailed comparison of the quality of fit of the LwMT (or similar) models with a

variety of smooth H(z) deformation models addressing the Hubble tension would also be a

useful extension. The use of full CMB spectrum data and possibly other cosmological data

sensitive to the dynamics of galaxies in clusters and superclusters could also be included.

The late time sudden deformation of the luminosity distance DL(z) induced through the w
transition helps to decrease the required magnitude of the M transition from ∆M ≃ −0.2 to

∆M ≃ −0.1. In the absence of the w transition the Hubble tension could still be resolved via

an M transition with ∆M ≃ −0.2 and no deformation of DL(z). Even though this approach

would be simpler it would require a larger amplitude of the ∆M transition at zt ≃ 0.01 while it

would not address the abrupt feature in the Pantheon data shown in Fig. 3.6. Nevertheless,

the simplicity of such an approach in an attractive feature and thus this model deserves a

detailed investigation by comparing its predictions with current and future data.
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CHAPTER 4
Smooth Deformations of H(z) and the S8
Tension

A
mongst the vast number of proposed late time solutions to the Hubble tension a

great deal of them uses late time smooth deformations of the Hubble expansion

rate H(z) of the Planck18/ΛCDM best fit to match the locally measured value

of H0, while effectively keeping the comoving distance to the last scattering sur-

face and Ω0mh
2

fixed to maintain consistency with Planck CMB measurements.

Although this approach is common it suffers from a number of issues.

The most well-known problem of these models is that they worsen the fit to low z distance

probes. In this chapter we show that another problem of these parametrizations is that they

significantly worsen the level of the Ω0m − σ8 growth tension. As we will discuss with greater

in the following sections, we show this by using the paradigm of the generic CPL [199,

200] model. This parametrization corresponds to an evolving dark energy equation of state

parameter of the form given by Eq. (2.13) with local measurements H0 prior and we identify

the pairs (w0, w1) that satisfy the condition mentioned above. The CPL parametrization is

one of the most generic and well known classes of smooth deformations of H(z) that are

designed to address the Hubble tension. We show that for this type of models the growth

tension between dynamical probe data and CMB constraints is worse than the corresponding

tension of the standard Planck18/ΛCDM model. We justify this feature using a two-fold

methodology, on one hand we explore an approximate analytic approach, and on the other

hand we also provide a full numerical solution of the growth equation and subsequently

fit to the data. However, it is very important to mention that this issue does not affect

the proposed solution of the Hubble crisis involving a SnIa absolute magnitude transition

at zt ≃ 0.01 that is explored in Chapter 3. Therefore, in the context of this chapter we

focus on the following question: ’Can this class of smooth deformation models improve the
growth tension by decreasing the growth rate of cosmological perturbations compared to the
Planck18/ΛCDM model?’

The analytic part of our study is being done by considering a generic CPL parametriza-

tion which in redshift space is expressed via Eq. 2.13. We impose consistency with

the Planck anisotropy spectrum and local measurements of H(z) by using the methodol-

ogy of Ref. [198] that is described in Chapter 2. More specifically, we fix ωm ≡ Ω0mh
2

(h ≡ H0/100kms−1Mpc−1
) to the Planck18/ΛCDM value ωm = ω̄m ≡ 0.143. Then we fix the

comoving distance to recombination (flat space) r(zrec) ≡
∫ zrec
0

dz
H(z

to its Planck18/ΛCDM
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4.1. Approximate Analytic Solutions to the Evolution of
the Matter Density Perturbations

value and, lastly, we fix the value of H0 to its locally measured value HR20
0 .

These three conditions lead to the numerical evaluation of the function w1h(w0) such that

for any given value of w0 we obtain the corresponding value of w1 = w1h that can potentially

address the Hubble problem by fitting local measurements of H0 while being consistent

with the CMB anisotropy spectrum [198]. We then focus on pairs (w0, w1h(w0)), evaluate the

predicted growth factor of perturbations in the context of general relativity
δ(z=0)
δ(zrec)

and compare

it with the corresponding growth factor predicted by the best fit Planck18/ΛCDM H(z). We

thus address the question: Are there w0, w1 pairs that can potentially address the Hubble
problem while having lower predicted growth of perturbations than the Planck18/ΛCDM form
of H(z) which is already in tension with RSD and weak lensing data?

In Chapter 2 we showed that in the case of wCDM with w0 ≃ −1.22, even though the model

claims to address the Hubble tension (at least superficially), it fails to address the S8 tension

and at the same time does not fit well the low z distance data (BAO and SnIa) as it has been

demonstrated in previous studies [189, 198, 219]. In fact, focusing on the growth tension,

we see that it worsens it and as we will show by generalizing this analysis to more general

cases of smooth deformations of H(z), this constitutes a key characteristic for all of them. In

order to do that, we calculate the growth factor for various values in the w0 − w1 parameter

space that have the ability to superficially address the Hubble tension and we continue by

constructing the σ8 − Ω0m likelihood contours for representative (w0, w1h(w0)) pairs via the

use of a robust RSD fσ8 data compilation [76,207]. By comparing these contours with the

corresponding Planck likelihood ones, we are able to estimate the tension level for each case

of (w0, w1h(w0)) pairs.

The next part of this chapter revolves around the numerical confirmation of our results.

To achieve that, we fitted these smooth deformations of H(z) models to compilations of SnIa,

BAO and CMB data and showed that the received fit in each case is much worse than that

of the Planck18/ΛCDM model. We anticipated this issue since, as we mentioned before

these models are expected to have a poor fit with respect to BAO and SnIa data. However,

we will not occupy ourselves with this aspect of the study, since we are interested on their

consistency with the growth fσ8 data. Lastly, we will focus on the absolute magnitude M of

the SnIa. Using the relevant Pantheon data we will identify the best fit values of M for these

H(z) deformations and we will compare these best fits with the corresponding range of M
that is implied by the Cepheid calibrators. This approach could hint towards a new issue of

the H(z) deformation models, known as the M tension [62,226] which is discussed also in

Chapter 3.

4.1 Approximate Analytic Solutions to the Evolution of

the Matter Density Perturbations

As mentioned with greater detail in Chapter 2, a deformation of the Hubble expansion rate

from its Planck18/ΛCDM form may be expressed as

H(z, ωm, ωr, h, w(z)) = H0

√
Ω0m(1 + z)3 + Ω0r(1 + z)4 + Ω0dee

3
∫ z
0 dz′ (1+w(z′))/(1+z′)

(4.1)

where w(z) is the dark energy equation of state parameter at redshift z, Ω0r, Ω0m are the

present day radiation and matter density parameters and Ω0de = 1−Ω0m−Ω0r is the present
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Chapter 4. Smooth Deformations of H(z) and the S8 Tension

day value of the dark energy density parameter assuming spatial flatness. We also define

ωr ≡ Ω0rh
2
. This deformed Hubble expansion can become simultaneously consistent with

local measurements of H0 = HR20
0 as well as with the CMB anisotropy spectrum. Reiterating

the results displayed in Chapter 2 if we consider that [194,195,198]

• The matter and radiation density parameter combinations ωm and ωr are fixed to their

Planck18/ΛCDM best fit value ω̄m = 0.1430± 0.0011 and ω̄r = (4.64± 0.3) 10−5
.

• The cosmological comoving distance to the recombination redshift

r(zr, ωm, ωr, w(z)) =

∫ zr

0

dz

H(z)
=

∫ 1

ar

da′

a′2H(a′)
(4.2)

(a is the cosmic scale factor, zr ≃ 1091 is the redshift of recombination) is fixed to the

Planck18/ΛCDM best fit value r̄ = (100 km sec−1 Mpc−1)−1(4.62± 0.08).

• The Hubble parameter H0 is fixed to its locally measured value HR20
0 .

then for the typical case of the CPL [see Eq. (2.13)] H(z) deformation model we would have

an H(z) of the form

H(z) = H0

√
Ω0m(1 + z)3 + Ω0r(1 + z)4 + (1− Ω0m − Ω0r) (1 + z)3(1+w0+w1)e−3

w1z
1+z (4.3)

while the corresponding constraint in the dark energy equation of state will be approximately

expressed as [198]

w1h(w0) ≃ −4.17w0 − 5.08. (4.4)

This equation defines a multitude of points in the w0−w1h parameter space that could claim

to address the Hubble tension according to the theory described in Chapter 2. The above

equation however is an approximation and as such more accurate values for the w1h(w0)
dependence could be found via the numerical solution of the equation r(zr, ω̄m, ω̄r, w(z)) =
4.62. In the subsequent parts of this chapter, the latter will be the go to method of obtaining

the w0 − w1 pairs we require, even though we will still refer to Eq. (4.4).

As we have mentioned in the start of this chapter the models that employ late deforma-

tions of H(z) are susceptible to poor fits to local distance measurements at z < 2 by SnIa [22]

and BAO [209–211] data. In the case that the asymptotic value of w(z) at early times which

in the CPL case is

w∞ = w0 + w1 (4.5)

increases to values w∞ > −0.5 while the best possible fit to BAO-SnIa is obtained for

w∞ ≃ −1.2 the fit to these datasets becomes even worse. Far more worse than that of

the Planck18/ΛCDM.

In the next parts we investigate the level of the S8 tension and the growth of perturbations

for the H(z) deformations in questions, while assuming the validity of Eq. (4.4). In partic-

ular we compare the growth factor of these models with the corresponding growth factor of

Planck18/ΛCDM and identify the tension level in the Ω0m − σ8 parameter space between

RSD growth data and Planck18/ΛCDM likelihoods contours.
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4.1. Approximate Analytic Solutions to the Evolution of
the Matter Density Perturbations

4.1.1 Evolution of the Growth Factor of Cosmological Matter

Perturbations

The evolution of the growth factor of cosmological matter perturbations δ(a) ≡ δρ
ρ
(a) in

terms of the cosmic scale factor a is determined in sub-horizon scales by the equation

[76,155,244–247]

δ′′(a) +

(
3

a
+

H ′(a)

H(a)

)
δ′(a)− 3Ω0m

2a5H(a)2/H2
0

δ(a) = 0, (4.6)

where the primes denote differentiation with respect to the scale factor a and H(a) ≡ ȧ
a

is

the Hubble expansion rate. The initial conditions for the solution of Eq. (4.6) are usually

taken deep in the matter era (e.g. for ai = 0.001) where it is easy to show that δ(ai) ∼ ai.
The growth factor δ(a)/δ(ai) indicated by this equation in the context of Planck18/ΛCDM

best fit parameters is higher than the growth favored by dynamical probe data like weak

lensing [85, 94, 248–253], cluster counts [32, 254–256] and redshift space distortions [75,

76, 111, 257, 258] at a 2 − 3σ level. This is known as the growth tension or Ω0m − σ8

tension where σ8 is defined as the matter density rms fluctuations within spheres of radius

8h−1
Mpc at the present time z = 0 and is connected with the amplitude of the primordial

fluctuation spectrum. In particular the best fit value of the matter density parameter favored

by Planck18/ΛCDM is higher than the value favored by the dynamical probes. This indicates

that dynamical probes prefer a weaker growth of perturbations since the matter density

parameter effectively ’drives’ the growth of density perturbations.
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Figure 4.1: Left panel:The relative growth factor δ(1)CPL/δ(1)ΛCDM
(red line), the best fit ratio

σCPL
8 /σΛCDM

8 (green line, fixed ωm = 0.143) and the ratio ωγ
m/ω

6
11
m (orange dot-dashed line)

all have similar dependence on w∞. The five thick dots correspond to the CPL parameter

values (w0, w1) pairs, (−1,−0.93), (−1.1,−0.497), (−1.22, 0), (−1.5, 1.05) and (−1.73, 1.72) of

the five panels of Fig. 4.3 (the sixth corresponds to ΛCDM ). Right panel: The quality of fit to

the CMB shift parameters, Pantheon and BAO data compared to ΛCDM is significantly worse

than ΛCDM for the CPL models that address the Hubble tension. In all cases ∆χ2 > 50. The

minimum (∆χ2 ≃ 54) occurs at about w∞ ≃ −1.2 corresponding to wCDM. Adopted from

Ref. [231].

A useful bias-free statistic probed by RSD data is the product fσ8:

fσ8(a) =
σ8

δ(a = 1)
a δ′(a,Ω0m) , (4.7)
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Chapter 4. Smooth Deformations of H(z) and the S8 Tension

where f ≡ d ln δ
d ln a

is the growth rate of matter density perturbations. Notice that for a given

measured value of fσ8(a), weaker growth (smaller δ(a = 1)) implies a lower value of σ8

(assuming that δ′(a) does not change significantly for a given value of a). This is demonstrated

in Fig. 4.1 where we show the properly normalized best fit value of σ8 (green line) obtained

by fitting the solution of Eq. (4.6) to the robust fσ8 dataset of Ref. [76]
1

for various values

of w∞ under the assumption of ωm = 0.143, h = 0.74 and Eq. (4.4), conditions required

for consistency of local measurements of H0 and Planck18/ΛCDM anisotropy spectrum.

Clearly σ8(w∞)/σP18Λ
8 (σP18Λ

8 denotes the best fit value in the context of Planck18/ΛCDM )

has the same monotonicity and differs by less than 2% from δ(1, w∞)/δ(1)P18Λ
(red line) thus

justifying that the best fit σ8 and δ(a = 1) are approximately proportional.

4.1.2 Approximate Analytic Solutions

An approximate solution to Eq. (4.6) can be found [259] by utilizing a growth index γ, which

is used to parameterize the linear growing mode of models with time varying equations of

state, such as Eq. (2.13). Using γ and ignoring the effects of radiation, the growth factor

solution ∆(a) ≡ δ(a=1)
δ(ai)

of (4.6) may be approximated as [259,260]

∆(a) = exp

[∫ a

ai

Ωγ
m(a

′)

a′
da′

]
(4.8)

where ∆(a) is the normalized growth factor δ(a)/δ(ai), ai = 0.001 is an initial redshift deep

in the matter era when δ(a) ∼ a and

Ωm(a) ≡
Ω0mH

2
0a

−3

H(a)2
=

ωm a−3

h(a)2
(4.9)

with h(a)2 ≡ ωma
−3+(h2−ωm)fa(a) (fa(a) denotes the evolution of the dark energy density).

The growth index is approximated by [259]

γ =
6− 3(1 + w∞)

11− 6(1 + w∞)
. (4.10)

where w∞ is defined in Eq. (4.5). For ΛCDM (w = −1) we have γ = 6/11 ≃ 0.55. From Eq.

(4.8) it is easy to obtain the well known approximate expression for the growth rate f(a) of

density perturbations

f(a) ≡ d ln∆

d ln a
≃ Ωm(a)

γ
(4.11)

which may also be used as a definition of the growth index γ.

Using Eqs. (4.8), (4.9) it is easy to express the growth factor as

∆(a) =
δ(a)

δ(ai)
= exp

[
ωγ
m

∫ a

ai

da′

a′1+3γ h(a′)2γ

]
(4.12)

Since γ ∈ [0.45, 0.65] in most physically interesting cases, the integral in the exponential of

Eq. (4.12) is very similar to the integral of the comoving distance (4.2) [260]. Since the dark

1
This dataset is optimized for independence of datapoints but it involves significanty less datapoints than

the more complete compilation of Ref. [208].
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4.1. Approximate Analytic Solutions to the Evolution of
the Matter Density Perturbations

energy parameter values (e.g. pairs of w0 −w1 in the CPL case) that can address the Hubble

tension have approximately fixed comoving distance to recombination they should also have

approximately fixed growth integral in Eq. (4.12) for a = 1. Therefore, the growth factor

∆(a = 1) is expected to have approximately similar behavior as ω
γ(w∞)
m . This is demonstrated

in Fig. 4.1 where we show the growth factor δ(1)CPL/δ(1)P18Λ
as obtained by a numerical

solution of Eq. (4.6) using the Planck18/ΛCDM best fit parameter values (δ(1)P18Λ
) and the

CPL parameter values (4.4) that address the Hubble problem (δ(1)CPL
). In both case we fixed

ωm = 0.143 for consistency with the CMB anisotropy spectrum while we set h = 0.74 for

δ(1)CPL
and h = 0.67 for δ(1)P18Λ

in Eq. (4.6). Superimposed is the ratio ω
γ(w∞)
m /ω

γ(w∞=−1)
m

for ωm = 0.143 and γ(w∞ = −1) = 6
11

corresponding to the ΛCDM growth index. The two

quantities (ω
γ(w∞)
m /ω

γ(w∞=−1)
m and δ(1)CPL/δ(1)P18Λ

) have similar monotonicities and differ by

less than 4% in the range w∞ ∈ [−2,−0.5]. This validates the approximation that the growth

integral of Eq. (4.12) varies slowly with w∞ when Eq. (4.4) is obeyed.

As shown in Fig. 4.1 (red curve) the H(z) CPL deformations that can address the Hubble

tension induce a growth factor that is larger than the one implied by a Planck18/ΛCDM

background for all w∞ < −0.5. This range of w∞ includes all the values of parameters which

are consistent with SnIa, BAO and CMB data. This is demonstrated in Fig. 4.1 (right panel)

where we show the excess value of χ2
with respect to Planck18/ΛCDM as a function of w∞

using the Pantheon SnIa data along with a compilation of 9 BAO datapoints and two CMB

effective distance/shift parameters [227]. Clearly, the best fit is obtained for w∞ ≃ −1.1±0.2,

while the value w∞ = −0.5 is more than 3σ away from the best fit value.

ΛCDM

w0 = -1, w1= -0.93

w0 = -1.1, w1= -0.497

w0 = -1.5, w1 = 1.05

w0 = -1.73, w1 = 1.72

wCDM (w = -1.22)
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Figure 4.2: The Planck18/ΛCDM form of H(z)/(1 + z) (blue dot-dashed line) is compared

with the same function obtained with various pairs of CPL parameters that address the

Hubble tension. Some BAO data are also shown. Adopted from Ref. [231].

The strong deformation of H(z) implied by models with high values of w∞ is also shown in
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Chapter 4. Smooth Deformations of H(z) and the S8 Tension

Fig. 4.2 where the Planck18/ΛCDM form of H(z)/(1+ z) (blue dot-dashed line) is compared

with the same function obtained with various pairs of CPL parameters that address the

Hubble tension. Clearly the strongest deformation at low z occurs for models with w∞ < −0.5
which implies also inconsistency with BAO and SnIa data at redshifts of O(1).

4.2 Numerical Fit Using fσ8 Data
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Figure 4.3: The cyan and the red contours correspond to the Growth and the Plank 18

CMB data respectively, for the ΛCDM and various (w0, w1) pairs of the CPL model. The ∆σ
differences between the best fit values produced by the two contours in each case, are shown

in Tab. 4.1. It is clear that the tension does not ease in the case of the CPL model despite

the fact that it appears to solve the H0 tension for the same w0 and w1 values used. Adopted

from Ref. [231].

The increased tension level between CMB data and RSD growth data in the context of late

time H(z) deformations addressing the Hubble tension is demonstrated in Fig. 4.3 where we

show the CMB data likelihood contours (Planck18 chains) in the parameter space Ω0m − σ8

superimposed with the corresponding contours obtained from a robust compilation of RSD

fσ8 data [76,207] for ΛCDM (upper left panel), and five CPL w0, w1 parameter pairs that can

address the Hubble problem with h = 0.74. These five pairs (thick dots in Fig. 4.1) in addition

to being disfavored by low z geometric probes (BAO and SnIa) by δχ2 > 50 (see Tab. 4.1), also

lead to increased tension between CMB and growth data compared to ΛCDM as shown in
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w0 w1 ∆M ∆χ2 ∆σ

-1 0 -0.19 - 2

-1 -0.93 -0.02 63 2.9

-1.1 -0.50 -0.03 57 3.0

-1.22 0.0 -0.05 54 3.1

-1.50 1.05 -0.09 65 3.4

-1.73 1.72 -0.12 279 3.4

Table 4.1: The three problems of H(z) deformations addressing the Hubble crisis (columns

1,2). Column 3: The deviation of the best fit value of the absolute magnitude M for each

deformation, from the Cepheid calibrated value of Refs. [62,226] shown in Fig. 4.4. Column

4: The ∆χ2
differences with respect to Planck18/ΛCDM shown also in Fig. 4.1 (right panel)

for each (w0, w1) pair that addresses the Hubble tension. Column 5: The ∆σ differences

between the best fit values of the Growth and CMB data contours depicted in Fig. 4.3.

Fig. 4.3 and Tab. 4.1 even for parameter values where the growth factor is less than that of

Planck18/ΛCDM (lower right panel corresponding to w∞ < −0.5). In constructing Fig. 4.3

and Tab. 4.1 we have only fixed the parameters w0, w1 in each panel as indicated so that

the Hubble tension is addressed (in the 5 panels) but have left free Ω0m and σ8 to be fitted

by the data. Notice that in all panels the CMB data favor a value of ωm ≃ 0.143 as expected.
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Figure 4.4: The best fit values of the absolute magnitude M , for the (w0, w1) pairs displayed

in Tab. 4.1. These values are consistently lower than the corresponding value of M implied

by local Cepheid calibrators (upper dashed line) even though this tension is not as large as

for the best fit value of M obtained in the context of the standard Planck18/ΛCDM model

(lower dashed line). Adopted from Ref. [231].

In addition to the reduced quality of fit to low z geometric probes and the increased growth

tension, the H(z) deformation models addressing the Hubble tension face another challenge:
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Chapter 4. Smooth Deformations of H(z) and the S8 Tension

They lead to a best fit value of the SnIa absolute magnitude M that is consistently lower than

the corresponding value implied by the Cepheid calibrators at z < 0.01 M = −19.24 ± 0.04.

This difference is indicated in Fig. 4.4 and in Tab. 4.1. In Fig. 4.5 we show the values of the

absolute magnitude in the context of a CPL model that attempts to address the H0 tension

with the use of an H0 prior. It is clear that the mean value of these absolute magnitudes is

in tension with the Cepheid calibrated M best fit (MC ), while the values themselves display

a downwards evolution for z > 0.1 instead of being constant.
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Figure 4.5: The values of the absolute magnitude corresponding to the binned SnIa data in

the context of the CPL model (w0 = −1.22, w1 = 0) that addresses the H0 tension via an H0

prior, shown to be in tension with the Cepheid calibrated M range. Adopted from Ref. [231].

4.3 In Brief

In this chapter we have demonstrated by analysing the typical CPL parameterization and

subsequently generalizing our results to all the late time deformations of H(z) that aim to

superficially address the Hubble tension, that they consistently worsen the S8 tension. This

effect adds to the fact that they display a worse fit to low z geometric probes like SnIa and

BAO data in comparison to Planck18/ΛCDM. Early time approaches to the Hubble tension

also display similar issues as reported by Ref. [261]. Furthermore, we have considered the

aspect of the M tension that is also discussed in the Chapter 3. To that end, we have shown

that these models exhibit a tendency for lower best fit values of the SnIa absolute magnitude

than the Cepheid calibrator one.

It may seem like a bold move to consider the CPL model as the quintessential paradigm in

our study, and in fact this point has been made before in the literature [262,263]. However,

we still expect that the results presented in this chapter are general and generic for all similar

parametrizations. That is because the issues of the generality of CPL become prevalent due

to it being a linear expansion on w around the present and thus only being accurate around
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4.3. In Brief

the present as well. The aspect that ultimately makes the CPL a good representative of the

smooth H(z) deformation models is most eloquently shown in Fig. 5.3. With its help it is

straightforward to see that the parameters that claim to solve the Hubble tension correspond

to a wide range of shapes for H(z).
In order to fully test our hypothesis we would need to consider a larger variety of cos-

mological data and a full MCMC analysis. That would mean the inclusion of the full CMB,

the Pantheon and the growth data, as well as the BAO measurements. As we have said

before, a similar analysis has been performed in [198] and described in Chapter 2. There we

showed that the best-fit values of (w0, w1) that were produced, are approximately equal to

those derived via the semi-analytic methodology. This was in the case where an an H0 prior

was implemented, alternatively we have demonstrated that the best fit values of (w0, w1) end

up close to the Planck18/ΛCDM model. This effect most probably is due to the domination

of the CMB - BAO data. Thus, such an MCMC extended analysis probably would require the

inclusion of an H0 prior along with the marginalization over other parameters demonstrating

the growth tension level after such marginalization.

Concluding this chapter we are tempted to once again turn our attention to the LwMT
model that was proposed in the previous one. We remind the reader that this model is

partially based on a rapid transition of SnIa absolute luminosity at z ≃ 0.01. This transition

could be explained if one considers an equally rapid change of the value of the gravitational

constant Geff by about 10%. This type of ultra late time transition model has the advantages

of fully resolving the Hubble tension while also simultaneously addressing the S8 tension

[227, 232] (two birds with one stone) and providing an equally good or even better fit to

the low z data (BAO and SnIa) with the Planck18/ΛCDM model. Although this model is

accompanied by w transition as well, it has been demonstrated that an M transition by itself

(LMT model) would suffice. It is obvious that these models have very interesting theoretical

implications with respect to fundamental physics and finally they are testable with the aid

of upcoming data, especially those from standard sirens.
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CHAPTER 5

Observational Hints for a Late M Transition

I
n this chapter we attempt to provide some observational support to the ex-

istence of a Late time w − M transition LwMT like the one postulated in

Chapter 3. This type of model has the capabilities of resolving both the Hubble

and S8 tensions, while maintaining a quality of fit to the data equal to that of

Planck18/ΛCDM. Therefore, we proceed by searching for observational indica-

tions of a sharp late transition in the SnIa absolute magnitude M , expressed in the form of

an analogous gravitational constant transition.

Firstly, we have utilized an up-to-date compilation of galaxy data in order to probe for

transitions in the evolution of the Baryonic Tully-Fisher (BTFR) relation [264]. As we will

demonstrate in greater detail below, we find hints for a transition in the BTFR evolution at

two citical distances, Dc ≃ 9 Mpc and Dc ≃ 17 Mpc, at an ≈ 3σ level of confidence. In

brief this analysis was conducted by splitting the entire dataset in two subsets, according to

the measured galaxy distance with respect to splitting distance Dc, and then proceeding to

calculate the likelihood of the best-fit slope and intercept of one subset with respect to the

best-fit corresponding values of the other subset. We have also demonstrated that these re-

sults are robust and not subject to major random systematic and statistical variations of the

galactic distance data. The latter was shown with the help of a homogeneous mock dataset

that was created using Monte Carlo simulations, and did not produce any discontinuities in

the evolution of the BTFR.

Secondly, we attempted to impose constrains on the gravitational transition that would

correspond to a transition in the Absolute Magnitude M [265]. To that effect we used two

robust low-z redshift survey datasets (z < 0.01), taken from the Six-degree Field Galaxy

Survey (6dFGS) as well as the 2MASS Redshift Survey (2MRS). Our goal was to observe and

constrain a peak in the distribution of galaxies, as such an effect would be, among else,

indicative of an ultra late-time gravitational transition. As we will demonstrate further on,

we observed such a feature near a distance of approximately 20 Mpc, however this could

be attributed to alternative causes such as the coherent peculiar velocities of galaxies or

galactic density fluctuations. Thus a conclusion was reached that although a gravitational

transition cannot be thoroughly constrained, it remains plausible and cannot be excluded

by redshift survey data at z < 0.01.
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5.1 Searching for Hints of a Gravitational Transition in

Tully-Fisher Data

5.1.1 The Baryonic Tully-Fisher Relation as a Probe of Gravitational

Dynamics

The classic Tully-Fisher relation (TFR) [266] is an empirical relation that has been proposed

to serve as a connection between the observed maximum velocity vrot of spiral galaxies in the

rotation curve and their intrinsic optical luminosity L. It has the following form,

L = Avsrot (5.1)

where s ≃ 4 is the slope in a logarithmic plot of (5.1), A is a constant and (log(A) is the zero

point or intercept). The constants s and A have a very weak dependence on galactic prop-

erties such as the mass to light ratio, the galactic profiles, the observed surface brightness,

HI gas content, size, etc. [267]. They depend, however, on the fundamental properties of

gravitational interactions.

The Baryonic Tully-Fisher relation (BTFR), on the other hand, is very similar to Eq. (5.1)

but it differentiates by connecting the galaxies rotation velocity with their total baryonic mass

(the sum of mass in stars and HI gas) MB. This connection takes the form,

MB = ABv
s
rot (5.2)

where AB ≃ 50M⊙ km
−4

s
4

[268]. This more generalized Tully-Fisher relation benefits

significantly from including gas-rich dwarf galaxies that appear in groups and have stellar

masses below 109M⊙.

We can derive the the BTFR relation if we consider a star in a circular orbit of radius R
around a galactic mass M rotating with velocity v [269]. Then, we can show that,

v2 = GeffM/R =⇒ v4 = (GeffM/R)2 ∼ M S G2
eff (5.3)

where Geff is the effective Newton’s constant involved in gravitational interactions and S the

surface density S ≡ M/R2
, which is expected to be constant [270]. Moving on, from Eqs.

(5.2) and (5.3), the following is anticipated:

AB ∼ G−2
eff S

−1
(5.4)

Therefore, the BTFR can, in principle, probe both galaxy formation dynamics (through, e.g.
S) and possible fundamental constant dynamics (through Geff ). An interesting feature of the

BTFR is that despite the above heuristic derivation, it appears to be robust, even in cases

when the galaxy sample includes low S and/or varying S galaxies [271, 272]. In fact, no

other parameter appears to be significant in the BTFR.

The BTFR has been shown to have lower scatter [267,273,274] than the classic stellar

TFR and also to be applicable for galaxies with stellar masses lower than 109M⊙. It is also

more robust than the classic TFR [275–278] since the parameters AB (intercept) and s (slope)

are very weakly dependent on galactic properties, such as size and surface brightness [267].

The low scatter of the BTFR and its robustness make it useful as a distance indicator for
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Method

∣∣∣∆Geff

Geff

∣∣∣
max

∣∣∣ Ġeff

Geff

∣∣∣
max

(yr−1
) time scale (yr) References

Lunar ranging 1.47× 10−13
24 [280]

Solar system 4.6× 10−14
50 [281,282]

Pulsar timing 3.1× 10−12
1.5 [283]

Strong Lensing 10−2
0.6 [284]

Orbits of binary pulsar 1.0× 10−12
22 [285]

Ephemeris of Mercury 4× 10−14
7 [286]

Exoplanetary motion 10−6
4 [287]

Hubble diagram SnIa 0.1 1× 10−11 ∼ 108 [288]

Pulsating white-dwarfs 1.8× 10−10
0 [289]

Viking lander ranging 4× 10−12 6 [290]

Helioseismology 1.6× 10−12 4× 109 [291]

Gravitational waves 8 5× 10−8 1.3× 108 [292]

Paleontology 0.1 2× 10−11 4× 109 [293]

Globular clusters 35× 10−12 ∼1010 [294]

Binary pulsar masses 4.8× 10−12 ∼1010 [295]

Gravitochemical heating 4× 10−12 ∼108 [296]

Strong lensing 3× 10−1 ∼1010 [284]

Big Bang Nucleosynthesis * 0.05 4.5× 10−12 1.4× 1010 [297]

Anisotropies in CMB * 0.095 1.75× 10−12 1.4× 1010 [298]

Table 5.1: Solar system, astrophysical and cosmological constraints on the evolution of the

gravitational constant. Methods with star (∗) constrain GN while the rest constrain Geff . The

latest and strongest constraints are shown for each method.

the measurement of the Hubble constant H0. A calibration of the BTFR using Cepheid and

TRGB distances leads to a value of H0 = 75± 3.8 km s−1 Mpc−1
[48].

The weak evolution and scatter of the BTFR can be used as a probe of galaxy formation

models as well as a probe of possible transitions of fundamental properties of gravitational

dynamics since the zero point constant AB is inversely proportional to the square of the

gravitational constant G. Previous studies investigating the evolution of the best-fit zero

point log AB and slope s of the BTFR have found a mildly high z evolution of the zero point

from z ≃ 0.9 to z ≃ 2.3 [279], which was attributed to the galactic evolution inducing a lower

gas fraction at low redshifts after comparing with the corresponding evolution of the stellar

TFR (STFR), which ignores the contribution of gas in the galactic masses.

Ref. [279] and other similar studies assumed a fixed strength of fundamental gravita-

tional interactions and made no attempt to search for sharp features in the evolution of the

zero point. In addition, they focused on the comparison of high redshift with low redshift

effects without searching for possible transitions within the low z spiral galaxy data. Such

transitions, if present, would be washed out and hidden from these studies, due to averag-

ing effects. In the present analysis, we search for transition effects in the BTFR at z ≲ 0.01
(distances D ≲ 40Mpc), which may be due to either astrophysical mechanisms or to a rapid

transition in the strength of the gravitational interactions Geff , due to fundamental physics.

In many modified gravity theories, including scalar tensor theories, the strength of grav-

itational interactions Geff measured in Cavendish-type experiments measuring force F be-
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tween masses (F = Geff
m1 m2

r2
), is distinct from the Planck mass corresponding to GN that

determines the cosmological background expansion rate (H2 = 8πGN

3
ρtot).

For example, in scalar tensor theories involving a scalar field ϕ and a non-minimal cou-

pling F (ϕ) of the scalar field to the Ricci scalar in the Lagrangian, the gravitational interaction

strength is as follows [299]:

Geff =
1

F

2F + 4F,2ϕ
2F + 3F,2ϕ

(5.5)

while the Planck mass related GN is as follows:

GN =
1

F
(5.6)

Most current astrophysical and cosmological constraints on Newton’s constant constrain

the time derivative of Geff at specific times, assume a smooth power-law evolution of Geff ,

or constrain changes of the Planck mass–related GN instead of Geff (CMB and nucleosyn-

thesis constraints [297]. Therefore, these studies are less sensitive in the detection of rapid

transitions of Geff at low z.

The current constraints on the evolution of Geff and GN are summarized in Table 5.1,

where we review the experimental constraints from local and cosmological time scales on

the time variation of the gravitational constant. The methods are based on very diverse

physics, and the resulting upper bounds differ by several orders of magnitude. Most con-

straints are obtained from systems in which gravity is non-negligible, such as the motion of

the bodies of the solar system, and the astrophysical and cosmological systems. They are

mainly related in the comparison of a gravitational time scale, e.g. period of orbits, with a

non-gravitational time scale. One can distinguish between two types of constraints, from ob-

servations on cosmological scales and on local (inner galactic or astrophysical) scales. The

strongest constraints to date come from lunar ranging experiments.

In the first column of Table 5.1, we list the used method. The second column contains the

upper bound

∣∣∆G
G

∣∣
max

of the fractional change of G during the corresponding timescale. Most

of these bounds assume a smooth evolution of G. In the third column, we present the upper

bound on the normalized time derivative

∣∣ Ġ
G

∣∣
max

. The fourth column is an approximate

time scale over which each experiment is averaging each variation, and the fifth column

refers to the corresponding study where the bound appears. Entries with a star (∗) indicate

constraints on GN , while the rest of the constraints refer to the gravitational interaction

constant Geff .

In this chapter, we will partially focus on the search for a transition of the BTFR best-

fit parameter values (intercept and slope) between data subsamples at low and high dis-

tances. We consider sample dividing distances Dc ∈ [2, 60]Mpc, using a robust BTFR

dataset [277, 300–302], which consists of 118 carefully selected BTFR datapoints, provid-

ing distance, rotation velocity baryonic mass (D, Vf ,MB) as well as other observables with

their 1σ errorbars. We focus on the gravitational strength Newton constant Geff and address

the following questions:

• Are there hints for a transition in the evolution of the BTFR?

• What constraints can be imposed on a possible Geff transition, using BTFR data?

• Are these constraints consistent with the level of Geff required to address the Hub-

ble tension?
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5.1.2 Transitions in the Evolution of the BTFR

The logarithmic form of the BTFR (Eq. (5.2)) is as follows:

y = logMB = s log vrot + logAB ≡ s x+ b (5.7)

and a similar form for the TFR. Due to Eq. (5.4), the intercept b ≡ logAB depends on both

the galaxy formation mechanisms through the surface density S and on the strength of

gravitational interactions through Geff .

A controversial issue in the literature is the type of possible evolution of the slope and

intercept of the TFR and the BTFR. Most studies have searched for possible evolution in

high redshifts (redshift range z ∈ [0, 3]) with controversial results. For example, several

studies found no statistically significant evolution of the intercept of the TFR up to red-

shifts of z ∼ 1.7 [303–309], while other studies found a negative evolution of the intercept

up to redshift z ≃ 3 [310–317]. Similar controversial results in high z appeared for the

BTFR, where [311] found no significant evolution of the intercept since z ≃ 0.6, while [315]

found a positive evolution of the intercept between low-z galaxies and a z ≃ 2 sample.

In addition, cosmological simulations of disc galaxy formation based on cosmological N-

body/hydrodynamical simulations have indicated no evolution of the TFR based on stellar

masses in the range z ∈ [0.1] [318], indicating also that any observed evolution of the TFR is

an artifact of the luminosity evolution.

These studies have focused mainly on comparing high-z with low-z samples, making no

attempt to scan low redshift samples for abrupt transitions of the intercept and slope. Such

transitions would be hard to explain in the context of known galaxy formation mechanisms

but are well motivated in the context of fundamental gravitational constant transitions, which

may be used to address the Hubble tension [227,232]. Thus, in this section, we attempt to

fill this gap in the literature.

We consider the BTFR dataset shown in Appendix A.2 based on the data from [277,300–

302] of the flat rotation velocity of galaxies vs the baryonic mass (stars plus gas) consisting

of 118 datapoints, shown in Table A.4. The sample is restricted to those objects for which

both quantities are measured to better than 20% accuracy and includes galaxies in the

approximate distance range D ∈ [1, 130]Mpc. This is a robust low z dataset (z < 0.1) with

low scatter showing no evolution of velocity residuals as a function of the central surface

density of the stellar disks.

Our analysis is distinct from previous studies in two aspects:

• We use an exclusively low z sample to search for BTFR evolution.

• We focus on a particular type of evolution: sharp transitions of the intercept and slope.

In this context, we use the dataset shown in Table A.4 of Appendix A.2 [277,300–302],

consisting of the distance D, the logarithm of the baryonic mass logMB and the logarithm of

the asymptotically flat rotation velocity log vrot of 118 galaxies along with 1σ errors. We fix a

critical distance Dc and split this sample in two subsamples Σ1 (galaxies with D < Dc) and Σ2

(galaxies with D > Dc). For each subsample, we use the maximum likelihood method [319]

and perform a linear fit to the data setting yi = log(MB)i, xi = log(vrot)i, while the parameters

to fit are the slope s and the intercept b of Eq. (5.7). Thus, for each sample j (j = 0, 1, 2 with
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j = 0 corresponding to the full sample and j = 1, 2 corresponding to the two subsamples Σ1

and Σ2), we minimize the following:

χ2
j(s, b) =

Nj∑
i=1

[yi − (sj xi + bj)]
2

s2jσ
2
xi + σ2

yi + σ2
s

(5.8)

with respect to the slope sj and intercept bj. We fix the scatter to σs = 0.077, obtained by

demanding that
χ2
0,min

N0
= 1, where χ2

0,min is the minimized value of χ2
for the full sample and

N0 is the number of datapoints of the full sample. We thus find the best fit values of the

parameters sj and bj, (j = 0, 1, 2) and also construct the 1σ−3σ likelihood contours in the s−b
parameter space for each sample (full, Σ1 and Σ2) for a given value of Dc. We then evaluate the

∆χ2
kl(Dc) of the best fit of each subsample k, best fit with respect to the likelihood contours

of the other subsample l. Using these values, we also evaluate the σ-distances (dσ,kl(Dc) and

dσ,lk(Dc)) and conservatively define the minimum of these σ-distances as follows:

dσ(Dc) ≡ Min [dσ,12(Dc), dσ,21(Dc)] (5.9)

For example, for the σ-distance of the best fit of Σ1 with respect to the likelihood contours of

Σ2, we have the following:

∆χ2
12(Dc) ≡ χ2

2(s1, b1)(Dc)− χ2
2,min(s2, b2)(Dc) (5.10)

and dσ,12 is obtained as a solution of the following equation [319]:

∆χ2
12 = 2 Q−1

[
M

2
, 1− Erf(

dσ,12√
2
)

]
(5.11)

where Q−1
is the inverse regularized incomplete Gamma function, M is the number of pa-

rameters to fit (M = 2 in our case) and Erf is the error function.

Fig.5.1 shows the σ distance dσ(Dc) in the parameter space (b, s) as a function of the split

sample distance Dc. There are two peaks indicating larger than 3σ difference between the

two subsamples at Dc = 9 Mpc and Dc = 17 Mpc. In addition, a transition of the σ distance

dσ(Dc) at Dc ≃ 20 Mpc is apparent. This Monte Carlo simulation is used to construct Fig. 5.2

(right panel green line range), where we show the mean and standard deviation range of the

σ-distances obtained by the above-described 100 Monte Carlo samples. Clearly, the random

variation in the galactic distances cannot change the qualitative features (high double peak

at low Dc) of Fig. 5.1 corresponding to the real sample. The σ-distances obtained from such

a typical Monte Carlo sample is shown in Fig. 5.2 (left panel green line).
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Figure 5.1: The σ-distance between the various Σ1 and Σ2 datasets as a function of the split

distances Dc. There are 2 clear peaks at Dc = 9 Mpc and Dc = 17 Mpc and a transition

seems to have been completed at Dc ≃ 20Mpc. The anticipated plot would be a σ-distance

that consistently varies in the range up to about 2σ for all values of Dc. The observed peaks

indicate either the presence of systematics or the presence of interesting physics. Adopted

from Ref. [264].
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Figure 5.2: Left panel: The σ-distances as a function of the split distances Dc for a sample

dataset with random distance values, normally distributed inside their individual 1−σ range

(green line), versus the σ-distances as a function of the split distances Dc for a homogeneous

Monte Carlo sample constructed using the best-fit BTFR (orange line). Right panel: The

68% range of the σ-distances versus the split distances Dc produced by a Monte Carlo

simulation of 100 sample datasets obtained by randomly varying galaxy distance values

with a Gaussian probability distribution (green band). Superimposed is the 68% range of

the σ-distances versus the split distances Dc obtained from 100 homogeneous Monte Carlo

samples constructed using the best-fit BTFR (orange band). Evidently, the characteristic

two-peak form of the plot remains practically unchanged, even after the random variation

in the distances (green band), whereas no significant tension is present in the case of the

homogeneous Monte Carlo samples for any value of Dc (orange band). Adopted from Ref.

[264].
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Dc (Mpc) intercept slope ∆χ2
min

- 2.287± 0.18 3.7± 0.08 -

<9 2.461± 0.407 3.586± 0.216 23.7 (4.5σ)
>9 2.854± 0.379 3.46± 0.204 23.7 (4.5σ)
<17 2.467± 0.38 3.592± 0.17 17.0 (3.7σ)
>17 2.677± 0.368 3.548± 0.166 17.0 (3.7σ)
<40 2.327± 0.987 3.681± 0.419 2.9 (1.2σ)
>40 3.318± 0.816 3.283± 0.349 2.9 (1.2σ)

Table 5.2: The best-fit values of the intercept and slope parameters corresponding to the

likelihood contours of Fig.5.3 alongside with their 1σ errors. The minimum ∆χ2
between the

best fits of the two samples is also shown. The corresponding σ-tension in parenthesis is

obtained in the context of two free parameters from Eq. (5.11). Notice that, even though the

parameter values appear to be consistent, the value of ∆χ2
between the subsamples reveals

the tension at Dc = 9Mpc and Dc = 17 Mpc.

The typical qualitative feature of dσ(Dc) corresponding to the real sample disappears if

we homogenize the sample by randomizing both the velocities and the galactic masses, using

the measured values of the velocities and the estimated values of the galactic masses in the

context of the best-fit BTFR. In order to construct such a homogenized BTFR sample from

the real sample, we use the following steps:

• We assign to each galaxy a randomly chosen distance obtained from a Gaussian distri-

bution with mean equal to the measured distance and standard deviation equal to the

1σ error of the measured distance.

• We assign to each galaxy a randomly chosen logvrot obtained from a Gaussian distri-

bution with mean equal to the measured logvrot and standard deviation equal to the 1σ
error of the measured logvrot.

• For each galaxy, we use the random logvrot obtained in the previous step to calculate

the corresponding BTFR logMB, using the best-fit slope and intercept of the real full

dataset (first row of Table 5.2). We then obtain a random logMB for each galaxy from

a Gaussian distribution with mean equal to the BTFR calculated logMB and standard

deviation equal to the 1σ error of the measured logMB.

• We repeat the above process 100 times, thereby generating 100 homogeneous Monte

Carlo samples (HMCS) based on the SPARC dataset.

• For each HMCS, we find the σ distances dσ(Dc) and for each Dc, we find the mean σ
distance and its standard deviation over the 100 HMCS. We thus construct the orange

region in Fig. 5.2 (right panel). A typical form of dσ(Dc) is shown as the orange line of

Fig. 5.2 (left panel) selected from the 100 HMCS.

Clearly, the forms of dσ(Dc) generated from the homogenized Monte Carlo samples have

the expected property to be confined mainly between 0σ and 2σ in contrast to the real mea-

sured sample, where dσ(Dc) extends up to 4σ or more. Thus, the real dataset is statistically

distinct from a homogeneous BTFR dataset.
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Figure 5.3: The best-fit contours of the slope and intercept for the entire dataset, as well

for 3 different cases of split distance (Dc). The red contours correspond to the dataset with

galaxies that have a distance below Dc, whereas the cyan contours correspond to galaxies

with distances above Dc. Adopted from Ref. [264].

The two maxima of dσ are more clearly illustrated in Fig. 5.3, where the likelihood

contours are shown in the parameter space s (slope)-b (intercept) for the full sample (upper

left panel) and for three pairs of subsamples Σi, including those corresponding to the peaks

shown in Fig. 5.1 (Dc = 17 and Dc = 9). For both dσ maxima, the tension between the

two best-fit points is mainly due to the different intercepts, while the values of the slope are

very similar for the two subsamples. In contrast, for Dc = 40Mpc, where the σ distance is

much lower (about 1σ, lower right panel), both the slope and the intercept differ significantly

in magnitude but the statistical significance of this difference is low. Notice that the use of

different statistics, such as the 1σ range of the best-fit intercept and slope shown in Table 5.2,

or the level of likelihood contour overlap in Fig. 5.3 would not reveal the tension between

far and nearby subsamples. In contrast, the σ-distance statistic demonstrates the effect and

the Monte Carlo results of Fig. 5.2 verify the fact that such a large σ-distance would be rare

in the context of a homogeneous sample.

The statistical significance of the different Tully-Fisher properties between near and far

galaxies, which abruptly disappears for dividing distance Dc ≳ 20 Mpc, could be an unlikely
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statistical fluctuation, a hint for systematics in the Tully-Fisher data
1
, an indication for an

abrupt change in the galaxy evolution or a hint for a transition in the values of fundamental

constants and, in particular, the strength of gravitational interactions Geff . The best-fit

values of the intercept and the slope for the cases shown in Fig. 5.3 are displayed in

Table 5.2 along with their 1σ errors.
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Figure 5.4: The best-fit lines corresponding to the best fit slope and intercept parameters

of the whole galaxy dataset as well as each of the 2 datasets produced for 4 different split

distances (Dc). The red dashed line and datapoints correspond to the data below Dc, and the

cyan ones belong to the data over Dc for each case. Adopted from Ref. [264].

The best-fit logMB − log vrot lines corresponding to Eq. (5.7) for the near–far galactic

subsamples are shown in Fig. 5.4, superimposed with the datapoints (red/blue correspond

to near/far galaxies). The full dataset corresponds to the upper-left panel. The difference

between the two lines for Dc = 9Mpc and Dc = 17Mpc is evident, even though their slopes

are very similar. The statistical significance of this difference disappears for larger values of

the splitting distance (e.g. Dc = 40Mpc), even though the slopes of the two lines become

significantly different in this case.

The Hubble diagram of the considered dataset along with the best-fit line (black dot-

dashed line) and the Hubble blue dashed line (z ≈ D
c
H0) corresponding to H0 = 73 km s−1

Mpc−1
is shown in Fig.5.5. The distances to galaxies beyond 20 Mpc are determined using

the Hubble flow with H0 = 73 km/sec Mpc, and thus, there is no effect of their peculiar

1
A possible source of systematics is the Malmquist bias, which would imply that the detected more distant

galaxies are also more massive and may, therefore, display different slopes and intercepts in different mass

bins [320,321].
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Figure 5.5: The distances alongside their errorbars versus the redshifts of each galaxy in our

compilation. The blue dashed line corresponds to the best fit line, and the black dot-dashed

one is produced by Eq. (5.1.2) for H0 = 73 km s−1 Mpc−1
. Adopted from Ref. [264].

velocities. Galaxies closer than about D ≃ 20Mpc are clearly not in the Hubble flow and

their redshift is affected significantly by their in-falling peculiar velocities, which tend to

reduce their cosmological redshifts. The detected transitions at about 9 Mpc and 17 Mpc

correspond to cosmological redshifts of z ≲ 0.005, which is lower than the transition redshift

required for the resolution of the Hubble tension (zt ≃ 0.07 is the upper redshift of SnIa-

Cepheid host galaxies).

In the context of the above-described analysis, we have ignored the possible systematic

uncertainties induced on the estimated baryonic masses MB, due to systematic uncertain-

ties in the measurement of galactic distances. In particular, different sub-samples of galaxies

in the SPARC database are affected by different systematic uncertainties. The SPARC sam-

ple includes galaxies with both direct and indirect distance measurements. Direct distance

measurements are based on standard candles (Cepheids and Tip of Red Giant stars), while

indirect measurements are based on the Hubble flow with Virgocentric infall correction.

Systematic uncertainties of indirectly measured distances affecting mainly galaxies beyond

15 Mpc are due to uncertainties in the Hubble constant H0 and in the a Virgocentric infall

model. H0 = 73 km/s/Mpc is assumed in estimating the distances of the Hubble flow sub-

sample of the SPARC sample along with the Virgocentric infall model used to correct the

Hubble flow distances. The anticipated shift in logMB due to an incorrect assumption of

the H0 value and/or the Virgocentric infall model is anticipated to be of the order of 0.1 dex,

assuming a 5% change in H0 and a scaling of the estimated value of MB with distance D as

MB D−2
.

Thus, the identified mismatch of the Tully–Fisher parameters between low- and high-

distance subsamples could, in principle, be due to such a systematic uncertainty of the
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Figure 5.6: The 68% range of the σ-distances versus the split distances Dc produced

by a Monte Carlo simulation of 100 sample datasets. The simulations are performed

for different values of the shift ∆ logMB, which represents the possible systematic errors

present in the datapoints whose distances are calculated using the Hubble flow, assum-

ing H0 = 73 km s−1Mpc−1
, and correcting for Virgo-centric infall. The same characteristic

two-peak structure remains for all shifts considered, indicating the robust nature of the

identified effect. Adopted from Ref. [264].

galactic baryonic masses of Hubble flow galaxies. In order to examine this possibility, we have

constructed new Monte Carlo samples where we not only vary randomly the distances but

also add a fixed shift of ∆ logMB along the vertical axis (mass) for all the datapoints where the

mass is estimated using the Hubble flow with H0 = 73 km s−1Mpc−1
. The distances of these

points are calculated using the Hubble flow, assuming H0 = 73 km s−1Mpc−1
, and correcting

for Virgo-centric infall. We have considered four cases of systematic shifts (fixed values of

∆ logMB):−0.1 dex, −0.05 dex, +0.05 dex and +0.1 dex. The results for the σ-distance ranges

in terms of the splitting distance Dc for each one of the above four cases are shown in Fig.

5.6. The corresponding likelihood contours for the subsamples corresponding to Dc = 9Mpc
(maximum mismatch) are shown in Fig. 5.7. Clearly, the mismatch features at Dc = 9Mpc
and Dc = 17Mpc remain in all four cases that explore this type of systematic uncertainty.

In particular, the 9 Mpc peak height varies from about 4σ for ∆ logMB = 0.1 dex to about

3σ for ∆ logMB = −0.1 dex. We thus conclude that this type of systematic uncertainty is

unable to wash out the mismatch effect we have identified.

If the intercepts’ transitions are interpreted as being due to a transition in Geff , we can

use Eq. (5.4) along with the observed intercept transition amplitude shown in Table 5.2 to

identify the magnitude and sign of the corresponding Geff transition. The intercept transition
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at Dc = 17Mpc indicated in Table 5.2 corresponds to the following:

∆ log AB ≡ log A>
B − log A<

B ≃ 0.2 (5.12)

Since AB is found to be higher at larger distances (early times), Geff should be lower, due to

Eq. (5.4). The corresponding fractional change in Geff is easily obtained by differentiating

the logarithmic form of Eq. (5.4) as follows:

∆ log AB =
∆AB

AB

= −2
∆Geff

Geff

=⇒ ∆Geff

Geff

≃ −0.1 (5.13)

This sign (weaker gravity at early times) and magnitude of the Geff transition is consistent

with the gravitational transition required for the resolution of the Hubble and growth tensions

in the context of the mechanism of Ref. [232].

Figure 5.7: The likelihood contours of the slope and intercept for a sample splitting distance

Dc = 9 Mpc corresponding to the different values of the systematic shift ∆ logMB shown in

Fig. 5.6. The red contours correspond to the dataset with galaxies that have distance below

9 Mpc, whereas the cyan contours correspond to galaxies with distances above 9 Mpc. The σ
distance between the two best fits varies between 3σ and 4σ. Adopted from Ref. [264].
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5.2 Constraining a Late Time Transition of Geff Using Low-z

Galaxy Survey Data

5.2.1 Effects of a gravitational transition on redshift survey data

As mentioned above, it is very likely that a transition of the Geff at redshifts z < 0.01 would

cause an analogous shift in the Hubble expansion rate. Although such a shift might be hard

to detect directly considering how low the expected redshifts are, it could be detectable indi-

rectly as a signal in the observed number of galaxies per redshift bin at z < 0.01. Therefore,

we proceed by attempting to search for this gravitational transition in galaxy survey data,

quantify and constrain it.

In the context of the scalar-tensor modified gravity theories the gravitational constant

acquires dynamical properties and thus the Friedman equation in redshift space may be

expressed as

H(z)2 =
8πGeff(z)

3
ρtot (5.14)

where ρtot refers to the total energy density including matter and an effective geometric

dark energy component induced eg by the non-minimally coupled scalar field. Also, Geff

is the dynamical gravitational constant which is proportional to the inverse non-minimal

coupling function F (Φ(z)) of the scalar-tensor theory. The dynamical evolution of Geff is

severely constrained by a wide range of experiments and astronomical observations which

constrain the time and redshift derivative of Geff to
Ġeff

Geff
< 10−12

at various specific time

ranges [281, 293, 322] including the present time constrained mainly using solar system

tests. Abrupt transitions of Geff however can not be constrained by local constraints of the

time derivative of Geff since by definition, in the context of an abrupt transition Geff would

remain constant at (almost) all times. The overall change of Geff between the present time

and nucleosynthesis is weakly constrained to be less than about 10% [297].

Based on the generalized Friedman Eq. (5.14) an abrupt change of Geff at z = zt would

also lead to a corresponding abrupt change of H(z) such that

∆Geff

Geff

= 2
∆H

H
(5.15)

In the Hubble flow zt > 0.01 such a transition is well constrained by detailed Hubble diagram

data based on Type Ia Supernovae (SnIa) [238]. For zt < 0.01 the Hubble diagram involves

significant contributions from galactic density inhomogeneities and peculiar velocity effects

and thus similar constraints are expected to be significantly weaker.

Using galaxy redshift surveys at z < 0.01 it is possible to bin the observed galaxies in

redshift bins of width ∆z such that there are ∆N(zi) galaxies in the i bin. In the presence

of random peculiar velocities the measured redshift of a given galaxy may be written as

cz = H0s+ c∆zr (5.16)

where H0 is the Hubble expansion rate at the galactic distance s and c∆zr is a perturbation

due to peculiar velocity effects and may be approximated to have random Gaussian distri-

bution (µ = 0, σ = 300km s
−1). The number of galaxies that exist in a spherical shell with

radius s is given by,

N(s) =
4π

3
s3ρ(z) (5.17)
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where we approximate the density at the redshift ρ(z) = ρ0(1 + z)3 ≈ ρ0 as homogeneous.

The number of galaxies in the i redshift bin may be easily obtained from Eq. (5.17) as

∆N(zi) = 4πρ0

(
c

H0

)3

(zi −∆zr)
2∆zi (5.18)

where ∆zi is width of the i redshift bin assumed to be the same for all bins. Thus the

predicted number of galaxies in the i bin ∆N(zi) is related to the number of galaxies in the

j = 1 bin as

∆N(zi) = ∆N(z1)

(
czi − c∆zr
cz1 − c∆zr

)2(
H01

H0i

)3

(5.19)

Violation of Eq. (5.19) may be induced by either large density fluctuations of galaxies or

coherent velocity flows. Eq. (5.19) however allows for a transition in the Hubble diagram

slope H0 at some redshift zt. Such a transition could be expressed as

H0i = H01 −∆H0Θ(zi − zt) (5.20)

In this case Eq. (5.19) takes the form

∆N(A, δ, zt, zi) = A

(
czi − c∆zr
cz1 − c∆zr

)2

[1− δ Θ(zi − zt)]
−3

(5.21)

where A ≃ ∆N(z1) and δ ≡ ∆H0

H0
are parameters to be fitted by survey data.

5.2.2 Analysis of the 6dF and 2MASS Galaxy Survey z < 0.01 Subsets

It is straightforward to implement the maximum likelihood method by minimizing χ2
with

respect to the parameters A, δ ≡ ∆H0

H0
and zt. Thus we minimize

χ2(A, δ, zt) =
Ntot∑
i=1

[∆N(zi)dat −∆N(A, δ, zt, zi)]
2

σ2
i + σ2

s

(5.22)

where Ntot is the total number of bins, σ2
i = Ntot/∆N(zi)dat is the Poisson distribution error

for each bin and σs is the scatter error fixed such that the minimum χ2
min per degree of

freedom is equal to one. Also ∆N(zi)dat is the number of galaxies in each redshift bin after

a random perturbation ∆zr is imposed on each measured galaxy redshift czi to account for

the random component ∆zr in the parametrization (5.21).

We use the 6dFGS [209,323–329] focusing on the galaxies with z < 0.01 (≈ 2800 galaxies).

The peculiar velocity sample consists of 8885 galaxies in the Southern Hemisphere with

z < 0.055. The sky distribution of our low z galaxy subsample is shown in Fig. 5.8 split

in 4 redshift bins of ∆z = 0.0025 increments. The corresponding distribution of the galaxy

sample in redshift space is shown in Fig. 5.9 where we split the sample in 25 redshift bins.

As shown in Fig. 5.9, there is a peak/dip feature in the redshift space number den-

sity of galaxies around 1500 − 2000km s
−1

(21 − 28 Mpc for a conservative value of H0 =
70km s

−1
Mpc

−1
). This abrupt break in the redshift density is most probably due to density

fluctuations of galaxies and/or coherent peculiar velocity flows. However, it may also be

induced by a step-like transition of the Newton’s constant Geff occurring for czt in the above
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Figure 5.8: The sky coverage of our collection of low-z 6dF data (z < 0.01) plotted in a

Mollweide projection, using galactic coordinates. The data is split in four bins, of ∆z = 0.0025
increments. It is evident that data homogeneity is present when considering the different

redshift increments. Adopted from Ref. [265].

range. Such gravitational transition would induce a similar transition in H(z) ≃ H0 in ac-

cordance with eqs (5.14) and (5.15). This type of transition has been discussed in Chapter 3

with the introduction of the LwMT model and could be expressed as [227],

µG(z) ≡
Geff

GN

= [1 + ∆µG Θ(z − zt)] (5.23)

where GN is the locally measured Newton’s constant, and Θ(z) is the Heaviside step-function.

This ansatz has been thoroughly explored in Refs. [232, 330], where it is proposed that it

would have the dual effect of solving both the Hubble and growth tensions. There have

also been observational hints for such a transition at ≈ 20 Mpc in Cepheid [331, 332] and

Tully-Fisher data [264].

Assuming that the gravitational transition is the only cause of the observed dip in the

∆N(z) distribution we may use Eq. (5.21) to minimize χ2
(Eq. (5.22)) and thus obtain the

best fit parameters A, δ and zt. Such a fit for δ ≡ ∆H0/H0 should be interpreted as an

upper bound for the transition amplitude δ and therefore also for the gravitational transition

amplitude as obtained from Eq. (5.15).

We thus obtain the best fit parameter values as czt ≈ 1810 ± 150km s
−1

, A = 20.9 ± 0.5
and δ = ∆H0

H0
= −0.275 ± 0.01 for a fixed value of σs ≈ 3.7. In the left panel of Fig. 5.10 we

show the likelihood contours corresponding from inner to outer to the 68%, 95% and 99.7%

confidence level (C.L.) intervals in the parameter space A − δ, while in the right panel we

show the best fit (blue curve) form of Eq. (5.21) (with its 68% C.L. error-band shown as cyan

area) superposed with the ∆N(zi) datapoints (red errorbars). In the context of the fit we

have included the random gaussian perturbations of redshifts with (µ = 0, σ = 300km s
−1)

due to the effects of peculiar velocities in the data and have set ∆zr = 0 in the ansatz (5.19),
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Figure 5.9: The ∆N − cz histogram plot corresponding to the data of the 6dFGS dataset. It

is evident that a large peak in the distribution of galaxies exists at cz = 1500− 2000km s
−1

.

Adopted from Ref. [265].
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Figure 5.10: Left panel: The ∆H0/H0 - A likelihood contours corresponding from inner to

outer to the 68%, 95% and 99.7% C.L. intervals. The best-fit value is at the center (black

bullet). The projected contours are taken at the best-fit value of the transition redshift zt.
Right panel: The ∆N - cz plot of the best-fit (blue curve) of Eq. (5.21) corresponding to the

best-fit values of the parameters δ ≡ ∆H0/H0, A and zt along with the 68% C.L. (cyan area).

The binned numbers of galaxies in each redshift bin and their Poisson error are also shown

(red errorbars). Adopted from Ref. [265].

(5.21).
2

We may therefore conclude that a possible transition of the Hubble diagram slope H0

has to be smaller than the best fit value δ = ∆H0

H0
≤ −0.275 ± 0.01. This upper bound for

2
This approach is equivalent to keeping the galaxy redshifts in their original form while including the random

redshift perturbation in the ansatz (5.19).

70



5.2. Constraining a Late Time Transition of Geff Using Low-z Galaxy Survey Data

a Hubble diagram slope transition may be translated to an upper bound for an underlying

gravitational transition using Eq. (5.15) which leads to
∆Geff

Geff
≲ 0.6. Such an upper bound

can easily accommodate the gravitational transition amplitude
∆Geff

Geff
≃ 0.1 which has been

proposed for the resolution of the Hubble and growth tensions [232] which implies that this

scenario remains viable in the context of the 6dFGS data.

We have repeated the analysis, in the same manner, using this time the larger and

more recent 2MRS [333–337] dataset. This survey provides an almost full coverage of the

sky (∼70%) including more data points than the 6dFGS peculiar velocity sample with a

total number of 44599 spectroscopically observed sources at z < 0.15 (the subsample with

z < 0.01 consists of ≈ 3200 galaxies). We simulate the peculiar velocities in the data as

described previously, for the case of the 6dFGS dataset. The sky distribution of these galaxies

are shown in Fig. 5.11 in four redshift bins up to z = 0.01.
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Figure 5.11: The sky coverage of our collection of low-z 2MRS data (z < 0.01) plotted

in a Mollweide projection, using galactic coordinates. The data is split into four bins, of

∆z = 0.0025 increments. Adopted from Ref. [265].

The galaxy distribution in redshift space is shown in Fig. 5.12 where a similar dip may

be seen at cz ≈ 1500km s
−1

. As in the case of the 6dFGS dataset, this feature is most likely

due to density variations of the galaxy distribution and to peculiar velocity flows. If however

we assume that it is due to a gravitational transition of the form (5.23) leading to a transition

of the Hubble parameter, then we can derive an upper bound on
∆Geff

Geff
.

In this case, the best fit parameter values are similar as in the 6dFGS and take the form

A = 17.5 ± 0.5, δ = ∆H0

H0
= −0.28 ± 0.01 and czt ≈ 1783 ± 150 km s

−1
for σs ≈ 3.4. We have

plotted the confidence contours in the A − δ parameter subspace (left panel) as well as the

best-fit form of ∆N(z) based on Eq. (5.21) (right panel), in Fig. 5.13.

In order to see how commonly, if at all, would the abrupt peak/dip in the galaxy distri-

bution appear also in the simulated data based on a standard ΛCDM cosmology, we have

used the Cosmological Lofty Realizations (CoLoRe) [338] software package that supports log-

normal fields to generate synthetic realizations for the 2MRS galaxy survey. We opted to
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Figure 5.12: The ∆N − cz histogram plot corresponding to the data of the 2MRS dataset.

The same peak/dip feature in the distribution of galaxies as in the 6dFGS dataset exists at

cz = 1500− 2000km s
−1

, albeit it is less prominent. Adopted from Ref. [265].
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Figure 5.13: Left panel: Same as Left panel of FIG. 5.10 but for the 2MRS sample. Right
panel: Same as Right panel of FIG. 5.10 but for the 2MRS sample. Adopted from Ref. [265].

generate mock catalogs for this survey since as we saw previously, it is more complete than

the 6dFGS peculiar velocity sample. In particular, for the simulated catalogs on top of the

assumed standard ΛCDM model for the input Gaussianised matter power spectrum P (k)
at z = 0, we also included a constant galaxy bias with redshift b(z) = 1.3 (a value found to

be a good approximation at non-linear scales) and the approximated fitting function for the

redshift distribution of the 2MRS found by [339] that reads:

dN

dz
=

Ngβ

z0Γ [(m+ 1)/β]

(
z

z0

)m

exp

[
−
(

z

z0

)β
]

(5.24)
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Figure 5.14: The ∆N−cz histogram plot corresponding to the data of two random simulated

datasets based on ΛCDM . Features like the one shown in the real data appear to be common

due to galactic number density inhomogeneities. Adopted from Ref. [265].

with β = 1.64, z0 = 0.0266, m = 1.31 and the total number of sources Ng = 44599, see Fig.

5.15.

Then we set up 500 simulations with the aim to clarify if the peak/dip feature in ∆N(z)
would occur naturally in them in the context of a standard ΛCDM cosmology. In this case

the best fit value of δ derived in the context of our analysis can only be viewed as an upper

bound.
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Figure 5.15: The number of galaxies in each redshift bin for the entire 2MRS sample (lightgray

histogram), as well as for our subsample with z < 0.01 (magenta histogram), superimposed

with the fitting function Eq. (5.24). Adopted from Ref. [265].

As expected, the simulated data indicate that peaks and dips like those found in the real

data occur commonly in the corresponding simulated datasets based on standard ΛCDM

cosmology due to density and peculiar velocity effects. This is demonstrated in the two

simulated 2MRS datasets shown in Fig. 5.14 randomly chosen from the 500 mock catalogs

to showcase here. The magnitude of these features overwhelms any possibility of interpreting
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the observed peak/dip feature in the real ∆N(z) data as a signature of the presence of a

∆H0/H0 transition and only allows the interpretation of the best fit value of ∆H0/H0 as a

bound on the magnitude of a possible corresponding Hubble and gravitational transition.

An assumption used in the analysis of the low-z galaxy survey data is that of uncorrelated

Gaussian random peculiar velocity field which was superposed in the Hubble velocity flow.

This assumption ignores the local bulk flows and the possible correlation among the redshift

bins in estimating the uncertainties. The use of a diagonal covariance matrix, instead of

using the full covariance matrix is a simplification which we had to implement, since the

detailed form of the velocity flows on the considered scales is not precisely known and

thus we do not have access to a reliable and detailed form of the full covariance matrix.

However, it is clear that the use of the full covariance matrix would weaken the constraint

on Geff derived here. We have verified this result using toy covariance matrices that fully

correlates only neighboring redshift bins. Following this approach, we have observed a very

small (few percent) increase in the uncertainties of the best-fit parameters. This indicates

that even after the inclusion of velocity correlations and the full covariance matrix, the

constraint would remain consistent with a 10% gravitational transition at z < 0.01. Thus

our approach can indeed lead to new constraints on a gravitational transition at redshifts

z < 0.01 (last 150 Myrs) but these constraints are not powerful enough to rule out the

gravitational transition class of models for the resolution to the Hubble tension.

5.3 In Brief

In this chapter we have used a two-sided approach in order to identify and constrain a pos-

sible late z gravitational transition. First of all, we employed a specific statistic on a robust

dataset of 118 Tully-Fisher datapoints to demonstrate the existence of evidence for a tran-

sition in the evolution of BTFR. This evidence was verified by a wide range of Monte Carlo

simulations that compare the real dataset with corresponding homogenized datasets con-

structed using the BTFR. It indicates a transition of the best-fit values of BTFR parameters,

which is small in magnitude but appears at a level of statistical significance of more than

3σ. It corresponds to a transition of the intercept of the BTFR at a distance of Dc ≃ 9Mpc
and/or at Dc ≃ 17Mpc (about 80 million years ago or less). Such a transition could be

interpreted as a systematic effect or as a transition of the effective Newton constant with a

10% lower value at early times, with the transition taking place about 80 million years ago

or less. The amplitude and sign of the gravitational transition are consistent with a recently

proposed mechanism for the resolution of the Hubble and growth tensions [227,232]. How-

ever, the time of the transition is about 60 million years later than the time suggested by

the above mechanism (100-150 million years ago corresponding to Dc ≃ 30-40 Mpc and z ≃
0.007-0.01).

The effect shown in our analysis could be attributed to causes other than a gravitational

transition. One such possible cause would be the presence of systematic errors affecting the

estimate of galactic masses or rotation velocities for particular distance ranges. Even if this

is the case, it is important to point out these inhomogeneities, which may require further

analysis to identify their origin. Alternatively, if the causes of the detected mismatch are

physical, they could also be due to variation of conventional galaxy formation mechanisms,

which may involve other types of modifications of gravitational physics (e.g. effects of MOND

gravity). The BTFR is an observationally tight empirical correlation and has therefore been
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used as a test of various modified gravity models (Refs. [156,340,341] offer comprehensive

reviews on the cosmological implications of such models), including modified Newtonian

dynamics (MOND) [342,343] and Grumiller modified gravity [344].These models have been

shown to be consistent with BTFR for specific values of their acceleration parameters. The

BTFR has also been used as a test of the properties of Cold Dark Matter and galaxy formation

mechanisms in the context of ΛCDM [345,346].

An interesting effect in the direction of the one observed in the analysis described in this

chapter was also reported in Ref. [332]. There, the authors found a transition of the Cepheid

magnitude behavior in the range of 10–20 Mpc, which could explain the Hubble tension (see

Fig.4 of Ref. [332]). The authors claimed that this transition is probably due to dust property

variation, but there is currently a debate on the actual cause of this mismatch.

An important extension of this analysis is the search for similar transition signals and

constraints in other types of astrophysical and geophysical-climatological data of Earth pale-

ontology. For example, a wide range of solar system anomalies were discussed in Ref. [347],

which could be revisited in the context of the gravitational transition hypothesis. Of par-

ticular interest, for example, is the ’Faint young Sun paradox’ [348], which involves an

inconsistency between geological findings and solar models about the temperature of the

Earth about 4 billion years ago. Another interesting extension of this study would be the use

of alternative methods for the identification of transition-like features in the data, e.g. the

use of a Bayesian analysis tool, such as the internal robustness described in Refs. [349,350].

Alternatively, other astrophysical relations that involve gravitational physics, such as

the Faber–Jackson relation between intrinsic luminosity and velocity dispersion of elliptical

galaxies or the Cepheid star period–luminosity relation, could also be screened for similar

types of transitions as in the case of BTFR. For example, the question to address in the

Cepheid case would be the following: ‘What constraints can be imposed on a transition-type

evolution of the absolute magnitude (Mv)-period (P ) relation of Population I Cepheid stars?’

This relation may be written as follows:

Mv = s (logP − 1) + b (5.25)

where s = −2.43± 0.12 and b = −4.05± 0.02 [351,352].

We also analysed the low z distribution (z < 0.01) of galaxies in the 6dFGS peculiar

velocity sample and the complete 2MRS galaxy survey searching for a signal consistent

with a gravitational abrupt transition. We have identified such a signal consistent with a

gravitational transition
∆Geff

Geff
≃ 0.6. Such a signal however is degenerate with corresponding

expected features emerging due to density fluctuations in the number density of galaxies

and peculiar velocity flows. This was demonstrated by simulating the expected redshift

distribution of the galaxies for the more complete 2MRS catalog in the context of standard

ΛCDM without gravitational transition. Thus the detected signal can only be interpreted

as an upper bound on the magnitude of such a gravitational transition. Even though this

bound is weaker than corresponding bounds obtained using nucleosynthesis and CMB power

spectrum data implying
∆Geff

Geff
≲ 0.1 it remains interesting for two reasons:

• It is based on a novel method for constraining a gravitational transition.

• It focuses on a very specific ultra-late redshift range.
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• It indicates that the proposed magnitude of a gravitational transition
∆Geff

Geff
≃ 0.1 for the

resolution of the Hubble and growth tension is consistent with current galaxy survey

data.

Interesting extensions of the analysis presented in this chapter include the following:

• The identification of actual distances and peculiar velocities of the galaxies included

in the surveys considered so that it can be estimated to what extend is the identified

feature in ∆N(z) due to galactic density variations and/or peculiar velocity flows. If

this feature can not be fully explained as a density and peculiar velocity effect then it

is possible that at least part of it may be due to a gravitational transition.

• The identification of additional astrophysical datasets beyond galaxy surveys, Tully-

Fisher data and solar system history which may lead to constraints on the magnitude

of such a profound effect like an ultra-late gravitational transition.

• The simulation of the solar system evolution (and in particular of the Oort cloud) to

identify the change of impactor rate in the context of a late gravitational transition.

In this context, the solar system history could become a useful laboratory for the

constraint of such a transition.

In conclusion, we can deduce that the hypothesis of a low z gravitational transition is

weakly constrained in the context of current studies but it could lead to the resolution of

important cosmological tensions of the standard ΛCDM model. We have, however, demon-

strated that it is possible to extract hints for the existence of such a transition both in the

evolution of the Tully-Fisher relation and in the low z (z < 0.01) distribution of galaxies.
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CHAPTER 6
Final Remarks

W
e are currently living during an exciting era of modern Cosmology. That is

because there is insurmountable evidence that the single most successful cos-

mological model in history is wrong. Never before since its formulation on

1998, when the observational discovery of the accelerated expansion of the

Universe took place, has there been a more heated debate regarding the via-

bility of the ΛCDM concordance model. Arguably the largest thorns on ΛCDM ’s side are

the so-called Hubble and S8 tensions which have reached the 5 and ≈ 3σ levels respectively.

The impact and possible resolution of these very significant tensions were the main focus of

this dissertation.

In what follows we present a brief summary of the most crucial points that are discussed

in each chapter. Furthermore, we comment on some unanswered questions and subsequent

limitations of the work that this thesis is based on.

6.1 Summary

In order to fully understand the nature of the aforementioned tensions and the characteristics

of the proposed solutions, we have dedicated the first chapter of this thesis to a quick review of

the most basic aspects of modern Cosmology. We started by reviewing the General Relativity

essentials for formulating the ΛCDM model, including the Friedmann-Lemaître-Roberson-

Walker metric and the Friedmann-Lemaître equations. Subsequently, we discussed the

current status of both the Hubble and growth tensions and offered a forecast in the future

of the field.

In the second chapter, we demonstrated how the exploitation of a degeneracy between the

equation of state parameter w and the Hubble parameter H0 could enable us to construct a

number of parametrizations that could serve as apparent solutions to the Hubble tension.

More specifically we have shown that the relation of the w parameter best fit of the H0 in the

context of the CMB power spectrum follows the approximate linear equation

H0 + 30.93w − 36.47 = 0. (6.1)

Solving this equation we find that for w = −1.22 the best fit value of H0 in the context of CMB

is 74 km sec−1 Mpc−1
, while of course for w = −1 the predicted value of H0 is consisted with

the one given in the context of Planck18/ΛCDM. Fitting the wCDM model for various values

of the w parameter with the Planck TT power spectrum we provide statistical evidence in the
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form of the χ2
quality of fit, that the w = −1.22 parametrization is not statistically inferior to

ΛCDM. This is very important because this parametrization has the advantage of providing

an apparent resolution to the Hubble tension.

However, we also demonstrated that if one includes the Pantheon SnIa, BAO or RSD data,

the χ2
quality of fit worsens as we cross the phantom divide. While this w −H0 degeneracy

can be generalized to the CPL parametrization, it is unfortunate that it only provides a

superficial solution of the Hubble tension. That is because it does not take into account the

Supernovae absolute magnitude aspect of the tension which is more accurately explained in

Chapter 3.

The next three chapters were devoted to the formulation of a joint w - absolute magnitude

M transition (LwMT ) and its impact on resolving both the H0 and S8 tensions simultane-

ously, the study of the inability of smooth H(z) deformations to resolve the growth tension

and the observational hints in favour of LwMT , in this order. Therefore, the third chapter

builds upon the idea of the w −H0 degeneracy by introducing the LwMT model which also

deals with the problem of the difference in the values of the SnIa absolute magnitude pre-

dicted by the Planck18/ΛCDM and local Cepheid calibrators. As stated above this model

consists of two parts, the first involves an abrupt transition of the dark energy equation of

state parameter at an ultra-late transition redshift zt < 0.1. This transition is capable of

leading to a value of H0 while mimicking a Planck18/ΛCDM form of the comoving distance

r(z) =
∫ z

0
H−1(z′)dz′ for z > zt. The second part of this model is what allows it to over-

come the SnIa absolute magnitude aspect of the tension, since it involves a similarly abrupt

transition of M .

We show that this type of M transition could be achieved by a reduction in the value of

the effective Newton constant Geff . This is made possible by the fact that the SnIa absolute

luminosity is proportional to the Chandrasekhar mass which varies as L ≈ G−3/2
. Further-

more, we provide a statistical analysis of the LwMT model showing that it provides a better

fit to cosmological data than the smooth late time deformations of H(z) that also claim to

solve the H0 tension. It does so by also while also providing a satisfactory resolution of the

growth tension, since it predicts a lower value of µ = Geff/GN for z > zt.
Subsequently, we use the paradigm of the well-known CPL model in order to categorically

show something that we have eluded to in the previous chapters. That any parametrization

claiming to resolve the Hubble tension by using late time smooth deformations of the Hubble

expansion rate H(z) of the Planck18/ΛCDM best fit to match the locally measured value of

H0 while effectively keeping the comoving distance to the last scattering surface and Ω0mh
2

fixed to maintain consistency with Planck CMB measurements fails to address the S8 tension.

This is shown both by using an analytic approach and by using statistical analysis involving

a numerical solution of the growth equation and then fitting to cosmological data.

Lastly, we search for observational hints of possible a gravitational transition and try to

constrain its effect. We do so by, firstly, considering a compilation of galaxy data and probing

for transitions in the evolution of the baryonic Tully-Fisher relation

MB = ABv
s
rot. (6.2)

We indeed show that there are ≈ 3σ level hints for a gravitational transition at distances of 17
Mpc and 9 Mpc. Using Monte Carlo simulations to create homogeneous "mock" Tully-Fisher

data, we show that our result is unaffected by random systematic and statistical variations

of the galactic distances. Next, we consider the fact that a gravitational transition could lead
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to a sharp change in the form of the Hubble diagram. This fact should theoretically enable

us to search for such a transition and constrain it. In order to do that, use two low-z robust

galaxy survey data compilations. Even though we observe a possible transition at a distance

of 20 Mpc using both compilations, we report that this effect could also be attributed to either

coherent peculiar galactic velocities or galactic density fluctuations. However, in any event

the possibility of a gravitational transition can not be excluded by low-z galaxy survey data.

6.2 Open Questions and Limitations

Even though the LwMT model presents us with an excellent fit to the data and is able to

address both the Hubble and the S8 tensions it remains an artificial solution. Artificial in the

sense that it is not supported by a natural underpinning physical theory. The easiest way

to interpret the proposed M transition is by considering it to be an equivalent gravitational

one. This means that the proposed model must be accountable and consistent with solar

system constraints in a similar fashion to other modified gravity theories. Due to its nature,

the transition predicts a significant shift in the planet trajectories almost 100 Myrs. ago.

Such a trajectory modification would have a lot of observable impact, visible in the current

solar system movements. No amount of echo of these type of monumental changes in the

solar system have been observed thus far. Therefore, a study encompassing geological,

astrophysical and solar system data could shed some more light in that direction categorically

ruling out or in such a prospect. Another important open question of this study is whether

it is possible to create a simple and intuitive modified gravity model, that could naturally

induce the gravitational transition predicted by LwMT . This would, in all probability, resolve

the fine-tuning issues that the model experiences.

Other than attributing the SnIa absolute magnitude transition to a gravitational transition

and trying to deal with the plethora of issues this assumption creates, perhaps it would be a

better idea to search for alternative mechanisms that could explain it. This approach could

in principle lead to a more natural physical theory that will, ad principia, be free of the

limitations imposed by the gravitational transition.

Despite its limitations, the ultimate goal of the LwMT parametrization was to show that,

in principle, the idea of a transition in the SnIa absolute magnitude is able to resolve the

Hubble tension and at the same time ease the S8 one as well. To that end it was successful

and its approach is quite inviting since it is the simplest possible model of this type. Another

aspect of this study was an effort to sort of "dislodge" the focus of the Hubble from the H0

constant itself and shift it to the M parameter. The reasoning behind this, as it is discussed

in more detail in Chapters 1 and 3, is that the SH0ES collaboration does not measure H(z) at

z = 0 directly, rather they infer its value by extrapolating from the value of H0 they measure

in the 0.023 < z < 0.15 interval. This creates a blind-spot at 0.023 < z which is the very fact

that enables us to conceive of a late M transition. If such a transition were to exist then it

would imply that the value of H0 reported by the SH0ES is not the "true" value, in the sense

that the one given by the CMB is. Therefore, focusing on M would mean that we are focusing

both on the mismatch that exists in the values of the SnIa absolute magnitude that one gets

from the CMB+BAO measurements and the demarginalization method of Ref. [226], without

the added issues that follow from the "recipe" of simply trying to raise the H0 value.
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APPENDIX A
Data Used in the Analysis

A.1 The Cosmological Data Compilations of Chapter 3

The covariance matrix which corresponds to the latest Planck18/ΛCDM CMB distance prior

data (shift parameter R and the acoustic scale la), for a flat universe has the following

form [228]

Cij = 10−8 ×
(
1598.9554 17112.007
17112.007 811208.45

)
where the corresponding Planck18/ΛCDM values for R and la are presented in Table A.1.

Furthermore, we present the full dataset of the BAO and CC likelihoods used in the Mathe-

matica analysis in Tables A.2 and A.3 respectively.

Table A.1: The CMB Distance Prior data for a flat

Universe used in our analysis.

Index CMB Observable CMB Value Reference

1 R 1.74963 [228]

2 la 301.80845 [228]

Table A.2: The BAO data that have been used in the analysis along with the

corresponding references.

Index z DA/rs (Mpc) DH/rs(km/sec ·Mpc) DV /rs (Mpc) Ref.

1 0.106 - - 2.98± 0.13 [209]

2 0.44 - - 13.69± 5.82 [353]

3 0.6 - - 13.77± 3.11 [353]

4 0.73 - - 16.89± 5.28 [353]

5 2.34 11.28± 0.65 - - [354]

6 2.34 - 9.18± 0.28 - [354]

7 0.15 - - 4.465± 0.168 [210]

8 0.32 - - 8.62± 0.15 [355]

9 0.57 - - 13.7± 0.12 [355]
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Table A.3: The Cosmic Chronometer data that

have been used in the analysis.

Index z H(z)(km/sec ·Mpc) Ref.

1 0.09 69± 12 [356]

2 0.17 83± 8 [357]

3 0.179 75± 4 [358]

4 0.199 75± 5 [358]

5 0.27 77± 14 [357]

6 0.352 83± 14 [358]

7 0.3802 83± 13.5 [359]

8 0.4 95± 17 [357]

9 0.4004 77± 10.2 [359]

10 0.4247 87.1± 11.2 [359]

11 0.4497 92.8± 12.9 [359]

12 0.4783 80.9± 9 [359]

13 0.48 97± 62 [360]

14 0.593 104± 13 [358]

15 0.68 92± 8 [358]

16 0.781 105± 12 [358]

17 0.875 125± 17 [361]

18 0.88 90± 40 [360]

19 0.9 117± 23 [357]

20 1.037 154± 20 [358]

21 1.3 168± 17 [357]

22 1.363 160± 33.6 [362]

23 1.43 177± 18 [357]

24 1.53 140± 14 [357]

25 1.75 202± 40 [357]

26 1.965 186.5± 50.4 [362]

27 0.35 82.7± 8.4 [363]

28 0.44 82.6± 7.8 [364]

29 0.57 96.8± 3.4 [355]

30 0.6 87.9± 6.1 [364]

31 0.73 97.3± 7 [364]

32 2.34 222± 7 [365]

33 0.07 69± 19.6 [361]

34 0.12 68.6± 26.2 [361]

35 0.2 72.9± 29.6 [361]

36 0.24 79.69± 2.65 [288]

37 0.28 88.8± 36.6 [361]

38 0.43 86.45± 3.68 [288]

39 0.57 92.4± 4.5 [366]

40 2.3 224± 8 [367]

41 2.36 226± 8 [368]
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A.2 The Tully-Fisher Data Compilation of Chapter 5

Table A.4: The robust compilation of galaxy data found in Refs. [277,

300–302].

Galaxy Name log vrot σlog vrot logMB σlogMB
D σD

(km/s) (km/s) (M⊙) (M⊙) (Mpc) (Mpc)

D631-7 1.76 0.03 8.68 0.05 7.72 0.39

DDO154 1.67 0.02 8.59 0.06 4.04 0.2

DDO161 1.82 0.03 9.32 0.26 7.5 2.25

DDO168 1.73 0.03 8.81 0.06 4.25 0.21

DDO170 1.78 0.03 9.1 0.26 15.4 4.62

ESO079-G014 2.24 0.01 10.48 0.24 28.7 7.17

ESO116-G012 2.04 0.02 9.55 0.27 13. 3.9

ESO563-G021 2.5 0.02 11.27 0.16 60.8 9.1

F568-V1 2.05 0.11 9.72 0.1 80.6 8.06

F571-8 2.15 0.02 9.87 0.19 53.3 10.7

F574-1 1.99 0.04 9.9 0.1 96.8 9.68

F583-1 1.93 0.04 9.52 0.22 35.4 8.85

IC2574 1.82 0.04 9.28 0.06 3.91 0.2

IC4202 2.38 0.02 11.03 0.13 100.4 10.

KK98-251 1.53 0.03 8.29 0.26 6.8 2.04

NGC0024 2.03 0.04 9.45 0.09 7.3 0.36

NGC0055 1.93 0.03 9.64 0.08 2.11 0.11

NGC0100 1.94 0.04 9.63 0.27 18.45 0.2

NGC0247 2.02 0.04 9.78 0.08 3.7 0.19

NGC0289 2.21 0.05 10.86 0.22 20.8 5.2

NGC0300 1.97 0.09 9.43 0.08 2.08 0.1

NGC0801 2.34 0.01 11.27 0.13 80.7 8.07

NGC0891 2.33 0.01 10.88 0.11 9.91 0.5

NGC1003 2.04 0.02 10.05 0.26 11.4 3.42

NGC1090 2.22 0.02 10.68 0.23 37. 9.25

NGC2403 2.12 0.02 9.97 0.08 3.16 0.16

NGC2683 2.19 0.03 10.62 0.11 9.81 0.49

NGC2841 2.45 0.02 11.03 0.13 14.1 1.4

NGC2903 2.27 0.02 10.65 0.28 6.6 1.98

NGC2915 1.92 0.04 9. 0.06 4.06 0.2

NGC2976 1.93 0.05 9.28 0.11 3.58 0.18

NGC2998 2.32 0.02 11.03 0.15 68.1 10.2

NGC3109 1.82 0.03 8.86 0.06 1.33 0.07

NGC3198 2.18 0.01 10.53 0.11 13.8 1.4

NGC3521 2.33 0.03 10.68 0.28 7.7 2.3

NGC3726 2.23 0.03 10.64 0.15 18. 2.5

NGC3741 1.7 0.03 8.41 0.06 3.21 0.17

NGC3769 2.07 0.04 10.22 0.14 18. 2.5

NGC3877 2.23 0.02 10.58 0.16 18. 2.5
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NGC3893 2.25 0.04 10.57 0.15 18. 2.5

NGC3917 2.13 0.02 10.13 0.15 18. 2.5

NGC3949 2.21 0.04 10.37 0.15 18. 2.5

NGC3953 2.34 0.02 10.87 0.16 18. 2.5

NGC3972 2.12 0.02 9.94 0.15 18. 2.5

NGC3992 2.38 0.02 11.13 0.13 23.7 2.3

NGC4010 2.1 0.02 10.09 0.14 18. 2.5

NGC4013 2.24 0.02 10.64 0.16 18. 2.5

NGC4051 2.2 0.03 10.71 0.16 18. 2.5

NGC4085 2.12 0.02 10.1 0.15 18. 2.5

NGC4088 2.24 0.02 10.81 0.15 18. 2.5

NGC4100 2.2 0.02 10.53 0.15 18. 2.5

NGC4138 2.17 0.05 10.38 0.16 18. 2.5

NGC4157 2.27 0.02 10.8 0.15 18. 2.5

NGC4183 2.04 0.03 10. 0.14 18. 2.5

NGC4217 2.26 0.02 10.66 0.16 18. 2.5

NGC4559 2.08 0.02 10.24 0.27 7.31 0.2

NGC5005 2.42 0.04 10.96 0.13 16.9 1.5

NGC5033 2.29 0.01 10.85 0.27 15.7 4.7

NGC5055 2.26 0.03 10.96 0.1 9.9 0.5

NGC5371 2.32 0.02 11.27 0.24 39.7 9.92

NGC5585 1.96 0.02 9.57 0.27 7.06 2.12

NGC5907 2.33 0.01 11.06 0.1 17.3 0.9

NGC5985 2.47 0.02 11.08 0.24 50.35 0.2

NGC6015 2.19 0.02 10.38 0.27 17. 5.1

NGC6195 2.40 0.03 11.35 0.13 127.8 12.8

NGC6503 2.07 0.01 9.94 0.09 6.26 0.31

NGC6674 2.38 0.03 11.18 0.19 51.2 10.2

NGC6946 2.20 0.04 10.61 0.28 5.52 1.66

NGC7331 2.38 0.01 11.15 0.13 14.7 1.5

NGC7814 2.34 0.01 10.59 0.11 14.4 0.72

UGC00128 2.12 0.05 10.2 0.14 64.5 9.7

UGC00731 1.87 0.02 9.41 0.26 12.5 3.75

UGC01281 1.75 0.03 8.75 0.06 5.27 0.1

UGC02259 1.94 0.03 9.18 0.26 10.5 3.1

UGC02487 2.52 0.05 11.43 0.16 69.1 10.4

UGC02885 2.46 0.02 11.41 0.12 80.6 8.06

UGC02916 2.26 0.04 10.97 0.15 65.4 9.8

UGC02953 2.42 0.03 11.15 0.28 16.5 4.95

UGC03205 2.34 0.02 10.84 0.2 50. 10.

UGC03546 2.29 0.03 10.73 0.24 28.7 7.2

UGC03580 2.10 0.02 10.09 0.23 20.7 5.2

UGC04278 1.96 0.03 9.33 0.26 12.59 0.2

UGC04325 1.96 0.03 9.28 0.27 9.6 2.88

UGC04499 1.86 0.03 9.35 0.26 12.5 3.75

UGC05253 2.33 0.04 11.03 0.23 22.9 5.72
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UGC05716 1.87 0.06 9.24 0.22 21.3 5.3

UGC05721 1.9 0.04 9.01 0.26 6.18 1.85

UGC05986 2.05 0.02 9.77 0.27 8.63 2.59

UGC06399 1.93 0.03 9.31 0.14 18. 2.5

UGC06446 1.92 0.04 9.37 0.26 12. 3.6

UGC06614 2.3 0.11 10.96 0.12 88.7 8.87

UGC06667 1.92 0.02 9.25 0.13 18. 2.5

UGC06786 2.34 0.02 10.64 0.24 29.3 7.32

UGC06787 2.4 0.01 10.75 0.24 21.3 5.32

UGC06818 1.85 0.04 9.35 0.13 18. 2.5

UGC06917 2.04 0.03 9.79 0.14 18. 2.5

UGC06923 1.90 0.03 9.4 0.14 18. 2.5

UGC06930 2.03 0.07 9.94 0.13 18. 2.5

UGC06983 2.04 0.03 9.82 0.13 18. 2.5

UGC07125 1.81 0.03 9.88 0.26 19.8 5.9

UGC07151 1.87 0.02 9.29 0.08 6.87 0.34

UGC07399 2.01 0.03 9.2 0.27 8.43 2.53

UGC07524 1.9 0.03 9.55 0.06 4.74 0.24

UGC07603 1.79 0.02 8.73 0.26 4.7 1.41

UGC07690 1.76 0.06 8.98 0.27 8.11 2.43

UGC08286 1.92 0.01 9.17 0.06 6.5 0.33

UGC08490 1.9 0.03 9.17 0.11 4.65 0.53

UGC08550 1.76 0.02 8.72 0.26 6.7 2.

UGC08699 2.26 0.03 10.48 0.24 39.3 9.82

UGC09037 2.18 0.04 10.78 0.11 83.6 8.4

UGC09133 2.36 0.04 11.27 0.19 57.1 11.4

UGC10310 1.85 0.08 9.39 0.27 15.2 4.6

UGC11455 2.43 0.01 11.31 0.16 78.6 11.8

UGC11914 2.46 0.07 10.88 0.28 16.9 5.1

UGC12506 2.37 0.03 11.07 0.11 100.6 10.1

UGC12632 1.86 0.03 9.47 0.26 9.77 2.93

UGCA442 1.75 0.03 8.62 0.06 4.35 0.22

UGCA444 1.57 0.07 7.98 0.06 0.98 0.05
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Numerical Calculations

B.1 Maximum Likelihood Analysis

We present the Mathematica code that was used in the data analysis of cosmological models

in the context of the CMB-shift, Cosmic Chronometers, BAO and Pantheon datasets. The

code is written using the nCPL parametrization as an example. First we define some theoret-

ical quantities and subsequently we calculate the χ2
expressions in each case, before using

them to define the total χ2
for our example.

B.1.1 Essential Theoretical Expressions

1 (* nCPL Dark Energy Model *)
2 wcpl[a_, w0_, wa_, n_] := w0 + wa (1 - a)ˆn
3

4 fcpl[a_, w0_, wa_, n_] := aˆ(-3 (1 + w0 + wa)) Eˆ(-3 wa
HarmonicNumber[n] + 3 a n wa HypergeometricPFQ[{1, 1, 1 - n}, {2, 2},
a])

5 Hcpl[a_?NumberQ, om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ,
h_?NumberQ] := 100 h Sqrt[aˆ-3 om (1 + aeq[om, h]/a) + (1 - om (1 +
aeq[om, h])) fcpl[a, w0, wa, n]]

6

7 (* Comoving sound horizon at drag redshift *)
8 rscpl[ze_, om_?NumberQ, obh2_?NumberQ, w0_?NumberQ, wa_?NumberQ,
9 n_?NumberQ, h_?NumberQ] := NIntegrate[cs[x, obh2]/( xˆ2 Hcpl[x, om,

w0, wa, n, h]), {x, 10ˆ-11, 1/(1 + ze[om, obh2, h])}]
10

11 Clear[DLsolcpl, DLcpl, dLcpl]
12 DLsolcpl[om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ,

h_?NumberQ]:= (DLsolcpl[om, w0, wa, n, h] =
13 NDSolve[{D[dLcpl[zz]/(1 + zz), zz] == 1/(Hcpl[1/(1 + zz), om, w0, wa,

n, h]/(100 h)), dLcpl[0] == 0}, dLcpl, {zz, 0, 1300}, MaxSteps ->
Infinity])

14 DLcpl[z_?NumberQ, om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ,
h_?NumberQ] := (c/(100 h) dLcpl[z] /. DLsolcpl[om, w0, wa, n,
h])[[1]] // Chop
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15

16 (* Angular diameter distance with curvature, see arxiv:0803.0547 *)
17 DAcpl[z_?NumberQ, om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ,

h_?NumberQ] := 1/(1 + z)ˆ2 DLcpl[z, om, w0, wa, n, h]
18

19 baodacpl[z_, om_, w0_, wa_, n_, h_] := DAcpl[z, om, w0, wa, n, h]
(rscpl[zdrag, om0pl, obh2pl, -1, 0, 1, h0pl]/rscpl[zdrag, om, obh2pl,
w0, wa, n, h]);

20

21 (* Dilation scale *)
22 Dvcpl[zbao_, om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ,

h_?NumberQ] := ((DLcpl[zbao, om, w0, wa, n, h] /(1 + zbao))ˆ2
(c*zbao)/Hcpl[1/(1 + zbao), om, w0, wa, n, h])ˆ(1/3)

23

24 (* BAO dz ratio *)
25 dzcpl[zbao_, om_, obh2_, w0_, wa_, n_, h_] := rscpl[zdrag, om, obh2, w0,

wa, n, h]/Dvcpl[zbao, om, w0, wa, n, h]
26

27 (* DH "distance" *)
28 DHcpl[z_?NumberQ, om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ,

h_?NumberQ] := c/Hcpl[1/(1 + z), om, w0, wa, n, h]
29

30 hzcpl[z_, om_, w0_, wa_, n_, h_] := Hcpl[1/(1 + z), om, w0, wa, n, h]
31 baodvcpl[z_, om_, w0_, wa_, n_, h_] := rscpl[zdrag, om0pl, obh2pl, -1,

0, 1, h0pl]/ dzcpl[z, om, obh2pl, w0, wa, n, h];
32

33 (* Scaled distance at recombination *)
34 Rcpl[om_, obh2_, w0_, wa_, n_, h_] := Sqrt[om (100 h)ˆ2] DAcpl[zcmb[om,

obh2, h], om, w0, wa, n, h] (1 + zcmb[om, obh2, h])/c
35

36 (* Angular scale of sound horizon at recombination *)
37 lacpl[om_, obh2_, w0_, wa_, n_, h_] := \[Pi] (DAcpl[zcmb[om, obh2, h],

om, w0, wa, n, h] (1 + zcmb[om, obh2, h]))/(rscpl[zcmb, om, obh2, w0,
wa, n, h])

B.1.2 Calculation of χ2
for CMB-shift Data

1 veccpl[om_, obh2_, w0_, wa_, n_, h_] := {Rcpl[om, obh2, w0, wa, n, h] -
datacmb[[1]], lacpl[om, obh2, w0, wa, n, h] - datacmb[[2]], obh2 -
datacmb[[3]]};

2 chi2Rcpl[om_, obh2_, w0_, wa_, n_, h_] := veccpl[om, obh2, w0, wa, n,
h].invcovcmb.veccpl[om, obh2, w0, wa, n, h]
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B.1.3 Calculation of χ2
for Cosmic Chronometer Data

1 chi2cccpl[om_?NumberQ, w0_?NumberQ, wa_?NumberQ, n_?NumberQ, h_?NumberQ]
:= Sum[(1/dataHz[[i,3]] (dataHz[[i, 2]] - hzcpl[dataHz[[i, 1]], om,
w0, wa, n, h]))ˆ2, {i, 1, Length[dataHz]}];

B.1.4 Calculation of χ2
for BAO Data

Here the covariance matrices are tailored to the specific data compilation mentioned in the

comments.

1 (* 6dFGs and WiggleZ BAO data, see arxiv:1605.02702 *)
2 vecbaocpl[om_, obh2_, w0_, wa_, n_, h_] := Table[(databao[[i, 2]] -

dzcpl[databao[[i, 1]], om, obh2, w0, wa, n, h]), {i, 1,
Length[databao]}];

3

4 (* BAO measurements from Lya are {Da/rs, DH/rs} - arxiv:1904.03400 *)
5 vecLyacpl[om_, obh2_, w0_, wa_, n_, h_] := {dataLya[[1, 2]] -

DAcpl[dataLya[[1, 1]], om, w0, wa, n, h]/rscpl[zdrag, om, obh2, w0,
wa, n, h], dataLya[[2, 2]] - DHcpl[dataLya[[2, 1]], om, w0, wa, n,
h]/rscpl[zdrag, om, obh2, w0, wa, n, h]};

6

7 (* Total BAO chiˆ2 *)
8 chi2baocpl[om_, obh2_, w0_, wa_, n_, h_] := vecbaocpl[om, obh2, w0, wa,

n, h].Cijbaoinv.vecbaocpl[om, obh2, w0, wa, n, h] + Sum[(dataSDSS[[i,
2]] - 1/dzcpl[dataSDSS[[i, 1]], om, obh2, w0, wa, n, h])ˆ2/
dataSDSS[[i, 3]]ˆ2, {i, 1, Length[dataSDSS]}] + vecLyacpl[om, obh2,
w0, wa, n, h].CijLyainv.vecLyacpl[om, obh2, w0, wa, n, h]

B.1.5 Calculation of χ2
for SnIa (Pantheon) Data

1 chi2Panthcpl[M_?NumberQ, om_?NumberQ, w0_?NumberQ, wa_?NumberQ,
n_?NumberQ] := Module[{Dm}, Dm = Table[dataPanth[[1 + i, 5]] - (M + 5
Log10[(1 + dataPanth[[1 + i, 3]])/(1 + dataPanth[[1 + i, 2]])
DLcpl[dataPanth[[1 + i, 2]], om, w0, wa, n, h0]] + 25), {i, 1,
ndatPanth}]; Dm.InvCovTotal.Dm]

B.1.6 Total χ2

1 (* The total chiˆ2 is the sum of the individuals calculated above*)
2 chi2totalcpl[M_?NumberQ, om_?NumberQ, w0_?NumberQ, wa_?NumberQ,

h_?NumberQ] := chi2Rcpl[om, obh2, w0, wa, 1, h] + chi2baocpl[om,
obh2, w0, wa, 1, h] + chi2cccpl[om, w0, wa, 1, h] + chi2Panthcpl[M,
om, w0, wa, 1]
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B.2 Modifications in MGCAMB: Analysis of Chapter 2

We present, as an example, the modifications done in the MGCAMB core files params_MG.ini
and params.ini for the case of the wCDM model with w = −1.2.

B.2.1 Modified params_MG.ini File

1 ###### Part 1. Choose the Modified Growth flag
2 # MG_flag = 0 : default GR
3 # MG_flag = 1 : pure MG models
4 # MG_flag = 2 : alternative MG models
5 # MG_flag = 3 : QSA models
6

7 MG_flag = 1
8

9 # Choose at which time to turn on MG
10 GRtrans = 0.001d0
11

12 ###### Part 2.1 - Pure MG models
13 # pure_MG_flag = 1 : mu, gamma parametrization
14 # pure_MG_flag = 2 : mu, sigma parametrization
15 # pure_MG_flag = 3 : Q, R parametrization
16

17 pure_MG_flag = 1
18

19

20 ###### Part 2.2 - Alternative MG models
21 # alt_MG_flag = 1 : Linder Gamma parametrization ( introduced in

arXiv:0507263 )
22

23 alt_MG_flag = 1
24

25

26 ###### Part 2.3 - QSA models
27 # QSA_flag = 1 : f(R)
28 # QSA_flag = 2 : Symmetron
29 # QSA_flag = 3 : Dilaton
30 # QSA_flag = 4 : Hu-Sawicki f(R)
31

32 QSA_flag = 4
33

34

35 ###### Part 3.1.1. - mu, gamma functions
36 # mugamma_par = 1 : BZ parametrization ( introduced in

arXiv:0809.3791 )
37 # mugamma_par = 2 : Planck parametrization
38 # mugamma_par = 3 : Effective Newton’s constant
39
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40 mugamma_par = 3
41

42 #BZ parameters:
43 B1 = 1.333
44 lambda1_2 = 1000
45 B2 = 0.5
46 lambda2_2 = 1000
47 ss = 4
48

49 #Planck parameters
50 E11 = 1
51 E22 = 1
52

53 # Effective Newtons constant
54 ga = 0
55 nn = 1
56

57

58 ###### Part 3.1.2. - mu, Sigma functions
59 # musigma_par = 1 : DES parametrization
60

61 musigma_par = 1
62

63 mu0 = -1
64 sigma0 = 0
65

66

67 ###### Part 3.1.3. - Q,R functions
68 # QR_par = 1 : (Q,R) ( introduced in arXiv:1002.4197 )
69 # QR_par = 2 : (Q0,R0,s) ( introduced in arXiv:1002.4197 )
70

71 QR_par = 1
72

73 #Bean parameters :
74 #(Q,R)
75 MGQfix=1
76 MGRfix=1
77

78 #(Q0,R0,s)
79 Qnot=1.
80 Rnot=1.
81 sss=0
82

83

84 ##### Part 3.2.1 - Linder Gamma
85 # Linder’s gamma :
86 Linder_gamma = 0.545
87

88
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89 ##### Part 3.3.1 - QSA f(R) model
90 B0 = 1.d-3
91

92

93 ##### Part 3.3.2 - QSA Symmetron model
94 beta_star = 1.0d0
95 a_star = 0.5d0
96 xi_star = 0.001d0
97

98

99 ##### Part 3.3.3 - QSA Dilaton model
100 beta0 = 1.d0
101 xi0 = 0.0001
102 DilS = 0.24d0
103 DilR = 1.d0
104 A2 = 1e3
105

106

107 ##### Part 3.3.4 - QSA Hu-Sawicki f(R)
108 F_R0 = 0.0001d0
109 FRn = 1.d0
110

111

112 ##### Part 4. Parameters for the DE model
113 # Note that the modification of the background works only for pure MG

models.
114 #
115 # DE_model = 0 : LCDM
116 # DE_model = 1 : wCDM
117 # DE_model = 2 : (w0,wa)CDM
118 # DE_model = 3 : user defined
119

120 DE_model = 1
121

122 # DE model 1 (choose w0DE) 2 (choose both)
123 w0DE = -1.2d0
124 waDE = 0.d0

B.2.2 Modified params.ini File

This is the MGCAMB model selection file.

1 DEFAULT(params_MG.ini)
2

3 #Parameters for CAMB
4

5 #output_root is prefixed to output file names
6 output_root = mg_wneg12
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7

8 #What to do
9 get_scalar_cls = T

10 get_vector_cls = F
11 get_tensor_cls = F
12 get_transfer = F
13

14 #if do_lensing then lens_potential_output_file contains the unlensed CMB
and lensing potential power spectra

15 #and lensed CMB Cls (without tensors) are in lensed_output_file, total
in lensed_total_output_file.

16 do_lensing = T
17

18 # 0: linear, 1: non-linear matter power (HALOFIT), 2: non-linear CMB
lensing (HALOFIT),

19 # 3: both non-linear matter power and CMB lensing (HALOFIT)
20 do_nonlinear = 1
21

22 #Maximum multipole and k*eta.
23 # Note that C_ls near l_max are inaccurate (about 5%), go to 50 more

than you need
24 # Lensed power spectra are computed to l_max_scalar-100
25 # To get accurate lensed BB need to have l_max_scalar>2000,

k_eta_max_scalar > 10000
26 # To get accurate lensing potential you also need k_eta_max_scalar >

10000
27 # Otherwise k_eta_max_scalar=2*l_max_scalar usually suffices, or don’t

set to use default
28 l_max_scalar = 2600
29 k_eta_max_scalar = 5000
30

31 # Tensor settings should be less than or equal to the above
32 l_max_tensor = 1500
33 k_eta_max_tensor = 3000
34

35 #Main cosmological parameters, neutrino masses are assumed degenerate
36 # If use_phyical set physical densities in baryons, CDM and neutrinos +

Omega_k
37 use_physical = T
38 ombh2 = 0.02226
39 omch2 = 0.1195
40 omnuh2 = 0.00064
41 omk = 0
42 hubble = 73.6
43

44 #effective equation of state parameter for dark energy
45 w = -1
46 #constant comoving sound speed of the dark energy (1=quintessence)
47 cs2_lam = 1
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48

49 #varying w is not supported by default, compile with
EQUATIONS=equations_ppf to use crossing PPF w-wa model:

50 #wa = 0
51 ##if use_tabulated_w read (a,w) from the following user-supplied file

instead of above
52 #use_tabulated_w = F
53 #wafile = wa.dat
54

55 #if use_physical = F set parameters as here
56 #omega_baryon = 0.0462
57 #omega_cdm = 0.2538
58 #omega_lambda = 0.7
59 #omega_neutrino = 0
60

61 temp_cmb = 2.7255
62 helium_fraction = 0.24
63

64 #for share_delta_neff = T, the fractional part of massless_neutrinos
gives the change in the effective number

65 #(for QED + non-instantaneous decoupling) i.e. the increase in neutrino
temperature,

66 #so Neff = massless_neutrinos + sum(massive_neutrinos)
67 #For full neutrino parameter details see

http://cosmologist.info/notes/CAMB.pdf
68 massless_neutrinos = 2.046
69

70 #number of distinct mass eigenstates
71 nu_mass_eigenstates = 1
72 #array of the integer number of physical neutrinos per eigenstate, e.g.

massive_neutrinos = 2 1
73 massive_neutrinos = 1
74 #specify whether all neutrinos should have the same temperature,

specified from fractional part of massless_neutrinos
75 share_delta_neff = T
76 #nu_mass_fractions specifies how Omeganu_h2 is shared between the

eigenstates
77 #i.e. to indirectly specify the mass of each state; e.g.

nu_mass_factions= 0.75 0.25
78 nu_mass_fractions = 1
79 #if share_delta_neff = F, specify explicitly the degeneracy for each

state (e.g. for sterile with different temperature to active)
80 #(massless_neutrinos must be set to degeneracy for massless, i.e.

massless_neutrinos does then not include Deleta_Neff from massive)
81 #if share_delta_neff=T then degeneracies is not given and set internally
82 #e.g. for massive_neutrinos = 2 1, this gives equal temperature to 4

neutrinos: nu_mass_degeneracies = 2.030 1.015, massless_neutrinos =
1.015

83 nu_mass_degeneracies =
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84

85 #Initial power spectrum, amplitude, spectral index and running. Pivot k
in Mpcˆ{-1}.

86 initial_power_num = 1
87 pivot_scalar = 0.05
88 pivot_tensor = 0.05
89 scalar_amp(1) = 2.1e-9
90 scalar_spectral_index(1) = 0.9626
91 scalar_nrun(1) = 0
92 scalar_nrunrun(1) = 0
93 tensor_spectral_index(1) = 0
94 tensor_nrun(1) = 0
95 #Three parameterizations (1,2,3) for tensors, see

http://cosmologist.info/notes/CAMB.pdf
96 tensor_parameterization = 1
97 #ratio is that of the initial tens/scal power spectrum amplitudes,

depending on parameterization
98 #for tensor_parameterization == 1, P_T =

initial_ratio*scalar_amp*(k/pivot_tensor)ˆtensor_spectral_index
99 #for tensor_parameterization == 2, P_T =

initial_ratio*P_s(pivot_tensor)*(k/pivot_tensor)ˆtensor_spectral_index
100 #Note that for general pivot scales and indices,

tensor_parameterization==2 has P_T depending on n_s
101 initial_ratio(1) = 1
102 #tensor_amp is used instead if tensor_parameterization == 3, P_T =

tensor_amp *(k/pivot_tensor)ˆtensor_spectral_index
103 #tensor_amp(1) = 4e-10
104

105 #note vector modes use the scalar settings above
106

107

108 #Reionization, ignored unless reionization = T, re_redshift measures
where x_e=0.5

109 reionization = T
110

111 re_use_optical_depth = F
112 re_optical_depth = 0.09
113 #If re_use_optical_depth = F then use following, otherwise ignored
114 re_redshift = 7.5
115 #width of reionization transition. CMBFAST model was similar to

re_delta_redshift0.5.
116 re_delta_redshift = 1.5
117 #re_ionization_frac=-1 sets it to become fully ionized using Yhe to get

helium contribution
118 #Otherwise x_e varies from 0 to re_ionization_frac
119 re_ionization_frac = -1
120

121 #Parameters for second reionization of helium
122 re_helium_redshift = 3.5
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123 re_helium_delta_redshift = 0.5
124

125 #RECFAST 1.5.x recombination parameters;
126 RECFAST_fudge = 1.14
127 RECFAST_fudge_He = 0.86
128 RECFAST_Heswitch = 6
129 RECFAST_Hswitch = T
130

131 # CosmoMC parameters - compile with RECOMBINATION=cosmorec and link to
CosmoMC to use these

132 #
133 # cosmorec_runmode== 0: CosmoMC run with diffusion
134 # 1: CosmoMC run without diffusion
135 # 2: RECFAST++ run (equivalent of the original

RECFAST version)
136 # 3: RECFAST++ run with correction function of

Calumba & Thomas, 2010
137 #
138 # For ’cosmorec_accuracy’ and ’cosmorec_fdm’ see CosmoMC for explanation
139 #-----------------------------------------------------------------------
140 #cosmorec_runmode = 0
141 #cosmorec_accuracy = 0
142 #cosmorec_fdm = 0
143

144 #Initial scalar perturbation mode (adiabatic=1, CDM iso=2, Baryon iso=3,
145 # neutrino density iso =4, neutrino velocity iso = 5)
146 initial_condition = 1
147 #If above is zero, use modes in the following (totally correlated)

proportions
148 #Note: we assume all modes have the same initial power spectrum
149 initial_vector = -1 0 0 0 0
150

151 #For vector modes: 0 for regular (neutrino vorticity mode), 1 for
magnetic

152 vector_mode = 0
153

154 #Normalization
155 COBE_normalize = F
156 ##CMB_outputscale scales the output Culs
157 #To get MuKˆ2 set realistic initial amplitude (e.g. scalar_amp(1) =

2.3e-9 above) and
158 #otherwise for dimensionless transfer functions set scalar_amp(1)=1 and

use
159 #CMB_outputscale = 1
160 CMB_outputscale = 7.42835025e12
161

162 #Transfer function settings, transfer_kmax=0.5 is enough for sigma_8
163 #transfer_k_per_logint=0 sets sensible non-even sampling;
164 #transfer_k_per_logint=5 samples fixed spacing in log-k
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165 #transfer_interp_matterpower =T produces matter power in regular
interpolated grid in log k;

166 # use transfer_interp_matterpower =F to output calculated values (e.g.
for later interpolation)

167 transfer_high_precision = F
168 transfer_kmax = 2
169 transfer_k_per_logint = 0
170 transfer_num_redshifts = 1
171 transfer_interp_matterpower = T
172 transfer_redshift(1) = 0
173 transfer_filename(1) = transfer_out.dat
174 #Matter power spectrum output against k/h in units of hˆ{-3} Mpcˆ3
175 transfer_matterpower(1) = matterpower.dat
176

177 #which variable to use for defining the matter power spectrum and sigma8
178 #main choices are 2: CDM, 7: CDM+baryon+neutrino, 8: CDM+baryon, 9:

CDM+baryon+neutrino+de perts
179 transfer_power_var = 7
180

181 #Output files not produced if blank. make camb_fits to use the FITS
setting.

182 scalar_output_file = scalCls.dat
183 vector_output_file = vecCls.dat
184 tensor_output_file = tensCls.dat
185 total_output_file = totCls.dat
186 lensed_output_file = lensedCls.dat
187 lensed_total_output_file =lensedtotCls.dat
188 lens_potential_output_file = lenspotentialCls.dat
189 FITS_filename = scalCls.fits
190

191 #Bispectrum parameters if required; primordial is currently only local
model (fnl=1)

192 #lensing is fairly quick, primordial takes several minutes on quad core
193 do_lensing_bispectrum = F
194 do_primordial_bispectrum = F
195

196 #1 for just temperature, 2 with E
197 bispectrum_nfields = 1
198 #set slice non-zero to output slice b_{bispectrum_slice_base_L L L+delta}
199 bispectrum_slice_base_L = 0
200 bispectrum_ndelta=3
201 bispectrum_delta(1)=0
202 bispectrum_delta(2)=2
203 bispectrum_delta(3)=4
204 #bispectrum_do_fisher estimates errors and correlations between bispectra
205 #note you need to compile with LAPACK and FISHER defined to use get the

Fisher info
206 bispectrum_do_fisher= F
207 #Noise is in muKˆ2, e.g. 2e-4 roughly for Planck temperature
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208 bispectrum_fisher_noise=0
209 bispectrum_fisher_noise_pol=0
210 bispectrum_fisher_fwhm_arcmin=7
211 #Filename if you want to write full reduced bispectrum (at sampled

values of l_1)
212 bispectrum_full_output_file=
213 bispectrum_full_output_sparse=F
214 #Export alpha_l(r), beta_l(r) for local non-Gaussianity
215 bispectrum_export_alpha_beta=F
216

217 ##Optional parameters to control the computation speed,accuracy and
feedback

218

219 #If feedback_level > 0 print out useful information computed about the
model

220 feedback_level = 1
221

222 #whether to start output files with comment describing columns
223 output_file_headers = T
224

225 #write out various derived parameters
226 derived_parameters = T
227

228 # 1: curved correlation function, 2: flat correlation function, 3:
inaccurate harmonic method

229 lensing_method = 1
230 accurate_BB = F
231

232

233 #massive_nu_approx: 0 - integrate distribution function
234 # 1 - switch to series in velocity weight once

non-relativistic
235 massive_nu_approx = 1
236

237 #Whether you are bothered about polarization.
238 accurate_polarization = T
239

240 #Whether you are bothered about percent accuracy on EE from reionization
241 accurate_reionization = T
242

243 #whether or not to include neutrinos in the tensor evolution equations
244 do_tensor_neutrinos = T
245

246 #whether you care about accuracy of the neutrino transfers themselves
247 accurate_massive_neutrino_transfers = F
248

249 #Whether to turn off small-scale late time radiation hierarchies (save
time,v. accurate)

250 do_late_rad_truncation = T
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251

252 #Which version of Halofit approximation to use (default currently
Takahashi):

253 #1. Original Smith et al. (2003; arXiv:astro-ph/0207664) HALOFIT
254 #2. Bird et al. (arXiv:1109.4416) updated HALOFIT
255 #3. Original plus fudge from http://www.roe.ac.uk/jap/haloes/,
256 #4. Takahashi (2012; arXiv:1208.2701) HALOFIT update
257 #5. HMcode (Mead et al. 2016; arXiv 1602.02154)
258 #6. A standard (inaccurate) halo model power spectrum calcultion
259 #7. PKequal (Casarini et al. arXiv:0810.0190, arXiv:1601.07230)
260 #8. HMcode (Mead et al. 2015; arXiv 1505.07833)
261 halofit_version=
262

263 #Computation parameters
264 #if number_of_threads=0 assigned automatically
265 number_of_threads = 0
266

267 #Default scalar accuracy is about 0.3% (except lensed BB) if
high_accuracy_default=F

268 #If high_accuracy_default=T the default target accuracy is 0.1% at L>600
(with boost parameter=1 below)

269 #Try accuracy_boost=2, l_accuracy_boost=2 if you want to check
stability/even higher accuracy

270 #Note increasing accuracy_boost parameters is very inefficient if you
want higher accuracy,

271 #but high_accuracy_default is efficient
272

273 high_accuracy_default=T
274

275 #Increase accuracy_boost to decrease time steps, use more k values, etc.
276 #Decrease to speed up at cost of worse accuracy. Suggest 0.8 to 3.
277 accuracy_boost = 1
278

279 #Larger to keep more terms in the hierarchy evolution.
280 l_accuracy_boost = 1
281

282 #Increase to use more C_l values for interpolation.
283 #Increasing a bit will improve the polarization accuracy at l up to 200 -
284 #interpolation errors may be up to 3%
285 #Decrease to speed up non-flat models a bit
286 l_sample_boost = 1
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