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H nmapovoa Awdaktopikr Alatplpry ekmovibnke oto MAAICLO TwV OToudwv yla TNV
amoktnon tou ABaktoplkol AUTAWUATOC oTa MaBnUATIKA TTOU QMOVEUEL TO TUAUA
MaBnuatikwyv tou Mavemotnuiov lwavvivwy.

YMNEYOYNH AHAQZ2H

"AnAwvw umelBuva OtTL n Tapoloa SISAKTOPLKA SLaTpLBh eKMOVABNKE KATW Onod TOUC
Slebveic nBKoUC Kal akadnuaikoug kavoveg deovtoloylag Kol TPOoTAGLOC TNG MVEUUATLKAG
oloktnolag. Iupdwva pe TOUG Kavoveg autoug, Sev €xw mpoPel oe 8lomoinon &€vou
ETILOTNMOVLKOU £PYOU KL €XW TANPWG avadpEPEL TIG TINYEC TTOU XpNnoLlomnolnoa otnv epyacia
avtd."
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ETXAPISTIEY

Oa flela va euyaploThow and ta Bddn tng xapdids wou Tov emPBrénovia
xadny Nt pou, x. Ltavpo [Moaraddxm, yio TNy emhoyr TV pELYNTIXGY VeUdTOY
NG ObaxTopxnc wou SatelBhg, TIC Ao TEIPEUTES IBEEC TOU Xt TNV adLAXOTY Xot-
Yodrynon tou. 'Eva peydho euyopioted otov ddoxalo pou mou mépa and TG
podnuotixég Tou YVOOoelg mou pou polpale amhdyepa, Nty mavta exel yio epéva
xar xdVe gopd mov Aoyl wou umevdOule OTL Ye UTOUOVY| ot ETuovY EEMEPVIO-
Ovton tar ueyahOtepa eunodio. Elvon ueydhn wou i vo ouyxatadéyopor oToug
podntég Tou.

[Tépo and tov emPBAénovta xadnynth wou, Vo fleha va uydploTHOW TOV
xodnyntr xou ouvepydtn woc x. Karim Adiprasito yatl pe eymotedtnxe xou
potpdletar YEVVOLOBmEA TIC YVWOELS Xat TIC 1déeg Tou pall wou. Ocwpd arioteuta
TUYEPG TOV EQUTO WOV Yial TN GLVEPYasia Ye auTolg Toug BVo omoudaioug pod-
pottxo0g.

Oa Hdeha eniong va euyaptotiow Toug xadnyNTés x. Améotoho Owud xou
x. Anécotoho Mrehnytdvvn yio TV ouctaoTixy Togousio Toug ot xdle wou Priua
Omo T TPOTTUYLAXES UOU AXOUY OTOUDES, TNV XUA0GUVY TOUC Xo TIS TOADTIUES
Oyt wovo godnuatixég ahhd xan tatpxéc oupPoukéc Toug. ‘Eva peydho suyaplotd
otov xoinynth x. Enauevovda Keyoryid yio tig oulntrioeig gog xot tn YEVIXOTERT
otheign Tou xa’ 6An TN Sidpxela TwY oToudKY wou oto HavemotAwo Inavvivey.

‘Eva biaitepo euyapiotod otov xadnynth x. Xproto Adoavaoiddn yio tny ou-
oo x| cuPPolr) Tou otn BbaxTopx wou dlatelPr xadwg eniong xar Y TiC
OLUPWTIO TIXES TOU ETUONUAVOELS XAl TOQATNENOELS.

‘Eva peydho evyapioted otov xodnynth x. Nixdhao TUd o yia 0 yevixdtepn
Topousia Tou, GO Xal TUPATNEHOELS TOL.

Oa Hicha enlong va evyoaptothow Ty xadnyrteia x. Xopd XopaAdunoug yia
Oheg T TOAUTIES oLPPoURES TN, 1) ool anotehel Tapdderyua xon TEOTUTO Yia
x&de yuvaixa poadnuatins.



‘Eva tepdotio euyaplote otov xonynth x. Xpuvooéotoyo Yapouddxn o omo-
fog xatd TN OLIPXELN TWV TEOTTUYIAXWY UOU GTIOUDWY PE TNV Topouaio Tou oTo
o Mo nuatindy we Sidaxtopixds QoLtnThc anoTEA0UCE TOPADELY A Yio EUEVOL.
Tov guyopiot® eniong Yy Ti¢ TOAOTIUES GUUBOUVAES xou TNV EVIEPEUVCT| TOU WoU
nopelye.

Evyapiotd Yepud tov xadnynti x. Anprteio Nobtoo yio 6An ) otipiln mou
pou Tapelye xatd TN BIdPXEIA TWV CTOUBWY YOoL.

‘Eva yeydho guyopiotod otov xadnynth x. Xeroto Tatdxn xou otny unégoyn
owoyévew tou (Mapia, Kovotavtivog xon Avaotdong) yiotl otddnxay dinhe pou
oV OXOYEVELN 0E XxAVE Prua LouU and TIC UETATTUYLUXES EWS X TNV TEPATMOT
TV H1daxXTOPIXGY oToud®Y wou. ‘Eva depud euyaplotd o otov xodnynth x.
Avpéa MdBBo Xakddn yio dheg Tig oulntroelc wog oto dimhavod ypageio. Hray
and toug dvitpwroug Tou aneuduvououy xdde gopd mou Rieha evidppuvor yia
va ouveyiow.

Aev Yo unopoloa va uny guyaplo ThHow toug @iloug wou Adavdcio I'rpénn,
Kaovotaviivo Afuoyhou, Ywxpdtn Zhxa, Iwdvva Kiagléln, Kwvotavtivo At
qumn, Miyadh Mdpxehho, [epixhy Hannia, Iétpo Xtoyidvton, I'enydpio Toyu-
eton, Baio Teplotdrn, Miyanh Towpwvn xar Indvvn ®ouptlh o onolot aveydtay
adtapaptipnTa Toug podnpatixols wou xat wh povohdyous. To mo peydho guyo-
ptotw ot Mopia Achavidov, oto mo onoudaio xopitol, moapdderyua Yo epéva,
ToU UE €YEL TWWNOEL UE TN QLAlal TNC.

Evyapioto eniong to tuiua Moadnuotixdy xow 6houg toug xadnyntés uou,
TPOTTUYLAXAY X0 UETATTUYLOXWY OTOUBWY YLot OAES TIC YVWOEIC TOU OV TOQE-
fyav.

Yty napodoa ddaxtopixy| dtatpifr elvan xafpla 1 oUVEIGPOEE TOU UTOAOYL-
otxol mpoypdupatoc Macaulay2. Oo fdeha vo evyaplotiow Yepud toug GUY-
Yeapeic Tou ev Moyw mpoypdupatog, Daniel Grayson xoa Mike Stilman.

Téhog, euyaptot® toug yovelg pouv Mapia xou Kwvotavtivo yia v ndue xou
vl unootheEn. Xowplc ™) othplln Toug auth 1 dratelPr dev Va elye nepatwiel.

Mépog tng épeuvag yenpatodothinxe ano tov Edixd Aoyopiacpd Kovouliowy
‘Epeuvac (EAKE) tou Haveniotnpiov Inavvivey oto mhaiolo tou npoypdupatoc
pe aprdpd 82561 xou titho “Ilpdypoppa yior TV owxovopxt uToo Thetln diduxTopt-
AWV QOLTNTOV X0l UETADLDUXTOPIXWDY EQEVVNTWY”, TOUG OTo{ouE EVYAPIO TW VePUd.



[IEPIAHYH

H napodoa datpifr anotekeiton and d0o pépn. To mpwto pépog tng datpl-
Bric oyetileton e tn perétn tng Vewplag tng avtimpoBohng xaL THY XoTAGKELN
TELOY ouVdIdoTaong 6 ouxoyevel®y Tetodidotatwy Fano noAuntuyudtwy avtixo-
VoVixd eupuTELUEVWY oTov Baduwtd mpoBohixd yweo. To deltepo pépog apopd
™ uerétn twv dothtev Lefschetz xou g avicotponiag tou Stanley-Reisner
B TUAIOU TV POVOTAEXTIXOV GPULEWY.

Y10 Kegdhato 2, ewodyoupe xdnoleg etoaywyixés €Vvoleg xat 1N Yvwotd a-
notehéopata and toug xhddoug g Metadetinric ‘AlyePpoac, tne AhyePpixc Ie-
ouetplog xar g Luvdvactixnc ‘Ahyefpoc, ue iaitepn ooy oToug duxTu-
Moug Gorenstein, ota tplodidotata Fano noluntdypoata xou otor povomhextixd
OUUTAEY HOTaL.

Y10 Kegdhowo 3, uneviupuilovpe xdmota )01 uTdpy 0VIa ATOTEAEGUATA TOL O)E-
tilovtar pe Tt Yewpla e avunpoPoric. H dewpio tng avtinpoBoitc, n onola
ogeiletar otov Miles Reid, ypnowomnouel oéec e Augiontne I'ewyetpioc yia
VO XATAOXEVAOEL o mepimAoxoug petadeTixovs duxtuiioug Zextvwvtag and -
mholoTepa apyxd dedopéva. Eivon 1o xOpio pog epyakeio yia Ti¢ YEWUETEIXES
EQUPUOYECS.

Y10 Kegdhawo 4, avantiooupe plo véa popen mapdhining avtinpoBohis, tnv
onola ovopdlovpe Tom xar Jerry tpuddec. Xpnowponololue auth 0 pop®n Yia
vo arodet&oupe, EextvivTag and ouvdidotaom 3, Ty Utapdn dvo cuvddotaong 6
OXOYEVEIWY and Tplodidotata Fano toluntdypato.

Y10 Kegdhowo 5, avantiooupe pio dedtepn woppr nopdAAning aviinpoBohic,
NV onola xahoVye 4-dtatour|. XpnotwonoloVUe auTH T Lop®T yia va anodel&ouye,
EextvevTag and ouvdldotaoT 2, Ty Unapdn uag ouvdldoTtacng 6 ouxoyévelag anod
Tpodidotata Fano noluntdypata.

Y10 Kegdhao 6, 1o omolo elvar oe ouvepyaoio pe tov Ltadpo Avapyloou
Hamaddxn, ewodyovye TV €vvola NG YEVIXNG AVIOOTPOTIAG ULIG LOVOTAEXTIXHS
ogaipac. Amodetxviouue 611 pla povomhextiny) ogaipa eivon YEVIXA avicOTpOTIXT,



UTIEEAVL OTIOLOUDATIOTE COUATOS YAUPUXTNEIOTIXNG 2, xou 6Tl ulo povodidoTtaty
povomAextixy ogaipa efvar YEVIXE avio0TROTIXY UTEPAVE OTOLOUBHTOTE CWUATOG.
Q¢ epapuoyr), divouue wio devtepn anddelln e g-ewooiag tou McMullen yia
HOVOTAEXTIXEC GQalpES.
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ABSTRACT

The present thesis consists of two parts. The first part of the thesis is related
to the study of unprojection theory and the construction of three codimension
6 families of Fano 3-folds anticanonically embedded in weighted projective
space. The second part concerns the study of the Lefschetz and anisotropy
properties of the Stanley-Reisner ring of simplicial spheres.

In Chapter 2, we introduce some preliminary notions and known results
from Commutative Algebra, Algebraic Geometry and Combinatorial Algebra,
with a particular emphasis to Gorenstein rings, Fano 3-folds and simplicial
complexes.

In Chapter 3, we recall some existing results related to unprojection theory.
Unprojection theory, which is due to Miles Reid, uses ideas from birational
geometry to construct more complicated commutative rings starting from si-
mpler data. It is our main tool for the geometric applications.

In Chapter 4, we develop a new parallel unprojection format, for which
we give the name Tom & Jerry triples format. We use the format to prove,
starting from codimension 3, the existence of two codimension 6 families of
Fano 3-folds.

In Chapter 5, we develop a second parallel unprojection format, which we
call the 4-intersection format. We use the format to prove, starting from
codimension 2, the existence of a codimension 6 family of Fano 3-folds.

In Chapter 6, which is joint work with Stavros Argyrios Papadakis, we
introduce the notion of generic anisotropy of a simplicial sphere. We prove that
a simplicial sphere is generically anisotropic over any field of characteristic 2,
and that a 1-dimensional simplicial sphere is generically anisotropic over any
field. As an application, we give a second proof of McMullen’s g-conjecture
for simplicial spheres.
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Chapter 1

Introduction

One of the most important problems in Algebraic Geometry is the classification of
algebraic varieties. In the early 1980s, the Minimal Model Program (also known as
Mori program) [24], 35, B6, 47| appeared as an effective approach for the birational
classification of the higher dimensional algebraic varieties. Fano 3-folds, as a building
block of this program in dimension 3, is an important topic of current research. In
this direction we develop two new methods of parallel unprojection and use them to
establish the existence of 3 new families of singular Fano 3-folds of codimension 6.

The second part of this thesis, which is joint work with Stavros Argyrios Papadakis,
was motivated by McMullen’s g-conjecture for simplicial spheres. The g-conjecture,
concerns the complete characterization of the set of f-vectors of simplicial spheres,
and was recently proven by Adiprasito [Il 2]. In the present work we investigate
some algebraic properties of Artinian reductions of Stanley-Reisner rings of simplicial
spheres. We introduce the notion of a simplicial sphere being generically anisotropic
over a field and establish the generic anisotropy of any simplicial sphere over any field
of characteristic 2 and the generic anisotropicy of 1-dimensional simplicial spheres over
an arbitrary field. As an application, we obtain a second proof of the g-conjecture for
simplicial spheres.

1.1 Some aspects of unprojection theory

Gorenstein rings form an important class of rings which appear often in Algebraic
Geometry. The anticanonical ring of a Fano n-fold, the canonical ring of a regular
surface of general type and the ring associated to an ample divisor on a smooth K3
surface are some examples of Gorenstein rings.

If R = klxy,...,x,]/1 is a Gorenstein graded ring, quotient of a polynomial ring
and the codimension of I is at most 3 then the structure of R is well-understood, see
Subsection An important open question is to find structure theorems when the

1



2 CHAPTER 1. INTRODUCTION

codimension of I is 4 or higher.

In the 1980s, Kustin and Miller tried to find a structure theorem for Gorenstein
rings of codimension 4 with a series of papers |38 39, 40l 41 [42]. In this context, in
1983 they introduced a procedure [37] which constructs more complicated Gorenstein
rings starting from simpler ones, by increasing the codimension. This procedure is
called Kustin-Miller unprojection.

Around 1995, Reid rediscovered what was essentially the same procedure while
working with Gorenstein rings arising from K3 surfaces and Fano 3-folds. Geomet-
rically, unprojection, as indicated by its name, is an inverse of certain projections
and can be considered as a modern and explicit version of Castelnuovo contractibility
theorem.

We now summarise Reid’s formulation of unprojection:

Assume that J C R is a codimension 1 ideal with R, R/.J being Gorenstein. De-
note by i: J — R the inclusion map. Then there exists ¢ such that Hompg(J, R) is
generated by the set {i,¢} as an R-module. Using ¢, Reid defined the new unpro-
jection ring as in Definition 3.1.1] Some years later Papadakis and Reid [57] proved
that the unprojection ring is Gorenstein (see Theorem . We refer the reader to
Example for the simplest example of Kustin-Miller unprojection.

Reid developed two families of unprojections which he called Tom and Jerry [54], 53]
59). Each of them is a way starting from a codimension 3 Gorenstein ring with some
additional properties to construct a new codimension 4 Gorenstein ring. We recall
the definitions of the Tom and Jerry families in Subsection Papadakis [55]
computed, using multilinear and homological algebra, the equations of the Tom and
Jerry families. For more details in the case of Tom we refer to Subsection [3.1.3]

Unprojection theory has found many applications in Algebraic Geometry. In par-
ticular, in the construction of new interesting algebraic surfaces and 3-folds, especially
in codimension four [3] 4], 14} 15| 16, 52| 53], 67]. In the context of explicit birational
geometry it allows one to explicitly write down varieties, morphisms and rational maps
that arise in the Minimal Model Program [21, 22]. It has also found applications in
Algebraic Combinatorics [9, 10, 11, 12].

Unprojection can be used many times over in an inductive way in order to produce
Gorenstein rings of arbitrary codimension, whose properties are, nevertheless, con-
trolled by just a few equations as new unprojection variables are adjoined. Neves and
Papadakis [53] developed such a theory which is called parallel Kustin-Miller unpro-
jection. More presicely, they discovered sufficient conditions on a positively graded
Gorenstein ring R and a finite set of codimension 1 ideals which ensure the series
of unprojections. Furthermore, they gave an explicit description of the end product
ring which corresponds to the unprojection of the ideals. We recall the results in
Subsection B.1.1l

We develop two new formats of parallel Kustin-Miller unprojection, which we call
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Tom & Jerry triples and 4-intersection respectively.

The Tom & Jerry triples unprojection format, which is discussed in Chapter [4] uses
Tom & Jerry unprojections in order to set up the unprojection data. In more detail,
we set conditions on the entries of a 5 x 5 skewsymmetric matrix M such that M can
be considered simultaneously as Tom or Jerry matrix in three codimension 4 complete
intersection ideals Ji, Jo, J3. Then, the ideal of Pfaffians of M is contained in the
ideals Ji, Jo, J3. Using parallel Kustin-Miller unprojection we construct a Gorenstein
ring of codimension 6.

The 4-intersection format, which is discussed in Chapter [5 defines a codimension
2 complete intersection ideal I such that [ is contained in four codimension 3 ideals
Ji, ..., Js. Using parallel Kustin-Miller unprojection, this format also leads to the
construction of a codimension 6 Gorenstein ring.

Brown’s online Graded Ring Database [4, 13| contains a large number of K3 sur-
faces, Fano 3-folds and Calabi-Yau 3-folds of high codimension which, conjecturally,
exist and are, again conjecturally, related to varieties of small codimension. Using
the Tom & Jerry triples and 4-intersection unprojection formats we establish, in Sec-
tions [£.3 and [5.2] the existence of three new families of Fano 3-folds which appear in
the Graded Ring Database.

1.2 McMullen’s g-conjecture

In 1971 McMullen conjectured a complete characterization of the f-vectors of the class
of simplicial polytopes. Around 1979, the sufficiency of the conditions were proven
by an explicit constuction due to joint work of Billera and Lee [§], while Stanley [61]
proved their necessity using tools from Algebraic Geometry.

Given two integers a,7 > 0 there exists the following unique expansion

a; ;-1 Q;
a= (") + () e
1 1—1 7
with a; > a;_1 > --- > a; > j > 1, see [17, Section 4.2|. We define
a<i>: a,—+1 i ai_1+1 NI CL]—I—l
i+1 i j+1
and 0<% = 0 for all i.

Definition 1.2.1 Assume that (go,...,gs) is a sequence of nonnegative integers. We
call (go, ..., gs) a Macaulay vector if go = 1 and 0 < g;41 < g7, for all ¢ > 1.
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Macaulay discovered the Macaulay vectors in his study of the growth of Hilbert
functions of graded rings [46], see also [17, Section 4.2]. We refer the reader to Sub-
section for the definitions of the f-vector, h-vector and g-vector of a simplicial
complex, and also for the definition of the geometric realization of a simplicial com-
plex. By definition, a simplicial sphere is a simplicial complex such that its geometric
realization is homeomorphic to the unit sphere S™ for some n > 1.

The combination of the following two famous theorems established McMullen’s
g-conjecture for the class of simplicial polytopes.

Theorem 1.2.2 (Billera and Lee [§]) Assume f = (fo,..., fn) is a finite sequence of
integers. Denote by h and g the corresponding sequences of integers obtained from f
as in Subsection . Assume that h; = hyi1—; for all i and that (1,91, ..., gin+1)/2])
1s a Macaulay vector. Then, there exists a simplicial polytope of dimension n+ 1 with
f-vector of its boundary compler equal to f.

Theorem 1.2.3 (Stanley [61]) Assume A is the boundary of a simplicial polytope of
dimension n + 1. Then, the g-vector of A is a Macaulay vector.

The following recent result of Adiprasito was known for more than 35 years as the
g-conjecture for simplicial spheres [66].

Theorem 1.2.4 (Adiprasito [1, [2]) Assume A is a simplicial sphere. Then, the
g-vector of A is a Macaulay vector.

Our approach for the second proof of the g-conjecture for simplicial spheres is
based on the well-known result that to prove the g-conjecture for a simplicial sphere
D it is enough to find a field & such that the Stanley-Reisner ring (also known as face
ring) k[D] has the Weak Lefschetz Property [23] 46| [61].

Instead of working directly with the Weak Lefschetz Property, we exploit some
algebraic properties of the generic Artinian reduction of the Stanley-Reisner ring of
a simplicial sphere. More precisely, we introduce in Definition the notion of a
simplicial sphere D being generically anisotropic over a field k. This means that for
a certain purely transcendental field extension k of k1, a certain Artinian reduction A
of the Stanley-Reisner ring k[D] has the following property: All nonzero homogeneous
elements u € A of degree less or equal to (dim D + 1)/2 have nonzero square.

We investigate the property of generic anisotropy of simplicial spheres. In particu-
lar, we prove that a 1-dimensional simplicial sphere is generically anisotropic over any
(finite or infinite) field, see Theorem [6.9.1] Moreover, in Theorem[6.2.3 we show, using
suitable differential operators, that over any (finite or infinite) field of characteristic 2,
every simplicial sphere is generically anisotropic. We expect that the last statement
is also true over any field of arbitrary characteristic but, so far, we have been unable
to prove it. A main obstacle is that even though the differential operators we use
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can be defined over any field, we need certain properties of them that hold only in
characteristic 2.

Using some ideas and results of Swartz [65], we prove in Theorem that the
generic anisotropy of the suspension S(D) of a simplicial sphere D over a field k;
implies the Weak Lefschetz Property of the Stanley-Reisner ring of D over a certain
field extension k of ky. Combining that with the generic anisotropy of all simplicial
spheres over any field of characteristic 2 we obtain, in Theorem [6.8.2] a second proof
of the g-conjecture for simplicial spheres.

1.3 Structure of thesis

The present thesis is organised as follows.

Chapter 2] contains background material. In Section [2.I] we recall a number of basic
results and definitions of Commutative Algebra related to graded rings, graded free
resolutions, Hilbert series and the Lefschetz properties. We emphasize two important
classes of rings, namely Cohen-Macaulay and Gorenstein rings. In Subsection [2.1.5]
we recall the structure theorems for Gorenstein ideals of codimension < 3 while in
Subsection we briefly discuss the Lefschetz Properties of a graded algebra. In
Section we recall some notions of Algebraic Geometry. In more detail, in Subsec-
tion we discuss the Proj construction of a variety starting from a graded ring,
while Subsection is about Fano 3-folds. In Section we recall some basic no-
tions of Combinatorial Algebra related to simplicial complexes and their associated
Stanley-Reisner rings.

Chapter [3| contains some existing results and definitions related to Kustin-Miller
unprojection and parallel Kustin-Miller unprojection. We recall the conditions defin-
ing the Kustin-Miller unprojection of a pair J C R and the definition of the unpro-
jection ring of the pair due to Reid [59, [57]. In Subsection we recall the parallel
unprojection theory due to Neves and Papadakis [53]. In Subsection , we recall
the Tom and Jerry unprojection families. Subsection [3.1.3] contains the calculation of
the unprojection ring for the Tom family due to Papadakis [55]. We close this chap-
ter with the explicit description of the unprojection ring of a certain codimension 2
complete intersection ideal contained in a certain codimension 3 complete intersection
ideal.

In Chapter 4] we introduce the new Tom and Jerry triples format of unprojection.
Section describes a number of alternative ways which guarantee that a codimen-
sion 3 ideal defined by the Pfaffians of a 5 x 5 skewsymmetric matrix is contained
in three codimension 4 complete intersection ideals Ji, Jo, J3. We study in detail one
of the cases in Subsection [4.2.1] Our main result is Theorem which establishes,
using the theory of parallel unprojection, the construction of a codimension 6 Goren-
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stein ring. We discuss a similar result for the remaining cases in Subsection [.2.2]
Using this new format of unprojection we prove the existence of two families of Fano
3-folds of codimension 6 embedded in weighted projective space which correspond to
the entries with ID: 14885 and ID: 12979 in Brown’s Graded Ring Database [4] [13].

In Chapter |5 we introduce a second new format of parallel unprojection which we
call the 4-intersection format. In Section we define this notion, which consists of
a codimension 2 complete intersection ideal I contained in four complete intersection
codimension 3 ideals Jy, ..., Jy. In Subsection we introduce a specific example
of 4-intersection format, and we construct, using parallel unprojection, a codimension
6 Gorenstein ring. We use the format to prove in Section the existence of a
family of Fano 3-folds of codimension 6 embedded in weighted projective space which
corresponds to the entry ID: 29376 in Brown’s Graded Ring Database.

In Chapter [6] which is joint work with Stavros Argyrios Papadakis, we introduce
the notion of a simplicial sphere D being generically anisotropic over a field kq, see
Definition We show in Theorem [6.8.1] that if the suspension S(D) of D is gener-
ically anisotropic over ky, then the Stanley-Reisner ring k[D] has the Weak Lefschetz
Property, where k is a certain purely transcendental field extension of k;. We establish
two results related to generic anisotropy. In Theorem we prove that a simplicial
sphere of dimension 1 is generically anisotropic over any (finite or infinite) field k.
In Theorem we prove that over any (finite or infinite) field of characteristic 2,
every simplicial sphere is generically anisotropic. The key results for these theorems
are Proposition which works in all characteristics but only for simplicial spheres
of dimension 1, and Theorem which is valid in any dimension but only in char-
acteristic 2. Finally, combining Theorem with Theorem we get a second
proof of McMullen’s g-conjecture for simplicial spheres in Theorem [6.8.2]



Chapter 2

Preliminary notions

In this chapter, we recall some basic notions of Commutative Algebra, Algebraic
Geometry and Combinatorial Algebra that we use throughout this thesis.

2.1 A review of some basic notions of Commutative
Algebra

Throughout this thesis, all rings are assumed to be commutative with unit. We denote
by
N={0,1,2,...}

the set of natural numbers. For more details related to the notions that follow we
refer to [17, 27, 63].

2.1.1 Graded rings and modules

In this subsection, we study rings, modules and ideals which are endowed with a
decomposition of their elements into homogeneous parts of nonnegative degree.

Definition 2.1.1 A ring R is called graded if there exists a family of subgroups
{Ra}a>o of R such that

1. R=&p, R4 as abelian group and
2. RyR. C Ry, for all d,e > 0.

We call R; the i-th homogeneous component of R. An element x € R; is called a
homogeneous element of R of degree 1.
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An element f of a graded ring R can be written uniquely as a sum of homogeneous
elements f; € {R;}i>0. The elements f; are called the homogeneous parts of f. The
simplest example of a graded ring is the polynomial ring in n variables as indicated
in the following example.

Example 2.1.2 Denote by R = S[zy,...,x,] the polynomial ring in n variables over
a ring S. For m = (my,...,my) € N we set 2™ = z{"' ... z'. For every choice of
natural numbers dy, ..., d, there exists a unique grading on R such that degx; = d;
for all 7 and degs =0 for all s € S. We have

Rd:{z Smxm‘SmES and d1m1+...+dnmn:d}.

meNT

The choice of degx; = 1 for all ¢ is called the standard grading on R.

Definition 2.1.3 Anideal [ of a graded ring R is called homogeneous if it is generated
by homogeneous elements of R.

Example 2.1.4 Let R = k[x1, x5 be the polynomial ring in 2 variables over a field k.
We set f = z? + 5 and consider the ideal T = (f) of R. Under the standard grading
on R the ideal I is not homogeneous because f is not a homogeneous element of R.
However, if we endow the ring R with the grading degxz; = 3, degxs = 2, then fis a
homogeneous element of R of degree 6 and the ideal I is homogeneous.

Definition 2.1.5 Assume £ is a field. A graded k-algebra A = @,y A; is a graded
ring that at the same time is a vector space over k and each component A; is a k-vector
subspace. A graded k-algebra A = @, A; is called positively graded if Ay = k.

In the following, whenever we talk of a homogeneous ideal I of a polynomial
ring S = k[xy,...,x,] over a field k we will always assume that each variable z; is
homogeneous of positive degree. This will imply that S is a positively graded k-algebra
and, when I # S, the same will be true for the quotient ring S/I.

An important example of a positively graded algebra which comes from Algebraic
Geometry is the homogeneous coordinate ring of a projective variety.

Example 2.1.6 Assume k is a field. Let S = k[zo,...,x,] be the standard graded
polynomial ring in n + 1 variables. The homogeneous coordinate ring A(X) of a
projective variety X C P" is

A(X) = 5/1(X),

where I(X) is the ideal of S generated by the set

{f €S| f homogeneous and f(P) =0 for all P € X}.
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The ring A(X), as a quotient of a positively graded k-algebra with a homogeneous
ideal, is also a positively graded k-algebra.

Definition 2.1.7 Let R be a graded ring. Denote by Ry = R; @ Ry @ ... the ideal
consisting of all elements of degree greater than zero. The homogeneous ideal R, is
called the irrelevant ideal.

The terminology for the irrelevant ideal arises from the connection with projective
geometry. Working in P, the irrelevant ideal in the standard graded polynomial
ring in n + 1 variables k[xo, ..., z,| contains all homogeneous polynomials of positive
degree. These have no common zero in projective space. So, the common zero locus
of the irrelevant ideal is the empty set.

Definition 2.1.8 Let R and S be graded rings. A ring homomorphism f: R — S is
called graded or homogeneous if f(Ry) C Sy, for all d.

Definition 2.1.9 A graded module over a graded ring R is an R-module M with a

decomposition
M= M
i€Z

as abelian groups, such that Ry;M; C Mgy, for all d € Z>, i € Z.

If R is a graded ring then R is a graded module over itself. We can construct many
other examples of graded modules considering graded submodules, direct sums and
quotients of graded modules by graded submodules. Given a graded R-module M, we
can form a new graded R-module by twisting the grading on M as follows.

Definition 2.1.10 Let n be an integer. Given a graded R-module M we define the
twist M(n) to be equal to M as an (ungraded) R-module with grading defined by

M(n)r = My
for all k € Z.

Definition 2.1.11 Let R be a graded ring and M, N be graded R-modules. A graded
R-module homomorphism of degree d, f: M — N is an R-module homomorphism
with the property f(M;) C Nyq for all i € Z. Two graded R-modules M, N are called
1somorphic if there exists a bijective graded R-module homomorphism of degree 0
between them.

Definition 2.1.12 Let R be a graded ring. A finitely generated R-module M is
called graded free if there exist integers ki,..., ks such that the graded modules M
and @, R(k;) are isomorphic.
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2.1.2 Graded complexes and graded free resolutions

In the present subsection we assume that k is a field, R = k[zy, ..., z,] is a polynomial
ring over k and we have a grading on R such that each variable z; is homogeneous of
positive degree.

Definition 2.1.13 A sequence of R-modules and homomorphisms between them

diqo2 dit1 d;
F:...-}F‘i+2 \Fi+1 \E—7> i—1 7 ...

such that d; o d;; .y = 0 for all ©+ € Z is called a chain complexr or just complex over
R. The set of maps d = {d; }icz is called the differential of F. If the modules F; are
graded and each d; is a graded homomorphism then the complex F is called graded.

Definition 2.1.14 Let F be a complex. The complex F is exact at the position 1 if
Ker(d;) = Im(d;4+1). A complex which is exact at every position i is called ezact.

In 1973, a criterion for the exactness of a finite complex of finitely generated free
modules over a Noetherian ring was given by Buchsbaum and Eisenbud. For details
we refer to [18].

Definition 2.1.15 Let F be a complex. The homology of F is defined by

The elements in Ker(d;) are called cycles and the elements in Im(d;y;) are called
boundaries.

Definition 2.1.16 Let (F,d) and (G, h) be two complexes of R-modules. A homo-
morphism of complezes ¢: F — G is a set of R-modules homomorphisms ¢;: F; — Gj
such that ¢;_1od; = h; o ¢; for all : € Z. If F and G are graded, ¢ is called homo-
morphism of graded complezes if ¢;: F; — G; is a homomorphism of fixed degree for
all i € Z.

Let F be a complex such that each F; be a finitely generated graded free R-module.
Then,
F; = Djez R(_j)ci’ja

where ¢; ; are nonnegative integers and all except finitely many of them are equal to
zero. Hence, a complex of graded free finitely generated modules is of the form

e o di oot
F: . =& R(=))" = @jez R(=j)" 7 = ...

The numbers ¢; ; are called the graded Betti numbers of the complex F.
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Definition 2.1.17 A free resolution of a finitely generated R-module M is a complex
of finitely generated free R-modules

d; di— d d
F:..>F5%F .. o3RS F,

which is exact and such that Cokerd; is isomorphic to M. Sometimes, we use the
following notation for a free resolution

d; di— d d d
F:.. oFS%F = o3RS FSM-0.

Every module has a free resolution which can be constructed as follows. As a
first step, we take a set of generators for M. A free module is mapped onto M by
sending the free generators of the free module to the given generators of M. Subse-
quently, we consider the kernel of this map which is denoted by M;. Now, we repeat
the same procedure starting with A; and so on. For more details, we refer to [58]
Construction 4.2]

Definition 2.1.18 Assume M is a finitely generated graded R-module and F is a
resolution of M. We say that F is a graded free resolution of M if F is graded, each F;
is finitely generated and graded free and the isomorphism M ~ Coker d; is of degree 0.
The length of F is defined as sup{i € N: F; # 0}. We say that F is a finite resolution
if it has finite length.

Given a graded free resolution F of M, we fix a homogeneous basis of each graded
free module F;. Then, for each ¢ the differential d; is given by a matrix A; with entries
homogeneous elements of R. These matrices are called differential matrices. We note
that the differential matrices depend on the given basis.

In what follows, we define the minimal graded free resolution F of a graded finitely
generated R-module M. The minimal graded free resolution of a module is closely
related with its structure. More precisely, it has the following form

a minimal system

a minimal system of homogeneous a minimal
of homogeneous relations on the system of
relations on the maintmal generators homogeneous
relations in dy of M generators of M
F F > F() M —0

It is remarkable that the structure of F reflects many properties of M.

Definition 2.1.19 Let F be a graded free resolution of a graded finitely generated
R-module M. We say that F is minimal if for all «+ > 0 it holds that

div1(Fip1) C (z1, ..., 20) F.
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In other words, F is minimal if there are no invertible elements (non-zero constants)
in the entries of the differential matrices.

Due to the following theorem it is possible to say "the" minimal graded free reso-
lution of M.

Theorem 2.1.20 Let M be a finitely generated graded R-module. Then there exists
a minimal graded free resolution of M which is unique up to isomorphism.

Proof For the proof of the theorem see [58, Theorem 7.5]. O

Definition 2.1.21 Let F be a minimal graded free resolution of a finitely generated
graded R-module M. The i-th Betti number of M over R, denoted by bE(M), is
defined as

bE(M) = rank (F}).

Due to Theorem [2.1.20] the Betti numbers of M are independent of the choice of
the minimal graded free resolution of M. Betti numbers, as numerical invariants of the
resolution can be used to obtain some useful information for the resolution especially
when it is complicated to have a description of the differentials.

Definition 2.1.22 Let F be a minimal graded free resolution of a finitely generated
graded R-module M. The graded Betti numbers of M are defined as

R N .
b, (M) = number of summands in F; of the form R(—p).

We use the notation b; instead of bf(M) and b;, instead of b (M) when it is
obvious which is the module and the ring that we use.
The Betti numbers are contained in a matrix of the following form

bo b b
0 bO,U bl,l e bi,i
1 bO,l b1,2 e bi,i+1
p bO,p bl,l—i—p e bi,i+p

The entry in the i-th row and p-th column is b; ;1,. The i-th step of the minimal graded
free resolution is contained in the i-th column. At the top there is an additional row
which contains the i-th Betti number b;,. The column to the left which is seperated by
a vertical line from the others columns contains the labels of the rows. A zero Betti
number is denoted by - or —. This matrix is called a Bett: table.

Proposition 2.1.23 Denote by ¢ the minimal degree of an element in a minimal
system of homogeneous generators of M. Then, bfp(M) =0forp<i+ec.
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Proof For a proof see [58, Proposition 12.3.]. O

Definition 2.1.24 Let F' be a minimal graded free resolution of a finitely generated
graded R-module M. The projective dimension of M is defined as

proj.dimg(M) = max{i | b(M) # 0}.

It is immediate that proj.dimg (M) is the length of the minimal graded free resolution
of M.

Theorem 2.1.25 (Hilbert’s syzyqy theorem) Every finitely generated graded R-module
M has a finite graded free resolution of length at most n. More generally, every finitely
generated R-module M has a finite free resolution of length at most n.

Proof For the proof, we refer to [I7, Corollary 2.2.14]. O

2.1.3 Hilbert functions

In the present subsection we assume that k is a field, R = k[zy, ..., z,] is a polynomial
ring over k and we have a grading on R such that each variable z; is homogeneous of
positive degree.

Assume I C R is a homogeneous ideal. The Hilbert function of R/I is an important
numerical invariant of I which gives the sizes of the graded components I; of degree j
of I. From the point of view of Algebraic Geometry, it encodes important information,
such as the dimension and the degree of the associated projective variety V (I).

Remark 2.1.26 We note that if M is a finitely generated graded R-module then
dimy (M;) < oo for all i € Z and there exists N € Z such that M; =0 for all i < N.

Proposition 2.1.27 Assume R is standard graded and I is an ideal of R generated
by monomials. Then, for all j >0, (R/I); is a vector space with basis the set

{monomial m € R:m ¢ I, deg(m) = j}
of monomials of degree 7 which are not elements of I.

Proof For a proof of the theorem we refer to |58, Proposition 1.8]. g

From Proposition [2.1.27] it follows that if [ is an ideal generated by monomials, then
dimg(R/I); is equal to the number of the degree j monomials of R which are not
elements of I.
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Definition 2.1.28 Let M be a finitely generated graded R-module. The numerical
function Hy; : Z — N defined by

is called the Hilbert function of M. The formal power series
Hilby (t) = dimy(M;)t* € Z[[{]
i€Z
is called the Hilbert series of M.

According to the following theorem, in the standard graded case one can also define
the Hilbert polynomial of a finitely generated graded module.

Theorem 2.1.29 (Hilbert) Assume that R is standard graded and M is a finitely
generated graded R-module. Then there exists a unique polynomial Py (t) € Q[t] of
degree < n — 1 and a positive integer N such that Hp (i) = Py (i) for all i > N.

Proof For a proof of the theorem we refer to [27, Theorem 1.11]. O

We call the polynomial Py (t) in the above theorem the Hilbert polynomial of M.
The following proposition shows that the Hilbert series is additive on short exact
sequences of graded R-modules.

Proposition 2.1.30 Let
00— M — My — M;—0

be a short exact sequence of finitely generated graded R-modules and homomorphisms
of degree 0. Then,
Hilbyy, (t) = Hilbyy, (t) + Hilby, (¢).

Proof For the proof see [58, Proposition 16.1]. O

For the way to compute the Hilbert series of a finitely generated graded R-module
from a graded free resolution of M we refer the reader to [58, Section 16].
The following theorem is related to the rationality of the Hilbert series.

Theorem 2.1.31 Assume that the variable x; has degree a; and I is a homogeneous
ideal of R. Then Hilbg,i(t) is a rational function of t, in the sense that there exists a
polynomial p(t) € Z[t] such that

p(t)

Hilbp(t) = T
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Proof It follows from [17, Proposition 4.4.1]. O

Example 2.1.32 If R is standard graded then

Hilbg(t) =

(1=t

2.1.4 Cohen-Macaulay and Gorenstein rings

In this subsection we discuss the Cohen-Macaulay and Gorenstein rings. These are
two classes of rings which play important role in Commutative Algebra, Algebraic Ge-
ometry and Algebraic Combinatorics. Cohen-Macaulay rings include the rings which
are associated to some interesting classes of singular varieties and schemes. The anti-
canonical ring of a Fano n-fold and the canonical ring of a regular surface of general
type are examples of Gorenstein rings. Our main reference is [17].

Definition 2.1.33 Assume R is a ring and N # 0 is an R-module. An element r € R
is called N-regular if rn # 0 for all nonzero n € N.

Definition 2.1.34 ([I7, Definition 1.1.1]) Let R be a ring and M be an R-module.
A sequence x4, ...,x, of elements of R is called reqular sequence for M or M-reqular
sequence if it satisfies the following conditions

1. M/(xq,...,2,)M #0.
2. x1 is M-regular.

3. For all 2 <i <n, the element z; is M/(x1,...,x;_1)M-regular.

Remark 2.1.35 Assume that R is a local ring with maximal ideal m and M # 0 is
a finitely generated R-module. If the ideal (xy,...,x,) of R is contained in m then
by Nakayama’s Lemma [27, Corollary 4.8| the first condition of Definition is
automatically satisfied.

Example 2.1.36 The sequence zq,...,x, of the variables in the polynomial ring
R = k[zy,...,z,] over a field k is a regular sequence on R.

Definition 2.1.37 Let R be a Noetherian ring and M be an R-module. Assume that
I is an ideal of R. An M-regular sequence x1, ..., x, which is contained in [ is called
maximal if there is no element x,,1 € [ such that z{,...,z,, x,1 is an M-regular
sequence in [.
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Theorem 2.1.38 (Rees) Let M be a finitely generated R-module over a Noetherian
ring R and I be an ideal such that IM # M. Then all maximal M-regular sequences
contained wn I have the same length n given by

n =min{i > 0: Exthy(R/I, M) # 0}.
Proof For the proof see [17, Theorem 1.2.5]. O

Definition 2.1.39 (|17, p. 65]) A Noetherian local ring R is called regular if the
dimension of R is equal to the minimal number of generators of its unique maximal
ideal.

Definition 2.1.40 ([I7, p. 68]) A Noetherian ring R is called regular if for every
maximal ideal m of R the localization R, is regular.

Example 2.1.41 The polynomial ring R = k[zy,...,x,] over a field k is a regular
ring.

Definition 2.1.42 (|17, p. 12|) Let R be a Noetherian ring and I C R a proper ideal.
We call grade of I the common length of all maximal R-sequences contained in [.

Definition 2.1.43 (|17, p. 412|) Let R be a Noetherian ring and I C R a proper
ideal. We call height of I in R and denote by height I the minimum of dim R,, where
p takes value in the set of prime ideals of R containing I.

Definition 2.1.44 (|17, p. 413]) Let R be a Noetherian ring and I C R an ideal. We
define the codimension of I in R, denoted by codim I, as follows:

codim/ = dim R — dim R/1.

The basic inequality between grade and height of an ideal is described in the
following proposition.

Proposition 2.1.45 Assume that R be a Noetherian ring and I C R a proper ideal.
Then,

grade I < height I.
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Proof For the proof see [17, Theorem 1.2.14]. O

Definition 2.1.46 (|17, Definition 1.2.7]) Assume R be a Noetherian local ring with
maximal ideal m and N is a finitely generated R-module. We define as depth of N
the common length of all maximal N-sequences contained in m .

Definition 2.1.47 (|17, Definition 2.1.1]) A Noetherian local ring R is called Cohen-
Macaulay if the depth of R as an R-module is equal to the dimension of R. More
generally, we call a Noetherian ring R Cohen-Macaulay if for every maximal ideal m
the localization R, is Cohen-Macaulay.

Example 2.1.48 The polynomial ring R = k[xy,...,x,]| over a field k is a Cohen-
Macaulay ring.

Theorem 2.1.49 Let R be a Cohen-Macaulay ring and I an ideal of R with I # R.
Then,
grade I = height I.

Moreover, if R is local then
height I = codim [.

Proof For the proof see [I7, Corollary 2.1.4]. O

Remark 2.1.50 Theorem [2.1.49 also holds for the case of a graded ring R and a
homogeneous ideal I.

Remark 2.1.51 Assume k is a field and R is a finitely generated k-algebra which
is an integral domain. Then, by [27, p. 226], for all proper ideals I of R we have
height I = codim I. In particular, this holds when R is a polynomial ring over a field
in finitely many variables.

Theorem 2.1.52 (Krull’s Principal Ideal Theorem) Assume that R is a local Noethe-
rian ring and I 1s an ideal of R which is generated by n elements. Then, codim [ < n.

Proof For the proof see [I7, p. 414]. O

We now introduce the class of Gorenstein rings. There are many equivalent defi-
nitions for Gorenstein rings, we give one of them. For a more extensive treatment we
refer to [6, 17, 27].
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Definition 2.1.53 (|17, Definition 3.1.18]) A Noetherian local ring R is called Goren-
stein if it has finite injective dimension as an R-module. More generally, a Noetherian
ring R is called Gorenstein if for every maximal ideal m of R the localization R, is
Gorenstein.

Definition 2.1.54 An ideal I of a Gorenstein ring R is called Gorenstein if the
quotient ring R/I is Gorenstein.

Example 2.1.55 The polynomial ring R = k[zy,...,x,] over a field k is Gorenstein.

Theorem 2.1.56 Let R be a polynomial ring of dimension n and I a homogeneous
ideal of R. If the ring R/I is Gorenstein ring of dimension q then

bi'(R/T) = by s(R/T),

n—q—1

for all0 <i<n—q.

Proof For the proof see 568, Theorem 25.6]. O

The following theorem gives a criterion for a ring to be Gorenstein.

Theorem 2.1.57 Let R = k[x1,...,x,] be a polynomial ring over a field k and I a
homogeneous ideal of R. We set ¢ = dim R/I. The ring R/I is Gorenstein if and only
if

proj.dimg(R/I) =n—q and by (R/I)=1.

Proof For the proof see [58, Theorem 25.7]. O

In the present work, we will call an ideal I of a polynomial ring k[z1, ..., z,] over
a field k a complete intersection ideal if I can be generated by codim I elements. We
refer to [I7, Section 2.3] for more details about this notion.

We conclude with a theorem which shows how the classes of regular rings, complete
intersections, Cohen-Macaulay and Gorenstein rings are related.

Theorem 2.1.58 Let R be a polynomial ring and I a homogeneous ideal of R. We
set S = R/I. Then we have the following implications

S reqular = S complete intersection = S Gorenstein = S Cohen-Macaulay.

Proof It follows from [I7, Proposition 3.1.20]. O
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2.1.5 Structure theorems for Gorenstein ideals of codimension
<3

If R=Ek[xy,...,2z,]/1 is a Gorenstein graded ring and the codimension of the homo-
geneous ideal [ is less or equal to 3 then there are good structure theorems. Serre
proved that if codim /I = 1 or 2 then R is a complete intersection while Buchsbaum
and Eisenbud [I9] showed that if codim/ = 3 then I is generated by the 2n x 2n
Pfaffians of a skewsymmetric (2n + 1) X (2n + 1) matrix. In this subsection we recall
these structure theorems.

Definition 2.1.59 Assume that M = [m;;], 1 <i,7 <n, is an n x n skewsymmetric
matrix ( i.e., mj; = —m,;; and m;; = 0 ) with entries in a commutative ring S.

1. If n is even, then there exists a unique polynomial Pf(M) in m;; with the fol-
lowing properties

(a) (PE(M))? = det M

oy ei(_p )=t

where I,, 5 is the n/2 x n/2 identity matrix. The polynomial Pf()/) is called the
Pfaffian of the matrix M.

2. If n is odd by Pfaffians of M we mean the set {Pf(My), Pf(Ms),..., Pf(M,)},
where M; denotes the skewsymmetric submatrix of M obtained by deleting the
t-th row and ¢-th column of M.

For more details about Pfaffians we refer to [44, Chapter XV, Section 9].

Example 2.1.60 1. Forn=2:

0 mio .
Pf( (_m12 0 )) = M.

2. Forn=5:
0 M1z My3 Mg Mis
—M12 0 ma3 Mog  Mas
Pf( —1M13 —Ma3 0 may msas ) = {Pf(M1>, Pf(MQ), . ,Pf(M5>}
—Mig —Mog —M34 0 Mys5

—Mmis —Mos —M3s —Mys 0



20 CHAPTER 2. PRELIMINARY NOTIONS

where
Pf(My) = mozmys — magmgs + maosmay,
Pt(Ms) = myizmys — mismas + mismay,
Pf(M3) = miamas — migmas + mysmay,
Pf(My) = myamss — myzmas + mysmas,
Pf(Ms) = migmas — mizmag + migmas.

Theorem 2.1.61 Assume k is a field and that the polynomial ring S = klxy, ..., z,]
has a grading with degx; > 0 for all i. Assume I C S is a homogeneous ideal. We set
R=25/I.

1. (Serre) If codim I =1 then R is Gorenstein if and only if the ideal I is generated
by a single element of S. If codim I = 2 then R is Gorenstein if and only if the
ideal I is generated by two elements of S.

2. (Buchsbaum-Fisenbud [19]) If codim [ = 3 then R is Gorenstein if and only if
I is generated by the 2n x 2n Pfaffians of a skewsymmetric (2n + 1) x (2n + 1)
matric with entries in S.

Proof The first part of the theorem follows from [27, Corollary 21.20]. The second
part of the theorem follows from [I7, Theorem 3.4.1]. O

2.1.6 Lefschetz properties

In this subsection we recall the notions of Weak and Strong Lefschetz Property of a
graded k-algebra. Good general references are [29] 49].

Assume £ is a field. In this subsection all graded k-algebras will be Noetherian
and of the form G = @;>¢G; with Gy = k and dimy, G; < oo for all 7. Recall that G is
called standard graded if it is generated, as a k-algebra, by G;. We denote by dim G
the Krull dimension of G.

Definition 2.1.62 Assume F'is an Artinian graded k-algebra. There exists a largest
integer d such that the d-th graded part Fj is nonzero, and we call d the socle degree
of F. An element w € F} is called a Weak Lefschetz element if, for all i > 0, the
multiplication by w map F; — Fj;; is of maximal rank, which means that it is injective
or surjective (or both). We say that F' has the Weak Lefschetz Property if there exists
a Weak Lefschetz element w € Fj.
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Definition 2.1.63 Assume F' is an Artinian Gorenstein graded k-algebra of socle
degree d. An element w € F} is called a Strong Lefschetz element if, for all i with
0 < 2i < d, the multiplication by w9 % map F; — Fy_; is bijective. We say that F
has the Strong Lefschetz Property if there exists a Strong Lefschetz element w € Fj.

Definition 2.1.64 We say that a standard graded k-algebra G with positive Krull
dimension has the Weak Lefschetz Property if it is Cohen-Macaulay, the field k is
infinite and for Zariski general homogeneous degree 1 elements fi,..., faima of G the
Artinian k-algebra G/(f1,..., famc) has the Weak Lefschetz Property.

Definition 2.1.65 We say that a standard graded k-algebra G with positive Krull
dimension has the Strong Lefschetz Property if it is Gorenstein, the field k is infinite
and for Zariski general homogeneous degree 1 elements f1, ..., foim ¢ of G the Artinian
k-algebra G/(f1,..., famg) has the Strong Lefschetz Property.

Remark 2.1.66 We refer to [29, Theorem 2.79] for the following well-known fact.
Assume F' = ®¢_F; with F; # 0 is a standard graded Gorenstein Artinian k-algebra.
Then F, is 1-dimensional, and, for all ¢+ with 0 < ¢ < d, the multiplication map
F;xFy;_; — F; = kis a perfect pairing. As a consequence, given i, j with 0 <17 < j <d
and a nonzero element u € Fj, there exists w € Fj_; such that uw # 0. The reason
is that by the perfect pairing property there exists w; € F,;_; such that uw; # 0, and
since Fis standard graded, w; is a sum of products of elements of F;_; with elements
of Fd—j-

2.2 Some notions of Algebraic Geometry

In this section we recall some notions of Algebraic Geometry that we need. More
precisely, we discuss the Proj construction which assigns a projective scheme to a
graded ring, a construction that will allow us to pass from algebra to geometry in
Sections and Moreover, we discuss the notion of the Mori category and Fano
3-folds.

2.2.1 The Proj of a graded ring

We briefly recall the Proj construction, which given a graded ring R produces a pro-
jective scheme.

Definition 2.2.1 Let R be a graded ring and R, be the irrelevant ideal of R. We
define as Proj R the set of all homogeneous prime ideals of R which do not contain
the ideal R..
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Proj R can be viewed as topological space as follows. If I is a homogeneous ideal
of R, we define the subset

V(I)={PeProj R|IC P}

Due to [30, 1.2, Proposition 2.1], we can define a topology on Proj R by taking the
closed sets to be the subsets of the form V(7). This topology is called Zariski topology.

There is a natural construction of a sheaf of rings on Proj R which makes Proj R
a projective scheme. For details we refer to [30] I1.7].

Definition 2.2.2 Assume that k is a field and S = k[xg, ..., z,] is the polynomial
ring which has a grading with degx; = a; > 0 for all i. The weighted projective space
denoted by P(ay,...,a,) is defined as

P(ayp,...,a,) = Proj S.

For more details related to weighted projective space we refer to [7, 26, 33].

2.2.2 Fano 3-folds

In this subsection we recall some notions of Algebraic Geometry related to Fano 3-folds.
Good references are |4, [34] [47].
Assume X is an irreducible normal variety. A Weil divisor of X is a formal sum

D= kD

where the sum is over all irreducible codimension 1 subvarieties D; of X, the k; are
integers and the set {i : k; # 0} is finite. For the definition of Cartier divisors we
refer the reader to [30, Chapter II, Section 6]. In the following, we denote by Kx the
canonical divisor of X and by —Kx the anticanonical divisor of X.

Definition 2.2.3 An irreducible normal variety X has terminal singularities if it
satisfies the following conditions:

1. For some positive integer r, r Ky is a Cartier divisor.

2. If f: Y — X is a resolution of singularities of X and {E;} is the family of all
exceptional prime divisors of f then Ky = f*Kyx + > a;F; with all a; > 0.

For more details on terminal singularities we refer the reader to [47, Section 4.1].
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Definition 2.2.4 A normal variety X is called Q-factorial if every Weil divisor on X
has a positive integer multiple which is a Cartier divisor.

Definition 2.2.5 We say that a normal projective variety belongs to the Mori cate-
gory if it has at worst Q-factorial terminal singularities.

For an important property that characterizes the Mori category we refer the reader to
[47, Theorem 4.1.3].

For a divisor D = ), k;D;, we write D > 0 if k; > 0 for all 7. For the definition of
the divisor div(f) of a nonzero rational function we refer the reader to |30, Chapter II,
Section 6].

Definition 2.2.6 Let X be an irreducible normal projective variety over an alge-
braically closed field k. Assume D = ). k;D; is a Weil divisor on X. The Riemann-
Roch space of D is defined as

HY(X,D) :={f € k(X)\ {0} | div(f) +D >0} u{0}.

In other words, it is the finite dimensional vector space of rational functions f € k(X)
consisting of 0 together with all nonzero f € k(X) such that for all 4

1. If k; =0, then f can have a zero along D;, or no pole nor zero along D;.

2. If k; < 0, then f has a zero along D; with the multiplicity of the zero at least
—k;.

3. If k; > 0, then f can have a zero along D;, or no pole nor zero along D;, or a
pole along D; with the multiplicity of the pole in the set {1,2,..., k;}.

Example 2.2.7 Consider X = P! the projective line and P =1[0: 1], Q = [1 : 1] two
points of X. Let D = 2P — Q. Then, f € H°(X, D) if and only if either f =0 or f
is nonzero and

1. f has a zero of multiplicity at least 1 at () and
2. f has no pole on X \ {P} and

3. f has a zero at P, or f has no pole nor zero at P, or f has a pole at P of
multiplicity 1 or 2.

Definition 2.2.8 The anticanonical ring of a normal variety X is the graded ring
defined by

R(X,—Kx) := EB”ZO HY(X, —nKyx).
The multiplication is given by the natural maps

HY(X,—nKx)®, H(X,-mKx) = H*(X,(—n —m)Kx).
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Definition 2.2.9 A Fano 3-fold is a normal projective variety X of dimension 3 which
belongs to the Mori category and the anticanonical divisor — Ky is ample.

The maximal integer f such that —Kx is divisible by some Weil divisor A, that is
—Kx = fA, is called the Fano index of X. The anticanonical ring R(X,—Kx) of a
Fano 3-fold X is Gorenstein, finitely generated and X = Proj R(X, —Kx).

Definition 2.2.10 Let X be a quasi-projective variety over C and z,y, z be coordi-
nates of C3. Suppose that the group Z, of r-th roots of unity acts on C? via:

z,y, 2) — (e%x, by, €2),
(z,,2) = ( y

where € is a fixed primitive r-th root of unity and a,b, ¢ are integers. A singularity
P € X is a quotient singularity of type %(a, b,c) if (X, P) is isomorphic to an ana-
Iytic neighborhood of (C3,0)/Z,. A basket of singularities is a collection of quotient
singularities of type {%(al, bi,c1), ~(ag, b, ca), ..., =(as, bs,cs)}.

) g ) rg

In the case of Fano 3-folds of index f, Suzuki ([64, Lemma 1.2]) proves that in
Definition we can assume that b = —a, ¢ = f and r is coprime to a,b,c.
Therefore, for a Fano 3-fold of index f, a basket of singularities is a collection of
singularities %(a, —a, f).

Definition 2.2.11 Let X be a closed subvariety of a weighted projective space with
homogeneous ideal I(X) C k[xo,...,z,|. The affine cone over X, denoted by Cyx, is
the zero set V(I(X)) C A", We define the vertez of Cx to be the point (0,0, ...,0).

Definition 2.2.12 Let X be a closed subvariety of a weighted projective space. X is
called quasismooth if its affine cone C'x is smooth outside its vertex.

2.3 A review of some basic notions of Combinatorics

In this section we introduce some notions from Combinatorial Commutative Algebra.
We discuss simplicial complexes to which we assign algebraic objects, the Stanley-
Reisner rings. We investigate the main properties of these objects and we see how
these are related to the algebraic notions introduced in Section Good general
references are |17, 311, 32, (501 63)].

2.3.1 Simplicial complexes

In this subsection we recall the notion of a simplicial complex.
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Definition 2.3.1 Let V = {vy,...,v,} be a finite set. A simplicial complex A on V
is a collection of subsets of V such that G € A and F' C G implies that F' € A and
such that {v;} € A for all v; € V. The elements of A are called faces. The dimension
of a face I, dim F' is the number #F — 1, where #F' denotes the cardinality of the set
F. A zero dimensional face of A is called verter. A one dimensional face of A is called
edge. The dimension dim A of the simplicial complex A is defined as the maximum
of the dimensions of the faces of A.

Definition 2.3.2 Let A be a simplicial complex with vertex set V = {vy,...,0,}. A
face of A is called a facet if it is a maximal face under inclusion. The set of facets is
denoted by F(A). A nonface of A is a subset F' of V' with the property F' ¢ A.

Remark 2.3.3 By convention, the empty set () is the unique face of dimension —1 in
any simplicial complex. A simplicial complex A is determined by the set F(A).

A simplicial complex in which all of its facets have the same dimension is called pure.

Definition 2.3.4 Let V, W be disjoint sets and I', A be simplicial complexes on V'
and W respectively. The join I' x A is defined as the simplicial complex with vertex
set VUW and faces FF'UG where F' € I' and G € A.

Definition 2.3.5 A simplez is a simplicial complex with a unique facet.

Definition 2.3.6 Let A be an arbitrary simplicial complex of dimension n > 0 on a
vertex set V. Denote by f; the number of i-dimensional faces of A. The (n + 1)-tuple

f(A> = (fO" . '7fn)
is called the f-vector of A.

We note that fy is the number of vertices of A. We set f_; = 1.
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Example 2.3.7 Consider the octahedron A with vertex set V = {1,...,6}.

2

The set of facets F(A) is described as
f(A) = {{]" 37 4}7 {17 47 5}7 {1’ 57 6}7 {17 37 6}’ {27 37 4}7 {27 47 5}’ {2) 57 6}7 {27 3’ 6}}

The f-vector f(A) is equal to
f(A) =(6,12,8).

Definition 2.3.8 Assume A is a simplicial complex of dimension n. We define the
h-vector h(A) = (ho, ..., hay1) of A by the equality

n+1 n+1

Z hi$n+17i _ Z fifl(x - 1)n+171l.
1=0 =0

Example 2.3.9 Consider the octahedron A (see Example [2.3.7)). The h-vector h(A)
is equal to
h(A) = (1,3,3,1).

Definition 2.3.10 Let A be a simplicial complex of dimension n. The g-vector
9(A) = (9o, - - - gint1)/2) of A is defined by

go=1, gi=h;—hi
for 1 <i<[(n+1)/2].

Definition 2.3.11 Let A be a simplicial complex with vertex set V- = {vy,..., v}
and F' a subset of V. The star of F is denoted by sta F' and described as

staF={GeA:FUG € A}.
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The link of F is denoted by linka F' and described as
linkan F={Ge€A:FUG €A, FNG = 0}.

Example 2.3.12 Consider the octahedron A (see Example [2.3.7) with vertex set
V ={1,...,6} and F' = {4,5}, G = {4} two subsets of V. Then, the set of facets of
linka F'is

{1} {23},

hence linka F' consists of two nonconnected points. Moreover, the set of facets of
linka G is

{{1,5},{1,3},{2,3},{2,5}},
hence linka G is the 4-gon with vertex set {2,5,1,3}. The set of facets of sta F is

{{17 4, 5}7 {27 4, 5}}a

hence sta F' consists of two solid triangles with common edge {4,5}. Finally, the set
of facets of sta G is

{{1,5,4},{1,3,4},{2,3,4},{2,5,4}},

hence sta G is the join of the 4-gon with vertex set {2,5,1,3} with the vertex 4.

Definition 2.3.13 Let V = {vy,...,v,} be a finite set. Denote by e; the i-th unit
vector of R™. For a subset F' of V', we define

|F'| = convex hull{e; |v; € F}.

The geometric realization of a simplicial complex A, denoted by |A| is defined as

A= U IFI

FeA

The set |A| is a subset of R". Hence, it becomes a topological space with the
subspace topology.

Definition 2.3.14 Let n > 1 be an integer. A simplicial sphere of dimension n is a
simplicial complex D of dimension n such that its geometric realization is homeomor-
phic to the unit sphere S™.
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2.3.2 Stanley-Reisner rings

Assume k is a field. In this subsection we recall the construction, due to Stanley, that
associates to a simplicial complex D the Stanley-Reisner ideal of it, which is an ideal
of the polynomial ring k[z,...,x,,] generated by squarefree monomials. Here m is
the number of vertices of D. Good references are [17, 31} B32] 50, 63].

Definition 2.3.15 Let R = k[xy,...,z,,]| be the polynomial ring over the field £ and

ai ,.a2

assume (ai,...,a,) € N™. The monomial z{'z5>... 2% of R is called squarefree if

a; € {0,1} for all 7. An ideal which is generated by monomials is called a monomial
tdeal. An ideal which is generated by squarefree monomials is called a squarefree
monomial ideal.

Definition 2.3.16 Let A be a simplicial complex with vertex set V = {vy,...,v,}
and k be a field. Denote by Ia the ideal generated by all monomials x;, z;, ... x;,
such that {v;,...,v,.} ¢ A. That is, Ia is the squarefree monomial ideal generated
by monomials corresponding to nonfaces of A. The ideal I is called the Stanley-
Reisner ideal (or face ideal) of A. The quotient ring

E[A] = klxy, ..., 20| /1A
is called the Stanley-Reisner ring (or face ring) of A over k.
Theorem 2.3.17 Assume k is a field. Associating to a simplicial complex its Stanley-

Reisner ideal over k induces a bijection between simplicial complexes with verter set
{1,...,m} and squarefree monomial ideals of the polynomial ring R = klz1, ..., xy].

Proof For the proof see [50, Theorem 1.7]. O

Theorem 2.3.18 Let A be a simplicial complex. It holds that

In= () Jr

FeA

where Jr is the ideal generated by all x; such that v; ¢ F. In particular,

dim k[A] = dim A + 1.

Proof For the proof see [17, Theorem 5.1.4]. O
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Example 2.3.19 Consider the octahedron A with vertex set V = {1,...,6} (see
Example [2.3.7)). The Stanley-Reisner ideal of A is

In = (2122, 325, T4T6)

and
k[A] = klxy, ..., x6]/IA.

Definition 2.3.20 A simplicial complex A is called Gorenstein over a field k if k[A]
is Gorenstein.

For the relation of this notion to the simplicial homology of the geometric realiza-
tion of A we refer to [I7, Section 5.6].

Theorem 2.3.21 Asume k is a field and D is a simplicial sphere. Then D is Goren-
stein over k.

Proof For the proof see [17, Theorem 5.6.2]. O






Chapter 3

Unprojection Theory

In this chapter, we recall some basic facts related to Kustin-Miller unprojection. For
more details see 54} 55 57, 59].

3.1 Kustin-Miller unprojection

Assume that R is a Gorenstein local ring and J C R is a codimension 1 ideal such that
the quotient ring R/J be Gorenstein. Then, Hompg(J, R) is generated as an R-module
by the inclusion map i: J — R and an extra homomorphism ¢: J — R, as it follows
from [57, Lemma 1.1].

Definition 3.1.1 We define the Kustin-Miller unprojection ring, Unpr(J, R), of the
pair J C R to be the graph of ¢, that is the quotient

RIT]

Unpr(J, R) = (TT‘ _ ¢(r) ir e J)7

where T is a new variable called the unprojection variable.

Theorem 3.1.2 ([57, Theorem 1.5]) The ring Unpr(J, R) is Gorenstein.

The simplest example of Kustin-Miller unprojection, which nevertheless has im-
portant consequences in birational geometry, is the example of a hypersurface which
contains a codimension 2 complete intersection.

Example 3.1.3 (Reid’s Az — By argument)
Assume A, B € k[z,y, z,w] such that Ax — By nonzero. We set

klx,y, z, w]

H= 14— By

31
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and
J = (x,y) CR.

We define ¢: J — R to be the unique R-module homomorphism such that ¢(z) = B
and ¢(y) = A. Then, Hompg(J, R) is generated as R-module by i and ¢.
Moreover,
R[T]
(Tx — B, Ty — A)

For more details we refer to [59, Section 2].

Unpr(J, R) =

For applications of the Kustin-Miller unprojection to graded rings and birational
geometry we refer to [57, 59).

3.1.1 Parallel Kustin-Miller unprojection

Sometimes, especially for applications, it is necessary to perform not only one but
several Kustin-Miller unprojections. Neves and Papadakis [53] developed such a theory
which they named parallel Kustin-Miller unprojection. In this subsection, we recall
their formulation.

Assume k is a field and £ is a nonempty finite indexing set. Assume that R is
a Gorenstein positively graded k-algebra and {.J,,«a € L} is a set of codimension 1
homogeneous ideals of R such that, for all « € L, the quotient ring R/J, is Gorenstein.

For each a € £ we fix a graded R-module homomorphisms ¢,: J, — R such
that Hompg(J,, R) is generated as an R-module by {i,, .}, where i,: J, — R is the
inclusion map. We make the assumption that for distinct a, g € L there exists a
homogeneous element r,3 € R with deg 7,5 = deg ¢, such that

(Pa + Tapla)(Ja) C Js (3.1)
and that for all distinct «, 5 € L,
codimp(J, + J3) > 2. (3.2)

Denote by ¢os = P+ Tapia- By [53, Proposition 2.1| for distinct «, 5 € L there exists
a unique homogeneous element Ag, € R of degree deg ¢, + deg ¢z such that

Opa(Pap(s)) = Agas for all s € J,.

Assume M C L is a nonempty subset, and denote by {T,, | u € M} a set of new
variables with degree of T, equal to deg ¢, for all u € M. Denote by R, the graded
ring given as quotient of polynomial ring R[T,, | u € M| by the ideal generated by the
set

{Tus — ¢uls) |ue M,s € J,} U{(Ty + rou)(To + Tuw) — Apu | u,v € M,u # v}
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Theorem 3.1.4 ([53, Theorem 2.3]) The ring R, is Gorenstein with dimension equal
to the dimension of R.

3.1.2 Tom and Jerry unprojections

We fix a codimension 4 complete intersection ideal J. The question is to find a 5 x 5
skewsymmetric matrix M such that if we denote by I the ideal given by the Pfaffians
of M we have I C J and [ has codimension 3. Tom and Jerry are two different answers
to this question.

Tom and Jerry are two families of unprojections which were defined and named by
Reid. These families occur in many constructions of Gorenstein codimension 4 ideals
with 9 x 16 resolution (i.e., 9 equations and 16 first syzygies) and, by [55, Section 5],
can be considered as a type of deformation of the homogeneous coordinate rings of
the Segre embeddings P2 x P? C P® and P! x P! x P! C P7 respectively.

Definition 3.1.5 Assume M = (my) is a 5 x 5 skewsymmetric matrix and J is a
codimension 4 ideal.

1. Assume 1 <14 < 5. The matrix M is called Tom; in J if my; € J whenever k # i
and [ # 1.

2. Assume 1 < i < j < 5. The matrix M is called Jerry,; in J if my; € J whenever
ke {ijtorledij}

Remark 3.1.6 In other words, M is Tom,; in J if all entries of the submatrix of
M obtained by deleting the ¢-th row and the i-th column of M are elements of J.
Moreover, M is Jerry;; in J if each entry of the i-th row of M is in J, and the same
is true for each each entry of the j-th row, the i-th column and the j-th column.

Remark 3.1.7 For an example which is Tom; in J = (21, 22, 23, 24) see Subsec-

tion B.1.3

Remark 3.1.8 Assume 1 < 4,5 < 5 and M is a Tom; matrix in J. Then there
exists a suitable permutation matrix A such that AM A" is Tom; in J, where A’ is the
transpose of A. For example, consider a matrix M which is Tomy matrix in J. Denote
by A the following invertible 5 x 5 matrix

S

I
cocoor~o
coo o
co—~oo
o~ ocoo
— o ooo
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Then the matrix AMA! is Tom; in J. A similar statement holds for the case of a
Jerry;; matrix in J.

3.1.3 The fundamental calculation for Tom

Papadakis [54] gave an explicit presentation of the unprojection ring for the Tom and
Jerry families. In what follows, we give a quick review of the main steps of the Tom
case.

We work over the polynomial ring R = k[zg, 2k, m
follows: 1 < k <4, 2 <i<j <5 Wedenote by

k

i;], where the indices are as

0 T i) T3 T4

—I1 0 mag Mag  Mas
N= |-z —mays 0 m34 M35 |,

—r3 —moy —mzy 0 mys

—xy —Mos —Mmzs —Mmys 0

where
4
_2 : k
k=1

Denote by P; the Pfaffian of the submatrix of NV obtained by deleting the (i+1)-th
row and column of N. We set J = (21, 22, 23, 24) and I = (P, ..., P;). We have that
I C J and N is a matrix which is Tom; in the codimension 4 complete intersection
ideal J.

Since P, ..., Py are linear in z1, 29, 23, 24, there exists a unique 4 x 4 matrix () such
that
Py <1
P . 22
P3 o Q z3
Py 24

We denote by (); the submatrix of ) which obtained by deleting the i-th row of
Q. Fori=1,...,4, let H; be the 1 x 4 matrix whose i-th entry is equal to (—1)""!
times the determinant of the submatrix of ;. For all 4, j, it holds that

.CL'iHj = Jj'jHl

Using the last equality, we can define four polynomials g1, go, g3, g4 as follows. We fix
1 <j <4 and we set

(917 g2, 93, g4) - HJ/xJ
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We note that this definition is independent of the choice of j.
Denote by ¢ the map which is defined by
¢: J/I — R/I
with
zi+I1w— g +1,

for all 1 < < 4.
By [54], Hompg/;(J/I, R/I) is generated as R/I-module by the inclusion map 4 and
¢. Moreover, the ideal

(Po,..., Py, Tz — g1, T2 — g2, T23 — g3, T24 — ga)

of the polynomial ring R[T] is Gorenstein of codimension 4.

3.1.4 Unprojection of a codimension 2 ideal inside a codimen-
sion 3

In this subsection we specify a codimension 2 complete intersection ideal I and a codi-
mension 3 complete intersection J such that I C J. Following [54, Subsection 2.5.1],
we give the explicit description of the unprojection ring Unpr(J/I, R/I) of the pair
J/I C R/I.

Let R = k[a;, b;, z;], where 1 < ¢ < 3 and j € {1,3,5}, be the standard graded
polynomial ring in 9 variables over a field k. We set

J1 = a171 + asxs + azws, J2 = b1y + barg + bsxs,
and consider the ideals
I =(f1, f2), J = (21,73, 75)
of R. We denote by A the 2 x 3 matrix
=i )
and, for 1 <1 < 3, by A; the 2 x 2 submatrix of A obtained by removing the i-th
column of A.

Proposition 3.1.9 The ideal I is a homogeneous codimension 2 Gorenstein ideal of
R and the ideal J is a homogeneous codimension 3 Gorenstein ideal. Moreover, I is
a subset of J.
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Proof We first prove that codim I = 2. The ideal [ is generated by two homogeneous
polynomials of R of degree 2. Hence, by Theorem [2.1.52 codim I < 2. To prove the
claim it is enough to show that codim I > 2. We set f3 = —by f1 + a1 fo. Let > be the
lexicographic order on R with

ap>-->a3>by > >by>x > > 13,

We denote by @ the initial ideal of I with respect >. It is well-known that it holds
that codim I = codim Q).
We set
L= (alxl, blfL'h alngg).

Since the initial term of f; is a;x1, the initial term of fy is byz; and the initial term
of f3is a1byrs we have L C @), hence codim L < codim Q).
We consider the affine variety X = V(L) C A% It holds that

X = V(Il,xgg) U V(bg, 5(31) U V(al, b1> U V(al, Il),
hence dim X =9 — 2 = 7. Using that
dim R/L =dim X,

it follows that codim L = 2. Hence codim I > 2.
We now prove that codim J = 3. According to the Third Isomorphism Theorem

of rings
R/J = k[ala g, az, b17 an bS]

So, dim R/J = 6. Hence,
codim J =dim R —dim R/J = 3.
By Theorem [2.1.61] the ideals I and J are Gorenstein. By the equality of matrices

T
(fl fz) = A | 23
L5
it follows that I C J. U
We set, for 1 <1 < 3, h; to be the determinant of the matrix A;. Denote by
¢: J/I — R/I

the map such that
Oler+1)=hi+1, ¢(xs+1)=—ha+ 1, ¢(xs+1)=hs+ 1.
By [54, Theorem 2.5.6], Hompg,;(J/I, R/I) is generated as R/I-module by the inclu-
sion map ¢ and ¢. As a corollary,
R[T]

I.R/I) = '
Unex(I R = iy~ Ty — (). T — )




Chapter 4

Tom & Jerry triples unprojection

format with an application to Fano
3-folds

In this chapter we introduce a new format of parallel unprojection which we call Tom
and Jerry triples. The initial data of the Tom and Jerry triples format provides one
answer to the following question:

Question 4.1 Assume we are given three codimension 4 complete intersection
ideals Ji,...,J3. How can one construct a 5 X 5 skewsymmetric matrix M such that
I C J, forall 1 <t <3, where I denotes the ideal generated by the 5 Pfaffians of M?

The motivation for Question 4.1 is that under favourable conditions for .J; and I
one can hope to use parallel unprojection to construct codimension 6 Gorenstein rings
which will correspond to interesting geometric objects.

Our approach for answering Question 4.1 is to insist that M is Tom, (or Jerry,)
with respect to the ideal J;, Tom,. (or Jerry.q) with respect to the ideal J; and Tom,
(or Jerry.r) with respect to the ideal J3, for a suitable choice of integers a, ..., f. (We
recall that the notions Tom, and Jerry,, were defined in Definition [3.1.5).

We will use the following notation: A 5 x5 skewsymmetric matrix M will be called
Tom,+Tom.+Tom, for the triple of ideals Ji, ..., Js if M is Tom, with respect to .J;,
Tom, with respect to Jy and Tom, with respect to J3. Similarly, it will be called
Tom,+Tom.+Jerry.; for the triple of ideals Ji,..., Js if M is Tom, with respect to
Ji, Tom, with respect to Jy and Jerry.s with respect to Js, etc. We will often avoid
mentioning the triple of ideals Jy, ..., Js when no confusion is likely to arise.

In Section we study the problem of what different Tom and Jerry triples we
have up to the obvious symmetry obtained by permutation of the indices.

Assume now that we have fixed explicit ideals Ji,...,.J3 and we have made the
choice to use for example the Tom; +Tom,+Toms configuration. Then, Definition [d.1.1]

37
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gives explicit conditions for the matrix M, and it makes sense to define the entries of M
as the most general linear combination of the generators of the ideals J; that satisfy the
conditions. An explicit example is the matrix Tom(1,2, 3) defined in Subsection [4.2.1]

A second question, very important for applications to Algebraic Geometry, is the

following:
Question 4.2 How can one choose three specific complete intersection ideals
Ji,...,J3 and a choice of a configuration (for example, Tom;+Toms+ Toms) such

that the parallel unprojection works with respect to this initial data, and produces a
Gorenstein codimension 6 ring with good properties such as being an integral domain
and the associated projective varieties have good properties such as being in the Mori
category?

We believe that Question 4.2 has no obvious answers, since one needs to balance
a number of contradicting factors. For example, if the three ideals J; intersect a lot
then the theory of parallel unprojection may not be applicable, while if the ideals J;
intersect very little this imposes many restrictions on M and we may lose essential
properties such as I being a prime ideal.

In Subsection we provide an answer to Question 4.2. More precisely, we make
a specific choice of ideals Jp, ..., J3 and the choice of Tom;+Tomy+ Tomjs configura-
tion and we use parallel unprojection to produce a Gorenstein codimension six family
of rings. In Section we use this family of rings in two different ways to construct
two families of Fano 3-folds of codimension 6 embedded in weighted projective space
which correspond to the entries with ID: 14885, ID: 12979 in Brown’s Graded Ring
Database [13].

4.1 Tom and Jerry triples

In this section we introduce the Tom and Jerry triples format. One of this triples is
studied in detail in Subsection and leads to an application to Fano 3-folds in
Section We discuss the remaining cases in Subsection [£.2.2]

Consider the 5 x 5 skewsymmetric matrix

0 mi2 mi3 Mg Mas

—Mi2 0 ma3 Mag  Mas

M= | —miz —mpy3 0 mg4  M3s
—myy —mgy —mgzg 0 mys

—Mmis —Mos —M3s —Mys 0

and three complete intersection ideals J;, J5, J3 of codimension 4. In each of the
following cases we set conditions in the entries of M such that the ideal I of Pfaffians
is contained in each of the ideals Jy,. .., J;. We denote by S5 the symmetric group of
permutations of the set {1,...,5}.
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4.1.1 Tom & Tom & Tom case
Consider
Tom;+Tom,+Tomy,
for 1 <1< j < k<5 Given o € S5 we obtain
Tomg(;)+Tomg;)+Tomg ),

for 1 < o(i) < o(j) < o(k) < 5. In other words, S5 acts on the set {i,j,k}. It
is not difficult to see that there is a unique orbit of this action with representative
Tom;+Tomy+Toms.

Definition 4.1.1 We say that M is a Tom;-+Tomy+Toms matrix if the entries of M
satisfy the following conditions:

miz € J3, muz € Jo, mug,mis € JoN J3, maz € Jy,
Mag, Mas € J1 N Js, mga,mss € 1N Jy, mys € J1 N SN Js.

Then, M is Tom; in J;, Tomy in Jy and Toms in J3.

4.1.2 Jerry & Jerry & Jerry case
Working as before, consider

Jerry;;+Jerryp+Jerry,,

for 1 <i<j<b51<k<i<51<m<n<b5and(i7),(k1),(m,n) pairwise
different. Given o € S5 we obtain

Jerry s (iyo(j) TJerry o (k)o (1) +JITY 0 (m)o(n) -
In this case, the following representatives of the orbits of the action occur:

1. Jerryo+Jerrys+Jerryy

2. Jerryjo+Jerryz+Jerryos

o

. Jerryjs+Jerryu+Jerryos

e

. Jerryy+Jerry s +Jerryos.

Definition 4.1.2 We say that M is a Jerryo+Jerry s+Jerryy matrix if M is Jerryo
in Jp, Jerry;3 in Jo and Jerryyy in J3. Similar definitions also hold for the remaining
representatives of the orbits of the action above and we will not write them explicitly.

To avoid repetition of the same arguments and definitions in the cases that follow
we write down explicitly only the representatives of the orbits of the action.
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4.1.3 Tom & Tom & Jerry case
Consider

Tom;+Tom;+Jerryy,

for1<i<j<b5,1<k<<h.
In this case, the following representatives arise:

(5) Tom;+Tomy+Jerryqy
(6) Tom;-+Toms+Jerry;s

(7) Tom;+Toms+Jerrys,.

4.1.4 Tom & Jerry & Jerry case

Consider
Tom;+Jerry ;i +Jerry;y,,

for 1<i<b5,1<j<k<5 1<l<m<5and (jk)#(l,m).
So, for this case we have the following list of representatives:

(8) Tom;+Jerryjo+Jerryys
(9) Tom;+Jerryjo+Jerryos
(10) Tom;+Jerryjo+Jerrysy
(11) Tom;+Jerryos+Jerryoy

(12) Tom;+Jerryag+Jerryys.

4.2 The main results

This section consists of two subsections. In Subsection [4.2.1] we establish a result
which concerns the construction of a codimension 6 Gorenstein ring using one of the
formats which were developed in Subsection [£.1.1] In Subsection we present a
theorem related to the other formats which were described in Section [4.1]
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4.2.1 Tom & Tom & Tom format

In the present subsection, we specify three codimension 4 complete intersection ide-
als Ji, Js, J3 and a codimension 3 ideal [ generated by the Pfaffians of a specific
Tom;+Toms+Toms matrix. We prove that this data satisfies the conditions for par-
allel Kustin-Miller unprojection established by Neves and Papadakis and recalled in
Theorem [3.1.4] Moreover, using Theorem we give a description of the final ring
as a quotient of a polynomial ring by a codimension 6 ideal. This format will be used
in Section [4.3] to prove the existence of two families of codimension 6 Fano 3-folds. As
Part 2 of Theorem demonstrates, there are also other alternative choices of ide-
als Jy, Jo, J3 which are leading to the construction of Gorenstein rings of codimension
six which could be useful for the construction of some interesting geometric objects.
We work over the standard graded polynomial ring R = k[z;, ¢;], where 1 <¢ <7
and 1 < j < 25. Denote by Tom(1,2,3) the following 5 x 5 skewsymmetric matrix

0 c1z1 + cozo 4+ c323 + 426 C521 + Ce2o + C724 + C825 C921 + C1022 C1121 + C1222

0 C1322 + C1423 + C1525 + C1627 Ci722 + C1823 C1922 + C20%3
0 C21%9 + C2225 €372 + C2425
—Sym 0 Co522
0

which is a Tom;+Tomsy+Toms matrix in the ideals
Jl = (227 23, %5, 27)7 J2 = (217 29, 24, 25)7 ']3 = (Zla 22, %3, 26)- (41)
Let I be the ideal generated by the Pfaffians of Tom(1,2, 3).

Proposition 4.2.1 (i) For all t with 1 < t < 3, the ideal J;/I is a codimension 1
homogeneous ideal of the quotient ring R/I such that the ring R/J; is Gorenstein.
(ii) For allt,s with 1 <t < s <3, it holds that codimp,(J,/1 + J,/I) = 3.

Proof We first prove (). According to the Third Isomorphism Theorem of rings
R/ Jy = klz1, 24, 26,C1,y - - -, Co5], R/Jy = klz3, 26, 27,1, . . ., Cas), (4.2)
R/J3 = klzy4, 25, 27,C1, - - ., Cos].
So, we conclude that for all t with 1 <t < 3,

dim R/J, = 28.
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We claim that
dim R/I = 29.

Denote by j = (Cla Cg, C3, Cs, C¢, C7, Cg, C12, C13, C15, C~16a C18, C19, C21, 023)7 the ideal gener-
ated by some variables of R. We set J"* = [ + [. The ideal J"*" is a homogeneous
ideal of R. Hence, from Krull’s principal ideal theorem it follows that

dim R/J"™" > dim R/I — 15.
We call I the ideal obtained from the ideal I by setting the variables

¢1, ¢, 3, Cs, Cq, C7, Cg, C12, C13, C15, C16, C18, C19, C21, C23

equal to zero. Using the Third Isomorphism Theorem of rings as before we have that

~

new
R/J = k[Zb ..y 27, C4, Cg, C10, C11, C14, C17, C20, C22, C24, 025]/[-
For the computation of the Krull dimension of

k[zla ...y R7,C4q, Cg, C10, C11, C14, C17, C20, C22, C24, 625]/[

we used the computer algebra program Macaulay?2 [28§].
It occurs that

dlm k[Zl, ...y R7,C4,Cg, C10, C11, C14, C17, C20, C22, C24, 625]/-[ - 14
and therefore

dim R/Jmev = 14.

As a consequence, dim R/I < 29.

It is well-known that, see for example [I7, Theorem 3.4.1(a)] the ideal generated by
the Pfaffians of a skewsymmetric matrix has codimension < 3. Hence, codim [ < 3.
Equivalently,

dim R/I > 29,
which completes the proof of the claim. As a consequence,

codim [ =dim R—dim R/I = 3.
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Hence, by the second part of the Theorem , R/I is a Gorenstein ring. Using

again the definition of codimension for all t with 1 <t < 3, we get codim J;/I = 1.
Due to the isomorphisms for all ¢ with 1 <t < 3, the ring R/J; is Gorenstein.
We now prove (iz). Third Isomorphism Theorem of rings implies that

R/(Jl + Jz) = k?[ZG,Cl, oo ,CQ5], R/(Jl + Jg) = ]C[Z4,Cl, C 7025],
R/(JQ + Jg) = ]{7[27, C1y. .- ,025].

From the later isomorphisms it holds that for ¢, s with 1 <t < s < 3,
dim R/(J; + J5) = 26.

Recall that dim R/I = 29. Taking into account the definition of codimension we
conclude that for all £, s with 1 <t < s < 3,

codim (J;/I + Js/I) = 3.

g

For all ¢, with 1 <t < 3, we denote by i;: J;/I — R/I the inclusion map. Our
aim is to define ¢;: J;/I — R/I for all ¢, with 1 <t < 3, and prove that these maps
satisfy the assumptions of the Theorem [3.1.4l As a first step for the definition of ¢,
we relate Tom; matrix in J; (for the definition see Subsection to the matrix N
which was defined in Subsection [3.1.3]

Assume D is a Tom; matrix in J;. It is clear that D is a specialization of the
matrix N. For an example, see Equation below.

Assume D is a Tomsy matrix in J5. Let A be the invertible 5 x 5 matrix

01000
1 00 0O
A=10 01 0 0
00010
0 00O0T1

The matrix ADA!, where A' is the transpose of A, is a specialization of the matrix N.
Assume D is a Toms matrix in J3. Denote by B the following invertible 5 x 5
matrix

o

|
oo~ oo
coor o
SCo oo
o~ ooo
—o oo o
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The matrix BDB! is a specialization of the matrix N.

We remark that the ideal generated by the Pfaffians of the matrix ADA? is equal
to the ideal generated by the Pfaffians of the matrix D. The same is true for the ideal
generated by the Pfaffians of the matrix BDB?.

As a second step we apply the above considerations to obtain, for ¢t = 1,2, 3, the
matrix Tom(1,2,3) in J; as a specialization of N. In what follows until the end of the
proof when we write "a = b” we mean that a is replaced by b. We set

0 I X9 T3 Ty
0 C1z2 + Coz3 + Cc325 + C427 C529 + Cez3 + Crz5 + C827 Uy
Dy = 0 C13%22 + C1423 + C1525 + C1627 U2 (4.3)
—Sym 0 us
0

where
Ul = CgZ2 + C1023 + C1125 + C1227, Uz = C1722 + C1823 + C1925 + C2027,

U3 = C2122 + C9223 + Co325 + Co427.

The matrix D; is a Tom; matrix in J;. D; is obtained from N by the following
substitutions
21 =29, 2 = 23, 23 = 25, 24 = 27 (4.4)

and the obvious substitutions of mfj in terms of ¢;. We set

C7 =C3=1C11 =Cjg=2Ciq4 = Clg = C1g = Cop = C2 = Co3 = Co4 = () (4-5)

in Dy. We call Dy the matrix which occurs. It is given explicitly by,

0 I xI9 I3 Ty
0 c122 + 223 + 325 + ¢427 €522 + ez Coz2 + C1023
0 C1322 + C1525 C1722 + C1925
—Sym 0 C2122
0

Finally, setting
T1 = C121 + Co2o + €323 + C426, To = C521 + Ce2o + Cr24 + C825, (4.6)
T3 = CgZ1 + C10%2, T4 = C1121 + C12%2, C1 = C13, C2 = Ci4,
C3 = C15, C4 = C16, C5 = C17, Cg = C18, C9 = C19, Ci0 = C20,

C13 = Ca1, Ci15 = C22, C17 = Cg23, Ci9 = C24, C21 = Cg5
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in Dy we obtain the Tom(1,2,3) matrix. A similar analysis applies to consider
Tom(1,2,3) matrix as a Toms in J; and Tomg in Js.

At this point we use Papadakis Fundamental Calculation for N (see Subsec-
tion in order to define the maps ¢, ¢ and ¢s.

Assume that 1 <t < 4. We consider the polynomial g; which was defined in Sub-
section We denote by g; the polynomial obtained from g; after the substitutions
which are noted in Equation and the obvious substitutions of mfj in terms of
¢;. We denote by ¢g; the polynomial obtained by g, after the substitutions which are
described in Equation (4.5). Finally, we denote by h; the polynomial which occurs
from the polynomial g; after the substitutions which are noted in Equation (4.6)).

Proposition 4.2.2 There exists a unique graded homomorphism of R/I-modules
¢1: J1/I — R/I such that

$1(zo+1)=hi+1, ¢1(25+1)=ho+1,

¢1(Z5+]):h3+], ¢1<Z7+I) :h4+1

Proof It follows from [55, Theorem 5.6]. O

For the definitions of ¢2 and ¢3 we work similarly. We omit the details. For all t
with 1 <t < 3, the degree of ¢, is equal to 6. Following [53, Definition 2.2| the degree
of the new unprojection variable is equal to the degree of the corresponding ¢;.

Proposition 4.2.3 For all t with 1 <t < 3, the R/I-module Hompg,;(J,/I, R/I) is
generated by the two elements i; and ¢;.

Proof It follows from [55, Theorem 5.6]. O
For all t,s with 1 <t,s < 3 and t # s, we define r,, = 0.

Proposition 4.2.4 For all t,s with 1 <t,s <3 and t # s, it holds that

oe(Ji/1) C Js/1.

Proof It is a direct computation using the definitions of the maps ¢,. O

Proposition 4.2.5 Forallt,s with1 <t,s < 3 andt # s, there exists a homogeneous
element A, such that

¢s(0e(p)) = Astp
for allp e J/1.
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Proof [t follows from [53, Proposition 2.1]. O

Remark 4.2.6 It is immediate by the above considerations that the elements A, are
polynomial expressions in the variables ¢; and z;. We explicitly computed the elements
Ay using the computer algebra program Macaulay?2 [28].

Definition 4.2.7 Let T, S, W be three new variables of degree 6. Following Subsec-
tion |3.1.1} we define as I, the ideal

(I)+ (T2 —p1(22), Tzs—p1(23), Tzs—p1(25), Ter—p1(27), Sz1—a(21), Sza—P2(22),

Szy — ¢a(za), Sz5 — Pa(25), War — ¢3(21), Waa — ¢3(22), Wes — ¢3(23), Wee — ¢3(26),
TS — Alg, TW — A137 SW — Agg)
of the polynomial ring R[T, S, W|. We set R, = R[T, S, W|/Ly,.

Concerning the previous definition we note that the new variables T',.S, W as un-
projection variables are of degree 6. Moreover, according to [53, Proposition 2.1| the
degree of each Ay is equal to 12.

Theorem 4.2.8 The ring R, s Gorenstein.

Proof By Propositions[1.2.1} [1.2.3]and [4.2.4] the assumptions of Theorem [3.1.4] are
satisfied. Hence, the ring R,, is Gorenstein. O

Proposition 4.2.9 The homogeneous ideal 1., is a codimension 6 ideal with a mini-
mal generating set of 20 elements.

Proof According to the grading of the variables and the discussion before the Propo-
sition it is not difficult to see that I, is a homogeneous ideal. Recall that in
Kustin-Miller unprojection codimension is increasing by 1. Hence, the homogeneous
ideal [,,, as a result of a series of three unprojections of Kustin-Miller type starting
by the codimension 3 ideal I, is a codimension 6 ideal. We denote by

A={2,3,4,5,6,7,9,10,13, 14, 15, 18,19, 21, 24, 25}

and
B=1{1,8,11,16,17,20, 22,23}
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two sets of indices. In order to prove that I, is minimally generated by 20 elements
we use the idea of specialization. More precisely, for i € A and j € B we set

c;=0and ¢; =1

in the ideal I,,. We call [Au; the ideal which occurs after these substitutions. I,
is a homogeneous ideal with 14 monomials and 6 binomials as generators. It is not
difficult to see that I, is minimally generated by these elements. Hence, we conclude
that I, is generated by at least 20 elements. By Definition I, is generated by
20 homogeneous elements. The result follows. O

4.2.2 The other formats

In this subsection we formulate a theorem related to the Cases (1) —(12) of Section [4.1]

Theorem 4.2.10 1. Consider the ideals Jy, Js, J3 defined in . Let I be the
ideal generated by the Pfaffians of a sufficiently general 5 x 5 skewsymmetric
matriz M which belongs to one of the Cases (2) — (12) defined in Section [{.1]
For the ideals Jy, Jo, J3 the conditions of parallel Kustin-Miller unprojection are
satisfied. Using the notation of Subsection the final ring Ry, s a codi-
mension 6 Gorenstein ring.

2. Consider the ideals Jy = (21, 22, 23, 24), J2 = (21, 22, 25, 26), J3 = (23, 24, 25, 26) Of
the polynomial ring R = klz;,¢;], where 1 < i < 6 and 1 < j < 26. Let I be
the ideal generated by the Pfaffians of a sufficiently general 5 X 5 skewsymmetric
matriz M which is a Jerryio+Jerrys+Jerryyy matriz in Ji, Ja, J3 (hence we are
in Case (1) defined in Section . The ideals Ji, Jo, J3 satisfy the conditions
of parallel Kustin-Miller unprojection. For this choice of J1, Jo, J3, the final ring
Ry, is a codimension 6 Gorenstein ring.

Proof We verified the above claims using the computer algebra program Macaulay?2.
0

Remark 4.2.11 We note that in Part (1) of the above theorem we didn’t include
Case (1) of Section because it leads to a codimension 6 Cohen-Macaulay ring
which is not Gorenstein.
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4.3 Applications

In this section, we prove, using Theorem [1.2.8] the existence of 2 families of Fano
3-folds of codimension 6 in weighted projective space. We note that in what follows
we make essential use of computer algebra systems Macaulay2 [28] and Singular [25].

The first construction is summarised in the following theorem. It corresponds to the
entry 14885 of Brown’s Graded Ring Database [13]. More details for the construction
are given in Subsection [£.3.1]

Theorem 4.3.1 There exists a family of quasismooth, projectively normal and pro-
jectively Gorenstein Fano 3-folds X C P(13,27), nonsingular away from eight quotient
singularities %(17 1,1), with Hilbert series

_ 1-20t4+64t5—90t8+64¢10—20t12 4416
PX<t) - (1—t)3(1—¢2)7 .
The second construction is summarised in the following theorem. It corresponds to
the entry 12979 of Brown’s Graded Ring Database. More details for the construction
are given in Subsection [4.3.2]

Theorem 4.3.2 There exists a family of quasismooth, projectively normal and projec-
tively Gorenstein Fano 3-folds X C P(13,25,3%), nonsingular away from four quotient
singularities %(1, 1,1), and two quotient singularities %(1, 1,2), with Hilbert series

)z (t) _ 1-114*—8t5+23t64+32t7 —13t8 —48¢2 —13¢19432¢1 1 23812 —8¢13 —11¢14 418
X\V) — (A—6)3(1—t2)5(1—t3)2 :

4.3.1 Construction of Graded Ring Database entry with Iden-
tifier Number 14885

In the present subsection, we give the details of the construction for the family of
codimension 6 Fano 3-folds described in Theorem (4.3.11

We note that a difficult part of the arguments for this construction is the compu-
tation of singular locus of the general member of the family. As we will see below, for
this part we used the computer algebra system Singular [25].

Denote by k£ = C the field of complex numbers. Consider the polynomial ring R =
k[zi, cj], where 1 <4 < 7 and 1 < j < 25. Let R, be the ring in Definition and
R= k[z1, ..., z7] be the polynomial ring in z;. We substitute the variables (cy, ..., cs5)
which appear in the definitions of the rings R and R, with a general element of k?°
(in the sense of being outside a proper Zariski closed subset of k). Let I be the ideal
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of R which is obtained by the ideal I and I, the ideal of R[T, S, W] which is obtained
by the ideal I, after this substitution. We set Ry, = R[T, S, W]/fun In what follows
z;, for all ¢ with 1 < ¢ <7, and T,S,W are variables of degree 2. According to this
grading the ideals I and I, are homogeneous. Moreover, from the discussion before
the Propositions and it follows that the degree of T is equal to 2. Similarly
for the variables S, W. Due to the Theorem Proj Run C P(2'9) is a projectively
Gorenstein 3-fold.

Let A = klwy,wq, ws, 21, 22, 23, 25, T, S, W] be the polynomial ring over k with
w1, we, ws variables of degree 1 and the other variables of degree 2. Consider the
graded k-algebra homomorphism

¢: R[T,S, W] — A

with
Y(21) = 21, P(22) =22, Y(23) =23, ¥(2) = fr,
Y(25) = 25, P(26) = fa, P(zr) = f5, P(T) =T,
P(S) =5, y(W)=W
where

fl = l121 + 122’2 + l323 + 1425 + l5T + lGS + Z7W + lgw% + lg’LUﬂUQ + llowlw;; + lllwg +
lowaws + lizw3,

f2 = luz + lisza + ligzs + lirzs + T 4 119S + oW + Ioywi + lpowyws + lagwiws +
l24w§ + lz5w2w3 + l%w%,

f3 = lorz1 + log2zo 4 lagzs + 3025 + Is1 T + 1325 + l3sW + l3qw] + l35wiws + lsgwiws +
lgﬂU% + l381U2w3 + l39w§
and (Iy,...,ls9) € k3 are general. In other words, fi, fo, f3 are general degree 2
homogeneous elements of A.

Denote by () the ideal of the ring A generated by the subset w(fun)

Let X = V(Q) C P(13,27). It is immediate that X is a codimension 6 projectively
Gorenstein 3-fold.

Proposition 4.3.3 The ring A/Q is an integral domain.

Proof It isenough to show that the ideal () is prime. The computer algebra program
Macaulay?2 |28] gave us that for a specific choice of rational values for the parameters
G, lj, for 1 <4 < 25 and 1 < j < 39 the ideal which was obtained by @ is a
homogeneous, codimension 6, prime ideal with the right Betti table. U

In what follows, we show that the only singularities of X C P(13,27) are 8 quotient
singularities of type %(1, 1,1). According to the discussion after Definition [2.2.10, X
belongs to the Mori category.
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Proposition 4.3.4 Consider X = V(Q) C P(13,2"). Denote by Xeone C A0 the
affine cone over X. The scheme X one 18 smooth outside the vertex of the cone.

Proof Our approach is similar to the approach in [60, p. 18]. We work over the
finite field Z/(1021). Differentiating the 20 equations of @) with respect to the ten
variables gives the 10 x 20 Jacobian matrix M7, Let J be the ideal of 6 x 6 minors of
M7, The ideal ) + J defines the singular locus of X ,,.. Our claim is that the only
singularity of the scheme X,,,. is the vertex of the cone. Consider the ideal @ + J.
Using the computer algebra program Singular we proved that dim(A/(Q + J)) = 0.
The ideal @ + J is homogeneous. Hence, the claim is proven. U

Proposition 4.3.5 Consider the singular locus Z = V(wy,we,ws) of the weighted
projective space P(13,27). The intersection of X with Z consists of exactly eight re-
duced points which are quotient singularities of type %(1, 1,1) for X.

Proof We checked using the computer algebra program Macaulay2 that the inter-
section of X with Z consists of eight reduced points. We observe that the first three
rows of the matrix which occurs from the jacobian matrix M7 of ) by setting the
variables wy, wy, w3 be equal to zero, are zero. Hence, due to the Proposition [4.3.4]
there exists a non-zero 6 x 6 minor in six out of seven variables of degree 2. In that
way, we conclude that the eight points are quotient singularities of type %(1, 1,1) for
X. O

Lemma 4.3.6 Let wg; be the canonical module of I%/IA It holds that the canonical

module wp ; is isomorphic to R/I(—4).

Proof Irom the minimal graded free resolution of R/ I as R-module
0 — R(—10) — R(—6)° — R(—4)* - R

and the fact that the sum of the degrees of the variables is equal to 14 we conclude
that o o
wR/f = R/[(lo — 14) = R/[(—4).

0

Proposition 4.3.7 The minimal graded resolution of A/Q as A-module is equal to

0 — A(—16) = A(—12)% — A(-10)** — A(—-8)" — A(—6)** — A(—4)*° = A
(4.7)
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Moreover, the canonical module of A/Q is isomorphic to (A/Q)(—1) and the Hilbert
series of A/Q as graded A-module is equal to

1 — 20t* 4 64t5 — 90t® + 6410 — 20¢12 + ¢16
(1—1)3(1 —12)7 '

Proof To compute the minimal graded free resolution of A/Q we followed the
method described in the proof of [52 Proposition 3.4|. From the minimal graded

free resolution (4.7)) of A/Q and the fact that the sum of the degrees of the variables
is equal to 17 we conclude that

wajg = A/Q(16 —17) = A/Q(-1).
The last conclusion of Proposition follows easily from the resolution (4.7). O

Taking into account the Propositions [4.3.4] [4.3.5] and [£.3.7] we conclude that X is
a Fano 3-fold.

4.3.2 Construction of Graded Ring Database entry with Iden-
tifier Number 12979

In this subsection, we sketch the construction for the family of the codimension 6 Fano
3-folds described in Theorem

Denote by k = C the field of complex numbers. Working as before, consider the
polynomial ring R = k[z;,¢;|, where 1 <4 <7 and 1 < j < 25. Let R,, be the ring
in Definition and R = k|21, 22, 23, 24, 25, 26, 27, C1, C5, Cg, C11] be the polynomial
ring. We substitute the variables (cs, c3, ¢4, ¢4, €7, Cs, C10, C12, C13, - - - , C25) Which appear
in the definitions of the rings R and R,, with a general element of k! (in the sense
of being outside a proper Zariski closed subset of km) Let I be the ideal of R which
is obtained by the ideal I and I, the ideal of R[T S, W] which is obtained by the
ideal I, after this substitution. We set R,, = R[T S, W]/Lm In what follows we
assume that the variables z1, ¢, cs5, co, 11 are of degree 1, the variables zo, ..., 27, T
are of degree 2 and the variables S, W are of degree 3. Under this grading, the ideals
I and fun are homogeneous. Due to the Theorem Proj }?m C ]13’(157 27, 32) is a
projectively Gorenstein 7-fold.

Let A = k[z1, ¢s5, o, 29, 23, 25, 26, T, S, W] be the polynomial ring with zy, c5, ¢y vari-
ables of degree 1, 2y, 23, 25, 26, T' variables of degree 2 and S, W are variables of degree
3. We consider the graded k-algebra homomorphism

¢: RIT,S, W] — A
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with
P(z1) =21, Y(a) = g1, dles) = ¢s, Pleg) = co,
len) = g2, ¥(2) = 22, (z3) = 23, ¢(2) = fi,
(z5) = 25, P(26) = 26, V(z7) = fo, ¥(T) =T,
W(S) =5, v(W) =W
where

g1 = liz1 + laes + l3c,

go = lyzy + Iscs + gy,

f1=lrza+ sz +lozs + lioze + 1T + Lozt + liszics + liaz1co + L3 + ligcsco + lizc,

f2 = lisgza+ligzg + 12025 + o126 + oo T + 9327 + laa 2105+ las z1¢o + a6 + larcs09 + Ios €3
and (I1,...,ls) € k® are general. In other words, g, g are general degree 1 ho-
mogeneous elements of A, while g1, go are general degree 2 homogeneous elements of
A.

Denote by @ the ideal of the ring A generated by the subset w(fun)

Let X = V(Q) C P(13,25, 3%). Tt is immediate that X is a codimension 6 projec-
tively Gorenstein 3-fold.

Repeating the arguments which were used for the construction which was described
in Subsection we proved that X C P(13,2° 3?) is a Gorenstein Fano 3-fold non-
singular away from four quotient singularities %(1, 1,1) and two quotient singularities
1(1,1,2).



Chapter 5

The 4-intersection unprojection

format with an application to Fano
3-folds

In this chapter we introduce a new format of parallel unprojection which we name the
4-intersection format. The 4-intersection format is specified by a codimension 2 com-
plete intersection ideal I with the property that it is contained in four codimension 3
ideals Jq, ..., Js. It leads to the construction of codimension 6 Gorenstein rings. As
an application, in Section we construct a family of Fano 3-folds of codimension 6
embedded in weighted projective space which corresponds to the entry I1D: 29376 in
Brown’s Graded Ring Database [13].

5.1 The 4-intersection unprojection format

We now define the notion of 4-intersection unprojection format.

Definition 5.1.1 Assume that .Ji,...,J; are four codimension 3 complete intersec-
tion ideals and [ is a codimension 2 complete intersection ideal. We say that [ is a
4-intersection ideal in Jy, ..., Jyif I C Jyfor all 1 <t < 4.

An important question is how to explicitly construct I and J; such that [ is a

4-intersection ideal in Ji, ..., J;. In Subsection we present such a construction.

5.1.1 An example of 4-intersection unprojection format

In the present subsection we specify the following: a codimension 2 complete inter-
section ideal I and four codimension 3 complete intersection ideals Ji,...,Jy such

23
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that [ is a 4-intersection ideal in Jy,...,Js. Using this configuration as initial data,
we construct, by parallel Kustin-Miller unprojection [53], a codimension 6 Gorenstein
ring.

Assume that k is a field. We consider the standard graded polynomial ring
R = klci, z;], where 1 <7 < 6. We set

[ = carire + cor3zy + c37576, g = C4X1T9 + C5X3T4 + CeT5T6,
I=(f,g)and
J1 = (21,23, 25), Jo = (1,24, T6), J3 = (T2,23,76), Js = (22,24, 25).

It is clear that f,g are homogeneous elements of degree 3 and [ is a 4-intersection
ideal in the ideals Jy,..., J4.

In the applications we need to specialize the variables ¢; to elements of k. We now
give a precise way to do that. Consider the Zariski open subset

U={(ug,...,ug) € A®:u; #0 forall 1<i<6}.

We assume that (dy, ..., ds) € U. We denote by R= k[x1,...,xg] the polynomial ring
in the variables x;. Let ) )
¢o: R— R

be the unique k-algebra homomorphism such that

~

o(xi) = x4, é(cz) =d;
for all 1 <7 < 6. We denote by I the ideal of the ring R generated by the subset (5([)

Proposition 5.1.2 The ideals I and I are homogeneous codimension 2 Gorenstein
ideals.

Proof Since [ is generated by two elements, we have, by Theorem [2.1.52] that
codim I < 2. Now we show that codim I > 2. We set

r = —cuf +ag, T2 =g, r3 = f.
Let > be the lexicographic order on R with ¢; > --- > ¢g > 21 > -+ > x4. Consider
the ideal
L = (inx(r1),ins (19),in= (r3)),
where in (1) = x3x4¢105, 05 (19) = T129¢4 and ins (r3) = z322¢1. We now prove that
codim L = 2. It is enough to show that dim R/L = 10. Consider the affine variety
X =V(L) c A2 Tt holds that

X = V(C4, Cl> U V(C5, Il) U V($4, 131) U V(xg, .%'1) U V(Cl, l’l) U V<C5,.7)2) Uz
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where
Z =V (x4, x2) UV (23, 29) UV (C1, T2).

Using that
dim R/L =dim X

the claim is proven. Hence, codim I > 2.

In what follows we show that the ideal I is also a codimension 2 Gorenstein ideal.
We set

~

71 = ¢(r1), 7’2:&5(7’2).
Let > be the lexicographic order on R with 2, > --- > z¢. Consider the ideal
Q = (ins(r1),ins(72)),

where in. (7]) = z3z4dids, in~ (7)) = x122dy. It is immediate that Q = (z3z4, T129).
It is enough to show that dim R/Q = 4. Consider the affine variety X = V(Q) C A°.
It holds that

X = V(l’27$4) U V(Qfg,l’g) U V([L’h ng) U V(l‘1,$4).

Using that
dim R/Q = dim X

the claim is proven. Hence, codim I > 2. By Theorem [2.1.61} the ideals I and I are
Gorenstein. 0

Proposition 5.1.3 (i) For all t with 1 < t < 4, the ideal J;/I is a codimension 1
homogeneous ideal of the quotient ring R/I such that the ring R/J; is Gorenstein.
(i) For all t,s with 1 <t <s <4, it holds that codimpg,;(J./I + Js/1) = 3.

Proof We first prove (i). According to the Third Isomorphism Theorem of rings
R/Jy = klcy, ..., 6,22, T4, x6], R/Jo = klcy, ..., co, 20, 23,25, (5.1)
R/Js = klcy, ... ce, 01,24, x5), R/Jy = klcy,. .., ce,11, 23, Tl
So, we conclude that for all t with 1 <t < 4,
dim R/J, =09.
By Proposition [5.1.2] it follows that

dim R/I =dim R — codim I = 10.



56 CHAPTER 5. THE 4-INTERSECTION FORMAT

Hence, using the last two equalities we have that for all t with 1 <t <4
codim J; /I = 1.

Due to the isomorphisms (5.1)) for all ¢ with 1 < ¢ < 4, the ring R/J; is Gorenstein.
Concerning the Claim (i7), the Third Isomorphism Theorem of rings implies that

12

R/(J1 + J2) 2 klcy, ... ce,x2], R/(J1+J3) = kley,. .., co, 4],
R/(J1 + Ji) Z klca, ..., ce,x6], R/(Jo+ J3) = kley, ..., cq, 5],
R/(Jy+ Jy) = K[y, ... co,x3), R/(J5+ Ji) = ke, ..., csx1).
From the later isomorphisms it holds that for ¢, s with 1 <t < s <4,
dim R/(J;+ Js) =T.

Recall that dim R/I = 10. Taking into account the definition of codimension we
conclude that for all £, s with 1 <t < s <4,

codim (J¢/I + J5/I) = 3.
U

For all ¢, with 1 <t < 4, we denote by i;: J;/I — R/I the inclusion map. In what
follows, we define ¢,: J;/I — R/I for all ¢, with 1 < ¢ < 4, and prove that these maps
satisfy the assumptions of the [53] Theorem 2.3].

Recall the polynomials hy, hy, hy which were defined in Section We denote
by hi, ho, hy the polynomials which occur from hq, ho, hs if we substitute

ap = 1Tz, Ay = Cay, A3 = C3Tg, by = 42, by = 574, b3 = C6T6.
Proposition 5.1.4 There exists a unique graded homomorphism of R/I-modules
¢1: J1/I — R/I such that

¢1($1+I):flv1+17 ¢1($3+I):f72+]7 ¢1($5+I):ﬁ3+1-

Proof It follows from [53, Theorem 4.3]. O

For the definition of ¢ we replace x3 by x4 and x5 by x¢. In this case, fa, },{2’ }73
are the polynomials which occur from hq, ho, hs if we substitute
ap = 1Tz, Ay = Ca3, Az = C3T5, by = 42, by = 513, b3 = c6s.

For the definitions of ¢3 and ¢4 we work similarly. For all t, with 1 <t < 4, the degree
of ¢, is equal to 3. By [53, Definition 2.2| the new unprojection variable has degree
equal to the degree of the corresponding ¢;.

Proposition 5.1.5 For all t, with 1 <t < 4, the R/I-module Hompg,(J¢/I, R/I) is
generated by the two elements i; and ¢;.
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Proof It follows from [55, Theorem 4.3]. O
For all ¢, s, with 1 <t,s <4 and t # s, we define r,, = 0.

Proposition 5.1.6 For allt,s, with 1 <t,s <4 andt # s, it holds that

ou(Je/ 1) C Jg/1.

Proof It is a direct computation using the definition of the maps ¢,. O

Proposition 5.1.7 For all t,s, with 1 < t,s < 4 and t # s, there exists a homoge-
neous element Ag such that

¢s(0e(p)) = Aup
for allp e J;/1.

Proof It follows from [53, Proposition 2.1]. O

Remark 5.1.8 We note that the elements A, are polynomial expressions in the vari-
ables ¢; and ;. We computed them using the computer algebra program Macaulay?2 [28].

Following [53], Section 2|, we write down explicitly the final ring as a quotient of a
polynomial ring by a codimension 6 ideal.

Definition 5.1.9 Let 17,715,753, T, be four new variables of degree 3. We define as
L, the ideal

(1) + (Thzy — ¢1(z1), Thas — di(w3), Thas — d1(x5), Tazy — ga(z1),
Tyxs — p2(x4), Towe — Ga(ws), Tswa — P3(x2), Txs — ¢3(x3),
Tzxe — ¢3(w6), Tary — da(x2), Taws — Pa(x4), Tuxs — Qu(ws), 12Ty — Aa,
13T — Asy, Ty — Ay, 13Ty — Asg, TyTy — Ago, TyTs — Ags)
of the polynomial ring R[T}, Ty, T3, Ty]. We set Ry, = R[T1,T5, T3, T4|/ Lun-

Remark 5.1.10 The reason we put, for all 1 <17 < 4, degT; = 3 is that each homo-
morphism ¢; is graded of degree 3. We also note that according to [53, Proposition 2.1]
the degree of each A is equal to 6.

Theorem 5.1.11 The ring Ry, is Gorenstein.
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Proof By Propositions [5.1.3] [5.1.4]and [5.1.6] the assumptions of [53, Theorem 2.3]
are satisfied. Hence, the ring R, is Gorenstein. O

Proposition 5.1.12 The homogeneous ideal I, is a codimension 6 ideal with a min-
imal generating set of 20 elements.

Proof According to the grading of the variables and the discussion before the Propo-
sition it is not difficult to see that I, is a homogeneous ideal. Recall that in
Kustin-Miller unprojection the codimension increases by 1. Hence, the homogeneous
ideal I,,, as a result of a series of four unprojections of Kustin-Miller type starting
by the codimension 2 ideal I, is a codimension 6 ideal. In order to prove that I, is
minimally generated by 20 elements we use the idea of specialization. More precisely
we set

C1263:C5:CGIO
and
62204:1

in the ideal I,,,. We call f; the ideal which occurs after these substitutions. The ideal
Iy, is a homogeneous ideal with 16 monomials and 4 binomials as generators. It is not
difficult to see that I, is minimally generated by these elements. Hence, we conclude
that I, is generated by at least 20 elements. By Definition I, is generated by
20 homogeneous elements. The result follows. U

5.2 Applications

In the present section we prove, using Theorem [5.1.11] the existence of a family of
Fano 3-folds of codimension 6 in weighted projective space. We note that in what
follows we make essential use of the computer algebra systems Macaulay2 [28] and
Singular [25].

The construction is summarised in the following theorem. It corresponds to the
entry 29376 of Brown’s Graded Ring Database [13].

Theorem 5.2.1 There exists a family of quasismooth, projectively normal and projec-
tively Gorenstein Fano 3-folds X C P(1%,2,3), nonsingular away from eight quotient
singularities %(1, 1,2), with Hilbert series

P (t) _ 1-6t2415t* =20t 4158 —6¢104¢12
X B (1-1)8(1—¢2)(1-13)
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We now give the explicit construction of the family of the Fano 3-folds which is
described in Theorem

We denote by k = C the field of complex numbers. We consider the polynomial
ring R = k[z;,¢;], where 1 < i < 6. Let Ry, be the ring in Definition and
R = klx1i,...,2z6] be the polynomial ring in the variables x;. We substitute the
variables (ci,...,cs) which appear in the definitions of the rings R and R,, with a
general element of k® (in the sense of being outside a proper Zariski closed subset
of kG). Let I be the ideal of R which is obtained by the ideal I and fun the ideal
of R[Tl, Tg,Tg,T4] which is obtained by the ideal I,, after this substitution. We set
Ryn = R[Tl,TQ,Tg,T4]/Iun In what follows w1, x3, x5 are variables of degree 1 and
X9, T4, Tg are variables of degree 2. From the discussion before the Propositions [5.1.4
and [5.1.5]it follows that the degrees of Ty, T3, T are equal to 1 and the degree of T} is
equal to 3. Accordmg to this grading the ideals I and I, are homogeneous. Due to
Theorem 1} Proj Run C P(15,23,3) is a projectively Gorenstein 3-fold.

Let A = k[wy,wy, Ty, T3, Ty, x1, 23, x5, X6, T1] be the polynomial ring over k with
w1, we variables of degree 1 and the other variables of degree noted as above. Consider
the unique k-algebra homomorphism

W: R[Ty, Ty, Ty, Ty] — A

such that
Y(z1) = 21, Y(a2) = f1, Y(x3) =23, P(Ta) = fo,
Y(ws) = x5, Y(6) =76, Y(T1) =T, Y(Tz) =15,
V(T3) =13, Y(Ty) =T,
where

fl = lll'% -+ lQﬂflfﬂg + lgﬂ?% + 141’15135 + l5$3l‘5 + lﬁ&?% + l7l’1T2 + lg[EgTQ + lgl’g,Tg + l10T22 +
lnxng + llgmng -+ 113$5T3 + l14T2T3 + 115T32 + l16$1T4 + +117T3T4 + 11833'5T4 + l19T2T4 +
oo T5Ty + In T} + loszqwy + lagzswy + laxswy + losTowy + lagTsw + lorThws + logw? +
lagiws + l3gT3ws + l31x5Ww2 + 5o Tows + lssTyws + l3aThws + lsswiws + lsgw3 + lsze,

fo = lssx? + lsgm1@3 4 Lio@3 + Ly w125 + lao @325 + lagx? + lagxy To + s s To + lygxs To +
LT3 + listn T + lagwsTs + lsowsTs + Ui ToT5 + Uso T3 + lsgxa Ty + lsa 3Ty + 55Ty +
lse ToTy + ls7 T3 Ty + lss T + gz wy + lgozzwr + lgrxswr + leoTowy + lesTawy + lea Tywy +
los w3 + o6 w1 wa 472 3ws + les x5 wa +lgo Tows +lrg Tawa + I Tyws + lrow wo + lrsw3 + 74w,
and (I1,...,l4) € k™ are general. In other words, fi, fo are two general degree 2
homogeneous elements of A.

Denote by @) the ideal of the ring A generated by the subset w(fun)

Let X = V(Q) C P(18,2,3). Tt is immediate that X is a codimension 6 projectively
Gorenstein 3-fold.

Proposition 5.2.2 The ring A/Q is an integral domain.
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Proof It is enough to show that the ideal () is prime. For a specific choice of rational
values for the parameters ¢;,[;, for 1 < i < 6 and 1 < j < 74 we checked using the
computer algebra program Macaulay2 that the ideal which was obtained by @ is a
homogeneous, codimension 6, prime ideal with the right Betti table. O

In what follows, we show that the only singularities of X C P(1%,2,3) is a quotient
singularity of type %(1, 1,2). According to the discussion after Definition [2.2.10] X
belongs to the Mori category.

Proposition 5.2.3 Consider X = V(Q) C P(1%,2,3). Denote by X.pne C A0 the
affine cone over X. The scheme X one 15 smooth outside the vertex of the cone.

Proof For the proof we follow the steps which are described in the proof of Propo-
sition [£.3.5 O

Proposition 5.2.4 Consider the singular locus Z = V (x1, 3, x5, To, T3, Ty, w1, ws) of
the weighted projective space P(1%,2,3). The intersection of X with Z is a unique
reduced point which is quotient singularity of type %(1, 1,2) for X.

Proof We checked with the computer algebra program Macaulay2 that the intersec-
tion of X with Z is one reduced point. We denote this point by P. Point P corresponds
to the ideal (z;, 7T}, wy) fori € {1,3,5,6},2<j < 4,1 <k <2. By Propositionm
X is smooth outside P. Around P we have that T} = 1. Looking the equations of @)
we can eliminate the variables x1, x3, x5, 15, T3, T, since these variables appear in the
set of equations multiplied by 7;. This means that P is a quotient singularity of type
$(1,1,2). O

Lemma 5.2.5 Let wp; be the canonical module of 1:2/12 It holds that the canonical

module wg; is isomorphic to R/I(-3).
Proof Irom the minimal graded free resolution of R/ I as R-module
0— R(—6) = R(-3)*> > R

and the fact that the sum of the degrees of the variables is equal to 9 we conclude
that
wR/f = R/[(G — 9) = R/[(—3).
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Proposition 5.2.6 The minimal graded resolution of A/Q as A-module is equal to

0=2Cs—C;s—Cy—C3—>0Cy—=C,—=Cy—0 (5.2)
where
Cs = A(—12), Cs = A(—8)° @ A(—9)* @ A(—10)",
Cyi= A6 A(-7)* @ A(-8)* @ A(—9)®,
Cy = A(—4)° ® A(=5)* @ A(=6)" ® A(=7)* & A(=8)°,
Cy=A(=3)%® A(—4)* @ A(=5)* @ A(—6)®,
C; = A(—2)° @ A(=3)® @ A(—4)°, Co=A

Moreover, the canonical module of A/Q is isomorphic to (A/Q)(—1) and the Hilbert
series of A/Q as graded A-module is equal to

1 — 6t2 + 15t* — 2015 + 15¢8 — 6¢10 4 12
(1—1)8(1 —#2)(1 —t3)

Proof To compute the minimal graded free resolution of A/Q we followed the
method described in the proof of [52 Proposition 3.4]. From the minimal graded
free resolution of A/Q) and the fact that the sum of the degrees of the variables
is equal to 13 we conclude that

wajg = A/Q(12 - 13) = A/Q(~1).

The last conclusion of Proposition follows easily from the resolution (5.2). O

Taking into account Propositions [5.2.3] [5.2.4] and [5.2.6, we conclude that X is a
Fano 3-fold.







Chapter 6

Anisotropy of Simplicial Spheres

This chapter is a joint work with Stavros Argyrios Papadakis, and was motivated by
McMullen’s g-conjecture for simplicial spheres [8, G61, [66]. In 2018, a proof of this
important conjecture was announced by Adiprasito |1}, 2].

Section contains the construction of the generic Artinian reduction of an al-
gebra. This useful construction appears many times throughout the chapter. In
Section we introduce the notion of the generic anisotropy of a simplicial sphere
and we formulate one of our two main results of the chapter. This is Theorem [6.2.3]
which states that over a field of characteristic 2 every simplicial sphere is generically
anisotropic. The proof of the theorem is given in Subsection The question of
generic anisotropicity of simplicial spheres of dimension > 2 over a field of character-
istic not equal to 2 remains open.

Section contains Theorem which is a key result for the proof of The-
orem In order to use Theorem for the proof of generic anisotropy in
characteristic 2, we introduce, in Section certain (dim D + 1)-th order differential
operators J, and 0, ., associated to faces 0,0 U {p} of a simplicial sphere D.

In Sections and we study the differential operators in some detail,
and prove Theorem which states identities related to the differentiation of the
product of the maximal minors of certain matrices. The theorem is used to prove the
key Propositions [6.4.1] and [6.4.7] The propositions imply Corollaries [6.4.6]| and [6.4.13]
and the corollaries imply Theorem [6.2.3]

In Section[6.§ we prove Theorem[6.8.T|which connects the notion of generic anisotropy
with the Lefschetz properties. Combining Theorem with Theorem we get
a second proof of McMullen’s g-conjecture for simplicial spheres in Theorem [6.8.2]

In Section we prove that the simplicial spheres of dimension 1 are generically
anisotropic over any field, which is the second of the main results of the chapter. A
key tool is Proposition which works in all characteristics.

Section is dedicated to a specific form of Gauss elimination that we need,

63
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while in Section we discuss a well-known technique for proving that a polynomial
is nonzero. Section contains some results related to the behaviour of the Lefschetz
properties under field extensions. Finally, in Section [6.13]we state a general conjecture
about our differential operators.

6.1 The generic Artinian reduction of an algebra

In this section we give a useful construction that will appear a number of times in the
present, chapter.

Assume m > 1 and k; is a field. We consider the polynomial ring ki [xy, ..., znm],
where the degree of the variable z; is equal to 1, for all 1 < ¢ < m. Assume [
is a homogeneous ideal of ki[z1,...,x,,]. We denote by d the Krull dimension of the
quotient ring ki [x1, ..., Z,,]/I. We assume d > 1, and denote by & the field of fractions
of the polynomial ring

Filaij:1<i<d, 1<j<m]

For 1 <1 < d, we set

m
fi=) ai ;.
j=1

Definition 6.1.1 We define the generic Artinian reduction of ki[x1, ..., x,]/I to be
the Artinian k-algebra

ke, am] /(1) + (o5 fa))s

where (1) denotes the ideal of k[z1, ..., x,,] generated by I.

6.2 Statement of the main theorem

In this section we introduce the notion of generic anisotropy and we formulate one of
our main results which is related to generic anisotropy of a simplicial sphere over a
field of characteristic 2.

Assume n > 1 is an integer and D is a simplicial sphere of dimension n with vertex
set {1,...,m}. Assume k; is any field and denote by k the field of fractions of the
polynomial ring

kilaij:1<i<n+1,1<j<m)].

We define the polynomial ring R = k[z1,...,x,,], where we put degree 1 for all
variables x;. Denote by Ip C R the Stanley-Reisner ideal of D. We set k[D] = R/Ip.
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Fori=1,...,n+ 1, we set
m

fi= Z A5 Tj,
j=1
and we define A = k[D]/(f1,..., fns1)- Hence, A is the generic Artinian reduction of
k1[D] in the sense of Definition We denote by 7 : R — A the natural projection
k-algebra homomorphism.

Remark 6.2.1 By |17, Section 5|, the k-algebra k[D] is standard graded and Goren-
stein with Krull dimension equal to n+1. Since a; ; are independent variables that do
not appear in the minimal monomial generating set for Ip, the sequence fi,..., foi1
is a regular sequence for k[D], see [I7, Proposition 1.5.12|. Hence, A is a Goren-
stein Artinian standard graded k-algebra. It has socle degree equal to n + 1 by [I7,
Lemma 5.6.4]. Consequently, A; = 0 for all i > n+2 and dimy A,, ;1 = 1. In particular,
dimg A; > 1, which implies that m > n + 2.

Definition 6.2.2 We call D generically anisotropic over ky, if for all integers j with
1 <2j <n+1 and all nonzero elements u € A; we have u? # 0.

The main result of the present Chapter is the following theorem, whose proof will
be given in Subsection [6.4.3]

Theorem 6.2.3 Assume that the field ki has characteristic 2, n > 1 is an integer,
and D 1s a simplicial sphere of dimension n. Then D is generically anisotropic over
k.

6.3 The Artinian reduction of the Stanley-Reisner
ring

In this section is contained one of the key results for the proof of the generic anisotropy
in characteristic 2 and all dimensions. This is the Theorem which is valid in
any dimension but only in characteristic 2. An interesting open question is to establish
a version of Theorem [6.3.14] valid in all characteristics.

We keep using the notations and assumptions defined in Section [6.2] In particular,
we allow the field k; to be of arbitrary characteristic.

If o = (by,...,b,) is a sequence of integers, with 1 <b; < m for all 7, we set

q
Ty = bei € R.
=1



66 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

Whenever ¢ = n + 1, we also use the notation
o] = [b1, ..., bpy1] € K,

where, by definition, [by, ..., b,1] is the determinant of the (n + 1) x (n + 1) matrix
with (4, j)-entry equal to a;p,.

We denote by F(D) the set of facets of D. We define an ordered facet of D to be
a sequence (by, by, ..., b, 1) of positive integers such that the set {by,ba, ..., b,i1} is
a facet of D. For 0 < i < n, we define a codimension i face o of D to be a face of
dimension n — 4. This is equivalent to #o0=n+1 —1.

Assume g = [[*, 2{" € R is a monomial. We define the complezity c(g) of g by

m

c(g) = Zai — #{i:a; > 0}.
i=1
It is clear that ¢(g) > 0 and that c¢(g) = 0 if and only if g is square-free.
The following proposition is well-known, but we provide a proof for completeness.

Proposition 6.3.1 Assume 1 < r < n+ 1. We have that the r-th graded piece A,
of A is spanned, as a k-vector space, by the image under w of the set of square-free
monomials of R of degree r.

Proof By finite induction, it is enough to show that if g € R is a nonzero monomial
of degree r and complexity > 1, then there exists ¢ € R homogeneous of degree r, such
that 7(¢) = m(g) and ¢ is a linear combination of monomials of complexity c(g) — 1.

Assume g = [, ", Since ¢(g) > 1, by rearranging indices we can assume that
a; > 2. Since r < n + 1, by rearranging indices we can assume that a; = 0 for all
1 >n+2.

By Proposition [6.10.1] we have

2[2, 3,...,n+ L tn(z:) = 0.
t=1
Hence,
2.3, on+ Lr(e) == Y [2,3,...,n+ 1 tw(z,).
t=n+2

As a consequence, multiplying by 7(g/x1) we get

m

m(g) = —( Z 2,3,...,n+ 1, tlm(xrg/21))/[2,3,...,n+ 1,1].

t=n+2

Since, for all t > n + 2, we have c(z,9/x1) = ¢(g) — 1, the result follows. O
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Remark 6.3.2 For a strengthening of Proposition see Proposition [6.4.9

Remark 6.3.3 We will use the following two facts, see [20, p. 111, Remark before
Corollary 7.19]. Each codimension 1 face of D is contained in exactly two facets of D.
Moreover, if o1 and gy are two facets of D, then there exists a finite sequence

To,Tl,...,Tq

of facets of D such that 79 = 01, 7, = 09, and, for all 0 < ¢ < ¢ — 1, the intersection
T; N T;41 1s a codimension 1 face of D.

Proposition 6.3.4 Assume
Ulz(bla"'vbnadl)a 02:<b1a-"7bn7d2)7

are two ordered facets of D having codimension 1 intersection. We then have the
following equality in the ring A

(01]7(20,) = —[oa]7(7s,)-

Proof We set 7 =0y Noy. Hence, 7 = {by,...,b,}. By Proposition [6.10.1, we have
that

Z[bl, bg, ce ,bn7j]7T(l'j) =0.
j=1

Hence,

Z[bl’ bQ, . ,bn,j]’ﬂ'(le’q—) =0.

j=1

If j € 7, we have [b1, b, ..., by, j] = 0. By Remark o1 and o4 are the only facets
of D which contain the codimension 1 face 7. Hence, the only terms of the last sum
that are nonzero are for j = d; and j = dy. The result follows. U

Corollary 6.3.5 Assume o1 and oy are two ordered facets of D. Then there exists
e € {—1,1}, such that

[01]7(26,) = eloa]m(@s,).
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Proof By Remark there exists a finite sequence
T0, iy« -5 Ty

of facets of D such that 7y = 01, 7, = 09, and, for all 0 < ¢ < ¢ — 1, the intersection
7; N T;+1 18 a codimension 1 face of D. Using Proposition we have that, for all
0 <i < q—1, there exists ¢; € {—1,1}, such that we have the following equality in
the ring A

[rilm(2r,) = €lmialm(n.,).
The result follows. O

We fix an ordered facet e = (e, ..., e,11) of D. By Remark dimy, A, = 1.
Using Proposition [6.3.1 A, is spanned, as a k-vector space, by the square-free
monomials that correspond to the facets of D. Corollary implies that any of
them spans A, ;1. As a consequence, 7(z.) # 0 and 7(x,.) is a k-basis of A, ;. Hence,
there exists a unique set-theoretic map V¥, : A, .1 — k with the property that

u =W, (u)le]r(ze) (6.1)

for all u € A, 1. It is clear that U, is an isomorphism of k-vector spaces. In addition,
if n is odd, we set p; = (n + 1)/2 and define the symmetric bilinear form

Pe: Ay X Ay — k (6.2)
by
pe(u, w) = ¥, (uw)

for all u,w € A,,.

Remark 6.3.6 If we change the ordered facet e of D to another ordered facet o,
Corollary implies that either ¥, = ¥, or ¥, = —V,. Hence, if the field k; has
characteristic 2 the map W, is canonical, in the sense that it is independent of the
choice of the facet e of D, and we will denote it by W.

Remark 6.3.7 Assume n is odd. Recall that a symmetric bilinear form
0: A, x Ay — k

is called anisotropic if §(u,u) # 0 for all nonzero elements u € A, . Using Re-
mark [2.1.66] it follows that p. is anisotropic if and only if for all integers j with
1 < 2j < n+1 and all nonzero elements u € A; we have u? # 0. This (partially)
explains the use of the term generic anisotropy in Definition [6.2.2]
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Remark 6.3.8 The proof of Proposition gives that for all u € A, the element
U, (u) of k is a rational function in the set of all bracket polynomials

{[ilw--ain—i—l} : 1§21<22<<zn+1§m}

In addition, combined with the proof of Corollary it provides an algorithm for
computing ¥, (u).

Proposition 6.3.9 Assume ky is a field of characteristic 2 and o = (by,...,byr1) 18
a facet of D. We have

(\Ij © T‘-)("EU) = 1/[b17 s abn-i-l]‘
Proof By Corollary we have
[olm(z5) = le]m(x.).

The result follows from the definition of W. O
The following proposition allows the computation of W, (u) in more cases.
Proposition 6.3.10 Assume o = (by,...,b,_1,¢) is a codimension 1 ordered face of

D. Denote by 7 = (b1,...,bp_1,¢,d1) and 1 = (by,...,by_1,¢,ds) the two ordered
facets of D that contain o. We then have the following two equalities

[bl,...,bn_l,C,lebl,... n—1,C, dg HI{, = —[bl,...,bn_l,dl,dg]{Tl]’YT(Iﬁ)
= [b17 s 7bn—17 d17 d2][7_2]7r<x7'2)‘

Proof Weset S={1,...,m}\ {c}. By Proposition 6.10.1, we have that

Zbl,bg,... n— 1,d17 ] (l']):O

Hence,
[bl, bg, “vey bn—l; dl, C]W(SL’C) = — Z[bl’ bQ, ceey bn—l, C,j]ﬂ'(l’j).

JjES

Consequently,

[bl,bg,... n— 1,d1, Hl’b Zbl,bg,... bn 1,d1, IJJ]CH(L’Z)

jeSs



70 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

Arguing for the last sum as in the proof of Proposition we get

n—1
[b1, b2, ..., b1, dy, ] HfEb b17b27~--abn—ladladQ]ﬂ(xdgxcH$bi)-
i=1
Using that, by Proposition (1|7 (zr,) = —[me]m(xs,), the result follows. O

The following corollary is an immediate consequence of Proposition [6.3.10

Corollary 6.3.11 Assume ky is a field of characteristic 2 and 0 = (by,...,b,_1,¢) is
a codimension 1 face of D. Denote by (by,...,by_1,c,d1) and (by,...,by_1,c,ds) the
two facets of D that contain o. We have

[bla R 7bn717d17d2]
(¥ )
O7T be bl,...,bn_l,c,dl][bl,...,bn_l,c,dg}

FURTHER ASSUMPTION. For the rest of this section we make the additional
assumption that the field k; has characteristic 2.

We set Z = m + 2n and denote by M the (n + 1) x Z matrix whose (i, j)-entry
is equal to the variable a;;, for 1 <i<n+1and 1< j < Z. Given a subset A of
the set {1,2,...,Z} of cardinality n + 1, we denote by M (A) the determinant of the
(n+1) x (n+ 1) submatrix of M obtained by keeping the columns of M specified by
the set A.

We denote by ky the field of fractions of the polynomial ring

kl[am-:lgz'gn—i—l, 1§j§Z]
It follows that k is a subfield of k.

Proposition 6.3.12 (Recall that the field ki has characteristic equal to 2.) Assume
n is odd. We set | = (n+1)/2. We assume that D is the boundary complex of the
(n+1)-dimensional simplex with vertex set 7 = {c1,...,¢1,91,--., g1} We then have
the following equality in the field ko

(\IIOT‘-><HZ.32) o Hz 1M( \{CZ})

T M\ {a))

Proof We set ¢ = {c1,...,¢},9 ={g1,--.,qi01}. Assume 1 < i < [. By Proposi-
tion [6.10.1) we have that

l I+1

> e\ ek g\ g cdlm(we) + D le\ {ei} g\ {gi}, gilm(z4,) = 0.

t=1 t=1
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Hence,
[e\{eit, g\ {gi}, ailm(ze,) = [e\ {ci}, g \ {9}, il 7 (zy,),
since the field has characteristic 2 and the other terms in the two sums are zero.
Multiplying the above equations for 1 <i <[, we get

l l

(Tl feiko g\ adsei) wo = (] Jle\ {ei} 9\ {9} ) wo, (6.3)

i=1 i=1

where
!

l
Uy = Hﬂ-('xci)’ U = Hﬂ-(xgi)'
i=1 i=1
The result follows by multiplying both sides of Equality (6.3) by w; and using that,
by Corollary [6.3.9]

V(uug) = 1/[c, g \ {gis1}]-

U

Proposition 6.3.13 (Recall that the field ki has characteristic equal to 2.) Assume
n is even. We set | = n/2. Assume that D is the boundary complex of the simplex
of dimension n + 1 with vertex set T = {c1,...,¢,,0,91,...,qi41}. We then have the
following equality in the field ko

. 1
, ile T\ G
(W om)(xy 1_11 T,,) = gli MET § J{(gj; .

Proof We set ¢ = {c1,...,¢},9 ={g1,--.,qe1}. Assume 1 < i < [. By Proposi-
tion [6.10.1) we have that

Y e\ {et g\ g eldm(ee) + ) [be\ {eid g\ {gi}, gilm(2g,) = 0.

Hence,
b, e\ {ci}, g \{gi}, cilm(ae,) = [b, e \{ci} 9 \ {gi}, gilm(zg,),

since the field has characteristic 2 and the other terms in the two sums are zero.
Multiplying the above equalities for 1 < i <[, we get

l l

([T e\ {eih o\ {gi} ) w = (T JIb. e\ {eid 9\ i} 02]) wo, (6.4)

i=1 i=1
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where
!

!
U = Hw(xci), Uy = Hw(xgi).

i=1
The result follows by multiplying both sides of Equality (6.4) by 7(zp)u; and using
that, by Corollary [6.3.9]

W (m(wp)urug) = 1/[b; ¢, g \ {gre1}]:
U

We fix an integer r with m+1 < r < Z. Assume [ is an integer with 2 < 2] < n+1.
We set s =n +1— 2[. Assume

’7'1:{C1,...,Cl}, ng{bl,...,bs}

are two subsets of the vertex set {1,...,m} of D, such that 7 U 7, has cardinality
[+ s and is a face of D. We set 7 = 1 U 9.
Assume o € F(D) is a facet of D. We define the rational function H (7, 72,0) as
follows:

1. If 7 is not a subset of o we set H (71, 72,0) = 0.

2. If 7 is a subset of o, we denote the elements of o \ 7 by ¢i,..., g and we set

[T M(@U {rh\ {e))
M(0) Tiey M((o U {r}) \ {g:})

H(m,m,0) =

Clearly,

[ljer, M((G U{rH \ 7))
M(0) [Le(o\iraumy M((@U{rH \ {7})
The proof of the following theorem will be given in Subsection [6.3.1]

H(m,m,0) =

Theorem 6.3.14 (Recall that the field ky has characteristic equal to 2.) We have the
following equality in the field ko

l

(‘I’OW)((HD%)(H%)) = ) H(m,m,o). (6.5)

=1 c€F (D)

Remark 6.3.15 It is interesting to notice the similarities in the statement and proof
of Theorem [6.3.14] with the results obtained by Lee in [45] Section 6].

Remark 6.3.16 Using the definition of the function H, it is clear that the nonzero
terms of the sum in Equation (6.5)) are exactly those where o contains 7. Hence, the
sum can also be considered as a sum over the facets of the link of the face 7 in D.
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Remark 6.3.17 Even though the left hand side in Equation (6.5]) is completely inde-
pendent of r, each nonzero term H (7, Ty, o) on the right hand side does depend on r.
Hence, provided no denominator vanishes, we are allowed to specialise the variables
a;r, for 1 <4 <n + 1. This observation will be used in Corollaries [6.5.3| and [6.6.3!

Example 6.3.18 Assume k; is a field of characteristic 2, m > 3 and D is the m-gon
with consecutive vertices 1,2,...,m. By Corollary [6.3.11, we have

[1,3]

(Vo 77)(373) = m,

while, by Theorem [6.3.14] we have

(1, 7] 3, 7]

(Vom(z3) = H({2}, 2.{1.2)) + H{2}.2.42.31) = o 5+ g

Example 6.3.19 Assume k; is a field of characteristic 2, and D is the simplicial
complex with vertex set {1,2,...,7} and Stanley-Reisner ideal equal to

Ip = (2179, 232475, T627).

Then D is a simplicial sphere of dimension 3.
We set 1 = {1,3}, 72 = (). Clearly we have that 71 is a face of D. Moreover, since
Ip : (x123) = (29, T475, Te27), the link of 77 in D is the 4-gon with consecutive vertices

4,6,5,7. By Theorem [6.3.14
(Von)(xix;) = Hyg + Hes + Hs 7+ Hra,
where

[1,a,b,7][3,a,b,r]
11,3,a,b][1,3,a,r|[1,3,b,7]

Hu.p = H(m1,m, 71 U{a,b}) =

Remark 6.3.20 We expect that with the correct sign adjustments there should be a
version of Theorem [6.3.14] valid over a field k; of arbitrary characteristic. We do not
pursue this direction further in the present work.

6.3.1 Proof of Theorem [6.3.14]

We now give the proof of Theorem [6.3.14] by induction on [ > 1.
Assume [ = 1. We have s =n — 1 and

™ = {Cl}, Ty = {bh-”;bn—l}'
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Recall that 7 = 73 U 7». Hence, 7 is a codimension 1 face of D. Using Remark [6.3.3]
T it is contained in exactly two facets of D. We denote them by

01—{51,--- nlacladl} 02—{51,~-- n1,C1,d2}

We use the notation
[TQ, Z,j] = [bl, e 7bn—17 Z,]]

By Corollary [6.3.11

7—27d17d2]
(Vo) x
Cl H b T27 C1, dl][7-27 (1, d2]

We have H(1,m2,0) = 0if 0 € F(D) \ {01,02}. Using the Pliicker relation ([43,
Theorem 5.2.3])

[7—27d17d2][7—27clar] - [T27d17r] [7—27017d2] + [7—27d17cl] [TQ,dQ,T]

and taking into account that the field k; has charactersitic 2, we have

\I]O’]T Hﬂfb 7-27dl7d2]

72701,d1][72,61>d2]

[7—27 d17 dQ] [T27 C1, T]

[, e1, di][To, c1, do) T2, 1, 7]
_m,dy, [T, c1, do] 4 (12, dy, e [T, do, 7
n [T2, €1, d1][T2, ¢1, da][T2, 1, 7]

B (T2, dy, 7] [T2, da, 7]

- [7’2,01,(11”7’2,61,7‘] [7’2,61,d2”7’2,01,’f’]
= H(m,1e,01) + H(m, 72, 02).

We assume now that [ > 1 with 2(l + 1) < n + 1 and that Theorem |6.3.14] is
true for [. We will prove that Theorem [6.3.14] is true for the value [ + 1. We set
s=n+1-2(l+1). Assume

7'1:{61,...,C1+1}, ng{bl,...,bs}

such that 71 U 75 has cardinality [ + s + 1 and is a face of D.
We fix integers py,...,p;, such that m+1 < p;, < Z, for all 1 <i <[, and the set
{r,p1,p2, ..., p} has cardinality equal to [+1. Weset B = {1,...,m}\(nUm) and

I+1

=<1211x;><g%>-
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For 1 <i < Z, we set
[[Z]] = [b17"'7b87 Ciy---»C, Ty P1y- -, Dl Z]

Using Proposition [6.10.1

=1
Hence ]
i
W(xclﬂ) = Z [[Cl+1]] W(.Ti),
with the sum for 1 <i < mand i # ¢;41. Since [[i]] = 0 wheni € {c1,...,¢,01,. ..

we have that

rran) =3 A 1)

icB HCH-IH

Multiplying this equality by

(o) [ @) [ m@)
we get [[ ]]
W(U) = ; HCH—IH W(El)7
where z
Ei =xiwe, (H xi)(H y,)
Hence,

(Tom)(u) = Z L] (¥ om)(E).

2 Tewnl]

5

Y b5}7

Since, for all 7 € B, the expression for E; has [ squares, we can use the inductive

hypothesis for (¥ o 7)(E;) to get

(Tom)(E)= Y H(mn\{an}hnU{ian},o).

o€F (D)

As a consequence,

(Tomu)=> > Vie= > > Vi,

1€B o F (D) oc€F(D) i€B
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where

‘/i,tf - Hgﬂ]l]] H(Tl \ {cl+1}a To U {7’7 Cl+1}7 0)'

Therefore, to finish the proof it is enough to show that for all ¢ € F(D) it holds

Z‘/;,O' = H(7-177-270-)' (66)

i€eB

For 7 € B we set
i = (Tl \ {Cl+1}> U (7—2 U {Za Cl+1})7

therefore n; = 7 U {i}.

We first assume that o € F(D) does not contain 7 as a subset. Hence H(7y,72,0)
is equal to zero. Assume ¢ € B. Since 7 C 1, it follows that 7; is not a subset of o.
This implies that H (71 \{ci11}, 2U{i, c41}) = 0, therefore V; , = 0. As a consequence,
Equality is true.

Assume now that o € F(D) contains 7 as a subset. We set C = o \ 7 and denote
the elements of C by g1,...,914+1. Weset 0" = o U {r}. If i € B\ C, it follows that n;
is not a subset of o, therefore V; , = 0. As a consequence,

Z‘/i,a = Z‘[i,d = ivi,a'
ieB icC i=1
We have
Voo = A0 fre\ feahoma U g} 0)
[[er41]]
_ gl | [Ty M(o"\ {c:})
lewall M(0) T2 M (o7 \ {g:}) TTiiiey M (o7 \ {g:})
_ Mgl M\ {g:}) [Tiey M(0"\ {ei})
[eall  M(o)TE M(om\ {g:})
= I'[[g;]] M(o" \ {g:}),
where
MM )
(e l]M (o) T M (o7 \ {g:})
Hence,

I+1 I+1

D Vaw =D Y[l (07\ {a).
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By the Pliicker relation ([43, Theorem 5.2.3|),

I+1

Y lglIM 0"\ {g:}) = [leen M (07 \ {1 }).

=1

Therefore,
I+1
> Voo =T llaal] M(o™\ {er})
_ IS Mo\ {e})
M(o) [T,5 M(o7\ {g:})
= H(m,m,0).

As a consequence, Equality is true, which finishes the proof of Theorem [6.3.14

6.4 Using the differential operators to establish anisotropy

We keep using the notations introduced in Sections and [6.3] Moreover, we assume
that the field k; has characteristic 2.

6.4.1 Case n is odd

Assume n > 1is odd. We set [ = (n+1)/2. We assume that o € D is a face of dimen-
sion [ — 1. We denote, in increasing order, the elements of o by o(1),0(2),...,0(l).
We define 0, : ko — ko to be the (n + 1)-th order differential operator which is
differentiation with respect to the variables in the set

{ai,a(j) 21 < i <n+ 17 j = [(Z + 1)/2]}7
where [x] denotes the integral part of the real number z.

Proposition 6.4.1 Assume 7 is a face of D of dimension | — 1. We then have

2

(05 0 Wom)(22) = (¥or)(zoz,)) (6.7)

Proof We define the sets

Ki={neFD):1cCn}, Ky={neF(D):7Uc Cn}.
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Weset vy =7No, 72 = (1Uo) \ 1. Using Theorem [6.3.14, we get

(W om)( ZHT@U and (Vorm)(xrs) ZH’YL’Yz»

neEK neks

Clearly ICy C Ky. If n € Ky \ Ky, we have that ¢ \ (n N o) # @, which implies that
0,(H(t,2,n)) = 0. Hence

(0, o Wor)( Z@ (1,2,1))

neks

Since the field £; has characteristic 2, we get

(Vom)(ra,)* = Y (H(m.72,m)

nes
Assume that n € Ky. Using Corollary we have

[Le, M((nuU{r})\ {:}) )
M) - TLicp. M((nU{r}) \ {i})
_ [Licrne(M((nU{r})\ {i}))?
(M(7))? - TLiep ooy (M (U {r}) \ {z}))?
= (H(v1,72,m))*

0o (H(T,2,n)) = 0y (

which finishes the proof. U

Remark 6.4.2 Conjecture|6.13.1|contains a conjectural statement generalising Propo-

sition [6.4.1]
Corollary 6.4.3 Assume u is a homogeneous element of R of degree . We then have

0y 0 Wom)(u?) = (¥ or)(zu)’. (6.8)

Proof Using Proposition [6.3.1] there exist s > 0, faces 7y, ...,7s of D of dimension
[ — 1 and elements Aq,..., A in k such that

= ﬂ(zs: iz, ).
i=1
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Taking into account that the field k; has characteristic 2 and combining Proposi-

tion with Remark [6.7.1) we have
(0,0 o m)(w?) = (9 0 Wom) (3 Na2) = 3 N ((0, 0 W o m)(a2))
i=1 i=1

=Y N (o m)(zozr,)) = (D N((¥ o m)(24,,)))

i=1 i=1

= (Tom)(Y_ Narw0)) = (¥ o m)(z,u))”.
i=1
This finishes the proof of Corollary U

Remark 6.4.4 If we abuse the notation by avoiding writing down the maps ¥ and
7, Equations (6.7) and take the simpler form

0, (22) = (vo2,)? and 05 (u?) = (w,u)?
respectively.

Example 6.4.5 We use the assumptions of Example [6.3.18 and the notational con-
vention described in Remark [6.4.4. We have

2 [173]
2T R, 3

) = g = (o Oa(ed) = i — ()

Assume, in addition, that m > 4. Then
8{4}(23%) =0= ($4$2>2.

Corollary 6.4.6 Assume u is a homogeneous element of R of degree less or equal

than 1 such that w(u) # 0. We then have that (mw(u))?* # 0.

Proof Using Remark[6.2.1] A is Artinian, Gorenstein and standard graded with socle
degree equal to n + 1. It follows, by Remark [2.1.66] that there exists a homogeneous
element h € R of degree [—deg(u) such that 7(uh) # 0. Combining Proposition [6.3.1]
with Remark[2.1.66] there exists a face o of D of dimension {—1 such that 7 (z,uh) # 0.

This implies that (¥ o7)(x,uh) # 0, hence, by Corollary (Tom)((uh)?) # 0.
Since 7 is a k-algebra homomorphism, we get (m(u))? # 0. O
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6.4.2 Case n is even

Assume n > 2 is even. We set [ = n/2. We assume o € D is a face of dimension [ — 1
and that p is vertex of D such that o U {p} is a face of D of dimension [. We denote,
in increasing order, the elements of o by o(1),0(2),...,0(l). We define 0,, : ks — ks
to be the (n+ 1)-th order differential operator which is differentiation with respect to
the variables in the set

{al,p} U {ai,a(j) . 2 S 7 S n -+ ]., j = [1/2]},

where [z] denotes the integral part of the real number z.

Proposition 6.4.7 Assume 7 is a face of D of dimension [—1 which does not contain
p. We then have
(Opo 0 W o) (222,) = (Vo 7)(zpra,))". (6.9)

Proof We set 7, = 7U {p}. If 7y is not a face of D, we have 7(z,z,) = 0 and the
proposition is true.
Hence, we can assume that 7 is a face of D. We define the sets

Ki={ne F(D):n Cn}, Ky={neF(D): 7 Uc Cn}.

We set 71 = 11 No, 2 = (mUo) \ 7. Since p is not an element of o, we have
v1 = 7N o. Using Theorem [6.3.14) we get

(Vo 7)(222,) Z H(r,{p},n) and (Vom)(x zo1y) Z H(v1,72,m

neky neLs

Clearly Ko C K. If n € K1\ Ky, we have that o \ (n N o) # @, which implies that
Opo(H(T,{p},n)) = 0. Hence
(Opo 0 Wom)(z2a,) Z Opo(H(T, {P},m)).
nes
Since the field k; has characteristic 2
(W om)(zrwomy)* = D (H(v,72,m))"
neks
Assume that n € ICy. Using Corollary we have
_ [Lie, M((nu {r}) \ {i})
Ope AP 0) = O (R oy MU DN T
_ [Lene(M((nU{rHh \ {i}))?
(M()? - T L rugue (M ((n U {r}) \ {i}))?
= (H(w,72m)”,
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which finishes the proof. U

Remark 6.4.8 Conjecture|6.13.1|contains a conjectural statement generalising Propo-
sition [6.4.71

We will need the following strengthening of Proposition [6.3.1]

Proposition 6.4.9 Assume 1 < d<n+1 andu € Ry. Then there exist s > 0, faces
Tiy...,Ts of D dimension d — 1 and elements \y, ..., \s in k such that

m(u) = W(Z Aitr,)

and, moreover, p is not an element of 7; for all 1 <i < s.

Proof Using Proposition [6.3.1} it is enough to assume that u = x,, where 7 is a face
of D of dimension d — 1. If p is not an element of 7, the result is obvious by setting
s=1,11=n A\ =1

Assume now that p € . Without loss of generality, we can assume that p = 1 and
n=1{1,2,...,d}. By Proposition [6.10.1] we have

2[2,3, cooon+ 1 tn(z) = 0.

t=1

Hence,

o 2,3, ,n+ 1,0
ﬂ-(xl) N tzn—&:a [2737---,71—1— 171]71—(1:1:)’

which implies that

The result follows. O

Corollary 6.4.10 Assume u is a homogeneous element of R of degree l. We then
have

(Ope © W o) (u’zy) = ((Vo W)(xouxp))Q. (6.10)



82 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

Proof Using Proposition , there exist s > 0, faces 7q,...,7s of D of dimension
[ — 1 and elements Aq,..., A in k such that

m(u) = W(Z Air,)

and, moreover, p is not an element of 7; for all 1 <7 < s.
Taking into account that the field k; has characteristic 2 and combining Proposi-

tion with Remark |6.7.1] we have

S

(Opo 0 Wom)(u?s,) = (Dpo0 Vo W)(Z )‘?xgimp) = Z A?((ap,a oWom) (xixp))
i=1

=Y X ((Wom)(rornmy) = (I N o m) (o)
=((Vo W)(Z )\ixnxga:p))Q =((Vo W)(xguxp))Q.

i=1

0

Remark 6.4.11 If we abuse the notation by avoiding writing down the maps ¥ and

7, Equations and (6.10)) take the simpler form
Opo(07) = (T507p)? and Opo (W'y) = (Tou,)®
respectively.

Example 6.4.12 Assume D is the boundary complex of the 3-simplex with vertex
set {1,2,3,4}. We set p = 1,7 = {2}. Using Corollary [6.3.11] and the notational
convention described in Remark [6.4.11, we have

> [1,3,4] > [1,3,4]? >
LrTp 1,2, 3][1, 274], p,{2}(xTxp) [1,2,3]2[1,2, 4] (Toxr2p)
and
Op i3y (x21,) = ! = (132,7,)° Oy (221,) = ! = (v47,2,)%
p,{3} TP [1 2 3}2 3LTdp) p,{4} TP [1 2 4]2 4L7Lp

Corollary 6.4.13 Assume u is a homogeneous element of R of degree less or equal
than | such that w(u) # 0. We then have that (m(u))? # 0.
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Proof Using Remark[6.2.1] A is Artinian, Gorenstein and standard graded with socle
degree equal to n + 1. It follows, by Remark [2.1.66] that there exists a homogeneous
element h € R of degree [—deg(u) such that 7(uh) # 0. Combining Proposition [6.3.1]
with Remark there exists a face o1 of D of dimension [ such that 7(z,,uh) # 0.

We fix an element p of oy, and set 0 = o1 \ {p}. Therefore, 7(z,,uh) # 0 implies
that (Vo) (z,uhz,) # 0. Using Corollary[6.4.10] it follows that (¥o7)((uh)?z,)) # 0.
Since 7 is a k-algebra homomorphism, we get (m(u))? # 0. O

6.4.3 Proof of Theorem [6.2.3

We now prove Theorem If n is odd, it follows from Corollary [6.4.6] while if n is
even, it follows from Corollary [6.4.13

6.5 The differential operator for n odd

The aim of the present section is to establish, in conjuction with the following two
Sections and [6.7] the results about the differential operators that were used in
Section 6.4

In the present section we work over a field k; of characteristic 2.

Assume n > 1 is odd and m is an integer with m > n+1. We set Z = m + 2n and
denote by M the (n+ 1) x Z matrix whose (4, j)-entry is equal to the variable q; ;,
for 1 <i<mand1<j<Z. Given asubset A of the set {1,2,..., 7} of cardinality
n + 1, we denote by M(A) the determinant of the (n+ 1) x (n + 1) submatrix of M
obtained by keeping the columns of M specified by the set A.

We denote by ko the field of fractions of the polynomial ring

kila;; :1<i<n+1,1<j< 7).
We set | = (n+1)/2. Assume

n={c,...,a}t, ={g1, -, 941}

are two subsets of the set {1,2,..., Z} such that 7 Uy has cardinality 2 + 1.
We set 7 = 71 Uy and

G, ) = H;_Tll M(r \ {CZ}>
IS M(m\ {g:})

For the rest of this section we make the assumption that 7 is a subset of the set
{1,2,...m}. We fix r with m+ 1 <r < Z and set, for 1 <i <1[+1,

Gi(m1, 72, {r}) = G(11, (o U{r}) \ {g:}).
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We denote by G:P(71,7) the result of substituting in G;(m,72,{r}) the value 1 for
the variable a;, and the value 0 for the variables a;,, for 2 < j <n + 1. We remark
that G;” (71, 72) is well-defined, since the denominator of G;(71, 72, {r}) does not vanish
when we perform the substitution.

Moreover, we denote by T, : ko — ko the (n + 1)-th order differential operator
which is differentiation with respect to the set of variables

{al,c1> A2.c1y A3,coy Ad coy A5.c35 A6ezy - -+ 5 Anyepy an+1,cl}-
Remark 6.5.1 This set of variables can also be described as the set
{1 <i<n+1,j=[(+1)/2),
where [z] denotes the integral part of the real number x. For example, if n = 3, then

84

8@1701 8a27cl 8a3702 8a4702

Tn+1 =

We remind the reader that the field k; has characteristic 2.

Proposition 6.5.2 We have the following equality in the field ko

I+1

G(Tl, Tg) = Z Gi(le T2, {T})

Proof Denote by D the boundary complex of the simplex of dimension n + 1 with
vertex set 7. By Proposition [6.3.12] we have

l

(Po W)(H 22) = G(m, 7).

i=1

Since G;(1y, 12, {r}) = H(m,2,7\ {¢:}), by Theorem [6.3.14] we have

l +1
(Tom)([[22)=>_ Gi(ri,m.{r}).
=1 =1
The result follows. U

For an example related to the above Proposition [6.5.2] see Example [6.3.18]
The following corollary follows immediately from Proposition [6.5.2] by taking into
account that, for all 1 < j <n+ 1, the variable a;, does not appear in G(7, 72).
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Corollary 6.5.3 We have the following equality in the field ko

+1

G(Tl, 7'2) = Z Gfp(Tl, 7'2).
i=1
The following proposition is an immediate corollary of Part 1 of Theorem [6.7.6]
For simplicity of notation, for i € 7 we set M; = M (7 \ {i}).

Proposition 6.5.4 We have the following equality in the field ko

T (H Mz) = H(Mz)2

1ET 1ETL

Corollary 6.5.5 Assume S is a subset of 7. We then have the following equality in

the field ko
Hies M; _ Hz‘eSm 1 (M2)2
HiGT\S M; HiGTz\S(Mi)Q

Proof Using Proposition [6.5.4] and Remark [6.7.1] we have

Tn+1 (

T 1( HiGS M; ) _T 1( HiGT M; o Tn+1(HiET Mz)
i\ ) = Int =
HiET\S MZ (HiET\S Ml)Z (HiET\S Ml)Z
_ Hz‘en(Mi)z _ L HieSﬂ Tl(Mi)Q
Hief\s(Mi)z E- HiGTZ\S(M’i>2 ’
where E = Hien\s(Mi)2' The result follows. 0

6.6 The differential operator for n even

The aim of the present section is to establish, in conjuction with the previous Sec-
tion [6.5] and the following Section the results about the differential operators that
were used in Section [6.4]

In the present section we work over a field k; of characteristic 2.

Assume n > 1 is even and m is an integer with m > n + 1. We set Z = m + 2n
and denote by M the (n+1) x Z matrix whose (4, j)-entry is equal to the variable a; ;,
for 1 <i<mand1<j<Z. Given asubset A of the set {1,2,..., 7} of cardinality
n + 1, we denote by M(A) the determinant of the (n+ 1) x (n + 1) submatrix of M
obtained by keeping the columns of M specified by the set A.

We denote by ko the field of fractions of the polynomial ring

kl[am:léiﬂn—i-l, ISJSZ]
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We set [ =n/2. Assume

n={c,....,q}, m={b}, m=A{g91, .., 01}

are three subsets of the set {1,2,..., 7} such that U?_;7; has cardinality 2 + 2.
We set 7= U}_;7; and

G(ri, 70, 73) = le_i M(7\ {c:}) _
[T M7\ {g:})

For the rest of this section we make the assumption that 7 is a subset of the set
{1,2,...m}. We fix r with m+1<r < Z and set, for 1 <i <1+ 1,

Gi(m1, 72,73, {r}) = G(11, 79, (13 U {r}) \ {gi}).

Denote by G;*(71, 72, 73) the result of substituting in G;(71, 72,73, {r}) the value 1 for
the variable a;, and the value O for the variables a,,, for 2 < j <n 4 1. We remark
that G;* (71, 72, 73) is well-defined, since the denominator of G;(71, 72, 73, {r}) does not
vanish when we perform the substitution.

Moreover, we denote by T, : ko — ko the (n + 1)-th order differential operator
which is differentiation with respect to the set of variables

{Ch,b, QA2,c15A3,c15 Ad,c05 A5,c05 - -+ Anyeys an—i—l,cl}'
Remark 6.6.1 This set of variables can also be described as the set
{a1p} U{aie, :2<i<n+1,j=1[i/2]},
where [z] denotes the integral part of the real number z. For example, if n = 2, then

83

8@171, 8a2,cl 8a3,cl

TnJrl =

We remind the reader that the field k; has characteristic 2.

Proposition 6.6.2 We have the following equality in the field ko

I+1

G(T1,7'2,7'3) = ZGz‘(ThTmT& {T})
i=1
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Proof Denote by D the boundary complex of the simplex of dimension n + 1 with
vertex set 7. By Proposition [6.3.13, we have

!
(Po W)(buxi) = G(11,72,T3).
i=1

Since G;(11, 72,73, {r}) = H(7m1, 72,7\ {g:}), by Theorem |6.3.14] we have

! I+1
(Uom)(m HxZ) = Z Gi(T1, 72, 73, {1}).
i=1 i=1
The result follows. O

The following corollary follows immediately from Proposition [6.6.2] by taking into
account that, for all 1 < j <n+ 1, the variable a;, does not appear in G(7, 72, 73).

Corollary 6.6.3 We have the following equality in the field ko

+1

G(7'1,7'2773) = ZGfp(TlaTQ7T3>‘
i=1
The following proposition is an immediate corollary of Part 2 of Theorem [6.7.6|
For simplicity of notation, for i € 7 U 13 we set M; = M (7 \ {i}).

Proposition 6.6.4 We have the following equality in the field ko
T ([ M) =]
1ETIUTS 1ET]

Corollary 6.6.5 Assume S is a subset of 1 Uts. We then have the following equality

wn the field ko
Hies M; _ HieS N 71 (M,)2
HiE(T1UT3)\S MZ Hie Tg\S(Mi)2

Tn+1(

Proof We set w =7 U7s. Using Proposition [6.6.4] and Remark [6.7.1] we have
HiES Mz ) -7 1( HiEw Mz . Tn+1(HiEw Mz)
SbiesT )y —
HiEw\S MZ (Hiew\S Ml)Q (Hiew\S M1)2
_ Hz‘en(Mi)Q _ E- HiESﬂ Tl(Mi)2
1_12'6111\,5'(]\411)2 E - HiETg\S(Mi)2 ’

where E =[], \¢(M;)?. The result follows. 0O

Tn—',-l(
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6.7 Some useful characteristic 2 identities

The aim of the present section is to establish, in conjuction with the previous two
Sections [6.5] and [6.6] the results about the differential operators that were used in
Section [6.4l
In the present section we work over a field k; of characteristic 2.
Assume h > 2 is an integer. We denote by k the field of fractions of the polynomial
ring
kilaij:1<i<h+2 1<j<h+1].

We denote by M9 the (h + 2) x (h + 1) matrix whose (i, j)-entry is equal to the
variable a; j, for 1 <i<h+2and 1 <j<h+1.

Assume h > 2 is even. We denote by N the h x (h + 1) submatrix of M9,
obtained by keeping the rows indexed by 1,2, ..., h. We denote by P the h x (h+1)
submatrix of M9, obtained by keeping the rows indexed by 3,4, ..., h+2. We define
the folowing two sets of variables

Anp =Haij:1<i<h,j=[G+1)/2]}, App={ai;:3 <1< h+2,5=][>i+1)/2]},

where [x] denotes the integral part of the real number z. For S € {N, P}, we denote
by Tsj the h-th order differential operator which is partial differentiation with respect
to the variables in the set Agj.

Assume h > 3 is odd. We denote by Q™ the h x (h + 1) submatrix of M9,
obtained by keeping the rows indexed by 2,3,..., h+ 1. We define the folowing set of
variables

Agn={aza} U{ai; :3<i<h+1,j=[(+1)/2]}.

We denote by Tg 5, the h-th order differential operator which is partial differentiation
with respect to the variables in the set Ag 5.

In the present section we will use the following notational convention. Assume
[ > 1, Sisanl x (Il + 1) matrix and 1 < i < [+ 1. We will denote by S; the
determinant of the [ x [ submatrix of S obtained by deleting the i-th column of S.

Remark 6.7.1 We will use that, since the field k; has characteristic 2, we have

Tsn(f?9) = f*Tsn(g)

forall f,g €k, S € {N,P,Q} and h > 2 as above (that is, h even if S = N or S = P
and h odd if S = Q). Indeed, by the Leibnitz Rule,

0

8am

0 0

0
=2

3ai,j

0

(9@1-,]»

(9) = g5 () + 1 N+ P52 (0) = F5—(9),
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and Ty is a composition of such operators. Consequently, if f, g € k with g # 0, then

f fg.  Tsulf
'QME%:RM;%::ség)

Proposition 6.7.2 Assume that h > 2 is even and that

h+1 h/2
h h
Twa(J] ) =TT V")2.
=1 =1
We then have
h+1 (h+2)/2
Ten(J[ P™) = ] (P2
=1 1=2

Proof We denote by N™°? the matrix obtained from N® by putting the last column
of N first. Since, the field k; has characteristic 2, we get N4 = N,(LZ)I and that

mo h
Nz‘ 4= Nz'(f)lv

for all 2 <7 < h + 1. Hence, using the assumption we have

h+1 h+1 h/2 h/2 (h+2)/2
Twn(J] Nty = Tun ([ M) = [T =TT visty2 = T vimey?. (6.11)
=1 =1 =1 =1 1=2

We have that both N™°? and P are h x (h + 1) matrices. The entries of each
matrix are independent indeterminates. For 1 <: < hand 1 < j < h+ 1, we denote
by n;; the (i, j)-entry of N™°¢ and by p; ; the (i, j)-entry of P, By definition, Ty,
is differentiation with respect to the variables in the set

{nij:1<i<hj=1+[c+1)/2]},
while Tp), is differentiation with respect to the variables in the set
{pij:1<i<hj=1+[(+1)/2]}.

There exists a unique isomorphism of kj-algebras ¢ : ki[n; ;| — ki[pi;] such that
¢(n;j) =pi;foralll1 <i<hand1l<j<h+1. Asa consequence, the result follows
from Equation (6.11]). O

Proposition 6.7.3 Assume h = 2. We have
TN,Z(Nl(Q)NQ(Z)N:§2)) — (Nl(z))2 and TP,2<P1(2)P2(2)P3(2)) _ (P2(2))2,
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Proof Using Proposition |6.7.2] it is enough to prove only the first equality. We have
82

INe = 7—F—
’ 3@171 8@2,1

and
S o I e ) B R Y G B
Q29 (23 G21 0A23 Q21 A22.

The result follows by an easy direct computation, taking into account that the field
ky has characteristic 2. O

Remark 6.7.4 Tt is easy to see that the assumption that the field k; has characteristic
two is crucial in order to have the equalities in the statement of Proposition [6.7.3]

Proposition 6.7.5 1) Assume h > 4 is even and that

h—1 h/2
Tono([[ P2 = [TP" )
i=1 i=2
We then have
h h/2
Tona(JI@" ") =@ )2
i=2 i=2
2) Assume h > 4 is even and that
h h/2
Tona(JT Q") =@ )
1=2 1=2
We then have
Rl h/2
Tun(]] Ny = H(Ni(h))2‘
=1 =1

Proof We fix an even integer h > 4. For simplicity of notation, we set

N = N(h)y TN = TN,ha Q = Q(h_l)’ TQ = TQ,h—17 P = P(h_2)7 TP = TP7h—2-

We first prove Part 1). We set

h—1
Hz (h+2)/2 Ql

W= O, Hh/Q
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Using Remark it is enough to prove that

To(W) =1/(Qn)*. (6.12)

Denote by r; the transpose of the 1 x (h — 1) matrix (1,0,0,...,0). For an
element s € {2,3,...,h/2} U{h} we denote by U<*> the (h—1) x h matrix obtained
by replacing the s-th column of @) with r;.

We set, for s € {2,3,...,h/2} U{h},

h—1 <s>
ress _ ALi=ew22 U
Uss> I—Ih/2 Uj<s>

Jj=2

Since U;*> # 0, for all 1 < j < h, we have that W<*> is well-defined. By Corol-
lary [6.6.3, we have

h/2
W = W<h> 4 Z W<S>.
s=2

For simplicity, we set B = U<">. Assume s € {2,3,...,h/2}. We have that
To(W<5>) is zero, since the variable aq; , is an element of Ag 1 but does not appear
in W=<°>. As a consequence, we have

To(W) = To(W<").
Hence, using that @, = By, to prove Equation (6.12)) it is enough to prove that
To(W<") = 1/(By)*.

Taking into account Remark 6.7.1] it follows that to prove Equation (6.12) it is enough
to prove that

h h/2
To(J[ B) = [1(B.)* (6.13)

Using the definition of 1, we get that B, = P, for all 1 <i < h — 1. We set
K= Bh — 6L271P1.

By the well-known formula for the development of the determinant Bj, using the row
containing the element ay; it follows that the variable ay; does not appear in K.
d

Consequently, the differential operator FosT annihilates K. Since the same operator

annihilates P; for all 1 < j < h, and Ty =Tp o %21, we get

h h—1 h—1 h—1 h/2

To(I]B) = To(Bu [ [ B) = Talaan P [ [ P) = Te(P [ [ P) = [ [(P),

=2 1=2 1=2 1=2 1=2
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with the last equality by the assumption for Part 1). Since, for 1 <1i < h—1, we have
B; = P;, Equality (6.13)) follows, which finishes the proof of Part 1).

EXAMPLE (to help understand the above proof of Part 1): If h = 4, we have

Q21 Ag22 A3 dA24 G271 G292 d23 1
_ _ <h> __
Q= ag1 Aaz2 AaA3z3 aA34 ) B=U = a31 Gaz2 433 0 )
(41 Q42 Q43 Q44 ag1 Qg ag3 0
as1 Q39
P = 3, 3, 3,3
Qg1 QAq2 A43
and . ,
0 0
To Tp

8a2,1 8(13,2 8&4,2, 8@372 8a472 ’

We now prove Part 2) using similar arguments to the ones used in the proof of
Part 1). We set

h
_ Hz‘:(h+2)/2 Ni
Nyt [T N

Using Remark it is enough to prove that

Tn(W) =1/(Np1)?. (6.14)
Denote by ry the transpose of the 1 x h matrix (1,0,0,...,0). For
se{l,2,...,h/2YU{h+1}

we denote by X <*> the h x (h + 1) matrix obtained by replacing the s-th column of
N with T9.
We set, for s € {1,2,...,h/2} U {h + 1},

h <s>
W<s> — Hj:(h+2)/2 Xj
X <s> h/2 <>
h+1 7=1 J

Since X;°7 # 0, for all 1 < j < h+ 1, we have that W=<*> is well-defined. By
Corollary [6.5.3] we have

h/2
W = W<ht1> ¢ Z W<s>

s=1



6.7. SOME USEFUL CHARACTERISTIC 2 IDENTITIES 93

For simplicity, we set C = X<"1>  Assume s € {1,2,...,h/2}. We have
Tn(W<*>) = 0, since the variable as; s is an element of Ay, but does not appear in
W<5>_ As a consequence, we have

TN(W) — TN(W<h+1>).
Hence, using that Nj,,1 = Cjy1, to prove Equation (6.14]) it is enough to prove that
TN<W<h+1>> — 1/(Ch+1)2-

Taking into account Remark [6.7.1} it follows that to prove Equation (6.14]) it is
enough to prove that

h+1 h/2
H c) =[] (6.15)
=1

Using the definition of 7o, we get that C; = @Q); for all 1 < i < h. We set

K = Ch+1 - a1,1Q1-

By the well-known formula for the development of the determinant C},; using the
row containing the element a; ; it follows that the variable a;; does not appear in K.

Consequently, the differential operator % annihilates K. Since the same operator
1,1

annihilates @; for all 1 < j < h,and Txy =T o , we get

h+1 h h

TN(H Oi) = TN(Ch-HHC TN allQlHQz TN all(Ql) HQz)
i=1

=1 = 1=2
h/2

= To( WH@ (@)’ Tg HQ Q) (@)

=2

with the last two equalities by Remark and the assumption for Part 2). Since,
for 1 < i < h, we have C; = @Q;, Equality (6.15)) follows, which finishes the proof of
Part 2).

EXAMPLE (to help understand the above proof of Part 2): If h = 4, we have

aj1 Aair2 a3 AaAig4 Qai15 ajq1 A2 ai3 Q14 1

N — Q21 G292 0A23 dA24 dgs . O = X <ht1> _ Q21 Q22 Q23 24 0
az1 G322 Aaz3 AaA34 dA35 a3;1 32 Aa33 A34 0 ’
Q41 Q42 Q43 Q44 Q45 Q41 Q42 Q43 Q44 0
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Q21 Q22 G23 A24
Q= a31 az2 az3 A34
Qg1 Aq2 A43 A44
and

o ok

Ty T

8@171 (9a271 (9a372 8a472’ 8a2,1 8a3,2 8a4,2 .

Theorem 6.7.6 1) Assume h > 2 is even. We have

h+1 h/2

Twa(JT ") = (V)2

i=1 i=1

2) Assume h > 3 is odd. We have

h+1 (h+1)/2
h h
Ton(J[Q") = [T @)
7=2 =2

Proof It is obvious that Part 2) is equivalent to the statement that for all even
integers h > 4 we have

h h/2
Tona(JTQ" ) = TJ@" )2
1=2 1=2

Using induction on the even integer h > 2, the proof of the present theorem follows
by combining Proposition which provides the starting case h = 2, and Proposi-
tions [6.7.2] and [6.7.5] which provide the inductive step. Il

Remark 6.7.7 Conjecture [6.13.1] contains a conjectural statement generalising The-
orem [0.7.6]

6.8 Anisotropy implies the Lefschetz properties

In the present section we investigate the relations between generic anisotropy and the
Lefschetz properties. As an application, in Theorem we give a second proof of
McMullen’s g-conjecture for simplicial spheres.

Assume k; is a field of arbitrary characteristic, n > 1 is an integer, and D is a
simplicial sphere of dimension n and vertex set {1,2,...,m}.
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We denote by S(D) the suspension of D. More precisely, it is the simplicial complex
with vertex set {1,2,...,m + 2} and set of facets equal to

{oU{zpmi1}:0€ F(D)} U {ocU{xpmi2}:0€ F(D)},

where F'(D) denotes the set of facets of D. It is well-known that S(D) is a simplicial
sphere of dimension n + 1. Moreover, we denote by k the field of fractions of the
polynomial ring

kilaij:1<i<n4+2, 1<j<m+2].

The proof of the following theorem will be given in Subsection [6.8.1]

Theorem 6.8.1 Assume that S(D) is generically anisotropic over the field ky. Then
the graded k-algebra k[D] has the Weak Lefschetz Property.

All three statements in the following theorem are results originally due to Adipr-
asito [I, 2]. The proof of the theorem will be given in Subsection [6.8.2]

Theorem 6.8.2 (Adiprasito) Assume D is a simplicial sphere of dimension n, with
n > 1. Then

i) McMullen’s g-conjecture is true for D.

ii) Assume ky is an infinite field of characteristic 2. Then the Stanley-Reisner ring
ki[D)] has the Weak Lefschetz Property.

iii) Assume ki is an infinite field of characteristic 2. Then the Stanley-Reisner
ring ki[D] has the Strong Lefschetz Property.

Remark 6.8.3 It is well-known that iii) implies ii). We state both ii) and iii), since
in our approach we first prove ii) and then use it to establish iii). Notice also that
the paper [I] contains the stronger result that for any infinite field k; of arbitrary
characteristic the Stanley-Reisner ring k;[D] has the Strong Lefschetz Property.

6.8.1 Proof of Theorem

The aim of the present subsection is to prove Proposition [6.8.8] since it immediately
implies Theorem [6.8.1] We use some key ideas and results of Swartz, which were
developed in [65] Section 4].

We keep using the notations defined in Section [6.8f We set Ry, = k[z1,. .., 2y
and R = Rgn|Tmi1, Tmio). We denote by Ip C Ry, the Stanley-Reisner ideal of D
over the field k& and by Igpy C R the Stanley-Reisner ideal of S(D) over the same
field k. It is clear that

Is(py = (Ip) + (Tm+1Tm2)-
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We denote by k[D] = R,y/Ip and k[S(D)] = R/Isp) the corresponding Stanley-
Reisner rings over k.
For 1 <1 <n+ 2, we set

m—+2

fz’ = Z CLZ'JLUJ‘ S R

J=1

We use the notation A = k[S(D)]/(f1,-.., fat2), and denote by m4 : R — A the
natural projection k-algebra homomorphism. Therefore, A is the generic Artinian

reduction of k;[S(D)] in the sense of Definition [6.1.1]
We set J = Ig(p) : (#m41) C R. In other words,

J = {U €ER : ur,iq € IS(D)}-
It is clear that J = (Ip) 4 (@m12). We use the notation

R
B =
J+(f17f27'”7fn+2) ’

and we denote by mp : R — B the natural projection k-algebra homomorphism.
For2<i<n+2and 1< j <m, we set

a; a
i = det( i Gt ) ek

Qi Qim+1

In addition, for 2 < i < n + 2, we set

m

gi = Zci,jxj € R

j=1
Since, for all 2 <17 < n + 2, it holds
9i = Gims1fi — @11 fi + Tmg2 (@1 m41Qimr2 — QGimt101,m2),
we get the following equality of ideals of R
(f1s fos ooy for2) + (@ma2) = (f1) + (92,935 - -+ s Gni2) + (Tms2)- (6.16)

We use the notation C' = k[D]/(g2, 93, - ., gnt+2), and denote by 7¢ : Ry, — C the
natural projection k-algebra homomorphism. We set

Ay

W= — T; € Rgp.

a
i=1 1,m+1
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It is clear that 7p(w) = mp(2m11). We consider the unique k-algebra homomorphism
Omod : R — C, such that ¢nea(x;) = mo(z;) for all 1 < i < m, dpmed(Tmi1) = mo(w)
and @od(Tmi2) = 0. From the definition of w it follows that f; € ker ¢,,,4. Hence,
Equation (6.16]) implies that the ideal J + (f1,..., fnio) is contained in the kernel
of dmoqa- Consequently, there exists an induced k-algebra homomorphism ¢ : B — C'
such that ¢ omg = Poa-

Proposition 6.8.4 The map ¢ is an isomorphism of graded k-algebras.

Proof [t is clear from the definition that ¢ preserves degrees. We consider the unique
k-algebra homomorphism R,,, — B, that sends z; to mp(x;), for all 1 <7 < m. Using
Equation (6.16), it follows that the ideal Ip + (g2, 93, ..., gns+2) Of Rep, is inside its
kernel, hence there exists an induced k-algebra homomorphism ¢ : C' — B. It follows
from the definitions that ¢ is the inverse map of ¢. O

Proposition 6.8.5 i) The k-algebra A is graded, Artinian and Gorenstein with socle
degree equal to n + 2.

ii) The k-algebras B and C are graded, Artinian and Gorenstein with socle degree
equal ton + 1.

Proof We first remark that, by Proposition the graded k-algebras B and C'
are isomorphic.

By Remark [6.2.1] the k-algebra k[S(D)] is graded and Gorenstein with Krull di-
mension equal to n + 2. Moreover, by the same remark A is Artinian and Gorenstein
with socle degree equal to n + 2.

Since Igpy C J, there exists a unique surjective homomorphism of k-algebras
Tnew : A — B, such that m,., 0 m4 = mg. Since m,., is surjective and A is Artinian, it
follows that B is Artinian. Since C'is isomorphic to B we get that C' is also Artinian.
By Remark the k-algebra k[D] is graded and Gorenstein with Krull dimension

equal to n+ 1. Tt follows that the sequence gs, . .., gn12 is a regular sequence for k[D].
This implies that the k-algebra C' is Gorenstein and, using again Remark that
the socle degree of C'is equal to n + 1. O

We consider the homomorphism of R-modules R — A, that sends u to ma(Zy41u),
for all w € R. Tt is clear that the ideal J + (fi,..., fut2) of R is inside its kernel.
Hence, we get an induced homomorphism of R-modules m, _, : B — A, such that

M1 (WB(U)) =TA (xm-&-lu)

for all u € R. The following proposition is a special case of [65, Proposition 4.24].

Proposition 6.8.6 (Swartz) The homomorphism m, ., is injective.
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Proof Recall the map v defined in the proof of Proposition We set
d=mg, o0 : C— A

Since 1 is an isomorphism, it is enough to prove that ¢ is injective.
Since, for all j > 0, we have 6(C;) C A,41, to prove that ¢ is injective it is enough
to assume that 0 < j <n+1 and u € (Rsy,); is a homogeneous element of degree j
such that m¢(u) # 0, and prove that d(mo(u)) # 0. In order to get a contradiction,
we assume that
d(me(u)) = 0. (6.17)

By Proposition C'is a graded Artinian Gorenstein k-algebra with socle degree
n + 1. Therefore, by Remark [2.1.66] there exists w € (Rgp)nt1—; such that m¢(uw)
is nonzero. Using Equation (6.17))

d(mo(vw)) = ma(Tmi1uw) = Ta(Tppru)ma(w) = §(me(u))ma(w) = 0. (6.18)
We fix a facet {aq,...,an41} of D and consider the facet {ai,...,a,41,m + 1} of
S(D). We set
n+1 n+1
Zo = H Ta, € Rem, ZA = Tl H Za, € R.
r=1 r=1

Using the discussion after the proof of Corollary ma(z4) is a nonzero element of
Ap1o. By the same discussion, mo(2¢) is nonzero, hence is a basis of the 1-dimensional
k-vector space C,, 1. Therefore, there exists a nonzero element A\ € k such that

7Tc<uw) = )\7‘(0(20).

Consequently,

(me(uw)) = 0(Ame(z0)) = Ao(me(ze)) = Ama(Tmi12¢) = Ama(za) # 0,

which contradicts Equation (6.18]). U
The following corollary follows immediately from Proposition [6.8.6]

Corollary 6.8.7 Assume u € R. Then the following are equivalent
i) We have mp(u) = 0.
ii) We have ma(Zpiqu) = 0.

Proposition 6.8.8 Assume S(D) is generically anisotropic over the field ky. Then
the element mo(w) is a Weak Lefschetz element for the Artinian k-algebra C. As a
consequence, the graded k-algebra k[D] has the Weak Lefschetz Property.
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Proof We denote by p the integral value of the rational number n/2.

Using that 7p(w) = 7p(#m+1) and Proposition [6.8.4] it is enough to prove that
the element wp(x,,.1) is a Weak Lefschetz element for the Artinian k-algebra B. By
Proposition [6.8.5] B is a graded Artinian Gorenstein k-algebra with socle degree n+1.
Using [51, Remark 2.4|, it is enough to prove that the multiplication by 7g(2,,1) map
from B, to B,y is injective.

Assume u € R, has the property

me(Tmiu) = 0.

Using Corollary we have m4(22, . u) =0, hence 7wa(z2,,,u*) = 0. Using that
the socle degree of A is n+ 2 and the assumption that S(D) is generically anisotropic
over the field ki, we get 7a(x,,11u) = 0. Corollary implies that 7p(u) =0. O

Proposition 6.8.9 Assume the dimension of D is even and S(D) is generically
anisotropic over the field k. Then the element o (w) is a Strong Lefschetz element
for the Artinian k-algebra C. As a consequence, the graded k-algebra k[D] has the
Strong Lefschetz Property.

Proof We set z = mg(w). Using Proposition it is enough to prove that the
element z is a Strong Lefschetz element for the Artinian k-algebra B. By Propo-
sition B is a graded Artinian Gorenstein k-algebra with socle degree n + 1.
Hence, to finish the proof it is enough to prove that, for all ¢ with 0 < 2; < n+ 1, the
multiplication by z"*1=2 map B; — B,,;1_; is injective.

Assume 0 < 2i <n+ 1 and u € R; has the property

22 (u) = 0.

Using that 2z = mp(z,41) and Corollary , we get WA(x%Jffziu) = 0, which
implies that 74 (255 *"u?) = 0.

Since n is even, the socle degree of A is n 4+ 2 and we assumed that S(D) is
generically anisotropic over the field k1, we get m(xﬁ,ijﬁ)/ >7'u) = 0. Corollary m

implies that WB(xq(ng)/Q_i_lu) = 0, therefore

222771 e p () = 0. (6.19)

By the proof of Proposition z is a Weak Lefschetz element for B. Hence, the
multiplication by z map B, — B, /241 is injective. Using Proposition [6.12.7, we have
that, for all ¢ with 0 < ¢ < n/2, the multiplication by z map B; — B, is injective.
Consequently, Equation (6.19)) implies that 7z (u) = 0. O
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6.8.2 Proof of Theorem

We start the proof of Theorem [6.8.2L 'We denote by k,,.q the field of fractions of the
polynomial ring

For 1 <:<n+1, we set

We use the notation

Amod = kmod[D]/<fmod,17 ) fmod,n+1)-

Hence, A,,0q is the generic Artinian reduction of k1[D] in the sense of Definition [6.1.1]

We first prove Part i). We denote by k; the field Z/(2) with two elements. By The-
orem S(D) is generically anisotropic over the field k;. Hence, by Theorem[6.8.1]
k[D] has the Weak Lefschetz Property. It is well-known ([6I]) that this implies that
McMullen’s g-conjecture is true for D.

We now prove Part ii). Assume k; is an infinite field of characteristic 2. By Theo-
rem [6.2.3] S(D) is generically anisotropic over the field k. Hence, by Theorem [6.8.1]
k[D] has the Weak Lefschetz Property. Using Proposition [6.12.3] ki[D] also has the
Weak Lefschetz Property.

We now prove Part iii). Assume k; is an infinite field of characteristic 2. By
Theorem S(D) is generically anisotropic over the field k. If the dimension n
of D is even, Proposition implies that k[D] has the Strong Lefschetz Property.
Using Proposition k1[D] also has the Strong Lefschetz Property.

Assume now that n is odd. By Part ii), k;[D] has the Weak Lefschetz Property.
Using Proposition the Artinian k,,.q-algebra A,,,q has the Weak Lefschetz
Property. By Theorem D is generically anisotropic over the field k;. Hence,
for all # with 0 < i < (n+1)/2 and all 0 # u € (Apmoa)i, we have u? # 0. Propo-
sition now implies that A,,,q has the Strong Lefschetz Property. Since kp is
infinite, Proposition implies that k;[D] has the Strong Lefschetz Property. This
finishes the proof of Theorem [6.8.2]

Corollary 6.8.10 Assume D is a simplicial sphere of dimension n > 1, and ki is a
(finite or infinite) field of characteristic 2. Then the kyoq-algebra A,oq has the Strong
Lefschetz Property.

Proof The field k,,,4 is infinite and has characteristic 2. Hence, Theorem im-
plies that the k,,,q4-algebra k,,,q[D] has the Strong Lefschetz Property. Using Propo-
sition [6.12.6] the result follows. O
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6.9 Anisotropy in dimension 1

In this section ki denotes a field of arbitrary characteristic.

We assume that m > 3 and D is the boundary of the m-gon with vertex set
{1,...,m}. We also assume the following: the vertex 1 is connected to the vertices m
and 2, the vertex 7 is connected to the vertices : — 1 and ¢ + 1 when 2 <i < m — 1,
and the vertex m is connected to the vertices m — 1 and 1.

We denote by S;, the polynomial ring

Ssp=kila;;:1<i<2,1<j<m]

and by k the field of fractions of Ss,. We define the polynomial ring R = k[z1, ..., Zp,).
We denote by Ip C R the Stanley-Reisner ideal of D, and we set k[D] = R/Ip. For

1 <2 <2 we set
m
fi= Zai,jxja
j=1

and we define A = k[D]/(f1, f2). Therefore, A is the generic Artinian reduction of
k1[D] in the sense of Definition [6.1.1]
If m > 4 we have

Ip=(rz; :3<j<m—-1)+(zz;:2<i<m-—2,i+2<j<m),

while if m = 3, we have Ip = (z1x273).

We fix the ordered facet (1,2) of D. Following Equations (6.1) and (6.2), we set
U = \11(172) : A2 — k and P =pa - Al X Al — k.

Proposition 6.9.1 For1 <i<m — 1, we have

1
(U om)(ziziyr) = RSk
Moreover, we have
om)(x1x :L or x2:_M om)(22) = — m =1, 1]
(\Ij )( 1 m) [m’ 1]7 (\Ij )( 1) [m’ 1][172]7 (\I/ )( m) [m—l,m][m, 1]
and =10+ 1]
(Wom() =~ Tt 1

for2<i1<m-—1.
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Proof Combining Proposition with Proposition [6.3.10, the result is immedi-
ate. Il

Proposition 6.9.2 We have dimy Ay = m — 2. If S is any subset of {1,...,m} of
cardinality m — 2, then the set {m(z;):i € S} is a k-basis of A;.

Proof We denote by M the 2 x m matrix with (4, j)-entry equal to a; ;. The de-
terminant of every 2 x 2 submatrix of M is a nonzero element of the field k. Since
A =k[D]/(f1, f2) and Ip is a homogeneous ideal with generators of degrees > 2, the
result follows. O

For 1 <i<m —2, we set ¢; = 7(x;41). By Proposition the finite sequence
€1,€2,.-.,Em-2

is an ordered basis of A;. We denote by N, the (m —2) x (m — 2) symmetric matrix,
with (7, j)-entry equal to p(e;,e;). We call N, the matrix of p with respect to the
ordered basis.

Remark 6.9.3 Assume a,b,c,d € {1,...,m}. Then, we have the well-known Pliicker
identity
[a,b[c,d] — [a,c][b,d] + [a,d][b,c] =0,

see [43, Theorem 5.2.3].
Proposition 6.9.4 We have

[1,m]
[T i+ 1]

Proof We use induction on m > 3. For m = 3, it follows from Proposition [6.9.1]
Assume m = 4. Then we have to compute the determinant of the matrix

13 1
N, = ( 2R3 B ) .
[2,3] T [23]3.4]

)2 ~[1,3][2,4] - [1,2][3,4]
37 [1,2]][2,3]2[3, 4]

det(N,,) = (—1)™

It is equal to

1,3] [2,4] 1
TR 3EIBd B

Using the Pliicker identity [1,2][3,4] — [1, 3][2,4] + [1,4][2,3] = 0 (see Remark [6.9.3))
the result follows.
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Assume now m > 5 and that the result holds for all previous values up to m — 1.
Using Proposition we have that V,, has the block format

Nm,1 'Ut
Nm — v N [m—2,m] s
[m—2,m—1][m—1,m]

where v is the (m — 3) x 1 matrix

Morever, a similar block format statement holds for the matrix N,,_;.
Developing the determinant of V,, using the last column, and using the inductive
hypothesis together with the Pliicker identity (see Remark [6.9.3)

[1,m —2][m —1,m] —[1,m —1|][m — 2,m] + [1,m][m — 2,m — 1] = 0,

we get
B [m — 2,m] 1 )
det(N,,) = — = 2m — 1im — L] det(Ny_1) — ([m Iy 1}) det(Np—2)
=yt gy RN
m—2,m—1][m—1,m|[[[Z,"[i,i + 1] m—2,m—12[[2,"[i,i + 1]
_ (_1)m,2( [1,m — 1][m — 2, m)| B [1,m — 2] )

m—2,m— T[S i+ 1 [m—2,m — 1)1, + 1]

= (-1

[1,m—1][m—2,m]—[1,m—2}[m—1,m])
[m —2,m — 1T 60 + 1]
e [1,m]
R
U

Remark 6.9.5 Assume 1 < ¢ < d < m. It is well-known that [c, d] is an irreducible
element of S,. Hence, there exists an induced valuation map

Val[c’d] ck \ {O} — 7.

Recall that if f,g € Sy, \ {0}, then valy q(f) is the largest integer s such that [c, d]*®
divides f in Sy, and

valie.q (f/9) = valiea(f) — valicq(g)-
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Remark 6.9.6 Assume that h is any ordered basis of A;. We denote by H the matrix
of p with respect to h. By the basic theory of bilinear forms, there exists an invertible
matrix P with entries in k& such that

H = P'N,,P.
As a consequence, using Proposition [6.9.4]

Lm

[T fivi + 1]

Taking into account Remark [6.9.5] we conclude that we can recover the simplicial
complex D from (the determinant of) p, since the set of facets of D is exactly the
set of ordered pairs (c,d) such that 1 < ¢ < d < m and valg(det(H)) is an odd
integer. An interesting question is whether this holds for all simplicial spheres of odd
dimension. In other words, assume F is a simplicial sphere of odd dimension > 3 and
e is an ordered facet of E. Is it possible to recover E from (the determinant of) the
symmetric bilinear form p.?

det(H) = (—1)™(det P)?

The proof of the following theorem will be given in Subsection [6.9.1]

Theorem 6.9.7 The simplicial sphere D is generically anisotropic over k.

6.9.1 Proof of Theorem [6.9.7]

We keep using the notations of Section [6.9] Using Remark to prove Theo-
rem it is enough to prove that the symmetric bilinear form p : A; x A; — k is
anisotropic.

We define a second basis of Ay, by using the Gram-Schmidt orthogonalization. We
set €, = e, and we inductively define

61‘:€Z‘+

[1, ]
€i—1,
[Li+1 !

for2<i:<m-—2.
Proposition 6.9.8 For all 1 <1 <m — 2, we have

€ = B ]ﬂ(xt). (6.20)

—~[1,i+1
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Proof We prove Equation (6.20) using induction on i. For ¢ = 1 it is true by the
definition of €;. Assume 1 <1i < m — 3 and that Equation (6.20) is true for the value
1. We have

L ni+1]. [Li+1] <~ [1,¢
€it1 = €i+1 t+ mei = m(Tit2) + [1,i+2 (tZQ 1,0+ 1]7T($t))
i+1 i+2 1, 1]

= ea) + 3 7 = X P

Proposition 6.9.9 For all 1 <i<m — 2, we have

1,7+ 2]
1,i4+ 1]+ 1,0+ 2]

p<é’i7éi) ==
Moreover, if 1 < j <m —2 and j # i, we have

Proof Assume 1 <i<m —2 Wesetu=>3,,[1,tnr(z;). By Proposition |6.10.1

m

S I () =

t=2

Hence, if 1 < r <, taking into account that 7(z,z;) = 0 when r +2 < t < m, we get
um(x,)=0. (6.21)

Assume 1 < j < i. Using Proposition [6.9.8, Equation (6.21)) implies that p(é;, €;)
is equal to zero. Moreover, Equation (6.21]) also implies that
it1
U(w?) = U(u () [ tr(x))) = U([1,i + ur (i)
t=2
= W([1,i+ 1L, dm(zzis) + (1,0 + 17 (27,,))
1,1 1,i+1 2
[1Z+1]( [ Z] o .[>7Z+'][Z7Z_}'_ ] )
[i,i+1] [, i+1)[i +1,i+2]
[Li)li+1,i4+2] — 1,0+ 1][i,i + 2]

= [Lit1] it i+ 1,i+2
0 [Li+2]i+1] i [1,i+ 2]
BRI E R R e Ea R
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where we used Proposition and Remark Since €; = u/[1,47+ 1], this proves
the formula for p(é;, é;). 0

We set .

L=1111,s]|[s,s+1]
and, for 1 <t <m —2, we define L, = L/([1,t + 1][t + 1, + 2]) € S,p.
Using Proposition [6.9.9] it is clear that to prove Theorem it is enough to
prove that, if d; € k satisfy

3

[|
¥

mz 1t+2] 0
[Lt+1t+1,t+2 7

we then have d; = 0 for all 1 <t < m — 2. By clearing denominators, it is enough to
prove the following proposition.

Proposition 6.9.10 Assume dy,...,d,,_2 € Sy, satisfy
> A1 t+ 2L, =0. (6.22)
Then, we have d; =0, for all 1 <t <m — 2.

Proof We give to the polynomial ring S;, the lexicographic ordering > with
a1 > a1 > > Ay > Q21 > 22 > - > A9 m-

Using Corollary|6.11.3] it is enough to prove that if the integers ¢, 7 have the properties
1<i<j<m-—2,d; #0and d; # 0, we then have

in (d7[1,i 4 2|L;) # ins (d3[1, j + 2] L;). (6.23)
Using the definitions of L; and L; and Remark [6.11.1] m we have

1n>(d22[1,7/+ 2]Lz) = (1n><d) al 1 Hals H als - Qm

s=i+2
and
7 m—1
ins (&3[1,j + 2|L;) = (ino(d)))* - (a1)™ - [Jars - [] ars- Qs
s=1 s=j+2
where ); and (); are monomials in the variables as 1, ..., a2,,. Therefore, the variable

a1 ;11 appears in the monomial in(d?[1,7 + 2]L;) with an odd power, and in the
monomial ins (d3[1,7 + 2]L;) with an even power. Hence, Inequality (6.23) is true.
]
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Example 6.9.11 Assume m = 6. Equation (6.22)) becomes
di[1, 3| Ly + d3[1, 4] La + d3[1, 5] Ly + d3[1,6] Ly = 0,

where

and
L =[1,2][1,3][1,4][1, 5][2, 3][3, 4][4, 5][5, 6]

6.10 A general proposition related to elimination

In this section we describe a specific form of Gauss elimination that is used in the
present, chapter.

Assume R is a commutative ring with unit, and n, m, Z are positive integers with
n < m < Z. Assume that, for 1 < j < m, z; is an elements of R and that for
1<i<nand1<j<Z, aq; is an element of R. We denote by M the n x Z matrix
with (7, j)-entry equal to a; ;.

Assume bq,...,b, are n integers, with 1 < b, < Z, for all .. We denote by
[b1,...,b,] the determinant of the n x n matrix, whose i-th column is equal to the
b;-th column of M. For 1 <1i < n, we set

m
fi = E Q5 t Tty
t=1

and we denote by I = (f1,..., f.) the ideal of R generated by the f;.

Proposition 6.10.1 Assume cq,...,c,_1 are integers, with 1 < ¢; < Z for all i. We
have

m

Z[Cl’ C2y vy Cp,tlxy € 1.

t=1

Proof Denote by N the n x (n— 1) matrix, whose i-th column is the ¢;-th column of
M. For 1 < j <n, we denote by N; the determinant of the submatrix of N obtained
by deleting the j-th row of N. We claim that

Z[Cl’ Coy...,Cph—1, t][[’t = Z(_l)j+anfj'

t=1 j=1
Indeed, on the left hand side, the coefficient of z; is [c1, co, ..., c,—1,t], while on the
right hand side the coefficient is equal to 3 7, (—1)7*"Nja,;. The two quantities are

equal, by developing the determinant [cy, o, ..., ¢, 1,t] using the last column. O
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6.11 A general technique for proving a polynomial is
nonzero

Here we discuss a well-known general method which is useful for proving that certain
sums of products of bracket polynomials are nonzero. We use it in the proof of

Proposition [6.9.10
Assume m > 1, k is a field and R = k[z; : 1 < ¢ < m]. We denote by Apg the set

of all monomials of R. In other words,
Ag = {af* - 22 2 a; > 0 for all i}.

Following |27, Section 15.2|, a monomial order on R is a total order > on Apg such
that if uy, us, w € Ar with uy > ug and w # 1, we then have wu; > wus > us. In
addition, by the same reference, the lezicographic order on R with x1 > x> --- > x,,

is the total order > on Ap defined by z{* - - - x%m > a:’il -+~ xbm if and only if a; > b; for

the first index ¢ such that a; # b;. It is a monomial order on R.

Assume now > is a monomomial order on R. It induces the initial monomial map,
in. : R\ {0} — Ag, defined as follows. Assume f € R\ {0}. Then, there exist
(unique) s >0, g1,...,9s € Ag and Ay, ..., As € k\ {0} such that

f:Z)\igi and g1 > 92> gz > - > Gs-
i=1

By definition, in. (f) = g;.
Remark 6.11.1 By the definition of a monomial ordering, we have

ins (f1f2) = (ins(f1))(ins(f2))

for all fi, fo € R\ {0}.
Moreover, by the definition of a monomial ordering we have the following propo-

sition.

Proposition 6.11.2 Assume fi, fo,...,f; € R\ {0}. Assume there exists a with
1 <a <t such that

in(fa) > ins(f)
for allb with 1 <b<tandb#a. Then Y. fi #0 and ins(30_, fi) = ins(fa).

Corollary 6.11.3 Assume fi1, fo,..., f: € R\ {0} satisfy

ins(f;) # inx(f;)
for all 1 <i,j <t withi#j. Then Y., fi #0.
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Proof Since in.(f;) # ino(f;) for all 1 <4, j <t with ¢ # j, there exists a unique
integer a such that 1 < a <t andin.(f,) > in-(f,) for all b with 1 <b <t and b # a.
The result follows by Proposition [6.11.2 U

6.12 Lefschetz properties and base change

The statements in the present section, with the likely exception of Proposition [6.12.8]
are well-known. We include them for completeness.

Proposition 6.12.1 Assume E is an infinite field, f € Elxq,...,2,] is a nonzero
polynomial and, for 1 < 1 < m, Z; 1s an infinite subset of E. Then, there exists a
point p in the set Zy X Zy X - -+ X Zy, such that f(p) # 0.

Proof We use induction on m. If m = 1, it is well-known that the polynomial f has
a finite number of roots in the field F, and the result follows.

Assume m > 2 and that the result is true for m — 1. There exist s > 0 and, for
0 <i<s, a polynomial g; € F[z1,...,Zy_1], such that

=Yg,
=0

Since f is nonzero, there exists ¢, with 0 < ¢ < s, such that g. is nonzero. Hence, by
the inductive hypothesis, there exists an element (aq,...,a,_1) € Z1 X Zo X+ X Zpy_q
such that g.(ai,...,a,-1) # 0. Consequently, the polynomial h € El[z,,], with

s
h = Zgi(alv s 7am—1)xfna
i=0

is nonzero. By the case m = 1, there exists a,, € Z,, such that h(a,,) # 0. This
implies that f(aq,...,a;) # 0. O

Corollary 6.12.2 Assume that E is an infinite field, m > 1 is a positive integer and
f € Elxy,...,xy] is a nonzero polynomial. Assume ki is an infinite subfield of E.
Then

i) There exists a point p € k7" such that f(p) # 0.

ii) Endow the set E™ with the Zariski topology. Then the subset k" of E™ is
Zariskr dense.



110 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

Proof Part i) follows from Proposition [6.12.1} by setting Z; = ky for all 1 <i < m.
Part ii) follows immediately from Part i). 0

Assume that k; C FE is a field extension. We consider the polynomial ring
ki[x1, ..., 2], where the degree of the variable z; is equal to 1, for all 1 < i < m.
Assume I C ky[xy,...,2,) is a homogeneous ideal such that the quotient algebra
G = ki[z1,...,2,)/] is Cohen-Macaulay. We denote by d the Krull dimension of G.

We set Gg = Elx1,...,2,]/(I), where (I) is the ideal of E[zy,...,x,,] generated
by I. By [I7, Theorem 2.1.10|, G is also Cohen-Macaulay. Since, for all ¢ > 0,
(Gg)i = G; ®y, E, the Hilbert function of G as a graded kj-algebra is equal to the
Hilbert function of G as a graded FE-algebra. Consequently, the Krull dimension of
GE is d.

Proposition 6.12.3 Assume that the field ki is infinite. Then the following are equiv-
alent:

i) The graded ky-algebra G has the Weak Lefschetz Property.

ii) The graded E-algebra Gg has the Weak Lefschetz Property.

Proof We first assume that GG has the Weak Lefschetz Property. Then, there exist
elements ¢1,...,94,w € G7 such that ¢q,...,gq is a regular sequence for G and w is
a Weak Lefschetz element for G/(g1,...,g4). Clearly, ¢, ..., gq is a regular sequence
also for Gg and w is a Weak Lefschetz element also for Gg/(g1,...,9q4). Hence, the
k-algebra G has the Weak Lefschetz Property.

For the opposite direction, we assume that Gg has the Weak Lefschetz Property.
By taking the coefficients of f; and w, we can identify the set

S = {(gl, - ,gd,W) 1 g; € (GE)l,W € (GE)l}

with the affine space (Gg){™. We denote by U the subset of S consisting of the
element (gi,...,gq4,w) such that gi,...,g4 is a regular sequence for Gg and w is a
Weak Lefschetz element for Gg/(g1,. ... ga)-

By the assumption that G g has the Weak Lefschetz Property, the set U is nonempty.
Hence, by [5l Lemma 4.1], U is a nonempty Zariski open subset of S. Using that the
field k; is infinite, Corollary [6.12.2)implies that G is Zariski dense in (G )¢, hence
G NU #@. Let (g1,...,94,w) € G NU. Then gy, ...,gq is a regular sequence
for G and w is a Weak Lefschetz element for G/(g1,...,g4). Hence, the kj-algebra G
has the Weak Lefschetz Property. U

We denote by k the field of fractions of the polynomial ring

kl[a,-J:lSiSd, 1§]§m]
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We set Gy = k[z1,...,2,]/(I), where (I) is the ideal of k[xy, ..., z,,] generated by I.
For1 <i<d, weset f;= 27]”21 a;;x;. Hence, the Artinian k-algebra G/(f1,..., fa)
is the generic Artinian reduction of the kj-algebra G in the sense of Definition [6.1.1}

Proposition 6.12.4 Assume d > 1. Then the following are equivalent:

i) The Artinian k-algebra Gi/(f1,. .., f4) has the Weak Lefschetz Property.

ii) If E is an infinite field containing ki as a subfield, then the E-algebra Gg has
the Weak Lefschetz Property.

iii) There exists an infinite field F which contains ki as a subfield such that the
F-algebra G has the Weak Lefschetz Property.

Proof We first prove that i) implies ii). Since the k-algebra G/(fi,..., f4) has the
Weak Lefschetz Property, it follows that the k-algebra Gj has the Weak Lefschetz
Property. Assume E is an infinite field containing k; as a subfield. We denote by E;
the field of fractions of the polynomial ring

Since k is a subfield of E;, Proposition implies that the F;-algebra Gg, has the
Weak Lefschetz Property. Since E is an infinite subfield of F;, the same proposition
gives that the E-algebra G has the Weak Lefschetz Property.

We now prove that ii) implies iii). It is clear.

We now prove that iii) implies i). We denote by E the field of fractions of the
polynomial ring in one variable k[T over k. We denote by F; the field of fractions of
the polynomial ring

FlT,a;,;:1<i<d, 1<j<m)].

Since we have that I is a subfield of F}, both fields are infinite, and, by the assumption,
the F-algebra G has the Weak Lefschetz Property, it follows, by Proposition [6.12.3]
that the Fj-algebra G, has the Weak Lefschetz Property. Since F is an infinite
subfield of Fi, the same proposition implies that the FE-algebra Gg has the Weak
Lefschetz Property.

We denote by I¢ the ideal of E[xy,...,x,,] generated by I. We denote by V the
m-~dimensional E-vector subspace of E[xy,...,z,,] consisting of homogeneous degree
one polynomials. For 1 <1 <d, 1 < j < m, we define the infinite subset

Zi,j = {ai,j —{—TT . r 2 1}

of . We denote by Z the Cartesian product, for 1 <i <d, 1 < j < m, of the sets
Z; ;. By Corollary , Z is Zariski dense in the affine space E%™.

Since G'i has the Weak Lefschetz Property, it follows that the set U consisting of all
(g1,...,94) € V¥such that gy,..., gy is a regular sequence for Gy and Gg/(g1,. .., ga)
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has the Weak Lefschetz Property, is a nonempty Zariski open subset of the affine space
Ve,

We identify V¢ with E%™ by considering the coefficients of the homogeneous degree
one polynomials. Since Z is Zariski dense in F9", the intersection of Z with U is
nonempty. Hence, for 1 <i <d, 1 < j < m, there exists a positive integer r; ; such
that, if we set

gi = (ai;+T" ),
j=1
we have that gy, ..., gq is a regular sequence for Gg and Gg/(g1, ..., ga) has the Weak
Lefschetz Property.

There exists a unique k;-linear automorphism of the polynomial ring ki[a; ;, T
that sends 7" to T" and a; ; to a; ; + 1", for all 4, 7. The automorphism extends first
to a field automorphism of £ and then to a degree preserving automorphism ¢ of the
polynomial ring Elxy, ..., z,,] that sends z; to x;, for all 1 <7 < m, and is the identity
when restricted to k. Hence, ¢(I¢) = I¢ and ¢(f;) = g;, for all 1 < ¢ < d, which
imply that

oI+ (f1,- -, fa)) =1+ (g1, -, 9a)-

Consequently, f1,..., fqis aregular sequence for Gg and Gg/(f1, ..., f1) has the Weak
Lefschetz Property, since the same properties hold for ¢1,...,94 and Gg/(¢1,- .., ga)-

Finally, since k is an infinite subfield of E, Proposition implies that the
k-algebra Gy /(f1,..., fa) has the Weak Lefschetz Property. O

We now discuss the corresponding statements of the last two propositions for the
Strong Lefschetz Property.

Proposition 6.12.5 Assume that the field ki is infinite and G is Gorenstein. Then
the following are equivalent:

i) The graded ky-algebra G has the Strong Lefschetz Property.

ii) The graded k-algebra G has the Strong Lefschetz Property.

Proof With the obvious modifications, the arguments in the proof of Proposition|6.12.3
also work here. O

Proposition 6.12.6 Assume that G is Gorenstein and d > 1. Then the following are
equivalent:

i) The Artinian k-algebra Gy /(f1,. .., fa) has the Strong Lefschetz Property.

i) If E is an infinite field containing ki as a subfield, then the E-algebra Gg has
the Strong Lefschetz Property.

iii) There exists an infinite field F which contains ki as a subfield such that the
F-algebra Gg has the Strong Lefschetz Property.
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Proof With the obvious modifications, the arguments in the proof of Proposition|6.12.4
also work here. O

We also need the following two propositions. The first is a special case of Part (b)
of |48, Proposition 2.1].

Proposition 6.12.7 Assume ky is a field and A is a standard graded Artinian Goren-
stein ki-algebra of socle degree d. Assume s in an integer with 1 < s < d. Assume
w € Ay has the property that the multiplication by w map Ay — Agy1 s injective.
Then, for all t with 0 <t < s, we have that the multiplication by w map Ay — Ayyq is
mnjective.

Proof Assume 0 <t < s and 0 # u € A;. By Remark [2.1.66| there exists z € A,_,
such that uz # 0. Hence w(uz) # 0, which implies that wu # 0. O

Proposition 6.12.8 Assume ky is a field and A is a standard graded Artinian Goren-
stein ki-algebra of even socle degree d. We assume that A has the Weak Lefschetz
Property and that, for all i with 0 < i < d/2 and all 0 # u € A;, we have u* # 0.
Then A has the Strong Lefschetz Property.

Proof We fix w € A; such that, for all £ > 0, the multiplication by w map A; — Az
has maximal rank. Since A is Gorenstein of even socle degree d, it follows that the
multiplication by w map form Ag_1 — Agse is injective. By the definition of the
Strong Lefschetz Property, and using that A is Gorenstein, to prove the proposition
it is enough to show that for all 4, with 0 < i < d/2, the multiplication by w? % map
from A; to Ag_; is injective.

Assume 0 < i < d/2 and that z € A; has the property

wh %, = 0.

As a consequence, w? %22 = 0. Using the assumption, it follows that w>~*

z = 0.
Proposition [6.12.7] implies that z = 0. U

6.13 A conjecture about differentiation

Assume ky is a field of characteristic 2. Assume n > 1 is an integer and D is a
simplicial sphere of dimension n with vertex set {1,2,...,m}. We denote by k the
field of fractions of the polynomial ring

kl[am:léiﬂn—i-l, ].S,]Sm]
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We define the polynomial ring R = k[z1,...,2,], where we put degree 1 for all
variables ;. We denote by Ip C R the Stanley-Reisner ideal of D. Moreover, we set
k[D] = R/Ip. For i =1,...,n+ 1, we set

m

fi= aia;,

Jj=1

and we define A = k[D]/(f1,..., fns1)- Hence, A is the generic Artinian reduction of
k1[D] in the sense of Definition We denote by 7 : R — A the natural projection
k-algebra homomorphism, and by ¥ : A,,,; — k the vector space isomorphism defined
in Remark [6.3.6

For a finite sequence ¢ = (d1,...,0,41) such that 1 < ¢; <mforalll <i<n+1
we set

n+1
Ty = H xs, € R.
i=1
Assume o = (0y,...,0,41) and 7= (7q,...,7,41) are two finite sequences such

that 1 < o;,7; <m, for all 1 <i <n+ 1. We denote by 974 : k — k the (n + 1)-th
order differential operator which is differentiation with respect to the variables in the
set

{aio, + 1<i<n+1}

The following conjecture, if true, will generalise Theorem [6.7.6] and Propositions [6.4.1
and [6.4.7

Conjecture 6.13.1 1) Assume the monomial z,z, is not the square of a monomial
in R. We then have
(0?0 W o 1) (x,) = 0.

2) Assume z,x, is the square of a monomial in R. Assume 6 = (1,...,0,41) 18
a finite sequence such that 1 <, <m, forall1 <i<n+1, and z,z, = (x5)2. We
then have
(O o W o m)(2,) = ((Uor)(zs))”.

Remark 6.13.2 We note that Conjecture [6.13.1] implies the following interesting
equality
(@7 oW o m)(,) = (07 0 W o 7)(z,).

Remark 6.13.3 Assume ¢ > 1 and t > 2 are two integers such that ti < n + 1.
Assume 0 # u € A;. Theorem implies that if ¢ is a power of 2 then u' # 0. Is
this also true for all values of ¢7
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