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EuqaristÐec

Ja  jela na euqarist sw apì ta b�jh thc kardi�c mou ton epiblèponta
kajhght  mou, k. StaÔro Papad�kh, gia thn epilog  twn ereunhtik¸n jem�twn
thc didaktorik c mou diatrib c, tic asteÐreutec idèec tou kai thn adi�koph ka-
jod ghsh tou. 'Ena meg�lo euqarist¸ ston d�skalo mou pou pèra apì tic
majhmatikèc tou gn¸seic pou mou moÐraze aplìqera,  tan p�nta ekeÐ gia emèna
kai k�je for� pou lÔgiza mou upenjÔmize ìti me upomon  kai epimon  xepernio-
Ôntai ta megalÔtera empìdia. EÐnai meg�lh mou tim  na sugkatalègomai stouc
majhtèc tou.

Pèra apì ton epiblèponta kajhght  mou, ja  jela na euqarist sw ton
kajhght  kai sunerg�th mac k. Karim Adiprasito giatÐ me empisteÔthke kai
moir�zetai gennaiìdwra tic gn¸seic kai tic idèec tou mazÐ mou. Jewr¸ apÐsteuta
tuqerì ton eautì mou gia th sunergasÐa me autoÔc touc dÔo spoudaÐouc majh-
matikoÔc.

Ja  jela epÐshc na euqarist sw touc kajhghtèc k. Apìstolo Jwm� kai
k. Apìstolo Mpelhgi�nnh gia thn ousiastik  parousÐa touc se k�je mou b ma
apì tic proptuqiakèc mou akìmh spoudèc, thn kalosÔnh touc kai tic polÔtimec
ìqi mìno majhmatikèc all� kai patrikèc sumboulèc touc. 'Ena meg�lo euqarist¸
ston kajhght  k. Epamein¸nda Keqagi� gia tic suzht seic mac kai th genikìterh
st rixh tou kaj' ìlh th di�rkeia twn spoud¸n mou sto Panepist mio IwannÐnwn.

'Ena idiaÐtero euqarist¸ ston kajhght  k. Qr sto Ajanasi�dh gia thn ou-
siastik  sumbol  tou sth didaktorik  mou diatrib  kaj¸c epÐshc kai gia tic
diafwtistikèc tou epishm�nseic kai parathr seic.

'Ena meg�lo euqarist¸ ston kajhght  k. Nikìlao Tziìla gia th genikìterh
parousÐa tou, sqìlia kai parathr seic tou.

Ja  jela epÐshc na euqarist sw thn kajhg tria k. Qar� Qaral�mpouc gia
ìlec tic polÔtimec sumboulèc thc, h opoÐa apoteleÐ par�deigma kai prìtupo gia
k�je gunaÐka majhmatikì.



'Ena ter�stio euqarist¸ ston kajhght  k. Qrusìstomo Yaroud�kh o opo-
Ðoc kat� th di�rkeia twn proptuqiak¸n mou spoud¸n me thn parousÐa tou sto
tm ma Majhmatik¸n wc didaktorikìc foitht c apoteloÔse par�deigma gia emèna.
Ton euqarist¸ epÐshc gia tic polÔtimec sumboulèc kai thn enj�rrunsh pou mou
pareÐqe.

Euqarist¸ jerm� ton kajhght  k. Dhm trio NoÔtso gia ìlh th st rixh pou
mou pareÐqe kat� th di�rkeia twn spoud¸n mou.

'Ena meg�lo euqarist¸ ston kajhght  k. Qr sto Tat�kh kai sthn upèroqh
oikogèneia tou (MarÐa, KwnstantÐnoc kai Anast�shc) giatÐ st�jhkan dÐpla mou
san oikogèneia se k�je b ma mou apì tic metaptuqiakèc ewc ka thn per�twsh
twn didaktorik¸n spoud¸n mou. 'Ena jermì euqarist¸ kai ston kajhght  k.
Andrèa S�bba Qalil�i gia ìlec tic suzht seic mac sto diplanì grafeÐo. 'Htan
apì touc �njrwpouc pou apeujunìmoun k�je for� pou  jela enj�rrunsh gia
na suneqÐsw.

Den ja mporoÔsa na mhn euqarist sw touc fÐlouc mou Ajan�sio Gkrèph,
K¸nstantÐno D moglou, Swkr�th Z ka, Iw�nna Kiafzèzh, KwnstantÐno Li-
�mph, Miqa l M�rkello, Perikl  PappÐa, Pètro Stogi�ntsh, Grhgìrio Taqu-
rÐdh, Baòo TerzoÔdh, Miqa l Tsir¸nh kai Iw�nnh Fourtz  oi opoÐoi aneqìtan
adiamartÔrhta touc majhmatikoÔc mou kai m  monolìgouc. To pio meg�lo euqa-
rist¸ sth MarÐa AslanÐdou, sto pio spoudaÐo korÐtsi, par�deigma gia emèna,
pou me èqei tim sei me th filÐa thc.

Euqarist¸ epÐshc to tm ma Majhmatik¸n kai ìlouc touc kajhghtèc mou,
proptuqiak¸n kai metaptuqiak¸n spoud¸n gia ìlec tic gn¸seic pou mou pare-
Ðqan.

Sthn paroÔsa didaktorik  diatrib  eÐnai kaÐria h suneisfor� tou upologi-
stikoÔ progr�mmatoc Macaulay2. Ja  jela na euqarist sw jerm� touc sug-
grafeÐc tou en lìgw progr�mmatoc, Daniel Grayson kai Mike Stilman.

Tèloc, euqarist¸ touc goneÐc mou MarÐa kai KwnstantÐno gia thn hjik  kai
ulik  upost rixh. QwrÐc th st rixh touc aut  h diatrib  den ja eÐqe peratwjeÐ.

Mèroc thc èreunac qrhmatodot jhke apo ton Eidikì Logariasmì KondulÐwn
'Ereunac (ELKE) tou PanepisthmÐou Iwanninwn sto plaÐsio tou progr�mmatoc
me arijmì 82561 kai tÐtlo <<Prìgramma gia thn oikonomik  upost rixh didaktori-
k¸n foitht¸n kai metadidaktorik¸n ereunht¸n>>, touc opoÐouc euqarist¸ jerm�.



PerÐlhyh

H paroÔsa diatrib  apoteleÐtai apì dÔo mèrh. To pr¸to mèroc thc diatri-
b c sqetÐzetai me th melèth thc jewrÐac thc antiprobol c kai thn kataskeu 
tri¸n sundi�stashc 6 oikogenei¸n trisdi�statwn Fano poluptugm�twn antika-
nonik� emfuteumènwn ston bajmwtì probolikì q¸ro. To deÔtero mèroc afor�
th melèth twn idiot twn Lefschetz kai thc anisotropÐac tou Stanley-Reisner
daktulÐou twn monoplektik¸n sfair¸n.

Sto Kef�laio 2, eis�goume k�poiec eisagwgikèc ènnoiec kai  dh gnwst� a-
potelèsmata apì touc kl�douc thc Metajetik c 'Algebrac, thc Algebrik c Ge-
wmetrÐac kai thc Sunduastik c 'Algebrac, me idiaÐterh èmfash stouc daktu-
lÐouc Gorenstein, sta trisdi�stata Fano poluptÔgmata kai sta monoplektik�
sumplègmata.

Sto Kef�laio 3, upenjumÐzoume k�poia  dh up�rqonta apotelèsmata pou sqe-
tÐzontai me th jewrÐa thc antiprobol c. H jewrÐa thc antiprobol c, h opoÐa
ofeÐletai ston Miles Reid, qrhsimopoieÐ idèec thc AmfÐrhthc GewmetrÐac gia
na kataskeu�sei pio perÐplokouc metajetikoÔc daktulÐouc xekin¸ntac apì a-
ploÔstera arqik� dedomèna. EÐnai to kÔrio mac ergaleÐo gia tic gewmetrikèc
efarmogèc.

Sto Kef�laio 4, anaptÔsoume mÐa nèa morf  par�llhlhc antiprobol c, thn
opoÐa onom�zoume Tom kai Jerry tri�dec. QrhsimopoioÔme aut  th morf  gia
na apodeÐxoume, xekin¸ntac apì sundi�stash 3, thn Ôparxh dÔo sundi�stashc 6
oikogenei¸n apì trisdi�stata Fano poluptÔgmata.

Sto Kef�laio 5, anaptÔsoume mÐa deÔterh morf  par�llhlhc antiprobol c,
thn opoÐa kaloÔme 4-diatom . QrhsimopoioÔme aut  th morf  gia na apodeÐxoume,
xekin¸ntac apì sundi�stash 2, thn Ôparxh miac sundi�stashc 6 oikogèneiac apì
trisdi�stata Fano poluptÔgmata.

Sto Kef�laio 6, to opoÐo eÐnai se sunergasÐa me ton StaÔro AnargÔrou
Papad�kh, eis�goume thn ènnoia thc genik c anisotropÐac miac monoplektik c
sfaÐrac. ApodeiknÔoume ìti mÐa monoplektik  sfaÐra eÐnai genik� anisotropik 

i



uper�nw opoioud pote s¸matoc qarakthristik c 2, kai ìti mÐa monodi�stath
monoplektik  sfaÐra eÐnai genik� anisotropik  uper�nw opoioud pote s¸matoc.
Wc efarmog , dÐnoume mia deÔterh apìdeixh thc g-eikasÐac tou McMullen gia
monoplektikèc sfaÐrec.

ii



Abstract

The present thesis consists of two parts. The first part of the thesis is related
to the study of unprojection theory and the construction of three codimension
6 families of Fano 3-folds anticanonically embedded in weighted projective
space. The second part concerns the study of the Lefschetz and anisotropy
properties of the Stanley-Reisner ring of simplicial spheres.

In Chapter 2, we introduce some preliminary notions and known results
from Commutative Algebra, Algebraic Geometry and Combinatorial Algebra,
with a particular emphasis to Gorenstein rings, Fano 3-folds and simplicial
complexes.

In Chapter 3, we recall some existing results related to unprojection theory.
Unprojection theory, which is due to Miles Reid, uses ideas from birational
geometry to construct more complicated commutative rings starting from si-
mpler data. It is our main tool for the geometric applications.

In Chapter 4, we develop a new parallel unprojection format, for which
we give the name Tom & Jerry triples format. We use the format to prove,
starting from codimension 3, the existence of two codimension 6 families of
Fano 3-folds.

In Chapter 5, we develop a second parallel unprojection format, which we
call the 4-intersection format. We use the format to prove, starting from
codimension 2, the existence of a codimension 6 family of Fano 3-folds.

In Chapter 6, which is joint work with Stavros Argyrios Papadakis, we
introduce the notion of generic anisotropy of a simplicial sphere. We prove that
a simplicial sphere is generically anisotropic over any field of characteristic 2,
and that a 1-dimensional simplicial sphere is generically anisotropic over any
field. As an application, we give a second proof of McMullen’s g-conjecture
for simplicial spheres.
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Chapter 1

Introduction

One of the most important problems in Algebraic Geometry is the classi�cation of
algebraic varieties. In the early 1980s, the Minimal Model Program (also known as
Mori program) [24, 35, 36, 47] appeared as an e�ective approach for the birational
classi�cation of the higher dimensional algebraic varieties. Fano 3-folds, as a building
block of this program in dimension 3, is an important topic of current research. In
this direction we develop two new methods of parallel unprojection and use them to
establish the existence of 3 new families of singular Fano 3-folds of codimension 6.

The second part of this thesis, which is joint work with Stavros Argyrios Papadakis,
was motivated by McMullen's g-conjecture for simplicial spheres. The g-conjecture,
concerns the complete characterization of the set of f-vectors of simplicial spheres,
and was recently proven by Adiprasito [1, 2]. In the present work we investigate
some algebraic properties of Artinian reductions of Stanley-Reisner rings of simplicial
spheres. We introduce the notion of a simplicial sphere being generically anisotropic
over a �eld and establish the generic anisotropy of any simplicial sphere over any �eld
of characteristic 2 and the generic anisotropicy of 1-dimensional simplicial spheres over
an arbitrary �eld. As an application, we obtain a second proof of the g-conjecture for
simplicial spheres.

1.1 Some aspects of unprojection theory

Gorenstein rings form an important class of rings which appear often in Algebraic
Geometry. The anticanonical ring of a Fano n-fold, the canonical ring of a regular
surface of general type and the ring associated to an ample divisor on a smooth K3
surface are some examples of Gorenstein rings.

If R = k[x1, . . . , xn]/I is a Gorenstein graded ring, quotient of a polynomial ring
and the codimension of I is at most 3 then the structure of R is well-understood, see
Subsection 2.1.5. An important open question is to �nd structure theorems when the

1
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codimension of I is 4 or higher.

In the 1980s, Kustin and Miller tried to �nd a structure theorem for Gorenstein
rings of codimension 4 with a series of papers [38, 39, 40, 41, 42]. In this context, in
1983 they introduced a procedure [37] which constructs more complicated Gorenstein
rings starting from simpler ones, by increasing the codimension. This procedure is
called Kustin-Miller unprojection.

Around 1995, Reid rediscovered what was essentially the same procedure while
working with Gorenstein rings arising from K3 surfaces and Fano 3-folds. Geomet-
rically, unprojection, as indicated by its name, is an inverse of certain projections
and can be considered as a modern and explicit version of Castelnuovo contractibility
theorem.

We now summarise Reid's formulation of unprojection:

Assume that J ⊂ R is a codimension 1 ideal with R, R/J being Gorenstein. De-
note by i : J → R the inclusion map. Then there exists ϕ such that HomR(J,R) is
generated by the set {i, ϕ} as an R-module. Using ϕ, Reid de�ned the new unpro-
jection ring as in De�nition 3.1.1. Some years later Papadakis and Reid [57] proved
that the unprojection ring is Gorenstein (see Theorem 3.1.2). We refer the reader to
Example 3.1.3 for the simplest example of Kustin-Miller unprojection.

Reid developed two families of unprojections which he called Tom and Jerry [54, 55,
59]. Each of them is a way starting from a codimension 3 Gorenstein ring with some
additional properties to construct a new codimension 4 Gorenstein ring. We recall
the de�nitions of the Tom and Jerry families in Subsection 3.1.2. Papadakis [55]
computed, using multilinear and homological algebra, the equations of the Tom and
Jerry families. For more details in the case of Tom we refer to Subsection 3.1.3.

Unprojection theory has found many applications in Algebraic Geometry. In par-
ticular, in the construction of new interesting algebraic surfaces and 3-folds, especially
in codimension four [3, 4, 14, 15, 16, 52, 53, 67]. In the context of explicit birational
geometry it allows one to explicitly write down varieties, morphisms and rational maps
that arise in the Minimal Model Program [21, 22]. It has also found applications in
Algebraic Combinatorics [9, 10, 11, 12].

Unprojection can be used many times over in an inductive way in order to produce
Gorenstein rings of arbitrary codimension, whose properties are, nevertheless, con-
trolled by just a few equations as new unprojection variables are adjoined. Neves and
Papadakis [53] developed such a theory which is called parallel Kustin-Miller unpro-
jection. More presicely, they discovered su�cient conditions on a positively graded
Gorenstein ring R and a �nite set of codimension 1 ideals which ensure the series
of unprojections. Furthermore, they gave an explicit description of the end product
ring which corresponds to the unprojection of the ideals. We recall the results in
Subsection 3.1.1.

We develop two new formats of parallel Kustin-Miller unprojection, which we call
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Tom & Jerry triples and 4-intersection respectively.

The Tom & Jerry triples unprojection format, which is discussed in Chapter 4, uses
Tom & Jerry unprojections in order to set up the unprojection data. In more detail,
we set conditions on the entries of a 5× 5 skewsymmetric matrix M such that M can
be considered simultaneously as Tom or Jerry matrix in three codimension 4 complete
intersection ideals J1, J2, J3. Then, the ideal of Pfa�ans of M is contained in the
ideals J1, J2, J3. Using parallel Kustin-Miller unprojection we construct a Gorenstein
ring of codimension 6.

The 4-intersection format, which is discussed in Chapter 5, de�nes a codimension
2 complete intersection ideal I such that I is contained in four codimension 3 ideals
J1, . . . , J4. Using parallel Kustin-Miller unprojection, this format also leads to the
construction of a codimension 6 Gorenstein ring.

Brown's online Graded Ring Database [4, 13] contains a large number of K3 sur-
faces, Fano 3-folds and Calabi-Yau 3-folds of high codimension which, conjecturally,
exist and are, again conjecturally, related to varieties of small codimension. Using
the Tom & Jerry triples and 4-intersection unprojection formats we establish, in Sec-
tions 4.3 and 5.2, the existence of three new families of Fano 3-folds which appear in
the Graded Ring Database.

1.2 McMullen's g-conjecture

In 1971 McMullen conjectured a complete characterization of the f-vectors of the class
of simplicial polytopes. Around 1979, the su�ciency of the conditions were proven
by an explicit constuction due to joint work of Billera and Lee [8], while Stanley [61]
proved their necessity using tools from Algebraic Geometry.

Given two integers a, i > 0 there exists the following unique expansion

a =

(
ai
i

)
+

(
ai−1

i− 1

)
+ · · ·+

(
aj
j

)
with ai > ai−1 > · · · > aj ≥ j ≥ 1, see [17, Section 4.2]. We de�ne

a<i> =

(
ai + 1

i+ 1

)
+

(
ai−1 + 1

i

)
+ · · ·+

(
aj + 1

j + 1

)
and 0<i> = 0 for all i.

De�nition 1.2.1 Assume that (g0, . . . , gs) is a sequence of nonnegative integers. We
call (g0, . . . , gs) a Macaulay vector if g0 = 1 and 0 ≤ gi+1 ≤ g<i>

i , for all i ≥ 1.
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Macaulay discovered the Macaulay vectors in his study of the growth of Hilbert
functions of graded rings [46], see also [17, Section 4.2]. We refer the reader to Sub-
section 2.3.1 for the de�nitions of the f -vector, h-vector and g-vector of a simplicial
complex, and also for the de�nition of the geometric realization of a simplicial com-
plex. By de�nition, a simplicial sphere is a simplicial complex such that its geometric
realization is homeomorphic to the unit sphere Sn for some n ≥ 1.

The combination of the following two famous theorems established McMullen's
g-conjecture for the class of simplicial polytopes.

Theorem 1.2.2 (Billera and Lee [8]) Assume f = (f0, . . . , fn) is a �nite sequence of
integers. Denote by h and g the corresponding sequences of integers obtained from f
as in Subsection 2.3.1. Assume that hi = hn+1−i for all i and that (1, g1, . . . , g[(n+1)/2])
is a Macaulay vector. Then, there exists a simplicial polytope of dimension n+1 with
f-vector of its boundary complex equal to f .

Theorem 1.2.3 (Stanley [61]) Assume ∆ is the boundary of a simplicial polytope of
dimension n+ 1. Then, the g-vector of ∆ is a Macaulay vector.

The following recent result of Adiprasito was known for more than 35 years as the
g-conjecture for simplicial spheres [66].

Theorem 1.2.4 (Adiprasito [1, 2]) Assume ∆ is a simplicial sphere. Then, the
g-vector of ∆ is a Macaulay vector.

Our approach for the second proof of the g-conjecture for simplicial spheres is
based on the well-known result that to prove the g-conjecture for a simplicial sphere
D it is enough to �nd a �eld k such that the Stanley-Reisner ring (also known as face
ring) k[D] has the Weak Lefschetz Property [23, 46, 61].

Instead of working directly with the Weak Lefschetz Property, we exploit some
algebraic properties of the generic Artinian reduction of the Stanley-Reisner ring of
a simplicial sphere. More precisely, we introduce in De�nition 6.2.2 the notion of a
simplicial sphere D being generically anisotropic over a �eld k1. This means that for
a certain purely transcendental �eld extension k of k1, a certain Artinian reduction A
of the Stanley-Reisner ring k[D] has the following property: All nonzero homogeneous
elements u ∈ A of degree less or equal to (dimD + 1)/2 have nonzero square.

We investigate the property of generic anisotropy of simplicial spheres. In particu-
lar, we prove that a 1-dimensional simplicial sphere is generically anisotropic over any
(�nite or in�nite) �eld, see Theorem 6.9.1. Moreover, in Theorem 6.2.3 we show, using
suitable di�erential operators, that over any (�nite or in�nite) �eld of characteristic 2,
every simplicial sphere is generically anisotropic. We expect that the last statement
is also true over any �eld of arbitrary characteristic but, so far, we have been unable
to prove it. A main obstacle is that even though the di�erential operators we use
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can be de�ned over any �eld, we need certain properties of them that hold only in
characteristic 2.

Using some ideas and results of Swartz [65], we prove in Theorem 6.8.1 that the
generic anisotropy of the suspension S(D) of a simplicial sphere D over a �eld k1
implies the Weak Lefschetz Property of the Stanley-Reisner ring of D over a certain
�eld extension k of k1. Combining that with the generic anisotropy of all simplicial
spheres over any �eld of characteristic 2 we obtain, in Theorem 6.8.2, a second proof
of the g-conjecture for simplicial spheres.

1.3 Structure of thesis

The present thesis is organised as follows.

Chapter 2 contains background material. In Section 2.1 we recall a number of basic
results and de�nitions of Commutative Algebra related to graded rings, graded free
resolutions, Hilbert series and the Lefschetz properties. We emphasize two important
classes of rings, namely Cohen-Macaulay and Gorenstein rings. In Subsection 2.1.5
we recall the structure theorems for Gorenstein ideals of codimension ≤ 3 while in
Subsection 2.1.6 we brie�y discuss the Lefschetz Properties of a graded algebra. In
Section 2.2 we recall some notions of Algebraic Geometry. In more detail, in Subsec-
tion 2.2.1 we discuss the Proj construction of a variety starting from a graded ring,
while Subsection 2.2.2 is about Fano 3-folds. In Section 2.3 we recall some basic no-
tions of Combinatorial Algebra related to simplicial complexes and their associated
Stanley-Reisner rings.

Chapter 3 contains some existing results and de�nitions related to Kustin-Miller
unprojection and parallel Kustin-Miller unprojection. We recall the conditions de�n-
ing the Kustin-Miller unprojection of a pair J ⊂ R and the de�nition of the unpro-
jection ring of the pair due to Reid [59, 57]. In Subsection 3.1.1 we recall the parallel
unprojection theory due to Neves and Papadakis [53]. In Subsection 3.1.2, we recall
the Tom and Jerry unprojection families. Subsection 3.1.3 contains the calculation of
the unprojection ring for the Tom family due to Papadakis [55]. We close this chap-
ter with the explicit description of the unprojection ring of a certain codimension 2
complete intersection ideal contained in a certain codimension 3 complete intersection
ideal.

In Chapter 4 we introduce the new Tom and Jerry triples format of unprojection.
Section 4.1 describes a number of alternative ways which guarantee that a codimen-
sion 3 ideal de�ned by the Pfa�ans of a 5 × 5 skewsymmetric matrix is contained
in three codimension 4 complete intersection ideals J1, J2, J3. We study in detail one
of the cases in Subsection 4.2.1. Our main result is Theorem 4.2.8 which establishes,
using the theory of parallel unprojection, the construction of a codimension 6 Goren-
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stein ring. We discuss a similar result for the remaining cases in Subsection 4.2.2.
Using this new format of unprojection we prove the existence of two families of Fano
3-folds of codimension 6 embedded in weighted projective space which correspond to
the entries with ID: 14885 and ID: 12979 in Brown's Graded Ring Database [4, 13].

In Chapter 5 we introduce a second new format of parallel unprojection which we
call the 4-intersection format. In Section 5.1 we de�ne this notion, which consists of
a codimension 2 complete intersection ideal I contained in four complete intersection
codimension 3 ideals J1, . . . , J4. In Subsection 5.1.1, we introduce a speci�c example
of 4-intersection format, and we construct, using parallel unprojection, a codimension
6 Gorenstein ring. We use the format to prove in Section 4.3 the existence of a
family of Fano 3-folds of codimension 6 embedded in weighted projective space which
corresponds to the entry ID: 29376 in Brown's Graded Ring Database.

In Chapter 6, which is joint work with Stavros Argyrios Papadakis, we introduce
the notion of a simplicial sphere D being generically anisotropic over a �eld k1, see
De�nition 6.2.2. We show in Theorem 6.8.1 that if the suspension S(D) of D is gener-
ically anisotropic over k1, then the Stanley-Reisner ring k[D] has the Weak Lefschetz
Property, where k is a certain purely transcendental �eld extension of k1. We establish
two results related to generic anisotropy. In Theorem 6.9.7, we prove that a simplicial
sphere of dimension 1 is generically anisotropic over any (�nite or in�nite) �eld k1.
In Theorem 6.2.3 we prove that over any (�nite or in�nite) �eld of characteristic 2,
every simplicial sphere is generically anisotropic. The key results for these theorems
are Proposition 6.9.1, which works in all characteristics but only for simplicial spheres
of dimension 1, and Theorem 6.3.14 which is valid in any dimension but only in char-
acteristic 2. Finally, combining Theorem 6.2.3 with Theorem 6.8.1 we get a second
proof of McMullen's g-conjecture for simplicial spheres in Theorem 6.8.2.



Chapter 2

Preliminary notions

In this chapter, we recall some basic notions of Commutative Algebra, Algebraic
Geometry and Combinatorial Algebra that we use throughout this thesis.

2.1 A review of some basic notions of Commutative

Algebra

Throughout this thesis, all rings are assumed to be commutative with unit. We denote
by

N = {0, 1, 2, . . . }

the set of natural numbers. For more details related to the notions that follow we
refer to [17, 27, 63].

2.1.1 Graded rings and modules

In this subsection, we study rings, modules and ideals which are endowed with a
decomposition of their elements into homogeneous parts of nonnegative degree.

De�nition 2.1.1 A ring R is called graded if there exists a family of subgroups
{Rd}d≥0 of R such that

1. R =
⊕

dRd as abelian group and

2. RdRe ⊂ Rd+e for all d, e ≥ 0.

We call Ri the i-th homogeneous component of R. An element x ∈ Ri is called a
homogeneous element of R of degree i.

7
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An element f of a graded ring R can be written uniquely as a sum of homogeneous
elements fi ∈ {Ri}i≥0. The elements fi are called the homogeneous parts of f . The
simplest example of a graded ring is the polynomial ring in n variables as indicated
in the following example.

Example 2.1.2 Denote by R = S[x1, . . . , xn] the polynomial ring in n variables over
a ring S. For m = (m1, . . . ,mn) ∈ Nn we set xm = xm1

1 . . . xmn
n . For every choice of

natural numbers d1, . . . , dn there exists a unique grading on R such that deg xi = di
for all i and deg s = 0 for all s ∈ S. We have

Rd = {
∑
m∈Nn

smx
m | sm ∈ S and d1m1 + · · ·+ dnmn = d}.

The choice of deg xi = 1 for all i is called the standard grading on R.

De�nition 2.1.3 An ideal I of a graded ring R is called homogeneous if it is generated
by homogeneous elements of R.

Example 2.1.4 Let R = k[x1, x2] be the polynomial ring in 2 variables over a �eld k.
We set f = x21 + x32 and consider the ideal I = (f) of R. Under the standard grading
on R the ideal I is not homogeneous because f is not a homogeneous element of R.
However, if we endow the ring R with the grading deg x1 = 3, deg x2 = 2, then f is a
homogeneous element of R of degree 6 and the ideal I is homogeneous.

De�nition 2.1.5 Assume k is a �eld. A graded k-algebra A =
⊕

i∈NAi is a graded
ring that at the same time is a vector space over k and each component Ai is a k-vector
subspace. A graded k-algebra A =

⊕
i∈NAi is called positively graded if A0 = k.

In the following, whenever we talk of a homogeneous ideal I of a polynomial
ring S = k[x1, . . . , xn] over a �eld k we will always assume that each variable xi is
homogeneous of positive degree. This will imply that S is a positively graded k-algebra
and, when I ̸= S, the same will be true for the quotient ring S/I.

An important example of a positively graded algebra which comes from Algebraic
Geometry is the homogeneous coordinate ring of a projective variety.

Example 2.1.6 Assume k is a �eld. Let S = k[x0, . . . , xn] be the standard graded
polynomial ring in n + 1 variables. The homogeneous coordinate ring A(X) of a
projective variety X ⊂ Pn is

A(X) = S/I(X),

where I(X) is the ideal of S generated by the set

{f ∈ S | f homogeneous and f(P ) = 0 for all P ∈ X}.
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The ring A(X), as a quotient of a positively graded k-algebra with a homogeneous
ideal, is also a positively graded k-algebra.

De�nition 2.1.7 Let R be a graded ring. Denote by R+ = R1 ⊕ R2 ⊕ . . . the ideal
consisting of all elements of degree greater than zero. The homogeneous ideal R+ is
called the irrelevant ideal.

The terminology for the irrelevant ideal arises from the connection with projective
geometry. Working in Pn, the irrelevant ideal in the standard graded polynomial
ring in n+ 1 variables k[x0, . . . , xn] contains all homogeneous polynomials of positive
degree. These have no common zero in projective space. So, the common zero locus
of the irrelevant ideal is the empty set.

De�nition 2.1.8 Let R and S be graded rings. A ring homomorphism f : R → S is
called graded or homogeneous if f(Rd) ⊆ Sd, for all d.

De�nition 2.1.9 A graded module over a graded ring R is an R-module M with a
decomposition

M =
⊕
i∈Z

Mi

as abelian groups, such that RdMi ⊂Md+i for all d ∈ Z≥0, i ∈ Z.

If R is a graded ring then R is a graded module over itself. We can construct many
other examples of graded modules considering graded submodules, direct sums and
quotients of graded modules by graded submodules. Given a graded R-module M , we
can form a new graded R-module by twisting the grading on M as follows.

De�nition 2.1.10 Let n be an integer. Given a graded R-module M we de�ne the
twist M(n) to be equal to M as an (ungraded) R-module with grading de�ned by

M(n)k =Mn+k

for all k ∈ Z.

De�nition 2.1.11 Let R be a graded ring andM , N be graded R-modules. A graded
R-module homomorphism of degree d, f : M → N is an R-module homomorphism
with the property f(Mi) ⊂ Ni+d for all i ∈ Z. Two graded R-modulesM,N are called
isomorphic if there exists a bijective graded R-module homomorphism of degree 0
between them.

De�nition 2.1.12 Let R be a graded ring. A �nitely generated R-module M is
called graded free if there exist integers k1, . . . , ks such that the graded modules M
and ⊕s

i=1R(ki) are isomorphic.
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2.1.2 Graded complexes and graded free resolutions

In the present subsection we assume that k is a �eld, R = k[x1, . . . , xn] is a polynomial
ring over k and we have a grading on R such that each variable xi is homogeneous of
positive degree.

De�nition 2.1.13 A sequence of R-modules and homomorphisms between them

F : . . . −→ Fi+2
di+2−−→ Fi+1

di+1−−→ Fi
di−→ Fi−1 −→ . . .

such that di ◦ di+1 = 0 for all i ∈ Z is called a chain complex or just complex over
R. The set of maps d = {di}i∈Z is called the di�erential of F. If the modules Fi are
graded and each di is a graded homomorphism then the complex F is called graded.

De�nition 2.1.14 Let F be a complex. The complex F is exact at the position i if
Ker(di) = Im(di+1). A complex which is exact at every position i is called exact.

In 1973, a criterion for the exactness of a �nite complex of �nitely generated free
modules over a Noetherian ring was given by Buchsbaum and Eisenbud. For details
we refer to [18].

De�nition 2.1.15 Let F be a complex. The homology of F is de�ned by

Hi(F) = Ker(di)/Im(di+1).

The elements in Ker(di) are called cycles and the elements in Im(di+1) are called
boundaries.

De�nition 2.1.16 Let (F, d) and (G, h) be two complexes of R-modules. A homo-
morphism of complexes ϕ : F → G is a set of R-modules homomorphisms ϕi : Fi → Gi

such that ϕi−1 ◦ di = hi ◦ ϕi for all i ∈ Z. If F and G are graded, ϕ is called homo-
morphism of graded complexes if ϕi : Fi → Gi is a homomorphism of �xed degree for
all i ∈ Z.

Let F be a complex such that each Fi be a �nitely generated graded free R-module.
Then,

Fi = ⊕j∈ZR(−j)ci,j ,

where ci,j are nonnegative integers and all except �nitely many of them are equal to
zero. Hence, a complex of graded free �nitely generated modules is of the form

F : . . . −→ ⊕j∈ZR(−j)ci,j
di−→ ⊕j∈ZR(−j)ci−1,j −→ . . .

The numbers ci,j are called the graded Betti numbers of the complex F.
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De�nition 2.1.17 A free resolution of a �nitely generated R-moduleM is a complex
of �nitely generated free R-modules

F : . . . −→ Fi
di−→ Fi−1

di−1−−→ . . . −→ F1
d2−→ F1

d1−→ F0,

which is exact and such that Coker d1 is isomorphic to M . Sometimes, we use the
following notation for a free resolution

F : . . . −→ Fi
di−→ Fi−1

di−1−−→ . . . −→ F2
d2−→ F1

d1−→ F0
d0−→M −→ 0.

Every module has a free resolution which can be constructed as follows. As a
�rst step, we take a set of generators for M . A free module is mapped onto M by
sending the free generators of the free module to the given generators of M. Subse-
quently, we consider the kernel of this map which is denoted by M1. Now, we repeat
the same procedure starting with M1 and so on. For more details, we refer to [58,
Construction 4.2]

De�nition 2.1.18 Assume M is a �nitely generated graded R-module and F is a
resolution ofM . We say that F is a graded free resolution ofM if F is graded, each Fi

is �nitely generated and graded free and the isomorphismM ≃ Coker d1 is of degree 0.
The length of F is de�ned as sup{i ∈ N : Fi ̸= 0}. We say that F is a �nite resolution
if it has �nite length.

Given a graded free resolution F of M , we �x a homogeneous basis of each graded
free module Fi. Then, for each i the di�erential di is given by a matrix Ai with entries
homogeneous elements of R. These matrices are called di�erential matrices. We note
that the di�erential matrices depend on the given basis.

In what follows, we de�ne the minimal graded free resolution F of a graded �nitely
generated R-module M . The minimal graded free resolution of a module is closely
related with its structure. More precisely, it has the following form

F2


a minimal system
of homogeneous
relations on the
relations in d1


−−−−−−−−−−−−−−−−→ F1



a minimal system
of homogeneous
relations on the

minimal generators
of M


−−−−−−−−−−−−−−−−−→ F0


a minimal
system of

homogeneous
generators of M


−−−−−−−−−−−−−−−→M −→ 0

It is remarkable that the structure of F re�ects many properties of M .

De�nition 2.1.19 Let F be a graded free resolution of a graded �nitely generated
R-module M . We say that F is minimal if for all i ≥ 0 it holds that

di+1(Fi+1) ⊂ (x1, . . . , xn)Fi.
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In other words, F is minimal if there are no invertible elements (non-zero constants)
in the entries of the di�erential matrices.

Due to the following theorem it is possible to say "the" minimal graded free reso-
lution of M .

Theorem 2.1.20 Let M be a �nitely generated graded R-module. Then there exists
a minimal graded free resolution of M which is unique up to isomorphism.

Proof For the proof of the theorem see [58, Theorem 7.5]. □

De�nition 2.1.21 Let F be a minimal graded free resolution of a �nitely generated
graded R-module M . The i-th Betti number of M over R, denoted by bRi (M), is
de�ned as

bRi (M) = rank (Fi).

Due to Theorem 2.1.20, the Betti numbers of M are independent of the choice of
the minimal graded free resolution ofM . Betti numbers, as numerical invariants of the
resolution can be used to obtain some useful information for the resolution especially
when it is complicated to have a description of the di�erentials.

De�nition 2.1.22 Let F be a minimal graded free resolution of a �nitely generated
graded R-module M . The graded Betti numbers of M are de�ned as

bRi,p(M) = number of summands in Fi of the form R(−p).

We use the notation bi instead of bRi (M) and bi,p instead of bRi,p(M) when it is
obvious which is the module and the ring that we use.

The Betti numbers are contained in a matrix of the following form

b0 b1 · · · bi
0 b0,0 b1,1 · · · bi,i
1 b0,1 b1,2 · · · bi,i+1
...

...
...

...
p b0,p b1,1+p · · · bi,i+p

The entry in the i-th row and p-th column is bi,i+p. The i-th step of the minimal graded
free resolution is contained in the i-th column. At the top there is an additional row
which contains the i-th Betti number bi. The column to the left which is seperated by
a vertical line from the others columns contains the labels of the rows. A zero Betti
number is denoted by · or −. This matrix is called a Betti table.

Proposition 2.1.23 Denote by c the minimal degree of an element in a minimal
system of homogeneous generators of M . Then, bRi,p(M) = 0 for p < i+ c.
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Proof For a proof see [58, Proposition 12.3.]. □

De�nition 2.1.24 Let F be a minimal graded free resolution of a �nitely generated
graded R-module M . The projective dimension of M is de�ned as

proj.dimR(M) = max{i | bRi (M) ̸= 0}.

It is immediate that proj.dimR(M) is the length of the minimal graded free resolution
of M .

Theorem 2.1.25 (Hilbert's syzygy theorem) Every �nitely generated graded R-module
M has a �nite graded free resolution of length at most n. More generally, every �nitely
generated R-module M has a �nite free resolution of length at most n.

Proof For the proof, we refer to [17, Corollary 2.2.14]. □

2.1.3 Hilbert functions

In the present subsection we assume that k is a �eld, R = k[x1, . . . , xn] is a polynomial
ring over k and we have a grading on R such that each variable xi is homogeneous of
positive degree.

Assume I ⊂ R is a homogeneous ideal. The Hilbert function of R/I is an important
numerical invariant of I which gives the sizes of the graded components Ij of degree j
of I. From the point of view of Algebraic Geometry, it encodes important information,
such as the dimension and the degree of the associated projective variety V (I).

Remark 2.1.26 We note that if M is a �nitely generated graded R-module then
dimk(Mi) <∞ for all i ∈ Z and there exists N ∈ Z such that Mi = 0 for all i < N .

Proposition 2.1.27 Assume R is standard graded and I is an ideal of R generated
by monomials. Then, for all j ≥ 0, (R/I)j is a vector space with basis the set

{monomial m ∈ R : m /∈ I, deg(m) = j}

of monomials of degree j which are not elements of I.

Proof For a proof of the theorem we refer to [58, Proposition 1.8]. □

From Proposition 2.1.27 it follows that if I is an ideal generated by monomials, then
dimk(R/I)j is equal to the number of the degree j monomials of R which are not
elements of I.
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De�nition 2.1.28 Let M be a �nitely generated graded R-module. The numerical
function HM : Z → N de�ned by

HM(i) := dimk(Mi)

is called the Hilbert function of M . The formal power series

HilbM(t) =
∑
i∈Z

dimk(Mi)t
i ∈ Z[[t]]

is called the Hilbert series of M .

According to the following theorem, in the standard graded case one can also de�ne
the Hilbert polynomial of a �nitely generated graded module.

Theorem 2.1.29 (Hilbert) Assume that R is standard graded and M is a �nitely
generated graded R-module. Then there exists a unique polynomial PM(t) ∈ Q[t] of
degree ≤ n− 1 and a positive integer N such that HM(i) = PM(i) for all i > N .

Proof For a proof of the theorem we refer to [27, Theorem 1.11]. □

We call the polynomial PM(t) in the above theorem the Hilbert polynomial of M .
The following proposition shows that the Hilbert series is additive on short exact

sequences of graded R-modules.

Proposition 2.1.30 Let

0 −→M1 −→M2 −→M3 −→ 0

be a short exact sequence of �nitely generated graded R-modules and homomorphisms
of degree 0. Then,

HilbM2(t) = HilbM1(t) + HilbM3(t).

Proof For the proof see [58, Proposition 16.1]. □

For the way to compute the Hilbert series of a �nitely generated graded R-module
from a graded free resolution of M we refer the reader to [58, Section 16].

The following theorem is related to the rationality of the Hilbert series.

Theorem 2.1.31 Assume that the variable xi has degree ai and I is a homogeneous
ideal of R. Then HilbR/I(t) is a rational function of t, in the sense that there exists a
polynomial p(t) ∈ Z[t] such that

HilbR(t) =
p(t)∏n

i=1(1− tai)
.
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Proof It follows from [17, Proposition 4.4.1]. □

Example 2.1.32 If R is standard graded then

HilbR(t) =
1

(1− t)n
.

2.1.4 Cohen-Macaulay and Gorenstein rings

In this subsection we discuss the Cohen-Macaulay and Gorenstein rings. These are
two classes of rings which play important role in Commutative Algebra, Algebraic Ge-
ometry and Algebraic Combinatorics. Cohen-Macaulay rings include the rings which
are associated to some interesting classes of singular varieties and schemes. The anti-
canonical ring of a Fano n-fold and the canonical ring of a regular surface of general
type are examples of Gorenstein rings. Our main reference is [17].

De�nition 2.1.33 Assume R is a ring and N ̸= 0 is an R-module. An element r ∈ R
is called N-regular if rn ̸= 0 for all nonzero n ∈ N .

De�nition 2.1.34 ([17, De�nition 1.1.1]) Let R be a ring and M be an R-module.
A sequence x1, . . . , xn of elements of R is called regular sequence for M or M-regular
sequence if it satis�es the following conditions

1. M/(x1, . . . , xn)M ̸= 0.

2. x1 is M -regular.

3. For all 2 ≤ i ≤ n, the element xi is M/(x1, . . . , xi−1)M -regular.

Remark 2.1.35 Assume that R is a local ring with maximal ideal m and M ̸= 0 is
a �nitely generated R-module. If the ideal (x1, . . . , xn) of R is contained in m then
by Nakayama's Lemma [27, Corollary 4.8] the �rst condition of De�nition 2.1.34 is
automatically satis�ed.

Example 2.1.36 The sequence x1, . . . , xn of the variables in the polynomial ring
R = k[x1, . . . , xn] over a �eld k is a regular sequence on R.

De�nition 2.1.37 Let R be a Noetherian ring andM be an R-module. Assume that
I is an ideal of R. An M -regular sequence x1, . . . , xn which is contained in I is called
maximal if there is no element xn+1 ∈ I such that x1, . . . , xn, xn+1 is an M -regular
sequence in I.
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Theorem 2.1.38 (Rees) Let M be a �nitely generated R-module over a Noetherian
ring R and I be an ideal such that IM ̸= M . Then all maximal M-regular sequences
contained in I have the same length n given by

n = min{i ≥ 0 : ExtiR(R/I,M) ̸= 0}.

Proof For the proof see [17, Theorem 1.2.5]. □

De�nition 2.1.39 ([17, p. 65]) A Noetherian local ring R is called regular if the
dimension of R is equal to the minimal number of generators of its unique maximal
ideal.

De�nition 2.1.40 ([17, p. 68]) A Noetherian ring R is called regular if for every
maximal ideal m of R the localization Rm is regular.

Example 2.1.41 The polynomial ring R = k[x1, . . . , xn] over a �eld k is a regular
ring.

De�nition 2.1.42 ([17, p. 12]) Let R be a Noetherian ring and I ⊂ R a proper ideal.
We call grade of I the common length of all maximal R-sequences contained in I.

De�nition 2.1.43 ([17, p. 412]) Let R be a Noetherian ring and I ⊂ R a proper
ideal. We call height of I in R and denote by height I the minimum of dimRp, where
p takes value in the set of prime ideals of R containing I.

De�nition 2.1.44 ([17, p. 413]) Let R be a Noetherian ring and I ⊂ R an ideal. We
de�ne the codimension of I in R, denoted by codim I, as follows:

codim I = dimR− dimR/I.

The basic inequality between grade and height of an ideal is described in the
following proposition.

Proposition 2.1.45 Assume that R be a Noetherian ring and I ⊂ R a proper ideal.
Then,

grade I ≤ height I.



2.1. BASIC NOTIONS OF COMMUTATIVE ALGEBRA 17

Proof For the proof see [17, Theorem 1.2.14]. □

De�nition 2.1.46 ([17, De�nition 1.2.7]) Assume R be a Noetherian local ring with
maximal ideal m and N is a �nitely generated R-module. We de�ne as depth of N
the common length of all maximal N -sequences contained in m .

De�nition 2.1.47 ([17, De�nition 2.1.1]) A Noetherian local ring R is called Cohen-
Macaulay if the depth of R as an R-module is equal to the dimension of R. More
generally, we call a Noetherian ring R Cohen-Macaulay if for every maximal ideal m
the localization Rm is Cohen-Macaulay.

Example 2.1.48 The polynomial ring R = k[x1, . . . , xn] over a �eld k is a Cohen-
Macaulay ring.

Theorem 2.1.49 Let R be a Cohen-Macaulay ring and I an ideal of R with I ̸= R.
Then,

grade I = height I.

Moreover, if R is local then

height I = codim I.

Proof For the proof see [17, Corollary 2.1.4]. □

Remark 2.1.50 Theorem 2.1.49 also holds for the case of a graded ring R and a
homogeneous ideal I.

Remark 2.1.51 Assume k is a �eld and R is a �nitely generated k-algebra which
is an integral domain. Then, by [27, p. 226], for all proper ideals I of R we have
height I = codim I. In particular, this holds when R is a polynomial ring over a �eld
in �nitely many variables.

Theorem 2.1.52 (Krull's Principal Ideal Theorem) Assume that R is a local Noethe-
rian ring and I is an ideal of R which is generated by n elements. Then, codim I ≤ n.

Proof For the proof see [17, p. 414]. □

We now introduce the class of Gorenstein rings. There are many equivalent de�-
nitions for Gorenstein rings, we give one of them. For a more extensive treatment we
refer to [6, 17, 27].
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De�nition 2.1.53 ([17, De�nition 3.1.18]) A Noetherian local ring R is called Goren-
stein if it has �nite injective dimension as an R-module. More generally, a Noetherian
ring R is called Gorenstein if for every maximal ideal m of R the localization Rm is
Gorenstein.

De�nition 2.1.54 An ideal I of a Gorenstein ring R is called Gorenstein if the
quotient ring R/I is Gorenstein.

Example 2.1.55 The polynomial ring R = k[x1, . . . , xn] over a �eld k is Gorenstein.

Theorem 2.1.56 Let R be a polynomial ring of dimension n and I a homogeneous
ideal of R. If the ring R/I is Gorenstein ring of dimension q then

bRi (R/I) = bRn−q−i(R/I),

for all 0 ≤ i ≤ n− q.

Proof For the proof see [58, Theorem 25.6]. □

The following theorem gives a criterion for a ring to be Gorenstein.

Theorem 2.1.57 Let R = k[x1, . . . , xn] be a polynomial ring over a �eld k and I a
homogeneous ideal of R. We set q = dimR/I. The ring R/I is Gorenstein if and only
if

proj.dimR(R/I) = n− q and bRn−q(R/I) = 1.

Proof For the proof see [58, Theorem 25.7]. □

In the present work, we will call an ideal I of a polynomial ring k[x1, . . . , xn] over
a �eld k a complete intersection ideal if I can be generated by codim I elements. We
refer to [17, Section 2.3] for more details about this notion.

We conclude with a theorem which shows how the classes of regular rings, complete
intersections, Cohen-Macaulay and Gorenstein rings are related.

Theorem 2.1.58 Let R be a polynomial ring and I a homogeneous ideal of R. We
set S = R/I. Then we have the following implications

S regular ⇒ S complete intersection ⇒ S Gorenstein ⇒ S Cohen-Macaulay.

Proof It follows from [17, Proposition 3.1.20]. □
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2.1.5 Structure theorems for Gorenstein ideals of codimension

≤ 3

If R = k[x1, . . . , xn]/I is a Gorenstein graded ring and the codimension of the homo-
geneous ideal I is less or equal to 3 then there are good structure theorems. Serre
proved that if codim I = 1 or 2 then R is a complete intersection while Buchsbaum
and Eisenbud [19] showed that if codim I = 3 then I is generated by the 2n × 2n
Pfa�ans of a skewsymmetric (2n+ 1)× (2n+ 1) matrix. In this subsection we recall
these structure theorems.

De�nition 2.1.59 Assume that M = [mij], 1 ≤ i, j ≤ n, is an n× n skewsymmetric
matrix ( i.e., mji = −mij and mii = 0 ) with entries in a commutative ring S.

1. If n is even, then there exists a unique polynomial Pf(M) in mij with the fol-
lowing properties

(a) (Pf(M))2 = detM

(b) Pf(

(
0 In/2

−In/2 0

)
) = 1S,

where In/2 is the n/2×n/2 identity matrix. The polynomial Pf(M) is called the
Pfa�an of the matrix M .

2. If n is odd by Pfa�ans of M we mean the set {Pf(M1),Pf(M2), . . . ,Pf(Mn)},
where Mi denotes the skewsymmetric submatrix of M obtained by deleting the
i-th row and i-th column of M .

For more details about Pfa�ans we refer to [44, Chapter XV, Section 9].

Example 2.1.60 1. For n = 2 :

Pf(

(
0 m12

−m12 0

)
) = m12.

2. For n = 5 :

Pf(


0 m12 m13 m14 m15

−m12 0 m23 m24 m25

−m13 −m23 0 m34 m35

−m14 −m24 −m34 0 m45

−m15 −m25 −m35 −m45 0

) = {Pf(M1),Pf(M2), . . . ,Pf(M5)}
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where

Pf(M1) = m23m45 −m24m35 +m25m34,

Pf(M2) = m13m45 −m14m35 +m15m34,

Pf(M3) = m12m45 −m14m25 +m15m24,

Pf(M4) = m12m35 −m13m25 +m15m23,

Pf(M5) = m12m34 −m13m24 +m14m23.

Theorem 2.1.61 Assume k is a �eld and that the polynomial ring S = k[x1, . . . , xn]
has a grading with deg xi > 0 for all i. Assume I ⊂ S is a homogeneous ideal. We set
R = S/I.

1. (Serre) If codim I = 1 then R is Gorenstein if and only if the ideal I is generated
by a single element of S. If codim I = 2 then R is Gorenstein if and only if the
ideal I is generated by two elements of S.

2. (Buchsbaum-Eisenbud [19]) If codim I = 3 then R is Gorenstein if and only if
I is generated by the 2n× 2n Pfa�ans of a skewsymmetric (2n+ 1)× (2n+ 1)
matrix with entries in S.

Proof The �rst part of the theorem follows from [27, Corollary 21.20]. The second
part of the theorem follows from [17, Theorem 3.4.1]. □

2.1.6 Lefschetz properties

In this subsection we recall the notions of Weak and Strong Lefschetz Property of a
graded k-algebra. Good general references are [29, 49].

Assume k is a �eld. In this subsection all graded k-algebras will be Noetherian
and of the form G = ⊕i≥0Gi with G0 = k and dimkGi <∞ for all i. Recall that G is
called standard graded if it is generated, as a k-algebra, by G1. We denote by dim G
the Krull dimension of G.

De�nition 2.1.62 Assume F is an Artinian graded k-algebra. There exists a largest
integer d such that the d-th graded part Fd is nonzero, and we call d the socle degree
of F . An element ω ∈ F1 is called a Weak Lefschetz element if, for all i ≥ 0, the
multiplication by ω map Fi → Fi+1 is of maximal rank, which means that it is injective
or surjective (or both). We say that F has the Weak Lefschetz Property if there exists
a Weak Lefschetz element ω ∈ F1.
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De�nition 2.1.63 Assume F is an Artinian Gorenstein graded k-algebra of socle
degree d. An element ω ∈ F1 is called a Strong Lefschetz element if, for all i with
0 ≤ 2i ≤ d, the multiplication by ωd−2i map Fi → Fd−i is bijective. We say that F
has the Strong Lefschetz Property if there exists a Strong Lefschetz element ω ∈ F1.

De�nition 2.1.64 We say that a standard graded k-algebra G with positive Krull
dimension has the Weak Lefschetz Property if it is Cohen-Macaulay, the �eld k is
in�nite and for Zariski general homogeneous degree 1 elements f1, . . . , fdimG of G the
Artinian k-algebra G/(f1, . . . , fdimG) has the Weak Lefschetz Property.

De�nition 2.1.65 We say that a standard graded k-algebra G with positive Krull
dimension has the Strong Lefschetz Property if it is Gorenstein, the �eld k is in�nite
and for Zariski general homogeneous degree 1 elements f1, . . . , fdimG of G the Artinian
k-algebra G/(f1, . . . , fdimG) has the Strong Lefschetz Property.

Remark 2.1.66 We refer to [29, Theorem 2.79] for the following well-known fact.
Assume F = ⊕d

i=0Fi with Fd ̸= 0 is a standard graded Gorenstein Artinian k-algebra.
Then Fd is 1-dimensional, and, for all i with 0 ≤ i ≤ d, the multiplication map
Fi×Fd−i → Fd

∼= k is a perfect pairing. As a consequence, given i, j with 0 ≤ i ≤ j ≤ d
and a nonzero element u ∈ Fi, there exists w ∈ Fj−i such that uw ̸= 0. The reason
is that by the perfect pairing property there exists w1 ∈ Fd−i such that uw1 ̸= 0, and
since F is standard graded, w1 is a sum of products of elements of Fj−i with elements
of Fd−j.

2.2 Some notions of Algebraic Geometry

In this section we recall some notions of Algebraic Geometry that we need. More
precisely, we discuss the Proj construction which assigns a projective scheme to a
graded ring, a construction that will allow us to pass from algebra to geometry in
Sections 4.3 and 5.2. Moreover, we discuss the notion of the Mori category and Fano
3-folds.

2.2.1 The Proj of a graded ring

We brie�y recall the Proj construction, which given a graded ring R produces a pro-
jective scheme.

De�nition 2.2.1 Let R be a graded ring and R+ be the irrelevant ideal of R. We
de�ne as Proj R the set of all homogeneous prime ideals of R which do not contain
the ideal R+.
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Proj R can be viewed as topological space as follows. If I is a homogeneous ideal
of R, we de�ne the subset

V (I) = {P ∈ Proj R | I ⊆ P}.

Due to [30, I.2, Proposition 2.1], we can de�ne a topology on Proj R by taking the
closed sets to be the subsets of the form V (I). This topology is called Zariski topology.

There is a natural construction of a sheaf of rings on Proj R which makes Proj R
a projective scheme. For details we refer to [30, II.7].

De�nition 2.2.2 Assume that k is a �eld and S = k[x0, . . . , xn] is the polynomial
ring which has a grading with deg xi = ai > 0 for all i. The weighted projective space
denoted by P(a0, . . . , an) is de�ned as

P(a0, . . . , an) = Proj S.

For more details related to weighted projective space we refer to [7, 26, 33].

2.2.2 Fano 3-folds

In this subsection we recall some notions of Algebraic Geometry related to Fano 3-folds.
Good references are [4, 34, 47].

Assume X is an irreducible normal variety. A Weil divisor of X is a formal sum

D =
∑
i

kiDi,

where the sum is over all irreducible codimension 1 subvarieties Di of X, the ki are
integers and the set {i : ki ̸= 0} is �nite. For the de�nition of Cartier divisors we
refer the reader to [30, Chapter II, Section 6]. In the following, we denote by KX the
canonical divisor of X and by −KX the anticanonical divisor of X.

De�nition 2.2.3 An irreducible normal variety X has terminal singularities if it
satis�es the following conditions:

1. For some positive integer r, rKX is a Cartier divisor.

2. If f : Y → X is a resolution of singularities of X and {Ei} is the family of all
exceptional prime divisors of f then KY = f ∗KX +

∑
aiEi with all ai > 0.

For more details on terminal singularities we refer the reader to [47, Section 4.1].
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De�nition 2.2.4 A normal variety X is called Q-factorial if every Weil divisor on X
has a positive integer multiple which is a Cartier divisor.

De�nition 2.2.5 We say that a normal projective variety belongs to the Mori cate-
gory if it has at worst Q-factorial terminal singularities.

For an important property that characterizes the Mori category we refer the reader to
[47, Theorem 4.1.3].

For a divisor D =
∑

i kiDi, we write D ≥ 0 if ki ≥ 0 for all i. For the de�nition of
the divisor div(f) of a nonzero rational function we refer the reader to [30, Chapter II,
Section 6].

De�nition 2.2.6 Let X be an irreducible normal projective variety over an alge-
braically closed �eld k. Assume D =

∑
i kiDi is a Weil divisor on X. The Riemann-

Roch space of D is de�ned as

H0(X,D) := {f ∈ k(X) \ {0} | div(f) +D ≥ 0} ∪ {0}.

In other words, it is the �nite dimensional vector space of rational functions f ∈ k(X)
consisting of 0 together with all nonzero f ∈ k(X) such that for all i

1. If ki = 0, then f can have a zero along Di, or no pole nor zero along Di.

2. If ki < 0, then f has a zero along Di with the multiplicity of the zero at least
−ki.

3. If ki > 0, then f can have a zero along Di, or no pole nor zero along Di, or a
pole along Di with the multiplicity of the pole in the set {1, 2, . . . , ki}.

Example 2.2.7 Consider X = P1 the projective line and P = [0 : 1], Q = [1 : 1] two
points of X. Let D = 2P − Q. Then, f ∈ H0(X,D) if and only if either f = 0 or f
is nonzero and

1. f has a zero of multiplicity at least 1 at Q and

2. f has no pole on X \ {P} and

3. f has a zero at P , or f has no pole nor zero at P , or f has a pole at P of
multiplicity 1 or 2.

De�nition 2.2.8 The anticanonical ring of a normal variety X is the graded ring
de�ned by

R(X,−KX) :=
⊕

n≥0
H0(X,−nKX).

The multiplication is given by the natural maps

H0(X,−nKX)⊗k H
0(X,−mKX) → H0(X, (−n−m)KX).
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De�nition 2.2.9 A Fano 3-fold is a normal projective varietyX of dimension 3 which
belongs to the Mori category and the anticanonical divisor −KX is ample.

The maximal integer f such that −KX is divisible by some Weil divisor A, that is
−KX = fA, is called the Fano index of X. The anticanonical ring R(X,−KX) of a
Fano 3-fold X is Gorenstein, �nitely generated and X ∼= Proj R(X,−KX).

De�nition 2.2.10 Let X be a quasi-projective variety over C and x, y, z be coordi-
nates of C3. Suppose that the group Zr of r-th roots of unity acts on C3 via:

(x, y, z) 7→ (ϵax, ϵby, ϵcz),

where ϵ is a �xed primitive r-th root of unity and a, b, c are integers. A singularity
P ∈ X is a quotient singularity of type 1

r
(a, b, c) if (X,P ) is isomorphic to an ana-

lytic neighborhood of (C3, 0)/Zr. A basket of singularities is a collection of quotient
singularities of type { 1

r1
(a1, b1, c1),

1
r2
(a2, b2, c2), . . . ,

1
rs
(as, bs, cs)}.

In the case of Fano 3-folds of index f , Suzuki ([64, Lemma 1.2]) proves that in
De�nition 2.2.10 we can assume that b = −a, c = f and r is coprime to a, b, c.
Therefore, for a Fano 3-fold of index f , a basket of singularities is a collection of
singularities 1

r
(a,−a, f).

De�nition 2.2.11 Let X be a closed subvariety of a weighted projective space with
homogeneous ideal I(X) ⊂ k[x0, . . . , xn]. The a�ne cone over X, denoted by CX , is
the zero set V (I(X)) ⊂ An+1. We de�ne the vertex of CX to be the point (0, 0, . . . , 0).

De�nition 2.2.12 Let X be a closed subvariety of a weighted projective space. X is
called quasismooth if its a�ne cone CX is smooth outside its vertex.

2.3 A review of some basic notions of Combinatorics

In this section we introduce some notions from Combinatorial Commutative Algebra.
We discuss simplicial complexes to which we assign algebraic objects, the Stanley-
Reisner rings. We investigate the main properties of these objects and we see how
these are related to the algebraic notions introduced in Section 2.1. Good general
references are [17, 31, 32, 50, 63].

2.3.1 Simplicial complexes

In this subsection we recall the notion of a simplicial complex.
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De�nition 2.3.1 Let V = {v1, . . . , vm} be a �nite set. A simplicial complex ∆ on V
is a collection of subsets of V such that G ∈ ∆ and F ⊆ G implies that F ∈ ∆ and
such that {vi} ∈ ∆ for all vi ∈ V . The elements of ∆ are called faces. The dimension
of a face F , dimF is the number #F −1, where #F denotes the cardinality of the set
F . A zero dimensional face of ∆ is called vertex. A one dimensional face of ∆ is called
edge. The dimension dim∆ of the simplicial complex ∆ is de�ned as the maximum
of the dimensions of the faces of ∆.

De�nition 2.3.2 Let ∆ be a simplicial complex with vertex set V = {v1, . . . , vm}. A
face of ∆ is called a facet if it is a maximal face under inclusion. The set of facets is
denoted by F(∆). A nonface of ∆ is a subset F of V with the property F /∈ ∆.

Remark 2.3.3 By convention, the empty set ∅ is the unique face of dimension −1 in
any simplicial complex. A simplicial complex ∆ is determined by the set F(∆).

A simplicial complex in which all of its facets have the same dimension is called pure.

De�nition 2.3.4 Let V,W be disjoint sets and Γ,∆ be simplicial complexes on V
and W respectively. The join Γ ⋆∆ is de�ned as the simplicial complex with vertex
set V ∪W and faces F ∪G where F ∈ Γ and G ∈ ∆.

De�nition 2.3.5 A simplex is a simplicial complex with a unique facet.

De�nition 2.3.6 Let ∆ be an arbitrary simplicial complex of dimension n ≥ 0 on a
vertex set V . Denote by fi the number of i-dimensional faces of ∆. The (n+1)-tuple

f(∆) = (f0, . . . , fn)

is called the f-vector of ∆.

We note that f0 is the number of vertices of ∆. We set f−1 = 1.
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Example 2.3.7 Consider the octahedron ∆ with vertex set V = {1, . . . , 6}.

3 4

56

2

1

The set of facets F(∆) is described as

F(∆) = {{1, 3, 4}, {1, 4, 5}, {1, 5, 6}, {1, 3, 6}, {2, 3, 4}, {2, 4, 5}, {2, 5, 6}, {2, 3, 6}}.

The f-vector f(∆) is equal to
f(∆) = (6, 12, 8).

De�nition 2.3.8 Assume ∆ is a simplicial complex of dimension n. We de�ne the
h-vector h(∆) = (h0, . . . , hn+1) of ∆ by the equality

n+1∑
i=0

hix
n+1−i =

n+1∑
i=0

fi−1(x− 1)n+1−i.

Example 2.3.9 Consider the octahedron ∆ (see Example 2.3.7). The h-vector h(∆)
is equal to

h(∆) = (1, 3, 3, 1).

De�nition 2.3.10 Let ∆ be a simplicial complex of dimension n. The g-vector
g(∆) = (g0, . . . , g[(n+1)/2]) of ∆ is de�ned by

g0 = 1, gi = hi − hi−1

for 1 ≤ i ≤ [(n+ 1)/2].

De�nition 2.3.11 Let ∆ be a simplicial complex with vertex set V = {v1, . . . , vm}
and F a subset of V . The star of F is denoted by st∆F and described as

st∆ F = {G ∈ ∆ : F ∪G ∈ ∆}.
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The link of F is denoted by link∆ F and described as

link∆ F = {G ∈ ∆ : F ∪G ∈ ∆, F ∩G = ∅}.

Example 2.3.12 Consider the octahedron ∆ (see Example 2.3.7) with vertex set
V = {1, . . . , 6} and F = {4, 5}, G = {4} two subsets of V. Then, the set of facets of
link∆ F is

{{1}, {2}},

hence link∆ F consists of two nonconnected points. Moreover, the set of facets of
link∆G is

{{1, 5}, {1, 3}, {2, 3}, {2, 5}},

hence link∆G is the 4-gon with vertex set {2,5,1,3}. The set of facets of st∆ F is

{{1, 4, 5}, {2, 4, 5}},

hence st∆ F consists of two solid triangles with common edge {4, 5}. Finally, the set
of facets of st∆G is

{{1, 5, 4}, {1, 3, 4}, {2, 3, 4}, {2, 5, 4}},

hence st∆G is the join of the 4-gon with vertex set {2,5,1,3} with the vertex 4.

De�nition 2.3.13 Let V = {v1, . . . , vm} be a �nite set. Denote by ei the i-th unit
vector of Rm. For a subset F of V , we de�ne

|F | = convex hull {ei | vi ∈ F}.

The geometric realization of a simplicial complex ∆, denoted by |∆| is de�ned as

|∆| =
⋃
F∈∆

|F |.

The set |∆| is a subset of Rn. Hence, it becomes a topological space with the
subspace topology.

De�nition 2.3.14 Let n ≥ 1 be an integer. A simplicial sphere of dimension n is a
simplicial complex D of dimension n such that its geometric realization is homeomor-
phic to the unit sphere Sn.
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2.3.2 Stanley-Reisner rings

Assume k is a �eld. In this subsection we recall the construction, due to Stanley, that
associates to a simplicial complex D the Stanley-Reisner ideal of it, which is an ideal
of the polynomial ring k[x1, . . . , xm] generated by squarefree monomials. Here m is
the number of vertices of D. Good references are [17, 31, 32, 50, 63].

De�nition 2.3.15 Let R = k[x1, . . . , xm] be the polynomial ring over the �eld k and
assume (a1, . . . , am) ∈ Nm. The monomial xa11 x

a2
2 . . . xamm of R is called squarefree if

ai ∈ {0, 1} for all i. An ideal which is generated by monomials is called a monomial
ideal. An ideal which is generated by squarefree monomials is called a squarefree
monomial ideal.

De�nition 2.3.16 Let ∆ be a simplicial complex with vertex set V = {v1, . . . , vm}
and k be a �eld. Denote by I∆ the ideal generated by all monomials xi1xi2 . . . xis
such that {vi1 , . . . , vis} /∈ ∆. That is, I∆ is the squarefree monomial ideal generated
by monomials corresponding to nonfaces of ∆. The ideal I∆ is called the Stanley-
Reisner ideal (or face ideal) of ∆. The quotient ring

k[∆] = k[x1, . . . , xm]/I∆

is called the Stanley-Reisner ring (or face ring) of ∆ over k.

Theorem 2.3.17 Assume k is a �eld. Associating to a simplicial complex its Stanley-
Reisner ideal over k induces a bijection between simplicial complexes with vertex set
{1, . . . ,m} and squarefree monomial ideals of the polynomial ring R = k[x1, . . . , xm].

Proof For the proof see [50, Theorem 1.7]. □

Theorem 2.3.18 Let ∆ be a simplicial complex. It holds that

I∆ =
⋂
F∈∆

JF ,

where JF is the ideal generated by all xi such that vi /∈ F . In particular,

dim k[∆] = dim∆ + 1.

Proof For the proof see [17, Theorem 5.1.4]. □
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Example 2.3.19 Consider the octahedron ∆ with vertex set V = {1, . . . , 6} (see
Example 2.3.7). The Stanley-Reisner ideal of ∆ is

I∆ = (x1x2, x3x5, x4x6)

and
k[∆] = k[x1, . . . , x6]/I∆.

De�nition 2.3.20 A simplicial complex ∆ is called Gorenstein over a �eld k if k[∆]
is Gorenstein.

For the relation of this notion to the simplicial homology of the geometric realiza-
tion of ∆ we refer to [17, Section 5.6].

Theorem 2.3.21 Asume k is a �eld and D is a simplicial sphere. Then D is Goren-
stein over k.

Proof For the proof see [17, Theorem 5.6.2]. □





Chapter 3

Unprojection Theory

In this chapter, we recall some basic facts related to Kustin-Miller unprojection. For
more details see [54, 55, 57, 59].

3.1 Kustin-Miller unprojection

Assume that R is a Gorenstein local ring and J ⊂ R is a codimension 1 ideal such that
the quotient ring R/J be Gorenstein. Then, HomR(J,R) is generated as an R-module
by the inclusion map i : J → R and an extra homomorphism ϕ : J → R, as it follows
from [57, Lemma 1.1].

De�nition 3.1.1 We de�ne the Kustin-Miller unprojection ring, Unpr(J,R), of the
pair J ⊂ R to be the graph of ϕ, that is the quotient

Unpr(J,R) =
R[T ]

(Tr − ϕ(r) : r ∈ J)
,

where T is a new variable called the unprojection variable.

Theorem 3.1.2 ([57, Theorem 1.5]) The ring Unpr(J,R) is Gorenstein.

The simplest example of Kustin-Miller unprojection, which nevertheless has im-
portant consequences in birational geometry, is the example of a hypersurface which
contains a codimension 2 complete intersection.

Example 3.1.3 (Reid's Ax−By argument)
Assume A,B ∈ k[x, y, z, w] such that Ax−By nonzero. We set

R =
k[x, y, z, w]

(Ax−By)

31
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and
J = (x, y) ⊂ R.

We de�ne ϕ : J → R to be the unique R-module homomorphism such that ϕ(x) = B
and ϕ(y) = A. Then, HomR(J,R) is generated as R-module by i and ϕ.
Moreover,

Unpr(J,R) =
R[T ]

(Tx−B, Ty − A)
.

For more details we refer to [59, Section 2].

For applications of the Kustin-Miller unprojection to graded rings and birational
geometry we refer to [57, 59].

3.1.1 Parallel Kustin-Miller unprojection

Sometimes, especially for applications, it is necessary to perform not only one but
several Kustin-Miller unprojections. Neves and Papadakis [53] developed such a theory
which they named parallel Kustin-Miller unprojection. In this subsection, we recall
their formulation.

Assume k is a �eld and L is a nonempty �nite indexing set. Assume that R is
a Gorenstein positively graded k-algebra and {Jα, α ∈ L} is a set of codimension 1
homogeneous ideals of R such that, for all α ∈ L, the quotient ring R/Jα is Gorenstein.

For each α ∈ L we �x a graded R-module homomorphisms ϕα : Jα → R such
that HomR(Jα, R) is generated as an R-module by {iα, ϕα}, where iα : Jα → R is the
inclusion map. We make the assumption that for distinct α, β ∈ L there exists a
homogeneous element rαβ ∈ R with deg rαβ = deg ϕα such that

(ϕα + rαβiα)(Jα) ⊂ Jβ (3.1)

and that for all distinct α, β ∈ L,

codimR(Jα + Jβ) ≥ 2. (3.2)

Denote by ϕαβ = ϕα+rαβiα. By [53, Proposition 2.1] for distinct α, β ∈ L there exists
a unique homogeneous element Aβα ∈ R of degree deg ϕα + deg ϕβ such that

ϕβα(ϕαβ(s)) = Aβαs for all s ∈ Jα.

Assume M ⊂ L is a nonempty subset, and denote by {Tu | u ∈ M} a set of new
variables with degree of Tu equal to deg ϕu for all u ∈ M. Denote by RM the graded
ring given as quotient of polynomial ring R[Tu | u ∈ M] by the ideal generated by the
set

{Tus− ϕu(s) | u ∈ M, s ∈ Ju} ∪ {(Tv + rvu)(Tu + ruv)− Avu | u, v ∈ M, u ̸= v}.
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Theorem 3.1.4 ([53, Theorem 2.3]) The ring RM is Gorenstein with dimension equal
to the dimension of R.

3.1.2 Tom and Jerry unprojections

We �x a codimension 4 complete intersection ideal J . The question is to �nd a 5× 5
skewsymmetric matrix M such that if we denote by I the ideal given by the Pfa�ans
ofM we have I ⊆ J and I has codimension 3. Tom and Jerry are two di�erent answers
to this question.

Tom and Jerry are two families of unprojections which were de�ned and named by
Reid. These families occur in many constructions of Gorenstein codimension 4 ideals
with 9× 16 resolution (i.e., 9 equations and 16 �rst syzygies) and, by [55, Section 5],
can be considered as a type of deformation of the homogeneous coordinate rings of
the Segre embeddings P2 × P2 ⊂ P8 and P1 × P1 × P1 ⊂ P7 respectively.

De�nition 3.1.5 Assume M = (mkl) is a 5 × 5 skewsymmetric matrix and J is a
codimension 4 ideal.

1. Assume 1 ≤ i ≤ 5. The matrix M is called Tomi in J if mkl ∈ J whenever k ̸= i
and l ̸= i.

2. Assume 1 ≤ i < j ≤ 5. The matrix M is called Jerryij in J if mkl ∈ J whenever
k ∈ {i, j} or l ∈ {i, j}.

Remark 3.1.6 In other words, M is Tomi in J if all entries of the submatrix of
M obtained by deleting the i-th row and the i-th column of M are elements of J .
Moreover, M is Jerryij in J if each entry of the i-th row of M is in J , and the same
is true for each each entry of the j-th row, the i-th column and the j-th column.

Remark 3.1.7 For an example which is Tom1 in J = (z1, z2, z3, z4) see Subsec-
tion 3.1.3.

Remark 3.1.8 Assume 1 ≤ i, j ≤ 5 and M is a Tomi matrix in J . Then there
exists a suitable permutation matrix A such that AMAt is Tomj in J , where A

t is the
transpose of A. For example, consider a matrix M which is Tom2 matrix in J. Denote
by A the following invertible 5× 5 matrix

A =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Then the matrix AMAt is Tom1 in J. A similar statement holds for the case of a
Jerryij matrix in J .

3.1.3 The fundamental calculation for Tom

Papadakis [54] gave an explicit presentation of the unprojection ring for the Tom and
Jerry families. In what follows, we give a quick review of the main steps of the Tom
case.

We work over the polynomial ring R = k[xk, zk,m
k
ij], where the indices are as

follows: 1 ≤ k ≤ 4, 2 ≤ i < j ≤ 5. We denote by

N =


0 x1 x2 x3 x4

−x1 0 m23 m24 m25

−x2 −m23 0 m34 m35

−x3 −m24 −m34 0 m45

−x4 −m25 −m35 −m45 0

 ,

where

mij =
4∑

k=1

mk
ijzk.

Denote by Pi the Pfa�an of the submatrix of N obtained by deleting the (i+1)-th
row and column of N . We set J = (z1, z2, z3, z4) and I = (P0, . . . , P4). We have that
I ⊂ J and N is a matrix which is Tom1 in the codimension 4 complete intersection
ideal J .

Since P1, . . . , P4 are linear in z1, z2, z3, z4, there exists a unique 4×4 matrix Q such
that 

P1

P2

P3

P4

 = Q


z1
z2
z3
z4

 .

We denote by Qi the submatrix of Q which obtained by deleting the i-th row of
Q. For i = 1, . . . , 4, let Hi be the 1 × 4 matrix whose i-th entry is equal to (−1)i+1

times the determinant of the submatrix of Qi. For all i, j, it holds that

xiHj = xjHi.

Using the last equality, we can de�ne four polynomials g1, g2, g3, g4 as follows. We �x
1 ≤ j ≤ 4 and we set

(g1, g2, g3, g4) = Hj/xj.
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We note that this de�nition is independent of the choice of j.
Denote by ϕ the map which is de�ned by

ϕ : J/I → R/I

with

zi + I 7→ gi + I,

for all 1 ≤ i ≤ 4.
By [54], HomR/I(J/I,R/I) is generated as R/I-module by the inclusion map i and

ϕ. Moreover, the ideal

(P0, . . . , P4, T z1 − g1, T z2 − g2, T z3 − g3, T z4 − g4)

of the polynomial ring R[T ] is Gorenstein of codimension 4.

3.1.4 Unprojection of a codimension 2 ideal inside a codimen-

sion 3

In this subsection we specify a codimension 2 complete intersection ideal I and a codi-
mension 3 complete intersection J such that I ⊂ J . Following [54, Subsection 2.5.1],
we give the explicit description of the unprojection ring Unpr(J/I,R/I) of the pair
J/I ⊂ R/I.

Let R = k[ai, bi, xj], where 1 ≤ i ≤ 3 and j ∈ {1, 3, 5}, be the standard graded
polynomial ring in 9 variables over a �eld k. We set

f1 = a1x1 + a2x3 + a3x5, f2 = b1x1 + b2x3 + b3x5,

and consider the ideals

I = (f1, f2), J = (x1, x3, x5)

of R. We denote by A the 2× 3 matrix

A =

(
a1 a2 a3
b1 b2 b3

)
and, for 1 ≤ i ≤ 3, by Ai the 2 × 2 submatrix of A obtained by removing the i-th
column of A.

Proposition 3.1.9 The ideal I is a homogeneous codimension 2 Gorenstein ideal of
R and the ideal J is a homogeneous codimension 3 Gorenstein ideal. Moreover, I is
a subset of J .
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Proof We �rst prove that codim I = 2. The ideal I is generated by two homogeneous
polynomials of R of degree 2. Hence, by Theorem 2.1.52 codim I ≤ 2. To prove the
claim it is enough to show that codim I ≥ 2. We set f3 = −b1f1 + a1f2. Let > be the
lexicographic order on R with

a1 > · · · > a3 > b1 > · · · > b3 > x1 > · · · > x3.

We denote by Q the initial ideal of I with respect >. It is well-known that it holds
that codim I = codimQ.

We set
L = (a1x1, b1x1, a1b2x3).

Since the initial term of f1 is a1x1, the initial term of f2 is b1x1 and the initial term
of f3 is a1b2x3 we have L ⊂ Q, hence codimL ≤ codimQ.

We consider the a�ne variety X = V (L) ⊂ A9. It holds that

X = V (x1, x3) ∪ V (b2, x1) ∪ V (a1, b1) ∪ V (a1, x1),

hence dimX = 9− 2 = 7. Using that

dim R/L = dim X,

it follows that codimL = 2. Hence codim I ≥ 2.
We now prove that codim J = 3. According to the Third Isomorphism Theorem

of rings
R/J ∼= k[a1, a2, a3, b1, b2, b3].

So, dim R/J = 6. Hence,

codim J = dim R− dim R/J = 3.

By Theorem 2.1.61, the ideals I and J are Gorenstein. By the equality of matrices

(
f1 f2

)
= A

x1x3
x5


it follows that I ⊂ J . □

We set, for 1 ≤ i ≤ 3, hi to be the determinant of the matrix Ai. Denote by

ϕ : J/I → R/I

the map such that

ϕ(x1 + I) = h1 + I, ϕ(x3 + I) = −h2 + I, ϕ(x5 + I) = h3 + I.

By [54, Theorem 2.5.6], HomR/I(J/I,R/I) is generated as R/I-module by the inclu-
sion map i and ϕ. As a corollary,

Unpr(J/I,R/I) =
R[T ]

I + (Tx1 − h1, Tx3 − (−h2), Tx5 − h3)
.



Chapter 4

Tom & Jerry triples unprojection

format with an application to Fano

3-folds

In this chapter we introduce a new format of parallel unprojection which we call Tom
and Jerry triples. The initial data of the Tom and Jerry triples format provides one
answer to the following question:

Question 4.1 Assume we are given three codimension 4 complete intersection
ideals J1, . . . , J3. How can one construct a 5× 5 skewsymmetric matrix M such that
I ⊂ Jt, for all 1 ≤ t ≤ 3, where I denotes the ideal generated by the 5 Pfa�ans of M?

The motivation for Question 4.1 is that under favourable conditions for Jt and I
one can hope to use parallel unprojection to construct codimension 6 Gorenstein rings
which will correspond to interesting geometric objects.

Our approach for answering Question 4.1 is to insist that M is Toma (or Jerryab)
with respect to the ideal J1, Tomc (or Jerrycd) with respect to the ideal J2 and Tome

(or Jerryef ) with respect to the ideal J3, for a suitable choice of integers a, . . . , f . (We
recall that the notions Toma and Jerryab were de�ned in De�nition 3.1.5).

We will use the following notation: A 5×5 skewsymmetric matrixM will be called
Toma+Tomc+Tome for the triple of ideals J1, . . . , J3 if M is Toma with respect to J1,
Tomc with respect to J2 and Tome with respect to J3. Similarly, it will be called
Toma+Tomc+Jerryef for the triple of ideals J1, . . . , J3 if M is Toma with respect to
J1, Tomc with respect to J2 and Jerryef with respect to J3, etc. We will often avoid
mentioning the triple of ideals J1, . . . , J3 when no confusion is likely to arise.

In Section 4.1 we study the problem of what di�erent Tom and Jerry triples we
have up to the obvious symmetry obtained by permutation of the indices.

Assume now that we have �xed explicit ideals J1, . . . , J3 and we have made the
choice to use for example the Tom1+Tom2+Tom3 con�guration. Then, De�nition 4.1.1

37
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gives explicit conditions for the matrixM , and it makes sense to de�ne the entries ofM
as the most general linear combination of the generators of the ideals Jt that satisfy the
conditions. An explicit example is the matrix Tom(1, 2, 3) de�ned in Subsection 4.2.1.

A second question, very important for applications to Algebraic Geometry, is the
following:

Question 4.2 How can one choose three speci�c complete intersection ideals
J1, . . . , J3 and a choice of a con�guration (for example, Tom1+Tom2+ Tom3) such
that the parallel unprojection works with respect to this initial data, and produces a
Gorenstein codimension 6 ring with good properties such as being an integral domain
and the associated projective varieties have good properties such as being in the Mori
category?

We believe that Question 4.2 has no obvious answers, since one needs to balance
a number of contradicting factors. For example, if the three ideals Jt intersect a lot
then the theory of parallel unprojection may not be applicable, while if the ideals Jt
intersect very little this imposes many restrictions on M and we may lose essential
properties such as I being a prime ideal.

In Subsection 4.2.1 we provide an answer to Question 4.2. More precisely, we make
a speci�c choice of ideals J1, . . . , J3 and the choice of Tom1+Tom2+ Tom3 con�gura-
tion and we use parallel unprojection to produce a Gorenstein codimension six family
of rings. In Section 4.3, we use this family of rings in two di�erent ways to construct
two families of Fano 3-folds of codimension 6 embedded in weighted projective space
which correspond to the entries with ID: 14885, ID: 12979 in Brown's Graded Ring
Database [13].

4.1 Tom and Jerry triples

In this section we introduce the Tom and Jerry triples format. One of this triples is
studied in detail in Subsection 4.2.1 and leads to an application to Fano 3-folds in
Section 4.3. We discuss the remaining cases in Subsection 4.2.2.

Consider the 5× 5 skewsymmetric matrix

M =


0 m12 m13 m14 m15

−m12 0 m23 m24 m25

−m13 −m23 0 m34 m35

−m14 −m24 −m34 0 m45

−m15 −m25 −m35 −m45 0


and three complete intersection ideals J1, J2, J3 of codimension 4. In each of the
following cases we set conditions in the entries of M such that the ideal I of Pfa�ans
is contained in each of the ideals J1, . . . , J3. We denote by S5 the symmetric group of
permutations of the set {1, . . . , 5}.



4.1. TOM AND JERRY TRIPLES 39

4.1.1 Tom & Tom & Tom case

Consider

Tomi+Tomj+Tomk,

for 1 ≤ i < j < k ≤ 5. Given σ ∈ S5 we obtain

Tomσ(i)+Tomσ(j)+Tomσ(k),

for 1 ≤ σ(i) < σ(j) < σ(k) ≤ 5. In other words, S5 acts on the set {i, j, k}. It
is not di�cult to see that there is a unique orbit of this action with representative
Tom1+Tom2+Tom3.

De�nition 4.1.1 We say that M is a Tom1+Tom2+Tom3 matrix if the entries of M
satisfy the following conditions:

m12 ∈ J3, m13 ∈ J2, m14,m15 ∈ J2 ∩ J3, m23 ∈ J1,

m24,m25 ∈ J1 ∩ J3, m34,m35 ∈ J1 ∩ J2, m45 ∈ J1 ∩ J2 ∩ J3.

Then, M is Tom1 in J1, Tom2 in J2 and Tom3 in J3.

4.1.2 Jerry & Jerry & Jerry case

Working as before, consider

Jerryij+Jerrykl+Jerrymn,

for 1 ≤ i < j ≤ 5, 1 ≤ k < l ≤ 5, 1 ≤ m < n ≤ 5 and (i, j), (k, l), (m,n) pairwise
di�erent. Given σ ∈ S5 we obtain

Jerryσ(i)σ(j)+Jerryσ(k)σ(l)+Jerryσ(m)σ(n).

In this case, the following representatives of the orbits of the action occur:

1. Jerry12+Jerry13+Jerry14

2. Jerry12+Jerry13+Jerry23

3. Jerry12+Jerry14+Jerry23

4. Jerry14+Jerry15+Jerry23.

De�nition 4.1.2 We say that M is a Jerry12+Jerry13+Jerry14 matrix if M is Jerry12
in J1, Jerry13 in J2 and Jerry14 in J3. Similar de�nitions also hold for the remaining
representatives of the orbits of the action above and we will not write them explicitly.

To avoid repetition of the same arguments and de�nitions in the cases that follow
we write down explicitly only the representatives of the orbits of the action.
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4.1.3 Tom & Tom & Jerry case

Consider

Tomi+Tomj+Jerrykl,

for 1 ≤ i < j ≤ 5, 1 ≤ k < l ≤ 5.

In this case, the following representatives arise:

(5) Tom1+Tom2+Jerry12

(6) Tom1+Tom2+Jerry13

(7) Tom1+Tom2+Jerry34.

4.1.4 Tom & Jerry & Jerry case

Consider

Tomi+Jerryjk+Jerrylm,

for 1 ≤ i ≤ 5, 1 ≤ j < k ≤ 5, 1 ≤ l < m ≤ 5 and (j, k) ̸= (l,m).

So, for this case we have the following list of representatives:

(8) Tom1+Jerry12+Jerry13

(9) Tom1+Jerry12+Jerry23

(10) Tom1+Jerry12+Jerry34

(11) Tom1+Jerry23+Jerry24

(12) Tom1+Jerry23+Jerry45.

4.2 The main results

This section consists of two subsections. In Subsection 4.2.1, we establish a result
which concerns the construction of a codimension 6 Gorenstein ring using one of the
formats which were developed in Subsection 4.1.1. In Subsection 4.2.2, we present a
theorem related to the other formats which were described in Section 4.1.
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4.2.1 Tom & Tom & Tom format

In the present subsection, we specify three codimension 4 complete intersection ide-
als J1, J2, J3 and a codimension 3 ideal I generated by the Pfa�ans of a speci�c
Tom1+Tom2+Tom3 matrix. We prove that this data satis�es the conditions for par-
allel Kustin-Miller unprojection established by Neves and Papadakis and recalled in
Theorem 3.1.4. Moreover, using Theorem 3.1.4 we give a description of the �nal ring
as a quotient of a polynomial ring by a codimension 6 ideal. This format will be used
in Section 4.3 to prove the existence of two families of codimension 6 Fano 3-folds. As
Part 2 of Theorem 4.2.10 demonstrates, there are also other alternative choices of ide-
als J1, J2, J3 which are leading to the construction of Gorenstein rings of codimension
six which could be useful for the construction of some interesting geometric objects.

We work over the standard graded polynomial ring R = k[zi, cj], where 1 ≤ i ≤ 7
and 1 ≤ j ≤ 25. Denote by Tom(1, 2, 3) the following 5× 5 skewsymmetric matrix
0 c1z1 + c2z2 + c3z3 + c4z6 c5z1 + c6z2 + c7z4 + c8z5 c9z1 + c10z2 c11z1 + c12z2

0 c13z2 + c14z3 + c15z5 + c16z7 c17z2 + c18z3 c19z2 + c20z3
0 c21z2 + c22z5 c23z2 + c24z5

−Sym 0 c25z2
0


which is a Tom1+Tom2+Tom3 matrix in the ideals

J1 = (z2, z3, z5, z7), J2 = (z1, z2, z4, z5), J3 = (z1, z2, z3, z6). (4.1)

Let I be the ideal generated by the Pfa�ans of Tom(1, 2, 3).

Proposition 4.2.1 (i) For all t with 1 ≤ t ≤ 3, the ideal Jt/I is a codimension 1
homogeneous ideal of the quotient ring R/I such that the ring R/Jt is Gorenstein.

(ii) For all t, s with 1 ≤ t < s ≤ 3, it holds that codimR/I(Jt/I + Js/I) = 3.

Proof We �rst prove (i). According to the Third Isomorphism Theorem of rings

R/J1 ∼= k[z1, z4, z6, c1, . . . , c25], R/J2 ∼= k[z3, z6, z7, c1, . . . , c25], (4.2)

R/J3 ∼= k[z4, z5, z7, c1, . . . , c25].

So, we conclude that for all t with 1 ≤ t ≤ 3,

dim R/Jt = 28.
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We claim that

dim R/I = 29.

Denote by Ĩ = (c1, c2, c3, c5, c6, c7, c9, c12, c13, c15, c16, c18, c19, c21, c23), the ideal gener-
ated by some variables of R. We set Jnew = I + Ĩ. The ideal Jnew is a homogeneous
ideal of R. Hence, from Krull's principal ideal theorem it follows that

dim R/Jnew ≥ dim R/I − 15.

We call Î the ideal obtained from the ideal I by setting the variables

c1, c2, c3, c5, c6, c7, c9, c12, c13, c15, c16, c18, c19, c21, c23

equal to zero. Using the Third Isomorphism Theorem of rings as before we have that

R/Jnew ∼= k[z1, . . . , z7, c4, c8, c10, c11, c14, c17, c20, c22, c24, c25]/Î.

For the computation of the Krull dimension of

k[z1, . . . , z7, c4, c8, c10, c11, c14, c17, c20, c22, c24, c25]/Î

we used the computer algebra program Macaulay2 [28].
It occurs that

dim k[z1, . . . , z7, c4, c8, c10, c11, c14, c17, c20, c22, c24, c25]/Î = 14

and therefore

dim R/Jnew = 14.

As a consequence, dim R/I ≤ 29.
It is well-known that, see for example [17, Theorem 3.4.1(a)] the ideal generated by

the Pfa�ans of a skewsymmetric matrix has codimension ≤ 3. Hence, codim I ≤ 3.
Equivalently,

dim R/I ≥ 29,

which completes the proof of the claim. As a consequence,

codim I = dim R− dim R/I = 3.
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Hence, by the second part of the Theorem 2.1.61, R/I is a Gorenstein ring. Using
again the de�nition of codimension for all t with 1 ≤ t ≤ 3, we get codim Jt/I = 1.

Due to the isomorphisms (4.2) for all t with 1 ≤ t ≤ 3, the ring R/Jt is Gorenstein.
We now prove (ii). Third Isomorphism Theorem of rings implies that

R/(J1 + J2) ∼= k[z6, c1, . . . , c25], R/(J1 + J3) ∼= k[z4, c1, . . . , c25],

R/(J2 + J3) ∼= k[z7, c1, . . . , c25].

From the later isomorphisms it holds that for t, s with 1 ≤ t < s ≤ 3,

dim R/(Jt + Js) = 26.

Recall that dim R/I = 29. Taking into account the de�nition of codimension we
conclude that for all t, s with 1 ≤ t < s ≤ 3,

codim (Jt/I + Js/I) = 3.

□

For all t, with 1 ≤ t ≤ 3, we denote by it : Jt/I → R/I the inclusion map. Our
aim is to de�ne ϕt : Jt/I → R/I for all t, with 1 ≤ t ≤ 3, and prove that these maps
satisfy the assumptions of the Theorem 3.1.4. As a �rst step for the de�nition of ϕt,
we relate Tomt matrix in Jt (for the de�nition see Subsection 3.1.2) to the matrix N
which was de�ned in Subsection 3.1.3.

Assume D is a Tom1 matrix in J1. It is clear that D is a specialization of the
matrix N . For an example, see Equation (4.3) below.

Assume D is a Tom2 matrix in J2. Let A be the invertible 5× 5 matrix

A =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The matrix ADAt, where At is the transpose of A, is a specialization of the matrix N.

Assume D is a Tom3 matrix in J3. Denote by B the following invertible 5 × 5
matrix

B =


0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
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The matrix BDBt is a specialization of the matrix N.
We remark that the ideal generated by the Pfa�ans of the matrix ADAt is equal

to the ideal generated by the Pfa�ans of the matrix D. The same is true for the ideal
generated by the Pfa�ans of the matrix BDBt.

As a second step we apply the above considerations to obtain, for t = 1, 2, 3, the
matrix Tom(1, 2, 3) in Jt as a specialization of N . In what follows until the end of the
proof when we write ”a = b” we mean that a is replaced by b. We set

D1 =


0 x1 x2 x3 x4

0 c1z2 + c2z3 + c3z5 + c4z7 c5z2 + c6z3 + c7z5 + c8z7 u1
0 c13z2 + c14z3 + c15z5 + c16z7 u2

−Sym 0 u3
0

 (4.3)

where

u1 = c9z2 + c10z3 + c11z5 + c12z7, u2 = c17z2 + c18z3 + c19z5 + c20z7,

u3 = c21z2 + c22z3 + c23z5 + c24z7.

The matrix D1 is a Tom1 matrix in J1. D1 is obtained from N by the following
substitutions

z1 = z2, z2 = z3, z3 = z5, z4 = z7 (4.4)

and the obvious substitutions of mk
ij in terms of cl. We set

c7 = c8 = c11 = c12 = c14 = c16 = c18 = c20 = c22 = c23 = c24 = 0 (4.5)

in D1. We call D2 the matrix which occurs. It is given explicitly by,
0 x1 x2 x3 x4

0 c1z2 + c2z3 + c3z5 + c4z7 c5z2 + c6z3 c9z2 + c10z3
0 c13z2 + c15z5 c17z2 + c19z5

−Sym 0 c21z2
0


Finally, setting

x1 = c1z1 + c2z2 + c3z3 + c4z6, x2 = c5z1 + c6z2 + c7z4 + c8z5, (4.6)

x3 = c9z1 + c10z2, x4 = c11z1 + c12z2, c1 = c13, c2 = c14,

c3 = c15, c4 = c16, c5 = c17, c6 = c18, c9 = c19, c10 = c20,

c13 = c21, c15 = c22, c17 = c23, c19 = c24, c21 = c25
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in D2 we obtain the Tom(1, 2, 3) matrix. A similar analysis applies to consider
Tom(1, 2, 3) matrix as a Tom2 in J2 and Tom3 in J3.

At this point we use Papadakis Fundamental Calculation for N (see Subsec-
tion 3.1.3) in order to de�ne the maps ϕ1, ϕ2 and ϕ3.

Assume that 1 ≤ t ≤ 4. We consider the polynomial gt which was de�ned in Sub-
section 3.1.3. We denote by g′t the polynomial obtained from gt after the substitutions
which are noted in Equation (4.4) and the obvious substitutions of mk

ij in terms of
ct. We denote by g̃t the polynomial obtained by g′t after the substitutions which are
described in Equation (4.5). Finally, we denote by ht the polynomial which occurs
from the polynomial g̃t after the substitutions which are noted in Equation (4.6).

Proposition 4.2.2 There exists a unique graded homomorphism of R/I-modules
ϕ1 : J1/I → R/I such that

ϕ1(z2 + I) = h1 + I, ϕ1(z3 + I) = h2 + I,

ϕ1(z5 + I) = h3 + I, ϕ1(z7 + I) = h4 + I.

Proof It follows from [55, Theorem 5.6]. □

For the de�nitions of ϕ2 and ϕ3 we work similarly. We omit the details. For all t
with 1 ≤ t ≤ 3, the degree of ϕt is equal to 6. Following [53, De�nition 2.2] the degree
of the new unprojection variable is equal to the degree of the corresponding ϕt.

Proposition 4.2.3 For all t with 1 ≤ t ≤ 3, the R/I-module HomR/I(Jt/I,R/I) is
generated by the two elements it and ϕt.

Proof It follows from [55, Theorem 5.6]. □

For all t, s with 1 ≤ t, s ≤ 3 and t ̸= s, we de�ne rts = 0.

Proposition 4.2.4 For all t, s with 1 ≤ t, s ≤ 3 and t ̸= s, it holds that

ϕt(Jt/I) ⊂ Js/I.

Proof It is a direct computation using the de�nitions of the maps ϕt. □

Proposition 4.2.5 For all t, s with 1 ≤ t, s ≤ 3 and t ̸= s, there exists a homogeneous
element Ast such that

ϕs(ϕt(p)) = Astp

for all p ∈ Jt/I.
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Proof It follows from [53, Proposition 2.1]. □

Remark 4.2.6 It is immediate by the above considerations that the elements Ast are
polynomial expressions in the variables ci and zj. We explicitly computed the elements
Ast using the computer algebra program Macaulay2 [28].

De�nition 4.2.7 Let T, S,W be three new variables of degree 6. Following Subsec-
tion 3.1.1, we de�ne as Iun the ideal

(I)+(Tz2−ϕ1(z2), T z3−ϕ1(z3), T z5−ϕ1(z5), T z7−ϕ1(z7), Sz1−ϕ2(z1), Sz2−ϕ2(z2),

Sz4 − ϕ2(z4), Sz5 − ϕ2(z5),Wz1 − ϕ3(z1), Wz2 − ϕ3(z2), Wz3 − ϕ3(z3), Wz6 − ϕ3(z6),

TS − A12, TW − A13, SW − A23)

of the polynomial ring R[T, S,W ]. We set Run = R[T, S,W ]/Iun.

Concerning the previous de�nition we note that the new variables T, S,W as un-
projection variables are of degree 6. Moreover, according to [53, Proposition 2.1] the
degree of each Ast is equal to 12.

Theorem 4.2.8 The ring Run is Gorenstein.

Proof By Propositions 4.2.1, 4.2.3 and 4.2.4, the assumptions of Theorem 3.1.4 are
satis�ed. Hence, the ring Run is Gorenstein. □

Proposition 4.2.9 The homogeneous ideal Iun is a codimension 6 ideal with a mini-
mal generating set of 20 elements.

Proof According to the grading of the variables and the discussion before the Propo-
sition 4.2.3 it is not di�cult to see that Iun is a homogeneous ideal. Recall that in
Kustin-Miller unprojection codimension is increasing by 1. Hence, the homogeneous
ideal Iun, as a result of a series of three unprojections of Kustin-Miller type starting
by the codimension 3 ideal I, is a codimension 6 ideal. We denote by

A = {2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 18, 19, 21, 24, 25}

and

B = {1, 8, 11, 16, 17, 20, 22, 23}
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two sets of indices. In order to prove that Iun is minimally generated by 20 elements
we use the idea of specialization. More precisely, for i ∈ A and j ∈ B we set

ci = 0 and cj = 1

in the ideal Iun. We call Ĩun the ideal which occurs after these substitutions. Ĩun
is a homogeneous ideal with 14 monomials and 6 binomials as generators. It is not
di�cult to see that Ĩun is minimally generated by these elements. Hence, we conclude
that Iun is generated by at least 20 elements. By De�nition 4.2.7, Iun is generated by
20 homogeneous elements. The result follows. □

4.2.2 The other formats

In this subsection we formulate a theorem related to the Cases (1)−(12) of Section 4.1.

Theorem 4.2.10 1. Consider the ideals J1, J2, J3 de�ned in (4.1). Let I be the
ideal generated by the Pfa�ans of a su�ciently general 5 × 5 skewsymmetric
matrix M which belongs to one of the Cases (2) − (12) de�ned in Section 4.1.
For the ideals J1, J2, J3 the conditions of parallel Kustin-Miller unprojection are
satis�ed. Using the notation of Subsection 4.2.1, the �nal ring Run is a codi-
mension 6 Gorenstein ring.

2. Consider the ideals J1 = (z1, z2, z3, z4), J2 = (z1, z2, z5, z6), J3 = (z3, z4, z5, z6) of
the polynomial ring R = k[zi, cj], where 1 ≤ i ≤ 6 and 1 ≤ j ≤ 26. Let I be
the ideal generated by the Pfa�ans of a su�ciently general 5×5 skewsymmetric
matrix M which is a Jerry12+Jerry13+Jerry14 matrix in J1, J2, J3 (hence we are
in Case (1) de�ned in Section 4.1). The ideals J1, J2, J3 satisfy the conditions
of parallel Kustin-Miller unprojection. For this choice of J1, J2, J3, the �nal ring
Run is a codimension 6 Gorenstein ring.

Proof We veri�ed the above claims using the computer algebra program Macaulay2.
□

Remark 4.2.11 We note that in Part (1) of the above theorem we didn't include
Case (1) of Section 4.1, because it leads to a codimension 6 Cohen-Macaulay ring
which is not Gorenstein.
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4.3 Applications

In this section, we prove, using Theorem 4.2.8, the existence of 2 families of Fano
3-folds of codimension 6 in weighted projective space. We note that in what follows
we make essential use of computer algebra systems Macaulay2 [28] and Singular [25].

The �rst construction is summarised in the following theorem. It corresponds to the
entry 14885 of Brown's Graded Ring Database [13]. More details for the construction
are given in Subsection 4.3.1.

Theorem 4.3.1 There exists a family of quasismooth, projectively normal and pro-
jectively Gorenstein Fano 3-folds X ⊂ P(13, 27), nonsingular away from eight quotient
singularities 1

2
(1, 1, 1), with Hilbert series

PX(t) =
1−20t4+64t6−90t8+64t10−20t12+t16

(1−t)3(1−t2)7
.

The second construction is summarised in the following theorem. It corresponds to
the entry 12979 of Brown's Graded Ring Database. More details for the construction
are given in Subsection 4.3.2.

Theorem 4.3.2 There exists a family of quasismooth, projectively normal and projec-
tively Gorenstein Fano 3-folds X ⊂ P(13, 25, 32), nonsingular away from four quotient
singularities 1

2
(1, 1, 1), and two quotient singularities 1

3
(1, 1, 2), with Hilbert series

PX(t) =
1−11t4−8t5+23t6+32t7−13t8−48t9−13t10+32t11+23t12−8t13−11t14+t18

(1−t)3(1−t2)5(1−t3)2
.

4.3.1 Construction of Graded Ring Database entry with Iden-

ti�er Number 14885

In the present subsection, we give the details of the construction for the family of
codimension 6 Fano 3-folds described in Theorem 4.3.1.

We note that a di�cult part of the arguments for this construction is the compu-
tation of singular locus of the general member of the family. As we will see below, for
this part we used the computer algebra system Singular [25].

Denote by k = C the �eld of complex numbers. Consider the polynomial ring R =
k[zi, cj], where 1 ≤ i ≤ 7 and 1 ≤ j ≤ 25. Let Run be the ring in De�nition 4.2.7 and

R̂ = k[z1, . . . , z7] be the polynomial ring in zi. We substitute the variables (c1, . . . , c25)
which appear in the de�nitions of the rings R and Run with a general element of k25

(in the sense of being outside a proper Zariski closed subset of k25). Let Î be the ideal
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of R̂ which is obtained by the ideal I and Îun the ideal of R̂[T, S,W ] which is obtained
by the ideal Iun after this substitution. We set R̂un = R̂[T, S,W ]/Îun. In what follows
zi, for all i with 1 ≤ i ≤ 7, and T, S,W are variables of degree 2. According to this
grading the ideals Î and Îun are homogeneous. Moreover, from the discussion before
the Propositions 4.2.2 and 4.2.3 it follows that the degree of T is equal to 2. Similarly
for the variables S,W . Due to the Theorem 4.2.8, Proj R̂un ⊂ P(210) is a projectively
Gorenstein 3-fold.

Let A = k[w1, w2, w3, z1, z2, z3, z5, T, S,W ] be the polynomial ring over k with
w1, w2, w3 variables of degree 1 and the other variables of degree 2. Consider the
graded k-algebra homomorphism

ψ : R̂[T, S,W ] → A

with

ψ(z1) = z1, ψ(z2) = z2, ψ(z3) = z3, ψ(z4) = f1,

ψ(z5) = z5, ψ(z6) = f2, ψ(z7) = f3, ψ(T ) = T ,

ψ(S) = S, ψ(W ) = W

where
f1 = l1z1 + l2z2 + l3z3 + l4z5 + l5T + l6S + l7W + l8w

2
1 + l9w1w2 + l10w1w3 + l11w

2
2 +

l12w2w3 + l13w
2
3,

f2 = l14z1 + l15z2 + l16z3 + l17z5 + l18T + l19S + l20W + l21w
2
1 + l22w1w2 + l23w1w3 +

l24w
2
2 + l25w2w3 + l26w

2
3,

f3 = l27z1 + l28z2 + l29z3 + l30z5 + l31T + l32S + l33W + l34w
2
1 + l35w1w2 + l36w1w3 +

l37w
2
2 + l38w2w3 + l39w

2
3

and (l1, . . . , l39) ∈ k39 are general. In other words, f1, f2, f3 are general degree 2
homogeneous elements of A.

Denote by Q the ideal of the ring A generated by the subset ψ(Îun).
Let X = V (Q) ⊂ P(13, 27). It is immediate that X is a codimension 6 projectively

Gorenstein 3-fold.

Proposition 4.3.3 The ring A/Q is an integral domain.

Proof It is enough to show that the ideal Q is prime. The computer algebra program
Macaulay2 [28] gave us that for a speci�c choice of rational values for the parameters
ci, lj, for 1 ≤ i ≤ 25 and 1 ≤ j ≤ 39 the ideal which was obtained by Q is a
homogeneous, codimension 6, prime ideal with the right Betti table. □

In what follows, we show that the only singularities of X ⊂ P(13, 27) are 8 quotient
singularities of type 1

2
(1, 1, 1). According to the discussion after De�nition 2.2.10, X

belongs to the Mori category.
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Proposition 4.3.4 Consider X = V (Q) ⊂ P(13, 27). Denote by Xcone ⊂ A10 the
a�ne cone over X. The scheme Xcone is smooth outside the vertex of the cone.

Proof Our approach is similar to the approach in [60, p. 18]. We work over the
�nite �eld Z/(1021). Di�erentiating the 20 equations of Q with respect to the ten
variables gives the 10×20 Jacobian matrixMJac. Let J be the ideal of 6×6 minors of
MJac. The ideal Q+ J de�nes the singular locus of Xcone. Our claim is that the only
singularity of the scheme Xcone is the vertex of the cone. Consider the ideal Q + J .
Using the computer algebra program Singular we proved that dim(A/(Q + J)) = 0.
The ideal Q+ J is homogeneous. Hence, the claim is proven. □

Proposition 4.3.5 Consider the singular locus Z = V (w1, w2, w3) of the weighted
projective space P(13, 27). The intersection of X with Z consists of exactly eight re-
duced points which are quotient singularities of type 1

2
(1, 1, 1) for X.

Proof We checked using the computer algebra program Macaulay2 that the inter-
section of X with Z consists of eight reduced points. We observe that the �rst three
rows of the matrix which occurs from the jacobian matrix MJac of Q by setting the
variables w1, w2, w3 be equal to zero, are zero. Hence, due to the Proposition 4.3.4,
there exists a non-zero 6 × 6 minor in six out of seven variables of degree 2. In that
way, we conclude that the eight points are quotient singularities of type 1

2
(1, 1, 1) for

X. □

Lemma 4.3.6 Let ωR̂/Î be the canonical module of R̂/Î. It holds that the canonical

module ωR̂/Î is isomorphic to R̂/Î(−4).

Proof From the minimal graded free resolution of R̂/Î as R̂-module

0 → R̂(−10) → R̂(−6)5 → R̂(−4)5 → R̂

and the fact that the sum of the degrees of the variables is equal to 14 we conclude
that

ωR̂/Î = R̂/Î(10− 14) = R̂/Î(−4).

□

Proposition 4.3.7 The minimal graded resolution of A/Q as A-module is equal to

0 → A(−16) → A(−12)20 → A(−10)64 → A(−8)90 → A(−6)64 → A(−4)20 → A
(4.7)
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Moreover, the canonical module of A/Q is isomorphic to (A/Q)(−1) and the Hilbert
series of A/Q as graded A-module is equal to

1− 20t4 + 64t6 − 90t8 + 64t10 − 20t12 + t16

(1− t)3(1− t2)7
.

Proof To compute the minimal graded free resolution of A/Q we followed the
method described in the proof of [52, Proposition 3.4]. From the minimal graded
free resolution (4.7) of A/Q and the fact that the sum of the degrees of the variables
is equal to 17 we conclude that

ωA/Q = A/Q(16− 17) = A/Q(−1).

The last conclusion of Proposition 4.3.7 follows easily from the resolution (4.7). □

Taking into account the Propositions 4.3.4, 4.3.5 and 4.3.7, we conclude that X is
a Fano 3-fold.

4.3.2 Construction of Graded Ring Database entry with Iden-

ti�er Number 12979

In this subsection, we sketch the construction for the family of the codimension 6 Fano
3-folds described in Theorem 4.3.2.

Denote by k = C the �eld of complex numbers. Working as before, consider the
polynomial ring R = k[zi, cj], where 1 ≤ i ≤ 7 and 1 ≤ j ≤ 25. Let Run be the ring

in De�nition 4.2.7 and R̂ = k[z1, z2, z3, z4, z5, z6, z7, c1, c5, c9, c11] be the polynomial
ring. We substitute the variables (c2, c3, c4, c6, c7, c8, c10, c12, c13, . . . , c25) which appear
in the de�nitions of the rings R and Run with a general element of k21 (in the sense
of being outside a proper Zariski closed subset of k21). Let Î be the ideal of R̂ which
is obtained by the ideal I and Îun the ideal of R̂[T, S,W ] which is obtained by the
ideal Iun after this substitution. We set R̂un = R̂[T, S,W ]/Îun. In what follows we
assume that the variables z1, c1, c5, c9, c11 are of degree 1, the variables z2, . . . , z7, T
are of degree 2 and the variables S,W are of degree 3. Under this grading, the ideals
Î and Îun are homogeneous. Due to the Theorem 4.2.8, Proj R̂un ⊂ P(15, 27, 32) is a
projectively Gorenstein 7-fold.

Let A = k[z1, c5, c9, z2, z3, z5, z6, T, S,W ] be the polynomial ring with z1, c5, c9 vari-
ables of degree 1, z2, z3, z5, z6, T variables of degree 2 and S,W are variables of degree
3. We consider the graded k-algebra homomorphism

ψ : R̂[T, S,W ] → A
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with

ψ(z1) = z1, ψ(c1) = g1, ψ(c5) = c5, ψ(c9) = c9,

ψ(c11) = g2, ψ(z2) = z2, ψ(z3) = z3, ψ(z4) = f1,

ψ(z5) = z5, ψ(z6) = z6, ψ(z7) = f2, ψ(T ) = T ,

ψ(S) = S, ψ(W ) = W

where
g1 = l1z1 + l2c5 + l3c9,
g2 = l4z1 + l5c5 + l6c9,
f1 = l7z2+ l8z3+ l9z5+ l10z6+ l11T + l12z

2
1 + l13z1c5+ l14z1c9+ l15c

2
5+ l16c5c9+ l17c

2
9,

f2 = l18z2+ l19z3+ l20z5+ l21z6+ l22T + l23z
2
1+ l24z1c5+ l25z1c9+ l26c

2
5+ l27c5c9+ l28c

2
9

and (l1, . . . , l28) ∈ k28 are general. In other words, g1, g2 are general degree 1 ho-
mogeneous elements of A, while g1, g2 are general degree 2 homogeneous elements of
A.

Denote by Q the ideal of the ring A generated by the subset ψ(Îun).
Let X = V (Q) ⊂ P(13, 25, 32). It is immediate that X is a codimension 6 projec-

tively Gorenstein 3-fold.
Repeating the arguments which were used for the construction which was described

in Subsection 4.3.1 we proved that X ⊂ P(13, 25, 32) is a Gorenstein Fano 3-fold non-
singular away from four quotient singularities 1

2
(1, 1, 1) and two quotient singularities

1
3
(1, 1, 2).



Chapter 5

The 4-intersection unprojection

format with an application to Fano

3-folds

In this chapter we introduce a new format of parallel unprojection which we name the
4-intersection format. The 4-intersection format is speci�ed by a codimension 2 com-
plete intersection ideal I with the property that it is contained in four codimension 3
ideals J1, . . . , J4. It leads to the construction of codimension 6 Gorenstein rings. As
an application, in Section 5.2 we construct a family of Fano 3-folds of codimension 6
embedded in weighted projective space which corresponds to the entry ID: 29376 in
Brown's Graded Ring Database [13].

5.1 The 4-intersection unprojection format

We now de�ne the notion of 4-intersection unprojection format.

De�nition 5.1.1 Assume that J1, . . . , J4 are four codimension 3 complete intersec-
tion ideals and I is a codimension 2 complete intersection ideal. We say that I is a
4-intersection ideal in J1, . . . , J4 if I ⊂ Jt for all 1 ≤ t ≤ 4.

An important question is how to explicitly construct I and Jt such that I is a
4-intersection ideal in J1, . . . , J4. In Subsection 5.1.1 we present such a construction.

5.1.1 An example of 4-intersection unprojection format

In the present subsection we specify the following: a codimension 2 complete inter-
section ideal I and four codimension 3 complete intersection ideals J1, . . . , J4 such
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that I is a 4-intersection ideal in J1, . . . , J4. Using this con�guration as initial data,
we construct, by parallel Kustin-Miller unprojection [53], a codimension 6 Gorenstein
ring.

Assume that k is a �eld. We consider the standard graded polynomial ring
R = k[ci, xi], where 1 ≤ i ≤ 6. We set

f = c1x1x2 + c2x3x4 + c3x5x6, g = c4x1x2 + c5x3x4 + c6x5x6,

I = (f, g) and

J1 = (x1, x3, x5), J2 = (x1, x4, x6), J3 = (x2, x3, x6), J4 = (x2, x4, x5).

It is clear that f, g are homogeneous elements of degree 3 and I is a 4-intersection
ideal in the ideals J1, . . . , J4.

In the applications we need to specialize the variables ci to elements of k. We now
give a precise way to do that. Consider the Zariski open subset

U = {(u1, . . . , u6) ∈ A6 : ui ̸= 0 for all 1 ≤ i ≤ 6}.

We assume that (d1, . . . , d6) ∈ U . We denote by R̂ = k[x1, . . . , x6] the polynomial ring
in the variables xi. Let

ϕ̂ : R → R̂

be the unique k-algebra homomorphism such that

ϕ̂(xi) = xi, ϕ̂(ci) = di

for all 1 ≤ i ≤ 6. We denote by Î the ideal of the ring R̂ generated by the subset ϕ̂(I).

Proposition 5.1.2 The ideals I and Î are homogeneous codimension 2 Gorenstein
ideals.

Proof Since I is generated by two elements, we have, by Theorem 2.1.52, that
codim I ≤ 2. Now we show that codim I ≥ 2. We set

r1 = −c4f + c1g, r2 = g, r3 = f.

Let > be the lexicographic order on R with c1 > · · · > c6 > x1 > · · · > x6. Consider
the ideal

L = (in>(r1), in>(r2), in>(r3)),

where in>(r1) = x3x4c1c5, in>(r2) = x1x2c4 and in>(r3) = x1x2c1. We now prove that
codimL = 2. It is enough to show that dim R/L = 10. Consider the a�ne variety
X = V (L) ⊂ A12. It holds that

X = V (c4, c1) ∪ V (c5, x1) ∪ V (x4, x1) ∪ V (x3, x1) ∪ V (c1, x1) ∪ V (c5, x2) ∪ Z
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where

Z = V (x4, x2) ∪ V (x3, x2) ∪ V (c1, x2).

Using that

dim R/L = dim X

the claim is proven. Hence, codim I ≥ 2.
In what follows we show that the ideal Î is also a codimension 2 Gorenstein ideal.

We set

r̃1 = ϕ̂(r1), r̃2 = ϕ̂(r2).

Let > be the lexicographic order on R̂ with x1 > · · · > x6. Consider the ideal

Q = (in>(r̃1), in>(r̃2)),

where in>(r̃1) = x3x4d1d5, in>(r̃2) = x1x2d4. It is immediate that Q = (x3x4, x1x2).
It is enough to show that dim R/Q = 4. Consider the a�ne variety X = V (Q) ⊂ A6.
It holds that

X = V (x2, x4) ∪ V (x2, x3) ∪ V (x1, x3) ∪ V (x1, x4).

Using that

dim R/Q = dim X

the claim is proven. Hence, codim Î ≥ 2. By Theorem 2.1.61, the ideals I and Î are
Gorenstein. □

Proposition 5.1.3 (i) For all t with 1 ≤ t ≤ 4, the ideal Jt/I is a codimension 1
homogeneous ideal of the quotient ring R/I such that the ring R/Jt is Gorenstein.

(ii) For all t, s with 1 ≤ t < s ≤ 4, it holds that codimR/I(Jt/I + Js/I) = 3.

Proof We �rst prove (i). According to the Third Isomorphism Theorem of rings

R/J1 ∼= k[c1, . . . , c6, x2, x4, x6], R/J2 ∼= k[c1, . . . , c6, x2, x3, x5], (5.1)

R/J3 ∼= k[c1, . . . , c6, x1, x4, x5], R/J4 ∼= k[c1, . . . , c6, x1, x3, x6].

So, we conclude that for all t with 1 ≤ t ≤ 4,

dim R/Jt = 9.

By Proposition 5.1.2, it follows that

dim R/I = dim R− codim I = 10.
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Hence, using the last two equalities we have that for all t with 1 ≤ t ≤ 4

codim Jt/I = 1.

Due to the isomorphisms (5.1) for all t with 1 ≤ t ≤ 4, the ring R/Jt is Gorenstein.
Concerning the Claim (ii), the Third Isomorphism Theorem of rings implies that

R/(J1 + J2) ∼= k[c1, . . . , c6, x2], R/(J1 + J3) ∼= k[c1, . . . , c6, x4],

R/(J1 + J4) ∼= k[c1, . . . , c6, x6], R/(J2 + J3) ∼= k[c1, . . . , c6, x5],

R/(J2 + J4) ∼= k[c1, . . . , c6, x3], R/(J3 + J4) ∼= k[c1, . . . , c6, x1].

From the later isomorphisms it holds that for t, s with 1 ≤ t < s ≤ 4,

dim R/(Jt + Js) = 7.

Recall that dim R/I = 10. Taking into account the de�nition of codimension we
conclude that for all t, s with 1 ≤ t < s ≤ 4,

codim (Jt/I + Js/I) = 3.

□

For all t, with 1 ≤ t ≤ 4, we denote by it : Jt/I → R/I the inclusion map. In what
follows, we de�ne ϕt : Jt/I → R/I for all t, with 1 ≤ t ≤ 4, and prove that these maps
satisfy the assumptions of the [53, Theorem 2.3].

Recall the polynomials h1, h2, h3 which were de�ned in Section 3.1.4. We denote
by h̃1, h̃2, h̃3 the polynomials which occur from h1, h2, h3 if we substitute

a1 = c1x2, a2 = c2x4, a3 = c3x6, b1 = c4x2, b2 = c5x4, b3 = c6x6.

Proposition 5.1.4 There exists a unique graded homomorphism of R/I-modules
ϕ1 : J1/I → R/I such that

ϕ1(x1 + I) = h̃1 + I, ϕ1(x3 + I) = h̃2 + I, ϕ1(x5 + I) = h̃3 + I.

Proof It follows from [53, Theorem 4.3]. □

For the de�nition of ϕ2 we replace x3 by x4 and x5 by x6. In this case, h̃1, h̃2, h̃3
are the polynomials which occur from h1, h2, h3 if we substitute

a1 = c1x2, a2 = c2x3, a3 = c3x5, b1 = c4x2, b2 = c5x3, b3 = c6x5.

For the de�nitions of ϕ3 and ϕ4 we work similarly. For all t, with 1 ≤ t ≤ 4, the degree
of ϕt is equal to 3. By [53, De�nition 2.2] the new unprojection variable has degree
equal to the degree of the corresponding ϕt.

Proposition 5.1.5 For all t, with 1 ≤ t ≤ 4, the R/I-module HomR/I(Jt/I,R/I) is
generated by the two elements it and ϕt.
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Proof It follows from [55, Theorem 4.3]. □

For all t, s, with 1 ≤ t, s ≤ 4 and t ̸= s, we de�ne rts = 0.

Proposition 5.1.6 For all t, s, with 1 ≤ t, s ≤ 4 and t ̸= s, it holds that

ϕt(Jt/I) ⊂ Js/I.

Proof It is a direct computation using the de�nition of the maps ϕt. □

Proposition 5.1.7 For all t, s, with 1 ≤ t, s ≤ 4 and t ̸= s, there exists a homoge-
neous element Ast such that

ϕs(ϕt(p)) = Astp

for all p ∈ Jt/I.

Proof It follows from [53, Proposition 2.1]. □

Remark 5.1.8 We note that the elements Ast are polynomial expressions in the vari-
ables ci and xj. We computed them using the computer algebra programMacaulay2 [28].

Following [53, Section 2], we write down explicitly the �nal ring as a quotient of a
polynomial ring by a codimension 6 ideal.

De�nition 5.1.9 Let T1, T2, T3, T4 be four new variables of degree 3. We de�ne as
Iun the ideal

(I) + (T1x1 − ϕ1(x1), T1x3 − ϕ1(x3), T1x5 − ϕ1(x5), T2x1 − ϕ2(x1),

T2x4 − ϕ2(x4), T2x6 − ϕ2(x6), T3x2 − ϕ3(x2), T3x3 − ϕ3(x3),

T3x6 − ϕ3(x6), T4x2 − ϕ4(x2), T4x4 − ϕ4(x4), T4x5 − ϕ4(x5), T2T1 − A21,

T3T1 − A31, T4T1 − A41, T3T2 − A32, T4T2 − A42, T4T3 − A43)

of the polynomial ring R[T1, T2, T3, T4]. We set Run = R[T1, T2, T3, T4]/Iun.

Remark 5.1.10 The reason we put, for all 1 ≤ i ≤ 4, deg Ti = 3 is that each homo-
morphism ϕi is graded of degree 3. We also note that according to [53, Proposition 2.1]
the degree of each Ast is equal to 6.

Theorem 5.1.11 The ring Run is Gorenstein.
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Proof By Propositions 5.1.3, 5.1.4 and 5.1.6, the assumptions of [53, Theorem 2.3]
are satis�ed. Hence, the ring Run is Gorenstein. □

Proposition 5.1.12 The homogeneous ideal Iun is a codimension 6 ideal with a min-
imal generating set of 20 elements.

Proof According to the grading of the variables and the discussion before the Propo-
sition 5.1.5 it is not di�cult to see that Iun is a homogeneous ideal. Recall that in
Kustin-Miller unprojection the codimension increases by 1. Hence, the homogeneous
ideal Iun, as a result of a series of four unprojections of Kustin-Miller type starting
by the codimension 2 ideal I, is a codimension 6 ideal. In order to prove that Iun is
minimally generated by 20 elements we use the idea of specialization. More precisely
we set

c1 = c3 = c5 = c6 = 0

and

c2 = c4 = 1

in the ideal Iun. We call Ĩun the ideal which occurs after these substitutions. The ideal
Ĩun is a homogeneous ideal with 16 monomials and 4 binomials as generators. It is not
di�cult to see that Ĩun is minimally generated by these elements. Hence, we conclude
that Iun is generated by at least 20 elements. By De�nition 5.1.9, Iun is generated by
20 homogeneous elements. The result follows. □

5.2 Applications

In the present section we prove, using Theorem 5.1.11, the existence of a family of
Fano 3-folds of codimension 6 in weighted projective space. We note that in what
follows we make essential use of the computer algebra systems Macaulay2 [28] and
Singular [25].

The construction is summarised in the following theorem. It corresponds to the
entry 29376 of Brown's Graded Ring Database [13].

Theorem 5.2.1 There exists a family of quasismooth, projectively normal and projec-
tively Gorenstein Fano 3-folds X ⊂ P(18, 2, 3), nonsingular away from eight quotient
singularities 1

3
(1, 1, 2), with Hilbert series

PX(t) =
1−6t2+15t4−20t6+15t8−6t10+t12

(1−t)8(1−t2)(1−t3)
.
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We now give the explicit construction of the family of the Fano 3-folds which is
described in Theorem 5.2.1.

We denote by k = C the �eld of complex numbers. We consider the polynomial
ring R = k[xi, ci], where 1 ≤ i ≤ 6. Let Run be the ring in De�nition 5.1.9 and
R̂ = k[x1, . . . , x6] be the polynomial ring in the variables xi. We substitute the
variables (c1, . . . , c6) which appear in the de�nitions of the rings R and Run with a
general element of k6 (in the sense of being outside a proper Zariski closed subset
of k6). Let Î be the ideal of R̂ which is obtained by the ideal I and Îun the ideal
of R̂[T1, T2, T3, T4] which is obtained by the ideal Iun after this substitution. We set
R̂un = R̂[T1, T2, T3, T4]/Îun. In what follows x1, x3, x5 are variables of degree 1 and
x2, x4, x6 are variables of degree 2. From the discussion before the Propositions 5.1.4
and 5.1.5 it follows that the degrees of T2, T3, T4 are equal to 1 and the degree of T1 is
equal to 3. According to this grading the ideals Î and Îun are homogeneous. Due to
Theorem 5.1.11, Proj R̂un ⊂ P(16, 23, 3) is a projectively Gorenstein 3-fold.

Let A = k[w1, w2, T2, T3, T4, x1, x3, x5, x6, T1] be the polynomial ring over k with
w1, w2 variables of degree 1 and the other variables of degree noted as above. Consider
the unique k-algebra homomorphism

ψ : R̂[T1, T2, T3, T4] → A

such that

ψ(x1) = x1, ψ(x2) = f1, ψ(x3) = x3, ψ(x4) = f2,

ψ(x5) = x5, ψ(x6) = x6, ψ(T1) = T1, ψ(T2) = T2,

ψ(T3) = T3, ψ(T4) = T4

where
f1 = l1x

2
1+ l2x1x3+ l3x

2
3+ l4x1x5+ l5x3x5+ l6x

2
5+ l7x1T2+ l8x3T2+ l9x5T2+ l10T

2
2 +

l11x1T3 + l12x3T3 + l13x5T3 + l14T2T3 + l15T
2
3 + l16x1T4 ++l17T3T4 + l18x5T4 + l19T2T4 +

l20T3T4 + l21T
2
4 + l22x1w1 + l23x3w1 + l24x5w1 + l25T2w1 + l26T3w1 + l27T4w1 + l28w

2
1 +

l29x1w2 + l30x3w2 + l31x5w2 + l32T2w2 + l33T3w2 + l34T4w2 + l35w1w2 + l36w
2
2 + l37x6,

f2 = l38x
2
1+ l39x1x3+ l40x

2
3+ l41x1x5+ l42x3x5+ l43x

2
5+ l44x1T2+ l45x3T2+ l46x5T2+

l47T
2
2 + l48x1T3 + l49x3T3 + l50x5T3 + l51T2T3 + l52T

2
3 + l53x1T4 + l54T3T4 + l55x5T4 +

l56T2T4 + l57T3T4 + l58T
2
4 + l59x1w1 + l60x3w1 + l61x5w1 + l62T2w1 + l63T3w1 + l64T4w1 +

l65w
2
1+l66x1w2+l67x3w2+l68x5w2+l69T2w2+l70T3w2+l71T4w2+l72w1w2+l73w

2
2+l74x6,

and (l1, . . . , l74) ∈ k74 are general. In other words, f1, f2 are two general degree 2
homogeneous elements of A.

Denote by Q the ideal of the ring A generated by the subset ψ(Îun).
LetX = V (Q) ⊂ P(18, 2, 3). It is immediate thatX is a codimension 6 projectively

Gorenstein 3-fold.

Proposition 5.2.2 The ring A/Q is an integral domain.
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Proof It is enough to show that the ideal Q is prime. For a speci�c choice of rational
values for the parameters ci, lj, for 1 ≤ i ≤ 6 and 1 ≤ j ≤ 74 we checked using the
computer algebra program Macaulay2 that the ideal which was obtained by Q is a
homogeneous, codimension 6, prime ideal with the right Betti table. □

In what follows, we show that the only singularities of X ⊂ P(18, 2, 3) is a quotient
singularity of type 1

3
(1, 1, 2). According to the discussion after De�nition 2.2.10, X

belongs to the Mori category.

Proposition 5.2.3 Consider X = V (Q) ⊂ P(18, 2, 3). Denote by Xcone ⊂ A10 the
a�ne cone over X. The scheme Xcone is smooth outside the vertex of the cone.

Proof For the proof we follow the steps which are described in the proof of Propo-
sition 4.3.5. □

Proposition 5.2.4 Consider the singular locus Z = V (x1, x3, x5, T2, T3, T4, w1, w2) of
the weighted projective space P(18, 2, 3). The intersection of X with Z is a unique
reduced point which is quotient singularity of type 1

3
(1, 1, 2) for X.

Proof We checked with the computer algebra program Macaulay2 that the intersec-
tion of X with Z is one reduced point. We denote this point by P. Point P corresponds
to the ideal (xi, Tj, wk) for i ∈ {1, 3, 5, 6}, 2 ≤ j ≤ 4, 1 ≤ k ≤ 2. By Proposition 5.2.3
X is smooth outside P . Around P we have that T1 = 1. Looking the equations of Q
we can eliminate the variables x1, x3, x5, T2, T3, T4 since these variables appear in the
set of equations multiplied by T1. This means that P is a quotient singularity of type
1
3
(1, 1, 2). □

Lemma 5.2.5 Let ωR̂/Î be the canonical module of R̂/Î. It holds that the canonical

module ωR̂/Î is isomorphic to R̂/Î(−3).

Proof From the minimal graded free resolution of R̂/Î as R̂-module

0 → R̂(−6) → R̂(−3)2 → R̂

and the fact that the sum of the degrees of the variables is equal to 9 we conclude
that

ωR̂/Î = R̂/Î(6− 9) = R̂/Î(−3).

□
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Proposition 5.2.6 The minimal graded resolution of A/Q as A-module is equal to

0 → C6 → C5 → C4 → C3 → C2 → C1 → C0 → 0 (5.2)

where

C6 = A(−12), C5 = A(−8)6 ⊕ A(−9)8 ⊕ A(−10)6,

C4 = A(−6)8 ⊕ A(−7)24 ⊕ A(−8)24 ⊕ A(−9)8,

C3 = A(−4)3 ⊕ A(−5)24 ⊕ A(−6)36 ⊕ A(−7)24 ⊕ A(−8)3,

C2 = A(−3)8 ⊕ A(−4)24 ⊕ A(−5)24 ⊕ A(−6)8,

C1 = A(−2)6 ⊕ A(−3)8 ⊕ A(−4)6, C0 = A.

Moreover, the canonical module of A/Q is isomorphic to (A/Q)(−1) and the Hilbert
series of A/Q as graded A-module is equal to

1− 6t2 + 15t4 − 20t6 + 15t8 − 6t10 + t12

(1− t)8(1− t2)(1− t3)
.

Proof To compute the minimal graded free resolution of A/Q we followed the
method described in the proof of [52, Proposition 3.4]. From the minimal graded
free resolution (5.2) of A/Q and the fact that the sum of the degrees of the variables
is equal to 13 we conclude that

ωA/Q = A/Q(12− 13) = A/Q(−1).

The last conclusion of Proposition 5.2.6 follows easily from the resolution (5.2). □

Taking into account Propositions 5.2.3, 5.2.4 and 5.2.6, we conclude that X is a
Fano 3-fold.





Chapter 6

Anisotropy of Simplicial Spheres

This chapter is a joint work with Stavros Argyrios Papadakis, and was motivated by
McMullen's g-conjecture for simplicial spheres [8, 61, 66]. In 2018, a proof of this
important conjecture was announced by Adiprasito [1, 2].

Section 6.1 contains the construction of the generic Artinian reduction of an al-
gebra. This useful construction appears many times throughout the chapter. In
Section 6.2, we introduce the notion of the generic anisotropy of a simplicial sphere
and we formulate one of our two main results of the chapter. This is Theorem 6.2.3,
which states that over a �eld of characteristic 2 every simplicial sphere is generically
anisotropic. The proof of the theorem is given in Subsection 6.4.3. The question of
generic anisotropicity of simplicial spheres of dimension ≥ 2 over a �eld of character-
istic not equal to 2 remains open.

Section 6.3 contains Theorem 6.3.14 which is a key result for the proof of The-
orem 6.2.3. In order to use Theorem 6.3.14 for the proof of generic anisotropy in
characteristic 2, we introduce, in Section 6.4, certain (dimD+1)-th order di�erential
operators ∂σ and ∂p,σ, associated to faces σ, σ ∪ {p} of a simplicial sphere D.

In Sections 6.5, 6.6 and 6.7 we study the di�erential operators in some detail,
and prove Theorem 6.7.6, which states identities related to the di�erentiation of the
product of the maximal minors of certain matrices. The theorem is used to prove the
key Propositions 6.4.1 and 6.4.7. The propositions imply Corollaries 6.4.6 and 6.4.13,
and the corollaries imply Theorem 6.2.3.

In Section 6.8 we prove Theorem 6.8.1 which connects the notion of generic anisotropy
with the Lefschetz properties. Combining Theorem 6.2.3 with Theorem 6.8.1 we get
a second proof of McMullen's g-conjecture for simplicial spheres in Theorem 6.8.2.

In Section 6.9 we prove that the simplicial spheres of dimension 1 are generically
anisotropic over any �eld, which is the second of the main results of the chapter. A
key tool is Proposition 6.9.1, which works in all characteristics.

Section 6.10 is dedicated to a speci�c form of Gauss elimination that we need,
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while in Section 6.11 we discuss a well-known technique for proving that a polynomial
is nonzero. Section 6.12 contains some results related to the behaviour of the Lefschetz
properties under �eld extensions. Finally, in Section 6.13 we state a general conjecture
about our di�erential operators.

6.1 The generic Artinian reduction of an algebra

In this section we give a useful construction that will appear a number of times in the
present chapter.

Assume m ≥ 1 and k1 is a �eld. We consider the polynomial ring k1[x1, . . . , xm],
where the degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m. Assume I
is a homogeneous ideal of k1[x1, . . . , xm]. We denote by d the Krull dimension of the
quotient ring k1[x1, . . . , xm]/I. We assume d ≥ 1, and denote by k the �eld of fractions
of the polynomial ring

k1[ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

For 1 ≤ i ≤ d, we set

fi =
m∑
j=1

ai,jxj.

De�nition 6.1.1 We de�ne the generic Artinian reduction of k1[x1, . . . , xm]/I to be
the Artinian k-algebra

k[x1, . . . , xm]/((I) + (f1, . . . , fd)),

where (I) denotes the ideal of k[x1, . . . , xm] generated by I.

6.2 Statement of the main theorem

In this section we introduce the notion of generic anisotropy and we formulate one of
our main results which is related to generic anisotropy of a simplicial sphere over a
�eld of characteristic 2.

Assume n ≥ 1 is an integer and D is a simplicial sphere of dimension n with vertex
set {1, . . . ,m}. Assume k1 is any �eld and denote by k the �eld of fractions of the
polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m].

We de�ne the polynomial ring R = k[x1, . . . , xm], where we put degree 1 for all
variables xi. Denote by ID ⊂ R the Stanley-Reisner ideal of D. We set k[D] = R/ID.
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For i = 1, . . . , n+ 1, we set

fi =
m∑
j=1

ai,jxj,

and we de�ne A = k[D]/(f1, . . . , fn+1). Hence, A is the generic Artinian reduction of
k1[D] in the sense of De�nition 6.1.1. We denote by π : R → A the natural projection
k-algebra homomorphism.

Remark 6.2.1 By [17, Section 5], the k-algebra k[D] is standard graded and Goren-
stein with Krull dimension equal to n+1. Since ai,j are independent variables that do
not appear in the minimal monomial generating set for ID, the sequence f1, . . . , fn+1

is a regular sequence for k[D], see [17, Proposition 1.5.12]. Hence, A is a Goren-
stein Artinian standard graded k-algebra. It has socle degree equal to n + 1 by [17,
Lemma 5.6.4]. Consequently, Ai = 0 for all i ≥ n+2 and dimk An+1 = 1. In particular,
dimk A1 ≥ 1, which implies that m ≥ n+ 2.

De�nition 6.2.2 We call D generically anisotropic over k1, if for all integers j with
1 ≤ 2j ≤ n+ 1 and all nonzero elements u ∈ Aj we have u

2 ̸= 0.

The main result of the present Chapter is the following theorem, whose proof will
be given in Subsection 6.4.3.

Theorem 6.2.3 Assume that the �eld k1 has characteristic 2, n ≥ 1 is an integer,
and D is a simplicial sphere of dimension n. Then D is generically anisotropic over
k1.

6.3 The Artinian reduction of the Stanley-Reisner

ring

In this section is contained one of the key results for the proof of the generic anisotropy
in characteristic 2 and all dimensions. This is the Theorem 6.3.14, which is valid in
any dimension but only in characteristic 2. An interesting open question is to establish
a version of Theorem 6.3.14 valid in all characteristics.

We keep using the notations and assumptions de�ned in Section 6.2. In particular,
we allow the �eld k1 to be of arbitrary characteristic.

If σ = (b1, . . . , bq) is a sequence of integers, with 1 ≤ bi ≤ m for all i, we set

xσ =

q∏
i=1

xbi ∈ R.
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Whenever q = n+ 1, we also use the notation

[σ] = [b1, . . . , bn+1] ∈ k,

where, by de�nition, [b1, . . . , bn+1] is the determinant of the (n + 1)× (n + 1) matrix
with (i, j)-entry equal to ai,bj .

We denote by F (D) the set of facets of D. We de�ne an ordered facet of D to be
a sequence (b1, b2, . . . , bn+1) of positive integers such that the set {b1, b2, . . . , bn+1} is
a facet of D. For 0 ≤ i ≤ n, we de�ne a codimension i face σ of D to be a face of
dimension n− i. This is equivalent to #σ = n+ 1− i.

Assume g =
∏m

i=1 x
ai
i ∈ R is a monomial. We de�ne the complexity c(g) of g by

c(g) =
m∑
i=1

ai −#{i : ai > 0}.

It is clear that c(g) ≥ 0 and that c(g) = 0 if and only if g is square-free.
The following proposition is well-known, but we provide a proof for completeness.

Proposition 6.3.1 Assume 1 ≤ r ≤ n + 1. We have that the r-th graded piece Ar

of A is spanned, as a k-vector space, by the image under π of the set of square-free
monomials of R of degree r.

Proof By �nite induction, it is enough to show that if g ∈ R is a nonzero monomial
of degree r and complexity ≥ 1, then there exists q ∈ R homogeneous of degree r, such
that π(q) = π(g) and q is a linear combination of monomials of complexity c(g)− 1.

Assume g =
∏m

i=1 x
ai
i . Since c(g) ≥ 1, by rearranging indices we can assume that

a1 ≥ 2. Since r ≤ n + 1, by rearranging indices we can assume that ai = 0 for all
i ≥ n+ 2.

By Proposition 6.10.1, we have

m∑
t=1

[2, 3, . . . , n+ 1, t]π(xt) = 0.

Hence,

[2, 3, . . . , n+ 1, 1]π(x1) = −
m∑

t=n+2

[2, 3, . . . , n+ 1, t]π(xt).

As a consequence, multiplying by π(g/x1) we get

π(g) = −(
m∑

t=n+2

[2, 3, . . . , n+ 1, t]π(xtg/x1))/[2, 3, . . . , n+ 1, 1].

Since, for all t ≥ n+ 2, we have c(xtg/x1) = c(g)− 1, the result follows. □
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Remark 6.3.2 For a strengthening of Proposition 6.3.1 see Proposition 6.4.9.

Remark 6.3.3 We will use the following two facts, see [20, p. 111, Remark before
Corollary 7.19]. Each codimension 1 face of D is contained in exactly two facets of D.
Moreover, if σ1 and σ2 are two facets of D, then there exists a �nite sequence

τ0, τ1, . . . , τq

of facets of D such that τ0 = σ1, τq = σ2, and, for all 0 ≤ i ≤ q − 1, the intersection
τi ∩ τi+1 is a codimension 1 face of D.

Proposition 6.3.4 Assume

σ1 = (b1, . . . , bn, d1), σ2 = (b1, . . . , bn, d2),

are two ordered facets of D having codimension 1 intersection. We then have the
following equality in the ring A

[σ1]π(xσ1) = −[σ2]π(xσ2).

Proof We set τ = σ1 ∩ σ2. Hence, τ = {b1, . . . , bn}. By Proposition 6.10.1, we have
that

m∑
j=1

[b1, b2, . . . , bn, j]π(xj) = 0.

Hence,
m∑
j=1

[b1, b2, . . . , bn, j]π(xjxτ ) = 0.

If j ∈ τ , we have [b1, b2, . . . , bn, j] = 0. By Remark 6.3.3, σ1 and σ2 are the only facets
of D which contain the codimension 1 face τ . Hence, the only terms of the last sum
that are nonzero are for j = d1 and j = d2. The result follows. □

Corollary 6.3.5 Assume σ1 and σ2 are two ordered facets of D. Then there exists
ϵ ∈ {−1, 1}, such that

[σ1]π(xσ1) = ϵ[σ2]π(xσ2).



68 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

Proof By Remark 6.3.3, there exists a �nite sequence

τ0, τ1, . . . , τq

of facets of D such that τ0 = σ1, τq = σ2, and, for all 0 ≤ i ≤ q − 1, the intersection
τi ∩ τi+1 is a codimension 1 face of D. Using Proposition 6.3.4, we have that, for all
0 ≤ i ≤ q − 1, there exists ϵi ∈ {−1, 1}, such that we have the following equality in
the ring A

[τi]π(xτi) = ϵi[τi+1]π(xτi+1
).

The result follows. □

We �x an ordered facet e = (e1, . . . , en+1) of D. By Remark 6.2.1, dimk An+1 = 1.
Using Proposition 6.3.1, An+1 is spanned, as a k-vector space, by the square-free
monomials that correspond to the facets of D. Corollary 6.3.5 implies that any of
them spans An+1. As a consequence, π(xe) ̸= 0 and π(xe) is a k-basis of An+1. Hence,
there exists a unique set-theoretic map Ψe : An+1 → k with the property that

u = Ψe(u)[e]π(xe) (6.1)

for all u ∈ An+1. It is clear that Ψe is an isomorphism of k-vector spaces. In addition,
if n is odd, we set p1 = (n+ 1)/2 and de�ne the symmetric bilinear form

ρe : Ap1 × Ap1 → k (6.2)

by

ρe(u,w) = Ψe(uw)

for all u,w ∈ Ap1 .

Remark 6.3.6 If we change the ordered facet e of D to another ordered facet σ,
Corollary 6.3.5 implies that either Ψσ = Ψe or Ψσ = −Ψe. Hence, if the �eld k1 has
characteristic 2 the map Ψe is canonical, in the sense that it is independent of the
choice of the facet e of D, and we will denote it by Ψ.

Remark 6.3.7 Assume n is odd. Recall that a symmetric bilinear form

δ : Ap1 × Ap1 → k

is called anisotropic if δ(u, u) ̸= 0 for all nonzero elements u ∈ Ap1 . Using Re-
mark 2.1.66, it follows that ρe is anisotropic if and only if for all integers j with
1 ≤ 2j ≤ n + 1 and all nonzero elements u ∈ Aj we have u2 ̸= 0. This (partially)
explains the use of the term generic anisotropy in De�nition 6.2.2.
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Remark 6.3.8 The proof of Proposition 6.3.1 gives that for all u ∈ An+1 the element
Ψe(u) of k is a rational function in the set of all bracket polynomials

{ [i1, . . . , in+1] : 1 ≤ i1 < i2 < · · · < in+1 ≤ m }.

In addition, combined with the proof of Corollary 6.3.5, it provides an algorithm for
computing Ψe(u).

Proposition 6.3.9 Assume k1 is a �eld of characteristic 2 and σ = (b1, . . . , bn+1) is
a facet of D. We have

(Ψ ◦ π)(xσ) = 1/[b1, . . . , bn+1].

Proof By Corollary 6.3.5, we have

[σ]π(xσ) = [e]π(xe).

The result follows from the de�nition of Ψ. □

The following proposition allows the computation of Ψe(u) in more cases.

Proposition 6.3.10 Assume σ = (b1, . . . , bn−1, c) is a codimension 1 ordered face of
D. Denote by τ1 = (b1, . . . , bn−1, c, d1) and τ2 = (b1, . . . , bn−1, c, d2) the two ordered
facets of D that contain σ. We then have the following two equalities

[b1, . . . , bn−1, c, d1][b1, . . . , bn−1, c, d2]π(x
2
c

n−1∏
i=1

xbi) = −[b1, . . . , bn−1, d1, d2][τ1]π(xτ1)

= [b1, . . . , bn−1, d1, d2][τ2]π(xτ2).

Proof We set S = {1, . . . ,m} \ {c}. By Proposition 6.10.1, we have that

m∑
j=1

[b1, b2, . . . , bn−1, d1, j]π(xj) = 0.

Hence,

[b1, b2, . . . , bn−1, d1, c]π(xc) = −
∑
j∈S

[b1, b2, . . . , bn−1, c, j]π(xj).

Consequently,

[b1, b2, . . . , bn−1, d1, c]π(x
2
c

n−1∏
i=1

xbi) = −
∑
j∈S

[b1, b2, . . . , bn−1, d1, j]π(xjxc

n−1∏
i=1

xbi).



70 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

Arguing for the last sum as in the proof of Proposition 6.3.4, we get

[b1, b2, . . . , bn−1, d1, c]π(x
2
c

n−1∏
i=1

xbi) = −[b1, b2, . . . , bn−1, d1, d2]π(xd2xc

n−1∏
i=1

xbi).

Using that, by Proposition 6.3.4, [τ1]π(xτ1) = −[τ2]π(xτ2), the result follows. □

The following corollary is an immediate consequence of Proposition 6.3.10.

Corollary 6.3.11 Assume k1 is a �eld of characteristic 2 and σ = (b1, . . . , bn−1, c) is
a codimension 1 face of D. Denote by (b1, . . . , bn−1, c, d1) and (b1, . . . , bn−1, c, d2) the
two facets of D that contain σ. We have

(Ψ ◦ π)(x2c
n−1∏
i=1

xbi) =
[b1, . . . , bn−1, d1, d2]

[b1, . . . , bn−1, c, d1][b1, . . . , bn−1, c, d2]
.

FURTHER ASSUMPTION. For the rest of this section we make the additional
assumption that the �eld k1 has characteristic 2.

We set Z = m + 2n and denote by M the (n + 1) × Z matrix whose (i, j)-entry
is equal to the variable ai,j, for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ Z. Given a subset A of
the set {1, 2, . . . , Z} of cardinality n+ 1, we denote by M(A) the determinant of the
(n+ 1)× (n+ 1) submatrix of M obtained by keeping the columns of M speci�ed by
the set A.

We denote by k2 the �eld of fractions of the polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ Z].

It follows that k is a sub�eld of k2.

Proposition 6.3.12 (Recall that the �eld k1 has characteristic equal to 2.) Assume
n is odd. We set l = (n + 1)/2. We assume that D is the boundary complex of the
(n+1)-dimensional simplex with vertex set τ = {c1, . . . , cl, g1, . . . , gl+1}. We then have
the following equality in the �eld k2

(Ψ ◦ π)(
l∏

i=1

x2ci) =

∏l
i=1M(τ \ {ci})∏l+1
i=1M(τ \ {gi})

.

Proof We set c = {c1, . . . , cl}, g = {g1, . . . , gl+1}. Assume 1 ≤ i ≤ l. By Proposi-
tion 6.10.1, we have that

l∑
t=1

[c \ {ci}, g \ {gi}, ct]π(xct) +
l+1∑
t=1

[c \ {ci}, g \ {gi}, gt]π(xgt) = 0.
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Hence,
[c \ {ci}, g \ {gi}, ci]π(xci) = [c \ {ci}, g \ {gi}, gi]π(xgi),

since the �eld has characteristic 2 and the other terms in the two sums are zero.
Multiplying the above equations for 1 ≤ i ≤ l, we get

(
l∏

i=1

[c \ {ci}, g \ {gi}, ci]) u1 = (
l∏

i=1

[c \ {ci}, g \ {gi}, gi]) u2, (6.3)

where

u1 =
l∏

i=1

π(xci), u2 =
l∏

i=1

π(xgi).

The result follows by multiplying both sides of Equality (6.3) by u1 and using that,
by Corollary 6.3.9,

Ψ(u1u2) = 1/[c, g \ {gl+1}].

□

Proposition 6.3.13 (Recall that the �eld k1 has characteristic equal to 2.) Assume
n is even. We set l = n/2. Assume that D is the boundary complex of the simplex
of dimension n + 1 with vertex set τ = {c1, . . . , cl, b, g1, . . . , gl+1}. We then have the
following equality in the �eld k2

(Ψ ◦ π)(xb
l∏

i=1

x2ci) =

∏l
i=1M(τ \ {ci})∏l+1
i=1M(τ \ {gi})

.

Proof We set c = {c1, . . . , cl}, g = {g1, . . . , gl+1}. Assume 1 ≤ i ≤ l. By Proposi-
tion 6.10.1, we have that

l∑
t=1

[b, c \ {ci}, g \ {gi}, ct]π(xct) +
l+1∑
t=1

[b, c \ {ci}, g \ {gi}, gt]π(xgt) = 0.

Hence,
[b, c \ {ci}, g \ {gi}, ci]π(xci) = [b, c \ {ci}, g \ {gi}, gi]π(xgi),

since the �eld has characteristic 2 and the other terms in the two sums are zero.
Multiplying the above equalities for 1 ≤ i ≤ l, we get

(
l∏

i=1

[b, c \ {ci}, g \ {gi}, ci]) u1 = (
l∏

i=1

[b, c \ {ci}, g \ {gi}, gi]) u2, (6.4)



72 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

where

u1 =
l∏

i=1

π(xci), u2 =
l∏

i=1

π(xgi).

The result follows by multiplying both sides of Equality (6.4) by π(xb)u1 and using
that, by Corollary 6.3.9,

Ψ(π(xb)u1u2) = 1/[b, c, g \ {gl+1}].

□

We �x an integer r withm+1 ≤ r ≤ Z. Assume l is an integer with 2 ≤ 2l ≤ n+1.
We set s = n+ 1− 2l. Assume

τ1 = {c1, . . . , cl}, τ2 = {b1, . . . , bs}

are two subsets of the vertex set {1, . . . ,m} of D, such that τ1 ∪ τ2 has cardinality
l + s and is a face of D. We set τ = τ1 ∪ τ2.
Assume σ ∈ F (D) is a facet of D. We de�ne the rational function H(τ1, τ2, σ) as
follows:

1. If τ is not a subset of σ we set H(τ1, τ2, σ) = 0.
2. If τ is a subset of σ, we denote the elements of σ \ τ by g1, . . . , gl and we set

H(τ1, τ2, σ) =

∏l
i=1M((σ ∪ {r}) \ {ci})

M(σ)
∏l

i=1M((σ ∪ {r}) \ {gi})
.

Clearly,

H(τ1, τ2, σ) =

∏
j∈τ1 M((σ ∪ {r}) \ {j})

M(σ)
∏

j∈(σ\(τ1∪τ2))M((σ ∪ {r}) \ {j})
.

The proof of the following theorem will be given in Subsection 6.3.1.

Theorem 6.3.14 (Recall that the �eld k1 has characteristic equal to 2.) We have the
following equality in the �eld k2

(Ψ ◦ π)((
l∏

i=1

x2ci)(
s∏

i=1

xbi)) =
∑

σ∈F (D)

H(τ1, τ2, σ). (6.5)

Remark 6.3.15 It is interesting to notice the similarities in the statement and proof
of Theorem 6.3.14 with the results obtained by Lee in [45, Section 6].

Remark 6.3.16 Using the de�nition of the function H, it is clear that the nonzero
terms of the sum in Equation (6.5) are exactly those where σ contains τ . Hence, the
sum can also be considered as a sum over the facets of the link of the face τ in D.
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Remark 6.3.17 Even though the left hand side in Equation (6.5) is completely inde-
pendent of r, each nonzero term H(τ1, τ2, σ) on the right hand side does depend on r.
Hence, provided no denominator vanishes, we are allowed to specialise the variables
ai,r, for 1 ≤ i ≤ n+ 1. This observation will be used in Corollaries 6.5.3 and 6.6.3.

Example 6.3.18 Assume k1 is a �eld of characteristic 2, m ≥ 3 and D is the m-gon
with consecutive vertices 1, 2, . . . ,m. By Corollary 6.3.11, we have

(Ψ ◦ π)(x22) =
[1, 3]

[1, 2][2, 3]
,

while, by Theorem 6.3.14, we have

(Ψ ◦ π)(x22) = H({2},∅, {1, 2}) +H({2},∅, {2, 3}) = [1, r]

[1, 2][2, r]
+

[3, r]

[2, 3][2, r]
.

Example 6.3.19 Assume k1 is a �eld of characteristic 2, and D is the simplicial
complex with vertex set {1, 2, . . . , 7} and Stanley-Reisner ideal equal to

ID = (x1x2, x3x4x5, x6x7).

Then D is a simplicial sphere of dimension 3.
We set τ1 = {1, 3}, τ2 = ∅. Clearly we have that τ1 is a face of D. Moreover, since

ID : (x1x3) = (x2, x4x5, x6x7), the link of τ1 in D is the 4-gon with consecutive vertices
4, 6, 5, 7. By Theorem 6.3.14

(Ψ ◦ π)(x21x23) = H4,6 +H6,5 +H5,7 +H7,4,

where

Ha,b = H(τ1, τ2, τ1 ∪ {a, b}) = [1, a, b, r][3, a, b, r]

[1, 3, a, b][1, 3, a, r][1, 3, b, r]
.

Remark 6.3.20 We expect that with the correct sign adjustments there should be a
version of Theorem 6.3.14 valid over a �eld k1 of arbitrary characteristic. We do not
pursue this direction further in the present work.

6.3.1 Proof of Theorem 6.3.14

We now give the proof of Theorem 6.3.14 by induction on l ≥ 1.
Assume l = 1. We have s = n− 1 and

τ1 = {c1}, τ2 = {b1, . . . , bn−1}.
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Recall that τ = τ1 ∪ τ2. Hence, τ is a codimension 1 face of D. Using Remark 6.3.3,
τ it is contained in exactly two facets of D. We denote them by

σ1 = {b1, . . . , bn−1, c1, d1}, σ2 = {b1, . . . , bn−1, c1, d2}.

We use the notation
[τ2, i, j] = [b1, . . . , bn−1, i, j].

By Corollary 6.3.11,

(Ψ ◦ π)(x2c1
n−1∏
i=1

xbi) =
[τ2, d1, d2]

[τ2, c1, d1][τ2, c1, d2]
.

We have H(τ1, τ2, σ) = 0 if σ ∈ F (D) \ {σ1, σ2}. Using the Plücker relation ([43,
Theorem 5.2.3])

[τ2, d1, d2][τ2, c1, r] = [τ2, d1, r][τ2, c1, d2] + [τ2, d1, c1][τ2, d2, r]

and taking into account that the �eld k1 has charactersitic 2, we have

(Ψ ◦ π)(x2c1
n−1∏
i=1

xbi) =
[τ2, d1, d2]

[τ2, c1, d1][τ2, c1, d2]

=
[τ2, d1, d2][τ2, c1, r]

[τ2, c1, d1][τ2, c1, d2][τ2, c1, r]

=
[τ2, d1, r][τ2, c1, d2] + [τ2, d1, c1][τ2, d2, r]

[τ2, c1, d1][τ2, c1, d2][τ2, c1, r]

=
[τ2, d1, r]

[τ2, c1, d1][τ2, c1, r]
+

[τ2, d2, r]

[τ2, c1, d2][τ2, c1, r]

= H(τ1, τ2, σ1) +H(τ1, τ2, σ2).

We assume now that l ≥ 1 with 2(l + 1) ≤ n + 1 and that Theorem 6.3.14 is
true for l. We will prove that Theorem 6.3.14 is true for the value l + 1. We set
s = n+ 1− 2(l + 1). Assume

τ1 = {c1, . . . , cl+1}, τ2 = {b1, . . . , bs}

such that τ1 ∪ τ2 has cardinality l + s+ 1 and is a face of D.
We �x integers p1, . . . , pl, such that m+ 1 ≤ pi ≤ Z, for all 1 ≤ i ≤ l, and the set

{r, p1, p2, . . . , pl} has cardinality equal to l+1. We set B = {1, . . . ,m}\ (τ1∪ τ2) and

u =
( l+1∏

i=1

x2ci
)( s∏

i=1

xbi
)
.
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For 1 ≤ i ≤ Z, we set

[[i]] = [b1, . . . , bs, c1, . . . , cl, r, p1, . . . , pl, i].

Using Proposition 6.10.1,
m∑
i=1

[[i]] π(xi) = 0.

Hence

π(xcl+1
) =

∑
i

[[i]]

[[cl+1]]
π(xi),

with the sum for 1 ≤ i ≤ m and i ̸= cl+1. Since [[i]] = 0 when i ∈ {c1, . . . , cl, b1, . . . , bs},
we have that

π(xcl+1
) =

∑
i∈B

[[i]]

[[cl+1]]
π(xi).

Multiplying this equality by

π(xcl+1
)

l∏
i=1

π(x2ci)
s∏

i=1

π(xbi)

we get

π(u) =
∑
i∈B

[[i]]

[[cl+1]]
π(Ei),

where

Ei = xixcl+1
(

l∏
i=1

x2ci)(
s∏

i=1

xbi).

Hence,

(Ψ ◦ π)(u) =
∑
i∈B

[[i]]

[[cl+1]]
(Ψ ◦ π)(Ei).

Since, for all i ∈ B, the expression for Ei has l squares, we can use the inductive
hypothesis for (Ψ ◦ π)(Ei) to get

(Ψ ◦ π)(Ei) =
∑

σ∈F (D)

H(τ1 \ {cl+1}, τ2 ∪ {i, cl+1}, σ).

As a consequence,

(Ψ ◦ π)(u) =
∑
i∈B

∑
σ∈F (D)

Vi,σ =
∑

σ∈F (D)

∑
i∈B

Vi,σ,
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where

Vi,σ =
[[i]]

[[cl+1]]
H(τ1 \ {cl+1}, τ2 ∪ {i, cl+1}, σ).

Therefore, to �nish the proof it is enough to show that for all σ ∈ F (D) it holds∑
i∈B

Vi,σ = H(τ1, τ2, σ). (6.6)

For i ∈ B we set
ηi = (τ1 \ {cl+1}) ∪ (τ2 ∪ {i, cl+1}),

therefore ηi = τ ∪ {i}.
We �rst assume that σ ∈ F (D) does not contain τ as a subset. Hence H(τ1, τ2, σ)

is equal to zero. Assume i ∈ B. Since τ ⊂ ηi, it follows that ηi is not a subset of σ.
This implies that H(τ1\{cl+1}, τ2∪{i, cl+1}) = 0, therefore Vi,σ = 0. As a consequence,
Equality (6.6) is true.

Assume now that σ ∈ F (D) contains τ as a subset. We set C = σ \ τ and denote
the elements of C by g1, . . . , gl+1. We set σr = σ ∪ {r}. If i ∈ B \ C, it follows that ηi
is not a subset of σ, therefore Vi,σ = 0. As a consequence,

∑
i∈B

Vi,σ =
∑
i∈C

Vi,σ =
l+1∑
i=1

Vgi,σ.

We have

Vgi,σ =
[[gi]]

[[cl+1]]
H(τ1 \ {cl+1}, τ2 ∪ {gi, cl+1}, σ)

=
[[gi]]

[[cl+1]]

∏l
t=1M(σr \ {ct})

M(σ)
∏i−1

t=1M(σr \ {gt})
∏l+1

t=i+1M(σr \ {gt})

=
[[gi]]

[[cl+1]]

M(σr \ {gi})
∏l

t=1M(σr \ {ct})
M(σ)

∏l+1
t=1M(σr \ {gt})

= Γ [[gi]]M(σr \ {gi}),

where

Γ =

∏l
t=1M(σr \ {ct})

[[cl+1]]M(σ)
∏l+1

t=1M(σr \ {gt})
.

Hence,
l+1∑
i=1

Vgi,σ = Γ
l+1∑
i=1

[[gi]]M(σr \ {gi}).
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By the Plücker relation ([43, Theorem 5.2.3]),

l+1∑
i=1

[[gi]]M(σr \ {gi}) = [[cl+1]]M(σr \ {cl+1}).

Therefore,

l+1∑
i=1

Vgi,σ = Γ [[cl+1]]M(σr \ {cl+1})

=

∏l+1
t=1M(σr \ {ct})

M(σ)
∏l+1

t=1M(σr \ {gt})
= H(τ1, τ2, σ).

As a consequence, Equality (6.6) is true, which �nishes the proof of Theorem 6.3.14.

6.4 Using the di�erential operators to establish anisotropy

We keep using the notations introduced in Sections 6.2 and 6.3. Moreover, we assume
that the �eld k1 has characteristic 2.

6.4.1 Case n is odd

Assume n ≥ 1 is odd. We set l = (n+1)/2. We assume that σ ∈ D is a face of dimen-
sion l − 1. We denote, in increasing order, the elements of σ by σ(1), σ(2), . . . , σ(l).
We de�ne ∂σ : k2 → k2 to be the (n + 1)-th order di�erential operator which is
di�erentiation with respect to the variables in the set

{ai,σ(j) : 1 ≤ i ≤ n+ 1, j = [(i+ 1)/2]},

where [x] denotes the integral part of the real number x.

Proposition 6.4.1 Assume τ is a face of D of dimension l − 1. We then have

(∂σ ◦Ψ ◦ π)(x2τ ) =
(
(Ψ ◦ π)(xσxτ )

)2
. (6.7)

Proof We de�ne the sets

K1 = {η ∈ F (D) : τ ⊂ η}, K2 = {η ∈ F (D) : τ ∪ σ ⊂ η}.
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We set γ1 = τ ∩ σ, γ2 = (τ ∪ σ) \ γ1. Using Theorem 6.3.14, we get

(Ψ ◦ π)(x2τ ) =
∑
η∈K1

H(τ,∅, η) and (Ψ ◦ π)(xτxσ) =
∑
η∈K2

H(γ1, γ2, η).

Clearly K2 ⊂ K1. If η ∈ K1 \ K2, we have that σ \ (η ∩ σ) ̸= ∅, which implies that
∂σ(H(τ,∅, η)) = 0. Hence

(∂σ ◦Ψ ◦ π)(x2τ ) =
∑
η∈K2

∂σ(H(τ,∅, η)).

Since the �eld k1 has characteristic 2, we get

((Ψ ◦ π)(xτxσ))2 =
∑
η∈K2

(H(γ1, γ2, η))
2.

Assume that η ∈ K2. Using Corollary 6.5.5, we have

∂σ(H(τ,∅, η)) = ∂σ
( ∏

i∈τ M((η ∪ {r}) \ {i})
M(η) ·

∏
i∈η\τ M((η ∪ {r}) \ {i})

)
=

∏
i∈τ∩σ(M((η ∪ {r}) \ {i}))2

(M(η))2 ·
∏

i∈η\(τ∪σ)(M((η ∪ {r}) \ {i}))2

= (H(γ1, γ2, η))
2,

which �nishes the proof. □

Remark 6.4.2 Conjecture 6.13.1 contains a conjectural statement generalising Propo-
sition 6.4.1.

Corollary 6.4.3 Assume u is a homogeneous element of R of degree l. We then have

(∂σ ◦Ψ ◦ π)(u2) =
(
(Ψ ◦ π)(xσu)

)2
. (6.8)

Proof Using Proposition 6.3.1, there exist s > 0, faces τ1, . . . , τs of D of dimension
l − 1 and elements λ1, . . . , λs in k such that

π(u) = π(
s∑

i=1

λixτi).
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Taking into account that the �eld k1 has characteristic 2 and combining Proposi-
tion 6.4.1 with Remark 6.7.1, we have

(∂σ ◦Ψ ◦ π)(u2) = (∂σ ◦Ψ ◦ π)(
s∑

i=1

λ2ix
2
τi
) =

s∑
i=1

λ2i
(
(∂σ ◦Ψ ◦ π)(x2τi)

)
=

s∑
i=1

λ2i
(
(Ψ ◦ π)(xσxτi)

)2
=
( s∑

i=1

λi((Ψ ◦ π)(xσxτi))
)2

=
(
(Ψ ◦ π)(

s∑
i=1

λixτixσ)
)2

=
(
(Ψ ◦ π)(xσu)

)2
.

This �nishes the proof of Corollary 6.4.3. □

Remark 6.4.4 If we abuse the notation by avoiding writing down the maps Ψ and
π, Equations (6.7) and (6.8) take the simpler form

∂σ(x
2
τ ) = (xσxτ )

2 and ∂σ(u
2) = (xσu)

2

respectively.

Example 6.4.5 We use the assumptions of Example 6.3.18 and the notational con-
vention described in Remark 6.4.4. We have

x22 =
[1, 3]

[1, 2][2, 3]
, ∂{1}(x

2
2) =

1

[1, 2]2
= (x1x2)

2, ∂{2}(x
2
2) =

[1, 3]2

[1, 2]2[2, 3]2
= (x22)

2.

Assume, in addition, that m ≥ 4. Then

∂{4}(x
2
2) = 0 = (x4x2)

2.

Corollary 6.4.6 Assume u is a homogeneous element of R of degree less or equal
than l such that π(u) ̸= 0. We then have that (π(u))2 ̸= 0.

Proof Using Remark 6.2.1, A is Artinian, Gorenstein and standard graded with socle
degree equal to n+ 1. It follows, by Remark 2.1.66, that there exists a homogeneous
element h ∈ R of degree l−deg(u) such that π(uh) ̸= 0. Combining Proposition 6.3.1
with Remark 2.1.66, there exists a face σ ofD of dimension l−1 such that π(xσuh) ̸= 0.

This implies that (Ψ◦π)(xσuh) ̸= 0, hence, by Corollary 6.4.3, (Ψ◦π)((uh)2) ̸= 0.
Since π is a k-algebra homomorphism, we get (π(u))2 ̸= 0. □
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6.4.2 Case n is even

Assume n ≥ 2 is even. We set l = n/2. We assume σ ∈ D is a face of dimension l− 1
and that p is vertex of D such that σ ∪ {p} is a face of D of dimension l. We denote,
in increasing order, the elements of σ by σ(1), σ(2), . . . , σ(l). We de�ne ∂p,σ : k2 → k2
to be the (n+1)-th order di�erential operator which is di�erentiation with respect to
the variables in the set

{a1,p} ∪ {ai,σ(j) : 2 ≤ i ≤ n+ 1, j = [i/2]},

where [x] denotes the integral part of the real number x.

Proposition 6.4.7 Assume τ is a face of D of dimension l−1 which does not contain
p. We then have

(∂p,σ ◦Ψ ◦ π)(x2τxp) =
(
(Ψ ◦ π)(xσxτxp)

)2
. (6.9)

Proof We set τ1 = τ ∪ {p}. If τ1 is not a face of D, we have π(xτxp) = 0 and the
proposition is true.

Hence, we can assume that τ1 is a face of D. We de�ne the sets

K1 = {η ∈ F (D) : τ1 ⊂ η}, K2 = {η ∈ F (D) : τ1 ∪ σ ⊂ η}.

We set γ1 = τ1 ∩ σ, γ2 = (τ1 ∪ σ) \ γ1. Since p is not an element of σ, we have
γ1 = τ ∩ σ. Using Theorem 6.3.14, we get

(Ψ ◦ π)(x2τxp) =
∑
η∈K1

H(τ, {p}, η) and (Ψ ◦ π)(xτxσxp) =
∑
η∈K2

H(γ1, γ2, η).

Clearly K2 ⊂ K1. If η ∈ K1 \ K2, we have that σ \ (η ∩ σ) ̸= ∅, which implies that
∂p,σ(H(τ, {p}, η)) = 0. Hence

(∂p,σ ◦Ψ ◦ π)(x2τxp) =
∑
η∈K2

∂p,σ(H(τ, {p}, η)).

Since the �eld k1 has characteristic 2

((Ψ ◦ π)(xτxσxp))2 =
∑
η∈K2

(H(γ1, γ2, η))
2.

Assume that η ∈ K2. Using Corollary 6.6.5, we have

∂p,σ(H(τ, {p}, η)) = ∂p,σ
( ∏

i∈τ M((η ∪ {r}) \ {i})
M(η) ·

∏
i∈η\(τ∪{p})M((η ∪ {r}) \ {i})

)
=

∏
i∈τ∩σ(M((η ∪ {r}) \ {i}))2

(M(η))2 ·
∏

i∈η\(τ∪{p}∪σ)(M((η ∪ {r}) \ {i}))2

= (H(γ1, γ2, η))
2,
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which �nishes the proof. □

Remark 6.4.8 Conjecture 6.13.1 contains a conjectural statement generalising Propo-
sition 6.4.7.

We will need the following strengthening of Proposition 6.3.1.

Proposition 6.4.9 Assume 1 ≤ d ≤ n+1 and u ∈ Rd. Then there exist s > 0, faces
τ1, . . . , τs of D dimension d− 1 and elements λ1, . . . , λs in k such that

π(u) = π(
s∑

i=1

λixτi)

and, moreover, p is not an element of τi for all 1 ≤ i ≤ s.

Proof Using Proposition 6.3.1, it is enough to assume that u = xη, where η is a face
of D of dimension d − 1. If p is not an element of η, the result is obvious by setting
s = 1, τ1 = η, λ1 = 1.

Assume now that p ∈ η. Without loss of generality, we can assume that p = 1 and
η = {1, 2, . . . , d}. By Proposition 6.10.1, we have

m∑
t=1

[2, 3, . . . , n+ 1, t]π(xt) = 0.

Hence,

π(x1) = −
m∑

t=n+2

[2, 3, . . . , n+ 1, t]

[2, 3, . . . , n+ 1, 1]
π(xt),

which implies that

π(xη) = −
m∑

t=n+2

[2, 3, . . . , n+ 1, t]

[2, 3, . . . , n+ 1, 1]
π(xt

d∏
i=2

xi).

The result follows. □

Corollary 6.4.10 Assume u is a homogeneous element of R of degree l. We then
have

(∂p,σ ◦Ψ ◦ π)(u2xp) =
(
(Ψ ◦ π)(xσuxp)

)2
. (6.10)
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Proof Using Proposition 6.4.9 , there exist s > 0, faces τ1, . . . , τs of D of dimension
l − 1 and elements λ1, . . . , λs in k such that

π(u) = π(
s∑

i=1

λixτi)

and, moreover, p is not an element of τi for all 1 ≤ i ≤ s.
Taking into account that the �eld k1 has characteristic 2 and combining Proposi-

tion 6.4.7 with Remark 6.7.1, we have

(∂p,σ ◦Ψ ◦ π)(u2xp) = (∂p,σ ◦Ψ ◦ π)(
s∑

i=1

λ2ix
2
τi
xp) =

s∑
i=1

λ2i
(
(∂p,σ ◦Ψ ◦ π)(x2τixp)

)
=

s∑
i=1

λ2i
(
(Ψ ◦ π)(xσxτixp)

)2
=
( s∑

i=1

λi((Ψ ◦ π)(xσxτixp))
)2

=
(
(Ψ ◦ π)(

s∑
i=1

λixτixσxp)
)2

=
(
(Ψ ◦ π)(xσuxp)

)2
.

□

Remark 6.4.11 If we abuse the notation by avoiding writing down the maps Ψ and
π, Equations (6.9) and (6.10) take the simpler form

∂p,σ(x
2
τxp) = (xσxτxp)

2 and ∂p,σ(u
2xp) = (xσuxp)

2

respectively.

Example 6.4.12 Assume D is the boundary complex of the 3-simplex with vertex
set {1, 2, 3, 4}. We set p = 1, τ = {2}. Using Corollary 6.3.11 and the notational
convention described in Remark 6.4.11, we have

x2τxp =
[1, 3, 4]

[1, 2, 3][1, 2, 4]
, ∂p,{2}(x

2
τxp) =

[1, 3, 4]2

[1, 2, 3]2[1, 2, 4]2
= (x2xτxp)

2

and

∂p,{3}(x
2
τxp) =

1

[1, 2, 3]2
= (x3xτxp)

2, ∂p,{4}(x
2
τxp) =

1

[1, 2, 4]2
= (x4xτxp)

2.

Corollary 6.4.13 Assume u is a homogeneous element of R of degree less or equal
than l such that π(u) ̸= 0. We then have that (π(u))2 ̸= 0.
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Proof Using Remark 6.2.1, A is Artinian, Gorenstein and standard graded with socle
degree equal to n+ 1. It follows, by Remark 2.1.66, that there exists a homogeneous
element h ∈ R of degree l−deg(u) such that π(uh) ̸= 0. Combining Proposition 6.3.1
with Remark 2.1.66, there exists a face σ1 of D of dimension l such that π(xσ1uh) ̸= 0.

We �x an element p of σ1, and set σ = σ1 \ {p}. Therefore, π(xσ1uh) ̸= 0 implies
that (Ψ◦π)(xσuhxp) ̸= 0. Using Corollary 6.4.10, it follows that (Ψ◦π)((uh)2xp)) ̸= 0.
Since π is a k-algebra homomorphism, we get (π(u))2 ̸= 0. □

6.4.3 Proof of Theorem 6.2.3

We now prove Theorem 6.2.3. If n is odd, it follows from Corollary 6.4.6, while if n is
even, it follows from Corollary 6.4.13.

6.5 The di�erential operator for n odd

The aim of the present section is to establish, in conjuction with the following two
Sections 6.6 and 6.7, the results about the di�erential operators that were used in
Section 6.4.

In the present section we work over a �eld k1 of characteristic 2.
Assume n ≥ 1 is odd and m is an integer with m ≥ n+1. We set Z = m+2n and

denote by M the (n + 1) × Z matrix whose (i, j)-entry is equal to the variable ai,j,
for 1 ≤ i ≤ n and 1 ≤ j ≤ Z. Given a subset A of the set {1, 2, . . . , Z} of cardinality
n + 1, we denote by M(A) the determinant of the (n+ 1)× (n + 1) submatrix of M
obtained by keeping the columns of M speci�ed by the set A.

We denote by k2 the �eld of fractions of the polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ Z].

We set l = (n+ 1)/2. Assume

τ1 = {c1, . . . , cl}, τ2 = {g1, . . . , gl+1}

are two subsets of the set {1, 2, . . . , Z} such that τ1 ∪ τ2 has cardinality 2l + 1.
We set τ = τ1 ∪ τ2 and

G(τ1, τ2) =

∏l
i=1M(τ \ {ci})∏l+1
i=1M(τ \ {gi})

.

For the rest of this section we make the assumption that τ is a subset of the set
{1, 2, . . .m}. We �x r with m+ 1 ≤ r ≤ Z and set, for 1 ≤ i ≤ l + 1,

Gi(τ1, τ2, {r}) = G(τ1, (τ2 ∪ {r}) \ {gi}).
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We denote by Gsp
i (τ1, τ2) the result of substituting in Gi(τ1, τ2, {r}) the value 1 for

the variable a1,r and the value 0 for the variables aj,r, for 2 ≤ j ≤ n + 1. We remark
that Gsp

i (τ1, τ2) is well-de�ned, since the denominator of Gi(τ1, τ2, {r}) does not vanish
when we perform the substitution.

Moreover, we denote by Tn+1 : k2 → k2 the (n+ 1)-th order di�erential operator
which is di�erentiation with respect to the set of variables

{a1,c1 , a2,c1 , a3,c2 , a4,c2 , a5,c3 , a6,c3 , . . . , an,cl , an+1,cl}.

Remark 6.5.1 This set of variables can also be described as the set

{ai,cj : 1 ≤ i ≤ n+ 1, j = [(i+ 1)/2]},

where [x] denotes the integral part of the real number x. For example, if n = 3, then

Tn+1 =
∂4

∂a1,c1 ∂a2,c1 ∂a3,c2 ∂a4,c2
.

We remind the reader that the �eld k1 has characteristic 2.

Proposition 6.5.2 We have the following equality in the �eld k2

G(τ1, τ2) =
l+1∑
i=1

Gi(τ1, τ2, {r}).

Proof Denote by D the boundary complex of the simplex of dimension n + 1 with
vertex set τ . By Proposition 6.3.12, we have

(Ψ ◦ π)(
l∏

i=1

x2ci) = G(τ1, τ2).

Since Gi(τ1, τ2, {r}) = H(τ1,∅, τ \ {gi}), by Theorem 6.3.14 we have

(Ψ ◦ π)(
l∏

i=1

x2ci) =
l+1∑
i=1

Gi(τ1, τ2, {r}).

The result follows. □

For an example related to the above Proposition 6.5.2 see Example 6.3.18.
The following corollary follows immediately from Proposition 6.5.2, by taking into

account that, for all 1 ≤ j ≤ n+ 1, the variable aj,r does not appear in G(τ1, τ2).
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Corollary 6.5.3 We have the following equality in the �eld k2

G(τ1, τ2) =
l+1∑
i=1

Gsp
i (τ1, τ2).

The following proposition is an immediate corollary of Part 1 of Theorem 6.7.6.
For simplicity of notation, for i ∈ τ we set Mi =M(τ \ {i}).

Proposition 6.5.4 We have the following equality in the �eld k2

Tn+1 (
∏
i∈τ

Mi) =
∏
i∈τ1

(Mi)
2.

Corollary 6.5.5 Assume S is a subset of τ . We then have the following equality in
the �eld k2

Tn+1

( ∏
i∈S Mi∏

i∈τ\S Mi

)
=

∏
i∈S∩ τ1

(Mi)
2∏

i∈τ2\S(Mi)2
.

Proof Using Proposition 6.5.4 and Remark 6.7.1, we have

Tn+1

( ∏
i∈S Mi∏

i∈τ\S Mi

)
= Tn+1

( ∏
i∈τ Mi

(
∏

i∈τ\S Mi)2
)
=
Tn+1(

∏
i∈τ Mi)

(
∏

i∈τ\S Mi)2

=

∏
i∈τ1(Mi)

2∏
i∈τ\S(Mi)2

=
E ·
∏

i∈S∩ τ1
(Mi)

2

E ·
∏

i∈τ2\S(Mi)2
,

where E =
∏

i∈τ1\S(Mi)
2. The result follows. □

6.6 The di�erential operator for n even

The aim of the present section is to establish, in conjuction with the previous Sec-
tion 6.5 and the following Section 6.7, the results about the di�erential operators that
were used in Section 6.4.

In the present section we work over a �eld k1 of characteristic 2.
Assume n ≥ 1 is even and m is an integer with m ≥ n + 1. We set Z = m + 2n

and denote byM the (n+1)×Z matrix whose (i, j)-entry is equal to the variable ai,j,
for 1 ≤ i ≤ n and 1 ≤ j ≤ Z. Given a subset A of the set {1, 2, . . . , Z} of cardinality
n + 1, we denote by M(A) the determinant of the (n+ 1)× (n + 1) submatrix of M
obtained by keeping the columns of M speci�ed by the set A.

We denote by k2 the �eld of fractions of the polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ Z].
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We set l = n/2. Assume

τ1 = {c1, . . . , cl}, τ2 = {b}, τ3 = {g1, . . . , gl+1}

are three subsets of the set {1, 2, . . . , Z} such that ∪3
i=1τi has cardinality 2l + 2.

We set τ = ∪3
i=1τi and

G(τ1, τ2, τ3) =

∏l
i=1M(τ \ {ci})∏l+1
i=1M(τ \ {gi})

.

For the rest of this section we make the assumption that τ is a subset of the set
{1, 2, . . .m}. We �x r with m+ 1 ≤ r ≤ Z and set, for 1 ≤ i ≤ l + 1,

Gi(τ1, τ2, τ3, {r}) = G(τ1, τ2, (τ3 ∪ {r}) \ {gi}).

Denote by Gsp
i (τ1, τ2, τ3) the result of substituting in Gi(τ1, τ2, τ3, {r}) the value 1 for

the variable a1,r and the value 0 for the variables aj,r, for 2 ≤ j ≤ n + 1. We remark
that Gsp

i (τ1, τ2, τ3) is well-de�ned, since the denominator of Gi(τ1, τ2, τ3, {r}) does not
vanish when we perform the substitution.

Moreover, we denote by Tn+1 : k2 → k2 the (n+ 1)-th order di�erential operator
which is di�erentiation with respect to the set of variables

{a1,b, a2,c1 , a3,c1 , a4,c2 , a5,c2 , . . . , an,cl , an+1,cl}.

Remark 6.6.1 This set of variables can also be described as the set

{a1,b} ∪ {ai,cj : 2 ≤ i ≤ n+ 1, j = [i/2]},

where [x] denotes the integral part of the real number x. For example, if n = 2, then

Tn+1 =
∂3

∂a1,b ∂a2,c1 ∂a3,c1
.

We remind the reader that the �eld k1 has characteristic 2.

Proposition 6.6.2 We have the following equality in the �eld k2

G(τ1, τ2, τ3) =
l+1∑
i=1

Gi(τ1, τ2, τ3, {r}).



6.6. THE DIFFERENTIAL OPERATOR FOR N EVEN 87

Proof Denote by D the boundary complex of the simplex of dimension n + 1 with
vertex set τ . By Proposition 6.3.13, we have

(Ψ ◦ π)(xb
l∏

i=1

x2ci) = G(τ1, τ2, τ3).

Since Gi(τ1, τ2, τ3, {r}) = H(τ1, τ2, τ \ {gi}), by Theorem 6.3.14 we have

(Ψ ◦ π)(xb
l∏

i=1

x2ci) =
l+1∑
i=1

Gi(τ1, τ2, τ3, {r}).

The result follows. □

The following corollary follows immediately from Proposition 6.6.2, by taking into
account that, for all 1 ≤ j ≤ n+ 1, the variable aj,r does not appear in G(τ1, τ2, τ3).

Corollary 6.6.3 We have the following equality in the �eld k2

G(τ1, τ2, τ3) =
l+1∑
i=1

Gsp
i (τ1, τ2, τ3).

The following proposition is an immediate corollary of Part 2 of Theorem 6.7.6.
For simplicity of notation, for i ∈ τ1 ∪ τ3 we set Mi =M(τ \ {i}).

Proposition 6.6.4 We have the following equality in the �eld k2

Tn+1

( ∏
i∈τ1∪τ3

Mi

)
=
∏
i∈τ1

(Mi)
2.

Corollary 6.6.5 Assume S is a subset of τ1∪ τ3. We then have the following equality
in the �eld k2

Tn+1

( ∏
i∈S Mi∏

i∈(τ1∪τ3)\S Mi

)
=

∏
i∈S ∩ τ1

(Mi)
2∏

i∈ τ3\S(Mi)2
.

Proof We set w = τ1 ∪ τ3. Using Proposition 6.6.4 and Remark 6.7.1, we have

Tn+1

( ∏
i∈S Mi∏

i∈w\S Mi

)
= Tn+1

( ∏
i∈wMi

(
∏

i∈w\S Mi)2
)
=
Tn+1(

∏
i∈wMi)

(
∏

i∈w\S Mi)2

=

∏
i∈τ1(Mi)

2∏
i∈w\S(Mi)2

=
E ·
∏

i∈S∩ τ1
(Mi)

2

E ·
∏

i∈τ3\S(Mi)2
,

where E =
∏

i∈τ1\S(Mi)
2. The result follows. □
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6.7 Some useful characteristic 2 identities

The aim of the present section is to establish, in conjuction with the previous two
Sections 6.5 and 6.6, the results about the di�erential operators that were used in
Section 6.4.

In the present section we work over a �eld k1 of characteristic 2.
Assume h ≥ 2 is an integer. We denote by k the �eld of fractions of the polynomial

ring

k1[ai,j : 1 ≤ i ≤ h+ 2, 1 ≤ j ≤ h+ 1].

We denote by M big the (h + 2) × (h + 1) matrix whose (i, j)-entry is equal to the
variable ai,j, for 1 ≤ i ≤ h+ 2 and 1 ≤ j ≤ h+ 1.

Assume h ≥ 2 is even. We denote by N (h) the h × (h + 1) submatrix of M big,
obtained by keeping the rows indexed by 1, 2, . . . , h. We denote by P (h) the h×(h+1)
submatrix of M big, obtained by keeping the rows indexed by 3, 4, . . . , h+2. We de�ne
the folowing two sets of variables

AN,h = {ai,j : 1 ≤ i ≤ h, j = [(i+1)/2]}, AP,h = {ai,j : 3 ≤ i ≤ h+2, j = [(i+1)/2]},

where [x] denotes the integral part of the real number x. For S ∈ {N,P}, we denote
by TS,h the h-th order di�erential operator which is partial di�erentiation with respect
to the variables in the set AS,h.

Assume h ≥ 3 is odd. We denote by Q(h) the h × (h + 1) submatrix of M big,
obtained by keeping the rows indexed by 2, 3, . . . , h+1. We de�ne the folowing set of
variables

AQ,h = {a2,1} ∪ {ai,j : 3 ≤ i ≤ h+ 1, j = [(i+ 1)/2]}.

We denote by TQ,h the h-th order di�erential operator which is partial di�erentiation
with respect to the variables in the set AQ,h.

In the present section we will use the following notational convention. Assume
l ≥ 1, S is an l × (l + 1) matrix and 1 ≤ i ≤ l + 1. We will denote by Si the
determinant of the l × l submatrix of S obtained by deleting the i-th column of S.

Remark 6.7.1 We will use that, since the �eld k1 has characteristic 2, we have

TS,h(f
2g) = f 2TS,h(g)

for all f, g ∈ k, S ∈ {N,P,Q} and h ≥ 2 as above (that is, h even if S = N or S = P
and h odd if S = Q). Indeed, by the Leibnitz Rule,

∂

∂ai,j
(f 2g) = g

∂

∂ai,j
(f 2) + f 2 ∂

∂ai,j
(g) = 2gf

∂

∂ai,j
(f) + f 2 ∂

∂ai,j
(g) = f 2 ∂

∂ai,j
(g),



6.7. SOME USEFUL CHARACTERISTIC 2 IDENTITIES 89

and TS,h is a composition of such operators. Consequently, if f, g ∈ k with g ̸= 0, then

TS,h(
f

g
) = TS,h(

fg

g2
) =

TS,h(fg)

g2
.

□

Proposition 6.7.2 Assume that h ≥ 2 is even and that

TN,h(
h+1∏
i=1

N
(h)
i ) =

h/2∏
i=1

(N
(h)
i )2.

We then have

TP,h(
h+1∏
i=1

P
(h)
i ) =

(h+2)/2∏
i=2

(P
(h)
i )2.

Proof We denote by Nmod the matrix obtained from N (h) by putting the last column
of N (h) �rst. Since, the �eld k1 has characteristic 2, we get N

mod
1 = N

(h)
h+1 and that

Nmod
i = N

(h)
i−1,

for all 2 ≤ i ≤ h+ 1. Hence, using the assumption we have

TN,h(
h+1∏
i=1

Nmod
i ) = TN,h(

h+1∏
i=1

N
(h)
i ) =

h/2∏
i=1

(N
(h)
i )2 =

h/2∏
i=1

(Nmod
i+1 )

2 =

(h+2)/2∏
i=2

(Nmod
i )2. (6.11)

We have that both Nmod and P (h) are h × (h + 1) matrices. The entries of each
matrix are independent indeterminates. For 1 ≤ i ≤ h and 1 ≤ j ≤ h+ 1, we denote
by ni,j the (i, j)-entry of Nmod and by pi,j the (i, j)-entry of P (h). By de�nition, TN,h

is di�erentiation with respect to the variables in the set

{ni,j : 1 ≤ i ≤ h, j = 1 + [(i+ 1)/2]},

while TP,h is di�erentiation with respect to the variables in the set

{pi,j : 1 ≤ i ≤ h, j = 1 + [(i+ 1)/2]}.

There exists a unique isomorphism of k1-algebras ϕ : k1[ni,j] → k1[pi,j] such that
ϕ(ni,j) = pi,j for all 1 ≤ i ≤ h and 1 ≤ j ≤ h+1. As a consequence, the result follows
from Equation (6.11). □

Proposition 6.7.3 Assume h = 2. We have

TN,2(N
(2)
1 N

(2)
2 N

(2)
3 ) = (N

(2)
1 )2 and TP,2(P

(2)
1 P

(2)
2 P

(2)
3 ) = (P

(2)
2 )2.
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Proof Using Proposition 6.7.2, it is enough to prove only the �rst equality. We have

TN,2 =
∂2

∂a1,1 ∂a2,1

and

N
(2)
1 = det

(
a1,2 a1,3
a2,2 a2,3

)
, N

(2)
2 = det

(
a1,1 a1,3
a2,1 a2,3

)
, N

(2)
3 = det

(
a1,1 a1,2
a2,1 a2,2.

)
.

The result follows by an easy direct computation, taking into account that the �eld
k1 has characteristic 2. □

Remark 6.7.4 It is easy to see that the assumption that the �eld k1 has characteristic
two is crucial in order to have the equalities in the statement of Proposition 6.7.3.

Proposition 6.7.5 1) Assume h ≥ 4 is even and that

TP,h−2(
h−1∏
i=1

P
(h−2)
i ) =

h/2∏
i=2

(P
(h−2)
i )2.

We then have

TQ,h−1(
h∏

i=2

Q
(h−1)
i ) =

h/2∏
i=2

(Q
(h−1)
i )2.

2) Assume h ≥ 4 is even and that

TQ,h−1(
h∏

i=2

Q
(h−1)
i ) =

h/2∏
i=2

(Q
(h−1)
i )2.

We then have

TN,h(
h+1∏
i=1

N
(h)
i ) =

h/2∏
i=1

(N
(h)
i )2.

Proof We �x an even integer h ≥ 4. For simplicity of notation, we set

N = N (h), TN = TN,h, Q = Q(h−1), TQ = TQ,h−1, P = P (h−2), TP = TP,h−2.

We �rst prove Part 1). We set

W =

∏h−1
i=(h+2)/2Qi

Qh

∏h/2
i=2Qi

.
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Using Remark 6.7.1, it is enough to prove that

TQ(W ) = 1/(Qh)
2. (6.12)

Denote by r1 the transpose of the 1 × (h − 1) matrix (1, 0, 0, . . . , 0). For an
element s ∈ {2, 3, . . . , h/2}∪{h} we denote by U<s> the (h−1)×h matrix obtained
by replacing the s-th column of Q with r1.

We set, for s ∈ {2, 3, . . . , h/2} ∪ {h},

W<s> =

∏h−1
j=(h+2)/2 U

<s>
j

U<s>
h

∏h/2
j=2 U

<s>
j

.

Since U<s>
j ̸= 0, for all 1 ≤ j ≤ h, we have that W<s> is well-de�ned. By Corol-

lary 6.6.3, we have

W = W<h> +

h/2∑
s=2

W<s>.

For simplicity, we set B = U<h>. Assume s ∈ {2, 3, . . . , h/2}. We have that
TQ(W

<s>) is zero, since the variable a2s,s is an element of AQ,h−1 but does not appear
in W<s>. As a consequence, we have

TQ(W ) = TQ(W
<h>).

Hence, using that Qh = Bh, to prove Equation (6.12) it is enough to prove that

TQ(W
<h>) = 1/(Bh)

2.

Taking into account Remark 6.7.1, it follows that to prove Equation (6.12) it is enough
to prove that

TQ(
h∏

i=2

Bi) =

h/2∏
i=2

(Bi)
2. (6.13)

Using the de�nition of r1, we get that Bi = Pi for all 1 ≤ i ≤ h− 1. We set

K = Bh − a2,1P1.

By the well-known formula for the development of the determinant Bh using the row
containing the element a2,1 it follows that the variable a2,1 does not appear in K.
Consequently, the di�erential operator ∂

∂a2,1
annihilates K. Since the same operator

annihilates Pj for all 1 ≤ j ≤ h, and TQ = TP ◦ ∂
∂a2,1

, we get

TQ(
h∏

i=2

Bi) = TQ(Bh

h−1∏
i=2

Bi) = TQ(a2,1P1

h−1∏
i=2

Pi) = TP (P1

h−1∏
i=2

Pi) =

h/2∏
i=2

(Pi)
2,
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with the last equality by the assumption for Part 1). Since, for 1 ≤ i ≤ h−1, we have
Bi = Pi, Equality (6.13) follows, which �nishes the proof of Part 1).

EXAMPLE (to help understand the above proof of Part 1): If h = 4, we have

Q =

 a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 , B = U<h> =

 a2,1 a2,2 a2,3 1
a3,1 a3,2 a3,3 0
a4,1 a4,2 a4,3 0

 ,

P =

(
a3,1 a3,2 a3,3
a4,1 a4,2 a4,3

)
and

TQ =
∂3

∂a2,1 ∂a3,2 ∂a4,2
, TP =

∂2

∂a3,2 ∂a4,2
.

We now prove Part 2) using similar arguments to the ones used in the proof of
Part 1). We set

W =

∏h
i=(h+2)/2Ni

Nh+1

∏h/2
i=1Ni

.

Using Remark 6.7.1, it is enough to prove that

TN(W ) = 1/(Nh+1)
2. (6.14)

Denote by r2 the transpose of the 1× h matrix (1, 0, 0, . . . , 0). For

s ∈ {1, 2, . . . , h/2} ∪ {h+ 1}

we denote by X<s> the h× (h + 1) matrix obtained by replacing the s-th column of
N with r2.

We set, for s ∈ {1, 2, . . . , h/2} ∪ {h+ 1},

W<s> =

∏h
j=(h+2)/2X

<s>
j

X<s>
h+1

∏h/2
j=1X

<s>
j

.

Since X<s>
j ̸= 0, for all 1 ≤ j ≤ h + 1, we have that W<s> is well-de�ned. By

Corollary 6.5.3, we have

W = W<h+1> +

h/2∑
s=1

W<s>.
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For simplicity, we set C = X<h+1>. Assume s ∈ {1, 2, . . . , h/2}. We have
TN(W

<s>) = 0, since the variable a2s,s is an element of AN,h but does not appear in
W<s>. As a consequence, we have

TN(W ) = TN(W
<h+1>).

Hence, using that Nh+1 = Ch+1, to prove Equation (6.14) it is enough to prove that

TN(W
<h+1>) = 1/(Ch+1)

2.

Taking into account Remark 6.7.1, it follows that to prove Equation (6.14) it is
enough to prove that

TN(
h+1∏
i=1

Ci) =

h/2∏
i=1

(Ci)
2. (6.15)

Using the de�nition of r2, we get that Ci = Qi for all 1 ≤ i ≤ h. We set

K = Ch+1 − a1,1Q1.

By the well-known formula for the development of the determinant Ch+1 using the
row containing the element a1,1 it follows that the variable a1,1 does not appear in K.
Consequently, the di�erential operator ∂

∂a1,1
annihilates K. Since the same operator

annihilates Qj for all 1 ≤ j ≤ h, and TN = TQ ◦ ∂
∂a1,1

, we get

TN(
h+1∏
i=1

Ci) = TN(Ch+1

h∏
i=1

Ci) = TN(a1,1Q1

h∏
i=1

Qi) = TN(a1,1(Q1)
2

h∏
i=2

Qi)

= TQ((Q1)
2

h∏
i=2

Qi) = (Q1)
2 TQ(

h∏
i=2

Qi) = (Q1)
2

h/2∏
i=2

(Qi)
2

with the last two equalities by Remark 6.7.1 and the assumption for Part 2). Since,
for 1 ≤ i ≤ h, we have Ci = Qi, Equality (6.15) follows, which �nishes the proof of
Part 2).

EXAMPLE (to help understand the above proof of Part 2): If h = 4, we have

N =


a1,1 a1,2 a1,3 a1,4 a1,5
a2,1 a2,2 a2,3 a2,4 a2,5
a3,1 a3,2 a3,3 a3,4 a3,5
a4,1 a4,2 a4,3 a4,4 a4,5

 , C = X<h+1> =


a1,1 a1,2 a1,3 a1,4 1
a2,1 a2,2 a2,3 a2,4 0
a3,1 a3,2 a3,3 a3,4 0
a4,1 a4,2 a4,3 a4,4 0

 ,
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Q =

 a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4


and

TN =
∂4

∂a1,1 ∂a2,1 ∂a3,2 ∂a4,2
, TQ =

∂3

∂a2,1 ∂a3,2 ∂a4,2
.

□

Theorem 6.7.6 1) Assume h ≥ 2 is even. We have

TN,h(
h+1∏
i=1

N
(h)
i ) =

h/2∏
i=1

(N
(h)
i )2.

2) Assume h ≥ 3 is odd. We have

TQ,h(
h+1∏
i=2

Q
(h)
i ) =

(h+1)/2∏
i=2

(Q
(h)
i )2.

Proof It is obvious that Part 2) is equivalent to the statement that for all even
integers h ≥ 4 we have

TQ,h−1(
h∏

i=2

Q
(h−1)
i ) =

h/2∏
i=2

(Q
(h−1)
i )2.

Using induction on the even integer h ≥ 2, the proof of the present theorem follows
by combining Proposition 6.7.3, which provides the starting case h = 2, and Proposi-
tions 6.7.2 and 6.7.5, which provide the inductive step. □

Remark 6.7.7 Conjecture 6.13.1 contains a conjectural statement generalising The-
orem 6.7.6.

6.8 Anisotropy implies the Lefschetz properties

In the present section we investigate the relations between generic anisotropy and the
Lefschetz properties. As an application, in Theorem 6.8.2 we give a second proof of
McMullen's g-conjecture for simplicial spheres.

Assume k1 is a �eld of arbitrary characteristic, n ≥ 1 is an integer, and D is a
simplicial sphere of dimension n and vertex set {1, 2, . . . ,m}.
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We denote by S(D) the suspension ofD. More precisely, it is the simplicial complex
with vertex set {1, 2, . . . ,m+ 2} and set of facets equal to

{σ ∪ {xm+1} : σ ∈ F (D)} ∪ {σ ∪ {xm+2} : σ ∈ F (D)},

where F (D) denotes the set of facets of D. It is well-known that S(D) is a simplicial
sphere of dimension n + 1. Moreover, we denote by k the �eld of fractions of the
polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 2, 1 ≤ j ≤ m+ 2].

The proof of the following theorem will be given in Subsection 6.8.1.

Theorem 6.8.1 Assume that S(D) is generically anisotropic over the �eld k1. Then
the graded k-algebra k[D] has the Weak Lefschetz Property.

All three statements in the following theorem are results originally due to Adipr-
asito [1, 2]. The proof of the theorem will be given in Subsection 6.8.2.

Theorem 6.8.2 (Adiprasito) Assume D is a simplicial sphere of dimension n, with
n ≥ 1. Then

i) McMullen's g-conjecture is true for D.
ii) Assume k1 is an in�nite �eld of characteristic 2. Then the Stanley-Reisner ring

k1[D] has the Weak Lefschetz Property.
iii) Assume k1 is an in�nite �eld of characteristic 2. Then the Stanley-Reisner

ring k1[D] has the Strong Lefschetz Property.

Remark 6.8.3 It is well-known that iii) implies ii). We state both ii) and iii), since
in our approach we �rst prove ii) and then use it to establish iii). Notice also that
the paper [1] contains the stronger result that for any in�nite �eld k1 of arbitrary
characteristic the Stanley-Reisner ring k1[D] has the Strong Lefschetz Property.

6.8.1 Proof of Theorem 6.8.1

The aim of the present subsection is to prove Proposition 6.8.8, since it immediately
implies Theorem 6.8.1. We use some key ideas and results of Swartz, which were
developed in [65, Section 4].

We keep using the notations de�ned in Section 6.8. We set Rsm = k[x1, . . . , xm]
and R = Rsm[xm+1, xm+2]. We denote by ID ⊂ Rsm the Stanley-Reisner ideal of D
over the �eld k and by IS(D) ⊂ R the Stanley-Reisner ideal of S(D) over the same
�eld k. It is clear that

IS(D) = (ID) + (xm+1xm+2).
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We denote by k[D] = Rsm/ID and k[S(D)] = R/IS(D) the corresponding Stanley-
Reisner rings over k.

For 1 ≤ i ≤ n+ 2, we set

fi =
m+2∑
j=1

ai,jxj ∈ R.

We use the notation A = k[S(D)]/(f1, . . . , fn+2), and denote by πA : R → A the
natural projection k-algebra homomorphism. Therefore, A is the generic Artinian
reduction of k1[S(D)] in the sense of De�nition 6.1.1.

We set J = IS(D) : (xm+1) ⊂ R. In other words,

J = {u ∈ R : uxm+1 ∈ IS(D)}.

It is clear that J = (ID) + (xm+2). We use the notation

B =
R

J + (f1, f2, . . . , fn+2)
,

and we denote by πB : R → B the natural projection k-algebra homomorphism.
For 2 ≤ i ≤ n+ 2 and 1 ≤ j ≤ m, we set

ci,j = det

(
a1,j a1,m+1

ai,j ai,m+1

)
∈ k.

In addition, for 2 ≤ i ≤ n+ 2, we set

gi =
m∑
j=1

ci,jxj ∈ Rsm.

Since, for all 2 ≤ i ≤ n+ 2, it holds

gi = ai,m+1f1 − a1,m+1fi + xm+2(a1,m+1ai,m+2 − ai,m+1a1,m+2),

we get the following equality of ideals of R

(f1, f2, . . . , fn+2) + (xm+2) = (f1) + (g2, g3, . . . , gn+2) + (xm+2). (6.16)

We use the notation C = k[D]/(g2, g3, . . . , gn+2), and denote by πC : Rsm → C the
natural projection k-algebra homomorphism. We set

ω = −
m∑
i=1

a1,i
a1,m+1

xi ∈ Rsm.
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It is clear that πB(ω) = πB(xm+1). We consider the unique k-algebra homomorphism
ϕmod : R → C, such that ϕmod(xi) = πC(xi) for all 1 ≤ i ≤ m, ϕmod(xm+1) = πC(ω)
and ϕmod(xm+2) = 0. From the de�nition of ω it follows that f1 ∈ kerϕmod. Hence,
Equation (6.16) implies that the ideal J + (f1, . . . , fn+2) is contained in the kernel
of ϕmod. Consequently, there exists an induced k-algebra homomorphism ϕ : B → C
such that ϕ ◦ πB = ϕmod.

Proposition 6.8.4 The map ϕ is an isomorphism of graded k-algebras.

Proof It is clear from the de�nition that ϕ preserves degrees. We consider the unique
k-algebra homomorphism Rsm → B, that sends xi to πB(xi), for all 1 ≤ i ≤ m. Using
Equation (6.16), it follows that the ideal ID + (g2, g3, . . . , gn+2) of Rsm is inside its
kernel, hence there exists an induced k-algebra homomorphism ψ : C → B. It follows
from the de�nitions that ψ is the inverse map of ϕ. □

Proposition 6.8.5 i) The k-algebra A is graded, Artinian and Gorenstein with socle
degree equal to n+ 2.

ii) The k-algebras B and C are graded, Artinian and Gorenstein with socle degree
equal to n+ 1.

Proof We �rst remark that, by Proposition 6.8.4, the graded k-algebras B and C
are isomorphic.

By Remark 6.2.1, the k-algebra k[S(D)] is graded and Gorenstein with Krull di-
mension equal to n+ 2. Moreover, by the same remark A is Artinian and Gorenstein
with socle degree equal to n+ 2.

Since IS(D) ⊂ J , there exists a unique surjective homomorphism of k-algebras
πnew : A→ B, such that πnew ◦πA = πB. Since πnew is surjective and A is Artinian, it
follows that B is Artinian. Since C is isomorphic to B we get that C is also Artinian.
By Remark 6.2.1, the k-algebra k[D] is graded and Gorenstein with Krull dimension
equal to n+1. It follows that the sequence g2, . . . , gn+2 is a regular sequence for k[D].
This implies that the k-algebra C is Gorenstein and, using again Remark 6.2.1, that
the socle degree of C is equal to n+ 1. □

We consider the homomorphism of R-modules R → A, that sends u to πA(xm+1u),
for all u ∈ R. It is clear that the ideal J + (f1, . . . , fn+2) of R is inside its kernel.
Hence, we get an induced homomorphism of R-modules mxm+1 : B → A, such that

mxm+1(πB(u)) = πA(xm+1u)

for all u ∈ R. The following proposition is a special case of [65, Proposition 4.24].

Proposition 6.8.6 (Swartz) The homomorphism mxm+1 is injective.
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Proof Recall the map ψ de�ned in the proof of Proposition 6.8.4. We set

δ = mxm+1 ◦ ψ : C → A.

Since ψ is an isomorphism, it is enough to prove that δ is injective.
Since, for all j ≥ 0, we have δ(Cj) ⊂ Aj+1, to prove that δ is injective it is enough

to assume that 0 ≤ j ≤ n + 1 and u ∈ (Rsm)j is a homogeneous element of degree j
such that πC(u) ̸= 0, and prove that δ(πC(u)) ̸= 0. In order to get a contradiction,
we assume that

δ(πC(u)) = 0. (6.17)

By Proposition 6.8.5, C is a graded Artinian Gorenstein k-algebra with socle degree
n + 1. Therefore, by Remark 2.1.66, there exists w ∈ (Rsm)n+1−j such that πC(uw)
is nonzero. Using Equation (6.17)

δ(πC(uw)) = πA(xm+1uw) = πA(xm+1u)πA(w) = δ(πC(u))πA(w) = 0. (6.18)

We �x a facet {a1, . . . , an+1} of D and consider the facet {a1, . . . , an+1,m + 1} of
S(D). We set

zC =
n+1∏
r=1

xar ∈ Rsm, zA = xm+1

n+1∏
r=1

xar ∈ R.

Using the discussion after the proof of Corollary 6.3.5, πA(zA) is a nonzero element of
An+2. By the same discussion, πC(zC) is nonzero, hence is a basis of the 1-dimensional
k-vector space Cn+1. Therefore, there exists a nonzero element λ ∈ k such that

πC(uw) = λπC(zC).

Consequently,

δ(πC(uw)) = δ(λπC(zC)) = λδ(πC(zC)) = λπA(xm+1zC) = λπA(zA) ̸= 0,

which contradicts Equation (6.18). □

The following corollary follows immediately from Proposition 6.8.6.

Corollary 6.8.7 Assume u ∈ R. Then the following are equivalent
i) We have πB(u) = 0.
ii) We have πA(xm+1u) = 0.

Proposition 6.8.8 Assume S(D) is generically anisotropic over the �eld k1. Then
the element πC(ω) is a Weak Lefschetz element for the Artinian k-algebra C. As a
consequence, the graded k-algebra k[D] has the Weak Lefschetz Property.
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Proof We denote by p the integral value of the rational number n/2.
Using that πB(ω) = πB(xm+1) and Proposition 6.8.4, it is enough to prove that

the element πB(xm+1) is a Weak Lefschetz element for the Artinian k-algebra B. By
Proposition 6.8.5, B is a graded Artinian Gorenstein k-algebra with socle degree n+1.
Using [51, Remark 2.4], it is enough to prove that the multiplication by πB(xm+1) map
from Bp to Bp+1 is injective.

Assume u ∈ Rp has the property

πB(xm+1u) = 0.

Using Corollary 6.8.7, we have πA(x
2
m+1u) = 0, hence πA(x

2
m+1u

2) = 0. Using that
the socle degree of A is n+2 and the assumption that S(D) is generically anisotropic
over the �eld k1, we get πA(xm+1u) = 0. Corollary 6.8.7 implies that πB(u) = 0. □

Proposition 6.8.9 Assume the dimension of D is even and S(D) is generically
anisotropic over the �eld k1. Then the element πC(ω) is a Strong Lefschetz element
for the Artinian k-algebra C. As a consequence, the graded k-algebra k[D] has the
Strong Lefschetz Property.

Proof We set z = πB(ω). Using Proposition 6.8.4, it is enough to prove that the
element z is a Strong Lefschetz element for the Artinian k-algebra B. By Propo-
sition 6.8.5, B is a graded Artinian Gorenstein k-algebra with socle degree n + 1.
Hence, to �nish the proof it is enough to prove that, for all i with 0 ≤ 2i ≤ n+1, the
multiplication by zn+1−2i map Bi → Bn+1−i is injective.

Assume 0 ≤ 2i ≤ n+ 1 and u ∈ Ri has the property

zn+1−2iπB(u) = 0.

Using that z = πB(xm+1) and Corollary 6.8.7, we get πA(x
n+2−2i
m+1 u) = 0, which

implies that πA(x
n+2−2i
m+1 u2) = 0.

Since n is even, the socle degree of A is n + 2 and we assumed that S(D) is

generically anisotropic over the �eld k1, we get πA(x
(n+2)/2−i
m+1 u) = 0. Corollary 6.8.7

implies that πB(x
(n+2)/2−i−1
m+1 u) = 0, therefore

z(n+2)/2−i−1 πB(u) = 0. (6.19)

By the proof of Proposition 6.8.8, z is a Weak Lefschetz element for B. Hence, the
multiplication by z map Bn/2 → Bn/2+1 is injective. Using Proposition 6.12.7, we have
that, for all t with 0 ≤ t ≤ n/2, the multiplication by z map Bt → Bt+1 is injective.
Consequently, Equation (6.19) implies that πB(u) = 0. □



100 CHAPTER 6. ANISOTROPY OF SIMPLICIAL SPHERES

6.8.2 Proof of Theorem 6.8.2

We start the proof of Theorem 6.8.2. We denote by kmod the �eld of fractions of the
polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m].

For 1 ≤ i ≤ n+ 1, we set

fmod,i =
m∑
j=1

ai,jxj.

We use the notation

Amod = kmod[D]/(fmod,1, . . . , fmod,n+1).

Hence, Amod is the generic Artinian reduction of k1[D] in the sense of De�nition 6.1.1.
We �rst prove Part i). We denote by k1 the �eld Z/(2) with two elements. By The-

orem 6.2.3, S(D) is generically anisotropic over the �eld k1. Hence, by Theorem 6.8.1,
k[D] has the Weak Lefschetz Property. It is well-known ([61]) that this implies that
McMullen's g-conjecture is true for D.

We now prove Part ii). Assume k1 is an in�nite �eld of characteristic 2. By Theo-
rem 6.2.3, S(D) is generically anisotropic over the �eld k1. Hence, by Theorem 6.8.1,
k[D] has the Weak Lefschetz Property. Using Proposition 6.12.3, k1[D] also has the
Weak Lefschetz Property.

We now prove Part iii). Assume k1 is an in�nite �eld of characteristic 2. By
Theorem 6.2.3, S(D) is generically anisotropic over the �eld k1. If the dimension n
of D is even, Proposition 6.8.9 implies that k[D] has the Strong Lefschetz Property.
Using Proposition 6.12.5, k1[D] also has the Strong Lefschetz Property.

Assume now that n is odd. By Part ii), k1[D] has the Weak Lefschetz Property.
Using Proposition 6.12.4, the Artinian kmod-algebra Amod has the Weak Lefschetz
Property. By Theorem 6.2.3, D is generically anisotropic over the �eld k1. Hence,
for all i with 0 ≤ i ≤ (n + 1)/2 and all 0 ̸= u ∈ (Amod)i, we have u2 ̸= 0. Propo-
sition 6.12.8 now implies that Amod has the Strong Lefschetz Property. Since k1 is
in�nite, Proposition 6.12.6 implies that k1[D] has the Strong Lefschetz Property. This
�nishes the proof of Theorem 6.8.2.

Corollary 6.8.10 Assume D is a simplicial sphere of dimension n ≥ 1, and k1 is a
(�nite or in�nite) �eld of characteristic 2. Then the kmod-algebra Amod has the Strong
Lefschetz Property.

Proof The �eld kmod is in�nite and has characteristic 2. Hence, Theorem 6.8.2 im-
plies that the kmod-algebra kmod[D] has the Strong Lefschetz Property. Using Propo-
sition 6.12.6, the result follows. □
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6.9 Anisotropy in dimension 1

In this section k1 denotes a �eld of arbitrary characteristic.
We assume that m ≥ 3 and D is the boundary of the m-gon with vertex set

{1, . . . ,m}. We also assume the following: the vertex 1 is connected to the vertices m
and 2, the vertex i is connected to the vertices i − 1 and i + 1 when 2 ≤ i ≤ m − 1,
and the vertex m is connected to the vertices m− 1 and 1.

We denote by Ssp the polynomial ring

Ssp = k1[ai,j : 1 ≤ i ≤ 2, 1 ≤ j ≤ m]

and by k the �eld of fractions of Ssp. We de�ne the polynomial ring R = k[x1, . . . , xm].
We denote by ID ⊂ R the Stanley-Reisner ideal of D, and we set k[D] = R/ID. For
1 ≤ i ≤ 2, we set

fi =
m∑
j=1

ai,jxj,

and we de�ne A = k[D]/(f1, f2). Therefore, A is the generic Artinian reduction of
k1[D] in the sense of De�nition 6.1.1.

If m ≥ 4 we have

ID = (x1xj : 3 ≤ j ≤ m− 1) + (xixj : 2 ≤ i ≤ m− 2, i+ 2 ≤ j ≤ m),

while if m = 3, we have ID = (x1x2x3).
We �x the ordered facet (1, 2) of D. Following Equations (6.1) and (6.2), we set

Ψ = Ψ(1,2) : A2 → k and ρ = ρ(1,2) : A1 × A1 → k.

Proposition 6.9.1 For 1 ≤ i ≤ m− 1, we have

(Ψ ◦ π)(xixi+1) =
1

[i, i+ 1]
.

Moreover, we have

(Ψ◦π)(x1xm) =
1

[m, 1]
, (Ψ◦π)(x21) = − [m, 2]

[m, 1][1, 2]
, (Ψ◦π)(x2m) = − [m− 1, 1]

[m− 1,m][m, 1]

and

(Ψ ◦ π)(x2i ) = − [i− 1, i+ 1]

[i− 1, i][i, i+ 1]

for 2 ≤ i ≤ m− 1.
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Proof Combining Proposition 6.3.4 with Proposition 6.3.10, the result is immedi-
ate. □

Proposition 6.9.2 We have dimk A1 = m − 2. If S is any subset of {1, . . . ,m} of
cardinality m− 2, then the set {π(xi) : i ∈ S} is a k-basis of A1.

Proof We denote by M the 2 × m matrix with (i, j)-entry equal to ai,j. The de-
terminant of every 2 × 2 submatrix of M is a nonzero element of the �eld k. Since
A = k[D]/(f1, f2) and ID is a homogeneous ideal with generators of degrees ≥ 2, the
result follows. □

For 1 ≤ i ≤ m− 2, we set ei = π(xi+1). By Proposition 6.9.2, the �nite sequence

e1, e2, . . . , em−2

is an ordered basis of A1. We denote by Nm the (m− 2)× (m− 2) symmetric matrix,
with (i, j)-entry equal to ρ(ei, ej). We call Nm the matrix of ρ with respect to the
ordered basis.

Remark 6.9.3 Assume a, b, c, d ∈ {1, . . . ,m}. Then, we have the well-known Plücker
identity

[a, b][c, d]− [a, c][b, d] + [a, d][b, c] = 0,

see [43, Theorem 5.2.3].

Proposition 6.9.4 We have

det(Nm) = (−1)m
[1,m]∏m−1

i=1 [i, i+ 1]
.

Proof We use induction on m ≥ 3. For m = 3, it follows from Proposition 6.9.1.
Assume m = 4. Then we have to compute the determinant of the matrix

N4 =

(
− [1,3]

[1,2][2,3]
1

[2,3]
1

[2,3]
− [2,4]

[2,3][3,4]

)
.

It is equal to

[1, 3]

[1, 2][2, 3]

[2, 4]

[2, 3][3, 4]
−
( 1

[2, 3]

)2
=

[1, 3][2, 4]− [1, 2][3, 4]

[1, 2]|[2, 3]2[3, 4]
.

Using the Plücker identity [1, 2][3, 4] − [1, 3][2, 4] + [1, 4][2, 3] = 0 (see Remark 6.9.3)
the result follows.
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Assume now m ≥ 5 and that the result holds for all previous values up to m− 1.
Using Proposition 6.9.1, we have that Nm has the block format

Nm =

(
Nm−1 vt

v − [m−2,m]
[m−2,m−1][m−1,m]

)
,

where v is the (m− 3)× 1 matrix

v =
(

0 0 . . . 0 1
[m−2,m−1]

)
.

Morever, a similar block format statement holds for the matrix Nm−1.
Developing the determinant of Nm using the last column, and using the inductive

hypothesis together with the Plücker identity (see Remark 6.9.3)

[1,m− 2][m− 1,m]− [1,m− 1][m− 2,m] + [1,m][m− 2,m− 1] = 0,

we get

det(Nm) = − [m− 2,m]

[m− 2,m− 1][m− 1,m]
det(Nm−1)− (

1

[m− 2,m− 1]
)2 det(Nm−2)

= (−1)m−1 −[m− 2,m][1,m− 1]

[m− 2,m− 1][m− 1,m]
∏m−2

i=1 [i, i+ 1]
−(−1)m−2 [1,m− 2]

[m− 2,m− 1]2
∏m−3

i=1 [i, i+ 1]

= (−1)m−2
( [1,m− 1][m− 2,m]

[m− 2,m− 1]
∏m−1

i=1 [i, i+ 1]
− [1,m− 2]

[m− 2,m− 1]
∏m−2

i=1 [i, i+ 1]

)
= (−1)m−2

( [1,m− 1][m− 2,m]− [1,m− 2][m− 1,m]

[m− 2,m− 1]
∏m−1

i=1 [i, i+ 1]

)
= (−1)m

( [1,m]∏m−1
i=1 [i, i+ 1]

)
.

□

Remark 6.9.5 Assume 1 ≤ c < d ≤ m. It is well-known that [c, d] is an irreducible
element of Ssp. Hence, there exists an induced valuation map

val[c,d] : k \ {0} → Z.

Recall that if f, g ∈ Ssp \ {0}, then val[c,d](f) is the largest integer s such that [c, d]s

divides f in Ssp, and

val[c,d](f/g) = val[c,d](f)− val[c,d](g).
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Remark 6.9.6 Assume that h is any ordered basis of A1. We denote by H the matrix
of ρ with respect to h. By the basic theory of bilinear forms, there exists an invertible
matrix P with entries in k such that

H = P tNmP.

As a consequence, using Proposition 6.9.4,

det(H) = (−1)m(detP )2
[1,m]∏m−1

i=1 [i, i+ 1]
.

Taking into account Remark 6.9.5, we conclude that we can recover the simplicial
complex D from (the determinant of) ρ, since the set of facets of D is exactly the
set of ordered pairs (c, d) such that 1 ≤ c < d ≤ m and val[c,d](det(H)) is an odd
integer. An interesting question is whether this holds for all simplicial spheres of odd
dimension. In other words, assume E is a simplicial sphere of odd dimension ≥ 3 and
e is an ordered facet of E. Is it possible to recover E from (the determinant of) the
symmetric bilinear form ρe?

The proof of the following theorem will be given in Subsection 6.9.1.

Theorem 6.9.7 The simplicial sphere D is generically anisotropic over k1.

6.9.1 Proof of Theorem 6.9.7

We keep using the notations of Section 6.9. Using Remark 6.3.7, to prove Theo-
rem 6.9.7 it is enough to prove that the symmetric bilinear form ρ : A1 × A1 → k is
anisotropic.

We de�ne a second basis of A1, by using the Gram-Schmidt orthogonalization. We
set ẽ1 = e1, and we inductively de�ne

ẽi = ei +
[1, i]

[1, i+ 1]
ẽi−1,

for 2 ≤ i ≤ m− 2.

Proposition 6.9.8 For all 1 ≤ i ≤ m− 2, we have

ẽi =
i+1∑
t=2

[1, t]

[1, i+ 1]
π(xt). (6.20)
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Proof We prove Equation (6.20) using induction on i. For i = 1 it is true by the
de�nition of ẽ1. Assume 1 ≤ i ≤ m− 3 and that Equation (6.20) is true for the value
i. We have

ẽi+1 = ei+1 +
[1, i+ 1]

[1, i+ 2]
ẽi = π(xi+2) +

[1, i+ 1]

[1, i+ 2]
(
i+1∑
t=2

[1, t]

[1, i+ 1]
π(xt))

= π(xi+2) +
i+1∑
t=2

[1, t]

[1, i+ 2]
π(xt) =

i+2∑
t=2

[1, t]

[1, i+ 2]
π(xt).

□

Proposition 6.9.9 For all 1 ≤ i ≤ m− 2, we have

ρ(ẽi, ẽi) = − [1, i+ 2]

[1, i+ 1][i+ 1, i+ 2]
.

Moreover, if 1 ≤ j ≤ m− 2 and j ̸= i, we have

ρ(ẽi, ẽj) = 0.

Proof Assume 1 ≤ i ≤ m− 2. We set u =
∑i+1

t=2[1, t]π(xt). By Proposition 6.10.1,

m∑
t=2

[1, t]π(xt) = 0.

Hence, if 1 ≤ r ≤ i, taking into account that π(xrxt) = 0 when r+ 2 ≤ t ≤ m, we get

u π(xr) = 0. (6.21)

Assume 1 ≤ j < i. Using Proposition 6.9.8, Equation (6.21) implies that ρ(ẽi, ẽj)
is equal to zero. Moreover, Equation (6.21) also implies that

Ψ(u2) = Ψ
(
u (

i+1∑
t=2

[1, t]π(xt))
)
= Ψ

(
[1, i+ 1]uπ(xi+1)

)
= Ψ

(
[1, i+ 1][1, i]π(xixi+1) + [1, i+ 1]2π(x2i+1)

)
= [1, i+ 1]

( [1, i]

[i, i+ 1]
− [1, i+ 1][i, i+ 2]

[i, i+ 1][i+ 1, i+ 2]

)
= [1, i+ 1]

[1, i][i+ 1, i+ 2]− [1, i+ 1][i, i+ 2]

[i, i+ 1][i+ 1, i+ 2]

= −[1, i+ 1]
[1, i+ 2][i, i+ 1]

[i, i+ 1][i+ 1, i+ 2]
= −[1, i+ 1]

[1, i+ 2]

[i+ 1, i+ 2]
,
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where we used Proposition 6.9.1 and Remark 6.9.3. Since ẽi = u/[1, i+1], this proves
the formula for ρ(ẽi, ẽi). □

We set

L =
m−1∏
s=2

[1, s][s, s+ 1]

and, for 1 ≤ t ≤ m− 2, we de�ne Lt = L/([1, t+ 1][t+ 1, t+ 2]) ∈ Ssp.
Using Proposition 6.9.9, it is clear that to prove Theorem 6.9.7 it is enough to

prove that, if dt ∈ k satisfy

m−2∑
t=1

d2t
[1, t+ 2]

[1, t+ 1][t+ 1, t+ 2]
= 0,

we then have dt = 0 for all 1 ≤ t ≤ m− 2. By clearing denominators, it is enough to
prove the following proposition.

Proposition 6.9.10 Assume d1, . . . , dm−2 ∈ Ssp satisfy

m−2∑
t=1

d2t [1, t+ 2]Lt = 0. (6.22)

Then, we have dt = 0, for all 1 ≤ t ≤ m− 2.

Proof We give to the polynomial ring Ssp the lexicographic ordering > with

a1,1 > a1,2 > · · · > a1,m > a2,1 > a2,2 > · · · > a2,m.

Using Corollary 6.11.3, it is enough to prove that if the integers i, j have the properties
1 ≤ i < j ≤ m− 2, di ̸= 0 and dj ̸= 0, we then have

in>(d
2
i [1, i+ 2]Li) ̸= in>(d

2
j [1, j + 2]Lj). (6.23)

Using the de�nitions of Li and Lj and Remark 6.11.1, we have

in>(d
2
i [1, i+ 2]Li) = (in>(di))

2 · (a1,1)m−2 ·
i∏

s=1

a1,s ·
m−1∏
s=i+2

a1,s ·Qi,

and

in>(d
2
j [1, j + 2]Lj) = (in>(dj))

2 · (a1,1)m−2 ·
j∏

s=1

a1,s ·
m−1∏
s=j+2

a1,s ·Qj,

where Qi and Qj are monomials in the variables a2,1, . . . , a2,m. Therefore, the variable
a1,j+1 appears in the monomial in>(d

2
i [1, i + 2]Li) with an odd power, and in the

monomial in>(d
2
j [1, j + 2]Lj) with an even power. Hence, Inequality (6.23) is true.

□
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Example 6.9.11 Assume m = 6. Equation (6.22) becomes

d21[1, 3]L1 + d22[1, 4]L2 + d23[1, 5]L3 + d24[1, 6]L4 = 0,

where

L1 =
L

[1, 2][2, 3]
, L2 =

L

[1, 3][3, 4]
, L3 =

L

[1, 4][4, 5]
, L4 =

L

[1, 5][5, 6]

and
L = [1, 2][1, 3][1, 4][1, 5][2, 3][3, 4][4, 5][5, 6].

6.10 A general proposition related to elimination

In this section we describe a speci�c form of Gauss elimination that is used in the
present chapter.

Assume R is a commutative ring with unit, and n,m,Z are positive integers with
n < m ≤ Z. Assume that, for 1 ≤ j ≤ m, xj is an elements of R and that for
1 ≤ i ≤ n and 1 ≤ j ≤ Z, ai,j is an element of R. We denote by M the n× Z matrix
with (i, j)-entry equal to ai,j.

Assume b1, . . . , bn are n integers, with 1 ≤ bi ≤ Z, for all i. We denote by
[b1, . . . , bn] the determinant of the n × n matrix, whose i-th column is equal to the
bi-th column of M . For 1 ≤ i ≤ n, we set

fi =
m∑
t=1

ai,txt,

and we denote by I = (f1, . . . , fn) the ideal of R generated by the fi.

Proposition 6.10.1 Assume c1, . . . , cn−1 are integers, with 1 ≤ ci ≤ Z for all i. We
have

m∑
t=1

[c1, c2, . . . , cn−1, t]xt ∈ I.

Proof Denote by N the n× (n−1) matrix, whose i-th column is the ci-th column of
M . For 1 ≤ j ≤ n, we denote by Nj the determinant of the submatrix of N obtained
by deleting the j-th row of N . We claim that

m∑
t=1

[c1, c2, . . . , cn−1, t]xt =
n∑

j=1

(−1)j+nNjfj.

Indeed, on the left hand side, the coe�cient of xt is [c1, c2, . . . , cn−1, t], while on the
right hand side the coe�cient is equal to

∑n
j=1(−1)j+nNjaj,t. The two quantities are

equal, by developing the determinant [c1, c2, . . . , cn−1, t] using the last column. □
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6.11 A general technique for proving a polynomial is

nonzero

Here we discuss a well-known general method which is useful for proving that certain
sums of products of bracket polynomials are nonzero. We use it in the proof of
Proposition 6.9.10.

Assume m ≥ 1, k is a �eld and R = k[xi : 1 ≤ i ≤ m]. We denote by AR the set
of all monomials of R. In other words,

AR = {xa11 · · · xamn : ai ≥ 0 for all i}.

Following [27, Section 15.2], a monomial order on R is a total order > on AR such
that if u1, u2, w ∈ AR with u1 > u2 and w ̸= 1, we then have wu1 > wu2 > u2. In
addition, by the same reference, the lexicographic order on R with x1 > x2 > · · · > xm
is the total order > on AR de�ned by xa11 · · · xamm > xb11 · · · xbmm if and only if ai > bi for
the �rst index i such that ai ̸= bi. It is a monomial order on R.

Assume now > is a monomomial order on R. It induces the initial monomial map,
in> : R \ {0} → AR, de�ned as follows. Assume f ∈ R \ {0}. Then, there exist
(unique) s > 0, g1, . . . , gs ∈ AR and λ1, . . . , λs ∈ k \ {0} such that

f =
s∑

i=1

λigi and g1 > g2 > g3 > · · · > gs.

By de�nition, in>(f) = g1.

Remark 6.11.1 By the de�nition of a monomial ordering, we have

in>(f1f2) = (in>(f1))(in>(f2))

for all f1, f2 ∈ R \ {0}.

Moreover, by the de�nition of a monomial ordering we have the following propo-
sition.

Proposition 6.11.2 Assume f1, f2, . . . , ft ∈ R \ {0}. Assume there exists a with
1 ≤ a ≤ t such that

in>(fa) > in>(fb)

for all b with 1 ≤ b ≤ t and b ̸= a. Then
∑t

i=1 fi ̸= 0 and in>(
∑t

i=1 fi) = in>(fa).

Corollary 6.11.3 Assume f1, f2, . . . , ft ∈ R \ {0} satisfy

in>(fi) ̸= in>(fj)

for all 1 ≤ i, j ≤ t with i ̸= j. Then
∑t

i=1 fi ̸= 0.
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Proof Since in>(fi) ̸= in>(fj) for all 1 ≤ i, j ≤ t with i ̸= j, there exists a unique
integer a such that 1 ≤ a ≤ t and in>(fa) > in>(fb) for all b with 1 ≤ b ≤ t and b ̸= a.
The result follows by Proposition 6.11.2. □

6.12 Lefschetz properties and base change

The statements in the present section, with the likely exception of Proposition 6.12.8,
are well-known. We include them for completeness.

Proposition 6.12.1 Assume E is an in�nite �eld, f ∈ E[x1, . . . , xm] is a nonzero
polynomial and, for 1 ≤ i ≤ m, Zi is an in�nite subset of E. Then, there exists a
point p in the set Z1 × Z2 × · · · × Zm such that f(p) ̸= 0.

Proof We use induction on m. If m = 1, it is well-known that the polynomial f has
a �nite number of roots in the �eld E, and the result follows.

Assume m ≥ 2 and that the result is true for m − 1. There exist s > 0 and, for
0 ≤ i ≤ s, a polynomial gi ∈ E[x1, . . . , xm−1], such that

f =
s∑

i=0

gix
i
m.

Since f is nonzero, there exists c, with 0 ≤ c ≤ s, such that gc is nonzero. Hence, by
the inductive hypothesis, there exists an element (a1, . . . , am−1) ∈ Z1×Z2×· · ·×Zm−1

such that gc(a1, . . . , am−1) ̸= 0. Consequently, the polynomial h ∈ E[xm], with

h =
s∑

i=0

gi(a1, . . . , am−1)x
i
m,

is nonzero. By the case m = 1, there exists am ∈ Zm such that h(am) ̸= 0. This
implies that f(a1, . . . , am) ̸= 0. □

Corollary 6.12.2 Assume that E is an in�nite �eld, m ≥ 1 is a positive integer and
f ∈ E[x1, . . . , xm] is a nonzero polynomial. Assume k1 is an in�nite sub�eld of E.
Then

i) There exists a point p ∈ km1 such that f(p) ̸= 0.

ii) Endow the set Em with the Zariski topology. Then the subset km1 of Em is
Zariski dense.
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Proof Part i) follows from Proposition 6.12.1, by setting Zi = k1 for all 1 ≤ i ≤ m.
Part ii) follows immediately from Part i). □

Assume that k1 ⊂ E is a �eld extension. We consider the polynomial ring
k1[x1, . . . , xm], where the degree of the variable xi is equal to 1, for all 1 ≤ i ≤ m.
Assume I ⊂ k1[x1, . . . , xm] is a homogeneous ideal such that the quotient algebra
G = k1[x1, . . . , xm]/I is Cohen-Macaulay. We denote by d the Krull dimension of G.

We set GE = E[x1, . . . , xm]/(I), where (I) is the ideal of E[x1, . . . , xm] generated
by I. By [17, Theorem 2.1.10], GE is also Cohen-Macaulay. Since, for all i ≥ 0,
(GE)i = Gi ⊗k1 E, the Hilbert function of G as a graded k1-algebra is equal to the
Hilbert function of GE as a graded E-algebra. Consequently, the Krull dimension of
GE is d.

Proposition 6.12.3 Assume that the �eld k1 is in�nite. Then the following are equiv-
alent:

i) The graded k1-algebra G has the Weak Lefschetz Property.
ii) The graded E-algebra GE has the Weak Lefschetz Property.

Proof We �rst assume that G has the Weak Lefschetz Property. Then, there exist
elements g1, . . . , gd, ω ∈ G1 such that g1, . . . , gd is a regular sequence for G and ω is
a Weak Lefschetz element for G/(g1, . . . , gd). Clearly, g1, . . . , gd is a regular sequence
also for GE and ω is a Weak Lefschetz element also for GE/(g1, . . . , gd). Hence, the
k-algebra GE has the Weak Lefschetz Property.

For the opposite direction, we assume that GE has the Weak Lefschetz Property.
By taking the coe�cients of fi and ω, we can identify the set

S = {(g1, . . . , gd, ω) : gi ∈ (GE)1, ω ∈ (GE)1}

with the a�ne space (GE)
d+1
1 . We denote by U the subset of S consisting of the

element (g1, . . . , gd, ω) such that g1, . . . , gd is a regular sequence for GE and ω is a
Weak Lefschetz element for GE/(g1, . . . , gd).

By the assumption thatGE has theWeak Lefschetz Property, the set U is nonempty.
Hence, by [5, Lemma 4.1], U is a nonempty Zariski open subset of S. Using that the
�eld k1 is in�nite, Corollary 6.12.2 implies that G

d+1
1 is Zariski dense in (GE)

d+1
1 , hence

Gd+1
1 ∩ U ̸= ∅. Let (g1, . . . , gd, ω) ∈ Gd+1

1 ∩ U . Then g1, . . . , gd is a regular sequence
for G and ω is a Weak Lefschetz element for G/(g1, . . . , gd). Hence, the k1-algebra G
has the Weak Lefschetz Property. □

We denote by k the �eld of fractions of the polynomial ring

k1[ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].
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We set Gk = k[x1, . . . , xm]/(I), where (I) is the ideal of k[x1, . . . , xm] generated by I.
For 1 ≤ i ≤ d, we set fi =

∑m
j=1 ai,jxj. Hence, the Artinian k-algebra Gk/(f1, . . . , fd)

is the generic Artinian reduction of the k1-algebra G in the sense of De�nition 6.1.1.

Proposition 6.12.4 Assume d ≥ 1. Then the following are equivalent:
i) The Artinian k-algebra Gk/(f1, . . . , fd) has the Weak Lefschetz Property.
ii) If E is an in�nite �eld containing k1 as a sub�eld, then the E-algebra GE has

the Weak Lefschetz Property.
iii) There exists an in�nite �eld F which contains k1 as a sub�eld such that the

F -algebra GF has the Weak Lefschetz Property.

Proof We �rst prove that i) implies ii). Since the k-algebra Gk/(f1, . . . , fd) has the
Weak Lefschetz Property, it follows that the k-algebra Gk has the Weak Lefschetz
Property. Assume E is an in�nite �eld containing k1 as a sub�eld. We denote by E1

the �eld of fractions of the polynomial ring

E[ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

Since k is a sub�eld of E1, Proposition 6.12.3 implies that the E1-algebra GE1 has the
Weak Lefschetz Property. Since E is an in�nite sub�eld of E1, the same proposition
gives that the E-algebra GE has the Weak Lefschetz Property.

We now prove that ii) implies iii). It is clear.
We now prove that iii) implies i). We denote by E the �eld of fractions of the

polynomial ring in one variable k[T ] over k. We denote by F1 the �eld of fractions of
the polynomial ring

F [T, ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ m].

Since we have that F is a sub�eld of F1, both �elds are in�nite, and, by the assumption,
the F -algebra GF has the Weak Lefschetz Property, it follows, by Proposition 6.12.3,
that the F1-algebra GF1 has the Weak Lefschetz Property. Since E is an in�nite
sub�eld of F1, the same proposition implies that the E-algebra GE has the Weak
Lefschetz Property.

We denote by Ie the ideal of E[x1, . . . , xm] generated by I. We denote by V the
m-dimensional E-vector subspace of E[x1, . . . , xm] consisting of homogeneous degree
one polynomials. For 1 ≤ i ≤ d, 1 ≤ j ≤ m, we de�ne the in�nite subset

Zi,j = {ai,j + T r : r ≥ 1}

of E. We denote by Z the Cartesian product, for 1 ≤ i ≤ d, 1 ≤ j ≤ m, of the sets
Zi,j. By Corollary 6.12.2, Z is Zariski dense in the a�ne space Edm.

Since GE has the Weak Lefschetz Property, it follows that the set U consisting of all
(g1, . . . , gd) ∈ V d such that g1, . . . , gd is a regular sequence for GE and GE/(g1, . . . , gd)
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has the Weak Lefschetz Property, is a nonempty Zariski open subset of the a�ne space
V d.

We identify V d with Edm, by considering the coe�cients of the homogeneous degree
one polynomials. Since Z is Zariski dense in Edm, the intersection of Z with U is
nonempty. Hence, for 1 ≤ i ≤ d, 1 ≤ j ≤ m, there exists a positive integer ri,j such
that, if we set

gi =
m∑
j=1

(ai,j + T ri,j)xj,

we have that g1, . . . , gd is a regular sequence for GE and GE/(g1, . . . , gd) has the Weak
Lefschetz Property.

There exists a unique k1-linear automorphism of the polynomial ring k1[ai,j, T ]
that sends T to T and ai,j to ai,j + T ri,j , for all i, j. The automorphism extends �rst
to a �eld automorphism of E and then to a degree preserving automorphism ϕ of the
polynomial ring E[x1, . . . , xm] that sends xi to xi, for all 1 ≤ i ≤ m, and is the identity
when restricted to k1. Hence, ϕ(Ie) = Ie and ϕ(fi) = gi, for all 1 ≤ i ≤ d, which
imply that

ϕ(Ie + (f1, . . . , fd)) = Ie + (g1, . . . , gd).

Consequently, f1, . . . , fd is a regular sequence forGE andGE/(f1, . . . , fd) has the Weak
Lefschetz Property, since the same properties hold for g1, . . . , gd and GE/(g1, . . . , gd).

Finally, since k is an in�nite sub�eld of E, Proposition 6.12.3 implies that the
k-algebra Gk/(f1, . . . , fd) has the Weak Lefschetz Property. □

We now discuss the corresponding statements of the last two propositions for the
Strong Lefschetz Property.

Proposition 6.12.5 Assume that the �eld k1 is in�nite and G is Gorenstein. Then
the following are equivalent:

i) The graded k1-algebra G has the Strong Lefschetz Property.
ii) The graded k-algebra GE has the Strong Lefschetz Property.

Proof With the obvious modi�cations, the arguments in the proof of Proposition 6.12.3
also work here. □

Proposition 6.12.6 Assume that G is Gorenstein and d ≥ 1. Then the following are
equivalent:

i) The Artinian k-algebra Gk/(f1, . . . , fd) has the Strong Lefschetz Property.
ii) If E is an in�nite �eld containing k1 as a sub�eld, then the E-algebra GE has

the Strong Lefschetz Property.
iii) There exists an in�nite �eld F which contains k1 as a sub�eld such that the

F -algebra GF has the Strong Lefschetz Property.
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Proof With the obvious modi�cations, the arguments in the proof of Proposition 6.12.4
also work here. □

We also need the following two propositions. The �rst is a special case of Part (b)
of [48, Proposition 2.1].

Proposition 6.12.7 Assume k1 is a �eld and A is a standard graded Artinian Goren-
stein k1-algebra of socle degree d. Assume s in an integer with 1 ≤ s < d. Assume
ω ∈ A1 has the property that the multiplication by ω map As → As+1 is injective.
Then, for all t with 0 ≤ t ≤ s, we have that the multiplication by ω map At → At+1 is
injective.

Proof Assume 0 ≤ t ≤ s and 0 ̸= u ∈ At. By Remark 2.1.66, there exists z ∈ As−t

such that uz ̸= 0. Hence ω(uz) ̸= 0, which implies that ωu ̸= 0. □

Proposition 6.12.8 Assume k1 is a �eld and A is a standard graded Artinian Goren-
stein k1-algebra of even socle degree d. We assume that A has the Weak Lefschetz
Property and that, for all i with 0 ≤ i ≤ d/2 and all 0 ̸= u ∈ Ai, we have u2 ̸= 0.
Then A has the Strong Lefschetz Property.

Proof We �x ω ∈ A1 such that, for all t ≥ 0, the multiplication by ω map At → At+1

has maximal rank. Since A is Gorenstein of even socle degree d, it follows that the
multiplication by ω map form Ad/2−1 → Ad/2 is injective. By the de�nition of the
Strong Lefschetz Property, and using that A is Gorenstein, to prove the proposition
it is enough to show that for all i, with 0 ≤ i < d/2, the multiplication by ωd−2i map
from Ai to Ad−i is injective.

Assume 0 ≤ i < d/2 and that z ∈ Ai has the property

ωd−2iz = 0.

As a consequence, ωd−2iz2 = 0. Using the assumption, it follows that ωd/2−iz = 0.
Proposition 6.12.7 implies that z = 0. □

6.13 A conjecture about di�erentiation

Assume k1 is a �eld of characteristic 2. Assume n ≥ 1 is an integer and D is a
simplicial sphere of dimension n with vertex set {1, 2, . . . ,m}. We denote by k the
�eld of fractions of the polynomial ring

k1[ai,j : 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ m].
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We de�ne the polynomial ring R = k[x1, . . . , xm], where we put degree 1 for all
variables xi. We denote by ID ⊂ R the Stanley-Reisner ideal of D. Moreover, we set
k[D] = R/ID. For i = 1, . . . , n+ 1, we set

fi =
m∑
j=1

ai,jxj,

and we de�ne A = k[D]/(f1, . . . , fn+1). Hence, A is the generic Artinian reduction of
k1[D] in the sense of De�nition 6.1.1. We denote by π : R → A the natural projection
k-algebra homomorphism, and by Ψ : An+1 → k the vector space isomorphism de�ned
in Remark 6.3.6.

For a �nite sequence δ = (δ1, . . . , δn+1) such that 1 ≤ δi ≤ m for all 1 ≤ i ≤ n+1
we set

xδ =
n+1∏
i=1

xδi ∈ R.

Assume σ = (σ1, . . . , σn+1) and τ = (τ1, . . . , τn+1) are two �nite sequences such
that 1 ≤ σi, τi ≤ m, for all 1 ≤ i ≤ n+ 1. We denote by ∂mod

σ : k → k the (n+ 1)-th
order di�erential operator which is di�erentiation with respect to the variables in the
set

{ai,σi
: 1 ≤ i ≤ n+ 1}.

The following conjecture, if true, will generalise Theorem 6.7.6 and Propositions 6.4.1
and 6.4.7.

Conjecture 6.13.1 1) Assume the monomial xσxτ is not the square of a monomial
in R. We then have

(∂mod
σ ◦Ψ ◦ π)(xτ ) = 0.

2) Assume xσxτ is the square of a monomial in R. Assume δ = (δ1, . . . , δn+1) is
a �nite sequence such that 1 ≤ δi ≤ m, for all 1 ≤ i ≤ n+ 1, and xσxτ = (xδ)

2. We
then have

(∂mod
σ ◦Ψ ◦ π)(xτ ) =

(
(Ψ ◦ π)(xδ)

)2
.

Remark 6.13.2 We note that Conjecture 6.13.1 implies the following interesting
equality

(∂mod
σ ◦Ψ ◦ π)(xτ ) = (∂mod

τ ◦Ψ ◦ π)(xσ).

Remark 6.13.3 Assume i ≥ 1 and t ≥ 2 are two integers such that ti ≤ n + 1.
Assume 0 ̸= u ∈ Ai. Theorem 6.2.3 implies that if t is a power of 2 then ut ̸= 0. Is
this also true for all values of t?
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