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Περίληψη

Η πληρέστερη κατανόηση που διαθέτουμε σχετικά με τα στοιχειώδη σωματίδια και τις θε-

μελιώδεις δυνάμεις βρίσκεται ενσωματωμένη στο Καθιερωμένο Πρότυπο (ΚΠ) της σωματιδιακής

φυσικής. Οι μετρήσεις ακριβείας που διερευνούν την ισχύ του Καθιερωμένου Προτύπου σε ολοένα

και υψηλότερες κλίμακες ενέργειας μέσω διαφόρων διεργασιών, συνιστούν βασική επιδίωξη για τα

πειράματα του Μεγάλου Αδρονικού Επιταχυντή (LHC). Ανάμεσα στις πιο ενδιαφέρουσες μετρήσεις
γνωστών διεργασιών, συγκαταλέγονται εκείνες που αφορούν στις ισχυρές αλληλεπιδράσεις οι ο-

ποίες περιγράφονται μέσω της Κβαντικής Χρωμοδυναμικής. Ειδικότερα, οι μελέτες που βασίζονται

σε πίδακες σωματιδίων, οι οποίοι προσδιορίζονται ως το πειραματικό αποτύπωμα των σωματιδίων

που αλληλεπιδρούν μέσω της ισχυρής δύναμης, δηλαδή κουαρκς και γλοιονίων, αποτελούν ένα

πολύτιμο εργαλείο για την βαθύτερη κατανόηση των μηχανισμών που διέπουν τις ισχυρές αλλη-

λεπιδράσεις. ΄Ενα εξέχον χαρακτηριστικό της Κβαντικής Χρωμοδυναμικής είναι η ιδιότητα της

ασυμπτωτικής ελευθερίας η οποία συνεπάγεται ότι τα κουάρκς και τα γλοιόνια αλληλεπιδρούν με-

ταξύ τους ασθενέστερα σε κοντινές αποστάσεις και ισχυρότερα σε μεγαλύτερες αποστάσεις. Με

άλλα λόγια, η σταθερά ζεύξης των ισχυρών αλληλεπιδράσεων αS ελαττώνεται όταν προσεγγίζεται
σε υψηλές κλίμακες ενέργειας και αυξάνεται σε χαμηλότερες κλίμακες ενέργειας. Η παράμετρος

αS είναι η μοναδική ελεύθερη παράμετρος στην Λαγκρατζιανή της Κβαντικής Χρωμοδυναμικής,
πέραν των μαζών των κουάρκς, που προσδιορίζεται μόνο πειραματικά. Ωστόσο, η αS από μόνη της
δεν συνιστά ένα μετρήσιμο φυσικό μέγεθος και ως εκ τούτου, η τιμή της θα πρέπει να συναχθεί

πειραματικά από μετρήσιμα φυσικά μεγέθη που είναι ευαίσθητα σε αυτή την παράμετρο.

Στην παρούσα εργασία, η μέτρηση της σταθεράς ζεύξης των ισχυρών αλληλεπιδράσεων υλο-

ποιείται μέσω του μετρήσιμου φυσικού μεγέθους R∆φ. Το φυσικό αυτό μέγεθος, ορίζεται ως ο

λόγος ανάμεσα στον αριθμό των γειτονικών πιδάκων σωματιδίων με εγκάρσια ορμή pT μεγαλύτερη
από ένα ορισμένο κατώφλι, που συνοδεύουν ένα συγκεκριμένο πίδακα σωματιδίων και βρίσκονται

εντός ορισμένου διαστήματος αζιμουθιακής απόστασης ∆φ από αυτόν, διαιρεμένου με τον συνολι-
κό αριθμό πιδάκων σωματιδίων στο γεγονός. Η μέτρηση βασίζεται σε δεδομένα από συγκρούσεις

πρωτονίου-πρωτονίου με ενέργεια 13 TeV στο κέντρο μάζας, που συλλέχθησαν από το πείραμα
CMS κατά την δεύτερη περίοδο λειτουργίας του Μεγάλου Αδρονικού Επιταχυντή (2016-2018)
και αντιστοιχούν σε ολοκληρωμένη λαμπρότητα 134.47 fb−1

. Οι προβλέψεις από προσομοιώσεις

μέσω γεννητόρων γεγονότωνMonte Carlo που συμπεριλαμβάνουν τις διαδικασίες του καταιγισμού
παρτονίων, της αδρονοποίησης και των πολυ-παρτονικών αλληλεπιδράσεων δίνουν μια μερική μόνο

περιγραφή των αποτελεσμάτων. Οι θεωρητικοί υπολογισμοί με ακρίβεια δεύτερης τάξης στην δια-

ταρακτική Κβαντική Χρωμοδυναμική, διορθωμένοι για τα μη-διαταρακτικά φαινόμενα, συγκρίνονται

επίσης με την μέτρηση και εντός των αβεβαιοτήτων βρίσκονται σε πλήρη συμφωνία με τα πειρα-

ματικά δεδομένα. Από την εν λόγω σύγκριση, η σταθερά ζεύξης των ισχυρών αλληλεπιδράσεων

προσδιορίστηκε με χρήση του NNPDF31 NLO πακέτου Συναρτήσεων Κατανομής Παρτονίων σε
κλίμακα ενέργειας ίση με την μάζα του μποζονίου Z, στην τιμή αS(MZ) = 0.1158+0.0089

−0.0042, όπου τα

σφάλματα περιλαμβάνουν τις πειραματικές και μη-διαταρακτικές αβεβαιότητες, τις αβεβαιότητες από

τις Συναρτήσεις Κατανομής Παρτονίων και τις αβεβαιότητες κλίμακας. Επιπροσθέτως, η εξέλιξη

της σταθεράς ζεύξης των ισχυρών αλληλεπιδράσεων ελέγχθηκε στην περιοχή των TeV έως και
2081 GeV , όπου παρουσίασε την αναμενόμενη από την Κβαντική Χρωμοδυναμική συμπεριφορά,
χωρίς να παρατηρείται κάποια απόκλιση.
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Abstract
The Standard Model (SM) of particle physics encapsulates our best understanding of funda-

mental particles and forces. Precision measurements investigating the validity of the Standard
Model up to unprecedented energy scales through a variety of processes, comprise a basic
objective for the Large Hardon Collider's (LHC) experiments. Towards even higher precision
measurements of known interactions, the study of strong interactions sector described by Quan-
tum Chromodynamics (QCD), consists a compelling challenge. In particular, studies based on
jets, which are the experimental signatures of strongly interacting particles, quarks and gluons,
provide a powerful insight in the strong interactions manifestation. An intriguing feature of
QCD is the property of asymptotic freedom which implies that quarks and gluons tend to inter-
act more weakly over short distances and more strongly over longer distances. Alternatively, the
strong coupling constant αS decreases when probed at high energy scales and increases at lower
energy scales. The αS is the only free parameter in the QCD Lagrangian, apart from the quark
masses, that need to be determined experimentally. However, the strong coupling constant
is not itself a physical observable and therefore its value must be inferred from experimental
observables which are sensitive to αS.

In this dissertation, the measurement of the strong coupling constant is performed through
the R∆φ observable. This is de�ned as a fraction between the number of neighboring jets with
transverse momenta above a pT threshold which accompany a given jet within a speci�ed dis-
tance interval in the azimuthal plane ∆φ, divided by the number of all jets in the event. The
measurement is based on data from proton-proton collisions collected by the CMS experiment
during LHC Run 2 (2016-2018) at a centre-of-mass energy of 13 TeV , corresponding to an
integrated luminosity of 134.47 fb−1. Predictions from simulations using Monte Carlo event
generators that include parton showers, hadronization, and multiparton interactions describe
barely the results. Theoretical �xed-order predictions of perturbative QCD at next-to-leading
order (NLO) accuracy, corrected for non-perturbative e�ects, are also compared to the measure-
ment and within uncertainties they are in complete agreement with experimental data. From
this comparison the strong coupling constant at the scale of the Z-boson mass is determined to
be αS(MZ) = 0.1158+0.0089

−0.0042, where the errors include the experimental, non-perturbative, PDF
and scale uncertainties, using the NNPDF31 NLO PDF set. Furthermore, the running of the
strong coupling constant was tested in the TeV region up to 2081 GeV , where no deviation
from the expected behaviour described by QCD was observed.
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Εκτεταμένη σύνοψη

Κεφάλαιο 1 - Το Καθιερωμένο Πρότυπο της σωματιδιακής φυσικής

Το Καθιερωμένο Πρότυπο (ΚΠ) της σωματιδιακής φυσικής περιγράφει τα στοιχειώδη σωμα-

τίδια, καθώς επίσης και τις τρεις από τις τέσσερις θεμελιώδεις δυνάμεις που έχουν γίνει γνωστές

μέχρι σήμερα: τις ηλεκτρομαγνητικές, τις ασθενείς και τις ισχυρές αλληλεπιδράσεις. Τα στοι-

χειώδη σωματίδια του ΚΠ κατηγοριοποιούνται σε σωματίδια ύλης και σωματίδια ακτινοβολίας.

Στην πρώτη κατηγορία ανήκουν τα λεπτόνια και τα κουάρκς, που ονομάζονται και φερμιόνια (σπιν-

1/2) και εντάσσονται σε τρεις γενιές: (κουάρκς) {u+2/3, d−1/3}, {c+2/3, s−1/3}, {t+2/3, b−1/3} και
(λεπτόνια) {e−, νe}, {µ−, νµ}, {τ−, ντ}. Από την άλλη πλευρά, τα σωματίδια ακτινοβολίας αντι-
στοιχούν στα μποζόνια (σπιν-1) φορείς των αλληλεπιδράσεων. Το φωτόνιο (γ) είναι ο φορέας
της ηλεκτρομαγνητικής, τα W±

και Z οι φορείς της ασθενούς και τα γλοιόνια (g) οι φορείς της
ισχυρής αλληλεπίδρασης. Το τελευταίο σωματίδιο που συμπληρώνει το παζλ των σωματιδίων και

έχουν ανακαλυφθεί έως σήμερα, είναι το βαθμωτό (σπιν-0) μποζόνιο Higgs, το οποίο δεν αποτελεί
τον φορέα κάποιας θεμελιώδους αλληλεπίδρασης, αλλά προκύπτει από το αυθόρμητο σπάσιμο της

ηλεκτρασθενούς συμμετρίας.

Η μαθηματική διατύπωση του ΚΠ επιτυγχάνεται μέσω της Κβαντικής Θεωρίας Πεδίου, όπου τα

σωματίδια περιγράφονται από τα αντίστοιχα κβαντικά πεδία και ο ιδανικός φορμαλισμός είναι ο λα-

γκρατζιανός. Οι εξισώσεις κίνησης Euler-Lagrange για τα πεδία φ συναρτήσει της λαγκρατζιανής
πυκνότητας L δίνονται από την εξίσωση:

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 (1)

Η μορφή της λαγκρατζιανής υπαγορεύεται από εσωτερικές συμμετρίες βαθμίδας. Για την περιγρα-

φή των στοιχειωδών σωματιδίων του ΚΠ και των μεταξύ τους αλληλεπιδράσεων απαιτούνται τρεις

τέτοιες συμμετρίες: η U(1) συμμετρία βαθμίδας για την διατύπωση των ηλεκτρομαγνητικών αλλη-
λεπιδράσεων, η SU(2) που συνδέεται με τις ασθενείς και τις ηλεκτρομαγνητικές αλληλεπιδράσεις
και τέλος η SU(3) που απαιτείται για την περιγραφή των ισχυρών αλληλεπιδράσεων. Συνολικά, λοι-
πόν, η συμμετρία βαθμίδας του Καθιερωμένου Προτύπου συμβολίζεται ως SU(3)×SU(2)×U(1).
Προκειμένου να αποκτήσουν μάζα τα μποζόνια W±

και Z, καθώς επίσης και τα φερμιόνια ύλης,
απαιτείται το αυθόρμητο σπάσιμο της ηλεκτρασθενούς συμμετρίας SU(2) × U(1). Αυτό πραγμα-
τώνεται μέσω του μηχανισμού Higgs, ο οποίος συνεπάγεται και την εμφάνιση του μποζονίου Higgs
που αναλύφθηκε το 2012 από τα πειράματα ATLAS και CMS στον Μεγάλο Αδρονικό Επιταχυντή
(LHC) του CERN, με μάζα mH = 125.10± 0.14 GeV . Το φωτόνιο και τα γλοιόνια παραμένουν
άμαζα, όπως και τα νετρίνα, καθιστώντας τις ενδείξεις περί μη-μηδενικών μαζών για τα νετρίνα

αντικείμενο μελέτης θεωριών πέραν του Καθιερωμένου Προτύπου.

Το κομμάτι του ΚΠ που αφορά στις ισχυρές αλληλεπιδράσεις, περιγράφεται από την Κβαντική

Χρωμοδυναμική (ΚΧΔ). Δεδομένου ότι τα μόνα σωματίδια που φέρουν φορτίο χρώματος, είναι

τα κουάρκς και τα γλοιόνια, τα σωματίδια αυτά είναι και τα μόνα που συμμετέχουν στις ισχυρές

αλληλεπιδράσεις. Κάθε κουάρκ υπάρχει σε τρία χρώματα (κατά σύμβαση: κόκκινο, πράσινο, μπλε),

ενώ υπάρχουν οκτώ είδη γλοιονίων όπου το καθένα μεταφέρει μια μονάδα χρώματος και μια αντι-

χρώματος. Πέρα από τις μάζες των κουάρκς, η σταθερά ζεύξης των ισχυρών αλληλεπιδράσεων

αS αποτελεί την μοναδική θεμελιώδη ελεύθερη παράμετρο στην λαγκρατζιανή της ΚΧΔ. Ανάμεσα
στα πιο σημαντικά φαινόμενα της ΚΧΔ, είναι εκείνα του εγκλωβισμού και της ασυμπτωτικής

ελευθερίας. Το πρώτο, έγκειται στο γεγονός ότι τόσο τα κουάρκς όσο και τα γλοιόνια, δεν

παρατηρούνται ως ελεύθερα σωματίδια στην φύση παρά μόνο στο εσωτερικό δέσμιων καταστάσεων
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που δεν έχουν χρώμα (μονές καταστάσεις χρώματος), τα αδρόνια, στα οποία συγκαταλέγονται τα

βαρυόνια και τα μεσόνια. Από την άλλη πλευρά, η ιδιότητα της ασυμπτωτικής ελευθερίας της

ΚΧΔ συνεπάγεται ότι τα κουάρκς και τα γλοιόνια αλληλεπιδρούν μεταξύ τους ασθενέστερα σε

κοντινές αποστάσεις και ισχυρότερα σε μεγαλύτερες αποστάσεις. Εναλλακτικά, η σταθερά ζεύξης

των ισχυρών αλληλεπιδράσεων αS ελαττώνεται όταν προσεγγίζεται σε υψηλές κλίμακες ενέργειας
και αυξάνεται σε χαμηλότερες κλίμακες ενέργειας. Κατά συνέπεια, η δυνατότητα εφαρμογής της

θεωρίας διαταραχών για την επίλυση ενός προβλήματος της ΚΧΔ, προϋποθέτει την εκδήλωση των

φαινομένων σε μικρές αποστάσεις ή αντίστοιχα μεγάλες κλίμακες ενέργειας όπου αS << 1.
Μια ευρέως διαδεδομένη τεχνική υπολογισμού διεργασιών διαταρακτικά είναι μέσω των δια-

γραμμάτων Feynman, όπου για τον υπολογισμό μιας ποσότητας όπως η ενεργός διατομή, θα
πρέπει κανείς να συμπεριλάβει συνεισφορές από όλα τα πιθανά διαγράμματα που αντιστοιχούν

στην υπό μελέτη διεργασία. Μολονότι, ένας τέτοιος υπολογισμός είναι εφικτός για απλά διαγράμ-

ματα κατώτερης τάξης στην θεωρία διαταραχών (διαγράμματα δέντρου), στην περίπτωση όπου

συμπεριλαμβάνονται κλειστοί βρόχοι στα διαγράμματα, οι υπολογισμοί οδηγούν σε απειρισμούς. Η

αντιμετώπιση αυτών των απειρισμών, που οφείλονται στο γενονός ότι η ενέργεια και η ορμή των

σωματιδίων στους κλειστούς βρόχους μπορούν να πάρουν τιμές μέχρι το άπειρο, γίνεται με την

μέθοδο της επανακανονικοποίησης. Η βασική ιδέα έγκειται στην απορρόφηση των απειρισμών, από

έναν πεπερασμένο αριθμό παραμέτρων, π.χ. μάζες, σταθερές ζεύξης, οι οποίες επανα-ορίζονται.

Το αντίκτυπο της παραπάνω διαδικασίας, αποτελεί ωστόσο η εμφάνιση μια κλίμακας ενέργειας µ
(κλίμακα επανακανονικοποίησης) από την οποία εξαρτώνται οι φυσικές παράμετροι. Η ακριβής

εξάρτηση καθορίζεται από τις λεγόμενες εξισώσεις της ομάδας επανακανονικοποίησης, οι οποίες

για την σταθερά ζεύξης των ισχυρών αλληλεπιδράσεων δίνονται από:

µ2∂αS(µ2)

∂µ2
= β(αS(µ2)), β(αS) = −α2

S

(
b0 + b1αS + b2α

2
S +O(α3

S)
)

(2)

και επομένως η διατήρηση μόνο του κυρίαρχου όρου οδηγεί στην εξίσωση:

αS(Q2) =
αS(µ2)

1 + b0ln (Q2/µ2)αS(µ2)
(3)

η οποία συνδέει την αS από μια κλίμακα ενέργειας Q, σε μια άλλη κλίμακα αναφοράς µ.
Για σκεδάσεις πρωτονίου-πρωτονίου, πάνω στις οποίες βασίζεται και η παρούσα εργασία, ο

υπολογισμός της ενεργού διατομής στηρίζεται στο θεώρημα παραγοντοποίησης της ΚΧΔ. Σύμ-

φωνα με αυτό, ο τελικός υπολογισμός μπορεί να διαχωριστεί σε δυο ξεχωριστούς παράγοντες:

έναν διαταρακτικό και έναν μη-διαταρακτικό παράγοντα. Ο πρώτος περιλαμβάνει τα φαινόμενα που

λαμβάνουν χώρα σε κοντινές αποστάσεις όπου η μεταφορά ορμής ανάμεσα στα συγκρουόμενα σω-

ματίδια είναι μεγάλη και η σταθερά ζεύξης των ισχυρών αλληλεπιδράσεων μικρή. Τουναντίον, η

περιγραφή των σωματιδίων πριν την σύγκρουση και σε μεγάλες μεταξύ τους αποστάσεις εναπόκει-

ται στον μη-διαταρακτικό όρο, ο οποίος παραμετροποιείται μέσω των Συναρτήσεων Κατανομής

Παρτονίων. Συμβολικά, αυτό εκφράζεται μέσω της εξίσωσης:

σ2→n =
∑
a,b

∫ 1

0

dxadxbfa/h1 (xa, µf ) fb/h2 (xb, µf ) σ̂ab→n (µf , µr) (4)

όπου σ̂ab→n ο διαταρακτικός όρος, fa/h1 και fb/h2 είναι οι Συναρτήσεις Κατανομής Παρτονίων, οι
οποίες σε κατώτερη τάξη της θεωρίας διαταραχών αντιπροσωπεύουν την πιθανότητα εντοπισμού

ενός παρτονίου a (b) στο εσωτερικό του αδρονίου h1 (h2) με κλάσμα ορμής xa (xb) στο προ-
σπίπτων πρωτόνιο. Η παράμετρος µr αντιστοιχεί την κλίμακα επανακανονικοποίησης, ενώ τέλος η
παράμετρος µf ονομάζεται κλίμακα παραγοντοποίησης και αντιπροσωπεύει μια επιπλέον αυθαίρετη
παράμετρο που εισάγεται κατά τον υπολογισμό των Συναρτήσεων Κατανομής Παρτονίων για την

αντιμετώπιση αντίστοιχων απειρισμών.
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Κεφάλαιο 2 - Επιταχυντές σωματιδίων

Οι επιταχυντές σωματιδίων ανήκουν σήμερα (2022) στην κατηγορία των πολυτιμότερων ε-

ρευνητικών εργαλείων στον τομέα της φυσικής υψηλών ενεργειών. Ανάμεσα στις πιο σημαντικές

παραμέτρους που χρησιμοποιούνται για τον χαρακτηρισμό ενός επιταχυντή, είναι η μέγιστη ενέρ-

γεια στο κέντρο μάζας των συγκρουόμενων σωματιδίων και η λαμπρότητα. Θεωρώντας δύο ίδιες

δέσμες σωματιδίων ενέργειας E, κινούμενες σε αντίθετες κατευθύνσεις σε έναν κυκλικό επιτα-
χυντή, η ενέργεια στο κέντρο μάζας ισούται με 2E. Η λαμπρότητα αντιπροσωπεύει τον αριθμό
των σωματιδίων που διαπερνούν το σημείο της σύγκρουσης ανά μονάδα χρόνου και ανά μονάδα

επιφάνειας, καθορίζοντας τον ρυθμό των συγκρούσεων μέσω της σχέσης:

R = L · σp (5)

όπου R ο αριθμός των γεγονότων ανά δευτερόλεπτο, L η στιγμιαία λαμπρότητα και σp η ενεργός
διατομή της διαδικασίας. Η ολοκληρωμένη λαμπρότητα προκύπτει από την απλή ολοκλήρωση της

στιγμιαίας λαμπρότητας σε ένα ορισμένο χρονικό διάστημα.

Ο Μεγάλος Αδρονικός Επιταχυντής (LHC) του Ευρωπαϊκού Κέντρου Πυρηνικών Ερευνών
(CERN), αποτελεί τον ισχυρότερο επιταχυντή σωματιδίων που έχει κατασκευαστεί μέχρι σήμε-
ρα. ΄Εχει σχεδιαστεί για την διεξαγωγή συγκρούσεων πρωτονίου-πρωτονίου έως και 14 TeV στο
κέντρο μάζας. Οι δυο χρονικές περίοδοι λειτουργίας του χωρίζονται ως: (Run 1) 2010-2012 με
ενέργειες 7 και 8 TeV στο κέντρο μάζας και (Run 2) 2015-2018 με ενέργεια 13 TeV στο κέντρο
μάζας, ενώ η τρίτη περίοδος λειτουργίας αναμένεται να ξεκινήσει το 2022. Πρόκειται για έναν

κυκλικό επιταχυντή με περίμετρο 27 km, που συνιστά τον τελευταίο κρίκο στην αλυσίδα του συ-
μπλέγματος επιταχυντών του CERN. Οι δυο δέσμες πρωτονίων κινούνται σε αντίθετες μεταξύ
τους κατευθύνσεις, διατηρούμενες σε κυκλική τροχιά στο εσωτερικό του επιταχυντή μέσω ενός

μαγνητικού πεδίου 8.33 T , βασιζόμενου σε διπολικούς μαγνήτες. Επιπλέον, μια ευρεία γκάμα πολυ-
πολικών μαγνητών (τετρα-πολικοί, εξα-πολικοί κλπ) χρησιμοποιούνται για επιπρόσθετες λειτουρ-

γίες όπως είναι η εστίαση της δέσμης κ.α. Η διατήρηση των μαγνητών στην υπεραγώγιμη φάση,

επιτυγχάνεται μέσω ενός ανεπτυγμένου κρυογενικού συστήματος, όπου με χρήση υπέρ-ρευστου

ηλίου (He), η θερμοκρασία διατηρείται στους 1.9 K. Η επιτάχυνση των πρωτονίων πραγματο-
ποιείται με κοιλότητες ραδιοσυχνοτήτων, με συχνότητα ταλάντωσης στα 400 MHz. Ταυτόχρονα,
για την αποφυγή συγκρούσεων μεταξύ των πρωτονίων με τα σωματίδια του αέρα, οι δέσμες των

πρωτονίων διατηρούνται σε υψηλό κενό με πιέσεις της τάξης του 10−10
με 10−11 mbar.

Οι δέσμες των πρωτονίων στο εσωτερικό του LHC είναι χωρισμένες σε διακριτές ομάδες με 25
ns χρονική απόσταση μεταξύ τους, οδηγώντας σε μια συχνότητα συγκρούσεων στα 40 MHz. Αν
και αρχικά είχε σχεδιαστεί να λειτουργήσει με μέγιστη στιγμιαία λαμπρότητα ίση με 1034 cm−2s−1

,

κατά την διάρκεια της δεύτερης περιόδου λειτουργίας του LHC, η τιμή αυτή διπλασιάστηκε. Η
συνολική ενεργός διατομή για συγκρούσεις πρωτονίου-πρωτονίου με ενέργεια 13 TeV στο κέντρο
μάζας, όπως μετρήθηκε από το πείραμα TOTEM του LHC, ισούται με σtot = (110.6 ± 3.4)
mb. Σε αυτή την τιμή συνεισφέρουν τόσο οι ελαστικές συγκρούσεις μεταξύ πρωτονίων με σel =
(31.0± 1.7) mb, όσο και οι ανελαστικές με σinel = (79.5± 1.8) mb. Το ενδιαφέρον στην παρούσα
εργασία επικεντρώνεται στις τελευταίες, οι οποίες βάσει της εξίσωσης 5 ξεπερνούν το 1 δις κάθε

δευτερόλεπτο. Συνολικά, 8 διαφορετικά πειράματα υπάρχουν αυτή την στιγμή στον LHC: ALICE,
ATLAS, CMS, FASER, LHCb, LHCf,MoEDAL και TOTEM. Βασική επιδίωξη είναι η μελέτη του
ευρύτερου δυνατού φάσματος της φυσικής των στοιχειωδών σωματιδίων, που ξεκινά από μετρήσεις

μέγιστης δυνατής ακρίβειας γνωστών διεργασιών του ΚΠ και εκτείνεται μέχρι και έρευνες πέραν

του ΚΠ. Σε αυτό το πλαίσιο, κάθε πείραμα εστιάζει σε συγκεκριμένο κομμάτι του φάσματος της

φυσικής, ενώ τα πειράματα ATLAS και CMS είναι τα μοναδικά πειράματα γενικού σκοπού με
μετρήσεις ακριβείας σε όλους του τομείς του ΚΠ και έρευνες για την ανακάλυψη νέας φυσικής.
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Κεφάλαιο 3 - Ανιχνευτές σωματιδίων - Το πείραμα CMS

Η ανίχνευση των σωματιδίων και η μέτρηση των ιδιοτήτων τους, στηρίζεται στην αλληλε-

πίδρασή τους με την ύλη. Για κάθε σωματίδιο υπάρχουν διαφορετικοί μηχανισμοί αλληλεπίδρασης,

οδηγώντας στην απαίτηση για εξειδικευμένους τύπους ανιχνευτών. Παράλληλα, ανιχνευτικές δια-

τάξεις όπως το CMS, που αποσκοπούν στην καταγραφή και μέτρηση διαφόρων ειδών σωματιδίων,
απαρτίζονται από πολύ-στρωματικά υπο-ανιχνευτικά συστήματα με στοχευμένη λειτουργία.

Ο ιονισμός και η διέγερση των ατόμων του υλικού στο οποίο προσπίπτουν, αποτελούν τους

κύριους μηχανισμούς απώλειας ενέργειας για βαριά φορτισμένα σωματίδια. Στην περίπτωση των

ηλεκτρονίων/ποζιτρονίων, ο ιονισμός του υλικού οδηγεί στις μεγαλύτερες απώλειες μόνο σε χα-

μηλές ενέργειες, ενώ για ενέργειες E & 10 MeV οι απώλειες εξαιτίας της ακτινοβολίας πέδησης
γίνονται σημαντικότερες. Τρεις είναι οι βασικότεροι μηχανισμοί απώλειας ενέργειας για φωτόνια

που αλληλεπιδρούν με την ύλη, καθένας από τους οποίους γίνεται κυρίαρχος σε διαφορετικό φάσμα

ενεργειών. Για χαμηλές ενέργειες φωτονίων (E < 100 keV ), κύριος μηχανισμός είναι το φωτοη-
λεκτρικό φαινόμενο, για υψηλές ενέργειες (E > 1 MeV ) η δίδυμη γένεση, ενώ για ενδιάμεσες
ενέργειες (E ∼ 1 MeV ) οι μεγαλύτερες απώλειες ενέργειας οφείλονται στην σκέδαση Compton.
Οι ισχυρές αλληλεπιδράσεις που λαμβάνουν χώρα στην περίπτωση των προσπίπτοντων αδρονίων,

είναι εξίσου σημαντικές για την ανίχνευση φορτισμένων και ηλεκτρικά ουδέτερων αδρονίων.

Κάθε ένας μηχανισμός απώλειας ενέργειας, εν δυνάμει μπορεί να αποτελέσει την αρχή λει-

τουργίας ενός ανιχνευτή στην φυσική υψηλών ενεργειών. Η ανίχνευση των φωτονίων, βασίζεται

στους διαφόρους τύπους φωτοανιχνευτών: κενού, αέριους και στερεάς κατάστασης, συνήθως με

την συλλογή των φωτοηλεκτρονίων που παράγονται κατά την πρόσπτωση του φωτονίου στο υλικό

του ανιχνευτή, αξιοποιώντας συχνά κατάλληλους φωτοπολλαπλασιαστές. Οι σπινθηριστές είναι μια

άλλη κατηγορία ανιχνευτών που χρησιμοποιείται για την ανίχνευση φορτισμένων και ουδέτερων

σωματιδίων, όπου ο ιονισμός του υλικού του ανιχνευτή από την διέλευση ενός σωματιδίου, συνε-

πάγεται την εκπομπή φωτονίων συλλεγόμενων από φωτοανιχνευτές. Οι τύποι των σπινθηριστών

διακρίνονται σε ανόργανους και οργανικούς (πλαστικοί, υγροί και κρυστάλλινοι). Η ανίχνευση και

ταυτοποίηση φορτισμένων σωματιδίων μπορεί να επιτευχθεί και με ανιχνευτές Cherenkov, μέσω
της συλλογής της ομώνυμης ακτινοβολίας που εκπέμπεται όταν φορτισμένα σωματίδια διασχίζουν

ένα διηλεκτρικό μέσο με ταχύτητα μεγαλύτερη από την ταχύτητα του φωτός στο εν λόγω μέσο.

Το φάσμα των εφαρμογών της γενικότερης κατηγορίας των αέριων ανιχνευτών είναι ιδιαίτερα

ευρύ, με τον ακριβή προσδιορισμό της τροχιάς των φορτισμένων σωματιδίων να αποτελεί μια από τις

κυριότερες χρήσεις τους. Η αρχή λειτουργίας τους συνίσταται στην συλλογή των προϊόντων ιονι-

σμού (ηλεκτρόνια και ιόντα) που δημιουργούνται όταν ένα φορτισμένο σωματίδιο διαπερνά τον αέριο

όγκο (π.χ θάλαμο) του ανιχνευτή. Βάσει αυτής της αρχής, έχει αναπτυχθεί και αξιοποιηθεί μια

τεράστια ποικιλία αέριων ανιχνευτών ταξινομημένων σε ευρύτερες κατηγορίες: Θαλάμους Ολίσθη-

σης (Drift Chambers), Θαλάμους Αντίστασης Παράλληλων Πλακών (Resistive Plate Chambers)
κ.α. Εξίσου σημαντικοί για τον ακριβή προσδιορισμό της τροχιάς των φορτισμένων σωματιδίων

(και ανίχνευση φωτονίων) είναι οι ημιαγώγιμοι ανιχνευτές οι οποίοι χαρακτηρίζονται συνήθως α-

πό την εξαιρετική διακριτική ικανότητα στην μέτρηση της θέσης. Η δημιουργία του σήματος σε

αυτή την περίπτωση προέρχεται από την συλλογή των ζευγών ηλεκτρονίων-οπών που προκύπτουν

όταν φορτισμένα σωματίδια (ή φωτόνια) διέρχονται από τον ημιαγώγιμο ανιχνευτή π.χ πυριτίου ή

γερμανίου. Τέλος, η μέτρηση της ενέργειας διαφόρων σωματιδίων στηρίζεται συνήθως στα καλο-

ρίμετρα, τα οποία διακρίνονται σε ηλεκτρομαγνητικά και αδρονικά. Στόχος της πρώτης κατηγορίας

είναι η απορρόφηση του ηλεκτρομαγνητικού καταιγισμού που προκαλείται όταν ηλεκτρόνια ή φω-

τόνια εισέρχονται στο υλικό του ηλεκτρομαγνητικού καλοριμέτρου, ενώ αντίστοιχα τα αδρονικά

καλορίμετρα αποσκοπούν στην μέγιστη δυνατή απορρόφηση του αδρονικού καταιγισμού και μέσω

αυτού στην μέτρηση της ενέργειας των φορτισμένων και ηλεκτρικά ουδέτερων αδρονίων.

x



Σχήμα 1: Γραφική απεικόνιση του ανιχνευτή CMS.

Ο ανιχνευτής CMS έχει κυλινδρική συμμετρία με τα διάφορα υπο-ανιχνευτικά συστήματα που
τον απαρτίζουνv να απεικονίζονται στο Σχήμα 1. Το κεντρικό χαρακτηριστικό της πειραματικής

διάταξης είναι ο υπεραγώγιμος σωληνοειδής μαγνήτης (superconducting solenoid magnet) συνολι-
κού μήκους 13 m και εσωτερικής διαμέτρου 6 m. Στο εσωτερικό του υπεραγώγιμου σωληνοειδούς
βρίσκονται ο ανιχνευτής τροχιών (tracker) αποτελούμενος από τους ανιχνευτές μικρο-λωρίδων πυ-
ριτίου και ψηφίδων (silicon micro-strips and pixels) και το ηλεκτρομαγνητικό (electromagnetic)
και αδρονικό (hadron) καλορίμετρο (calorimeter), ενώ οι ανιχνευτές μιονίων (muon detectors)
βρίσκονται τοποθετημένοι στο εξωτερικό του. Επιπλέον, ένα τμήμα του αδρονικού καλοριμέτρου

είναι εγκατεστημένο έξω από το υπεραγώγιμο σωληνοειδές. Τα διάφορα υπο-ανιχνευτικά συστήμα-

τα απαρτίζονται από επιμέρους στρώματα τόσο στην κεντρική περιοχή του βαρελιού (barrel), όσο
στα καπάκια (end-caps).
Σκοπός του υπεραγώγιμου μαγνήτη είναι η καμπύλωση των τροχιών των φορτισμένων σωματι-

δίων που αναδύονται από το σημείο της αλληλεπίδρασης. Το μαγνητικό πεδίο στο εσωτερικό του

σωληνοειδούς ισοδυναμεί με 4 T , καθιστώντας δυνατή τόσο την ταυτοποίηση του φορτίου των
σωματιδίων όσο και τον προσδιορισμό της ορμής τους. Κάτι τέτοιο απαιτεί βέβαια και την ακριβή

καταγραφή της τροχιάς που ακολούθησαν τα φορτισμένα σωματίδια, γεγονός που επιτυγχάνεται

μέσω του ανιχνευτή τροχιών πυριτίου. Αυτός αποτελείται από τέσσερις ομόκεντρους κυλίνδρους

ανιχνευτών ψηφίδων πυριτίου στην περιοχή του βαρελιού και τέσσερα επιμέρους συστήματα α-

νιχνευτών μικρο-λωρίδων πυριτίου τοποθετημένα τόσο στην περιοχή του βαρελιού όσο και στα

καπάκια, καλύπτοντας συνολικά μια περιοχή ψευδο-ωκύτητας |η| < 2.5. Η μέτρηση της ενέργειας
των ηλεκτρονίων και των φωτονίων υλοποιείται μέσω του ηλεκτρομαγνητικού καλοριμέτρου, κα-

τασκευασμένου από κρυστάλλους βολφραμίου-μολύβδου (PbWO4). Επιμέρους τμήματα και στην
περίπτωση του ηλεκτρομαγνητικού καλοριμέτρου εντοπίζονται τόσο στην περιοχή του βαρελιού

(|η| < 1.479) όσο και στα καπάκια (1.479 < |η| < 3.0). Παράλληλα, για την καλύτερη ταυτο-
ποίηση των ουδέτερων πιονίων και ηλεκτρονίων, καθώς επίσης και τον ακριβέστερο προσδιορισμό

της θέσης των ηλεκτρονίων και των φωτονίων, ένα διαφορετικής τεχνολογίας ηλεκτρομαγνητι-

κό καλορίμετρο (Preshower) είναι τοποθετημένο στην εμπρόσθια περιοχή των προαναφερθέντων
ηλεκτρομαγνητικών καλοριμέτρων που βρίσκονται στα καπάκια.

Η μέτρηση της ενέργειας των φορτισμένων και ηλεκτρικά ουδέτερων αδρονίων επιτελείται από

το αδρονικό καλορίμετρο το οποίο συγκροτείται από τέσσερα υπο-συστήματα. Τα δυο από αυτά

εντοπίζονται στο εσωτερικό του σωληνοειδούς, στην περιοχή του βαρελιού και στα καπάκια α-

ντίστοιχα, καλύπτοντας μια περιοχή ψευδο-ωκύτητας |η| < 3.0. Το τρίτο τμήμα βρίσκεται στην
εξωτερική επιφάνεια του υπεραγώγιμου σωληνοειδούς και στοχεύει στην περαιτέρω απορρόφηση

των αδρονικών καταιγισμών που δεν απορροφούνται ολοκληρωτικά από το αδρονικό καλορίμετρο
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του βαρελιού. Το τελευταίο τμήμα του αδρονικού καλοριμέτρου βρίσκεται τοποθετημένο 11.2 m
μακριά από το σημείο της αλληλεπίδρασης, σε περιοχές υψηλής ψευδο-ωκύτητας 3.0 < |η| < 5.2,
για την μέτρηση των αδρονίων που κινούνται σχεδόν παράλληλα στην διεύθυνση κίνησης της

δέσμης. Το σύστημα ανίχνευσης μιονίων αποτελεί το εξώτερο ανιχνευτικό σύστημα του CMS,
εκτεινόμενο έως και |η| < 2.4 και απαρτιζόμενο από τρία επιμέρους συστήματα αέριων ανιχνευ-
τών: τους Θαλάμους Ολίσθησης (Drift Tubes - DTs), τους Καθοδικούς Λωριδιακούς Θαλάμους
(Cathode Strip Chambers - CSCs) και τους Θαλάμους Αντίστασης Παράλληλων Πλακών (Resi-
stive Plate Chambers - RPCs). Ανιχνευτικοί σταθμοί για τον πρώτο τύπο ανιχνευτών μιονίων
(DTs) βρίσκονται στην περιοχή του βαρελιού, για τον δεύτερο τύπο (CSCs) στα καπάκια, ενώ ο
τελευταίος τύπος (RPCs) συναντάται σε αμφότερες τις περιοχές του βαρελιού και των καπακιών.
Τέλος, ο τεράστιος αριθμός των παραγόμενων γεγονότων αναπόφευκτα οδηγεί σε υπέρογκες πο-

σότητες δεδομένων που διατίθεται προς αποθηκεύση και επεξεργασία, καθιστώντας απαραίτητη

την παρουσία ενός ιδιαίτερα προχωρημένου συστήματος σκανδαλισμού (trigger system) με σκοπό
την επιλογή και καταγραφή μόνο των ενδιαφέροντων γεγονότων. Ο σκανδαλιστής του CMS περι-
λαμβάνει δυο ξεχωριστά τμήματα: τον Σκανδαλιστή 1oυ Επιπέδου (Level-1 Trigger) που ελαττώνει
τον ρυθμό των αποδεκτών γεγονότων σε 100 kHz και τον Σκανδαλιστή Υψηλού Επιπέδου (High
Level Trigger) που μειώνει περαιτέρω τον ρυθμό σε 1 kHz.

Κεφάλαιο 4 - Μέτρηση πιδάκων σωματιδίων στο CMS

Από την στιγμή που κουάρκς και γλοιόνια δεν παρατηρούνται ως ελεύθερα σωματίδια, αυ-

τό που προκύπτει από μια διαδικασία σκέδασης με τέτοια σωματίδια στην τελική κατάσταση, είναι

πίδακες σωματίδιων (jets) που αποτελούν το πειραματικό αποτύπωμα κουάρκς και γλοιονίων. Ει-
δικότερα για σκεδάσεις πρωτονίου-πρωτονίου, πέρα από την κύρια (σκληρή) αλληλεπίδραση όπου

εξάγονται παρτόνια από τα συγκρουόμενα πρωτόνια (π.χ 2 παρτόνια - 1 από κάθε πρωτόνιο :

2 → 2 ), πρόσθετα φαινόμενα λαμβάνουν χώρα και συνεισφέρουν στην διαδικασία σχηματισμού
ενός πίδακα. Τέτοια φαινόμενα είναι για παράδειγμα η ακτινοβολία αρχικής (τελικής) κατάστα-

σης (initial-�nal state radiation) που εκπέμπεται από τα παρτόνια πριν (μετά) την σύγκρουση, οι
πολυ-παρτονικές αλληλεπιδράσεις (multi-parton interactions) που συμβαίνουν ταυτόχρονα με την
κύρια αλληλεπίδραση, η διαδικασία της αδρονοποίησης (hadronization) που οδηγεί από τα παρτόνια
στις παρατηρήσιμες αδρονικές καταστάσεις και οι πολυ-πρωτονικές αλληλεπιδράσεις (in-time pile
up) που υπάρχουν εξαιτίας του γεγονότος ότι οι συγκρούσεις διεξάγονται ανάμεσα σε ομάδες
(bunches) πρωτονίων και όχι απομονωμένα πρωτόνια.
Η ομαδοποίηση των σωματιδίων σε πίδακες πραγματοποιείται χρησιμοποιώντας κατάλληλους

μαθηματικούς αλγορίθμους, με τον anti-kt να αποτελεί την καθιερωμένη επιλογή αλγορίθμου για
τα πειράματα του LHC. Ο εν λόγω αλγόριθμος ανήκει στην οικογένεια των αλγορίθμων διαδοχικού
ανασυνδυασμού που περιγράφονται από τις εξισώσεις:

diB = (pT , i)
2p

dij = min
{

(pT , i)
2p, (pT , j)

2p
} ∆2

ij

R2

(6)

όπου diB συμβολίζει την απόσταση μεταξύ του αντικειμένου i και της δέσμης B και dij την
απόσταση ανάμεσα σε δυο αντικείμενα i και j. ∆ij είναι η απόσταση μεταξύ i και j στο επίπεδο
y-φ: ∆2

ij = (yi − yj)2 + (φi − φj)2
, R η παράμετρος που καθορίζει το μέγεθος του πίδακα, ενώ η

παράμετρος p ισούται με −1 στην περίπτωση του anti-kt. Ξεκινώντας από μια λίστα αντικειμένων
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προς ομαδοποίηση, υπολογίζεται για κάθε αντικείμενο i η απόσταση diB και οι αποστάσεις dij
ανάμεσα σε αυτό και οποιοδήποτε άλλο αντικείμενο j, εντοπίζοντας παράλληλα την ελάχιστη
απόσταση για οποιοδήποτε ζεύγος αντικειμένων. Εάν τελικά ανάμεσα στην diB και την ελάχιστη
dij μικρότερη είναι η diB, τότε το αντικειμένο i ορίζεται ως πίδακας και αφαιρείται από την αρχική
λίστα των αντικειμένων. Αντιθέτως, εάν η ελάχιστη dij είναι μικρότερη, τότε τα αντικείμενα i
και j ανασυνδυάζονται σε ένα νέο αντικείμενο (proto-jet) που προστίθεται στην λίστα, ενώ τα
αντικείμενα i και j αφαιρούνται από αυτήν. Η διαδικασία επαναλαμβάνεται έως ότου δεν υπάρχουν
πλέον αντικείμενα προς ομαδοποίηση στην λίστα.

Στο CMS, ο αλγόριθμος anti-kt ομαδοποιεί τα σωματίδια που έχουν ανακατασκευαστεί από
τον αλγόριθμο Particle Flow (PF). Ο τελευταίος, αξιοποιεί την πληροφορία από τα επιμέρους
ανιχνευτικά συστήματα (ανιχνευτή τροχιών, καλορίμετρα κλπ) και πραγματοποιεί μια συνολική

ανακατασκευή των γεγονότων. Οι πίδακες που προκύπτουν από αυτή την διαδικασία ονομάζονται

PFjets . Επιπλέον, για την εξάλειψη όσο το δυνατόν περισσότερων συνεισφορών από Pile Up, ε-
φαρμόζεται η τεχνική της αφαίρεσης φορτισμένων αδρονίων (charged hadron substraction - CHS )
όπου φορτισμένα αδρόνια που δεν προέρχονται από την κύρια κορυφή στο γεγονός αφαιρούνται

πριν την διαδικασία της ομαδοποίησης σε πίδακες. Επιπροσθέτως, οι ανακατασκευασμένοι πίδα-

κες υπόκεινται σε μια διαδικασία βαθμονόμησης της ενέργειάς τους προκειμένου να αποκτήσουν

την σωστή κλίμακα ενέργειας. Αυτό επιτυγχάνεται μέσα από μια αλληλουχία διορθώσεων που

εφαρμόζονται στην ενέργεια των πιδάκων (Jet Energy Corrections - JECs) με την μορφή πολλα-
πλασιαστικών παραγόντων. Τα στάδια της διαδικασίας βαθμονόμησης της ενέργειας των πιδάκων

φαίνονται στο Σχήμα 2. Κάθε στάδιο αποσκοπεί στο αντιστάθισμα γνωστών φαινομένων που ο-

δηγούν σε αποκλίσεις ανάμεσα στην πραγματική κλίμακα ενέργειας και την ανακατασκευασμένη,

όπως είναι το φαινόμενο Pile Up, η ανομοιόμορφη απόκριση του ανιχνευτή σε σχέση με την περιο-
χή ψευδο-ωκύτητας και εγκάρσιας ορμής του πίδακα, καθώς επίσης και οι διαφορές στην απόκριση

του ανιχνευτή σε σχέση με την γεύση του πίδακα (κληρονομημένη από το αρχικό παρτόνιο).

Σχήμα 2: Τα στάδια της διαδικασίας βαθμονόμησης της ενέργειας των πιδάκων.

Τέλος, η επιτυχής προσομοίωση μιας διαδικασίας αποτελεί ένα πολύτιμο εργαλείο όχι μόνο για

την πληρέστερη κατανόηση γνωστών διαδικασιών, αλλά και για την πρόβλεψη και αναζήτηση νέων

φαινομένων. Η προσομοίωση των φυσικών διεργασιών που εξελίσσονται κατά την σύγκρουση των

πρωτονίων διεξάγεται με τους γεννήτορες γεγονότων Monte Carlo, ενώ η προσομοίωση του ανι-
χνευτή και της αλληλεπίδρασης των σωματιδίων με το υλικό του, μέσω του πακέτου GEANT4.
Στην παρούσα μελέτη διερευνώνται οι προβλέψεις από τέσσερις γεννήτορες γεγονότων Monte
Carlo: Herwig++, Madgraph5, Pythia8 και Powheg. Οι τρεις πρώτοι υπολογίζουν το
στοιχείο πίνακα (Matrix Element) στην χαμηλότερη τάξη (Leading Order - LO), ενώ ο τελευ-
ταίος σε δεύτερη τάξη (Next-to-Leading Order - NLO) της θεωρίας διαταραχών. Επιπλέον, οι
Herwig++ και Pythia8 διαθέτουν μοντέλα προσομοίωσης για όλες τις διεργασίες (πέραν την
κύριας αλληλεπίδρασης) που απαιτούνται για την πλήρη προσομοίωση της διαδικασίας, όπως είναι

οι πολυ-παρτονικές αλληλεπιδράσεις και ο καταιγισμός παρτονίων (Parton Shower) που περιγράφει
την ακτινοβολία αρχικής/τελικής κατάστασης. Αντιθέτως, οι άλλοι δυο γεννήτορες υπολογίζουν

μόνο το στοιχείο πίνακα και συνεπώς η πλήρης προσομοίωση ενός γεγονότος απαιτεί τον συνδυα-

σμό τους με το Pythia8 στην περίπτωση τουMadgraph5 και με το Pythia8 ή το Herwig++
στην περίπτωση του Powheg.
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Κεφάλαιο 5 - Μέτρηση της ποσότητας R∆φ σε συγκρούσεις πρωτονίου-πρωτονίου

με ενέργεια 13 TeV στο κέντρο μάζας στο πείραμα CMS

Εξαιρουμένων των μαζών των κουάρκς, η σταθερά ζεύξης των ισχυρών αλληλεπιδράσεων αS
αποτελεί την μοναδική ελεύθερη παράμετρο στην λαγκρατζιανή της Κβαντικής Χρωμοδυναμικής,

με την τιμή της να προσδιορίζεται πειραματικά. Από την άλλη πλευρά, η εξάρτηση της αS(Q) από
την κλίμακα ενέργειας Q, προβλέπεται θεωρητικά από τις εξισώσεις της ομάδας επανακανονικοπο-
ίησης (Renormalization Group Equations - RGE), σύμφωνα με τις εξισώσεις 2, 3, που συνδέουν
την τιμή της αS από μια κλίμακα ενέργειας αναφοράς µ σε μια άλλη κλίμακα ενέργειας Q. Πειρα-
ματικά έχει καθιερωθεί η τιμή της κλίμακας αναφοράς να ισούται με την μάζα του μποζονίου Z,
τιμή στην οποία έχει πραγματοποιηθεί κατά το παρελθόν πληθώρα μετρήσεων από πειραματικές

ομάδες σε επιταχυντές σωματιδίων: HERA, Tevatron, LHC.
Ο σκοπός στην παρούσα εργασία είναι διττός. Πρωταρχική επιδίωξη είναι ο προσδιορισμός της

αS σε κλίμακα ενέργειας ίση με την μάζα του μποζονίου Z (Q = MZ), μετρώντας μια ποσότητα

που βασίζεται σε πίδακες σωματιδίων και χρησιμοποιώντας δεδομένα από συγκρούσεις πρωτονίου-

πρωτονίου με ενέργεια 13 TeV στο κέντρο μάζας στο πείραμα CMS. Σε δεύτερο στάδιο, στόχος
είναι ο έλεγχος της εξέλιξης της αS σε υψηλότερες κλίμακες ενέργειας Q αξιοποιώντας τις εξι-
σώσεις της ομάδας επανακανονικοποίησης. Μάλιστα, οι κλίμακες ενέργειας που προσεγγίζονται

με την συγκεκριμένη μέτρηση επιτρέπουν για πρώτη φορά τον πειραματικό έλεγχο της εξέλιξης

της αS σε κλίμακες ενέργειας Q & 2 TeV . Συνολικά, η ανάλυση βασίζεται στην μέτρηση της
ποσότητας R∆φ που ορίζεται ως ο λόγος δύο ενεργών διατομών:

R∆φ(pT ,∆φ, p
nbr
Tmin) =

∑Njet(pT )
i=1 N

(i)
nbr(∆φ, p

nbr
Tmin)

Njet(pT )
(7)

όπου στην μέτρηση της ενεργού διατομής του παρονομαστή λαμβάνεται υπόψιν το σύνολο των

πιδάκων σωματιδίων ενός γεγονότος (inclusive jet cross section). Στην ενεργό διατομή του
αριθμητή συνεισφέρουν μόνο οι πίδακες σωματιδίων που έχουν γειτονικούς πίδακες με εγκάρσια

ορμή μεγαλύτερη από ένα ορισμένο κατώφλι pnbrTmin και αζιμουθιακή απόσταση ∆φ από αυτόν
εντός ενός ορισμένου διαστήματος ∆φmin < ∆φ < ∆φmax. Σε χαμηλότερη τάξη της θεωρίας
διαταραχών, ο παρονομαστής είναι ανάλογος της α2

S, ο αριθμητής είναι ανάλογος της α
3
S και

συνεπώς η ποσότητα R∆φ είναι απευθείας ανάλογη της αS.
Η μέτρηση βασίζεται στο σύνολο των δεδομένων που συλλέχθησαν από το πείραμα CMS κατά

την δεύτερη περίοδο λειτουργίας του LHC (2016-2018) και αντιστοιχούν σε ολοκληρωμένη λα-
μπρότητα 134.47 fb−1

. Η συλλογή των πιδάκων που λαμβάνονται υπόψιν αποτελείται από πίδακες

με εγκάρσια ορμή μεγαλύτερη από 50 GeV και ωκύτητα |y| < 2.5, ενώ για την ενεργό διατομή του
αριθμητή εφαρμόζονται επιπλέον τα κριτήρια όπως περιγράφησαν παραπάνω με pnbrTmin > 100 GeV
και 2π/3 < ∆φ < 7π/8. Η ανακατασκευή των γεγονότων υλοποείται μέσω του PF αλγορίθμου
με χρήση της τεχνικής CHS για την ελάττωση των Pile Up φαινομένων, ενώ η ομαδοποίηση των
σωματιδίων σε πίδακες γίνεται μέσω του αλγορίθμου anti-kt με παράμετρο R ίση με 0.7 (ak7 jets).
Επιπρόσθετες διορθώσεις εφαρμόζονται στα πειραματικά δεδομένα για την εξάλειψη γνωστών φαι-

νομένων όπως είναι το πρόβλημα του pre�ring των σκανδαλιστών 1oυ επιπέδου ή η παρουσία πε-
ριοχών στα καλορίμετρα με αφύσικα υψηλό ρυθμό καταγραφής γεγονότων (hot zones), η ύπαρξη
των οποίων διαπιστώθηκε κατά την διενέργεια του πειράματος. Πέρα από τα πειραματικά δεδομένα,

στην ανάλυση αξιοποιούνται για πολλαπλούς σκοπούς δείγματα από προσομοιώσεις γεννητόρων

γεγονότων Monte Carlo, στα οποία επίσης εφαρμόζεται μια απαραίτητη σειρά διορθώσεων, όπως
είναι η αφαίρεση γεγονότων με αφύσικα στατιστικά βάρη εξαιτίας του Pile Up ή η προσαρμογή
της προσομοιωμένης διακριτικής ικανότητας έτσι ώστε να αντιστοιχεί στην πραγματική διακριτική

ικανότητα μέτρησης της ενέργειας του ανιχνευτή.
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Τα πειραματικά δεδομένα της ανάλυσης έχουν συλλεχθεί από τους σκανδαλιστές υψηλού ε-

πιπέδου HLT_AK8PFJetX, οι οποίοι καταγράφουν μόνο γεγονότα όπου τουλάχιστον ένας
πίδακας σωματιδίων με εγκάρσια ορμή μεγαλύτερη από ένα ορισμένο κατώφλι X είναι παρών.
Η αποδοτικότητα κάθε σκανδαλιστή μελετήθηκε για κάθε έτος συλλογής δεδομένων ξεχωριστά,

έτσι ώστε να εξασφαλιστεί ότι είναι 100% αποδοτικός στο εύρος της εγκάρσιας ορμής που χρη-
σιμοποιείται. Ωστόσο, η απευθείας σύγκριση της μέτρησης στο επίπεδο του ανιχνευτή, είτε με

θεωρητικούς υπολογισμούς είτε με μετρήσεις άλλων πειραμάτων είναι στην πραγματικότητα μη

ενδεδειγμένη. Αυτό οφείλεται αφενός στο γεγονός ότι οι θεωρητικές προβλέψεις δεν συμπερι-

λαμβάνουν την διαδικασία της ανίχνευσης και αφετέρου στο ότι κάθε ανιχνευτής έχει την δική

του διακριτική ικανότητα και συνεπώς επιδρά διαφορετικά στην μέτρηση οποιασδήποτε ποσότη-

τας. Είναι λοιπόν απαραίτητο η μέτρηση να αναδιπλωθεί (unfolding) από το επίπεδο του ανιχνευτή
στο επίπεδο των σωματιδίων. Η μέθοδος της αναδίπλωσης που χρησιμοποιείται εδώ ονομάζεται

μέθοδος ψευδο-αναστροφής πίνακα (matrix pseudo-inversion method) και υλοποιείται μέσω του
υπολογιστικού πακέτου TUnfold. Η μέθοδος βασίζεται στην ελαχιστοποίηση της ποσότητας:

χ2 = (Ax + b− y)T (V−1) (Ax + b− y) (8)

όπου V ο πίνακας συνδιακύμανσης της μέτρησης, b το υπόβαθρο, y η μέτρηση στο επίπεδο του
ανιχνευτή και x η ζητούμενη ποσότητα, δηλαδή η μέτρηση στο επίπεδο των σωματιδίων. Επιπλέον,
όπου A είναι ο πίνακας απόκρισης που απεικονίζεται στο Σχήμα 3 και παραμετροποιεί την επίδραση
του ανιχνευτή στην μέτρηση, κατασκευαζόμενος από δείγματα γεννητόρων γεγονότων Monte
Carlo.
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Σχήμα 3: Ο πίνακας απόκρισης για την διαδικασία της αναδίπλωσης, κατασκευασμένος με τον

γεννήτορα γεγονότων Monte Carlo Pythia8.

Τα σφάλματα των πειραματικών μετρήσεων διακρίνονται σε δύο κατηγορίες: τα στατιστικά και

τα συστηματικά σφάλματα. Η πρώτη κατηγορία αντιπροσωπεύει τον πιθανοκρατικό χαρακτήρα της

μέτρησης, ενώ ειδικότερα για την περίπτωση της ποσότητας R∆φ, ο υπολογισμός τους γίνεται σε

επίπεδο σωματιδίων λαμβάνοντας υπόψιν την συσχέτιση ανάμεσα στις ενεργές διατομές αριθμητή

και παρονομαστή. Από την άλλη πλευρά, τα συστηματικά σφάλματα προέρχονται από διάφορες
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πηγές αβεβαιότητας που υπεισέρχονται στην διαδικασία της μέτρησης και μεταδίδονται στην πο-

σότητα R∆φ. Στην παρούσα ανάλυση, οι πηγές συστηματικών αβεβαιοτήτων είναι η διαδικασία της

βαθμονόμησης της ενέργειας των πιδάκων (Jet Energy Scale - JES), η ατελής προσομοίωση της
διακριτικής ικανότητας του ανιχνευτή που θεωρείται στην διαδικασία της αναδίπλωσης (Jet Energy
Resolution - JER) και άλλες πηγές (Other) που σχετίζονται με τις επιμέρους διορθώσεις που ε-
φαρμόζονται στα πειραματικά δεδομένα (π.χ pre�ring) και τα δείγματα γεννητόρων γεγονότων
Monte Carlo. Τα πειραματικά σφάλματα της R∆φ ποσότητας φαίνονται στο Σχήμα 4.
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Σχήμα 4: Τα πειραματικά σφάλματα για την ποσότητα R∆φ.

Η μέτρηση στο επίπεδο των σωματιδίων συγκρίνεται με προβλέψεις από γεννήτορες γεγονότων

Monte Carlo, όπως προαναφέρθηκε. Αριστέρα στο Σχήμα 5 απεικονίζεται η σύγκριση με πρώτης
τάξης και δεξιά με δεύτερης τάξης γεννήτορες γεγονότων Monte Carlo.
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Σχήμα 5: Σύκριση ανάμεσα στην μέτρηση σε επίπεδο σωματιδίων και προβλέψεις από γεννήτο-

ρες γεγονότων Monte Carlo πρώτης τάξης (αριστερά) και δεύτερης τάξης (δεξιά).
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Κεφάλαιο 6 - Θεωρητικοί υπολογισμοί ΚΧΔ για παραγωγή πιδάκων

Οι θεωρητικοί υπολογισμοί για την ποσότητα R∆φ πραγματοποιούνται με ακρίβεια δεύτερης

τάξης (Next-to-Leading Order - NLO) στην θεωρία διαταραχών της ΚΧΔ. ΄Ενας τέτοιος υπο-
λογισμός περιλαμβάνει στην πράξη τον υπολογισμό δύο επιμέρους διορθώσεων στον υπολογισμό

πρώτης τάξης: τις πραγματικές (real) διορθώσεις που αντιστοιχούν στην εκπομπή ενός έξτρα παρ-
τονίου στην τελική κατάσταση και τις εικονικές (virtual) διορθώσεις που ισοδυναμούν με την
προσθήκη ενός κλειστού βρόχου στα βασικά διαγράμματα δέντρου. Για τελικές καταστάσεις α-

ποτελούμενες από πίδακες σωματιδίων, οι υπολογισμοί με ακρίβεια δεύτερης τάξης στην θεωρία

διαταραχών είναι εφικτοί για πολλαπλότητες μέχρι και τριών πιδάκων μέσω του υπολογιστικού πα-

κέτου NLOJET++. Μάλιστα, αξιοποιώντας κανείς και το πακέτο fastNLO, μπορεί να εξάγει
τους θεωρητικούς υπολογισμούς για διάφορες επιλογές των κλιμάκων επανακανονικοποίησης (µr)
και παραγοντοποίησης (µf ) και για διάφορα σετ Συναρτήσεων Κατανομής Παρτονίων (PDF sets).
Στην παρούσα ανάλυση διερευνώνται δυο διαφορετικές επιλογές για τις κλίμακες µr και µf .

Στην πρώτη περίπτωση οι κλίμακες θέτονται ίσες με την εγκάρσια ορμή του εκάστοτε πίδακα σωμα-

τιδίων (µ = pT ), ενώ στην δεύτερη περίπτωση αμφότερες θέτονται ίσες με την εγκάρσια ορμή του
πίδακα με την υψηλότερη εγκάρσια ορμή στο γεγονός (µ = pmaxT ). Οι αβεβαιότητες κλίμακας προ-

έρχονται από τις ανώτερες τάξεις της θεωρίας διαταραχών που δεν συμπεριλαμβάνονται στις βασικές

προβλέψεις και υπολογίζονται μεταβάλλοντας κατά έναν παράγοντα 2 τις δυο αυτές κλίμακες από
την κεντρική τιμή. Οι προβλέψεις εξάγονται για πέντε διαφορετικά σετ PDFs: ABMP16, CT14,
HERAPDF20,MMHT2014 και NNPDF31, για τα οποία υπολογίζονται και οι αντίστοιχες αβε-
βαιότητές. Δεδομένου ότι οι θεωρητικοί υπολογισμοί είναι διαθέσιμοι μόνο σε επίπεδο παρτονίων,

εφαρμόζονται διορθώσεις για τα μη-διαταρακτικά φαινόμενα των πολυ-παρτονικών αλληλεπιδράσε-

ων (MPI) και της αδρονοποίησης (hadronization). Οι διορθώσεις αυτές λαμβάνουν την μορφή
πολλαπλασιαστικών παραγόντων και υπολογίζονται με την χρήση γεννητόρων γεγονότων Monte
Carlo. Οι θεωρητικές προβλέψεις βρίσκονται σε πολύ καλή συμφωνία με την μέτρηση και για τις
δύο διαφορετικές κλίμακες µr και µf και για όλα τα PDFs, όπως ενδεικτικά φαίνεται στο Σχήμα
6 για το NNPDF31. Οι αβεβαιότητες κλίμακας είναι οι κυρίαρχες αβεβαιότητες κυμαινόμενες
μεταξύ 2 και 7%, ενώ οι αβεβαιότητες των PDFs είναι της τάξης του 1-2%.

Σχήμα 6: Σύγκριση πειραματικών δεδομένων - θεωρίας, για µr = µf = pT για το NNPDF31.
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Κεφάλαιο 7 - Προσδιορισμός της αS(MZ) και έλεγχος της εξέλιξής της αS(Q)

Η ποσότητα R∆φ είναι απευθείας ανάλογη με την παράμετρο αS. Για τον πειραματικό προσδιορι-
σμό της παραμέτρου αυτής ωστόσο, βασική προϋπόθεση αποτελεί σε κάθε περίπτωση η μετρούμενη

ποσότητα να είναι αρκετά ευαίσθητη σε μεταβολές της αS. Η ευαισθησία της R∆φ διερευνάται ε-

ξάγοντας τις θεωρητικές προβλέψεις για PDFs που έχουν προσδιοριστεί με διαφορετικές τιμές της
αS(MZ). Για κάθε ξεχωριστό PDF, γίνεται χρήση όλων των διαφορετικών τιμών της παραμέτρου,
όπως προσφέρονται από την βιβλιοθήκη LHAPDF. Η ποσότητα R∆φ παρουσίαζει πολύ μεγάλη

ευαισθησία στην τιμή της αS, όπως ενδεικτικά φαίνεται στο Σχήμα 7 για το NNPDF31. Το
συμπέρασμα αυτό παραμένει το ίδιο, για όλα τα διαφορετικά PDFs και για τις δυο διαφορετικές
επιλογές κλιμάκων µr και µf .
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Σχήμα 7: Ευαισθησία της R∆φ στην αS, για µr = µf = pT για το NNPDF31.

Σε πρώτο στάδιο προσδιορίζεται η τιμή της αS για κλίμακα ενέργειας ίση με την μάζα του
μποζονίου Z (αS(MZ)). Η μέθοδος που ακολουθείται είναι η ελαχιστοποίηση της ποσότητας χ2

ανάμεσα στις πειραματικές μετρήσεις Di και τις θεωρητικές προβλέψεις Ti βάσει της εξίσωσης:

χ2 =
N∑
ij

(Di − Ti)C−1
ij (Dj − Tj) (9)

όπου Cij ο πίνακας συνδιακύμανσης που περιλαμβάνει τις πειραματικές και τις θεωρητικές αβεβαι-
ότητες. Τα αποτελέσματα εξάγονται για κάθε PDF ξεχωριστά και όπως φαίνεται στον Πίνακα
1 είναι όλα συμβατά μεταξύ τους, εντός των αβεβαιοτήτων τους. Οι τιμές αυτές είναι μάλιστα

συμβατές με την αποδεκτή σήμερα τιμή για την παράμετρο αS(MZ), όπως έχει προσδιοριστεί από
διαφορετικές μετρήσεις και εντοπίζεται στο PDG (Particle Data Group). Η σύγκριση της νέας
μέτρησης (NNPDF) με την τιμή αυτή, καθώς επίσης και με προηγουμένες μετρήσεις βασισμένες
σε αδρόνια, φαίνεται στο Σχήμα 8.
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Πίνακας 1: Τα αποτελέσματα της αS(MZ) για τα διάφορα PDFs.

PDF set αS(MZ) Exp NP PDF Scale

ABMP16 0.1179 0.0008 0.0008 0.0004 +0.0052
−0.0026

CT14 0.1138 0.0012 0.0012 0.0015 +0.0086
−0.0036

HERAPDF20 0.1161 0.0009 0.0009 0.0003 +0.0051
−0.0017

MMHT2014 0.1146 0.0011 0.0012 0.0008 +0.0087
−0.0037

NNPDF31 0.1158 0.0012 0.0011 0.0006 +0.0087
−0.0038

)
Z

(MSα
0.1 0.12 0.14 0.16 0.18 0.2

World Average : Prog. Theor. Exp. Phys. 083C01(2020)

 13TeV : New Measurement (2021)φ∆CMS R

CMS Incl. Jets 13TeV : arXiv 2111.10431 (2021)NNLO

 13TeV : EPJC 80:658 (2020)tCMS multi-diff t

 cross section 13TeV : EPJC 79:368 (2019)tCMS tNNLO

 8TeV : CMS-PAS-SMP-16-008 (2017)32CMS R

CMS Incl. Jets 8TeV : JHEP 03:156 (2017)

CMS Incl. Jets 7TeV : EPJC 75:288 (2015)

CMS 3-Jet mass 7TeV : EPJC 75:186 (2015)NNLO

 cross section 7TeV : PLB 728:496 (2014)tCMS t

 7TeV : EPJC 73:2604 (2013)32CMS R

ATLAS azimuth. decor. 8TeV : PRD 98:092004 (2018)

ATLAS TEEC 8TeV : EPJC 77:872 (2017)

ATLAS TEEC 7TeV : PLB 750:427 (2015)

 7TeV : ATLAS-CONF-2013-041 (2013)32ATLAS N

Malaescu & Starovoitov (ATLAS Incl. Jets 7TeV)
EPJC 72:2041 (2012)

D0 ang. correl. : PLB 718:56 (2012)

D0 incl. jets : PRD 80:111107 (2009)

CDF Incl. Jets : PRL 88:042001 (2002)

 : EPJC 67:1 (2010)2H1 multijets at low Q

p : NPB 864:1 (2012)
*γZEUS incl. jets in 

 : arXiv 1406.4709 (2014)2H1 multijets at high Q

H1+ZEUS (NC, CC, jets) : EPJC 75:580 (2015)

H1 incl. & dijet : EPJC 77:791 (2017)NNLO

Σχήμα 8: Σύγκριση της νέας μέτρησης της αS(MZ) με προηγούμενες μετρήσεις βασισμένες
σε αδρόνια, καθώς επίσης και με την σημερινή αποδεκτή τιμής της παραμέτρου (PDG).
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Σε δεύτερο στάδιο ελέγχεται η εξέλιξη της τιμής της αS(Q). Για τον σκοπό αυτό, η περιοχή της
μέτρησης χωρίζεται σε τέσσερις επιμέρους υπο-περιοχές και η διαδικασία εξαγωγής της αS(MZ)
επαναλαμβάνεται σε κάθε υπο-περιοχή ξεχωριστά. ΄Επειτα, υπολογίζεται η μέση κλίμακα ενέργειας

〈Q〉 για κάθε υπο-περιοχή και αξιοποιώντας τις εξισώσεις της ομάδας επανακανονικοποίησης (Re-
normalization Group Equations - RGE) προσδιορίζεται τελικά η τιμή της αS(〈Q〉). Με αυτό τον
τρόπο επιτυγχάνεται ο έλεγχος της εξέλιξη της αS(Q) μέχρι και Q = 2081 GeV , όπου παρουσιάζει
την αναμενόμενη από την Κβαντική Χρωμοδυναμική συμπεριφορά, χωρίς να παρατηρείται κάποια

απόκλιση, όπως φαίνεται στο Σχήμα 9.
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Σχήμα 9: ΄Ελεγχος της εξέλιξης της αS(Q).
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Chapter 1

The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is the theory that is used to describe the prop-
erties of elementary particles and their interactions. Developed in stages starting in the early
1970s, the Standard Model is at the core of today's understanding of fundamental particle
physics. It provides a consistent theoretical description for three of the four known funda-
mental forces that govern the universe: electromagnetic, weak and strong forces. The fourth
fundamental force is gravity, which is omitted and not yet incorporated within the Standard
Model context. However, for the scale of sub-atomic particle physics the e�ect of gravity is
so weak as to be negligible. Although the SM framework encapsulates our best understanding
of nature's fundamental order providing remarkably successful predictions for the outcomes of
particle physics experiments, it does have limits since it lacks of explanation for a plethora of
phenomena like the neutrino masses, the dark matter, the hierarchy problem etc [1].

The Standard Model particles can be classi�ed into two main categories: matter particles
and force mediators. The matter particles are further subdivided into two basic types: leptons
and quarks. Both quarks and leptons are fermions with spin 1/2 and are considered as elemen-
tary, appearing to have no internal structure for the distances that are accessible at modern
accelerator systems e.g ∆x ≥ 10−18 cm at the LHC [2]. Furthermore, quarks and leptons are
arranged into three so-called families or generations which are shown in Fig. 1.1. There are
six types (�avors) of quarks: up (u), down (d), charm (c), strange (s), top (t) and bottom
(b). They have electric charge +2/3 or −1/3 and exhibit hierarchical mass spectrum from few
MeV (natural unit system c = 1) to hundreds of GeV (see Fig 1.1). Note also that the quarks
come in three di�erent colours, mixing in such ways as to form colourless objects. Accordingly,
the six lepton types are: electron (e), electron neutrino (νe), muon (µ), muon neutrino (νµ),
tau (τ) and tau neutrino (ντ ). The electron, the muon and the tau all have electric charge −1
and masses ranging from hundreds of keV to few GeV . On the other hand, neutrinos are all
electrically neutral and exhibit tiny masses. For each lepton and quark there is an anti-lepton
and anti-quark respectively, with identical mass and opposite charge sign. Thus, adding up the
di�erent leptons and quarks together with their anti-particles and taking also into account the
colour charge property of quarks, results in 48 (12 + 36) elementary particles.

Inside the SM scope, the interactions between particles can be viewed as the exchange of the
force mediators which are bosons with spin 1 (vector bosons). In particular, each fundamental
force has its own boson: the electromagnetic force is mediated by the photon (γ) which is
massless and electrically neutral, the weak force is mediated by the electrically charged W±

and the electrically neutral Z bosons with masses around 80 GeV and 91 GeV respectively,
while there are eight massless and electrically neutral gluons (g) mediating the strong force
which just like quarks, carry color charge allowing them to self-interact. Among the above
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three forces, electromagnetic is the only long-range force exhibiting in�nite range due to the
zero photon mass. On the other hand, the weak force is short-range (around 10−18 m) due to
the non-zero W and Z boson masses. The strong is also a short-range force (around 10−15 m)
despite the fact that gluons are massless, due to the asymptotic freedom phenomenon of QCD
described in Sec. 1.3. Hence, there are 12 force mediator particles in the Standard Model raising
the total number of elementary particles from 48 to 60. Last but not least, the Higgs boson
with spin 0 (scalar boson) and mass around 125 GeV , discovered in 2012 by the ATLAS and
CMS experiments at CERN [3, 4], is an essential component of the Standard Model associated
with the Higgs �eld which is responsible for giving mass toW and Z bosons as well as fermions.
This leads to a total number of 61 SM elementary particles discovered to date.

The theoretical framework for the formulation of the Standard Model is provided by the
relativistic Quantum Field Theory (QFT). Each elementary particle is associated with a �eld,
the fundamental entity of any �eld theory. Motivated from classical mechanics, where the
Lagrangian is the fundamental concept capturing all the dynamics and characterizing the state
of a physical system, the SM is formulated in Lagrangian formalism where the equations of
motion are derived from the well-known stationary-action or least-action principle which will
be discussed in Sec. 1.1. The invariance of the Lagrangian under a set of transformations
(symmetries) and their importance in particle physics is also addressed in Sec. 1.1. The
formulation of the electroweak interactions and the Higgs mechanism are presented in Sec. 1.2.
Finally, the strong interactions are discussed in more depth in Sec. 1.3, since they consist the
main theoretical background for the physics analysis part (Part II).

Figure 1.1: The elementary particles of the Standard Model [5].
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1.1. LAGRANGIAN FORMULATION AND GAUGE THEORIES

1.1 Lagrangian formulation and Gauge theories

To begin with, in classical particle mechanics the equations of motion can be derived based
either on Newtonian or Lagrangian mechanics. In the latter case, which is of particular interest
here, the dynamics of the system is summarized in the Lagrangian function L de�ned as:

L = T − V (1.1)

where T is the kinetic energy and V the potential of the system. The Lagrangian is a function
of the coordinates q and their time derivatives: L = L (q(t), q̇(t)). The action S is a quantity
de�ned with respect to the above Lagrangian as:

S[q] =

∫ t2

t1

L (q(t), q̇(t)) dt (1.2)

The dimensions of action are (Energy)×(Time). The stationary-action or least-action principle
postulates that the actual path followed by a particle between two �xed points q(t1) and q(t2)
is the path of least action. Mathematically, this principle leads to the derivation of the Euler-
Lagrange equations of motion which are equivalent to Newton's law (F = ma):

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (1.3)

Similar techniques can be applied in quantum (or classical) �eld theory. However, instead
of calculating the position of localized particles as a function of time, in a �eld theory the task
is the calculation of �elds φ which are functions of position and time. The dynamics of the
system is described by the Lagrangian density L, which is a function of the �elds and their
derivatives [6]:

L = L (φ, ∂µφ) (1.4)

where the derivatives are de�ned as:

∂µ ≡
∂

∂xµ
=

(
1

c

∂

∂t
, ~∇
)
, ∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
,−~∇

)
(1.5)

with xµ the position 4-vector xµ = (ct, x, y, z) and xµ = (x0,−x1,−x2,−x3) respectively. Simi-
larly, the action here is de�ned as:

S[φ] =

∫
d4xL (φ, ∂µφ) (1.6)

The relevant Euler-Lagrange �eld equations of motion, derived from the least-action principle
are:

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0 (1.7)

Examples of Lagrangian densities for a free (no interaction terms) real scalar (spin 0) �eld
φ with mass m, for a spinor (spin 1/2) �eld ψ with mass m and for a massless vector (spin 1)
�eld Aµ, along with the relevant �eld equations of motion are:

1. (spin 0) The Lagrangian density describing neutral1 spinless particles with mass m is:

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 (1.8)

1For the description of spinless particles with charge ±1, a complex scalar �eld with two degrees of freedom
is required rather than real.
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1.1. LAGRANGIAN FORMULATION AND GAUGE THEORIES

where the Euler-Lagrange formula, leads to the �eld equation of motion which is also
known as Klein-Gordon equation:

∂µ∂
µφ+m2φ = 0 (1.9)

2. (spin 1/2) In the case of a spinor2 �eld ψ of mass m the Lagrangian density is:

L = ψ̄ (iγµ∂µ −m)ψ (1.10)

where ψ̄ is the so-called adjoint spinor de�ned as ψ̄ = ψ†γ0 and introduced here such that
ψ̄ψ is relativistically invariant. The γµ (µ = 0, 1, 2, 3) are the Dirac 4× 4 matrices, which
are written using the 2× 2 Pauli matrices σk (k = 1, 2, 3) as:

γ0 =

(
1 0
0 −1

)
, γk =

(
0 σk
−σk 0

)
(1.11)

The equation of motion derived from the Euler-Lagrange equations is the so-called Dirac
equation:

(iγµ∂µ −m)ψ = 0 (1.12)

3. (spin 1) The last example concerns a vector �eld with mass m = 0 (like photon) Aµ with
source jµ

3, where the Lagrangian is written as:

L = −1

4
F µνFµν − jµAµ (1.13)

where F µν is the electromagnetic �eld tensor4. The Euler-Lagrange equations here, results
in Maxwell equations (in tensor notation):

∂µF
µν = jν (1.14)

One of the main assets of the Lagrangian formulation, is that it provides a simple connection
between symmetry principles and the existence of conserved quantities. A symmetry is a set of
transformations of the �elds which leave the Lagrangian of the system invariant. The relation
between symmetries of a system and conserved quantities is encoded in Noether's theorem which
states that for any continuous symmetry of the action S, there always exists a corresponding
conserved quantity called current Jµ, which satis�es ∂µJ

µ = 0 [7]. Such symmetries can be
either external symmetries or internal symmetries based on whether they depend on changes
in spacetime or they are related to internal parameters respectively. Examples of the �rst type
of symmetries are the invariance of the Lagrangian under spatial translations (momentum con-
servation), time translations (energy conservation) and spatial rotations (angular momentum
conservation). On the other hand, the gauge symmetry of electrodynamics is an example of an
internal symmetry (electric charge conservation) which is described in detail below, in order to
enlighten the way symmetries are realized in a �eld theory.

2Dirac spinor ψ: 4-component vector represented by a 4-element column matrix used to describe fermions
with spin 1/2, composed from two 2-component spinors (one for particle and one for antiparticle) [1].

3jµ is the current density 4-vector jµ = (ρ,~j) (natural unit system c = 1), with ρ and ~j the charge and
current densities respectively.

4The object (second-rank antisymmetric tensor) that combines electric and magnetic �elds into a single
entity, de�ned as: Fµν = ∂µAν − ∂νAµ.
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1.1. LAGRANGIAN FORMULATION AND GAUGE THEORIES

Starting from the Maxwell equations of electrodynamics:

~∇× ~E +
∂ ~B

∂t
= 0, ~∇ · ~B = 0 (1.15)

~∇× ~B − ∂ ~E

∂t
= ~j, ~∇ · ~E = ρ (1.16)

the two �rst equations can be re-written by introducing the potentials φ and ~A, such that the
electric and magnetic �elds are given by:

~E = −~∇φ− ∂ ~A

∂t
, ~B = ~∇× ~A (1.17)

which reduces the six components of ~E and ~B to four components of φ and ~A. However, the
correspondence between the electric and magnetic �elds which are the physical quantities of
interest and the potentials φ and ~A is not unique. In particular, for any scalar �eld Λ the
transformation:

~A′ = ~A+ ~∇Λ, φ′ = φ− ∂Λ

∂t
(1.18)

gives the same electric and magnetic �elds. Such transformations in potentials are called gauge
transformations implying a symmetry of the theory. In other words, the electromagnetic theory
is invariant under the above gauge transformations.

Similarly, in a �eld theory the interest is focused on transformations of the �elds that leave
the Lagrangian invariant. In the case of Quantum Electrodynamics (QED), this can be seen
by considering a complex scalar �eld φ with the Lagrangian:

L = (∂µφ
†)(∂µφ)−m2φ†φ (1.19)

which is invariant under the transformations:

φ→ φ′ = eiαφ, φ† → φ′† = e−iαφ† (1.20)

They are also called global gauge transformations because the parameter α is constant across
all the space-time points. However, the above Lagrangian is not invariant when considering
transformations where the parameter α has a dependence on the space-time points (xµ) i.e.,:

φ→ φ′ = eiα(x)φ, φ† → φ′† = e−iα(x)φ† (1.21)

The above Lagrangian (1.19), is now not invariant under such local gauge transformations.
The demand for local gauge invariance, requires the presence of a new �eld Aµ, such that the
Lagrangian is modi�ed as:

L = (Dµφ
†)(Dµφ)−m2φ†φ− 1

4
F µνFµν (1.22)

where Dµ = ∂µ + iqAµ is the so-called covariant derivative, with q representing the electric
charge. The Lagrangian 1.22 is now invariant under the local gauge transformations :

φ→ φ′ = eiα(x)φ, Aµ → A′µ = Aµ −
1

q
∂µα(x) (1.23)

7



1.1. LAGRANGIAN FORMULATION AND GAUGE THEORIES

where the covariant derivative is also transformed as:

Dµφ→ (Dµφ)′ = eiα(x)(Dµφ) (1.24)

The equations of motion derived from substituting Eq. 1.22 in the Euler-Lagrange equations,
are the Maxwell equations 1.14. The conclusion is that by imposing the invariance under local
transformations for a free complex scalar �eld, a massless vector �eld (Aµ) which is nothing
but the electromagnetic potential is introduced, together with a kinetic term for the vector
�eld. Even if instead of a scalar �eld the starting point was a Dirac spinor �eld, describing for
example electrons or positrons, the conclusion would be the same: the demand of invariance
under the relevant local gauge transformations implies the introduction of the photon �eld Aµ

along with the need for a gauge invariant derivative i.e., the covariant derivative as above,
generating physically the electromagnetic interactions between charged particles as observed in
Nature [8].

The mathematical language for expressing symmetries is called group theory. For the QED
example discussed above, the local gauge transformation, U = eiα(x), is the simplest case of
a unitary gauge transformation i.e., U †U = 1. This can be also thought as a unitary 1 × 1
matrix, the equivalent of which in group theory language, is represented as a U(1) local gauge
transformation and the corresponding symmetry is a U(1) gauge symmetry5. Furthermore, the
QED is considered as a U(1) gauge theory, which leads to charge conservation. The U(1) group,
belongs to the abelian groups, meaning that two successive U(1) transformations commute:
U(α1)U(α2) = U(α2)U(α1), in contrast to non-abelian groups where the group elements do not
commute. For example spatial and time translations consist an abelian group, while spatial
rotations are non-abelian group. Additionally, the category of the continuous or Lie groups
are those whose elements depend on one or more continuous parameters and U(1) is classi�ed
as Lie group since its elements depend on the continuous parameter α(x). On the other hand,
there are also discrete groups where the elements depend on integer parameters, like parity P
and charge conjugation C.

In the general case, an element of a Lie group can be written as [7]:

eiαiXi (1.25)

where αi are the continuous parameters, Xi are the generators of the group and the index i in
the exponent implies a summation over all parameters and generators. There is one generator,
for each parameter required to specify a particular element of the group, while the total number
of generators gives the dimension of the group. For example, the spatial translation symmetry
has as generators the momentum operators

(
ei(~x+ ~x0)·~p), the time translation symmetry has as

generators the Hamiltonian
(
e−i(t+t0)· ~H

)
and the spatial rotation symmetry has as generators

the angular momentum operators
(
e−iφ~η·

~l
)
. The commutator [Xi, Xj] is proportional to some

linear combination of the generators of the group:

[Xi, Xj] = ifijkXk (1.26)

where the constants fijk are called structure constants of the group. The number of generators
for a U(N) group is N2 e.g 1 for U(1) group.

The above discussion can be generalized to more complicated gauge groups than U(1), since
all Lie groups can be represented by matrices. Besides the abelian U(1) gauge group used to

5The unitary group U(N) consists of all N ×N unitary matrices.
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1.1. LAGRANGIAN FORMULATION AND GAUGE THEORIES

describe the electromagnetic interactions, the other two non-abelian Standard Model gauge
groups are SU(2) and SU(3) describing the electroweak (see Sec. 1.2) and strong interactions
(see Sec. 1.3) respectively. A group element of SU(N) is a unitary matrix N × N with
determinant 1, while the number of generators for the group is N2 − 1 e.g 3 for SU(2), 8 for
SU(3). Therefore, the Standard Model is characterized by the SU(3)×SU(2)×U(1) symmetry
group. An additional concept from group theory which is relevant for the discussion below, is
the group representation. In general, a representation is any set of matrices that respects the
multiplicative structure of the group and hence, there are many representations for each group.
The N×N representation of a group of dimension N is called the regular representation, though
there might exist other representations that are "smaller" than the regular representation. For
example, the regular representation for the SU(2) group consists of 2×2 unitary matrices with
determinant 1. A speci�c representation of a given group is called reducible if there is a smaller
representation and irreducible in the opposite case [7].
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1.2. ELECTROWEAK INTERACTIONS AND HIGGS MECHANISM

1.2 Electroweak interactions and Higgs mechanism

The electroweak sector corresponds to the SU(2)× U(1) piece of the SM symmetry group
with gauge bosons W±, Z for SU(2) and Bµ for U(1) respectively. For the electroweak inter-
actions formulation and the calculation of the relevant couplings of the W±, Z bosons and of
the Higgs particle with the fermions and among themselves, the Lagrangian can be split into
two parts [9, 2]:

L = Lgauge + LHiggs (1.27)

where each term (sector) is addressed in turn below.

1.2.1 The Gauge Sector

The �rst term in equation 1.27 involves the gauge bosons and the fermions and is written
as:

Lgauge = −1

4

3∑
A=1

FA
µνF

Aµν − 1

4
BµνB

µν + ψ̄Liγ
µDµψL + ψ̄Riγ

µDµψR (1.28)

where Bµν = ∂µBν − ∂νBµ, is the gauge tensor constructed from the gauge �eld Bµ which is
associated with U(1)6. The Fµν gauge tensor in equation 1.28, is de�ned as: FA

µν = ∂µW
A
ν −

∂νW
A
µ − gεABCWB

µ W
C
ν , where W

A
µ correspond to the three SU(2) generators, g is the gauge

coupling described below and εABC are the SU(2) structure constants which here coincide with
the totally antisymmetric Levi-Civita tensor7.

Accordingly, ψL and ψR are the left-handed and right-handed components of fermion �elds.
The chirality or handedness operator (i.e., right/left-handed) is γ5 = iγ0γ1γ2γ3 and de�nes a
quantity which is the same as the helicity operator (the projection of the spin onto the direction
of momentum) for massless particles. Any Dirac spinor ψ can be written in terms of left-handed
and right-handed chiral states, as ψ = ψL + ψR, where the left-handed (ψL) or right-handed
(ψR) chiral particle states can be projected using the projection operators:

PL =
1

2
(1− γ5) PR =

1

2
(1 + γ5) (1.29)

such that:
ψL,R = [(1∓ γ5)/2]ψ ψ̄L,R = ψ̄[(1± γ5)/2] (1.30)

The electroweak theory is a chiral theory, in the sense that left-handed (ψL) and right-handed
(ψR) particle states have di�erent behaviour and transform as di�erent representations under
the gauge group, which allows the parity and charge conjugation non-conservation in EW
interactions.

The covariant derivatives in equation 1.28 are given by:

DµψL,R =

[
∂µ + ig

3∑
A=1

tAL,RW
A
µ + ig′

1

2
YL,RBµ

]
ψL,R (1.31)

where tAL,R are the three generators from the SU(2) symmetry in the reducible representation,

following the commutation relations:
[
tAL,R, t

B
L,R = iεABCt

C
L,R

]
. The YL,R is the generator of the

6The gauge �eld Bµ does not coincide with the photon �eld Aµ and the relevant quantum number is not

identical with electric charge.
7εABC is 1 if (A,B,C) is an even permutation of (1, 2, 3), −1 if it is an odd permutation and 0 if any index

is repeated.
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1.2. ELECTROWEAK INTERACTIONS AND HIGGS MECHANISM

U(1) symmetry which is called hypercharge, related to the electric charge generator Q via:

Q = t3L + 1/2YL = t3R + 1/2YR (1.32)

while the g′ represents the U(1) gauge coupling. In the above expressions, the charged W±
µ

�elds are described by W 1,2
µ , while the weak neutral gauge boson Zµ and the photon Aµ from

combinations of W 3
µ and Bµ. The interactions of W

± are also known as Charged-Current (CC)
interactions, in contrast to Z and photon interactions which are called Neutral-Current (NC)
interactions. All the expressions for the fermion coupling of the gauge bosons can be derived
from Eq. 1.28 with the use of 1.31. By de�ning the weak mixing angle θW ≡ tan−1(g′/g), the
positron electric charge is given by e = gsinθW = g′cosθW and the particle �elds are [10]:

Aµ ≡ BµcosθW +W 3
µsinθW (1.33)

W±
µ ≡

W 1
µ ∓W 2

µ√
2

(1.34)

Zµ ≡ −BµsinθW +W 3
µcosθW (1.35)

Finally, the weak interaction coupling g is related to the electromagnetic coupling i.e., the
�ne-structure constant of QED (α ≡ e2/4π = 1/137) via the weak mixing angle:

g2sin2θW = e2 = 4πα (1.36)

Furthermore, the study of the e�ective four-fermion interactions allows the calculation of the
relation between g and the Fermi coupling constant GF which is precisely measured in muon
decays via:

GF/
√

2 = g2/8M2
W (1.37)

where MW is the W boson mass. Note that the fermion masses together with the W± and Z
masses will be introduced in Sec. 1.2.2 where the Higgs mechanism is addressed.

1.2.2 The Higgs Sector

The second term in equation 1.27 involves the spontaneous symmetry breaking8 of SU(2)×
U(1) symmetry for the generation of masses for the gauge bosons W , Z and for the fermions
and is formulated as:

LHiggs = (Dµφ)†(Dµφ)− V (φ†φ)− ψ̄LΓψRφ− ψ̄RΓ†ψLφ
† (1.38)

where φ is a column vector and here corresponds to a doublet such that:

φ =

(
φ+

φ0

)
(1.39)

where φ+ and φ0 are complex �elds containing 4 degrees of freedom in total i.e.,:

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(1.40)

8The spontaneous symmetry breaking in contrast to explicit symmetry breaking, leaves the Lagrangian in-
variant under the symmetry, while the ground state of the theory does not exhibit the same symmetry and is
not invariant.
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1.2. ELECTROWEAK INTERACTIONS AND HIGGS MECHANISM

The covariant derivative in Eq. 1.38 is given by:

Dµφ =

[
∂µ + ig

3∑
A=1

tAWA
µ + ig′(Y/2)Bµ

]
φ (1.41)

with tA and Y/2 representing the SU(2) and U(1) generators in the reducible representation
(see also Eq. 1.31, 1.32). The quantities Γ in Eq. 1.38 are matrices allowing the invariance of
the Yukawa couplings9 under the Lorentz transformations and gauge groups.

The potential V (φ) in Eq. 1.38 which is symmetric under SU(2)× U(1) is:

V (φ†φ) = −µ2φ†φ+
1

2
λ(φ†φ)2 (1.42)

The minimum of this potential is the classical analogue of the quantum mechanical vacuum
state i.e., they both represent the states of minimum energy and is obtained from the vacuum
expectation value (VEV) of φ, denoted by υ. The parameter λ in Eq. 1.42 must be positive,
otherwise the potential V has no stable vacuum state. In the case where the parameter µ2

is also positive (µ2 > 0) the potential has a minimum at |φ| ≡
√
φ†φ = 0 which leaves the

electroweak symmetry unbroken in the vacuum. On the other hand, when µ2 < 0 then the
potential has a minimum at:

φ†φ =
−µ2

2λ
≡ υ√

2
(1.43)

Figure 1.2: An illustration of the
Higgs potential for µ2 < 0 [11].

In fact, there is an in�nite number of degenerate states
satisfying Eq. 1.43 which are related to each other via
the U(1) local gauge transformation φ′ = eiα(x)φ and
correspond to a spherical surface in four dimensions
upon which the potential is minimized. The choice
of any of such state causes the spontaneous symmetry
breaking of SU(2) × U(1) symmetry, which is graph-
ically illustrated in the complex plane in Fig. 1.2.
Hence, there is a freedom in the selection of the ba-
sis of states φ1, ..., φ4 for the expression of the non-
zero vacuum expectation value υ and the selection

〈φ3〉 ≡ υ =
√

µ2

λ
, 〈φ1〉 = 〈φ2〉 = 〈φ4〉 = 0 gives10:

〈0|φ|0〉 =
1√
2

(
0
υ

)
(1.44)

With the introduction of a new real scalar �eld H with zero vacuum value, 〈H〉 = 0, the
VEV and the �eld equations are written:

〈0|φ|0〉 =
1√
2

(
0

υ +H

)
, φ =

1√
2

(
φ1 + iφ2

υ +H + iφ4

)
(1.45)

The replacement of the �rst equation, in the potential equation 1.42 gives:

V = −µ
2υ2

2
+ µ2H2 +

µ2

√
2υ
H3 +

µ2

8υ2
H4 (1.46)

9Couplings for the interactions of fermion-boson �elds.
10Dirac notation where the expectation value of A with respect to a state α is given by 〈A〉 ≡ 〈α|A|α〉.
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1.2. ELECTROWEAK INTERACTIONS AND HIGGS MECHANISM

Accordingly, the Lagrangian in Eq. 1.38, using the covariant derivative from equation 1.41
and also the W±

µ , Zµ and Aµ �elds from equations 1.33, 1.34 and 1.35, becomes:

LHiggs =
1

2
(∂µH)(∂µH) +

1

4
g2υ2W+

µ W
−
µ +

1

4
(g′2 + g2)υ2ZµZ

µ − λυ2H2

+ cubic interaction terms + quartic interaction terms + const.
(1.47)

where the �rst term corresponds to the kinetic term of H �eld, the second is interpreted as the
mass term for the W boson which acquires mass:

M2
W =

gυ2

4
(1.48)

the third term in Eq. 1.47 stands for the Z boson mass term, with:

M2
Z =

(g + g′2)υ2

4
≡ M2

W

cos2θW
(1.49)

The last term in Eq. 1.47 is interpreted as the mass term for the scalar Higgs �eld (H), where
the mass for the Higgs boson is:

M2
H = 2λυ2 = 2µ2 (1.50)

Therefore, by breaking the SU(2)× U(1) local gauge symmetry with the above procedure,
the W and Z bosons acquire masses while the photon remains massless (no mass term for the
photon in Eq. 1.47), MA = 0. On the other hand, the Goldstone theorem [12] postulates that
the spontaneous breaking of continuous global symmetry implies the existence of one or more
massless scalar particles. Here from the four SU(2)×U(1) generators, three are spontaneously
broken and are identi�ed as the three of the four Higgs �eld degrees of freedom. However,
from the initial four degrees of freedom of the Higgs �eld, two are absorbed by the W± gauge
bosons, one by the Z gauge boson, and there is one remaining degree of freedom, H, that is the
physical Higgs boson, discovered in 2012 by the ATLAS and CMS experiments at CERN [3, 4].
From the combination of Eq. 1.37 and 1.49 the vacuum expectation value of the Higgs �eld is

calculated at υ =
(√

2GF

)−1/2 ≈ 246 GeV [10]. Though, the existence of the free parameter λ
prohibits the a priori prediction for the Higgs mass which is only experimentally measured at
mH = 125.10 ± 0.14 GeV and hence λ ≈ 0.13 [10]. Moreover, with the same mechanism the
fermions of the SM also acquire masses mf which are proportional to the fermion-Higgs Yukawa
couplings gφf̄f i.e., mf = gφf̄fυ and represent free SM parameters that are only experimentally
measured. Finally, the SU(3) symmetry remains unbroken and hence the gluons are massless.
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1.3. QUANTUM CHROMODYNAMICS - STRONG INTERACTIONS

1.3 Quantum Chromodynamics - Strong interactions

Quantum chromodynamics (QCD) corresponds to the unbroken gauge theory based on the
SU(3) group. As already mentioned above, there are eight massless gauge bosons named gluons
with spin 1 mediating the strong force among the only strongly interacting fundamental �elds of
the Standard Model: quarks and gluons themselves. Both quarks and gluons carry an internal
quantum number called colour existing in three varieties (Nc = 3) which are usually labelled
as red, green and blue. As will be discussed later in this section, the colour-charged particles
are never observed isolated, but only con�ned in bound states: the hadrons. Apart from the
colour charge, gluons carry no other intrinsic quantum number. In contrast, quarks carry an
additive baryon number B which is +1/3 for quarks and −1/3 for antiquarks, as well as all the
additive quantum numbers shown in Tab. 1.1. Note also that for the antiquarks all the signs
shown in this table are reversed.

Table 1.1: Quarks quantum numbers [10].

d u s c b t

electric charge (Q) −1
3

+2
3
−1

3
+2

3
−1

3
+2

3

isospin (I) 1
2

1
2

0 0 0 0
isospin z-component (Iz) −1

2
+1

2
0 0 0 0

strangeness (S) 0 0 −1 0 0 0
charm (C) 0 0 0 +1 0 0

bottomness (B) 0 0 0 0 −1 0
topness (T ) 0 0 0 0 0 +1

In the Standard Model there are two types of hadrons: mesons and baryons. The mesons are
bound states of quarks q and antiquarks q̄ and thus they have baryon number B = 0. Typically,
mesons are classi�ed into multiplets according to their JPC quantum numbers, where J is given
by the orbital angular momentum l and spin s relation: |l − s| ≤ J ≤ |l + s|, with s = 0 for
antiparallel quark spins or s = 1 for parallel quark spins. The charge conjucation C is given
by (−1)l+s and P is the parity de�ned as (−1)l+1. The states with l = 0 can be either 0−+

or 1−− which are called pseudoscalar and vector mesons respectively. Accordingly the orbital
excitation with l = 1 can be 0++ named scalar, or 1++ called axial vector, or 2++ which are
the tensors. The lightest known mesons are the pions π which are pseudoscalars 0−+ and can
be either charged π± composed by ud̄ (π+) and ūd (π−) with mass around 140 MeV/c2, or
electrically neutral made of the superposition 1√

2
(dd̄− uū) with mass around 135 MeV/c2 [10].

In general, baryons have baryon number B = 1 and are composed by three quarks (qqq)
plus any number of quark-antiquark pairs qq̄. However, almost all the observed baryons are
made of three quark con�gurations, although recently the LHCb collaboration published the
�rst evidence for the observation of pentaquark states [13]. Baryons are also grouped into
multiplets according to their quantum numbers. Based on the quark content and the isospin
quantum number they are classi�ed into six categories: Nucleons (N ′s), Deltas (∆′s), Lambdas
(Λ′s), Sigmas (Σ′s), Xis (Ξ′s) and Omegas (Ω′s). Besides the main symbol which is normally
de�ned by the minimal number of u plus d quarks together with the isospin number, there
might also exist a subscript indicating the content of heavy quarks e.g Ξb or Ξcc. The N

′s have
a minimal content of three u and/or d quarks and isospin 1/2, while ∆′s have also the same rule
for the contents but have isospin 3/2. Both the Λ′s and Σ′s have two u and/or d quarks but
their isospin is 0 and 1 respectively. The Ξ′s have one u or d quark and isospin 1/2 and �nally
Ω′s have no u or d quarks and isospin 0. The lightest known baryon is the proton p which is
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1.3. QUANTUM CHROMODYNAMICS - STRONG INTERACTIONS

composed of uud quarks (Nucleon) with a mass around 938 MeV/c2, while the neutron n with
udd quark content (Nucleon) is slightly heavier with a mass around 940 MeV/c2 [10].

In contrast to the other Standard Model sectors which were only brie�y discussed above,
the Quantum Chromodynamics will be presented more extensively. The Lagrangian of QCD
is de�ned in Sec. 1.3.1, where the con�nement and asymptotic freedom properties of QCD
are also introduced. In Sec. 1.3.2 the basic QCD Feynman rules and the transition from
Lagrangians to the measurable cross sections and decay rates are addressed. The main concept
of renormalization and its application in QCD via the strong coupling constant is discussed in
Sec. 1.3.3, while the basic formulation for cross section predictions in pp collisions is presented
in Sec. 1.3.4. Moreover, the fundamental concepts for QCD Fixed Order (FO) predictions will
be discussed later in Chapter 6.

1.3.1 The QCD Lagrangian

The Lagrangian density for Quantum Chromodynamics is formulated as [14, 2]:

LQCD =
∑

nf flavors

ψ̄fi (x) [iγµDµ −mf ]ij ψ
f
j (x)− 1

4

8∑
α=1

Fα
µνF

αµν (1.51)

where nf is the number of di�erent �avours, ψfj (x) and ψ̄fj (x) are the quark and antiquark
spin-1/2 Dirac �eld spinors with colour i, �avour f and mass mf . Accordingly, there is a �eld
Aαµ(x) describing the massless spin-1 gluon with colour index α. In fact, the Lagrangian in Eq.
1.51 corresponds to the classical QCD Lagrangian and should be extended to contain gauge
�xing and ghost terms which enable the usage of perturbation theory and the derivation of
Feynman rules discussed in the following section [15]. The covariant derivative in the above
equation is given by:

Dµ = ∂µ − igAµ = ∂µ − igstαAαµ (1.52)

where gs is the QCD coupling constant: αS = g2
s/4π, which is the only fundamental parameter

of QCD besides the quark masses arising from the electroweak symmetry breaking. The tα are
the SU(3) generators and are represented as 3× 3 matrices (tα = λα/2, where λα are the Gell-
Mann matrices) acting on quark �elds which are colour triplets, encoding the quark colour's
change (rotation in the SU(3) space) from the quark-gluon interaction [10]. The gluon �eld
tensor is de�ned as:

Fα
µν = ∂µA

α
ν − ∂νAαµ + gsf

abcAbµA
c
ν (1.53)

where fabc are the SU(3) group structure constants.
The algebra of the SU(3) colour group contains some extremely useful relations for the so-

called colour factors. Firstly, the relation tAabt
A
bc = CF δac includes the colour factor CF which is

associated with the gluon emission from a quark and is given by: CF ≡ (N2
c − 1) / (2Nc) = 4/3.

Secondly, the relation fACDfBCD = CAδAB contains the colour factor CA which is associated
with the gluon emission from a gluon, with CA ≡ Nc = 3. From these two relations, the
relative gluon emission from a gluon to the gluon emission from a quark is calculated as:
CA/CF = 9/4, implying that gluons radiate more than two times stronger than quarks. The
last relation is tAabt

B
ab = TRδAB, where TR is associated with the colour factor for a gluon split

to a quark-antiquark pair with TR = 1/2. Therefore, from the comparison of CA with TR the
conclusion is that gluons split into a gluon pair almost 6 times (CA/TR) more often than into
a quark-antiquark pair [10, 16].

Two of the most important properties of QCD are the con�nement and asymptotic freedom
which will be further discussed in Sec. 1.3.3. The con�nement phenomenon dictates that the
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1.3. QUANTUM CHROMODYNAMICS - STRONG INTERACTIONS

colour-charged quarks and gluons cannot be observed isolated as free particles and hence, the
physically observed particle spectrum consists of colourless or colour-singlet states. The only
combinations of quarks leading to such colourless bound states are quark-antiquark pairs and
3-quark (or three antiquark) combinations forming the well known mesons and baryons (or
antibaryons) respectively. On the other hand, the asymptotic freedom phenomenon stands for
the fact that the strong coupling constant αS becomes smaller at short distances or correspond-
ingly at high energy scales, while it increases at large distances or correspondingly at low energy
scales. This means that quarks and gluons interact weakly at asymptotically short distances
becoming asymptotically free i.e., the e�ective coupling goes to zero at zero distance. It is worth
of mention that referring to the force couplings as "constants" might be misleading, since the
couplings are not truly constants but they rather depend on the energy scale or equivalently on
the distance at which they are probed. The asymptotic freedom of QCD is in contrast to QED,
where the observed charge of the electron decreases at large distances due to the screening of its
electric charge by vacuum polarization. However, the main di�erence between QED and QCD
is that gluons carry colour charge (while photons are electrically neutral) and subsequently they
interact among themselves, creating the so-called anti-screening e�ect [15].

The value of the strong coupling determines the applicability of perturbation theory for
QCD solutions. In principle, perturbative methods can be applied when the strong coupling αS
is rather small (αS << 1), which holds only at small distances or equivalently at large energy
scales. In such case, any observable f can be predicted as an order-by-order expansion in the
αS:

f = f1αS + f2α
2
S + f3α

2
S + ... (1.54)

where the commonly used technique for calculating the coe�cients fi is the Feynman diagram-
matic technique addressed in Sec. 1.3.2. In practice, perturbative techniques play a crucial role
for predictions in proton-proton collisions at the LHC, where typically only few terms of the
above series are calculated providing �xed-order (FO) predictions (see Chap. 6) in the strong
coupling (αS).

On the contrary, the growth of the strong coupling constant at large distances (or equiva-
lently low energies) imposes the requirement for non-perturbative methods for the determina-
tion of low energy properties of QCD. Lattice QCD (LQCD) is one of the main non-perturbative
methods used and is based on the discretization of space-time resulting in a 4-dimensional lat-
tice with quark �elds placed on sites and gluon �elds on the link between sites. Then, using
Monte Carlo sampling over all possible �eld con�gurations and the calculation of the relative
likelihood of di�erent �eld con�gurations, leads to the solution of QCD. However, the complex-
ity of LQCD calculations and the availability of the computational resources restricts the usage
of the method to a small number of applications, not highly relevant to LHC proton-proton
collisions, yet [17]. An example of LQCD application is the study of quark-antiquark (qq̄)
potential approximated by [2]:

Vqq̄ ≈ CF

[
αS(r)

r
+ ...+ σr

]
(1.55)

where CF = 4/3 is the color factor described above, r the relative quark-antiquark distance
and σ a free parameter. The observation is that at short distances the potential has a Coulomb
part, while at long distances it is described by a linearly rising term. The latter provides an
intuitive explanation to the con�nement phenomenon, since it makes the separation of a qq̄
pair energetically impossible. Consequently, when a qq̄ pair is created at one space-time point
(e.g e+e− annihilation), the two particles start moving away from each other until it becomes
energetically favourable to create additional pairs, which neutralise the colour and allow the
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1.3. QUANTUM CHROMODYNAMICS - STRONG INTERACTIONS

�nal state to be reorganised into jets of colourless hadrons, through the hadronization process
(see also Chapter 4).

1.3.2 Feynman diagrams for QCD

The perturbative calculations are performed according to the Feynman rules which are
obtained from the Lagrangian introduced above. The derivation of the Feynman rules is based
on the action [15]:

S = i

∫
d4xL(x) (1.56)

which leads to the phase of transition amplitudes from the Lagrangian density. The latter can
be split into two terms: a free (non-interacting) term L0 and an interaction term LI , such that:

S = S0 + SI , S0 = i

∫
d4xL0(x), SI = i

∫
d4xLI(x) (1.57)

The S0 term leads to two-point functions whose inverses de�ne the particle propagators, while
the interaction terms of SI are represented by vertices.

The fermion propagators and particularly the quark propagators are obtained from the
momentum-space operator replacement (∂µ → −ipµ). On the other hand, the de�nition of the
gauge boson propagators and speci�cally the gluon propagator is not feasible without adding a
gauge-�xing term in Eq. 1.51, where a typical gauge choice is the Lorenz gauge de�ned by the
condition ∂µA

αµ = 0 which leads to the term:

Lgauge−fixing = − 1

2ξ

(
∂µAαµ

)2
(1.58)

where ξ is an arbitrary parameter. However, the inclusion of a gauge �xing term in non-
Abelian theories such as QCD, introduces also unphysical degrees of freedom that must be
cancelled. This is achieved by introducing yet another term in the Lagrangian which represents
an unphysical set of �elds, the ghosts, which are scalars but have Fermi statistics. In practice,
this means that for every diagram with a closed loop of internal gluons containing only triple-
gluon vertices, a diagram where the gluons are replaced by ghosts should be added [18]. Hence,
the complete QCD Lagrangian is written as:

LQCD =
∑

nf flavors

ψ̄fi (x) [iγµDµ −mf ]ij ψ
f
j (x)− 1

4

8∑
α=1

Fα
µνF

αµν − 1

2ξ

(
∂µAαµ

)2
+ Lghost (1.59)

The quark propagator (shown in Fig. 1.3A)11 is given by:

i(�p+mq)

p2 −m2
q

δij (1.60)

where �p = γµpµ, p is the momentum and mq the mass of the quark and δij is the Kronecker
delta function. The ghost propagator (shown in Fig. 1.3B) is:

i

k2
δab (1.61)

11All the diagrams in this thesis were drawn with the online Feynman diagram maker from [19].
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Figure 1.3: Graphical representation for quark
(A), ghost (B) and gluon (C) propagators.

Figure 1.4: Graphical representation for
quark-gluon (A), ghost-gluon (B), three-gluon
(C) and four-gluon (D) vertices.

where k here represents the ghost particle momentum. The gluon propagator (shown in Fig.
1.3C) is formulated as:

−iDµν(k)

k2
δab (1.62)

where in the Lorenz gauge Dµν(k) is de�ned as Dµν(k) = gµν− (1− ξ)kµkν
k2

, with gµν the metric
tensor where all the elements are 0 except the diagonal which are (+1,−1,−1,−1).

Correspondingly, there are algebraic factors for the vertices which represent the particle
interactions. For the quark-gluon vertex (shown in Fig. 1.4A) it is:

igsγ
µ(ta)ji (1.63)

where gs is the strong coupling and (tα)ji the color factor from the SU(3) colour group described
above. For a ghost-gluon vertex (shown in Fig. 1.4B) the factor is given by:

gs(p+ k)µfabc (1.64)

where fabc is the SU(3) group structure constant. Finally, for the three-gluon (3g) and four-
gluon (4g) vertices (shown in Fig. 1.4C and 1.4D) the factors are:

(3g) : −gsfabc [(k1 − k3)νgµρ + (k2 − k1)ρgµν + (k3 − k2)µgνρ] (1.65)

(4g) : −ig2
s

[
fabef cde (gµρgνσ − gµσgνρ) + facef bde (gµνgρσ − gµσgνρ) + fadef bce (gµνgρσ − gµρgνσ)

]
(1.66)

A pictorial representation of the QCD Lagrangian from Eq. 1.51 (without the ghost) contribu-
tions is shown in Fig. 1.5. Note also that arrows on the quark and ghost propagators indicate
the �ow of the particle number and, in the cases of the quark propagator and the ghost�gluon
vertex, they also indicate the momentum �ow. Moreover, the standard Feynman diagram rules
e.g., 4-momentum and baryon/lepton number conservation at each vertex, also apply here.

E�ectively, the Feynman calculus allows the computation of the quantities that can actually
be measured: cross sections (σ) and decay rates (Γ). In both cases the two main ingredients
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Figure 1.5: A pictorial representation of the QCD Lagrangian (no ghost contributions) [20].

are the amplitude M of the process and the available phase space. The former contains all the
information about system's dynamics and is obtained by considering all the possible Feynman
diagrams for the speci�c process. The phase space ingredient is purely kinematic depending on
the masses and 4-momenta of the process participants. For example, for a 2 → N scattering
process, the (di�erential) cross section is formulated as follows [21]:

dσ =
1

2EA2EB|υA − υB|

(∏
f

d3pf
(2π)3

1

2Ef

)
× |M(pA, pB → {pf})|2(2π)4δ(4)(pA + pB −

∑
pf )

(1.67)
where EA, EB and pA, pB are the 4-momenta of the initial state colliding beams, |υA−υB| is the
relative velocity of the beams as viewed from the laboratory frame, pf and Ef are the 4-momenta
of the �nal state particles andM is the invariant matrix element (scattering amplitude) which
is computed from Feynman diagrams. The latter (M) contains all the information related to
the speci�c physical process such as the coupling constant dependence, whereas everything else
in Eq. 1.67 are kinematic factors which are the same for all 2→ N processes. The (di�erential)
decay rate formula in terms ofM, for a decaying particle at rest is:

dΓ =
1

mA

(∏
f

d3pf
(2π)3

1

2Ef

)
× |M(mA → {pf})|2(2π)4δ(4)(pA −

∑
pf ) (1.68)

1.3.3 Renormalization and the strong coupling

In the above discussion on Feynman diagrams, only tree-level diagrams were considered,
which means that no loops were contained in them. In fact, all the above processes exhibit
higher order contributions called radiative corrections from diagrams that do contain loops.
Examples of diagrams accounting for contributions to the quark self-energy, the gluon self-
energy and the quark-gluon vertex at one loop are shown in Fig. 1.6.

Figure 1.6: Examples of one loop contributions to the quark self-energy (A), the gluon self-
energy (B) and the quark-gluon vertex (C).

The evaluation of physical quantities such as couplings or amplitudes to a speci�c order in
perturbation theory translates to the summation of the tree level Feynman diagrams (Leading
Order - LO) plus a certain number of loops, where the order in the perturbative expansion
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increases with the number of loops. However, the calculation of such radiative corrections is
rather than trivial since they are ill-de�ned. This is because each diagram that contains a
loop, involves an integration over the loop momentum which is allowed to vary up to in�nity
k → ∞, also called ultra-violet (UV) region. The treatment of such UV divergences is called
renormalization and allows the absorption of those divergences in the quantities that appear in
the Lagrangian such as masses and coupling constants [22, 23]. In that sense, renormalization
enables the extraction of �nite predictions from mathematically divergent quantities.

In general, the renormalization process involves three separate steps. In the �rst step, a
regulator or cut-o� Λ is arti�cially introduced such that all the integrals become �nite. An
example is the dimensional regularization where the integrals are calculated in a number of
dimensions D = 4−2ε where the loop integrals converge. In the second step, any free parameter
of the theory is made adjustable as function of the above cut-o�. In the last step, the regulator
is removed again (Λ → ∞, ε → 0) while at the same time the cut-o� dependence of the
parameters is chosen in such way as to cancel the UV divergences with the addition of new
counterterms in the Lagrangian [24]. However, changing the spacetime dimensions in order
to make integrals convergent, enforces the introduction of an arbitrary parameter µ called
mass parameter or renormalization scale which accounts for the dimensional di�erence and
preserves consistent dimensions (units) for all the renormalized quantities. For example, the
strong coupling constant is dimensionless which means that in the dimensional regularization
the strong coupling gs is replaced by the gsµ

ε, in order to keep gs dimensionless for all ε. It
becomes obvious then, that the value of the strong coupling αS (αS = g2

s/4π) depends on the
scale µ at which it is evaluated: αS = αS(µ), where the exact dependence is investigated below.
From the experimental point of view, the renormalization scale µ is related to the physical scale
of the process i.e., the scale at which the process is studied or the experimental measurement is
made. For example, for a process involving a momentum transfer Q, the strength of the QCD
interaction is given by αS(µ) with µ ∼ Q [17].

The renormalization process leads to a Lagrangian which has exactly the same form as the
original Lagrangian, though written in terms of the renormalized �elds and parameters. The
counterterms that are incorporated, include the part which cancels the corresponding diver-
gence but also a �nite part which is arbitrarily chosen. The prescription for the determination
of such �nite parts is called the renormalization scheme [24]. The most common choice for
QCD calculation is the MS scheme, where MS means Minimal Substraction (MS) which is
itself another scheme. In the MS scheme, all the masses and couplings are dependent on the
renormalisation scale µ and the exact dependence is de�ned by the Renormalization Group
Equations (RGE). For the strong coupling, which is of particular interest here, the RGE is
formulated as [15]:

µ2∂αS(µ2)

∂µ2
= β(αS(µ2)) (1.69)

where the β function of QCD is perturbatively expressed as:

β(αS) = −α2
S

(
b0 + b1αS + b2α

2
S +O(α3

S)
)

(1.70)

with:

b0 =
33− 2nf

12π
, b1 =

153− 19nf
24π2

, b2 =
77139− 15099nf + 325n2

f

3456π3
(1.71)

where nf is the number of quark �avours which have mass lower than µ. Clearly, the �rst
coe�cient b0 is positive for nf ≤ 16 and considering the minus sign in Eq. 1.70, the term
−α2

S · b0 is negative. Having also in mind the corresponding QED β function coe�cients, which
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for one fermion �avour is:

βQED(α) =
1

3π
α2 + ... (1.72)

it is obvious that QED and QCD have opposite sign for the �rst β function coe�cient, with
the minus sign in QCD arising from the non-Abelian interactions of the theory i.e., gluon self-
interactions, which is the origin of the asymptotic freedom property of QCD described above.

After keeping only the leading term b0 and ignoring all the other terms in the perturbative
expansion of Eq. 1.70, the solution for Eq. 1.69 is written:

αS(Q2) =
αS(µ2)

1 + b0ln (Q2/µ2)αS(µ2)
(1.73)

which relates the value of the strong coupling at a scale Q to a reference scale µ, if both scales
are in the perturbative region. The crucial role of the b0 positive sign becomes visible also here,
since for higher scales Q the αS coupling decreases resulting in asymptotic freedom. A standard
choice for the reference scale is the well-known Z-boson mass (µ = MZ), with the latest world
average value given in (2020) PDG [10]:

αS(M2
Z) = 0.1179± 0.0010 (1.74)

An alternative formulation is obtained by introducing a dimensionful parameter in the
αS(Q2) de�nition. This parameter is called ΛQCD and corresponds to the scale at which the
strong coupling would diverge when an extrapolation in the non-perturbative domain is per-
formed, while at the same time it indicates the scale where the αS(Q) becomes large. The
value of ΛQCD is not theoretically predicted and the experimental measurements have shown
that ΛQCD ≈ 200 MeV . This means that the strong coupling becomes large or equivalently the
perturbation theory breaks down for scales close to the light hadron masses Q ≈ 1 GeV [15].
Finally, the formulation of the αS(Q) with respect to ΛQCD, retaining again only the leading
term, is:

αS(Q2) =
1

b0 · ln
(
Q2/Λ2

QCD

) (1.75)

which leads to the evaluation of αS(Q2) for a given value of ΛQCD.

1.3.4 Cross section predictions for pp collisions

Figure 1.7: Sketch
of a hadron-hadron
hard-scattering pro-
cess [25].

The perturbation theory can be applied for interactions between par-
tons at short-distances or equivalently large energy scales. Therefore, for
a high-energy scattering experiment based on a hadronic initial state,
more elaborate techniques are needed for the cross section calculation.
The solution is given by the factorization theorem which separates the
treatment of the processes of interest into di�erent regimes, according to
the scales of momentum transfer involved. In the case of pp collisions,
at high scales (or short distances) the constituent partons of the incom-
ing proton beams interact producing energetic outgoing partons. This
"hard" subprocess is perturbatively calculable yielding to the partonic
scattering cross section (σ̂ in Fig. 1.7). On the other hand, at lower
scales of the order of 1 GeV as discussed above, the incoming partons
are con�ned in the beams and non-perturbative methods are required
for describing the interaction. In practice, those "soft" long-distance
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subprocess are not calculated from �rst principles and are modelled through the Parton Dis-
tribution Functions (PDFs).

A PDF fi/h (x, µf ) represents the e�ective density of partons of �avor i, as a function of
the momentum fraction xi (~pi = xi~ph) when a hadron h is probed at the factorization scale
µf . At leading order, it can be physically interpreted as the probability to �nd the parton i in
the hadron h with momentum fraction xi, parametrizing the transition of incident hadrons to
incident partons. The µf parameter is a cut-o� arti�cially introduced for the treatment of the
divergences arising in cross section calculations with incoming partons, which is reminiscent
of renormalization for the coupling constant discussed above. The di�erence here is that the
divergences are not in the ultraviolet region but in the infrared region, arising from the collinear
emissions with transverse momentum kt → 0 of the incoming partons i.e., the cross section for a
process with incoming partons (with virtual corrections included) are collinear unsafe. The idea
is that introducing the parameter µf , any emission with kt ≤ µf will be absorbed into the PDF
itself, in a similar way as the strong coupling constant and the other fundamental theoretical
parameters absorb the ultraviolet divergences. Technically, in most cases the factorization
scale µf (i.e., the scale at which the PDFs are determined) is chosen to be equal with the
renormalization scale, symbolized with µr from now on (i.e., the scale at which the strong
coupling is evaluated) and both denoted as Q (i.e., the scale of the process). In analogy with
the renormalization group equation 1.69, the corresponding equations used to describe the scale
evolution of the PDFs are the Dokshitser�Gribov�Lipatov�Altarelli�Parisi (DGLAP) equations
[17], not discussed further here.

The PDFs describe the densities not only for the u and d quarks, known as valence quarks,
but also for the gluons and the so-called sea quarks. The latter are generated from the emission
of gluons which are not immediately re-absorbed and split into quark-antiquark pairs i.e., the sea
partons which have increasing lifetime with decreasing momentum fraction x. Moreover, with
increasing scale the probed time intervals become smaller and smaller and therefore the quantum
�uctuations inside the hadron are resolved. In other words, at higher µf the momentum of the
proton is given to gluons and sea quarks with relatively low x and the population of partons
which posses large x is decreased. Furthermore, the PDFs are universal i.e., they are process-
independent, meaning that once they are determined for one set of processes they can be used
as basis for the cross section calculation for any other process. The standard technology for
PDF determination is by performing global �ts to data from di�erent experiments: �xed target
experiments, Tevatron, HERA and LHC experiments etc. Figure 1.8 shows the the kinematic
plane x-Q2 accessible to di�erent center-of-mass energies and experiments. There are di�erent
collaborations with primary goal the determination of PDFs (e.g CTEQ, NNPDF, etc), using
in general di�erent approaches and data in �ts. The LHAPDF (Les Houches Accord PDF) [26]
is a widely used interface which enables the compact storage of the di�erent PDF sets, while
the APFEL (A PDF Evolution Library) [27, 28] is a web-based application which is extremely
useful for the graphical visualisation of PDFs. Figure 1.9 shows an example of PDF visualisation
generated with APFEL, illustrating the NNPDF31 NLO parton densities for valence, sea quarks
and gluons at Q = 100 GeV .

Coming back to the factorization theorem, the cross section for the hadronic production of
an n-parton �nal state from a scattering reaction with two hadrons h1 and h2 in the initial
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state, is formulated as [29, 30] (see also Eq. 1.67):

σ2→n =
∑
a,b

∫ 1

0

dxadxbfa/h1 (xa, µf ) fb/h2 (xb, µf ) σ̂ab→n (µf , µr)

=
∑
a,b

∫ 1

0

dxadxbfa/h1 (xa, µf ) fb/h2 (xb, µf )
1

2ŝ

∫
dΦn|Mab→n|2 (Φn;µf , µr)

(1.76)

where fa/h1 and fb/h2 are the PDFs described above for the two incoming hadrons, respectively.
The parton-level cross section is denoted by σ̂ab→n, which is given by the corresponding matrix
element squared |Mab→n|2, averaged over initial-state spin and colour degrees of freedom and
integrated over the available n-parton �nal-state phase space Φn, while the parton �ux ŝ is
given by: 1/ (2ŝ) = 1/ (2xaxbs), where s is the hadronic center-of-mass energy. As discussed
in Sec. 1.3.2, the matrix element is calculated with a summation over the Feynman diagrams,
denoted as:

Mab→n =
∑
i

F (i)
ab→n (1.77)

The phase space element dΦn is given by:

dΦn =
n∏
i=1

d3pi
(2π)3

1

2Ei
· (2π)4δ(4)

(
pa + pb −

n∑
i=1

pi

)
(1.78)

Finally, the transition from �nal state partons to measurable hadrons is described in Chapter
4, where the jet production is also addressed.
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Chapter 2

Particle accelerators and colliders

A particle accelerator is a device that propels electrically charged particles, such as protons
or electrons, at velocities which may approach the speed of light. In general, in particle accel-
erator systems, beams of charged particles are produced and they are directed at a �xed target
or they can be collided with another beam of particles circulating in the opposite direction.

There are more than 30.000 accelerators in operation worldwide, from which less than 1% are
devoted for fundamental research, while the vast majority of them are used for medical purposes
and industrial applications [1]. The most common usages of accelerated particle beams are:

� For causing nuclear reactions when proton beams interact with atomic nuclei. Examples of
such nuclear applications are the production of medical radioisotopes needed for medical
treatments and the transmutation of nuclear waste into less harmful isotopes.

� For breaking/modifying chemical bonds, which can be utilized in materials science (e.g
polymer processing) or for cancer therapy by breaking up tumour cell's DNA strands.

� For producing X-rays when electron beams hit a metal target, which can be used for
various applications such as X-ray scanning and imaging.

� For creating new particles when particle beams are collided. This makes feasible the
exploration of the building blocks of the universe, which may reveal what the universe is
made of at the most fundamental level and how it works.

This chapter focuses on the last application of accelerators and more speci�cally on ac-
celerator systems used for high energy particle physics experiments. It is worthy of mention
that historically the �rst accelerators were inspired for early nuclear physics experiments, while
nowadays (2022) the world's largest and most powerful particle accelerator, namely the Large
Hadron Collider (LHC) at CERN, is devoted for basic physics research.
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2.1 History - Types of accelerators

Based on the type of the �elds used for accelerating the particles, two basic classes of
accelerators have been developed: electrostatic and electromagnetic accelerators.

2.1.1 Electrostatic

Historically, the �rst particle accelerators were designed during the 20th century, based on
the technology of electrostatic high-voltage generators. Those early accelerators consisted of
an evacuated tube with an electrode at either end, creating a static potential across the tube.
Using a particle source, for example an electron source, close to one electrode at a potential
−V , the electrons with charge e were accelerated towards the second electrode, with voltages
that could approach few tens of kV [2].

The �rst electrostatic accelerators with voltages of the MV scale, were invented during
1930s. Firstly, Cockcroft and Walton built a generator made up of capacitors and diodes (CW
generator), which could generate voltages that approached 1 MV and was used for accelerating
particles in their �ssion experiments. Such CW generators are still used today as starting points
of the acceleration chain for other accelerator systems (e.g linacs, synchrotrons) or in everyday
electronic devices that require high voltage (e.g microwave ovens, photocopiers). Then, the
invention by Van der Graaf of an electrostatic generator that could reach voltages of several
MV in early 1930s, led to the particle accelerator named after him. That simple Van der
Graaf accelerator, used a belt moving over two rollers and carried mechanically the charge
into a high voltage terminal until it reached a maximum value. More advanced con�gurations
of such electrostatic generators are still in use today as low energy particle accelerators, e.g
Van der Graaf Tandem accelerator of the National Centre for Scienti�c Research "Demokritos"
(NCSRD) in Athens which has a maximum acceleration voltage of 5 MV and is used for nuclear
physics experiments [3].

2.1.2 Electromagnetic

In order to overcome the limitations imposed by electrical breakdowns in electrostatic ac-
celerators, the varying property of electromagnetic �elds needed to be exploited. This idea
was conceived by R. Wideröe in the design of the �rst circular accelerator which was called
ray transformer in 1928. That device, using magnetic induction, would be able to accelerate
electron beams at several MeV , when circulating in a ring of few cm diameter. In practice,
the acceleration of electrons by induction from an increasing magnetic �eld, was applied by
D.W. Kerst and R. Serber in 1940 with the invention of a series of betatrons. In betatrons,
electrons are accelerated in a circular evacuated tube, harnessing the inductive e�ect of varying
magnetic �elds generated via alternating currents, which cause a change in the magnetic �ux
and thus an accelerating potential di�erence around the beam path. The maximum energies of
the betatrons which were built for particle physics experiments, since then, were limited due
to the practical size of the magnets and the synchrotron radiation and have reached about 300
MeV . However, lower energy betatrons are still in use mainly for producing energetic x-rays
for medical and industrial applications.

Wideröe was also pioneer in the invention of linear accelerators or linacs, inspired by prin-
ciples proposed by G. Ising for accelerating particles using alternating electric �elds. In 1927
Wideröe constructed a linear array of 3 drift tubes (drift tube linac) and successfully used it for
the acceleration of sodium ions at the RWTH Aachen University. Based on Wideröe's idea, D.
Sloan and E.O Lawrence at Berkeley constructed later (1931-1934) a linac consisted of 30 drift
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tubes and used it for the acceleration of mercury ions. The �rst proton linac was built from
L.W. Alvarez in 1946 at the Radiation Laboratory of the University of California. In modern
linacs, charged particles are accelerated by receiving electrical impulses when travelling through
a sequence of metallic chambers, also known as electromagnetic (RF) cavities. The RF cavi-
ties' �eld is oscillating (switching direction) at a given frequency, so that the charged particles
are being pushed from the cavities behind them and being pulled from the cavities ahead of
them. Linear accelerators are widely used for medical applications e.g X-ray source for cancer
treatment from electrons accelerated at 4-25 MeV , but also as injectors for circular colliders
(see for example Fig. 2.6) for accelerating protons or electrons in the range 10 MeV - 1 GeV .

Figure 2.1: The Linear accelerator (Linac) 2
at CERN [4].

Two representative examples of linear acceler-
ators used for physics research are the Stan-
ford Linear Accelerator at SLAC in California
which is 3.2 km and accelerates e− and e+ up
to 50 GeV [5] and the 2.1 km long linac used
at the European XFEL at DESY in Hamburg
which accelerates e− up to 17.5 GeV [6]. At
CERN, Linear accelerator (Linac) 2 shown in
Fig. 2.1 was used until 2020, when it was re-
placed by Linac4 during LS2. It was the start-
ing point for the acceleration of protons used
in CERN's experiments for 40 years, with pro-
ton's energies reaching 50 MeV .

Cyclotrons is another category of particle
accelerator invented by E.O Lawrence in 1930
at the University of California, Berkeley. In
a cyclotron, charged particles are accelerated
along a �at spiral trajectory by using radiofre-
quency generators. For bending the particles' path, a static magnetic �eld which is perpendic-
ular to the direction of the motion is used. The circular orbit condition is derived by equating
the Lorentz force and the centrifugal force:

qυB =
mυ2

ρ
(2.1)

Thus, the particles' orbit radius in a cyclotron is proportional to the momentum and for a
charged particle it can be written as:

Bρ =
p

q
(2.2)

where B is the strength of the magnetic �eld, ρ is the radius of the orbit, p is the momentum
(mυ for classical, γmυ for relativistic particles) and q is the electric charge of the particle.
Hence, when charged particles are injected in the centre of a cyclotron, their acceleration from
the RF generators leads to the increment of the rotation radius and their energies reach the
highest values at the end of the spiral path. At the same time, the frequency of the RF is
synchronised with the revolution frequency of the particles, which can be expressed as:

f =
qB

2πm
(2.3)

where m is the mass of the charged particle. This frequency remains constant in the classical
regime, but this is no longer the case for relativistic particles, since the relativistic mass in not
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constant and frequency decreases proportionally to the particle's Lorentz factor γ. Therefore,
di�erent types of cyclotrons have been developed:

� classical cyclotrons which are limited to non-relativistic energies, with constant frequency.

� synchrocyclotrons where the frequency of the RF is varied in order to be synchronised
with the particles' revolution frequency.

� isocyclotrons which use a nonuniform magnetic �eld with properly adjusted strength in
order to allow the synchronism between the RF and revolution frequency.

Several cyclotrons are still used for medical and industrial applications and for fundamental
scienti�c research. An example is the Superconducting Ring Cyclotron (SRC) at the RIKEN
research institute in Japan which can accelerate light ions (such as helium) and heavy ions (such
as uranium) up to 400 MeV and 350 MeV per nucleon, respectively [7]. Another example is
the cyclotron hosted at Canada's particle accelerator centre TRIUMF, which delivers proton
beams up to 520 MeV [8].

The last type of accelerator to be discussed here is synchrotron, with M. Oliphant being the
�rst who described its principles and also designed the �rst proton synchrotron in 1952. Com-
pared to isocyclotrons, the basic di�erence of a synchrotron is that the magnetic �eld, which
is used for guiding the particle beams, is now time dependent rather than spatially variant.
Therefore, the strength of the magnetic �eld rises in proportion to the momentum of the parti-
cles which are accelerated using RF cavities synchronised with the particles' orbital frequency.
Unlike the cyclotron, the radius of the orbit in a synchrotron remains constant. Cosmotron, the
�rst proton synchrotron which was built in 1953 at Brookhaven National Laboratory, was the
�rst particle accelerator in history that achieved to accelerate particles in the range of GeV , by
accelerating protons at 3 GeV . Since then, a wide range of next generation synchrotrons have
been developed and used for fundamental physics research leading to substantial discoveries.
To date, synchrotrons comprise the basic elements in complex accelerator systems used in high
energy particle physics experiments. The DESY accelerator complex, shown in Fig 2.2, is such
an example, where di�erent types of accelerators were used to accelerate electrons/positrons
and protons, before they were injected and made to collide at the HERA collider (1992-2007)
with up to 318 GeV center-of-mass energy. The Fermilab accelerator complex, shown in Fig
2.3, is the home of Tevatron collider (1983-2011) which employed collisions of proton-antiproton
beams with up to 1.96 TeV center-of-mass energy. The Large Hadron Collider (LHC), the last
element of the CERN accelerator complex (see Fig. 2.6), will be discussed in detail in Sec. 2.3.

Figure 2.2: Aerial view of DESY accelerators
and H1 experiment (blue sketch) [9].

Figure 2.3: Aerial view of Fermilab accelera-
tor complex [10].
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2.2 Physics of circular accelerators and colliders

High energy accelerators and colliders are the main tools used for the investigation of el-
ementary particles' properties and their fundamental interactions, as well as for searches for
new particles. The �rst key physics parameter of interest here is the energy of the colliding
particles. In particular, particle beams are collided either with a �xed target or with opposing
beams. In the �rst case, the centre of mass energy for the collision only increases with the
square root of the accelerator's energy ∼

√
m0E, where m0 is the mass of the �xed target. On

the other hand when two opposite travelling identical beams of energy E are colliding head on,
then the centre-of-mass energy is 2E. In the latter case, the center-of-mass energy is usually
denoted as ECM , or in terms of a Lorentz invariant Mandelstam variable s:

ECM ≡
√
s, s ≡ (p1 + p2)2 = (E1 + E2)2 (2.4)

where p1 and p2 are the momenta of the two colliding particles with ~p1 + ~p2 = 0 in the center-of-
mass frame [11]. Such variables (Mandelstam) are Lorentz invariant bilinears of the 4-momenta
of incoming and outgoing particles, which are extremely useful for analysis of hadron collisions
because they are invariant under boosts connecting the parton and the lab frame. Since the
highest energy available for new particle production is achieved at collider experiments with
two particle beams colliding head on, a wide range of powerful colliders of this type have
been developed over the last century for particle physics experiments with (anti)hadron and
(anti)lepton beams. The Large Hadron Collider (LHC) at CERN (see Sec. 2.3), is the world's
largest and most powerful particle accelerator ever built, designed to reach a maximum center-
of-mass energy for collisions of proton beams at 14 TeV . A comparison of the center-of-mass
energy for various colliders used for high energy physics experiments versus time (in years), as
well as the corresponding particle beam types, is illustrated in Fig. 2.4.

Figure 2.4: Centre-of-mass energy of particle
colliders versus year [12].

Besides the center-of-mass energy, another
important parameter for colliders is luminos-
ity, which de�nes the rate of produced colli-
sion events:

R = L · σp (2.5)

where R is the number of events per second,
L is the instantaneous luminosity and σp is
the process cross section. In practice, colliders
usually employ particle beams in bunches col-
liding at the interaction point (IP) at a given
frequency. Therefore, instantaneous luminos-
ity represents the number of particles passing
each other per unit time through a transverse
unit area at the IP. While the cross section of
a process depends on the fundamental inter-
action properties of the particles in the initial
and �nal state, the luminosity is a parameter
which depends only on machine characteris-
tics. For, two identical particle beams, instantaneous luminosity can be written in its simplest
form as:

L = fcol
n1n2

4πσ?xσ
?
y

F (2.6)

where fcol is the collision frequency, n1 and n2 are the particles contained in the �rst and
second bunch respectively, σ?x and σ

?
y are the transverse beam sizes and F is a factor of order 1
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[13]. The units of instantaneous luminosity are cm−2s−1, but since the unit commonly used for
cross sections is barn (1 b=10−24cm2), it may also be convenient to use luminosity units like:
1 cm−2s−1 = 10−33 nb−1s−1. In fact, an even more useful quantity is the integrated luminosity
i.e., the accumulation of the luminosity for a speci�ed period of time:

Lint =

∫ T

0

L(t)dt (2.7)

Cross section calculation for processes of interest, are also of particular relevance for collider
physics, since they allow the comparisons between di�erent experiments with di�erent beam
sizes and intensities. A cross section is a quantity that is intrinsic to the colliding particles
and quanti�es the probability for obtaining a particular �nal state. It can be experimentally
measured by counting the number of events (see also Eq. 2.5), but also theoretically predicted
from a Lagrangian quantum �eld theory and for that reason it usually serves as the bridge
between theory and experiment. As mentioned above, cross section has units of area. For
an experiment with two colliding beams, it physically represents the e�ective area of portion
taken out of one beam, by each particle in the other beam. For a 2 → N scattering process,
the cross section is given by Eq. 1.67. When dealing with unpolarized beams, an average of
the quantity |M|2 over all possible initial state polarizations should be computed, while for
polarized beams a weighted average is calculated. Additionally, |M|2 should be summed over
all possible spin states, when �nal state particles have spin. The summed/averaged |M|2 is
usually denoted by ¯|M|2. Note also, that Eq. (1.67) is invariant under boosts parallel to the
collision axis [14]. Figure 2.5 shows cross section measurements of Standard Model processes
from the CMS experiment (see Chap. 3), as well as the corresponding theoretical predictions
for di�erent center-of-mass energies. As an illustrative example of luminosity and cross section
concepts, let's consider the Higgs boson production in proton-proton collisions at 13 TeV at
the LHC which has a total cross section of the order of 6000 fb. This means that for every 1
fb−1 of integrated luminosity delivered by the LHC, about 6000 Higgs bosons are produced.

A signi�cant limiting factor to the collider energy is the synchrotron radiation i.e., the
electromagnetic radiation emitted when charged particles travel in curved paths. The energy
loss per revolution for a circular collider is:

∆E ∼ 1

R

(
E

m

)4

(2.8)

where R is the radius of the circular machine, m is the particle mass and E is the energy of the
beam. Therefore, the e�ciency for an accelerator increases for larger radius or more massive
particles. For this reason, synchrotron radiation is the main obstacle for e+e− rings. On the
other hand, an advantage in colliding (anti)lepton beams is that the center-of-mass energy is
entirely available to produce short distance reactions, in contrast with hadron colliders where
the corresponding energy is spread among the hadron constituents (e.g. quarks and gluons).
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Figure 2.5: Cross section measurements of Standard Model processes from the CMS experi-
ment, in comparison with theoretical predictions for various center-of-mass energies [15].

32



2.3. THE LARGE HADRON COLLIDER

2.3 The Large Hadron Collider

Figure 2.6: The CERN accelerator complex
[16].

The Large Hadron Collider (LHC) is the
world's most powerful particle accelerator, de-
signed to collide proton beams up to 14 TeV
center-of-mass energy [17]. It is located 100
m underground at the European Organization
for Nuclear Research (CERN) and is installed
in the ∼ 27 km long tunnel which was orig-
inally constructed for LEP machine between
1984-1989. The LHC is the last element of
CERN's accelerator complex (shown in Fig.
2.6) which consists of a particle accelerator
chain used not only for boosting particles en-
ergies, but also for providing beams to various
experiments.

The LHC started operating on 2008 and
from 2010 to 2012 (Run 1) it employed
proton-proton (pp) collisions with center-of-
mass energy at 7 and 8 TeV , which both
noted as world records at that time. Then
after a two-year Long Shutdown (LS1), LHC
restarted on 2015 by breaking its own record with delivering proton-proton collisions at 13 TeV
center-of-mass energy and then stopped again (LS2) on 2018 (Run 2: 2015-2018). The total
integrated luminosity delivered by the LHC and recorded from the CMS experiment versus
time (in years) for Run 1 & 2, is shown in Fig. 2.7. Though it was designed to operate with
a peak luminosity of 1034 cm−2s−1 (nominal value) for proton-proton collisions, during Run 2
the peak luminosity reached 2 · 1034 cm−2s−1.

Apart from proton beams, LHC also delivers heavy ion (HI) beams. In particular, heavy
ion collisions are scheduled for a speci�c period of the operating year, normally after proton
collisions. So far, lead-lead (Pb-Pb), xenon-xenon (Xe-Xe) and proton-lead (p-Pb) collisions,
have been provided from the LHC at multiple energies and peak luminosities e.g up to 2.56
TeV/nucleon energy and 3.6 · 1027 cm−2s−1 peak luminosity for Pb-Pb collisions [18].

At the time of writing (2022), it is foreseen that the LHC will deliver pp collisions again
at the start of 2022, �rstly at 13 TeV and later at 14 TeV center-of-mass energy. By the end
of Run 3 (expected at the end of 2024), it is anticipated that a total integrated luminosity of
∼ 350fb−1 will have been recorded. Then, a major upgrade will lead to the successor of the
LHC, the High Luminosity LHC (HL-LHC). In the HL-LHC, the instantaneous luminosity will
be increased by a factor of 5 beyond the original design value and the integrated luminosity
by a factor of 10 [19]. Hence, the observation of rare processes which are below the current
sensitivity level will be enabled and the accuracy of the measurements of new particles will be
increased. Currently, the HL-LHC operation lifetime is scheduled from 2027 until 2040, a period
which is also called Phase II in contrast to the LHC era (Run 1-3) which is usually denoted as
Phase I. In the following subsections an overview of the LHC machine characteristics and the
main physics goals for the collider's experiments will be discussed.
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Figure 2.7: The total integrated luminosity delivered by the LHC and recorded from the CMS
experiment during Run 1 and Run 2 [20].

2.3.1 LHC machine

The LHC is a two-ring superconducting hadron accelerator and collider, designed to accel-
erate two counter-rotating beams before they are made to collide at the center of experimental
detectors. The two hadron beams travel in opposite directions in separate beam pipes, guided
by strong magnetic �elds maintained by superconducting electromagnets. Geometrically the
LHC is made of eight straight sections (∼ 528 m long) and eight arcs (∼ 2.45 km long). There
are four locations hosting the underground experimental caverns for the four main experiments
(ATLAS, ALICE, CMS and LHCb) where the beam crossing occurs, while di�erent sections
and locations host systems serving for various functionalities e.g beam injection, beam cleaning,
beam dumping etc [17].

All the magnets in the LHC are electromagnets i.e., the magnetic �eld is produced by the
�ow of electric current [21]. A wide range of magnets in terms of type and size are used for
directing the beams around the LHC accelerator, with 9593 magnets in total used for this
purpose [22]. There are 1232 main dipole magnets, each ∼ 15 m long and 35 t heavy used for

bending the hadron trajectories. Every dipole generates a ~B on each pipe which has opposite
direction to that of the other pipe, so that the Lorentz force exerted on charged hadrons, curves
their path clockwise and anticlockwise respectively. The coils are wound from niobium-titanium
(NbTi) Rutherford cables, operating in a superconducting state (conduction of electricity with-
out resistance or loss of energy). For achieving this, an advanced cryogenic system is used
which maintains the superconducting magnets at 1.9 K (−271.3◦C) using super�uid helium.
Figure 2.8 shows two LHC cylinders containing the LHC magnets before they are connected
together and the liquid helium system. The same cryogenic technique is used at the experimen-
tal detectors for keeping heavy gases such as argon (Ar) and krypton (Kr) in a liquid state, for
detecting particles in calorimeters, for example. In total, a magnetic �eld of 8.33 T is produced
for keeping the particle beams in path around the LHC ring. A current of ∼ 12 kA in the
magnet coils is needed to reach the previous value of 8.33 T . Dipoles are also equipped with
sextupole, octupole and decapole magnets, which correct for small imperfections in the magnetic
�eld at the extremities of the dipoles. Besides dipoles, 392 quadrupoles 5-7 m long are also
used for beam focusing. Quadrupoles help to squeeze the bunches and keep the particles in a
tight beam, by acting as lens which constrain beams' width and height. Accordingly, they have
four magnetic poles arranged symmetrically around the beam pipe to compress the beam either
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vertically or horizontally. Other magnetic multipoles (sextupoles, octupoles) are used also here
for helping the beam focusing and counteracting e�ects which distort it e.g electromagnetic
interactions between proton bunches (discrete packets of protons).

The acceleration of charged particles at the LHC is attained using radiofrequency (RF)
cavities [17], shown in Fig. 2.9. The basic concepts for RF cavities were already introduced in
Sec. 2.1, as for the LHC, there are in total 16 cavities (8 for each beam) grouped in four (2
per beam) cylindrical refrigerators called cryomodules operating at 4.5 K. The cavities' shape
and size have been speci�cally designed so that the electromagnetic waves become resonant
and built up in intensity inside the cavity. The electromagnetic �eld is fed to the RF cavity
via waveguides (rectangular pipe of conducting metal) from high-power RF generators called
klystrons i.e., tubes containing electron beams which are intensity-modulated to a frequency of
400 MHz. Thus, each RF cavity is tuned to oscillate at 400 MHz. The timing of particles'
arrival at the cavities is important here since ideally timed protons with correct energy will see
zero accelerating voltage, while protons arriving later/earlier with slightly di�erent energies will
be accelerated or decelerated so that they are kept close to the desired energy and the beam is
grouped in bunches. The maximum voltage for an RF cavity is 2 MV , which corresponds to 16
MV for each beam. From the SPS (see Fig. 2.6) every proton enters the LHC with 450 GeV
energy, meaning that the maximum energy for proton beams of 6.5 TeV (Run II) is reached
in around 20 min when each bunch have passed through the RF cavities more than 10 million
times [23].

Three vacuum systems are available at the LHC: one for the beam pipes, one for the insu-
lation of cryomagnets and one for the insulation of the helium distribution line [17]. In order
to avoid collisions between beam particles and gas molecules, an ultra-high vacuum is needed
and pressures in the beam pipes are at the order of 10−10 to 10−11 mbar (10−8 to 10−9 Pa).
On the other hand, the vacuum required for insulation purposes and speci�cally for reducing
the amount of heat seeping towards the cryomagnets and helium distribution lines from the
surrounding room temperature, is signi�cantly lower and stands at the order of 10−6 mbar.

Figure 2.8: Photo of the LHC cylinders (blue)
containing the dipole magnets (magnetic yoke
and coils) and the liquid helium system [24].

Figure 2.9: Photo of a radio-frequency cavity
in the LHC tunnel [25].

2.3.2 Physics at the LHC

As already mentioned above, the LHC is the last component of CERN's accelerator complex
which is a succession of machines (see Fig. 2.6) that accelerate particles to increasingly higher
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energies. For the proton collisions, a simple bottle of hydrogen gas H2 is used as proton source
and an electric �eld strips the hydrogen atoms of their electrons, leaving only protons.1 This
proton source was at one end of Linac2, which was the �rst accelerator in the chain for the
protons from 1978 until 2020 when it was replaced by Linac4 [26]. The protons entered Linac2
with an energy of 750 keV and by the time they reached the other end, they had energy of 50
MeV (for Linac4 this will be 160 MeV ). The protons are then injected to Proton Synchrotron
Booster (PSB), which increases their energy to 1.4 GeV . Then, they are transferred to Proton
Synchrotron (PS), where they accelerated further to 25 GeV . Next, the protons are injected to
Super Proton Synchrotron (SPS) which increases their energy to 450 GeV . Finally, the protons
are sent to the two beam pipes of the LHC, where they can be accelerated up to 7 TeV per
beam.

The protons inside the LHC are grouped into bunches, which are ∼ 7.5 cm long and have
a minimum beam radius of 8.5 µm at the interaction point [13]. The bunches are separated by
∼ 7.5 m or 25 ns from each other, which means that collisions occur at 40 MHz. The protons
moving around the LHC ring at nearly the speed of light, and taking also into account the LHC
circumference (26659m), the revolution frequency is 11.245 kHz. The total number of �lled
bunches is limited by design to a maximum of 2808, however a maximum of 2556 number of
bunches reached during Run 2 [27], with 1.1 × 1011 protons per bunch (at start). Figure 2.10
shows cross section predictions for typical Standard Model processes for proton-proton (pp)
collisions above 4 TeV and proton-antiproton (pp̄) collisions below 4 TeV , with respect to

√
s.

In the case of proton-proton collisions, the total cross section can be broken down in contri-
butions from elastic (pp→ pp), inelastic (pp→ X) and di�ractive processes. The latter refer to
the case where one or both of the two incoming protons survive the collision carrying most of
the beam energy or dissociate into a low mass system [28]. Thus, there can be Single Dissocia-
tion (SD) (pp→ Xp, pp→ pY ), Double Dissociation (DD) (pp→ XY ), or Central Di�raction
(CD) (pp → pXp) processes, with X, Y here representing a multi-particle state of the same
quantum numbers as protons. At the LHC the di�ractive processes (σSD, σDD and σCD) consist
about 20-30% of the inelastic cross section. Several methods have been developed for determin-
ing the di�erent cross section components. An example is the luminosity-independent method
which can be used for deriving the elastic and inelastic cross sections formulating the total cross
section as:

σtot =
16π

1 + ρ2

dNel/dt|t=0

Nel +Ninel

(2.9)

where Nel and Ninel are the elastic and inelastic rates, ρ is the ratio of the real to the imaginary
part of the forward nuclear elastic amplitude (for high energies ρ << 1) and t is the momentum
transfer squared. Figure 2.11 shows an overview of experimental measurements of elastic (σel),
inelastic (σinel) (corrected for di�ractive events) and total cross section (σtot) for pp/pp̄ collisions
as a function of

√
s, including measurements from TOTEM experiment (see Sec. 2.3.3) over

the whole energy range explored by the LHC. The total proton-proton cross section at 13 TeV
was measured at σtot = (110.6 ± 3.4) mb, the elastic cross section at σel = (31.0 ± 1.7) mb
and the inelastic at σinel = (79.5 ± 1.8) mb. Consequently, plugging those cross sections and
the peak LHC instantaneous luminosity (2 · 1034cm−2s−1) in Eq. 2.5, a total rate of about 2.2
billion pp collisions per second (55 per bunch crossing) or 1.6 billion inelastic events per second
(40 per bunch crossing) are produced at the LHC.

The LHC acquires a wide physics program. To begin with, testing the predictions and limits

1The proton source has now been replaced towards Run 3, with the substitution of Linac2 with Linac4. The
latter, accelerates negative hydrogen ions H−, which are stripped of their two electrons during injection from
Linac4 to PSB.
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of the Standard Model (SM) of particle physics to unprecedented energy scales is one of its main
objectives. For achieving that goal, several precise measurements from di�erent experiments
have been performed at the LHC thus far, con�rming the validity of the Standard Model [29].
The collection of such measurements covers the di�erent SM sectors: strong interactions (jet
production, Parton Density Functions etc), Electroweak processes (Vector Boson Scattering -
VBS, W-mass etc), Higgs boson studies (couplings, decays etc), �avour physics (top quark
properties, τ lepton decays etc). Even if the Standard Model has successfully passed all the
experimental tests that it has been put to, yet the model fails to account for major elements
such as dark matter and dark energy. On that account, substantial amount of searches are un-
dergoing at the LHC experiments hunting the observation of new physics phenomena. Searches
for Supersymmetric (SUSY) particles (e.g charginos, neutralinos), searches for Dark Matter
candidates (e.g Weakly Interacting Massive Particles - WIMPs), or searches trying to solve
fundamental open physics questions like the matter-antimatter asymmetry problem, the exis-
tence of extra dimensions etc, are only few examples from that category [30]. A brief overview
of the physics program for each of the eight experiments hosted at the LHC is discussed in the
following section.
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Figure 2.10: Predictions for typical Standard
Model processes for proton-proton (pp) colli-
sions (above 4 TeV ) and proton-antiproton (pp̄)
collisions (below 4 TeV ) with respect to

√
s [31].

Figure 2.11: Overview of experimental mea-
surements of elastic (σel), inelastic (σinel) and
total cross section (σtot) for pp/pp̄ collisions
as a function of

√
s, including measurements

from TOTEM experiment over the whole energy
range explored by the LHC [32].
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2.3.3 LHC experiments

Currently (LS2 - 2022), eight detectors designed to investigate the broadest physics scope
possible, are established at the LHC.

� ALICE (A Large Ion Collider Experiment) [33]:
is aiming to explore the strong interaction sector of the Standard Model, by studying the
strongly interacting matter at extreme energy densities. This is feasible during heavy ion
(e.g Pb nuclei) collisions, where the temperature at the collision zone is 100000 times hot-
ter than the core of our Sun. In such conditions, protons and neutrons "melt" into their
elementary constituents, quarks and gluons, which form the quark-gluon plasma. This
primordial state of matter, where quarks and gluons are freed, is considered as dominant
in the universe the �rst millionths of a second after the Big Bang. The hot reaction zone
rapidly expands and cools and then the ordinary matter particles are formed. Therefore,
recreating this primordial state of matter in the laboratory and tracking precisely its evo-
lution, helps in addressing questions about how matter is organized, the color con�nement
mechanism of QCD etc. The ALICE detector has overall dimensions 16 × 16 × 26 m3

weighting 10000 t, while the collaboration counts about 2000 scientists (2022).

� ATLAS (A Toroidal LHC ApparatuS) [34]:
is one of two general-purpose detectors at the LHC and is designed to exploit the full
discovery potential of the LHC. The physics program ranges from precise measurements
of Standard Model parameters to searches for new physics phenomena, produced dur-
ing pp collisions and HI collisions. After the completion of one of the most important
inceptive goals for the ATLAS and CMS experiments, the discovery of the Higgs boson
on 2012 [35], signi�cant studies have been performed for investigating its properties, its
interactions with other SM particles, the production and decay mechanisms etc. Besides
Higgs physics, the electroweak sector of the SM (e.g accurate measurement W-mass) and
�avor physics (e.g t-quark properties, B and D-mesons) are thoroughly investigated. Ad-
ditionally, searches for new particles predicted from theories Beyond the Standard Model
(e.g squarks predicted from SUSY) are employed and open physics questions like the
matter-antimatter asymmetry (see also LHCb) or the existence of extra dimensions are
addressed. The detector is 46 m long, 25 m high, 25 m wide and 7000 t heavy and more
than 5500 scientists are members of the ATLAS experiment (2022).

� CMS (Compact Muon Solenoid) [36]:
is the second of the two general-purpose detectors at the LHC. The scienti�c goals for
the CMS experiment coincides with ATLAS's and also covers the wide range of physics
described above. However, CMS uses di�erent technical solutions (tracking system,
calorimeters, trigger architectures etc) and a di�erent magnet system design for com-
pleting its goals. The CMS detector is 21 m long, 15 m high, 15 m wide and weighs
14000 t, while a detailed description of the CMS subdetector systems is included in Sec.
3.3 The CMS collaboration has more than 5500 scientists (2022).

� FASER (ForwArd Search ExpeRiment) [37]:
is CERN's newest experiment, installed 480 m downstream from the ATLAS interaction
point, during LS2. It is designed to search for light and weakly-interacting particles which
may be produced along the beam axis during proton-proton collisions. Such particles,
would not be detected from the ATLAS detector which has holes along the beamline to let
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the proton beams through. Furthermore, new light particles may also be Long-Lived Par-
ticles (LLPs), travelling hundreds of meters before decaying to Standard Model particles
and FASER aspires to detect them. Apart from that, a dedicated subdetector, FASERν,
which operates in front of the main FASER detector, is designed to detect neutrinos
which also avoid detection from the other LHC detectors. The aim of this subdetector
is to provide interesting information about SM particles by detecting neutrinos for the
�rst time at the LHC. The whole detector will be about 5 m long, while the collaboration
currently (2022) consists of around 70 members. The experiment is expected to start
taking data during Run 3 of the LHC.

� LHCb (Large Hadron Collider beauty) [38]:
is primarily oriented to study heavy �avour physics, especially CP violation from CKM
matrix measurements and rare decays of B hadrons (hadrons containing a b-quark). Such
studies may provide hints for the solution of matter-antimatter asymmetry problem.
Apart from that, a wide range of spectroscopic measurements (masses, widths, lifetimes
etc) has been performed from the LHCb for both charm and beauty hadrons leading to
the observation of most of the 59 new hadrons found at the LHC (including tetraquarks
and pentaquarks) [39]. Additionally, even if it was not initially planned, the LHCb has
accomplished studies and measurements not related with �avour physics, such as Elec-
troweak W and Z bosons production or searches for new particles predicted from theories
Beyond the Standard Model e.g dark photons. The detector consists of a series of sub-
detectors designed to detect mainly particles in the forward region, since cc̄ and bb̄ pairs
are predominantly produced at small angles with respect to the beam-line. In total, the
detector is 21 m long, 10 m high and 13m wide weighting 5600 t, while the collaboration
counts about 1400 scientists (2022).

� LHCf (Large Hadron Collider forward) [40]:
is dedicated to performing measurements which are useful for understanding and inter-
preting data from large scale cosmic ray experiments (e.g Pierre Auger Observatory in
Argentina). This is done by measuring neutral particles (e.g π0) emitted in the very
forward region of LHC collisions. Such collisions are similar to collisions taking place
in the Earth's upper atmosphere between cosmic ray charged particles and air's nuclei.
Therefore, LHCf data are useful for the calibration of the hadron interaction models that
are used for the description of ultra-high-energy cosmic ray collisions with the earth's
atmosphere. The LHCf detectors are placed on either side ±140 m from the ATLAS
interaction point and the collaboration has more than 30 scientists (2022).

� MoEDAL (MOnopole and Exotics Detector At the LHC) [41]:
has as priority on its physics program the direct searches for magnetic monopoles and
other ionizing Stable (or pseudo-stable) Massive Particles (SMPs), predicted by theories
Beyond the Standard Model (BSM). The MoEDAL detector is deployed around the in-
tersection region of LHCb experiment and acts as giant camera sensitive only to new
physics, as well as a trap for potential BSM particles. More than 60 scientists (2022) are
involved in MoEDAL collaboration.

� TOTEM (TOTal cross section, Elastic scattering and di�raction Measurement at the
LHC) [42]:
is dedicated to the precise measurement of the total proton-proton cross section by pre-
cisely measuring the elastic, inelastic and di�ractive processes (see Fig. 2.11). Addi-
tionally, a detailed exploration of proton's structure is attempted by measuring protons

39



2.3. THE LARGE HADRON COLLIDER

emerging from the collision point in the region very close the particles beam (forward
region) and is inaccessible by other LHC experiments. For this purpose, TOTEM sub-
detectors are spread across ∼ 450 m around the CMS interaction point (4 T1 and T2
telescopes, 26 Roman pot detectors) and the collaboration has about 100 scientists (2022).
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Chapter 3

Particle detectors - The CMS experiment

As already discussed in the previous chapter, the LHC boosts particle beams to high energies
before they are made to collide inside particle detectors. In such high energy particle physics
experiments, detectors are devices used to detect, track, identify and measure speci�c attributes
(energy, momentum, etc) of particles produced in collisions [1].

The detection of the produced particles is based on their interactions with matter. This
chapter starts (Sec. 3.1) with a brief introduction to the main interaction mechanisms of charged
particles (e.g π±), radiation (photons) and neutral particles (e.g n) in matter. For each particle
type, there is not only a wide range of relevant processes occurring when passaging through
matter, but also di�erent interaction mechanisms at di�erent energies might be dominant. For
this reason, modern particle detectors usually consist of layers of subdetector systems, each
designed to detect speci�c type of particles or even more specialized to measure particular
properties of a particle. A comprehensive overview of the di�erent types of detectors used at
accelerator particle physics experiments is presented in Sec. 3.2. Finally, Sec. 3.3 focuses on
the details of the CMS detector subsystems.
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3.1. PARTICLE AND RADIATION INTERACTIONS WITH MATTER

3.1 Particle and radiation interactions with matter

3.1.1 Interactions of charged particles with matter

Figure 3.1: Mean energy loss rate for muons,
pions and protons in liquid hydrogen (H2),
gaseous helium (He), carbon (C), aluminium
(Al), iron (Fe), tin (Sn) and lead (Pb) [2].

When charged particles pass through mat-
ter, they lose kinetic energy due to interac-
tions with the bound electrons leading to ion-
ization or excitation of the medium's atoms.
The case of excitation is accompanied with
the subsequent low-energy photon emission
which may be detected in an appropriate ap-
paratus. On the other hand, in the case of
ionization the amount of transferred energy
is so large, that the bound electrons are lib-
erated from the atom. The maximum possi-
ble kinetic energy transfer to an electron (at
rest) in a single collision Wmax, depends on
the mass M of the incident particle and its
velocity [2]:

Wmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.1)

where me is the electron's mass (me = 0.511
MeV/c2) and β, γ are the relativistic kine-
matic variables for the incident particle (β =
υ/c, γ = 1/

√
1− β2). For low energies

(2γme << M) and for incident particles heav-
ier than electrons (M > me), theWmax can be
approximated by Wmax ≈ 2mec

2β2γ2, while
for high energies (2γme >> M) the approx-
imation is Wmax ≈ Mc2β2γ. As a quantitative example, let's consider an incident muon
(Mµ = 105.66 MeV/c2) with relativistic factor γ = 10 which corresponds to 1.06 GeV total
energy. In that case, the low energy criterion (2γme << M) holds and the maximum possible
energy transfer to the electron is approximately 100 MeV [3].

For the description of charged particles' passage through matter, the average energy loss dE
per length dx (also known as stopping power) is a quantity of practical interest and the result
depends, inter alia, on the mass of the incident particles. Hence, the approach is di�erent for
heavy incident particles (M >> me), in contrast to the case of incident electrons, where special
treatment is needed. Starting from relativistic heavy charged particles the average energy loss
is approximated by the Bethe-Bloch equation [2]:〈

−dE
dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
(3.2)

whereK is a constant factor1, z is the incident's particle charge number, Z and A are the atomic
number and atomic mass of the absorber respectively, I is the mean excitation energy which
depends on the absorber material2 and δ(βγ) is the density-e�ect correction to ionization energy

1K = 0.3071 MeV g−1cm2.
2Values for the mean excitation energy for di�erent elements can be found at [4] e.g I = 19.2 eV for Hydrogen

(H) and I = 286 eV for Iron (Fe).
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3.1. PARTICLE AND RADIATION INTERACTIONS WITH MATTER

loss3. The units for −dE/dx are MeV g−1cm2. Figure 3.1 shows the mean energy loss rate for
various incident particles with respect to their momentum in di�erent absorber materials. The
Eq. 3.2 is only an approximation of the energy loss of heavy charged particles by ionization
and excitation, which give accurate results for incident particles with velocities βγ < 1000
(where radiative e�ects become important) and βγ > 0.1 (where they become comparable with
atomic electron velocities), while additional correction terms may be added for the extension
of the formula to lower energies. Nevertheless, even for (0.1 < βγ < 1000) large �uctuations
from the above mean value may exist especially for thin absorbers. The energy loss probability
distribution by ionization and excitation for a single particle is described by a Landau (or
Landau-Vavilov) distribution. Thus, in that case, instead of the average energy loss, the most
probable energy loss should be used [2]:

∆Ep = ξ

[
ln

2mec
2β2γ2

I
+ ln

ξ

I
− β2 − δ(βγ) + 0.2

]
(3.3)

where ξ = K
2
· Z
A
· z2 · x

β2 for a detector with thickness x in g cm−2.

The passage of electrons (and positrons) through matter needs to be investigated sepa-
rately, since now the mass of the incident particles is the same as the target particles (atomic
electrons). Although at low energies the incident particles (e−/e+) primarily lose energy by ion-
ization, there are also other interaction mechanisms present: Møller scattering (e−e− → e−e−),
Bhabha scattering (e+e− → e+e−) and positron annihilation (e+e− → γγ). Furthermore, the
bremsstrahlung (discussed below) plays signi�cant role for electrons and positrons even at low
energies (MeV range). The energy loss by ionization for electrons is approximated by [2]:〈
−dE
dx

〉
=

1

2
K
Z

A

1

β2

[
ln
mec

2β2γ2{mec
2(γ − 1)/2}

I2
+ (1− β2)− 2γ − 1

γ2
ln2 +

1

8

(
γ − 1

γ

)2

− δ

]
(3.4)

where the maximum possible energy transferWmax has been replaced withmec
2(γ−1)/2 (factor

2 because primary and secondary electrons are indistinguishable). In the case of positrons, the
relevant equation is [2]:〈
−dE
dx

〉
=

1

2
K
Z

A

1

β2

[
ln
mec

2β2γ2{mec
2(γ − 1)}

2I2
+ 2ln2− β2

12

(
23 +

14

γ + 1
+

10

(γ + 1)2
+

4

(γ + 1)3

)
− δ
]

(3.5)
where the maximum possible energy transfer Wmax has been replaced with mec

2(γ−1). Figure
3.2 shows the fractional energy loss for electrons and positrons per radiation length4 in lead as
a function of their energy, for the di�erent interaction mechanisms.

As already mentioned, the equations above are only approximations for the energy loss by
excitation and ionization. Although they form the basis for such calculations, for more ac-
curate results a detailed consideration of additional e�ects and special conditions is needed.
An exhaustive discussion of such e�ects is beyond the present scope due to their extent
and their dependence on the incident particles' and the various materials' properties. In
order to give an insight of the additional phenomena that need to be taken into account,
only three of them are remarked here. First of all, when a signi�cant fraction of the inci-
dents' particles energy is transferred to the primarily produced electrons, then the latter (also

3i.e., how much the incident's particle electric �eld is screened by the charge density of atomic electrons
(signi�cant for dense absorber materials).

4Radiation length X0 (g cm
−2): the mean distance over which the energy of a high-energy electron is reduced

by a factor of 1/e due to bremsstrahlung.
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known as knock-on electrons or δ rays) may cause additional (secondary) ionization and sub-
sequently the total ionization consists of both primary and secondary ionization products [5].

Figure 3.2: Fractional energy loss for elec-
trons and positrons per radiation length in lead
as a function of their energy [2].

The second example, is the energy loss caused
by de�ections (multiple scattering) of the in-
cident particle in the Coulomb �eld of the nu-
clei and electrons of the material, leading to
very small deviations from their original path.
Finally, an example of special conditions to
be considered exist when the incident charged
particles pass through a channelled crystal,
since the energy loss is di�erent in the case of
aligned than in non-aligned substance [3].

When traversing the material, the charged
particles are confronted with the electric
�eld of atomic nuclei which cause their
deceleration and subsequently they emit
electromagnetic radiation, also known as
bremsstrahlung. For high energies, the energy
loss by bremsstrahlung for charged particles
with mass M , energy E and charge number z
can be approximated by [3]:

−dE
dx

= 4α ·NA ·
Z2

A
· z2

(
1

4πε0
· e2

Mc2

)2

· E · ln 183

Z1/3
(3.6)

where α is the �ne-structure constant (a = 1
4πε0
· e2~c ≈ 1/137), NA is the Avogadro number

(NA = 6.022 · 1023 mol−1) and ε0 is the permittivity of free space (ε0 = 8.85 · 10−12 F ·m−1).
In Eq. 3.6 energy loss by bremsstrahlung is inversely proportional to the mass of the incident
particle squared and inevitably it is quite signi�cant for electrons (see also Fig. 3.2) due to their
small mass. Further corrections to the above approximation can be obtained when considering
also the bremsstrahlung emitted due to interactions of the incident particles with the target
material electrons' electric �eld, which imposes the replacement of Z2 with Z2 + Z. It should
also be pointed out that the energy loss by bremsstrahlung is proportional to the energy of the
incident particles, in contrast to the ionization energy which is proportional to the logarithm of
the same quantity. In the case of electrons, the energy where the energy loss by bremsstrahlung
is equal to the energy loss by ionization is called critical energy (Ec) e.g Ec = 84 MeV for air
and Ec = 83 MeV for water.

Apart from bremsstrahlung, further energy loss is caused by direct electron-pair production
and photonuclear interactions. The former refers to the creation of electron-positron pairs by
virtual photons in the nuclei's Coulomb �eld and can be parametrized as [3]:

−dE
dx

= b(Z,A,E) · E (3.7)

where b(Z,A,E) is a parameter with small variations at high energies and E is the energy of the
incident particle. For high energy muons the losses due to this process is even more important
than bremsstrahlung losses e.g for muons with E = 100 GeV , −dE/dx from direct electron-pair
production is 0.3 MeV/(g/cm2). As far as the energy losses due to photonuclear interactions
are concerned, they are caused by inelastic interactions of the incident charged particles via
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virtual gauge photons with the nuclei of the target material. This e�ect plays important role
only for leptons and the parametrization here is identical as in Eq. 3.7. For example for muons
with E = 100 GeV in iron (Fe) which has b = 0.4·10−6 g−1cm2, the −dE/dx from photonuclear
interactions is equal to 0.04 MeV/(g/cm2) [3].

Finally, the total energy loss for charged passing through matter by the above mechanisms
can be parametrised as [3]:

−dE
dx

∣∣∣∣
total

= −dE
dx

∣∣∣∣
ion.

−dE
dx

∣∣∣∣
brems.

−dE
dx

∣∣∣∣
pair−prod.

−dE
dx

∣∣∣∣
photonucl.

= α(Z,A,E) + b(Z,A,E) · E

(3.8)
where α(Z,A,E) represents the energy loss described by Eq. 3.2 and is proportional to the
logarithm of the incident particles' energy E, while b(Z,A,E) is the sum over the other three
processes described above: bremsstrahlung, direct electron-pair production and photonuclear
interactions which are all proportional to the incident particles energy (see Eq. 3.6, 3.7).

As a conclusion to this subsection, three additional physics processes are de�ned. These are
responsible for further energy losses of charged particles which might be utilized not only for
particle detection, but also for applications in other �elds (e.g synchrotron radiation is widely
used for solid state or medical physics etc) [3]:

� Synchrotron radiation: the electromagnetic radiation emitted when charged particles are
accelerated radially (see also Sec. 2.2 and Eq. 2.8). The energy loss per revolution in a
circular accelerator with radius R for an electron with energy E is:

∆E [MeV ] ≈ 0.0885
E4 [GeV 4]

R [m]
(3.9)

For example, for the Large Electron-Positron (LEP) collider at CERN with radius R = 3.1
km and beam energy E = 100 GeV , the above equation gives ∆E = 2.85 GeV per
revolution. Correspondingly, for proton beams the energy loss per revolution is:

∆E [MeV ] ≈ 0.0885

(
me

mp

)4
E4 [GeV 4]

R [m]
(3.10)

which gives 6 keV energy loss per revolution for proton beams of E = 7 TeV at the LHC.

� Cherenkov radiation: the electromagnetic radiation emitted when charged particles tra-
verse a medium of refractive index n with velocity υ which is larger that the velocity of
light c/n in that particular medium. The energy loss due to Cherenkov radiation is small
(only few %) compared to that from ionization and excitation.

� Transition radiation: the electromagnetic radiation emitted when charged particles cross
the boundary between media with di�erent optical properties. The energy loss by transi-
tion energy is usually extremely small in comparison with the rest energy loss interaction
mechanisms.

3.1.2 Interactions of photons with matter

Photon interactions with matter are fundamentally di�erent from what described above for
charged particles. For photon energies beyond the ultraviolet range, the three main interaction
mechanisms are:
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3.1. PARTICLE AND RADIATION INTERACTIONS WITH MATTER

� photoelectric e�ect : γ + atom→ atom+ + e−

� Compton scattering : γ + e− → γ + e−

� pair production: γ + CF → e− + e+ + CF
where CF is the nucleus's or atomic electron's Coulomb Field.

Each physical process is dominant at di�erent energy regime: the photoelectric e�ect at low
energies Eγ < 100 keV , the Compton scattering at medium energies Eγ ≈ 1 MeV and the pair
production at high energies Eγ >> 1 MeV . Before proceeding to a more detailed inspection
of those interactions, it is of purpose to note that in the cases where the photons are absorbed
(photoelectric e�ect and pair production), the photon beam intensity is attenuated according
to the following formula [3]:

I = I0e
−µx (3.11)

where x is the penetration depth and µ is the attenuation coe�cient which parametrizes how
easily the speci�c material can be penetrated by the photon beam and is proportional to the
atomic density N of the material and strongly dependent on the photon energy.

To begin with, the photoelectric e�ect refers to the case where the incident photon is com-
pletely absorbed by an atomic electron. This process is forbidden for free electrons due to
momentum conservation, but is allowed for atomic electrons because of the presence of atomic
nucleus which serves as third collision partner. The cross section for the photoelectric e�ect,
considering an electron in the atom's K (innermost) shell, is given by the non-relativistic Born
approximation [3]:

σKp.e.

[
cm2

atom

]
=

(
32

ε7

)1/2

α4 · Z5 · σeTh (3.12)

where ε is the reduced photon energy (ε = Eγ/(mec
2)) and σeTh = 6.65 · 10−25 cm2 is the Thom-

son cross section for the elastic photon-electron scattering. Further corrections are required
to the above approximation close to the absorption edges, while for higher photon energies
(Eγ/(mec

2) >> 1), the relevant cross section is approximated by [3]:

σKp.e. = 4πr2
e · Z5 · α4 · 1

ε
(3.13)

where re is the classical electron radius (re = 1
4πε0
· e2

mec2
≈ 2.82 fm). The occurrence of the

photoelectric e�ect may also initiate additional phenomena, since the removal for example of
a K-shell electron, will leave a vacancy in that atom's shell. This vacancy may then be �lled
by an electron from an outer (e.g L) shell and the energy di�erence may be transformed to
characteristic X rays or it can be transferred to an electron at another shell and liberate it from
the atom (Auger electron).

As Compton scattering is indicated the collision of a photon with a weakly bound electron,
with the incident photon transferring fraction of its energy to the electron and being de�ected
from its original path. Assuming that the target electron is free and initially at rest, the total
cross section for Compton scattering is [3]:

σeC

[
cm2

electron

]
= 2πr2

e

[(
1 + ε

ε2

){
2(1 + ε)

1 + 2ε
− 1

ε
ln(1 + 2ε)

}
+

1

2ε
ln(1 + 2ε)− 1 + 3ε

(1 + 2ε)2

]
(3.14)

The cross section for the Compton scattering o� an atom is the above cross section scaled by
the number of electrons in the atom (Z) [3]:

σatomC = Z · σeC (3.15)
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For a scattering angle θγ, the ratio of the scattered photon's energy over the incident photon's
energy is [3]:

Esc.
γ

Einc.
γ

=
1

1 + ε(1− cosθγ)
(3.16)

which means that the maximum energy transfer to the electron is achieved for backscattering
(θγ = π). Apart from the normal Compton scattering, there is also the inverse Compton
scattering, where a high-energy electron (e.g in the keV or MeV range) collides with a low-
energy photon (e.g in the eV range) and transfers amount of its kinetic energy causing the shift
of the photon to higher frequencies (blueshift).

Figure 3.3: Cross sections as a function of
energy for the following photon interactions in
lead: photoelectric e�ect (p.e.), Rayleigh scat-
tering, Compton scattering, pair production in
nuclear (κnuc) or electron (κe) �eld and pho-
tonuclear interactions [2].

The pair production process, refers to the
disappearance of the incident photon with the
production of an electron-positron pair in the
Coulomb �eld of a nucleus or an electron.
In the former case (nucleus Coulomb �eld),
the momentum conservation imposes that the
photon's energy must exceed the threshold of
2mec

2, while in the latter (electron Coulomb
�eld) the threshold is 4mec

2. It should be
noted that the pair production in the elec-
tron's Coulomb �eld is strongly suppressed
compared to pair production in the nucleus's
Coulomb �eld. The cross section for pair pro-
duction from material's atoms taking into ac-
count the screening e�ect (i.e., the screening
of nuclear charge by atomic electrons) can be
approximated by [3]:

σpair

[
cm2

atom

]
= 4αr2

eZ
2

(
7

9
ln

183

Z1/3
− 1

54

)
(3.17)

There are also further interactions of pho-
tons, like Rayleigh scattering (coherent scat-
tering of photons with bound electrons where
the atom is neither ionized nor excited, in con-
trast to Compton scattering which is incoher-
ent) or photonuclear interactions (interactions of photons not with the electrons but with the
nuclei of the atoms). However, such interactions are governed by low cross sections as shown
in Fig. 3.3.

3.1.3 Strong interaction of hadrons

Besides the electromagnetic interactions of charged particles with matter, in the case of
incident hadrons, there are also strong interactions. Such interactions, play a signi�cant role in
the detection of hadrons, charged (e.g p) and neutral (e.g n), at high energy physics experiments.
The total proton-proton cross section at the LHC has already been extensively discussed in Sec.
2.3.2 (see also Eq. 2.9), while in the case of inelastic cross sections the absorption of hadrons
in matter is described by [3]:

N = N0e
−x/λI (3.18)
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where x is the penetration depth and λI is the interaction length which can be calculated using
the inelastic cross section as [3]:

λI =
A

NA · ρ · σinel
(3.19)

Similarly, using the total cross section instead of only the inelastic part, the collision length λT
can be de�ned:

λT =
A

NA · ρ · σtot
(3.20)

The utility of strong interactions in hadron detection will become more clear in Sec. 3.2.6,
where the hadron calorimeter principles are discussed.
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3.2 Detector types

Each interaction process presented in Sec. 3.1 can be used as a basis for particle detection.
In this subsection, an overview of the main detector technologies commonly used at accelerator
particle physics experiments is attempted. The aim is not to provide a complete list of detector
types or speci�cations for particular categories, but rather to point out the basic detector
concepts, most of which will help to analyse the CMS subdetector systems in Sec. 3.3.

3.2.1 Photon detectors

The detection of photons with energies in the visible or the ultraviolet range i.e., E of
few eV or few keV , is usually based on the photoelectric or the photoconductive e�ect5. The
electric signal (photoelectrons) produced by photons incident to a photocathode material (e.g
CsI, SbRbC etc), is ampli�ed to detectable levels before it is collected. Two important pa-
rameters commonly used for the evaluation of a photodetector are the quantum e�ciency (εQ)
which is the mean number of primary photoelectrons produced per incident photon and the
collection e�ciency (εC) which is the overall acceptance factor other than the production of
photoelectrons. The energy resolution for a photodetector is given by [2]:

σ(E)

〈E〉
=

√
fN

nγεQεC
+

(
Ne

GnγεQεC

)2

(3.21)

under the assumption that the electronic noise Ne and the statistical �uctuations in the am-
pli�cation process are described by a Poisson distribution for nγ incident photons. The fN
(excess noise factor) in the above equation represents the contribution to the energy distri-
bution variance from the ampli�cation statistics, while G (Gain) is the number of electrons
collected for each photoelectron produced. Three of the main detector technologies based on
the above concept are: vacuum photodetectors, gaseous photon detectors and solid-state photon
detectors.

� Vacuum photodetectors:

� Photomultiplier Tubes (PMTs): the incident photons hit the photocathode mate-
rial which is emplaced either to the interior surface of a transparent window which
allows the entrance of photons (transmission-type PMT) or on a separate surface
(re�ection-type PMT), causing the production of photoelectrons via the photoelec-
tric e�ect. Each photoelectron is then accelerated by an electric �eld and focused
onto a secondary-emission electrode (dynode), causing the emission of secondary elec-
trons (typically 3 to 5 secondary electrons). The multiplication process is repeated
several times until a su�cient number of electrons has been produced. Finally, the
electrons are collected at the anode and are delivered to an external circuit.

� Microchannel Plates (MCPs): in the intermediate region between the transmission-
type photocathode and the anode plane, there is one or more highly resistive thick
(∼ 2 mm) glass plates with a regular array of tiny (∼ 10 µm) cylindrical holes
(microchannels). By applying a strong electric �eld across the MCP, the inner surface
of each individual microchannel operates as a continuous dynode electron multiplier.

5The increase of electrical conductivity of a material radiated with light due to absorption of incident light,
electron-hole (e-h) pairs generation and other mechanisms. In the above context, this is relevant for solid-state
detectors with the generation of e-h pairs in a semiconductor by incident photons.
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Therefore, the production of photoelectrons in the photocathode or in the inner wall
of a microchannel, generates entire cascades of electrons through the microchannels,
which are collected on the opposite side of the plate where the anode is emplaced.

� Hybrid Photon Detectors (HPDs): a combination of PMT with a silicon (Si) sensor,
where each single photoelectron produced at the PMT photocathode, is accelerated
via a potential di�erence and then penetrate the silicon sensor (anode). The travers-
ing of electrons through the sensor's material create e-h pairs which are collected
and processed with the process described in Sec. 3.2.5. The reason for such con�g-
uration (hybrid) is the compound of large sensitivity provided by the PMTs, with
the excellent spatial and energy resolution of the Si sensors.

� Gaseous photon detectors: in a gaseous photomultiplier (GMP), the incident photons
hit the photocathode (e.g same way as in PMT's) and the produced photoelectrons tra-
verse a gas mixture generating avalanches of secondary impact-ionization electrons. The
whole avalanche process and the collection of ionization products will be described in
detail in Sec. 3.2.4, since they are identical to the processes of gaseous tracking detectors.

� Solid-state photon detectors: one of the most widely used type of particle detector
for light detection in high energy physics is the Silicon Photodiodes (PD). The detection
of light is based on the photoconductive e�ect, where incident photons with energies
greater than the indirect bandgap energy, create e-h pairs. In the simplest case, a PD
is a reverse-biased p-n junction and the produced e-h pairs are collected on the p and n
sides respectively. (see Sec. 3.2.5 for more details).

3.2.2 Scintillators

Scintillators are widely used in high energy physics as ionizing radiation detectors. As
discussed in Sec. 3.1, one of the main energy loss mechanisms for particles (e.g electrons)
interacting with matter, is the excitation of material's atoms and molecules. In general, a
scintillation detector performs the following two operations: �rstly, it converts the excitation
caused by the energy loss of a particle traversing the detector's material into a number of
photons in the visible or near the visible range, and secondly, it transfers those photons (directly
or via a light guide) to photon detectors described above (photomultipliers, photodiodes etc).
Among the important parameters commonly used for the characterization of a scintillator,
are the scintillation e�ciency (εsc) which is the ratio of the emitted photons' energy to the
total energy absorbed by the scintillator, the light output Lph which is the number of photons
measured per 1 MeV of energy absorbed by the scintillator and the characteristic wavelength(s)
λem (more than one in some cases) of the emission spectrum. The decay time τD and the rise
time τR of the scintillation light (which are characteristic of the scintillation material) are of
practical interest, too. The resolution for a scintillator is given by [1]:

σE
E

=

√
fN
Npe

+
(σe
E

)
+ ∆2 (3.22)

where E is the energy deposited to the scintillator, fN is the excess noise factor for the photode-
tector (see also Eq. 3.21), Npe is the number of photoelectrons generated in the photodetector by
the scintillation light and by electronics noise, σe is the noise from the read-out electronics and
∆ parametrizes all the rest contributions e.g non-linear scintillator response etc. There are two
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main classes of scintillators, organic and inorganic, with fundamentally di�erent scintillation6

mechanisms.

� Organic: there are three types of organic scintillators: plastic, liquid and crystalline,
with the scintillation arising with the transition from an excited molecular level, to the
corresponding electronic ground state. In high energy physics, plastic scintillators are
most commonly used, with a primary �uorescent emitter (�uor) emplaced in a plastic
base containing aromatic rings7 such as polystyrene (PS) or polyvinyltoluene (PVT).
The excitation of plastic base's substance, leads to the emission of light in the ultraviolet
(UV) range with short attenuation length (several mm, see also 3.11). The radiation
energy is then transferred to one or two �uors (also called �uorescent agents), for example
oxazole, and re-emitted from them as light with larger attenuation length and larger
wavelengths (typically in the optical range: ∼ 400 nm, blue color). In that sense, �uors
act as wavelength shifters i.e., they shift the scintillation light to wavelengths where the
photodetectors have maximum sensitivity. The plastic scintillator densities, are typically
in the range from 1.03 to 1.20 g cm−3 [2].

� Inorganic: scintillators based on inorganic substances are also widely used in high energy
physics, mainly for the detection of electrons and photons at electromagnetic calorimeters
(see Sec. 3.2.6). Inorganic scintillators are mostly crystals, pure (e.g CsI) or doped
with other materials (e.g CsI(T l)), with much higher densities than the organic plastic
scintillators, typically in the range from 4 to 8 g cm−3 [2]. Such high densities are required
for applications relevant to high energy physics, since they provide high stopping power
which is necessary for reducing the lateral spread of the high energy showers (see also
Sec. 3.2.6) and therefore minimizing the leakage �uctuations achieving excellent energy
resolution. Fast scintillation is another demand of high energy physics, since it a�ects
the timing resolution8. The timing information is of great importance, especially at the
Large Hadron Collider, playing a crucial role in the mitigation of pile-up e�ects, as well as
particle identi�cation, since the time development of particle showers is highly dependent
on the interactions (electromagnetic, hadronic, etc). The scintillation mechanism in the
case of inorganic scintillators, arises from electrons and holes, moving to the bottom
of the conduction band or the top of the valence band respectively. In particular, the
valence band is initially fully occupied and separated by several eV energy gap from
the conduction band which is normally empty. The traverse of a charged particle or
a high-energy photon (e.g γ ray) will transfer electrons from the valence band to the
conduction band, leaving a hole in the latter. Those electrons in the conduction band
may recombine with the created hole, or they may form a bound state called exciton.
Finally, the excitons are transferred through migrations in the crystal to the luminescent
centres9 (e.g T l) which then radiate the scintillation photons. Note that the energy can
also be transferred to the luminescent centres directly by ionization [3].

6Scintillation : a process of luminescence [6] (spontaneous emission of light by a substance), where a �ash of
light is produced in a transparent material from a traversing particle. The type of luminescence relevant here is
photoluminescence (resulted from photon absorption) with its two di�erent forms: �uorescence (singlet�singlet
electronic relaxation, lifetime ∼ ns) and phosphorescence (triplet�triplet electronic relaxation, lifetime ∼ µs −
hours.)

7Stable cyclic (ring) shaped structures with π bonds (i.e., bonds formed by the overlap of p orbitals of
adjacent atoms) [7].

8Timing resolution for a scintillator can be approximated by: σt ≈
√

τRτD
Npe

[1].
9Luminescent centres: impurities intentionally added in the crystal to activate the scintillator which are

energetically localised between the valence and the conduction band.
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3.2.3 Cherenkov detectors

The applications of detectors using the Cherenkov radiation (see Sec. 3.1.1 for de�nition)
span over a wide range: electromagnetic calorimeters, particle identi�cation, tracking detectors
etc. The two basic components of a Cherenkov detector are: the radiator which is the material
traversed by the charged particle and the photodetector for the detection of the electromag-
netic radiation. In general, any transparent material is a Cherenkov radiator candidate. For
example, Cherenkov radiation is emitted in any scintillator material discussed above, however
the Cherenkov light is ∼ 100 times less intense than the scintillation light. For a charged par-
ticle with a relativistic factor β = υ/c (υ is the particle's velocity) traversing a medium with
refractive index n, Cherenkov radiation is emitted only if β > 1/n. The angle between the
Cherenkov photons and the original track of the charged particle is called Cherenkov angle θc
and is de�ned as [3]:

cosθc =
1

nβ
(3.23)

where the maximum is reached for β = 1 [3]:

θmaxc = arccos
1

n
(3.24)

which means that the emission of Cherenkov radiation of wavelenth λ is possible only for
materials with n(λ) > 1. The choice of the radiator material, which depends on the application,
takes into account several parameters apart from the refraction index, such as the material
density and the radiation length. Therefore, various radiators from gases (e.g H2), liquids (e.g
water) and solids (e.g lead glass) are used for di�erent applications. Based on whether they use
the Cherenkov angle information or not, there are two classes of Cherenkov counters: threshold
and imaging. In the latter case, which is widely used in high energy physics especially for
particle identi�cation, the fractional error for the particle velocity is [2]:

σβ
β

= tanθcσ(θc) (3.25)

where

σ(θc) =
〈σ(θi)〉√
Npe

⊕ C (3.26)

where with Npe is noted, as usual, the number of photoelectrons generated in the photodetector,
〈σ(θi)〉 is the average resolution for a single photoelectron and C accounts for other contributions
like alignment term and hit ambiguities.

3.2.4 Gaseous detectors

All the gaseous detectors are based on the collection of the ionization products (generally
after multiplication) i.e., electron-ion pairs, produced from the passage of a charged particle
through the gas. In high energy physics, they are mostly used for charged particle tracking,
in calorimeters and Cherenkov counters and also for transition radiation detection [1]. As
discussed in 3.1.1 the total ionization consists of both primary and secondary (knock-on elec-
trons) ionization products which form clusters. Although, the majority of such clusters contain
only a single electron (primary ionization), the contribution of clusters with two or more elec-
trons might be signi�cantly larger to the total number of electrons produced. For example, for
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minimum-ionizing particles (MIPs)10 traversing gas Ne at NTP11, the mean primary (np) and
the total number (nT ) of electron-ion pairs per cm are np = 13, nT = 40, while for CO2 they
are np = 35, nT = 100 respectively [2].

The electrons and ions which are produced in the ionization process, under the in�uence of
an external electric �eld drift through the gas and lose energy due to scattering with gas atoms
and molecules and therefore, the locally produced ionization di�uses by multiple collisions into
the gas volume. In the presence of a homogeneous electric �eld E, electrons and ions acquire
constant drift velocities, uedr and uiondr towards the anode and cathode respectively, which are
di�erent due to their di�erent masses. In the case of electrons, they are scattered isotropically
in a collision with a drift velocity [1]:

uedr =
e

me

Eτ (3.27)

where τ is the time between two collisions which is given by:

τ =
1

Nσc
(3.28)

where the instantaneous velocities of electrons between collisions is approximated with c, N
is the density of gas molecules and σ is the collision cross section. The values of the electron
drift velocities have large variations for di�erent gases and conditions e.g uedr = 13 cm/µs with
E = 5 kV/cm in CF4 and uedr = 2 cm/µs with E = 5 kV/cm in Ar. In the case of ions,
di�erent approximations have to be considered for low and high electric �elds, but in general
their drift velocity is typically three orders of magnitude less than electrons' drift velocity [2].
For low electric �elds, the approximation is that ions of mass m have a random energy close to
thermal energy12 and the drift velocity is [1]:

uiondr =
(
m−1 +M−1

)1/2
(1/3kT )1/2eE/(Nσ) (3.29)

where M is the mass of the gas molecules and k is the Boltzmann constant. For example, for
E = 200 V/cm typical values of ion drift velocities are around 4 m/s [1]. For high electric �elds,
it can be shown that the ion drift velocity is proportional to ∼

√
E. The above equations 3.27

and 3.29 hold under the assumption that there is only external electric �eld present, while in
the presence of magnetic �eld they require strong modi�cations. Furthermore, for an individual
ion or electron, the drift velocity deviates from the mean value and for the description of the
di�usion of ionization in the gas volume, isotropic deviations may be assumed. That being the
case, the evolution of di�usion in the z direction starts at t = 0 as a point-like cloud and after
time t, the charge density distribution is given by a Gaussian distribution [1]:

N = (4πDt)−3/2exp

(
−r2

4Dt

)
(3.30)

with mean squared deviation in any direction from the cloud centre: σI =
√

2Dt, where
r = x2 + y2 + (z − udrt)2 and D is the di�usion coe�cient which depends on the gas mixture
and the conditions like the electric �eld strength. In practice, the di�usion in the direction
of the electric �eld (longitudinal di�usion) DL may be di�erent from the one in the direction

10Minimum Ionizing Particles (MIPs) are particles with mean loss energy, when traversing a material, very
close to the material's minimum ionization energy.

11Normal Temperature: 20◦C and Pressure: 1 atm
12Average energy at room temperature is: ε = 3

2kT = 40 meV .
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perpendicular to the �eld (transverse di�usion)DT leading to anisotropic di�usion which might
be utilized in various detector types.

In the following, a brief overview of the various gas detector technologies is presented.

� Multi-Wire Proportional Chambers (MWPCs): consist of a planar layer of anode
wires (e.g tungsten wires) emplaced in the intermediate region between two cathodes (e.g
metal foils). The electric �eld, apart from the potential di�erence between the anode
and cathode, depends also on the capacitance of the anode wire, the wire-wire (typically
few µm) and the wire-anode/cathode (typically few mm) spacing. As described above,
the passage of charged particles through the gas volume (e.g mixture of argon, isobutane
and freon) creates electron and ion pairs drifting in the direction of anode wires and
cathode respectively. The signal originates primarily from the positive ions collected
at the cathode. Multiwire proportional chambers can provide a localization of charged
particle tracks with an accuracy of ∼ 50 µm for tracks perpendicular to the wire plane,
degrading to ∼ 250 µm at 30◦ [2]. The replacement of cathode pads with cathode strips,
allows also the simultaneous reconstruction of a large number of particle tracks using
multiple electronic channels [3].

� Drift Chambers (DCs): are manufactured in di�erent geometries (planar, cylindrical,
drift tubes, etc.) and are mainly used for the longitudinal position of a charged particle's
track. The drift volume can be either separated from the ampli�cation volume, or the gas
mixture and the �eld wires are contained in a single volume where the particle passes.
The basic principle stands on the fact that the time interval between the particle's passage
through the chamber and the arrival of the charge cloud at the anode, depends on the
point of passage. Drift chambers can provide longitudinal track measurements with a
resolution of ∼ 100 µm. In practice, multi-drift modules consisting of multiple layers of
chambers may be used for providing the coordinates of segments of tracks and for particle
identi�cation through the total charge information [2].

� Micro-Pattern Gas Detectors (MPGDs): are tiny chambers where the wires have
been replaced with parallel metal strips (microstrip gaseous detectors) laid on a thin
substrate. Anode strips are arranged between the cathode strips (typical distance ∼
100 µm) allowing the fast collection of ions. Furthermore, the use of strips or pixels
(pixel gaseous detectors) instead of planar cathodes allows the two-dimensional read-out
with excellent spatial resolution of around ∼ 30 µm [2]. The two most widely used
designs of micro-pattern gas detectors are: the Gas Electron Multiplier (GEM) and the
Micromegas. The GEM detector is constructed of a kapton foil coated with copper on
both sides, chemically perforated with holes of diameter typically in the range 50-200 µm.
When applying a potential di�erence between the two sides of GEM, each hole acts as an
individual proportional counter which multiplies the charge. In practice, one or several
layers of GEMs are emplaced in the intermediate region of a drift cathode and an anode,
with the electrons produced from the passage of a charged particle through the gas (above
the GEM foil), drifting into the GEM holes and starting avalanches. Finally most of the
secondary electrons are collected at the anode, while most of the ions are collected at the
GEM electrodes. In Micromegas detectors, the gas volume is divided by a thin metal grid
(micromesh) in two regions: the drift region (typically 2-5 mm) and the multiplication
gap (typically 25-150 µm). The former is the region where the electrons are released
from primary ionization, before they drift through the mesh holes and ampli�ed in the
multiplication gap. Accordingly, the electrons are collected at the anode plane which is
segmented into readout strips or pixels.

57



3.2. DETECTOR TYPES

� Time Projection Chambers (TPCs): in contrast to the other tracking detectors
which provide 2D measurements of charged particles tracks, time projection chambers
provide full 3D measurements of the tracks. A TPC is made of a cylindrical or square
chamber �lled with gas (the working principles hold also for liquids), for example argon-
methane (Ar/CH4) (90 : 10) mixture, and divided in two halves by a central electrode.
In cylindrical coordinates, a TPC can determine the z coordinate from the arrival time
of the drifted electrons, the radial coordinate r from the position of the �red pad at the
cathode which is intentionally segmented for this purpose and �nally, the azimuthal angle
φ from the coordinate along of the anode wire which is also segmented into pads. Apart
from the track reconstruction, particle identi�cation and measurement of momentum are
feasible, using the energy deposit information and �tting the particle's trajectory in the
presence of a magnetic �eld. Typical values for the spatial resolutions are σz = 1 mm
and σr,φ = 160 µm [3].

� Transition Radiation Detectors (TRDs): exploit the transition radiation (TR) (de-
�ned in Sec. 3.1.1) for the detection of highly relativistic particles crossing multiple
surfaces (e.g a stack of polypropylene foils ∼ 20 µm thick). The electromagnetic tran-
sition radiation is in the X-ray range (typically few keV ), emitted close to the forward
region and its intensity increases with γ. A simple TR detector is composed of a TR
radiator (e.g polypropylene, carbon etc.) followed by an active layer of gas chambers
containing mixture Xe-rich mixture, which absorbs the incoming X-ray radiation (see
also Sec. 3.2.1). In high energy physics, variants of TRDs are mainly used for particle
identi�cation (in particular electron) and as part of the tracker integral (e.g First Level
Trigger of ALICE, Tracking System of ATLAS, etc).

� Resistive Plate Chambers (RPCs): is the last category of gaseous detectors presented
here, which are widely used due to the excellent time and spatial resolution they provide.
A Resistive Plate Chamber detector consists of two parallel electrode plates (usually
phenolic-melaminic laminate (HPL)) with high resistivity (ρ = 109−1013 Ω·cm), separated
by a gap (typically few mm) containing the gas mixture (e.g tetra�uorethane [1]) where
the ionization process takes place. In practice, RPCs with multiple gaps (mRPCs) are
also constructed, for ensuring high detection e�ciency. A uniform electric �eld of several
kV/mm is established across the gap, while the readout electrodes (e.g pads, strips etc.)
are emplaced behind the resistive electrodes for the detection of the signal created from
the avalanche electrons. The response is quite fast, since there is no drift delay and the
start of avalanche ampli�cation is immediate. The time resolution for a single gap RPC
with 2 mm gas gap is around ∼ 1 ns, improved down to around ∼ 20 ps for a mRPC
with 0.1 mm gas gaps. For a single gap RPC typical values for the space resolution is
around ∼ 100 µm, scaled down to around ∼ 40 µm for mRPCs. Examples of applications
of RPC detectors at the LHC, are their usage at the ATLAS and CMS muon detection
systems [2].

3.2.5 Semiconductor detectors

Semiconductor detectors are basically ionization chambers with a solid state counting medium.
In high energy physics they are most commonly used as position sensors, exhibiting excellent
position resolution, but also as photodetectors. The passage of a charged particle or a photon
through a semiconductor-based detector, for example silicon (Si) or germanium (Ge) based,
will produce electron-hole pairs which under the in�uence of an externally applied electric �eld

58



3.2. DETECTOR TYPES

will move towards the charge collection electrodes. In a semiconductor, the energy di�erence
between the top of the valence band and the bottom of the conduction band is referred to as
energy bandgap or simply bandgap (e.g 1.1 eV for Si, 0.7 eV for Ge), with the energy required
for the production of an electron-hole pair being proportional to its value.

Typical semiconductor detector structures are based on p-n junctions, where a depletion
region (low concentration of free carriers) is formed at the interface between a p-type semi-
conductor (high concentration of free holes) and a n-type semiconductor (high concentration
of free electrons). For p-n junctions operating at reverse bias (positive voltage applied to the
n region) the depletion area increases, while for most detector applications the p electrode is
highly doped and the n region is lightly doped, so that the depletion region extends mostly in
the n region. The interaction of a photon with the depletion area or the crossing of a charged
particle through this area, will produce electron-ion pairs which are separated by the electric
�eld and are collected at the electrodes where they induce a current pulse. In a typical 300
µm thick detector, the collection of electrons lasts about 10 ns and for holes around 25 ns are
required, while the spatial resolution is around 5 µm [2]. Note also that the electrodes can be
segmented in the form of pads/strips (cm-scale) or pixels (µm-scale) and can be integrated on
the same wafer where each one has its own read channel and therefore provide excellent position
resolution even for larger structures. The CMS and ATLAS tracking systems include variants
of semiconductor detectors for the precise reconstruction of charged particle trajectories.

Concerning the resolution of energy measurement for semiconductor detectors, it can be
parametrized using three separate terms and approximated by [3]:

σE =
√
σ2
eh + σ2

noise + σ2
col (3.31)

where σeh stands for the statistical �uctuations of the number of charge carriers (electrons-holes)
which are smaller than Poissonian �uctuations, σnoise is the contribution from electronics noise
which may be reduced using low-noise electronics and σcol is the contribution of the collection
of all other e�ects such as non-uniform charge collection e�ciency.

3.2.6 Calorimeters

In high energy physics, the main tools for particle energy measurement of photons, electrons
and hadrons are the calorimeters. In a calorimetric detector, the incident particles are com-
pletely absorbed by the material and their energy is transformed into measurable signal. The
primary purpose of such a device is to sum the individual losses of the particle (e.g ionization,
scintillation, Cherenkov radiation etc) and built up a signal which is related to the particle's
initial energy. The interactions of high energy photons, electrons and hadrons with matter (see
Sec. 3.1) lead to the production of a cascade of secondary lower energy particles. Therefore,
the energy measurement corresponds to the detection of electromagnetic showers produced by
electrons and photons which interact only through electromagnetic interactions13 and hadronic
showers produced by strongly interacting particles hadrons. Accordingly, specialized calorime-
ter systems are developed for each case and are discussed separately below.

Electromagnetic calorimeters

When high energy electrons pass through a thick absorber they lose energy almost exclu-
sively by bremsstrahlung (see Fig. 3.2), while electron-positron pair production is the dominant

13The weak interactions are too small to contribute and the gravitational interaction is always negligible in
this context.
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energy loss mechanism for high energy photons (see Fig. 3.3). In both cases, an electromag-
netic cascade is initiated with the production of more electrons-positrons pairs and photons of
lower energy, until the electron/positron energies fall below the critical energy Ec (de�ned in
Sec. 3.1.1) and subsequently the ionization and excitation become the dominant energy loss
mechanisms terminating the new particle production. Accordingly, Compton scattering and
photoelectric e�ect start to dominate among the photon energy loss mechanisms.

The radiation length (X0) is the characteristic interaction distance for an electromagnetic
interaction14 ranging from 13.8 g cm−2 in Fe to 6.0 g cm−2 in U [2]. For the description
of the development of the electromagnetic "shower" of particles, it is convenient to use the
penetration distance x normalised to radiation lengths: t = x/X0. Assuming a symmetric
energy share between particles for each new particle generation step, the number of shower
particles N and the individual particle energy E at depth t, are given by the equations [3]:

N(t) = 2t, E(t) = E0 · 2−t (3.32)

where E0 is the incident's particle energy. The position tmax where the new particle production
stops is obtained by replacing E with EC in the above equations and is typically few times
larger than X0. For this reason, electromagnetic calorimeters are designed 15-30 X0 deep, in
order to provide the maximum possible containment of the shower particles in its volume and
absorb most of the incident particle's energy.

In the longitudinal direction, the energy deposition in the electromagnetic cascade is ap-
proximated by [2]:

dE

dt
= E0b

(bt)a−1e−bt

Γ(a)
(3.33)

where Γ(a) is Euler's gamma distribution15, a and b are model parameters which can be obtained
from simulation �ttings (b ≈ 0.5 for heavy absorbers and a is energy dependent). The transverse
development of the electromagnetic cascade is mainly caused by multiple scattering of electrons
and positrons and is commonly quanti�ed using the Molière radius RM [2]:

RM = X0
Es
Ec

(3.34)

where Es is given by Es =
√

4π/a mec
2 ≈ 21 MeV . The physical meaning of the Molière

radius is that on average about 90% of the shower energy is contained in a cylinder with radius
RM , or equivalently about 99% in 3.5RM .

Electromagnetic calorimeters are classi�ed into two categories: homogeneous and sampling.
In a homogeneous calorimeter the total volume of the calorimeter material is sensitive to the de-
posited energy, acting both as absorber and detector. The aim is the production of a measurable
signal from the particle's energy which is all deposited in the calorimeter volume, in the forms
of scintillation light, ionization (charges) and Cherenkov light. Therefore, the construction of a
homogeneous electromagnetic calorimeter is based on high-density inorganic scintillating crys-
tals such as PWO, non-scintillating Cherenkov radiators such as lead glass, or ionizing noble
liquids like liquid argon. Homogeneous electromagnetic calorimeters based on heavy scintilla-
tion crystal provide the best energy resolutions. A sampling calorimeter consists of two di�erent
materials with (in the simplest form) alternating layers: a passive which serves as absorber and

14In practice, this means that a photon will produce an electron-positron pair after traversing one radiation
length, the newly produced electron and positron will emit a bremsstrahlung photon each after another radiaton
length etc [3].

15Gamma function de�nition: Γ(g) =
∫∞
0
e−xxg−1dx [3].
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an active which generates the signal. For the latter, a scintillator, an ionizing noble liquid, a
semiconductor, or a gas ionization detector may be selected. The passive material is usually a
high-Z metal such as tungsten or lead. The advantage of sampling electromagnetic calorime-
ters is their relatively low cost, however their energy resolution is worse than the homogeneous
calorimeters [2].

The energy resolution of an electromagnetic calorimeter is parameterized as [2]:

σE
E

=
S√
E
⊕ N

E
⊕ C (3.35)

where the symbol ⊕ means summation in quadrature. The S is the stohastic term which
stands for �uctuations arising from statistics such as photoelectron statistics. For homogeneous
calorimeters S is at the level of few per cent, while for sampling calorimeters it is typically
in the range from 10 to 20%. The term N represents the electronics noise of the readout
channels required for the shower measurement (< 1% for CMS), and �nally, the term C is a
constant factor accounting for systematic e�ects such as detector non-uniformity and calibration
uncertainties and can be generally maintained at below per cent level.

Although the primary goal of electromagnetic calorimeters is the energy measurement, they
may also provide measurements of positions and directionality for electrons and photons. The
position resolution is parameterized as [2]:

σx =
S√
E
⊕ C (3.36)

where S is the stochastic term (typically from few mm up to 20 mm) and C a constant factor
(typically below 1 mm). In general, position resolution depends on the Molière radius of the
material and the transverse granularity of the calorimeter. The measurement of directionality
is extremely important for the case of photons because they are not detected from tracking
systems, since they are electrically neutral. Typical photon angular resolution is approximated
by:

σθ =
45 mrad√

E
(3.37)

Hadronic calorimeters

The main task of a hadronic calorimeter, is the energy measurement of charged and neutral
hadrons. In an analogous way with electromagnetic showers, a high-energy hadron traversing
the calorimeter material, will produce a hadronic cascade depositing its energy mostly through
strong interactions.

As already pointed out in Sec. 3.1.3, the secondary particles in the hadronic shower are
produced from inelastic hadronic processes. In particular, the hadronic interactions lead to the
production of energetic secondary hadrons typically carrying a large fraction of the primary
hadron momentum (i.e., GeV scale). Charged and neutral pions (π±, p0) are the majority of
secondary hadrons, while other hadrons (kaons, protons, neutrons etc.) are also produced but
at lower multiplicities. Secondary charged particles lose their energy either through ionization
and excitation or in hadronic collisions with nuclei where they produce evaporation neutrons,
spallation protons and neutrons, etc., with energies in the MeV scale.

Since the hadronic interactions are charge independent, on average 1/3 of the produced
pions are neutral (π0). These neutral pions then quickly (∼ 10−16 s) decay into two photons
(p0 → γγ) and hence initiate an electromagnetic cascade which evolutes as a "subcascade"
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in the hadronic shower according to the processes described above for the electromagnetic
showers. In that sense, a fraction of the hadronic energy is transferred to the electromagnetic
component and no longer contributes to the hadronic processes. The average energy fraction
for the electromagnetic component is parametrized as [2]:

〈fem〉 = 1− 〈fh〉 (3.38)

where the average energy fraction for the hadronic component fh, is approximated by:

〈fh〉 ≈ (E/E0)m−1 (for E > E0) (3.39)

where E is the incident's particle energy, E0 is a parameter representing the average energy
required for a pion production e.g 0.7 GeV for iron, 1.3 GeV for lead [3] and m is a parameter
which is dependent on the multiplicity of a collision and is typically in the range 0.80-0.87 [2].
For a shower of 100 GeV fh is of the order of 0.5, while for a 1 TeV shower fh is around 0.3
[1].

Another important aspect of hadronic cascades, is that a substantial fraction of their energy
which is typically in the range 20-40% cannot be detected in practical calorimeters remaining
invisible. The main reason is that part of the hadron's energy, both for primary and secondary
hadrons, is used to overcome the nuclear binding energies and does not contribute to the
measurable energy. Furthermore, smaller contributions to the invisible energy fraction originate
from particles escaping from the calorimeter like long-lived neutral particles (e.g neutrons) and
neutrinos or decay products such as muons produced from pion/kaon decays and deposit only
a small fraction of their energy in the calorimeter.

The longitudinal development of a hadronic shower is quanti�ed using the interaction length
λI (see Eq. 3.19) which de�nes the mean free path between hadronic collisions. In comparison
with the radiation length X0, which is used in the case of electromagnetic shower, λI is much
larger, varying from 132.1 g cm−2 in Fe to 209 g cm−2 in U [2]. Taking also into account
that the depth of the calorimeter should cover many interaction lengths, it becomes clear that
hadron calorimeters are much larger than electromagnetic and are typically designed at 5-10λI .
The energy deposition in the longitudinal direction for a hadronic cascade is a non-trivial task
due to the complexity of the strong interactions, though it can be parameterized from the
sum of two Γ distributions, one with a characteristic interaction length λI and the other with
the radiation length X0 (see also Eq. 3.33). Typically, for the containment of 98% of a 100
GeV scale hadronic shower, about 9λI are required, while for the LHC multi-TeV scales about
10λI are su�cient [1]. The transverse development in hadronic showers is also increased in
comparison with electromagnetic, since there are contributions both from the electromagnetic
component but also from the large transverse momentum transfers in nuclear interactions.

The energy resolution in a hadron calorimeter is signi�cantly worse than in electromagnetic,
due to large �uctuations in the hadron-shower development mainly caused by the di�erent re-
sponse of the calorimeter to electrons and hadrons. Let h be the e�ciency with which the
hadronic energy is detected and e the corresponding e�ciency for electron detection, where
in general h 6= e. This leads to the concept of compensation of the response i.e., design a
calorimeter where 〈h/e〉 = 1, which is possible only for sampling calorimeters. This requires
tuning of several variables in the calorimeter design, such as the adjustment of electromagnetic
and hadronic sensitivity using appropriate sampling materials in order to obtain a near com-
pensating calorimeter. For example, D0 collaboration at Fermilab, had achieved a value of
〈h/e〉 = 1.08 for their U/LAr sampling calorimeters [2]. The fractional energy resolution for a
hadronic calorimeter is approximated by [2]:

σ

E
=
a1(E)√
E
⊕ |1− 〈h/e〉 |σfem (3.40)
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where a1 is a coe�cient lightly dependent on the energy and σfem is the standard deviation
for fem (see Eq. 3.38). For the above D0 example the resolution is 44%/

√
E, while another

example is the ATLAS hadron calorimeter which without compensation (〈h/e〉 = 1.37) has
achieved a resolution of 42%/

√
E for pions [3].
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3.3 The CMS detector

Figure 3.4: A schematic view of the CMS detector with the di�erent components [8].

The Compact Muon Solenoid (CMS) detector (see also Sec. 2.3.2 and 2.3.3) has a symmet-
rical onion-like structure and is composed of several concentric layers of sub-detector systems.
The overall layout of the CMS detector with the modular design is shown in Fig. 3.4. The
3.8 T Superconducting Solenoid is the central feature of the apparatus, which is 13 m long
and has a 6 m internal diameter. Inside the bore of the superconducting solenoid, are accom-
modated the Tracker (Silicon Micro-strips and Pixels) and the Calorimeters (Electromagnetic
and Hadron), while outside the solenoid are emplaced the Muon Detectors. To complete the
coverage of the central part of the CMS detector (barrel), detector systems (calorimeters and
muon detectors) are added on each side of the barrel cylinders (end-caps). The goals and the
main characteristics of each subsystem are discussed in the following subsections.

The CMS detector has designed following few guiding principles in order to complete its
broad physics programme. The main detector requirements for the di�erent physics objects as
described in Ref. [8], are:

� Muons: e�cient identi�cation, momentum and di-muon mass measurement with good
resolution and precise muon charge determination.

� Charged Particles: e�cient reconstruction for all the charged particles in the inner
tracker, good resolution for the momentum measurement and more speci�cally for the τ
lepton e�cient triggering and o�ine tagging.

� Photons and Electrons: good resolution for the measurement of energy, di-photon
mass and di-electron mass and e�cient isolation of photon and lepton.

� MET and Jets: good resolution for the measurement of the missing-transverse-energy
and the dijet mass, e�cient triggering and o�ine tagging for the b-jets.

The nominal collision point is located at the center of CMS and de�nes the origin of the
coordinate system adopted from the experiment. The beam direction coincides with the z-axis
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pointing toward the Jura mountains from the LHC Point 5, the y-axis pointing vertically upward
and the x-axis pointing at the center of the LHC, as shown in Fig. 3.5. The xy plane, also
referred to as the transverse plane, is where the azimuthal angle φ is measured and transverse
variables such as the transverse momentum pT are computed. The polar angle θ has its usual
cylindrical coordinate de�nition and is measured from the z-axis. Besides the cartesian and the
cylindrical coordinates, two extremely important quantities used for specifying the position are
the rapidity (y) and the pseudo-rapidity (η). The rapidity is a kinematic quantity de�ned as:

y =
1

2
ln
E + pz
E − pz

(3.41)

where E is the scalar energy and pz is the z component of the momentum. The key advantage of
using rapidity is that rapidity di�erences are invariant with respect to Lorentz boosts along the
beam axis (z-axis). Note also that the transverse momentum px and py, as well as the azimuthal
angle (φ ≡ tan−1 (px/py)) are also invariant under boosts along the z direction. Therefore, the
angular separation de�ned as:

R =
√

(∆φ)2 + (∆y)2 (3.42)

is a quantity invariant with respect to boosts along the z-axis. On the other hand, pseudo-
rapidity is a geometric quantity de�ned as:

η = −ln
[
tan

(
θ

2

)]
(3.43)

For highly relativistic particles i.e., particles travelling close to the speed of light or equivalently
particles with negligible mass, equation y ≈ η holds. Hence, the motivation for using η arises
from the fact that although it is almost identical to y in the high relativistic regime, it does
not depend on kinematic variables and subsequently it can be quicker and faster estimated
by far. However, pseudo-rapidity di�erences ∆η are invariant with respect to Lorentz boosts
along the beam axis only for massless particles. Finally, few representative values for η and its
correspondence to the polar angle θ are shown in Fig. 3.6

Figure 3.5: The CMS coordinate system [9].
Figure 3.6: The correspondence between
pseudo-rapidity (η) and the polar angle (θ) [10].
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3.3.1 Superconducting magnet

Figure 3.7: Trajec-
tory of a charged parti-
cle in a constant mag-
netic �eld.

The CMS superconducting magnet is necessary for bending the
trajectories of charged particles emerging from the collision point. In
principle, the trajectory of a charged particle in a constant magnetic
�eld ~B is a helix, as shown in Fig. 3.7. The purpose of employing
such trajectory bend is twofold: �rstly, the identi�cation of the parti-
cle's charge since positively and negatively charges bend in opposite
directions under the in�uence of the same ~B and secondly, the mea-
surement of particle's momentum. In particular, the radius R of the
curvature of a particle with charge ze in a constant magnetic �eld ~B,
is related to the particle's momentum component P⊥ perpendicular
to ~B and correspondingly to the total momentum Ptot via [2]:

P⊥ [GeV/c] = 0.3 · z ·B [T ] ·R [m], Ptot =
P⊥
cosλ

(3.44)

where λ is the dip angle shown in Fig. 3.7. Hence, it becomes clear that the more momentum
a particle has, the less its path is curved by the magnetic �eld (curvature k ≡ 1/R).

The CMS magnet system contains the largest superconducting magnet ever built and is
constructed with 12.5 m length, 6 m internal diameter and 12.000 t weight in total [11].

Figure 3.8: Insertion of
the CMS coil into the barrel
yoke on 14 September 2005
[12].

It can generate a magnetic �eld of around 4 T which is about
100,000 times the strength of the Earth's magnetic �eld. The
nominal current for the whole magnet system is 19.14 kA cor-
responding to a stored energy of 2.6 GJ . The superconducting
solenoid is formed by coils of wire made from niobium-titanium
(NbTi) Rutherford cables operating in the superconducting state
(also discussed in Sec. 2.3.1). The �ux is returned through an
iron structure, called yoke or return yoke. The yoke is used not
only for the con�nement of the high magnetic �eld in the detec-
tor's volume, but also as structural support for the other detector
systems. Therefore, it is by far the CMS's heaviest component
(10.000 t) and is composed of 6 endcap disks and 5 barrel wheels.
In Fig. 3.8 a photo of the insertion of the CMS coil into the bar-
rel yoke, during the preparation for Run I on September 2005,
is shown. A cryogenic system based on super�uid helium (also discussed in Sec. 2.3.1), enables
the superconductivity for the magnets by maintaining a temperature of 4.45 K (−268.7◦C),
while a dedicated vacuum system is used for the isolation of coil cryostat [8].

3.3.2 Tracking system

The tracking system of CMS has been designed to record the paths followed by charged
particles by measuring their positions at a number of speci�c points. The accurate path recon-
struction is crucial for the measurement of charged particles' momentum utilizing the bend of
their trajectory inside the magnetic �eld described above. The CMS tracker not only recon-
structs the trajectories of muons, electrons and charged hadrons, but also identi�es precisely
tracks produced from secondary vertices, for example from the decay of short-lived particles
such as b-quarks or neutral kaons KS [13].

The proximity of the CMS tracker to the interaction point (closest subdetector system to
the beam pipe) implies the need for high granularity, fast response and radiation hardness.
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Such requirements are ful�lled with silicon detector technology (see Sec. 3.2.5). In particular,
two di�erent types of silicon detectors are used: pixels at the very core of the detector and
microstrips on the circumferential area of the pixel modules. In the original design, the silicon
pixel detector consisted of 3 concentric barrel layers surrounding the interaction point at radii
of 44, 73 and 102 mm respectively and 2 disks on each side of the cylinders at distances 345
and 465 mm from the interaction point [8]. This design was based on the assumption that the
maximum instantaneous luminosity would be 1× 1034 cm−2s−1. However, as discussed in Sec.
2.3, this parameter exceeded its nominal value and was doubled during Run 2 and therefore the
original pixel detector was replaced by a new system during the year-end technical stop of the
LHC in 2016/2017, in order to maintain e�cient end robust tracking under these conditions.
Hence, the new pixel detector consists of 4 concentric barrel layers surrounding the interaction
point at radii of 29, 68, 109 and 160 mm respectively and 3 disks on each side of the cylinders
at distances 291, 396 and 516 mm from the interaction point [14]. The pixel detector layout is
optimized to deliver three-dimensional (3D) measurement of 4 space points for each trajectory
over the pseudorapidity range |η| < 2.5, and has a total active area of 1.9 m2.

On the other hand, the silicon microstrip detector is subdivided into four di�erent subsys-
tems: the barrel region with radius from 20 to 55 cm is covered from 4 layers of the Tracker
Inner Barrel (TIB) which is complemented on each side from 3 disks of the Tracker Inner Disks
(TID) and surrounded by 6 layers of the Tracker Outer Barrel (TOB). In the z direction, the
above systems extend between ±118 cm, while beyond this range 9 disks of the Tracker End-
Caps (TEC) on each barrel side covers the region 124 cm < |z| < 282 cm. TIB/TID provides up
to 4 r-φ measurements of the trajectory, TOB delivers another 6 r-φ measurements and �nally,
TEC provides up to 9 φ measurements. In total, at least 9 hits are provided from the silicon
strip tracker over the pseudorapidity range |η| < 2.4 from which at least 4 are two-dimensional
(2D), while the total active silicon strip area is 198 m2. The ultimate tracker acceptance goes
up to η ≈ 2.5. A schematic cross section through the original CMS tracker is shown in Fig.
3.9.

Figure 3.9: Schematic cross section through the original CMS tracker in the r-z plane. Strip
modules providing 2D hits are shown with black lines, while those permitting 3D position re-
construction are shown with blue lines. The pixel modules shown by red lines also provide 3D
hits [15].

67



3.3. THE CMS DETECTOR

Pixel detector

The pixel system delivers 3D measurement of tracking points in r-φ and z coordinates and
for that purpose, each of the pixel layers described above is split into segments. There are
1856 segmented silicon sensor modules in total, from which 1184 are used in the Barrel PIXel
detector (BPIX) and 672 in the disks (see Fig. 3.10b), also known as the Forward PIXel
detector (FPIX). Each module is composed of a silicon sensor with 160× 416 pixels connected
to 16 read-out chips (ROCs) also segmented into channels for reading out the pulse information
height for each pixel (see Fig. 3.10a). The overall size of the silicon sensor is 18.6× 66.6 mm2,
while the standard pixel size is 100 × 150 µm2. The sensor technology is based on n-in-n
technology where strongly n-doped n+ pixelated implants are emplaced on an n-doped silicon
bulk and a p-doped back side, such that in reverse bias the n+ implants are collecting electrons
(see also Sec. 3.2.5). Furthermore, in order to achieve optimal yield, di�erent approaches on
that technology were adopted for BPIX and FPIX leading to di�erent types of modules among
them [14]. The position resolution not only varies depending on the track angle and the radial
position of the layer, but also di�ers for the two directions rφ and z for the BPIX and r and
φ for the FPIX. For example, the position resolution for the third layer of the BPIX is 9.5
µm in the rφ direction and 22.2 µm in the z direction. Figure 3.10c illustrates the BPIX and
FPIX detectors together with the service half-cylinders used for holding the readout and control
circuits.

Figure 3.10: (a) A CMS silicon pixel detector [16], (b) Drawing of a pixel detector module
used in FPIX [14], (c) Drawing of the BPIX and FPIX detectors layout [14].

Silicon strip tracker

The silicon strip tracker is composed of 15148 modules, with 29 di�erent module designs and
15 di�erent sensor designs required to cover the needs of the four di�erent subsystems (TIB,
TID, TOB, TEC). There are 24244 silicon sensors in total, with typical dimensions 6× 12 cm2

in the TIB and 10 × 9 cm2 in the TOB. Depending on its position, each module is equipped
with one thin (320 µm) or two thick (500 µm) silicon sensors. The sensor technology for the
strip detector is based on p-on-n technology, manufactured on planar wafers with uniform n+

implantation on the back side, while the front side consists of p+ implantation into n type
bulk [8]. The strip pitch in the TIB is 80µm for the two innermost layers and 120 µm for
the two outer layers, performing single point measurements with resolution 23 µm and 35 µm,
respectively. The mean strip pitch in the TID varies in the range 100-141 µm, while in the
TOB 186 µm strip pitches are used in the �rst four layers leading to a single point resolution of
53 µm and 122 µm strip pitches in the outer two layers with 35µm single point resolution. The
average pitch for the radial strips in TEC disks varies between 97 and 184 µm. Finally, several
layers (shown in Fig. 3.9 with blue lines) of the four subsystems carry a second microstrip
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detector module in order to provide measurements of the z coordinate, too. The single point
resolution measurement for that case is 230 µm in TIB, 530 µm in TOB and varies with pitch
in TID and TEC [8]. Figure 3.11 shows a photo of the TIB modules, while Fig. 3.12 is a sketch
of one tracker endcap where modules are arranged in rings of diameter 2.3 m around the beam
axis.

Figure 3.11: Photo of the CMS silicon strip
detectors in the barrel region (TIB) [17].

Figure 3.12: Sketch of a tracker endcap
(TEC) [8].

3.3.3 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) of the CMS, is used for measuring the energy of
photons and electrons. The CMS ECAL is a homogeneous calorimeter (see also Sec. 3.2.6)
made of lead tungstate (PbWO4) crystals shown in Fig 3.13a. The choice of the crystal was
based on the high density (8.28 g/cm3), the short radiation length (0.89 cm), the small Molière
radius (2.2 cm) and the fact that it is a fast and radiation-hard scintillator. In addition, the
above crystals enable the design of compact calorimeters with �ne granularity and excellent
energy resolution [18]. The latter, is of practical importance mainly due to the decay of the
Higgs boson to two photons (H → γγ), but also for a wide range of other SM and new physics
processes.

The CMS ECAL is composed of (i) a central barrel part (EB) which covers a pseudorapidity
range of |η| < 1.479 and consists of 61200 crystals and (ii) two endcaps (EE) covering a
pseudorapidity range of 1.479 < |η| < 3.0 with 7324 crystals in total. The EB crystals have
a length of 23 cm which corresponds to around 25.8X0, front-crystal face 22 × 22 mm2 and
26×26 mm2 rear-crystal face. Those (PbWO4) crystals are contained in submodules of alveolar
structure which are assembled into modules containing 400 or 500 crystals and further assembled
into 36 supermodules (shown in Fig. 3.13b) in total with 1700 each. On the other hand, the
EE crystals have length 22 cm (24.7X0), front-crystal face 28.62× 28.62 mm2 and rear-crystal
face 30 × 30 mm2. The EE crystals are grouped in mechanical units of 5 × 5 crystals called
supercrystals (SCs), shown in Fig 3.13c. Furthermore, the endcap is split into 2 halves called
Dees, where each Dee is composed of 138 SCs and 18 special partial SCs or 3662 crystals in
total [8]. The scintillation light in the barrel region is collected from avalanche photodiodes
(APDs), while in the endcaps vacuum phototriodes (VPTs) are used as photodetectors (see Sec
3.2.1).

The energy resolution for an electromagnetic calorimeter is given by Eq. 3.35. For the CMS
ECAL, the stochastic term S varies between 1.5% when the energy is reconstructed from the
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sum of 5 × 5 crystal array and 2% in the case of 3 × 3 crystal array [8]. The noise term N
for energies above 15 GeV is below 1% and its contribution reduces signi�cantly as the energy
rises [18]. Finally, the constant term C here is of the order of 0.3%. Typical energy resolution
for electrons between 20 and 250 GeV in the CMS ECAL is parameterized as [8]:

σE
E

=
2.8%√
E
⊕ 0.12

E
⊕ 0.30% (3.45)

Finally, a Preshower detector emplaced in front of the EE aiming mainly to identify π0

within 1.653 < |η| < 2.6, as well as to help in the electron identi�cation and position determi-
nation for electrons and photons. The preshower is a sampling calorimeter (see also Sec. 3.2.6)
composed of alternating layers of lead radiators where the EM showers are developed (passive
layers) and silicon strip sensors for the signal measurement (active layers).

Figure 3.13: (a) Lead tungstate crystals [19], (b) six installed ECAL supermodules [19], (c)
crystals on a quadrant of Endcap ECAL [20].

3.3.4 Hadron calorimeter

The hadron calorimeter (HCAL) measures the energy of charged and neutral hadrons (pro-
tons, neutrons, kaons etc). In addition, the CMS HCAL measures the missing transverse energy
(MET) �ow and inevitably plays a crucial role in searches for new particles (e.g SUSY particles)
or other SM particles that escape the detection such as neutrinos. Furthermore, in conjunction
with ECAL and the muon system it helps the identi�cation of electrons, photons and muons
[21].

The CMS HCAL consists of four main components: the HCAL Barrel (HB), the HCAL
Endcap (HE), the HCAL Outer (HO) and the HCAL Forward (HF). The HB and HE calorime-
ters are located inside the CMS solenoid magnet covering pseudorapidity ranges of |η| < 1.3
and 1.3 < |η| < 3 respectively. On the other hand, the HO calorimeter is emplaced outside the
solenoid volume in order to ensure total shower energy containment acting as tail-catcher for
the hadronic shower energy portions that are deposited outside the HB. The HF calorimeter is
placed in the forward region, 11.2 m away from the interaction point and covers pseudorapidity
range of 3 < |η| < 5.2 [8]. Figure 3.14 shows (right) a longitudinal view of the CMS detector,
with �xed η values presented as dashed lines.

The HB is a sampling calorimeter (see also Sec. 3.2.6) made of alternating layers of �at brass
absorber plates (50.5-56.5 mm thick layers) and tiles of plastic scintillator. It is segmented into
36 azimuthal wedges forming two half-barrels (HB+ and HB-), where each wedge is further sub-
divided into 4 azimuthal angle sectors. The absorber chemical composition is 70% Cu and 30%
Zn with a density of 8.53 g/cm3 and interaction length 16.42 cm, while stainless steel is used
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Figure 3.14: Longitudinal views (r-z) plane of a quarter of the CMS detector showing: (left)
the HCAL tower segmentation for the HB, HE and HO detectors [8] and (right) the HCAL
component (HB, HE, HO, HF) locations, the ECAL (EB, EE) and the muon systems, where
the dashed lines represent �xed η values [22].

for the innermost (40 mm thick) and outermost (75 mm thick) layers. The e�ective thickness
of the absorber varies with pseudorapidity between 5.82λI at η = 0 and 10.6λI at η = 1.3. For
the scintillator tiles, the Kuraray SCSN81 plastic scintillator is used for all the layers (3.7 mm
thick) except from the �rst where Bicron BC408 (9 mm thick layer) is used. The light produced
from the plastic scintillator material, is wavelength-shifted (WLS) and captured in WLS �bers
and then channeled to the photodetectors. In the original design, Hybrid Photodiodes (HPDs)
where used as photodetectors, though they were replaced by Silicon Photomultipliers (SiPM)
in a series of upgrades during Phase I, when the read-out electronics were also upgraded [23].
The HE is also a sampling calorimeter based on the same materials and design principles as
the HB, with 79 mm thick brass plates identical scintillator tiles, while its photodetectors and
electronics also subjected to the above upgrade process.

Figure 3.15: Schematic
view of an HCAL tower [8].

The HO is composed of the same active material as the HB,
however it utilizes the steel return yoke and magnet material of
CMS as an additional absorber increasing the total HCAL depth
to a minimum of 11.8λI . The HO is divided into �ve rings em-
placed as the �rst layer in the iron yoke, positioned at nominal
central positions of ±5.342 (rings ±2), ±2.686 (rings ±1) and
0 (ring 0), where each ring is sub-divided into 12 azimuthal an-
gle sectors. In the longitudinal plane (r-z) the HB, HE and HO
are segmented into η sectors called towers, which are illustrated
in Fig. 3.14 (left) and 3.15. In practice, the measurement of
the energy deposition of a particle requires the summation over
the successive layers of tiles or equivalently over the tower. The
number of scintillator layers depends on the tower and segment
position, for example tower 15 contains 12-13 scintillators in the
front segment and 3 in the rear segment. The HO tower segmentation roughly maps the HB
16 η sectors, forming towers with granularity 0.087× 0.087 in η and φ. The utility of HO was
investigated in simulations using incident pions of �xed energy and comparing the the measured
energy deposits with and without this component. The mean energy fraction recorded from
the HO at η = 0 (ring 0) was 0.38% for 10 GeV pions, increasing to 4.3% for 300 GeV pions
[8].
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Finally, the HF uses quartz �bers (used-silica core and polymer hard-cladding) as active
component, inserted in 5 mm thick grooved plates of steel absorber [8]. The material choices
were primarily motivated from the harsher radiation environment of the forward detector region
which receives unprecedented particle �uxes, many times larger than the rest detector regions.
The signal generation is based on the collection of Cherenkov radiation (see Sec. 3.2.3) emitted
from charged particles traversing the calorimeter volume with velocity above the Cherenkov
threshold. Geometrically, the HF forms two cylindrical structures which are azimuthally sub-
divided into 18 modular wedges of 20◦ positioned on either side of the interaction point. It is
also segmented into η towers with granularity 0.175× 0.175 in η and φ. The phototubes which
where used in the original HF design for the light collection have been replaced by multi-anode
tubes along with their electronics, in the Phase I HCAL upgrade [23].

3.3.5 Muon system

The detection of muons is one of the most important challenges in the CMS experiment.
The need for precise muon detection originates from the fact that it consists a powerful tool
providing clear signatures for a wide range of physics. A typical example is the decay of the
Higgs boson into ZZ or ZZ? which in turn decay into 4 leptons. In the case where all the
leptons are muons, the best 4-particle mass resolution is achieved and for that reason it is
noted as gold plated case. The CMS muon system has three main purposes: (i) the muon
identi�cation with correct charge assignment, (ii) triggering on single and multi-muon events
and (iii) muon momentum measurement with good resolution [24].

The CMS muon system is based on three types of gaseous detectors (see Sec. 3.2.4) for
the muon detection and measurement: Drift Tube (DTs) chambers, Cathode Strip Chambers
(CSCs) and Resistive Plate Chambers (RPCs). Geometrically, it consists of a cylindrical barrel
region covering a pseudorapidity range of |η| < 1.2 and two planar endcap regions covering
0.9 < |η| < 2.4. The DTs are used in the barrel region, the CSCs in the endcap and the RPCs
in both the barrel and the endcap regions. In the barrel region there are 4 detector stations
interspersed among the iron return yoke plates of the magnet. The �rst 3 stations contain 12
DT chambers of rectangular shape, where 8 of them are used for the measurement of muon
in the r-φ bending plane and the other 4 for the z coordinate measurement, while in the 4th
station only the �rst 8 planes exist. Each endcap region contains 4 stations with CSCs providing
precise muon measurement in the r-φ bending plane, formed in trapezoidal shape structured in
concentric rings around the beam line, which are also separated by the iron return yoke plates
of the magnet. The �rst station has 3 rings and the other 3 stations have 2 rings. In both
the barrel and the endcap region, RPCs are used for triggering purposes (discussed below). In
total, 6 layers of RPCs are embedded in the barrel region, 2 for the �rst 2 stations and 1 for
each of the outer stations. In the endcaps, 1 RPC layer is emplaced in all the 4 stations. Figure
3.16 shows a cross section of a quarter of the CMS detector with the positions of the muon
detector systems.

The CMS DTs are classi�ed into the Drift Chambers gaseous tracking detector technology
discussed in Sec. 3.2.4. The 4 barrel muon detector stations are arranged in concentric cylinders
around the beam line containing 250 chambers in total: 60 for each of the 3 �rst stations and 70
for the outer station. The DT chamber width ranges from 180 cm to 400 cm, the depth is �xed
at 250 cm [24], while each DT is divided into 3 or 2 groups which are also called Superlayers
(SLs) made of 4 consecutive layers of rectangular drift cells staggered by half a cell. Figure
3.17 shows on the left a sketch of a drift shell of 13× 42 mm2 cross section, with gas mixture
of 85% Ar + 15% CO2 corresponding to a drift velocity of uedr ∼ 5.5 cm/µs and drift time of
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Figure 3.16: Cross section of a quarter of the CMS detector showing the muon systems: Drift
Tubes (DTs) with yellow colour labelled as MB (Muon Barrel), Cathode Strip Chambers (CSCs)
with green colour labelled as ME (Muon Endcap) and Resistive Plate Chambers (RPCs) with
blue color marked as (RB) and (RE) for the barrel and the endcap region respectively [25].

380 ns in a uniform drift �eld of E = 1.5 kV/cm. Two SLs are used for the measurement of
the r-φ coordinate i.e., the wires are parallel to the beam line, while the third SL measures
the z coordinate i.e., the wires are orthogonal to the beam line. As mentioned above, the
latter is missing in the fourth station where only the φ coordinate is measured. Additionally,
an aluminium honeycomb plate is used to separate the sensitive layers of the two SL groups.
Therefore, a muon emerging from the interaction point, �rstly passes through one r-φ SL, it
traverses the honeycomb plate, then it crosses the z SL and then passes through the second r-φ
SL. The single wire resolution is better than 250 µm for the r-φ measurement and therefore
the 100 µm global resolution, which was the initial design target, is already achieved by the 8
track points measured in the two r-φ SLs. Each SL has a time resolution of a few nanoseconds
providing e�cient bunch crossing identi�cation, while the reconstruction e�ciency for a high
pT muon is better than 95% for the barrel muon system alone [24].

The CSCs fall into the category of Multi-Wire Proportional Chambers (also described in
discussed in Sec. 3.2.4). The 4 endcap muon detector stations contain 540 cathode strip
chambers in total (for the two endcaps): 216 in the �rst station arranged into 3 rings (for each
endcap) and 108 for every subsequential station arranged into 2 rings (for each endcap), with
an individual ring containing 36 or 18 chambers. The overall chamber length varies from 170
cm to 340 cm, the top and bottom widths (trapezoidal shape) are in the ranges 61-153 cm and
31-90 cm respectively, while the thickness is �xed at 25 cm except from the CSCs of the �rst
ring in the �rst station where the thickness is 15 cm [24]. Each chamber covers azimuthal angle
of 10◦ or 20◦, while there is also an overlap of DTs and CSCs for the pseudorapidity range of
0.9 < |η| < 1.2 (shown also in Fig. 3.16). As can be seen in the schematic view of a CSC in Fig.
3.18 (left), it is composed of 6 anode wire planes which run azimuthally de�ning the track's
radial coordinate, interleaved among 7 cathode panels milled with strips which run lengthwise
(radially) with constant azimuthal width ∆φ. The cathode planes de�ne the gas gaps of around
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Figure 3.17: (left) Sketch of a drift shell [8] and (right) schematic layout of the DT chamber
superlayers (SLs) [26].

9.5 mm (7 mm for chambers in the very �rst ring) width �lled with a gas mixture of 40% Ar
+ 50% CO2 + 10% CF4. As described also in the working principles of MWPCs in Sec. 3.2.4,
the precise track localisation is obtained from the interpolation of charges induced on cathode
strips by avalanche positive ions near the wire direction, which is illustrated in Fig. 3.18 (right).
Apart from the precision muon measurement, the CSCs operate also as muon triggers with a
99.9% e�ciency per chamber for �nding track stubs by the �rst-level trigger, which is above
the performance requirement of 99% [8]. The probability per chamber of correct bunch crossing
identi�cation by the �rst-level trigger is 98-99% well above the minimum desired level of 92%.
Furthermore, the combined 6-plane o�-line spatial r-φ resolution for the �rst 2 rings of the �rst
station is 33 µm (performance goal 75 µm) and 80 µm for all the other rings (performance goal
150 µm). Finally, the performance requirement of 2 mm spatial r-φ resolution at the �rst level
trigger is also achieved [8].

Figure 3.18: (left) Schematic view of a CMS Cathode Strip Chamber and (right) an illustra-
tion of the CSC operation principle [27].

Finally, as described in Sec. 3.2.4, the combination of good spatial and time resolution of
the RPC gaseous detectors, make them a powerful tool for fast space-time muon tracking in
CMS. This is of great importance for the muon trigger system where fast decisions are required.
Therefore, since RPCs tag the time of ionizing events in less than 25 ns and have adequate
spatial resolution, a trigger system based on such detectors is not only capable of e�cient bunch
crossing (BX) identi�cation for each muon track, but also for momentum estimation [24]. In
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CMS there are 610 RPCs chambers in total: in the barrel region there are 6 layers of RPCs, 2
for each of the �rst 2 stations and 1 for each of the other 2 stations, while in the endcap region
4 layers of RPCs exist, located as indicated in Fig 3.16. The 2 mm thick CMS RPC parallel
plates are made of phenolic resin (bakelite) of resistivity 1010-1011 Ω · cm [24] separated by two
gas gaps of around 2 mm width containing a mixture of 96.2% C2H2F4 + 3.5% iC4H10 + 0.3%
SF6 with common pick-up readout strips in between. Each station has chamber modules with
2 and 3 double-gaps mounted sequentially along the beam direction, with up to 96 strips per
double-gap [8]. In the barrel region, the RPC chambers form concentric dodecagon structures,
where each chamber has rectangular shape with strips running along the beam direction, while
in the endcap region the chambers have trapezoidal shape with strips running radially and are
arranged into concentric rings. Performance studies of the CMS RPC detector, estimated the
time resolution at about 2 ns and the e�ciency at around 97% [28].

3.3.6 Trigger

In proton-proton collisions with an LHC luminosity peak of 2 · 1034 cm−2s−1 and beam
crossing interval of 25 ns (crossing frequency of 40 MHz), more than 2 billion collisions take
place every second inside the CMS detector (see also Sec. 2.3.2). Such high number of events
translates to a huge amount of data which is impossible to be read out and stored for o�-
line analysis. Apart from that, only a small fraction of the produced events contain events of
interest for the CMS physics program and might reveal new physics phenomena. Therefore, a
trigger system is required with main task the reduction of the amount of data to be read out
and stored by selecting the potentially interesting events out of the bulk of the events recorded
by the detector. In CMS, this is implemented in two steps (levels): the Level-1 Trigger (L1T)
and the High Level Trigger (HLT).

The Level-1 Trigger system is based on custom electronics and is designed to reduce the
rate of events accepted down to 100 kHz [29]. Based on the input information from the muon
and calorimeter detectors, L1T selects events according to a list of algorithms composing the
so-called trigger menu and keeps only those events which satisfy prede�ned criteria. The CMS
L1T menu for pp collisions has 300-450 algorithms (also called seeds) in total [30]. Examples
of such trigger algorithms consist of typical criteria such as pT or η thresholds applied to one
or more objects of a single type such as muons or jets. Events which satisfy the conditions of
at least one seed, initiate the readout of all the detector information from the Data Acquisition
(DAQ) system and the transfer of the data to the HLT.

The L1T is organized into three major subsystems: the L1 Calorimeter Trigger, The L1
Muon Trigger and the L1 Global Trigger. The electronics of all three subsystems were upgraded
during Phase I before Run 2 [31] and the data�ow upgraded chart is illustrated in Fig. 3.19. The
L1 Calorimeter (Calo) Trigger is composed of two sequential layers, where the �rst one (Layer
1) receives the local energy deposits recorded by the ECAL and HCAL and then calibrates and
sorts them before they are sent to the next layer (Layer2) where the reconstruction of calibrated
physics objects such as jets or electrons takes place. The L1 Muon Trigger includes three Muon
Track Finders (MTF) which reconstruct the muons of speci�c detector regions: Barrel (BMTF),
Endcap (EMTF) and Overlap (OMTF). The reconstructed muons along with the calorimeter
objects are then transferred to the Global Muon Trigger (micro-GMT or µGMT) where every
algorithm of the trigger menu is executed in parallel for the muon selection. Finally, the
information from both the Calo Trigger Layer 2 and the µGMT are sent to the Global Trigger
(micro-GT or µGT) and used as a basis for the �nal L1 trigger decision i.e., whether to accept
or reject an event and subsequently generate the L1 Accept (L1A) signal. The L1 Trigger
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latency, between a particular bunch crossing and the distribution of the trigger decision less
than 4 µs [31].

Figure 3.19: Data-�ow chart for the CMS Level-1 trigger upgrade [31].

On the other hand, the High Level Trigger [32] is a software system implemented in a
computing farm of around 32k CPU cores (2018) which reduces further the rate from 100 kHz
to 1 kHz. The HLT system has access to the complete detector readout and using dedicated
software algorithms (also called paths), it performs an online event reconstruction for the event
selection. The HLT menu has over than 600 di�erent paths in order to cover the broad CMS
physics program, where each path contains a sequence of modules for the reconstruction and
the selection of events. The maximal processing time for each event depends on the number
of the available CPU cores, e.g for 32k CPU cores it corresponds to 320 ms [33]. Finally, the
events which are selected from the HLT system are transferred and stored to CERN Tier 0 for
o�ine processing.
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Chapter 4

Jet measurement with CMS

Figure 4.1: Illustration of a jet for-
mation where partons, hadrons, or de-
tector measurements are clustered to-
gether [1].

In Chapter 1 Quantum Chromodynamics was for-
mulated in terms of the strong interacting particles,
quarks and gluons (partons). As discussed there, both
of them are never observed isolated, but only con�ned
in color-singlet bound states i.e., the hadrons. How-
ever, even if individual quarks or gluons are not ob-
servable, after they are being produced they hadronize
leading to the production of collimated streams of en-
ergetic hadrons, the jets, which inherit the energy and
momentum of the parent partons. On that count, jets
are physically the closest experimental object to a par-
ton. At hadron colliders, jets are produced from par-
tons originated from various sources, namely: (i) the
high-momentum-transfer pp collision where one parton
of each proton (2→ 2 process) undergoes in hard scat-
tering, addressed in Sec. 4.1, (ii) the hadronic decay
of a heavy particle such as a top quark e.g t → Wb,
(iii) the radiative gluon emission from another parton
in the event [2].

Mathematically, a jet is de�ned through a set of
rules used to group the particles into jets and assign
to them a momentum. Such jet de�nition is encoded
in a jet algorithm which clusters partons, or parti-
cles, or calorimeter towers [3] based on speci�c crite-
ria discussed in Sec. 4.2, together with a recombination
scheme which describes how to assign a momentum to the combination of two clustering objects.
In CMS experiment the particle identi�cation is based on the Particle Flow (PF) technique,
where the subsequent clustering of PF candidates de�nes the so-called PF jets described in Sec.
4.3. The measured jets are reconstructed objects, and like any other reconstructed object, a
calibration process is necessary for assigning to them the correct energy, which is presented in
Sec. 4.4. In the last section of this chapter (Sec. 4.5), a brief introduction to the Monte Carlo
(MC) event generators used for the simulation of the jet production is given, with emphasis on
the generators used in the Physics Analysis part (Part II).
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4.1 Jet production in pp collisions

Figure 4.2: (left) Sketch of a 2 → 2 hard-scattering event [4] and (right) a dictionary of
hadron collider terms related to jet measurements [5].

Figure 4.2 (left) summarizes the main components involved in a proton-proton collision
event and need to be considered in jet measurements. Each step, starting from the incoming
long-distance protons contained in beams, continuing with the short-distance scattering process
and ending to the long-distance outgoing particles measured by the detector, is brie�y described
below. A compact dictionary with term de�nitions and the relation among di�erent e�ects is
shown in Figure 4.2 (right), for quick reference.

1. Primary (Hard) interaction
The short-distance, large-momentum-transfer scattering interaction which is also the "sig-
nal process" consists the hardest interaction in the event. This part is calculated from �rst
principles using �xed-order perturbation theory, while the necessary input here are the
PDFs evaluated at a relevant factorization scale which parametrize the long-distance par-
tonic distribution for the incoming protons. The extraction of short-distance interacting
partons from the incident protons is formulated by the factorization theorem presented
in Sec. 1.3.4 (see Eq. 1.76). In the simplest case, this corresponds to a 2 → 2 process,
where two partons (one from each proton) undergo in the hard process and are extracted
as outgoing partons (see Fig. 4.2 (left)), while higher multiplicities in the �nal state are
also feasible.

2. Initial State Radiation (ISR)
The partons contained in protons may emit radiation prior to the short-distance hard
interaction which is known as initial-state radiation (ISR). Such processes are still calcu-
lable using perturbation theory (resummation of logarithmically enhanced contributions)
and can be modelled through Parton Shower (PS) algorithms in Monte Carlo event gen-
erators.

3. Final State Radiation (FSR)
The particles produced from the large-scale hard scattering, will exhibit another radiation
step i.e., �nal-state radiation (FSR), where more quark pairs and gluons are added to the
state. The evolution of such lower-scale parton radiation is, like the ISR, perturbatively
calculable and numerically performed in a Monte Carlo event generator (see Sec. 4.5).
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4. Underlying Event (UE)
Since protons are composite objects containing many partons, more than just one pair
of partons may interact from the incoming protons which is known as Douple Parton
Scattering (DPS) or Multi-Parton Interactions (MPI) e�ect. The calculation of this
e�ect is only model-based, since it is not incorporated in the factorization formalism
and not evaluated from �rst principles. Furthermore, the remnants from the "broken"
incident hadrons, also called beam remnants, are no longer color-singlets due to the loss
of one or more partons. Therefore, they are involved in soft interactions and hadronize,
increasing the particle multiplicity mostly in the forward region (parallel to the beam).
The contributions associated with the MPI and the beam remnants are grouped under
the name Underlying Event (UE).

5. Hadronization
The transition from the colored degrees of freedom (partons), produced from the above
processes, to color-singlets (hadrons) is characterized as hadronization process. This
evolves at scales where the perturbative description breaks down (∼ 1GeV 2) and hence
is typically modelled using Monte Carlo event generators (see Sec. 4.5). The union
of the parton shower and the hadronization process is labelled as fragmentation and is
parametrized through the Fragmentation Functions (FFs) Dp/h(x,Q

2). Similarly to PDFs
(see Sec. 1.3.4), the FFs are not extracted from �rst principles and are only measured,
while at leading order they represent the probability to �nd the hadron h emerging from
the proton p at scale Q2 with momentum fraction x. The collection of hadrons emerging
from the hadronization process includes both ground state hadrons such as pions, but
also resonances of unstable particles e.g B/D mesons which further decay into lighter
hadrons.

6. Pile Up (PU)
The formation of protons into bunches results in interactions of multiple pairs of pro-
tons within the same bunch crossing, an e�ect known as pile-up (PU). The number of
multi-proton interactions increase with increasing luminosity (see Sec. 2.3.2) leading to
additional tracks and energy depositions in the detector calorimeters. From the experi-
mental point of view, apart from the secondary interactions between protons within the
same bunch-crossing as the primary interaction (in-time pile-up (IT PU)), additional con-
tributions to the calorimeters energy are caused by previous or subsequent pp collisions
due to the �nite signal decay time in the calorimeters (out-of-time pile-up (OOT PU)).
The corrections that are applied for the mitigation of these e�ects in CMS, are discussed
in Sec. 4.3 and 4.4.
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4.2 Jet Algorithms

A jet algorithm is the mathematical prescription used for grouping particles into jets. The
description of a particular hard-scattering event by a jet algorithm must be consistent regardless
if it is applied to partons, particles or detector measured tracks and energy depositions (see Fig.
4.1). From the experimental point of view, among other requirements, the algorithm imple-
mentation must be independent of the detector details, should exhibit maximum reconstruction
e�ciency and minimum resolution smearing and at the same time providing ease of calibration
and being computationally e�cient. From the theoretical perspective, the most important re-
quirement for a jet algorithm is being collinear and infrared (IRC) safe. This means that it has
to deal with the cancellation of collinear and soft singularities appearing in perturbative QCD
calculations, in order to yield to well-de�ned �nite cross sections at any order of perturbation
theory. Speci�cally, the clustering procedure must be independent of: (i) the splitting/merging
of collinear parton 4-vectors (collinear safety) and (ii) the addition of soft partons to the list of
objects to be clustered (infrared safety) [1, 2].

The jet algorithms that have been used over the years at collider experiments can be gen-
erally classi�ed into two broad categories: (i) the cone algorithms which rely on the assump-
tion that QCD parton branching and hadronization leave the event's energy �ow unchanged
and directed within a cone and hence objects are assigned to the leading energy �ow objects
based on geometrical criteria related to the proximity in coordinate space, (ii) the sequential-
recombination algorithms where the closest pair of objects are repeatedly recombined according
to some distance measure which is usually not related to the coordinate space but to the diver-
gent structure of QCD matrix elements [2]. The FastJet package [6] is the standard software
library used at the LHC, providing fast native implementations of many sequential recombina-
tion algorithms, as well as plugins for access to a range of cone jet �nders. At the LHC, the
sequential-recombination algorithm anti-kt [7] has been adopted as the standard jet algorithm,
combining in the most e�cient way the theoretical and experimental requirements imposed by
the LHC applications. For this reason, only this algorithm is described here.

As mentioned above, the anti-kt algorithm belongs to the category of sequential recombina-
tion algorithms and more speci�cally to the kt-algorithms family. In general, these algorithms
repeatedly recombine objects based on their momentum space distance using two distance
measures:

diB = (pT , i)
2p

dij = min
{

(pT , i)
2p, (pT , j)

2p
} ∆2

ij

R2

(4.1)

where

� diB is the distance between the object i and the beam B

� dij is the distance between the pair of objects i and j

� ∆ij is the distance between the i and j objects in the y-φ plane: ∆2
ij = (yi−yj)2+(φi−φj)2

� R is a parameter (also called resolution parameter) which controls the size of the cone-like
jet

� p is a parameter specifying the sequence of the recombination.
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Starting with a list of objects (particles, proto-jets etc) to be clustered, for each object i the
distance from the beam (diB) and from any other object j (dij) is calculated, computing also
the minimum (min) distance from all the pair-wise objects. Then if diB is the smallest among
those two values, the object i is de�ned as a jet and removed from the list of objects. On the
other hand, if dij is the smallest, the objects i and j are recombinated by summing their 4-vector
components into a new object (proto-jet), which enters the list of objects removing at the same
time the individual i and j objects. The distances are re-calculated and the recombination
procedure is repeated until no more objects are left in the clustering list.

The �rst parameter of choice in Eq. 4.1 is p, where the three typical values are:

- p = 1, de�nes the original kt algorithm, where objects are clustered into jets in order of
decreasing transverse momenta.

- p = 0, corresponds to the Cambridge�Aachen (CA) algorithm, with a clustering sequence
based on the proximity of y-φ space.

- p = −1, is the choice for the LHC standard anti-kt algorithm which is the only among
the three yielding to fairly cone-like jets.

Figure 4.3: Estimation of contributions to the
squared average shift in pt (〈δpt〉2) from pertur-
bative radiation (pert), hadronization (h) and
underlying event (UE), for quark jets at the
Tevatron, as a function of the jet size R [8].

The second parameter of choice in Eq.
4.1 is R, with typical values ranging in 0.4-
0.8. When selecting the parameter R and
therefore the jet-size in an analysis, vari-
ous theoretical and experimental aspects need
to be considered. For example, smaller jet
sizes (R ∼ 0.4) are less sensitive to under-
lying events (UE) and pile-up (PU), how-
ever the non-perturbative hadronization ef-
fects become more important (∼ 1/R) as the
jet size increases. The minimization of such
non-perturbative corrections that need to be
applied to �xed order QCD predictions (see
Chap. 6) was one of the main reasons for se-
lecting a large cone size (R = 0.7) for the anal-
ysis performed and presented in the Physics
Analysis part (Part II). Additionally, as R de-
creases, perturbative radiation becomes more
signi�cant (∼ lnR). A relevant study has
been performed using quark jets at the Teva-
tron for the estimation of contributions to the
squared average shift in pt (〈δpt〉2) from per-
turbative radiation, hadronization and under-
lying event as a function of the jet size R,
shown in Fig. 4.3.
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4.3 Event and Jet Reconstruction

The event reconstruction at the CMS is based on the Particle Flow (PF) algorithm [9, 10],
which uses the information from all the subdetector systems and completely reconstructs an
event. This global event description illustrated in Fig. 4.4, is performed by correlating the basic
elements (tracks and clusters) from the subdetectors and combining the information in order
to identify and reconstruct all particles in the event. The reconstructed particles (also called
PF candidates) are then used to build the physics objects: jets, missing transverse momentum
(pmissT ), muons, electrons, photons and taus. The global event description is achievable at CMS,
due to the high-segmentation of the subdetectors which enables the good separation among the
individual particles. The physics objects obtained by combining the measurements from the
detector layers, are determined with better resolutions and e�ciencies, compared to the other
traditional approaches which were focused on the localized information in the subdetectors.

Figure 4.4: Graphical illustration of the PF algorithm which is used to identify and reconstruct
particles at CMS [11].
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Figure 4.5: PF Jet energy com-
position for AK4 PFchs jets, using
2016 CMS data and Pythia8 simula-
tion [12].

As mentioned above, the basic PF elements that are
reconstructed are the charged-particle tracks/vertices
and calorimeter clusters. The charged-particle trajecto-
ries are reconstructed iteratively in three stages starting
from few tracks (hits) which are compatible with a tra-
jectory followed by a charged particle, then gathering
hits from all the other tracker layers for this speci�c
particle trajectory and �nally perform a �t to obtain
the origin, the direction and the transverse momentum
of the charged particle. Meanwhile, in the calorimeter
subdetectors, clusters of energy are reconstructed based
on dedicated clustering algorithms. Starting from clus-
ter seeds, which are identi�ed as neighbouring calorime-
ter cells with energy above a given threshold and larger
than their neighbouring cells energy, topological clus-
ters are produced by aggregating the cells which have
at least one corner that coincide with the cell already
in the cluster and has energy above a cell threshold.

In the general case, a particle interacts with various
subdetector systems giving rise to more than one PF
elements. Therefore, a link algorithm is used to con-
nect the PF elements from the subdetectors in order
to identify and reconstruct each particle. For example,
a charged hadron is identi�ed from the connection in
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the (η, φ) views of one track and one or more calorimeter clusters and the absence of signal
in the muon subdetectors, while its energy is determined from the combination of tracker and
calorimeter measurements.

Figure 4.6: Particle composition of
a jet simulated with Pythia6.4 tune
Z2∗ (particle level) [13].

The clustering of particles, reconstructed with the
PF algorithm, into jets is performed using the anti-kt
algorithm (see Sec. 4.2) and gives rise to the PF jets.
On the other hand, a di�erent category of jets can be
obtained from the clustering of the sum of ECAL and
HCAL energy depositions in calorimeter towers alone,
i.e., Calo jets. As shown in Fig. 4.5 and 4.6, the bulk
of the jet energy (∼ 65%) is carried by charged hadrons
(on average), while photons and neutral hadrons consist
the other two main contributions (∼ 25% and ∼ 10%
respectively). The jet energy resolution for PF jets is
much superior than Calo jets, mostly due to the more
precise and accurate measurement of charged-hadron
momentum performed using the PF technique. This
can be seen in Fig. 4.7 (left) for the barrel region of
CMS, where jets produced from Monte Carlo event gen-
erators were used as reference (Ref jets). Moreover, the
PF reconstruction algorithm is also used at the HLT in
order to optimize the performance. The bene�t of us-
ing PF jets at HLT, rather than Calo jets, is illustrated in Fig. 4.7 (right) which shows the
probability to �nd a jet with pT > 40 GeV at HLT, matching the jet reconstructed o�ine which
is much sharper in the case of PF jets.

The pile-up (PU) interactions lead to additional photons, charged and neutral hadrons
present in the PF reconstruction. In order to mitigate the contributions from PU, the charged-
hadron substraction (CHS) method is commonly used, leading to the PFchs jets. The basic
concept of the CHS algorithm is the identi�cation and removal of the reconstructed within the
tracker acceptance (|η| < 2.5) charged hadrons which are not associated with the primary ver-
tex1 and is instead originated from a pile-up vertex. This method removes most of the charged
hadrons associated with PU vertices, which is about 2/3 of the overall pileup contribution.
Additional corrections for the mitigation of PU contributions in PFchs jets are discussed in
Sec. 4.4.

Figure 4.7: (left) Jet energy resolution for PF and Calo jets in the barrel region of CMS,
using MC event generator jets as reference and (right) the probability to �nd a jet with pT > 40
GeV at HLT, matching the jet reconstructed o�ine [9].

1The Primary Vertex (PV) corresponds to the vertex in the event with the highest
∑
p2t which is considered

as the hard-scatter vertex, while any other vertex is identi�ed as Pile-Up (PU) vertex.
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4.4 Jet Energy Calibration

The jets which has been reconstructed from the clustering of Particle Flow candidates,
need to be calibrated in order to have the correct jet energy scale (JES). The calibration
of reconstructed jets in CMS, is performed through successive correction steps, namely jet
energy corrections (JECs) applied to the measured jet energy. The JECs are evaluated using
data and MC simulation samples, aiming to correct for the o�set energy caused from PU
interactions, non-uniformities of the detector response and residual di�erences between data
and MC simulation. Further corrections which account for di�erences in the response with
respect to the jet �avor are also required. Each stage of the jet calibration procedure for data
and MC simulation is shown in Fig. 4.8 and is brie�y presented below [13].

Figure 4.8: The stages of jet calibration process for data (upper half) and MC simulation
(lower half) [13].

Pileup o�set corrections
The �rst stage of the jet energy calibration process aims to the subtraction of the unwanted

pileup contributions, both OOT and IT PU (see Sec. 4.1). The basic parameters involved in
the PU corrections formulation are: pT , η, jet area A (∼ πR2) and the o�set energy density
ρ2, while their evaluation is based on simulation of QCD dijet events with and without pile-up
contributions. As discussed in Sec. 4.3, the CHS algorithm identi�es and removes (before
jet clustering) the charged particles originating from pileup vertices, reducing the contributions
from IT PU. Then the remaining o�set energy from neutral particles and OOT PU is estimated
per event, using an extended hybrid jet area method [13], and subtracted per jet in the event.
Roughly speaking, the hybrid jet area method calculates the energy to be subtracted from
the jet by estimating the event PU contributions distributed inside the jet area. Since the
dependence of the PU o�set corrections on pT and η are extracted from simulation, an o�set
scale factor is calculated (Random Cones (RC) method [13]) and applied on data, accounting
for di�erences between data and simulation.

Simulated response corrections
Once the pileup o�set corrections have been performed, corrections for the particle response

derived from simulations, Rptcl, are applied on jets. They account for non-uniformities in
detector response which depends on η and pT . The basic response parameter Rptcl is de�ned
as:

Rptcl (〈pT 〉, η) =
〈pT 〉
〈pT,ptcl〉

[pT,ptcl, η] (4.2)

where 〈pT 〉 is the average reconstructed jet pT and 〈pT,ptcl〉 is the average pT for the particle-level
jet which is the closest (matched) to the reconstructed jet. The notation [pT,ptcl,η] indicates that

2The o�set energy density for an event is de�ned as: ρ = median (pT,i/Ai) i.e., the median of the jet momenta
divided by the jet area.
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Rptcl is binned in pT,ptcl and reconstructed η. The extraction of these corrections are based on
QCD Multijet samples produced with Monte Carlo event generators e.g Pythia6 with tune Z2∗

in [13], together with a detailed CMS detector simulation based on GEANT4 package [14].

Residual corrections for data
The evaluation of detector response from simulations, does not include imperfections of the

real detector. Therefore, residual corrections must be applied on data in order to account for
them and make the detector response uniform with respect to pT and η. The basic concept
stands in measuring the transverse momentum balance between the jet to be calibrated and a
reference object, where imbalances at the reconstructed level are caused when the jet energy
scale di�ers from unity. In the �rst place, the jet response is corrected with respect to η, using
dijet events where a reference jet is constrained in the barrel region |η| < 1.3 and the jet to be
calibrated has no η restriction. This allows the correction of all the jets response relative to the
barrel jets (|η| < 1.3). Then events from Z(→ µµ) + jet, Z(→ ee) + jet, γ + jet and multijet
events are used for correcting the dependence of the response on pT , using other well-measured
objects (muons, electrons, photons) as reference and calibrate jets with respect to the barrel
region jets.

Jet �avor corrections
The last step of the jet calibration process, accounts for the di�erences of the response to

quark- or gluon-initiated jets. The need for these corrections arises from the fact that the jet
particle composition depends on the �avor of the parton that initiates the jet. In particular, soft
(low-momenta) particles lead to lower response, while the neutral hadron fraction inside the jet
also a�ects the response. Typically, gluon jets are wider in shape, contain higher multiplicities of
soft particles and therefore exhibit the lowest response [15]. On the other hand, jets originated
from u and d quarks have the highest response, while c and b jets are in between gluon and
u/d jets. The evaluation of the response di�erences is based on simulations exploiting samples
which are gluon-enriched (QCD dijet) and quark-enriched (Z + jet, γ + jet).

In the end, each correction comes in the form of a multiplicative factor C, such that the
calibrated jet pT is described by:

pT,cor. = C × pT,uncor. (4.3)

where pT,cor. stands for the corrected (calibrated) jet transverse momentum and pT,uncor. is the
un-corrected jet transverse momentum. Moreover, each correction stage presented above, is
accompanied with relevant uncertainties arising from di�erent sources. The latter, are referred
as systematic sources and are propagated to any measurement based on calibrated jets. The
names of the individual JEC uncertainty sources can be seen in Tab. G.1 and their treatment in
a jet physics analysis will be discussed in Sec. 5.8. Figure 4.9 shows the total JEC uncertainty
(grey band) and few individual JEC uncertainty sources as a function of pT (left) and η (right)
for 2016 data for AK4 jets.
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Figure 4.9: The total (grey band) and individual JEC uncertainties as a function of pT (left)
and η (right) for 2016 data for AK4 jets [12].
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4.5 Monte Carlo simulation

The sub-processes involved in a pp collision and introduced in Sec. 4.1, can be simulated
e�ciently with Monte Carlo (MC) techniques. Particularly, all the phenomena de�ned there
correspond to a di�erent step that need to be simulated in the event generation of a MC event
generator. In physics analyses, MC event generators are used for several purposes such as in
the calibration process presented in Sec. 4.4 or in the data unfolding procedure which will be
described in Sec. 5.7. Generally, in high energy physics experiments some common applications
of MC event generators are the extraction of new physics signals from background processes,
the SM parameters measurement when their predictions are compared to experimental data,
the input information they can provide in the design of new experiments etc [16].

In general, the Monte Carlo methods correspond to the numerical methods which involve
the repeated use of computer-generated pseudo-random numbers in order to solve a problem
[17]. Here, an essential part when extracting predictions for any experimental observable at the
LHC, is the integration over the �nal-state phase space, as formulated in Sec. 1.3.4. However,
this phase space has typically large and variable dimension d which for an n-particle �nal state,
considering the three momentum components per particle and the four constraints implied by
the energy-momentum conservation, is: d = 3n− 4, plus the �avour and spin labels [16]. Since
in the most interesting processes hundreds of particles are typically produced, the numerical
integration with Monte Carlo method is preferred among other choices. This is because the
integration accuracy improves as σI ∼ 1/(

√
N) [17] (where N are the integration points),

regardless of the dimension d of the problem, in contrast to other numerical methods (Simpson's,
Gaussian etc.) which exhibit severe computing penalties as d increases. Essentially, a Monte
Carlo event generator provides a set of representative points in the phase space of the process of
interest, where the density of the points is analogous to the probability distribution predicted
for that speci�c process.

The short-distance and high-momentum transfer hard subprocess is at the core of any MC
event generator, while the overall simulation is built around it. Based on the factorization
formula of Eq. 1.76, the hard subprocess corresponds to the calculation of the matrix element
squared |Mab→n|2 which involves the summation and averaging over the quantum numbers
of initial and �nal state particles. In the case of low multiplicity �nal states i.e., 2 → 2
and 2 → 3, the calculation is usually performed analytically based on theoretical algebraic
expressions and for this reason all MC event generators include such pre-computed matrix
elements. However, for �nal-state multiplicities of four or larger more specialized techniques
(e.g based on Berends�Giele recursion relations [18]) have been developed for the numerical
evaluation of the matrix elements, which is usually performed from dedicated matrix-element
generators e.g Comix [19] and phase space integrators. Moreover, going beyond the LO accuracy
is rather than trivial as will be discussed in Sec. 6.1, where the technology of NLO calculations
is introduced.

Once the "hard" matrix element has been computed, the radiative e�ects must be simulated
in order to account for the successive emissions of colour charged particles both in the initial and
in the �nal state. This parton cascade is simulated through Parton Shower (PS) modeling which
evolves in the perturbative regime, from the hard interaction's high scales down to typically
around ∼ 1GeV where the strong coupling becomes large and the perturbative description
breaks down. In principle, the PS represents higher-order real-emission (see Sec. 6.1) corrections
to the hard subprocess with the simulation of branching of a single external parton into two
partons [20]. The calculation of such corrections rely on general approximations and conditions,
such as that (i) the total shower evolution through the parton branchings should leave the cross
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section invariant, (ii) the additional emissions are strongly ordered, (iii) the QCD amplitudes
are approximated by their universal soft and collinear factorization properties [21]. The latter
practically means that for collinear partons or soft gluons the QCD matrix element becomes
singular in the relevant phase-space regions and the matrix element factorizes into a singular
factor and the hard matrix element. For example, in the collinear factorization the parton
splittings: q → qg, q → gq, g → gg, q → qq̄ are usually described by the Altarelli-Parisi splitting
functions Pqq, Pgq, Pgg and Pqg, which are then used for the cross section formulation. Many
di�erent models have been developed for the simulation of the Parton Shower like the successive
parton emissions in angular ordering implemented in Herwig++ [22] or the partitioned dipole
shower with Leading-Colour Approximation used in Pythia8 [23].

Another important task arising in the event simulation is the incorporation of the infor-
mation from matrix elements and parton showers. Such combination is necessary in order
to obtain a more complete description of the partonic states, since the approaches followed
in the calculation of matrix elements and parton showers are complementary. The former,
deals with the simulation of hard and well-separated partons, in contrast to the latter which
simulates soft and collinear parton emissions. However, implementing the above combination
is again not trivial due to several problems that must be resolved. For example, the matrix
elements are inclusive3 quantities while the parton showers are exclusive4, which means that
special treatment is needed to avoid overcounting. There are many di�erent approaches that
can be followed for the ME-PS combination, which can be widely categorized into two distinct
strategies: matching and merging. In the former, the high-order corrections from the inclusive
process are integrated with the PS, as done for example inMC@NLO [24] or Powheg [25, 26]
methods used for the matching of PS with NLO matrix elements. In the latter, a merging
scale is de�ned such that any parton generated above that scale is generated with the ME and
partons below are generated with the PS, as implemented for example in the MLM [27] or
CKKW [28] methods used for multi-jet merging at LO.

At the scales around 1 GeV , the perturbative evolution of the PS is terminated and a
hadronization mechanism is required for the description of transition from the coloured partons
to colourless hadrons. Since there is no way to describe this transition from �rst principles in
QCD, the non-perturbative hadronization process is model-based. Such hadronization models
are developed with a number of tunable parameters that need to be adjusted for the description
of the data. The two main classes of hadronization models are the string models used for
example in Pythia8 and the cluster models used by Herwig++. The string models start
from the formation of a colour �ux tube among two colour charges that moving apart, under
the assumption that the tube is uniform along its length, resembling a linear static potential
between the partons: V = σr (see also Eq. 1.55). As the distance between partons increases,
the potential energy stored in the string also increases and the string eventually breaks with
the production of qq̄ pairs. Then each meson is formed by the quark from one break and
the antiquark from an adjacent break, which is extended to diquark�antidiquark pairs for the
formation of baryons. On the other hand, the cluster models rely on the concept of colour pre-
con�nement of parton showers, a property of many-body QCD �nal states which implies that
partons which are neighbors in the momentum space are also neighbors in colour space [18].
The cluster hadronization starts from the gluons present at the end of the PS which are split
non-perturbatively into color-singlet qq̄ combinations, forming clusters (colour connected pairs)
considered as unstable intermediate states that immediately decay isotropically into hadron

3For example, a tree-level ME gives the probability to have at least n partons calculated exactly at the lowest
order in αS [16].

4The probability to have exactly n partons calculated approximately in all αS orders [16].
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pairs. In the end, the collection of primary hadrons obtained from the hadronization procedure
contains also unstable and excited hadrons. Their decay into secondary stable hadrons (in
collider timescales) is simulated by selecting the hadrons to be included in the simulation and
the relevant decay channels.

Finally, the simulation of soft QCD physics phenomena and the underlying event contribu-
tions is also model-based, with a wide range of approaches and models that have been developed
and implemented for the various MC event generators. A brief overview of the Monte Carlo
event generators used in the Physics Analysis part (Part II) is given below.

1. Herwig++ [22] is a general-purpose Monte Carlo event generator which is based on
the obsolete event generator Herwig (Hadron Emission Reactions With Interfering
Gluons). The Matrix Element (ME) is computed at Leading Order (LO) accuracy for
2 → 2 QCD scattering processes. The Parton Shower (PS) is simulated by the angular
ordering of successive emissions, while the cluster model is used for the hadronization.
Contributions from the Underlying Event (UE) physics are obtained from the simulation
of Multiparton Interactions (MPI) which are tuned to experimental data, while hadron
decays are also simulated. The tune used in the analysis is the UE-EE-5-CTEQ6L1 or
simply EE5C [29] which is based on CTEQ6.1M LO PDF set.

2. Madgraph5 [30, 31] is the successor of Madgraph and is capable of generating ma-
trix elements at LO accuracy for 2 → 2 + n QCD scattering processes, where n is the
number of the additional partons to be included in the analytical calculation, which go
up to 2 additional partons i.e., 2 → 4. Since no Parton Shower, Underlying Events and
hadronization models are available in Madgraph5, for the complete event simulation it
is combined with Pythia8 with the MLM method [27].

3. Pythia8 [23] similarly to Herwig++, is a general-purpose Monte Carlo event gen-
erator, which corresponds to the successor of Pythia6. The ME is calculated at LO
accuracy for 2 → 2 QCD scattering processes, while in the PS simulation the successive
emissions are pT ordered. The hadronization mechanism is based on the string model,
the UE/MPI e�ects are tuned to experimental data and particle decays are also simu-
lated. Three di�erent tunes are considered in the analysis: the CUETP8M1 [32] based
on NNPDF2.3 LO PDF set, the CUETP8M2T4 [33] based on NNPDF3.0 LO PDF set
and the CP5 [34] tune based on NNPDF3.1 NNLO PDF set.

4. Powheg (Positive WeightHardest EmissionGenerator) [25, 26], based on the Powheg
box [35] generates 2 → 2 matrix elements at NLO accuracy, as well as 2 → 3 matrix
elements at LO accuracy. Similarly to Madgraph, for the complete event simulation
it is interfaced either to Pythia8 or to Herwig++ which provide the PS, UE and
hadronization models. The ME-PS matching is performed through the Powheg method
[25, 26].
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Chapter 5

R∆φ measurement in pp collisions at√
s = 13 TeV with the CMS experiment

As discussed in Sec. 1.3 the property of asymptotic freedom of Quantum Chromodynamics,
implies that the strong coupling αS, decreases when probed at large momentum transfers Q,
corresponding to small distances. Although the values of the fundamental QCD parameter
αS are not predicted from theory, the renormalization group equation (RGE) formulated in
Eq. 1.69 (and Eq. 1.73 keeping only the leading term), describes the dependence of αS on
the renormalization scale µr and hence on the momentum transfer Q. Therefore, experimental
measurements can be used for the extraction of the αS at a speci�c scale, which by convention
is chosen to be the well-known Z-boson mass (see Eq. 1.74) and then using the RGE which
precisely describes the evolution of αS, test the running of the coupling to higher scales Q.
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Figure 5.1: An overview of determinations of the strong coupling constant at the scale of
the Z-boson mass from measurements (left) using hadrons [1] and (right) di�erent sub-�elds
observables [2].
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Table 5.1 shows previous measurements of the strong coupling constant at hadron colliders,
extracted from analyses based on hadron physics. The results from all these αS(MZ) measure-
ments are shown in Fig. 5.1 (left), which also includes measurements performed by the H1
and ZEUS collaborations based on data from deep-inelastic e±p scattering at DESY HERA
collider. The vertical band in this plot represents the world average value from PDG (2020)
[2] according to Eq. 1.74. On the right of Fig. 5.1 the most recent plot from PDG (2020),
illustrating αS(M2

Z) determinations from various �elds e.g lattice QCD or electroweak precision
�ts, is shown. Apart from the αS(MZ) measurement and the comparison with the world av-
erage, testing the running of αS i.e., αS(Q), is yet another challenge. Figure 5.2 shows on the
left, this result as determined from the latest jet-based CMS αS running test [3] using a 2-loop
solution for the RGE, while on the right the most recent plot taken from PDG (2020) [2], is
shown. It is directly observed from these plots that αS has been experimentally tested up to
Q ∼ 1.5 TeV . Hence, the motivation for this analysis is twofold:

� Extraction of the αS(MZ) based on CMS data collected during pp collisions at
√
s = 13

TeV using jets and direct comparison to the world average.

� Testing of αS(Q) running for momentum transfers Q & 2 TeV .

Table 5.1: Measurements of the αS using hadron physics at hadron colliders (pp̄ collisions-
Tevatron-for D0 and CDF, pp collisions-LHC-for ATLAS and CMS.)

√
s (TeV) Collaboration (year) Observable

1.96 CDF (2002) Inclusive jet cross section [4]
1.96 D0 (2009) Inclusive jet cross section [5]
1.96 D0 (2012) Jet angular correlations [6]

7 ATLAS (2012) Inclusive jet cross section [7]
7 CMS (2013) 3-jet over 2-jet inclusive jet ratio (R32) [8]
7 CMS (2014) tt̄ production cross section [9]
7 CMS (2015) 3-jet di�erential cross section (3-jet mass) [10]
7 CMS (2015) Inclusive jet cross section [11]
7 ATLAS (2015) Multi-jet event correlations (TEEC) [12]

8 CMS (2017) Inclusive jet cross section [3]
8 CMS (2017) Triple di�erential dijet cross section [13]
8 ATLAS (2017) Multi-jet event correlations (TEEC) [14]
8 ATLAS (2018) Dijet azimuthal decorrelations (R∆φ) [15]

13 CMS (2019) tt̄ production cross section [16]
13 CMS (2020) tt̄ multi-di�erential cross sections [17]
13 CMS (2021) Inclusive jet cross section [18]
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Figure 5.2: (left) The strong coupling constant running αS(Q) as determined in [3] and (right)
a summary of αS(Q) determinations from di�erent sub-�eld observables [2].

For the extraction of the αS(MZ) and αS(Q) running investigation, an observable called
R∆φ which is related to the azimuthal correlations of jets is measured. Speci�cally, the R∆φ

observable is de�ned as:

R∆φ(pT ,∆φ, p
nbr
Tmin) =

∑Njet(pT )
i=1 N

(i)
nbr(∆φ, p

nbr
Tmin)

Njet(pT )
(5.1)

where the denominator and the numerator of this equation are de�ned as two di�erent cross
sections. The denominator Njet(pT ) is the number of inclusive jets in a given inclusive jet

pT bin. The numerator N
(i)
nbr(∆φ, p

nbr
Tmin) is the number of neighboring jets with transverse

momenta greater than pnbrTmin, separated from the i-th inclusive jet by an azimuthal angle ∆φ
within a speci�ed interval ∆φmin < ∆φ < ∆φmax. The Leading Order (LO) process for the
denominator is proportional to α2

S, while in the numerator for ∆φ < π only topologies with at
least three jets contribute1. Therefore, the numerator is proportional to α3

S (at leading order)
and subsequently R∆φ observable is directly proportional to αS at lowest order. Performing an
analysis which depends on a ratio of jet cross sections (see for example [6, 8, 15]), rather than
a simple cross section measurement, has two important advantages. Firstly, when dealing with
cross section ratios many experimental uncertainties like the uncertainty due to luminosity or
JEC uncertainties, totally or partially cancel out. Secondly, PDF and QCD scale dependencies
in �xed order QCD calculations are potentially reduced in the ratio.

The measurement is based on an inclusive jet sample collected with the CMS detector, at
the CERN LHC collider during Run II period, for pp collisions at a centre-of-mass energy of 13
TeV . The total integrated luminosity corresponds to 134.47 fb−1: 33.18 fb−1 from 2016, 41.47
fb−1 from 2017 and 59.82 fb−1 from 2018. The inclusive jet sample contains only jets within
the tracker acceptance |y| < 2.5 and with transverse momenta pT > 50 GeV . The data and
Monte Carlo simulation samples for each year of data taking separately are presented in Sec.
5.1, while the software used for their processing, the jet reconstruction with the AK7 clustering
algorithm and the event selection details are discussed in Sec. 5.2. Besides the above |y| and
pT selection cuts which were applied on all jets, the pnbrTmin for the neighboring jets in Eq. 5.1

1An illustrative explanation is given in Appendix A.
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is set to 100 GeV and the ∆φ interval is chosen to 2π/3 < ∆φ < 7π/8, as explained further
in Sec. 5.2. Then Sec. 5.3 contains few additional corrections that need to be applied on data
and Sec. 5.4 the di�erent processing steps followed for the o�cial CMS Monte Carlo simulation
samples. The High Level Triggers (HLT) used for the data collection and the evaluation of
their e�ciencies are discussed in Sec. 5.5. Then, the measurement of the two di�erent cross
sections, arising from the de�nition of the R∆φ observable in Eq. 5.1, using reconstructed jets
at the detector level is shown in Sec. 5.6. The unfolding of the measurement from the detector
to particle level is discussed in Sec. 5.7 and the systematic uncertainties for the measurement
propagated at the unfolded measurement in Sec. 5.8. Finally, the comparison between data
and Monte Carlo event generator predictions at particle level are shown in Sec. 5.9. The �xed
order QCD predictions are discussed in the next Chapter 6 and the �nal analysis results for
the extraction of αS(MZ) parameter and the testing of αS(Q) running in Chapter 7.

100



5.1. DATA AND MONTE CARLO SAMPLES

5.1 Data and Monte Carlo samples

The data which are collected from the CMS Online Data Acquisition (DAQ) and Trig-
ger System (see Sec. 3.3.6), are distributed and processed in a three-level tiered architecture
computing infrastructure, named Worldwide LHC Computing Grid (WLCG) and graphically
illustrated in Fig. 5.3 (for the four main LHC experiments: ALICE, ATLAS, CMS and LHCb)
[19, 20]. The �rst tier (Tier-0) corresponds to the CERN Data Centre which is directly con-
nected to the experiment and performs several functions including: (i) the safe-keeping of the
�rst copy of the data (RAW data) containing the raw detector information such as detec-
tor element hits, (ii) a �rst-pass processing of the raw data for obtaining the reconstructed
physics objects such as tracks and jets and reconstructed hits/clusters (PromptReco data)
and derivation of the Analysis Object Data (AOD) described below and (iii) the distribution of
the raw, reconstructed data and the AODs among the Tier-1 centers. The second tier (Tier-1)
is composed of 13 large computer centers shown in Fig. 5.3 (left) which are responsible among
others for: (i) the safe keeping of the subset of raw and reconstructed data they receive from
Tier-0, (ii) the re-reconstruction (RECO data) of the PromptReco data based on improved
algorithms and extraction of the AODs and skims described below and (iii) the distribution
of the reconstructed data, skims and AODs to Tier-2 centers. Finally, the third tier (Tier-2)
consists of 160 centers hosted at universities and scienti�c institutes, allowing the access to
Tier-1 datasets and providing substantial CPU resources used for physics analysis purposes,
calibration studies and Monte Carlo production.

Figure 5.3: Graphical illustration of the Worldwide LHC Computing Grid (WLCG) tiers (left)
and the real event data �ow in the CMS Computing Model [19, 20].

The CMS data are split into Physics Datasets based on the trigger decision, such that the
data handling becomes easier. The Primary Datasets produced centrally on Tier-1 systems are
extremely large since they contain too large number of events. Therefore, �ltering the events is
necessary in order to reduce the time and resources required for physics analysis to reasonable
values. This process of event selection is called skimming and is performed in a series of even-
tighter selection criteria, where the �rst skims are produced centrally at Tier-1 reducing the size
of primary datasets by a factor of about 10. Then, secondary skims might be produced from
physics analysis groups, such as Standard Model Physics group, by running on the primary
skims applying event selection criteria which are motivated by the group's physics analyses.
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5.1. DATA AND MONTE CARLO SAMPLES

Figure 5.4: CMS main data
formats (Taken from [21]).

Event information from each step in the data reconstruc-
tion chain is hierarchically arranged into data tiers, where each
tier contains di�erent levels of information about an event and
therefore it has di�erent usages. The main data tiers in CMS
are the RAW, RECO and AOD. The RAW contain the full
event information from what discussed above in the Tier-0 de-
scription with an event size of around 1-2 MB/event and hence
they are not used for analysis purposes. The RECO, as already
mentioned, contain the reconstructed data and are derived from
the RAW data. They contain information from all the recon-
struction stages: reconstructed hits, clusters and segments at
the lowest level, reconstructed tracks and vertices at the inter-
mediate level and reconstructed jets, muons etc at the highest
level. In practice, the inclusion of all the reconstruction hierar-
chy makes the RECO data tier too heavy to be used for analysis
with event size around 3 MB/event. For this reason, the AOD
which is a distilled version of the RECO event information in
a compact format, is more suitable for analysis. It contains only the high-level physics objects
plus a summary of information contained in RECO and might be used for analysis actions such
as track re�tting, with event size 400-500 kB/event. The CMS data �ow through the three
tiers of WLCG is illustrated in 5.3 (right). The AOD format was the data tier upon which
were based the CMS Run 1 physics analysis. For Run 2 even more compact formats derived
either from RECO or from AOD format were developed to serve the physics analyses needs:
the miniAOD format with event size 40-50 kB/event [22] is the working-horse CMS analysis
format for Run 2 and the nanoAOD with 1-2 kB/event resembles the typical structure and
size of private ntuples2 [23] and is expected to be the main tier for Run 3.

The split of stream of events acquired by CMS into Primary Datasets, is based on the
HLT selection such that in the �nal dataset, events with similar physics content are grouped
together. Hence, a Primary Dataset contains events which have passed at least one out of
the set of HLT paths de�ned for each dataset, for example DoubleMu, JetHT, SingleElectron
etc. The following analysis is based on JetHT datasets in the miniAOD format, where each of
them contains the aggregation of events collected in a di�erent LHC run period (era) during
Run 2. The complete dataset list which corresponds to the full Run 2 dataset, along with the
integrated luminosity for each year, is shown in Table 5.2.

Any physics analysis must be based on data which are certi�ed as good by the detector and
physics objects experts. Data are de�ned as good when all the sub-detector systems are fully
operational and the reconstruction and calibration conditions are optimal. Therefore, physics
analyses are based only on the good lumisections3 from each run, which are speci�ed in the
so-called Golden JSON �les. For each Run year the o�cial JSON �les (recommended by the
PdmV group4) used in the following analysis:

2Distilled versions of AODs or miniAODs created by the user (or group) based on event �ltering motivated
by one (or many) particular analysi(e)s.

31 lumisection = 218 revolutions of the LHC beams = 23 s of data taking.
4The Physics Data and Monte Carlo Validation (PdmV) group is responsible (among others) for the eval-

uation of Physics performance and validation of Monte Carlo and data samples coming from (pre-)production
campaigns (RelVals), prompt reconstruction, re-reconstructions and skims.
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5.1. DATA AND MONTE CARLO SAMPLES

Table 5.2: Integrated luminosity and primary datasets for each Run year.

Year Lint (fb−1) Datasets

2016 33.18 /JetHT/Run2016B-07Aug17-ver2-v1/MINIAOD
/JetHT/Run2016C-07Aug17-v1/MINIAOD
/JetHT/Run2016D-07Aug17-v1/MINIAOD
/JetHT/Run2016E-07Aug17-v1/MINIAOD
/JetHT/Run2016F-07Aug17-v1/MINIAOD
/JetHT/Run2016G-07Aug17-v1/MINIAOD
/JetHT/Run2016H-07Aug17-v1/MINIAOD

2017 41.47 /JetHT/Run2017B-09Aug2019_UL2017-v1/MINIAOD
/JetHT/Run2017C-09Aug2019_UL2017-v1/MINIAOD
/JetHT/Run2017D-09Aug2019_UL2017-v1/MINIAOD
/JetHT/Run2017E-09Aug2019_UL2017-v1/MINIAOD
/JetHT/Run2017F-09Aug2019_UL2017-v1/MINIAOD

2018 59.82 /JetHT/Run2018A-12Nov2019_UL2018-v2/MINIAOD
/JetHT/Run2018B-12Nov2019_UL2018-v2/MINIAOD
/JetHT/Run2018C-12Nov2019_UL2018_rsb-v1/MINIAOD
/JetHT/Run2018D-12Nov2019_UL2018_rsb-v1/MINIAOD

� 2016 : Cert_271036-284044_13TeV_23Sep2016ReReco_Collisions16_JSON.txt

� 2017 : Cert_294927-306462_13TeV_UL2017_Collisions17_GoldenJSON.txt

� 2018 : Cert_314472-325175_13TeV_Legacy2018_Collisions18_JSON.txt

Correspondingly, Monte Carlo simulation samples are also arranged to data tiers based on
the contained information. The �rst step in the production of a Monte Carlo sample is the
production of the events at the generator level (GEN), which means the production of the
four vectors of the particles by simulating the hard scattering, the multiparton interaction, the
hadronization etc, using a Monte Carlo event generator like Pythia8 or Sherpa. Then the
interaction of the generated particles with the detector's material is simulated (SIM) based on
the GEANT4 toolkit which allows the simulation of the CMS detector. The combination of
the above two (GEN and SIM) de�nes the �rst Monte Carlo output format which is called
GEN-SIM. Moreover, the simulated detector signals are digitized enabling the capability to
apply reconstruction algorithms on them, while simulated hits from pileup interactions are also
included along with the trigger menu information. Events produced in this process are called
DIGI-RECO events and the relevant output format for the Monte Carlo sample is the AOD-
SIM. Finally, the skimmed versions of AODSIM, the MINIAODSIM and NANOAODSIM,
contain only the necessary information required for physics analyses. The work�ow for the
production of a Monte Carlo sample is illustrated in Fig. 5.5. The o�cial CMS Monte Carlo
samples used in the analysis are shown in Table 5.3.
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5.1. DATA AND MONTE CARLO SAMPLES

Figure 5.5: A summary work�ow for the production of a Monte Carlo sample, image credits:
Gurpreet Chahal [24].

Table 5.3: O�cial CMS Monte Carlo samples used in the analysis.

Year MC Samples

2016 1. QCD_Pt_xxtoxx_TuneCUETP8M1_13TeV_pythia8/RunIISummer16MiniAODv3-
PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM

2. QCD_HTxxtoxx_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISummer16
MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v2/MINIAODSIM

2017 1. QCD_Pt_xxtoxx_TuneCP5_13TeV_pythia8/RunIISummer19UL17MiniAOD-
106X_mc2017_realistic_v6-v2/MINIAODSIM

2. QCD_HTxxtoxx_TuneCP5_13TeV-madgraphMLM-pythia8/RunIIFall17MiniAODv2-
PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM

2018 1. QCD_Pt_15to30_TuneCP5_13TeV_pythia8/RunIISummer19UL18MiniAOD-
106X_upgrade2018_realistic_v11_L1v1-v2/MINIAODSIM

2. QCD_HT50to100_TuneCP5_13TeV-madgraphMLM-pythia8/RunIIAutumn18
MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM
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5.2 Software, Jet Reconstruction and Event selection

Analysis software
The Data and Monte Carlo sample analysis was exclusively based on the DAS Analysis

Framework or simply DAS, which is a generic framework for jet analysis. The DAS framework
is currently used by several ongoing analyses at the Standard Model Physics - Hadronic (SMP-
HAD) group such as inclusive jet, b-jet, dijet mass analyses etc. It is a ROOT-based [25]
environment implemented as a CMSSW [26] module which is inspired from the former SMPJ
framework [27] used by the Standard Model Physics - Jet (SMPJ) analysis group for Run 1
data analysis. The code for the di�erent analysis actions starting from the private n-tuple
production from the miniAOD samples (see Sec. 5.1), up to the �nal analysis plots is hosted
at [28] and is available to all collaboration members. A detailed description of the various
analysis techniques, as well as framework commands documentation can be found within the
CMS internal note [29]. The CMS Software (CMSSW) version used here is 10_6_X which is
the recommended version for Run 2 UltraLegacy (UL) (see Tab. 5.2) sample processing.

Jet Reconstruction
For the event and jet reconstruction the CMS standard PFchs and anti-kt algorithms (de-

scribed in Sec. 4.3) were used respectively. The radius resolution parameter of the algorithm
was set to R = 0.7, by re-clustering the jets during the private n-tuple production since only
AK4 and AK8 jets are present in the centrally produced miniAOD samples. In the �rst place,
the choice of a large radius parameter was made because of the smaller non-perturbative (NP)
corrections exhibited from "fat" jets, as described in Sec. 4.2. This is of particular importance
here, where �xed order QCD predictions need to be corrected for the non-perturbative e�ects,
introducing also an additional NP uncertainty which propagates to the �nal analysis results (see
Chapters 6, 7). Then, even if the CMS default choice for "large" jets is R = 0.8, here the 0.7
choice was inspired from the fact that this was the default value for CMS Run 1 measurements.
Therefore, the direct comparison between the present and any former CMS Run 1 analysis,
such as R32 [8], is always feasible.

For the Jet Energy Calibration (see Sec. 4.4) the recommended Jet Energy Corrections
(JEC) provided centrally by the JetMET group5 were used. Since no dedicated corrections for
AK7 jets exist, the corrections for AK8 jets were used instead. The global tags which fully
specify the corresponding JEC versions for both Data and MC samples are given in Tab. 5.4.

Table 5.4: Jet Energy Corrections Global Tags for Data and MC samples.

Year Data MC

2016 Summer16_07Aug2017_V11 Summer16_07Aug2017_V11
2017 Fall17_17Nov2017_V32 Summer19UL17_V5
2018 Summer19UL18_V5 Summer19UL18_V5

Event selection
Each event is required to have at least one o�ine-reconstructed vertex [30]. The vertex

reconstruction involves the selection of tracks, the vertex �nding where the tracks are grouped
into vertex candidates and the vertex �tting where the best estimate of the vertex parameters

5The JetMET (JME) Physics Object Group (POG) is responsible for monitoring, reconstructing, calibrating,
and providing scale factors and software tools for jets and missing energy in CMS.
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e.g the vertex location and its uncertainty, is calculated. Primary Vertices (PV) are those
associated with all proton-proton interactions, including the "signal" vertex i.e., the one which
triggered the readout of the event and any vertices from pileup collisions. These are distin-
guished from secondary vertices which represent decay vertices. The relevant requirements
applied to each event are:

� Require at least one primary vertex (PV).

� Require the z component of PV to be |z(PV )| < 24 cm.

� Require the radius in x-y plane of PV to be rho < 2 cm.

� Require the vertex �t ndof > 4 .

where |z(PV )| represents the position of the proton-proton collision along the beam-line and
z = 0 indicates the center of the CMS detector.

For the rejection of fake, badly reconstructed and noise jets, a set of jet identi�cation criteria
are applied, known as PFJetID, which retain about 99% of real jets (CMS internal note [31]).
In particular, here the applied PFJetID is the tight ID with lepton veto aka TightLepVeto ID,
which is recommended by the JetMET group and consists of the criteria shown in Tab. 5.5.

Table 5.5: Tight ID with lep veto for AK8CHS jets [32].

Year 2016 2017− 2018
PF Jet ID |η| <= 2.7 |η| <= 2.6

Neutral Hadron Fraction < 0.90 < 0.90
Neutral EM Fraction < 0.90 < 0.90
Number of Constituents > 1 > 1
Muon Fraction < 0.80 < 0.80
Charged Hadron Fraction > 0 > 0
Charged Multiplicity > 0 > 0
Charged EM Fraction < 0.9 < 0.8
Number of Neutral Particles - -

As already mentioned, the measurement of R∆φ observable de�ned in Eq. 5.1, is based on
an inclusive jet sample with transverse momenta pT > 50 GeV and rapidities |y| < 2.5. The
pnbrTmin is set to 100 GeV and ∆φ interval has been chosen as 2π/3 < ∆φ < 7π/8. The last
two selection criteria were chosen based on a detailed study performed for the optimization
of the phase space selection, which is presented in Appendix B. An additional description of
the di�erent event topologies contributing to the numerator and denominator cross sections
consisting the R∆φ observable, is given in Appendix A.
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5.3 Data corrections

Pre�ring issue
During 2018 data taking, the L1-DPG group reported a pre�ring issue related to the EG

triggers i.e., the timing shift from the ECAL system was not properly transmitted to the L1
Trigger Primitives. As a result high eta Trigger Primitives were being mistakenly associated
to the previous bunch crossing and since trigger rules forbid two consecutive bunch crossings
to �re the trigger, L1EG objects were wrongly related to the previous bunch crossing. Finally,
the mis-timed Trigger Primitives cause loss of events and ine�ciencies mostly in the forward
region 2. < |η| < 3. This issue a�ected 2016 and 2017 data (not 2018) and is not included in
the simulations. An overview of the e�ect can be found at [33].

In order to quantify this e�ect, the centrally produced jet maps are used, which are shown
in Fig. C.1 in Appendix C and represent the probability of jet pre�ring as a function of jet
pT and η. Since the e�ect is not constant over time (for example late 2017 data are more
a�ected that early 2017), the pre�ring corrections are applied in 2016 and 2017 data per era,
so that the time dependence is also considered. Technically, the correction is applied on the
event weights according to the pre�re maps and as recommended, an uncertainty is estimated
by shifting the pre�ring probabilities within their uncertainties. The latter are estimated by
taking the maximum between 20% of the pre�ring probability and the corresponding statistical
uncertainty.

MET �lters
For the removal of events with large fake Missing Transverse Energy (MET), which may

be the result of various causes (e.g HCAL noise, beam halos etc), a series of MET �lters are
applied on the Data, as recommended by the JetMET group in [34]. The applied MET �lters
are:

� goodVertices

� globalSuperTightHalo2016Filter

� HBHENoiseFilter

� HBHENoiseIsoFilter

� EcalDeadCellTriggerPrimitiveFilter

� BadPFMuonFilter

� eeBadScFilter

Hot zones
During the data taking, some regions of the calorimeters observed to have anomalously high

rate (hot zones), due to mis-calibrations of the calorimeter for jet measurement performance.
For the elimination of any bias arising from these problematic detector regions, events with
important jet contributions in the hot zones were vetoed. This was done using the jet veto
maps provided by the JetMET group in [35].
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5.4 Monte Carlo sample processing

The Monte Carlo samples included in Tab. 5.3 which are centrally provided by CMS, are
subjected to the following series of processing steps, before used for the analysis purposes.

Cross section normalization
The Pythia8 and Madgraph samples are split in p̂T

6 and HT
7 slices. Therefore, before

combining the di�erent slices together, they should be normalized with the corresponding cross
section obtained from the cross section database [36] and can be found in Appendix D.

Corrections on the PU simulation
The Pile Up (PU) e�ects described in Sec. 4.1 - 4.4, can also be included in a Monte Carlo

simulation sample. However, for the correct simulation of the PU, two distinct points need to
be addressed.

� Removal of overweighted PU events
The split of the MC samples into p̂T or HT is done for obtaining su�cient statistics over
the whole jet pT phase space. On the other hand, the simulation of the PU is done
irrespectively of the p̂T or HT slices. As a result, when normalizing each slice with the
corresponding cross section, jets originating from the PU simulation appear in larger pT
values than con�gured with the slicing method. For example, a jet with pT = 300 GeV
might appear in the p̂T slice 30-50 jet pT spectrum, which is unphysical. The problem
is resolved by ensuring that any low-p̂T slice cannot contribute more e�ectively than any
higher p̂T slice. The events where (max)p̂PUT > p̂mainT are removed, as well as contributions
with unphysical weights and contributions to bins with less than one hundred entries.

� Re-weighting of the simulated PU pro�le
Typically, the PU in the simulation is usually overestimated in comparison with the PU in
the real data. The amount of PU can be quanti�ed using the Pile-Up (PU) pro�le, which
corresponds to the probability distribution describing the number of interactions per
bunch crossing. For the data the PU is estimated using the pileupCalc.py utility, provided
by the Lumi POG8 and is implemented within the CMSSW. The PU distribution for
individual events corresponds to a Poisson distribution with mean value µ, calculated as:

µ =
Linstσinel
frev

(5.2)

where Linst is the instantaneous luminosity, σinel is the total inelastic cross section and
frev is the LHC orbit frequency 11246. The recommended value for the Run II cross
section is 69.2 mb [37], while the instantaneous luminosity is obtained per lumisection
from the JSON �les. The Linst is assumed to be constant within one lumisection, but it
may vary for longer time periods leading to a non-Poissonian behaviour. On the other
hand, in simulation the PU can be simulated from the consideration of several Poisson
distributions which correspond to di�erent PU con�gurations. An illustration of PU
pro�le di�erences for 2018 data and MC samples, can be found in Appendix E. Finally,

6For a 2 → 2 LO process like in Pythia8, p̂T corresponds to the transverse momentum of either of the two
outgoing particles of the hard process.

7The scalar sum of the jets transverse momenta.
8Luminosity Physics Object group, responsible for the determination of the absolute luminosity in CMS.
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for PU pro�le inconsistencies between data and MC are faced with the reweighting of the
MC PU pro�le in order to match the data PU pro�le.

Jet Energy Calibration
The simulated jets are calibrated with the procedure described in Sec. 4.4, using the Jet

Energy Corrections (JECs) contained in Tab. 5.4.

Jet Energy Resolution - Smearing of reconstructed jets
As pointed out in Sec. 5.1, the production of a full simulation sample includes the sim-

ulation of interaction of generated particles with the CMS detector material. The resolution
of the jet energy measurement (JER) in simulation is better than in data and for this reason
the reconstructed jets in simulation are smeared, so that their pT resolution matches the one
observed in data. Two di�erent methods are used for the smearing of reconstructed jets and
both of them rely on the Scale Factors (SFs) provided by the JetMET group, to account for
the data-MC di�erence [38].

� Scaling method
The 4-momenta of the reconstructed jets are rescaled with the factor:

cJER = 1 + (sJER − 1)
precT − p

gen
T

precT
(5.3)

where precT is the reconstructed jet pT , p
gen
T is the pT of the jet at generator (particle)

level and sJER is the data-to-simulation core resolution factor provided by the JetMET
group. This method works under the assumption that for each reconstructed jet, there is
a well-matched generated jet, matched with the following criteria:

∆R < Rcone/2, |precT − p
gen
T | < 3σprecT (5.4)

where Rcone here is 0.7, ∆R =
√

(∆y)2 + (∆φ)2 and σ is the relative pT resolution from
simulation.

� Stochastic method
The 4-momenta of the reconstructed jets are rescaled with the factor:

cJER = 1 +N (0, σ)
√
max (s2

JER − 1, 0) (5.5)

where sJER, σ have the same meaning as above and N (0, σ) represents a random number
sampled from a Gaussian distribution with 0 mean and σ2 variance.

Following the recommendation from the JetMET group, a "hybrid" method is used here, in the
sense that the scaling method is used when the matching is possible, otherwise the stochastic
method is applied. The Global Tags (GTs) for the SFs provided by the JetMET group is shown
in Tab. 5.6, while Tab. 5.7 contains only an example for such factors and their uncertainties
for 2016 samples. Typical jet energy resolution curves from 2016 simulation samples are shown
in Appendix F.
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Table 5.6: Jet Energy Resolution Global Tags (GTs)

Year GT

2016 Summer16_25nsV1b
2017 Summer19UL17_JRV2
2018 Summer19UL18_JRV2

Table 5.7: The Data/MC Scale Factors (SF) and their uncertainties from Sum-
mer16_25nsV1b.

|η| Data/MC SF Uncertainty

0.000 - 0.522 1.1595 0.0645
0.522 - 0.783 1.1948 0.0652
0.783 - 1.131 1.1464 0.0632
1.131 - 1.305 1.1609 0.1025
1.305 - 1.740 1.1278 0.0986
1.740 - 1.930 1.1000 0.1079
1.930 - 2.043 1.1426 0.1214
2.043 - 2.322 1.1512 0.1140
2.322 - 2.500 1.2963 0.2371
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5.5 Trigger studies

As discussed in Sec. 3.3.6, events in CMS are recorded using a two-level trigger sys-
tem consisted of a hardware-based level-1 (L1) trigger and a software-based high level trig-
ger (HLT)9. This analysis was based on events collected with High Level single AK8PFJet
(HLT_AK8PFJetX) triggers, which require at least one PFJet reconstructed with the AK8
algorithm and with pT above a given threshold X in GeV (e.g pT > 40 GeV for HLT_AK8PF
Jet40 etc), to be present in the event.

In general, the limited trigger bandwidth imposes the need to adjust the rates recorded
by each trigger. The rate reduction is achieved by applying a prescale that determines what
fraction of the events satisfying the trigger conditions is accepted. A prescale of N means
that only 1 in every N events is accepted, for example with a prescale of 2 only half of the
events satisfying the trigger conditions are recorded. For each LHC �ll, the beam intensities
are decreasing with time, meaning that dynamic prescales (prescale columns) with decreasing
values are used to maximize the signal e�ciency and keep the total HLT rate at around 1
kHz. In fact, both the HLT paths and L1 seeds are prescaled and this needs to be taken into
account in o�ine physics analysis by re-weighting each event with L1 times HLT prescales10.
The prescale information is available in the miniAOD samples and is used for the normalization
of the data (together with total luminosity). Moreover, the e�ective luminosity is the active
luminosity times the HLT and L1 prescales and is calculated using brilcalc [41], which is the
o�cial tool for calculating CMS luminosity. The e�ective luminosities for the HLT paths used
in this analysis for each year of data taking are shown in Tab. 5.8. Note that all those HLT
paths were prescaled except for HLT_AK8PFJet450 and HLT_AK8PFJet500 in 2016 and
HLT_AK8PFJet500 in 2017 and 2018.

Table 5.8: The HLT_AK8PFJet trigger e�ective luminosities for each year.

HLT Path 2016 (fb−1) 2017 (fb−1) 2018 (fb−1)

HLT_AK8PFJet40 0.0000496663 0.000182566 0.0000150598
HLT_AK8PFJet60 0.000328065 0.000504795 0.000419033
HLT_AK8PFJet80 0.00100466 0.00252747 0.00216941
HLT_AK8PFJet140 0.0101074 0.0266014 0.0471297
HLT_AK8PFJet200 0.0857619 0.188957 0.202538
HLT_AK8PFJet260 0.518048 0.469357 0.465597
HLT_AK8PFJet320 1.52555 1.2261 1.24011
HLT_AK8PFJet400 4.59104 7.69057 3.71907
HLT_AK8PFJet450 33.5348 9.66322 7.38989
HLT_AK8PFJet500 33.5348 41.4714 59.8166

The trigger e�ciency ε is a quantity de�ned as:

ε =
nT
nR

(5.6)

where nT is the number of the triggered objects i.e., the objects that �red the trigger and
nR is the total number of reconstructed objects i.e., the objects that obtained by an o�ine
reconstruction algorithm [42]. In practice, the nominal value (threshold) for an HLT trigger

9For a complete list of the physics triggers used in Run 2 see [39].
10The prescale columns along with several other trigger information for any run/era can be found in [40].
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does not coincide with the value where it is 100% e�cient. For example, during online jet
reconstruction at HLT, fast and simpli�ed algorithms were used compared to the o�ine re-
construction algorithms, leading to nT < nR. For this reason, it is important to calculate the
e�ciency for each trigger and obtain the point where it becomes 100% e�cient. In this analy-
sis the accurate e�ciency of each trigger is evaluated using the emulation method, apart from
HLT_AK8PFJet40 where the Tag & Probe method is used instead. Taking as example the
trigger HLT_AK8PFJet200, the emulation method proceeds in four steps [43]:

� Start with all events that �red a reference jet trigger e.g HLT_AK8PFJet140.

� Access the L1 and HLT objects.

� Find the subset of the events that satisfy the L1 and HLT conditions of the path of
interest, in this example HLT_AK8PFJet200.

� Apply the o�ine selection cuts and �ll the two pT histograms (emulated HLT_AK8PF
Jet200 and reference HLT_AK8PFJet140) for the two set of events.

Then from the division of the two histograms (emulated over reference) the e�ciency curve for
the trigger of interest is obtained. Similarly, for the calculation of the e�ciency for each HLT
path shown in Tab. 5.8, the trigger which is one position above in the list (lower threshold) is
used as reference.

Figure 5.6 shows the e�ciency curves for the di�erent triggers and for each year respectively.
The turn-on point corresponds the point where the trigger is 99.5% e�cient. In order to select
events for this analysis, the phase space has been divided into independent leading jet pT
regions. In each region, only one trigger from the above is used and every region has no overlap
with any other region, in order to avoid double counting. Table 5.9 shows the turn-on points,
for all the triggers involved in the analysis and for each year respectively.

Table 5.9: The HLT trigger turn-on points for each year.

HLT Path 2016 (GeV) 2017 (GeV) 2018 (GeV)

HLT_AK8PFJet40 74 97 114
HLT_AK8PFJet60 94 105 114
HLT_AK8PFJet80 115 124 133
HLT_AK8PFJet140 173 194 204
HLT_AK8PFJet200 244 252 266
HLT_AK8PFJet260 306 313 328
HLT_AK8PFJet320 369 375 390
HLT_AK8PFJet400 464 467 482
HLT_AK8PFJet450 512 513 528
HLT_AK8PFJet500 581 583 595
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Figure 5.6: HLT paths e�ciency curves for 2016 (top), 2017 (middle) and 2018 (bottom).
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5.6 Detector level measurement

At the detector level, the R∆φ observable is determined by measuring the two cross sections
(numerator and denominator) de�ned in Eq. 5.1. Up to this level, each year of data taking
is treated independently and the two di�erential cross sections are extracted per year. The
transition from event counts to di�erential cross sections is based on Eq. 2.5, where the data
are normalized with the total integrated luminosity (Lint) and the pT bin width (dpT ).

Figure 5.7 illustrates the detector level measurement for 2016 (left), 2017 (centre) and
2018 (right). On the top of each plot, the di�erential cross sections dσ/dpT are shown for

the denominator (Njet(pT )) with blue color and for the numerator (
∑Njet(pT )

i=1 N
(i)
nbr(∆φ, p

nbr
Tmin))

with green color. On the bottom of each plot, the ratio of the above two cross sections which
corresponds to the R∆φ observable is shown with red markers. It is worth mentioning that
these plots are only useful for data consistency checks at the detector level and hence the
statistical uncertainties of R∆φ are approximated by binomial errors here. The proper treatment
of the statistical correlations between numerator and denominator cross sections is described
in the following section (Sec. 5.7). The cross sections and R∆φ measurements are consistent
among the three years, considering that the statistical uncertainties and the fact that systematic
uncertainties are not yet included (see Sec. 5.8).

Figure 5.7: (Top of each plot) Detector level measurement of the denominator (blue) and
numerator (green) di�erential cross sections and (Bottom of each plot) the R∆φ observable for
2016 (left), 2017 (centre) and 2018 (right) years.
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5.7 Data Unfolding

5.7.1 Matrix Inversion method

In high energy physics experiments, the measurements are often based on event counting,
where the data are collected in the form of binned histograms. The observed number of events
ni in each bin, follows a Poisson distribution corresponding only to an estimation of the Poisson
parameter µi which represents the expectation value. The probability to observe ni entries in
bin i is [44]:

P (ni;µi) =
µnii e

−µi

µi!
(5.7)

Figure 5.8: Illustration of the devi-
ations between true distribution f(t)
and measured distribution g(s) caused
by di�erent sources [42].

Hence, the observed event counts di�er from the
expectation due to statistical �uctuations, with their
square root commonly assigned as statistical uncertain-
ties. Apart from the unavoidable �uctuations of data
with statistical origin, di�erences among the observed
and expectation values are caused by additional ran-
dom e�ects a�ecting the experimental data. Firstly,
any event property (e.g jet pT ) is measured with a �-
nite resolution which means that the measured value
y is di�erent from the true x because of measurement
errors and as a result it has migrated to another bin.
Besides �nite resolution, any real detector exhibits lim-
ited e�ciency and acceptance and therefore events that
would result in a speci�c bin are lost. Furthermore,
background processes lead to additional contributions
in a bin and distort the value of the signal process.

The consequence of the e�ects described above is
that the measured distribution g(s) of s measured variables, is in general di�erent from the
true distribution f(t) of t true variables: g(s) 6= f(t), which is illustrated in Fig. 5.8. However,
the relation connecting the two distributions can be generally expressed mathematically as [42]:∫

k(s, t)f(t)dt+ b(s) = g(s) (5.8)

where b(s) is the background distribution and k(s, t) is called kernel function. This is stated
as that the true distribution is folded with the kernel function and an unfolding procedure is
required for estimating it. In the case of histograms with �nite number of bins, the distributions
g(s) and f(t) are discretized and replaced by the vectors x and y with dimensions (number of
bins) n andm respectively (generally n 6= m). Similarly, the kernel function k(s, t) is substituted
by the rectangular matrix A, called response matrix which parametrizes the detector response,
while the background distribution b(s) is replaced by the vector b. The above folding equation
then becomes:

Ax + b = y (5.9)

where x is the unknown true distribution that needs be determined, y is the measured distri-
bution, b is the background and A is a m × n response matrix which can be interpreted as
probability density function. In particular, each element of Aij represents the probability of an
event produced (true value) in bin j, to be observed (measured value) in bin i:

Aij = P (observed in bin i | true value in bin j) (5.10)
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Expressing this di�erently, it is said that the true distribution has been smeared with the
detector response and the goal of the unfolding is the unsmearing.

Solving Eq. 5.9 and determining the true vector x, through the unfolding process, is of
particular importance in order to compare the measurement with theoretical predictions, where
no detection e�ects are included. This also enables the comparison with results from other
experiments with di�erent detector responses. Assuming that the two vectors x and y have
equal number of bins (n = m), the obvious solution would be simply to invert equation 5.9 and
calculate the vector x as:

x = A−1(y − b) (5.11)

In fact, this is also the solution that minimizes the χ2:

χ2 = (Ax + b− y)T (V−1) (Ax + b− y) (5.12)

where V is the covariance matrix which describes the statistical covariance among the bins of
the measurement (diagonal in the case of statistically independent bins).

However, this matrix inversion unfolding solution is rarely used and consists only the start-
ing point for better solutions. The reason is that, as stated above, the observed event counts
are randomly drawn from a Poisson distribution and do not coincide with the expectation
values. Therefore, they are subject to statistical �uctuations which are ampli�ed in the unfold-
ing process distorting the �nal results [45]. For this reason, more advanced solving strategies
have been developed and are commonly used in high energy physics analyses [46], such as the
D'Agostini iterative method or Tikhonov regularization [47] not described here. The relevant
software packages for the implementation of such unfolding methods are the RooUnfold [48]
and TUnfold [49].

5.7.2 R∆φ unfolding strategy - Response Matrix

In this analysis the TUnfold package is used and the chosen method is the matrix pseudo-
inversion. This corresponds to the solution of the above matrix inversion equation 5.12, using
more bins in the measured than in the true (unfolded) distribution i.e., m > n. In particular
here, twice more bins are used in the measured distribution: m = 2n.

Figure 5.9: The 2D distributon N(pT , n) used
for the re-de�nition of R∆φ observable, where n
stands for the number of neighboring jets.

In order to account for the statistical cor-
relations properly, an advanced 2D unfold-
ing of a more general 2D distribution is
performed. This is in contrast to proceed-
ing with an 1D unfolding of the numera-
tor/denominator or of the R∆φ distribution
directly. This choice was based on the fact
that, there is no analytical expression ac-
counting for the statistical correlations among
the numerator and denominator cross sections
and subsequently for the calculation of the
statistical uncertainties of the R∆φ distribu-
tion. Therefore, the basic concept stands in
re-writing the observable in an equivalent way
with Eq. 5.1:

R∆φ =

∑∞
n=0 nN(pT , n)∑∞
n=0 N(pT , n)

(5.13)
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whereN is a 2D distribution illustrated in Fig. 5.9 and n is the number of neighboring jets which
can be seen as any other property of jet, like pT or y. The basic advantage for this re-de�nition
is that the same quantity N(pT , n) appears in both the numerator and the denominator, while
the R∆φ observable can be extracted from N , using a MC calculation described below. Hence,
unfolding this 2D distribution and then extracting the R∆φ observable after unfolding allows
a perfectly rigorous treatment of statistical correlations.

The input covariance matrix V , describes that statistical correlations among the pT and
n bins for the 2D N(pT , n). For a single-count observable (one contribution per event) the
covariance matrix would be completely diagonal. However, for a multi-count observable (more
than one contributions per event) as R∆φ, o�-diagonal are also present corresponding to the
correlations among the jets within the same event. The correlation is simply the dimensionless
version of the covariance and the corresponding correlation matrix is evaluated as:

ρij =
Vij
σiσj

(5.14)

where σi represents the uncertainty of bin i, with Vii = σ2
i . Figure 5.10 shows the correlation

matrix for the 2D distributon N(pT , n), where as expected there are non-zero o�-diagonal
elements representing the correlations among the pT bins, but there are also correlations among
the numbers of neighboring jets bins n.
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Figure 5.10: Correlation matrix for the 2D distributon N(pT , n).
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The Response Matrix (RM) for the 2D N(pT , n) distribution was built using the o�cial
CMS Monte Carlo samples presented in Tab. 5.3. In particular, the Pythia8 samples which
have larger statistics were used for the main unfolding results and the Madgraph samples for
evaluating the model uncertainty. The RM is built on an event-by-event basis by matching the
jets between particle (GEN jets) and detector level (PF jets) in the MC sample. The matching
is performed in a series of steps:

� Loop over the particle-level jets sorted in pT , starting from the highest-pT particle-level
jet.

� For a given particle-level jet, de�ne a cone around the jet axis with
Rmatching = Rcone/2, where Rcone here is 0.7.

� Try to match the particle-level jet to the highest-pT detector-level jet with axis inside the
above cone. The following possibilities arise:

- If the matching is successful and both jets are within the phase space at both particle
and detector levels, then the pair of jets is �lled in the RM and removed from the list
of jets. This means that the RM includes only migrations within the phase space.

- If the matching is successful, the detector-level jet is within the phase space but the
particle-level jet is outside of the phase space, then the detector-level jet is considered
as fake jet.

- If the matching is successful, the particle-level jet is within the phase space but the
detector-level jet is outside of the phase space, then the particle-level jet is considered
as miss jet.

- If the matching is unsuccessful, meaning that no detector-level jet can be found
inside the cone, the particle-level jet is de�ned as miss jet.

In the end, after the loop on all particle-level jets has �nished, the remaining unmatched
detector-level jets are de�ned as fake jets.

Figure 5.11 shows the Response Matrix for the 2D N(pT , n) distribution with particle level
on the x-axis and detector level y-axis. Following the suggestion from the CMS Statistics
Committee [50], the condition number of the response matrix is evaluated in order to check
whether the problem is ill-conditioned. When the condition number is small . 10, the problem
can be e�ectively solved without using regularization techniques11. The condition number of a
matrix A is de�ned as:

cond(A) =
σmax

max(0, σmin)
(5.15)

where σmax is the largest and σmin is the smallest singular values of the matrix A. The singular
values here are computed using the ROOT's TDecompSVD class [51], where the m× n matrix
A is decomposed to two orthogonal matrices m×m and n×n and a diagonal matrix m×n and
the singular values correspond to the diagonal elements of the diagonal matrix. The condition
number here is 5.5, which means that the problem is well-conditioned and therefore can be
solved with the pseudo-inversion method described above, without regularization.

11For example, Tikhonov regularization [47] consists in adding an extra term to the χ2 of Eq. 5.12 which
constrains the shape of the particle-level spectrum.
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Figure 5.11: Response matrix for the 2D distribution N(pT , n), built with Pythia8 o�cial
CMS samples.

5.7.3 Unfolding results - Particle level measurement

The particle-level R∆φ with proper treatment of statistical uncertainties is obtained using
an Monte Carlo toy method. In particular, for the extraction of the 1D R∆φ observable and the
corresponding 2D covariance matrix, from the unfolded 2D N(pT , n) distribution and the corre-
sponding covariance matrix obtained as output from the unfolding procedure, the prescription
below was followed:

1. In the �rst place, the distributions are �attened using the ROOT's TUnfoldBinning
class [52], such that a 1D distribution x and its 2D covariance matrix V are obtained.

2. The covariance matrix V is then diagonalized and its eigenvalues ki are stored.
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3. Then, the iteratively perform the following actions until the statistics has reached the
desired value:

� generate a multi-dimensional Gaussian event δ in diagonal matrix, such that
δi ∼ N

(
0,
√
ki
)

� rotate back to the original basis where the matrix has non-zero o�-diagonal elements

� calculate the R∆φ ratio on the event

� sum the current event with former events (this is used for the evaluation of the �nal
R∆φ observable)

� sum the tensor products for each event (this is used for the evaluation of the statis-
tical uncertainties)

4. Finally, the sum of events and their tensor products are normalized to the number of
events and the R∆φ observable and its covariance matrix are obtained respectively. Similar
techniques are applied in CMS for example for the extraction of b-jet fraction [53].

In the �rst place, the unfolding procedure was performed for each year separately, in order
to obtain a �rst estimate of the unfolding corrections per year. The Response Matrices and
the unfolding corrections for each year separately are included in the Appendix H. Figure 5.13
shows on the left the correlation matrix for the R∆φ observable calculated with the method
described above. In Fig. 5.14, the comparison between unfolded and reconstructed R∆φ is
illustrated, where the statistical errors at the detector level were approximated by the binomial
errors. The corrections from the unfolding procedure for the R∆φ are 1-2%.

The bottom-line test (BLT), is a useful sanity check of the unfolding result. The main
concept stands in the principle that the unfolding procedure should not enhance the ability to
reject incorrect models. Therefore, the agreement between data and MC predictions can not
become worse at the unfolded level than at the detector level [50]. The BLT here was performed
by comparing the Data and Pythia8 predictions both at particle and detector level which is
illustrated in Fig. 5.12. Each cell of this plot correspond to an n bin of the 2D distribution
N(pT , n), which is the quantity that is essentially unfolded, while it can also be seen that two
bins from the detector level correspond to one bin at particle level, as explained in Sec. 5.7.2.
Indeed here the Data-Pythia8 level of agreement remains the same before and after unfolding.
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Figure 5.12: The bottom-line test performed with Pythia8 o�cial CMS samples.

120



5.7. DATA UNFOLDING

Apart from the BLT, another check of the validity of the unfolding method is the Closure
Test (CT). This is achieved by unfolding pseudo-data i.e., the detector level from the MC,
instead of the real data. Then the particle level spectrum from the Monte Carlo should be
obtained, which indeed is the case here. In particular, for the Pythia8 samples, unfolding the
detector level spectra leads to the particle level Pythia8 spectra.

Figure 5.13: Correlation matrix after unfolding for
the R∆φ observable. For illustration purposes only
bins with (anti-)correlation (smaller) larger than
(-0.05) 0.05 are drawn also as text.

Figure 5.14: (Top) The R∆φ ob-
servable at the reconstructed (detec-
tor) level with blue color and the un-
folded (particle) level with red color
and (Bottom) the unfolded over recon-
structed ratio, for full Run II data.
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5.8 Systematic Uncertainties

Jet Energy Scale (JES) uncertainties
The Jet Energy Calibration procedure described in Sec. 4.4, introduces many di�erent sys-

tematic uncertainty sources which are propagated to the R∆φ measurement. The 27 individual
uncertainty sources can be seen in Tab. G.1 of Appendix G, while a detailed description of the
origin for each source can be found at [54]. The sensitivity of the measurement to the JEC
uncertainty is investigated by varying the jets transverse momenta as:

pT = pT (1± uncert. source) (5.16)

where the uncertainty sources here are provided from the JetMET group together with the Jet
Energy Corrections (see Tab. 5.4). In order to estimate the total Jet Energy Scale uncertainty
for the R∆φ measurement at particle level, the variations of Eq. 5.16 are performed at detector
level data and then the unfolding process is repeated for each individual variation. Finally,
the di�erences between the unfolded spectra obtained from the variations and the nominal
unfolded spectrum are added in quadrature. The total (relative) JES uncertainty is shown
with the orange band in Fig. 5.15. As illustrated in this plot, the JES uncertainty is very small
< 1% for the bulk of the R∆φ spectrum, while at high pT large �uctuations are caused by the
limited statistics. Those, �uctuations are smoothed in order to be used e�ectively in the αS
�tting procedure described in Chapter 7. The fact that the JES uncertainties are that small,
in contrast for example to inclusive jets measurements where they are > 10%, consists one of
the main pro�ts in measuring ratios of cross sections where large cancellations of systematics
e�ects occur.

Jet Energy Resolution (JER) uncertainties
The Jet Energy Resolution (JER) smearing, which is of particular importance for the un-

folding procedure, has already been described in Sec. 5.4. The Scale Factor (SFs) provided
by the JetMET group, are available with their corresponding uncertainties, with an example
shown in Tab. 5.7. The latter, re�ect the uncertainties in the estimation of such factors and
are propagated to the R∆φ measurement. Hence, for the calculation of the JER uncertainty in
the R∆φ measurement the smearing procedure is repeated, considering the 1σ variation of the
SFs. Then the unfolding process is repeated and the di�erences between the unfolded spectra
obtained from the variations and the nominal unfolded spectrum are assigned as JER uncer-
tainty. The total JER uncertainty for the R∆φ measurement is shown with yellow band in Fig.
5.15. The observation is that this uncertainty is also very small < 0.5%.

Other uncertainties
Besides the JES and JER uncertainties, four additional systematic uncertainty sources are

investigated.

� Uncertainties from the Pre�re corrections
The corrections applied on data in order to account for the pre�ring issue and their
uncertainty estimations described in Sec. 5.3. The propagation of these uncertainties to
the measurement of R∆φ were obtained, with the same method as for JES and JER, i.e.,
by varying the correction factors and repeating the unfolding procedure.
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� Uncertainties from miss and fake rates
The miss and fake jets which correspond to detector ine�ciencies and background con-
tributions respectively, were discussed in Sec. 5.7.2. In order to estimate their impact in
the R∆φ unfolded spectrum, a normalization uncertainty of 5% was considered for each
of them respectively during the unfolding procedure.

� Pile Up (PU) reweighting uncertainties
The impact of the PU pro�le reweighting procedure which is applied on the MC samples
(see Sec. 5.4), is investigated by considering upwards and downwards variation of the
reweight factors. Again, the unfolding is repeated for these variations and the uncertain-
ties are calculated at particle level.

� Model uncertainties
The Response Matrix (RM) presented in Sec. 5.7.2 is built using the Madgraph MC
samples shown in Tab. 5.3, instead of the Pythia8 MC samples. The unfolding is
performed based on the new RM and the model uncertainties are calculated as usual
from the di�erence between the unfolded spectrum obtained when using Madgraph
RM and the nominal unfolded spectrum based on Pythia8 RM.

The systematic uncertainties in the measurement of R∆φ from all the above four uncertainty
sources are extremely small < 0.4% (in total) and shown with the blue band in Fig. 5.15. In
this �gure the statistical uncertainty is also shown with vertical lines. The total experimental
uncertainty for the R∆φ measurement is calculated from the quadratic sum of systematic and
statistical uncertainties.
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Figure 5.15: The experimental uncertainties for the R∆φ measurement, where JES is the Jet
Energy Scale, JER is the Jet Energy Resolution, Other includes uncertainties from Pre�re Cor-
rections, miss/fake rates, PU MC pro�le reweighting and model uncertainties and the vertical
lines represent the statistical uncertainties.
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5.9 Data-MC comparison at particle level

The unfolded (particle-level) data can now be compared to Monte Carlo event generator
predictions at the generator (particle) level. A brief overview of the MC event generators and
the corresponding tunes used here, has already been given in Sec. 4.5. The MC predictions
were obtained using the Rivet toolkit (Robust Independent Validation of Experiment and
Theory) [55]. Figure 5.16 shows on the top plot the R∆φ observable from the unfolded data
(black markers) in comparison with the Leading Order (LO) MC event generators: Pythia8
with tune CUETP8M1 (red line) and tune CUETP8M2T4 (green line) and Herwig++ with
tune EE5C (magenta line). On the bottom plot of this �gure the MC over data ratio is shown,
together with the experimental uncertainty band obtained from the quadratic sum of systematic
and statistical uncertainties. Accordingly, Figure 5.17 illustrates the comparison between data
and Next-to-Leading Order (NLO) MC predictions based on Powheg Matrix Element (ME)
event generator, which is matched to all the LO MC event generators for the simulation of
Parton Shower (PS), Multiparton Interactions (MPI) and hadronization, with the Powheg
method.
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Figure 5.16: Comparison between data and Leading Order and Monte Carlo predictions at
particle level.
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The predictions from (LO) Herwig++ EE5C and (LO) Pythia8 CUETP8M1 overesti-
mate the observable by ∼ 20% and ∼ 12−18% respectively. On the other hand, the predictions
from the (LO) Pythia8 CUETP8M2T4 gives a very nice description of the measurement. The
large deviation among the two Pythia8 tunes arises from the di�erences in the αS values used
in the initial-state shower. In particular, for tune CUETP8M1 the strong coupling at MZ

for the initial-state shower and the �nal-state shower are �xed at: αISRS = αFSRS = 0.1365.
In contrast, CUETP8M2T4 tune uses the signi�cantly lower αISRS = 0.1108 as obtained in
[56], which investigates the impact of Pythia8 PS tuning in tt̄ modeling. The R∆φ observable
exhibits very large sensitivity to the strong coupling and for this reason the predictions are
largely a�ected by the parameter used in tuning. Among the Next-to-Leading Order MC pre-
dictions based on the Powheg, the matching of Powheg ME with Pythia8 CUETM2T4
gives the best description: ∼ 5-6% away from the data. Finally Powheg matched to Her-
wig++ EE5C or to Pythia8 CUETP8M1 overestimate the R∆φ measurement by ∼ 12%
and ∼ 10% respectively.
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Figure 5.17: Comparison between data and Next-to-Leading Order Monte Carlo predictions
at particle level.
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Chapter 6

Fixed Order QCD for jet production

The extraction of more precise QCD theoretical calculations practically means the inclusion
of higher perturbative orders in the strong coupling constant (see Eq. 1.54). Typically, an
NLO QCD correction is related either to the emission of an additional parton into the �nal
state (real correction), or to the emission and re-absorption of a parton through a loop (virtual
correction). The divergences arising from low-momentum (soft) and small-angle (collinear)
emissions, along with the presence of ultaviolet divergences in such calculations are addressed
in Sec. 6.1. The experimentally measured and theoretically de�ned objects i.e., jets, need to
be infrared and collinear safe, meaning that adding any number of in�nitely soft particles or
splitting an existing particle into two comoving (collinear) particles does not change the value
of any observable. As already discussed in Sec. 4.2, this is achieved by using the infrared and
collinear safe anti-kt algorithm.

The �nal states of interest here are composed of quarks and gluons which lead to the
formation of jets. In particular, the analysis is based on inclusive n-jet topologies, where n
stands for the minimum number of jets present in the �nal state. In the inclusive jet production
or correspondingly inclusive jet cross section any jet present in a given event is measured,
which means that an n-jet has n contributions to an inclusive jet observable. In the simplest
case, two incoming partons produce two outgoing partons i.e., 2 → 2 process, which leads to
the formation of two jets (dijet production) moving in opposite directions (back-to-back) with
zero net transverse momentum (see also Appendix A). The calculations of dijet and three-
jet production at NLO accuracy are available through the NLOJET++ program [1, 2] and
are widely used in almost all CMS analyses that require �xed-order QCD predictions. It is
also worth mentioning that NLO QCD calculations for up to �ve jets production at the LHC
are currently available for example through the conjunction of Sherpa event generator with
external packages providing one-loop amplitudes such as BLACKHAT or NJET [3, 4, 5].
Moreover, NNLO QCD calculations have also become available through NNLOJET package
[6, 7] but only for the dijet production, while a �rst study towards NNLO calculations also for
the three-jet production recently became public [8].

The �xed order predictions for this analysis were based on the NLOJET++ package and
performed within the fastNLO framework [9], which enables the fast extraction of the theory
predictions for various renormalization (µr) and factorization (µf ) scale choices and PDF sets.
As mentioned in Sec. 1.3.3 and 1.3.4 the renormalization (µr) and factorization (µf ) scales are
arbitrarily chosen. The common approach is setting the two scales to a common central value
µr = µf = µ which should be of the order of the "hard scale". Hence, here two alternatives are
investigated:
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1. µ = pT : The scales are set equal to the transverse momentum of the jet. This means that
for an n-jet event, the matrix elements and the PDFs are evaluated n-times, where each
time the scales are set equal to the transverse momentum of the jet under consideration.

2. µ = pmaxT : The scales are set equal to the transverse momentum of the leading pT jet in
the event.

However, the µf and µr can in principal be set independently and for this reason the variations
of these scales with respect to their central values are performed independently. Such variations
are employed for the evaluation of the scale uncertainties, in order to account for the missing
higher orders in the perturbative expansion and are discussed in Sec. 6.3.

Concerning the PDFs, here the standard recommendations from the PDF4LHC group [10]
were adopted, and the PDF sets shown in Tab. 6.1 were used for the extraction of the �xed-
order NLO predictions. Each PDF group provides a central set with the αS(MZ) used for the
main result, as well as alternative sets based on di�erent αS(MZ) values. In this context, wide
ranges with many αS(MZ) values are extremely important for the αS �tting procedure presented
in Chapter 7. Moreover, each PDF set contains di�erent members used for the calculation of
the PDF uncertainties as discussed in Sec. 6.3.

Table 6.1: PDF sets used in the theory calculations.

PDF set Central value αS(MZ) αS range

ABMP16_5_nlo [11] 0.1191 0.114 - 0.123
CT14nlo [12] 0.118 0.111 - 0.123

HERAPDF20_NLO [13] 0.118 0.110 - 0.130
MMHT2014nlo68cl [14] 0.120 0.108 - 0.128
NNPDF31_nlo [15] 0.118 0.106 - 0.130
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6.1. TECHNOLOGY OF NEXT-TO-LEADING-ORDER CALCULATIONS

6.1 Technology of next-to-leading-order calculations

For the calculation of a cross section at next-to-leading-order (NLO) accuracy, Eq. 1.76
introduced in Sec. 1.3.4 for the hadron-hadron scattering with n-parton �nal state which
involves the leading order (LO) cross section σ̂, needs to be adjusted in order to include higher
orders such that:

σ = σLO + σNLO (6.1)

where the LO part, also known as Born Level (B) is computed from the phase integration of
the di�erential cross section for the n-body �nal state:

σLO =

∫
n

dσB (6.2)

On the other hand, the NLO part receives contributions from real corrections (R) and
from virtual corrections (V). The former corresponds to the square of matrix elements with
one additional outgoing particle i.e., n + 1 parton �nal state, while the latter represents the
addition of one closed loop retaining the n parton �nal state.

σNLO ≡
∫
n

dσNLO =

∫
n+1

dσR +

∫
n

dσV (6.3)

Examples of the two di�erent contributions are illustrated in Fig. 6.1.

Figure 6.1: Examples of one real (left) and one virtual (right) corrections, that need to be
accounted in an NLO QCD calculation.

Taking these into account, the formula for the cross section calculation at NLO accuracy
σ(@NLO) is adjusted as:

σ(@NLO) =

∫
dΦB [Bn (ΦB;µf , µr) + Vn (ΦB;µf , µr)] +

∫
dΦRRn (ΦR;µf , µr) (6.4)

where the individual terms are given by:

Bn (ΦB;µf , µr) =
∑
h

|M(b)
n (ΦB;h;µf , µr) |2,

Vn (ΦB;µf , µr) = 2
∑
h

Re
[
M(b)

n (ΦB;h;µf , µr)M∗(b+1)
n (ΦB;h;µf , µr)

]
,

Rn (ΦR;µf , µr) = 2
∑
h

|M(b+1)
n+1 (ΦR;h;µf , µr) |2

(6.5)

where b stands for the Born level contribution and M(b) indicates the order of the matrix
element.
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6.1. TECHNOLOGY OF NEXT-TO-LEADING-ORDER CALCULATIONS

The evaluation of the cross section atNLO accuracy based on the above formulation is rather
than trivial, since several obstacles arise in the calculations, mainly due to the emergence of
ultraviolet and infrared divergences. The former, are introduced from the virtual contributions
and they are resolved with the well-known renormalization procedure described in Sec. 1.3.3.
On the other hand, confronting with the infrared divergences which arise both in the real and the
virtual contributions is much more challenging. Their origin are soft (energy → 0) or collinear
(parallel to another particle) emissions either in the loop (virtual) or in the additional particle
radiated (real). According to the Bloch-Nordsieck (BN) and Kinoshita�Lee�Nauenberg (KLN)
theorems these divergences must cancel each other for physically meaningful i.e., infrared safe
observables. In practice, di�erent strategies have been developed for regularizing the divergences
and calculating such cancellations, while the NLO calculations are currently based on infrared
subtraction algorithms such as the Catani-Seymour or dipole substraction method [16]. This is
also the method (with some modi�cation) upon which are based the NLOJET++ calculations,
used in the present analysis. Schematically, the above NLO cross section can now be written
as:

σ(@NLO) =

∫
dΦB

[
Bn (ΦB;µf , µr) + Vn (ΦB;µf , µr) + I(S)

n (ΦB;µf , µr)
]

+

∫
dΦR [Rn (ΦR;µf , µr)− Sn (ΦR;µf , µr)]

(6.6)

where the real subtraction term Sn and the integrated subtraction term I(S)
n cancel each other:

0 ≡
∫
dΦBI(S)

n (ΦB;µf , µr)−
∫
dΦRSn (ΦR;µf , µr) (6.7)

As already mentioned, for theR∆φ observable the �xed orderNLO predictions were obtained
from the NLOJET++ package using the fastNLO framework. In practice, the calculations
were performed separately for the R∆φ numerator's and for the denominator's cross sections, by
de�ning the relevant scenarios1. Hence for each PDF set included in Tab. 6.1, the parton-level
�xed-order predictions for the two cross sections and subsequently for the R∆φ observable were
obtained. Finally, it is worth mentioning that the fastNLO allows the extraction of �xed order
predictions for di�erent variations of the µr and µf de�ned in the scenario, as well as di�erent
PDF members included in each PDF set. This is of particular importance for the calculation
of the scale and PDF uncertainties respectively, discussed in Sec. 6.3.

1Examples of various analyses scenarios can be found at [17].
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6.2. NON-PERTURBATIVE CORRECTIONS

6.2 Non-Perturbative corrections

The �xed-order theoretical predictions that were described in Sec. 6.1 are available at parton
level only. This means that corrections for the non-perturbative (NP) e�ects of multiple-parton-
interactions (MPI) and hadronization must be applied, in order to make these predictions
comparable to the experimental data.

In practice, such non-perturbative e�ects are evaluated using MC event generators, where
the ratio of the nominal event generation with fully hadronized events over a sample with
MPI and hadronization switched o� is accounted as the NP correction. Essentially, the NP
corrections takes the form of simple factors by which the theoretical predictions are multiplied.
In order to obtain unbiased results, all the Monte Carlo event generators presented in Sec. 4.5
and considered in the data-MC particle level comparisons in Sec. 5.9 were used also here, while
the MC predictions were once again obtained using the Rivet toolkit. The NP correction
factors are formulated as:

CNP
(LO) =

NPS+HAD+MPI
(LO)

NPS
(LO)

CNP
(NLO) =

NPS+HAD+MPI
(NLO)

NPS
(NLO)

(6.8)

In order to avoid the statistical �uctuations in less populated regions of the phase space, the
NP correction factors are parametrized by a simple polynomial function:

y = a+ b · xc (6.9)

Finally, an envelope is constructed from the predictions of di�erent event generators to derive
a medium correction factor and an uncertainty for each pT bin.

Figure 6.2 shows on the left, the NP correction factors for the numerator's cross section
derived from the various MCs and tunes, while on the right of this plot the envelope of these
predictions is shown. Correspondingly, the results for the denominator's cross section (left) and
the corresponding envelope (right) is shown in Fig. 6.3. The �nal non-perturbative corrections
to be applied on �xed-order predictions NLO for R∆φ observable are shown in Fig. 6.4, while
Table 6.2 contains the values for the corrections and their uncertainties for each bin. As
expected, the NP corrections for the R∆φ are below the per cent level, mainly due to the
large cancellations of such e�ects when considering ratios of cross sections. Moreover, the
uncertainties are also small (< 1%), which is also important since they are propagated to the
�nal αS(MZ) and αS(Q) results, as will be discussed in the Chapter 7.
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Figure 6.2: The non-perturbative corrections for the R∆φ numerator's cross section derived
from di�erent Monte Carlos and tunes (left) and their envelope (right).
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Figure 6.3: The non-perturbative corrections for the R∆φ denominator's cross section derived
from di�erent Monte Carlos and tunes (left) and their envelope (right).
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Figure 6.4: The non-perturbative corrections for R∆φ observable (blue line) and their uncer-
tainties (red band).

Table 6.2: The NP correction factors and their uncertainties per pT bin for the R∆φ observable.

pT bin NP corr. factor Unc. (%)

300-360 1.0077 0.92
360-430 1.0070 0.90
430-510 1.0064 0.87
510-600 1.0058 0.84
600-700 1.0053 0.80
700-800 1.0049 0.76
800-920 1.0045 0.72
920-1050 1.0041 0.69
1050-1190 1.0038 0.65
1190-1340 1.0035 0.62
1340-1500 1.0032 0.59
1500-1680 1.0030 0.57
1680-1870 1.0028 0.55
1870-2070 1.0026 0.52
2070-2300 1.0024 0.50
2300-2560 1.0023 0.48
2560-3170 1.0020 0.46
3170-4000 1.0017 0.42
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6.3 PDF and scale uncertainties

PDF uncertainties
Besides the best estimates for the PDFs values, each PDF group provides a set of variations

(members) which correspond to the PDF uncertainties. Figure 6.5 shows an example of the
NNPDF31_nlo members for the u quark PDF, generated with the APFEL web application
(as Fig. 1.9). Consequently, it is important to estimate the propagation of the uncertainty,
arising from the limited PDFs knowledge, to any observable �xed-order predictions.
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Figure 6.5: The NNPDF31_nlo members for the u quark PDF.

In general, two di�erent techniques are used for the PDF uncertainties calculation:

1. The Hessian or eigenvector method, which is used for ABMP16, CT14 andMMHT2014.
The PDF uncertainties in this case are calculated from the formula:

∆χ± = ±

√√√√NEV∑
i=1

[
χ+
i − χ−i

2

]2

(6.10)

where χ here represents the R∆φ observable, ∆χ is the symmetric PDF uncertainty for
the R∆φ observable, NEV is the number of eigenvectors (members) of the PDF set and
χ+
i , χ

−
i correspond to the observable when the ith member is varied + and − respectively.

These PDF uncertainties are evaluated at 68% con�dence interval, except for CT14 which
provide uncertainties at 90% and the result from the above formula must be multiplied
by a factor of

√
2erf−1 ≈ 1.645.

2. The Monte Carlo method, which is used for NNPDF31. The PDF uncertainties in this
case are obtained from the formula:

∆χ± =

√√√√ 1

Nrep − 1

Nrep∑
i=1

[χi − 〈χ〉]2 (6.11)

where χ here represents the R∆φ observable, ∆χ is the symmetric PDF uncertainty for
the R∆φ observable, Nrep is the number of MC replicas (members) of the PDF set, χi is
ith PDF member and 〈χ〉 corresponds to the average prediction for the observable.
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6.3. PDF AND SCALE UNCERTAINTIES

For the HERAPDF20 set, following the prescription described in [13], the PDF uncertain-
ties are subdivided into experimental, model and parametrisation uncertainties. The experi-
mental uncertainties are calculated using the Hessian approach described above, based on the
members of HERAPDF20_NLO_EIG PDF set. The model uncertainties are calculated by
considering the variations of the model assumptions e.g the strangeness fraction fs, the b/c
quark masses and the minimum Q2 value for the data. In practice this is done, using HERA-
PDF20_NLO_VAR PDF set, which consists of 14 members. The 0th member is the central
�t, while the 1-10 variations are used for the calculation of the model errors. They are treated
one-by-one, by taking the di�erence between the variation and the central value, and then
adding in quadrature all the positive (negative) di�erences to obtain the positive (negative)
model error. The parametrisation uncertainties are estimated by considering a more general
form of parametrisation for the PDF, for example by adding extra parameters in the PDF form.
In practice, these uncertainties are also evaluated from HERAPDF20_NLO_VAR, using the
last three members (members 11-13), by taking the envelope of these members and the central
member (0th member). The total PDF uncertainties of the HERAPDF20 are calculated from
the quadratic sum of experimental, model and parametrisation uncertainties.

Scale uncertainties
The uncertainties related to unknown higher orders of the perturbative series are evaluated

by varying independently the renormalization and the factorization scales from the default
choice µ0 (µr = µf = µ0) which is either pT or pmaxT within the six combinations shown in Tab.
6.3.

Table 6.3: The six µf , µr combinations considered for the evaluation of scale uncertainties.

µr/µ0 µf/µ0

1/2 1/2
1/2 1

1 1/2
1 2
2 1
2 2
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6.4 Fixed Order predictions and Data-Theory comparison

The Fixed Order (FO) predictions from NLOJET++ for the R∆φ observable's numerator
and denominator cross sections using the NNPDF31 PDF set are shown in Fig. 6.6. Starting
from the top row, the left plot illustrates the numerator's cross sections (LO and NLO), while
the denominator's cross sections (LO and NLO) are shown on the right plot. In both top row
plots the predictions were based on the jet pT as the central value for µr and µf , with the
coloured bands representing the scale uncertainties from the missing higher orders calculated
as described in Sec. 6.3. Moreover, the ratios to LO predictions are also shown on the bottom
part of each plot. The ratios between the NLO to LO predictions correspond to the so-called
k-factors, which are of the order of 1.2-1.4 here. Correspondingly, the bottom row plots show
the predictions for the numerator's cross sections (left) and for the denominator's cross sections
(right) using the pmaxT as the central value for µr and µf . The results are almost identical for
the two di�erent scale choices, which still holds for all the di�erent PDF sets as can be seen in
Appendix I.

The comparison between the FO NLO theoretical predictions and the experimental data
is shown in Fig. 6.7 (for µr = µf = pT ) and Fig. 6.8 (for µr = µf = pmaxT ). Each plot
contained in these �gures corresponds to a di�erent PDF choice from the �ve sets considered in
this analysis: ABMP16, CT14, HERAPDF20, MMHT2014 and NNPDF31. On the top of
each plot the data are shown with blue markers, the FO NLO prediction based on the central
αS(MZ) value (see Tab. 6.1) is shown with black continuous line, while the coloured bands
represent the scale (red) and PDF (green) uncertainties (see Sec. 6.3). Furthermore, on the
bottom part of each plot the ratio between data and FO NLO predictions is illustrated. The
points represent the ratio between data and the predictions based on the central αS(MZ) value
and the error bars represent the total uncertainties from the propagation of both experimental
and theoretical uncertainties. The dashed coloured lines represent the scale (red) and PDF
(green) uncertainties.

In general, the FO NLO predictions give a very nice description of the R∆φ measurement
for all the PDF sets and for the two di�erent scale choices. The scale uncertainties are dominant
ranging from 2 to 7% in all cases, while the PDF uncertainties are of the order of 1-2%, with
the smallest PDF uncertainties obtained from ABMP16 and the largest from CT14 PDF set.
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Figure 6.6: (Top row) Fixed Order predictions for the R∆φ numerator's (left) and denomina-
tor's (right) cross sections using the NNPDF31 PDF set and µr = µf = pT and (Bottom row)
the numerator's (left) and denominator's (right) cross sections predictions using the NNPDF31
PDF set and µr = µf = pmaxT .

140



6.4. FIXED ORDER PREDICTIONS AND DATA-THEORY COMPARISON

Figure 6.7: Comparison between data and �xed-order NLO predictions for µr = µf = pT using
ABMP16, CT14, HERAPDF20, MMHT2014 and NNPDF31 PDF sets. (Top of each plot) The
data are shown with blue markers, the continuous black line is the central αS(MZ) value for each
PDF set and the coloured bands are the scale (red) and PDF (green) uncertainties. (Bottom of
each plot) The ratio between data and �xed-order predictions.
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Figure 6.8: Comparison between data and �xed-order NLO predictions for µr = µf = pmaxT

using ABMP16, CT14, HERAPDF20, MMHT2014 and NNPDF31 PDF sets. (Top of each
plot) The data are shown with blue markers, the continuous black line is the central αS(MZ)
value for each PDF set and the coloured bands are the scale (red) and PDF (green) uncertainties.
(Bottom of each plot) The ratio between data and �xed-order predictions.

142



BIBLIOGRAPHY

Bibliography

[1] Zoltan Nagy. Three jet cross-sections in hadron hadron collisions at next-to-leading order.
Phys. Rev. Lett., 88:122003, 2002. https://doi.org/10.1103/PhysRevLett.88.122003.

[2] Zoltan Nagy. Next-to-leading order calculation of three jet observables in hadron hadron
collision. Phys. Rev. D, 68:094002, 2003. https://doi.org/10.1103/PhysRevD.68.

094002.

[3] Simon Badger, Benedikt Biedermann, Peter Uwer, and Valery Yundin. NLO QCD cor-
rections to multi-jet production at the LHC with a centre-of-mass energy of

√
s = 8 TeV.

Phys. Lett. B, 718:965�978, 2013. https://doi.org/10.1016/j.physletb.2012.11.029.

[4] Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, S. Hoeche, D. A. Kosower, H. Ita,
D. Maitre, and K. Ozeren. Four-Jet Production at the Large Hadron Collider at Next-to-
Leading Order in QCD. Phys. Rev. Lett., 109:042001, 2012. https://doi.org/10.1103/
PhysRevLett.109.042001.

[5] Simon Badger, Benedikt Biedermann, Peter Uwer, and Valery Yundin. Next-to-leading
order QCD corrections to �ve jet production at the LHC. Phys. Rev. D, 89(3):034019,
2014. https://doi.org/10.1103/PhysRevD.89.034019.

[6] J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, and J. Pires.
Precise predictions for dijet production at the lhc. Phys. Rev. Lett., 119:152001, Oct 2017.
https://doi.org/10.1103/PhysRevLett.119.152001.

[7] Thomas Gehrmann et al. Jet cross sections and transverse momentum distributions with
NNLOJET. PoS, RADCOR2017:074, 2018. https://doi.org/10.22323/1.290.0074.

[8] Michal Czakon, Alexander Mitov, and Rene Poncelet. Next-to-Next-to-Leading Order
Study of Three-Jet Production at the LHC. Phys. Rev. Lett., 127(15):152001, 2021. https:
//doi.org/10.1103/PhysRevLett.127.152001.

[9] T. Kluge, K. Rabbertz, and M. Wobisch. FastNLO: Fast pQCD calculations for PDF �ts.
2006. https://doi.org/10.1142/9789812706706_0110.

[10] Jon Butterworth et al. PDF4LHC recommendations for LHC Run II. J. Phys. G,
43:023001, 2016. https://doi.org/10.1088/0954-3899/43/2/023001.

[11] S. Alekhin, J. Blümlein, S. Moch, and R. Placakyte. Parton distribution functions, αs,
and heavy-quark masses for LHC Run II. Phys. Rev. D, 96(1):014011, 2017. https:

//doi.org/10.1103/PhysRevD.96.014011.

[12] Sayipjamal Dulat, Tie-Jiun Hou, Jun Gao, Marco Guzzi, Joey Huston, Pavel Nadolsky, Jon
Pumplin, Carl Schmidt, Daniel Stump, and C. P. Yuan. New parton distribution functions
from a global analysis of quantum chromodynamics. Phys. Rev. D, 93(3):033006, 2016.
https://doi.org/10.1103/PhysRevD.93.033006.

[13] H. Abramowicz et al. Combination of measurements of inclusive deep inelastic e±p scat-
tering cross sections and QCD analysis of HERA data. Eur. Phys. J. C, 75(12):580, 2015.
https://doi.org/10.1140/epjc/s10052-015-3710-4.

143

https://doi.org/10.1103/PhysRevLett.88.122003
https://doi.org/10.1103/PhysRevD.68.094002
https://doi.org/10.1103/PhysRevD.68.094002
https://doi.org/10.1016/j.physletb.2012.11.029
https://doi.org/10.1103/PhysRevLett.109.042001
https://doi.org/10.1103/PhysRevLett.109.042001
https://doi.org/10.1103/PhysRevD.89.034019
https://doi.org/10.1103/PhysRevLett.119.152001
https://doi.org/10.22323/1.290.0074
https://doi.org/10.1103/PhysRevLett.127.152001
https://doi.org/10.1103/PhysRevLett.127.152001
https://doi.org/10.1142/9789812706706_0110
https://doi.org/10.1088/0954-3899/43/2/023001
https://doi.org/10.1103/PhysRevD.96.014011
https://doi.org/10.1103/PhysRevD.96.014011
https://doi.org/10.1103/PhysRevD.93.033006
https://doi.org/10.1140/epjc/s10052-015-3710-4


BIBLIOGRAPHY

[14] P. Motylinski et al. Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys.
J. C, 74:204, 2015. https://doi.org/10.1140/epjc/s10052-015-3397-6.

[15] Richard D. Ball et al. Parton distributions from high-precision collider data. Eur. Phys.
J. C, 77(10):663, 2017. https://doi.org/10.1140/epjc/s10052-017-5199-5.

[16] S. Catani and M. H. Seymour. A General algorithm for calculating jet cross-sections in NLO
QCD. Nucl. Phys. B, 485:291�419, 1997. https://doi.org/10.1016/S0550-3213(96)

00589-5.

[17] FastNLO project. https://fastnlo.hepforge.org.

144

https://doi.org/10.1140/epjc/s10052-015-3397-6
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1016/S0550-3213(96)00589-5
https://doi.org/10.1016/S0550-3213(96)00589-5
https://fastnlo.hepforge.org


Chapter 7

Determination of αS(MZ) and αS(Q)
running test

Since the R∆φ observable depends directly on the strong coupling αS, it can be used for
the determination of the parameter αS(MZ) from the comparison of �xed-order predictions to
experimental data. The sensitivity of R∆φ to αS is presented in Sec. 7.1.

The determination of αS(MZ) is based on the minimization of the χ2 between the experi-
mental measurements and the theoretical predictions. The χ2 is de�ned as:

χ2 =
N∑
ij

(Di − Ti)C−1
ij (Dj − Tj) (7.1)

where N is the number of measurements, Di are the experimental measurements, Ti are the
theoretical predictions and Cij is the covariance matrix which is comprised of:

C = Cstat + Cuncor +

( ∑
sources

CJES

)
+ Cunfolding + Cpref + CNP + CPDF (7.2)

where Cstat represents the statistical uncertainty, Cuncor is the uncorrelated systematic uncer-
tainty assigned to each bin, CJES is the systematic uncertainty for each JEC uncertainty source,
Cunfolding is the systematic uncertainty induced through unfolding (JER + Other, see Sec. 5.8),
Cpref is the uncertainty from the pre�ring and CNP , CPDF are the Non-Perturbative and PDF
uncertainties respectively.

The �rst �ve terms in Eq. 7.2 constitute the experimental uncertainty, while JES, unfold-
ing, pre�ring, NP and PDF uncertainties are considered as 100% correlated among pT bins.
Furthermore, these correlated uncertainties are treated as multiplicative, in order to avoid
the statistical bias that arises from uncertainty estimations taken from data [1]. The central
αS(MZ) result is obtained by minimizing the χ2 with respect to αS(MZ). Then, the uncertainty
of this result is obtained from the αS(MZ) values for which the χ2 is increased by 1 with respect
to the minimum value.

The procedure that has been followed for each PDF set is the following:

1. Minimization of the χ2 using only the experimental uncertainties in the composition of
the covariance matrix:

C = Cstat + Cuncor +

( ∑
sources

CJES

)
+ Cunfolding + Cpref (7.3)
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2. Evaluation of the individual contribution of each experimental uncertainty source, by
removing each time one of the uncertainty sources and repeating the χ2 minimization.

3. Repeat the χ2 minimization for the estimation of the NP and PDF uncertainties in the
determination of the αS(MZ) by adding either NP or PDF uncertainties in the covariance
matrix:

C = Cstat + Cuncor +

( ∑
sources

CJES

)
+ Cunfolding + Cpref + CPDF/NP (7.4)

4. Finally, the uncertainty in the αS(MZ) due to the renormalization (µr) and factorization
(µf ) scales is estimated by repeating the χ2 minimization for all the possible variations
of µr and µf from the default choice µ0, in the usual six combinations of µr and µf (see
Tab. 6.3).

All the results for the αS(MZ) from the di�erent PDF sets are shown in Sec. 7.2. They
were extracted using µr = µf = pT , since as discussed in Sec. 6.4 both scale choices (pT and
pmaxT ) lead to very similar results in terms of theoretical uncertainties and agreement between
data and theory. Apart from that, the sensitivity of R∆φ to αS (Sec. 7.1) is very large for both
scale choices, allowing the selection of any of them for the αS(MZ) determination. Finally, the
procedure followed for the investigation of running of the strong coupling constant is presented
in Sec. 7.3.
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7.1 R∆φ sensitivity to the strong coupling

The sensitivity of R∆φ observable to the strong coupling constant is shown in Fig. 6.7 (for
µr = µf = pT ) and Fig. 6.8 (for µr = µf = pmaxT ). Each plot contained in these �gures
corresponds to a di�erent PDF choice from the �ve sets considered in this analysis: ABMP16,
CT14, HERAPDF20, MMHT2014 and NNPDF31. The data are shown with blue markers,
the FO NLO prediction based on the central αS(MZ) value is shown with black continuous line,
the minimum and the maximum αS(MZ) values from each PDF set (see Tab. 6.1) are shown
with red and green continuous lines respectively. All the dashed lines represent intermediate
αS(MZ) values provided from each group. It is directly observed that a small change in the
αS(MZ) leads to a di�erent prediction for the R∆φ which means that the observable is very
sensitive to the αS(MZ) and therefore ideal for the determination of this parameter.
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Figure 7.1: Sensitivity of R∆φ to the αS(MZ) for µr = µf = pT using ABMP16, CT14,
HERAPDF20, MMHT2014 and NNPDF31 PDF sets. The data are shown with blue markers,
the continuous black line is the central αS(MZ) value, the red and green lines are the minimum
and maximum value respectively and all the dashed lines represent intermediate αS(MZ) values.
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Figure 7.2: Sensitivity of R∆φ to the αS(MZ) for µr = µf = pmaxT using ABMP16, CT14,
HERAPDF20, MMHT2014 and NNPDF31 PDF sets. The data are shown with blue markers,
the continuous black line is the central αS(MZ) value, the red and green lines are the minimum
and maximum value respectively and all the dashed lines represent intermediate αS(MZ) values.
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7.2 Determination of αS(MZ)

7.2.1 ABMP16

The χ2 minimization with respect to αS(MZ) using ABMP16 PDF set and only the ex-
perimental uncertainties in the covariance matrix (Eq. 7.3) is shown in Fig. 7.3. The result
is αS(MZ) = 0.11788 ± 0.00077(exp), with χ2/ndof = 17/16. Then the individual contribu-
tion of each experimental uncertainty source, is calculated by removing each time one of the
uncertainty sources and repeating the χ2 minimization as shown in Fig. 7.4. The NP and
PDF uncertainties are calculated by adding the NP and PDF uncertainties respectively in the
covariance matrix (Eq. 7.4) and repeating the χ2 minimization as shown in Fig. 7.5. Finally,
the scale uncertainties are obtained by performing the χ2 minimization for the six di�erent
combinations of renormalization (µr) and factorization (µf ) scales de�ned in Tab. 6.3 as shown
in Fig. 7.6. The result for ABMP16 is:

αS(MZ) = 0.1179+0.0052
−0.0026(scale)± 0.0008(exp)± 0.0008(NP )± 0.0004(PDF ) (7.5)
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Figure 7.3: The χ2 minimization with respect to αS(MZ) using ABMP16 and only the exper-
imental uncertainties in the covariance matrix.
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Figure 7.4: The χ2 minimizations with respect to αS(MZ) for the estimation of the individual
contributions to the experimental αS(MZ) uncertainty for ABMP16.
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Figure 7.5: The χ2 minimizations with respect to αS(MZ) for the estimation of the NP (left)
and PDF (right) uncertainties for ABMP16.
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Figure 7.6: The χ2 minimizations with respect to αS(MZ) for the six di�erent combinations
of µr and µf used for the evaluation of scale uncertainties for ABMP16.
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7.2.2 CT14

The χ2 minimization with respect to αS(MZ) using CT14 PDF set and only the experi-
mental uncertainties in the covariance matrix (Eq. 7.3) is shown in Fig. 7.7. The result is
αS(MZ) = 0.11384 ± 0.00121(exp), with χ2/ndof = 18/16. Then the individual contribution
of each experimental uncertainty source, is calculated by removing each time one of the un-
certainty sources and repeating the χ2 minimization as shown in Fig. 7.8. The NP and PDF
uncertainties are calculated by adding the NP and PDF uncertainties respectively in the co-
variance matrix (Eq. 7.4) and repeating the χ2 minimization as shown in Fig. 7.9. Finally,
the scale uncertainties are obtained by performing the χ2 minimization for the six di�erent
combinations of renormalization (µr) and factorization (µf ) scales de�ned in Tab. 6.3 as shown
in Fig. 7.10. The result for CT14 is:

αS(MZ) = 0.1138+0.0086
−0.0036(scale)± 0.0012(exp)± 0.0012(NP )± 0.0015(PDF ) (7.6)
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Figure 7.7: The χ2 minimization with respect to αS(MZ) using CT14 and only the experi-
mental uncertainties in the covariance matrix.
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Figure 7.8: The χ2 minimizations with respect to αS(MZ) for the estimation of the individual
contributions to the experimental αS(MZ) uncertainty for CT14.
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Figure 7.9: The χ2 minimizations with respect to αS(MZ) for the estimation of the NP (left)
and PDF (right) uncertainties for CT14.
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Figure 7.10: The χ2 minimizations with respect to αS(MZ) for the six di�erent combinations
of µr and µf used for the evaluation of scale uncertainties for CT14.
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7.2.3 HERAPDF20

The χ2 minimization with respect to αS(MZ) using HERAPDF20 PDF set and only the
experimental uncertainties in the covariance matrix (Eq. 7.3) is shown in Fig. 7.11. The
result is αS(MZ) = 0.11614 ± 0.00086(exp), with χ2/ndof = 24/16. Then the individual
contribution of each experimental uncertainty source, is calculated by removing each time one
of the uncertainty sources and repeating the χ2 minimization as shown in Fig. 7.12. The NP
and PDF uncertainties are calculated by adding the NP and PDF uncertainties respectively
in the covariance matrix (Eq. 7.4) and repeating the χ2 minimization as shown in Fig. 7.13.
Finally, the scale uncertainties are obtained by performing the χ2 minimization for the six
di�erent combinations of renormalization (µr) and factorization (µf ) scales de�ned in Tab. 6.3
as shown in Fig. 7.14. The result for HERAPDF20 is:

αS(MZ) = 0.1161+0.0051
−0.0017(scale)± 0.0009(exp)± 0.0009(NP )± 0.0003(PDF ) (7.7)
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Figure 7.11: The χ2 minimization with respect to αS(MZ) using HERAPDF20 and only the
experimental uncertainties in the covariance matrix.
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Figure 7.12: The χ2 minimizations with respect to αS(MZ) for the estimation of the individual
contributions to the experimental αS(MZ) uncertainty for HERAPDF20.
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Figure 7.13: The χ2 minimizations with respect to αS(MZ) for the estimation of the NP (left)
and PDF (right) uncertainties for HERAPDF20.
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Figure 7.14: The χ2 minimizations with respect to αS(MZ) for the six di�erent combinations
of µr and µf used for the evaluation of scale uncertainties for HERAPDF20.
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7.2.4 MMHT2014

The χ2 minimization with respect to αS(MZ) using MMHT2014 PDF set and only the
experimental uncertainties in the covariance matrix (Eq. 7.3) is shown in Fig. 7.15. The
result is αS(MZ) = 0.11462 ± 0.00111(exp), with χ2/ndof = 17/16. Then the individual
contribution of each experimental uncertainty source, is calculated by removing each time one
of the uncertainty sources and repeating the χ2 minimization as shown in Fig. 7.16. The NP
and PDF uncertainties are calculated by adding the NP and PDF uncertainties respectively
in the covariance matrix (Eq. 7.4) and repeating the χ2 minimization as shown in Fig. 7.17.
Finally, the scale uncertainties are obtained by performing the χ2 minimization for the six
di�erent combinations of renormalization (µr) and factorization (µf ) scales de�ned in Tab. 6.3
as shown in Fig. 7.18. The result for MMHT2014 is:

αS(MZ) = 0.1146+0.0087
−0.0037(scale)± 0.0011(exp)± 0.0012(NP )± 0.0008(PDF ) (7.8)
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Figure 7.15: The χ2 minimization with respect to αS(MZ) using MMHT2014 and only the
experimental uncertainties in the covariance matrix.
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Figure 7.16: The χ2 minimizations with respect to αS(MZ) for the estimation of the individual
contributions to the experimental αS(MZ) uncertainty for MMHT2014.
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Figure 7.17: The χ2 minimizations with respect to αS(MZ) for the estimation of the NP (left)
and PDF (right) uncertainties for MMHT2014.
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Figure 7.18: The χ2 minimizations with respect to αS(MZ) for the six di�erent combinations
of µr and µf used for the evaluation of scale uncertainties for MMHT2014.
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7.2.5 NNPDF31

The χ2 minimization with respect to αS(MZ) using NNPDF31 PDF set and only the
experimental uncertainties in the covariance matrix (Eq. 7.3) is shown in Fig. 7.19. The
result is αS(MZ) = 0.11577 ± 0.00117(exp), with χ2/ndof = 17/16. Then the individual
contribution of each experimental uncertainty source, is calculated by removing each time one
of the uncertainty sources and repeating the χ2 minimization as shown in Fig. 7.20. The NP
and PDF uncertainties are calculated by adding the NP and PDF uncertainties respectively
in the covariance matrix (Eq. 7.4) and repeating the χ2 minimization as shown in Fig. 7.21.
Finally, the scale uncertainties are obtained by performing the χ2 minimization for the six
di�erent combinations of renormalization (µr) and factorization (µf ) scales de�ned in Tab. 6.3
as shown in Fig. 7.22. The result for NNPDF31 is:

αS(MZ) = 0.1158+0.0087
−0.0038(scale)± 0.0012(exp)± 0.0011(NP )± 0.0006(PDF ) (7.9)
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Figure 7.19: The χ2 minimization with respect to αS(MZ) using NNPDF31 and only the
experimental uncertainties in the covariance matrix.

0.105 0.11 0.115 0.12 0.125 0.13
)

Z
(MSα 

0

10000

20000

30000

40000

50000

2 χ 

  

 = 0.11630 + 0.00006 - 0.00006 Sa

only stat

  

0.105 0.11 0.115 0.12 0.125 0.13
)

Z
(MSα 

0

100

200

300

400

500

600

700

800

900

2 χ 

  

 = 0.11736 + 0.00043 - 0.00043 Sa

only stat + UNC

  

0.105 0.11 0.115 0.12 0.125 0.13
)

Z
(MSα 

0

100

200

300

400

500

600

700

2 χ 

  

 = 0.11731 + 0.00047 - 0.00047 Sa

no JES

  

0.105 0.11 0.115 0.12 0.125 0.13
)

Z
(MSα 

0

20

40

60

80

100

120

140

2 χ 

  

 = 0.11578 + 0.00116 - 0.00115 Sa

no UNF

  

Figure 7.20: The χ2 minimizations with respect to αS(MZ) for the estimation of the individual
contributions to the experimental αS(MZ) uncertainty for NNPDF31.
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Figure 7.21: The χ2 minimizations with respect to αS(MZ) for the estimation of the NP (left)
and PDF (right) uncertainties for NNPDF31.
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Figure 7.22: The χ2 minimizations with respect to αS(MZ) for the six di�erent combinations
of µr and µf used for the evaluation of scale uncertainties for NNPDF31.
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7.2.6 Discussion on the results

Table 7.1 contains all the αS(MZ) results obtained from the above �tting procedure, which
are also illustrated in Fig. 7.23. All these results are fully compatible among each other (within
their uncertainties) and with the PDG world average value αS(MZ) = 0.1179± 0.0010 [2]. As
expected, the dominant theoretical scale uncertainties (see Sec. 6.4) propagated to the αS(MZ)
scale uncertainty, constituting the largest uncertainty in the parameter evaluation. The ex-
perimental, non-perturbative and PDF uncertainties are signi�cantly smaller than the scale
uncertainties, with CT14 exhibiting the largest and HERAPDF the smallest PDF uncertain-
ties. The χ2/ndof which characterizes the goodness-of-�t has the best value (closest to 1) for
the ABMP16, MMHT2014 and NNPDF31 PDF sets and the worst for HERAPDF20.

Revisiting now the plot shown in Fig. 5.1 (left) from Chapter 5, the αS(MZ) results from this
analysis can be included. Among the di�erent PDF sets, the result from NNPDF is selected
as the main analysis result and also used for the αS(Q) running determination (Sec. 7.3).
This choice was mainly motivated from the fact that NNPDF includes the most updated list
of datasets, including CMS and ATLAS inclusive jets measurements from LHC Run I. Figure
7.24 shows the αS(MZ) measurements as presented in Chapter 5, including the R∆φ analysis
result based on NNPDF PDF set. It is directly observed the aforementioned fact that the new
result is fully compatible with the αS(MZ) world average value.

Table 7.1: The results for αS(MZ) from the various PDF sets.

PDF set αS(MZ) Exp NP PDF Scale χ2/ndof

ABMP16 0.1179 0.0008 0.0008 0.0004 +0.0052
−0.0026 17/16

CT14 0.1138 0.0012 0.0012 0.0015 +0.0086
−0.0036 18/16

HERAPDF20 0.1161 0.0009 0.0009 0.0003 +0.0051
−0.0017 24/16

MMHT2014 0.1146 0.0011 0.0012 0.0008 +0.0087
−0.0037 17/16

NNPDF31 0.1158 0.0012 0.0011 0.0006 +0.0087
−0.0038 17/16
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Figure 7.23: Minimization of the χ2 between experimental measurements and theoretical
predictions with respect to αS(MZ) for ABMP16, CT14, HERAPDF20, MMHT2014 and
NNPDF31 NLO PDF sets. In this �gure, only experimental uncertainties are included in the co-
variance matrix. The minimum value αS(MZ) value for each PDF set is denoted with a dashed
line and corresponds to the central result. The experimental is estimated from the αS(MZ)
values for which the χ2 is increased by one unit with respect to the minimum value.
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Figure 7.24: An overview of αS(MZ) determinations from measurements using hadrons, in-
cluding the new result from the R∆φ analysis based on NNPDF31.
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7.3 Running of αS(Q)

Figure 7.25: Split of the R∆φ �tted region into four sub-regions for testing the αS running.
The 〈Q〉 corresponds to the average scale value for each sub-region.

For the investigation of the running of the strong coupling, the �tted region is split into
four sub-regions with four bins each, as shown in Fig. 7.25. The �tting procedure followed in
the previous section is then repeated for each sub-region separately, resulting in an αS(MZ)
extraction for each range. The χ2 minimizations with respect to αS(MZ), including only the
experimental uncertainty sources in the covariance matrix are shown in Fig. 7.26, while the
αS(MZ) results with the total uncertainty (experimental and theoretical) are included in Tab.
7.2.

The fastNLO framework provides the capability to solve the renormalization group equa-
tion (RGE) at 2-loop order through the HOPPET toolkit [3] or the Gluck-Reya-Vogt formula
(GRV) [4]. Therefore, the αS(MZ) values from each sub-region are evolved to higher scales Q
which are also calculated inside the fastNLO as a cross section weighted average for each sub-
region. The Q and αS(Q) results are shown in Tab. 7.2. Based on these results, a new version
of Fig. 5.2 can now be obtained. This is illustrated in Fig. 7.27, where the solid line represents
the αS(Q) result and the associated total uncertainty (yellow band) evolved using the αS(MZ)
determination from NNPDF31 set, αS(MZ) = 0.1158+0.0089

−0.0042. The new αS(Q) results from the
R∆φ measurement are shown with red markers in the high-Q region. All the results reported in
this study are consistent with the energy dependence predicted by the RGE and no deviation
is observed from the expected behaviour up to ∼ 2 TeV .
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Figure 7.26: The χ2 minimizations with respect to the αS(MZ) for the four di�erent pT
ranges (in GeV): 300-700 (top left), 700-1090 (top right), 1090-1870 (bottom left) and 1870-
3170 (bottom right).
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7.3. RUNNING OF αS(Q)

Table 7.2: The αS(MZ) and αS(Q) determinations for the four di�erent �tting sub-regions.

pT range (GeV ) αS(MZ) 〈Q〉 (GeV ) αS(Q)

360− 700 0.1176+0.0091
−0.0048 433.0 0.0954+0.0058

−0.0032

700− 1190 0.1158+0.0097
−0.0057 819.0 0.0875+0.0054

−0.0033

1190− 1870 0.1192+0.0101
−0.0068 1346.0 0.0847+0.0049

−0.0034

1870− 3170 0.1172+0.0110
−0.0082 2081.0 0.0800+0.0049

−0.0039
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Figure 7.27: The running of the strong coupling constant αS(Q), as determined from the R∆φ

measurement (the four red points in high-Q region), in comparison with previous experimental
measurements and the world average.
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7.4. CONCLUSION

7.4 Conclusion

To sum up, the analysis presented in the second part of this dissertation, culminates in two
main results. Firstly, the strong coupling constant was extracted at the scale of the Z-boson
mass, using the full Run 2 CMS dataset collected during pp collisions at

√
s = 13 TeV and the

jet-based R∆φ observable. The αS(MZ) results were derived for �ve di�erent PDF sets and are
fully compatible among each other and with the world average value: αS(MZ) = 0.1179±0.0010.
The result selected as the main analysis result based on the NNPDF31 is:

αS(MZ) = 0.1158+0.0087
−0.0038(scale)± 0.0012(exp)± 0.0011(NP )± 0.0006(PDF )

Secondly, the running of the strong coupling constant was experimentally tested up to the
TeV region at energy scales of Q = 2081 GeV . The result is in complete agreement with the
predicted value for αS(Q) derived from the Renormalization Group Equation (RGE) of QCD
and no deviation was observed in this measurement.

From the experimental perspective, the Run 3 period of LHC is now (February 2022) planned
to last from 2022 to 2024 [5], where the center-of-mass energy is expected to be increased to
13.6 TeV and the total integrated luminosity to 350 fb−1. Then, the transition to the HL-LHC
era, where the instantaneous luminosity will be increased by a factor of 5 beyond the original
design value and the integrated luminosity by a factor of 10, is planned for 2027 [6]. On the other
hand, progress has also been made in theoretical calculations, with recent developments towards
next-to-next-to-leading order (NNLO) accuracy for three-jet observables [7]. The combination
of the above advancements, provide a unique possibility for extremely precise determinations
of the αS(MZ), through observables like R∆φ in the future. Moreover, testing the running of
αS(Q) to even higher scales with the highest precision possible, is always an intriguing challenge
for the QCD predictions.
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Appendix A

Azimuthal (de)correlations of jets and
R∆φ observable

Figure A.1: Normalized inclusive 2-
jet cross section as a function of the
azimuthal separation ∆φ1,2 between
the two leading pT jets [1].

Fig. A.2 is helpful for obtaining a better insight of
the topologies contributing to the R∆φ observable cross
sections as de�ned in:

R∆φ(pT ,∆φ, p
nbr
Tmin) =

∑Njet(pT )
i=1 N

(i)
nbr(∆φ, p

nbr
Tmin)

Njet(pT )
(A.1)

This �gure illustrates the normalized inclusive 2-jet
cross section (1/σ)(dσ/d∆φ1,2) as a function of the az-
imuthal angular separation ∆φ1,2 between the two high-
est (leading) pT jets, for several regions of the leading
jet pT (pmaxT ).

At leading order (LO), the two �nal-state partons
are produced back-to-back in the transverse plane, lead-
ing to an azimuthal angular separation ∆φ1,2 = |φjet1−
φjet2| equal to π. The production of a third jet leads
to the decorrelation of the azimuthal angles of those
two leading jets. This means that the ∆φ1,2 for topolo-
gies with a third jet present is smaller than π, with
2π/3 being the smallest achievable value corresponding
to a symmetric star-shaped con�guration. In the case
where more than three jets are produced, the ∆φ1,2 can
approach zero. This is also illustrated in Fig. A.2.

For the denominator of the R∆φ observable which
corresponds to the inclusive jets cross section, two jets in a back-to-back con�guration (2→ 2
process in Fig. A.2) is still the dominant process, hence the denominator is O(α2

S) at leading
order. For the numerator, by imposing the azimuthal angular separation between two neigh-
boring jets to be signi�cantly smaller than π, i.e., 7π/8, means that only topologies with at
least three jets are may contribute in the cross section, meaning that the numerator is O(α3

S) at
leading order. Finally, setting the minimum azimuthal separation at 2π/3, is for ensuring pure
NLO QCD calculations for the �xed order predictions which is not the case for ∆φ < 2π/3 [2].
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Appendix B

Phase space selection

For the optimization of the phase space selection for the measurement of R∆φ observable
discussed in Chapter 5, the scenarios shown in Tab. B.1 were considered. The goal here is
to investigate whether increasing the minimum pT cut applied on the neighboring jets

(
pnbrTmin

)
and/or extending the ∆φ interval for their azimuthal separation (∆φ range) the dominant
theoretical uncertainty which is the scale uncertainty would be reduced or/and the sensitivity
of the observable to the strong coupling would be increased. For this study, only theoretical
predictions from CT14nlo PDF set were used, however the scale uncertainties and sensitivity
are very similar among all the PDF sets, as discussed in Chapter 6. Moreover, 2016 data at
the detector level are included in the following plots only for illustration purposes, since this
study is based exclusively on theoretical predictions and not a�ected by the measured data.

Table B.1: Six di�erent scenarios for the R∆φ phase space selection.

∆φ range pnbr
Tmin (GeV)

0 < ∆φ < 7π/8 100

π/2 < ∆φ < 7π/8 100

2π/3 < ∆φ < 7π/8 100

0 < ∆φ < 7π/8 150

π/2 < ∆φ < 7π/8 150

2π/3 < ∆φ < 7π/8 150

Figures B.1 and B.2 show the scale uncertainties, while Fig. B.3 and B.4 show the sensitivity
to αS for the above six scenarios. The observation is that the scale uncertainties and the
sensitivity are very similar in all cases. Therefore the phase space selection for this analysis
was set as: pnbrTmin = 100 GeV and 2π/3 < ∆φ < 7π/8. The former was motivated for statistics
purposes, while from the same perspective the preferable selection for the ∆φ range would be
0 < ∆φ < 7π/8. However, the �xed-order calculations used in the analysis are next-to-leading
order only in the reduced ∆φ range 2π/3 < ∆φ < 7π/8, leading to the selection of this scenario.
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Figure B.1: The scale uncertainties for the three di�erent ∆φ ranges for pnbrTmin = 100 GeV .
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Figure B.2: The scale uncertainties for the three di�erent ∆φ ranges for pnbrTmin = 150 GeV .
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Figure B.3: The sensitivity to αS for the three di�erent ∆φ ranges for pnbrTmin = 100 GeV .
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Figure B.4: The sensitivity to αS for the three di�erent ∆φ ranges for pnbrTmin = 150 GeV .
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Appendix C

Jet pre�ring maps
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Figure C.1: Jet pre�ring probability for 2016 (top) and for 2017 (bottom).
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Appendix D

Monte Carlo cross sections

Table D.1: Pythia8 p̂T slices cross sections.

p̂T slice 2016 (pb) 2017 (pb) 2018 (pb)

30→ 50 138800000 105800000 106900000

50→ 80 19110000 15560000 15710000

80→ 120 2735000 2317000 2342000

120→ 170 466200 403700 407100

170→ 300 117200 102500 103600

300→ 470 7763 6762.0 6763.0

470→ 600 641.0 546.1 546.0

600→ 800 185.7 154.9 154.8

800→ 1000 32.02 25.97 25.98

1000→ 1400 9.375 7.398 7.398

1400→ 1800 0.8384 0.6396 0.6423

1800→ 2400 0.1133 0.08671 0.08670

2400→ 3200 0.006746 0.005191 0.005199

3200→∞ 0.0001623 0.0001340 0.0001340
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Table D.2: Madgraph HT slices cross sections.

HT slice 2016 (pb) 2017 (pb) 2018 (pb)

50→ 100 246400000 183700000 183800000

100→ 200 27940000 26360000 23570000

200→ 300 1712000 1751000 1555000

300→ 500 347700 428300 325400

500→ 700 32150 39750 29630

700→ 1000 6828 5067 6240

1000→ 1500 1200 1228 1088

1500→ 2000 120.0 108.1 99.10

2000→∞ 25.34 24.4 20.22
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Appendix E

Data and Monte Carlo Pile Up pro�les
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Figure E.1: Di�erences in Pile Up (PU) pro�les between data and Pythia8 MC simulation
for 2018 CMS samples.
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Appendix F

Jet Energy Resolution curves

Figure F.1 shows the Jet Energy Resolution curves derived from Pythia8 2016 samples
presented in Sec. 5.1 (Tab. 5.3), where the gen-jet pT is on the x-axis and relative resolution
on the y-axis. Each cell corresponds to a di�erent η bin starting from 0.0 and going up to
4.7, while di�erent line colours represent di�erent values for the o�set energy density ρ bins.
Negative and positive η values are distinguished by dashed and continuous lines respectively.
Each line is obtained by a �t with the NSC function:

σ

pT
=

√
N2

p2
T

+
S2

pdT
+ C2 (F.1)

where N , S, C, d are �tting parameters and σ is the resolution. Each point considered for the
�t is extracted from the width of the response distributions given in di�erent gen pT bins.
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Figure F.1: The Jet Energy Resolution curves from Pythia8 2016 CMS samples, for di�erent
η and ρ bins. The continuous lines represent positive and the dashed lines negative η bins.
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Appendix G

Run 2 JEC uncertainty correlations

The correlation for the individual JEC uncertainty sources, described in Sec. 5.8, are shown
in Table provided by the JetMET group. They correspond to the correlation among 2016 and
2017 eras, while the same assumptions hold also for 2018.
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Table G.1: Run 2 JEC uncertainty correlations.

Uncertainty Source Correlation

AbsoluteMPFBias 100% correlated

AbsoluteScale 100% correlated

AbsoluteStat no correlation

FlavorQCD 100% correlated

Fragmentation 100% correlated

PileUpDataMC 50% correlated

PileUpPtBB 50% correlated

PileUpPtEC1 50% correlated

PileUpPtEC2 50% correlated

PileUpPtHF 50% correlated

PileUpPtRef 50% correlated

RelativeFSR 50% correlated

RelativeJEREC1 no correlation

RelativeJEREC2 no correlation

RelativeJERHF 50% correlated

RelativePtBB 50% correlated

RelativePtEC1 no correlation

RelativePtEC2 no correlation

RelativePtHF 50% correlated

RelativeBal 50% correlated

RelativeSample no correlation

RelativeStatEC no correlation

RelativeStatFSR no correlation

RelativeStatHF no correlation

SinglePionECAL 100% correlated

SinglePionHCAL 100% correlated

TimePtEta no correlation
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Appendix H

Unfolding corrections per year
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Figure H.1: The probability matrices for the 2D N(pT , n) distribution built with CMS of-
�cial Pythia8 Monte Carlo samples for 2016 (top left), 2017 (top right) and 2018 (bottom)
repsectively.
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Figure H.2: (Top of each plot) R∆φ observable at the reconstructed (detector) level with blue
color and the unfolded (particle) level with red color and (Bottom of each plot) the unfolded
over reconstructed ratio, for 2016 (left), 2017 (centre) and 2018 (right) eras.
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Appendix I

Fixed Order predictions
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Figure I.1: (Top row) Fixed Order predictions for the R∆φ numerator's (left) and denomina-
tor's (right) cross sections using the ABMP16 PDF set and µr = µf = pT and (Bottom row)
the numerator's (left) and denominator's (right) cross sections predictions using the ABMP16
PDF set and µr = µf = pmaxT .
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Figure I.2: (Top row) Fixed Order predictions for the R∆φ numerator's (left) and denomina-
tor's (right) cross sections using the CT14 PDF set and µr = µf = pT and (Bottom row) the
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Figure I.3: (Top row) Fixed Order predictions for the R∆φ numerator's (left) and denomina-
tor's (right) cross sections using the HERAPDF20 PDF set and µr = µf = pT and (Bottom
row) the numerator's (left) and denominator's (right) cross sections predictions using the HER-
APDF20 PDF set and µr = µf = pmaxT .
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