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— Abstract —

The theory of General Relativity was established on a spacetime manifold equipped with a metric tensor,
(M4,g), and the connection on M4 identified with the Levi-Civita one. Even though there are valid rea-
sons to assume a torsionless manifold that preserves the metric, it was shown that dealing away with these
assumptions the Levi-Civita condition can be reproduced at the level of equations of motion of GR for
a metric-affine connection. It was not long before the equivalence of General Relativity between the two
descriptions, known as the Palatini or first-order formalism in which the connection is independent of the
metric, and the conventional metric or second-order formalism, was broken for more complicated action
functionals involving higher-order curvature invariants and/or nonminimal couplings between the grav-
itational and matter sector. Nowadays these types of theories are prominent in modeling inflation where
they have found major success. Since the paradigm of inflation is fused with the gravitational degrees
of freedom and thus their parametrisation, it is interesting to understand how the predictions of these
models differ between the two formulations. For example, one of the outstanding models of inflation is
the Starobinsky or quadratic gravity model, R+R2, with continued success since its conception. However
in the Palatini formalism the scalar degree of freedom sourced by the R2 term is actually nonpropagating
and therefore is unable to drive an inflationary phase. Then in order for inflation to be realised in the
first-order formalism the Starobinsky model has to be coupled with a fundamental scalar field that will
assume the role of the inflaton field. In this thesis we investigate different inflationary scenarios, starting
with previously ruled-out models such as the free massive scalar, natural inflation, etc, where we find that
the R2 term has a significant role in flattening the Einstein-frame inflaton potential and thus giving the
opportunity for these models to come in contact with observations in that specific program. Of particular
interest is the study of Higgs inflation in this context and a possible comparison with results obtained
in the usual metric formalism, as well as proposing a case of minimal Higgs inflation with the R2 term.
Contrary to their second-order formulation in which the field space of the models is two-dimensional,
here we show that the models are actually one-dimensional in the field space and can be readily studied
analytically leading to interesting results.



Περίληψη

Extended summary in Greek

Η Γενική θεωρία της Σχετικότητας (ΓΣ) και το Καθιερωμένο Πρότυπο (ΚΠ) αποτελούν τις πιο ικανές θεωρίες

να περιγράψουν με ακρίβεια τη φυσική γύρω μας. Το ΚΠ είναι μια κβαντική θεωρία πεδίου που περιγράφει

τις αλληλεπιδράσεις των στοιχειωδών σωματιδίων και τις ιδιότητές τους, βασισμένη στη συμμετρία βαθμίδας

SU(3)C ×SU(2)L×U(1)Y . Η τελευταία επιβεβαίωση του ΚΠ ήρθε με την πρόσφατη ανακάλυψη του μποζονίου
Higgs (Higgs boson) στο Μεγάλο Επιταχυντή Αδρονίων (LHC) στο Ευρωπαϊκό Πυρηνικό Κέντρο Ερευνών
(CERN), ολοκληρώνοντας έτσι την ενοποίηση των θεμελιώδων (μη-βαρυτικών) δυνάμεων της φύσης. Παρόλες
τις επιτυχίες της θεωρίας υπάρχουν ακόμα αναπάντητα ερωτήματα και διάφορα πρόβληματα, μεταξύ άλλων είναι

το πρόβλημα των μαζών των νετρίνων, η φύση της σκοτεινής ύλης του σύμπαντος και η αδυναμία του ΚΠ να

ενοποιηθεί με την τέταρτη δύναμη, τη βαρύτητα. Η ΓΣ περιγράφει αποκλειστικά τις βαρυτικές αλληλεπιδράσεις

και βρίσκει επιτυχία σε μια εντελώς διαφορετική περιοχή ισχύος από αυτή του ΚΠ και έχει αντέξει το πέρασμα

του χρόνου, έχοντας επιβεβαιωθεί από πειράματα σε διάφορες περιπτώσεις με τελευταίο και ίσως πιο σημαντικό

την παρατήρηση στον ανιχνευτή του LIGO βαρυτικών κυμάτων από συγχωνευόμενες μελανές οπές.
Η ασυμβατότητα του ΚΠ με την ΓΣ καταδεικνύει ότι η φιλόδοξη ιδέα της ενοποίησης των θεμελιωδών

δυνάμεων κάτω από ένα μοναδικό θεωρητικό πλαίσιο απέχει ακόμα αρκετά. Ωστόσο, τα τελευταία χρόνια η κο-

σμολογία και η σωματιδιακή φυσική πλησιάζουν ολοένα και περισσότερο, το οποίο αποδεικνύεται καλύτερα από

τις σύγχρονες εξελίξεις στη θεωρία του κοσμολογικού πληθωρισμού (inflation). Επεκτείνοντας τη θεωρία της
Γενικής Σχετικότητας με ένα επιπλέον θεμελιώδες βαθμωτό πεδίο, ικανό να περιγράψει μια διαστολή de-Sitter
τις πρώτες στιγμές του σύμπαντος, μπορούμε να εξηγήσουμε την παρατηρούμενη επιπεδότητα, ομοιογένεια και

ισοτροπία που έχει παρατηρηθεί να ισχύει σε μεγάλες αποστάσεις στο σύμπαν. Η θεωρία του κοσμολογικού

πληθωρισμού προτάθηκε αρχικά ακριβώς για να λύσει αυτά τα ζητήματα της κοσμολογίας, συγκεκριμένα θέματα

συνδεδεμένα με τις αρχικές συνθήκες του σύμπαντος, που είναι ουσιαστικά το μεγαλύτερο μέρος της Φυσικής,

λαμβάνει την κεντρική θέση. Διατυπωμένη στα τέλη της δεκαετίας του ΄70 με αρχές της δεκαετίας του ΄80, εφάρ-

μοσε διάφορες γνώσεις, θεωρίες και αποτελέσματα από πολυάριθμα πεδία της σωματιδιακής φυσικής, αλλά ο ίδιος

ο μηχανισμός της θεωρίας του κοσμολογικού πληθωρισμού είναι ακόμα άγνωστος. Ως εκ τούτου, προτείνονται

διάφορα μοντέλα, ικανά να περιγράψουν το σενάριο του κοσμολογικού πληθωρισμού, που οδηγούν σε αντίστοιχες

προβλέψεις, οι οποίες με τη σειρά τους συνδέονται με παρατηρήσιμα γεγονότα και έτσι έχουν την δυνατότητα να

επαληθευτούν ή απορριφθούν. Ο κοσμολογικός πληθωρισμός έχει αποδειχθεί ότι είναι η απλούστερη πραγμα-

τοποίηση, όσον αφορά την εφαρμογή και τις υποθέσεις, μιας τέτοιας προσπάθειας κατανόησης της εξέλιξης του

πρώιμου σύμπαντος.

Ενώ ο κοσμολογικός πληθωρισμός κατασκευάστηκε έτσι ώστε να μπορεί φυσικά να αντιμετωπίσει τα ζη-

τήματα που συζητήθηκαν παραπάνω, περιλαμβάνει μια χαρακτηριστική πρόβλεψη – την ικανότητα να παράγει
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τους «σπόρους» για την υλοποίηση του σχηματισμού δομών μεγάλης κλίμακας του γνώριμου σύμπαντος (όπως

άστρα, γαλαξίες κ.α.) μέσω των διαστελλόμενων κβαντικών διακυμάνσεων του πεδίου που υλοποιεί το σενάριο

του κοσμολογικού πληθωρισμού. Το χαρακτηριστικό αυτό υποδηλώνει την προβλεπτική δύναμη της θεωρίας και

την επιτυχία της να οδηγήσει σε ένα παρατηρήσιμο αποτέλεσμα της αλληλεπίδρασης μεταξύ της ΓΣ και Κβαντι-

κής Θεωρίας, πιθανώς μία από τις λίγες γνωστές περιπτώσεις στη φυσική σήμερα. Αυτό το φαινόμενο μπορεί

να επιβεβαιωθεί πειραματικά στις ανισοτροπίες που παρατηρούνται στο CMB και, με αυξανόμενη ακρίβεια (οι
αποστολές προγραμματίζονται για τις επόμενες δεκαετίες), μας επιτρέπει να περιορίσουμε τον μεγάλο αριθμό

προτεινόμενων μοντέλων για το σενάριο του πληθωρισμού.

Ο κοσμολογικός πληθωρισμός χρησιμεύει επίσης για την «αραίωση» των ανεπιθύμητων υπολειμμάτων (π.χ.

topological defects). Ως αποτέλεσμα, στο τέλος παραμένουν μόνο το zero mode του πεδίου inflaton και οι
μικροσκοπικές διακυμάνσεις της μετρικής. Τότε, είναι φυσικό να υποθέσουμε την πιθανή ύπαρξη μιας περιόδου

κατά την οποία το σύμπαν θερμαίνεται, από κενό και κρύο αμέσως μετά το τέλος του πληθωρισμού έως τα μεγάλα

επίπεδα ενέργειας και εντροπίας που παρατηρούνται στον ορίζοντα σήμερα. Κατά τη διάρκεια αυτής της περιόδου,

γνωστής ως αναθέρμανση (reheating), η πυκνότητα ενέργειας του inflaton μετατρέπεται σε ακτινοβολία (ή άλλα
έμμαζα σωματίδια) στο τέλος του κοσμολογικού πληθωρισμού μέσω διαφόρων μηχανισμών. Δυστυχώς, κατά

την περίοδο της αναθέρμανσης, οι κινούμενες κλίμακες (comoving scales) εισέρχονται ξανά στον ορίζοντα,
καθιστώντας την έμμεση ανίχνευση σχεδόν αδύνατη, σε αντίθεση με την περίπτωση του πληθωρισμού όπου

αυτές «παγώνουν» και αφήνουν ένα «αποτύπωμα» στο CMB. Επομένως, η περίοδος αναθέρμανσης περιορίζεται
ελάχιστα από κοσμολογικές παρατηρήσεις. ΄Ενας τρόπος για να περιοριστεί τουλάχιστον η εξέλιξή της είναι να

συσχετίσουμε τις κλίμακες που επανέρχονται στον ορίζοντα με εκείνες που εξέρχονται από τον ορίζοντα κατα

τον πληθωρισμό. Αυτό το είδος παραμετροποίησης μπορεί να παρέχει έμμεσες ενδείξεις για την περίοδο της

αναθέρμανσης βοηθώντας στην πιθανή ελαχιστοποίηση του χώρου παραμέτρων του αντίστοιχου πληθωριστικού

μοντέλου.

Η εκπληκτική διορατικότητα του Albert Einstein πρέπει να αναφερθεί όταν κάποιος συζητά τη Γενική θεωρία
της Σχετικότητας, η οποία βασίζεται στη συνειδητοποίηση ότι ένας παρατηρητής που βρίσκεται σε ελεύθερη

πτώση δεν ασθάνεται τη βαρύτητα και όταν οι επιπτώσεις αυτής είναι μη διακρίσιμες από αυτές σε κατάσταση

επιτάχυνσης. Αυτό που είναι σήμερα γνωστό ως η Αρχή της Ισοδυναμίας του Einstein (Einstein’s Equivalence
Principle – EEP), τον οδήγησε σε μια θεωρία ικανή να εξηγήσει ή έστω να περιγράψει το μεγαλύτερο μέρος της
βαρυτικής φυσικής. Η βασική παρατήρηση που εξάγεται από την EEP είναι ότι η βαρύτητα κατανοείται καλύτερα
ως η καμπυλότητα του χωροχρόνου σε αντίθεση με τις άλλες θεμελιώδεις δυνάμεις της φύσης. Αργότερα αυτό

είχε τεράστιο αντίκτυπο για το μέλλον της θεωρητικής φυσικής οδηγώντας σε μια «γεωμετροποίηση» της φυσικής

και του τρόπου με τον οποίο προσεγγίζουμε τη φυσική συνολικά (π.χ. θεωρίες βαθμίδων, θεωρία χορδών κ.α.).

Η Γενική Σχετικότητα, όπως περιγράφεται από τη δράση Einstein-Hilbert, είναι βασισμένη στη γλώσσα της
γεωμετρίας του Riemann και (εκείνη την εποχή) πρωτοποριακών άρθρων αναφορικά με τη διαφορική γεωμετρία
και τον τανυστικό λογισμό, που εφαρμόζονται ακόμη και σήμερα.

Αμέσως μετά της ανακάλυψης της ΓΣ, προτάθηκαν τροποποιήσεις της, αν και αρχικά ήταν οδηγημένες κυρίως

από επιστημονική περιέργεια και όχι από κάποια αδυναμία της θεωρίας. Ωστόσο οι μελέτες αυτές, καθώς και

ο αυτός ο τρόπος έρευνας, επιβραβεύθηκαν αργότερα από την ανάγκη για νέα χαρακτηριστικά, που η ΓΣ δεν

περιλαμβάνει, όπως είχε διατυπωθεί από τον Einstein. Διάφορες θεωρίες με ανάλογες επιτυχίες προτάθηκαν
όπως για παράδειγμα το πρόγραμμα κβαντικής βαρύτητας βρόχου (loop quantum gravity – LQG) μαζί με άλλα
που επιχειρούν να κατασκευάσουν μια κβαντική θεωρία της βαρύτητας ή άλλες όπως τα μοντέλα Kaluza-Klein
ή string theory που στοχεύουν στην ενοποίηση της βαρύτητας με τις υπόλοιπες θεμελιώδεις δυνάμεις.
Είναι ενδιαφέρον ότι περίπου την ίδια εποχή που διαμορφώθηκε για πρώτη φορά η ΓΣ, ο E. Cartan την

δεκαετία του ΄20 ανέπτυξε έναν πολύ διαφορετικό τύπο διαφορικής γεωμετρίας, με βάση τις διαφορικές μορφές

(differential forms) και τις δέσμες ινών (fiber bundle). Σχετικά με τη ΓΣ, εξέτασε άλλες δέσμες εκτός της
εφαπτομενικής δέσμης και άλλες connections εκτός της Levi-Civita. Αυτό επιδιώχθηκε επίσης άκαρπα από τον
H. Weyl και άλλους την ίδια περίπου περίοδο. Η γενίκευση της γεωμετρίας Riemann από τον Cartan και οι πιο
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γενικές connections ανακαλύφθηκαν (ή καταλληλότερα επανεξετάστηκαν) πολύ αργότερα στα έργα των Yang
και Mills (1954). Σήμερα, οι αλληλεπιδράσεις στη φύση περιγράφονται από ένα gauge field (ή connection). Οι
προσπάθειες τροποποίησης της ΓΣ με γενίκευση της connection ή, πιο σημαντικά της υποκείμενης γεωμετρίας,
είναι εμφανείς σήμερα ακόμα κι αν διαφοροποιούν τη διατύπωση της βαρυτικής θεωρίας (θεωρία μετρικής ή

connection).
Η γενίκευση της έννοιας του χωροχρόνου σε μια καμπύλη πολλαπλότηταM4 με μετρική g, όπως υποτίθεται

από τη Γενική σχετικότητα, επέφερε επανάσταση στον τρόπο προσέγγισης των σύγχρονων θεωριών που προ-

σπαθούν να ενσωματώνουν τη βαρύτητα με τη συμβατική σωματιδιακή φυσική. ΄Ισως μία από τις πιο κρίσιμες, και

ταυτόχρονα ανεπιτήδευτες, προϋποθέσεις της ΓΣ είναι η connection Levi-Civita, με άλλα λόγια ότι η connection
είναι συμβατή με την μετρική (διατηρεί τη μετρική) και συμμετρική (ελευθερία στρέψης). Η συγκεκριμένη επιλογή

της connection δεν είναι τυχαία, καθώς αποδείχθηκε από τον Levi-Civita (και τον Christoffel) ότι συνδέεται
με την έννοια της παράλληλης μεταφοράς διανυσμάτων στον καμπύλο χώρο. Επιπλέον, η ιδέα της συναλλοίωτης

παραγώγου (covariant derivative) ενός διανύσματος κατά μήκος μιας καμπύλης γενικεύτηκε για την περίπτωση
μιας γεωμετρίας Riemann, την οποία ακριβώς χρειαζόταν η ΓΣ εκείνη την εποχή. Πολύ σύντομα η προϋπόθεση
της connection Levi-Civita άρχισε να αμφισβητείται, όπως και άλλες πτυχές της ΓΣ, αρχικά στις μελέτες του A.
Palatini, όπου γενικεύοντας την έννοια της connection σε μια ανεξάρτητη της μετρικής, μπόρεσε να αποδείξει
ότι και οι δύο διατυπώσεις της ΓΣ είναι ισοδύναμες. Η κύρια διαφορά βρίσκεται στο γεγονός ότι η συνθήκη

Levi-Civita ανακτάται στο επίπεδο των εξισώσεων κίνησης της θεωρίας (on-shell) και δεδομένου ότι ο φορμαλι-
σμός Palatini ή πρώτης τάξης της ΓΣ είναι ισοδύναμος με τη συμβατική μετρική ή δεύτερης τάξης διατύπωση το
θέμα των διαφόρων διατυπώσεων τέθηκε σε αναστολή και δόθηκε ελάχιστη προσοχή μέχρι τις επόμενες μελέτες

του Cartan που έδειξαν ότι και οι γεωμετρίες εκτός του Riemann μπορούν επίσης να υποστηρίξουν μια θεωρία
βαρύτητας.

Μετά από πρόσφατες εξελίξεις σε εκτεταμένες/τροποποιημένες θεωρίες βαρύτητας, που επικεντρώνονται

κυρίως σε κοσμολογικά ζητήματα (π.χ. μοντέλα σκοτεινής ενέργειας, μοντέλα κοσμολογικού πληθωρισμού),

φάνηκε ότι ο φορμαλισμός Palatini αντιστοιχεί σε ένα θεμελιώδες ερώτημα σχετικά με την παραμετροποίηση
των βαρυτικών βαθμών ελευθερίας. Συγκεκριμένα, το μεγαλύτερο μέρος των πληθωριστικών μοντέλων που είναι

ακόμα σε συμφωνία με τις πειραματικές ενδείξεις περιέχουν ένα είδος μη-τετριμμένης ζεύξης της βαρύτητας με το

βαθμωτό πεδίο inflaton, γεγονός που είναι ικανό να οδηγήσει σε προβλέψεις που διαφέρουν δραματικά ανάμεσα
στους δύο φορμαλισμούς (μετρικής και Palatini). ΄Ισως ένα από τα πιο γνωστά πληθωριστικά μοντέλα με συ-
νεχείς επιτυχίες είναι το μοντέλο Starobinsky ή μοντέλο τετραγωνικής βαρύτητας (R + R2

), διατυπωμένο στο

φορμαλισμό μετρικής. Προβλέψεις αυτού βρίσκονται εντός της επιτρεπόμενης περιοχής 1σ των παρατηρήσεων ο-
δηγώντας σε μια πληθώρα άλλων μοντέλων που επιχειρούν να το τροποποιήσουν ή να το επεκτείνουν διατηρώντας

παράλληλα ορισμένα από τα ελκυστικά χαρακτηριστικά του. ΄Ομως, το μοντέλο Starobinsky διατυπωμένο κατά
το φορμαλισμό Palatini περιγράφει μια τελείως διαφορετική εικόνα του σεναρίου του κοσμολογικού πληθωρισμού,
γεγονός που τονίζεται ιδιαίτερα στα κύρια αποτελέσματα της διατριβής.

Με βάση τις προηγούμενες συζητήσεις φαίνεται σημαντικό να επανεξαστούν ορισμένες πτυχές του κοσμολο-

γικού πληθωρισμού, πράγμα που γίνεται στο δεύτερο κεφάλαιο όπου τα περισσότερα από τα αποτελέσματα που

χρειάζονται μετέπειτα εξάγονται με ελάχιστη μαθηματική αυστηρότητα, παραπέμποντας τον αναγνώστη στην τε-

ράστια βιβλιογραφία για εκάστοτε θέμα αλλά και σε επόμενες ενότητες στην ίδια την διατριβή. Ξεκινώντας με μια

σύντομη επισκόπηση της σύγχρονης κοσμολογίας, οδηγούμαστε αμέσως στα ερωτήματα του Big Bang, που με
τη σειρά τους μας οδηγούν στην κεντρική ιδέα του πληθωρισμού. Παρόλο που οι πραγματικές προβλέψεις σχετικά

με την περίοδο του πληθωρισμού εξαρτώνται σε μεγάλο βαθμό από το μοντέλο, όλα όσα παρουσιάζονται στο

κεφάλαιο αυτό είναι εντελώς ανεξάρτητα από το μοντέλο, θυσιάζοντας ενδεχομένως μερικά από τα συναρπαστικά

αποτελέσματα που προσφέρει η θεωρία, τα οποία συζητούνται σε επόμενα κεφάλαια. Η πραγματική πρόβλεψη του

πληθωρισμού, δηλαδή οι διαταραχές της πυκνότητας ενέργειας του πεδίου inflaton μελετώνται και παρουσιάζο-
νται με μεγάλη λεπτομέρεια λόγω της σημασίας τους. Αναλύοντας στη συνέχεια το απλούστερο μοντέλο ενός

πληθωρισμού, ένα πραγματικό βαθμωτό πεδίο ελάχιστα συζευγμένο (minimal coupling) με τη βαρύτητα με το
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δυναμικό αυτό-αλληλεπίδρασής του υπό την προσέγγιση αργής κύλισης (single-field slow-roll), οι παράμετροι
αργής κύλισης (slow-roll parameters) συνδέονται με το πλάτος αυτών των διακυμάνσεων, σηματοδοτώντας έναν
τρόπο ποσοτικής κατανόησης και δίνωντας την ικανότητα πρόβλεψης των παρατηρήσιμων ποσοτήτων κατά τον

πληθωρισμό. Για να αντισταθμίσουμε αυτό, εξετάζουμε επίσης τη λεγόμενη προσέγγιση σταθερής κύλισης του

πεδίου inflaton (constant-roll) και συσχετίζουμε προβλέψεις μεταξύ των δύο προσεγγίσεων για συγκεκριμένα
μοντέλα σε επόμενο κεφάλαιο. Στο τέλος του κεφαλαίου παρουσιάζουμε μια σύντομη σύνοψη της περιόδου

αναθέρμανσης που ακολουθεί τον πληθωρισμό, πρώτα εξετάζοντας μερικούς από τους πιθανούς μηχανισμούς

και τέλος επικεντρωνόμαστε στην παραμετροποίηση της αναθέρμανσης ως προς τις πληθωριστικές παραμέτρους,

διατηρώντας με αυτόν τον τρόπο μια άμεση σύνδεση μεταξύ των δύο εποχών, που μας επιτρέπει να θέσουμε

πιθανώς αυστηρότερους περιορισμούς στις παραμέτρους του κάθε μοντέλου.

Στο επόμενο κεφάλαιο (Κεφάλαιο 3) αναλύουμε τον φορμαλισμό Palatini ή φορμαλισμό πρώτης τάξης, που
αποτελεί την κεντρική ιδέα του κύριου μέρους της διατριβής, δίνοντας ιδιαίτερη προσοχή σε αυτά που επισημα-

ίνονται περαιτέρω στα πληθωριστικά μοντέλα. Αρχικά εφιστούμε την προσοχή σε ορισμένες πτυχές του συμβα-

τικού φορμαλισμού μετρικής που είναι θεμελιωδώς διαφορετικές στη διατύπωση Palatini της ΓΣ, όπως ο όρος
York-Gibbons-Hawking (YGH). Για να καθορίσουμε την Palatini variation , αρχίζουμε ορίζοντας αρχικά τους
metric-affine χώρους και ιδιαίτερα την έννοια της στρέψης (torsion), της μη-μετρικότητας (nonmetricity) και
της καμπυλότητας στηνM4, όπου οδηγούμαστε στο θέμα της metric-affine connection. Μετά από μια σύντομη
ιστορική ανασκόπηση επανεξετάζουμε τον συμβατικό μετρικό φορμαλισμό και εξάγουμε τις γνωστές εξισώσεις

πεδίου Einstein της ΓΣ. Στη συνέχεια, εξάγουμε τις εξισώσεις πεδίου για την Lagrangian Einstein-Hilbert
υποθέτωντας τον φορμαλισμό πρώτης τάξης, δηλαδή η μετρική και η connection δεν είναι εξαρτημένες μεταξύ
τους εκ των προτέρων, όπου τα αρχικά αποτελέσματα του Palatini (και των άλλων) αναπαράγονται καθιστώντας
την ισοδυναμία της ΓΣ μεταξύ αυτών των δύο διατυπώσεων. Κλείνοντας το κεφάλαιο συζητάμε την προσπάθεια

κατανόησης εάν αυτή η ισοδυναμία παραμένει στο κβαντικό επίπεδο.

Στο τέταρτο κεφάλαιο παρουσιάζουμε τα κύρια αποτελέσματα της διατριβής χρησιμοποιώντας και συνδυ-

άζοντας μερικές από τις ιδέες που παρουσιάστηκαν στα προηγούμενα κεφάλαια, με το επίκεντρο να είναι το

πληθωριστικό μοντέλο Starobinsky. ΄Ετσι, ξεκινάμε πρώτα με μια ανασκόπηση του μοντέλου στον φορμαλισμό
μετρικής, τονίζοντας πως ο βαθμωτός βαθμός ελευθερίας (γνωστός και ως scalaron) που προέρχεται από τον όρο
R2
προκύπτει στη βαθμωτή αναπαράσταση της εν λόγω θεωρίας. Στη συνέχεια, είναι εύκολο να εξάγουμε το δυ-

ναμικό Starobinsky στο σύστημα αναφοράς του Einstein (Einstein frame) μετά από μια επανακλιμάκωση Weyl
(Weyl rescaling) της μετρικής και έναν επαναπροσδιορισμό του πεδίου, εφαρμόζοντας έτσι τον μηχανισμό του
πληθωρισμού αργής κύλισης ενός πεδίου, όπως περιγράφεται στο δεύτερο κεφάλαιο προκειμένου να αποκτηθούν

οι περίφημες προβλέψεις του μοντέλου Starobinsky. Συνεχίζουμε εξετάζοντας μια σύζευξη του μοντέλου Staro-
binsky με ένα πραγματικό βαθμωτό πεδίο και το δυναμικό του, πρώτα με ελάχιστο τρόπο (μέσω του παγκόσμιου
όρου

√−g) και αργότερα μέσω μιας μη-τετριμμένης σύζευξης με τον όρο Einstein-Hilbert της μορφής ξϕ2R.
Είναι προφανές ότι και στις δύο περιπτώσεις η θεωρία περιέχει ουσιαστικά δύο βαθμωτούς βαθμούς ελευθερίας,

το scalaron χ και το αρχικό βαθμωτό πεδίο ϕ. Εκεί παρατηρούμε ότι η εφαρμογή των μοντέλων αυτών στον
πληθωρισμό περιπλέκεται αρκετά αφού και τα δύο πεδία μπορούν κατ΄ αρχήν να συμβάλουν στην υλοποίηση του

πληθωρισμού, και ειδικά στην περίπτωση όπου οι κινητικοί όροι του κάθε πεδίου εξαρτώνται μη-τετριμμένα από

το άλλο πεδίο, περιπλέκοντας την ανάλυση.

Υποθέτουμε έπειτα το μοντέλο της τετραγωνικής βαρύτητας στον φορμαλισμό Palatini, όπου και αποδει-
κνύουμε ότι ο όρος R2

δεν οδηγεί στην πραγματικότητα σε ένα δυναμικό βαθμωτό πεδίο, χ. Δεδομένου ότι
στον φορμαλισμό πρώτης τάξης η συνοχή και η μετρική δεν εξαρτώνται εκ των προτέρων η μία από την άλλη,

μια επανακλιμάκωση της μέτρησης (Weyl rescaling) αφήνει τον τανυστή Ricci αμετάβλητο, καθώς σε αυτή την
περίπτωση είναι καθαρά συνάρτηση της connection, δηλαδή Rµν(Γ). Επομένως, δεν υπάρχει τρόπος για το
scalaron να αποκτήσει έναν κινητικό όρο στο σύστημα αναφοράς του Einstein. Τότε, οι διάφοροι συνδυασμοί
των συναρτήσεων καμπυλότητας υψηλότερων τάξεων δεν είναι σε θέση να συνεισφέρουν ένα βαθμωτό βαθμό

ελευθερίας, έτσι ώστε το μοντέλο να περιγράψει ενα σενάριο πληθωρισμού και το πεδίο inflaton πρέπει να συ-
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μπεριληφθεί εμφανώς στη δράση με τη μορφή ενός θεμελιώδους βαθμωτού πεδίου ϕ. Το σημείο εκκίνησής μας
είναι τότε μια δράση αυτής της μορφής. Στο πλαίσιο του Einstein δείχνουμε ότι το scalaron χ περιλαμβάνεται
σε πολλαπλασιαστικούς παράγοντες του κινητικού όρου του ϕ και του δυναμικού του V (ϕ). Στη συνέχεια,
μετά από variation της τελικής δράσης σε σχέση με το χ, παράγουμε την εξίσωση κίνησης του χ, την οποία
στη συνέχεια αντικαθιστούμε στη δράση. Εκεί διαπιστώνουμε ότι η δράση αποκτά κινητικούς όρους υψηλότερης

τάξης του αρχικού βαθμωτού πεδίου, ∝ (∇ϕ)4, καθώς και περίπλοκες εκφράσεις για τη μη-κανονική κινητική
συνάρτηση και το βαθμωτό δυναμικό. Στη συνέχεια, μπορούμε να εξάγουμε τις γενικευμένες εξισώσεις πεδίου

Einstein για το σύστημα μετά από variation σε σχέση με τη μετρική και το βαθμωτό πεδίο και να δείξουμε ότι η
εξίσωση κίνησης της connection οδηγεί στη συνθήκη Levi-Civita σε σχέση με την νέα μετρική ḡ. Εξετάζοντας
τη διατύπωση path integral της ίδιας θεωρίας διαπιστώνουμε ότι η μη-δυναμική φύση του πεδίου scalaron δεν
περιορίζεται στην κλασική δράση, αλλά παραμένει στο κβαντικό επίπεδο ακόμα και όταν άλλα πεδία ύλης περιλαμ-

βάνονται στην δράση, οδηγούμενοι σε τοπικούς όρους που μπορούμε με ασφάλεια να αγνοήσουμε. Κλείνοντας

αυτή την ενότητα προσφέρουμε μια σύντομη συζήτηση για το θέμα των συστημάτων αναφοράς, του Einstein
και του Jordan συγκεκριμένα, καθώς η μετάβαση από το σύστημα αναφοράς Jordan στο σύστημα αναφοράς του
Einstein παίζει πολύ σημαντικό ρόλο για την επικείμενη ανάλυση.
Στην επόμενη ενότητα εστιάζουμε σε έναν αριθμό πληθωριστικών μοντέλων που ήδη αποκλείονται από παρα-

τηρήσεις υποθέτοντας μια τετριμμένη σύζευξη με τον βαρυτικό τομέα R+R2
. Αρχικά εξετάζουμε το λεγόμενο

μοντέλο natural inflation, όπου δείξαμε ότι ο όρος R2
έχει σημαντική συμβολή στο δυναμικό πληθωρισμού προ-

καλώντας μια επίπεδη περιοχή στα όρια μεγάλων τιμών του πεδίου του πληθωρισμού ϕ. Στην πραγματικότητα, το
αποτέλεσμα αυτό ισχύει γενικά για οποιαδήποτε λογική μορφή δυναμικού V (ϕ) που οδηγεί σε ένα οροπέδιο για
πολύ γενικές συνθήκες. Στη συγκεκριμένη περίπτωση του natural inflation, η εξομάλυνση του δυναμικού είναι
εμφανής. Δεδομένου ότι μας ενδιαφέρει ο πληθωρισμός αργής κύλισης, παραμελούμε τη συμβολή των κινητικών

όρων υψηλότερης τάξης ∝ ϕ̇4 και εφαρμόζουμε τον συμβατικό μηχανισμό του πληθωρισμού ενός πεδίου. Εκεί
διαπιστώνουμε ότι όταν το μοντέλο φυσικού πληθωρισμού γενικεύεται με τον όρο Starobinsky στον φορμαλισμό
Palatini, μπορούμε να λάβουμε αποδεκτές προβλέψεις για τα πληθωριστικά παρατηρήσιμα μεγέθη, επιτρέποντας
επομένως τη δυνατότητα το μοντέλο να περιγράφει ένα αποδεκτό σενάριο κοσμολογικού πληθωρισμού σε αντίθε-

ση με τη συνηθισμένη τους διατύπωση κατά το φορμαλισμό μετρικής όπου προβλέψεις του μοντέλου βρίσκονται

εκτός της επιτρεπόμενης περιοχής.

Το απλούστερο σενάριο ενός ελεύθερου έμμαζου βαθμωτού πεδίου μοιράζεται επίσης την ίδια μοίρα με το

μοντέλο natural inflation, ωστόσο θεωρώντας αυτό στον φορμαλισμό Palatini με τετριμμένη ζεύξη με το μοντέλο
Starobinsky, λαμβάνουμε τιμές των πληθωριστικών παρατηρήσιμων ποσοτήτων εντός της επιτρεπόμενης περιοχής
1σ για τιμές του όρου μάζας κοντά στα m ∼ 1013 GeV. Η κλίμακα του πληθωρισμού, που ορίζεται ως οι τιμές
πεδίου του κανονικοποιημένου πεδίου inflaton, είναι ελαφρώς πάνω από την κλίμακα Planck.
Μετά την επιτυχία των προηγούμενων μοντέλων, μας ενδιαφέρει να αναλύσουμε το σενάριο πληθωρισμού

Higgs (Higgs inflation) με τετριμμένη ζεύξη με τη βαρύτητα. Είναι γνωστό ότι στον φορμαλισμό μετρικής
απαιτείται μια μη-τετριμμένη ζεύξη, ωστόσο στο συγκεκριμένο πλαίσιο δείχνουμε ότι η επίδραση του όρου R2

επιτρέπει την επίτευξη του κοσμολογικού πληθωρισμού με την προϋπόθεση ότι ο αριθμός των e-foldings που
απαιτείται είναι μεγαλύτερος από τον συνηθισμένο, τουλάχιστον N ∼ 70 e-foldings.
΄Εχοντας αναλύσει το φάσμα των ελάχιστα συζευγμένων μοντέλων, συζητούνται επίσης τα εξαιρετικά δημο-

φιλή μοντέλα που έχουν μια μη-τετριμμένη ζεύξη με τον όρο Einstein-Hilbert. Το γενικό χαρακτηριστικό της
ισοπέδωσης του βαθμωτού δυναμικού στο πλαισίο Einstein παραμένει ακόμα. Εφαρμόζοντας αυτό το πρόγραμμα
στο μοντέλο Coleman-Weinberg και στο μοντέλο induced gravity λαμβάνουμε αποδεκτές τιμές για τα παρατη-
ρήσιμα μεγέθη κατά τον πληθωρισμό και για τα δύο μοντέλα για ένα μεγάλο μέρος του χώρου των παραμέτρων

για το κάθε μοντέλο. Ιδιαίτερη σημασία έχει το σενάριο της μη-τετριμμένης ζεύξης του Higgs όπου δείχνουμε
ότι η σταθερά ζεύξης ξ μεταξύ του Higgs και της βαρύτητας μπορεί να λάβει μικρές τιμές σε σύγκριση με αυτές
που αποκτούνται απουσία του όρου R2

. Σε αντίθεση με το προηγούμενο σενάριο όπου θεωρήσαμε τετριμμένη

ζεύξη, το μοντέλο είναι ικανό να παράγει κατάλληλα πληθωριστικά παρατηρήσιμα μεγέθη για τιμές N ∈ [50, 60]
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e-foldings.
Με κίνητρο την επιτυχία των προηγούμενων μοντέλων, ερευνήσαμε το σενάριο όπου ο όρος Starobinsky

είναι συζευγμένος μη-τετριμμένα με ένα θεμελιώδες βαθμωτό που έχει quartic δυναμικό προωθώντας τη σταθε-
ρά Starobinsky α να συμπεριλάβει λογαριθμικές διορθώσεις ∝ log (ϕ2/µ2) του θεμελιώδους βαθμωτού πεδίου,
α 7→ α(ϕ). Η δράση που προκύπτει στο σύστημα αναφοράς του Einstein έχει παρόμοια μορφή με τα μοντέλα
Palatini-R2

που θεωρήθηκαν προηγουμένως, ωστόσο το οροπέδιο του δυναμικού παραβιάζεται λογαριθμικά για

τιμές του πεδίου ϕ > µ. Διαπιστώνουμε ότι η πρόβλεψη του μοντέλου σχετικά με τα πληθωριστικά παρατη-
ρήσιμα στοιχεία είναι σε καλή συμφωνία με τα πρόσφατα δεδομένα παρατήρησης, ιδίως όταν η συνάρτηση ζεύξης

α(ϕ) παίρνει μεγάλες τιμές οι τιμές των παρατηρήσιμων μεγεθών επηρεάζονται σε αντίθεση με τα προηγούμενα
μοντέλα όπου μόνο το παρατηρήσιμο μέγεθος r εξαρτιώταν από το α. Αυτό υποδηλώνει ότι άλλα μοντέλα που
βρίσκονται εκτός της επιτρεπόμενης περιοχής (+)2σ μπορούν τελικά να συμφωνούν με τις παρατηρήσεις αν ει-
σάγουμε σταθερά που εξαρτάται από το βαθμωτό πεδίο, α(ϕ). Επιπλέον, οι τιμές του r μπορεί να κυμαίνονται
από μικροσκοπικές, που είναι ένα γενικό χαρακτηριστικό των μοντέλων Palatini-R2

, έως αρκετά μεγάλες πλη-

σιάζοντας το άνω όριο του r, πράγμα που σημαίνει ότι μπορούν να έρθουν σε επαφή με μελλοντικά πειράματα
αναμενόμενης ακρίβειας 10−3 ή ακόμη και 10−4. Μετά το τέλος του πληθωρισμού για το μοντέλο μελετάται
η διαδικασία αναθέρμανσης. Μέσω του μηχανισμού που επισημαίνεται σε προηγούμενο κεφάλαιο είναι δυνατόν

να συσχετισθούν οι παράμετροι αναθέρμανσης με τις παραμέτρους του πληθωρισμού και έτσι για διαφορετικές

τιμές της παραμέτρου κατάστασης αναθέρμανσης wR δείξαμε ότι το εν λόγω μοντέλο είναι πράγματι ικανό να

υποστηρίξει μια εποχή αναθέρμανσης για τις συγκεκριμένες τιμές των παραμέτρων του μοντέλου που λαμβάνονται

κατά τη διάρκεια του πληθωρισμού, με μέγιστη θερμοκρασία αναθέρμανσης TR ∼ 1015 GeV. Υπό την υπόθεση
της στιγμιαίας αναθέρμανσης, λάβαμε ένα άνω όριο για τον αριθμό των e-foldings N ≈ 52. Κλείνοντας αυ-
τήν την ενότηταν εξετάστηκαν άλλες μορφές εξάρτησης της σταθεράς με το πεδίο, α(ϕ), που διατηρούν επίσης
την επιθυμητή επιπεδότητα του δυναμικού inflaton. Ακόμη και σε αυτές τις περιπτώσεις μπορέσαμε να βρούμε
συμφωνία με παρατηρήσεις για ένα συγκεκριμένο μέρος του χώρου παραμέτρων του μοντέλου.

Στην τελευταία ενότητα εστιάζουμε την ανάλυσή μας στην πληθωριστική φαινομενολογία του πεδίου Higgs
σε συνδυασμό με την τετραγωνική βαρύτητα υπό την υπόθεση της προσέγγισης σταθερής κύλισης. Παρόμοια

με τα προηγούμενα μοντέλα, η προκύπτουσα δράση στο πλαισίο Einstein έχει τη μορφή του γενικευμένου τύπου
k-inflation. Συγκεκριμένα. αναλύουμε και τις δύο περιπτώσεις ζεύξης, τετριμμένης και μη, του Higgs με τη
βαρύτητα υποθέτοντας ότι η συνθήκη σταθερής κύλισης ϕ̈ ∼ βHϕ̇ ισχύει, όπου το β είναι μια σταθερή παράμε-
τρος. Και στις δύο περιπτώσεις, οι προβλέψεις για τα παρατηρήσιμα μεγέθη δείχνουν σημαντική εξάρτηση από

τους κινητικούς όρους υψηλότερης τάξης, σε αντίθεση με την αντίστοιχη περίπτωση όπου τα μοντέλα εξετάζο-

νται υποθέτοντας slow-roll inflation. Ειδικά για το σενάριο τετριμμένης ζεύξης διαπιστώσαμε ότι λαμβάνουμε
αποδεκτές τιμές για τα παρατηρήσιμα μεγέθη για N ∈ [50, 60] e-foldings, κάτι που έρχεται σε αντίθεση με την
περίπτωση αργής κύλισης όπου είχαμε αποδείξει ότι χρειαζόμαστε N ≳ 70 e-foldings προκειμένου το ns να
βρίσκεται εντός της επιτρεπόμενης περιοχής 2σ.
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1

Introduction

It is not an exaggeration to state that the Standard Model (SM) of particle physics [1–3] and the General
theory of Relativity (GR) [4] constitute the pillars of our understanding of the physical world. After all,
both of them are established as the most complete theories to date.

The last piece of the puzzle of the SM came with the discovery of the Higgs boson [5–8] at CERN’s
Large Hardon Collider (LHC) [9, 10] that validated and solidified the predictions of the theory. Even
though processes described by the SM are (or can in principle be) observed, there exist however others
that SM cannot account for without nontrivial modifications to its content, leading to possibly serious
ramifications. Many theoretical issues are brought up when shortcomings of the SM are discussed,2 some
of them being the inability of the SM to provide a dark matter candidate and also to explain the dark
energy of the universe via a vacuum energy density of the appropriate magnitude. Arguably the most
important of them is its prediction of exactly massless neutrinos which has been observationally falsified
via neutrino oscillations [15–21].

On the other hand, the theory of GR is validated through the years [22] with its latest achievement
being the observation of its predicted gravitational waves produced by a black hole merger [23, 24]. Issues
regarding GR arise primarily due to its failure to be quantised (or renormalised for that matter [25, 26])
and, in general, quantum phenomena in curved spacetime are inadequately understood in that context.3

It is however entirely possible that the overall approach of quantising a theory with a geometrical inter-
pretation is ill-defined and as such results obtained in this way should be considered approximate at best.
For example, other bold claims of GR such as the black hole solutions (and the initial singularity; “Big
Bang”) were viewed as mathematical paradoxes to be snuffed out by a complete theory of gravity.4

The incompatibility of the SM with GR demonstrates then that the aspiration of unifying the funda-
mental forces under one theoretical framework is still far away from being realised, with many possible
shortcomings on the horizon. However, cosmology and particle physics are getting increasingly closer
over the years, undeniably not better exemplified by developments in the theory of cosmic inflation [28–

2The notion of disagreement of an experiment with the SM is measured in σ, meaning that after some observation is
above some σ (5σ is believed to be the threshold) of the SM prediction it is labeled as “new physics”. Actually, this would be an
encouraging result hinting towards a possible avenue of research, much awaited by the theoretical physics community. Currently,
under serious consideration are the measured value of the anomalous dipole moment of the muon (preliminary results point at
deviation of 4.2σ [11]; see also ref. [12] for a review on the subject) and the B meson decay (BaBar reports a 3.4σ [13]; LHCb
2.1σ [14]).

3Even though different approaches to quantising gravity have been proposed with various levels of success, the overall
statement still holds at present time.

4As is known a black hole has already been observed and we even managed to capture an image of it and its shadow [27]!
There is however a justified concern regarding predictions made by the theory due to its breakdown at the point of the singularity.
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1. Introduction

32]. By supplementing GR with an additional fundamental scalar degree of freedom that is able to
support a quasi-de Sitter expansion during the early moments of the universe, known as inflation, we
can explain the observed flatness, homogeneity and isotropy at large distances measured by precision
data [33]. There exist however certain patches of inhomegeneity measured in the Cosmic Microwave
Background (CMB) [34] approximately at 10−5 on large energy scales. Surprisingly, these fluctuations are
almost Gaussian and relatively scale-invariant and can be also explained by inflation when the classical de
Sitter fluctuations are treated quantum mechanically [35–37]. Constraints from observations include the
amplitude of these fluctuations that in turn are translated to further constraints on the proposed models
and increasing accuracy of these observations can heavily restrict these models [38, 39]. In fact, a di-
rect detection of primordial gravitational waves coming from inflation can determine the energy density
of inflation via the amplitude of the tensor modes, although the growing precision of experiments can
place a substantial upper bound already. Most of the proposed inflationary models are inspired in some
way from developments in particle physics, perhaps demonstrated best in the Higgs inflation model [40–
42], in which the Higgs boson assumes the role of the field driving inflation and serves as the simplest
inflationary scenario in terms of extensions to the SM field content.

ΛEW

102

Λinfl

∼ 1016

MP

1018

IR UV

∞

Here be dragons

New Physics (?)

Figure 1.1: The difference between the EW scale, the Planck and the (supposed – model dependent) scale of inflation.
It is possible that the large chasm separating these energy scales may include New Physics phenomena or it may
end up being simply a transitional era between high- and low-energy physics.

It cannot be overstated how the generalisation of the notion of spacetime to a curved manifold M
with a metric g as supposed by the theory of GR [4] has revolutionised how one approaches modern
theories that attempt to incorporate gravity with conventional particle physics. Perhaps one of the most
crucial, and simultaneously unassuming, postulates of GR is the Levi-Civita connection, in other words
that the connection on the manifold is metric-compatible (preserves the metric) and symmetric (torsion free-
dom). The particular choice of the connection is not all accidental since it was proven by Levi-Civita [43]
(and Christoffel [44]) that is linked to the notion of parallel transport of vectors in curved space, and
additionally the idea of covariant derivative of a vector along a curve was generalised for the case of a
Riemannian geometry, which is exactly what GR was in need of at the time. Similarly to other aspects of
GR, it did not take long for the assumption to be challenged, done first in the works of A. Palatini [45],
in which by generalising the concept of a connection to a metric-affine one he was able to show that both
formulations of GR are equivalent. The main difference is that the Levi-Civita condition is recovered at
the level of equations of motion of the theory (on-shell) and since the Palatini or first-order formulation
of GR is equivalent with the conventional metric or second-order formulation the matter was put to rest
with little attention paid until subsequent works of E. Cartan (see for a review [46–48]) demonstrating that
non-Riemannian geometries can also support a theory of gravity. Then, following recent developments in
extended/modified theories of gravity, primarily focused on cosmological issues (e.g. dark energy mod-
els), it appears that the Palatini variation is translated to a fundamental question on the parametrisation
of the gravitational degrees of freedom.
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Outline

In the next chapter, ch. 2, the theory of cosmic inflation is explored and most of the physical results
needed in later chapters are extracted with minimal mathematical rigor, referring the reader to the vast
literature on the subject for a complete discussion. We start by analysing several aspects that make
inflation appealing as a solution of the headaches induced by the initial singularity. Even though actual
predictions regarding the inflationary period are highly model-dependent everything presented in the
chapter is completely model-independent, potentially sacrificing some of the exciting results the theory
offers which are discussed in a later chapter. The actual prediction of inflation, i.e. the energy density
perturbations of the inflaton field are studied and presented in great detail due to their significance. By
then analysing the simplest model of an inflation, a real scalar field minimally coupled to gravity with its
self-interacting potential under the slow-roll approximation, the slow-roll parameters are connected with
the amplitude of these fluctuations marking a way to quantitatively understand and make predictions
about quantities during inflation that are observed today. To compensate that, we examine also the so-
called constant-roll approximation and relate predictions between the two approximations for particular
models in a later chapter. At the end of the chapter we present a brief overview of the reheating era
that follows inflation, first by reviewing some of the mechanisms possible and finally concentrate on
parametrising the reheating in terms of the inflationary parameters, maintaining in that way a direct
connection between the two that is readily used to apply potentially stricter bounds on both of them. At
the very least it can show if a candidate model of inflation can support a reheating phase.

In ch. 3 we analyse the Palatini or first-order formalism setting it up to take center stage in the main
part of the thesis. First we draw attention to some aspects of the conventional metric formalism that
are fundamentally different in the Palatini formulation of GR, such as the York-Gibbons-Hawking (YGH)
term. In order to establish the Palatini variation we start by first defining the metric-affine spaces and
particularly the notion of torsion, nonmetricity and curvature on M, that in turn allows us to approach
the subject of an affine connection. Then we derive the field equations for the Einstein-Hilbert Lagrangian
now under the assumption of the first-order formalism, i.e. the metric and the connection do not have an a
priori dependence on each other, in which the initial results of Palatini (and related works) are effectively
reproduced via the apparent equivalence of these two formulations of GR. Closing the chapter we discuss
the endeavor of understanding if that equivalence remains at the quantum level.

The ch. 4 is comprised primarily by the main results by using and combining some of the ideas pre-
sented in the previous chapters. We start by highlighting that modified theories of gravity such as the
Starobinsky model of inflation (among others) do not have an equivalent description in the metric and
Palatini formulation. Specifically, the R2 term in the first-order formalism does not generate a dynami-
cal (propagating) degree of freedom which in the usual metric formalism is identified with the inflaton
field driving inflation. Therefore, in the interest of describing an inflationary phase we attempt to couple
the R + R2 gravitational term, either minimally or nonminimally, to a fundamental scalar field with a
self-interacting potential term. There we notice that various prominent model candidates for inflation that
were previously excluded or were in marginal contact with recent observations in the so-called Palatini-R2

models their predictions reside within the allowed region by the Planck 2018 mission [38]. The Higgs infla-
tion model is singled-out due to its appeal by not extending the particle content of the SM, and predictions
of the Higgs-R2 model in the Palatini formalism are also analysed in the constant-roll approximation.

All of the previous chapters are supplemented by small sections, referred to usually as “digressions”,
that provide more context to each particular discussion, however these results are not applied in the main
part of the thesis. Lastly, in the last chapter (ch. 5) we summarise the main findings of the present work.
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1. Introduction

Notation

The metric signature convention used throughout the thesis is the “mostly-positive”

ηµν = diag(−,+,+,+) .

The Einstein summation convention is also implied and we use the usual notation that Greek indices
denote strictly spacetime indices, µ, ν, . . . = 0, 1, 2, 3 and Latin indices are internal indices specifically for
gravity they take up values of i, j, . . . = 1, 2, 3. Following the conventions of the community we also
employ the condensed notation

dnx ≡
n∏

i=1

dxi .

Throughout the thesis we also use the dot and the prime over quantities to denote derivative with respect
to time and with respect to the function’s argument, respectively; in other words:

ḟ(x) ≡ df(x)

dt
, f ′(x) ≡ df(x)

dx
.

When we refer to the metric tensor in text we use the symbol “g” and assign g strictly to its determinant
that mostly shows up in the action functional in the form of

√−g with g ≡ det(gµν). Throughout the thesis
the (anti)symmetrisation of the indices is weighted by a factor of 1/n! where n is the number of indices,
e.g.

A(µBν) ≡
1

2!
(AµBν +AνBµ) .

Likewise, the antisymmetrisation A[µBν] is defined with a minus on the RHS. Indices separated as shown
below

A(µ|νBρ) ≡
1

2!
(AµνBρ +AρνBµ) ,

are assumed to be excluded from the (anti)symmetrisation.
In chapter 3 we adopt the abstract notation (when convenient) instead of the explicit one in some parts

of the discussion, therefore we should emphasize in the following table their equivalent form

Object Abstract Explicit
Vector field X Xµ

Tensor product X ⊗ Y XµY ν

Covariant derivative ∇X(Y ) = ∇YX Y µ∇µX
ν

Cov. derivative tensor ∇X ∇µX
ν = ∂µX

ν + Γν
µρX

ρ

Metric tensor ⟨· , ·⟩ ≡ g gµν
Inner product ⟨X,Y ⟩ ≡ g(X,Y ) gµνX

µY ν

The Christoffel symbols - coefficients of the Levi-Civita connection - are defined by

Γρ
µν =

1

2
gρλ (∂µgλν + ∂νgµλ − ∂λgµν) =: {µρν}g ,

where the subscript g in the last equation is occasionally neglected and is implied through context. In
this work the Lie derivative is denoted by L and the Lagrangian density by L , even though a possible

confusion between the two is highly unlikely. We also reserve the notation !
= to denote equality modulo

equations of motion, however when the context allows us we opt to neglect it.
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In scalar field theories it is useful to recast the dimensional quantities in the natural units in which

ℏ := 1 =: c ,

allowing us then to cast the dimensions of any physical quantity in terms of mass dimensions. We may
also set the reduced Planck mass to unity

M2
P ≡ 1

8πG
:= 1 ,

for ease of notation but at the expense of obscuring the dimensions of the quantities. All of the above
hold unless otherwise stated.

Glossary of abbreviations

ADM Arnowitt-Deser-Misner

BBN Big Bang nucleosynthesis

BD Brans-Dicke

BSM Beyond the Standard Model

CMB Cosmic Microwave Background

CR Constant-roll

CSI Classical scale invariance

CW Coleman-Weinberg

DEC Dominant energy condition

DOF(s) Degree(s) of freedom

EEP Einstein equivalence principle

EFT Effective field theory

EH Einstein-Hilbert

EoM(s) Equation(s) of motion

EW Electroweak

FRW Friedmann-Robertson-Walker

GR General Relativity

GUT Grand Unified Theory

HSRP(s) Hubble slow-roll parameter(s)

LHC Large Hardon Collider

LHS Left-hand side

LQG Loop quantum gravity

NEC Null energy condition

(. . .N)NLO (. . .next-to) next-to leading order

PSRP(s) Potential slow-roll parameter(s)

QCD Quantum Chromodynamics

QM Quantum Mechanics

RG Renormalisation group

RHS Right-hand side

SEC Strong energy condition

SEP Strong equivalence principle

SM Standard Model

SR Slow-roll

SRP(s) Slow-roll parameter(s)

SSB Spontaneous symmetry breaking

VEV Vacuum expectation value

WEC Weak energy condition

WEP Weak equivalence principle

YGH York-Gibbons-Hawking

YM Yang-Mills
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2

Inflation

The idea of the Big Bang singularity is accompanied with a series of puzzles cosmological in nature,
primarily regarding the initial conditions of the universe, such as the horizon problem, the flatness and the
magnetic monopole problem [28, 29]. In principle, most of physics deals with the detailed evolution of an
initial state, within some boundaries of uncertainty. Of course, the issue of initial conditions takes center
stage when one considers the initial state of the universe, however one can avoid the discussion altogether
by admitting a tremendous fine-tuning of the initial conditions. The theory of Cosmic Inflation [28–32]
was first proposed in order to address these issues of the Big Bang cosmology, and suggests a period of
exponential, quasi-de Sitter expansion of space of the universe moments after its genesis, that is capable of
leading the universe in that peculiar initial state. Advanced in the late 70s and early 80s, it boldly applied
insights and theories from the successful particle physics frontier, yet its exact particle physics mechanism
is still unknown. As such, different models of inflation are proposed that lead to various predictions,
which are then linked and verified or falsified by observations. Inflation has proven to be the simplest
realisation, in terms of application and assumptions, of such an attempt to understand our early universe;
however, a UV-complete theory of gravity can ultimately constitute this discussion redundant.

While inflation was constructed so that it can naturally address the issues discussed above, it includes
an essential feature; the ability to seed the large-scale structure formation of the known universe [35–
37, 49–51] through growing quantum fluctuations of the field describing inflation, known as the inflaton.
This feature hints at the predictive power of the theory and its success in leading to an observable effect
of the interplay between GR and Quantum Mechanics (QM), possibly one of the few known cases in
physics today. This effect is testable experimentally in the anisotropies observed in the CMB [33] and,
with growing precision (missions are planned for the next decades), it allows us to constrain the vast
model space of the inflationary paradigm [38, 39].

Inflation serves also in diluting the undesired relics (e.g. topological defects); as a consequence, at the
end of it only the zero mode of the inflaton and tiny fluctuations of the metric remain. Therefore, it is
natural to assume the possible existence of a period during which the universe thermalised, from cold and
empty right after inflation to the large energy and entropy observed at the current horizon. Throughout
that period, known as reheating, the inflaton’s energy density is converted to radiation (or other massive
particles) at the end of inflation through different mechanisms. In fact, in its first years of study the
reheating era was thought to be largely understood via its minimal scenario, in which the inflaton field
decays to other fields that it was coupled with,2 referred to now as the perturbative reheating scenario [52–
54]. Since then the landscape of the possible mechanism of reheating has expanded dramatically, including

2The exponential expansion of the early universe proposed by inflation, would dilute the energy densities of these particles.
So, these types of couplings proposed between the fields can indeed exist during inflation, even though they do not play a role
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2. Inflation

also nonperturbative dynamics [55–63], implying that its underlying nature is highly complicated and
uncertain at this point (see ref. [64] for a review).

Unfortunately, during the phase of reheating the comoving scales re-enter the horizon, making its
indirect detection a challenge, unlike during inflation in which they “freeze-out” and leave an imprint
on the CMB. Also, as would be the case in inflation and every era that precedes recombination, it is not
directly detectable. Therefore, the period of reheating is hardly constrained observationally. A way to at
least restrain its expansion history is to relate its comoving modes re-entering the horizon to the ones at
horizon exit of inflation. Then, that kind of parametrisation can provide indirect signatures and also assist
in minimizing the parameter space of the inflationary model [65–70].

In this chapter, we briefly illustrate the puzzles of the Hot Big Bang, by first introducing some basic
wisdom from modern cosmology, and then addressing them in the framework of inflation. The elementary
implementation of an inflationary scenario into the theory is discussed so that the field dynamics are also
presented, which will serve as the foundations for a large part of the thesis. Certain subtle points of slow-
roll inflation and its derivatives are discussed in detail, primarily highlighting the observable quantities
predicted by inflation. We direct the reader to an indicative list of reviews on inflation in refs. [71–75]
and references therein for further details. Then, we present the concept of reheating after inflation. After
briefly reviewing some of its more intricate mechanisms, we parametrise the reheating parameters in
terms of the inflationary ones and thus making possible contact with high-energy physics phenomena.

2.1 A sketch of Modern Cosmology
In order to work out the details of the inflationary era we require the introduction of some basic aspects

of modern cosmology, briefly reviewed in this section. Cosmology is established under the cosmological
principle, which states that the universe viewed by two observers at two different points looks the same.
Despite stated as a principle it has been observationally confirmed that universe is homogeneous and
isotropic at large scales (≳ 100 Mpc) [33], meaning it has a translational and rotational invariance. Without
loss of generality, the metric respecting these symmetries is the Friedmann-Robertson-Walker1 (FRW)
metric

ds2 = −dt2 + a2(t)

(
dr2

1− k r2
+ r2

(
dθ2 + sin2 θ dϕ2

))
, (2.1)

where a(t) is known as the scale factor describing the evolution of the spatial slices Σ with cosmic time t.
Here, k is a curvature parameter that assumes values of k={0,+1,−1} for these spacelike 3-hypersurfaces
that are flat (Euclidean E3), positively curved (spherical S3) and negatively curved (hyperbolic H3), respec-
tively. Clearly, the metric (2.1) is invariant under a constant rescaling of the form a 7→ aλ, r 7→ r/λ and
k 7→ kλ2, utilised in setting the scale factor at present day to unity, a0 ≡ a(t0) ≡ 1. For reasons that will
soon become clear, it is useful to re-express the metric (2.1) in the following way

ds2 = −dt2 + a2(t)

dχ2 + dΩ2


sin2 χ, k = +1
χ2, k = 0

sinh2 χ, k = −1

 , (2.2)

in terms of χ ≡
∫
dr/

√
1− kr2.

during that period other than maybe inducing radiative corrections.
1Throughout the literature it is also referred to as the Friedmann-Lemaitre-Robertson-Walker (FLRW) or just Robertson-

Walker (RW) metric. It should also be noted that we invoked our notation c ≡ 1 in order to present the metric in such a form.
In general, including the speed of light in the definition of ds2 = −c2dt2 + a2(t) dΣ2 means that the coordinates xµ have the
dimension of length, which in turn simplifies the dimensional analysis of the theory. More on that subject in chapter 4.
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2.1. A sketch of Modern Cosmology

The notion of the event and particle horizon is very prominent in cosmology and very critical to the
establishment of the inflationary era. In order to introduce the causal structure of spacetime we require
the concept of conformal time, defined as

τ ≡
∫

dt

a(t)
. (2.3)

In an isotropic space the propagation of light is then described by the line element

ds2 = a2(τ)
(
−dτ2 + dχ2

)
, (2.4)

which is conformally flat. Similar then to flat space, the null geodesics (ds2 = 0) of photons are given in
the χ− τ plane as

χ(τ) = ±τ + const. , (2.5)

corresponding to straight lines at 45◦ angle.1

Space (χ)

Conformal time (τ)

45o

Event E

Future of E

Past of E

Spacelike wrt E

Timelike
wrt E

Figure 2.1: The light cones, future and past, are displayed by the dashed lines starting from some event E . An
event residing outside the cones is causally disconnected from E and travel along spacelike geodesics (ds2 < 0).
Likewise, photons travel exactly on the lines of ds2 = 0, known as null geodesics and massive particles travel in
timelike worldlines with ds2 > 0. Part of spacetime that lies within the interior and the light cone itself is known
to be causally connected to the event E .

From a starting point in time ti until some time later t light propagated a (maximum) comoving
distance

χp(τ) ≡ τ − τi =

∫ t

ti

dt′

a(t′)
, (2.6)

called the (comoving) particle horizon, with a physical size of a(t)χp. Let us consider a single moment, say
tmax, then there exists a maximum separation between two points after which no signal can be received

1Obviously if we used the proper time t the light cone would be curved.
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2. Inflation

between them in the future. Again, in comoving coordinates it is described as

χe(τ) = τmax − τ =

∫ tmax

t

dt′

a(t′)
, (2.7)

and is called the event horizon, with a physical size of a(t)χe.
A crucial quantity often used to characterise the FRW spacetime is the rate

H(t) ≡ ȧ(t)

a(t)
, (2.8)

the Hubble parameter. The dot here denotes derivative with respect to time t. It is often used in character-
ising a specific scale in the expanding universe.

Field equations & fluid dynamics

In order to understand the evolution of the metric we require the equations that govern it, known as
the Einstein field equations. Starting from the Einstein-Hilbert action, under variation with respect to the
metric tensor we obtain the following famous equation

Gµν =M−2P Tµν , (2.9)

where Gµν is the Einstein tensor and Tµν denotes the energy-momentum tensor of the universe.1 Also,
MP is the reduced Planck mass and is hereafter set to unity, MP ≡ 1. The complete derivation of the
Einstein field equations is postponed for a later chapter, and we refer the reader to sec. 3.1 in which
we delve into more details regarding the subject. Since the universe is homogeneous and isotropic the
energy-momentum tensor is heavily restricted, taking the general form

Tµν = (ρ+ p)uµuν + p gµν , (2.10)

where uµ ≡ dxµ/dτ is the 4-vector timelike velocity and, in a frame that is comoving with the perfect
fluid described by Tµν , we may choose uµ = {1, 0, 0, 0}T. Here, ρ is called the (rest) energy density of
the system and p the (principal) pressure. Conservation of the energy-momentum tensor (or through the
Bianchi identity ∇µGµν = 0) it is straightforward to show2 that the continuity equation for the fluid reads

∇µT
µ
ν = 0 =⇒ dρ

dt
+ 3H(ρ+ p) = 0 , (2.11)

1The cosmological constant Λ is often included in the starting Lagrangian, but in principle can be absorbed in the energy-
momentum tensor as a fluid. Pertaining to the discussion at hand the interpretation is equivalent and as such we limit ourselves
to the idea of a fluid rather than a free constant of the theory. For the sake of completeness let us also include the definition of
the Ricci and Einstein tensors

Rµν = ∂ρΓ
ρ
µν − ∂νΓ

ρ
µρ + Γλ

µνΓ
ρ
ρλ − Γλ

µρΓ
ρ
νλ ,

and

Gµν ≡ Rµν − 1

2
gµνR =

(
δρµδ

λ
ν − 1

2
gµνg

ρλ

)(
∂σΓ

σ
ρλ − ∂λΓ

σ
ρσ + Γκ

ρλΓ
σ
σκ − Γσ

λκΓ
κ
σρ

)
.

2In the case of FRW symmetric metric given by g00 = −1 and gij = a2(t)γij , the Christoffel symbols read

Γµ
00 = 0 = Γ0

0µ ,

Γ0
ij = ȧaγij ,

Γi
0j = Hδij ,

Γi
jk =

1

2
γiℓ (∂jγkℓ + ∂kγjℓ − ∂ℓγjk) ,

where the last one is Γi
jk = 0 in the case of E3. More on the connection coefficients in chapter 3.
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2.1. A sketch of Modern Cosmology

which is the first law of thermodynamics dU = −pdV , assuming an adiabatic expansion (dS = 0). By
defining a constant state parameter

w ≡ p

ρ
, (2.12)

we can integrate eq. (2.11) to obtain
ρ ∝ a−3(1+w) . (2.13)

All known cosmological fluids have one of three equations of state: matter, radiation and vacuum energy.
Matter includes nonrelativistic particles with zero pressure, w = 0, and free energy density decreasing as
ρm ∝ a−3 in an expanding universe. Radiation may include actual electromagnetic radiation or relativistic
particles, w = 1/3, and their energy density falls off ρr ∝ a−4. Vacuum energy has negative pressure,
w = −1, and its energy density remains constant ρΛ ∝ a0 during the expansion of the universe.

Another way to derive eq. (2.11) is by combining the Friedmann equations reduced from the Einstein
field equation

H2 =

(
ȧ

a

)2

=
ρ

3
− k

a2
, (2.14)

Ḣ +H2 =
ä

a
= −1

6
(ρ+ 3 p) . (2.15)

In the case of a flat universe (k = 0) we can directly solve eq. (2.14) to obtain

a(t) ∝
{
t2/(3(1+w)), ∀ w ̸= −1 ,

eHt, for w = −1 .
(2.16)

Type of fluid ρ(a) w a(t)

radiation a−4 1/3 t1/2

cold matter a−3 0 t2/3

spatial curvature a−2 −1/3 t
vacuum energy a0 −1 eHt

scalar field a−2ϵH −1 + 2 ϵH
3 t1/ϵH

Table 2.1: Different types of energy densities dominating a flat FRW universe and their associated state parameter
values w and scale factor a(t) in terms of cosmic time.

It is useful to discuss the contribution of various constituents to the energy density and pressure,
through the fractions

ρ =
∑
i

ρi, p =
∑
i

pi , (2.17)

where i sums over all the potential contributions. Notice that the continuity equation (2.11) holds for each
constituent ρi and pi, while the Friedmann equations (2.14)-(2.15) only hold for the summed over ρ and
p. An important quantity, especially in astrophysics, is the present day ratio of the energy density to the
critical energy density ρcrit,0 ≡ 3H2

0 , defined through

Ωi,0 ≡
ρ0,i
ρcrit

, (2.18)

11



2. Inflation

and similarly we may parametrise the curvature contribution by

Ωk,0 ≡ − k

(a0H0)
2 , (2.19)

where the subscript “0” denotes present day values of the quantities. Normalising the scale factor at
present day a0 ≡ 1 allows us to re-express the Friedmann equation (2.14) as(

H

H0

)2

=
∑
i

Ωi,0 a
−3(1+wi) +Ωk,0 a

−2 . (2.20)

Then, at present time
∑

iΩi,0 + Ωk,0 = 1. The definition of the energy fractions can be generalised to
include a time dependence

Ωi(a) =
ρi(a)

ρcrit(a)
, Ωk(a) = − k

a2H2
, (2.21)

where ρcrit = 3H2 is now time-dependent.

2.2 Big Bang puzzles of initial conditions
It should be again emphasised that the issues described in this section are not inconsistent with the

standard cosmological model, but rather highlight shortcomings in its predictive power. In what follows
we discuss two of these issues in detail, known as the flatness and the horizon problem, and demonstrate
how the focal point of inflation can provide a natural solution to them.

Flatness problem

If we start from eq. (2.21) and assume a state parameter w ̸= −1, we can rewrite it as

∂Ωk

∂ ln a
= Ωk(1 + 3w) . (2.22)

This shows that values of Ωk > 0 grow with time, and similarly negative values keep decreasing. Also,
it seems that in the case in which w > −1/3 the solution of Ωk = 0 is an unstable fixed point. It is then
surprising that the present day observed value of Ωk ∼ 10−2 is so close to zero. Therefore, it is expected
that in earlier periods it would be even smaller, e.g. at the Big Bang nucleosynthesis (BBN) epoch it is
Ωk ∼ 10−16 and at Planck scale it would be Ωk ∼ 10−61 [74]. One can accept k = 0 as the precise initial
state of the universe at the price of an immense fine-tuning, but a theory that dynamically explains it
seems more attractive.

Horizon problem

Let us rewrite the particle horizon (2.6) as

χp =

∫ a′

ai

da

a2H
=

∫ a′

ai

d ln a

aH
, (2.23)

expressed in terms of the comoving Hubble radius (aH)−1. Assuming a universe described by a fluid
with a state parameter w we obtain,

χp ∝ a2(1+3w) , (2.24)

12



2.3. Inflaton field dynamics

which implies that comoving scales entering the horizon today have not been in causal contact before that
and they interact for the first time. Meaning that new regions should appear different from one another,
but examining the near-homogeneity of the CMB suggests otherwise.

Solving the problems: central idea of inflation

The central idea is to allow for some form of energy with a state parameter w < −1/3 or, in other
words, a decreasing Hubble radius (aH)−1, so that the integral of the particle horizon is dominated by
early times instead of late times. Formulated in mathematical language it suggests that

d

dt

(
1

aH

)
< 0 =⇒ ä > 0 , (2.25)

which implies that physical wavelengths become larger than H−1. From eq. (2.15) it also implies that
w < −1/3. Then, since (aH)−1 decreases instead of increasing, the universe is driven towards flatness,
and the solution of Ωk = 0 becomes an attractor solution of eq. (2.22).

Regarding the scale factor, we obtained

a ∝ τ2/(1+3w) (2.26)

which in case w > −1/3 suggests that as τ → 0 we are forced to the initial singularity a → 0. However, if
we allow for a phase in which w < −1/3 we can extend τ to negative values and in this way making the
horizon larger than H−1 (see fig. 2.2).

Digression on the monopole problem

It is very likely that the universe underwent through a series of phase transitions during its evolution,
e.g. the QCD and electroweak phase transitions and potentially others. Depending on the symmetry that
is broken in the transitions topological defects form; especially in the case of string theory these defects
appear in the form of magnetic monopoles. The issue of the magnetic monopoles (and the topological
defects in general) is entirely model dependent and mostly tied to Grand Unified Theories (GUTs) [76–80]
that attempt to unify the three gauge interactions of the SM into one force at some unification scale EGUT.
These magnetic monopoles are nonrelativistic and they fall off as ∝ a−3 as opposed to the photon (or
neutrino) ∝ a−4, meaning that at present times they should dominate over them, which is not the case
(they are undetected). However, if inflation takes place after the phase transition the monopole density is
diluted by inflation, from a−3 to a tiny size.

2.3 Inflaton field dynamics
During the inflationary period we demand that the violation of the strong energy condition (w < −1/3;

more on that in ch. 4), dynamically comes to a halt towards the end of inflation. The simplest realisation
of this is achieved via a scalar field1, dubbed the inflaton field and usually denoted by ϕ(x, t), which is
dominating the energy density of the early universe. The exact nature of the inflaton field is still highly
speculative, since the physics of inflation cannot be tested in a particle accelerator due to the high energy

1Note that a scalar field can approximate a vacuum-like state, after all it has the same quantum number as the vacuum and
can assume nonzero vacuum expectation value (VEV) and nontrivial configuration without breaking Lorentz invariance.
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2. Inflation
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Figure 2.2: The cosmological histogram of inflationary scales. By extending the conformal time to negative values
previously assumed casually disconnected regions of space become connected where their past light cones intersect
during inflation. Credit: [74].

scales.1 Meaning that the only constraints of inflation are placed on the shape of the scalar potential
V (ϕ) and, even then, various proposed models are able to satisfy the observational bounds within some
margins of success [38].

Therefore, let us consider a real scalar field ϕ that is minimally coupled to gravity, described by the
simple2 action in four dimensions

S =

∫
d4x

√−g
{
M2

P

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

}
, (2.27)

where V (ϕ) is unspecified at the moment and denotes the self-interacting potential of the inflaton. The
action (2.27) includes two dynamical degrees of freedom, the metric tensor gµν(x) and the scalar field
ϕ(x). Variation with respect to ϕ leads to the famous Klein-Gordon equation

□ϕ+
dV (ϕ)

dϕ
= 0 , (2.28)

1A nontrivial assumption of the inflationary paradigm is the introduction of an additional scalar degree of freedom to the
SM. The only known fundamental scalar field of the SM, that can assume the role of the inflaton, is the Higgs field, but even in
that case, an extension of the interaction between the gravitational sector and the Higgs field is required (e.g. see ref. [81]).

2We could allow for the possibility of a nonminimal interaction between the inflaton and the graviton or introduce higher-
order curvature invariants that admit a propagating scalar mode. In principle, most of these models can be brought into the
form of eq. (2.27) via a field redefinition and/or a Weyl rescaling of the metric.

14



2.3. Inflaton field dynamics

where □ ≡ gµν∇µ∇ν denotes the d’Alembertian operator in curved spacetime. Likewise, variation with
respect to gµν gives rise to the Einstein field equations (M2

P ≡ 1)

Gµν ≡ Rµν −
1

2
gµνR = ∂µϕ∂νϕ− gµν (∂

ρϕ∂ρϕ+ V (ϕ)) , (2.29)

where, by definition, the RHS of eq. (2.29) is identified with the scalar field energy-momentum tensor
Tµν(ϕ).

Assuming a flat FRW universe, described by the metric (2.1) and a spatially homogeneous field
ϕ(x, t) = ϕ(t) we can rewrite the equations of motion as follows

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (2.30)

3H2 =
1

2
ϕ̇2 + V (ϕ) , (2.31)

Ḣ = −1

2
ϕ̇2 , (2.32)

where, hereafter, the dot and the prime denote derivative with respect to t and the function’s argument,
f ′(x) = df(x)/dx, respectively. Next, assuming a perfect fluid we can make use of

ρ =
1

2
ϕ̇2 + V (ϕ) , (2.33)

p =
1

2
ϕ̇2 − V (ϕ) . (2.34)

Therefore, the equation of state for the inflaton reads

w =

1

2
ϕ̇2 − V (ϕ)

1

2
ϕ̇2 + V (ϕ)

. (2.35)

Slow-roll approximation

Note that eq. (2.30) is similar to the one describing a particle trajectory rolling down its potential that
is also subject to a friction term, ∝ Hϕ̇ (due to the expansion of the universe in this case). In a completely
similar fashion, this means that the solution ϕ̇ ≈ V ′/(3H) is an attractor solution and the field is driven
towards the minimum of the potential, for various initial conditions. The feature of the (slow-roll) attractor
solution is especially appealing since it indicates that our universe will “end up” in the inflationary period
quite generally, without fine-tuning.

Directly from eq. (2.35) one can obtain an accelerated expansion if the scalar potential dominates over
the kinetic energy. At the limit of ϕ̇→ 0 (de Sitter limit) the scalar field describes a cosmological constant
with negative pressure (w = −1) and from the continuity equation we obtain ρ̇ → 0, meaning that the
inflaton has (almost) constant energy density. Then, eq. (2.14) suggests that the Hubble parameter is
constant throughout inflation and the scale factor is given by an exponential function a(t) ∝ eHt. Clearly,
if we consider a constant vacuum energy describing inflation, classically the inflationary era cannot end,
and even if a quantum tunnelling effect from the false to the true vacuum is considered, it would only
end locally leading to a universe either too homogeneous or empty. That was the problem of the graceful
exit of the models of what is now referred to as old inflation [28].
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2. Inflation

reheating

Figure 2.3: An exemplary inflaton potential. Inflation begins at some field value in the flat region of the potential
where the potential energy dominates over the kinetic energy of the inflaton and stops approximately at some field
values where it starts to contribute considerably compared to the potential, ϕ̇2 ≈ V (ϕ). Quantum fluctuations
of the field δϕ lead to different regions of space to inflate by different amounts leading in turn to observed
inhomogeneities in the CMB spectrum. Credit: [74].

Slow-roll parameters

We classify the deviation from de Sitter space (during inflation) in terms of the so-called slow-roll
parameters (SRPs). In order to introduce them, let us rewrite eq. (2.15) in the following way:

ä

a
= −1

6
(ρ+ p) = H2(1− ϵH) , (2.36)

where

ϵH ≡ − Ḣ

H2
(2.37)

and is known as the first (Hubble) slow-roll parameter (Hubble SRP or HSRP) [82]. Now, the de Sitter
limit is suggested by ϵH → 0 and the accelerated expansion occurs when ϵH < 1. By means of eq. (2.31),
this means that if ϵH ≪ 1 we obtain

ϕ̇2 ≪ V (ϕ) . (2.38)

In order to be on the slow-roll trajectory we require also

ηH ≡ − ϕ̈

Hϕ̇
≪ 1 , (2.39)

dubbed the second (Hubble) slow-roll parameter. This simplifies greatly the Klein-Gordon EoM so as to
express the first SRP in terms of the potential

ϵH = − Ḣ

H2
≈ 1

2

(
V ′

V

)2

≡ ϵV , (2.40)

which is usually referred to as the potential SRP (or PSRP). Further differentiating of the Klein-Gordon
EoM leads to

d

dt

(
3Hϕ̇ ≈ −V ′

)
=⇒ ηH + ϵH ≈ V ′′

V
(2.41)
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2.3. Inflaton field dynamics

and allows us to introduce the second potential SRP as:

ηV ≡ |V ′′|
V

. (2.42)

Equations (2.40) and (2.41) also describe the approximate1 relation between the Hubble and the potential
SRPs. Then, slow-roll inflation occurs when these two parameters are small

ϵH ≪ 1 & |ηH | ≪ 1 (2.43)

and it ends when one of the SRPs is close to unity, namely [82]

ϵH = 1 (ϵV ≈ 1) or/and ηH = 1 (ηV ≈ 1) . (2.44)

Duration of inflation

The exact amount of inflation the universe went through is measured in number of e-foldings N , such
that the scale factor at the start and end of inflation, ti and tf respectively, is expressed as

a(tf )

a(ti)
= eN =⇒ dN = d ln a . (2.45)

Then using d ln a = Hdt and the approximate slow-roll expression we can write N in terms of the scalar
potential V (ϕ) as follows:

N ≃ −
∫ ϕf

ϕi

V

V ′
dϕ = −

∫ ϕf

ϕi

dϕ√
2ϵV (ϕ)

, (2.46)

where ϕi ≡ ϕ(ti) and ϕf ≡ ϕ(tf ) are the field values at the beginning and end of inflation, respectively.
Notice how Ωk ∝ a−2 suggests that in order to explain the observed flatness, if the universe started at GUT
or Planck scale, we require about N ∼ 60 e-folds (see refs. [65, 66]). Analogously, the horizon problem
is solved if regions of the CMB were within the horizon, meaning that we require N ≳ 60 e-folds in that
case.

The definition of the number of e-foldings N allows us to introduce the Hubble slow-roll parameters
in hierarchical order [82]

ϵH,i+1 =
1

|ϵH,i|
d |ϵH,i|
dN

, (2.47)

where ϵH,0 = Hstart/H , with Hstart denoting the Hubble parameter at the start of inflation ti. Again,
during slow-roll inflation we expect that ϵH,i ≪ 1, ∀i ∈ N and they are approximately of the same order
of magnitude. Inflationary observables are usually expressed in terms of leading order in the SRPs (at
most NLO), however the increasing accuracy and sensitivity of the experimental missions may require
higher-order terms and other types of approximations (other than the Taylor expansion discussed here).

1The exact relation of the potential and Hubble SRPs is given, up to first order in the SRPs, by:

ϵV = ϵH

(
3− ηH
3− ϵH

)2

,

ηV = (ϵH + ηH)

(
3− ηH
3− ϵH

)
+

√
2ϵH

η′
H

3− ϵH
.
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2. Inflation

Attractor points

As we stated earlier, the concept of cosmological attractors is especially desirable; after all it suggests
that the inflaton scalar field eventually arrives to its preferred evolution, regardless of its initial conditions.
In this case, initial data are the field value and its velocity at some point. Intuitively, we can think of the
expansion of the universe as some kind of friction acting on the system, that while the field is away from
the attractor solution it is negligible, but when it reaches that point it dominates and “forces” it into the
general trajectory. Effectively, it seems that any kind of initial conditions ultimately sends the field onto
the preferred trajectory from where it continues to evolve.

The actual phase space of trajectories is four-dimensional, possibly parametrised by {a, pa, ϕ, pϕ},
where pa and pϕ are the conjugate momenta of the scale factor a and inflaton field ϕ, respectively. Then,
it is not straightforward how or why the (ϕ̇− ϕ) ≃ R2 space completely defines the effective phase space,
in which in principle trajectories of a − pa should cross into it. Generally, a 2n-dimensional symplectic
manifold C is equipped with a closed, non-degenerate 2-form, known as the symplectic form

ω =

n∑
i=1

dpi ∧ dqi , (2.48)

where pi are local coordinates on the manifold and qi are soldered momenta to the velocities dqi. It also
defines the Liouville measure

Ω =
(−1)

n(n−1)
2

n!
ωn , (2.49)

that under Liouville’s theorem of classical mechanics is conserved along the Hamiltonian flow vector
XH, meaning LXHΩ = 0. Then, the space of trajectories is given by Γ = {C/H∗}/XH, where H∗ is the
constrained Hamiltonian of the system [83]. In the particular case of the (canonically normalised) scalar
field coupled minimally to the Einstein-Hilbert term with zero spatial curvature (k = 0 in eq. (2.1)), it was
shown in ref. [84] that Γ is 2-dimensional and in fact the measure dϕ̇∧dϕ is conserved under Hamiltonian
flow. Therefore, in that unique case we can safely assume that other trajectories do not “bleed” into the
ϕ̇− ϕ space and we can observe the (coordinate dependent) attractor behaviour. In what follows, we use
this argument in order to draw conclusions regarding the attractor solution of the cosmological systems
we study.

Density perturbations

One of the most appealing feature of inflation is the prediction of the observed CMB anisotropies,
when addressed under a quantum framework. It perfectly highlights the predictive power of the theory
since these cosmological perturbations were only considered after the formulation of the theory before
the observation of the CMB fluctuations. However, just from the apparent large-structure formation
observed today it was expected that some kind of fluctuations existed at sub-Hubble scales that were then
amplified (“stretched”) to large scales. Remarkably, the quantum effects in a gravitational setting (a result
surprising on its own) after an exponential expansion become the source of galaxies and other structures
in our universe and provide us with a connection to physics of small distances.

Deviations from the scale-invariant spectrum are designated by inhomogeneous primordial perturba-
tions of the scalar field around its classical background, δϕ(x, t) ≡ ϕ(x, t)−φ(t), that in turn lead to differ-
ent regions expanding by different amount. Since the inflaton field assumes the role of a local clock (mea-
suring the amount of inflation), its spatially varying fluctuations spontaneously break time-translation
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2.3. Inflaton field dynamics

(due to the uncertainty principle). Then, we can draw inspiration from particle physics and describe in-
flation by introducing the Goldstone boson of the broken gauge redundancy (following refs. [85–89] and
a similar detailed approach in ref. [90]; also see refs. [75, 91, 92] for relevant reviews).

Digression on gauge redundancy

A critical point to keep in mind is that the introduction of the perturbations around a classical back-
ground is not uniquely defined, and therefore depends on the coordinate frame or the choice of gauge.
In other words, by defining the constant-time hypersurfaces we implicitly choose a gauge for the pertur-
bations and, in general, we can either introduce fictitious perturbations or completely eliminate physical
perturbations. It is useful then to describe them in a gauge-invariant way and include perturbations of
the metric and the matter field(s).

The issue of the gauge freedom is laborious and in what follows we attempt to circumvent it as much
as possible, but let us demonstrate its importance in the following simple example. Think of a quantum
universe and a field ϕ(x) expanded around its classical background φ(t). Thus, its vacuum state is not
any more an eigenstate of its operator, say ϕ̂ |0⟩ ≠ ϕ |0⟩, where

ϕ = φ(t) + δϕ(x, t) . (2.50)

Consider an infinitesimal change in the coordinates as

xµ → x̄µ = xµ + ξµ . (2.51)

Then, we can express the scalar field in the new coordinate frame, up to first order, as

ϕ̄(x̄− ξ) ≈ ϕ̄(x̄)− ξµ∂µϕ̄(x̄) . (2.52)

Any scalar density of weight w transforms as ϕ̄(x̄) = J wϕ(x), where J w ≡
[

det
∂(x̄ν)

∂xµ

]w
is the Jacobian

of the coordinate transformation. Making use of det (1+A) ≈ 1 + TrA + . . . for a matrix A, the Jacobian
becomes J w ≈ 1 + w ∂µξ

µ. Returning to the scalar field we obtain1

ϕ̄(x̄− ξ) ≈ ϕ(x) + w ∂µξ
µ ϕ(x)− ξµ∂µϕ(x) +O(ξ2, ξ · δϕ)

≈ φ(t) + δϕ(x)− ξµ∂µφ(t) + w ∂µξ
µ φ(t) +O(ξ2, ξ · δϕ) ,

where we recognise the Lie derivative of a scalar density Lξϕ(x) = ξµ∂µϕ(x)−w ∂µξµϕ(x). In the particular
case of a scalar field it coincides with the directional derivative ∇ξ and the expression is simplified further,
leading to

δϕ(x) → δϕ(x̄)− ξ0 φ̇(t) . (2.53)

Therefore, the fluctuations δϕ shift under (time) diffeomorphisms, a fact that we exploit later on so that
we gain a deeper understanding of the particle physics phenomenology of the inflaton.

1The definition of the perturbation δϕ is not to be confused with the usual definitions of the value variation δϕ = ϕ̄(x̄)−ϕ(x)
and the form variation δ0ϕ(x) = ϕ̄(x)− ϕ(x).
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Scalar perturbations

The inflaton in the EFT approach

Following our previous discussion it is interesting to describe the dynamics of the inflaton field using
the language of the Effective Field Theory (EFT) approach, meaning that the action includes all available
degrees of freedom in terms of operators compatible with the symmetries. The residual gauge symmetry
is the remaining time-dependent spatial diffeomorphisms x̄i = xi + ξi(x, t). The most general Lagrangian
reads as [88]

S =

∫
d4x

√−g
{
1

2
R− c0(t)g

00 − c1(t) +
1

2!
M2(t)

4(δg00)2 +
1

3!
M3(t)

4(δg00)
3+ (2.54)

− 1

2
M1(t)

3δg00 δKµ
µ − 1

2
M2(t)

2 (δKµ
µ)

2 − 1

2
M3(t)

2 δKµ
ν δK

ν
µ + . . .

}
,

where dots indicate higher-order terms in fluctuations and ci(t), Mi(t) and M i(t) are coefficients. Here
we defined δg00 ≡ g00 + 1 and made use of the extrinsic curvature arising from the embedding of the
3-hypersurfaces of constant time in four-dimensional spacetime

Kµν = hµ
ρ∇ρnν , (2.55)

where ∇ is the covariant derivative, nµ is the timelike unit vector (nµnµ = −1) normal to the 3-hypersurface,
and hµν the induced metric hµν = gµν + nµnν on it. Note that we denote δKµν = Kµν − a2Hhµν vari-
ations around a flat FRW background, then the coefficients can be easily fixed by the FRW solution (by
tadpole cancellation). It is evident then that the higher-order terms (beyond the zeroth order) are model
dependent. Generally, one can imagine more (or infinite) terms that contribute at first order to eq. (2.54)
containing derivatives, but by integrating them by parts we obtain a combination of the terms already
present.

The Friedmann equations become

3H2 = c0 + c1 & Ḣ +H2 =
1

3
c1 −

2

3
c0 . (2.56)

Solving the system for the ci’s and substituting them back into the action, we obtain [88]

S =

∫
d4x

√−g
{
1

2
R+ Ḣg00 − (3H2 + Ḣ) +

1

2!
M2(t)

4(δg00)2 +
1

3!
M3(t)

4(δg00)
3+ (2.57)

− 1

2
M1(t)

3δg00 δKµ
µ − 1

2
M2(t)

2 (δKµ
µ)

2 − 1

2
M3(t)

2 δKµ
ν δK

ν
µ + . . .

}
,

Notice how, in the language of the background scalar field, we can write∫
d4x

√−g
(
−1

2
g00φ̇(t)− V (φ)

)
=

∫
d4x

√−g
(
Ḣg00 − 3H2 − Ḣ

)
, (2.58)

where in the last step we used the Friedmann equations. Since during inflation H ≈ const. and Ḣ ≈ 0 we
assume that it holds for the rest of the operators, leading to a Lagrangian that is (approximately) invariant
under time translations.
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2.3. Inflaton field dynamics

At this point, it is not clear how the scalar degree of freedom is represented in the action (2.57). This
is completely analogous to the case of a non-Abelian gauge group in the unitary gauge by introducing
the Goldstone boson of the broken symmetry. Let us take a step back and consider the operators at the
zeroth order under a time diffeomorphism t→ t̄ = t+ ξ0(x) and x → x̄; then we obtain∫

d4x
√−g

(
c0(t)g

00 + c1(t)
)
=

∫
d4x̄

√−ḡ
{
c1(t̄− ξ0) + c0(t̄− ξ0)

∂(t̄− ξ0)

∂x̄µ
∂(t̄− ξ0)

∂x̄ν
ḡµν
}
. (2.59)

Next, we make the following redefinition

− ξ0(x(x̄)) ≡ π̄(x̄) , (2.60)

in order to reintroduce explicitly the Goldstone boson [75]. Then, eq. (2.57) becomes (dropping the bars
for brevity)

S =

∫
M
d4x

√−g
{
1

2
R−

(
3H2 + Ḣ

)
(t+ π) + Ḣ(t+ π)∂µ(t+ π) ∂ν(t+ π) gµν+ (2.61)

+
M2(t+ π)4

2!
[∂µ(t+ π) ∂ν(t+ π) gµν + 1]2+

+
M3(t+ π)4

3!
[∂µ(t+ π) ∂ν(t+ π) gµν + 1]3 + . . .

}
,

where the dots here denote terms of higher-order and terms including the extrinsic curvature.
Similar to a gauge theory, the action (2.61) is simplified at short distances, in which the scalar field

decouples from the metric fluctuations. Above some high energy scale, terms that include derivatives
are subleading to the main contribution of the kinetic term of π. Let us focus on the tadpole contribution
(M2 = 0 =M3 etc) which includes the slow-roll solution [88]. The leading term that mixes the gravitational
with the scalar degrees of freedom is

∝ Ḣπ̇ δg00 . (2.62)

Now, δg00 is the gravitational potential and is determined by π. Using the post-Newtonian approximation
we obtain H∂iδg

00 ≈ Ḣ∂iπ implying δg00 ≈ Ḣπ̇/H . Then, it is straightforward to show that the mixing
term is negligible in the limit of a scale Λ above the mixing scale, which holds especially in the far UV
region. Therefore, the action is further simplified as follows1

S =

∫
M

{
1

2
R− Ḣ

[
π̇2 −

(
∂iπ

a

)2
]
+ 2(M2)

4

[
π̇2(1 + π̇)− π̇

(
∂iπ

a

)2
]
− 4

3
(M3)

4π̇3 + . . .

}
. (2.63)

Clearly, the action presented in the decoupling limit is only useful for calculating correlation functions
just after the last horizon crossing via the gauge invariant quantity, usually known as ζ, that remains
constant at all orders of perturbation [93, 94]. If one is interested in non-Gaussianities of the system,
encoded in the 3-point function ⟨ζ(k1)ζ(k2)ζ(k3)⟩, terms mixing with gravity and self-interactions of π
have to be considered [88].

1Note that we have

∂(t+ π)

∂xµ

∂(t+ π)

∂xν
gµν = g00(1 + π̇)2 + 2g0i∂iπ(1 + π̇) + gij∂iπ∂jπ −→ −1− π̇2 − 2π̇ +

(∂iπ)
2

a2

and keep terms up to third order.
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Canonical quantisation

Having nested the inflaton degree of freedom in a field-theoretic language and without leaving the
gauge, we employ the Arnowitt-Deser-Misner (ADM) formalism [95] to the action functional (2.63). As
we alluded to earlier, the ADM decomposition (or 3 + 1 approach) consists of describing the spacetime
(M,g) as a set of 3-hypersurfaces Σ, constant in time, that are propagating in time, meaning M ∼= Σ×R.1

The line element is decomposed as

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (2.64)

where hij is, once again, the induced metric, and N and N i are the lapse function and shift vector,
respectively. Then, using the Gauss–Codazzi relation2 we can contract the four-dimensional Ricci scalar
as:

R = (3)R+
(
KµνK

µν −K2
)
+ 2∇ν (n

ν∇µn
µ − nµ∇µn

ν) , (2.65)

where (3)R(h) is the intrinsic curvature of the hypersurfaces. Note that, as before, the covariant derivative
∇µ is taken with respect to the induced metric h. Finally, using the ADM expression for the extrinsic
curvature

Kij =
1

N
Eij , Eij ≡

1

2
hij −∇(iNj), (2.66)

and after integration by parts, the action (2.63) reads

S =

∫
d4x

√
h

{
N · (3)R+

1

N
(EijE

ij − E2)+

+ 2Ḣ(t+ π)

[
− 1

N
(1 + π̇2) +

2

N
(1 + π̇)N i ∂iπ −N(hij∂iπ ∂jπ)−

1

N
(N i∂iπ)

2

]
+

−N
(
Ḣ(t+ π) + 3H2(t+ π)

)
+O(M2,M4, . . .)

}
(2.67)

For the purposes of this work we restrict ourselves in the case where M2,4,... = 0, that includes the slow-
roll inflation. Variation of the above action with respect to Ni and N leads to equations of motion, which
respectively are given by:

∇i

(
Ei

j − δij E

N

)
+

2

N
Ḣ(t+ π)

[
(1 + π̇)∂iπ −N j ∂jπ ∂iπ

]
= 0 , (2.68)

and

1Here we consider a case in which the manifold M is diffeomorphic to Σ × R, where space is denoted by Σ and time by
t ∈ R. In fact, there are different ways to split spacetime by picking a diffeomorphism f : M → Σ × R, but we focus on a
particular slice of τ = 0, where τ = f∗t is the time coordinate, and assume that is also spacelike. These foliations are allowed
based in a theorem stating that in a globally hyperbolic spacetime (M, g) there exists a global time function such that each
constant “surface” is a Cauchy surface. The subject of the ADM decomposition of GR is beyond the scope of this work and we
avoid getting into detailed calculations. Although, it is completely analogous to the textbook canonical quantisation of a classical
particle in a configuration space Rn, but in this case the configuration space is the superspace defined by the Riemannian metrics
on Σ, (3)gij .

2It is derived by relating the 3- and 4-dimensional Riemann tensors on (Σ, h) and (M4, g) by means of the extrinsic curvature.
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2.3. Inflaton field dynamics

(3)R− 1

N2
(EijE

ij − E2)− 3H2(t+ π) + Ḣ(t+ π)+ (2.69)

+
Ḣ(t+ π)

N2

[
(1 + π̇)2 − (1 + π̇)N i∂iπ +N2hij∂iπ∂jπ + (N i∂iπ)

2

]
= 0 .

These are the momentum and Hamiltonian constraints, respectively defined by Pi
!≈ 0 and H !≈ 0, where

!≈ denotes equality modulo equations of motion. Then, the variables N and Ni are constrained and
therefore they are not physical degrees of freedom of the theory. Let us do a brief counting of the degrees
of freedom; we started with (10) from the symmetric metric tensor and (1) from the inflaton field (π in
this case). We may also remove (4) degrees of freedom from the gauge redundancy (3 generators from
the spatial diffeomorphisms and 1 from the time ones), and another (4) from the constrained quantities
N and Ni, leaving us with just (3) dynamical degrees of freedom. Two of them represent the helicities of
the graviton and the last one is the matter field. At this point (second order) we can neglect the tensor
perturbations since they do not mix with the scalar perturbations.

Next we fix a gauge; we choose the ζ-gauge, in which the induced metric and the time diffeomor-
phisms are fixed by imposing the following conditions

hij = a2δije
2ζ , & π = 0 . (2.70)

In this gauge we gain better insight into the IR behaviour of the gauge-invariant quantity ζ. The eqs. (2.68)-
(2.69) become respectively:

∇i

(
Ei

j − δij E

N

)
= 0 , (2.71)

(3)R− 1

N2
(EijE

ij − E2)− 3H2 − Ḣ + 2
Ḣ

N2
= 0 . (2.72)

The solution for the constrained N and Ni yields:

N = 1 +
ζ̇

H
, & Ni = −∂i

(
1

a2
ζ̇

H
+

Ḣ

H2

1

∂2
ζ̇

)
. (2.73)

Substituting the above solutions back into the action leads to

S =

∫
d4x a3

(
− Ḣ

H2

)(
ζ̇2 − 1

a2
(∂iζ)

2

)
. (2.74)

Quantising the system is now easier, since the action resembles the one for a massless scalar field. Then,
for the conjugate momentum of ζ we find

Πζ =
δL
δζ̇

= −2a3ζ̇
Ḣ

H2
(2.75)

and impose the equal time commutation relation [ζ(x, t),Πζ(x
′, t)] = iδ(3)(x − x′) where the classical

variables have been promoted to quantum operators (note that ℏ = 1). We are free to expand the Fourier
components of ζ in terms of annihilation and creation operators

ζ̄(t) = ζcl
k (t)ak + ζcl,∗

−k (t)a
†
−k , (2.76)
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where the usual commutation relation [ak(t), a
†
k′(t)] = δ(3)(k+ k′) holds ∀t and ζcl represents the classical

solution to the equation of motion

δL
δζ

= − d

dt

(
a3ζ̇cl Ḣ

H2

)
+ ak2ζcl = 0 . (2.77)

In order to solve the equation we require two initial conditions. One condition we can impose is given
by [75]

ζcl(−kτ ≫ 1) ≃ − i

(2ϵ)1/2a3(τ)

H√
2k/a(τ)

eikτ , (2.78)

where the coefficient stems from normalisation. This is true since we know that vacuum state modes
inside the horizon 1/H should look the same as in the Minkowski space [88]. The second order equation
is then solvable if we ignore the time evolution of terms H and Ḣ and calculate them at horizon exit;
yielding the following solution:

ζcl
k (τ) =

H√
2ϵ (2k)3/2

(1− ikτ)eikτ . (2.79)

Finally the power spectrum of the perturbations is given by [88]

⟨ζk(τ) ζk′(τ ′)⟩ = (2π)3δ(3)(k + k′)
1

4M2
Pl k

3

(
−H

4

Ḣ

)∣∣∣∣
horizon exit

, (2.80)

iff kτ ≪ 1 and kτ ′ ≪ 1. In the last step we reintroduced also the dimensionful parameters. Now, it is
straightforward to recognise that the expression for the power spectrum of scalar perturbations coincides
with the already familiar one.

Let us define the dimensionless power spectrum of primordial scalar fluctuations [71]

As =
k3

2π2
Pζ , where Pζ ≡

1

4M2
P k

3

(
−H

4

Ḣ

)∣∣∣∣
horizon exit

, (2.81)

defined through eq. (2.80). The deviation of the scalar power spectrum from absolute scale invariance is
measured by the scalar spectral index ns (also referred to as the spectral/primordial tilt), defined as

ns − 1 ≡ d lnAs

d ln k

SR∼ −4ϵH + 2ηH ≈ −6ϵV + 2ηV , (2.82)

where all the quantities are calculated at horizon exit k = aH and ns = 1 represents the point of an
exactly scale-invariant spectrum. In the second equality we assumed slow-roll conditions for the scalar
field allowing us to rephrase the quantities as

d lnAs

d ln k
=

d

d ln k
ln

(
−H

4

Ḣ

)
≈ d

d ln k
ln

(
−H

4

ϕ̇2

)
d ln k∼Hdt∼ −2

Ḣ

H2
+ 2

ϕ̈

Hϕ̇
= 4ϵH − 2ηH , (2.83)

computed, for the purpose of this work, up to first order in the SRPs.
For the sake of completeness, let us include the complete parametrisation of the power spectrum used

for the analysis of the CMB anisotropies. Here, Pζ is decomposed into its scale invariant part As and parts
encoding the scale dependence, as follows:

lnPζ = lnAs + (ns − 1) ln
k

k∗
+

1

2!
αs ln

2 k

k∗
+

1

3!
βs ln

2 k

k∗
+O

(
d4Pζ

d ln k4

)
, (2.84)
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2.3. Inflaton field dynamics

where k∗ = a∗H∗ is a reference scale (usually 0.05Mpc−1) and αs, βs denote the running and the running
of the running of the spectral index ns, respectively. They are defined by

αs ≡
d2 lnPζ

d ln k2

∣∣∣∣
k=k∗

=
dns
d ln k

∣∣∣∣
k=k∗

≈ 8ϵV (2ηV − 3ϵV )− 2ξV , (2.85)

βs ≡
d3 lnPζ

d ln k3

∣∣∣∣
k=k∗

=
d2ns
d ln k2

∣∣∣∣
k=k∗

≈ 32ϵV
[
η2V + 6ϵV (ϵV − ηV )

]
+ 2ϵV (12ξV − ηV )− 2πV , (2.86)

where the higher-order PSRPs are given by

ξV =M4
P

V ′ V (3)

V 2
, πV =M6

P

(V ′)2 V (4)

V 3
. (2.87)

The Planck 2018 collaboration has constrained the values of the runnings αs and βs to [38]

αs = 0.013± 0.010 , βs = 0.022± 0.012 , (2.88)

that has helped restrict the space of the simplest models, since they predict a scale-invariant spectrum
to a very high degree; by power counting, a rough estimate is αs ∼ O(10−3) and βs ∼ O(10−5). More
importantly, the data (consistent with previous missions, e.g. Planck 2015 [96]) suggest a nonstandard
hierarchy of the runnings, hinting to possible new dynamics to be included in the frame of inflation.

Tensor perturbations

The FRW metric can be perturbed in the following general way [97]:

ds2 = −(1 + 2Φ)dt2 + 2a(t)Bi dx
idt+ a2(t) [(1− 2Ψ)δij +Aij ] dx

idxj . (2.89)

Notice that we included the potential vector perturbations even though they are not produced during
inflation driven by a scalar field. We can separate these perturbations according to their transformation
under rotation. Then, we conclude that Φ and Ψ are scalars (helicity zero) and we can decompose Aij

and Bi into their scalar, vector and tensorial components. It is now possible to see that at first order,
and in a rotational invariant background (like FRW) the different modes are not mixing and they evolve
independently of each other. Furthermore, under a general coordinate transformation it is straightforward
to show that the different helicity metric fluctuations do not mix and they transform only by the coordinate
change with the same helicity. That is why the scalar (and vector) perturbations are transforming and the
tensor perturbations are gauge invariant.

Since we are interested in the tensor perturbations we can simply express the metric as

ds2 = −dt2 + a2(t) (δij + hij) dx
idxj , (2.90)

where δij is the Kronecker delta and we ignore the rest of the perturbations. At first order of perturbations
it is straightforward to show that only the GR part of the action contributes and the perturbed action reads

S ∝
∫
d4x a3

{
(ḣij)

2 − 1

a2
(∂khij)

2

}
, (2.91)

where the small fluctuations hij are implicitly dimensionless; an overall proportionality factor of M2
P /8

has been absorbed. Next, let us decompose hij into its two helicity modes as follows

hij =

h+ h× 0
h× −h+ 0
0 0 0

 = h+e+,ij + h×e×,ij , (2.92)
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2. Inflation

where we assumed, without loss of generality, that the unit vector of propagation is along the k = ẑ axis.
We can now expand hij in its Fourier modes

hij =
∑

s=+,×

∫
d3k esij h

s
k e

ik·x , with kieij = 0, esik e
s′
kj = δij δs,s′ (2.93)

and rewrite the action as

S =
∑

s=+,×

∫
dtd3k a3

{
ḣsk ḣ

s
−k − k2

a2
hsk h

s
−k

}
. (2.94)

Then, the action is similar to the one for the scalar perturbations, but for a different normalisation of the
fluctuations. Therefore, we immediately obtain the power spectrum of each of the polarisations of the
tensor perturbations

⟨hsk hs
′
k′⟩ = (2π)3 δ3(k+ k′) δs,s′

H2

M2
P

1

k3

∣∣∣∣
k=aH

, (2.95)

where once again we reinstated the proper units. Similarly to what we did before we may write the power
spectrum of the tensor perturbations as

At =
k3

2π2
Pt, where Pt =

H2

M2
P

1

k3

∣∣∣∣
k=aH

. (2.96)

Likewise, we associate the deviation from the scale invariant spectrum by its tensor tilt defined as

nt − 1 =
d lnAt

d ln k

SR≈ −2 ϵH , (2.97)

calculated at the horizon exit. Very much like the spectral index ns, we can write down the running of nt
as

αt ≈ 4ϵV (ηV − 2ϵV ) . (2.98)

Finally, we introduce another useful (observable) quantity, the tensor-to-scalar ratio of their respective power
spectra, defined through

r ≡ At

As
≈ 16 ϵH . (2.99)

A measurement of r is a direct measure of the energy scale of inflation since As is fixed and At ∝ H2.
Then large values of r, close to r ≥ 0.01, suggest that inflation occurs near a GUT scale (∼ 1016 GeV) and
the field excursion can potentially be transPlanckian, ∆ϕ ≳MP .

Digression on the Lyth bound

We can recast the tensor-to-scalar ratio r in the following way

r =
8

M2
P

ϕ̇2

H2
=

8

M2
P

(
dϕ

dN

)2

, (2.100)

which connects the evolution of the inflaton with r. Using the slow-roll approximated results it is straight-
forward to show that the total field excursion from the time the observable scales exited the horizon to
the end of inflation is given by

∆ϕ =
MP

8
√
π

√
r |∆N | . (2.101)

26



2.3. Inflaton field dynamics

Note that at least at first order in the slow-roll approximation,1 we can safely assume that r is slowly
varying with N . In Lyth’s original paper the scales considered (1 < ℓ ≤ 100) leaving the horizon allowed
for the universe to expand in that time by |∆N | ≈ 4, which leads to the formula [99]

∆ϕ ≳MP

√
r

4π
, (2.102)

known as the Lyth bound. The bound can be even more strict if one accounts for the entire span of inflation
and obtain a more refined bound of ∆ϕ ≈ 6MP r

1/4, when r ≳ 10−3 [100].

Contact with observations

The hypothesis of inflation is testable against observational data, albeit, disappointingly, current
bounds on the plethora of models are relatively lenient. The cornerstone of our cosmological data have
come through the observation of the CMB anisotropies, leading to fig. 2.4 in which the 1σ and 2σ allowed
regions of r and ns are presented.
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Figure 2.4: The results of the Planck 2018 collaboration regarding the predictions of well-known inflationary models
against the latest observational data. Credit: [38].

At this point our qualitative bounds on the inflationary period are given by the Planck collabora-
tion [38] (and similarly from BICEP2 [39]) and they are

As ≈ 2.1× 10−9 , r ≲ 0.056 , ns =


(0.9607, 0.9691) at 1σ region

(0.9565, 0.9733) at 2σ region
(2.103)

1In second order in the slow-roll approximation the field excursion is also related to the scalar perturbations through [98]

∆ϕ(2) =
MP

2
√
π

√
ϵ |∆N | [1 + (η − ϵ)∆N ] .
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Future missions with higher precision aim to place further constraints on the model space by restricting
the allowed region of these quantities even more.

It is rather incredible that a lot of the simplest single-field inflation models are already ruled out by
observations or they are at marginal contact with them. There are those however, much like the Starobinsky
model [101], the Higgs inflation model [40–42] or the α-attractor models [102–104] that are persistently
in good agreement with observation. These models, and others alike, usually include some kind of
nonminimal coupling of the scalar mode that assumes the role of the inflaton to the gravitational sector.
So, in a way, the added degree of freedom accounts for the favourable predictions, while on the other
hand one has to account for the issues concerning the nature of that coupling. Such couplings, of the
form f(ϕ)R, are expected to arise at the quantum level of a gravitational theory that includes a scalar field
living in the background1 (scalar-tensor theories – due to their propagating modes) or from dimensional
reduction of higher-dimensional theories2. Another interesting possibility is the scenario that more than
one scalar mode contributes to inflation, either both at the same time or one after the other. In the latter,
the flat directions of the (multi-dimensional) potential allow for one field to lead inflation and it naturally
stops to enter a phase in which another one contributes. For this reason, analysing the spectrum of these
theories is often a daunting task, usually met with further assumptions.

There exist more parameters that can provide additional information and restrain the inflationary era.
One of them is the non-Gaussianity detected in the power spectrum [108, 109]. In fact, conventional
single-field slow-roll inflation models predict a Gaussian spectrum with high accuracy, since in order for
slow-roll to occur any kind of interactions of the inflaton field have to be weak. The non-Gaussianity
is encoded in the three-point function ⟨ζk1 ζk2 ζk3⟩ and its bi-spectrum can leave imprints in the angular
power spectrum of the CMB fluctuations. The latest constraint on the parameter characterising the non-
Gaussianity is f local

NL = −0.9 ± 5.1 [110]. Even though the task of detecting them is demanding, they can
have a major impact on our understanding of the physics of the early universe.

There is also a point to be made for the potentially astounding information the CMB polarisation
offers. Induced by Thompson scattering, the polarisation can be decomposed into two spin-0 fields,
known as E and B, completely describing the linear polarisation field. It was shown [111, 112] that scalar
perturbations create only E-modes and tensor perturbations (primordial gravitational waves) create both
E- and B-modes.3 Then, measuring the angular spectrum of the B-modes provides us with unique
information about the primordial tensor modes.

Constant-roll approximation

In principle, since most of the single-field slow-roll inflation models predict negligible non-Gaussianity
(close to the order of the SRPs), one expects that any kind of detection of non-Gaussianity would exclude
a lot of them, or at least heavily constrain the model space of inflation. It has been argued [113–115],
however, that this might not be exactly the case if we allow for a “generalisation” of the slow-roll approx-
imation, dubbed the constant-roll [116–119].

It was first noticed, that in the case of the ultra slow-roll [115], in which the potential is almost flat
(∂V/∂ϕ ≈ 0), the scalar power spectrum is almost scale-invariant, similarly to the usual slow-roll approx-

1See for example ref. [105] for more details. In the case of the Starobinsky model the higher-order curvature terms are also
expected to appear at the quantum level of the theory [106, 107]. However, current results pertaining to the quantisation of
gravity are always met with skepticism and at this point we should not make bold claims regarding what a quantum theory of
gravity will look like.

2For example, a simple model in which a 5-dimensional Kaluza-Klein theory with a compactified dimension leads to a
4-dimensional dilaton model (also referred to as the radion field).

3Vector perturbations, that decay with the expansion of the universe, are not considered here but they do create B-modes as
well.
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imation. Intuitively, we expect that since the Klein-Gordon equation yields ϕ̈/(Hϕ̇) = −3 the second SRP
is ηH ≈ O(1) and therefore the power spectrum should deviate from scale-invariance. Generalising that
case we allow for the possibility of the scalar field to roll with a constant rate, defined by [116]

ϕ̈

Hϕ̇
≈ β , (2.104)

where β ∈ R is a constant parameter. In the case that β = 0 the standard slow-roll approximation is
recovered, but if β = −3 the ultra slow-roll one is obtained. Therefore, the constant-roll encompasses both
of these approximations, while also supporting a more general scenario. Clearly, not all cases of β are
allowed seeing that they do not comply with current observational data, although they lead to predictions
that are in principle distinguishable from the slow-roll inflation.

Apart from accounting for possible CMB anisotropies, an attractive feature of the constant-roll scenario
is that plenty of the inflaton dynamics can be studied analytically. For example, equation (2.32) can be
expressed as

ϕ̇ = −2M2
P

dH

dϕ
, (2.105)

where we reintroduced the Planck scale and assumed that ϕ̇ ̸= 0 in order to write the RHS. Direct substi-
tution of this into eq. (2.104) gives rise to the following differential equation for the Hubble parameter

d2H

dϕ2
= − β

2M2
P

H . (2.106)

The most general solution to this equation is given by:

H(ϕ) = c1 exp

(√
−β
2

ϕ

MP

)
+ c2 exp

(
−
√

−β
2

ϕ

MP

)
. (2.107)

Notice how β ̸= 0 induces linear perturbations to the standard case of slow-roll inflation (in which β = 0).
From eq. (2.31) we obtain the form of the inflaton potential required to support the above solution; it
reads:

V (ϕ) = 3M2
P H

2 − 2M4
P

(
dH

dϕ

)2

. (2.108)

It is straightforward to show that eqs. (2.104), (2.106) and (2.108) satisfy the Klein-Gordon equation
eq. (2.30) trivially.

Any solution of H(ϕ) may not necessarily be an attractor solution or may even evolve out of the
attractor trajectory. In order to verify the stability of the solution we have to employ numerical techniques,
but it might prove useful to first describe it analytically. Suppose there exists a solution to eq. (2.108), say
H0(ϕ) with a linear perturbation δH(ϕ). The linearised equation for the perturbation then becomes:

H ′0(ϕ) δH
′(ϕ) =

3

2M2
P

H0(ϕ) δH(ϕ) , (2.109)

which has the general solution

δH(ϕ) = δH(ϕ0) exp
(

3

2M2
P

∫ ϕ

ϕ0

H0(ϕ)

H ′0(ϕ)
dϕ

)
, (2.110)
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where δH(ϕ0) and ϕ0 denote initial conditions of the cosmological system. Therefore, if the linear pertur-
bations are decaying the attractor point is maintained and the solution is stable. To complete the analysis
of the attractor behaviour one is also required to study the phase space of solutions (ϕ̇− ϕ) (usually done
numerically). We discuss further the attractor behaviour of the cosmological systems in ch. 4, where we
consider specific inflationary models.

2.4 Parametrising Reheating after Inflation
In previous sections we demonstrated how inflation provides a solution to modern cosmological puz-

zles, while also making predictions of its own. One of its valuable features is the ability to dilute unwanted
energy densities appearing prior to inflation due to the exponential expansion of the universe. For any
particle species (relativistic or not) the matter and radiation densities decay as ρm ∝ a−3 ∼ e−3N → 0 and
ρr ∝ a−4 ∼ e−4N → 0, respectively, for N ≫ 1 (while vacuum densities like the inflaton’s remain constant).
In order then to obtain the large energy and entropy observed today it is postulated that another era exists
starting after the end of inflation, known as reheating, in which the universe thermalises.

Brief overview of reheating mechanisms

Perturbative reheating

Soon after the first models capable of describing the dynamics of inflation were proposed, the first
models of reheating were also suggested [52–54], contemplating the possible transfer of the energy density
of the inflaton to other fields coupled to it. The assumed interactions were purely perturbative and so the
decay rates were calculated in the usual way.

Let us introduce interactions of the inflaton with a massive scalar field χ and fermion ψ in the following
way:

Lint ⊃ −σ ϕχ2 − hϕψψ , (2.111)

where σ and h have to be small couplings1 to avoid large radiative corrections during inflation. Then, the
equation of motion for the inflaton field ϕ including also the effects of particle production reads [64]:

ϕ̈+ (3H(t) + Γ)ϕ̇+m2ϕ = 0 , (2.112)

where Γ is identified with the total decay rate, given by

Γ =
∑
i

Γ(ϕ→ χiχi) +
∑
j

Γ(ϕ→ ψjψj) . (2.113)

Here we assumed that the inflaton potential is V (ϕ) = (m2/2)ϕ2 + O(ϕ4). After the end of inflation we
can safely assume m ≫ H and H ∼ Γ (or even if H ≫ Γ specifically at the start of reheating), thus we
approximate the solution of ϕ(t) ≈ Φ(t) cos (mt) where the amplitude is assumed to be slowly varying
compared to the phase. Then, the equation of motion (2.112) admits the following solution

ϕ(t) ≈ ϕ0 exp
(
−1

2
(3H + Γ)t

)
cos (mt) . (2.114)

The evolution of the number density and energy satisfies the Boltzman equation

dz

dt
= −Γ z , where z = {a3nϕ, a3ρϕ} , (2.115)

1They are usually encountered in gauge theories with sponstaneously broken symmetries.
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and nϕ = ρϕ/m.
Since the couplings are assumed to be small based on perturbativity grounds, the inflaton field loses

energy at the start of reheating primarily due to the expansion of the universe. Only after the Hubble rate
has reached H ∼ Γ does the particle production take effect. The decay rates are not always comparable
to each other, meaning that some channels are more effective than others. If we assume the opposite, i.e.
the decay products are in thermal equilibrium, we can place an upper bound on the reheating tempera-
ture, under the assumption of instantaneous reheating with relativistic degrees of freedom g∗ ≈ 102 that
reads [64]

TR ≈ O(0.1)
√
MP Γ . (2.116)

We refrain from discussing further the phenomenological aspects, since they are model dependent and
the specific model of chaotic inflation assumed here as an example is already ruled out by observational
data (see fig. 2.4).

Unfortunately, the equation of motion eq. (2.112) does not account for all the dynamics of the infla-
ton field. For example, the equation should include fluctuations that are present in such systems with
dissipation [57]. Also, even if the couplings are small enough to satisfy perturbativity, there is still the
scenario that the phase space of χ-particles is densely populated and therefore Bose condensation effects
can enhance the decay rate [64]. The most crusial point however, is that the perturbative method fails (at
least in the initial stage); the inflaton condensate is a coherent homogeneous field that oscillates and there-
fore many inflaton particles decay simultaneous and not independent of each other. In other words, even
though we are justified in describing the inflaton field classically due its large amplitude of oscillations,
the decay products have to be treated quantum mechanically. Furthermore, for the perturbative reheating
to end one assumes a coupling of the inflaton to fermions, which further constrains the structure of the
theory allowing for reheating. In what follows we briefly describe some of the nonperturbative dynamics
of reheating.

Preheating & parametric resonances

The study of the early stage of reheating with nonperturbative techniques is usually referred to as
preheating and falls under the paradigm of particle production in the presence of strong background
fields. For illustrative purposes, let us consider once again the chaotic inflation potential. The total scalar
potential reads

V (ϕ, χ) =
m2

2
ϕ2 +

m2
χ

2
χ2 +

1

2
g2χ2ϕ2 . (2.117)

The classical equation of motion for the χ field is given by

χ̈− 1

a2
∇2χ+ 3Hχ̇+ Vχ = 0 . (2.118)

Expanding it in Fourier modes

χ(t,x) =

∫
d3k

(2π)3/2

(
akχk(t)e

−ik·r + a†kχ
∗
k(t)e

ik·r
)
, (2.119)

it satisfies

χ̈k + 3Hχ̇k +

(
k2

a2
+m2

χ + g2ϕ2(t)

)
χk = 0 , (2.120)

where ϕ(t) ≈ Φ(t) sin (mt). This is the equation for an oscillator with a varying frequency that is further
damped by the expansion of the universe 3Hχ̇. Then, we expect some modes k to parametrically excite
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themselves, similar to the case of a parametric oscillator. The above equation can be recast into the form
of a Mathieu equation by also disregarding the expansion of the universe H ≈ 0 at this point

d2χk

dz2
+ (Ak − 2q cos 2z)χk = 0 , (2.121)

where z ≡ mt is dimensionless and

Ak ≡
k2 +m2

χ

m2
+ 2q , q =

g2Φ2

4m2
. (2.122)

The instabilities appear for certain modes k that lead to exponential growth χk ∝ eµkz , where µk is
called the Floquet exponent and is nonnegative. The value of the q parameter leads to different types of
resonances; values of q < 1 introduce what is known as narrow resonances and q > 1 induce more efficient
resonance effects, broad resonances [57].

Finally, if the effective frequency of oscillations of the χ field were negative it leads to tachyonic
resonances, a scenario usually referred to as tachyonic preheating. This is achieved trivially in models with
negative couplings. Then, higher-order terms are added to ensure the overall stability of the system, but
only contribute during inflation and are unimportant during reheating. In some cases these tachyonic
instabilities prove to be even more efficient than the narrow and broad resonances.

Parametrising reheating

Undoubtedly, there is a high uncertainty concerning the theoretical part of reheating. As was illus-
trated there are different complicated processes one has to take into account, depending also on the type
of inflation preceding reheating. Furthermore, the period of our universe from the end of inflation until
the point of baryogenesis and Big Bang nucleosynthesis is relatively unknown.

Interestingly, we may parametrise the cosmic fluid during reheating by an effective constant equation
of state parameter wR. At the end of inflation the inflaton oscillates around its potential minimum,
essentially, between the point of complete kinetic domination (w = 1) and domination of the potential
(w = −1). Therefore, the universe at that time is properly described by w = 0 that increases as the inflaton
decays, reaching the radiation domination era of w = 1/3. In reality, the equation of state parameter
changes very quickly to w ∼ 0.25 at the first stages of preheating (e.g. see refs. [59, 120]) justifying the
assumption of a constant wR.

Apart from the state parameter wR, reheating is described also by its duration NR and its temperature
TR. By considering a history of the expansion of the scales from the point of horizon exit that we observe
at the CMB to horizon re-entry, we can relate the reheating parameters to the inflationary ones [65–70].
Generally, we assume that the inflaton field ϕ describes inflation for N e-foldings given a specific potential
V (ϕ), during which the comoving Hubble horizon decreases. Then, the reheating phase begins that grows
the comoving horizon for NR e-folds until the era of radiation domination is initiated. Finally, the radiation
era proceeds for Neq e-folds until the point of equilibrium. It is important to note that we assume instant
transition between each of these epochs and the state parameter w remains constant in each of them (see
fig. 2.5).

Each period’s duration is defined through its respective e-folds

N = ln
af
a∗
, NR = ln

aR

af
, Neq = ln

aeq

aR
, (2.123)

where af and a∗ are the scale factor values at the end and start of inflation, respectively. Similarly, aR and
aeq are the scale factor values at the end of reheating and end of radiation, respectively. Finally, a0 is the
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Figure 2.5: An example of the evolution of the comoving Hubble scale 1/aH displaying also the different epochs
with their associated number of e-foldings. The phase of reheating connects the inflation and radiation era.

present day value of the scale factor. Considering next the relation between a pivot scale k = a∗H∗ at the
start of inflation and the size of the present horizon a0H0, we obtain [66]:

k

a0H0
=
a∗H∗
a0H0

=
a∗
af

af
aR

aR

aeq

aeq

a0

HeqH∗
H0Heq

, (2.124)

∴ ln
k

a0H0
= −N −NR −Neq + ln

aeqHeq

a0H0
+ ln

H∗
Heq

. (2.125)

During the period of reheating we assume ρ ∝ a−3(1+w) and write the following

ρf
ρR

=

(
af
aR

)−3(1+wR)

=⇒ ln
ρf
ρR

= 3(1 + wR)NR , (2.126)

where ρf is the energy density at the end of inflation at field values of ϕ = ϕf , approximately described
by ρf ≈ 3V (ϕf )/2 with V (ϕf ) ≡ Vf the potential value at field value ϕ = ϕf . Then, solving the equation
above for the number of e-folds we obtain

NR =
1

3(1 + wR)
ln

(
3

2ρR
Vf

)
. (2.127)

The temperature and energy density are related by1

ρR =
π2

30
gR T

4
R , (2.129)

1A particle species with g degrees of freedom and µ chemical potential, has an equilibrium energy density

ρ = g

∫
d3p

(2π)3
E(p) f(p) , (2.128)

where f(p) = 1/ [exp ((E(p)− µ)/T )± 1] is the phase space distribution in momentum space with plus (minus) for Fermi-
Dirac (Bose-Einstein) statistics, and E(p) =

√
|p|2 +m2. In the case that T ≫ m, µ the integral is exactly solvable and it

leads to eq. (2.129). Interestingly, for nonrelativistic species, where T ≪ m, the energy density is exponentially vanishing
ρ ∝ T 3/2e−(m−µ)/T . Note also that at early times the chemical potential µ of all particles was tiny, such that we can safely
neglect it at this point.
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where gR denotes the relativistic degrees of freedom at the end of reheating. Substituting to the expression
for NR we obtain:

NR =
1

3(1 + wR)
ln

(
45

π2
Vf

gRTR
4

)
, (2.130)

From conservation of entropy between the transition of the reheating era to today, S ∝ g∗(aT )3, we
can write the following expression

gR (aRTR)
3 = gγ (a0Tγ)

3 + gν (a0Tν)
3 , (2.131)

where gγ is the photon and gν = 7
8 · 3 · 2 = 21/4 are three light neutrinos with(

Tν =
4

11
Tγ

)3

(2.132)

and Tγ ∼ 2.7K. Therefore, the reheating temperature is expressed as

TR = Tγ

(
a0
aeq

)
eNeq

(
43

11gR

)1/3

. (2.133)

Next, focusing on the term of a0/aeq we can write it down as

a0
aeq

=
a0H∗a∗
aeqk

=
a0H∗
k

a∗
af

af
aR

aR

aeq
=
a0H∗
k

e−Ne−NRe−Neq , (2.134)

introducing a factor of unity by means of the pivot scale k = a∗H∗. Finally, the temperature TR reads

TR =

(
Tγ a0
k

)(
43

11gR

)1/3

H∗e−Ne−NR . (2.135)

Expectantly, an increase in the number of e-foldings NR suggests a decrease in the reheating temper-
ature TR, and vice versa. The bounds on the actual reheating temperature are inferred from potential
impact on the lower-energy phenomenology. Meaning that temperatures below TR > 10MeV are ruled
out from BBN [121], but even temperatures close to the EW scale, TR ≳ 100GeV may affect baryogenesis
(while not strictly disallowed). On the other hand, an upper bound of TR ∼ 1016 GeV can be placed,
in order to avoid the restoration of a potential GUT symmetry right after inflation. This was a point of
intense research at early stages of the reheating paradigm, and it was also shown that in sypersymmetric
theories the upper bound can be relaxed to 109 GeV [122–125].

If there were stronger indications for the state parameter wR, then the scenario of reheating can be
better interpreted. However, we can assume an effective, constant wR in the range of

{
−1

3 , 1
}

, in which
wR = −1/3 is the minimum value required such that inflation terminates. From direct substitution of
eq. (2.135) into eq. (2.130) we obtain the following for NR

NR =
4

3(1 + wR)

N +NR + ln
k

a0Tγ
+ ln

V
1/4
f

H∗
+ ln

[(
45

π2

)1/4(11

3

)1/3

g
1/12
R

] . (2.136)

Now, this is an algebraic equation in NR that admits a straightforward solution depending on the value
of wR.
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Case of wR ̸= 1/3

Let us first assume that wR ̸= 1/3; then directly from eq. (2.136) it gives rise to

NR =
4

1− 3wR

−N − ln
V

1/4
f

H∗
− ln

k

a0Tγ
− ln

[(
45

π2

)1/4(11

3

)1/3

g
1/12
R

] . (2.137)

At the point of reheating and since we assume energy scales at least larger than the EW scales, we can
liberally assume that1

gR ≳
427

4
≈ 100 . (2.138)

Specifically, at a pivot scale of k = 0.05Mpc−1 we obtain the simplified version of this:

NR =
4

1− 3wR

61.6− ln
V

1/4
f

H∗
−N

 , (2.139)

which after some algebra leads to the following expression for the temperature

TR =

{(
43

11gR

)1/3(Tγ a0
k

)
H∗e−N

(
45

π2
Vf
gR

)− 1
3(1+wR)

}3(1+wR)/(3wR−1)

. (2.140)

Case of wR = 1/3

In the special case of wR = 1/3 it is straightforward to show that eq. (2.136) leads to

N = 61.6− ln
V

1/4
f

H∗
, (2.141)

following also what we assumed in the previous case. This can be seen as a constraint on the duration
of inflation, through N , or the predicted value of ns, and is a general feature of the scenario known as
instant reheating suggesting that the period of radiation starts immediately after inflation. In that case
the reheating temperature TR takes its maximum allowed value depending primarily on the model of
inflation.

There is a particular connection of the reheating and inflation periods (specifically the SRPs) that is
apparent by using the definition of the tensor-to-scalar ratio, eq. (2.99), at the pivot scale k = a∗H∗

r =
2H2
∗

M2
P π

2As
(2.142)

and the slow-roll approximation r ≈ 16ϵV to obtain [70]:

H∗ ≈MP π
√

8As ϵV (ϕ∗) . (2.143)

Finally, assuming a precise inflationary model and its potential V (ϕ) we can express its value Vf at the
end of inflation in terms of SRPs and therefore the values of NR and TR are expressed explicitly in terms
of them. Further discussion on the model-dependent part of reheating is left for a later chapter (ch. 4),
in which we investigate if different inflationary models can support a reheating period, and if so under
what conditions.

1The proposed number of gR conservatively only includes the SM degrees of freedom. It is natural to expect beyond the
Standard Model (BSM) degrees of freedom coming from the sought-after UV completeness of the theory to increase the value
of gR, but even if one assumes gR ≈ O(103) the number of e-folds NR and the reheating temperature TR are largely unaffected,
attributed to the small dependence on the actual value of gR.
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3

First-order formalism

Inevitably Einstein’s astonishing insight has to be mentioned when one discusses the General theory of
Relativity. It is based on his realisation that an observer that is freely falling in a frame does not experience
gravity and therefore its effects are indistinguishable from those in an accelerating frame. What is today
known as the Einstein Equivalence Principle (EEP), led him to a beautiful theory capable of explaining or
describing most of gravitational physics, which, with the discovery of gravitational waves by LIGO [23],
is still validated today, hundred years after its inception.

The key observation extracted from EEP is that gravity is better understood as the curvature of space-
time unlike the other external forces of nature. Later this had an immense impact on the future of
theoretical physics, and, together with seminal works of others after Einstein, led to a “geometrisation”
of physics and the way we approach physics altogether (e.g. gauge theories, string theory, etc). General
Relativity, described by the Einstein-Hilbert action, is nested in the language of Riemannian geometry and
(at that time) pioneer works on differential geometry and 19th century tensor calculus, which are applied
even today (with a more convenient notation).

Immediately after its inception, modifications to GR had been proposed, albeit driven at first primarily
by scientific curiosity. That avenue of exploration was later legitimised by the need for new features
that GR, as formulated by Einstein, does not include. For example, alternatives to GR such as the loop
quantum gravity (LQG) program [126–128] attempt to construct a quantum theory of gravity, or others
like the Kaluza-Klein or string theory models that attempt to unify gravity with other fundamental forces.

Interestingly, around the same time when GR was first formulated, E. Cartan in the 1920s developed
a very different type of differential geometry, based on differential forms and fiber bundles [129–131].
Actually, most of Cartan’s important contributions were developed around that time. Pertaining to GR,
he considered other bundles other than the tangent bundle and other connections other than the Levi-
Civita one. This was also unfruitfully pursued by H. Weyl [132] and others around the same time. Cartan’s
generalisation of Riemannian geometry and, in particular, the more general connections were discovered
(or more appropriately reconsidered) by physicists much later, in the works of Yang and Mills (1954) [133].
Today, interactions in nature are described by a gauge field (or connection). Attempts to modify GR by
generalising the connection, or more importantly the underlying geometry, are nowadays prominent even
if they are rather divisive with respect to the metric and connection based formulations.

There are a plethora of reasons why one should consider GR as a theory of connections (much like
Yang-Mills), but historically, and most appealing, is the attempt to also canonically quantise gravity.
With the development of gauge theories it was understood that they are dependent on connection 1-
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forms1 (taking values of the same gauge group) and alongside their conjugate momenta we attempt to
analyse their Hamiltonian formulation. It turns out that applying the usual Hamiltonian analysis to GR
leads to many problems, for example the fact that the Hamiltonian constraints are non-polynomial in the
canonical variables, as well as ordering problems of their respective operators. However, in the 1980s
Ashtekar showed [126, 135] by extending the (Palatini) action to complex values that the constraints were
now closed and polynomial, with the caveat that one has to now impose reality conditions on the metric.2

More recently, developments regarding the Jackiw-Teitelboim (JT) gravity [136–138] - a starting point in
discussing nonperturbative quantum aspects of (lower dimensional) gravity - were made using its first-
order formulation (e.g. see refs. [139, 140]). All of the above considerations concern quantum phenomena
and owe to the fact that the first-order formulation involves momentum independent cubic interactions
as opposed to the second-order (or metric) formulation that involves momentum dependent three-point
and more vertices [141].

There is a recent effort in describing gravity in a connection-based language that can also be applied
to lower energies. Typically, the two variational principles coincide (on-shell) for the Einstein-Hilbert
action [45], but when one assumes extensions that include nonminimal couplings with the matter sector
or the introduction of higher-order curvature invariants in the theory, the two formalisms lead to wildly
different results, that can potentially differentiate between the two formalisms (see ref. [142] for a review).
These types of modifications are especially popular in recent inflationary models and appear in a variety
of cosmological studies, which are in principle classical but incorporate some quantum phenomena.

In this chapter, we begin by recalling some of the key features of the metric formulation of the Einstein-
Hilbert action, which are later related and compared to its Palatini formulation. Especially, the derivation
of the Einstein field equations is described in great detail for the same reason. Following that, we discuss
the Palatini variation and the concept of a metric-affine connection. First we parallelise the discussion of
the first- and second-order formulation of gravity with the analogous first- and second-order formulation
of Electromagnetism. After that we introduce the notion of a metric-affine space and its primary compo-
nents, the torsion, metricity and curvature tensors. Then, we are ready to apply the Palatini variation to
the Einstein-Hilbert action and derive the complete set of field equations for the dynamical variables in
the theory. The point of classical equivalence of the Einstein-Hilbert action between the two formulations
is further stressed and is followed by a brief discussion on their possible equivalence at the quantum level.

3.1 Metric formalism resivited
The most essential and revolutionary concept in GR, as opposed to Newtonian gravity, is the notion

of spacetime. By incorporating the gravitational force into relativity we are led to a generalisation of the
Minkowskian spacetime (R4, η) to a four-dimensional Lorentzian manifold with a Lorentzian (nondegen-
erate and symmetric) metric, (M,g), defined at each point p ∈ M. The idea of a curved manifold is crucial
to GR, since it can provide a local description of Euclidean space at each point p ∈ M (EEP). Additionally,
another assumption is that any test-object with positive mass follows a timelike curve in M, which in the
case of free fall is a geodesic.

1In fact, fiber bundles have allowed us to understand the global (or nonperturbative) aspect of these theories. For example
the gauge field Aa

µ in Yang-Mills theory are connections on principal bundles and not just local 1-forms. Also, the Yang-Mills
instanton is actually the nontrivial class of the principal bundle underlying the gauge field [134]. In similar fashion fiber bundles
govern other topologically nontrivial dynamics, for example quantum anomalies (not globally well-defined action functionals)
are understood as statements of nontrivialisability of bundles.

2Later development along those lines led to LQG with many interesting and promising results (see ref. [128] for a review),
further solidifying the search for a connection-oriented gravity.
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The metric tensor at some point can be considered as a matrix gµν(p) that is dependent on the choice
of coordinates. However, due to its symmetry1 (g[µν] = 0) it can be diagonalised and its eigenvalues are
coordinate independent. In fact, we can choose a base in which the eigenvalues are +1 and −1 and vary
smoothly with p. The concept of distances in spacetime is encapsulated in the invariant line element

ds2 = gµν dx
µ ⊗ dxν , (3.1)

with the help of the metric tensor.
Together with the metric tensor, the manifold is also endowed with a connection ∇ that clarifies the

idea of parallel transporting data in a curved spacetime. Specifically, it is in the form of a covariant
derivative that measures the change of a vector field after being parallel transported in another direction.
Think of a curve γ : I → M with two vector fields, uµ and vµ, along that curve. The inner product of
gµνu

µvν changes along the curve γ

γ̇ρ∇ρ (gµνu
µvν) = γ̇ρuµvν ∇ρ gµν , (3.2)

unless ∇ρ gµν = 0. This is known as the metric-compatibility condition. Then, for a Lorentzian metric g
there is only one connection that satisfies that condition, the Levi-Civita connection, characterised by its
connection coefficients Γρ

µν , known as the Christoffel symbols and are given in terms of the metric tensor
as

Γρ
µν =

1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) ≡ {µρν} . (3.3)

Given now a covariant derivative one can define the curvature on the manifold

Rµνρ
σbσ = 2∇[µν]bρ , (3.4)

where bµ is a 1-form. The rank (1, 3) tensor Rµνρ
σ is known as the Riemann curvature tensor and has

many properties; most important are the following: Rµνρ
σ = −Rνµρ

σ, R[µνρ]
σ = 0 and ∇[λRµν]ρ

σ (Bianchi
identity). Due to its symmetries the Riemann tensor has n2(n2 − 1)/12 independent components (20 in
n = 4 dimensions). We pay extra attention to the idea of these tensors on M in section 3.2 and refer the
reader there (and the vast literature on the subject e.g. refs. [143–146]) for more details .

The actual dynamics of gravity are encoded in its Lagrangian that is a scalar function on M. Besides
that, we also demand that the Euler-Lagrange equations of the system are up to second order in derivatives
of the metric tensor g.2 From contracting the Riemann tensor we are provided with a scalar quantity, the
Ricci scalar (or scalar curvature)

R ≡ gµν Rµν , (3.5)

where Rµν = gρσRµρνσ is known as the Ricci tensor. Finally, we can consider the action3

SEH [g;V] = M2
P

2

∫
V
dvolR[g] , (3.6)

1The symmetry stems from the definition/creation of the metric tensor through its definition of the spacetime interval
equation, or the invariant line element. Since we have [dxµ, dxν ] = 0 only the symmetric part of gµν contributes and we may
as well assume that it is symmetric. In turn it ensures that the norm of vectors ∈ Γ(TM) is nonnegative and the angle between
them does not depend on the order chosen.

2Usually, that point becomes nontrivial when one considers generalisations of GR. It is not obvious how in GR a Lagrangian
containing nondegenerate second-order derivatives ∂2g does not lead to Ostrogradski instabilities [147], that essentially state
that if that is the case the Hamiltonian of the system has at least one linear instability. In fact, GR falls under the “blanket”
theory of Lovelock gravity [148], in which conserved second-order equations of motion can be produced in arbitrary spacetime
dimensions.

3Suppose we ignore the reduced Planck mass for a moment. Then, in order for the action to have the right dimensions, i.e.
time×energy (like ℏ), a factor of c3/(16πG) has to be included [146]. Here, c is the speed of light and G is Newton’s constant
and plays the role of the coupling constant of gravitational interactions. If one is interested mainly in studying gravitational
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3. First-order formalism

where V is a domain of (M,g) and dvol denotes the infinitesimal volume element generated by the metric
field g, which in local coordinates reads dvol =

√−g d4x (here g denotes det(gµν)).

Principle of least Action & Field equations

According to the Action Principle, also known as the Variational Principle, acceptable solutions of the
physical system have to be stationary points of the Lagrangian density. In this way, we derive partial
differential equations for the tensor fields, named the Euler-Lagrange equations. These then lead to the
equations of motion for the system.

Before we derive the field equations for the Einstein-Hilbert action, let us consider first a compact
variation of the metric tensor

δgµν =
dgµν(ε)

dε

∣∣∣∣
ε=0

, (3.7)

where ε is a small parameter and

gµν(ε) = gµν + ε δgµν +O(ε2) . (3.8)

Note also that, in order to retain gµρ gνρ = δνµ at first order in ε, it follows that gµν(ε) = gµν−ε δgµν+O(ε2).
Then, for the field gµν to be stationary in S for any compact variation gµν(ε) it suffices that

dS(ε)
dε

∣∣∣∣
ε=0

≡ δS
δgµν

= 0 , (3.9)

where we adopted the shorthand notation S(ε) ≡ S[gµν(ε);V].
Let us apply the above procedure in the case of the Einstein-Hilbert action, while also disregarding

the proportionality constant M2
P /2 for the time being. For the volume element we trivially obtain

δ (dvol) =
1

2
d4x

√−g gµνδgµν = −1

2
d4x

√−g gµνδgµν . (3.10)

Therefore, by distributing the variation for the Ricci scalar as δR = δgµνRµν + gµνδRµν we obtain:

δSEH

δgµν
=

∫
V
d4x

√−g
{
Rµν −

1

2
gµνR

}
δgµν +

∫
V
d4x

√−g gµνδRµν . (3.11)

Let us ignore the second integral at this moment; we show later that it is a total derivative and does
not contribute to the equations of motion of the system. If we also allow for the possibility of matter fields
living on the gravitational background we can extend the total action describing the system by

Stot = SEH + Sm , (3.12)

phenomena, e.g. black holes, they can safely set c = 1 = G, incidentally equating mass with length dimension. However, by
fixing ℏ = 1 allows us to rewrite the dimensional factor as

ℏc
8πG

≡ M2
P ,

known as the (reduced) Planck mass. It is then better to set c = 1 = ℏ. Lastly, the fixing of c = ℏ = G = 1 seems nonsensical,
seeing that all of the dimensionful parameters in the theory are now eliminated alongside with our ability to apply dimensional
analysis.
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3.1. Metric formalism resivited

where Sm[ϕ,g] =
∫
d4x

√−gLm[ϕ,g] denotes the matter action over a configuration of fields denoted
collectively by ϕ. Likewise, we can write the variation of the matter action as

δSm

δgµν
=

∫
V
d4x

√−g
{
∂Lm

∂gµν
− 1

2
gµνLm

}
δgµν (3.13)

and define the energy-momentum tensor that describes the energy density and momentum distribution
of the system as

Tµν ≡ 2√−g
δSm

δgµν
=
∂Lm

∂gµν
− 1

2
gµνLm . (3.14)

Note that the tensor is symmetric by construction - a fundamental feature of matter fields. Finally, we are
led to the Einstein field equations, which read

Gµν({ }) ≡ Rµν −
1

2
gµνR = Tµν , (3.15)

where we should point out that the Einstein tensor Gµν is dependent entirely on the metric denoted by
the short-hand notation { } of the Christoffel symbols (3.3). Notice that by means of the Bianchi identity
∇µGµν = 0 the divergence of the energy-momentum tensor implicitly vanishes, ∇µTµν = 0.

Equation (3.15) is the central point in understanding the dynamics of different systems describing
gravitational interactions. In order to do that we have to solve the system of differential equations, either
by numerical methods or by imposing even more constraints on the allowed symmetry of the system at
hand. Historically, by following the second way, cosmological solutions (FRW metric) were found that are
capable of describing the dynamics of the cosmos and also black hole solutions (e.g. Schwarzschild met-
ric). The case of cosmological solutions, specifically the FRW metric, plays a crucial role in understanding
inflation and as such it is discussed in detail in a previous ch. 2.

The York-Gibbons-Hawking term

Let us return to the second integral in the RHS of eq. (3.11). We need the variation of the Ricci tensor,
which after using the Palatini identity yields

δRµν = ∇ρ (δΓ
ρ
µν)−∇ν (δΓ

ρ
µρ) . (3.16)

A way to see why this is the case is to think of a point p ∈ M where the Christoffel symbols vanish. The
total variation of the connection coefficients reads

δΓρ
µν =

1

2
gρσ (∇µδgσν +∇νδgµσ −∇σδgµν) . (3.17)

Then, after some manipulation of the indices and using the metric-compatibility condition it is straight-
forward to show that∫

M
d4x

√−g gµνδRµν =

∫
M
d4x

√−g ∇µ (g
µν δΓρ

ρν − gνσ δΓµ
νσ) ≡

∫
M
d4x

√−g ∇µV
µ , (3.18)

where V µ is a vector field in M. By means of the Stokes theorem we can express the resulting integral as∫
M
d4x

√−g∇µV
µ =

∮
∂M

dΣµ V
µ =

∮
∂M

ϵ V µnµ
√
|det(h)| d3x′ . (3.19)

We denote by nµ the unit normal to ∂M, and gµν = ϵnµnν + hµν with hµν playing the role of the induced
metric on the boundary. Here ϵ = nµnµ is +1 (−1) if ∂M is timelike (spacelike).
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3. First-order formalism

Next, we assume that the variation of the metric field vanishes on the boundary, meaning δgµν |∂M = 0,
and therefore its covariant derivatives become simple derivatives. After some tedious manipulation of the
indices one can show that the integral becomes∮

∂M
ϵ V µnµ

√
|det(h)| d3x′ = −

∮
∂M

ϵ hµν (∂ρδgµν)n
ρ
√
|det(h)|d3x′ . (3.20)

Therefore, in order to properly define the compact variation of the Einstein-Hilbert action the boundary
term, known as the YGH term [149, 150] has to be added, such that this contribution is exactly canceled.
It is not difficult to see that the above term is the variation of δ(∇µn

µ), and thus the desired term reads

SY GH =

∮
∂M

d3x
√
|det(h)| ϵK =

∮
∂M

d3x
√
|det(h)| ϵ∇µn

µ , (3.21)

where K is the trace of the intrinsic curvature.
Even though the addition of this term has incredible physical significance we are not interested in its

application in this work. Furthermore, it will become apparent that in its first-order formulation the YGH
term is redundant with respect to the completeness of the variational principle.

3.2 Palatini variation
In the first-order or Palatini formulation of gravity the metric and the connection do not have an a

priori dependence on one another. In other words, the connection coefficients Γρ
µν are not necessarily

given by the Levi-Civita condition (3.3), but instead they are dynamically obtained at the level of the
equations of motion, since now the action includes two dynamical degrees of freedom, namely the metric
field and the connection. This particular idea falls under the class of metric-affine spaces, in which unlike
other generalised connections, they allow for metric-compatibility and torsion.

Analogy with tree-level Yang-Mills theory

Before discussing further the concept of metric-affine spaces, let us provide a brief comparison with
the first-order formulation of a Yang-Mills (YM) theory. In its first-order formulation, the Lagrangian for
a free SU(2) Yang-Mills field reads

LYM =
1

4
F a

µνF
aµν − 1

2
F a

µν

(
∂µAaν − ∂νAaµ + gfabcAbµAcν

)
, (3.22)

where at this point the fields Aa and F a are assumed to be completely independent and dynamical
variables of the system. Here, g is the coupling constant and fabc are the structure constants. Then,
variation of the Lagrangian gives rise to the following equations of motion

∂µF
aµν = 0 , (3.23)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (3.24)

Combining the two equations we are led to the same equation that describes the same classical dynamics
with its usual (second-order) formulation, on-shell. Also, both formulations are invariant under local
gauge transformations of the form:

δF a
µν = gfabcF b

µν θ
c , δAa

µ = ∂µθ
a + gfabcAb

µ θ
c . (3.25)
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3.2. Palatini variation

Notice the parallels between the YM theory and GR, in which the role of Aa is played by the metric
tensor g and the one of the field-strength F a by the connection Γ. In the case of the interacting YM theory
we have to make further assumptions, e.g. that the interacting Lagrangian is explicitly independent of ∂Aa

such that the Noether current is unaffected. Equivalently, by considering interactions between (Palatini)
gravity and matter fields we are led to assumptions regarding the underlying geometry of that theory as
well.

There is a point to be made regarding the path integral quantisation of these two formulations, specifi-
cally for the case of the Yang-Mills field. The form of the Lagrangian (3.22) suggests that we should expect
two propagators (AA) and (FF ), alongside a mixed propagator (AF ) and a vertex ⟨AAF ⟩. However, if
we perform a shift of

F a
µν −→ F a

µν + (∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν) , (3.26)

the path integral becomes, neglecting the ghost-fixing terms, [151–153]∫
[DAa

µ][DF a
µν ] exp

(
i

∫
ddx

(
1

4
F a

µνF
aµν + L (II)

YM [Aa]

))
, (3.27)

where L (II)
YM denotes the second-order formulation implicitly dependent solely on Aa.

Then, the integral over F 2 decouples, recovering the known path integral for the Yang-Mills theory.
In this case, we obtain two propagators of (AA) and (FF ) alongside two vertices ⟨AAA⟩ and ⟨AFF ⟩, but
there is not a mixed propagator of the vector potential and the field strength. Thus, by performing a
different kind of shift we can in principle exploit the fact that we can “change” the Feynman rules in YM,
and apply it in GR. This subject is beyond the scope of this work, however some aspects of path integral
quantisation will be raised in a following section.

Metric-affine spaces

A metric-affine space is defined by (M,g,∇), where M is a differentiable manifold with a metric g and
a linear connection ∇ (e.g. see ref. [154]).1 Formally, the affine connection is defined as the map [155]

∇ : Γ(TM)× Γ(TM) → Γ(TM) , (3.28)

where Γ(TM) denotes the collection of vector fields on M. The idea is to connect information about
tensor fields evaluated at one point p ∈ M with their values at some other point, say q ∈ M. At any point
p ∈ M we can define the connection coefficients on the tangent bundle TpM in a coordinate basis eµ as
follows

∇eµeν = Γρ
µνeρ , (3.29)

where Γρ
µν are the components of the connection or connection coefficients. To relieve some of the notation

we adopt the usual notation of ∇µ ≡ ∇ϵµ .
The connection satisfies the following conditions

∇X(Y + Z) = ∇XY +∇XZ , (3.30)
∇(fX+hY )Z = f∇XZ + h∇Y Z , (3.31)

∇X(fY ) = f∇XY + (∇Xf)Y , (3.32)
1The notation can be potentially confusing; in fiber bundle theory ∇ represents the covariant derivative while Γ denotes

the connection 1-form. Keeping with relativistic physics notation, we regularly refer to the connection coefficients Γρ
µν as the

connection, and not its map ∇. We rely to context in order to resolve any further misunderstanding caused by this abuse of
notation.
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3. First-order formalism

where X,Y, Z are vectors on M and f, h are smooth real-valued functions. To touch base with the usual
definition of the connection in GR, we apply the covariant derivative as:

∇XY = ∇X(Y µϵµ) = Xνϵν Y
µϵµ +XνY µ∇νϵµ = Xν (ϵνY

µ + Γµ
ρνY

ρ) ϵµ . (3.33)

Since Xν can be factored out we denote ∇XY = ∇νY . Finally, if we assume a coordinates basis with
ϵµ = ∂µ we can write it in components:

∇νY
µ = ∂νY

µ + Γµ
ρνY

ρ . (3.34)

The action of the covariant derivative can be unambiguously generalised to tensor fields of general rank
(p, q) in the following way

∇ρ T
µ1µ2...µp

ν1ν2...νq = ∂ρ T
µ1µ2...µp

ν1ν2...νq + Γµ1
ρσT

σµ2...µp
ν1ν2...νq + . . .+ Γ

µp
ρσT

µ1µ2...µp−1σ
ν1ν2...νq+

− Γσ
ρν1T

µ1µ2...µp
σν2...νq − . . .− Γσ

ρνqT
µ1µ2...µp

ν1ν2...νq−1νq . (3.35)

For every upstairs index we get a contribution of ΓT , while for a downstairs one we obtain −ΓT , with the
appropriate index contraction.

Torsion

It is straightforward to show that the connection is not in fact a tensor itself. However, two other
tensors can be defined from it. One of them is a rank (1, 2) tensor, the torsion tensor, defined through its
action on X,Y ∈ Γ(TM) and 1-form ω ∈ Λ1(M) as [156]

T (ω;X,Y ) = ω (∇XY −∇YX − [X,Y ]) . (3.36)

In coordinate basis eµ = ∂µ and dual basis aµ = dxµ we can rewrite it as:

T ρ
µν = aρ (∇µϵν −∇νϵµ − [ϵµ, ϵν ]) = Γρ

µν − Γρ
νµ = 2Γρ

[µν] , (3.37)

where we used [∂µ, ∂ν ] = 0. The torsion tensor is manifestly antisymmetric in its lower indices and manifolds
that are torsion-free, i.e. the torsion tensor vanishes, admit an additional symmetry of the connection,
namely Γρ

[µν] = 0. However, it should be stressed that this potential symmetry relies on the condition
that the commutator of the basis vectors on TpM vanishes.

There is a simple example that further illustrates the significance of torsion on the manifold. Suppose
two vectors X,Y ∈ TpM with coordinates xµ; then we can write X = Xµ∂µ and Y = Y µ∂µ. Starting from
some point p ∈ M we can construct two other points very close to p, say p1 and p2, using the vectors X,Y ;
these are:

(p1) : x
µ +Xµε , (p2) : x

µ + Y µε , (3.38)

where ε is an infinitesimal parameter. Next, we parallel transport the vectors with respect to each other,
forming new vectors with components

X ′ = (Xµ − εΓµ
νρY

νXρ) ∂µ , Y ′ = (Y µ − εΓµ
µρX

νY ρ) ∂µ . (3.39)

These new vectors form two new points, q1 and q2 respectively; their coordinates are

(q1) : x
µ + (Xµ + Y µ)ε− ε2Γµ

νρY
νXρ , (3.40)

(q2) : x
µ + (Xµ + Y µ)ε− ε2Γµ

νρX
νY ρ . (3.41)
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3.2. Palatini variation

Then we can see that the difference of the two resulting vectors is

∝ (T ρ
µν)X

µY ν . (3.42)

Therefore, we can think of the torsion tensor as a “measurement” of the (in)ability of the (infinitesimal)
parallelogram to close. This point is further illustrated in fig. 3.1.

p
p1

p2

q2

q1

X

Y
X ′

Y ′

Figure 3.1: The infinitesimal parallelogram formed by parallel transporting vectors X and Y along each other, and
its non-closure due to nonvanishing torsion.

Another subtle point is that if we include matter on the manifold, which is the main goal of this work,
the covariant derivatives do not commute; especially for a scalar field

∇[µ∇ν]ϕ ∝ T ρ
µν∇ρ ϕ . (3.43)

There has been a large amount of work on theories based on torsion. Historically, torsion was first con-
sidered to be directly sourced by spin. This was first seen in the works of Cartan and later by Kibble [157]
and Sciamma [158]. The Einstein-Cartan-Kibble-Sciamma theory [159] is one of the most fundamentally
sound attempt to include spin-matter fields. Since then, more works have been put forth starting as mod-
ifications to what is known as the teleparallel equivalent of GR1 [160], like the f(T ) gravity (see ref. [161]
and references therein), in which T is the trace of the torsion tensor assuming the role of the gravitational
field. These works are primarily focused on cosmology and as such remain classical in nature, but provide
a meaningful test of these theories against the best available cosmological data with the added possibility
of falsifying them in the future. In these works (and others related also to nonmetricity) we frequently
meet the torsion tensor in linear combinations, such as the contorsion tensor defined by

Kµν
ρ ≡ Tµ

ρ
ν − T ρ

µν − Tµν
ρ , (3.44)

or through some of its contractions or trace. The subject of torsion is impressively deep, along with its
applications, however we refrain from discussing it further, after all in the next chapter (ch. 4) where we
apply the same formalism to inflation, we manage to circumvent the issue of torsion altogether.

1This is an equivalent description of GR formulated solely by the trace of the torsion tensor,
∫
MT dvol.
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3. First-order formalism

(Non)Metricity

Following what we have discussed in previous sections, one can impose another condition known as
the metricity or metric-compatibility condition, requiring that the affine connection “covariantly preserves”
the metric

∇X(g) = 0 =⇒ ∂ρgµν − Γσ
ρµgσν − Γσ

ρνgµσ = 0 . (3.45)

That is the sole condition imposed on the affine connection in the original works of Cartan. It ensures
that the inner product of two vectors is invariant under parallel transport over any curve, which is also a
consequence of the EEP.

Since the connection is a tensor it must obey the Leibniz rule (linearity) and therefore it satisfies

∇ (X ⊗ Y ) = (∇X)⊗ Y +X ⊗ (∇Y ) . (3.46)

Then, we can also say ∇µX
ν = (∇X)µ

ν and consider ∇X as a rank (1, 1) tensor. Therefore we have,

gρν∇µX
ν = gρν(∇X)µ

ρ = (∇X)µν = ∇µXν , (3.47)

but also,
∇µXν = ∇µ(gρνX

ρ) = gρν∇µX
ρ + (∇µgρν)X

ρ . (3.48)

Clearly now for this to be consistent we must require that the nonmetricity tensor vanishes, namely Qρµν ≡
∇ρgµν = 0. In fact, this is another way of applying the metricity condition, since we assume that the metric
is able to relate covectors and contravectors. Further than that, in a topological space we can have more
than one connection but only one of them is going to be compatible with the metric if we also require
Γρ

[µν] = 0.

γ ∈ M

X

Figure 3.2: Variation of the length of a vector X as is transported along a path, due to the nonvanishing of the
nonmetricity tensor.

Similar to torsion, there are (classical) theories being developed that attempt to describe gravitational
interactions using only the nonmetricity tensor.1 The studies are also focused mainly on cosmology and
testing the theories against observational data [162]. A general class of them is dubbed f(Q) gravity
theories [163] and is described by a general function of the trace of the nonmetricity tensor Q, which is
given by

Q = −gµν (Lρ
σµL

σ
νρ − Lρ

σρL
σ
µν) , (3.49)

where
Lρ

µν ≡ 1

2
gρσ (Qσµν −Qµσν −Qνσµ) (3.50)

1Once again, in complete analogy with the case of the torsional description of GR, there exists an equivalent description of
GR utilising (contractions of) the nonmetricity tensor,

∫
MQdvol.
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3.2. Palatini variation

defines the disformation. In these theories the torsion tensor and the curvature are “turned off”, which
defines the covariant derivative on M. This is usually done by implementing Lagrange multipliers in the
theory.

Curvature: Riemann tensor and its contractions

For the sake of completeness let us include the other tensor we can build out of the connection. That is
a rank (1, 3) tensor that we have already briefly covered, the curvature tensor, known also as the Riemann
tensor defined as the action on X,Y, Z ∈ Γ(TM) and ω ∈ Λ1(M)

R(ω;X,Y, Z) = ω
(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z

)
. (3.51)

In components it reads Rρ
σµν = R[aρ; ϵσ, ϵµ, ϵν ], and with ϵµ = ∂µ and aµ = dxµ it is expressed as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γλ

νσΓ
ρ
µλ − Γλ

µσΓ
ρ
νλ , (3.52)

where once again [∂µ, ∂ν ] = 0 was used. Notice that the Riemann tensor is antisymmetric in its last two
indices Rρ

σ(µν) = 0 if the torsion tensor vanishes.
From the Riemann tensor we can build the Ricci tensor by contraction, namely

Rρ
µρν ≡ Rµν , (3.53)

with R[µν] = 0 again attributed to the vanishing of the torsion tensor. Next, by contracting the last two
indices with the metric tensor the scalar curvature on the manifold is formed, known also as the Ricci
scalar - given by R ≡ gµνRµν - which takes the spotlight in GR and has an essential role in the theories
proposed to modify GR; discussed in detail in the next chapter.

If we allow for a general transformation of the form Γρ
µν 7→ Γρ

µν + Γ̂ρ
µν that relate two different

(metric-affine) connections, the Riemann tensor transforms as

Rρ
σµν(Γ) −→ Rρ

σµν(Γ) + 2 Γ̂ρ
[µ|λΓ̂

λ
ν]σ + 2∇[µΓ̂

ρ
ν]σ + T λ

µνΓ̂
ρ
λσ . (3.54)

Likewise, the torsion and nonmetricity tensors become

T ρ
µν(Γ) −→ T ρ

µν(Γ) + 2 Γ̂ρ
[µν] , (3.55)

Qρµν(g,Γ) −→ Qρµν(g,Γ)− 2 Γ̂(µ|ρ|ν) . (3.56)

A menagerie of geometrical spaces and theories

All of the above can muddle the perception of the underlying geometry of a gravitational theory. In
fig. 3.3 we hope to address any misconceptions and illustrate how these spaces correspond to GR, at least
diagrammatically. We start with the most general concept of a general metric-affine space (M,g,∇) with
a nonzero torsion and nonmetricity tensor, T ̸= 0 ̸= Q. Historically, by assuming the metric-compatibility
condition, Q = 0, we are led to the (Riemann-)Cartan spaces. Even further, by switching off the torsional
contribution GR is recovered, or (pseudo-)Riemannian spaces in general. On the other hand, the condition
that R = 0, alongside the condition of metric-compatibility, produces the Weitzenböck spaces, in which
the original notion of teleparallism was born by Einstein some years after his proposal of GR. A metric-
affine space with vanishing torsion, T = 0 is known as a Weyl space. Clearly, if we also impose that Q = 0
we once more obtain a Riemann space. Finally, any Riemann space with zero curvature is a Euclidean or
flat space.
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Weyl spaces

Metric-affine spaces
(M,g,∇)

Riemann-Cartan spaces

Riemann spaces
(M,g) Weitzenböck spacesEuclidean spaces

T
=
0

Q
=
0

Q
=
0 T

=
0

R
=
0R = 0

Figure 3.3: A diagrammatic representation of the connection between the geometrical spaces discussed in this
chapter and their relation to the general metric-affine space.

As far as GR is concerned there exist equivalent representations following the definitions given in fig. 3.3.
The equivalence is based on classical phenomena (currently), and holds only in vacuum, meaning no
interactions, minimal or nonminimal, with other matter fields. In fig. 3.4, the equivalence between the
different formulations is depicted by the arrows. Incredibly, all of them allow for a massless spin-2 field
(graviton) respecting the equivalence principle. This topic is beyond the scope of this work and as such
we refer the reader for more details to ref. [164] and references therein. It suffices to say that there is an
extensive literature on generalisations of each of these equivalent descriptions considering modifications
and extensions to them, similar to modifications of GR.

General Relativity
Rµ

νρσ

T ρ
µν = 0 = Qρµν

Teleparallel GR
T ρ

µν

Rµ
νρσ = 0 = Qρµν

Symmetric teleparallel GR
Qρµν

Rµ
νρσ = 0 = T ρ

µν

Palatini formulation of GR
g, Γ

on-shell

Figure 3.4: The equivalent representations of GR expressed solely in terms of torsion or nonmetricity. The first-order
formulation of GR is not intrinsically an equivalent representation but a reparametrisation of the gravitational
degrees of freedom. The above diagram holds only at tree-level.
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3.2. Palatini variation

Variational Principle & dynamical generation of Levi-Civita connection

After being acquainted with the concept of a metric-affine connection, let us apply this idea to the
Einstein-Hilbert action. In this case it reads as

SEH [g,Γ] =
M2

P

2

∫
d4x

√−g gµν Rµν(Γ) , (3.57)

where the scalar curvature is split into its metric-dependent part,
√−g gµν , and the one purely dependent

on the connection (and its derivatives) Rµν(Γ). The action contains two (potentially) dynamical degrees of
freedom, the metric and the connection, and thus we have to consider variation of the action with respect
to both.

Since the connection is not the Levi-Civita, the symmetries of the Riemann tensor do not hold in
general. This means that there is actually multiple ways to construct the Ricci tensor. In fact, there are
two ways to contract the indices of the Riemann tensor

Rµν = Rρ
µρν and Rµν ≡ Rρ

ρµν . (3.58)

The first is the one used in conventional GR, defined as

Rµν = 2 ∂[ρΓ
ρ
µ|ν] + 2Γρ

σ[ρΓ
σ
µ|ν] , (3.59)

while the other one is given by
Rµν = 2 ∂[µΓ

ρ
ρ|ν] . (3.60)

Since the metric tensor is symmetric g[µν] = 0, the second Ricci tensor vanishes by contracting with the
metric, i.e. R ≡ 2g(µν)Rµν = 0. Therefore, the Ricci scalar is uniquely constructed in this case as well, by
R = gµνRµν . Obviously there are more contractions of the Riemann tensor, such as Rµ

ρ
ρν , but involve the

metric tensor, and eventually lead to the same unique definition of the Ricci scalar [142].

Field equations

Firstly, let us consider the variation of the action (3.57) with respect to the metric field. Since the Ricci
tensor is independent of the metric we obtain:

δg
(√−g gµνRµν

)
=
{
(δg

√−g)gµν +√−g δg(gµν)
}
Rµν , (3.61)

where we used for brevity the shorthand notation δg ≡ δ/δgµν . It is then straightforward to show that we
obtain the field equations

Gµν(g,Γ) = Rµν(Γ)−
1

2
gµν R(g,Γ) = 0 . (3.62)

At this point, the Einstein tensor is dependent on the metric tensor and the connection Γ. Suppose that
we include matter fields living on the background that are also explicitly independent of the connection;
we can use the usual definitions to write

Gµν(g,Γ) = Tµν . (3.63)

Crucially, these equations resemble the Einstein field equations, although they do not yet have the same
description of gravity. The equations of motion for the connection are needed in order to derive the
complete set of equations describing the physical system.
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3. First-order formalism

Next is the variation with respect to the connection. The only component in the action that depends
on the connection is the Ricci tensor, so we have to evaluate δΓRµν(Γ). We drop the subscript Γ in what
follows to alleviate the notation, but we are only considering variation with respect to Γ. By definition
δΓρ

µν is a tensor since it is a difference of the connection coefficients, and therefore we can write down its
covariant derivative as

∇λ δΓ
ρ
µν = ∂λ δΓ

ρ
µν + Γρ

λσ δΓ
σ
µν − Γσ

λµ δΓ
ρ
σν − Γσ

λν δΓ
ρ
µσ . (3.64)

Using this we can express the variation of the Ricci tensor as

δRµν = ∇ρ δΓ
ρ
νµ −∇ν δΓ

ρ
ρµ + T λ

ρν δΓ
ρ
λµ , (3.65)

known also as the (generalised) Palatini identity. Notice the contribution of the torsion tensor. After some
algebraic manipulation we can expand the first term in the RHS of eq. (3.65) (analogously done for the
second term) as ∫

d4x
√−g gµν ∇ρ δΓ

ρ
νµ =

∫
d4x

(√−g gµν T λ
λρ −∇ρ(

√−g gµν)
)
δΓρ

µν , (3.66)

up to vanishing boundary terms. We already have hints that the connection is the Levi-Civita. Returning
to the complete variation of the Ricci tensor we obtain the following equation

∇λ

(√−g gνλ
)
δµρ −∇ρ

(√−g gµν
)
+
(
gµνT λ

λρ − gνλT σ
σλδ

µ
ρ + gνλTµ

λρ

)√−g = 0 . (3.67)

Next, by assuming a torsion-free manifold, in other words vanishing of the torsion tensor, and taking the
trace of µ and ρ in the equation we end up with

∇ρ

(√−g gµν
)
= 0 , (3.68)

which is the metric-compatibility condition. This is expressed in terms of components, so let us generalise
the notion of metricity by assuming two vector fields X,Y ∈ M and a vector V ∈ TpM. Then a connection
is said to be metric-compatible if

V (g(X,Y )) = g(∇VX,Y ) + g(X,∇V Y ) . (3.69)

The only connection that is metric-compatible as well as torsionless is the Levi-Civita connection with
coefficients given by the Christoffel symbols. Its uniqueness is trivially proven if we write down the
symmetry conditions for some vectors fields X,Y, Z ∈ M

∇XY −∇YX = [X,Y ] ,

∇Y Z −∇ZY = [Y,Z] , (3.70)
∇ZX −∇XZ = [Z,X] ,

where brackets here denote the Lie bracket. Also the compatibility conditions

g(∇XY,Z) + g(Y,∇XZ) = Xg(Y,Z) ,

g(∇Y Z,X) + g(Z,∇YX) = Y g(Z,X) , (3.71)
g(∇ZX,Y ) + g(X,∇ZY ) = Zg(X,Y ) .
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3.2. Palatini variation

Summing the first two, subtracting the last one and after using the symmetries above we obtain

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y ) + g(Z, [X,Y ]) + g(Y, [Z,X]) + g(X, [Z, Y ]) , (3.72)

which in terms of components it leads to the Christoffel symbols given in eq. (3.3).
Another way to obtain the Levi-Civita dynamically is to start by assuming a deviation of the general

connection1 from the Levi-Civita one [165]

Γρ
µν = {µρν}+ Γρ

µν (3.73)

and vary the action with respect to Γ. The field equations for the metric tensor remain unchanged,
however the equation for the connection becomes

Γνρ
ρ δ

µ
λ + Γρ

ρλ g
µν − 2Γν

λ
µ = 0 . (3.74)

A (trivial) solution to the above equation is Γ = 0, meaning that Γ = { } on-shell.
In any case, after considering the complete variation of the Einstein-Hilbert action with respect to

both the dynamical variables we obtain two sets of equations, which after combining the solution of the
connection constraint equation with the field equations lead to the correct partial differential equations.
It is important to note that we did not need any boundary term to complete the Palatini variation, unlike
the metric formulation in which the YGH term was introduced.

In this way, the Levi-Civita connection on M is dynamically generated without making any assump-
tions at the level of the action [45]. In fact, if one is concerned particularly with gravitational dynamics
the Levi-Civita condition is very crucial and is not at all incidental that it was initially considered as the
connection. Even though the procedure of the general metric-affine connection seems attractive requiring
less assumptions than its counterpart, it might as well be a mathematical framework under which we can
deduce how to recover GR dynamics. In other words, the Levi-Civita condition is a sought-after outcome
and if we do away with it there are serious ramifications. Some of them include the fact that the geodesic
equation is not necessarily a resultant of the Euler-Lagrange equation, and the connection cannot be set
locally to vanish ruining the equivalence principle [142, 165], which established our understanding of the
gravitational interaction.

Even though the equivalence holds up to boundary terms for the Einstein-Hilbert action, the two
approaches differ tremendously when one considers modified theories of gravity, specifically including
higher-order curvature invariants and/or nonminimal couplings between gravity and the matter sector.
Since the present work deals with inflation, the matter sector discussed here is constituted of a real scalar
field and its self-interacting potential, in other words explicitly independent of the connection. However,
even the simplest case is highly complicated, in which the Einstein-Hilbert term is coupled (minimally) to
matter that is dependent on the connection. For example one has to define the tensor

∆ρ
µν ≡ − 2√−g

δSm

δΓρ
µν
, (3.75)

where Sm denotes the matter action. It turns out that the form of ∆ρ
µν is restricted at the level of the

equations of motion, which in turn means that the matter Lagrangian has to be chosen such that it can
satisfy these conditions [165], namely ∆µ

µν = 0.
1In a general sense the connection coefficients can be decomposed in terms of the distortion and contorsion tensors as

Γρ
µν = {µρ

ν}+Kρ
µν + Lρ

µν .
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3. First-order formalism

Suppose now that the matter action includes a (canonical) kinetic term for a scalar field and a potential
term. Then we have ∇µϕ = ∂µϕ and thus the action is manifestly independent of the connection. Then,
matter follows the geodesics predefined by a metric-compatible connection. Even more, the equation of
the connection is “demoted” to a constraint, meaning that the connection is effectively an auxiliary field
and does not carry any characteristics of the curvature. Therefore, the theory is relegated basically to a
metric theory describing spacetime, just like GR. Let us clarify this point further by considering a simple
example of a real scalar field ϕ(x) with a self-interacting potential V (ϕ) coupled minimally to gravity and
described by the following Lagrangian

Lm = −1

2
(∇ϕ)2 − V (ϕ) . (3.76)

Then, variation of the action with respect to ϕ leads to

δS
δϕ

=

∫
M
dvol

{
gµν∇µ∇νϕ− ∂V (ϕ)

∂ϕ
+

1√−g∇µ

(√−g gµν
)
∇νϕ

}
δϕ+

∮
∂M

dΣnµ
{√−g gµν∇νϕ

}
δϕ ,

(3.77)
where nµ denotes the outward pointing unit vector normal to ∂M and dΣ the invariant volume on the
boundary. Assuming that δϕ = 0 on the boundary ∂M, then the second integral vanishes and we are
left with a deformed Klein-Gordon equation including a term that it ends up vanishing via the Levi-
Civita condition on-shell. In what follows, these terms arising from the nonmetricity are assumed to be
vanishing at the level of equations of motion (the connection is Levi-Civita at that point) and therefore are
not included in the equations.

Projective invariance

As we eluded to earlier, eq. (3.74) can have more general and involved solutions. It is straightforward
to show that a general solution is

Γρ
µν = δρν Vµ , (3.78)

for an arbitrary vector field Vµ. This is known in the literature as a projective transformation

{µρν} −→ {µρν}+ δρν Vµ , (3.79)

transforming the Ricci tensor as
Rµν −→ Rµν − 2 ∂[µVν] . (3.80)

Since the metric is symmetric the scalar curvature is invariant under the transformation. Moreover, one
can show by using the definition of the torsion tensor that

T ν
µν = 3Vµ , (3.81)

which should vanish on-shell to define the Levi-Civita connection. Then one can enforce this condition
by employing different techniques, such as the implementation of Lagrange multipliers. However, in a
way similar to the case of eq. (3.75), by demanding the trace of the torsion tensor to vanish1 the type of
connection allowed in the theory is restricted. The fact that the Einstein-Hilbert action is invariant under
projective transformations but the matter action is not necessarily can lead to inconsistencies at the level
of the equations of motion of the theory.

1Notice that only the trace of the tensor vanishes and not necessarily the torsion itself.
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3.2. Palatini variation

Beyond tree-level equivalence

As noted in earlier sections and throughout the literature, the equivalence between the two approaches
holds at the classical level, as far as the Einstein-Hilbert action is concerned. It is possible then to think of g
and Γ as independent quantities that in general propagate and are dynamical. At tree level we showed that
the connection plays the role of an auxiliary field and as such is fixed by its constraint equation and does
not propagate, however this does not hold necessarily at the quantum level. If the first-order formalism
is to be considered something more than an academic game, the quantum nature of the connection has to
be understood through its quantum effects, if any. In what follows, by recalling conventional approaches
to analysing quantum (field) interactions, we attempt to outline the influence of the connection at the
quantum level.

Path integral formulation

Directly from the action given in eq. (3.57), there is an interaction between the dynamical quantities
g and Γ that result in a vertex of ⟨gΓΓ⟩ and a very complicated nondiagonal matrix propagator of (gg),
(ΓΓ) and (gΓ), reminiscent of the first-order formulation of the Yang-Mills theory. It seems then that the
familiar problem one runs into when attempting to quantise GR, namely the infinite series of momentum-
dependent vertices, has been traded away for a new headache of involved mixed propagators. However,
it was shown [166] that by utilising a shift in the variables the contribution of the connection at one-loop
is vanishing. In what follows, we sketch the results of refs. [151, 153, 166, 167] in order to gain a better
understanding of the contribution of Γ at the (one-loop) quantum level.

Let us start by rephrasing the dynamical variables as [166]

ϕµν ≡ √−g gµν , Gρ
µν ≡ Γρ

µν − δρ(µΓ
λ
ν)λ . (3.82)

Then, the d-dimensional Lagrangian reads

LEH = −Gρ
µν ∂ρϕ

µν +
1

2
Mµν

λ
ρσ

τG
λ
µνG

τ
ρσ , (3.83)

where

Mµν
λ
ρσ

τ (ϕ) ≡ 2

(
1

d− 1
δ(ρ|τδ(µλϕ

ν)|σ) − δ(ρ|λδ
(µ

τϕ
ν)|σ)

)
. (3.84)

After performing a shift of the form

Gλ
µν −→ Gλ

µν + (M−1)λµντ ρσ∂τϕρσ (3.85)

we may find that the path integral formulation of the action results in the following generating func-
tional [151]

Z =

∫
[Dϕ(x)][DG(x)]∆FP (ϕ) exp

{
i

∫
ddx

(
1

2
Gρ

µνM
µν

λ
ρσ

τG
τ
ρσ +

1

2
∂λϕ

µνMλ
µν

τ
ρσ∂τϕ

ρσ + Lgf

)}
.

(3.86)
Here [Dϕ] and [DG] denote integration over all possible paths ϕ and G respectively, and ∆FP is the
Faddeev-Popov determinant associated with the gauge fixing term Lgf [168]. Notice that we chose to
ignore an overall normalisation factor 1/N . Let us assume that we can expand ϕµν(x) around a flat
background of the form:

ϕµν(x) = ηµν + hµν(x) . (3.87)
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3. First-order formalism

Since the matrix Mµν
λ
ρσ

τ is linear in ϕ we can expand it as M(ϕ) =M(η)+M(h) meaning that contribut-
ing diagrams to the Green’s function have the field Gρ

µν in closed loops with its momentum-independent
propagator [151]. In turn, this means that the integral associated with loop contributions of Gρ

µν has the
form ∫

ddk P (kµ) , (3.88)

where P (kµ) is a polynomial in kµ. Assuming dimensional regularisation these integrals vanish and
therefore the only contribution with hµν on external legs comes from the second term, which is the same
as if we considered the usual metric formulation of the Einstein-Hilbert action.

Quantum effects in gravity is a sensitive and heavily debatable subject and as such it is unsure if the
above analysis describes exactly the quantum nature of the field Γ and its interaction with other fields.
It is however an indication of its effect, at least at one-loop level and in complete vacuum, meaning no
interaction with matter fields. Results are also presented using the background field expansion method,
however in principle one can perform the same analysis using the Heat Kernel method [169], which is
more direct but more involved depending on the form of the action.

Hamiltonian analysis

Since the discovery of the ADM variables the idea to canonically quantise GR seemed feasible, at least
at initial stages. The program, arguably, has since failed but the ADM decomposition is used still, prov-
ing its capability and potential. However, attempts to canonically quantise the Palatini action (Einstein-
Hilbert action assuming the first-order formalism) has left the scientific community puzzled and is mainly
attributed to the confusion around how to handle the arising second-class constraints. Different methods
seem to focus on eliminating time-independent fields via equations of motion, although in the meantime
a generator of the gauge transformations is lost [170, 171].

For transformations of xµ → xµ + ξµ one can show that the metric transforms as

δgµν = 2∇(µξν) , (3.89)

which is generally covariant since ξµ is a true vector. Similarly, for the Christoffel symbols we can directly
show that

δΓρ
µν = (∂λξ

ρ)Γλ
µν − ξλ ∂λΓ

ρ
µν − 2Γρ

(µ|λ∂ν)ξ
λ − ∂µ∂νξ

ρ . (3.90)

Since there are second derivatives of the parameter ∝ ∂2ξ in the transformation it suggests that the
generators must have the same order of derivatives, meaning that tertiary constraints should exist. In fact,
this point breaks the analogy between the first-order formulation of Electromagnetism and GR, since in
the first case the variation of the field strength is zero and as such there is no increase in order of the
gauge parameter, as pointed out in refs. [171–173]. The subject of canonical quantisation of the Palatini
action is still open with active research developing and using different methods. It seems however that
the dynamical degrees of freedom in the theory are the same as in GR [174], although the exact approach
is still questionable.
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4

Quadratic gravity coupled to matter

In the previous chapters specific ideas of inflation and the Palatini formalism were highlighted serving
as the background to the main part of the thesis, presented in this chapter. The following sections include
results from the merger of these two concepts.

When the first-order formalism was discussed in ch. 3, the larger part of the discussion was devoted
to its equivalence with the conventional metric formalism and as such the subject of more complicated
actions was avoided, even though it was claimed at that point that these action functionals can generally
lead to different predictions. This fact now takes the spotlight in the following section by comparing the
famous Starobinsky model (or R+R2) of inflation [101] within its two formulations explicitly highlighting
their inequivalence. It will become obvious that in the Palatini formalism the Starobinsky model does not
include an additional scalar mode as in its metric counterpart [175–177] and therefore it is incapable of
describing inflation in that formulation. It is then necessary to couple the R+R2 term with a matter sector
that manifestly includes the inflaton field and its self-interacting potential. In doing so we noticed that
different models of inflation that were initially disfavoured by observations, such as the quadratic model
(see fig. 2.4), now in their first-order formulation (coupled to the Starobinsky term) are capable of leading
to an adequate inflationary era. However, it should be noted that the same form of the action in the metric
formalism can possibly provide us with inflation that is also within the observational bounds, however the
analysis of these theories is considerably harder than their Palatini formulation, since it involves a higher-
dimensional field space including fields that are able to contribute in “driving” inflation. In later sections
we examine some prominent inflationary models that are also motivated by lower-energy particle physics
and entertain various cases of minimal or nonminimal coupling with the gravitational sector. Primarily,
our investigation is focused under which conditions, namely which region of the model parameter space,
the observational bounds set by the Planck collaboration are satisfied suggesting that the model at hand
is capable of providing a successful inflation in the Palatini formalism.

4.1 Metric & Palatini formulation of the Starobinsky model
Most of our investigation revolves around the Starobinsky model, and as such it is necessary to cover

some of its features in this section. In what follows, we provide some details that are identical in both
formulations and later the analysis is divided in two sections discussing various effects in each of them.
Let us first begin with the action describing the model, which reads as [101]

S =

∫
d4x

√−g
{
M2

P

2
R+

M2
P

12m2
R2

}
, (4.1)
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4. Quadratic gravity coupled to matter

where R is the Ricci scalar and R2 ≡ R · R = (gµνRµν)(g
ρσRρσ). The parameter m has mass-dimensions

and can be identified with the inflaton mass (in the metric formulation). It will prove more convenient,
especially when we examine the first-order formulation of the model, to define a new dimensionless
parameter, referred to also as the Starobinsky parameter (or constant), as

α ≡ M2
P

6m2
. (4.2)

Notice how in the IR limit, in which R ≪ m2, the model is reduced to GR with a small term that can in
principle be identified with the cosmological constant (after an enormous fine-tuning). However, when
R ∼ m2 the second term can have important contribution.

In its original proposal the model predicted (and since then readily supports) an inflationary de Sitter
expansion of the early universe. It was motivated by the idea that gravitational quantum corrections
should play a role in the stages of the early universe, where curvature was assumed to be strong (strong
gravity limit) and therefore higher-order curvature invariants should be included in the total action.1 At
one-loop order the quantum corrected action involves operators of the form [107]

∝ R2, RµνRµν , RµνρσRµνρσ , (4.3)

however, the last two include ghost fields2 that have negative Dirac norm or energies unbounded from
below, violating either unitarity or causality of the theory. As far as inflation is concerned, in this thesis we
include only the R2 term in the action and model predictions of the inflationary observables are calculated
from the R+R2 action, also referred to as quadratic gravity.

At this point it is not obvious how the model described by the action (4.1) leads to the usual spin-2
graviton and an additional scalar mode. Let us then introduce an auxiliary scalar field χ and rephrase the
original Lagrangian as follows

S =

∫
d4x

√−g
{
1

2

(
M2

P + 2αχ2
)
R− α

2
χ4

}
. (4.4)

Then, variation of the action with respect to χ2 leads to its constraint equation χ2 = R and substitution
of that back into the action reduces to the original action in eq. (4.1). One can in general introduce the
field as χ̄ ≡ χ2, however we found that it is more convenient to apply tools of dimensional analysis in the
action as presented in eq. (4.4).

This is known as the scalar representation of the action (4.1) and can be generalised for any function
f(R) of the scalar curvature in the following way.∫

dvol f(R) −→
∫
dvol

{
f ′(χ)(R− χ) + f(χ)

}
≡
∫
dvol

{
Ω2(χ)R− V (χ)

}
, (4.5)

1Since it was shown that the Einstein-Hilbert action was nonrenormalisable [25, 26], higher-derivative (of the metric) theories
became alluring. After all, the Einstein gravity produces a graviton propagator that is nonrenormalisable ∝ k−2 at large k2 and
a Ricci scalar squared results in a renormalisable propagator ∝ k−4 at large k2. However, it seems that even if we obtain a
gravitational theory that is (even perturbatively) renormalisable, other fundamental properties of a quantum field theory might
be sacrificed [107, 178, 179], such as unitarity of the theory - linked to the ability of understanding the theory in a probabilistic
way - or relativistic invariance, as e.g. in Hořava gravity [180] in which Lorentz invariance emerges as an approximate symmetry
at low energies and is violated at high energies. The issue of renormalisability is brought forward for its significance; in the
present work we do not attempt to study features of what would be a quantum gravity, but mainly draw inspiration from
relevant works.

2The notion of a ghost field was encountered in ch. 3 where the Faddeev-Popov ghosts [168] were briefly mentioned. These
are usually referred to as “good” ghosts since they are included in a gauge theory to keep its gauge invariance, in contrast to the
“bad” ghosts inducing unphysical states in a theory.
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4.1. Metric & Palatini formulation of the Starobinsky model

where it is assumed that f ′′(R) ̸= 0, ∀R and in the last equality we used the definition of Ω2(χ) ≡ f ′(χ)
and V (χ) ≡ f(χ) − χf ′(χ). In fact, the Starobinsky model can be thought of as a specific case of the
general class of f(R) theories with f(R) ∝ R + R2. Another example one can immediately think of is
an expansion of f(R) around the mass parameter m2, then one obtains the following theory containing
higher powers of the scalar curvature R

f(R) =
M2

P

2
R+M2

P

∞∑
n=2

anm
2

(
R

m2

)n

, (4.6)

where an denote the coefficients in the expansion. Clearly, there exist more intricate cases of f(R) theories,
however they should be accompanied by studies of possible pathologies they might be contained in each
case. It is not as trivial as it first seems to generalise GR in the context of f(R) extended theories and there
is obviously the issue of motivation behind each case. For the rest of this work we confine ourselves only
in the Starobinsky model and avoid discussing further different cases of f(R) theories.

Metric formalism

Let us redirect our focus on the scalar representation of the Starobinsky model, given in eq. (4.4), and
consider a Weyl rescaling of the metric as follows

ḡµν(x) = Ω2(χ) gµν(x) , (4.7)

where now the conformal factor is defined as

Ω2(χ) ≡ M2
P + 2αχ

M2
P

. (4.8)

It is straightforward to show that the Christoffel symbols, given in eq. (3.3), transform as

{µρν} = {µρν}+Ω−1
(
2δρ(µ∇ν)Ω− gµν∇ρΩ

)
. (4.9)

After a lengthy calculation one can show that the Ricci scalar also transforms as

R = Ω2R+ 6
Ω2

√−g ∇µ

(√
−g∇µ

lnΩ
)
− 6 gµν ∇µΩ∇νΩ , (4.10)

where ∇ denotes the covariant derivative with respect to the metric ḡ. Finally, using all of the above for
the 4-dimensional Starobinsky model we can rephrase it as

S[χ,g;α] =
∫
d4x

√
−g
{
M2

P

2
R− 3M2

P

∇µ
Ω(χ)∇µΩ(χ)

Ω2(χ)
− V (χ)

Ω4(χ)

}
+

∫
d4x∇µ

(√
−g∇µ

lnΩ
)
, (4.11)

where the last integral contributes a surface term1 that we ignore hereafter, and we reuse the definition
of V (χ) = αχ2/2. Let us substitute the form of the function Ω(χ), given in eq. (4.8); the action functional
becomes:

S =

∫
d4x

√
−g
{
M2

P

2
R− 3M2

Pα
2(

M2
P + 2αχ

)2 ∇µ
χ∇µχ− αM4

Pχ
2

2
(
M2

P + 2αχ
)2
}
. (4.12)

1Notice that the metricity condition, namely ∇ρgµν = 0, has already been used at this point.
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4. Quadratic gravity coupled to matter

This is reminiscent of a scalar-tensor theory with a scalar field minimally coupled to gravity and a non-
canonical kinetic term. In order to obtain a scalar field with a canonical kinetic term we apply a field
redefinition of the form1

− 3M2
Pα

2(
M2

P + 2αχ
)2 ∇µ

χ∇µχ 7−→ −1

2
(∇φ)2 (4.13)

∴
φ

MP
= ±

√
3

2
ln
M2

P + 2αχ

M2
P

, ∀χ > −M
2
P

2α
. (4.14)

The action then becomes

S =

∫
d4x

√
−g
{
M2

P

2
R− 1

2
(∂φ)2 − U(φ)

}
, (4.15)

where the potential term reads as [181–183]

U(φ) ≡ M4
P

8α

(
1− e

− φ
MP

2√
3

)2
. (4.16)

In order for the above scalar potential to behave asymptotically as the one expressed in terms of the
original χ field we are forced to pick the positive sign in eq. (4.14). Furthermore, for large values of the
canonical field φ it is trivial now to see that the potential is dominated by a vacuum energy

U(φ→ ∞) =
M2

P

8α
. (4.17)

Notice that the potential has a global minimum at its origin, φ = 0, that is a stable U ′′(φ) > 0, and the
field starting from large field values around the flat region of the potential is led to the origin naturally,
as displayed in fig. 4.1.

In the action (4.15) the additional scalar mode coming from the R2 term is perfectly manifested as a
real scalar field φ with a potential term U(φ). As shown in figure 4.1 the potential is asymptotically flat for
large (positive) values of the field, which as was discussed in ch. 2 it is crucial for the slow-roll inflation.

The equations of motion for the system described by the Lagrangian in eq. (4.15) are the Einstein field
equations for the metric ḡ and the Klein-Gordon equation for the scalar field; namely:

Gµν( { } ) ≡ Rµν −
1

2
gµνR = ∇µφ∇νφ− gµν

(
∇ρ
φ∇ρφ+ V (φ)

)
(4.18)

and
gµν ∇µ∇νφ+

dV (φ)

dφ
= 0 . (4.19)

Naturally then, one can readily apply the single-field inflation mechanism as is described in ch. 2.

Application to slow-roll inflation

For the sake of completeness let us also include some brief remarks on the usual R2 inflation model,
as was first formulated in the metric formalism. Starting from the action (4.15) we can effortlessly apply
the mechanism of the single-field slow-roll inflation that was described in sec. 2.3. First let us consider the
number of e-folds; the integral is exactly solvable and results in

N(φ) =
1

4MP

(
3MP e

φ
MP

2√
3 −

√
6φ
)
+ C0 ∼

3

4
e

φ
MP

2√
3 , (4.20)

1Note that in eq. (4.14) we assumed the form of the integration constants in terms of the reduced Planck mass, such that the
canonical field has the correct dimensions.
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Figure 4.1: The form of the famous Starobinsky potential in the Einstein frame given by eq. (4.16). The axes have
been rescaled in order to properly describe the qualitative behaviour of the potential without necessarily assuming
any values for the model parameters. At the start of inflation the field assumes values in the flat region of the
potential and eventually runs to smaller values ending up at the minimum of the potential.

where C0 is an integration constant. Since the value of the integral is dominated by the large values of the
inflaton field, with φi ≫ φf (recall that N = N(φi) −N(φf )), we simply keep terms that are dominating
at large field values φ → ∞. It is straightforward to show that in the same field limit the spectral tilt and
the tensor-to-scalar ratio are given by

ns ≈ 1− 2

N
& r ≈ 12

N2
, as φ→ ∞ . (4.21)

These are the celebrated results of the Starobinsky model that is in persistent contact with observa-
tions [38]. Other than the model being motivated by possible gravitational quantum corrections (albeit ad
hoc from a theoretical point of view) and its ability to predict preferable values for the ns in a wide range
of N ∈ [50, 60], the main advantage comes from its suppression of the tensor-to-scalar ratio, r ∼ 10−3. It
is expected however that future experiments are able to probe the region of r ∼ 10−3 (and maybe even
10−4) [184–186], which will in principle be able to falsify some of the models lying in that region, the
Starobinsky model (and some of its generalisations) being one of them. Additionally, an upper bound can
be placed on the dimensionless parameter α from the power spectrum of scalar perturbations

As
SR≈ U(φ)

24π2M4
P ϵV (φ)

∣∣∣∣
φ=φi

≈ O
(
10−3

α

)
. (4.22)

In order for the model to admit the observed amplitude of scalar perturbations the constant takes approx-
imate values of α ∼ O(106), meaning that the mass parameter defined through α is m ≈ 1015 GeV.

A subtle point to be made regarding inflation is the scale of inflation, meaning at which energy
scales are the predictions of the models sensible (cutoff scale) placing also constraints on the associated
inflaton field excursion. Clearly, the discussion pertains to each inflationary model separately and was
not addressed in an earlier chapter for that reason. To properly obtain the cutoff scale of each model, the
models are understood as quantum field theories interacting with gravity in a weak field expansion of the
form gµν = ηµν + hµν/MP . Then, depending on model parameters (but not necessarily), the validity of
the inflationary predictions is checked by calculating the quantum corrections and their contribution. For
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example, it was shown that the cutoff energy scale of the R2 inflation model is Λ =MP [187]. It should be
noted that the nature of the issue is more complicated and in fact there are often disagreements regarding
the results obtained in the way highlighted above, however it is a point to keep in mind regarding inflation
and its (range of) validity.

Coupling with matter

Minimal coupling

A natural extension to the Starobinsky model is to attempt a coupling of it with a matter Lagrangian.
Presently, we are interested only in the minimal coupling of quadratic gravity with a scalar field, that
could also be fundamental. The action in the Jordan frame that describes such a system reads as

S =

∫
d4x

√−g
{
M2

P

2
R+

α

2
R2 − 1

2
(∂ϕ)2 − V (ϕ)

}
. (4.23)

Notice that it is straightforward to generalise the above action in order to describe multiple scalar fields
coupled minimally with gravity, where ϕ would then collectively denote all of the scalar fields. Following
the same steps as we did to rephrase the pure R2 model in eq. (4.12), we can express the above action
functional as

S =

∫
d4x

√
−g
{
M2

P

2
R− 3M2

Pα
2

(M2
P + 2αχ)2

gµν ∇µχ∇νχ− M2
P

2(M2
P + 2αχ)

gµν ∇µϕ∇νϕ− U(ϕ, χ)

}
, (4.24)

where the potential term is given by

U(ϕ, χ) ≡ V (ϕ) + V (χ)

Ω4(χ)
=M4

P

α
2χ

2 + V (ϕ)

(M2
P + 2αχ)2

. (4.25)

Let us canonically normalise the kinetic terms of the scalar fields. Clearly, since the kinetic function
of the ϕ field mixes with the field χ, the kinetic term of ϕ has to be noncanonical (or generally one of
the scalar fields would have a noncanonical kinetic term). Assuming a field redefinition of the form of
eq. (4.14) we can express the total action as

S =

∫
d4x

√
−g
{
M2

P

2
R− 1

2
G IJ(Φ) gµν ∇µΦ

I ∇νΦ
J − U(Φ)

}
, (4.26)

where Φ = {φ, ϕ} denotes collectively all the scalar fields, the metric G IJ(Φ) is the metric on the field-
space manifold indicating that the space spanned by these two fields is not flat anymore. Here the indices
I, J run over the different scalar fields {φ, ϕ}. The functions are then defined as

GIJ =

(
1 0

0 exp
(
− φ

MP

2√
3

)) , U(φ, ϕ) =
M4

P

8α

(
1− e

− φ
MP

2√
3

)2
+ e
− φ

MP

4√
3V (ϕ) . (4.27)

Ultimately the form of the two-dimensional potential U(Φ) depends on the potential V (ϕ). For the pur-
poses of inflation the analysis is more complicated since it is multidimensional in the field space, however
it is possible in principle that inflation happens in a flat direction of the potential U (in ϕ in this specific
case), and therefore only one of the scalar fields drives inflation (being χ 7→ φ here). Interestingly enough,
there is a possibility that depending on the potential both of the fields can contribute consecutively, how-
ever it cannot be realised in this particular example due to the form of the potential term induced by the
χ field.

60



4.1. Metric & Palatini formulation of the Starobinsky model

The equations of motion derived from the variation of the action (4.26) with respect to the ΦK fields
and the metric g are given by

GKJ g
µν ∇µ∇νΦ

J + γIJK gµν ∇µΦ
I∇νΦ

J − ∂U(Φ)

∂ΦK
= 0 , (4.28)

M2
P Gµν = GIJ ∇µΦ

I∇νΦ
J − gµν

(
1

2
GIJ g

ρσ ∇ρΦ
I∇σΦ

J − U(Φ)

)
, (4.29)

where we also defined the connection coefficients on the field space manifold MΦ as

γIJK ≡ 1

2

(
∂GIK

∂ΦJ
+
∂GKJ

∂ΦI
− ∂GIJ

∂ΦK

)
. (4.30)

These are the equations governing the evolution of the collection of scalar fields Φ in a curved spacetime.

Nonminimal coupling

The model of eq. (4.23) can be further generalised by assuming a nonminimal coupling between the
scalar field ϕ and the Einstein-Hilbert term; it reads as

S =

∫
d4x

√−g
{
1

2
(M2

P + ξϕ2)R+
α

2
R2 − 1

2
(∂ϕ)2 − V (ϕ)

}
, (4.31)

where ξ is a dimensionless coupling constant. A coupling of the form of ∝ ϕ2R is expected to arise due
to quantum corrections coming from a scalar field in the gravitational background and, other than that, it
is generally considered in modified theories of gravity and models describing inflation. In the case that
ϕ is identified as the dilaton field coming from the compactification of higher dimensions a nonminimal
coupling with gravity is also expected to appear.

Regardless, after performing a Weyl rescaling of the metric as

g̃µν(x) = Λ2(χ, ϕ) gµν(x) , where Λ2 ≡ M2
P + ξϕ2 + 2αχ

M2
P

, (4.32)

we can express the action in the Einstein frame as follows:

S =

∫
d4x

√
−g̃
{
M2

P

2
R̃− 1

2
Z IJ g̃µν∇̃µΨ

I∇̃νΨ
J − V(Ψ)

}
, (4.33)

where we define as Ψ = {χ, ϕ} and the metric on the curved field-space manifold is given by

Z IJ ≡


6M2

P α
2

(M2
P + ξϕ2 + 2αχ)2

3M2
P α ξ

2(M2
P + ξϕ2 + 2αχ)2

3M2
P α ξ

2(M2
P + ξϕ2 + 2αχ)2

M2
P

6ξ2 +M2
P + ξϕ2 + 2αχ

(M2
P + ξϕ2 + 2αχ)2

 , I, J, . . . = {χ, ϕ} , (4.34)

and the scalar potential reads

V(Ψ) ≡ V (χ) + V (ϕ)

Λ4(χ, ϕ)
=M4

P

α
2χ

2 + V (ϕ)

(M2
P + ξϕ2 + 2αχ)2

. (4.35)
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One immediate consequence of the nonminimal interaction of the ϕ field is the appearance of a mixed
kinetic term of the form ∝ (∇̃χ)(∇̃ϕ), evident also from the fact that Zχϕ|ξ→0 → 0 meaning that the
terms decouple in that limit. The equations of motion derived in this case have the same form as the ones
derived for the action (4.26), presented in eqs. (4.28)-(4.29), with the metric ZIJ now describing the field
space MΦ.

Clearly, due to the involved kinetic terms the analysis of the model is almost impossible without any
assumptions that might decoupled them. One may think to introduce a new field in a linear combination
of the old ones, χ and ϕ. A trivial redefinition of that nature would be the following

(σ(x))2 ≡ 6
[
M2

P + ξ(ϕ(x))2 + 2αχ(x)
]
, (4.36)

where the proportionality factor is included to canonically normalise (up to an overall factor) the kinetic
terms of the two fields. In turn, the action becomes

S =

∫
d4x,

√
−g̃
{
M2

P

2
R̃− 1

2

(
6M2

P

σ2

)
δIJ g̃µν∇̃µΨ̃

I∇̃νΨ̃
J − Ṽ(Ψ̃)

}
, (4.37)

where δIJ denotes the Kronecker delta and Ψ̃ = {σ, ϕ}. It is straightforward to show that the potential
now reads

Ṽ =
36M4

P

σ4
V (ϕ) +

1

8α

(
σ2

6
−M2

P − ξϕ2
)2

. (4.38)

There exist other field redefinitions one might try, e.g. extending the definition of the scalar degree of
freedom as in refs. [182, 188, 189], that ultimately result in two scalar fields that have noncanonical kinetic
terms but do not mix.

As a closing note, the coupling of the R+R2 gravity to a matter sector, be that minimal or nonminimal,
gives rise to a theory with some type of mixing between the matter fields and the scalar degree of freedom
(scalaron field). Since for most inflationary models the matter sector contains a scalar field and its potential,
the predictions regarding inflation are best approached in what is known as a multifield framework. In the
next section considering the same class of models described by an action functional as in eq. (4.31) under
the Palatini formalism we show that the scalaron field is nondynamical and can in fact be integrated out
of the theory. Therefore the only dynamical scalar field capable of assuming the role of the inflaton is the
original one, denoted by ϕ in the initial action.

Digression on the Weyl vs. conformal transformations

The Weyl rescaling of the metric is often confused or referred to interchangeably in the literature with
the conformal transformation of the metric. Actually, the Weyl transformation, or as is more formally
known the scale transformations, is not a coordinate transformation at all and is not a symmetry that is
respected by the laws of physics as we know them, e.g. the SM.1 Schematically, a Weyl rescaling reads

x 7→ x, gµν(x) 7→ Ω(x) gµν(x) , (4.39)

which changes the physical distances at each point p ∈ M by a factor of ds′2 = Ω(x)ds2 that may depend
on the place, but it does not depend on the direction of the line we measure on.

Contrarily, conformal transformations are a subset of coordinate transformations, that, as will become
obvious by their definition, include isometries as a subset. The conformal symmetry is an extension of

1An exception to that can be models that are specifically build to be (classically) scale invariant. We discuss these models in
further detail in a later section, sec. 4.3.
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the Poincaré group that also includes five additional degrees of freedom for the four conformal transfor-
mations and one for the dilation; in RN,1 the conformal group is ∼=SO(N +1, 2), while on the other hand,
the group associated with the Weyl transformations is infinite-dimensional [190]. The transformation is
defined as follows

x→ x′, g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = Λ(x) gµν(x) . (4.40)

Therefore, the conformal transformation is a diffeomorphism that also scales the metric by a conformal
factor Λ(x). In fact, since the metric is invariant up to that scaling factor, the angles are preserved and
we can write that ds′2 = ds2 since we have simply relabeled the points. See ref. [191] for a more detailed
discussion on the role of Weyl and conformal transformations (particularly invariance) in physics today.

Palatini formalism

Let us consider the Starobinsky cosmological model in the Palatini formalism, where the connection
and the metric have no a priori dependence on one another. The action resembles the original one but
with key differences that are further highlighted below

S[g,Γ] =
∫

d4x
√−g

{
M2

P

2
gµνRµν(Γ) +

α

4
(gµνRµν(Γ))

2

}
. (4.41)

The action is explicitly dependent on the two dynamical variables, namely the metric tensor g and the
connection Γ. Note that the Ricci tensor Rµν is expressed purely in terms of the connection coefficients
and their derivatives. Therefore, under a Weyl transformation of the form

gµν(x) 7−→ Ω−2(x) gµν(x) , (4.42)

the two terms appearing in the action transform as

∝ √−g gµνRµν(Γ) 7−→ Ω−2
√−g gµνRµν(Γ) , (4.43)

∝ √−g gµνgρσRµν(Γ)Rρσ(Γ) 7−→ √−g gµνgρσRµν(Γ)Rρσ(Γ) . (4.44)

It may be worth noting that the R2 term is manifestly Weyl invariant in the first-order formalism.1 Before
we continue with the Weyl transformation, let us first consider the action in its scalar representation by
introducing the auxiliary χ field, similarly to what we was done in the metric formulation of the theory.
Then without loss of generality we can write2

S =

∫
d4x

√−g
{
1

2
(M2

P + αχ2)gµνRµν(Γ)−
α

4
χ4

}
, (4.45)

which after a Weyl rescaling of the metric we can absorb the factor of R and obtain the action in the
Einstein frame, reading

S =

∫
d4x

√
−g
{
M2

P

2
gµνRµν(Γ)− V (χ)

}
, (4.46)

where

gµν(x) = Ω2(χ) gµν(x) ≡
M2

P + αχ2

M2
P

gµν(x) , (4.47)

1A straightforward generalisation of the statement to D dimensions suggests that the term
√
−g RD/2 is Weyl invariant in

that context.
2Notice that the auxiliary field is redefined in order to have the appropriate dimensions, meaning that at the level of equations

of motion it satisfies χ2 = R, unlike the previous section where [χ]m = 2, (χ = R).
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and the potential term is obtained as

V (χ) =
αM4

P

4

χ4

(M2
P + αχ2)2

. (4.48)

For large values of the auxiliary field the potential term also tends to a constant value of ∝M4
P /α.

The crucial difference between the metric and the Palatini formulations is that in the latter one there is
no additional (dynamical) scalar mode present in the theory [175, 176], which is effectively described by
the Einstein-Hilbert term with a potential term in the Einstein frame. Thus, it contains the usual spin-2
graviton together with a potential term that can play the role of a cosmological constant (after fine-tuning).
This is based on the equivalent description of Einstein-Hilbert action in the two formulations, which was
discussed in the previous chapter, ch. 3.

Obviously then the Starobinsky model in its first-order formulation is incapable of describing inflation
and therefore it has to be coupled with another scalar field that would play the role of the inflaton
field. With this in mind, the conventional idea of single-field inflation seems attractive and some of the
inflationary models, that in their metric counterpart have already been ruled out by observational data,
may in principle be “rescued”. In order to do that let us include an exemplary scalar field, say ϕ, with
a most general nonminimal coupling with the Einstein-Hilbert term in the form of f(ϕ)R in the action
functional:

S =

∫
d4x

√−g
{
1

2
f(ϕ)R+

α

4
R2 − 1

2
(∂ϕ)2 − V (ϕ)

}
, (4.49)

where for ease of notation we reintroduced the Ricci scalar with the implicit dependence on the connection
through the Ricci tensor, and (∂ϕ)2 ≡ gµν∇µϕ∇νϕ. Expressed in its scalar representation it reads

S =

∫
d4x

√−g
{
1

2
(f(ϕ) + αχ2)R− 1

2
(∂ϕ)2 − V (ϕ)− α

4
χ4

}
. (4.50)

Considering a Weyl rescaling of the metric as follows

gµν(x) = Ω2(ϕ, χ) gµν(x) ≡
(
f(ϕ) + αχ2

M2
P

)
gµν(x) , (4.51)

we obtain the action in the Einstein frame as follows

S =

∫
d4x

√
−g
{
M2

P

2
gµν Rµν(Γ)−

1

2
Ω−2(ϕ, χ)gµν ∇µϕ∇νϕ− V (ϕ, χ)

}
, (4.52)

where the potential is simply

V (ϕ, χ) ≡ V (ϕ) + α
4χ

4

Ω4(ϕ, χ)
. (4.53)

As expected the ϕ field is still the unique propagating scalar degree of freedom in the theory. Since
the χ field is auxiliary it can be integrated out via its equation of motion, which it is straightforward to
show that it is simply a constraint.1 Computing the variation of the action functional with respect to χ we

1The process of “integrating out” the auxiliary field is rather misleading at this point, since it is usually associated with the
path integral formulation of a theory. The effect of an auxiliary field in a quantum or classical theory is the same as a result of
their nonpropagating nature and they have been used throughout physics to help simplify the calculations. Some of the most
notable examples are the complex scalar field F and the real scalar field D appearing in the F - and D-terms, respectively, in
supersymmetric theories that are used to close the supersymmetric algebra (e.g. see ref. [192]). Others include those used in
string theory in order to substitute the Nambu-Goto with the Polyakov Lagrangian [193].
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obtain the equation of motion [175]

δS
δχ

= 0 =⇒ αM2
P

χ3
(
α(∇ϕ)2 −M2

P f(ϕ)
)
+ χ

(
f(ϕ)(∇ϕ)2 + 4M2

PV (ϕ)
)

(f(ϕ) + αχ2)3
= 0 , (4.54)

which if χ ̸= 0 and χ ̸= −
√
f(ϕ)/α holds ∀ϕ, it leads to the following constraint

χ2 =

4V (ϕ)

f(ϕ)
+

(∇ϕ)2
M2

P

1− α
(∇ϕ)2
M2

P f(ϕ)

. (4.55)

In the case of auxiliary fields appearing in the Lagrangian in a bilinear form we can express them in terms
of the other fields coupled to them, in this case the ϕ field. A direct substitution of the algebraic relation
of χ in terms of ϕ in the action functional gives rise to the following [176]

S =

∫
d4x

√
−g
{
M2

P

2
gµν Rµν(Γ)−

1

2
M2

PK(ϕ)(∇ϕ)2 + 1

4
α
K(ϕ)

f(ϕ)
(∇ϕ)4 −M4

P

K(ϕ)

f(ϕ)
V (ϕ)

}
, (4.56)

where we used the following definition of the noncanonical kinetic function

K(ϕ) ≡ f(ϕ)

(f(ϕ))2 + 4αV (ϕ)
. (4.57)

Let us assume that the original potential is given by - or at least approximated by at large field values -
a polynomial function V (ϕ) ∝ ϕn with n ∈ N∗, and the nonminimal coupling function has a scale-invariant
form f(ϕ) ∝ ϕ2. Then, due to the auxiliary field the rescaled potential in the large field limit tends to

U(ϕ) ≡M4
P

K(ϕ)

f(ϕ)
V (ϕ)

ϕ→∞≈ M4
P

ϕ4−n + 4α
=


M4

P

4α
, ∀n ≥ 4 ,

0 , ∀n < 4 .

(4.58)

Even though the R2 term ultimately does not lead to a dynamical degree of freedom it can contribute
nontrivially in the inflationary potential by inducing a flat region at large values of the inflaton field [175].
In other words, it can help flatten a quite general class of inflationary potentials V (ϕ), thus allowing for
the possibility of them supporting an inflationary epoch for some range of the parameter α (depending
on the rest of the model parameters as well).

Comparing the form of the final actions between the two formulations, namely equations (4.56) and
(4.33), it is evident that we have effectively traded the two-dimensional field space with a one-dimensional
field space that includes higher-order kinetic terms, ∝ (∇̄ϕ)4. These nonstandard terms are not unusual,
in fact if we think of ϕ as some moduli field (like the dilaton) in string theory, the α′ corrections predict a
series of higher-derivative terms in the effective action.

In the case that eq. (4.56) describes an inflationary model the terms quadratic in kinetic energy are
highly suppressed by the potential and, during that period, they are presumably negligible. However,
there is a specific type of inflation, known as k-inflation (“k” for kinetic) [194, 195], in which the model
includes higher-derivative kinetic terms that drive inflation without the need of a potential term. Since
then, generalisations of the theory were considered in which a potential term was also included, bringing
the theory schematically similar to the action derived in eq. (4.56), i.e. L ∼ A(ϕ)(∇ϕ)2+B(ϕ)(∇ϕ)4+V (ϕ).
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Let us relabel the function coefficients in the action eq. (4.56) as follows

S =

∫
d4x

√
−g
{
M2

P

2
gµν Rµν(Γ) + k0(ϕ)X(ϕ) + k2(ϕ)(X(ϕ))2 − U(ϕ)

}
, (4.59)

where X ≡ 1
2(∇ϕ)2. Then, variation of the action with respect to the connection Γ, the metric g and the

field ϕ(x) leads to their respective equations of motion which read1 [196]

Γρ
µν = {µρν} ≡ 1

2
gρσ

(
∂µgσν + ∂νgµσ − ∂σgµν

)
, (4.60)

Gµν(g,Γ) ≡ Rµν −
1

2
gµνR = −(k0 + 2k2X)∇µϕ∇νϕ+ gµν

(
k0X + k2X

2 − U
)
, (4.61)

(k0 + 2k2X) gµν∇µ∇νϕ+ 2k2g
µν∂µX∂νϕ+ k′0X + 3k′2X

2 + U ′ + (k0 + 2k2X)∇µ

(√
−g gµν

)
∇νϕ = 0 ,

(4.62)

where the Ricci scalar is defined as R = gµνRµν(Γ)
!
= gµνRµν(g, ∂g) and the very last term in the last

equation vanishes identically due to the Levi-Civita condition.

Scalaron (non)propagation at the 1ℓ quantum level

Admittedly, since a full definition of quantum gravity does not exist at the moment, the claim that we
obtain results at the quantum level is misleading. Specifically, if we consider a path integral for the usual
Einstein gravity there are several problems connected with, but not limited to, the integration over metrics,
[Dg]. Instead, results pertaining to gravity are obtained in a semi-classical way around the theory’s saddle
points and in this approach, even though not exhaustive, it has led in the past to many developments (e.g.
see refs. [150, 197]).

In the path integral approach to quantisation usually one considers a generating functional of the form
of

Z =

∫
[DΦ] e

i
ℏS[Φ] , (4.63)

where Φ(x) denotes collectively the set of all classical fields present in the theory described by the action
S[Φ]. The measure of the path integral [DΦ] denotes integration over all possible configurations (or
“paths”) of Φ ∫

[DΦ] =
∏
n

∫
dΦn

√
2πi

, (4.64)

where n is a DeWitt index denoting the different species of Φn(x) that are in principle dependent on x
and therefore implying that the product runs over points in spacetime.

1Note also that if we were to first vary the action S[g, ϕ, χ] with respect to g
µν

and substitute the solution for the auxiliary χ
in the resulting Einstein equation, we would obtain the same result as in eq. (4.61), meaning that the variations with respect to
gµν and χ can be interchanged. Schematically this reads as follows

S[g, χ, ϕ] −→ δχS[g, χ, ϕ]
!
= 0 ↷ S[g, χ, ϕ] −→ δḡS[g, ϕ]

!
= 0 =⇒ Eq. (4.61)

is equivalent to

S[g, χ, ϕ] −→


δχS[g, χ, ϕ]

!
= 0 ↷ δḡS[g, χ, ϕ]

!
= 0

∧
δḡS[g, χ, ϕ]

!
= 0

=⇒ Eq. (4.61) ,

where the curved arrow denotes substitution of the element in the LHS into the ones in RHS.
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In the case of the pure R+R2 model (without matter fields) we showed that in the Palatini formalism
it culminates to Einstein gravity with a potential term. In principle, quantum corrections of the field χ can
generate a kinetic term effectively making it dynamical. Therefore, a starting point is the path integral

Z =

∫
[Dg] [DΓ]∆FP exp

{
i

∫
d4x

√−g
(
1

2
R+

α

4
R2 + Lgf + LFP

)}
, (4.65)

where we set ℏ=1=MP in order to alleviate some of the notation and ∆FP denotes the Faddeev-Popov
determinant. In what follows we are not concerned with the subtleties of the gauge fixing Lgf and the
ghost Lagrangian LFP and thus are ignored at this point. Then, we can introduce a factor of unity in the
form of a Gaussian path integral∫

[Dχ] exp
{
±i α

4

∫
d4x

√−g (χ−R)2
}

=
(
det(

√−g)
)∓1/2

, (4.66)

integrating over a field χ(x). Thus, the total path integral becomes

Z =

∫
[Dg] [DΓ] [Dχ]

(
det(

√−g)
)−1/2 exp

{
i

∫
d4x

√−g
(
1

2
(1 + αχ)R− α

4
χ2

)}
. (4.67)

A factor of α2/4 (or (α/2)D/2 in D dimensions) is absorbed in the redefinition of the measurement of
the path integral, which has to be reparametrisation invariant and as such contains a normalisation of its
own [198]. Under a Weyl rescaling of the form ḡµν(x) = (1 + αχ)gµν(x) we may rewrite it as

Z =

∫
[Dg] [DΓ] [Dχ]

(
det(

√
−g)

)−1/2
(det(1 + αχ))−1 exp

{
i

∫
d4x

√
−g
(
1

2
gµνRµν(Γ)−

α

4

χ2

(1 + αχ)2

)}
.

(4.68)
Next, by allowing for a redefinition of χ in terms of

χ ≡ χ

1 + αχ
, (4.69)

and since (det(1 + αχ))−1 = J (χ;χ) is exactly the Jacobian of the transformation χ→ χ, the path integral
over the auxiliary field becomes∫

[Dχ] exp
{
−i α

4

∫
d4x

√
−g χ2

}
=
(

det(
√

−g)
)1/2

. (4.70)

Finally, we obtain

Z =

∫
[Dg] [DΓ] exp

{
i

2

∫
d4x

√
−g gµν Rµν(Γ)

}
. (4.71)

Therefore, the pure Starobinsky model in its first-order formulation is equivalent at the quantum level
to Einstein gravity in the Palatini formalism, which in turn is equivalent, at least at the classical level, to its
conventional metric description. Actually, it is already known that at tree-level any Palatini f(R) theory
can be understood as a metric theory with an Einstein-Hilbert term and a potential (or constant) term.
The above statement can be readily generalised to any f(R) beyond the R + R2, however the specifics of
the (in)equivalence between the two formulations for the Einstein-Hilbert term is not considered here and
we refer the reader to ch. 3 and references therein for a limited discussion on the subject.

A compelling idea would be to include matter fields in the theory in terms of a scalar field ϕ(x)
coupled nonminimally to gravity through a term ξϕ2R, similar to our attempt at tree-level. In this way, a

67



4. Quadratic gravity coupled to matter

kinetic term for the χ field can be generated at the quantum level through its interaction with the scalar
field ϕ. Then, the initial path integral reads as

Z =

∫
[Dg] [DΓ] [Dϕ] exp

{
i

∫
d4x

√−g
(
1

2
(1 + ξϕ2)R+

α

4
R2 − 1

2
(∇ϕ)2 − V (ϕ)

)}
, (4.72)

which, after following the procedure of introducing the Gaussian path integral over χ, becomes

Z =

∫
[Dg] [DΓ] [Dϕ] [Dχ]

(
det(

√−g)
)−1/2×

× exp
{
i

∫
d4x

√−g
(
1

2
(1 + ξϕ2 + αχ)R− 1

2
(∇ϕ)2 − V (ϕ)− α

4
χ2

)}
. (4.73)

Thus, after a metric rescaling g̃µν = (1 + ξϕ2 + αχ)gµν we obtain

Z =

∫
[Dg̃] [DΓ] [Dϕ] [Dχ]

(
det(

√
−g̃)

)−1/2
det

(
1

1 + ξϕ2 + αχ

)
×

× exp
{
i

∫
d4x

√
−g̃
(
1

2
R̃− 1

2(1 + αχ+ ξϕ2)
(∇̃ϕ)2 − V (ϕ) + α

4χ
2

(1 + αχ+ ξϕ2)2

)}
. (4.74)

Collectively, we can rewrite it as

Z =

∫
[Dg̃] [DΓ] [Dϕ] [Dχ]

(
det(

√
−g̃)

)−1/2
exp

{
iSeff +

i

2

∫
d4x

√
−g̃ g̃µνRµν(Γ)

}
, (4.75)

where we defined the effective action as

Seff [χ, ϕ, g̃] ≡ iTr log (1 + αχ+ ξϕ2) +

∫
d4x

√
−g̃
(
− 1

2(1 + αχ+ ξϕ2)
(∇̃ϕ)2 − V (ϕ) + α

4χ
2

(1 + αχ+ ξϕ2)2

)
, (4.76)

where we applied the identity det(A) = exp(log (A)) for a general matrix A.
Next we employ the semiclassical approximation, known also as the saddle point expansion1, in which

we expand the action around its classical solution δχS = 0 =⇒ χ = χc as2

Seff[χ] ≈ Seff[χc] +

∫
d4x′

δSeff

δχ′

∣∣∣∣
χ=χc

δχ′ +
1

2!

∫
d4x′

∫
d4x′′

δ2Seff

δχ′δχ′′

∣∣∣∣
χ=χc

δχ′δχ′′ + . . . (4.77)

where we denote χ(x′) ≡ χ′, χ(x′′) = χ′′ , etc, and

χ(x) = χc(x) + δχ(x) . (4.78)

The path integral measure under such a shift trivially becomes [Dχ] → [Dδχ]. Clearly, the second term in
the expansion vanishes by definition, δ(1)χ S(χc) = 0, and the first contributing term involves the secondary
functional variation δ(2)χ Seff which reads:

1

2

∫
d4x′

∫
d4x′′

δ2Seff[χc(x)]

δχ(x′)δχ(x′′)
δχ′δχ′′ =− i

2
Tr

(α 1 + ξϕ2 − α(∇̃ϕ)2
(1 + ξϕ2)2 + 4αV

)2
 δχ2+ (4.79)

1The WKB (Wentzel–Kramers–Brillouin) method used often in QM, can be thought of as a semiclassical approximation and
sometimes is used while referring to the saddle point expansion.

2Notice that the generating functional can now be approximated by

Z =

∫
[Dḡ] [DΓ] [Dϕ]

(
det(

√
−ḡ)

)1/2 (det
(
δ2Seff

δχδχ

))−1/2

exp
(
i

2

∫
d4x

√
−ḡ ḡµνRµν(Γ) + iSeff(χc)

)
.
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− 1

2

∫
d4x′ δχ′ D̄(x′) δχ′ ,

where we made the definition of D̄(x) ≡ √
g̃ D(x) with

D(x) ≡ α

2

[
(1 + ξϕ2)2 + 4αV

]−3 4∑
n=0

c2n(ϕ)(∇̃ϕ)2n . (4.80)

Here the coefficients c2n(ϕ) are defined as

c0(ϕ) = 1 + 4ξϕ2 + 6ξ2ϕ4 + 4ξ3ϕ6 + ξ4ϕ8 ,

c2(ϕ) = −4α(1 + 3ξϕ2 + 3ξ2ϕ4 + ξ3ϕ6) ,

c4(ϕ) = 6α2(1 + 2ξϕ2 + ξ2ϕ4) , (4.81)

c6(ϕ) = −4α2(1 + ξϕ2) ,

c8(ϕ) = α4.

Then, D̄(x) can be seen as a Strum-Liouville opeartor with, in principle, eigenvalues and eigenvectors
given by

D̄(x)δχi(x) = λi δχi(x), λi < λi+1 ∀i ∈ N∗ . (4.82)

Provided we can solve the eigenvalue problem, we can then reduce the calculation to simple Gaussian
integrals, and thus obtain the following path integral

Z =

∫
[Dg̃] [DΓ] [Dϕ]

[
det(D̂(x))

]1/2 [
det

(
4αV + (1 + ξϕ2)2

1 + ξϕ2 − α(∇̄ϕ)2
)]−1

(4.83)

exp
{
i

∫
d4x

√
−g̃
[
1

2
ḡµνRµν(Γ) +

1

(1 + ξϕ2)2 + 4αV

[
−1

2
(1 + ξϕ2)(∇̃ϕ)2 + α

4
(∇̃ϕ)4 − V (ϕ)

]]}
where now D̂(x) is defined as

D̂(x) = D̄(x)− i√−g̃ δ
(4)(x)Tr

(α 1 + ξϕ2 − α(∇̃ϕ)2
(1 + ξϕ2)2 + 4αV

)2
 . (4.84)

Crucially, all of terms generated are local, in other words they are dependent on specific spacetime
points x and, most notably, on gradients of the field ϕ(x), thus we can ignore them and ultimately the
effective action seemingly does not obtain any corrections due to χ. Therefore, we claim that the ac-
tion obtained at the classical level is robust to quantum corrections of the χ field, which at 1ℓ remains
nondynamical.

Digression on pure R2 gravity

Let us pay closer attention to the Weyl-invariant R2 term in the Palatini formalism (see also ref. [199]).
In fact any term built from the metric tensor schematically as ∝

√
−det(g)R2 is invariant under a Weyl

transformation of the metric and can be generalised in D spacetime dimensions to ∝
√

−det(g)R(D/2).
The action functional in the usual four dimensions is expressed as

S[g,Γ] = α

2

∫
d4x

√−g R2 , (4.85)
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where α is now some dimensionless constant. Similarly to what was done before we can obtain the action
in its scalar representation by introducing an auxiliary field as follows

S =

∫
d4x

√−g
{
χ2gµνRµν(Γ)−

χ4

α

}
. (4.86)

It might be worth noting that the above action has the same form in both the metric and the Palatini
formalism. After a Weyl rescaling of the metric as ĝµν = (2χ2/M2

P )gµν we obtain the action in the Einstein
frame as

S =

∫
d4x

√
−ĝ
{
M2

P

2
ĝµνRµν(Γ)−

M4
P

4α

}
. (4.87)

Note that the constant term in the action is also obtained in the large field limit of the pure Starobinsky
model, R+R2, which is also equivalent to the strong gravity limit of R+R2 ∼ R2. In any case, the constant
term can be identified with the cosmological constant after a substantial fine-tuning of the α parameter.

The equations of motion of the theory as was initially formulated in the Jordan frame1 are

RRµν −
1

4
gµνR

2 = 0 , (4.88)

and for the connection
α (gµν∇ρ − δρν∇µ)R+O(∇ρgµν) +O(T ρ

µν) = 0 , (4.89)

where the terms proportional to the nonmetricity and torsion tensors are grouped. A trivial solution for
the connection coefficients is given by Γρ

µν = ˆ{µρν}, namely the Christoffel symbols for the metric ĝ with
χ2 = αR/2. Note that in the equations of motion for the metric a factor of R is kept since the Weyl
transformation g → ĝ becomes singular if R = 0. This point is crucial when one discusses the expansion
of the metric around a background, usually taken to be Minkowski. Then, similar to the metric case [200–
203], an expansion is made around a de Sitter background (also can be taken to be anti-de Sitter) in order
to show that indeed the theory includes a spin-2 massless graviton and no other propagating degrees
of freedom. The analysis trails closely to the metric one and we refrain from discussing further details.
Interactions of the pure R2 action and matter in the Palatini formalism are discussed in further detail in
ref. [199].

Digression on all-inclusive quadratic gravity & amalgamations of the Riemann tensor

The most general Lagrangian including curvature terms quadratic in contractions of the Riemann
tensor in the metric formulation is given by

S(2) =

∫
d4x

√−g
{
αR2 + 4β RµνR

µν + γ RµνρσR
µνρσ

}
. (4.90)

In the special case where α = −β = γ then the combination of these curvature terms is known as the
Gauss-Bonnet term and is a topological invariant of the theory, specifically known as the Euler character-
istic of the manifold. That means that it vanishes at the level of equations of motion, however, in general
D ̸= 4 dimensions it is dynamical and generally contributes. Obviously, it might be the case that the
Gauss-Bonnet term is coupled nonminimally with another field, say for example in a term schematically
reading as ∝ f(ϕ)EGB.

1In the Einstein frame they are simply the Einstein field equations following our discussion in ch. 3.

70



4.1. Metric & Palatini formulation of the Starobinsky model

In contrast, in the Palatini formalism the Gauss-Bonnet term is not necessarily a topological invariant
and should in principle include dynamical degrees of freedom that can also be ghosts. In fact, the most
general action quadratic in curvature terms contains additional contractions of the Riemann tensor due to
the loss of the symmetries as a result of the Levi-Civita connection. As we discussed in ch. 3 it is possible
to contract the Riemann tensor in different ways as follows

Rµν = Rρ
µρν , Rµν = Rρ

ρµν , R̂µ
ν = gρσRµ

σνρ . (4.91)

Then the action containing all the possible contractions reads as [204]

S(2) =

∫
d4x

√−g
{
αR2 + β1RµνR

µν + β2RµνR
νµ + β3R̂µνR

µν
+ β4RµνR

µν
+ β5RµνR

µν
+

+ β6RµνR̂
νµ + β7RµνR̂

µν + β8R̂µνR̂
µν + β9R̂µνR̂

νµ+ (4.92)
+ γ1RµνρσR

µνρσ + γ2RµνρσR
νµρσ + γ3RµνρσR

µρνσ+

+ γ4RµνρσR
νρµσ + γ5RµνρσR

ρνµσ + γ6RµνρσR
ρσµν

}
.

Notice that there are no terms involving R(µν) since it is antisymmetric and it vanishes identically. We can
further group the terms illustrating the possible symmetries; for a specific set of constants βi and γi we
can rewrite the action as

L (2) ⊃ αR2+β′1RµνR
(µν) + β′2RµνR̂

(µν) + β′3R̂µνR̂
(µν) +

(
β′4Rµν + β′5Rµν + β′6R̂µν

)
R

µν
+ (4.93)

+ γ′1RµνρσR
µνρσ + γ′2RµνρσR

µ[νρσ] + γ′3RµνρσR
[{µν}{ρσ}] , (4.94)

where we abused the notation slightly by defining [{ab}{cd}] = abcd − cdab to mean antisymmetrisation
of the set of indices appearing in the brackets. It is now straightforward to show that the Levi-Civita
condition trivially reproduces the action in the metric formalism by using the Riemann tensor symmetries,
for specific values of the constants βi and γi. Regardless, if the connection is metric-affine, calculations
involving the complete quadratic action are complicated and beyond the scope of this work.

As an aside, it is trivial to realise that the conventional conformal gravity in the metric formulation
(known also as Weyl gravity), comprised from the squared of the Weyl tensor, is not actually invari-
ant under Weyl transformations in its first-order formulation. The Lagrangian in general D spacetime
dimensions reads

L = CµνρσC
µνρσ ≡ C2 = RµνρσR

µνρσ − 4

D − 2
RµνR

µν +
2

(D − 1)(D − 2)
R2 , (4.95)

where the Weyl tensor is defined as

Cµνρσ ≡ Rµνρσ − 4

D − 2
gµλgνκg

[λ
[ρRσ]

κ] +
2

(D − 1)(D − 2)
Rgµ[ρgσ]ν . (4.96)

The tensor has many important properties; one of them is that in the case that it vanishes the metric is
locally conformally flat. Especially, in dimensions D = 2 the tensor vanishes identically meaning that any
2-dimensional (smooth) Riemannian manifold is conformally flat, and in D = 3 dimensions the condition
of a vanishing Cotton tensor - built from contractions of the metric and the Weyl tensor - is necessary and
sufficient for the metric to be conformally flat. In the general case of D ≥ 4 the condition of a vanishing
Weyl tensor is simply sufficient.

Evidently, the term C2(Γ) is not invariant under a rescaling of the metric since it manifestly includes
terms of the Riemann tensor. It was shown in ref. [205] that in the Palatini formalism a generalisation
of the action

∫
C2dvol that still respects the Weyl invariance and in which the Weyl tensor has the same

symmetries as in the metric formulation does not exist.
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Frames of action

In what was presented until this very point we avoided discussing the issue of the Jordan and Einstein
frame and in many cases their equivalence is implicit. In fact, this is largely the stance we adopt in this
work, meaning that as far as classical (or semiclassical for that matter) theories are concerned the two
frames are mathematically equivalent and observationally indistinguishable.

Let us begin by formally defining what these frames are. In the Jordan frame, denoted hereafter by
J , gravity is nonminimally coupled with matter field(s) in the form of f(Φ)R(g), in which if we restrict
ourselves to scalar fields the function of the matter field(s) Φ is quadratic in them. Lagrangians that
include these kinds of couplings were first considered in the 60’s, e.g. in the bosonic string theory the
action given in the formally known as string frame1 [206]

S =

∫
dnx

√−g e
−2ϕ

2κ2n

{
R− 4gµν∇µϕ∇νϕ− 1

12
HµνρH

µνρ − n− 26

3 ℓ2s

}
. (4.97)

Also significant impact had the Brans-Dicke (BD) theory given as [207]

S =
1

16π

∫
d4x

√−g
{
ϕR− ω

ϕ
gµν∇µϕ∇νϕ

}
+

∫
d4x

√−gLm , (4.98)

where Lm denotes the matter Lagrangian that is coupled universally with gravity via the
√−g term.

The BD theory, and other descendant modern scalar-tensor theories, are inspired by the original paper
of Jordan [208]. Many of these theories, like the ones considered here, are motivated by results obtained
at the quantum level, in which a coupling of the scalar field to the Einstein-Hilbert term arises due to
quantum corrections of the field (at the one-loop level). In this way the Jordan frame is intrinsically
connected with high energy physics, or at least its origins were, and as such any questions regarding its
nature are actually better posed in the context of our lackluster understanding of high energy physics
phenomena, specifically the inexact methods used in obtaining these effective actions.

The Einstein frame, denoted hereafter by E , is defined in a straightforward way as the frame in
which the gravitational part is simply the Einstein-Hilbert term and matter fields are coupled to gravity
minimally (through the universal term

√−g). Another point is that the kinetic terms of the matter fields
are canonical, however here we extend slightly the definition of E to include noncanonical kinetic terms,
only for the sake of not introducing more terminology to refer to an action functional in an “intermediate
frame”. For example the bosonic string theory can be rewritten in the Einstein frame as

S =
1

2κ2n

∫
dnx

√−ḡ
{
R̄− 4

n− 2
ḡµν∇̄µϕ̄∇̄ν ϕ̄− e−8ϕ̄/(n−2)

12
HµνρH

µνρ − e4ϕ̄/(n−2)
n− 26

3ℓ2s

}
, (4.99)

after a Weyl rescaling of the metric as

ḡµν(x) = e−2ϕ(x)gµν(x) . (4.100)

In fact, the existence of the Weyl rescaling is at the heart of the transformation from the Jordan to the
Einstein frame, used for the first time in ref. [209]. Moreover, usually the Einstein frame is discussed in
context of passing from

{g,Φ} ∈ J 7−→ {ḡ, Φ̄} ∈ E (4.101)

1For the purposes of this work the string and Jordan frame are effectively the same, or at least refer to the same dynamics,
namely the nonminimal coupling of the scalar field to the Einsten-Hilbert term.
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and rarely referred to as a standalone frame.1 Note that the matter Lagrangian is rescaled by the trans-
formation and thus conventional wisdom from J is not transferred trivially to E but rather obtains a
spacetime dependence.

While the two frames are mathematically equivalent that does not necessarily imply physical equiva-
lence and, in general, there are three standpoints regarding to which frame is the “correct” one,2 in terms
of truly describing physics [210]; (i) J is physical and E is not, (ii) E is physical while J is not, (iii)
both frames give an equivalent description of physics. The question can be extended to if other (infinite in
principle) frames that are conformally related to the initial Jordan frame, via a metric rescaling of g 7→ ĝ,
are also physical. Usually the first viewpoint originates from particle physics intuition, since in J the
interactions between matter fields and, more generally, nongravitational physics is well understood, as
opposed to the gravitational action which in this case is complicated. In contrast, the second viewpoint
is adopted mainly by cosmologists, since in the E frame gravity is described by the well-known Einstein-
Hilbert term and hence GR is inferred, with the “sacrifice” that the matter sector has now an involved
expression or is subject to field redefinitions in order to obtain a canonical kinetic term (with a nonpolyno-
mial potential). These comments mostly concern how close is one frame to conventional wisdom and as
such cannot be taken into full consideration if we are to ultimately label a conformal frame as “physical”.

It is usually cited that an issue with E is that the Weak Equivalence Principle (WEP) is violated, unless
matter is conformally coupled with gravity such that its stress-energy tensor is covariantly conserved
in E . However, the WEP can very well be violated in nature, and is in fact an avenue of on-going
research together with possible detectable violations of EEP and the Strong Equivalence Principle (SEP),
for example in a quantum system with a gravitational potential the WEP is respected locally and only for
specific forms of the potential. Another point is that in J the Weak Energy Condition (WEC) is possibly
violated, while in E the energy density is positive definite [210, 211]. However, the inconsistency is not
measurable observationally since there does not exist a physical observable that for timelike vectors uµ

has a predicted value of Tµνuµuν that is conformally invariant [212]. Moreover, violation of the energy
conditions is not uncommon and historically some of them have been abandoned, like the Trace Enegy
Condition (TEC), while the Strong Energy Condition (SEC) being on the fence as of now. Accepted
wisdom suggests that at least the Null Energy Condition (NEC) should be satisfied, however there are
indications that it too can be violated by quantum corrections [213].

It seems that most of the arguments arise from quantum effects violating commonplace classical in-
tuition in, at least, one of the frames and possibly in others conformally related to them. After all, the
quantum behaviour of most of these systems is not completely understood and therefore this approach
can be misleading. A point of caution would be the interpretation of scales from frame to frame (e.g.
see ref. [214]), since they differ between them, but local or nongravitational physics remain the same.3

Thus, since the discrepancies between J and E cannot be measured observationally4 (at the moment)

1Interestingly, the transition E → J is never considered.
2Unfortunately the stances are not often discussed in the literature, apart from specific papers discussing the (non)equivalence

of the two frames, and as such it is usually masked or quietly implied. More than that many authors tend to cast the issue under a
philosophical light, in many ways relegating it to something reminiscent of discussions on interpretations of quantum mechanics.

3For example, in J and E one can read off the Planck mass as MJ ≡ MΩ and ME = M respectively, under a rescaling
g 7→ g = Ω2g. Then distances measured in Planck units are invariant; schematically

M2
J ds2 = M2

J gµνdx
µdxν = M2

E gµνdx
µdxν = M2

E ds2 .

4Or they cannot possibly falsify one of the two. For example let us consider one frame which is related to the initial J by
ds2 −→ ds2 = −dτ2+dΣ, which is conformally flat. In this frame, say M , since the universe is static the photons do not redshift
due to the vanishing Hubble flow. Naively we might say that it is unphysical, however since the electron mass varies in time
in M due to the conformal transformation, we obtain m(τ) = m/(1 + z), where 1 + z ≡ a−1(τ). Then, the energy level in M
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it hints at a more conservative point of view, somewhere in between mathematical and physical equiva-
lence, starting from the energy scale of classical physics to possibly high-energy physics. An alternative
avenue of addressing the issue is to reformulate any theory in terms of quantities that transform covari-
antly [216, 217] or are invariant under conformal transformations [218–223], however either the theories
cannot be conventionally interpreted (and/)or they are assumed ad hoc with uncertain origins.

4.2 Minimally coupled matter fields
In this and following sections we shift our focus to understanding the inflationary predictions and

the high energy behaviour of specific (inflationary) models coupled minimally (and in next section non-
minimally) to gravity including higher-order curvature invariants under the assumption of the first-order
formalism. Specifically, we attempt to merge the Starobinsky model of inflation, which as was illustrated
in previous sections does not provide a dynamical degree of freedom in the Palatini formulation, with
other prominent inflationary models.

Natural inflation

One interesting model capable of describing inflation is the one dubbed the natural inflation model.
When it was first introduced [224, 225] it had the attractive feature that the potential has a flat enough
plateau capable of generating an ample amount of (slow-roll) inflation. Since then, the feature of a flat
potential is not so hard to come by, especially when the identification of the proposed inflationary model
with low-energy physical models is lost. In fact, following our previous discussion (in sec. 4.1), in the
Palatini–R2 models the potential in the Einstein frame is able to generate a flat region that in principle can
provide a successful inflation.

In natural inflation the inflaton is an axionic field in the sense that its potential is shift-symmetric
protecting it from quantum corrections, which in general can ruin the flat slope of any potential, thus
elevating the form of the potential to “natural”. Then, during the early universe an explicit breaking of
the shift symmetry results to slow-roll expansion realising the inflaton as a pseudo-Nambu-Goldstone
boson.

In order to highlight exactly that, let us consider a complex field Φ with two degrees of freedom in the
following representation

Φ = −ϑ eiϕ , (4.102)

where ϑ and ϕ are real fields. Notice that the complex field Φ is exactly invariant under the shift trans-
formation of ϕ 7→ ϕ + 2π. There are many ways to introduce such a field (even without considering
string theory) into the theory, one of them originally proposed a coupling to the SM as a second Higgs
doublet known as the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion with the primary objective to solve
the strong CP problem [226–229], however it has since been excluded by experiment but other forms of
axions still survive. A kinetic term for Φ can be expressed as

|∂Φ|2 = (∂ϑ)2 + ϑ2(∂ϕ)2 . (4.103)

Assuming a large VEV for ϑ ≈ v we can canonically normalise ϕ as ϕ̄ = ϕ/v and decouple the radial from
the angular component. It was proposed that since ϑ ≈ const. it can be identified with Dark Energy and
ϕ with Dark Matter (e.g. see refs. [230, 231] and references therein).

is En = En/(1 + z), where En is the energy level in J , and therefore in a level transition n → n′ the frequency of photons is
Enn′ = Enn′/(1 + z). Exactly what is predicted by Hubble’s law in J . See ref. [215] for a more details regarding the subject.
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Next, let us generalise this idea to a charged scalar field Φ under a continuous global U(1) symmetry.
The most general renormalisable potential reads

V (Φ) = −m2
Φ|Φ|2 + λΦ|Φ|4 , (4.104)

where it is assumed that λΦ > 0. Then a spontaneous symmetry breaking can occur when ϑ→ λΦm
2
Φ and

the potential can be written as [224]

V (ϕ) = Λ4

(
1± cos

ϕ

v

)
, (4.105)

where Λ would be the scale of nonperturbative physics at which the shift symmetry is broken. It is
straightforward to see that the potential is periodic, therefore it has at least one maximum and one
minimum in an interval of ϕ/v ∈ [−π, π], and still respects the residual shift symmetry ϕ 7→ ϕ + 2nπv
meaning that only a subgroup of the original minima survive.

In what follows, we consider only the positive root of the potential, which has been shown to drive
inflation in terms of appropriate scales Λ ≈ MGUT and v ≈ MP , however its predictions lie on the un-
favourable region of observations (see fig. 2.4).

It is interesting then to see how predictions of the natural inflation model change in the framework of
the Palatini-R2; the total Lagrangian at the scale of inflation reads

L =
M2

P

2
R+

α

4
R2 − 1

2
(∂ϕ)2 − V (ϕ) , (4.106)

where MP is the reduced Planck mass and the scalar potential is of the form

V (ϕ) = Λ4

(
1 + cos

ϕ

f

)
, (4.107)

where f is some scale that the global shift symmetry of the inflaton was spontaneously broken and Λ
is the soft explicit symmetry breaking scale giving the boson its mass. Then after we express the total
action functional in its scalar representation by introducing an auxiliary field χ to assume the role of the
R2 term, as was done in previous section, and performing a Weyl rescaling

gµν(x) =

(
1 +

αχ2

M2
P

)
gµν(x) , (4.108)

we obtain the action in the Einstein frame [232]:

S =

∫
d4x

√
−g


M2

P

2
gµν Rµν(Γ)−

1

2

(∇ϕ)2(
1 +

4α

M4
P

V (ϕ)

) − V (ϕ)

1 +
4α

M4
P

V (ϕ)
+O

(
(∇ϕ)4

) , (4.109)

where higher-order kinetic terms O
(
(∇ϕ)4

)
are neglected considering slow-roll inflation.

The equations of motion derived from the above action are a special case of the ones given in eq. (4.61).
The generalised Einstein field equations read as

M2
P

(
Rµν −

1

2
gµνR

)
=

1

(1 + 4α̃V (ϕ))

{
∇µϕ∇νϕ− gµν

(
1

2
(∇ϕ)2 + V (ϕ)

)}
, (4.110)
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while the generalised Klein-Gordon equation, after assuming a spatially homogeneous field ϕ(x) = ϕ(x)
in a flat FRW background with a metric ds2 = −dt2 + a2(t)dx2, becomes

3M2
PH

2 =
1

(1 + 4α̃V (ϕ))

(
1

2
ϕ̇2 + V (ϕ)

)
, (4.111)

where we defined α̃ ≡ α/M4
P .

Next, we can canonically normalise the scalar field by

φ =

∫ ϕ

0

dϕ′√
1 +

4α

M4
P

V (ϕ′)

=

∫ ϕ

0

dϕ′√
1 +

4αΛ4

M4
P

(
1 + cos

ϕ′

f

)
=

∫ ϕ

0

dϕ′√
1 +

8αΛ4

M4
P

(
1− sin2

ϕ′

2f

)

=
2fM2

P√
M4

P + 8αΛ4

∫ ϕ
2f

0

d(ϕ′/2f)√
1− 8αΛ4

M4
P + 8αΛ4

sin2
ϕ′

2f

. (4.112)

Then the integral can be represented using the incomplete elliptic integral of the first kind F defined as

F(ϑ | k2) =
∫ ϑ

0

dx√
1− k2 sin2 x

. (4.113)

Then we obtain

φ =
2fM2

P√
8αΛ4 +M4

P

F(
ϕ

2f
| 1

1 +
M4

P

8αΛ4

) . (4.114)

Now, the inflaton potential in terms of the canonically normalised field φ reads

U(φ) ≡ V (φ)

1 + 4α
M4

P
V (φ)

=
cn2( φ

2fM2
P

√
M4

P + 8αΛ4 | 8αΛ4

8αΛ4+M4
P
)

1 + 8αΛ4

M4
P

cn2( φ
2fM2

P

√
M4

P + 8αΛ4 | 8αΛ4

8αΛ4+M4
P
)
, (4.115)

where cn(φ | k2) is the Jacobi elliptic function. In fig. 4.2 we show that the potential in the Einstein frame
is flattened compared to the one in the Jordan frame. The matter Lagrangian can be expressed in terms of
the field φ reading

L ⊃ −1

2
(∇φ)2 − U(φ) , (4.116)

meaning that we can employ the usual first-order expressions for the inflationary observables ns and r in
terms of the first and second slow-roll parameters ϵV and ηV , with respect to the canonically normalised
field φ.

Since the expressions are rather involved for both the normalised field φ as well as the initial field
ϕ, the calculations are done numerically and the results are presented below. Importantly, the power
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Figure 4.2: Plot of the original potential in the Jordan frame (blue solid line) against the scalar potential in the
Einstein frame after it is flattened by the R2 term (red dashed line). The chosen values of the parameters are
Λ = 0.4, α = 10, f = 10 and MP = 1.

spectrum of scalar perturbations1 reads

As =
f2Λ4

6π2M2
P

cn2( φ
2fM2

P

√
M4

P + 8αΛ4 | 8αΛ4

8αΛ4+M4
P
)

sn2( φ
2fM2

P

√
M4

P + 8αΛ4 | 8αΛ4

8αΛ4+M4
P
)

∣∣∣∣∣∣∣
φ=φi

∼ 2× 10−9 , (4.117)

where sn(φ | k2) is again a Jacobi elliptic function. It is important to note that in the Einstein frame the
Levi-Civita condition is a solution to the equation of motion for Γ, thus it is possible to employ the
conventional methods used in the metric single-field inflation.

In fig. 4.3 we plot the values of the predicted tensor-to-scalar ratio against the spectral index ns, after
numerically solving the equation of ϵV (φi) ≡ 1 in order to obtain the field value at the end of inflation
φ = φi and using that to compute φf for various number of e-foldings N ∈ [50, 60]. The values of the
free parameters are Λ = 8 × 10−3, f = 10 and α ∈ [108, 109] with MP fixed to unity. Values of f ≲ 7 (in
natural units) are excluded by the recent Planck collaboration, fact which we abide by in this study. Note
that for values of α ≲ 107 (for the specific values of the other parameters) are also excluded since the
tensor-to-scalar ratio escapes the preferred region. By increasing the value of α we obtain lower values
of r, however ns remains unchanged. This is in fact a general feature of the Palatini-R2 models, which is
also discussed in ref. [176] in a model independent way. All of the parameter values presented here lead
to the correct value for the scalar power spectrum As ∼ 10−9.

In the next figure, fig. 4.4, we obtain a similar graph to the one in fig. 4.3, by varying the parameter
f and keep α constant instead. The values of the parameters are Λ = 8 × 10−3, α = 109 and f ∈ [5, 10],
while once again fixing MP = 1. The plot is reminiscent of the one given by the Planck collaboration for
the natural inflation, however in the case of Palatini-R2 values of f ≳ 6 are allowed leading to acceptable
values of r. This is in contrast with the conventional metric case in which the model lies outside even the
2σ region of observations.

1We can safely use the convectional expressions for the inflationary observables obtained in the metric formalism, since the
action contains the EH term and a nontrivial matter sector. However, see ref. [233] for a detailed analysis of the inflationary
spectrum strictly in the Palatini formalism.
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Figure 4.3: A plot of the r − ns region for various values of α ∈ [108, 109] and Λ = 0.008, f = 10 and MP = 1.
The light and dark blue region denote the 2σ and 1σ allowed region from the Planck2018 collaboration. The
values of α are specifically chosen such that the plot is within the bounds of r ≲ 0.056. Each dot is a solution for
a specific value of N , which from left to right is increasing up to a maximum value of N = 60 and each “line” is
formed for a specific value of α, as displayed in the colour coding of the legend.
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Figure 4.4: A plot of the r− ns region for various values of f ∈ [5, 10] and Λ = 0.008, α = 109 and MP = 1. The
light and dark blue region denote the 2σ and 1σ allowed region from the Planck2018 collaboration. Each dot is a
solution for a specific value of N , which from left to right is increasing up to a maximum value of N = 60 and
each “line” is formed for a specific value of f based on the colour coding of the legend.
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Figure 4.5: A plot of the phase-space trajectories ϕ̇− ϕ highlighting the attractive behaviour of the scalar potential
U(ϕ) for a specific set of the parameters α = 109, f = 10, Λ = 0.008 and MP = 1. In the bottom left there
is superimposed a magnified plot of the attractor point of the potential. The solid black curve corresponds to the
potential of the canonically normalised field φ.

Finally, we present a study of the phase-space flow diagram in terms of the numerical solutions of the
generalised Klein-Gordon equation. For different initial conditions of the inflaton field and its velocity, the
trajectories of ϕ̇ − ϕ settle on the slow-roll trajectory and are led to the minimum of the potential. Then,
from fig. 4.5 it is clear that the potential has indeed an attractor behaviour.

Massive scalar

One of the simplest models realising inflation is the one described by a free massive scalar field with
a potential

V (ϕ) =
m2

2
ϕ2 . (4.118)

The metric formulation of this model coupled minimally to gravity has been excluded by observations
(see fig. 2.4), so let us consider here its Palatini counterpart but with a minimal coupling to an extended
gravitational sector of R + R2 [175]. The total final action is of the same form as the one for the previous
model of natural inflation, given in eq. (4.109); only the scalar potential has a different form. Then the
canonically normalised scalar field φ in this case reads

φ =

∫
dϕ√

1 +
2αm2

M4
P

ϕ2

=
M2

P

m
√
2α

sinh−1(m
√
2αϕ/M2

P ) , (4.119)
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which in terms of the original field can be also inverted as

ϕ =
M2

P

m
√
2α

sinh(m
√
2αφ/M2

P ) , (4.120)

where m > 0 and α > 0 is assumed throughout. Next, substituting the above relation of ϕ = f(φ) in the
expression of the scalar potential we obtain [175]

U(φ) =
M2

P

4α
tanh2 (m

√
2αφ/M2

P ) . (4.121)

This is a well-known potential, usually referred to under the general class of the T-models, in which the
potential term of the canonically normalised field is given by V (φ) ∝ ᾱ tanh2n (φ/

√
6ᾱ), where now ᾱ is

another constant not to confused with the one coming from the R + αR2 term. These models gathered
considerable attention after it was shown that they arise in supergravity models [234–237]. In cosmology
they can be realised more generally in the context of a scalar field with a pole in the kinetic term. In
fact, these models fall under the same universality class, known as the attractor models1, because their
predictions are insensitive to the features of the potential V (ϕ) for small values of the parameter ᾱ and
are largely dependent on the order and residue of the pole [234].

The slow-roll parameters in terms of the canonically normalised field φ are found to be [175]

ϵV =
m2

M2
P

16α

sinh2 (2m
√
2αφ/M2

P )
, (4.122)

ηV = 16α
m2

M2
P

(
2− cosh2 (2m

√
2αφ/M2

P )

sinh2 (2m
√
2αφ/M2

P )

)
. (4.123)

Then the end of inflation can be analytically obtained by solving ϵV (φ = φf ) ≡ 1, yielding

φf ≈ M2
P

2m
√
2α

sinh−1 (2m
√
2α/M2

P ) . (4.124)

The scalar power spectrum is similarly given by

As =
M4

P

1536α2π2m2
sinh2 (2m

√
2αφ/M2

P ) tanh
2 (2m

√
2αφ/M2

P ) , (4.125)

which, once again, evaluated at horizon exit φ = φi should yield its observed value of As ≈ 2.1 × 10−9.
Finally, the integral for the number of e-folds in terms of the canonical field is

N =
M2

P

16αm2

∫ 2mφf

√
2α/MP

2mφi

√
2α/MP

dx

x

√
sinhx . (4.126)

Unfortunately the expressions become complicated to sort out analytically and we resort to numerical
methods to solve the system. In fig. 4.6 the values of the tensor-to-scalar ratio r are plotted against the
spectral index ns for various values of the parameter α in a range of N ∈ [50, 60] e-foldings. We observe
that for increasing values of α the tensor-to-scalar ratio is decreasing while ns remains largely unaffected.
In fact α can assume values larger than what is presented in the figure suppressing further the predicted
value of r. It is also evident that as α increases the predictions of the observables asymptote to those

1In the present case of V (φ) ∝ ᾱ tanh2n (φ/
√
6ᾱ) they would be the α-attractor models.
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Figure 4.6: A plot of the r − ns region for various values of α ∈ [107, 108], m = 10−5 (which is 1013 GeV) and
MP = 1. The light and dark blue region denote the 2σ and 1σ allowed region from the Planck2018 collaboration,
while the red dashed line denotes the bound on r ≲ 0.056. Each dot is a solution for a specific value of N , which
from left to right is increasing up to a maximum value of N = 60 and each “line” is formed for a specific value
of α based on the colour coding of the legend.

produced by the simple (without the R2 term) quadratic model, presented also in fig. 2.4. The value of
the mass parameter in the figure is m = 10−5 (10−13 GeV) in terms of the fixed Planck mass MP = 1,
and altogether the parameters manage to produce the appropriate value of the power spectrum As. The
scale of inflation is preferably described by the field values of the inflaton field during inflation, which in
principle varies with the different values of the model parameters and the number of e-foldings. However,
a general statement of their values includes

φi ≈ 10MP , & φf ≈MP . (4.127)

In terms of the initial field ϕ the field values of ϕf and ϕi are very similar to the ones produced for the
canonical field φ. Therefore, inflation in this case happens above the Planck scale, also referred to as
transPlanckian.

Digression on attractor models

Let us illustate the above point by considering a toy model with a Lagrangian reading

L =
M2

P

2
R− ω(Φ)

2
(∇Φ)2 − V (Φ) , (4.128)

where Φ is a scalar field with a general potential V (Φ). The following discussion is universal in the metric
and Palatini formulations so we ignore the subject at the moment. The noncanonical kinetic function has
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a general form of
ω(Φ) ≡ αp

|ϕ− ϕ0|p
, (4.129)

with αp a positive constant in order to avoid ghost instabilities. Near the pole of the inflaton field Φ = Φ0

the potential can be expanded as V (Φ) ≈ V (Φ0)+ΦV ′(Φ0) suggesting that the potential should be at least
well-behaved near the pole.

Let us define the canonically normalised field through

dΨ

dΦ
=

1√
ω(Φ)

, (4.130)

and by expressing the slow-roll parameters in terms of it we obtain

ϵ =
M2

P

2

(
V ′(Ψ)

V (Ψ)

)2

=
M2

P

2

1

ω(Φ)

(
V ′(Φ)
V (Φ)

)2

, (4.131)

and

η =M2
P

V ′′(Ψ)

V (Ψ)
=M2

P

1

ω(Φ)

V ′′(Φ)
V (Φ)

(
1− 1

2

ω′(Φ)
ω(Φ)

V ′(Φ)
V ′′(Φ)

)
. (4.132)

The number of e-foldings can also be expressed in terms of the original field as

N(Φ) =

∫ Ψf

Ψi

1

MP

dΨ√
2ϵ

=
1

M2
P

∫ Φf

Φi

ω(Φ)
V (Φ)

V ′(Φ)
dΦ . (4.133)

It is straightforward then to show that the observable quantities read

ns = 1− 6ϵ− 2η =
M2

P

ω(Φ)

(
2
V ′′(Φ)
V (Φ)

− 3

(
V ′(Φ)
V (Φ)

)2

− ω′(Φ)
ω(Φ)

V ′(Φ)
V (Φ)

)
, (4.134)

and

r = 16ϵ = 8
M2

P

ω(Φ)

(
V ′(Φ)
V (Φ)

)2

. (4.135)

If we expand around the inevitable point of the pole at Φ = Φ0 we obtain

ϵ0 ≈
M2

P

2αp
|Φ− Φ0|p

(
V ′0
V0

)2(
1 + 2(Φ− Φ0)

(
V ′′0
V ′0

− V ′0
V0

))
, (4.136)

η0 ≈
M2

P

αp
|Φ0 − Φ|p

{
p

2

sgn(Φ− Φ0)

|Φ− Φ0|
V ′0
V0

+
V ′′0
V0

+
p

2

[
V ′′0
V0

−
(
V ′0
V0

)2
]
+ . . .

}
, (4.137)

where sgn(x) is the sign function. It is straightforward to show that the tensor-to-scalar ratio and the
spectral index are given by

ns − 1 ≈ M2
P

αp
|Φ− Φ0|p

{
p

sgn(Φ− Φ0)

|Φ− Φ0|
V ′0
V0

+ (p+ 2)
V ′′0
V0

− (p+ 3)

(
V ′0
V0

)2

+ . . .

}
, ∀ p ∈ Z+ (4.138)

and

r ≈ 8M2
P

αp
|Φ− Φ0|p

(
V ′0
V0

)2(
1 + 2(Φ− Φ0)

(
V ′′0
V ′0

− V ′0
V0

)
+ . . .

)
, ∀ p ∈ Z+ . (4.139)
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In order to proceed we have to identify two cases of the order of the pole p = 1 and p ̸= 1. Then, the
number of e-foldings can be approximated as

N ≈ αp

M2
P

V0
V ′0

ln |Φ− Φ0| − {Φ → Φf} , (p = 1) . (4.140)

N ≈ αp

M2
P

V0
V ′0

|Φ− Φ0|1−p
p− 1

− {Φ → Φf}︸ ︷︷ ︸
≡C

(p ̸= 1) , (4.141)

where the last term in both equations is simply the first term with Φ = Φf .
Interestingly, in the case of p ̸= 1, which is also the more common, the leading term of the spectral

index becomes
ns − 1 ≈ sgn(Φ− Φ0)

p

p− 1

1

N + C , (p ̸= 1) . (4.142)

Notice that the spectral index is completely independent of the inflaton potential and solely determined
by the order of the pole. Let us return to the case of T-models and take a look at a limiting case of large
ᾱ. Then, the spectral index and the tensor-to-scalar ratio are [234]

ns ≈ 1− 2

N
− n− 1

8n
r , r ≈ 24n ᾱ

N(3ᾱ+ 2nN)

N≫1≈ 12

N2
ᾱ . (4.143)

Then, only r of the two has a multiplicative dependence on ᾱ that can lead to suppressed values of
r < 10−3. This is completely model independent and hinges only on the fact that the kinetic term of the
inflaton field has a pole at some field value Φ0 of order p.

Higgs field

In an attempt to connect low energy particle physics with high energy phenomena it is tempting to
identify the inflaton field with the sole observed scalar field, the Higgs boson. This is not only a scenario
appealing to theoretical physics, but also very predictive in the sense that we can in principle “match”
observational data from cosmology and particle physics. The total action in question then reads

S =

∫
d4x

√−g
{
M2

P

2
R+

α

4
R2 + LSM

}
, (4.144)

where LSM denotes SM Lagrangian. This is the most straightforward way to construct such a model of
inflation, with the exception of α = 0 being the true minimal construction.

Revisiting the SM Higgs

Assuming that the Higgs field plays the role of the inflaton we can safely ignore the interactions with
other fields and in this case obtain

LSM ⊃ −(DµH)†(DµH)− V (|H|) , (4.145)

where H is the Higgs field and V (|H|) its self-interacting potential given by

V (|H|) = −µ2H†H + λ(H†H)2 , (4.146)

where µ2 > 0 is the Higgs mass term and λ > 0 is its self-coupling. For the SM to maintain the SU(2)L ⊗
U(1)Y invariance the covariant derivative is introduced as

Dµ = ∇µ − ig2 t
aW a

µ − igY Y Bµ , (4.147)
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where g2 and gY are the SU(2) and U(1)Y gauge coupling constants and W a and B are the gauge fields
corresponding to their generators, i.e. SU(2)L → {W 1

µ ,W
2
µ ,W

3
µ} and U(1)Y → {Bµ}. Notice that the

notion of the flat spacetime partial derivative is preemptively generalised to curved spacetime by ∂µ → ∇µ.
Let us introduce the Higgs doublet in the spinor representation

H ≡
(
ϕ+

ϕ0

)
. (4.148)

It is straightforward to show that due to the symmetry of the potential V (|H|) there exist an infinite
number of states satisfying H†H = v2/2, where

v2 =
µ2

λ
(4.149)

is the minimum of the potential, also identified with the EW scale and its observed value is v = 246GeV.
Then we can choose in complete generality its VEV to be

⟨H⟩ = 1√
2

(
0
v

)
. (4.150)

In this specific choice the component ϕ0 is identified with the neutral component. This is associated with
the famous breaking of the symmetry SU(2)L ⊗ U(1)L → U(1)em. It is easy to see that the vacuum is
invariant under U(1)em; a sketch of that is as follows

eiαQ ⟨H⟩ ≈ (1 + iαQ) ⟨H⟩ (4.151)

= ⟨H⟩+ iα

(
T3 +

1

2
Y

)
⟨H⟩ (4.152)

= ⟨H⟩+ i
α

2

[(
1 0
0 −1

)
+

(
1 0
0 1

)]( 0
v√
2

)
(4.153)

= ⟨H⟩ , (4.154)

where for the electric charge we used the Gell-Mann-Nishijima relation Q = T3 +
1
2Y , with T3 being a

generator of the SU(2) group. Therefore, the photon remains massless. The rest of the gauge fields that
correspond to the broken generators T1 and T2 acquire a mass; this mechanism is known as the Higgs
mechanism.

Leaving the low energy physics and returning to the inflationary regime we obtain the Higgs sector
with its self-interactions only. Considering the Higgs in the unitary gauge

H ≡ 1√
2

(
0
h

)
. (4.155)

the total action becomes

S =

∫
d4x

√−g
{
M2

P

2
R+

α

4
R2 − 1

2
(∂h)2 − V (h)

}
, (4.156)
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with the potential term given by

V (h) =
λ

4
(h2 − v2)2 . (4.157)

Then we can employ the mechanism highlighted in previous sections, namely express the action in its
scalar representation and transform it from the Jordan to the Einstein frame. The resulting action has the
same form as the one given in eq. (4.109); restated here in this case as [232]

S =

∫
d4x

√
−g


M2

P

2
gµν Rµν(Γ)−

1

2

(∇h)2(
1 +

4α

M4
P

V (h)

) − V (h)

1 +
4α

M4
P

V (h)
+O

(
(∇h)4

) . (4.158)

In what follows we assume that it is safe to approximate the Higgs potential as

V (h) ≈ λ

4
h4 , h≫ v , (4.159)

since we expect the field to assume values far away from its VEV during inflation. It is however un-
fortunate that the Higgs self-coupling is open to interpretation at these energy scales. Meaning that the
running of the coupling following the conventional SM renormalisation group equations suggests that it
decreases with energy to values of λ ∼ 10−13 (see ref. [81]). All of that depends on the exact interplay
between the Higgs mass and the top quark coupling and, as expected, is very sensitive to BSM degrees
of freedom. Unfortunately, the self-coupling can even assume negative values close to the Planck scale,
µc ∼MP , leading to the issue known as the metastability of the Higgs vacuum [238–243]. In order to avoid
the issue we assume tiny positive values of the coupling 0 < λ|Λ=MP

≪ 1 close to the Planck scale, and if
that it is not the case we assume that other degrees of freedom can stabilise the potential.

Regarding the prediction of inflationary observables the analysis follows closely those presented for
the two previous models. At the level of equations of motion the connection satisfies the Levi-Civita
condition and assuming that a field redefinition exists such that the kinetic term can be canonical the
conventional machinery of slow-roll inflation can be applied directly. In order to do that let us begin by
canonically redefining the inflaton as follows

φ =

∫
dh√

1 +
4α

M4
P

V (h)

=
MP

(αλ)1/4

∫
dx√
1 + x4

=
MP

(αλ)1/4

(
4√
π
(Γ(5/4))2 − 1

2
F(y, 1/

√
2)

)
, (4.160)

where F is the elliptic integral of the first kind defined previously in eq. (4.113) and we also made the
following definitions

x ≡ αλ

MP
h , cos y ≡ x2 − 1

x2 + 1
. (4.161)

We can in fact invert the expression of φ(h) to obtain h(φ) in terms of one of Jacobi’s elliptic functions,
similarly to what was done right after eq. (4.113). In fig. 4.7 we present a plot of the field x in terms of
φ̄ = (αλ)1/4φ/MP , where it is noticeable that the expression saturates at some value of φ̄0 that is connected
with the value of 4√

π
(Γ(5/4))2 ≈ 1.85407. This can be also verified analytically by assuming a large field

expansion of F in terms of x.
The total scalar potential in the Einstein frame is given in terms of x(φ) by

U(x) =
M4

P

4α

x4(φ)

1 + x4(φ)
. (4.162)
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Figure 4.7: A plot of relation between the field x = f(φ).

Using this expression we can directly compute the slow-roll parameters as follows

ϵV =
8
√
αλ

x2(1 + x4)
, ηV =

12(1− x4)
√
αλ

x2(1 + x4)
, (4.163)

and the number of e-foldings is given by

N = − 1

MP

∫ φf

φi

dφ√
2ϵV (φ)

=
1

MP

∫ xf

xi

dx√
2ϵV (x)

√
1 + x4

=
1

8
√
αλ

(x2i − x2f ) , (4.164)

where xi, φi and xf , φf are the field values at the start and end of inflation of the x and φ fields respec-
tively. We can obtain the field value at the end of inflation via [232]

ϵV (xf ) ≃ 1 =⇒ x2f ≈ 8
√
αλ , iff

√
αλ < 10−2 . (4.165)

Therefore, we may obtain an approximate expression for N in terms of xi, (N + 1) = x2i /(8
√
αλ). The

power spectrum of scalar perturbations becomes

As =
x6i

768π2α
√
αλ

≈ 2λ

3π2
(N + 1)3 . (4.166)

This in turn leads to values of the self-coupling λ ∼ 10−13 in order to satisfy the observed value of
As ≈ 10−9.

Let us consider the other observable quantities; starting from the spectral index we may substitute the
value of xi in terms of N to obtain:

ns = 1− 6ϵV (xi) + 2ηV (xi) = 1− 24
√
αλ

x2i
≈ N − 2

N + 1

N≫1≈ 1− 3

N
+O(1/N2) . (4.167)

Notice that it is manifestly independent of the parameter α and its approximate expression suggests a
larger than usual amount of e-foldings is required in order to satisfy the bounds of ns. The tensor-to-
scalar ratio reads

r = 16ϵV (xi) =
128

√
αλ

x2i (1 + x4i )
≈ 16

(N + 1)(1 + 8αλ(N + 1)2)

N≫1≈ 2

αλ

(
1

N3
− 3

N4
+O(1/N5)

)
. (4.168)
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Figure 4.8: A plot of the relation between ns = f(N). The blue shaded region represents the 2σ allowed region of
ns and the dashed lines the conventional range of e-foldings N ∈ [50, 60].

Then, in contrast to ns, large values of the parameter α can in principle suppress r. It is possible to derive
a lower bound on the product of αλ by demanding that

r ≲ 0.056 =⇒ αλ ≳ O(10−5) , for N ≈ 75 e-folds , (4.169)

where we allowed for larger values of N in order to satisfy the bounds on ns. Then, in order for the
discussion above to make sense the product of these parameters is bounded as follows

O(10−5) ≲ αλ < 10−4 , (4.170)

where the last inequality stems from the condition that xf is a solution to ϵV (xf ) = 1. Since the power
spectrum demands values of the self-coupling close to λ ∼ 10−13 we can derive a bound on α reading

108 ≲ α < 109 , (4.171)

where once again the upper bound is limited to the approximation used here and is not a physical
limitation of the model. In fact, in fig. 4.9 it is clear that arbitrarily large values of α are also acceptable,
with the “disadvantage” that r is highly suppressed.

In fig. 4.8 we present in a more comprehensive way the fact that in order for the predictions to reside
in the allowed region of observations for ns (displayed by the light blue shaded region) a large amount
of N ≳ 70 e-foldings is required. This is made blatantly clear in the next figure, fig. 4.9, in which we plot
the numerical results for the predicted values of ns and r for various values of α ∈ [107, 108] and a fixed
value of λ = 10−13 and MP = 1. As expected, a large number of N ∈ (70, 80) is required which is not
necessarily out of line with high-scale inflation and suggests a period of slower expansion compared to
the standard radiation domination.

The initial and final values of the inflaton field, for a characteristic set of the parameters λ = 10−13,
α = 108 and N ≈ 75, are approximately given by

φf ≈ 3MP , & φi ≈ 20MP , (4.172)

which also confirm that the field excursion is inside the well-defined range of [−φ̄0, φ̄0], after all we have
φ̄i ≈ 1.1MP . In terms of the initial field h we also obtain similar values of hf ≈ 3MP and hi ≈ 25MP .
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Figure 4.9: A plot of the r− ns region for various values of α ∈ [107, 108], λ = 10−13 and MP = 1. The light and
dark blue region denote the 2σ and 1σ allowed region from the Planck2018 collaboration, while the red dashed
line denotes the bound on r ≲ 0.056. Each dot is a solution for a specific value of N , which from left to right is
increasing from a starting value of N = 65 to N = 85 e-foldings, and each “line” is formed for a specific value
of α based on the colour coding of the legend.

In fig. 4.10 we solve numerically the generalised Klein-Gordon equation for the field x ≡ (αλ)h/MP

for various initial conditions of the inflaton field and a specific set of parameters α = 108 and λ = 10−13.
The trajectories ẋ− x are then presented, which regardless of the initial conditions converge to minimum
of the potential. Therefore, it is clear that it exhibits an attractive behaviour. A similar figure can be
produced for the canonically normalised field φ.

A general class of monomial potential terms

The last two inflationary models, namely the free massive scalar field and the Higgs inflation model,
fall under the general class of monomial potentials, of which an example would be

V (ϕ) =
λ

4

ϕ2n

M
2(n−2)
P

, (4.173)

where ϕ plays the role of the inflaton field, n ∈ Z+ and λ is the self-coupling constant. Then, the
discussion follows similarly to what was done previously, meaning that the canonically normalised field
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Figure 4.10: A plot of the phase-space trajectories ẋ−x highlighting the attractive behaviour of the scalar potential
U(x(φ)) for a specific set of the parameters α = 108, λ = 10−13 and a fixed value of MP = 1. The solid blue
curve corresponds to the potential of the inflaton field x, namely U(x).

can be approximated by [232]

φ =

∫
dϕ√

1 +
αλ

M2n
P

ϕ2n
∼ c0 − c1/x

n−1 , (4.174)

where c0 and c1 are integration constants and the field x ≡ (αλ)1/2nϕ/MP is the generalised case of the
previously defined x. Then the Einstein-frame total scalar potential becomes

U(x) =
M4

P

4α

x2n

1 + x2n
, (4.175)

and follows a similar behaviour to φ, reaching a plateau in the large field limit. It is straightforward to
show that the slow-roll parameters are

ϵV =
2n2(αλ)1/n

x2(1 + x2n)
ηV = 2n(αλ)1/n

2n− 1− (n+ 1)x2n

x2(1 + x2n)
. (4.176)

Then the field value at the end of inflation is obtained by demanding ϵV (x = xf ) = 1 implying that
x2f ≈ 2n2(αλ)1/n for small (αλ)1/n ≪ 1. Next, the number of e-foldings are given by

N =
1

4n(αλ)1/n
(
x2i − x2f

)
, (4.177)

which can be expressed in terms of xi only, yielding x2i = 4n(αλ)1/n(N +n/2). Thus, from all of the above
we are able to approximate the value of the spectral index in terms of the number of e-foldings and the
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Figure 4.11: A plot of the relation between ns = f(N). The blue shaded region represents the 2σ allowed region of
ns and the dashed vertical lines the conventional range of e-foldings N ∈ [50, 60]. Each curve represents different
values of the power of the monomial potential n ∈ {1/3, 2/3, 1, 3/2, 2, 3}

power n of the monomial; reading

ns(xi) =
2N − n− 2

2N + n

N≫1∼ 1− n+ 1

N
. (4.178)

Therefore the best fit of ns corresponds to values of n close to unity, meaning the quadratic potential,
and values of n > 1 that require larger amount of inflation. Especially values of n ≥ 3 are excluded since
they tend to unusually large values of N . However, there are rational values of 1 < n = q/p < 2 that
can provide satisfactory values for ns. A plot of ns in terms of the number of e-foldings N for different
values of n is presented in fig. 4.11, in which that exact relation can be better understood visually by its
“limiting” cases of n ≈ 1/3 and n ≈ 2.

A similar discussion follows for the tensor-to-scalar r which can be rephrased as

r(xi;n,N) = 16ϵV ≈ 23−2nn1−n

αλ

1(
N +

n

2

)n+1

N≫1∼ O(1)

αλNn+1
, ∀n ∈ Z∗ , (4.179)

where λ is in general the self-coupling of the ϕ2n term; not to be confused with the Higgs self-coupling
discussed previously. Then, the power spectrum of scalar perturbations leads to

As =
4n−2nn−1

3π2
λ
(
N +

n

2

)n+1
. (4.180)

Therefore, we may invert λ in terms of As and substitute into the expression of r amounting to

r =
1

6π2Asα
=⇒ α =

1

6π2rAs
≳ 108 ∀n . (4.181)

Importantly, the value of the constant of the R2 term does not depend on the form of the potential
(λ, n) and is simply chosen such that the predicted observable quantities are within the allowed region of
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observations. This result is in agreement with previous sections where the cases of n = 1 and n = 2 were
discussed.

The argument can be generalised for the values of λ for each power n. Starting from the requirement
that r ≲ 0.056 we obtain

αλNn+1 ≳ O(10) =⇒ αλ ≳ O(10−2n−1) . (4.182)

Therefore, by using the result that α assumes the same values for each n it is straightforward to show that
λ must satisfy

λ ⪆ O(10−2n−9) ∀n . (4.183)

This is also in agreement with results of previous sections, where for example in the Higgs field model
(approximately a quartic monomial potential) we obtain λ ≈ 10−13 and for the free massive scalar field
(quadratic potential) we obtain λ = 2m2 ≈ 2× 10−10.

Obviously the approximations cannot describe completely the dynamics of each model, but they do
however paint an intuitive picture of the predicted results of a general class of these models, that is, for
slow-roll inflation to take place the constant α has to assume large values and the self-coupling constant
λ of the potential V (ϕ) ∝ λϕ2n takes up tiny values. Clearly, there are intricate points in each particular
model, such as in the case of n = 2 in which the amount of e-foldings required is larger than usual.

4.3 Nonminimally coupled matter fields
In this section we allow for the possibility of extended interactions of the inflaton field ϕ with the

gravitational sector R + αR2 through a scale-invariant coupling of the form ∝ ξϕ2R. As was stated in a
previous chapter these types of couplings arise at the quantum level due to quantum corrections of ϕ in the
presence of a curved gravitational background and as such they play a vital role to the renormalisability
of the scalar field theory in a curved background. General cases of the nonminimal coupling f(ϕ)R can
also be considered and they are especially interesting in studies pertaining to cosmology and inflation.
The total Lagrangian relative to the inflationary epoch is given by

L ⊃ 1

2
(M2 + ξϕ2)R+ αR2 − 1

2
(∂ϕ)2 − V (ϕ) , (4.184)

where α and ξ are dimensionless constants and M is the bare Planck mass later to be identified with the
Planck scale. An analysis of the above action was presented in a completely model independent way in a
previous section, sec. 4.1, and therefore some of the calculations are retraced here.

Coleman-Weinberg model

During inflation the higher-order curvature invariants tend to dominate over the linear Einstein-
Hilbert term suggesting that gravity at high energies might be scale-invariant. This means that there
are no mass scales present in the theory at that energy scale and the theory is said to be (classically)
scale-invariant. Let us first introduce the concept of scale-invariance and then present an application to
the particular inflationary program described in the previous section.

Classical Scale Invariance

In the EFT approach the Lagrangian is written as an expansion in operators [244, 245]

L =
∑
i

ci
Oi

Λ4−di
i

= Ld≤4 +
L5

Λ
+

L6

Λ2
+ . . . , (4.185)
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where Λ is some high-energy scale that in principle suppresses the higher-dimensional operators Oi. In
D spacetime dimensions, operators of dimension d belong to one of three groups: the relevant operators
with d < D, the marginal operators with d = D and the irrelevant operators with d > D. The SM has
only one relevant operator (all the others are renormalisable) the Higgs mass parameter. If we assume
that the cut-off scale Λ is very large compared to the EW scale then the absence of operators d > 5 can be
explained, however a fine-tuning of the Higgs mass term is needed in order to explain its size, leading to
the issues of naturalness.1

This infinite set of higher-dimensional operators is not generated if the theory is (classically) scale-
invariant, and can be thought of as a special case of an EFT when Λ → ∞. In other words, in D = 4
dimensions only operators with mass-dimensions of d = 4 are expected to appear at least at the classical
level of the theory. Operators of d ̸= D then break explicitly the scale invariance by setting some unique
scale and thus are not allowed, meaning that for example in the SM the Higgs mass term is not considered
fundamental and a mechanism must be introduced in order to dynamically generate that term.

Before we move on to describing how one can generate a scale dynamically in a theory without any
scales, let us first begin by considering a simple toy model of a free scalar field

S[ϕ] =
∫
dDx

(
−1

2
∂µϕ∂µϕ− m2

2
ϕ2 − g

4!
ϕ4
)
, (4.186)

under a scale transformation of

x→ x′ = λx & ϕ(x) → ϕ′(x) = λ−∆ϕ(λ−1x) , (4.187)

where ∆ here is the scaling dimension (also known as canonical dimension) of the scalar field, which in the
case of a free scalar is obtained to be ∆ = (D − 2)/2, where D are the spacetime dimensions. The total
action functional S[ϕ] transforms to S ′[ϕ′] where the kinetic term becomes

L ⊃ −1

2

(
∂x′µ

∂xν
∂ϕ′(x)
∂x′µ

)2

= −1

2

(
λ−(1+∆) ∂ϕ(λ

−1x)
∂x′µ

)2

= −λ
−2(1+∆)

2

(
∂ϕ(λ−1x)
∂(λ−1xµ)

)2

. (4.188)

Then it is straightforward to show after a redefinition of yµ ≡ λ−1xµ that the transformed action reads

S ′[ϕ′] =
∫
dDy

{
−λD−2(1+∆) 1

2

(
∂ϕ(y)

∂yµ

)2

− λD−2∆
m2

2
ϕ2(y)− λD−4∆

g

4!
ϕ4(y)

}
, (4.189)

which after substituting ∆ = (D − 2)/2 we obtain

S ′[ϕ′] =
∫
dDy

{
−1

2

(
∂ϕ(y)

∂yµ

)2

− λ2
m2

2
ϕ2(y)− λ4−D

g

4!
ϕ4(y)

}
. (4.190)

This means that in D = 4 dimensions the only term that violates the (would-be) scale-invariance of
S[ϕ] → S ′[ϕ′] is the mass term, and as such we demand that these terms vanish. For a general monomial
term we obtain

∝ ϕn(x) → λD−n∆ϕ(y) = λ
(2−n)D

2
+nϕ(y)

D=4
= λ4−nϕ(y) . (4.191)

As expected only terms of ∝ ϕ4 are scale-invariant in D = 4 dimensions.
1More than that EFTs are naturally nonrenormalisable theories since in order to absorb loop divergences with arbitrarily

many insertions of Ld≤5, operators of arbitrarily high dimension are needed.
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Next, we can calculate the (non)conserved Noether current which after some manipulations of the
transformations δxµ = −λxµ, δϕ(x) = λ(∆ + xµ∂µ)ϕ(x) we obtain

δL = ∂µ(x
µL ) +m2ϕ2 =⇒ ∂µJ

µ = m2ϕ2 . (4.192)

In general we can construct it as usual through the energy-momentum tensor

Tµν = 2
δ

δgµν

∫
d4xL =⇒ Jµ = Tµνxν . (4.193)

Then, conservation of the scale current means that the energy-momentum tensor has to be traceless (sim-
ilar to theories that are conformally invariant)

∂µJ
µ = Tµ

µ . (4.194)

Even if the theory is scale-invariant at the classical level, quantum corrections can break the symmetry
logarithmically via the RG running of the couplings, which in that case the classical scale invariance (CSI)
is referred to as anomalous1 (similar to conformal anomaly). However, there are theories2 that are exactly
(quantum) scale-invariant (e.g. see refs. [247–250]), meaning that the β functions of the couplings vanish
at all orders of perturbation theory; e.g. N = 4 super-Yang-Mills theory and in principle Conformal Field
Theories (CFTs) [190]. It is however desirable that the scale invariance is softly broken [251–253] at some
point since we already know that it is at best an approximate symmetry – after all physical phenomena
are different at different scales. Then one can imagine for example the SM as a theory embedded in a
UV-complete theory with scale symmetry restored at the UV limit of that theory (see refs. [254–260]).

The Coleman-Weinberg mechanism

The concept of generating a scale (nonzero VEV) through radiative corrections in a theory without
any energy scales is based on the pioneer work of S. Coleman and E. Weinberg [261], based also on
an earlier work of G. Jona-Lasinio [262]. In this section we briefly highlight the Coleman-Weinberg (CW)
mechanism with the main goal to extract the 1-loop corrected potential, after which will be considered as
an inflationary model.

Let us first consider a (classically) massless complex scalar field charged under a local U(1) symmetry
described by the following Lagrangian

L = (DµΦ)
†(DµΦ) +

1

4
FµνFµν −

λ

4!
|Φ|4 , (4.195)

where Φ is the complex scalar field Φ = (ϕ1 + iϕ2)/
√
2. The covariant derivative is Dµ = ∂µ − igAµ with

g denoting the gauge coupling and Fµν the field strength. Since the Lagrangian is gauge invariant the
effective potential depends only on ϕ2 = ϕ1

2 + ϕ2
2. In what follows we calculate the one-loop corrected

potential via cut-off regularisation of the integrals at some cut-off energy scale Λ. It seems counter-intuitive
to introduce explicitly a scale Λ in the theory since it manifestly breaks the scale-invariance, however the

1Such a breaking is termed “natural” in contrast to the one associated with power-law divergences [246]. This is similar to
GUTs, in which for example by embedding the electroweak SU(2) ⊗ U(1) to an SU(5) GUT the radiative corrections to lighter
masses often involve the larger scales. This is the motivation behind the softly broken supersymmetry, which protects this effect.
Taking this a step further we can see how EFTs, that usually have power-law radiative corrections of the high energy scale, cannot
describe a scale-invariant theory below that mass scale.

2Also known as the fixed points of the corresponding RG flow.
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4. Quadratic gravity coupled to matter

same results are obtained by using other schemes such the MS subtraction scheme and the dimensional
regularisation.

It will prove beneficial if we expand the Lagrangian in terms of its field components and obtain

L =
1

2
(∂ϕ1)

2 +
1

2
(∂ϕ2)

2 − g√
2
Aµ (ϕ1

←→
∂µ ϕ2)−

1

4
(Fµν)

2 + 2g2A2
µϕ

2 − λ

4!
ϕ4 . (4.196)

Next, we employ an expansion around the scalar field’s classical solution defined here are as

ϕ(x) = ϕc(x) + ϕ̂(x) , (4.197)

where ϕ̂ is assumed to be a perturbation. The action is expanded as:

Seff[ϕ] ≈ Seff[ϕc] +

∫
d4x′

δSeff

δϕ′

∣∣∣∣
ϕ=ϕc

δϕ′ +
1

2!

∫
d4x′

∫
d4x′′

δ2Seff

δϕ′δϕ′′

∣∣∣∣
ϕ=ϕc

δϕ′δϕ′′ + . . . (4.198)

The equation of motion, or δϕS = 0, is simply the familiar Klein-Gordon one

∂µ∂
µϕ = V ′(ϕ) . (4.199)

Therefore, trivially the second variation of the action gives rise to the following integral

δ
(2)
ϕ S =

∫
d4x ϕ̂T

(
∂2 − V ′′(ϕ)

)
ϕ̂ . (4.200)

Then ϕ̂ can be integrated out and the final path integral reads as follows:

Z ∝
∫
(detD(x))−1/2 eiS[ϕc] , (4.201)

where
D(x) ≡ ∂µ∂

µ − V ′′(ϕ) . (4.202)

Finally we can include in the effective action the correction coming from the determinant and obtain the
following expression

Γ[ϕ] = S[ϕ] +
iℏ
2

Tr logD(x) . (4.203)

Now, the functional trace is a trace over the space which the operator D acts, i.e.(
D ϕ̂

)
x
=
∑
y

Dxyϕ̂y =
(
∂2x − V ′′

)
ϕ̂ (4.204)

and matrix elements (∂2 − V ′′)xy = δ(4)(x− y)(∂2x − V ′′). Here we assumed that the background field ϕ is
constant and not the same as the fluctuation ϕ̂. We can represent the trace-log as a position integral

Tr log (∂2 − V ′′) =
∫
d4x ⟨x| log(∂2 − V ′′) |x⟩

=

∫∫∫
d4x

d4k

(2π)4
d4k′

(2π)4
⟨x|k′⟩ ⟨k′| log(k2 − V ′′) |k⟩ ⟨k|x⟩

=

∫∫
d4x

d4k

(2π)4
log(k2 − V ′′) , (4.205)
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where we used 1 =
∫
d4k |k⟩ ⟨k| and || ⟨x|k⟩ ||2 = 1. Since the logarithm of a dimensionful quantity is

ill-defined we have to regulate it by choosing the additive constant (regulating tadpole diagrams). Then
all the terms are added to the effective potential which reads

U(ϕ) = V (ϕ)− iℏ
2

∫
d4k

(2π)4
log

(
k2 − V ′′

k2

)
+O(ℏ2) (4.206)

Finally we can calculate the integral up to a cut-off scale k2 = Λ2 after a Wick rotation k → kE to limit the
integration contour {kE | k2E ≤ Λ2} and obtain the following effective potential

U(ϕ) = V (ϕ) +
Λ2

32π2
V ′′(ϕ)− (V ′′(ϕ))2

64π2
ln

(√
eΛ2

V ′′(ϕ)

)
. (4.207)

There is still a contribution left coming from the path integral over the gauge field Aµ, which in the
Landau gauge ∂µAµ = ikµA

µ = 0 is equivalent to∫
[DAµ] exp

{
i

ℏ

∫
d4x

(
−1

4
(Fµν)

2 + g2ϕ2A2
µ

)}
=
(
det(∂2 + 2g2ϕ2)

)−3/2
. (4.208)

After following the same process described earlier it brings the one-loop corrected potential to its final
form of

V1ℓ(ϕ) =
1

4!
λϕ2+

1

2
Zmϕ

2+
1

4!
Zλϕ

4+
Λ2ϕ2

64π2
(λ+6g2)+

λ2ϕ4

256π2

(
ln
λϕ2

2Λ2
− 1

2

)
+
3λ2ϕ4

64π2

(
ln
g2ϕ2

Λ2
− 1

2

)
, (4.209)

where we included the counterterms Zm and Zλ required to absorb the divergences from the loop dia-
grams.1 We may impose the following renormalisation conditions

d2V1ℓ(ϕ)

dϕ2
= 0 , &

d4V1ℓ(ϕ)

dϕ

∣∣∣∣
Λ=µ

= λ , (4.210)

where the first one imposes the massless condition and the second one defines the quartic coupling λ
at some renormalisation scale µ. It is then straightforward to show after some algebra that the effective
potential reads

V1ℓ(ϕ) =
λ

4!
ϕ4 +

(
λ2

256π2
+

3g4

64π2

)
ϕ4
(
ln
ϕ2

µ2
− 25

6

)
. (4.211)

The interactions of the gauge bosons and the scalar field dynamically break the symmetry at pertur-
bative couplings, and since λ ∼ g4 we can drop the quadratic term λ2 and express the potential as

V1ℓ(ϕ) =
λ

4!
ϕ4 +

3g4

64π2
ϕ4
(
ln
ϕ2

µ2
− 25

6

)
. (4.212)

Next, if we choose the renormalisation scale at the VEV of ϕ, say µ = ⟨ϕ⟩, there is a nontrivial minimum
of the effective potential at

λ =
33

8π2
g4 . (4.213)

1Note that this result is the same as if we blindly used the general formula for the one-loop effective potential

∆Veff(ϕ) =
∑
dof

(−1)f

28π2
(V ′′)2

(
ln

V ′′(ϕ)

2Λ2
− 3

2

)
,

where the sum is over all the degrees of freedom and (−1)f is −1 for fermions and +1 for bosons.
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4. Quadratic gravity coupled to matter

Notice that in this case we can balance the quartic coupling λ against the gauge coupling g. After substi-
tuting all of the above we obtain the final form of the effective potential

V1ℓ(ϕ) =
3g4

64π2
ϕ4
(
ln

ϕ2

⟨ϕ⟩2
− 1

2

)
. (4.214)

This is the CW mechanism in a nutshell, in which the scale ⟨ϕ⟩ is generated dynamically and ex-
changed for the dimensionless coupling λ, in a process formally known as dimensional transmutation. The
masses of the particles in this particular theory are calculated directly – recall that eq. (4.196) – as

m2
A = g2 ⟨ϕ⟩2 , & m2

ϕ =
3g4

8π2
⟨ϕ⟩2 = 3g2

8π2
m2

A , (4.215)

for the vector boson and the scalar boson respectively. The β functions of the couplings have the following
form [261]

βg =
g3

48π2
, (4.216)

βλ =
1

4π2

(
5

6
λ2 − 3λg2 + 9g4

)
. (4.217)

Notice that the β function of λ is positive suggesting that the value of λ decreases with energy. There exists
then one energy scale, say µc, where the value of the coupling is λ(µc) = 33g4(µc)/(8π), denoting exactly
the energy scale of symmetry breaking. Therefore, we can understand the relation between couplings as
a general result triggered by their RG running and not some sort of fine-tuning.

Return to slow-roll inflation

Motivated by the possible scale-invariance at high energy scales we are interested in studying a theory
of a classically (quasi-)scale-invariant spectrum described by a Lagrangian such as [175]

L =
1

2
ξϕ2gµνRµν(Γ) +

α

4
R2(g,Γ)− 1

2
(∇ϕ)2 − λ

4
ϕ4 − Λ4 , (4.218)

where Λ plays the role of a cosmological constant and is the only dimensionful parameter in the theory.
We show later that during inflation close to the Planck scale Λ ≪ MP , meaning that scale-invariance
is only softly broken. The coupling ξ quantifies the nonminimal coupling of the scalar field ϕ(x) with
gravity. In the absence of the R2 term it was shown [263] that for ξ ≳ 0.1 the above action leads to linear
inflation [264].

To this Lagrangian we should add in principle the Lagrangian L (Φ, ψ,Aµ) that contains the possible
scale-invariant interactions of ϕ with all matter fields. As discussed previously these interactions at the
quantum level will generate radiative corrections, which calculated in the (flat space) Jordan frame we
group them in a general potential V1ℓ(ϕ). Assuming that the field content is such that the CW mechanism
can be implemented the one-loop effective potential reads [175, 263, 264]

V1ℓ(ϕ) = Λ4

[
1 +

ϕ4

⟨ϕ⟩4
(
2 ln

ϕ2

⟨ϕ⟩2
− 1

)]
. (4.219)

An important note is that the Lagrangian as presented in eq. (4.218) lacks the scale of gravity, in other
words the Planck mass is explicitly absent. We can circumvent that by demanding that the nonzero VEV
of the scalar field obeys

⟨ϕ⟩2 = M2
P

ξ
. (4.220)
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Then the constant term Λ ensures that the potential vanishes at the minimum in order to avoid issues
related to the possibility of eternal inflation. Alternatively, it is possible to replace that condition by
assuming the vanishing of the overall scalar potential V̄ ∝ V1ℓ(ϕ) + αχ4 with the effective potential then
given by V1ℓ = M4ϕ4(2 ln ϕ2

⟨ϕ⟩4 − 1), where the coefficient M depends on the characteristics of the matter
field content. Otherwise, the potential can be brought to its final form given by [175, 263]

V1ℓ(ϕ) = Λ4

[
1 +

ξ2ϕ4

M4
P

(
2 ln

ξϕ2

M2
P

− 1

)]
(4.221)

Next, we can follow the same steps as in the previous section of minimally coupled fields, i.e. express
the total action in its scalar representation

S[g,Γ, ϕ, χ] =
∫
d4x

√−g
{
1

2
(ξϕ2 + αχ2)gµνRµν(Γ)−

1

2
(∇ϕ)2 − α

4
χ4 − V1ℓ(ϕ)

}
, (4.222)

perform a Weyl rescaling of the metric

gµν(x) =
ξϕ2 + αχ2

M2
P

gµν(x) , (4.223)

to obtain the action in the Einstein frame

S[g,Γ, ϕ, χ] =
∫
d4x

√
−g
{
M2

P

2
gµνRµν(Γ)−

1

2
(∇ϕ)2 − V (ϕ, χ)

}
, (4.224)

where we defined

V =M2
P

V1ℓ +
αχ4

4
ξϕ2 + αχ4

. (4.225)

Variation of the action with respect to the connection results to the usual Levi-Civita condition

δS
δΓ

= 0 =⇒ Γρ
µν

!
= {µρν} . (4.226)

The equation of motion for the auxiliary field χ is [175]

χ2 =

4V1ℓ(ϕ) +
ξϕ2(∇ϕ)2
M2

P

ξϕ2 − α
(∇ϕ)2
M2

P

, (4.227)

which after its substitution to the starting action functional we obtain

S[g, ϕ] =
∫
d4x

√
−g
{
M2

P

2
R− 1

2

(
ξϕ2M2

P

ξ2ϕ4 + 4αV1ℓ(ϕ)

)
(∇ϕ)2 −

(
M4

P

ξ2ϕ4 + 4αV1ℓ(ϕ)

)
V1ℓ(ϕ) +O((∇ϕ)4)

}
.

(4.228)
We can introduce the canonically normalised scalar field φ through

φ =

∫
dϕ

√
ξϕ2

ξ2ϕ4 + 4αV1ℓ(ϕ)

Λ≪MP≈ MP

2
√
ξ
ln
ξϕ2

M2
P

, (4.229)
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which then brings the Lagrangian to its canonical form of

L ⊃ −1

2
(∇φ)− V (φ) , (4.230)

where the scalar potential is now given by [175]

V (φ) =

M4
P Λ4

(
4
√
ξ
φ

MP
− 1 + exp

(
−4
√
ξ
φ

MP

))
M4

P + 4αΛ4

(
4
√
ξ
φ

MP
− 1 + exp

(
−4
√
ξ
φ

MP

)) , (4.231)

which for large values of the normalised field φ tends to U(φ → ∞) → M4
P /4α, while giving rise to

a minimum at field values of φ = 0. The asymptotic flatness of the inflationary potential is not at all
accidental, it is generated due to the R2 term similar to the case of minimally coupled models studied in
the previous section. It is straightforward to show that the potential includes other inflationary models as
limiting cases, e.g. as

√
ξ ≪ 1 (or equivalently ⟨ϕ⟩ ≪ 1) the potential is approximated by

V (φ)

√
ξ≪1≈ 8ξ

Λ4

M2
P

φ2 +O(φ3) , (4.232)

which is a quadratic monomial and at first order expansion it is independent of α.
Since the action functional is given in terms of a canonically normalised scalar φwith its self-interacting

potential V (φ) coupled minimally to the Einstein-Hilbert term we can obtain the canonical Friedmann
equations by assuming a time-dependent homogeneous field φ(xµ) = φ(t) and an FRW metric ds2 =
−dt2 + a2(t)dx2

3M2
PH

2 =
1

2
φ̇2 + V (φ) . (4.233)

Then, we can safely employ the slow-roll approximation and obtain the first order slow-roll parameters
as [175]

ϵV =
M2

P

2

(
φ− MP

4
√
ξ

)2 [
1 + 16α

√
ξ
Λ4

M5
P

(
φ− MP

4
√
ξ

)]2 , (4.234)

ηV = −
32α

√
ξ

Λ4

M4
P(

φ− MP

4
√
ξ

)2 [
1 + 16α

√
ξ
Λ4

M4
P

(
φ− MP

4
√
ξ

)]2 . (4.235)

The field value at the end of inflation can be determined via the condition of its termination ϵV (φf ) ≃ 1,
leading to

φf =
M4

P

32Λ4α
√
ξ

√1 +

√
2M4

P

16αΛ4
√
ξ
− 1

+ 4M4
P

√
ξ (4.236)

≈ 4M4
P

√
ξ +

MP

2
√
2
− 2α

√
ξ

Λ4

M3
P

,
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Figure 4.12: A plot of the r − ns region for various values of α ∈ [107, 109], ξ = 10−3, Λ = 10−2 and MP = 1.
The light and dark blue region denote the 2σ and 1σ allowed region from the Planck2018 collaboration, while the
red dashed line denotes the bound on r ≲ 0.056. Each dot is a solution for a specific value of N , which from left
to right is increasing from a starting value of N = 50 to N = 60 e-foldings, and each “line” is formed for a
specific value of α based on the colour coding of the legend.

which after inserting it to the definition of the number of e-foldings it gives rise to the following expression

N ≈ ln

(
φi

MP
− 4

√
ξ
)

(
φf

MP
− 4

√
ξ
) + 16α

√
ξ

Λ4

M5
P

(φi − φf ) . (4.237)

In fig. 4.12 we present the numerical analysis of the model and its predictions regarding the inflation-
ary observables r and ns for various values of the parameter α. Specifically, we considered different cases
of α ∈ [107, 109] with fixed values of the nonminimal coupling ξ = 10−3 and the scale Λ = 10−2, satisfying
the initial assumption of Λ ≪ MP = 1. This particular parameter space is capable of reproducing the
correct values of the power spectrum As ∝ 10−9. It is noticeable that for smaller values of α < 107 the
predictions lie outside the allowed region with the limiting case of α = 0 leading to values of r ∼ 10−1.
The effect of the parameter α is effectively to reduce the tensor-to-scalar ratio and in turn lead the model
back into the 2σ (if not the 1σ) of observations. This behaviour was first highlighted in ref. [175, 263]
and subsequent studies included different features [265, 266] such as the reheating phase of the present
model [267].

If we assume varying values of Λ the observables quickly saturate at values close to r ≈ 10−1 and
ns ∼ 0.965 when Λ ∼ 10−3. In contrast, increasing values of ξ tend to decrease the tensor-to-scalar ratio
but increase the scalar spectral index to the point where it is outside the 2σ region at ξ ∼ 0.02, with larger
values of ξ ≳ 0.02 being excluded. In the limit of

√
ξ ≪ 1 the values of the observables tend to the those

predicted by a quadratic monomial. All of these are illustrated in the next figure, fig. 4.13, where the same
plot is reproduced but now for varying values of ξ ∈ [10−4, 10−2] and fixed values of α = 108, Λ = 10−2.

99



4. Quadratic gravity coupled to matter

log(ξ)

-4.0

-3.5

-3.0

-2.5

-2.0

r ≲ 0.056

N = 50

N = 60

0.945 0.950 0.955 0.960 0.965 0.970 0.975 0.980
0.00

0.02

0.04

0.06

0.08

0.10

ns

r

Figure 4.13: A plot of the predicted values of r − ns for varying values of ξ ∈ [10−4, 10−2] and fixed values of
α = 108, Λ = 10−2 and MP = 1. The values of the power spectrum are not entirely respected and the plot it
mostly to illustrate the behaviour of the observables with respect to varying values of ξ. In fact, increasing values
of ξ suggest decreasing values of Λ, and vice versa, in order to obtain the observed value As. The figure follows
the “notation” of the previous figure, fig. 4.12.

Induced gravity model

Another way of spontaneous symmetry breaking (SSB) that can also dynamically generate the Planck
scale can be achieved by assuming a scalar field with a Higgs-like potential

V (ϕ) =
λ

4

(
ϕ2 − v2

)2
, (4.238)

where v = ⟨ϕ⟩ is the VEV of the field. In this case the breaking occurs due to a condensate of the
Ginzburg-Landau type. Then, a nonminimal coupling of the scalar ϕ to the Einstein-Hilbert term through

S =

∫
d4x

√−g
{
1

2
ξϕ2R+

α

4
R2 − 1

2
(∇ϕ)2 − λ

4
(ϕ2 − v2)2

}
, (4.239)

is able to generate dynamically the Planck scale when the field acquires its VEV

ϕ −→ ⟨ϕ⟩ = MP√
ξ
. (4.240)

These models originate from early attempts to reconcile the dynamics of SSB and gravity [268, 269].
They were celebrated for their ability to “induce gravity” through the VEV of scalar field, however since
their initial formulation many more have been proposed and what was once their main attraction has now
been largely forgotten. Nowadays, most of them are considered as inflationary models [270, 271] and as
such, in this section, we study the behaviour of this particular model when coupled also with an R2 term
under the Palatini formalism.
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Following what we did in the previous section we obtain a similar effective action in the Einstein
frame [175]

S[g, ϕ] =
∫
d4x

√
−g
{
M2

P

2
R− 1

2

(
ξϕ2M2

P

ξ2ϕ4 + 4αV (ϕ)

)
(∇ϕ)2 −

(
M4

P

ξ2ϕ4 + 4αV (ϕ)

)
V (ϕ) +O((∇ϕ)4)

}
,

(4.241)
where the potential V (ϕ) is given in eq. (4.238). The action is produced after the substitution of the
solution to the constraint equation δχS = 0 and the Levi-Civita condition with respect to the metric g.

We may introduce the canonical scalar via the redefinition

φ =
M2

P

2

√
ξ

ξ2 + αλ
ln
(
ϕ2(αλ+ ξ2)− αλv2 +

√
αλ+ ξ2

√
ξ2ϕ4 + αλ(ϕ2 − v2)2

)
, (4.242)

thus the inflaton potential expressed in terms of φ becomes [175]

V̄ (φ) ≡ M4
P

ξ2ϕ4 + 4αV (ϕ)
V (ϕ) =

λM4
P

4(ξ2 + αλ)

exp
(

4φ
√

αλ+ξ2

MP
√
ξ

)
− 2 exp

(
2φ
√

αλ+ξ2

MP
√
ξ

)
− αλM4

P

αλM4
P + exp

(
4φ
√

αλ+ξ2

MP
√
ξ

)


2

, (4.243)

where we identified the VEV of the scalar field with v2 =M2
P /ξ.

Then the matter Lagrangian is given in terms of scalar field with a canonical kinetic term and a self-
interacting scalar potential, schematically of the form of L ⊃ −1

2(∇φ)2 − V̄ (φ). Applying the usual
slow-roll approximation φ̇2 ≪ V (φ) the first-order slow-roll parameters have the following form [175]

ϵV (φ) =

32M4
P (αλ+ ξ2)exp

(
4φ
√

αλ+ξ2

MP
√
ξ

)
ξ

(
exp

(
4φ
√

αλ+ξ2

MP
√
ξ

)
+ αλM4

P

)2

ξexp
(

4φ
√

αλ+ξ2

MP
√
ξ

)
+ 2αλM2

P exp
(

2φ
√

αλ+ξ2

MP
√
ξ

)
− αλξM4

P

exp
(

4φ
√

αλ+ξ2

MP
√
ξ

)
− 2ξM2

P exp
(

2φ
√

αλ+ξ2

MP
√
ξ

)
− αλM4

P


2

,

(4.244)
and

ηV (φ) =
16M2

P

(
αλ+ ξ2

)
ξ


6α2λ2M6

P(
e

4φ
√

αλ+ξ2√
ξMP + αλM4

P

)2 +

2M4
P

(
αλ+ ξ2

)(
2ξe

2φ
√

αλ+ξ2√
ξMP + αλM2

P

)
(
−2ξM2

P e
2φ
√

αλ+ξ2√
ξMP + e

4φ
√

αλ+ξ2√
ξMP − αλM4

P

)2

− 6αλM2
P

e
4φ
√

αλ+ξ2√
ξMP + αλM4

P

+
2M2

P

(
αλ+ ξ2

)
− ξe

2φ
√

αλ+ξ2√
ξMP

−2ξM2
P e

2φ
√

αλ+ξ2√
ξMP + e

4φ
√

αλ+ξ2√
ξMP − αλM4

P

 . (4.245)

Due to the complexity of the multi-dimensional parameter space we resort to numerical methods
to study the model. The condition for the inflation to end at some field value ϵV (φf ) = 1 is solved
numerically for a specific set of the parameters {α, λ, ξ}. Then, by requiring inflation to last at least
N ∈ {50, 60} e-foldings we obtain the field value at the start of inflation, φi. In fig. 4.14 we present the
results for the inflationary observables r−ns. The dashed and solid lines (or equivalently the shaded dark
blue and light blue regions) represent the 1σ and 2σ range of ns set by the Planck 2018 collaboration. The
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Figure 4.14: A plot of the r−ns region for various values of α ∈ [107, 109], ξ = 1, λ = 10−10,v =MP /
√
ξ =MP

and MP = 1. The light and dark blue region denote the 2σ and 1σ allowed region from the Planck2018
collaboration. Each dot is a solution for a specific value of N , which from left to right is increasing from a starting
value of N = 50 to N = 60 e-foldings, and each “line” is formed for a specific value of α based on the colour
coding of the legend.

bound on the power spectrum, As ≈ 10−9, is also satisfied approximately by parameters chosen in that
figure and is largely independent of (large) values of α. We notice that for increasing values of the R2

parameter α the ns remains the same at each e-fold N while r is suppressed further to values r ∼ 10−4.
Further investigation reveals that ratio of the parameters has to be of the order of λ/ξ ∼ 10−10 in order
that the power spectrum As ≈ 10−9. This leads us to produce another figure, fig. 4.15, in which we plot
the values of r− ns for α = 108 but varying values of λ ∈ [10−10, 10−9] and ξ ∈ [1, 10], such that their ratio
is always approximately 10−10, while setting v =MP /

√
ξ at each value of ξ. The behaviour recognised in

that figure is similar to the one for varying α, i.e. the values of ns do not change for varying ξ and λ, but
are dependent on the ratio λ/ξ (similar to As). However, increasing values of λ and ξ tend to decrease the
already small values of r [175].

Higgs field

In a previous section we addressed the possibility that the Higgs boson playing the role of the in-
flaton coupled minimally to the R + R2 model. In the conventional metric formulation in order for the
Higgs to successfully drive inflation a nonminimal coupling with the Einstein-Hilbert term has to be in-
troduced [40–42, 81, 272]. Initial interest of nonminimal Higgs inflation was targeted in the differences
between the two formulations and it is then important to first review the simpler scenario, in which the
R2 term is absent.
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Figure 4.15: A plot of the r−ns region for various values of ξ ∈ [1, 10], λ ∈ [10−10, 10−9] and v =MP /
√
ξ, while

keeping fixed the values of α = 108 and MP = 1. The light and dark blue region denote the 2σ and 1σ allowed
region from the Planck2018 collaboration. Each dot is a solution for a specific value of N , which from left to right
is increasing from a starting value of N = 50 to N = 60 e-foldings.

Absence of the R2 term – an overview

Let us introduce once again the Higgs field coupled nonminimally with gravity; in the unitary gauge
we obtain the following Lagrangian [273]

L =
1

2

(
M2 + ξh2

)
gµνRµν(Γ)−

1

2
(∇h)2 − V (h) , (4.246)

where h(x) denotes the Higgs scalar andM2 is an energy scale that together with the nonminimal coupling
ξϕ2 identify the Planck scale. Next, we can eliminate the nonminimal coupling via a Weyl rescaling

gµν(x) =
M2 + ξh2

M2
P

gµν(x) , (4.247)

to obtain the action in the Einstein frame

S =

∫
d4x

√
−g
{
M2

P

2
gµνRµν(Γ)−

M2
P

2(M2 + ξh2)
(∇h)2 − λh4

4(M2 + ξh2)2

}
, (4.248)

where we ignored the Higgs VEV in the potential as we expect the field to assume values close to the
Planck scale.

Let us normalise the kinetic term of the inflaton via a field redefinition of the form
dφ

dh
=

1√
M2 + ξh2

=⇒ φ =
1√
ξ
sinh−1(

√
ξh) , (4.249)
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where we identified the scale M ≡ 1. Under this field redefinition the potential becomes

V̄ (φ) =
λ

4ξ2
tanh2(

√
ξφ) . (4.250)

At this point the theory is reminiscent of the free massive scalar field that is coupled minimally to the
R + R2 term, discussed in a previous section. Applying then the slow-roll approximation we can obtain
the duration of inflation encoded in the formula

N =

∫ φi

φf

V̄ (φ)

V̄ ′(φ)
dφ ≈ 1

16ξ
cosh (2

√
ξφi) ≈

h2i
8
, (4.251)

where we assumed that φi ≫ φf , or at least it dominates in the expression of N = f(φ). Therefore, we
can express the slow-roll parameters in terms of the approximate formula for the e-foldings N as follows

ϵV ≈ 1

8ξN2
ηV ≈ − 1

N
. (4.252)

Assuming then an expansion of the inflationary observables around large numbers of N we obtain the
following approximate expressions [273]

ns ≈ 1− 2

N
, r ≈ 2

ξN2
As ≈

λN2

12π2ξ
. (4.253)

Clearly, since the value of the power spectrum depends on the ratio of the two free parameters λ/ξ we
can interchange one for the other using its observed value [274, 275]

ξ ≈ 4× 106N2λ . (4.254)

Thus, we are left effectively with only one free parameter, ξ or λ. Then, in order for the observables
eq. (4.253) to reside within the allowed region of observations for N ∼ 55 e-folds, the model parameters
assume values in the range

ξ ∈ [105, 109] =⇒ λ ∈ [10−5, 10−1] , (4.255)

and vice verca.
Even the most conservative values of ξ lead to highly suppressed values of r ∼ 10−12, contrary to the

usual metric formulation in which r ∼ 10−3. Other than that the predicted values of ξ in the Palatini
formalism seem to be close to five magnitudes larger than those in the metric formalism, in which ξ ∼
(102 − 105).

This encapsulates what is currently cited in the literature, however it does not constitute an appro-
priate comparison of the two formulations. A common link between the two can be found by invoking
arguments based on the phenomenology of the proposed model, for example it is currently assumed that
λ ∼ 10−12 at energy scales close to the Planck scale [81] and without any other BSM degrees of freedom
present to stabilise the potential we are led to take it at face value, or at least assume some kind of tiny
value of λ. Following the same procedure one can derive a similar relation between ξ and λ in the metric
formulation of the model, reading [40]

ξ(2) ≈ 4× 104
√
λ(2) , (4.256)

where the subscript (2) here denotes the metric (second-order) formalism. It is trivial then to show that
in the case that λ ∼ 10−12 both formulations demand values of ξ ∼ 10−2, which in fact is in agreement
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with QFT wisdom that dimensionless couplings coming from perturbation theory (which is the main
motivation of the nonminimal coupling) should be ≪ 1. If that is the case then the predicted value of the
tensor-to-scalar ratio in the Palatini formalism is close to the current 2σ cut-off value of r ∼ 0.05, while
the conventional metric formulation leads to r(2) ∼ 10−3 that depends only on the value of N and not
on the model parameters. This is an advantage of the Palatini-Higgs model; since r is dependent on ξ
any possible disagreement with future experiments can be remedied by placing stricter constraints on the
allowed values of ξ, constraining in turn the values of λ through As.

Return of the R2 term

Let us include the R2 term in the gravitational sector, and while still under the assumption of the
Palatini formalism, examine how the inflationary predictions of the model change. We noticed from
earlier investigations that the R2 term induces an asymptotic flatness to the inflaton potential in the
Einstein frame. The total action functional is [175]

S =

∫
d4x

√−g
{
1

2
(M2 + 2ξ|H|2)R(g,Γ) + α

4
R2(g,Γ)− |DH|2 − V (|H|)

}
, (4.257)

where H would be the Higgs field. Next, we may introduce the auxiliary field χ as we did before in order
to eliminate the R2; we obtain the following action in the scalar representation

S =

∫
d4x

√−g
{
1

2
(M2 + 2ξ|H|2 + αχ2)R(g,Γ)− |DH|2 − V (|H|)− α

4
χ4

}
. (4.258)

Then after a Weyl rescaling of the metric with the assumption that M2 ≈M2
P

gµν(x) =

(
1 +

αχ2

M2
P

+ 2ξ
|H|2
M2

P

)
gµν(x) , (4.259)

we obtain the action in the Einstein frame

S =

∫
d4x

√
−g

M
2
P

2
gµνRµν(Γ)−

|DH|2(
1 + αχ2

M2
P
+ 2ξ |H|

2

M2
P

) − V (|H|) + α
4χ

4(
1 + αχ2

M2
P
+ 2ξ |H|

2

M2
P

)2
 . (4.260)

Variation of the action with respect to the auxiliary field χ leads to the following constraint equation [175]

δχS = 0 =⇒ χ2 =

4V (H)

M2 + 2ξ|H|2 +
2|∇H|2
M2

P

1− 2α|∇H|2
M2

P (M
2 + 2ξ|∇H|2)

. (4.261)

If we adopt the unitary gauge H = 1√
2
(0 h)T the Higgs potential reads

V (H) = λ

(
|H|2 − v2

2

)2

=
λ

4
(h2 − v2)2 ≈ λ

4
h4 , (4.262)

where in the last equality we assumed that in order for the Higgs field to play the role of the inflaton it
has to be far away from the EW scale. Then we can substitute the expression of χ2 back into the action to
obtain

S =

∫
d4x

√
−g
{
M2

P

2
gµνRµν(Γ)−

1

2
(∇h)2

(
M2

P ξ h
2

ξ2h4 + 4αV (h)

)
− V (h)

M4
P

ξ2h4 + 4αV (h)
+O((∇h)4)

}
.

(4.263)
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It is possible to reformulate the action functional in terms of a canonically normalised scalar field
under the assumption that the Higgs field with its coupling satisfy the condition ξh2 ≫ M2

P , at least
during the first stages of inflation. Then we obtain

φ =MP

√
ξ

ξ2 + αλ
sinh−1

(
h

MP

√
ξ
ξ2 + αλ

ξ2 − αλ

)
, iff ξh2 ≫M2

P . (4.264)

Therefore the Lagrangian can be brought to its canonical form of

L ⊃ −1

2
(∇φ)2 − V̄ (φ) , (4.265)

where the scalar potential reads

V̄ (φ) =
λ

4

M4
P

ξ2 + αλ

sinh2

(
φ

MP

√
ξ2 + αλ

ξ

)
2ξ2

ξ2 − αλ
+ sinh2

(
φ

MP

√
ξ2 + αλ

ξ

) . (4.266)

Notice that at the limit of ξ2 ≫ αλ we recover the potential eq. (4.250) derived in the case that the R2 term
is absent, i.e. α = 0. Clearly this is not a surprising result, in fact it is expected that if the nonminimal
coupling dominates the R2 effectively does not contribute. On the other hand, if ξ2 ≪ αλ, or simply
ξ ≪ 1, the potential takes the form of eq. (4.175) for n = 2 and x =

√
ξφ/MP . This is once again expected

since in the limit of ξ → 0 we obtain the simple quartic potential minimally coupled R+R2 term. In that
case a larger amount of inflation is required as was noted in that section.

As we discussed earlier at the level of equations of motion the Levi-Civita condition is satisfied mean-
ing that the connection coefficients are the Christoffel symbols with respect to the metric ḡ. Therefore, by
assuming a flat FRW background and spatially homogeneous field φ(x, t) = φ(t) the equations of motion
of the system read

φ̈+ 3Hφ̇+ V̄ ′(φ) = 0 , 3H2 =
1

2
φ̇2 + V̄ (φ) , (4.267)

where we set MP ≡ 1. Using the slow-roll approximation we can rewrite the system of equations as

3Hφ̇+ V̄ ′(φ) ≈ 0 , 3H2 ≈ V̄ (φ) . (4.268)

Then, we can directly apply the mechanism of single-field slow-roll inflation via the slow-roll parameters,
which in this case are given by [175]

ϵV (φ) = 8ξ3(αλ+ ξ2)
coth2

(
φ

MP

√
αλ+ξ2

ξ

)
csch4

(
φ

MP

√
αλ+ξ2

ξ

)
(
M2

P (ξ
2 − αλ) + 2ξ2 csch2

(
φ

MP

√
αλ+ξ2

ξ

))2 , (4.269)

where csch(z) = 1/ sinh (z) is the hyperbolic cosecant and coth (z) is the hyperbolic cotangent. The second
slow-roll parameter reads [175]

ηV (φ) =
4ξ(αλ+ ξ2) csch4

(
φ

MP

√
αλ+ξ2

ξ

)
(
2ξ2 csch2

(
φ

MP

√
αλ+ξ2

ξ

)
+M2

P (ξ
2 − αλ)

)2× (4.270)
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Figure 4.16: A plot of the r − ns region for various values of ξ ∈ [10−2, 10−1], α = 108, λ = 10−12 and MP = 1.
The light and dark blue region denote the 2σ and 1σ allowed region from the Planck2018 collaboration, while the
red dashed line denotes the bound on r ≲ 0.056; following the notation of previous figures.

×
[
M2

P (αλ− ξ2)

(
cosh

(
φ

MP

√
αλ+ ξ2

ξ

)
+ 2

)
+ 2ξ2

(
coth2

(
φ

MP

√
αλ+ ξ2

ξ

)
+ 1

)]
.

Likewise, we obtain an expression for the scalar power spectrum given below

As(φ) =
λ(ξ2 − αλ)2

768M6
Pπ

2ξ3(ξ2 + αλ)5
sinh4

(
φ

MP

√
ξ2 + αλ

ξ

)
tanh2

(
φ

MP

√
ξ2 + αλ

ξ

)
×

×
[
M4

P (ξ
3 + αλξ)3 + αλ(ξ2 − αλ)2 sinh4

(
φ

MP

√
ξ2 + αλ

ξ

)]
. (4.271)

In fig. 4.16 we employ numerical methods in order to calculate the predictions concerning the infla-
tionary observables r and ns. Similarly to what was done in previous models, we obtain the field value
at the end of inflation via the condition ϵV (φf ) = 1 and for N in the conventional range of N ∈ [50, 60]
e-foldings we derive the field value at the start of inflation, φi. Then, in the figure we plot the values
obtained for different values of the ξ parameter and fixed values of α = 108 and λ = 10−12. Predictions
close to values of ξ ∼ 10−2 also break our initial condition that ξh2 ≫ M2

P and are not to be trusted
entirely [175], they reside anyway outside the 2σ range of r. It is evident that values ξ ≳ 10−1 can result
in successful inflation, with an ample amount of N and observables in the 1σ range.

It might prove useful to approach it also in a semi-analytic way, which is more conveniently presented
if we reintroduce the original scalar field h(t). For starters, the slow-roll parameters become

ϵV (h) =
8M6

P (M
2
P + ξh2)

h2
(
αλh4 + (M2

P + ξh2)2
) , (4.272)
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ηV (h) =
24M6

P (M
2
P + ξh2)

h2
(
αλh4 + (M2

P + ξh2)2
) − 4M6

P

h2(M2
P + ξh2)

− 8M4
P

h2
. (4.273)

Next, we may solve for the number of e-folds N to obtain

N =
h2

8M4
P

∣∣∣∣hi

hf

≈ h2i
8M4

P

. (4.274)

The field value at the start of inflation, used in the expression of the observables, can be approximately
expressed as h2i ≈ 8M2

PN . Therefore, the expressions of the spectral index and the tensor-to-scalar ratio
become

ns = 1− 16M4
P

h2
− 8M6

P

h2(M2
P + ξh2)

≈ 1− 2

N
− 1

N(1 + 8 ξNM2
P )

N≫1≈ 1− 2

N
− 1

8M2
P ξN

2
+O(N−3) ,

(4.275)

r =
128M6

P (M
2
P + ξh2)

h2
(
αλh4 + (M2

P + ξh2)2
) ≈ 16

N

(
1 + 8 ξNM2

P

8αλN + (1 + 8 ξNM2
P )

2

)
N≫1≈ 2ξ

M2
P (αλ+ ξ2)N2

+O(N−3) .

(4.276)

Depending on its magnitude, the parameter α can play a role in suppressing the values of r, however
it does not affect the ns as noted by the numerical results. Likewise, the power spectrum of scalar
perturbations can be expressed as

As =
λh6

768M4
Pπ

2(M2
P + ξh2)

≈ 2λM6
PN

3

3π2(1 + 8ξNM2
P )

N≫1≈ λN2M4
P

12π2ξ
− λM2

PN

96π2ξ2
+O(N−1) . (4.277)

Since the power spectrum is independent from α (at all orders [176, 276]), it is possible to place the
same condition on the ratio of λ/ξ as we did before, meaning that λ/ξ ∼ 10−10 in order for As ≈ 10−9.
The approximate formula derived for r then leads to a bound on α depending on ξ, for example if ξ ≪ 1
then α ≳ 108, however if ξ ≫ 1 we are led to α < 1012 and ξ ≳ 108. The discussion agrees with our
numerical results [175] and with results presented in similar studies in refs. [274, 276–278].

4.4 Extended interactions of gravity and matter
During inflation it is expected that quantum effects can play a significant role. In previous sections

we analysed certain ramifications of that statement, initially with the inclusion of the R2 term and the
nonminimal coupling of the inflaton field to the Einstein-Hilbert term, and in section 4.3 by considering
the one-loop effective potential. In this section we are particularly interested in the type of coupling
between the inflaton field and the gravitational sector. Currently, as we discussed previously in this work,
our description of a quantum theory of gravity is lackluster at best and as such comments regarding
what it entails should be treated with suspicion. Following the line of thought presented in this work
it is interesting to consider the case in which the α parameter of the αR2 term is also dependent on the
inflaton field, i.e. α → α(ϕ). This type of coupling, alongside the ξϕ2R, are expected to be generated by
quantum corrections of the ϕ field in a curved background, even if they are absent in the bare (tree-level)
Lagrangian,1 see for example ref. [105].

1There are other local terms that are generated in the process, schematically reading as R∇µϕ∇µϕ and Rµν ϕ∇µ∇νϕ etc,
which can be grouped for example in the Einstein tensor Gµν ≡ Rµν − 1

2
gµνR, as Gµν∇µϕ∇νϕ. In ref. [275] it was studied

specifically this type of combination in the Palatini formalism with a special interest given towards inflation.
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Let us consider a fundamental scalar field ϕ(x) that is nonminimally coupled to gravity in the way
described above, then a general action describing its interactions would be [196]

S =

∫
d4x

√−g
{

1

2
(1 + f(ϕ)) gµνRµν(Γ) +

α(ϕ)

4
R2(Γ)− 1

2
(∇ϕ)2 − V (ϕ)

}
, (4.278)

where we fixed MP ≡ 1. Equivalently the action can be brought to its scalar representation via the
introduction of an auxiliary field χ as follows

S =

∫
d4x

√−g
{
1

2
(1 + f(ϕ) + α(ϕ)χ)R− 1

2
(∇ϕ)2 − V (ϕ)− 1

4
α(ϕ)χ2

}
. (4.279)

In a way similar to what was done in previous sections we can rescale the metric as

gµν(x) = (1 + f(ϕ) + α(ϕ)χ) gµν(x) , (4.280)

to obtain the action in the Einstein frame

S[g,Γ, ϕ, χ] =
∫
d4x

√
−g
{

1

2
gµνRµν(Γ) − 1

2

(
∇ϕ
)2

(1 + f(ϕ) + α(ϕ)χ)
−
(
V (ϕ) + 1

4α(ϕ)χ
2
)

(1 + f(ϕ) + α(ϕ)χ)2

}
. (4.281)

In contrast to the metric formalism, terms involving derivatives of the ϕ and χ field are not generated
through the Weyl rescaling of the metric and the action is schematically similar to the one of constant α.

Field equations & Equations of motion

The action (4.281) serves as the starting point in our analysis. In that case, variation of eq. (4.281) with
respect to the Γρ

µν leads to the standard Levi-Civita condition, following exactly what was presented in
previous sections and discussed in detail in ch. 3; that is

δS
δΓρ

µν
= 0 =⇒ Γρ

µν =
1

2
gρλ
(
∂µgλν + ∂νgµλ − ∂λgµν

)
. (4.282)

Next, variation with respect to the auxiliary field χ leads to the constraint

δS
δχ

= 0 =⇒ χ =
4V (ϕ) + (1 + f(ϕ))

(
∇ϕ
)2

(1 + f(ϕ))− α(ϕ)
(
∇ϕ
)2 . (4.283)

Substitution of the above equations back to the level of the action (4.281) leads to the final form of the
action functional reading

S[g, ϕ] =
∫
d4x

√
−g
{
1

2
R− 1

2
K0(ϕ)

(
∇ϕ
)2

+
1

4
K2(ϕ)

(
∇ϕ
)4 − U(ϕ)

}
, (4.284)

where the functions encoding the noncanonical nature of the kinetic terms K0(ϕ) and K2(ϕ), alongside
the scalar potential in the Einstein frame, are defined as follows

K0(ϕ) ≡
1 + f(ϕ)[

(1 + f(ϕ))2 + 4α(ϕ)V (ϕ)
] , (4.285)
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K2(ϕ) ≡
α(ϕ)[

(1 + f(ϕ))2 + 4α(ϕ)V (ϕ)
] , (4.286)

U(ϕ) ≡ V (ϕ)[
(1 + f(ϕ))2 + 4α(ϕ)V (ϕ)

] . (4.287)

Notice that the action (4.281) is exact, meaning that all terms of ∇ϕ are present at this stage.
It is then straightforward to show that variation of the action (4.284) with respect to the rescaled metric

g leads to the following generalised Einstein field equations [196]

Gµν ≡ Rµν −
1

2
gµνR =

(
K0(ϕ)−K2(ϕ)

(
∇ϕ
)2)

∂µϕ∂νϕ− gµν

(
1

2
K0(ϕ)

(
∇ϕ
)2 − 1

4
K2(ϕ)

(
∇ϕ
)4

+ U(ϕ)

)
,

(4.288)

and variation with respect to the scalar field ϕ(x) gives rise to a generalised Klein-Gordon equation of the
following form(
K0(ϕ)−K2(ϕ)

(
∇ϕ
)2)

□ϕ−K2(ϕ)
(
∂µ
(
∇ϕ
)2)

gµν∂νϕ+
1

2
K ′0(ϕ)

(
∇ϕ
)2 − 3

4
K ′2(ϕ)

(
∇ϕ
)4 − U ′(ϕ) = 0 ,

(4.289)

where the d’ Alembertian operator is defined here as □ϕ = 1√−g∂µ (
√−g gµν∂νϕ). The pair of these two

field equations govern, in essence, the dynamics of the model.
Since we are interested primarily in understanding the predictions concerning the inflationary ob-

servables we assume a spatially homogeneous scalar field ϕ(x) = ϕ(t) in a curved spacetime endowed
with a flat FRW metric ds2 = −dt2 + a2(t) δij dx

i dxj . The equations of motion are then reduced to the
generalised Friedmann equation

3

(
ȧ

a

)2

= 3H2 =
1

2
K0(ϕ)ϕ̇

2 +
3

4
K2(ϕ)ϕ̇

4 + U(ϕ) = ρ , (4.290)

and the generalised Klein-Gordon equation becomes(
K0(ϕ) + 3K2(ϕ)ϕ̇

2
)
ϕ̈+ 3H

(
K0(ϕ) +K2(ϕ)ϕ̇

2
)
ϕ̇+

1

2
K ′0(ϕ)ϕ̇

2 +
3

4
K ′2(ϕ)ϕ̇

4 + U ′(ϕ) = 0 . (4.291)

As far as slow-roll inflation is concerned it is safe to assume that the kinetic terms obey

3

4
K2(ϕ) ϕ̇

4 ≪ 1

2
K0(ϕ) ϕ̇

2 ≪ U(ϕ) , (4.292)

at least during the initial stages of inflation, with the possibility that the condition is violated towards the
end of inflation, in line with single-field slow-roll. Generally, corrections to the energy density due to the
higher-order kinetic term K2(ϕ)ϕ̇

4 are encoded in deviations of the effective sound speed from unity.1 We
also assume that

|ϕ̈| ≪ |3Hϕ̇| . (4.293)

1In the present section we check these deviations numerically for each set of the parameters considered below and have
found deviations smaller than 10−5, meaning that c2s ≈ 1 throughout inflation and we can safely neglect the higher-order kinetic
terms altogether.

110



4.4. Extended interactions of gravity and matter

Therefore, at inflationary scales the action effectively reduces to

S =

∫
d4x

√
−g
{
1

2
R− 1

2
K(ϕ)

(
∇ϕ
)2 − U(ϕ)

}
, (4.294)

which after a redefinition of the scalar field

Φ = ±
∫
dϕ
√
K0(ϕ) , (4.295)

can be brought into its canonical form yielding

L ⊃ −1

2

(
∇Φ
)2 − U(ϕ(Φ)) . (4.296)

The first-order slow-roll parameters containing the information of slow-roll inflation can be expressed
in terms of the original field ϕ as follows

ϵV =
1

2

(
U ′(Φ)
U(Φ)

)2

=
1

2K0(ϕ)

(
U ′(ϕ)
U(ϕ)

)2

, (4.297)

ηV =
U ′′(Φ)
U(Φ)

=
1

K0(ϕ)

(
U ′′(ϕ)
U(ϕ)

)
− 1

2

K0
′(ϕ)

K0
2(ϕ)

(
U ′(ϕ)
U(ϕ)

)
, (4.298)

and similarly the duration of inflation is given by

N =

∫ Φf

Φi

dΦ

(
U(Φ)

U ′(Φ)

)
=

∫ ϕf

ϕ∗

dϕK0(ϕ)

(
U(ϕ)

U ′(ϕ)

)
, (4.299)

where, following the notation of previous sections, the field values at end and start of inflation are denoted
by Φi (or ϕi) and Φf (or ϕf ), respectively. All of the above are related to observable quantities through
their usual approximate expressions.

Specifying the nonminimal couplings

The setup described up to this point has been purposefully quite general and involved the inflaton
potential V (ϕ) and the two nonminimal coupling functions f(ϕ) and α(ϕ) between the scalar field and
the R+R2 term. In general, since R is dimensionful it suggests that the function f(ϕ) is a monomial in ϕ,
which, in the case that it also respects an internal Z2 symmetry it can be generally expressed as

f(ϕ) = ξϕ2 , (4.300)

where the constant parameter ξ is dimensionless. This was actually the type of coupling considered prior
to this discussion.

In the case of the inflaton potential we suppose that only the renormalisable self-interaction terms of
the inflaton would contribute and as such we assume that the potential is given by a quartic monomial in
ϕ, reading:

V (ϕ) =
λ

4!
ϕ4 . (4.301)

As we discussed in the section 4.3, the potential can be possibly enhanced by radiative corrections and
obtain a logarithmic dependence on ϕ in the form of ϕ4 ln (ϕ2/µ2), where µ denotes the would-be renor-
malisation scale. At this point we can parallelise the potential with the Higgs potential far away from
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4. Quadratic gravity coupled to matter

the EW scale and identify the λ parameter with the Higgs self-coupling. In what follows, values of
the free parameters of the model are chosen such that they are phenomenologically consistent, at least
approximately.

The other parametric function α(ϕ) corresponds to a generalisation of the Starobinsky constant1 (or the
mass term ∝M2

P R
2/M2(ϕ)) that includes a dimensionless dependence on the inflaton field ϕ. Since the R2

term is invariant under a Weyl rescaling (in the Palatini formalism) a direct relation between these two
nonminimal couplings f(ϕ) and α(ϕ) cannot be assumed ad hoc.2 If we were to assume a UV completion
of the theory the coupling α(ϕ) would obtain a logarithmic correction from its running which could be
represented here as

α(ϕ) = α0 + β0 ln

(
ϕ2

µ2

)
, (4.302)

where α0 and β0 are constant dimensionless parameters. In the following analysis we accompany the
values of α0 and β0 with a factor of at least α0/β0 ⪆ O(10) to account for the perturbative nature of α(ϕ),
as well as maintain the overall positivity of the R2 term. Since α(ϕ) depends on the field values ϕ we
expect the model to differ substantially compared to the usual Palatini-R2 models analysed earlier, in
which the constant parameter α does not even affect the observables ns and As [175, 176], and it should
contribute drastically to the tensor-to-scalar ratio r and the total number of e-folds N since both depend
manifestly on α. Naturally, this depends on the magnitude of the value of α compared to the rest of
the model parameters, as demonstrated in what follows. Notice that at field values close to the would-
be renormalisation scale ϕ → µ the model is asymptotically scale-invariant resembling the undeformed
Starobinsky model, which is recovered with corrections δϕ around µ given by ∝ R+

(
α0 + β0(δϕ/µ)

2
)
R2.

Considering that specific form of the parametric functions they give rise to the following expressions
for the functions K0(ϕ), K2(ϕ) and U(ϕ) appearing in the final action [196]

K0(ϕ) =
1 + ξϕ2

(1 + ξϕ2)2 +
λ

6
ϕ4
(
α0 + β0 ln(ϕ

2/µ2)
) , (4.303)

K2(ϕ) =
α0 + β0 ln(ϕ

2/µ2)

(1 + ξϕ2)2 +
λ

6
ϕ4
(
α0 + β0 ln(ϕ

2/µ2)
) , (4.304)

U(ϕ) =

λ

4!
ϕ4

(1 + ξϕ2)2 +
λ

6
ϕ4
(
α0 + β0 ln(ϕ

2/µ2)
) . (4.305)

Instinctively, a logarithmic correction to the scalar self-coupling can be added and actually, following
the reasoning for the logarithmic form of α(ϕ), it should. For this particular model such corrections would
in principle affect the denominator of the above functions, however they can be absorbed in the definition
of α0 and β0 schematically as λ(ϕ)α(ϕ) ∝ λ0α0 + (λ1α0 + λ0β1) ln(ϕ

2/µ2). As such, only the numerator
of the Einstein-frame scalar potential would obtain a contribution, which could further improve the infla-
tionary plateau even though it is subleading due to the smallness of the self-coupling λ. Specifically for
inflation, the potential enters in the formulae of the slow-roll parameters in the form of U ′/U, (U ′/U)′,
meaning that derivatives of the logarithmic corrections amount to inverse powers of the inflaton that are
subleading in the large field limit [196]. The perturbative nature of the term β0 ln (ϕ

2/µ2) ensures also

1See refs. [279, 280] for a similar discussion in the metric formalism.
2However, in ref. [281] the contrary was assumed.
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Figure 4.17: Plot of the scalar potential U(ϕ) in terms of the original field ϕ, as given in eq. (4.305). In the main
part of the figure the values of the free parameters are

{
ξ = 105, λ = 10−4, µ = 20, α0 = 108, β0 = 107

}
. In

the secondary figure presented in the bottom right corner, we showcase the asymptotic behaviour of the potential
in the large field limit for varying values of β0, from β0 ≈ 107 to β0 = 0. The local maximum of the potential is
not relevant to inflation, since, as we show later on, inflation occurs for field values way before the maximum. It
is also important to note that for values above the scale µ, which is always assumed to be ≃ ϕ∗, the form of the
potential cannot be trusted.

that the plateau of the potential U(ϕ) would remain unaffected, violated only logarithmically at Planckian
scales ϕ ≳ µ ∼ O(1) as

U(ϕ) ≈ λ

4! ξ2 + 4λ (α0 + β0 ln(ϕ2/µ2))
. (4.306)

In terms of the canonically normalised scalar field Φ given by

Φ =

∫
dϕ
√
K(ϕ)

ξ
√
ϕ≫MP≈

∫
d ln(ϕ/µ)√

ξ +
λ

6ξ
(α0 + 2β0 ln(ϕ/µ))

=
6ξ

λβ0

√
ξ +

λ

6ξ
(α0 + 2β0 ln(ϕ/µ)) , (4.307)

we obtain the following expression for the Einstein-frame potential

U(Φ) ≈ 3ξ

2λβ20

(
1

Φ2 + . . .

)
, (4.308)

where the dots denote exponentially small corrections of O
(
e−(λβ0/6ξ)Φ2

)
.

Let us proceed directly to the calculation of the SRPs in terms of the parametric functions assumed in
the previous section. Without any additional assumptions the first and second SRPs are given as follows

ϵV (ϕ) =
1

2ϕ2(1 + ξϕ2)

(
4(1 + ξϕ2)− λβ0

3
ϕ4
)2

(
(1 + ξϕ2)2 +

λ

6
ϕ4
(
α0 + β0 ln(ϕ

2/µ2)
)) , (4.309)

ηV (ϕ) = 3 ϵV (ϕ)−
(

8

ϕ2
+

4

ϕ2(1 + ξϕ2)
+
λβ0
3

ϕ2

(1 + ξϕ2)2

)
. (4.310)
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Then, in the slow-roll approximation the usual expressions for the inflationary observables lead to the
following formulae

As ≈
U(ϕ)

24π2ϵV
=

1

12π2

λ
4!ϕ

6(1 + ξϕ2)(
4(1 + ξϕ2)− λβ0

3 ϕ4
)2 (4.311)

ns = 1−
(
16

ϕ2
+

8

ϕ2(1 + ξϕ2)
+

2λβ0
3

ϕ2

(1 + ξϕ2)2

)
(4.312)

r ≈ 16ϵV =
8

ϕ2(1 + ξϕ2)

(
4(1 + ξϕ2)− λβ0

3 ϕ4
)2

[
(1 + ξϕ2)2 + λ

6ϕ
4 (α0 + β0 ln(ϕ2/µ2) )

] . (4.313)

The integral of the number of e-folds N is exactly integrable after direct substitution of the kinetic function
K0(ϕ) and the potential U(ϕ) in its integrand, leading to the expression

N =
b

8
√
4b+ (ξb)2

{(
1 +

1

2
ξ2b

)
ln

∣∣∣∣∣ϕ2 − 1
2ξb− 1

2

√
4b+ (ξb)2

ϕ2 − 1
2ξb+

1
2

√
4b+ (ξb)2

∣∣∣∣∣ + 1

2
ξ
√
4b+ (ξb)2 ln

∣∣ϕ4 − ξbϕ2 − b
∣∣}∣∣∣∣∣

ϕ∗

ϕf

(4.314)
where we made the definition of b ≡ 12/(λβ0) for the sake of brevity.

Semi-analytic approach and numerical results

Before we move on with the predictions for the observables, let us entertain the possibility of ξ = 0,
namely the original minimally coupled model.1 The order of magnitude of As requires a specific power-
play of λβ02ϕ2 ∼ O(106) between the coupling constants, which in turn implies a very large value of
the β0 parameter. In what was considered the minimal case, implying ξ = 0= β0 in this particular case,
it can successfully describe the inflationary era with appropriate inflationary observables, however it
requires unusually large number of e-foldings N ≈ 75 e-folds, as was demonstrated in section 4.2 (also
see refs. [232, 282]). Thus, if β0 ̸= 0 it is natural to expect large values of the parameter β0 (not unlike
the ones cited for α0 in the previous case [232, 274, 276, 282]), since the self-coupling is approximately
λmax ∼ O(10−4) when the inflaton ϕ assumes values around the Planck scale. However, large values of the
parameter β0 can lead to inconsistencies primarily conserning possible violation of the subleading nature
of the kinetic terms, specifically their noncanonical functions K0(ϕ) and K2(ϕ). Pathologies of that nature
can be detected in the values of the effective sound speed c2s =

(
K0(ϕ) +K2(ϕ)ϕ̇

2
)
/
(
K0(ϕ) + 3K2(ϕ)ϕ̇

2
)

,
namely in possible deviations from unity, which are especially alarming at field values close to the start
of inflation. Additionally it can assume negative values hinting at instabilities or unphysical states.

A simple calculation via power counting shows that values of the parameters [196]

ϕi ∼ 20 and λβ0/ξ ∼ O(10−9) (4.315)

can indeed satisfy the observable quantities. The specific values presented above are of no particular
interest, even though they can possibly reflect the high-energy phenomenology of the model and they are
chosen primarily in order to satisfy the observation bounds. Although the value of α0 is accompanied
by a factor of α0/β0 ∝ O(10) based on perturbativity grounds, as shown later its specific value does not
affect the predictions of the observables, which is in line with previous results of the Palatini-R2 models.

1Of course the field ϕ is still coupled (nonminimally) with the R2 term through the coupling α(ϕ), so labeling it the “minimal
coupling” is used just in comparison with previously considered minimal models.
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r ns

ξ λ N = 50 N = 60 N = 50 N = 60

105 10−4 8× 10−9 5.5× 10−9 0.9600 0.9667
103 10−6 8× 10−8 5.5× 10−8 0.9600 0.9667
103 10−5 8× 10−7 5.5× 10−7 0.9600 0.9667
102 10−7 8× 10−6 5.5× 10−6 0.9600 0.9667

Table 4.1: Table including results of the numerical study of the exact expressions regarding inflationary observables.
Assumed constant values of α0 = 10, β0 = 1 and µ = 20MP ∼ ϕ∗ that, together with ξ and λ, we are
able to reproduce the appropriate value of the scalar amplitude As within a field excursion ∆ϕ ≡ ϕi − ϕf of
ϕf ≈ 10−1MP and ϕ∗ ∼ 20MP .

The expression of the spectral index ns in eq. (4.312) shows that the field values ϕi are dominating at
first order with contributions of ϕ−2i and ensuing corrections of ∝ (λβ0/ξ)ϕ

−4
i , meaning that due to the

smallness of the couplings we can approximately chose ϕi ∼ 20 in order to satisfy the 1σ bound on ns.
Finally, the predictions are collectively presented below

ns ≈ 0.960 , As ∼ 3.5× 10−9 , r ≈ 10−4

2ξ
, (4.316)

where the factor of As is not important at this point and can in principle be absorbed in the values of the
parameters. The amount of inflation is encoded in N which is approximately given by

N ≈ 3ξ

2λβ0
ln

∣∣∣∣∣∣∣∣
1− λβ0

12ξ
ϕ2i

1− λβ0
12ξ

ϕ2f

∣∣∣∣∣∣∣∣ . (4.317)

It is straightforward to show that assuming a conservative value of N ∼ 50 e-folds the field value at the
end of inflation is ϕ2f ≈ O(

√
8/ξ).

In order to obtain the complete behaviour of the model concerning the inflationary period it is useful
to employ numerical methods similar to the ones used in previous sections. In doing so we are able
to produce the following table (table 4.1) including some characteristic values of the parameter space
and the predictions regarding the inflationary observables. All of the entries are generated through
numerical solution of the exact formulae in combination with the known conditions for inflation, for
example ϵV (ϕf ) ≡ 1 being the condition for inflation to end. It is important to note that the parameters in
table 4.1 also lead to the desired value of the power spectrum As, even if it is not presented.

As expected from eq. (4.312) different values of {ξ, λ, α0, β0} presented in table 4.1 lead to absolutely
identical values of ns [196]. This is a known feature of the Palatini–R2 models (e.g. see refs. [175, 232,
275]) accompanied also by highly suppressed values of the tensor-to-scalar ratio r, which is effectively
undetectable. In fig. 4.18 the values of r are presented in terms of varying values of λ and ξ in a more
comprehensive manner.

In previously considered models where β0 = 0 larger values of α0 are assumed, namely α0 ∼ 108, in
order to satisfy the observational bounds. Similar values of α0 were also reported in ref. [283] capable of
retaining the canonically normalised field Φ at sub-Planckian values during inflation. Therefore, in order
to make contact with previous results we assume larger values of β0 leading to larger values of α0 due to
our condition α0/β0 ∼ O(10). Then, from eqs. (4.311)-(4.313) it is immediately noticeable that large values
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Figure 4.18: Plot of λ = f(ξ) and the associated values of r corresponding to the color grading displayed in the
bar of the figure. These values are calculated at exactly N = 50 e-folds and As ≈ 2.1 × 10−9 is maintained
throughout the displayed curve. In fact the figure is part of a larger contour plot, but only a small part of it leads
to the appropriate value of the scalar power spectrum As.

r ns

α0 β0 N = 50 N = 60 N = 50 N = 60(
10 ∼ 104

) (
1 ∼ 103

)
8× 10−9 5.5× 10−9 0.9600 0.9667

105 104 7.7× 10−9 5.3× 10−9 0.9600 0.9666
108 107 5.7× 10−9 3.7× 10−9 0.9530 0.9596

Table 4.2: Similar to table 4.1 we present the numerical study of the exact expressions of the inflationary observables
under the assumption of ξ = 105, λ = 10−4 and µ = 20MP ∼ ϕ∗. Together with the values of α0 and β0
displayed in the table they are able to correctly reproduce the appropriate value of the scalar amplitude As. The
field excursion ∆ϕ associated with the values in the table is approximated by ϕf ≈ 10−2MP and ϕi ≲ 20MP .

of β0 can impact negatively the prediction of the observables. In table 4.2, following the same numerical
algorithm employed in table 4.1, we present the predictions of the inflationary observables in the limit of
large β0 values.

In fig. 4.19 larger values of the total coupling α(ϕ) leads to larger values of the tensor-to-scalar ratio
r and surprisingly some of the predicted values for large α0 and β0 reside in the projected accuracy
of future experiments r ∼ 10−4 [184–186], meaning that they can possibly be differentiated. The two
distinct curves that can reproduce the desired value of As are attributed to the power interplay between
the parameters β0λ and ξ2. Depending on their values one of the terms in the expression of the tensor-to-
scalar ratio r (4.313), can dominate over the other, which in turn leads to large(r) values of r [196], contrary
to fig. 4.18.

As seen from the entries in table 4.2 large values of β0 tend to decrease the predicted values of ns,
discernible also from its formula (4.312). It seems that values of β0 ⪅ 10−5 suggest that the value of
the spectral index ns is determined primarily through the field value ϕi. This behaviour is examined in
fig. 4.20, in which we plot the r-ns for varying values of the parameter β0 and a representative value of α0
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Figure 4.19: Plot of λ = f(ξ) in terms of their predicted value of the tensor-to-scalar ratio r following the colour
grading of the legend in the figure. Similarly to the previous figure, fig. 4.18, the values are presented at the point
of N = 50 e-folds and As ≈ 2.1× 10−9 is maintained throughout the curve(s).

since it affects only the values of r which are already tiny.
As we alluded to earlier large values of β0 can destabilise the inflaton field out of its slow-roll inflation

trajectory. In fig. 4.21 we present a numerical study of the phase-space flow of numerical solutions of the
equation of motion eq. (4.291). For a plethora of initial conditions the trajectories ϕ̇−ϕ of the inflaton field
fall into the slow-roll trajectory concluding at the potential minimum and oscillate around it [196]. Then,
the attractive behaviour of the potential is retained even at large values of β0. Note that only fine-tuned
trajectories end up directly to the oscillatory phase without any prior amount of inflation. It should be
mentioned that smaller values of β0, as considered earlier in table 4.1, do not spoil the attractor behaviour
of the model and also reproduce the results of refs. [232, 278]. The same is true in the case of K2(ϕ) = 0,
in which the higher-order kinetic term ∝ ϕ̇4 is completely disregarded.

Reheating

In this section we examine if the proposed model is consistent with a period of reheating ensuing the
inflationary era. As discussed in section 2.4 of chapter 2 following the results of refs. [65–70] the quantities
parametrising reheating, such as its number of e-foldings NR and the equation of state parameter wR, in
terms of parameters of inflation. This is done without discussing a particular reheating mechanism and
in principle can restrict the allowed parameter space of an inflationary model or at least demonstrate if
the model is consistent with a reheating era.

Without loss of generality we assume that the transition between the different eras, for example from
inflation to reheating, is abrupt, in other words there is an instantaneous transition from w = −1/3 at the
end of inflation to w → wR at the start of reheating and so on. Additionally, we consider values of wR
constant for the entirety of the reheating era. Therefore, following section 2.4 one can derive expressions
of the reheating temperature TR and the e-foldings NR in terms of inflationary parameters of a canonically
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Figure 4.20: The predictions of the inflationary observables r and ns. Following the notation of previous figure,
the dotted and solid grid lines denote the 1σ and 2σ allowed range of ns. The parameter values assumed in the
numerical analysis are α0 = 108, ξ = 2 × 105, λ = 10−4 and varying values of β0 ∈

[
105, 107

]
, as presented

in the colour grading in the bar of the figure. The system is solved in the usual range of N ∈ [50, 60] values of
which increase along the arrow displayed in the figure.

Figure 4.21: Plot of the phase-space trajectories ϕ̇-ϕ illustrating the attractor point of the potential for a particular
part of the parameter space

{
α0 = 108, β0 = 107, ξ = 2× 105, λ = 10−4

}
. The bolder line corresponds to the

slow-roll trajectory resulting to the minimum of the potential at the center of the figure.
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normalised inflaton Φ with its potential U(Φ) as follows:

TR =

(
Tγa0
k

)(
43

11gR

)1/3

H∗e−Ne−NR , (4.318)

NR =
4

3(1 + wR)

N +NR + ln
k

a0Tγ
+ ln

U
1/4
f

H∗
+ ln

[(
45

π2

)1/4(11

3

)1/3

g
1/12
R

] , (4.319)

with the identification of Uf ≡ U(Φf ) and gR denoting the relativistic degrees of freedom at the point of
reheating.

As discussed it is possible to directly solve for the number of e-foldings NR in case of instantaneous
reheating wR = 1/3 leading to the following constraint of the number of e-folding N during inflation

N = 61.6− ln
U

1/4
f

H∗
. (4.320)

Specifically for the model at hand a direct substitution of the parameters α0 = 10, β0 = 1, λ = 10−4,
ξ = 105 and µ ∼ 20MP leads to the maximum allowed value of N [196]

N inst
max ≈ 52 e-folds , (4.321)

such that the model is consistent with the case of instantaneous reheating. The prediction is relatively
robust to variations of the free parameters, tending to N ≈ 51 e-folds at very large values of the parameters
α0 and β0.

Different values of wR with wR ̸= 1/3 lead to a varying reheating temperature best described by the
following formula

TR =

{
ρf

(
30

π2gR

)}1/4

e−
3
4
(1+wR)NR ≡ TR,max e

− 3
4
(1+wR)NR , (4.322)

manifestly dependent on value of the state parameter wR and the number of e-foldings NR. Then, we are
able to present the values of TR in terms of the amount of inflation N for different values of the parameter
wR, as shown in fig. 4.22. All the values of wR are consistent with reheating leading to a characteristic
value of the temperature TR, always in terms of N [196]. All the curves converge, as expected, to the point
of instantaneous reheating (wR = 1/3) at a temperature of TR ≈ 1015 GeV.

Prospects of different coupling functions

It is worth mentioning some other forms of the coupling α(ϕ). A general feature of the Palatini-R2

models is that it provides the Einstein-frame rescaled inflaton potential a flat-enough region in the large
field limit. For a general function α(ϕ) this still holds, meaning that in the case of quartic potential V (ϕ)
with a nonminimal coupling ξϕ2R we obtain

U(φ)
φ→∞≈ λ

4!

1

ξ2 +
λ

6
α(ϕ) +

2ξ

ϕ2
+

1

ϕ4
+ . . .

, (4.323)

where we assumed for ease of notation that MP ≡ 1. Therefore, it is possible to obtain a plateau for any
function α(ϕ) that is well-behaved at large field values or at least within the field excursion required for
inflation. Notice that in a previous section the parametric function had the form α(ϕ) ∝ const. + ln (ϕ/µ)
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Figure 4.22: A plot of the reheating temperature TR in terms of the number of e-foldings assumed during the
inflationary era, N . The coloured area represent the amount of e-foldings usually assumed in order to address
the issues of early universe cosmology. The blue, dashing-orange, dotted green and black lines represent different
values of wR ∈ {−1/3, 0, 2/3, 1} respectively.

which “blows up” at large field values, however the field space in that theory is truncated, namely field
values of the potential with ϕ≫ µ are not to considered valid.

A similar behaviour is obtained if one assumes a string-inspired parametric function reading

α(ϕ) = α0 e
β0 ϕ2/µ2

, (4.324)

where α0 and β0 are constant free parameters and µ is once again some mass scale. Depending on the
value of β0 the scalar potential U(φ) behaves at large field values as

U(φ)|φ→∞ ≃

 0 , β0 > 0
λ

24ξ2
, β0 < 0

(4.325)

In the case of positive β0 > 0, the predicted values of the inflationary observables do not change much
compared to what was discussed earlier, for example for a specific set of the parameters β0 = λ =
α0 = 10−5 and ξ ∼ 2 · 104, at N = 55 e-foldings we obtain the following expressions for the inflationary
observables

ns(N = 55) ≃ 0.9637, & r(N = 55) ≃ 3.4× 10−8 . (4.326)

Note that the parameters are capable of reproducing the appropriate value for the power spectrum of
scalar perturbations As ≈ 10−9.

If the condition of instant reheating is to be satisfied the maximum number of e-folds allowed during
inflation is given by N ≈ 52 e-folds for ξ ∼ 1.9 · 104 and α0 = β0 = λ = 10−5. In fig. 4.23 we present also
case studies of the reheating temperature TR in terms of N for varying values of the state parameter wR.
Similarly to the previous figure, fig. 4.22, the curves converge to the point of instantaneous reheating at
N ≈ 52 e-foldings with a temperature of TR ∼ 1015 GeV.
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Figure 4.23: Plot of the reheating temperature as a function of the e-foldings N . The lines converge at the point
of instant reheating at N ≈ 52 e-folds. The colour coding of the curves follows the one presented in previous
figures.

Let us consider the following dimensionless function of the α(ϕ)R2 term, given by

α(ϕ) = α0 tanh

(
ϕ2

µ2

)
, (4.327)

motivated primarily from mathematical amusement, however it is capable of reproducing some intuitive
results. In the far UV region we obtain(

ϕ

µ

)
→ ∞ =⇒ α(ϕ) → α0 , (4.328)

meaning that the Starobinsky model is recovered alongside an asymptotic scale invariance. On the other
hand at the small field limit we obtain(

ϕ

µ

)
→ 0 =⇒ α(ϕ) ∼ α0

ϕ2

µ2
+O(φ6) , (4.329)

which dynamically turns off the contribution of the R2 term as the inflaton field approaches the minimum
of the potential at ϕ→ 0, and after doing so its condensate starts to dissipate.

The scalar potential U(φ) in the Einstein frame obtains the desired plateau at large field values

lim
ϕ→∞

U(φ) =
λ

4αλ+ 24ξ2
. (4.330)

Let us include also a note on the numerical results obtained following the same procedure as in previous
sections. Results show that the free parameters are once again close to irrelevant as far as values of ns go.
For example, if α0 = 1, ξ = 102, λ = 10−7 we obtain, at N = 55 e-foldings,

ns(N = 55) ≃ 0.9637 , r(N = 55) ≃ 10−5 , (4.331)
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Figure 4.24: Plot of the reheating temperature in terms of the e-foldings N . The lines converge at the point of
instant reheating at N ≈ 54 e-folds. The colour coding of the curves follows the one presented in previous
figures.

where the tensor-to-scalar ratio chiefly depends on values of ξ. An important feature of the model is that
relatively small values of the parameter space are able to generate the desired values for the inflationary
observables. More importantly, the tensor-to-scalar ratio r can assume large-enough values close to r ∼
10−4 with the possibility of detection by future missions.

The model is also consistent with a reheating phase succeeding inflation. For example for the particular
values of the free parameters ξ = 1.8 × 102, λ ≈ 10−7 and α0 = 10, under the assumption of instant
reheating an upper bound of N ≈ 54 e-folds is obtained. Then in fig. 4.24 the relation of the reheating
temperature TR with N is plotted for varying values of the state parameter wR. As expected, the curves
converge at the point of instantaneous reheating with a higher than usual reheating temperature of TR ⪅
1016 GeV.

4.5 Constant-roll application
The previous sections were devoted to understanding the inflationary models under the assumption of

the slow-roll approximation, however we met in sec. 2.3 a different type of approximation that is capable
of describing inflation, namely the constant-roll approximation. In the present section we are interested
in examining the Palatini-R2 models under the assumption of constant-roll.

Preliminary considerations

Before we delve into more details of the approximation it is useful to cast the previous Palatini-R2

models under a different light. We showed that if one considers as a starting point an action functional of
the form

S =

∫
d4x

√−g
{
1

2
(M2

P + ξϕ2)gµνRµν(Γ) +
α

4
(gµνRµν(Γ))

2 − 1

2
(∇ϕ)2 − V (ϕ)

}
, (4.332)
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4.5. Constant-roll application

it can be equivalently represented in terms of a rescaled metric g in the Einstein frame where the scalar
field ϕ obtains a noncanonical kinetic factor as well as a higher-order kinetic term ∝ (∇ϕ)4. All of the
above can be grouped schematically in the following way (MP ≡ 1 henceforth)

S =

∫
d4x

√
−g
(
1

2
gµν Rµν(Γ) + L (ϕ,X)

)
, (4.333)

expressed in terms of an effective Lagrangian

L (ϕ,X) ≡ A(ϕ)X +B(ϕ)X2 − U(ϕ) , (4.334)

where we defined X ≡ 1
2(∇ϕ)2 and the model functions

A(ϕ) ≡ −
(
1 + ξϕ2 + 4α

V (ϕ)

(1 + ξϕ2)

)−1
, (4.335)

B(ϕ) ≡ α
(
(1 + ξϕ2)2 + 4αV (ϕ)

)−1
= − αA(ϕ)

(1 + ξϕ2)
, (4.336)

U(ϕ) ≡ V (ϕ)

(1 + ξϕ2)2 + 4αV (ϕ)
= −A(ϕ)V (ϕ)

1 + ξϕ2
. (4.337)

Note that the Lagrangian belongs to a generalised class of the so-called k-inflation models and, as previ-
ously stated, in their original formulation the models assumed a vanishing potential, however, since then
generalisations of them were proposed that included a scalar potential, similar to the model at hand.

The energy-momentum tensor governing the dynamics of the source field ϕ is given by

Tµν ≡ 2√−g
δS
δgµν

= −∂L

∂X

(
∇µϕ

) (
∇νϕ

)
+ gµν L (4.338)

or, expressed in terms of the model functions

Tµν = − (A(ϕ) + 2B(ϕ)X)
(
∇µϕ

) (
∇νϕ

)
+ gµν

(
A(ϕ)X +B(ϕ)X2 − U(ϕ)

)
. (4.339)

Therefore, assuming that the inflaton field is spatially homogeneous, dependent only on time, the energy
density ρ = T00 and the pressure Tij = p gij = L gij are obtained as

ρ = A(ϕ)X + 3B(ϕ)X2 + U(ϕ) , (4.340)

p = A(ϕ)X +B(ϕ)X2 − U(ϕ) . (4.341)

In order to describe inflation we assume a flat FRW metric g that gives rise to the following equations of
motion

3H2 = ρ , (4.342)
ρ̇+ 3H(ρ+ p) = 0 , (4.343)

which can be combined into
2Ḣ + 3H2 = −p . (4.344)

Likewise, the equation of motion for the scalar field, obtained by variation of the action δϕS = 0, is given
by

ϕ̈(A(ϕ) + 6B(ϕ)X) + 3Hϕ̇(A(ϕ) + 2B(ϕ)X)−A′(ϕ)X − 3B′(ϕ)X2 = U ′(ϕ) . (4.345)

Note that in our conventions the kinetic term X = −(1/2)ϕ̇2 is negative.
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4. Quadratic gravity coupled to matter

Digression on energy conditions

The state parameter w = p/ρ during inflation must satisfy

w =
p

ρ
< −1

3
, (4.346)

leading to the following inequality

3B(ϕ)X2 + 2A(ϕ)X − U(ϕ) < 0 =⇒ (4.347)

−A(ϕ)
(
3αX2 − 2(1 + ξϕ2)X − V (ϕ)

)
< 0 =⇒

3α

4
ϕ̇4 + (1 + ξϕ2)ϕ̇2 < V (ϕ) , (4.348)

which in the slow-roll regime is trivially satisfied for any potential bounded from below V (ϕ) > 0 (at least
locally). Notice that in order to obtain the last inequality we assumed that A(ϕ) < 0 which is exactly the
condition such that AX is a ghost-free term and is trivially satisfied ∀α > 0. As expected, eq. (4.348) is also
obtained if we start from the equivalent condition that ϵH < 1.

Since the formulation of Einstein’s field equations Gµν∝Tµν the fact that Tµν is not a universal function
similar to Gµν , but is instead dependent on the type of matter and its interaction, has led the scientific
community to come up with general rules, known as the “energy conditions” (of GR) [284], that express in
a mathematical way the notion of locally positive energy densities. The conditions seem to be violated one
after the other by quantum effects and some of them are even abandoned altogether [213]. Those that are
still relevant in the literature are the null, weak, dominant and the strong conditions, with the null energy
condition being the weakest of them and as such it is expected that any reasonable theory should satisfy
that one at least. In what follows we discuss possible implications arising from the energy conditions in
terms of the stress-energy tensor provided in eq. (4.339).

So the null energy condition (NEC) is the statement that for any future-pointing null vector k⃗ it should
hold that Tµνkµkν ≥ 0, which leads to

ρ+ p ≥ 0 . (4.349)

Therefore in terms of the energy density and pressure derived earlier in eq. (4.340) and eq. (4.341) respec-
tively, it becomes

2X(A(ϕ) + 2B(ϕ)X) ≥ 0 =⇒ 1 + ξϕ2 + αϕ̇2 ≥ 0 , (4.350)

satisfied for ξ > 0 and α > 0, as per standard wisdom. In fact, at the slow-roll regime it tends to 1+ξϕ2 > 0
which is simply the condition that gravity remains attractive for all ϕ.

The weak energy condition (WEC) states that for every timelike vector Y⃗ the matter density has to be
nonnegative, meaning that TµνY µY ν ≥ 0. The condition then has an overlap with the NEC since it
demands that ρ ≥ 0 as well as ρ + p ≥ 0. Assuming that the latter is covered by the NEC let us focus on
the first part amounting to

A(ϕ)X + 3B(ϕ)X2 + U(ϕ) ≥ 0 =⇒ 1

2
ϕ̇2 +

3

4
αϕ̇4 + V ≥ 0 , (4.351)

which is similar to the condition for inflation (4.348) and as such is trivially satisfied.
The dominant energy condition (DEC) says that additionally to the WEC for every future-pointing null

or timelike vector W⃗ the vector field Tµ
νW

ν should also be future-pointing and causal. For a perfect
fluid the condition simply reads ρ ≥ |p|; in the case that p < 0, which also makes sense for inflation (see
eq. (4.348)) the condition collapses to the NEC. So for p > 0 we obtain

B(ϕ)X2 + U(ϕ) ≥ 0 =⇒ α

4
ϕ̇4 + V (ϕ) ≥ 0 , (4.352)
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4.5. Constant-roll application

which is also satisfied for any α > 0 and especially at the slow-roll limit for any potential V (ϕ) > 0 ∀ϕ.
The DEC then encapsulates the condition that the original metric g is rescaled into g by a positive factor.
Let us remind the reader that the Weyl rescaling is done through

gµν = (1 + ξϕ2 + αχ2)gµν
!
=

(
4αV (ϕ) + (1 + ξϕ2)2

1 + ξϕ2 + αϕ̇2

)
gµν , (4.353)

where the last equality is obtained by substituting the on-shell relation of the auxiliary field χ2 in terms
of ϕ. Assuming that the overall factor is positive, it leads to the condition best summarised by DEC.

The strong energy condition (SEC) demands that for any timelike vector Y⃗ the trace of the tidal tensor
measured by observers is always nonnegative, meaning (Tµν − 1

2Tgµν)Y
µY ν ≥ 0, where T ≡ Tµ

µ, leading
to the following conditions in the case of a perfect fluid

ρ+ p ≥ 0 , ρ+ 3p ≥ 0 . (4.354)

The first part is simply the NEC while the second part directly violates our assumption for inflation
(4.348). Nevertheless, it leads to the following inequality

2A(ϕ)X + 3B(ϕ)X2 − U(ϕ) ≥ 0 =⇒ ϕ̇2(1 + ξϕ2) +
3

4
αϕ̇4 − V (ϕ) ≥ 0 , (4.355)

which is violated in the slow-roll regime.
We avoided discussing the energy conditions of GR up to this point, however the addition of higher-

order terms lead to nontrivial contributions to the energies densities, especially close to and after the end
of inflation. Notice that some parts if not all of the energy conditions can also be derived from different
considerations, such as the no-ghost condition A(ϕ) < 0 and others, as stated above.

Parameters & observables

With the ϕ field being the sole scalar degree of freedom capable of driving inflation we assume that it
satisfies the constant-roll condition

ϕ̈ = βHϕ̇ , (4.356)

where β is some undetermined constant dimensionless parameter. As we discussed in sec. 2.3 the condi-
tion approaches the slow-roll approximation in the limit of β ≪ 1 in which ϕ̈ ≈ 0. Let us introduce the
following slow-roll parameters encoding inflation [285]

ϵ1 = − Ḣ

H2
, ϵ2 = − ϕ̈

Hϕ̇
, ϵ3 =

Ḟ

2HF
, ϵ4 =

Ė

2HE
, (4.357)

in terms of the quantities F and E defined by

F =
∂L

∂R
, E = − F

2X

(
X
∂L

∂X
+ 2X2 ∂

2L

∂X2

)
. (4.358)

In order for the SRPs ϵi to make sense we shall also assume that (1/2)ϕ̇2 ≪ U(ϕ) at least at the very
initial stages of inflation. The magnitude of the SRPs is checked numerically later on for each particular
part of the parameter space that is able to provide us with a successful inflation. Under the constant-roll
condition (4.356) the second SRP becomes ϵ2 = −β and since we are in the Einstein frame with F = 1/2 we
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4. Quadratic gravity coupled to matter

obtain ϵ3 = 0. Nevertheless, we can express the inflationary observables ns and r in terms of the SRPs ϵi
as follows [285]

ns = 1− 2
2ϵ1 − ϵ2 − ϵ3 + ϵ4

1− ϵ1
, (4.359)

r = 4 |ϵ1| cs , (4.360)

where cs represents the effective sound speed of propagation of primordial perturbations given by

c2s =
LX

LX + 2XLXX
=

A(ϕ)−B(ϕ)ϕ̇2

A(ϕ)− 3B(ϕ)ϕ̇2
=

1 + ξϕ2 + αϕ̇2

1 + ξϕ2 + 3αϕ̇2
. (4.361)

Notice that in the present case the sound speed is bounded by 0 < cs
2 < 1 as it should. Then, the

corresponding power spectrum of scalar perturbations is

As ≈
H2

8π2ϵ1(ϕ)
=

1

72π2

(
A(ϕ)X + 3B(ϕ)X2 + U(ϕ)

)2
(A(ϕ)X + 2B(ϕ)X2)

. (4.362)

Evaluated at the horizon crossing ϕ = ϕi has to yield the observed value of As ∼ 10−9.
One of the advantages of the constant-roll approximation is that the generalised Klein-Gordon equa-

tion of motion for the inflaton can be solved analytically, which is not the case in general for such com-
plicated systems, as was demonstrated in previous sections in which we studied the same models in the
slow-roll regime. Supposing then that such a solution exists we substitute the constant-roll condition
(4.356) into the equation of motion (4.345) yielding [286]

ϕ̇H [(β + 3)A(ϕ) + 6(β + 1)B(ϕ)X]−A′(ϕ)X − 3B′(ϕ)X2 = U ′(ϕ) . (4.363)

Next we can solve the above equation for the Hubble parameter H to obtain the expression

H =

√√√√√U

3

1−A

(
ϕ̇2

2U

)
+ 3B

(
ϕ̇2

2U

)2
 ≈

√
U

3

(
1− A

4U
ϕ̇2 +

1

8

(
3B

U
− A2

4U2

)
ϕ̇4
)
, (4.364)

where the approximate formula is derived by expanding around powers of ϕ̇2/U(ϕ) and keeping terms
up to O

(
(ϕ̇2/2U)2

)
. Substitution of the last expression back into the initial equation leads to a cubic

polynomial in terms of ϕ̇ reading√
U

3

(
3B(β + 1) +

A2

4U
(β + 3)

)
ϕ̇3 − 1

2
A′ ϕ̇2 −A

√
U

3
(β + 3)ϕ̇+ U ′ = 0 , (4.365)

where terms O(ϕ̇4) are neglected. In principle even if these terms are present the resulting quartic equa-
tion is solvable, however due to the assumed tiny values of ϕ̇ leading to insignificant effects the added
complications are not justified. It is known that a cubic equation can be rewritten as the depressed cubic
in the form of

x3 + ν1 x+ ν0 = 0 , with x ≡ ϕ̇− A′

6γ
, (4.366)

where the coefficients are defined as [286]

γ =

√
U

3

(
3B(β + 1) +

A2

4U
(β + 3)

)
, (4.367)
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ν1 = −1

γ

[
(β + 3)A

√
U

3
+

(A′)2

12γ

]
, (4.368)

ν0 =
1

γ

[
U ′ −A(β + 3)

A′

6γ

√
U

3
− (A′)3

108γ2

]
(4.369)

Then a real solution to the depressed cubic equation reads

x =

(
−9ν0 +

√
3
√
4ν12 + 27ν02

)1/3
21/3 32/3

−
(
2
3

)1/3
ν1(

−9ν0 +
√
3
√
4ν12 + 27ν02

)1/3 , (4.370)

at which point we say that we have a solution of ϕ̇ in terms of ϕ. Therefore, all of the expressions of the
SRPs and subsequently the ones for the observables can be rephrased purely in terms of the inflaton field
ϕ, which is also the case for the number of e-folds defined as

N =

∫ ϕf

ϕi

dϕ

ϕ̇
H =

1√
3

∫ ϕf

ϕi

dϕ

ϕ̇

√
A(ϕ)X + 3B(ϕ)X2 + U(ϕ) . (4.371)

Higgs field

Under the assumption that the inflaton field ϕ is a fundamental scalar that interacts with the rest of
the matter fields, interactions which may prove important at the stage of reheating, the self-interacting
potential V (ϕ) can be restricted to a renormalisable form of V (ϕ) = m2ϕ2/2 + λϕ4/4, which in the large
field limit is best approximated by a quartic monomial

V (ϕ) =
λ

4
ϕ4 , (4.372)

even though in principle the higher-order terms cannot be ruled out completely. A quartic potential is
appealing in particular since it can be identified with the Higgs potential far away from the EW scale,
namely V (H) = λ (|H|2 − v2/2)2 for |H| ≫ v, driven also by a nonminimal coupling to the Einstein-
Hilbert term in the form of ξ|H|2. As noted ealier in the thesis, the subject of Higgs inflation is studied
extensively especially in the metric formalism with limited studies spent on the Higgs-R2 models due
to their complexity (2-dimensional field space; see however refs. [189, 287, 288]). It is then interesting
to compare results obtained in the slow-roll regime from our previous studies of the Palatini-R2 Higgs
models with ones in the constant-roll approximation.

Minimally coupled Higgs field

Let us consider first a simpler model in which the Higgs field is coupled minimally to gravity, corre-
sponding to ξ = 0. Then, the model functions become

A = −(1 + 4αV )−1, B = −αA, U = −V A (4.373)

and their derivatives with respect to the inflaton read

A′ = 4αA2V ′, B′ = −4α2A2V ′, U ′ = −V ′A2 , (4.374)
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where the initial Jordan-frame potential is the quartic potential. By substituting the above relations we
can simplify the expressions of the SRPs [286]

ϵ1 = 3
AX + 2BX2

AX + 3BX2 + U
= 3

ϕ̇2 + αϕ̇4

ϕ̇2 + 3
2αϕ̇

4 + 2V
, (4.375)

ϵ2 = −β, (4.376)
ϵ3 = 0, (4.377)

ϵ4 =

√
3

2

ϕ̇(A′ + 6B′X) + 12βBHX

(A+ 6BX)
√
AX + 3BX2 + U

=

 3αβϕ̇2

1 + 3αϕ̇2
− 2

√
3α√

1 + 4αV

V ′ ϕ̇√
1
2 ϕ̇

2 + 3
4αϕ̇

4 + V

 . (4.378)

Therefore the power spectrum As is given by

As =
1

72π2

(
AX + 3BX2 + U

)2
X(A+ 2BX)

=
1

36π2

(
1
2 ϕ̇

2 + 3
4αϕ̇

4 + V
)2

ϕ̇2
(
1 + αϕ̇2

)
(1 + 4αV )

, (4.379)

and a similar albeit more involved expression can be reached for the tensor-to-scalar ratio r and the
spectral index ns.

In what follows we study the system numerically by first substituting the real solution of ϕ(ϕ̇) into
the expressions of the SRPs. Then, by demanding that inflation ends at some point defined by ϵ1(ϕf ) ≡ 1
we obtain the field value ϕf at the end of inflation. Allowing for a conservative range of e-folds between
N ∈ [50, 60] e-folds we are able to obtain the value at horizon crossing ϕi. In table 4.3 we present our
findings for specific values of α = 107 and λ = 10−13, while varying small values of β.

β ns (N = 55)

0.019 0.9761
0.020 0.9721
0.021 0.9681
0.022 0.9641
0.023 0.9601
0.024 0.9561

Table 4.3: Values of the spectral tilt ns for α = 107, λ = 10−13 and varying values of β. Note that as β increases the
spectral tilt ns decreases rapidly, while the tensor-to-scalar ratio r is largely unaffected, being rN=55 ∼ 5× 10−3.

The values of α = 107 and λ = 10−13 are directly linked to the power spectrum and as such they are
chosen so that the correct value As ≈ 2.1×10−9 is reproduced. Interestingly, if we allow for various values
of α and keep the other parameters β and λ constant we obtain the following table 4.4 using the same
procedure as with table 4.3.
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α ns (N = 55) r (N = 55)

5× 106 0.9589 9.7× 10−3

7× 106 0.9639 7.4× 10−3

9× 106 0.9670 5.9× 10−3

107 0.9681 5× 10−3

2× 107 0.9739 3× 10−3

3× 107 0.9763 2.1× 10−3

Table 4.4: Values of the spectral tilt ns and the tensor-to-scalar ratio r for β = 0.021, λ = 10−13 and varying
values of α ∈ {5, 30} × 106.

Then it is noticeable that increasing values of α lead to an increase of ns as well as a decrease in r.
It was demonstrated earlier that in the slow-roll approximation, namely the limit of β → 0, the spectral
index is manifestly independent of α, however in the present case of the constant-roll the parameter α
and therefore the R2 term plays an important role in determining the value of ns, even if β takes up small
values [286]. On the other hand, the dependence of r on the parameter α is already known, however,
the actual values of r are, in this case, possibly detectable by future missions contrary to the case of the
slow-roll regime, in which they are effectively undetectable, r ≲ 10−10 [175, 232].

The predictions for the inflationary observables are within the 1σ of the allowed region of observations.
Nevertheless, we noticed in a previous section that the minimal Higgs model in the Palatini-R2 requires
an unusually large amount of inflation of N ∼ 75 e-folds [232] when considered in the slow-roll regime.
However, in the present case we notice that a conservative amount of N ∼ 55 e-folds suffices [286] in order
to obtain the desired values of ns and r.

The hierarchy of the kinetic terms AX/BX2 ∼ 1 at N = 60 e-folds for α = 107, λ = 10−13 and
β = 2.1 × 10−2 suggests that the higher-order kinetic term can have a considerable contribution to the
inflaton field dynamics in the constant-roll regime. Therefore, it is important to ensure that the SRPs
remain small, ϵi ≪ 1, for the duration of inflation so that the assumed approximations remain valid. For
example, assuming the same values for the parameters we obtain ϵ1 ≈ 10−3, |ϵ4| ∼ 10−2 and obviously
|ϵ2| ≈ 10−2. It should be noted that it was also checked numerically that the solution of ϕ(ϕ̇) does indeed
satisfy the equation of motion, where small deviations were found at field values well after the end of
inflation, ϕ < ϕf , which is to be expected since violations of the approximation tend to appear at field
values approaching ϕf .

Inflation takes place in the large field domain with the exact scale of inflation determined in terms of
the canonically normalised scalar field Φ defined through

− 1

2

(
∇Φ
)2

=
1

2
A(ϕ)

(
∇ϕ
)2

+
1

4
B(ϕ)

(
∇ϕ
)4
, (4.380)

which in this particular case of the minimally coupled Higgs it becomes(
dΦ

dϕ

)2

= −A(ϕ)
(
1 +

α

2
ϕ̇2
)
=

1

1 + αλϕ4

(
1 +

α

2
ϕ̇2
)
. (4.381)

Then we can substitute the solution of ϕ(ϕ̇) into the above formula and expand the overall expression for
large field values ϕ̇ ≃ ϑ0 + ϑ1/ϕ, where the constants ϑi(α, λ, β) are depending solely on the values of the
model parameters [286]. This remains consistent with our results that the inflaton field ϕ resides in the
transPlanckian region throughout inflation. Finally, the relation of the two fields can be approximated in
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the large field limit by

Φ ≈ C ∓

√1 + α
2 ϑ

2
0

αλ

 1

ϕ
∓

 αϑ0 ϑ1

4
√
αλ
√
1 + α

2ϑ
2
0

 1

ϕ2
, (4.382)

where C is an integration constant. Independently of C the exact excursion of the field Φ can be calculated
directly from the formula above, yielding ∆Φ ≡ Φf − Φi = 14MP if we assume that α = 107, λ = 10−13

and β = 0.021. Note that it was verified once again that the equation of motion expressed in terms of
the normalised field Φ is satisfied, where similar deviations were found in the region of Φ < Φf [286].
Therefore, under the assumption of constant-roll we are able to approximately rewrite the higher-order
and noncanonical kinetic terms in terms of a canonically normalised field Φ with a complicated self-
interacting potential U(Φ).
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Figure 4.25: A plot of the r-ns plane for α = 107, λ = 10−13, ξ = 10−6 and varying values of β ∈ {0.018, 0.022}.
The dashed and solid lines represent the 1σ and 2σ allowed range of the ns, respectively. All of the values of
the tensor-to-scalar ratio r are within the allowed region of observations r < 0.06. Once again, as |β| increases,
the spectral tilt ns decreases, while the effect on the tensor-to-scalar ratio r is minimal, rN=50 = 0.03 and
rN=60 = 0.02.

Nonminimally coupled Higgs field

Let us now assume a nonminimal coupling between the inflaton and gravity in the form of ξϕ2R,
which is known that in the slow-roll framework the interplay of this coupling and the R2 term yields
appropriate values of the inflationary observables.

It is then straightforward to follow the same procedure with the assumption that ξ ̸= 0. In fig. 4.25 we
present the results coming from that exact numerical analysis, meaning that the field excursion is obtained
by the condition that inflation ends at ϵ1(ϕf ) ≡ 1 and lasts some amount N ∈ [50, 60] e-folds. The figure
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is obtained for characteristic values of the parameters, α = 107, λ = 10−13, ξ = 10−6 and varying values
of β ∈ {0.018, 0.022}. It is immediately noticeable that larger values of β tend to decrease the values of
ns and minimally affect r, as expected from the results we obtained in the minimal case. The parameters
are chosen such that the power spectrum of scalar primordial perturbations takes up its observed value
of As ≈ 2.1 × 10−9. The model is able to provide a successful inflation with appropriate values for the
observables, similarly to its slow-roll counterpart, however it requires smaller values of ξ compared to the
slow-roll paradigm. Another thing to note is that the SRPs remain small during inflation reporting values
at ϵ1 ≲ 10−2 and |ϵ4| ∼ 10−2, as well as |ϵ2| ≈ 10−2 by definition.

The numerical values of the parameter cs2 both in the minimal and the nonminimal scenario are
approximately cs2 ∼ 0.4 and close to the start of inflation are approximately unity as ϕ tends to MP . As it
should, the values are cs2 < 1 and possible instabilities due to negative values cs < 0 are avoided.
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Summary & Conclusions

The theory of cosmic inflation is currently the best candidate that provides a natural solution to puz-
zles from the Big Bang singularity and, most importantly, the seeds for large structure formation in our
universe, with the latter being a prediction of the theory. There exist numerous models that can describe
inflation, meaning that they can reproduce the correct values of the inflationary observable quantities,
with varying success. Advances in inflation are connected with developments in (future) experiments and
our ability to probe the region of observables with higher precision. A large part of the simplest models
has already been ruled out or they are at marginal contact with observational data (e.g. see fig. 2.4),
however the Starobinsky model (R+R2) resides persistently within the 1σ allowed region of observations
since its inception. The continued success of the model has led to a plethora of other models that attempt
to modify or extend the initial model, while also retaining some of its attractive features.

Predictions of the theory of inflation rely on the interplay of gravity and matter, and our understanding
of it. Therefore, it is naturally connected with the parametrisation of the gravitational degrees of freedom.
The so-called Palatini or first-order formulation of gravity offers a different way to parametrise the gravita-
tional DOFs, by generalising the connection on the manifold to a metric-affine one assuming no a priori
dependence on the metric. As far as GR is concerned, it was shown that it is equivalent to the conven-
tional metric or second-order formulation (at least at the classical level) [45], and the Palatini formalism was
lost to obscurity for the most part. However, recent developments in modified theories of gravity and a
rising interest in non-Riemannian geometries elevated the Palatini formalism to a fundamental question
on the gravitational degrees of freedom. Since extended theories of gravity are prevalent in the infla-
tionary paradigm it was promptly shown that they tend to have different descriptions between the two
formalisms [273], even leading to contrasting results in some cases. This observation is the stepping-stone
of the main part of the thesis as we explain later on.

Based on the previous discussion it seemed important to review some aspects of single-field inflation,
which was done in chapter 2. Starting with a brief overview of modern cosmology we are led to the
puzzles of Big Bang, which in turn lead us straight to the central idea of inflation. Most importantly, we
review the simplest mechanism of single-field slow-roll inflation and obtain the (approximate) expressions
of the observable quantities in terms of the slow-roll parameters. In the same direction, we study the
constant-roll approximation noting some of its features and differences with the slow-roll one. Towards the
end of the chapter we offer a discussion on reheating, i.e. the era right after the end of inflation. First,
we begin by briefly analysing some of the proposed mechanisms of reheating, such as the well-known
perturbative reheating and preheating. Then, trailing the results of refs. [65–70], we review a different way
to parametrise the reheating parameters in terms of the inflationary ones that allows us to possibly place
stricter constraints on the model parameters.
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In the following chapter, ch. 3, we comment on different features of the first-order formalism, paying
close attention to the ones that are further highlighted in inflationary models. After a short historical
review we revisit the conventional metric formalism and derive the Einstein field equations of GR. In
the following section we introduce the notion of the Palatini variation, starting with an example of the
first-order and second-order of Electromagnetism. Then, a detailed summary of metric-affine spaces is
needed in order to properly introduce the metric-affine connection (especially the nonmetricity and torsion)
in GR. After that, the on-shell equivalence between the metric and the Palatini formulations of GR is directly
derived, concluding the chapter with a discussion on their possible equivalence at the quantum level.

In the last chapter, ch. 4, we present the main results of the thesis, in which the Starobinsky inflation-
ary model is the focal point. As such, we begin by first reviewing the model in the metric formalism
highlighting how the scalar degree of freedom (the scalaron field) sourced by the R2 term arises in the
scalar representation of the theory. Then, it is straightforward to derive the Starobinsky potential in the Ein-
stein frame, following a Weyl rescaling of the metric and a field redefinition, and apply the mechanism
of single-field slow-roll inflation, as described in ch. 2, in order to obtain the famous predictions of the
model. We continue by considering a coupling of the Starobinsky model with a real scalar field and its
self-interacting potential, first in a minimal way (the global term

√−g) and later in a nonminimal via a
coupling to the EH term of the form of ξϕ2R. It is evident that in both cases the theory effectively contains
two scalar degrees of freedom, the scalaron χ and the original scalar field ϕ. There we notice that an
application of the models to inflation is highly complicated since both fields can in principle contribute
in driving inflation, and especially in the case of the nonminimal coupling, the kinetic terms of the scalar
fields in the Einstein frame mix nontrivially further complicating the analysis.

Considering the Starobinsky model in the Palatini formalism we show that the R2 does not actually
lead to a dynamical scalaron, χ. Since in the first-order formulation the connection and the metric do not
dependent on each other a priori, a Weyl rescaling of the metric leaves the Ricci tensor invariant being
purely a function of the connection, i.e. Rµν(Γ). Therefore, there is no way for the scalaron to obtain a
kinetic term in the Einstein frame. Then, higher-order curvature invariants are unable to contribute a scalar
DOF, so in order for the model to describe inflation the inflaton field has to be manifestly included into
the action in the form of a fundamental scalar field ϕ. Our starting point is then an action of that form. In
the Einstein frame we show that the scalaron χ is included in multiplicative factors of the kinetic term of
ϕ and its potential V (ϕ). Then, after a variation of the final action with respect to χ we obtain its constraint
equation, which we then substitute back into the action. There we find that the action obtains higher-order
kinetic terms of the original scalar field, ∝ (∇ϕ)4, as well as complicated expressions for the noncanonical
kinetic function and scalar potential. Next, we are able to obtain the generalised Einstein field equations
for the system after variation with respect to the metric and the scalar field and show that the equation of
motion of the connection leads to the Levi-Civita condition with respect to the Weyl rescaled metric ḡ. By
considering the path integral formulation of the same theory it is evident (even though not conclusive)
that the nondynamical nature of the scalaron is not a figment of the classical action, but it remains at the
quantum level even when other matter fields are included in the background of the action, leading to
local terms that we can safely ignore. In closing of that section, we offer a brief discussion on the issue of
frames,namely the Einstein and Jordan, since the transition from the Jordan frame to the Einstein frame is
at the heart of our analysis.

In the next section we focus in a number of inflationary models that are already ruled out from obser-
vations in their metric version, and assume a minimal coupling with the R+R2 gravitational sector. First,
we consider the so-called natural inflation model, where we showed that the R2 term has a considerable
contribution to the inflaton potential by inducing a flat region in the large field limit of the inflaton ϕ. In
fact, the result generally holds for any sensible form of an inflaton potential V (ϕ), leading to a plateau for
quite general conditions. In the particular case of natural inflation the flattening of the potential is evident
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in fig. 4.2. Since we are interested in slow-roll inflation we neglect the contribution of the higher-order
kinetic terms ∝ ϕ̇4 and apply the conventional mechanism of single-field inflation. There we find that
when the natural inflation model is minimally coupled to the Starobinsky model in the Palatini formalism
we are able to obtain acceptable predictions for the inflationary observable quantities, therefore allowing
for the possibility for the model to describe inflation, contrary to their metric formulation in which they
fall short.

The simplest scenario of a free massive scalar field also shares the same fate as the natural inflation,
however considered here in the Palatini formalism coupled minimally to the Starobinsky model we obtain
values of the inflationary observables within the allowed 1σ region for values of the mass term around
m ∼ 1013 GeV. The scale of inflation, defined as the field values of the canonically normalised inflaton
field, is slightly above the Planck scale.

Following the success of the previous models we are interested in realising the Higgs inflation scenario
with a minimal coupling to gravity. It is known that in the metric formalism a nonminimal coupling is
required, however, considered in this specific context we show that the effect of the R2 term allows for a
successful inflation with the caveat that the number of e-folds required is larger than usual, close to N ∼ 75
e-foldings.

Having analysed the spectrum of minimally coupled models, the wildly popular models that are
nonminimally coupled to the EH term are also discussed. The general feature of the flattening of the
Einstein-frame scalar potential still remains. Implementing this program to the CW and the induced
gravity model we obtain acceptable inflationary observables for both models for a large part of the model
parameter space. Of particular importance is the scenario of nonminimal Higgs inflation, in which we show
that the nonminimal coupling ξ between Higgs and the EH term can assume small values compared to
the ones obtained in absence of the R2 term. Contrary to its minimal formulation the model leads to
appropriate inflationary observables for values of N ∈ [50, 60] e-folds.

Motivated from the success of the previous models we investigated the scenario in which the Starobin-
sky is nonminimally coupled to a quartic potential, and promoted the Starobinsky constant α to include
logarithmic corrections ∝ log (ϕ2/µ2) of the fundamental scalar field, α 7→ α(ϕ). The resulting action in the
Einstein frame has a similar form to the previously considered Palatini-R2 models, however the plateau of
the Einstein-frame inflaton potential is violated logarithmically at field values ϕ > µ. We find that predic-
tion of the model regarding the inflationary observables are in good agreement with recent observational
data, notably a large coupling α(ϕ) can actually influence the values of the observables (see fig. 4.20), con-
trary to the previous model in which only the tensor-to-scalar ratio r was dependent on α. This suggests
that other models that reside outside the (+)2σ allowed region can in principle be in agreement with ob-
servational bounds by introducing a field dependent constant α(ϕ). In addition the values of r can range
from tiny, which is a general feature of the Palatini-R2 models, to rather large approaching the bound on
r, meaning that they can be in contact with future experiments of expected precision 10−3 or even 10−4.
After the end of inflation the model undergoes a process of reheating. Through the mechanism high-
lighted in section 2.4 it is possible to parametrise the reheating parameters in terms of the inflation ones,
which for different values of the reheating state parameter wR we showed that the model is indeed capable
of supporting a reheating era for the specific values of the model parameters assumed during inflation
with maximum reheating temperature TR ∼ 1015 GeV, fig. 4.22. Under the assumption of instantaneous
reheating we obtained an upper bound on N ≈ 52 e-folds. Concluding this section, other forms of field
dependence of α(ϕ) were considered that also retain the desired plateau of the inflaton potential. For a
specific part of the model parameter space we were able to find agreement with observational bounds
even in these cases.

In the last section we shift our focus and analyse the inflationary phenomenology of the Higgs field
coupled to the quadratic gravity under the assumption of the constant-roll approximation. Similarly to
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5. Summary & Conclusions

previous models the resulting Einstein-frame action is of the form of a generalised k-inflation type and
we analyse the cases of minimal and nonminimal coupling of the Higgs with gravity, by assuming that the
constant-roll condition ϕ̈ ∼ βHϕ̇ holds, where β is a constant parameter. In both cases the predictions
of the inflationary observables show a significant dependence on the higher-order kinetic terms, contrary
to their slow-roll counterparts. Particularly for the minimal scenario we found that in the constant-roll
regime acceptable values for the observables are obtained for N ∈ [50, 60] e-folds, which is in contrast
with the slow-roll case where it was shown that large values of N ≳ 70 e-folds are required in order for
ns to reside within the 2σ allowed region.
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