
The Impact of Coding Depth on Sliding Window
RLNC Protocols

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Foteini Karetsi

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN ADVANCED COMPUTER SYSTEMS

University of Ioannina

School of Engineering

Ioannina 2022

Examining Committee:

• Evangelos Papapetrou, Assist. Professor, Department of Computer Science and
Engineering, University of Ioannina (Advisor)

• Christos Liaskos, Assist. Professor, Department of Computer Science and En-
gineering, University of Ioannina

• Lysimachos‐Pavlos Kondi, Professor, Department of Computer Science and
Engineering, University of Ioannina

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Assistant Professor Mr. Evangelos
Papapetrou of University of Ioannina, for his undivided support and guidance over
the last few years. I am beyond grateful for sparking my interest in research and
believing in my capabilities when I mostly doubt myself. Our endless discussions
always encourage me to step over boundaries and make me evolve as a scientist and
researcher.

I would also like to thank my family for standing by me all these years, both
mentally and financially. Their willingness to facilitate my daily routine in order to
pursue my ambitions is an undeniable proof of selfless love that I will always look
up to.

Last but not least, I could not be more indebted to Alexandros, without whose
boundless patience and affection nothing would have happened. Thank you for being
the light of my life and making me smile every day even during the darkest of times.

TABLE OF CONTENTS

List of Figures iii

List of Tables v

List of Algorithms vi

Glossary vii

Abstract viii

Εκτεταμένη Περίληψη x

1 Introduction 1
1.1 The Goals of 5G and Beyond Networks 1
1.2 Achieving URLLC in 5G and Beyond 3
1.3 Objectives of Thesis . 3
1.4 Structure of Thesis . 5

2 Background and Related Work 6
2.1 Sliding Window RLNC Primer . 7

2.1.1 RLNC Fundamental Principles 7
2.1.2 RLNC Variants . 7

2.2 Related Work on Sliding Window RLNC 9

3 Addressing the Limitations of SW RLNC with the Use of Coding Depth 13
3.1 Analyzing the Concept and the Benefits of Coding Depth 14
3.2 Rate Adaptation in RLNC Schemes . 15

3.2.1 Existing Literature on Rate Adaptation 16
3.3 Rate adaptation vs Coding depth: Strengths and Limitations 18

i

4 Dynamic Adaptation of Coding Depth 24
4.1 Exploring the Vicinity of the Optimal d 24
4.2 Calculating an Efficient d Estimation . 26
4.3 An Efficient Algorithm for the Dynamic Adaptation of d 29

4.3.1 Loss Ratio Estimation . 31
4.3.2 Triggering Change in d . 32
4.3.3 The Actual Adaptation of Coding Depth 34

5 Experimental Evaluation 36
5.1 Simulation Setup . 36
5.2 Performance Evaluation in Diverse Scenarios 37

5.2.1 Throughput - Average Delay Performance 37
5.2.2 Investigating the Average Decoding Matrix Size 41

5.3 Performance under Various Channel Error Rates 44
5.4 Resilience to Bursts of Errors . 47
5.5 The Impact of Error Burst for Various Loss Rates 52

6 Conclusion 57
6.1 Closing Remarks . 57
6.2 Future Extensions . 58

Bibliography 60

ii

LIST OF FIGURES

1.1 5G and beyond networks: Use Cases. 2

2.1 An illustration of the fixed-size sliding window RLNC concept (W =

6 and R = 3/4 (k = 3)), dashed and dotted lines indicate the sliding
window contents when a coded packet is created). 8

2.2 A classification of existing SW RLNC protocols. 10

3.1 Throughput-delay performance of Caterpillar RLNC-FB [11] and rapi-
dARQ [23] in 5G test scenario. The above plot corresponds to the pro-
tocols’ performance when RTX = 0 while the below one to RTX = 3.
Labels indicate the various values of R and d examined in this test
scenario. 21

3.2 Throughput-delay performance of Caterpillar RLNC-FB [11] and rap-
idARQ [23] in satellite test scenario. The above plot corresponds to
the protocols’ performance when RTX = 0 while the below one to
RTX = 3. Labels indicate the various values of R and d examined in
this test scenario. Labels for values d = 7 and d = 11 are omitted for
clarity reasons. 23

4.1 Successive coding cycles observed at the sender side in a SW RLNC
protocol. The product d · k describes the coding window size. 25

5.1 Throughput-Delay Performance of Adaptive and static rapidARQ, Caterpillar-
FB and Tetrys without re-transmissions (RTX = 0) in (a) the satellite
scenario, and (b) the 5G wireless scenario. The color in this figure
indicates the packet drop rate of each protocol. 38

iii

5.2 Throughput-Delay Performance of Adaptive and static rapidARQ, Caterpillar-
FB and SR-ARQ with re-transmissions (RTX = 3) in (a) the satellite
scenario, and (b) the 5G wireless scenario. 40

5.3 Average Decoding Matrix Size of network-coded protocols in satellite
scenario (a) without re-transmissions (RTX = 0) and (b) with re-
transmissions (RTX = 3). 42

5.4 Average Decoding Matrix Size of network-coded protocols in 5G wire-
less scenario (a) without re-transmissions (RTX = 0) and (b) with
re-transmissions (RTX = 3). 43

5.5 Throughput-Delay Performance of Adaptive and static rapidARQ, Caterpillar-
FB and Tetrys without re-transmissions (RTX = 0) in the satellite sce-
nario for varying channel error rate, (a) pl = 2.5%, (b) pl = 5% and
(c) pl = 7.5%. The color in this figure indicates the packet drop rate of
each protocol. 46

5.6 Percentage improvement of average decoding matrix size vs burstiness
in the satellite scenario when (a) RTX = 0 and (b) RTX = 3. 49

5.7 Percentage improvement of average decoding matrix size vs burstiness
in the 5G test scenario when (a) RTX = 0 and (b) RTX = 3. 50

5.8 Percentage improvement of average decoding matrix size vs burstiness
in the satellite scenario without re-transmissions: (a) B = 2, (b) B = 2.5

and (c) B = 3. For the applied link loss rates, the estimated optimal d
values are: 2.5% - dopt = 14, 5% - dopt = 15, 7.5% - dopt = 18 and 10% -
dopt = 15. 55

iv

LIST OF TABLES

3.1 Experiment’s Main Parameters. 19

4.1 Adaptive d: Symbol Definitions. 30

5.1 Coding parameters used under variable channel loss rates. 46
5.2 Performance difference of Adaptive rapidARQ (dmax = 15) and rapi-

dARQ (d = 15) under variable channel conditions in the satellite scenario. 48
5.3 Performance difference of Adaptive rapidARQ (dmax = 2) and rapi-

dARQ (d = 2) under variable channel conditions in the 5G wireless
scenario. 48

5.4 Performance difference of Adaptive rapidARQ and rapidARQ in chan-
nels with variable packet error rate when B = 2 in the satellite scenario
without re-transmissions (RTX = 0). 55

5.5 Performance difference of Adaptive rapidARQ and rapidARQ in chan-
nels with variable packet error rate when B = 2.5 in the satellite sce-
nario without re-transmissions (RTX = 0). 56

5.6 Performance difference of Adaptive rapidARQ and rapidARQ in chan-
nels with variable packet error rate when B = 3 in the satellite scenario
without re-transmissions (RTX = 0). 56

v

LIST OF ALGORITHMS

4.1 Loss Ratio Estimation . 31
4.2 Adapt(lr) . 35

vi

GLOSSARY

URLLC Ultra-Reliable Low-Latency Communication
RLNC Random Linear Network Coding
ARQ Automatic Repeat reQuest
FEC Forward Error Correction
SW Sliding Window
CW Maximum Coding Window Size
W Maximum Sliding Window Size
d Coding Depth
R Code Rate
Sw RapidARQ’s Sliding Window
Cw RapidARQ’s Coding Window
k The number of source packets transmitted between two succes-

sive coded packets

vii

ABSTRACT

Foteini Karetsi, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2022.
The Impact of Coding Depth on Sliding Window RLNC Protocols.
Advisor: Evangelos Papapetrou, Assistant Professor.

5G and beyond networks are envisioned to provide services for a plethora of het-
erogeneous applications which pose stringent constraints regarding data rate, latency
and reliability. One of the main pillars of 5G networks is the support of Ultra-Reliable
Low-Latency Communication (URLLC). The latter will cater to multiple advanced ser-
vices where ultra-high reliability and low latency are pivotal requirements, such as
Virtual (VR) and Augmented (AR) Reality systems or factory automation. Towards
achieving these goals, the deployment of high-performance reliability mechanisms
is essential in order to mitigate the impact of errors. Several legacy techniques have
been utilized for that purpose. However, they usually fall short of complying with the
hard specifications of URLLC. Random Linear Network Coding (RLNC) techniques
incorporating a sliding window scheme have proved to be an enabler of URLLC.

While sliding window RLNC schemes have been broadly examined as an efficient
reliability mechanism, little do we know so far about the impact of the coding win-
dow size on the coding scheme’s efficiency. This issue is immensely important for
channels with varying conditions, where the coding scheme should be appropriately
adjusted to tackle the occurring errors efficiently. In this work, we examine the impact
of the coding window size on the performance of sliding window RLNC protocols.
To that end, we leverage the abstraction of coding depth to facilitate the definition of
the coding window size. First, we observe that based on the concept of coding depth,
sliding window RLNC schemes can achieve superior overall performance especially
under varying channel conditions. We provide an analytical method to select an

viii

optimal coding depth value for specific channel conditions while considering the per-
formance and complexity constraints of the coding scheme. We also devise an efficient
algorithm to dynamically adapt coding depth according to the dynamic channel con-
ditions. Finally, we experimentally prove that the proposed adaptive scheme achieves
comparable or even improved performance compared to previous sliding window
RLNC models where the coding window size remains invariant.

Keywords: Ultra-Reliable Low-Latency Communication (URLLC), Random Lin-
ear Network Coding (RLNC), sliding window RLNC, coding depth

ix

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Φωτεινή Καρέτση, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2022.
Η Επίδραση του Βάθους Κωδικοποίησης στα Πρωτόκολλα Κωδικοποίησης Δικτύου
με Κυλιόμενο Παράθυρο.
Επιβλέπων: Ευάγγελος Παπαπέτρου, Επίκουρος Καθηγητής.

Τα ψηφιακά δίκτυα 5ης και μεταγενέστερης γενιάς αποβλέπουν στην παροχή υπη-
ρεσιών για μια ποικιλία από ετερογενείς εφαρμογές που θέτουν αυστηρούς πε-
ριορισμούς όσον αφορά το ρυθμό μετάδοσης δεδομένων, τη συνολική καθυστέρηση
και την αξιοπιστία. Μία από τις βασικές υπηρεσίες που σκοπεύουν να προσφέρουν
αυτά τα δίκτυα είναι η εξαιρετικά αξιόπιστη, χαμηλής καθυστέρησης επικοινωνία
(Ultra-Reliable Low-latency Communication, URLLC). Η υπηρεσία αυτή αφορά μια
πληθώρα εφαρμογών για τις οποίες τόσο η εξαιρετικά υψηλή αξιοπιστία όσο και η
χαμηλή καθυστέρηση είναι αναγκαίες απαιτήσεις, όπως είναι τα συστήματα εικο-
νικής και επαυξημένης πραγματικότητας και οι διαδικασίες αυτοματοποίησης των
εργοστασίων. Προκειμένου να επιτευχθούν αυτοί οι αυστηροί περιορισμοί, είναι
αναγκαία η αξιοποίηση μηχανισμών που εξασφαλίζουν υψηλή απόδοση και μεγάλη
αξιοπιστία περιορίζοντας, παράλληλα, την επίδραση των σφαλμάτων που συμβαί-
νουν στο σύνδεσμο μετάδοσης. Μέχρι στιγμής, διάφορες τεχνικές έχουν χρησιμοποι-
ηθεί για αυτό το σκοπό. Ωστόσο, οι τεχνικές Κωδικοποίησης Δικτύου και, συγκεκρι-
μένα, Τυχαίας Γραμμικής Κωδικοποίησης Δικτύου, που ενσωματώνουν ένα σχήμα
κυλιόμενου παραθύρου (sliding window) έχουν τη δυναμική για την επίτευξη των
υψηλών προδιαγραφών αξιοπιστίας και χαμηλής καθυστέρησης.

Παρόλο που τα πρωτόκολλα Κωδικοποίησης Δικτύου με κυλιόμενο παράθυρο
έχουν εξεταστεί ευρέως ως αποδοτικοί μηχανισμοί που εξασφαλίζουν την αξιοπι-
στία, ελάχιστη αναφορά γίνεται στη βιβλιογραφία αναφορικά με την επίδραση του

x

μεγέθους του παραθύρου κωδικοποίησης στην αποδοτικότητα του μηχανισμού. Ο
κατάλληλος ορισμός του παραθύρου είναι ιδιαίτερα σημαντικός σε κανάλια με με-
ταβαλλόμενες συνθήκες, όπου η προσαρμογή του σχήματος κωδικοποίησης είναι
αναγκαία ώστε να επιτευχθεί η επιτυχής αντιμετώπιση των σφαλμάτων που προ-
κύπτουν. Στην παρούσα εργασία εξετάζουμε την επίδραση του μεγέθους του παρα-
θύρου κωδικοποίησης στην απόδοση των πρωτοκόλλων Κωδικοποίησης Δικτύου με
κυλιόμενο παράθυρο, αξιοποιώντας την έννοια του βάθους κωδικοποίησης (coding
depth) για τον ορισμό του παραθύρου κωδικοποίησης. Αρχικά, επισημαίνουμε τη
σπουδαιότητα του ορθού καθορισμού του παραθύρου κωδικοποίησης για την απο-
δοτική λειτουργία των πρωτοκόλλων. Αυτό αφορά κανάλια που είτε οι συνθήκες
μετάδοσης είναι σχετικά σταθερές είτε παρατηρούνται σημαντικές μεταβολές. Κα-
τόπιν, παρέχουμε έναν αναλυτικό τρόπο υπολογισμού του βάθους κωδικοποίησης
για συγκεκριμένες συνθήκες καναλιού που μπορεί να εξασφαλίσει σχεδόν βέλτιστη
απόδοση. Επιπλέον, υλοποιούμε έναν αποτελεσματικό μηχανισμό για τη δυναμική
προσαρμογή του βάθους κωδικοποίησης και, επομένως, του παραθύρου κωδικο-
ποίησης λαμβάνοντας υπόψη τις μεταβαλλόμενες συνθήκες του καναλιού. Τέλος,
αποδεικνύουμε ότι το προτεινόμενο δυναμικό σχήμα πετυχαίνει συγκρίσιμη ή και
καλύτερη απόδοση από άλλα πρωτόκολλα Κωδικοποίησης Δικτύου με κυλιόμενο
παράθυρο στα οποία το παράθυρο κωδικοποίησης παραμένει αμετάβλητο.

Λέξεις-κλειδιά: Εξαιρετικά Αξιόπιστη Χαμηλής Καθυστέρησης Επικοινωνία,
Κωδικοποίηση Δικτύου, Κυλιόμενο Παράθυρο, Βάθος Κωδικοποίησης

xi

CHAPTER 1

INTRODUCTION

1.1 The Goals of 5G and Beyond Networks

1.2 Achieving URLLC in 5G and Beyond

1.3 Objectives of Thesis

1.4 Structure of Thesis

1.1 The Goals of 5G and Beyond Networks

In a world of ubiquitous connectivity dictated by the Internet of Things (IoT) paradigm,
the exponential growth of data traffic and the vast increase in mobile terminals are
challenging issues for the next generation of communication networks. Apart from
the significantly enhanced capacity to meet the growing demands of users, the un-
ceasing emergence of new services as well as the heterogeneity across applications
and devices pose additional constraints in terms of scalability, reliability and latency.
5G is envisioned to support this unprecedented demand for high-data rate connec-
tivity, stringent low latency and reliability constraints. By leveraging the intrinsic
merits of diverse technologies, such as satellite networks and unmanned aerial vehi-
cles (UAVs), vehicular networking, edge and cloud computing as well as machine-to-
machine communications (M2M) [1], 5G and beyond networks are expected to pave
the way towards a fully connected digital society.

5G is completely reshaping our lives by enabling new technologies that enhance
user experience and facilitate different aspects of life. Figure 1.1 illustrates various use

1

Vehicular Communication

Smart FactoriesHealthcare

Entertainment

Smart homes and cities

Remote Connection

Emergency Relief

5G and Beyond
Networks
Use Cases

Figure 1.1: 5G and beyond networks: Use Cases.

cases which benefit from the advent of 5G and beyond networks. The emergence of
smart homes and cities as well as ensuring remote connections worldwide could not
be feasible with the support of legacy communications systems, due to scalability and
coverage constraints. Reliability and timeliness are also critical parameters to vari-
ous domains of applications, such as immersive entertainment platforms, e.g., Virtual
Reality (VR) and Augmented Reality (AR) systems, autonomous vehicles, smart in-
dustries and healthcare. In particular, these applications demand ultra-reliability and
low latency to perform efficiently, which are pivotal for Ultra-Reliable Low Latency
Communication (URLLC) [2]. The latter will play a major role in 5G and future
networks, since achieving these requirements is an extremely challenging task. In
URLLC, the specification mandates a success probability of over 99.99% and targets
for end-to-end latency up to 1ms. The latter includes the transmission delay, queu-
ing delay, processing delay and retransmission overhead when needed. Furthermore,
regarding reliability, target block error rate ranges between 10−9 and 10−5 depending
on the use case [3].

2

1.2 Achieving URLLC in 5G and Beyond

It is evident that the successful achievement of URLLC requirements will give rise
to applications where the delay and reliability are critical. For instance, the targeted
latency will allow efficient remote diagnosis and surgery as well as minimize hazards
in manufacturing. An enhanced user experience will be offered via VR systems to
sports or music fans that cannot attend various events in person. Similarly, ultra-high
reliability will assist in industry automation or remote monitoring in cities and smart
homes [3]. Towards achieving 5G and beyond goals, various sophisticated techniques
are deployed to utilize more available spectrum and deliver information with high-
data rates. In this direction, millimeter-wave (mmWave) communication is a key
enabler for 5G networks while exploiting the terahertz band is also considered for
6G and beyond systems. Unfortunately, by leveraging these frequency bands, severe
losses are observed from a physical-layer point of view, hence mechanisms for tackling
packet losses should be devised in the data link or transport layer.

Several legacy techniques have been deployed to mitigate the impact of failures
in wireless channels, such as Automatic Repeat ReQuest (ARQ), Forward Error Cor-
rection (FEC) or even Hybrid Automatic Repeat reQuest (HARQ) schemes. While
these techniques consider the reliability-delay trade-off, the achieved performance
falls short compared to the URLLC requirements, either due to increased overhead or
prohibitive delay. To tackle this shortcoming, various coding approaches have been
utilized over the last years but the most promising one entails the use of Network
Coding (NC). Exploiting the combination of packets to enhance performance, NC and
particularly Random Linear Network Coding (RLNC) has been successfully examined
as an efficient reliability mechanism. Coding enhanced with the notion of sliding win-
dow has proved to be a promising candidate in order to manage delay and reliability
constraints. To further enhance reliability, some sliding window (SW) RLNC schemes
may employ retransmissions at the expense of increased delay. Hence, the presence
of retransmissions is decided depending on the requirements of each application.

1.3 Objectives of Thesis

While sliding window RLNC has proved to be an enabler of URLLC, little attention has
been paid to the optimization of the coding efficiency of such schemes. In particular,

3

the performance of SW RLNC protocols depends on two factors:

• the level of redundancy injected into the original data stream and,

• the number of packets involved in the encoding process, also known as the
coding window size.

An appropriate definition of the coding window size is of high importance for the
performance vs complexity trade-off, since the size determines the range of transmit-
ted packets requiring additional protection through coding. However, the larger the
range of packets, the larger the overhead induced due to the coding process. There-
fore, we should be very cautious with the choice of the coding window size, otherwise
we may undermine the overall performance of the coding scheme.

Despite its significance, typically, existing SW RLNC schemes do not examine the
impact of the coding window size. Instead, they utilize an arbitrary window size,
without specifying its suitability in the applied scheme. In case of retransmissions,
SW RLNC schemes usually rest upon the performance of ARQ protocols, where an
optimal window is determined based on the bandwidth-delay product. However, this
approach bears inherent limitations, because the coding window should be optimized
based on the link loss profile. Therefore, the choice of a suitable coding window size is
still an open issue in literature, especially under varying channel conditions, where the
coding paradigm should adjust to the occurring variations. In this work, our primary
goal is to investigate the impact of the coding window size on the performance of SW
RLNC protocols. To that end, we leverage the concept of coding depth to facilitate the
discussion. The main contributions of this thesis are the following:

1. We investigate the impact of coding depth on the definition of the coding win-
dow size in SW RLNC protocols, by analyzing the strengths and limitations of
this approach both theoretically and experimentally.

2. We provide an analytical method to optimally select coding depth for certain
channel conditions in order to control the performance vs complexity trade-off
of the coding scheme.

3. We devise an efficient algorithm for the dynamic adaptation of the coding depth
based on the channel’s varying conditions.

4

4. We experimentally confirm, through detailed simulations, that the performance
of the adaptive algorithm is comparable to the one of SW RLNC protocols
where the coding window size remains invariant throughput the simulation’s
execution. Indeed, we can observe a noticeable reduction in complexity owing
to the efficient management of the coding window size.

1.4 Structure of Thesis

The rest of this thesis is organized as follows. Chapter 2 provides the essential back-
ground on RLNC protocols and a literature review on Sliding Window RLNC variants.
In chapter 3, we analyze the concept of coding depth in sliding window RLNC proto-
cols and highlight its impact on the protocols’ performance especially under dynamic
channel conditions. We back up our arguments through an extensive experimental
analysis comparing the impact of coding depth against the applied level of redun-
dancy. Chapter 4 focuses on the optimal selection of coding depth for specific channel
conditions and presents an adaptive approach for the dynamic adaptation of coding
depth based on channel’s variations. We evaluate the performance of our approach
through extensive experimental evaluation in chapter 5. Chapter 6 summarizes our
findings and provides a list of future extensions of this work.

5

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Sliding Window RLNC Primer

2.2 Related Work on Sliding Window RLNC

URLLC is considered to play a pivotal role in providing novel services and applications
in the context of 5G and beyond networks. Various techniques successfully deployed
in the past to mitigate the impact of errors, such as ARQ and FEC schemes, have
proved to be insufficient in terms of satisfying the stringent demands of URLLC,
i.e., ultra-high reliability at a low delay and vice-versa. Network Coding (NC) [4]
and particularly Random Linear Network Coding (RLNC) [5, 6], is a relatively recent
technique that constitutes a promising candidate in this direction. RLNC variants have
been successfully examined as an efficient reliability mechanism, though, there is still
room for improvement regarding the coding process. In particular, Sliding Window
(SW) RLNC schemes can bring major enhancements in the coding efficiency. Inspired
by the main principles of ARQ protocols, SW RLNC schemes have the potential to
tackle the shortcomings of existing coded mechanisms and close the gap between
reliability protocols’ performance and URLLC specifications.

In this chapter, we describe the fundamental principles of RLNC protocols and
thoroughly review the related literature with an emphasis on SW RLNC protocols.

6

2.1 Sliding Window RLNC Primer

2.1.1 RLNC Fundamental Principles

RLNC relies on the concept of linearly combining multiple packets, based on the
theory of finite fields (F2s) [5]. Practically, uncoded packets, called native or source
packets, form groups which will be used to generate coded packets, using finite fields’
arithmetic. Assume that we have a group of n source packets P 1, P 2, · · · , P n stored
at a node. Each source packet P i is divided into symbols of s bits and then the j-th
symbol of the coded packet e(j) is computed as:

e(j) =
n∑

i=1

ciP
i(j) , ∀j (2.1)

where P i(j) is the j-th symbol of the i-th source packet and n is the total number
of source packets in the group. The set of coefficients c = (c1, c2, · · · , cn), called the
encoding vector, is chosen uniformly at random over F2s. It is proved that the proba-
bility of creating linearly dependent packets depends on the field size and becomes
negligible for large field sizes [7]. In this thesis, we consider a sufficiently large finite
field, such as F28 , to avoid linear dependencies of the encoding vectors. Encoding can
be performed recursively at intermediate nodes, thereby encoding already encoded
packets.

As for the decoding process, the receiver stores the received packets (source or
coded ones) in a decoding matrix D, which is populated by innovative packets, i.e., the
ones that increase the rank of the matrix. The receiver needs to solve a linear system in
order to retrieve the original packets P i. Decoding is performed using Gauss-Jordan
elimination when the matrix reaches full rank. Partial decoding [8], i.e., decoding
when there exists a full rank sub-matrix of D, and other decoding optimizations also
exist in literature [9, 10, 11]. Decoding is optional at intermediate nodes but it should
be performed at the receiver.

2.1.2 RLNC Variants

In RLNC, a major performance factor is the complexity of coding operations. High
complexity incurs large delays, hence a finite set of packets should be involved in the
coding process. Apart from the group size, determining the way of populating the
group is crucial in terms of the protocol’s efficiency. RLNC schemes can be broadly

7

p1 p2 p3 p4 p5 p6 p7 p8 p9
c1

c2=f(p1, . . . , p6)
c3 =

f(p4, . . . , p9)

WW

p1 p2 p3 c1 p4 p6 c2 p7 p8 p9 c3

k

Figure 2.1: An illustration of the fixed-size sliding window RLNC concept (W =6 and
R=3/4 (k=3)), dashed and dotted lines indicate the sliding window contents when
a coded packet is created).

categorized in block-based RLNC [8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and sliding-
window RLNC [11, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43]. In the first class, encoded packets are created using fixed-size groups
of g packets, called generations. None subsequent packet can be involved in coding if
the decoding of the previous generation is not complete. This, however, significantly
increases delay and makes such schemes inappropriate for URLLC applications.

To address this problem, sliding window RLNC methods adopt the concept of
the sliding window in the coding process. Coded packets are created as random lin-
ear combinations of a dynamically changing group of source packets known as the
sliding (or coding) window. Here, instead of employing fixed-size sets of packets, as
in block-based schemes, the management of the window’s contents is quite flexible.
New source packets are inserted whenever they are available at the source, whereas
older ones are removed in a process known as closing the window. SW RLNC schemes
usually adopt a systematic approach, that is, coding is applied only on the redundant
packets while source ones are transmitted in an uncoded form. Figure 2.1 illustrates
a typical example of a systematic SW RLNC protocol, borrowed from [23, 24]. Except
for outlining the main functionality of such a scheme, this figure displays two major
parameters that affect the coding performance of SW RLNC protocols. First, the num-
ber of source packets involved in the coding process delineates the coding window
size (W), while the level of redundancy introduced into the original data stream is
determined by the code rate R. The latter is defined as the ratio of the number of
source packets of the coding window to the total number of packets (source and

8

redundant ones) sent by the transmitter. In practice, we express R as:

R =
k

k + r
(2.2)

where k symbolizes the number of source packets and r the number of redundant
ones. The coding window size and the code rate play a major role in determining
the trade-off between coding efficiency and protocol’s performance.

Returning back to figure 2.1, we can observe that the arrival of new packets forces
the window to move forward and drop older packets so that the window size never
exceeds the predetermined size W . In this example, only one coded packet is injected
in the stream every k source packets, thereby defining the code rate equal to R =
k

k + 1
. The coded packets are destined for recovering any lost source packets. Recovery

is indeed possible when the receiver collects a number of linearly independent coded
packets equal to the number of lost source packets. For instance, the recovery of lost
packet p5 can be achieved either using c2 or c3.

2.2 Related Work on Sliding Window RLNC

To date, extensive research has been conducted on the impact of applying SW RLNC
protocols in various fields, such as multimedia [30, 31, 32], IoT scenarios [38] and
opportunistic routing [28]. Additionally, SW RLNC serves as the basis for designing
and investigating more complex coding approaches which rely on its main principles.
For instance, [40] examines the performance of Fulcrum SW codes while in [41], the
authors investigate SW BATS codes. SW RLNC-based reliability mechanisms have
also been examined in the context of transport-layer protocols, initially regarding the
TCP protocol [29] and, more recently, QUIC [44].

The proposed SW RLNC schemes [11, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43] share some common concepts regarding the
coding process which could be used to categorize existing works according to these
features. Figure 2.2 illustrates a classification of existing SW RLNC schemes. First of
all, SW RLNC protocols can be classified into full-vector [35, 36] and systematic [45],
based on the “per-packet” coding approach. As for the first class, each transmission
packet is obtained by coding, i.e., linearly combining all source packets currently
existing in the sliding window. On the contrary, systematic approaches transmit a

9

Coding
Approach RetransmissionsWindow Size

SW RLNC
protocols

Full-Vector Systematic

Infinite Finite

FEC-based ARQ-based

Figure 2.2: A classification of existing SW RLNC protocols.

mixture of source and coded packets and coding is applied only on the redundant
packets. Actually, coded packets are interleaved within the data stream typically by
transmitting a coded packet after sending k source packets. In this way, packet losses
can be recovered more quickly, hence achieving lower mean packet delivery delay
compared to full-vector codes [24]. Since achieving low delay is a common target for
URLLC applications, the majority of the existing SW RLNC schemes adopt systematic
codes.

As mentioned in Section 2.1.2, the performance of SW RLNC schemes heavily
depends on R and the SW size. Devising an efficient strategy to manage the SW is
quite important because the SW size determines which source packets are included
in the generation of a coded one and therefore “demand” protection through cod-
ing. Although inserting new source packets is straightforward, various policies for
removing packets, i.e., closing the window, have been discussed. Some algorithms
adopt an infinite window approach [13] where source packets are never removed from
the window, that is, all previously transmitted source packets contribute to the gen-
eration of a new coded one. This strategy, though, cannot be applied in practice
because of the prohibitive computational complexity of the coding processes as well
as the increased memory requirements for buffering source packets at both sides.
Most algorithms follow a finite window approach [11, 23, 24, 30, 32, 33], where the
number of source packets in the SW is upper bounded by the coding window size.
Two policies can be adopted in order to ensure that SW never exceeds this size. In the
first one, old packets are removed from the window only when the addition of new

10

packets would result in exceeding W [33]. On the other hand, employing feedback
from the receiver would allow the sender to remove delivered packets from its buffer,
and hence from the decoding process. This is achieved, for instance, through the use
of periodic acknowledgements [30, 31, 34], as demonstrated in Tetrys protocol [30].
There, periodic acknowledgements are used in order to “close” the window, while
loss recovery is achieved only through coded redundancy.

Utilizing feedback in SW RLNC schemes is not solely exploited in closing the SW,
though. A common strategy entails the use of feedback to trigger re-transmissions in
a similar fashion as in ARQ protocols [11, 23, 24, 10, 25, 26, 27, 28, 29, 32, 35, 36].
RLNC serves the following purpose: coded redundancy is injected into data stream to
overcome packet losses without inducing additional delay because of re-transmissions.
Unless redundant packets suffice for loss recovery, feedback activates the transmis-
sion of additional packets (coded or not) to facilitate the decoding process and in-
crease the probability of packet recovery. Caterpillar RLNC-FB [11] is a representa-
tive ARQ-based SW RLNC protocol employing systematic coding, re-transmissions
and feedback. On the contrary, SW RLNC protocols that do not incorporate feedback
fall into the category of FEC-based schemes. The main difference of ARQ-based and
FEC-based SW RLNC lies in the use of re-transmissions in the presence of feedback.
FEC-based schemes rely exclusively on coded redundancy to recover lost packets [33]
and they leverage feedback, if available, to solely update the coding window’s con-
tents [30, 31].

According to figure 2.2, the coding window size is a critical parameter for the
performance of the coding schemes. Nevertheless, existing finite window schemes
tend to become complacent about the superiority of the finite window against the
infinite one and they do not elaborate further on the reasoning behind choosing
the examining coding window sizes. Instead, in FEC-based schemes, coding window
size is arbitrarily defined whereas, in ARQ-based SW RLNC [11, 10, 25, 26, 27, 29,
32, 35, 36], a single window is associated with both the data flow process and the
coding one, i.e., they use the sliding window to maximize data flow and generate
redundant packets at the same time. In our previous work [23, 24] we identified this
issue regarding ARQ-based SW RLNC protocols as a practice that poses limitations in
the performance of SW RLNC protocols due to the conflict of interest regarding the
SW size. On the one hand, flow maximization relies on the bandwidth-delay product
whereas coding parameters are chosen based on the link loss profile. Contradictory

11

requirements are more evident in links with high bandwidth-delay product, e.g.,
satellite links, where a large window size is optimal for maximizing data flow, but the
link loss profile may dictate a different configuration for the SW size. In particular,
a large window size increases the coding complexity at both sides which also incurs
larger delay, hence the performance of SW RLNC protocols significantly degrades.
We addressed this issue by utilizing two distinct windows; the ARQ-like sliding
window (Sw) for maximizing data flow and the coding window (Cw) used at the
coding process. However, despite our initial effort to formulate an appropriate coding
window size, the problem of choosing a suitable value for the coding window remains
an open issue in literature, both in ARQ-based and FEC-based schemes. It is evident
that utilizing some seemingly appropriate coding window sizes is a restrictive factor
regarding the efficient performance of a SW RLNC coding scheme and we should
not rest on our laurels. Au contraire, it is essential that a systematic approach for
determining the coding window size be devised in order to maximize protocols’
efficiency. In the following chapters, we are going to discuss about the importance
of properly defining the coding window size and highlight the benefits of choosing
an optimal coding window under dynamic channel conditions. Especially for the
occasions of arguing for ARQ-based schemes, we will utilize the notation introduced
in rapidARQ [23, 24], our protocol that embodies the novelty of decoupling the coding
and the sliding window.

12

CHAPTER 3

ADDRESSING THE LIMITATIONS OF SW RLNC
WITH THE USE OF CODING DEPTH

3.1 Analyzing the Concept and the Benefits of Coding Depth

3.2 Rate Adaptation in RLNC Schemes

3.3 Rate adaptation vs Coding depth: Strengths and Limitations

While the idea of differentiating between the sliding and the coding window seems
to be an efficient solution, little do we know so far about the determination of the
coding window size. In [23, 24], we facilitate the discussion about the coding window
by introducing the concept of coding depth (d). The latter refers to the protection a
coded packet offers to a specific number of k-packet groups constituting the redun-
dant packet. By means of coding depth, we propose a practical way to articulate the
factors affecting the performance of SW RLNC protocols and the envisioned benefits
of optimally choosing the coding window size. Since little attention has been paid
to the coding window size in SW RLNC schemes, there is plausibly no prior work
dwelling upon the advantages of an optimal coding window. Note that this problem is
especially important under dynamic channel conditions. Thus, our aim is to analyze
the appropriate selection of the coding window size via the use of d as well as the
strengths and limitations of the online adaptation of d. Our motivation derives from
the fact that static configuration of RLNC coding parameters is usually insufficient

13

when the packet loss of the channel varies. A common approach proposed in litera-
ture for coping with loss variations and increase robustness focuses on dynamically
adapting the code rate R. While rate adaptation seems to be an appropriate solution,
it comes at the high cost of bandwidth consumption required for transmitting more
redundant information. On the contrary, we make the observation that the dynamic
adaptation of coding depth outweighs rate adaptation in that it does not require
additional bandwidth resources. Therefore, it looks like a good prospect in tackling
packet losses in error-prone channels.

In this chapter, we first elaborate on the concept of the coding depth and its impact
on the coding window size. We also provide a brief review of the existing literature
regarding rate adaptation and argue for the benefits of manipulating d both in static
and dynamic configuration of RLNC protocols in order to cope with packet losses.
We back up our arguments with experimental data suggesting that an appropriate
selection of the coding window size (equivalently of d) may outperform the strategy
of adapting the coding rate in terms of throughput-delay.

3.1 Analyzing the Concept and the Benefits of Coding Depth

An effort to formally describe the coding window size has been made in our previous
work [23, 24], where we first utilize the concept of coding depth in the context of
ARQ-based SW RLNC protocols. We define the coding window as:

Definition 3.1. Coding Window (Cw): The subset of Sw containing the most recent
not-yet acknowledged source packets which are used in the encoding process.

The range of source packets comprising Cw depends on the level of protection we
would like to offer to them, i.e., the number of redundant packets “covering” the
source ones in case of losses. For a specific code rate R the level of redundancy
is specified by the coding window size. The coding depth (d) incarnates that level of
protection, as it describes the number of k-packet tuples constructing a coded packet. Hence,
we define the:

Definition 3.2. Coding Window size (CW): The maximum number of source packets
in Cw which is equal to

CW = d× k (3.1)

14

CW is chosen as an integer multiple of k, as Cw should provide equal protection
to all source packets comprising it. However, so far the choice of d (or CW) is em-
pirical and there is no previous work on how to optimally decide it. Nor has its
impact been discussed on the coding process under varying channel conditions. A
randomly chosen CW can cause various implications in the performance of the cod-
ing scheme. In particular, a small CW leads to reduced redundancy, which, in turn,
offers fewer opportunities for decoding. On the contrary, overestimating the win-
dow increases coding complexity and may interfere with the other sliding window
parameters, leading to performance degradation [23, 24].

By selecting the optimal d, we are able to minimize coding complexity and delay
without sacrificing coding efficiency. We should bear in mind that by fine-tuning Cw,
we can obtain performance improvements both in the encoding and the decoding
operation. Indeed, the maximum number of source packets involved in the encoding
process affects not only the encoding process but also the size of the encoding vector
appended in a transmitted coded packet. During decoding, an optimal Cw results
in a smaller decoding matrix size and therefore in reduced computational complex-
ity during Gaussian elimination. The proper adjustment of d and, by extension Cw,
signifies that the redundant coded packets have higher probability of compensating
the resultant packets losses, hence less redundancy is stored at the decoding matrix.
Since the size of the matrix is reduced and that size is the only factor affecting the
Gaussian elimination, the optimal configuration of CW using d demonstrates lower
decoding complexity and, hence, significantly reduced delay.

3.2 Rate Adaptation in RLNC Schemes

Although the size of the coding window is a powerful tool for mitigating the impact
of packet losses, the most common approach in the related literature is to increase the
level of redundancy, i.e., the code rate R, e.g., [14, 16, 17, 19, 20, 21, 22, 35, 36, 42].
This is typically done by changing k, the number of source packets between two
successive coded ones. The rationale is clear; by increasing k, the probability of packet
losses is expected to be smaller. Even though this practice is effective, its drawback is
that the increased redundancy compromises the protocol’s throughput.

15

3.2.1 Existing Literature on Rate Adaptation

A significant research effort has been made in exploring adaptations of various coding
parameters based on feedback from the receivers. We could use various factors to
classify existing research in this direction, such as the RLNC variant, e.g., block-based
or SW-based RLNC, or the objective of rate adaptation, i.e., modify k or r based on
equation 2.2. We choose to review these works following the categorization based on
the coding paradigm. Although only SW RLNC schemes belong to the scope of this
thesis, we examine both block-based and SW schemes in this section for the sake of
completeness.

In block-based RLNC schemes [14, 15, 16, 17, 18, 19, 20, 21, 22, 46, 47, 48, 49, 50],
the code rate R is shaped based on the generation size g. Hence, the majority of adap-
tive coding schemes focus on modifying g to enhance performance. In particular, [14]
uses a heuristic method to adaptively determine the maximum generation size after
measuring the average input load in the system for a predetermined time period,
while [46] and [50] rely on feedback to adjust coding redundancy by estimating the
link loss rate. [22] examines the dynamic adaptation of g in the context of the TCP
protocol and utilizes the Generation Round Trip Time (GRTT), i.e., the time period
between the transmission of the first packet of a generation and the reception of its
last ACK, to estimate the next generation size. A time-variant optimization of the gen-
eration size is examined in [15], where the authors develop an adaptive scheme that
sequentially adjusts the block size in polynomial time in order to maximize through-
put under hard transmission deadlines. [47] presents an adaptive redundancy scheme
that utilizes MAC acknowledgements as a feedback regarding the link quality. By ex-
ploiting these acknowledgements, the scheme decides when is the appropriate time
to pump redundancy in the network to tackle packet losses. Also oriented towards
data link layer protocols, [16] designs an adaptive coding scheme that utilizes two
encoding methods, where the constraints imposed by the MAC and physical layers
determine which encoding method and generation size can ensure a specific QoS
level. The latter is also the objective of [17], where a feedback control mechanism
adjusts g according to the network load variations for multicast flows with the aim
of achieving efficient throughput-delay performance.

Dynamic adaptation of g has also been investigated in the context of wireless
broadcast channels [18, 21, 48]. Actually, [21] shows that the optimal generation size

16

can be expressed as a function of the network size, while [48] formulates a dynamic
rate adaptation scheme that uses performance prediction models and feedback from
the receivers to regulate the sender’s transmission rate. Since this scheme affects which
packets currently exist in the transmission queue and the coding scheme employs only
packets from that queue, the proposed dynamic adaptation scheme implicitly deter-
mines the generation size. An interesting variation of systematic block-based RLNC
is Pace [20], in which the transmission of redundant coded packets is interspersed
throughout the generation, thus creating a form of sub-generations. This implies that
redundant packets transmitted at the beginning of the generation protect fewer source
packets, while the subsequent ones include all the sub-generations transmitted until
then. While this strategy allows the receiver to decode earlier in case of a packet
loss at the beginning of the generation, this approach offers more protection to the
first source packets of the generation than to the subsequent ones, whilst a coding
scheme should ensure equal protection to all transmitted packets. Lastly, adaptive
redundancy has been examined even in the context of SDN [49], where the SDN
controller receives as input the actual packet losses monitored by SDN switches and
calculates the amount of redundancy required to compensate for the losses given a
certain decoding probability.

As for sliding-window RLNC schemes, a number of studies examine the dynamic
adaptation of rate [31, 35, 36, 37, 42, 43, 51]. In [31], a redundancy adaptation algo-
rithm for real-time video transmission is designed based on Tetrys with the aim of
minimizing packet losses. The receiver incorporates a monitoring agent, which ob-
serves packet losses and induced delay. The information collected by the monitoring
agent is forwarded to the redundancy adaptation module, which is reponsible for
making the receiver send a feedback message requiring a redundancy increment or
decrement. Another approach studies a tiny coding scheme (W = 2) with cumulative
feedback, where its contents regulate the code rate [51], while in [43] a scheme for
jointly selecting link rate and adaptive redundancy is proposed. Adaptive coding has
also been studied concerning the recoding process at intermediate nodes [37, 52].
Finally, [35] proposes a SW scheme that monitors the channel conditions in order
to adjust its coding window size in a causal fashion. The proposed model learns the
loss pattern through feedback and adaptively adjusts the level of redundancy via two
mechanisms. The first one acts proactively, as it sends redundant packets in advance
to prevent decoding failure based on the model’s estimation of channel behavior.

17

The second mechanism is reactive, since it triggers the transmission of additional
redundancy to compensate for packet losses identified by feedback information. The
aforementioned proposal has also been generalized for multipath multi-hop commu-
nications [36].

3.3 Rate adaptation vs Coding depth: Strengths and Limitations

As we explained in Section 3.2, adapting the coding rate comes at the cost of band-
width consumption in order to cope with increased errors. This is because more
redundant packets need to be transmitted. On the contrary, adjusting the coding
depth d does not pose additional overhead in throughput as we continue sending
out the same number of redundant packets at the expense of a slight overhead in
the coding complexity. Should an adequate coding depth be in use, the adjustment
to short-term loss variations can be more efficient than in conventional SW RLNC
schemes.

The aforementioned arguments manifest that the proper adjustment of CW (or
equivalently d) can assist in tackling the inherent deficiencies of existing SW RLNC
schemes and make an important step towards achieving URLLC. So far, we have
shown that, in the context of ARQ-based SW RLNC protocols, rapidARQ, which al-
lows adjusting the coding depth, demonstrates superior throughput-delay and coding
performance compared to traditional ARQ-based SW RLNC schemes [24]. A concept
similar to ours is proposed in [38] destined only for FEC-based schemes, where the
authors introduce the notion of overlap, as the number of coding windows/groups to
which a source packet belongs. However, that work does not highlight the impact
of the novelty on the decoding process (they assume infinite decoding window at
the receiver) nor do they examine the scheme’s performance with adaptive over-
lap values under varying channel conditions. We expect that the importance of the
optimal adaptation of CW is even greater under dynamic channel conditions, partic-
ularly when source packets require increased protection. We claim that the dynamic
adaptation of coding depth outweighs the strategy of rate adaptation.

To validate our observation, we evaluate the performance of varying d in contrast to
variable code rate (R) using rapidARQ [23] and Caterpillar RLNC-FB [11], two of the
most representative ARQ-based SW RLNC protocols. We use two different scenarios

18

Table 3.1: Experiment’s Main Parameters.

Parameter 5G link Satellite link

Propagation delay 66.7µs 4ms

Bandwidth 500Mpbs 1Gbps

Packet error rate (pl) (one-way) 5% 10%

Sliding Window Size (W) 43 668

Packet Size 200 bytes 1500 bytes

Traffic Type CBR CBR

for this comparison, based on the evaluation settings in [24]. We are interested in
the throughput-delay performance, i.e., the set of throughput values and delivery
delays achievable by the system. The first scenario refers to a typical 5G terrestrial
wireless link whereas in the second one, we examine the performance over a high-
speed link to a low-earth orbiting satellite. Table 3.1 summarizes the parameters used
in this experiment for each test scenario. We consider a uniform model for channel’s
losses, i.e., errors are uniformly distributed in time. Regarding rapidARQ, R is set
according to the link’s loss rate (pl), so that, on average, the coding redundancy
is sufficient for coping with the average number of expected packet losses. More
specifically, we define R = 9/10 in the 5G scenario and R = 4/5 in the satellite
case. The coding depth can range between [1, ⌊W

k
⌋]. In the 5G scenario, we depict

all possible values, namely d ∈ [1, 4], whereas in satellite scenario, we choose to
illustrate indicative values, mainly covering the smallest and the largest possible ones,
as well as the configurations resulting in the best throughput-delay performance. In
particular, we depict the performance of rapidARQ when d takes one of the following
values: 2, 3, 5, 7, 20, 85, 167. As for Caterpillar RLNC-FB, apart from the optimal R
configuration (based on pl as in rapidARQ), we examine the performance in cases
where R is smaller or greater than the optimal value. In other words, we study the
cases where additional coded packets are sent out every fewer coded ones or more
sparsely (k′ ≥ optimal k). We examine the performance of both protocols under the
existence of re-transmissions and without them.

Figure 3.1 illustrates the throughput-delay performance of Caterpillar RLNC-FB
and rapidARQ in the 5G scenario. At first sight, rapidARQ outweighs Caterpillar for
every value tested. Regarding Caterpillar, we can observe that increased redundancy

19

(R = 7/8, R = 8/9) results in poorer throughput performance, as we expect theoreti-
cally. Additionally, the larger the redundancy, the smaller the average delay is, since
redundant coded packets are transmitted more often and this allows the receiver to
quickly recover any missing source packets. In fact, in case of no re-transmissions,
when R = 7/8, the average delay is at least 25% smaller than the rest of the values
tested, at the expense of slightly reduced throughput. The overhead in throughput
runs up to 3.5%, compared to R = 10/11. The advantage in average delay dissipates,
though, when re-transmissions are included, since they mostly account for packet
recovery at the receiver side. By accepting a slight overhead in average delay, we can
apply a scarcer coding rate, e.g., R = 9/10, which results in improved throughput
performance.

On the contrary, rapidARQ proves that it performs optimally simply by adjust-
ing d and without modifying R. While in Caterpillar increased redundancy aims to
enhance protection of source packets, we manage to combine increased protection
and superior overall performance by only adapting d. Not only do we accomplish
comparable average delay with R = 7/8 with and without re-transmissions, but also
we outperform Caterpillar massively regarding throughput. In particular, we notice a
net throughput benefit of ∼30Mbps in RTX = 0 and ∼25Mbps in RTX = 3, which
corresponds to a 10% and 7% improvement, respectively, compared to Caterpillar
RLNC-FB.

Similar results are obtained in the satellite scenario, too. Figure 3.2 highlights the
superior throughput-delay performance of rapidARQ against Caterpillar RLNC-FB.
Here, the throughput benefits of rapidARQ are quite more evident, depending on
the applied value of R in Caterpillar. In case of high redundancy (R = 2/3), the
throughput benefits can reach up to 69% and 75% for RTX = 0 and RTX = 3,
respectively. For the default code rate (R = 4/5), the net increase in throughput runs
to ∼ 169Mpbs with and without re-transmissions, which corresponds to around 40%
increase with the same introduced redundancy. As for the average delay, rapidARQ
achieves minimum delay equivalent to the one noticed when R = 2/3 in Caterpillar.
RapidARQ’s performance can be considered poor only in very small values of d, such
as d = 2, where the achieved delay is double as the minimum one and throughput
performance depends on the existence of re-transmissions. In case of the latter, the
importance of the decoding process is neutralized by the impact of re-transmissions,
hence the average delay remains small in Caterpillar regardless of the code rate.

20

397.70 402.70 407.70 412.70 417.70 422.70 427.70 432.70
Throughput (Mbps)

0.0864
0.0884
0.0904
0.0924
0.0944
0.0964
0.0984
0.1004
0.1024
0.1044
0.1064
0.1084
0.1104
0.1124
0.1144

De
la

y
(m

s)

R=7/8

d=1

R=8/9

d=2

R=9/10

d=3

R=10/11

d=4

RTX=0
Caterpillar varying R
rapidARQ, R=9/10, varying d

351.71 356.71 361.71 366.71 371.71 376.71
Throughput (Mbps)

0.0749

0.0769

0.0789

0.0809

0.0829

0.0849

0.0869

De
la

y
(m

s)

R=7/8

d=1

R=8/9

d=2

R=9/10

d=3

R=10/11

d=4

RTX=3
Caterpillar varying R
rapidARQ, R=9/10, varying d

Throughput-Delay Performance (5G)

Figure 3.1: Throughput-delay performance of Caterpillar RLNC-FB [11] and rapi-
dARQ [23] in 5G test scenario. The above plot corresponds to the protocols’ perfor-
mance when RTX = 0 while the below one to RTX = 3. Labels indicate the various
values of R and d examined in this test scenario.

Without re-transmissions, though, Caterpillar RLNC-FB substantially falls short of the
expected delay, since it introduces an overhead of around 70% with the default code
rate R. Therefore, Caterpillar performs poorly either regarding delay or throughput
depending on the level of protection it offers to the source packets.

The results obtained from the uniform error model can be generalized in bursty
models as well. The previous comparison indicates that the advantages of rate adap-

21

tation come at a high throughput cost. On the contrary, by altering only d, rapidARQ
demonstrates an improved performance. Equally noteworthy is the fact that a wide
range of d values can perform efficiently. Actually, rapidARQ’s performance degrades
only for very small or large d values. In figure 3.2, when d ranges in [5, 20], rapidARQ
achieves almost optimal performance. The improvement is notable against Caterpillar
even when d = 85. However, the optimal range of values for d depends on the test
scenario and has yet to be determined.

22

350 400 450 500 550 600
Throughput (Mbps)

4

6

8

10

12

De
la

y
(m

s)

R=2/3 R=3/4

R=4/5 R=5/6

d=2

d=3

d=5d=85

d=167
RTX=0

Caterpillar varying R
rapidARQ, R=4/5, varying d

350 400 450 500 550
Throughput (Mbps)

4

5

6

7

8

9

De
la

y
(m

s)

R=2/3 R=3/4 R=4/5 R=5/6

d=2

d=3

d=5d=85d=167

RTX=3
Caterpillar varying R
rapidARQ, R=4/5, varying d

Throughput-Delay Performance (Satellite)

Figure 3.2: Throughput-delay performance of Caterpillar RLNC-FB [11] and rapi-
dARQ [23] in satellite test scenario. The above plot corresponds to the protocols’
performance when RTX = 0 while the below one to RTX = 3. Labels indicate the
various values of R and d examined in this test scenario. Labels for values d = 7 and
d = 11 are omitted for clarity reasons.

23

CHAPTER 4

DYNAMIC ADAPTATION OF CODING DEPTH

4.1 Exploring the Vicinity of the Optimal d

4.2 Calculating an Efficient d Estimation

4.3 An Efficient Algorithm for the Dynamic Adaptation of d

In chapter 3 we experimentally proved that the use of coding depth does result in
superior performance under dynamic channel conditions. However, an efficient mech-
anism for dynamic adaptation of d under varying channel conditions has yet to be
examined. In the following sections, we outline the properties of d for achieving near-
optimal performance by providing a theoretical analysis to support these arguments.
Subsequently, we discuss an efficient algorithm for adaptive configuration of d under
variable channel loss rate.

4.1 Exploring the Vicinity of the Optimal d

As we observed in section 3.3, rapidARQ exhibits increased robustness in conjunction
with enhanced throughput-delay performance under variable packet loss rates. This
superior performance is attributed to the concept of coding depth that makes possible
the maximization of coding benefits. Interestingly enough, rapidARQ performs near-
optimally not for a single d value but for a wide range of values (see, for example,
fig. 3.2). This is a reasonable result since increasing d also increases the offered

24

dk
dk

Figure 4.1: Successive coding cycles observed at the sender side in a SW RLNC pro-
tocol. The product d · k describes the coding window size.

protection. When d goes beyond a threshold value (dth), which corresponds to the
required protection, no significant improvement is witnessed. However, depending on
the channel properties and loss profile, it is not always the case that a wide range of
d values can produce a near optimal performance. For example, this is the case of the
5G scenario discussed in the previous chapter. As can be seen in fig. 3.1, the range
of d values that optimize performance is rather narrow (i.e., d = 2, 3). The reason is
that, while d should be greater than dth, it also should not exceed an upper value dup.
In other words,

dth ≤ d ≤ dup (4.1)

We discussed the existence of dup in our previous work [24]. This upper limit is
imposed by the limited sliding window size at the receiver side. To elaborate on this,
let us examine fig. 4.1 where a series of coding cycles at the sender is presented. As
can be seen, when a coded packet arrives at the destination, the decoding process
involves all the native packets within the coding window, i.e., the d · k last native
packets, and the corresponding coded ones in this range. However, note that the
oldest coded packet in this group of packets also “contains” the previous d · k native
packets. As a result, in the worst case, in any given moment, the last (2d − 1) · k
packets are involved in the decoding process at the receiver. However, the receiver
has a limited sliding window size W . Therefore, (2d − 1) · k ≤ W , otherwise the
receiver will start dropping packets that are outside the sliding window although
those packets may be necessary for the decoding process to complete. The previous
limitation results in

d ≤ 1

2
(⌊W

k
⌋+ 1) = dup (4.2)

Clearly, dup depends on the channel characteristics since W is set based on the chan-
nel’s bandwidth-delay product and k is chosen based on the packet loss rate.

It is straightforward from the previous discussion that, depending on the channel
characteristics, it may either be that dup ≤ dth or dth ≤ dup. It is reasonable that the

25

former inequality holds in channels with small bandwidth-delay products and/or
relatively large loss rates while the latter is valid in channels with large bandwidth-
delay products and rather small loss rates. In general, the optimal value for d can be
determined as

dopt = min{dth, dup} (4.3)

This equation can explain the behavior of rapidARQ witnessed in the experiments
of Chapter 3. In the case of the 5G scenario, the bandwidth delay product is rather
small therefore the best value for d is dominated by dup. The opposite is true for the
satellite scenario where the large bandwidth-delay product indicates that dopt = dth.
Keep in mind that, in this case, rapidARQ’s throughput-delay performance is near
optimal for all values in the range [dth, dup] since all those values provide the required
protection.

While calculating dup is straightforward, determining dth is a daunting challenge
because it depends on a variety of coding/decoding design choices. Not surprisingly,
to the best of our knowledge, such an analytical calculation does not exist in literature.
Our approach is to derive an analytical framework (see Section 4.2) that will allow
us to obtain a rough estimation (d̃th) of dth. In the case that d̃th > dup clearly the
best choice for d is dup. However, when d̃th < dup, our estimation will produce a near
optimal performance if d̃th ∈ [dth, dup].

4.2 Calculating an Efficient d Estimation

In this section we provide the theoretical analysis for computing a rough estimation
of dth. As previously explained, in rapidARQ, the receiver side can perceive the packet
reception/decoding process as consisting of a repetition of coding cycles. Each coding
cycle consists of k native (or uncoded) packets and a coded one. The coded packet in
a specific coding cycle is built based on the native packets comprising the last d coding
cycles, including the current one. If the receiver misses native packets (because they
are lost) then, upon the reception of a coded packet, checks whether decoding the
lost packets is possible. Let us assume that at time t = 0 the decoder is not missing
any packet and a new coding cycle starts where at least one native packet is missing.
The decoder will try to recover the lost packet(s) at the end of the decoding cycle,
i.e., after receiving redundant information in the form of the coded packet. If this

26

not possible the process will continue with another chance to recover the packet(s) in
the second coding cycle. Note that, in the meanwhile, the number of missing packets
may increase if native packets belonging to the second coding cycle are missing. The
process will continue in the following coding cycles until decoding (the entirety of the
missing packets) is possible or is confidently deemed unrecoverable. For the latter,
we assume in this work, that this happens after d cycles because beyond that point
no more coded packets containing the lost packets in round 1 will be received1.

We wish to calculate the probability that the receiver will not to be able to recover
(through decoding) the missing packets after i coding cycles. Let P̃i denote this
probability. We assume that Xi denotes the random variable corresponding to the
number of lost packets (either native or coded) during coding cycle i. Note that Xi

is binomially distributed, i.e., Xi ∼ B(k + 1, p) where k + 1 is the number of packets
(native and coded ones) in the coding cycle and p is the channel’s loss rate. Let also
Wi denote the opposite of the decoding matrix’s rank deficiency, i.e., the difference
between the decoding matrix’s rank and its number of rows (number of linearly
independent packets), at the end of cycle i. In other words, Wi represents the number
of linearly independent packets needed by the receiver to perform a decoding. Note
that:

Wi = max(0,Wi−1 +Xi − 1), ∀ i > 0, W0 = 0 (4.4)

The previous formula is easy to understand if we keep in mind that there are two
possibilities for theXi packets missing during cycle i. The first is that allXi packets are
native and the one coded packet offers a linearly independent combination containing
those packets therefore it can increase the rank of the decoding matrix. The second
possibility is that only Xi − 1 packets are native and the one coded packet is lost. In
this case, again, W increases by Xi−1. It is clear that Wi = 0 implies that decoding is
possible at round i. Similarly, no decoding is possible after i coding cycles iff Wi > 0

and Wj > 0 ∀ j < i. Therefore, we can write P̃i as:

P̃i =
ik∑

x=1

P{Wi = x | Wj > 0, ∀ j < i} (4.5)

1Whether there is a possibility of decoding or not after this point heavily depends on the policies
implemented at the decoder for keeping the decoding matrix at a reasonable size. Our assumption is
based on the reasonable strategy not to wait for a possible decoding beyond that point in time. This
is based on the rationale that the probability of such an event is small and the trade-off in terms of
delay and decoding matrix size is not negligible.

27

Note that the maximum value of Wi is i · k. This can be derived by (4.4) if Xj =

k+1, ∀ j, which corresponds to the worst case where all native and all coded packets
are lost in every coding cycle. Given P̃i, we can write the probability of decoding in
any of the cycles up to i as:

P̂i = 1− P̃i (4.6)

Moreover, we can prove that the probability of decoding at cycle i, i.e., without any
decoding at a previous round, is:

Pi = 1− P̃i − P̂i−1 (4.7)

Proof. By its definition, Pi can be written as Pi = P{Wi = 0 | Wj > 0, ∀ j < i}.
Thus, we can derive Pi by examining all sequences of W1,W2, . . .Wi−1,Wi(= 0) and
eliminating those containing at least one 0 in any place j ≤ i − 1 because those
latter sequences correspond to chains of events where a decoding occurs before cycle
i. Equivalently, we first examine all possible sequences of W1,W2, . . .Wi−1,Wi . The
probability of any such sequence occurrence is clearly 1. Then we exclude those
sequences that contain at least 0 in any place j ≤ i − 1. Note that, by definition, the
probability that any such sequence takes place is P̂i. Finally, from the remaining set of
sequences, each of which does not contain any 0 in any position j ≤ i−1, we exclude
the ones that end with Wi > 0. In other words, we exclude that sequences that end in
0 but do not not contain any other 0s. The probability of any such sequence taking
place is, by definition, P̃i.

Going back to (4.5), clearly, it is easy to derive P̃i if we can analytically compute
P

(i)
x = P{Wi = x | Wj > 0, ∀ j < i}, i.e., the probability that the receiver’s decoding
matrix requires x linearly independent packets at cycle i while no decoding has
occurred in the previous rounds. To this end, as a first step, we use (4.4) recursively
to re-write P

(i)
x . More specifically, when Wj = 0 ∀ j < i, we can conclude from (4.4)

that Wi = X1 + · · ·+Xi − i. As a result, P (i)
x can be re-written as:

P (i)
x = P{X1 + · · ·+Xi = x+ i | Wj > 0, ∀ j < i}

This makes the computation of P (i)
x easier since X1, X2, · · · , Xi are all binomial ran-

dom variables. Therefore, the sum of those variables is also binomially distributed
with X1 + . . . + Xi ∼ B(i · (k + 1), p) and as a result P{X1 + · · · + Xi = x + i}, i.e.,
the probability of any combination that sums up to x + i, is ease to compute. Note

28

that this latter probability is a good starting point for the computation of P (i)
x . How-

ever, we need to eliminate from this calculation the probability of any combination of
X1, X2, · · · , Xi that results in a decoding in a previous round j. Since a decoding in
round j < i requires thatX1+· · ·+Xj = j, this means thatXj+1+· · ·+Xi = x+i−j. The
probability of such a combination happening is clearly Pi ·P{Xj+1+· · ·+Xi = x+i−j}
where again P{Xj+1 + · · · + Xi = x + i − j} is easy to calculate using the Binomial
distribution. As a result, P (i)

x can be written as:

P (i)
x =P{X1 + . . .+Xi = x}−

i−1∑
j=2

Pj ·P{
i∑

l=j+1

Xl=x+i−j}

−P{X1=0}·P{X2+. . .+Xi=x+i}−P{X1=1}·P{X2 + . . .+Xi=x+i−1}
(4.8)

In the previous equation we also take into account the special case where in round 1
there is no lost packet (X1 = 0), so decoding is not required. Note that (4.8) can be
used recursively to compute P

(i)
x and therefore P̃i through (4.5).

Finally, we can compute the average number of packets lost during a decoding
failure, L̃. As we mentioned previously, Wi = x means that X1 +X2 + . . .+Xi = i+ x

,i.e., the total number of lost packets is i + x. However, only a percentage of those
packets are native. More specifically, it is expected that, on average, k

k+1
(x+ i) native

packets will be lost. Based on this, we can now calculate L̃ as:

L̃ =
i·k∑
x=1

P{Wi = x | Wj > 0, ∀ j < i} · k

k + 1
· (x+ i) (4.9)

By setting a requirement for L̃ (e.g., such as 10−6 described in URLLC), one can
obtain i, i.e., the required coding depth.

4.3 An Efficient Algorithm for the Dynamic Adaptation of d

Up to now we assumed that a static value of d can provide the desirable protection
from channel losses. However, this is true only if the channel’s packet loss rate is
rather static because a static value of d results in a fixed coding performance. If the
loss rate varies then there may exist time periods when the introduced redundancy
may not be useful, i.e., transmitted coded packets do not assist in compensating
packet losses. Similarly, there may exist periods of time that the provided protection
is not sufficient to cope with bursts of errors. Given the fact that bursty channels are

29

Table 4.1: Adaptive d: Symbol Definitions.

Parameter Definition

P Set containing the source packets positively acknowledged by a
cumulative ACK during a loss estimation period.

N Set containing the source packets negatively acknowledged by a
cumulative ACK during a loss estimation period.

sle The total number of packets that should be positively or nega-
tively acknowledged before activating the adaptation of d.

previouslr Loss estimation ratio calculated in the previous period.

pcd Number of periods before decreasing d.

dmax Maximum d for achieving a specific packet loss ratio, derived
from theoretical analysis.

RTX Per-packet re-transmission limit.

common, it is clear that the coding protocol should be able to realize the emergence
of such idle or burst time periods and appropriately adjust its coding window to
reduce/increase its coding efficiency. Clearly, this can be achieved by adjusting the
coding depth d. In the effort to strike a balance between the coding complexity and the
protocol’s performance, the dynamic adaptation of d would be a promising approach.
Our aim is to offer the essential level of protection through coding and at the same
time minimize the coding complexity by taking advantage of the idle periods.

In practice, the main idea behind the adaptation of d relies on the exploitation
of rapidARQ’s cumulative acknowledgements [23, 24], so that we can keep track of
the total number of source packets successfully delivered to the receiver. Apart from
the main notations regarding Sw, Cw and their sizes (see glossary), the definition
of additional parameters used in the following adaptive algorithm is provided in
Table 4.1. Coding depth is upper bounded by the rough estimation of optimal d
derived from equation 4.3 (see section 4.1). This estimation is given as input to the
algorithm. We distinguish three main components regarding the efficiency of our
adaptive algorithm which will be discussed in the following sections.

30

Algorithm 4.1 Loss Ratio Estimation
Require: P,N, sle

1: s← |P |+ |N |
2: if s ≥ sle then
3: lr ← |N |/s
4: Adapt(lr)
5: previouslr ← lr

6: P.clear()

7: N.clear()

8: end if

4.3.1 Loss Ratio Estimation

In order to decide whether an adjustment to the Cw is essential, the transmitter
should track the channel behavior, i.e., the erasure probability, its variations and the
burst pattern. This can be accomplished using the cumulative acknowledgements sent
by the receiver. This feedback incorporates both positive acknowledgements for suc-
cessfully delivered source packets and negative ones for the lost packets that cannot
be decoded yet. Apart from the cumulative acknowledgements, a timeout event at the
transmitter side indicates the occurrence of a loss. This event is useful in case feed-
back has not provided updated information for a particular source packet. A critical
parameter is the total number of acknowledgements required from the transmitter
in order to activate the process of loss ratio estimation. This is illustrated through
variable sle and remains invariant throughput the data transmission. A typical yet
efficient approach sets sle equal to the sliding window size W , since a cumulative
acknowledgement already contains information for that range of packets.

Algorithm 4.1 describes in detail the loss ratio estimation process activated either
by the reception of a new cumulative acknowledgement or a timeout occurrence.
These events are responsible for populating the sets P and N given as input in the
loss ratio estimation procedure. P describes the collection of positively acknowledged
source packets, while N contains the negatively acknowledged ones. Of course the
insertion of a new positively acknowledged packet excludes any obsolete information
regarding the loss of the particular packet, i.e., a source packet cannot be included in
both sets concurrently. If the transmitter has collected feedback for at least sle unique
source packets (line 2), it calculates the current loss as the ratio of the number of

31

estimated lost packets to the total number of packets acknowledged so far (line 3). The
calculated loss ratio is passed as an argument to function Adapt, which implements
the actual adjustment of the coding depth (see Algorithm 4.2). The calculation of
the loss ratio and the adaptation of d signify the end of a loss estimation period and
hence we should update the value of variable previouslr, which will be used as a
comparison to the subsequent loss estimation, as well as clear the contents of sets P
and N (resp. to lines 5- 7).

4.3.2 Triggering Change in d

Two major parameters should be taken into account when discussing the dynamic
adaptation of coding depth; that is, the moment and the level of change of d. The
former one denotes at which point in time a modification in d is essential whereas
the second parameter refers to how much we should alter d in order to adapt to the
varying channel conditions. The adaptive algorithm should follow the principle of
fast-increase-slow-decrease, which signifies an instant reaction in case of increased loss
estimations in contrast to a moderate approach in shortening coding depth when the
impact of losses seems to decline. In this way, we avoid dropping unackowledged
packets that are still essential for the decoding process. Nevertheless, we should keep
in mind that re-transmissions also affect the coding window size. In particular, under
the presence of re-transmissions (RTX > 0), the actual size of Cw may be smaller than
CW . Hence, the process of dynamically adaptating d should conform to the prevailing
channel conditions. On the contrary, in a re-transmission-free scheme, Cw constantly
attains the maximum coding window size. This is because the sender does not wait
to receive any feedback for the transmitted packets; instead, it drops the oldest ones
whenever a new source packet arrives. Therefore, it is critical for the coding scheme
to ensure that all source packets receive the required protection. Otherwise, the risk
of dropping source packets that are still necessary for the decoding process looms. To
that end, it is essential that we specify additional safety nets apart from the triggering
conditions to reduce that risk.

In algorithm 4.2, lines 2, 5, 14 and 18- 20 depict the conditions which activate
the adaptation of d. In particular, we choose to enhance protection offered by coding
depth every time the loss estimation is greater than the one in the previous period
(lines 2 and 14). In this way, our algorithm reacts immediately to the effect of loss

32

variations. On the contrary, this is not the case when decreasing d. While one would
consider that a complementary-to-the increase strategy would be a reasonable solution
(i.e., decreasing d whenever lr < previouslr), the performance obtained by adopting
this strategy is instead quite poor. Instant decrease acts as a counter-measure to any
attempts of increasing d, as it results in needless fluctuations of the coding window
size, hence it ends up canceling the desired enhanced protection and amplifying
performance issues, e.g., increased delay. This happens due to the sensitivity even
in small variations of loss and the fact that loss estimation is not always accurate.
Therefore, a slightly smaller new estimation would trigger a reduction in d, although
this modification is not essential. A possible solution to surpass the aforementioned
issue would be the introduction of a threshold value to enhance tolerance against small
variations between two successive loss estimation periods. However, the appropriate
choice of such a threshold depends on various parameters concerning the channel
conditions, hence we consider it as a future extension of this work.

To tackle any unnecessary reductions in d, we incorporate the following strategy
(lines 5, 18- 20). Instead of taking into account only the smaller new loss estimations
(lr < previouslr), we regard any invariable zero estimations (lr == previouslr == 0)
as evidence of potential decrease in d (lines 5, 18). The absence of losses indicates
that the level of protection provided by the coding process is more than adequate
and therefore we could mitigate the redundancy in aid of improved throughput
performance. Nevertheless, before proceeding to any alteration, we should specify an
additional constraint regarding re-transmission-free schemes. Since |Cw| = CW is
typically true in such scheme, we should take precautions to prevent dropping useful
source packets from the coding window. Hence, instead of immediately modifying
d every time the condition in line 18 is true, we monitor the loss variations for a
number of periods, and advance to the reduction of d after noticing pcd successive
reductions or zero loss estimations (line 19) In this way, we implicitly presume that
the protocol enters an idle period, hence the risk of removing useful source packets
from the coding window is smaller. In practice, the algorithm performs well under
any channel conditions assuming pcd = CW/2.

33

4.3.3 The Actual Adaptation of Coding Depth

In addition to the triggering conditions, the actual adjustment of coding depth and, by
extension, the coding window, is of great significance. We implement two modification
policies to tackle the different requirements of the scheme depending on the presence
of re-transmissions. While the increase of d seems trivial, we should lay more em-
phasis on the decrease process, since it is critical to prevent dropping packets that are
still necessary for the coding procedure. More specifically, lines 3 and 4 illustrate the
updates regarding the increase in d when the protocol incorporates re-transmissions.
As we can observe, an increment of 1 takes place whenever the algorithm opts for
increasing d (line 3). An upper bound for d is given through the theoretical analysis
provided in section 4.2. Subsequently, we update the maximum CW , which can run
up to W , i.e., the size of the sliding window (line 4). As for the reduction of d, we
monitor the difference in size between the maximum coding window size CW and
the actual contents of the Cw (line 6). We downscale d by normalizing the afore-
mentioned difference with the number of source packets transmitted between two
successive coded ones, i.e., k (line 3). This strategy allows us to reduce the size of d
and, hence CW , by conforming to the current channel conditions.

On the other hand, we choose to keep the adjustment steps simple, yet efficient,
when re-transmissions are not used. Lines 16 and 17 describe the occurring updates
when we increase d. It is evident that we follow the same approach here as in case of
RTX > 0. Nevertheless, the major difference lies in the decrement of d (lines 24- 28).
First, we reduce the size of coding depth by 1 following by the assignment of the
updated value to CW (lines 25 and 26 respectively). The minimum value of coding
depth is equal to 1. An additional step is required in this case regarding the update
of the Cw contents. In particular, if the current size of Cw exceeds the new CW , we
remove the |Cw|−CW oldest source packets from Cw to ensure consistency (line 28).

34

Algorithm 4.2 Adapt(lr)
Require: previouslr, pcd, dmax,W,CW,Cw, d, RTX, k

1: if RTX > 0 then
2: if lr > previouslr then
3: if d+ 1 < dmax then d← d+ 1 else d← dmax

4: if d× k ≥ W then CW ← W else CW ← d× k

5: else if (lr < previouslr) or (lr == 0 and previouslr == 0) then
6: diff = CW − |Cw|
7: if diff > 0 then
8: depth_decr = diff / k

9: if d− depth_decr > 1 then d← d− depth_decr else d← 1

10: CW ← d× k

11: end if
12: end if
13: else
14: if lr > previouslr then
15: pcd← 0

16: if d+ 1 < dmax then d← d+ 1 else d← dmax

17: if d× k ≥ W then CW ← W else CW ← d× k

18: else if (lr < previouslr) or (lr == 0 and previouslr == 0) then
19: pcd← pcd+ 1

20: if pcd < CW/2 then
21: return
22: end if
23: pcd← 0

24: if d > 1 then
25: d← d− 1

26: CW ← d× k

27: if |Cw| > CW then
28: remove |Cw| − CW oldest packets from Cw

29: end if
30: end if
31: else
32: pcd← 0

33: end if
34: end if 35

CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Simulation Setup

5.2 Performance Evaluation in Diverse Scenarios

5.3 Performance under Various Channel Error Rates

5.4 Resilience to Bursts of Errors

5.5 The Impact of Error Burst for Various Loss Rates

5.1 Simulation Setup

In this chapter, we evaluate the performance of the proposed adaptive algorithm using
ns2 simulator [53]. Since the dynamic adaptation of coding depth is implemented on
top of rapidARQ [23, 24], we refer to the adaptive scheme as Adaptive rapidARQ from
here on. We provide a performance comparison of adaptive rapidARQ with multiple
sliding window reliability mechanisms. In particular, we consider Caterpillar RLNC-
FB [11] as a prominent ARQ-based systematic SW RLNC protocol, Tetrys [30] as
the most representative FEC-based SW RLNC scheme and Selective Repeat ARQ (SR-
ARQ) [54]. Of course, we could not overlook the performance comparison of adaptive
rapidARQ with its static counterpart, which we symbolize as rapidARQ henceforward.

We exploit the same evaluation scenarios described in section 3.3, i.e., a high-
speed link to a low-earth orbiting satellite, which is a suitable scenario for 6G and
beyond networks, and a typical 5G wireless link. The main simulation parameters
are summarized in table 3.1. The choice of code rate R and coding depth d follows

36

the same principles explained in section 3.3. That is, R is set accordingly so that,
on average, the introduced redundancy can compensate a single packet loss every
k + 1 packets while the maximum coding depth value dmax ranges in [1, ⌊W

k
⌋]. We

examine the performance of the aforementioned protocols by allowing at most RTX =

3 re-transmissions in ARQ-based sliding window schemes. For a fair comparison
with FEC-based schemes, i.e., Tetrys, we perform additional comparisons without
the presence of re-transmissions (RTX = 0). As for the channel’s error model, we
consider both a uniform and a bursty model. If burstiness is not introduced in the
discussion, we consider by default a uniform error model. To ensure that a constant
flow of traffic is always available, we use constant bit rate (CBR) traffic generators
in both simulation scenarios. For each experiment, we carry out a set of 5 trials
considering a sufficiently large simulation time of 50s and report the average values.

We are interested in the in-order packet delivery at the receiver. To that end, we
make use of the following evaluation metrics:

• Throughput: The average bit-rate recorded at the receiver side.

• Average Delay: The average in-order source packet delay, defined as the time
elapsed from the moment when the source packet becomes available at the
sender for transmission to the instant when it is successfully delivered in-order
to the receiver’s upper layer.

• Average Decoding Matrix Size: The average number of linearly independent pack-
ets in the decoding matrix whenever a decoding operation is performed.

• Packet Drop Rate: The percentage of source packets that could not be successfully
received or decoded even after re-transmissions.

5.2 Performance Evaluation in Diverse Scenarios

5.2.1 Throughput ‐ Average Delay Performance

In the first experiment we assess the throughput-delay performance of all protocols
in the two scenarios, i.e., (a) the satellite link and (b) the 5G wireless link, with or
without the utilization of re-transmissions. We assume a relatively stable transmission
link, where packet losses are uniformly distributed in time. Figure 5.1 illustrates the

37

535 540 545 550 555 560 565 570 575 580
Throughput (Mbps)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

De
la

y
(m

s)

min delay

d=3

d=10

d=15d=20
d=85

dmax = 15

Throughput-Delay Performance (Satellite), RTX=0
Caterpillar RLNC-FB
Tetrys
Adaptive rapidARQ
rapidARQ

400 425 450 475 500
8

10

12

d=167

10 6

10 5

10 4

10 3

10 2

10 6

10 4

10 2

(a)

405 410 415 420 425 430 435 440
Throughput (Mbps)

0.07

0.08

0.09

0.10

0.11

0.12

De
la

y
(m

s)

min delay

d=1

d=2

d=3

d=4

dmax = 2

Throughput-Delay Performance (5G), RTX=0
Caterpillar RLNC-FB
Tetrys
Adaptive rapidARQ
rapidARQ

10 2

2 × 10 2

(b)

Figure 5.1: Throughput-Delay Performance of Adaptive and static rapidARQ,
Caterpillar-FB and Tetrys without re-transmissions (RTX = 0) in (a) the satellite
scenario, and (b) the 5G wireless scenario. The color in this figure indicates the
packet drop rate of each protocol.

throughput-delay performance of all re-transmission-free mechanisms (RTX = 0)
considered in this experiment, that is Caterpillar RLNC-FB, Tetrys, rapidARQ and
the proposed adaptive rapidARQ. Figure 5.1a refers to the satellite scenario while

38

Figure 5.1b to the 5G link. We display the performance of rapidARQ under multiple
coding depth values, hence it is plotted as a line, whereas the rest of the protocols
are illustrated as single points. We leverage the analytical framework explained in
chapter 4 and, based on equation 4.3, we estimate the appropriate dopt for each test
scenario given that the coded scheme should be able to achieve a drop rate in the
order of 10−6. The near optimal estimation for the satellite scenario is dopt = 15,
whereas for the 5G link dopt = 2. We conventionally describe dopt as dmax in adaptive
rapidARQ, so that we maintain consistency with the symbol definition in table 4.1.
Unless stated differently, these estimations will be used throughout this chapter to
evaluate the performance of adaptive rapidARQ. We also denote the performance
of rapidARQ when these rough estimations are assigned to d as a reference for the
resulting performance-complexity trade-off. Since coding is the only utilized practice
for counteracting channel’s loss rate, we present the packet drop rate performance of
each protocol with color (the darker the color, the larger the drop rate is).

As expected, both variants of rapidARQ massively outweigh Caterpillar RLNC-FB
and Tetrys protocol. This is due to the appropriate definition of the coding window
size according to the channel’s loss profile. The performance gains are more salient in
links with larger bandwidth-delay products, i.e., the satellite link, since, in the latter,
d can be chosen among a wider range of possible values, hence its optimal choice is
crucial. While we notice a significant improvement in throughput, the most notable
gains pertain to average delay, where the reduction in the satellite scenario runs to
nearly 55% compared to Caterpillar and 66% against Tetrys, and packet drop rate
(up to two orders of magnitude reduction in the 5G case).

Regarding rapidARQ, both the adaptive and the static scheme perform near opti-
mally by utilizing the theoretical estimation (d = 15 in the satellite scenario, d = 2 in
5G). This proves that the estimated threshold value for d can adequately provide the
required protection without compromising the overall performance. Meanwhile, it is
quite impressive that we can derive a near optimal estimation of d without an exhaus-
tive experimental search of the optimal value. While the effort of the experimental
assessment would not be critical for channels with relatively small bandwidth-delay
product, e.g., the 5G link, this is not true for channels with large bandwidth-delay
products, such as the assumed satellite link, since a wide range of values can be
assigned to d. In the satellite scenario, it is equally noteworthy that the proposed
analytical methodology converges to a relatively small near optimal d, hence the cod-

39

ing complexity remains low as well. In the 5G scenario, the small bandwidth-delay
product substantially restrains the available options for d. However, the proposed
methodology successfully identifies the best d value even under such restrictions.

400 425 450 475 500 525 550 575
Throughput (Mbps)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

De
la

y
(m

s)

min delay

d=3

d=10

d=15d=20

d=85d=167
dmax = 15

Throughput-Delay Performance (Satellite), RTX=3
Caterpillar RLNC-FB
SR-ARQ
Adaptive rapidARQ
rapidARQ

130 135 140 145 150
18.0

18.5

19.0

19.5

20.0

(a)

350 355 360 365 370 375 380 385 390
Throughput (Mbps)

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

De
la

y
(m

s)

min delay

d=1

d=2
d=3

d=4
dmax = 2

Throughput-Delay Performance (5G), RTX=3

Caterpillar RLNC-FB
SR-ARQ
Adaptive rapidARQ
rapidARQ

240 242 244 246 248 250
0.130

0.135

0.140

0.145

0.150

(b)

Figure 5.2: Throughput-Delay Performance of Adaptive and static rapidARQ,
Caterpillar-FB and SR-ARQ with re-transmissions (RTX = 3) in (a) the satellite
scenario, and (b) the 5G wireless scenario.

Compared to its static counterpart, adaptive rapidARQ’s performance is compa-

40

rable to the near-optimal one, although the channel loss rate is rather static and,
therefore, no significant improvements are expected. More specifically, adaptive rap-
idARQ performs nearly as efficiently as the static protocol regarding throughput and
delay with a single exception in the 5G link, where we can observe a slight increase
in the average delay. This can be attributed to the dynamic adaptation of the coding
window size, which delays the convergence to the desired operating point. However,
the adaptive scheme may affect the smoothness of the coding process due to the con-
stant updates in d and, as a consequence, the packet drop rate is increased compared
to the near optimal performance. Still, the packet drop rate difference between the
static and the adaptive scheme is very small (e.g., in the order of 10−4).

When re-transmissions are allowed (figure 5.2), similar observations can be made
regarding the throughput-delay performance of the examined protocols. Here, apart
from the network-coded schemes, we also evaluate the performance of SR-ARQ. It
is evident that both Caterpillar and rapidARQ variants enormously outperform SR-
ARQ in both test scenarios. In fact, rapidARQ achieves more impressive performance
gains in the satellite scenario, where it provides a vast net increase in throughput
of up to 415 Mbps while simultaneously decreasing delay up to 79%. As for Cater-
pillar, although its delay performance is equivalent to the one of rapidARQ, it is
considerably inferior to rapidARQ regarding throughput, especially in the satellite
scenario, where we can observe a throughput difference of ∼ 150 Mbps (∼ 30%).
As for rapidARQ, while the theoretical framework does not take into account the
effect of re-transmissions, the exploitation of the proposed methodology can benefit
the overall performance even under the presence of re-transmissions. By utilizing
the calculated estimation of d, we can minimize the probability of packet losses, by
avoiding decoding failures. Therefore, minimum loss probability entails the mini-
mization of re-transmissions, which induce prohibitive delay overhead in the context
of URLLC. The aforementioned arguments are valid even for the adaptive scheme,
which performs close to optimal under re-transmissions as well.

5.2.2 Investigating the Average Decoding Matrix Size

A critical aspect on the coding scheme’s efficiency is the computational cost induced by
the coding operations. In [24] we proved that rapidARQ has indeed lower decoding
complexity than the other SW RLNC schemes. Figures 5.3 and 5.4 illustrate the

41

Protocol
0

100

200

300

400

500

Av
er

ag
e

De
co

di
ng

 M
at

rix
 S

ize

63 65

571

525
Adaptive rapidARQ dmax = 15
rapidARQ d=15
Caterpillar
Tetrys

(a)

Protocol
0

100

200

300

400

500

Av
er

ag
e

De
co

di
ng

 M
at

rix
 S

ize

64 65

498Adaptive rapidARQ dmax = 15
rapidARQ d=15
Caterpillar

(b)

Figure 5.3: Average Decoding Matrix Size of network-coded protocols in satellite
scenario (a) without re-transmissions (RTX = 0) and (b) with re-transmissions
(RTX = 3).

42

Protocol
0

10

20

30

40

Av
er

ag
e

De
co

di
ng

 M
at

rix
 S

ize

23

28

43 43Adaptive rapidARQ dmax = 2
rapidARQ d=2
Caterpillar
Tetrys

(a)

Protocol
0

5

10

15

20

25

30

35

40

Av
er

ag
e

De
co

di
ng

 M
at

rix
 S

ize

25 26

40Adaptive rapidARQ dmax = 2
rapidARQ d=2
Caterpillar

(b)

Figure 5.4: Average Decoding Matrix Size of network-coded protocols in 5G wire-
less scenario (a) without re-transmissions (RTX = 0) and (b) with re-transmissions
(RTX = 3).

43

average decoding matrix size of the coded schemes in the default satellite and 5G
scenarios, respectively. Again, we examine the performance of the protocols both
with and without the presence of re-transmissions. To avoid cluttering, we choose to
display only the performance of d = 15 regarding rapidARQ. We refer any interested
readers to [23, 24] for further experimental results on the impact of d on the average
decoding matrix size. Previously, we mentioned that rapidARQ achieves significant
performance gains compared to Caterpillar and Tetrys. These gains are accompanied
by a huge decrease in the decoding matrix size, as reflected in the experimental results,
where we can clearly perceive an order of magnitude reduction. The benefits are more
obvious in the satellite scenario (figure 5.3).

As for adaptive rapidARQ, the proposed scheme aims to further improve coding
complexity by adjusting the coding window size according to the current channel
conditions. However, due to the uniform distribution of losses, the performance gains,
as expected, are minimal. Even so, the resulting complexity of the adaptive scheme
is very close to the minimum complexity achieved by the estimated near optimal
d when applied in static rapidARQ. In fact, we can note further reduction in the
decoding matrix size, which is typically rather small. For instance, in the satellite
case (figure 5.3), the recorded improvement compared to rapidARQ is negligible (63
vs 65 when RTX = 0 and 64 vs 65 when RTX = 3), whereas in the 5G scenario, we
can discern a larger improvement of ∼ 18% when no re-transmissions are allowed
(RTX = 0). However, as previously illustrated, this comes at the expense of slightly
poorer throughput, delay and loss performance (see figure 5.2b), signifying that the
fluctuations in d have affected the overall performance. Based on the obtained results,
we can conclude that adaptive rapidARQ achieves comparable throughput, delay and
loss performance with its static counterpart in relatively stable channel conditions.
The achieved small reduction in the decoding matrix size is a consequence of the
absence of bursts of errors. We will show in the following sections that under such
bursts, the adaptive scheme performs more efficiently.

5.3 Performance under Various Channel Error Rates

Another interesting experiment refers to the performance evaluation of rapidARQ un-
der various channel loss rates. Here, we aim to assess the suitability of the analytical

44

framework in deriving efficient rough estimations for different loss rates. Note that
the distribution of errors remains uniform; only the level of occurring errors changes.
In particular, we examine the throughput-delay performance when the channel loss
rate pl takes one of the following values: 2.5%, 5%, 7.5%. Since pl varies, we should

540 550 560 570 580
Throughput (Mbps)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

De
la

y
(m

s)

min delay

d=3

d=10

d=14
d=20

dmax = 14

Throughput-Delay Performance, pl = 2.5%, (Satellite), RTX=0
Caterpillar RLNC-FB
Tetrys
Adaptive rapidARQ
rapidARQ

540 545 550 555 560
9

10

11

12 d=35

10 6

10 5

10 4

10 3

10 2

10 6

10 4

10 2

(a)

540 550 560 570 580
Throughput (Mbps)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

De
la

y
(m

s)

min delay

d=3

d=10

d=15d=20

d=55

dmax = 15

Throughput-Delay Performance, pl = 5%, (Satellite), RTX=0
Caterpillar RLNC-FB
Tetrys
Adaptive rapidARQ
rapidARQ

520 530 540 550
11.0

11.5

12.0

12.5

13.0

d=74

10 6

10 5

10 4

10 3

10 2

10 6

10 4

10 2

(b)

45

540 550 560 570 580
Throughput (Mbps)

4.0

4.5

5.0

5.5

6.0

6.5

7.0
De

la
y

(m
s)

min delay

d=3

d=10

d=18d=20

d=74
dmax = 18

Throughput-Delay Performance, pl = 7.5%, (Satellite), RTX=0
Caterpillar RLNC-FB
Tetrys
Adaptive rapidARQ
rapidARQ

490 495 500 505 510
10

11

12
d=111

10 6

10 5

10 4

10 3

10 2

10 6

10 4

10 2

(c)

Figure 5.5: Throughput-Delay Performance of Adaptive and static rapidARQ,
Caterpillar-FB and Tetrys without re-transmissions (RTX = 0) in the satellite sce-
nario for varying channel error rate, (a) pl = 2.5%, (b) pl = 5% and (c) pl = 7.5%.
The color in this figure indicates the packet drop rate of each protocol.

adjust the code rate R so that, on average, the coding redundancy is sufficient for
coping with the average number of expected packet losses. Based on the updated
channel conditions and without modifying the prescribed drop rate target, i.e., 10−6,
it is essential that we reexamine the estimation of the optimal dopt value, based on
the framework described in section 4.2. Table 5.1 contains the updated simulation
parameters accordingly adjusted to the varying channel conditions using the afore-
mentioned framework.

Table 5.1: Coding parameters used under variable channel loss rates.

Link loss rate (pi) Code Rate R dopt

2.5% 19/20 14

5% 9/10 15

7.5% 6/7 18

46

Figure 5.5 illustrates the throughput-delay performance of the examined proto-
cols for different link loss rates. For simplicity, we choose to investigate the protocols’
performance only in the satellite scenario and without employing re-transmissions.
This is because a re-transmission-free scenario portrays the maximum potential of
the coding scheme, whereas the satellite scenario offers more useful lessons regarding
the impact of coding depth on rapidARQ’s performance (d may take a wide range
of values compared to the 5G scenario). Again, rapidARQ variants significantly out-
perform Caterpillar and Tetrys. Furthermore, it is impressive that both rapidARQ
variants perform close to optimal when d is determined by the theoretical estimation.
We can also observe that a larger pl results in a larger range of values for d, which can
achieve near optimal performance. Nevertheless, through the analytical framework,
we obtain an estimation of dopt close to the lower limit of this range of values. Once
again, the adaptive scheme works quite well, even though the uniformly distributed
error model does not point out its contribution.

5.4 Resilience to Bursts of Errors

So far, we have only examined the protocol’s performance in channels with relatively
stable loss rate. However, many real-world channels exhibit a bursty nature. In such
channels, there may exist idle time periods, i.e., periods of time that errors are absent,
where the introduced redundancy may not be useful. Similarly, there may exist time
periods where an increased level of protection is required to deal with bursts of
errors. In view of the fact that channels with loss variations are quite common, it
is essential that the coding protocol be able to realize the emergence of such idle
or burst time periods and appropriately adjust its coding window and, hence, its
coding efficiency. Therefore, it is necessary to investigate how the adaptive scheme
handles bursts of errors. To that end, we introduce a bursty error profile using an
on-off model. Assume that a channel with a uniform error model has an error rate pl.
In the bursty model, the channel error rate p′l for the “on” period is set accordingly so
that during a complete on-off cycle, the error rate is on average equal to pl, while no
errors occur during the “off” period. Supposing the duration of “on” and “off” periods
is expressed with Ton and Toff , respectively, we define burstiness B as B =

(T̄on+T̄off)

T̄on
,

where T̄on and T̄off express the average values of Ton and Toff . Therefore, the packet

47

Table 5.2: Performance difference of Adaptive rapidARQ (dmax = 15) and rapidARQ
(d = 15) under variable channel conditions in the satellite scenario.

Tdiff (Mbps) Ddiff (ms) Ldiff

B RTX = 0 RTX = 3 RTX = 0 RTX = 3 RTX = 0 RTX = 3

1 0.0389748 -0.1467068 0.0784574 0.0036118 0.0002024 0.0000006

1.5 -0.9113904 0.0364908 1.5515418 0.0035814 0.0032904 0.0000018

2 -0.1337934 -1.6107328 1.0156504 0.034613 0.0019448 0.0000066

3 0.8316014 2.220455 0.0048696 1.1064776 -0.0006404 0.0009002

Table 5.3: Performance difference of Adaptive rapidARQ (dmax = 2) and rapidARQ
(d = 2) under variable channel conditions in the 5G wireless scenario.

Tdiff (Mbps) Ddiff (ms) Ldiff

B RTX = 0 RTX = 3 RTX = 0 RTX = 3 RTX = 0 RTX = 3

1 1.9448608 -1.722714 0.0086084 0.0007228 0.0053012 0.0000154

1.5 1.4134774 -2.4772956 0.0093132 0.0011138 0.0060306 0.0000366

2 1.053732 -3.1950436 0.0095582 0.001507 0.006386 0.0000564

3 1.2508618 -4.7282036 0.0084766 0.00263 0.005376 0.0001602

error rate observed during an “on” period is equal to p′l = B · pl. When T̄off = 0,
the error model degenerates into the uniform error model, i.e., B = 1. On the other
hand, larger B values indicate that T̄on is very small and p′l very high.

We are interested in the comparison of adaptive and static rapidARQ regarding
not only performance metrics, i.e., throughput, delay and loss, but also the complex-
ity improvements. This multi-faceted comparison is crucial in order to determine the
efficacy of the proposed adaptive scheme under variable burstiness. Once again, we
assess the performance of the examined protocols in both the satellite and the 5G sce-
nario. Tables 5.2 and 5.3 display the performance difference of adaptive and static
rapidARQ in the satellite and 5G scenarios, respectively, with and without consider-
ing re-transmissions. The experiment is repeated for different levels of burstiness. We
define the performance difference by subtracting the obtained rapidARQ metric from
the corresponding result of adaptive rapidARQ, i.e. Mdiff = Ma−Ms, where, Mdiff is
the resulting difference for metric M , Ma refers to the performance metric of adap-
tive rapidARQ and Ms the corresponding metric of the static protocol. Assume Tdiff ,

48

1.0 1.5 2.0 3.0
Burstiness

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

4.10

18.75

23.21

10.45

Percentage change of Average Decoding Matrix Size vs Burst Duration (Satellite), RTX=0

(a)

1.0 1.5 2.0 3.0
Burstiness

0

10

20

30

40

50

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

0.26 0.98
2.79

43.86

Percentage change of Average Decoding Matrix Size vs Burst Duration (Satellite), RTX=3

(b)

Figure 5.6: Percentage improvement of average decoding matrix size vs burstiness in
the satellite scenario when (a) RTX = 0 and (b) RTX = 3.

49

1.0 1.5 2.0 3.0
Burstiness

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

19.92 19.45
18.71

17.70

Percentage change of Average Decoding Matrix Size vs Burst Duration (5G), RTX=0

(a)

1.0 1.5 2.0 3.0
Burstiness

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

1.78
2.42 2.79

4.15

Percentage change of Average Decoding Matrix Size vs Burst Duration (5G), RTX=3

(b)

Figure 5.7: Percentage improvement of average decoding matrix size vs burstiness in
the 5G test scenario when (a) RTX = 0 and (b) RTX = 3.

50

Ddiff and Ldiff indicate the difference in throughput, delay and loss, respectively. By
examining the table contents regarding both test scenarios, we can observe that adap-
tive rapidARQ achieves comparable performance in all evaluation metrics. Ideally, we
would like to obtain increased throughput (Tdiff > 0), reduced delay (Ddiff < 0) and
smaller packet loss rate (Ldiff < 0) with the adaptive scheme. However, we cannot
distinctly deduce that the adaptive algorithm ameliorates or deteriorates the overall
protocol’s performance. Although we can distinguish slight throughput gains, both
the average delay and the packet loss rate are slightly worse in the adaptive scheme
compared to its static counterpart.

As for the decoding matrix size, the adaptive scheme achieves superior perfor-
mance compared to static rapidARQ. This can be verified by figures 5.6 and 5.7,
which capture the percentage change of the average decoding matrix size of adap-
tive rapidARQ against static rapidARQ for the estimated dopt value both in satellite
(fig. 5.6) and in the 5G scenario (fig. 5.7). In the former scenario, figure 5.6a indi-
cates a re-transmission free mechanism, while figure 5.6b refers to the case where
re-transmissions are allowed. Similarly, figures 5.7a and 5.7b portray the same per-
centage improvements but in the context of 5G. At first sight, we observe that adaptive
rapidARQ consistently yields improvements in the decoding matrix size. This obser-
vation is rational, because the adaptive scheme is designed in such a way so that it
takes advantage of the idle time periods and reduces the decoding matrix size. Since
increased burstiness indicates frequent idle time periods, the decoding matrix size
benefits of the adaptive scheme should increase. However, the level of improvement
varies depending on the experiment. In particular, when re-transmissions are not
allowed in the satellite scenario (figure 5.6a), the most notable improvements pertain
to intermediate levels of burstiness, that is B = 1.5 and B = 2. The percentage im-
provement in these cases exceeds 18% and 23%, respectively. This is attributed to the
fact that the dynamic adaptation of d responds well to the channel variations. When
the intensity of bursts is mediocre, the oscillations of the coding window size are not
that extreme, hence the algorithm has enough opportunities to detect the absence of
losses during “off” periods and gradually decrease the coding window size. This is
not exactly the case, though, when bursts are very intense, because the benefits are
reduced compared to smaller burstiness values. Typically, the algorithm increases d
to a larger extent in order to provide enough protection to tackle any subsequent
packet losses. Although the adaptive scheme is able to detect the loss-free periods,

51

any attempts to reduce the coding window size seem to be less efficient than one
would anticipate, because the rapid increase during the update period ends up to a
very large dmax value. In other words, in case of intense bursts, the reduction process
still works but the decrease steps do not suffice to cancel the preceding increments in
d, as it happens when burstiness is lower.

Different conclusions can be deduced, though, under the impact of re-transmissions
(see figure 5.6b). Here, the performance improvements are rather small but they show
an incremental trend while increasing burstiness. In fact, the percentage improvement
when B = 3 exceeds 43%, which means that we can conserve around half of the stor-
age requirements dictated by rapidARQ when d = 15. As a consequence, we expect
that the decoding delay will be significantly reduced. The demonstrated results are
rather reasonable; by employing re-transmissions the usefulness of coding is restricted
to a certain extent. Further attempts to adjust the coding window size do not have
a tremendous impact on coding complexity. On the other hand, when bursts are
quite intense, e.g., when B = 3, the coding process plays a major role in coping with
bursts of errors. Therefore, being able to identify the idle or burst time periods and
appropriately adjust the coding window yields significant complexity improvements.

Similar observations can be made in the context of 5G. Under the effect of re-
transmissions (fig. 5.7b), adaptive rapidARQ exhibits increasing complexity improve-
ments in accordance with the increase in burstiness. Nevertheless, the gains are rel-
atively small (up to 4% when B = 3), since the best value of d is dominated by the
upper bound dictated by the bandwidth-delay product (see section 4.1), unlike the
satellite scenario. On the other hand (fig. 5.7a), the complexity improvement without
re-transmissions runs to ∼ 20% with a decreasing inclination for larger burstiness
values.

5.5 The Impact of Error Burst for Various Loss Rates

Previously, we examined the impact of burstiness in channels with a certain average
packet loss rate. In this experiment, we keep burstiness fixed and vary the packet
loss rate in order to investigate the performance benefits as well as the complexity
ones. Here, we focus on the satellite test scenario without re-transmissions. We also
study the impact of variable loss rates in channels with relatively heavy bursts, that

52

is, channels where the maximum packet loss rate during an “on” period is at least
double than that of average pl. In particular, we investigate the cases of B = 2,
B = 2.5 and B = 3. Note that since we examine various average packet loss rates
(pl), the optimal dopt estimation provided by the theoretical framework should be
recalculated. Since the examined pl values have been already considered in previous
experiments, we exploit the estimated optimal d values illustrated in table 5.1. For
pl = 10%, we consider dopt = 15.

Figure 5.8 displays the average decoding matrix size percentage change for differ-
ent link loss rate. Each subfigure pertains to a different burstiness level. The maximum
complexity improvement exceeds 20% in each case. More specifically, the obtained
improvements when B = 2 differ compared to higher burstiness values. Here, there
is an increasing trend in complexity gains which follows the increase of the average
packet loss rate. In other words, the higher pl is, the higher the complexity improve-
ments noticed. This is sensible, since small packet loss rates signify lower complexity
at the receiver side and the coding window size converges to a relatively small value
without further significant improvement margins. While the average pl increases,
more protection is required from the coding scheme, hence larger fluctuations are
noticed in the coding window size. Adaptive rapidARQ is able to identify idle peri-
ods, which results in a significant complexity improvement. In more intense bursts of
errors (e.g., fig. 5.8b, 5.8c), the main principles remain the same. Nevertheless, we can
observe a notable difference when pl = 10%. Instead of further reducing complexity,
adaptive rapidARQ cannot improve the computational cost beyond a certain extent.
This behavior reminds us of the observation we made in section 5.4 for very intense
bursts, which is attributed to the large fluctuations in the coding window size.

Besides complexity, we also evaluate the throughput, average delay and drop rate
performance by calculating the difference of adaptive and static rapidARQ, under the
assumption that both variants operate based on the optimal d estimation for each
applied channel loss rate. Once again, the achieved performance is comparable to
the one of the static scheme. Tables 5.4, 5.5 and 5.6 depict these results for B = 2,
B = 2.5 and B = 3, respectively. Even though the adaptive scheme does not result in
superior performance, the achieved results are close to the near-optimal one, which
renders the applicability of adaptive rapidARQ quite successful in this context.

53

2.50% 5% 7.50% 10%
Packet Error Rate

0

5

10

15

20

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

2.01

9.65

19.86

23.21
Percentage change of Average Decoding Matrix Size vs Link Loss Rate for Burstiness B=2, RTX=0

(a)

2.50% 5% 7.50% 10%
Packet Error Rate

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

2.68

16.26

28.55

21.57

Percentage change of Average Decoding Matrix Size vs Link Loss Rate for Burstiness B=2.5, RTX=0

(b)

54

2.50% 5% 7.50% 10%
Packet Error Rate

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 (%

) I
m

pr
ov

em
en

t

3.95

16.02

20.07

10.45

Percentage change of Average Decoding Matrix Size vs Link Loss Rate for Burstiness B=3, RTX=0

(c)

Figure 5.8: Percentage improvement of average decoding matrix size vs burstiness in
the satellite scenario without re-transmissions: (a) B = 2, (b) B = 2.5 and (c) B = 3.
For the applied link loss rates, the estimated optimal d values are: 2.5% - dopt = 14,
5% - dopt = 15, 7.5% - dopt = 18 and 10% - dopt = 15.

Table 5.4: Performance difference of Adaptive rapidARQ and rapidARQ in channels
with variable packet error rate when B = 2 in the satellite scenario without re-
transmissions (RTX = 0).

Packet Error Rate pl Tdiff (Mbps) Ddiff (ms) Ldiff

2.50% 0.7531078 -0.096753 -0.0005332

5% 0.2326052 0.0129936 0.0002836

7.50% 0.5585636 0.0132738 0.0002524

10% -0.1337934 1.0156504 0.0019448

55

Table 5.5: Performance difference of Adaptive rapidARQ and rapidARQ in channels
with variable packet error rate when B = 2.5 in the satellite scenario without re-
transmissions (RTX = 0).

Packet Error Rate pl Tdiff (Mbps) Ddiff (ms) Ldiff

2.50% 1.1946938 -0.1503742 -0.0009306

5% 0.1473676 0.0662248 0.000446

7.50% 1.990353 0.000889 -0.0015282

10% 1.840873 0.17727 -0.001595

Table 5.6: Performance difference of Adaptive rapidARQ and rapidARQ in channels
with variable packet error rate when B = 3 in the satellite scenario without re-
transmissions (RTX = 0).

Packet Error Rate pl Tdiff (Mbps) Ddiff (ms) Ldiff

2.50% 1.5487776 -0.2306058 -0.0014246

5% 0.5679624 -0.0346076 -0.0005262

7.50% 1.6705072 0.0120326 -0.001021

10% 0.8316014 0.0048696 -0.0006404

56

CHAPTER 6

CONCLUSION

6.1 Closing Remarks

6.2 Future Extensions

6.1 Closing Remarks

5G and beyond networks are envisioned to completely alter our lifestyle by enabling
a plethora of heterogeneous applications with different requirements in data rate,
delay and reliability. In fact, they are considered to support URLLC services to a
broad class of novel applications, where ultra-high reliability and very low latency
are of critical concern. To satisfy such demands, it is essential that appropriate reli-
ability mechanisms be devised in the data link layer and foremost in transport and
application layers in order to cope with the occurring packet errors.

There are strong indications that the synergy between RLNC and the concept of
sliding window can be a game changer in achieving ultra reliable data transmission
over a link with minimum delay. The increasing dynamics of sliding window RLNC
is reflected on the rising popularity of such schemes and their in-depth study in
literature. However, existing SW RLNC schemes tend to neglect the discussion about
the importance of an appropriate coding window size, although the latter plays a
major role in the coding scheme’s efficiency. In this thesis, we investigate the impact
of the coding window size on the performance of SW RLNC protocols. To that end,
we leverage the abstraction of coding depth to facilitate the discussion about the cod-
ing window size. By introducing coding depth (d), we create the required degrees of

57

freedom so that RLNC optimizes the level of protection offered to each source packet
without degrading the goodput of the protocol, i.e., by modifying the amount of in-
jected redundancy. It is still an open issue, though, how to determine the optimal
coding window size so that SW RLNC schemes can achieve superior overall per-
formance. This is extremely important under varying channel conditions, where the
coding scheme should be able to detect the level of packet errors and appropriately
adjust its coding parameters in order to achieve an optimal performance-complexity
trade-off.

Motivated by the aforementioned observation, we attempt to devise an analytical
framework for calculating the optimal d value for specific channel conditions. Since
the precise approximation of coding depth is a daunting challenge, we notice that
even a rough estimation can result in near-optimal performance. This relies on the
observation that when coding depth exceeds a threshold value for a prescribed level
of protection, no significant performance improvements are noticed. Therefore, we
provide an analytical method to estimate this threshold d value by taking into ac-
count the channel conditions. Apart from that, we explore the dynamic adaptation of
coding depth under varying channel conditions by implementing an efficient adaptive
scheme for this purpose. We exploit the theoretical result to upper bound the range
of values which can be assigned to d during the protocol’s execution. Finally, we
assess the performance of the introduced novelties through extensive experimental
evaluation in test scenarios suitable for 5G and beyond networks. We confirm that
the SW RLNC scheme which exploits the rough estimation of the optimal d value
performs near optimally in all test cases. Similarly, the adaptive scheme achieves
comparable performance to the near optimal one. We should further stress that the
adaptive scheme can provide substantial complexity improvements through the effi-
cient management of the coding window size.

6.2 Future Extensions

Clearly, the proposed analytical methodology as well as the adaptive scheme can ben-
efit the performance of SW RLNC protocols. During this work, we implemented our
reliability mechanism as a link-layer protocol. However, there is a tendency towards
transferring such responsibilities in the transport or even in the application layer. This

58

is attributed to the convenience in introducing modifications by overlooking network
routers and the restrictions posed by the host. By integrating the proposed novelties,
e.g., in a transport-layer protocol, such as QUIC, we anticipate that the benefits of
our scheme will be more intense since the bandwidth-delay product may grow very
large over multiple transmission links. However, the real challenge is to integrate the
ability of recoding in multi-hop wireless networks, where intermediate nodes also
take part in the coding process, as the principles of network coding dictate.

59

BIBLIOGRAPHY

[1] Y. Xu, G. Gui, H. Gacanin, and F. Adachi, “A survey on resource allocation for 5g
heterogeneous networks: Current research, future trends and challenges,” IEEE
Communications Surveys & Tutorials, 2021.

[2] “Study on scenarios and requirements for next generation access technologies,”
3GPP TSG RAN TR38.913 R14, Tech. Rep., 05-2017.

[3] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency wireless
communication: Tail, risk, and scale,” Proceedings of the IEEE, vol. 106, no. 10,
pp. 1834–1853, 2018.

[4] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information flow,”
IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[5] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong,
“A random linear network coding approach to multicast,” IEEE Transactions on
Information Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[6] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an instant
primer,” ACM SIGCOMM Computer Communication Review, vol. 36, no. 1, pp.
63–68, 2006.

[7] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits of
coding over routing in a randomized setting,” 2003.

[8] N. Papanikos and E. Papapetrou, “Deterministic broadcasting and random lin-
ear network coding in mobile ad hoc networks,” IEEE/ACM Transactions on
Networking, vol. 25, no. 3, pp. 1540–1554, 2017.

60

[9] J. K. Sundararajan, D. Shah, and M. Médard, “Arq for network coding,” in
2008 IEEE International Symposium on Information Theory. IEEE, 2008, pp.
1651–1655.

[10] J. K. Sundararajan, D. Shah, M. Médard, and P. Sadeghi, “Feedback-based online
network coding,” IEEE Transactions on Information Theory, vol. 63, no. 10, pp.
6628–6649, 2017.

[11] F. Gabriel, S. Wunderlich, S. Pandi, F. H. Fitzek, and M. Reisslein, “Caterpillar
rlnc with feedback (crlnc-fb): Reducing delay in selective repeat arq through
coding,” IEEE Access, vol. 6, pp. 44 787–44 802, 2018.

[12] J. Cloud, D. Leith, and M. Médard, “A coded generalization of selective repeat
arq,” in 2015 IEEE Conference on Computer Communications (INFOCOM). IEEE,
2015, pp. 2155–2163.

[13] J. Cloud and M. Médard, “Network coding over satcom: Lessons learned,” in
International Conference on Wireless and Satellite Systems. Springer, 2015, pp.
272–285.

[14] W.-L. Yeow, A. T. Hoang, and C.-K. Tham, “Minimizing delay for multicast-
streaming in wireless networks with network coding,” in IEEE INFOCOM 2009.
IEEE, 2009, pp. 190–198.

[15] L. Yang, Y. E. Sagduyu, and J. H. Li, “Adaptive network coding for schedul-
ing real-time traffic with hard deadlines,” in Proceedings of the thirteenth ACM
international symposium on Mobile Ad Hoc Networking and Computing, 2012, pp.
105–114.

[16] H.-T. Lin, Y.-Y. Lin, and H.-J. Kang, “Adaptive network coding for broadband
wireless access networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 1, pp. 4–18, 2012.

[17] Y. Benfattoum, S. Martin, and K. Al Agha, “Qos for real-time reliable multicas-
ting in wireless multi-hop networks using a generation-based network coding,”
Computer Networks, vol. 57, no. 6, pp. 1488–1502, 2013.

61

[18] P. Sadeghi, R. Shams, and D. Traskov, “An optimal adaptive network coding
scheme for minimizing decoding delay in broadcast erasure channels,” EURASIP
Journal on Wireless Communications and Networking, vol. 2010, pp. 1–14, 2010.

[19] W. Zeng, C. T. Ng, and M. Médard, “Joint coding and scheduling optimization
in wireless systems with varying delay sensitivities,” in 2012 9th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON). IEEE, 2012, pp. 416–424.

[20] S. Pandi, F. Gabriel, J. A. Cabrera, S. Wunderlich, M. Reisslein, and F. H. Fitzek,
“Pace: Redundancy engineering in rlnc for low-latency communication,” IEEE
Access, vol. 5, pp. 20 477–20 493, 2017.

[21] B. Swapna, A. Eryilmaz, and N. B. Shroff, “Throughput-delay analysis of ran-
dom linear network coding for wireless broadcasting,” IEEE Transactions on
Information Theory, vol. 59, no. 10, pp. 6328–6341, 2013.

[22] X. Zhong, Y. Qin, and L. Li, “Tcpnc-dgsa: Efficient network coding scheme for
tcp in multi-hop cognitive radio networks,” Wireless Personal Communications,
vol. 84, no. 2, pp. 1243–1263, 2015.

[23] F. Karetsi and E. Papapetrou, “A low complexity network-coded arq protocol
for ultra-reliable low latency communication,” in 2021 IEEE 22nd International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).
IEEE, 2021, pp. 11–20.

[24] ——, “Lightweight network-coded arq: An approach for ultra-reliable low la-
tency communication,” Computer Communications, 2022.

[25] M. Karzand, D. J. Leith, J. Cloud, and M. Medard, “Design of fec for low delay
in 5g,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp.
1783–1793, 2017.

[26] J. Cloud and M. Médard, “Multi-path low delay network codes,” in 2016 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2016, pp. 1–7.

[27] M. Karzand and D. J. Leith, “Low delay random linear coding over a stream,” in
2014 52nd Annual Allerton Conference on Communication, Control, and Computing
(Allerton). IEEE, 2014, pp. 521–528.

62

[28] Y. Lin, B. Liang, and B. Li, “Slideor: Online opportunistic network coding in
wireless mesh networks,” in 2010 Proceedings IEEE INFOCOM. IEEE, 2010,
pp. 1–5.

[29] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzenmacher, and
J. Barros, “Network coding meets tcp: Theory and implementation,” Proceedings
of the IEEE, vol. 99, no. 3, pp. 490–512, 2011.

[30] P. U. Tournoux, E. Lochin, J. Lacan, A. Bouabdallah, and V. Roca, “On-the-fly
erasure coding for real-time video applications,” IEEE Transactions on Multimedia,
vol. 13, no. 4, pp. 797–812, 2011.

[31] T. T. Thai, J. Lacan, and E. Lochin, “Joint on-the-fly network coding/video qual-
ity adaptation for real-time delivery,” Signal Processing: Image Communication,
vol. 29, no. 4, pp. 449–461, 2014.

[32] P. J. Braun, D. Malak, M. Medard, and P. Ekler, “Multi-source coded downloads,”
in ICC 2019-2019 IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–7.

[33] S. Wunderlich, F. Gabriel, S. Pandi, F. H. Fitzek, and M. Reisslein, “Caterpillar
rlnc (crlnc): A practical finite sliding window rlnc approach,” IEEE Access, vol. 5,
pp. 20 183–20 197, 2017.

[34] M. Brulatout, H. Khalifé, V. Conan, J. Leguay, E. Lochin, and J. Lacan, “Reliable
streaming protocol for lossy networks,” in 2015 International Wireless Communi-
cations and Mobile Computing Conference (IWCMC). IEEE, 2015, pp. 1486–1491.

[35] A. Cohen, D. Malak, V. B. Bracha, and M. Médard, “Adaptive causal network
coding with feedback,” IEEE Transactions on Communications, vol. 68, no. 7, pp.
4325–4341, 2020.

[36] A. Cohen, G. Thiran, V. B. Bracha, and M. Médard, “Adaptive causal network
coding with feedback for multipath multi-hop communications,” IEEE Transac-
tions on Communications, vol. 69, no. 2, pp. 766–785, 2020.

[37] E. Tasdemir, M. Tömösközi, J. A. Cabrera, F. Gabriel, D. You, F. H. Fitzek, and
M. Reisslein, “Sparec: Sparse systematic rlnc recoding in multi-hop networks,”
IEEE Access, vol. 9, pp. 168 567–168586, 2021.

63

[38] M. Zverev, P. Garrido, R. Agüero, and J. Bilbao, “Systematic network coding with
overlap for iot scenarios,” in 2019 International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob). IEEE, 2019, pp. 1–6.

[39] P. Garrido, D. Gómez, J. Lanza, and R. Agüero, “Exploiting sparse coding: A
sliding window enhancement of a random linear network coding scheme,” in
2016 IEEE International Conference on Communications (ICC). IEEE, 2016, pp.
1–6.

[40] E. Tasdemir, V. Nguyen, G. T. Nguyen, F. H. Fitzek, and M. Reisslein, “Fsw:
Fulcrum sliding window coding for low-latency communication,” IEEE Access,
2022.

[41] J. Yang, Z.-P. Shi, C.-X. Wang, and J.-B. Ji, “Design of optimized sliding-window
bats codes,” IEEE Communications Letters, vol. 23, no. 3, pp. 410–413, 2019.

[42] P. Garrido, D. J. Leith, and R. Agüero, “Joint scheduling and coding for low
in-order delivery delay over lossy paths with delayed feedback,” IEEE/ACM
Transactions on Networking, vol. 27, no. 5, pp. 1987–2000, 2019.

[43] T. Geithner, F. Sivrikaya, and S. Albayrak, “Joint link rate selection and adaptive
forward error correction for high-rate wireless multicast,” IEEE Open Journal of
the Communications Society, vol. 3, pp. 830–846, 2022.

[44] M. Zverev, P. Garrido, F. Fernández, J. Bilbao, Ö. Alay, S. Ferlin, A. Brunstrom,
and R. Agüero, “Robust quic: Integrating practical coding in a low latency trans-
port protocol,” IEEE Access, vol. 9, pp. 138 225–138244, 2021.

[45] J. Heide, M. V. Pedersen, F. H. Fitzek, and T. Larsen, “Network coding for mobile
devices-systematic binary random rateless codes,” in 2009 IEEE International
Conference on Communications Workshops. IEEE, 2009, pp. 1–6.

[46] C.-C. Chen, C. Chen, J.-S. Park, S. Y. Oh, M. Gerla, and M. Sanadidi, “Multiple
network coded tcp sessions in disruptive wireless scenarios,” in 2011-MILCOM
2011 Military Communications Conference. IEEE, 2011, pp. 754–759.

[47] T. Van Vu, N. Boukhatem, T. M. T. Nguyen, and G. Pujolle, “Adaptive redun-
dancy control with network coding in multi-hop wireless networks,” in 2013

64

IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2013,
pp. 1510–1515.

[48] A. Fu, P. Sadeghi, and M. Médard, “Dynamic rate adaptation for improved
throughput and delay in wireless network coded broadcast,” IEEE/ACM Trans-
actions on Networking, vol. 22, no. 6, pp. 1715–1728, 2013.

[49] J. Rischke, F. Gabriel, S. Pandi, G. Nguyen, H. Salah, and F. H. Fitzek, “Improving
communication reliability efficiently: Adaptive redundancy for rlnc in sdn,” in
2019 IEEE Conference on Network Softwarization (NetSoft). IEEE, 2019, pp.
291–295.

[50] Y. Shi, Y. E. Sagduyu, J. Zhang, and J. H. Li, “Adaptive coding optimization in
wireless networks: Design and implementation aspects,” IEEE Transactions on
Wireless Communications, vol. 14, no. 10, pp. 5672–5680, 2015.

[51] D. Malak, M. Médard, and E. M. Yeh, “Tiny codes for guaranteeable delay,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 809–825,
2019.

[52] H. H. Yin, K. H. Ng, A. Z. Zhong, R. W. Yeung, S. Yang, and I. Y. Chan,
“Intrablock interleaving for batched network coding with blockwise adaptive
recoding,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 4, pp.
1135–1149, 2021.

[53] S. McCanne and S. Floyd. ns Network Simulator. [Online]. Available:
http://www.isi.edu/nsnam/ns/

[54] E. Papapetrou and F. Karetsi, “Selective repeat arq implementation for ns2,”
[Online]. Available: https://github.com/epapapet/SR-ARQ, 2020.

65

http://www.isi.edu/nsnam/ns/

AUTHOR’S PUBLICATIONS

1. Karetsi, Foteini, and Evangelos Papapetrou. ”A low complexity network-coded
ARQ protocol for ultra-reliable low latency communication.” 2021 IEEE 22nd
International Symposium on a World of Wireless, Mobile and Multimedia Net-
works (WoWMoM). IEEE, 2021.

2. Karetsi, Foteini, and Evangelos Papapetrou. ”Lightweight network-coded ARQ:
An approach for Ultra-Reliable Low Latency Communication.” Computer Com-
munications (2022).

SHORT BIOGRAPHY

Foteini Karetsi was born in Ioannina in 1997. She obtained a Diploma in Computer
Science and Engineering with honours from the Department of Computer Science and
Engineering at the University of Ioannina, Greece, in 2020. She is currently an M.Sc.
student at the same department. She has received several scholarships and awards for
academic excellence. She was also a research intern in Prof. Katerina Argyraki’s Net-
work Architecture Laboratory (NAL) at École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland, under Summer@EPFL 2021 program. Her research interests
include network coding, routing and performance optimization for next generation
wireless networks.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	The Goals of 5G and Beyond Networks
	Achieving URLLC in 5G and Beyond
	Objectives of Thesis
	Structure of Thesis

	Background and Related Work
	Sliding Window RLNC Primer
	RLNC Fundamental Principles
	RLNC Variants

	Related Work on Sliding Window RLNC

	Addressing the Limitations of SW RLNC with the Use of Coding Depth
	Analyzing the Concept and the Benefits of Coding Depth
	Rate Adaptation in RLNC Schemes
	Existing Literature on Rate Adaptation

	Rate adaptation vs Coding depth: Strengths and Limitations

	Dynamic Adaptation of Coding Depth
	Exploring the Vicinity of the Optimal d
	Calculating an Efficient d Estimation
	An Efficient Algorithm for the Dynamic Adaptation of d
	Loss Ratio Estimation
	Triggering Change in d
	The Actual Adaptation of Coding Depth

	Experimental Evaluation
	Simulation Setup
	Performance Evaluation in Diverse Scenarios
	Throughput - Average Delay Performance
	Investigating the Average Decoding Matrix Size

	Performance under Various Channel Error Rates
	Resilience to Bursts of Errors
	The Impact of Error Burst for Various Loss Rates

	Conclusion
	Closing Remarks
	Future Extensions

	Bibliography
	Author's Publications
	Short Biography

