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Abstract 

 In this treatise on the theory of the continuum of the surreal numbers of 

J.H. Conway,  is  proved   ,that the three different techniques 

and   hierarchies   of  the continuums of the  transfinite   real    numbers of 

Glayzal  A. (1937) defined through transfinite power series  , of     the 

surreal  numbers of J.H. Conway (1976) defined by Dedekind cuts ,and 

of  the  ordinal  real  numbers of K. E. Kyritsis (1992) defined by 

fundamental Cauchy transfinite sequences, give by  inductive limit or 

union the same class and continuum of infinite numbers.  This is quite 

remarkable and is the analogue in the transfinite numbers, of that the real 

numbers can be constructed either as decimal power series, or by Dedekind 

cuts, or by Cauchy fundamental sequences.  

Key words: Linearly ordered commutative fields, transfinite real 

numbers, surreal numbers, formal power series fields 
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PROLOGUE 

In 1976 J.H. Conway published a book with title “On Numbers and 

games”, where utilizing the very well-known technique o the  Dedekind 

cuts and applied not only on the finite natural and rational numbers on the 

ordinal numbers as well, a new continuum is created analogous to the real 

numbers but vastly larger and finer,  that he called the surreal numbers. 

In this treatise we re-create   the surreal number with the other very well 

known technique of the Cauchy fundamental sequences. Actually a new 

vastly large and fine continuum is also created that the author called 

ordinal real numbers. This creative  work was carried out  during 1990- 

1991 in the birth Greek island of the Pythagoras called Samos, and in the 
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mathematical Department of the University of the Aegean. When this was 

complete, the author discovered that still a third older author A, Glayzal in 

1937, had created also such a vast and fine continuum through transfinite 

power series that he called transfinite real numbers. Then in 1992 the 

author proved that the three continuums of transfinite real numbers, of the 

surreal numbers and of the ordinal real numbers is one and the same 

continuum. This fact, includes the very well-known fact in the foundations 

of the mathematics that the usual real numbers can be created either by 

decimal power series, or by Dedekind cuts or by Cauchy fundamental 

sequences. This work was partitioned in 5 separate papers. These papers 

remained unpublished as the author had an Odyssey of different jobs, and 

eventually were published during 2017, in the proceedings   

https://books.google.gr/books?id=BSUsDwAAQBAJ&pg  pp 233-292 

 

 of the conference 1st INTERNATIONAL CONFERENCE ON 

QUANTITATIVE, SOCIAL, BIOMEDICAL AND ECONOMIC ISSUES 29-

30 JUNE 2017 https://www.linkedin.com/pulse/1st-international-

conference-quantitative-social-economic-frangos/ .  

http://icqsbei2017.weebly.com/ 

The next   table summarizes the equivalence of the hree techniques so as 

to create this continuum of the surreal numbers.  

Table 1 

UNIFICATION HOW IT IS 

CRERATED 

THE RESULT 

TRANFINITE 

REAL NUMBERS 
by A. Glayzal  1937 

Transfinite power 

series 

The  continuum No 

of the surreal 

numbers 

THE SURREAL 

NUMBERS by J.H. 

Conway 1976 

Dedekind cuts The  continuum No 

of the surreal 

numbers 

THE ORDINAL 

REAL NUMBERS 
by K.E. Kyritsis 1991 

Cauchy fundamental 

sequences 

The  continuum No 

of the surreal 

numbers 

 

We should not understand that with the current theory we suggest direct 

applications in the physical sciences.  Not at all!  Matter is always finite. 

Actually not even the real numbers are fully appropriate for the physical 
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reality because they are based on the infinite too which does not exist in 

the material reality. This has been described in more detailed by the famous 

Nobel prize winner physicist E. Schrödinger in his book “Science and 

Humanity” (see [ Schrödinger E.  1961]. That is why the author has 

developed the digital or natural real numbers without the infinite with the 

corresponding Euclidean geometry and also Differential and Integral 

calculus, which is logically different from the classical. (See [Kyritsis 

2017] and [Kyritsis 2019]) But the ordinal numbers and the surreal 

numbers reflect more the human consciousness and perceptions rather 

than properties of the physical material reality. Still such a discipline as the 

study of the continuum of the surreal numbers is an excellent spiritual, 

mental and metaphysical meditative practice probably better than many 

other metaphysical spiritual systems. It is certainly an active reminding to 

the scientists that the ontology of the universe is not only the finite matter 

but also the infinite perceptive consciousness.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Alternative algebraic definitions of the Hessenberg   natural 

operations   in the ordinal numbers. The ORDINAL NATURAL 

NUMBERS 1 
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Abstract 

This paper   proves prerequisite results for the theory of Ordinal Real 

Numbers. In this paper, is  proved  that  any  field-inherited  abelian 

operations  and the Hessenberg operations ,in the ordinal numbers 

coincide. It is given an algebraic characterization  of the Hessenberg 

operations ,that can be described as an abelian, well- ordered, double 

monoid with cancelation laws.  
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§0.  Introduction  This is a series of five papers that have as goal the  

definition of topological complete linearly ordered fields (continuum of 

transfinite  numbers)  that include the real numbers and are obtained from 

the ordinal numbers in a method analogous to the way that  Cauchy derived 

the real numbers from the natural numbers. We shall also prove that this 

continuum is nothing lase than the continuum of the surreal numbers of 

J.H. Conway.  

We should not understand that with the current theory we suggest direct 

applications in the physical sciences.  Not at all!  Matter is always finite. 

Actually not even the real numbers are fully appropriate for the physical 

reality because they are based on the infinite too which does not exist in 

the material reality. This has been described in more detailed by the famous 

Nobel prize winner physicist E. Schrödinger in his book “Science and 

Humanity” (see [ Schrödinger E.  1961]. That is why the author has 

developed the digital or natural real numbers without the infinite with the 

corresponding Euclidean geometry and also Differential and Integral 

calculus, which is logically different from the classical. (See [Kyritsis 

2017] and [Kyritsis 2019]) But the ordinal numbers and the surreal 

numbers reflect more the human consciousness and perceptions rather 

than properties of the physical material reality. Still such a discipline as the 
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study of the continuum of the surreal numbers is an excellent spiritual, 

mental and metaphysical meditative practice probably better than many 

other metaphysical spiritual systems. It is certainly an active reminding to 

the scientists that the ontology of the universe is not only the finite matter 

but also the infinite perceptive consciousness.  

The author started and completed this research in the island of Samos 

during 1990-1992 .  

In this paper are studied the Hessenberg operations  in the ordinal 

numbers,  from  an  algebraic point of view. 

    The main results are the characterization theorems 9,10 . They are 

characterizations  of the Hessenberg  operations as   

     a) field-inherited operations in the ordinal numbers, that satisfy two 

inductive properties .(see proposition 10)  

     b) operations that satisfy a number of purely algebraic properties, that 

could be called in short operations of a well-ordered commutative semiring 

with unit ;(see Lemma 0, proposition 9). 

     In  a  next  paper  I   shall   give   two   more   algebraic characterisations 

of the Hessenberg operations as  

     c) operations defined by transfinite induction in the ordinal numbers and 

by  two recursive rules , 

   d) operations of the free semirings in the category of abelian semirings; 

or   as   the   operations   of   the   formal polynomial  algebras  of the 

category of abelian semirings. These  characterisations  of the Hessenberg 

operations are independed   of   the standard non-commutative  operations 

of  the ordinal  numbers and can be considered as alternative and simpler  

definitions  of them (especially the c),d)). 

 In particular  it  is  proved  that  the  Hessenberg  natural operations are 

free finitary operations ; We make  use of rudimentary techniques  relevant 

to  K-theory and Universal Algebra . 

    The main application of the present results is in the definition of the 

ordinal  real  numbers.(see  [ Kyritsis C.E.1991]  .By making use of the 

present results and techniques  it is  proved in [Kyritsis C.E.1991] that all 

the three techniques  and Hierarchies of transfinite real numbers ,see [ 

Glayzal A 1937],of surreal numbers, see [ Conway J.H. 1976], of ordinal 



real numbers see  [ Kyritsis C.E.1991], give by inductive limit  or union, 

the same class of numbers ,already known as the class No. We refer to the 

class No as "the totally ordered Newton-Leibniz realm of numbers").  

       1. Two algebraic characterizations of the Hessenberg operations   

in the ordinal numbers.  

     Let us denote by F a linearly ordered field of characteristic ω (also said 

of characteristic 0).Let us denote  by  h  a  mapping of  an  initial  segment 

of ordinal   numbers, denoted by W(a),in F such that it is 1-1, order 

preserving  and h(0)=0, h(1)=1, h(s(b))=b+1,where s(b) is the sequent of 

the b , b<a, the b+1 is in the field operations  the  set  h(W(a))  is  closed   

in the  field addition   and multiplication . We shall call field-inherited 

operations in the ordinal numbers of W(a), the  operations induced by the 

field, in the initial segment  W(a). 

     (For a reference to standard symbolisms and definitions for ordinal  

numbers,  see [Cohn P.M. 1965] p.1-36 also [ Kutatowski K.-Mostowski 

A. 1968]).  

The following properties hold for these field-inherited  abelian 

operations for the ordinals of w(a) ( in that case, it is needless to say that a 

is a limit ordinal).  

     Lemma 1. For the field-inherited abelian  operations  in  the initial 

segment  w(a) of ordinal numbers, the followings hold (x,y,z,c,x',y', 

w(a)).  

     0)   s(x) = x+1                    for every x  w(a) 

     1)   x+y = y+x                     ,    x.y = y.x 

     2)   x+(y+z) = (x+y)+z             ,    x.(y.z) = (x.y).z 

     3)   x+0 = 0+x = x       , 

          x.0 = 0 

          x.1 = 1.x = x 

     4)   x(y+z) = xy+xz 

     5)   
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     6)   If x>y, x'>y' then x+x'>y+y', and xx'+yy'>xy'+yx' 

          The proof of the  previous  lemma  is  direct  from  the properties  of 

a linearly ordered field.  

          We  mention  two  more  properties  that  they  will  be of  

significance in the followings paragraphs. 

     7)  The  w(x+y) is a cofinal set with  the {w(x)+x x+w(y)}and  we 

write cf(w(x+y)) = cf{w(x)+y   x+w(y)}. 

     8) The      W(x.y)     is     cofinal     set     with     the  

h-1({h(y)h(w(x))+h(x)h(w(y))-h(w(x)).h(w(y))})   

          and  we write  

     cf(w(x.y)) = cf h-1  ({h(y)h(w(x))+h(x)h(w(y))-h(w(x)).h(w(y))}) 

     To continue our argument we need  a  many-variables  form  of  

transfinite induction.  

     Let ai  i = 1,...,n   n  N ordinal numbers and (b1,...bn)   w(αi)x...xw(αn).  

We  define  as   simultenous initial segment of n-variables defined by 

(b1,...bn), the set      w((b1,...bn))  =  w(b1)x...x{b1}x...xw(bn)  for   every  

 

     I  {1,...n},or w((b1,...,bn))= w{b1}x...xw{bi)x...x{bn} for  

           

     every I {1,...n} with I  . 

     Lemma 2. (many-variables transfinite induction)  

          Let A w(a1)x...xw(an) such that  

     1.   (0,...,0)  A 

     2.   For every (b1,...bn)  w(a1)x...xw(an)  it holds that w((b1,...,bn)) A 

 (b1,...,bn)  A. 

     By  1.2. we infer that A = w(a1)x...xw(an). 





 



 i I n  1,...,


 

 i I n  1,...,







 





     Lemma  3.   (many-variables   definition   by   transfinite  

                   induction)  

     Let  a  set   A  and  ordinal  numberss  a1,...,an. Let   a  set denoted by B, 

such that it is sufficient for inductive rules h BA : 

     This means that : 

a)    

     The set  B is a set of  functions, denoted by   and defined on 

simulteneous initial segments with values in  A. : w((b1,...,bn))  A.  

    If   B and c1< b1,...,cn<bn then  B  

b)  For every  there is a  such that   

B 

c) Let  and let us  denote the value  of  f at (b1,...,bn) with 

. Let us suppose that  it holds that whenever c1  b1,b'1,...,cn  bn,b'n,   

(b1,...,bn),(b'1,...,b'n)     

w(α1)x...xw(αn) then                

Then let us suppose that we get as a consequence that the function defined  

by , belongs to B 

     It holds that for every function h:B  A  

     (called many -variables transfinite inductive rule ) there is one and only 

one function f defined on w(a1)x...xw(an) with values in  A such that for 

every  (b1,...,bn)      w(α1)x...xw(αn) it holds  that 

 

Remark:We notice that even for one variable this version of the definition 

by transfinite induction is somehow different from that which  appears 
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usually in the bibliography (e.g.see [Kutayowski K. –Mostowski A 1968] 

§4 pp 233 ).It uses not all the set Aw(α) ,but only a subset of it,  sufficient 

for recursive rules .The proof ,for one variable, is nevertheless exactly the 

same as with the ordinary version . 

     In order to  save  space  and  because  the  proofs  are  not directly 

relevant  to our subject  we will not give the  proofs of lemma 2  and 3 but 

we will mention that they are  analogous, without  serious difficulties, to 

the ones with  one-variable only  (see  e.g. [ Kutayowski K. –Mostowski A 

1968],[ Lang S.1984]).  

Proposition 4. (Uniqueness)  

         Any  two  pairs  of  field-inherited  operations  in  the initial segment  

w(a) of ordinals, satisfying properties  7,8 of lemma 1 (a  is a limit ordinal 

) are isomorphic .  

     Proof: Let a monomorphic embedding denoted by h of w(a), as is 

described in  the beggining of the paragraph in two linearly ordred fields  

denoted by   F1, F2. 

     Let the two pairs of field inherited operations in   w(a) be denoted by   

((+,.) ( ) respectively.    They    satisfy the properties 0.1.2.3.4.5.6.7.8.of 

lemma 1 . Suppose that the  operations +, coincide for    the    set  

where 

. Then  by      

property 7 (by the  hypothesis of 

transfinite induction) =  

                                        

      Where by S(A) we denote the sequent of the set A .Thus by lemma 2 

the operations +, coincide on  w(a)xw(a).  

     Then the set w(a) is an ordered abelian  monoid  relative  to addition, 

with cancelation law.  

     The Grothendieck groups of w(a) for both +, and  coincide, and we 

denote it  by  k(w(a))  (see  for  the  definition  of Grothendieck group 

[Lang S. 1984] Ch1 §4 p.  44  or  [Cohn P.M. 1965]  ch  vii  §3 pp 263  ). 

Thus  also  the opposite -x of an element x  of w(a)  is  the  same  in  the 
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Grothendieck  group  k(w(a))  of w(a)  for  both   the   two  operations + 

and .  

      Suppose also that the operations  coincide  for  the set w ((b1, b2)). 

Then by property 8  

 

 (because +, and are isomorphic and the   hypothesis   of   transfinite 

induction  for  

. Hence  

by  lemma  2 the two operations  coincide on the  whole  set  w(a)xw(a)      

Q.E.D.  

     The  next  step  is  to  find  the  relation  of field-inherited operations  in  

an  initial  segment  of  ordinals  with  the Hessenberg operations .  It  will 

turn  out  that, if they      satisfy the properties 7.8.of lemma 1 ,then they 

are nothing else than the Hessenberg-Conway natural  sum  and product 

(see [Kutatoski K.Mostowski A. 1968 ] ch VII §7 p. 252-253 exercises  1.  

2.  3.) and [ Frankel A.A.1953] pp. 591-594 also [Conway J.H. 1976] ch2 

p. 27-28).  

          The way in which the Hessenberg operations are defined, 

traditionally , depends  on  the standard non-commutative operation on 

ordinals.  

     In order to define the Hessenberg-Conway operations in the traditional 

way ,we remind that : 

    

 

  Lemma 6 (Cantor normal form).  

         For every ordinal  a there  exists  a  natural  number   n and finite 

sequences :   b1,...,b2 of natural numbers and  ordinal numbers a1,a2,...an 

with  a1>...>an such  that (For a proof see for instance 

[Kutatowski K.-Mostowski A. 1968]  ch VII §7 p. 248-251).  
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     Then we get for the two ordinal numbers   α, b, by adding terms with 

zero coefficients, to make  their  Cantor normal  forms of   equal   length ,   

that        

      we define the natural sum (we denote it by (+)) with      

The  natural   product, denoted by α(.)b 

is defined to  be  the  ordinal  arising  by multiplication (using distributive 

and associative laws) from the Cantor normal forms of a and b and  by  

using  the  rule: ωx(.)ωy =ωx(+)y to multiply powers of ω. As a  result  we  

get for instance that  

     Remark 7  

     1)   The normal form of a can also be written in the standard Hessenberg-

Conway operations that is  

            

     2)   The sum a(+)b is an increasing function of a and b.  

     3)   If and    then for ordinals  ζ, η, α and           

conversely if an ordinal j  satisfies the condition: "if ξ<j and η<j then ξ.η<j" 

then  there  exists  an  ordinal number α such that ;we call ordinal 

numbers of  the           type principal   ordinals   of   the   Hessenberg 

operations.(see [ Kutatowski K.-Mostowski A. 1968] ch vii paragraph 7,p 

253) This  has also as  a consequence  that  we define the Hessenberg-

Conway           natural operations only for initial segments of the type W

for  some  ordinal number  α (we  will  call them   principal initial 

segments ).  

     4)   The Hessenberg-Conway natural operation restricted on the set of 

Natural numbers coincide with  the  ordinary  sum and product of natural 

numbers.  

     5)   The   operation    "powers    of    ω" ,   through    the Hessendberg-

Conway natural operation, can be  defined  as follows:  

          a)   ω(0) = 1 ω(1) = ω if ξ is a limit ordinal ω(ξ) = sup ω(η) 

                                                             η<ξ 
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1 1p p b q qn n
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b)   If ξ is not a limit ordinal then  there  exists  an ordinal  η  with   

η(+)1= s(η)=ξ   and   we   define ω(ξ) = ωη(.)ω. 

               It holds, (this happens especially for the base ω), that these 

"natural powers" of ω coincide with  the standard powers of ω defined 

through  the  standard non-commutative multiplication of  ordinal  numbers 

(this  can be proved with transtinite induction  since  ωη.ω=ω(η) ω. This 

gives us the right to express any ordinal number α in Cantor normal form, 

exclusively  with natural operations:  

                  

     6)   Also we notice that, the natural difference   denoted  by a (-) b, of 

two ordinals a,  b  in  Cantor  normal  forms    

 , is defined only if  

p1q1... pnqn.  

7)      We notice that if ξi<ξj for two  ordinals  then   but also 

 

for every pair of non-zero  natural numbers a,b. (in the standard non-

commutative operations on ordinals). But  this  has  as  consequence  

that  the ordering of a finite set of ordinal  numbers  in  Cantor normal 

form (normalizing  the  Cantor  normal  forms  by adding terms with 

zero coefficients so that all of  them have the same set of exponents) is 

isomorphic (similar) to the lexicographical ordering of the  coefficients  

of the normal forms.  

     Proposition  8.  For every principal initial segment of ordinal numbers, 

the   Hessenberg natural operations satisfy the properties 0.1.2.3.4.5.6.7.8. 

of lemma 1. 

Remark. From the moment we have  proved the properties 0.1.2.3.4.5.6. 

for the  natural operations in the  principal initial  segment  w(a), there is 

the Grothendieck group k(w(a)) of  the  monoid relative to sum, w(a) such 

that the w(a) is monomorphicaly embedded in k(w(a) (because of 

cancelation law)  and  also  there  is  an ordering in k(w(a)) that restricted 

on  w(a)  coincides  with the standard ordering in w(a).  

     Then the difference that occurs in property 8 has meaning and also the 

statement of property  8  itself  has  meaning  (see [Lang S. 1984] Ch I §9 


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p. 44).We denote by h  the monomorphism  of  the W(a)  in  the  K(W(a))   

. 

     Proof. The properties 0.1.2.3.4. are  directly  proved  from  the 

definition of the natural operations.  Let us check  the property 5. Namely 

, the  cancelation  laws. Let us suppose  that  y,x,c,  are ordinal numbers 

with y,x,c  for some  ordinal  a and their  Cantor  normal   form ,  

in   natural   operations ,  are  

                  

            

     pi, ci, y1  No       

     then  

                      

               

      hence  

               x(+)c=y(+)c  pi +ci  = qi +ci          i = 1,...,n        

and by cancelation law for addition  in  natural  numbers  we deduce that 

pi=qi  i=1,...,n  hence x = y.  

     Also  

                        and        

                    and if c  0    

and x(.)c = y(.)c then pi.cj = qi.cj with  not  all  of  cj  equal  to zero.  Say 

, then  for  every i = 1,...,n hence pi = qi and x=y.  

     Let us check the  property 6. The first part  of  property  6  is immediate 

from Remark 7, 2. Let, furthermore, x',y'   with Cantor normal 
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form (changing the ξi, in  order  to  have the same exponents for all x, y, x', 

y')  

    

     with pi',qi'  No and with  summation  interpreted  as  natural sum. By 

hypothesis x'>y', x>y.  

     Then  

                       and            

                      

     and the coefficient of the monomial of greatest  exporent  of 

x(.)x'(+)y(.)y' is p1p1'+ q1q1' and of x(.)y'(+)y(.)x' is p1q1'+q1p1'. But p1p1' + 

q1q1' - p1q1' - q1p1' = p1(p1'-q1') - q1(p1'-q1') = (p1-q1). (p1'-q1') > 0 which is  a  

product  of  the  positive factors p1-q1, (p1'-q1') hence  it is  positive.  By  

Remark  7,7 because p1 q1' + q1 q1'  >  p1 q1'  + q1 p1 we  deduce  that 

x(.)x'(+)y(.)y'>x(.)y'(+)x'(.)y. Next we prove the property 7. Let x' as 

before but also satisfying x' w(x)  that  is  x'<x. Then by property 5 we 

deduce that  w(x)+y w(x+y).  Conversely let z<x+y z w(x+y). Let  the  

Cantor  normal  form  of  z  be  (we rearrange appropriately 

the  normal  forms of x, x', y, y', Z) with ri No. From the last inequality 

we get that in   the    lexiographical    ordering    it    holds    that 

(ri,...,rn)<(p1+q1,...,pn+qn)(*)  

     Let  and  

     Let    and   Then the following ordinals  are 

defined: z1'(-)z, z1'(-)y, z2'(-)z, z2'(-)y, and also  by  Remark 7,7. It holds 

that zz1' zz2', yz1' xz2'. From the  inequality (*) and the inequality (**) 

qi  pi + qi i = 1,...,n and  the definition  of  ki   we   infer   that   it   holds   

in   the lexicographical ordering, the inequality (k1,...,kn)  (p1 +q1,...,pn + 

qn) similarly (λi,…,λn)  (p1 + q1,...,pn + qn).  Hence by Remark 7.7. it holds 

that z1'x(+)y and z2'x(+)y  If  for both z1', z2' holds that z1'=x(+)y=z2'.  
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     Then {ri, qi}= {ri, pi}=pi + qi, hence  ri = pi + qi   i=1,...,n.  

     But then z=x(+)y ,contradiction.  

     Let us suppose then, that z1'<x(+)y.  

     Then if z" = z1'(-)y  by  the  last  inequality  we  get  that z"(+)y = z1'(-

)y(+)y = z1' < x(+)y or z"(+)y < x(+)y.  

     That is we proved that for every  z w(x+y)  there  is  z"  an other ordinal 

with zz"(+)y<x+y. If  z"x  then  z"(+)yx(+)y contradiction, hence z"<x 

that is z" w(x)  and z"(+)y w(x)+y. From this and also that 

w(x)+yw(x+y) ,that  we  have  already      proved ,we deduce that w(x+y) 

and {w(x)+yx+w(y)} are  cofinal sets; we  write  

cf(w(x+y))=cf({w(x)+yx+w(y)})  .  In  other words we haved proved the 

property 7.  

     Let us prove the property 8. As  we  have  already  remarked  the 

difference is to be understood in the extension of  the  additive monoid w(a) 

into the linearly ordered  Grothendick  group k(w(a)).    The    ordering    in    

k(w(a))    is    defined      by: (x,y)(x',y')x+y'x'+y.  

     Where by (x,y) we denote the equivalence class  of  the  free abelian  

group  generated  by  w(a),  which is denoted  by  Fa,b (w(a)) (k(w(a)) = Fa,b 

(w(a))/ ([x+y]-[x]-[y])), in the process of taking the quotient by the normal 

subgroup generated by the elements of the form [x+y]-[x]-[y]  in  Fa,b (w(a))  

(the  corresponding generator of x w(a), in Fa,b (w(a) we denote by [x]), 

that  is defined by the representative  x+(-y).  Needless  to  mention that 

the natural difference in w(a), isn't but an instance of difference in k(w(a)).  

     We  make  clear that  h-1({h(x)(.)h(w(y))(+)h(w(x))(.)h(y) -

h(w(x))(.)h(w(y))}={v|v w(α) and v =h-1 (h(x)(.)h(y)'(+)h(x')(.)h(y) - 

h(x')(.)h(y'))  with  x' w(x) y' w(y) and x,y w(a)}. By the property  6 we 

get that h(x)(.)h(y')(+)h(x')(.)h(y)  <h(x)(.)h(y)(+)h(x')(.)h(y')   hence  

h(x)(.)h(y')(+)h(x')(.)h(y) - h(x')(.)h(y') < h(x)(.)h(y)  

hence h-1({h(x)(.)h(w(y))(+)h(w(x))(.)h(y) - h(w(x))(.)h(w(y))}}  

w(x(.)y).  

Conversely, let, z w(x(.)y), that is z<x(.)y.  

max
i

max
i



 





  
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     If x(.)y =   then we  also  write  for the normal form of  

z: z =    and rij  No. By  Remark  7,7.  We  deduce  that  in  

the lexicographical ordering it holds that (r11,...,rij,...,rn,n   ) <  

(p1p1,...,pipj,...,pn.pn). It is sufficient to prove that  for  every 

(r11,...,rij,...,rn,n)< (p1p1,...,pipj,...,pn.pn) there  are      (p1',...,pn') and (q1',...,qn'),  

pi, qj   No  with  (p1',...,pn')<   (p1,...,pn)  and  (q1',...,qn')< (q1,...,qn)   such   

that (r11,...,rij,...,rn,n)    (p1q1'+p1'q1 - p1'.q1',...,pn.qn'+pn'.qn - pn'.qn') < 

p1.q1,..., pn.qn).  

     But the property 8  holds  for  a=ω,  that  is  for  the  natural numbers. 

Hence there are p1', q1' with p1' < p1 q1' < q1  and  r11   p1 q1'+p1'q1 - p1'.q1' 

< p1' q1  and completing with arbitrary pi', qi' i = 2,...,n) that give positive 

the terms pi qj' + pi'qj  -  pi'qj' (by elementary arithmetic of natural numbers 

this is always possible) we define  

x' =  and y' = .  

     By the lexicographical ordering it holds that x'  w(x), y'  w(y) and  

h(z)    h(x)(.)h(y')(+)h(x')(.)h(y)   -   h(x')(.)h(y') <h(x)(.)h(y). Hence  the  

sets W(x(.)y)  and h-1({h(x)(.)h(w(y))  (+) h(w(x))(.)h(y)  - 

h(w(x))(.)h(w(y))})  are cofinal and we write  

     cf(w(x(.)y)) = cfh-1({h(x)(.)h(w(y)) (+) h(w(x))(.)h(y) - 

h(w(x))(.)h(w(y))}).  

     This is the end of the proof of  the property  8.          Q.E.D.  

     

Corollary 9 (first characterisation ) 

    Every pair of operations in a  principal  initial  segment  of ordinal that 

satisfy the properties 0.1.2.3.4.5.6.7.8 of lemma 1 ,.is unique up-to-

isomorphism   and    coincides with    the    Hessenberg natural operations 

. 

     Remark:   The   difference     that    appears    in    the property   8   is   

defined   as   in   the   remark   after  the proposition 8 . 
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     Proof:Direct after the proposition 4 and  8            Q.E.D. 

. 

 

 

Corollary 10.(Second characterisation ) 

      Every pair of field -inherited operations in a principal initial segment 

of ordinals, w(a)  that satisfy the properties  7. 8. coincides  with the 

natural sum and product of Hessenberg .  

     ( For the existence of field-inherited operations in the ordinal     numbers 

see [C Conway J.H.1976 ] ch note pp 28 .) 

 Proof: The proof is immediate from  proposition 4 and 8.Q.E.D.  

     Remark.11 It seems that N.L.Alling in his publications: 

               a)On the existence of real closed Fields that are ηα -sets of power 

ωα Transactions Amer.Math.Soc. 103 (1962) pp 341-352.  

              b)Conway's     field     of     surreal     numbers. 

Trans.Amer.Math.Soc.287 (1985) pp.365-386. 

               c)Fountations  of  Analysis  over  Surreal   number Fields  .Math. 

studies 141 North-Holland 1987. 

     he  is  unaweare  that  if  an  initial  segment of  ordinals  is contained 

in a set-field and it is cofinal with   the   field   ,(and   it   induces    the    

Hessenbeg operations   in it) then it has to be an initial segment of a 

principal ordinal that is  of type (see [Kutatowski K-Mostowski 

A.1968] ch VII §7 p. 252-253 exercises 1.  2.  3.) 

               Thus properties 0.1.2.3.4.5.6.7.8. can be taken as an axiomatic 

definition of the  Hessenberg  operations  without having to mention the 

non-commutative ordinal operations.  

         In a forthcoming paper, I  will  be  able  to prove      the      non-

contradictory      of   properties 0.1.2.3.4.5.6.7.8. (actually the existence in 

Zermelo-Frankel set theory, of the operations +,.) without  using  the non-





commutative  ordinal operations,neither field-inherited operations.  but  

through  transfinite  induction  and  other methods of universal algebra . 
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      List of special symbols 

 

     ω  :  Small Greek letter omega,  the  first  infinit number. 

     α, b         :  Small Greek letter alfa, an ordinal. 

      Ω1          :  Capital   Greek   letter   omega   with    the subscript one. 

(x)         :  Aleph of x, the cardinality of the set X. 

                         N: the fisrt  capital  letter  of  the  Hebrew alfabet. 

             :  Natural sum and  product of G. Hessenberg plus and point 

in   parenthesis. 
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Free  algebrae and alternative definitions of 

the  Hessenberg           operations  in the ordinal numbers . The 

ORDINAL NATURAL NUMBERS 2 
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Abstract. 

    It is proved and is given,  in this paper, two  alternative algebraic 

definitions of the  Hessenberg  natural  numbers in  the  ordinal numbers: 

a) by  definition  with  transfinite induction  and  two inductive rules , 

b)  by  the  free  algebras  of  the  polynomial  symbols  of  the 

commutative semirings with unit. 

 Key Words:Hessenberg natural operations, ordinal numbers,free 

algebras,semirings 

  Subject Classification of AMS 03,04,08,13,46 

  

 

 

§0.  Introduction  This is the second paper of  a series of five papers that 

have as goal the  definition of topological complete linearly ordered fields 

(continuous numbers)  that include the real numbers and are obtained from 

the ordinal numbers in a method analogous to the way that  Cauchy derived 

the real numbers from the natural numbers. We may call them linearly 

ordered Newton-Leibniz numbers. The author started and completed 

this  research in the island of Samos during 1990-1992 .  

We should not understand that with the current theory we suggest direct 

applications in the physical sciences.  Not at all!  Matter is always finite. 

Actually not even the real numbers are fully appropriate for the physical 

reality because they are based on the infinite too which does not exist in 

the material reality. This has been described in more detailed by the famous 

Nobel prize winner physicist E. Schrödinger in his book “Science and 

Humanity” (see [ Schrödinger E.  1961]. That is why the author has 

developed the digital or natural real numbers without the infinite with the 

corresponding Euclidean geometry and also Differential and Integral 

mailto:ckiritsi@teiep.gr
mailto:C_kyrisis@yahoo.com


calculus, which is logically different from the classical. (See [Kyritsis 

2017] and [Kyritsis 2019]) But the ordinal numbers and the surreal 

numbers reflect more the human consciousness and perceptions rather 

than properties of the physical material reality. Still such a discipline as the 

study of the continuum of the surreal numbers is an excellent spiritual, 

mental and metaphysical meditative practice probably better than many 

other metaphysical spiritual systems. It is certainly an active reminding to 

the scientists that the ontology of the universe is not only the finite matter 

but also the infinite perceptive consciousness.  

In this second paper on the same subject, I shall give two more ,and even 

simpler, algebraic characterizations of the 

Hessenberg  natural  operations  in  the   ordinal   numbers. These 

characterizations are actually alternative and direct definitions of the 

Hessenberg natural operations; independent from the standard non-

commutative  operations  in  the  ordinal  numbers  .The  main 

results    are    the    characterization    theorems   4.7.          

.These characterisations of the Hessenberg natural operations are : 

a) As operations defined  by  transfinite  induction  through  two 

inductive   rules  that  are  already  satisfied  by  the  usual  operations in 

the natural numbers . 

b) An initial segment of  a  principal ordinal  in  the  Hessenberg 

natural operations is isomorphic  with  the  free  semiring  of α 

many  generators in the category of  abelian  semirings  ;or  isomorphic 

with the algebra of polynomial symbols of α inderminates of the type of 

algebra of semirings with constants the natural numbers . 

The previous characterizations proves that the Hessenberg natural 

operations are the natural extensions in the ordinal numbers, of the usual 

operations in the natural numbers,. This turns  out  to be so, if  we approach 

this subject from whatever aspect. Thus the Hessenberg natural operations 

should be coined as the standard abelian 

operations  in  the  ordinal  numbers,  for  all  practical algebraic purposes 

.There are already extended applications of this . (see  [ Conway J.H.]) 

The main application of the previous results is in the theory of ordinal real 

numbers (see [ Kyritsis C.E. ] ).The final  result  is  that the 

three  Hierarchies and different techniques of transfinite real numbers (see 

[ Gleyzal A. ]), of the surreal numbers (see   [ Conway J.H.])  ) ,of the 

ordinal real numbers (see  [ Kyritsis C.E. ]) give by 

inductive  limit  or  union the same class of numbers ,already known 

as  the  class  No  and to which we   make reference in  [ Kyritsis C.E. ]   as 

the "totally  ordered Newton-Leibniz realm of numbers ". 



§1.The  third algebraic  characterizations  of  the  Hessenberg natural 

operations. 

Let a initial segment of an  ordinal number of type β=ωα. Let us define a 

binary  operation ,denoted by +, in W(β) by definition by transfinite 

induction (see e.g. [Kuratowski K.-Mostoeski A.] §4 pp 233, [Enderton 

B.H.], [ Frankel A.A.], [Kyritsis C.E.] Lemma 2, 3 ) and the inductive 

rule  defined by 

p+ (f)=S({f(W(x),y)}{f(x,W(y))})  for an . 

The  definition  by  transfinite  induction  is  supposed  of  two variables 

as is also the inductive rule  (see [ Kyritsis C.E] Lemma 2,3). Thus, there 

exists a unique function denoted by (+):W(ωα)2 W(γ+1), where the 

γ  is  an  ordinal  number  with 

 ωα  <γ  such  that  it  satisfies the inductive rule p+ ; thus it holds : 

p+                   x+y=S({x+W(y)}{{W(x)+y}) . 

The  restriction  of  this  operation in W(ω)=ω coincides with  the 

usual  operations  of  the natural  numbers, since  the  addition 

of  the   natural   numbers satisfies also the inductive rule p+ : 

Lemma 0. The Hessenberg natural sum in a initial 

segment W(ωα ), satisfies the inductive rule  p+ . 

Proof: See [ Kyritsis C.E]  Proposition 8; the arguments hold also for the 

initial segments of type W(ωα); if we are concerned only for the natural 

sum .                                         Q.E.D. 

  

Thus by  the  uniqueness  ,the  natural  sum  coincides  with  the operation 

defined with the inductive rule p+. 

Corollary 1.The operation defined as before by the inductive 

rule p+, satisfies the properties   0.1.2.3.5.6.7.(See [ Kyritsis C.E] lemma 

1, the part of the properties that refer only to the sum ). 

Proof: See again the [ Kyritsis C.E] proposition 8.               Q.E.D. 

Since  the  commutative  monoid  W(ωα)  relative  the  Hessenberg 

natural sum satisfies  the cancellation law, it has a monomorphic 

embedding in the Universal group of it,  which at this case is called also 

the Grothendick group and it is denoted by K(W(ωα)). Thus the difference 

x-y is definable in W(ωα) with values in K(W(ωα)). 



See also [ Kyritsis C.E] the remark before the proof of the proposition 8. 

Let an initial segment W(ωα)  of a principal ordinal number . Let the 

binary operation denoted by (.):W( )2W(γ) ,where the γ is an ordinal 

number  with  <γ  defined  with  definition  by transfinite induction 

and with inductive rule  the function  

p 

such that for every 

 

p (f)=S({f(x,W(y))+f(W(x),y)-f(W(x),W(y)} W(γ+1)) . Thus there is a 

unique function (.):W( )2 W(γ+1) such that it satisfies the inductive 

rule 

p           x.y=S({W(x).y+x.W(y)-W(x).W(y)}W(γ+1)). 

Lemma 2.The Hessenberg natural  product  satisfies  the  inductive 

rule p  . 

Proof: See [ Kyritsis C.E]Proposition 8 .                              Q.E.D. 

Therefore  by the uniqueness of the function (.) this operation coincides 

with the Hessenberg natural product . 

Corollary 3. Let an initial segment of a principal ordinal number 

. The  operations  that  are  defined  as  before with the inductive rules p+, 

p satisfy   the properties 0.1.2.3.4.5.6.7.8. (See [ Kyritsis C.E] lemma 

1)and  coincide with the Hessenberg natural sum and product . 

Proof: See again [ Kyritsis C.E] proposition 8. 

 Corollary 4. (third characterisation) 

Let an initial segment  of  a  principal  ordinal  number  . Two 

operations in W( ) are the Hessenberg natural operations  if  and only 

if they satisfy the inductive rules p+, p. 

Proof: Direct from lemma 2 and corollary 3.                 Q.E.D. 

§ 2 .The definition of the Hessenberg natural operations with finitary 

free algebras . 

     In this paragraph  we  shall  prove  a  key  result  with respect to the 

Hessenberg natural operations. We  shall  prove that the Hessenberg 



operations are actually free finitary operations definable by the operations 

of the Natural numbers . 

(see [ Graetzer G.] about operations of polynomial symbols ch 1 e.t.c.) 

Proposition 5. Let an initial segment W(ωα) of an ordinal number of type 

ωα. The commutative monoid  W(ωα) relative  to  the  Hessenberg natural 

sum is isomorphic with the commutative free monoid   in  the 

category of commutative monoids . 

  Remark: The free monoid coincides with the polynomial algebra 

of polynomial symbols of the algebra of type (N0,.),in other words of 

commutative monoids with nullary operations the constants of N0. Since 

the  commutative  monoids  is  an  equational  class (variety )  there are 

free commutative monoids  ;(see  [ Graetzer G.]  ch  4 §25 corollary 2 pp 

167 ). 

  Proof: Let us define a function h : W(ωα) by h(x)=ωx for x<α 

and  h(n1x1 +...+nkxk)=n1ω1
x +...+ nkωk

x  for any y=n1x1 +...+ nkxk  

. The operations in the second part of the defining equation of h are the 

Hessenberg natural operations .By the definition of  and the Cantor 

normal form of ordinal numbers in the Hessenberg operations we get that 

the h is 1-1 on-to and homomorphism of abelian monoids .Thus an 

isomorphism of commutative monoids 

.                                                             Q.E.D. 

Remark 6. We deduce from the previous proposition that two initial 

segments W(ωα), W(ωβ) are algebraically isomorphic as commutative 

monoids if and only if (α)= 

 (β), in other words the ordinals α, β have the same cardinality . 

Proposition 7. (Fourth characterisation ) Let an initial segment W( ) 

of a principal ordinal number . The   commutative semiring W( ) 

relative   to   the Hessenberg natural operations is isomorphic with the 

commutative free semiring 

 N0 in the category of commutative semirings  with unit . 

Remark : The free commutative semiring with unit N0 coincides 

with the polynomial algebra of polynomial symbols of the algebrae of type 



(N0,+,.) in other words of the commutative semirings with nullary 

operations the constants of N0. The commutative semirings with unit are 

an equational class thus they have free semirings; 

(see again   [ Graetzer G.]  ch  4 § 25 corollary 2 pp 167 ).The semiring 

N0 is   constructed as the  semigroup  semiring   of   the 

semigroup written  multiplicativelly;(in a way analogous to the 

construction of the semigroup ring of a semigroup ). 

  

  

  

  

  

  

  

Proof: Let us define a function as in the proof of proposition 5 

h2 :N0 W( ) by h2 (x)=ωh(x) for  where the h is as in 

the proof of the proposition 5 h : W(ωα) and the is 

written multiplicatively; y y= n1x1 +...+nkxk   with x1,...,xk  

h(y)= 

. Again by the definition of the N0 and the 

uniqueness of the Cantor normal form in the Hessenberg natural operations 

(see [Kyritsis C.E.] Remark 7,5),b)) we get that the function h is an 

homomorphism of semirings,1-1 and on-to ;thus an isomorphism of 

abelian semigroups with unit .                           Q.E.D. 

 Remark 8.From the previous proposition and the dependence of the free 

semiring N0 , up-to-isomorphism,on the cardinality of the set α, we 

deduce that two initial segments W( ) , W( ) are algebraically 



isomorphic relative to the Hessenberg natural operations  if  and only 

if (α)= (β); n other words if the ordinal numbers α, β are of the same 

cardinality . 
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Abstract 

  In this paper are introduced the ordinal integers ,the ordinal rational 

numbers ,the ordinal real numbers ,the ordinal p-adic numbers ,the ordinal 

complex numbers and  the  ordinal  quaternion numbers .It is also 

introduced the ordinal characteristic of linearly ordered fields. The final 

result of this series of papers shall be that the three different 

techniques  of surreal numbers, of transfinite real numbers  ,of ordinal real 

numbers give by inductive limit or union the same class of numbers known 

already as the class No and that would deserve the name the "infinitary 

totally ordered Newton-Leibniz realm of numbers ". 
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§0 Introduction. This is the third paper of  a series of five papers that have 

as goal the  definition of topological complete linearly ordered fields 

(continuous numbers)  that include the real numbers and are obtained from 

the ordinal numbers in a method analogous to the way that  Cauchy derived 

the real numbers from the natural numbers. We may call them linearly 

ordered Newton-Leibniz numbers. The author initiated and completed 

this  research in the island of Samos in Greece  during 1990-1992 . 

We should not understand that with the current theory we suggest direct 

applications in the physical sciences.  Not at all!  Matter is always finite. 

Actually not even the real numbers are fully appropriate for the physical 

reality because they are based on the infinite too which does not exist in 

mailto:ckiritsi@uoi.gr
mailto:C_kyrisis@yahoo.com


the material reality. This has been described in more detailed by the famous 

Nobel prize winner physicist E. Schrödinger in his book “Science and 

Humanity” (see [ Schrödinger E.  1961]. That is why the author has 

developed the digital or natural real numbers without the infinite with the 

corresponding Euclidean geometry and also Differential and Integral 

calculus, which is logically different from the classical. (See [Kyritsis 

2017] and [Kyritsis 2019]) But the ordinal numbers and the surreal 

numbers reflect more the human consciousness and perceptions rather 

than properties of the physical material reality. Still such a discipline as the 

study of the continuum of the surreal numbers is an excellent spiritual, 

mental and metaphysical meditative practice probably better than many 

other metaphysical spiritual systems. It is certainly an active reminding to 

the scientists that the ontology of the universe is not only the finite matter 

but also the infinite perceptive consciousness.  

 In a communication (1992) that the author had with N.L. Alling and his 

group of researchers on analysis on surreal numbers, suggested the term 

ordinal real numbers instead of surreal numbers. Some years later and 

before the present work appears for publication, it appeared in the 

bibliography conferences aboutreal ordinal numbers .   

In these last three   papers is studied a special 

Hierarchy   of   transcendental   over    the    real    numbers, linearly 

ordered fields that are characterized by the property that they are 

fundamentally (Cauchy ) complete. It shall turn out  that they are 

isomorphic to the transfinite real numbers (see [Glayzal A. (1937)]).The 

author was not  familiar with the 5 pages paper of [ Glayzal A. (1937)] ,and 

his original term was “transfinite real numbers”. When one year later 

(1991) he discovered the  paper by A. Glayzal  ,he changed the term to the 

next closest :”Ordinal Real Numbers” .One more year later he proved that 

the transfinite real numbers ,the surreal numbers and the ordinal real 

numbers were three different techniques leading to isomorphic field of 

numbers. He then suggested (1992) to researchers of surreal numbers, like 

N.L.Alling to use the more casual term “ordinal or transfinite real numbers 

“ for the surreal numbers. In  the  present   work   it   is   introduced a new, 

better, classifying and more natural technique in order to define them. This 

technique I call "free  operations-fundamental  completion". It 

is  actually  the  same  ideas  that  lead  to  the   process   of  construction 

of the real numbers from the natural numbers through fundamental 

(Cauchy) sequenses. In the modern conceptual context of 

the  theory  of  categories  this  may  demand  at   least   three adjunctions 

(see[ MacLane S 1971 ]).It is developed their elementary  theory  which 

belongs to algebra. Their definition uses the Hessenberg operations of the 

ordinal numbers .It may be considered as making use of an infinite 



dimensional K-theory  which  is mainly not created yet. In this first paper 

it is  also  introduced the ordinal characteristic of any linearly ordered field 

.It is  a principal ordinal number, that is of type . These numbers ,as 

defined  with  the  present  technique  of  the  "free operations-

fundamental completion " and prior to the proof that the 

resulting  linearly  ordered  fields  are  isomorphic  to  the transfinite real 

numbers (as in [Glayzal A. (1937)]) ,we shall call  Ordinal  real numbers. 

The  relevancy  with   the   surreal   numbers   and   the non-standard 

(hyper) real numbers ,shall  be  studied  in  a  later paper. In detail, the 

next  Hierarchies  are defined: 

1)  The Ordinal natural numbers, denoted by  Nα .2) 

The  Ordinal  integral numbers, denoted 

by Zα 3)The  Ordinal  rational  numbers,  denoted  by Qα 4)The  Ordin

al  p-adic  numbers, denoted  by  Qα,p 5)The  Ordinal  real numbers, 

denoted by Rα 6)The  Ordinal comlpex numbers, denoted 

by Cα7)The  Ordinal quaternion numbers, denoted by Hα, of 

characteristic α . The fields Qα,p, Rα, Cα, Hα are fundamentaly 

(Cauchy)complete topological fields. 

The   field Rα is also the   unique   maximal    field    of characteristic α ( 

that is, it  is  Hilbert  complete)  ,  and   the unique 

fundamentally  (Cauchy ) complete  field  of  characteristic α. It is also 

a   real  closed  field  ,  according  to  the  theory  of Artin-Schreier . These 

will be proved in the next paper on ordinal real numbers. 

As it is known there are three more techniques and Hierarchies of 

transcendental over the real numbers, linearly ordered fields. Namely (in 

the historical order): The transfinite real numbers (see [Glayzal A. 1937 ]), 

and the surreal numbers (see [Conway J.H (1976) ]). 

In this series of papers, it is proved (among other results ) that all the 

previous three different techniques and Hierarchies give by inductive limit, 

or by union, the same class of numbers (already known as the class No ). 

  

  

  

§ 1. The ordinal characteristic of linearly ordered fields. 

 

     Definition 0. We remind the reader  that 

a  linearly  (totally)   ordered,  double abelian semigroup (semiring 

) M  is  a  set  with  two operations denoted by +,., such that with each one 



of them it is an abelian semigroup. Furthermore the distribution  law 

holds  for multiplication over addition. A linear ordering  is supposed 

defined in M that satisfies  the  following compatibility conditions with the 

two operations 1)  if  x>y,      x'>y' x,x',y,y' M then x+x'>y+y' and 

xx'+yy'>xy'+yx' (The symbol < is used for  and not equal) if M is also a 

monoid relative to the two  operations, and zero is  absorbent  unit for  M, 

M  is called ordered double abelian monoid. (semiring)     

(e.g.The set of natural numbers ,denoted by N). 

          In the next we shall consider  linearly (totally) ordered  fields.( For 

a definition see [Lang S.] ch xi §1 pp 391). 

         Also in  the  next  we  shall  use  ordinal  numbers. (For   a reference 

to  standard  symbolism and   definitions   see   [Kuratowski K.-

Mostowski A. 1968] ch vii, [Cohn P.M. 1965] pp 1-36 ) 

     In the following paragraphs  we  will  not avoid the use of larger 

totalities  than  the  sets  of  the Zermelo-Frankel set theory, namely 

classes. 

          We may suppose that we work in the  Zermelo-Frankel  set theory, 

augmented with axioms for  classes  also, as  is presented for instance in 

bibliography [ Cohn P.M. 1965]  p.1-36  with  axioms A1-A11. Wee 

denote by  Ω1 the class of the ordinal numbers. (The 

last   capital   letter   of   the   Greek   alphabet    with subscript 1). The 

axioms A1-A11 allow for larger entities than sets, to define  algebraic 

fields or integral  domains  or  semi-groups. Hence we will also 

study  classes  that  have  two  algebraic operations (Their Cartesian 

square treated as classes of sets of the form {{x, y}, {x}}, that 

is  of ordered  pairs)  that satisfy the axioms of an algebraic field and have 

a  subclass called the class of positive elements, with properties 1. 2., that 

they define a compatible ordering in the field (again as a class of 

ordered  pairs)  such  classes  that  are  ordered fields we will call again 

ordered fields and if we  want  to discriminate them from set-fields, 

especially when  they  are classes that are not sets, we will write for 

them  that  they are  c-fields  similarly  we  write  c-integral   domains  or 

c-semigroups. We must not confuse the term "c-field" with the term "class-

field" of  the  ordinary  set-fields  of  "class-fields  theory" (see  [ Van der 

Waerden B.L 1970],  [Artin E.-Tate J. 1967]). A   subset (or  subclass) 

denoted by X  F of a linearly ordered field F, is said to be cofinal with F, 

if for every a  F there is a b X with ab. 

    Definition 4. The ordinal characteristic is essentially a measurement of 

the size of a linearly ordered commutative field with a semi-ring of Ordinal 

natural numbers (Hessenberg natural commutative operations in the 



ordinal numbers, as developed in the two previous papers-sections). We 

embed systems of ordinal natural numbers in a linearly ordered field, so 

that not “gaps” exist. There is always a minimal such system the natural 

numbers themselves.  The definition of the ordinal characteristic of such 

ordinal natural numbers (See Definition 6 below) is always the supremum 

of the ordinals which are contained in it, and it is a principal ordinal 

numbers as we have described in the previous paper-section. Then we 

embed with monomorphisms and with 1-1 functions , such semi-rings of 

ordinal natural numbers in a linearly ordered commutative field so that the 

0 and 1 of the ordinal real numbers goes to the 0, 1 of the linearly ordered 

field and there are no “gaps”, in other words the image is the minimal such 

possible set in the linearly ordered field. All such possible monomorphic 

with no gaps in a linearly ordered field, which is a set, give a set of 

corresponding ordinal characteristics of such semi-rings of ordinal natural 

numbers which is upper bounded, because of the cardinal and 

corresponding ordinal of the set and linearly ordered field. Thus as such 

ordinal are a subset of a well ordered set of ordinals it holds the supremum 

property, and there is such a supremum ordinal. Since also such a maximal 

embedding is also a semi-ring of ordinal natural numbers, this supremum 

is also a principal ordinal number which exist and its unique, it measures 

the size of the linearly ordered field and  we call the it its ordinal 

characteristic. We say that the field (or integral domain  or  double abelian 

monoid ) F is of characteristic α and we shall write charF = α. 

          If F is a c-field we include the case  of characteristic Ω1 and we write 

charF = Ω1 if all ordinals contained in F is the class Ω1 and also it is a 

cofinal subclass with F. 

  

     Remark . In the case of a set-field F with  α  =  charF,  we do not need 

to suppose that the subset of elements of F corresponding to the ordinal in 

α by the definition 1 (it always exists ,by making use of the  definition by 

transfinite induction and its version that uses only  a  set of functions 

sufficient for an inductive  rule), see  appendix A), is cofinal with F, as this 

is a consequence of the definition. For, if there is an element  with 

β<X0 for  every  ordinal number β with βa, then the set α{X0} can 

be  extended , with the field operations ,to its closure  in the natural 

Hessenberg operations (a semiring) (see  [Kyritsis C. Alt] ) and  it becomes 

similar to an  initial segment of a principal  ordinal number   Thus α+1 is 

an ordinal contained in F, contradiction with  the definition of a . 

By the previous definitions we realize that  every  linearly ordered set-field 

has characteristic which is  a  limit ordinal number. 



          The  fact  that  the  linearly  ordered  field   F   has characteristic ω 

(the least infinite ordinal)  is  equivalent with the statement that the field F 

is Archimedean. 

     In the followings when we will work  on  a  linearly  ordered field 

denoted by F of ordinal characteristic α, α=charF  (or Ω1= charF) we will 

supposed that is fixed  an  embedding  of the ordinal numbers of the initial 

segment w(α) in the set  F (or of  Ω1 in F). 

     If the characteristic is ω, the embedding is obviously  unique as it can 

be proved by finite induction. 

     Remark.5 Let a linearly ordered field denoted by F .Obviously there is 

an extension which is  a real field .Let us denote by R(F) the real closure 

of F .(For  results of the theory of Artin-Schreir  on real and real closed 

fields see e.g.[ Lang S. 1984] ch xi .or [Artin E.-Shreier O. 1927]) 

Since  R(F) can be obtained by adjunction of the square roots of the 

positive elements of F and Zorn's Lemma on  algebraic extensions 

see[Lang S. 1984] ch i proposition 2.10 theorem 2.11  pp 397), it is direct 

that the characteristic of the real closure R(F) is  the same with that of F. 

     For  the  definitions  of the 

terms infinite,  finite, infinitesimal elements  in an extension of such 

fields, see e.g.[ Lang S] ch xi paragraph 1 pp 391, the definitions can be 

given relative to  extensions of any linearly ordered field to an other 

linearly ordered field ,and not only extensions  of the real numbers. 

§2     The ordinal natural numbers N . The ordinal- integers Z . 

          Let w(α) a principal initial segment of ordinal numbers. Let us 

denote by + and . the  Hessenberg's  natural  sum  and product in w(α). 

They satisfy properties 0.1.2.3.4.5.6. after lemma 1  in §1  in [ Kyritsis 

C.1991 Alter] 

Definition 6. The set w(α)=α   where  for some  ordinal x, is an 

abelian double monoid  relative  to  sum and product and furthermore it 

satisfies the  cancellation  low  (see  [ Kyritsis C. 1991 Alter] lemma 1 

).This set I call the (double abelian) monoid of ordinal natural numbers  of 

characteristic a and I denote it by Nα. Thus Nα =α. 

     Remark 7. It is obvious that the (double abelian, well ordered ) monoid 

Nα, is  the minimal  such  monoid  of  characteristic   α and the embedding 

of the ordinal numbers of W(α) in it is unique . Furthermore it can be 

proved by transfinite induction that it is a unique factorization 

monoid (called simply factorial monoid also). 

     The   additive cancellation low in α   has as  a  consequence that 

α  is  monomorphicaly  embedded  in  its  Grothendieck 



group  denoted  by  k(α)  (see [Lang S. 1984]  Ch.1  §9 p. 44). 

Furthermore the Grochendieck group k(Nα) can be ordered  by defining the 

set of positive elements k(α)+= {v/v  =  (x,y) with x,y  w(α) and x > y }. 

We remind the reader  that if we  denote  by Fab(α) the free abelian group 

generated by α, and  by ((x+y)-x-y) the normal 

subgroup  of  Fab(α)  generated  by elements of the form (x+y)-x-y, 

then               

          By (x,y) we denote the equivalence class that is defined in Fab(α) in 

the process  of  taking  the  quotient  group Fab(α)/((x+y)-x-y) by the 

representative x+(-y). 

 The first part of property 6. (lemma 1  in  [Kyritsis C.1991 Alter]) 

guarantees that this ordering in k(α) restricted on  α  coincides with the 

usual ordering of ordinal numbers. 

Definition 8. The ordered Grothendieck group  k(α)  of  an  initial 

segment of ordinals  relative to natural  sum, we call transfinite cyclic 

group of exponent α and we  denote it by Γα. (by [Kuratowski K. Mostowski 

A. 1968] ch vii §7 pp 252-253 exercises 1.2.3.the ordinal α has to be of the 

type ωx. If the ordinal α is principal then I denote it also by Zα). 

          Every element of  the  group  Zα is  represented  as  a difference x-y 

with x,y w(α). Then we define multiplication in Zα by  the  rule 

 (*)  (x-y).(x'-y')=(x.x'+y.y')-(xy'+x'y) 

where sum and product are the  natural  sum  and  product  in w(α). This 

makes Zα a commutative ring with unit (the element 1). 

          If (x-y)(x'-y') = 0 and both (x-y), (x'-y') are not zero, we get by 

property 6 in lemma 1 in [Kyritsis C. 1991Alter] that xx'+yy'  xy'+yx' or 

(x-y)(x'-y')  0, contradiction. Then one of 

(x-y), (x'-y') is zero that  is the ring Zα has no divisors of zero 

and  it  is  an  integral domain. Remembering that Zα
+ = {v|v Zα and v = 

(x,+y) with x,y w(α)  x  >  y},  by property  6 lemma 1 in [ Kyritsis C. 

1991 Alter],  we get  that  the  sum  and product of elements of Zα
+ are 

again elements  of  Zα
+.  From all these we get: 

Lemma 9. The ring Zα is a linearly ordered  integral  domain of 

characteristic the principal ordinal α (see § 1 Def.1).The set Zα
+ is a 

linearly ordered double abelian monoid and Zα
+Nα 

Definition 10 . The integral  domain  Zα I  call ordinal  integers of 

characteric α . 



The integral domain Zα of characteristic  α  has  minimality relative to its 

property  of being an integral domain of characteristic α, in the following 

sense: Every integral domain of characteristic α contains a monomorphic 

image of Zα. 

Theorem 11  (Minimality). 

Every  integral domain 

Zα is  minimal  integral  domain  of  characteristic  α.  That is 

every  integral   domain   of characteristic  α, contains   a monomorphic 

image of Zα. 

Proof. Put Rα an integral domain of characteristic α, where α is a principal 

ordinal number ( ). 

Then the initial  segment  w(α)  is  contained  in  Rα (more precisely an 

order preserving image of w(α)).  The  principal initial segment is closed 

to the integral  domain  operations and by theorem 13,14 of [ Kyritsis C. 

1991 Alter],  they coincide with the natural sum and product of 

Hessenberg. Then, applying the construction of this paragraph for the 

integral-domain Zα, we remain  inside  the integral-domain Rα, that is 

ZαRα. This proves the minimality. 

Remark 12. The ordinal integers are  semigroup-rings of quotient monoids 

of semigroups that are used to define as semigroup-rings  the hierarchy of 

integral domains of the transfinite  integers  (see  [Gleyzal A. 

1937]  pp  586).I  use  the term hierarchy not only as a well ordered 

sequence but also as a net (thus partially ordered ). The transfinite real 

numbers are thus  an  hierarchy. 

The   transfinite   integers over   the  order-type λ symbolised by Z(λ), is 

the semigroup-ring (also module Z-

algebra   and   integral   domain)   of    the    linearly ordered 

monoid  , where  is the coproduct, or direct sum denoted 

also  by ,  of a family of isomorphic copies of  N with  set of indices 

the order-type λ. Thus Z(λ) =Z[ ]. Thus any ring of  polynomials of a 

linearly ordered set of variables with integer coefficients is an integral 

domain of transfinite integers and conversely. It can be proved 

with  the  axiom  of  choice  and transfinite induction , as in  the  case  of 

finite  set  of  variables,  that Z(λ)  is  a  unique  factorization 

domain .  On  the other hand the Cantor normal form in the Hessenberg 

operations of the ordinal numbers (see lemma 6 in [Kyritsis C. 1991 Alter]) 

gives that any element x of Zα is of the 



form  xi are ordinals with x1>...>xn. 

The ordinal powers of ω in Zα is an abelian well ordered monoid (see e.g. 

[Neumann B.H. 1949] §2 pp 204-205) of ordinal characteristic β=ωx , 

if . Let us denote it by Mβ. Actually Mβ=β. Let us denote by 

, or simply by λα the order type of the  Archimedean equivalent classes of 

Mβ. Then we get by the Cantor normal form that Zα =Z [Mβ] (The 

semigroup ring of Mβ). The monoid Mβ can be obtained as quotient monoid 

of the free abelian multiplicative  monoid of λα variables, which is the 

monoid  . 

 But Z [ ]=Z(λα), which  was  the assertion to  be  proved. 

Remark 13 The equation  gives an alternative, simpler 

definition of the  ordinal integers without the use of the Hessenberg 

multiplication, since the ordinal powers of ω coincide n the abelian 

Hessenberg operations and the usual ordinal operations (see [Kyritsis 

C.1991 Alter] Remark 7.5) ) and without the use of the Grothentick group 

.The monoid Mx  is defined as the initial segment W(ωx) (or simply as the 

ordinal ωx) in the Hessenberg addition . 

  

§3   The  definition  of  the  fields  Qα, Rα, Cα, Hα. 

In this  paragraph, I  shall  introduce  the  hierarchies  of fields of ordinal 

rational ,real, complex ,quaternion numbers. These hierarchies give the 

unification of the other three techniques and hierarchies, namely of the 

transfinite real numbers,  of  the  surreal  numbers. 

Furthermore   we  introduced the   hierarchies   of    transfinite complex 

and transfinite quaternion numbers. 

Definition 14. The localization (field of  quotients)  of  the integral 

domain Zα, I  will denote by Qα  and  I  will  call ordinal  rational 

numbers (of characteristic α)  (see [Lang S. 1984] ChII §3). 

Remark. Since we have that cancellation low holds,  we  do  not have to 

use the Malcev-Neuman theorem (see  [Cohn P.M. 1965]  Ch  VII  §3. 

Theorem 3.8). We define as set of positive element of Qα the 

set . It  is elementary in algebra 

that if the integral domain is linearly ordered then also its field of quotients 

(localization)  with the previous definition for its set of positive 

elements,  is a linearly ordered field with the restriction of its ordering on 



the integral domain to coincide with the ordering  of  the 

integral  domain.  Obviously  the  ordinals  of  the  initial segment of w(α) 

are contained in Zα and also in Qα. By a direct argument, holds also that the 

characteristic of Qα is a: Char Qα = α. 

      Remark From the construction of Qα we infer easily that (Qα) 

=  (α) and if α < β where α, β are two principal ordinals then QαQβ. The 

converse obviously holds. 

Lemma 15. Every element  x  of  the field  Qα is of the 

form   where αi, βj  w(α) 

and  α1>α2>...>αn0,  β1>β2>...>βm0  and ai, bj  for i = 1,...,n, j = 1,...,m 

are finite integers. 

Proof.  Direct  from  the  definition  of  localization   and lemma 6 in 

[ Kyritsis C. 1991Alter]. 

Theorem 17. (Minimality) 

The field Qα is a minimal field of characteristic α, in the sense that every 

field of  characteristic  α,  contains  the field  Qα (more precisely an order 

preserving monomorphic image of Qα). 

Remark. This property is already obvious  for  the  field  of rational 

numbers, that in the  statement  of  Theorem  17  is denoted by Qω. 

Proof. Let a field of characteristic α, that we denote by Fα. Then 

the  principal  initial  segment  w(α)  of  ordinals  is contained in Fα and 

the field-inherited operations  coincide with the natural sum and product of 

Hessenberg  (see  theorem 14 in [ Kyritsis C. 1991 Alter]). Then 

constructing  first  the  integral  domain Zα  and afterwards its localization 

Qα we always remain in the  field Fα. 

          Thus Qα  Fα (or more precisely h(Qα)  Fα where h is  a order-

preserving monomorphism of Qα in to Fα)                  Q.E.D. 

Definition  18.  The  (strong)  Cauchy  completion   of   the topological 

field Qα we denote by Rα and I  call  ordinal real numbers of characteristic 

α. 

Remark.The process of extensions ,beginning with a principal initial 

ordinal α=Nα which is  the  minimal  double, abelian monoid of 

characteristic  α,  and ending  with  the  field  Rα which is the maximal 

field of characteristic α ,we call K-fundamental densification . 

Lemma 19. The  characteristic of the (strong) Cauchy completion of a 

linearly ordered field F ,is the same with that of the field F. 



Proof. If the characteristic ofthe field is α, let us denote it by Fα, and its 

completion by . Obviously the characteristic of is not less than α. 

Suppose that  there  is  an  ordinal  β  with α < β which  is contained in 

(see Definition 1). Then there  is  a  Cauchy net {xi|i  I} of elements of 

Fα that converges  to . Let ε  Fα 0<ε<1, then there is i0  I 

such that for every i  I i  i0 

xi  (b-ε, b+ε) . But this gives an element of Fα greater than α, hence than 

every element of Fα, which is a contradiction. Thus Char Rα = 

α.                               Q.E.D. 

Corollary 20. The characteristic of Rα is α . 

From the definition of Rα we infer that  (Rα)  2(α) and that 

α<β  Rα  Rβ for two principal ordinals denoted  by α, β. 

Remark.21 We denote by R(λ) the transfinite real numbers of order-base 

λ . It holds by  definition that R(λ)=R((LRλ)), where LRλ is the 

lexicographic product of a family of isomorphic copies of the real numbers 

R ,with set of indices the order-type λ. 

Remark . It is said that a field  F has formal power series representation, 

if there is a formal power series ring R((G)) and a ideal I of it such that F 

has a monomorphic  image in R((G))/I .From the universal embedding 

property of the hierarchy of transfinite real numbers we get that every 

linearly ordered  field has formal power series representation .Thus: 

Corollary 22. The fields of ordinal real numbers R, have formal power 

series representation ,with real coefficients. 

Definition 23 The field  Cα =  Rα[i] I call  ordinal  complex numbers  of 

characteristic α. 

Definition 24.  The    field   C(λ)= R(λ)[i] we call transfinite  complex 

numbers of base-order λ. Actually it is the field C(λ)=C((LRλ)) . 

Definition 25. The quaternion extension field  of  the  field Rα (or of Cα) by 

the units i, j, k with i2 = j2 = k2 = ijk =  -1, I call the ordinal quaternion 

numbers of characteristic α and  I  denote them  by  Hα .  They  are  non-

commutative  fields (following the terminology e.g. of A.Weil in [ Weil A. 

1967]) that  are transcendental extension of the non-

commutative  field  H  of quaternion numbers. 

Definition 26 . The formal power series fields H(λ)=H((LRλ)) we 

call transfinite quaternion numbers of base-order λ. 



For a proof that H((LRλ)) is a (non commutative ) field see [Neumann 

B.H.1949] part I. 

§4 The ordinal p-adic numbers Qα,p . 

      As it is known  if F is a linearly ordered field ,and K a linearly ordered 

subfield of the real numbers and FK  is an extension respecting  the 

ordering, then this extension defines the order-valuation (see [N.L.Alling 

1987] ch 6 § 6.00 pp 207) .Actually every extension of any two linearly 

ordered fields  F, K, KF, respecting the ordering, defines a place, thus a 

valuation v. (I use the place and valuation as  are defined e.g. by O.Zariski 

in [Zariski O.-. Samuel P.1958] vol ii ch vi §2, §8.and not as are defined 

by A.Weil  in [Weil A. 1967] ch iii  or  by v.der Waerden in [Van der 

Waerden B.L. 1970] vol ii ch 18 .The definition of Zariski is equivalent 

with the definition of v.der Waerden only for the non Archimedean 

valuations of the latter). 

The place-ring is the Fν ={x/x  F and there are a, b K with a<x<b }. The 

maximal ideal of the place (or valuation v ) is the ideal of infinitesimals of 

K relative to F. 

This valuation  we  call  extension - valuation  (and the corresponding 

place extension - place) It  has as special case the order valuation .The rank 

of the extension- place (see [Zariski O.-. Samuel P.1958] vol.II §3 pp 9) 

we call the rank of the extension .If char(F)>char(K) then the extension is 

transcendental ,and has transcendental degree and basis ;the latter is to be 

found in the ideal of infinitesimals or in the set of infinite elements . 

Definition 27 . 

          Let F a field of ordinal characteristic. Let R a subring of F that has 

F as its field of  quotients.  Let  p  a  prime ideal of R, such that the triple 

(pRp, Rp, F) where Rp  is the localization of R at p, defines a place of 

F.  Such  a  place (or valuation denoted by vp) I call p-adic of the field F. 

In  the  valuation topology of the valuation vp, that has a local base of 

zero  the ideals of R ) the field F is a topological field and the (strong) 

Cauchy completion I denote by Fp, it is a (topological field )  and I  call  p-

adic extension field of F. 

Definition 28. For F=Qa and R=Za in the previous definition 

the   field   Qα,p I   call   ordinal p-adic numbers    of characteristic α. 

Final  remark  .Using  inductive  limit  ,or  union  of   the elements of the 

hierarchies of the previous ordinal and transfinite number systems, we get 

corresponding classes of numbers .The classes of ordinal natural, integer, 

rational, real, complex, quaternion numbers denoted respectively by Ω1, 

(or On ), Ω1Z, Ω1Q, Ω1R, Ω1C, Ω1H. 



And the classes of transfinite integer, rational, real, complex, quaternion 

numbers denoted respectively by: 

     CZ, CQ, CR, CC, CH. 
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     List of special symbols 

     ω           :  Small Greek letter omega,  the  first  infinit number. 

  

     α, β        :  Small Greek letter alfa, an ordinal. 

       Ordinal alpha α equal to omega in the power of omega in the 

power of x       

  

      Ω0         :  Capital   Greek   letter   omega   with    the superscript zero. 

  

     Fa          :  Capital letter with superscript  a.  The of algebraic elements 

of a field F. 

  

     char F      :  The characteristic of a field denoted by F. 

  

                :  Equiralence relation of Commensurateness. 

  

     ~           :  Equiralence relation of comparability. 

  

     tr.d.(x) :  The transcendance degree initial of  words tr.(anscendance) 

and d.(egree). 



  

     N(x)     :  Aleph of x, the cardinality of the set X. N: the fisrt capital 

letter of the Hebrew alfabet. 

cf(X)=cf(Y) :  The sets x and Y are cofinal. 

  

    W(α)        :  Initial segment of  ordinal  naumbers  defined by the 

ordinal number a. 

  

            :  Natural sum and product of G. Hessenberg plus and point in 

parenthesis. 

  

     Nα,Zα,Qα,Rα,:  Double-lined  capital  letters  with subscript small 

Greek letters 

     Cα,Hα           namely transfinite positive integers, intergals, rationals 

reats, complex and quatenion numbers. 

  

     Zα1
*ω      :  The dual lually compact abelian groups of  the transfinite 

integers Za. The capital letter  Z double-lined wiuth 

subscripts two  Greek  let-α (alpha) and ω (omega) and 

superscript a star 

  

     Tα          :  Transfinite circle groups:  Capital  letter  T with subscript a 

small Greek letter. 

  

     *X, *R et.c  :  A non-standard enlergement  structure  capital letter X 

with left superscript a star. 

  

     ξNo         :  A sureal number field of  characteristic  ξ. A small Greek 

letter followed by the symbol No. 

  

     C,RC*R,No   :  The c-structures  (classes)  previous  symbols 

following the capital 

     CN,CZ,CQ,.     latin letter C 

     CC,CH 



                :  Strong Canchy  competition  of  a  topological space capital 

letter with cap. 

  

     Σ             :  Capital Greek letter sigma symbol for summation. 

  

            :  The open full-linary tree of leight a. Capital latin D with 

subscript a  small  Greek  letter and in upper place a small 

zero. 

The ordinal real numbers 1. The ordinal characteristic. 

  

APPENTIX A. 

A MORE EFFECTIVE FORM OF DEFINITION BY TRANSFINITE 

INDUCTION. 

1.Given a set Z and an ordinal α, let Φ   be a set of ξ-sequences with the 

properties: 

a) If f belongs to Φ then f/W(ξ) belongs to Φ for every ξ <= domain of  f. 

b) For every ξ<α there is at least one f belonging to Φ    with 

ξ=w(ξ)=domain(f)    and values belonging to Ζ. 

c)If fξ is an α-sequence of ξ-sequences of Φ such that whenever γ<ξ1 

, ξ2 <α ,  fξ1 /w(γ) = fξ2 /w(γ) ;then the α-sequence cα (ξ)=fξ (ξ), belongs to 

Φ  also. 

For each function h in ZΦ, there is one and only one transfinite sequence f 

defined on ξ<=α,  

f in Φ and such that f(ξ)=h[f/w(ξ)] for every ξ<=α . 

The function h is called a recursive rule for Φ. The set Φ with the 

properties a). b), c), is called ,sufficient  for recursive rules. 

Proof: Not much different than the ordinary form of definition by 

transfinite induction. 

  

  

  

  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ORDINAL REAL  NUMBERS  2. The “Cartesian” arithmetization 

of  order  types . 
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Abstract 

      In this paper the main results are :Proofs that the ordinal real numbers 

are real closed fields and complete up-to-characteristic .They are also 

Dedekind ,and Archemedean complete fields .They are real formal power 

series fields and Pythagorean     complete fields It   is proved   and 

discussed   the K-fundamental arithmetisation 

and  the   binary   arithmetisation   of   the order  types . 

Key words:Real closed commutative fields,Grothendick 

group,Archemidean complete fields,linearly ordered commutative 

fields,full binary trees 

Subject Classification of AMS 03,04,08,13,46 

 

                                                                                               

§0 Introduction .   

The author initiated and completed this  research in the island of Samos in 

Greece  during 1990-1992. 

We should not understand that with the current theory we suggest direct 

applications in the physical sciences.  Not at all!  Matter is always finite. 

Actually not even the real numbers are fully appropriate for the physical 

reality because they are based on the infinite too which does not exist in 

the material reality. This has been described in more detailed by the famous 

Nobel prize winner physicist E. Schrödinger in his book “Science and 

Humanity” (see [ Schrödinger E.  1961]. That is why the author has 

developed the digital or natural real numbers without the infinite with the 

corresponding Euclidean geometry and also Differential and Integral 

calculus, which is logically different from the classical. (See [Kyritsis 

2017] and [Kyritsis 2019]) But the ordinal numbers and the surreal 

numbers reflect more the human consciousness and perceptions rather 

than properties of the physical material reality. Still such a discipline as the 

study of the continuum of the surreal numbers is an excellent spiritual, 

mental and metaphysical meditative practice probably better than many 

mailto:ckiritsi@uoi.gr
mailto:C_kyrisis@yahoo.com


other metaphysical spiritual systems. It is certainly an active reminding to 

the scientists that the ontology of the universe is not only the finite matter 

but also the infinite perceptive consciousness.  

In this second paper on ordinal real numbers are proved, the main 

(elementary) properties of them. It is proved that the ordinal real numbers 

Rα of characteristic α, is the maximal field of characteristic α (maximality) 

and that it is , according  to the theory of Artin-Screier, a real closedfield. 

(It turned out ,after the work was  completed and by thinking aside, that 

they are also  Archimedean complete (see [ Glayzal A. 1937]),formal 

power series fields with real coefficients ,Dedekind complete (see 

[Massaza,Carla 1971]),  and Pythagorean fields ). 

It is also proved a classification theorem which is analogous to the Hölder 

theorem for the Archimedean linearly ordered fields.In particular it is 

proved  that  any  linearly  ordered  field  of 

characteristic  α contains   the   field   Qα of   ordinal 

rational   numbers    of characteristic α, as a dense subfield and it is 

contained in the field Rα of ordinal real numbers of characteristic α, as a 

subfield ..As it is known, the linear segments of elementary euclidean 

geometry can be defined as special order-types with Archimedean 

property, and Archimedean (Hilbert) completness through axioms (see e.g. 

for a not ancient approach  the Hilbert axiomatisation in [ Hilbert D.1977] 

ch 1 ).It  can  be proved  to be order isomorphic with subsets of the real 

number field R. This is well-known and it can be called, the elementary 

arithmetisation  of the order-types of Euclidean linear segments. On this 

fact is based the Cartesian idea of analytic geometry. This was an important 

turning point in the developments of the ideas and techniques of 

mathematics, of the discrete nature  of numbers and continuous nature of 

geometry. The basic principle is that the continuum is developed from the 

discrete and not vice versa! An instance of this principle is the 

development of images and animation in computers through pixels and 

bits! It is surprising that in one of the consequences of the theory of ordinal 

real numbers, it is proved a far more advanced and complete result for the 

whole category of order types that has as corollary the previous important 

and elementary arithmetisation. Although more advanced, the result 

remains in the context of elementary theory of ordinal real numbers .In this 

result any order type can be “discretised” or “arithmetised” through the 

ordinal numbers. 

The process of  definition  of  the  maximal  fields  Rα, from  the minimal 

(double well ordered ) monoids Nα =α, of principal ordinal numbers, we 

call K- fundamental densification. It is proved that any order-type is order 

isomorphic to a subset of some field Rα. Thus any order-type is constuctible 

by K-fundamental densification from ordinal numbers .This is  called 



the  K-arithmetisation of the  order-types. Although  in  the  way   it   is 

presented, this result  is softly obtained, throws new light to the relation of 

ordinal numbers and order-types ,this relation turns out to be similar to the 

elementary relation of  numbers and line segments in geometry. 

Also  it,  holds  a  second  kind  of  arithmetisation  ,the  binary  arithmeti

sation which we state in the same paragraph . 

 §1   On the topology of linearly ordered fields. Local deepness, α-

sequences. 

The ordering of any linearly  ordered  field  F  defines a well known 

topology : the  order-topology denoted by T<; In this topology, as it is 

known, the field F is a topological field. 

This topology has very good separation properties;  it  is  a T1-T5 topology, 

that is a completely normal topology (see for instance [ Lynn A.Steen-

Seebach J.A. Jr 1970] § 39 p. 66-68, also see [ Munkress J.R. 

1975]  Chapters  I,  II) 

The previously  described  order  topology is  also  called 

the  locally  convex  topology compatible with the order (see [Nachbin L. 

1976] Ch I, II).  (The convexity defined by the order). 

Definition 1. Let X be a topological space. Let p X. The  least 

ordinal α such that it exists a (local) base denoted by  Bp of open 

neighbourhoods of the point p which is an  α-sequence such that if x<y<α, 

Ux  Uy, is called local deepness of X  at p. 

We notice that the concept of local deepness is very close to the concept 

of local weight of  a  topological  space,  where instead of ordinal we 

have  an  initial  ordinal  that  is  a cardinal number (see [Kuratowski K. 

1966] V-I p. 53-54). 

Examples of topological spaces such that every point has local deepness, 

are the ξ*-uniform topological spaces as they are defined in [Cohen 

L.W.Goffman C. 1949] pp 66 conditions 1.2.3.4. 

As in the case of fields that  are  classes,  we  may  permit topological 

spaces that are classes and the open  sets  is  a class of subclasses closed to 

union and finite  intersection. For such spaces, the local deepness may 

be   Ω1 that  is  the class of all ordinal numbers. 

Proposition 2. Let X a topological  space  and  α,  a  limit ordinal such 

that every point has local-deepness α  let  AX. It holds 

that  there  is  an  β-sequence  {xs|s<β}  from elements of A such 

that . In other words  topological convergence 

in  X  can  be  treated  with  β-sequences  where β=car(α) is the upper 

character of α (see  [N.L.Alling 1987]  ch  1 §1.30  pp 29) 



The proof is almost direct and to save space we shall not give it here. 

Proposition  3.  Let  a  field  denoted  by  F  of   ordinal characteristic α, 

where α is  a  limit  ordinal.  Then  every point x F in the order-topology 

has local-deepness car(α), 

where  car(α)  is  the  upper  character  of  α   (see   [ N.L.Alling 1987] ch 

1 §1.30  pp 29 ). 

The proof is again direct and outside the scope of the paper. 

Corollary 4. Convergence in the order-topology of a field of ordinal 

characteristic α, can be treated with β-sequences βcar(α) 

          Needless  to  say,  that  in  the  case  in   which   the 

topological   space is a class and the local deepness is  Ω1, then 

convergence can  be treated with  Ω1-sequences. 

 §2 The Holder- type  classification . 

Lemma 5. In every field of characteristic the field Qα  is a dense subset. 

Proof. Let a field of characteristic α, which  we  denote  by Fα. By the 

theorem 17 of [Kyritsis C. OR1] the field Qα is a subfield of Fα. Let us 

suppose that  it is not dense in Fα. Then  there  are  two elements 

x,y  Fα x<y , such that there is no 

element  of  Qα in  the  internal  [x,y].  Then  the  element  z  =  y-x   is 

Qα-infinitesimal. 

This holds because 

where 

similarly. But by the 

hypothesis and every 

element of Qα can be  written as r2-r1 where r2  (y) and r1  

(x).  Also  we  have  that 0<y-x<r2-r1. Then y-x is a  Qα-

infinitesimal  and   is  a Qα-infinite element of Fα, thus   >α, 

contradiction since Char Fα = α. 

Then there are not two element y,x  Fα x<y with  no  element of Qα in 

[x,y], and Qα is dense in Fα. Q E D 

Remark. Thus every field Fα of characteristic  α  is  a  Weil completion of 

the field Qα of  ordinal   rational  numbers (see [ Weil A.] ChIII Definition 

2 but applied not only  to  local fields). 

Theorem 6 (Maximality or completness up-to-characteristic ). 

          The field Rα is the maximal field, of characteristic  α. In the sense 

that every field of characteristic α is contained as  subfield of Rα (more 



precisely Rαcontains an order  preserving  monomorphic image of the 

field).The field Rα is the unique fundamentally complete field of 

characteristic α. 

Remark. This theorem is analogous to the  well-known  Holders theorem 

theorem ςηιψη στατες that every linearly ordered Archimedean field 

is  a  subfield of the field of real numbers.  In other words the field of  real 

numbers is the maximal Archimedean linearly ordered  field. The previous 

property of the ordinal real numbers Rα relative to their characteristic ,we 

call maximality or completness up-to  characteristic . 

But as an erroneous application  of  terms  R   is  also  the minimal Cauchy 

complete field of characteristic    and  this also applies for the fields 

Rα in the sense that a completion of a linearly ordered field of 

characteristic α  must be the field Rα . 

Proof. Let any field of ordinal characteristic α  denoted  by Fα. By theorem 

17 of [ Kyritsis C. 1991], the field Qα is contained in Fα: QαFα. Let x

 Fα. Let (L(x), R(x)) be the cut that x  defines on Qα (L(x) = 

{v|v  Qα v<x}, R(x) = {v|v  Qα x<v}).  Since Qα is dense in 

Fα (Lemma 5). There is  a Cauchy  α-sequence {xn|n w(α)} of elements 

of Qα that converges in Fα to x  (all topologies are the order-topologies). 

Hence QαFαRα  and the field Rα is a maximal field of 

characteristic α ;  but  also  the  field  Rα is actually a minimal   Cauchy 

complete  field  of characteristic α  in  the  sense  that 

the  (strong) Cauchy completion  of any field Fα of 

characteristic  α  contains the field  Rα:QαFα has as a concequence that 

Rα . Thus  if Fα  is complete then RαFα, FαRα  hence Fα =Rα   Q.E.D. 

The theory of Artin-Schreier of real closed fields has an excellant 

application  to the ordinal real numbers . 

Corollary 7. The fields of ordinal real numbers  Rα are  real closed fields. 

Proof.  Direct  from  Theorem  6 , and  remark 5 of [ Kyritsis 

C.1991]      Q.E.D. 

 Post written Remark A. The author developed the theory of ordinal real 

numbers during 1990-1992 He had used the name “transfinite real 

numbers” without being aware that this term had been introduced by 

A.Glayzal during 1937 for his theory of linearly ordered fields. From the 

moment he fell upon the work of A.Glayzal (see [ Glayzal A. 1937 ])  in 

the bibliography of the Book of N.L alling (see [N.L.Alling 1987 ] ) he 

changed the title to “Ordinal Real Numbers” . After the work had 

been  completed ,the author realised , 

by  thinking  aside,  a  quite  unexpected and not unhappy fact :That the 



fields of ordinal real numbers are algebraically and order isomorphic to 

the   fields of transfinite real numbers of Galyzal  .This can be deduced by 

the fact that the fields of transfinite real numbers are exactly all the 

Archemidean complete fields (see [Glayzal A. 1937] theorems 4,8,9) and 

by the maximality of the ordinal real numbers (theorem 6). Thus if Rα is a 

field of ordinal real numbers of  characterisic  α, 

any  Archemidean  (linearly ordered  field  ) extension of it ,it shall have 

the same characteristic with Rα. It seems that it can be proved , that any 

cofinal (coterminal) linearly ordered field extension ,is  of  the same 

characteristic . By the maximality of Rα (theorem 6) it shall have to 

coinside with  Rα. In other words the fields of ordinal real numbers are 

Archemidean complete fields (although they may be non-Archemidean 

).But this is a characteristic property of the fields of transfinite real 

numbersb of Glayzal. 

Thus they are order and field isomorphic with fields of transfinite real 

numbers .Conversely ,let any  field  R(λ)  of  transfinite  real 

numbers  of Archemidean base  λ. Let  us  denote   by   α   its ordinal 

characteristic .Let us suppose  that  there  is  an order and  field extension 

of it with the same characteristic .Then it has to be an Archemidean 

extension of R(λ). By the Archemidean completness of the transfinite real 

numbers ,it has to coinside with the R(λ). Thus the transfinite real numbers 

are also complete up-to-characteristic . 

But this is a characteristic property of the fields of the ordinal real 

numbers.Hence they are order and  field  isomorphic  with  fields  of 

ordinal  real  numbers  .Thus  the ordinal  real  numbers  should   be 

considered as a different technique ,nevertheless indispensable and more 

far reaching .It is the technique  that  everyone  would  like  to work. 

Post written Remark B .Let  a  field  Rα of  ordinal  real  numbers  of 

ordinal characteristic α. It is also a field  of  transfinite  real numbers of 

archemidean base  λ. The  set  of  all  elements  of  Rα that as formal 

power series have support of  ordinality  less  than  βo(λ)=maximum 

ordinality of well ordered set of λ, and which we denote 

by Rα,β is a field ,subfield of Rα .Indeed Rα,ο(λ) =Rα. For  the 

applications  and  especially  with   measurment proceeses ,the fields 

Rα,ω are of prime interest and indispensable . 

Post written remark C .The  facts of the previous remark ,have as a 

concequence that the fields of ordinal real numbers are formal power 

series  fields  with  coefficients  in  the  real  numbers  and exponents in 

some order types.Thus the n-roots of their positive elements are contained 

in them (see [Neumann B.H. 1949] pp 211 ,4.91 Corollary).In other 

words  they are Pythagorean complete fields. 



     Theorem 8. (The Holder-type classification theorem). 

     Every field of ordinal characteristic α, denoted by Fα (where α is a 

principal ordinal) is contained between the fields  Qα and Rα :QαFαRα . 

     Proof. Contained in the proofs of the theorem 7  and lemma 

5       Q.E.D. 

     Remark.9 The previous theorem gives that the hierarchy of ordinal real 

numbers has universal embedding property for the category of linearly 

ordered fields, that is every linearly ordered field has an monomorphic 

image in some field of the hierarchy.The hierarchy of transfinite real 

numbers is known to have, also, this property .Such hierarchies  we 

call universal embedding hierarchies. Especially  the hierarchy of ordinal 

real numbers after the classification theorem 8 ,we call also, universal 

classification hierarchy. 

Remark.10 We  notice  that since every order type λ is order-embeddable 

in some transfinite real number field R(λ) (see [Glayzal A. 1937]   )as 

Archemidean base which in its turn is embeddable in some ordinal real 

number field Rα ,the above two hierarchies as hierarhies of order-types 

are universal embedding hierarchies for the category of order-types .Let an 

order type λ ; the least principal ordinal number α  such that λ is order-

embeddable (by a monomorphism) in the order-type and field Rα, is called 

the fundamental density of the order type λ and is denoted by df(λ). 

Remark. In the [ Massaza Carla, 1971] Definition I , is defined which cuts 

are the Dedekind cuts in  linearly  ordered  fields  .It  is   proved   also 

that   the Dedekind completion D(F) of a linaerly ordered field F is also 

its  Cauchy completion  (in the order topology ).If  we  take the  Dedekind 

completion D(Rα) of a field of ordinal real numbers Rα, it has  to  be its 

Cauchy completion which is again the  Rα. Thus the fields of the ordinal 

real numbers are alsoDedekind complete . Conversely ,let any Dedekind 

complete linearly field F .Let us denote with α its ordinal characteristic 

.Then by the Holder type classification (theorem 8 ) it is a subfield of the 

field Rα of ordinal real numbers of characteristic α .Since the Dedekind 

completion D(F) =F coincides with the F and also with its Cauchy 

completion ,we get that F=Rα, because the Cauchy completion of F is the 

Rα. In other words the class of Dedekind complete fields coincides with the 

class of the fields of  ordinal real numbers . 

Summarising we mention that the fields of ordinal real numbers have at 

least four kinds of completnesses that characterise them 

: Cauchy completness ,Dedekind completness,completness up-to-

characteristic, Archemidean  completness  .It seems that he previous four 

completnesses  can  be  summarised  by  saying  that   there   is   no 

cofinal (coterminal ) order field extensions of them ;in short they 



are cofinally complete ,or cofinally maximal .They are also realcomplete 

(closed ,Artin-Shreier )  and Pythagorean complete. 

Remark. By corollary 7 we get that the field Cα is the algebraic closure of 

Rα :Cα= . 

          We close this paragraph by mentioning that an  axiomatic definition 

of the field Rα (α is a principal  ordinal)  would be the following: 

      First  axiomatic   definition   of   Rα. 

     The   field of ordinal real numbers   Rα   is   the unique Funtamental 

(Canchy)-complete,   in   the order-topology, field    of characteristic α. 

     Second axiomatic definition of Rα . 

     The field  of ordinal real numbers Rα is  the unique complete (up-to-

characteristic)  field of characteristic α . These  definitions apply even in 

the case of the field of real numbers (a = ω). 

  § 3 The arithmetisation of order-types . 

Remark.As it is known the linear segments of elementary Euclidean 

geometry can be defined as special order-types with Archimedean property 

and Hilbert completness through axioms (see e.g. for a not ancient 

approach  the Hilbert axiomatisation in [Hilbert D 1977] ch 1 ).Then ,they 

can be proved to be order isomorfic with subsets of the real number field 

R. This is known as the elementary arithmetisation of the order-types of 

Euclidean linear segments. 

 Proposition 10.(the K- funtamental arithmetisation theorem of order-

types.) 

  Every order-type λ is K-arithmetisable with ordinal numbers and has a 

fundamental density df(λ) which is a principal ordinal number . 

In the next paper ,after the unification theorem of the transfinite real 

,surreal ,ordinal real numbers ,a second arithmetisation theorem shall be 

proved. Two more universal hierarchies of formal power series fields shall 

be, also, proved that they are universal embedding hierarchies .We state 

these results here. For the definition of tree ,height of a tree, level of a tree, 

binary tree e.t.c.see [Kuratowski K.-Mostowski A. 1968] ch ii § 1, § 2 . 

The binary tree of height the ordinal α we denote with Dα. After the 

previously mentioned unification theorem 17 of the next paper 

we  get  that  the  hierarchy  of  binary  trees  is  a universal 

embedding  hierarchy for the order- types . Since the binary trees are 

subsets of linearly ordered fields and their elements consisting exclusively 

from 1's in the binary sequence,  correspond  to   the   ordinal   numbers 

with   the Hessenberg operations (see also [Conway J.H. 1976] ch 3 note 



pp 28 and  also [ Kyritsis C. 1991Alt] the characterisation theorem ) this 

universal   embedding property   we   call 

also   binary  arithmetisation .The least ordinal αsuch that  an  order-

type λ is order embeddable in the binary tree Dα ,we call the binary density 

of λ ,and we denote it by  db(λ). 

Theorem 11 ( The binary arithmetisation theorem of order-types ) 

Every order-type λ  is binary arithmetisable and has a binary density db(λ) 

which is an ordinal number . 

From the previous theorem ,by denoting a level of height α of a binary tree 

,by Tα ,and giving to the Cartesian product   the lexicographical 

ordering ,we also get the next  : 

Corollary 12. The formal power series hierarchies R((Dα)), , 

are universal embedding hierarchies for the linearly ordered  fields . 

§ 4 Some general results on linearly ordered fields . 

In this paragraph we give some results generally for the category of linearly 

ordered fields. To save space we shall not give the proofs, since they do 

not have serious dificulties,nevertheless we shall indicate how they can be 

obtained . 

     Lemma 13 (On the rank and characteristic) 

     Let us suppose that the characteristic of the field F is   where α, 

is α limit ordinal. It holds  that  the  rank  of the extension F/K is a cofinal 

order-type with the characteristic of the field F. That is cf(r(F/K))= 

cf(charF)=cf(char F-char K). 

Remark.For the definition of the rank of an extension see [ Kyritsis C. 

1991] § 4. For the proof of the previous theorem we use the 

existence for any principal ordinal  of the ordinal real numbers 

fields of characteristic  . 

          Let F be  a linearly ordered field. If x F by L(x) we denote the set 

L(x) = {y| y F y<x} and by R(x) the set R(x) ={y| y F x<y}. 

          By elementary arguments on linearly ordered  fields  the following 

identities can be proved. 

     Lemma  14 

          Let x, y  F. The following hold 

     1.   L(-x) = - L(x)                          R(-x) = -R(x) 



     2.   L(x+y) = L(x)+y = x+L(y) 

          R(x+y) = R(x)+y = x+R(y) 

     3.   L(x.y) = L(x).y + xL(y) - L(x).L(y)  = R(x).y + xR(y) - R(x)R(y) 

          R(x.y) = L(x).y+xR(y) - L(x).R(y) = R(x).y + xL(y) - R(x).L(y) 

     4.  

     5.    

          The previous identities show also that the definition of operations 

used to define the surreal number 

fields   are  not  something  peculiar  to  these  fields  but hold in 

any linearly ordered field . 

      In the next paper  of  this  work  we  will understand 

the   true   peculiarity   of    the    technique    of    the surreal  numbers. 

     Lemma 15  If F/k is an  extension  of  two  linearly  ordered fields , 

it  holds that   

     tr.d.(F/k)  2(Char.F) where tr.d.is the transandental degree of the 

extension . 

     Remark. For the definition of the  transandental  degree, base e.t.c see 

for instance [ Zariski O.-Samuel P. 1958] vol. I pp. 95-102 also [Kyritsis 

C. 1991 ] § 4 ). The proof is obtained by using the Holder-type 

classification for F :Qα  F  Rα where α=char(F). 

    The  next proposition shows that  all  the  information of  an extension 

of linearly ordered fields is to be found in the ideal of infinitesimals (or in 

the infinite elements). Proposition 16. Let F/k, F'/k two (ordered) 

extensions of the same linearly ordered field k. If the  ideals  of K-

infinitesimals of the extension denoted respectively by mF and mF' are 

isomorphic as ordered integral domains ,then this isomorphism is 

extendable to an algebraic  and order isomorphism of the fields F, F'. 

 Remark .The  proof is direct from the definitions. 

Remark. An extension F/k of the linearly ordered field  k  to F, is 

transcendental if Char F>char k and then  the field F is an infinite 

dimensional vector space over k. 



Proposition 17 .  Let  F  be  a  linearly   ordered   field   of characteristic 

char(F)=  where α is a limit ordinal . It holds that the field F in the 

order topology is totally disconnected . 

Remark. The proof  uses  the  existence,  for  every  principal 

ordinal  , of the fields of ordinal real numbers R . 

Theorem 18  The classes of transfinite real numbers CR, and of ordinal 

real numbers Ω1R, coinside. 

Proof. Since both Hierarchies of transfinite real and ordinal real numbers 

have the  universal embedding property (see remark 9 ) ,every transfinite 

real number-field is contained in some ordinal real number-field and every 

ordinal  real-number   field   in   some   transfinite   real number-

field.Thus CR Ω1R  and  Ω1R  CR, and CR = Ω1R .      Q.E.D. 

§ 5       The A-Archimedeanity 

       The, at least  two different, definitions of archemideanity, that can be 

found for instance in [Glayzal A. 1937] and in other authors as in [ Conway 

J.H. 1976 ] or [ Arin E. Schreier O. 1927] give us the opportunity to treat 

them in unified way through the concept of archemideanity relative to a 

monoid. 

     The  fact  that  the  linearly  ordered  field   F   has 

characteristic ω  (the least infinite ordinal)  is  equivalent with the 

statement that the field F is Archimedean  according to any (classical) 

known definition. 

     Let us denote by G a linearly ordered group and by A a monoid  of 

endomorphisms of G  as a group. 

     It is said that x is A-Archimedean to y where x,y G  iff there are a,b

A with a(x)y and b(y)x.   If A is the domain Z of integers (the 

endomorphisms are  multiplication  with  an integer )we simply say that x 

is Archimedean to y. If for every pair x,y of elements of G holds that x is 

A-Archimedean to y, it is said that G is A-Archimedean 

     Let F be a linearly ordered field .If we consider it as an additive group, 

and we denote by A1 a monoid of endomorphisms of the additive group 

,   we get the concept of x being A-additively Archimedean to y. If we 

consider the multiplicative group F* and we take a monoid, denoted by A2, 

of edomorphisms of the multiplicative group, we get the concept of 

x  being A-multiplicatively Archimedean to y. 

     Let A=A1VA2 be the monoid of mappings from F to F generated by the 

previous monoids . It is said that x is A-field-Archimedean to y iff there 

are a, b A such that a(x)y, b(y)x. 



     In any extension F/k of a field K by a field F, where F,k are fields of 

ordinal characteristic  with  char  F>Char  K,  if we take as A1, to be the 

multiplication with elements from the field K ( considering the field  F as 

a linear space over K), we get the concept of x being K-additively 

Archimedean to y.( For K=R this is also known as "x is commensurate to 

y " see [Conway J.H. 1976] ch 3 pp 31 ). 

     If A1 is the multiplication with  integers and A2 is  power  with integral 

exponents ,then it is simply said that x is field Archimedean to y  (Known 

also from  the A.  Gleyzal’s  definition of  Archimedeanity) 

     A non-Archimedean linearly ordered field denoted by F is simply  a 

linearly ordered field  for which  not all pairs (x,y) of its elements are 

mutually additively Archimedean. (Thus charF>ω ) But it can be very well 

A-additively Archimedean for other monoids A.In particular if 

charF=α and A is the monoid of endomorphisms of the additive group of F 

defined by  (field ) multiplication with ordinals less than α, then it is A-

additively Archimedean  and we denote it by writing that it is α-additively 

Archimedean 
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List of special symbols 

  

   α,β,ω           :  Small Greek letters 

  

      Ω1         :  Capital   Greek   letter   omega   with    the subscript 1 

  

     Fa          :  Capital   letter F  with   superscript  a.  

  

     N      :  Capital Aleph ,the first letter of the hebrew alphabet . In the text 

is used a capital script. letter n . 

       : cross in a circle, point in a circle . 

     Nα,Zα,Qα,Rα,:  Roman capital  letters  with subscript small Greek 

letters 

     Cα,Hα 

      *Χ, *R et.c  :  Capital standard or roman letters with left superscript a 

star. 

     CN,CZ,CQ,      :Capital   standard    letter    c    followed    by 

capital  letters 

     C*R,                   with  possibly  a  left superscript  a  star 

                :  Capital tstandard letter with a cap. 

     Σ           :  Capital Greek letter sigma 

            :  Capital standard  D with subscript a  small Greek  letter and in 

upper place a small zero. 
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Abstract 

 In this last paper  on the theory of the ordinal real 

numbers,  is  proved   ,that the three different techniques 

and   hierarchies   of   transfinite   real    numbers , of     the 

surreal  numbers  ,of  the  ordinal  real  numbers, give   by      inductive 

limit or union the same class of numbers. 

Key words:Linearly ordered commutative fields,transfinite real 

numbers,surreal numbers,formal power series fields 
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§ 0  Introduction . In this third paper on ordinal real numbers, it is proved 

that the three  different techniques and Hierarchies of transfinite real 

number-fields, of surreal numbers, and of ordinal real numbers , give by 

inductive limit ,or union, the same class of numbers and continuum, 

,already known as the class No of surreal numbers.It can be 

characterized, simply, as the smallest (linearly ordered field  which is a ) 

class and contains every linearly ordered set- field as a subfield . Τhis class 

,and also the category of linearly ordered set-fields, we call    " the linearly 

ordered transfinite continuum  of infinite numbers". It is obvious that 

without the set theory of G. Cantor as it is formalized, for instance, by 

Zermelo-Frankel  and a correct thinking about the infinite, this "realm 

of  numbers" would   not be definable. 

We should not understand that with the current theory we suggest direct 

applications in the physical sciences.  Not at all!  Matter is always finite. 

Actually not even the real numbers are fully appropriate for the physical 

reality because they are based on the infinite too which does not exist in 

the material reality. This has been described in more detailed by the famous 

mailto:ckiritsi@uoi.gr
mailto:C_kyrisis@yahoo.com


Nobel prize winner physicist E. Schrödinger in his book “Science and 

Humanity” (see [ Schrödinger E.  1961]. That is why the author has 

developed the digital or natural real numbers without the infinite with the 

corresponding Euclidean geometry and also Differential and Integral 

calculus, which is logically different from the classical. (See [Kyritsis 

2017] and [Kyritsis 2019]) But the ordinal numbers and the surreal 

numbers reflect more the human consciousness and perceptions rather 

than properties of the physical material reality. Still such a discipline as the 

study of the continuum of the surreal numbers is an excellent spiritual, 

mental and metaphysical meditative practice probably better than many 

other metaphysical spiritual systems. It is certainly an active reminding to 

the scientists that the ontology of the universe is not only the finite matter 

but also the infinite perceptive consciousness.  

  It  is  not directly apparent that  so 

different  techniques  and  ideas  would have  such 

an  underlying   unity.  It  is, also ,  surprising  that, 

although    the    Hessenberg     operations    were     very early known in 

the theory of ordinal  numbers, (at least since 1906, see  [ Gleyzal A. 

1937])  no one went far  enough to define through them, fields in a way 

similar to  the way that the real numbers are defined from the natural 

numbers.  Although  G.Cantor,  himself was  conceiving   the ordinals as a 

natural continuation of  the  natural   numbers (see [Frankell A. A. 1953 ] 

introduction pp 3 ) ,as  it  is  kmown,  he    rejected the attempts to 

define  infinitesimals   through  them  . (see [Frankell A. A. 1953] ch ii § 

7.7 pp   120). We could speculate that un underlying  reason  for  this, 

might  be  that,  his   set-theory  was  already 

strongly  attacked  and  was   facing  the  danger of final rejection ,and 

these were good  enough reasons to  avoid  the 

additional  charge  that  his  theory   "  opened  the  door"   to 

infinitesimals . In spite of this, there  are many who might  consider that 

although the present results are coming now, nevertheless it is too late and 

,they might speculate ,for this long    delay    (more  than  eighty years) and 

diversion   of ideas and  technique,  nevertheless  on 

the   same   subject,    we    could      suspect      systematic obstructions, 

that    came    outside    the    mathematics. Nevertheless, there are others 

who consider that it is too  early for  such  a development ,and especially 

for an analysis  on   such numbers. It  seems that it has never been 

published   any   "partially ordered transfinite continuum  

of infinite  numbers" (in    other words a category of transcendental 

extensions of  the real    numbers ,that are partially ordered   fields and 

complete in the order topology )  with reasonably   "good" properties  for 

a  classification.     



  In this  paper we use the surreal numbers, as they are definable in the 

Zermelo-Frankel set theory, through the binary trees, directly as a class, 

and not as union of some set fields.(The original technique of 

J.H.Conway).I met J.H.Conway during 1992 at Philadelphia in the USA, I 

talked to him about the new developments in this area of research and I 

gave to him the present work but as he told me he had more than a decade 

that for the last time he had active interest in the subject. I is somehow 

necessary to make use of classes instead of sets; since, for the kind of 

"induction" that the J.H.Conway uses, we prove that it  is reduced to the 

usual transfinite induction on the height of the elements of the trees; but in 

their union as a class and not for each one of them separately as a set; in 

the latter case in  which  the  trees  are  sets  the induction  fails .The key-

point is to prove that for every cut that J.H.Conway uses it does 

really exist a unique element of the trees of least height . "simplest 

number" as it is used to be called ).  This is  a  very crucial point, for the 

whole technique of the surreal numbers,  to  work,  and 

it   seems   that   it   has   been obscured,  by  not paying 

sufficient  attention to it 

The author has initially included also the non-standard real numbers in the 

classification. As they are also linearly ordered fields and the present 

classification is of all linearly ordered fields it was natural to include them. 

There were experts in non-standard analysis that were glad about it. 

Nevertheless there were experts that insisted that according to the initial 

definition of A.Robinson and not of later definitions, it was not claimed 

that the non-standard real numbers were sets inside Zermelo-Frankel 

system. Only if Zermelo-Frankel system was used to model meta-

mathematics also the they would be also sets. This was nevertheless 

different as such sets would models of meta-mathematical entities different 

than the sets that are models of mathematical and not meta-mathematical 

entities. Because of their arguments and in spite the fact that this made 

some other researchers of non-standard mathematics unhappy, the author 

prefers in this first publication about ordinal real numbers not to include 

the non-standard real numbers in the unification. Any definition 

nevertheless that has the non-standard real numbers as ordinary sets of 

Zermelo-Frankel set theory, would naturally lead to a straightforward proof 

that such fields are always subfields of some field of ordinal real numbers! 

The author has already produced pages with this proof that is based on the 

premise that I mentioned. 

§ 2.  The   surreal numbers . 

     In this paragraph we define the class No of surreal numbers inside the 

ZF-set theory.We use the binary  trees  (see  [ Conway J.H. 1976] 

appendix to part zero pp 65  and   [Kuratwski K.-Mostowski A. 



1968]  Ch  IX  §1,  §2).The crucial point is to prove that for the cuts 

defined by J.H.Conway in these trees it does really exist a unique element 

strictly greater than all the elements of the left section and strictly smaller 

than  all  the  elements  of  the  right section  (the "simplest number" 

).Through this the Conway-induction us reduced to the usual transfinite 

induction on the height of the elements of the tree .As we shall see this 

works for the union of all trees as a class but fails for each one set-tree .For 

the definition  of the tree, binary tree, height, levels of the tree ,Hξ-set 

see   [Kuratwski K.-Mostowski A. 1968]  Ch  IX  §1, §2 Theorem 2, . The 

binary tree of height α we denote by Dα . More precisely we are  interested 

for the trees of the next definition.      

Definition 1. Let α be an ordinal . We define = {x|x  Da such that 

there  is β<α such that for  the  element x  as  a zero-one sequence x = 

{xξ|ξ<a} holds that xβ = 1 and xξ = 0 for  ξ>β}. 

We call the set  the open full-binary tree of height α. 

We also remind that if for the height α, holds that (α) is a cofinal 

to α regular aleph: (α) = cf(α)= ξ the open full-binary tree is an 

Hξ set,  (see [Kuratwski K.-Mostowski A. 1968] ChIX §2 Theorem 2,  the 

proof works  also   for   trees  where (α)= cf(α)) 

Lemma  2.  For  every  pair  of  subsets   L,   R   of   the open-full-binary 

tree  of height the  ordinal  α, such that (α) is a regular aleph, and 

holds that: for every l L, r R, l < r, and (L), (R) 

< (α),  there  is  exactly  one element x0 of least height in  such that l 

<  x0  <  r  for every  l  L, r  R. 

Proof. Let D(L) = {x|x   such that there exists l  L with x  l} and 

I(R) = {x|x   such that there exists r  R with r  x} that is D(L), I(R) 

are the decreasing  and  increasing lower and upper half subsets 

of  determined by L, R, in the linear ordering of  as a tree (see 

[Kuratwski K.-Mostowski A. 1968] Ch IX §1  Lemma A). Let the set M = 

{x|x e  and for every  l  D(L), r  I(R) it holds that l < x < r}. By the 

Hξ property of   it  holds that M   . Let A = {β|β is an ordinal number 

such that there is x  M with x   Tβ where  Tβ is  the  β-level  of  Dα  in 

other words there is x  M of height β}. Let α0 =  min  A.  Let Dα0(L) 

Iα0(R) the subsets of D(L) R(L) of elements  of  height less than α0, and let 

Mα0  M the subset of M that consists of elements of height α0. Suppose 



that the set Mα0  contains  two elements x, y with e.g. x  y. We will prove 

that Mα0 contains only one element. 

          Let x'={xβ|β<α0} that is that part of the α0-sequence  x with terms of 

indifes less than α0. And the  same  also  with y' = {yβ|β < α0}. Then 

there  is  lx  or  rx  and  ly  or  ry respectively in Dα0(L), Iα0(R) such that 

they are equal  with x', y'. If x=rx then, if the α0-term of x is 0 or 1, in  both 

cases x > rx, contradiction. Hence there is no  such  rx  and also such ry. 

Then lx=x' ly=y' and lxly. The α0-term  of  x and y might be 0 or 1. 

The  only  possible  cases  are  {x  = (lx,0), y = (ly,0)}, {x = (lx,0), y = (ly,1} 

{x = (lx,1), (ly,1)}, {x = (lx,1), y = (ly,0} where with  the  parenthesis we 

symbolize the α0- sequence which is the elements x, y. Let us suppose that 

x  y and ,  the  part of the α0-sequence with terms with 

indices less than δ,  with δ  α . Let the least value of δ, be 

denoted  by  δ0  such  that . If holds 

that  because x<y. In the sequent, let 

z=(Dβ(x)=Dβ(y) β< δ0, 1). Then x < z  y. If δ0 = a0 then x=y because 

Xα0 = Yα0 = 1. Then δ0 < α0 and also z < y and x < z<  y and  the height of 

z is δ0 < a0 contradiction.  Hence  x=  y,  and  Mα0 contains only one 

element.  It also holds that if  we  restrict to Dc(L), Ic(R) 

where  (and L, R have height <c), then 

a0   c by the Hξ-property of  if c  is also such 

that (α)= cf(α)      Q.E.D. 

Definition 3. The open full binary tree  of height α, such that (α) is 

a cofinal to α, regular aleph , I  call  regular open  full- binary tree. 

The property of the previous lemma of a regular open full-binary  tree  I 

call Hξ-leveled Dedekind completness. 

We remark that the class of regular alephs is unbounded (see [Kuratwski 

K.-Mostowski A. 1968] p. 275 relation 5 ) Thus the class of 

ordinals α  such that (α)= cf(α) is unbounded. 

The next definition is the definition of the class of surreal numbers in the 

ZF-set theory and it depends as we mentioned on the lemma 2 .As it is 

seen  ,in  the  hypotheses  of  the lemma 2 the cardinality of halfs of the cut 

is bounded by (α). If it is to include all possible cuts of the tree  then 

the lemma 2 will give the element xο in some tree  , 

of  sufficient  greater  height,thus   outside   the original  tree  Dα. 

This  is  why  we  mentioned  that   the definition of surreal numbers (with 



the original technique of J.H.Conway ) does not apply to the 

trees  separately . 

Definition 4. Let U =No be  the union of all regular  open full-binary 

trees. It is a class (after axiom A2.(see [Cohn P.M. 1965] p1-36)) 

Operations may be defined in this linearly ordered  class according to the 

formulae of Lemma 2 in [Kyritsis C.1991 Alt. or Free etc.)] II, that hold 

for every linearly ordered field that is: 

     1.   let α be an ordinal with (α)= cf(α) and L,R subsets of such 

that   for every l  L, r  R holds that l < r. Then there exists a regular 

aleph β such that  and (L), (R)< (β). Then there is by 

lemma 2 a unique element  of least height  such that l < x0 < r for 

every l  L, r  R, we  denote  this element by {L|R} and we write 

x0=  {L|R}.  We  note  that  although  ,  it holds 

that  and α <β. 

     2.   If and we  denote the height of x, y by  h(x), h(y) and by 

L(x), L(y), R(x), R(y) the sets 

Then  the operations are  defined through  simultaneous two-

variable  transfinite induction in the form of the lemma 2,3 in [ Kyritsis C. 

1991 Free etc.], for  the  heights of the trees  where for the initial 

segments of ordinals  we substitute the corresponding trees of 

No  (For  every ordinal β<α such  that N(β)=Ncf(β) corresponds a tree 

).  Thus  the function of operation is defined not  on  w(α)2  but  on 2. 

For the addition, the next  rule  is  used  x+y={L(x)+y  x+L(y)| 

x+R(y)}  R(x)+y}. 

     3.   The opposite  is  defined  by: 

          -x = {-R(x)|-L(x)} 

     4.   Multiplication  is defined by 

          x.y={L(x).y+xL(y)-L(x).L(y)R(x).y+xR(y)-R(x)R(y) 

|L(x).y+x.R(y)-L(x).R(y)  R(x).y+x.L(x)-R(x).L(x)}. 



          This definition presupposes the definition of addition. 

     5.   Inverse is defined by 

 

 As it is proved in [Conway J.H. 1976] Ch0, 1 the set No is a linearly 

ordered c-field. The characteristic of No is easily proved to  be   Ω1, we 

call this c-field, c-field of surreal numbers.  According to Definition 3 No 

is an Hξ -leveled Dedekind  complete  field. 

§ 3  The unification . 

     In this paragraph  we  prove  that  all  the  three  different techniques 

and hierarchies of transfinite real ,of surreal ,of ordinal real numbers  give 

by inductive limit or union the same class 

of  numbers  .We  have  already  proved  that CR=Ω1R=C*R. (see 

corollary 10) and it remains to prove No=CR. 

Lemma 5 . It holds that CR=Ω1R=C*R No. 

Proof  .Let  an  open  full  binary   tree    of   height the principal 

ordinal a .Then   No  ,and  the  field-inherited operations in the 

initial  segment W(α)  are  the  Hessenberg operations (see [Conway J.H. 

1976] ch 2 § ""containment of the ordinals "note pp 28 and also [Kyritsis 

C.1991 Alt] the characterisation theorem ).If  α was not a principal ordinal, 

the W(α) would not be closed to the Hessenberg operations .Thus the  Nα, 

Zα, Qα are contained in No ,since what it is used to define them 

from  W(α)  is  only the 

field  operations  .The  Qα is  a  field   and   from   the fact that No 

is  closed  to  extensions of  its  set-subfields (see[ Conway J.H. 1976] 

ch  4  theorem  28  )we  deduce  that  the  field  of ordinal 

real  numbers  Rα is  contained  in   No, for   every principal ordinal 

number α .Thus Rα=Ω1RNo .Q.E.D. 

Lemma 6 . For every regular open full binary  tree  , it 

holds  that   Rβ, for  some  sufficiently  big  principal ordinal 

number β . (With the inclusion is meant that the restriction of ordering of 

Rα in the tree, coincides with the ordering of the tree). 

Proof . We shall prove it by transfinite induction .It holds  for the trees of 

finite height. The transfinite induction shall be on the transfinite sequence 

of all ordinal numbers such that (α)= cf(α) and (α) is a regular aleph. 

Let us suppose that it holds for all such ordinal numbers of W(α), 

and (α)= cf(α)and (α) is a regular aleph .Then 



:  where β(α) is a principal 

ordinal with . Q.E.D. 

From the previous lemma we get that   = No  Ω1R ,thus : 

The unification theorem 7 

It holds that the classes of transfinite real numbers CR , of surreal numbers 

No, of ordinal real numbers  Ω1R ,coincide ,and it is the smallest class (and 

linearly ordered  c-field ) ,that contains all linearly ordered set-fields as 

subfields. 

We  can  have  obviously analogous  statements  for  the  other classes  of 

numbers (complex , quaternion e.t.c.). After the previous theorem, the 

binary arithnetisation of the order-types, stated  in  [ Kyritsis C. 

1991]  II  ,theorem  11, is   directly provable. We remark that because the 

levels of the open full binary trees have the property that any upper (lower 

bounded set has supremum (infimum ) ,(see [Kuratowski K. -Mostowski 

A 1968] ch ix §1, § 2 theorem 2 ),and after the Hilbert and fundamental 

(Cauchy) completness of the ordinal real numbers,  and remark  after 

definition  13  and ω-normal form according to [ Frankel A.A. 1953] ch 3 

theorem 21 ,and  after corollary 21 in [Kyritsis C. 1991] ,II , we also get: 

Theorem 8 . The class of numbers CR=Ω1R=No has leveled 

formal  power  series   representation, leveled Hilbert completeness, 

leveled fundamental (Cauchy) completeness, leveled Hξ Dedekind 

completeness ,leveled supremum completeness and representation with ω-

normal forms. 
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List of special symbols 

   α,β,ω           :  Small Greek letters 

      Ω1         :  Capital   Greek   letter   omega   with    the subscript 1 

     Fa          :  Capital   letter F  with   superscript  a.  

     N      :  Capital Aleph ,the first letter of the hebrew alphabet . In the text 

is used a capital script. letter n . 

       : cross in a circle, point in a circle . 

     Nα,Zα,Qα,Rα,:  Roman capital  letters  with subscript small Greek 

letters 

     Cα,Hα 

      *X, *R et.c  :  Capital standard or roman letters with left superscript a 

star. 

     CN,CZ,CQ,      :Capital standard letter c followed by capital letters, 

with possibly 

     C*R                     a  left superscript  a  star 

              :  Capital tstandard letter with a cap. 

     Σ           :  Capital Greek letter sigma 

            :  Capital standard  D with subscript a  small Greek  letter and in 

upper place a small zero. 

  

  

  

  

  



  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 


