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Abstract 
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§0 Introduction. This is the third paper of  a series of five papers that have as goal 

the  definition of topological complete linearly ordered fields (continuous numbers)  that 

include the real numbers and are obtained from the ordinal numbers in a method analogous to 

the way that  Cauchy derived the real numbers from the natural numbers. We may call them 

linearly ordered Newton-Leibniz numbers. The author initiated and completed this  research 

in the island of Samos in Greece  during 1990-1992 . 

The present papers define the topological and algebraic structure of the ordinal real numbers 

and does not refer at all to their stochastic interpretation. Nevertheless as in practical 

applications of pre-emptive Goal Programming in Operations Research and  operating 

systems of computers, the non-Archimedean or lexicographic order is usually called pre-

emptive prioritization order .the ordinal real numbers could as well be called (for the sake 

of practical applications) Linearly ordered pre-emptive real numbers . 

 In a communication (1992) that the author had with N.L. Alling and his group of researchers 

on analysis on surreal numbers, suggested the term ordinal real numbers instead of surreal 

numbers. Some years later and before the present work appears for publication, it appeared in 

the bibliography conferences aboutreal ordinal numbers .   

In these last three  papers is studied a special 

Hierarchy   of   transcendental   over    the    real    numbers, linearly ordered fields that are 

characterized by the property that they are fundamentally (Cauchy ) complete. It shall turn 

out  that they are isomorphic to the transfinite real numbers (see [Glayzal A. (1937)]).The 

author was not  familiar with the 5 pages paper of [ Glayzal A. (1937)] ,and his original term 

was “transfinite real numbers”. When one year later (1991) he discovered the  paper by A. 

Glayzal  ,he changed the term to the next closest :”Ordinal Real Numbers” .One more year 
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later he proved that the transfinite real numbers ,the surreal numbers and the ordinal real 

numbers were three different techniques leading to isomorphic field of numbers. He then 

suggested (1992) to researchers of surreal numbers, like N.L.Alling to use the more casual 

term “ordinal or transfinite real numbers “ for the surreal numbers. 

In  the  present   work   it   is   introduced a new, better, classifying and more natural 

technique in order to define them. This technique I call "free  operations-

fundamental  completion". It 

is  actually  the  same  ideas  that  lead  to  the   process   of  construction of the real numbers 

from the natural numbers through fundamental (Cauchy) sequenses. In the modern 

conceptual context of the  theory  of  categories  this  may  demand  at   least   three 

adjunctions (see[ MacLane S 1971 ]).It is developed their elementary  theory  which belongs 

to algebra. Their definition uses the Hessenberg operations of the ordinal numbers .It may be 

considered as making use of an infinite dimensional K-theory  which  is mainly not created 

yet. In this first paper it is  also  introduced the ordinal characteristic of any linearly ordered 

field .It is  a principal ordinal number, that is of type . These numbers ,as 

defined  with  the  present  technique  of  the  "free operations-fundamental completion " and 

prior to the proof that the resulting  linearly  ordered  fields  are  isomorphic  to  the 

transfinite real numbers (as in [Glayzal A. (1937)]) ,we shall call  Ordinal  real numbers. 

The  relevancy  with   the   surreal   numbers   and   the non-standard (hyper) real numbers 

,shall  be  studied  in  a  later paper. In detail, the next  Hierarchies  are defined: 

1)  The Ordinal natural numbers, denoted by  Nα .2) The  Ordinal  integral numbers, 

denoted by Zα 3)The  Ordinal  rational  numbers,  denoted  by Qα 4)The  Ordinal  p-

adic  numbers, denoted  by  Qα,p 5)The  Ordinal  real numbers, denoted 

by Rα 6)The  Ordinal comlpex numbers, denoted by Cα7)The  Ordinal quaternion 

numbers, denoted by Hα, of characteristic α . The fields Qα,p, Rα, Cα, Hα are fundamentaly 

(Cauchy)complete topological fields. 

The   field Rα is also the   unique   maximal    field    of characteristic α ( that is, 

it  is  Hilbert  complete)  ,  and   the unique fundamentally  (Cauchy ) 

complete  field  of  characteristic α. It is also 

a   real  closed  field  ,  according  to  the  theory  of Artin-Schreier . These will be proved in 

the next paper on ordinal real numbers. 

As it is known there are three more techniques and Hierarchies of transcendental 

over the real numbers, linearly ordered fields. Namely (in the historical order): The 

transfinite real numbers (see [Glayzal A. 1937 ]), and the surreal numbers (see 

[Conway J.H (1976) ]). 

In this series of papers, it is proved (among other results ) that all the previous three different 

techniques and Hierarchies give by inductive limit, or by union, the same class of numbers 

(already known as the class No ). 

  

  

  

§ 1. The ordinal characteristic of linearly ordered fields. 

Corrective Remark (2022) : The ordinal characteristic is essentially a 

measurement of the size of a linearly ordered commutative field with a semi-



ring of Ordinal natural numbers (Hessenberg natural commutative operations in 

the ordinal numbers, as developed in the two previous papers-sections). We 

embed systems of ordinal natural numbers in a linearly ordered field, so that not 

“gaps” exist. There is always a minimal such system the natural numbers 

themselves.  The definition of the ordinal characteristic of such ordinal natural 

numbers is always the supremum of the ordinals which are contained in it, and 

it is a principal ordinal numbers as we have described in the previous paper-

section. Then we embed with monomorphisms and with 1-1 functions , such 

semi-rings of ordinal natural numbers in a linearly ordered commutative field so 

that the 0 and 1 of the ordinal real numbers goes to the 0, 1 of the linearly 

ordered field and there are no “gaps”, in other words the image is the minimal 

such possible set in the linearly ordered field. All such possible monomorphic 

with no gaps in a linearly ordered field, which is a set, give a set of 

corresponding ordinal characteristics of such semi-rings of ordinal natural 

numbers which is upper bounded, because of the cardinal and corresponding 

ordinal of the set and linearly ordered field. Thus as such ordinal are a subset of 

a well ordered set of ordinals it holds the supremum property, and there is such 

a supremum ordinal. Since also such a maximal embedding is also a semi-ring 

of ordinal natural numbers, this supremum is also a principal ordinal number 

which exist and its unique, it measures the size of the linearly ordered field and  

we call the it its ordinal characteristic. Having defined the ordinal characteristic 

as above the next definitions follow with minor corrections. 

 

     Definition 0. We remind the reader  that a  linearly  (totally)   ordered,  double abelian 

semigroup (semiring ) M  is  a  set  with  two operations denoted by +,., such that with each 

one of them it is an abelian semigroup. Furthermore the distribution  law holds  for 

multiplication over addition. A linear ordering  is supposed defined in M that 

satisfies  the  following compatibility conditions with the two operations 1)  if  x>y,      x'>y' 

x,x',y,y' M then x+x'>y+y' and xx'+yy'>xy'+yx' (The symbol < is used for  and not equal) 

if M is also a monoid relative to the two  operations, and zero is  absorbent  unit for  M, 

M  is called ordered double abelian monoid. (semiring)     

(e.g.The set of natural numbers ,denoted by N). 

          In the next we shall consider  linearly (totally) ordered  fields.( For a definition see 

[Lang S.] ch xi §1 pp 391). 

         Also in  the  next  we  shall  use  ordinal  numbers. (For   a reference 

to  standard  symbolism and   definitions   see   [Kuratowski K.-Mostowski A. 1968] ch vii, 

[Cohn P.M. 1965] pp 1-36 ) 

     In the following paragraphs  we  will  not avoid the use of larger 

totalities  than  the  sets  of  the Zermelo-Frankel set theory, namely classes. 

          We may suppose that we work in the  Zermelo-Frankel  set theory, augmented with 

axioms for  classes  also, as  is presented for instance in bibliography [ Cohn P.M. 1965]  p.1-

36  with  axioms A1-A11. Wee denote by  Ω1 the class of the ordinal numbers. (The 

last   capital   letter   of   the   Greek   alphabet    with subscript 1). The axioms A1-A11 allow 



for larger entities than sets, to define  algebraic fields or integral  domains  or  semi-groups. 

Hence we will also study  classes  that  have  two  algebraic operations (Their Cartesian 

square treated as classes of sets of the form {{x, y}, {x}}, that is  of ordered  pairs)  that 

satisfy the axioms of an algebraic field and have a  subclass called the class of positive 

elements, with properties 1. 2., that they define a compatible ordering in the field (again as a 

class of ordered  pairs)  such  classes  that  are  ordered fields we will call again ordered fields 

and if we  want  to discriminate them from set-fields, especially when  they  are classes that 

are not sets, we will write for them  that  they are  c-fields  similarly  we  write  c-

integral   domains  or c-semigroups. We must not confuse the term "c-field" with the term 

"class-field" of  the  ordinary  set-fields  of  "class-fields  theory" (see  [ Van der Waerden 

B.L 1970],  [Artin E.-Tate J. 1967]). A   subset (or  subclass) denoted by X  F of a linearly 

ordered field F, is said to be cofinal with F, if for every a  F there is a b X with ab. 

    Definition 1. We say that an ordinal number α' is contained in a 

linearly  ordered  field  (or  integral  domain  or  double abelian monoid ) denoted by F, if 

there is an ordinal α, α'<α and , (omega in the power of omega in the power of x) 

where x is an ordinal ,and a subset A of F+{O} and  a  function h: W(α)  A which is an 

order isomorphism  (similarity) of W(α) and A and such that h(0)=0 and  if  β  is  an ordinal 

number with β<α  then h(s(β))=h(β)+1 in  the  field operations and furthermore the set A 

is  closed  to  sum  and product in the field 

(integral   domain   or   double   monoid)   operations   and isomorphic by 

h  to  the  W(α)  relative  to  the  Hessenberg natural operations , furthermore the closure in 

the order topology of the field of the set A (range of h) is the  minimal such set with the 

previous properties (so we ensure that there are no gaps at the limits that are included). 

Remark 2. If an ordinal number α’ is contained in the field F, then also the sequent of α’, 

S(α’)  is  contained  in  F.  This holds since the sequent of α' is again in W(α) where α as in 

the definition above. 

Remark 3. If the ordinal number α is contained in  the  field F, then obviously every ordinal 

number less than α,  is  also contained in the field F. In the next, we will  suppose  (for 

simplification of symbolism) that if the  ordinal  α  is contained in F, the set α is α subset of F, 

and also  α  is  the element h(α) of the field F. We fix a mapping h for each ordinal that is 

contained in F .So we can talk about the set of ordinals contained in F as if it is a subset of F 

.The set of  ordinal  numbers  that  are contained in a linearly ordered  set-

field,  is  obviously  a non-empty set. (Because as F is linearly ordered, charF =  hence for 

every natural number n, we have that it is a (finite)  ordinal  contained  in  the field F). 

But even more by the remarks 2, 3, we have that the set of  ordinals  contained in a linearly 

ordered field  ,which of course by the non-Neuman definition of ordinals is itself an ordinal , 

is  either of the form W(x) or W(x)  {x}  =  W(S(x)) for  some  ordinal number x  (in other 

words either it shall be a limit ordinal or it shall have a immediately  previous ordinal 

).  The  last  case  is  directly excluded (by remark 2) hence it is of the form W(x) = x, that is 

this set is itself a limit ordinal  number.  In  case  the linearly ordered field F, is a c-field then 

all the  ordinals contained in F is again a set which is limit ordinal  number, or the class  Ω1 of 

all ordinal numbers. 

Definition 4. Let a linearly ordered set-field  (or  integral domain or double abelian  monoid) 

demoted by  F.  Let  α  be the  set  of ordinals contained in F (which  is  itself  a limit  ordinal 

number). We say that the field (or integral domain  or  double abelian monoid ) F is of 

characteristic α and we shall write charF = α. 



          If F is a c-field we include the case  of characteristic Ω1 and we write charF = Ω1 if all 

ordinals contained in F is the class Ω1 and also it is a cofinal subclass with F. 

  

     Remark . In the case of a set-field F with  α  =  charF,  we do not need to suppose that the 

subset of elements of F corresponding to the ordinal in α by the definition 1 (it always exists 

,by making use of the  definition by transfinite induction and its version that uses only  a  set 

of functions sufficient for an inductive  rule), see  appendix A), is cofinal with F, as this is a 

consequence of the definition. For, if there is an element  with 

β<X0 for  every  ordinal number β with βa, then the set α{X0} can be  extended , with the 

field operations ,to its closure  in the natural Hessenberg operations (a semiring) 

(see  [Kyritsis C. Alt] ) and  it becomes similar to an  initial segment of a principal  ordinal 

number   Thus α+1 is an ordinal contained in F, contradiction with  the definition of a . 

By the previous definitions we realize that  every  linearly ordered set-field has characteristic 

which is  a  limit ordinal number. 

          The  fact  that  the  linearly  ordered  field   F   has characteristic ω (the least infinite 

ordinal)  is  equivalent with the statement that the field F is Archimedean. 

     In the followings when we will work  on  a  linearly  ordered field denoted by F of ordinal 

characteristic α, α=charF  (or Ω1= charF) we will supposed that is fixed  an  embedding  of 

the ordinal numbers of the initial segment w(α) in the set  F (or of  Ω1 in F). 

     If the characteristic is ω, the embedding is obviously  unique as it can be proved by finite 

induction. 

     Remark.5 Let a linearly ordered field denoted by F .Obviously there is an extension 

which is  a real field .Let us denote by R(F) the real closure of F .(For  results of the theory of 

Artin-Schreir  on real and real closed fields see e.g.[ Lang S. 1984] ch xi .or [Artin E.-Shreier 

O. 1927]) Since  R(F) can be obtained by adjunction of the square roots of the positive 

elements of F and Zorn's Lemma on  algebraic extensions see[Lang S. 1984] ch i proposition 

2.10 theorem 2.11  pp 397), it is direct that the characteristic of the real closure R(F) is  the 

same with that of F. 

     For  the  definitions  of the terms infinite,  finite, infinitesimal elements  in an extension of 

such fields, see e.g.[ Lang S] ch xi paragraph 1 pp 391, the definitions can be given relative 

to  extensions of any linearly ordered field to an other linearly ordered field ,and not only 

extensions  of the real numbers. 

§2     The ordinal natural numbers N . The ordinal- integers Z . 

          Let w(α) a principal initial segment of ordinal numbers. Let us denote by + 

and . the  Hessenberg's  natural  sum  and product in w(α). They satisfy properties 

0.1.2.3.4.5.6. after lemma 1  in §1  in [ Kyritsis C.1991 Alter] 

Definition 6. The set w(α)=α   where  for some  ordinal x, is an abelian double 

monoid  relative  to  sum and product and furthermore it satisfies 

the  cancellation  low  (see  [ Kyritsis C. 1991 Alter] lemma 1 ).This set I call the (double 

abelian) monoid of ordinal natural numbers  of characteristic a and I denote it by Nα. Thus 

Nα =α. 

     Remark 7. It is obvious that the (double abelian, well ordered ) monoid Nα, 

is  the minimal  such  monoid  of  characteristic   α and the embedding of the ordinal numbers 



of W(α) in it is unique . Furthermore it can be proved by transfinite induction that it is 

a unique factorization monoid (called simply factorial monoid also). 

     The   additive cancellation low in α   has as  a  consequence that 

α  is  monomorphicaly  embedded  in  its  Grothendieck group  denoted  by  k(α)  (see [Lang 

S. 1984]  Ch.1  §9 p. 44). Furthermore the Grochendieck group k(Nα) can be ordered  by 

defining the set of positive elements k(α)+= {v/v  =  (x,y) with x,y  w(α) and x > y }. We 

remind the reader  that if we  denote  by Fab(α) the free abelian group generated by α, and  by 

((x+y)-x-y) the normal subgroup  of  Fab(α)  generated  by elements of the form (x+y)-x-y, 

then               

          By (x,y) we denote the equivalence class that is defined in Fab(α) in the 

process  of  taking  the  quotient  group Fab(α)/((x+y)-x-y) by the representative x+(-y). 

 The first part of property 6. (lemma 1  in  [Kyritsis C.1991 Alter]) guarantees that this ordering 

in k(α) restricted on  α  coincides with the usual ordering of ordinal numbers. 

Definition 8. The ordered Grothendieck group  k(α)  of  an  initial segment of 

ordinals  relative to natural  sum, we call transfinite cyclic group of exponent α and 

we  denote it by Γα. (by [Kuratowski K. Mostowski A. 1968] ch vii §7 pp 252-253 exercises 

1.2.3.the ordinal α has to be of the type ωx. If the ordinal α is principal then I denote it also 

by Zα). 

          Every element of  the  group  Zα is  represented  as  a difference x-y with x,y w(α). 

Then we define multiplication in Zα by  the  rule 

 (*)  (x-y).(x'-y')=(x.x'+y.y')-(xy'+x'y) 

where sum and product are the  natural  sum  and  product  in w(α). This makes Zα a 

commutative ring with unit (the element 1). 

          If (x-y)(x'-y') = 0 and both (x-y), (x'-y') are not zero, we get by property 6 in lemma 1 

in [Kyritsis C. 1991Alter] that xx'+yy'  xy'+yx' or (x-y)(x'-y')  0, contradiction. Then one of 

(x-y), (x'-y') is zero that  is the ring Zα has no divisors of zero and  it  is  an  integral domain. 

Remembering that Zα
+ = {v|v Zα and v = (x,+y) with x,y w(α)  x  >  y},  by property  6 

lemma 1 in [ Kyritsis C. 1991 Alter],  we get  that  the  sum  and product of elements of Zα
+ are 

again elements  of  Zα
+.  From all these we get: 

Lemma 9. The ring Zα is a linearly ordered  integral  domain of characteristic the principal 

ordinal α (see § 1 Def.1).The set Zα
+ is a linearly ordered double abelian monoid and Zα

+Nα 

Definition 10 . The integral  domain  Zα I  call ordinal  integers of characteric α . 

The integral domain Zα of characteristic  α  has  minimality relative to its property  of being 

an integral domain of characteristic α, in the following sense: Every integral domain of 

characteristic α contains a monomorphic image of Zα. 

Theorem 11  (Minimality). 

Every  integral domain Zα is  minimal  integral  domain  of  characteristic  α.  That is 

every  integral   domain   of characteristic  α, contains   a monomorphic image of Zα. 

Proof. Put Rα an integral domain of characteristic α, where α is a principal ordinal number (

). 



Then the initial  segment  w(α)  is  contained  in  Rα (more precisely an order preserving 

image of w(α)).  The  principal initial segment is closed to the integral  domain  operations 

and by theorem 13,14 of [ Kyritsis C. 1991 Alter],  they coincide with the natural sum and 

product of Hessenberg. Then, applying the construction of this paragraph for the integral-

domain Zα, we remain  inside  the integral-domain Rα, that is ZαRα. This proves the 

minimality. 

Remark 12. The ordinal integers are  semigroup-rings of quotient monoids of semigroups 

that are used to define as semigroup-rings  the hierarchy of integral domains of 

the transfinite  integers  (see  [Gleyzal A. 1937]  pp  586).I  use  the term hierarchy not only 

as a well ordered sequence but also as a net (thus partially ordered ). The transfinite real 

numbers are thus  an  hierarchy. 

The   transfinite   integers over   the  order-type λ symbolised by Z(λ), is the semigroup-ring 

(also module Z-algebra   and   integral   domain)   of    the    linearly ordered monoid  , 

where  is the coproduct, or direct sum denoted also  by ,  of a family of 

isomorphic copies of  N with  set of indices the order-type λ. Thus Z(λ) =Z[ ]. Thus any 

ring of  polynomials of a linearly ordered set of variables with integer coefficients is an 

integral domain of transfinite integers and conversely. It can be proved 

with  the  axiom  of  choice  and transfinite induction , as in  the  case  of 

finite  set  of  variables,  that Z(λ)  is  a  unique  factorization domain .  On  the other hand the 

Cantor normal form in the Hessenberg operations of the ordinal numbers (see lemma 6 in 

[Kyritsis C. 1991 Alter]) gives that any element x of Zα is of the 

form  xi are ordinals with x1>...>xn. The ordinal 

powers of ω in Zα is an abelian well ordered monoid (see e.g. [Neumann B.H. 1949] §2 pp 

204-205) of ordinal characteristic β=ωx , if . Let us denote it by Mβ. Actually Mβ=β. 

Let us denote by , or simply by λα the order type of the  Archimedean equivalent 

classes of Mβ. Then we get by the Cantor normal form that Zα =Z [Mβ] (The semigroup ring 

of Mβ). The monoid Mβ can be obtained as quotient monoid of the free abelian 

multiplicative  monoid of λα variables, which is the monoid  . 

 But Z [ ]=Z(λα), which  was  the assertion to  be  proved. 

Remark 13 The equation  gives an alternative, simpler definition of 

the  ordinal integers without the use of the Hessenberg multiplication, since the ordinal 

powers of ω coincide n the abelian Hessenberg operations and the usual ordinal operations 

(see [Kyritsis C.1991 Alter] Remark 7.5) ) and without the use of the Grothentick group .The 

monoid Mx  is defined as the initial segment W(ωx) (or simply as the ordinal ωx) in the 

Hessenberg addition . 

  

§3   The  definition  of  the  fields  Qα, Rα, Cα, Hα. 



In this  paragraph, I  shall  introduce  the  hierarchies  of fields of ordinal rational ,real, 

complex ,quaternion numbers. These hierarchies give the unification of the other three 

techniques and hierarchies, namely of the transfinite real numbers,  of  the  surreal  numbers. 

Furthermore   we  introduced the   hierarchies   of    transfinite complex and transfinite 

quaternion numbers. 

Definition 14. The localization (field of  quotients)  of  the integral domain Zα, I  will denote 

by Qα  and  I  will  call ordinal  rational numbers (of characteristic α)  (see [Lang S. 1984] 

ChII §3). 

Remark. Since we have that cancellation low holds,  we  do  not have to use the Malcev-

Neuman theorem (see  [Cohn P.M. 1965]  Ch  VII  §3. Theorem 3.8). We define as set of 

positive element of Qα the set . It  is 

elementary in algebra that if the integral domain is linearly ordered then also its field of 

quotients (localization)  with the previous definition for its set of positive elements,  is a 

linearly ordered field with the restriction of its ordering on the integral domain to coincide 

with the ordering  of  the integral  domain.  Obviously  the  ordinals  of  the  initial segment 

of w(α) are contained in Zα and also in Qα. By a direct argument, holds also that the 

characteristic of Qα is a: Char Qα = α. 

      Remark From the construction of Qα we infer easily that (Qα) =  (α) and if α < β 

where α, β are two principal ordinals then QαQβ. The converse obviously holds. 

Lemma 15. Every element  x  of  the field  Qα is of the form   where 

αi, βj  w(α) and  α1>α2>...>αn0,  β1>β2>...>βm0  and ai, bj  for i = 1,...,n, j = 1,...,m are 

finite integers. 

Proof.  Direct  from  the  definition  of  localization   and lemma 6 in [ Kyritsis C. 1991Alter]. 

Theorem 17. (Minimality) 

The field Qα is a minimal field of characteristic α, in the sense that every field 

of  characteristic  α,  contains  the field  Qα (more precisely an order preserving 

monomorphic image of Qα). 

Remark. This property is already obvious  for  the  field  of rational numbers, that in 

the  statement  of  Theorem  17  is denoted by Qω. 

Proof. Let a field of characteristic α, that we denote by Fα. Then 

the  principal  initial  segment  w(α)  of  ordinals  is contained in Fα and the field-inherited 

operations  coincide with the natural sum and product of Hessenberg  (see  theorem 14 in 

[ Kyritsis C. 1991 Alter]). Then constructing  first  the  integral  domain Zα  and afterwards its 

localization Qα we always remain in the  field Fα. 

          Thus Qα  Fα (or more precisely h(Qα)  Fα where h is  a order-preserving 

monomorphism of Qα in to Fα)                  Q.E.D. 

Definition  18.  The  (strong)  Cauchy  completion   of   the topological field Qα we denote by 

Rα and I  call  ordinal real numbers of characteristic α. 

Remark.The process of extensions ,beginning with a principal initial ordinal α=Nα which 

is  the  minimal  double, abelian monoid of 



characteristic  α,  and ending  with  the  field  Rα which is the maximal field of characteristic 

α ,we call K-fundamental densification . 

Lemma 19. The  characteristic of the (strong) Cauchy completion of a linearly ordered field 

F ,is the same with that of the field F. 

Proof. If the characteristic ofthe field is α, let us denote it by Fα, and its completion by . 

Obviously the characteristic of is not less than α. 

Suppose that  there  is  an  ordinal  β  with α < β which  is contained in (see Definition 1). 

Then there  is  a  Cauchy net {xi|i  I} of elements of Fα that converges  to . Let 

ε  Fα 0<ε<1, then there is i0  I such that for every i  I i  i0 

xi  (b-ε, b+ε) . But this gives an element of Fα greater than α, hence than every element of 

Fα, which is a contradiction. Thus Char Rα = α.                               Q.E.D. 

Corollary 20. The characteristic of Rα is α . 

From the definition of Rα we infer that  (Rα)  2(α) and that α<β  Rα  Rβ for two 

principal ordinals denoted  by α, β. 

Remark.21 We denote by R(λ) the transfinite real numbers of order-base λ . It holds 

by  definition that R(λ)=R((LRλ)), where LRλ is the lexicographic product of a family of 

isomorphic copies of the real numbers R ,with set of indices the order-type λ. 

Remark . It is said that a field  F has formal power series representation, if there is a formal 

power series ring R((G)) and a ideal I of it such that F has a monomorphic  image in R((G))/I 

.From the universal embedding property of the hierarchy of transfinite real numbers we get 

that every linearly ordered  field has formal power series representation .Thus: 

Corollary 22. The fields of ordinal real numbers R, have formal power series representation 

,with real coefficients. 

Definition 23 The field  Cα =  Rα[i] I call  ordinal  complex numbers  of characteristic α. 

Definition 24.  The    field   C(λ)= R(λ)[i] we call transfinite  complex numbers of base-order 

λ. Actually it is the field C(λ)=C((LRλ)) . 

Definition 25. The quaternion extension field  of  the  field Rα (or of Cα) by the units i, j, k 

with i2 = j2 = k2 = ijk =  -1, I call the ordinal quaternion numbers of characteristic 

α and  I  denote them  by  Hα .  They  are  non-commutative  fields (following the terminology 

e.g. of A.Weil in [ Weil A. 1967]) that  are transcendental extension of the non-

commutative  field  H  of quaternion numbers. 

Definition 26 . The formal power series fields H(λ)=H((LRλ)) we call transfinite 

quaternion numbers of base-order λ. 

For a proof that H((LRλ)) is a (non commutative ) field see [Neumann B.H.1949] part I. 

§4 The ordinal p-adic numbers Qα,p . 

      As it is known  if F is a linearly ordered field ,and K a linearly ordered subfield 

of the real numbers and FK  is an extension respecting  the ordering, then this 

extension defines the order-valuation (see [N.L.Alling 1987] ch 6 § 6.00 pp 207) 

.Actually every extension of any two linearly ordered fields  F, K, KF, respecting 



the ordering, defines a place, thus a valuation v. (I use the place and valuation 

as  are defined e.g. by O.Zariski in [Zariski O.-. Samuel P.1958] vol ii ch vi §2, 

§8.and not as are defined by A.Weil  in [Weil A. 1967] ch iii  or  by v.der Waerden 

in [Van der Waerden B.L. 1970] vol ii ch 18 .The definition of Zariski is 

equivalent with the definition of v.der Waerden only for the non Archimedean 

valuations of the latter). 

The place-ring is the Fν ={x/x  F and there are a, b K with a<x<b }. The maximal ideal of 

the place (or valuation v ) is the ideal of infinitesimals of K relative to F. 

This valuation  we  call  extension - valuation  (and the corresponding place extension - 

place) It  has as special case the order valuation .The rank of the extension- place (see 

[Zariski O.-. Samuel P.1958] vol.II §3 pp 9) we call the rank of the extension .If 

char(F)>char(K) then the extension is transcendental ,and has transcendental degree and basis 

;the latter is to be found in the ideal of infinitesimals or in the set of infinite elements . 

Definition 27 . 

          Let F a field of ordinal characteristic. Let R a subring of F that has F as its field 

of  quotients.  Let  p  a  prime ideal of R, such that the triple (pRp, Rp, F) where Rp  is the 

localization of R at p, defines a place of F.  Such  a  place (or valuation denoted by vp) I 

call p-adic of the field F. In  the  valuation topology of the valuation vp, that has a local base 

of zero  the ideals of R ) the field F is a topological field and the (strong) Cauchy completion 

I denote by Fp, it is a (topological field )  and I  call  p-adic extension field of F. 

Definition 28. For F=Qa and R=Za in the previous definition the   field   Qα,p I   call   ordinal 

p-adic numbers    of characteristic α. 

Final  remark  .Using  inductive  limit  ,or  union  of   the elements of the hierarchies of the 

previous ordinal and transfinite number systems, we get corresponding classes of numbers 

.The classes of ordinal natural, integer, rational, real, complex, quaternion numbers denoted 

respectively by Ω1, (or On ), Ω1Z, Ω1Q, Ω1R, Ω1C, Ω1H. 

And the classes of transfinite integer, rational, real, complex, quaternion numbers denoted 

respectively by: 

     CZ, CQ, CR, CC, CH. 

Acknowledgments. I would like to thank professors W.A.J.Laxemburg and A.Kechris 

(Mathematics Department of the CALTECH) for the interest they showed and that they gave 

to me the opportunity to lecture about the ordinal real numbers in CALTECH. Also the 

professors H.Enderton and G.Moschovakis (Mathematics Department of the UCLA) for their 

interest and encouragement to continue this project. 

  

  

  

  

  

  

  

  



  

  

  

  

  

  

  

  

  

  

  

  

              

  

  

  

 Bibliography 

[ N. L. Alling  1987]                                   Foundations of analysis over surreal number fields 

North-Holland  Μath.Studies V. 141 1987 . 

[ Artin  E.  Schreier   O.1927]                     Algebraishe konstruktion reellerkorper, Abh. 

Math. Sem.Univ. Hamburg 5 (1927) pp 85-99  . 

[Artin E. - Tate J.1967]                              Class  Field   Theory  Benjamin 1967. 

[Bourbaki N.1952]                                     Elemente de Mathematique algebre, chapitre II 

Hermann Paris 1948, chapitre VI 

Hermann                                    Paris 1952. 

[ Clliford   A. H.1954]                                Note  on  Hahn's  theorem  on ordered  abelian 

groups. Proc. of the Amer. Math. Soc. 5 (1954) pp 

860-863. 

[ Cohen L.W. - Goffman C. 1949]              Theory of transfinite Convergence.Transact. of the 

Amer. Math. Soc. 66 (1949) pp 65-74. 

[ Cohn P.M.1965]                                      Universal  Algebva Harper - Row 1965  . 

[Conway J.H 1976].                                   On numbers and  games  Academic press 1976 . 

[ Cuesta  Dutardi  N.1954]                         Algebra  Ordinal  Rev.  Acad. Cientis Madrid 4 

(1954) pp 103-145 . 

[ Dugundji J.1966]                                      Topology, Allyn and  Bacon  inc. 1966. 

[Ehreshmann Ch 1956].                              Categories et structure Dunod  1956 

[Ehrlich P.1988]                                         An alternative construction of Conway's Ordered 

Field No, Algebra 



Universalis                                    25  (1988) pp 7-16 

. 

[Ehrlich P ].                                                The Dedekind completion of No, submitted to 

Algebra Universalis. 

[Endler  O.1972]                                        Valuation  Theory,   Springer 1972. 

[  Erdos P.-Gillman L.-                               An isomorphism theorem for real 

        Henrkiksen  M.1955]                         closed fields.  Ann. of Math.(2) 61 (1955)pp 542-

554. 

[Frankel A.A.  1953]                                  Abstract  set  Theory.  North  - Holland 1953. 

[Fuchs L 1963].                                          Partially ordered algebraic systems. 

Pergamon   Oxford 1963. 

[Gillman L.-Jerison M.1960]                       Rings of continuous functions. Van Nostrand 

Princeton 1960. 

[Gleyzal A.   1937]                                     Transfinite real numbers. Proc. of the Nat. Acad.of 

scien. 23 (1937) pp 581-587. 

[Gravett K.A.H. 1956]                               Ordered abelian groups. Quart. J. Math. Oxford 7 

(1956) pp 57-63. 

[Hahn H.1907]                                           Uber die nichtarhimedishen Grossensysteme.S.  Ber. 

Akad. Wiss. Wein. Math. Natur.Wkl Abt.   IIa 116 

(1907) pp 601-655. 

[Hausner M.-Wendel J.G. 1952]                Ordered Vector Spases Proc. of the Amer. Math. 

Soc.3 (1952) pp 977-982. 

[Hessenberg G.  1906]                               Grundbegriffe  der  Mengenlehre (Abh. 

der  Friesschen Schule, N.S. [1] Heft 

4) Gottingen 220 1906). 

[Hilbert D.1977]                                         Grundlagen der Geometry Teubner Studienbucher 

1977 . 

 [Hilbert D. -Ackermann W.1950]              Principles of Mathematical Logic. 

Chelsea  Pub. Comp. N.Y. 1950. 

[Kaplansky I. 1942]                                   Maximal fields with valuations 

Duke  Math.  J.  9  (1942)   pp 303-321. 

[Krull W.  1931]                                         Allgemeine Bewertungs theorie. J.reine angew. 

Math. 176 (1931) pp 160-196. 

[Kuratowski K 1966].                                Topology  v.I   v.II   Academic Press 1966. 

[Kuratowski K. -Mostowski A.1968]         Set  Theory  North  -  Holland 1968. 

 [Kyritsis C.E.1991]                                   Alternative algebraic definitions of the Hessenberg 

operations in the ordinal numbers.  

[Lang S 1984].                                           lgebra .  Addison-Wesley   P.C. 1984 . 

[Laugwitz Detler 1983]                               Ω Calculus as a  Generalization of  Field 

Extension.  An alternative   approach   to non-

Standard  analysis  "Recent developments  in   non-



standard analysis" Lecture Notes in Math 

983   Springer 1983. 

[MacLane  S.  1939]                                  The  Universality  of  Formal Power Series 

fields.Bull. of the Amer. Math. Soc. 45  (1939) pp 

880-890. 

[MacLane S 1971].                                    Categories for the working mathematician  Springer 

1971 

[Monna A.F.1970]                                     Analyse non-Archimedienne Springer 1970. 

[Munkress J.R. 1975]                                 Topology. Prenctice Hall 1975. 

[Nachbin  L. 1976]                                     Topology   and   Order.   Robert E.Krieger P.C. 

N.Y. 1976. 

[Neumann B.H 1949].                                On ordered division rings. Transact. of the Amer. 

Math. Soc. 66 (1949) pp 202-252.   . 

[Robinson A. 1974]                                    Non-Standard analysis.  North  - Holland 1974 

(1966). 

[Rudin W. 1960]                                        Fourier  analysis on groups. Interscience Pub 1960 . 

[Shilling O.F.G.   1950]                              The theory of valuastions. Amer. Math. Soc. 1950. 

[Schubert  H.1972]                                     Categories Springer 1972. 

[Sirkoski R. 1948]                                      On an ordered algebraic field. Warsow, 

Towarzytwo Nankowe Warzawskie 41  (1948) pp 

69-96. 

[Stone A.L.  1969]                                     Non-Standard analysis in  topological algebra in 

Applications of Model Theory to 

Algebra,                                    Analysis 

and  Probability  N.Y. (1969) PP 285-300. 

[Stroyan, K.D. and                                     Introduction to the  theory  of Infinitecimals 

       Luxenburg W.A.J. 1976]                     N.Y.1976. 

[Lynn A.Steen-                                           Counterexamples in Toplogy Springer 1970. 

        Seebach J.A. Jr. 1970]             

[Van der Waerden B.L.1970]                     Algebra V1  V2 Frederick  Unger Pub. Co. N.Y. 

1970. 

[Weil A.1967]                                            Basic Number  Theory, Springer 

Verlag Berlin, Heidelberg  N.Y. 1967. 

[Zakon E.1955]                                          Fractions  of  ordinal numbers Israel Institute of 

Tecnology Scient. Public. 6, 94-103 1955. 

[Zariski O. -Samuel P.1958]                       Commutative Algebra V.I.II Springer 1958. 

  

     List of special symbols 

     ω           :  Small Greek letter omega,  the  first  infinit number. 

  



     α, β        :  Small Greek letter alfa, an ordinal. 

       Ordinal alpha α equal to omega in the power of omega in the power of x       

  

      Ω0         :  Capital   Greek   letter   omega   with    the superscript zero. 

  

     Fa          :  Capital letter with superscript  a.  The of algebraic elements of a field F. 

  

     char F      :  The characteristic of a field denoted by F. 

  

                :  Equiralence relation of Commensurateness. 

  

     ~           :  Equiralence relation of comparability. 

  

     tr.d.(x) :  The transcendance degree initial of  words tr.(anscendance) and d.(egree). 

  

     N(x)     :  Aleph of x, the cardinality of the set X. N: the fisrt capital letter of the Hebrew 

alfabet. 

cf(X)=cf(Y) :  The sets x and Y are cofinal. 

  

    W(α)        :  Initial segment of  ordinal  naumbers  defined by the ordinal number a. 

  

            :  Natural sum and product of G. Hessenberg plus and point in parenthesis. 

  

     Nα,Zα,Qα,Rα,:  Double-lined  capital  letters  with subscript small Greek letters 

     Cα,Hα           namely transfinite positive integers, intergals, rationals reats, complex and 

quatenion numbers. 

  

     Zα1
*ω      :  The dual lually compact abelian groups of  the transfinite integers Za. The 

capital letter  Z double-lined wiuth subscripts two  Greek  let-α (alpha) and ω 

(omega) and superscript a star 

  

     Tα          :  Transfinite circle groups:  Capital  letter  T with subscript a small Greek letter. 

  

     *X, *R et.c  :  A non-standard enlergement  structure  capital letter X with left superscript a 

star. 

  



     ξNo         :  A sureal number field of  characteristic  ξ. A small Greek letter followed by 

the symbol No. 

  

     C,RC*R,No   :  The c-structures  (classes)  previous  symbols following the capital 

     CN,CZ,CQ,.     latin letter C 

     CC,CH 

                :  Strong Canchy  competition  of  a  topological space capital letter with cap. 

  

     Σ             :  Capital Greek letter sigma symbol for summation. 

  

            :  The open full-linary tree of leight a. Capital latin D with subscript 

a  small  Greek  letter and in upper place a small zero. 

The ordinal real numbers 1. The ordinal characteristic. 

  

APPENTIX A. 

A MORE EFFECTIVE FORM OF DEFINITION BY TRANSFINITE INDUCTION. 

1.Given a set Z and an ordinal α, let Φ   be a set of ξ-sequences with the properties: 

a) If f belongs to Φ then f/W(ξ) belongs to Φ for every ξ <= domain of  f. 

b) For every ξ<α there is at least one f belonging to Φ    with ξ=w(ξ)=domain(f)    and values 

belonging to Ζ. 

c)If fξ is an α-sequence of ξ-sequences of Φ such that whenever γ<ξ1 

, ξ2 <α ,  fξ1 /w(γ) = fξ2 /w(γ) ;then the α-sequence cα (ξ)=fξ (ξ), belongs to Φ  also. 

For each function h in ZΦ, there is one and only one transfinite sequence f defined on ξ<=α,  

f in Φ and such that f(ξ)=h[f/w(ξ)] for every ξ<=α . 

The function h is called a recursive rule for Φ. The set Φ with the properties a). b), c), is 

called ,sufficient  for recursive rules. 

Proof: Not much different than the ordinary form of definition by transfinite induction. 

  

  

  

  
 


