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Abstract In this paper is presented a very short solution to the 4th Millennium problem about the Navier-

Stokes equations. The solution proves that there cannot be a blow up in finite or infinite time, and the local in 

time smooth solutions can be extended for all times, thus regularity.  This happily is proved not only for the 

Navier-Stokes equations but also for the inviscid case of the Euler equations both for the periodic or non-

periodic formulation and without external forcing (homogeneous case). The proof is based on an appropriate 

modified extension in the viscous case of the well-known Helmholtz-Kelvin-Stokes theorem of invariance of 

the circulation of velocity in the Euler inviscid flows. This is essentially a 1D line density of (rotatory) 

momentum conservation. We discover a similar 2D surface density of (rotatory) momentum conservation. 

These conservations are indispensable, besides to the ordinary momentum conservation, to prove that there 

cannot be a blow-up in finite time, of the point vorticities, thus regularity. 
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1. Introduction 

The Clay millennium problem about the Navier-Stokes equations is one of the 7 

famous problem of mathematics that the Clay Mathematical Institute has set a high 

monetary award for its solution. It is considered a difficult problem as it has resisted 

solving it for almost a whole century. The Navier-Stokes equations are the equations 

that are considered to  govern the flow of fluids, and had been formulated long ago in 

mathematical physics before it was known that matter consists from atoms. So actually 

they formulate the old infinite divisible material fluids. Although it is known that under 

its assumptions of the millennium problem the Navier-Stokes equations have a unique 

smooth and local in time solution, it was not known if this solution can be extended 

smoothly and globally for all times, which would be called the regularity of the 



Navier-Stokes equations in 3 dimensions. The corresponding case of regularity in 2 

dimensions has long ago been proved to hold but the 3-dimensions had resisted proving 

it. Of course the natural outcome would be that regularity holds also in 3-Dimensions. 

Many people felt that this difficulty hides our lack of understanding of the laws of 3-

dimensional flow of the incompressible fluids.  

In this paper is presented a very short solution to the Clay Millennium problem about 

the Navier-Stokes equations. The solution proves that there cannot be a blow up in 

finite or infinite time, and the local in time smooth solutions can be extended for all 

times, thus regularity.  This happily is proved not only for the Navier-Stokes equations 

but also for the inviscid case of the Euler equations both for the periodic or non-periodic 

formulation and without external forcing (homogeneous case). But it is also proved 

that once the hypotheses of external forcing of the millennium problem allow for the 

existence of a unique smooth solution local in time, then   the same result of regularity 

(no blow up) holds also for this inhomogeneous case. I try to keep the length of this 

paper as short as possible so as to encourage reading it, and make the solution as easy 

to be understood.as much as possible. 

My first attempt to solve the millennium problem about the regularity of the Navier-

Stokes equations problem was during the spring 2013 (uploaded at that time see [4] 

Kyritsis K. October 2013). Later attempts and solutions were published between 2017 

and 2022 (see references [7], [8], [9], [11], [10] , [17]). All of them in the same direction 

of regularity and no Blow-up. But some of the proofs contained errors, that in the 

current paper have been eliminated and the solution shortened. In the current paper we 

prove also something more compared to my previous publications that the regularity 

holds also for the Euler inviscid equations, with the same hypotheses of the millennium 

problem putting ν=0, for the viscosity coefficient.    

The author has also solved the 3rd Millennium problem P vs NP in computational 

complexity with 3 different successive solutions each one simpler that the previous. 

(see references [8], [10], [12 ], [13], [18] )  

This millennium problem seems by the title of the articles as if   solved by other authors 

like [2] Durmagambetov Asset et al 2015 also [20] Moschandreou. T. 2021 , and [23] 

Ramm G. A. 2021.  

Nevertheless, in my assessment they do not really solve it but eventually prove 

something else.  In [9] Durmagambetov Asset et al 2015, the authors do not utilize the 

strict hypotheses of the formulation of the millennium problem, and the existence in 

general of blows-ups that they prove is a rather known fact. In [22] Ramm G. A.  the 

strict hypotheses of the formulation of the millennium problem are indeed utilized but 

the solution essentially gives the existence of a smooth solution locally in time.   

Because the local in time [0, t1] smooth solution that he produces does depend on the 

initial data, we cannot repeated it in [t1 , t2 ] , [t2 , t3 ]  till infinite with certainty because 

we cannot claim that t1= t2- t1 = t2 -t3  etc. Thus there is no really a proof for no blow up 

and regularity. On the other hand in [23]   Ramm G. A. 2021 he proves that any solution 

of the Navier-Stokes equations, with the hypotheses of the millennium problem it will 

blow-up in finite time. There is obviously the counter example of potential 



(irrotational) flows that it is known that they do not blow up, and plenty many other 

specific counter examples in various publications of various authors , that do not blow 

up. Thus his solution cannot be correct (although I could not find the error in his 

arguments). And finally in [20] Moschandreou T. the solution as he writes in the 

conclusions is regular but he leaves open that fact that for a set of measure zero of the 

3-space there might be a blow-up in finite time.  Thus it does not really proved either 

regularity or the existence with certainty of a blow up.  

   

§ 2. The formulation of the millennium problem and the 4 sub-problems (A) , (B), 

(C), (D) 

In this paragraph we highlight the basic parts of the standard formulation of the 4th Clay 

millennium problem. 

The Navier-Stokes equations are given by  (by R we denote the field of  the  real 

numbers, ν>0 is the density normalized viscosity coefficient ) 
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 with initial conditions  u(x,0)=u0(x)      x∈R3                  

 and u0 (x)  C∞ divergence-free vector field on R3                            (eq.2.3)   

If ν=0 then we are taking about the Euler equations and inviscid case.  
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 is the Laplacian operator .The Euler equations are (eq2.1), (eq2.2), (eq2.3) 

when  ν=0.  

It is reminded to the reader, that in the equations of Navier-Stokes, as in (eq. 2.1)  the 

density ρ, is constant, it is custom to normalized to 1 and omit it. 

 

 For physically meaningful solutions we want to make sure that u0(x) does not grow 

large as |x|. This is set by defining u0(x) , and f(x,t)  and called in this paper  

Schwartz initial conditions  , in other words  
K
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a

x xCxu  )1()( ,

0  on R3   for any α and K                                            (eq.2.4 ) 

(Schwartz used such functions to define the space of Schwartz distributions)  

Remark 2.1. It is important to realize that smooth Schwartz initial velocities after 

 (eq 4) will give that the initial vorticity ω0 =curl(u0) ,  in its supremum norm, is  

bounded over all 3-space.  



|𝜕𝑥
𝑎𝜕𝑡

𝑚𝑓 (𝑥, 𝑡)| ≤ 𝐶𝑎,𝑚,𝐾(1 + |𝑥| + 𝑡)−𝐾on R3× [𝟎, +∞) for any α,m,K     (eq.2.5 ) 

We accept as physical meaningful solutions only if it satisfies  

p, u C(R3 [0,))                                   (eq.2.6 ) 

and  

∫ |𝑢(𝑥, 𝑡)|
ℜ3

2

𝑑𝑥 < 𝐶  for all t>=0 (Bounded or finite energy)            (eq.2.7 ) 

Remark 2.2 It is important to realize that smooth external force (densities) with the 

Schwartz property as in (eq.2.5) , have not only a rule for upper bounded spatial partial 

derivatives but also the same rule for time upper bounded partial derivatives. 

 Remark 2.3 We must stress here that imposing smoothness of the coordinate functions 

of velocities and external forces of the initial t=0 data and later time t data in the 

Cartesian coordinates plus and Schwartz condition as in  (eq 2.5) is not equivalent with 

imposing similar such smoothness of the coordinate functions and conditions in the 

cylindrical or spherical coordinates. We will give in the paragraph 4, remark 4.5 an 

example of a strange blowup, where at any time t>0 the coordinates of the velocities 

are smooth and bounded in all space as functions in the polar coordinates and still the 

vorticity has infinite singularity at zero. 

Alternatively, to rule out problems at infinity, we may look for spatially periodic 

solutions of (1), (2), (3). Thus we assume that u0(x) , and f(x,t)  satisfy  

u0(x+ej)= u0(x), f(x+ej,t)= f(x,t),  p(x+ej ,0)=p(x,0), for 1<=j<=3            (eq.2.8 ) 

(ej is the jth unit vector in R3)    

In place of (4) and (5), we assume that u0(x), is smooth and that 

|𝜕𝑥
𝑎𝜕𝑡

𝑚𝑓 (𝑥, 𝑡)| ≤ 𝐶𝑎,𝑚,𝐾(1 + 𝑡)−𝐾 on R3× [𝟎, +∞) for any α,m,K       (eq.2.9 ) 

We then accept a solution of (1), (2) , (3) as physically reasonable if it satisfies  

u(x+ej ,t)= u(x, t), p(x+ej , t)=p(x,t), on R3× [𝟎, +∞) for 1<=j<=3               (eq.2.10 ) 

and p, u C(R3 [0,))                                    (eq.2.11 )                                                         

In the next paragraphs we may also write u0 instead of u0 for the initial data velocity. 

We denote Euclidean balls by 𝐵(𝑎, 𝑟): = {𝑥 ∈ 𝑅3: ||𝑥 − 𝑎|| ≤ 𝑟}, where ||x|| is the 

Euclidean norm.  

The 4 sub-problems or conjectures of the  millennium problem are the next: 

(Conjecture A) Existence and smoothness of Navier-Stokes solution on R3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free vector field satisfying (4). 

Take f(x,t) to be identically zero. Then there exist smooth functions p(x,t) , u(x,t) on 

R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.6) , (2.7).  



 (Conjecture B) Existence and smoothness of Navier-Stokes solution on R3/Z3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free vector field satisfying (8); 

we take f(x,t) to be identically zero. Then there exist smooth functions p(x,t) , u(x,t) on 
R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.10) , (2.11).  

(Conjecture C) Breakdown of Navier-Stokes solution on R3 

Take ν>0 and n=3. Then there exist a smooth, divergent-free vector field u0(x) on R3 

and a smooth f(x,t) on R3x[0,+∞) satisfying (4), (5)  for which there exist no smooth 
solution (p(x,t) ,u(x,t)) of (2.1), (2.2), (2.3) , (2.6) , (2.7)  on R3x[0,+∞).   

(Conjecture D)  Breakdown of Navier-Stokes solution on R3/Z3 

Take ν>0 and n=3. Then there exist a smooth, divergent-free vector field u0(x) on R3 

and a smooth f(x,t) on R3x[0,+∞) satisfying (2.8), (2.9)  for which there exist no smooth 
solution (p(x,t) ,u(x,t)) of (2.1), (2.2), (2.3) , (2.10) , (2.11) on R3x[0,+∞).   

In the next the || ||m  is the corresponding Sobolev spaces norm and . We denote by  Vm 

={u in  Hm(Rn) and divu=0} where Hm(Rn) are the Sobolev spaces with the L2 norm.  

 

Remark 2.4. It is stated in the same formal formulation of the Clay millennium 

problem by C. L. Fefferman see [3] Fefferman C.L.  2006 (see page 2nd line 5 from 

below) that the conjecture (A) has been proved to holds locally. “..if the time internal  

[0,), is replaced by a small time interval [0,T), with T depending on the initial 

data....”. In other words there is >T>0, such that there exists a unique and smooth  

solution  u(x,t)C(R3 [0,T)). See also [19] A.J. Majda-A.L. Bertozzi  ,Theorem 3.4 

pp 104. In this paper, as it is standard almost everywhere, the term smooth refers to the 

space C 

In these next  the || ||m  is the corresponding Sobolev spaces norm and . We denote by  

Vm ={u in  Hm(Rn) and divu=0} where Hm(Rn) are the Sobolev spaces with the L2 norm.  

 We must mention that in A.J. Majda-A.L. Bertozzi [19] ,Theorem 3.4 pp 104, Local 

in Time existence of Solutions to the Euler and Navier-Stokes equations it is proved 

that indeed if the initial velocities belong to  Vm  m>=[3/2]+2 there exist unique smooth 

solutions locally in time [0,t]. Here, in the formulation of the millennium problem the 

hypotheses of smooth with Schwartz condition initial velocities   satisfies this 

condition therefore we have the existence and uniqueness of smooth solution locally in 

time, both in the non-periodic and the periodic setting without external forcing 

(homogeneous case). 

The existence and uniqueness of a smooth solutions locally in time is stated in the 

formulation by C.L. Fefferman [3] for the homogeneous cases and conjectures (A), 

(B). When a smooth Schwartz condition external force is added (inhomogeneous case) 

, it is natural to expect that also there should exist a  local in time unique sooth solution. 



But this I did not find to be stated in the A.J. Majda-A.L. Bertozzi [19], so I will avoid 

assuming it.  

We state here also two, very well-known criteria of no blow-up and regularity.  

In this theorem the || ||m  is the corresponding Sobolev spaces norm and . We denote by  

Vm ={u in  Hm(Rn) and divu=0} where Hm(Rn) are the Sobolev spaces with the L2 norm.  

Theorem 2.1 Velocities Sobolev norm sufficient condition of regularity.  Given an 

initial condition u0  ∈ Vm  m>=[3/2]+2=3.5 e.g. m=4 , then for any viscosity ν>=0 . 

there exists a maximal time T* (possibly infinite) of existence of a unique smooth 

solution u  ∈ C([0,T*];Vm ) ᴖ C1([0,T*];Vm-2) to the Euler or Navier-Stokes equation. 

Moreover, if T*<+∞  then necessarily limt->T* ||u(. , t)||m =+∞. 

 Proof: See A.J. Majda-A.L. Bertozzi [19] , Corollary 3.2 pp 112). QED 

Remark 2.5 Obviously this proposition covers the periodic case too. 

Theorem 2.2 Supremum of vorticity sufficient condition of regularity 

Let the initial velocity u0 ∈ Vm  m>=[3/2]+2 , e.g. m=4, so that there exists a classical 

solution  u∈ C1([0,T] ; C2ᴖVm) to the 3D Euler or Navier-Stokes equations. Then : 

(i) If for any T>0 there is M1 >0 such that the vorticity ω=curl(u) satisfies 

∫ |𝜔(. , 𝜏)|𝐿∞ 
𝑇

0
 dτ ≤ 𝛭1 

Then the solution u exists globally in time, u∈ C1([0,+∞] ; C2ᴖVm) 

(ii) If the maximal time T* of the existence of the solution u∈ C1([0,T] ; C2ᴖVm) is finite, 

 then necessarily the vorticity accumulates so rapidly that  

𝑙𝑖𝑚𝑡→𝑇∗ ∫ |𝜔(. , 𝜏)|𝐿∞ 
𝑇

0
 dτ=+∞                                            (eq. 11.1) (eq. 2.12) 

Proof: See A.J. Majda-A.L. Bertozzi [19] ,Theorem 3.6 pp 115, L∞ vorticity control of 

regularity.          QED. 

Remark 2.6 Obviously this proposition covers the periodic case too.  

 

§ 3. What is that we do not understand with the Navier-Stokes equations? The 

need for more consciousness for interpretations. Why we chose the geometric 

calculus approach for the solution?  

It has been written in the initial formulation of the problem, that our difficulty of 

solving this millennium problem shows that there several things that we do not 

understand very well in the Navier-Stokes equations. In this paragraph we will 

investigate this issue. We will explain also why the rather elementary geometric 



calculus approach is better so as to solve the millennium problem, compared to more 

advanced functional analysis.  

 

1) One primary point, known but often forgotten is the next. The Euler and the Navier-

Stokes equations are the equations that are considered to govern the flow of fluids, and 

had been formulated long ago in mathematical physics before it was known that matter 

consists from atoms. So actually they formulated  the old infinite divisible material 

fluids. After L. Boltzmann and the discovery of material atoms, the more true model 

is that of statistical mechanics. We may consider that the two different types of matter, 

a) infinite divisible b) made from finite atoms, behave the same as far as flows in fluid 

dynamics, and certainly there are many common properties but ultimately are 

mathematically and logically different. One example of the difference is that in the 

atomic structured material fluid model, the angular velocity of the spin e.g. of electrons, 

protons, neutrons which is about 1 terahertz (infrared range) can vary increase or 

decrease, independently from the vorticity, which only the part of the angular velocity 

which is “geared to the environmental” rotation of the fluid. In the classical Weierstrass 

calculus of infinite divisible material fluids (Euler and Navier-Stokes equations) this 

distinction does not exist and all the angular velocity of a point is due to the vorticity. 

In [21] Muriel, A  2000  a corresponding to the millennium problem in statistical 

mechanics has been solved in the direction of regularity. Similarly, in [6] Kyritsis, K. 

November 2017 a solution of the current millennium problem has been proved in the 

direction of regularity, but only if adding an additional hypothesis to the initial 

formulation, that of existence of finite atomic particles that are conserved during the 

flow. Strictly speaking a mathematical model of the material fluids and their flow 

which will have a high degree of exactness should take in to account that matter 

consists of atoms, (the electron range of magnitudes is of the order 10-15 meters) and 

this it should avoid utilizing concepts of continuity and smoothness that use ε>0 δ>0 

in their definition smaller than 10-15 meters.   To address this difficulty of our current 

(Weierstrass) calculus the author developed the Democritus digital and finite decimal 

differential calculus (see [16] Kyritsis K. 2019b , [15] Kyritsis K. 2017 B , [14] Kyritsis 

K. 2022) In this finite calculus, we define concepts, of seemingly infinitesimal numbers 

(they are finite), seemingly infinite numbers (they are finite) and feasible finite 

numbers, so as to develop a differential and integral calculus up to decimal numbers 

with only a fixed finite number decimal (decimal density of level of precision). 

Different levels of precision give different definitions of continuity and smoothness.   

These multi-precision levels Democritus calculi is what an applied mathematician is 

doing when applying the Newton-Leibniz and Weierstrass calculus with the infinite 

(and infinitesimals). The Democritus calculus strictly speaking is not logically 

equivalent to the Newton-Leibniz calculus or to the Weierstrass calculus. E.g. classical 

Weisstrass calculus continuity corresponds in the Democritus calculus of being 

continuous not only to a single precision level but to all possible personal levels.  

Because in the Democritus calculus continuity and smoothness is only up to a precision 



level, the turbulence can be defined in a way that in  Weierstrass calculus cannot be 

defined. In a turbulent flow, the flow in the Democritus calculus may be smooth 

relative to a precision level but non-smooth relative to a coarser precision level (or the 

opposite) in the Weierstrass calculus this is impossible.  Furthermore, now when a 

computer scientist is experimenting with computers to discover if in a flow there will 

be a blow up or not in finite time, within the Democritus calculus and its Navier-Stokes 

equations he will have an absolute proof and criterion. If the vorticity will become 

seemingly infinite (still finite) in a feasible finite time interval there is a blow up. If it 

becomes only feasible finite in any feasible finite time interval, there is no blow up.  

Of course blow-up in the Democritus calculus is not equivalent with a blow up in the 

Weisstrass calculus. Finally, with the Democritus calculus the applied mathematician 

acquires the subjective quality of congruence. In other words, what he thinks, sais and 

writes is what he acts and applies. With the infinite in the ontology of calculus this is 

not possible and it is unavoidable the incongruence, because infinite cannot be acted in 

the applications in a material reality where all are finite.  

  

2) It is known that when the calculus (which is used in modeling the fluids) was 

discovered by Newton and Leibniz, the original mathematical ontology was utilizing 

infinitesimals, smaller than any positive real numbers but not zero. Then later with 

Weierstrass calculus this ontology was abandoned, we restricted ourselves to the real 

numbers only, and we utilized limits and convergence. So when we take the law of 

force (momentum conservation) of Newton F=m*γ on a solid finite particle and then 

take the limit by shrinking it to a point to derive the Euler and Navier-Stokes equations, 

we must not forget, that originally the limit was not to a point but to an infinitesimal 

solid body particle. This is not the same! In [30x3 ] Kyritsis K. 2022, I have restored 

with strict mathematics the original ontology of infinitesimals of Newton-Leibniz , 

utilizing algebra of intervals (or inverses of ordinal numbers as J. H Conway has also 

done with the surreal numbers see [1] J H. Conway and [5] K Kyritsis ordinal real 

numbers 1,2,3). Then we have a two-density calculus with two different linearly 

ordered fields, a) the real numbers b) a larger such field of Newton-Leibniz fluxions, 

with infinitesimal, finite and infinite numbers. The topologies of convergence of a solid 

finite particle by shrinking it to a point ot to an infinitesimal solid particle are different! 

And this affects the issue of vorticity and angular velocity of infinitesimal particle. 

When I was a University student, and I was learning about the equations of Navier-

Stokes, I was satisfied to see that the simple law of force (momentum conservation) of 

Newton F=m*γ was converted to the Navier-Stokes equations, but I was shocked to 

realize, that the rest of the independent information about the motion of the solid finite 

particle, namely its rotational momentum, was not shanked to an angular velocity ω of 

the infinitesimal solid particle. So we see now that this is not reasonable in the 

Weisstrass calculus, which shrinks to a point, while it is possible in the older Newton-

Leibniz calculus which shrinks to an infinitesimal solid body, and would lead to a 

different model of flows of fluids, with independent initial data of angular velocities, 

besides linear velocities and besides the derived from them vorticity.  



3) In the current solution of the millennium problem, we may observe a 20%-80% 

Pareto rule. In other words, more than 80% of the equations utilized as governing 

equations of the flow, are those derived from fundamental theorem of the calculus, (in 

the form of Stokes theorem, divergence theorem, green theorem, Helmholtz-kelvin 

theorem, fundamental theorem of calculus etc.) and less that 30% the PDE of the 

Navier-Stokes equations. So I might say that the main equations governing the 

phenomenon of flow is the machinery of exterior differential algebra (wedge product) 

differentiation (differential forms) etc. rather than simply PDE equations. For reasons 

of simplicity and because we are restricted here to only 3 spatial dimensions, we do not 

utilize the symbolism of the wedge products and differential forms, but only the Stokes 

theorem, divergence theorem etc.   

4) These versions of the fundamental theorem of the calculus (Stokes theorem etc) lead 

to an extension of the law of momentum conservation of 3D fluid parts to a law of 1D 

line density (rotatory) momentum conservation (Theorem 4.1) and law of 2D surface 

density  (rotatory)  momentum conservation (Theorem 4.2). These laws are very 

valuable for infinite divisible fluids so valuable as the existence of finite atoms in the 

atomics structured fluids. Without these extra laws of momentum density conservation, 

we would have a hope to solve the millennium problem.  As T. Tao had remarked, only 

an integral of 3D energy conservation and an integral of 3D momentum conservation 

is not adequate to derive that momentum point densities ρ•u, or energy point densities 

(1/2)ρ•u2  will not blow up.  

5) Besides the forgotten conservation law of finite particles, which unfortunately we 

cannot utilize in the case of infinite divisible fluids to solve the millennium problem, 

there are two more forgotten laws of conservation or invariants. The first of them 

is the obvious that during the flow, the physical measuring units dimensions 

(dimensional analysis) of the involved physical quantities (mass density, velocity, 

vorticity, momentum, energy, force point density, pressure, etc.) are conserved. It is 

not very wise to eliminate the physical magnitudes interpretation and their dimensional 

analysis when trying to solve the millennium problem, because the dimensional 

analysis is a very simple and powerful interlink of the involved quantities and leads 

with the physical interpretation, to a transcendental shortcut to symbolic calculations. 

By eliminating the dimensional analysis we lose part of the map to reach our goal. 

6) The 2nd forgotten conservation law or invariant, is related to the viscosity (friction). 

Because we do know that at each point (pointwise), the viscosity is only subtracting 

kinetic energy, with an irreversible way, and converting it to thermal energy,  (negative 

energy point density), and this is preserved in the flow, (it can never convert thermal 

energy to macroscopic kinetic energy), we know that its sign does not change too it is 

a flow invariant , so the integrated 1D or 2D work density is always of the same sign 

(negative) and as sign an invariant of the flow.  The conservation or invariance of 

the sign of  work density by the viscosity (friction) is summarized in the lemma 3.1 

below.   



7) Finally we must not understate the elementary fact that the force densities Fp due to 

the pressures p,       𝐹𝑝 = −∇𝑝    are conservative , irrotational vector field, and they do 

not contribute to the increase or decrease of the rotational momentum and vorticity of 

the fluid during the flow.  Because of this we get that the conserved 1D and 2D densities 

of momentum in Theorems 4.1 and 4.2 are only of the rotatory type.         

8) Anyone who has spent time to try to prove existence of Blow up or regularity in the 

various physical quantities of the fluid like velocity, vorticity, acceleration, force 

density, momentum, angular momentum, energy etc. he will observe that in the 

arguments the regularity and uniform in time boundedness propagates easily from 

derivatives to lower order of differentiation, while the blowup propagates easily from 

the magnitudes to their derivatives. The converses are hard in proving. This is due to 

the usual properties of the calculus derivatives and integrals. The hard part of the 

proofs, must utilize forms of the fundamental theorem of the calculus like stokes 

theorem, divergence theorem etc.  

9) Based on the above 8 remarks about what is not very well understood with Navier-

Stokes equations I decided that elementary geometric calculus should be the 

appropriate to solve the millennium problem, and this I did indeed.  

 

Lemma 3.1 The viscosity sign forgotten invariant. 

If we integrate the force density of the viscosity, over a line (1D work density) or 

surface (2D work density) or a volume (work) its sign will remain the same during 

the flow. 

Proof: Because we do know that pointwise, the viscosity is only subtracting kinetic 

energy, with an irreversible way, and converting it to thermal energy,  (negative 

energy point density), and this is preserved in the flow, (it can never convert thermal 

energy to macroscopic kinetic energy), we deduce that its sign does not change too it 

is a flow invariant , so the integrated 1D or 2D work density is always of the same 

sign (negative) and as sign an invariant of the flow.                                                   QED.   

 

§ 4. The Helmholtz-Kelvin-Stokes  theorem in the case of viscous flows.  New   

monotone semi-invariants of viscous flows with the interpretation of average 

rotational momentum axial 1-D line densities.  

Here we apply the idea that the most valuable equations that govern he flow of the fluid 

are not literally the Navier-Stokes equations but the invariants or semi-invariant 

properties of the flow, derived from the abstract multi-dimensional fundamental 

theorems of calculus, in the forms of divergence theorems, Stokes theorems, Greens 

theorems etc. Actually this is the mechanism of wedge-products and abstract algebra 

of differential forms which is beyond classical partial differential equations. We do not 



utilize though definitions and symbolism of wedge-products and differential forms in 

his paper so as to keep it elementary and easy to read. The main discovery of this 

paragraph is the Helmholtz-Kelvin-Stokes theorems  4.3 in the case of viscous flows 

and the resulting general no-blow-up theorem 4.4 for the viscous flows without 

external forcing.  A blow-up when it occurs, it will occur at least as blow-up of the 

vorticity, or of ρ•ω. If we discover average value invariants of the flow with physical 

units dimensions ρ•ω, that in the limit can give also the point value of the ρ•ω, and 

that are invariants independent from the size of averaging, it is reasonable that we 

can deduce conclusions, if the point densities can blow-up or not.  

 

 

 Theorem 4.1 The Helmholtz-Kelvin-Stokes  theorem in the case of inviscid Euler 

equations flows without external force or homogeneous case. (Α 1D line density of 

rotatory momentum, conservation law). 

Let initial data in R3 so that they guarantee the existence of a unique smooth solution 

to the Euler equation in a local time interval [0,T]. Then at any time t ∈ [0,T]  the 

circulation Γ(c) of the velocities on a closed smooth loop is equal to the flux of the 

vorticity on smooth surface S with boundary the loop c, and is constant and preserved 

as both loop and surface flow with the fluid. In symbols (ρ=1 is the density of the 

incompressible fluid) 

𝛤𝑐(𝑡) = 𝜌 ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

ρ∬ 𝜔 • 𝑑𝑠
𝑆

                                                                   (eq. 4.1) 

Proof: 

See [19] Majda, A.J-Bertozzi, A. L. 2002, Proposition 1.11 and Corollary 1.3 , in page 

23.   The proof is carried actually by integrating the Euler equations on a loop 

c and utilizing that the integral of the pressure forces (densities) defined as –∇p are 

zero as it is a conservative (irrotational) field of force (densities). Then by applying 

also the Stokes theorem that makes the circulation of the velocity on a loop equal to 

the flux of the vorticity on a smooth surface with boundary the loop (see e.g. Wikipedia 

Stokes theorem https://en.wikipedia.org/wiki/Stokes%27_theorem) the claim is 

obtained.      QED. 

We may notice that this circulation and surface vorticity flux has physical measuring 

units [ρ]*[ω]*[s]^2=[m]*[s]^(-3)*[t]^(-1)[s]^2=[m]*[s]^(-1)*[t]^(-1) 

=[moment_of_inertia]*[ω]*[s]^(-3) thus angular momentum point density. While the 

ρ*ω has physical measuring units dimensions [ρ]*[ω]=[m]*[s]^(-3]*[t]^(-1) = 

[moment_of_inertia]*[ω]*[s]^(-2) thus 2nd spatial derivative of rotational momentum 

of point density  .  



A blow-up when it occurs, it will occur at least as blow-up of the vorticity, or of ρ•ω. 

If we discover bounded average value invariants of the flow with physical units 

dimensions ρ•ω, that in the limit can give also the point value of the ρ•ω, and that are 

invariants and bounded independent from the size of averaging, it is reasonable that we 

can deduce conclusions, if the point densities can blow-up or not.  

Here we convert the surface vorticity flux invariant of Helmholtz-Κelvin-Stokes to one 

with 3D integration which will be more convenient in the arguments as the volumes 

are preserved by incompressible flows and most important, the integration is 3-

dimensional which can be utilized to define average values of the vorticity (flux) on 

3D finite particles..  

We will prove at first a lemma about the 3D volume integral of Theorem 4.2, and 

convergence of average values of vorticity, based on this 3D integral,  to point values 

to vorticity. 

We define an average value for the volume 3D integral of vorticity flux.  

Definition 4.1 

We define as average value on ball in   of the vorticity ω , denoted by 𝜔̅𝐵 ,the unique 

constant value of the vorticity on the interior of the ball that would give the same 3D  

flux of vorticity on  the ball,  ρ∫ ∬ 𝜔̅ • 𝑑𝑠
𝑆

𝜋

0
 = ρ∫ ∬ 𝜔 • 𝑑𝑠

𝑆

𝜋

0
.   This average value 𝜔̅ 

of the vorticity is of course the   

 || 𝜔̅𝐵|| = |
𝜌 ∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
 |                                                                        (eq.4.2) 

 and its direction is that of the vertical axis of the ball Β                                                                 

Where |Β|=(4/3)*π*r2  is the volume of the ball B, of radius r,  and | |𝜔̅̅̅𝐵||  is the 

Euclidean norm of the vector.  A more detailed symbolism of the average vorticity is 

the 𝜔̅(𝑥𝑡 , 𝑡)𝐵(𝑟,𝑡) 

The numerator of this average value of vorticity has also the interpretation of 

rotational momentum average axial density on the ball B and relative to the axis a. A 

reason for this is that the physical dimensions of measuring units of this magnitude is 

that of rotational momentum line density. This is because the rotational momentum 

point density has physical dimensions [moment_of_inertia]*[ω]*[s]^(-3)=[m][s]^(-

1)[t]^(-1), where [m] for mass, [s] for distance, [t] for time, and this magnitude has 

physical units dimensions, ([ρ][ω][s]^3 )=([m][s]^(-1)[t]^(-1))[s]^(1),  thus rotational 

momentum point density integrated on  1-d line axial density. And the full quotient 

therefore has physical units dimensions [m][s]^(-3)[t]^(-1) )=[ρ][ω].  



A blow-up when it occurs, it will occur at least as blow-up of the vorticity, or of ρ•ω. 

If we discover average value invariants of the flow with physical units dimensions ρ•ω, 

that in the limit can give also the point value of the ρ•ω, and that are invariants and 

bounded independent from the size of averaging, it is reasonable that we can deduce 

conclusions, if the point densities can blow-up or not.  

Lemma 4.1 Let a ball B of radius r and center x, and the average vorticity 𝜔̅𝐵 in it as 

in the Definition 4.1 so that its  axis a that defines the average vorticity is also the axis 

of the point vorticity ωx at the center x of the ball.   By taking the limit of shrinking the 

ball to its center x , (r->0), the average vorticity 𝜔̅𝐵  converges to the point vorticity 

ωx  . In symbols 𝑙𝑖𝑚
𝑟→0

 𝜔̅𝐵 = ωx . If the axis a of the ball to estimate the average vorticity 

is not the axis of the point vorticity, then the limit of the average vorticity will be equal 

to the projection component ωa(x,t) of the point vorticity ω(x,t) on the axis a.  

Proof: We simply apply an appropriate 3-dimensional version, with iterated integrals 

of the 1-dimensional fundamental theorem of the calculus.                               QED. 

Remark 4.1. Such a limit of 3D body to a point is the same as the limit that from the 

Newton equation of force F=mγ, We deduce the Navier-Stokes equations.  

Since the flow of a fluid under the Euler or Navier-Stokes equations, with or without 

smooth Schwartz external force is a smooth and continuous mapping F , then such a 

limit will be conserved to still be a valid limit during the flow. In other words  

F(𝑙𝑖𝑚
𝐵→0

 𝜔̅𝐵)= 𝑙𝑖𝑚𝐹(
𝐹(𝐵)→0

 𝜔̅𝐵)                            

and B->0 , implies Ft(B)->0. We define of course in an obvious appropriate way the 

average vorticity Ft(𝜔̅𝐵) as in definition 4.1, for the flow-image of a ball B after time 

t. Simply the disc surfaces will no longer be flat, and the loop no longer perfect circle. 

But the integrals in the definition will be the same. Constancy of the average vorticity 

on such surfaces will only be, up to its Euclidean norm and vertical angle to the surface. 

We must notice though that although a relation F(𝑙𝑖𝑚
𝐵→0

 𝜔̅𝐵)= 𝑙𝑖𝑚𝐹(
𝐵→0

 𝜔̅𝐵)   would hold 

,  the value of this limit will not be the vorticity  ωF(x)   at the flowed point! 

Unfortunately, the Lemma 4.2 holds not on arbitrary 3D shapes and arbitrary 

integration parametrization on it, but only when we start with standard 3D shapes like 

a sphere, a cylinder a cube etc. and the normal parametrization on them. The reason is 

that we need to take in to account in a normal way the average vorticity around a point 

in an unbiased way, that an arbitrary shape will not give.                        

Another important conservation point is that the relation of the vorticity ωx  being 

tangent to an axis a (or general curve) is conserved during inviscid Euler flows. It is 

the conservation of vorticity lines (See [19] Majda, A. J. –Bertozzi, A. L.  2002, 

Proposition 1.9 in page 21). Therefore for inviscid (and incompressible) flows the axis 

of the initial point vorticity ω(0) , which is also the axis to estimate the average vorticity 

on the ball B, will still be after the flow and at time t, tangent to the point vorticity ω(t).  



But for general viscous flows this will not be so. Notice that such limits of average 

values would not work for the circulation of the velocity on a loop, as in the application 

of the iterated 1-dimensional fundamental theorem of the calculus would require 

boundaries of the integration.  

Lemma 4.2 Let the Euler or Navier-Stokes equations of incompressible fluids in the 

non-periodic or periodic setting, with smooth initial data and we assume that the initial 

data in the periodic or non-periodic case, are so that the supremum of the vorticity is 

finite denoted by Fω  on all 3-space at time t=0. Let the average vorticity, or average 

rotational momentum density, defined as in Definition 4.1 but with integration 

parametrization one any smooth 3D shape B of any size, that of course  both as a 

diffeomorphic image of a spherical ball with its spherical coordinates integration 

parametrization. Then the average vorticity or average rotational momentum density 

is also upper bounded by the Fω.  In symbols  

|| 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
 |  ≤   Fω                                                  (eq. 4.3)                                                                   

 

Proof: Since ||ω|| <= Fω = ||(ω/||ω||)||Fω   in the flux-integration we have for the inner 

product of  ω and the unit area vector n, (ω, n)<= ((ω/||ω||)Fω ,n)<= Fω . Thus in the 

integration we may factor out the Fω 

|
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
 |  ≤ |

∫ ∬ 𝐹𝜔𝑑𝑠𝑑𝜃
𝑆

𝜋

0

|𝛣|
 |  =   Fω|

∫ ∬ ds𝑑𝜃
S

π

0

|Β|
|=  Fω |

|𝛣|

|Β|
 = Fω  .         QED.                              

 Theorem 4.2 A 3-dimensionl integral version of the Helmholtz-Kelvin-Stokes 

theorem. (Α 2D surface density of rotatory momentum, conservation law). 

Let initial data in R3 so that they guarantee the existence of a unique smooth solution 

to the Euler equation in a local time interval [0,T]. Then at any time t ∈ [0,T] let a 

sphere B of radius r (as in figure 4.) considered as a finite particle, then the azimuthal 

θ-angle, θ-integral on a meridian in spherical coordinates of the circulations Γ(c) of 

the velocities on all closed longitude smooth loops parallel to the equatorial loop is 

equal to the same θ-integral of the surface flux of the vorticity on smooth flat disc 

surfaces S with boundary the loops c (as in figures 4.2, 4.3) , and both integrals are 

constant and preserved as both surface and volume integrals during the  flow with the 

fluid. In symbols (ρ=1 is the density of the incompressible fluid) 

𝜌 ∫ ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

𝜋

0
ρ∫ ∬ 𝜔 • 𝑑𝑠

𝑆

𝜋

0
                                                   (eq. 4.4) 

 



After (eq. 4.2)  || 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
 |           it holds also 

for t ∈ [0,T]  || 𝜔̅̅̅𝐵(0)|| = || 𝜔̅̅̅𝐵(𝑡)||                                          (eq. 4.5) 

 

 

 

 

Figure 4.1 

 

Figure 4.2-4.3 

 

Proof: We simply take the θ-azimuthal angle θ-integral of both sides of the equation 

4.1 in the theorem 4.1. Both sides are preserved during the flow and so is their θ-

integrals too.  We notice that the measuring physical units dimensions  of 

the conserved quantity 𝜌 ∫ ∮ 𝑢𝑑𝑙 
𝑐=𝜕𝑆

𝜋

0
is [mass]*[length]^(-

3)*[velocity]*[length]^(2)= [mass]*[length]^(-2)*[velocity] thus integration in  2-

dimension surface of momentum 3D-point-density, or equivalently  momentum 1D 

density                       QED 



Theorem 4.3. The Helmholtz-Kelvin-Stokes  theorem in the case of viscous Navier-

Stokes equations flows without external force (homogeneous case) . 

Let initial data in R3 so that they guarantee the existence of a unique smooth solution 

to the Navier-Stokes equation with viscosity coefficient ν>0 , in a local time interval 

[0,T]. Then at any time t ∈ [0,T]  the circulation Γ(c) of the velocities on a closed 

smooth loop is equal to the flux of the vorticity on smooth surface S with boundary the 

loop c, and is decreasing as both loop and surface flow with the fluid. In symbols (ρ=1 

is the density of the incompressible fluid) 

𝜌 ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

ρ∬ 𝜔 • 𝑑𝑠
𝑆

                                                          (eq. 4.1) 

and for t ∈ [0,T]    ∮ 𝑢(0)𝑑𝑙 > ∮ 𝑢(𝑡)𝑑𝑙 
𝑐=𝜕𝑆𝑐=𝜕𝑆

                      (eq. 4.6) 

and similarly for the 3D volume integration as in Theorem 4.2 

 for t ∈ [0,T]  𝜌 ∫ ∬ 𝜔(0) • 𝑑𝑠𝑑𝜃
𝑆

𝜋

0
> 𝜌 ∫ ∬ 𝜔(𝑡) • 𝑑𝑠𝑑𝜃

𝑆

𝜋

0
            (eq. 4.7) 

After (eq. 4.2) || 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
 |   it holds also for initial finite spherical      

particles for t ∈ [0,T]  || 𝜔̅̅̅𝐵(0)|| > || 𝜔̅̅̅𝐵(𝑡)||  |                                              (eq. 4.8) 

Proof: Again The (eq. 4.1) is nothing else of course but the Stokes theorem as in (eq 

4.1)  

We shall utilize here the next equation (See [19] Majda, A.J-Bertozzi, A. L. 2002, (eq 

1.61) , in page 23.) in the case of viscous incompressible  flows under the Navier-

Stokes equations  

𝑑

𝑑𝑡
𝛤𝑐(𝑡) =

𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 = 𝜈 ∮ ∆𝑢𝑑𝑙 =

𝑐(𝑡)𝑐(𝑡)
− 𝜈 ∮ 𝑐𝑢𝑟𝑙 𝜔𝑑𝑙

𝑐(𝑡)
                      (eq. 4.9) 

This equation is derived after applying as in Theorem 4.1 the loop integral of the 

circulation at the Navier-Stokes equations instead at the Euler equations taking the 

material-flow derivative outside the integral, and eliminating the conservative, 

irrotational part of the pressure forces as gradient of the pressure. Here the viscosity is 

not zero thus the left hand of the equations is not zero as in the case of Euler equations, 

where it is conserved. The right hand side is nothing else than the loop work density 

of the point density of the force of viscosity at any time t.  And as the viscosity 

always subtracts energy, this right hand side work density is always negative 

during the flow. We notice after the Lemma 3.1   that the viscosity force point density  

keeps constant sign on the trajectory path as orbital component during the flow and 

relative to the velocity on the trajectory. It is always as orbital component opposite to 



the motion and represents the always irreversible energy absorption and linear 

momentum and angular momentum decrease. Similarly, for any rotation of the fluid 

e.g. with axis the trajectory path. The viscosity force point density as component on 

the loop is always opposite to the rotation, it never converts thermal energy to add to 

linear or angular momentum. This opposite to motion monotonicity of the viscosity 

force density applies to the Navier-Stokes equations but also as opposite to rotation 

monotonicity in the vorticity equation 
𝐷𝜔

𝐷𝑡
= 𝜔 ∗ ∇u+ν∆𝜔  (see  [19] Majda, A.J-

Bertozzi, A. L. 2002, (eq 1.33 ) and (eq 1.50 )  in pages 13 and 20 ) .  So if we choose 

a direction of the loop so that the circulation integral on the right hand side is positive 

then this will have the same sign during the flow (although different absolute value), 

and will make the left hand side of the (eq. 4.9) always negative during the flow. But 

this means from the left-hand side of the equation that the circulation of the velocity 

on the loop is always decreasing during the flow.  

𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 < 0

𝑐(𝑡)
   for any t in [0,T]                  (eq. 4.10) 

Thus (eq. 4.6) is proved, and (eq. 4.7) is direct consequence.    

To prove the equation 4.8 we notice that due to incompressibility, the flow is volume 

preserving, thus |B(x(t))|=|B(x(0)| , and by dividing both sides of the equation 4.7 , and 

after the definition   

 || 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣|
 |                              it holds also 

    for t ∈ [0,T]  || ω̅̅̅B(0)|| > || ω̅̅̅B(t)||            (eq. 4.8)      QED. 

 

   Remark 4.2. We can extend the results of the theorems 4.1, 4.3 with Euler or Navier-

Stokes equations to similar ones in the inhomogeneous case with external forces Fext., 

provided of course we have the existence and uniqueness of a smooth solution local in 

time. We would start from an equation  

𝑑

𝑑𝑡
𝛤𝑐(𝑡) = 𝜌

𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 =

𝑐(𝑡)
− 𝜈𝜌 ∮ 𝑐𝑢𝑟𝑙 𝜔𝑑𝑙

𝑐(𝑡)
  +ρ ∮ 𝐹𝑒𝑥𝑡𝑑𝑙

𝑐(𝑡)
  <=  ρ ∮ 𝐹𝑒𝑥𝑡𝑑𝑙

𝑐(𝑡)
    

Similarly  

𝑑

𝑑𝑡
𝜌 ∬ 𝜔 • 𝑑𝑠

𝑆
= −𝜈𝜌 ∮ 𝑐𝑢𝑟𝑙 𝜔𝑑𝑙

𝑐(𝑡)
  + 𝜌 ∬ 𝑐𝑢𝑟𝑙𝐹𝑒𝑥𝑡 • 𝑑𝑠

𝑆
   

<=  𝜌 ∬ 𝑐𝑢𝑟𝑙𝐹𝑒𝑥𝑡 • 𝑑𝑠
𝑆

   <=|S| M0                     



since as in the proof of Theorem 4.3 the friction circulation term is always negative 

and  due to the Schwartz conditions on the external force in space and time the constant 

M0  is independent from space and time and the size of the surface of the loop in the 

integration. |S| is the area of the flux integration. 

Then from smoothness and elementary 1-dimensional calculus we would get an 

inequality like  

𝜌| ∬ 𝜔(0) • 𝑑𝑠 − ∬ 𝜔(0) • 𝑑𝑠|
𝑆𝑆

<=|S| M1(Fext , t)                     

where again due to the Schwartz conditions on the external force in space and time the 

constant M1  is independent from space and the trajectories paths and depends only on 

the  time and the external force.  

Similarly  by dividing the first equation by |B| which does not change by time and 

integrating for 3D ball , we can result similarly to an inequality like  

|
∫ ∬ 𝜔(𝑡)•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣(𝑡)|
−

∫ ∬ 𝜔(0)•𝑑𝑠𝑑𝜃
𝑆

𝜋

0

|𝛣(0)|
 |≤

|𝐵|

|𝐵|
𝑀1(𝐹𝑒𝑥𝑡 , 𝑡) = 𝑀1(𝐹𝑒𝑥𝑡 , 𝑡)       where again the 

constant M2  is independent from space and the size of the ball and depends only on the 

time t.  

                                                    

 

Theorem 4.4   The no blow-up theorem in finite or infinite time in the Euler, 

Navier-Stokes, periodic or non-periodic and homogeneous cases.  

Let the Euler or Navier-Stokes equations of incompressible fluids in the non-periodic 

or periodic setting (homogeneous case with no external forces), with  

a) smooth initial data and whatever else hypothesis is necessary so as, also to 

guarantee the existence and uniqueness of smooth solutions to the equations locally 

in time [0, T). 

 b) Furthermore we assume that the initial data in the periodic or non-periodic case, 

are such that the supremum of the vorticity, denoted by Fω , is finite at t=0. (In the 

periodic case, smoothness of the initial velocities is adequate to derive it, while in the 

non-periodic setting smooth Schwartz initial velocities is adequate to derive it) 

Then it holds that there cannot exist any finite or infinite time blow-up at the point 

vorticities during the flow.  



Proof: The proof will by contradiction. The main idea of the proof is to utilize that in 

the case of a  blow-up the vorticity will converge to infinite, so it will become larger 

than an arbitrary  lower bound M+Fω , Μ>0 , Fω  >0 and by approximating it with 

average flux vorticity of a 3D spherical particle, and tracing it back at the initial 

conditions where all is bounded by Fω ,utilizing the semi-invariance of the average 

vorticity that we have proved, we will get that Fω  > M+Fω  . 

So let us assume that there is a blow up, in a finite time or infinite time T* , with the 

hypotheses of the theorem 4.x. Then from the Theorem 2.2 and (eq. 2.12 ) which is the 

well-known result of the control of regularity or blow up by the vorticity we get that , 

limt→T∗ ∫ |ω(. , τ)|L∞ 
T

0
 dτ=+∞                                                          (eq. 2.12) 

We conclude that there  will exist an infinite  sequence of points {xtn  , n natural number, 

0<tn<T*, limn→∞𝑡𝑛 = 𝑇∗ } so that the point vorticity 𝜔(𝑥𝑡𝑛)   blows-up, or 

equivalently  limn→∞𝜔(𝑥𝑡𝑛) = +∞ . We do not need to assume them on the same 

trajectory. Therefore, for every positive arbitrary large real number M0  , there is a n0  

such that for all natural numbers n> n0 , it holds that ω(xtn)>M0 .  We choose M0=M00 

+Fω  , for an arbitrary large positive number M00 . So  

 ω(xtn)> M00 +Fω                                                                                 (eq. 4.11)  

Now we approximate this point vorticity with an average flux vorticity on a 3D particle 

after Definition 4.1 , theorem 4.2 and Lemma 4.1.  

Let a spherical ball particle B(r, xtn,)  as in theorem  4.2. with center xtn  and radius r>0. 

After Definition 4.1 ,theorem 4.2 and Lemma 4.1. we have that  

lim
r→0

 ω̅B = ωx(tn) , with || ω̅B|| = |
∫ ∬ ω•ds𝑑𝜃

S

2π

0

|B(r,x(tn))|
 |                                     (eq. 4.2) 

Therefore for arbitrary small positive number ε>0 , there is radius R, with  

  𝜔̅𝐵(𝑅) > 𝜔𝑥(𝑡𝑛) − ε       or       |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

2𝜋

0

|B(r,x(tn))|
> 𝜔𝑥(𝑡𝑛) − ε                    (eq. 4.12) 

 

Thus after (eq. 4.11)     |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

2𝜋

0

|B(R,x(tn))|
| > 𝑀00 + 𝐹𝜔 − ε                        (eq. 4.13) 

Now we trace back on the trajectory of the xtn   the parts of the (eq. 4.13) 



At initial time t=0. We use the advantage that as the incompressible flow is volume 

preserving, the |B(R, x0,)|=  |B(R, x(tn))|. We also utilize theorems 4.2, 4.3, and (eq. 

4.5), (eq. 4.8) , which prove that at the initial conditions t=0 , this average vorticity is 

the same or higher  than that at tn  . 

|
∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃

𝑆

2𝜋

0

|B(R, x(0))|
| ≥      |

∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃
𝑆

2𝜋

0

|B(R, x(tn))|
| 

We conclude that  

|
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃

𝑆

2𝜋

0

|B(R,x(0))|
| > 𝑀00 + 𝐹𝜔 − ε                                                 (eq. 4.14) 

          

From the  (eq. 4.14) and (eq. 4.3) of Lemma 4.2 we conclude  that  

Fω      > 𝑀00 + 𝐹𝜔 − ε                                                                     (eq. 4.15)                                

But M00   was chosen in an independent way from ε>0 to be arbitrary large, while ε>0 

can be chosen to be arbitrary small. Therefore, a contradiction. Thus there cannot be 

any blow-up either in finite or infinite time T*.          QED.  

Remark 4.3. Infinite initial energy. We must remark that we did not utilize anywhere 

that the initial energy was finite, only that the vorticity initially has finite supremum. 

Thus this result of no-blow-up can be with infinite initial energy too. But when 

applying it to the millennium problem we do have there also that the initial energy is 

finite.  

Remark 4.4. Inhomogeneous case. It is interesting to try to extend this result of no 

blowup, for the inhomogeneous case too of the Euler and Navier-Stokes equations and 

investigate where it would fail, if at all, provided of course we have the existence and 

uniqueness of a smooth solution local in time. We would utilize the last inequality of 

remark 4.2 

|
∫ ∬ 𝜔(𝑡)•𝑑𝑠𝑑𝜃

𝑆

𝜋

0

|𝛣(𝑡)|
−

∫ ∬ 𝜔(0)•𝑑𝑠𝑑𝜃
𝑆

𝜋

0

|𝛣(0)|
 |≤ 𝑀1(𝐹𝑒𝑥𝑡 , 𝑡)  and we would anticipate for the 

choice of the constant M0 in (eq 4.11) ,  M0=M00 +M1+Fω . We would reason similarly 

as in the proof of the Theorem 4.4 and we end to a same contradiction  

Fω      > 𝑀00 + 𝐹𝜔 − ε                                                                             

But since at least in the book [19] Majda, A.J-Bertozzi, A. L. 2002, that I took as 

reference on the subject, it does not claim the existence and uniqueness of a smooth 

solution locally in time, in the case of external forces, as we wrote in remark 2.4, I will 



avoid using it, and I remain only in the homogeneous case. Therefore, for the moment 

I will not spend space in this paper on the inhomogeneous case.  

Remark 4.5. A strange blow up for any time t>0 of initially smooth data. We might 

be curious to ask the question if it is possible, starting with zero initial velocities and 

pressures, to create an artificial blow-up only with external forcing. A good candidate 

is the perfect circular vortex, where all the trajectory paths are perfect circles, which is 

known that it is an instance of the solution of the Euler and Navier-Stokes equations. 

We can formulate the circular vortex in 3D with cylindrical or spherical coordinates. 

But for simplicity we will formulate it in 2 dimensions, in spite the fact that we do 

know that in 2D dimensions there cannot be a blow up under the hypotheses of the 

millennium problem. So with an external forcing also as perfect circular vortex that in 

polar coordinates are as follows 

Fr=0     , Fθ=2ρ/(1+exp(r)) (eq 4.16)  

we raise the absolute initial rest within finite time t the flow to a circular vortex which 

has velocities in polar coordinates  

ur=0     , uθ=2t/(1+exp(r)) (eq 4.17)  

 

Now it is elementary to show that 

1) this flow follows the Euler and Navier-Stokes equations 

2) Because curlω=0 , the viscosity has no effect it is as if an inviscid flow.  

Where ω is the vorticity which is calculated in polar coordinates at the verical z-axis 

by the formula   

   𝜔𝑧 =
𝑢𝜃

𝑟
+

𝜕𝑢𝜃

𝜕𝑟
−

𝜕𝑢𝑟

𝑟𝜕𝑟
          (eq. 4.18) 

4) Although the velocity has smooth polar coordinates, the vorticity is in steady blow-

up (singularity) at r=0 for any t>0. That is although at t=0 the initial data are smooth, 

for any t>0, there is a blow-up. 

5) The 4) is so because the external forcing although it has smooth polar coordinates, 

in the Cartesian coordinates, it has curl(F)=+∞, at r=0, thus it does not satisfy the 

smooth Schwartz condition external forcing of the millennium problem.  

 

 

§5 THE SOLUTION OF THE MILLENNIOUM PROBLEM FOR THE 

NAVIER-STOKES EQUATIONS BUT ALSO FOR THE EULER EQUATIONS.  

We are now in a position to prove the Conjectures (A) and (B) , non-periodic and 

periodic setting , homogeneous case of the Millennium problem. 



(Millennium Homogeneous Case A) Existence and smoothness of Navier-Stokes 

solution on R3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free vector field satisfying (2.4). 

Take f(x,t) to be identically zero. Then there exist smooth functions p(x,t) , u(x,t) on 
R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.6) , (2.7).  

Proof: All the hypotheses of the no-blow-up theorem 4.4 are satisfied. After remark 

2.4, with the current case of the millennium problem there exist indeed a unique smooth 

solution locally in time [0,t] (after A.J. Majda-A.L. Bertozzi [19] ,Theorem 3.4 pp 104, 

Local in Time existence of Solutions to the Euler and Navier-Stokes equations) . And 

also the Schwartz condition of the initial data, guarantees that the supremum of the 

vorticity, is finite at t=0. Therefore we conclude by Theorem 4.4  that there cannot be 

any finite or infinite time blow-up. Thus from Theorem 2.2 Supremum of vorticity 

sufficient condition of regularity we conclude that this local in time [0,t] solution , 

can be extended in [0,+∞).         QED 

 

(Millennium Homogeneous Case B) Existence and smoothness of Navier-Stokes 

solution on R3/Z3. 

Take ν>0 and n=3. Let u0(x) be any smooth, divergent-free vector field satisfying (8); 

we take f(x,t) to be identically zero. Then there exist smooth functions p(x,t) , u(x,t) on 

R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.10) , (2.11).  

Proof: All the hypotheses of the no-blow-up theorem 4.4 are satisfied. After remark 

2.4, with the current case of the millennium problem there exist indeed a unique smooth 

solution locally in time [0,t] (after A.J. Majda-A.L. Bertozzi [19] ,Theorem 3.4 pp 104, 

Local in Time existence of Solutions to the Euler and Navier-Stokes equations) . And 

also the compactness of the 3D torus  of the initial data, guarantees that the supremum 

of the vorticity, is finite at t=0. Therefore we conclude by Theorem 4.4 that there cannot 

be any finite or infinite time blow-up. Thus from Theorem 2.2 Supremum of vorticity 

sufficient condition of regularity and remark 2.6 (that the previous theorem covers 

the periodic setting too) we conclude that this local in time [0,t] solution , can be 

extended in [0,+∞).          QED 

 

 

 Remark 5.1. Now in the previous two Millennium cases we could as well take ν=0 , 

and we would have the same proofs and conclusions because the Theorem 4.4 of the 

no-blow-up covers  too the case of inviscid Euler equations flows.    

      

9. Epilogue 

In this paper I solved the millennium problem about the Navier-Stokes equations in the 

homogeneous case without external forcing, and proved that there cannot be a blowup 

in finite or infinite time (regularity) both in the periodic and non-periodic setting 



without external forcing (homogeneous case). But it is also proved that once the 

hypotheses of external forcing of the millennium problem allow for the existence of a 

unique smooth solution local in time, then   the same result of regularity (no blow up) 

holds also for this inhomogeneous case with external forcing. Furthermore I proved 

also the by far more difficult same result for the Euler inviscid flows. I did so by 

utilizing (e.g. in in the inviscid case) that not only the momentum is conserved but also 

rotatory versions of the momentum 1D line and 2D surface densities are conserved. 

Then I extended the conservation in the case of viscous Navier-Stokes flows to 

monotone semi invariants, in other words that these densities are monotonously 

decreasing due to friction. This allowed me to prove with elementary geometric 

calculus that there cannot be any blow up (regularity). The solution of this millennium 

problem gave the opportunity to discover 2 new monotone semi invariants (1D and 2D 

densities of (rotatory type) momentum) for the viscous Navier-Stokes equations.    
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