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Abstract in English

Gelfand Duality establishes a duality, i.e. a contravariant equivalence, between con-
venient categories of topological spaces and certain algebras of continuous functions.
There has been much research in the case of commutative algebras, whereas the
noncommutative case is still being developed. In the classical commutative case,
Gelfand Duality gives a duality between compact Hausdorff spaces and commutative
C∗-Algebras and since then has been extended to many more classes of spaces. The
noncommutative case includes Noncommutative Measure Theory, Noncommutative
K-Theory and many other subjects incorporated in the field of Noncommutative
Geometry. This thesis presents an overview of the aforementioned subjects, concen-
trating in the commutative case and commenting on topics of current research in the
direction of Noncommutative Geometry.





Abstract in Greek

Η Δυϊκότητα Gelfand αφορά μια σχέση δυϊκότητας, δηλαδή μια αντισταθμιστική ισο-
δυναμία μεταξύ κατηγοριών, με συγκεκριμένες καλές ιδιότητες, τοπολογικών χώρων

και αλγεβρών συνεχών συναρτήσεων. Η περίπτωση των μεταθετικών αλγεβρών έχει

μελετηθεί διεξοδικά, ενώ αυτή των μη μεταθετικών είναι ακόμα υπό εξέλιξη. Στην

κλασική μεταθετική περίπτωση, η Δυϊκότητα Gelfand μας παρέχει μια δυϊκότητα μεταξύ
συμπαγών χώρων Hausdorff και μεταθετικών C∗-αλγεβρών και, περαιτέρω, έχει επεκ-
ταθεί σε πολλές άλλες κλάσεις τοπολογικών χώρων. Η μη μεταθετική περίπτωση

περιλαμβάνει τη Μη Μεταθετική Θεωρία Μέτρου, τη Μη Μεταθετική K-θεωρία αλλά
και αρκετά ακόμη θέματα, τα οποία εντάσσονται στον ευρύτερο κλάδο της Μη Μετα-

θετικής Γεωμετρίας. Η παρούσα διατριβή αποτελεί μια επισκόπηση των θεμάτων που

προαναφέραμε, δίνοντας έμφαση στην μεταθετική περίπτωση και κάνοντας αναφορά σε

θέματα που αποτελούν αντικείμενο ενεργούς έρευνας, προς την κατεύθυνση της Μη

Μεταθετικής Γεωμετρίας.
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Introduction

Based on a profound idea of Alain Connes [15], one can associate geometric objects to
noncommutative algebras in the framework of analysis. This theory, called Noncom-
mutative Geometry, is a rapidly growing area of mathematics which interacts with
and contributes to many disciplines in mathematics and physics. Examples of such
interactions and contributions include the theory of operator algebras, index theory
of elliptic operators, algebraic and differential topology, number theory, quantum
field theory and string theory.

To understand the basic ideas of Noncommutative Geometry one should first
become familiar with the idea of a noncommutative space. The notion of a noncom-
mutative space is based on one of the most profound ideas in mathematics, namely
a duality or correspondence between Algebra and Geometry, according to which
concepts or statements in Geometry correspond to, and can be equally formulated
to, similar concepts and statements in Algebra. Specifically, one can formulate a
correspondence

Φ : Geometric object −→ Algebraic object.

Based on Φ, a “commutative” object, corresponds to an algebraic one, usually a
commutative algebra. This correspondence is more complicated when one tries to
associate a “noncommutative” algebraic object R with a “noncommutative” geomet-
ric object X, for which Φ(X) = R. Here comes the notion of a “noncommutative
space”. We already have in hand many generalizations of commutative algebraic
objects and we would like to associate to these, noncommutative geometric ones.
The field of Noncommutative Geometry is a rapidly growing area of mathematics
that emphasizes in the above association and extends to many more fields of both
Geometry and Topology.

We need to emphasize, though, that this correspondence is, by no means, a
new trend in mathematics. In fact, this duality is utilized in mathematics and
its applications very often. A trivial example is the use of numbers in counting.
It is, however, the case that throughout history, each new generation of mathe-
maticians has found new ways of formulating this principle and at the same time
broadening its scope. Just to mention a few highlights of this rich history, we
quote Descartes (analytic geometry–1630’s), Hilbert (affine varieties and commu-
tative algebras–1900’s), Gelfand–Naimark (locally compact spaces and commuta-
tive C∗-algebras–1940’s), and Grothendieck (affine schemes and commutative rings–
1960’s). Precisely, in what concerns the approach of Gelfand and Naimark in applying
the aforementioned Algebra–Geometry correspondence, is what this dissertation is
all about, namely Gelfand Duality. In particular, we will prove both of the following
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2 Gelfand Duality

unital and nonunital cases of Gelfand Theorems.

Theorem (Unital case of Gelfand Theorem, [16], p.236). Let A be a unital com-
mutative C∗-algebra, with norm ‖ · ‖. Then, the Gelfand transform, which is a map
γ : A→ C(∆), is an isometric ∗-isomorphism.

Theorem (Nonunital case of Gelfand Theorem, [17], p.7). Let A be a nonunital
commutative C∗-algebra. Then, the Gelfand transform, which is a map γ : A →
C0(∆), is an isometric ∗-isomorphism.

Utilizing the theorems above, we will establish the main goal of this dissertation,
which is Gelfand Duality and consists of the following two theorems.

Theorem ([27], p.4). The category of compact Hausdorff spaces CS is dual to the
category of unital commutative C∗-algebras C∗Algcom,u.

Theorem ([27], p.5). The category of locally compact Hausdorff spaces LCS is dual
to the category of nonunital commutative C∗-algebras C∗Algcom,nu.

Last to mention is a noncommutative Gelfand Theorem which is analyzed in
Chapter 4 and depends heavily on certain concepts in the theory of projections in a
von Neumann algebra. Specifically, we will prove the following theorem.

Theorem (Noncommutative Gelfand Theorem, [5], p.6). The hermitian elements of
A are exactly those q-continuous elements b of M , such that the spectral projections
of b corresponding to closed subsets of the spectrum of b, which don’t contain 0, are
q-compact, that is, b “vanishes at ∞”.

In Chapter 1 we present some fundamentals about the theory of Banach algebras.
Specifically, we define the notion of a Banach algebra, the notion of the spectrum,
the notion of an ideal in a Banach algebra and we prove, using the quotient map,
that the quotient algebra A/J is also a Banach algebra, provided that A is a Banach
algebra and J is a proper closed ideal of A. We close up this chapter by defining the
Gelfand transform and its main properties and by proving that the maximal ideal
space of a commutative Banach algebra is a compact Hausdorff space.

Chapter 2 is concerned with C∗-algebras. We emphasize on certain kinds of ele-
ments in C∗-algebras, that is, hermitian (or self-adjoint), normal, positive and unitary
ones. Using those elements and some of their properties, we prove the Gelfand The-
orems 2.2.13 and 2.2.14. We close up this chapter with the notion of an approximate
identity.

Chapter 3 is the main goal of this thesis, that is, Gelfand Duality. This chapter
consists of some fundamental concepts of Category Theory, from which we distinguish
the natural transformations. Two kinds of them are of our concern, namely the one
of an equivalence between categories and that of a duality between categories. We
prove Gelfand Duality in both cases (Theorems 3.4.1 and 3.4.2). To be specific, for a
given C∗-algebra without unit, we construct a duality between the category of locally
compact Hausdorff spaces and the category of nonunital commutative C∗-algebras,
whereas for a given unital C∗-algebra, we have a duality between the category of
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compact Hausdorff spaces and the category of unital commutative C∗-algebras. We
close up this chapter with some consequences of Gelfand Duality.

In Chapter 4 we analyze the fundamentals of the theory of representations in
C∗-algebras, making our way to the Gelfand-Naimark Theorem (Theorem 4.1.35),
which associates an arbitrary C∗-algebra, with a subalgebra of B(H), i.e. the algebra
of all linear and bounded operators on a Hilbert space. We define certain notions in
the theory of von Neumann algebras and we prove a generalized (up to commutativ-
ity) version of Gelfand Theorem (Theorem 4.3.15), which associates the hermitian
elements of an arbitrary C∗-algebra, with spectral projections of q-continuous oper-
ators, that are q-compact and do not contain 0. Finally, we comment on some topics
of modern research incorporated in the field of Noncommutative Geometry.





Chapter 1

Basics of Banach Algebras

In this chapter we present some preliminaries for the theory of Banach algebras.
Particularly, we present the basic concepts that lead to the construction of a Banach
algebra, that is, the notions of an algebra, a normed algebra and an algebra norm.
Then we define the spectrum of an element in a Banach algebra. Using this notion,
we go further deep into the theory of Banach algebras and Banach algebra homo-
morphisms. We prove some useful theorems that concern properties of the spectrum,
from which we derive results, such as the fact that the spectrum of an element in a
Banach algebra is compact and nonempty. Furthermore, we define the notion of the
Gelfand transform and we prove that the maximal ideal space ∆ of a commutative
Banach algebra A is a Hausdorff space which is compact if, and only if, A is unital.
We will use the aforementioned notions in the proofs of Gelfand Theorems in Chapter
2.

1.1 Introduction to Banach Algebras

We begin this section with some definitions about various kinds of algebras.

Definition 1.1.1 ([33], p.227). An algebra is a vector space A, over some field K,
such as the field of complex numbers C, together with a binary operation ∗ : (x, y)→
x ∗ y, called multiplication, that satisfies the following

(i) (a ∗ b) ∗ c = a ∗ (b ∗ c) (Associativity).

(ii) (a+ b) ∗ c = a ∗ b+ a ∗ c (Right distributivity).

(iii) a ∗ (b+ c) = a ∗ b+ a ∗ c (Left distributivity).

(iv) λ · (a ∗ b) = (λ · a) ∗ b = a ∗ (λ · b), for all a, b, c ∈ A and all λ ∈ K.

Definition 1.1.2 ([33], p.227). A unital algebra A is an algebra, which has a
multiplicative identity (called unit), that is, a nonzero element 1A, such that

1A ∗ a = a ∗ 1A = a, for all a ∈ A.
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Definition 1.1.3 ([33], p.228). A commutative algebra A is an algebra for which

a ∗ b = b ∗ a, for all a, b ∈ A.

Definition 1.1.4 ([33], p.230). A map f : A → B between algebras is called an
algebra homomorphism, if it is linear and, also, if it is multiplicative, that is

f(a ∗ a′) = f(a) ∗ f(a′), for all a, a′ ∈ A.

Definition 1.1.5 ([29], p.5). If A and B are unital algebras with units 1A and 1B
respectively, then an algebra homomorphism f : A→ B is called unital, if

f(1A) = 1B.

Definition 1.1.6 ([29], p.1). A subset B of an algebra A is called a subalgebra of
A, if B is an algebra by itself, under the operations inherited from A.

Definition 1.1.7 ([29], p.1). A subalgebra B of a unital algebra A is called a unital
subalgebra of A, if B contains 1A (the unit of A).

Remark 1.1.8. In order for B to be a unital subalgebra of A, it is not enough that
B has a unit 1B of its own. It must contain the unit 1A of A, in which case we
demand that 1A = 1B, as proven in Remark 1.1.9. Thus, an algebra B can be both
unital and a subalgebra of A, without being a unital subalgebra of A.

Remark 1.1.9. An algebra A can have, at most, one multiplicative identity. If this
was not the case, there would exist elements 1A, 1

′
A ∈ A, with 1A 6= 1′A, such that

1A = 1A ∗ 1′A = 1′A

which is a contradiction.

Example 1.1.10. Some elementary examples of algebras are the fields of real and
complex numbers, denoted by R and C, respectively. Both are unital and commu-
tative.

Example 1.1.11. If X is a compact Hausdorff space, then the set C(X) = C(X,C),
of all continuous complex-valued functions defined onX, is an algebra under the usual
operations of addition, multiplication and scalar multiplication. It is both unital and
commutative.

Example 1.1.12. If X is a locally compact Hausdorff space, then, under the usual
operations of addition, multiplication and scalar multiplication, the family C0(X) =
C0(X,C) of all continuous complex-valued functions defined on X that vanish at
infinity, meaning that

for all ε > 0, there exists K ⊆ X compact, such that |f(x)| < ε, for all x /∈ K,

is a commutative algebra, which is nonunital. Indeed, if it was unital, there would
exist a function 1 ∈ C0(X), such that

f · 1 = 1 · f = f, for all f ∈ C0(X).

But this can not happen, since 1 ∈ C0(X) is the usual constant function of value 1,
which does not vanish.
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Example 1.1.13. Let A be an algebra. The family Mn(A) of n × n matrices con-
sisting of elements of A is a unital algebra, under the usual matrix operations of
addition, multiplication and scalar multiplication, if, and only if, A is unital. In such
a case, the unit of Mn(A) is In, the n× n matrix with 1A on the main diagonal and
zeros elsewhere. It is noncommutative for n > 1.

Example 1.1.14. If V is a normed linear space, then the set

B(V ) = {T : T is a linear and bounded map from V onto itself}

is a unital algebra. If dimV > 1, then B(V ) is noncommutative. Indeed, each
S, T ∈ B(V ) has a matrix representation. Following Example 1.1.13, we deduce that
ST 6= TS since Mn(V ) is noncommutative, for n > 1.

Definition 1.1.15 ([29], p.1). If an algebra A is equipped with a norm ‖·‖ : A→ R,
satisfying

‖xy‖ ≤ ‖x‖‖y‖, for all x, y ∈ A,
then A is called a normed algebra, and ‖ · ‖ : A→ R is called an algebra norm.
If A is unital, with unit 1A, then the norm must satisfy the relation ‖1A‖ = 1.

Definition 1.1.16 ([29], p.2). A complete normed algebra is called a Banach al-
gebra.

Definition 1.1.17 ([29], p.5). A map f : A→ B between Banach algebras is called
a Banach algebra homomorphism, if it is both an algebra homomorphism and
a bounded linear map.

Definition 1.1.18 ([33], p.275). Suppose K is a field in which an involution a 7→ a′

has been defined. An involution on an algebra A is a map x 7→ x∗, from A into A,
such that for all x, y ∈ A and all a ∈ K, it holds that

(i) (x+ y)∗ = x∗ + y∗

(ii) (ax)∗ = a′x∗

(iii) (x∗)∗ = x

(iv) (xy)∗ = y∗x∗

Remark 1.1.19. In Definition 1.1.1 we defined the algebra A over the field K. In
most cases, K is the field of complex numbers C, so property (ii) in the Definition
1.1.18 can be replaced by (ax)∗ = ax, where a 7→ a is the usual complex conjugation.

Definition 1.1.20 ([29], p.35). An algebra A with an involution is called a ∗-algebra
and an algebra homomorphism f : A → B between ∗-algebras which preserves
involution, meaning that

f(a∗) = f(a)∗, for all a ∈ A

is called a ∗-homomorphism. If the ∗-algebras A and B are unital, then f : A→ B
is said to be unital, if f(1A) = 1B.
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Definition 1.1.21 ([29], p.35). Let S be a subset of a ∗-algebra A and define the
set

S∗ = {s∗ : s ∈ S}.

If S∗ = S, then S is called self-adjoint.

Definition 1.1.22 ([29], p.35). A nonempty self-adjoint subalgebra of a ∗-algebra
A is called a ∗-subalgebra of A.

The next definition concerns C∗-algebras, which is the key component that leads
to Gelfand Duality.

Definition 1.1.23 ([29], p.36). A C∗C∗C∗-algebra is a Banach algebra A with an iso-
metric involution that satisfies

‖a∗a‖ = ‖a‖2, for all a ∈ A.

This property of the norm is usually referred to, as the C∗C∗C∗-condition and an algebra
norm that satisfies this condition is called a C∗C∗C∗-norm.

Definition 1.1.24 ([29], p.36). A C∗C∗C∗-subalgebra of a C∗-algebra A is a closed
∗-subalgebra of A.

Example 1.1.25. The field C of complex numbers with the usual operations and
the complex conjugation, as involution, is a unital commutative C∗-algebra with unit
being the element 1 ∈ C.

Example 1.1.26. If S is a set, then the algebra l∞(S) of all bounded complex-valued
functions on S is a unital commutative C∗-algebra, under the usual operations and
the complex conjugation as involution, with respect to the norm ‖f‖ = sup{f(x) :
x ∈ X}.

Example 1.1.27. If X is a compact Hausdorff space, then the algebra C(X) =
C(X,C) of all continuous complex-valued functions on X, is a unital commutative
C∗-algebra, with the usual operations and the complex conjugation as involution,
with respect to the norm ‖f‖ = sup{f(x) : x ∈ X}. Its unit is the constant function
with value 1.

Example 1.1.28. If X is a locally compact Hausdorff space, then the algebra
C0(X) = C0(X,C) of all continuous complex valued functions on X that vanish
at infinity is a nonunital commutative C∗-algebra, under the usual operations and
the complex conjugation as involution, with respect to the norm ‖f‖ = sup{f(x) :
x ∈ X}. The fact that it is nonunital was proved in Example 1.1.12.

Example 1.1.29. If (X,µ) is a measure space, then the algebra L∞(X,µ) of (classes
of) essentially bounded complex-valued measurable functions on X is a unital com-
mutative C∗-algebra, under the usual operations and the complex conjugation as
involution, with respect to the essential supremum norm ‖f‖ = sup{f(x) : x ∈ X}.
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Example 1.1.30. If (X,µ) is a measure space, then the algebra B∞(X,µ) of all
bounded complex-valued measurable functions on X is a unital commutative C∗-
algebra under the usual operations and the complex conjugation as involution, with
respect to the norm ‖f‖ = sup{f(x) : x ∈ X}.

Example 1.1.31. The algebra B(H) of all bounded linear operators on a Hilbert
space H is a unital noncommutative C∗-algebra with the involution T 7→ T ∗, that
maps each operator to its adjoint. Its unit is the identity operator 1 ∈ B(H) that
maps each bounded subset V ⊆ H to itself. The fact that it is noncommutative was
proved in Example 1.1.14.

Example 1.1.32. We have seen in Example 1.1.13 that the algebra Mn(C) of n×n
matrices of complex numbers is a unital algebra, since the field of complex numbers
C is a unital algebra with unit 1 ∈ C (Example 1.1.25). In order to make it into a
C∗-algebra, we relate each n× n matrix in Mn(C) with the bounded linear operator
in B(Cn) which it represents. The unit of Mn(C) is In, the n× n matrix with ones
on the main diagonal and zeros elsewhere.

1.2 The Spectrum

In this section we define the spectrum of an element in a Banach algebra. We prove
a theorem which states that the spectrum, regarded as a subset of C, is compact
and nonempty and, also, that the spectral radius formula is relevant and applicable
(Theorem 1.2.14). We conclude this section with the Gelfand-Mazur Theorem (The-
orem 1.2.18). All algebras are defined over the field of complex numbers C, unless
explicitly stated otherwise.

Definition 1.2.1 ([33], p.234). If A is a unital Banach algebra and x ∈ A, then the
spectrum σ(x) of x is the set

σ(x) = {λ ∈ C : (λ1A − x) /∈ inv(A)},

where inv(A) is the group of all invertible elements of A.

Remark 1.2.2. The fact that inv(A) is a group is evident. For if x, y ∈ inv(A),
then x−1, y−1 ∈ inv(A) and

• xy = (y−1x−1)−1 ⇒ xy ∈ inv(A),

• x−1x = xx−1 = 1A ⇒ 1A ∈ inv(A),

• x1A = 1Ax = x.

Definition 1.2.3 ([33], p.234). The complement of σ(x) is called the resolvent set
of x and consists of all λ ∈ C, for which (λ1A − x)−1 exists.

Definition 1.2.4 ([33], p.234). The spectral radius of x is the number

p(x) = sup{|λ| : λ ∈ σ(x)}.
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Remark 1.2.5. The spectral radius of x can be intuitively thought of, as the radius
of the smallest closed disk in C, centered at the origin, that contains σ(x). Of course,
the definition of the spectral radius of an element x does not make sense if σ(x) = ∅,
but that is never the case, as we shall see in Theorem 1.2.14.

Remark 1.2.6. We observe that if an element x ∈ A is invertible, then xx−1 =
x−1x = 1A. This implies that x is nonzero. On the other hand, it is well known that
in any field, every nonzero element is invertible. So, in any field, we have that an
element is nonzero if, and only if, it is invertible.

Example 1.2.7. If z ∈ C, then

σ(z) = {λ ∈ C : (λ− z) /∈ inv(C)}.

However, the condition λ− z /∈ inv(C) implies that λ− z = 0. Thus σ(z) = {z}.

Example 1.2.8. Let X be a compact Hausdorff space and f ∈ C(X). Then

σ(f) = {λ ∈ C : (λ− f) /∈ inv(C(X))}
= {λ ∈ C : (λ− f)(x) = 0, for all x ∈ X}.

However, the condition (λ − f)(x) = 0 for all x ∈ X implies that λ = f(x) for all
x ∈ X. Thus σ(f) = {f(x) : x ∈ X} = f(X).

Example 1.2.9. The set Mn(C) of n× n matrices over C is a unital C∗-algebra, as
we saw in Example 1.1.32. For any matrix A ∈Mn(C), we have that

σ(A) = {(λIn − A) /∈ inv(Mn(C))}.

The above condition implies that det(λIn − A) = 0. Thus, σ(A) consists of all
eigenvalues of A.

Now, we will state and prove some useful tools, which will be needed in spectral
theory.

Theorem 1.2.10 ([33], p.231). Suppose A is a unital Banach algebra with unit 1A
and x ∈ A with ‖x‖ < 1. Then

(i) 1A − x ∈ inv(A).

(ii) ‖(1A − x)−1 − 1A − x‖ ≤
‖x‖2

1− ‖x‖
.

Proof. (i) By Definition 1.1.15 we can clearly see that ‖xn‖ ≤ ‖x‖n, for all x ∈ A.
Consider the elements

Sn = 1A + x+ x2 + . . . xn, for all n ∈ N. (1.1)

For any m,n ∈ N with m > n, we have that

‖Sn − Sm‖ = ‖xn+1 + · · ·+ xm‖
≤ ‖xn+1‖‖1A + x+ · · ·+ xm−n−1‖.
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Since ‖x‖ < 1, for all x ∈ A, we have that xn −→ 0, as n −→ +∞. Thus

‖Sn − Sm‖ −→ 0 as n −→ +∞.

So (Sn)n∈N is a Cauchy sequence. However, A is a Banach algebra and, there-
fore, (Sn)n∈N is convergent, that is, there exists an element s ∈ A, such that
Sn −→ s. Since xn −→ 0 and

Sn(1A − x) = (1A + x+ x2 + . . . xn)(1A − x) = (1A − xn+1)

= (1A − x)(1A + x+ x2 + . . . xn) = (1A − x)Sn

we have that

s(1A − x) = lim
n→+∞

Sn(1A − x) = lim
n→+∞

(1A − x)Sn = (1A − x)s

and
lim

n→+∞
(1A − xn+1) = 1A.

So
s(1A − x) = 1A = (1A − x)s

which means that s is the inverse of 1A − x and so (1A − x) ∈ inv(A).

(ii) By (1.1), we have that

‖(1A − x)−1 − 1A − x‖ = ‖s− 1A − x‖ = ‖x2 + x3 + . . . ‖

≤
+∞∑
n=2

‖x‖n = ‖x‖2

+∞∑
n=0

‖x‖n =
‖x‖2

1− ‖x‖
.

Thus

‖(1A − x)−1 − 1A − x‖ ≤
‖x‖2

1− ‖x‖
.

Theorem 1.2.11 ([33], p.235). Suppose A is a unital Banach algebra, x ∈ inv(A)

and h ∈ A, such that ‖h‖ < 1

2
‖x−1‖−1. Then

(i) (x+ h) ∈ inv(A).

(ii) ‖(x+ h)−1 − x−1 + x−1hx−1‖ ≤ 2‖x−1‖3‖h‖2.

Proof. (i) Since x + h = x(1A + x−1h) and ‖x−1h‖ < 1
2
, Theorem 1.2.10 implies

that (1A+x−1h) ∈ inv(A). Because inv(A) is a group, we deduce that (x+h) ∈
inv(A).

(ii) We have that

‖(x+ h)−1 − x−1 + x−1hx−1‖ ≤ ‖(1A + x−1h)−1 − 1A + x−1h‖‖x−1‖

≤ ‖x−1h‖2

1− ‖x−1h‖
‖x−1‖ ≤ 2‖x−1‖3‖h‖2.

The last inequality is a consequence of Theorem 1.2.10.
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Theorem 1.2.12 ([33], p.235). If A is a unital Banach algebra, then inv(A) is open
and for all x ∈ inv(A), the map x 7→ x−1 is a homeomorphism.

Proof. Using Theorem 1.2.11 we have, for any x ∈ inv(A) and any element h ∈ A
with ‖h‖ < 1

2
‖x−1‖−1, that (x+ h) ∈ inv(A). So, we get

‖x− (x+ h)‖ = ‖h‖ < 1

2
‖x−1‖−1.

Thus, the ball centered at x ∈ inv(A) with radius 1
2
‖x−1‖−1 is entirely contained in

inv(A). Hence inv(A) is open.
Now, let f : inv(A) → inv(A) be defined as f(x) = x−1. For any y ∈ inv(A) we

have that f(y−1) = y, so f is surjective. Also

kerf = {x ∈ inv(A) : f(x) = 0}
= {x ∈ inv(A) : x−1 = 0}
= {0}.

Therefore, f is injective. Thus, we have that f−1(x) = x−1 and for any open set
U ⊂ inv(A), with x ∈ U , we get

f(f−1(x)) = f(x−1) = x ∈ U.

Thus, f is continuous and so is f−1. Hence, the map f is a homeomorphism.

Recall that the index of a complex number z ∈ C, with respect to a closed path Γ

that does not pass through z, is the integer IndΓ(z) =
1

2πi

∫
Γ

dζ

ζ − z
. Next, we recall

the Cauchy Theorem, omitting its proof.

Theorem 1.2.13 (Cauchy Theorem, [35], p.259). Suppose U ⊂ C is an open set
and f : U → C is an holomorphic function.

(i) If γ is a closed path in U such that Indγ(a) = 0, for all a /∈ U , then∫
γ

f(z)dz = 0

and if z ∈ U , with Indγ(z) = 1, then

f(z) =
1

2πi

∫
γ

f(λ)

λ− z
dλ.

(ii) If γ0 and γ1 are closed paths in U , such that

Indγ0(a) = Indγ1(a), for all a /∈ U,

then ∫
γ0

f(z)dz =

∫
γ1

f(z)dz.
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Theorem 1.2.14 ([33], p.235). Suppose that A is a unital Banach algebra and x ∈ A.
The following hold.

(i) The spectrum σ(x) of x is compact and nonempty.

(ii) The spectral radius p(x) of x, satisfies the spectral radius formula

p(x) = lim
n→∞

‖xn‖1/n = inf
n≥1
‖xn‖1/n.

Proof. (i) First, we will show that σ(x) is bounded. In order to do this, we will
show that p(x) ≤ ‖x‖. If λ ∈ σ(x), with |λ| ≤ ‖x‖, then it is evident that

p(x) = sup{|λ| : λ ∈ σ(x)} ≤ ‖x‖.

If λ ∈ σ(x) with |λ| > ‖x‖, then

‖λ−1x‖ ≤ |λ−1|‖x‖ < |λ|−1|λ| = 1.

So, by Theorem 1.2.10, we have that (1A − λ−1x) ∈ inv(A) and so does the
element λ1A−x = λ(1A−λ−1x), because inv(A) is a group. Thus (λ1A−x) ∈
inv(A) or, equivalently, λ /∈ σ(x), which is a contradiction. So, in any case, we
have that p(x) ≤ ‖x‖. Consequently, σ(x) is a bounded set.

In order to prove that σ(x) is closed, we define the map g : C→ A, by

g(λ) = λ1A − x, for all λ ∈ C.

We can see that g is continuous. Indeed, let λ ∈ C. For any sequence (λn)n∈N ⊂
C with λn −→ λ, we have that

λn1A − x −→ λ1A − x.

So, the complement of σ(x) is the set Ω = g−1(inv(A)), which is open by
Theorem 1.2.12. Thus σ(x) is compact.

We will now prove that σ(x) 6= ∅. Define the map f : Ω→ inv(A), by

f(λ) = (λ1A − x)−1, for all λ ∈ Ω.

For the remainder of the proof, we apply Theorem 1.2.11 for h = (µ − λ)1A
and λ1A − x in place of x, where µ, λ ∈ Ω and µ is arbitrarily close to λ. So,
from Theorem 1.2.11, we have that

‖f(µ)− f(λ) + (µ− λ)f 2(λ)‖ ≤ 2‖f(λ)‖|µ− λ|2

and the continuity of the norm implies that

lim
µ→λ

f(µ)− f(λ)

µ− λ
= −f 2(λ).



14 Gelfand Duality

Thus, f is a strongly holomorphic function. Recall that a function f : Ω→ A
is called strongly holomorphic, if the limit

lim
µ→λ

f(µ)− f(λ)

µ− λ

exists, for all λ ∈ Ω. For any λ ∈ Ω we have that |λ| > ‖x‖. Using an
argument, similar to the one used in Theorem 1.2.10, we get that

f(λ) =
+∞∑
n=0

λ−n−1xn = λ−11A + λ−2x+ . . . (1.2)

This series converges uniformly on every circle centered at 0, with radius r >
‖x‖. Indeed, for every ε > 0, there exists a kε ∈ N, such that for all k > kε and
all x ∈ A, we have that

+∞∑
n=0

λ−n−1xn −
k∑

n=0

λ−n−1xn =
+∞∑

n=k+1

λ−n−1xn −→ 0, as k −→ +∞.

So ∥∥∥∥∥f(λ)−
k∑

n=0

λ−n−1xn

∥∥∥∥∥ < ε.

Hence, we can integrate (1.2) term-by-term and get

xn =
1

2πi

∫
Γr

λnf(λ)dλ, for any n ∈ N (1.3)

Now, suppose that σ(x) is empty. Then Ω = C and by Cauchy Theorem
(Theorem 1.2.13), every integral in (1.3) would be equal to 0. But, when
n = 0, we deduce from (1.3) that 1 = 0. Thus σ(x) 6= ∅.

(ii) If λ /∈ σ(x), which means that λ ∈ Ω and |λ| > p(x), then by Cauchy Theorem
(Theorem 1.2.13) we can replace the condition r > ‖x‖, with r > p(x) and the
integrals in (1.3) would remain the same. This is true, since we integrate in
closed paths. We define

M(r) = max
θ
‖f(reiθ)‖, for all r > p(x) and all θ ∈ [0, 2π],

and get

‖xn‖ =
1

2πi

∥∥∥∥∫
Γr

λnf(λ)dλ

∥∥∥∥ ≤ 1

2πi

∫
Γr

∥∥(reiθ)f(reiθ)ireiθ
∥∥ dθ

≤ rn+1 1

2πi

∫
Γr

∥∥eiθ(n+1)
∥∥∥∥f(reiθ)

∥∥ dθ
≤ rn+1M(r).
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So, we have that ‖xn‖1/n ≤ r(M(r))1/n. By taking limits, this inequality yields
that lim sup

n→∞
‖xn‖1/n ≤ r. The last inequality implies that

lim sup
n→∞

‖xn‖1/n ≤ p(x) (1.4)

On the other hand, if λ ∈ σ(x), then

λn1A − xn = (λ1A − x)(λn−11A + · · ·+ xn−1),

which implies that the element λn1A−xn is not invertible, since λ1A−x is not
invertible. Thus λn ∈ σ(x) and by (1.1) we deduce that

|λn| ≤ ‖xn‖, for all n ∈ N.

Hence
p(x) ≤ inf

n≥1
‖xn‖1/n. (1.5)

Combining the relations (1.4) and (1.5), we get

lim sup
n→∞

‖xn‖1/n ≤ inf
n≥1
‖xn‖1/n.

Since the converse inequality always holds, we deduce that

p(x) = lim
n→∞

‖xn‖1/n = inf
n≥1
‖xn‖1/n.

Definition 1.2.15 ([16], p.19). A map φ : A→ B between Banach algebras is called
an isometry, if

‖φ(x)‖ = ‖x‖, for every x ∈ A.

Definition 1.2.16 ([16], p.93). A map φ : A → B is called an isomorphism, if it
is an injective Banach algebra homomorphism from A onto B.

Definition 1.2.17 ([19], p.13). A map φ : A → B is called an isometric isomor-
phism, if it is both an isometry and an isomorphism.

Theorem 1.2.18 (Gelfand–Mazur, [33], p.237). If A is a unital Banach algebra in
which every nonzero element is invertible, then A is isometrically isomorphic to the
complex field C.

Proof. If x ∈ A and λ1, λ2 ∈ C, with λ1 6= λ2, then at most one of (λ11A − x) and
(λ21A−x) is 0, because if both were equal to 0, this would imply that λ1 = λ2. Let’s
say that (λ21A − x) is 0. Then, (λ11A − x) is non-zero, thus it is invertible. This,
however, is a contradiction, since λ1 belongs in the spectrum.

Thus, σ(x) contains only one point, say λ(x). Hence, λ(x)1A−x is not invertible
and, by the hypothesis, we deduce that x = λ(x)1A. So, the map x 7→ λ(x) is an
isomorphism of A onto C. This map is also an isometry, since

|λ(x)| = ‖λ(x)1A‖ = ‖x‖.
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Lemma 1.2.19 ([33], p.238). Suppose A is a Banach algebra, (xn)n∈N is a sequence
in inv(A) and x ∈ inv(A) (the closure of inv(A)), such that xn −→ x, as n −→∞.
Then

‖x−1
n ‖ −→ ∞, as n −→∞.

Proof. Suppose that the conclusion is false. Then there would exist M < +∞, such
that ‖x−1

n ‖ < M . We fix an n ∈ N, such that

‖x−1
n ‖ < M and ‖xn − x‖ <

1

M
.

Hence
‖1A − x−1

n x‖ = ‖x−1
n (xn − x)‖ < 1.

Thus, by Theorem 1.2.10, we have that (1A − (1A − x−1
n x)) ∈ inv(A), which implies

that x−1
n x ∈ inv(A). Since x = xn(x−1

n x) and inv(A) is a group, it follows that
x ∈ inv(A). This means that inv(A) is closed, which is a contradiction.

An application of Lemma 1.2.19 is Theorem 1.2.20, whose conclusion is the same
as that of Gelfand–Mazur Theorem (Theorem 1.2.18), but with a different hypothesis.

Theorem 1.2.20 ([33], p.239). If A is a Banach algebra and if there exists an
M <∞, such that

‖x‖‖y‖ ≤M‖xy‖, for all x, y ∈ A,

then A is isometrically isomorphic to C.

Proof. Let y ∈ inv(A). Then, there exists a sequence (yn)n∈N of elements of inv(A),
such that yn −→ y. So, by Lemma 1.2.19, we have that ‖y−1

n ‖ −→ ∞. Using the
hypothesis, we have that

‖yn‖‖y−1
n ‖ ≤M‖1A‖ = M. (1.6)

So, for (1.6) to hold, we must have ‖yn‖ −→ 0. Therefore, y = 0. By this construc-
tion, if we let x ∈ A and λ be a point in the closure of σ(x), then the element λ1A−x
is a point in the closure of inv(A) for which λ1A−x = 0. This implies that x = λ1A.
Thus

A = {λ1A : λ ∈ C}

and the proof is complete.

1.3 Ideals

This section is about providing some algebraic background that concerns various
types of ideals and a useful theorem about them. Particularly, we prove that every
proper ideal of a unital commutative algebra A is contained in a maximal ideal of A
and that every maximal ideal of a commutative Banach algebra is a closed set. We
make use of Hausdorff maximal principle (Lemma 1.3.8) and Zorn Lemma (Lemma
1.3.9) for the proof of the aforementioned theorem (Theorem 1.3.10).
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Definition 1.3.1 ([29], p.4). A subset J of an algebra A is called a left ideal (resp.
right ideal), if all of the following conditions hold

(i) J is a vector subspace of A.

(ii) xy ∈ J (resp. yx ∈ J), for all x ∈ A, y ∈ J .

A subset that is both a left ideal and a right ideal is called a two-sided ideal. If
J 6= A, then J is called a proper ideal. Maximal ideals are proper ideals that are
not contained in any larger proper ideal, meaning that there does not exist I ⊂ A
with I being proper, such that

J ⊂ I ⊂ A.

Proposition 1.3.2 ([33], p.264). (i) If A is a unital commutative algebra, then
no proper ideal of A contains any invertible element of A.

(ii) If J is an ideal in a commutative Banach algebra A, then its closure J is also
an ideal.

Proof. (i) Suppose that J is a proper ideal in A and that there exists an element
x ∈ inv(A), such that x ∈ J . Then, by the definition of the ideal, we have that
x−1x ∈ J , which implies that 1A ∈ J . Thus, for any y ∈ A, we get y1A ∈ J or,
equivalently, J = A, which is a contradiction, since J is proper.

(ii) Suppose that J is an ideal in a commutative Banach algebra A, where A is
taken over some field K. Then, for any x, y ∈ J and any λ, µ ∈ K, there exist
sequences (xn)n∈N, (yn)n∈N in J , such that xn −→ x and yn −→ y. By the
continuity of addition and scalar multiplication, we have that

λxn + µyn −→ λx+ µy,

which implies that λx + µy ∈ J . So, J is a vector subspace of A. Now, for
any z ∈ J , there exists a sequence (zn)n∈N in J , such that zn −→ z. Since
multiplication in A is continuous, we have, for any x ∈ A, that xzn −→ xz,
which implies that xz ∈ J . Thus J is an ideal in A.

The following definitions and lemmas are derived from [20].

Definition 1.3.3. A partial order is a binary relation � over a set P , such that
for all a, b, c ∈ P , the following conditions are satisfied

(i) a � a (Reflexivity).

(ii) If a � b and b � a, then a = b (Antisymmetry).

(iii) If a � b and b � c, then a � c (Transitivity).

A set with a partial order is called a partially ordered set.

Definition 1.3.4. If (P,�) is a partially ordered set, then an upper bound of a
subset X of P is an element u of P , such that x � u, for all x ∈ X.
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Definition 1.3.5. A maximal element of a subset X of a partially ordered subset
(P,�) is an element m of X, such that, for all a ∈ X, m � a, implies that a � m.

Definition 1.3.6. A chain of a partially ordered set (P,�) is a subset of P for
which any two elements are related, with respect to the partial order � of P . It is
called maximal, if no other element of P can be added, without losing the property
of being totally ordered.

Definition 1.3.7. A partially ordered set that is also a chain is called a totally
ordered set.

We state two useful lemmas before introducing a key theorem of our study. We
omit the proofs of these lemmas, since these are outside the scope of this thesis.

Lemma 1.3.8 (Hausdorff maximal principle). Let (P,�) be a nonempty partially
ordered set. Then, there exists a maximal chain in P .

Lemma 1.3.9 (Zorn lemma). Let (P,�) be a partially ordered set. If every nonempty
chain has an upper bound in P , then P contains at least one maximal element.

Theorem 1.3.10 ([33], p.264). (i) If A is a unital commutative algebra, then ev-
ery proper ideal of A is contained in a maximal ideal of A.

(ii) If A is a unital commutative Banach algebra, then every maximal ideal of A is
a closed set.

Proof. (i) Let J be a proper ideal of A and P be the collection of all proper ideals
of A that contain J , that is

P = {I ⊂ A : I is a proper ideal and J ⊂ I}.

We observe that P is nonempty, since it contains the proper ideal J and J is
an ideal of itself. We partially order P by the usual subset relation. If we let
K ⊂ N be any countable subset of N, we can, then, define

L = {Ii ∈ P : i ∈ K}

to be a maximal totally ordered subcollection of P . The existence of L is
guaranteed by the Hausdorff maximal principle (Lemma 1.3.8). Now, let M =
∪i∈KIi. It is evident that the set M , being the union of elements in the totally
ordered set L, is a proper ideal that contains J . Since L is maximal, M is a
maximal ideal of A, i.e. it is greater than any other element of L.

(ii) Suppose that M is a maximal ideal of A. Since M contains no invertible
elements of A (Proposition 1.3.2) and since inv(A) is open, we deduce that
M contains no invertible elements of A as well. Indeed, let Πx be an open
neighborhood of x ∈ inv(A). We can let Πx be a subset of inv(A), since inv(A)
is open. If M contained the invertible element x ∈ A, we would have that

∅ 6= Πx ∩M ⊂ inv(A) ∩M = ∅.

Thus 1A /∈ M or, equivalently, M 6= A. This implies that M is proper. Since
M is maximal in A, we have that M ⊂M . The converse relation always holds,
so we deduce that M = M , that is, M is closed.
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1.4 Quotient Spaces

Definition 1.4.1 ([33], p.29). Let N be a subspace of a vector space X over some
field K. For every x ∈ X, let π(x) be the coset of N that contains x, that is

π(x) = x+N.

These cosets form a vector space X/N , called the quotient space of X modulo
N . In this space, addition and scalar multiplication are defined by

π(x) + π(y) = π(x+ y)

and

απ(x) = π(αx), for all x, y ∈ X, α ∈ K.

Remark 1.4.2. Since N is itself a vector space, the operations of addition and scalar
multiplication are well defined.

The next proposition concerns some fundamental properties of the quotient map
and, thus, its proof will be omitted.

Proposition 1.4.3 ([16], p.370). The quotient map π : X → X/N is linear and
kerπ = N , where kerπ is the kernel (or null space) of π, defined to be the set

kerπ = {x ∈ X : π(x) = 0X/N = N}.

Definition 1.4.4 ([33], p.30). Let X be a normed vector space and N be a vector
subspace of X. We define the quotient norm on the vector space X/N by

‖π(x)‖ = ‖x+N‖ = inf{‖x− z‖ : z ∈ N}.

Remark 1.4.5. The quotient norm can be interpreted as the distance of x ∈ X
from the vector subspace N of X.

Remark 1.4.6. The origin of X/N is π(0) = N .

Proposition 1.4.7 ([16], p.70). (i) The quotient norm ‖ · ‖ : X/N → R satisfies
‖π(x)‖ ≤ ‖x‖, for every x ∈ X.

(ii) The quotient map π : X → X/N is continuous, with respect to the quotient
norm.

Proof. (i) Since 0 ∈ kerπ, we immediately obtain

‖π(x)‖ = inf{‖x− z‖ : z ∈ N} ≤ inf{‖x− 0‖ : 0 ∈ kerπ} = ‖x‖.

Thus

‖π(x)‖ ≤ ‖x‖.
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(ii) Let (xn)n∈N be a sequence in X that converges to an element x ∈ X, that is

xn
‖·‖−→ x, as n −→∞

Then, for any ε > 0, we have that

‖π(xn − x)‖ ≤ ‖xn − x‖ < ε.

Thus, π(xn)
‖·‖−→ π(x) and π is continuous.

The next theorem plays an important role for the remainder of this thesis. It will
be used to prove the completion of the space X/N , through the use of the quotient
map, provided that X is complete. We will see, later on, that this statement holds
for Banach algebras as well.

Theorem 1.4.8 ([33], p.29). Let N be a closed subspace of the Banach space X.
Then X/N is also a Banach space.

Proof. Let (yn)n∈N be a Cauchy sequence in X/N . For each n ∈ N, we choose an
element xn ∈ X, such that π(xn) = yn. We can do that because the quotient map
is onto X/N . In this way, we construct a sequence (xn)n∈N in X, which is Cauchy.
Indeed, since (yn) is a Cauchy sequence, we have for all m,n ∈ N with m ≥ n and
any ε > 0, that ‖ym− yn‖ < ε. This means that ‖π(xm)− π(xn)‖ < ε, which implies
that ‖π(xm − xn)‖ < ε. Thus, there exists a δ > 0, such that ‖xm − xn‖ < δ. So,
(xn)n∈N is a Cauchy sequence in X and, since X is complete, there exists an element
x ∈ X such that

xn −→ x, as n −→∞.

From the continuity of π, we obtain

π(xn) = yn −→ π(x).

Thus, the sequence (yn)n∈N in X/N converges to π(x). Hence, X/N is a Banach
space.

1.5 Quotient Algebras and Homomorphisms

As we saw in Theorem 1.4.8, for a Banach space X and a closed subspace N of X,
the quotient space X/N is also a Banach space. A similar argument holds if X is a
Banach algebra and N is a closed proper ideal of X. In this section, we will prove
the aforementioned statement as well as some basic properties of ∆, the set of all
complex homomorphisms on X. Also, we will describe the connection between ∆
and the maximal ideals of X.

Proposition 1.5.1 ([33], p.264). If A and B are commutative Banach algebras and
φ : A→ B is a Banach algebra homomorphism, then kerφ is an ideal of A, which is
closed if φ is continuous.
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Proof. Let K be the field over which A was defined. For any x, y ∈ kerφ and any
λ, µ ∈ K we have that

φ(x) = 0 = φ(y)⇒ {λφ(x) = 0 = φ(λx) and µφ(y) = 0 = φ(µy)}
⇒ φ(λx+ µy) = φ(λx) + φ(µy) = 0

⇒ (λx+ µy) ∈ kerφ

⇒ kerφ is a subspace of A.

For any x ∈ kerφ and any y ∈ A, we have

φ(x) = 0⇒ yφ(x) = 0

⇒ φ(yx) = 0

⇒ yx ∈ kerφ

⇒ kerφ is an ideal of A.

Now, suppose that φ is continuous. Then for any sequence (xn)n∈N in kerφ that
converges to an element x ∈ A, we have that φ(xn) −→ φ(x), as n −→ ∞, so
φ(x) = 0. Thus x ∈ kerφ, which means that kerφ is closed.

Before stating and proving the next theorem, we will show that a multiplication
can be defined in A/J . Indeed, for any x, x′, y, y′ ∈ A, with π(x) = π(x′) and
π(y) = π(y′), we have that

(x′ − x) ∈ J and (y′ − y) ∈ J.

Thus, by the identity

x′y′ − xy = (x′ − x)y′ + x(y′ − y)

we have that (x′y′ − xy) ∈ J , because J is an ideal. Hence π(x′y′) = π(xy) and,
therefore, a multiplication can be defined in A/J by the relation

π(x)π(y) = π(xy), for all x, y ∈ A.

Theorem 1.5.2 ([33], p.264). If J is a proper closed ideal of the unital Banach
algebra A and π : A→ A/J is the quotient map, then A/J is a Banach algebra.

Proof. As we have seen in Theorem 1.4.8, if A is a Banach space, so is A/J . So, we
just need to prove, for every x, y ∈ A, that

‖π(x)π(y)‖ ≤ ‖π(x)‖‖π(y)‖ and ‖π(1A)‖ = 1,

where 1A is the unit of A.
Let x1, x2 ∈ A and ε > 0 be arbitrary. Then, we have that there exist y1, y2 ∈ J ,

such that
‖xi − yi‖ ≤ ‖π(xi)‖+ ε, for i = 1, 2 (1.7)

and, by Proposition 1.4.3,
‖π(x)‖ ≤ ‖x‖. (1.8)
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Since
(x1 − y1)(x2 − y2) = x1x2 + (y1y2 − x1y2 − x2y1) ∈ x1x2 + J,

we have that

‖π(x1x2)‖ ≤ ‖(x1 − y1)(x2 − y2)‖
≤ ‖x1 − y1‖‖x2 − y2‖.

This last inequality implies that

‖π(x1x2)‖ ≤ ‖π(x1)‖‖π(x2)‖. (1.9)

Also, if 1A is the unit of A, then

π(x) = π(x)π(1A) = π(1A)π(x),

which means that π(1A) is the unit of A/J . It is a fact that π(1A) 6= J since,
otherwise, we would have

π(1A) = 1A + J = 0 + J.

The last equality implies that 1A ∈ J or, equivalently, that J = A which is a
contradiction because J is proper. So from (1.9) we obtain

‖π(1A)‖‖π(1A)‖ ≥ ‖π(1A)π(1A)‖ = ‖π(1A)‖.

Thus, ‖π(1A)‖ ≥ 1. Now, the relation (1.8) implies that ‖π(1A)‖ ≤ ‖1A‖ = 1. Hence
‖π(1A)‖ = 1 and A/J is a Banach algebra.

Theorem 1.5.3 ([33], p.265). Suppose that A is a unital commutative Banach alge-
bra and that ∆ is the set of all Banach algebra homomorphisms f : A→ C. Then

(i) Every maximal ideal of A is the kernel of some h ∈ ∆.

(ii) If h ∈ ∆, then kerh is a maximal ideal of A.

(iii) An element x ∈ A is invertible if, and only if, h(x) 6= 0, for all h ∈ ∆.

(iv) An element x ∈ A is invertible if, and only if, x lies in no proper ideal of A.

(v) λ ∈ σ(x) if, and only if, h(x) = λ, for some h ∈ ∆.

Proof. (i) Let M be a maximal ideal of A. Then, from Theorems 1.3.10 and 1.5.2,
M is closed and A/M is a Banach algebra, since every maximal ideal is proper.

Now, we choose x ∈ A with x /∈M and define the set

J = {αx+ y : α ∈ A, y ∈M}.

It is evident that J is an ideal of A, for if z ∈ A is an arbitrary element of A,
then

z(αx+ y) = (zα)x+ y ∈ J, for all α ∈ A and all y ∈M.
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Also, the ideal J is larger than M , since for α = 1A and y = 0, we have
that x ∈ J , for every x ∈ A. Thus, J = A and αx + y = 1A, for some
α ∈ A and y ∈M. If π : A→ A/M is the quotient map, then

π(αx+ y) = π(1A),

which implies that π(α)π(x) = π(1A). Hence, every nonzero element π(x) of
A/M is invertible in A/M . By applying the Gelfand-Mazur Theorem (Theorem
1.2.18), to the Banach algebra A/M , we get an isomorphism j : A/M → C.

Next, we define the map h : A → C, via the composition h = j ◦ π. Then,
h ∈ ∆ since for all x, y ∈ A we have that

h(xy) = (j ◦ π)(x · y) = j(π(x) · π(y))

= ((j ◦ π)(x)) · ((j ◦ π)(y))

= h(x) · h(y).

Thus,

kerh = {x ∈ A : h(x) = 0 = (j ◦ π)(x)}
= {x ∈ A : j ◦ (x+M) = 0}
= {x ∈ A : (x+M) ∈ kerj = 0 +M}
= {x ∈ A : x ∈M}
= M.

(ii) If h ∈ ∆, then h−1(0) = {x ∈ A : h(x) = 0} = kerh is an ideal of A which
is maximal, because it has codimension 1. This is true, since from Theorem
1.3.10, every proper ideal is contained in a maximal one. So, if kerh was not
maximal, but only proper, there would exist a maximal ideal I of A, with
codimension < 1. Apparently, its codimension would be 0, which implies that
I would not be proper, a contradiction.

(iii) If x ∈ inv(A) and h ∈ ∆, then

h(x)h(x−1) = h(xx−1) = h(1A).

Thus, h(x) 6= 0. For the converse, we assume that x is not invertible. Then,
the set B = {αx : α ∈ A} does not contain 1A. Hence B = {αx : α ∈ A} 6= A
and, thus, B is a proper ideal of A which is contained in a maximal one, by
Theorem 1.3.10. Therefore, by (i), there exists an h ∈ ∆, such that

h(αx) = αh(x) = 0,

which implies that h(x) = 0, for every x ∈ A. This is a contradiction.

(iv) If x ∈ inv(A), then it is evident that x does not belong in any proper ideal M
of A, since, otherwise, this would imply that 1A belongs in this ideal, which
leads to M not being proper. The converse can be easily shown utilizing (iii),
by considering the specific proper ideal {αx : α ∈ A} for a = 1A ∈ A.
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(v) If λ ∈ σ(x), then (λ1A − x) /∈ inv(A). So, we can apply (iii), taking (λ1A − x)
in place of x, in order to deduce that h(λ1A − x) = 0, which implies that
λ = h(x), for some h ∈ ∆. For the converse, suppose there exists an h ∈ ∆,
such that h(x) = λ. Then h(λ1A − x) = 0. Again, by (iii), we have that
(λ1A − x) /∈ inv(A), from which we deduce that λ ∈ σ(x).

1.6 The Gelfand Transform

For the last section of this chapter, we will define the Gelfand transform of an element
x ∈ X and the maximal ideal space, also known as the structure space ∆, which
is the space ∆ equipped with the, so called, Gelfand topology. For the rest of this
chapter, all algebras are unital and over the field C unless explicitly stated otherwise.

Definition 1.6.1 ([33], p.268). Let ∆ be the set of all complex homomorphisms of
a commutative Banach algebra A. For each x ∈ A, we define a map x̂ : ∆→ C, with
x̂(h) = h(x). This map is called the Gelfand transform of x.

Definition 1.6.2 ([33], p.268). For every x ∈ A, let Â be the set of all Gelfand
transforms x̂ : ∆→ C and ∆∗ be the continuous dual of ∆, namely

∆∗ = {f : ∆→ C : f is linear and continuous }.

The Gelfand topology of ∆ is theW∗ topology, induced by ∆∗, that is, the weakest
topology that makes every x̂ : ∆ → C continuous. We can define a norm on Â by
the formula

‖x̂‖∞ = max
h∈∆
{|x̂(h)|}.

Remark 1.6.3. By ”weakest” in the definition of Gelfand topology, we mean that
W∗ ⊂ T , for any other topology T on ∆ which makes every x̂ continuous. The
elements of the W∗ topology are of the form

V = W (x1, x2, . . . , xn, ε) = {h ∈ ∆∗ : |h(xi)| < ε, for all i = 1, 2, . . . , n}.

Remark 1.6.4. We observe that Â ⊂ C(∆). This implies that the set Â is a com-
mutative Banach algebra, under the usual operations and the complex conjugation,
as involution.

Remark 1.6.5. The map ‖ · ‖∞ : Â→ R, defined by the formula

‖x̂‖∞ = max
h∈∆A

{|x̂(h)|},

is a norm. Indeed

‖x̂(h)‖∞ = 0⇔ max
h∈∆A

{|x̂(h)|} = 0

⇔ x̂(h) = 0, for all h ∈ ∆A

⇔ x̂ ≡ 0, for all x̂ ∈ Â.



Chapter 1. Basics of Banach Algebras 25

Additionally

‖x̂+ ŷ‖∞ = max
h∈∆A

{|(x̂+ ŷ)(h)|}

≤ max
h∈∆A

{|x̂(h) + ŷ(h)|}

= ‖x̂‖∞ + ‖ŷ‖∞, for all x̂, ŷ ∈ Â, h ∈ ∆A.

Also

‖αx̂‖∞ = ‖α̂x‖∞ = max
h∈∆A

{|α̂x(h)|} = |α|‖x̂‖∞, for all α ∈ C, x̂ ∈ Â.

We made use of the fact that the Gelfand transform, regarded as a map from A into
Â, is a homomorphism, which is proved in Theorem 1.6.15.

Definition 1.6.6. The radical of A, denoted by radA, is the intersection of all
maximal ideals of A. Since every ideal of A contains the zero element of A, we obtain
that radA 6= ∅. If radA = {0}, then A is called semisimple.

Remark 1.6.7. The definition of a semisimple algebra must not be confused with
the definition of a simple algebra, which is the algebra that contains only the trivial
ideals, that is {0} and the whole algebra.

Remark 1.6.8. Since there exists a one-to-one correspondence between the elements
of ∆ and the maximal ideals of A, ∆ equipped with the Gelfand topology is usually
called the maximal ideal space of A. The elements of ∆ are usually referred to
as the characters of A, that is, nonzero homomorphisms from A onto C.

We recall some definitions from other branches of mathematics.

Definition 1.6.9 ([20], p.210). A directed set is a nonempty set Λ, together with
a binary relation ≤, that satisfies all of the following properties

(i) x ≤ x, for all x ∈ Λ (Reflexivity).

(ii) x ≤ y and y ≤ z implies that x ≤ z, for all x, y, z ∈ Λ (Transitivity).

(iii) For all x, y ∈ Λ there exists z ∈ Λ, such that x ≤ z and y ≤ z (Upper
boundedness).

Definition 1.6.10 ([20], p.210). If Λ is a directed set and X is a nonempty set, then
a function f : Λ→ X with f(λ) = xλ, is called a net in X, denoted by (xλ)λ∈Λ.

Definition 1.6.11 ([20], p.210). A net (xλ)λ∈Λ on a nonempty set X is called in-
creasing, if xν ≤ xµ, whenever ν ≤ µ.

Now, we prove an important theorem from functional analysis.

Theorem 1.6.12 (Banach–Alaoglu, [16], p.130). Let X be a normed space. Then,
the closed unit ball BX∗ of X∗ is W∗ compact, that is, (BX∗ ,W∗) is compact.
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Proof. By the definition of the closed unit ball, we get

BX∗ = {f ∈ X∗ : ‖f‖ ≤ 1} = {f ∈ X∗ : |f(x)| ≤ ‖x‖, for all x ∈ X}.

Next, we define the map φ : BX∗ → RX , via the formula

φ(f) = (f(x))x∈X .

Recall that the set RX is the set of all functions from X into R. If we let K =
Πx∈X [−‖x‖, ‖x‖] then, from Tychonoff Theorem, we see that K is compact. The Ty-
chonoff Theorem states that if (Xi, Ti) are compact topological spaces, then (ΠXi,×Ti)
is compact, where ×Ti is the product topology of ΠXi.

We, also, observe, for any net (fλ)λ∈Λ in BX∗ and any f ∈ BX∗ with fλ
W∗−−→ f

that
fλ

W∗−−→ f if, and only if, fλ(x)→ f(x), for all x ∈ X
or, equivalently,

fλ
W∗−−→ f if, and only if, φ(fλ)→ φ(f).

Hence, the map φ : (BX∗ ,W∗) → (φ(BX∗ ,×T ) is a homeomorphism. So, in order
to deduce that (BX∗ , w

∗) is compact, we just need to prove that φ(BX∗) is a closed
subset of K, because if it is closed, then it will also be compact, since K is compact.

Let (fλ)λ∈Λ be a net in φ(BX∗) and f ∈ K, such that fλ → f , in the product
topology ×T . Then, for any x, y ∈ X and any α, β ∈ R, we have that

fλ(αx+ βy) = αfλ(x) + βfλ(y) −→ αf(x) + βf(y)

and
fλ(αx+ βy) −→ f(αx+ βy).

Hence f(αx + βy) = αf(x) + βf(y), since RX is Hausdorff and the limit is unique.
Thus, f is linear. Since (fλ)λ∈Λ ∈ φ(BX∗) ⊂ K, we have that |fλ(x)| ≤ ‖x‖, for all
x ∈ X and |f(x)| ≤ ‖x‖, for all x ∈ X, since f ∈ K. Hence, f is continuous. So,
φ(BX∗) is a closed subset of K, hence compact. Thus (BX∗ ,W∗) is compact, since φ
is a homeomorphism.

Lemma 1.6.13 ([33], p.231). Let ε > 0. For any Banach algebra A and any x ∈ A,
with ‖x‖ < ε, we have that |φ(x)| < ε, for every homomorphism φ : A→ C.

Proof. For any λ ∈ C, with |λ| > ε, we have

‖λ−1x‖ ≤ |λ|−1‖x‖ < 1.

Hence, by Theorem 1.2.10 we have

(1A − λ−1x) ∈ inv(A)

and by Theorem 1.5.3 we get

1− λ−1φ(x) = φ(1A − λ−1x) 6= 0.

Hence φ(x) 6= λ, which implies that |φ(x)| < ε.
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Lemma 1.6.14 ([16], p.219). Let A be a unital commutative Banach algebra and
h ∈ ∆. Then

(i) h(1A) = 1.

(ii) ‖h‖ = 1.

(iii) |h(x)| ≤ ‖x‖, for all x ∈ A.

Proof. (i) Since h ∈ ∆, we have that h(x) 6= 0, for some x ∈ A. Thus h(x) =
h(x1A) = h(x)h(1A), which means that h(1A) = 1.

(ii) Let a ∈ A be an arbitrary element of A and λ = h(a) ∈ C. If |λ| > ‖a‖, then∥∥∥a
λ

∥∥∥ < 1 and so the element 1A−
a

λ
is invertible, according to Theorem 1.2.10.

Now, let b =
(
a− a

λ

)−1

. Then 1A = b
(
a− a

λ

)
. Using (i), we have

1 = h(1A) = h
[
b
(

1A −
a

λ

)]
= h(b)− ba

λ
= h(b)− h(b)h(a)

h(a)
= 0,

which is a contradiction. Hence |h(a)| = |λ| ≤ ‖a‖. Since h(1A) = 1, we
observe that this inequality can never hold, unless ‖h‖ = 1.

(iii) By (i) and (ii) we get, for any x ∈ A, that

|h(x)| ≤ ‖h‖‖x‖ = ‖x‖.

Theorem 1.6.15 ([33], p.268). Suppose that ∆ is the maximal ideal space of a unital
commutative Banach algebra A. Then

(i) ∆ is a compact Hausdorff space.

(ii) The Gelfand transform, regarded as a map from A into Â is a homomorphism,
whose kernel is radA. Therefore, the Gelfand transform is an isomorphism if,
and only if, A is semisimple.

(iii) For each x ∈ A, the range ∆(x) of x̂ is the spectrum σ(x) of x, that is

σ(x) = ∆(x) = {h(x) : h ∈ ∆}.

Hence

‖x̂‖∞ = p(x) ≤ ‖x‖

and

x ∈ radA, if, and only if, p(x) = 0.
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Proof. (i) Let A∗ be the continuous dual of A, regarded as a Banach space, that
is

A∗ = {f : A→ C : f is linear and continuous }.

A∗, being a normed linear space, is a Hausdorff space. Thus, the closed unit
ball BA∗ of A∗ is a Hausdorff space and is W∗ compact, by Banach–Alaoglu
Theorem (Theorem 1.6.12). So, we just need to show that ∆ ⊂ BA∗ and that
∆ is W∗ closed in BA∗ . Using Lemma 1.6.14, it is evident that ∆ ⊂ BA∗ .

Now, let (hi)i∈I be a net in ∆ and an h ∈ BA∗ , such that hi
W∗−−→ h. By the

definition of the W∗ topology, we have that

hi
W∗−−→ h if, and only if, hi(x) −→ h(x), for all x ∈ A.

From the fact that C is a Hausdorff space, we deduce that the limit above is
unique. Since left and right multiplication on C are continuous we have, for
any a, b ∈ A, that hi(a) −→ h(a), which implies that

hi(b)hi(a) −→ hi(b)h(a)

and hi(b) −→ h(b), which implies that

hi(b)h(a) −→ h(b)h(a).

Thus
hi(b)hi(a) −→ h(b)h(a)

and
hi(a)hi(b) = hi(ab) −→ h(ab).

Hence, h(ab) = h(a)h(b). For any λ, µ ∈ C, we have that

hi(λa+ µb) −→ h(λa+ µb)

and

hi(λa+ µb) = hi(λa) + hi(µb) = λhi(a) + µhi(b) −→ λh(a) + µh(b).

Thus, h is a complex homomorphism.

Since for any Banach algebra homomorphism h : A → B between unitary
algebras, it holds that h(1A) = 1B, we have that

1 = hi(1A) −→ h(1A),

which implies that
h(1A) = 1. (1.10)

Thus, h is a Banach algebra homomorphism which is nonzero, because of (1.10).
Hence, h ∈ ∆, which implies that ∆ is W∗ closed in BA∗ and since BA∗ is
compact, we deduce that ∆ is a compact Hausdorff space. Notice that every
subspace of a topological Hausdorff space, is Hausdorff itself.
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(ii) Let x, y ∈ A, α ∈ C and h ∈ ∆. Then

(̂αx)(h) = h(αx) = αh(x) = αx̂(h),

̂(x+ y)(h) = h(x+ y) = h(x) + h(y) = x̂(h) + ŷ(h)

and
(̂xy)(h) = h(xy) = h(x)h(y) = x̂(h)ŷ(h).

Thus, the map x 7→ x̂ is a homomorphism, since 1̂A(h) = h(1A) = 1. The kernel
of the map x 7→ x̂ consists of all x ∈ A, for which h(x) = 0. By Theorem 1.5.3,
the condition h(x) = 0 implies that x lies in every maximal ideal of A. So, the
kernel of the map x 7→ x̂ is the intersection of all maximal ideals of A, which is
equal to radA by definition. Thus, if x 7→ x̂ is an isomorphism, then radA = 0,
which means that A is semisimple. For the converse, if A is semisimple, then
radA = 0, which implies that the map x 7→ x̂ is an injective homomorphism.
By the definition of the Gelfand transform, we deduce that the map x 7→ x̂ is
surjective and, thus, an isomorphism.

(iii) Consider a λ ∈ C, such that λ = h(x). By Theorem 1.5.3, this implies that
λ ∈ σ(x). Thus

∆(x) = {h(x) : h ∈ ∆} ⊂ σ(x).

Now, for any λ ∈ σ(x), we have, again from Theorem 1.5.3, that λ = h(x), for
all h ∈ ∆, which implies that λ ∈ ∆(x). Hence ∆(x) = σ(x). By the definition
of the norm ‖ · ‖∞ : Â→ R, we have that

‖x̂‖∞ = max
h∈∆
{|x̂(h)|}

= max{|h(x)| : h ∈ ∆A}
= sup{|λ| : λ ∈ σ(x)}
= p(x) ≤ ‖x‖.

The last inequality holds from Theorem 1.2.14.

Now, if x ∈ radA, then from Theorem 1.5.3, we deduce that h(x) = 0, for all
h ∈ ∆, which means that σ(x) = {0}. Indeed, if λ ∈ σ(x), with λ 6= 0, then
h(x) = λ, for all h ∈ ∆ by Theorem 1.5.3. This means that x does not lie in
any proper ideal of A, which is a contradiction, since x ∈ radA. Thus σ(x) = 0,
for all x ∈ A and p(x) = 0.

Now, for an element x ∈ A with p(x) = 0, we have that 0 ∈ σ(x). This implies
that x /∈ inv(A) or, equivalently, that x lies in every maximal ideal of A. Thus,
x lies in the intersection of those maximal ideals. This intersection is radA by
definition, hence x ∈ radA.

Remark 1.6.16. In the proof of (i) of Theorem 1.6.15, the hypothesis that A is
unital was only used to prove that the complex homomorphism h preserves the
identity 1A of A. So, if we withdraw this hypothesis, we can conclude that ∆A is
a locally compact Hausdorff space since, in that case, every point of ∆A, i.e. every
complex homomorphism h : A → C, would have a neighborhood basis consisting of
compact sets. Thus, ∆A is compact if, and only if, A is unital.
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Theorem 1.6.17 ([33], p.269). If φ : B → A is a homomorphism of a commuta-
tive Banach algebra B, into a semisimple commutative Banach algebra A, then φ is
continuous.

Proof. Suppose (xn)n∈N is a sequence in B and x ∈ B, such that xn −→ x. We will
show that φ(xn) −→ φ(x).

For this, let ∆B,∆A, be the maximal ideal spaces of B and A respectively. We
fix an h ∈ ∆A and let ψ = h ◦ φ. For any x, y ∈ B and any λ, µ ∈ C, we have that

ψ(xy) = h ◦ φ(xy) = (h ◦ φ)(x)(h ◦ φ)(y) = ψ(x)ψ(y),

ψ(λx+ µy) = h ◦ φ(λx+ µy) = λ(h ◦ φ)(x) + µ(h ◦ φ)(y) = λψ(x) + µψ(y)

and

ψ(x) = h ◦ φ(x) 6= 0.

Hence ψ ∈ ∆B.
Now, we pick an ε > 0 and apply Lemma 1.6.13 to the element (xn − x), for

which ‖xn − x‖ < ε. Thus, we get |ψ(xn − x)| < ε, which means that ψ is continu-
ous. Following Lemma 1.6.13 and the continuity of ψ, we deduce that all complex
homomorphisms of Banach algebras are continuous. Hence, h is continuous, since
h ∈ ∆A.

Now, let λ ∈ C, with λ 6= 0 and λ ∈ σ(limφ(xn)− φ(x)). By Theorem 1.5.3, we
have that

λ = h(limφ(xn)− φ(x)) = limψ(xn)− ψ(x) = 0,

which is a contradiction, since λ 6= 0. Hence

σ(limφ(xn)− φ(x)) = 0,

which implies that

p(limφ(xn)− φ(x)) = 0.

By (iii) of Theorem 1.6.15, we get

(limφ(xn)− φ(x)) ∈ radA = {0},

by hypothesis. Thus φ(xn) −→ φ(x) and φ is continuous.

Corollary 1.6.18. Every isomorphism between two semisimple commutative Banach
algebras is a homeomorphism.

Lemma 1.6.19 ([33], p.270). If A is a commutative Banach algebra and for all
x ∈ A with x 6= 0 it holds that

r = inf
‖x2‖
‖x‖2

and s = inf
‖x̂‖∞
‖x‖

,

then s2 ≤ r ≤ s.
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Proof. From Theorem 1.6.15, we have that ‖x̂‖∞ = p(x) ≤ ‖x‖. Then, for any
x ∈ A, we have

‖x2‖ ≥ ‖x̂2‖∞ = ‖x̂‖2
∞ ≥ s2‖x‖2.

Thus, {s2} is a lower bound of the set{
‖x2‖
‖x‖2

, for all x ∈ A with x 6= 0

}
.

Hence s2 ≤ r. Since ‖x2‖ ≥ r‖x‖2, for all x ∈ A with x 6= 0, induction on N implies,
for all n ∈ N, that

‖xn‖ ≥ rn−1‖x‖n ⇒ ‖xn‖1/n ≥ r(n−1)/n‖x‖
⇒ lim ‖xn‖1/n ≥ r‖x‖
⇒ ‖x̂‖∞ = p(x) ≥ r‖x‖.

Thus, r is a lower bound of the set{
‖x̂‖∞
‖x‖

, for all x ∈ A with x 6= 0

}
.

Hence, r ≤ s and s2 ≤ r ≤ s.

Next, we derive an important result for this thesis.

Theorem 1.6.20 ([33], p.270). Suppose that A is a commutative Banach algebra.
Then, the Gelfand transform is an isometry if, and only if, ‖x2‖ = ‖x‖2, for all
x ∈ A.

Proof. From Lemma 1.6.19, we have that the Gelfand transform is an isometry if,
and only if, s = 1. This is true, because if the Gelfand transform is an isometry, then
‖x̂‖∞ = ‖x‖, which implies that s = 1. Furthermore, if s = 1, then for any x ∈ A,
with x 6= 0, we have that

‖x̂‖∞
‖x‖

≥ 1.

Since the converse inequality was proved in Theorem 1.6.15, we finally have that

‖x̂‖∞ = ‖x‖,

that is, the Gelfand transform is an isometry.
By Lemma 1.6.19, s = 1 implies that r = 1 and vice-versa. Hence, we have the

result.

Corollary 1.6.21. Let A be a commutative C∗-algebra. Then, the Gelfand transform
is an isometry.

Proof. Since ‖x∗x‖ = ‖x‖2, for all x ∈ A, by the definition of the C∗-identity, we
immediately conclude that ‖x2‖ = ‖x‖2, which implies that the Gelfand transform
is an isometry, from Theorem 1.6.20.
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We complete this chapter with examples of how a maximal ideal space can be
computed and we close up with some remarks.

Example 1.6.22. Let X be a compact Hausdorff space and A = C(X), induced
with the supremum norm. For each x ∈ X, the map hx : C(X)→ C, with hx = f(x),
is a complex homomorphism. By Urysohn Lemma, C(X) separates the points of X,
since C(X) is normal and Hausdorff. So, the condition x 6= y implies that hx 6= hy,
for all x, y ∈ X. Thus, the map x 7→ hx embeds X into ∆A.

Now, we claim that each h ∈ ∆A is, in fact, an hx, for some x ∈ X. Indeed, if
the conclusion is false, then there exists a maximal ideal M of C(X), that contains
a function f , with f(p) 6= 0 for all p ∈ X. The compactness of X implies that
M contains finitely many functions f1, f2, . . . , fn, such, that at least one of them is
nonzero. We let

g = f̂1f1 + · · ·+ f̂nfn.

Since M is an ideal, we have that g ∈ M and g(x) > 0 for all x ∈ X. Hence, g is
invertible and, by Theorem 1.5.3, does not lie in any proper ideal of A, which is a
contradiction. Hence x ↔ hx is a one-to-one correspondence between X and ∆A.
This identification is also correct in terms of the two topologies that are involved.
The Gelfand Topology of X is the weak topology induced by C(X) and is, therefore,
weaker that the original topology of X. But the Gelfand topology is a Hausdorff
topology (Theorem 1.6.15), while the original topology is compact since X is assumed
to be compact. Hence, the two topologies coincide and the identification x ↔ hx is
a homeomorphism. Thus, X is the maximal ideal space of C(X) and the Gelfand
transform is the identity map of C(X). Following a similar argument as that above,
we deduce that

“If X is a locally compact Hausdorff space,
then X is the maximal ideal space of C0(X).”

For our last example, we will need some measure theoretic background. Further
measure theoretic definitions will be used and the interested reader can look for more
details in [22], [23] and [35].

Theorem 1.6.23 (The Riesz Representation Theorem, [35], p.40). Let X be a locally
compact Hausdorff space and let Λ be a positive linear functional on Cc(X) which
is defined to be the collection of all continuous complex-valued functions on X with
compact support. Then, there exists a σ-algebra M in X which contains all Borel
sets in X and a unique positive measure µ on M, such that

Λf =

∫
X

fdµ

for every f ∈ Cc(X). This positive measure satisfies the following additional proper-
ties.

(i) µ(K) <∞, for every compact set K ⊂ X.
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(ii) For every E ∈M, we have

µ(E) = inf{µ(V ) : E ⊂ V, V open }.

(iii) The relation
µ(E) = sup{µ(K) : K ⊂ E,K compact }

holds, for every open set E and for all E ∈M that satisfy µ(E) <∞.

(iv) If E ∈M, A ⊂ E and µ(E) = 0, then A ∈M.

For the next theorem, we suppose that µ is a measure on a locally compact
Hausdorff space X that satisfies the properties of Theorem 1.6.23.

Theorem 1.6.24 (Lusin Theorem, [35], p.53). Let ε > 0 be arbitrary. Also, suppose
that f is a complex measurable function on X, µ(A) < ∞ and f(x) = 0 if x /∈ A.
Then, there exists a function g ∈ Cc(X), such that

µ({x : f(x) 6= g(x)}) < ε

and
sup
x∈X
|g(x)| ≤ sup

x∈X
|f(x)|.

Example 1.6.25. Our last example is L∞(µ). Here µ is a Lebesgue measure on the
unit interval [0, 1] and L∞(µ) is the usual Banach space of equivalent classes (modulo
sets of measure 0) of complex bounded measurable functions on [0, 1], normed by
the essential supremum norm ‖f‖ = sup

x∈[0,1]

{f(x)}, which is defined as the usual

supremum norm but without regarding the subsets of [0, 1] of measure 0. Under
pointwise multiplication, L∞(µ) is obviously a commutative Banach algebra.

If f ∈ L∞(µ) and Gf is the union of all open sets G ⊂ C with µ(f−1(G)) = 0, then
the complement of Gf (called the essential range of f) coincides with the spectrum

σ(f) of f and, hence, with the range of its Gelfand transform f̂ . It follows that

f̂ is real, if f is real. Hence, L̂∞(µ) is closed under complex conjugation. By the

Stone–Weierstrass Theorem, L̂∞(µ) is dense in C(∆), where ∆ is the maximal ideal

space of L∞(µ). It also follows that f 7→ f̂ is an isometry, so that L̂∞(µ) is closed
in C(∆). We conclude that f 7→ f̂ is an isometry of L∞(µ) onto C(∆).

Next, we prove that f̂ 7→
∫
fdµ is a bounded linear functional on C(∆). By the

Riesz representation theorem (Theorem 1.6.23), there exists a regular Borel proba-
bility measure µ̂ on ∆ that satisfies∫

∆

f̂dµ̂ =

∫ 1

0

fdµ. (1.11)

By a Borel measure, we mean a measure µ that is defined on all open (hence in all
Borel) sets of a topological space. It is called regular, if it is both inner and outer
regular. A probability measure is a measure that must assign the value 1 to the entire
topological space. Now, if Ω is a nonempty open set in ∆, Urysohn lemma implies
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that there exists f̂ ∈ C(∆), with f̂ ≥ 0, such that f̂ = 0 outside of Ω and f̂(p) = 1
at some p ∈ Ω. Hence, f is not the zero element of L∞(µ) and the integrals in (1.11)
are positive. Thus, µ̂(Ω) > 0 if Ω is open and nonempty.

Assume next that φ is a Borel function on ∆ with |φ| ≤ 1. By Lusin theorem
(Theorem 1.6.24), there are functions f̂n ∈ C(∆), with |f̂n| ≤ 1, that converge
to φ in the norm of L2(µ̂). Since f 7→ f̂ preserves complex conjugation and is a
homomorphism, applying (1.11) to (fi − fj)(f i − f j), we get that∫

∆

|f̂i − f̂j|2dµ̂ =

∫ 1

0

|fi − fj|2dµ. (1.12)

Thus, {fn} is a Cauchy sequence in L2(µ). Also, |fn| ≤ 1 almost everywhere. Hence,
there exist an f ∈ L∞(µ) such that fn −→ f in L2(µ). Now, (1.12) implies that
f̂n −→ f̂ in L2(µ). The conclusion is that φ = f̂ almost everywhere. Thus, every
bounded Borel function φ on ∆ coincides with some f̂ ∈ C(∆) almost everywhere
and C(∆), L∞(µ̂) are identical as Banach spaces.

Remark 1.6.26. As we mentioned throughout the proof of Theorem 1.6.17, it is a
fact that for any Banach algebra A, any ε > 0 and any x ∈ A, with ‖x‖ < ε, we
have that |φ(x)| < ε, for any complex homomorphism φ : A → C. We proved this
last statement in Lemma 1.6.13, from which we deduce the following result

“In any Banach algebra (unital and over the field C),
every complex homomorphism is continuous.”

This is true, since if X, Y are normed linear spaces and T : X → Y is linear, then T
is bounded if, and only if, T is continuous.

Remark 1.6.27. Theorem 1.6.17 and Corollary 1.6.18 are special cases of the fol-
lowing theorem.

“Suppose that X is a complex topological vector space and Y is a subspace of X,
with dimY = n, where n is a fixed natural number.

Then every isomorphism of Y onto Cn is a homeomorphism.”

The interested reader should look for Theorem 1.21 in [33] for more details.



Chapter 2

Basics of C∗-Algebras

We begin this chapter with several definitions and properties about C∗-algebras. We
prove Dini Theorem (Theorem 2.1.9), which helps us distinguish pointwise conver-
gence of a sequence of functions from uniform convergence, under specific circum-
stances. We prove that the closure of a real algebra is also an algebra, which we use
to prove the Stone-Weierstrass Theorem over the field R (Theorem 2.1.15) and over
the field C (Theorem 2.1.16). The latter is a consequence of the former. We make
a construction about unitizing C∗-algebras that are not already unital (Theorem
2.2.8). This construction allows us to unitize any C∗-algebra by just adjoining an
identity and it will be useful in the proof of nonunital Gelfand Theorem (Theorem
2.2.14). The unital case of Gelfand Theorem can be easily approached by using the
tools that we presented in the previous sections. We close up this chapter with the
notion of an approximate identity.

2.1 Introduction to C∗-Algebras

For this section, all algebras are taken over the field C, unless explicitly stated
otherwise.

Definition 2.1.1 ([29], p.35). An involution on an algebra A is a map from A into
itself, such that for all x, y ∈ A and all α ∈ C

(i) (x+ y)∗ = x∗ + y∗

(ii) (αx)∗ = αx∗

(iii) (x∗)∗ = x

(iv) (xy)∗ = y∗x∗

Definition 2.1.2 ([29], p.36). A C∗C∗C∗-algebra A is a Banach algebra with an involu-
tion, that satisfies

‖a∗a‖ = ‖a‖2, for all a ∈ A.

This last property of the norm is usually referred to as the C∗C∗C∗-condition and an
algebra norm that satisfies this condition is called a C∗C∗C∗-norm.

35
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Definition 2.1.3 ([29], p.36). A C∗C∗C∗-subalgebra of a C∗-algebra A is a closed *-
subalgebra of A.

Remark 2.1.4. Certain properties follow immediately from the aforementioned def-
initions. For example, the involution map x 7→ x∗ from A into itself is a bijection,
that is, injective and surjective.

Indeed, we have, for any x, y ∈ A with x∗ = y∗, that (x∗)∗ = (y∗)∗, which implies
that x = y. This means that the map x 7→ x∗ is injective. Also, we can easily see
that the map x 7→ x∗ is surjective, since (x∗)∗ = x. Thus, the involution map is a
bijection.

Remark 2.1.5. We observe that the involution map is isometric. Indeed, if we apply
the C∗-condition to the element a∗ ∈ A, we have that

‖a∗‖2 = ‖(a∗)∗(a∗)‖ = ‖aa∗‖ ≤ ‖a‖‖a∗‖.

Thus ‖a∗‖ ≤ ‖a‖. Following the same procedure as above, we can see that the
converse inequality holds too, that is

‖a‖ ≤ ‖a∗‖, for all a ∈ A.

Hence, ‖a‖ = ‖a∗‖, for all a ∈ A, which means that the involution map is isometric.

Definition 2.1.6 ([20], p.272). Let X be any topological space and let (fn)n∈N be
a sequence of functions, with fn : X → R, for all n ∈ N. The sequence (fn)n∈N
converges pointwise to the function f : X → R, if

fn(x) −→ f(x), for all x ∈ X.

Definition 2.1.7 ([20], p.267). Let X be any topological space and let (fn)n∈N be
a sequence of functions, with fn : X → R, for all n ∈ N. The sequence (fn)n∈N
converges uniformly to the function f : X → R, if for any ε > 0 there exists
N ∈ N, such that for all n ∈ N with n ≥ N , it holds that

|fn(x)− f(x)| < ε, for all x ∈ X.

Remark 2.1.8. Uniform convergence implies pointwise convergence, as it can be
seen by the definitions above. But, the converse does not always hold as we shall see
in Dini Theorem (Theorem 2.1.9) that follows.

Theorem 2.1.9 (Dini Theorem, [18], p.277). Let X be a compact topological space
and let (fn)n∈N be a decreasing sequence of functions fn : X → R, that converges
pointwise to a continuous function f : X → R. Then, (fn)n∈N converges uniformly
to f.

Proof. We define the sequence of functions (gn)n∈N, with gn : X → R, such that gn =
fn − f . For each n ∈ N, gn is continuous. The sequence (gn)n∈N converges pointwise
to 0, since fn −→ f pointwise, and is decreasing, since (fn)n∈N is decreasing. We,
now, prove that gn −→ 0 uniformly.
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Let ε > 0 and define

Kn = {x ∈ X : gn(x) ≥ ε}, for all n ∈ N.

Since gn is continuous for any n ∈ N, we have that Kn is closed hence compact, as
a closed subset of a compact space. Since (gn)n∈N is decreasing, that is, gn ≥ gn+1,
for all n ∈ N, we have that Kn ⊃ Kn+1 ⊃ . . . . Now, let x ∈ X be any element of
X. Then, gn(x) −→ 0 pointwise, which means that x /∈ Kn, for all n ∈ N. Thus
x /∈ ∩n∈NKn. This means that ∩n∈NKn = ∅. So, there exists N ∈ N, for which
KN = ∅ and since (Kn)n∈N is a decreasing sequence of compact sets, we have, for all
n ∈ N, with n ≥ N , that 0 ≤ gn(x) < ε, for all x ∈ X. Thus, gn −→ 0 uniformly,
which means that fn −→ f uniformly.

Lemma 2.1.10. If A is a real algebra, that is, an algebra over the field R, then so
is its closure A.

Proof. The fact that A is a vector space is trivial. Now, let x, y, z be arbitrary
elements of A. Then, there should exist sequences (xn)n∈N, (yn)n∈N, (zn)n∈N in A,
such that xn −→ x, yn −→ y and zn −→ z. Since A is a real algebra, we deduce the
following properties

(i) (xnyn)zn = xn(ynzn).

(ii) (xn + yn)zn = xnzn + ynzn.

(iii) xn(yn + zn) = xnyn + xnzn.

(iv) r(xnyn) = (rxn)yn = xn(ryn), for all n ∈ N and all r ∈ R.

Since (xn)n∈N, (yn)n∈N and (zn)n∈N are convergent and since the limit of any sequence
is unique, we deduce the following

(v) (xy)z = x(yz).

(vi) (x+ y)z = xz + yz.

(vii) x(y + z) = xy + xz.

(viii) r(xy) = (rx)y = x(ry), for all r ∈ R.

Thus, A is a real algebra.

Lemma 2.1.11 ([18], p.277). Suppose that A is a subalgebra of CR
0 (X), where

CR
0 (X) = {f : X → R : f continuous and vanishes at ∞}

and let X be a compact topological space.

(i) If f ∈ A, then |f | ∈ A.

(ii) If f, g ∈ A, then max(f, g) ∈ A and min(f, g) ∈ A.
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Proof. (i) If f = 0 ∈ A, then it is obvious that |f | = 0 ∈ A. Now, suppose that
0 6= f ∈ A. Let ‖f‖sup = sup{f(x) : x ∈ A}, so that f

‖f‖sup ∈ A. Then,

f(X) ⊂ [−1, 1] and f(x)2 ∈ [0, 1], for all x ∈ X. We construct a sequence of
polynomials (pn)n∈N, such that p1 ≡ 0 and

pn+1(t) = pn(t)− 1

2
(p2
n(t)− t), for all t ∈ [0, 1].

We will show, using induction, that 0 ≤ pn(t) ≤
√
t and pn(0) = 0, for all

n ∈ N and all t ∈ [0, 1]. For n = 1, we get p1(t) = 0 for all t ∈ [0, 1]. Thus, the
result is true for n = 1.

Now, suppose that the result is true for some n ∈ N. We will show that it is
also true for n+ 1. Indeed

pn+1(t)−
√
t = pn(t)−

√
t− 1

2
(p2
n(t)− t)

= (pn(t)−
√
t)− 1

2
(pn(t)−

√
t)(pn(t) +

√
t)

= (pn(t)−
√
t)

[
1− 1

2
(pn(t) +

√
t)

]
≤ 0.

The last inequality is true, since pn(t) ≤
√
t and pn(t) +

√
t ≤ 2

√
t ≤ 2, for all

t ∈ [0, 1]. Also, for t = 0, we have

pn+1(0) = pn(0)− 1

2
p2
n(0) = 0.

Hence, 0 ≤ pn(t) ≤
√
t and pn(0) = 0, for all n ∈ N. Furthermore, we have

that

pn+1(t)− pn(t) =
1

2
(t− p− n(t)2) ≥ 0.

This is true, since 0 ≤ pn(t) ≤
√
t, for all t ∈ [0, 1]. Thus, the sequence (pn)n∈N

is increasing and bounded by
√
t. So, it converges to a function g ∈ CR

0 (X),
such that

0 ≤ g(t) ≤
√
t, for all t ∈ [0, 1].

Thus

0 = g(t)− g(t) = lim
n

(pn+1(t)− pn(t))

= lim
n

1

2
(t− pn(t)2)

=
1

2
(t− g(t)2).

Thus g(t) =
√
t, for all t ∈ [0, 1].

To sum up, we proved so far that the sequence of polynomial (pn)n∈N is in-
creasing and that it converges to the continuous function

g(t) =
√
t, for all t ∈ [0, 1].
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Utilizing the Dini Theorem (Theorem 2.1.9), we deduce that the sequence of
polynomials (pn)n∈N converges uniformly to g, in [0, 1]. We define the sequence
(fn)n∈N with fn : X → R and fn(x) = pn(f 2(x)), for all n ∈ N and we observe
that the sequence (fn)n∈N converges uniformly to the function

√
f 2 = |f | in

X. Since (fn)n∈N is a sequence of polynomials of powers of f , that is, a linear
combination of powers of f , we have that

{fn : n ∈ N} ⊂ A.

Hence
lim
n
fn = |f | ∈ A.

So, in any case, we have shown that if f ∈ A, then |f | ∈ A.

(ii) We will make use of the formulas

max(f, g) =
1

2
(f + g + |f − g|)

and

min(f, g) =
1

2
(f + g − |f − g|), for all f, g ∈ A.

Since A is a real algebra, by Lemma 2.1.10 we have that A is a real algebra, so
we conclude that max(f, g) ∈ A and min(f, g) ∈ A.

Definition 2.1.12 ([18], p.276). Let A be a family of functions on a topological
space X.

(i) A is said to separate points on X, if for any x, y ∈ X, there exists a function
f ∈ A, such that f(x) 6= f(y).

(ii) If for each x ∈ X, there exists a function g ∈ A, such that g(x) 6= 0, then we
say that A does not vanish on X.

Definition 2.1.13 ([18], p.275). Let A be a real algebra of functions on a topological
space X and let B be a subalgebra of A. Then B is dense in A, if B = A or,
equivalently, if for all f ∈ A and all ε > 0 there exists a g ∈ B such that

|f(x)− g(x)| < ε, for all x ∈ X.

Lemma 2.1.14 ([18], p.278). Suppose A is a real algebra of functions on a topological
space X, A separates points on X and A vanishes at no point of X. Also, suppose
that x1, x2 ∈ X are distinct points of A and c1, c2 ∈ R. Then, there exists a function
f ∈ A, such that f(x1) = c1 and f(x2) = c2.

Proof. There exist functions g, h, k ∈ A, such that g(x1) 6= g(x2) (A separates the
points x1, x2 ∈ X), h(x1) 6= 0 (A does not vanish at x1 ∈ X) and k(x2) 6= 0 (A does
not vanish at x2 ∈ X). Let u = (g − g(x1))k and v = (g − g(x2))h. Since u(x2) 6= 0,
v(x1) 6= 0 and u, v ∈ A, we define the function f : X → R, with

f(x) =
c1v(x)

v(x1)
+
c2u(x)

u(x2)
.

Then f(x1) = c1 and f(x2) = c2 and the proof is complete.
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Now, we are in place to state and prove the Stone-Weierstrass Theorem, over R
and C.

Theorem 2.1.15 (Stone–Weierstrass Theorem over R, [18], p.277). Let X be a
locally compact Hausdorff space and suppose that the set A ⊂ CR

0 (X) = C0(X,R) is
a subalgebra of CR

0 (X), such that all of the following hold.

(i) A separates the points of X.

(ii) A vanishes at no point of X.

Then A is dense in CR
0 (X).

Proof. Let h ∈ CR
0 (X) and let ε > 0 be arbitrary. We need to show that there exists

f ∈ A, such that

|h(x)− f(x)| < ε, for all x ∈ X.

We note here that the algebra A in dense in A. For any x, y ∈ X, with x 6= y, we
choose gx,y ∈ A, such that h(x) = gx,y(x) and h(y) = gx,y(y). By applying Lemma
2.1.14, we get that h(x) and h(y) exist.

For a fixed element y ∈ X we define

Ux = {z ∈ X : (h− gx,y)(z) < ε}, for all x ∈ X with x 6= y.

Then, Ux is an open neighborhood of x and since (h−gx,y) vanishes at∞, we deduce
that the set

X \ Ux = {z ∈ X : (h− gx,y)(z) ≥ ε}

is compact. Thus, we fix an element x1 ∈ X, and there exist elements x2, x3, ..., xk ∈
X \ Ux1 , such that

X \ Ux1 ⊂ ∪ki=2Uxi ,

which implies that

X ⊂ ∪ki=1Uxi .

If we let

fy = max(gx1,y, gx2,y, . . . , gxk,y),

we can see from Lemma 2.1.11 that fy ∈ A, because every gxi,y lies in A, for each
i ∈ {1, 2, . . . , k}. Also, for each z ∈ Uxi , we have that h(z) − gxi,y(z) < ε, which
implies that h(z)− fy(z) ≤ ε. Thus h(z)− fy(z) < ε, for all z ∈ X.

Now, for any y ∈ X, we define the set

Vy = {z ∈ X : (fy − h)(z) < ε}.

Since fy(y) = max(gx1,y, . . . , gxk,y) = h(y), we have that Vy is an open neighborhood
of Y and, similarly as above, we deduce that there exist elements y1, y2, . . . , yλ ∈ X,
such that

X ⊂ ∪λj=2Vyj .
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If we let f = min(fy1 , . . . , fyλ), then, by Lemma 2.1.11, we have that f ∈ A, since
each fyj , j ∈ {1, 2, . . . , λ}, lies in A, as proven earlier. Also, for any z ∈ X, we
observe that

f(z)− h(z) = min(fy1 , . . . , fyλ)(z)− h(z) = (fyj(z)− h(z)) < ε,

for some j ∈ {1, 2, . . . , λ}. As stated previously, we also have that h(z)− fy(z) < ε.
Thus, |h(z)− f(z)| < ε, for all z ∈ X and the proof is complete.

So far, we proved the version of the Stone-Weierstrass Theorem for real-valued
functions. We will, now, show that the version for complex-valued functions follows
from the real one.

Theorem 2.1.16 (Stone-Weierstrass Theorem over C, [18], p.277). Let X be a locally
compact Hausdorff space and suppose that A ⊂ C0(X) is a subalgebra of C0(X) (the
algebra of all continuous complex-valued functions f : X → C that vanish at infinity)
such that all of the following hold.

(i) A separates the points of X.

(ii) For all x ∈ X there exists an f ∈ A, such that f(x) 6= 0.

(iii) A is closed under complex conjugation.

Then, A is dense in C0(X).

Proof. Let f ∈ A and let AR = A ∩ CR
0 (X). Then, the function f ∈ A can be

decomposed as
f = Re(f) + iIm(f),

where Re(f) =
1

2
(f + f) and Im(f) =

1

2i
(f − f), since A is closed under complex

conjugation. We also observe that Re(f), Im(f) ∈ AR. Thus A = AR + iAR. If
A satisfies the conditions of Theorem 2.1.15, then AR = A ∩ CR

0 (X) satisfies the
conditions of Dini Theorem (Theorem 2.1.9), as a real subalgebra of CR

0 (X). Thus

A
R

= CR
0 (X) and

A = A
R

+ iA
R

= CR
0 (X) + iCR

0 (X).

This means that
A = CR

0 (X)

and the proof is complete.

2.2 Gelfand Theorems

In this section, all algebras are commutative, unless explicitly stated otherwise.

Definition 2.2.1 ([16], p.234). Let A be a C∗-algebra.

(i) An element a ∈ A is called hermitian or self-adjoint, if a∗ = a.
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(ii) An element a ∈ A is called normal, if a∗a = aa∗.

(iii) A hermitian element p ∈ A is called positive, denoted by p ≥ 0, if σ(p) ≥ 0.
The set of all positive elements of A is denoted by A+.

(iv) An element u ∈ A is called unitary, if u∗u = uu∗ = 1A.

Proposition 2.2.2 ([33], p.275). Let A be a C∗-algebra and a ∈ A. Then all of the
following are true.

(i) The elements a+ a∗, i(a− a∗) and aa∗ are hermitian.

(ii) The element a ∈ A has a unique representation, as a = b + ic, with b, c ∈ A
being both hermitian.

(iii) If A is unital, with unit 1A, then 1A is hermitian.

(iv) An element x ∈ A is invertible if, and only if, x∗ is invertible. In this case we
have that (x∗)−1 = (x−1)∗.

(v) It holds that λ ∈ σ(x) if, and only if, λ ∈ σ(x∗).

Proof. (i) For a ∈ A, we have

(a+ a∗)∗ = a∗ + (a∗)∗ = a∗ + a = a+ a∗.

Hence, the element (a+ a∗) is hermitian. Also

(i(a− a∗))∗ = (a∗ − a)(−i) = i(a− a∗).

Hence, the element i(a− a∗) is hermitian. Finally

(aa∗)∗ = (a∗)∗a∗ = aa∗.

Thus, the element aa∗ is hermitian.

(ii) Since (a+a∗) and i(a−a∗) are hermitian, we construct the hermitian elements

b =
a+ a∗

2
and c =

a− a∗

2i
.

We can, now, see that

b+ ic =
a+ a∗

2
+
a− a∗

2
= a.

The uniqueness part of the proof is immediate.

(iii) Since 1A1∗A = 1A, by applying (i), we deduce that the element 1A is hemirian.
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(iv) If a ∈ A is invertible, then

aa−1 = a−1a = 1A if, and only if, (1A)∗ = 1A = (aa−1)∗

and

(1A)∗ = 1A = (aa−1)∗ if, and only if, 1A = (a−1)∗a∗ = a∗(a−1)∗.

Thus, a∗ is invertible. As a consequence, we have that

(a∗)−1 = (a−1)∗.

(v) We apply (iv) to the element λ1A − a, for λ ∈ C, and we have that

λ1A − a ∈ inv(A) if, and only if, λ1A − a∗ ∈ inv(A).

Thus
λ ∈ σ(a) if, and only if, λ ∈ σ(a∗).

Following (v) of Proposition 2.2.2, we get the following corollary.

Corollary 2.2.3. Let A be a C∗-algebra and let a ∈ A. Then

σ(a∗) = σ(a) = {λ ∈ C : λ ∈ σ(a)}.

Theorem 2.2.4 ([16], p.234). If a is a hermitian element of a C∗-algebra A, then
the spectral radius of a is equal to ‖a‖.

Proof. Since a is hermitian, we have that

‖a‖2 = ‖aa∗‖ = ‖aa‖ = ‖a2‖.

By induction, we have that

‖a‖2n = ‖a2n‖, for all n ∈ N.

Hence, by the spectral radius formula (Theorem 1.2.14) we have that the spectral
radius of a is equal to

lim
n→∞

‖an‖1/n = lim
n→∞

‖a2n‖1/(2n) = ‖a‖.

Corollary 2.2.5. In any ∗-algebra A, there exists at most one norm making A a
C∗-algebra.

Proof. If ‖ · ‖1, ‖ · ‖2 are norms on A such that it is a C∗-algebra, then

‖a‖2
i = ‖a2‖i = ‖a∗a‖i = p(a∗a) = sup{|λ| : λ ∈ σ(a∗a)}, for i = 1, 2.

Thus, ‖a‖1 = ‖a‖2.
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Proposition 2.2.6 ([16], p.235). Let A be a unital commutative C∗-algebra, a ∈ A
and h ∈ ∆A, that is, h : A→ C is a nonzero complex homomorphism.

(i) If a is hermitian, then h(a) ∈ R.

(ii) It holds that h(a∗) = h(a).

(iii) It holds that h(a∗a) ≥ 0.

(iv) If u ∈ A is unitary, then |h(u)| = 1.

Proof. (i) If a is hermitian, then a∗ = a. Now, consider t ∈ R. Then, by Lemma
1.6.14, we have that

|h(a+ it)|2 ≤ ‖a+ it‖2 ≤ ‖a‖2 + |t|2.

So, if h(a) = x+ iy, with x, y ∈ R and y 6= 0, then

‖a‖2 + |t|2 ≥ |h(a+ it)|
= |h(a) + h(it)| = |x+ iy + ith(1A)|
= |x+ i(y + t)|2 = x2 + y2 + 2yt

≥ y2 + 2yt.

So, if t ∈ R tends to infinity, we have a contradiction, unless y = 0. Hence
h(a) = x ∈ R.

(ii) According to Proposition 2.2.2, we can write the element a ∈ A as a = x+ iy,
where both x and y are hermitian. So, by (i), we have that h(x), h(y) ∈ R.
Thus

h(a∗) = h(x− iy) = h(x)− ih(y) = h(x) + ih(y) = h(a).

(iii) By (ii) we have

h(a∗a) = h(a∗)h(a) = h(a)h(a) = |h(a)|2 ≥ 0.

(iv) Using the conclusion of (ii), we have that

h(u)2 = h(u∗)h(u) = h(u∗u) = h(1A) = 1.

Hence, |h(u)| = 1.

Our next step is to prove the Gelfand Theorems, that characterize an arbitrary
commutative C∗-algebra, in terms of its maximal ideal space. In order to prove both
the unital and nonunital case, we need to construct a method of unitizing nonunital
C∗-algebras, so that we may confine our attention to unital C∗-algebras only. While
this construction is very useful in many cases, it does not always work, as we shall
see in the next section.
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Remark 2.2.7. We recall that if V is a finite dimensional vector space and U1, U2, ..., Um
are vector subspaces of V , such that

V = U1

⊕
U2

⊕
...
⊕

Um,

then
dimV = dimU1 + dimU2 + ...+ dimUm.

Theorem 2.2.8 (Unitization of a C*-algebra, [17], p.2). Every nonunital C∗-algebra
A is contained in a unital C∗-algebra Ã, being a maximal ideal of codimension 1.

Proof. Let Ã = A
⊕

C. We know that Ã is an algebra, since the direct sum of vector
spaces is also a vector space and the binary operation

((a, λ), (b, µ)) 7→ (a, λ)(b, µ),

defined by

(a, λ)(b, µ) = (ab+ µa+ λb, λµ), for all a, b ∈ A, λµ ∈ C,

satisfies all the properties of a multiplication between vector spaces.
Since both algebras A and C are normed algebras, we define the norm ‖ · ‖Ã :

Ã→ R, with
‖(a, λ)‖Ã = sup

‖c‖≤1

‖ac+ λc‖.

This is a norm on Ã since, for all a, b ∈ A and all λ, µ ∈ C, we have that

‖(a, λ)‖Ã = sup
‖c‖≤1

‖ac+ λc‖ ≥ 0.

Also
‖(a, λ)‖Ã = 0⇔ sup

‖c‖≤1

‖ac+ λc‖ = 0⇔ (a, λ) = (0, 0).

Additionally

‖µ(a, λ)‖Ã = ‖(µa, µλ)‖Ã = sup
‖c‖≤1

‖µac+ µλc‖

= |µ| sup
‖c‖≤1

‖ac+ λc‖

= |µ|‖(a, λ)‖Ã.

Furthermore

‖(a, λ) + (b, µ)‖Ã = ‖(a+ b, λ+ µ)‖Ã = sup
‖c‖≤1

‖(a+ b)c+ (λ+ µ)c‖

= sup
‖c‖≤1

‖(a+ λ)c+ (b+ µ)c‖

≤ sup
‖c‖≤1

‖ac+ λc‖+ sup
‖c‖≤1

‖bc+ µc‖

= ‖(a, λ)‖Ã + ‖(b, µ)‖Ã.
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Let (an, λn)n∈N, be a Cauchy sequence in Ã. Then (an)n∈N and (λn)n∈N are Cauchy
sequences in A and C, respectively. Since A and C are Banach spaces, there exist
elements a ∈ A and λ ∈ C, such that

an
‖·‖−→ a and λn

|·|−→ λ.

This means, equivalently, that for all ε > 0 there exists n0 ∈ N such that for all
n ∈ N, with n ≥ n0, it holds that

‖an − a‖ <
ε

2
and |λn − λ| <

ε

2
.

Thus

‖(an, λn)− (a, λ)‖Ã = ‖(an − a, λn − λ)‖Ã
= sup
‖c‖≤1

‖(an − a)c+ (λn − λ)c‖

≤ sup
‖c‖≤1

[‖c‖(‖an − a‖+ |λn − λ|)]

<
ε

2
+
ε

2
= ε.

Thus, the sequence (an, λn)n∈N ⊂ Ã converges to the element (a, λ) ∈ Ã, which
implies that Ã is a Banach space.

Furthermore, for any a, b ∈ A and λ, µ ∈ C, we have that

‖(a, λ)(b, µ)‖Ã = ‖(ab+ µa+ λb, λµ)‖
= sup
‖c‖≤1

‖abc+ µac+ λbc+ λµc‖

≤ ‖ab+ µa+ λb+ λµ‖ sup
‖c‖≤1

‖c‖

≤ ‖a+ λ‖‖b+ µ‖
= ‖(a, λ)‖Ã‖(b, µ)‖Ã.

Thus, Ã is a Banach algebra. Now, define the map ∗ : Ã → Ã, by (a, λ)∗ = (a∗, λ).
We will show that this map defines an involution on Ã. For any pairs (a, λ)(b, µ) ∈ Ã
and any c ∈ C, the following hold

• ((a, λ) + (b, µ))∗ = (a+ b, λ+ µ)∗ = (a∗ + b∗, λ+ µ) = (a, λ)∗ + (b, µ)∗.

• c(a, λ))∗ = (ca, cλ)∗ = (ca∗, cλ) = c(a, λ)∗.

• ((a, λ)∗)∗ = (a∗, λ)∗ = (a∗∗, λ) = (a, λ).

• ((a, λ)(b, µ))∗ = (ab+µa+λB, λµ)∗ = (b∗a∗+µa∗+λb∗, λµ) = (b∗, µ)(a∗, λ) =
(b, µ)∗(a, λ)∗.

Thus, the map ∗ : Ã→ Ã defines an involution on Ã.
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Our next step is to prove the C∗-condition for Ã, assuming that both A and C
are C∗-algebras. For any (a, λ) ∈ Ã, we have that

‖(a, λ)‖2
Ã

= sup
‖c‖≤1

‖ac+ λc‖ sup
‖c‖≤1

‖ac+ λc‖

≤ sup
‖c‖≤1

‖c‖(‖a+ λ‖2)

= ‖a+ λ‖2 = ‖(a+ λ)∗(a+ λ)‖
= ‖a∗a+ λa∗ + λa+ |λ|2‖
= ‖(a∗a+ λa∗ + λa, |λ|2)‖Ã = ‖(a, λ)∗(a, λ)‖Ã
≤ ‖(a, λ)∗‖Ã‖(a, λ)‖Ã.

So
‖(a, λ)‖Ã ≤ ‖(a, λ)∗‖Ã.

Following the same procedure for the element (a∗, λ) = (a, λ)∗ ∈ Ã, we deduce that

‖(a, λ)∗‖Ã = ‖(a, λ)‖Ã.

Thus
‖(a, λ)‖2

Ã
= ‖(a, λ)∗(a, λ)‖Ã.

So Ã is a C∗-algebra.
The algebra Ã is also unital, with unit (0, 1) ∈ Ã, since for any (a, λ) ∈ Ã, we

have
(a, λ)(0, 1) = (a, λ) = (0, 1)(a, λ).

Next, we define the map φ : Ã→ C, by φ(a, λ) = λ. Observe that

kerφ = {(a, λ) ∈ Ã : φ(a, λ) = λ = 0} = {(a, 0) : a ∈ A}.

Since C is a field, we have that kerφ is a maximal ideal of Ã. Using the map
γ : A→ kerφ, with γ(a) = (a, 0), we can easily see that this map defines an algebra
isomorphism. Hence, the algebra A is a maximal ideal of Ã. From the fact that
Ã = A

⊕
C, we deduce that

dimÃ = dimA+ dimC = dimA+ 1.

Before stating and proving Gelfand Theorems, we gather some useful definitions
and properties, concerning Banach algebras, that were introduced in Chapter 1.

Remark 2.2.9. Let ∆ be the set of all nonzero complex homomorphisms of a com-
mutative Banach algebra A. For each x ∈ A, we define the Gelfand transform of x,
by the map

x̂ : ∆→ C, with x̂(h) = h(x), for all h ∈ ∆.

Remark 2.2.10. Let Â denote the set of all x̂ : ∆→ C. The map γ : A→ Â, with

γ(x)(h) = x̂(h) = h(x), for all h ∈ ∆,

is an algebra homomorphism, whose kernel is the radical of A, denoted by radA.
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Remark 2.2.11. The maximal ideal space ∆ of a commutative Banach algebra A
is a locally compact Hausdorff space. Additionally, it is compact if, and only if, A is
unital.

Remark 2.2.12. For any commutative Banach algebra A, a norm can be defined
on Â by the map ‖ · ‖∞ : Â→ R, with

‖x̂‖∞ = max
h∈∆
{|x̂(h)|}.

Now, we can state and prove the Gelfand Theorems for commutative C∗-algebras.

Theorem 2.2.13 (Unital case of Gelfand Theorem, [16], p.236). Let A be a unital
commutative C∗-algebra, with norm ‖ · ‖. Then, the Gelfand transform, which is a
map γ : A→ C(∆), is an isometric ∗-isomorphism.

Proof. Using Theorem 1.6.15, we have that ‖x̂‖∞ = p(x) ≤ ‖x‖, for all x ∈ A. Also,
from Theorem 2.2.4, we have that ‖a‖ = p(a), for any hermitian element a ∈ A. So,
we conclude that ‖x∗x‖ = ‖x̂∗x‖∞, for all x ∈ A, since the element x∗x ∈ A is, itself,
hermitian. Now, for any a ∈ A and h ∈ ∆, we have from Proposition 2.2.6, that

â∗(h) = h(a∗) = h(a) = â(h)

from which we derive that â∗ = â. Since the involution in C is the complex conjuga-
tion, we deduce that

γ(a∗) = â∗ = â = â∗ = γ(a)∗.

As we mentioned in Remark 2.2.12, the map γ : A → C(∆) is a homomorphism.
Thus, the Gelfand transform is a ∗-homomorphism. Also, we observe, for any a ∈ A,
that

‖a‖2 = ‖a∗a‖ = ‖â∗a‖∞
= max

h∈∆
{|â ∗ a(h)|} = max

h∈∆
{|h(a)∗h(a)|}

= max
h∈∆
{|h2(a)|} = max

h∈∆
{|â2(h)|}

= ‖|â|2‖∞ = ‖â‖2
∞.

Therefore, we have that ‖a‖ = ‖â‖∞, for all a ∈ A. Hence, γ is an isometry.
We, now, prove that γ : A → C(∆) is injective. For this, let γ(a) = γ(b),

for a, b ∈ A. This means, for any h ∈ ∆, that γ(a)(h) = γ(b)(h) and, thus, that
h(a) = h(b). So

‖γ(a)− γ(b)‖∞ = 0 = ‖γ(a− b)‖∞ = ‖a− b‖.

Since γ is an isometry, we deduce that a = b and that γ is injective.
The last part of the proof is to show that γ is surjective, that is, γ(A) = C(∆).

For this, we will use the Stone-Weierstrass Theorem (Theorem 2.1.16). We can do
this, since A is unital and, so, ∆ is a compact Hausdorff space. Since A is a Banach
space, hence complete, we immediately have that γ(A) is complete, because γ is
continuous, being an isometry. So γ(A) is closed in C(∆).
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The fact that every isometry is continuous is evident, since for any sequence
(an)n∈N in A, such that an −→ a ∈ A, we have

‖an − a‖ < ε, for any ε > 0.

Thus

‖γ(an − a)‖ = ‖γ(an)− γ(a)‖ < ε

and γ is continuous.
We, now, show that γ(A) separates points in ∆. Let φ, h ∈ ∆ with φ 6= h. Then

there exists an a ∈ A, such that φ(a) 6= h(a). This means that â(φ) 6= â(h), which
implies that γ(a)(φ) 6= γ(a)(h). Thus, γ(A) separates points in ∆. Since γ preserves
involution, that is, γ(a∗) = γ(a)∗, for all a ∈ A, we have that γ(A) is closed under
complex conjugation. Indeed, if h ∈ γ(A), then h = γ(a), for some a ∈ A, which
implies that

h = γ(a) = γ(a)∗ = γ(a∗) ∈ γ(A).

Finally, for any h ∈ ∆, we have by the definition of the maximal ideal space ∆, that
h 6= 0. This means that there exists an a ∈ A, such that h(a) 6= 0. By the definition
of the Gelfand transform, we have that â(h) 6= 0, which implies that γ(a)(h) 6= 0.
Thus, γ(A) vanishes at no point of ∆. Hence, we can apply the Stone-Weierstrass
Theorem (Theorem 2.1.16) and deduce that γ(A) = C(∆). Since γ(A) is closed in
C(∆), we also have that γ(A) = γ(A) = C(∆) and so γ is surjective. Thus, the
Gelfand transform is an isometric ∗-isomorphism.

Theorem 2.2.14 (Nonunital case of Gelfand Theorem, [17], p.7). Let A be a nonuni-
tal commutative C∗-algebra. Then, the Gelfand transform, which is a map γ : A →
C0(∆), is an isometric ∗-isomorphism.

Proof. We apply Theorem 2.2.8, to the C∗-algebra A, in order to get a unital com-
mutative C∗-algebra Ã, which has A as a maximal ideal of codimension 1. Since Ã
is unital, we deduce that Ã is isometrically ∗-isomorphic to C(∆Ã). From this we
derive that A is isometrically ∗-isomorphic to C(∆Ã/{∞}). Here, {∞} is the point
at infinity which made ∆A into the compact Hausdorff space ∆Ã, via the one-point
compactification.

Indeed, by identifying C(∆Ã/{∞}) with C0(∆A), using the obvious ∗-isomorphism
between these algebras, we deduce that A is isometrically ∗-isomorphic to C0(∆A),
since the Gelfand transform maps the ideal A of Ã, to the ideal C0(∆A) of C(∆Ã).
The isomorphism maps each function f : ∆A → C, to itself, that is, to the func-
tion f : ∆Ã → C. Thus, we have that the Gelfand transform, regarded as a map
γ : A→ C0(∆), is an isometric ∗-isomorphism.

An immediate application of Gelfand Theorems is the Spectral Mapping Theorem
(Theorem 2.2.17) which states that the spectrum of the functional calculus of a
normal element in a C∗-algebra A is exactly the functional calculus of the spectrum
of this element. First, we need to define the notion of the functional calculus of a
normal element in a C∗-algebra.
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Definition 2.2.15 ([29], p.41). Let A be a unital C∗-algebra, with unit 1A, and
a ∈ A be a normal element of A. The commutative C∗-algebra C∗(a) = span{1A, a}
is called the C∗-algebra generated by aaa and 1A1A1A. It can be easily proved that C∗(a)
is the smallest C∗-subalgebra of A that contains a and 1A.

Definition 2.2.16 ([29], p.43). Let A be a unital C∗-algebra, with unit 1A and a ∈ A
be a normal element of A. We define the map r : C(σ(a))→ C∗(a), by

r(f) = f(a), for all f ∈ C(σ(a)).

The map r is called the functional calculus for aaa.

Theorem 2.2.17 (Spectral Mapping Theorem, [29], p.43). If A is a C∗-algebra and
a ∈ A is a normal element of A, then σ(f(a)) = f(σ(a)), for all f ∈ C(σ(a)).

Proof. Let r : C(σ(a)) → C∗(a) be defined by r(f) = f(a). Then, r is a ∗-
isomorphism. The proof that r is a ∗-isomorphism is trivial and will be omitted.
Hence

σ(f(a)) = σ(r(f)) = σ(f).

Applying Gelfand Theorem (Theorem 2.2.13), we have that σ(f) = f(σ(a)). Hence
σ(f(a)) = f(σ(a)).

Proposition 2.2.18 ([16], p.240). If A is a C∗-algebra and a ∈ A is a hermitian
element of A, then there are positive elements u, v ∈ A such that a = u − v and
uv = vu = 0.

Proof. We define the functions f, g : A→ R by f(t) = max(t, 0) and g(t) = min(t, 0).
Then, f, g ∈ C(R), f(t) − g(t) = t and f(t)g(t) = 0. Using the definition of
functional calculus, we find elements u, v ∈ A, with u = f(a) and v = g(a). Then,
u and v are hermitian, since u∗ = f(a)∗ = f(a∗) = f(a) = u and v∗ = g(a)∗ =
g(a∗) = g(a) = v. Using the Spectral Mapping Theorem (Theorem 2.2.17), we
have that σ(u) = σ(f(a)) = f(σ(a)) ≥ 0 and that σ(v) = σ(g(a)) = g(σ(a)) ≥ 0.
Thus, the elements u and v are positive and satisfy u − v = f(a) − g(a) = a and
uv = vu = f(a)g(a) = 0.

Proposition 2.2.19 ([16], p.241). If A is a C∗-algebra and a ∈ A is such, that
a = x∗x, then a ≥ 0.

Proof. We observe that a∗ = x∗x = a. Hence, by Proposition 2.2.18, there exist
positive elements u, v ∈ A, such that a = u− v and uv = vu = 0. We need to show
that v = 0. Let b + ic = xv1/2, where b, c ∈ A are hermitian elements of A. The
existence of the elements b and c is due to Proposition 2.2.2. Then

(xv1/2)∗(xv1/2) = (b− ic)(b+ ic) = b2 + c2 + i(bc− cb)

and

(xv1/2)∗(xv1/2) = v1/2x∗xv1/2 = v1/2av1/2 = v1/2(u− v)v1/2 = uv − v2 = −v2.
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Hence i(bc− cb) = −(v2 + b2 + c2) ≤ 0 and since (xv1/2)∗(xv1/2) = −v2, we observe
that (xv1/2)∗(xv1/2) ≤ 0. If we let y = −(xv1/2)(xv1/2)∗, we can see that y ∈ A+. So
−y = (b+ ic)(b− ic) = b2 + c2 − i(bc− cb) and thus i(bc− cb) = b2 + c2 + y ≥ 0. So

0 ≤ i(bc− cb) ≤ 0.

Hence, i(bc − cb) = 0 and −v2 = b2 + c2 ≥ 0. Thus, v = 0 and the proof is
complete.

2.3 Approximate Identities

We finish this chapter with some useful definitions concerning C∗-algebras.

Definition 2.3.1 ([29], p.77). Let A be a C∗-algebra. An approximate identity
of A is a net (xλ)λ∈Λ of elements of A, such that all of the following hold.

(i) The net (xλ)λ∈Λ is increasing.

(ii) The net (xλ)λ∈Λ is contained in the closed unit ball of A.

(iii) The net (xλ)λ∈Λ contains only positive elements of A.

(iv) lim
λ
‖xλ − x‖ = 0 = lim

λ
‖xxλ − x‖, for all x ∈ A.

Remark 2.3.2. If A is a unital C∗-algebra, then an approximate identity of A is
the constant net (xλ)λ∈Λ with xλ = 1A, for all λ ∈ Λ. If A is a nonunital C∗-algebra,
then A admits an approximate identity, as we shall see in Theorem 2.3.7.

Remark 2.3.3. If A and B are both nonunital commutative C∗-algebras and φ :
A→ B is a ∗-homomorphism from A into B, then φ always respects the approximate
identity (aλ)λ∈Λ of A, that is, φ(aλ) = (bµ)µ∈M , where (bµ)µ∈M is the approximate
identity of B.

Remark 2.3.4. The unitization of a nonunital C∗-algebra A does not always come
with no drawbacks. For example, if J is a right ideal of A and J̃ = J

⊕
C is the

unitization of J , then J̃ is no longer an ideal of A, for if (j, c) ∈ J̃ and a ∈ A, then

(j, c)a = (j, c)(a, 0) = (ja+ ca, 0) /∈ J̃ ,

since ca /∈ J .

Remark 2.3.5. The problem of showing that every closed ideal J of a C∗-algebra
A is self-adjoint, is solved by using approximate identities. Indeed, if (xλ)λ∈Λ is an
approximate identity of J and if x ∈ J is an arbitrary element of J , then

lim
λ
‖xλx− x‖ = 0 = lim

λ
‖xλx∗ − x∗‖ = lim

λ
‖x∗xλ − x∗‖.

Since x∗xλ ∈ J for all λ ∈ Λ and since J is closed, we have that

lim
λ

(x∗xλ) = x∗ ∈ J.

Thus, J is self-adjoint.
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Lemma 2.3.6 ([8], p.36). Let A be a unital C∗-algebra, with unit 1A, and x, y be
positive invertible elements of A, satisfying x ≤ y. Then y−1 ≤ x−1.

Proof. Since both x and y are positive, we can find positive roots for both, which
are denoted by x1/2 and y1/2, respectively. Multiplying x ≤ y, left and right, with
y−1/2, we get

y−1/2xy−1/2 ≤ 1A.

If we let z = x1/2y−1/2 ∈ A, we get

z∗z = y−1/2xy−1/2 ≤ 1A.

Thus, we have that

‖z∗z‖ = ‖z‖2 ≤ 1⇒ ‖z‖ ≤ 1

⇒ ‖x1/2y−1/2‖ ≤ 1

⇒ ‖(x1/2y−1/2)∗‖ = ‖y−1/2x1/2‖ ≤ 1.

So, we deduce that zz∗ ≤ 1A, since ‖z‖ ≤ 1 and ‖z∗‖ ≤ 1. Hence

x1/2y−1x1/2 ≤ 1A,

which implies that y−1 ≤ x−1.

Theorem 2.3.7 ([8], p.36). Every C∗-algebra A admits an approximate identity.

Proof. If A is unital, we immediately have that an approximate identity is (xλ)λ∈Λ,
with xλ = 1A, for all λ ∈ Λ. So, we assume that A has no unit and let Ã be the
unitization of A, with unit 1Ã = (0, 1). Also, under the usual set inclusion, we define
the partially ordered set

Λ = {Ui : i ∈ I}

where
Ui = {{x1, . . . , xi} : xj ∈ A, for all j = 1, 2, . . . , i, i ∈ I}.

For each integer n ≥ 1, let fn be the function fn : [0,+∞) → [0, 1], defined by
fn(t) = nt(1 + nt)−1. Since fn is continuous, for every integer n ≥ 1, it can operate
on the set of all positive elements of A, denoted by A+, instead of R. In other words,
for each integer n ≥ 1, we can define a function fn : A+ → A+. The domain of this
function contains the positive elements of A whose spectrum is contained in [0,+∞)
and its image consists of those positive elements of A whose spectrum is contained
in [0, 1]. So, for each λ ∈ Λ, say λ = {x1, . . . , xn}, we define the element eλ ∈ A, by

eλ = fn(x2
1 + · · ·+ x2

n).

The element x2
1 + · · ·+x2

n is positive, since each x2
i is positive, for any i ∈ {1, . . . , n},

because σ(x2
i ) = σ(xi)

2 ≥ 0. Hence x2
1+...+x2

n ≥ 0, which implies that σ(eλ) ⊂ [0, 1].
Thus, (eλ)λ∈Λ is contained in the closed unit ball of A and is positive, so eλ ≥ 0 and
‖eλ‖ ≤ 1, for all λ ∈ Λ.
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Now, let λ ≤ µ, say λ = {x1, . . . , xm} and µ = {x1, . . . , xn}, where m ≤ n. Since
1− fn(t) = (1 + nt)−1, we have that

1Ã +m(x2
1 + · · ·+ x2

m) ≤ 1Ã + n(x2
1 + · · ·+ x2

n).

This implies that

[1Ã + n(x2
1 + · · ·+ x2

n)]−1 ≤ [1Ã +m(x2
1 + · · ·+ x2

m)]−1.

Furthermore
1Ã − fn(x2

1 + · · ·+ x2
n) ≤ 1Ã − fm(x2

1 + · · ·+ x2
m).

Thus eλ ≤ eµ. Consequently, the net (eλ)λ∈Λ is increasing.
Finally, we need to prove that

lim
λ
‖eλx− x‖ = 0 = lim

λ
‖xeλ − x‖,

for any hermitian element x ∈ A, since any other element z ∈ A can be decomposed
into the form z = z1 + z2, where z1, z2 are hermitian. So, we fix an x ∈ A, for which
x = x∗. Let m be a positive integer and let λ = {x1, . . . , xm, xm+1, . . . , xn} be any
finite set of hermitian elements that contains x and that has at least m elements.
We claim that

‖xeλ − x‖2 ≤ 1

4m
.

Indeed, since x2 ≤ x2
1 + · · ·+ x2

n, we have that

(1Ã − eλ)x
2(1Ã − eλ) ≤ (1Ã − eλ)(x

2
1 + · · ·+ x2

n)(1Ã − eλ).

We define the function gn : [0,+∞)→ [0, 1], by

gn(t) = (1− fn(t))t(1− fn(t)).

We observe that
gn(t) = t(1− fn(t))2 = t(1 + nt)−2

and that

|gn(t)| = |t(1 + nt)−2| ≤ 1

4n
.

Thus

(1Ã − eλ)x
2(1Ã − eλ) ≤ gn(x2

1 + · · ·+ x2
n) ≤ 1

4n
1Ã,

where gn is considered as gn : A+ → A+. So, the element z = x − eλ = x(1Ã − eλ),
satisfies

z∗z = (1∗
Ã
− e∗λ)x∗x(1Ã − eλ) = (1Ã − eλ)x

2(1Ã − eλ) ≤
1

4n
1Ã.

Thus

‖z∗z‖ = ‖z‖2 ≤ 1

4n
.
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The above relation implies that

‖xeλ − x‖2 ≤ 1

4n
≤ 1

4m
.

We, also, observe that

‖xeλ − x‖ = ‖(xeλ − x)∗‖ = ‖eλx∗ − x∗‖ = ‖eλx− x‖.

Since m is arbitrary, we deduce that

lim
λ
‖xeλ − x‖ = 0 = lim

λ
‖eλx− x‖.

Thus, (eλ)λ∈Λ is an approximate identity of A.



Chapter 3

Gelfand Duality and Applications

This chapter is about category theory and the Gelfand Duality. The first section
consists of some preliminary notions of category theory such as the notion of a
category and that of a morphism. We state some terminology about certain categories
of topological spaces and C∗-algebras. In the second section we define the notion of
a covariant and a contravariant functor and we give some examples of special kinds
of functors that will be used throughout this chapter. The third section is about
equivalences of categories. We provide a theorem (Theorem 3.3.10) that relates
certain properties of functors with the equivalence of the categories associated to
that functor. Finally, the last section is about Gelfand Duality. Specifically, we
prove that the category LCS of locally compact Hausdorff spaces is dual to the
category of nonunital commutative C∗-algebras C∗Algcom,nu and the category CS of
compact Hausdorff spaces is dual to the category of unital commutative C∗-algebras
C∗Algcom,u. We close up this chapter with some interesting consequences of Gelfand
Duality.

3.1 Categories

In this section, we will analyze some basic notions of category theory, that is, the
notions of a category C and that of a morphism, which is a structure preserving map,
alongside with the notion of a functor between two categories. We will introduce the
notion of a category equivalence and that of category duality, which we will make
use of in the proofs of Gelfand Theorems.

Definition 3.1.1 ([10], p.71). A category C consists of a collection O of objects
and a collection M of morphisms, which are structure preserving maps between
same types of structures, such that all of the following conditions hold

(i) For all A,B ∈ O, there is a (possibly empty) set, denoted by Mor(A,B), called
the set of morphisms f : A→ B, such that

Mor(A,B) ∩Mor(A′, B′) = ∅, whenever (A,B) 6= (A′, B′).

(ii) IfA,B,C ∈ O, we can define an operation, called composition, from Mor(A,B)×
Mor(B,C) to Mor(A,C), with (f, g)→ g ◦ f , such that

55
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• (Associativity) If f : A → B, g : B → C and h : C → D are morphisms
in C, then (h ◦ g) ◦ f = h ◦ (g ◦ f).

• (Existence of identity) For each A ∈ O, there exists an identity morphism
idA : A → A, such that f ◦ idA = f and idA ◦ g = g, for any morphisms
f : A→ B, g : E → A of C and any B,E ∈ O.

Definition 3.1.2 ([10], p.71). A morphism f : A → B in C is said to be an iso-
morphism, if there exists a morphism g : B → A in C, such that f ◦ g = idB and
g ◦ f = idA.

Definition 3.1.3 ([10], p.71). A category C is a subcategory of a category D, if
all of the following conditions are satisfied.

(i) Every object of C is an object of D.

(ii) If A and B are objects of C, then MorC(A,B) ⊆ MorD(A,B).

(iii) The composition of morphism in C coincides with the composition of morphisms
in D.

(iv) For every object A of C, the identity morphism idA : A → A of C coincides
with the identity morphism idA : A→ A of D.

Definition 3.1.4 ([10], p.72). If C is a subcategory ofD and MorC(A,B) = MorD(A,B),
for all objects A,B of C, then C is called a full subcategory of D.

Definition 3.1.5 ([10], p.72). A category C is called additive, if

(i) Mor(A,B) has the structure of an additive abelian group, for each pair of
objects A,B of C and

(ii) g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 and (g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f , for all
f, f1, f2 ∈ Mor(A,B) and g, g1, g2 ∈ Mor(B,C), where A,B,C are objects of
C.

Definition 3.1.6 ([10], p.72). An object O of a category C is said to be a zero
object of C, if Mor(0, A) and Mor(A, 0) contain a single morphism each, for all
objects A of C.

Remark 3.1.7. If C is an additive category, then Mor(A,B) 6= ∅, since the zero
morphism OAB : A→ B is in Mor(A,B), for any pair of objects A,B of C.

Remark 3.1.8. For the remainder of this chapter, we will denote any morphism

f ∈ Mor(A,B) by f : A→ B or A
f−→ B, for any pair of objects A,B of C.

Definition 3.1.9. A map f : X → Y between topological spaces, is called proper,
if the preimage of every compact set in Y is compact in X, that is, for any K ⊂ Y ,
with K compact in Y , we have that f−1(K) is compact in X.
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Definition 3.1.10 ([27], p.5). Let A and B be any C∗-algebras. A ∗-homomorphism
φ : A→ B is called proper, if for any approximate identity (eλ)λ∈Λ of A, (φ(eλ))λ∈Λ

is an approximate identity of B.

Remark 3.1.11. The category T OPT OPT OP consists of all topological spaces and all con-
tinuous maps. The category CSCSCS consists of all compact Hausdorff spaces and all
continuous maps. Note that any f ∈ MorCS(X, Y ) is proper, by definition. The
category LCSLCSLCS consists of all locally compact Hausdorff spaces and all continuous
proper maps between these spaces. We observe that CS is a full subcategory of LCS,
since every continuous map f ∈ MorCS(X, Y ) between compact spaces, is proper
and every compact Hausdorff topological space is locally compact. Indeed, if X is a
Hausdorff topological space, then for each x ∈ X, we have

{x} =
⋂
i∈I

Ui, for every closed neighborhood Ui of x.

If X is assumed to be compact, then these closed neighborhoods are compact them-
selves. Thus, X is locally compact, since any x ∈ X has a neighborhood basis,
consisting of compact sets. The category C∗AlguC∗AlguC∗Algu consists of all unital C∗-algebras
and all ∗-homomorphisms, while the category C∗AlgnuC∗AlgnuC∗Algnu consists of all nonunital C∗-
algebras and all proper ∗-homomorphisms. In the same manner, we define the cate-
gories C∗Algcom,uC∗Algcom,uC∗Algcom,u and C∗Algcom,nuC∗Algcom,nuC∗Algcom,nu, as the commutative analogues of the categories
mentioned above. Note that C∗Algcom,u and C∗Algcom,nu are full subcategories of
C∗Algu and C∗Algnu, respectively, since every commutative C∗-algebra, either uni-
tal or nonunital, is a C∗-algebra by itself. Also

MorC∗Algu(A,B) = MorC∗Algcom,u(A,B)

and
MorC∗Algnu(X, Y ) = MorC∗Algcom,nu(X, Y ),

for any pair of objects A,B of C∗Algcom,u and X, Y of C∗Algcom,nu. The category
SETSETSET consists of all sets and if A and B are objects of SET , then Mor(A,B) is
the set of all function f : A → B. Note that each of the examples mentioned
above, are subcategories of the category SET . This statement is true, since any
topological space and any C∗-algebra are sets by themselves and any morphism
between topological spaces or C∗-algebras is a morphism between sets. We will refer
to a category, whose objects are sets, as a concrete category. So, all the categories
that were mentioned in the examples above are concrete categories.

3.2 Functors

In this section, we will discuss the notion of functors, which provide a method of
transferring information from one category to another in a way that is, in some
sense, structure preserving.

Definition 3.2.1 ([28], p.34). If C and D are categories, then a covariant functor
F : C → D is a pair of maps, that consists of
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(i) An object map F , which associates each object A of C with exactly one object
F (A) of D.

(ii) A morphism map (also denoted by F ), which associates each morphism
f : A → B of C with exactly one morphism F (f) : F (A) → F (B) in D,
such that all of the following hold

• F (idA) = idF (A) for each object A of C.
• If f : A → B and g : B → C are morphisms in C, then F (g ◦ f) =
F (g) ◦ F (f) in D.

Definition 3.2.2 ([10], p.76). A contravariant functor F : C → D has exactly the
same properties as a covariant functor, except that the morphism map F associates
each morphism f : A→ B in C with a morphism F (f) : F (B)→ F (A) in D. More
precisely, if f : A → B and g : B → C are morphisms in C, then F (f) : F (B) →
F (A), F (g) : F (C) → F (B) and F (g ◦ f) : F (C) → F (A) are morphisms in D.
Hence F (g ◦ f) = F (f) ◦ F (g).

Definition 3.2.3 ([10], p.76). A functor F : C → D, either covariant or contravari-
ant, between additive categories C and D is said to be additive if F (f + g) =
F (f) + F (g), for all f, g ∈ MorC(A,B) and all A,B ∈ OC.

Definition 3.2.4 ([10], p.75). If C is a category, then the opposite category Cop
of C is defined to be the category which satisfies all of the following.

(i) The objects of Cop are the objects of C.

(ii) For any pair of objects A,B of Cop, Morop(B,A) is the set of morphisms
Mor(A,B) of C, meaning that if f op : B → A and gop : C → B are mor-
phisms in Cop, then f : A → B and g : B → C are morphisms in C. The
morphism f op is called the opposite of f and the morphisms in Cop are ob-
tained from those of C by reversing the arrows. The composition of morphisms
f : A→ B, g : B → C in C gives g ◦ f : A→ C, while the composition in Cop
gives f op ◦ gop : C → A. Hence

(g ◦ f)op = f op ◦ gop.

Remark 3.2.5. It can be easily proved that (Cop)op = C.

Remark 3.2.6. For the remainder of this thesis, the terms functor and cofunctor
will refer to a covariant and a contravariant functor, respectively.

Definition 3.2.7 ([10], p.76). If C is an additive category, then the identity functor
idC is defined by idC(A) = A, for each object A of C. If f : A→ B is a morphism of
C, between objects A,B of C, then

idC(f) : idC(A)→ idC(B)

is the morphism f : A → B. It is an additive functor, since for any morphism
f, g ∈ MorC(A,B) we have that

idC(f + g) = f + g = idC(f) + idC(g).
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Definition 3.2.8 ([10], p.76). If C is an additive subcategory of an additive category
D and F : C → D is a functor, such that F (A) = A and F (f) = f , for any object A
and any morphism f of C, then F is called the canonical embedding functor. F
is an additive functor, since

F (f + g) = f + g = F (f) + F (g),

for any morphism f of C. We also observe that the identity functor idC of a category
C is a canonical embedding functor, since any category C is a subcategory of itself.

Definition 3.2.9 ([10], p.77). If F : C → D and G : D → E are functors, then we
can define the functor GF : C → E in the obvious way. We send each object A of C
to an object F (A) in D and, via G, we get an object (GF )(A) in E . Also, for any

morphisms A
f−→ B, B

g−→ C of C we have that

GF (g ◦ f) = G(F (g) ◦ F (f)) = (GF (g)) ◦ (GF (f))

and
GF (idA) = G(F (idA)) = G(idF (A)) = idGF (A).

Hence, the functor GF : C → R is well defined and is called the composition of F
and G. It is additive if, and only if, the functors F , G and the categories in question
are additive. Indeed, if f, g ∈ MorC(A,B) are additive morphisms in the category C,
we have that

GF (f + g) = G(F (f + g)) = G(F (f) + F (g)) = GF (f) +GF (g).

Definition 3.2.10 ([10], p.76). The forgetful functor from a concrete category C
into the category SET , assigns to each object A of C, the set A, with no additional
structure, and to any morphism f ∈ MorC(A,B) the morphism f ∈ MorSET , where
A and B are objects of C, regarded as sets.

Example 3.2.11. Let CS be the category of compact Hausdorff spaces and con-
tinuous maps. Then the functor F : CS → SET , sending each compact Hausdorff
topological space to itself and each continuous map f ∈ MorCS(X, Y ) to itself is
forgetful.

Definition 3.2.12 ([10], p.79). If F : C → D and G : D → R are cofunctors, then
we define the composition of F and G, via the map GF : C → R.

Remark 3.2.13. Following Definition 3.2.12, we observe that GF : C → R remains
a functor, since for any morphisms f : A→ B and g : B → C of C, we have that

GF (g ◦ f) = G(F (f) ◦ F (g)) = GF (g) ◦GF (f).

On the other hand, if either F : C → D or G : D → R is a cofunctor, then the
composition of F and G is a cofunctor, for if f : A → B and g : B → C are
morphisms in C, then

GF (g ◦ f) = (GF (f)) ◦ (GF (g)).
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3.3 Natural Transformations

In this section we will analyze the notions of equivalent and dual categories, which
are key components of this thesis.

Definition 3.3.1 ([10], p.97). A functor F : C → D is said to be a category
isomorphism, if there exists a functor G : D → C, such that FG = idD and
GF = idC. If such a functor F exists between C and D, then C and D are called
isomorphic categories and we denote this relation by C ∼= D.

Example 3.3.2. The identity functor idC : C → C is a category isomorphism, since
the existence of idC implies that idCidC = idC.

Remark 3.3.3. Let C and D be any two categories. We form the category C × D,
called the product category, as follows. The objects of C ×D are pairs (A,B), where
A,B are objects of C and D, respectively. A morphism in MorC×D((A1, B1), (A2, B2))
is a pair (f, g), where f : A1 → A2 is a morphism in C and g : B1 → B2 is a morphism
in D. Composition of morphisms is given by

(f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ g1),

where f2 ◦ f1 is defined in C and g2 ◦ g1 is defined in D. So, suppose that F :
C × D → D × C is such that F (A,B) = (B,A) and F (f, g) = (g, f). Next, let
G : D × C → C × D be defined by G(B,A) = (A,B) and G(g, f) = (f, g). Then, F
is a category isomorphism, since

FG = idD×C and GF = idC×D.

Definition 3.3.4 ([10], p.98). Let F,G : C → D be functors and suppose that for
each object A of C, there exists a morphism ηA : F (A) → G(A) in D such, that for
each morphism f : A→ B in C, the diagram

F (A) G(A)

F (B) G(B)

ηA

F (f) G(f)

ηB

is commutative.

(i) The class of morphisms η = {ηA : F (A)→ G(A)}, indexed over the objects of
C, is said to be a natural transformation from F to G. Such a transformation
will be denoted by η : F → G.

(ii) If ηA is an isomorphism in D, for each object A of C, then η : F → G is said
to be a natural isomorphism and F,G are called naturally equivalent
functors, denoted by F ≈ G.

Definition 3.3.5 ([10], p.98). If F : C → D and G : D → C are functors, such that
GF ≈ idC and FG ≈ idD, then C and D are said to be equivalent categories,
denoted by C ≈ D and we say that the pair (F,G) gives a category equivalence
between C and D.
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Definition 3.3.6 ([10], p.98). If F and G are cofunctors (i.e. contravariant functors),
such that GF ≈ idC and FG ≈ idD, then C and D are said to be dual categories,
denoted by C ≈ Dop, and we say that the pair (F,G) forms a duality between C and
D.

Definition 3.3.7 ([32], p.30). A functor F : C → D is called full, if for each pair of
objects A,B of C, the map

MorC(A,B) −→ MorD(F (A), F (B))

is surjective.

Definition 3.3.8 ([32], p.30). A functor F : C → D is called faithful, if for each
pair of objects A,B of C, the map

MorC(A,B) −→ MorD(F (A), F (B))

is injective.

Definition 3.3.9 ([32], p.31). A functor F : C → D is called essentially surjective,
if for each object B of D, there is exists an object A of C, such that F (A) ∼= B.

Following the definitions stated above, we get a theorem which can be used to
clarify the notion of a category equivalence.

Theorem 3.3.10 ([32], p.31). Let F : C → D be a functor between categories C
and D. Then F is an equivalence if, and only if, F is full, faithful and essentially
surjective.

Proof. Suppose that F : C → D is an equivalence. Then, there exists a functor
G : D → C and natural isomorphisms η : 1C → GF and µ : 1D → FG, such that
GF ≈ 1C and FG ≈ 1D, meaning that the diagrams

C C ′

GF (C) GF (C ′)

f

ηC ηC′

GF (f)

D D′

FG(D) FG(D′)

g

µD µD′

FG(g)

commute, for objects C,C ′ of C, D,D′ in D and morphisms f ∈ MorC(C,C
′)

and g ∈ MorD(D,D′). From this, we derive that the map α : MorC(C,C
′) →

MorC(GF (C), GF (C ′)), with α(f) = GF (f) is a bijection, that is, injective and
surjective. Indeed, if f1, f2 ∈ MorC(C,C

′) with GF (f1) = GF (f2), then GF (f1) =
GF (f2), which means that GF (f1) ◦ ηC = GF (f2) ◦ ηC . This implies that ηC′ ◦ f1 =
ηC′ ◦ f2. Consequently f1 = f2. Also, for any g ∈ MorC(GF (C), GF (C ′)), we have
that the morphism f : C → C ′ with f = η−1

C′ ◦ g ◦ ηC such that g = GF (f) = α(f).
Hence, the map

α : MorC(C,C
′)→ MorC(GF (C), GF (C ′))

is bijective. Now, for any morphism f : C → C ′ in the category C we define the
maps

β : MorC(C,C
′)→ MorD(F (C), F (C ′)),
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with β(f) = F (f) and

γ : MorD(F (C), F (C ′))→ MorC(GF (C), GF (C ′)),

with γ(F (f)) = GF (f). The map γ is well defined, since for any morphism f : C →
C ′ in C, there exists a map F (f) : F (C)→ F (C ′) in D, for which γ(F (f)) = GF (f).
Now, we can see that the map β is injective and the map γ is surjective. Indeed,
if f1, f2 ∈ MorC(C,C

′), with β(f1) = β(f2), then F (f1) = F (f2), which means
that GF (f1) = GF (f2). This implies that α(f1) = α(f2). Thus, f1 = f2. We
have previously proved that for any g ∈ MorC(GF (C), GF (C ′)), there exists an
f ∈ MorC(C,C

′), with f = η−1
C′ ◦g ◦ηC such that GF (f) = g. So, by the definition of

the map γ, we get γ(F (f)) = g. Thus, β is injective and γ is surjective. Additionally,
concerning the map

β : MorC(C,C
′)→ MorD(F (C), F (C ′)),

we observe that for any h ∈ MorD(F (C), F (C ′)), there exists f ∈ MorC(C,C
′), such

that F (f) = h. So, h = β(f). Hence, the map β : MorC(C,C
′)→ MorD(F (C), F (C ′))

is surjective. Thus, we deduce that the functor F is full and faithful.

Since µ : 1D → FG is a natural isomorphism, we have, for any object D of D,
that D ≈ FG(D). Hence, the functor F is essentially surjective.

For the converse, suppose that the functor F is full, faithful and essentially sur-
jective. We have to construct a functor G : D → C and natural isomorphisms
φ : 1D → FG and ψ : 1C → GF . Since F is essentially surjective, we have that for
any object D of D, there exists an object C of C, such that F (C) ≈ D. This gives
rise to an isomorphism φD : D → F (C). We set G(D) = C. Then φD : D → FG(D)
is also an isomorphism. Now, for each morphism g : D → D′ in D, there exists a
morphism f : C = G(D)→ C ′ = G(D′) (since F is full), such that the diagram

D D′

FG(D) FG(D′)

g

φD φD′

FG(g)=F (f)

commutes. Let G(g) = f . Then, for each object D of D, we have the identity
morphism g = idD : D → D and the commutative diagram

D D

FG(D) FG(D)

idD

φD φD

FG(idD)

Hence

φD ◦ idD(D) = FG(idD) ◦ φD(D) = φD(D),

which implies that

FG(idD) = idFG(D).
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Thus, G(idD) = idG(D). Now, for any pair of morphisms g : D → D′, g′ : D′ → D′′

in D, there exist morphisms f : C → C ′, f ′ : C ′ → C ′′ in C, such that

G(g′ ◦ g) = f ′ ◦ f = G(g′) ◦G(g).

Thus G : D → C is a functor and φ : 1D → FG is a natural isomorphism. Now, let
C be any object of C. Define an isomorphism φF (C) : F (C) → FGF (C). Since F
is full, there exists a morphism ψC : C → GF (C) in C, such that F (φC) = φF (C).
Since φF (C) is an isomorphism, there exists a morphism g : FGF (C)→ F (C) in D,
such that g ◦ φF (C) = idF (C) and φF (C) ◦ g = idFGF (C). Since g is a morphism in
MorD(FGF (C), F (C)) and F is full, we get a morphism h : GF (C)→ C, for which
F (h) = g. Thus

F (h ◦ ψC) = F (h) ◦ F (ψC) = g ◦ φF (C) = idF (C) = F (idC)

and also

F (ψC ◦ h) = F (ψC) ◦ F (h) = φF (C) ◦ g = idFGF (C) = F (idGF (C).

From hypothesis, F is faithful, so h ◦ ψC = idC and ψC ◦ h = idGF (C). Hence,
ψC : C → GF (C) is an isomorphism. Now, let f : C → C ′ be any morphism in C
and consider the diagram

C C ′

GF (C) GF (C ′)

f

ψC ψC′

GF (f)

By constructing the diagram (via the functor F )

F (C) F (C ′)

FGF (C) FGF (C ′)

F (f)

ψF (C) ψF (C′)

FGF (f)

and by setting F (C) = D and F (C ′) = D′, we get the diagram

D D′

FG(D) FG(D′)

F (f)

ψD ψD′

FGF (f)

which we have already proved to be commutative. So, we have

φD′ ◦ F (f) = FGF (f) ◦ φD ⇒ F (ψC′ ◦ f) = F (GF (f) ◦ ψC).

But F is faithful, so we have ψC′ ◦ f = GF (f) ◦ ψC , which implies that the diagram

C C ′

GF (C) GF (C ′)

f

ψC ψC′

GF (f)
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is commutative. Hence ψ : 1C → GF is a natural isomorphism and the proof is
complete.

Remark 3.3.11. A similar argument holds for cofunctors, that is

“If F : C → D is a cofunctor between categories C and D,
then F is a duality if, and only if, F is full, faithful and essentially surjective”.

The proof will be omitted, as it is similar to that of Theorem 3.3.10, except that
G : D → C is proved to be a cofunctor, instead of a functor.

3.4 Gelfand Duality

In this paragraph, we present the two basic theorems of Gelfand Duality, followed
by some applications. These theorems establish a duality, that is, a contravariant
equivalence between categories of commutative C∗-algebras and algebras of continu-
ous functions. Intuitively, we need a way to transfer information from one category
to another, without the concern of the structure of the aforementioned algebras.

Theorem 3.4.1 ([27], p.5). The category of locally compact Hausdorff spaces LCS
is dual to the category of nonunital commutative C∗-algebras C∗Algcom,nu.

Proof. We need to construct two contravariant functors ∆ : C∗Algcom,nu → LCS and
C0 : LCS → C∗Algcom,nu, such that ∆C0 ≈ idLCS and C0∆ ≈ idC∗Algcom,nu . We will
first define the cofunctor C0 : LCS → C∗Algcom,nu. To each locally compact Haus-
dorff space X, we associate the algebra C0(X) which is nonunital and commutative.
If f : X → Y is a continuous and proper map between locally compact Hausdorff
spaces X and Y , we define

C0(f) = f ∗ : C0(Y )→ C0(X),

with f ∗(g) = g ◦ f , which is the pullback of f . We just need to show that f ∗ is a
proper ∗-homomorphism between nonunital commutative C∗-algebras. Indeed, for
any g, h ∈ C0(Y ), we have

• f ∗(g · h) = (g · h) ◦ f = (g ◦ f) · (h ◦ f) = f ∗(g) · f ∗(h),

• f ∗(g + h) = (g + h) ◦ (f) = g ◦ f + h ◦ f = f ∗(g) + f ∗(h),

• f ∗(g∗) = g∗ ◦ f = (g ◦ f)∗ = (f ∗(g))∗.

Hence, f ∗ is a ∗-homomorphism. Now, let (gλ)λ∈Λ be an approximate identity of
C0(Y ). This means that

(i) gλ ≥ 0 and ‖gλ‖ ≤ 1, for all λ ∈ Λ,

(ii) gλ ≤ gµ, for all λ, µ ∈ Λ, with λ ≤ µ,

(iii) lim
λ
‖gλ · g − g‖ = 0 = lim

λ
‖g · gλ − g‖
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Now, we observe that

• f ∗(gλ) = gλ ◦ f ≥ 0, for all λ ∈ Λ and ‖f ∗(gλ)‖ = ‖gλ ◦ f‖ ≤ 1, since ‖gλ‖ ≤ 1,
for all λ ∈ Λ.

• For any λ, µ ∈ Λ, with λ ≤ µ, we have gλ ≤ gµ, which implies that gλ◦f ≤ gµ◦f .
Consequently, we have f ∗(gλ) ≤ f ∗(gµ).

• Since (gλ)λ∈Λ is an approximate identity of C0(Y ) from (iii), we have that

lim
λ
‖f ∗(gλ) · f ∗(g)− f ∗(g)‖ = lim

λ
‖f ∗(gλ · g − g)‖ = 0.

and, also, that
lim
λ
‖f ∗(g) · f ∗(gλ)− f ∗(g)‖ = 0.

Thus (f ∗(gλ))λ∈Λ is an approximate identity of C0(X) and f ∗ is a proper ∗-homomorphism.
Hence, the cofunctor C0 is defined.

To define the cofunctor ∆, let A be a nonunital commutative C∗-algebra. Now,
let ∆(A) denote the maximal ideal space ∆A of A. As we have shown in Chapter
1, ∆(A) is a locally compact Hausdorff space (see Theorem 1.6.15). For a proper
∗-homomorphism f : A→ B between nonunital commutative C∗-algebras, let

∆(f) = f̂ : ∆(B) = ∆B → ∆(A) = ∆A,

with f̂(g) = g ◦ f , for any g ∈ ∆(B). We will show that f̂ is continuous and proper.
For this, let (hn)n∈N be a sequence in ∆(B), with hn −→ h ∈ ∆(B). Then

f̂(hn) = hn ◦ f −→ h ◦ f = f̂(h).

Thus, f̂ is continuous. Now, let K be a compact subset of ∆(A) and define f̂−1 :
∆(A) → ∆(B), by f̂−1(g) = g ◦ f−1. We will show that the set f̂−1(K) ⊂ ∆(B) is
compact. For this, let (zn)n∈N be a sequence of complex homomorphisms in f̂−1(K).
Then, there exists a sequence (gn)n∈N in K, such that

zn = f̂−1(gn) = gn ◦ f−1, for all n ∈ N.

Since K is compact, there exists a convergent subsequence (gkn)n∈N of (gn)n∈N, mean-
ing that there exists a function g ∈ ∆A, for which gkn −→ g, as n −→ +∞. Hence,
we can construct a subsequence (zkn)n∈N of (zn)n∈N, for which

zkn = f̂−1(gkn) = gkn ◦ f−1 −→ g ◦ f−1.

Thus, if we let z = f̂−1(g) = g◦f−1 ∈ f̂−1(K) ⊂ ∆B, we deduce that zkn −→ z ∈ ∆B

and, hence, that f̂ is proper. So, the cofunctor ∆ is defined.
Lastly, we will show the equivalence of the categories LCS and C∗Algcom,nu. For

this, it is enough to show that C0∆ ≈ idC∗Algcom,nu and ∆C0 ≈ idLCS . We define the
map γ : X → ∆(C0(X)), by

γ(x)(f) = ex(f) = f(x),
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called the evaluation map, which we will show to be a homeomorphism. Indeed

kerγ = {x ∈ X : ex(f) = γ(x) (f) = 0} = {x ∈ X : f(x) = x · f(1) = 0} = {0}.

Thus, γ is injective. Also, for any complex number λ ∈ C, let f ∈ C0(X) be the
constant function f(x) = λ. Then, the evaluation map sends the function f ∈ C0(X)
to the complex number f(x) = λ. Thus, the evaluation map is surjective and so is
the map γ. Hence, γ is a homeomorphism. Using the Gelfand transform, regarded
as a map from A into C0(∆(A)), we get the homeomorphism in question. Hence, for
any morphism f : X → Y of LCS, we have that the diagram

X Y

∆C0(X) ∆C0(Y )

f

γ γ

∆C0(f)

is commutative, since for any x ∈ X and any g ∈ C0(Y ) we have

(∆C0(f) ◦ γ)(x) = [∆C0(f) ◦ ex](g) = ex ◦ (∆C0(f))(g)

= ex ◦ (∆f ∗(g)) = ex ◦ (∆(g ◦ f))

= ex ◦ (∆(g(f))) = ex ◦ (ĝ(f))

= ex ◦ (f ◦ g) = (f ◦ g)(x)

= (γ ◦ f)(x)(g).

Thus idLCS ≈ ∆C0. In the same way we can prove, using the Gelfand transform
regarded as a mapˆ: A→ C0∆(A), that the diagram

A B

C0∆(A) C0∆(A)

f

·̂ ·̂
C0∆(f)

is commutative, for any morphism f : A → B in the category C∗Algcom,nu. Hence
idC∗Algcom,nu ≈ C0∆. So, we established the duality

{locally compact Hausdorff spaces} ≈ {nonunital commutative C∗-algebras}op

and the proof is complete.

Theorem 3.4.2 ([27], p.4). The category of compact Hausdorff spaces CS is dual to
the category of unital commutative C∗-algebras C∗Algcom,u.

Proof. We need to construct two contravariant functors ∆ : C∗Algcom,u → CS and
C : CS → C∗Algcom,u, such that ∆C ≈ idCS and C∆ ≈ idC∗Algcom,u .

We will, first, define the cofunctor C. To each compact Hausdorff space X, we
associate the algebra C(X) which is unital and commutative. If f : X → Y is a
morphism in CS, between compact Hausdorff spaces X and Y , we define

C(f) = f ∗ : C(Y )→ C(X),
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with f ∗(g) = g ◦ f , which is the pullback of f . We, just, need to show that f ∗

is a ∗-homomorphism between unital commutative C∗-algebras. Indeed, for any
g, h ∈ C(Y ) we have that

• f ∗(g · h) = (g · h) ◦ f = (g ◦ f) · (h ◦ f) = f ∗(g) · f ∗(h),

• f ∗(g + h) = (g + h) ◦ f = g ◦ f + h ◦ f = f ∗(g) + f ∗(h),

• f ∗(g∗) = g∗ ◦ f = (g ◦ f)∗ = (f ∗(g))∗.

We, also, observe that

f ∗(1C(Y )) = f ∗(1) = 1 = 1C(X).

Thus, f ∗ is a ∗-homomorphism and, hence, the cofunctor C is defined.
To define the cofunctor ∆, let A be a unital commutative C∗-algebra and let

∆(A) denote the maximal ideal space of A, that is, ∆A. By Theorem 1.6.15, ∆A is
a compact Hausdorff space, since the C∗-algebra A is unital. For a ∗-homomorphism
f : A→ B, between unital commutative C∗-algebras, let

∆(f) = f̂ : ∆(B) = ∆B → ∆(A) = ∆A,

with
f̂(g) = g ◦ f, for any g ∈ ∆B.

We will show that f̂ is continuous. Indeed, for any sequence (gn)n∈N ⊂ ∆(B), with
gn −→ g ∈ ∆B, we have that

f̂(gn) = gn ◦ f −→ g ◦ f = f̂(g).

Thus, f̂ is continuous and the cofunctor ∆ is well defined. Lastly, we will show the
equivalence of the categories CS and C∗Algcom,u. For this, it is enough to show that
C∆ ≈ idC∗Algcom,u and ∆C ≈ idCS . As we did in Theorem 3.4.1, we can define the
map γ : X → ∆(C(X)), by

γ(x)(f) = ex(f) = f(x),

which is proved to be a homeomorphism. Using the Gelfand transform, regarded
as a map from A into C(∆(A)), with â(h) = h(a), for any h ∈ ∆A, we get the
homeomorphism in question. Hence, for any morphism f : X → Y in CS, we have
that the diagram

X Y

∆C(X) ∆C(Y )

f

γ γ

∆C(f)

is commutative, since for any x ∈ X and any g ∈ C(Y ), we have

(∆C(f) ◦ γ)(x) = [∆C(f) ◦ ex](g) = ex ◦ (∆f ∗(g))

= ex ◦ (∆(g(f))) = ex ◦ (f̂(g))

= (g ◦ f)(x) = (γ ◦ f)(x)(g).

Hence idCS ≈ ∆C. Similarly, we can prove that the diagram
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A B

C∆(A) C∆(A)

f

·̂ ·̂
C∆(f)

is commutative, for any morphism f : A → B in the category C∗Algcom,u. Indeed,
for any g ∈ ∆B and any x ∈ A, we have that

(C∆(f) ◦ x̂)(g) = x̂ ◦ (C(f̂(g))) = x̂ ◦ (C(g ◦ f))

= x̂ ◦ (C(g))(f) = x̂ ◦ (f ◦ g)

= (f ◦ g)(x) = (x̂ ◦ f)(g).

Hence idC∗Algcom,u ≈ C∆. So, we establised the duality

{compact Hausdorff spaces} ≈ {unital commutative C∗-algebras}op

and the proof is complete.

3.5 Consequences of Gelfand Duality

As a consequence of Gelfand Duality, we have the following corollary.

Corollary 3.5.1 ([36], p.17). Two unital C∗-algebras are isomorphic if, and only if,
their maximal ideal spaces are homeomorphic.

Proof. Let A and B be any two unital C∗-algebras that are isomorphic, that is, there
exists an isomorphism f : A → B. Using Theorem 2.2.13, we can associate both
algebras A and B, with the algebras C(∆A) and C(∆B) respectively. Furthermore,
there exist isometric ∗-isomorphisms γA : A→ C(∆A) and γB : B → C(∆B), whose
existence we get from Theorem 2.2.13, again. Using Theorem 3.4.2, we derive the
existence of a homeomorphism g = F (f), where F is the contravariant functor from
the category C∗Algcom,u to the category CS.

The converse is trivial, if we observe, for any two unital C∗-algebras A and B
with homeomorphic maximal ideal spaces ∆A and ∆B, respectively, that there exist
isometric ∗-isomorphisms γA : A→ C(∆A) and γB : B → C(∆B) by Theorem 2.2.13.
Again, using Theorem 3.4.2, we deduce that A and B are isomorphic and the proof
is complete.

Remark 3.5.2. It is a fact that a categorical equivalence maintains isomorphisms
in the categories involved, while a categorical duality reflects them (see [10]). Thus,
the corollary above can be seen as a consequence of this remark, applied to Gelfand
Duality. Moreover, Gelfand Duality established a whole new method of passing
information from topological objects to algebraic ones and vice-versa. The next two
propositions are examples of how this transition is interpreted, in terms of Gelfand
Duality.

Proposition 3.5.3 ([36], p.18). A compact topological space X is metrizable if, and
only if, the algebra C(X) is separable.
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Proof. First, we assume that the space X is metrizable. Then, there exists a count-
able family of open balls {Bn}∞n=1 that generates its topology. For any n ∈ N, define
the functions

fn(x) = dist(x,X \Bn), for all x ∈ X,

where dist(x,X \ Bn) = inf
z∈X/Bn

{d(x, z)} and d : X × X → R is the metric of X

that we get by hypothesis. Let x 6= y be any two elements of X. Consider the set
W = X \ {y}. Since X is compact and since W is a neighborhood of {x}, there
exists and open set U , such that U ⊂ W . Since U is open, there exists an element
Bi of {Bn}∞n=1, such that {x} ⊂ Bi ⊂ U ⊂ U ⊂ W . Hence, we found an element Bi

of {Bn}∞n=1, such that

fi(x) = dist(x,X \Bi) 6= 0 = dist(y,X \Bi) = fi(y).

Thus, the family of functions {fn}∞n=1 separates the points of X and belongs to the
algebra C(X). Hence, the algebra generated by the functions fn, for all n ∈ N, and
the constant functions of C(X) is dense in C(X) by the Stone-Weierstrass Theorem
(Theorem 2.1.15). Consequently, the algebra C(X) is separable, since it admits a
countable and dense subset.

Conversely, if C(X) is separable, it contains a countable and dense family of
continuous functions {fn}∞n=1. We may suppose that all of them have norm less than
1. Otherwise, if some fn had norm greater than 1, we could replace it with the

function
fn

1 + |fn|
. Since the family {fn}∞n=0 is dense in C(X), it approximates all

continuous functions, hence the ones that separate the points of X. Thus, {fn}∞n=0

separates the points of X. We define the function p : X ×X → R, with

p(x, y) =
∞∑
n=0

|fn(x)− fn(y)|
2n

.

The function p is well defined, since we assumed that each fn has norm less that 1,

for all n ∈ N, therefore, the series
∞∑
n=0

|fn(x)−fn(y)|
2n

converges. It, also, defines a metric

on X, since for any x, y, z ∈ X we have that

p(x, y) =
∞∑
n=0

|fn(x)− fn(y)|
2n

≥ 0

and

p(x, x) =
∞∑
n=0

|fn(x)− fn(x)|
2n

= 0.

Additionally

p(x, y) =
∞∑
n=0

|fn(x)− fn(y)|
2n

=
∞∑
n=0

|fn(y)− fn(x)|
2n

= p(y, x).
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Furthermore

p(x, z) =
∞∑
n=0

|fn(x)− fn(y)|
2n

≤
∞∑
n=0

|fn(x)− fn(y)|+ |fn(y)− fn(z)|
2n

≤ p(x, y) + p(y, z).

Consequently, the map p defines a metric on X. Also, the identity map i : (X, T )→
(X, Tp), where T is the original topology of X and Tp is the induced topology by p,
is a homeomorphism. Thus, X is metrizable.

Proposition 3.5.4 ([36], p.18). A compact topological space X is connected if, and
only if, C(X) has no nontrivial idempotents.

Proof. Recall that an idempotent in an algebra A is an element e ∈ A, such that
e2 = e. Now, suppose that there exists a nontrivial idempotent e ∈ C(X). For
e ∈ C(X) to be nontrivial is equivalent to e not being constant since, otherwise,
the condition e2 = e would never hold. Using the condition e2 = e, we deduce that
e(x) = 0 or e(x) = 1, for all x ∈ X. Thus, we can write X as the disjoint union of
the sets {x : e(x) = 0} and {x : e(x) = 1}. Hence, X is not connected.

For the converse, suppose that X is not connected. Then, there exist open subsets
A,B of X, such that A∩B = ∅ and A∪B = X. Using Urysohn Lemma, we can find
an f ∈ C(X), such that f(a) = 0, for all a ∈ A and f(b) = 1, for all b ∈ B. Now, it
is clear that the function f ∈ C(X) is a nontrivial idempotent of C(X), since it is
not constant, for any x ∈ X, and the proof is complete.



Chapter 4

A Noncommutative Gelfand
Theorem

We begin this chapter with some basics of functional analysis, such as the notion
of the Hilbert space, the notions of the algebras L(H) and B(H) and that of a
representation. The aim of this chapter is to generalize Theorem 2.2.13, which was
introduced in Chapter 2. The term “generalize” refers to the withdrawal of the word
“commutative” in Theorem 2.2.13. There have been many attempts to generalize
this notion in various directions. The direction we will focus on heavily depends on
the theory of von Neumann algebras.

4.1 Representations of C∗-Algebras

We begin this section with some definitions.

Definition 4.1.1 ([35], p.75). If V is a vector space over the field F , then a map
〈·, ·〉 : V × V → F is called an inner product if for all vectors x, y, z ∈ V and all
a ∈ F , the following conditions are satisfied

(i) 〈ax, y〉 = a〈x, y〉 and 〈x+ y, z〉 = 〈x+ z〉+ 〈y + z〉 (Linearity).

(ii) 〈x, y〉 = 〈y, x〉 (Conjugate symmetry).

(iii) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0, if x 6= 0 (Positive definiteness).

In this case, V is called an inner product space.

Remark 4.1.2. We defined an inner product space over any field F . In most cases,
F will be either R or C.

Definition 4.1.3 ([33], p.293). An inner product space H is called a Hilbert space
if it is complete, with respect to the norm

‖x‖H = 〈x, x〉1/2, for all x ∈ H.

A Hilbert space can also be defined as the completion of the inner product space
H, with respect to the norm induced by the inner product.

71
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Definition 4.1.4 ([16], p.19). If H and V are Hilbert spaces, an isomorphism
between H and V is a linear surjection f : H → V , such that

〈fx, fy〉V = 〈x, y〉H
for all x, y ∈ H. In this case, H and V are said to be isomorphic.

Definition 4.1.5 ([33], p.292). Let H be a Hilbert space and S be a subset of H.
Then the set of vectors orthogonal to S is defined by

S⊥ = {x ∈ H : 〈x, s〉 = 0, for all s ∈ S}.

Remark 4.1.6. We observe that S⊥ is a closed subspace of H and, hence, a Hilbert
space itself. Indeed, if (xn)n∈N is a sequence in S⊥, with xn −→ x ∈ H, then by the
continuity of the inner product of H we have that 〈x, s〉 = 0, for all s ∈ S. Thus,
s ∈ S⊥ and S⊥ is a Hilbert space.

Definition 4.1.7 ([33], p.294). Let H be a Hilbert space and V be a closed subspace
of H. Then V ⊥ is called the orthogonal complement of VVV .

Remark 4.1.8. Let’s recall some definitions from operator theory. L(H) is the
algebra of linear operators on a Hilbert space H, namely

L(H) = {T : T is a linear operator from H into H},

whereas B(H) is the algebra of bounded linear operators on a Hilbert space H,
namely

B(H) = {T : T is a bounded and linear operator from H into H}.

It is obvious that both algebras are noncommutative and that B(H) is a ∗-subalgebra
of L(H). If T : H → H is a bounded operator, then the adjoint of TTT is the operator
T ∗ : H → H, for which 〈Tx, y〉 = 〈x, T ∗y〉, for all x, y ∈ H.

Theorem 4.1.9 ([16], p.10). Let V be a closed linear subspace of the Hilbert space
H. For any h ∈ H, let Ph be the unique point in V for which (h− Ph)⊥V . Then

(i) P is a linear transformation in H.

(ii) ‖Ph‖ ≤ ‖h‖, for every h ∈ H.

(iii) P 2 = P .

(iv) kerP = V ⊥ and ImP = V .

Proof. (i) We observe that the relation h − Ph⊥V implies that 〈h − Ph, v〉 = 0,
for any v ∈ V . This means that h−Ph ∈ V ⊥ and that ‖h−Ph‖ = dist(h, V ).
So, if we choose any element v ∈ V , we immediately get that ‖v − Pv‖ = 0
or, equivalently, Pv = v. This means that the correspondence h→ Ph can be
extended to an operator P : H → H. Now, let h1, h2 ∈ H and a1, a2 ∈ R. If
f ∈ V , then

〈(a1h1 + a2h2)− (a1Ph1 + a2Ph2), f〉 = a1〈h1−Ph1, f〉+ a2〈h2−Ph2, f〉 = 0.

Hence, P (a1h1 + a2h2) = a1Ph1 + a2Ph2.
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(ii) For any h ∈ H we have, by hypothesis, that Ph ∈ V and h− Ph ∈ V ⊥. Thus,
the relation h = (h−Ph) +Ph implies that ‖h‖ ≥ ‖h−Ph‖+ ‖Ph‖ ≥ ‖Ph‖.

(iii) For any h ∈ H we have that Ph ∈ V . Therefore, we have that ‖Ph−P (Ph)‖ =
dist(Ph, V ) = 0, hence P (Ph) = Ph. Thus, P 2 = P .

(iv) If Ph = 0, then h = h−Ph ∈ V ⊥. This means that kerP ⊆ V ⊥. Conversely, if
h ∈ V ⊥, then 0 is the unique vector in V , such that h− 0 = h⊥V . Therefore,
Ph = 0, which means that h ∈ kerP . Hence, kerP = V ⊥. Now, for any v ∈ V ,
we have that 0 = dist(v, V ) = ‖v − Pv‖. Hence, Pv = v and the image ImP
of P is V .

Definition 4.1.10 ([16], p.10). Let V be a closed linear subspace of a Hilbert space
H. Then the linear operator P : H → H defined in the preceding theorem is called
the orthogonal projection of HHH onto VVV .

Remark 4.1.11. Throughout this chapter, the term “projection” will be an abbre-
viation of “orthogonal projection”. Also, we will consider a C∗-algebra A as lying in
its second dual A∗∗ (regarded as Banach spaces), through the canonical embedding
T : A→ A∗∗, with (T (x))(f) = f(x).

Definition 4.1.12 ([29], p.93). A representation of a C∗-algebra A is a pair (π,H),
where H is a Hilbert space and π : A→ B(H) is a ∗-homomorphism. In particular,
if the C∗-algebra A is unital, with unit 1A, we require that π(1A) = 1.

Definition 4.1.13 ([29], p.93). Let A be a C∗-algebra and (π,H) be a representation
of A. We say that π is faithful, if π is injective.

Remark 4.1.14. We must not confuse the notion of a faithful representation with
the notion of a faithful functor, as introduced in Definition 3.3.8. Nevertheless, the
context is similar, meaning that the property of injectivity is required in both terms.

Remark 4.1.15. For the remainder of this thesis we will say that π is a representa-
tion of A, instead of (π,H), when no confusion is made.

Definition 4.1.16 ([16], p.249). If {(πi, Hi) : i ∈ I} is a family of representations of
A, let H = ⊕i∈IHi =

{
x = (xi)i∈I ∈ Πi∈IHi :

∑
i∈I ‖xi‖2

Hi
<∞

}
and π(a)(xi)i∈I =

(πi(a)xi)i∈I , for all i ∈ I, all (xi)i∈I ∈ H and all a ∈ A. Then, (π,H) is called the
direct sum of this family of representations.

Example 4.1.17. If H is a Hilbert space and A is a C∗-subalgebra of B(H), then
the identity map idA : A→ B(H), with idA(1A) = 1 is a representation.

Definition 4.1.18 ([16], p.249). A representation π of a C∗-algebra A is called
cyclic, if there exists a vector e ∈ H such that

π(A)e = H,

with respect to the norm of H. In other words, π is a cyclic representation, if the
set of vectors

{π(x)e : x ∈ A}
is dense in H. In that case, we call the vector e ∈ H a cyclic vector for the
representation π.
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Definition 4.1.19 ([16], p.249). If A is a C∗-algebra and (π1, H1), (π2, H2) are two
representations of A, then π1 and π2 are equivalent, if there exists an isomorphism
f : H1 → H2, such that

f ◦ π1(a) ◦ f−1 = π2(a), for all a ∈ A.

For a better intuition, we provide the following commutative diagram

H1 H2

H1 H2

f

π1(a) π2(a)

f−1

f

f−1

The importance of cyclic representations arises from the fact that every represen-
tation is equivalent to the direct sum of cyclic representations, as presented in the
next theorem.

Theorem 4.1.20 ([16], p.249). If π is a representation of the C∗-algebra A, then
there is a family of cyclic representation {πi} of A, such that π and ⊕i∈Iπi are
equivalent.

Proof. We define the set

S = {E ⊂ H : 0 /∈ E and 〈π(A)e, π(A)f〉 = 0, for all e, f ∈ E with e 6= f}.

We partially order S by set inclusion and apply Zorn Lemma (Lemma 1.3.9) in order
to get a maximal element E0 of S. Now, let

H0 = ⊕e∈E0π(A)e ⊂ H.

If h ∈ H⊥0 then 〈π(a)e, h〉 = 0, for all a ∈ A and all e ∈ E0. So, for any a, b ∈ A and
any e ∈ E0 we have that

0 = 〈π(b∗a)e, h〉 = 〈π(b)∗π(a)e, h〉 = 〈π(a)e, π(b)h〉.

Hence, 〈π(a)e, π(b)h〉 = 0, for all e ∈ E0 and, thus, E0 ∪ {h} ∈ S. Since E0 is
maximal, the relation above implies that h = 0. Hence H = H0.

Now, for any e ∈ E0, we define the set

He = π(A)e.

If a ∈ A, then π(a)He ⊆ He and since a∗ ∈ A and π(a∗) = π(a)∗, we deduce that
the operator π(a) : H → H can be reduced to an operator π(a)|He : He → He. If
we define the operator πe : A → B(He) by πe(a) = π(a)|He , we can see that πe is
a cyclic representation of A, since π(A)e = He, and that π = ⊕e∈E0πe. Thus, the
representations ⊕e∈E0πe and π are equivalent.

Definition 4.1.21 ([16], p.250). Let A be a C∗-algebra and f : A → C be a linear
functional. Then f is called positive if f(a) ≥ 0, for all a ∈ A+.
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Definition 4.1.22 ([16], p.250). Let A be a C∗-algebra and f : A→ C be a positive
linear functional. Then f is called a state if ‖f‖sup = sup{|f(x)| : x ∈ A} = 1. The
space of all states of A is denoted by S(A).

Definition 4.1.23 ([27], p.206). Let A be a C∗-algebra. Then a state f ∈ S(A) is
called pure, if f ∈ Ext(S(A)).

Proposition 4.1.24 ([16], p.250). If f is a positive linear functional of a C∗-algebra
A, then for all x, y ∈ A it holds that

|f(y∗x)|2 ≤ f(y∗y)f(x∗x).

Proof. Since f is a positive linear functional of A we have, for any λ, µ ∈ C and all
x, y ∈ A, that f((λx+ µy)∗(λx+ µy)) ≥ 0. Thus

0 ≤ f((µy∗ + λx∗)(λx+ µy)) = f(λµy∗x+ |µ|2y∗y + |λ|2x∗x+ λµx∗y)

= |λ|2f(x∗x) + f(λµy∗x) + f(λµy∗x) + |µ|2f(y∗y)

= |λ|2f(x∗x) + 2Re(λµf(y∗x)) + |µ|2f(y∗y).

Hence

4Re(µf(y∗x))2 − 4|µ|2f(x∗x)f(y∗y) ≤ 0

and

|f(y∗x)|2 ≤ f(x∗x)f(y∗y).

Corollary 4.1.25. If f is a positive linear functional on a unital C∗-algebra A, with
unit 1A, then f is bounded and ‖f‖sup = f(1A).

Proof. We apply Proposition 4.1.24, with y = 1A, and for any x ∈ A we have that
|f(x)|2 ≤ f(1A)f(x∗x). So,

|f(x)|2 ≤ f(1A)|f(x∗x)| ≤ f(1A)2‖x∗x‖ = f(1A)2‖x‖2.

Hence, |f(x)| ≤ f(1A)‖x‖, which means that f is bounded, with ‖f‖sup = f(1A).

Theorem 4.1.26 (Gelfand–Naimark–Segal Construction, [16], p.250). Let A be a
unital C∗-algebra with unit 1A.

(i) If f is a positive linear functional on A, then there exists a cyclic representation
(πf , Hf ) of A, with cyclic vector e, such that f(a) = 〈πf (a)e, e〉.

(ii) If (π,H) is a cyclic representation of A, with cyclic vector e, and f(a) =
〈π(a)e, e〉, then (π,H) and (πf , Hf ) are equivalent.

Proof. (i) Define L = {x ∈ A : f(x∗x) = 0}. Clearly L is closed in A. Indeed,
if (xn)n∈N is a sequence in L such that xn −→ x ∈ A, then x∗n −→ x∗. This
implies that x∗nxn −→ x∗x, which means that f(x∗nxn) −→ f(x∗x), since f is
bounded, hence continuous, by Corollary 4.1.25. Thus f(x∗x) = 0 and x ∈ L.
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Also, if a ∈ A and x ∈ L, then by Proposition 4.1.24 we have that

f((ax)∗(ax))2 = f(x∗a∗ax)2

≤ f(x∗x)f((a∗ax)∗a∗ax)

= f(x∗x)f(x∗a∗aa∗ax)

= 0.

Hence ax ∈ L which means that L is a left ideal of A. Thus, A/L is a vector
space.

Now, for any x, y ∈ A, we define the map 〈·, ·〉 : A/L × A/L → C by 〈x +
L, y + L〉 = f(y∗x). This map defines an inner product on A/L. Indeed, for
any x, y, z ∈ A and any λ, µ ∈ C, we have that

〈x+ L, x+ L〉 = f(x∗x) ≥ 0

and

〈x+ L, x+ L〉 = 0⇔ f(x∗x) = 0

⇔ x ∈ L
⇔ x+ L = 0 + L = L.

Additionally

〈x+ L, y + L〉 = f(y∗x) = f(x∗y) = 〈y + L, x+ L〉.

Also

〈λ(x+ L) + µ(y + L), z + L〉 = 〈(λx+ µy) + L, z + L〉
= f(z∗(λx+ µy))

= λf(z∗z) + µf(z∗y)

= λ〈x+ L, z + L〉+ µ〈y + L, z + L〉.

Now, for a ∈ A, we define the map h : A/L→ A/L by h(x+L) = ax+L. We
can see that it is linear since for any x, y ∈ A and any λ, µ ∈ C we have

h(λ(x+ L) + µ(y + L)) = h((λx+ µy) + L)

= a(λx+ µy) + L

= a(λx) + a(µy) + L

= ah(x+ L) + ah(y + L).

Furthermore

‖ax+ L‖2 = 〈ax+ L, ax+ L〉 = f((ax)∗ax) = f(x∗a∗ax).

We, also, observe that the element ‖a∗a‖−a∗a is positive, since a∗a is hermitian,
by Proposition 2.2.2, and since

σ(‖a∗a‖ − a∗a) = ‖a∗a‖ − σ(a∗a) ≥ 0.
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The above relation holds since ‖a∗a‖ = p(a∗a) by Theorem 2.2.4. Additionally,
if a ∈ A+ and x, y ∈ A, with y being hermitian, then x∗ax = x∗y∗yx =
(xy)∗(xy). By Proposition 2.2.19, we observe that x∗ax ≥ 0. We, also, observe
that 0 ≤ x∗(‖a∗a‖− a∗a)x = ‖a2‖x∗x− x∗a∗ax and, hence, x∗a∗ax ≤ ‖a‖2x∗x.
Consequently, we have that

‖ax+ L‖2 = f(x∗a∗ax) ≤ ‖a2‖f(x∗x) = ‖a‖2‖x+ L‖2.

Now, let Hf be the completion of A/L, with respect to the aforementioned inner
product, and define the map πf (a) : A/L → A/L by πf (a)(x + L) = ax + L.
The map πf (a) is a linear operator on A/L which is bounded, since

‖πf (a)‖ = sup{‖πf (a)(x+ L)‖ : ‖x+ L‖ ≤ 1}
= sup{‖ax+ L‖ : ‖x+ L‖ ≤ 1}
≤ sup{‖a‖‖x+ L‖ : ‖x+ L‖ ≤ 1}
≤ ‖a‖.

Thus, πf (a) ∈ B(Hf ), for all a ∈ A. By the definition of πf , we can see that it
is a ∗-homomorphism. Indeed, for any a ∈ A, we have that

πf (a)(x1 + L+ x2 + L) = πf (a)(x1 + x2 + L)

= a(x1 + x2) + L = ax1 + L+ ax2 + L

= πf (a)(x1 + L) + πf (a)(x2 + L), for all x1, x2 ∈ A.

Also

πf (a)(λ(xL)) = πf (a)(λx+ L)

= aλx+ L = λax+ L = λ(ax+ L)

= λπf (a)(x+ L), for all x ∈ A and all λ ∈ C.

Consequently

πf (a)((x+ L)∗) = πf (a)(x∗ + L)

= ax∗ + L = a∗x∗ + L = (ax+ L)∗

= (πf (a)(x+ L))∗.

Hence, πf is a ∗-homomorphism. Furthermore, we observe that πf (1A)(1A +
L) = 1A1A +L = 1A +L. The element 1A +L is the unit of A/L and, thus, πf
is a representation of A. Let e = 1A + L ∈ Hf . Then πf (A)e = {a + L : a ∈
A} = A/L is dense in Hf , by the definition of Hf . Hence, e is a cyclic vector
of πf , for which 〈πf (a)e, e〉 = 〈a+ L, 1A + L〉 = f(1∗Aa) = f(a).

(ii) Let ef be the cyclic vector for πf , such that f(a) = 〈πf (a)ef , ef〉, for all a ∈ A.
Then 〈π(a)e, e〉 = f(a) = 〈πf (a)ef , ef〉, for all a ∈ A. We define the map



78 Gelfand Duality

g : πf (A) → H by gπf (a)ef = π(f)e, where πf (A)ef is dense in Hf by the
definition of Hf . Since

‖π(a)e‖2 = 〈π(a)e, π(a)e〉 = 〈π(a)π(a)∗e, e〉
= 〈π(aa∗)e, e〉 = 〈π(aa∗)ef , ef〉
= ‖πf (a)ef‖2,

we have that g is an isometry, since ‖gπf (a)ef‖ = ‖πf (a)ef‖. Thus, g can
be extended to an isomorphism g : Hf → H. So, if we let x, a ∈ A be any
elements of A, then

gπf (a)πf (x)ef = gπf (ax)ef = π(ax)e

= π(a)π(x)e = π(a)gπf (x)ef .

Thus, π(a)g = gπf (a) or, equivalently, g−1π(a)g = πf (a). Hence, the represen-
tations π and πf of A are equivalent.

Remark 4.1.27. The representation (πf , Hf ) constructed in Theorem 4.1.26 is the
Gelfand-Naimark-Segal representation (or GNS representation) of A, associated to
f .

Remark 4.1.28. Let A be a C∗-algebra. If A is nonzero, then its universal rep-
resentation is defined to be the representation (π,H), where π = ⊕f∈S(A)πf and
H = ⊕f∈S(A)Hf .

Before proceeding to the Gelfand-Naimark Theorem, we state and prove some
theorems. The Hahn-Banach Theorem’s proof will be omitted.

Theorem 4.1.29 (Hahn–Banach, [33], p.56). Let X be a linear space. If Y is a
linear subspace of X, f : Y → R is a linear map and p : X → R is a nonnegative
sublinear functional such that f(y) ≤ p(y), for all y ∈ Y , then there exists a linear
map g : X → R, such that

g(y) = f(y), for all y ∈ Y

and
g(x) ≤ p(x), for all x ∈ X.

Remark 4.1.30. The difference between linear and sublinear functionals is that a
linear functional satisfies f(x + y) = f(x) + f(y), while a sublinear one satisfies
f(x+ y) ≤ f(x) + f(y).

Theorem 4.1.31 ([29], p.88). Let f be a bounded linear functional on a C∗-algebra
A. The following are equivalent

(i) f is positive.

(ii) For each approximate identity (uλ)λ∈Λ of A, ‖f‖ = lim
λ
f(uλ).
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(iii) For some approximate identity (uλ)λ∈Λ of A, ‖f‖ = lim
λ
f(uλ).

Proof. Since f is bounded, we may suppose that ‖f‖ = 1. First, we show that (i)
implies (ii). Let (uλ)λ∈Λ be an approximate identity of A. Then, f(uλ)λ∈Λ is an
increasing net in R and, hence, lim

λ
f(uλ) ≤ 1. Now, let a ∈ A be an element of A

with ‖a‖ ≤ 1. Then, by Proposition 4.1.24 we have

|f(uλa)|2 ≤ f(u2
λ)f(a∗a)

≤ f(uλ)f(a∗a)

≤ f(uλ)‖f‖‖a∗a‖
≤ f(uλ)

≤ lim
λ
f(uλ).

Hence, |f(uλa)|2 ≤ lim
λ
f(uλ) and, thus, 1 ≤ lim

λ
f(uλ). Consequently, lim

λ
f(uλ) = 1.

The implication (ii)⇒(iii) is obvious. Now, we show that (iii) implies (i). Suppose
that (uλ)λ∈Λ is an approximate identity of A, such that lim

λ
f(uλ) = 1. Let a ∈ A be

a hermitian element of A, such that ‖a‖ ≤ 1 and write f(a) ∈ C as f(a) = x+ iy. In
order to show that f(a) ∈ R, suppose that y ≤ 0. If we let n ∈ N be arbitrary, then

‖a− inuλ‖2 = ‖(a+ inuλ)(a− inuλ)‖
≤ ‖a2 + n2u2

λ − in(auλ − uλa)‖
≤ ‖a2‖+ n2‖uλ‖2 + n‖auλ − uλa‖
≤ 1 + n2 + ‖auλ − uλa‖.

Hence
|f(a− inuλ)|2 ≤ ‖a− inuλ‖2 ≤ 1 + n2 + n‖auλ − uλa‖.

However, lim
λ
f(a − inuλ) = f(a) − in and lim

λ
(auλ − uλa) = 0. Thus, by taking

limits as λ −→ +∞, we have that |x + iy − in|2 ≤ 1 + n2, which implies that
x2 + y2 − 2ny + n2 ≤ 1 + n2. Consequently, −2ny ≤ 1 − y2 − x2. Since n ∈ N is
arbitrary, we demand that y = 0 in order for the above inequality to hold. Thus,
f(a) ∈ R whenever a ∈ A is hermitian.

If a ∈ A is positive, with ‖a‖ ≤ 1, then the element (uλ − a) is hermitian, for
any λ ∈ Λ, since (uλ − a)∗ = u∗λ − a∗ = (uλ − a). The last assertion follows from
Corollary 2.2.3. Also, we have that ‖uλ − a‖ ≤ 1, which implies that f(uλ − a) ≤ 1.
However, 1− f(a) = lim

λ
f(uλ − a) ≤ 1 and, therefore, f(a) ≥ 0. Thus, f is positive

and the proof is complete.

Corollary 4.1.32. If f is a bounded linear functional on a unital C∗-algebra A, with
unit 1A, then f is positive if, and only if, f(1A) = ‖f‖.

Proof. Consider the approximate identity uλ = 1A, for all λ ∈ Λ. Then, by Theorem
4.1.31 we have that ‖f‖ = lim

λ
f(1A). Thus, f is positive if, and only if, ‖f‖ =

f(1A).
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Corollary 4.1.33. If f, g are positive linear functionals on a C∗-algebra A, then
‖f + g‖ = ‖f‖+ ‖g‖.

Proof. If (uλ)λ∈Λ is an approximate identity of A, then

‖f + g‖ = lim
λ

(f + g)(uλ) = lim
λ
f(uλ) + lim

λ
g(uλ) = ‖f‖+ ‖g‖.

Theorem 4.1.34 ([29], p.90). If a is a normal element of a nonzero C∗-algebra A,
then there is a state f of A, such that ‖a‖ = |f(a)|.

Proof. We assume that a 6= 0. Let C∗(a) be the C∗-algebra generated by 1Ã and
a in Ã. Since C∗(a) is commutative and the Gelfand transform â is continuous on
∆C∗(a), there exists an element f2 ∈ ∆C∗(a), such that ‖a‖ = ‖â‖∞ = |f2(a)|. By the
Hahn-Banach Theorem (Theorem 4.1.29), there is a linear functional f1 extending
f2 to the whole algebra Ã and preserving the norm. Hence ‖f1‖ = 1. Since f1(1A) =
f2(1A) = 1, by Lemma 1.6.14, we deduce that f1 is positive, by Corollary 4.1.32. If
we define the linear functional f , as f = f1|A, then we can see that f is a positive
linear functional on A, such that ‖a‖ = |f(a)|. Hence ‖a‖ = |f(a)| ≤ ‖f‖‖a‖, which
implies that ‖f‖ ≥ 1. The converse inequality is obvious. Therefore, ‖f‖ = 1 and f
is a state of A, by definition.

The following theorem played a key role in the development of the theory of C∗-
algebras since it established the possibility of considering an abstract C∗-algebra as a
C∗-subalgebra, up to an isometric ∗-isomorphism, of the C∗-algebra B(H) of bounded
operators on a Hilbert space. This result was first formulated and proven by Israel
Gelfand and Mark Naimark in 1943 and played a major role for the development of
the theory of operator algebras since then. For the original proof, we refer to [24].

Theorem 4.1.35 (Gelfand–Naimark, [29], p.94). If A is a C∗-algebra, then it admits
a faithful representation. Specifically, its universal representation is faithful.

Proof. Let (π,H) be the universal representation of A and suppose that a ∈ A is
such, that π(a) = 0. By Theorem 4.1.34, there exists a state f of A, such that
‖a∗a‖ = f(a∗a), since the element a∗a is normal. Using the GNS construction
(Theorem 4.1.26) and letting L = {x ∈ A : f(x∗x) = 0} (as in Theorem 4.1.26), we
have that ‖a‖2 = f(a∗a) = ‖πf (a∗a)(a∗a + 1)‖ = 0, since πf (a

∗a) = 0. Hence a = 0
and π is injective. Thus, the universal representation (π,H) of A is faithful.

Before closing up this section, we state some definitions and the Krein-Milman
Theorem, omitting its proof.

Definition 4.1.36 ([33], p.70). Let X be a real vector space and K be a convex
subset of X. Then an element x ∈ K is called an extreme point of KKK, if there do
not exist elements y, z ∈ K, with y 6= z, and λ ∈ R, with 0 < λ < 1, such that

x = λy + (1− λ)z.

The set of all extreme points of K is denoted by Ext(K).
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Definition 4.1.37 ([33], p.8). A topological vector spaceX is called locally convex,
if the origin of X has a neighborhood basis consisting of convex sets.

Definition 4.1.38 ([29], p.272). Let X be a topological vector space and K be a
subset of X. Then, the convex hull of KKK is the intersection of all convex sets
containing K and is denoted by conv(K). Equivalently

conv(K) =
⋂
i∈I

{Ki ⊃ K : Ki is convex, for all i ∈ I}.

Remark 4.1.39. If X is a topological vector space and K is a convex subset of X,
then conv(K) = K.

Theorem 4.1.40 (Krein–Milman, [16], p.142). Let X be a locally convex Hausdorff
topological space. If K is a compact convex subset of X, then K is equal to the closed
convex hull of its extreme points or, equivalently

K = conv(Ext(K)).

4.2 Von Neumann Algebras

There are several topologies on B(H) that are weaker that the norm topology. We
introduce two of them that will be used to define the notion of a von Neumann
algebra.

Definition 4.2.1 ([17], p.16). The weak operator topology (abbreviated as
WOT) on B(H) is defined as the weakest topology on B(H), such that, for any
x, y ∈ H and any T ∈ B(H), the sets of the form

W (T, x, y) = {A ∈ B(H) : |〈(T − A)x, y〉| < 1}

are open.

Definition 4.2.2 ([17], p.16). A net (Tλ)λ∈Λ in B(H) converges WOT to an
operator T , if for any x, y ∈ H, it holds that lim

λ
(〈Tλx, y〉) = 〈Tx, y〉. We denote this

convergence by Tλ
WOT−−−→ T .

Definition 4.2.3 ([17], p.16). The strong operator topology (abbreviated as
SOT) on B(H) is the topology defined by the open sets

S(T, x) = {A ∈ B(H) : ‖(T − A)x‖ < 1},

for all T ∈ B(H) and all x ∈ H, where ‖ · ‖ : H → R is the norm on H induced by
its inner product.

Definition 4.2.4 ([17], p.16). A net (Tλ)λ∈Λ in B(H) converges SOT to T if for any
x ∈ H, it holds that lim

λ
(Tλx) = Tx, for any x ∈ H. We denote this convergence by

Tλ
SOT−−→ T .
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Remark 4.2.5. Left and right multiplication by a fixed operator A ∈ B(H) is

continuous in both SOT and WOT topologies. In other words, if Tλ
WOT−−−→ T , then

ATλ
WOT−−−→ AT and TλA

WOT−−−→ TA and if Tλ
SOT−−→ T , then ATλ

SOT−−→ AT and

TλA
SOT−−→ TA.

Remark 4.2.6. Multiplication is SOT-continuous on the unit ball. Suppose that

Sλ
SOT−−→ S and Tλ

SOT−−→ T and that ‖Sλ‖ ≤ 1, for all λ ∈ Λ. Then, for any x ∈ H,
we have that

‖(ST − SλTλ)x‖ ≤ ‖(S − Sλ)Tx‖+ ‖Sλ‖‖(T − Tλ)x‖.

Consequently, if we let λ tend to infinity, we deduce that SλTλ
SOT−−→ ST . Thus, the

assertion is true.

Definition 4.2.7 ([17], p.19). A C∗-subalgebra of B(H) which contains the identity
operator and is closed in the weak operator topology, is called a von Neumann
algebra.

Definition 4.2.8 ([17], p.19). If S is a subset of B(H), we define the commutant
of SSS to be

S ′ = {T ∈ B(H) : AT = TA, for all A ∈ S}.

Remark 4.2.9. We observe by Definition 4.2.8 that S ′ is a unital algebra with
unit being the identity operator of B(H). Furthermore, S ′ is self-adjoint, if S is
self-adjoint. Indeed, for any A ∈ S and any T ∈ S ′, we have that

AT ∗ = (TA∗)∗ = (A∗T )∗ = T ∗A.

Moreover, S ′ is WOT-closed. Indeed, if (Tλ)λ∈Λ is a net in S ′ such that Tλ
WOT−−−→

T ∈ B(H), then for any A ∈ S, we have that

AT = WOT − lim
λ
ATλ = WOT − lim

λ
TλA = TA.

Hence, S ′ is a von Neumann algebra. In fact, there exists an alternative definition
for a von Neumann algebra that contains the aforementioned notions.

Definition 4.2.10 ([16], p.281). A von Neumann algebra A is a C∗-subalgebra
of B(H), such that A = A

′′
.

Next, we define a topology that will be used through the rest of this chapter.

Definition 4.2.11 ([29], p.59). Let u be an operator on a Hilbert space H and
suppose that E is an orthonormal basis of H. We define the map ‖ · ‖2 : H → R,

with ‖u‖2 =

(∑
x∈E
‖u(x)‖2

)1/2

, where ‖u(x)‖ = 〈u(x), x〉1/2. If ‖u‖2 < +∞, then

‖u‖2 is called the Hilbert-Schmidt norm of u and u is called a Hilbert-Schmidt
operator.
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Definition 4.2.12 ([29], p.63). Let u be an operator on a Hilbert space H and E
be an orthonormal basis of H. We define the map ‖ · ‖1 : H → R, with ‖u‖1 =∑
x∈E
〈|u|(x), x〉. If ‖u‖1 < +∞, then ‖u‖1 is called the trace-class norm of u and

u is called a trace-class operator. It holds that ‖u‖1 = ‖|u|1/2‖2
2. The set of

trace-class operators is denoted by L1(H).

Definition 4.2.13 ([29], p.63). Let H be a Hilbert space and E be an orthonormal
base of H. We define the trace of an operator u ∈ B(H) to be

tr(u) =
∑
x∈E

〈u(x), x〉.

Remark 4.2.14. Concerning Definitions 4.2.11, 4.2.12 and 4.2.13 the choice of the
orthonormal basis is arbitrary, since the results remain the same.

Definition 4.2.15 ([29], p.126). The ultraweak or σσσ-weak topology on B(H) is
the Hausdorff locally convex topology on B(H) generated by the family of seminorms
{pi : i ∈ I}, with pi(u) = |tr(uv)|, for any v ∈ L1(H). It is the weakest topology
on B(H), such that all elements of the continuous predual of B(H) are continuous,
considered as functions on B(H).

Remark 4.2.16. The ultraweak topology is similar to the WOT topology of B(H).
For example, on any norm-bounded set, the WOT topology and the ultraweak topol-
ogy are the same and, in particular, the unit ball is compact on both topologies.

Remark 4.2.17. The WOT topology on B(H) is weaker than the ultraweak topol-
ogy. Indeed, let E be an orthonormal basis of H and (uλ)λ∈Λ be a net on B(H)
converging ultraweakly to an operator u ∈ B(H). Then for any λ ∈ Λ, we have that
|〈uλ(x)−u(x), y〉| ≤ |

∑
x∈E
〈(uλ−u)(x), y〉| = |tr((uλ−u)(x⊗ y))|, which converges to

0, for any x, y ∈ H. So, the net (uλ)λ∈Λ converges WOT to u ∈ B(H). The notation
⊗ is of a rank-one operator and must not be confused with the usual tensor product.

Definition 4.2.18 ([16], p.33). Let H be a Hilbert space and T ∈ B(H). Then T
is called hermitian or self–adjoint, if T ∗ = T . It is called normal, if TT ∗ = T ∗T .

Remark 4.2.19. Observe that the definitions of normal and hermitian elements in
operator algebras are similar to those of C∗-algebras. In fact, the theory of hermitian
and normal elements in a C∗-algebra arises from the theory of operator algebras.

Remark 4.2.20. For a deeper understanding of the following measure theoretic
notions, we suggest [22], [23] and [35].

Definition 4.2.21 ([35], p.12). Let X be a topological space. We form the class B
of Borel sets to be the smallest collection of sets that includes the open and closed

sets, such that if B1, B2, . . . are in B then so are the sets
∞⋃
i=1

Bi,
∞⋂
i=1

Bi and X \ Bi,

for i = 1, 2, . . . .
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Definition 4.2.22 ([35], p.47). Let X be a topological space and let Σ be a σ-algebra
on X. Also, let µ be a positive measure on (X,Σ). A measurable subset A of X is said
to be inner regular, if µ(A) = sup{µ(F ) : F ⊆ A,F is compact and measurable}
and outer regular if µ(A) = inf{µ(G) : G ⊇ A,G is open and measurable}. If
every Borel set in X is both outer and inner regular, then µ is called regular.

Definition 4.2.23 ([29], p.66). Let Ω be a compact Hausdorff space and H be a
Hilbert space. A spectral measure EEE is a map from the σ-algebra of all Borel sets
of Ω to the set of projections in B(H), such that

(i) E(∅) = 0 and E(Ω) = 1.

(ii) E(S1 ∩ S2) = E(S1)E(S2), for all Borel sets S1, S2 of Ω.

(iii) for all x, y ∈ H, the function Ex,y : S 7→ 〈E(S)x, y〉 is a regular Borel measure
in Ω, for all Borel sets S of Ω.

Remark 4.2.24. Let T ∈ B(H) be a normal operator. If we apply Definition 4.2.23
for the special case of Ω = σ(T ), we get, for any Borel subset A ⊂ σ(T ), a projection
E(A) in B(H). The projection E(A) is called the spectral projection of TTT .

Remark 4.2.25. If p, q are projections on a Hilbert space H, then we can define an
order ≤, such that p ≤ q if, and only if, the element q − p is positive, meaning that
its spectrum lies in [0,+∞).

Theorem 4.2.26 ([29], p.50). Let p, q be projections on a Hilbert space H. Then,
the following are equivalent

(i) p ≤ q.

(ii) pq = p.

(iii) qp = p.

(iv) p(H) ⊆ q(H).

(v) ‖p(x)‖ ≤ ‖q(x)‖, for all x ∈ H.

(vi) q − p is a projection.

Proof. The equivalence of Conditions (ii), (iii) and (iv) is clear, as are the implications
(ii)⇒(vi)⇒(i). So, we just need to prove the implications (i)⇒(v)⇒(ii) and the proof
will be complete.

If we assume that Condition (i) holds, then ‖q(x)‖2−‖p(x)‖2 = 〈(q− p)(x), x〉 =
‖(q− p)(x)‖2 ≥ 0, hence Condition (v) holds. Now, if we assume that Condition (v)
holds, then ‖p(1− q)(x)‖ ≤ ‖(q− q2)(x)‖ = 0, since q is a projection. Hence, p = pq,
that is, Condition (ii) holds.

Definition 4.2.27 ([39], p.51). A projection p in a C∗-algebra A is called minimal,
if pAp = Cp.
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Definition 4.2.28 ([29], p.138). Let A be a C∗-algebra. Then a central projection
is an element p ∈ A, such that p = p∗, p2 = p and px = xp, for all x ∈ A.

The next definition distinguishes the notions of the support projection and the
support of a projection, when the latter is seen as a positive linear functional. In
an analogous way, we can define the support of an ideal and of an order ideal, as
presented in Definition 4.2.33.

Definition 4.2.29 ([39], p.140,126). Let M be a von Neumann algebra. Given an
element x ∈ M , the smallest projection p ∈ M (see Remark 4.2.25) with px = x is
called the left support of x. The right support of x is the smallest projection
q ∈M , such that xq = x. Now, let f ∈M∗ be arbitrary. Then the left (resp. right)
support projection w of f is the smallest projection in M , such that f = wf (resp.
f = fw).

Remark 4.2.30. Recall that a positive cone of a real linear space X is a subset
K satisfying the following conditions

• If x, y ∈ K and a, b ≥ 0, then ax+ by ∈ K.

• K ∩ (−K) = {0}.

As an example we can take the Banach space of all continuous real-valued functions
on R with a positive cone being the subset of all continuous non-negative functions
on R.

Definition 4.2.31 ([21], p.391). An order ideal in a partially ordered Banach space
X is a subset I of the positive cone that satisfies the following conditions

(i) If x, y ∈ I, then x+ y ∈ I.

(ii) If x ∈ I and λ ≥ 0, then λx ∈ I.

(iii) If x ∈ I and y ∈ X with 0 ≤ y ≤ x, then y ∈ I.

Example 4.2.32. Lets consider the field of complex numbers C with the partial
order (x1, y1) ≤ (x2, y2)⇔ x1 ≤ y1 and x2 ≤ y2. A positive cone I can be constructed
by taking the positive values of any (x, y) ∈ C, meaning that I = {(x, y) ∈ C : x ≥
0 and y ≥ 0}. It is easily verified that I is an order ideal of C with the partial order
defined above.

Definition 4.2.33 ([2], p.278). If A is a C∗-algebra and I is an order ideal in A∗,
then the support of III is the supremum of the supports of the elements of I in A∗∗.
If I is taken to be a left ideal of A, then the support of III is a projection p ∈ A∗∗,
such that I = A∗∗p. Here I denotes the W∗ closure of I in A∗∗.

The following definitions concern the theory of projections in von Neumann al-
gebras and are very useful in the theory of operator algebras. Particularly, in what
follows, we will analyze certain types of projections and will state some of their
properties.
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Definition 4.2.34 ([2], p.279,282). A projection p ∈ A∗∗ is open, if there exists an

increasing net (aλ)λ∈Λ of positive elements of A, such that aλ
w∗−→ p. If p is open, we

say that the projection p′ = 1− p is closed. The closure of p, denoted by p, is the
smallest closed projection that majorizes p, meaning that p ≥ p (see Remark 4.2.25).
The projection p is called regular, if ‖ap‖ = ‖ap‖, for all a ∈ A.

For the following two definitions, M will denote the von Neumann algebra zA∗∗,
where A is a C∗-algebra and z is a central projection of A∗∗.

Definition 4.2.35 ([5], p.1,2). A projection p in M is called q-open if there exists
a closed left ideal I of A, such that theW∗ closure I of I in M is of the form Mp or,
equivalently, if I = zA∗∗p. If p is q-open, then its complement p′ = 1 − p (in M) is
called q-closed. The projection p is called q-compact if p is q-closed and if there
exists an element b ∈ A+ = {a ∈ A : a ≥ 0}, with bp = p.

Definition 4.2.36 ([5], p.6). A self-adjoint operator b ∈M (b∗ = b) is q-continuous
if each spectral projection of b, corresponding to an open subset of σ(b), is also q-
open.

4.3 A Noncommutative Gelfand Theorem

Now we will present a series of theorems that will be used to prove our general Gelfand
Theorem. By Theorem 4.1.35, we can view any C∗-algebra as a C∗-subalgebra of
B(H). Thus, from now on, any C∗-algebra will be considered as an algebra of
operators. Also, for the remainder of this thesis, we will consider the von Neumann
algebra M = zA∗∗, with A being a C∗-algebra and z being a central projection of
A∗∗.

Theorem 4.3.1 ([3], p.545). Let A be a C∗-algebra and B be the C∗-subalgebra of
A that contains a positive, increasing approximate identity (aλ)λ∈Λ. Then, given
a ∈ A with a ≥ 0 and ε > 0, there exists b ∈ B with b ≥ 0, such that b ≥ a and
‖b‖ ≤ ‖a‖+ ε.

Proof. First, we observe that if the theorem is true for all a ∈ A with ‖a‖ = 1, then
it is true for all a ∈ A. Indeed, if we chose any element a ∈ A, we could normalize it
by dividing with its norm and get the desirable element whose norm would be equal
to 1. So, let’s assume that ‖a‖ = 1. We choose an element aλ1 of (aλ)λ∈Λ, such that

‖a−aλ1aaλ1‖ <
ε

2
. Since (aλ)λ∈Λ is an increasing, positive approximate identity and

‖a‖ = 1, we have that aλ1 ≥ aλ1aaλ1 . Set a1 = a − aλ1aaλ1 . Then, we can find an

element aλ2 of (aλ)λ∈Λ, such that ‖a1−aλ2a1aλ2‖ <
ε

4
. Since ‖aλ‖ ≤ 1, for all λ ∈ Λ,

and ‖2

ε
a1‖ ≤ 1, we have that

aλ2 ≥ a2
λ2
≥ aλ2

(
2

ε
a1

)
aλ2 .
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Thus,
ε

2
aλ2 ≥ aλ2a1aλ2 . Set a2 = a1− aλ2a1aλ2 . By induction, we can find sequences

(λn)n∈N ∈ Λ and (an)n∈N ∈ A, such that an = an−1 − aλnan−1aλn , for all n ∈ N,

‖an‖ ≤
ε

2n
and

ε

2n−1
aλn ≥ aλnan−1aλn . Hence, the series

∞∑
n=1

aλnan−1aλn is convergent

to a0. Indeed, for a fixed N ∈ N, we have that∥∥∥∥∥
N∑
n=1

aλnan−1aλn − a0

∥∥∥∥∥ =

∥∥∥∥∥
N∑
n=1

(an−1 − an)− a0

∥∥∥∥∥ = ‖a0 − aN − a0‖ <
ε

2N
.

We, also, observe that a0 =
∞∑
n=1

aλnan−1aλn ≤ aλ1 +
∞∑
n=2

ε

2n−1
aλn . The right hand side

of the above inequality converges absolutely to an element b ∈ B. Indeed, we have
that

∞∑
n=2

∥∥∥ ε

2n−1
aλn

∥∥∥ ≤ ∞∑
n=2

∥∥∥ ε

2n−1

∥∥∥ = ε.

Hence

‖b‖ =

∥∥∥∥∥aλ1 +
∞∑
n=2

ε

2n−1
aλn

∥∥∥∥∥ ≤ ‖aλ1‖ =

∥∥∥∥∥
∞∑
n=2

ε

2n−1
aλn

∥∥∥∥∥ ≤ 1 + ε.

Thus ‖b‖ ≤ ‖a‖+ ε.

Theorem 4.3.2 ([1], p.222). A projection p in A∗∗ supports a W∗ closed order ideal
in A∗ if, and only if, p = lim

λ
aλ, where (aλ)λ∈Λ is a decreasing net of positive elements

of A.

Proof. If I is a W∗ closed order ideal with support p, we can see that p′A∗∗p′ is the
W∗ closure of Ap′ = {a ∈ A : p′ap′ = a} in A∗∗, where p′ = 1 − p. Thus, there is
an increasing approximate identity (bλ)λ∈Λ in Ap′ , with bλ ≥ 0, for all λ ∈ Λ. Since

multiplication isW∗ continuous in A∗∗, we have that bλ
w∗−→ p′. If we set aλ = 1− bλ,

for all λ ∈ Λ, we get a decreasing net (aλ)λ∈Λ of positive elements of A, such that

aλ
w∗−→ p.

Now, let (aλ)λ∈Λ be a decreasing net of positive elements of A, with aλ
w∗−→ p. We

define, for all λ ∈ Λ, the sets

Iλ = {f ∈ A∗ : f ≥ 0 and f(a′λ) = 0}.

We observe that each Iλ is a W∗ closed order ideal, so that the set I = ∩λ∈ΛIλ is
also a W∗ closed order ideal. Let q be the support of I. Now, if f ≥ 0 in A∗, then
we have that f(p′) = 0 if, and only if, f(a′λ) = 0, for all λ ∈ Λ or, equivalently if,
and only if, f ∈ Iλ. Thus, f(p′) = 0 if, and only if, f(q′) = 0. Hence, p′ = q′ which
means that p = q.

Corollary 4.3.3 ([1], p.223). If p is a minimal projection in A∗∗, then there exists

a decreasing net (aλ)λ∈Λ in A, such that aλ
w∗−→ p.
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Proof. By Theorem 4.3.2, we only need to show that p supports a W∗ closed order
ideal in A∗. If we define the set I = {f ∈ A∗ : f ≥ 0 and f(p′) = 0}, then we can see
that p supports I. Let f, g ∈ I with g 6= 0. Then f(a) = f(pap) and g(a) = g(pap),
for all a ∈ A∗∗. Since p is minimal, there exists a scalar µ ≥ 0 in C, such that
f(pap) = µg(pap), for all a ∈ A∗∗. Thus, f(a) = µg(a), for all a ∈ A∗∗. This means
that the set I can be written as

I = {µg : µ ∈ C with µ ≥ 0}

and, hence, I is W∗ closed.

Theorem 4.3.4 ([2], p.279). A projection p ∈ A∗∗ is closed if, and only if, p supports
a W∗ closed order ideal in A∗.

Proof. By applying Theorem 4.3.2, we have that p supports a W∗ closed order ideal
if, and only if, there exists a decreasing net (aλ)λ∈Λ of positive elements of A, such

that aλ
w∗−→ p. We set a′λ = 1 − aλ ≥ 0 and we get a′λ

w∗−→ p′. Thus, p′ is open and,
hence, p is closed.

Theorem 4.3.5 ([2], p.282). Let p ∈ A∗∗ be a projection and φ : A → A∗∗, defined
by φ(a) = ap. Let K be the kernel of φ. Then, p is regular if, and only if, ‖a+K‖ =
‖ap‖, for all a ∈ A.

Proof. We define the map φ0 : A → A∗∗ by φ0(a) = ap and we let K0 = kerφ0. We
observe that both K and K0 are norm closed left ideals of A and that K ⊃ K0. We
will show that K0 = K.

Since p is closed, p′ = 1 − p is the support of K0. Let q be the support of K.
Then q′ is closed and q′ ≤ p. On the other hand, q′ ≥ p, since q ≤ p′. This last

statement is true, since aλ
w∗−→ q, for an increasing net (aλ)λ∈Λ of A. Thus, aλp = 0,

for all λ ∈ Λ and all a ∈ A. Hence, qp = 0. We deduce that q′ = p and, also, that
K0 = K. Since p is closed, we have that ‖ap‖ = ‖a+K0‖ = ‖a+K‖. The converse
statement is trivial and its proof will be omitted.

Theorem 4.3.6 ([2], p.283). If A is a von Neumann algebra, then each projection
in A∗∗ is regular.

Proof. Let p ∈ A∗∗ be open and let (aλ)λ∈Λ be an increasing net of positive elements of

A, such that aλ
w∗−→ p. Then, there exists a projection q ∈ A, such that aλ

w∗−→ q ∈ A,
since A is a von Neumann algebra. Clearly, q ≥ p. Since q′ ∈ A, we have that q′ is
open and, hence, q is closed. Now, we will prove that q = p. We observe that ap = 0
if, and only if, aaλ = 0, for all a ∈ A, which holds if, and only if, aq = 0, for all
a ∈ A. Furthermore, ‖ap‖ = lim

λ
‖aaλ‖ = ‖aq‖ = ‖ap‖ and, thus, p is regular.

Theorem 4.3.7 ([2], p.283). Let p ∈ A∗∗ be a closed projection in A∗∗. Then,
zp = p, where z is a central projection of A∗∗, and zp is regular.

Proof. Let I be a W∗ closed order ideal in A∗ with support p. Also, let I1 be the
W∗ closed unit ball of A∗. It is clear that I1 is convex, compact and that its extreme
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points are pure states, by definition. Thus, by the Krein-Milman Theorem (Theorem
4.1.40), I1 is the closed convex hull of the pure states it contains. But, the ideal zI1

contains all the pure states of I1 and is convex, since I1 is convex. Thus, I1 is the
W∗ closure of zI1. On the other hand, zI is a norm closed order ideal of A∗ which
can be easily proved, since the projection z is central. Hence, by Theorem 4.3.6, we
have that ‖zp‖ = ‖zp+ I1‖ = ‖zp+ I‖ = ‖zp‖. So, zp is regular and since I1 is the
W∗ closure of zI1, we deduce that zp = p.

Theorem 4.3.8 ([2], p.284). If p, q ∈ A are either open or closed projections and
zp ≥ zq, where z is a central projection of A∗∗, then p ≥ q.

Proof. If both p and q are closed, then p = zp ≥ zq = q. If both are open, we have
that p′ = 1− p and q′ = 1− q are closed, by definition, and that p′ = zp′ ≤ zq′ ≤ q′.
Hence p ≥ q. If p is closed and q is open, then there exist nets (aλ)λ∈Λ and (bµ)µ∈M

of elements of A, with aλ
w∗−→ p and bµ

w∗−→ q. Then, z(aλ− bµ) ≥ 0, for all λ ∈ Λ and
all µ ∈ M , since zaλ ≥ zp ≥ zq ≥ zbµ. Also, zaλ − zbµ = z(aλ − bµ) ≥ 0, since the
map γ : A→ zA with γ(a) = za is a ∗-isomorphism. Thus lim

µ,λ
|aλ− bµ| = |p− q| ≥ 0

and p ≥ q.
Now, suppose that p is open and q is closed. By the definition of open projections,

there exists an increasing net (aλ)λ∈Λ of positive elements of A, with aλ
w∗−→ p. In

order to conclude the proof, we need to show that g(aλ)
w∗−→ 1, for each state g of

A, with g(q) = 1. We define the set {lim
λ
g(aλ) : g is a state and g(q) = 1}. Let

ε = inf
g
{lim

λ
g(aλ) : g is a state and g(q) = 1}. If ε ≥ 1, we immediately have that

g(p) = lim
λ
g(aλ) ≥ ε ≥ g(q) and, thus, p ≥ q. If ε < 1, we define, for every λ ∈ Λ,

the set

Kλ = {g : g is a state, g(aλ) ≤ ε and g(q) = 1}.

Since q is closed, the set S of all states of g of A∗ for which g(q) = 1 is W∗ compact.
Thus, for every λ ∈ Λ, we have that the function γ : S → R+, with γ(g) = g(aλ)
attains a minimum which must be less than ε. Hence, the family {Kλ}λ∈Λ is a de-
creasing family of nonempty, compact, convex sets which is directed by set inclusion.
Thus, the set K = ∩λ∈ΛKλ is a nonempty, compact and convex set and, thus, by
the Krein-Milman Theorem (Theorem 4.1.40), it has an extreme point, say f . We
need to prove that f is also an extreme point of S and, hence, a pure state, since S
contains the states of norm 1 in the order ideal with support q.

Suppose that f is not an extreme point of S. Then, there should exist states f1, f2

of S and a µ ∈ (0, 1), such that f = µf1 + (1 − µ)f2. If f1 /∈ K, then there would
exist a λ0 ∈ Λ, for which f1(aλ0) > ε and f1(aλ) > ε, for all λ ≥ λ0. Thus, f2(aλ) < ε,
for all λ ≥ λ0, since ε ≥ f(aλ) = µf1(aλ) + (1−mu)f2(aλ). Since lim

λ
f(aλ) = ε, we

deduce that lim
λ
f2(aλ) ≥ ε and, thus, lim

λ
f1(aλ) ≤ ε, a contradiction. Hence, f is a

pure state of S.
Now, by hypothesis, we have that zp ≥ zq. Thus

lim
λ
f(aλ) = lim

λ
f(zaλ) = f(zp) ≥ f(zq) = 1,
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since f is a pure state of S. But this contradicts the assumption that ε < 1. Thus,
ε ≥ 1 and, hence, p ≥ q.

Theorem 4.3.9 ([2], p.285). Let p1 be closed and p2 be one-dimensional projection
in A∗∗, with p1p2 = 0. Then, there exist open projections q1 and q2 in A∗∗, such that
q1q2 = 0, q1 ≥ p1 and q2 ≥ p2.

Proof. Let I be a norm closed left ideal of A with support p1. Also, let B = I ∩ I∗.
Then B is a C∗-subalgebra of A. Now, let f be a pure state of A with support p2.
We will show that f is pure on B as well.

Suppose that f |B is not pure. Then, there exist states f1, f2 of A and a scalar
µ ∈ (0, 1), such that f |B = µf1|B + (1 − µ)f2|B. By definition, we have that the
condition for p1 being closed implies that p′1 is open. So, there exists an increasing

net (bλ)λ∈Λ of positive elements of B, such that bλ
w∗−→ p′1. Since p1p2 = 0, we have

that 1 − (p1p2)′ = 0 and, hence, f(p′1) = 1, which implies that f1(p′1) = 1 = f2(p′1).
Since f is pure, there exists a positive element b ∈ B+, with ‖b‖ ≤ 1 and f(b) 6=
µf1(b) + (1 − µ)f2(b). As B+ is an order ideal, we have, for each b ∈ B+, that
0 ≤ bλbbλ ≤ b2

λ ∈ B+ and, hence, bλbbλ ∈ B+. Thus, we have

f(bλbbλ) = µf1(bλbbλ) + (1− µ)f2(bλbbλ)

and

f(b) = f(p′1bp
′
1)

= lim
λ
f(bλbbλ)

= µf1(p′1bp
′
1) + (1− µ)f2(p′1bp

′
1)

= µf1(b) + (1− µ)f2(b),

which is a contradiction by the choice of the element b ∈ B+. Hence, f is pure on B.
Since f is pure, there exists an element b0 ∈ B, with ‖b0‖ ≤ 1, b∗0 = b0 and

f(b0) = 1. We define the characteristic functions

q1 = χ(−2, 1
2

)(b0) and q2 = χ( 1
2
,2)(b0)

and we observe that both q1 and q2 are open projections and that q1q2 = 0. We, also,
observe that f(b0) = 1 = f(b2

0), which implies that q2 ≥ p2, since p2 is, by definition,
the support projection of f . Furthermore, we have that b0 ∈ B = I ∩ I∗ and that p1

is the support of I. Hence, b0p1 = 0 and q1 ≥ p1.

Theorem 4.3.10 ([4], p.306). Let p and q be closed projections in A∗∗, with pq = 0.
Then, there exists a ∈ A with 0 ≤ a ≤ 1, ap = 0 and aq = q.

Proof. Let A0 = {a ∈ A : ap = pa = 0}. We observe that A0 is a C∗-algebra without
unit since, otherwise, the identity ap = pa = 0 would never hold. Also, let Ã0 denote
the C∗-subalgebra of A generated by A0 and 1A. Since p is closed, p′ = 1 − p is
open and, hence, there exists an increasing net (aλ)λ∈Λ of positive elements of A0,

such that aλ
w∗−→ p′. Since A∗∗0 is isomorphic to clw∗(A0) (the W∗ closure of A0), we
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have that A∗∗0
∼= p′A∗∗p′. We, also, observe that q ≤ p′, since from Theorem 4.2.26

we have that qp′ = q(1 − p) = q − qp = q. Thus, we may consider q ∈ A∗∗0 ⊂ Ã0
∗∗

.

Now, we will prove that the projection q is closed in Ã0
∗∗

. This would follow from
Theorem 4.3.4, if we could show that (qÃ0

∗
q)+ is aW∗ closed order ideal. Since Ã0 is

the algebra generated by A0 and 1A, we can identify Ã0
∗

with A∗ and, hence, the set
(qÃ0

∗
q)+ with (qA∗q)+. We, also, have that the set K = {f ∈ (qA∗q)+ : ‖f‖ ≤ 1}

is compact in the ultraweak topology of A. Since the ultraweak topology in Ã0 is
weaker than the ultraweak topology in A, they must coincide on K. Thus, the set
K = {f ∈ (qÃ0

∗
q)+ : ‖f‖ ≤ 1} is compact in the ultraweak topology of Ã0. Hence,

(qÃ0
∗
q) is W∗ closed and, thus, the projection q is closed in Ã0

∗∗
, by Theorem 4.3.4.

Now, let f be the pure state of Ã0 defined by f(a + λ1A) = λ, for every a ∈ A0

and any λ ∈ C. Let x be the support of f in Ã0
∗∗

. We can see that xq = 0. Indeed,
we have that x = xp implies that x(1−p) = xp′ = 0, which means that xq ≤ xp′ = 0.
Consequently, xq = 0. Hence, we can apply Theorem 4.3.9 in order to get an element
a ∈ Ã0 with 0 ≤ a ≤ 1, ax = 0 and aq = q. From the fact that ax = 0, we have that
a ∈ A0 and, thus, ap = 0. This concludes the proof.

Theorem 4.3.11 ([4], p.315). Let a ∈ A∗∗ be a hermitian element of A∗∗ and suppose
that every spectral projection of a ∈ A∗∗, corresponding to an open set in σ(a), is
also an open projection for A. Then, a ∈ A.

Proof. Suppose that the conclusion is false. Then, there exists a hermitian element
φ ∈ A∗∗∗, such that φ(a) 6= 0 and φ|A = 0. Let C∗(a) be the C∗-algebra generated
by a and 1A. Then, C∗(a) is isomorphic to C(σ(a)), by Theorem 2.2.17. This
isomorphism is the functional calculus of a, as introduced in Definition 2.2.16. Since
φ(a) 6= 0, there exists an open set (β, γ) ∩ σ(a) = Q in σ(a), such that φ(q) 6= 0.
By the definition of a spectral projection, we can identify the Borel subset Q of σ(a)
with the projection q. Let δ = β − γ and consider, for j = 1, 2, . . . , the open sets
Qj
n = (β+δ2−n−j, γ−δ2−n−j)∩σ(a), for all n ∈ N. Again, these open sets correspond

to spectral projections qjn, for j = 1, 2, . . . and for all n ∈ N, which are open in A by
hypothesis.

Next, we choose, for every n ∈ N, elements an, cn ∈ C∗(a), with q1
n ≤ an ≤ q2

n and
q3
n ≤ cn ≤ q. Let pn be the projection in A∗∗ corresponding to the closure of Q2

n in
σ(a). Then, pn ≤ q3

n and since q3
n is open (by hypothesis), Theorem 4.3.10 is applied

in order to get, for any n ∈ N, elements bn ∈ A, such that q2
n ≤ pn ≤ bn ≤ q3

n. Thus,
we obtain

q1
n ≤ an ≤ q2

n ≤ pn ≤ bn ≤ q3
n ≤ cn ≤ q.

When n ∈ N tends to infinity, we have that lim
n→∞

bn = q, in the W∗ topology, which

is a contradiction, since φ|A = 0 and, hence, φ(bn) = 0 and φ(q) 6= 0.

The next theorem’s proof will be omitted, as it is trivially followed by Theorems
4.3.8 and 4.3.11.

Theorem 4.3.12 ([5], p.2). A self-adjoint operator b ∈ M lies in A if, and only
if, each spectral projection of b which corresponds to an open subset of R is also a
q-open projection.
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Lemma 4.3.13 ([5], p.3). Suppose B is a C∗-algebra, b ∈ B+, p ∈ B∗∗ a projection
and let (aλ)λ∈Λ be an increasing net of positive elements of B, with ‖b1/2−b1/2aλ‖ −→
0. If b ≥ p, then ‖p− aλp‖ −→ 0.

Proof. Since ‖b1/2 − b1/2aλ‖ −→ 0, we can see that

‖(1− aλ)b(1− aλ)‖ = ‖b1/2 − b1/2aλ‖2 −→ 0.

Since (1− aλ)b(1− aλ) ≥ (1− aλ)p(1− aλ), for all λ ∈ Λ, we get

‖p− aλp‖2 = ‖(1− aλ)p‖2

= ‖(1− aλ)p(1− aλ)‖
≤ ‖(1− aaλ)b(1− aλ)‖ −→ 0.

Hence, ‖p− aλp‖ −→ 0, as λ tends to infinity.

Lemma 4.3.14 ([5], p.3). If p is a q-closed projection in A, b ∈ A+ with b ≥ p and
Ã, M̃ are the unitizations of A and M , respectively, then p is q-closed in M̃ .

Proof. Let K = (pA∗p)+. By Theorem 4.3.4, K is closed in the ultraweak topology
of A. If K is not closed in the ultraweak topology of Ã, then there exists a net
(fλ)λ∈Λ in K, with ‖fλ‖ = 1 and fλ −→ f in the ultraweak topology of Ã, for some
f ∈ Ã∗, with ‖f‖ = f(1Ã) = 1. Since Ã∗ = A∗ ⊕ {µf∞}, where f∞ is a pure state of
Ã which vanishes on A, we have that f = f0 + µf∞, where f0 ∈ (A∗)+ and µ ≥ 0 is
a complex scalar. For any q ≥ p, we get

f0(q) = f(q) = lim
λ
fλ(q) ≥ lim

λ
fλ(p) = 1, (4.1)

since each fλ ∈ K, for every λ ∈ Λ.
Now, if 1Ã ∈ A, then A∗ is closed in the ultraweak topology of Ã and the proof

is complete. If 1Ã /∈ A, let (an)n∈N be an increasing approximate identity of positive
elements of A. Then, by Lemma 4.3.13, we have that ‖p− anp‖ −→ 0, as n tends to
infinity. Thus, for a given ε > 0, there exists a c ∈ A, with c ≥ p and ‖c‖ ≤ 1 + ε, by
Theorem 4.3.1. Hence, we have that fλ(c) ≥ 1 for c = q in the relation (4.1). Since
f = f0 + λf∞, we have that ‖f0‖ = 1 and λ = 0, because ‖f‖ = ‖f0‖ + |λ|‖f∞‖ =
‖f0‖ + |λ| = 1. Thus, f ∈ A∗. Since (fλ)λ∈Λ belongs to K, we deduce that K is
closed in the ultraweak topology of A and that fλ −→ f in the ultraweak topology
of Ã. Hence, f ∈ K and, so, K is closed in the ultraweak topology of Ã.

Theorem 4.3.15 (Noncommutative Gelfand Theorem, [5], p.6). The hermitian el-
ements of A are exactly those q-continuous elements b of M , such that the spectral
projections of b corresponding to closed subsets of the spectrum of b, which don’t
contain 0, are q-compact, that is, b “vanishes at ∞”.

Proof. Let Ã, M̃ be the unitizations of A and M , respectively, as introduced in
Lemma 4.3.14. Since b ∈ M = zA∗∗, we have that b ∈ Ã implies b ∈ A. Let p be
the spectral projection of b, corresponding to an open subset U of σ(b). We consider
two cases.
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If 0 /∈ U , then p ∈M . Since b ∈M is q-continuous, we have that p is q-open for
A and, thus, for Ã.

If 0 ∈ U , then the complement of U is closed and does not contain 0. Thus,
the projection p′ is q-closed for A and, thus, q-compact for A. By applying Lemma
4.3.14, we have that the projection p′ is q-closed for Ã.

Thus, in any case, we have that a spectral projection of b, corresponding to closed
subsets that do not contain 0, is q-compact for Ã. Hence, b is q-continuous for Ã
and by applying Theorem 4.3.12, we deduce that b ∈ Ã and, thus, that b ∈ A by the
above discussion. This completes the proof.

Remark 4.3.16. Theorem 4.3.15 is a generalized analogue of Theorem 2.2.14, mean-
ing that we associated all hermitian elements of a C∗-algebra A, with certain types
of projections that are q-continuous and “vanish at ∞”. This is similar to Theorem
2.2.14, except the fact that we withdrew the hypothesis of commutativity and we
made a construction of recovering a general C∗-algebra from the space of all spectral
projections b that correspond to open subsets of the spectrum of b (analogous to the
maximal ideal space that was presented in Theorem 2.2.14).

4.4 Comments on Further Research

In this section, we will present some subjects incorporated in the field of Noncommu-
tative Geometry like the Noncommutative K-theory and the Noncommutative Mea-
sure theory. We will comment on certain topics in the field of Noncommutative
Geometry and will state some references for the interested researcher. Finally, we
will provide the reader with some other approaches regarding Chapter 4.

4.4.1 Physical Origin of Noncommutative Geometry

To control the divergences which from the very beginning had plagued quantum
electrodynamics, Heisenberg already in the 1930’s proposed to replace the space-time
continuum by a lattice structure. A lattice however breaks Lorentz invariance and can
hardly be considered as fundamental. It was Snyder who first had the idea of using a
noncommutative structure at small length scales to introduce an effective cut-off in
field theory similar to a lattice but at the same time maintaining Lorentz invariance.
Some time later von Neumann introduced the term “noncommutative geometry”
to refer in general to a geometry in which an algebra of functions is replaced by a
noncommutative algebra. As in the quantization of classical phase-space, coordinates
are replaced by generators of the algebra. Since these do not commute they cannot
be simultaneously diagonalized and the space disappears. One can argue that, just
as Bohr cells replace classical phase-space points, the appropriate intuitive notion to
replace a “point” is a Planck cell of dimension given by the Planck area. If a coherent
description could be found for the structure of space-time which were pointless on
small length scales, then the ultraviolet divergences of quantum field theory could
be eliminated.
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4.4.2 K-Theory

Now, we will briefly present a subject that is commonly seen around the field of
noncommutative Geometry, but demands a deep mathematical background for a
proper understanding. K-theory, is a topological invariant, under Gelfand Duality,
which can be recovered by the algebraic counterpart of Gelfand Duality, that is,
by the algebra C(X), over the compact topological space X. Indeed, the 2-graded
abelian group K(X) (meaning that K(X) is the direct sum of 2 different abelian
groups) is generated, on its first part, by the stable isomorphism classes of complex
vector bundles over the compact topological space X has a very simple description
in terms of the C∗-algebra C(X). The second part of this group, provided to us
by a result of Serre [37] and Swan [38], is the abelian group generated by the stable
isomorphism classes of finite projective modules over C(X), a purely algebraic notion
which, also, makes no use of the commutativity of C(X). A key result of K-theory
is the Bott Periodicity Theorem [13], [14]. Thanks to the work of Atiyah and Bott
[9], this result, once formulated in the algebraic context, has a very simple proof and
holds for any (not necessarily commutative) Banach algebra and, in particular, any
C∗-algebra.

4.4.3 Noncommutative Measure Theory

The next subject that we briefly present is the Noncommutative Measure theory. The
relation between von Neumann algebras and Measure spaces is similar to the relation
between commutative C∗-algebras and locally compact Hausdorff spaces. Given a
measure space (X,µ), let L∞(X,µ) denote the ∗-algebra of essentially bounded,
measurable and complex valued functions on X. This algebra acts on a Hilbert
space L2(X,µ), as multiplication operators, and its image in L(H) is closed in the
weak operator topology (WOT). Hence, it is a commutative von Neumann algebra.
Conversely, any commutative von Neumann algebra can be shown to be algebraically
isomorphic to L∞(X,µ), for some measure space (X,µ).

In a general framework, a construction of a Hilbert space with a countable basis
provides specific automorphisms (unitary operators) of that space. The algebra of
operators on the Hilbert space which commute with these particular automorphisms,
form a von Neumann algebra and all von Neumann algebras are obtained in that
manner. The theory of not necessarily commutative von Neumann algebras was ini-
tiated by Murray and von Neumann [30] and is considerably more difficult than the
commutative case. The center of a von Neumann algebra is a commutative von Neu-
mann algebra and, thus, dual to an essentially unique measure space. The general
case, thus, decomposes over the center as a direct integral of, so called, factors,
that is, von Neumann algebras with trivial center. Using the above construction,
Murray [30] managed to classify the factors of a von Neumann algebra intro three
types I, II and III, with varying degree of complexity. Because of the above corre-
spondences and constructions, the theory of von Neumann algebras is often regarded
as Noncommutative Measure theory.

Concerning the discussion that was presented in the previous paragraph, Pavlov
[31] managed to prove a categorical equivalence between the following five categories.
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(i) The opposite category of commutative von Neumann algebras.

(ii) The category of compact strictly localizable enhanced measurable spaces.

(iii) The category of measurable locales.

(iv) The category of hyperstonean locales.

(v) The category of hyperstonean spaces.

This result was a measure-theoretic counterpart of the Gelfand Duality between
commutative unital C∗-algebras and compact Hausdorff topological spaces. We give
some terminology for a better understanding of the aforementioned approach.

Definition 4.4.1 ([31]). An enhanced measurable space is a triple (X,M,N),
where X is a set, M is a σ-algebra on X and N is a σ-ideal on X, such that N ⊂M .

Definition 4.4.2 ([31]). An enhanced measurable space (X,M,N) is strictly lo-
calizable if it is isomorphic to the coproduct of a small family of σ-finite enhanced
measurable spaces in the category PreEMS of enhanced measurable spaces (as
objects) and premaps of enhanced measurable spaces (as morphisms).

Definition 4.4.3 ([31]). A Stonean space is a compact, Hausdorff, extremely
disconnected topological space. A Hyperstonean space is a Stonean space such
that the union of supports of all normal measures is everywhere dense. A normal
measure is a Radon measure that vanishes on nowhere dense subsets. A Radon
measure on a Hausdorff topological space X is a Borel measure µ such that µ is
locally finite and inner regular on all Borel subsets.

Definition 4.4.4 ([11]). A Heyting algebra HHH is a lattice, with top and bottom
elements, in which for every element b ∈ H the functor

· ∧ b : H → H, a 7→ a ∧ b

has a right adjoint.

Definition 4.4.5 ([11]). A locale LLL is a complete Heyting algebra in which arbitrary
joins distribute over finite meets, i.e. the distributivity law

a ∧

(∨
i∈I

bi

)
=
∨
i∈I

(a ∧ bi)

holds, where I is an arbitrary indexing set and a, bi are elements of L.
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4.4.4 Noncommutative Geometry of Schemes

Noncommutative Algebraic Geometry is the study of “spaces” represented in terms
of algebras or categories. Commutative Algebraic Geometry restricts its attention
to spaces, whose local description is made, via commutative rings and algebras,
while Noncommutative Algebraic Geometry allows for more general local (or affine)
models, like schemes. The categories involved, are viewed as categories of qua-
sicoherent modules on noncommutative locally affine spaces and are, typically,
abelian, triangulated or DG-categories. In the best case scenario, given a scheme X,
one can construct a spectrum S(X) by utilizing algebraic tools. This spectrum is
proved to be equivalent (either geometrically or topologically) to X, but that is not
always the case. For more details, one should look for [6] and [7].

4.4.5 Derived Noncommutative Algebraic Geometry

In Noncommutative Algebraic Geometry one represents a scheme by an abelian cate-
gory of quasicoherent sheaves on the scheme and looks at more general abelian cate-
gories as categories of quasicoherent sheaves on a noncommutative space. In Derived
Noncommutative Algebraic Geometry one, instead, considers the derived category
of quasicoherent sheaves, or more precisely its DG-enhancement, since there exist
many spaces, theories and problems around the field of Theoretical Physics (Quan-
tum Mechanics, String and Superstring Theory, etc.), that can not be solved by using
commutative tools. Derived Noncommutative Algebraic Geometry has been infor-
mally introduced by Kapranov-Bondal 1990, although the full framework belongs to
Kontsevich and van den Bergh.

4.4.6 Topos-Theoretic Gelfand Duality

Another approach to generalize the classical Gelfand Duality was made by Simon
Henry [26], which is topos-theoretic and states that any Boolean locally separated
topos can be reconstructed as the classifying topos of “non-degenerate” monoidal
normal ∗-representations of both its category of internal Hilbert spaces and its cat-
egory of square integrable Hilbert spaces. In both cases, these categories suggest
a symmetric monoidal monotone complete C∗-category. Specifically Simon Henry
proves that if T is a boolean locally separated topos, then T is the classifying topos
for non-degenerate normal symmetric monoidal representations of either Hred(T ) and
H(T ), which are defined to be the symmetric monoidal C∗-categories of Hilbert bun-
dles and square-integrable Hilbert bundles, respectively. We suggest [26] and [12] for
the elementary definitions needed and for a better understanding of this approach.
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Unitization of a C*-algebra, 44
upper bound, 17
Urysohn Lemma, 32

vanish at infinity, 6

weak operator topology, 81

zero object, 56
Zorn lemma, 18
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