
ÁëãïñéèìéêÝò Tå÷íéêÝò Êùäéêïðïßçóçò ÌåôáèÝóåùí

êáé Ìåôáèåôéêþí ÃñáöçìÜôùí ãéá Õäáôïóýìáíóç

Ëïãéóìéêïý, Åéêüíáò, ¹÷ïõ, êáé ÊåéìÝíïõ

Ç ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ

õðïâÜëëåôáé óôçí

ïñéóèåßóá áðü ôçí ÃåíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ôïõ ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò

ÅîåôáóôéêÞ ÅðéôñïðÞ

áðü ôçí

Ìáñßá Ã. ×ñüíç

ùò ìÝñïò ôùí Õðï÷ñåþóåùí ãéá ôç ëÞøç ôïõ

ÄÉÄÁÊÔÏÑÉÊÏÕ ÄÉÐËÙÌÁÔÏÓ ÓÔÇÍ ÐËÇÑÏÖÏÑÉÊÇ

ÄåêÝìâñéïò 2014

ÔñéìåëÞò ÓõìâïõëåõôéêÞ ÅðéôñïðÞ

• Óôáýñïò Ä. Íéêïëüðïõëïò, ÊáèçãçôÞò, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò, Ðá-

íåðéóôÞìéï Éùáííßíùí (åðéâëÝðùí).

• Ãåþñãéïò Á. Ðáðáäüðïõëïò, ÊáèçãçôÞò, ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Êýðñïõ.

• ÉùÜííç Óôáìáôßïõ, ÁíáðëçñùôÞò ÊáèçãçôÞò, ÔìÞìá ÏñãÜíùóçò êáé Äéïßêçóçò Åðé÷åé-

ñÞóåùí, ÐáíåðéóôÞìéï Ðáôñþí.

ÅðôáìåëÞò ÅîåôáóôéêÞ ÅðéôñïðÞ

1. Óôáýñïò Ä. Íéêïëüðïõëïò, ÊáèçãçôÞò, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò, Ðá-

íåðéóôÞìéï Éùáííßíùí (åðéâëÝðùí).

2. Ãåþñãéïò Á. Ðáðáäüðïõëïò, ÊáèçãçôÞò, ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Êýðñïõ.

3. ÉùÜííç Óôáìáôßïõ, ÁíáðëçñùôÞò ÊáèçãçôÞò, ÔìÞìá ÏñãÜíùóçò êáé Äéïßêçóçò Åðé÷åé-

ñÞóåùí, ÐáíåðéóôÞìéï Ðáôñþí.

4. ÉùÜííçò Ìáíùëüðïõëïò, ÊáèçãçôÞò, ÔìÞìá ÐëçñïöïñéêÞò, ÁñéóôïôÝëåéï ÐáíåðéóôÞìéï

Èåóóáëïíßêçò.

5. ÓôÝöáíïò Ãêñßôæáëçò, ÊáèçãçôÞò, ÔìÞìá Ìç÷áíéêþí Ðëçñïöïñéáêþí êáé Åðéêïéíùíéá-

êþí ÓõóôçìÜôùí, ÐáíåðéóôÞìéï Áéãáßïõ.

6. Ëåùíßäáò Ðáëçüò, ÁíáðëçñùôÞò ÊáèçãçôÞò, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò,

ÐáíåðéóôÞìéï Éùáííßíùí.

7. ËïõêÜò ÃåùñãéÜäçò, Åðßêïõñïò ÊáèçãçôÞò, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé ÐëçñïöïñéêÞò,

ÐáíåðéóôÞìéï Éùáííßíùí.

Dedication

Óôç ìçôÝñá ìïõ...

...Ãåùñãßá

To my mother...

...Georgia

You were my strength when I was weak

You were my voice when I couldn't speak

You were my eyes when I couldn't see

You lifted me up when I couldn't reach

You gave me faith because you believed

You were always there for me

I'm blessed and grateful for been my mother!

Åõ÷áñéóôßåò

Ç åêðüíçóç ìéáò äéäáêôïñéêÞò äéáôñéâÞò áðïôåëåß ìéá ðïëõåôÞ äéáäéêáóßá, Ýíá ôáîßäé ãåìÜôï óõ-

ãêéíÞóåéò, óõíôñïöéÜ ìå áíèñþðïõò ðïõ ìïéñÜæåóáé êïéíÜ åíäéáöÝñïíôá êáé óôü÷ïõò, áëëÜ êáé ìå

áíèñþðïõò ðïõ áðëÜ âñßóêïíôáé äßðëá óïõ êáé êÜíïõí ôï ôáîßäé áõôü ðéï üìïñöï êáé áóöáëÝò.

Ôï äéêü ìïõ ôáîßäé ïëïêëçñþèçêå êáé ãéá áõôü èá Þèåëá íá åõ÷áñéóôÞóù îå÷ùñéóôÜ üëïõò áõôïýò

ôïõò áíèñþðïõò ðïõ Þôáí óõíôáîéäéþôåò óôï ôáîßäé áõôü ùò åëÜ÷éóôï äåßãìá åõãíùìïóýíçò êáé

áíáãíþñéóçò ôçò óõìâïëÞò ôïõò.

Èá Þèåëá íá åõ÷áñéóôÞóù ìÝóá áðü ôçí êáñäéÜ ìïõ ôïí êýñéï óõíôáîéäéþôç ìïõ, ôïí åðéâëÝðï-

íôá êáèçãçôÞ ìïõ, Óôáýñï Ä. Íéêïëüðïõëï ãéá ôçí äõíáôüôçôá ðïõ ìïõ Ýäùóå íá áêïëïõèÞóù ôá

üìïñöá êáé óõíáñðáóôéêÜ ìïíïðÜôéá ôçò Ýñåõíáò, ãéá ôçí åìðéóôïóýíç ðïõ ìïõ Ýäåéîå, êáé ãéá ôç

óôÞñéîç êáé êáèïäÞãçóç ðïõ ìïõ ðáñåß÷å êáè' üëç ôç äéÜñêåéá ôùí óðïõäþí ìïõ. Ìå Ýìáèå íá Ý÷ù

ðßóôç, ðñïóÞëùóç óôïõò óôü÷ïõò ìïõ, êáé íá îåðåñíþ ôá åìðüäéá. Èá Þèåëá íá ôïí åõ÷áñéóôÞóù

ãéáôß ìÝóá áðü áõôü ôï ôáîßäé üëùí áõôþí ôùí åôþí ìïõ Üíïéîå íÝïõò ïñßæïíôåò êáé ìïõ ìåôÝöåñå

ìå ôï êáëýôåñï ôñüðï ðëÞèïò ãíþóåùí, äåîéïôÞôùí êáé óôÜóåùí ðïõ èá ìå áêïëïõèïýí êáé èá ìå

ïäçãïýí óôç æùÞ ìïõ. Áðïôåëåß ãéá ìÝíá ðñüôõðï áêáäçìáúêïý, äáóêÜëïõ, êáé áíèñþðïõ.

Åõ÷áñéóôþ èåñìÜ ôá ìÝëç ôçò åîåôáóôéêÞò åðéôñïðÞò ìïõ ãéá ôç ôéìÞ ðïõ ìïõ Ýêáíáí íá óõììå-

ôÝ÷ïõí óå áõôÞ êáé ãéá ôçí ïõóéáóôéêÞ óõìâïëÞ ôïõò óôçí ðïéïôéêÞ áîéïëüãçóç ôùí åñåõíçôéêþí

ìïõ ðåðñáãìÝíùí. Åõ÷áñéóôþ ôïõò ìåôáðôõ÷éáêïýò öïéôçôÝò, êáé ðëÝïí ößëïõò ìïõ, ¢ããåëï

ÖõëÜêç êáé ÉùÜííç ×éüíç ãéá ôçí åéëéêñéíÞ åñåõíçôéêÞ óõíåñãáóßá ðïõ åß÷áìå, êáé ãéá ôï êëßìá

åìðéóôïóýíçò, óåâáóìïý, êáé ðßóôçò óôïõò êïéíïýò åñåõíçôéêïýò óôü÷ïõò ðïõ èÝóáìå. Ç óõ-

íåñãáóßá áõôÞ, åêôüò áðü ôá üðïéá óçìáíôéêÜ åñåõíçôéêÜ áðïôåëÝóìáôá, ìïõ Ýäùóå ðñùôßóôùò

äýï áîéüëïãïõò, êáëïýò êáé áãáðçìÝíïõò ößëïõò.

ÉäéáéôÝñùò èá Þèåëá íá åõ÷áñéóôÞóù ôïõò áíèñþðïõò ôïõ ÔìÞìáôïò Ìç÷áíéêþí Ç/Õ êáé

ÐëçñïöïñéêÞò ôïõ Ðáíåðéóôçìßïõ Éùáííßíùí, ãéá ôç óôÞñéîÞ ôïõò, ôçí åìðéóôïóýíç ôïõò, êáé ôç

äõíáôüôçôá ðïõ ìïõ Ýäùóáí íá åßìáé óå Ýíá ÔìÞìá ðñüôõðï, ìå Üñéóôç åðéóôçìïíéêÞ õðïäïìÞ êáé

Üøïãï êëßìá óõíåñãáóßáò, êáé íá åñãáóôþ óå Ýíá áíôéêåßìåíï ðïõ ðñáãìáôéêÜ áãáðþ êáé ðïõ

áéóèÜíïìáé üôé ðñïóöÝñù ìå ôéò ãíþóåéò ðïõ ôï ßäéï áõôü ÔìÞìá êÜðïôå ìïõ Ýäùóå.

Åõ÷áñéóôþ ôïõò ößëïõò ìïõ ðïõ áðïäÝ÷ôçêáí ôçí áðïõóßá ìïõ ìÝóá óôéò áôÝëåéùôåò þñåò

ðïõ ÷áíüìïõí óôï ìáãéêü áõôü êüóìï ôçò Ýñåõíáò. ÔÝëïò ïöåßëù Ýíá ìåãÜëï åõ÷áñéóôþ óôçí

ïéêïãÝíåéÜ ìïõ, ãéá ôçí áãÜðç ôïõò, ôçí êáèïäÞãçóÞ ôïõò, ôçí áðïäï÷Þ êáé óôÞñéîç üëùí ôùí

óôü÷ùí ìïõ, ôùí óôü÷ùí ôùí óðïõäþí ìïõ, ôùí óôü÷ùí ôçò æùÞò ìïõ.

Ìáñßá Ãåùñãßïõ ×ñüíç

ÄåêÝìâñéïò 2014

. . . Ýíá íÝï ôáîßäé îåêéíÜ!

Table of Contents

1 Introduction 1

1.1 Information Hiding . 1

1.2 Digital Watermarking . 3

1.2.1 Watermarking Classi�cation . 5

1.2.2 Properties . 6

1.2.3 Attacks . 6

1.2.4 Watermarking Techniques . 8

1.3 Motivation . 13

1.4 The Structure of the Thesis . 14

1.5 Main Results . 15

2 Encode Watermark Numbers as Self-inverting Permutations 19

2.1 Introduction . 19

2.2 Preliminaries . 21

2.3 Self-inverting Permutations (SiP) . 22

2.4 Encode Watermark Numbers as SiPs . 23

2.4.1 Algorithm Encode W.to.SiP . 24

2.4.2 Algorithm Decode SiP.to.W . 25

2.5 The Structure of Permutation �∗ . 27

2.6 Properties of Permutation �∗ . 29

2.7 Concluding Remarks . 30

3 Encoding SiPs as

Reducible Permutation Graphs 31

3.1 Introduction . 31

3.2 Preliminaries . 35

3.3 Reducible Permutation Graphs (RPG) . 35

3.4 The Structure of our Codec System . 36

3.5 Encode SiPs as Reducible Permutation Graphs 37

3.5.1 Encode SiPs as Reducible Permutation Graphs - I 37

3.5.2 Encode SiPs as Reducible Permutation Graphs - II 41

3.6 Properties of the Flow-graph F [�∗] . 44

3.6.1 Structural Properties . 45

3.6.2 Unique Hamiltonian Path . 45

3.7 Detecting Attacks . 46

i

3.7.1 Node-label Modi�cation . 46

3.7.2 Edge Modi�cation . 47

3.8 Concluding Remarks . 48

4 Multiple Encoding of a Number

into RPGs using Cographs 49

4.1 Introduction . 49

4.2 Background Results . 50

4.2.1 Cographs and Cotrees . 52

4.3 Multiple Encoding of a SiP into Cographs . 53

4.3.1 Algorithm Encode SiP.to.Cograph . 53

4.3.2 Algorithm Decode Cograph.to.SiP . 54

4.4 Encoding Cographs as RPGs . 56

4.4.1 Algorithm Encode Cotree.to.RPG . 56

4.4.2 Algorithm Decode RPG.to.SiP . 58

4.5 Concluding Remarks . 60

5 Software Watermarking 61

5.1 Introduction . 61

5.2 Background Results . 65

5.2.1 Encode Numbers as RPGs . 66

5.2.2 Call-graphs . 66

5.3 The Dynamic Watermarking Model WaterRPG 67

5.3.1 Operational Framework . 67

5.3.2 Model Components . 67

5.3.3 Embedding an RPG into a Code . 74

5.3.4 Extracting the RPG from the Code . 79

5.4 Implementation . 79

5.5 Model Evaluation . 84

5.5.1 Performance . 85

5.5.2 Resilience . 89

5.6 Concluding Remarks . 92

6 Image and Audio Watermarking 93

6.1 Introduction . 93

6.2 Background Results . 97

6.2.1 2D Representation of SiP . 97

6.2.2 1D Representation of SiP . 99

6.2.3 Color Images . 100

6.2.4 The Discrete Fourier Transform . 101

6.3 Image Watermarking in the Spatial Domain . 101

6.3.1 Embed Watermark into Image - S . 101

6.3.2 Extract Watermark from Image - S . 105

6.3.3 Performance . 106

6.4 Image Watermarking in the Frequency Domain 108

ii

6.4.1 Embed Watermark into Image - F . 109

6.4.2 Extract Watermark from Image - F . 111

6.4.3 Function f . 112

6.4.4 Experimental Evaluation . 113

6.4.5 Performance . 113

6.4.6 Attack Issues . 114

6.5 Audio Watermarking . 118

6.5.1 Embed Watermark into Audio . 118

6.5.2 Extract Watermark from Audio . 122

6.5.3 Experimental Results . 123

6.6 Concluding Remarks . 126

7 Text Watermarking 129

7.1 Introduction . 129

7.2 Background Results . 132

7.2.1 Structure of a PDF Documents . 134

7.3 Watermarking PDF Documents . 135

7.3.1 Embed Watermark into PDF - I . 136

7.3.2 Embed Watermark into PDF - II . 137

7.3.3 Embed an RPG into a PDF . 139

7.4 Concluding Remarks . 141

8 Conclusions and Future Work 143

8.1 Encoding Numbers as SiPs and RPGs . 143

8.2 Software Watermarking . 144

8.3 Image and Audio Watermarking . 145

8.4 Text Watermarking . 146

iii

List of Figures

1.1 A formal view of digital watermarking. 3

1.2 An abstract view of software and digital media watermarking. 4

1.3 Digital watermarking classi�cation. 5

1.4 Digital watermarking attacks. 7

1.5 The Structure of the 8 Chapters of the Thesis. 15

1.6 Algorithms of the Chapters 2, 3, and 4 (Part II: Encodings) and Chapters 5, 6, and 7

(Part III: Watermarking). 16

2.1 The main data components used by the algorithms of our codec system: (i) the watermark

number w and (ii) the self-inverting permutation �∗. 21

2.2 The main data components used by our two codec Algorithms Encode W.to.SiP and

Decode SiP.to.W. 26

3.1 The main data components used by the algorithms of our codec system: (i) the watermark

number w, (ii) the self-inverting permutation �∗, and (iii) the reducible permutation

graph F [�∗]. 34

3.2 The DAG D[�∗] of the self-inverting permutation �∗ and the corresponding Dmax-tree

Td[�
∗]. 37

3.3 The main structures used or constructed by the algorithms Encode SiP.to.RPG-I and

Decode RPG.to.SiP-I, that is, the self-inverting permutation �∗, the values of function

P (), the reducible permutation graph F [�∗], and the Dmax-tree Td[�
∗]. 40

3.4 The main structures used or constructed by Algorithms Encode SiP.to.RPG-II and

Decode RPG.to.SiP-II, i.e., the self-inverting permutation �∗, the decreasing subse-

quences of �∗, the graph F [�∗], the tree Ts[�
∗], and the elements of �∗ in pairs. 43

3.5 The probability for the RPG F [�∗] to have the RPG property after a modi�cation of

(a) 1 edge, (b) 2 edges, (c) 3 edges, and (d) 4 edges. Note the di�erent scaling of the four

diagrams. 47

4.1 The main data components used by the algorithms of our codec system for multiple

encoding the same watermark number w = 4 into several RPGs using Cographs. 51

4.2 (a) A cograph on 7 vertices, and (b) the corresponding cotree. 52

4.3 Two cographs C1[�
∗] and C2[�

∗] on 7 vertices which encode the same watermark number

w, corresponding to permutation �∗ = (3; 5; 1; 7; 2; 6; 4), along with their corresponding

cotrees. 55

4.4 The cotree T1[�
∗] and the resulting RPG-tree R1[�

∗]; trees T ′[�∗] and T ′′[�∗] show the

contraction process. 57

iv

4.5 Two RPG-trees R1[�
∗] and R2[�

∗] and the corresponding reducible permutation graphs

F1[�
∗] and F2[�

∗], respectively, produced by the algorithm Encode Cotree.to.RPG. . . . 59

5.1 (a) The dynamic call-graph G(P; Ikey) of an application program P . (b) The reducible

permutation graph F [�∗]. (c) The dynamic call-graph G(P ∗; Ikey) of the watermarked

program P ∗. 68

5.2 (a) The real-call (f4; f6) in the call-graph G(P; Ikey) of a program P ; bold arrow. (b) The

corresponding path-call (f4; f3; f5; f6) in the call-graph G(P ∗; Ikey) of the watermarked

program P ∗; bold arrows. 70

5.3 (a) The forward call pattern f-call; (b) The backward call pattern b-call; (c) The path

call pattern p-call. The boxes with marked corners are the f|b-blocks. 71

5.4 An example of cf-statement modi�cation via opaque predicates in the case where

(fi; fj) is a water-forward function call. 72

5.5 An example of cf-statement modi�cation via opaque predicates in the case where

(fi; fj) is a real-backward function call. 72

5.6 An example of cf-statement modi�cation via opaque predicates of the function fj
in the case where (fi; fj) is a water-forward function call. 73

5.7 A block diagram of the main operations of the embedding algorithm. 75

5.8 (a) The dynamic call-graph G(Shortest Path; Ikey). (b) The reducible permutation

graph F [�∗] which encodes the watermark w = 2, where �∗ = (3; 5; 1; 4; 2). (c) The

dynamic call-graph G(Shortest Path∗; Ikey). 77

5.9 The call-tables T and T ∗ of the programs Shortest Path and Shortest Path∗,

respectively, the edge characterization table C∗, and the values of the cf -variable. 78

5.10 The function up() of the original program Laser watermarked with the naive

approach; the functions down() and health() are both water functions and belong

to category Bcallee, i.e., both are functions of G(Laser; Ikey). 82

5.11 The function up() of the original program Laser watermarked with a stealthy

approach; the functions down() and health() are both water functions and belong

to category Bcallee, i.e., both are functions of G(Laser; Ikey). 83

5.12 Graphical representation of the results for parameters (i) Execution time, (ii.a)

Disk usage and (ii.b) Heap space usage of the original program P , and the cor-

responding watermarked program under both the Naive P ∗
N and Stealthy P ∗

S ap-

proaches. 88

6.1 (a) A 2D representation of the self-inverting permutation � = (5; 6; 9; 8; 1; 2; 7; 4; 3); (b) A

2DM representation of permutation �. 98

6.2 The 1DM representations of the self-inverting permutation � = (4; 7; 6; 1; 5; 3; 2). 99

6.3 The range of colors represented on the Cartesian 3-dimensional system. 100

6.4 The brightness k`ij of the central and cross pixels p`ij of the grid-cell Cij(I), 0 ≤ ` ≤ 4,

and the brightness k`mij of the cycle-cross pixels p`mij , 1 ≤ ` ≤ 4 and m = 1; 2; 3. 103

6.5 (a) The original image I; (b) The watermarked image Iw. 104

6.6 The embedding process. 109

6.7 The original image of Lena and its two watermarked images with c = cmax and c = copt;

the watermark corresponds to SiP (6,3,2,4,5,1). 114

v

6.8 Some original images and their corresponding watermarked ones; for each image, its size

and its copt, and PSNR and SSIM values are also shown, for Q = 55. 115

6.9 The original image of Lena and its watermarked images with �2 = 0:01, �2 = 0:001 and

�2 = 0:0001. 116

6.10 (a) Watermarked image of Lena, (b) 90 degrees angled image, (c) 180 degrees angled

image, and (d) cropped image. 117

6.11 Segmentation of the S's signal into speci�c frames according to 1DM-representation of

the permutation �∗. 119

6.12 The DFT representation of a marked frame. 120

6.13 The \Red" and \Blue" segments on DFT. 121

6.14 The encoding process of audio signal watermarking. 122

7.1 Three di�erent representations of permutation �∗ = (4; 7; 6; 1; 5; 3; 2). 133

7.2 Components of a PDF �le. 134

7.3 (a) The structure of a PDF �le; (b) The code of a PDF �le containing, in object 50obj,

the text \Hello World". 135

7.4 (a) The main structural components of a PDF �le; (b) The document structure of PDF

�le. 136

7.5 The initial PDF document T and watermarked PDF document Tw using the 1D repre-

sentation of permutation �∗ = (4; 7; 6; 1; 5; 3; 2). 137

7.6 The initial PDF document T and watermarked PDF document Tw using the 2D repre-

sentation of permutation �∗ = (4; 7; 6; 1; 5; 3; 2). 138

7.7 The watermarked DS(T ∗) which encodes the RPG of �∗ = (4; 5; 3; 1; 2). 140

vi

List of Tables

5.1 General properties of watermarking models and the properties of our WarerRPG

model. 65

5.2 Execution Time (msec) . 87

5.3 Disk Usage (Kb) . 87

5.4 Heap Space Usage (Mb) . 87

5.5 Three Group of Bytecode Instructions . 89

5.6 Indicative Bytecode Instructions of each Group 89

6.1 The PSNR and SSIM values of the original and watermarked images, for compression of

qualities Q = 85, Q = 75, Q = 65, and Q = 55. 115

6.2 The PSNR values of the original and watermarked images, for Gaussian noise with vari-

ance values �2 = 0:01, �2 = 0:001, and �2 = 0:0001. 116

6.3 The PSNR values of the watermarked audio signals. 124

6.4 The Hamming distance of the watermark w and the extracted watermark w∗ after com-

mon signal attacks. 126

vii

Abstract

Maria G. Chroni. PhD, Department of Computer Science & Engineering, University of Ioan-

nina, Greece; Graduation December, 2014.

PhD thesis: Algorithmic Techniques for Encoding Permutations and Permutation Graphs for

Watermarking Software, Image, Audio, and Text.

Supervisor: Stavros D. Nikolopoulos, Professor.

Internet technology, in modern communities, has become an indispensable tool for everyday life

since most people use it on a regular basis and do many daily activities online. This frequent use

of the internet means that measures taken for internet security are indispensable since the web

is not risk-free. One of those risks is the fact that the web is an environment where intellectual

property is under threat since a huge amount of digital data are transferred every day, and thus

such data may end up on a user who falsely claims ownership.

Digital watermarking (or, simply, watermarking) is a technique for protecting the intellectual

property of a digital object; the idea is simple: a unique identi�er, which is called watermark,

is embedded into a digital object which may be used to verify its authenticity or the identity

of its owners. A digital object may be audio, picture, video, text, or software, and the water-

mark is embedded into object's data through the introduction of errors not detectable by human

perception; note that, if the object is copied then the watermark also is carried in the copy. E�-

cient watermarking techniques, should be able to embed and successfully extract the watermark,

even after the digital object has been attacked, i.e., it has been subjected to transformations by

malicious users that aim to mislead the watermark extractor.

The issues addressed in this thesis concern the design of e�cient and easily implementable

codec systems for watermarking software and digital media, such as image, audio, and text.

Previous works on digital watermarking propose speci�c encoding techniques for a speci�c type

O of a digital object, i.e., the main idea of a proposed technique for watermarking a digital object

of type O cannot be e�ciently applied to a di�erent digital object of type O′; for example,

the main idea of a proposed technique for watermarking a software (application program) P,
cannot be e�ciently applied to image I, audio (signal) S or even text T . In our work, we

overcome such a drawback by proposing algorithmic techniques for encoding a watermark w

into a self-inverting permutation (or, SiP for short) �∗, and then embedding the self-inverting

permutation �∗ into di�erent digital objects, i.e., software, image, audio, and text, by using

di�erent representations of the same SiP �∗. The data structures used to represent the SiP, as

well as the encoding techniques, encompasses important properties allowing us to design a codec

system which e�ciently detect attacks.

viii

In the �rst part of the thesis, presents the basic research on encoding watermark members

as graph structures through the use of self-inverting permutations (SiP) and algorithms for

multiple encodings. We introduce the notion of a bitonic permutation, and present our algorithm

Encode W.to.SiP for encoding an integer w as a self-inverting permutation �∗, along with the

corresponding decoding algorithm Decode SiP.to.W, and discuss important properties of the self-

inverting permutation �∗. Then, we de�ne the main graph-based data component of our codec

system, namely reducible permutation graphs (or, PRG for short), describe the two operational

phases of our codec system, and present the structure of our system's reducible permutation

graph F [�∗]. We next present the two algorithms, namely Encode SiP.to.RPG-I and -II for

encoding the self-inverting permutation �∗ as a reducible permutation ow-graph F [�∗] along

with the corresponding decoding algorithms Decode RPG.to.SiP-I and -II. Finally, we present

the properties of the reducible permutation ow-graph F [�∗] and show that node-label or edge

modi�cations on the graph F [�∗] can be e�ciently detected.

We extended the class of graphs that encode a watermark by proposing a randomized en-

coding algorithm which takes as input a self-inverting permutation �∗ and encodes the same

permutation �∗ into several cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗]. Then, we present the algorithm

Encode Cograph.to.RPG, along with its corresponding decoding algorithm, which embeds a co-

graph into an RPG by exploiting the structure and some important algorithmic properties of

its cotree. Thus, having such encoding algorithms, we can encode a watermark number w into

many RPGs F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗], n ≥ 2. A digital object can be made more resilient to

attacks if multiple copies of the same watermark w are embedded into it.

The second part of the thesis, presents how the di�erent components of our codec system can

be used for watermarking software, digital images and audio, as well as, digital text. Initially, we

present our dynamic software watermarking model WaterRPG; we �rst describe its structural

and operational components and then the embedding algorithm Embed RPG.to.CODE and the

extracting algorithm Extract CODE.to.RPG. The main idea behind the proposed watermarking

model is a systematic modi�cation of appropriate function calls of the program P , through the use

of control statements and opaque predicates, so that the execution of the watermarked program

Pw with a speci�c input gives a dynamic call-graph from which the watermark graph F [�∗] can

be easily constructed. Then, we implement our watermarking model in real Java application

programs and show two main watermarking approaches supported by the WaterRpg model,

namely naive and stealthy. We also evaluate our model under several software watermarking

assessment criteria.

Next, we present our image watermarking technique where a watermark w or, equivalently,

a self-inverting permutation �∗ of length n∗, is transformed from a numerical form to a 2D form

(i.e., 2D-representation) through the exploitation of self-inverting permutation properties. The

2D-representation can be e�ciently marked on an image I resulting thus the watermarked image

Iw. The main idea of the proposed algorithms is that a self-inverting permutation �
∗ is embedded

into an image I by �rst mapping the elements of �∗ into an n∗×n∗ matrix A∗ and then using the

information stored in A∗ to mark speci�c areas of image I in the frequency domain resulting the

watermarked image Iw. We have evaluated the embedding and extracting algorithms by testing

them on various and di�erent in characteristics images that were initially in JPEG format and we

had positive results as the watermark was successfully extracted even if the image was converted

back into JPEG format with various compression ratios.

ix

Similarly, since an audio signal is one dimensional object, we present a transformation of a

watermark w or, equivalently, a self-inverting permutation �∗ of length n∗, from a numerical

form to a 1D form (i.e., 1D-representation) and then an algorithm which embeds w into an

audio signal. More precisely, our proposed algorithm embeds a self-inverting permutation �∗

over the set Nn∗ into an audio signal S by �rst mapping the elements of �∗ into an 1D-matrix

B∗ of length n′ = n∗ × n∗, and then, based on the information stored in B∗, marking speci�c

areas of audio S in the frequency domain resulting thus the watermarked audio Sw. An e�cient

algorithm extracts the embedded self-inverting permutation �∗ from the watermarked audio Sw
by locating the positions of the marks in Sw; it enables us to reconstruct the 1D representation

of �∗ and, then, obtain the watermark w.

Based on the three di�erent representations of self-inverting permutation (SiP), namely 1D-

representation, 2D-representation, and RPG-representation (i.e., the encoding of permutation

�∗ as a reducible permutation graph F ∗[�∗]), we present the algorithms Embed SiP.to.PDF-I,

Embed SiP.to.PDF-II, and Embed RPG.to.PDF, respectively, along with the corresponding ex-

tracting algorithms, for embedding a watermark number (or, equivalently, a self-inverting per-

mutation �∗ or a reducible permutation graph F ∗[�∗]) into a PDF document �le T . We have

evaluated the embedding and extracting algorithms by testing them on various and di�erent in

characteristics PDF documents.

Finally, we conclude the thesis by summarizing our results, discussing possible future exten-

sions, and proposing open problems for further research in the aria of digital watermarking and,

in general, in the aria of information hiding.

x

Ðåñßëçøç

Ìáñßá Ã. ×ñüíç. PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ & ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí.

Áðïöïßôçóç, ÄåêÝìâñéïò 2014.

ÄéäáêôïñéêÞ ÄéáôñéâÞ: ÁëãïñéèìéêÝò Ôå÷íéêÝò Êùäéêïðïßçóçò ÌåôáèÝóåùí êáé Ìåôáèåôéêþí

ÃñáöçìÜôùí ãéá ÕäáôïóÞìáíóç Ëïãéóìéêïý, Åéêüíáò, ¹÷ïõ êáé ÊåéìÝíïõ.

ÅðéâëÝðùí: Óôáýñïò Ä. Íéêïëüðïõëïò, ÊáèçãçôÞò.

Óôç óýã÷ñïíç åðï÷Þ ôï äéáäßêôõï áðïôåëåß áíáðüóðáóôï ôå÷íïëïãéêü ìÝóï âïÞèåéáò ôùí äñáóôç-

ñéïôÞôùí ôçò êáèçìåñéíÞò ìáò æùÞò, êáèþò ÷ñçóéìïðïéåßôáé ãéá ôç äéåêðåñáßùóç óýíèåôùí, êáé

óõ÷íÜ ÷ñïíïâüñùí, åðáããåëìáôéêþí êáé êáèçìåñéíþí åñãáóéþí. Ç óõíå÷Þò êáé óõ÷íÞ ÷ñÞóç ôïõ

äéáäéêôýïõ, ï üãêïò ôçò øçöéáêÞò ðëçñïöïñßáò ðïõ äéáêéíåßôáé ìÝóù áõôïý, ôï åýñïò ôçò çëéêéá-

êÞò äéáóôñùìÜôùóçò ÷ñÞóçò ôïõ, êáé åðéðëÝïí ïé ðïëëáðëïß êßíäõíïé ôçò ðñïóùðéêÞò áóöÜëåéáò

ôùí ÷ñçóôþí ôïõ, áðáéôïýí áõîçìÝíá êáé ôå÷íïëïãéêÜ åõöõÞ ìÝôñá ðñïóôáóßáò áõôïý.

Ç øçöéáêÞ õäáôïóÞìáíóç (Þ, õäáôïóÞìáíóç) åßíáé ìéá ôå÷íéêÞ ãéá ôçí ðñïóôáóßá ôçò ðíåõìá-

ôéêÞò éäéïêôçóßáò åíüò øçöéáêïý áíôéêåéìÝíïõ. Ç éäÝá åßíáé áðëÞ: Ýíá ìïíáäéêü áíáãíùñéóôéêü,

ôï ïðïßï ïíïìÜæåôáé õäáôüóçìá, åíóùìáôþíåôáé óôï øçöéáêü áíôéêåßìåíï ðñïêåéìÝíïõ íá ÷ñç-

óéìïðïéçèåß ãéá ôçí áðüäåéîç ôçò áõèåíôéêüôçôáò Þ áíáãíþñéóç ôçò ôáõôüôçôáò ôïõ øçöéáêïý

áíôéêåéìÝíïõ áðü ôïõò éäéïêôÞôåò ôïõ. ¸íá øçöéáêü áíôéêåßìåíï ìðïñåß íá åßíáé øçöéáêüò Þ÷ïò,

åéêüíá, êåßìåíï, Þ ëïãéóìéêü, êáé ôï õäáôüóçìá åíóùìáôþíåôáé óôï øçöéáêü áíôéêåßìåíï åéóÜ-

ãïíôáò óå áõôü ôñïðïðïéÞóåéò ðïõ äåí åßíáé ïñáôÝò êáé äåí ãßíïíôáé áíôéëçðôÝò. Ãéá íá åßíáé

áðïäïôéêÞ ìéá ðñïôåéíüìåíç ôå÷íéêÞ õäáôïóÞìáíóçò, èá ðñÝðåé íá åíóùìáôþíåé áðïôåëåóìáôéêÜ

ôï õäáôüóçìá óôá øçöéáêÜ äåäïìÝíá ôïõ áíôéêåéìÝíïõ êáé íá ôï åîÜãåé åðéôõ÷þò, áêüìç êáé áí

ôï áíôéêåßìåíï áõôü Ý÷åé õðïóôåß ôñïðïðïéÞóåéò, äçëáäÞ Ý÷åé äå÷èåß åðéèÝóåéò áðü êáêüâïõëïõò

÷ñÞóôåò ìå óêïðü ôçí ìç-åöéêôÞ Þ áíåðéôõ÷Þ åîáãùãÞ ôïõ õäáôüóçìïõ.

Ç ðáñïýóá äéäáêôïñéêÞ äéáôñéâÞ ðñáãìáôåýåôáé èÝìáôá ó÷åôéêÜ ìå ôçí ó÷åäßáóç áðïôåëåóìáôé-

êþí êáé åýêïëá õëïðïéÞóéìùí óõóôçìÜôùí êùäéêïðïßçóçò ãéá ôçí õäáôïóÞìáíóç ëïãéóìéêïý êáé

øçöéáêþí ìÝóùí, üðùò åßíáé ç åéêüíá, ï Þ÷ïò, êáé ôï êåßìåíï. Óôá Ýùò óÞìåñá åñåõíçôéêÜ áðïôå-

ëÝóìáôá øçöéáêÞò õäáôïóÞìáíóçò, êÜèå ðñïôåéíüìåíç ôå÷íéêÞ êùäéêïðïßçóçò êáé åíóùìÜôùóçò

åöáñìüæåôáé óõíÞèùò óå Ýíá óõãêåêñéìÝíï åßäïò øçöéáêïý áíôéêåéìÝíïõ O. Ðéï óõãêåêñéìÝíá,

ôå÷íéêÝò êùäéêïðïßçóçò ðïõ Ý÷ïõí åöáñìïóôåß ãéá ôçí õäáôïòÞìáíóç åíüò øçöéáêïý áíôéêåéìÝíïõ

O, äåí ìðïñïýí íá åöáñìïóôïýí, ôïõëÜ÷éóôïí åýêïëá, óå Ýíá äéáöïñåôéêü áíôéêåßìåíï O′. Ãéá ðá-

ñÜäåéãìá, ç âáóéêÞ éäÝá ìéáò ôå÷íéêÞò ðïõ ÷ñçóéìïðïéÞèçêå óôçí õäáôïóÞìáíóç åíüò ëïãéóìéêïý

P, äåí ìðïñåß íá åöáñìïóôåß áðïôåëåóìáôéêÜ óôçí åéêüíá I, óôïí Þ÷ï S Þ áêüìá óå Ýíá êåßìåíï

T . Ç óçìáíôéêÞ óõíåéóöïñÜ ôçò ðáñïýóáò äéáôñéâÞò Ýãêåéôáé óôç ó÷åäßáóç áðïôåëåóìáôéêþí

áëãïñéèìéêþí ôå÷íéêþí êùäéêïðïßçóçò åíüò õäáôüóçìïõ w óå ìéá áõôïáíáóôñÝöïõóá ìåôÜèåóç

xi

(Þ, SiP) �∗, êáèþò êáé óôçí åíóùìÜôùóç ôçò áõôïáíáôñÝöïõóáò ìåôÜèåóçò �∗ óå äéáöïñåôéêÜ

øçöéáêÜ áíôéêåßìåíá, üðùò ëïãéóìéêü, åéêüíá, Þ÷ïò, êáé êåßìåíï, ÷ñçóéìïðïéþíôáò äéáöïñåôéêÝò

áíáðáñáóôÜóåéò ôçò ßäéáò ìåôÜèåóçò �∗. Ïé äïìÝò äåäïìÝíùí ðïõ ÷ñçóéìïðïéïýíôáé ãéá ôçí áíáðá-

ñÜóôáóç ôçò SiP, üðùò åðßóçò êáé ïé ôå÷íéêÝò êùäéêïðïßçóçò, åíóùìáôþíïõí óçìáíôéêÝò éäéüôçôåò

ðïõ äßíïõí ôç äõíáôüôçôá ó÷åäßáóçò óõóôçìÜôùí êùäéêïðïßçóçò ðïõ áíé÷íåýïõí áðïôåëåóìáôéêÜ

Ýíá ðëÞèïò êáêüâïõëùí åðéèÝóåùí.

Óôï ðñþôï ìÝñïò ôçò äéáôñéâÞò, ðáñïõóéÜæïíôáé ôá âáóéêÜ åñåõíçôéêÜ áðïôåëÝóìáôá ãéá ôçí

êùäéêïðïßçóç áñéèìçôéêþí õäáôïóçìÜôùí óå ãñáöÞìáôá ìÝóù ôçò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò

(SiP) �∗, êáèþò êáé áëãüñéèìïé ðïëëáðëÞò êùäéêïðïßçóçò. ÅéóÜãïõìå áñ÷éêÜ ôçí Ýííïéá ôùí äé-

ôïíéêþí (bitonic) ìåôáèÝóåùí êáé óôç óõíÝ÷åéá ðáñïõóéÜæïõìå ôïí áëãüñéèìï Encode W.to.SiP

ãéá ôçí êùäéêïðïßçóç åíüò áêåñáßïõ áñéèìïý w óå ìéá áõôïáíáóôñÝöïõóá ìåôÜèåóç �∗, üðùò

åðßóçò êáé ôïí áíôßóôïé÷ï áëãüñéèìï áðïêùäéêïðïßçóçò Decode SiP.to.W, ìå ðáñÜëëçëç áíá-

öïñÜ óôéò óçìáíôéêÝò éäéüôçôåò ìéáò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò �∗. Óôç óõíÝ÷åéá, ïñßæïõìå

ôç âáóéêÞ ãñáöïèåùñçôéêÞ óõíéóôþóá ôïõ ðñïôåéíüìåíïõ óõóôÞìáôïò êùäéêïðïßçóçò, ôçí ïðïßá

ïíïìÜæïõìå áíáãþãéìï ìåôáèåôéêü ãñáöÞìáôá (reducible permutation graphs Þ, PRG), ðåñé-

ãñÜöïõìå ôéò öÜóåéò êùäéêïðïßçóçò åíüò õäáôüóçìïõ óå áíáãþãéìï ìåôáèåôéêü ãñÜöçìá F [�∗],

êáèþò êáé ôç äïìÞ ôïõ ãñáöÞìáôïò F [�∗]. Ðéï óõãêåêñéìÝíá, ðáñïõóéÜæïõìå ôïõò áëãïñßèìïõò

Encode SiP.to.RPG-I êáé -II ãéá ôçí êùäéêïðïßçóç ìéáò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò �∗ óå

Ýíá áíáãþãéìï ìåôáèåôéêü ãñÜöçìá F [�∗], êáèþò êáé ôïõò áíôßóôïé÷ïõò áëãïñßèìïõò áðïêù-

äéêïðïßçóçò Decode RPG.to.SiP-I êáé -II. ÔÝëïò, áíáöÝñïõìå ôéò éäéüôçôåò ôïõ áíáãþãéìïõ

ìåôáèåôéêïý ãñáöÞìáôïò F [�∗] êáé áðïäåéêíýïõìå üôé êáêüâïõëåò åðéèÝóåéò óôï ãñÜöçìá F [�∗],

üðùò ìåôïíïìáóßá êüìâùí êáé ôñïðïðïßçóç áêìþí, ìðïñïýí íá áíé÷íåõôïýí áðïôåëåóìáôéêÜ.

Åðåêôåßíïõìå ôç êëÜóç ôùí ãñáöçìÜôùí ðïõ êùäéêïðïéïýí Ýíá õäáôüóçìá ðñïôåßíïíôáò Ýíáí

ðéèáíïôéêü áëãüñéèìï êùäéêïðïßçóçò (randomized algorithm), ï ïðïßïò äÝ÷åôáé ùò åßóïäï ìéá áõ-

ôïáíáóôñÝöïõóá ìåôÜèåóç �∗ êáé êùäéêïðïéåß áõôÞ óå äéáöïñåôéêÜ óõìðëçñùìáôéêÜ-áíáãþãéìá

ãñáöÞìáôá (complement-reducible graphs) Þ cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗]. Óôç óõíÝ÷åéá,

ðáñïõóéÜæïõìå ôïí áëãüñéèìï Encode Cograph.to.RPG, êáèþò êáé ôïí áíôßóôïé÷ï áëãüñéèìï

áðïêùäéêïðïßçóçò, ï ïðïßïò ìåôáôñÝðåé Ýíá cograph Ci[�
∗] óå Ýíá áíáãþãéìï ìåôáèåôéêü ãñÜ-

öçìá Fi[�
∗] ÷ñçóéìïðïéþíôáò ôç äïìÞ ôïõ êáé óçìáíôéêÝò áëãïñéèìéêÝò éäéüôçôåò ôçò ìïíáäéáßáò

äåíäñéêÞò áíáðáñÜóôáóçò (cotree) åíüò cograph. ÅðïìÝíùò, ìðïñïýìå íá êùäéêïðïéÞóïõìå Ýíá

áñéèìçôéêü õäáôüóçìá w óå ðïëëÜ áíáãþãéìá ìåôáèåôéêÜ ãñáöÞìáôá F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗],

n ≥ 2. Ç åíóùìÜôùóç ðïëëáðëþí áíôéãñÜöùí ðïõ êùäéêïðïéïýí ôï ßäéï õäáôüóçìá óå Ýíá

øçöéáêü áíôéêåßìåíï êáèéóôÜ áõôü ðéï áíèåêôéêü óå êáêüâïõëåò åðéèÝóåéò.

Óôï äåýôåñï ìÝñïò ôçò äéáôñéâÞò, ðáñïõóéÜæïíôáé áëãïñéèìéêÝò ôå÷íéêÝò õäáôïóÞìáíóçò ëï-

ãéóìéêïý, øçöéáêÞò åéêüíáò, Þ÷ïõ, êáé êåéìÝíïõ, ïé ïðïßåò âáóßæïíôáé óôá äïìéêÜ óôïé÷åßá ðïõ

áíáðôý÷ôçêáí êáé ðáñïõóéÜóôçêáí óôï ðñþôï ìÝñïò . Áñ÷éêÜ, ðáñïõóéÜæåôáé ôï ìïíôÝëï äõíá-

ìéêÞò õäáôïóÞìáíóçò ëïãéóìéêïý, ôï ïðïßï ïíïìÜæïõìå WaterRPG, êáé áíáëýïíôáé ïé äïìéêÝò

êáé ëåéôïõñãéêÝò óõíéóôþóåò ôïõ, êáé óôç óõíÝ÷åéá ðáñïõóéÜæåôáé ï áëãüñéèìï åíóùìÜôùóçò

Embed RPG.to.CODE ôïõ õäáôïóÞìáôïò óôï êþäéêá åíüò ðñïãñÜììáôïò P , ðñïêýðôïíôáò Ýôóé ôï

õäáôïóçìáóìÝíï ðñüãñáììá Pw , êáèþò êáé ï áëãüñéèìïò åîáãùãÞò Extract CODE.to.RPG ôïõ

õäáôïóÞìáôïò áðü ôïí êþäéêá ôïõ ðñïãñÜììáôïò Pw. Ç âáóéêÞ éäÝá ôïõ ðñïôåéíüìåíïõ óõóôÞìá-

ôïò õäáôïóÞìáíóçò âáóßæåôáé óôç óõóôçìáôéêÞ ôñïðïðïßçóç êáôÜëëçëùí êëÞóåùí óõíáñôÞóåùí

åíüò ðñïãñÜììáôïò P , ÷ñçóéìïðïéþíôáò óõíèÞêåò åëÝã÷ïõ êáé áäéáöáíÞ êáôçãïñÞìáôá, Ýôóé

þóôå ç åêôÝëåóç ôïõ õäáôïóçìáóìÝíïõ ðñïãñÜììáôïò Pw ìå ìéá óõãêåêñéìÝíç åßóïäï Ikey íá

xii

åðéóôñÝöåé Ýíá äõíáìéêü ãñÜöçìá êëÞóåùí áðü ôï ïðïßï ìðïñåß åýêïëá íá êáôáóêåõáóôåß ôï ãñÜ-

öçìá F [�∗]. Ôï ðñïôåéíüìåíï ìïíôÝëï Ý÷åé õëïðïéçèåß óå ðñïãñÜììáôá ðïõ Ý÷ïõí áíáðôõ÷èåß

óôç ãëþóóá ðñïãñáììáôéóìïý Java, êáé ç õëïðïßçóÞ ôïõ åìðåñéÝ÷åé äýï ðñïóåããßæåéò: ôçí naive

êáé ôçí stealthy ðñïóÝããéóç. ÔÝëïò, ôï ðñïôåéíüìåíï ìïíôÝëï áîéïëïãÞèçêå ÷ñçóéìïðïéþíôáò

äéÜöïñá êñéôÞñéá ãéá ôçí åêôßìçóç ôçò áðïôåëåóìáôéêüôçôÜò ôïõ.

Óôç óõíÝ÷åéá, ðáñïõóéÜæïõìå ôå÷íéêÝò õäáôïóÞìáíóçò øçöéáêÞò åéêüíáò âáóéæüìåíåò óôï ìå-

ôáó÷çìáôéóìü åíüò õäáôïóÞìáôïò w Þ, éóïäýíáìá, ìéá áõôïáíáóôñÝöïõóá ìåôÜèåóç �∗ ìÞêïõò n∗

áðü áñéèìçôéêÞ ìïñöÞ óå äéóäéÜóôáôç (2Ä-áíáðáñÜóôáóç) ÷ñçóéìïðïéþíôáò ôéò éäéüôçôåò ôçò áõ-

ôïáíáóôñÝöïõóáò ìåôÜèåóçò �∗. Ç 2Ä-áíáðáñÜóôáóç ìéáò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò ìðïñåß

íá åíóùìáôùèåß áðïôåëåóìáôéêÜ óå ìéá øçöéáêÞ åéêüíá, êáèþò ç åéêüíá áðïôåëåß Ýíá äéáóäéÜóôáôï

áíôéêåßìåíï. Ç âáóéêÞ éäÝá ôùí ðñïôåéíüìåíùí áëãïñßèìùí õäáôïóÞìáíóçò åéêüíáò Ýãêåéôáé óôçí

áðåéêüíéóç ôçò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò �∗ óå Ýíáí n∗×n∗ ðßíáêá A∗, óôç ÷ñÞóç ôçò ðëç-

ñïöïñßáò ðïõ åßíáé áðïèçêåõìÝíç óå óõãêåêñéìÝíåò èÝóåéò ôïõ ðßíáêá A∗, êáé óôçí ôñïðïðïßçóç

ôùí áíôßóôïé÷ùí ðåñéï÷þí ôçò øçöéáêÞò åéêüíáò I óôï ðåäßï ôùí óõ÷íïôÞôùí, ðáñÜãïíôáò Ýôóé

ôçí õäáôïóçìáóìÝíç åéêüíá Iw. Ïé áëãüñéèìïé åíóùìÜôùóçò êáé åîáãùãÞò ôïõ õäáôïóÞìáôïò óå

ìéá øçöéáêÞ åéêüíá áîéïëïãÞèçêáí ðåéñáìáôéêÜ óå Ýíá óýíïëï øçöéáêþí åéêüíùí ôýðïõ JPEG,

ìå äéáöïñåôéêÜ ÷áñáêôçñéóôéêÜ, äéáöïñåôéêÜ ìåãÝèç, êáé äéáöïñåôéêÝò áíáëïãßåò, äßíïíôáò èåôéêÜ

áðïôåëÝóìáôá êáèþò ôï õäáôüóçìá åîÜãåôáé åðéôõ÷þò áêüìç êáé óôçí ðåñßðôùóç ðïõ ç åéêüíá

õößóôáôáé õøçëÞ óõìðßåóç.

¸÷ïíôáò ðáñïõóéÜóåé ôéò ôå÷íéêÝò õäáôïóÞìáíóçò øçöéáêþí åéêüíùí êáé êáèüôé ï øçöéáêüò

Þ÷ïò åßíáé Ýíá ìïíïäéÜóôáôï óÞìá, ðáñïõóéÜæïõìå Ýíá ìåôáó÷çìáôéóìü ôïõ õäáôïóÞìáôïò w Þ,

éóïäýíáìá, ôçò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò �∗ ìÞêïõò n∗, áðü ôçí áñéèìçôéêÞ ôïõ ìïñöÞ óôç

1Ä ìïñöÞ (1Ä-áíáðáñÜóôáóç) êáé óôç óõíÝ÷åéá ðáñïõóéÜæïõìå ôïí áëãüñéèìï ðïõ åíóùìáôþíåé

ôï w óôï øçöéáêü Þ÷ï. Ðéï óõãêåêñéìÝíá, ïé ðñïôåéíüìåíïé áëãüñéèìïé åíóùìáôþíïõí ìéá áõôïá-

íáóôñÝöïõóá ìåôÜèåóç �∗ ìÞêïõò n∗ óå Ýíá ç÷çôéêü óÞìá S, áðåéêïíßæïíôáò ôá óôïé÷åßá ôïõ �∗

óå Ýíá ìïíïäéÜóôáôï ðßíáêá B∗ ìÞêïõò n′ = n∗ × n∗, êáé óôç óõíÝ÷åéá ìå âÜóç ôá óôïé÷åßá ôïõ

ðßíáêá B∗ ôñïðïðïéïýìå ôï ç÷çôéêü óÞìá S óôï ðåäßï ôùí óõ÷íïôÞôùí, åðéóôñÝöïíôáò ôåëéêÜ ôï

õäáôïóçìáóìÝíï ç÷çôéêü óÞìá Sw. Ï áëãüñéèìïò åîáãùãÞò ôïõ õäáôïóÞìáôïò âáóßæåôáé óôïí

åíôïðéóìü ôùí óçìåßùí óôï Sw ðïõ Ý÷ïõí ôñïðïðïéçèåß, ãåãïíüò ðïõ ìáò äßíåé ôç äõíáôüôçôá íá

áíáêáôáóêåõÜóïõìå ôçí 1Ä-áíáðáñÜóôáóç ôïõ �∗, êáé åðïìÝíùò íá ðÜñïõìå ôï õäáôüóçìá w.

Âáóéæüìåíïé óôéò ôñåéò äéáöïñåôéêÝò áíáðáñáóôÜóåéò ìéáò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò, äç-

ëáäÞ ôçí 1Ä-áíáðáñÜóôáóç, ôç 2Ä-áíáðáñÜóôáóç, êáé ôçí RPG-áíáðáñÜóôáóç (Þôïé ç êùäéêï-

ðïßçóç ôçò ìåôÜèåóçò �∗ óå Ýíá áíáãþãéìï ìåôáèåôéêü ãñÜöçìá F ∗[�∗]), ðáñïõóéÜæïõìå ôïõò

áëãïñßèìïõò Embed SiP.to.PDF-I, Embed SiP.to.PDF-II, êáé Embed RPG.to.PDF, áíôßóôïé÷á,

ãéá ôçí åíóùìÜôùóç åíüò õäáôïóÞìáôïò w (Þ éóïäýíáìá ìéáò áõôïáíáóôñÝöïõóáò ìåôÜèåóçò �∗

Þ åíüò áíáãþãéìïõ ìåôáèåôéêïý ãñáöÞìáôïò F ∗[�∗]) óå Ýíá øçöéáêü êåßìåíï T ôýðïõ PDF. Ïé

áëãüñéèìïé åíóùìÜôùóçò êáé åîáãùãÞò áîéïëïãÞèçêáí ðåéñáìáôéêÜ óå äéáöïñåôéêÜ PDF áñ÷åßá.

Ôï êåßìåíï ôçò äéáôñéâÞò ïëïêëçñþíåôáé óõíïøßæïíôáò ôá åñåõíçôéêÜ áðïôåëÝóìáôÜ ìáò, ðñï-

ôåßíïíôáò ìåëëïíôéêÝò åðåêôÜóåéò, êáèþò êáé áíïé÷ôÜ åñåõíçôéêÜ ðñïâëÞìáôá óôçí ðåñéï÷Þ ôçò

øçöéáêÞò õäáôïóÞìáíóçò êáé ãåíéêüôåñá óôçí ðåñéï÷Þ ôçò áðüêñõøçò ðëçñïöïñßáò.

xiii

Chapter 1

Introduction

1.1 Information Hiding

1.2 Digital Watermarking

1.3 Motivation

1.4 The Structure of the Thesis

1.5 Main Results

1.1 Information Hiding

Information hiding, steganography, and watermarking are three closely related �elds that have

a great deal of overlap and share many technical approaches. However, there are fundamental

philosophical di�erences that a�ect the requirements, and thus the design, of a technical solution.

In this section, we discuss these di�erences, we give some historical examples on how steganogra-

phy used in ancient times and present the importance of information hiding techniques in current

era.

Information hiding (or data hiding) is a general term encompassing a wide range of problems

beyond that of embedding messages in content. The term hiding here can refer to either making

the information imperceptible (as in watermarking) or keeping the existence of the information

secret. Information hiding can thus be thought as yet another tool to convey information and

provide privacy, ownership proof, and deter piracy and copyright infringement.

Staganography, as a branch of information hiding, is not a new method. The technical term

itself is derived from the Greek words steganos (óôåãáíüò), which means \covered", and graphi

(ãñáöÞ), which means \writing". Steganography is the art of concealed communication. The

very existence of a message is secret. The �rst use of steganography is reported by Herodotus, the

so-called father of history, who mentions that in ancient Greek, hidden text was written on wax

tablets. When Demeratus wanted to notify Sparta that the king of Persia, Xerxes, intended to

invade Greece, he wrote this message on a tablet and covered it with wax. To recover the message

1

the other people in Sparta simply had to scrape the wax o� the tablet. Aeneas the Tactician

mentions in his documents a lot of other steganographic schemes. Secret letters can be hidden in

the messengers' shoe soles or women's ear rings, secret text could be written on wood tables and

then whitewashed or one could use pigeons to carry secret notes. Aeneas also suggested some

schemes which are very similar to those. One of these suggested techniques included hiding text

by making very small holes below or above letters or by changing the heights of letter-strokes in

a cover text. Another ingenious method was to shave the head of a messenger and to paint the

secret letters on the messenger's head [43].

In ancient China, people used paper masks to agree about the locations of the secret letters.

Both, the sender and the receiver had the same paper mask with a number of holes cut at random

locations. To conceal a message, the sender places this mask over a sheet of paper, writes the

secret message into the holes and �lls up the other locations by composing a cover-text. The

receiver can read the secret message by placing his mask over the complete message. Of course,

this technique assumes that the cover text does not cause the suspicion of a third party. It seems

surprising that Cardan, an Italian mathematician, reinvented this scheme in the 16th century

and that a British bank recommended to its customers in 1992 (!) to conceal the personal

information number (for the cash machine) using a similar system. The idea behind this paper

mask scheme is to \camouage" the secret part in an innocent sounding message.

Very famous is a message which a German spy sent in World War II:

\Apparently neutral�s protest is thoroughly discounted and ignored. Isman hard hit. Blockade

issue a�ects pretext for embargo on by products, ejecting suets and vegetable oils."

Taking the second letter in each word reveals the following secret message:

\Pershing sails from NY June 1"

It becomes apparent that people from ancient times need to communicate and exchange secret

messages, ensuring the privacy and authentication of their content. The digital revolution has

penetrated every aspect of our lives, and has formed a new way of communication. Everyday

people communicate through world wide web by exchanging digital text, images, video, or audio.

A vast amount of digital data are transferred every day. The ease of distributing fast and in the

original form digital content through internet, has led to an increment in privacy infringement

from unwanted parties. This has signi�cantly a�ected not only the global economy but also

people's personal lives, since personal data are used or transmitted without the consent of the

owner. It is estimated that digital piracy costs the global economy somewhere around $75 billion

annually. Staganography and watermarking appears in digital era as means of privacy protection,

and what it makes them to distinguish from the ancient methods is the cover for secret data,

i.e., the human skin, game, etc. has been replaced by digital text, image, audio, video, software.

Steganography is the process where the digital object is changed by the addition of a secret

message in a way that only the sender and the intended recipient is able to detect the message

sent through it. It is an invisible message, and thus the detection is not easy. It is a better way

of sending secret messages than encoded messages as cryptography does.

Watermarking is used to verify the identity and authenticity of the owner of a digital image.

The term \digital watermark" was �rst coined in 1993 by Andrew Tirkel et al. [116]. It is a

process in which the information which veri�es the owner is embedded into the digital object;

2

Embed Extract−→ Ow

O

w
w

→

key

→

key

−→ −→

−→

−→

Figure 1.1: A formal view of digital watermarking.

note that it is embedded in a way that it is inseparable from the data and so that it is resistant

to many operations not degrading the host object. These objects could be either video, picture,

audio, or software. For example, famous artists watermark their pictures and images, ensuring

thus that every copy of the image is a watermarked copy.

It is worth noting that staganography and watermarking although they are similar concepts,

they present some basic di�erences. The information hidden by a watermarking system is always

associated to the digital object to be protected or to its owner while steganographic systems just

hide any information. \Robustness" criteria are also di�erent, since

◦ steganography is mainly concerned with detection of the hidden message, while

◦ watermarking concerns potential removal by a pirate.

Steganographic communications are usually point-to-point (between sender and receiver) while

watermarking techniques are usually one-to-many.

Another concept which is related to watermarking is cryptography. A number of analogies to

cryptographic concepts have been made about watermarking, and according to [45] these analo-

gies are misleading or incorrect. Cryptography is de�ned as the art and science of secret writing.

The word itself comes from Greek where the words kruptos (êñõðôüò) and graphen (ãñáöÞí)

mean secret and writing, respectively. The focus in cryptography is to protect the content of the

message and to keep it secure from unintended audiences. Encryption of digital objects prevents

an intruder from accessing the contents without a proper decryption key. But once the data is de-

crypted, it can be duplicated and distributed illegally. In digital watermarking if somebody tries

to copy the digital object, the watermark is copied along with it. Additionally, in cryptography,

the message is usually scrambled and unreadable. However, when the communication happens,

it is known or noticed. Although the information is hidden in the cipher, an interception of the

message can be damaging, as it still shows that there is communication between the sender and

receiver. Digital watermarking requires imperceptibility, i.e., the watermark is an invisible mark

that is embedded in the digital object, without making it's presence noticeable.

1.2 Digital Watermarking

Paper watermarks appeared in the art of handmade papermaking nearly 700 years ago. The

oldest watermarked paper found in archives dates back to 1292 and has its origin in Fabriano,

Italy, which is considered the birthplace of watermarks. The analogy between paper watermarks,

3

123456789
Secrete Input (Key)

Key123456789

Embedder

Extractor

Figure 1.2: An abstract view of software and digital media watermarking.

steganography, and digital watermarking is obvious, and in fact, paper watermarks in money bills

or stamps [135] actually inspired the �rst use of the term watermarking in the context of digital

data.

In 1961, Emil Hembrooke of the Muzac Corporation, in his patent entitled \Identi�cation of

sound and like signals" [65] described a method for imperceptibly embedding an identi�cation

code into music for the purpose of proving ownership. The term identi�cation code for ownership

proving was later replaced by term \digital watermark" in works of the authors [116] and [71].

It took a few more years until 1996 before watermarking received remarkable attention. Since

then, digital watermarking has gained a lot of attention and has evolved very quickly, and while

there are a lot of topics open for further research, practical working methods and systems have

been developed.

Digital watermarking (or, simply, watermarking) is a technique for protecting the intellectual

property of a digital object; the idea is simple: a unique identi�er, which is called watermark,

is embedded into a digital object which may be used to verify its authenticity or the identity

of its owners [29]. A digital object may be audio, picture, video, text, or software, and the

watermark is embedded into object's data through the introduction of errors not detectable by

human perception [15]; note that, if the object is copied then the watermark also is carried in

the copy.

Formally, the watermarking problem can be described as the problem of embedding a wa-

termark w into an object O and, thus, producing a new object Ow, such that w can be reliably

located and extracted from Ow even after Ow has been subjected to transformations; for exam-

ple, compression in case the object is an image or optimization in case the object is software.

An abstract view of watermarking with side information is depicted in Figure 1.1 (see also,

Figure 1.2).

In the following sections we present a digital watermarking classi�cation, various attacks on

watermarks, and we give an overview of the watermarking techniques proposed in the literature

in software, image, audio, and text watermarking.

4

Watermarking Classification

Cover Data Perceptibility Robustness Watermark Type Application

Text

Image

Audio

Video

Visible

Invisible

Robust

Fragile

Semi-fragile

Noise

Code

Fingerprinting

Extraction

Non-blind

Semi-blind

Blind

Static

DynamicSoftware

Image
format

Copyright
protection

Data
authentication

Copy
protection

Broadcast
monitoring

Figure 1.3: Digital watermarking classi�cation.

1.2.1 Watermarking Classi�cation

Digital watermarking has some very basic characteristics, according to the purpose they serve.

Figure 1.3 shows classi�cation of watermarking techniques.

Digital Watermarking can be applied into several digital objects such as text, image, audio,

video, and software. According to perceptivity, a watermark is either visible or invisible. An

example of visible watermark is the logo. Invisible watermarks will not appear as a legible image

to the end-user but can be extracted by some algorithm in the end-user's direct control. Authors

of [43] de�ne robustness as the \ability to detect the watermark after common signal processing

operations". In case where a watermark tolerates some of the operations it is characterized

as semi-fragile. Fragile watermarks will always be destroyed when the digital object has been

changed. In image, audio, and video watermarking techniques, the watermark is represented

in the form of a noise signal, such as pseudo noise, gaussian noise. Another common type of

a watermark, which is met and in text watermarking, is image type, where a binary image, a

stamp, or a logo is inserted into the cover data. The watermark of code type, is used in software

watermarking.

Copyright protection is the most important application of watermarking. The objective is

to embed information identi�es the copyright owner of the digital media, in order to prevent

other parties from claiming the copyright. This application requires a high level of robustness to

ensure that embedded watermark cannot be removed without causing a signi�cant distortion in

digital media. In �ngerprinting a di�erent watermark embedded into each distributed copy, in

order to identify single distributed copies of digital object. It is very similar to the serial number

of software product. Data authentications' objective is to detect modi�cation of data. This can

be achieved with so called fragile watermark that have a low robustness to certain modi�cations.

Copy protection tries to �nd a mechanism to disallow unauthorized copy of digital media. In

5

broadcast monitoring an identi�cation code is embedded in the digital data being broadcasted.

A computer-base monitoring system can detect the embedded watermark, to ensure that they

receive all of the airtime they purchase from the broadcasters.

Finally, in order to extract the watermark information, blind, semi-blind, non-blind, static, or

dynamic techniques are used. Non-blind techniques require at least an original media. It extracts

a watermark from the possibly distorted image and the original media. Semi-blind techniques do

not require an original media for detection, whereas blind techniques require neither an original

media nor the embedded watermark. It is also referred to as public watermarking. Static or

dynamic techniques refer to software watermarking [32]. A static software watermark is one

inserted in the data area or the text of codes. The extraction of such watermark needs not run

the software. A dynamic software watermark is inserted in the execution state of a software

object. More precisely, in dynamic software watermarking, what has been embedded is not the

watermark itself but some codes which cause the watermark to be expressed, or extracted, when

the software is run.

1.2.2 Properties

There are three main requirements of digital watermarking. They are transparency, robustness,

and capacity, which are presented below.

• Transparency (or Fidelity or Imperceptibility). The digital watermark should not a�ect

the quality of the original digital object after it is watermarked. In [43] transparency is

de�ned as \perceptual similarity between the original and the watermarked versions of

the cover work". Watermarking should not introduce visible distortions because if such

distortions are introduced it reduces the commercial value of the image.

• Robustness. Authors of [43] de�ne robustness as the \ability to detect the watermark

after common signal processing operations". Watermarks could be removed intentionally

or unintentionally by simple processing operations. Hence watermarks should be robust

against variety of attacks.

• Capacity (or Data Payload). Capacity or data payload is de�ned as \the number of

bits a watermark encodes within a unit of time or work". This property describes how

much data should be embedded as a watermark to successfully detect during extraction.

Watermark should be able to carry enough information to represent the uniqueness of the

digital object [43].

1.2.3 Attacks

A watermarked object is likely to be subjected to certain manipulative processes before it reaches

the receiver. Common signal processing functions such as analog-to-digital conversion, digital-to-

analog conversion, sampling, quantization, requantization, recompression, linear and nonlinear

�ltering, low-pass and high-pass �ltering, addition of Gaussian and non Gaussian noise are com-

mon manipulations. An attack is any processing that impairs or misleads the watermark detector.

The performance of a watermarking algorithm against these attacks reects its quality.Figure 1.4

shows classi�cation of watermarking attacks.

6

Watermark Attacks

Removal Geometry Cryptographic Protocol

Sharpen

Blur

Filter

Noise

Translation

Rotation

Brute Force

Oracle

Invertible

Copy

Compression

Scaling

Optimization

Obfuscation

De-compilation

Figure 1.4: Digital watermarking attacks.

• Removal and interference attacks. Removal attacks intend to remove the watermark

data from the watermarked object. Such attacks exploit the fact that the watermark is

usually an additive noise signal present in the host signal. Moreover, interference attacks

are those which add additional noise to the watermarked object. Lossy compression, quan-

tization, collusion, denoising, remodulation, averaging, and noise storm are some examples

of this category of attacks. The collusion attack occurs when a number of authorized re-

cipients of the multimedia object come together to generate an un-watermarked object by

averaging all the di�erent watermarked objects. In software watermarking one of the �rst

things that an adversary may do in an attempt to eliminate a watermark is decompile the

application. Once the code has been decompiled the attacker can search for aspects of the

code that look suspicious such as dummy methods.

• Geometric attacks. Geometric attacks do not actually remove the watermark, but ma-

nipulate the watermarked object in such a way that the detector cannot �nd the watermark

data, i.e., distort the watermark. This type of attack includes a�ne transformations such

as rotation, translation, and scaling. Warping, line/column removal and cropping are also

included in this family of attacks. Another example of geometric attack is the mosaic

attack. As far as it concerns software watermarking, distortive attacks are any semantics

preserving code transformation, such as code obfuscation or optimization algorithms. This

type of attack is used to distort a watermark such that it is unrecoverable. The advantage

of this attack over subtractive attacks is that the adversary need not know the exact loca-

tion of the watermark. Rather, he can apply the transformation indiscriminately over the

application.

7

• Cryptographic attacks. The aim of cryptographic attacks is to crack the security meth-

ods in watermarking schemes and thus �nd a way to remove the embedded watermark

information or to embed misleading watermarks. For example, �nding the secret wa-

termarking key using exhaustive brute force method is a cryptographic attack. Another

example of this type of attack is the oracle attack. In the oracle attack, a non-watermarked

object is created when a public watermark detector device is available. These attacks are

similar to the attacks used in cryptography.

• Protocol attacks. Protocol attacks add the attacker's own watermark onto the data in

question. This results in ambiguities on the true owners question. The �rst protocol attack

was proposed by Craver et al. [46]. They introduced the concept of invertible watermarks

and showed that for copyright protection purpose watermarks need to be non-invertible.

The idea behind inversion is that the attacker subtracts his own watermark from the

watermarked data and claims to be the owner of the watermarked data. This can create

ambiguity with respect to the true ownership of the data. It has been shown that for

copyright protection applications, watermarks need to be non-invertible. Another protocol

attack is the copy attack: instead of destroying the watermark, the copy attack estimates

a watermark from watermarked data and copies it to some other data, called target data.

This attack, in fact, embeds one or several additional watermarks such that it is unclear

which the watermark of the original owner was.

1.2.4 Watermarking Techniques

In this section we present a brief overview on the watermarking techniques currently available in

the literature on software, image, audio, and text watermarking.

(A) Software Watermarking

The most important software watermarking algorithms currently available in the literature are

based on several techniques. In 1996, Davidson and Myhrvold [48] presented the �rst patented

static software watermarking algorithm,where a program is watermarked by reordering its basic

blocks. The preliminary concepts of software watermarking also appeared in the paper [51] and

the patents [85, 105]. Register allocation algorithm proposed by Qu and Potkonjak [101], inserts

a watermark into the interference graph of a program. Each vertex in the graph represents a

variable and an edge between two variables indicates that their live ranges overlap. The graph is

colored in order to minimize the number of registers required and ensure that two live variables do

not share a register. In [38, 106], authors propose a spread-spectrum algorithm which represents

a program as a vector and modi�es each component of the vector with a small random amount.

Algorithms have been also proposed, where pieces of a watermark are encoded as constants

within opaque predicates [1, 86]; an opaque predicate is a predicate whose outcome is known a

priori. Collberg et al. [35] proposed the path-based algorithm that inserts a watermark in the

runtime branch structure of a program to be watermarked. It is based on the observation that

the branch structure is an essential part of a program and that it is di�cult to analyze such a

structure completely because it captures so much of the semantics of the program. Other software

watermarking techniques rely on abstract interpretation [37], code re-orderings [112]; see, also

8

[29, 130, 131] for an exposition of the main results. It is worth noting that many algorithmic

techniques on software watermarking have also received patent protection [34, 48, 103, 114].

The algorithm of Davidson and Myhrvold [48] embeds the watermark into a program by

reordering the basic blocks of a control ow-graph; note that a static watermark is stored inside

programs' code in a certain format and it does not change during the programs' execution.

Based on this idea, Venkatesan, Vazirani and Sinha [120] proposed the �rst graph-based software

watermarking algorithm which embeds the watermark by extending a method's control ow-

graph through the insertion of a directed subgraph; it is also a static algorithm called VVS or

GTW. In [120], the construction of the directed watermark graph G is not discussed. Collberg et

al. [31] proposed an implementation of GTW, which they call GTWsm, and it is the �rst publicly

available implementation of the algorithm GTW. In GTWsm the watermark is encoded as a reducible

permutation graph (or, for short, RPG) [30], which is a reducible control ow-graph with a

maximum out-degree of two, mimicking real code. Note that, for encoding integers the GTWsm

method uses only those permutations that are self-inverting. The �rst dynamic watermarking

algorithm CT was proposed by Collberg and Thomborson [32]; it embeds the watermark through

a graph structure which is built on a heap at runtime.

Recently, several software watermarking algorithms have been appeared in the literature

that encode watermarks as graph structures [30, 31, 48, 120]. In general, such encodings make

use of an encoding function encode which converts a watermarking number w into a graph G,

encode(w) → G, and also of a decoding function decode that converts the graph G into the

number w, decode(G) → w; we usually call the pair (encode; decode) along with the graph G,

denoted by (encode; decode)G, as graph codec system [30]. From a graph-theoretic point of view,

we are looking for a class of graphs G and a corresponding codec (encode; decode)G with the

following properties:

◦ Appropriate graph types: Graphs in G should be directed having such properties, i.e., nodes
with small outdegree, so that matching real program graphs;

◦ High resiliency: The function decode(G) should be insensitive to small changes of G, i.e.,

insertions or deletions of a constant number of nodes or/and edges; that is, if G ∈ G and

decode(G)→ w then decode(G′)→ w with G′ ≈ G;

◦ Small size: The size |Pw| − |P | of the embedded watermark should be small;

◦ E�cient codecs: The functions encode and decode should be computed in polynomial

time.

Five classes of graph structures have been proposed in the literature for encoding a watermark

as graph, the Oriented Parent-Pointer Tree, the Radix Graphs, the Permutation Graphs, the

Planted Plane Cubic Trees, and the Reducible Permutation Graphs.

• Oriented Parent-Pointer Trees. In oriented parent-pointer trees each node has just one

pointer �eld referencing its parent. In [69], is presented an extended theoretical analysis

of enumeration of trees by the exploitation of oriented parent-pointer trees. The parent-

pointer data structure has almost no error-correcting properties. An adversary who adds

a single node or an edge to a parent-pointer graph may radically change the watermark

value it represents [30].

9

• Radix-list Watermark Graphs. Radix-list watermark graphs Gr of order n have the

following structure: they are a singly-linked circular list of n nodes, in which each node

has an additional pointer �eld that may point either to NULL or to any other node in the

list. The idea is simple. First, it is constructed a circular linked list o length k. Then,

extra pointer �elds are added to each node representing the base-k digit. These graphs

have poor error-correcting properties. Node and edge addition attacks on such graphs will

force the decoder to enumerate all Hamiltonian subgraphs, in order to construct all possible

watermark graphs that could have existed prior to the attacks [30].

• Permutation Graphs. Permutation graphs use the same structure as radix graphs, i.e.

use the same singly linked circular list, where the extra k pointers encode the permutation

of integers [0; 1; : : : ; k− 1]. A number n is �rst converted to a permutation � and then the

permutation is encoded to a graph. In [29], the algorithms that encode an integer n to

permutation �, and the inverse, are presented. The speci�c class of graphs is more resilient

to the modi�cation of an edge in comparison to radix graphs.

• Planted Plane Cubic Tree. Planted plane cubic tree (or, for short, PPCT), is essentially

a binary tree with one extra node called origin, which has a pointer to the root of the binary

tree. Moreover, all leaves are linked into a circular linked list which includes the origin.

Each leaf has a self-pointer and every node in a PPCT has two outgoing pointers. The

underlying undirected graph is thus cubic (uniform degree 3) except at its leaves and its

root. Such data structures are used in any program involving binary search trees, and

super�cially similar structures arise in any program that has a data type with exactly two

pointer �elds. According to Catalan number theory [50], a PPCT with n leaves (2n nodes)

can represent any integer in the following set: 0; 1; 2; : : : ; 1
n
Cn−1
n−2 . The Catalan number c(n)

gives the number of unique trees for each n. An integer is encoded as one of the trees.

• Reducible Permutation Graphs. Reducible permutation graphs (or, for short, RPG) [29,

30] are very similar to permutation graphs but they closely resemble control ow graphs

as they are reducible-ow graphs.

A ow graph G is reducible if and only if we can partition the edges into two disjoint

groups, often called forward edges and back edges, with the following two properties:

(i) The forward edges from an acyclic graph in which every node can be reached from

the initial node of G.

(ii) The back edges consist only of edges whose heads dominate their tails.

The reducibility of this family of graphs means that they resemble control-ow graphs

constructed from programming constructs such as if, while etc. [29]. RPGs, like CFGs,

contain a unique entry node and a unique exit node, a preamble which contains zero

or more nodes from which all other nodes can be reached and a body which encodes a

watermarking using a self-inverting permutation

(B) Image and Audio Watermarking

Digital image and audio watermarking schemes mainly fall into two broad categories: a) the

spatial-domain or time-domain technique, and b) the frequency domain technique. The �rst

10

category is the most straightforward way to hide the watermark within the host signal. Since

audio signal is an one-dimensional signal, the technique is called time-domain watermarking,

whereas spatial-domain technique refers to digital image watermarking, since image is a two-

dimension signal. In frequency techniques, image and audio are represented in terms of its

frequencies, and watermark is embedded by modifying the frequency coe�cients of the host

signal.

• Spatial/Time-Domain Techniques. According to this method the watermark is em-

bedded into original signal. Least Signi�cant Bits (LSB) is the simplest approach, because

the least signi�cant bit carries less relevant information and their modi�cation does not

cause perceptible changes. LSB technique is easy to implement to embed the watermark

and there are two basic ways of doing this: the lower order bits of the digital audio signal

can be fully substituted with a pseudo random (PN) sequence that contains the water-

mark message m, or the PN-sequence can be embedded into the lower order bit stream.

The major disadvantage of LSB techniques is the poor robustness to signal processing

operations. Another technique have been proposed, the spread spectrum technique,which

encodes the watermark data prior to insertion into the image or audio frequency domain

data. Spread spectrum encoding allows multiple narrow band communications signals to

be spread across a broad band with out interference.

• Frequency Domain Techniques. Compared to spatial domain techniques, frequency

domain techniques are more applied. The target of this technique is to insert the water-

marks in the spectral coe�cients of the image. The most commonly used transforms are

the Discrete Cosine Transform (DCT), Discrete Fourier Transform (DFT), and Discrete

Wavelet Transform(DWT). The discrete wavelet transforms (DWT) and the discrete cosine

transforms (DCT) are implemented very e�ectively in numerous digital images watermark-

ing scheme. In this new era Singular Value Decomposition (SVD) is also implementing

very e�ectively in the digital image watermarking scheme.

Spatial domain watermarking techniques for images include works of [100, 115], and [123]. Some

of the earliest techniques [115] and [123] embed M-sequence into the LSB of the host signal

to provide an e�ective transparent embedding technique. In [123] the authors reshape the M-

sequence into two-dimensional watermark blocks which are added and detected on a block-by-

block basis. Another spatial-domain technique is proposed in [73], where the blue component of

an image in RGB format is watermarked to ensure robustness while remaining fairly insensitive

to human visual system (HVS) factors.

Initial research on audio watermarking dates back to the mid-nineties where Bender et al.

[8] presented data hiding techniques for audio signals. Several audio watermarking algorithms

in time-domain have been proposed. One of the simplest techniques under this category is

Least Signi�cant Bit (LSB) alteration. In this technique, LSB of each sample value of the host

audio signal is made 0 or 1 depending upon the watermark bit to be embedded [125]. Echo

hiding is another audio watermarking technique in time domain which embeds the watermark

by introducing an echo [72]. Another category of watermarking techniques in time-domain is

Quantization Index Modulation (QIM) watermarking methods [47].

The concept of spread spectrum used in communication systems is also employed in digital

watermarking. The basic idea of spread spectrum is to encode audio signal by spreading the

11

watermark information [44] across as much of the audible spectrum as possible. Using this

technique, a watermark can be embedded robustly into a host audio signal without destroying

its perceptual quality.

Various frequency-domain audio watermarking techniques were proposed. These techniques

can be DFT [126, 127], DCT or DWT [124]. In these approaches, the amplitude or phase of the

transformed coe�cients are modi�ed with some speci�ed amount in order to carry watermark

data.

A lot of work have been proposed in image watermarking in the frequency-domain [43, 98].

DCT domain watermarking can be classi�ed into Global DCT watermarking and Block based

DCT watermarking. One of the �rst algorithms presented by [44] used global DCT approach to

embed a robust watermark in the perceptually signi�cant portion of the Human Visual System

(HVS). Embedding in the perceptually signi�cant portion of the image has its own advantages

because most compression schemes remove the perceptually insigni�cant portion of the image.

Another domain exploited for embedding the watermark is the wavelet domain. The DWT

(Discrete Wavelet Transform) separates an image into a lower resolution approximation image

(LL) as well as horizontal (HL), vertical (LH) and diagonal (HH) detail components. The pro-

cess can then be repeated to computes multiple \scale" wavelet decomposition. DWT is much

preferred because it provides both a simultaneous spatial localization and a frequency spread of

the watermark within the host image.

Discrete Fourier transform (DFT) transforms a continuous function into its frequency compo-

nents. It has robustness against geometric attacks like rotation, scaling, cropping, translation etc.

DFT shows translation invariance. An extensive analysis of the di�erent techniques proposed in

the literature can be found at [98, 104].

(C) Text Watermarking

The previous work on digital text watermarking can be classi�ed in the following categories; an

image based approach, a syntactic approach and a semantic approach.

• Image-based Techniques. In Image-based approach towards digital text watermarking,

text document image is used to embed the watermark. Text is di�cult to watermark

because of its simplicity, sensitiveness, and low capacity for watermark embedding. Initially

attempts in text watermarking tried to treat text as image. Watermark was embedded in

the layout and appearance of the text image.

Brassil, et al. were the �rst to propose a few text watermarking methods utilizing text

image [9, 10]; they also developed document watermarking schemes based on line shifts,

word shifts as well as slight modi�cations to the characters [11]. Maxemchuk, et al. [87,

88, 89] analyzed the performance of these methods, while later Low et al. [80, 81] further

analyzed their e�ciency. Huang and Yan [64] proposed a text watermarking method based

on an average inter-word distance in each line. The distances are adjusted according to

the sine-wave of a speci�c phase and frequency. Feature and pixel level algorithms were

also developed which mark the documents by modifying the stroke features such as width

or serif [6].

• Syntactic Techniques. Text is made up of characters, words, and sentences. Sentences

have di�erent syntactic structures. Applying syntactic transformations on text structure

12

to embed watermark has also been one of the approaches towards text watermarking in

the past. In syntactic approach, the syntactic structure of text has been used to embed

watermark. Atallah, et al. [5] proposed several methods of natural language watermarking,

which opened up a brand-new and challenging research direction for text watermarking.

Meral et al. performed morpho-syntactic alterations to the text to watermark it [90]. They

also provided an overview of available syntactic tools for text watermarking [91].

• Semantic Techniques. In semantic approach, semantics of text are used to embed the wa-

termark in text. The semantic watermarking schemes focus on using the semantic structure

of text to embed the watermark. Text contents, verbs, nouns, words and their spellings,

acronyms, sentence structure, grammar rules, etc. have been exploited to insert watermark

in the text but none of these proved to be resilient and degrade the quality of the text to a

large extent. Atallah et al. were the �rst to propose the semantic watermarking schemes [5].

Later, the synonym substitution method was proposed, in which watermark was embedded

by replacing certain words with their synonyms [118]. Sun, et al. [111] proposed noun-verb

based technique for text watermarking which used nouns and verbs parsed by semantic

networks. Topkara, et al. proposed an algorithm of the text watermarking by using typos,

acronyms and abbreviation in the text to embed the watermark [119]. Algorithms were

developed to watermark the text using the linguistic approach of presuppositions [92] in

which the discourse structure, meaning, and representations are observed and utilized to

embed watermark bits. The text pruning and the grafting algorithms were also developed

in the past. Another algorithm based on text meaning representation (TMR) strings has

also been proposed [82].

• Structural Techniques. The structural approach is the most recent approach used for

copyright protection of text documents. In this approach, text is not altered, rather it

is used to logically embed watermark in it. A text watermarking algorithm for copyright

protection of text using occurrences of double letters (aa-zz) in text has recently been

proposed [67]. Recently, a signi�cant number of techniques have been proposed in the

literature which use Portable Document Format (PDF) �les as cover media in order to

hide data [12, 13, 76, 77, 78, 79, 133].

1.3 Motivation

Today storing information and data such as documents, images, video, and audio in digital

formats is very common. For many people transferring digital �les via the internet is a daily

activity. Owing to the rapid development of digital technology and the widespread use of the

Internet, life becomes increasingly more convenient than previously. However, this increase in

internet usage has motivated copyright concerns.

As is well known, due to the nature of digital information, it is easy to make unlimited lossless

copies from the original digital source, to modify the content, and to transfer the copies rapidly

over the Internet. Creators and owners of Intellectual Property designs want assurances that

their content will not be illegally redistributed by consumers, and consumers want assurances

that the content they buy is legitimate.

13

The term intellectual property (IP) refers to a creation of a mind for which a set of exclu-

sive rights are recognized [56]. That creation may have any possible form; for example, it may

be a work of art, an invention, literary or artistic work, a discovery or even a phrase. More

precisely, IP can be divided into two categories: industrial property, which includes inventions

(patents), trademarks, industrial designs, and geographic indications of source; and copyright,

which includes literary and artistic works such as novels, poems, plays, �lms, video games, soft-

ware applications, musical works, drawings, paintings, photographs, sculptures, and architectural

designs.

The objective of recognizing intellectual property is to encourage innovation. That is because

people won't have the incentive to create if they are not legally protected in order to get the

social value that they deserve from their creations [83]. Of course the world's evolution and

economic growth depends on creations and inventions and that makes intellectual property such

an important and vital aspect [68].

Over the last years the internet has been expanding very rapidly and, thus, information is

now spread freely, easily and cost-e�ciently and that gives a greater importance to intellectual

property. Because of the internet, the distribution of intellectual material went out of control.

Just the fact that nearly every intellectual material that is produced today is published in digital

form or can be transformed into digital form means that it can be easily transmitted free via the

internet, without any permission from the creator.

All that urged the adoption of new laws and the development of systems for the protection

of intellectual property [49]. But still the cyberspace is chaotic nowadays and that makes it

extremely di�cult to have any kind of control over it. The �gures talk by themselves; according

to IFPI (International Federation of the Phonographic Industry) 95% of music downloads are

pirated. What is more, a survey from Digital Life America showed us that things aren't any better

for the movies. If we also take into account the fact that the internet population is consisted

of nearly seven billion we may realize that its power is greater than the law and the systems

for protection. Therefore, the demands of copyright protection, ownership demonstration, and

tampering veri�cation for digital data are becoming more and more urgent. Among the solutions

for these problems, digital watermarking [43] is the most popular one.

1.4 The Structure of the Thesis

The current PhD Thesis consists of 8 Chapters which can be partitioned, according to research

issues addressed, into the following four Parts I-IV, namely:

(I) Background Results (Chapter 1),

(II) Encodings (Chapters 2-3-4),

(III) Watermarking (Chapters 5-6-7), and

(IV) Conclusions (Chapters 8).

We next briey discuss our contribution and the main results of the chapters of each of the four

Parts I, II, III, and IV.

14

Chapter 1

Chapter 2 Chapter 3 Chapter 4

Chapter 5 Chapter 6 Chapter 7

Chapter 8

Figure 1.5: The Structure of the 8 Chapters of the Thesis.

◦ Part I: The part, which contains the Chapter 1, provides an introduction to current

watermarking techniques and an outline of the problems under consideration, while it

briey presents our research contribution.

◦ Part II: This is the part containing the basic research on encoding watermark members

as graph structures through the use of self-inverting permutations (Chapters 2-3) and

algorithms for multiple encodings (Chapter 4).

◦ Part III: The three Chapters of this part propose e�cient and easily implementable codec

algorithms for software watermarking (Chapter 5), image and audio watermarking (Chap-

ter 6) and text watermarking (Chapter 7).

◦ Part IV: This part consists of the Chapter 8, the last chapter of the PhD thesis, which

summarizes the main results presented in Chapters 2 to 7, and discusses possible future

extensions.

Figure 1.5 schematically depicts the eight Chapters of the Thesis and organizes them in levels

and groups according to Parts I-IV.

1.5 Main Results

From the above partitioning of the 8 Chapters and the brief description of the 4 Parts, it becomes

obvious that the main research results of our Thesis are presented in Part II and Part III. We

next give the organization of the chapters of theses two parts emphasizing the main features of

the proposed codec techniques.

Part II, Chapters 2-3-4. In Chapter 2, we de�ne a main data component of our codec system,

namely, the self-inverting permutations (SiP), we introduce the notion of a bitonic permutation,

15

Chapter 5 Chapter 6 Chapter 7

Encode W.to.SiP Encode SiP.to.RPG-I

Encode SiP.to.RPG-II

Encode SiP.to.Cograph

Encode Cograph.to.RPG

Embed RPG.to.CODE Embed SiP.to.Image-S

Embed SiP.to.Image-F

Embed SiP.to.Audio

Embed SiP.to.PDF-I

Embed SiP.to.PDF-II

Embed RPG.to.PDF

Chapter 3 Chapter 4Chapter 2

Figure 1.6: Algorithms of the Chapters 2, 3, and 4 (Part II: Encodings) and Chapters 5, 6, and 7

(Part III: Watermarking).

we present our algorithm Encode-W.to.SiP for encoding an integer w as a self-inverting per-

mutation �∗, along with the corresponding decoding algorithm Decode-SiP.to.W, and �nally

discuss important properties of the self-inverting permutation �∗.

In Chapter 3, we �rst de�ne the main graph-based data component of our codec system,

namely, the reducible permutation graphs (PRG), we describe the two operational phases of

our codec system, and present the structure of our system's reducible permutation graph F [�∗].

Then, we present the two algorithms, namely Encode-SiP.to.RPG-I and -II for encoding the

self-inverting permutation �∗ as a reducible permutation ow-graph F [�∗] along with the corre-

sponding decoding algorithms Decode-RPG.to.SiP-I and -II. Finally, we present the properties

of the reducible permutation ow-graph F [�∗] and show that node-label or edge modi�cations

on the graph F [�∗] can be e�ciently detected.

In Chapter 4, we �rst present the randomize encoding algorithm Encode SiP.to.Cograph,

along with its corresponding decoding algorithm, which takes as input a self-inverting permuta-

tion �∗ and encodes the permutation �∗ into a cograph C[�∗]. Then, we present the algorithm

Encode Cograph.to.RPG, along with its corresponding decoding algorithm, which embeds a co-

graph into an RPG by exploiting the structure and some important algorithmic properties of its

cotree.

Part III, Chapters 5-6-7. In Chapter 5, we present our dynamic watermarking model Wa-

terRPG; we �rst describe its structural and operational components and then the embedding

algorithm Embed RPG.to.CODE and the extracting algorithm Extract CODE.to.RPG. Then, we

implement our watermarking model in real Java application programs and show two main wa-

termarking approaches supported by the WaterRpg model, namely naive and stealthy. We also

evaluate our model under several software watermarking assessment criteria.

In Chapter 6, we describe our primary work on image watermarking in the spatial domain and

16

give the Embed SiP.to.Image-S and Extract SiP.from.Image-S algorithms. We �rst present

our codec algorithms, Embed SiP.to.Image-F and Extract SiP.from.Image-F, for watermark-

ing images in the frequency domain, and then we expand our idea on image watermarking by ap-

plying it in audio watermarking and present our audio watermarking algorithms, i.e., the embed-

ding algorithm Embed SiP.to.Audio and the extracting algorithm Extract SiP.from.Audio.

In Chapter 7, based on the three di�erent representations of self-inverting permutation (SiP),

i.e. the two dimensional (2D-representation), the one dimensional (1D-representation), and the

RPG-representation (the encoding of permutation �∗ as a reducible permutation graph F [�∗]),

we present the algorithms Embed SiP.to.PDF-I, Embed SiP.to.PDF-II, and Embed RPG.to.PDF,

along with the corresponding extracting algorithms, for embedding a watermark number (or,

equivalently, a self-inverting permutation �∗ or a reducible permutation graph F [�∗]) into a

PDF document �le.

17

18

Chapter 2

Encode Watermark Numbers as

Self-inverting Permutations

2.1 Introduction

2.2 Preliminaries

2.3 Self-inverting Permutations (SiP)

2.4 Encode Watermark Numbers as SiPs

2.5 The Structure of Permutation �∗

2.6 Properties of Permutation �∗

2.7 Concluding Remarks

2.1 Introduction

Digital (or, media) watermarking is a technique that is currently being studied to prevent or

discourage digital media piracy and copyright infringement. The main idea is simple: a unique

identi�er is embedded in software, image, audio, or video data through the introduction of errors

not detectable by human perception [15].

The Digital Watermarking problem can be described as follows: Embed a structure w into a

digital object O, resulting the watermarked object Ow, such that w can be reliably located and

e�ciently extracted from Ow even after Ow has been subjected to typical transformations. More

precisely, a Digital Watermarking System can be de�ned by the following two functions:

• embed(O;w; k) −→ Ow

• extract(Ow; k) −→ w

where, O is the digital object, w is a watermark, and k is a key; throughout the thesis, we

equivalently use the functions decode(·) or recognize(·) to denote the extraction process.

19

Digital watermarking has made considerable progress and become a popular technique for

copyright protection of multimedia information [15, 113]. Recently, research on software water-

marking has also received su�cient attention. We next briey discuss on software watermarking

issues since self-inverting permutations have been used in an graph-based watermarking codec

system proposed by Collberg et al. [30].

In 1990, Davidson and Myhrvold [48] proposed the �rst software watermarking algorithm

which is static and embeds the watermark by reordering the basic blocks of a control ow graph.

Based on this idea, Venkatesan et al. [120] propose a software watermarking scheme which is

called GTW; in such a scheme an executable program is marked by the addition of code for which

the topology of the control ow graph (CFG) encodes a watermark. More precisely, the GTW

process is as follows: The watermark value w is encoded as a directed graph G which, in turn,

is converted into control ow graph (CFG). In [120] the construction of a directed graph G

(or, watermark graph G) is not discussed. Collberg et al. [31] proposed an implementation of

algorithm GTW, which they call GTWsm, and it is the �rst publicly available implementation of GTW.

In GTWsm the watermark is encoded as a reducible permutation graph (RPG) [30], which is a

reducible control-ow graph with maximum out-degree of two, mimicking real code.

In GTWsm implementation a watermark value (integer) is encoded as a RPG; in particular,

in the enumeration of Collberg et al. [31], an integer n is encoded as the RPG corresponding

to the n-th self-inverting permutation. Note that there is a one-to-one correspondence between

self-inverting permutations and isomorphic classes of RPGs. Thus, for encoding integers the

GTWsm methods uses only those permutations that are self-inverting.

Contribution. Collberg et al. [29, 31] use an enumeration of self-inverting permutations and

correspond an integer n to the n-th self-inverting permutation in their enumeration. In this

chapter, we present an e�cient, resilient to attacks, and easily implementable system for encoding

numbers as self-inverting permutations (or SiP, for short); see, Figure 2.1.

More precisely, we present an e�cient algorithm which encodes a watermark number (integer)

w as a self-inverting permutation �∗. Our algorithm, which we call Encode W.to.SiP, takes as

input an integer w, computes its binary representation b1b2 · · · bn, then constructs a bitonic

permutation on n∗ = 2n + 1 numbers, and �nally produces a self-inverting permutation �∗

of length n∗ in O(n∗) time and space. We also present the corresponding decoding algorithm

Decode SiP.to.W, which extracts the integer w from the self-inverting permutation �∗ within

the same time and space complexity.

The self-inverting permutation �∗ encompasses important structural properties, due to the

bitonic property used in the construction of �∗, which makes our codec system resilient to attacks.

Finally, we point out that our codec system has very low time and space complexity which is

O(n), where n is the number of bits in the binary representation of the watermark integer w.

We mention here that, having designed an e�cient method for encoding integers as self-

inverting permutations, in Chapter 3 we present algorithms for encoding a self-inverting permu-

tation �∗ as a reducible permutation ow-graph.

Road Map. The chapter is organized as follows: In Section 2.2 we establish the notation and re-

lated terminology. In Section 2.3 we de�ne a main data component of our codec system, namely,

the self-inverting permutations (SiP). In Section 2.4 we �rst introduce the notion of a bitonic

20

π
∗ = (4, 7, 6, 1, 5, 3, 2)

The watermark number w = 4

W.to.SiP SiP.to.W

Figure 2.1: The main data components used by the algorithms of our codec system: (i) the watermark

number w and (ii) the self-inverting permutation �∗.

permutation, and then present our algorithm Encode-W.to.SiP for encoding an integer w as a

self-inverting permutation �∗ and the corresponding decoding algorithm Decode-SiP.to.W. In

Section 2.5 we analyze the structure of a self-inverting permutation �∗ produced by algorithm

Encode W.to.SiP. In Section 2.6 we summarize the properties of the self-inverting permuta-

tion �∗. Finally, in Section 2.7 we conclude the chapter and discuss possible future extensions.

2.2 Preliminaries

We next introduce some de�nitions that are key to our algorithms for encoding numbers as self-

inverting permutations. Let � be a permutation over the set Nn = {1; 2; : : : ; n}. We think of per-

mutation � as a sequence (�1; �2; : : : ; �n), so, for example, the permutation � = (1; 4; 2; 7; 5; 3; 6)

has �1 = 1, �2 = 4, etc. By �−1
i we denote the position in the sequence of number i ∈ Nn; in our

example, �−1
4 = 2, �−1

7 = 4, �−1
3 = 6, etc [52]. The length of a permutation � is the number of

elements in �. The reverse of �, denoted �R, is the permutation �R = (�n; �n−1; : : : ; �1). The

inverse of � is the permutation � = (�1; �2; : : : ; �n) with ��i = ��i = i. Clearly, every permutation

has a unique inverse, and the inverse of the inverse is the original permutation.

A subsequence of a permutation � = (�1; �2; : : : ; �n) is a sequence � = (�i1 ; �i2 ; : : : ; �ik) such

that i1 < i2 < · · · < ik. If, in addition, �i1 < �i2 < · · · < �ik , then we say that � is an increasing

subsequence of �, while if �i1 > �i2 > · · · > �ik we say that � is a decreasing subsequence of �;

the length of a subsequence � is the number of elements in �.

A cycle of � is a sequence c = (�i1 ; �i2 ; : : : ; �ip) such that �−1
i1

= �i2 , �
−1
i2

= �i3 , · · · ,
�−1
ip

= �i1 . For example, the permutation � = (4; 7; 1; 6; 5; 3; 2) has three cycles c1 = (4; 1; 3; 6),

c2 = (7; 2), and c3 = (5) of lengths 4, 2, and 1, respectively. In general, a permutation � contains

` cycles, where 1 ≤ ` ≤ n; for example, the identity permutation � over the set Nn contains n

cycles of length 1. Throughout the thesis, a cycle of length k is referred to as a k-cycle.

A left-to-right maximum (left-to-right minimum, resp.) of � is an element �i, 1 ≤ i ≤ n,

such that �i > �j (�i < �j , resp.) for all j < i. The increasing (decreasing, resp.) subsequence

� = (�i1 ; �i2 ; : : : ; �ik) is a left-to-right maxima (minima, resp.) subsequence if it consists of all

the left-to-right maxima (minima, resp.) of �; clearly, �i1 = �1. For example, the left-to-right

maxima subsequence of the permutation � = (4; 2; 6; 1; 9; 3; 7; 5; 12; 11; 8; 10) is (4; 6; 9; 12), while

21

the left-to-right minima subsequence of � is (4; 2; 1).

The 1st increasing (decreasing, resp.) subsequence S1 of a permutation � is de�ned to be

the left-to-right maxima (minima, resp.) subsequence of �∗. The ith increasing (decreasing,

resp.) subsequence Si of � is de�ned to be the left-to-right maxima (minima, resp.) subsequence

of �′, where �′ results from � after having ignored the elements of the 1st, 2nd, . . . , (i − 1)st

increasing (decreasing, resp.) subsequences of �. For example, the decreasing subsequences of

the permutation � = (4; 2; 6; 1; 9; 3; 7; 5; 12; 11; 8; 10) are S1 = (4; 2; 1), S2 = (6; 3), S3 = (9; 7; 5),

S4 = (12; 11; 8), and S5 = (10).

We say that an element i of a permutation � over the set Nn dominates the element j if

i > j and �−1
i < �−1

j . An element i directly dominates (or d-dominates, for short) the element j

if i dominates j and there exists no element k in � such that i dominates k and k dominates j

[94]. For example, in the permutation � = (8; 3; 2; 7; 1; 9; 6; 5; 4), the element 7 dominates the

elements 1; 6; 5; 4 and directly dominates the elements 1; 6.

2.3 Self-inverting Permutations (SiP)

We next de�ne the main component of our codec system, namely, the self-inverting permutations

(SiP), and prove properties that are used as key-objects in our algorithms for encoding numbers

as reducible permutation graphs.

De�nition 2.1. Let � = (�1; �2; : : : ; �n) be a permutation over the set Nn. A self-inverting

permutation (or involution) is a permutation that is its own inverse: ��i = i.

The de�nition of the inverse of a permutation implies that a permutation is a self-inverting

permutation i� all its cycles are of length 1 or 2; hereafter, we shall denote a 2-cycle by (x; y)

with x > y and a 1-cycle by (x) or, equivalently, (x; x).

De�nition 2.2. A sequence C = (c1; c2; : : : ; ck) of all the 2- and 1-cycles of a self-inverting

permutation � is a decreasing cycle representation of � if c1 ≻ c2 ≻ · · · ≻ ck where ci = (ai; bi) ≻
cj = (aj ; bj) (with ai ≥ bi and aj ≥ bj) if bi > bj , 1 ≤ i; j ≤ k. The cycle ck containing the

smallest element among the elements of the cycles is the minimum element of the sequence C.

Lemma 2.1. Let ci = (x; y) and cj = (z; w) be two 2-cycles of a self-inverting permutation �

such that x > y and z > w.

(i) If x > z > y and �−1
x < �−1

z < �−1
y , then w > y and �−1

w < �−1
y . Symmetrically, if

x > w > y and �−1
x < �−1

w < �−1
y , then x > z and �−1

x < �−1
z . In either case, it holds that

x > z > w > y and �−1
x < �−1

z < �−1
w < �−1

y .

(ii) If x > z > w and �−1
x < �−1

z < �−1
w , then w > y and �−1

w < �−1
y . Symmetrically, if

z > w > y and �−1
z < �−1

w < �−1
y , then x > z and �−1

x < �−1
z . In either case, it holds that

x > z > w > y and �−1
x < �−1

z < �−1
w < �−1

y .

Proof. The lemma follows from the fact that in a self-inverting permutation � (of size n) for

every i = 1; 2; : : : ; n, ��i = i or equivalently for any 2-cycle (a; b) it holds that a = �−1
b and

b = �−1
a .

22

Theorem 2.1. Let Si = (x1; x2; : : : ; xki) be the ith decreasing subsequence of a self-inverting

permutation �. Then,

(i) if ki is an even number, the following pairs (x1; xki), (x2; xki−1), : : :, (x ki
2

; x ki
2
+1

) form ki
2

2-cycles of �;

(ii) if k is an odd number, the following pairs (x1; xki), (x2; xki−1), : : :, (x⌊ ki
2
⌋; x⌈ ki

2
⌉+1

) form

⌊ki2 ⌋ 2-cycles and (x⌊ ki
2
⌋+1

) forms an 1-cycle of �.

Proof. We use induction on i. For the basis case, we consider i = 1, that is, the 1st decreasing

subsequence S1 = (x1; x2; : : : ; xk1). Then, for each j = 1; 2; : : : ; ⌊k12 ⌋ it su�ces to show that

(i) if xj ∈ S1 belongs to a 2-cycle (xj ; xj′) then xj′ belongs to S1, and (ii) in fact, xj′ is the

(k1 − j + 1)-st element in S1. We use induction on j. Statements (i) and (ii) clearly hold for

j = 1, since the �rst and the smallest element of � belong to the 1st decreasing subsequence of

�, they form a 2-cycle of �, and in fact they are the �rst and the last element of S1, respectively.

For the inductive hypothesis, suppose that statements (i) and (ii) hold for j = j0 − 1 where

1 ≤ j0 − 1 < ⌊ki2 ⌋; we next show that they hold for j = j0 where 2 ≤ j0 ≤ ⌊ki2 ⌋. Let (xj0 ; x
′) be

the 2-cycle of the self-inverting permutation � to which xj0 belongs; then, Lemma 2.1(i) for the

2-cycles (xj0−1; xk1−j0+2) and (xj0 ; x
′) implies that x′ > xk1−j0+1 and �−1

x′ < �−1
xk1−j0+1

.

Now, suppose for contradiction that x′ ̸∈ S1. Since x
′ ̸∈ S1, there must exist t in � such that

�−1
xj0

< �−1
t < �−1

x′ and t < x′:

These inequalities imply that �−1
t > �−1

xj0
= x′ > t, that is, the element t cannot belong to an

1-cycle. Thus, t belongs to a 2-cycle of �; let it be (s; t) with s > t since s = �−1
t > x′ > t.

Lemma 2.1(ii) for the 2-cycles (xj0 ; x
′) and (s; t) implies that s < xj0 and �−1

s < �−1
xj0

, which in

turn imply that xj0 should not belong to S1, a contradiction. Therefore, x
′ belongs to S1 as well.

Moreover, x′ = xk1−j0+1. If not, let t
′ = xk1−j0+1. Then

x′ > t′ > xk1−j0+2 and �−1
x′ < �−1

t′ < �−1
xk1−j0+2

:

These inequalities imply that �−1
t′ > �−1

x′ = xj0 > x′ > t′; hence, t′ does not belong to an 1-cycle.

Therefore, t′ belongs to a 2-cycle (s′; t′) with s′ > t′. Then, Lemma 2.1(ii) for the 2-cycles (xj0 ; x
′)

and (s′; t′) implies that s′ > xj0 and �−1
s′ < �−1

xj0
. Additionally, Lemma 2.1(i) for the 2-cycles

(xj0−1; xk1−j0+2) and (s′; t′) implies that xj0−1 > s′ and �−1
xj0−1

< �−1
s′ . However, these contradict

the fact that xj0−1 and xj0 are in consecutive positions in the decreasing subsequence S1. Thus,

x′ = xk1−j0+1, as desired.

The inductive step for the induction on i can be easily proved by taking into account (i) that

the ith decreasing subsequence of a permutation � is precisely the 1st decreasing subsequence of

the permutation that results from � after having removed from it the elements of the 1st, 2nd,

: : :, (i − 1)st decreasing subsequence of �, and (ii) that both elements of a 2-cycle get removed

while removing a decreasing subsequence.

2.4 Encode Watermark Numbers as SiPs

In this section, we �rst introduce the notion of a Bitonic Permutation and then we present two

algorithms, namely Encode W.to.SiP and Decode SiP.to.W, for encoding an integer w into a

23

self-inverting permutation �∗ and for extracting it from �∗, respectively. Both algorithms run in

O(n) time, where n = log2w is the length of the binary representation of the integer w [28].

Bitonic Permutations: The key-object in our algorithm for encoding integers as self-inverting

permutations is the bitonic permutation: a permutation � = (�1; �2; : : : ; �n) over the set Nn is

called bitonic if it either monotonically increases and then monotonically decreases, or mono-

tonically decreases and then monotonically increases. For example, the permutations �1 =

(1; 4; 6; 7; 5; 3; 2) and �2 = (6; 4; 3; 1; 2; 5; 7) are both bitonic.

Let � = (�1; �2; : : : ; �i; �i+1; : : : ; �n) be a bitonic permutation over the set Nn that �rst

monotonically increases and then monotonically decreases and let �i be the leftmost element of

� such that �i > �i+1; note that �i is the maximum element of �. Then, we call the sequence

X = (�1; �2; : : : ; �i−1) the increasing subsequence of � and the sequence Y = (�i; �i+1; : : : ; �n)

the decreasing subsequence of �.

Notations: We next give some notations and terminology we shall use throughout the chapter.

If B1 = b1b2 · · · bn and B2 = d1d2 · · · dm are two binary numbers, then the number B1||B2 is

the binary number b1b2 · · · bnd1d2 · · · dm. The binary sequence of the number B = b1b2 · · · bn is

the sequence B∗ = (b1; b2; : : : ; bn) of length n. For a binary number B = b1b2 · · · bn, flip(B) =

b′1b
′
2 · · · b′n is the binary number such that b′i = 0 (1, resp.) if and only if bi = 1 (0, resp.),

1 ≤ i ≤ n. Note that for any binary number B, flip(flip(B)) = B.

2.4.1 Algorithm Encode W.to.SiP

We next present an algorithm for encoding an integer as a self-inverting permutation without

having to consult a list of all self-inverting permutations. Our algorithm takes as input an integer

w, computes its binary representation, and then produces a self-inverting permutation �∗ in time

linear in the length of the binary representation of w. The proposed algorithm is the following:

Algorithm Encode W.to.SiP

1. Compute the binary representation B of w and let n be the length of B;

2. Construct the binary number B′ = 00 · · · 0︸ ︷︷ ︸
n

||B||0 of length n∗ = 2n+1, and then the binary

sequence B∗ of flip(B′);

3. Construct the sequence X = (x1; x2; : : : ; xk) of the 0s' positions and the sequence Y =

(y1; y2; : : : ; ym) of the 1s' positions in B∗ from left to right, where k +m = n∗;

4. Construct the bitonic permutation �b = X||Y R = (x1; x2; : : : ; xk; ym; ym−1; : : : ; y1) over

the set Nn∗ = N2n+1;

5. for i = 1; 2; : : : ; n = ⌊n∗=2⌋ do
{construct a 2-cycle with the i-th element of �b from left and the i-th from right}
construct the 2-cycle ci = (�bi ; �

b
n∗−i+1);

construct the 1-cycle ci = (�bn+1);

24

6. Initialize the permutation �∗ to the identity permutation (1; 2; : : : ; 2n+ 1);

for each 2-cycle (�i; �j) computed at Step 5, set �∗�i = �j and �∗�j = �i;

7. Return the permutation �∗ (which by construction is self-inverting).

Example 2.1 Let w = 12 be the input watermark integer in the algorithm Encode W.to.SiP.

We �rst compute the binary representation B = 1100 of the number 12; then we construct the

binary number B′ = 000011000 and the binary sequence B∗ = (1; 1; 1; 1; 0; 0; 1; 1; 1) of flip(B′);

we compute the sequences X = (5; 6) and Y = (1; 2; 3; 4; 7; 8; 9), and then construct the bitonic

permutation �b = (5; 6; 9; 8; 7; 4; 3; 2; 1) on n∗ = 9 numbers; since n∗ = 9 is odd, we form

4 2-cycles (5; 1), (6; 2), (9; 3), (8; 4) and the 1-cycle (7), and then construct the self-inverting

permutation �∗ = (5; 6; 9; 8; 1; 2; 7; 4; 3).

Time and Space Complexity. The encoding algorithm Encode W.to.SiP performs basic opera-

tions on sequences of O(n) length, where n is the number of bits in the binary representation

of w (see Figure 2.2). Thus, the whole encoding process requires O(n) time and space, and the

following theorem holds:

Theorem 2.2. Let w be an integer and let b1b2 · · · bn be the binary representation of w. The

algorithm Encode W.to.SiP encodes the number w in a self-inverting permutation �∗ of length

2n+ 1 in O(n) time and space.

2.4.2 Algorithm Decode SiP.to.W

Next, we present an extraction algorithm, that is, an algorithm for decoding a self-inverting

permutation. More precisely, our extraction algorithm, which we call Decode SiP.to.W, takes

as input a self-inverting permutation �∗ produced by algorithm Encode W.to.SiP and returns

its corresponding integer w. Its time complexity is linear in the length of the permutation �∗.

We next describe the proposed algorithm:

Algorithm Decode SiP.to.W

1. Compute the decreasing cycle representation C = (c1; c2; : : : ; ck) of the self-inverting per-

mutation �∗ = (�1; �2; : : : ; �n∗), where n∗ = 2n+ 1;

2. Construct the permutation �b of length n∗ as follows:

set i = 1 and j = n∗;

while the set C is not empty, do the following:

select the minimum element c of the set C, i.e., the cycle containing the minimum

among

the elements of all the cycles in C;

Case 1: the selected cycle c has length 2 and let c = (a; a′) with a > a′:

set �bi = a and �bj = a′;

i = i+ 1 and j = j − 1;

Case 2: the selected cycle c has length 1 and let c = (a):

25

B: binary representation B: binary number of the 2nd block of B′

b1b2 · · · bn of the integer w b1b2 · · · bn = b′
n+1b

′

n+2 · · · b
′

n′
−1

B′: binary number 0n|| b1b2 · · · bn || 0 B′: binary number of sequence flip(B∗)
on 2n+ 1 bits b′1b

′

2 · · · b
′

n
b′
n+1b

′

n+2 · · · b
′

n′
−1b

′′

n′

B∗: sequence of 0s and 1s of the B∗: binary sequence with 0s (1s) at the
binary number flip(B′) positions corresp. to X’s (Y ’s) elements

X: sequence of indices of 0s in B∗ X: the increasing subsequence of πb

Y : sequence of indices of 1s in B∗ Y : the decreasing subsequence of πb

πb: bitonic permutation constructed πb: bitonic permutation constructed from
by X and Y R, i.e., X||Y R the increasing cycle representation

C: set of 2-cycles and 1-cycle C: increasing cycle representation of π∗

constructed from πb

w: watermarking integer

π∗: self-inverting permutation

Figure 2.2: The main data components used by our two codec Algorithms Encode W.to.SiP and

Decode SiP.to.W.

set �bi = a and i = i+ 1;

remove the cycle c from C;

3. Find the increasing subsequence X = (�b1; �
b
2; : : : ; �

b
k) of �

b and then the decreasing subse-

quence Y = (�bk+1; �
b
k+2; : : : ; �

b
n∗);

4. Construct the binary sequence B∗ = (b1; b2; : : : ; bn∗) by setting 0 in positions �b1; �
b
2; : : : ; �

b
k

and 1 in positions �bk+1; �
b
k+2; : : : ; �

b
n∗ ;

5. Compute B′ = flip(B∗) = (b′1; b
′
2; : : : ; b

′
n; b

′
n+1; : : : ; b

′
n∗−1; b

′
n∗);

6. Return the decimal value w of the binary number B = b′n+1b
′
n+2 · · · b′n∗−1.

The decoding algorithm is essentially the reverse of the encoding algorithm; its correctness relies

on the fact that flip(flip(B)) = B.

Example 2.2 Let �∗ = (5; 6; 9; 8; 1; 2; 7; 4; 3) be a self-inverting permutation produced by

Algorithm Encode W.to.SiP. The decreasing cycle representation of �∗ is the sequence C =(
(7); (8; 4); (9; 3); (6; 2); (5; 1)

)
; these cycles are processed in order from right to left in C and

we construct the permutation �b = (5; 6; 9; 8; 7; 4; 3; 2; 1); then, we compute the increasing subse-

quence X = (5; 6) and the decreasing subsequence Y = (9; 8; 7; 4; 3; 2; 1); we then construct the

binary sequence B∗ = (1; 1; 1; 1; 0; 0; 1; 1; 1) of length 9; we ip the elements of B∗ and construct

the sequence B′ = (0; 0; 0; 0; 1; 1; 0; 0; 0); the decimal value of the binary number 1100 is the

integer w = 12.

26

Time and Space Complexity. It is easy to see that the decoding algorithm Decode SiP.to.W

performs the same basic operations on sequences of O(n) length as the encoding algorithm (see,

Figure 2.2). Thus, we obtain the following result:

Theorem 2.3. Let w be an integer (whose binary representation has length n) and let �∗ be

the self-inverting permutation of length n∗ = 2n+ 1 produced by algorithm Encode W.to.SiP to

encode w. Algorithm Decode SiP.to.W correctly extracts w from �∗ in O(n∗) = O(n) time and

space.

2.5 The Structure of Permutation �
∗

We next analyze the structure of a self-inverting permutation �∗ produced by the encoding

algorithm Encode W.to.SiP. We distinguish the following two cases.

Special Case: Suppose that w = 2n − 1, that is, all the bits in w's binary representation are

1. Then, according to algorithm Encode W.to.SiP, B′ = 0n1n0, �b = (n + 1; n + 2; : : : ; 2n +

1; n; n− 1; : : : ; 2; 1), and �∗ = (n+ 1; n+ 2; : : : ; 2n; 1; 2; : : : ; n; 2n+ 1). Note that �∗ is the

concatenation of the (increasing) sub-permutations �∗1 and �∗2 where

�∗1 = (n+ 1; n+ 2; : : : ; 2n) and �∗2 = (1; 2; : : : ; n; 2n+ 1): (2.1)

General Case: Suppose that w ̸= 2n − 1. Then, the concatenation of the binary representation

of w with a trailing 0 consists of a1 1s, followed by b1 0s, followed by a2 1s, followed by b2 0s,

and so on, followed by a` 1s, followed by b` 0s where ` ≥ 1, ai; bi > 0, and a1 < n.

For convenience, let Aj =
∑j

t=1 at and Γj =
∑j

t=1(at + bt) for 0 ≤ j ≤ `; note that A0 = 0,

Γ0 = 0, Γ` = n + 1, and A` is equal to the number of 1s in the binary representation of w.

Additionally, let Bj =
∑j

t=1 bt for 0 ≤ j ≤ `, and Bj =
(∑`

t=1 bt

)
− Bj , which imply that

B0 = B` = 0, Bj−1 = Bj + bj , and Γ` = A` +B` = A` +B0.

Then, according to algorithm Encode W.to.SiP, B′ = 0 · · · 0||B||1 where B is the binary

representation of w, and �b = X ||Y R where X is the sequence of the 0s' positions in flip(B′)

and Y R is the reverse of the sequence of the 1s' positions in flip(B′), that is,

X = X1 ||X2 || : : : ||Xi || : : : ||X`

=
(
n+ 1; : : : ; n+ a1︸ ︷︷ ︸

a1

; n+ Γ1 + 1; : : : ; n+ Γ1 + a2︸ ︷︷ ︸
a2

; : : : ; n+ Γi−1 + 1; : : : ; n+ Γi−1 + ai︸ ︷︷ ︸
ai

;

: : : ; n+ Γ`−1 + 1; : : : ; n+ Γ`−1 + a`︸ ︷︷ ︸
a`

)
and

Y R = Y R
` || : : : ||Y R

i || : : : ||Y R
1 ||Y R

0

=
(
n+ Γ`; : : : ; n+ Γ` − b` + 1︸ ︷︷ ︸

b`

; : : : ; n+ Γi; : : : ; n+ Γi − bi + 1︸ ︷︷ ︸
bi

; : : : ;

n+ Γ1; : : : ; n+ Γ1 − b1 + 1︸ ︷︷ ︸
b1

; n; n− 1; : : : ; 2; 1︸ ︷︷ ︸
n

)
:

27

(Note that Γi−1 + ai = Γi − bi.)

Next, because the total length of the concatenation of X1; X2; : : : ; X`; Y
R
` ; : : : ; Y R

1 is n + 1

whereas the length of Y R
0 is n, the cycles constructed in Step 5 of algorithm Encode W.to.SiP

are:

• 2-cycles : the 2-cycles in increasing order of their second elements from 1 to n are (note

that A0 = B` = 0, A` +B0 − 1 = Γ` − 1 = (n+ 1)− 1 = n, and Γi−1 + ai = Γi − bi):

(n+ 1; A0 + 1), (n+ 2; A0 + 2), : : :, (n+ a1; A1),

(n+ Γ1 + 1; A1 + 1), (n+ Γ1 + 2; A1 + 2), : : :, (n+ Γ1 + a2; A2),

· · ·
(n+ Γi−1 + 1; Ai−1 + 1), (n+ Γi−1 + 2; Ai−1 + 2), : : :, (n+ Γi−1 + ai; Ai),

· · ·
(n+ Γ`−1 + 1; A`−1 + 1), (n+ Γ`−1 + 2; A`−1 + 2), : : :, (n+ Γ`−1 + a`; A`),

(n+ Γ`; A` +B` + 1), (n+ Γ` − 1; A` +B` + 2), : : :, (n+ Γ` − b` + 1; A` +B`−1),

· · ·
(n+ Γi; A` +Bi + 1), (n+ Γi − 1; A` +Bi + 2), : : :, (n+ Γi − bi + 1; A` +Bi−1),

· · ·
(n+ Γ2; A` +B2 + 1), (n+ Γ2 − 1; A` +B2 + 2), : : :, (n+ Γ2 − b2 + 1; A` +B1),

(n+Γ1; A` +B1 + 1), (n+Γ1 − 1; A` +B1 + 2), : : :, (n+Γ1 − b1 + 2; A` +B0 − 1);

• 1-cycle: the 1-cycle involves the last element of Y R
1 , that is, it is (n + Γ1 − b1 + 1) =

(n+ a1 + 1).

Therefore, the self-inverting permutation �∗ is the concatenation of �∗1 and �∗2, where

�∗1 = X1 ||X2 || : : : ||X` ||Y R
` || : : : ||Y R

2 ||ΨR
1 (2.2)

with ΨR
1 = (n + Γ1; : : : ; n + Γ1 − b1 + 2) (note that ΨR

1 is empty if b1 = 1 otherwise it is equal

to Y R
1 without its last element n+ Γ1 − b1 + 1 = n+ a1 + 1) and

�∗2 =
(
1; 2; : : : ; A1︸ ︷︷ ︸

a1

; n+A1 + 1; n; n− 1; : : : ; n−B1 + 2︸ ︷︷ ︸
b1−1

;

A1 + 1; A1 + 2; : : : ; A2︸ ︷︷ ︸
a2

; n−B1 + 1; n−B1; : : : ; n−B2 + 2︸ ︷︷ ︸
b2

;

· · · ;
Ai−1 + 1; Ai−1 + 2; : : : ; Ai︸ ︷︷ ︸

ai

; n−Bi−1 + 1; n−Bi−1; : : : ; n−Bi + 2︸ ︷︷ ︸
bi

;

· · · ;
A`−1 + 1; A`−1 + 2; : : : ; A`︸ ︷︷ ︸

a`

; n−B`−1 + 1; n−B`−1; : : : ; n−B` + 2︸ ︷︷ ︸
b`

)
(2.3)

(note that the last element of �∗2 is n−B`+2 = (Γ`−1)−B`+2 = (A`+B`−1)−B`+2 = A`+1).

It is interesting to note that �∗1 is a permutation of the numbers n+1; n+2; : : : ; 2n+1 except for

n+a1+1; in turn, �∗2 is a permutation of the numbers 1; 2; : : : ; n and n+a1+1. Additionally, �∗2
consists of the a1 numbers 1; 2; : : : ; A1 followed by b1 numbers larger than A`+1, followed by the

a2 numbers A1+1; A1+2; : : : ; A2, followed by b2 numbers larger than A`+1, and so on, up to the

a` numbers A`−1+1; A`−1+2; : : : ; A` that are followed by the b` numbers A`+b`; A`+b`−1; : : : ; A`

28

(note that n−B`−1+1 = (Γ`−1)−B`−1+1 = (A`+B`−1)−B`−1+1 = A`+(B`−B`−1) = A`+b`).

Example 2.3 Consider w = 220. The binary representation of w is 11011100, and hence n = 8.

From the concatenation of the binary representation of w with the additional trailing 0, we

have that ` = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 3; in turn, A1 = a1 = 2, A2 = a1 + a2 = 5,

B1 = B1 = b1 = 1, B2 = B0 = b1 + b2 = 4, Γ1 = A1 +B1 = 3, and Γ2 = A2 +B2 = 9. Then,

�b = (0; 0; 0; 0; 0; 0; 0; 0︸ ︷︷ ︸
n=8

; 1; 1; 0; 1; 1; 1; 0; 0︸ ︷︷ ︸
n=8

; 0)

and �∗1 = (9; 10; 12; 13; 14; 17; 16; 15) and �∗2 = (1; 2; 11; 3; 4; 5; 8; 7; 6); thus,

�∗ = (9; 10; 12; 13; 14; 17; 16; 15; 1; 2; 11; 3; 4; 5; 8; 7; 6):

2.6 Properties of Permutation �
∗

In this section, we analyze the structure of the self-inverting permutation �∗ produced by the

algorithms Encode W.to.SiP and discuss its properties with respect to resilience to attacks.

Collberg et al. [30, 32] describe several techniques for encoding watermark integers in graph

structures. Based on the fact that there is a one-to-one correspondence, say, C, between self-

inverting permutations and isomorphism classes of reducible permutation graphs (or, for short,

RPG), Collberg et al. [30] proposed a polynomial-time algorithm for encoding the integer w as

the RPG corresponding to the wth self-inverting permutation � in C. This encoding exploits

only the inversion property of a self-inverting permutation; it does not incorporate any other

structural properties.

In our codec system an integer w is encoded as a self-inverting permutation �∗ using a

construction technique which captures into �∗ important structural properties. The main prop-

erties of our self-inverting permutation �∗ produced by the algorithm Encode W.to.SiP can be

summarized into the following four categories:

• Odd-length property: By construction, the self-inverting permutation �∗ has always

odd length.

• One-cycle property: The self-inverting permutation �∗ always contains one, and only

one, cycle of length 1;

• Bitonic property: The self-inverting permutation �∗ is constructed from the bitonic

sequence �b = X||Y R, where X and Y are increasing subsequences (see, Step 4 of our

encoding algorithm Encode W.to.SiP), and thus the bitonic property of �b is encapsulated

in the cycles of �∗.

• Block property: The algorithm Encode W.to.SiP takes the binary representation of

the integer w and initially constructs the binary number B′ (see, Step 2). The binary

representation of B′ consists of three parts (or, blocks):

(i) the �rst part contains the leftmost n bits, each equal to 0,

29

(ii) the second part contains the next n bits which form the binary representation of the

integer w, and

(iii) the third part of length one contains a bit 0.

This property a�ects the construction of both subsequences X and Y (see, Bitonic prop-

erty), and thus the cycles of �∗.

The above properties enable us to identify any single change (in some cases, multiple changes)

made by an attacker to permutation �∗ produced by our encoding algorithm Encode W.to.SiP.

2.7 Concluding Remarks

We presented an e�cient algorithm for encoding watermark integers as self-inverting permuta-

tions. Our algorithm takes as input an integer w and produces a self-inverting permutation �∗ in

O(n) time, where n is the number of bits in the binary representation of w. We also presented the

corresponding decoding algorithm; it takes as input a self-inverting permutation �∗ produced by

the encoding algorithm and returns the encoding integer w in O(n) time, where n is the length

of the input permutation. Both algorithms are simple, easy implemented and very fast.

It is worth noting that our encoding approach enable us to encode any integer w as self-

inverting permutation �∗ of any length n∗ ≥ 3; indeed, �∗ can be constructed over the set Nn∗ ,

where n∗ = 2⌈logw⌉+ 1.

30

Chapter 3

Encoding SiPs as

Reducible Permutation Graphs

3.1 Introduction

3.2 Preliminaries

3.3 Reducible Permutation Graphs (RPG)

3.4 The Structure of Our Codec System

3.5 Encode SiPs as Reducible Permutation Graphs

3.6 Properties of the Flow-graph F [�∗]

3.7 Detecting Attacks

3.8 Concluding Remarks

3.1 Introduction

Although digital watermarking has made considerable progress and become a popular technique

for copyright protection of multimedia information [15, 113], research on software watermarking

has recently received considerable attention. Software watermarking has been studied for about

10-15 years and has been pioneered by Christian Collberg and his research team. The major soft-

ware watermarking algorithms currently available are based on several techniques, among which

the register allocation, spread-spectrum, opaque predicate, abstract interpretation, dynamic path

techniques (see, [1, 35, 37, 38, 86, 95, 101, 106]).

Recently, several software watermarking algorithms have appeared in the literature that en-

code watermarks as graph structures among which our algorithms proposed in this thesis which

encode watermarks numbers as Reducible Permutation Graphs (this chapter) or Cographs (Chap-

ter 5). In general, such encodings make use of an encoding function encode which converts a

31

watermarking number w into a graph G and of a decoding function decode that converts the

graph G into the number w, that is,

• encode(w)→ G

• decode(G)→ w

We usually call the pair (encode; decode)G as a graph codec [30]. From a graph-theoretic point

of view, we are looking for a class of graphs G and a corresponding codec (encode; decode)G with

the following properties:

(i) Appropriate Graph Types: Graphs in class G should be directed having appropriate properties
(e.g., nodes with small outdegree) so that their structure resembles that of real program

graphs;

(ii) High Resiliency: The function decode(G) should be insensitive to small changes of G (e.g.,

insertions or deletions of a constant number of nodes or/and edges); that is, if G ∈ G and

decode(G)→ w then decode(G′)→ w with G′ ≈ G;

(iii) Small Size: The size |Pw| − |P | of the embedded watermark should be small, where Pw and

P are the watermarked and the original program, respectively;

(iv) E�cient Codecs: The functions encode and decode should be computed in polynomial

time.

We briey mention here that there are two general categories of software watermarking algo-

rithms: the static and the dynamic algorithms [32]. A static watermark is stored inside program

code P in a certain format, and it does not change during the program execution. A dynamic wa-

termark is built during program execution, perhaps only after a particular sequence of input, and

it might be retrieved by analyzing the data structures built when watermarked program is run-

ning. Further discussion of static and dynamic watermarking issues can be found in [48, 85, 120]

and [32].

In 1996, Davidson and Myhrvold [48] presented the �rst published static software watermark-

ing algorithm; it embeds the watermark by reordering the basic blocks of a control ow-graph,

whereas the �rst dynamic watermarking algorithm CT was proposed by Collberg and Thomborson

[32]; it embeds the watermark through a graph structure which is built on a heap at runtime.

Based on the idea of Davidson and Myhrvold algorithm, Venkatesan, Vazirani, and Sinha [120]

proposed the �rst graph-based software watermarking algorithm which embeds the watermark

by extending a method's control ow-graph through the insertion of a directed subgraph; it is

a static algorithm and is called VVS or GTW. In [120] the construction of a directed graph G (or

watermark graph G) is not discussed. Collberg et al. [31] proposed an implementation of GTW,

which they call GTWsm; this is the �rst publicly available implementation of the algorithm GTW.

In GTWsm the watermark is encoded as a reducible permutation graph (RPG) [30], which is a

reducible control ow-graph with maximum out-degree of two, mimicking real code. Note that

for encoding integers, the GTWsm method uses only those permutations that are self-inverting.

Attacks: A successful attack against the watermarked program Pw prevents the recognizer from

extracting the watermark while not seriously harming the performance or correctness of the

32

program Pw. It is generally assumed that the attacker has access to the algorithm used by the

embedder and recognizer. There are four main ways to attack a watermark in an application

program.

◦ Additive attacks: Embed a new watermark into the watermarked software, so that the

original copyright owners of the software cannot prove their ownership by their original

watermark inserted in the software;

◦ Subtractive attacks: Remove the watermark of the watermarked software without a�ecting

the functionality of the watermarked software;

◦ Distortive attacks: Modify watermark to prevent it from being extracted by the copyright

owners and still keep the usability of the software;

◦ Recognition attacks: Modify or disable the watermark, so that the detector gives a mislead-

ing result.

Attacks against graph-based software watermarking algorithms can mainly occur in the fol-

lowing three ways: (i) Edge-ip attacks, (ii) Edges-addition/deletion attacks, and (iii) Node-

addition/deletion attacks.

Contribution. For encoding integers some recently proposed watermarking methods uses only

those permutations that are self-inverting. Collberg et al. [30, 32] based on the fact that there

is a one-to-one correspondence between self-inverting permutations and isomorphism classes of

RPGs, proposed a polynomial algorithm for encoding any integer w as the RPG corresponding

to the w-th self-inverting permutation � in this correspondence [30]. This encoding exploits only

the fact that a self-inverting permutation is its own inverse.

In this chapter, we present an e�cient and easily implementable system for encoding numbers

as reducible permutation graphs, whose structure resembles that of real program graphs, through

the use of self-inverting permutations (or SiP, for short); see, Figure 3.1.

More precisely, having designed an e�cient method for encoding integers as self-inverting

permutations (see, Chapter 3), we next describe algorithms for encoding a self-inverting permu-

tation �∗ of length n∗ as a reducible permutation ow-graph F [�∗]. In particular, we propose

the algorithm Encode SiP.to.RPG-I which exploits domination relations on the elements of �∗

and properties of a DAG representation of �∗, and the algorithm Encode SiP.to.RPG-II which

exploits neighborhood relations on speci�c decreasing subsequences of permutation �∗, and both

produce a reducible permutation ow-graph F [�∗] on n∗ + 2 nodes; in both approaches, the

whole encoding process takes O(n∗) time and requires O(n∗) space. The corresponding decoding

algorithm Decode RPG.to.SiP-I extracts the self-inverting permutation �∗ from the reducible

permutation graph F [�∗] by �rst converting the graph F [�∗] into a directed tree Td[�
∗] and then

applying DFS-search on Td[�
∗], while the decoding algorithm Decode RPG.to.SiP-II extracts

�∗ from F [�∗] by also �rst converting F [�∗] into a directed tree Ts[�
∗] and then �nding pairs of

nodes on speci�c paths in Ts[�
∗]. The decoding process takes time and space linear in the size of

the ow-graph F [�∗], that is, both decoding algorithms take O(n∗) time and space; recall that

the length of the permutation �∗ and the size of the ow-graph F [�∗] are both O(n∗) = O(n),

where n = ⌈log2w⌉.

33

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 t

F [π∗]

s

SiP.to.RPG RPG.to.SiP

The watermark number w = 4

W.to.SiP SiP.to.W

Figure 3.1: The main data components used by the algorithms of our codec system: (i) the watermark

number w, (ii) the self-inverting permutation �∗, and (iii) the reducible permutation graph F [�∗].

Our codec (encode; decode)F [�∗] system incorporates several important properties and char-

acteristics which make it appropriate for use in a real software watermarking environment. In

particular, the reducible permutation ow-graph F [�∗] resembles the graph data structures built

by real programs since its maximum outdegree does not exceed two and it has a unique root

node. The ow-graph F [�∗] is highly insensitive to small edge-changes and fairly insensitive to

small node-changes of F [�∗]; on the other hand, the properties of the graph F [�∗] enable us to

correct such edge changes.

Road Map. The chapter is organized as follows: In Section 3.2 we establish the notation and

related terminology, and we present background results. In Section 3.3 we de�ne the main graph-

based data component of our codec system, namely, the reducible permutation graphs (PRG). In

Section 3.4 we describe the two operational phases of our codec system and present the structure

of our system's reducible permutation graph F [�∗]. In Section 3.5 we present the two algo-

rithms, namely Encode-SiP.to.RPG-I and -II for encoding the self-inverting permutation �∗

as a reducible permutation ow-graph F [�∗] along with the corresponding decoding algorithms

Decode-RPG.to.SiP-I and -II. In Section 3.6 we present the properties of the reducible per-

mutation ow-graph F [�∗], while in Section 3.7 we show that node-label or edge modi�cations

on the graph F [�∗] can be e�ciently detected. Finally, in Section 3.8 we conclude the chapter

and discuss possible future extensions.

34

3.2 Preliminaries

We consider �nite graphs with no multiple edges. For a graph G, we denote by V (G) and E(G)

the vertex set and edge set of G, respectively. The neighborhood N(x) of a vertex x of the

graph G is the set of all the vertices of G which are adjacent to x. The degree of a vertex x in

the graph G, denoted deg(x), is the number of edges incident on x; thus, deg(x) = |N(x)|. For
a node x of a directed graph G, the number of directed edges coming in x is called the indegree

of x and the number of directed edges leaving x is its outdegree.

A path in an undirected graph G of length k is a sequence of vertices (v0; v1; : : : ; vk) such

that (vi−1; vi) ∈ E(G) for i = 1; 2; : : : ; k. A path is called simple if none of its vertices occurs

more than once.

Let T be a rooted tree. The parent of a node x of T is denoted by p(x), whereas the node

set containing the children of x in T is denoted by ch(x). The root node of a tree is said to be

at level 0, while the level of any other node x is equal to the level of x's parent increased by 1.

Let Li denote the set of nodes at the i-th level of T , for each value of i from 0 to the height of

the tree T .

3.3 Reducible Permutation Graphs (RPG)

A ow-graph is a directed graph with an initial node from which all other nodes are reachable.

A directed graph G is strongly connected if for every pair of vertices x; y of G there is a directed

path in G from x to y. A node y is an entry for a subgraph H of the graph G if there is an edge

(x; y) in G such that y ∈ H and x ̸∈ H.

De�nition 3.1. A ow-graph is reducible if it does not have a strongly connected subgraph with

two (or more) entries.

There are at least two other equivalent de�nitions, as Theorem 3.1 shows. These de�nitions

use a few more graph-theoretic concepts. An edge (x; x) (for some node x) is a cycle-edge. A

depth �rst search (DFS) traversal of a ow-graph partitions its edges into tree edges (making up

a spanning tree known as a DFS tree), forward edges (pointing to a successor in the spanning

tree), back edges (pointing to a predecessor in the spanning tree, plus the cycle-edges), and cross

edges (the remaining edges). Tree edges, forward edges, and cross edges form a dag known as a

DFS dag.

Theorem 3.1. [59, 60] Let F be a ow-graph. The following three statements about F are

equivalent:

(i) the graph F is reducible;

(ii) the graph F has a unique DFS dag;

(iii) the graph F can be transformed into a single node by repeated application of the transfor-

mations T1 and T2, where T1 removes a cycle-edge, and T2 picks a non-initial node y that

has only one incoming edge (x; y) and glues nodes x and y.

35

3.4 The Structure of our Codec System

In this section, we describe the main structural and data components of our codec system which

encodes an integer w into a reducible permutation graph through the use of self-inverting per-

mutations produced the algorithm Encode W.to.SiP (see, Chapter 2).

For a watermark number w, our codec system uses two main data components: (i) the self-

inverting permutation �∗ and (ii) the reducible permutation graph F [�∗]; these components are

depicted in Figure 3.1. The same �gure also shows the two main phases of our system's process:

(I) Phase W{SiP: it uses two algorithms, one for encoding the watermark number w into a

self-inverting permutation �∗ and the other for extracting w from �∗;

(II) Phase SiP{RPG: this phase uses two algorithms as well, one for encoding the self-

inverting permutation �∗ into a reducible permutation graph F [�∗] and the other for ex-

tracting �∗ from F [�∗].

Our codec system encodes an integer w as a self-inverting permutation �∗ using a construction

technique which captures into �∗ important structural properties. As we discussed in Chapter 3,

these properties enable an attack-detection system to identify edge and/or node modi�cations

made by an attacker to �∗; we briey mention here, the odd-length property (the self-inverting

permutation �∗ has always odd length), the one-cycle property (�∗ contains always one, and

only one, cycle of length 1), the bitonic property, and the block property (see, Section 2.6).

Moreover, the encoding approach adopted by our system enables it to encode any integer w as

a self-inverting permutation �∗ of length n∗ = 2n+ 1, where n = 2⌈log2w⌉+ 1.

The reducible permutation graph F [�∗] produced by our system's algorithms consists of n∗ + 2

nodes, say, un∗+1; un∗ ; : : : ; ui; : : : ; u0, which include:

(A) A header node: it is a root node with outdegree one from which all other nodes of the

graph F [�∗] are reachable; note that every control ow-graph has such a node. In F [�∗]

the header node is denoted by s = un∗+1;

(B) A footer node: it is a node with outdegree zero that is reachable from all other nodes

of the graph F [�∗]. Every control ow-graph has such a node representing the exit of the

method. In F [�∗] the footer node is denoted by t = u0;

(C) The body: it consists of n∗ nodes un∗ ; un∗−1; : : : ; ui; : : : ; u1 each with outdegree two. In

particular, each node ui (1 ≤ i ≤ n∗) has exactly two outgoing pointers: one points to

node ui−1 and the other points to a node um with m > i; recall that un∗+1 = s and u0 = t.

By construction, the reducible permutation graph F [�∗] is of order (i.e., number of nodes) n∗+2

and size (i.e., number of edges) 2n∗ + 1. Thus, since n∗ = 2n + 1, both the order and size of

graph F [�∗] are of O(n), where n = 2⌈log2w⌉+ 1.

Recall that our contribution in this chapter has to do with both the W{SiP and the SiP{RPG

phase. We design and analyze algorithms for encoding a watermark number w as a SiP �∗ and

algorithms for encoding a SiP �∗ as a reducible permutation ow-graph F [�∗] along with the

corresponding decoding algorithms; we also show properties of our codec system that prevent

edge and/or node modi�cation attacks.

36

π∗ = (6, 3, 2, 9, 8, 1, 11, 5, 4, 10, 7)

s6

93

82

5

7

1

4

t

D[π∗]

10

11

s6

93

82

5

7

1

4

t

Td[π
∗]

10

11

Figure 3.2: The DAG D[�∗] of the self-inverting permutation �∗ and the corresponding Dmax-tree

Td[�
∗].

3.5 Encode SiPs as Reducible Permutation Graphs

In this section, we concentrate on the system's phase SiP{RPG and present e�cient algorithms

for encoding a self-inverting permutation �∗ into a reducible permutation graph F [�∗] as well as

the corresponding decoding algorithms for extracting the permutation �∗ from the graph F [�∗].

We present two such encoding algorithms yielding two di�erent reducible permutation graphs.

The former applies to any permutation � and relies on domination relations on the elements of �

whereas the latter applies to a self-inverting permutation �∗ produced in any way and relies on

the decreasing subsequences of �∗. We mention that the restricted structure of a self-inverting

permutation �∗ produced by algorithm Encode W.to.SiP (as discussed in Chapter 2) enables

us to obtain the decreasing subsequences of �∗ in time linear in its size and, more importantly,

makes the encoding of �∗ into graph F [�∗] robust and resilient to attacks.

In light of our encoding algorithm Encode W.to.SiP, the two proposed encoding algorithms

provide two di�erent ways to encode the same watermark value w into two di�erent reducible

permutation graphs and thus can be very useful for multiple watermarking.

3.5.1 Encode SiPs as Reducible Permutation Graphs - I

The proposed algorithm, which we call Encode SiP.to.RPG-I, takes as input the self-inverting

permutation �∗ produced by the algorithm Encode W.to.SiP and constructs a reducible per-

mutation ow-graph F [�∗] by using a DAG representation D[�∗] of the permutation �∗ [23]; in

fact, it uses a parent-relation of a tree obtained from the graph D[�∗] de�ned below. The whole

encoding process takes O(n∗) time and requires O(n∗) space, where n∗ is the length of the input

self-inverting permutation �∗.

Next, we �rst describe the main ideas and the structures behind our encoding algorithm. In

particular, given a self-inverting permutation �∗ we construct a directed acyclic graph, a directed

37

tree and de�ne speci�c d-domination relations on the elements of �∗.

DAG Representation D[�∗]: We construct the directed acyclic graph D[�∗] by exploiting the

d-domination relation of the elements of �∗ as follows: (i) for every element i of �∗, we create a

corresponding vertex vi and we add it into the vertex set V (D[�∗]) of D[�∗]; (ii) for every pair

of vertices (vi; vj) where vi; vj ∈ V (D[�∗]), we add the directed edge (vi; vj) in E(D[�∗]) if the

element i d-dominates the element j in �∗; (iii) we create two dummy vertices s = vn∗+1 and

t = v0 and we add them both in V (D[�∗]); then, we add in E(D[�∗]) the directed edge (s; vi)

for every vi with indegree equal to 0, and the edge (vj ; t) for every vj with outdegree equal to 0.

Figure 3.2 depicts the graphD[�∗] of the permutation �∗ = (6; 3; 2; 9; 8; 1; 11; 5; 4; 10; 7). Note

that, by construction, i > j for every directed edge (vi; vj) of D[�∗] since the element j of �∗ is

d-dominated by the element i.

Dmax-domination Relations: Let d-dom(j) be the set of all the elements of the permuta-

tion �∗ which d-dominates the element j and dmax(j) be the element of the set d-dom(j) with

maximum value; similarly, d-dom(vj) is the set of all the nodes vi of the graph D[�∗] such that

i d-dominates j in �∗ and let dmax(vj) = vdmax(j), 1 ≤ j ≤ n∗. For example, in Figure 3.2

d-dom(5)=(6,8,11) and dmax(5)=11, and d-dom(7)=(8,10) and dmax(7)=10.

We say that the element i dmax-dominates j (node vi dmax-dominates vj , resp.) if i =

dmax(j) (vi = dmax(vj), resp.). The ordered pair (i; j) of elements of �∗ (the ordered pair

(vi; vj) of nodes of D[�∗], resp.) are in a dmax-domination relation if i dmax-dominates j (vi
dmax-dominates vj , resp.).

By de�nition, the element i = dmax(j) of permutation �∗, i.e., i dmax-dominates j, is the

rightmost element on the left of j in �∗ which d-dominates j; equivalently, the node vi = dmax(vj)

of graph D[�∗] is the parent of the node vj with the maximum label.

Dmax-tree Td[�
∗]: We construct the directed tree Td[�

∗], which we call Dmax-tree, by exploiting

the dmax-domination relation on the nodes ofD[�∗]. The Dmax-tree Td[�
∗] is simply constructed

as follows:

(i) construct the D-dag D[�∗];

(ii) delete all the directed edges (vi; vj) from D[�∗] if vi and vj are not in dmax-domination

relation, i.e., vi ̸= dmax(vj).

The Dmax-tree Td[�
∗] of the permutation �∗ = (6; 3; 2; 9; 8; 1; 11; 5; 4; 10; 7) is shown in Figure 3.2.

We point out that the construction of the Dmax-tree Td[�
∗] can also be done directly from

permutation �∗ by �nding the dmax-domination relation of each element of �∗; note that s =

vn∗+1 dominates all the elements of �
∗.

Algorithm Encode SiP.to.RPG-I

Given a self-inverting permutation �∗ of length n∗, our proposed algorithm Encode W.to.SiP-I

works as follows: �rst, it computes the dmax-domination relation of each of the n elements of the

self-inverting permutation �∗ (Step 1), and then, it constructs a directed graph F [�∗] on n∗ + 2

nodes using the dmax-domination relation of the elements of the permutation �∗ (Steps 2 and

3).

38

Now we present the encoding algorithm in detail.

Algorithm Encode SiP.to.RPG-I

1. for each element i ∈ �∗, 1 ≤ i ≤ n∗, do

◦ set P (i) = m, where m = dmax(i), i.e., m is the element from d-dom(i) with

the maximum value;

2. Construct a directed graph F [�∗] on n∗ + 2 vertices as follows:

◦ V (F [�∗]) = {s = un∗+1; un∗ ; : : : ; u1; u0 = t};
◦ for i = n∗; n∗ − 1; : : : ; 0 do

add the edge (ui+1; ui) in E(F [�∗]);

3. for each vertex ui ∈ V (F [�∗]), 1 ≤ i ≤ n∗, do

◦ add the edge (ui; um) in E(F [�∗]) where m = P (i);

4. Return the graph F [�∗].

Time and Space Complexity. The most time-consuming step of the algorithm is the computa-

tion of the dmax-domination relation on each element of �∗ (Step 1). On the other hand, the

construction of the reducible permutation ow-graph F [�∗] on n∗ + 2 nodes requires only the

forward pointers (Step 2) which can be trivially computed, and the dmax-domination pointers

(Step 3) which can be computed using the function P ().

Returning to Step 1, we observe that the element m is the max-indexed element on the left

of the element i in the permutation �∗ that is greater than i. Thus, the function P () can be

alternatively computed using the input permutation as follows:

(i) insert the value n∗ + 1 into an initially empty stack S;

(ii) for each element �∗i ∈ �∗, i = 1; 2; : : : ; n∗, do the following:

while the element at the the top of S is less than �∗i do

remove from S the element at its top;

P (�∗i) = element at the top of S;

insert �∗i in stack S;

For the correctness of this procedure, note that the contents of the stack S are in decreasing order

from bottom to top; in fact, at the completion of the processing of element �∗i , S contains (from

top to bottom) the left-to-right maxima of the reverse subpermutation (�∗i ; �
∗
i−1; : : : ; �

∗
1; n

∗ +1).

Additionally, it is important to observe that the value n∗ + 1 at the bottom of the stack S is

never removed.

The time to process element �∗i in step (ii) is O(1 + ti) where ti is the number of elements

popped from the stack S while processing �∗i . Since the number of pops from S does not exceed

the number of pushes in S and since each element of the input permutation �∗ is inserted exactly

once in S, the whole computation of the function P () takes O(n∗) time and space, where n∗ is

the length of the permutation �∗. Thus, we obtain the following result:

Theorem 3.2. The algorithm Encode SiP.to.RPG-I for encoding a self-inverting permutation

�∗ of length n∗ as a reducible permutation ow-graph F [�∗] requires O(n∗) time and space.

39

π∗ = (6, 3, 2, 9, 8, 1, 11, 5, 4, 10, 7)

1011 9 8 7 6 5 4 3 2 1 t

6 9 11

3 8 5 10

2 1 4

F [π∗]

Td[π
∗]

7

s

s

P (6) = 12

P (3) = 6

P (2) = 3

P (9) = 12

P (8) = 9

P (1) = 8

P (11) = 12

P (5) = 11

P (4) = 5

P (10) = 11

P (7) = 10

Figure 3.3: The main structures used or constructed by the algorithms Encode SiP.to.RPG-I and

Decode RPG.to.SiP-I, that is, the self-inverting permutation �∗, the values of function P (), the reducible

permutation graph F [�∗], and the Dmax-tree Td[�
∗].

Algorithm Decode RPG.to.SiP-I

The algorithm Encode SiP.to.RPG-I produces a reducible permutation ow-graph F [�∗] in

which it encodes a self-inverting permutation �∗. Thus, we are interested in designing an e�cient

and easily implementable algorithm for extracting the permutation �∗ from the graph F [�∗].

Next, we present such a decoding algorithm, we call it Decode RPG.to.SiP-I, which takes

time and space linear in the size of the ow-graph F [�∗], and is easily implementable: the only

operations used by the algorithm are edge modi�cations on F [�∗] and DFS-search on trees.

The algorithm takes as input a reducible permutation ow-graph F [�∗] on n∗ + 2 nodes

constructed by algorithm Encode SiP.to.RPG-I, and produces a self-inverting permutation �∗

of length n∗; it works as follows:

Algorithm Decode RPG.to.SiP-I

1. Delete the directed edges (ui+1; ui) from the edge set E(F [�∗]), 1 ≤ i ≤ n∗, and the node

t = u0 from V (F [�∗]);

2. Flip all the remaining directed edges of the graph F [�∗];

let Td[�
∗] be the resulting tree with nodes s; u1; u2; : : : ; un∗ ;

3. Perform DFS-search on the tree Td[�
∗] starting at node s by always proceeding to the

minimum-labeled child node and compute the DFS discovery time d[u] of each node u of

Td[�
∗];

40

4. Order the nodes u1; u2; : : : ; un∗ of the tree Td[�
∗] by their DFS discovery time d[] and let

� = (u′1; u
′
2; : : : ; u

′
n∗) be the resulting order, where d[u′i] < d[u′j] for i < j, 1 ≤ i; j ≤ n∗;

5. Return �∗ = �.

Time and Space Complexity. The size of the reducible permutation graph F [�∗] constructed by

the algorithm Encode SiP.to.RPG-I is O(n∗), where n∗ is the length of the permutation �∗, and

thus the size of the resulting tree Td[�
∗] is also O(n∗). It is well known that the DFS-search on

the tree Td[�
∗] takes time linear in the size of Td[�

∗]. Thus, the decoding algorithm is executed

in O(n∗) time using O(n∗) space. Thus, the following theorem holds:

Theorem 3.3. Let F [�∗] be a reducible permutation ow-graph of size O(n∗) produced by the

algorithm Encode SiP.to.RPG-I. The algorithm Decode RPG.to.SiP-I decodes the graph F [�∗]

in O(n∗) time and space.

3.5.2 Encode SiPs as Reducible Permutation Graphs - II

The proposed encoding algorithm, which we call Encode SiP.to.RPG-II, takes as input a self-

inverting permutation �∗ of length n∗ = 2n + 1 produced by Algorithm Encode W.to.SiP and

constructs a reducible permutation ow-graph F [�∗] by using the properties of the decreasing

subsequences of �∗ [21].

Decreasing Subsequences of �∗: For the special case in which w = 2n−1 (that is, all the bits

in w's binary representation are 1), the fact that both sub-permutations �∗1 and �
∗
2 are increasing

(see, Eq. 2.1) implies that the self-inverting permutation �∗ has n + 1 decreasing subsequences

which are in order: (n+ 1; 1), (n+ 2; 2), : : :, (2n; n), and (2n+ 1).

Next, if w ̸= 2n−1, the sub-permutation �∗1 (see, Eq. 2.2) has the following A`+1 decreasing

subsequences in order:

◦ the a1 subsequences (n+ 1), (n+ 2), : : :, (n+ a1) of length 1 each;

◦ the subsequence (n+ Γ1 + 1; n+ Γ1; : : : ; n+ a1 + 2) of length b1;

◦ the a2 − 1 subsequences (n+ Γ1 + 2), (n+ Γ1 + 3), : : :, (n+ Γ1 + a2) of length 1 each;

◦ for i = 2; 3 : : : ; `− 1,

the subsequence (n+ Γi + 1; n+ Γi; : : : ; n+ Γi−1 + ai + 1) of length bi + 1 and

the ai+1 − 1 subsequences (n+ Γi + 2), (n+ Γi + 3), : : :, (n+ Γi + ai+1) of length 1

each;

◦ the subsequence (n+ Γ`; n+ Γ` − 1; : : : ; n+ Γ`−1 + a` + 1) of length b`.

In turn, the sub-permutation �∗2 (see, Eq. 2.3) has an equal number (i.e., A` + 1) of decreasing

subsequences. In order, they are:

◦ the a1 subsequences (1), (2), : : :, (A1) of length 1 each;

◦ the subsequence (n+A1 + 1; n; n− 1; : : : ; n−B1 + 2; A1 + 1) of length b1 + 1;

41

◦ the a2 − 1 subsequences (A1 + 2), (A1 + 3), : : :, (A2) of length 1 each;

◦ for i = 2; 3 : : : ; `− 1,

the subsequence (n−Bi−1 +1; n−Bi−1; : : : ; n−Bi+2; Ai+1) of length bi+1 and

the ai+1 − 1 subsequences (Ai + 2), (Ai + 3), : : :, (Ai+1) of length 1 each;

◦ the subsequence (n−B`−1 + 1; n−B`−1; : : : ; n−B` + 2) of length b`.

Then we can show the following result.

Lemma 3.1. The decreasing subsequences of �∗ can be computed by concatenating the corre-

sponding decreasing subsequences of �∗1 and of �∗2.

Proof: It su�ces to show that the last (smallest) element of the i-th decreasing subsequence of

�∗1 is larger than the �rst (largest) element of the i-th decreasing subsequence of �
∗
2. Indeed, this

is true for the �rst a1 = A1 decreasing subsequences, since the (single) element of each of these

subsequences of �∗1 is larger than n, whereas the (single) element of each of these subsequences

of �∗2 is at most equal to A1 = a1 ≤ n. For the (a1 + 1)-st decreasing subsequence, we have that

the smallest element of this subsequence of �∗1 is n+ a1 + 2 whereas the largest element of that

of �∗2 is n+A1 + 1; clearly, n+ a1 + 2 = n+A1 + 2 > n+A1 + 1. For the remaining decreasing

subsequences, we observe that the elements of all these subsequences of permutation �∗1 are at

least equal to n + Γ1 + 2 ≥ n + 2, whereas the elements of those of �∗2 are at most equal to

n−B1 + 1 ≤ n+ 1.

Example 3.1 For the self-inverting permutation �∗ = (5; 6; 9; 8; 1; 2; 7; 4; 3) of Example 4.2, we

have that �∗1 = (5; 6; 9; 8) with decreasing subsequences (5), (6), and (9; 8), and �∗2 = (1; 2; 7; 4; 3)

with decreasing subsequences (1), (2), and (7; 4; 3). In turn, the decreasing subsequences of �∗

are: (5; 1), (6; 2), and (9; 8; 7; 4; 3).

Algorithm Encode SiP.to.RPG-II

Our Encode SiP.to.RPG-II algorithm works as follows: (i) �rst, it computes the decreasing

subsequences S1; S2; : : : ; Sk of the permutation �∗ and then (ii) it constructs a directed graph

F [�∗] on n∗ + 2 nodes using the subsequences S1; S2; : : : ; Sk. The algorithm takes O(n∗) time

and requires O(n∗) space.

Next, we present the proposed encoding algorithm in detail (see, Figure 3.4).

Algorithm Encode SiP.to.RPG-II

1. Compute the decreasing subsequences S1, S2, : : : ; Sk of permutation �∗;

2. Construct a directed graph F [�∗] on n∗ + 2 vertices as follows:

◦ V (F [�∗]) = {s = un∗+1; un∗ ; : : : ; u1; u0 = t};

42

π∗ = (6, 3, 2, 9, 8, 1, 11, 5, 4, 10, 7)

1011 9 8 7 6 5 4 3 2 1 t

6 9 11

3 8 10

2

F [π∗]

Ts[π
∗]

7

s

s

S1 = (6, 3, 2, 1)

S2 = (9, 8, 5, 4)

S3 = (11, 10, 7)

1

5

4

C1 = (6, 1)

C2 = (3, 2)

C3 = (9, 4)

C4 = (8, 5)

C5 = (11, 7)

C6 = (10)

Figure 3.4: The main structures used or constructed by Algorithms Encode SiP.to.RPG-II and

Decode RPG.to.SiP-II, i.e., the self-inverting permutation �∗, the decreasing subsequences of �∗, the

graph F [�∗], the tree Ts[�
∗], and the elements of �∗ in pairs.

◦ for i = n∗; n∗ − 1; : : : ; 0 do

add the edge (ui+1; ui) in E(F [�∗]);

3. for each decreasing subsequence Si = (i1; i2; : : : ; it), 1 ≤ i ≤ k, do

add the edge (ui1 ; s) in E(F [�∗]);

for j = t; t− 1; : : : ; 2 do

add the edge (uij ; uij−1) in E(F [�∗]);

4. Return the graph F [�∗].

Time and Space Complexity. The sequences S1; S2; : : : ; Sk of �
∗ can be computed in O(n∗) time

and space: from �∗, we isolate subpermutation �∗2 (see, Eq. 2.1 and 2.3) from which we determine

the ais, the bis, and `, and from them, the Ais, Bis, and Γis; then, the sequences S1; S2; : : : ; Sk

can be computed based on the description of the decreasing subsequences of �∗1 and �∗2 given

earlier in this section and Lemma 3.1. Furthermore, the construction of the graph F [�∗] also

takes O(n∗) time and space. Thus, the following theorem holds.

Theorem 3.4. The algorithm Encode SiP.to.RPG-II for encoding a self-inverting permuta-

tion �∗ of length n∗ as a reducible permutation ow-graph F [�∗] requires O(n∗) time and space.

43

Algorithm Decode RPG.to.SiP-II

Having designed the e�cient encoding algorithm Encode SiP.to.RPG-II, we next present the

decoding algorithm Decode RPG.to.SiP-II which takes as input a ow-graph F [�∗] and extracts

the self-inverting permutation �∗ from F [�∗] (see, Figure 3.4); it works as follows:

Algorithm Decode RPG.to.SiP-II

1. Delete the directed edges (ui+1; ui) from the edge set E(F [�∗]), 1 ≤ i ≤ n∗, and the node

t = u0 from V (F [�∗]) = {s = un∗+1; un∗ ; : : : ; u1; u0 = t};

2. Flip all the remaining directed edges of the graph F [�∗]; the resulting graph is a tree Ts[�
∗]

rooted at s = un∗+1; let vn∗+1; vn∗ ; : : : ; v1 be the corresponding nodes of Ts[�
∗];

3. While the root s of Ts[�
∗] has at least one child vi do

◦ �nd the leaf vj of Ts[�
∗] which is reachable from node vi;

◦ set Pm = (vi; vj) and delete both vi and vj from Ts[�
∗];

4. Initialize the permutation �∗ = (�∗1; �
∗
2; : : : ; �

∗
n∗) to the identity permutation (1; 2; : : : ; n∗),

and let P be the set of all pairs P1; P2; : : : ; Pk computed at Step 3; then

◦ for each pair (vi; vj) ∈ P , swap elements �∗i and �∗j in permutation �∗;

5. Return the self-inverting permutation �∗.

Time and Space Complexity. The size of the tree Ts[�
∗] is O(n∗) since the input graph F [�∗]

constructed by algorithm Encode SiP.to.RPG-II has O(n∗) nodes. Based on the structure of

the tree Ts[�
∗] we can compute the pairs P1; P2; : : : ; Pk in O(n∗) time using O(n∗) space. Thus,

we can obtain the following result.

Theorem 3.5. Let F [�∗] be a reducible permutation ow-graph of size 2n∗ + 1 produced by the

algorithm Encode SiP.to.RPG-II. The algorithm Decode RPG.to.SiP-II decodes the ow-graph

F [�∗] in O(n∗) time and space.

3.6 Properties of the Flow-graph F [�∗]

In this section, we analyze the structures of the main component of our proposed codec system,

that is, the reducible permutation graph F [�∗] produced by the algorithms Encode SiP.to.RPG-I

and -II, and discuss their properties with respect to resilience to attacks.

We next describe the main properties of our reducible permutation graph F [�∗]; we mainly

focus on the properties of F [�∗] with respect to graph-based software watermarking attacks.

44

3.6.1 Structural Properties

In graph-based watermarking environment, the watermark w is encoded by a codec algorithm

into some special kind of graphs G; in such an environment, graph G is usually called watermark

graph. In general, the watermark graph G should not di�er from the graph data structures built

by real programs. Important properties are the maximum outdegree ofG which should not exceed

two or three, and the existence of a unique root node so that all other nodes can be reached from

it. Moreover, G should be resilient to attacks against edge and/or node modi�cations. Finally,

G should be e�ciently constructed.

Our watermark graph F [�∗] and a corresponding codec system (encode; decode)F[�∗] incor-

porate all the above properties; in particular, the graph F [�∗] and the corresponding codec have

the following properties:

• Appropriate graph types: The graph F [�∗] is directed on n∗ + 2 nodes with outdegree

at most two; that is, it has low max-outdegree, and thus it matches real program graphs.

• High resiliency: Since exactly one node of the reducible permutation graph F [�∗] has

outdegree 0, one other has outdegree 1, and the rest have outdegree 2, we can with high

probability identify and correct single edge modi�cations, i.e., edge-ips, edge-additions,

or edge-deletions. Thus, the graph F [�∗] enables us to correct single edge changes.

• Small size: The size |Pw|− |P | of the embedded watermark w is relatively small since the

size of the corresponding watermark graph F [�∗] is O(n∗); in fact, F [�∗]'s size is O(log2w)

because n∗ = 2n+ 1 and n = ⌈log2w⌉.

• E�cient codecs: The codec (encode; decode)F [�∗] has low time and space complexity;

indeed, we have showed that both the encoding algorithms Encode SiP.to.RPG-I and

-II and the decoding algorithms Decode RPG.to.SiP-I and -II require O(n∗) time and

space, where n∗ is the size of the input permutation �∗ (see, Theorems 3.2 and 3.3 and

Theorems 3.4 and 3.5).

It is worth noting that our encoding and decoding algorithms use basic data structures and

operations, and thus they are easily implementable.

3.6.2 Unique Hamiltonian Path

It is well-known that any acyclic digraph G has at most one Hamiltonian path (HP); G has

one HP if there exists an ordering (v1; v2; : : : ; vn) of its n nodes such that in the subgraphs

G0; G1; : : : ; Gn−1 the nodes v1; v2; : : : ; vn, respectively, are the only nodes with indegree zero,

where G0 = G and Gi = G\{v1; v2; : : : ; vi}, 1 ≤ i ≤ n − 1. Furthermore, it has been shown

that any reducible ow-graph has at most one Hamiltonian path [30]. It is not di�cult to see

that the reducible permutation graphs F [�∗] constructed by algorithms Encode SiP.to.RPG-I

and -II have a unique Hamiltonian path, denoted by HP(F [�∗]); this is precisely the path

un∗+1un∗ · · ·u1u0. Such a path can be found in time linear in the size of F [�∗]. The following

algorithm, which we call Unique HP, takes as input a graph F [�∗] on n∗ +2 nodes and produces

45

its unique Hamiltonian path HP(F [�∗]).

Algorithm Unique HP

1. Find the node un∗+1 of the graph F [�∗] with outdegree 1;

2. Perform DFS-search on graph F [�∗] starting at node un∗+1 and compute the DFS discovery

time d[u] of each node u of F [�∗];

3. Return HP(F [�∗]) = (u′0; u
′
1; : : : ; u

′
n∗+1) where (u′0; u

′
1; : : : ; u

′
n∗+1) is the ordering of the

nodes un∗+1; un∗ ; : : : ; u0 of the graph F [�∗] by increasing DFS discovery time d[], i.e.,

d[u′i] < d[u′j] for i < j, 0 ≤ i; j ≤ n∗ + 1.

Since the graph F [�∗] contains n∗ + 2 nodes and 2n∗ + 1 edges, both �nding the node of F [�∗]

with outdegree 1 and performing DFS-search on F [�∗] take O(n∗) time and require O(n∗) space.

Moreover, ordering the nodes by their DFS discovery time can also be done in O(n∗) time by

bucket sorting. Thus, we have the following result.

Theorem 3.6. Let F [�∗] be a reducible permutation graph of size O(n∗) constructed by algo-

rithm Encode SiP.to.RPG-I or -II. The algorithm Unique HP correctly computes the unique

Hamiltonian path of F [�∗] in O(n∗) time and space.

3.7 Detecting Attacks

In this section, we show that the malicious intentions of an attacker to lead a reducible permu-

tation graph F [�∗] in incorrect-stage by modifying some node-labels or edges of the graph F [�∗]

can be e�ciently detected.

3.7.1 Node-label Modi�cation

By construction, our reducible permutation graph F [�∗] is a node-labeled graph on n∗+2 nodes,

where n∗ is the length of �∗. Indeed, the labels of F [�∗] are numbers of the set {0; 1; : : : ; n∗+1},
where the label n∗ + 1 is assigned to header node s = un∗+1, the label 0 is assigned to footer

node t = u0, and the label n∗ + 1− i is assigned to the ith body node un∗+1−i, 1 ≤ i ≤ n.

A label modi�cation attacker may perform swapping of the labels of two nodes of F [�∗],

altering the value of the label of a node, or even removing all the labels of the graph F [�∗]

resulting in a node-unlabeled graph. Since the extraction of the watermark w relies on the labels

of the ow-graph F [�∗] (see, algorithms Decode RPG.to.SiP-I and -II), it follows that our

codec system (encode; decode)F[�∗] is susceptible to node-label modi�cation attacks.

Therefore, it is important for us to also have a way to extract the watermark w e�ciently

from F [�∗] without relying on its labels. Obtaining the correct labels can be easily done in O(n∗)

time and space thanks to the unique Hamiltonian path HP(F [�∗]) since the nodes of F [�∗]) are

encountered along HP(F [�∗]) in decreasing order of their labels. Thus, we can recover from any

change of the labels or even from complete deletion of them. Therefore, we have the following

result.

46

11 21 31 41 51 61 71 81 91
0

0,004

0,008

0,012

0,016

0,02

1 Edge Attack

Number of Nodes

P
ro

ba
bi

lit
y

11 21 31 41 51 61 71 81 91
0

1

2

3

4

x 10
−4

2 Edges Attack

Number of Nodes

P
ro

ba
bi

lit
y

(a) (b)

11 21 31 41 51 61 71 81 91
0

1

2

3

4

5

6

7

8

x 10
−6

3 Edges Attack

Number of Nodes

P
ro

ba
bi

lit
y

11 21 31 41 51 61 71 81 91
0

0.4

0.8

1.2

1.6

x 10
−7

4 Edges Atack

Number of Nodes

P
ro

ba
bi

lit
y

(c) (d)

Figure 3.5: The probability for the RPG F [�∗] to have the RPG property after a modi�cation of (a) 1

edge, (b) 2 edges, (c) 3 edges, and (d) 4 edges. Note the di�erent scaling of the four diagrams.

Lemma 3.2. Let F [�∗] be a reducible permutation graph of size O(n∗) produced by either al-

gorithm Encode SiP.to.RPG-I or -II, and let F ′[�∗] be the graph resulting from F [�∗] after

having modi�ed or deleted the node-labels of F [�∗]. Given F ′[�∗], the ow-graph F [�∗] can be

constructed in O(n∗) time and space.

3.7.2 Edge Modi�cation

We next argue that we can decide, with high probability, whether the reducible permutation

graph F [�∗] produced by our codec system has su�ered an attack on its edges.

Let F [�∗] be a ow-graph which encodes the integer w and let F ′[�∗] be the graph resulting

from F [�∗] after an edge modi�cation. Then, we say that F ′[�∗] is either False-incorrect (F-

incorrect) or True-incorrect (T-incorrect): F ′[�∗] is F-incorrect if our codec system fails to return

an integer from the graph F ′[�∗], whereas F ′[�∗] is T-incorrect if our system extracts from F ′[�∗]

and returns an integer w′ ̸= w.

Since the SiP properties of the permutation �∗, i.e., odd-length property, one-cycle property,

bitonic property, and block property (see, Section 2.6), are incorporated in the structure of the

reducible permutation graph F [�∗], it follows that the graph F ′[�∗] resulting from F [�∗] after any

47

edge-modi�cation may be F-incorrect if at least one of the SiP properties does not hold. Indeed, if

F ′[�∗] decodes a permutation �′∗ ̸= �∗, then the subsequence X (Y , resp.) may not be increasing

and thus the bitonic property does not hold. In addition, if an attacker makes appropriate edge-

modi�cations to F [�∗] so that the resulting graph F ′[�∗] decodes a permutation �′∗ which is

still self-inverting, then the �rst block of the binary sequence B′ may contain one or more 1s

or the third block may be 0. On the other hand, due to the odd-length property any single

node-modi�cation in F [�∗], i.e., node-addition or node-deletion, can be easily identi�ed.

We also experimentally evaluated the resilience of the ow-graph F [�∗], the main component

of our system, in edge-modi�cations. To this end, we have produced reducible permutation

graphs F [�∗] on n = 11; 21; 31; : : : ; 91 nodes and computed the probability for the graph Fi[�
∗]

to be F-incorrect, where Fi[�
∗] is the graph resulting from F [�∗] after a modi�cation of i edges,

1 ≤ i ≤ 4.

In our experimental study the graphs Fi[�
∗], 1 ≤ i ≤ 4, are produced in the following manner:

we �rst choose an integer w uniformly at random from [2n−1; 2n−1], where n = 5; 10; 15; : : : ; 45,

then generate a SiP �∗ of length n∗ = 2n+1, and �nally encode the permutation �∗ as a reducible

permutation graph F [�∗] using the algorithm Encode SiP.to.RPG-I; we next randomly select

i edges (ux; uy) and i nodes uz, and then delete the edge (ux; uy) and add the edge (ux; uz),

1 ≤ i ≤ 4.

The experimental results show that we can decide with high probability whether our reducible

permutation graph F [�∗] has su�ered an attack on its edges. Figure 3.5 depicts the high-resilience

structure of the graph F [�∗].

3.8 Concluding Remarks

In this chapter we proposed an e�cient and easily implementable codec system for encoding

watermark numbers as graph structures. In particular, we proposed an e�cient codec method

for encoding a self-inverting permutation �∗ as a reducible permutation graph F [�∗]; the proposed

ow-graph F [�∗] can be e�ciently used for software watermarking since its structure mimics real

codes.

Our codec algorithms are very simple, use elementary operations on sequences and linked

structures, have very low time and space complexity, and the ow-graph F [�∗] incorporates

important structural properties which enable us to identify with high probability edge and/or

node modi�cations made by an attacker to F [�∗].

In light of the two main data components of our codec system, i.e., the permutation �∗ and

the graph F [�∗], it would be very interesting to come up with new e�cient codec algorithms

and structures having \better" properties with respect to resilience to attacks; we leave it as an

open question. Another interesting question with practical value is whether the class of reducible

permutation graphs can be extended so that it includes other classes of graphs with structural

properties capable to e�ciently encode watermark numbers.

Finally, the evaluation of our codec algorithms and structures under other watermarking mea-

surements in order to obtain detailed information about their practical behavior is a interesting

problem for future study.

48

Chapter 4

Multiple Encoding of a Number

into RPGs using Cographs

4.1 Introduction

4.2 Background Results

4.3 Multiple Encoding of a SiP into Cographs

4.4 Encoding Cographs as RPGs

4.5 Concluding Remarks

4.1 Introduction

In previous chapters, we proposed e�cient and easily implemented codec systems for encoding

watermark numbers as reducible permutation ow-graphs, extending thus the class of graph

structures for software watermarking. More precisely, we have presented an e�cient encoding

algorithm which encodes a watermark number w as self-inverting permutation �∗ and two encod-

ing algorithms which encode the permutation �∗ as a reducible permutation ow-graph F [�∗]:

the former applies to any permutation � and relies on domination relations on the elements of �

whereas the latter applies to a self-inverting permutation �∗ produced in any way and relies on

the decreasing subsequences of �∗. Again, we point out that the two main components of the pro-

posed codec system, i.e., the self-inverting permutation �∗ and the reducible permutation graph

F [�∗], incorporate important structural properties which make the encoding of permutation �∗

into graph F [�∗] robust and resilient to attacks (see, Chapters 2 and 3).

Contribution. In this chapter, we extend the class of graphs which can be e�ciently used in

a software watermarking codec system by proposing e�cient encoding and decoding algorithms

that embed a watermark value into cographs and e�ciently extract the watermark from the

graph structures. Moreover, we present a randomized encoding algorithm and show that the

49

same watermark number w can be e�ciently encoded into several di�erent reducible permutation

graphs F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗], n ≥ 2, all of equal size; see, Figure 4.1.

More precisely, we �rst present the randomized encoding algorithm Encode SiP.to.Cograph,

which takes as input a self-inverting permutation �∗, encoding a watermark number w (see, al-

gorithm Encode W.to.SiP in Chapter 3), and encodes the permutation �∗ into a cograph C[�∗].

We also present its corresponding decoding algorithm Decode Cograph.to.SiP; it takes as input

a cograph C[�∗], produced by our randomized encoding algorithm, and extracts the self-inverting

permutation �∗ from it. Thus, in light of our encoding algorithm Encode W.to.SiP, which en-

codes an integer w as a self-inverting permutation �∗, we can appropriately use the proposed ran-

domized algorithm to encode the same integer w into several cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗],

where n ≥ 2.

Having presented our randomized encoding algorithm, we next present an e�cient trans-

formation of a cograph C[�∗] into a reducible permutation graph F [�∗]. Indeed, we propose

the encoding algorithm Encode Cograph.to.RPG which embeds a cograph C[�∗] into F [�∗] by

exploiting the structure and some important algorithmic properties of the cotree T [�∗] of the

cograph C[�∗]; recall that, a cograph admits a unique tree representation, up to isomorphism,

called a cotree [74]. Thus, having such an encoding algorithm, we can encode a watermark

number w into many RPGs F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗], n ≥ 2.

Based on the above results, we can propose a codec system for graph-based software water-

marking having better behavior with respect to code attacks since it can embed multiple copies

of the same watermark number w into an application program; in general, a digital object can be

made more resilient to attacks if multiple copies of the same watermark w are embedded into it.

Moreover, the proposed codec system has low time complexity and can be easily implemented.

Road Map. The chapter is organized as follows: In Section 4.2 we give background results

on self-inverting permutations, reducible permutation graphs and cographs. In Section 4.3 we

present the randomize encoding algorithm Encode SiP.to.Cograph, along with its corresponding

decoding algorithm, which takes as input a self-inverting permutation �∗, encoding a watermark

number w, and encodes the permutation �∗ into a cograph C[�∗]. In Section 4.4 we present

the algorithm Encode Cograph.to.RPG, along with its corresponding decoding algorithm, which

embeds a cograph into an RPG by exploiting the structure and some important algorithmic

properties of its cotree. Finally, Section 4.5 concludes the chapter and gives futures research

directions.

4.2 Background Results

In this section, we give some de�nitions that are key-objects in our algorithms for multiple

encoding self-inverting permutations as complement reducible graphs (or, cographs) [52], and

also algorithms for encoding cographs as reducible permutation graphs (or, RPGs).

Self-Inverting Permutations. In Chapter 2, we de�ned a permutation � over the set Nn

as a sequence � = (�1; �2; : : : ; �n) whereas a self-inverting permutation (or, involution) as a

permutation that is its own inverse, i.e., ��i = i. By de�nition, all the cycles of a self-inverting

50

π∗ = (4, 7, 6, 1, 5, 3, 2)

The watermark number w = 4

C1[π
∗], C2[π

∗], . . . , Ci[π
∗], . . . , Cn[π

∗]

↓

Ti[π
∗]

Ci[π
∗]

Fi[π
∗]

↑↓

↑↓

←−
1

27

0 0

36

1

14

1

0

1

4

7

02

3

6

↑↓

67 5 4 3 2 1 ts
↑↓ RPG-tree

↓

π∗ = (4, 7, 6, 1, 5, 3, 2)

Figure 4.1: The main data components used by the algorithms of our codec system for multiple encoding

the same watermark number w = 4 into several RPGs using Cographs.

permutation are of length 1 or 2.

Moreover, in the same chapter, we proposed the encoding algorithm Encode W.to.SiP for

encoding numbers as self-inverting permutations (or SiP, for short) along with the corresponding

decoding algorithm Decode SiP.to.W. The self-inverting permutation �∗ produced by our en-

coding algorithm encompasses important structural properties, i.e., (i) odd-length property, (ii)

one-cycle property, (iii) bitonic property, and (iv) block property, which makes our codec system

resilient to attacks.

Reducible Permutation Graphs. In Chapter 3, we de�ned a ow-graph as a directed graph

F with an initial node s from which all other nodes are reachable, and showed that a ow-graph

is reducible when it does not have a strongly connected subgraph with two (or more) entries;

see, Section 3.3.

In the same chapter, we proposed the reducible permutation graph F [�∗] on n∗ + 2 nodes

consisting of three components:

(A) a header node,

(B) a footer node, and

(C) the body.

Recall that, the header is a root node with outdegree one from which all other nodes of the

graph F [�∗] are reachable, the footer is a node with outdegree zero that is reachable from

all other nodes of F [�∗], while the body consists of n∗ nodes each with outdegree two; see,

51

v1

v3

 v6

(a) (b)

v7

v4 v5

v2

v6 v7

1

1 1

0

v1 v3 v4 v5

0

v2

Figure 4.2: (a) A cograph on 7 vertices, and (b) the corresponding cotree.

Section 3.4.

4.2.1 Cographs and Cotrees

The complement reducible graphs, also known as cographs, are de�ned as the class of graphs

formed from a single vertex under the closure of the operations of union and complement [74].

More precisely, the class of cographs is de�ned recursively as follows:

(i) a single-vertex graph is a cograph;

(ii) the disjoint union of cographs is a cograph;

(iii) the complement of a cograph is a cograph.

Cographs have arisen in many disparate areas of applied mathematics and computer science

and have been independently rediscovered by various researchers under various names. Cographs

are perfect graphs and in fact form a proper subclass of permutation graphs and distance hered-

itary graphs; they contain the class of quasi-threshold graphs and, thus, the class of threshold

graphs [14, 52]. Furthermore, cographs are precisely the graphs which contain no induced sub-

graph isomorphic to a P4 (i.e., a chordless path on four vertices).

Cographs were introduced in the early 1970s by Lerchs [74] who studied their structural and

algorithmic properties. Along with other properties, Lerchs has shown that the cographs admit

a unique tree representation, up to isomorphism, called a cotree. The cotree of a cograph G is a

rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;

(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the internal nodes

that are children of a 1-node (0-node resp.) are 0-nodes (1-nodes resp.), i.e., 1-nodes and

0-nodes alternate along every path from the root to any (internal) node of the cotree;

(iii) the leaves of the cotree are in an 1-1 correspondence with the vertices of G, and two vertices

vi, vj are adjacent in G if and only if the least common ancestor of the leaves corresponding

to vi and vj is a 1-node.

52

Lerchs' de�nition required that the root of a cotree be an 1-node; if however we relax this

condition and allow the root to be an 0-node as well, then we obtain cotrees whose internal

nodes all have at least two children, and whose root is an 1-node if and only if the corresponding

cograph is connected.

The study of cographs led naturally to constructive characterizations that implied sev-

eral linear-time recognition algorithms that also enabled the construction of the corresponding

tree representation (cotree) in linear time [52]. The �rst linear-time recognition and cotree-

construction algorithm was proposed by Corneil, Perl, and Stewart in 1985 [39]. Recently,

Bretscher et. al [7] presented a simple linear-time recognition algorithm which uses a multisweep

LexBFS approach; their algorithm either produces the cotree of the input graph or identi�es an

induced P4.

4.3 Multiple Encoding of a SiP into Cographs

In this section we present a randomized encoding algorithm, we call it Encode SiP.to.Cograph,

which takes as input a self-inverting permutation �∗, encoding a watermark number w, and

encodes the permutation �∗ into a cograph C[�∗]; we also present the corresponding decod-

ing algorithm which we call Decode Cograph.to.SiP. Thus, in light of our encoding algorithm

Encode W.to.SiP (see, Chapter 3), which encodes an integer w as a self-inverting permutation

�∗, we can multiply use the proposed randomized algorithm to encode the same integer w into

several cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗], n ≥ 2 [24, 27].

The main property of our randomized encoding algorithm is its ability to encode the same

integer w, through the use of a self-inverting permutation �∗, into more than one cograph.

This property causes a watermarking codec system to be resilient to attacks since it can embed

multiple copies of the same watermark number w into a digital object. Moreover, such a codec

system has low time complexity and can be easily implemented.

4.3.1 Algorithm Encode SiP.to.Cograph

In this section, we present the Encode SiP.to.Cograph algorithm which takes as input a self-

inverting permutation �∗ of length 2n + 1 produced by algorithm Encode W.to.SiP (see, [28]),

and constructs an arbitrary cograph Ci[�
∗] on 2n+1 vertices by preserving the cycle relation of

permutation �∗; recall that, by construction the self-inverting permutation �∗ has length 2n+1

and contains one 1-cycle (x; x) and n 2-cycles (x1; y1), (x2; y2), : : :, (xn; yn).

Algorithm Encode SiP.to.Cograph

1. Construct a graph H from the input permutation �∗ = (�1; �2; : : : ; �n) such that:

V (H) = {�1; �2; : : : ; �n};
E(H) = {(�i; �j) is an edge if (�i; �j) is a 2-cycle in �∗};

2. Compute the connected components H1; H2; : : : ; Hk of the graph H;

3. S = H1; H2; : : : ; Hk; the graphs in S are connected cographs

53

4. While |S| > 1 do

Select two arbitrary cographs Hi, Hj from S;

Remove Hi and Hj from the set, i.e., S = S − {Hi; Hj};
Compute the complements Hi and Hj of the connected cographs Hi and Hj ,

and set Hi = Hi and Hj = Hj ; the cographs Hi and Hj are now disconnected;

Compute the disjoint union Hi +Hj of the disconnected cographs Hi and Hj

and set Hi = Hi +Hj ;

Add the cograph Hi in the set S, i.e., S = S ∪Hi;

end-while;

5. Return the cograph G = Hi, where Hi is the only cograph in S.

Encode Example: Let �∗ = (3; 5; 1; 7; 2; 6; 4) be the input self-inverting permutation in the

algorithm Encode SiP.to.Cograph which corresponds to watermark number w. The algorithm

�rst constructs the graph H having V (H) = {v1, v2, v3, v4, v5, v6, v7} and E(H) = {(v1; v3),
(v2; v5), (v4; v7)} and then computes its connected components H1 = H[v1; v3], H2 = H[v2; v5],

H3 = H[v4; v7] and H4 = H[v6]; note that H1 = H[v1; v3] is the subgraph of H induced by the

nodes v1 and v3.

Construction of the cograph C1[�
∗] of Figure 4.3: 1st iteration of step 4: the algorithm takes

H1 and H2, computes the disjoint union U(1; 2) of H1 and H2, and then sets H1 = U(1; 2) and

removes subgraph H2; 2nd iteration of step 4: it takes H1 and H4, computes the disjoint union

U(1; 4) of H1 and H4, and then sets H1 = U(1; 4) and removes subgraph H4; 3rd iteration of

step 4: it takes H1 and H3, computes the disjoint union U(1; 3) of H1 and H3, and then sets

H1 = U(1; 3) and removes subgraph H3; it returns H1 which is the cograph C1[�
∗] of Figure 4.3.

Construction of the cograph C2[�
∗] of Figure 4.3: in a similar way, the algorithm constructs

the graph C2[�
∗] of Figure 4.3 by taking �rst the subgraphs H1 and H2, then the subgraphs H3

and H4, and �nally the subgraphs H1 and H3.

4.3.2 Algorithm Decode Cograph.to.SiP

Next, we present a decoding algorithm for extracting a self-inverting permutation from a cograph.

Our decoding algorithm, which we call Decode Cograph.to.SiP, takes as input a cograph C[�∗]

produced by algorithm Encode SiP.to.Cograph and extracts the self-inverting permutation �∗

from C[�∗] by constructing �rst its cotree T [�∗] and then �nding the pairs of nodes (x1; y1),

(x2; y2), : : :, (xn; yn) such that the nodes xi and yi, 1 ≤ i ≤ n, have the same internal node

(0-node or 1-node) as parent; these pairs correspond to 2-cycles of the permutation �∗. We next

describe the decoding algorithm:

Algorithm Decode Cograph.to.SiP

1. Compute the cotree T (G) of the input cograph G = C[�∗];

Let V = {v1; v2; : : : ; vn} be the set of its terminal vertices;

2. While |V | > 0 do

Select a vertex v from the set V and remove it from V , i.e., V = V − {v};
Find the child u ̸= v of the parent p(v) of the vertex v;

If u is a vertex of V then

54

00

1

v7v4 11

v3v1 v5v2

v6

T1[π
∗]

1

T2[π
∗]

0

11

0

1

C1[π
∗]

C2[π
∗]

v1v5v2 v3 v4 v7

v6

v1

v4

v7

v5v2

v3

v6

v1

v4

v7

v5v2

v3

v6

Figure 4.3: Two cographs C1[�
∗] and C2[�

∗] on 7 vertices which encode the same watermark number

w, corresponding to permutation �∗ = (3; 5; 1; 7; 2; 6; 4), along with their corresponding cotrees.

construct a 2-cycle (v; u) and V = V − {v; u};
else

construct a 1-cycle (v) and V = V − {v};
end-while;

3. Construct the identity permutation �∗ = (�1; �2; : : : ; �n), i.e., �
−1
i = i, 1 ≤ i ≤ n;

4. For each 2-cycle (v; u) do the following:

�v = u and �u = v;

5. Return the self-inverting permutation �∗.

Decode Example: Let C1[�
∗] and C2[�

∗] be two cographs produced by the encoding algorithm

Encode SiP.to.Cograph. The decoding algorithm constructs �rst the corresponding cotrees

T1[�
∗] and T2[�

∗], and then computes the pairs of nodes (v4; v7), (v1; v3) and (v2; v5) (see, Fig-

ure 4.3). Then it constructs the identity permutation �∗ = (1; 2; 3; 4; 5; 6; 7), which maps every

element of the set Nn to itself, and swap the element 4 and 7, 1 and 3, and 2 and 5; it returns the

self-inverting permutation �∗ = (3; 5; 1; 7; 2; 6; 4) which corresponds to watermark number w.

55

4.4 Encoding Cographs as RPGs

Having presented in the previous section an encoding algorithm which embeds a watermark w

number into several deferent cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗], n ≥ 2, let us next propose an

algorithm which embeds a cograph into a reducible permutation graph (or, for short, RPG).

To this end, we exploit the structure and some important algorithmic properties of the class of

cographs; recall that, a cograph admits a unique tree representation, up to isomorphism, called

a cotree [74]. Thus, having such an algorithm, we can encode a watermark number w into many

RPGs F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗], n ≥ 2.

4.4.1 Algorithm Encode Cotree.to.RPG

We next propose the algorithm Encode Cotree.to.RPG which takes as input the cotree T [�∗]

of a cograph C[�∗], produced by our randomized algorithm Encode SiP.to.Cograph, and con-

structs a reducible permutation graph F [�∗] by using an e�cient node elimination and subtree

modi�cation on T [�∗]. Note that, the cotree of a cograph can be constructed in linear time

[14, 39].

Given a cograph C[�∗] on n vertices, our encoding algorithm �rst construct its corresponding

cotree T [�∗] and then it works on two phases:

(I) it �rst uses a strategy based on node elimination and subtree modi�cation to transform the

cotree T [�∗] into a binary tree R[�∗], which we call RPG-tree, having the property that

each node has value smaller than the value of its parent;

(II) then, it constructs a directed graph F [�∗] on n+2 nodes using the child-parent relation of

the nodes of the tree R[�∗].

Next, we describe in detail the encoding algorithm Encode Cotree.to.RPG (see, Figure 4.4 and

Figure 4.5).

Algorithm Encode Cotree.to.RPG

1. Construct the RPG-tree R[�∗] from T [�∗] (Phase I);

2. Construct the RPG F [�∗] from R[�∗] (Phase II);

3. Return the graph F [�∗].

We next describe in detail the two phases of the encoding algorithm Encode Cotree.to.RPG.

Phase I. Construction of the RPG-tree R[�∗] from T [�∗]: We construct the RPG-tree

R[�∗] by eliminating the internal nodes of the cotree T [�∗] and max-merging certain subtrees in

an appropriate way, as follows:

I.1. Let r be the root of the cotree T [�∗] and t be the internal node of T [�∗] with only one leaf,

say, v;

◦ Replace the label of the root r with the number n+1 and the label of each internal

node with the number −1;
◦ Create a new node with value 0 and make it child of the node v;

56

0

1

v7v4

v3v1 v5v2

v6

8

74

31 52

T1[π
∗] T

′[π∗]

T
′′[π∗] R1[π

∗]

0

6

-1

0

1 1

-1 -1

-1 -1

8

4

7 6

0 5

23

1

8

7

4 3

1

6

0

5

2

Figure 4.4: The cotree T1[�
∗] and the resulting RPG-tree R1[�

∗]; trees T ′[�∗] and T ′′[�∗] show the

contraction process.

I.2. While the tree T [�∗] contains internal nodes u with value -1, do the following:

◦ Find such an internal node u of maximum high and let u1; u2; : : : ; uk be

its children, k > 1;

◦ Max-merge the subtrees T (u1); T (u2); : : : ; T (uk) and let T (um) be the

resulting subtree rooted at node um, 1 ≤ m ≤ k;

◦ Make the root um of the subtree T (um) child of the parent of u;

◦ Delete the node u from the tree T [�∗];

where the function Max-merge works as follows:

◦ Order the subtrees T (u1); T (u2); : : : ; T (uk) according to their root values, and

let u1 < u2 < : : : < uk;

◦ Make the root ui of T (ui) child of the root ui+1 of T (ui+1), for all i (1 ≤ i ≤ k− 1);

Phase II: Construction of the RPG F [�∗] from R[�∗]: We construct the directed graph

F [�∗] by exploiting the child-parent relation of the nodes of the rpgtree R[�∗], as follows:

II.1. For every node ui of R[�
∗], 0 ≤ i ≤ n+1, create a node vi and add it to V (F [�∗]); that is,

V (F [�∗]) = {s = vn+1; vn; vn−1; : : : ; v1; ; v0 = t};

57

II.2. For every pair of nodes (vi; vi−1) of the set V (F [�∗]) add the directed edge (vi; vi−1) in

E(F [�∗]), 1 ≤ i ≤ n+ 1; we call it list pointer;

II.3. For every node ui of R[�
∗] compute its parent node p(vi), 0 ≤ i ≤ n, and add the directed

edge (ui; p(ui)) in E(F [�∗]); we call it tree pointer.

Time and Space Complexity. It is easy to see that the most time-consuming step of the algorithm

is that of max-merging the subtrees T (u1); T (u2); : : : ; T (uk) of the node u (see, function Max-

merge); indeed, a sorting sequence S of k > 1 values must be computed. Since the values

u1; u2; : : : ; uk are integers in the range [0; n+ 1], the sequence S can be computed in O(n) time

and space [40]. On the other hand, the construction of the reducible permutation ow-graph

F [�∗] (Steps II.1 { II.3) requires only the list pointers, which can be trivially computed, and the

tree pointers which can be computed using the parent function on R[�∗]. Thus, we obtain the

following result:

Theorem 4.1. Let T [�∗] be the cotree of a cograph G[�∗] on n vertices. The encoding algorithm

Encode Cotree.to.RPG encodes the cotree T [�∗] into a reducible permutation graph F [�∗] in

O(n) time and space.

4.4.2 Algorithm Decode RPG.to.SiP

Having designed the algorithm Encode Cotree.to.RPG which encodes a self-inverting permuta-

tion �∗ into a reducible permutation ow-graph F [�∗], let us now propose an e�cient and easily

implemented algorithm for extracting the permutation �∗ from the graph F [�∗].

Next, we present such a decoding algorithm, we call it Decode RPG.to.SiP, which is e�cient:

it takes time and space linear in the size of the ow-graph F [�∗], and easily implemented: the

only operations used by the algorithm are edge modi�cations on F [�∗] and inorder traversal on

trees.

The algorithm takes as input a reducible permutation graph F [�∗] on n+2 nodes and produces

a self-inverting permutation �∗ of length n; it works as follows:

Algorithm Decode RPG.to.SiP

1. Delete the directed edges (vi+1; vi) from the edge set E(F [�∗]), 1 ≤ i ≤ n;

2. Flip all the remaining directed edges of the graph F [�∗]; let R[�∗] be the resulting tree and

let s = v0; v1; v2; : : : ; vn; vn+1 = t be the nodes of R[�∗];

3. Make �rst the binary tree R[�∗] rooted at node s = v0 and ordered, and then perform

inorder traversal on R[�∗];

4. List the nodes s = v0; v1; v2; : : : ; vn+1 of the tree R[�
∗] by the order in which the nodes are

visited; remove from the list the root node and let v′1; v
′
2; : : : ; v

′
n+1 be the resulting list;

5. Compute the pairs (v′1; v
′
2); (v

′
3; v

′
4); : : : ; (v

′
n; v

′
n+1) and remove the pair (v′i; v

′
i+1) for which

v′i = 0; let n′ be the remaining pairs;

6. Construct the identity permutation on N2n′ , and then compute a self-inverting permutation

� using the pairs of step 5; return �∗ = �.

58

8

4

7

6

R2[π
∗]

5

3 2

8

7

4

3

5

2

6

0

1

R1[π
∗]

67 5 4 3 2 1 t

F2[π
∗]

s

67 5 4 3 2 1 t

F1[π
∗]

s

01

0

0

Figure 4.5: Two RPG-trees R1[�
∗] and R2[�

∗] and the corresponding reducible permutation graphs

F1[�
∗] and F2[�

∗], respectively, produced by the algorithm Encode Cotree.to.RPG.

Let us now describe the decoding process using the two RPGs F1[�
∗] and F2[�

∗] of Figure 4.5.

Let F1[�
∗] be the input of the algorithm Decode RPG.to.SiP. It �rst computes the rooted ordered

tree R1[�
∗] and then computes the inorder sequence I1 = (4; 7; 8; 0; 6; 1; 3; 5; 2); it deletes the

value 8 of the root resulting the sequence I ′1 = (4; 7; 0; 6; 1; 3; 5; 2); then the algorithm computes

the pairs C1 = {(4; 7); (0; 6); (1; 3); (5; 2)} and removes the pair (0; 6) from C1. Then, it takes

the identity permutation �I = (1; 2; 3; 4; 5; 6; 7) and using the pairs (4; 7); (1; 3); (5; 2) as 2-cycles

produces the SiP �∗ = (3; 5; 1; 7; 2; 6; 4).

If the algorithm takes as input the RPG F1[�
∗] then I1 = (1; 3; 5; 2; 8; 0; 6; 7; 4) and thus

I ′1 = (1; 3; 5; 2; 0; 6; 7; 4). It is easy to see that the 2-cycles in C2 are (1; 3); (5; 2); (7; 4), and thus

the identity permutation �I becomes �
∗ = (3; 5; 1; 7; 2; 6; 4).

Time and Space Complexity. The size of the reducible permutation graph F [�∗] constructed by

the algorithm Encode Cotree.to.RPG is O(n), where n is the length of the permutation �∗, and

thus the size of the resulting RPG-tree R[�∗] is also O(n). The inorder traversal on the tree

R[�∗] takes time linear in the size of R[�∗] (see, [40]). Thus, the decoding algorithm is executed

in O(n) time using O(n) space. Thus, the following theorem holds:

Theorem 4.2. Let T [�∗] be a cotree which encodes the self-inverting permutation �∗ and let

F [�∗] be a reducible permutation ow-graph of size O(n) produced by the encoding algorithm

59

Encode Cotree.to.RPG. The algorithm Decode RPG.to.SIP extracts the permutation �∗ from

the ow-graph F [�∗] in O(n) time and space.

4.5 Concluding Remarks

In this chapter we proposed an e�cient algorithm which encodes a self-inverting permutation

�∗ into several cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗], n ≥ 2, and an e�cient transformation of a

cograph into a reducible permutation graph F [�∗]. In light of our encoding algorithms which

encode a watermark integer w as a self-inverting permutation �∗ [28] and the permutation �∗

into many di�erent cographs, we conclude that we can e�ciently encode the same watermark

integer w into several reducible permutation graphs F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗], n ≥ 2.

It is worth noting that this property causes a codec watermarking system resilient to attacks

since we can embed multiple copies of the same watermark value w into an application program.

An interesting open question is whether the approach and techniques used in this chapter

can help develop e�cient codec algorithms and graph structures having \better" properties with

respect to resilience, size, and/or time and space e�ciency; we leave it as an open problem for

future investigation.

60

Chapter 5

Software Watermarking

5.1 Introduction

5.2 Background Results

5.3 The Model WaterPRG

5.4 Implementation

5.5 Model Evaluation

5.6 Concluding Remarks

5.1 Introduction

The rapid growth of World Wide Web users, the ease of distributing fast and in the original

form digital content through internet, as well as the lack of technical measures to assure the

intellectual property right of owners, has led to an increment in copyright infringement. Digital

watermarking is a technique for protecting the intellectual property of any digital content, i.e.,

software, image, audio, video, text, ect. The main idea of digital watermarking is the embedding

of a unique identi�er into the digital content through the introduction of errors not detectable by

human perception [15, 29]. Although digital watermarking has made considerable progress and

become a popular technique for copyright protection of multimedia information [15], research on

software watermarking has recently received su�cient attention.

Software Watermarking. Software watermarking is a technique that is currently being studied

to prevent or discourage software piracy and copyright infringement. The idea is similar to digital

(or, media) watermarking where a unique identi�er is embedded in image, audio, or video data

through the introduction of errors not detectable by human perception [15].

The Software Watermarking problem can be described as the problem of embedding a struc-

ture w into a program P resulting the program Pw such that w can be reliably located and

extracted from Pw even after Pw has been subjected to code transformations such as transla-

tion, optimization, and obfuscation [84]. More precisely, given a program P , a watermark w,

61

and a key k, the software watermarking problem can be formally described by the following two

functions:

• embed(P;w; k) −→ Pw

• extract(Pw; k) −→ w.

There are two main categories of software watermarking techniques namely static and dynamic

[32]. Moreover, depending on the behavioral properties of the embedded watermark w, software

watermarking techniques can also be divided into other categories namely robust and fragile,

visible and invisible, blind and informed, focus and spread spectrum; further discussion on the

above software watermarking classi�cation issues can be found in [48, 85, 120].

Static and Dynamic Watermarking. A static watermark w is embedded inside program

code in a certain format and it does not change during the program execution. According to

the representation of watermark information, there are two types of static watermarks: data

watermarks and code watermarks.

(i) A data watermark stores watermark information as program data, and can be stored any-

where inside a program, such as in comments or in variables.

(ii) A code watermark is represented by choosing a particular sequence of instructions in cases

(and these are common), where more than one sequence of instructions has an equivalent

e�ect. A static code watermark may also be stored in \dead code" (which is never ex-

ecuted); any sequence of instructions may be used with equivalent e�ect in a dead-code

area. For example, in a Java program, a particular order of cases in a switch statement

can be used to represent a watermark number.

On the other hand, a dynamic watermark w is encoded in a data structure built at runtime

(i.e., during program execution), perhaps only after receiving a particular input Ikey; it might

be retrieved from the watermarked program Pw by analyzing the data structures built when

program Pw is running on input Ikey. There are three kinds of dynamic watermarks: Easter eggs,

execution trace watermarks, and dynamic data structure watermarks [32]. Further discussion of

dynamic and/or static watermarking issues can be found in [48, 85, 120].

Graph-based Codecs and Attacks. Software watermarking involves embedding a unique

identi�er or, equivalently, a watermark value within a software to prove owner's authenticity and

thus to prevent or discourage copyright infringement. Towards the embedding process, several

graph theoretic watermarking algorithmic techniques (or, equivalently, models or systems) encode

the watermark values as graph structures and embed them in application programs.

In general, such a graph-based software watermarking model mainly consists of two codec

algorithms: an encoding algorithm which embeds a graph G which represents a watermark w into

an application program P resulting thus the watermarked program Pw, i.e., embed(P;G; k)→ Pw,

and a decoding algorithm which extracts the graph G from Pw, i.e., extract(Pw; k) → G. We

usually call the pair

• (embed; extract)G

as graph codec model and the embedding and extracting algorithms as codec or watermarking

algorithms.

62

In a graph-based software watermarking environment we are interested in both �nding a

class of graphs G having appropriate graph properties, e.g., graphs in G should be contained

nodes with small outdegree so that matching real program graphs, and designing e�cient codec

algorithms, e.g., both algorithms of (embed; extract)G model should be computed in polynomial

time.

Having designed a software watermarking algorithm, it is very important to evaluate it under

various assessment criteria in order to gain information about its practical behavior [30]; the most

valuable and broadly used criteria can be divided into two main categories: (i) performance

criteria (e.g., data-rate, time and space overhead, part protection, stealth, credibility), and (ii)

resilience criteria (e.g., resistance against obfuscation, optimization, language-transformation)

[36, 84]. We mention that the performance criteria measure the behavior of the watermarked

program Pw and the quality and e�ectiveness of the embedded watermark w, while the resilience

criteria measure the robustness and resistance of the embedded watermark w against malicious

user attacks.

From a graph-theoretical and practical point of view, we are interested in �nding a class of

graphs G having appropriate graph properties, e.g., graphs G ∈ G should contain nodes with

small outdegree so that matching real program graphs, and developing software watermarking

models (embed; extract)G which meet both:

◦ High Performance: both programs, the original P and the watermarked Pw, have almost

identical execution behavior, almost same size and similar codes; and

◦ High Resiliency: the algorithm extract() is insensitive to small changes of Pw caused by

various attacks, that is, if G ∈ G represents the watermark w and extract(Pw; k) → w

then extract(P ′
w; k)→ w with P ′

w ≈ Pw.

Related Work1. The most important software watermarking algorithms currently available in

the literature are based on several techniques, among which the register allocation [101], spread-

spectrum [106], opaque predicate [1], abstract interpretation [37], dynamic path techniques [35],

code re-orderings [112]; see, also [29] for an exposition of the main results. It is worth noting

that many algorithmic techniques on software watermarking have also received patent protection

[34, 48, 103, 114].

In 1996, Davidson and Myhrvold [48] presented the �rst patented static software watermark-

ing algorithm. The preliminary concepts of software watermarking also appeared in the paper

[51] and the patents [85, 105]. Collberg et al. [32, 33] presented detailed de�nitions for soft-

ware watermarking, while Zhang et al. [131] and Zhu et al. [130] gave brief surveys of software

watermarking research; see, Collberg and Nagra [29] for an exposition of the main results.

The algorithm of Davidson and Myhrvold [48] embeds the watermark into a program by

reordering the basic blocks of a control ow-graph; note that a static watermark is stored inside

programs' code in a certain format and it does not change during the programs' execution.

Based on this idea, Venkatesan, Vazirani and Sinha [120] proposed the �rst graph-based software

watermarking algorithm which embeds the watermark by extending a method's control ow-

graph through the insertion of a directed subgraph; it is also a static algorithm called VVS or

1Some references of this part have also appeared in Chapter 3: Encode Watermark Numbers as Self-inverting

Permutations, and in Chapter 4: Encoding SiPs as Reducible Permutation Graphs.

63

GTW. In [120], the construction of the directed watermark graph G is not discussed. Collberg et

al. [31] proposed an implementation of GTW, which they call GTWsm, and it is the �rst publicly

available implementation of the algorithm GTW. In GTWsm the watermark is encoded as a reducible

permutation graph (or, for short, RPG) [30], which is a reducible control ow-graph with a

maximum out-degree of two, mimicking real code. Note that, for encoding integers the GTWsm

method uses only those permutations that are self-inverting. The �rst dynamic watermarking

algorithm CT was proposed by Collberg and Thomborson [32]; it embeds the watermark through

a graph structure which is built on a heap at runtime.

Several software watermarking algorithms have been appeared in the literature that encode

watermarks as graph structures [30, 31, 48, 120]. Recently, Chroni and Nikolopoulos extended

the class of software watermarking codec algorithms and graph structures by proposing e�cient

and easily implemented algorithms for encoding numbers as reducible permutation ow-graphs

(RPG) through the use of self-inverting permutations (or, for short, SiP). More precisely, they

have presented an e�cient method for encoding �rst an integer w as a self-inverting permutation

�∗ and then encoding �∗ as a reducible permutation ow-graph F [�∗] [28]; see, also [23]. The

watermark graph F [�∗] incorporates properties capable to mimic real code, that is, it does not

di�er from the graph data structures built by real programs. Moreover, the structural properties

of F [�∗] cause it resilient to edge, node and label modi�cation attacks; see, Chapter 3 (see, also

[19, 26, 20]).

Contribution. In this chapter, we present a dynamic watermarking model, which we call

WaterRPG, for embedding the watermark graph F [�∗] into an application program P resulting

thus the watermarked program P ∗; throughout the thesis, we denote by P ∗ the program Pw

watermarked by our codec model.

The main idea behind the proposed watermarking model is a systematic modi�cation of

appropriate function calls of the program P , through the use of control statements and opaque

predicates, so that the execution of the watermarked program P ∗ with a speci�c input gives

a dynamic call-graph from which the watermark graph F [�∗] can be easily constructed. More

precisely, for a speci�c input Ikey of a given program P , our model takes the dynamic call-graph

G(P; Ikey) of P and the watermarked graph F [�∗], and produces the watermarked program P ∗

so that the following key property holds:

• The dynamic call-graph G(P ∗; Ikey) of P
∗ with input Ikey is isomorphic to the watermark

graph F [�∗].

Within this idea the program P ∗ is produced by only altering appropriate calls of speci�c func-

tions of the input program P and manipulating the execution ow of P ∗ by including these altered

function calls into control statements using opaque predicates. In the resulting watermarked pro-

gram P ∗, the control statements are executed following speci�c and well-de�ned execution rules

and o�er high functionality of P ∗. Indeed, our model achieves low time and space overhead and

ensures correctness, that is,

• T (P; I) ≈ T (P ∗; I), S(P; I) ≈ S(P ∗; I), and O(P; I) = O(P ∗; I), for every input I

where T (), S(), and O() are the execution time, the heap space, and the output of P or P ∗ with

input I. Note that, performance and correctness are the two most important properties of any

software watermarking model.

64

Models' Properties WaterRPG's Properties

static - dynamic dynamic (execution trace)

robust - fragile robust

visible - invisible invisible

blind - informed blind

focus - spread spectrum spread spectrum

Table 5.1: General properties of watermarking models and the properties of our WarerRPG

model.

We have implemented our watermarking model WaterRPG on Java application programs

downloaded from a free non commercial game database, and evaluated its performance under

various and commonly used watermarking evaluation criteria. In particular, we selected a num-

ber of Java application programs and watermarked them using two main approaches: (i) the

straightforward or naive approach, and (ii) the stealthy approach. The naive approach water-

marks a given program P using the well-de�ned call patterns of our model, while the stealthy

approach watermarks P using structural and programming properties of the code.

The evaluation results show the e�cient functionality of all the Java programs P ∗ water-

marked under both the naive and stealthy cases. The experiments also show that the watermark-

ing approaches supported by our model can help develop e�cient watermarked Java programs

with respect to time and space overhead, credibility, stealthiness, and other watermarking met-

rics. Moreover, our WaterPRG model incorporates properties which cause it resilient to several

watermark and code attacks.

Table 5.1 summarizes the most important general properties, in complementary or opposite

pairs, of a software watermarking model and shows the properties of our WarerRPG model.

Throughout the paper, for a given program P we shall denote by P ∗ the watermarked program

produced by our model WaterRPG.

Road Map. The paper is organized as follows: In Section 5.2 we establish the notation and re-

lated terminology, and present background results. In Section 5.3 we present our dynamic water-

marking model WaterRPG; we �rst describe its structural and operational components and then

the embedding algorithm Embed RPG:to:CODE and the extracting algorithm Extract CODE:to:RPG.

In Section 5.4 we implement our watermarking model in real Java application programs and

show two main watermarking approaches supported by the WaterRpg model, namely naive and

stealthy. In Section 5.5 we evaluate our model under several software watermarking assessment

criteria, while in Section 5.6 we summarize our work and propose possible future extensions.

5.2 Background Results

In this section, we present background results and key objects that are used in the design of

our watermarking model WaterRPG. In particular, we briey present the main results of our

previous work concerning the process of encoding numbers as graph structures namely reducible

permutation graphs (or, for short, RPG); we denote such a graph as F [�∗]. We also briey

65

discuss properties of dynamic call-graphs which are used as key-objects in our watermarking

model for embedding the graph F [�∗] into an application program.

5.2.1 Encode Numbers as RPGs

In Chapter 2, we introduced the notion of bitonic permutations and we presented two algorithms,

namely Encode W:to:SiP and Decode SiP:to:W, for encoding an integer w into a self-inverting

permutation �∗ and extracting it from �∗. We have actually proved the following results.

Theorem 5.1. Let w be an integer and let b1b2 · · · bn be the binary representation of w. The

algorithm Encode W.to.SiP encodes the number w in a self-inverting permutation �∗ of length

2n+ 1 in O(n) time and space.

Theorem 5.2. Let �∗ be a self-inverting permutation of length n which encodes an integer

w using the algorithm Encode W.to.SiP. The algorithm Decode SiP.to.W correctly decodes the

permutation �∗ in O(n) time and space.

In Chapter 3, we have presented an e�cient and easily implemented algorithm for encoding

numbers as reducible permutation ow-graphs through the use of self-inverting permutations;

see, also [23]. In particular, we have proposed two such encoding algorithms: the algorithm

Encode SiP.to.RPG-I applies to any permutation � and relies on domination relations on the

elements of � whereas the algorithm Encode SiP.to.RPG-II applies to a self-inverting permu-

tation �∗ produced in any way and relies on the decreasing subsequences of �∗. Our results are

summarized in the following theorems.

Theorem 5.3. Let �∗ be a self-inverting permutation over the set Nn. The permutation �∗

can be encoded into a reducible permutation graph F [�∗] in O(n) time and space using algorithm

Encode SiP.to.RPG-I or -II.

Theorem 5.4. Let F [�∗] be a reducible permutation graph of order O(n) produced by the encoding

algorithm Encode SiP.to.RPG-I or -II. The permutation �∗ can be correctly extracted from

F [�∗] in O(n) time and space using algorithm Decode RPG.to.SiP-I or -II.

The reducible permutation graph F [�∗] of the self-inverting permutation �∗ is directed with a

descending ordering on its nodes s = un+1, un, : : : , u1; u0 = t. Hereafter, we shall call the edge

(ui; uj) of graph F [�∗] forward if i > j and backward otherwise.

5.2.2 Call-graphs

A call-graph is a directed graph that represents calling relationships between program units in

a computer program. Speci�cally, the nodes f1; f2; : : : ; fn of a call-graph represent functions,

procedures, classes, or similar program units and each edge (fi; fj) indicates that fi calls fj ;

function fi is called caller while fj is called callee.

Call-graphs can be divided in two main classes of graphs, namely static and dynamic. A

static call-graph is the structure describing those invocations that could be made from one

program unit to another in any possible execution of the program [128]. The static call-graph

can be determined from the program source code; we mention that, its construction is a time

consuming process speci�cally in the case of large scale software [57].

66

A dynamic call-graph G is a directed graph that includes invocations of caller{callee pairs

over an execution of the program P . Such a graph can be considered as an instance of the

corresponding static call-graph for a speci�c input sequence I. The call-graph G is a data

structure that is used by dynamic optimizers for analyzing and optimizing the whole-program's

behavior; such a graph can be extracted by a pro�ler. It is fair to mention that the construction

of a dynamic call-graph G of a program P is not a time consuming process even if P is a large

scale software.

Throughout the paper we denote a dynamic call-graph G of the program P over the input

I as G(P; I). Figure 5.1(a) depicts the structure of the dynamic call-graph G(P; Ikey) of an

application program P with input Ikey.

5.3 The Dynamic Watermarking Model WaterRPG

Having encoded a watermark number w as reducible permutation graph F [�∗], let us now present

our dynamic watermarking model WaterRPG; we �rst demonstrate its structural and operational

components and, then, we describe the embedding and extracting watermarking algorithms.

5.3.1 Operational Framework

The main idea behind the proposed watermarking model is a systematic modi�cation of ap-

propriate function calls of the program P so that the execution of the resulting watermarked

program P ∗ with a speci�c input Ikey gives a dynamic call-graph G(P ∗; Ikey) from which the

watermark graph F [�∗] can be easily constructed.

More precisely, the main operations performed by the WaterRPG model can be outlined

as follows: for a speci�c input Ikey of the original program P , it takes the dynamic call-graph

G(P; Ikey) and the graph F [�∗], and produces the watermarked program P ∗ so that its dynamic

call-graph G(P ∗; Ikey) with input Ikey is isomorphic to the watermark graph F [�∗]. The call-

graphs G(P; Ikey) and G(P ∗; Ikey) dictate the execution ow of the original program P and the

watermarked program P ∗, respectively. Thus, since the call-graph G(P; Ikey) is not isomorphic

to G(P ∗; Ikey) in general, the model controls the ow of selected function calls of P ∗ so that

O(P; I) = O(P ∗; I) for every input I, where O(P; I) (resp. O(P ∗; I)) is the output of the

program P (resp. P ∗) with input I. In this framework, the program P ∗ is produced by only

altering appropriate calls of speci�c functions of the input program P .

Figure 5.1 shows the dynamic call-graph G(P; Ikey) of an application program P , the re-

ducible permutation graph F [�∗] which encodes the number w = 4 and the dynamic call-graph

G(P ∗; Ikey) of the watermarked program P ∗.

5.3.2 Model Components

Our watermarking model uses two main categories of components namely structural components

and operational components. The �rst category includes the dynamic call-graph G(P; Ikey) of

the input program P , the watermark graph F [�∗], and the dynamic call-graph G(P ∗; Ikey) of the

watermarked program P ∗, while the second category includes call patterns, control statements

67

F [π∗]fmain

s

7

6

5

4

3

fs

f7

f6

f5

f4

f3

f2

f1

ft

2

1

t

(a) (b) (c)

fmain

fs

f7

f6

f5

f4

f3

f2

f1

ft

Figure 5.1: (a) The dynamic call-graph G(P; Ikey) of an application program P . (b) The reducible

permutation graph F [�∗]. (c) The dynamic call-graph G(P ∗; Ikey) of the watermarked program P ∗.

and execution rules which are components related to the process of embedding the graph F [�∗]

into application program P .

We next describe the construction and main properties of the dynamic call-graph G(P ∗; Ikey),

two call patterns based on which we correspond edges of the call-graph G(P ∗; Ikey) to function

calls, and speci�c variables and statements which control the execution of real and water func-

tions.

(I) The Dynamic Call-graph G(P∗, Ikey)

Let F [�∗] be a watermark graph (or, equivalently, water-graph) on n + 2 nodes and G(P; Ikey)

be the dynamic call-graph of a program P on n + 3 nodes fmain; fs; f1; : : : ; fn; ft taken after

running the program P with the input Ikey. In general, the selection of the input Ikey is such

that it produces the call-graph G(P; Ikey) having structure as \close" as possible to the structure

of F [�∗]. We assign the n + 2 nodes fs = fn+1; fn; : : : ; f1; f0 = ft of the call-graph G(P; Ikey)

to n + 2 nodes s = un+1; un; : : : ; u1; u0 = t of F [�∗] into 1-1 correspondence; the main function

fmain do not correspond to any node of F [�∗].

Let (ui; uj) be an edge in graph F [�∗] and let (fi; fj) be an edge in call-graph G(P; Ikey). We

say that the edge (fi; fj) corresponds to edge (ui; uj) i� the node fi corresponds to ui and the

node fj corresponds to uj , 0 ≤ i; j ≤ n + 1. Moreover, if (ui; uj) is a forward (resp. backward)

edge in the graph F [�∗] we say that the corresponding edge (fi; fj) in graph G(P; Ikey) is a

forward (resp. backward) edge.

The dynamic call-graph G(P ∗; Ikey) is constructed as follows:

• V (G(P ∗; Ikey)) = V (G(P; Ikey)), i.e., it has the same nodes as the call-graph G(P; Ikey);

68

• E(G(P ∗; Ikey)) = E(F [�∗]), i.e., (fi; fj) is an edge in E(G(P ∗; Ikey)) i� the corresponding

(ui; uj) is an edge in F [�∗].

The edges of the call-graph G(P ∗; Ikey) are divided into two categories namely real and water

edges; note that, the real (resp. water) edges correspond to real (resp. water) function calls. An

edge (fi; fj) of the call-graph G(P; Ikey) is characterized as either

• real edge if (fi; fj) is an edge in G(P; Ikey), or

• water edge if (fi; fj) is not an edge in G(P; Ikey).

Figure 5.1(c) shows the dynamic call-graph G(P ∗; Ikey) along with its real edges (solid arrows)

and water edges (dashed arrows).

(II) Call Patterns

In the implementation phase, we modify the source code of program P using speci�c function

call patterns which we describe below.

Let P be an application program, G(P; Ikey) be the dynamic call-graph of the program P

with input Ikey, and F [�∗] be a watermark-graph which we have to embed into P . According

to our watermarking model, the embedding process relies mainly on altering the execution-ow

of appropriate function calls of P such that the execution of the resulting program P ∗ with the

input Ikey produces a call-graph G(P ∗; Ikey) which, after removing the node fmain, is isomorphic

to watermark-graph F [�∗].

Let (fi; fj) be an edge of call-graph G(P ∗; Ikey) or, equivalently, an edge which we want to

appear in G(P ∗; Ikey). Since G(P ∗; Ikey) has two types of edges it follows that (fi; fj) is either

real or water edge. Based on the type of (fi; fj), we do the following:

• if (fi; fj) is a water edge we add the statement call(fj) in the function fi, while

• if (fi; fj) is a real edge we add no call statement since the statement call(fj) exists in fi.

Based on whether (fi; fj) is either a forward or a backward edge we add speci�c statements in

functions fi and fj according to the following two call patterns namely forward and backward

call patterns:

(a) if (fi; fj) is a forward edge we add the statement x = x + h() in function fi before the

call-site or, equivalently, call-point of the function fj , and the statement x = x+ c() in the

function fj , while

(b) if (fi; fj) is a backward edge we add the statement x = x + g() in function fi before the

call-site of the function fj , and the statement x = x+ c() in the function fj ,

where x is a variable and h(), g() and c() are functions. Figure 5.3(a) depicts the forward call

pattern or, for short, f-call, while Figure 5.3(b) depicts the backward call pattern or, for short,

b-call.

Recall that the direct edge (fi; fj) of a call-graph represents a function call operation where

fi is the caller function and fj the callee function; in other words, it means that in function fi

69

(a) (b)

fmain

fs

f7

f6

f5

f4

f3

f2

f1

ft

fmain

fs

f7

f6

f5

f4

f3

f2

f1

ft

Figure 5.2: (a) The real-call (f4; f6) in the call-graph G(P; Ikey) of a program P ; bold arrow. (b) The

corresponding path-call (f4; f3; f5; f6) in the call-graph G(P ∗; Ikey) of the watermarked program P ∗; bold

arrows.

there exists the statement call(fj). Hereafter, in this case we shall say that (fi; fj) is a direct

call.

In a call-graph of an application program we usually meet sequences of calls of the form

(fi; fk1 ; fk2 ; : : : ; fkm ; fj). For simplicity we set fi = fk0 and fj = fkm+1 and suppose that each

of these calls (fk0 ; fk1), (fk1 ; fk2), : : :, (fkm ; fm+1) is either forward or backward. We extend the

notion of the direct call (fi; fj) to indirect call (fi → fj); an indirect call consists of a path of

functions (fi; fk1 ; : : : ; fj) of length ` ≥ 2. Using the f-call and b-call patterns, we next de�ne the

path call pattern or, for short, p-call as follows:

(c) if (fki ; fki+1
) and (fki+1

; fki+2
) are two consecutive calls of a call sequence, we apply an f-call

or a b-call in (fki+1
; fki+2

) by �rst adding either the statement x = x+h() or x = x+g() in

function fki+1
after the call-point of statement x = x+ c(), and then adding the statement

x = x+ c() in fki+2
, 0 ≤ i ≤ m− 1.

Figure 5.3 shows the structures of the patterns f-call and b-call of the direct call (fi; fj), and the

structure of the pattern p-call of an indirect call (fi → fj).

(III) Control Statements and Variables

In any watermarking model both the original program P and the watermarked program P ∗

have to operate identically. Thus, since the call-graphs G(P; Ikey) and G(P ∗; Ikey) dictate the

execution ow of programs P and P ∗, respectively, and the call-graphG(P; Ikey) is not isomorphic

to G(P ∗; Ikey), we have to control the ow of selected function calls of program P ∗ so that

O(P; I) = O(P ∗; I) for every input I.

70

fi() fj()

x = x+ h() x = x+ c()

f

forward

callfj()

f|bedge

f

(a)

fi() fj()

x = x+ g() x = x+ c()

b

backward

callfj()

f|bedge

b

(b)

fk1()

fi() fj()

f|bf|b
fk2()

f|bf|b
fkm()

f|b

(c)

Figure 5.3: (a) The forward call pattern f-call; (b) The backward call pattern b-call; (c) The path call

pattern p-call. The boxes with marked corners are the f|b-blocks.

To do this, we exploit the values of speci�c variables in a function fi by using them in some

selected or added control statements as part of opaque predicates. More precisely, we use the

variable x of the f-call and b-call patterns and include it in a speci�c control statement s causing

thus an \appropriate execution ow" of the functions of the call-graph G(P ∗; Ikey); with the term

\appropriate execution ow" we mean that the execution ow of the functions of the call-graph

G(P ∗; Ikey) is such that O(P; I) = O(P ∗; I) for every input I. Hereafter, we call cf-statement

the control statement s and cf-variable the variable x. In this point, we also de�ne the f-block

and b-block to be speci�c parts of the code which contain (i) cf-statements, (ii) cf-variables, and

(iii) water-forward or water-backward function calls. We denote by f|b-block either an f-block or
a b-block; in Figure 5.3, the f|b-blocks are shown by boxes with marked corners.

We next describe the mechanism which ensures an appropriate execution ow of the functions

of G(P ∗; Ikey) through the altering of the execution ow of the functions of the program P by

modifying or adding some speci�c control statements. In fact, what the mechanism actually

does is to modify the conditions or expressions of these control statements by adding opaque

predicates.

De�nition 5.1. A predicate Q is opaque at a program point p, if at point p the outcome of Q

is known at embedding time. If Q always evaluates to true we write QT
p , for false we write QF

p ,

and if Q sometimes evaluates to true and sometimes to false we write Q?
p.

Let (fi; fj) be a direct call in our program P ∗ or, equivalently, an edge in the call-graph

G(P ∗; Ikey); it is either real-forward, real-backward, water-forward, or water-backward edge.

In any case, the proposed mechanism uses the value of the cf-variable x and makes the following

operations:

71

Program P Program P ∗

function fi() function fi()

.

if (condition & Q?
p)

if (condition) . . .

. . . x = x+ h();

statements; . . .

. . . call fj();

. . .

statements;

. . .

Figure 5.4: An example of cf-statement modi�cation via opaque predicates in the case where

(fi; fj) is a water-forward function call.

Program P Program P ∗

function fi() function fi()

.

if (condition & Q?
p)

if (condition) . . .

. . . x = x+ g();

call fj(); . . .

. . . call fj();

statements; . . .

. . . statements;

. . .

Figure 5.5: An example of cf-statement modi�cation via opaque predicates in the case where

(fi; fj) is a real-backward function call.

• in function fi: create a control statement (if, switch, for, while, etc), add an opaque

predicate Q?
p containing the cf-variable x, and insert it at a point p before the statement

x = x + h() or x = x + g(); we could also select a control statement at a point p, if there

exists, consider it as cf-statement and include the opaque predicate Q?
p in its condition

part.

• in function fj : create a control statement as in function fi, if such a statement does not

exist, and insert it at a point p before the statement x = x+ c(); if such a statement exists,

we only add a new opaque predicate Q?
p in the condition of that statement. The main body

of fj is included in a block of a cf-statement the execution of which is depending upon the

behavior (i.e., true or false) of the opaque predicate Q?
p.

Note that, the above operations form speci�c parts of code of functions fi and fj , namely f|b-
blocks, i.e., either f-blocks or b-blocks; see, Figure 5.3.

72

Call (fi; fj) of Program P ∗

function fi() function fj()

.

if (condition & Q?
p) if (condition & Q?

p)

.

x = x+ h(); x = x+ c();

.

call fj(); if (condition & Q?
p)

.

statements; statements;

.

Figure 5.6: An example of cf-statement modi�cation via opaque predicates of the function fj in

the case where (fi; fj) is a water-forward function call.

Figure 5.4 shows an example of the modi�cation of the condition part of an if cf-statement

via an opaque predicate; since (fi; fj) is a water-forward function call, the statement call(fj)

does not exist in function fi, and thus we add it in fi, while the cf-statement is the x = x+ h().

On the other hand, Figure 5.5 shows an example in case where (fi; fj) is a real-backward function

call. In this case, the statement call(fj) does exist in fi while the cf-statement is the x = x+g().

Figure 5.6 shows an example of the modi�cation of the function fj in the case where (fi; fj) is

a water-forward function call.

Remark 5.1. Based on the structural properties of the watermark graph F [�∗] and call-graph

G(P ∗; Ikey) we can easily prove the following lemma.

Lemma 5.1. Let G(P; Ikey) and G(P ∗; Ikey) be the call-graphs of programs P and P ∗, respec-

tively, on input Ikey, and let (fi; fj) be an edge in call-graph G(P; Ikey). Then, there always exists

an edge (fi; fj) or a path (fi; fk1 ; fk2 ; : : : ; fkm ; fj) in call-graph G(P ∗; Ikey).

Remark 5.2. In our implementation, in the case where (fi; fj) is an edge in G(P; Ikey) and

(fi; fj) is not an edge in G(P ∗; Ikey) we have to compute a path (fi; fk1 ; : : : ; fj) of function

calls in G(P ∗; Ikey). Such a path is a shortest path from f4 to f6 in the graph G(P ∗; Ikey); it

may consist of all types of edges, that is, real-forward or real-backward and water-forward or

water-backward edges. Figure 5.2(a) shows the edge (f4; f6) in G(P; Ikey) which is not an edge

in G(P ∗; Ikey), while Figure 5.2(b) shows its corresponding shortest path from fi to fj , that is,

the path (f4; f3; f5; f6); note that, (f4; f3) is a real-forward edge, (f3; f5) is a real-backward edge,

and (f5; f6) is a water-backward edge.

(VI) Execution Rules

We present the rules based on which we control the execution ow of the functions of P ∗ such

that O(P; I) = O(P ∗; I) for every input I. In fact, we show in all the cases how the value of Q?
p

dictates the execution ow of functions of G(P ∗; Ikey).

Let (fi; fj) be a direct call in program P ∗ or, equivalently, an edge in the call-graphG(P ∗; Ikey).

73

We distinguish the following cases:

• (fi; fj) is real-forward or real-backward: in this case we modify the functions fi and fj
as follows:

◦ Function fi: the opaque predicate Q?
p in the cf-statement before the cf-value x =

x+ h() or x = x+ g() and the call(fj) is evaluated to true, that is, QT
p .

◦ Function fj : the opaque predicateQ
?
p in the cf-statement before the cf-value x = x+c()

is evaluated to true, that is, QT
p , while the Q

?
p for the cf-statement which controls the

statements of the main body of the function fj is also evaluated to true, that is, QT
p .

• (fi; fj) is water-forward or water-backward: in this case we modify the functions fi
and fj as follows:

◦ Function fi: the opaque predicate Q?
p in the cf-statement before the cf-value x =

x+ h() or x = x+ g() and the call(fj) is evaluated to true, that is, QT
p .

◦ Function fj : the opaque predicateQ
?
p in the cf-statement before the cf-value x = x+c()

is evaluated to true, that is, QT
p , while the Q

?
p for the cf-statement which controls the

statements of the main body of the function fj is evaluated to false, that is, QF
p .

Recall that a predicate Q is opaque at a program point p, if at point p the outcome of Q is known

at the embedding time.

Remark 5.3. During the execution of the function fi of the program P ∗ only one opaque

predicate Q?
p of the cf-statements is evaluated to true with respect to the current value of the

cf-variable x.

5.3.3 Embedding an RPG into a Code

Let us now present our model's algorithm which e�ciently watermarks an application program

P by embedding the reducible permutation graph F [�∗] into P . The proposed embedding algo-

rithm, which we call Embed RPG:to:CODE, is described below.

Algorithm Embed RPG:to:CODE

1. Take as input the source code of the program P , select an input Ikey, and construct the call-

graph G(P; Ikey); let S = (fmain; fs = fn+1; fn; : : : ; f1; f0 = ft) be the execution sequence

of the functions of call-graph G(P; Ikey), that is, fi appears before fj in S if fi is executed

before fj with input Ikey, and let s = un+1; un; : : : ; u1; u0 = t be the n + 2 nodes of the

watermark graph F [�∗];

2. Remove the node fmain from the call-graph G(P; Ikey) and assign an exact pairing (i.e.,

1-1 correspondence) of the n + 2 nodes of graph G(P; Ikey) or, equivalently, of the n + 2

functions fs = fn+1; fn; : : : ; f1; f0 = ft to the nodes of F [�∗];

3. Construct the graph G(P ∗; Ikey) as follows:

74

P F [π∗] P ∗+ →

T G(P, Ikey)

G(P ∗, Ikey)

T ∗, C∗

Steps 1 and 2

Step 3

Step 5

Steps 6, 7 and 8

Step 4

Figure 5.7: A block diagram of the main operations of the embedding algorithm.

3.1. V (G(P ∗; Ikey)) = V (G(P; Ikey)), i.e., G(P ∗; Ikey) has the same nodes as the call-graph

G(P; Ikey);

3.2. E(G(P ∗; Ikey)) = E(F [�∗]), i.e., (fi; fj) is an edge in E(G(P ∗; Ikey)) i� the corre-

sponding (ui; uj) is an edge in graph F [�∗];

4. Create a call-table T of size m which contains all the m function calls (fi; fj) as they

appear in the execution trace of program P with input Ikey;

5. Create the tables T ∗ and C∗, both of size m∗, as follows:

5.1. For each function call (fi; fj) of table T do the following:

• if (fi; fj) is a function call of G(P ∗; Ikey) then insert (fi; fj) in table T ∗ and

its characterization in table C∗; in this step, (fi; fj) is characterized as either

real-forward or real-backward;

• if (fi; fj) is not a function call in graph G(P ∗; Ikey) then:

◦ compute the shortest path (fi; fk1 ; fk2 ; : : : ; fk` ; fj) from node fi to node fj
in G(P ∗; Ikey),

◦ insert the calls (fi; fk1), (fk1 ; fk2), : : :, (fk` ; fj) in table T ∗, in that order,

and their characterizations in table C∗; in this step, a call is characterized

as either real-forward, real-backward, water-forward, or water-backward (see,

Subsection 5.3.2), and

◦ mark the �rst and last function calls of the shortest path, i.e., (fi; fk1) and

(fk` ; fj), as �rst and last, respectively;

5.2. For each function call (fi; fj) of graph G(P ∗; Ikey) check whether it appears in table

T ∗; if not, do the following:

• �nd the �rst appearance of a function call of type (fo; fi) in table T ∗, where fo
is any function;

75

• insert the function call (fi; fj) in table T ∗ after the call (fo; fi) and its character-

ization in the corresponding row in table C∗;

6. Take each function call (fi; fj) of the table T ∗ and modify the functions fi and fj of

program P as follows:

6.1. Add/replace call statements and locate appropriate call points in function fi as follows:

• if (fi; fj) is a real function call then �nd the statement call(fj) in function fi

and locate its call-point;

• if (fi; fj) is a water function call then:

◦ if it is the �rst function call of a short path, then �nd the last function call

of that path in table T ∗, say, (fk` ; flast), replace the statement call(flast) in

function fi with the statement call(fj), and locate its call-point;

◦ otherwise, if call(fj) does not exist in f-block of function fi, add the state-

ment call(fj) in f|b-block and locate its call-point;

6.2. Insert either statement x = x + h() or x = x + g() before the statement call(fj), if

(fi; fj) is characterized either as forward or backward, respectively;

6.3. Include both statements x = x+h() or x = x+g() and call(fj) in a control statement

and evaluate it as true or false using the cf-variable x;

6.4. Include all the statements of the b-block of function fi in a control statement and

evaluate it using the cf-variable x;

6.5. Add the statement x = x+ c() before the f|b-block of function fj ;

7. For each function call (fout; fj) of program P s.t. fout =∈ G(P ∗; Ikey) and fj ∈ G(P ∗; Ikey)

do the following:

7.1. Find the �rst appearance of a function call of type (fo; fj) in table T ∗, such that fo
is any function and fj is either a real function call or the last function of a shortest

path (fi; fk1 ; fk2 ; : : : ; fk` ; fj), i.e., (fo; fj) = (fk` ; fj);

7.2. Take the value of the cf-variable x of function fk` , say, \value", and insert the state-

ment x = “value” in function fout before the call-point of the statement call(fj);

8. Return the source code of the modi�ed program P which is the watermarked program P ∗.

Remark 5.4. In Step 5 of the embedding algorithm, the edges (fi; fj) are included into the

table T in a speci�c order. This order is determined by the order they appeared in the execution

trace of program P with input Ikey, i.e., if the function call (fi; fj) appears before (fk; f`) in the

execution trace of P , then the edge (fi; fj) appears before the edge (fk; f`) in table T .

Remark 5.5. Let (fi; fj) be an edge which is handled in Step 6 of the embedding algorithm and

let the statement call(fj) appear more that once in function fi. We point out that in this case

we insert both the cf-variable and cf-statement before the call-site of each statement call(fj) in

function fi.

76

main

s

5

4

3

InputGs

Split

Adjacent

Dikjstra

FindMin

Relax

PrintPath

2

1

t

(b) (c)(a)

main

InputGs

Split

Adjacent

Dikjstra

FindMin

Relax

PrintPath

Figure 5.8: (a) The dynamic call-graph G(Shortest Path; Ikey). (b) The reducible permutation graph

F [�∗] which encodes the watermark w = 2, where �∗ = (3; 5; 1; 4; 2). (c) The dynamic call-graph

G(Shortest Path∗; Ikey).

The Algorithm by an Example. In order to illustrate the working of the embedding algorithm

Embed RPG:to:CODE, we present a simple example and show the main operations (i.e., function

calls) and the values of the main variables during the algorithm's execution.

In our example, we chose the original program P to be one that computes the shortest

paths in a weighted graph G with non-negative edge-values; it takes as input a graph G and

a node s and computes the shortest paths from s to every other node v ∈ V (G) − {s}. The

program P , which we call Shortest Path, consists of 8 functions (i.e., 7 functions plus the

main) and have the property that its dynamic call-graph G(Shortest Path; Ikey) is the same

for every input Ikey; see, its dynamic call-graph in Figure 5.8(a). Moreover, we chose to embed

the watermark number w = 2 into the source code of program Shortest Path. The reducible

permutation graph F [�∗] which encodes the watermark w = 2 consists of 7 nodes and is depicted

in Figure 5.8(b). We point out that, according to our model's rules, the number w = 2 is encoded

by the SiP �∗ = (3; 5; 1; 4; 2) and it can be successfully embedded into Shortest Path since our

program consists of 8 functions and the graph F [�∗] contains 7 nodes. The dynamic call-graph

G(Shortest Path∗; Ikey) of our watermarked program is presented in Figure 5.8(c). Observe

that, G(Shortest Path∗; Ikey) is isomorphic to the watermark graph F [(3; 5; 1; 4; 2)].

In Figure 5.9 we show the call-tables T and T ∗ of the original and watermarked programs

Shortest Path and Shortest Path∗, respectively, the edge characterization of each function call

(fi; fj) of the call-table T ∗ (see, Table C∗), and the increment of the value of the cf -variable x in
each case. More precisely, in Table C∗ each (fi; fj) is characterized as either rf (real-forward), rb

(real-backward), wf (water-forward), or wb (water-backward), while in the case where a function

call (fi; fj) is replaced by a path of calls (shortest path) we characterize as �rst (resp. last) the

77

Call-table T
main → InputGs

InputGs → Split

InputGs → Split

InputGs → Adjacent

main → Dikjstra

Dikjstra → FindMin

Relax → Dikjstra

Relax → PrintPath

Call-table T ∗

main → InputGs

InputGs → Split

Split → InputGs

InputGs → Split

InputGs → Split

Split → Adjacent

Adjacent → Split

main → InputGs

InputGs → Split

Split → Adjacent

Adjacent → Dikjstra

Dikjstra → InputG

Dikjstra → FindMin

FindMin → Adjacent

Dikjstra → FindMin

FindMin → Relax

Relax → Split

Relax → PrintPath

Table C∗

rf

rf

wb

rf

wf { �rst

wf { last

wb

wf { �rst

wf

wf

wf { last

wb

rf

wb

wf { �rst

wf { last

wb

rf

Values of the cf-variable

x+=3 (3) → x+=1 (4)

x+=3 (7) → x+=1 (8)

x+=2 (10) → ... (11)

x+=3 (14) → ... (15)

x+=3 (18) → ... (19)

x+=3 (22) → ... (23)

x+=2 (25) → ... (26)

x+=3 (29) → ... (30)

x+=3 (33) → ... (34)

x+=3 (37) → ... (38)

x+=3 (41) → ... (42)

x+=2 (44) → ... (45)

x+=3 (48) → ... (49)

x+=2 (51) → ... (52)

x+=3 (55) → ... (56)

x+=3 (59) → ... (60)

x+=2 (62) → ... (63)

x+=3 (66) → x+=1 (67)

Figure 5.9: The call-tables T and T ∗ of the programs Shortest Path and Shortest Path∗,

respectively, the edge characterization table C∗, and the values of the cf -variable.

�rst (resp. last) function call of that path. The fourth table of Figure 5.9 shows the values (in

parentheses) of the cf -variable x in both functions fi and fj of the program Shortest Path∗.

Recall that according to the f-call and b-call patterns (see, Section 5.3.2), if (fi; fj) is a forward

edge we add the statement x = x+h() in function fi, while if (fi; fj) is a backward edge we add

the statement x = x + g() in function fi; in both cases we unconditionally add the statement

x = x+ c() in function fj .

In our example, we initialize the cf -variable x = 0 and consider for simplicity reasons constant

values for the functions h(), g(), and c(), that is, h() = 3, g() = 2, and c() = 1. Based on the

above, we take the �rst function call (main; InputGs) of Table T ∗ and, since it is characterized as

rf in Table C∗, we increase by h() the value of the cf -variable x in function main before the call

site of InputGs, i.e., we set x = x+h() and thus x = 3. In the callee function InputGs we always

increase by c() the value of the variable x, i.e., we set x = x + c() and thus x = 4. We observe

that, the function call (Split; InputGs) of Table T ∗ is characterized as wb (water-backward)

and, thus, we increase by g() = 2 the value of the variable x in function Split, again before the

call site of InputGs, i.e., x becomes equal to 10 because in the previous function call x's value

was 8 (see, last table of Figure 5.9). Note that, by construction the shortest paths of function

calls do not intersect.

78

5.3.4 Extracting the RPG from the Code

We next present our WaterRPG model's algorithm for extracting the graph F [�∗] from the pro-

gram P ∗ watermarked by the embedding algorithm Embed RPG:to:CODE. The proposed extracting

algorithm works as follows:

Algorithm Extract CODE:to:RPG

1. Take as input the program P ∗ watermarked by the embedding algorithm Embed RPG:to:CODE

and run it with input Ikey;

2. Construct the call-table T using the execution trace of the program P ∗ with input Ikey;

3. Construct the dynamic call-graph G(P ∗; Ikey) using the call-table T as follows:

3.1. take all the function calls (fi; fj) of table T and add both functions fi and fj in the

set V ; note that, V has n+ 2 elements since T contains n+ 2 di�erent functions;

3.2. take all the function calls (fi; fj) of table T and add the selected pairs in the set E;

note that, E contains 2n+ 1 elements;

3.3. assign the set V to V (G(P ∗; Ikey)) and the set E to E(G(P ∗; Ikey));

4. Remove the node fmain from the graph G(P ∗; Ikey); the resulting graph is a reducible

permutation graph isomorphic to F [�∗] (see, algorithm Embed RPG:to:CODE);

5. Compute the unique Hamiltonian path HP = (f0; f1; f2; : : : ; fn; fn+1) of G(P ∗; Ikey);

6. Relabel the nodes of the graph G(P ∗; Ikey) according to their order in the HP as follows:

f0 = un+1, f1 = un, f2 = un−1, : : :, fn = u1, fn+1 = u0; the resulting graph G(P ∗; Ikey)

has a unique Hamiltonian path HP = (un+1; un; un−1; : : : ; u1; u0) and thus G(P ∗; Ikey) =

F [�∗];

7. Return the reducible permutation graph F [�∗].

Remark 5.6. In Step 5 of the extracting algorithm, we compute the unique Hamiltonian path

of the graph F [P ∗]. Indeed, it has been shown that the reducible permutation graph F [�∗] has

always a unique Hamiltonian path, denoted by HP(F [�∗]), and this Hamiltonian path can be

found in O(n) time, where n is the number of nodes of F [�∗] [23]. Since F [�∗] is isomorphic to

G′(P ∗; Ikey) we can compute the unique Hamiltonian path HP of the graph F [P ∗] within the

same time complexity.

5.4 Implementation

In this section we present in detail the watermarking process performed by our WaterRPG

model on a Java application program P . We show the implementation of our watermarking

process using a real program with market-name Laser which we have downloaded from the web-

site www:java− gaming:org containing various and di�erent in characteristics game application

programs.

79

Let fs = fn+1; fn; : : : ; f1; f0 = ft be the functions of the dynamic call-graph G(P; Ikey), where

P = Laser. Recall that the functions fs = fn+1; fn; : : : ; f1; f0 = ft are into 1-1 correspondence

with the nodes s = un+1; un; : : : ; u1; u0 = t of the reducible permutation graph F [�∗] which

encodes the watermark number w.

We focus on the function fi = up() of the program Laser; in our implementation, the

important part of the Java code of fi = up() is the following:

public void up{
if (b[cx+ 1][cy− 1− 1]:bgr() : : :){

hlth−−;
}
b[cx+ 1][cy]:bgr(black);
...

We �rst show the straightforward case of the watermarking process on function fi = up() and,

then, we proceed with advanced cases. In all cases our model uses the cf-variable x which

increases its value by h() = 3, g() = 2, and c() = 1; see, Call Patterns in Section 3.2.

Before we proceed to watermark the function fi = up(), we divide the callee functions of fi
into the following three categories:

Acallee : contains the callee functions f1j and f2j of fi which correspond to forward node u1j and

backward node u2j of graph F [�∗], respectively; that is, both f1j and f2j are functions of

the dynamic call-graph G(P; Ikey).

Bcallee : contains the callee functions f∗j of fi which are executed with the input Ikey except of

f1j and f2j ; that is, f
∗
j is a function of the dynamic call-graph G(P; Ikey).

Ccallee : contains all the callee functions f∗∗j of fi which are not executed with the input Ikey.

Naive-case Implementation

Let ui be the node of graph F [�∗] which corresponds to fi = up(), and let u1j and u2j be the

two nodes of F [�∗] such that (ui; u
1
j) and (ui; u

2
j) are the forward and backward outgoing edges

of node ui, respectively. Let f
1
j and f2j be the two functions of G(P; Ikey) which correspond to

nodes u1j and u2j , respectively; in our implementation, f1j = down() and f2j = health().

We next describe in a step-by-step manner the modi�cations we make in function fi = up()

according to the watermarking rules of our WaterRPG model. The watermarking process of the

naive-case implementation consists of the following phases:

(I) We �rst include the body of the function fi into a control statement holding opaque predi-

cates of the cf-variable x. In our naive-case implementation, we use the statement if-then-

else and add opaque predicates of the form x == value; see, statement if (x == 271 &&

down == false) {:::} of Figure 5.11.

Then, we handle the functions f1j and f2j of categories Acallee; in particular, we locate

the call-points of all the statements call(f1j) and call(f2j) in fi, if any, and we do the

following:

80

◦ We form an f-block, in the case where fi contains f
1
j , by adding the statement x =

x + h() in a call-point before that of call(f1j) and including both x = x + h() and

call(f1j) into a control statement with opaque predicates using the cf-variable x; in

our implementation, f1j = down() and h() = 3.

◦ We similarly form a b-block, in the case where fi contains f
2
j , by adding the statement

x = x + g() instead of x = x + h() as before; in our implementation, f2j = health()

and g() = 2.

In the case where the function fi does not contain call(f1j) or call(f2j), we locate a

call-point before that of the control statement if-then-else and we do the following:

◦ If fi does not contain call(f
1
j), we add the statements x = x+h() and call(f1j) in this

order and, then, we include both x = x + h() and call(f1j) into a control statement

with conditions consisting of opaque predicates using the cf-variable x; recall that

h() = 3; see, statement if (x == 271) && down == true) {:::} of Figure 5.11.

◦ If fi does not contain call(f2j), we add the statements x = x + g() and call(f2j) in

this order; we also include both statements into a control statement as before; see,

statement if (x == 268) {:::} of Figure 5.11.

(II) In this phase, we locate a point in the beginning of the callee function f1j (resp. f2j) of

function fi, add the statement x = x + c() in this point and include x = x + c() into a

control statement with conditions consisting of opaque predicates using the cf-variable x;

in our implementation c() = 1; see, statement if (x == 267) {:::} of Figure 5.11.

(III) We next handle all the functions f∗j of category Bcallee, that is, the callee functions of fi
that are functions of the call-graph G(P; Ikey) except of f

1
j and f2j . For every direct call

(fi; f
∗
j) we compute the sequence (fi; fk1 ; : : : ; f

∗
j) which corresponds to the shortest path

(ui; uk1 ; : : : ; u
∗
j) from ui to u

∗
j in graph F [�∗]; then, we remove the statement call(f∗j) from

fi and add either the statements x = x+ h() and call(f1j) if (ui; uk1) is a forward edge or

the statements x = x + g() and call(f1j) if (ui; uk1) is a backward edge in F [�∗]; in any

case, we include the added statements into a control statement with conditions consisting

of opaque predicates using the cf-variable x.

(IV) In the last phase we handle all the functions fout of program P which call functions that

correspond to nodes of graph F [�∗], i.e., fout is not a function of the call-graph G(P; Ikey)

and calls a function fj of fs = fn+1; fn; : : : ; f1; f0 = ft. We �nd the �rst appearance

of a function call of type (fout; fj) in table T ∗ such that fj is either a real function call

or the last function of a shortest path (fi; fk1 ; fk2 ; : : : ; fk` ; fj) (see, Step 7 of embedding

algorithm), take the value of the cf-variable x of function fk` , say, \value", and insert the

statement x = “value” in function fout before the call-point of the statement call(fj).

All the functions f∗∗j of category Ccallee are ignored during the process of watermarking the

function fi = up() since they are not executed with the input Ikey.

Remark 5.7. In order to avoid a large increment of the value of cf-variable x, in the imple-

mentation Phase (I), if a call function is included into a loop structure we could apply the call

patterns as follows: (i) we add the assignment of the cf-variable (i.e., x = x+ h() or x = x+ g()

81

The Naive-case Implementation

public void up{
if(x == 267){

x = x+ 1;

}
if(x == 268){

x = x+ 2;

health();

}
if(x == 271&&down == true){

x = x+ 3;

down();

}
if(x == 271&&down == false){

if(b[cx+ 1][cy− 1− 1] : : :){
hlth−−;

}
b[cx+ 1][cy]:bgr(black);
...

Figure 5.10: The function up() of the original program Laser watermarked with the naive

approach; the functions down() and health() are both water functions and belong to category

Bcallee, i.e., both are functions of G(Laser; Ikey).

assignments) outside this loop, and (ii) we add the statement x=value before loop inside and

before the end of the loop, where value before loop is the value of x before the execution of this

loop.

Stealthy-case Implementation

We next show properties and modi�cation rules of the model's call patterns based on which we

can stealthily watermark a Java application program P . The main modi�cation cases, which we

call stealthy cases, supported by the WaterRPG model are the following:

(S.1) Making nested patterns: We can merge f-statements and b-statements in any way; for ex-

ample, we can include the control b-statement if (x == 268) {:::} inside the f-statement if
(x == 271 && down == true) {:::} after the statement call(f1j) = up(); we appropriately

change their opaque predicates; see, Figure 5.11.

(S.2) Adding multiple water-calls: Since water-calls do not a�ect the functionality of the program,

we can add multiple water-calls in the body of the function fi = up(). Our aim is to increase

the complexity of the source code making thus di�cult for an attacker to understand it,

the more the complexity the more the extend of the code.

82

Two Stealthy-case Implementations

public void up{ public void up{
x = x+ 1; x = x+ 1;

if(x == 268&&down == true){ if(x == 268&&down == true){
x = x+ 3; x = x+ 3;

down(); down();

if(x == 272){ }
x = x+ 2; else{
health(); if(b[cx+ 1][cy− 1− 1] : : :

} &&x == 268){
} hlth−−;
else{ x = x+ 2;

if(b[cx+ 1][cy− 1− 1] : : : health();

&&x == 268){ }
hlth−−; b[cx+ 1][cy]:bgr(black);

}
...

b[cx+ 1][cy]:bgr(black);

...

Figure 5.11: The function up() of the original program Laser watermarked with a stealthy

approach; the functions down() and health() are both water functions and belong to category

Bcallee, i.e., both are functions of G(Laser; Ikey).

(S.3) Removing control statements: We can remove the control statement that includes the

statement x = x+ c() of a function fi = up() (Phase III); we can do that in the case where

fi is called by a function of category Ccallee; note that, functions of category Ccallee do not
modify the value of the cf-variable x.

(S.4) Constructing complex opaque predicates: We can construct more complex opaque predicates

thus making the control ow of a program more di�cult for an attacker to analyze it. In

Phase I, we added opaque predicates of the form (x == value1 || x == value2 || : : : ||
x == valuem), whereas in the stealthy case we evaluate the cf-variable in a range of values

(x <= valuei && x >= valuej) by adding logical and relational operators.

(S.5) Merging control statements: We can merge control statements that we added in program P ∗

with program's original control statements by appropriately merging their corresponding

logical expressions.

(S.6) Assigning complex expressions: In the naive case the incremental functions of statements

x = x + h() and x = x + g() have constant values h() = 3 and g() = 2, respectively. We

can easily use any complex function for h() and g() in order to systematically increase the

cf-variable x.

83

(S.7) Using more cf-variables: We can use more that one cf-variable to control the ow of the

watermarked program P ∗. We built relationships between the cf-variables in order to

be used interchangeably throughout the execution phase. We establish thresholds that

determine the use of di�erent cf-variables.

In Figure 5.11 we present two stealthy-case implementations of the function up() of the original

program Laser (left and right code). The functions down() and health() are both water functions

and belong to category Bcallee, that is, both are functions of G(Laser; Ikey).

5.5 Model Evaluation

Having designed a static or dynamic software watermarking model, it is very important to

evaluate it under various criteria in order to gain information about its practical behavior. Several

criteria have been appeared in the literature and used for evaluating the properties of a proposed

watermarking model and showing its strong and weak implementation points [31]. It is a common

belief that a good watermarking model must have at least the following characteristics [30]:

◦ a software watermarking model should not adversely a�ect the size and execution time of

the program P ;

◦ the ratio of the number of bits of the whole program P to the number of bits encoded by

the watermark w should be high;

◦ a model must be resilient against a reasonable set of malicious watermarking attacks;

◦ both host program P and watermarked program P ∗ should have similar statistical proper-

ties.

In our work, we use various criteria which mainly aim to evaluate our WaterRPG model's per-

formance and its resiliency. More precisely, we propose a set of evaluation criteria consisting of

two main categories:

(I) Performance Criteria

(II) Resilience Criteria

The Performance criteria (or, P-criteria) concern the behavior of the resulting watermarked

program P ∗ and the quality and e�ectiveness of the embedded watermark w, while the Resilience

criteria (or, R-criteria) concern the robustness and resistance of the embedded watermark w

against malicious user attacks.

For our evaluation process, we implemented the WaterRPG model on Java application pro-

grams and experimentally evaluated it under several P-criteria and R-criteria. More precisely,

we selected a number of Java application programs downloaded from the free non commercial

game database website www:java− gaming:org and watermarked them using the two watermark-

ing approaches supported by our WaterRPG model, i.e., the Naive approach, and the Stealthy

approach. The selected Java programs are almost of the same size and are watermarked by em-

bedding watermarks of three di�erent sizes; we use watermarking graphs F [�∗] having number

of nodes n = 11, n = 13, and n = 15.

84

All the experiments were performed on a computer with dual-core 2.0 GHZ processors, 3.0 GB

of main memory under Linux operating system using Java version 1.6.0.26 of the SDK (Software

Development Kit).

5.5.1 Performance

The performance criteria (or, P-criteria) mostly focus only on how much a watermarking model

modi�es the code of a program P . As these criteria range in satisfactory levels, both programs P

and P ∗ have almost identical execution behavior and similar codes, and thus the code associated

with the watermark w is very likely to pass unnoticed by the attacker's eyes; in our classi�cation,

the P-criteria are divided into the following two main categories:

• Data-rate: The data-rate criterion measures the ratio |w|=|P |, where |w| is the size of the
embedded watermark w and |P | is the size of the original program P . A model should

have a high data-rate so that it can embed a large message.

• Embedding overhead: The additional execution time and space caused by embedding

the watermark w into program P , that is,

(i) time overhead, and

(ii) space overhead: (ii.a) disk space usage, and (ii.b) heap space usage.

• Part protection: The part protection criterion evaluates how well the watermark is

distributed or spread throughout the entire code of P . This is an important performance

property of program P ∗ because it decreases the probability that the watermark will be

altered or destroyed when small changes are made to program P ∗.

• Credibility: The credibility criterion evaluates how much detectable the watermark is.

The embedded watermark should be easily extracted from P ∗ and the detector (i.e., the

extracting algorithm) should minimize the probability to generate false positives and false

negative results.

• Stealth: A watermarked program P ∗ has the stealth property if the embedded watermark

should exhibit the same properties as the code of P or data around it and thus it should

be di�cult to detect. In other words, P ∗ should have characteristics that are not di�erent

from a typical program so that an attacker can not use these characteristics to locate and

attack the watermark.

Let us now discuss on the performance of the WaterRPG model and let us �rst focus on the

data-rate of our model.

Data-rate. This criterion essentially depends on the size of the watermark w or, in our model,

of the size of the embedding watermark graph F [�∗]. We consider that the size of the watermark

graph is the number of vertices that it contains. In order to measure the data-rate ratio |w|=|P |,
we compute the size of the original program P by counting the number of functions it has, since

in our model we assign an exact pairing of the nodes of F [�∗] to the functions of P . We claim

that our model has high data rate for large programs since in such programs we are able to

85

encode a watermark graph less than or equal to programs' size. According to our model for

encoding a number as reducible permutation graph a relatively large graph encodes a large set

of di�erent integer numbers.

Embedding overhead. In order to evaluate the embedding overhead of our WaterRPG model

we choose the parameters (i) execution time, (ii.a) disk usage, and (ii.b) heap space usage. We

measure these parameters on the selected Java application programs P and the corresponding

watermarked programs P ∗ under both the naive and stealthy approaches. In the evaluation

process, each program is executed “n” times with di�erent inputs. The run-time of each tested

program is computed by taking the di�erence of the start-value and the end-value of the Java

method System:currentTimeMillis().

The execution time overhead is proportional to the size of the watermarking graph F [�∗].

The experimental results in Table 5.2 indicate that for a graph F [�∗] on n = 11, n = 13 and

n = 15 nodes the execution time of the naive watermarking causes a slight increase of 5:25%,

7:65% and 11:07%, respectively, while the corresponding increments for the stealthy case are

even smaller.

The disk storage requirements of program P ∗ compared to P increases as the number of

nodes of the graph F [�∗] increases. Applying the stealthy approach a noteworthy amount of

storage memory is saved because many of the control statements and opaque predicates that

were not necessary to maintain proper functionality of the program P ∗ removed safely from the

code. Table 5.3 illustrates the percentage increment of disk demand for P ∗
N and P ∗

S , as well as

the improvement caused by the stealth approach in comparison to the naive. The experimental

results show that our WareRpg watermarking model has a similar performance for the heap

space usage; see, Table 5.4. The results for all the evaluating parameters are also depicted in a

graphical form in Figure 5.12.

Towards the evaluation of the space overhead of our watermarking method we compute the

total amount of the bytecode instructions added to watermarked program P ∗. In particular, we

compute the percentage of the increment resulted by adding control statements, functions calls

and variable assignments to the program P . To this end, we count the bytecode instructions of

watermarked programs P ∗
N and P ∗

S that belong to four main categories: (i) Control statements,

(ii) Invocations, (iii) Assignments, and (iv) Rest instructions; see, Table 5.5. Note that the cat-

egory (iv) contains all the bytecode instructions that remain unchanged after the watermarking

process. Indicatively, in Table 5.6 we show the number of some bytecode instructions of the

tested Java application programs P .

Part protection. The idea behind the property of part protection is to split the watermark into

pieces and then broadly spread it across the application program P . The splitted watermark

w has a better chance to survive if an attack modi�cation on some w's parts does not a�ect

the recognition process. The more the part protection is increased, the more likely a watermark

remains unchanged after a possible theft or modi�cation of a portion of the whole watermarked

code.

In our case, we do not split the watermark in order to encoded it into code, and thus our model

has a low part protection. However, an attack modi�cation on a part of our watermark code may

cause incorrectness of P ∗ unless the attacker goes through all the parts of the watermark code

86

Table 5.2: Execution Time (msec)

Nodes in F [�∗] P → P ∗
N P → P ∗

S P ∗
N → P ∗

S

11 +5.25% +3.82% -1.37%

13 +7.65% +5.99% -1.56%

15 +11.07% +9.19% -1.72%

Table 5.3: Disk Usage (Kb)

Nodes in F [�∗] P → P ∗
N P → P ∗

S P ∗
N → P ∗

S

11 +20.98% +16.71% -3.65%

13 +26.35% +18.81% -6.34%

15 +30.10% +21.76% -6.85%

Table 5.4: Heap Space Usage (Mb)

Nodes in F [�∗] P → P ∗
N P → P ∗

S P ∗
N → P ∗

S

11 +7.69% +4.61% -2.94%

13 +10.76% +6.15% -4.34%

15 +15.38% +9.23% -5.63%

and makes appropriate modi�cations. On the other hand, since we can encode the same number

w into more than one reducible permutation graphs F [�∗] (see, [24]), our model could obtain

higher part protection by encoding multiple water-graphs F [�∗] using di�erent input sequences

which produce di�erent dynamic call graphs protecting thus larger code area.

Credibility. The credibility of a watermarking model is dependent on how detectable the

watermark is. Concerning our model, we should point out that the rates of false positive and

false negative outcomes are noticeable low in the case where the program P ∗ has not being

attacked. In addition, even the watermarked code undergoes attacks, the execution sequence

S of the functions of P ∗ is very hardly distorted. Nevertheless, an attacker could make such a

distortion possible but then he has to replace the sequence of function calls S with a sequence

S′ in order to produce exactly the same output keeping the functionality and correctness of the

remaining code; it is very time consuming for an attacker to �nd an S′ and test it under various

inputs.

Stealth. Some common attacks against watermarking systems begin by identifying the code

composing the watermark. To resist such attacks, watermarking should be stealthy: the water-

mark code embedded to a program P should be locally indistinguishable from the rest code of

P so that it is hidden from malicious users.

The code embedded to program P by our watermarking model WaterRPG is not highly

unusual since our model modi�es the existing source code of P by only altering its control ow

in order to produce, during the execution of P ∗ with the secret input Ikey, a dynamic call graph

87

Figure 5.12: Graphical representation of the results for parameters (i) Execution time, (ii.a) Disk

usage and (ii.b) Heap space usage of the original program P , and the corresponding watermarked

program under both the Naive P ∗
N and Stealthy P ∗

S approaches.

isomorphic to the watermark graph F [�∗]. More precisely, our model does not add any dead or

dummy code but only encodes the graph F [�∗] using three groups of bytecode instructions:

(i) call functions,

(ii) control statements, and

(iii) variable assignments.

Most of these instructions are already used in the original source code P and thus the embedded

watermark code is quite di�cult to be located in the watermarked program P ∗. The experimental

88

Table 5.5: Three Group of Bytecode Instructions

Bytecode P P ∗
N P ∗

S

Control Statements 519.4 42.0% 25.0%

Invocations 188.3 10.6% 10.6%

Assignments 1346.7 45.5% 32.4%

Rest Instructions 941.6 0% 0%

Table 5.6: Indicative Bytecode Instructions of each Group

Bytecode P P ∗
N P ∗

S

Control Statements

if icmpne 19,2 78,1 57,6

ifne 3,1 4,5 4,5

goto 43,5 45,3 45,3

Invocations

invokevirtual 188,2 208,4 208,4

Assignments

iconst 1 186,2 202,7 202,7

getstatic 368,6 614,4 529,5

iadd 84,9 132,8 132,8

alaod 0 136,7 156,2 156,2

Rest Instructions

dup 33,6 33,6 33,6

ldc 19,7 19,7 19,7

results indicate that there is an increment from 10.6% to 45.5% (resp. from 10.6% to 32.4%) of

instructions of these three groups in the naive (resp. stealthy) implementation. Table 5.5 shows

the number of bytecode instructions, on average, of each of the three instruction groups of the

tested programs P and the increments of these instructions in both naive P ∗
N and stealthy P ∗

S im-

plementation cases, while Table 5.6 depicts the number of some indicative bytecode instructions

of the three instruction groups.

5.5.2 Resilience

The resilience criteria (or, R-criteria) mainly focus on how the embedded watermark resists

against attacks made by malicious users. These attacks are either targeted-attacks on the code

composing the watermark w or widespread-attacks on the whole code of program P ∗. According

to the type of attacks, the R-criteria are divided into the following two main categories:

• Watermark resilience: The watermark resilience (or, water-resilience) criteria measure

the resistance of the watermark w against attacks on its own code; we call these attacks

targeted-attacks or water-attacks. In this case the attacker �rst detects the watermark w,

89

that is, the code of program P ∗ associated with the watermark w, and then makes speci�c

operations on that code in order to

◦ remove (e.g., by subtracting part of the watermark, or even the whole watermark),

◦ destroy (e.g., by applying semantics preserving transformations so that w can be

undetectable, i.e., the detector can not �nd the watermark), or even

◦ alter the watermark w (e.g., by changing the structure of the embedded watermark w

so that it causes the extracting algorithm to produce a di�erent watermark w′).

The attacker can also add a new watermark w′ into P ∗ without modifying the existing w

in order to confuse the detector.

• Code resilience: The code-resilience criteria measure the resistance of the watermark

w against attacks made on the whole code of the watermarked program P ∗; we call these

attacks widespread-attacks or code-attacks. In the case the attacker fails to detect the code

of program P ∗ associated with the watermark w, and thus he makes attacks in the whole

code aiming in this way to maximize the distortion of possible watermarking protections;

in our classi�cation, the code-resilience criteria include:

◦ obfuscation (e.g., by transferring a reducible ow graph to non-reducible),

◦ optimization (e.g., by removing information for debugging with an automated tool,

such as ProGuard),

◦ de-compilation (e.g., by using a malicious tool, such as Java-Decompiler), and

◦ language-transformation (e.g., by converting a watermarked program P ∗ from C++

to Java).

As in the case performance criteria, we next discuss on the resilience of our WaterRPG model

focusing �rst on the water-resilience criteria.

Watermark resilience. The water-attacks take place when the code of the watermark w, the

graph F [�∗] in our model, is known to the attacker. In this case, he makes attacks on the

structure of watermark graph F [�∗] in order to destroy it or even to remove F [�∗] from program

P ∗.

Our model embeds the watermark graph F [�∗] into an application program P by using

opaque predicates in speci�c control statements in order to manipulate the ow of selected

function calls of the watermarked program P ∗ so that it reserves an appropriate execution, that

is, O(P; I) = O(P ∗; I) for every input I. In general, it is hard for an attacker to deduce an

opaque predicate at run time. Speci�cally, the usage of opaque predicates in our model enables

us to dictate the execution ow of function calls and also makes the programs' control ow

di�cult for an attacker to analyze it either statically or dynamically. In fact, our model creates

dependencies on the data between the original program P and the watermark F [�∗] making thus

the watermark graph F [�∗] operational part of the program P . This causes our model resilient

to water-attacks.

Indeed, if the attacker makes a modi�cation in a value of a cf-variable x in a call-site p (e.g.,

he increases x by a constant c), then he has to properly modify all the values of all the cf-variables

90

in every call-site of the execution ow after p (e.g., by adding the same constant c) so that P ∗

still remains functional, but then the watermark F [�∗] also remains unchanged. Moreover, if the

attacker tries to remove any of the cf-statements then the program P ∗ is not longer functional

since a \gap" is occurred on the execution ow of P ∗ (e.g., the program executes a part of a

code which in same cases produces incorrect results). What is more, every cf-statement produces

di�erent results, so our model withstands common subexpression elimination.

Additionally, if the attacker modi�es either a real-call or a water-call then the program P ∗

is no longer operational. Indeed, let the attacker modi�es a water-call call(fj) in function fi

which appears in a path (fa, : : :, fk, fi, fj , : : :, fb). Then, he has to make several modi�cations

on function calls, among which the deletion of call(fj) from function fi and the replacement

of call(fi) with call(fj) in function fk, in order to remain the program P ∗ functional. Such

modi�cation have very low probability to destroy the structure of the embedded watermark F [�∗]

without breakdown the functionality of program P ∗.

It is worth noting that any code modi�cation which destroys the structure of F [�∗] can be

detected with high probability by our model WaterRPG due to error-correcting properties of the

watermark graph F [�∗]. Finally, we should point out that our model does not add any dead

or dummy code in the watermarked program P ∗ and also it does not use any mark during the

embedding process in order to locate and extract the watermark from P ∗.

Code-resilience. Resiliency against code-attacks refers to the ability of a watermarking model

to recognize a watermark even after the program P ∗ has been attacked or subjected to code

transformations such as translation, optimization and obfuscation [84]. The code-attacks take

place when the attacker fails to detect the code of program P ∗ associated with our watermark

F [�∗]. In this case, the attacker broadly applies code transformation attacks in the whole code

of P ∗ in order to reduce the ability of the model's recognizer to extract the watermark.

Roughly speaking, the goal of an obfuscation attack is to make a model's recognizer to hardly

extract the watermark from P ∗. Our model watermarks an application program P in such a

way that it withstands several obfuscation attacks among which layout-obfuscation and data-

obfuscation attacks. Indeed, the experiments showed that the water-graph F [�∗] can be e�ciently

extracted even the code of program P ∗ has been subjected to control-obfuscation attacks such

as expression reordering or loop reordering; some of our experiments were performed with an

automated tool (e.g., ProGuard). It is fair to mention that our model does not properly operate

on some other control obfuscation attacks such as aggregation including inline functions and

outline functions; for example, if an attacker split a function or merge functions of P ∗ associated

with the code of the watermark F [�∗], he actually makes a targeted attack both on vertices and

edges of watermark graph F [�∗] destroying thus the structure of F [�∗].

As far as the optimization attacks are concerned we point out that they are mainly applied by

a compiler or interpreter into the executable program altering the generated traces of program P ∗;

note that our WaterRpg model encodes execution trace watermarks. The embedded watermark

F [�∗] withstands on such attacks since any removal of function calls, register reallocation, or

information for debugging does not a�ect the structural properties of the embedding graph

F [�∗]. Again, the experimental study showed that our WaterRPG withstands on a relatively

large subset of optimization attacks including semantic-preserving transformations, shrinking,

and also it withstands on the most time consuming operation namely language transformation

91

(i.e., the attacker rewrites the whole code ofP � in another language).
A watermarking model must also be resilient against a reasonable set of de-compilation

attacks. Thus, in our experimental study, we also included the evaluation of our watermarking
model WaterRPG against de-compilation attacks. More precisely, we tested our programs with a
revere engineering tool (e.g., Java Decompiler) and �gure out that in all the cases that WaterRPG
successfully extracts the watermarking graphF [� �] from the watermarked programsP �

N and
P �

S ; indeed, in all the cases the dynamic call-graphG(P � ; I key) taken by the input I key were
isomorphic to graph F [� �].

5.6 Concluding Remarks

Through the evaluation of WaterRPG, we showed that our model has zero false positive and
false negative rates in the case where the watermarked code has not been attacked. Indeed, it
is true because the execution of the watermarked programP � with the secret input sequence
always builds a call graphG(P � ; I key) which is isomorphic with the water-graphF [� �].

The execution time and space overhead varies depending on the size of the embedded water-
mark; in fact, the overhead increases linearly in the size of the water-graphF [� �]. It is worth
noting that the data-rate is directly correlated with the number of functions used or, equivalently,
with the size of the water-graph. In the case where the code (in bits) of the original programP
is large enough, our model has high data-rate and extremely low embedding overhead. We point
out that the number of nodes of the water-graphF [� �] a�ects the number of functions we use
for embedding. Thus, it is possible to use fewer functions which would result in a graphF [� �]
with fewer nodes; note that, the graphF [� �] on n = 2k + 1 nodes can encode a watermarking
integer w in the range [0; 2k� 1 � 1]; see, authors' work [23, 28].

Furthermore, in our model the code which is associated with the watermark is composed
both by new code and host code; this enable us to obtain high stealth watermarked programs
P � . Moreover, since the watermark code has become an indispensable piece of the functionality
of program P � , a malicious user would need to fully understand the operations ofP � in order to
intervene changing possible execution ows. On the other hand, the extraction of our watermark
takes into account and uses the traces of all the functions that are assigned to the nodes of the
water-graph F [� �] which, in turn, means that if a subset of these functions is intercepted then
the watermark can not be extracted; unfortunately, this implies a poor part protection of our
watermarked programP � .

Finally, the experimental results show the high functionality of all the Java programsP �

watermarked under both the naive and stealthy cases, and also their low time complexity. The
experiments also show that the watermarking approaches supported by our model can help de-
velop e�cient watermarked Java programs with respect to various and broadly used performance
and resilience watermarking criteria.

Closing, we note that in light of our dynamic watermarking model WaterRPG it would be
very interesting to compare it with other dynamic, or even static, already proposed software
watermarking models [31, 35, 86, 95, 106]; we leave it as a direction for future work.

92

Recently, a signi�cant number of watermarking techniques have been proposed in the liter-

ature in order to create robust and imperceptible audio watermarks. Initial research on audio

watermarking dates back to the mid-nineties where Bender et al. [8] presented data hiding tech-

niques for audio signals; the �rst techniques were directly inspired from previous research on

image watermarking. A broad range of audio watermarking techniques goes from simple least

signi�cant bit (LSB) scheme to the various spread spectrum methods and can be classi�ed ac-

cording to the domain where the watermarking takes place in frequency, time, and compressed

domain [3, 43, 61, 108].

Attacks. An e�cient watermarking technique should resist to any process speci�cally intended

to thwart the watermark's purpose, i.e., to protect the intellectual property of the digital object.

Generally digital image and audio watermarking has certain requirements, the most important

being invisibility and robustness. Invisibility is the state of a watermark that cannot be seen,

while robustness means that the embedded watermark cannot be removed by an attack, that is,

an intentional or unintentional digital data change.

In general, attacks against embedded data (i.e., image and audio watermarks) can included

various combinations of several image processing techniques, or other techniques for overwriting

or removing the embedded information. Attacks can be classi�ed into the following four di�erent

types [110]:

◦ removal and interference attacks,

◦ geometric attacks,

◦ cryptographic attacks, and

◦ protocol attacks.

Lossy compression, quantization, collusion, denoising, remodulation, averaging, and noise storm

are some examples of removal and interference attacks. Geometric attacks do not actually remove

the watermark, but manipulate the watermarked object in such a way that the detector cannot

�nd the watermark data. This type of attack includes a�ne transformations such as rotation,

translation, and scaling. The aim of cryptographic attacks is to crack the security methods in

watermarking schemes and thus �nd a way to remove the embedded watermark or to embed

misleading watermarks. Protocol attacks add the attacker's own watermark signal introducing

thus ambiguities on the true ownership of data.

Contribution. In this chapter, we present e�cient and easily implemented techniques for wa-

termarking images and audio signals that we are interested in uploading in the web and making

them public online; this way web users are enabled to claim the ownership of their images and

audio signals.

We �rst present our primary work on image watermarking in the spatial domain and we next

expand our idea by moving from the spatial domain to the image's frequency domain. What

is important for our idea is the fact that it suggests a way in which an integer number can

be represented with a two dimensional representation (or, for short, 2D-representation). Thus,

since images are two dimensional objects that representation can be e�ciently marked on them

resulting the watermarked images. In a similar way, such a 2D-representation can be extracted

for a watermarked image and converted back to the integer w.

95

Having designed an e�cient method for encoding integers as self-inverting permutations, we

propose an e�cient algorithm for encoding a self-inverting permutation �∗ into an image I by

�rst mapping the elements of �∗ into an n∗×n∗ matrix A∗ and then using the information stored

in A∗ to mark speci�c areas of image I in the frequency domain resulting the watermarked image

Iw. We also propose an e�cient algorithm for extracting the embedded self-inverting permutation

�∗ from the watermarked image Iw by locating the positions of the marks in Iw; it enables us to

reconstruct the 2D-representation of the self-inverting permutation �∗.

It is worth noting that although digital watermarking has made considerable progress and

became a popular technique for copyright protection of multimedia information [15], our work

proposes something new. We �rst point out that our watermarking method incorporates such

properties which allow us to successfully extract the watermark w from the image Iw even if the

input image has been compressed with a lossy method. In addition, our embedding method can

transform a watermark from a numerical form into a two dimensional (2D) representation and,

since images are 2D structures, it can e�ciently embed the 2D-representation of the watermark

by marking the high frequency bands of speci�c areas of an image. The key idea behind our

extracting method is that it does not actually extract the embedded information instead it locates

the marked areas reconstructing the watermark's numerical value.

We have evaluated the embedding and extracting algorithms by testing them on various and

di�erent in characteristics images that were initially in JPEG format and we had positive results

as the watermark was successfully extracted even if the image was converted back into JPEG

format with various compression ratios. What is more, the method is open to extensions as the

same method might be used with a di�erent marking procedure such as the one we used in our

previous work. Note that, all the algorithms have been developed and tested in MATLAB [54].

Based on the idea behind our image watermarking technique, where the integer watermark

number w is represented as a two dimensional array, we present an audio signal watermark-

ing technique. Since audio is one dimensional signal, the 2D-representation can be e�ciently

reconstructed in the 1D space and be used to mark an audio signal.

What is important of the proposed audio watermarking technique is the fact that it sug-

gests a way in which an integer number w can be represented as an one-dimensional array (or,

equivalently, 1D-representation). More precisely, our proposed algorithm embeds a self-inverting

permutation �∗ over the set Nn into an audio signal S by �rst mapping the elements of �∗ into

an n× n matrix B∗ and then, based on the information stored in B∗, marking speci�c areas of

audio S in the frequency domain resulting thus the watermarked audio Sw. An e�cient algo-

rithm extracts the embedded self-inverting permutation �∗ from the watermarked audio Sw by

locating the positions of the marks in Sw; it enables us to reconstruct the 1D-representation of

�∗ and, then, obtain the watermark w.

Finally, we would like to point out that the primary purpose of our approach is not to �ll a

gap of the existing audio watermarking methods by proposing a new embedding technique, but

to expand the idea used on our previous work and show that it can be e�ciently applied for

audio watermarking depicting thus the high versatility of the whole concept.

Road Map. The chapter is organized as follows: In Section 6.2 we establish the notation and

related terminology, and we present background results. In Section 6.3 we describe our pri-

mary work on image watermarking in the spatial domain and give the Embed-SiP.to.Image-S

96

and Extract-SiP.from.Image-S algorithms. In Section 6.4 we present our codec algorithms,

Embed-SiP.to.Image-F and Extract-SiP.from.Image-F, for watermarking images in the fre-

quency domain. In Section 6.5 we expand our idea on image watermarking by applying it in

audio watermarking and present our audio watermarking algorithms, i.e., the embedding algo-

rithm Embed-SiP.to.Audio and the extracting algorithm Extract-SiP.from.Audio. Finally,

in Section 6.6 we conclude the chapter and discuss possible future extensions.

6.2 Background Results

In this section we present basic tools which are used by our image and audio watermarking

algorithms. Since images are two dimensional objects we present a transformation of a watermark

from a numerical form to a 2D form (i.e., 2D-representation) through the exploitation of self-

inverting permutation properties. The 2D-representation can be e�ciently marked on images

resulting thus the watermarked images. Similarly, since audio signal is an one dimensional

object we present a transformation of a watermark from a numerical form to a 1D form (i.e.,

1D-representation).

In Chapter 2, we de�ned a permutation � over the set Nn as a sequence � = (�1; �2; : : : ; �n)

whereas a self-inverting permutation (or, involution) as a permutation that is its own inverse,

i.e., ��i = i. By de�nition, all the cycles of a self-inverting permutation are of length 1 or 2.

Moreover, in the same chapter, we proposed the encoding algorithm Encode W.to.SiP for

encoding numbers as self-inverting permutations (or SiP, for short) along with the corresponding

decoding algorithm Decode SiP.to.W; recall that, the algorithms of our codec system run in

O(n) time, where n is the length of the binary representation of the integer w [28].

6.2.1 2D Representation of SiP

Given a permutation � over the set Nn, we �rst de�ne a two-dimensional representation (2D-

representation) of the permutation � that is useful for studying properties which help us to

de�ne, later, a more suitable representation of � for e�cient use in our watermarking system.

In this representation, the elements of the permutation � = (�1; �2; : : : ; �n) are mapped in

speci�c cells of an n× n matrix A as follows:

• number �i −→ entry A(�−1
i ; �i)

or, equivalently,

• the cell at row i and column �i is labeled by the number �i, for each i = 1; 2; : : : ; n.

Figure 6.1(a) depicts the 2D-representation of the permutation � = (5; 6; 9; 8; 1; 2; 7; 4; 3) over

the set N9; the permutation � is self-inverting.

By de�nition, there is one label in each row and in each column, so each cell in the matrix

A corresponds to a unique pair of labels; see, [107] for a long bibliography on permutation

representations and also in [23] for a DAG representation.

97

1

2

3

4

9

6

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9

7

8

9

5

8

7

1

2

3

4

9

6

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9

7

8

9

5

8

7

(a) (b)

Figure 6.1: (a) A 2D representation of the self-inverting permutation � = (5; 6; 9; 8; 1; 2; 7; 4; 3); (b) A

2DM representation of permutation �.

Based on the previous 2D-representation of a permutation, we next propose a two-dimensional

marked representation (2DM-representation) of a permutation which is an e�cient tool for wa-

termarking images.

In our 2DM-representation, a permutation � over the set Nn is represented by an n×n matrix
A∗ as follows:

• the cell at row i and column �i is marked by a speci�c symbol, for each i = 1; 2; : : : ; n.

Figure 6.1(b) shows the 2DM-representation of the permutation �. Note that, as in the 2D-

representation, there is also one symbol in each row and in each column of the matrix A∗.

We next present an algorithm which extracts the permutation � from its 2D-representation

matrix. More precisely, let � be a permutation over Nn and let A∗ be the 2DM-representation

matrix of � (see, Figure 6.1); given the matrix A∗, we can easily extract � from A∗ in linear time

(in the size of matrix A∗) by the following algorithm:

Algorithm Extract � from 2DM

1. For each row i of matrix A∗, 1 ≤ i ≤ n, do:

�nd the marked cell and let j be its column;

set �i ← j;

2. Return the permutation �.

Remark 6.1. It is easy to see that the resulting permutation �, after the execution of Step 1,

can be taken by reading the matrix A∗ from top row to bottom row and write down the positions

of its marked cells. Since the permutation � is a self-inverting permutation, its 2D matrix A has

the following property:

• A(i; j) = j if �i = j, and

• A(i; j) = 0 otherwise, 1 ≤ i; j ≤ n.

98

1 2 3 4 5 6 8 9 10 11 12 137 14 15

. . .
* *

36 37 38 39 40 41 43 44 45 46 47 4842 4935

. . .
* *

22 23 24 25 26 27 292821

. . .
*

. . .

Figure 6.2: The 1DM representations of the self-inverting permutation � = (4; 7; 6; 1; 5; 3; 2).

Thus, the corresponding matrix A∗ is symmetric:

• A∗(i; j) = A∗(j; i) = \mark" if �i = j, and

• A∗(i; j) = A∗(j; i) = 0 otherwise, 1 ≤ i; j ≤ n.

Based on this property, it is also easy to see that the resulting permutation � can be also taken

by reading the matrix A∗ from left column to right column and write down the positions of its

marked cells.

6.2.2 1D Representation of SiP

We next present an one-dimensional representation (1D-representation) of the permutation �,

over the set Nn, which we will use as a mark to embed it into audio signal.

In our 1D-representation, the elements of the permutation � are mapped in speci�c cells of

an array B of size n2 as follows:

number �i −→ entry B((�−1
�i
− 1)n+ �i)

or, equivalently, the cell at the position (i − 1)n + �i is labeled by the number �i, for each

i = 1; 2; : : : ; n.

We next describe the 1DM-representation acquired in a similar manner as the 2DM-representation.

In our 1DM-representation, a permutation � over the set Nn is represented by an n2 array B∗

as follows:

◦ the cell at the position (i−1)n+�i is marked by a speci�c symbol, for each i = 1; 2; : : : ; n;

where, in our implementation, the used symbol is again the asterisk character *". Figure 6.2

shows the 1DM-representation of the same permutation � = (4; 7; 6; 1; 5; 3; 2).

Hereafter, we shall denote by �∗ a self-inverting permutation and by n∗ the number of ele-

ments of �∗.

99

6.2.3 Color Images

A digital image is a numeric representation of a 2-dimensional image; it has a �nite set of values,

called picture elements or pixels, that represent the brightness of a given color at any speci�c

point in the image [53].

A digital image contains a �xed number of rows and columns of pixels which are usually

stored in computer memory as a two-dimensional matrix I of numeric values; in our system the

numeric values are integers from 0 to 255. When we say that an image has a resolution of N×M
we mean that its two-dimensional matrix I contains N rows and M columns and the value of

each entry I(i; j), i.e., the value of each pixel, is an integer k0 (grayscale image), or a triple of

integers (k1; k2; k3) (color image), 0 ≤ k0; k1; k2; k3 ≤ 255.

R

B

G(0, 0, 0)

(0, 0, 255)

(0, 255, 0)

(255, 0, 0)

(255, 255, 255)(255, 0, 255)

(0, 255, 255)

(255, 255, 0)

Figure 6.3: The range of colors represented on the Cartesian 3-dimensional system.

There are several models used for representing color. In our system, we use the RGB model;

it is an additive color model in which red, green, and blue light is added together in various ways

to reproduce a broad array of colors. The name of the model comes from the initials of the three

additive primary colors, Red, Green, and Blue [53, 97].

The range of colors can be represented on the Cartesian 3-dimensional system as a cube with

the following characteristics:

• on the x-axis (R-axis) we have the brightness of the red color,

• on the y-axis (G-axis) we have the brightness of the green color, and

• on the z-axis (B-axis) we have the brightness of the blue color.

Figure 6.3 shows the 3D topology of the colors. For example, the white color (255, 255, 255) is

located in the front upper right point of the color cube.

In our system, since a color is a triple of integers (x; y; z), a digital image I of resolution

N ×M (i.e., it contains N rows and M columns) is stored in a three-dimensional matrix Img of

size N ×M × 3 as follows:

• if the pixel I(i; j) of the image I has (x; y; z) color, then Img(i; j; 1) = x, Img(i; j; 2) = y,

and Img(i; j; 3) = z.

For example, let (240, 29, 35) be the color of the upper left pixel of an image I, i.e., I(1; 1) =

(240; 29; 35). Then, in our system Img(1; 1; 1) = 240, Img(1; 1; 2) = 29, and Img(1; 1; 3) = 35.

100

6.2.4 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used to decompose an image into its sine and cosine

components. The output of the transformation represents the image in the frequency domain,

while the input image is the spatial domain equivalent. In the image's fourier representation,

each point represents a particular frequency contained in the image's spatial domain.

If f(x; y) is an image of size N ×M we use the following formula for the Discrete Fourier

Transform:

F (u; v) =
N−1∑
x=0

M−1∑
y=0

f(x; y)e−j2�(
ux
N

+ vy
M

) (6.1)

for u = 0; 1; : : : ; N − 1 and v = 0; 1; : : : ;M − 1.

In a similar manner, if we have the transform F (u; v) i.e the image's fourier representation we

can use the Inverse Fourier Transform to get back the image f(x; y) using the following formula:

f(x; y) =
1

NM

N−1∑
u=0

M−1∑
v=0

F (u; v)ej2�(
ux
N

+ vy
M

) (6.2)

for x = 0; 1; : : : ; N − 1 and y = 0; 1; : : : ;M − 1.

Typically, in our method, we are interested in the magnitudes of DFT coe�cients. The

magnitude |F (u; v)| of the Fourier transform at a point is how much frequency content there is

and is calculated by Equation (6.1) [53].

6.3 Image Watermarking in the Spatial Domain

Having proposed an e�cient method for encoding integers as self-inverting permutations using

the algorithm Embed W.to.SiP (see, Section 2), and the 2DM-representation of self-inverting

permutations (see, Section 6.2), we next describe the two main algorithms of our image water-

marking system; the encoding algorithm Embed SiP.to.Image-S which encodes a self-inverting

permutation �∗, corresponding to watermark w, into an image I resulting the watermarked im-

age Iw and the decoding algorithm Extract SiP.from.Image-S which extracts the permutation

�∗ from the image Iw.

6.3.1 Embed Watermark into Image - S

We next describe the algorithm Embed SiP.to.Image-S of our codec system which embeds a

self-inverting permutation �∗ into an image I [25]; recall that, in our codec system we encode

the watermark w as a self-inverting permutation �∗ over the set Nn∗ , where n∗ = 2n+ 1 and n

is the length of the binary representation of the integer w [28]; see, Subsection 2.4.1.

101

The algorithm takes as input a SIP �∗ and an image I, in which the user wants to embed

the watermark w = �∗, and produces the watermarked image Iw; it works as follows:

Algorithm Embed SiP.to.Image-S

1. The algorithm �rst computes the 2DM-representation of the permutation �∗, that is, it

computes the n∗ × n∗ array A (see, Subsection 6.2.1); the entry (i; �∗i) of the array A

contains the symbol *", 1 ≤ i ≤ n∗;

2. Next, the algorithm computes the size N ×M of the input image I and do the following: if

N is an even number it removes the pixels from the bottom row of I and reduces N by 1,

while if M is an even number it removes the pixels from the right column of I and reduces

M by 1. The resulting image has size N∗×M∗, where N∗ and M∗ are both odd numbers;

3. Let n∗ be the size of the SiP �∗ and let N∗ ≤ M∗. Now the algorithm takes the input

image I and places on it an imaginary grid G, covering almost all the image I, having

n∗ × n∗ grid-cells Cij(I)

each Cij(I) of size

⌊N∗=n∗⌋ × ⌊N∗=n∗⌋

where, 1 ≤ i; j ≤ n∗.

It places the imaginary grid G on I as follows: it �rst locates the central pixel P 0
cent of the

image I, which is at position (⌊N∗=2⌋ + 1; ⌊M∗=2⌋ + 1), then locates the central pixel p0ii
of the central grid-cell Cii(I), where i = ⌊n∗=2⌋+1, and places the grid G on image I such

that both P 0
cent and p0ii have the same position in I;

4. Then it scans the image and goes to each grid-cell Cij(I) (there are always n
∗×n∗ grid-cells

in any image) and locates the central pixel p0ij of the grid-cell Cij(I) and also the four pixels

p1ij , p
2
ij , p

3
ij , and p4ij around it, 1 ≤ i; j ≤ n∗; hereafter, we shall call these four pixels cross

pixels.

Then, it computes the di�erence between the brightness of the central pixel p0ij and the

average brightness of the twelve pixels around it, that is, the pixels p`1ij , p
`2
ij , and p`3ij

(` = 1; 2; 3; 4), and stores this value in the variable dif(p0ij) (see, Figure 6.4).

Finally, it computes the maximum absolute value of all n∗ × n∗ di�erences dif(p0ij), 1 ≤
i; j ≤ n∗, and stores it in the variable Maxdif(I);

5. The algorithm goes again to each central pixel p0ij of each grid-cell Cij and if the corre-

sponding entry A(i; j) contains the symbol *", then it increases

• the brightness k0ij of the central pixel p
0
ij , and

• the brightness k1ij , k
2
ij , k

3
ij , and k4ij of its cross pixels.

Actually, it �rst increases the central pixel p0ij by the value e0ij so that it surpasses the

image's maximum di�erence Maxdif(I) by a constant c; that is,

102

• k0ij + e0ij = Maxdif(I) + c

and, then, it sets the brightness of the four cross pixels p1ij , p
2
ij , p

3
ij , and p4ij equal to k

0
ij .

In our system we use c = 5, and thus the brightness k0ij of the central pixel of each grid-cell

Cij is increased by e0ij , where,

e0ij = Maxdif(I)− k0ij + 5 (6.3)

where, 1 ≤ i; j ≤ n∗.

Let Iw be the resulting image after increasing the brightness of the n∗ central and the

corresponding cross pixels, with respect to �, of the image I. Hereafter, we call the n∗

central pixels of I as 2DM-pixels; recall that, p0ij is a 2DM-pixel if A(i; �i) = *", or,

equivalently, the cell (i; �i) of the matrix A is marked;

6. The algorithm returns the watermarked image Iw.

k
2

ij

k
4

ij

Cij grid-cell

k
1

ij k
0

ij k
3

ij

k
21

ij k
22

ij k
23

ij

k
31

ij

k
32

ij

k
33

ij

k
43

ijk
42

ijk
41

ij

k
13

ij

k
12

ij

k
11

ij

Figure 6.4: The brightness k`ij of the central and cross pixels p`ij of the grid-cell Cij(I), 0 ≤ ` ≤ 4, and

the brightness k`mij of the cycle-cross pixels p`mij , 1 ≤ ` ≤ 4 and m = 1; 2; 3.

Having described our encoding algorithm which embeds a permutation � into an image I, let us

now show the e�ciency of our algorithm by computing its time and space complexity.

Time and Space. We shall compute the complexity of each step of the algorithm; suppose that

the input image I has N ×M size (i.e., pixels).

It is easy to see that Step 1 requires n∗ × n∗ (asymptotic) time and space, since the length

of the permutation � and the size of the array A are n∗ and n∗ × n∗, respectively.

In Step 2 the algorithm computes the values of the two dimensions of the image I, and thus

this computations takes N +M time.

In Step 3 the algorithm places on I the imaginary grid G having n∗×n∗ grid-cells Cij(I) each

of size ⌊N∗=n∗⌋×⌊N∗=n∗⌋, where 1 ≤ i; j ≤ n∗, and thus it covers (⌊N∗=n∗⌋×⌊N∗=n∗⌋)×(n∗×n∗)
pixels of the image I. The location of the n∗×n∗ central pixels p0ij can be done in n∗×n∗ time,
where 1 ≤ i; j ≤ n∗ and n∗ < N∗. Thus, the step takes (⌊N∗=n∗⌋n∗)2 time.

In Step 4 it computes the di�erence between the brightness of the central pixel p0ij and the

average brightness of the twelve cycle-cross pixels p`mij around it, ` = 1; 2; 3; 4 and m = 1; 2; 3.

This di�erence, denoted by dif(p0ij), is computed as follows:

103

(a) (b)

Figure 6.5: (a) The original image I; (b) The watermarked image Iw.

dif(p0ij) =

∣∣∣∣∣k0ij −
∑4

`=1

∑3
m=1 k

`m
ij

12

∣∣∣∣∣ (6.4)

where,

k`mij =
x`mij + y`mij + z`mij

3
: (6.5)

Recall that, the values x`mij , y
`m
ij , and z`mij compose the brightness k`mij of the pixel p`mij in the

RGB model (see, Subsection 6.2.3). Thus, the n∗ × n∗ di�erences dif(p0ij) can be computed in

n∗ × n∗ time and require n∗ × n∗ space (i.e., an array of n∗ × n∗ size).

Finally, in this step the algorithm computes the maximum absolute value Maxdif(I) of all

n∗ × n∗ di�erences dif(p0ij), that is,

Maxdif(I) = max{dif(p0ij)|1 ≤ i; j ≤ n∗} (6.6)

which obviously takes also n∗ × n∗ time.

The only operation performed in Step 5 is the increment of the brightness k0ij of each central

pixel and the brightness k1ij , k
2
ij , k

3
ij , and k4ij of its four cross pixels by the value e0ij (see,

Equation 6.8); it obviously takes n∗ × n∗ time since there are n∗ × n∗ such central pixels.

Based on the above step-by-step analysis of our encoding algorithm Embed SiP.to.Image-S

we conclude that it runs (asymptotically) in order N×n∗ time and requires n∗×n∗ space, where
N is the smallest dimension of the input image I and n∗ is the size of the SiP.

Remark 6.2. The values x`ij , y
`
ij , and z`ij which compose the brightness k`ij of the pixel p`ij

are stored in the array Img at the entries (i′; j′; 1), (i′; j′; 2), and (i′; j′; 3), respectively (see,

Subsection 6.2.3). Note that, (i′; j′) is the position of pixel p`ij in image I, while (i; j) is the

position of pixel p`ij in the n∗ × n∗ grid.

104

6.3.2 Extract Watermark from Image - S

Next we describe our algorithm which is responsible for extracting the watermark w = �∗ form

image Iw. In particular, the algorithm, which we call Extract SiP.from.Image-S, takes as input

a watermarked image Iw and returns the SiP �∗ which corresponds to integer watermark w; the

steps of the algorithm are the following:

Algorithm Extract SiP.from.Image-S

1. The algorithm places again the same imaginary n∗ × n∗ grid on image Iw and locates the

central pixel p0ij of each grid-cell Cij(I), 1 ≤ i; j ≤ n∗; there are n∗ × n∗ central pixels

in total. Then, it �nds the n∗ central pixels p01; p
0
2; : : : ; p

0
n∗ , among the n∗ × n∗, with the

maximum brightness using a known sorting algorithm [40];

2. In this step, the algorithm takes the n∗ grid-cell C1; C2; : : : ; Cn∗ of the image Iw which

correspond to n∗ central pixels p01; p
0
2; : : : ; p

0
n∗ , and compute an n∗ × n∗ matrix A∗ as

follows:

• Initially, set A∗(i; j)← 0, 1 ≤ i; j ≤ n∗;

• For each grid-cell Cm, 1 ≤ m ≤ n∗, do:

if (i; j) is the position of the grid-cell Cm in the grid G
then set A∗(i; j)← “ ∗ ”;

It is easy to see that, the n∗ × n∗ matrix A∗ is exactly the 2DM-representation of the self-

inverting permutation �∗ embedded in image Iw by the algorithm Embed SiP.to.Image-S.

Then, the permutation �∗ can be extracted from the matrix A∗ using the algorithm Ex-

tract � from 2DM; see, Subsection 6.2.1;

3. Finally, the algorithm returns the self-inverting permutation �∗.

Let us next compute the time and space e�ciency of the proposed decoding algorithm

Extract SiP.from.Image-S by computing the complexity of each step separately.

Time and Space. Again, we suppose, as we did with the encoding algorithm Embed SiP.to.Image-S,

that the input image Iw has N ×M size (i.e., it consists of N ×M pixels) and N ≤M .

In Step 1 the algorithm places on Iw an imaginary n∗× n∗ grid, as the embedding algorithm
do on image I, and thus the values of the two dimensions of the image Iw must be known; this

computations takes N +M time. Then, the location of the n∗×n∗ central pixels p0ij can be done
in n∗ × n∗ time, 1 ≤ i; j ≤ n∗, while the �nding of the n∗ central pixels, among the n∗ × n∗,

with the maximum brightness can be done in (n∗ × n∗)× log(n∗ × n∗) time; note that, it is well
known that fastest sorting algorithm on an input of size n takes n log n time [40].

In Step 2 the algorithm takes the n∗ grid-cell C1; C2; : : : ; Cn∗ of the image Iw which correspond

to the n∗ central pixels p01; p
0
2; : : : ; p

0
n∗ , and compute an n∗ × n∗ matrix A∗. It is easy to see that

this computation can be done in n∗×n∗ time. It is also easy to see that the permutation �∗ can
be extracted from A∗, using the algorithm Extract � from 2DM, within the same time. Thus,

Step 2 requires n∗ × n∗ time. Obviously, Step 3 takes constant time.

105

Based on the above complexity analysis we conclude that the proposed decoding algorithm

Extract SiP.from.Image-S extracts the watermark SiP �∗ from the image Iw in N+M+(n∗×
n∗)× log(n∗ × n∗) time; it requires n∗ × n∗ space.

6.3.3 Performance

Our image watermarking system mainly consists of four algorithms, each of which is responsible

for a particular codec operation:

• Encode W.to.SiP: algorithm for encoding an integer w into a self-inverting permutation

�∗;

• Decode SiP.to.W: algorithm for decoding w from �∗;

• Embed SiP.to.Image-S: algorithm for embedding a self-inverting permutation �∗ into an

image I;

• Extract SiP.from.Image-S: algorithm for extracting �∗ form the watermarked image Iw;

The two algorithms that are considered the basic ones for our system are those responsible for

embedding a SiP into an image and extracting the SiP from it.

We next discuss some issues concerning the performance of our image watermarking system.

In particular, we mainly focus on the embedding algorithm Embed SiP.to.Image-S and the

e�ciency of watermarking image Iw produced by this algorithm, and also on important properties

of the n∗×n∗ matrix A∗ which stores the 2DM-representation of a SiP. Finally we show the time

and space performance of our system by computing the complexity of their algorithms.

It is worth noting that our system incorporates such properties which allow us to success-

fully extract the watermark w from the image Iw even if the input image Iw of algorithm

Extract SiP.from.Image-S has been compressed with a lossy method and/or rotated.

We have evaluated the embedding and extracting algorithms by testing them on various and

di�erent in characteristics images that were initially in JPEG format and we had positive results

as the watermark was successfully extracted at every case even if the image was converted back

into JPEG format. What is more, the method is open to extensions as the same method might

be used with a di�erent marking procedure part of the Embed SiP.to.Image-S algorithm.

All the system's algorithms have been initially developed and tested in MATLAB [54] and

then redeveloped and also tested in JAVA.

Compression. The experimental results show that the watermark w is \well hidden" in the

image Iw. It is because we mark the image by changing the di�erence between the brightness

of the 2DM-pixels p0ij of the n
∗ × n∗ imaginary grid and its 12 neighborhood pixels around it,

that is, the pixels p`1ij , p
`2
ij , and p`3ij , for ` = 1; 2; 3; 4 (see, Figure 6.4 and also Step 2 of the

embedding algorithm Encode SiP.to.Image-S); recall that, we also set the brightness of the

four cross pixels of each 2DM-pixel p0ij , that is, the pixels p
1
ij , p

2
ij , p

3
ij , and p

4
ij , to be equal to the

brightness of the 2DM-pixel p0ij .

Note that, we change the brightness of the 2DM-pixels by increasing them so that they surpass

the image's maximum di�erence Maxdif(I) by a constant c, where in our implementation c = 5.

We add �ve because if we compress the image the values of the pixels may slightly change, and

106

we want our watermark to be robust. We also believe that this technique despite being simple,

it is e�cient because the brightness of each of the n∗ marked central pixels does not have a great

di�erence from the brightness of the 12 neighborhood pixels and thus the modi�ed central pixel,

along with the cross pixels, does not change something signi�cantly in the image.

Rotation. The watermarked images produced by our embedding method have a property worth

to be referenced. And this is certain characteristics noticed at the 2DM-representation of the

image's watermarks which in our system are self-inverting permutations. Sometimes an image

might show an indeterminate depiction, such as a night sky or an aerial view. These types of

images might be rotated changing the coordinates of the watermark's marks making invalid the

watermark that we are about to extract. Also it is about an indeterminate depiction which does

not allow someone to tell which is the right angle of the image.

Thanks to our embedding method's properties this problem can be overcome. It has to do

with the coordinates of the marks of a 2DM-representation of a self-inverting permutation found

on image Iw. Those coordinates allow us to turn the image into the initial angle and then extract

the watermark successfully.

The 2DM-representation of a self-inverting permutation (see, Section 6.2) has the following

properties:

(i) The main diagonal of the n∗ × n∗ symmetric matrix A∗ have always one and only one

marked cell, and

(ii) this marked cell are always in the entries (i; i) of A∗, where i = ⌈n∗

2 ⌉+ 1; ⌈n∗

2 ⌉+ 2; : : : ; n∗.

If the main diagonal of matrix A∗ has no marked cell then we rotate the image by 90 degrees.

Additionally, if the marked cell of the main diagonal is in entry (i; i) with i ≤ ⌈n∗

2 ⌉, then we

turn the image by 180 degrees and thus we end up at the initial image from which we are able

to extract the right watermark.

Time and Space Performance. As far as the time and space performance of our codec system

is concerned, we should mention that it is asymptotically linear in the size (i.e., number N ×M
of pixels) of the input images.

More precisely, the embedding algorithm takes (N × n∗) + (n∗ × n∗) time which is less than

the size N ×M of the input image I. Recall that, in our implementation: (i) N ≤ M , and (ii)

the length of the watermark is n∗ and thus we always have n∗ × n∗ grid-cells.

The extracting algorithm is also very fast since it also operates mainly on the n∗ × n∗ grid-

cells of the input image Iw. The most time consuming step of the algorithm is that of sorting

the n∗ × n∗ cental pixels of the image in order to �nd the n∗ pixels with the max brightness; it

takes n∗ × n∗ × log(n∗ × n∗) time.

Finally, it is fair for the time performance of our system to take into consideration the time

needed for converting the image I that the system takes as input from the initial format to raw

raster format; note that, the system usually uses compressed images as input. It is obvious that

the time needed for converting the image I into a raw raster format depends on the type of the

image selected. The most common types of images would be the JPEG as digital cameras store

images of this type and also nearly every image on the WWW (world wide web) is in JPEG

format. The compression to a JPEG requires the usage of the DCT (discrete cosine transform);

107

the DCT is similar to a Fourier transform and it is of order n2, but it is also possible to do

the same thing by doing something similar to the FFT (fast fourier transform) which is of order

n log n. Note that the same techniques applies for the JIF images which are also popular in the

web [2, 41].

Summarizing, the total time performance of our codec system, neglecting the conversion of

the input image I into raw raster format, is N × n∗ for embedding the watermark w into I and

N +M + (n∗ × n∗)× log(n∗ × n∗) for extracting w from the watermarked image Iw. Moreover,

the extra space needed by our codec system is linear in the size of the input image, i.e., it uses

only some extra auxiliary variables and an auxiliary matrix for the 2DM-representation of the

self-inverting permutation.

6.4 Image Watermarking in the Frequency Domain

In this work we present an e�cient and easily implemented technique for watermarking images

that we are interested in uploading in the web and making them public online; this way web

users are enabled to claim the ownership of their images.

What is important for our idea is the fact that it suggests a way in which an integer number

can be represented with a two dimensional representation (or, for short, 2D-representation).

Thus, since images are two dimensional objects that representation can be e�ciently marked

on them resulting the watermarked images. In a similar way, such a 2D-representation can be

extracted for a watermarked image and converted back to the integer w.

Having designed an e�cient method for encoding integers as self-inverting permutations, we

propose an e�cient algorithm for encoding a self-inverting permutation �∗ into an image I by

�rst mapping the elements of �∗ into an n∗ × n∗ matrix A∗ and then using the information

stored in matrix A∗ to mark speci�c areas of image I in the frequency domain resulting the

watermarked image Iw. We also propose an e�cient algorithm for extracting the embedded self-

inverting permutation �∗ from the watermarked image Iw by locating the positions of the marks

in image Iw; it enables us to recontract the 2D-representation of the self-inverting permutation

�∗.

It is worth noting that although digital watermarking has made considerable progress and

became a popular technique for copyright protection of multimedia information [15], our work

proposes something new. We �rst point out that our watermarking method incorporates such

properties which allow us to successfully extract the watermark w from the image Iw even if the

input image has been compressed with a lossy method, scaled and/or rotated. In addition, our

embedding method can transform a watermark from a numerical form into a two dimensional

(2D) representation and, since images are 2D structures, it can e�ciently embed the 2D repre-

sentation of the watermark by marking the high frequency bands of speci�c areas of an image.

The key idea behind our extracting method is that it does not actually extract the embedded

information instead it locates the marked areas reconstructing the watermark's numerical value.

We have evaluated the embedding and extracting algorithms by testing them on various and

di�erent in characteristics images that were initially in JPEG format and we had positive results

as the watermark was successfully extracted even if the image was converted back into JPEG

format with various JPEG compression ratios. We had also positive results on Gaussian noise

108

Input image: I

Watermark: π∗ = (4, 7, 6, 1, 5, 3, 2)

Mark ↑↓↓

Watermarked image: Iw

DFT

obtained for each

color of the RGB

model

IFFT

↓↓

↓↓

MAGNITUDE PHASE

↓

↓

Figure 6.6: The embedding process.

addition and geometric transformation attacks. All the algorithms have been developed and

tested in MATLAB environment [54].

We next describe codec algorithms that e�ciently encode and decode a watermark into the

image's frequency domain [53, 75, 109].

6.4.1 Embed Watermark into Image - F

We next describe the embedding algorithm of our proposed technique which encodes a self-

inverting permutation �∗ into a digital image I [16, 18, 22]. Recall that, the permutation �∗ is

obtained over the set Nn∗ , where n∗ = 2n+1 and n is the length of the binary representation of

an integer w which actually is the image's watermark [28].

The watermark w, or equivalently the self-inverting permutation �∗, is inserted in the fre-

quency domain of speci�c areas of the image I. More precisely, we mark the DFT's magnitude

of an image's area using two ellipsoidal annuli, denoted hereafter as \Red" and \Blue" (see,

Figure 6.6). The ellipsoidal annuli are speci�ed by the following parameters:

◦ Pr, the width of the \Red" ellipsoidal annulus,

◦ Pb, the width of the \Blue" ellipsoidal annulus,

◦ R1 and R2, the radiuses of the \Red" ellipsoidal annulus on y-axis and x-axis, respectively.

The algorithm takes as input a SiP �∗ and an image I, and returns the watermarked image Iw;

it consists of the following steps.

109

Algorithm Embed SiP.to.Image-F

1. Compute �rst the 2DM-representation of the permutation �∗, i.e., construct an array A∗

of size n∗ × n∗ such that the entry A∗(i; �∗i) contains the symbol *", 1 ≤ i ≤ n∗;

2. Next, compute the size of the input image I, say, N ×M , and cover the image I with an

imaginary grid C with n∗ × n∗ grid-cells Cij of size
⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
, 1 ≤ i; j ≤ n∗;

3. For each grid-cell Cij , compute the Discrete Fourier Transform (DFT) using the Fast

Fourier Transform (FFT) algorithm, resulting in a n∗×n∗ grid of DFT cells Fij , 1 ≤ i; j ≤
n∗;

4. For each DFT cell Fij , compute its magnitude Mij and phase Pij matrices which are both

of size
⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
, 1 ≤ i; j ≤ n∗;

5. Then, the algorithm takes each of the n∗ × n∗ magnitude matrices Mij , 1 ≤ i; j ≤ n∗, and

places two imaginary ellipsoidal annuli, denoted as \Red" and \Blue", in the matrix Mij

(see, Figure 6.6). In our implementation,

◦ the \Red" is the outer ellipsoidal annulus while the \Blue" is the inner one. Both

are concentric at the center of the Mij magnitude matrix and have widths Pr and Pb,

respectively;

◦ the radiuses of the \Red" ellipsoidal annulus are R1 (y-axis) and R2 (x-axis), while

the \Blue" ellipsoidal annulus radiuses are computed in accordance to the \Red"

ellipsoidal annulus and have values (R1 − Pr) and (R2 − Pr), respectively;

◦ the inner perimeter of the \Red" ellipsoidal annulus coincides to the outer perimeter

of the \Blue" ellipsoidal annulus;

◦ the values of the widths of the two ellipsoidal annuli are Pr = 2 and Pb = 2, while the

values of their radiuses are R1 =
⌊

N
2n∗

⌋
and R2 =

⌊
M
2n∗

⌋
.

The areas covered by the \Red" and the \Blue" ellipsoidal annuli determine two groups of

magnitude values on Mij (see, Figure 6.6);

6. For each magnitude matrix Mij , 1 ≤ i; j ≤ n∗, compute the average of the values that

are in the areas covered by the \Red" and the \Blue" ellipsoidal annuli; let AvgRij be the

average of the magnitude values belonging to the \Red" ellipsoidal annulus and AvgBij be

the one of the \Blue" ellipsoidal annulus;

7. For each magnitude matrix Mij , 1 ≤ i; j ≤ n∗, compute �rst the variable Dij as follows:

◦ Dij = |AvgBij −AvgRij |, if AvgBij ≤ AvgRij

◦ Dij = 0, otherwise.

Then, for each row i of the matrix Mij , 1 ≤ i; j ≤ n∗, compute the maximum value of the

variables Di1; Di2; : : : ; Din∗ in row i; let MaxDi be the max value;

110

8. For each cell (i; j) of the 2DM-representation matrix A∗ of the permutation �∗ such that

A∗
ij = “ ∗ ” (i.e., marked cell), mark the corresponding grid-cell Cij , 1 ≤ i; j ≤ n∗; the

marking is performed by increasing all the values in magnitude matrix Mij covered by the

\Red" ellipsoidal annulus by the value

AvgBij −AvgRij +MaxDi + c, (6.7)

where c = copt. The additive value of copt is calculated by the function f (see, Subsec-

tion 6.4.3) which returns the minimum possible value of c that enables successful extracting;

9. Reconstruct the DFT of the corresponding modi�ed magnitude matrices Mij , using the

trigonometric form formula [53], and then perform the Inverse Fast Fourier Transform

(IFFT) for each marked cell Cij , 1 ≤ i; j ≤ n∗, in order to obtain the image Iw;

10. Return the watermarked image Iw.

In Figure 6.6 we demonstrate the main operations performed by our embedding algorithm. In

particular, we show the marking process of the grid-cell C55 of the Lena image; in this example,

we embed in the Lena image the watermark number w which corresponds to SiP (4; 7; 6; 1; 5; 3; 2).

6.4.2 Extract Watermark from Image - F

In this section we describe the decoding algorithm of our proposed technique. The algorithm

extracts a self-inverting permutation �∗ from a watermarked digital image Iw, which can be later

represented as an integer w.

The self-inverting permutation �∗ is obtained from the frequency domain of speci�c areas of

the watermarked image Iw. More precisely, using the same two \Red" and \Blue" ellipsoidal

annuli, we detect certain areas of the watermarked image Iw that are marked by our embedding

algorithm and these marked areas enable us to obtain the 2D-representation of the permutation

�∗. The extracting algorithm works as follows:

Algorithm Extract SiP.from.Image-F

1. Take the input watermarked image Iw and compute its N ×M size. Then, cover Iw with

the same imaginary grid C, as described in the embedding method, having n∗×n∗ grid-cells
Cij of size

⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
;

2. Then, again for each grid-cell Cij , 1 ≤ i; j ≤ n∗, using the Fast Fourier Transform (FFT)

get the Discrete Fourier Transform (DFT) resulting a n∗ × n∗ grid of DFT cells;

3. For each DFT cell, compute its magnitude matrix Mij and phase matrix Pij which are

both of size
⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
;

4. For each magnitude matrix Mij , place the same imaginary \Red" and \Blue" ellipsoidal

annuli, as described in the embedding method, and compute as before the average values

111

that coincide in the area covered by the \Red" and the \Blue" ellipsoidal annuli; let AvgRij

and AvgBij be these values;

5. For each row i of Cij , 1 ≤ i ≤ n∗, search for the jth column where AvgBij − AvgRij is

minimized and set �∗i = j, 1 ≤ j ≤ n∗;

6. Return the self-inverting permutation �∗.

Having presented the embedding and extracting algorithms, let us next comment on the function

f which returns the additive value c = copt (see, Step 8 of the embedding algorithm).

6.4.3 Function f

In our watermarking model, the embedding algorithm ampli�es the marks in the \Red" ellip-

soidal annulus by adding the output of the function f . What exactly f does is returning the

optimal value that allows the extracting algorithm under the current requirements, such as JPEG

compression, noise addition, to still be able to extract the watermark from the image.

The function f takes as an input the characteristics of the image and the parameters R1,

R2, Pb, and Pr of our proposed watermark model (see, Step 5 of embedding algorithm and

Figure 6.6), and returns the minimum possible copt that added as c to the values of the \Red"

ellipsoidal annulus enables extracting (see, Step 8 of the embedding algorithm). More precisely,

the function f initially takes the interval [0; cmax], where cmax is a relatively great value such

that if cmax is taken as c for marking the \Red" ellipsoidal annulus it allows extracting, and

computes the copt in [0; cmax].

Note that, cmax allows extracting but because of being great damages the quality of the image

(see, Figure 6.7). We mentioned relatively great because it depends on the characteristics of each

image. For a speci�c image it is useless to use a cmax greater than a speci�c value, we only need

a value that de�nitely enables the extracting algorithm to successfully extract the watermark.

We next describe the computation of the value copt returned by f ; note that, the parameters

Pb and Pr of our implementation are �xed with the values 2 and 2, respectively. The main steps

of this computation are the following:

(i) Check if the extracting algorithm for c = 0 validly obtains the watermark �∗ = w from the

image Iw; if yes, then the function f returns copt = 0;

(ii) If not, that means, c = 0 doesn't allow extracting; then, the function f uses binary search

on [0; cmax] and computes the interval [c1; c2] such that:

◦ c = c1 doesn't allow extracting,

◦ c = c2 do allow extracting, and

◦ |c1 − c2| < 0:2;

(iii) The function f returns copt = c2.

As mentioned before, the function f returns the optimal value copt. Recall that, optimal means

that it is the smallest possible value which enables extracting �∗ = w from the image Iw. It is

important to be the smallest one as that minimizes the additive information to the image and,

thus, assures minimum drop to the image quality.

112

6.4.4 Experimental Evaluation

In this section we present the experimental results of the proposed watermarking codec algorithms

which we have implemented using the general-purpose mathematical software package Matlab

(version 7.7.0) [54]. We tested our codec algorithms on various 24-bit digital color images of

various sizes (from 200× 130 up to 4600× 3700) and quality characteristics. Many of the images

in our image repository where taken from a web image gallery [99] and enriched by some other

images di�erent in characteristics.

In this work we used JPEG images due to their great importance on the web, since they are

small in size, while storing full color information (24 bit/pixel), and can be easily and e�ciently

transmitted. Moreover, robustness to lossy compression is an important issue when dealing with

image authentication. It should be observed that the design goal of lossy compression systems is

opposed to that of watermark embedding systems. The Human Visual System (HVS) attempts

to identify and discard perceptually insigni�cant information of the image, whereas the goal of

the watermarking system is to embed the watermark information without altering the visual

perception of the image [132].

In order to evaluate the quality of the watermarked image obtained from our watermarking

method we used two objective image quality assessment metrics, namely the Peak Signal to Noise

Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). Our aim was to prove that

the watermarked image is closely related to the original (image �delity [43]), because watermark-

ing should not introduce visible distortions in the original image as that would reduce images'

commercial value.

The PSNR metric is the ratio between the reference signal and the distortion signal, i.e.,

watermark, in an image given in decibels (dB). It is well known that, PSNR is most commonly

used as a measure of quality of reconstruction of lossy compression codecs (e.g., for image com-

pression). The higher the PSNR value the closer the distorted image is to the original or the

better the watermark conceals. It is a popular metric due to its simplicity, although it is well

known that this distortion metric is not absolutely correlated with human vision. The SSIM

image quality metric, developed by [122], is considered to be correlated with the quality percep-

tion of the HVS [62]. The highest value of SSIM is 1, and it is achieved when the original I and

watermarked image Iw are identical.

6.4.5 Performance

Initially, we had to choose the appropriate values for the parameters of the quality function f . In

our implementation we set both of the parameters Pr and Pb equal to 2 (see, Step 5 of Algorithm

Extract SiP.from.Image-F). Recall that, the value 2 is a relatively small value which allows

us to modify a satisfactory number of pixels in order to embed the watermark and successfully

extract it, without a�ecting images' quality. Note that, for great in size images, a smaller width

reduces the strength of the watermark. There isn't a distance between the two ellipsoidal annuli

as that enables the algorithm to apply a small additive information to the values of the \Red"

annulus. The two ellipsoidal annuli are inscribed to the rectangle magnitude matrix, as we want

to mark images' cells on the high frequency bands.

We mark the high frequencies by increasing their values using mainly the additive parameter

c = copt because alterations in the high frequencies are less detectable by human eye [70]. What

113

original c = copt c = cmax

Figure 6.7: The original image of Lena and its two watermarked images with c = cmax and c = copt; the

watermark corresponds to SiP (6,3,2,4,5,1).

is more, in high frequencies most images contain less information.

The quality function f returns the factor c, which has the minimum value copt that allows

the extracting algorithm to successfully extract the watermark. In fact, this value copt (see,

Formula 6.8) is the main additive information embedded into the image. Depending on the

images and the amount of compression, we need to increase the watermark strength by increasing

the factor c. The value of c increases as the quality factor of JPEG compression decreases. It

is obvious that the embedding algorithm is image dependent. It is worth noting that, the copt
values are small for images of relatively small size while these values increase as we move to

images of greater size.

To demonstrate the di�erences on watermarked image quality, with respect to the values of

the additive factor c, we watermarked the original image lena.jpg and we embedded a watermark

with c = cmax and c = copt, where cmax >> copt (see, Figure 6.7); in the watermarked image in

the middle we used c = cmax for illustrative purposes.

6.4.6 Attack Issues

In this section we present the experimental results of our watermarking method under several

attacks. In fact, we test the robustness of our method after applying the following attacks:

(A) JPEG Compression

(B) Gaussian Noise

(C) Geometric Transformations

Recall that, for the evaluation process we use the PSNR and SSIM metrics.

(A) JPEG Compression

The quality factor (or, for short, Q-factor) is a number that determines the degree of loss in the

compression process when saving an image. In general, JPEG recommends a quality factor of

114

Original Watermarked

500 x 500

PSNR = 46.3c = 6.2

1024 x 1024

PSNR = 56.2c = 5.8

 PSNR = 41.5

200 x 200

Name / Size

Baboon.jpg

Trattoria.jpg

Aquarium.jpg

c = 2.7opt

opt

opt

SSIM = 0.977

SSIM = 0.984

SSIM = 0.997

 PSNR = 42.2

200 x 200

Ibook.jpg

c = 2.5opt SSIM = 0.963

500 x 500

PSNR = 51.5c = 3.4

City.jpg

opt SSIM = 0.993

1024 x 1024

PSNR = 50.3c = 11.9

Statue.jpg

opt SSIM = 0.977

Original WatermarkedName / Size

Figure 6.8: Some original images and their corresponding watermarked ones; for each image, its size

and its copt, and PSNR and SSIM values are also shown, for Q = 55.

PSNR SSIM

Filename Q=85 Q=75 Q=65 Q=55 Q=85 Q=75 Q=65 Q=55

Lena.jpg 54:04 50:10 46:82 44:86 0:997 0:993 0:986 0:981

Baboon.jpg 49:19 46:17 42:48 41:53 0:995 0:989 0:980 0:977

Trattoria.jpg 67:79 60:59 53:50 46:36 0:999 0:999 0:996 0:984

Aquarium.jpg 65:19 61:20 58:26 56:18 0:999 0:999 0:998 0:997

Ibook.jpg 51:47 47:78 44:76 42:21 0:994 0:987 0:976 0:963

City.jpg 57:20 52:86 48:63 51:54 0:998 0:995 0:987 0:993

Statue.jpg 63:58 58:40 54:90 50:30 0:998 0:995 0:990 0:977

Table 6.1: The PSNR and SSIM values of the original and watermarked images, for compression of

qualities Q = 85, Q = 75, Q = 65, and Q = 55.

75{95 for visually indistinguishable quality di�erence, and a quality factor of 50{75 for merely

acceptable quality. We compressed the images with Matlab using imwrite with di�erent JPEG

quality factors; we present results for Q = 85, Q = 75, Q = 65, and Q = 55.

115

original σ
2 = 0.01 σ

2 = 0.001 σ
2 = 0.0001

Figure 6.9: The original image of Lena and its watermarked images with �2 = 0:01, �2 = 0:001 and

�2 = 0:0001.

Our watermarked images have excellent PSNR and SSIM values. In Figure 6.8 we present six

images of di�erent sizes, along with their corresponding PSNR and SSIM values. Typical values

for the PSNR in lossy image compression are between 40 and 70 dB, where higher is better. In

our experiments, the PSNR values of 90% of the watermarked images were greater than 40 dB.

The SSIM values are almost equal to 1, which means that the watermarked image is quite similar

to the original one, which explains the method's high �delity.

In Table 6.1 we demonstrate the PSNR and SSIM values of some images that are used in

this work. We observe that these values are decreasing on smaller quality factors. Also, as the

additive value c = copt increases for each quality factor, the quality decreases. Moreover, the

additive value c that embeds robust marks for qualities Q = 85, Q = 75 and Q = 65, does not

result in a signi�cant image distortion as the tables suggest.

(B) Gaussian Noise

We test the robustness of our watermarking model by adding Gaussian noise in the images with

mean = 0 and di�erent variances �2, that is, we use �2 = 0:01, �2 = 0:001 and �2 = 0:0001.

Figure 6.9 illustrates the original image of Lena and the watermarked images with Gaussian

noise of these three variance values. We have to mention that the watermark can be extracted

Filename �2 = 0.01 �2 = 0.001 �2 = 0.0001

Lena.jpg 24:94 34:75 44:62

Baboon.jpg 24:89 34:79 44:65

Trattoria.jpg 25:04 34:83 44:73

Aquarium.jpg 25:97 35:27 44:81

Ibook.jpg 25:01 34:79 44:62

City.jpg 24:89 34:76 44:70

Statue.jpg 25:37 35:12 44:92

Table 6.2: The PSNR values of the original and watermarked images, for Gaussian noise with variance

values �2 = 0:01, �2 = 0:001, and �2 = 0:0001.

116

(a) (b) (c) (d)

Figure 6.10: (a) Watermarked image of Lena, (b) 90 degrees angled image, (c) 180 degrees angled image,

and (d) cropped image.

successfully from the attacked image.

Table 6.2 presents the PSNR values of the original image and the watermarked image with

Gaussian noise. As Table 6.2 and Figure 6.9 indicate, although Gaussian noise with �2 = 0:01

introduces signi�cant perceptual distortion in images, watermark remains imperceptible.

(C) Geometric Transformations

The robustness of the proposed model against geometric attacks was evaluated by applying

common geometric attacks, which included rotation, cropping, and scaling.

C.1. Rotation Attacks

It is possible to detect whether the watermarked image has been subjected to rotations, thanks

to the following two properties of the 2DM-representation of self-inverting permutations.

Due to the fact that the 2DM-representation that has been used to mark the image is the

result of a self-inverting permutation the sequence of the marked cells on the image is not random

but there are the two properties that can be used to determine the angle of a watermarked image

in respect with the original one and that has to do with the position of the marked cell in the

main diagonal of the grid. The two properties are the following:

◦ The main diagonal of the n∗×n∗ symmetric matrix A∗ has always one and only one marked

cell, and

◦ The marked cell on the diagonal is always in the entry (i; i) of A∗ where:

i = ⌈n∗2 ⌉+ 1; ⌈n∗2 ⌉+ 2; : : : ; n∗.

In case the watermarked image has been subject to 90 degree rotation as demonstrated in Fig-

ure 6.10(b) you may notice that the main diagonal has not any cells marked which means that

we are dealing with a non valid watermark as there should have been exactly one marked cell.

The second case is when the watermarked image has been subject to 180 degree rotation as

demonstrated in Figure 6.10(c). In this case, beginning with the �rst property someone may

notice that the main diagonal has one and only one marked cell meaning that the �rst property

is satis�ed con�rming that the image has not been subjected to 90 degree rotation.

117

The diagonal marked cell is situated in the grid's position (i; i); in our image i = 3 and thus

i < ⌈n∗

2 ⌉ since n
∗ = 9. It is against the second property meaning that the watermarked image

has been subjected to 180 degree rotation.

C.2. Cropping

Once again thanks to the fact that the 2DM-representation a SiP has the symmetric property,

i.e., the n∗×n∗ matrix A∗ is symmetric, our algorithm successfully extracts the watermark even

marked parts of the watermarked image have been lost. This loss can be the result of cropping

procedures to certain areas of the image. Recall that, this property is a consequence of the fact

that at a self-inverting permutation, each element has its own inverse.

In Figure 6.10(d) the removed marked part of the image can be recovered since the matrix

A∗ of the SiP �∗ is symmetric; for example, because of the fact that A∗(4; 8) is marked, A∗(8; 4)

is marked as well. Based on this property, we conclude that the lost marked cell is A∗(8; 4) and

then we correctly extract the embedded watermark.

C.3. Scaling

In the case where a watermarked image has underwent signi�cant scaling then extracting a

watermark may be unsuccessful. In our model if an image has been scaled by a known ratio

then each cell of the imaginary grid has underwent exactly the same scaling meaning that the

magnitude cell has now a di�erent size as well. Due to this fact, the width of the annuli will be

incorrect making it impossible to calculate the appropriate di�erence between them. A solution

to this would be to use di�erent sized annuli in order to calculate the valid di�erence between

them so that to spot marked areas.

The idea is simple, considering that we know the scaling ratio that the image has underwent

we apply the same ratio calculating the new width for the two annuli. So if for example we used

Pb = 2 and Pr = 2 for the width of the \Blue" and the \Red" annulus respectively when we

performed the embedding procedure and the image has underwent 50% scaling then in order to

extract the embedded watermark from the image we have to use P ∗
b = 1 and P ∗

r = 1.

In order to calculate the di�erence between the same frequency bands, in the second case

where the magnitude cell has 50% of the initial size, we use annuli that have 50% less width in

comparison with the ones originally embedded.

6.5 Audio Watermarking

In this section we present an algorithm for encoding a self-inverting permutation �∗ into an

audio signal S by marking speci�c time segments of S in the frequency domain resulting thus

the watermarked audio signal Sw. We also present a decoding algorithm which extracts the

embedded permutation �∗ from Sw by locating the positions of the marks in Sw [17].

6.5.1 Embed Watermark into Audio

The embedding algorithm of our proposed technique encodes a self-inverting permutation �∗ into

a digital audio signal S. Recall that, the permutation �∗ is obtained over the set Nn∗ , where

n∗ = 2n + 1 and n is the length of the binary representation of an integer w which actually is

118

Figure 6.11: Segmentation of the S's signal into speci�c frames according to 1DM-representation of the

permutation �∗.

the audio's watermark [28].

The main idea of embedding. The watermark w, or equivalently the corresponding self-

inverting permutation �∗, is imperceptibly inserted in the frequency domain of speci�c frames

on the audio track signals S; see, Figure 6.11. More precisely, we mark certain frames getting the

DFT and do alterations at the magnitude values of high frequencies for each audio frame to be

marked; see, Figure 6.12. This is achieved by choosing two groups of magnitude values speci�ed

with two segments of the magnitude vector namely \Red" and \Blue" and the alterations are

actually on their di�erence; see, Figure 6.13. In our implementation we use �xed segments'

widths and distances from the center of symmetry of the DFT's magnitude vector. The added

value is speci�ed by the maximum value in the de�ned area.

The embedding algorithm. Our embedding algorithm takes as input a SiP �∗ and an audio

signal S and returns the watermarked audio signal Sw; it performs the following main processes:

(i) construct the 1DM-representation of the watermark number w;

(ii) transform the input audio signal S and acquire the frequency representation of it;

(iii) modify signals' frequency representation according to the 1DM-representation of the signal

S;

(iv) returns the watermarked audio signal Sw;

We describe below in detail the embedding algorithm in steps.

119

Figure 6.12: The DFT representation of a marked frame.

Algorithm Embed SiP.to.Audio

1. Compute �rst the 1DM-representation of the permutation �∗, i.e., construct the array B∗

of size n = n∗ × n∗; recall that the entry B∗((i − 1)n∗ + �∗i) contains the symbol *",

1 ≤ i ≤ n;

2. Segment the audio signal S into n non-overlapping frames fi of size fi[a; b] = ⌊N−1
n
⌋,

1 ≤ i ≤ n, where N is the length of the audio signal;

3. For each frame fi, compute the Discrete Fourier Transform (DFT) using the Fast Fourier

Transform (FFT) algorithm, resulting in n DFT frames Fi of size Fi[a; b] = ⌊N−1
n
⌋, 1 ≤

i ≤ n, that is, Fi = FFT(fi);

4. For each DFT frame Fi, compute its magnitudeMi and phase Pi vectors (or, arrays) which

are both of size Mi[a; b] = Pi[a; b] = ⌊N−1
n
⌋, 1 ≤ i ≤ n;

5. Then, the algorithm takes each of the nmagnitude vectorsMi and determines two segments

in Mi, 1 ≤ i ≤ n, denoted as \Red" and \Blue" (see, Figure 6.13). In our implementation,

◦ each \Red" segment [xr; yr] has length `r (even), where xr = ⌊N−1
2n ⌋ −

`r
2 and yr =

⌊N−1
2n ⌋+

`r
2 ;

◦ each \Blue" segment [xb; yb] has length `b (even), where xb = xr− `b
2 and yb = yr+

`b
2

The \Red" and the \Blue" segments determine two groups of magnitude values onMi; the

Red Values and the Blue Values (see, Figure 6.13);

6. For each magnitude vector Mi, 1 ≤ i ≤ n, compute the average value AvgRi of the

Red Values and the average value AvgBi of the Blue Values of Mi;

120

Figure 6.13: The \Red" and \Blue" segments on DFT.

7. For each magnitude vector Mi, 1 ≤ i ≤ n, compute �rst the variable Di as follows:

◦ Di = |AvgBi −AvgRi|, if AvgBi ≥ AvgRi

◦ Di = 0, otherwise;

8. Partition the n values D1, D2, : : :, Dn into n∗ sets E1; E2; : : : ; En∗ , each of size n∗ (recall

that n = n∗ × n∗); let {Di1; Di2; : : : ; Din∗} be the elements of the i-th set Ei, 1 ≤ i ≤ n∗.

Then, compute the values

◦ MaxD1, MaxD2, : : :, MaxDn∗

where MaxDi is the maximum value of the i-th set Ei = {Di1; Di2; : : : ; Din∗}, 1 ≤ i ≤ n∗;

9. For each marked cell B∗(i) of the 1DM-representation matrix B∗ of the permutation �∗

(i.e., the call which contains the symbol *", mark the corresponding frame Fi, 1 ≤ i ≤ n;

the marking is performed by increasing all the Red Values in Mi by the value

AvgBi −AvgRi +MaxDk + c, (6.8)

where k = ⌈ i
n∗ ⌉ and c = copt. The additive value of copt is a prede�ned value which enables

successful extracting;

10. Reconstruct the DFT of the corresponding modi�ed magnitude vector Mi, using the

trigonometric form formula [53], and then perform the Inverse Fast Fourier Transform

(IFFT) for each frame Fi, 1 ≤ i ≤ n, in order to obtain the audio signal Sw;

11. Return the watermarked audio signal Sw.

121

DFT

for each frame

F

B*

Initial signal S

Watermarked signal Sw

i

Figure 6.14: The encoding process of audio signal watermarking.

Note that concerning the placement of the \Red" and \Blue" segments, their position can vary

according to the frequency band in which we want to mark a frame. At the above illustration

we mark it in the high frequencies but there can be a di�erent approach. Speci�cally, we can

mark instead lower frequencies and that is performed by moving the segments from the center

to the right and left edges of the magnitude array of the Discrete Fourier Transform (DFT)

representation.

6.5.2 Extract Watermark from Audio

In this section we describe the decoding algorithm of our proposed technique. The algorithm

extracts the SiP �∗ from a watermarked digital audio signal Sw, which can be later represented

as an integer w.

The main idea of extracting. The main idea behind the extracting algorithm is that the

self-inverting permutation �∗ is obtained from the frequency domain of speci�c frames of the

watermarked audio signal Sw. More precisely, using the same two \Red" and \Blue" segments,

we detect certain areas of the watermarked audio signal Sw so that the di�erence between the

average values of the \Red" segment have the maximum positive di�erence over the average

values of the \Blue" segments. In this way we can detect marked frames that enable us to obtain

the 1DM-representation of the permutation �∗.

The extracting algorithm. We next describe the extracting algorithm which consists of the

following steps.

Algorithm Extract SiP.from.Audio

1. Take the input watermarked audio Sw and compute its size N . Then, segment Sw into n

non-overlapping frames fi of size fi[a; b] = ⌊N−1
n
⌋, 1 ≤ i ≤ n;

2. Then, using the Fast Fourier Transform (FFT), get the Discrete Fourier Transform (DFT)

for each frame fi, resulting in n DFT frames Fi, 1 ≤ i ≤ n;

3. For each DFT frame Fi, compute its magnitude Mi and phase Pi vectors, which are both

of size Mi[a; b]=Pi[a; b]=
⌊
N−1
n

⌋
, 1 ≤ i ≤ n;

122

4. For each magnitude vector Mi, compute the average values AvgRi and AvgBi of the

Red Values and Blue Values of Mi, respectively, as described in the embedding algorithm;

5. Partition the n vectors Mi, 1 ≤ i ≤ n, into n∗ sets L1; L2; : : : ; Ln∗ , each of size n∗; let

{Mi1;Mi2; : : : ;Min∗} be the elements of the i-th set Li and let AvgRij and AvgBij be

the average values of the Red Values and Blue Values, respectively, of the vector Mij ,

1 ≤ i; j ≤ n∗;

6. For each set Li = {Mi1;Mi2; : : : ;Min∗} �nd the kth vectorMij such that AvgBik−AvgRik

is minimum and set �∗i = k, 1 ≤ k ≤ n∗;

7. Return the self-inverting permutation �∗.

Having presented the embedding and extracting algorithms, we next briey comment on the

purpose of the additive value c = copt (see, Step 9 of the embedding algorithm). Similar to

image watermarking, we add at the corresponding embedding marking step the additive value

copt which by getting greater increases the robustness of the marks; in our audio watermarking

case, we just used a very small value for it.

6.5.3 Experimental Results

This section summarizes the experimental results of the proposed audio watermarking codec

algorithms; we implemented our algorithms and carried out tests using the general-purpose

mathematical software package Matlab (Version 7.7.0) [66].

Testing of our embedding and extracting algorithms has been made by the use of various

16-bit digital audio tracks in wav format with 44.1 KHz sampling frequency. Concerning the

audio samples used, they where relatively short abstracts with di�erent characteristics. For

instance there were tracks containing speech which have many silent segments as well as music

track samples and tracks with extreme features such as low and high frequency sounds. Many

of the audio tracks that we used for testing were acquired from a web audio repository called

wavsource and enriched by some other audio tracks from various sources. It is well known in the

�eld of watermarking that there are three main characteristics to take into account describing

and evaluating a digital watermarking system: Fidelity, Robustness, and Capacity [43].

Concerning our watermarking system, it seems to be of high �delity as watermarked tracks

were not distinguished over the original ones and the results using the PSNR metric were inter-

estingly positive. Concerning the marking procedure of our implementation, we set both lengths

`r and `b of the \Red" and \Blue" segments respectively, equal to 20% of half the length of

magnitude vector as it is mirrored (see, Section 6.5.1). Recall that, the value 20% is a relatively

small percentage which allows us to modify the audio track segments in a satisfactory level in

order to detect the watermark and successfully extract it without a�ecting audio tracks' initial

quality. Moreover, we choose to alter higher frequencies and thus the two segments are at the

center of the magnitude vector. This is because high frequencies are less perceptible according

to the human auditory system. What is more, at high frequencies audio tracks contain less

information which means that information is less likely to be lost due to post alterations.

123

Filename PSNR

bach.wav 67:2

clarinet.wav 67:9

castanets.wav 68:2

elvis riverside.wav 75:3

family man.wav 73:8

high10sec.wav 58:8

low10sec.wav 64:5

Table 6.3: The PSNR values of the watermarked audio signals.

Fidelity. In order to evaluate the watermarked audio track quality obtained from our proposed

watermarking method we used the Peak Signal to Noise Ratio (PSNR) metric. Our aim was to

prove that the watermarked audio track is closely related to the original track proving the high

�delity attribute of our system. This is something vital as watermarking should not introduce

audible distortions in the original audio track, as that would certainly reduce its commercial

value.

Giving a short introduction to the PSNR metric, we should mention that it is de�ned as the

ratio between the reference (or, original) signal and the distorted (or, watermarked) signal of

an audio track and it is given in decibels (dB). It is well known that PSNR is most commonly

used as a measure of quality of reconstruction of lossy compression codecs (e.g., for image or

audio compression methods). The higher the PSNR value the closer the distorted signal is to

the original or the better the watermark conceals. We mentions that PSNR is a popular metric

due to its simplicity.

For an initial audio signal S of size N and its watermarked equivalent signal Sw, PSNR is

de�ned by the formula:

PSNR(S; Sw) = 10 log10
N2
max

MSE
; (6.9)

where Nmax is the maximum signal value that exists in the original audio track and MSE is the

Mean Square Error which is given by the following formula:

MSE(S; Sw) =
1

N

N−1∑
i=0

(S(i)− Sw(i))
2: (6.10)

Comparing the original audio tracks with the watermarked ones, we immediately get to notice

that they depict excellent �delity according to the PSNR values that we have obtained. In every

case PSNR is over 50 dB which proves that fact that there is a striking similarity between the

original and the watermarked signal of an audio track.

In Table 6.3 you can see the performance of our method as we demonstrate the PSNR values

of some audio tracks that we used in this work. Each of them was sampled at 41.1 KHz and the

duration was of about 10 sec. Additionally, each one has much di�erent characteristics. More

speci�cally, the audio tracks

124

◦ bach:wav, clarinet:wav and castanets:wav

where a concert, a clarinet and castanets solo respectively. The audio track

◦ elvis riverside:wav

combines human voice with music, while the

◦ family man:wav

contains only speech which means that it also has periods of silence. Lastly the audio tracks

◦ high10sec:wav and low10sec:wav

are some extreme cases of high and low frequency sounds.

Robustness. The watermarked signals were subjected to distortions or common signal attacks

in order to evaluate the robustness of our audio watermarking algorithms. We tested the perfor-

mance of each audio track under white noise addition, cropping, resampling, requantization and

MP3 compression. Below we describe in more details each one of the �ve di�erent attacks that

we applied in our experiments.

(a) Gaussian Noise. A white gaussian noise of SNR 20 dB was added to the original audio

signal.

(b) Cropping. A 10% of the beginning of the watermarked audio signal was cropped and sub-

sequently replaced by zeros.

(c) Resampling. The watermarked signal, originally sampled at 44.1 KHz, is resampled at

22.05 KHz, and then restored back by sampling again at 44.1 KHz

(d) Requantization. The 24-bit watermarked audio signal is re-quantized down to 16 bits/sample

and then back to 24 bits/sample.

(e) MP3 compression. The watermarked audio signal is compressed using a bit rate of 128 Kb/s

and then decompressed back to the WAV format.

Since the watermark that we embed in our audio signal is a permutation, i.e. a vector over the

set Nn (n > 1), we test after each attack the similarity of the extracted watermark with the

original one using the Hamming distance [63].

The Hamming distance d(x; y) between two vectors x and y is the number of coe�cients in

which they di�er [63]. The Hamming distance equals to zero, i.e., d(x; y) = 0, if x and y agree in

all coordinates; it happens if and only if x = y. In our case the Hamming distance is computed

between the watermark w = �∗ that we embedded into the audio track and the watermark

�∗ext that we extract from the audio. If d(�∗; �∗ext) = 0 the watermark w = �∗ successfully

extracts from the attacked audio signal. Additionally, it is worth noting that if d(�∗; �∗ext) is

relatively small, then the watermark �∗ can be reconstructed with high probability by exploiting

the self-inverting properties of the permutation �∗.

In Table 6.4 we demonstrate similarity results between the watermark that we embedded

into the audio track and the watermark that we extracted after various signal processing attacks.

125

Filename Gaussian Noise Cropping Resampling Requantization MP3 Compres.

bach.wav 0 1 0 0 3:2

clarinet.wav 0 1 0 0 2:4

castanets.wav 0 1 0 0 5:2

elvis riverside.wav 0 1 0 0 2:8

family man.wav 0 1 0 0 0:2

high10sec.wav 0 1 0 0 3:0

low10sec.wav 0 1 0 0 2:0

Table 6.4: The Hamming distance of the watermark w and the extracted watermark w∗ after common

signal attacks.

As the experimental results show, our audio watermarking algorithm is robust against additive

gaussian noise of SNR 20 dB, cropping, resampling and requantization. Evaluating our method's

robustness over lossy compression we tested it using the MP3 encoding format with a bit rate

of 128 Kb/s. In order to optimize the results as high frequency information is mostly lost using

MP3 we made the appropriate adjustments concerning the width of the segments to be marked

as well as the additive value c = copt (see, embedding algorithm Embed SiP.to.Audio). For most

cases the results were positive as despite not being able in every case to successfully extract all

the elements of the watermark, using the properties of self-inverting permutations recovery of

the initial watermark can be successfully operated.

Closing the robustness evaluation of our method, we should point out that a drawback of our

method is actually when we want to watermark an audio track with extreme high frequencies;

it is something that could be encountered on future work.

Capacity. The capacity of our audio watermark method has been computed by measuring

the percentage of the watermarked parts of an audio track over the length of the entire audio

track. Our method partitions the audio track into n∗ × n∗ frames, where n∗ is the length of

the permutation �∗, and marks only one frame of a set of n∗ frames; recall that our embedding

method groups the frames into n∗ sets each containing n∗ frames (see, embedding algorithm

Embed SiP.to.Audio). That means, a total n∗ over n∗ × n∗ frames are marked, so the ratio

of the watermarked part over the entire length of the audio track is n∗

(n∗×n∗) . Thus, our audio

watermarking method has 1
n∗ capacity.

6.6 Concluding Remarks

In this chapter we proposed watermarking models for embedding invisible watermarks into dig-

ital images and audio signals. We presented methods for embedding invisible watermarks into

images and their intention is to prove the authenticity of an image. The watermarks are given in

numerical form, transformed into self-inverting permutations, and embedded into an image by

partially marking the image in the frequency domain; more precisely, thanks to 2D-representation

of self-inverting permutations, we locate speci�c areas of the image and modify their magnitude

of high frequency bands by adding the least possible information ensuring robustness and im-

126

perceptiveness.

We experimentally tested our embedding and extracting algorithms on color JPEG images

with various and di�erent characteristics; we obtained positive results as the watermarks were

invisible, they didn't a�ect the images' quality and they were extractable despite the JPEG

compression. In addition, the experimental results show an improvement in comparison to the

initial obtained results on spatial domain and they also depict the validity of our proposed codec

algorithms.

It is worth noting that the proposed algorithms on image watermarking in frequency domain

are robust against cropping or rotation attacks since the watermarks are in SiP form, mean-

ing that they determine the embedding positions in speci�c image areas. Thus, if a part is

being cropped or the image is rotated, SiP's symmetry property may allow us to reconstruct

the watermark. Furthermore, our codec algorithms can also be modi�ed in the future to get

robust against scaling attacks. That can be achieved by selecting multiple widths concerning the

ellipsoidal annuli depending on the size of the input image.

Finally, we should point out that the study of our quality function f remains a problem for

further investigation; indeed, f could incorporate learning algorithms [102] so that to be able to

return the copt accurately and in a very short computational time.

Additionally, in this chapter we presented an audio watermarking technique which e�ciently

and invisibly embeds information, i.e., watermarks, into an audio digital signal. Our technique

is based on the same main idea of image watermarking technique expanding thus the digital

objects that can be e�ciently watermarked through the use of self-inverting permutations.

We experimentally tested our embedding and extracting algorithms on WAV audio signals.

Our testing procedure includes the phases of embedding a numerical watermark w = �∗ into

several audio signals S, storing the watermarked audio Sw in WAV format, and extracting the

watermark w = �∗ from the audio Sw. We obtained positive results as the watermarks were

invisible, they didn't a�ect the audio's quality and they were extractable.

The performance evaluation of our audio watermarking technique on several other attacks

remains a problem for further investigation.

127

128

Chapter 7

Text Watermarking

7.1 Introduction

7.2 Background Results

7.3 Watermarking PDF Documents

7.4 Concluding Remarks

7.1 Introduction

Information age has altered the way people communicate by breaking the barriers imposed on

communications by time, distance, and location and has undoubtedly impact not only humans

activities but also global industry and economy. Communication has been greatly a�ected by

the constant and rapid evolution of many technologies such as �ber optic, cellular and satellite

technology, networking, digital transmission and compression as well as advanced computers,

and improved human-computer interaction. The aforementioned technologies allow the rapid

transmission, and store, of great amounts of information.

The digital era has already had extensive impacts on business, commerce, education, services,

and social life. The concepts of e-government, e-learning, e-commerce, e-business, e-publishing,

refer/outline peoples' interaction in the digital world. In this world, people everyday, interact by

exchanging e-mails, instant messages, video, audio, images, and digital documents. Part of the

information transmitted is an increasing amount of sensitive information, such as personal data,

medical and �nancial records, business information, government data, legal documents. Another

part of information available in the web is used to promote ones' work or product.

Electronic document, is an extensively used medium traveling over the internet for informa-

tion exchange and due to the ease of copying and distributing they are susceptible to threats

like illegal copying, redistribution of copyrighted documents, and plagiarism. Subsequently, it

has become more important to protect the electronic documents from any malicious user while

existing in the digital world. Copyright protection of digital contents is such a need of time which

129

cannot be overlooked. In past, various methods like encryption, steganography and watermark-

ing has been used to solve these problems. However, digital watermarking is the better solution

for copyright protection than encryption and steganography. Digital watermarking methods are

e�cient enough to identify the original copyright owner of the contents.

Recall that there are many reasons why you would want to use watermarks in digital docu-

ments: as a copying deterrent, as a means of identifying the source of a printed document, as a

means of determining whether a document has been altered, etc.

Attacks. Any action that a user can perform on a text that can a�ect the watermark, or its

usefulness, is called attack. In [134] existing attacks on text watermarking can be classi�ed into

three main categories:

◦ watermark attacks,

◦ geometric attacks, and

◦ system attacks.

In a watermark attack, the adversary aims to detect and destroy the watermark, without nec-

essarily decoding the original message. In contrast to watermark attacks, geometrical attacks

are blind attacks on watermarked text documents. The process of these attacks requires neither

the algorithmic knowledge of the watermarking technique nor the watermarking key, geometrical

attacks intend not to remove the embedded watermark itself, but to prevent it from serving its

intended purpose through altering format or content of the watermarked text documents. This

type of attack includes reformatting, reproducing, sentences swapping, paragraphs shu�ing, the

addition/deletion of words, sentences and paragraphs. System attacks use signal processing

tools such as principal component analysis, independent component analysis, clustering, vector

quantization.

Related Work. Text watermarking is the area of research that has emerged after the develop-

ment of Internet and communication technologies; we mention that the �rst reported e�ort on

marking documents dates back to 1993 [87].

Generally, we can classify the previous work on digital text watermarking in the following

categories:

◦ image based approach,

◦ syntactic approach,

◦ semantic approach, and

◦ structural approach.

In image based approach, watermark is embedded in text image. Brassil, et al. were the �rst

to propose a few text watermarking methods utilizing text image [9, 10]; they also developed

document watermarking schemes based on line shifts, word shifts as well as slight modi�cations

to the characters [11]. Maxemchuk, et al. [87, 88, 89] analyzed the performance of these methods,

while later Low, et al. [80, 81] further analyzed their e�ciency. Huang and Yan [64] proposed a

text watermarking method based on an average inter-word distance in each line. The distances

are adjusted according to the sine-wave of a speci�c phase and frequency. Feature and pixel level

130

algorithms were also developed which mark the documents by modifying the stroke features such

as width or serif [6].

In syntactic approach, the syntactic structure of text has been used to embed watermark.

Atallah, et al. [5] proposed several methods of natural language watermarking, which opened up

a brand-new and challenging research direction for text watermarking. Meral et al. performed

morpho-syntactic alterations to the text to watermark it [90]. They also provided an overview

of available syntactic tools for text watermarking [91].

In semantic approach, semantics of text are used to embed the watermark in text. Atallah

et al. were the �rst to propose the semantic watermarking schemes [5]. Later, the synonym

substitution method was proposed, in which watermark was embedded by replacing certain

words with their synonyms [118]. Sun, et al. [111] proposed noun-verb based technique for

text watermarking which used nouns and verbs parsed by semantic networks. Topkara, et al.

proposed an algorithm of the text watermarking by using typos, acronyms and abbreviation in

the text to embed the watermark [119]. Algorithms were developed to watermark the text using

the linguistic approach of presuppositions [92] in which the discourse structure, meaning, and

representations are observed and utilized to embed watermark bits. The text pruning and the

grafting algorithms were also developed in the past. Another algorithm based on text meaning

representation (TMR) strings has also been proposed [82].

The structural approach is the most recent approach used for copyright protection of text

documents. In this approach, text is not altered, rather it is used to logically embed watermark

in it. A text watermarking algorithm for copyright protection of text using occurrences of

double letters (aa-zz) in text has recently been proposed [67]. Recently, a signi�cant number of

techniques have been proposed in the literature which use Portable Document Format (PDF)

�les as cover media in order to hide data [12, 13, 76, 77, 78, 79, 133].

Contribution. In this chapter, in order to provide to web users copyright protection of their

digital documents, we present easily implemented techniques for watermarking PDF documents.

Our aim is to extent the digital objects that the proposed representations of a self-inverting

permutation, i.e. the 1D-representation, the 2D-representation, and the RPG-representation,

can be e�ciently applied to; note that, RPG-representation means the encoding of permutation

�∗ as a reducible permutation graph F [�∗].

We �rst propose an image-based technique for marking the PDF document T by exploiting the

1D-representation of a permutation (or, for short, SiP) �∗, which we presented in Subsection 6.2.2.

The embedding of a mark is performed by increasing the distance (or, space) between two

consecutive words in a paragraph of document T . The extraction algorithm operates in a reverse

manner.

Since pages of PDF documents T are two dimensional objects, we propose an algorithm for

encoding a self-inverting permutation �∗ into a document T by �rst mapping the elements of

�∗ into an n∗ × n∗ matrix A∗ and then using the information stored in A∗ to mark invisibly

speci�c areas of PDF document T resulting thus the watermarked PDF document T ∗. We also

propose an e�cient algorithm for extracting the embedded self-inverting permutation �∗ from

the watermarked PDF document T ∗ by locating the positions of the marks in T ∗; it enables us

to recontract the 2D-representation of the self-inverting permutation �∗.

Finally, we describe a watermarking algorithm for embedding a self-inverting permutation

131

into the document structure of a PDF �le T , by exploiting the graph representation of �∗

proposed in this thesis and the structure of a PDF document T described in this chapter. More

precisely, in light of the two embedding algorithms Encode SiP.to.RPG-I and -II, we present

an algorithm for embedding a reducible permutation graph F [�∗] into a PDF document T . The

main idea behind the proposed embedding algorithm is a systematic addition of appropriate

object-references in the input PDF document T , through the use of entries of type \kye(·),
so that the graph F [�∗] can be easily constructed from the page tree PT(T ∗) of the resulting

watermarked document T ∗.

Road Map. The chapter is organized as follows: In Section 7.2 we establish the notation

and related terminology, and we present background results. In Section 7.3 based on the

three di�erent representations of self-inverting permutation (SiP), i.e. the two dimensional

(2D-representation), the one dimensional (1D-representation), and the the RPG-representation

(the encoding of permutation �∗ as a reducible permutation graph F [�∗]), we present the al-

gorithms Embed SiP.to.PDF-I, Embed SiP.to.PDF-II, and Embed RPG.to.PDF, along with the

corresponding extracting algorithms, for embedding a watermark number (or, equivalently, a

self-inverting permutation �∗ or a reducible permutation graph F [�∗]) into a PDF document �le.

Finally, in Section 7.4 we conclude the chapter and discuss possible future extensions.

7.2 Background Results

In this section, we give some de�nitions and the theoretical background we use towards the

watermarking of Portable Document Format (PDF) documents. We �rst briey present the

di�erent representations of a self-inverting permutation (SiP), and then we present the structure

of PDF documents.

1D representation of SiP. In Chapter 6, we presented the one-dimensional representation

(1D-representation) of a self-inverting permutation (SiP) and the one dimensional marked rep-

resentation of SiP (1DM-representation). We later showed how to embed a SiP, represented in

1D space, into an audio signal for watermarking. In our 1D-representation, the elements of the

permutation � are mapped in speci�c cells of an array B of size n2 as follows:

• number �i −→ entry B((�−1
�i
− 1)n+ �i)

or, equivalently, the cell at the position (i − 1)n + �i is labeled by the number �i, for each

i = 1; 2; : : : ; n.

In our 1DM-representation, a permutation � over the set Nn is represented by an n2 array

B∗ by marking the cell at the position (i− 1)n+�i by a speci�c symbol, for each i = 1; 2; : : : ; n,

where, in our implementation, the used symbol is again the asterisk character *".

2D representation of SiP. In Chapter 6, we presented the two-dimensional representation

of a SiP (2D-representation) and the two dimensional marked representation of SiP (2DM-

representation), which we later used to watermark an image. We de�ned the 2D-representation

132

π∗ = (4, 7, 6, 1, 5, 3, 2)

67 5 4 3 2 1 ts

The watermark number w = 4

6

5

4

3

2

1

1 2 3 4 5 6 7

7

1 2 3 4 5 6 8 9 10 11 12 137 14 15
. . .* *

36 37 38 39 40 41 43 44 45 46 47 4842 4935

* *

22 23 24 25 26 27 292821
. . . *

. . .
20

34
. . .

33

*

*

*

*

*

*

*

*

*

1D-representation of π∗ 2D-representation of π∗

Reducible Permutation Graph F [π∗]

↓

Figure 7.1: Three di�erent representations of permutation �∗ = (4; 7; 6; 1; 5; 3; 2).

of a SiP as the representation where the elements of the permutation � = (�1; �2; : : : ; �n) are

mapped in speci�c cells of an n× n matrix A as follows:

• number �i −→ entry A(�−1
i ; �i)

or, equivalently,

• the cell at row i and column �i is labeled by the number �i, for each i = 1; 2; : : : ; n.

In 2DM-representation the cell at row i and column �i of matrix A is marked by a speci�c

symbol, for each i = 1; 2; : : : ; n.

In Chapter 7, we also presented algorithms for embedding the 2D-dimensional representation

of SiP in an image. Recall that the matrix A∗ incorporates important structural properties which,

in image watermarking, make it possible to detect geometric transformations on the watermarked

image. The properties of the matrix A∗ are the following:

◦ The matrix A∗ is symmetric.

◦ The main diagonal of the symmetric matrix A∗ has always one and only one marked cell.

◦ The marked cell on the diagonal is always in the entry (i; i) of A∗ where:

i = ⌈n∗

2 ⌉+ 1; ⌈n∗

2 ⌉+ 2; : : : ; n∗.

In Chapter 3, we have also presented an e�cient and easily implemented algorithm for encoding

numbers as reducible permutation graphs through the use of self-inverting permutations. In

133

File

structure

Objects

Document

structure

Content

stream

Figure 7.2: Components of a PDF �le.

particular, we have proposed two such encoding algorithms: the algorithm Encode SiP.to.RPG-I

applies to any permutation � and relies on domination relations on the elements of � whereas

the algorithm Encode SiP.to.RPG-II applies to a self-inverting permutation �∗ produced in any

way and relies on the decreasing subsequences of �∗. Figure 7.1 summarizes by an example the

representations of the permutation �∗ = (4; 7; 6; 1; 5; 3; 2) over the set N7.

7.2.1 Structure of a PDF Documents

The Portable Document Format (PDF) [4] is an open standard (de�ned in ISO 32000) which

facilitates device and platform independent capture and representation of rich information such

as text, multimedia and graphics, into a single medium. Thus the PDF format enables viewing

and printing of a rich document, independent of either application software or hardware. In this

section we present a structural analysis of a PDF �le, by giving its basic components. Figure 7.2

shows the main components of a PDF �le are. which we briey present below.

Object. An object is the basic element in PDF �les, in which eight kinds of objects, namely

Boolean Object, Numeric Object, String Object, Name Object, Array Object, Null Object,

Dictionary and Stream Object are sustained. Objects may be labeled so that they can be

referred to by other objects. A labeled object is called an indirect object.

File structure. The PDF �le structure determines how objects are stored in a PDF �le, how

they are accessed, and how they are updated. The �le structure (see, Figure 7.6) includes the

following:

• an one-line header identifying the version of the PDF speci�cation to which the �le con-

forms,

• a body containing the objects that make up the document contained in the �le,

• a cross-reference table containing information about the indirect objects in the �le, and

• a trailer giving the location of the cross-reference table and of certain special objects within

the body of the �le.

Figure 7.6 shows an example of a PDF �le and its internal �le structure.

Document structure. The PDF document structure speci�es how the basic object types are

used to represent components of a PDF document: pages, fonts, annotations, and so forth.

The document structure of PDF �le is organized in the shape of an object tree topped by

134

%PDF-1.1

1 0 obj
<< /Type /Catalog /Outlines 2 0 R /Pages 3 0 R >> endobj

2 0 obj
<< /Type /Outlines /Count 0 >> endobj

3 0 obj
<< /Type /Pages /Kids [4 0 R] /Count 1 >> endobj

4 0 obj
<< /Type /Page /Parent 3 0 R /MediaBox [0 0 612 792] /Contents 5
0 R /Resources << /ProcSet 6 0 R /Font << /F1 7 0 R>> >> >>

endobj

5 0 obj
<< /Length 48 >>

stream
BT
/F1 24 Tf
100 700 Td
(Hello World)Tj
ET
endstream
endobj

6 0 obj
[/PDF /Text] endobj

7 0 obj
<< /Type /Font /Subtype /Type1 /Name /F1 /BaseFont /Helvetica
/Encoding /MacRomanEncoding >> endobj

xref
0 8
0000000000 65535 f
0000000012 00000 n
0000000089 00000 n
0000000145 00000 n
0000000214 00000 n
0000000381 00000 n
0000000485 00000 n
0000000518 00000 n

trailer
<<

/Size 8
/Root 1 0 R
>>

startxref
642

(b)

Cross-reference

table

Trailer

Body

Header

(a)

Header

Body

Cross-reference

table

Trailer

Figure 7.3: (a) The structure of a PDF �le; (b) The code of a PDF �le containing, in object 50obj, the

text \Hello World".

Catalog, Page tree, Outline hierarchy and Article thread included. The Outline hierarchy is the

bookmarker of PDF, and Page tree includes page and Pages which in turn includes the total page

number and each page marker. Page, the main body of PDF �le, is the most important object

which involves the typeface applied, the text, pictures, page size and so on. The organization of

other objects is analogous to Page tree. With the object tree topped by Catalog, any object in

PDF �le can be visited. Figure 7.4 illustrates the structure of the object hierarchy.

7.3 Watermarking PDF Documents

In this section we describe embedding algorithms for encoding a self-inverting permutation �∗

into a digital document T . More speci�cally, we embed the permutation �∗ into a PDF document

by exploiting (i) the one-dimensional representation of �∗, (ii) the two-dimensional representation

of a �∗, and (iii) the encoding of �∗ as a reducible permutation graph F ∗[�∗].

135

Document
catalog

Page
tree

Outline
hierarchy

Article
threads

Named
destinations

Interactive
form

Page

Page

Content
stream

Content
stream

Content
stream

Outline
entry

Outline
entry

Thread

Thread

Bead

Bead

l

l
.
.
.

. . .

. . .

. . .

.
.
.

.
.
.

.
.
.

. . .

↓

↑

(a)

Page
tree

Page

Page

Content
stream

Content
stream

Content
stream

. . .

. . .

. . .

.
.
.

(b)

Figure 7.4: (a) The main structural components of a PDF �le; (b) The document structure of PDF �le.

7.3.1 Embed Watermark into PDF - I

We �rst design an embedding algorithm for watermarking a PDF document by exploiting the 1D-

representation of a permutation �∗. The marking is performed by increasing the space between

two consecutive words in a paragraph of T .

Let B∗ be the 1D array of size n = n∗ × n∗ which represents the permutation �∗ of length

n∗, and let (w1, s1), (w2, s2), : : :, (wn, sn) be n pairs of type \word-space" of a paragraph par

of the input PDF document; recall that the entry B∗((i − 1)n∗ + �∗i) contains the symbol *",

1 ≤ i ≤ n∗. The algorithm increases by a small value \c" the i-th space of the pair (wordi,

spacei) if B
∗((i− 1)n∗ + �∗i) = “ ∗ ”. We next give a high-level description, with respect to DPF

modi�cation, of our proposed embedding algorithm.

Algorithm Embed SiP.to.PDF-I

1. Compute the 1DM representation of the permutation �∗, i.e., construct the array B∗ of

size n = n∗×n∗ where the (i−1)n∗+�∗i entry of B
∗ contains the symbol *", 1 ≤ i ≤ n∗;

2. Select an appropriate paragraph par on a page P of PDF document T to embed the self-

inverting permutation �∗;

136

Figure 7.5: The initial PDF document T and watermarked PDF document Tw using the 1D represen-

tation of permutation �∗ = (4; 7; 6; 1; 5; 3; 2).

3. Partition the paragraph par into n pairs (w1; s1); (w2; s2); : : : ; (wn; sn), where wi and si are

the i-th word and space, respectively, in selected paragraph par, 1 ≤ i ≤ n;

4. For each pair (wi; si) s.t. B
∗((i− 1)n∗+�∗i) = “ ∗ ”, increases the space si or, equivalently,

distance d(wi; wi+1) between words wi and wi+1, by a relative small value c, 1 ≤ i ≤ n;

5. Return the watermarked PDF document Tw.

Extraction. The extraction algorithm, which we call Extract PDF.from.SiP-I, operates in a

usual manner: it takes as input the watermarked PDF document Tw, locate the paragraph par,

and compute the permutation �∗ by �nding the positions of the words wi such that:

◦ d(wi; wi+1) > d(wi−1; wi), or

◦ d(wi; wi+1) > d(wi+1; wi+2)

where, d(wi; wj) is the distance between words wi and wj in a paragraph par of Tw, 1 ≤ i ≤ n;

note that, an appropriate paragraph par contains more that n words.

7.3.2 Embed Watermark into PDF - II

In this section we describe a di�erent approach of embedding algorithm a self-inverting per-

mutation �∗ into a digital document T , by exploiting the two-dimensional representation of

permutation �∗.

The main idea behind the embedding algorithm, which we call Embed SiP.to.PDF-II, is

similar of that of algorithm Embed SiP.to.Image-F (see, Section 6.4). The most important of

this idea is the fact that it suggests a way in which the permutation �∗ can be represented

with a 2D-representation and since pages of a PDF documents T are two dimensional objects

that representation can be e�ciently marked on them resulting the watermarked PDF document

Tw; in a similar way as in our image watermarking approach, such a 2D-representation can be

137

Figure 7.6: The initial PDF document T and watermarked PDF document Tw using the 2D represen-

tation of permutation �∗ = (4; 7; 6; 1; 5; 3; 2).

e�ciently extracted for a watermarked PDF document Tw and converted back to the self-inverting

permutation �∗.

Let A∗ be the 2D matrix of size n∗ × n∗ which represents the permutation �∗ of length n∗.

The marking of the input PDF document T is performed by selecting an appropriate page P

of T and setting n∗ objects (e.g., characters, symbols, images) in a speci�c positions on page

P , 1 ≤ i ≤ n∗. In fact, we set an object Oi in position with (x′i; y
′
i) coordinates on page P

if A∗(xi; yi) = “ ∗ ”, where 1 ≤ xi; yi ≤ n∗ and 0 ≤ x′i; y
′
i ≤ size(P); note that, (0; 0) is the

lower-left point (or, equivalently, the bottom-left corner) of page P .

The algorithm takes as input a SiP �∗ and a PDF document T , and returns the watermarked

document Tw; it consists of the following steps.

Algorithm Embed SiP.to.PDF-II

1. Compute the 2DM representation of the self-inverting permutation �∗, i.e., construct an

array A∗ of size n∗ × n∗ s.t. the entry A∗(i; �∗i) contains the symbol *", 1 ≤ i ≤ n∗;

2. Select an appropriate page P to embed the permutation �∗ and compute the size size(P)

of the page P , say, N ×M ;

3. Segment the PDF page P into n∗ × n∗ grid-cells Cij of size
⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
, 1 ≤ i; j ≤ n∗;

4. For each grid-cell Cij s.t. A
∗(i; j) = “ ∗ ”, mark the cell Cij by setting a symbol, with an

appropriate calor, in any position inside Cij of P , 1 ≤ i; j ≤ n∗, resulting thus the marked

document Tw;

138

5. Return the watermarked PDF document Tw.

Extraction. The algorithm which extracts the permutation �∗ from the watermarked PDF

Tw operates in a similar way as the corresponding extraction algorithm for images: it takes

the input watermarked image Iw, locate the marked page P , computes its N × M size, and

segments P into n∗ × n∗ grid-cells Cij of size
⌊
N
n∗

⌋
×

⌊
M
n∗

⌋
; then, it computes the permutation

�∗ by �nding the coordinates (xi; yi) of the n
∗ symbols in the page P , 1 ≤ i ≤ n∗; it is called

Extract PDF.from.SiP-II.

7.3.3 Embed an RPG into a PDF

In this section we describe a watermarking algorithm for embedding a self-inverting permutation

�∗ into a PDF document T , by exploiting the graph representation of �∗ proposed in this thesis

and the structure of a PDF document T described in this chapter.

Indeed, in Chapter 3 we have presented two algorithms, namely Encode SiP.to.RPG-I and

Encode SiP.to.RPG-II, for encoding self-inverting permutations �∗ as reducible permutation

graphs F [�∗] (see, Section 3.5), while in this chapter we have described the document structure

DS(T) of a PDF document T (see, Subsection 7.2.1); note that, the document structure of a

PDF �le always contains a node, namely Document-catalog, and a page tree PT(T) rooted at

node Page-tree, denoted by root(pt); see, Figure 7.4(b).

In light of the two embedding algorithms Encode SiP.to.RPG-I and -II, we next present

an algorithm for embedding a reducible permutation graph F [�∗] into a PDF document T . The

main idea behind the proposed embedding algorithm is a systematic addition of appropriate

object-references in selected nodes of the page-tree PT(T) of the document structure DS(T),

through the use of entries of type =Kye(·), so that the graph F [�∗] can be easily constructed

from the page-tree PT(T ∗) of the resulting watermarked document T ∗.

Let F [�∗] be a reducible permutation graph produced by one of our two embedding algorithms

(i.e. Encode SiP.to.RPG-I or -II), and let un+1; un; : : : ; u1; u0 be the nodes of the graph F [�∗];

note that, F [�∗] does not contain the back-edge (u0; un+1). In order to simplify the extraction

process, the graph F [�∗] which is embedded into a PDF document T contains one extra back-

edge, i.e., the edge (u0; un+1); see, Step 4 of the embedding algorithm.

The proposed algorithm, which we call Encode RPG:to:PDF, for embedding a reducible per-

mutation graph F [�∗] into a PDF document T is described below.

Algorithm Encode RPG.to.PDF

1. Compute the document structure DS(T) of the input PDF document T and locate its page-

tree PT(T); let node(dc) be the document catalog node of structure DS(T) and root(pt)

be the root node of the page tree PT(T); see, Figure 7.4(b);

2. Compute a path O(T) = (vn+1; vn; : : : ; v1; v0) on n+2 nodes (i.e., objects) of the page-tree

PT(T) s.t. vn+1 = root(pt), and set s = vn+1 and t = v0;

3. Assign an exact pairing (i.e., 1-1 correspondence) of the n + 2 nodes of path O(T) to the

nodes un+1; un; : : : ; u1; u0 of the watermark graph F [�∗];

139

1 0 obj
catalog Page

. . .

. . .

. . .

. . .

29 0 obj

Page
3 0 obj

Page
25 0 obj

Contents
23 0 obj

Resources
24 0 obj

XObject
13 0 obj

Resources
22 0 obj

.
.
.

ColorSpace
6 0 obj

ExtGState
8 0 obj

XObject
10 0 obj

Font
12 0 obj

R9
5 0 obj

R7
7 0 obj

R10
9 0 obj

R10
11 0 obj

. . .

Figure 7.7: The watermarked DS(T ∗) which encodes the RPG of �∗ = (4; 5; 3; 1; 2).

4. For each back-edge (ui; uj) of the graph F [�∗] (i.e., uj > ui), add the forward-edge (vj ; vi)

in page-tree PT(T) by adding in object [vj 0 obj] an entry of type =Key(vi 0 R); add in

object [vn+1 0 obj] an entry of type =Key(v0 0 R);

5. Return the modi�ed PDF document T which is the watermarked document T ∗.

Let us briey discuss the way we add forward-edge in the page-tree PT(T); recall that, in Step 4 of

the previous algorithm Encode RPG.to.PDF we add the forward-edge (vj ; vi) in page-tree PT(T)

by adding in object [vj 0 obj] an entry of type =Key(vi 0 R). The entry =Key(vi 0 R) may be of

various types; note that, =Key(·) is used as parameter in our algorithm's description.

In our implementation, for the forward-edge (vj ; vi) such that the object [vj 0 obj] is not

the rood-node root(pt) of the page-tree PT(T), we always chose the entry =Key(vi 0 R) which

we add in object [vj 0 obj] to be of the same type of object [vi 0 obj]. In the case where

vj = root(pt), we chose the entry =Key(vi 0 R) to be of type =Kids(·).
For example, in Figure 7.7 we have added forward-edges from object [29 0 obj] to object

[3 0 obj], from object [29 0 obj] to object [24 0 obj], from object [3 0 obj] to object [13 0 obj],

etc. Thus, in our implementation we have added in the rood-node object [29 0 obj] the entries

=Kids(3 0 R) and =Kids(24 0 R), in object [3 0 obj] the entry =XObject(13 0 R), while in object

[13 0 obj] the entries =ColorSpace(6 0 R) and =R9(5 0 R).

Remark 7.1. Let T be a PDF �le and let PT(T) be a page-tree of the document structure

DS(T). A node of the page-tree PT(T) may contain several entries =Kye(·) of various types. We

mention that, some types are required for the entries in speci�c nodes of PT(T); for example,

the required entries in the rood-node root(pt) of the page-tree PT(T) are the following four:

=Type(·), =Parent(·), =Kids(·), and =Count(·).

Extraction. We next describe the corresponding extraction algorithm which extracts the graph

140

F [�∗] from the PDF document T ∗ watermarked by the embedding algorithm Encode RPG:to:PDF;

the extraction algorithm, which we call Extract RPG.from.PDF, works as follows:

• Take �rst as input the PDF document T ∗ watermarked by the embedding algorithm

Encode RPG:to:PDF, compute the document structure DS(T ∗) of T ∗, and locate its page

tree PT(T ∗); then, �nd in object root(pt), where root(pt) is the root of the tree PT(T ∗),

the entry =Kids(vk 0 R) s.t. vk is not a child of root(pt), and set vn+1 = root(pt) and

v0 = vk;

• Compute the path O(T) = (vn+1; vn; : : : ; v1; v0) of PT(T
∗), from node root(pt) to v0, and

assign an exact pairing (i.e., 1-1 correspondence) of the n + 2 nodes of path O(T) to the

nodes un+1; un; : : : ; u1; u0 of a graph F [�∗]; initially, E(F [�∗]) = ∅;

• Add edges (ui+1; ui) in F [�∗] for i = n; n − 1; : : : ; 0, and the edge (ui; uj) i� (vi; vj) is a

forward edge in the page tree PT(T ∗);

• Delete the edge (un+1; u0) from the graph F [�∗];

• Return the graph F [�∗];

It is easy to see that, by construction the returned graph F [�∗] is a reducible permutation graph

produced by either algorithm Encode SiP.to.RPG-I or algorithm Encode SiP.to.RPG-II. Thus,

F [�∗] has the following property: the structure which results after deleting

(i) all the forward edges (ui+1; ui) of F [�∗], 0 ≤ i ≤ n, and

(ii) the node u0

is either the tree Td[�
∗] or tree Ts[�

∗] produced during the execution of either the decoding algo-

rithm Decode RPG.to.SiP-I or algorithm Decode RPG.to.SiP-II, respectively (see, Figures 3.3

and 3.4). Thus, we can e�ciently extract the self-inverting permutation �∗ embedded into a

PDF document T by algorithm Encode RPG.to.PDF.

7.4 Concluding Remarks

In this chapter we presented embedded algorithms, along with their corresponding extraction

algorithms, for embedding watermark numbers w into PDF documents T using three di�erent

representations of a self-inverting permutation �∗, namely 1D-representation, 2D-representation,

and RPG-representation; note that, RPG-representation means the encoding of permutation �∗

as a reducible permutation graph F ∗[�∗].

The main features of our algorithms, i.e., the way they mark a PDF document T or, equiva-

lently, the way they embed a self-inverting permutation �∗ into document T , are summarized as

follows:

◦ In the �rst algorithm Embed SiP.to.PDF-I the marking of a PDF document T is performed

by increasing the distance (or, space) between two consecutive words in a paragraph of T .

141

◦ The main idea behind the second algorithm Embed SiP.to.PDF-II based on the fact that

�∗ has a 2D-representation and, since pages of PDF documents T are two dimensional

objects, it can be e�ciently used to mark speci�c positions on a page of T resulting thus

the watermarked PDF document T ∗.

◦ The third graph-based embedding algorithm Encode RPG.to.PDF uses a di�erent approach:

it exploits the structure of a PDF document T and embeds the graph F [�∗] into T by

adding appropriate object-references in the document T , through the use of entries of type

=Kids(k 0 R), so that the graph F [�∗] can be easily constructed from the page tree PT(T ∗)

of the resulting watermarked document T ∗.

In light of our graph-based embedding algorithm Encode RPG.to.PDF it would be very interesting

to investigate the possibility of altering other components of the document structure of a PDF

�le in order to embed the graph F [�∗]; we leave it as a direction for future work.

Moreover, an interesting open question is whether the approach and techniques used in this

chapter can help develop e�cient encoding algorithms having \better" properties with respect

text attacks; we leave it as an open problem for future investigation.

142

Chapter 8

Conclusions and Future Work

8.1 Encoding Numbers as SiPs and RPGs

8.2 Software Watermarking

8.3 Image and Audio Watermarking

8.4 Text Watermarking

8.1 Encoding Numbers as SiPs and RPGs

In Chapter 2, we presented an e�cient algorithm for encoding watermark integers as self-inverting

permutations. Our algorithm takes as input an integer w and produces a self-inverting permu-

tation �∗ in O(n) time, where n is the number of bits in the binary representation of w. We also

presented the corresponding decoding algorithm; it takes as input a self-inverting permutation

�∗ produced by the encoding algorithm and returns the encoding integer w in O(n) time, where

n is the length of the input permutation. Both algorithms are simple, easy implemented and

very fast.

It is worth noting that our encoding approach enable us to encode any integer w as self-

inverting permutation �∗ of any length n∗ ≥ 3; indeed, �∗ can be constructed over the set Nn∗ ,

where n∗ = 2⌈logw⌉+ 1.

In Chapter 3, we proposed an e�cient and easily implementable codec system for encoding

watermark numbers as graph structures. In particular, we proposed an e�cient codec method for

encoding a self-inverting permutation �∗ as a reducible permutation graph F [�∗]; the proposed

ow-graph F [�∗] can be e�ciently used for software watermarking since its structure mimics real

codes.

Our codec algorithms are very simple, use elementary operations on sequences and linked

structures, have very low time and space complexity, and the ow-graph F [�∗] incorporates

important structural properties which enable us to identify with high probability edge and/or

node modi�cations made by an attacker to F [�∗].

143

In light of the two main data components of our codec system, i.e., the permutation �∗ and

the graph F [�∗], it would be very interesting to come up with new e�cient codec algorithms

and structures having \better" properties with respect to resilience to attacks; we leave it as an

open question. Another interesting question with practical value is whether the class of reducible

permutation graphs can be extended so that it includes other classes of graphs with structural

properties capable to e�ciently encode watermark numbers.

Finally, the evaluation of our codec algorithms and structures under other watermarking mea-

surements in order to obtain detailed information about their practical behavior is an interesting

problem for future study.

In Chapter 4, we proposed an e�cient algorithm which encodes a self-inverting permutation

�∗ into several cographs C1[�
∗]; C2[�

∗]; : : : ; Cn[�
∗], n ≥ 2, and an e�cient transformation of a

cograph into a reducible permutation graph F [�∗]. In light of our encoding algorithms which

encode a watermark integer w as a self-inverting permutation �∗ [28] and the permutation �∗

into many di�erent cographs, we conclude that we can e�ciently encode the same watermark

integer w into several reducible permutation graphs F1[�
∗]; F2[�

∗]; : : : ; Fn[�
∗], n ≥ 2.

It is worth noting that this property causes a codec watermarking system resilient to attacks

since we can embed multiple copies of the same watermark value w into an application program.

An interesting open question is whether the approach and techniques used in this chapter

can help develop e�cient codec algorithms and graph structures having \better" properties with

respect to resilience, size, and/or time and space e�ciency; we leave it as an open problem for

future investigation.

8.2 Software Watermarking

In Chapter 5, through the evaluation of WaterRPG, we showed that our model has zero false

positive and false negative rates in the case where the watermarked code has not been attacked.

Indeed, it is true because the execution of the watermarked program P ∗ with the secret input

sequence always builds a call graph G(P ∗; Ikey) which is isomorphic with the water-graph F [�∗].

The execution time and space overhead varies depending on the size of the embedded water-

mark; in fact, the overhead increases linearly in the size of the water-graph F [�∗]. It is worth

noting that the data-rate is directly correlated with the number of functions used or, equivalently,

with the size of the water-graph. In the case where the code (in bits) of the original program P

is large enough, our model has high data-rate and extremely low embedding overhead. We point

out that the number of nodes of the water-graph F [�∗] a�ects the number of functions we use

for embedding. Thus, it is possible to use fewer functions which would result in a graph F [�∗]

with fewer nodes; note that, the graph F [�∗] on n = 2k + 1 nodes can encode a watermarking

integer w in the range [0; 2k−1 − 1]; see, authors' work [28, 23].

Furthermore, in our model the code which is associated with the watermark is composed

both by new code and host code; this enable us to obtain high stealth watermarked programs

P ∗. Moreover, since the watermark code has become an indispensable piece of the functionality

of program P ∗, a malicious user would need to fully understand the operations of P ∗ in order to

intervene changing possible execution ows. On the other hand, the extraction of our watermark

takes into account and uses the traces of all the functions that are assigned to the nodes of the

144

water-graph F [�∗] which, in turn, means that if a subset of these functions is intercepted then

the watermark can not be extracted; unfortunately, this implies a poor part protection of our

watermarked program P ∗.

Finally, the experimental results show the high functionality of all the Java programs P ∗

watermarked under both the naive and stealthy cases, and also their low time complexity. The

experiments also show that the watermarking approaches supported by our model can help de-

velop e�cient watermarked Java programs with respect to various and broadly used performance

and resilience watermarking criteria.

Closing, we note that in light of our dynamic watermarking model WaterRPG it would be

very interesting to compare it with other dynamic, or even static, already proposed software

watermarking models [35, 31, 86, 95, 106]; we leave it as a direction for future work.

8.3 Image and Audio Watermarking

In Chapter 6, we proposed watermarking models for embedding invisible watermarks into dig-

ital images and audio signals. We presented methods for embedding invisible watermarks into

images and their intention is to prove the authenticity of an image. The watermarks are given

in numerical form, transformed into self-inverting permutations, and embedded into an image

by partially marking the image in the frequency domain; more precisely, thanks to 2D repre-

sentation of self-inverting permutations, we locate speci�c areas of the image and modify their

magnitude of high frequency bands by adding the least possible information ensuring robustness

and imperceptiveness.

We experimentally tested our embedding and extracting algorithms on color JPEG images

with various and di�erent characteristics; we obtained positive results as the watermarks were

invisible, they didn't a�ect the images' quality and they were extractable despite the JPEG

compression. In addition, the experimental results show an improvement in comparison to the

initial obtained results on spatial domain and they also depict the validity of our proposed codec

algorithms.

It is worth noting that the proposed algorithms on image watermarking in frequency domain

are robust against cropping or rotation attacks since the watermarks are in SiP form, mean-

ing that they determine the embedding positions in speci�c image areas. Thus, if a part is

being cropped or the image is rotated, SiP's symmetry property may allow us to reconstruct

the watermark. Furthermore, our codec algorithms can also be modi�ed in the future to get

robust against scaling attacks. That can be achieved by selecting multiple widths concerning the

ellipsoidal annuli depending on the size of the input image.

Finally, we should point out that the study of our quality function f remains a problem for

further investigation; indeed, f could incorporate learning algorithms [102] so that to be able to

return the copt accurately and in a very short computational time.

Additionally, in this chapter we presented an audio watermarking technique which e�ciently

and invisibly embeds information, i.e., watermarks, into an audio digital signal. Our technique

is based on the same main idea of image watermarking technique expanding thus the digital

objects that can be e�ciently watermarked through the use of self-inverting permutations.

We experimentally tested our embedding and extracting algorithms on WAV audio signals.

145

Our testing procedure includes the phases of embedding a numerical watermark w = �∗ into

several audio signals S, storing the watermarked audio Sw in WAV format, and extracting the

watermark w = �∗ from the audio Sw. We obtained positive results as the watermarks were

invisible, they didn't a�ect the audio's quality and they were extractable.

The performance evaluation of our audio watermarking technique on several other attacks

remains a problem for further investigation.

8.4 Text Watermarking

In Chapter 7, we presented embedded algorithms, along with their corresponding extraction

algorithms, for embedding watermark numbers w into PDF documents T using three di�erent

representations of a self-inverting permutation �∗, namely 1D-representation, 2D-representation,

and RPG-representation; note that, RPG-representation means the encoding of permutation �∗

as a reducible permutation graph F [�∗].

The main features of our algorithms, i.e., the way they mark a PDF document T or, equiva-

lently, the way they embed a self-inverting permutation �∗ into document T , are summarized as

follows:

◦ In the �rst algorithm Embed SiP.to.PDF-I the marking of a PDF document T is performed

by increasing the distance (or, space) between two consecutive words in a paragraph of T .

◦ The main idea behind the second algorithm Embed SiP.to.PDF-II based on the fact that

�∗ has a 2D-representation and, since pages of a PDF documents T are two dimensional

objects, it can be e�ciently used to mark speci�c positions on a page of T resulting thus

the watermarked PDF document T ∗.

◦ The third graph-based embedding algorithm Encode RPG.to.PDF uses a di�erent approach:

it exploits the structure of a PDF document T and embeds the graph F [�∗] into T by adding

appropriate object-references in the document T , through the use of statements of type

=Kids(k 0 R), so that the graph F [�∗] can be easily constructed from the page tree PT(T ∗)

of the resulting watermarked document T ∗.

In light of our graph-based embedding algorithm Encode RPG.to.PDF it would be very interesting

to investigate the possibility of altering other components of the document structure of a PDF

�le in order to embed the graph F [�∗]; we leave it as a direction for future work.

Moreover, an interesting open question is whether the approach and techniques used in this

chapter can help develop e�cient encoding algorithms having \better" properties with respect

text attacks; we leave it as an open problem for future investigation.

146

Bibliography

[1] G. Arboit. A method for watermarking Java programs via opaque predicates. Proc. of the

5th Int'l Conference on Electronic Commerce Research (ICECR-5), 2002.

[2] N. Ahmed, T. Natarajan and K.R. Rao. Discrete cosine transform. IEEE Transactions on

Computers (C-23), 90{93, 1974.

[3] M.A. Alsalami, and M.M. Al-Akaidi. Digital audio watermarking: survey. De Montfort

University, 1{14, 2003.

[4] Adobe Systems Incorporated. Adobe Portable document format Version 1.7,

http://www.adobe.com, Nov. 2006.

[5] M.J. Atallah, V. Raskin, C.F. Hempelmann, M. Karahan, R. Sion, U. Topkara, and

K.E. Triezenberg. Natural language watermarking and tamperproo�ng. LNCS 5, Springer,

196{212, 2003.

[6] T. Amano, and D. Misaki. A feature calibration method for watermarking of document im-

ages. Proc. of the 5th In'l Conference on Document Analysis and Recognition (ICDAR'99),

IEEE, 91{94, 1999.

[7] A. Bretscher, D. Corneil, M. Habib, and C. Paul. A simple linear time LexBFS cograph

recognition algorithm. SIAM J. Discrete Math. 22, 1277{1296, 2008.

[8] W. Bender, D. Gruhl, and N. Morimoto. Techniques for data hiding. Proc. of the IBM

systems journal 35(3-4), 313{336, 1996.

[9] J.T. Brassil, S. Low, N.F. Maxemchuk, and L.O. Gorman. Electronic Marking and Identi-

�cation Techniques to Discourage Document Copying. IEEE Journal on Selected Areas in

Communications 13(8), 1495{1504, 1995.

[10] J.T. Brassil, S. Low, N.F. Maxemchuk, L.O. Gorman. Hiding information in document

images. Proc. of the 29th Annual Conference on Information Sciences and Systems, Johns

Hopkins University, 482{489, 1995.

[11] J.T. Brassil, S. Low, and N.F. Maxemchuk. Copyright protection for the electronic distri-

bution of text documents. Proc. of the IEEE 87(7), 1181{1196, 1999.

[12] G.S. Bindra. Invisible communication through Portable Document File (PDF) format.

Proc. of the 7th Int'l Conference on Intelligent Information Hiding and Multimedia Signal

Processing (IIH-MSP), 173{176, 2011.

147

[13] G.S. Bindra. Masquerading as a trustworthy entity through Portable Document File (PDF)

format. Proc. of the 2011 IEEE Int'l Conference on PASSAT, and IEEE Int'l Conference

on Social Com., Boston, USA, 2011.

[14] A. Brandst�adt, V.B. Le, and J. Spinrad. Graph classes: a survey. SIAM Monographs on

Discrete Mathematics and Applications 3, 1999.

[15] I. Cox, J. Kilian, T. Leighton, and T. Shamoon. A secure, robust watermark for multimedia.

Proc. of the 1st Int'l Workshop on Information Hiding, LNCS 1174, 317{333, 1996

[16] M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking Digital Images in the Fre-

quency Domain: Performance and Attack Issues, LNBIP 189, Springer, 68{84, 2014.

[17] M. Chroni, A. Fylakis, and S.D. Nikolopoulos. From image to audio watermarking using

self-inverting permutations. Proc. of the 10th Int'l Conference on Web Information Systems

and Technologies (WEBIST'14), SciTePress, 177{184, 2014.

[18] M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking images in the frequency

domain by exploiting self-inverting permutations. Journal of Information Security 4(2),

80{91, 2013.

[19] I. Chionis, M. Chroni, and S.D. Nikolopoulos. A dynamic watermarking model for em-

bedding reducible permutation graphs into software. Proc. of the 10th Int'l Conference on

Security and Cryptography (SECRYPT'13), SciTePress, 74{85, 2013.

[20] I. Chionis, M. Chroni, and S.D. Nikolopoulos. Evaluating the WaterRpg software water-

marking model on Java application programs. Proc. of the 17th Panhellenic Conference on

Informatics (PCI'13), ACM, 144{151, 2013.

[21] M. Chroni and S.D. Nikolopoulos. Design and evaluation of a graph codec system for soft-

ware watermarking. Proc. of the 2nd Int'l Conference on Data Management Technologies

and Applications (DATA'13), SciTePress, 277{284, 2013.

[22] M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking images in the frequency

domain by exploiting self-inverting permutations. Proc. of the 9th Int'l Conference on

Web Information Systems and Technologies (WEBIST'13), SciTePress, 45{54, 2013, (Best

Student Paper Award).

[23] M. Chroni and S.D. Nikolopoulos. An e�cient graph codec system for software water-

marking. Proc. of the 36th Int'l Conference on Computers, Software, and Applications

(COMPSAC'12), Workshop STPSA'12, IEEE, 595{600, 2012.

[24] M. Chroni and S.D. Nikolopoulos, Multiple encoding of a watermark number into reducible

permutation graphs using cotrees. Proc. of the 13th Int'l Conference on Computer Systems

and Technologies (CompSysTech'12), ACM, 118{125, 2012.

[25] M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking images using 2D representa-

tions of self-inverting permutations. Proc. of the 8th Int'l Conference on Web Information

Systems and Technologies (WEBIST'12), SciTePress, 380{385, 2012.

148

[26] M. Chroni and S.D. Nikolopoulos. An embedding graph-based model for software water-

marking. Proc. of the 8th Int'l Conference on Intelligent Information Hiding and Multime-

dia Signal Processing (IIH-MSP'12), IEEE, 261{264, 2012.

[27] M. Chroni and S.D. Nikolopoulos. Encoding watermark numbers as cographs using self-

inverting permutations. Proc. of the 12th Int'l Conference on Computer Systems and Tech-

nologies (CompSysTech'11), ACM ICPS 578, 142{148, 2011.

[28] M. Chroni and S.D. Nikolopoulos. Encoding watermark integers as self-inverting permuta-

tions. Proc. of the 11th Int'l Conference on Computer Systems and Technologies (Comp-

SysTech'10), ACM ICPS 471, 125{130, 2010.

[29] C. Collberg and J. Nagra. Surreptitious Software. Addison-Wesley, 2010.

[30] C. Collberg, S. Kobourov, E. Carter, and C. Thomborson. Error-correcting graphs for soft-

ware watermarking. Proc. of the 29th Workshop on Graph-Theoretic Concepts in Computer

Science (WG'03), LNCS 2880, 156{167, 2003.

[31] C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp. More on graph theoretic

software watermarks: Implementation, analysis, and attacks. Information and Software

Technology 51, 56{67, 2009.

[32] C. Collberg and C. Thomborson. Software watermarking: models and dynamic embed-

dings. Proc. of the 26th ACM SIGPLAN-SIGACT on Principles of Programming Lan-

guages (POPL'99), 311{324, 1999.

[33] C. Collberg, C. Thomborson, and D. Low. On the limits of software watermarking. De-

partment of Computer Science, The University of Auckland, Technical Report No 164,

1998.

[34] C.S. Collberg, C.D. Thomborson,J.J. Horning, W.O. Silbert, L.R. Matheson, A.K. Wright,

and S.S. Owicki. Software watermarking techniques. US Patent, 0214188, 2011.

[35] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn and M. Stepp.

Dynamic path-based software watermarking. Proc. of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, ACM SIGPLAN 39, 107{118, 2004.

[36] C. Collberg, and C. Thomborson. Watermarking, Tamper-Proo�ng, and Obfuscation -

Tools for Software Protection. IEEE Trans. Software Engineering 28, 735{746, 2000.

[37] P. Cousot and R. Cousot. An abstract interpretation-based framework for software water-

marking. Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL'04), 173{185, 2004.

[38] D. Curran, N. Hurley and M. Cinneide. Securing Java through software satermarking,

Proc. Proc. of the Int'l Conference on Principles and Practice of Programming in Java

(PPPJ'03), 145{148, 2003.

[39] D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. SIAM

J. Comput. 14, 926{984, 1985.

149

[40] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT

Press (2nd ed.), 2001.

[41] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex fourier

series. Mathematics of Computation C-23, 297{301, 1965.

[42] L. Chun-Shien, H. Shih-Kun, S. Chwen-Jye, M.L. Hong-Yuan. Cocktail watermarking for

digital image protection. IEEE Trans. on Multimedia 4, 209{224, 2000.

[43] I.J. Cox, M.L. Miller, J.A. Bloom, J. Fridrich, and T. Kalker. Digital Watermarking and

Steganography. Morgan Kaufmann (2nd ed.), 2008.

[44] I.J. Cox, J. Kilian, T. Leighton, and T. Shamoon. Secure Spread Spectrum Watermarking

for Multimedia. IEEE Transactions on Image Processing 6, 1673{1687, 1997.

[45] I.J. Cox, G. Do�err, and T. Furon. Watermarking is not cryptography. Proc. of the Digital

Watermarking, Springer, 1{15, 2006.

[46] S. Craver, N. Memon, B.L. Yeo, and M. Yeung. Resolving rightful ownerships with invisible

watermarking techniques: limitations, attacks, and implications. IEEE Journal on Selected

Areas in Communications (Special issue on Copyright and Privacy Protection), 16(4), 573{

586, 1998.

[47] B. Chen, and G.W. Wornell. Quantization Index Modulation: A Class of Provably Good

Methods for Digital Watermarking and Information Embedding. IEEE Transactions on

Information Theory 47(4), 1423{1443, 2001.

[48] R.L. Davidson and N. Myhrvold. Method and system for generating and auditing a signa-

ture for a computer program. US Patent 5.559.884, Microsoft Corporation 1996.

[49] J. C. Davis. Intellectual property in cyberspace - what technological / legislative tools

are necessary for building a sturdy global information infrastructure? Proc. of the Int'l

Symposium on Technology and Society, IEEE, 66{74, 1997.

[50] I.P. Goulden, and D.M. Jackson. Combinatorial Enumeration. New York, Wiley, 1983.

[51] D. Grover. The Protection of Computer Software - Its Technology and Applications. Cam-

bridge University Press, New York, 1997.

[52] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New

York (1980). Annals of Discrete Math. 57 (2nd ed.), Elsevier 2004.

[53] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Prentice-Hall, 2007.

[54] R.C. Gonzalez, R.E. Woods, and S.L. Eddins. Digital Image Processing using Matlab.

Prentice-Hall, 2003.

[55] S. Gar�nkel. Web Security, Privacy and Commerce. O'Reilly (2nd ed.), 2001.

[56] R. Raysman, E.A.Pisacreta, and K.A. Adler. Intellectual Property Licensing: Forms and

Analysis.Law Journal Press, 1999.

150

[57] S. Graham and P. Kessler and M. Mckusick. Gprof: A call graph execution pro�ler. ACM

SIGPLAN Notices 17(6), 120{126, 1982.

[58] F. Harary, and E. Palmer. Graphical Enumeration. New York, Academic Press, 1973.

[59] M.S. Hecht and J.D. Ullman. Flow graph reducibility. Proc. of the 4th Annual ACM Sym-

posium on Theory of Computing, ACM, 238{250, 1972.

[60] M.S. Hecht and J.D. Ullman. Characterizations of reducible ow graphs. Journal of the

ACM 21(3), 367{375, 1974.

[61] F. Hartung, and M. Kutter. Multimedia watermarking techniques. Proc. of the IEEE

87(70), 1079{1107, 1999.

[62] A. Hore and D. Ziou. Image Quality Metrics: PSNR vs. SSIM. Proc. of the 20th Int'l

Conference on Pattern Recognition, 2366{2369, 2010.

[63] R.W. Hamming. Error detecting and error correcting codes. Bell System Technical Journal

29(2), 147{160, 1950.

[64] D. Huang, and H. Yan. Interword distance changes represented by sine waves for water-

marking text images. IEEE Trans. Circuits and Systems for Video Technology 11(12),

1237{1245, 2001.

[65] E.F. Hembrooke. Identi�cation of sound and like signals. US Patent 3.004.104, Google

Patents, 1961.

[66] V.K. Ingle and J.G. Proakis. Digital Signal Processing using Matlab. Cengage Learning

(3rd ed.), 2010.

[67] Z. Jalil, and A.M. Mirza. An invisible text watermarking algorithm using image watermark.

Proc. of the Innovations in Computing Sciences and Software Engineering, 147{152, 2010.

[68] K. Jain, M. Raghavan, and S. K. Jha. Study of the linkages between innovation and intel-

lectual property. Proc. of the PICMET 2009, 1945{1953, 2009.

[69] D.E. Knuth. Fundamental Algorithms. The Art of Computer Programming: Vol.1,

Addison-Wesley (3rd ed.), Reading, MA, USA, 1997.

[70] M. Kaur, S. Jindal, and S. Behal. A Study of Digital Image Watermarking. Journal of

Research in Engineering and Applied Sciences 2, 126{136, 2012.

[71] N. Komatsu, and T. Hideyoshi. A proposal on digital watermark in document image com-

munication and its application to realizing a signature. Electronics and Communications

in Japan (Part I: Communications) 73(5), 22{33, 1990.

[72] B.S. Ko, R. Nishimura, and Y. Suzuki. Time-Spread Echo Method for Digital Audio Wa-

termarking. IEEE Transactions on Multimedia 7(2), 212-221, 2005.

[73] M. Kutter, F. Jordan, and F. Bossen. Digital Watermarking of Color Images using Ampli-

tude Modulation. Journal of Electronic Imaging 7(2), 326{332, 1998.

151

[74] H. Lerchs. On cliques and kernels. Department of Computer Science, University of Toronto,

March 1971.

[75] V. Licks and R. Hordan. On Digital Image Watermarking Robust to Geometric Transfor-

mations. Proc. of the IEEE Int'l Conference on Image Proceesing 3, 690{693, 2000.

[76] H. Liu, L. Li, , J. Li, and J. Huang. Three novel algorithms for hiding data in pdf �les

based on incremental updates. In Digital Forensics and Watermarking, Springer Berlin

Heidelberg, 167{180, 2012.

[77] X. Liu, Q. Zhang, C. Tang, J. Zhao, and J. Liu. A Steganographic Algorithm for Hiding

Data in PDF Files Based on Equivalent Transformation. Int'l Symposiums on Information

Processing (ISIP), 417{421, 2008.

[78] Y. Liu, X. Sun, and G. Luo. A novel information hiding algorithm based on structure of

PDF document. Computer Engineering 32(17), 230{232, 2006.

[79] I.S. Lee, and W.H. Tsai. A new approach to covert communication via PDF �les. Signal

Processing 90(2), 557{565, 2010.

[80] S.H. Low, N.F. Maxemchuk, and A.M. Lapone. Document identi�cation for copyright pro-

tection using centroid detection. IEEE Transactions on Communications 46(3), 372{381,

1998.

[81] S.H. Low, and N.F. Maxemchuk. Capacity of text marking channel. IEEE Signal Processing

Letters 7(12), 345{347, 2000.

[82] P. Lu, Z. Lu, Z. Zhou, and J. Gu. An optimized natural language watermarking algorithm

based on TMR. Proc. of the 9th Int'l Conference for Young Computer Scientists, 1459{

1463, 2008.

[83] M. A. Lemley. Intellectual property, and free riding. Texas Law Review 83, 1031, 2005.

[84] G. Myles and C. Collberg. Software watermarking via opaque predicates: Implementation,

analysis, and attacks. Electronic Commerce Research 6, 155{171, 2006.

[85] S.A. Moskowitz and M. Cooperman. Method for stegacipher protection of computer code.

US Patent 5.745.569, 1996.

[86] A. Monden, H. Iida, K. Matsumoto, K. Inoue and K. Torii. A practical method for water-

marking Java programs, Proc. of the 24th Computer Software and Applications Conference

(COMPSAC'00), 191{197, 2000.

[87] N.F. Maxemchuk, and S. Low. Marking text documents. Proc. of the IEEE Int'l Conference

on Image Processing, Washington DC, 13{16, 1997.

[88] N.F. Maxemchuk, ans S.H. Low. Performance comparison of two text marking methods.

IEEE Journal of Selected Areas in Communications 16(4), 561{572, 1998.

[89] N.F. Maxemchuk. Electronic document distribution. AT&T Technical Journal 73(5), 73{

80, 1994.

152

[90] H.M. Meral, and B. Sankur, A. �Ozsoy, T. G�ung�or, and E. Sevin�c. Natural language water-

marking via morphosyntactic alterations. Computer Speech and Language 23(1), 107{125,

2009.

[91] H.M. Meral,, E. Sevin�c, E. �Unkar, B. Sankur, A. �Ozsoy, and T. G�ung�or. Syntactic tools

for text watermarking, Proc. of the 19th SPIE Electronic Imaging Conference on Security,

Steganography, and Watermarking of Multimedia Contents, San Jose, CA, 2007.

[92] B. Macq, and O. Vybornova. A method of text watermarking using presuppositions. In

Electronic Imaging 2007, Society for Optics and Photonics, 65051R{65051R{10, 2007.

[93] J. Nagra, C. Thomborson, and C. Collberg. A functional taxonomy for software water-

marking. Australian Computer Science Communications 24(1), 177{186, 2002.

[94] S.D. Nikolopoulos. Coloring permutation graphs in parallel. Discrete Applied Mathemat-

ics 120, 165{195, 2002.

[95] J. Nagra, and C. Thomborson. Threading software watermarks. Proc. of the 6th Int'l

Workshop on Information Hiding (IH'04), LNCS 3200, 208{223, 2004.

[96] J.J.K. O'Ruanaidh, W.J. Dowling, F.M. Boland. Watermarking digital images for copyright

protection. Proc. of the Vision, Image and Signal Processing 143, IEEE, 250{256, 1996.

[97] D. Pascale. A Review of RGB Color Spaces ...from xyY to R'G'B'. The BabelColor Com-

pany, 2003.

[98] V.M. Potdar, S. Han, and E. Chang. A survey of digital image watermarking techniques.

Proc. of the IEEE Third Int'l Conference on Industrial Informatics (INDIN), 709{716,

2005.

[99] F. Petitcolas. Image Database for Watermarking. Retrive from Petitcolas' personal web

site (http://www.petitcolas.net/fabien/watermarking/), Retrieved September, 2012.

[100] I. Pitas. A Method of Signature Casting on Digital Images. Proc. of the IEEE Int'l Con-

ference on Image Processing, ICIP-1996, 215{218, 1996.

[101] G. Qu and M. Potkonjak. Analysis of watermarking techniques for graph coloring problem.

Proc. IEEE/ACM Int'l Conference on Computer-aided Design (ICCAD'98), ACM Press,

190{193, 1998.

[102] S. Russell and P. Norvig. Arti�cial Intelligence: A Modern Approach (3rd ed.), Prentice-

Hall, 2010.

[103] T.F. Rodriguez, B.T. MacIntosh, and A.E. Gustafson. Software watermarking. US Patent

20100095376, 2010.

[104] C. Rey, and J.L. Dugelay. A survey of watermarking algorithms for image authentication.

EURASIP Journal on Applied Signal Processing 6, 613-621, 2002.

[105] P. Samson. Apparatus and method for serializing and validating copies of computer soft-

ware. US Patent 5.287.408, 1994.

153

[106] J. Stern, G. Hachez, F. Koeune, and J. Quisquater. Robust object watermarking: Applica-

tion to code. Proc. of the 3rd Int'l Workshop on Information Hiding (IH'99), LNCS 1768,

368{378, 1999.

[107] R. Sedgewick, and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-

Wesley, 1996.

[108] S. Sharma, J. Rajpurohit, and S. Dhankar. Survey on di�erent level of audio watermarking

techniques. Proc. of the Int'l Journal of Comput. Applications 49(10), 41{48, 2012.

[109] V. Solachidis and I. Pitas. Circularly Symmetric Watermark Embedding in 2D DFT Do-

main. IEEE Transactions on Image Processing 10(11), 1741{1753, 2001.

[110] C. Song, S. Sudirman, M. Merabti, and D. Llewellyn-Jones. Analysis of digital image

watermark attacks. In Consumer Communications and Networking Conference (CCNC),

1{5, 2010.

[111] X. Sun, and A.J. Asiimwe. Noun-verb based technique of text watermarking using recursive

decent semantic net parsers. LNCS 3612, 958{961, 2005.

[112] B.K. Sharma, R.P. Agarwal, and R. Singh. An e�cient software watermark by equation

reordering and FDOS. Proc. of the Int'l Conference on Soft Computing for Problem Solving

(SocProS 2011, 131, 735{745, 2011.

[113] H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto. Design and evaluation of

birthmarks for detecting theft of Java programs. Proc. of the Int'l Conference on Software

Engineering (IASTED SE'04), 569{575, 2004.

[114] W.G. Horne, U. Maheshwari, R.E. Tarjan, J.J. Horning, W.O. Silbert, L.R. Matheson,

A.K. Wright, and S.S. Owicki. Systems and methods for watermarking software and other

media. US Patent 8.140.850, 2012.

[115] R.G. Van Schyndel, A.Z. Tirkel, and C.F. Osborne. A digital watermark. Proc. of the

Image Processing (ICIP-94), 86{90, 1994.

[116] A.Z. Tirkel, G.A. Rankin, R.M. Van Schyndel, W.J. Ho, N.R.A. Mee, and C.F. Os-

borne. Electronic watermark. Digital Image Computing, Technology and Applications

(DICTA'93), 666{673, 1993.

[117] A.Z. Tirkel, R.G. Schyndel, and C. Osborne. A Two-Dimensional Watermark. Proc. of the

DICTA 95(7), 5{8, 1995.

[118] U. Topkara, M. Topkara, and M.J. Atallah. The hiding virtues of ambiguity: Quanti�ably

resilient watermarking of natural language text through synonym substitutions, Proc. of

the ACM Multimedia and Security Conference, 2006.

[119] M. Topkara, U. Topraka, and M.J. Atallah. Information hiding through errors: A con-

fusing ap- proach. Proc. of the SPIE Int'l Conference on Security, Steganography, and

Watermarking of Multimedia Contents, San Jose, CA, 2007.

154

[120] R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software wa-

termarking. Proc. of the 4th Int'l Workshop on Information Hiding (IH'01), LNCS 2137,

157{168, 2001.

[121] F.H. Wang, J.S. Pan, and L.C. Jain. Innovations in Digital Watermarking Techniques.

Springer, 2009.

[122] Z. Wang, A.C. Bovic, H.R. Sheikh, and E.P. Simoncelli. Image Quaity Assessment: From

Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4),

600{612, 2004.

[123] R.B. Wolfgang, and E.J. Delp. A watermark for digital images. Proc. of the IEEE Int'l

Conference on Image Processing, ICIP-1996, 219{222, 1996.

[124] X.Y. Wang, and H. Zhao. A Novel Synchronization Invariant Audio Watermarking Scheme

Based on DWT and DCT. IEEE Transactions on Signal Processing 54(12), 4835-4840,

2006.

[125] Y. Xiong, and Z.X. Ming. Covert Communication Audio Watermarking Algorithm Based

on LSB. Proc. of the In'l Conference on Communication Technology, ICCT-2006, 1{4, 2006.

[126] L. Xie, J. Zhang, and H. He. Robust Audio Watermarking Scheme Based on Non-uniform

Discrete Fourier Transform. Proc. of the IEEE Int'l Conference on Engineering of Intelligent

Systems, 1{5, 2006.

[127] S. Yang, W. Tan, Y. Chen, and W. Ma. Quantization-Based Digital Audio Watermarking

in Discrete Fourier Transform Domain. Journal of Multimedia 5(2), 151{158, 2010.

[128] T. Xie, and D. Notkin. An Empirical Study of Java Dynamic Call Graph Extractors.

University of Washington CSE, Technical Report 02-12-03, 2002.

[129] J. Zhu, Y. Liu, and K. Yin. A Novel Planar IPPCT Tree Structure and Characteristics

Analysis. Journal of Software 5(3), 344{351, 2010.

[130] W. Zhu, C. Thomborson, and F.Y. Wang. A survey of software watermarking. Proc. IEEE

Int'l Conference on Intelligence and Security Informatics (ISI'05), LNCS 3495, 454{458,

2005.

[131] L. Zhang, Y. Yang, X. Niu, and S. Niu. A survey on software watermarking. Journal of

Software 14, 268{277, 2003.

[132] J.M. Zain. Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) for

Medical Images for medical images. European Journal of Scienti�c Research 42(2), 250{256,

2010.

[133] S. Zhong, X. Cheng, and T. Chen. Data hiding in a kind of PDF texts for secret commu-

nication. Int'l Journal of Network Security 4(1), 17{26, 2007.

[134] X. Zhou, W. Zhao, Z. Wang, and L.Pan. Security Theory and Attack Anlysis for Text

watermarking. Proc. of the Int'l Conference on E-Business and Information System Security

(EBISS), 1{6, 2009.

155

Author's Publications

1. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, \Watermarking Digital Images in the Fre-

quency Domain: Performance and Attack Issues", LNBIP 189, Springer, 68{84, 2014.

2. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, \From image to audio watermarking using

self-inverting permutations", Proceedings of the 10th Int'l Conference on Web Information

Systems and Technologies (WEBIST'14), SciTePress, 177{184, 2014.

3. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, \Watermarking images in the frequency

domain by exploiting self-inverting permutations", Journal of Information Security 4(2),

80{91, 2013.

4. I. Chionis, M. Chroni, and S.D. Nikolopoulos, \A dynamic watermarking model for embed-

ding reducible permutation graphs into software", Proceedings of the 10th Int'l Conference

on Security and Cryptography (SECRYPT'13), SciTePress, 74{85, 2013.

5. M. Chroni and S.D. Nikolopoulos, \Design and evaluation of a graph codec system for

software watermarking", Proceedings of the 2nd Int'l Conference on Data Management

Technologies and Applications (DATA'13), SciTePress, 277{284, 2013.

6. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, \Watermarking images in the frequency

domain by exploiting self-inverting permutations", Proceedings of the 9th Int'l Conference

on Web Information Systems and Technologies (WEBIST'13), SciTePress, 45{54, 2013,

(Best Student Paper Award).

7. I. Chionis, M. Chroni, and S.D. Nikolopoulos, \Evaluating the WaterRpg software wa-

termarking model on Java application programs", Proceedings of the 17th Panhellenic

Conference on Informatics (PCI'13), ACM, 144{151, 2013.

8. M. Chroni and S.D. Nikolopoulos, \Multiple encoding of a watermark number into reducible

permutation graphs using cotrees", Proceedings of the 13th Int'l Conference on Computer

Systems and Technologies (CompSysTech'12), ACM, 118{125, 2012.

9. M. Chroni and S.D. Nikolopoulos, \An e�cient graph codec system for software watermark-

ing", Proceedings of the 36th Int'l Conference on Computers, Software, and Applications

(COMPSAC'12), Workshop STPSA'12, IEEE, 595{600, 2012.

Author's Publications (cont.)

10. M. Chroni, A. Fylakis, and S.D. Nikolopoulos,\A watermarking system for teaching intel-

lectual property rights: implementation and performance", Proceedings of the 11th Int'l

Conference on Information Technology Based Higher Education and Training (ITHET'12),

IEEE, 1{8, 2012.

11. M. Chroni and S.D. Nikolopoulos, \An embedding graph-based model for software water-

marking", Proceedings of the 8th Int'l Conference on Intelligent Information Hiding and

Multimedia Signal Processing (IIH-MSP'12), IEEE, 261{264, 2012.

12. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, \Watermarking images using 2D represen-

tations of self-inverting permutations", Proceedings of the 8th Int'l Conference on Web

Information Systems and Technologies (WEBIST'12), SciTePress, 380{385, 2012.

13. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, \A watermarking system for teaching stu-

dents to respect intellectual property rights", Proceedings of th 4th Int'l Conference on

Computer Supported Education (CSEDU'12), SciTePress, 336{339, 2012.

14. M. Chroni and S.D. Nikolopoulos, \Encoding watermark numbers as cographs using self-

inverting permutations", Proceedings of the 12th Int'l Conference on Computer Systems

and Technologies (CompSysTech'11), ACM, 142{148, 2011, (Best Paper Award).

15. M. Chroni and S.D. Nikolopoulos, \Encoding watermark integers as self-inverting permu-

tations," Proceedings of the 11th Int' l Conference on Computer Systems and Technologies

(CompSysTech'10), ACM, 125{130, 2010.

Short CV

Maria G. Chroni was born in Ioannina, Greece, on 4th of December, 1982. She holds a BSc degree

(2004) and an MSc degree (2007) in Computer Science both from the Department of Computer

Science, University of Ioannina. She also holds a BEdu degree (2013) in Early Childhood Edu-

cation from the Department of Early Childhood Education of the University of Ioannina. She

defended her PhD on 19th of December, 2014.

Her research interests are in design and analysis of algorithms, algorithmic graph theory,

and information hiding (in this area, she has proposed several algorithmic techniques for water-

marking software, image, audio, and text). Her research interests are extended in applications

of Information and Communication Technology (ICT) in Education. She has participated in the

research project Pythogoras-II and the European projects TRICE (Teaching, Research, Innova-

tion in Computing Education) and FETCH (Future Education and Training in Computing: How

to support learning at anytime anywhere). She is a researcher at the Algorithms Engineering

Lab (AlgoLab) of the Department of Computer Science and Engineering, University of Ioan-

nina (2009-now). She is a member of IEEE (2012-now) and Student Branch Chair of IEEE at

University of Ioannina (2012-14).

