AhyoplBuéc Teyvixéc Kndixonoinone Metabéoewy
xat Metabetindv [pagnudtwy yio Ydatooluavorn
Aoylouxou, Ewodvae, "Hyou, o Keywévou

H AIAAKTOPIKH AIATPIBH

UTOBAARETAL OTNY
optobeloa and v T'eviy) Yuvérevon Ewunric Xivleonc
tou Tuhuatoc Mnyavixdy H/Y xow [TAnpogopixic

Eéetaotind) Emitponn

and Ty

Mopta I'. Xpdvn

0¢ UEPOC TWY YTOYPEDOEWY Yot TN AN Tou

AIAAKTOPIKOY AIMTAQMATOY, ¥THN ITAHPOPOPIKH

Aexéufperog 2014

TPIMEAHY X YMBOYAEYTIKH EIIITPOITH

o Yralvpoc A. Nuxohérmovhog, Kabnyntic, Tudue Mnyavixdy H/Y xow Inpogopiniic, Ha-
vemothuo Ioavvivey (emBrénwy).

o I'edpyrog A. ITanaddénoviog, Kabnyntic, Turua IThinpogopixic, Havemotiuo Kinpou.

o Iwdvvn Ytapatiov, Avaninpwtic Kabnyntic, Tufua Opydvewong xar Awixnong Enyer-
efhoewy, Haveriotiuro Iatpdy.

EIITAMEAHY EEETAXTIKH EIITPOITH

1. Xradpog A. Nuxorérovhog, Kabnyntic, Tudua Mnyavixdy H/Y xoa Iinpogopuxc, Ila-
vemothuo Ioavvivey (emBrénwy).

2. Tedpyrog A. ITanaddnoviog, Kabnyntie, Tunua IIinpogopuxic, Havemotiuio Kinpou.

3. Iwavvn Yrapatiov, Avaminpwtic Kabnyntic, Tudua Opydvwong xav Aolxnorng Emvyer-
efhoewy, Haveriotiuto Iatpdy.

4. Iwdvvng Mavwiénouvrog, Kabnyntic, Turua IIinpogopuic, Aptototéheio Haveniotiuto

Ozoocahovinng.

5. Yrégavog I'xpltlaing, Kabnyntic, Tudua Mnyovixdv IIinpogoplaxdy xar Emuxotveovia-
x0v Yuotnudtoy, Havemotiulio Avyalou.

6. Aewvidag IMainéds, Avaninenthc Kalnyntic, Tudua Mnyoavuedy H/Y xow IIinpogopuxic,
IMoaverniothuto Twavvivey.

7. Aouxds I'ewpyiddng, Enixovpoc Kalnynthc, Tudua Mnyavixdy H/Y xou ITinpogopuxic,
IMoaveriothuto Twavvivwy.

DEDICATION

Xty untéea uov...

.. Tewpyia

To my mother...

...Georgia

You were my strength when I was weak
You were my voice when I couldn’t speak
You were my eyes when I couldn’t see
You lifted me up when I couldn’t reach
You gave me faith because you believed
You were always there for me

I’'m blessed and grateful for been my mother!

EYXAPIXTIES

H exnévnomn wag ddaxtopwnrc dwatp3ric amotehel pia mohvety dwadixaota, éva talidl yeudto ou-
YUWAGELS, GUYTROPLA Ue avlphToug oy UoLedlecal XoLvd evBLAQEEOVTA XAl GTOYOUS, UANS XL UE
avlpdroug Tou anhd Peloxovtal Simha cou xal xdvouy To TaEidL auTd TLo GUOPYO XuL AGHANES.
To 36 pou Ta&idL ohoxhnedinxe xau yio autd Ha Hlela va euyoplothion Eeywplotd 6houg autolg
Toug avipdnoug mou ftav cuvtaddnTes 6To Tagldl auTd KS EAdYLoTO delyua EVYVOUOGUYNS %ol
avaYvoELoTS TNe ouuBolhc Touc.

Ou ffeha va euyopLoThow Pué€oo and TNy xupdild Hou Tov xUplo cUYTAELLOTY) Uov, Tov eTBAéTo-
vTa xalnyntd wou, Ltalpo A. NuxoAdénouho yio Ty SuvatdTnta Tou Lou €3waoe vo axolovinon Ta
SUOPGU XAUL CUVAETAGTIXA LOVOTATLO TNG £PEVVAS, YLOL TNV EUTLGTOGUVY TOL Hou €del€e, XaL Yo TN
othplgn xat xabodRynon nou uwou mapelye xald’ 6An TN Sidpxela Ty oToLd®Y wou. Me uabe vo €yw
TloTn, TEOCHAWOT) GTOUC GTOYOUC YOV, XAl Vo EEMEPVE T eunddLo. Oa feha Vo TOV EUYAPLETROW
yiatl uéoa and autd to TaZldl GAwV AUTOY TV ETOV Hov dvolle véoug opllovtes xalL Lou UEeTEPERE
ue o xahvTepo TeéTo TARlog YVdoewy, dedlothtmy xau aTtdoewy oy Hu ue axohouvfolv xon o ue
odnyoly otn Lwh you. Armotehel yio uéva mpdTuTo axadnuaixos, daoxdiou, xoL avlpdrou.

Euyaptotd Oepud o uéhn tng e€eTAO TG ERLTROTAS LOU YLa TH TLUY TOU UOU EXAVALY VA GUUUE-
TEYOUY GE QUTH 0L YL TNV OLUGLAGTLXY GUUBOAY TOUS GTNY TOLOTLXT| AELOAOYNOT] TWY EQELVITIXGY
uou mempayUévey. Euyapiotd Toug petamtuytaxols @outntég, xou Théov @lhoug uwou, ‘Ayyeho
Purdoen xou Iwdvvny Xidvn yior Ty ethixplvry epeuvntiny| cuvepyasio mou elyaue, oL Yo To xAlua
EUTLOTOOUYNG, OEBACUOY, ol TOTNG GTOUS XOWoUS epeLYNTIX0US oTdyous nou Oécaue. H ou-
vepyaota auTh, EXTOC amd To OO ONUAVTLXY EPELVNTIXG amoTEAéOUATA, UOY E0WOE TEWTIOTWS
do agiohoyoug, xaholc xal ayannuévoug Glloug.

ISiontépwe Ha Abeha vo euyaptothon toug avlpdnoug tou Turuatoc Mnyavixdy H/Y xon
IIinpogopixic Tou Iavemotnuiov Inavviveoy, Yo ™) othellr Toug, TV EUTLETOGUVY TOUS, XUl TN
duvatdtnTa Tou Hou €dwoay va eluat o eva Tuua tepdTuto, Ue dpLoTy emaTnUOVLXT UTOSoUT) XAl
Goyo xhipa cuvepyaolog, ol Vo €pYUCTG GE EVA AVTIXEUEVO TOU TEAYUATIXE YU XAl TOU
atofdvouar 6TL TpooPépw Ue TG YVOOoELS Tou To (So autéd Tuhua xdrote pou édwae.

Euyoplotd toug @lhoug Uou Tou amodEyTnXAY TNY anouclo Uou UEGA OTLC ATEAELWTES (PES
TOU YAVOUOUY GTO LAY autd xoouo g €peuvag. Téhog ogelhw €va ueydho suyapLotd oTny
OWOYEVELWD HOU, YLl TNV aydmy Toug, Ty xabodryney toug, Ty amodoyn xal aThelln Ghwy Twv
OTOY WY L0V, TOY GTOYWY TOY GTOLSGY LoV, TV aToYwY TNe Luhig uou.

Mopia I'ewpylov Xpdvn
Aexéufpelog 2014

.. éva véo talibt Eexival

TABLE OF CONTENTS

1 Introduction 1
1.1 Information Hiding 1
1.2 Digital Watermarking oL 3

1.2.1 Watermarking Classification 5
1.2.2 Properties 6
1.2.3 Attacks 6
1.2.4 Watermarking Techniques 8
1.3 Motivation L e 13
1.4 The Structure of the Thesis 14
1.5 Main Results 15

2 Encode Watermark Numbers as Self-inverting Permutations 19
2.1 Introduction L 19
2.2 Preliminaries oL e e 21
2.3 Self-inverting Permutations (SiP) Lo o Lo 22
2.4 Encode Watermark Numbers as SiPs, 23

24.1 Algorithm Encode-W.to.SiP oo 0oL 24
24.2 Algorithm Decode SiP.toW 25
2.5 The Structure of Permutation 7 27
2.6 Properties of Permutation 7 29
2.7 Concluding Remarks 30

3 Encoding SiPs as
Reducible Permutation Graphs 31
3.1 Introduction 31
3.2 Preliminarieso e 35
3.3 Reducible Permutation Graphs (RPG) 35
3.4 The Structure of our Codec System 36
3.5 Encode SiPs as Reducible Permutation Graphs 37

3.5.1 Encode SiPs as Reducible Permutation Graphs -1 37
3.5.2 Encode SiPs as Reducible Permutation Graphs - I 41
3.6 Properties of the Flow-graph F[n*] 44
3.6.1 Structural Properties 45
3.6.2 Unique Hamiltonian Path 45
3.7 Detecting Attacks L 46

3.7.1 Node-label Modification 46
3.7.2 Edge Modification oL oo o 47
3.8 Concluding Remarks 48

Multiple Encoding of a Number

into RPGs using Cographs 49
4.1 Introduction L 49
4.2 Background Resultso L 20
4.2.1 Cographs and Cotrees 52
4.3 Multiple Encoding of a SiP into Cographs 53
4.3.1 Algorithm Encode_SiP.to.Cograph 53
4.3.2 Algorithm Decode_Cograph.to.SiP 54
4.4 Encoding Cographsas RPGs oo oL o6
4.4.1 Algorithm Encode_Cotree.to. RPG 56
4.4.2 Algorithm Decode RPG.to.SiP, 58
4.5 Concluding Remarks oo L 60
Software Watermarking 61
5.1 Imtroduction oL 61
5.2 Background Results L 65
52.1 Encode Numbersas RPGs 66
5.2.2 Call-graphs L 66
5.3 The Dynamic Watermarking Model WaterRPG 67
5.3.1 Operational Framework 67
5.3.2 Model Componentso 67
5.3.3 Embedding an RPG intoa Code 74
5.3.4 Extracting the RPG from the Code 79
5.4 Implementation oL 79
5.5 Model Evaluation 84
5.5.1 Performance. 85
5.5.2 Resilience oL 89
5.6 Concluding Remarks 92
Image and Audio Watermarking 93
6.1 Introduction L 93
6.2 Background Results 97
6.2.1 2D Representation of SiP o000 97
6.2.2 1D Representation of SiP oL 99
6.2.3 Color Images 100
6.2.4 The Discrete Fourier Transform, 101
6.3 Image Watermarking in the Spatial Domain 101
6.3.1 Embed Watermark into Image-S 00 101
6.3.2 Extract Watermark from Image-S L. 105
6.3.3 Performance. 106
6.4 Image Watermarking in the Frequency Domain 108

il

6.4.1 Embed Watermark into Image-F 0. 109

6.4.2 Extract Watermark from Image-Fo 0oL 111
6.4.3 Function f 112
6.4.4 FExperimental Evaluationo 0000 113
6.4.5 Performance. L 113
6.4.6 Attack Issues L 114
6.5 Audio Watermarkingo oo 118
6.5.1 Embed Watermark into Audio L. 118
6.5.2 Extract Watermark from Audio L. 122
6.5.3 Experimental Results o oo 123
6.6 Concluding Remarks 126
Text Watermarking 129
7.1 Introduction L 129
7.2 Background Results o 132
7.2.1 Structure of a PDF Documents 134
7.3 Watermarking PDF Documentso 135
7.3.1 Embed Watermark into PDF -1 136
7.3.2 Embed Watermark into PDF - 11 oL 137
7.3.3 Embed an RPGintoa PDF 139
7.4 Concluding Remarks 141
Conclusions and Future Work 143
8.1 Encoding Numbers as SiPsand RPGs 143
8.2 Software Watermarking oL Lo 144
8.3 Image and Audio Watermarking oL 145
8.4 Text Watermarking 146

1l

LIST OF FIGURES

1.1
1.2
1.3
14
1.5
1.6

2.1

2.2

3.1

3.2

3.3

3.4

3.5

4.1

4.2
4.3

4.4

A formal view of digital watermarking.o
An abstract view of software and digital media watermarking.
Digital watermarking classification.o
Digital watermarking attacks.o Lo
The Structure of the 8 Chapters of the Thesis.
Algorithms of the Chapters 2, 3, and 4 (Part II: Encodings) and Chapters 5, 6, and 7
(Part IIT: Watermarking).

The main data components used by the algorithms of our codec system: (i) the watermark
number w and (ii) the self-inverting permutation 7#*. L.
The main data components used by our two codec Algorithms Encode_W.to.SiP and
Decode SiP.to.W. oo

The main data components used by the algorithms of our codec system: (i) the watermark
number w, (ii) the self-inverting permutation #*, and (iii) the reducible permutation
graph Fm*]. 0 e
The DAG D[n*] of the self-inverting permutation 7* and the corresponding Dmax-tree
Talm], o o e e
The main structures used or constructed by the algorithms Encode_SiP.to.RPG-I and
Decode RPG.to.SiP-I, that is, the self-inverting permutation 7*, the values of function
P(), the reducible permutation graph F[7*], and the Dmax-tree Ty[7*].
The main structures used or constructed by Algorithms Encode_SiP.to.RPG-II and
Decode RPG.to.SiP-1I, i.e., the self-inverting permutation 7*, the decreasing subse-
quences of 7*, the graph F[r*], the tree T,[7*], and the elements of 7* in pairs.
The probability for the RPG F[r*] to have the RPG property after a modification of
(a) 1 edge, (b) 2 edges, (c) 3 edges, and (d) 4 edges. Note the different scaling of the four

diagrams. L L L L e e e e e e e e e e e e e

The main data components used by the algorithms of our codec system for multiple
encoding the same watermark number w = 4 into several RPGs using Cographs.

(a) A cograph on 7 vertices, and (b) the corresponding cotree.
Two cographs C[7*] and C[#*] on 7 vertices which encode the same watermark number
w, corresponding to permutation 7* = (3,5,1,7,2,6,4), along with their corresponding
COLIEES. L o v o i e e e e e e e e e
The cotree Ty [7*] and the resulting RPG-tree Ry[n*]; trees T'[n*] and T"[r*] show the

contraction ProCess. et e e e e e e e e e e

v

- Ot o W

4.5

0.1

9.2

9.3

5.4

5.5

0.6

9.7

5.8

5.9

9.10

5.11

5.12

6.1

6.2
6.3
6.4

6.5
6.6
6.7

Two RPG-trees R1[r*] and Ra[n*] and the corresponding reducible permutation graphs
Fi[r*] and Fy[r*], respectively, produced by the algorithm Encode Cotree.to.RPG.. . . 59

(a) The dynamic call-graph G (P, Ij.,) of an application program P. (b) The reducible
permutation graph F[x*]. (c¢) The dynamic call-graph G(P*,Ii.,) of the watermarked
program P*. . .. L L e e 68
(a) The real-call (fs, fs) in the call-graph G(P, I1e,) of a program P; bold arrow. (b) The
corresponding path-call (f1, f3, f5, fs) in the call-graph G(P*, I.,) of the watermarked

program P*; bold arrows. Lo 70
(a) The forward call pattern f-call; (b) The backward call pattern b-call; (c) The path
call pattern p-call. The boxes with marked corners are the f|b-blocks. 71

An example of cf-statement modification via opaque predicates in the case where
(fi, f;) is a water-forward function call. 0000 72
An example of cf-statement modification via opaque predicates in the case where
(fi, fj) is a real-backward function call. 72
An example of cf-statement modification via opaque predicates of the function f;
in the case where (f;, f;) is a water-forward function call. 73
A block diagram of the main operations of the embedding algorithm. 75
(a) The dynamic call-graph G(Shortest_Path,l;.,). (b) The reducible permutation
graph F[r*] which encodes the watermark w = 2, where 7* = (3,5,1,4,2). (c) The
dynamic call-graph G/(Shortest Path®*, Ipey). 77
The call-tables 7 and T of the programs Shortest_Path and Shortest_Path*,
respectively, the edge characterization table C*, and the values of the ¢f-variable. 78
The function up() of the original program Laser watermarked with the naive
approach; the functions down() and health() are both water functions and belong
to category Begiice, i-€., both are functions of G(Laser, Iyey). . - 82
The function up() of the original program Laser watermarked with a stealthy
approach; the functions down() and health() are both water functions and belong
to category Begiice, i-€., both are functions of G'(Laser, Ijey). . - 83
Graphical representation of the results for parameters (i) Execution time, (ii.a)
Disk usage and (ii.b) Heap space usage of the original program P, and the cor-
responding watermarked program under both the Naive Py and Stealthy Pg ap-
proaches. L 88

(a) A 2D representation of the self-inverting permutation = = (5,6,9,8,1,2,7,4,3); (b) A

2DM representation of permutation 7.o 98
The 1DM representations of the self-inverting permutation = = (4,7,6,1,5,3,2). 99
The range of colors represented on the Cartesian 3-dimensional system. 100
The brightness kf; of the central and cross pixels pf; of the grid-cell Cj;(I), 0 < £ < 4,

and the brightness kf]m of the cycle-cross pixels pf}”, 1<¢(<4andm=1,2,3. 103
(a) The original image I; (b) The watermarked image L,. 104
The embedding process. L Lo e e e e 109

The original image of Lena and its two watermarked images with ¢ = ¢y, and ¢ = copy;
the watermark corresponds to SiP (6,3,2,4,5,1). L. 114

6.8 Some original images and their corresponding watermarked ones; for each image, its size
and its cop, and PSNR and SSIM values are also shown, for @ =55.
6.9 The original image of Lena and its watermarked images with o2 = 0.01, 02 = 0.001 and
02 =0.0001.o
6.10 (a) Watermarked image of Lena, (b) 90 degrees angled image, (c) 180 degrees angled
image, and (d) cropped image.
6.11 Segmentation of the S’s signal into specific frames according to 1DM-representation of
the permutation 7*. L L L e e e e
6.12 The DFT representation of a marked frame.
6.13 The “Red” and “Blue” segments on DFT.

6.14 The encoding process of audio signal watermarking.

7.1 Three different representations of permutation #* = (4,7,6,1,5,3,2).
7.2 Components of aPDF file.
7.3 (a) The structure of a PDF file; (b) The code of a PDF file containing, in object 500bj,

the text “Hello World”. o . o e
7.4 (a) The main structural components of a PDF file; (b) The document structure of PDF

7.5 The initial PDF document T and watermarked PDF document T, using the 1D repre-
sentation of permutation 7* = (4,7,6,1,5,3,2).
7.6 The initial PDF document T and watermarked PDF document T, using the 2D repre-
sentation of permutation 7* = (4,7,6,1,5,3,2). L.
7.7 The watermarked DS(T™*) which encodes the RPG of n* = (4,5,3,1,2).

vi

121

LIST OF TABLES

0.1

9.2
9.3
5.4
9.9
5.6

6.1

6.2

6.3
6.4

General properties of watermarking models and the properties of our WarerRPG

model.o 65
Execution Time (msec) Lo 87
Disk Usage (Kb) 87
Heap Space Usage (Mb) 87
Three Group of Bytecode Instructions 89
Indicative Bytecode Instructions of each Group 89

The PSNR and SSIM values of the original and watermarked images, for compression of

qualities @ =85, =75, =65, and Q@ =55. 115
The PSNR values of the original and watermarked images, for Gaussian noise with vari-

ance values 02 = 0.01, 02 = 0.001, and 62 =0.0001. 116
The PSNR values of the watermarked audio signals. 124

The Hamming distance of the watermark w and the extracted watermark w* after com-

mon signal attacks. L Lo Lo 126

vil

ABSTRACT

Maria G. Chroni. PhD, Department of Computer Science & Engineering, University of Ioan-
nina, Greece; Graduation December, 2014.

PhD thesis: Algorithmic Techniques for Encoding Permutations and Permutation Graphs for
Watermarking Software, Image, Audio, and Text.

Supervisor: Stavros D. Nikolopoulos, Professor.

Internet technology, in modern communities, has become an indispensable tool for everyday life
since most people use it on a regular basis and do many daily activities online. This frequent use
of the internet means that measures taken for internet security are indispensable since the web
is not risk-free. One of those risks is the fact that the web is an environment where intellectual
property is under threat since a huge amount of digital data are transferred every day, and thus
such data may end up on a user who falsely claims ownership.

Digital watermarking (or, simply, watermarking) is a technique for protecting the intellectual
property of a digital object; the idea is simple: a unique identifier, which is called watermark,
is embedded into a digital object which may be used to verify its authenticity or the identity
of its owners. A digital object may be audio, picture, video, text, or software, and the water-
mark is embedded into object’s data through the introduction of errors not detectable by human
perception; note that, if the object is copied then the watermark also is carried in the copy. Effi-
cient watermarking techniques, should be able to embed and successfully extract the watermark,
even after the digital object has been attacked, i.e., it has been subjected to transformations by
malicious users that aim to mislead the watermark extractor.

The issues addressed in this thesis concern the design of efficient and easily implementable
codec systems for watermarking software and digital media, such as image, audio, and text.
Previous works on digital watermarking propose specific encoding techniques for a specific type
O of a digital object, i.e., the main idea of a proposed technique for watermarking a digital object
of type O cannot be efficiently applied to a different digital object of type O'; for example,
the main idea of a proposed technique for watermarking a software (application program) P,
cannot be efficiently applied to image Z, audio (signal) S or even text 7. In our work, we
overcome such a drawback by proposing algorithmic techniques for encoding a watermark w
into a self-inverting permutation (or, SiP for short) 7*, and then embedding the self-inverting
permutation 7* into different digital objects, i.e., software, image, audio, and text, by using
different representations of the same SiP 7*. The data structures used to represent the SiP, as
well as the encoding techniques, encompasses important properties allowing us to design a codec
system which efficiently detect attacks.

viii

In the first part of the thesis, presents the basic research on encoding watermark members
as graph structures through the use of self-inverting permutations (SiP) and algorithms for
multiple encodings. We introduce the notion of a bitonic permutation, and present our algorithm
Encode W.to.SiP for encoding an integer w as a self-inverting permutation 7*, along with the
corresponding decoding algorithm Decode_SiP.to.W, and discuss important properties of the self-
inverting permutation 7*. Then, we define the main graph-based data component of our codec
system, namely reducible permutation graphs (or, PRG for short), describe the two operational
phases of our codec system, and present the structure of our system’s reducible permutation
graph F[n*]. We next present the two algorithms, namely Encode_SiP.to.RPG-I and -II for
encoding the self-inverting permutation 7* as a reducible permutation flow-graph F[r*] along
with the corresponding decoding algorithms Decode_RPG.to.SiP-I and -II. Finally, we present
the properties of the reducible permutation flow-graph F[r*] and show that node-label or edge
modifications on the graph F[r*] can be efficiently detected.

We extended the class of graphs that encode a watermark by proposing a randomized en-
coding algorithm which takes as input a self-inverting permutation 7* and encodes the same
permutation 7 into several cographs C[7*], Ca[r*],. .., Cp[7*]. Then, we present the algorithm
Encode_Cograph.to.RPG, along with its corresponding decoding algorithm, which embeds a co-
graph into an RPG by exploiting the structure and some important algorithmic properties of
its cotree. Thus, having such encoding algorithms, we can encode a watermark number w into
many RPGs Fy[r*], Fa[n*],..., Fp[7*], n > 2. A digital object can be made more resilient to
attacks if multiple copies of the same watermark w are embedded into it.

The second part of the thesis, presents how the different components of our codec system can
be used for watermarking software, digital images and audio, as well as, digital text. Initially, we
present our dynamic software watermarking model WaterRPG; we first describe its structural
and operational components and then the embedding algorithm Embed RPG.to.CODE and the
extracting algorithm Extract_CODE.to.RPG. The main idea behind the proposed watermarking
model is a systematic modification of appropriate function calls of the program P, through the use
of control statements and opaque predicates, so that the execution of the watermarked program
P, with a specific input gives a dynamic call-graph from which the watermark graph F[r*| can
be easily constructed. Then, we implement our watermarking model in real Java application
programs and show two main watermarking approaches supported by the WaterRpg model,
namely naive and stealthy. We also evaluate our model under several software watermarking
assessment criteria.

Next, we present our image watermarking technique where a watermark w or, equivalently,
a self-inverting permutation 7* of length n*, is transformed from a numerical form to a 2D form
(i.e., 2D-representation) through the exploitation of self-inverting permutation properties. The
2D-representation can be efficiently marked on an image I resulting thus the watermarked image
1. The main idea of the proposed algorithms is that a self-inverting permutation 7* is embedded
into an image I by first mapping the elements of 7* into an n* X n* matrix A* and then using the
information stored in A* to mark specific areas of image I in the frequency domain resulting the
watermarked image [,,. We have evaluated the embedding and extracting algorithms by testing
them on various and different in characteristics images that were initially in JPEG format and we
had positive results as the watermark was successfully extracted even if the image was converted
back into JPEG format with various compression ratios.

1X

Similarly, since an audio signal is one dimensional object, we present a transformation of a
watermark w or, equivalently, a self-inverting permutation 7* of length n*, from a numerical
form to a 1D form (i.e., 1D-representation) and then an algorithm which embeds w into an
audio signal. More precisely, our proposed algorithm embeds a self-inverting permutation 7*
over the set N« into an audio signal .S by first mapping the elements of 7* into an 1D-matrix
B* of length n’ = n* x n*, and then, based on the information stored in B*, marking specific
areas of audio S in the frequency domain resulting thus the watermarked audio S,,. An efficient
algorithm extracts the embedded self-inverting permutation 7* from the watermarked audio S,
by locating the positions of the marks in Sy,; it enables us to reconstruct the 1D representation
of 7* and, then, obtain the watermark w.

Based on the three different representations of self-inverting permutation (SiP), namely 1D-
representation, 2D-representation, and RPG-representation (i.e., the encoding of permutation
7* as a reducible permutation graph F*[r*]), we present the algorithms Embed SiP.to.PDF-I,
Embed_SiP.to.PDF-II, and Embed RPG.to.PDF, respectively, along with the corresponding ex-
tracting algorithms, for embedding a watermark number (or, equivalently, a self-inverting per-
mutation 7 or a reducible permutation graph F*[r*]) into a PDF document file T. We have
evaluated the embedding and extracting algorithms by testing them on various and different in
characteristics PDF documents.

Finally, we conclude the thesis by summarizing our results, discussing possible future exten-
sions, and proposing open problems for further research in the aria of digital watermarking and,

in general, in the aria of information hiding.

I IEPIAHWH

Moagia I'. Xpévy. PhD, Tudua Mnyavixadv H/Y & Mnpogopintc, Tlavemotiuo Iwavvivey.
Arnogoltnor, AexéuPplog 2014.

Adaxtopuxr; Avatel3n: Alyoplbuxéc Teyvinéc Kwdixonoinong Metabéoewy xar Metabetindy
Coagnudtwy yio Ydatochuavern Aoyiouxol, Ewdvag, "Hyouv xal Kewévou.

EmpAénwv: Ytadpog A. Nuxolémoviog, Kabnynrtic.

Y11 alyyeovn exoyr) To SLadixTuo anotehel avandonacTto ey voroyd uéco Porbelag twv dpaotn-
proThTwY TNg xabnuepvric pag Lorhg, xalog yenowonoweltal yia) Siexnepaiwon odvietwy, xau
oUY VA Y eoVOPoRKY, ETAYYEAUATIXGY Xt xalbnuepvdy epyaotdy. H ouveyhc xaw auyvi| yeron tou
dradxtiou, o dyxog tng Ynglaxnic Tinpopoplac mou Sraxtveltol Yéow autol, To eYEOg TNS NALXLI-
xhC SO TEWUATWONS Yphiong Tou, XL EMTAEOV oL Tolhamhol x(vSuvoL TNg TPOCWTLXTC ACPIAELNS
TOV YENOTOV TOU, ATOLTOUY AUENUEVOL XL TEYVOLOYXE eupuT| UéTpa TpooTaciug auToy.

H {npuaxs; udatoofipavern (4, udatoohuaven) elvat wa Teyvixr YL TRV Tpootacio Tne TyEuUd-
Twhc Wroxtnolog evég Ynguaxot avtueluévou. H éa elvar amh: éva yovadixnd avayvwelstixd,
70 onolo ovoudletal LdATOHONUA, EVOWUATOVETAL 6TO YNPLIXG AVTIXEIUEVO TPOXEWEVOU VAL YPT)-
owonownfel yia v anddelln e aubevixdnTac 1 avayveielon Tng TouTOTNTUS Tou Yn@Laxou
avTixelévou and toug Wioxtiteg Tou. 'Eva dmgraxd aviixeluevo unopel va elvar gnguaxds fyog,
eova, xeluevo, 1 AoYLopxs, xat T0 LBATOOTUA EVOWUATOVETAL 6TO Ynelaxd avixeluevo eLod-
YOVTUG G€ aUTO TEOTOTOLAGELS Tou dev elval opatég xon dev yivovtar avtidnmtés. L var elvon
anodoTixY) U TEOTELVOUEVY TEY VXY LUdaTooHUAVeNS, Do TREREL VO EVOOUATOVEL ANOTEAEGUATLIXY
70 udatdonua 6Ta Pnelaxd SedoUEVA TOU AVTIXEWEVOU XAl VO TO EEAYEL EMLTUY OGS, aXOUT XUl AV
To avTixeluevo autéd €yel unootel Tponomoioel, dnhadh éyel deybel embéoeig and xaxdBouhoug
XENOTES UE OXOTS TNHY UN-eQXTH 1 avemTuy T e€aywyy) TOL LUdUTHONUOL.

H rapotoo Sidaxtopuxy| Stateifn mpayuateletal Deuata oyetind Ue tny oyedlaoT anoteAecuaTL-
AV XL EUXOAAL VAOTOWIOLUGY GUOTNUATOV X®ELXOTOINGTG Yid TNV USATOGHUAVGT) AOYLOULXOY XaL
PnpLaxedy péowy, 6nwg elval 1 exéva, o HYog, xoL To xeluevo. X1a €wg 0HUERN EPEUVNTLXE ATOTE-
Aoyt Yneaxnc udatochuavens, xdbe TPOTELVOUEYY TEYVIXY) XOIXOTOINCNS XAl EVOOUATWOTNS
egapudletar ouviing oe éva ouyxexpuuévo eldog dmgraxod aviixewévou O. Iho ouyxexpuéva,
TEYVIXES XWOLXOTOINGTS TOU €YUV EQUPUOCTEL YL TNV UBATOCHUAVET) EVOS YNPLAXOT AVTLXELUEVOU
O, 3ev uropoHY v eQuUpL06TOUY, TOUAEYLETOY £UX0AA, ot éva dlapopeTtind avixelpevo O, T wo-
eddelyua, 1 Baowh Wéa Uag TEXVIXHEC TOU YenoLoTotinxe oty LBATOGHUAVGT EVOS AOYLOULXOU
P, dev unopel va egapuootel anotehecuatind oty ewova L, otov fyo S 1) axdua oe eva xeluevo
T. H onuavixd ouvelogopd tng napolboag dateBhc €yxeltal otn oyedlaoy anoTEAECUATIXGY
ahyopliuxdv TexVdy xeduxorolnong evég udATHONUOL W OE ULd AVTOAVAGTEEQOLGH UeTdleo

x1

(, SiP) 7*, xafdc xar oty evowudtwon e auvtoavatpépovcus uetdbeone ©* oe SapopeTind
Pnpraxd aviixelyeva, Onng AoyLouws, exbdva, y0g, xoL XEWEVO, YpNOLLOTOLOVTAUS LOUPOPETLXES
avanapaotdoels g g uetdbeone 7. O dopéc SeSOUEVHDY TOU YENGLLOTOLOVYTAL YLX THY VAT~
pdotaoy e SiP, énwe enlong xat oL ey vixéc xwdLxomolneng, EVOOUATOGVOUY ONUAVTIXES BLOTNTES
70U 3lvouy T1) SUVATOTNTA GYESLUGNS CUGTNUATOY XWILXOTOINGTS TOU AVLYVEVOUY ATOTEAEGUATLX
éva mTAf0og xaxdBovhwy emlécewy.

Y10 npdto uépog g datpPrc, mtapousidlovtal Ta Baoixd epeuvnTIXd aTOTEAEGUOTA YL TNV
xwdxonolnen apliunTxdy USATOCHUATWY GE YRAUPHUATO UEGL TNS AUTOAVIGTEEPOVGUS UeTdbEaTC
(SiP) 7*, xaldc xow ahybplbuol todhanific xwdxonoinong. Ewodyouye apyixd tnv évvola twv di-
Tovx@v (bitonic) yetabféoenv xar ot cuvéyea napovaidlovue tov alyoptfuo Encode W.to.SiP
Y TNV xwdxornolnon evog axepaiou aplbuol w oe uwa autoavaoteépouca uetdbeon T, onwg
eniong xou Tov avtiotolyo alydplfuo anoxwdixonoinong Decode_SiP.to.W, ye mapdAAnin oavo-
popd oTLC oNUAVTIXES WLOTNTES ULag auToavaoTeépoucag Letdfeone m*. Xtn ouvéyela, optlouue
™ Baow yeapobewpntin cUVLGTHCN TOU TEOTELVOUEVOL GUOTHUATOS XwdLxoroinang, TNy onola
ovoudlovue avayodywo petabetnd ypaghuata (reducible permutation graphs ¥, PRG), repi-
Yedpouue TiC Qdoel xwdixonolnong evic udatdanuou oe avaydyLo petafetind ypdonua Fr*],
xafde xow tn Sour| tou yeapAuatog Fr*]. o ouyxexpiuéva, tapovotdlovue Touc ahyoplbuoug
Encode_SiP.to.RPG-I xal —II yio TV xwdixonolnon ULag autoavaotpépoucas Uetdleong m* o€
éva avaydyo petafetind ypdonua Fr*], xabdc xa toug aviiotoryouc akyoplfuoug anoxw-
duonolnong Decode RPG.to.SiP-I xoau -II. Téhog, avagépouue T WOLOTNTES TOU AVAYGYLLOU
uetafetiol ypaghuatog Fm*] xou anodewxviouue 6t xoxdBoukec embéoeic oto ypdonua Flm*],
Omwg Uetovouasia xOUBwy xoL TPOTOTOINGT AXUGY, UTOROUY VA AVLYVEUTOUY ATOTEAEGUATIXG.

Enextelvouye) xhdom Twv yeapnudtny Tou xmdixonololy éva udatéonud TEOTELYOVTAS EVay
mfavotxnd akydelbuo xwdxonoinorne (randomized algorithm), o onolog Séyetar wg eloodo pra au-
ToavVaoTREPoUCA UeTAbEST) TF XAl xwdxoTolel auTY 0t SLAPORETING CUUTANEWUATIXA-UVAY YU
yeaghuata (complement-reducible graphs) # cographs Ci[7*], Can*], ..., Cp[r*]. T1n ouvéyew,
rapovsidlovue tov alydelbuo Encode_Cograph.to.RPG, xabdg xor tov aviietoiyo alydplbuo
aroxwdixonoinong, o onoloc petatpénel éva cograph Ci[7*] oe éva avaydywo uetabetind ypd-
gnua F;[m*] yenowwonowdvtag 0 dout; Tou xoL onuoavtixés alyoptbuixés iotntes e wovadialag
devdpuic avanoapdotacne (cotree) evég cograph. Emouévee, unopolue va xwdconolfioovue éva
aptBuntxé vdatéonua w oe TOAG avaydyiua petabetind ypagphuota Fi[r*], Foln*], ..., Fyr*],
n > 2. H evooudtwon noAaniodyv aviiypdgony mou xenduonowly to (8o udatbonuou oe éva
Pnpraxd avtixelpevo xabotd autd mo avliextind oe xaxdBoulec enbécerc.

Yo dedtepo uépog g SwatpBrc, napovoidlovtar ahyopluixés teyvixés udatoauavens Ao-
yiouwol, Pnglaxic ewdvag, Hyou, xal xewévou, o onoleg Bacilovtal ota Souxd otoiyela tou
OVOTTUYTNXAY X0l TOROUGLAGTNXAY 6TO Te®To Uépog . Apywd, tapoucidletal To woviého duva-
uweric udatooruavong Aoylouxol, to onolo ovoudlovue WaterRPG, xon availovtol ol Souuxég
XL AELTOURYWMES GUVLOTOOES TOU, XAl GTY GUVEYEL Topouctdletal o alybplbuo evowudtnong
Embed_RPG.to.CODE tou udatoouatog 610 xGdxa evog npoypduuatos P, npoxintoviag €tol To
vdatoonuacuévo tpdYypauud Py, , xabde xal o alydelbuoc eCaywyhic Extract_CODE.to.RPG Tou
udatoouatog and Tov xGIWa Tou Tpoyeduuatos Py, H Bacuxd Wéa tou tpotelvouevou cuoThua-
To¢ vdatoofuavong Paciletal 0T CUGTNUATIXY TEOTOTOINCT XATIAANAWY XAHCEWY CUVAPTHOEWY
evog mpoypduuatoc P, ypnowwonotdvtag ouvinxes ehéyyou xar adlogavi xatnyopiuaTd, €1ol
©OOTE 1) EXTENEGT) TOU LBATOOTUAGUEVOU TpoYpduuaToS Py ue ua ouyxexpuwévn eloodo Iie, va

xi1

EMLOTEEPEL EVaL SuVaULXO YRAENUA XAoEwY and To onolo unopel EVXONA VoL XATAGXEVACTEL TO Ypd-
gnua F[r*]. To mpotewvbuevo poviého €yxel vhonowbel oe npoypdupata mou €youv avartuybel
o711 YAGooo npoypauuatiopgol Java, xal 1 vhoroinot| Tou eunepléyel dGo npooeyyilels: v naive
xal v stealthy npocéyyion. Téhog, to npotewvéuevo poviého alohoyhinxe yprnoLLonoLdyToS
dLdpopar xpLTAPLAL YL TNV EXTIUNGCT TNS ANOTEAEGUATIXOTNTAS TOU.

Y1n ouvéyela, napouotdlovue TeEYLxES LdaTooHUAvVENS Ynpraxic ewbvag BaollOUEveES GTO Ue-
TACY NUATLOUS EVOC USATOGHUATOS W 1, LOOSVVIUIL, ULo AUTOAVACTREPOUca UeTdbeon T uhxoug n*
and apthuntix| popet oe dodidotaty (2A-avanapdoTaoy)) YeNoLLOTOLOVTAC TIC WLOTNTES TNG dU-
Toavaotpépoucag uetdbeone mF. H 2A-avanapdotacy uag autoavacsteépoucas uetdeons unopel
va evowuaTelel anoteheouatind oe uio Pneaxt edva, xabde 1 euxdva anotehel Eva StaodidoTtato
avieiyevo. H Baoud Béa twv npotetvouevey akyopliumy udatoouavong exdvog €yxeltar otny
ATEWMOVLEY) TNE auToavaoTeépovaag uetdleorne m* o évav n* x n* wlvaxa A*, otn yeron tne Thy-
pogoplag mou elvar anobnxevuévny oe ouyxexpluéveg Béoelg Tou mlvaxa A*, xou oty Tpononolnoy
TOV AVTIOTOLY WY TERLOY®OY TNe YngLaxnic exdvag I oto nedlo Twv ouyvoThtwY, tapdyovtag €ToL
v vdatoonuacuevn ewova I, Ou ahyodplfuol evonudtwong xal e€aywyhc ToU UBATOCHUATOS G
wea PngLo) ecova aglohoyfnxay melpauatind oe éva 6Uvolo Ynpuaxdy exdvwyv timou JPEG,
UE SLOPOPETLXE YopaxXTNELOTLX, dlapopeTixd UeyEln, xon SlapopeTixés avaroyieg, divovtog Detixd
arotehéouata xafdg To LdaTdoNUA EEAYETAL EMLTUY MG aXOUT) XAl OTNY TERITTOGY TOU 1) elxdva
vplotatar uPniy cuunieon.

"Eyovtac nagovoidocet tig teyvixés udatoouaveng Yneraxdy exdvmy xal xabott o PngLaxds
Ao etvan éva uovodidotato orfua, TopouctdlouUe €Va UETACYNUATIONS TOU USUTOGHUATOS W 1),
teodUvaua, TN auToavaosTeépouaas uetdlbeong m uixoug n*, and Ty aplBuntixny Tou Lopp 6Ty
1A woppt; (1A-avanapdotaon) xor 6T ouvéEyeL tapouotdlovue Tov ahydplduo Tou EVoOUATMVEL
T0 w 670 Ynguaxd yo. 1o ouyxexpuuéva, ol tpoteLvouevoL ahydelblUoL EVEWUATOVOUY UL AUTOU-
vooTtpépovoa petdbeon T urixoug n* o éva NynTixd ofua S, anewxovilovtag Ta oTolyelo Tou T
ot éva povodldotato wlvaxa B* ufixoug n’ = n* x n*, xou ot cuvéyewa ue Bdon to otoryela Tou
mivaxa B* tporonololue o nynTtd ofua S 0To 1edio TV oUYVOTATWY, ETLOTREPOVTAC TEALXY TO
udatoonuacuEvo NyNTxd ofua Sy. O ahkydplbuog eaywyhc Tou udatooruatog Baciletal 6ToY
EVIOTLOUS TRV onuelwy 670 Sy mou €youv tpomorolnlel, Yeyovog mou uag Sivel T SuvatdtnTa va
avaxotaoxeudoouue Ty 1A-avanapdotacy Tou T, xaL eTOUEVWS VA TAPOUUE TO USATHONUA W.

Baolouevol 6Tig TRELS LAPORETIXES AVATARACTACELS ULAS AUTOUVAGTREQOUGAS UeTdleong, S1-
Aadh v 1A-avanapdotao, tn 2A-avanapdotact, xou v RPG-avanapdotacy (fror n xwdixo-
nolnon e petdfeonc ™ oe éva avaydyuwo uetabetind ypdgnua F¥[1*]), napouvedlovue toug
aiyoptOuouc Embed_SiP.to.PDF-I, Embed_SiP.to.PDF-II, xat Embed RPG.to.PDF, avtiotouya,
Yo TNV EVonUdtwor evég udatochipatos w () toodbvapa uag autoavaotpépovoas Uetdbeong T
evoc avaydyou petafetixol ypaghuatog F*[1*]) oe éva dnpraxd xeluevo T tinou PDF. Ou
ahyobpliuol evowudtnons xal efaywyric allohoyhinxay newpauatind oe dtagopetind PDF apycela.

To xetuevo tne SatpPric ohoxinedvetar cuvoPllovTag Ta epeUVNTIXE ATOTEAECUATS UOg, TEO-
telvovtag yehoviuég enextdoelg, xalog oL avolytd epeuvnTind npofifuata TNy TEELOY) TNS
PnpLaxhc UBATOGRUAVENG XL YEVIXOTERN GTNV TEPLOYT| TNS andxpulme TAnpopoplag

xiii

CHAPTER 1

INTRODUCTION

1.1 Information Hiding

1.2 Digital Watermarking

1.3 Motivation

1.4 The Structure of the Thesis

1.5 Main Results

1.1 Information Hiding

Information hiding, steganography, and watermarking are three closely related fields that have
a great deal of overlap and share many technical approaches. However, there are fundamental
philosophical differences that affect the requirements, and thus the design, of a technical solution.
In this section, we discuss these differences, we give some historical examples on how steganogra-
phy used in ancient times and present the importance of information hiding techniques in current
era.

Information hiding (or data hiding) is a general term encompassing a wide range of problems
beyond that of embedding messages in content. The term hiding here can refer to either making
the information imperceptible (as in watermarking) or keeping the existence of the information
secret. Information hiding can thus be thought as yet another tool to convey information and
provide privacy, ownership proof, and deter piracy and copyright infringement.

Staganography, as a branch of information hiding, is not a new method. The technical term
itself is derived from the Greek words steganos (oteyavéc), which means “covered”, and graphi
(vear)), which means “writing”. Steganography is the art of concealed communication. The
very existence of a message is secret. The first use of steganography is reported by Herodotus, the
so-called father of history, who mentions that in ancient Greek, hidden text was written on wax
tablets. When Demeratus wanted to notify Sparta that the king of Persia, Xerxes, intended to
invade Greece, he wrote this message on a tablet and covered it with wax. To recover the message

the other people in Sparta simply had to scrape the wax off the tablet. Aeneas the Tactician
mentions in his documents a lot of other steganographic schemes. Secret letters can be hidden in
the messengers’ shoe soles or women’s ear rings, secret text could be written on wood tables and
then whitewashed or one could use pigeons to carry secret notes. Aeneas also suggested some
schemes which are very similar to those. One of these suggested techniques included hiding text
by making very small holes below or above letters or by changing the heights of letter-strokes in
a cover text. Another ingenious method was to shave the head of a messenger and to paint the
secret letters on the messenger’s head [43].

In ancient China, people used paper masks to agree about the locations of the secret letters.
Both, the sender and the receiver had the same paper mask with a number of holes cut at random
locations. To conceal a message, the sender places this mask over a sheet of paper, writes the
secret message into the holes and fills up the other locations by composing a cover-text. The
receiver can read the secret message by placing his mask over the complete message. Of course,
this technique assumes that the cover text does not cause the suspicion of a third party. It seems
surprising that Cardan, an Italian mathematician, reinvented this scheme in the 16th century
and that a British bank recommended to its customers in 1992 (!) to conceal the personal
information number (for the cash machine) using a similar system. The idea behind this paper

mask scheme is to “camouflage” the secret part in an innocent sounding message.
Very famous is a message which a German spy sent in World War II:

“Apparently neutrals protest is thoroughly discounted and ignored. Isman hard hit. Blockade

1ssue affects pretext for embargo on by products, ejecting suets and vegetable oils.”
Taking the second letter in each word reveals the following secret message:

“Pershing sails from NY June 17

It becomes apparent that people from ancient times need to communicate and exchange secret
messages, ensuring the privacy and authentication of their content. The digital revolution has
penetrated every aspect of our lives, and has formed a new way of communication. Everyday
people communicate through world wide web by exchanging digital text, images, video, or audio.
A vast amount of digital data are transferred every day. The ease of distributing fast and in the
original form digital content through internet, has led to an increment in privacy infringement
from unwanted parties. This has significantly affected not only the global economy but also
people’s personal lives, since personal data are used or transmitted without the consent of the
owner. It is estimated that digital piracy costs the global economy somewhere around $75 billion
annually. Staganography and watermarking appears in digital era as means of privacy protection,
and what it makes them to distinguish from the ancient methods is the cover for secret data,
i.e., the human skin, game, etc. has been replaced by digital text, image, audio, video, software.

Steganography is the process where the digital object is changed by the addition of a secret
message in a way that only the sender and the intended recipient is able to detect the message
sent through it. It is an invisible message, and thus the detection is not easy. It is a better way
of sending secret messages than encoded messages as cryptography does.

Watermarking is used to verify the identity and authenticity of the owner of a digital image.
The term “digital watermark” was first coined in 1993 by Andrew Tirkel et al. [116]. It is a
process in which the information which verifies the owner is embedded into the digital object;

key key
4 1

U

Embed — O, — Extract — w

Figure 1.1: A formal view of digital watermarking.

note that it is embedded in a way that it is inseparable from the data and so that it is resistant
to many operations not degrading the host object. These objects could be either video, picture,
audio, or software. For example, famous artists watermark their pictures and images, ensuring
thus that every copy of the image is a watermarked copy.

It is worth noting that staganography and watermarking although they are similar concepts,
they present some basic differences. The information hidden by a watermarking system is always
associated to the digital object to be protected or to its owner while steganographic systems just
hide any information. “Robustness” criteria are also different, since

o steganography is mainly concerned with detection of the hidden message, while

o watermarking concerns potential removal by a pirate.

Steganographic communications are usually point-to-point (between sender and receiver) while
watermarking techniques are usually one-to-many.

Another concept which is related to watermarking is cryptography. A number of analogies to
cryptographic concepts have been made about watermarking, and according to [45] these analo-
gies are misleading or incorrect. Cryptography is defined as the art and science of secret writing.
The word itself comes from Greek where the words kruptos (xpuntéc) and graphen (ypoghy)
mean secret and writing, respectively. The focus in cryptography is to protect the content of the
message and to keep it secure from unintended audiences. Encryption of digital objects prevents
an intruder from accessing the contents without a proper decryption key. But once the data is de-
crypted, it can be duplicated and distributed illegally. In digital watermarking if somebody tries
to copy the digital object, the watermark is copied along with it. Additionally, in cryptography,
the message is usually scrambled and unreadable. However, when the communication happens,
it is known or noticed. Although the information is hidden in the cipher, an interception of the
message can be damaging, as it still shows that there is communication between the sender and
receiver. Digital watermarking requires imperceptibility, i.e., the watermark is an invisible mark

that is embedded in the digital object, without making it’s presence noticeable.

1.2 Digital Watermarking

Paper watermarks appeared in the art of handmade papermaking nearly 700 years ago. The
oldest watermarked paper found in archives dates back to 1292 and has its origin in Fabriano,
Italy, which is considered the birthplace of watermarks. The analogy between paper watermarks,

»
123456789 Secrete Input (Key) ‘ U l
- aricat l

t Embedder

123456789 ‘—i Extractor Key

Figure 1.2: An abstract view of software and digital media watermarking.

steganography, and digital watermarking is obvious, and in fact, paper watermarks in money bills
or stamps [135] actually inspired the first use of the term watermarking in the context of digital
data.

In 1961, Emil Hembrooke of the Muzac Corporation, in his patent entitled “Identification of
sound and like signals” [65] described a method for imperceptibly embedding an identification
code into music for the purpose of proving ownership. The term identification code for ownership
proving was later replaced by term “digital watermark” in works of the authors [116] and [71].
It took a few more years until 1996 before watermarking received remarkable attention. Since
then, digital watermarking has gained a lot of attention and has evolved very quickly, and while
there are a lot of topics open for further research, practical working methods and systems have
been developed.

Digital watermarking (or, simply, watermarking) is a technique for protecting the intellectual
property of a digital object; the idea is simple: a unique identifier, which is called watermark,
is embedded into a digital object which may be used to verify its authenticity or the identity
of its owners [29]. A digital object may be audio, picture, video, text, or software, and the
watermark is embedded into object’s data through the introduction of errors not detectable by
human perception [15]; note that, if the object is copied then the watermark also is carried in
the copy.

Formally, the watermarking problem can be described as the problem of embedding a wa-
termark w into an object O and, thus, producing a new object O,,, such that w can be reliably
located and extracted from O, even after O, has been subjected to transformations; for exam-
ple, compression in case the object is an image or optimization in case the object is software.
An abstract view of watermarking with side information is depicted in Figure 1.1 (see also,
Figure 1.2).

In the following sections we present a digital watermarking classification, various attacks on
watermarks, and we give an overview of the watermarking techniques proposed in the literature

in software, image, audio, and text watermarking.

Watermarking Classification

Cover Data| | Perceptibility Robustness | [Watermark Type | | Application Extraction

4{ Text ‘ 4{ Visible ‘ Robust ‘ || gr(())l?gi‘lt%g;
—‘ Image ‘ 4‘ Invisible ‘ Fragile ‘ g;;;g;t # Fingerprinting‘ % Semi—blind‘
\—‘Code B auth]gl?ttiz(lzation
B prgtct)algion
{ e

Figure 1.3: Digital watermarking classification.

1.2.1 Watermarking Classification

Digital watermarking has some very basic characteristics, according to the purpose they serve.
Figure 1.3 shows classification of watermarking techniques.

Digital Watermarking can be applied into several digital objects such as text, image, audio,
video, and software. According to perceptivity, a watermark is either visible or invisible. An
example of visible watermark is the logo. Invisible watermarks will not appear as a legible image
to the end-user but can be extracted by some algorithm in the end-user’s direct control. Authors
of [43] define robustness as the “ability to detect the watermark after common signal processing
operations”. In case where a watermark tolerates some of the operations it is characterized
as semi-fragile. Fragile watermarks will always be destroyed when the digital object has been
changed. In image, audio, and video watermarking techniques, the watermark is represented
in the form of a noise signal, such as pseudo noise, gaussian noise. Another common type of
a watermark, which is met and in text watermarking, is image type, where a binary image, a
stamp, or a logo is inserted into the cover data. The watermark of code type, is used in software
watermarking.

Copyright protection is the most important application of watermarking. The objective is
to embed information identifies the copyright owner of the digital media, in order to prevent
other parties from claiming the copyright. This application requires a high level of robustness to
ensure that embedded watermark cannot be removed without causing a significant distortion in
digital media. In fingerprinting a different watermark embedded into each distributed copy, in
order to identify single distributed copies of digital object. It is very similar to the serial number
of software product. Data authentications’ objective is to detect modification of data. This can
be achieved with so called fragile watermark that have a low robustness to certain modifications.
Copy protection tries to find a mechanism to disallow unauthorized copy of digital media. In

broadcast monitoring an identification code is embedded in the digital data being broadcasted.
A computer-base monitoring system can detect the embedded watermark, to ensure that they
receive all of the airtime they purchase from the broadcasters.

Finally, in order to extract the watermark information, blind, semi-blind, non-blind, static, or
dynamic techniques are used. Non-blind techniques require at least an original media. It extracts
a watermark from the possibly distorted image and the original media. Semi-blind techniques do
not require an original media for detection, whereas blind techniques require neither an original
media nor the embedded watermark. It is also referred to as public watermarking. Static or
dynamic techniques refer to software watermarking [32]. A static software watermark is one
inserted in the data area or the text of codes. The extraction of such watermark needs not run
the software. A dynamic software watermark is inserted in the execution state of a software
object. More precisely, in dynamic software watermarking, what has been embedded is not the
watermark itself but some codes which cause the watermark to be expressed, or extracted, when
the software is run.

1.2.2 Properties

There are three main requirements of digital watermarking. They are transparency, robustness,
and capacity, which are presented below.

e Transparency (or Fidelity or Imperceptibility). The digital watermark should not affect
the quality of the original digital object after it is watermarked. In [43] transparency is
defined as “perceptual similarity between the original and the watermarked versions of
the cover work”. Watermarking should not introduce visible distortions because if such
distortions are introduced it reduces the commercial value of the image.

e Robustness. Authors of [43] define robustness as the “ability to detect the watermark
after common signal processing operations”. Watermarks could be removed intentionally
or unintentionally by simple processing operations. Hence watermarks should be robust
against variety of attacks.

e Capacity (or Data Payload). Capacity or data payload is defined as “the number of
bits a watermark encodes within a unit of time or work”. This property describes how
much data should be embedded as a watermark to successfully detect during extraction.
Watermark should be able to carry enough information to represent the uniqueness of the
digital object [43].

1.2.3 Attacks

A watermarked object is likely to be subjected to certain manipulative processes before it reaches
the receiver. Common signal processing functions such as analog-to-digital conversion, digital-to-
analog conversion, sampling, quantization, requantization, recompression, linear and nonlinear
filtering, low-pass and high-pass filtering, addition of Gaussian and non Gaussian noise are com-
mon manipulations. An attack is any processing that impairs or misleads the watermark detector.
The performance of a watermarking algorithm against these attacks reflects its quality.Figure 1.4
shows classification of watermarking attacks.

Watermark Attacks

Removal Geometry Cryptographic Protocol
Sharpen — Brute Force

Oracle

Blur Rotation

— Filter

Scaling

Noise Optimization

Obfuscation

Compression

De-compilation

Figure 1.4: Digital watermarking attacks.

e Removal and interference attacks. Removal attacks intend to remove the watermark
data from the watermarked object. Such attacks exploit the fact that the watermark is
usually an additive noise signal present in the host signal. Moreover, interference attacks
are those which add additional noise to the watermarked object. Lossy compression, quan-
tization, collusion, denoising, remodulation, averaging, and noise storm are some examples
of this category of attacks. The collusion attack occurs when a number of authorized re-
cipients of the multimedia object come together to generate an un-watermarked object by
averaging all the different watermarked objects. In software watermarking one of the first
things that an adversary may do in an attempt to eliminate a watermark is decompile the
application. Once the code has been decompiled the attacker can search for aspects of the
code that look suspicious such as dummy methods.

e Geometric attacks. Geometric attacks do not actually remove the watermark, but ma-
nipulate the watermarked object in such a way that the detector cannot find the watermark
data, i.e.; distort the watermark. This type of attack includes affine transformations such
as rotation, translation, and scaling. Warping, line/column removal and cropping are also
included in this family of attacks. Another example of geometric attack is the mosaic
attack. As far as it concerns software watermarking, distortive attacks are any semantics
preserving code transformation, such as code obfuscation or optimization algorithms. This
type of attack is used to distort a watermark such that it is unrecoverable. The advantage
of this attack over subtractive attacks is that the adversary need not know the exact loca-
tion of the watermark. Rather, he can apply the transformation indiscriminately over the
application.

e Cryptographic attacks. The aim of cryptographic attacks is to crack the security meth-
ods in watermarking schemes and thus find a way to remove the embedded watermark
information or to embed misleading watermarks. For example, finding the secret wa-
termarking key using exhaustive brute force method is a cryptographic attack. Another
example of this type of attack is the oracle attack. In the oracle attack, a non-watermarked
object is created when a public watermark detector device is available. These attacks are
similar to the attacks used in cryptography.

e Protocol attacks. Protocol attacks add the attacker’s own watermark onto the data in
question. This results in ambiguities on the true owners question. The first protocol attack
was proposed by Craver et al. [46]. They introduced the concept of invertible watermarks
and showed that for copyright protection purpose watermarks need to be non-invertible.
The idea behind inversion is that the attacker subtracts his own watermark from the
watermarked data and claims to be the owner of the watermarked data. This can create
ambiguity with respect to the true ownership of the data. It has been shown that for
copyright protection applications, watermarks need to be non-invertible. Another protocol
attack is the copy attack: instead of destroying the watermark, the copy attack estimates
a watermark from watermarked data and copies it to some other data, called target data.
This attack, in fact, embeds one or several additional watermarks such that it is unclear
which the watermark of the original owner was.

1.2.4 Watermarking Techniques

In this section we present a brief overview on the watermarking techniques currently available in

the literature on software, image, audio, and text watermarking.

(A) Software Watermarking

The most important software watermarking algorithms currently available in the literature are
based on several techniques. In 1996, Davidson and Myhrvold [48] presented the first patented
static software watermarking algorithm,where a program is watermarked by reordering its basic
blocks. The preliminary concepts of software watermarking also appeared in the paper [51] and
the patents [85, 105]. Register allocation algorithm proposed by Qu and Potkonjak [101], inserts
a watermark into the interference graph of a program. Each vertex in the graph represents a
variable and an edge between two variables indicates that their live ranges overlap. The graph is
colored in order to minimize the number of registers required and ensure that two live variables do
not share a register. In [38, 106], authors propose a spread-spectrum algorithm which represents
a program as a vector and modifies each component of the vector with a small random amount.
Algorithms have been also proposed, where pieces of a watermark are encoded as constants
within opaque predicates [1, 86]; an opaque predicate is a predicate whose outcome is known a
priori. Collberg et al. [35] proposed the path-based algorithm that inserts a watermark in the
runtime branch structure of a program to be watermarked. It is based on the observation that
the branch structure is an essential part of a program and that it is difficult to analyze such a
structure completely because it captures so much of the semantics of the program. Other software
watermarking techniques rely on abstract interpretation [37], code re-orderings [112]; see, also

[29, 130, 131] for an exposition of the main results. It is worth noting that many algorithmic
techniques on software watermarking have also received patent protection [34, 48, 103, 114].

The algorithm of Davidson and Myhrvold [48] embeds the watermark into a program by
reordering the basic blocks of a control flow-graph; note that a static watermark is stored inside
programs’ code in a certain format and it does not change during the programs’ execution.
Based on this idea, Venkatesan, Vazirani and Sinha [120] proposed the first graph-based software
watermarking algorithm which embeds the watermark by extending a method’s control flow-
graph through the insertion of a directed subgraph; it is also a static algorithm called VVS or
GTW. In [120], the construction of the directed watermark graph G is not discussed. Collberg et
al. [31] proposed an implementation of GTW, which they call GTWsp, and it is the first publicly
available implementation of the algorithm GTW. In GTWg, the watermark is encoded as a reducible
permutation graph (or, for short, RPG) [30], which is a reducible control flow-graph with a
maximum out-degree of two, mimicking real code. Note that, for encoding integers the GTWgy
method uses only those permutations that are self-inverting. The first dynamic watermarking
algorithm CT was proposed by Collberg and Thomborson [32]; it embeds the watermark through
a graph structure which is built on a heap at runtime.

Recently, several software watermarking algorithms have been appeared in the literature
that encode watermarks as graph structures [30, 31, 48, 120]. In general, such encodings make
use of an encoding function encode which converts a watermarking number w into a graph G,
encode(w) — G, and also of a decoding function decode that converts the graph G into the
number w, decode(G) — w; we usually call the pair (encode, decode) along with the graph G,
denoted by (encode,decode)gq, as graph codec system [30]. From a graph-theoretic point of view,
we are looking for a class of graphs G and a corresponding codec (encode,decode)g with the
following properties:

o Appropriate graph types: Graphsin G should be directed having such properties, i.e., nodes
with small outdegree, so that matching real program graphs;

o High resiliency: The function decode(G) should be insensitive to small changes of G, i.e.,
insertions or deletions of a constant number of nodes or/and edges; that is, if G € G and
decode(G) — w then decode(G') — w with G’ = G;

o Small size: The size |P,| — |P| of the embedded watermark should be small;

o Efficient codecs: The functions encode and decode should be computed in polynomial

time.

Five classes of graph structures have been proposed in the literature for encoding a watermark
as graph, the Oriented Parent-Pointer Tree, the Radix Graphs, the Permutation Graphs, the
Planted Plane Cubic Trees, and the Reducible Permutation Graphs.

e Oriented Parent-Pointer Trees. In oriented parent-pointer trees each node has just one
pointer field referencing its parent. In [69], is presented an extended theoretical analysis
of enumeration of trees by the exploitation of oriented parent-pointer trees. The parent-
pointer data structure has almost no error-correcting properties. An adversary who adds
a single node or an edge to a parent-pointer graph may radically change the watermark
value it represents [30].

e Radix-list Watermark Graphs. Radix-list watermark graphs G, of order n have the
following structure: they are a singly-linked circular list of n nodes, in which each node
has an additional pointer field that may point either to NULL or to any other node in the
list. The idea is simple. First, it is constructed a circular linked list o length £. Then,
extra pointer fields are added to each node representing the base-k digit. These graphs
have poor error-correcting properties. Node and edge addition attacks on such graphs will
force the decoder to enumerate all Hamiltonian subgraphs, in order to construct all possible
watermark graphs that could have existed prior to the attacks [30].

e Permutation Graphs. Permutation graphs use the same structure as radix graphs, i.e.
use the same singly linked circular list, where the extra k pointers encode the permutation
of integers [0,1,...,k —1]. A number n is first converted to a permutation 7 and then the
permutation is encoded to a graph. In [29], the algorithms that encode an integer n to
permutation 7, and the inverse, are presented. The specific class of graphs is more resilient
to the modification of an edge in comparison to radix graphs.

e Planted Plane Cubic Tree. Planted plane cubic tree (or, for short, PPCT), is essentially
a binary tree with one extra node called origin, which has a pointer to the root of the binary
tree. Moreover, all leaves are linked into a circular linked list which includes the origin.
Each leaf has a self-pointer and every node in a PPCT has two outgoing pointers. The
underlying undirected graph is thus cubic (uniform degree 3) except at its leaves and its
root. Such data structures are used in any program involving binary search trees, and
superficially similar structures arise in any program that has a data type with exactly two
pointer fields. According to Catalan number theory [50], a PPCT with n leaves (2n nodes)
can represent any integer in the following set: 0,1,2,..., %02:21. The Catalan number ¢(n)
gives the number of unique trees for each n. An integer is encoded as one of the trees.

e Reducible Permutation Graphs. Reducible permutation graphs (or, for short, RPG) [29,
30] are very similar to permutation graphs but they closely resemble control flow graphs
as they are reducible-flow graphs.

A flow graph G is reducible if and only if we can partition the edges into two disjoint
groups, often called forward edges and back edges, with the following two properties:

(i) The forward edges from an acyclic graph in which every node can be reached from

the initial node of G.

(ii) The back edges consist only of edges whose heads dominate their tails.
The reducibility of this family of graphs means that they resemble control-flow graphs
constructed from programming constructs such as if, while etc. [29]. RPGs, like CFGs,
contain a unique entry node and a unique exit node, a preamble which contains zero

or more nodes from which all other nodes can be reached and a body which encodes a

watermarking using a self-inverting permutation

(B) Image and Audio Watermarking

Digital image and audio watermarking schemes mainly fall into two broad categories: a) the
spatial-domain or time-domain technique, and b) the frequency domain technique. The first

10

category is the most straightforward way to hide the watermark within the host signal. Since
audio signal is an one-dimensional signal, the technique is called time-domain watermarking,
whereas spatial-domain technique refers to digital image watermarking, since image is a two-
dimension signal. In frequency techniques, image and audio are represented in terms of its
frequencies, and watermark is embedded by modifying the frequency coefficients of the host
signal.

e Spatial/Time-Domain Techniques. According to this method the watermark is em-
bedded into original signal. Least Significant Bits (LSB) is the simplest approach, because
the least significant bit carries less relevant information and their modification does not
cause perceptible changes. LSB technique is easy to implement to embed the watermark
and there are two basic ways of doing this: the lower order bits of the digital audio signal
can be fully substituted with a pseudo random (PN) sequence that contains the water-
mark message m, or the PN-sequence can be embedded into the lower order bit stream.
The major disadvantage of LSB techniques is the poor robustness to signal processing
operations. Another technique have been proposed, the spread spectrum technique,which
encodes the watermark data prior to insertion into the image or audio frequency domain
data. Spread spectrum encoding allows multiple narrow band communications signals to
be spread across a broad band with out interference.

e Frequency Domain Techniques. Compared to spatial domain techniques, frequency
domain techniques are more applied. The target of this technique is to insert the water-
marks in the spectral coefficients of the image. The most commonly used transforms are
the Discrete Cosine Transform (DCT), Discrete Fourier Transform (DFT), and Discrete
Wavelet Transform(DWT). The discrete wavelet transforms (DWT) and the discrete cosine
transforms (DCT) are implemented very effectively in numerous digital images watermark-
ing scheme. In this new era Singular Value Decomposition (SVD) is also implementing
very effectively in the digital image watermarking scheme.

Spatial domain watermarking techniques for images include works of [100, 115], and [123]. Some
of the earliest techniques [115] and [123] embed M-sequence into the LSB of the host signal
to provide an effective transparent embedding technique. In [123] the authors reshape the M-
sequence into two-dimensional watermark blocks which are added and detected on a block-by-
block basis. Another spatial-domain technique is proposed in [73], where the blue component of
an image in RGB format is watermarked to ensure robustness while remaining fairly insensitive
to human visual system (HVS) factors.

Initial research on audio watermarking dates back to the mid-nineties where Bender et al.
[8] presented data hiding techniques for audio signals. Several audio watermarking algorithms
in time-domain have been proposed. One of the simplest techniques under this category is
Least Significant Bit (LSB) alteration. In this technique, LSB of each sample value of the host
audio signal is made 0 or 1 depending upon the watermark bit to be embedded [125]. Echo
hiding is another audio watermarking technique in time domain which embeds the watermark
by introducing an echo [72]. Another category of watermarking techniques in time-domain is
Quantization Index Modulation (QIM) watermarking methods [47].

The concept of spread spectrum used in communication systems is also employed in digital
watermarking. The basic idea of spread spectrum is to encode audio signal by spreading the

11

watermark information [44] across as much of the audible spectrum as possible. Using this
technique, a watermark can be embedded robustly into a host audio signal without destroying
its perceptual quality.

Various frequency-domain audio watermarking techniques were proposed. These techniques
can be DFT [126, 127], DCT or DWT [124]. In these approaches, the amplitude or phase of the
transformed coefficients are modified with some specified amount in order to carry watermark
data.

A lot of work have been proposed in image watermarking in the frequency-domain [43, 98].
DCT domain watermarking can be classified into Global DCT watermarking and Block based
DCT watermarking. One of the first algorithms presented by [44] used global DCT approach to
embed a robust watermark in the perceptually significant portion of the Human Visual System
(HVS). Embedding in the perceptually significant portion of the image has its own advantages
because most compression schemes remove the perceptually insignificant portion of the image.

Another domain exploited for embedding the watermark is the wavelet domain. The DWT
(Discrete Wavelet Transform) separates an image into a lower resolution approximation image
(LL) as well as horizontal (HL), vertical (LH) and diagonal (HH) detail components. The pro-
cess can then be repeated to computes multiple “scale” wavelet decomposition. DWT is much
preferred because it provides both a simultaneous spatial localization and a frequency spread of
the watermark within the host image.

Discrete Fourier transform (DFT) transforms a continuous function into its frequency compo-
nents. It has robustness against geometric attacks like rotation, scaling, cropping, translation etc.
DFT shows translation invariance. An extensive analysis of the different techniques proposed in
the literature can be found at [98, 104].

(C) Text Watermarking

The previous work on digital text watermarking can be classified in the following categories; an
image based approach, a syntactic approach and a semantic approach.

e Image-based Techniques. In Image-based approach towards digital text watermarking,
text document image is used to embed the watermark. Text is difficult to watermark
because of its simplicity, sensitiveness, and low capacity for watermark embedding. Initially
attempts in text watermarking tried to treat text as image. Watermark was embedded in
the layout and appearance of the text image.

Brassil, et al. were the first to propose a few text watermarking methods utilizing text
image [9, 10]; they also developed document watermarking schemes based on line shifts,
word shifts as well as slight modifications to the characters [11]. Maxemchuk, et al. [87,
88, 89] analyzed the performance of these methods, while later Low et al. [80, 81] further
analyzed their efficiency. Huang and Yan [64] proposed a text watermarking method based
on an average inter-word distance in each line. The distances are adjusted according to
the sine-wave of a specific phase and frequency. Feature and pixel level algorithms were
also developed which mark the documents by modifying the stroke features such as width
or serif [6].

e Syntactic Techniques. Text is made up of characters, words, and sentences. Sentences
have different syntactic structures. Applying syntactic transformations on text structure

12

to embed watermark has also been one of the approaches towards text watermarking in
the past. In syntactic approach, the syntactic structure of text has been used to embed
watermark. Atallah, et al. [5] proposed several methods of natural language watermarking,
which opened up a brand-new and challenging research direction for text watermarking.
Meral et al. performed morpho-syntactic alterations to the text to watermark it [90]. They
also provided an overview of available syntactic tools for text watermarking [91].

Semantic Techniques. In semantic approach, semantics of text are used to embed the wa-
termark in text. The semantic watermarking schemes focus on using the semantic structure
of text to embed the watermark. Text contents, verbs, nouns, words and their spellings,
acronyms, sentence structure, grammar rules, etc. have been exploited to insert watermark
in the text but none of these proved to be resilient and degrade the quality of the text to a
large extent. Atallah et al. were the first to propose the semantic watermarking schemes [5].
Later, the synonym substitution method was proposed, in which watermark was embedded
by replacing certain words with their synonyms [118]. Sun, et al. [111] proposed noun-verb
based technique for text watermarking which used nouns and verbs parsed by semantic
networks. Topkara, et al. proposed an algorithm of the text watermarking by using typos,
acronyms and abbreviation in the text to embed the watermark [119]. Algorithms were
developed to watermark the text using the linguistic approach of presuppositions [92] in
which the discourse structure, meaning, and representations are observed and utilized to
embed watermark bits. The text pruning and the grafting algorithms were also developed
in the past. Another algorithm based on text meaning representation (TMR) strings has
also been proposed [82].

Structural Techniques. The structural approach is the most recent approach used for
copyright protection of text documents. In this approach, text is not altered, rather it
is used to logically embed watermark in it. A text watermarking algorithm for copyright
protection of text using occurrences of double letters (aa-zz) in text has recently been
proposed [67]. Recently, a significant number of techniques have been proposed in the
literature which use Portable Document Format (PDF) files as cover media in order to
hide data [12, 13, 76, 77, 78, 79, 133].

1.3 Motivation

Today storing information and data such as documents, images, video, and audio in digital

formats is very common. For many people transferring digital files via the internet is a daily

activity. Owing to the rapid development of digital technology and the widespread use of the

Internet, life becomes increasingly more convenient than previously. However, this increase in

internet usage has motivated copyright concerns.

As is well known, due to the nature of digital information, it is easy to make unlimited lossless

copies from the original digital source, to modify the content, and to transfer the copies rapidly

over the Internet. Creators and owners of Intellectual Property designs want assurances that

their content will not be illegally redistributed by consumers, and consumers want assurances

that the content they buy is legitimate.

13

The term intellectual property (IP) refers to a creation of a mind for which a set of exclu-
sive rights are recognized [56]. That creation may have any possible form; for example, it may
be a work of art, an invention, literary or artistic work, a discovery or even a phrase. More
precisely, IP can be divided into two categories: industrial property, which includes inventions
(patents), trademarks, industrial designs, and geographic indications of source; and copyright,
which includes literary and artistic works such as novels, poems, plays, films, video games, soft-
ware applications, musical works, drawings, paintings, photographs, sculptures, and architectural
designs.

The objective of recognizing intellectual property is to encourage innovation. That is because
people won’t have the incentive to create if they are not legally protected in order to get the
social value that they deserve from their creations [83]. Of course the world’s evolution and
economic growth depends on creations and inventions and that makes intellectual property such
an important and vital aspect [68].

Over the last years the internet has been expanding very rapidly and, thus, information is
now spread freely, easily and cost-efficiently and that gives a greater importance to intellectual
property. Because of the internet, the distribution of intellectual material went out of control.
Just the fact that nearly every intellectual material that is produced today is published in digital
form or can be transformed into digital form means that it can be easily transmitted free via the
internet, without any permission from the creator.

All that urged the adoption of new laws and the development of systems for the protection
of intellectual property [49]. But still the cyberspace is chaotic nowadays and that makes it
extremely difficult to have any kind of control over it. The figures talk by themselves; according
to IFPI (International Federation of the Phonographic Industry) 95% of music downloads are
pirated. What is more, a survey from Digital Life America showed us that things aren’t any better
for the movies. If we also take into account the fact that the internet population is consisted
of nearly seven billion we may realize that its power is greater than the law and the systems
for protection. Therefore, the demands of copyright protection, ownership demonstration, and
tampering verification for digital data are becoming more and more urgent. Among the solutions
for these problems, digital watermarking [43] is the most popular one.

1.4 The Structure of the Thesis

The current PhD Thesis consists of 8 Chapters which can be partitioned, according to research

issues addressed, into the following four Parts I-1V, namely:

(I) Background Results (Chapter 1),
(I) Encodings (Chapters 2-3-4),
(III) Watermarking (Chapters 5-6-7), and

(IV) Conclusions (Chapters 8).

We next briefly discuss our contribution and the main results of the chapters of each of the four
Parts I, 11, I, and IV.

14

Chapter 1 i Chapter 8 3

Chapter 4

A

Chapter 2 > Chapter 3

\J

Chapter 5 Chapter 6 Chapter 7

Figure 1.5: The Structure of the 8 Chapters of the Thesis.

o Part I: The part, which contains the Chapter 1, provides an introduction to current
watermarking techniques and an outline of the problems under consideration, while it
briefly presents our research contribution.

o Part II: This is the part containing the basic research on encoding watermark members
as graph structures through the use of self-inverting permutations (Chapters 2-3) and
algorithms for multiple encodings (Chapter 4).

o Part III: The three Chapters of this part propose efficient and easily implementable codec
algorithms for software watermarking (Chapter 5), image and audio watermarking (Chap-
ter 6) and text watermarking (Chapter 7).

o Part IV: This part consists of the Chapter 8, the last chapter of the PhD thesis, which
summarizes the main results presented in Chapters 2 to 7, and discusses possible future

extensions.

Figure 1.5 schematically depicts the eight Chapters of the Thesis and organizes them in levels
and groups according to Parts I-IV.

1.5 Main Results

From the above partitioning of the 8 Chapters and the brief description of the 4 Parts, it becomes
obvious that the main research results of our Thesis are presented in Part II and Part III. We
next give the organization of the chapters of theses two parts emphasizing the main features of

the proposed codec techniques.

Part II, Chapters 2-3-4. In Chapter 2, we define a main data component of our codec system,
namely, the self-inverting permutations (SiP), we introduce the notion of a bitonic permutation,

15

Chapter 2 R Chapter 3 I Chapter 4

Encode W.to.SiP Encode SiP.to.RPG-I Encode_SiP.to.Cograph
Encode_SiP.to.RPG-II Encode_Cograph.to.RPG
[} Y
Chapter 5 Chapter 6 Chapter 7
Embed_RPG.to.CODE Embed_SiP.to.Image-S Embed_SiP.to.PDF-I
Embed _SiP.to.Image-F Embed_SiP.to.PDF-II
Embed_SiP.to.Audio Embed_RPG.to.PDF

Figure 1.6: Algorithms of the Chapters 2, 3, and 4 (Part II: Encodings) and Chapters 5, 6, and 7
(Part IIT: Watermarking).

we present our algorithm Encode-W.to.SiP for encoding an integer w as a self-inverting per-
mutation 7%, along with the corresponding decoding algorithm Decode-SiP.to.W, and finally
discuss important properties of the self-inverting permutation 7.

In Chapter 3, we first define the main graph-based data component of our codec system,
namely, the reducible permutation graphs (PRG), we describe the two operational phases of
our codec system, and present the structure of our system’s reducible permutation graph F[7*].
Then, we present the two algorithms, namely Encode-SiP.to.RPG-I and -II for encoding the
self-inverting permutation 7* as a reducible permutation flow-graph F[r*] along with the corre-
sponding decoding algorithms Decode-RPG.to0.SiP-I and -II. Finally, we present the properties
of the reducible permutation flow-graph F[7*] and show that node-label or edge modifications
on the graph F[r*] can be efficiently detected.

In Chapter 4, we first present the randomize encoding algorithm Encode_SiP.to.Cograph,
along with its corresponding decoding algorithm, which takes as input a self-inverting permuta-
tion 7* and encodes the permutation 7* into a cograph C[r*]. Then, we present the algorithm
Encode_Cograph.to.RPG, along with its corresponding decoding algorithm, which embeds a co-
graph into an RPG by exploiting the structure and some important algorithmic properties of its
cotree.

Part I1I, Chapters 5-6-7. In Chapter 5, we present our dynamic watermarking model Wa-
terRPG; we first describe its structural and operational components and then the embedding
algorithm Embed RPG.to.CODE and the extracting algorithm Extract_CODE.to.RPG. Then, we
implement our watermarking model in real Java application programs and show two main wa-
termarking approaches supported by the WaterRpg model, namely naive and stealthy. We also
evaluate our model under several software watermarking assessment criteria.

In Chapter 6, we describe our primary work on image watermarking in the spatial domain and

16

give the Embed _SiP.to.Image-S and Extract_SiP.from.Image-S algorithms. We first present
our codec algorithms, Embed_SiP.to.Image-F and Extract_SiP.from.Image-F, for watermark-
ing images in the frequency domain, and then we expand our idea on image watermarking by ap-
plying it in audio watermarking and present our audio watermarking algorithms, i.e., the embed-
ding algorithm Embed_SiP.to.Audio and the extracting algorithm Extract_SiP.from.Audio.

In Chapter 7, based on the three different representations of self-inverting permutation (SiP),
i.e. the two dimensional (2D-representation), the one dimensional (1D-representation), and the
RPG-representation (the encoding of permutation 7* as a reducible permutation graph F[n*]),
we present the algorithms Embed _SiP.to.PDF-I, Embed_SiP.to.PDF-II, and Embed RPG.to.PDF,
along with the corresponding extracting algorithms, for embedding a watermark number (or,
equivalently, a self-inverting permutation 7* or a reducible permutation graph F[r*]) into a
PDF document file.

17

18

CHAPTER 2

ENCODE WATERMARK NUMBERS AS
SELF-INVERTING PERMUTATIONS

2.1 Introduction

2.2 Preliminaries

2.3 Self-inverting Permutations (SiP)
2.4 Encode Watermark Numbers as SiPs
2.5 The Structure of Permutation 7
2.6 Properties of Permutation 7

2.7 Concluding Remarks

2.1 Introduction

Digital (or, media) watermarking is a technique that is currently being studied to prevent or
discourage digital media piracy and copyright infringement. The main idea is simple: a unique
identifier is embedded in software, image, audio, or video data through the introduction of errors
not detectable by human perception [15].

The Digital Watermarking problem can be described as follows: Embed a structure w into a
digital object O, resulting the watermarked object Oy, such that w can be reliably located and
efficiently extracted from O,, even after O, has been subjected to typical transformations. More
precisely, a Digital Watermarking System can be defined by the following two functions:

e embed(O,w, k) — Oy
e extract(Oy, k) — w

where, O is the digital object, w is a watermark, and k is a key; throughout the thesis, we
equivalently use the functions decode(-) or recognize(-) to denote the extraction process.

19

Digital watermarking has made considerable progress and become a popular technique for
copyright protection of multimedia information [15, 113]. Recently, research on software water-
marking has also received sufficient attention. We next briefly discuss on software watermarking
issues since self-inverting permutations have been used in an graph-based watermarking codec
system proposed by Collberg et al. [30].

In 1990, Davidson and Myhrvold [48] proposed the first software watermarking algorithm
which is static and embeds the watermark by reordering the basic blocks of a control flow graph.
Based on this idea, Venkatesan et al. [120] propose a software watermarking scheme which is
called GTW; in such a scheme an executable program is marked by the addition of code for which
the topology of the control flow graph (CFG) encodes a watermark. More precisely, the GTW
process is as follows: The watermark value w is encoded as a directed graph G which, in turn,
is converted into control flow graph (CFG). In [120] the construction of a directed graph G
(or, watermark graph G) is not discussed. Collberg et al. [31] proposed an implementation of
algorithm GTW, which they call GTWgy, and it is the first publicly available implementation of GTW.
In GTWg, the watermark is encoded as a reducible permutation graph (RPG) [30], which is a
reducible control-flow graph with maximum out-degree of two, mimicking real code.

In GTWg, implementation a watermark value (integer) is encoded as a RPG; in particular,
in the enumeration of Collberg et al. [31], an integer n is encoded as the RPG corresponding
to the n-th self-inverting permutation. Note that there is a one-to-one correspondence between
self-inverting permutations and isomorphic classes of RPGs. Thus, for encoding integers the
GTWsp, methods uses only those permutations that are self-inverting.

Contribution. Collberg et al. [29, 31] use an enumeration of self-inverting permutations and
correspond an integer n to the n-th self-inverting permutation in their enumeration. In this
chapter, we present an efficient, resilient to attacks, and easily implementable system for encoding
numbers as self-inverting permutations (or SiP, for short); see, Figure 2.1.

More precisely, we present an efficient algorithm which encodes a watermark number (integer)
w as a self-inverting permutation 7*. Our algorithm, which we call Encode _W.to.SiP, takes as
input an integer w, computes its binary representation bibs---b,, then constructs a bitonic
permutation on n* = 2n 4+ 1 numbers, and finally produces a self-inverting permutation 7*
of length n* in O(n*) time and space. We also present the corresponding decoding algorithm
Decode_SiP.to.W, which extracts the integer w from the self-inverting permutation 7* within
the same time and space complexity.

The self-inverting permutation 7* encompasses important structural properties, due to the
bitonic property used in the construction of 7%, which makes our codec system resilient to attacks.
Finally, we point out that our codec system has very low time and space complexity which is
O(n), where n is the number of bits in the binary representation of the watermark integer w.

We mention here that, having designed an efficient method for encoding integers as self-
inverting permutations, in Chapter 3 we present algorithms for encoding a self-inverting permu-
tation 7* as a reducible permutation flow-graph.

Road Map. The chapter is organized as follows: In Section 2.2 we establish the notation and re-

lated terminology. In Section 2.3 we define a main data component of our codec system, namely,
the self-inverting permutations (SiP). In Section 2.4 we first introduce the notion of a bitonic

20

The watermark number w = 4

W.to.SiP SiP.to.W

™ =(4,7,6,1,5,3,2)

Figure 2.1: The main data components used by the algorithms of our codec system: (i) the watermark
number w and (ii) the self-inverting permutation 7*.

permutation, and then present our algorithm Encode-W.to.SiP for encoding an integer w as a
self-inverting permutation 7* and the corresponding decoding algorithm Decode-SiP.to.W. In
Section 2.5 we analyze the structure of a self-inverting permutation 7* produced by algorithm
Encode W.to.SiP. In Section 2.6 we summarize the properties of the self-inverting permuta-
tion 7*. Finally, in Section 2.7 we conclude the chapter and discuss possible future extensions.

2.2 Preliminaries

We next introduce some definitions that are key to our algorithms for encoding numbers as self-
inverting permutations. Let 7 be a permutation over the set N, = {1,2,...,n}. We think of per-
mutation 7 as a sequence (71, T2, . .., T,), s0, for example, the permutation 7 = (1,4,2,7,5,3,6)
has 71 = 1, mg = 4, etc. By wi_l we denote the position in the sequence of number i € N,; in our
example, 7@1 =2, 7T';1 =4, 7751 = 6, etc [52]. The length of a permutation 7 is the number of
elements in 7. The reverse of m, denoted 7%, is the permutation 7% = (7, m,_1,...,71). The
inverse of 7 is the permutation 7 = (71, 72, ..., 7,) with 7, = 7., = i. Clearly, every permutation
has a unique inverse, and the inverse of the inverse is the original permutation.

A subsequence of a permutation = = (my, m,...,m,) is a sequence « = (m;,, Ty, ..., T,) such
that 41 <2 < --- <. If, in addition, m;; < m;, < --- < m,, then we say that « is an increasing
subsequence of m, while if m;; > m;, > --- > m;, we say that o is a decreasing subsequence of ;
the length of a subsequence « is the number of elements in a.

A cycle of 7 is a sequence ¢ = (m;,,mj,,...,m;,) such that 7r;11 = Ty, 7r;21 =
77;1 = 7;,. For example, the permutation 7 = (4,7,1,6,5,3,2) has three cycles ¢; = (4,1,3,6),
co = (7,2), and ¢3 = (5) of lengths 4, 2, and 1, respectively. In general, a permutation 7 contains
¢ cycles, where 1 < ¢ < n; for example, the identity permutation A over the set N, contains n
cycles of length 1. Throughout the thesis, a cycle of length k is referred to as a k-cycle.

A left-to-right mazimum (left-to-right minimum, resp.) of m is an element 7;, 1 < i < n,
such that m; > m; (m; < 7, resp.) for all j < i. The increasing (decreasing, resp.) subsequence
o« = (Tjy, Ty, - .., m,) i a left-to-right mazima (minima, resp.) subsequence if it consists of all
the left-to-right maxima (minima, resp.) of m; clearly, m;; = 7. For example, the left-to-right
maxima subsequence of the permutation = = (4,2,6,1,9,3,7,5,12,11,8,10) is (4,6,9,12), while

21

the left-to-right minima subsequence of 7 is (4,2, 1).

The 1st increasing (decreasing, resp.) subsequence S1 of a permutation 7 is defined to be
the left-to-right maxima (minima, resp.) subsequence of 7*. The ith increasing (decreasing,
resp.) subsequence S; of 7 is defined to be the left-to-right maxima (minima, resp.) subsequence
of 7/, where 7’ results from 7 after having ignored the elements of the 1st, 2nd, ..., (i — 1)st
increasing (decreasing, resp.) subsequences of w. For example, the decreasing subsequences of
the permutation 7 = (4,2,6,1,9,3,7,5,12,11,8,10) are S1 = (4,2,1), S2 = (6,3), S5 = (9,7,5),
Sy = (12,11, 8), and S5 = (10).

We say that an element i of a permutation © over the set NV, dominates the element j if
i>jand < 7Tj_1. An element ¢ directly dominates (or d-dominates, for short) the element j
if ¢+ dominates j and there exists no element & in 7 such that ¢ dominates k& and k dominates j
[94]. For example, in the permutation = = (8,3,2,7,1,9,6,5,4), the element 7 dominates the
elements 1,6, 5,4 and directly dominates the elements 1, 6.

2.3 Self-inverting Permutations (SiP)

We next define the main component of our codec system, namely, the self-inverting permutations
(SiP), and prove properties that are used as key-objects in our algorithms for encoding numbers
as reducible permutation graphs.

Definition 2.1. Let 7 = (w1, m2,...,m,) be a permutation over the set N,. A self-inverting

permutation (or involution) is a permutation that is its own inverse: m,, = i.

The definition of the inverse of a permutation implies that a permutation is a self-inverting
permutation iff all its cycles are of length 1 or 2; hereafter, we shall denote a 2-cycle by (z,y)
with > y and a 1-cycle by (z) or, equivalently, (z,x).

Definition 2.2. A sequence C = (c1,c¢2,...,¢) of all the 2- and 1-cycles of a self-inverting
permutation w is a decreasing cycle representation of wif ¢1 = ca > -+ = ¢ where ¢; = (a;,b;) >
¢j = (aj,bj) (with a; > b; and aj > b;) if b; > b;, 1 < 4,5 < k. The cycle ¢; containing the
smallest element among the elements of the cycles is the minimum element of the sequence C.

Lemma 2.1. Let ¢; = (z,y) and ¢; = (z,w) be two 2-cycles of a self-inverting permutation w
such that © >y and z > w.

(i) Ifx >z >y and o' < o' <)t D<ot

r>w>yand 1yl <yl < 7ry_1, then x > z and w;* < ;. In either case, it holds that
r>z>w>yand !t <7t <w,l<w .

then w > y and 7w, Symmetrically, if

1 -1 -1

(i) If £ > 2z > w and ;" < 7w, < m,,
z>w>yand77;1<7r1;1<7rzjl, then x* > z and m; ' < m; 1. In either case, it holds that
x>z>w>yand7r51<7r;1<771;1<7ry_1.

1 1

then w >y and 7, < w, . Symmetrically, 1f

Proof. The lemma follows from the fact that in a self-inverting permutation 7 (of size n) for
every i = 1,2,...,n, m;, = i or equivalently for any 2-cycle (a,b) it holds that a« = 7rb_1 and
b=m,t 1

22

Theorem 2.1. Let S; = (z1,®2,...,zk;) be the ith decreasing subsequence of a self-inverting
permutation w. Then,
(1) if ki is an even number, the following pairs (z1,zk,;), (T2, Tk, 1), - - -, (m%,x%ﬂ) form %,

2-cycles of w;

(it) if k is an odd number, the following pairs (z1,zy,), (2, Zk,—1), - -, (ﬂj_ﬂj,ﬂjl—ﬂ-‘_i_l) form
2 2

L%J 2-cycles and (z forms an I-cycle of w.

1)
Proof. We use induction on ¢. For the basis case, we consider ¢ = 1, that is, the 1st decreasing
subsequence S; = (z1,%2,...,2k,). Then, for each j = 1,2,..., L’%J it suffices to show that
(i) if z; € S1 belongs to a 2-cycle (xj, ;) then z; belongs to S1, and (ii) in fact, z; is the
(k1 — j + 1)-st element in S;. We use induction on j. Statements (i) and (ii) clearly hold for
j =1, since the first and the smallest element of = belong to the 1st decreasing subsequence of
7, they form a 2-cycle of 7, and in fact they are the first and the last element of 57, respectively.
For the inductive hypothesis, suppose that statements (i) and (ii) hold for j = jo — 1 where
1 <jo—1< |%]; we next show that they hold for j = jo where 2 < jo < [%]. Let (z,,2’) be

the 2-cycle of the self-inverting permutation 7 to which xj, belongs; then, Lemma 2.1(i) for the
~1

Thy—jo+1’

Now, suppose for contradiction that ' & S;. Since ' ¢ S1, there must exist ¢ in 7 such that

2-cycles (o1, T, —jo+2) and (zj,,2') implies that ' > x4, _jo41 and 7' <=

—1 —1 —
Ta, < m s < T

1 and t < 2.

These inequalities imply that =, L 7%_],1) = 1/ > t, that is, the element ¢ cannot belong to an

l-cycle. Thus, ¢ belongs to a 2-cycle of 7; let it be (s,t) with s > t since s = 7, ' > 2/ > t.

Lemma 2.1(ii) for the 2-cycles (zj,, ') and (s,t) implies that s < zj, and 7, ! < wajji, which in

turn imply that x, should not belong to Si, a contradiction. Therefore, 2’ belongs to S as well.
Moreover, 2’ =z, —jo4+1. If not, let ¢ =z, _jo+1. Then

/ / -1 -1 -1
>t > T joy2 and Ty < Ty < Tg oy

These inequalities imply that ,, b 7T;,1 = xj, > 2’ > t'; hence, t’ does not belong to an 1-cycle.
Therefore, ¢’ belongs to a 2-cycle (s',t') with s’ > ¢/. Then, Lemma 2.1(ii) for the 2-cycles (z;,, 2)
and (s',¢') implies that s’ > zj, and 7' < W;E Additionally, Lemma 2.1(i) for the 2-cycles
(Zjo—1, Tk —jo+2) and (s',¢') implies that zj,—1 > s’ and 77;;)71 < 7. However, these contradict
the fact that z,—1 and xj, are in consecutive positions in the decreasing subsequence S1. Thus,
&' = xp,—jo+1, as desired.

The inductive step for the induction on ¢ can be easily proved by taking into account (i) that
the ith decreasing subsequence of a permutation 7 is precisely the 1st decreasing subsequence of
the permutation that results from 7 after having removed from it the elements of the 1st, 2nd,

.., (i — 1)st decreasing subsequence of 7, and (ii) that both elements of a 2-cycle get removed

while removing a decreasing subsequence. 1

2.4 FEncode Watermark Numbers as SiPs

In this section, we first introduce the notion of a Bitonic Permutation and then we present two

algorithms, namely Encode W.to.SiP and Decode_SiP.to.W, for encoding an integer w into a

23

self-inverting permutation 7#* and for extracting it from 7*, respectively. Both algorithms run in
O(n) time, where n = logy w is the length of the binary representation of the integer w [28].

Bitonic Permutations: The key-object in our algorithm for encoding integers as self-inverting
permutations is the bitonic permutation: a permutation 7w = (71,72, ..., mT,) over the set N, is
called bitonic if it either monotonically increases and then monotonically decreases, or mono-
tonically decreases and then monotonically increases. For example, the permutations m; =
(1,4,6,7,5,3,2) and w2 = (6,4,3,1,2,5,7) are both bitonic.

Let m = (m,m2,..., T, Tit1,...,Tp) be a bitonic permutation over the set N, that first
monotonically increases and then monotonically decreases and let m; be the leftmost element of
7 such that m; > m;41; note that m; is the maximum element of 7. Then, we call the sequence
X = (w1,m2,...,m—1) the increasing subsequence of 7w and the sequence Y = (m;, mit1,...,7n)
the decreasing subsequence of .

Notations: We next give some notations and terminology we shall use throughout the chapter.
If By = biby---by, and By = didsy---d,, are two binary numbers, then the number B;||By is
the binary number b1bs - - - bpdida - - - dyy,. The binary sequence of the number B = biby - - by, is
the sequence B* = (b1, ba,...,b,) of length n. For a binary number B = bibs - - by, flip(B) =
bib, - - - b, is the binary number such that b, = 0 (1, resp.) if and only if b; = 1 (0, resp.),
1 <4 < n. Note that for any binary number B, flip(flip(B)) = B.

2.4.1 Algorithm Encode W.to.SiP

We next present an algorithm for encoding an integer as a self-inverting permutation without
having to consult a list of all self-inverting permutations. Our algorithm takes as input an integer
w, computes its binary representation, and then produces a self-inverting permutation 7* in time
linear in the length of the binary representation of w. The proposed algorithm is the following:

Algorithm Encode W.to.SiP

1. Compute the binary representation B of w and let n be the length of B;

2. Construct the binary number B’ = 00 - - 0||B]|0 of length n* = 2n+1, and then the binary

n

sequence B* of flip(B’);

3. Construct the sequence X = (x1,2,...,x) of the 0s’ positions and the sequence ¥V =
(y1,Y2, - -, Ym) of the 18’ positions in B* from left to right, where k +m = n*;

4. Construct the bitonic permutation 7° = X||Y® = (z1,22,..., %k, Yms Ym—1,--.,Yy1) Over
the set Np» = Nopt1;

5. fori=1,2,...,n=|n"/2] do
{construct a 2-cycle with the i-th element of ©° from left and the i-th from right}
construct the 2-cycle ¢; = (ﬂf, Wz*_i+1);
construct the l-cycle ¢; = (b ,);

24

6. Initialize the permutation 7* to the identity permutation (1,2,...,2n + 1);
for each 2-cycle (m;, ;) computed at Step 5, set 7 = 7; and T = T

7. Return the permutation 7* (which by construction is self-inverting).

Example 2.1 Let w = 12 be the input watermark integer in the algorithm Encode_W.to.SiP.
We first compute the binary representation B = 1100 of the number 12; then we construct the
binary number B’ = 000011000 and the binary sequence B* = (1,1,1,1,0,0,1,1,1) of flip(B');
we compute the sequences X = (5,6) and Y = (1,2,3,4,7,8,9), and then construct the bitonic
permutation 7° = (5,6,9,8,7,4,3,2,1) on n* = 9 numbers; since n* = 9 is odd, we form
4 2-cycles (5,1), (6,2), (9,3), (8,4) and the 1-cycle (7), and then construct the self-inverting
permutation 7* = (5,6,9,8,1,2,7,4, 3).

Time and Space Complexity. The encoding algorithm Encode W.to.SiP performs basic opera-
tions on sequences of O(n) length, where n is the number of bits in the binary representation
of w (see Figure 2.2). Thus, the whole encoding process requires O(n) time and space, and the
following theorem holds:

Theorem 2.2. Let w be an integer and let biby---b, be the binary representation of w. The
algorithm Encode W.to.SiP encodes the number w in a self-inverting permutation ©* of length

2n 4+ 1 in O(n) time and space.

2.4.2 Algorithm Decode_SiP.to.W

Next, we present an extraction algorithm, that is, an algorithm for decoding a self-inverting
permutation. More precisely, our extraction algorithm, which we call Decode_SiP.to.W, takes
as input a self-inverting permutation 7* produced by algorithm Encode W.to.SiP and returns
its corresponding integer w. Its time complexity is linear in the length of the permutation 7*.
We next describe the proposed algorithm:

Algorithm Decode SiP.to.W

1. Compute the decreasing cycle representation C' = (c1, ¢, ..., cg) of the self-inverting per-

mutation 7* = (w1, w2, ..., T+), where n* = 2n + 1;

2. Construct the permutation 7° of length n* as follows:
set t =1and j =n";
while the set C is not empty, do the following:
select the minimum element ¢ of the set C| i.e., the cycle containing the minimum
among
the elements of all the cycles in C
Case 1: the selected cycle ¢ has length 2 and let ¢ = (a,a’) with a > d:
set 70 = a and 77? =a;
t=t+1land j=j5—1;
Case 2: the selected cycle ¢ has length 1 and let ¢ = (a):

25

w: watermarking integer

A

B: binary representation B: binary number of the 2nd block of B’
bibg - - - by, of the integer w biby by = b, b0y

B’: binary number 0"|| b1by - - b, || 0 B’: binary number of sequence flip(B*)
on 2n + 1 bits bibly - b0 O - b b

B*: sequence of 0s and 1s of the B*: binary sequence with Os (1s) at the
binary number flip(B') positions corresp. to X’s (Y’s) elements

X: sequence of indices of Os in B* X: the increasing subsequence of 7°

Y: sequence of indices of 1s in B* Y: the decreasing subsequence of 7°

7®: bitonic permutation constructed 7°: bitonic permutation constructed from
by X and Y% ie., X|[YF the increasing cycle representation

C: set of 2-cycles and 1-cycle C: increasing cycle representation of 7*
constructed from 7

v

7% self-inverting permutation

Figure 2.2: The main data components used by our two codec Algorithms Encode W.to.SiP and
Decode_SiP.to.W.

setﬂfzaandi:iJrl;
remove the cycle ¢ from O}

3. Find the increasing subsequence X = (74,75, ..., 7r,2) of 7° and then the decreasing subse-
quence Y = (7T£+1,772+2, TR

4. Construct the binary sequence B* = (b1, ba, ..., by+) by setting 0 in positions 72, 75, ... ,772
and 1 in positions 7Tz+1, 7T,I;_,’_2, ceey 772*;

5. Compute B’ = flip(B*) = (01,05, ..., b}, 0}, 11, b1, b))

6. Return the decimal value w of the binary number B =¥/, b o -b._;.

The decoding algorithm is essentially the reverse of the encoding algorithm; its correctness relies
on the fact that flip(flip(B)) = B.

Example 2.2 Let 7 = (5,6,9,8,1,2,7,4,3) be a self-inverting permutation produced by
Algorithm Encode W.to.SiP. The decreasing cycle representation of 7* is the sequence C' =
((7), (8,4), (9,3), (6,2), (5,1)); these cycles are processed in order from right to left in C' and
we construct the permutation 7 = (5,6,9,8,7,4,3,2,1); then, we compute the increasing subse-
quence X = (5,6) and the decreasing subsequence Y = (9,8,7,4,3,2,1); we then construct the
binary sequence B* = (1,1,1,1,0,0,1,1,1) of length 9; we flip the elements of B* and construct
the sequence B’ = (0,0,0,0,1,1,0,0,0); the decimal value of the binary number 1100 is the
integer w = 12.

26

Time and Space Complezity. Tt is easy to see that the decoding algorithm Decode SiP.to.W
performs the same basic operations on sequences of O(n) length as the encoding algorithm (see,
Figure 2.2). Thus, we obtain the following result:

Theorem 2.3. Let w be an integer (whose binary representation has length n) and let 7 be
the self-inverting permutation of length n* = 2n + 1 produced by algorithm Encode W.to.SiP fo
encode w. Algorithm Decode _SiP.to.W correctly extracts w from ©* in O(n*) = O(n) time and

space.

2.5 The Structure of Permutation 7*

We next analyze the structure of a self-inverting permutation 7* produced by the encoding
algorithm Encode_W.to.SiP. We distinguish the following two cases.

Special Case: Suppose that w = 2" — 1, that is, all the bits in w’s binary representation are
1. Then, according to algorithm Encode W.to.SiP, B’ = 0"1"0, 7’ = (n +1,n +2, ..., 2n +
ILn,n—1,...,2,1),and7*=(n+1,n+2,...,2n, 1,2 ..., n, 2n+1). Note that 7* is the
concatenation of the (increasing) sub-permutations 77 and 75 where

= (n+1l,n+2 ..., 2n) and w5 = (1,2,...,n,2n+1). (2.1)

General Case: Suppose that w # 2™ — 1. Then, the concatenation of the binary representation
of w with a trailing 0 consists of a1 1s, followed by b1 Os, followed by ao 1s, followed by bs Os,
and so on, followed by a, 1s, followed by by Os where £ > 1, a;,b; > 0, and a1 < n.

For convenience, let A; = zgzl a; and I'; = Z‘Zzl (ar + b;) for 0 < j < ¢; note that 4g =0,
I'h=0,Ty =n+1, and A is equal to the number of 1s in the binary representation of w.
Additionally, let B; = S, b for 0 < j < ¢, and B, = (Zle bt> — B;, which imply that
By :Eg =0, Ej_l :Ej +bj,and I'y = A+ By= Ay + Bo.

Then, according to algorithm Encode W.to.SiP, B’ = 0---0||B||1 where B is the binary
representation of w, and 7® = X ||Y® where X is the sequence of the 0s’ positions in flip(B’)
and Y is the reverse of the sequence of the 1s’ positions in flip(B’), that is,

X = Xu|| Xl (| XG] [Xe
= <n+1,...,n—|—a1,n+F1+1,...,n+F1+a2,...,n+Fi_1+1,...,n+Fi_1+ai,
a1 a2 a;
..,n+Pg_1+1,...,n+Fg_1+a4)
ay
and
YE = YR YR Y
- (n+rg,...,n+rg—bg+1,...,n+ri,...,n+r,-—bz-+1,...,
be bi
T, n+T1—b+1, n,n—1,...,2,1).
b1 n

27

(Note that I';_1 + a; = T'; — b;.)

Next, because the total length of the concatenation of X1, Xo,..., Xy, YER, Lo Yftisn 1
whereas the length of YOR is n, the cycles constructed in Step 5 of algorithm Encode W.to.SiP
are:

e 2-cycles: the 2-cycles in increasing order of their second elements from 1 to n are (note
that A():Eg:(), Ag—l—?g—l:l—‘g—l:(n—i—l)—l:n, and Fi,1+ai:Fi—bi):

(n+1, Ag+1), (n+2, A0+2), ..., (n+a1, A1),

(TL+F1+1, A1—|—1), (7”L+F1+2, A1—|—2), ey (n+F1+a2, AQ),

(n+Tii+1, Aia+1), (n+lic1+2, A41+2), ..., (n+Tic1+a;, Ai),
(n+Tpa+1, A1 +1), n+Tea1+2, Ap1+2), .., (n+T1+ay, Ay,
(n+Ty, Ag+By+1), (n+Tp—1, Ay+B;+2), ..., mn+Ty—b+1, A4p+ By_1),
(n+Ti, Ag+Bi+1), (n+Ti—1, Ag+Bi+2), ..., (n+Ti—b;+1, Aj+ B;i1),
(n+Ta, Ag+Ba+1), (n+To—1, Ay+Ba+2), ..., (n+Ta—by+1, Ay + B1),
(TL—I—Fl, Ag—i—?l—l—l), (n+F1—1, Ag+§1+2), R (n+F1—b1+2, Ag+§0—1);

e I-cycle: the l-cycle involves the last element of Y{ft, that is, it is (n + 1 — b + 1) =
(n+a1+1).

Therefore, the self-inverting permutation 7* is the concatenation of 7] and 75, where
o= Xl Xl XY Y (2.2)

with U = (n+Tq,...,n+ 1 — b +2) (note that Uf is empty if by = 1 otherwise it is equal
to Y{f* without its last element n +T1 —b; +1=n+a; + 1) and

T = (1, % o AL, ntA 4+l nn—1,....n— B +2
~—_—————
al b1—1
A1+1,A1+2,...,A2, n—Bi1+1,n—DBq,...,n— By + 2,
a2 ba

A1 +1, A4, 1+2,...,4, n—B,_1+1,n—B;_1,...,.n— B; + 2,

a; bi

Apr 41, Apy +2, ..., Ay, n—Bg_l—i—l,n—Bg_l,...,n—Bg—i-Q) (2.3)

ay bg

(note that the last element of 75 isn—By+2 = (I'y—1)—By+2 = (4y+By—1)—B;+2 = A;+1).
It is interesting to note that 7] is a permutation of the numbers n+1,n+2,...,2n+1 except for
n-+a1+1; in turn, 75 is a permutation of the numbers 1,2,...,n and n+a1 +1. Additionally, 75
consists of the a1 numbers 1,2, ..., A; followed by b; numbers larger than A, + 1, followed by the
ag numbers A1 +1, A1+2,..., Ag, followed by by numbers larger than 4,41, and so on, up to the
ag numbers Ay_1+1, Ay_1+2, ..., Ay that are followed by the by numbers Ay+by, Ap+by—1,..., Ay

28

(note that n—By_1+1 = (Fg—l)—Bg_l—Fl = (Ag—}—Bg—l)—Bg_l—Fl = Ag—F(Bg—Bg_l) = Ag+bg).

Example 2.3 Consider w = 220. The binary representation of w is 11011100, and hence n = 8.
From the concatenation of the binary representation of w with the additional trailing 0, we
have that £ = 2, a1 = 2, b1 =1, as = 3, by = 3; in turn, 4; = a1 = 2, Ao = a1 + a2 = 5,
Bi=Bi=bi=1,By=Byg=bi+by=4,T1=A4,+B; =3,and I'y = Ay + By = 9. Then,

x*=(0,0,0,0,0,0,00 1,1,0,1,1,1,0,0,0)

n==8 n==8

and 77 = (9, 10, 12, 13, 14, 17, 16, 15) and «5 = (1, 2, 11, 3, 4, 5, 8, 7, 6); thus,

™ = (9, 10, 12, 13, 14, 17, 16, 15, 1, 2, 11, 3, 4, 5, 8, 7, 6).

2.6 Properties of Permutation 7*

In this section, we analyze the structure of the self-inverting permutation 7* produced by the
algorithms Encode W.to.SiP and discuss its properties with respect to resilience to attacks.

Collberg et al. [30, 32] describe several techniques for encoding watermark integers in graph
structures. Based on the fact that there is a one-to-one correspondence, say, C, between self-
inverting permutations and isomorphism classes of reducible permutation graphs (or, for short,
RPG), Collberg et al. [30] proposed a polynomial-time algorithm for encoding the integer w as
the RPG corresponding to the wth self-inverting permutation 7 in C. This encoding exploits
only the inversion property of a self-inverting permutation; it does not incorporate any other
structural properties.

In our codec system an integer w is encoded as a self-inverting permutation 7* using a
construction technique which captures into 7* important structural properties. The main prop-
erties of our self-inverting permutation 7* produced by the algorithm Encode W.to.SiP can be
summarized into the following four categories:

e (Odd-length property: By construction, the self-inverting permutation n* has always
odd length.

e One-cycle property: The self-inverting permutation 7* always contains one, and only
one, cycle of length 1;

e Bitonic property: The self-inverting permutation 7* is constructed from the bitonic
sequence m° = X||Y®, where X and Y are increasing subsequences (see, Step 4 of our
encoding algorithm Encode_W.to0.SiP), and thus the bitonic property of 7® is encapsulated
in the cycles of 7*.

e Block property: The algorithm Encode W.to.SiP takes the binary representation of
the integer w and initially constructs the binary number B’ (see, Step 2). The binary
representation of B’ consists of three parts (or, blocks):

(i) the first part contains the leftmost n bits, each equal to 0,

29

(ii) the second part contains the next n bits which form the binary representation of the

integer w, and

(iii) the third part of length one contains a bit 0.

This property affects the construction of both subsequences X and Y (see, Bitonic prop-
erty), and thus the cycles of 7*.

The above properties enable us to identify any single change (in some cases, multiple changes)
made by an attacker to permutation 7* produced by our encoding algorithm Encode W.to.SiP.

2.7 Concluding Remarks

We presented an efficient algorithm for encoding watermark integers as self-inverting permuta-
tions. Our algorithm takes as input an integer w and produces a self-inverting permutation 7* in
O(n) time, where n is the number of bits in the binary representation of w. We also presented the
corresponding decoding algorithm; it takes as input a self-inverting permutation ©* produced by
the encoding algorithm and returns the encoding integer w in O(n) time, where n is the length
of the input permutation. Both algorithms are simple, easy implemented and very fast.

It is worth noting that our encoding approach enable us to encode any integer w as self-
inverting permutation 7* of any length n* > 3; indeed, 7* can be constructed over the set Ny,
where n* = 2[logw] + 1.

30

CHAPTER 3

ENCODING SIPS AS
REDUCIBLE PERMUTATION (GRAPHS

3.1 Introduction

3.2 Preliminaries

3.3 Reducible Permutation Graphs (RPG)

3.4 The Structure of Our Codec System

3.5 Encode SiPs as Reducible Permutation Graphs
3.6 Properties of the Flow-graph F[r*]

3.7 Detecting Attacks

3.8 Concluding Remarks

3.1 Introduction

Although digital watermarking has made considerable progress and become a popular technique
for copyright protection of multimedia information [15, 113], research on software watermarking
has recently received considerable attention. Software watermarking has been studied for about
10-15 years and has been pioneered by Christian Collberg and his research team. The major soft-
ware watermarking algorithms currently available are based on several techniques, among which
the register allocation, spread-spectrum, opaque predicate, abstract interpretation, dynamic path
techniques (see, [1, 35, 37, 38, 86, 95, 101, 106]).

Recently, several software watermarking algorithms have appeared in the literature that en-
code watermarks as graph structures among which our algorithms proposed in this thesis which
encode watermarks numbers as Reducible Permutation Graphs (this chapter) or Cographs (Chap-
ter 5). In general, such encodings make use of an encoding function encode which converts a

31

watermarking number w into a graph G and of a decoding function decode that converts the
graph G into the number w, that is,

e encode(w) — G

e decode(G) — w

We usually call the pair (encode,decode)q as a graph codec [30]. From a graph-theoretic point
of view, we are looking for a class of graphs G and a corresponding codec (encode,decode)g with
the following properties:

(i) Appropriate Graph Types: Graphs in class G should be directed having appropriate properties
(e.g., nodes with small outdegree) so that their structure resembles that of real program
graphs;

(ii) High Resiliency: The function decode(G) should be insensitive to small changes of G (e.g.,
insertions or deletions of a constant number of nodes or/and edges); that is, if G € G and
decode(G) — w then decode(G’') — w with G' = G;

(iii) Small Size: The size |P,| — |P| of the embedded watermark should be small, where P, and
P are the watermarked and the original program, respectively;

(iv) Efficient Codecs: The functions encode and decode should be computed in polynomial

time.

We briefly mention here that there are two general categories of software watermarking algo-
rithms: the static and the dynamic algorithms [32]. A static watermark is stored inside program
code P in a certain format, and it does not change during the program execution. A dynamic wa-
termark is built during program execution, perhaps only after a particular sequence of input, and
it might be retrieved by analyzing the data structures built when watermarked program is run-
ning. Further discussion of static and dynamic watermarking issues can be found in [48, 85, 120]
and [32].

In 1996, Davidson and Myhrvold [48] presented the first published static software watermark-
ing algorithm; it embeds the watermark by reordering the basic blocks of a control flow-graph,
whereas the first dynamic watermarking algorithm CT was proposed by Collberg and Thomborson
[32]; it embeds the watermark through a graph structure which is built on a heap at runtime.

Based on the idea of Davidson and Myhrvold algorithm, Venkatesan, Vazirani, and Sinha [120]
proposed the first graph-based software watermarking algorithm which embeds the watermark
by extending a method’s control flow-graph through the insertion of a directed subgraph; it is
a static algorithm and is called VVS or GTW. In [120] the construction of a directed graph G (or
watermark graph G) is not discussed. Collberg et al. [31] proposed an implementation of GTW,
which they call GTWgy; this is the first publicly available implementation of the algorithm GTW.
In GTWgy the watermark is encoded as a reducible permutation graph (RPG) [30], which is a
reducible control flow-graph with maximum out-degree of two, mimicking real code. Note that
for encoding integers, the GTWg, method uses only those permutations that are self-inverting.

Attacks: A successful attack against the watermarked program P,, prevents the recognizer from
extracting the watermark while not seriously harming the performance or correctness of the

32

program P,. Tt is generally assumed that the attacker has access to the algorithm used by the
embedder and recognizer. There are four main ways to attack a watermark in an application

program.

o Additive attacks: Embed a new watermark into the watermarked software, so that the
original copyright owners of the software cannot prove their ownership by their original
watermark inserted in the software;

o Subtractive attacks: Remove the watermark of the watermarked software without affecting
the functionality of the watermarked software;

o Distortive attacks: Modify watermark to prevent it from being extracted by the copyright
owners and still keep the usability of the software;

o Recognition attacks: Modify or disable the watermark, so that the detector gives a mislead-

ing result.

Attacks against graph-based software watermarking algorithms can mainly occur in the fol-
lowing three ways: (i) Edge-flip attacks, (ii) Edges-addition/deletion attacks, and (iii) Node-
addition/deletion attacks.

Contribution. For encoding integers some recently proposed watermarking methods uses only
those permutations that are self-inverting. Collberg et al. [30, 32] based on the fact that there
is a one-to-one correspondence hetween self-inverting permutations and isomorphism classes of
RPGs, proposed a polynomial algorithm for encoding any integer w as the RPG corresponding
to the w-th self-inverting permutation 7 in this correspondence [30]. This encoding exploits only
the fact that a self-inverting permutation is its own inverse.

In this chapter, we present an efficient and easily implementable system for encoding numbers
as reducible permutation graphs, whose structure resembles that of real program graphs, through
the use of self-inverting permutations (or SiP, for short); see, Figure 3.1.

More precisely, having designed an efficient method for encoding integers as self-inverting
permutations (see, Chapter 3), we next describe algorithms for encoding a self-inverting permu-
tation 7* of length n* as a reducible permutation flow-graph F[x*]. In particular, we propose
the algorithm Encode_SiP.to.RPG-I which exploits domination relations on the elements of 7*
and properties of a DAG representation of 7*, and the algorithm Encode_SiP.to.RPG-II which
exploits neighborhood relations on specific decreasing subsequences of permutation 7%, and both
produce a reducible permutation flow-graph F[r*] on n* 4+ 2 nodes; in both approaches, the
whole encoding process takes O(n*) time and requires O(n*) space. The corresponding decoding
algorithm Decode RPG.to.SiP-I extracts the self-inverting permutation 7* from the reducible
permutation graph F[r*] by first converting the graph F[r*] into a directed tree Ty[n*] and then
applying DFS-search on Ty[n*]|, while the decoding algorithm Decode RPG.to.SiP-II extracts
7* from F[r*] by also first converting F[r*] into a directed tree Ts[n*| and then finding pairs of
nodes on specific paths in T[7*]. The decoding process takes time and space linear in the size of
the flow-graph F[r*], that is, both decoding algorithms take O(n*) time and space; recall that
the length of the permutation 7* and the size of the flow-graph F[7*] are both O(n*) = O(n),

where n = [logy w].

33

The watermark number w = 4

\

W.to.SiP SiP.to. W

v
T = (47 7,6,1,5,3, 2)
A

SiP.to.RPG RPG.to.5iP

Flr*]
1]
O OGO

Figure 3.1: The main data components used by the algorithms of our codec system: (i) the watermark

number w, (ii) the self-inverting permutation 7*, and (iii) the reducible permutation graph F[r*].

Our codec (encode,decode) g+ System incorporates several important properties and char-
acteristics which make it appropriate for use in a real software watermarking environment. In
particular, the reducible permutation flow-graph F[n*] resembles the graph data structures built
by real programs since its maximum outdegree does not exceed two and it has a unique root
node. The flow-graph F[r*] is highly insensitive to small edge-changes and fairly insensitive to
small node-changes of F[x*]; on the other hand, the properties of the graph F[r*] enable us to
correct such edge changes.

Road Map. The chapter is organized as follows: In Section 3.2 we establish the notation and
related terminology, and we present background results. In Section 3.3 we define the main graph-
based data component of our codec system, namely, the reducible permutation graphs (PRG). In
Section 3.4 we describe the two operational phases of our codec system and present the structure
of our system’s reducible permutation graph F[x*]. In Section 3.5 we present the two algo-
rithms, namely Encode-SiP.to.RPG-I and -II for encoding the self-inverting permutation 7*
as a reducible permutation flow-graph F[r*] along with the corresponding decoding algorithms
Decode-RPG.to0.8iP-I and -II. In Section 3.6 we present the properties of the reducible per-
mutation flow-graph F[x*], while in Section 3.7 we show that node-label or edge modifications
on the graph F[r*] can be efficiently detected. Finally, in Section 3.8 we conclude the chapter
and discuss possible future extensions.

34

3.2 Preliminaries

We consider finite graphs with no multiple edges. For a graph G, we denote by V(G) and E(G)
the vertex set and edge set of G, respectively. The neighborhood N(x) of a vertex x of the
graph G is the set of all the vertices of G which are adjacent to x. The degree of a vertex z in
the graph G, denoted deg(z), is the number of edges incident on z; thus, deg(z) = |N(z)|. For
a node z of a directed graph G, the number of directed edges coming in z is called the indegree
of z and the number of directed edges leaving z is its outdegree.

A path in an undirected graph G of length k is a sequence of vertices (vg,v1,...,vx) such
that (v;—1,v;) € E(G) for 1 = 1,2,...,k. A path is called simple if none of its vertices occurs
more than once.

Let T be a rooted tree. The parent of a node x of T is denoted by p(x), whereas the node
set containing the children of z in 7" is denoted by ch(z). The root node of a tree is said to be
at level 0, while the level of any other node z is equal to the level of x’s parent increased by 1.
Let L; denote the set of nodes at the i-th level of T', for each value of ¢ from 0 to the height of
the tree T'.

3.3 Reducible Permutation Graphs (RPG)

A flow-graph is a directed graph with an initial node from which all other nodes are reachable.
A directed graph G is strongly connected if for every pair of vertices x,y of G there is a directed
path in G from z to y. A node y is an entry for a subgraph H of the graph G if there is an edge
(x,y) in G such that y € H and 2 ¢ H.

Definition 3.1. A flow-graph is reducible if it does not have a strongly connected subgraph with

two (or more) entries.

There are at least two other equivalent definitions, as Theorem 3.1 shows. These definitions
use a few more graph-theoretic concepts. An edge (z,z) (for some node) is a cycle-edge. A
depth first search (DFS) traversal of a flow-graph partitions its edges into tree edges (making up
a spanning tree known as a DF'S tree), forward edges (pointing to a successor in the spanning
tree), back edges (pointing to a predecessor in the spanning tree, plus the cycle-edges), and cross
edges (the remaining edges). Tree edges, forward edges, and cross edges form a dag known as a
DFS dayg.

Theorem 3.1. [59, 60] Let F' be a flow-graph. The following three statements about F are
equivalent:

(i) the graph F is reducible;
(ii) the graph F has a unique DFS dag;

(153) the graph F can be transformed into a single node by repeated application of the transfor-
mations T1 and Tz, where T1 removes a cycle-edge, and To picks a non-initial node y that

has only one incoming edge (x,y) and glues nodes x and y.

35

3.4 The Structure of our Codec System

In this section, we describe the main structural and data components of our codec system which
encodes an integer w into a reducible permutation graph through the use of self-inverting per-
mutations produced the algorithm Encode W.to.SiP (see, Chapter 2).

For a watermark number w, our codec system uses two main data components: (i) the self-
inverting permutation 7* and (ii) the reducible permutation graph F'[7*]; these components are
depicted in Figure 3.1. The same figure also shows the two main phases of our system’s process:

(I) Phase W—SiP: it uses two algorithms, one for encoding the watermark number w into a

self-inverting permutation 7* and the other for extracting w from *;

(I) Phase SiP-RPG: this phase uses two algorithms as well, one for encoding the self-
inverting permutation 7* into a reducible permutation graph F[n*] and the other for ex-
tracting 7* from F[r*].

Our codec system encodes an integer w as a self-inverting permutation 7* using a construction
technique which captures into 7* important structural properties. As we discussed in Chapter 3,
these properties enable an attack-detection system to identify edge and/or node modifications
made by an attacker to 7*; we briefly mention here, the odd-length property (the self-inverting
permutation 7* has always odd length), the one-cycle property (7* contains always one, and
only one, cycle of length 1), the bitonic property, and the block property (see, Section 2.6).
Moreover, the encoding approach adopted by our system enables it to encode any integer w as
a self-inverting permutation 7* of length n* = 2n + 1, where n = 2[logy w] + 1.

The reducible permutation graph F[7*| produced by our system’s algorithms consists of n* + 2
nodes, say, Un*+1, Un*, - - -, Ui, - - - , Uy, which include:

(A) A header node: it is a root node with outdegree one from which all other nodes of the
graph F[r*| are reachable; note that every control flow-graph has such a node. In F[r*]
the header node is denoted by s = uy*41;

(B) A footer node: it is a node with outdegree zero that is reachable from all other nodes
of the graph F[r*]. Every control flow-graph has such a node representing the exit of the
method. In F[r*] the footer node is denoted by t = wp;

(C) The body: it consists of n* nodes wy*, up*—1,...,u;,...,u; each with outdegree two. In
particular, each node u; (1 <4 < n*) has exactly two outgoing pointers: one points to
node u;—1 and the other points to a node u,, with m > 7; recall that u,+1 = s and ug = ¢.

By construction, the reducible permutation graph F[7*] is of order (i.e., number of nodes) n* +2
and size (i.e., number of edges) 2n* + 1. Thus, since n* = 2n + 1, both the order and size of
graph F[r*] are of O(n), where n = 2[logy w]| + 1.

Recall that our contribution in this chapter has to do with both the W-SiP and the SiP-RPG
phase. We design and analyze algorithms for encoding a watermark number w as a SiP 7* and
algorithms for encoding a SiP 7* as a reducible permutation flow-graph F[7*] along with the
corresponding decoding algorithms; we also show properties of our codec system that prevent
edge and/or node modification attacks.

36

™ =(6,3,2,9,8,1,11,5,4,10,7)

Ta[m)

(O+——(s)

Figure 3.2: The DAG D[r*] of the self-inverting permutation 7* and the corresponding Dmax-tree
Td[ﬂ'*}.

3.5 Encode SiPs as Reducible Permutation Graphs

In this section, we concentrate on the system’s phase SiP-RPG and present efficient algorithms
for encoding a self-inverting permutation 7* into a reducible permutation graph F[r*] as well as
the corresponding decoding algorithms for extracting the permutation 7* from the graph F[r*].

We present two such encoding algorithms yielding two different reducible permutation graphs.
The former applies to any permutation 7 and relies on domination relations on the elements of 7
whereas the latter applies to a self-inverting permutation 7* produced in any way and relies on
the decreasing subsequences of 7*. We mention that the restricted structure of a self-inverting
permutation 7* produced by algorithm Encode W.to.SiP (as discussed in Chapter 2) enables
us to obtain the decreasing subsequences of 7* in time linear in its size and, more importantly,
makes the encoding of 7* into graph F[r*] robust and resilient to attacks.

In light of our encoding algorithm Encode_W.to.SiP, the two proposed encoding algorithms
provide two different ways to encode the same watermark value w into two different reducible
permutation graphs and thus can be very useful for multiple watermarking.

3.5.1 Encode SiPs as Reducible Permutation Graphs - I

The proposed algorithm, which we call Encode_SiP.to.RPG-I, takes as input the self-inverting
permutation 7* produced by the algorithm Encode W.to.SiP and constructs a reducible per-
mutation flow-graph F[r*] by using a DAG representation D[r*] of the permutation 7* [23]; in
fact, it uses a parent-relation of a tree obtained from the graph D|[r*] defined below. The whole
encoding process takes O(n*) time and requires O(n*) space, where n* is the length of the input
self-inverting permutation 7*.

Next, we first describe the main ideas and the structures behind our encoding algorithm. In
particular, given a self-inverting permutation 7" we construct a directed acyclic graph, a directed

37

tree and define specific d-domination relations on the elements of 7*.

DAG Representation D[r*]: We construct the directed acyclic graph D[r*] by exploiting the
d-domination relation of the elements of 7* as follows: (i) for every element i of 7%, we create a
corresponding vertex v; and we add it into the vertex set V/(D[n*]) of D[r*]; (ii) for every pair
of vertices (v;,v;) where v;,v; € V(D[r*]), we add the directed edge (v;,v;) in E(D[r*]) if the
element 7 d-dominates the element j in 7*; (iii) we create two dummy vertices s = v,+41 and
t = vp and we add them both in V(D[r*]); then, we add in E(D[r*]) the directed edge (s,v;)
for every v; with indegree equal to 0, and the edge (vj,t) for every v; with outdegree equal to 0.

Figure 3.2 depicts the graph D[r*| of the permutation 7* = (6,3,2,9,8,1,11,5,4,10,7). Note
that, by construction, i > j for every directed edge (v;,v;) of D[r*] since the element j of 7* is
d-dominated by the element <.

Dmax-domination Relations: Let d-dom(j) be the set of all the elements of the permuta-
tion 7* which d-dominates the element j and dmax(j) be the element of the set d-dom(j) with
maximum value; similarly, d-dom(v;) is the set of all the nodes v; of the graph D|[n*] such that
i d-dominates j in 7* and let dmax(vj) = Vamax(j), 1 < j < n*. For example, in Figure 3.2
d-dom(5)=(6,8,11) and dmax(5)=11, and d-dom(7)=(8,10) and dmax(7)=10.

We say that the element i dmaz-dominates j (node v; dmax-dominates v;, resp.) if i =
dmax(j) (v; = dmax(v;), resp.). The ordered pair (i,j) of elements of 7* (the ordered pair
(vi,v;) of nodes of D[r*], resp.) are in a dmax-domination relation if ¢ dmax-dominates j (v;
dmax-dominates v;, resp.).

By definition, the element i = dmax(j) of permutation 7*, i.e., i dmax-dominates j, is the
rightmost element on the left of j in 7* which d-dominates j; equivalently, the node v; = dmax(v;)
of graph D[r*] is the parent of the node v; with the maximum label.

Dmax-tree Ty[x*]: We construct the directed tree Ty[r*], which we call Dmax-tree, by exploiting
the dmax-domination relation on the nodes of D[r*]. The Dmax-tree Ty[n*] is simply constructed
as follows:

(i) construct the D-dag D[n*;

(ii) delete all the directed edges (v;,v;) from D[n*] if v; and v; are not in dmax-domination
relation, i.e., v; # dmax(v;).

The Dmax-tree Ty[7*] of the permutation 7* = (6, 3,2,9,8,1,11,5,4, 10, 7) is shown in Figure 3.2.
We point out that the construction of the Dmax-tree Ty[x*] can also be done directly from
permutation 7* by finding the dmax-domination relation of each element of 7*; note that s =
vp*4+1 dominates all the elements of 7*.

Algorithm Encode_SiP.to.RPG-I

Given a self-inverting permutation 7* of length n*, our proposed algorithm Encode _W.to.SiP-I
works as follows: first, it computes the dmax-domination relation of each of the n elements of the
self-inverting permutation 7 (Step 1), and then, it constructs a directed graph F[r*] on n* + 2
nodes using the dmax-domination relation of the elements of the permutation 7* (Steps 2 and
3).

38

Now we present the encoding algorithm in detail.

Algorithm Encode_SiP.to0.RPG-I

1. for each element ¢ € 7%, 1 < ¢ < n*, do
o set P(i) = m, where m = dmax(i), i.e., m is the element from d-dom(i) with

the maximum value;

2. Construct a directed graph F[r*] on n* + 2 vertices as follows:
o V(F[r*]) = {s = un 41, Un*,-..,u1,up =1};
o fori=n*n*—1,...,0do
add the edge (uj+1,u;) in E(F[x*]);

3. for each vertex u; € V(F[r*]), 1 <i<n* do
o add the edge (u;, un,) in E(F[r*]) where m = P(i);

4. Return the graph F[r*].

Time and Space Complexity. The most time-consuming step of the algorithm is the computa-
tion of the dmax-domination relation on each element of 7* (Step 1). On the other hand, the
construction of the reducible permutation flow-graph F[7*] on n* + 2 nodes requires only the
forward pointers (Step 2) which can be trivially computed, and the dmax-domination pointers
(Step 3) which can be computed using the function P().

Returning to Step 1, we observe that the element m is the max-indexed element on the left
of the element 7 in the permutation 7* that is greater than i. Thus, the function P() can be
alternatively computed using the input permutation as follows:

(1) insert the value n* + 1 into an initially empty stack .S;
(ii) for each element w7 € 7%, i =1,2,...,n%, do the following:
while the element at the the top of S is less than 7} do
remove from S the element at its top;
P(n}) = element at the top of S;

insert 7; in stack S

For the correctness of this procedure, note that the contents of the stack S are in decreasing order
from bottom to top; in fact, at the completion of the processing of element 77, S contains (from
top to bottom) the left-to-right maxima of the reverse subpermutation (7}, 7 {,...,], n*+1).
Additionally, it is important to observe that the value n* 4+ 1 at the bottom of the stack S is
never removed.

The time to process element « in step (ii) is O(1 + ¢;) where ¢; is the number of elements
popped from the stack .S while processing 7. Since the number of pops from S does not exceed
the number of pushes in S and since each element of the input permutation 7* is inserted exactly
once in S, the whole computation of the function P() takes O(n*) time and space, where n* is
the length of the permutation #*. Thus, we obtain the following result:

Theorem 3.2. The algorithm Encode_SiP.to.RPG-I for encoding a self-inverting permutation

7 of length n* as a reducible permutation flow-graph F[r*| requires O(n*) time and space.

39

7™ =(6,3,2,9,8,1,11,5,4,10,7)

P(6)=12 P(8)=9 P@4)=5
PB3)=6 P(1)=8 P(10)=11) (o
P(2)=3 P(11)=12 P(7)=10 oo
P9 =12 P()=11

Flr*]

Figure 3.3: The main structures used or constructed by the algorithms Encode_SiP.to.RPG-I and

Decode RPG.to.SiP-I, that is, the self-inverting permutation 7*, the values of function P(), the reducible
permutation graph F[r*], and the Dmax-tree Ty[n*].

Algorithm Decode_ RPG.t0.SiP-1

The algorithm Encode_SiP.to.RPG-I produces a reducible permutation flow-graph F[r*] in
which it encodes a self-inverting permutation 7*. Thus, we are interested in designing an efficient
and easily implementable algorithm for extracting the permutation 7* from the graph F'[7*].

Next, we present such a decoding algorithm, we call it Decode RPG.to0.SiP-I, which takes
time and space linear in the size of the flow-graph F[r*], and is easily implementable: the only
operations used by the algorithm are edge modifications on F[r*] and DFS-search on trees.

The algorithm takes as input a reducible permutation flow-graph F[7r*] on n* + 2 nodes
constructed by algorithm Encode_SiP.to.RPG-I, and produces a self-inverting permutation 7*
of length n*; it works as follows:

Algorithm Decode RPG.t0.SiP-I

1. Delete the directed edges (ujt+1,u;) from the edge set E(F[r*]), 1 <i < n* and the node
t = ug from V(F[x*]);

2. Flip all the remaining directed edges of the graph F[r*];
let Ty[7*] be the resulting tree with nodes s, u1, ug, ..., tp*;

3. Perform DFS-search on the tree Ty[n*| starting at node s by always proceeding to the
minimum-labeled child node and compute the DFS discovery time d[u] of each node u of
Ty[™];

40

4. Order the nodes ui,ug, ..., u,+ of the tree Ty[r*] by their DFS discovery time d[] and let

T = (u}, U, ..., Uy~) be the resulting order, where d[u;] < d[u)] for i < j, 1 <i,j <n¥

y Wp*
5. Return 7* = «.

Time and Space Complexity. The size of the reducible permutation graph F[r*| constructed by
the algorithm Encode_SiP.to.RPG-I is O(n*), where n* is the length of the permutation 7*, and
thus the size of the resulting tree Ty[r*] is also O(n*). It is well known that the DFS-search on
the tree Ty[n*] takes time linear in the size of Ty[x*]. Thus, the decoding algorithm is executed
in O(n*) time using O(n*) space. Thus, the following theorem holds:

Theorem 3.3. Let F[r*] be a reducible permutation flow-graph of size O(n*) produced by the
algorithm Encode_SiP.to.RPG-I. The algorithm Decode RPG.to.SiP-I decodes the graph F[r*]
in O(n*) time and space.

3.5.2 Encode SiPs as Reducible Permutation Graphs - 11

The proposed encoding algorithm, which we call Encode_SiP.to.RPG-II, takes as input a self-
inverting permutation 7* of length n* = 2n 4 1 produced by Algorithm Encode W.to.SiP and
constructs a reducible permutation flow-graph F[7*] by using the properties of the decreasing
subsequences of 7* [21].

Decreasing Subsequences of 7*: For the special case in which w = 2" —1 (that is, all the bits
in w’s binary representation are 1), the fact that both sub-permutations 7] and 7 are increasing
(see, Eq. 2.1) implies that the self-inverting permutation ©* has n + 1 decreasing subsequences
which are in order: (n+1, 1), (n+2,2), ..., (2n, n), and (2n + 1).

Next, if w # 2" — 1, the sub-permutation 7] (see, Eq. 2.2) has the following A, + 1 decreasing

subsequences in order:

o the a; subsequences (n + 1), (n+2), ..., (n + a1) of length 1 each;

e}

the subsequence (n +T'1 + 1, n+ T, ..., n+ a1 + 2) of length by;

e}

the ag — 1 subsequences (n + 11 +2), (n+ 11 +3), ..., (n+T1 + ag) of length 1 each;

e}

fort=2,3...,6—1,

the subsequence (n +1'; + 1, n+ 1y, ..., n+ ;1 4+ a; + 1) of length b; + 1 and
the a;4+1 — 1 subsequences (n +1'; +2), (n+1;+3), ..., (n +T'; + aj+1) of length 1
each;

o the subsequence (n +Ty,n+Ty—1, ..., n+Ty_1+as+ 1) of length b,.

In turn, the sub-permutation 75 (see, Eq. 2.3) has an equal number (i.e., Ay + 1) of decreasing
subsequences. In order, they are:

o the aj subsequences (1), (2), ..., (41) of length 1 each;

o the subsequence (n+ A1 +1,n,n—1, ..., n— By +2, A1 + 1) of length b; + 1;

41

o the ag — 1 subsequences (A1 + 2), (41 + 3), ..., (A2) of length 1 each;
ofori=23...,0—1,

the subsequence (n — B;—1+1,n—B;_1, ..., n—B;+2, A; +1) of length b; + 1 and
the a;+1 — 1 subsequences (A; + 2), (4; +3), ..., (Aj+1) of length 1 each;

o the subsequence (n — By_1+1,n— By_1, ..., n — By + 2) of length b,.

Then we can show the following result.

Lemma 3.1. The decreasing subsequences of ©* can be computed by concatenating the corre-

sponding decreasing subsequences of 7] and of 735.

Proof: 1t suffices to show that the last (smallest) element of the i-th decreasing subsequence of
77 is larger than the first (largest) element of the i-th decreasing subsequence of 7. Indeed, this
is true for the first a; = A; decreasing subsequences, since the (single) element of each of these
subsequences of 77 is larger than n, whereas the (single) element of each of these subsequences
of 73 is at most equal to A; = a1 < n. For the (a1 + 1)-st decreasing subsequence, we have that
the smallest element of this subsequence of 7] is n + a1 + 2 whereas the largest element of that
of 5 isn+ A1 +1; clearly, n+ a1 +2 =n+ A1 +2 > n+ A; + 1. For the remaining decreasing
subsequences, we observe that the elements of all these subsequences of permutation 7} are at
least equal to n +I'1 +2 > n + 2, whereas the elements of those of 75 are at most equal to
n—B1+1<n+1.]

Example 3.1 For the self-inverting permutation 7* = (5,6,9,8,1,2,7,4,3) of Example 4.2, we
have that 77 = (5, 6,9, 8) with decreasing subsequences (5), (6), and (9, 8), and 75 = (1,2,7,4, 3)
with decreasing subsequences (1), (2), and (7, 4, 3). In turn, the decreasing subsequences of 7*
are: (5, 1), (6, 2), and (9, 8, 7, 4, 3).

Algorithm Encode_SiP.to.RPG-II

Our Encode SiP.t0.RPG-II algorithm works as follows: (i) first, it computes the decreasing
subsequences 51,59, ...,k of the permutation 7* and then (ii) it constructs a directed graph
F[r*] on n* 4+ 2 nodes using the subsequences S1,S2,...,Sk. The algorithm takes O(n*) time
and requires O(n*) space.

Next, we present the proposed encoding algorithm in detail (see, Figure 3.4).
Algorithm Encode_SiP.to.RPG-II
1. Compute the decreasing subsequences S1, S2, ..., Sk of permutation 7*;

2. Construct a directed graph F[r*] on n* + 2 vertices as follows:

o V(F[r*]) = {8 = tun*41,Un*, ..., u1,ug =t};

42

™ =(6,3,2,9,8,1,11,5,4,10,7)

T[]

(s)
s-es2n O 0B oo
Sy = (9,8,5,4) OO W o
Sy = (11,10,7) GG (D Ci = (8,5)
é & c = En,?)

Cs =

f

Flr*

Figure 3.4: The main structures used or constructed by Algorithms Encode_SiP.to.RPG-II and
Decode RPG.to.SiP-1I1I, i.e., the self-inverting permutation 7*, the decreasing subsequences of 7*, the
graph F[n*], the tree Ts[r*], and the elements of 7* in pairs.

ofort=n*n*—1,...,0do
add the edge (ujt+1,u;) in E(F[r*]);

3. for each decreasing subsequence S; = (i1,12,...,%), 1 <i <k, do
add the edge (u;,, s) in E(F[r*]);
forj=t,t—1,....2do

add the edge (u;;,u;;_,) in E(F[r*]);

4. Return the graph F[r*].

Time and Space Complezity. The sequences S1,S2, ..., Sk of 7 can be computed in O(n*) time
and space: from 7*, we isolate subpermutation 75 (see, Eq. 2.1 and 2.3) from which we determine
the a;s, the b;8, and £, and from them, the A4;s, B;s, and I';s; then, the sequences S, 59,..., Sk
can be computed based on the description of the decreasing subsequences of 7] and 73 given
earlier in this section and Lemma 3.1. Furthermore, the construction of the graph F[n*] also
takes O(n*) time and space. Thus, the following theorem holds.

Theorem 3.4. The algorithm Encode_SiP.to.RPG-II for encoding a self-inverting permuta-

tion ™ of length n* as a reducible permutation flow-graph F[r*] requires O(n*) time and space.

43

Algorithm Decode RPG.to.SiP-11I

Having designed the efficient encoding algorithm Encode_SiP.to.RPG-II, we next present the
decoding algorithm Decode RPG.to.SiP-II which takes as input a flow-graph F[r*] and extracts
the self-inverting permutation 7* from F[r*] (see, Figure 3.4); it works as follows:

Algorithm Decode RPG.to.SiP-II

1. Delete the directed edges (uj+1,u;) from the edge set E(F[r*]), 1 <4 < n* and the node
t = up from V(F[r*]) = {s = up=41, up*, ..., u1,up =t};

2. Flip all the remaining directed edges of the graph F'[r*]; the resulting graph is a tree Ts[n*]
rooted at § = up=41; let vp«y1, U+, ..., v1 be the corresponding nodes of Ts[r*];

3. While the root s of Ts[n*] has at least one child v; do

o find the leaf v; of Ts[r*] which is reachable from node v;;

o set P, = (v;,v;) and delete both v; and v; from T[7*];

4. Initialize the permutation 7* = (7}, 75, ..., 7:«) to the identity permutation (1,2,...,n%),
and let P be the set of all pairs P1, Ps, ..., P, computed at Step 3; then

o for each pair (v;,v;) € P, swap elements m and 7r;-‘ in permutation 7*;
5. Return the self-inverting permutation 7*.

Time and Space Complexity. The size of the tree Tg[r*] is O(n*) since the input graph F[r*]
constructed by algorithm Encode_SiP.to.RPG-II has O(n*) nodes. Based on the structure of
the tree Tg[r*] we can compute the pairs Pj, Py, ..., Py in O(n*) time using O(n*) space. Thus,
we can obtain the following result.

Theorem 3.5. Let F[n*| be a reducible permutation flow-graph of size 2n* + 1 produced by the
algorithm Encode _SiP.to.RPG-II. The algorithm Decode RPG.to.SiP-1I decodes the flow-graph
F[r*] in O(n*) time and space.

3.6 Properties of the Flow-graph F[r*]

In this section, we analyze the structures of the main component of our proposed codec system,
that is, the reducible permutation graph F[7*] produced by the algorithms Encode _SiP.to.RPG-I
and -II, and discuss their properties with respect to resilience to attacks.

We next describe the main properties of our reducible permutation graph F[7*]; we mainly
focus on the properties of F[r*] with respect to graph-based software watermarking attacks.

44

3.6.1 Structural Properties

In graph-based watermarking environment, the watermark w is encoded by a codec algorithm
into some special kind of graphs G; in such an environment, graph G is usually called watermark
graph. In general, the watermark graph G should not differ from the graph data structures built
by real programs. Important properties are the maximum outdegree of G which should not exceed
two or three, and the existence of a unique root node so that all other nodes can be reached from
it. Moreover, G should be resilient to attacks against edge and/or node modifications. Finally,
G should be efficiently constructed.

Our watermark graph F[7*] and a corresponding codec system (encode,decode)g(,+] incor-
porate all the above properties; in particular, the graph F[r*] and the corresponding codec have
the following properties:

e Appropriate graph types: The graph F[r*] is directed on n* + 2 nodes with outdegree
at most two; that is, it has low max-outdegree, and thus it matches real program graphs.

e High resiliency: Since exactly one node of the reducible permutation graph F[r*] has
outdegree 0, one other has outdegree 1, and the rest have outdegree 2, we can with high
probability identify and correct single edge modifications, i.e., edge-flips, edge-additions,
or edge-deletions. Thus, the graph F[r*] enables us to correct single edge changes.

e Small size: The size |Py,| — |P| of the embedded watermark w is relatively small since the
size of the corresponding watermark graph F[r*] is O(n*); in fact, F[r*]’s size is O(logy w)
because n* = 2n + 1 and n = [logy w].

e Efficient codecs: The codec (encode,decode)p(,+ has low time and space complexity;
indeed, we have showed that both the encoding algorithms Encode_SiP.to.RPG-I and
-1I and the decoding algorithms Decode RPG.to.SiP-I and -II require O(n*) time and
space, where n* is the size of the input permutation 7* (see, Theorems 3.2 and 3.3 and
Theorems 3.4 and 3.5).

It is worth noting that our encoding and decoding algorithms use basic data structures and
operations, and thus they are easily implementable.

3.6.2 Unique Hamiltonian Path

It is well-known that any acyclic digraph G has at most one Hamiltonian path (HP); G has
one HP if there exists an ordering (v1,v2,...,v,) of its n nodes such that in the subgraphs
Go,G1, ..., Gp—1 the nodes vy,va, ..., vy, respectively, are the only nodes with indegree zero,
where Gy = G and G; = G\{v1,v92,...,v;}, 1 < i < n — 1. Furthermore, it has been shown
that any reducible flow-graph has at most one Hamiltonian path [30]. It is not difficult to see
that the reducible permutation graphs F[r*] constructed by algorithms Encode _SiP.to.RPG-I
and -II have a unique Hamiltonian path, denoted by HP(F[r*]); this is precisely the path
Up*41Up= - - - uitg. Such a path can be found in time linear in the size of F[r*]. The following
algorithm, which we call Unique_HP, takes as input a graph F[7*] on n* + 2 nodes and produces

45

its unique Hamiltonian path HP(F[r*]).

Algorithm Unique _HP

1. Find the node uy+41 of the graph F[x*] with outdegree 1;

2. Perform DFS-search on graph F[r*] starting at node u,»11 and compute the DFS discovery
time d[u] of each node u of F[r*];

3. Return HP(F[z*]) = (ug,u},...,up., ;) where (ug,u),...,ul.) is the ordering of the
nodes wp+41,Up=,...,up of the graph F[r*] by increasing DFS discovery time dJ], i.e.,
d[uj] < dluj] fori <j, 0<i,j <n*+1.

Since the graph F[n*] contains n* + 2 nodes and 2n* 4+ 1 edges, both finding the node of F[r*]
with outdegree 1 and performing DFS-search on F[7*] take O(n*) time and require O(n*) space.
Moreover, ordering the nodes by their DFS discovery time can also be done in O(n*) time by
bucket sorting. Thus, we have the following result.

Theorem 3.6. Let F[r*] be a reducible permutation graph of size O(n*) constructed by algo-
rithm Encode_SiP.to.RPG-I or -II. The algorithm Unique HP correctly computes the unique

Hamiltonian path of F[n*] in O(n*) time and space.

3.7 Detecting Attacks

In this section, we show that the malicious intentions of an attacker to lead a reducible permu-
tation graph F[r*] in incorrect-stage by modifying some node-labels or edges of the graph F[r*|
can be efficiently detected.

3.7.1 Node-label Modification

By construction, our reducible permutation graph F[r*] is a node-labeled graph on n* 42 nodes,
where n* is the length of 7*. Indeed, the labels of F[7*] are numbers of the set {0,1,...,n*+1},
where the label n* + 1 is assigned to header node s = uy,~y1, the label 0 is assigned to footer
node t = ug, and the label n* + 1 — 7 is assigned to the ith body node up+411-4, 1 <i < n.

A label modification attacker may perform swapping of the labels of two nodes of F[r*],
altering the value of the label of a node, or even removing all the labels of the graph F[r*]
resulting in a node-unlabeled graph. Since the extraction of the watermark w relies on the labels
of the flow-graph F[r*| (see, algorithms Decode RPG.to.SiP-I and -II), it follows that our
codec system (encode,decode)g(,+] is susceptible to node-label modification attacks.

Therefore, it is important for us to also have a way to extract the watermark w efficiently
from F[n*] without relying on its labels. Obtaining the correct labels can be easily done in O(n*)
time and space thanks to the unique Hamiltonian path HP(F'[7*]) since the nodes of F[7*]) are
encountered along HP(F[7*]) in decreasing order of their labels. Thus, we can recover from any
change of the labels or even from complete deletion of them. Therefore, we have the following

result.

46

1 Edge Attack 2 Edges Attack

0,016 -

0,012

Probability
Probability

0,008 -

0,004 -

. I n
1 21 31 41 51 61 71 81 91 1 21 31 41 51 61 71 81 91
Number of Nodes Number of Nodes

(@ | (v)

3 EdgesAttack | 4 Edges Atack

Probability
Probability

. . .
11 21 31 41 51 61 71 81 91 11 21 31 41 51 61 71 81 91
Number of Nodes Number of Nodes

(c) (d)

Figure 3.5: The probability for the RPG F[rx*] to have the RPG property after a modification of (a) 1
edge, (b) 2 edges, (c) 3 edges, and (d) 4 edges. Note the different scaling of the four diagrams.

Lemma 3.2. Let F[r*] be a reducible permutation graph of size O(n*) produced by either al-
gorithm Encode_SiP.to.RPG-I or -II, and let F'[7*] be the graph resulting from F|n*] after
having modified or deleted the node-labels of F[r*]. Given F'[x*], the flow-graph F[r*] can be

constructed in O(n*) time and space.

3.7.2 Edge Modification

We next argue that we can decide, with high probability, whether the reducible permutation
graph F[r*] produced by our codec system has suffered an attack on its edges.

Let F[r*] be a flow-graph which encodes the integer w and let F'[7*] be the graph resulting
from F[r*] after an edge modification. Then, we say that F'[x*] is either False-incorrect (F-
incorrect) or True-incorrect (T-incorrect): F'[m*] is F-incorrect if our codec system fails to return
an integer from the graph F'[r*], whereas F’[r*] is T-incorrect if our system extracts from F”[r*]
and returns an integer w’ # w.

Since the SiP properties of the permutation 7%, i.e., odd-length property, one-cycle property,
bitonic property, and block property (see, Section 2.6), are incorporated in the structure of the
reducible permutation graph F[r*], it follows that the graph F'[n*] resulting from F[7*] after any

47

edge-modification may be F-incorrect if at least one of the SiP properties does not hold. Indeed, if
F'[r*] decodes a permutation 7'* # 7*, then the subsequence X (Y, resp.) may not be increasing
and thus the bitonic property does not hold. In addition, if an attacker makes appropriate edge-
modifications to F[r*] so that the resulting graph F’[r*] decodes a permutation 7* which is
still self-inverting, then the first block of the binary sequence B’ may contain one or more 1s
or the third block may be 0. On the other hand, due to the odd-length property any single
node-modification in F[r*], i.e., node-addition or node-deletion, can be easily identified.

We also experimentally evaluated the resilience of the flow-graph F[7*], the main component
of our system, in edge-modifications. To this end, we have produced reducible permutation
graphs F[7*] on n = 11,21,31,...,91 nodes and computed the probability for the graph F;[7*]
to be F-incorrect, where F;[n*] is the graph resulting from F[r*] after a modification of i edges,
1< <4

In our experimental study the graphs F;[7*], 1 <1i < 4, are produced in the following manner:
we first choose an integer w uniformly at random from [2"~1, 2" — 1], where n = 5,10, 15, ..., 45,
then generate a SiP ©* of length n* = 2n+1, and finally encode the permutation 7* as a reducible
permutation graph F[r*] using the algorithm Encode_SiP.to.RPG-I; we next randomly select
i edges (ug,uy) and i nodes u,, and then delete the edge (us,uy) and add the edge (ug,u.),
1< <4,

The experimental results show that we can decide with high probability whether our reducible
permutation graph F[7*]| has suffered an attack on its edges. Figure 3.5 depicts the high-resilience
structure of the graph F[r*].

3.8 Concluding Remarks

In this chapter we proposed an efficient and easily implementable codec system for encoding
watermark numbers as graph structures. In particular, we proposed an efficient codec method
for encoding a self-inverting permutation 7* as a reducible permutation graph F[7*]; the proposed
flow-graph F[7*] can be efficiently used for software watermarking since its structure mimics real
codes.

Our codec algorithms are very simple, use elementary operations on sequences and linked
structures, have very low time and space complexity, and the flow-graph F[r*| incorporates
important structural properties which enable us to identify with high probability edge and/or
node modifications made by an attacker to F[r*].

In light of the two main data components of our codec system, i.e., the permutation 7* and
the graph F[r*], it would be very interesting to come up with new efficient codec algorithms
and structures having “better” properties with respect to resilience to attacks; we leave it as an
open question. Another interesting question with practical value is whether the class of reducible
permutation graphs can be extended so that it includes other classes of graphs with structural
properties capable to efficiently encode watermark numbers.

Finally, the evaluation of our codec algorithms and structures under other watermarking mea-
surements in order to obtain detailed information about their practical behavior is a interesting

problem for future study.

48

CHAPTER 4

MULTIPLE ENCODING OF A NUMBER
INTO RPGS USING COGRAPHS

4.1 Introduction

4.2 Background Results

4.3 Multiple Encoding of a SiP into Cographs
4.4 Encoding Cographs as RPGs

4.5 Concluding Remarks

4.1 Introduction

In previous chapters, we proposed efficient and easily implemented codec systems for encoding
watermark numbers as reducible permutation flow-graphs, extending thus the class of graph
structures for software watermarking. More precisely, we have presented an efficient encoding
algorithm which encodes a watermark number w as self-inverting permutation #* and two encod-
ing algorithms which encode the permutation 7* as a reducible permutation flow-graph F[7*]:
the former applies to any permutation 7 and relies on domination relations on the elements of 7
whereas the latter applies to a self-inverting permutation 7* produced in any way and relies on
the decreasing subsequences of 7*. Again, we point out that the two main components of the pro-
posed codec system, i.e., the self-inverting permutation 7* and the reducible permutation graph
F[r*], incorporate important structural properties which make the encoding of permutation 7*
into graph F[n*] robust and resilient to attacks (see, Chapters 2 and 3).

Contribution. In this chapter, we extend the class of graphs which can be efficiently used in
a software watermarking codec system by proposing efficient encoding and decoding algorithms
that embed a watermark value into cographs and efficiently extract the watermark from the
graph structures. Moreover, we present a randomized encoding algorithm and show that the

49

same watermark number w can be efficiently encoded into several different reducible permutation
graphs Fiy[m*], Fo[r*],..., F,[7*], n > 2, all of equal size; see, Figure 4.1.

More precisely, we first present the randomized encoding algorithm Encode_SiP.to.Cograph,
which takes as input a self-inverting permutation 7*, encoding a watermark number w (see, al-
gorithm Encode W.to.SiP in Chapter 3), and encodes the permutation 7* into a cograph C[r*].
We also present its corresponding decoding algorithm Decode_Cograph.to.SiP; it takes as input
a cograph C[r*], produced by our randomized encoding algorithm, and extracts the self-inverting
permutation 7* from it. Thus, in light of our encoding algorithm Encode_W.to.SiP, which en-
codes an integer w as a self-inverting permutation 7*, we can appropriately use the proposed ran-
domized algorithm to encode the same integer w into several cographs Ci[n*], Cao[n*], ..., Cpl7*],
where n > 2.

Having presented our randomized encoding algorithm, we next present an efficient trans-
formation of a cograph C[r*] into a reducible permutation graph F[r*]. Indeed, we propose
the encoding algorithm Encode_Cograph.to.RPG which embeds a cograph C[r*] into F[x*] by
exploiting the structure and some important algorithmic properties of the cotree T[r*] of the
cograph C[r*]; recall that, a cograph admits a unique tree representation, up to isomorphism,
called a cotree [74]. Thus, having such an encoding algorithm, we can encode a watermark
number w into many RPGs Fi[r*], Fa[n*],..., Fp[7*], n > 2.

Based on the above results, we can propose a codec system for graph-based software water-
marking having better behavior with respect to code attacks since it can embed multiple copies
of the same watermark number w into an application program; in general, a digital object can be
made more resilient to attacks if multiple copies of the same watermark w are embedded into it.
Moreover, the proposed codec system has low time complexity and can be easily implemented.

Road Map. The chapter is organized as follows: In Section 4.2 we give background results
on self-inverting permutations, reducible permutation graphs and cographs. In Section 4.3 we
present the randomize encoding algorithm Encode_SiP.to.Cograph, along with its corresponding
decoding algorithm, which takes as input a self-inverting permutation 7*, encoding a watermark
number w, and encodes the permutation 7* into a cograph C[n*]. In Section 4.4 we present
the algorithm Encode_Cograph.to.RPG, along with its corresponding decoding algorithm, which
embeds a cograph into an RPG by exploiting the structure and some important algorithmic
properties of its cotree. Finally, Section 4.5 concludes the chapter and gives futures research

directions.

4.2 Background Results

In this section, we give some definitions that are key-objects in our algorithms for multiple
encoding self-inverting permutations as complement reducible graphs (or, cographs) [52], and
also algorithms for encoding cographs as reducible permutation graphs (or, RPGs).

Self-Inverting Permutations. In Chapter 2, we defined a permutation = over the set NV,
as a sequence m = (my,72,...,7T,) whereas a self-inverting permutation (or, involution) as a

permutation that is its own inverse, i.e., T, = ¢. By definition, all the cycles of a self-inverting

20

The watermark number w = 4

N

™ =(4,7,6,1,5,3,2)

™ =(4,7,6,1,5,3,2)

Figure 4.1: The main data components used by the algorithms of our codec system for multiple encoding
the same watermark number w = 4 into several RPGs using Cographs.

permutation are of length 1 or 2.

Moreover, in the same chapter, we proposed the encoding algorithm Encode W.to.SiP for
encoding numbers as self-inverting permutations (or SiP, for short) along with the corresponding
decoding algorithm Decode_SiP.to.W. The self-inverting permutation 7* produced by our en-
coding algorithm encompasses important structural properties, i.e., (i) odd-length property, (ii)
one-cycle property, (iii) bitonic property, and (iv) block property, which makes our codec system
resilient to attacks.

Reducible Permutation Graphs. In Chapter 3, we defined a flow-graph as a directed graph
F with an initial node s from which all other nodes are reachable, and showed that a flow-graph
is reducible when it does not have a strongly connected subgraph with two (or more) entries;
see, Section 3.3.

In the same chapter, we proposed the reducible permutation graph F[r*] on n* + 2 nodes
consisting of three components:

(A) a header node,

(B) a footer node, and

(C) the body.
Recall that, the header is a root node with outdegree one from which all other nodes of the
graph F[n*] are reachable, the footer is a node with outdegree zero that is reachable from
all other nodes of F[r*], while the body consists of n* nodes each with outdegree two; see,

ol

V2

(a) (b)

Figure 4.2: (a) A cograph on 7 vertices, and (b) the corresponding cotree.

Section 3.4.

4.2.1 Cographs and Cotrees

The complement reducible graphs, also known as cographs, are defined as the class of graphs
formed from a single vertex under the closure of the operations of union and complement [74].
More precisely, the class of cographs is defined recursively as follows:

(i) a single-vertex graph is a cograph;
(ii) the disjoint union of cographs is a cograph;
(iii) the complement of a cograph is a cograph.

Cographs have arisen in many disparate areas of applied mathematics and computer science
and have been independently rediscovered by various researchers under various names. Cographs
are perfect graphs and in fact form a proper subclass of permutation graphs and distance hered-
itary graphs; they contain the class of quasi-threshold graphs and, thus, the class of threshold
graphs [14, 52]. Furthermore, cographs are precisely the graphs which contain no induced sub-
graph isomorphic to a Py (i.e., a chordless path on four vertices).

Cographs were introduced in the early 1970s by Lerchs [74] who studied their structural and
algorithmic properties. Along with other properties, Lerchs has shown that the cographs admit
a unique tree representation, up to isomorphism, called a cotree. The cotree of a cograph G is a
rooted tree such that:

(i) each internal node, except possibly for the root, has at least two children;

(ii) the internal nodes are labeled by either 0 (0-nodes) or 1 (1-nodes); the internal nodes
that are children of a 1-node (0-node resp.) are 0-nodes (1-nodes resp.), i.e., 1-nodes and

0-nodes alternate along every path from the root to any (internal) node of the cotree;

(iii) the leaves of the cotree are in an 1-1 correspondence with the vertices of G, and two vertices
v;, vj are adjacent in G if and only if the least common ancestor of the leaves corresponding
to v; and v; is a 1-node.

92

Lerchs’ definition required that the root of a cotree be an 1-node; if however we relax this
condition and allow the root to be an 0-node as well, then we obtain cotrees whose internal
nodes all have at least two children, and whose root is an 1-node if and only if the corresponding
cograph is connected.

The study of cographs led naturally to constructive characterizations that implied sev-
eral linear-time recognition algorithms that also enabled the construction of the corresponding
tree representation (cotree) in linear time [52]. The first linear-time recognition and cotree-
construction algorithm was proposed by Corneil, Perl, and Stewart in 1985 [39]. Recently,
Bretscher et. al [7] presented a simple linear-time recognition algorithm which uses a multisweep
LexBFS approach; their algorithm either produces the cotree of the input graph or identifies an
induced Py.

4.3 Multiple Encoding of a SiP into Cographs

In this section we present a randomized encoding algorithm, we call it Encode_SiP.to.Cograph,
which takes as input a self-inverting permutation 7*, encoding a watermark number w, and
encodes the permutation 7* into a cograph C[r*]; we also present the corresponding decod-
ing algorithm which we call Decode_Cograph.to.SiP. Thus, in light of our encoding algorithm
Encode W.to.SiP (see, Chapter 3), which encodes an integer w as a self-inverting permutation
7*, we can multiply use the proposed randomized algorithm to encode the same integer w into
several cographs Ch[r*], Ca[n*], ..., Cy[n*], n > 2 [24, 27].

The main property of our randomized encoding algorithm is its ability to encode the same
integer w, through the use of a self-inverting permutation 7%, into more than one cograph.
This property causes a watermarking codec system to be resilient to attacks since it can embed
multiple copies of the same watermark number w into a digital object. Moreover, such a codec
system has low time complexity and can be easily implemented.

4.3.1 Algorithm Encode_SiP.to.Cograph

In this section, we present the Encode _SiP.to.Cograph algorithm which takes as input a self-
inverting permutation 7* of length 2n + 1 produced by algorithm Encode W.to.SiP (see, [28]),
and constructs an arbitrary cograph C;[7*] on 2n + 1 vertices by preserving the cycle relation of
permutation 7©*; recall that, by construction the self-inverting permutation 7* has length 2n + 1
and contains one 1-cycle (z,z) and n 2-cycles (z1,y1), (z2,92), -, (Tn, Yn)-

Algorithm Encode_SiP.to.Cograph

1. Construct a graph H from the input permutation 7* = (71,72, ..., m,) such that:
V(H)={m,m2,...,m};
E(H) = {(m;,7;) is an edge if (m;, 7;) is a 2-cycle in 7*};

2. Compute the connected components Hi, Hs, ..., H; of the graph H;

3. S=Hy, Hy,..., Hg; the graphs in S are connected cographs

23

4. While |S| > 1 do
Select two arbitrary cographs H;, H; from S;
Remove H; and Hj from the set, i.e., S =S — {H;, H;};
Compute the complements H; and E of the connected cographs H; and Hj,
and set H; = H; and H = Fj; the cographs H; and H; are now disconnected,;
Compute the disjoint union H; + H; of the disconnected cographs H; and H;
and set H; = H; + Hj;
Add the cograph H; in the set S, i.e., S =S U H;;
end-while;

5. Return the cograph G = H;, where H; is the only cograph in §.

Encode Example: Let 7* = (3,5,1,7,2,6,4) be the input self-inverting permutation in the
algorithm Encode_SiP.to.Cograph which corresponds to watermark number w. The algorithm
first constructs the graph H having V(H) = {v1, va, vs3, v4, vs, vg, v7} and E(H) = {(v1,v3),
(v2,v5), (v4,v7)} and then computes its connected components Hy = H[v1,vs], Ho = H[va, vs],
Hs = Hlvy,v7] and Hy = H|vg]; note that Hy = H|[vy,vs3] is the subgraph of H induced by the
nodes v; and vs.

Construction of the cograph C1[7*] of Figure 4.3: 1st iteration of step 4: the algorithm takes
Hi and Ho, computes the disjoint union U(1,2) of H; and Hs, and then sets H; = U(1,2) and
removes subgraph Hs; 2nd iteration of step 4: it takes Hy and H4, computes the disjoint union
U(1,4) of Hy and Hy, and then sets H; = U(1,4) and removes subgraph Hy; 3rd iteration of
step 4: it takes H; and Hs, computes the disjoint union U(1,3) of H; and H3, and then sets
H, = U(1,3) and removes subgraph Hs; it returns H; which is the cograph C4[x*] of Figure 4.3.

Construction of the cograph Co[n*] of Figure 4.3: in a similar way, the algorithm constructs
the graph Cs[r*] of Figure 4.3 by taking first the subgraphs H; and Ha, then the subgraphs Hj
and Hy, and finally the subgraphs H; and Hs.

4.3.2 Algorithm Decode Cograph.to.SiP

Next, we present a decoding algorithm for extracting a self-inverting permutation from a cograph.
Our decoding algorithm, which we call Decode_Cograph.to.SiP, takes as input a cograph C[r*]
produced by algorithm Encode_SiP.to.Cograph and extracts the self-inverting permutation 7*
from C[r*] by constructing first its cotree T[7*] and then finding the pairs of nodes (z1,41),
(z2,92), .., (Tn,yn) such that the nodes z; and y;, 1 < i < n, have the same internal node
(0-node or 1-node) as parent; these pairs correspond to 2-cycles of the permutation 7*. We next
describe the decoding algorithm:

Algorithm Decode_Cograph.to.SiP

1. Compute the cotree T(G) of the input cograph G = C[r*];
Let V = {v1,v2,...,v,} be the set of its terminal vertices;

2. While |[V| >0 do
Select a vertex v from the set V' and remove it from V,ie., V =V — {v};
Find the child u # v of the parent p(v) of the vertex v;
If v is a vertex of V' then

o4

@o® @o®® @0

Figure 4.3: Two cographs Ci[r*] and Ca[n*] on 7 vertices which encode the same watermark number
w, corresponding to permutation 7#* = (3,5,1,7,2,6,4), along with their corresponding cotrees.

construct a 2-cycle (v,u) and V =V — {v,u};

else
construct a 1-cycle (v) and V =V — {v};
end-while;
3. Construct the identity permutation 7* = (71,72, ..., m), i.e., 7; L =14, 1 <i < n;

4. For each 2-cycle (v,u) do the following:

Ty = w and m, = v;
5. Return the self-inverting permutation 7*.

Decode Example: Let C;[n*] and Ca[n*] be two cographs produced by the encoding algorithm
Encode_SiP.to.Cograph. The decoding algorithm constructs first the corresponding cotrees
T1[7*] and T»[r*], and then computes the pairs of nodes (v4,v7), (v1,v3) and (ve,vs) (see, Fig-
ure 4.3). Then it constructs the identity permutation #* = (1,2,3,4,5,6,7), which maps every
element of the set IV, to itself, and swap the element 4 and 7, 1 and 3, and 2 and 5; it returns the

self-inverting permutation 7* = (3,5,1,7,2,6,4) which corresponds to watermark number w.

29

4.4 Encoding Cographs as RPGs

Having presented in the previous section an encoding algorithm which embeds a watermark w
number into several deferent cographs C1[n*], Cao[n*],...,Cplx*], n > 2, let us next propose an
algorithm which embeds a cograph into a reducible permutation graph (or, for short, RPG).
To this end, we exploit the structure and some important algorithmic properties of the class of
cographs; recall that, a cograph admits a unique tree representation, up to isomorphism, called
a cotree [74]. Thus, having such an algorithm, we can encode a watermark number w into many
RPGs Fi[r*], Fa[r*],..., Fplm*], n > 2.

4.4.1 Algorithm Encode_Cotree.to.RPG

We next propose the algorithm Encode_Cotree.to.RPG which takes as input the cotree T[r*]
of a cograph C[r*], produced by our randomized algorithm Encode_SiP.to.Cograph, and con-
structs a reducible permutation graph F[r*] by using an efficient node elimination and subtree
modification on T[r*]. Note that, the cotree of a cograph can be constructed in linear time
[14, 39].

Given a cograph C[r*] on n vertices, our encoding algorithm first construct its corresponding
cotree T'[7*] and then it works on two phases:

(I) it first uses a strategy based on node elimination and subtree modification to transform the
cotree T[r*] into a binary tree R[n*], which we call RPG-tree, having the property that
each node has value smaller than the value of its parent;

(IT) then, it constructs a directed graph F[7*] on n + 2 nodes using the child-parent relation of
the nodes of the tree R[m*].

Next, we describe in detail the encoding algorithm Encode Cotree.to.RPG (see, Figure 4.4 and
Figure 4.5).

Algorithm Encode_Cotree.to.RPG
1. Construct the RPG-tree R[7*] from T'[7*] (Phase I);

2. Counstruct the RPG F[r*| from R[r*] (Phase II);

3. Return the graph F[7*].

We next describe in detail the two phases of the encoding algorithm Encode_Cotree.to.RPG.

Phase I. Construction of the RPG-tree R[r*] from T[r*]: We construct the RPG-tree
R[r*] by eliminating the internal nodes of the cotree T'[7*] and max-merging certain subtrees in
an appropriate way, as follows:

L.1. Let r be the root of the cotree T'[7*] and t be the internal node of T'[x*] with only one leaf,
say, v;
o Replace the label of the root r with the number n + 1 and the label of each internal
node with the number —1;
o Create a new node with value 0 and make it child of the node v;

26

T1 [77*]

Figure 4.4: The cotree T1[r*] and the resulting RPG-tree R;[r*]; trees T'[x*] and T"[7*] show the
contraction process.

I.2. While the tree T[7*] contains internal nodes u with value -1, do the following:
o Find such an internal node u of maximum high and let uj,uo, ..., u; be
its children, k& > 1;
o Max-merge the subtrees T'(u1),T (u2),...,T(ux) and let T'(u,,) be the
resulting subtree rooted at node u,,, 1 <m < k;
o Make the root wu,, of the subtree T(u,,) child of the parent of w;
o Delete the node u from the tree T'[7*];

where the function Max-merge works as follows:

o Order the subtrees T'(u1), T (u2), ..., T(ux) according to their root values, and
let uy < ug < ... < ug;
o Make the root u; of T'(u;) child of the root ;1 of T'(ujt1), for all ¢ (1 <i <k—1);

Phase II: Construction of the RPG F[r*] from R[r*]: We construct the directed graph
F[r*] by exploiting the child-parent relation of the nodes of the rpgtree R[r*], as follows:

I1.1. For every node u; of R[r*], 0 <4 < n+1, create a node v; and add it to V(F[r*]); that is,

V(F[ﬂ'*]) = {S = Un+1,Vn,Un-1,-.-,01,,00 = t};

o7

[1.2. For every pair of nodes (v;,v;—1) of the set V(F[r*]) add the directed edge (v;,v;—1) in
E(F[r*]), 1 <i<n+1; we call it list pointer;

I1.3. For every node u; of R[r*] compute its parent node p(v;), 0 < i < n, and add the directed
edge (uj, p(u;)) in E(F[r*]); we call it tree pointer.

Time and Space Complexity. 1t is easy to see that the most time-consuming step of the algorithm
is that of max-merging the subtrees T'(u1),T(u2),...,T (ux) of the node u (see, function Max-
merge); indeed, a sorting sequence S of k > 1 values must be computed. Since the values
u1,u2,. .., u are integers in the range [0,n + 1], the sequence S can be computed in O(n) time
and space [40]. On the other hand, the construction of the reducible permutation flow-graph
F[n*] (Steps I1.1 — I1.3) requires only the list pointers, which can be trivially computed, and the
tree pointers which can be computed using the parent function on R[r*]. Thus, we obtain the
following result:

Theorem 4.1. Let T[n*] be the cotree of a cograph G[r*] on n vertices. The encoding algorithm
Encode_Cotree.to.RPG encodes the cotree T[n*] into a reducible permutation graph F[r*] in

O(n) time and space.

4.4.2 Algorithm Decode RPG.to.SiP

Having designed the algorithm Encode_Cotree.to.RPG which encodes a self-inverting permuta-
tion 7* into a reducible permutation flow-graph F[x*], let us now propose an efficient and easily
implemented algorithm for extracting the permutation 7* from the graph F[#*].

Next, we present such a decoding algorithm, we call it Decode RPG.to.SiP, which is efficient:
it takes time and space linear in the size of the flow-graph F[r*], and easily implemented: the
only operations used by the algorithm are edge modifications on F[r*] and inorder traversal on
trees.

The algorithm takes as input a reducible permutation graph F[7*] on n+2 nodes and produces
a self-inverting permutation 7* of length n; it works as follows:

Algorithm Decode RPG.to.SiP

1. Delete the directed edges (vi11,v;) from the edge set E(F[r*]), 1 < i <m;

2. Flip all the remaining directed edges of the graph F[7*]; let R[x*] be the resulting tree and
let s = vg,v1,v2, ..., U0, Un+1 = t be the nodes of R[7*];

3. Make first the binary tree R[r*] rooted at node s = vy and ordered, and then perform

inorder traversal on R[7*];

4. List the nodes s = vg,v1,v2,. .., vp+1 of the tree R[7*] by the order in which the nodes are
visited; remove from the list the root node and let v}, vy, ..., v, be the resulting list;
5. Compute the pairs (v, v5), (v5,vy), ..., (vy, v, 41) and remove the pair (vj,v;,) for which

v} = 0; let n/ be the remaining pairs;

6. Construct the identity permutation on No,/, and then compute a self-inverting permutation

7 using the pairs of step 5; return 7* = 7.

28

Rl[ﬂ'*]
e Fl[ﬂ*]
v
@ 0 eoe"eeeee
ONENORERO
ONO
®
Rg[ﬂ'*]

Figure 4.5: Two RPG-trees R;[r*] and Ra[r*] and the corresponding reducible permutation graphs
Fi[7*] and Fy[r*], respectively, produced by the algorithm Encode_Cotree.to.RPG.

Let us now describe the decoding process using the two RPGs Fi[7*] and Fa[7n*] of Figure 4.5.
Let F1[7*] be the input of the algorithm Decode RPG.to.SiP. It first computes the rooted ordered
tree R1[7*] and then computes the inorder sequence It = (4,7,8,0,6,1,3,5,2); it deletes the
value 8 of the root resulting the sequence I} = (4,7,0,6,1,3,5,2); then the algorithm computes
the pairs C1 = {(4,7),(0,6),(1,3),(5,2)} and removes the pair (0,6) from C;. Then, it takes
the identity permutation 7y = (1,2,3,4,5,6,7) and using the pairs (4,7), (1, 3), (5,2) as 2-cycles
produces the SiP 7* = (3,5,1,7,2,6,4).

If the algorithm takes as input the RPG Fi[r*] then I} = (1,3,5,2,8,0,6,7,4) and thus
1 =(1,3,5,2,0,6,7,4). It is easy to see that the 2-cycles in Cy are (1,3),(5,2), (7,4), and thus
the identity permutation 77 becomes 7* = (3,5,1,7,2,6,4).

Time and Space Complexity. The size of the reducible permutation graph F[r*| constructed by
the algorithm Encode_Cotree.to.RPG is O(n), where n is the length of the permutation 7, and
thus the size of the resulting RPG-tree R[r*] is also O(n). The inorder traversal on the tree
R[7*] takes time linear in the size of R[n*| (see, [40]). Thus, the decoding algorithm is executed
in O(n) time using O(n) space. Thus, the following theorem holds:

Theorem 4.2. Let T[r*] be a cotree which encodes the self-inverting permutation = and let
F[r*] be a reducible permutation flow-graph of size O(n) produced by the encoding algorithm

29

Encode _Cotree.to.RPG. The algorithm Decode RPG.to.SIP extracts the permutation 7 from
the flow-graph F[r*] in O(n) time and space.

4.5 Concluding Remarks

In this chapter we proposed an efficient algorithm which encodes a self-inverting permutation
7* into several cographs Ci[r*], Co[n*],...,Cp[r*], n > 2, and an efficient transformation of a
cograph into a reducible permutation graph F[r*]. In light of our encoding algorithms which
encode a watermark integer w as a self-inverting permutation #* [28] and the permutation 7*
into many different cographs, we conclude that we can efficiently encode the same watermark
integer w into several reducible permutation graphs Fi[r*], Fo[r*], ..., F,[7*], n > 2.

It is worth noting that this property causes a codec watermarking system resilient to attacks
since we can embed multiple copies of the same watermark value w into an application program.

An interesting open question is whether the approach and techniques used in this chapter
can help develop efficient codec algorithms and graph structures having “better” properties with
respect to resilience, size, and/or time and space efficiency; we leave it as an open problem for

future investigation.

60

CHAPTER 5

SOFTWARE WATERMARKING

5.1 Introduction

5.2 Background Results
5.3 The Model WaterPRG
5.4 Implementation

5.5 Model Evaluation

5.6 Concluding Remarks

5.1 Introduction

The rapid growth of World Wide Web users, the ease of distributing fast and in the original
form digital content through internet, as well as the lack of technical measures to assure the
intellectual property right of owners, has led to an increment in copyright infringement. Digital
watermarking is a technique for protecting the intellectual property of any digital content, i.e.,
software, image, audio, video, text, ect. The main idea of digital watermarking is the embedding
of a unique identifier into the digital content through the introduction of errors not detectable by
human perception [15, 29]. Although digital watermarking has made considerable progress and
become a popular technique for copyright protection of multimedia information [15], research on
software watermarking has recently received sufficient attention.

Software Watermarking. Software watermarking is a technique that is currently being studied
to prevent or discourage software piracy and copyright infringement. The idea is similar to digital
(or, media) watermarking where a unique identifier is embedded in image, audio, or video data
through the introduction of errors not detectable by human perception [15].

The Software Watermarking problem can be described as the problem of embedding a struc-
ture w into a program P resulting the program P, such that w can be reliably located and
extracted from P, even after P, has been subjected to code transformations such as transla-
tion, optimization, and obfuscation [84]. More precisely, given a program P, a watermark w,

61

and a key k, the software watermarking problem can be formally described by the following two

functions:
e embed(P,w, k) — Py
o extract(Py, k) — w.

There are two main categories of software watermarking techniques namely static and dynamic
[32]. Moreover, depending on the behavioral properties of the embedded watermark w, software
watermarking techniques can also be divided into other categories namely robust and fragile,
vistble and inwvisible, blind and informed, focus and spread spectrum; further discussion on the
above software watermarking classification issues can be found in [48, 85, 120].

Static and Dynamic Watermarking. A static watermark w is embedded inside program
code in a certain format and it does not change during the program execution. According to
the representation of watermark information, there are two types of static watermarks: data

watermarks and code watermarks.

(i) A data watermark stores watermark information as program data, and can be stored any-

where inside a program, such as in comments or in variables.

(i1) A code watermark is represented by choosing a particular sequence of instructions in cases
(and these are common), where more than one sequence of instructions has an equivalent
effect. A static code watermark may also be stored in “dead code” (which is never ex-
ecuted); any sequence of instructions may be used with equivalent effect in a dead-code
area. For example, in a Java program, a particular order of cases in a switch statement
can be used to represent a watermark number.

On the other hand, a dynamic watermark w is encoded in a data structure built at runtime
(i.e., during program execution), perhaps only after receiving a particular input Ije,; it might
be retrieved from the watermarked program P, by analyzing the data structures built when
program P, is running on input Ij.,. There are three kinds of dynamic watermarks: Easter eggs,
execution trace watermarks, and dynamic data structure watermarks [32]. Further discussion of
dynamic and/or static watermarking issues can be found in [48, 85, 120].

Graph-based Codecs and Attacks. Software watermarking involves embedding a unique
identifier or, equivalently, a watermark value within a software to prove owner’s authenticity and
thus to prevent or discourage copyright infringement. Towards the embedding process, several
graph theoretic watermarking algorithmic techniques (or, equivalently, models or systems) encode
the watermark values as graph structures and embed them in application programs.

In general, such a graph-based software watermarking model mainly consists of two codec
algorithms: an encoding algorithm which embeds a graph GG which represents a watermark w into
an application program P resulting thus the watermarked program P, i.e., embed(P, G, k) — Py,
and a decoding algorithm which extracts the graph G from P, i.e., extract(Py,, k) — G. We
usually call the pair

o (embed, extract)q

as graph codec model and the embedding and extracting algorithms as codec or watermarking

algorithms.

62

In a graph-based software watermarking environment we are interested in both finding a
class of graphs G having appropriate graph properties, e.g., graphs in G should be contained
nodes with small outdegree so that matching real program graphs, and designing efficient codec
algorithms, e.g., both algorithms of (embed, extract)s model should be computed in polynomial
time.

Having designed a software watermarking algorithm, it is very important to evaluate it under
various assessment criteria in order to gain information about its practical behavior [30]; the most
valuable and broadly used criteria can be divided into two main categories: (i) performance
criteria (e.g., data-rate, time and space overhead, part protection, stealth, credibility), and (ii)
resilience criteria (e.g., resistance against obfuscation, optimization, language-transformation)
[36, 84]. We mention that the performance criteria measure the behavior of the watermarked
program P, and the quality and effectiveness of the embedded watermark w, while the resilience
criteria measure the robustness and resistance of the embedded watermark w against malicious
user attacks.

From a graph-theoretical and practical point of view, we are interested in finding a class of
graphs G having appropriate graph properties, e.g., graphs G € G should contain nodes with
small outdegree so that matching real program graphs, and developing software watermarking
models (embed, extract)s which meet both:

o High Performance: both programs, the original P and the watermarked P,, have almost

identical execution behavior, almost same size and similar codes; and

o High Resiliency: the algorithm extract() is insensitive to small changes of P, caused by
various attacks, that is, if G € G represents the watermark w and extract(P,,k) — w
then extract(P),, k) — w with P, ~ P,.

Related Work'. The most important software watermarking algorithms currently available in
the literature are based on several techniques, among which the register allocation [101], spread-
spectrum [106], opaque predicate [1], abstract interpretation [37], dynamic path techniques [35],
code re-orderings [112]; see, also [29] for an exposition of the main results. It is worth noting
that many algorithmic techniques on software watermarking have also received patent protection
[34, 48, 103, 114].

In 1996, Davidson and Myhrvold [48] presented the first patented static software watermark-
ing algorithm. The preliminary concepts of software watermarking also appeared in the paper
[51] and the patents [85, 105]. Collberg et al. [32, 33] presented detailed definitions for soft-
ware watermarking, while Zhang et al. [131] and Zhu et al. [130] gave brief surveys of software
watermarking research; see, Collberg and Nagra [29] for an exposition of the main results.

The algorithm of Davidson and Myhrvold [48] embeds the watermark into a program by
reordering the basic blocks of a control flow-graph; note that a static watermark is stored inside
programs’ code in a certain format and it does not change during the programs’ execution.
Based on this idea, Venkatesan, Vazirani and Sinha [120] proposed the first graph-based software
watermarking algorithm which embeds the watermark by extending a method’s control flow-
graph through the insertion of a directed subgraph; it is also a static algorithm called VVS or

1Some references of this part have also appeared in Chapter 3: Encode Watermark Numbers as Self-inverting
Permutations, and in Chapter 4: Encoding SiPs as Reducible Permutation Graphs.

63

GTW. In [120], the construction of the directed watermark graph G is not discussed. Collberg et
al. [31] proposed an implementation of GTW, which they call GTWgy, and it is the first publicly
available implementation of the algorithm GTW. In GTWg, the watermark is encoded as a reducible
permutation graph (or, for short, RPG) [30], which is a reducible control flow-graph with a
maximum out-degree of two, mimicking real code. Note that, for encoding integers the GTWgy
method uses only those permutations that are self-inverting. The first dynamic watermarking
algorithm CT was proposed by Collberg and Thomborson [32]; it embeds the watermark through
a graph structure which is built on a heap at runtime.

Several software watermarking algorithms have been appeared in the literature that encode
watermarks as graph structures [30, 31, 48, 120]. Recently, Chroni and Nikolopoulos extended
the class of software watermarking codec algorithms and graph structures by proposing efficient
and easily implemented algorithms for encoding numbers as reducible permutation flow-graphs
(RPG) through the use of self-inverting permutations (or, for short, SiP). More precisely, they
have presented an efficient method for encoding first an integer w as a self-inverting permutation
7* and then encoding 7* as a reducible permutation flow-graph F[r*] [28]; see, also [23]. The
watermark graph F[r*] incorporates properties capable to mimic real code, that is, it does not
differ from the graph data structures built by real programs. Moreover, the structural properties
of F[r*] cause it resilient to edge, node and label modification attacks; see, Chapter 3 (see, also
[19, 26, 20]).

Contribution. In this chapter, we present a dynamic watermarking model, which we call
WaterRPG, for embedding the watermark graph F[r*] into an application program P resulting
thus the watermarked program P*; throughout the thesis, we denote by P* the program P,
watermarked by our codec model.

The main idea behind the proposed watermarking model is a systematic modification of
appropriate function calls of the program P, through the use of control statements and opaque
predicates, so that the execution of the watermarked program P* with a specific input gives
a dynamic call-graph from which the watermark graph F[r*] can be easily constructed. More
precisely, for a specific input Iy, of a given program P, our model takes the dynamic call-graph
G (P, Iey) of P and the watermarked graph F[r*], and produces the watermarked program P*
so that the following key property holds:

e The dynamic call-graph G(P*, Ijey) of P* with input Ij, is isomorphic to the watermark
graph F[r*].

Within this idea the program P* is produced by only altering appropriate calls of specific func-
tions of the input program P and manipulating the execution flow of P* by including these altered
function calls into control statements using opaque predicates. In the resulting watermarked pro-
gram P* the control statements are executed following specific and well-defined execution rules
and offer high functionality of P*. Indeed, our model achieves low time and space overhead and

ensures correctness, that is,
o T(PI)~T(P*I), S(P,I)~ S(P*,I), and O(P,I)= O(P*,I), for every input I

where T'(), S(), and O() are the execution time, the heap space, and the output of P or P* with
input I. Note that, performance and correctness are the two most important properties of any

software watermarking model.

64

Models’ Properties WaterRPG’s Properties ‘

static - dynamic dynamic (execution trace)
robust - fragile robust
visible - invisible invisible
blind - informed blind
focus - spread spectrum spread spectrum

Table 5.1: General properties of watermarking models and the properties of our WarerRPG
model.

We have implemented our watermarking model WaterRPG on Java application programs
downloaded from a free non commercial game database, and evaluated its performance under
various and commonly used watermarking evaluation criteria. In particular, we selected a num-
ber of Java application programs and watermarked them using two main approaches: (i) the
straightforward or naive approach, and (ii) the stealthy approach. The naive approach water-
marks a given program P using the well-defined call patterns of our model, while the stealthy
approach watermarks P using structural and programming properties of the code.

The evaluation results show the efficient functionality of all the Java programs P* water-
marked under both the naive and stealthy cases. The experiments also show that the watermark-
ing approaches supported by our model can help develop efficient watermarked Java programs
with respect to time and space overhead, credibility, stealthiness, and other watermarking met-
rics. Moreover, our WaterPRG model incorporates properties which cause it resilient to several
watermark and code attacks.

Table 5.1 summarizes the most important general properties, in complementary or opposite
pairs, of a software watermarking model and shows the properties of our WarerRPG model.
Throughout the paper, for a given program P we shall denote by P* the watermarked program
produced by our model WaterRPG.

Road Map. The paper is organized as follows: In Section 5.2 we establish the notation and re-
lated terminology, and present background results. In Section 5.3 we present our dynamic water-
marking model WaterRPG; we first describe its structural and operational components and then
the embedding algorithm Embed _RPG.to.CODE and the extracting algorithm Extract_CODE.to.RPG.
In Section 5.4 we implement our watermarking model in real Java application programs and
show two main watermarking approaches supported by the WaterRpg model, namely naive and
stealthy. In Section 5.5 we evaluate our model under several software watermarking assessment

criteria, while in Section 5.6 we summarize our work and propose possible future extensions.

5.2 Background Results

In this section, we present background results and key objects that are used in the design of
our watermarking model WaterRPG. In particular, we briefly present the main results of our
previous work concerning the process of encoding numbers as graph structures namely reducible
permutation graphs (or, for short, RPG); we denote such a graph as F[r*]. We also briefly

65

discuss properties of dynamic call-graphs which are used as key-objects in our watermarking
model for embedding the graph F[r*] into an application program.

5.2.1 Encode Numbers as RPGs

In Chapter 2, we introduced the notion of bitonic permutations and we presented two algorithms,
namely Encode W.to.SiP and Decode_SiP.to.W, for encoding an integer w into a self-inverting
permutation 7* and extracting it from 7*. We have actually proved the following results.

Theorem 5.1. Let w be an integer and let bibs - - - b, be the binary representation of w. The
algorithm Encode W.to.SiP encodes the number w in a self-inverting permutation ©* of length
2n 4+ 1 in O(n) time and space.

Theorem 5.2. Let @ be a self-inverting permutation of length n which encodes an integer
w using the algorithm Encode W.to.SiP. The algorithm Decode_SiP.to.W correctly decodes the

permutation ™ in O(n) time and space.

In Chapter 3, we have presented an efficient and easily implemented algorithm for encoding
numbers as reducible permutation flow-graphs through the use of self-inverting permutations;
see, also [23]. In particular, we have proposed two such encoding algorithms: the algorithm
Encode_SiP.t0.RPG-I applies to any permutation 7w and relies on domination relations on the
elements of 7 whereas the algorithm Encode_SiP.to.RPG-II applies to a self-inverting permu-
tation 7* produced in any way and relies on the decreasing subsequences of 7*. Qur results are

summarized in the following theorems.

Theorem 5.3. Let ™ be a self-inverting permutation over the set Nyp. The permutation w*
can be encoded into a reducible permutation graph F[r*] in O(n) time and space using algorithm
Encode_SiP.to.RPG-I or -II.

Theorem 5.4. Let F[n*] be a reducible permutation graph of order O(n) produced by the encoding
algorithm Encode _SiP.to.RPG-I or -II. The permutation w* can be correctly extracted from

F[r*] in O(n) time and space using algorithm Decode RPG.to.SiP-I or -II.

The reducible permutation graph F[r*] of the self-inverting permutation 7* is directed with a
descending ordering on its nodes s = Up41, Up, -- ., U1, ug = t. Hereafter, we shall call the edge
(ui,u;) of graph F[r*] forward if i > j and backward otherwise.

5.2.2 Call-graphs

A call-graph is a directed graph that represents calling relationships between program units in
a computer program. Specifically, the nodes fi, fo,..., fn of a call-graph represent functions,
procedures, classes, or similar program units and each edge (f;, f;) indicates that f; calls fj;
function f; is called caller while f; is called callee.

Call-graphs can be divided in two main classes of graphs, namely static and dynamic. A
static call-graph is the structure describing those invocations that could be made from one
program unit to another in any possible execution of the program [128]. The static call-graph
can be determined from the program source code; we mention that, its construction is a time

consuming process specifically in the case of large scale software [57].

66

A dynamic call-graph G is a directed graph that includes invocations of caller—callee pairs
over an execution of the program P. Such a graph can be considered as an instance of the
corresponding static call-graph for a specific input sequence I. The call-graph G is a data
structure that is used by dynamic optimizers for analyzing and optimizing the whole-program’s
behavior; such a graph can be extracted by a profiler. It is fair to mention that the construction
of a dynamic call-graph G of a program P is not a time consuming process even if P is a large
scale software.

Throughout the paper we denote a dynamic call-graph G of the program P over the input
I as G(P,I). Figure 5.1(a) depicts the structure of the dynamic call-graph G(P, Ij.,) of an
application program P with input Ixey.

5.3 The Dynamic Watermarking Model WaterRPG

Having encoded a watermark number w as reducible permutation graph F[r*], let us now present
our dynamic watermarking model WaterRPG; we first demonstrate its structural and operational
components and, then, we describe the embedding and extracting watermarking algorithms.

5.3.1 Operational Framework

The main idea behind the proposed watermarking model is a systematic modification of ap-
propriate function calls of the program P so that the execution of the resulting watermarked
program P* with a specific input Iy, gives a dynamic call-graph G(P*, I;,) from which the
watermark graph F[r*] can be easily constructed.

More precisely, the main operations performed by the WaterRPG model can be outlined
as follows: for a specific input Ij., of the original program P, it takes the dynamic call-graph
G(P, Iey) and the graph F[7*], and produces the watermarked program P* so that its dynamic
call-graph G(P*,I,) with input I, is isomorphic to the watermark graph F[r*]. The call-
graphs G(P, Ijey) and G(P*, Ijey) dictate the execution flow of the original program P and the
watermarked program P*, respectively. Thus, since the call-graph G(P, Ije,) is not isomorphic
to G(P*, I}ey) in general, the model controls the flow of selected function calls of P* so that
O(P,I) = O(P*,I) for every input I, where O(P,I) (resp. O(P*,I)) is the output of the
program P (resp. P*) with input I. In this framework, the program P* is produced by only
altering appropriate calls of specific functions of the input program P.

Figure 5.1 shows the dynamic call-graph G(P,Ii.,) of an application program P, the re-
ducible permutation graph F[7*] which encodes the number w = 4 and the dynamic call-graph
G(P*, Iiey) of the watermarked program P*.

5.3.2 Model Components

Our watermarking model uses two main categories of components namely structural components
and operational components. The first category includes the dynamic call-graph G(P, Ije,) of
the input program P, the watermark graph F[7*], and the dynamic call-graph G(P*, I,) of the
watermarked program P*, while the second category includes call patterns, control statements

67

fmain [Flr*] fmain

Figure 5.1: (a) The dynamic call-graph G(P,I;e,) of an application program P. (b) The reducible
permutation graph F[r*]. (c) The dynamic call-graph G(P*, Ij.,) of the watermarked program P*.

and execution rules which are components related to the process of embedding the graph F[r*]
into application program P.

We next describe the construction and main properties of the dynamic call-graph G(P*, Iy),
two call patterns based on which we correspond edges of the call-graph G(P*, I,) to function
calls, and specific variables and statements which control the execution of real and water func-

tions.

(I) The Dynamic Call-graph G(P*, I;,)

Let F[r*] be a watermark graph (or, equivalently, water-graph) on n + 2 nodes and G(P, I,)
be the dynamic call-graph of a program P on n + 3 nodes fiin, fs, f1,---, fn, ft taken after
running the program P with the input Ii.,. In general, the selection of the input Iy, is such
that it produces the call-graph G (P, Ij.,) having structure as “close” as possible to the structure
of F[r*]. We assign the n + 2 nodes f; = fuy1, fn,-.-, f1,fo = fi of the call-graph G (P, Ijey)
to n + 2 nodes s = Up41,Un, - - -, u1,ug =t of F[r*] into 1-1 correspondence; the main function
fmain do not correspond to any node of F[r*].

Let (u;, u;) be an edge in graph F[r*] and let (f;, f;) be an edge in call-graph G (P, Ije,). We
say that the edge (f;, f;) corresponds to edge (u;,u;) iff the node f; corresponds to u; and the
node f; corresponds to uj, 0 <4i,j < n+ 1. Moreover, if (u;,u;) is a forward (resp. backward)
edge in the graph F[r*] we say that the corresponding edge (f;, f;) in graph G(P, Ijey) is a
forward (resp. backward) edge.

The dynamic call-graph G(P*, Ije,) is constructed as follows:

o V(G(P*, Ikey)) = V(G(P, I1ey)), ie., it has the same nodes as the call-graph G(P, Iy);

68

o E(G(P*, Iyey)) = E(F[r*]), i.e., (fi, fj) is an edge in E(G(P*, I,)) iff the corresponding
(ui, uj) is an edge in F[r*].

The edges of the call-graph G(P*, Ij.,) are divided into two categories namely real and water
edges; note that, the real (resp. water) edges correspond to real (resp. water) function calls. An
edge (fi, f;) of the call-graph G (P, Ij.,) is characterized as either

o real edge if (f;, f;) is an edge in G (P, Ijey), or
o water edge if (f;, f;) is not an edge in G (P, Ijey).

Figure 5.1(c) shows the dynamic call-graph G(P*, I;.,) along with its real edges (solid arrows)
and water edges (dashed arrows).

(IT) Call Patterns

In the implementation phase, we modify the source code of program P using specific function
call patterns which we describe below.

Let P be an application program, G(P, Ije,) be the dynamic call-graph of the program P
with input Ii.,, and F[r*] be a watermark-graph which we have to embed into P. According
to our watermarking model, the embedding process relies mainly on altering the execution-flow
of appropriate function calls of P such that the execution of the resulting program P* with the
input Ire, produces a call-graph G(P*, I,) which, after removing the node fiqin, is isomorphic
to watermark-graph F[7*].

Let (fi, fj) be an edge of call-graph G(P*, I.,) or, equivalently, an edge which we want to
appear in G(P*, Ijey). Since G(P*, I;ey) has two types of edges it follows that (f;, f;) is either
real or water edge. Based on the type of (f;, fj), we do the following:

o if (f;, fj) is a water edge we add the statement call(f;) in the function f;, while
o if (fi, fj) is a real edge we add no call statement since the statement call(f;) exists in f;.

Based on whether (f;, f;) is either a forward or a backward edge we add specific statements in
functions f; and f; according to the following two call patterns namely forward and backward
call patterns:

(a) if (fi, fj) is a forward edge we add the statement x = x + h() in function f; before the
call-site or, equivalently, call-point of the function f;, and the statement x = x 4 ¢() in the
function f;, while

(b) if (fi, f;) is a backward edge we add the statement = x + g¢() in function f; before the
call-site of the function f;, and the statement z = z + ¢() in the function f;,

where z is a variable and h(), g() and ¢() are functions. Figure 5.3(a) depicts the forward call
pattern or, for short, f-call, while Figure 5.3(b) depicts the backward call pattern or, for short,
b-call.

Recall that the direct edge (f;, f;) of a call-graph represents a function call operation where
fi is the caller function and f; the callee function; in other words, it means that in function f;

69

fmain

)
fs
;
f1

.

Figure 5.2: (a) The real-call (fu, f6) in the call-graph G(P, Ite,) of a program P; bold arrow. (b) The
corresponding path-call (fu, f3, f5, f6) in the call-graph G(P*, I,) of the watermarked program P*; bold

aArrows.

there exists the statement call(f;). Hereafter, in this case we shall say that (f;, f;) is a direct
call.

In a call-graph of an application program we usually meet sequences of calls of the form
(fis frrs fhos -5 frn o fj)- For simplicity we set f; = f, and f; = fi,.,, and suppose that each
of these calls (fry, fk1)s (Feys fka)s - (ks fms+1) 18 either forward or backward. We extend the
notion of the direct call (f;, fj) to indirect call (f; — f;); an indirect call consists of a path of
functions (fi, fk,, ..., fj) of length £ > 2. Using the f-call and b-call patterns, we next define the
path call pattern or, for short, p-call as follows:

(€) if (fr> frirr) and (fr, 1 s friyo) are two consecutive calls of a call sequence, we apply an f-call
or ab-call in (f,,,, fr;,) by first adding either the statement & = x4+ h() or z = 2 +g() in
function fy,,, after the call-point of statement x = z + ¢(), and then adding the statement
r=x+c()in fr,,,, 0<i<m—1

Figure 5.3 shows the structures of the patterns f-call and b-call of the direct call (f;, f;), and the
structure of the pattern p-call of an indirect call (f; — f;).

(III) Control Statements and Variables

In any watermarking model both the original program P and the watermarked program P*
have to operate identically. Thus, since the call-graphs G (P, Iey) and G(P*,I,) dictate the
execution flow of programs P and P*, respectively, and the call-graph G(P, Iy) is not isomorphic
to G(P*,Iie,), we have to control the flow of selected function calls of program P* so that
O(P,I) = O(P*,1I) for every input I.

70

fi0) £i0 fi() fi0)

z=x+h() z=x+c) z=z+g() z=x+c)

callf;() % f call f;() 1 b -
forward backward
edge i) edge b

(a) (b)

fi) fi0)
I L/ O L L R L | Lt

Figure 5.3: (a) The forward call pattern f-call; (b) The backward call pattern b-call; (c) The path call
pattern p-call. The boxes with marked corners are the f|b-blocks.

To do this, we exploit the values of specific variables in a function f; by using them in some
selected or added control statements as part of opaque predicates. More precisely, we use the
variable z of the f-call and b-call patterns and include it in a specific control statement s causing
thus an “appropriate execution flow” of the functions of the call-graph G(P*, I,); with the term
“appropriate execution flow” we mean that the execution flow of the functions of the call-graph
G(P*, Iey) is such that O(P,I) = O(P*,I) for every input I. Hereafter, we call cf-statement
the control statement s and cf-variable the variable x. In this point, we also define the f-block
and b-block to be specific parts of the code which contain (i) cf-statements, (ii) cf-variables, and
(iii) water-forward or water-backward function calls. We denote by f|b-block either an f-block or
a b-block; in Figure 5.3, the f|b-blocks are shown by boxes with marked corners.

We next describe the mechanism which ensures an appropriate execution flow of the functions
of G(P*, Ijey) through the altering of the execution flow of the functions of the program P by
modifying or adding some specific control statements. In fact, what the mechanism actually
does is to modify the conditions or expressions of these control statements by adding opaque
predicates.

Definition 5.1. A predicate) is opaque at a program point p, if at point p the outcome of

T
p

and if) sometimes evaluates to true and sometimes to false we write Q;.

is known at embedding time. If @ always evaluates to true we write Q7 , for false we write fo ,

Let (fi,fj) be a direct call in our program P* or, equivalently, an edge in the call-graph
G(P*,Ipey); it is either real-forward, real-backward, water-forward, or water-backward edge.
In any case, the proposed mechanism uses the value of the cf-variable x and makes the following

operations:

71

Program P ‘ Program P*

function f;() function f;()

if (condition & Q;)
if (condition) .
x =x+h();
statements; R
call f;();

statements;

Figure 5.4: An example of cf-statement modification via opaque predicates in the case where

(fi, fj) is a water-forward function call.

‘ Program P ‘ Program P*

function f;() function f;()

if (condition & Q;)
if (condition)
x =x+g();

call f;();

call f;();
statements;

statements;

Figure 5.5: An example of cf-statement modification via opaque predicates in the case where
(fi, fj) is a real-backward function call.

e in function f;: create a control statement (if, switch, for, while, etc), add an opaque
predicate Q; containing the cf-variable x, and insert it at a point p before the statement
z =z + h() or z =z + g(); we could also select a control statement at a point p, if there
exists, consider it as cf-statement and include the opaque predicate Q; in its condition

part.

e in function f;: create a control statement as in function f;, if such a statement does not
exist, and insert it at a point p before the statement x = x + ¢(); if such a statement exists,
we only add a new opaque predicate Q; in the condition of that statement. The main body
of f; is included in a block of a cf-statement the execution of which is depending upon the
behavior (i.e., true or false) of the opaque predicate Q;.

Note that, the above operations form specific parts of code of functions f; and f;, namely f|b-
blocks, i.e., either f-blocks or b-blocks; see, Figure 5.3.

72

’ Call (f;, fj) of Program P*

function f;() function f;()
1f (condition & Q;) lf (condition & Q;)
;c”:x—kh(); ;cu=x+0();
;:;11 1 0); if ‘(.condition Q)
statements; statements;

Figure 5.6: An example of cf-statement modification via opaque predicates of the function f; in
the case where (f;, f;) is a water-forward function call.

Figure 5.4 shows an example of the modification of the condition part of an if cf-statement
via an opaque predicate; since (f;, f;) is a water-forward function call, the statement call(f;)
does not exist in function f;, and thus we add it in f;, while the cf-statement is the z = z + h().
On the other hand, Figure 5.5 shows an example in case where (f;, f;) is a real-backward function
call. In this case, the statement call(f;) does exist in f; while the cf-statement is the z = z+g().
Figure 5.6 shows an example of the modification of the function f; in the case where (f;, f;) is
a water-forward function call.

Remark 5.1. Based on the structural properties of the watermark graph F[7*] and call-graph
G (P*, Iey) we can easily prove the following lemma.

Lemma 5.1. Let G(P,Iiey) and G(P*, Iiey) be the call-graphs of programs P and P*, respec-
tively, on input Iy, and let (f;, f;) be an edge in call-graph G(P, Iey). Then, there always exists

an 6dg€ (flvf]) or a pa’th (fivfknszv"'afkmafj) mn call—gmph G(P*alkey)'

Remark 5.2. In our implementation, in the case where (f;, f;) is an edge in G(P, Ij.,) and
(fi, fj) is not an edge in G(P*,I.,) we have to compute a path (f;, fi,,-..,f;) of function
calls in G(P*, Iyey). Such a path is a shortest path from f4 to fe in the graph G(P*, Iiy); it
may congsist of all types of edges, that is, real-forward or real-backward and water-forward or
water-backward edges. Figure 5.2(a) shows the edge (f4, f6) in G(P, I;¢y) which is not an edge
in G(P*, Iey), while Figure 5.2(b) shows its corresponding shortest path from f; to f;, that is,
the path (f4, f3, f5, f6); note that, (f4, f3) is a real-forward edge, (fs, f5) is a real-backward edge,
and (fs, f6) is a water-backward edge.

(VI) Execution Rules

We present the rules based on which we control the execution flow of the functions of P* such
that O(P,I) = O(P*,I) for every input I. In fact, we show in all the cases how the value of QZ,
dictates the execution flow of functions of G(P*, Iy).

Let (f;, f;) be a direct call in program P* or, equivalently, an edge in the call-graph G (P*, Iy).

73

We distinguish the following cases:

e (fi, f;) is real-forward or real-backward: in this case we modify the functions f; and f;
as follows:

o Function f;: the opaque predicate Q; in the cf-statement before the cf-value ¢ =
z+h() or v =z + g() and the call(f;) is evaluated to true, that is, QZ.

o Function f;: the opaque predicate Q; in the cf-statement before the cf-value © = x+¢()
is evaluated to true, that is, g, while the Q; for the cf-statement which controls the
statements of the main body of the function f; is also evaluated to true, that is, Qg.

e (fi, f;) is water-forward or water-backward: in this case we modify the functions f;
and f; as follows:

o Function f;: the opaque predicate Q; in the cf-statement before the cf-value z =
z+ h() or z = x4 g() and the call(f;) is evaluated to true, that is, Q7.

o Function f;: the opaque predicate Q; in the cf-statement before the cf-value z = x+c¢()
is evaluated to true, that is, QZ, while the Q; for the cf-statement which controls the
statements of the main body of the function f; is evaluated to false, that is, Q]If .

Recall that a predicate Q) is opaque at a program point p, if at point p the outcome of () is known
at the embedding time.

Remark 5.3. During the execution of the function f; of the program P* only one opaque
predicate Q; of the cf-statements is evaluated to true with respect to the current value of the
cf-variable .

5.3.3 Embedding an RPG into a Code

Let us now present our model’s algorithm which efficiently watermarks an application program
P by embedding the reducible permutation graph F[r*] into P. The proposed embedding algo-
rithm, which we call Embed RPG.to0.CODE, is described below.

Algorithm Embed_RPG.to.CODE

1. Take as input the source code of the program P, select an input I, , and construct the call-
graph G(P, Ijey); let S = (fuain, fs = fat1, fn, -, f1, fo = fi) be the execution sequence
of the functions of call-graph G(P, I,), that is, f; appears before f; in S if f; is executed
before f; with input Iie,, and let s = u,1,uy,,...,u1,ug = t be the n + 2 nodes of the
watermark graph F[7*];

2. Remove the node fyin from the call-graph G(P,Ii.,) and assign an exact pairing (i.e.,
1-1 correspondence) of the n + 2 nodes of graph G(P, I;y) or, equivalently, of the n + 2
functions fs = fut1, fn,- -, f1, fo = fi to the nodes of F[r*];

3. Construct the graph G(P*, I,) as follows:

74

¥

Step 4 Steps 1 and 2
T G(P, Ikey)
Step 3
G(P*, Ilcey)
Step 5 ‘

Steps 6, 7 and 8

Figure 5.7: A block diagram of the main operations of the embedding algorithm.

3.1. V(G(P*, Iyey)) = V(G(P, Itey)), i-e., G(P*, Iey) has the same nodes as the call-graph
G(P7 Ikey)§

3.2. E(G(P*, Ixey)) = E(F[r*]), ie., (fi, f;) is an edge in E(G(P*, Iy)) iff the corre-
sponding (u;,u;) is an edge in graph F[r*];

. Create a call-table 7 of size m which contains all the m function calls (f;, fj) as they

appear in the execution trace of program P with input Iye,;
. Create the tables 7* and C*, both of size m*, as follows:

5.1. For each function call (f;, f;) of table T do the following:

o if (f;, f;) is a function call of G(P*,Iie,) then insert (f;, f;) in table 7* and
its characterization in table C*; in this step, (fj, f;) is characterized as either

real-forward or real-backward;
e if (f;, f;) is not a function call in graph G(P*, Ije,) then:

o compute the shortest path (fi, fk,, fros -- -, fr,» fj) from node f; to node f;
in G(P*, Ijey),
o insert the calls (fi, fr,), (fir, fra)s - (fiy, fj) in table 7%, in that order,

and their characterizations in table C*; in this step, a call is characterized
as either real-forward, real-backward, water-forward, or water-backward (see,
Subsection 5.3.2), and

o mark the first and last function calls of the shortest path, i.e., (f;, f,) and

(fr, fj), as first and last, respectively;
5.2. For each function call (f;, f;) of graph G(P*,Ijey) check whether it appears in table

T*; if not, do the following:

e find the first appearance of a function call of type (f,, fi) in table T*, where f,

is any function;

75

e insert the function call (f;, f;) in table 7 after the call (f,, f;) and its character-
ization in the corresponding row in table C*;

6. Take each function call (f;, f;) of the table 7* and modify the functions f; and f; of
program P as follows:

6.1.

6.2.

6.3.

6.4.

6.5.

Add/replace call statements and locate appropriate call points in function f; as follows:
o if (f;, fj) is a real function call then find the statement call(f;) in function f;
and locate its call-point;
o if (f;, f;) is a water function call then:
o if it is the first function call of a short path, then find the last function call

of that path in table 7%, say, (f,, fiast), replace the statement call(fi4s) in
function f; with the statement call(f;), and locate its call-point;

o otherwise, if call(f;) does not exist in f-block of function f;, add the state-
ment call(f;) in f|b-block and locate its call-point;

Insert either statement & = x + h() or = = + ¢() before the statement call(f;), if
(fi, f;) is characterized either as forward or backward, respectively;

Include both statements © = z+h() or z = z+g() and call(f;) in a control statement

and evaluate it as true or false using the cf-variable x;

Include all the statements of the b-block of function f; in a control statement and
evaluate it using the cf-variable x;

Add the statement z = « + ¢() before the f|b-block of function f;;

7. For each function call (fout, f;) of program P s.t. four ¢ G(P*,Ijey) and fj € G(P*, Iey)
do the following:

7.1.

7.2.

Find the first appearance of a function call of type (f,, f;) in table 7, such that f,
is any function and f; is either a real function call or the last function of a shortest

path (fiafk17fk27 s 7fk[7fj)7 i'e'7 (fovfj) = (fk[af])7

Take the value of the cf-variable x of function f,, say, “value”, and insert the state-
ment z = “value” in function f,,; before the call-point of the statement call(f;);

8. Return the source code of the modified program P which is the watermarked program P*.

Remark 5.4. In Step 5 of the embedding algorithm, the edges (f;, f;) are included into the

table T in a specific order. This order is determined by the order they appeared in the execution

trace of program P with input Iy, i.e., if the function call (f;, fj) appears before (f, f¢) in the
execution trace of P, then the edge (f;, fj) appears before the edge (fx, f¢) in table 7.

Remark 5.5. Let (f;, fj) be an edge which is handled in Step 6 of the embedding algorithm and
let the statement call(f;) appear more that once in function f;. We point out that in this case

we insert both the cf-variable and cf-statement before the call-site of each statement call(f;) in

function f;.

76

InputGs

-

-» Split

P AN

/

Adjacent

i

- Dikjstra

Ll ___1

FindMin -

i

=c}

8:
~—

o

PrintPath

()
©,
O
©)
O,
©

—
~
=
—
=}
N
—
o
&

Figure 5.8: (a) The dynamic call-graph G/(Shortest_Path, Iy,).
F[7*] which encodes the watermark w = 2, where 7* = (3,5,
G(Shortest Path*, Iy).

(b) The reducible permutation graph
1,4,2). (c) The dynamic call-graph

The Algorithm by an Example. In order to illustrate the working of the embedding algorithm
Embed RPG.t0.CODE, we present a simple example and show the main operations (i.e., function
calls) and the values of the main variables during the algorithm’s execution.

In our example, we chose the original program P to be one that computes the shortest
paths in a weighted graph G with non-negative edge-values; it takes as input a graph G and
a node s and computes the shortest paths from s to every other node v € V(G) — {s}. The
program P, which we call Shortest_Path, consists of 8 functions (i.e., 7 functions plus the
main) and have the property that its dynamic call-graph G(Shortest_Path, I,) is the same
for every input Ij,; see, its dynamic call-graph in Figure 5.8(a). Moreover, we chose to embed
the watermark number w = 2 into the source code of program Shortest_Path. The reducible
permutation graph F[7*] which encodes the watermark w = 2 consists of 7 nodes and is depicted
in Figure 5.8(b). We point out that, according to our model’s rules, the number w = 2 is encoded
by the SiP 7* = (3,5, 1,4,2) and it can be successfully embedded into Shortest_Path since our
program consists of 8 functions and the graph F[r*| contains 7 nodes. The dynamic call-graph
G/(Shortest_Path*, Ij.,) of our watermarked program is presented in Figure 5.8(c). Observe
that, G(Shortest_Path*, I},) is isomorphic to the watermark graph F[(3,5,1,4,2)].

In Figure 5.9 we show the call-tables 7 and 7™ of the original and watermarked programs
Shortest_Path and Shortest_Path*, respectively, the edge characterization of each function call
(fi, fj) of the call-table T* (see, Table C*), and the increment of the value of the ¢f-variable z in
each case. More precisely, in Table C* each (f;, f;) is characterized as either rf (real-forward), rb
(real-backward), wf (water-forward), or wb (water-backward), while in the case where a function
call (f;, f;) is replaced by a path of calls (shortest path) we characterize as first (resp. last) the

7

Call-table 7 |

Call-table 7~ |

Table C* H Values of the cf-variable ‘

main — InputGs main — InputGs rf z+=3 (3) — z+=1 (4)
InputGs — Split InputGs — Split rf z+=3 (7) — z+=1 (8
InputGs — Split Split — InputGs wh z+=2 (10) — (11)
InputGs — Adjacent || InputGs — Split rf z+=3 (14) — (15)
main — Dikjstra InputGs — Split wf - first || z+=3 (18) — (19)
Dikjstra — FindMin || Split — Adjacent wf — last z+=3 (22) — (23)
Relax — Dikjstra Adjacent — Split wh z+=2 (25) — (26)
Relax — PrintPath main — InputGs wf — first z+=3 (29) — (30)
InputGs — Split wf r+=3 (33) — (34)
Split — Adjacent wf z+=3 (37) — (38)
Adjacent — Dikjstra || wf— last z+=3 (41) — (42)
Dikjstra — InputG wh r+=2 (4) — (45)
Dikjstra — FindMin || rf r+=3 (48) — (49)
FindMin — Adjacent wb r+=2 (51) — (52)
Dikjstra — FindMin wf — first z+=3 (55) — (56)
FindMin — Relax wf — last z+=3 (59) — (60)
Relax — Split wh z+=2 (62) — .. (63)
Relax — PrintPath rf z+=3 (66) — z+=1 (67)

Figure 5.9: The call-tables 7 and T* of the programs Shortest_Path and Shortest Path*,
respectively, the edge characterization table C*, and the values of the ¢f-variable.

first (resp. last) function call of that path. The fourth table of Figure 5.9 shows the values (in
parentheses) of the cf-variable z in both functions f; and f; of the program Shortest_Path*.
Recall that according to the f-call and b-call patterns (see, Section 5.3.2), if (f;, f;) is a forward
edge we add the statement = z + h() in function f;, while if (f;, f;) is a backward edge we add
the statement z = x + ¢() in function f;; in both cases we unconditionally add the statement
z =z +¢() in function f;.

In our example, we initialize the ¢f-variable = 0 and consider for simplicity reasons constant
values for the functions h(), g(), and ¢(), that is, h() = 3, g() = 2, and ¢() = 1. Based on the
above, we take the first function call (main, InputGs) of Table 7* and, since it is characterized as
rf in Table C*, we increase by h() the value of the ¢f-variable x in function main before the call
site of InputGs, i.e., we set x = x+h() and thus z = 3. In the callee function InputGs we always
increase by c¢() the value of the variable z, i.e., we set * = z + ¢() and thus x = 4. We observe
that, the function call (Split, InputGs) of Table 7* is characterized as wb (water-backward)
and, thus, we increase by g() = 2 the value of the variable z in function Split, again before the
call site of InputGs, i.e., £ becomes equal to 10 because in the previous function call x’s value
was 8 (see, last table of Figure 5.9). Note that, by construction the shortest paths of function
calls do not intersect.

78

5.3.4 Extracting the RPG from the Code

We next present our WaterRPG model’s algorithm for extracting the graph F[r*] from the pro-
gram P* watermarked by the embedding algorithm Embed RPG.to.CODE. The proposed extracting
algorithm works as follows:

Algorithm Extract_CODE.to.RPG

1. Take as input the program P* watermarked by the embedding algorithm Embed RPG.t0.CODE
and run it with input Ixey;

2. Construct the call-table 7 using the execution trace of the program P* with input Ij.,;

3. Construct the dynamic call-graph G(P*, Ij¢,) using the call-table T as follows:

3.1. take all the function calls (f;, fj) of table 7 and add both functions f; and f; in the
set V; note that, V has n + 2 elements since 7 contains n + 2 different functions;

3.2. take all the function calls (f;, fj) of table 7 and add the selected pairs in the set E;
note that, F contains 2n + 1 elements;

3.3. assign the set V to V(G (P*, Iey)) and the set E to E(G(P*, Irey));

4. Remove the node fiq4in from the graph G(P*, Iiey); the resulting graph is a reducible
permutation graph isomorphic to F[r*] (see, algorithm Embed RPG.t0.CODE);

5. Compute the unique Hamiltonian path HP = (fo, f1, f2,..., fa, fat1) of G(P*, Iey);

6. Relabel the nodes of the graph G(P*, Ije,) according to their order in the HP as follows:

fo = Uny1, f1 = Un, fo = un_1, ..., fn = u1, fay1 = uo; the resulting graph G(P*, Ij,)
has a unique Hamiltonian path HP = (un1,Un, Un—1,- .., u1,uo) and thus G(P*, Ije,) =
Flx];

7. Return the reducible permutation graph F[r*].

Remark 5.6. In Step 5 of the extracting algorithm, we compute the unique Hamiltonian path
of the graph F[P*]. Indeed, it has been shown that the reducible permutation graph F[7*| has
always a unique Hamiltonian path, denoted by HP(F|[r*]), and this Hamiltonian path can be
found in O(n) time, where n is the number of nodes of F[x*] [23]. Since F[r*] is isomorphic to
G'(P*, Iyey) we can compute the unique Hamiltonian path HP of the graph F[P*] within the

same time complexity.

5.4 Implementation

In this section we present in detail the watermarking process performed by our WaterRPG
model on a Java application program P. We show the implementation of our watermarking
process using a real program with market-name Laser which we have downloaded from the web-
site www.java — gaming.org containing various and different in characteristics game application

programs.

79

Let fs = fut1, fns- -5 f1, fo = fi be the functions of the dynamic call-graph G(P, I,), where
P = Laser. Recall that the functions fs = fn11, fn,---, f1, fo = ft are into 1-1 correspondence
with the nodes s = wupy1,Un,...,u1,up = t of the reducible permutation graph F[r*] which
encodes the watermark number w.

We focus on the function f; = up() of the program Laser; in our implementation, the
important part of the Java code of f; = up() is the following:

public void up{
if (blex+ 1][cy —1 —1].bgr() ...){
hlth — —;

}

b[cx + 1][cy].bgr(black);

We first show the straightforward case of the watermarking process on function f; = up() and,
then, we proceed with advanced cases. In all cases our model uses the cf-variable x which
increases its value by h() = 3, g() = 2, and ¢() = 1; see, Call Patterns in Section 3.2.
Before we proceed to watermark the function f; = up(), we divide the callee functions of f;
into the following three categories:
Acatlee - contains the callee functions fjl and ff of f; which correspond to forward node u} and
backward node u? of graph F[r*], respectively; that is, both fjl and ij are functions of
the dynamic call-graph G(P, Ijey).

Bealiee : contains the callee functions f; of f; which are executed with the input I, except of
fjl and sz; that is, f is a function of the dynamic call-graph G(P, Ijey)-

Ceiallee : contains all the callee functions f]** of f; which are not executed with the input Iy, .

Naive-case Implementation

Let u; be the node of graph F[x*] which corresponds to f; = up(), and let ujl and u]2 be the
2
j
of node u;, respectively. Let fjl and ff be the two functions of G(P, I,) which correspond to
1
J
We next describe in a step-by-step manner the modifications we make in function f; = up()

two nodes of F[r*] such that (u;, u;) and (u;,us) are the forward and backward outgoing edges

nodes u; and u?, respectively; in our implementation, fj1 = down() and ij = health().
according to the watermarking rules of our WaterRPG model. The watermarking process of the
naive-case implementation consists of the following phases:

(I) We first include the body of the function f; into a control statement holding opaque predi-
cates of the cf-variable z. In our naive-case implementation, we use the statement if-then-
else and add opaque predicates of the form x == value; see, statement if (x == 271 &&
down == false) {...} of Figure 5.11.

Then, we handle the functions f]-1 and ij of categories Acqiiee; in particular, we locate
the call-points of all the statements call(fjl) and call(sz) in f;, if any, and we do the
following:

80

o We form an f-block, in the case where f; contains fjl, by adding the statement z =
z + h() in a call-point before that of call(fjl) and including both z = z + h() and
call(fjl) into a control statement with opaque predicates using the cf-variable x; in
our implementation, fj1 = down() and h() = 3.

o We similarly form a b-block, in the case where f; contains f]?, by adding the statement
z =z + g() instead of x = = + h() as before; in our implementation, fj2 = health()
and g() = 2.

In the case where the function f; does not contain call(fjl) or call(sz), we locate a
call-point before that of the control statement if-then-else and we do the following:

o If f; does not contain call(‘]“jl)7 we add the statements z = z+h() and call(fjl) in this
order and, then, we include both x = 2 + h() and call(fjl) into a control statement
with conditions consisting of opaque predicates using the cf-variable z; recall that
h() = 3; see, statement if (x == 271) && down == true) {...} of Figure 5.11.

o If f; does not contain call(sz), we add the statements z = = + g() and call(ij) in
this order; we also include both statements into a control statement as before; see,
statement if (x == 268) {...} of Figure 5.11.

(IT) In this phase, we locate a point in the beginning of the callee function fj1 (resp. ff) of
function f;, add the statement z = x + ¢() in this point and include z = = + ¢() into a
control statement with conditions consisting of opaque predicates using the cf-variable z;
in our implementation ¢() = 1; see, statement if (x == 267) {...} of Figure 5.11.

(ITI) We next handle all the functions f;‘ of category Begiee, that is, the callee functions of f;
that are functions of the call-graph G(P, Iy) except of fj1 and ij. For every direct call
(fis f]*) we compute the sequence (fj, fr,,-- -, f]"‘) which corresponds to the shortest path

J
fi and add either the statements z = x + h() and call(fjl) if (u;,ug,) is a forward edge or

the statements z = x + g() and call(fjl) if (u;,ug,) is a backward edge in F[r*]; in any

(s, gy, - - -, ul) from u; to u} in graph F[7*]; then, we remove the statement call(f]’-‘) from

case, we include the added statements into a control statement with conditions consisting
of opaque predicates using the cf-variable z.

(IV) In the last phase we handle all the functions fy,; of program P which call functions that
correspond to nodes of graph F[r*], i.e., fou is not a function of the call-graph G (P, Ijey)
and calls a function f; of fs = fuy1, fn.---, f1,Jo = fi. We find the first appearance
of a function call of type (fout, fj) in table 7* such that f; is either a real function call
or the last function of a shortest path (fi, fi,, fias- -+ fr,, fj) (see, Step 7 of embedding
algorithm), take the value of the cf-variable z of function fj,, say, “value”, and insert the
statement © = “value” in function f,,; before the call-point of the statement call(f;).

All the functions f;‘* of category Ceqiiee are ignored during the process of watermarking the
function f; = up() since they are not executed with the input Ij,.

Remark 5.7. In order to avoid a large increment of the value of cf-variable z, in the imple-
mentation Phase (I), if a call function is included into a loop structure we could apply the call
patterns as follows: (i) we add the assignment of the cf-variable (i.e., z = x + h() or z = z + g()

81

The Naive-case Implementation

public void up{

if(x == 267){
x=x+1;

}

if(x == 268){
X=x+2;
health();

}

if(x == 271&&down == true){
xX=x++3;
down();

}

if(x == 271&&down == false){
if(blex+ 1fey — 1 —1]...){
nlth — —:

}

blcx + 1][cy].bgr(black);

Figure 5.10: The function up() of the original program Laser watermarked with the naive
approach; the functions down() and health() are both water functions and belong to category
Beaiice, 1-€., both are functions of G/(Laser, Ijey).

assignments) outside this loop, and (ii) we add the statement x=wvalue_before_loop inside and
before the end of the loop, where value_before_loop is the value of x before the execution of this

loop.

Stealthy-case Implementation

We next show properties and modification rules of the model’s call patterns based on which we
can stealthily watermark a Java application program P. The main modification cases, which we
call stealthy cases, supported by the WaterRPG model are the following:

(S.1) Making nested patterns: We can merge f-statements and b-statements in any way; for ex-
ample, we can include the control b-statement if (x == 268) {...} inside the f-statement if
(x == 271 && down == true) {...} after the statement call(fjl) = up(); we appropriately
change their opaque predicates; see, Figure 5.11.

(S.2) Adding multiple water-calls: Since water-calls do not affect the functionality of the program,
we can add multiple water-calls in the body of the function f; = up(). Our aim is to increase
the complexity of the source code making thus difficult for an attacker to understand it,
the more the complexity the more the extend of the code.

82

Two Stealthy-case Implementations

public void up{ public void up{
x=x+1; x=x+1
if(x == 268&&down == true){ if(x == 268&&down == true){
X =x+3; x=x+3;
down/(); down();
if(x == 272){ }
x=x+2; else{
health(); if(blex+1]ley —1—1]...
} &&x == 268){
} hlth — —;
else{ x=x+2;
if(blex + 1]fcy —1—1]... health();
&&x == 268){ }
hlth — —; blcx + 1][cy].bgr(black);
}

blcx + 1][cy].bgr(black);

Figure 5.11: The function up() of the original program Laser watermarked with a stealthy
approach; the functions down() and health() are both water functions and belong to category
Beaiice, i-e., both are functions of G(Laser, Ij.y).

(S.3) Removing control statements: We can remove the control statement that includes the
statement x = x 4 ¢() of a function f; = up() (Phase III); we can do that in the case where
fi is called by a function of category Ceqiiee; note that, functions of category Cegiree do not
modify the value of the cf-variable z.

(S.4) Constructing complez opaque predicates: We can construct more complex opaque predicates
thus making the control flow of a program more difficult for an attacker to analyze it. In
Phase I, we added opaque predicates of the form (x == value; || x == valuey || ... ||
x == valuey), whereas in the stealthy case we evaluate the cf-variable in a range of values
(x <= value; && x >= value;j) by adding logical and relational operators.

(S.5) Merging control statements: We can merge control statements that we added in program P*
with program’s original control statements by appropriately merging their corresponding
logical expressions.

(S.6) Assigning complex expressions: In the naive case the incremental functions of statements
x =x+ h() and 2 = x + g() have constant values h() = 3 and g() = 2, respectively. We
can easily use any complex function for A() and g() in order to systematically increase the

cf-variable z.

83

(S.7) Using more cf-variables: We can use more that one cf-variable to control the flow of the
watermarked program P*. We built relationships between the cf-variables in order to
be used interchangeably throughout the execution phase. We establish thresholds that
determine the use of different cf-variables.

In Figure 5.11 we present two stealthy-case implementations of the function up() of the original
program Laser (left and right code). The functions down() and health() are both water functions
and belong to category Begjice, that is, both are functions of G(Laser, Ijey).

5.5 Model Evaluation

Having designed a static or dynamic software watermarking model, it is very important to
evaluate it under various criteria in order to gain information about its practical behavior. Several
criteria have been appeared in the literature and used for evaluating the properties of a proposed
watermarking model and showing its strong and weak implementation points [31]. It is a common
belief that a good watermarking model must have at least the following characteristics [30]:

o a software watermarking model should not adversely affect the size and execution time of
the program P;

o the ratio of the number of bits of the whole program P to the number of bits encoded by
the watermark w should be high;

o a model must be resilient against a reasonable set of malicious watermarking attacks;

o both host program P and watermarked program P* should have similar statistical proper-
ties.

In our work, we use various criteria which mainly aim to evaluate our WaterRPG model’s per-
formance and its resiliency. More precisely, we propose a set of evaluation criteria consisting of

two main categories:
(I) Performance Criteria
(IT) Resilience Criteria

The Performance criteria (or, P-criteria) concern the behavior of the resulting watermarked
program P* and the quality and effectiveness of the embedded watermark w, while the Resilience
criteria (or, R-criteria) concern the robustness and resistance of the embedded watermark w
against malicious user attacks.

For our evaluation process, we implemented the WaterRPG model on Java application pro-
grams and experimentally evaluated it under several P-criteria and R-criteria. More precisely,
we selected a number of Java application programs downloaded from the free non commercial
game database website www.java — gaming.org and watermarked them using the two watermark-
ing approaches supported by our WaterRPG model, i.e., the Naive approach, and the Stealthy
approach. The selected Java programs are almost of the same size and are watermarked by em-
bedding watermarks of three different sizes; we use watermarking graphs F'[r*] having number
of nodes n =11, n = 13, and n = 15.

84

All the experiments were performed on a computer with dual-core 2.0 GHZ processors, 3.0 GB
of main memory under Linux operating system using Java version 1.6.0.26 of the SDK (Software
Development Kit).

5.5.1 Performance

The performance criteria (or, P-criteria) mostly focus only on how much a watermarking model
modifies the code of a program P. As these criteria range in satisfactory levels, both programs P
and P* have almost identical execution behavior and similar codes, and thus the code associated
with the watermark w is very likely to pass unnoticed by the attacker’s eyes; in our classification,
the P-criteria are divided into the following two main categories:

e Data-rate: The data-rate criterion measures the ratio |w|/|P|, where |w| is the size of the
embedded watermark w and |P| is the size of the original program P. A model should
have a high data-rate so that it can embed a large message.

¢ Embedding overhead: The additional execution time and space caused by embedding
the watermark w into program P, that is,

(i) time overhead, and

(ii) space overhead: (ii.a) disk space usage, and (ii.b) heap space usage.

e Part protection: The part protection criterion evaluates how well the watermark is
distributed or spread throughout the entire code of P. This is an important performance
property of program P* because it decreases the probability that the watermark will be
altered or destroyed when small changes are made to program P*.

o Credibility: The credibility criterion evaluates how much detectable the watermark is.
The embedded watermark should be easily extracted from P* and the detector (i.e., the
extracting algorithm) should minimize the probability to generate false positives and false

negative results.

e Stealth: A watermarked program P* has the stealth property if the embedded watermark
should exhibit the same properties as the code of P or data around it and thus it should
be difficult to detect. In other words, P* should have characteristics that are not different
from a typical program so that an attacker can not use these characteristics to locate and
attack the watermark.

Let us now discuss on the performance of the WaterRPG model and let us first focus on the
data-rate of our model.

Data-rate. This criterion essentially depends on the size of the watermark w or, in our model,
of the size of the embedding watermark graph F[r*]. We consider that the size of the watermark
graph is the number of vertices that it contains. In order to measure the data-rate ratio |w|/|P],
we compute the size of the original program P by counting the number of functions it has, since
in our model we assign an exact pairing of the nodes of F[r*] to the functions of P. We claim
that our model has high data rate for large programs since in such programs we are able to

85

encode a watermark graph less than or equal to programs’ size. According to our model for
encoding a number as reducible permutation graph a relatively large graph encodes a large set
of different integer numbers.

Embedding overhead. In order to evaluate the embedding overhead of our WaterRPG model
we choose the parameters (i) execution time, (ii.a) disk usage, and (ii.b) heap space usage. We
measure these parameters on the selected Java application programs P and the corresponding
watermarked programs P* under both the naive and stealthy approaches. In the evaluation
process, each program is executed “n” times with different inputs. The run-time of each tested
program is computed by taking the difference of the start-value and the end-value of the Java
method System.currentTimeMillis().

The execution time overhead is proportional to the size of the watermarking graph F[r*].
The experimental results in Table 5.2 indicate that for a graph F[r*] on n = 11, n = 13 and
n = 15 nodes the execution time of the naive watermarking causes a slight increase of 5.25%,
7.65% and 11.07%, respectively, while the corresponding increments for the stealthy case are
even smaller.

The disk storage requirements of program P* compared to P increases as the number of
nodes of the graph F[n*] increases. Applying the stealthy approach a noteworthy amount of
storage memory is saved because many of the control statements and opaque predicates that
were not necessary to maintain proper functionality of the program P* removed safely from the
code. Table 5.3 illustrates the percentage increment of disk demand for Py and Pg, as well as
the improvement caused by the stealth approach in comparison to the naive. The experimental
results show that our WareRpg watermarking model has a similar performance for the heap
space usage; see, Table 5.4. The results for all the evaluating parameters are also depicted in a
graphical form in Figure 5.12.

Towards the evaluation of the space overhead of our watermarking method we compute the
total amount of the bytecode instructions added to watermarked program P*. In particular, we
compute the percentage of the increment resulted by adding control statements, functions calls
and variable assignments to the program P. To this end, we count the bytecode instructions of
watermarked programs Py and Pg that belong to four main categories: (i) Control statements,
(ii) Invocations, (iii) Assignments, and (iv) Rest instructions; see, Table 5.5. Note that the cat-
egory (iv) contains all the bytecode instructions that remain unchanged after the watermarking
process. Indicatively, in Table 5.6 we show the number of some bytecode instructions of the
tested Java application programs P.

Part protection. The idea behind the property of part protection is to split the watermark into
pieces and then broadly spread it across the application program P. The splitted watermark
w has a better chance to survive if an attack modification on some w’s parts does not affect
the recognition process. The more the part protection is increased, the more likely a watermark
remains unchanged after a possible theft or modification of a portion of the whole watermarked
code.

In our case, we do not split the watermark in order to encoded it into code, and thus our model
has a low part protection. However, an attack modification on a part of our watermark code may
cause incorrectness of P* unless the attacker goes through all the parts of the watermark code

86

Table 5.2: Execution Time (msec)

Nodes in Flr*] | P—Py | P—P: | Py— P:

11 +5.25% +3.82% -1.37%
13 +7.65% +5.99% -1.56%
15 +11.07% +9.19% -1.72%

Table 5.3: Disk Usage (Kb)

Nodes in Flz*] | P—Py | P—P; | Py — P;

11 +20.98% | +16.71% -3.65%
13 +26.35% | +18.81% -6.34%
15 +30.10% | +21.76% -6.85%
Table 5.4: Heap Space Usage (Mb)

Nodes in Fl*] | P— Py | P—P: | Py— P&
11 +7.69% +4.61% -2.94%
13 +10.76% +6.15% -4.34%
15 +15.38% +9.23% -5.63%

and makes appropriate modifications. On the other hand, since we can encode the same number
w into more than one reducible permutation graphs F[7*] (see, [24]), our model could obtain
higher part protection by encoding multiple water-graphs F/[n*]| using different input sequences
which produce different dynamic call graphs protecting thus larger code area.

Credibility. The credibility of a watermarking model is dependent on how detectable the
watermark is. Concerning our model, we should point out that the rates of false positive and
false negative outcomes are noticeable low in the case where the program P* has not being
attacked. In addition, even the watermarked code undergoes attacks, the execution sequence
S of the functions of P* is very hardly distorted. Nevertheless, an attacker could make such a
distortion possible but then he has to replace the sequence of function calls S with a sequence
S’ in order to produce exactly the same output keeping the functionality and correctness of the
remaining code; it is very time consuming for an attacker to find an S’ and test it under various

inputs.

Stealth. Some common attacks against watermarking systems begin by identifying the code
composing the watermark. To resist such attacks, watermarking should be stealthy: the water-
mark code embedded to a program P should be locally indistinguishable from the rest code of
P so that it is hidden from malicious users.

The code embedded to program P by our watermarking model WaterRPG is not highly
unusual since our model modifies the existing source code of P by only altering its control flow
in order to produce, during the execution of P* with the secret input Iy, a dynamic call graph

87

2201 [original
[Naive
[stealthy -

Execution time (msec)

[original -
I Naive
[stealthy B

Disk usage (kKb

8L == original B
I Naive
[stealthy

Heap space usage (Mb)

n =11 n =13 n =15

Number of RPG nodes

Figure 5.12: Graphical representation of the results for parameters (i) Execution time, (ii.a) Disk
usage and (ii.b) Heap space usage of the original program P, and the corresponding watermarked
program under both the Naive Py and Stealthy P¢ approaches.

isomorphic to the watermark graph F[7*]. More precisely, our model does not add any dead or
dummy code but only encodes the graph F[r*] using three groups of bytecode instructions:

(i) call functions,
(ii) control statements, and
(iii) wvariable assignments.

Most of these instructions are already used in the original source code P and thus the embedded
watermark code is quite difficult to be located in the watermarked program P*. The experimental

88

Table 5.5: Three Group of Bytecode Instructions

Bytecode P Py Pg

Control Statements 519.4 42.0% 25.0%
Invocations 188.3 10.6% 10.6%
Assignments 1346.7 45.5% 32.4%
Rest Instructions 941.6 0% 0%

Table 5.6: Indicative Bytecode Instructions of each Group

Bytecode P Py Pg
Control Statements
if_icmpne 19,2 78,1 57,6
ifne 3,1 4,5 4,5
goto 43,5 45,3 45,3
Invocations
invokevirtual 188,2 208.,4 208.,4
Assignments
iconst_1 186,2 202,7 202,7
getstatic 368,6 614,4 529.,5
iadd 84,9 132,8 132,8
alaod- 0 136,7 156,2 156,2
Rest Instructions
dup 33,6 33,6 33,6
ldc 19,7 19,7 19,7

results indicate that there is an increment from 10.6% to 45.5% (resp. from 10.6% to 32.4%) of
instructions of these three groups in the naive (resp. stealthy) implementation. Table 5.5 shows
the number of bytecode instructions, on average, of each of the three instruction groups of the
tested programs P and the increments of these instructions in both naive Py and stealthy Pg im-
plementation cases, while Table 5.6 depicts the number of some indicative bytecode instructions
of the three instruction groups.

5.5.2 Resilience

The resilience criteria (or, R-criteria) mainly focus on how the embedded watermark resists
against attacks made by malicious users. These attacks are either targeted-attacks on the code
composing the watermark w or widespread-attacks on the whole code of program P*. According
to the type of attacks, the R-criteria are divided into the following two main categories:

e Watermark resilience: The watermark resilience (or, water-resilience) criteria measure
the resistance of the watermark w against attacks on its own code; we call these attacks
targeted-attacks or water-attacks. In this case the attacker first detects the watermark w,

89

that is, the code of program P* associated with the watermark w, and then makes specific

operations on that code in order to

o remove (e.g., by subtracting part of the watermark, or even the whole watermark),

o destroy (e.g., by applying semantics preserving transformations so that w can be
undetectable, i.e., the detector can not find the watermark), or even

o alter the watermark w (e.g., by changing the structure of the embedded watermark w
so that it causes the extracting algorithm to produce a different watermark w’).

The attacker can also add a new watermark w’ into P* without modifying the existing w
in order to confuse the detector.

e Code resilience: The code-resilience criteria measure the resistance of the watermark
w against attacks made on the whole code of the watermarked program P*; we call these
attacks widespread-attacks or code-attacks. In the case the attacker fails to detect the code
of program P* associated with the watermark w, and thus he makes attacks in the whole
code aiming in this way to maximize the distortion of possible watermarking protections;

in our classification, the code-resilience criteria include:

o obfuscation (e.g., by transferring a reducible flow graph to non-reducible),

o optimization (e.g., by removing information for debugging with an automated tool,
such as ProGuard),

o de-compilation (e.g., by using a malicious tool, such as Java-Decompiler), and

o language-transformation (e.g., by converting a watermarked program P* from C++

to Java).

As in the case performance criteria, we next discuss on the resilience of our WaterRPG model

focusing first on the water-resilience criteria.

Watermark resilience. The water-attacks take place when the code of the watermark w, the
graph F[r*] in our model, is known to the attacker. In this case, he makes attacks on the
structure of watermark graph F[x*] in order to destroy it or even to remove F[r*] from program
P*.

Our model embeds the watermark graph F[r*] into an application program P by using
opaque predicates in specific control statements in order to manipulate the flow of selected
function calls of the watermarked program P* so that it reserves an appropriate execution, that
is, O(P,I) = O(P*,I) for every input I. In general, it is hard for an attacker to deduce an
opaque predicate at run time. Specifically, the usage of opaque predicates in our model enables
us to dictate the execution flow of function calls and also makes the programs’ control flow
difficult for an attacker to analyze it either statically or dynamically. In fact, our model creates
dependencies on the data between the original program P and the watermark F'[7*] making thus
the watermark graph F'[7*] operational part of the program P. This causes our model resilient
to water-attacks.

Indeed, if the attacker makes a modification in a value of a cf-variable x in a call-site p (e.g.,
he increases x by a constant ¢), then he has to properly modify all the values of all the cf-variables

90

in every call-site of the execution flow after p (e.g., by adding the same constant ¢) so that P*
still remains functional, but then the watermark F[r*| also remains unchanged. Moreover, if the
attacker tries to remove any of the cf-statements then the program P* is not longer functional
since a “gap” is occurred on the execution flow of P* (e.g., the program executes a part of a
code which in same cases produces incorrect results). What is more, every cf-statement produces
different results, so our model withstands common subexpression elimination.

Additionally, if the attacker modifies either a real-call or a water-call then the program P*
is no longer operational. Indeed, let the attacker modifies a water-call call(f;) in function f;
which appears in a path (fq, ..., fk, fi, fj, ---» fo). Then, he has to make several modifications
on function calls, among which the deletion of call(f;) from function f; and the replacement
of call(f;) with call(f;) in function fj, in order to remain the program P* functional. Such
modification have very low probability to destroy the structure of the embedded watermark F[r*|
without breakdown the functionality of program P*.

It is worth noting that any code modification which destroys the structure of F[r*] can be
detected with high probability by our model WaterRPG due to error-correcting properties of the
watermark graph F[r*]. Finally, we should point out that our model does not add any dead
or dummy code in the watermarked program P* and also it does not use any mark during the
embedding process in order to locate and extract the watermark from P*.

Code-resilience. Resiliency against code-attacks refers to the ability of a watermarking model
to recognize a watermark even after the program P* has been attacked or subjected to code
transformations such as translation, optimization and obfuscation [84]. The code-attacks take
place when the attacker fails to detect the code of program P* associated with our watermark
F[r*]. In this case, the attacker broadly applies code transformation attacks in the whole code
of P* in order to reduce the ability of the model’s recognizer to extract the watermark.

Roughly speaking, the goal of an obfuscation attack is to make a model’s recognizer to hardly
extract the watermark from P*. Our model watermarks an application program P in such a
way that it withstands several obfuscation attacks among which layout-obfuscation and data-
obfuscation attacks. Indeed, the experiments showed that the water-graph F[7*] can be efficiently
extracted even the code of program P* has been subjected to control-obfuscation attacks such
as expression reordering or loop reordering; some of our experiments were performed with an
automated tool (e.g., ProGuard). It is fair to mention that our model does not properly operate
on some other control obfuscation attacks such as aggregation including inline functions and
outline functions; for example, if an attacker split a function or merge functions of P* associated
with the code of the watermark F[n*], he actually makes a targeted attack both on vertices and
edges of watermark graph F[r*] destroying thus the structure of F[r*].

As far as the optimization attacks are concerned we point out that they are mainly applied by
a compiler or interpreter into the executable program altering the generated traces of program P*;
note that our WaterRpg model encodes execution trace watermarks. The embedded watermark
F[r*] withstands on such attacks since any removal of function calls, register reallocation, or
information for debugging does not affect the structural properties of the embedding graph
F[r*]. Again, the experimental study showed that our WaterRPG withstands on a relatively
large subset of optimization attacks including semantic-preserving transformations, shrinking,
and also it withstands on the most time consuming operation namely language transformation

91

(i.e., the attacker rewrites the whole code oP in another language).

A watermarking model must also be resilient against a reasonable set of de-compilation
attacks. Thus, in our experimental study, we also included the evaluation of our watermarking
model WaterRPG against de-compilation attacks. More precisely, we tested our programs with a
revere engineering tool (e.g., Java Decompiler) and gure out that in all the cases that WaterRPG
successfully extracts the watermarking graphF[] from the watermarked programsP, and
Pg; indeed, in all the cases the dynamic call-graptG(P ;lxey) taken by the input Iyey were
isomorphic to graphF[.

5.6 Concluding Remarks

Through the evaluation of WaterRPG, we showed that our model has zero false positive and
false negative rates in the case where the watermarked code has not been attacked. Indeed, it
is true because the execution of the watermarked prograr® with the secret input sequence
always builds a call graphG(P ;lxey) Which is isomorphic with the water-graphF[].

The execution time and space overhead varies depending on the size of the embedded water-
mark; in fact, the overhead increases linearly in the size of the water-grapR[]. It is worth
noting that the data-rate is directly correlated with the number of functions used or, equivalently,
with the size of the water-graph. In the case where the code (in bits) of the original prograrR
is large enough, our model has high data-rate and extremely low embedding overhead. We point
out that the number of nodes of the water-graphF[] a ects the number of functions we use
for embedding. Thus, it is possible to use fewer functions which would result in a grapR[]
with fewer nodes; note that, the graphF[] onn =2k + 1 nodes can encode a watermarking
integer w in the range [0;2¢ 1 1]; see, authors' work [23, 28].

Furthermore, in our model the code which is associated with the watermark is composed
both by new code and host code; this enable us to obtain high stealth watermarked programs
P . Moreover, since the watermark code has become an indispensable piece of the functionality
of program P , a malicious user would need to fully understand the operations & in order to
intervene changing possible execution ows. On the other hand, the extraction of our watermark
takes into account and uses the traces of all the functions that are assigned to the nodes of the
water-graph F[] which, in turn, means that if a subset of these functions is intercepted then
the watermark can not be extracted; unfortunately, this implies a poor part protection of our
watermarked programP .

Finally, the experimental results show the high functionality of all the Java programsP
watermarked under both the naive and stealthy cases, and also their low time complexity. The
experiments also show that the watermarking approaches supported by our model can help de-
velop e cient watermarked Java programs with respect to various and broadly used performance
and resilience watermarking criteria.

Closing, we note that in light of our dynamic watermarking model WaterRPG it would be
very interesting to compare it with other dynamic, or even static, already proposed software
watermarking models [31, 35, 86, 95, 106]; we leave it as a direction for future work.

92

Recently, a significant number of watermarking techniques have been proposed in the liter-
ature in order to create robust and imperceptible audio watermarks. Initial research on audio
watermarking dates back to the mid-nineties where Bender et al. [8] presented data hiding tech-
niques for audio signals; the first techniques were directly inspired from previous research on
image watermarking. A broad range of audio watermarking techniques goes from simple least
significant bit (LSB) scheme to the various spread spectrum methods and can be classified ac-
cording to the domain where the watermarking takes place in frequency, time, and compressed
domain [3, 43, 61, 108].

Attacks. An efficient watermarking technique should resist to any process specifically intended
to thwart the watermark’s purpose, i.e., to protect the intellectual property of the digital object.
Generally digital image and audio watermarking has certain requirements, the most important
being invisibility and robustness. Invisibility is the state of a watermark that cannot be seen,
while robustness means that the embedded watermark cannot be removed by an attack, that is,
an intentional or unintentional digital data change.

In general, attacks against embedded data (i.e., image and audio watermarks) can included
various combinations of several image processing techniques, or other techniques for overwriting
or removing the embedded information. Attacks can be classified into the following four different
types [110]:

[¢]

removal and interference attacks,

o

geometric attacks,

e}

cryptographic attacks, and

o

protocol attacks.

Lossy compression, quantization, collusion, denoising, remodulation, averaging, and noise storm
are some examples of removal and interference attacks. Geometric attacks do not actually remove
the watermark, but manipulate the watermarked object in such a way that the detector cannot
find the watermark data. This type of attack includes affine transformations such as rotation,
translation, and scaling. The aim of cryptographic attacks is to crack the security methods in
watermarking schemes and thus find a way to remove the embedded watermark or to embed
misleading watermarks. Protocol attacks add the attacker’s own watermark signal introducing
thus ambiguities on the true ownership of data.

Contribution. In this chapter, we present efficient and easily implemented techniques for wa-
termarking images and audio signals that we are interested in uploading in the web and making
them public online; this way web users are enabled to claim the ownership of their images and
audio signals.

We first present our primary work on image watermarking in the spatial domain and we next
expand our idea by moving from the spatial domain to the image’s frequency domain. What
is important for our idea is the fact that it suggests a way in which an integer number can
be represented with a two dimensional representation (or, for short, 2D-representation). Thus,
since images are two dimensional objects that representation can be efficiently marked on them
resulting the watermarked images. In a similar way, such a 2D-representation can be extracted
for a watermarked image and converted back to the integer w.

95

Having designed an efficient method for encoding integers as self-inverting permutations, we
propose an efficient algorithm for encoding a self-inverting permutation 7* into an image I by
first mapping the elements of 7* into an n* X n* matrix A* and then using the information stored
in A* to mark specific areas of image [in the frequency domain resulting the watermarked image
I,. We also propose an efficient algorithm for extracting the embedded self-inverting permutation
7* from the watermarked image I, by locating the positions of the marks in I,,; it enables us to
reconstruct the 2D-representation of the self-inverting permutation 7*.

It is worth noting that although digital watermarking has made considerable progress and
became a popular technique for copyright protection of multimedia information [15], our work
proposes something new. We first point out that our watermarking method incorporates such
properties which allow us to successfully extract the watermark w from the image I,, even if the
input image has been compressed with a lossy method. In addition, our embedding method can
transform a watermark from a numerical form into a two dimensional (2D) representation and,
since images are 2D structures, it can efficiently embed the 2D-representation of the watermark
by marking the high frequency bands of specific areas of an image. The key idea behind our
extracting method is that it does not actually extract the embedded information instead it locates
the marked areas reconstructing the watermark’s numerical value.

We have evaluated the embedding and extracting algorithms by testing them on various and
different in characteristics images that were initially in JPEG format and we had positive results
as the watermark was successfully extracted even if the image was converted back into JPEG
format with various compression ratios. What is more, the method is open to extensions as the
same method might be used with a different marking procedure such as the one we used in our
previous work. Note that, all the algorithms have been developed and tested in MATLAB [54].

Based on the idea behind our image watermarking technique, where the integer watermark
number w is represented as a two dimensional array, we present an audio signal watermark-
ing technique. Since audio is one dimensional signal, the 2D-representation can be efficiently
reconstructed in the 1D space and be used to mark an audio signal.

What is important of the proposed audio watermarking technique is the fact that it sug-
gests a way in which an integer number w can be represented as an one-dimensional array (or,
equivalently, 1D-representation). More precisely, our proposed algorithm embeds a self-inverting
permutation 7* over the set IV,, into an audio signal S by first mapping the elements of 7* into
an n X n matrix B* and then, based on the information stored in B*, marking specific areas of
audio S in the frequency domain resulting thus the watermarked audio S,,. An efficient algo-
rithm extracts the embedded self-inverting permutation #* from the watermarked audio S, by
locating the positions of the marks in Sy,; it enables us to reconstruct the 1D-representation of
7% and, then, obtain the watermark w.

Finally, we would like to point out that the primary purpose of our approach is not to fill a
gap of the existing audio watermarking methods by proposing a new embedding technique, but
to expand the idea used on our previous work and show that it can be efficiently applied for
audio watermarking depicting thus the high versatility of the whole concept.

Road Map. The chapter is organized as follows: In Section 6.2 we establish the notation and

related terminology, and we present background results. In Section 6.3 we describe our pri-
mary work on image watermarking in the spatial domain and give the Embed-SiP.to.Image-S

96

and Extract-SiP.from.Image-S algorithms. In Section 6.4 we present our codec algorithms,
Embed-SiP.to.Image-F and Extract-SiP.from.Image-F, for watermarking images in the fre-
quency domain. In Section 6.5 we expand our idea on image watermarking by applying it in
audio watermarking and present our audio watermarking algorithms, i.e., the embedding algo-
rithm Embed-SiP.to.Audio and the extracting algorithm Extract-SiP.from.Audio. Finally,
in Section 6.6 we conclude the chapter and discuss possible future extensions.

6.2 Background Results

In this section we present basic tools which are used by our image and audio watermarking
algorithms. Since images are two dimensional objects we present a transformation of a watermark
from a numerical form to a 2D form (i.e., 2D-representation) through the exploitation of self-
inverting permutation properties. The 2D-representation can be efficiently marked on images
resulting thus the watermarked images. Similarly, since audio signal is an one dimensional
object we present a transformation of a watermark from a numerical form to a 1D form (i.e.,
1D-representation).

In Chapter 2, we defined a permutation 7 over the set N,, as a sequence m = (71,72, ..., 7y)
whereas a self-inverting permutation (or, involution) as a permutation that is its own inverse,
l.e., Ty, = ¢. By definition, all the cycles of a self-inverting permutation are of length 1 or 2.

Moreover, in the same chapter, we proposed the encoding algorithm Encode_W.to.SiP for
encoding numbers as self-inverting permutations (or SiP, for short) along with the corresponding
decoding algorithm Decode_SiP.to.W; recall that, the algorithms of our codec system run in
O(n) time, where n is the length of the binary representation of the integer w [28].

6.2.1 2D Representation of SiP

Given a permutation m over the set N,, we first define a two-dimensional representation (2D-
representation) of the permutation m that is useful for studying properties which help us to
define, later, a more suitable representation of 7 for efficient use in our watermarking system.

In this representation, the elements of the permutation © = (w1, m2,...,m,) are mapped in
specific cells of an n x n matrix A as follows:

o number m — entry A(m; ' m)

or, equivalently,

e the cell at row ¢ and column 7; is labeled by the number m;, for each i =1,2,... n.

Figure 6.1(a) depicts the 2D-representation of the permutation 7 = (5,6,9,8,1,2,7,4,3) over
the set Ng; the permutation 7 is self-inverting.

By definition, there is one label in each row and in each column, so each cell in the matrix
A corresponds to a unique pair of labels; see, [107] for a long bibliography on permutation
representations and also in [23] for a DAG representation.

97

(a) (b)

Figure 6.1: (a) A 2D representation of the self-inverting permutation = = (5,6,9,8,1,2,7,4,3); (b) A
2DM representation of permutation 7.

Based on the previous 2D-representation of a permutation, we next propose a two-dimensional
marked representation (2DM-representation) of a permutation which is an efficient tool for wa-
termarking images.

In our 2DM-representation, a permutation 7 over the set IV, is represented by an n X n matrix
A* as follows:

e the cell at row ¢ and column 7; is marked by a specific symbol, for each ¢ =1,2,... n.

Figure 6.1(b) shows the 2DM-representation of the permutation 7. Note that, as in the 2D-
representation, there is also one symbol in each row and in each column of the matrix A*.

We next present an algorithm which extracts the permutation 7 from its 2D-representation
matrix. More precisely, let = be a permutation over N, and let A* be the 2DM-representation
matrix of 7 (see, Figure 6.1); given the matrix A*, we can easily extract 7 from A* in linear time

(in the size of matrix A*) by the following algorithm:

Algorithm Extract_m_from_2DM

1. For each row 4 of matrix A%, 1 <¢ < n, do:
find the marked cell and let j be its column;
set m; < 7;

2. Return the permutation «.
Remark 6.1. It is easy to see that the resulting permutation 7, after the execution of Step 1,
can be taken by reading the matrix A* from top row to bottom row and write down the positions

of its marked cells. Since the permutation 7 is a self-inverting permutation, its 2D matrix A has
the following property:

o A(i,j)=7 if m =7, and

o A(i,j) =0 otherwise, 1 <i,5 <n.

98

21 22 23 24 25 26 27 28 29

Figure 6.2: The 1DM representations of the self-inverting permutation 7 = (4,7,6,1,5, 3, 2).

Thus, the corresponding matrix A* is symmetric:

o A*(i,j) = A*(j,i) = “mark” if m; =7, and

o A*(i,7) = A*(j,1) = 0 otherwise, 1 <1i,5 <mn.

Based on this property, it is also easy to see that the resulting permutation 7 can be also taken
by reading the matrix A* from left column to right column and write down the positions of its
marked cells.

6.2.2 1D Representation of SiP

We next present an one-dimensional representation (1D-representation) of the permutation .,
over the set N,, which we will use as a mark to embed it into audio signal.

In our 1D-representation, the elements of the permutation 7 are mapped in specific cells of
an array B of size n? as follows:

number m; — entry B((x;' — L)n +m)
or, equivalently, the cell at the position (i — 1)n + m; is labeled by the number 7;, for each
1=1,2,...,n.

We next describe the 1DM-representation acquired in a similar manner as the 2DM-representation.

2

In our 1DM-representation, a permutation = over the set N, is represented by an n° array B*

as follows:

o the cell at the position (¢ — 1)n + m; is marked by a specific symbol, for each 1 = 1,2,...,n;

“7_ Figure 6.2

where, in our implementation, the used symbol is again the asterisk character
shows the 1DM-representation of the same permutation = = (4,7,6,1,5, 3,2).
Hereafter, we shall denote by 7* a self-inverting permutation and by n* the number of ele-

ments of 7*.

99

6.2.3 Color Images

A digital image is a numeric representation of a 2-dimensional image; it has a finite set of values,
called picture elements or pizels, that represent the brightness of a given color at any specific
point in the image [53].

A digital image contains a fixed number of rows and columns of pixels which are usually
stored in computer memory as a two-dimensional matrix I of numeric values; in our system the
numeric values are integers from 0 to 255. When we say that an image has a resolution of N x M
we mean that its two-dimensional matrix I contains N rows and M columns and the value of
each entry I(i,j), i.e., the value of each pixel, is an integer ko (grayscale image), or a triple of
integers (k1, ko, k3) (color image), 0 < ko, k1, k2, ks < 255.

B

(0,0,255)

@)
:

(255,0,0) (255, 255,0)

Figure 6.3: The range of colors represented on the Cartesian 3-dimensional system.

There are several models used for representing color. In our system, we use the RG'B model,;
it is an additive color model in which red, green, and blue light is added together in various ways
to reproduce a broad array of colors. The name of the model comes from the initials of the three
additive primary colors, Red, Green, and Blue [53, 97].

The range of colors can be represented on the Cartesian 3-dimensional system as a cube with
the following characteristics:

e on the z-axis (R-axis) we have the brightness of the red color,
e on the y-axis (G-axis) we have the brightness of the green color, and

e on the z-axis (B-axis) we have the brightness of the blue color.

Figure 6.3 shows the 3D topology of the colors. For example, the white color (255, 255, 255) is
located in the front upper right point of the color cube.

In our system, since a color is a triple of integers (x,y, z), a digital image I of resolution
N x M (i.e., it contains N rows and M columns) is stored in a three-dimensional matrix I'mg of
size N x M x 3 as follows:

e if the pixel I(i,7) of the image I has (x,y, z) color, then I'mg(i,j,1) = =, Img(i,7,2) =y,
and Img(i, j,3) = z.

For example, let (240, 29, 35) be the color of the upper left pixel of an image I, i.e., I(1,1) =
(240,29, 35). Then, in our system Img(1,1,1) =240, Img(1,1,2) =29, and Img(1,1,3) = 35.

100

6.2.4 The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is used to decompose an image into its sine and cosine
components. The output of the transformation represents the image in the frequency domain,
while the input image is the spatial domain equivalent. In the image’s fourier representation,
each point represents a particular frequency contained in the image’s spatial domain.

If f(x,y) is an image of size N x M we use the following formula for the Discrete Fourier

Transform:

1 M-
=S e) (6.1)
=0

MZ

F(u

=0

<

foru=0,1,.... N—landv=0,1,... M —1.

In a similar manner, if we have the transform F'(u,v) i.e the image’s fourier representation we
can use the Inverse Fourier Transform to get back the image f(z,y) using the following formula:

N—-1M-1

1 71“’13
f(z, =N Z Z F(u,v)e?m (5 +27) (6.2)

u=0 v=0

forx=0,1,..., N—landy=0,1,...,M — 1.

Typically, in our method, we are interested in the magnitudes of DF'T coefficients. The
magnitude |F(u,v)| of the Fourier transform at a point is how much frequency content there is
and is calculated by Equation (6.1) [53].

6.3 Image Watermarking in the Spatial Domain

Having proposed an efficient method for encoding integers as self-inverting permutations using
the algorithm Embed W.to.SiP (see, Section 2), and the 2DM-representation of self-inverting
permutations (see, Section 6.2), we next describe the two main algorithms of our image water-
marking system; the encoding algorithm Embed_SiP.to.Image-S which encodes a self-inverting
permutation 7*, corresponding to watermark w, into an image I resulting the watermarked im-
age I, and the decoding algorithm Extract_SiP.from.Image-S which extracts the permutation

©* from the image I,,.

6.3.1 Embed Watermark into Image - S

We next describe the algorithm Embed_SiP.to.Image-S of our codec system which embeds a
self-inverting permutation 7* into an image I [25]; recall that, in our codec system we encode
the watermark w as a self-inverting permutation ©* over the set N,«, where n* =2n 4+ 1 and n
is the length of the binary representation of the integer w [28]; see, Subsection 2.4.1.

101

The algorithm takes as input a SIP 7* and an image I, in which the user wants to embed

the watermark w = 7*, and produces the watermarked image I,; it works as follows:

Algorithm Embed_SiP.to.Image-S

1.

The algorithm first computes the 2DM-representation of the permutation 7*, that is, it
computes the n* x n* array A (see, Subsection 6.2.1); the entry (i,7)) of the array A
contains the symbol “*”, 1 <4 <n*;

Next, the algorithm computes the size N x M of the input image I and do the following: if
N is an even number it removes the pixels from the bottom row of I and reduces N by 1,
while if M is an even number it removes the pixels from the right column of I and reduces
M by 1. The resulting image has size N* x M*, where N* and M* are both odd numbers;

Let n* be the size of the SiP #* and let N* < M*. Now the algorithm takes the input
image I and places on it an imaginary grid G, covering almost all the image I, having

n* x n* grid-cells C;;(I)

each Cy;(I) of size
[N*/n*] < [N*/n]

where, 1 <14,7 <n*.

It places the imaginary grid G on I as follows: it first locates the central pixel P2, . of the
image I, which is at position (|N*/2] + 1, |M*/2| + 1), then locates the central pixel p);
of the central grid-cell C;;(I), where i = |[n*/2] + 1, and places the grid G on image I such
that both PJ

) and pY have the same position in 7;

Then it scans the image and goes to each grid-cell Cj;(I) (there are always n* xn* grid-cells
in any image) and locates the central pixel p% of the grid-cell C;;(I) and also the four pixels
p%j, p?j, pf’j, and pfj around it, 1 <14, 5 < n*; hereafter, we shall call these four pixels cross
pixels.

Then, it computes the difference between the brightness of the central pixel p?j and the
average brightness of the twelve pixels around it, that is, the pixels pfjl-,

(¢ =1,2,3,4), and stores this value in the variable dif(p?j) (see, Figure 6.4).

(2 3
Y27 and i

Finally, it computes the maximum absolute value of all n* x n* differences dif(pgj), 1<
i,7 < n*, and stores it in the variable Maxdif(7);

The algorithm goes again to each central pixel p% of each grid-cell C;; and if the corre-
sponding entry A(i,j) contains the symbol “*” then it increases

e the brightness k% of the central pixel p%, and

e the brightness kfilj, k:izj, k:?j, and k’?j of its cross pixels.

0

Actually, it first increases the central pixel pgj by the value e;; so that it surpasses the

image’s maximum difference Maxdif(I) by a constant ¢; that is,

102

. k% + e?j = Maxdif(T) + ¢

and, then, it sets the brightness of the four cross pixels pzlj, p%j, p?j, and pfj equal to k%

In our system we use ¢ = 5, and thus the brightness kioj of the central pixel of each grid-cell
0

Cjj is increased by € where,

ed; = Maxdif(I) — kY +5 (63)

where, 1 <14,7 <n*.

Let I, be the resulting image after increasing the brightness of the n* central and the
corresponding cross pixels, with respect to w, of the image I. Hereafter, we call the n*

ks
)

central pixels of I as 2DM-pizels; recall that, pgj is a 2DM-pixel if A(i,m;) = or,

equivalently, the cell (i, 7;) of the matrix A is marked;

6. The algorithm returns the watermarked image I,,.

"""" k2| R g
,,,,,,, S I)
ki | g | kG| kG| R
ki ks ki
k| kR

Cy; grid-cell

Figure 6.4: The brightness kf; of the central and cross pixels p{; of the grid-cell Cj;(I), 0 <€ < 4, and
the brightness k{f" of the cycle-cross pixels p{f*, 1 <£ <4 and m = 1,2,3.

ij
Having described our encoding algorithm which embeds a permutation 7 into an image I, let us
now show the efficiency of our algorithm by computing its time and space complexity.

Time and Space. We shall compute the complexity of each step of the algorithm; suppose that
the input image I has N x M size (i.e., pixels).

It is easy to see that Step 1 requires n* x n* (asymptotic) time and space, since the length
of the permutation 7 and the size of the array A are n* and n* x n*, respectively.

In Step 2 the algorithm computes the values of the two dimensions of the image I, and thus
this computations takes N + M time.

In Step 3 the algorithm places on I the imaginary grid G having n* x n* grid-cells Cj;(I) each
of size |[N*/n*| x| N*/n*|, where 1 < i,7 < n*, and thus it covers (| N*/n*| x| N*/n*])x (n* xn*)
pixels of the image I. The location of the n* X n* central pixels pgj can be done in n* x n* time,
where 1 < 4,5 < n* and n* < N*. Thus, the step takes (| N*/n*|n*)? time.

In Step 4 it computes the difference between the brightness of the central pixel pgj and the
average brightness of the twelve cycle-cross pixels pf}-n around it, £ = 1,2,3,4 and m = 1,2, 3.
This difference, denoted by dif(p%), is computed as follows:

103

(a)

Figure 6.5: (a) The original image I; (b) The watermarked image I,,.

4 3
ZEZI Zm:l kzgm
12

(e = | -
where,

{m Im Im
W= Ty (6.5)

Recall that, the values xf]m, yf]m, and zf]m compose the brightness kfjm of the pixel pf}" in the
RGB model (see, Subsection 6.2.3). Thus, the n* x n* differences dif(p?j) can be computed in
n* x n* time and require n* x n* space (i.e., an array of n* x n* size).

Finally, in this step the algorithm computes the maximum absolute value Maxdif(I) of all

n* x n* differences dif(p?j), that is,

Maxdif(!) = maz{dif(p};)|1 <i,j < n*} (6.6)

which obviously takes also n* x n* time.

The only operation performed in Step 5 is the increment of the brightness kgj of each central
pixel and the brightness kilj, k?j, k:?j, and k:fj of its four cross pixels by the value e?j (see,
Equation 6.8); it obviously takes n* x n* time since there are n* x n* such central pixels.

Based on the above step-by-step analysis of our encoding algorithm Embed_SiP.to.Image-S
we conclude that it runs (asymptotically) in order N X n* time and requires n* x n* space, where

N is the smallest dimension of the input image I and n* is the size of the SiP.

Remark 6.2. The values xfj, yfj, and zfj which compose the brightness kfj of the pixel pfj
are stored in the array Img at the entries (/,5',1), (¢/,5',2), and (¢, 5',3), respectively (see,
Subsection 6.2.3). Note that, (i’,j') is the position of pixel pfj in image I, while (i,7) is the

position of pixel pfj in the n* x n* grid.

104

6.3.2 Extract Watermark from Image - S

Next we describe our algorithm which is responsible for extracting the watermark w = 7* form
image I,,. In particular, the algorithm, which we call Extract_SiP.from.Image-S, takes as input
a watermarked image I,, and returns the SiP 7* which corresponds to integer watermark w; the
steps of the algorithm are the following:

Algorithm Extract_SiP.from.Image-S

1. The algorithm places again the same imaginary n* x n* grid on image I, and locates the
central pixel p?j of each grid-cell Cj;(I), 1 < 4,5 < n*; there are n* x n* central pixels
in total. Then, it finds the n* central pixels p,pJ,...,pY., among the n* x n*, with the
maximum brightness using a known sorting algorithm [40];

2. In this step, the algorithm takes the n* grid-cell C',Co,...,Cph~ of the image I, which
correspond to n* central pixels pd,p3,...,p0., and compute an n* X n* matrix A* as
follows:

e Initially, set A*(i,5) < 0, 1 <i,5 < n*;
e For each grid-cell Cy,, 1 < m < n*, do:

if (4,7) is the position of the grid-cell Cy, in the grid G
then set A*(i,7) < “x7;

It is easy to see that, the n* x n* matrix A* is exactly the 2DM-representation of the self-
inverting permutation 7* embedded in image I,, by the algorithm Embed_SiP.to.Image-S.

Then, the permutation 7* can be extracted from the matrix A* using the algorithm FEx-
tract_m_from 2DM; see, Subsection 6.2.1;

3. Finally, the algorithm returns the self-inverting permutation 7*.

Let us next compute the time and space efficiency of the proposed decoding algorithm
Extract_SiP.from.Image-S by computing the complexity of each step separately.

Time and Space. Again, we suppose, as we did with the encoding algorithm Embed_SiP.to.Image-S,
that the input image I,, has N x M size (i.e., it consists of N x M pixels) and N < M.

In Step 1 the algorithm places on I, an imaginary n* x n* grid, as the embedding algorithm
do on image I, and thus the values of the two dimensions of the image I, must be known; this
computations takes N + M time. Then, the location of the n* x n* central pixels p?j can be done
in n* x n* time, 1 < 4,5 < n*, while the finding of the n* central pixels, among the n* x n*,
with the maximum brightness can be done in (n* x n*) x log(n* x n*) time; note that, it is well
known that fastest sorting algorithm on an input of size n takes nlogn time [40].

In Step 2 the algorithm takes the n* grid-cell C,Co, ..., Cy= of the image I, which correspond
to the n* central pixels p{,pJ,...,p2., and compute an n* x n* matrix A*. It is easy to see that
this computation can be done in n* x n* time. It is also easy to see that the permutation 7* can
be extracted from A*, using the algorithm Extract_m_from 2DM, within the same time. Thus,
Step 2 requires n* X n* time. Obviously, Step 3 takes constant time.

105

Based on the above complexity analysis we conclude that the proposed decoding algorithm
Extract_SiP.from.Image-S extracts the watermark SiP «* from the image I, in N +M + (n* x
n*) x log(n* x n*) time; it requires n* x n* space.

6.3.3 Performance

Our image watermarking system mainly consists of four algorithms, each of which is responsible
for a particular codec operation:

e Encode W.to0.SiP: algorithm for encoding an integer w into a self-inverting permutation

I

e Decode _SiP.to.W: algorithm for decoding w from 7*;

e Embed_SiP.to.Image-S: algorithm for embedding a self-inverting permutation #* into an
image I;

e Extract_SiP.from.Image-S: algorithm for extracting 7* form the watermarked image I,;

The two algorithms that are considered the basic ones for our system are those responsible for
embedding a SiP into an image and extracting the SiP from it.

We next discuss some issues concerning the performance of our image watermarking system.
In particular, we mainly focus on the embedding algorithm Embed_SiP.to.Image-S and the
efficiency of watermarking image I, produced by this algorithmn, and also on important properties
of the n* x n* matrix A* which stores the 2DM-representation of a SiP. Finally we show the time
and space performance of our system by computing the complexity of their algorithms.

It is worth noting that our system incorporates such properties which allow us to success-
fully extract the watermark w from the image I, even if the input image I, of algorithm
Extract _SiP.from.Image-S has been compressed with a lossy method and/or rotated.

We have evaluated the embedding and extracting algorithms by testing them on various and
different in characteristics images that were initially in JPEG format and we had positive results
as the watermark was successfully extracted at every case even if the image was converted back
into JPEG format. What is more, the method is open to extensions as the same method might
be used with a different marking procedure part of the Embed_SiP.to.Image-S algorithm.

All the system’s algorithms have been initially developed and tested in MATLAB [54] and
then redeveloped and also tested in JAVA.

Compression. The experimental results show that the watermark w is “well hidden” in the
image I,. It is because we mark the image by changing the difference between the brightness
of the 2DM-pixels p% of the n* x n* imaginary grid and its 12 neighborhood pixels around it,
that is, the pixels pf}, psz, and pf]?-’, for £ = 1,2,3,4 (see, Figure 6.4 and also Step 2 of the
embedding algorithm Encode_SiP.to.Image-S); recall that, we also set the brightness of the
four cross pixels of each 2DM-pixel p%, that is, the pixels pzlj, p%j, p?j, and pfj, to be equal to the
brightness of the 2DM-pixel p?j.

Note that, we change the brightness of the 2DM-pixels by increasing them so that they surpass
the image’s maximum difference Maxdif(I) by a constant ¢, where in our implementation ¢ = 5.

We add five because if we compress the image the values of the pixels may slightly change, and

106

we want our watermark to be robust. We also believe that this technique despite being simple,
it is efficient because the brightness of each of the n* marked central pixels does not have a great
difference from the brightness of the 12 neighborhood pixels and thus the modified central pixel,
along with the cross pixels, does not change something significantly in the image.

Rotation. The watermarked images produced by our embedding method have a property worth
to be referenced. And this is certain characteristics noticed at the 2DM-representation of the
image’s watermarks which in our system are self-inverting permutations. Sometimes an image
might show an indeterminate depiction, such as a night sky or an aerial view. These types of
images might be rotated changing the coordinates of the watermark’s marks making invalid the
watermark that we are about to extract. Also it is about an indeterminate depiction which does
not allow someone to tell which is the right angle of the image.

Thanks to our embedding method’s properties this problem can be overcome. It has to do
with the coordinates of the marks of a 2DM-representation of a self-inverting permutation found
on image I,,. Those coordinates allow us to turn the image into the initial angle and then extract
the watermark successfully.

The 2DM-representation of a self-inverting permutation (see, Section 6.2) has the following

properties:

(i) The main diagonal of the n* x n* symmetric matrix A* have always one and only one
marked cell, and

(i) this marked cell are always in the entries (i,i) of A*, where i = [%-] +1,[%°] +2,...,n"

If the main diagonal of matrix A* has no marked cell then we rotate the image by 90 degrees.
Additionally, if the marked cell of the main diagonal is in entry (4,4) with i < (%L then we
turn the image by 180 degrees and thus we end up at the initial image from which we are able
to extract the right watermark.

Time and Space Performance. As far as the time and space performance of our codec system
is concerned, we should mention that it is asymptotically linear in the size (i.e., number N x M
of pixels) of the input images.

More precisely, the embedding algorithm takes (N X n*) + (n* x n*) time which is less than
the size N x M of the input image I. Recall that, in our implementation: (i) N < M, and (ii)
the length of the watermark is n* and thus we always have n* x n* grid-cells.

The extracting algorithm is also very fast since it also operates mainly on the n* x n* grid-
cells of the input image I,. The most time consuming step of the algorithm is that of sorting
the n* X n* cental pixels of the image in order to find the n* pixels with the max brightness; it
takes n* x n* x log(n* x n*) time.

Finally, it is fair for the time performance of our system to take into consideration the time
needed for converting the image I that the system takes as input from the initial format to raw
raster format; note that, the system usually uses compressed images as input. It is obvious that
the time needed for converting the image I into a raw raster format depends on the type of the
image selected. The most common types of images would be the JPEG as digital cameras store
images of this type and also nearly every image on the WWW (world wide web) is in JPEG
format. The compression to a JPEG requires the usage of the DCT (discrete cosine transform);

107

the DCT is similar to a Fourier transform and it is of order n?, but it is also possible to do
the same thing by doing something similar to the FF'T (fast fourier transform) which is of order
nlogn. Note that the same techniques applies for the JIF images which are also popular in the
web [2, 41].

Summarizing, the total time performance of our codec system, neglecting the conversion of
the input image I into raw raster format, is N x n* for embedding the watermark w into I and
N+ M + (n* x n*) x log(n* x n*) for extracting w from the watermarked image I,,. Moreover,
the extra space needed by our codec system is linear in the size of the input image, i.e., it uses
only some extra auxiliary variables and an auxiliary matrix for the 2DM-representation of the

self-inverting permutation.

6.4 Image Watermarking in the Frequency Domain

In this work we present an efficient and easily implemented technique for watermarking images
that we are interested in uploading in the web and making them public online; this way web
users are enabled to claim the ownership of their images.

What is important for our idea is the fact that it suggests a way in which an integer number
can be represented with a two dimensional representation (or, for short, 2D-representation).
Thus, since images are two dimensional objects that representation can be efficiently marked
on them resulting the watermarked images. In a similar way, such a 2D-representation can be
extracted for a watermarked image and converted back to the integer w.

Having designed an efficient method for encoding integers as self-inverting permutations, we
propose an efficient algorithm for encoding a self-inverting permutation 7* into an image I by
first mapping the elements of 7* into an n* X n* matrix A* and then using the information
stored in matrix A* to mark specific areas of image I in the frequency domain resulting the
watermarked image I,,. We also propose an efficient algorithm for extracting the embedded self-
inverting permutation 7* from the watermarked image I,, by locating the positions of the marks
in image I,,; it enables us to recontract the 2D-representation of the self-inverting permutation
.

It is worth noting that although digital watermarking has made considerable progress and
became a popular technique for copyright protection of multimedia information [15], our work
proposes something new. We first point out that our watermarking method incorporates such
properties which allow us to successfully extract the watermark w from the image [, even if the
input image has been compressed with a lossy method, scaled and/or rotated. In addition, our
embedding method can transform a watermark from a numerical form into a two dimensional
(2D) representation and, since images are 2D structures, it can efficiently embed the 2D repre-
sentation of the watermark by marking the high frequency bands of specific areas of an image.
The key idea behind our extracting method is that it does not actually extract the embedded
information instead it locates the marked areas reconstructing the watermark’s numerical value.

We have evaluated the embedding and extracting algorithms by testing them on various and
different in characteristics images that were initially in JPEG format and we had positive results
as the watermark was successfully extracted even if the image was converted back into JPEG
format with various JPEG compression ratios. We had also positive results on Gaussian noise

108

DFT
— obtained for each

color of the RGB
model

Input image: / \

Watermark: 7* = (4,7,6,1,5,3,2)

MAGNITUDE PHASE

IFFT

Watermarked image: 1,

Figure 6.6: The embedding process.

addition and geometric transformation attacks. All the algorithms have been developed and
tested in MATLAB environment [54].
We next describe codec algorithms that efficiently encode and decode a watermark into the

image’s frequency domain [53, 75, 109].

6.4.1 Embed Watermark into Image - F

We next describe the embedding algorithm of our proposed technique which encodes a self-
inverting permutation 7* into a digital image I [16, 18, 22]. Recall that, the permutation 7* is
obtained over the set, Ny«, where n* = 2n+ 1 and n is the length of the binary representation of
an integer w which actually is the image’s watermark [28].

The watermark w, or equivalently the self-inverting permutation 7, is inserted in the fre-
quency domain of specific areas of the image I. More precisely, we mark the DF'T’s magnitude
of an image’s area using two ellipsoidal annuli, denoted hereafter as “Red” and “Blue” (see,
Figure 6.6). The ellipsoidal annuli are specified by the following parameters:

o P,, the width of the “Red” ellipsoidal annulus,

o Py, the width of the “Blue” ellipsoidal annulus,

o Rj and Rg, the radiuses of the “Red” ellipsoidal annulus on y-axis and z-axis, respectively.
The algorithm takes as input a SiP 7* and an image I, and returns the watermarked image I,,;

it consists of the following steps.

109

Algorithm Embed_SiP.to.Image-F

1.

Compute first the 2DM-representation of the permutation 7, i.e., construct an array A*
of size n* x n* such that the entry A*(¢,n) contains the symbol “*” 1 <7 < n¥,

Next, compute the size of the input image I, say, N x M, and cover the image I with an

imaginary grid C' with n* x n* grid-cells Cj; of size L%J X LR—A{J, 1<4,5 <n™;

For each grid-cell Cjj, compute the Discrete Fourier Transform (DFT) using the Fast
Fourier Transform (FFT) algorithm, resulting in a n* x n* grid of DFT cells Fj;, 1 <1i,j <

n*;

. For each DFT cell F};, compute its magnitude M;; and phase P;; matrices which are both

of size [25| x |2, 1<4,j <n%

Then, the algorithm takes each of the n* x n* magnitude matrices M;;, 1 <4,5 < n*, and
places two imaginary ellipsoidal annuli, denoted as “Red” and “Blue”, in the matrix M;;
(see, Figure 6.6). In our implementation,

o the “Red” is the outer ellipsoidal annulus while the “Blue” is the inner one. Both
are concentric at the center of the M;; magnitude matrix and have widths P, and P,

respectively;

o the radiuses of the “Red” ellipsoidal annulus are R; (y-axis) and Ra (z-axis), while
the “Blue” ellipsoidal annulus radiuses are computed in accordance to the “Red”
ellipsoidal annulus and have values (R; — P,) and (R2 — P,), respectively;

o the inner perimeter of the “Red” ellipsoidal annulus coincides to the outer perimeter
of the “Blue” ellipsoidal annulus;

o the values of the widths of the two ellipsoidal annuli are P, = 2 and P, = 2, while the

values of their radiuses are R; = L%L*J and Ry = LQZI*J.

The areas covered by the “Red” and the “Blue” ellipsoidal annuli determine two groups of
magnitude values on M;; (see, Figure 6.6);

For each magnitude matrix M;;, 1 < 4,5 < n*, compute the average of the values that
are in the areas covered by the “Red” and the “Blue” ellipsoidal annuli; let AvgR;; be the
average of the magnitude values belonging to the “Red” ellipsoidal annulus and AvgB;; be
the one of the “Blue” ellipsoidal annulus;

For each magnitude matrix M;;, 1 < 1,5 < n*, compute first the variable D;; as follows:

o Dij = ’AUgBij - A’l}gRij|, if A’UgBZ'j < A’UgRij

o D;; =0, otherwise.

Then, for each row ¢ of the matrix M;;, 1 <4,j < n*, compute the maximum value of the
variables Dj1, Dja, ..., Dip+ in row 4; let MaxD; be the max value;

110

8. For each cell (7,7) of the 2DM-representation matrix A* of the permutation 7* such that
Aj =t (i.e., marked cell), mark the corresponding grid-cell Cj;, 1 < 4,5 < n*; the
marking is performed by increasing all the values in magnitude matrix M;; covered by the
“Red” ellipsoidal annulus by the value

AvgB;j — AvgR;j + MaxD; + c, (6.7)

where ¢ = cop;. The additive value of ¢,y is calculated by the function f (see, Subsec-
tion 6.4.3) which returns the minimum possible value of ¢ that enables successful extracting;

9. Reconstruct the DFT of the corresponding modified magnitude matrices M;j, using the
trigonometric form formula [53], and then perform the Inverse Fast Fourier Transform
(IFFT) for each marked cell Cj;, 1 < 4,5 < n*, in order to obtain the image I;

10. Return the watermarked image [,,.

In Figure 6.6 we demonstrate the main operations performed by our embedding algorithm. In
particular, we show the marking process of the grid-cell C55 of the Lena image; in this example,
we embed in the Lena image the watermark number w which corresponds to SiP (4,7,6,1,5,3,2).

6.4.2 Extract Watermark from Image - F

In this section we describe the decoding algorithm of our proposed technique. The algorithm
extracts a self-inverting permutation 7* from a watermarked digital image I,,, which can be later
represented as an integer w.

The self-inverting permutation 7* is obtained from the frequency domain of specific areas of
the watermarked image [,,. More precisely, using the same two “Red” and “Blue” ellipsoidal
annuli, we detect certain areas of the watermarked image I,, that are marked by our embedding
algorithm and these marked areas enable us to obtain the 2D-representation of the permutation
7w*. The extracting algorithm works as follows:

Algorithm Extract_SiP.from.Image-F

1. Take the input watermarked image I,, and compute its N x M size. Then, cover I, with
the same imaginary grid C, as described in the embedding method, having n* xn* grid-cells
Cjj of size L%J X Ln—]\ﬂ,

2. Then, again for each grid-cell Cj;, 1 <i,j < n*, using the Fast Fourier Transform (FFT)
get the Discrete Fourier Transform (DFT) resulting a n* x n* grid of DFT cells;

3. For each DFT cell, compute its magnitude matrix M;; and phase matrix P;; which are
both of size L%J X LMJ;

n*

4. For each magnitude matrix M;;, place the same imaginary “Red” and “Blue” ellipsoidal
annuli, as described in the embedding method, and compute as before the average values

111

that coincide in the area covered by the “Red” and the “Blue” ellipsoidal annuli; let AvgR;;
and AvgB;; be these values;

5. For each row 7 of Cj;, 1 < i < n*, search for the jy, column where AvgB;; — AvgR;; is

minimized and set 7} = j, 1 <7 <n*;

6. Return the self-inverting permutation 7*.

Having presented the embedding and extracting algorithms, let us next comment on the function
f which returns the additive value ¢ = ¢, (see, Step 8 of the embedding algorithm).

6.4.3 Function f

In our watermarking model, the embedding algorithm amplifies the marks in the “Red” ellip-
soidal annulus by adding the output of the function f. What exactly f does is returning the
optimal value that allows the extracting algorithm under the current requirements, such as JPEG
compression, noise addition, to still be able to extract the watermark from the image.

The function f takes as an input the characteristics of the image and the parameters R,
Rs, Py, and P, of our proposed watermark model (see, Step 5 of embedding algorithm and
Figure 6.6), and returns the minimum possible ¢,y that added as ¢ to the values of the “Red”
ellipsoidal annulus enables extracting (see, Step 8 of the embedding algorithm). More precisely,
the function f initially takes the interval [0, ¢maz], Where ¢pqq is a relatively great value such
that if ¢pez is taken as ¢ for marking the “Red” ellipsoidal annulus it allows extracting, and
computes the cope in [0, ¢z

Note that, cnee allows extracting but because of being great damages the quality of the image
(see, Figure 6.7). We mentioned relatively great because it depends on the characteristics of each
image. For a specific image it is useless to use a ¢4, greater than a specific value, we only need
a value that definitely enables the extracting algorithm to successfully extract the watermark.

We next describe the computation of the value ¢,y returned by f; note that, the parameters
Py and P, of our implementation are fixed with the values 2 and 2, respectively. The main steps
of this computation are the following:

(1) Check if the extracting algorithm for ¢ = 0 validly obtains the watermark 7* = w from the
image I,,; if yes, then the function f returns c,p; = 0;

(ii) If not, that means, ¢ = 0 doesn’t allow extracting; then, the function f uses binary search
on [0, ¢maz] and computes the interval [c1, c2] such that:

o ¢ = cj doesn’t allow extracting,
o ¢ = cg do allow extracting, and

o |1 — o] < 0.2
(iii) The function f returns cqp = ca.

As mentioned before, the function f returns the optimal value c,p;. Recall that, optimal means
that it is the smallest possible value which enables extracting #* = w from the image I,. It is
important to be the smallest one as that minimizes the additive information to the image and,
thus, assures minimum drop to the image quality.

112

6.4.4 Experimental Evaluation

In this section we present the experimental results of the proposed watermarking codec algorithms
which we have implemented using the general-purpose mathematical software package Matlab
(version 7.7.0) [54]. We tested our codec algorithms on various 24-bit digital color images of
various sizes (from 200 x 130 up to 4600 x 3700) and quality characteristics. Many of the images
in our image repository where taken from a web image gallery [99] and enriched by some other
images different in characteristics.

In this work we used JPEG images due to their great importance on the web, since they are
small in size, while storing full color information (24 bit/pixel), and can be easily and efficiently
transmitted. Moreover, robustness to lossy compression is an important issue when dealing with
image authentication. It should be observed that the design goal of lossy compression systems is
opposed to that of watermark embedding systems. The Human Visual System (HVS) attempts
to identify and discard perceptually insignificant information of the image, whereas the goal of
the watermarking system is to embed the watermark information without altering the visual
perception of the image [132].

In order to evaluate the quality of the watermarked image obtained from our watermarking
method we used two objective image quality assessment metrics, namely the Peak Signal to Noise
Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). Our aim was to prove that
the watermarked image is closely related to the original (image fidelity [43]), because watermark-
ing should not introduce visible distortions in the original image as that would reduce images’
commercial value.

The PSNR metric is the ratio between the reference signal and the distortion signal, i.e.,
watermark, in an image given in decibels (dB). It is well known that, PSNR is most commonly
used as a measure of quality of reconstruction of lossy compression codecs (e.g., for image com-
pression). The higher the PSNR value the closer the distorted image is to the original or the
better the watermark conceals. It is a popular metric due to its simplicity, although it is well
known that this distortion metric is not absolutely correlated with human vision. The SSIM
image quality metric, developed by [122], is considered to be correlated with the quality percep-
tion of the HVS [62]. The highest value of SSIM is 1, and it is achieved when the original I and
watermarked image [, are identical.

6.4.5 Performance

Initially, we had to choose the appropriate values for the parameters of the quality function f. In
our implementation we set both of the parameters P, and P, equal to 2 (see, Step 5 of Algorithm
Extract_SiP.from.Image-F). Recall that, the value 2 is a relatively small value which allows
us to modify a satisfactory number of pixels in order to embed the watermark and successfully
extract it, without affecting images’ quality. Note that, for great in size images, a smaller width
reduces the strength of the watermark. There isn’t a distance between the two ellipsoidal annuli
as that enables the algorithin to apply a small additive information to the values of the “Red”
annulus. The two ellipsoidal annuli are inscribed to the rectangle magnitude matrix, as we want
to mark images’ cells on the high frequency bands.

We mark the high frequencies by increasing their values using mainly the additive parameter
¢ = copt because alterations in the high frequencies are less detectable by human eye [70]. What

113

original C = Copt C = Chmaz

Figure 6.7: The original image of Lena and its two watermarked images with ¢ = ¢ja, and ¢ = ¢op; the
watermark corresponds to SiP (6,3,2,4,5,1).

is more, in high frequencies most images contain less information.

The quality function f returns the factor ¢, which has the minimum value cop; that allows
the extracting algorithm to successfully extract the watermark. In fact, this value cqp (see,
Formula 6.8) is the main additive information embedded into the image. Depending on the
images and the amount of compression, we need to increase the watermark strength by increasing
the factor ¢. The value of ¢ increases as the quality factor of JPEG compression decreases. It
is obvious that the embedding algorithm is image dependent. It is worth noting that, the cypy
values are small for images of relatively small size while these values increase as we move to
images of greater size.

To demonstrate the differences on watermarked image quality, with respect to the values of
the additive factor ¢, we watermarked the original image lena.jpg and we embedded a watermark
with ¢ = ¢nar and ¢ = copr, Where ¢z >> copt (see, Figure 6.7); in the watermarked image in
the middle we used ¢ = ¢jnqy for illustrative purposes.

6.4.6 Attack Issues

In this section we present the experimental results of our watermarking method under several

attacks. In fact, we test the robustness of our method after applying the following attacks:

(A) JPEG Compression
(B) Gaussian Noise

(C) Geometric Transformations
Recall that, for the evaluation process we use the PSNR and SSIM metrics.

(A) JPEG Compression

The quality factor (or, for short, Q-factor) is a number that determines the degree of loss in the
compression process when saving an image. In general, JPEG recommends a quality factor of

114

Name / Size Original Watermarked Name / Size Original Watermarked

Baboon.jpg Ibook.jpg
200 x 200 200 x 200
Copt= 2.7 PSNR =41.5 SSIM =0.977 Copt= 2.5 PSNR =42.2 SSIM = 0.963
Trattoria.jpg City.jpg
500 x 500 500 x 500
Copt=6.2 PSNR = 46.3 SSIM = 0.984 Copt= 3.4 PSNR =515 SSIM = 0.993
Aquarium.jpg Statue.jpg
1024 x 1024 1024 x 1024
Copt=5.8 PSNR =56.2 SSIM = 0.997 Copt=11.9 PSNR =50.3 SSIM = 0.977

Figure 6.8: Some original images and their corresponding watermarked ones; for each image, its size
and its cope, and PSNR and SSIM values are also shown, for () = 55.

PSNR SSIM

Filename Q=8 | Q=75 | Q=65 | Q=55 | Q=8 | Q=75 | Q=65 | Q=55
Lena.jpg 54.04 | 50.10 | 46.82 [44.86 | 0997 | 0.993 [0.98 | 0.981
Baboon.jpg 49.19 | 4617 | 4248 | 4153 | 0995 | 0.989 | 0.980 | 0977
Trattoria.jpg 67.79 | 60.59 | 53.50 | 46.36 | 0.999 | 0.999 | 0996 | 0.984
Aquariumjpg | 6519 | 61.20 | 58.26 | 56.18 | 0.999 | 0999 | 0998 | 0.997
Thook.jpg 5147 | 4778 | 4476 | 4221 | 0994 | 0987 | 0.976 | 0.963
City.jpg 57.20 | 52.86 | 48.63 | 5154 | 0998 | 0.995 | 0.987 | 0.993
Statue.jpg 63.58 | 5840 | 5490 | 50.30 | 0.998 | 0.995 | 0.990 | 0977

Table 6.1: The PSNR and SSIM values of the original and watermarked images, for compression of
qualities Q = 85, Q = 75, Q = 65, and) = 55.

75-95 for visually indistinguishable quality difference, and a quality factor of 50-75 for merely
acceptable quality. We compressed the images with Matlab using imwrite with different JPEG
quality factors; we present results for () = 85, Q = 75, Q = 65, and) = 55.

115

original o =0.01 0% =0.0001

Figure 6.9: The original image of Lena and its watermarked images with 02 = 0.01, ¢ = 0.001 and
o? = 0.0001.

Our watermarked images have excellent PSNR and SSIM values. In Figure 6.8 we present six
images of different sizes, along with their corresponding PSNR and SSIM values. Typical values
for the PSNR in lossy image compression are between 40 and 70 dB, where higher is better. In
our experiments, the PSNR values of 90% of the watermarked images were greater than 40 dB.
The SSIM values are almost equal to 1, which means that the watermarked image is quite similar
to the original one, which explains the method’s high fidelity.

In Table 6.1 we demonstrate the PSNR and SSIM values of some images that are used in
this work. We observe that these values are decreasing on smaller quality factors. Also, as the
additive value ¢ = ¢,y increases for each quality factor, the quality decreases. Moreover, the
additive value ¢ that embeds robust marks for qualities (= 85,) = 75 and) = 65, does not
result in a significant image distortion as the tables suggest.

(B) Gaussian Noise

We test the robustness of our watermarking model by adding Gaussian noise in the images with
mean = 0 and different variances o2, that is, we use o2 = 0.01, ¢2 = 0.001 and ¢ = 0.0001.
Figure 6.9 illustrates the original image of Lena and the watermarked images with Gaussian
noise of these three variance values. We have to mention that the watermark can be extracted

Filename 02 =0.01 o? = 0.001 o? = 0.0001
Lena.jpg 24.94 34.75 44.62
Baboon.jpg 24.89 34.79 44.65
Trattoria.jpg 25.04 34.83 44.73
Aquarium.jpg 25.97 35.27 44.81
Ibook.jpg 25.01 34.79 44.62
City.jpg 24.89 34.76 44.70
Statue.jpg 25.37 35.12 44.92

Table 6.2: The PSNR values of the original and watermarked images, for Gaussian noise with variance
values 02 = 0.01, 02 = 0.001, and o2 = 0.0001.

116

1 2 3 4 5 6 7 8 8 12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
T T T e S S SN S S S B S
| T T S R O S S S R SR A

wwwwwwwwww

PEy By Ny @y Ry e ey

[

L L I TR T
[

Figure 6.10: (a) Watermarked image of Lena, (b) 90 degrees angled image, (c) 180 degrees angled image,
and (d) cropped image.

successfully from the attacked image.

Table 6.2 presents the PSNR values of the original image and the watermarked image with
Gaussian noise. As Table 6.2 and Figure 6.9 indicate, although Gaussian noise with o2 = 0.01
introduces significant perceptual distortion in images, watermark remains imperceptible.

(C) Geometric Transformations

The robustness of the proposed model against geometric attacks was evaluated by applying
common geometric attacks, which included rotation, cropping, and scaling.

C.1. Rotation Attacks

It is possible to detect whether the watermarked image has been subjected to rotations, thanks
to the following two properties of the 2DM-representation of self-inverting permutations.

Due to the fact that the 2DM-representation that has been used to mark the image is the
result of a self-inverting permutation the sequence of the marked cells on the image is not random
but there are the two properties that can be used to determine the angle of a watermarked image
in respect with the original one and that has to do with the position of the marked cell in the
main diagonal of the grid. The two properties are the following:

o The main diagonal of the n* xn* symmetric matrix A* has always one and only one marked
cell, and

o The marked cell on the diagonal is always in the entry (i,4) of A* where:
=%+ 1[5 +2,...,n%

In case the watermarked image has been subject to 90 degree rotation as demonstrated in Fig-
ure 6.10(b) you may notice that the main diagonal has not any cells marked which means that
we are dealing with a non valid watermark as there should have been exactly one marked cell.

The second case is when the watermarked image has been subject to 180 degree rotation as
demonstrated in Figure 6.10(c). In this case, beginning with the first property someone may
notice that the main diagonal has one and only one marked cell meaning that the first property
is satisfied confirming that the image has not been subjected to 90 degree rotation.

117

The diagonal marked cell is situated in the grid’s position (i,4); in our image ¢+ = 3 and thus
1< ["2—*} since n* = 9. It is against the second property meaning that the watermarked image
has been subjected to 180 degree rotation.

C.2. Cropping

Once again thanks to the fact that the 2DM-representation a SiP has the symmetric property,
i.e., the n* x n* matrix A* is symmetric, our algorithm successfully extracts the watermark even
marked parts of the watermarked image have been lost. This loss can be the result of cropping
procedures to certain areas of the image. Recall that, this property is a consequence of the fact
that at a self-inverting permutation, each element has its own inverse.

In Figure 6.10(d) the removed marked part of the image can be recovered since the matrix
A* of the SiP 7* is symmetric; for example, because of the fact that A*(4,8) is marked, A*(8,4)
is marked as well. Based on this property, we conclude that the lost marked cell is A*(8,4) and
then we correctly extract the embedded watermark.

C.3. Scaling

In the case where a watermarked image has underwent significant scaling then extracting a
watermark may be unsuccessful. In our model if an image has been scaled by a known ratio
then each cell of the imaginary grid has underwent exactly the same scaling meaning that the
magnitude cell has now a different size as well. Due to this fact, the width of the annuli will be
incorrect making it impossible to calculate the appropriate difference between them. A solution
to this would be to use different sized annuli in order to calculate the valid difference between
them so that to spot marked areas.

The idea is simple, considering that we know the scaling ratio that the image has underwent
we apply the same ratio calculating the new width for the two annuli. So if for example we used
P, = 2 and P, = 2 for the width of the “Blue” and the “Red” annulus respectively when we
performed the embedding procedure and the image has underwent 50% scaling then in order to
extract the embedded watermark from the image we have to use P, =1 and P = 1.

In order to calculate the difference between the same frequency bands, in the second case
where the magnitude cell has 50% of the initial size, we use annuli that have 50% less width in
comparison with the ones originally embedded.

6.5 Audio Watermarking

In this section we present an algorithm for encoding a self-inverting permutation 7* into an
audio signal S by marking specific time segments of S in the frequency domain resulting thus
the watermarked audio signal 5,,. We also present a decoding algorithm which extracts the
embedded permutation ©* from Sy, by locating the positions of the marks in S,, [17].

6.5.1 Embed Watermark into Audio

The embedding algorithm of our proposed technique encodes a self-inverting permutation 7* into
a digital audio signal 5. Recall that, the permutation ©* is obtained over the set Ny, where
n* = 2n + 1 and n is the length of the binary representation of an integer w which actually is

118

S\‘.'

— —

Frame to be marked Frame to be marked

Figure 6.11: Segmentation of the S’s signal into specific frames according to 1DM-representation of the
permutation 7*.

the audio’s watermark [28].

The main idea of embedding. The watermark w, or equivalently the corresponding self-
inverting permutation 7*, is imperceptibly inserted in the frequency domain of specific frames
on the audio track signals S; see, Figure 6.11. More precisely, we mark certain frames getting the
DFT and do alterations at the magnitude values of high frequencies for each audio frame to be
marked; see, Figure 6.12. This is achieved by choosing two groups of magnitude values specified
with two segments of the magnitude vector namely “Red” and “Blue” and the alterations are
actually on their difference; see, Figure 6.13. In our implementation we use fixed segments’
widths and distances from the center of symmetry of the DFT’s magnitude vector. The added
value is specified by the maximum value in the defined area.

The embedding algorithm. Our embedding algorithm takes as input a SiP 7* and an audio
signal S and returns the watermarked audio signal Sy,; it performs the following main processes:

(i) construct the IDM-representation of the watermark number w;
(ii) transform the input audio signal S and acquire the frequency representation of it;

(iii) modify signals’ frequency representation according to the 1DM-representation of the signal
3

(iv) returns the watermarked audio signal Sy;

We describe below in detail the embedding algorithm in steps.

119

SH'

The 4th marked frame

L The DFT of the

4th marked frame

Figure 6.12: The DFT representation of a marked frame.

Algorithm Embed_SiP.to.Audio

1.

Compute first the 1DM-representation of the permutation 7*, i.e., construct the array B*
of size n = n* x n*; recall that the entry B*((¢ — 1)n* 4+ 7;') contains the symbol “*”,
1 <1< n;

N—-1

. Segment the audio signal S into n non-overlapping frames f; of size f;[a,b] = |*—],

n

1 < i < n, where N is the length of the audio signal;

For each frame f;, compute the Discrete Fourier Transform (DFT) using the Fast Fourier
Transform (FFT) algorithm, resulting in n DFT frames F; of size Fj[a,b] = L%J, 1<
i <mn, that is, F; = FFT(f;);

For each DFT frame F;, compute its magnitude M; and phase P; vectors (or, arrays) which
are both of size M;[a,b] = P;a,b] = [X=1] 1< <n;

Then, the algorithm takes each of the n magnitude vectors M; and determines two segments
in M;, 1 <i <mn, denoted as “Red” and “Blue” (see, Figure 6.13). In our implementation,

o each “Red” segment [z,,y,] has length ¢, (even), where z, = [%-1] — L and y, =

N-—1 L.
L on J+77

o each “Blue” segment [zp, yp] has length ¢, (even), where z, = z, — %’ and yp =y + %b

The “Red” and the “Blue” segments determine two groups of magnitude values on M;; the
Red_Values and the Blue_Values (see, Figure 6.13);

For each magnitude vector M;, 1 < i < n, compute the average value AvgR; of the
Red_Values and the average value AvgB; of the Blue_Values of M;;

120

Read_Values

0N Blue_Values — Blue_Values
— e

10.

11.

Figure 6.13: The “Red” and “Blue” segments on DFT.

For each magnitude vector M;, 1 <14 < n, compute first the variable D; as follows:

o D; = |AvgB; — AvgR;|, if AvgB; > AvgR;

o D; =0, otherwise;

Partition the n values Dy, Do, ..., D, into n* sets E1, Fs, ..., Ey=, each of size n* (recall
that n = n* x n*); let {D;1, Dsa, ..., Din+} be the elements of the i-th set E;, 1 <i < n*.
Then, compute the values

o MaxD1, MaxDs, ..., MaxDy~
where MaxD; is the maximum value of the i-th set F; = {Dj1, Djo, ..., Dip=}, 1 <i < n*;

For each marked cell B*(i) of the 1DM-representation matrix B* of the permutation =*
(i.e., the call which contains the symbol “*” mark the corresponding frame Fj, 1 < i < n;
the marking is performed by increasing all the Red_Values in M; by the value

AvgB; — AvgR; + Max Dy, + ¢, (6.8)

where k = [7;71 and ¢ = ¢qp¢. The additive value of cop; is a predefined value which enables

successful extracting;

Reconstruct the DFT of the corresponding modified magnitude vector M;, using the
trigonometric form formula [53], and then perform the Inverse Fast Fourier Transform
(IFFT) for each frame F;, 1 <i <mn, in order to obtain the audio signal S;

Return the watermarked audio signal Sy,.

121

st 2nd n
frame frame frame

02 DFT
— —» | for each frame

1 2 3 ¥ 5

Initial signal S

Watermarked signal Sw

Figure 6.14: The encoding process of audio signal watermarking.

Note that concerning the placement of the “Red” and “Blue” segments, their position can vary
according to the frequency band in which we want to mark a frame. At the above illustration
we mark it in the high frequencies but there can be a different approach. Specifically, we can
mark instead lower frequencies and that is performed by moving the segments from the center
to the right and left edges of the magnitude array of the Discrete Fourier Transform (DFT)

representation.

6.5.2 Extract Watermark from Audio

In this section we describe the decoding algorithm of our proposed technique. The algorithm
extracts the SiP 7* from a watermarked digital audio signal S,,, which can be later represented

as an integer w.

The main idea of extracting. The main idea behind the extracting algorithm is that the
self-inverting permutation 7* is obtained from the frequency domain of specific frames of the
watermarked audio signal S,,. More precisely, using the same two “Red” and “Blue” segments,
we detect certain areas of the watermarked audio signal S, so that the difference between the
average values of the “Red” segment have the maximum positive difference over the average
values of the “Blue” segments. In this way we can detect marked frames that enable us to obtain
the 1DM-representation of the permutation 7*.

The extracting algorithm. We next describe the extracting algorithm which consists of the
following steps.

Algorithm Extract_SiP.from.Audio

1. Take the input watermarked audio S, and compute its size N. Then, segment S,, into n
non-overlapping frames f; of size f;la,b] = L%J, 1<i<mn;

2. Then, using the Fast Fourier Transform (FFT), get the Discrete Fourier Transform (DFT)
for each frame f;, resulting in n DFT frames F;, 1 < i < n;

3. For each DFT frame Fj;, compute its magnitude M; and phase P; vectors, which are both
of size M;[a,b]=P;[a,b]=| =], 1 <i <n;

122

4. For each magnitude vector M;, compute the average values AvgR; and AvgB; of the
Red_Values and Blue_Values of M;, respectively, as described in the embedding algorithm;

5. Partition the n vectors M;, 1 < i < n, into n* sets L1, La, ..., Ly«, each of size n*; let
{M;1, Msa, ..., M, } be the elements of the i-th set L; and let AvgR;; and AvgB;; be
the average values of the Red_Values and Blue_Values, respectively, of the vector M;;,
1<4,j <n*

6. For each set L; = {M;1, Mo, ..., My,~} find the Ky, vector M;; such that AvgB;, — AvgRis

is minimum and set 77 =k, 1 <k <n*;

7. Return the self-inverting permutation 7*.

Having presented the embedding and extracting algorithms, we next briefly comment on the
purpose of the additive value ¢ = ¢y (see, Step 9 of the embedding algorithm). Similar to
image watermarking, we add at the corresponding embedding marking step the additive value
Copt Which by getting greater increases the robustness of the marks; in our audio watermarking

case, we just used a very small value for it.

6.5.3 Experimental Results

This section summarizes the experimental results of the proposed audio watermarking codec
algorithms; we implemented our algorithms and carried out tests using the general-purpose
mathematical software package Matlab (Version 7.7.0) [66].

Testing of our embedding and extracting algorithms has been made by the use of various
16-bit digital audio tracks in wav format with 44.1 KHz sampling frequency. Concerning the
audio samples used, they where relatively short abstracts with different characteristics. For
instance there were tracks containing speech which have many silent segments as well as music
track samples and tracks with extreme features such as low and high frequency sounds. Many
of the audio tracks that we used for testing were acquired from a web audio repository called
wavsource and enriched by some other audio tracks from various sources. It is well known in the
field of watermarking that there are three main characteristics to take into account describing
and evaluating a digital watermarking system: Fidelity, Robustness, and Capacity [43].

Concerning our watermarking system, it seems to be of high fidelity as watermarked tracks
were not distinguished over the original ones and the results using the PSNR metric were inter-
estingly positive. Concerning the marking procedure of our implementation, we set both lengths
£, and /£, of the “Red” and “Blue” segments respectively, equal to 20% of half the length of
magnitude vector as it is mirrored (see, Section 6.5.1). Recall that, the value 20% is a relatively
small percentage which allows us to modify the audio track segments in a satisfactory level in
order to detect the watermark and successfully extract it without affecting audio tracks’ initial
quality. Moreover, we choose to alter higher frequencies and thus the two segments are at the
center of the magnitude vector. This is because high frequencies are less perceptible according
to the human auditory system. What is more, at high frequencies audio tracks contain less
information which means that information is less likely to be lost due to post alterations.

123

Filename PSNR

bach.wav 67.2
clarinet.wav 67.9
castanets.wav 68.2
elvis_riverside.wav 75.3
family_man.wav 73.8
high10sec.wav 58.8
low10sec.wav 64.5

Table 6.3: The PSNR values of the watermarked audio signals.

Fidelity. In order to evaluate the watermarked audio track quality obtained from our proposed
watermarking method we used the Peak Signal to Noise Ratio (PSNR) metric. Our aim was to
prove that the watermarked audio track is closely related to the original track proving the high
fidelity attribute of our system. This is something vital as watermarking should not introduce
audible distortions in the original audio track, as that would certainly reduce its commercial
value.

Giving a short introduction to the PSNR metric, we should mention that it is defined as the
ratio between the reference (or, original) signal and the distorted (or, watermarked) signal of
an audio track and it is given in decibels (dB). It is well known that PSNR is most commonly
used as a measure of quality of reconstruction of lossy compression codecs (e.g., for image or
audio compression methods). The higher the PSNR value the closer the distorted signal is to
the original or the better the watermark conceals. We mentions that PSNR is a popular metric
due to its simplicity.

For an initial audio signal S of size /N and its watermarked equivalent signal S,,, PSNR is
defined by the formula:

2

N,

where Np,qq is the maximum signal value that exists in the original audio track and MSE is the
Mean Square Error which is given by the following formula:

1 N—
- 2
MSE(S, Su) = z:0 ()2 (6.10)

._\

Comparing the original audio tracks with the watermarked ones, we immediately get to notice
that they depict excellent fidelity according to the PSNR values that we have obtained. In every
case PSNR is over 50 dB which proves that fact that there is a striking similarity between the
original and the watermarked signal of an audio track.

In Table 6.3 you can see the performance of our method as we demonstrate the PSNR values
of some audio tracks that we used in this work. Each of them was sampled at 41.1 KHz and the
duration was of about 10 sec. Additionally, each one has much different characteristics. More
specifically, the audio tracks

124

o bach.wav, clarinet.wav and castanets.wav
where a concert, a clarinet and castanets solo respectively. The audio track
o elvis_riverside.wav
combines human voice with music, while the
o family man.wav
contains only speech which means that it also has periods of silence. Lastly the audio tracks
o highlOsec.wav and lowlOsec.wav
are some extreme cases of high and low frequency sounds.

Robustness. The watermarked signals were subjected to distortions or common signal attacks
in order to evaluate the robustness of our audio watermarking algorithms. We tested the perfor-
mance of each audio track under white noise addition, cropping, resampling, requantization and
MP3 compression. Below we describe in more details each one of the five different attacks that

we applied in our experiments.

(a) Gaussian Noise. A white gaussian noise of SNR 20 dB was added to the original audio

signal.

(b) Cropping. A 10% of the beginning of the watermarked audio signal was cropped and sub-
sequently replaced by zeros.

(c) Resampling. The watermarked signal, originally sampled at 44.1 KHz, is resampled at
22.05 KHz, and then restored back by sampling again at 44.1 KHz

(d) Requantization. The 24-bit watermarked audio signal is re-quantized down to 16 bits/sample
and then back to 24 bits/sample.

(e) MP3 compression. The watermarked audio signal is compressed using a bit rate of 128 Kb/s
and then decompressed back to the WAV format.

Since the watermark that we embed in our audio signal is a permutation, i.e. a vector over the
set Np (n > 1), we test after each attack the similarity of the extracted watermark with the
original one using the Hamming distance [63].

The Hamming distance d(z,y) between two vectors 2 and y is the number of coefficients in
which they differ [63]. The Hamming distance equals to zero, i.e., d(x,y) = 0, if z and y agree in
all coordinates; it happens if and only if z = y. In our case the Hamming distance is computed
between the watermark w = #n* that we embedded into the audio track and the watermark

*
ext

*

w},; that we extract from the audio. If d(7*,7},,) = 0 the watermark w = 7 successfully

extracts from the attacked audio signal. Additionally, it is worth noting that if d(#*,#},;) is
relatively small, then the watermark 7* can be reconstructed with high probability by exploiting
the self-inverting properties of the permutation 7*.

In Table 6.4 we demonstrate similarity results between the watermark that we embedded

into the audio track and the watermark that we extracted after various signal processing attacks.

125

Filename Gaussian Noise | Cropping | Resampling | Requantization | MP3 Compres.

bach.wav 0 1 0 0 3.2
clarinet.wav 0 1 0 0 2.4
castanets.wav 0 1 0 0 5.2
elvis_riverside.wav 0 1 0 0 2.8
family_man.wav 0 1 0 0 0.2
high10sec.wav 0 1 0 0 3.0
low10sec.wav 0 1 0 0 2.0

Table 6.4: The Hamming distance of the watermark w and the extracted watermark w* after common
signal attacks.

As the experimental results show, our audio watermarking algorithm is robust against additive
gaussian noise of SNR 20 dB, cropping, resampling and requantization. Evaluating our method’s
robustness over lossy compression we tested it using the MP3 encoding format with a bit rate
of 128 Kb/s. In order to optimize the results as high frequency information is mostly lost using
MP3 we made the appropriate adjustments concerning the width of the segments to be marked
as well as the additive value ¢ = cqp; (see, embedding algorithm Embed_SiP.to.Audio). For most
cases the results were positive as despite not being able in every case to successfully extract all
the elements of the watermark, using the properties of self-inverting permutations recovery of
the initial watermark can be successfully operated.

Closing the robustness evaluation of our method, we should point out that a drawback of our
method is actually when we want to watermark an audio track with extreme high frequencies;
it is something that could be encountered on future work.

Capacity. The capacity of our audio watermark method has been computed by measuring
the percentage of the watermarked parts of an audio track over the length of the entire audio
track. Our method partitions the audio track into n* x n* frames, where n* is the length of
the permutation #*, and marks only one frame of a set of n* frames; recall that our embedding
method groups the frames into n* sets each containing n* frames (see, embedding algorithm
Embed_SiP.to.Audio). That means, a total n* over n* x n* frames are marked, so the ratio

of the watermarked part over the entire length of the audio track is 0 Thus, our audio

n*
) n*xn*) "
watermarking method has _% capacity.

6.6 Concluding Remarks

In this chapter we proposed watermarking models for embedding invisible watermarks into dig-
ital images and audio signals. We presented methods for embedding invisible watermarks into
images and their intention is to prove the authenticity of an image. The watermarks are given in
numerical form, transformed into self-inverting permutations, and embedded into an image by
partially marking the image in the frequency domain; more precisely, thanks to 2D-representation
of self-inverting permutations, we locate specific areas of the image and modify their magnitude
of high frequency bands by adding the least possible information ensuring robustness and im-

126

perceptiveness.

We experimentally tested our embedding and extracting algorithms on color JPEG images
with various and different characteristics; we obtained positive results as the watermarks were
invisible, they didn’t affect the images’ quality and they were extractable despite the JPEG
compression. In addition, the experimental results show an improvement in comparison to the
initial obtained results on spatial domain and they also depict the validity of our proposed codec
algorithms.

It is worth noting that the proposed algorithms on image watermarking in frequency domain
are robust against cropping or rotation attacks since the watermarks are in SiP form, mean-
ing that they determine the embedding positions in specific image areas. Thus, if a part is
being cropped or the image is rotated, SiP’s symmetry property may allow us to reconstruct
the watermark. Furthermore, our codec algorithms can also be modified in the future to get
robust against scaling attacks. That can be achieved by selecting multiple widths concerning the
ellipsoidal annuli depending on the size of the input image.

Finally, we should point out that the study of our quality function f remains a problem for
further investigation; indeed, f could incorporate learning algorithms [102] so that to be able to
return the cyp; accurately and in a very short computational time.

Additionally, in this chapter we presented an audio watermarking technique which efficiently
and invisibly embeds information, i.e., watermarks, into an audio digital signal. Our technique
is based on the same main idea of image watermarking technique expanding thus the digital
objects that can be efficiently watermarked through the use of self-inverting permutations.

We experimentally tested our embedding and extracting algorithms on WAV audio signals.
Our testing procedure includes the phases of embedding a numerical watermark w = #* into
several audio signals S, storing the watermarked audio S, in WAV format, and extracting the
watermark w = 7* from the audio S,. We obtained positive results as the watermarks were
invisible, they didn’t affect the audio’s quality and they were extractable.

The performance evaluation of our audio watermarking technique on several other attacks

remains a problem for further investigation.

127

128

CHAPTER 7

TEXT WATERMARKING

7.1 Introduction
7.2 Background Results
7.3 Watermarking PDF Documents

7.4 Concluding Remarks

7.1 Introduction

Information age has altered the way people communicate by breaking the barriers imposed on
communications by time, distance, and location and has undoubtedly impact not only humans
activities but also global industry and economy. Communication has been greatly affected by
the constant and rapid evolution of many technologies such as fiber optic, cellular and satellite
technology, networking, digital transmission and compression as well as advanced computers,
and improved human-computer interaction. The aforementioned technologies allow the rapid
transmission, and store, of great amounts of information.

The digital era has already had extensive impacts on business, commerce, education, services,
and social life. The concepts of e-government, e-learning, e-commerce, e-business, e-publishing,
refer /outline peoples’ interaction in the digital world. In this world, people everyday, interact by
exchanging e-mails, instant messages, video, audio, images, and digital documents. Part of the
information transmitted is an increasing amount of sensitive information, such as personal data,
medical and financial records, business information, government data, legal documents. Another
part of information available in the web is used to promote ones’ work or product.

Electronic document, is an extensively used medium traveling over the internet for informa-
tion exchange and due to the ease of copying and distributing they are susceptible to threats
like illegal copying, redistribution of copyrighted documents, and plagiarism. Subsequently, it
has become more important to protect the electronic documents from any malicious user while
existing in the digital world. Copyright protection of digital contents is such a need of time which

129

cannot be overlooked. In past, various methods like encryption, steganography and watermark-
ing has been used to solve these problems. However, digital watermarking is the better solution
for copyright protection than encryption and steganography. Digital watermarking methods are
efficient enough to identify the original copyright owner of the contents.

Recall that there are many reasons why you would want to use watermarks in digital docu-
ments: as a copying deterrent, as a means of identifying the source of a printed document, as a
means of determining whether a document has been altered, etc.

Attacks. Any action that a user can perform on a text that can affect the watermark, or its
usefulness, is called attack. In [134] existing attacks on text watermarking can be classified into

three main categories:
o watermark attacks,
o geometric attacks, and

o system attacks.

In a watermark attack, the adversary aims to detect and destroy the watermark, without nec-
essarily decoding the original message. In contrast to watermark attacks, geometrical attacks
are blind attacks on watermarked text documents. The process of these attacks requires neither
the algorithmic knowledge of the watermarking technique nor the watermarking key, geometrical
attacks intend not to remove the embedded watermark itself, but to prevent it from serving its
intended purpose through altering format or content of the watermarked text documents. This
type of attack includes reformatting, reproducing, sentences swapping, paragraphs shuffling, the
addition/deletion of words, sentences and paragraphs. System attacks use signal processing
tools such as principal component analysis, independent component analysis, clustering, vector

quantization.

Related Work. Text watermarking is the area of research that has emerged after the develop-
ment of Internet and communication technologies; we mention that the first reported effort on
marking documents dates back to 1993 [87].

Generally, we can classify the previous work on digital text watermarking in the following
categories:

o image based approach,

o syntactic approach,

o semantic approach, and

o structural approach.
In image based approach, watermark is embedded in text image. Brassil, et al. were the first
to propose a few text watermarking methods utilizing text image [9, 10]; they also developed
document watermarking schemes based on line shifts, word shifts as well as slight modifications
to the characters [11]. Maxemchuk, et al. [87, 88, 89] analyzed the performance of these methods,
while later Low, et al. [80, 81] further analyzed their efficiency. Huang and Yan [64] proposed a

text watermarking method based on an average inter-word distance in each line. The distances
are adjusted according to the sine-wave of a specific phase and frequency. Feature and pixel level

130

algorithms were also developed which mark the documents by modifying the stroke features such
as width or serif [6].

In syntactic approach, the syntactic structure of text has been used to embed watermark.
Atallah, et al. [5] proposed several methods of natural language watermarking, which opened up
a brand-new and challenging research direction for text watermarking. Meral et al. performed
morpho-syntactic alterations to the text to watermark it [90]. They also provided an overview
of available syntactic tools for text watermarking [91].

In semantic approach, semantics of text are used to embed the watermark in text. Atallah
et al. were the first to propose the semantic watermarking schemes [5]. Later, the synonym
substitution method was proposed, in which watermark was embedded by replacing certain
words with their synonyms [118]. Sun, et al. [111] proposed noun-verb based technique for
text watermarking which used nouns and verbs parsed by semantic networks. Topkara, et al.
proposed an algorithm of the text watermarking by using typos, acronyms and abbreviation in
the text to embed the watermark [119]. Algorithms were developed to watermark the text using
the linguistic approach of presuppositions [92] in which the discourse structure, meaning, and
representations are observed and utilized to embed watermark bits. The text pruning and the
grafting algorithms were also developed in the past. Another algorithm based on text meaning
representation (TMR) strings has also been proposed [82].

The structural approach is the most recent approach used for copyright protection of text
documents. In this approach, text is not altered, rather it is used to logically embed watermark
in it. A text watermarking algorithm for copyright protection of text using occurrences of
double letters (aa-zz) in text has recently been proposed [67]. Recently, a significant number of
techniques have been proposed in the literature which use Portable Document Format (PDF)
files as cover media in order to hide data [12, 13, 76, 77, 78, 79, 133].

Contribution. In this chapter, in order to provide to web users copyright protection of their
digital documents, we present easily implemented techniques for watermarking PDF documents.
Our aim is to extent the digital objects that the proposed representations of a self-inverting
permutation, i.e. the 1D-representation, the 2D-representation, and the RPG-representation,
can be efficiently applied to; note that, RPG-representation means the encoding of permutation
7* as a reducible permutation graph F[r*].

We first propose an image-based technique for marking the PDF document T by exploiting the
1D-representation of a permutation (or, for short, SiP) 7*, which we presented in Subsection 6.2.2.
The embedding of a mark is performed by increasing the distance (or, space) between two
consecutive words in a paragraph of document T'. The extraction algorithm operates in a reverse
manner.

Since pages of PDF documents T are two dimensional objects, we propose an algorithm for
encoding a self-inverting permutation 7* into a document T by first mapping the elements of
7% into an n* X n* matrix A* and then using the information stored in A* to mark invisibly
specific areas of PDF document T resulting thus the watermarked PDF document T™. We also
propose an efficient algorithm for extracting the embedded self-inverting permutation 7* from
the watermarked PDF document T by locating the positions of the marks in T*; it enables us
to recontract the 2D-representation of the self-inverting permutation 7*.

Finally, we describe a watermarking algorithm for embedding a self-inverting permutation

131

into the document structure of a PDF file T, by exploiting the graph representation of 7*
proposed in this thesis and the structure of a PDF document 1" described in this chapter. More
precisely, in light of the two embedding algorithms Encode_SiP.to.RPG-I and -II, we present
an algorithm for embedding a reducible permutation graph F[7*] into a PDF document T'. The
main idea behind the proposed embedding algorithm is a systematic addition of appropriate
object-references in the input PDF document T, through the use of entries of type \kye(-),
so that the graph F[7n*] can be easily constructed from the page tree PT(T™) of the resulting
watermarked document 7.

Road Map. The chapter is organized as follows: In Section 7.2 we establish the notation
and related terminology, and we present background results. In Section 7.3 based on the
three different representations of self-inverting permutation (SiP), i.e. the two dimensional
(2D-representation), the one dimensional (1D-representation), and the the RPG-representation
(the encoding of permutation 7* as a reducible permutation graph F[r*]), we present the al-
gorithms Embed _SiP.to.PDF-I, Embed _SiP.t0.PDF-II, and Embed RPG.to.PDF, along with the
corresponding extracting algorithms, for embedding a watermark number (or, equivalently, a
self-inverting permutation ©* or a reducible permutation graph F[7*]) into a PDF document file.
Finally, in Section 7.4 we conclude the chapter and discuss possible future extensions.

7.2 Background Results

In this section, we give some definitions and the theoretical background we use towards the
watermarking of Portable Document Format (PDF) documents. We first briefly present the
different representations of a self-inverting permutation (SiP), and then we present the structure
of PDF documents.

1D representation of SiP. In Chapter 6, we presented the one-dimensional representation
(1D-representation) of a self-inverting permutation (SiP) and the one dimensional marked rep-
resentation of SiP (1DM-representation). We later showed how to embed a SiP, represented in
1D space, into an audio signal for watermarking. In our 1D-representation, the elements of the
permutation 7 are mapped in specific cells of an array B of size n? as follows:

e number m; — entry B((r;!—1)n+m)

or, equivalently, the cell at the position (i — 1)n + m; is labeled by the number 7;, for each
1=1,2,...,n.

In our 1DM-representation, a permutation 7 over the set N, is represented by an n? array

B* by marking the cell at the position (i — 1)n + 7; by a specific symbol, for each i = 1,2,...,n,

where, in our implementation, the used symbol is again the asterisk character “*”.

2D representation of SiP. In Chapter 6, we presented the two-dimensional representation

of a SiP (2D-representation) and the two dimensional marked representation of SiP (2DM-
representation), which we later used to watermark an image. We defined the 2D-representation

132

The watermark number w = 4

!
™ =(4,7,6,1,5,3,2)

1 2 3 5 6 7
1 *
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEEEE NN 2 *
3 *
20 21 22 23 24 25 26 27 28 29 4 | %
o Ix [H]
5 *
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 [§ ES
[#1 T [[I* [P [[[+l T T]| T Tx
1D-representation of 7* 2D-representation of 7*

G~ oD

Reducible Permutation Graph F[r*]

Figure 7.1: Three different representations of permutation 7* = (4,7,6,1,5,3,2).

of a SiP as the representation where the elements of the permutation = = (71, m2,...,7,) are
mapped in specific cells of an n X n matrix A as follows:

e number m; — entry A(m; ', m)
or, equivalently,

e the cell at row ¢ and column m; is labeled by the number ;, for each ¢ = 1,2,... n.

In 2DM-representation the cell at row ¢ and column m; of matrix A is marked by a specific
symbol, for each : =1,2,....n.

In Chapter 7, we also presented algorithms for embedding the 2D-dimensional representation
of SiP in an image. Recall that the matrix A* incorporates important structural properties which,
in image watermarking, make it possible to detect geometric transformations on the watermarked
image. The properties of the matrix A* are the following:

o The matrix A* is symmetric.
o The main diagonal of the symmetric matrix A* has always one and only one marked cell.

o The marked cell on the diagonal is always in the entry (i,4) of A* where:
i=1%7+1,[%]+2,...,n"

In Chapter 3, we have also presented an efficient and easily implemented algorithm for encoding
numbers as reducible permutation graphs through the use of self-inverting permutations. In

133

Objects

File Content
structure stream
Document

structure

Figure 7.2: Components of a PDF file.

particular, we have proposed two such encoding algorithms: the algorithm Encode_SiP.to.RPG-I
applies to any permutation 7 and relies on domination relations on the elements of © whereas
the algorithm Encode_SiP.to.RPG-II applies to a self-inverting permutation 7#* produced in any
way and relies on the decreasing subsequences of 7*. Figure 7.1 summarizes by an example the
representations of the permutation 7* = (4,7,6, 1,5, 3,2) over the set N7.

7.2.1 Structure of a PDF Documents

The Portable Document Format (PDF) [4] is an open standard (defined in ISO 32000) which
facilitates device and platform independent capture and representation of rich information such
as text, multimedia and graphics, into a single medium. Thus the PDF format enables viewing
and printing of a rich document, independent of either application software or hardware. In this
section we present a structural analysis of a PDF file, by giving its basic components. Figure 7.2
shows the main components of a PDF file are. which we briefly present below.

Object. An object is the basic element in PDF files, in which eight kinds of objects, namely
Boolean Object, Numeric Object, String Object, Name Object, Array Object, Null Object,
Dictionary and Stream Object are sustained. Objects may be labeled so that they can be
referred to by other objects. A labeled object is called an indirect object.

File structure. The PDF file structure determines how objects are stored in a PDF file, how
they are accessed, and how they are updated. The file structure (see, Figure 7.6) includes the
following:

e an one-line header identifying the version of the PDF specification to which the file con-

forms,
e a body containing the objects that make up the document contained in the file,
e 3 cross-reference table containing information about the indirect objects in the file, and

e 3 trailer giving the location of the cross-reference table and of certain special objects within
the body of the file.

Figure 7.6 shows an example of a PDF file and its internal file structure.

Document structure. The PDF document structure specifies how the basic object types are
used to represent components of a PDF document: pages, fonts, annotations, and so forth.
The document structure of PDF file is organized in the shape of an object tree topped by

134

[%PDF-11] Header

10 0bj
<< /Type /Catalog /Outlines 2 0 R /Pages 3 0 R >> endobj

20 obj
<< /Type /Outlines /Count 0 >> endobj

30 0bj
<< /Type /Pages /Kids [0 R] /Count 1 >> endobj

10 obj

Header << /Type /Page /Parent 3 0 R /MediaBox [0 0 612 792] /Contents 5
0 R /Resources << /ProcSet 6 0 R /Font << /F170 R>> >> >>
endobj

50 obj
<< /Length 48 >> Body
stream

BT

Body /F1 24 Tf

100 700 Td
(Hello World)Tj
ET

endstream
endobj

c f 60 obj
ross-relerence [/PDF /Text] endobj

table
70 obj

<< /Type /Font /Subtype /Typel /Name /F1 /BascFont /Helvetica
Trailer /Encoding /MacRomanEncoding >> endobj

xref

08

000C
)0C

D000 65535 £
0012 00000 n
000
000

00
000000089 0
00

000C

0(

00

00

0145 0
1214 (
1381 (
0485 0
0518 (

Il

000
000
00C
Il
Il
(

; n Cross-reference
n

) n
)00 n

0 n

N

table
0C

000
000

000
000

0
i
i
)
)
I

(
0
0
(
(a) ;
0
0

trailer
<<
/Size 8
/Root 10 R Trailer
>>
startxref
642

(b)

Figure 7.3: (a) The structure of a PDF file; (b) The code of a PDF file containing, in object 500bj, the
text “Hello World”.

Catalog, Page tree, Outline hierarchy and Article thread included. The Outline hierarchy is the
bookmarker of PDF, and Page tree includes page and Pages which in turn includes the total page
number and each page marker. Page, the main body of PDF file, is the most important object
which involves the typeface applied, the text, pictures, page size and so on. The organization of
other objects is analogous to Page tree. With the object tree topped by Catalog, any object in
PDF file can be visited. Figure 7.4 illustrates the structure of the object hierarchy.

7.3 Watermarking PDF Documents

In this section we describe embedding algorithms for encoding a self-inverting permutation 7*
into a digital document T. More specifically, we embed the permutation 7* into a PDF document
by exploiting (i) the one-dimensional representation of 7*, (ii) the two-dimensional representation
of a 7*, and (iii) the encoding of 7* as a reducible permutation graph F*[r*].

135

Content
stream
Page Content
stream
R Content
Page . stream

tree
N Content
stream

% Content ‘

stream
(J()“tcut
entry stream

Outline

hierarchy

Outline
Document entry
catalog

ﬁ Thread }—{ Bead ‘

threads .
I

Named
destinations
Interactive

form

(a)

Figure 7.4: (a) The main structural components of a PDF file; (b) The document structure of PDF file.

7.3.1 Embed Watermark into PDF - 1

We first design an embedding algorithm for watermarking a PDF document by exploiting the 1D-
representation of a permutation 7*. The marking is performed by increasing the space between
two consecutive words in a paragraph of 7.

Let B* be the 1D array of size n = n* x n* which represents the permutation 7* of length
n*, and let (wy, s1), (w2, s2), ..., (Wp, sp) be n pairs of type “word-space” of a paragraph par
of the input PDF document; recall that the entry B*((: — 1)n* + ©}) contains the symbol “*”.
1 <4 < n*. The algorithm increases by a small value “c” the i-th space of the pair (word;,
space;) if B*((i —1)n*+ 7)) = “x”. We next give a high-level description, with respect to DPF
modification, of our proposed embedding algorithm.

Algorithm Embed SiP.to.PDF-I

1. Compute the 1DM representation of the permutation 7*, i.e., construct the array B* of
size n = n* x n* where the (i — 1)n* 4+ 7 entry of B* contains the symbol “*” 1 <4 < n*;

2. Select an appropriate paragraph par on a page P of PDF document 1" to embed the self-

inverting permutation 7*;

136

Information Age has altered the way people communicate by breaking the barriers imposed on
communications by time, distance, and location and has undoubtedly impact not only humans
activities but also global industry and economy. Communication has been greatly affected by the
constant and rapid evolution of many technologies such as fiber optic, cellular and satellite
technology, networking, digital transmission and compression as well as advanced computers,
and improved human-computer interaction. The aforementioned technologies allow the rapid
transmission, and store, of great amounts of information

Electronic document, is an extensively used medium traveling over the intemet for information
exchange and due to the ease of copying and distributing they are susceptible to threats like illegal
copying, redistribution of copyrighted decuments, and plagiarism. Subsequently, it has become
more important to protect the electronic documents from any malicious user while existing in the
digital world. Copyright protection of digital contents is such a need of time which cannot be
overlooked. In past, various methods like encryption, steganography and watermarking has been
used to solve these problems. However, digital watermarking is the better solution for copyright
protection than encryption and steganography. Digital watermarking methods are efficient enough
to identify the original copyright owner of the contents.

Information Age has allsradrﬁ)e way people communicate by breaking the barriers imposed o)
communications by time, d\\sﬁnce, and locatién and h@ndnuhted\y impact not only humans
activities but also global industry :\m@mnomﬁnmmﬁmnm has been great@fected @e
constant and rapid evolution of many technologies such as fiber optic, cellular :mﬂ/snlaHhs -
technology, networking, digital transmission and compression as well as advanced computers,
and improved human-computer interaction. The aforementioned technologies allow the rapid
transmission, and store, of great amounts of information.

Electronic document, is an extensively used medium traveling over the internet for information
exchange and due to the ease of copying and distributing they are susceptible to threats like illegal
copying, redistribution of copyrighted documents, and plagiarism. Subsequently, it has become
more important to protect the electrenic documents from any malicious user while existing in the
digital world. Copyright protection of digital contents is such a need of time which cannot be
overlocked. In past, various metheds like encryption, steganography and watemmarking has been
used fo solve these problems. However, digital watermarking is the better solution for copyright
protection than encryption and steganography. Digital watermarking methods are efficient enough
to identify the original copyright owner of the contents.

Figure 7.5: The initial PDF document T' and watermarked PDF document T, using the 1D represen-
tation of permutation 7* = (4,7,6,1,5,3,2).

3. Partition the paragraph par into n pairs (w1, s1), (w2, s2), .. ., (wn, s,), where w; and s; are
the ¢-th word and space, respectively, in selected paragraph par, 1 <i < n;

4. For each pair (w;, s;) s.t. B*((i —1)n*+ 7)) = “x”, increases the space s; or, equivalently,
distance d(w;, w;+1) between words w; and w;4+1, by a relative small value ¢, 1 <1i < n;

5. Return the watermarked PDF document T,.

Extraction. The extraction algorithm, which we call Extract PDF.from.SiP-I, operates in a
usual manner: it takes as input the watermarked PDF document T),, locate the paragraph par,
and compute the permutation 7* by finding the positions of the words w; such that:

o d(wi,wiH) > d(wi_l,wi), or
o d(wi, wit1) > d(wit1, wit2)

where, d(w;, w;) is the distance between words w; and w; in a paragraph par of Ty, 1 < i < n;
note that, an appropriate paragraph par contains more that n words.

7.3.2 Embed Watermark into PDF - II

In this section we describe a different approach of embedding algorithm a self-inverting per-
mutation 7* into a digital document 7', by exploiting the two-dimensional representation of
permutation 7*.

The main idea behind the embedding algorithm, which we call Embed_SiP.to.PDF-II, is
similar of that of algorithm Embed_SiP.to.Image-F (see, Section 6.4). The most important of
this idea is the fact that it suggests a way in which the permutation 7#* can be represented
with a 2D-representation and since pages of a PDF documents T are two dimensional objects
that representation can be efficiently marked on them resulting the watermarked PDF document
Ty; in a similar way as in our image watermarking approach, such a 2D-representation can be

137

\lgorithmic Techniques for Encoding Algorithmic Techniques for Encoding
; s for Watermarking

>ermutations and Permutation Graphs for Watermarking Permutations and Permutat
Software, Image, Audio, and Text Software, Imag io, and Text

HAIAAKTOPIKH AIATPIBH H AIAAKTOPIKH AIATPIBH

Magho I'. Xpévn, Moagia . Xpévn

v Yroygedoey Y T K Tou ¢ Uépoc Tov YoyseGoeey i T Mibn <oy

AIAAKTOPIKOY ATHTAQMATOY XTHN HAHPO®OPIKH AIAAKTOPIKOY AITAQMATON X THN HAHPO®POPIKH

Figure 7.6: The initial PDF document T' and watermarked PDF document T,, using the 2D represen-
tation of permutation 7* = (4,7,6,1,5,3,2).

efficiently extracted for a watermarked PDF document Ty, and converted back to the self-inverting
permutation 7*.

Let A* be the 2D matrix of size n* X n* which represents the permutation 7* of length n*.
The marking of the input PDF document T is performed by selecting an appropriate page P
of T and setting n* objects (e.g., characters, symbols, images) in a specific positions on page
P, 1 < i < n* In fact, we set an object O; in position with (z},y;) coordinates on page P
if A*(zs,yi) = “*7, where 1 < zj,y; < n* and 0 < 2,4y} < size(P); note that, (0,0) is the
lower-left point (or, equivalently, the bottom-left corner) of page P.

The algorithm takes as input a SiP 7* and a PDF document 7', and returns the watermarked
document 7,; it consists of the following steps.

Algorithm Embed_SiP.to.PDF-II
1. Compute the 2DM representation of the self-inverting permutation 7*, i.e., construct an

array A* of size n* x n* s.t. the entry A*(i,#}) contains the symbol “*” 1 <i <n*;

2. Select an appropriate page P to embed the permutation 7* and compute the size size(P)
of the page P, say, N X M;

3. Segment the PDF page P into n* x n* grid-cells Cj; of size LnﬂJ X LM*J, 1<4,5 <n"

n

4. For each grid-cell Cj; s.t. A*(4,7) = “* 7, mark the cell Cj; by setting a symbol, with an
appropriate calor, in any position inside Cj; of P, 1 <4, j < n*, resulting thus the marked
document Ty,;

138

5. Return the watermarked PDF document T,.

Extraction. The algorithm which extracts the permutation #* from the watermarked PDF
T, operates in a similar way as the corresponding extraction algorithm for images: it takes
the input watermarked image [, locate the marked page P, computes its N x M size, and
segments P into n* X n* grid-cells Cj; of size Lnﬂj X LHM*L then, it computes the permutation
7 by finding the coordinates (z;,y;) of the n* symbols in the page P, 1 < i < n*; it is called
Extract_PDF.from.SiP-II.

7.3.3 Embed an RPG into a PDF

In this section we describe a watermarking algorithm for embedding a self-inverting permutation
7* into a PDF document T', by exploiting the graph representation of 7* proposed in this thesis
and the structure of a PDF document 1" described in this chapter.

Indeed, in Chapter 3 we have presented two algorithms, namely Encode_SiP.to.RPG-I and
Encode_SiP.to.RPG-II, for encoding self-inverting permutations 7* as reducible permutation
graphs F[7*] (see, Section 3.5), while in this chapter we have described the document structure
DS(T) of a PDF document T (see, Subsection 7.2.1); note that, the document structure of a
PDF file always contains a node, namely Document-catalog, and a page tree PT(7") rooted at
node Page-tree, denoted by root(pt); see, Figure 7.4(b).

In light of the two embedding algorithms Encode_SiP.to.RPG-I and -II, we next present
an algorithm for embedding a reducible permutation graph F[7*] into a PDF document T'. The
main idea behind the proposed embedding algorithm is a systematic addition of appropriate
object-references in selected nodes of the page-tree PT(T) of the document structure DS(T'),
through the use of entries of type /Kye(:), so that the graph F[r*] can be easily constructed
from the page-tree PT(T™) of the resulting watermarked document 7.

Let F[7*] be a reducible permutation graph produced by one of our two embedding algorithms
(i.e. Encode _SiP.to.RPG-I or -II), and let w,41, Uy, .., u1, up be the nodes of the graph F[r*];
note that, F[r*] does not contain the back-edge (ug, un+1). In order to simplify the extraction
process, the graph F[r*] which is embedded into a PDF document 7' contains one extra back-
edge, i.e., the edge (uo, un+1); see, Step 4 of the embedding algorithm.

The proposed algorithm, which we call Encode RPG.to.PDF, for embedding a reducible per-
mutation graph F[r*] into a PDF document 7' is described below.

Algorithm Encode RPG.to.PDF

1. Compute the document structure DS(T") of the input PDF document 7" and locate its page-
tree PT(T); let node(dc) be the document catalog node of structure DS(T') and root (pt)
be the root node of the page tree PT(1'); see, Figure 7.4(b);

2. Compute a path O(T) = (vp41,Vn, - - -, v1,v0) on n+2 nodes (i.e., objects) of the page-tree
PT(T) s.t. vp+1 = root(pt), and set s = vy41 and ¢ = vp;

3. Assign an exact pairing (i.e., 1-1 correspondence) of the n + 2 nodes of path O(T) to the
nodes Up41,Unp, - - -, u1, up of the watermark graph F[r*];

139

) v
1 =% 60 obj 50 obj
! : ColorSpace R9
. # 8 0 obj H 70 obj ‘
130 obj ! ExtGState R7
XObject
10 0 obj 9 0 obj L
XObject R10
12 0 obj 11 0 obj ‘
Font R10

10 obj 29 0 obj
catalog Page Lot

22 0 obj

Resources

Figure 7.7: The watermarked D.S(T*) which encodes the RPG of 7* = (4,5,3,1,2).

4. For each back-edge (u;,u;) of the graph F[n*] (i.e., u; > w;), add the forward-edge (v, v;)
in page-tree PT(T") by adding in object [vj 0 obj] an entry of type /Key(vi O R); add in
object [vy+1 O obj] an entry of type /Key(vg O R);

5. Return the modified PDF document T which is the watermarked document T*.

Let us briefly discuss the way we add forward-edge in the page-tree PT(1"); recall that, in Step 4 of
the previous algorithm Encode RPG.to.PDF we add the forward-edge (vj;,v;) in page-tree PT(T)
by adding in object [vj 0 obj] an entry of type /Key(vi O R). The entry /Key(vi O R) may be of
various types; note that, /Key(-) is used as parameter in our algorithm’s description.

In our implementation, for the forward-edge (v;,v;) such that the object [vj 0 obj] is not
the rood-node root (pt) of the page-tree PT(T'), we always chose the entry /Key(v; 0 R) which
we add in object [vj 0 obj] to be of the same type of object [vi 0 obj]. In the case where
vj = root(pt), we chose the entry /Key(vi O R) to be of type /Kids(-).

For example, in Figure 7.7 we have added forward-edges from object [29 0 obj] to object
[3 0 obj], from object [29 0 obj] to object [24 0 obj], from object [3 0 obj] to object [13 0 obj],
etc. Thus, in our implementation we have added in the rood-node object [29 0 obj] the entries
/Kids(3 0 R) and /Kids(24 O R), in object [3 O obj] the entry /XObject(13 0 R), while in object
[13 0 obj] the entries /ColorSpace(6 0 R) and /R9(5 O R).

Remark 7.1. Let T be a PDF file and let PT(T) be a page-tree of the document structure
DS(T'). A node of the page-tree PT(7) may contain several entries /Kye(-) of various types. We
mention that, some types are required for the entries in specific nodes of PT(T); for example,
the required entries in the rood-node root (pt) of the page-tree PT(T') are the following four:
/Type(-), /Parent(:), /Kids(:), and /Count(-).

Extraction. We next describe the corresponding extraction algorithm which extracts the graph

140

F[r*] from the PDF document T* watermarked by the embedding algorithm Encode RPG.to.PDF;
the extraction algorithm, which we call Extract RPG.from.PDF, works as follows:

e Take first as input the PDF document T* watermarked by the embedding algorithm
Encode RPG.to.PDF, compute the document structure DS(T*) of T*, and locate its page
tree PT(T™); then, find in object root(pt), where root(pt) is the root of the tree PT (1),
the entry /Kids(vx O R) s.t. vy is not a child of root(pt), and set v,+1 = root(pt) and
Vo = Vk;

e Compute the path O(T) = (vp+1,vn,...,v1,00) of PT(T™), from node root(pt) to vg, and
assign an exact pairing (i.e., 1-1 correspondence) of the n + 2 nodes of path O(T') to the
nodes Up41,Up, - - -, u1,up of a graph F[r*]; initially, F(F[r*]) = 0;

o Add edges (ujt1,u;) in F[r*] for i = n,n —1,...,0, and the edge (u;, u;) iff (v;,v;) is a
forward edge in the page tree PT(1™);

e Delete the edge (un41,u0) from the graph F[r*];
e Return the graph F[r*];

It is easy to see that, by construction the returned graph F'[r*] is a reducible permutation graph
produced by either algorithm Encode_SiP.to.RPG-I or algorithm Encode_SiP.to.RPG-II. Thus,
F[r*] has the following property: the structure which results after deleting

(i) all the forward edges (u;+1,u;) of F[r*], 0 <i <m, and
(ii) the node ug

is either the tree Ty[n*| or tree Ts[r*] produced during the execution of either the decoding algo-
rithm Decode RPG.to.SiP-TI or algorithm Decode RPG.to.SiP-II, respectively (see, Figures 3.3
and 3.4). Thus, we can efficiently extract the self-inverting permutation 7* embedded into a
PDF document T by algorithm Encode_RPG.to.PDF.

7.4 Concluding Remarks

In this chapter we presented embedded algorithms, along with their corresponding extraction
algorithms, for embedding watermark numbers w into PDF documents T using three different
representations of a self-inverting permutation 7*, namely 1D-representation, 2D-representation,
and RPG-representation; note that, RPG-representation means the encoding of permutation 7*
as a reducible permutation graph F*[x*].

The main features of our algorithms, i.e., the way they mark a PDF document T or, equiva-
lently, the way they embed a self-inverting permutation 7* into document 7', are summarized as
follows:

o In the first algorithm Embed_SiP.to.PDF-I the marking of a PDF document T is performed
by increasing the distance (or, space) between two consecutive words in a paragraph of 7'

141

o The main idea behind the second algorithm Embed_SiP.to.PDF-II based on the fact that
7* has a 2D-representation and, since pages of PDF documents 1" are two dimensional
objects, it can be efficiently used to mark specific positions on a page of T' resulting thus
the watermarked PDF document T*.

o The third graph-based embedding algorithm Encode_RPG. to.PDF uses a different approach:
it exploits the structure of a PDF document 7" and embeds the graph F[r*] into T' by
adding appropriate object-references in the document 7', through the use of entries of type
/Kids(k O R), so that the graph F[7*] can be easily constructed from the page tree PT(T™)
of the resulting watermarked document 7.

In light of our graph-based embedding algorithm Encode RPG.to.PDF it would be very interesting
to investigate the possibility of altering other components of the document structure of a PDF
file in order to embed the graph F[n*]; we leave it as a direction for future work.

Moreover, an interesting open question is whether the approach and techniques used in this
chapter can help develop efficient encoding algorithms having “better” properties with respect
text attacks; we leave it as an open problem for future investigation.

142

CHAPTER &

(CONCLUSIONS AND FUTURE WORK

8.1 Encoding Numbers as SiPs and RPGs
8.2 Software Watermarking
8.3 Image and Audio Watermarking

8.4 Text Watermarking

8.1 Encoding Numbers as SiPs and RPGs

In Chapter 2, we presented an efficient algorithm for encoding watermark integers as self-inverting
permutations. Our algorithm takes as input an integer w and produces a self-inverting permu-
tation 7* in O(n) time, where n is the number of bits in the binary representation of w. We also
presented the corresponding decoding algorithm; it takes as input a self-inverting permutation
7* produced by the encoding algorithm and returns the encoding integer w in O(n) time, where
n is the length of the input permutation. Both algorithms are simple, easy implemented and
very fast.

It is worth noting that our encoding approach enable us to encode any integer w as self-
inverting permutation 7* of any length n* > 3; indeed, 7* can be constructed over the set Ny,
where n* = 2[logw] + 1.

In Chapter 3, we proposed an efficient and easily implementable codec system for encoding
watermark numbers as graph structures. In particular, we proposed an efficient codec method for
encoding a self-inverting permutation 7* as a reducible permutation graph F[r*]; the proposed
flow-graph F[7*] can be efficiently used for software watermarking since its structure mimics real
codes.

Our codec algorithms are very simple, use elementary operations on sequences and linked
structures, have very low time and space complexity, and the flow-graph F[r*] incorporates
important structural properties which enable us to identify with high probability edge and/or
node modifications made by an attacker to F[x*].

143

In light of the two main data components of our codec system, i.e., the permutation 7* and
the graph F[r*], it would be very interesting to come up with new efficient codec algorithms
and structures having “better” properties with respect to resilience to attacks; we leave it as an
open question. Another interesting question with practical value is whether the class of reducible
permutation graphs can be extended so that it includes other classes of graphs with structural
properties capable to efficiently encode watermark numbers.

Finally, the evaluation of our codec algorithms and structures under other watermarking mea-
surements in order to obtain detailed information about their practical behavior is an interesting
problem for future study.

In Chapter 4, we proposed an efficient algorithm which encodes a self-inverting permutation
7* into several cographs Cy[r*], Cao[r*],...,Cplm*], n > 2, and an efficient transformation of a
cograph into a reducible permutation graph F[r*]. In light of our encoding algorithms which
encode a watermark integer w as a self-inverting permutation 7* [28] and the permutation 7*
into many different cographs, we conclude that we can efficiently encode the same watermark
integer w into several reducible permutation graphs Fy[n*], Fo[n*],... Fy[7*], n > 2.

It is worth noting that this property causes a codec watermarking system resilient to attacks
since we can embed multiple copies of the same watermark value w into an application program.

An interesting open question is whether the approach and techniques used in this chapter
can help develop efficient codec algorithms and graph structures having “better” properties with
respect to resilience, size, and/or time and space efficiency; we leave it as an open problem for

future investigation.

8.2 Software Watermarking

In Chapter 5, through the evaluation of WaterRPG, we showed that our model has zero false
positive and false negative rates in the case where the watermarked code has not been attacked.
Indeed, it is true because the execution of the watermarked program P* with the secret input
sequence always builds a call graph G(P*, Ije,) which is isomorphic with the water-graph F[r*].

The execution time and space overhead varies depending on the size of the embedded water-
mark; in fact, the overhead increases linearly in the size of the water-graph F[r*]. It is worth
noting that the data-rate is directly correlated with the number of functions used or, equivalently,
with the size of the water-graph. In the case where the code (in bits) of the original program P
is large enough, our model has high data-rate and extremely low embedding overhead. We point
out that the number of nodes of the water-graph F[n*] affects the number of functions we use
for embedding. Thus, it is possible to use fewer functions which would result in a graph F[r*]
with fewer nodes; note that, the graph F[7*] on n = 2k + 1 nodes can encode a watermarking
integer w in the range [0, 2%¥~1 — 1]; see, authors’ work [28, 23].

Furthermore, in our model the code which is associated with the watermark is composed
both by new code and host code; this enable us to obtain high stealth watermarked programs
P*. Moreover, since the watermark code has become an indispensable piece of the functionality
of program P*, a malicious user would need to fully understand the operations of P* in order to
intervene changing possible execution flows. On the other hand, the extraction of our watermark
takes into account and uses the traces of all the functions that are assigned to the nodes of the

144

water-graph F[r*| which, in turn, means that if a subset of these functions is intercepted then
the watermark can not be extracted; unfortunately, this implies a poor part protection of our
watermarked program P*.

Finally, the experimental results show the high functionality of all the Java programs P*
watermarked under both the naive and stealthy cases, and also their low time complexity. The
experiments also show that the watermarking approaches supported by our model can help de-
velop efficient watermarked Java programs with respect to various and broadly used performance
and resilience watermarking criteria.

Closing, we note that in light of our dynamic watermarking model WaterRPG it would be
very interesting to compare it with other dynamic, or even static, already proposed software
watermarking models [35, 31, 86, 95, 106]; we leave it as a direction for future work.

8.3 Image and Audio Watermarking

In Chapter 6, we proposed watermarking models for embedding invisible watermarks into dig-
ital images and audio signals. We presented methods for embedding invisible watermarks into
images and their intention is to prove the authenticity of an image. The watermarks are given
in numerical form, transformed into self-inverting permutations, and embedded into an image
by partially marking the image in the frequency domain; more precisely, thanks to 2D repre-
sentation of self-inverting permutations, we locate specific areas of the image and modify their
magnitude of high frequency bands by adding the least possible information ensuring robustness
and imperceptiveness.

We experimentally tested our embedding and extracting algorithms on color JPEG images
with various and different characteristics; we obtained positive results as the watermarks were
invigible, they didn’t affect the images’ quality and they were extractable despite the JPEG
compression. In addition, the experimental results show an improvement in comparison to the
initial obtained results on spatial domain and they also depict the validity of our proposed codec
algorithms.

It is worth noting that the proposed algorithms on image watermarking in frequency domain
are robust against cropping or rotation attacks since the watermarks are in SiP form, mean-
ing that they determine the embedding positions in specific image areas. Thus, if a part is
being cropped or the image is rotated, SiP’s symmetry property may allow us to reconstruct
the watermark. Furthermore, our codec algorithms can also be modified in the future to get
robust against scaling attacks. That can be achieved by selecting multiple widths concerning the
ellipsoidal annuli depending on the size of the input image.

Finally, we should point out that the study of our quality function f remains a problem for
further investigation; indeed, f could incorporate learning algorithms [102] so that to be able to
return the ¢,y accurately and in a very short computational time.

Additionally, in this chapter we presented an audio watermarking technique which efficiently
and invisibly embeds information, i.e., watermarks, into an audio digital signal. Our technique
is based on the same main idea of image watermarking technique expanding thus the digital
objects that can be efficiently watermarked through the use of self-inverting permutations.

We experimentally tested our embedding and extracting algorithms on WAV audio signals.

145

Our testing procedure includes the phases of embedding a numerical watermark w = #* into
several audio signals S, storing the watermarked audio S,, in WAV format, and extracting the
watermark w = 7* from the audio S,. We obtained positive results as the watermarks were
invisible, they didn’t affect the audio’s quality and they were extractable.

The performance evaluation of our audio watermarking technique on several other attacks
remains a problem for further investigation.

8.4 Text Watermarking

In Chapter 7, we presented embedded algorithms, along with their corresponding extraction
algorithms, for embedding watermark numbers w into PDF documents T using three different
representations of a self-inverting permutation 7*, namely 1D-representation, 2D-representation,
and RPG-representation; note that, RPG-representation means the encoding of permutation 7*
as a reducible permutation graph F[r*].

The main features of our algorithms, i.e., the way they mark a PDF document T or, equiva-
lently, the way they embed a self-inverting permutation 7* into document 7', are summarized as
follows:

o In the first algorithm Embed_SiP.to.PDF-I the marking of a PDF document T is performed
by increasing the distance (or, space) between two consecutive words in a paragraph of 7'

o The main idea behind the second algorithm Embed_SiP.to.PDF-II based on the fact that
7* has a 2D-representation and, since pages of a PDF documents T are two dimensional
objects, it can be efficiently used to mark specific positions on a page of T resulting thus
the watermarked PDF document T*.

o The third graph-based embedding algorithm Encode_RPG. to.PDF uses a different approach:
it exploits the structure of a PDF document 7" and embeds the graph F[7*] into T' by adding
appropriate object-references in the document 7', through the use of statements of type
/Kids(k O R), so that the graph F[7*] can be easily constructed from the page tree PT(T™)
of the resulting watermarked document 7.

In light of our graph-based embedding algorithm Encode RPG.to.PDF it would be very interesting
to investigate the possibility of altering other components of the document structure of a PDF
file in order to embed the graph F[n*]; we leave it as a direction for future work.

Moreover, an interesting open question is whether the approach and techniques used in this
chapter can help develop efficient encoding algorithms having “better” properties with respect
text attacks; we leave it as an open problem for future investigation.

146

BIBLIOGRAPHY

1]

2]

G. Arboit. A method for watermarking Java programs via opaque predicates. Proc. of the
5th Int’l Conference on Electronic Commerce Research (ICECR-5), 2002.

N. Ahmed, T. Natarajan and K.R. Rao. Discrete cosine transform. IEEE Transactions on
Computers (C-23), 90-93, 1974.

M.A. Alsalami, and M.M. Al-Akaidi. Digital audio watermarking: survey. De Montfort
University, 1-14, 2003.

Adobe Systems Incorporated. Adobe Portable document format Version 1.7,
http://www.adobe.com, Nov. 2006.

M.J. Atallah, V. Raskin, C.F. Hempelmann, M. Karahan, R. Sion, U. Topkara, and
K.E. Triezenberg. Natural language watermarking and tamperproofing. LNCS 5, Springer,
196212, 2003.

T. Amano, and D. Misaki. A feature calibration method for watermarking of document im-
ages. Proc. of the 5th In’l Conference on Document Analysis and Recognition (ICDAR’99),
IEEE, 91-94, 1999.

A. Bretscher, D. Corneil, M. Habib, and C. Paul. A simple linear time LexBFS cograph
recognition algorithm. STAM J. Discrete Math. 22, 1277-1296, 2008.

W. Bender, D. Gruhl, and N. Morimoto. Techniques for data hiding. Proc. of the IBM
systems journal 35(3-4), 313-336, 1996.

J.T. Brassil, S. Low, N.F. Maxemchuk, and L.O. Gorman. Electronic Marking and Identi-
fication Techniques to Discourage Document Copying. IEEE Journal on Selected Areas in
Communications 13(8), 1495-1504, 1995.

J.T. Brassil, 5. Low, N.F. Maxemchuk, L..O. Gorman. Hiding information in document
images. Proc. of the 29th Annual Conference on Information Sciences and Systems, Johns
Hopkins University, 482-489, 1995.

J.T. Brassil, 5. Low, and N.F. Maxemchuk. Copyright protection for the electronic distri-
bution of text documents. Proc. of the IEEE 87(7), 1181-1196, 1999.

G.S. Bindra. Invisible communication through Portable Document File (PDF) format.
Proc. of the 7th Int’l Conference on Intelligent Information Hiding and Multimedia Signal
Processing (ITH-MSP), 173-176, 2011.

147

[13]

[19]

[22]

G.S. Bindra. Masquerading as a trustworthy entity through Portable Document File (PDF)
format. Proc. of the 2011 IEEE Int’l Conference on PASSAT, and IEEE Int’] Conference
on Social Com., Boston, USA, 2011.

A. Brandstadt, V.B. Le, and J. Spinrad. Graph classes: a survey. STAM Monographs on
Discrete Mathematics and Applications 3, 1999.

I. Cox, J. Kilian, T. Leighton, and T. Shamoon. A secure, robust watermark for multimedia.
Proc. of the 1st Int’l Workshop on Information Hiding, LNCS 1174, 317-333, 1996

M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking Digital Images in the Fre-
quency Domain: Performance and Attack Issues, LNBIP 189, Springer, 6884, 2014.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos. From image to audio watermarking using
self-inverting permutations. Proc. of the 10th Int’l Conference on Web Information Systems
and Technologies (WEBIST’14), SciTePress, 177-184, 2014.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking images in the frequency
domain by exploiting self-inverting permutations. Journal of Information Security 4(2),
80-91, 2013.

I. Chionis, M. Chroni, and S.D. Nikolopoulos. A dynamic watermarking model for em-
bedding reducible permutation graphs into software. Proc. of the 10th Int’l Conference on
Security and Cryptography (SECRYPT’13), SciTePress, 74-85, 2013.

I. Chionis, M. Chroni, and S.D. Nikolopoulos. Evaluating the WaterRpg software water-
marking model on Java application programs. Proc. of the 17th Panhellenic Conference on
Informatics (PCT’13), ACM, 144-151, 2013.

M. Chroni and S.D. Nikolopoulos. Design and evaluation of a graph codec system for soft-
ware watermarking. Proc. of the 2nd Int’l Conference on Data Management Technologies
and Applications (DATA’13), SciTePress, 277-284, 2013.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking images in the frequency
domain by exploiting self-inverting permutations. Proc. of the 9th Int’l Conference on
Web Information Systems and Technologies (WEBIST’13), SciTePress, 45-54, 2013, (Best
Student Paper Award).

M. Chroni and S.D. Nikolopoulos. An efficient graph codec system for software water-
marking. Proc. of the 36th Int’l Conference on Computers, Software, and Applications
(COMPSAC’12), Workshop STPSA’12, IEEE, 595-600, 2012.

M. Chroni and S.D. Nikolopoulos, Multiple encoding of a watermark number into reducible
permutation graphs using cotrees. Proc. of the 13th Int’l Conference on Computer Systems
and Technologies (CompSysTech’12), ACM, 118-125, 2012.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos. Watermarking images using 2D representa-
tions of self-inverting permutations. Proc. of the 8th Int’l Conference on Web Information
Systems and Technologies (WEBIST’12), SciTePress, 380-385, 2012.

148

[26]

[27]

28]

32]

[33]

M. Chroni and S.D. Nikolopoulos. An embedding graph-based model for software water-
marking. Proc. of the 8th Int’l Conference on Intelligent Information Hiding and Multime-
dia Signal Processing (ITH-MSP’12), IEEE, 261-264, 2012.

M. Chroni and S.D. Nikolopoulos. Encoding watermark numbers as cographs using self-
inverting permutations. Proc. of the 12th Int’l Conference on Computer Systems and Tech-
nologies (CompSysTech’11), ACM ICPS 578, 142-148, 2011.

M. Chroni and S.D. Nikolopoulos. Encoding watermark integers as self-inverting permuta-
tions. Proc. of the 11th Int’l Conference on Computer Systems and Technologies (Comp-
SysTech’10), ACM ICPS 471, 125-130, 2010.

C. Collberg and J. Nagra. Surreptitious Software. Addison-Wesley, 2010.

C. Collberg, S. Kobourov, E. Carter, and C. Thomborson. Error-correcting graphs for soft-
ware watermarking. Proc. of the 29th Workshop on Graph-Theoretic Concepts in Computer
Science (WG’03), LNCS 2880, 156-167, 2003.

C. Collberg, A. Huntwork, E. Carter, G. Townsend, and M. Stepp. More on graph theoretic
software watermarks: Implementation, analysis, and attacks. Information and Software
Technology 51, 5667, 2009.

C. Collberg and C. Thomborson. Software watermarking: models and dynamic embed-
dings. Proc. of the 26th ACM SIGPLAN-SIGACT on Principles of Programming Lan-
guages (POPL’99), 311-324, 1999.

C. Collberg, C. Thomborson, and D. Low. On the limits of software watermarking. De-
partment of Computer Science, The University of Auckland, Technical Report No 164,
1998.

C.S. Collberg, C.D. Thomborson,J.J. Horning, W.O. Silbert, L.R. Matheson, A.K. Wright,
and S.S. Owicki. Software watermarking techniques. US Patent, 0214188, 2011.

C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn and M. Stepp.
Dynamic path-based software watermarking. Proc. of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, ACM SIGPLAN 39, 107-118, 2004.

C. Collberg, and C. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation -
Tools for Software Protection. IEEE Trans. Software Engineering 28, 735-746, 2000.

P. Cousot and R. Cousot. An abstract interpretation-based framework for software water-
marking. Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’04), 173-185, 2004.

D. Curran, N. Hurley and M. Cinneide. Securing Java through software satermarking,
Proc. Proc. of the Int’] Conference on Principles and Practice of Programming in Java
(PPPJ’03), 145-148, 2003.

D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. STAM
J. Comput. 14, 926-984, 1985.

149

[40]

[41]

[42]

[47]

[48]

[49]

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press (2nd ed.), 2001.

J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation C-23, 297-301, 1965.

L. Chun-Shien, H. Shih-Kun, S. Chwen-Jye, M.L. Hong-Yuan. Cocktail watermarking for
digital image protection. IEEE Trans. on Multimedia 4, 209-224, 2000.

1.J. Cox, M.L. Miller, J.A. Bloom, J. Fridrich, and T. Kalker. Digital Watermarking and
Steganography. Morgan Kaufmann (2nd ed.), 2008.

1.J. Cox, J. Kilian, T. Leighton, and T. Shamoon. Secure Spread Spectrum Watermarking
for Multimedia. IEEE Transactions on Image Processing 6, 1673-1687, 1997.

1.J. Cox, G. Doérr, and T. Furon. Watermarking is not cryptography. Proc. of the Digital
Watermarking, Springer, 1-15, 2006.

S. Craver, N. Memon, B.L. Yeo, and M. Yeung. Resolving rightful ownerships with invisible
watermarking techniques: limitations, attacks, and implications. IEEE Journal on Selected
Areas in Communications (Special issue on Copyright and Privacy Protection), 16(4), 573—
586, 1998.

B. Chen, and G.W. Wornell. Quantization Index Modulation: A Class of Provably Good
Methods for Digital Watermarking and Information Embedding. IEEE Transactions on
Information Theory 47(4), 1423-1443, 2001.

R.L. Davidson and N. Myhrvold. Method and system for generating and auditing a signa-
ture for a computer program. US Patent 5.559.884, Microsoft Corporation 1996.

J. C. Davis. Intellectual property in cyberspace - what technological / legislative tools
are necessary for building a sturdy global information infrastructure? Proc. of the Int’l
Symposium on Technology and Society, IEEE, 66-74, 1997.

1.P. Goulden, and D.M. Jackson. Combinatorial Enumeration. New York, Wiley, 1983.

D. Grover. The Protection of Computer Software - Its Technology and Applications. Cam-
bridge University Press, New York, 1997.

M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York (1980). Annals of Discrete Math. 57 (2nd ed.), Elsevier 2004.

R.C. Gonzalez and R.E. Woods. Digital Image Processing. Prentice-Hall, 2007.

R.C. Gonzalez, R.E. Woods, and S.L. Eddins. Digital Image Processing using Matlab.
Prentice-Hall, 2003.

S. Garfinkel. Web Security, Privacy and Commerce. O'Reilly (2nd ed.), 2001.
R. Raysman, E.A Pisacreta, and K.A. Adler. Intellectual Property Licensing: Forms and

Analysis.Law Journal Press, 1999.

150

[57]

[69]

[70]

S. Graham and P. Kessler and M. Mckusick. Gprof: A call graph execution profiler. ACM
SIGPLAN Notices 17(6), 120-126, 1982.

F. Harary, and E. Palmer. Graphical Enumeration. New York, Academic Press, 1973.

M.S. Hecht and J.D. Ullman. Flow graph reducibility. Proc. of the 4th Annual ACM Sym-
posium on Theory of Computing, ACM, 238-250, 1972.

M.S. Hecht and J.D. Ullman. Characterizations of reducible flow graphs. Journal of the
ACM 21(3), 367-375, 1974.

F. Hartung, and M. Kutter. Multimedia watermarking techniques. Proc. of the IEEE
87(70), 1079-1107, 1999.

A. Hore and D. Ziou. Image Quality Metrics: PSNR vs. SSIM. Proc. of the 20th Int’l
Conference on Pattern Recognition, 2366-2369, 2010.

R.W. Hamming. Error detecting and error correcting codes. Bell System Technical Journal
29(2), 147-160, 1950.

D. Huang, and H. Yan. Interword distance changes represented by sine waves for water-
marking text images. IEEE Trans. Circuits and Systems for Video Technology 11(12),
1237-1245, 2001.

E.F. Hembrooke. Identification of sound and like signals. US Patent 3.004.104, Google
Patents, 1961.

V.K. Ingle and J.G. Proakis. Digital Signal Processing using Matlab. Cengage Learning
(3rd ed.), 2010.

7. Jalil, and A.M. Mirza. An invisible text watermarking algorithm using image watermark.
Proc. of the Innovations in Computing Sciences and Software Engineering, 147-152, 2010.

K. Jain, M. Raghavan, and S. K. Jha. Study of the linkages between innovation and intel-
lectual property. Proc. of the PICMET 2009, 1945-1953, 2009.

D.E. Knuth. Fundamental Algorithms. The Art of Computer Programming: Vol.1,
Addison-Wesley (3rd ed.), Reading, MA, USA, 1997.

M. Kaur, S. Jindal, and S. Behal. A Study of Digital Image Watermarking. Journal of
Research in Engineering and Applied Sciences 2, 126-136, 2012.

N. Komatsu, and T. Hideyoshi. A proposal on digital watermark in document image com-
munication and its application to realizing a signature. Electronics and Communications
in Japan (Part I: Communications) 73(5), 22-33, 1990.

B.S. Ko, R. Nishimura, and Y. Suzuki. Time-Spread Echo Method for Digital Audio Wa-
termarking. IEEE Transactions on Multimedia 7(2), 212-221, 2005.

M. Kutter, F. Jordan, and F. Bossen. Digital Watermarking of Color Images using Ampli-
tude Modulation. Journal of Electronic Imaging 7(2), 326-332, 1998.

151

[74]

[75]

[76]

[77]

[78]

[79]

H. Lerchs. On cliques and kernels. Department of Computer Science, University of Toronto,
March 1971.

V. Licks and R. Hordan. On Digital Image Watermarking Robust to Geometric Transfor-
mations. Proc. of the IEEE Int’l Conference on Image Proceesing 3, 690-693, 2000.

H. Liu, L. Li, , J. Li, and J. Huang. Three novel algorithms for hiding data in pdf files
based on incremental updates. In Digital Forensics and Watermarking, Springer Berlin
Heidelberg, 167-180, 2012.

X. Liu, Q. Zhang, C. Tang, J. Zhao, and J. Liu. A Steganographic Algorithm for Hiding
Data in PDF Files Based on Equivalent Transformation. Int’l Symposiums on Information
Processing (ISIP), 417-421, 2008.

Y. Liu, X. Sun, and G. Luo. A novel information hiding algorithm based on structure of
PDF document. Computer Engineering 32(17), 230-232, 2006.

1.S. Lee, and W.H. Tsai. A new approach to covert communication via PDF files. Signal
Processing 90(2), 557-565, 2010.

S.H. Low, N.F. Maxemchuk, and A.M. Lapone. Document identification for copyright pro-
tection using centroid detection. IEEE Transactions on Communications 46(3), 372-381,
1998.

S.H. Low, and N.F. Maxemchuk. Capacity of text marking channel. IEEE Signal Processing
Letters 7(12), 345-347, 2000.

P. Lu, Z. Lu, Z. Zhou, and J. Gu. An optimized natural language watermarking algorithm
based on TMR. Proc. of the 9th Int’l Conference for Young Computer Scientists, 1459—
1463, 2008.

M. A. Lemley. Intellectual property, and free riding. Texas Law Review 83, 1031, 2005.

G. Myles and C. Collberg. Software watermarking via opaque predicates: Implementation,
analysis, and attacks. Electronic Commerce Research 6, 155-171, 2006.

S.A. Moskowitz and M. Cooperman. Method for stegacipher protection of computer code.
US Patent 5.745.569, 1996.

A. Monden, H. lida, K. Matsumoto, K. Inoue and K. Torii. A practical method for water-
marking Java programs, Proc. of the 24th Computer Software and Applications Conference
(COMPSAC’00), 191-197, 2000.

N.F. Maxemchuk, and S. Low. Marking text documents. Proc. of the IEEE Int’l Conference
on Image Processing, Washington DC, 13-16, 1997.

N.F. Maxemchuk, ans S.H. Low. Performance comparison of two text marking methods.
IEEE Journal of Selected Areas in Communications 16(4), 561-572, 1998.

N.F. Maxemchuk. Electronic document distribution. AT&T Technical Journal 73(5), 73—
80, 1994.

152

[90]

[91]

[92]

[93]

[94]

[95]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

H.M. Meral, and B. Sankur, A. Ozsoy, T. Glingor, and E. Seving. Natural language water-
marking via morphosyntactic alterations. Computer Speech and Language 23(1), 107-125,
2009.

H.M. Meral,, E. Seving, E. Unkar, B. Sankur, A. Ozsoy, and T. Gingor. Syntactic tools
for text watermarking, Proc. of the 19th SPIE Electronic Imaging Conference on Security,
Steganography, and Watermarking of Multimedia Contents, San Jose, CA, 2007.

B. Macq, and O. Vybornova. A method of text watermarking using presuppositions. In
Electronic Imaging 2007, Society for Optics and Photonics, 65051R-65051R-10, 2007.

J. Nagra, C. Thomborson, and C. Collberg. A functional taxonomy for software water-
marking. Australian Computer Science Communications 24(1), 177-186, 2002.

S.D. Nikolopoulos. Coloring permutation graphs in parallel. Discrete Applied Mathemat-
ics 120, 165-195, 2002.

J. Nagra, and C. Thomborson. Threading software watermarks. Proc. of the 6th Int’l
Workshop on Information Hiding (IH’04), LNCS 3200, 208-223, 2004.

J.J.K. O’'Ruanaidh, W.J. Dowling, F.M. Boland. Watermarking digital images for copyright
protection. Proc. of the Vision, Image and Signal Processing 143, IEEE, 250-256, 1996.

D. Pascale. A Review of RGB Color Spaces ...from xyY to R’G’B’. The BabelColor Com-
pany, 2003.

V.M. Potdar, S. Han, and E. Chang. A survey of digital image watermarking techniques.
Proc. of the IEEE Third Int’l Conference on Industrial Informatics (INDIN), 709-716,
2005.

F. Petitcolas. Image Database for Watermarking. Retrive from Petitcolas’ personal web
site (http://www.petitcolas.net/fabien/watermarking/), Retrieved September, 2012.

I. Pitas. A Method of Signature Casting on Digital Images. Proc. of the IEEE Int’l Con-
ference on Image Processing, ICTP-1996, 215218, 1996.

G. Qu and M. Potkonjak. Analysis of watermarking techniques for graph coloring problem.
Proc. IEEE/ACM Int’l Conference on Computer-aided Design (ICCAD’98), ACM Press,
190-193, 1998.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (3rd ed.), Prentice-
Hall, 2010.

T.F. Rodriguez, B.T. Maclntosh, and A.E. Gustafson. Software watermarking. US Patent
20100095376, 2010.

C. Rey, and J.L. Dugelay. A survey of watermarking algorithms for image authentication.
EURASIP Journal on Applied Signal Processing 6, 613-621, 2002.

P. Samson. Apparatus and method for serializing and validating copies of computer soft-
ware. US Patent 5.287.408, 1994.

153

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

J. Stern, G. Hachez, F. Koeune, and J. Quisquater. Robust object watermarking: Applica-
tion to code. Proc. of the 3rd Int’l Workshop on Information Hiding (IH’99), LNCS 1768,
368-378, 1999.

R. Sedgewick, and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-
Wesley, 1996.

S. Sharma, J. Rajpurohit, and S. Dhankar. Survey on different level of audio watermarking
techniques. Proc. of the Int’l Journal of Comput. Applications 49(10), 41-48, 2012.

V. Solachidis and I. Pitas. Circularly Symmetric Watermark Embedding in 2D DFT Do-
main. IEEE Transactions on Image Processing 10(11), 1741-1753, 2001.

C. Song, S. Sudirman, M. Merabti, and D. Llewellyn-Jones. Analysis of digital image
watermark attacks. In Consumer Communications and Networking Conference (CCNC),
1-5, 2010.

X. Sun, and A.J. Asiimwe. Noun-verb based technique of text watermarking using recursive
decent semantic net parsers. LNCS 3612, 958-961, 2005.

B.K. Sharma, R.P. Agarwal, and R. Singh. An efficient software watermark by equation
reordering and FDOS. Proc. of the Int’l Conference on Soft Computing for Problem Solving
(SocProS 2011, 131, 735-745, 2011.

H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto. Design and evaluation of
birthmarks for detecting theft of Java programs. Proc. of the Int’l Conference on Software
Engineering (IASTED SE’04), 569-575, 2004.

W.G. Horne, U. Maheshwari, R.E. Tarjan, J.J. Horning, W.O. Silbert, L.R. Matheson,
A K. Wright, and S.S. Owicki. Systems and methods for watermarking software and other
media. US Patent 8.140.850, 2012.

R.G. Van Schyndel, A.Z. Tirkel, and C.F. Oshorne. A digital watermark. Proc. of the
Image Processing (ICIP-94), 86-90, 1994.

A.Z. Tirkel, G.A. Rankin, R.M. Van Schyndel, W.J. Ho, N.R.A. Mee, and C.F. Os-
borne. Electronic watermark. Digital Image Computing, Technology and Applications
(DICTA’93), 666673, 1993.

A.Z. Tirkel, R.G. Schyndel, and C. Osborne. A Two-Dimensional Watermark. Proc. of the
DICTA 95(7), 5-8, 1995.

U. Topkara, M. Topkara, and M.J. Atallah. The hiding virtues of ambiguity: Quantifiably
resilient watermarking of natural language text through synonym substitutions, Proc. of
the ACM Multimedia and Security Conference, 2006.

M. Topkara, U. Topraka, and M.J. Atallah. Information hiding through errors: A con-
fusing ap- proach. Proc. of the SPIE Int’l Conference on Security, Steganography, and
Watermarking of Multimedia Contents, San Jose, CA, 2007.

154

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software wa-
termarking. Proc. of the 4th Int’l Workshop on Information Hiding (IH'01), LNCS 2137,
157-168, 2001.

F.H. Wang, J.S. Pan, and L.C. Jain. Innovations in Digital Watermarking Techniques.
Springer, 2009.

7. Wang, A.C. Bovic, H.R. Sheikh, and E.P. Simoncelli. Image Quaity Assessment: From
Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4),
600-612, 2004.

R.B. Wolfgang, and E.J. Delp. A watermark for digital images. Proc. of the IEEE Int’l
Conference on Image Processing, ICIP-1996, 219-222, 1996.

X.Y. Wang, and H. Zhao. A Novel Synchronization Invariant Audio Watermarking Scheme
Based on DWT and DCT. IEEE Transactions on Signal Processing 54(12), 4835-4840,
2006.

Y. Xiong, and Z.X. Ming. Covert Communication Audio Watermarking Algorithm Based
on LSB. Proc. of the In’l Conference on Communication Technology, ICCT-2006, 1-4, 2006.

L. Xie, J. Zhang, and H. He. Robust Audio Watermarking Scheme Based on Non-uniform
Discrete Fourier Transform. Proc. of the IEEE Int’l Conference on Engineering of Intelligent
Systems, 1-5, 2006.

S. Yang, W. Tan, Y. Chen, and W. Ma. Quantization-Based Digital Audio Watermarking
in Discrete Fourier Transform Domain. Journal of Multimedia 5(2), 151-158, 2010.

T. Xie, and D. Notkin. An Empirical Study of Java Dynamic Call Graph Extractors.
University of Washington CSE, Technical Report 02-12-03, 2002.

J. Zhu, Y. Liu, and K. Yin. A Novel Planar IPPCT Tree Structure and Characteristics
Analysis. Journal of Software 5(3), 344-351, 2010.

W. Zhu, C. Thomborson, and F.Y. Wang. A survey of software watermarking. Proc. IEEE
Int’l Conference on Intelligence and Security Informatics (IS’05), LNCS 3495, 454-458,
2005.

L. Zhang, Y. Yang, X. Niu, and S. Niu. A survey on software watermarking. Journal of
Software 14, 268277, 2003.

J.M. Zain. Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) for
Medical Images for medical images. European Journal of Scientific Research 42(2), 250-256,
2010.

S. Zhong, X. Cheng, and T. Chen. Data hiding in a kind of PDF texts for secret commu-
nication. Int’l Journal of Network Security 4(1), 17-26, 2007.

X. Zhou, W. Zhao, Z. Wang, and L.Pan. Security Theory and Attack Anlysis for Text
watermarking. Proc. of the Int’l Conference on E-Business and Information System Security
(EBISS), 1-6, 2009.

155

AUTHOR'S PUBLICATIONS

1. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “Watermarking Digital Images in the Fre-
quency Domain: Performance and Attack Issues”, LNBIP 189, Springer, 68—84, 2014.

2. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “From image to audio watermarking using
self-inverting permutations”, Proceedings of the 10th Int’l Conference on Web Information
Systems and Technologies (WEBIST 14), SciTePress, 177-184, 2014.

3. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “Watermarking images in the frequency
domain by exploiting self-inverting permutations”, Journal of Information Security 4(2),
80-91, 2013.

4. 1. Chionis, M. Chroni, and S.D. Nikolopoulos, “A dynamic watermarking model for embed-
ding reducible permutation graphs into software”, Proceedings of the 10th Int’l Conference
on Security and Cryptography (SECRYPT’13), SciTePress, 74-85, 2013.

5. M. Chroni and S.D. Nikolopoulos, “Design and evaluation of a graph codec system for
software watermarking”, Proceedings of the 2nd Int’l Conference on Data Management
Technologies and Applications (DATA’13), SciTePress, 277-284, 2013.

6. M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “Watermarking images in the frequency
domain by exploiting self-inverting permutations”, Proceedings of the 9th Int’l Conference
on Web Information Systems and Technologies (WEBIST’13), SciTePress, 45-54, 2013,
(Best Student Paper Award).

7. 1. Chionis, M. Chroni, and S.D. Nikolopoulos, “Evaluating the WaterRpg software wa-
termarking model on Java application programs”, Proceedings of the 17th Panhellenic
Conference on Informatics (PCI'13), ACM, 144-151, 2013.

8. M. Chroni and S.D. Nikolopoulos, “Multiple encoding of a watermark number into reducible
permutation graphs using cotrees”, Proceedings of the 13th Int’l Conference on Computer
Systems and Technologies (CompSysTech’12), ACM, 118-125, 2012.

9. M. Chroni and S.D. Nikolopoulos, “An efficient graph codec system for software watermark-
ing” | Proceedings of the 36th Int’l Conference on Computers, Software, and Applications
(COMPSAC’12), Workshop STPSA’12, IEEE, 595-600, 2012.

AUTHOR’S PUBLICATIONS (CONT.)

10.

11.

12.

13.

14.

15.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “A watermarking system for teaching intel-
lectual property rights: implementation and performance”, Proceedings of the 11th Int’l
Conference on Information Technology Based Higher Education and Training (ITHET’12),
IEEE, 1-8, 2012.

M. Chroni and S.D. Nikolopoulos, “An embedding graph-based model for software water-
marking”, Proceedings of the 8th Int’] Conference on Intelligent Information Hiding and
Multimedia Signal Processing (ITH-MSP’12), IEEE, 261-264, 2012.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “Watermarking images using 2D represen-
tations of self-inverting permutations”, Proceedings of the 8th Int’l Conference on Web
Information Systems and Technologies (WEBIST’12), SciTePress, 380-385, 2012.

M. Chroni, A. Fylakis, and S.D. Nikolopoulos, “A watermarking system for teaching stu-
dents to respect intellectual property rights”, Proceedings of th 4th Int’l Conference on
Computer Supported Education (CSEDU’12), SciTePress, 336-339, 2012.

M. Chroni and S.D. Nikolopoulos, “Encoding watermark numbers as cographs using self-
inverting permutations”, Proceedings of the 12th Int’l Conference on Computer Systems
and Technologies (CompSysTech’11), ACM, 142-148, 2011, (Best Paper Award).

M. Chroni and S.D. Nikolopoulos, “Encoding watermark integers as self-inverting permu-
tations,” Proceedings of the 11th Int’ 1 Conference on Computer Systems and Technologies
(CompSysTech’10), ACM, 125-130, 2010.

SHORT CV

Maria G. Chroni was born in Ioannina, Greece, on 4th of December, 1982. She holds a BSc degree
(2004) and an MSc degree (2007) in Computer Science both from the Department of Computer
Science, University of loannina. She also holds a BEdu degree (2013) in Early Childhood Edu-
cation from the Department of Early Childhood Education of the University of loannina. She
defended her PhD on 19th of December, 2014.

Her research interests are in design and analysis of algorithms, algorithmic graph theory,
and information hiding (in this area, she has proposed several algorithmic techniques for water-
marking software, image, audio, and text). Her research interests are extended in applications
of Information and Communication Technology (ICT) in Education. She has participated in the
research project Pythogoras-IT and the European projects TRICE (Teaching, Research, Innova-
tion in Computing Education) and FETCH (Future Education and Training in Computing: How
to support learning at anytime anywhere). She is a researcher at the Algorithms Engineering
Lab (AlgoLab) of the Department of Computer Science and Engineering, University of Ioan-
nina (2009-now). She is a member of IEEE (2012-now) and Student Branch Chair of IEEE at
University of Ioannina (2012-14).

