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Me v ohoxAfpwot| tng mapovoag Metamtuytoxie Awatefric Yo Hdeia va
aneLYOVL Eva ot vy aEIeTE oE aUTOUE ToL Ye Borinoay va TNy Qépw oE TEPACS.

Oa Adelo va evyaploThon Witepa Tov emPBAEnovtd pou, Avamhnewty Ka-
Inynt xoeto Xdern Hanaddémovdo, o onolog npocépepe T0 evilapépoy VEua Tng
epyaoiog auTAg o Hou Topetye o dha To oTddL TNE eEENENS TNg MeTamTuytlaxihc
pou Atatelfnc, TapOho TOV TEQLOPIGUEVO YEOVO Tou, OAN TNV amapalTnTy xoo-
O YNoM, 0ARE xou oTdNTOTE GAAO YEELlOUOLY.
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TORUTNENCELS TOUC.

Awoddvopon emlong Tny avdyxn vo euyoelo THow YepUS TNV GUVABEAPO Xl GUU-
porthTetd wou oto Metantuyloxd Tlpdypauua Xnouddv, xupioa Evoryyeiia Tonorv-
TC1d, YLt TNV AUERLC TN CUUTAEAOC TAUCT) TNE XAk TNY TOAUTLUT GUVOEOUN TNE TROS TO
TPOCWTO HOU, GE OAEC TIC DUOXOAEG OTUIYUES, UXUONUAIXES XOU UT), TNG CUVONXTG
UOALO TaL BIEXELS TV PETATTUYLAXWDY OV GTIOUOWY.
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HOU GTIOLBWV.






[IEPIAHTYH

H xopugy| evog ypagriuatog tng onolag 1 yertowid ebvon xhixa, xokeiton simpli-
cial. Ebvar yvewotd 611 1) ebpeon dhwv twv simplicial xopupdv evog ypaphuatog
e 1 xopLEES xaL m oxpés unopel va emteuydel oe O(nm) ypdvo 1 O(n*) yedvo,
6mou O(n®) eivar 0 YpGVOS TOU OTOUTELTOL YIot TOV TOARATAAGIAOUS TUVAXWY OL-
dotaone n x n. H évvola v xopupdv anoguyfc (avoidable vertices) amotehel
yevixeuon tng évvolag Twv simplicial xopugpny pe Tov axdroudo TpodTO: Lol xO-
eLet u ebvan xopupy| amoguyfc (avoidable) eav xdle enaydpevo povondt TELHV
XOPUPWY UE UECULO XOPUPT| TNV U TEQLEYETAL O EVOLY ETAYOUEVO XUXAO.

[opouctdlouye xou avahboLUE oAyOELIIOUC TOU GYEBLACOUE Yiot TNV €VPEDT
OAWYV TWV XOPLUPWY ATOPUYTS EVOS YRUPHUATOS UECHK TWV EVVOLMY TwV minimal
triangulations xou tng aviyvevong xowrc yertovide. Ilo ocuyxexpéva, divouue
ahydprdpouc pe mtolumhoxbtnta Yedvou O(n?m) xor O(nt*), avtiotoyo. Ent-
TAEOV, TTPOTEIVOUUE Xal €VaV THO Y YORO GAYORIIUO UE YEOVIXTH TOAUTAOXOTNTA
O(n? + m?), n onola cuurintel pe v avtioToyn TOATAOXGTNTA YPOVOU TNC
ebpeone Twv simplicial xopup®y ot apoud yeagpruata 6Tou yapoxtnellovion and

m = O(n).

AZ{Ter vo onueldoouUE OTL XA TNV AvEAUGT] TWV CUYXEXEHEVLY oAYoplluwy
oYeddooue eMTAEOV Evay BEATIOTO Ypouuxo olyderduo yio ta cograph xou €vory
oaly6prdpo yia tor chordal ypogpruata pe tohumhoxdtnta yedvou O(nm).

Enextelvouye ta anotedéopatd yoc, eZetdlovtog Tic axpéc anogpuync (avoid-
able edges) xat, mo yewxd, To povomdtior amoguyrc (avoidable paths) xaddde
ATOTEAOUV TNV PUOLXY| YEVIXEUOT TwV x0pLYLY anopuyhc. Tlapoucidlouue Evay
alyopripo yeovixric tohurthoxdtntac O(nm), o onolog avayvwpeilel note €va do-
0év enaryduevo povomdt (1 oaxun) etvon povordt (1 oeun) amopuynic.

Téhog, ouyxplvoude TNV eUNEELXY| ATOBOGCT, TV TREOTEWOUEVKLY ohYoplduwmy
MO, TOU EXTEAOUYTOL GTO GUVOAMXO YRAPTUAL ELGOB0U, XIS XL GTA GURLXVWUEVAL
unoypoapruatd tou. I'o To oxond autd, Bledyouue plor BIECOBIXT] TELPAUUOTIXY
MERETN Yot Var ovadEiE OUPE Tot TAEOVEXTAUOTA Xou TIG aBUVaiES xdde TpoTEVOUEVNC
TEYVIXAC.






ABSTRACT

A simplicial vertex of a graph is a vertex whose neighborhood is a clique. It
is known that listing all simplicial vertices can be done in O(nm) time or O(n®)
time, where O(n*) is the time needed to perform a fast matrix multiplication.
The notion of avoidable vertices generalizes the concept of simplicial vertices
in the following way: a vertex u is avoidable if every induced path on three
vertices with middle vertex u is contained in an induced cycle.

We present algorithms for listing all avoidable vertices of a graph through
the notion of minimal triangulations and common neighborhood detection.
In particular we give algorithms with running times O(n?m) and O(n!*),
respectively. Additionally, we propose a faster algorithm that runs in time
O(n? +m?), and thus matches the corresponding running time of listing the
simplicial vertices on sparse graphs with m = O(n).

Moreover, our results imply an optimal algorithm on cographs and O(nm)-
time algorithm on chordal graphs.

To complement our results, we consider their natural generalizations of
avoidable edges and avoidable paths. We propose an O(nm)-time algorithm
that recognizes whether a given induced path is avoidable.

Finally, we compare the empirical performance of our proposed algorithms
that are performed on the overall input graph as well as on its contracted sub-
graphs. To that end, we conduct a thorough experimental study to highlight
the merits and weaknesses of each technique.
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CHAPTER

INTRODUCTION

Closely related to chordal graphs is the notion of a simplicial vertex, that is
a vertex whose neighborhood induces a clique. In particular, Dirac [13] proved
that every chordal graph admits a simplicial vertex. However not all graphs
contain a simplicial vertex. Due to their importance to several algorithmic
problems, such as finding a maximum clique or detecting the chromatic num-
ber, it is natural to seek for fast algorithms that list all simplicial vertices of
a graph. For doing so, the naive approach takes O(nm) time, whereas the
fastest algorithms take advantage of computing the square of an n x n binary
matrix and run in O(n®) and O(m?/“+1)) time [15]. Hereafter we assume
that we are given a graph G on n vertices and m edges; currently, w < 2.37286
[2].

A natural way to generalize the concept of simplicial vertices is the notion of
an avoidable vertex. A vertex u is avoidable if either there is no induced path
on three vertices with middle vertex u, or every induced path on three vertices
with middle vertex u is contained in an induced cycle. Thus every simplicial
vertex is avoidable, however the converse is not necessarily true. As opposed
to simplicial vertices, it is known that every graph contains an avoidable vertex
[1, 7, 5, 17]. Extending the notion of avoidable vertices is achieved through
avoidable edges and, more general, avoidable paths. This is accomplished by
replacing the middle vertex in an induced path on three vertices by an induced
path on arbitrary k > 2 vertices, denoted by Pj. Beisegel et. al [3] proved first
that every non-edgeless graph contains an avoidable edge, considering the case
of k = 2. Regarding the existence of an avoidable induced path of arbitrary
length, Bonamy et al. [9] settled a conjecture in [3] and showed that every
graph is either Pj-free or contains an avoidable P.

Since avoidable vertices generalize simplicial vertices, it is expected that
avoidable vertices find applications in further algorithmic problems. Indeed,
Beisegel et. al [3] revealed new polynomially solvable cases of the maximum
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weight clique problem that take advantage the notion of avoidable vertices.
Similar to simplicial vertices, the complexity of a problem can be reduced by
removing avoidable vertices, tackling the problem on the reduced graph. It
is therefore of interest to list all avoidable vertices efficiently. If we are only
interested in computing two avoidable vertices this can be done in linear time
by using fast graph searches [5, 3]. However, computing the set of all avoidable
vertices requires to decide for each vertex of the graph whether it is avoidable
and a usual graph search cannot guarantee to test all vertices.

A naive approach that recognizes of a single vertex u of a graph G whether it
is avoidable or not, needs to check if all neighbors of u are pairwise connected in
an induced subgraph of G. Thus the running time of recognizing an avoidable
vertex is O(n3 + n?m) or, as explicitly stated in [3], it can be expressed as
O(m-(n+m)) where T is the number of edges in the complement of G. Inspired
by both running times, we first show that we can reduce in linear time the
listing problem on a graph G having m > n and m > n. In a sense such a
result states that graphs that are sparse (m < n) or dense (Th < n) can be
decomposed efficiently to smaller connected graphs for which their complement
is also connected. Towards this direction, we give an interesting connection
with the avoidable vertices on the complement of G. As a result, the naive
algorithms for listing all avoidable vertices take O(n3-m) and O(n-m-m) time,
respectively. Moreover, based on the proposed reduction we derive an optimal,
linear-time, algorithm for listing all avoidable vertices on graphs having no
induced path on four vertices, known as cographs.

Our main results consist of new algorithms for listing all avoidable vertices
in running times comparable to the ones for listing simplicial vertices. More
precisely, we propose three main approaches that result in algorithms for listing
all avoidable vertices of a graph G with the following running times:

e O(n? - m), by using a minimal triangulation of G. A close relation-
ship between avoidable vertices and minimal triangulation was already
known [3]. However, listing all avoidable vertices through the proposed
characterization is inefficient, since one has to produce all possible min-
imal triangulations of G. Here we strengthen such a characterization
in the sense that it provides an efficient recognition based on one par-
ticular minimal triangulation of G. More precisely, we take advantage
of vertex-incremental minimal triangulations that can be computed in

O(nm) time [8].

e O(n? 4 m?), by exploring structural properties on each edge of G. This
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approach is based on a modified, traditional breadth-first search algo-
rithm. Our task is to construct search trees rooted at a particular vertex
that reach all vertices of a predescribed set .S, so that every non-leaf ver-
tex does not belong to S. If such a tree exists then every path from the
root to a leaf that belongs to S is called an S-excluded path. It turns
out that S-excluded paths can be tested in linear time and we need to
make 2m calls of a modified breadth-first search algorithm.

e O(n'*¥), where O(n*) is the running time for matrix multiplication. For
applying a matrix multiplication approach, we contract the connected
components of G that are outside the closed neighborhood of a vertex.
Then we observe that a vertex u is avoidable if the neighbors of w are
pairwise in distance at most two in the contracted graph. As the distance
testing can be encapsulated by the square of its adjacency matrix, we
deduce an algorithm that takes advantage of a fast matrix multiplication.

We should note that each of the stated algorithms is able to recognize if a
given vertex u of G is avoidable in time O(nm), O(d(u)(n 4+ m)), and O(n*),
respectively, where d(u) is the degree of v in G. Further, all of our proposed
algorithms are characterized by their simplicitiy and, besides the fast matrix
multiplication, consist of basic ingredients that avoid using sophisticated data
structures.

In addition, we consider the natural generalizations of avoidable vertices,
captured within the notions of the avoidable edges and avoidable paths. A
naive algorithm that recognizes an avoidable edge takes time O(n? - m) or
O(m -m). Here we show that recognizing an avoidable edge of a graph G can
be done in O(n-m) time. This is achieved by taking advantage of the notions
of the S-excluded paths and their efficient detection by the modified breadth-
first search algorithm. Also notice that an avoidable edge is an avoidable
path on two vertices. We are able to reduce the problem of recognizing an
avoidable path of arbitrary length to the recognition of an avoidable edge. In
particular, given an induced path we prove that we can replace the induced
path by an edge and test whether the new added edge is avoidable or not in
a reduced graph. Therefore our recognition algorithm for testing whether a
given induced path is avoidable takes O(n - m) time.
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1.1 Road Map

In Chapter 2 we give the necessary general notation and the basic definitions
of avoidable vertices.

In Chapter 3 we consider separately sparse and dense graphs. Moreover we
give an optimal algorithm on cographs with running time O(n 4+ m).

In Chapter 4 we compute avoidable vertices using minimal triangulations
and we propose a fast algorithm that uses a new notion, namely the S —
excluded path and protecting. Moreover we give a O(nm)-time algorithm on
chordal graphs.

In Chapter 5 we compute avoidable vertices via contractions and fast matrix
multiplication.

In Chapter 6 we propose a fast algorithm for recognizing avoidable edges
and paths using the notion of protected edge.

In Chapter 7 we conduct a thorough experimental analysis of the proposed
algorithms for listing all avoidable vertices of a graph.



CHAPTER

PRELIMINARIES

All graphs considered here are finite undirected graphs without loops and
multiple edges. We refer to the textbook by Bondy and Murty [10] for any
undefined graph terminology. For a graph G = (Viz, Eg), we use Vi and Eg
to denote the set of vertices and edges, respectively. We use n to denote the
number of vertices of a graph and use m for the number of edges. Given
x € Vg, we denote by Ng(z) the neighborhood of x. The degree of x is the
number of edges incident to x, denoted by dg(x). That is, dg(z) = |Ng(x)|.
The closed neighborhood of z, denoted by N¢|x], is defined as Ng(x) U {z}.
For a set X C V(G), Ng(X) denotes the set of vertices in V(G) \ X that
have at least one neighbor in X. Analogously, Ng[X] = Ng(X) U X. Given
X C Vg, we denote by G — X the graph obtained from G by the removal of the
vertices of X. If X = {u}, we also write G — u. The subgraph induced by X is
denoted by G[X], and has X as its vertex set and {uv | u,v € X and uwv € Eg}
as its edge set. For R C E(G), G\ R denotes the graph (V(G), E(G) \ R),
that is a subgraph of G. If R = {e}, we also write G \ e.

A clique of G is a set of pairwise adjacent vertices of G, and a mazimal
clique of G is a clique of G that is not properly contained in any clique of
G. An independent set of G is a set of pairwise non-adjacent vertices of G.
The induced path on k > 2 vertices is denoted by P, and the induced cycle on
k > 3 vertices is denoted by Cy. For an induced path Py, the vertices of degree
one are called endpoints. A vertex v is universal in G if Njv] = V(G) and v is
isolated if N(v) = (). A vertex of degree one is called leaf. A graph is connected
if there is a path between any pair of vertices. A connected component of GG is a
maximal connected subgraph of G. Given two vertices u and v of a connected
graph G, a set S C Vi is called (u,v)-separator if u and v belong to different
connected components of G —S. We say that S is a separator if there exist
two vertices u and v such that S is a (u, v)-separator. For a set of finite graphs
H, we say that a graph G is H-free if G does not contain an induced subgraph
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(1) (i) (iit)

Figure 2.1: (i) Vertex u is simplicial and thus avoidable. (i7) Vertex w is
simplicial and thus avoidable. (iii) A non-simplicial avoidable vertex wu.

isomorphic to any of the graphs of H.

The disjoint union of two graphs G and H, denoted by G U H, is the graph
on vertex set V(G)UV (H) and edge set E(G)UE(H). The complement of G,
denoted by G, is the graph on vertex set V(G) and edge set {uv | uv ¢ E(G)}.
We say that a graph G is co-connected if G is connected. Moreover a co-
component of G is a connected component of G.

Given an edge e = zy, the contraction of e removes both x and y and replaces
them by a new vertex w, which is made adjacent to those vertices that were
adjacent to at least one of the vertices x and y, that is N(w) = (N(z) U
N(y)) \ {z,y}. Let S be a vertex set of G such that G[S] is connected. If we
repeatedly contract an edge of G[S]| until one vertex remains in S then we say
that we contract S into a single vertex. In different terminology, contracting
a set of vertices S is the operation of substituting the vertices of S by a new
vertex w with N(w) = N(5).

A vertex v is called simplicial if the vertices of Ng(v) induce a clique (see
Figure 2.1 (i) — (i7)). Listing all simplicial vertices of a graph can be done
O(nm) time. The fastest algorithm for listing all simplicial vertices takes time
O(n¥), where O(n%) is the time needed to multiply two n x n binary matrices
[15] (currently, w < 2.37286 [2]). Avoidable vertices and edges generalize the
concept of simplicial vertices in a natural way.

Definition 1. A vertex v is called avoidable if every P with middle vertex v
is contained in an induced cycle. Equivalently, v is avoidable if dg(v) < 1 or
for every pair z,y € Ng(v) the vertices = and y belong to the same connected
component of G — (Ng[u] \ {z,y}) (see Figure 2.1 (7i1)).
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Figure 2.2: A connected graph G. A non-avoidable vertex u in G has a
(x,y) — separator S such that S C Nglu| for some vertices =,y € Ng(u).

Every simplicial vertex is avoidable, however the converse is not necessarily
true. It is known that every graph contains an avoidable vertex [1, 7, 17].
Every vertex of a graph of degree < 1 is simplicial and hence avoidable. Thus
a non-avoidable vertex of a graph, has degree > 2.

Observation 1. Let G be a graph and let u be a vertex of G. Then u is
non-avoidable if and only if there is an (x,y)-separator S that contains u such
that S C Nglu] for some vertices x,y € Ng(u).

Proof. Assume that u is non-avoidable. Then by Definition 1, there are two
vertices x,y € Ng(u) that belong to different connected components in G —
(Nglu]\ {z,y}). This means that S = Ng[u]\{z,y} is an (x, y)-separator (see
Figure 2.2). On the other hand, if there is such a separator S for some vertices
z,y € Ng(u) then z and y do not belong to the same connected component
in the graph G — S and, consequently, also in the graph G — (Ngu| \ {z,y}),
because S C Ng[u]. Thus u is non-avoidable vertex. O



CHAPTER

DETECTING AVOIDABLE
VERTICES IN SPARSE OR DENSE
(GRAPHS

Here we show how to compute efficiently all avoidable vertices on sparse
or dense graphs. In particular, for a graph G on n vertices and m edges, we
consider the cases in which m < n (sparse graphs) or m < n (dense graphs),
where m = |E(G)|. Our main motivation comes the naive algorithm that
lists all avoidable vertices in O(n - - (n + m)) time that takes advantage
of the non-edges of G [3]. We will show that we can handle such cases in
linear time, so that the running time of the naive algorithm can be written as
O(n3 - m). For doing so, we consider the impact of avoidable vertices on the
complement of a graph by considering the connected components in both G
and G. Before reaching the details of our approach, we give a simple linear-
time algorithm on the class of cographs, since they can be totally decomposed
by the corresponding operations.

3.1 Appetizer: an optimal algorithm on cographs

A graph G is cograph if every induced subgraph of G on at least two vertices
is either disconnected or its complement is disconnected. Cographs are exactly
the class of Pj-free graphs [11]. Every cograph G admits a unique tree repre-
sentation known as cotree which is a rooted tree 1" with two types of internal
nodes: 0-nodes and 1-nodes. The vertices of G are assigned to the leaves of T’
in a one-to-one manner. Thus 7" contains O(n) nodes (see Figure 3.1). The
properties of a cotree T are summarized as follows:

10
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(@) (i)

Figure 3.1: Tllustrating a cograph and the corresponding cotree.

(i) Two vertices of G are adjacent if and only if their least common ancestor
in T"is a 1-node.

(ii) Every internal node of T has at least two children.

(iii) No two internal nodes of the same type are adjacent in 7.

The cotree of a cograph is unique and can be generated in linear time [12].

We give the following characterization of avoidable vertices in G in terms
of the cotree T'. For doing so, we denote by p(u) the parent of a vertex u in
T. A 1-node w of T is called full 1-node if the children of w are all leaves in
T.

Lemma 2. Let T be a cotree of a cograph G and let u be a vertex of G. Then,
u 1s avoidable in G if and only if either p(u) is a 0-node or p(u) is a full
1-node.

Proof. We first introduce some notation. For a node w of T, we let Ty, be
the subtree of T" rooted at w and we denote by V(Ty,) the set of leaves in Ty,.
Recall that V(T,,) corresponds to a subset of vertices of G. By property (i)
observe that all the vertices of V(1},) are either adjacent or non-adjacent to
a vertex = of V(G) \ V(Ty,). Let r be the root of T and let w be the parent

11



Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

Figure 3.2: Illustrating the cases considered in the proof of Lemma 2.

node of vertex u, that is w = p(u). We consider separately the following cases
(see Figure 3.2).

e Assume that w is a 0-node in 7. We show that u is avoidable in G.
Consider two vertices z,y € Ng(u). By property (i), z,y € V(T,)\V(Tw)
and any vertex of V(7)) is non-adjacent to u. Moreover, property (ii)
implies that there is a vertex a € V(Ty,) \ {u} such that au ¢ E(G).
Thus, both x and y are adjacent to u and a, since z,y ¢ V(T,,). Hence,
regardless of whether  and y being adjacent, there is a path between x
and y that does not contain any vertex of Ng(u).

e Assume that w is a full 1-node in 7. We show that u is avoidable
in G. Consider two vertices x,y € Ng(u). If z € V(T,) then zy €
E(G) because either y € V(T,,) as a leaf vertex, or y ¢ V(T},) and y
is adjacent to every vertex of V(Ty,) as uy € E(G). Suppose that both
z,y € V(1) \ V(Ty). Let P(r,w) be the unique path of 7" between
the root r and the 1-node w. Since z,y € Ng(u), there are 1-nodes w,
and wy, (not necessarily distinct) on P(r,w) such that z € V(T,,) and
y € V(Ty,). Now consider the parent w’ of w in T'. By property (iii), w’

12
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exists and is a 0-node of 7. Thus there is a vertex a € V(T,y) \ V(Tw)
that is non-adjacent to u. Since the least common ancestor of x and a is
wy, by property (i) we have za € E(G). Similarly, we have ya € E(G).
Hence there is a path between x and y that contains a non-neighbor of
u, which shows that u is an avoidable vertex of G.

e Assume that w is a 1-node that is not full in 7. We show that u is
non-avoidable in G. Let w’ be a non-leaf child of w. By property (iii),
w’ is a 0-node. Moreover, property (ii) implies that there are vertices
x,y € V(T ) for which their least common ancestor is w’. Thus zy ¢
E(G) and uz,uy € E(G), because w is a 1-node. If there is no path
between x and y in G —u then u is non-avoidable. Let A be the internal
vertices of an induced path between x and y in G —u. Since G is Py-free,
every vertex of A is adjacent to both x and y, so that A = {a}. We show
that u is adjacent to a. To see this, observe that a does not belong to
V(Ty), since w’ is the 0-node that is the least common ancestor of x
and y. Hence a belongs to V(7}.)\ V(T}y) and its least common ancestor
w, with x and y is a 1-node. This means that w, is an ancestor of w’
that is a 1-node in T. As w’ is a child of w, we deduce that w, is the
least common ancestor of a and u. Thus ua € E(G), which means that
u is non-avoidable, since there is no path between x and y that avoids
any neighbor of u.

Therefore, we have a complete characterization of u since all cases have been
considered depending on the parent of u in 7. O

Thus, we deduce the following optimal algorithm for the vertices of a co-
graph G. Note that, given a cograph G, its corresponding cotree T can be
constructed in O(n + m) time [12].

Theorem 3. Given a cotree T' of a cograph G, there is an O(n)-time algorithm
that lists all avoidable vertices of G.

Proof. We first mark the internal nodes of the cotree T' that have as children
only leaves of T'. By a single bottom-up traversal from the leaves of T', this can
be done in O(n) time. Thus applying Lemma 2 in a straightforward way on the
cotree T' with the marked information, results in an O(n)-time algorithm. O

13
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M e (i)

Figure 3.3: (i) Avoidability of a vertex u in a graph G is relevant only with
the component C,, € G of u. (ii) Trees have a trivial solution because only
their leafs are avoidable vertices.

3.2 Sparse or dense graphs

Here we extend the previous notions on cographs and show how to handle
the cases in which m < n (sparse graphs) or m < n (dense graphs).

It is not difficult to handle sparse graphs. Observe that m < n implies that
G is disconnected or G is a tree. The connectedness assumption of the input
graph G follows from the fact that a vertex u is avoidable in G if and only
if u is avoidable in the connected component containing u, since there are no
paths between vertices of different components. Moreover, trees have a trivial
solution as the leaves are exactly the set of avoidable vertices (see Figure 3.3).
We include both properties in the following statement.

Observation 4. Let u be a vertex of G and let C(u) be the connected com-
ponent of G containing u. Then u is avoidable if and only if u is avoidable in
G[C(u)]. Moreover, if G is a tree then u is avoidable if and only if u is a leaf
n G.

14
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Figure 3.4: Illustrating a non-avoidable vertex u of a graph G, and the compo-
nents C7,Cs and the separator S according to Observation 1. The horizontal
lines between C; and C5 in G, indicate that every vertex of Cy is adjacent to
every vertex of Cy. In G, u is avoidable.

Next we describe that we can follow almost the same approach on the
complement of G. For doing so, we first prove the following result which
interestingly relates avoidability on G and G. Note, however, that the converse
is not necessarily true.

Lemma 5. Let G be a graph and let u be a non-avoidable vertex. Then, u is
avoidable in G.

Proof. Since u is a non-avoidable vertex in G, there is a separator S that
contains u such that S C Ng[u] by Observation 1. Let C1,...,Ck be the con-
nected components of G — .5, with k£ > 2. Notice that at least two components
of C1,...,C} contain a neighbor of u. Without loss of generality, assume that
C1 N Ng(u) # 0 and CoN Ng(u) # 0. Consider the complement G and let x,y
be two neighbors of v in G. Observe that both z and y do not belong to S,
since S C Nglu]. Thus ¢ € C; and y € Cj, for 1 < i,j < k. We show that
either 7y € E(G) or there is a path in G between x and y that avoids vertices
of Ng(u). If i # j then zy € E(G), because every vertex of C; is adjacent
to every vertex of C; in G. Suppose that z,y € C;. If C; # C; then there is
a vertex wy; € C1 N Ng(u) such that wiu ¢ E(G) and wiz,wiy € E(G). If
C; = C then there is a vertex wy € Co N Ng(u) such that wou ¢ E(G) and
wor, woy € E(G) (see Figure 3.4). Thus in both cases there is a path of length
two between x and y that avoids vertices Nx(u). Therefore, u is avoidable in

G. O
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We next deal with the case in which G is disconnected. Notice that if
G = K,, then every vertex of (G is simplicial and thus avoidable.

Lemma 6. Let G # K, u € V(G), and let C(u) be the co-component contain-
ing u. Then, u is avoidable in G if and only if |C(u)| > 1 and u is avoidable

in G[C(u)].

Proof. Assume first that C'(u) = {u}. Then w is universal in G. Since G # K,
there are vertices z,y such that xy ¢ E(G). As any path between z and y
contains a neighbor of u, we deduce that u is non-avoidable. In the following
we assume that |C'(u)] > 1. This assumption implies that there is a vertex
a € C(u) such that ua ¢ E(G). Also notice that every vertex of C(u) is
adjacent to every vertex of V(G) \ C(u).

e Suppose that u is avoidable in G. Assume for contradiction that w is
non-avoidable in G[C(u)]. Then there are vertices z,y in C(u) such that
z,y € Na(u), zy ¢ E(G), and every path (if it exists) between = and y in
G[C(u)] contains a neighbor of u. Since G[C(u)] is an induced subgraph
of G and u is avoidable in G, there is path in G between x and y that
contains a vertex z of V(G)\ C(u) such that zu ¢ E(G). Then, however,
we reach a contradiction to the fact that every vertex of C'(u) is adjacent
to every vertex of V(G) \ C(u), so that zu € E(G) for any such vertex

z. Thus u is avoidable in G[C(u)].

e Suppose that u is avoidable in G[C(u)]. We show that u is avoidable in
G. Consider two vertices x,y € Ng(u). If both vertices z,y belong to
C(u) then the avoidability of u in G[C(u)] carries along G, since G[C (u)]
is an induced subgraph of G. If z € C(u) and y € V(G) \ C(u) then
ry € E(G). Now assume that both vertices z,y belong to V(G) \ C(u).
Then the path (z,a,y) with a € C(u) and ua ¢ E(G) is the desired path

between = and y. Thus u is avoidable in G.
Therefore both directions show the claimed statement. O

In general, avoidability is not a hereditary property with respect to in-
duced subgraphs, even when restricted to the removal of non-avoidable ver-
tices. However, as we show next, the removal of universal vertices does not
affect the rest of the graph.
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G G—w

(4) (i)

Figure 3.5: Avoidability of a vertex u in a graph G is not affected by the
removal of a universal vertex w.

Lemma 7. Let G be a graph and let w be a universal vertex of G. Then
w s avoidable if and only if G is a complete graph. Moreover, any vertex
u € V(G)\ {w} is avoidable in G if and only if u is avoidable in G — {w}.

Proof. First statement follows by Lemma 6 and from the fact that every vertex
of a complete graph is simplicial. For the second statement, assume that u
is avoidable in G. We show that u is avoidable in the graph G' = G — {w}.
Consider two vertices x,y € Ng/(u). If xy € E(G) then clearly zy € E(G').
Suppose that xy ¢ E(G). Then, as u is avoidable in G, there is a path P
between z and y in G. Since w is universal in G, w does not belong to P (see
Figure 3.5). Thus P exists in G’ which shows that u is avoidable in G’. For
the reverse direction, assume that u is avoidable in G’ = G — {w}. Observe
that any two vertices z,y € Ng(u) \ {w} fulfill the necessary conditions in
G, since G’ is as induced subgraph of G. Moreover, w € Ng(u) and for any
vertex € Ng(u) \ {w}, we have wx € E(G). Therefore u remains avoidable
in G. O

To conclude the cases for which M < n, we next consider graphs whose
complement is a tree. By Observation 4 we restrict ourselves on connected
graphs.
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Figure 3.6: Every leaf, and thus avoidable vertex u of G = T, belongs to a P,
since both G and G are connected and therefore considering this Py we deduce
that u is non-avoidable in G because of z,y. Also by Lemma 5 we conclude
that every non-avoidable and thus non-leaf vertex of G, is avoidable in G.

Lemma 8. Let G be a connected graph such that G is a tree T. A vertex u
of G is avoidable if and only if u is a non-leaf vertex in T.

Proof. We consider the vertices of T. Let u be a non-leaf vertex of T. Then
u is a non-avoidable vertex in G. Thus by Lemma 5 u is avoidable in G.

Now assume that u is a leaf vertex of T', and thus avoidable in G. We prove
that v is non-avoidable in G. Since both graphs G and G are connected, u
belongs to a Py in T' [11]. Let (u,a,z,y) be a Py in T' that contains u. Observe
that u is adjacent to every vertex of V(G) \ {a} in G. Consider the vertices =
and y of the Py for which x,y € Ng(u). As zy € E(G), we have 2y ¢ FE(G).
We show that there is no path between x and y that avoids any neighbor of
u in G. If there is a path between x and y then it contains the vertex a and
it has the form (z,a,y) in G. Then, however, notice that ya € E(G) but

ra ¢ E(G) by the induced P3 = {(a,z,y) in G. Thus u is non-avoidable in G,
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because of z and y (see Figure 3.6). Therefore, every avoidable vertex of T is
non-avoidable in G, since the set of leaves in T are exactly the set of avoidable
vertices in G. O

3.3 A modular decomposition approach

Based on the previous results, we can reduce our problem to a graph G that
is both connected and co-connected and neither G nor G are isomorphic to
trees. To achieve this in linear time we apply known techniques that avoid
computing explicitly the complement of G, since we are mainly interested
in recursively detecting the components and co-components of G. Such a
decomposition, known as the modular decomposition, can be represented by a
tree structure, denoted by T'(G), of O(n) size and can be computed in linear
time [16, 19]. More precisely, the leaves of T'(G) correspond to the vertices
of G and every internal node w of T(G) is labeled with three distinct types
according to whether the subgraph of GG induced by the leaves of the subtree
rooted at w is (i) not connected, or (ii) not co-connected, or (iii) connected
and co-connected (see Figure 3.7).

Moreover the connected components and the co-components of types (i)
and (ii), respectively, correspond to the children of w in T(G). Let G be a
collection of maximal vertex-disjoint induced subgraphs of G that are both
connected and co-connected. Then T'(G) determines all graphs of G in linear
time. Observe that if G is empty, then G is a cograph. In addition, we call G,
typical collection of G if for each graph H € G:

e H is connected and co-connected,
o [V(H)| < |E(H)|, |V(H)| <|E(H)]|, and

e every avoidable vertex in H is an avoidable vertex in G.

The results of this section deduce the following algorithm.

Theorem 9. Let G be a graph and let A(G) be the set of avoidable vertices
i G. There is a linear-time algorithm, that

e computes a typical collection G of maximal vertex-disjoint induced sub-
graphs of G and

e for every vertex v € V(G) \ V(G), decides if v € A(G).
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Proof. We first compute T'(G) in linear time [16, 19]. Then we visit all nodes
of T(QG) starting from the root and move towards the leaves of T'(G). We stop
each branch when we reach either a leaf for which we include it in A(G), or
when we reach a graph of G. Given a node w of T'(G), let G,, be the graph
induced by the leaves of the subtree rooted at w. At each node of T'(G) we
perform the following steps.

1. If G, is disconnected then consider the connected components Cy, - - - , C
of G by Observation 4. That is, A(Gy) = A(C1) U---U A(Ck).

2. If G, is disconnected then consider the co-components C1,...,C) of G
such that |C;| > 2, for each 1 < i < k.

(a) If G, = Ky, (that is, k = 0) then A(Gy) = V(Gy)-

(b) Otherwise, A(Gy,) = A(C1)U---UA(C},) by Lemma 6. Observe that
all universal vertices in G, (that is, |C;| = 1) have been disregarded
by Lemma 7.

3. Handling connected and co-connected graphs:

(a) If Gy, =T then A(G,,) = the set of leaves in T' by Observation 4.
(b) If G, = T then A(G,,) = the set of non-leaves in T' by Lemma, 8.

(c¢) Otherwise, include G, in the collection G.

All steps can be carried out in O(n + m) time by checking the type of the
internal node w in T'(G) and assigning the components and the co-components
with the subtrees of w’s children. Testing the corresponding cases whenever
G, is connected and co-connected can be done by looking at the number of
edges of G, that is in time O(|V(Gy)| + |E(Gy)|). Therefore the algorithm
outputs in O(n +m) time the described collection G and the set A(G) \ A(G).

O
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I=Disconnected II=Not co-connected III=Connected and co-connected

(i)

Figure 3.7: Illustrating the modular decomposition tree of a graph G given in

(4)-
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CHAPTER

COMPUTING AVOIDABLE
VERTICES DIRECTLY FROM G

Here we give two different approaches for computing all avoidable vertices
of a given graph G. Both of them deal with the input graph itself without
shrinking any unnecessary information, as opposed to the algorithms given
in forthcoming sections. Our first algorithm makes use of notions related to
minimal triangulations of G' and runs in time O(n?m). The second algorithm
runs in time O(n? + m?) and is based on a modified, traditional breadth-first
search algorithm.

Let us first explain our algorithm through a minimal triangulation of G.
We first need some necessary definitions. A graph is chordal if it does not
contain an induced cycle of length more than three. In different terminology,
G is chordal if and only if G is (Cy, C5, . . .)-free graph.

A graph H = (V,E U F) is a minimal triangulation of G = (V,E) if H
is chordal and for every F’ C F, the graph (V, E U F’) is not chordal. The
edges of F' in H are called fill edges. Several O(nm)-time algorithms exist for

computing a minimal triangulation [4, 6, 14, 18]. In connection with avoidable
vertices, Beisegel et al. [3] showed the following characterization.

4.1 A nice minimal triangulation

Theorem 10 ([3]). Let u be a vertex of G. Then u is avoidable in G if and
only if u is a simplicial verter in some minimal triangulation of G.

Although such a characterization is complete, it does not lead to an efficient
algorithm for deciding whether a given vertex is avoidable, since one has to
produce all possible minimal triangulations of G (see Figure 4.1). Here we
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G H

(4) (i)

Figure 4.1: An avoidable vertex u in a graph G that is a simplicial vertex in
some minimal triangulation H of G.

strengthen such a characterization in the sense that it provides an efficient
recognition based on a particular, nice, minimal triangulation of G.

Lemma 11. Let u be a vertex of a graph G = (V, E) and let H = (V,EUF)
be a minimal triangulation of G such that u is not incident to any edge of F'.
Then u is avoidable in G if and only if u is stmplicial in H.

Proof. If u is simplicial in H then by Theorem 10 we deduce that u is avoidable
in G. Suppose that v is non-simplicial in H. Then there are two vertices
x,y € Ng(u) that are non-adjacent in H. Since G is a subgraph of H, we have
zy ¢ E(Q) (see Figure 4.2). We claim that there is no path in G between z and
y that avoids any vertex of Ng[u]\ {z,y}. Assume for contradiction that there
is such a path P. Then V(P)\ {z,y} is non-empty and contains vertices only
from V'\ N[u|. This means that x,y belong to the same connected component
of H induced by (V' \ N[u]) U {z,y}. As u is non-adjacent to any vertex of
V' \ Nu] in H, the vertices of (V' \ N[u]) U{z,y,u} induce an induced cycle
of length at least four in H. Then we reach a contradiction to the chordality
of H. Therefore, there is no such path between x and y, which implies that u
is non-avoidable in G. O
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Figure 4.2: An avoidable vertex u of GG is a non-simplicial vertex in a minimal
triangulation H of G. Notice that an incident edge to u is added as a fill edge.

4.2 Constructing a nice minimal triangulation via
vertex incremental approach

Next we show that such a minimal triangulation with respect to u, always
exist and can be computed in O(nm) time. Our approach for computing a
nice minimal triangulation of G is wvertex incremental, in the following sense.
We take the vertices of G one by one in an arbitrary order (vq,...,v,), and at
step ¢ we compute a minimal triangulation H; of G; = G[{v1,...,v;}] from a
minimal triangulation H;_; of G;_1 by adding only edges incident to v;. This
is possible thanks to the following result.

Lemma 12 ([8]). Let G be an arbitrary graph and let H be a minimal trian-
gulation of G. Consider a new graph G' = G + v, obtained by adding to G a
new vertex v. There is a minimal triangulation H' of G' such that H' —v = H.

We denote by H(vi,...,v,) a vertex incremental minimal triangulation of
G which is obtained by considering the vertex ordering (v1, .. .,v,) of G. Com-
puting such a minimal triangulation of G, based on any vertex ordering, can
be done in O(nm) time [8].

Lemma 13. Let u be a vertex of G and let X = Ng(u) and A = V(G)\ Ngu).
In any vertez incremental minimal triangulation H(A,u, X) of G, no fill edge
is incident to u.
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H(A,u) ®

H(Au,X{e, z}) .

(#41) (iv)

Figure 4.3: Ilustrating the construction of a nice minimal triangulation via
vertex incremental approach. (i) In order to check avoidability for an avoid-
able vertex u in a graph G we consider the vertex sets {u}, X, A. (i7) Starting
the vertex incremental by adding in an arbitrary order all the vertices of A
and then we add vertex u. Note that u is not adjacent to any vertex of A.
(731) We assume that we have this vertex order (e, z, x,y) for X. First we add
vertex e and all edges labeled by 1 in black that already existed in G’ and then
none fill edge is needed to be added. Secondly vertex z and edges labeled 2
in black are added in the same way as for vertex e and additionally fill edges
are added, labeled by 2 in blue. (iv) Finally we add, in the exact same way,
vertices z and y and thus we end up in a nice minimal triangulation in which
u is simplicial.
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Algorithm 1: Testing if u is avoidable with a vertex incremental
minimal triangulation
Input : A graph G, a minimal triangulation H of G, and a vertex u
Output: Returns true iff u is avoidable in G

1 Let X = Ng(u) and A =V (G) \ Nglul;

2 Initialize a new graph H' = H[A U {u}];

3 Add the vertices of X in H' in an arbitrary order and maintain a
minimal triangulation H' of G by applying the O(nm)-time
algorithm given in [8];

if u is simplicial in H' then
‘ return true;

else
L return false;

RN E'S

Proof. Let H(A,u,X) = (V,E UF) be a vertex incremental minimal trian-
gulation of G = (V,E). Consider the vertex ordering (A,u,X). Observe
that when adding u to H[A] no fill edge is required, as the considered graph
H[A] + u is already chordal. Moreover u is adjacent in G to every vertex
appearing after u in the described ordering (A, u, X'). Thus u is non-adjacent
to any vertex of A in H(A,u,X) which means that no edge of F' is incident
to u (see Figure 4.3). O

4.3 Avoidable vertex via minimal triangulations

A direct consequence of Lemmas 11 and 13 is an O(nm)-time recognition
algorithm for deciding whether a given vertex u is avoidable. For every vertex
u, we first construct a vertex incremental minimal triangulation H (A, u, X) of
G by applying the O(nm)-time algorithm given in [8]. Then we simply check
whether u is simplicial in the chordal graph H(A,u, X) by Lemma 11, which
means that the overall running time is O(nm).

We note that one may compute any minimal triangulation H of G, as a
preprocessing step in time O(nm), and then use H for constructing the vertex
incremental minimal triangulation at each vertex u, so that H[A] is already
computed for A = V(G)\ Ng[u]. Although such an approach results within the
same theoretical time complexity, in practice it avoids recomputing common
parts of the input data. We give the details in Algorithm 1 and, as already
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explained, its running time is O(nm). By applying Algorithm 1 on each vertex,
we obtain the following result.

Theorem 14. Listing all avoidable vertices of G by using Algorithm 1 takes
O(n®m) time.

An interesting remark of such an approach is that we can list all avoidable
vertices of a chordal graph G in an efficient way. We note that such a result
can be obtained directly from the definition of an avoidable vertex which shows
that a non-simplicial vertex of a chordal graph is non-avoidable.

Corollary 15. Let G be a chordal graph. Listing all avoidable vertices of G
can be done in O(n%) time, where O(n®) is the time required to multiply two
n X n binary matrices.

Proof. By Lemma 11 the set of simplicial vertices of G is the set of avoidable
vertices because any minimal triangulation H of G contains no fill edge, as G
is chordal. Thus listing the avoidable vertices of a chordal graph G reduces to
listing the simplicial vertices of G. Therefore detecting all avoidable vertices
can be done in O(n*) time by using the algorithm of [15], which is the time
needed to perform a fast matrix multiplication. O

4.4 A fast algorithm for listing avoidable vertices

Our second approach is based on the following notion of protecting that we
introduce here. Given a set of vertices S C V, an S-excluded path is a path in
which no internal vertex belongs to S. Observe that an edge is an S-excluded
path, for any choice of S. By definition a single vertex is connected to itself by
the trivial path. Whenever there is an S-excluded path in G between vertices
a and b, notice that a can reach b through vertices of V/(G)\ S (see Figure 4.4).

Definition 2 (protecting). Let x and y be two vertices of G. We say that
x protects y if there is a Ngly]-excluded path between z and every vertex
of Ng(y). In other words, x protects y if for any z € Ng(y) \ {z}, either
zz € E(G) or x can reach z through vertices of V(G) \ Ng[y] (see Figure 4.5).
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S — excluded path

(i) (i)

Figure 4.4: (i) A path (a, b) is a S—excluded path if none of its internal vertices
belong to set S. Note that an edge is a S — excluded path for any choice of S.
(71) An example for S — excluded path. Observe that for the vertices 1 and 4
there is a ({2}, {3}) — excluded path but not a ({2}, {5}) — excluded path.

4.4.1 A modified BFS

Let us explain how to check if x protects y in linear time, that is in O(n+m)
time. We consider the graph G’ = G — {y} and run a slight modification of
a breadth-first search algorithm on G’ starting from z. In particular, we try
to reach the vertices of Ng(y) \ {z} (target set) from z in G'. Every time we
encounter a vertex v of the target set, we include v in a set T of discovered
target vertices and we do not continue the search from v by avoiding to place
v within the search queue. Consequently, no vertex of the target set is a
non-leaf node of the constructed search tree. Algorithm 2 shows in detail the
considered modification of a breadth-first search (see Figure 4.6).

Lemma 16. Algorithm 2 is correct and runs in O(n + m) time.
Proof. For the correctness, let T' be the search tree discovered by the algorithm
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Protecting
Y

_______ = N¢ly]-excluded path

Figure 4.5: For two vertices x,y of a graph G we say that x is protecting y if
for x and every vertex z € Ng(y) there is a Ng[y] — excluded path.

when the search starts from x. Observe that the basic concepts of the breadth-
first search are maintained, so that the key properties with the shortest paths
between the vertices of G and the search tree T are preserved. If there is a
leaf vertex v in the constructed tree T" such that v € S then the unique path
in T is an S-excluded path in G between x and v, since no vertex of S is a
non-leaf vertex of 7. On the other hand, assume that there is an S-excluded
path in G between = and every vertex of S. For every v € S, among such
S-excluded paths between x and v, choose P(v) to be the shortest. Let p(v)
be the neighbor of v in P(v). Clearly = and every vertex p(v) belong to the
same connected component of G. Consider the graph G—S. Notice that every
vertex p(v) belongs to the same connected component with = in G — S, since
for otherwise some vertices of S separate z and a vertex v of S which implies
that there is no S-excluded path in G between z and v in G. Now let T}, be a
breadth-first search tree of G — .S that contains x. Then the distance between
x and p(v) in T, corresponds to the length of their shortest path in G — S.
Construct T by attaching every vertex v of S to be a neighbor of p(v) in 7.
Therefore T' is a tree that contains the shortest S-excluded paths between z
and the vertices of S.

Regarding the running time, notice that no additional data structure is
required compared to the classical implementation of the breadth-first search.
Hence the running time of Algorithm 2 is bounded by the breadth-first search
algorithm which is O(n + m). O
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Algorithm 2: Detecting whether there is an S-excluded path be-

tween x and every vertex of S
Input : A graph G, a vertex z, and a target set S C V(G)
Output: Returns true iff there is an S-excluded path between x and

every vertex of S

1 Set Q = {x}, T = 0;

2 Mark z;

3 while Q is not empty do

s | s=Qpop();

5 for v € N(s) do

6 if v is unmarked then
7 if v € S then

8 | T=Tu{v}
9 else

10 L Q.add(v);

11 Mark v;

12 return 7 = S

4.4.2 Exploiting the modified BFS

Therefore we can check whether z protects y by running Algorithm 2 on
the graph G — {y} with target set S = Ng(y) \ {z}. The connection to the
avoidability of a vertex, can be seen with the following result.

Lemma 17. Let u be a vertex of a graph G = (V, E). Then u is avoidable in
G if and only if x protects u for every vertex x € Ng(u).

Proof. Suppose first that u is avoidable. Consider a vertex z € Ng(u). Then
for any vertex y € Ng(u) \ {x} there is a path between z and y that avoids
vertices of Ng(u). This means that there is an S-excluded path between z
and y with S = Ng[u]. Thus z protects u in G.

For the other direction, assume that u is non-avoidable. Then there are
vertices x,y € Ng(u) that belong to different connected components of G —
(Ng[u] \ {z,y}). Thus = cannot reach y through vertices of V(G) \ Ng[u],
implying that = (and y) does not protect u. Therefore there are at least two
vertices in Ng(u) that do not protect w. O
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Traditional Algorithm 2
BFS Input :

x = startvertex
S = {s1, s2, 3, $4 J=target set

x x
S Y Sy, Y
e 53 34 / \53 Sa
Visited : x s1 y S2 2z € 83 84 Visited : x s1 y z S3 S4
Queue : S1 Yy S2 2z € 83 S4 Queue : y =z
Out : z 81 Yy S2 2 e S3 S4 Out : =z Yy z
T : 81 S3 S4

Output = False(T # S)

Figure 4.6: Illustrating how Algorithm 2 works taking advantage of the mod-
ified BF'S, in comparison to traditional BFS. We assume that start vertex is
x and the target set S = {s1, s2, s3, 54}

Now we are ready to show our fast algorithm for deciding whether a vertex
is avoidable which is given in Algorithm 3.

Theorem 18. Listing all avoidable vertices of G by using Algorithm 8 takes
O(n? +m?) time.

Proof. Correctness follows from Lemmas 16 and 17. For the running time,
observe that constructing G’ takes O(n+m) time. Moreover we need to make
d(u) calls to Algorithm 2 for a particular vertex u where d(u) is the degree of
u. Thus, by Lemma 16 the total running time is O(}_, (1 + d(u))(n +m)) =
O(n? +m?). O

31



Chapter 4. Computing Avoidable Vertices Directly from G

Algorithm 3: Testing if u is avoidable by detecting whether its neigh-
bors protect u

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G
Let X = N, and G' = G — {u};
for z € X do
Set S =X\ {z};
if Algorithm 2(G',x,S) is not true then
L return false;

B

(=]

return {rue;
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CHAPTER

AVOIDABLE VERTICES VIA
CONTRACTIONS

Here we show how to compute all avoidable vertices of a graph G through
contractions. Given a graph G = (Vz, Eg) and a vertex u € Vg, we denote
by G, the graph obtained from G by contacting every connected component
of G — Ng[u]. We partition the vertices of G, — u into (X, C), such that
X = Ng(u) and C contains the contracted vertices of G — Ng[u]. We denote
by G, (X, C) the contracted graph where (X, () is the vertex partition with
respect to Gy,. Observe that G, [X U{u}] = G[X U{u}] and G,[C U{u}] is an
independent set (see Figure 5.1).

5.1 Computing a contracted graph

Observation 19. Given a vertezu of G = (V, E), the construction of G, (X, C)
can be done in O(n + m) time.

Proof. To compute the connected components C1, ..., Cy of G — Ng[u] takes
linear time. For each vertex set C;, 1 < i < k, we compute Ng(C;) in time
d(C;) where d(C;) is the sum of the degrees of the vertices in C;. As Cy,...,C
is a partition of V(G) \ Ng[u], the total running time for substituting each set
Ciis O(k+>d(C;)) = O(n+m). O

Next we show that G, (X, C) holds all necessary information of important
paths of G with respect to the avoidability of u.
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.
Secnnaa=="

~§

(iid)

Figure 5.1: (i) An avoidable vertex u of a graph G.

(i) After removing
N¢u], we find the connected components in O(n +m) time. (zi7) Hlustrating
Gu(X,C), by contracting the connected components of (i7).

5.2 Avoidable vertex in a contracted graph

Lemma 20. Let u be a vertex of a graph G = (V, E). Then u is avoidable in

G if and only if u is avoidable in G, (X, C).
Proof. Since G| X U{u}] = G,[X U{u}], we only need to consider the vertices
of X = Ng(u) that are non-adjacent. Let x,y € Ng(u) = X such that
zy ¢ E(G) and let S = (XU{u})\{z,y}. Observe that all vertices of S belong
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to both graphs G and G, (X, C). We claim that there is a path between x and
y in G — S if and only if there is a path between = and y in G,(X,C) — S.
Consider any path in G — S of the form (z, P,y). The vertices of the given
path belong to the same connected component of G —S. Thus the vertices
of P belong to exactly one connected component Cp of G — (S U {z,y}). As
S UA{z,y} = Ng[u], there is a vertex C; € C that corresponds to Cp in the
contracted graph G, (X, C). Hence, the path (z, C;,y) forms the desired path
in Gu(X,C) - S.

If there is a path between z and y in G, (X,C) — S then such a path is of
length two and has the form (z, C;,y) where C; € C. Since zC; is an edge in
Gu(X,C), there is a vertex a € V(C;) such that za € E(G). Similarly, there
is a vertex b € V(C;) such that yb € E(G). As a and b belong to the same
connected component C; of G — Ng|u], there is a path P; in G between a and
b that contains only vertices from V(C;). Thus there is a path (x, P;,y) in G
where P; C V(C;).

Now observe that any path between two neighbors of u in either G — S or
Gu(X,C) — S does not contain any vertex of Ng[u]. Therefore, by the above
claim, we get the desired characterization of u in both graphs. O

Lemma 20 implies that we can apply all of our algorithms given in the
previous section in order to recognize an avoidable vertex. Although such an
approach does not lead to faster theoretical time bounds, in practice the con-
tracted graph has substantial smaller size than the original graph and may
lead to practical running times. We next show that the contracted graph re-
sults in an additional algorithm with different running time. Let G, (X, C)
be the contracted graph of a vertex u. The filled-contracted graph, denoted
by H,(X,C), is the graph obtained from G,(X,C) by adding all necessary
edges in order to make clique every neighborhood of C; € C. That is, for
every C; € C, Ny, (C;) is a clique (see Figure 5.2). The following proof resem-
bles the characterization given through minimal triangulations in Lemma 11.
However observe that H,(X,C) is not necessarily a chordal graph, because
X ¢ Ng, (C).

Lemma 21. A vertex u is avoidable in G if and only if H,[X] is a clique.
Proof. We apply Lemma 20 and we need to show that w is avoidable in
Gu(X,C) if and only if H,[X] is a clique. Assume that u is avoidable in

Gu(X,C). We show that H,[X] is a clique. Consider two vertices x,y € X. If
xy is an edge in G, (X, C) then zy remains an edge in H,(X,C), as G, (X, C)
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G.(X,C)

H,(X,C)

e

(#) (i)

Figure 5.2: Tllustrating how the filled-contracted graph H, (X, C) is obtained
from G, (X, C). Observe that u is simplicial in H, (X, C).

is a subgraph of H,(X,C). If x and y are non-adjacent in G,(X,C), there
is a vertex C; € C such that {z,y} C Ng,(C;), because u is avoidable and
G, [C] is an independent set. Thus, by the definition of H,(X,C), Ny, (C;) is
a clique implying that xy is an edge in H,[X].

Assume that u is non-avoidable in G, (X, C). Then there are vertices x,y €
X such that zy ¢ E(G,) and they belong in different connected components
of Gy[C U{x,y}]. Thus x and y is a pair of non-adjacent vertices in H,[X],
since there is no vertex C; € C such that x,y € Ng,(C;). Hence there is a
pair of non-adjacent vertices in H,[X], so that H,[X] is not a clique. O

5.3 Exploiting a fast matrix multiplication

We take advantage of Lemma 21 in order to recognize whether u is avoidable.
The naive construction of H, (X, C) requires O(n?) time, since |X| < n and
|C| < n. Instead of constructing H,(X,C), we are able to check H,[X] in an
efficient way through matrix multiplication. To do so, we consider the graph
G’ obtained from G, (X, C) by removing u and deleting every edge with both
endpoints in X. Observe that the resulting graph G’ is a bipartite graph with
bipartition (X, C), as G,[C U {u}] is an independent set. It turns out that it
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Algorithm 4: Testing if u is avoidable by using matrix multiplication

Input : A graph G and a vertex u
Output: Returns true iff v is avoidable in G
Construct the contracted graph G, (X, C) of u;
Let G1 = G (X, C) — {u};
Construct the adjacency matrix M; of Gy;
Let G2 be the bipartite graph obtained from G by removing every
edge having both endpoints in X;
Construct the adjacency matrix My of Go;
Compute the square of My, i.e., M3 = My - Mo;
Construct the matrix Mz = M + M2;
for z,y € X do

if the entry Ms[z,y] is zero then
L L return false;

B W N =

© 0w N o >

11 return true;

is enough to check whether two vertices of X are in distance two in G’ which
can be encapsulated by the square of its adjacency matrix. Algorithm 4 shows
in details our proposed approach.

We are now in position to claim the following running time through matrix
multiplication.

Theorem 22. Listing all avoidable vertices of G by using Algorithm 4 takes
O(n*¥) time, where O(n®) is the time required to multiply two n x n binary
matrices.

Proof. We apply Algorithm 4 on each vertex of G. Let us first discuss on the
correctness of Algorithm 4. By Lemma 21, it is enough to show that H,[X] is
a clique if and only if M3[X] has non-zero entries in its non-diagonal positions.
Let G1 and G2 be the two constructed graphs in Algorithm 4. Observe that
the square of Gg, denoted by G3, is the graph obtained from the same vertex
set of G5 and two vertices u, v are adjacent in G3 if the distance of u and v is at
most two in Gg. Thus the matrix M3 computed by Algorithm 4 corresponds to
the adjacency matrix of G3. Now it is enough to notice that two vertices x,y
of X are adjacent in H,[X] if and only if 2y € E(G1) U E(G3). In particular
observe that if z and y have a common neighbor w in G2 then w is a vertex of
C since there is no edge between vertices of X in Gz and u ¢ V(G2). Therefore
M3z, y] has a non-zero entry if and only if z and y are adjacent in H,[X].
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Regarding the running time, notice that the construction of G,, take linear
time by Observation 19. All steps besides the computation of M2 can be done
in O(n?) time. The most time-consuming step is the matrix multiplication
involved in computing M2, which can be done in O(n®) time. Hence the total
running time for recognizing all n vertices takes O(n!) time. O
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CHAPTER

RECOGNIZING AVOIDABLE
EDGES AND PATHS

Natural generalizations of avoidable vertices are avoidable edges and avoid-
able paths. Here we show how to efficiently recognize an avoidable edge and an
avoidable path. Recall that the two vertices having degree one in an induced
path P, on k > 2 vertices are called endpoints. Moreover, the edge obtained
after removing the endpoints from an induced path P4 on four vertices is called
middle edge.

————— = closes each Py in aninduced cycle

(4) (i)

Figure 6.1: (i) The edge wv is simplicial and thus avoidable. (ii) Illustrating
an avoidable edge uwv.

Definition 3 (simplicial and avoidable edge). An edge uv is called simplicial
if there is no P, having uv as a middle edge. An edge uv is called avoidable
if either wv is simplicial, or every P, with middle edge uv is contained in an
induced cycle (see Figure 6.1).
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Figure 6.2: Illustrating the sets B(x,y), A, and A, for the vertices x,y of a
graph G.

6.1 Private and common neighbors

Given two vertices x and y of G, we define the following sets of the neighbors
of x and y:

e B(xz,y) contains the common neighbors of = and y; ie., B(z,y) =
Nea(z) N Na(y).

e A, contains the private neighbors of z; i.e., A, = Ng(z)\ (B(z,y)U{y}).

e A, contains the private neighbors of y; i.e., A, = Ng(y)\ (B(z,y)U{z}).

Under this terminology, observe that A;NA, = 0 and Ng({z, y}) is partitioned
into the three sets B(z,y), Az, Ay (see Figure 6.2). Clearly all described sets
can be computed in O(d(z) + d(y)) time.

Observation 23. An edge xy of G is simplicial if and only if Ay = (0 or
Ay =0 or every vertex of A, is adjacent to every vertex of A,.

Proof. Consider a Py = a,x,y,b that contains xy as a middle edge. Then
a € Ay and b € Ay, because ay ¢ F(G) and zb ¢ E(G). Thus both sets
A, and A, are non-empty. Moreover, since ab ¢ E(G), we deduce that any
non-edge with one endpoint in A, and the other in A, results in a P4 having
xy as a middle edge. d

By Observation 23, the recognition of a simplicial edge can be achieved in
O(n+m) time: consider the bipartite subgraph H(A,, A,) of G[A,UA,] which
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is obtained by removing every edge having both endpoints in either A, or A,.
Then it is enough to check whether H(A,, A,) is a complete bipartite graph.

We show that the more general concept of an avoidable edge can be rec-
ognized in O(nm) time. For doing so, we will take advantage of Algorithm 2
and the notion of protecting given in Definition 2.

: (Ng[z] U Nglyl)-exzcluded path

Figure 6.3: Illustrating a protected edge xy.

6.2 Recognizing an avoidable edge

Definition 4 (protected edge). An edge xy is protected if there is an (Ng[z]U
N¢ly])-excluded path between every vertex of Ng(x) and every vertex of
N¢(y) (see Figure 6.3).

We note that if an edge xy is protected then x protects y and y protects x
in accordance to Definition 2. However, the reverse is not necessarily true, as
shown in Figure 6.4.

Lemma 24. Let xy be an edge of G. Then xy is an avoidable edge in G if
and only if xy is a protected edge in G — B(x,y).

Proof. Let H = G — B(z,y) and let us first show that zy is an avoidable
edge in G if and only if xy is an avoidable edge in H. Suppose that zy is
an avoidable edge in . For any two vertices a € A, and b € A, such that
ab ¢ E(G), there is an induced cycle C' that contains a, x,y,b. Now observe
that no vertex of B(z,y) belongs to C, as C' is an induced cycle in G. Thus
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¢ Y d

Figure 6.4: In this example we have Ng[z] U Ng[y] = V(G). Observe that
x protects y, because x has {c,y, d}-excluded paths to both ¢ and d, and
similarly y protects x. However, the edge xy is not protected because, for
instance, there is no V(G)-excluded path (and, thus, an edge) between a and
d. Also notice that there is a Py = (a,z,y,d) that is not contained in an
induced cycle.

G

Ne¢ly))-excluded path
(@) (i)

Figure 6.5: Illustrating Lemma 24.

xy is an avoidable edge in H. For the converse, notice that H is an induced
subgraph of GG, so that all induced cycles of H remain induced cycles in G.
Therefore our task is to show that zy is an avoidable edge in H if and only if
xy is protected in the same graph H.

Suppose that zy is an avoidable edge in H. Observe that Ny (z) = A, U{y}
and Ny (y) = AyU{z}. If at least one of A,, A, is empty then zy is protected
(as well as simplicial), because all required (Ng[x] U Ngly])-excluded paths
have length one between a vertex and its neighbors. Consider any two vertices
a € A, and b € A,. Clearly the edges za and yb constitute N [y]-excluded
path and Np[z]-excluded path, respectively. Assume first that ab ¢ E(H).
Then there is a Py = (a, x,y, b) that contains xy as a middle edge. Any induced
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cycle C that contains the described Py, contains vertices from V (H)\ (A;UAy),
so that the vertices of C' — P; belong to V(H) \ (Ng[x] U Ng[y]). Thus the
subpath on C taken from C'— P, with endpoints a and b is a (A, UA, U{z,y})-
excluded path of length at least two between a and b. If ab € E(H) then (a, b)
is an (A; U Ay U {z, y})-excluded path of length one between a and b. In all
cases we deduce that zy is a protected edge.

Suppose that zy is a protected edge in H. Consider a Py = (a,x,y,b) that
contains zy as middle edge. Then clearly a € A,, b € Ay, and ab ¢ E(H).
We show that there is an induced cycle in H that contains the P;. Between
a and b, there is an (Ng|[z] U Ng[y])-excluded path P, in H. The length of
P,y is at least two, since ab ¢ E(H). By definition, all internal vertices of P,
belong to V(H) \ (Ng[z] U Ng[y]) and, thus, are non-adjacent to x and y.
Let S = V(P,;) and consider the induced subgraph H|[S] that is connected.
Then the shortest path P/, between a and b in H[S] is an induced path of
H. Therefore the concatenation of the Py = (a,z,y,b) with P, results in the
desired induced cycle of H. O

Based on Lemma 24, we deduce the following running time for recognizing
an avoidable edge. This is achieved by carefully applying Algorithm 2. No-
tice that the stated running time is comparable to the O(d(u)(n + m))-time
algorithm for recognizing an avoidable vertex w implied by Theorem 18.

Theorem 25. Recognizing an avoidable edge of a graph G can be done in
O(n -m) time.

Proof. Let xy be an edge of G. We first collect the vertices of B(x,y) in
O(n) time. By Lemma 24 we need to check whether zy is protected in H =
G — B(z,y)(see Figure 6.5). If xy is simplicial edge then zy is avoidable and,
by Observation 23, this can be tested in O(n +m) time. Otherwise, both sets
Ay, Ay are non-empty. Without loss of generality, assume that [A;| < |A,].
In order to check if zy is protected, we run |A,| times Algorithm 2:

e for every vertex a € Az, run Algorithm 2(H — ((A;\{a})U{z,y}), a, Ay).

In particular, we test whether there is an Ay -excluded path between a and
every vertex of A, without considering the vertices of (A, \ {a}) U {z,y},
that is on the graph H — ((A; \ {a}) U {z,y}). If all vertices of A, have an
Ay-excluded path with all the vertices of A, on each corresponding graph,
then such paths do not contain any internal vertex from A, U A, U {y}. Since
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By By

uy Uy Ug Uk—1 Ug

(4) (i)

Figure 6.6: (i) A path P that is simplicial and thus avoidable. (i) A non-
simplicial avoidable path Pj.

Nylz] = Ay U{z,y} and Ngly] = A,U{z,y}, we deduce that xy is a protected
edge, and thus, zy is avoidable in G. Regarding the running time, observe that
we make at most n > |A,| calls to Algorithm 2 on induced subgraphs of G.
Therefore, by Lemma 16, the total running time is O(nm). O

6.3 Recognizing an avoidable path

Let us now show how to extend the recognition of an avoidable edge towards
their common generalization of avoidable induced paths. The internal path
of a non-edgeless induced path P is the path obtained from P without its
endpoints and it is denoted by in(P).

Definition 5 (simplicial and avoidable path). An induced path Py on k > 2
vertices is called simplicial if there is no induced path on k + 2 vertices that
contains P, as an internal path. An induced path P. on k > 2 vertices is
called avoidable if either Py is simplicial, or every induced path on k + 2
vertices that contains P as an internal path is contained in an induced cycle
(see Figure 6.6).

For k = 2, avoidable paths correspond to avoidable edges. Let P be an
induced path on k vertices of a graph G with £ > 3 having endpoints z and
y. We denote by I[Pg] the vertices of Nglin(Py)] \ {z,y}. That is, I[Pj]
contains the vertices of the internal path of P, and their neighbors outside P.
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G+ zy — I[Py

Figure 6.7: Illustrating Lemma 26 by replacing Pj, by an edge.

Given two non-adjacent vertices x and y in G, we denote by G + xy the graph
obtained from G by adding the edge zy (see figure 6.7).

Lemma 26. Let Py be an induced path on k vertices of a graph G with k > 3
having endpoints x and y. Then Py is an avoidable path in G if and only if
xy is an avoidable edge in G + xy — I[Py].

Proof. We claim first that there is a Pyy9 that contains Py as an internal path
in G if and only if there is a P, that contains xy as a middle edge in the graph
H =G+ xzy— I[Pl

Assume that there is a P19 that contains P, as an internal path in G. Let
2’ and y’ be the endpoints of Pyys. As Pgio is an induced path, both 2’y
belong to H and z'y,zy',2'y’ ¢ E(H). Thus (z/,x,y,vy) is a Py in H that
contains xy as a middle edge.

Assume that there is a Py = (2/,z,y,%’) in H that contains zy as a middle
edge. Consider the vertices of the path Py_5 of P,—{x,y} in G that correspond
to the edge zy of H. Then no vertex of the Pj_5 is adjacent to any of 2’ or ¢/
by the construction of H. Thus, replacing the edge zy in the Py = (2, z,y,y’)
by the path Py_o, results in an induced path Pyxio on k + 2 vertices in G.

Observe that the above claim implies that Py is a simplicial path in G if and
only if xy is a simplicial edge in H. Next we show that a non-simplicial path
P, with endpoints x and y is avoidable in G if and only if the non-simplicial
edge zy is avoidable in H. Assume that there is a Pyio = (2/, 2, Pr_2,9,y)
that contains P, = (z, Py_2,y) as an internal path in G. Let Cs be an induced
cycle that contains the Py o in G. Since Cg is induced cycle, every vertex of
Ca — P;_o belongs to H. Now observe that the vertices of Cg — Pi_s induce
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a path in G of length at least four. Hence the vertices of Cq — Py_o induce a
cycle in H, since zy € E(H), which shows that zy is avoidable edge in H.

To show that Py is avoidable in G, we show that there is an induced cycle
that contains the described Py19. Let Cy be an induced cycle of H containing
a Py = (2 x,y,y'). Since zy is a avoidable edge in H, such a cycle exists. Con-
struct the cycle C’ obtained from Cy by removing the edge xy and attaching
the path Py_s of Py — {z,y}. Then C’ is an induced cycle in G because:

e Cyg—{z,y} is an induced path in G, as H—{x, y} is an induced subgraph
of G,

e P is an induced path in GG by definition, and

e no vertex of P;_o has a neighbor in Cy — {z,y}, as Ng(Pr—2) \ {z,y} C
I[P

Therefore there is an induced cycle in G that contains the described Pyio of
P,. O

Theorem 27. Given an induced path P, on k > 2 wvertices of G, testing
whether Py, is avoidable can be done in O(n - m) time.

Proof. Assume that the endpoints of P, are z and y. By Lemma 26, it is
enough to check if the edge zy is avoidable in the graph G + xzy — I[Pg]. Con-
structing the graph G + xy — I[Pg] takes O(nk) time. Applying the algorithm
given in Theorem 25 results in an algorithm with the claimed running time,
since k£ < n. O
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CHAPTER

EMPIRICAL ANALYSIS

Here we conduct an experimental analysis of the proposed algorithms for
computing all avoidable vertices of a graph. We mainly compare, in term of
time execution, four algorithms of the previous chapters. We also propose
two additional algorithms that we present in this chapter. All considered six
algorithms compute avoidable vertices of a graph that is both connected and
co-connected.

We wrote our implementations in Python, using NetworkX, a python pack-
age for studying data structure and network connection analysis to compile
the code. Also we used Matplotlib package for visualizing and plotting the
graph regarding the avoidability of its vertices. These two packages use a
pretty huge amount of resources such as CPU and memory consumption, so
it is only for study and analysis purpose.

We report the running times on a Dell Precision Tower 7820 CTO Base
machine running Ubuntu (16.04 LTS), equipped with an Intel Xeon Gold 5118
2.3 GHz processor with 16 MB L3 cache and 192GB DDR4-2400 RAM at 2,666
MHz. We did not use any parallelization, and each algorithm ran on a single
core. All our running times were averaged over ten different runs.

7.1 Experimental algorithms

We have implemented the naive algorithm that we denote by NG. NG is
based on the definition of an avoidable vertex. Given a vertex u, the naive
algorithm NG runs a linear-time connectivity algorithm (here we considered
BF'S) for every pair (x,y) of non-adjacent vertices of Ng(u) that is performed
on the graph G — (Ng[u] \ {z,y}). As already explained, the running time of
NG is O(n®m).
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Algorithm 5: Testing if H,[X] is a clique.
Input : A graph G and a vertex u
Output: Returns true iff v is avoidable in G
Construct the contracted graph G, (X, C) of u;
Construct the filled-contracted graph H, (X, C) of u;
if H,[X] is a cliqgue then
return true;

else

L return false;

S AN W N =

Moreover, we use two of the aforementioned algorithms, by applying the
notion of protecting (Definition 2 and Lemma 17) via Algorithm 3 which is
based on the modified BFS. The reason for reaching two such algorithms is
that of directly applying to the whole graph as well as on the contracted graph
by Lemma 20. We denote the two algorithms based on the protecting notion
by PG and PCG, respectively. Regarding their running time, Theorem 18
shows that they are both performed in O(n? + m?) time.

Let us now explain three additional algorithms that are applied on the
contracted graph G, (X, C) of a vertex u.

We propose an algorithm denoted by HuCG, that comes directly from
Lemma 21, in which it is stated that a vertex u of G is avoidable, if and
only if, the filled-contracted graph H,[X] is a clique. Algorithm 5 gives the
details of the proposed algorithm. Regarding its running time, observe that
constructing H, (X, C) takes O(n3) time, as we need to consider all pairs of
neighbors of a vertex C; € C' in order to turn N, (C;) into a clique.

Furthermore, we propose the ICG algorithm that takes advantage of the
intersection of the neighborhood of two non-adjacent vertices in X.

Lemma 28. A wverter u is avoidable in G if and only if for every pair of
non-adjacent vertices (x,y) € X, there is a C; € C such that C; € (Ng,(x) N

Na,)(©))-

Proof. By Lemma 21, u is avoidable if and only if H,[X] is a clique. If there
are two non-adjacent vertices x and y that have no common neighbor in C
then xy is not an edge of H,. Thus H,[X] is not a clique and u is a non-
avoidable vertex. On the other hand, if every pair of non-adjacent vertices
x,y € X have a common neighbor in C then H,[X] is a clique which means
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Algorithm 6: Testing if each non-adjacent pair x,y € Ng(u) have a
common neighbor in C.

Input : A graph G and a vertex u

Output: Returns true iff v is avoidable in G
Construct the contracted graph G, (X, C) of u;
Let L={(z,y) : (z,y) ¢ E(G) and =,y € X };
Remove all edges of X and remove u;

for (z,y) € L do

L if N, (z) N Ng,(y) =0 then

S Gk W N =

L return false;

~

return true;

that u is avoidable. O

In other words, a vertex w is avoidable if and only if every pair of non-
adjacent vertices of Ng, (u) have a common neighbor in C. Algorithm 6 shows
the details of ICG. Regarding its running time, observe that the intersection
of Ng, (x)NC and Ng, (y)NC takes O(n) time and as there O(n?) pairs (z,y)
in X, the overall running time for testing a single vertex u is O(n?).

Further, we present the CXCG algorithm that uses the complement F,, of a
subgraph of G, (X, C). Let us explain. We consider G, (X, C), we remove ver-
tex u and all edges between vertices of X. At the new bipartite graph F with
partition (X, C), we take its bipartite complement, regarding only the edges
between X and C. The resulting graph is denoted by F, (see Figure 7.2). In
particular, V(F,) = XUC and E(F,) = {{z,c}lz € X,c € C,{z,c} ¢ E(G,)}.
With the next lemma, we claim that u is non-avoidable iff there is at least
one pair (x,y) of non-adjacent vertices of X such that Ng, (z) U Ng,(y) = C.
That is, u is non-avoidable iff there are at most two non-adjacent vertices in
X that dominate the set C in F,.

Lemma 29. Let u be a vertex of G and let Fy, be the bipartite complement
of the contracted graph G.(X,C). Then u is a non-avoidable verter in G
if and only if there is a pair of non-adjacent vertices (x,y) € X such that
Np,(z) U Ng,(y) = C.

Proof. Assume that u is non-avoidable. Then from Lemma 28 there are non-
adjacent vertices z,y € X that have no common neighbor in C. We show that
x and y dominate C' in Fy,. Let N, = Ng,(z) N C and let N, = Ng, (y) N C.
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Algorithm 7: Testing if there is a non-adjacent pair (z,y) € Ng(u),
such that y is adjacent to every node C; of F,, — Np,[z] .

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G
Construct the contracted graph G, (X, C) of u;
Let L={(z,y) : (z,y) ¢ E(G) and z,y € X};
Construct the bipartite complement graph F;
for (z,y) € L do

remove Ng, [z];

if Np,(y) = C then

L return false;

g OO ks W =

[0 d]

return true;

Then C' is partitioned into three disjoint sets C'\ (N U Ny), N, Ny. In the
bipartite complement F,, = is adjacent to every vertex of C'\ (N U Ny), N,
and y is adjacent to every vertex of C'\ (IN; U Ny), N;. Thus every vertex of
C' is dominated by x or y, which implies that Ng, (z) U Ng,(y) = C.

Now assume that there is a vertex C; € C such that C; ¢ (Ng, (z)UNE, (v)),
for every pair of non-adjacent vertices x,y € X. Then C; is adjacent to both z
and y in Gy, since C; is a vertex of C. Thus = and y have a common neighbor
in C in the graph G,. By Lemma 28 we deduce that u is avoidable. O

In order to take advantage of Lemma 29 and test if there exist two non-
adjacent vertices z and y in X, we first construct the bipartite complement
F, of Gu(X,C), then we remove all vertices of Np, (), and then we check
whether y is adjacent to every vertex of C' (see Figure 7.1). The details of
the aforementioned CXCG algorithm are given in Algorithm 7. Regarding its
running time, the construction of the bipartite complement F, takes O(n?)
time and testing each of the O(n?) pair of vertices takes O(dp, (z)) time where
dr,(x) is the degree of x in F,,. Thus the overall running time of CXCG is
O(n® m).

In Table 7.1 we summarize all considered algorithms that we have imple-
mented and used in this experimental analysis.
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Cy

(@) (i)

Figure 7.1: Illustrating CXCG algorithm in F;, graph. Observe that after the
removal of vertex x and its neigbours in C, the remaining vertex y is adjacent
to all of the remaining vertices of C.

Algorithm Description Complexity

NG Applying the naive algorithm directly in G~ O(n®m)

PG Using the notion of protecting directly in G O(n? + m?)
(Algorithm 3)

PCG Using the notion of protecting in the con- O(n? 4+ m?)
tracted G (Algorithm 3)

HuCG Checking the filled-contracted graph H,[X] O(n%)
in the contracted G (Algorithm 5)

ICG Checking the intersection of the neighbor- O(n*)
hood in the contracted G (Algorithm 6)

CXCG Testing for a dominating pair of non-adjacent O(n*m)

vertices of G, (X) in F, in the contracted G
(Algorithm 7)

Table 7.1: The algorithms that are used in the experimental analysis. Here
n, m and m denote the number of vertices, edges, and non-edges, respectively,
of the given graph.

7.2 Random graphs

Here we compare the efficiency of our algorithms in random graphs. In order
to do so, we used random graph generator of NetworkX package with 100, 200
and 300 nodes. Moreover for each random graph we used three different values
of probability p, for edge creation : p=0.05, p=0.50 and p=0.95 (see table 7.3).

Table 7.2 shows the considered random graphs in which we report structural
properties in each generated graph. Besides the usual data, we report the
percentage of the number of non-avoidable vertices and the reduced sizes (in
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(iii) (iv)

Figure 7.2: Tllustrating the steps of Lemma 29.

average) of the contracted graphs.

The results in running times for all of our algorithms applied on the graphs
taken from Table 7.2 are given in Table 7.3.

7.3 Real-world graphs

For the experimental evaluation of our algorithms in real-world networks, we
use real datasets that are both connected and co-connected. The datasets are
taken from several divergent areas such as animal networks, brain networks,
social networks, infrastructure networks and facebook networks [20].

Table 7.4 reports the details of each considered real-world network. We
have chosen 12 networks in which the number of vertices ranges from 58 to
1458 and with edge density (i.e., 2m/n(n — 1)) that diverges significantly.
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n p m | Density Aver. Deg. Non-Avoid. (%) C.R. (%)
100 0.05 337 0.068 6.74 2 6
100 0.50 2475 0.500 49.50 0 29
100 0.95 4613 0.931 92.26 2 89
200 0.05 1175 0.059 11.75 2 2
200 0.50 9950 0.500 99.50 0 27
200 0.95 18725 0.940 187.25 0 90
300 0.05 2512 0.056 16.74 3 2
300 0.50 22425 0.500 149.50 0 26
300 0.95 42338 0.943 282.25 0 90

Table 7.2: Random graphs produced by NetworkX and their percentage of
non-avoidable vertices.The percentage of C.R. shows how much each graph is
reduced in terms of number of vertices, after the contraction procedure.

n p NG PG PCG HuCG ICG CXCG
100 0.05 0.5745 0.4939 0.0743 0.0737 0.0772 0.0786
100 0.50 18.2944 7.7577 0.4048 0.2798 0.8779 0.5677
100 0.95 18.8785 5.2704 1.4625 0.7490 5.1182 0.8820
200 0.05 7.1858 4.8089 0.3514 0.3480 0.3751 0.3835
200 0.50 | 278.7692  109.1687 2.8438 1.8785 8.8196 4.9547
200 0.95 | 242.1613 55.7412 11.2460 5.3009 66.9655 7.0046
300 0.05 30.8796 18.0353 0.8825 0.8717 0.9484 0.9631
300 0.50 | 1493.5639  525.0821 9.5477 6.1045 38.3495 19.2981
300 0.95 | 1147.9665  243.6962 39.2457 18.0800  309.1732 24.9562

Table 7.3: Running times of our algorithms, in random graphs produced by
NetworkX. We highlight with bold the best running time in each instance
(row).

The results in running times for all of our algorithms applied on the graphs
taken from Table 7.4 are given in Table 7.5.

7.4 Experimental conclusions

The corresponding plotted values from Table 7.3 and Table 7.5 are shown
in Figure 7.3 and Figure 7.5 respectively.

For the random graphs that are neither sparse nor dense, (0.05 < p < 0.95)
HuCG has the best performance. The same behavior occurs on sparse random
graphs (p = 0.05) as well as on dense random graphs (p = 0.95). However,
on real-world graphs in almost all instances both PCG and HuCG outperform
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Dataset n m  Density Aver. Deg. Non-Avoid. (%) C.R. (%)
insecta-ant-colony2-day39 | 58 879 0.531 30.310 22 45
soc-dolphins 62 159 0.084 5.129 23 13
insecta-ant-colony2-day16 | 111 4041 0.661 72.810 36 60
aves-wildbird-network-1 131 1444 0.169 22.045 65 23
insecta-ant-colony6-day0l | 164 10731 0.802 130.865 16 71
inf-USAir97 332 2126 0.038 12.807 35 17
bio-celegans 453 2025 0.019 8.940 35 6
bio-diseasome 516 1188 0.008 4.604 31 4
soc-wiki-Vote 889 2914 0.007 6.555 23 3
soctb-Reed98 962 18812 0.040 39.110 13 3
soctfb-Haverford76 1446 59589 0.057 82.419 5 3
bio-yeast 1458 1948 0.001 2.672 31 2

Table 7.4: The datasets from Real World Networks taken from [20] that we
used for the evaluation of our algorithms.

Dataset NG PG PCG HuCG ICG CXCG

insecta-ant-colony2-day39 1.5365 0.7510 0.1117 0.0756 0.1685 0.0987
soc-dolphins 0.0691 0.0851 0.0249 0.0250 0.0251 0.0258
insecta-ant-colony2-day16 16.1304 6.3688 0.8177 0.5784 2.0461 0.7049
aves-wildbird-network-1 0.6090 0.5732 0.1952 0.2058 0.2050 0.2002
insecta-ant-colony6-day01 107.1668 38.1257 3.9208 2.2945 17.0078 3.6033
inf-USAir97 2.8236 2.7650 0.5876 0.6102 0.6157 0.6816
bio-celegans 3.9009 5.0335 1.0322 1.0532 1.0329 1.0621
bio-diseasome 0.2920 0.3045 0.4345 0.4382 0.4381 0.4377
soc-wiki-Vote 17.2691 19.4446 3.4021 3.4156 3.4144 3.4541
socfb-Reed98 1582.0383 597.3261 15.3947 15.1578 18.2741 18.0137
socfb-Haverford76 20416.9665  6229.3409 70.4331 66.8618  105.9508 95.9866
bio-yeast 4.5956 7.6304 4.3437 4.3279 4.3423 4.3497

Table 7.5: Results in running times for our algorithms regarding real world
network datasets. We highlight with bold the best running time in each in-
stance (row).

the rest of the algorithms.

The results taken from random graphs in Table 7.3 suggest that the contrac-
tion process significantly reduces the actual running time. When comparing
PC and PCG which apply the same algorithm, an improvement of almost 85%
is occurred. As expected, the small number of non-avoidable vertices is crucial
for the exhaustive application of each algorithm. Moreover, sparsity and den-
sity of each test graph is an important aspect that affects the corresponding
running times. Furthermore, Table 7.5 shows that the outcomes taken from
the random graphs naturally correspond on real-world data.
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Random graphs
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Figure 7.3: Running times in seconds with respect to the number of edges (in
log scale) taken by Table 7.3.

Real-world graphs
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Figure 7.4: Running times in seconds with respect to the number of edges (in
log scale) taken by Table 7.5.
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CONCLUDING REMARKS

The running times of our algorithms for listing all avoidable vertices are
comparable to the corresponding ones for listing all simplicial vertices. Thus
we believe it is difficult to achieve a reduction of the running time for avoid-
able vertices without affecting the time needed for simplicial vertices. As
pointed out, we can detect avoidable vertices in particular graph classes in
more efficient way. Towards this direction, it is interesting to consider planar
graphs and reveal any possible improvement on the running time. Moreover
the notion of protecting and the relative S-excluded paths seem to tackle fur-
ther problems concerning avoidable structures. Our recognition algorithm for
avoidable edges results in an algorithm for listing avoidable edges with running
time O(nm?) which is comparable to the O(m?)-algorithm for listing avoid-
able vertices. Regarding avoidable paths on k vertices, one needs to detect
first with a naive algorithm a path Py in O(n*) time and then test whether P
being avoidable or not. As observed in [9], such a detection is nearly optimal,
since we can hardly avoid the dependence of the exponent in O(n*). Therefore
by Theorem 25 we get an O(n**+!.m)-algorithm for listing all avoidable paths
on k vertices. An interesting direction for further research along the avoidable
paths is to reveal problems that can be solved efficiently by taking advantage
the list of all avoidable paths in a graph.
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