
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΟΜΕΑΣ ΕΦΑΡΜΟΣΜΕΝΩΝ

ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Αθανάσιος Ζήσης

Αλγόριθμοι για τον υπολογισμό κόμβων αποφυγής
και μονοπατιών αποφυγής

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ

Ιωάννινα, 2021

UNIVERSITY OF IOANNINA
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS
SECTION OF APPLIED AND

COMPUTATIONAL MATHEMATICS

Athanasios Zisis

Algorithms for Computing Avoidable

Vertices and Avoidable Paths

MASTER THESIS

Ioannina, 2021

Dedicated to the memory of my loving sister Irene

and to the memory of my parents Evangelos and Eleni.

’’Μικρού δ’ αγώνος ου μέγα έρχεται κλέος.’’

Σοφοκλής, 496-406 π.Χ.

(Από ασήμαντο αγώνα δεν προκύπτει μεγάλη δόξα.)

”Little effort will not bring much glory.”
Sophocles, 496-406 B.C.

Η παρούσα Μεταπτυχιακή Διατριβή εκπονήθηκε στο πλαίσιο των σπουδών για

την απόκτηση του Μεταπτυχιακού Διπλώματος Ειδίκευσης στα ’’Εφαρμοσμένα

Μαθηματικά και Πληροφορική’’ που απονέμει το Τμήμα Μαθηματικών του Πανε-

πιστημίου Ιωαννίνων.

Εγκρίθηκε την 02/12/2021 από την εξεταστική επιτροπή:

Ονοματεπώνυμο Βαθμίδα

Χάρης Παπαδόπουλος Αναπληρωτής Καθηγητής (Επιβλέπων)

Λουκάς Γεωργιάδης Αναπληρωτής Καθηγητής

Λεωνίδας Παληός Καθηγητής

ΥΠΕΥΘΥΝΗ ΔΗΛΩΣΗ

“Δηλώνω υπεύθυνα ότι η παρούσα διατριβή εκπονήθηκε κάτω από τους διεθνείς

ηθικούς και ακαδημαϊκούς κανόνες δεοντολογίας και προστασίας της πνευματι-

κής ιδιοκτησίας. Σύμφωνα με τους κανόνες αυτούς, δεν έχω προβεί σε ιδιοποίηση

ξένου επιστημονικού έργου και έχω πλήρως αναφέρει τις πηγές που χρησιμοπο-

ίησα στην εργασία αυτή.”

Αθανάσιος Ζήσης

Ευχαριστίες

Με την ολοκλήρωσή της παρούσας Μεταπτυχιακής Διατριβής θα ήθελα να

απευθύνω ένα βαθύ ευχαριστώ σε αυτούς που με βοήθησαν να την φέρω σε πέρας.

Θα ήθελα να ευχαριστήσω ιδιαίτερα τον επιβλέποντά μου, Αναπληρωτή Κα-

θηγητή κύριο Χάρη Παπαδόπουλο, ο οποίος προσέφερε το ενδιαφέρον θέμα της

εργασίας αυτής και μου παρείχε σε όλα τα στάδια της εξέλιξης της Μεταπτυχιακής

μου Διατριβής, παρόλο τον περιορισμένο χρόνο του, όλη την απαραίτητη καθο-

δήγηση, αλλά και οτιδήποτε άλλο χρειαζόμουν.

Επίσης, τον ευχαριστώ θερμά, που συνετέλεσε με κάθε δυνατό τρόπο να εδραι-

ώσουμε μεταξύ μας μια άψογη, υψηλής ποιότητας και επαγγελματική ερευνητική

συνεργασία, βασισμένη στον αλληλοσεβασμό.

Επιπλέον, θα ήθελα να ευχαριστήσω τα μέλη της εξεταστικής επιτροπής, τους

κυρίους Λουκά Γεωργιάδη και Λεωνίδα Παληό, για τα χρήσιμα σχόλια και τις

παρατηρήσεις τους.

Αισθάνομαι επίσης την ανάγκη να ευχαριστήσω θερμά την συνάδελφο και συμ-

φοιτήτριά μου στο Μεταπτυχιακό Πρόγραμμα Σπουδών, κυρία Ευαγγελία Τακαν-

τζιά, για την αμέριστη συμπαράστασή της και την πολύτιμη συνδρομή της προς το

πρόσωπο μου, σε όλες τις δύσκολες στιγμές, ακαδημαϊκές και μη, της συνολικής

μάλιστα διάρκειας των μεταπτυχιακών μου σπουδών.

Τέλος, θα ήταν παράλειψή μου να μην ευχαριστήσω την φίλη, κυρία Ολυμπία

Φώτου, για την πολύπλευρη στήριξή της κατά την διάρκεια των μεταπτυχιακών

μου σπουδών.

Περίληψη

Η κορυφή ενός γραφήματος της οποίας η γειτονιά είναι κλίκα, καλείται simpli-
cial. Είναι γνωστό ότι η εύρεση όλων των simplicial κορυφών ενός γραφήματος

με n κορυφές και m ακμές μπορεί να επιτευχθεί σε O(nm) χρόνο ή O(nω) χρόνο,

όπου O(nω) είναι ο χρόνος που απαιτείται για τον πολλαπλασιασμό πινάκων δι-

άστασης n× n. Η έννοια των κορυφών αποφυγής (avoidable vertices) αποτελεί

γενίκευση της έννοιας των simplicial κορυφών με τον ακόλουθο τρόπο: μια κο-

ρυφή u είναι κορυφή αποφυγής (avoidable) εαν κάθε επαγόμενο μονοπάτι τριών

κορυφών με μεσαία κορυφή την u περιέχεται σε έναν επαγόμενο κύκλο.

Παρουσιάζουμε και αναλύουμε αλγόριθμους που σχεδιάσαμε για την εύρεση

όλων των κορυφών αποφυγής ενός γραφήματος μέσω των εννοιών των minimal
triangulations και της ανίχνευσης κοινής γειτονιάς. Πιο συγκεκριμένα, δίνουμε

αλγόριθμους με πολυπλοκότητα χρόνου O(n2m) και O(n1+ω), αντίστοιχα. Επι-

πλέον, προτείνουμε και έναν πιο γρήγορο αλγόριθμο με χρονική πολυπλοκότητα

O(n2 + m2), η οποία συμπίπτει με την αντίστοιχη πολυπλοκότητα χρόνου της

εύρεσης των simplicial κορυφών σε αραιά γραφήματα όπου χαρακτηρίζονται από

m = O(n).

Αξίζει να σημειώσουμε ότι κατά την ανάλυση των συγκεκριμένων αλγορίθμων

σχεδιάσαμε επιπλέον έναν βέλτιστο γραμμικό αλγόριθμο για τα cograph και έναν

αλγόριθμο για τα chordal γραφήματα με πολυπλοκότητα χρόνου O(nm).

Επεκτείνουμε τα αποτελέσματά μας, εξετάζοντας τις ακμές αποφυγής (avoid-
able edges) και, πιο γενικά, τα μονοπάτια αποφυγής (avoidable paths) καθώς

αποτελούν την φυσική γενίκευση των κορυφών αποφυγής. Παρουσιάζουμε έναν

αλγόριθμο χρονικής πολυπλοκότητας O(nm), ο οποίος αναγνωρίζει πότε ένα δω-

θέν επαγόμενο μονοπάτι (ή ακμή) είναι μονοπάτι (ή ακμή) αποφυγής.

Τέλος, συγκρίνουμε την εμπειρική απόδοση των προτεινόμενων αλγορίθμων

μας, που εκτελούνται στο συνολικό γράφημα εισόδου, καθώς και στα συρικνωμένα

υπογραφήματά του. Για το σκοπό αυτό, διεξάγουμε μια διεξοδική πειραματική

μελέτη για να αναδείξουμε τα πλεονεκτήματα και τις αδυναμίες κάθε προτεινόμενης

τεχνικής.

i

Abstract

A simplicial vertex of a graph is a vertex whose neighborhood is a clique. It
is known that listing all simplicial vertices can be done in O(nm) time or O(nω)
time, where O(nω) is the time needed to perform a fast matrix multiplication.
The notion of avoidable vertices generalizes the concept of simplicial vertices
in the following way: a vertex u is avoidable if every induced path on three
vertices with middle vertex u is contained in an induced cycle.

We present algorithms for listing all avoidable vertices of a graph through
the notion of minimal triangulations and common neighborhood detection.
In particular we give algorithms with running times O(n2m) and O(n1+ω),
respectively. Additionally, we propose a faster algorithm that runs in time
O(n2 + m2), and thus matches the corresponding running time of listing the
simplicial vertices on sparse graphs with m = O(n).

Moreover, our results imply an optimal algorithm on cographs and O(nm)-
time algorithm on chordal graphs.

To complement our results, we consider their natural generalizations of
avoidable edges and avoidable paths. We propose an O(nm)-time algorithm
that recognizes whether a given induced path is avoidable.

Finally, we compare the empirical performance of our proposed algorithms
that are performed on the overall input graph as well as on its contracted sub-
graphs. To that end, we conduct a thorough experimental study to highlight
the merits and weaknesses of each technique.

ii

Περιεχόμενα

Περίληψη i

Abstract ii

1 Introduction 3

1.1 Road Map . 6

2 Preliminaries 7

3 Detecting Avoidable Vertices in Sparse or Dense Graphs 10

3.1 Appetizer: an optimal algorithm on cographs 10

3.2 Sparse or dense graphs . 14

3.3 A modular decomposition approach 19

4 Computing Avoidable Vertices Directly from G 22

4.1 A nice minimal triangulation 22

4.2 Constructing a nice minimal triangulation via vertex incremen-
tal approach . 24

4.3 Avoidable vertex via minimal triangulations 26

4.4 A fast algorithm for listing avoidable vertices 27

4.4.1 A modified BFS . 28

4.4.2 Exploiting the modified BFS 30

5 Avoidable Vertices via Contractions 33

1

5.1 Computing a contracted graph 33

5.2 Avoidable vertex in a contracted graph 34

5.3 Exploiting a fast matrix multiplication 36

6 Recognizing Avoidable Edges and Paths 39

6.1 Private and common neighbors 40

6.2 Recognizing an avoidable edge 41

6.3 Recognizing an avoidable path 44

7 Empirical Analysis 47

7.1 Experimental algorithms . 47

7.2 Random graphs . 51

7.3 Real-world graphs . 52

7.4 Experimental conclusions . 53

8 Concluding Remarks 56

Bibliography 58

2

CHAPTER 1
Introduction

Closely related to chordal graphs is the notion of a simplicial vertex, that is
a vertex whose neighborhood induces a clique. In particular, Dirac [13] proved
that every chordal graph admits a simplicial vertex. However not all graphs
contain a simplicial vertex. Due to their importance to several algorithmic
problems, such as finding a maximum clique or detecting the chromatic num-
ber, it is natural to seek for fast algorithms that list all simplicial vertices of
a graph. For doing so, the naive approach takes O(nm) time, whereas the
fastest algorithms take advantage of computing the square of an n× n binary
matrix and run in O(nω) and O(m2ω/(ω+1)) time [15]. Hereafter we assume
that we are given a graph G on n vertices and m edges; currently, ω < 2.37286
[2].

A natural way to generalize the concept of simplicial vertices is the notion of
an avoidable vertex. A vertex u is avoidable if either there is no induced path
on three vertices with middle vertex u, or every induced path on three vertices
with middle vertex u is contained in an induced cycle. Thus every simplicial
vertex is avoidable, however the converse is not necessarily true. As opposed
to simplicial vertices, it is known that every graph contains an avoidable vertex
[1, 7, 5, 17]. Extending the notion of avoidable vertices is achieved through
avoidable edges and, more general, avoidable paths. This is accomplished by
replacing the middle vertex in an induced path on three vertices by an induced
path on arbitrary k ≥ 2 vertices, denoted by Pk. Beisegel et. al [3] proved first
that every non-edgeless graph contains an avoidable edge, considering the case
of k = 2. Regarding the existence of an avoidable induced path of arbitrary
length, Bonamy et al. [9] settled a conjecture in [3] and showed that every
graph is either Pk-free or contains an avoidable Pk.

Since avoidable vertices generalize simplicial vertices, it is expected that
avoidable vertices find applications in further algorithmic problems. Indeed,
Beisegel et. al [3] revealed new polynomially solvable cases of the maximum

3

Chapter 1. Introduction

weight clique problem that take advantage the notion of avoidable vertices.
Similar to simplicial vertices, the complexity of a problem can be reduced by
removing avoidable vertices, tackling the problem on the reduced graph. It
is therefore of interest to list all avoidable vertices efficiently. If we are only
interested in computing two avoidable vertices this can be done in linear time
by using fast graph searches [5, 3]. However, computing the set of all avoidable
vertices requires to decide for each vertex of the graph whether it is avoidable
and a usual graph search cannot guarantee to test all vertices.

A naive approach that recognizes of a single vertex u of a graph G whether it
is avoidable or not, needs to check if all neighbors of u are pairwise connected in
an induced subgraph of G. Thus the running time of recognizing an avoidable
vertex is O(n3 + n2m) or, as explicitly stated in [3], it can be expressed as
O(m·(n+m)) where m is the number of edges in the complement of G. Inspired
by both running times, we first show that we can reduce in linear time the
listing problem on a graph G having m ≥ n and m ≥ n. In a sense such a
result states that graphs that are sparse (m < n) or dense (m < n) can be
decomposed efficiently to smaller connected graphs for which their complement
is also connected. Towards this direction, we give an interesting connection
with the avoidable vertices on the complement of G. As a result, the naive
algorithms for listing all avoidable vertices take O(n3 ·m) and O(n·m·m) time,
respectively. Moreover, based on the proposed reduction we derive an optimal,
linear-time, algorithm for listing all avoidable vertices on graphs having no
induced path on four vertices, known as cographs.

Our main results consist of new algorithms for listing all avoidable vertices
in running times comparable to the ones for listing simplicial vertices. More
precisely, we propose three main approaches that result in algorithms for listing
all avoidable vertices of a graph G with the following running times:

� O(n2 · m), by using a minimal triangulation of G. A close relation-
ship between avoidable vertices and minimal triangulation was already
known [3]. However, listing all avoidable vertices through the proposed
characterization is inefficient, since one has to produce all possible min-
imal triangulations of G. Here we strengthen such a characterization
in the sense that it provides an efficient recognition based on one par-
ticular minimal triangulation of G. More precisely, we take advantage
of vertex-incremental minimal triangulations that can be computed in
O(nm) time [8].

� O(n2 +m2), by exploring structural properties on each edge of G. This

4

Chapter 1. Introduction

approach is based on a modified, traditional breadth-first search algo-
rithm. Our task is to construct search trees rooted at a particular vertex
that reach all vertices of a predescribed set S, so that every non-leaf ver-
tex does not belong to S. If such a tree exists then every path from the
root to a leaf that belongs to S is called an S-excluded path. It turns
out that S-excluded paths can be tested in linear time and we need to
make 2m calls of a modified breadth-first search algorithm.

� O(n1+ω), where O(nω) is the running time for matrix multiplication. For
applying a matrix multiplication approach, we contract the connected
components of G that are outside the closed neighborhood of a vertex.
Then we observe that a vertex u is avoidable if the neighbors of u are
pairwise in distance at most two in the contracted graph. As the distance
testing can be encapsulated by the square of its adjacency matrix, we
deduce an algorithm that takes advantage of a fast matrix multiplication.

We should note that each of the stated algorithms is able to recognize if a
given vertex u of G is avoidable in time O(nm), O(d(u)(n + m)), and O(nω),
respectively, where d(u) is the degree of u in G. Further, all of our proposed
algorithms are characterized by their simplicitiy and, besides the fast matrix
multiplication, consist of basic ingredients that avoid using sophisticated data
structures.

In addition, we consider the natural generalizations of avoidable vertices,
captured within the notions of the avoidable edges and avoidable paths. A
naive algorithm that recognizes an avoidable edge takes time O(n2 · m) or
O(m ·m). Here we show that recognizing an avoidable edge of a graph G can
be done in O(n ·m) time. This is achieved by taking advantage of the notions
of the S-excluded paths and their efficient detection by the modified breadth-
first search algorithm. Also notice that an avoidable edge is an avoidable
path on two vertices. We are able to reduce the problem of recognizing an
avoidable path of arbitrary length to the recognition of an avoidable edge. In
particular, given an induced path we prove that we can replace the induced
path by an edge and test whether the new added edge is avoidable or not in
a reduced graph. Therefore our recognition algorithm for testing whether a
given induced path is avoidable takes O(n ·m) time.

5

Chapter 1. Introduction

1.1 Road Map

In Chapter 2 we give the necessary general notation and the basic definitions
of avoidable vertices.

In Chapter 3 we consider separately sparse and dense graphs. Moreover we
give an optimal algorithm on cographs with running time O(n + m).

In Chapter 4 we compute avoidable vertices using minimal triangulations
and we propose a fast algorithm that uses a new notion, namely the S −
excluded path and protecting. Moreover we give a O(nm)-time algorithm on
chordal graphs.

In Chapter 5 we compute avoidable vertices via contractions and fast matrix
multiplication.

In Chapter 6 we propose a fast algorithm for recognizing avoidable edges
and paths using the notion of protected edge.

In Chapter 7 we conduct a thorough experimental analysis of the proposed
algorithms for listing all avoidable vertices of a graph.

6

CHAPTER 2
Preliminaries

All graphs considered here are finite undirected graphs without loops and
multiple edges. We refer to the textbook by Bondy and Murty [10] for any
undefined graph terminology. For a graph G = (VG, EG), we use VG and EG

to denote the set of vertices and edges, respectively. We use n to denote the
number of vertices of a graph and use m for the number of edges. Given
x ∈ VG, we denote by NG(x) the neighborhood of x. The degree of x is the
number of edges incident to x, denoted by dG(x). That is, dG(x) = |NG(x)|.
The closed neighborhood of x, denoted by NG[x], is defined as NG(x) ∪ {x}.
For a set X ⊂ V (G), NG(X) denotes the set of vertices in V (G) \ X that
have at least one neighbor in X. Analogously, NG[X] = NG(X) ∪X. Given
X ⊆ VG, we denote by G−X the graph obtained from G by the removal of the
vertices of X. If X = {u}, we also write G− u. The subgraph induced by X is
denoted by G[X], and has X as its vertex set and {uv | u, v ∈ X and uv ∈ EG}
as its edge set. For R ⊆ E(G), G \ R denotes the graph (V (G), E(G) \ R),
that is a subgraph of G. If R = {e}, we also write G \ e.

A clique of G is a set of pairwise adjacent vertices of G, and a maximal
clique of G is a clique of G that is not properly contained in any clique of
G. An independent set of G is a set of pairwise non-adjacent vertices of G.
The induced path on k ≥ 2 vertices is denoted by Pk and the induced cycle on
k ≥ 3 vertices is denoted by Ck. For an induced path Pk, the vertices of degree
one are called endpoints. A vertex v is universal in G if N [v] = V (G) and v is
isolated if N(v) = ∅. A vertex of degree one is called leaf. A graph is connected
if there is a path between any pair of vertices. A connected component of G is a
maximal connected subgraph of G. Given two vertices u and v of a connected
graph G, a set S ⊂ VG is called (u, v)-separator if u and v belong to different
connected components of G − S. We say that S is a separator if there exist
two vertices u and v such that S is a (u, v)-separator. For a set of finite graphs
H, we say that a graph G is H-free if G does not contain an induced subgraph

7

Chapter 2. Preliminaries

u

u u

(i) (ii) (iii)

Figure 2.1: (i) Vertex u is simplicial and thus avoidable. (ii) Vertex u is
simplicial and thus avoidable. (iii) A non-simplicial avoidable vertex u.

isomorphic to any of the graphs of H.

The disjoint union of two graphs G and H, denoted by G∪H, is the graph
on vertex set V (G)∪V (H) and edge set E(G)∪E(H). The complement of G,
denoted by G, is the graph on vertex set V (G) and edge set {uv | uv /∈ E(G)}.
We say that a graph G is co-connected if G is connected. Moreover a co-
component of G is a connected component of G.

Given an edge e = xy, the contraction of e removes both x and y and replaces
them by a new vertex w, which is made adjacent to those vertices that were
adjacent to at least one of the vertices x and y, that is N(w) = (N(x) ∪
N(y)) \ {x, y}. Let S be a vertex set of G such that G[S] is connected. If we
repeatedly contract an edge of G[S] until one vertex remains in S then we say
that we contract S into a single vertex. In different terminology, contracting
a set of vertices S is the operation of substituting the vertices of S by a new
vertex w with N(w) = N(S).

A vertex v is called simplicial if the vertices of NG(v) induce a clique (see
Figure 2.1 (i) − (ii)). Listing all simplicial vertices of a graph can be done
O(nm) time. The fastest algorithm for listing all simplicial vertices takes time
O(nω), where O(nω) is the time needed to multiply two n×n binary matrices
[15] (currently, ω < 2.37286 [2]). Avoidable vertices and edges generalize the
concept of simplicial vertices in a natural way.

Definition 1. A vertex v is called avoidable if every P3 with middle vertex v
is contained in an induced cycle. Equivalently, v is avoidable if dG(v) ≤ 1 or
for every pair x, y ∈ NG(v) the vertices x and y belong to the same connected
component of G− (NG[u] \ {x, y}) (see Figure 2.1 (iii)).

8

Chapter 2. Preliminaries

u

x z e y

G

Cx Cy

S

Figure 2.2: A connected graph G. A non-avoidable vertex u in G has a
(x, y)− separator S such that S ⊂ NG[u] for some vertices x, y ∈ NG(u).

Every simplicial vertex is avoidable, however the converse is not necessarily
true. It is known that every graph contains an avoidable vertex [1, 7, 17].
Every vertex of a graph of degree ≤ 1 is simplicial and hence avoidable. Thus
a non-avoidable vertex of a graph, has degree ≥ 2.

Observation 1. Let G be a graph and let u be a vertex of G. Then u is
non-avoidable if and only if there is an (x, y)-separator S that contains u such
that S ⊂ NG[u] for some vertices x, y ∈ NG(u).

Proof. Assume that u is non-avoidable. Then by Definition 1, there are two
vertices x, y ∈ NG(u) that belong to different connected components in G −
(NG[u]\{x, y}). This means that S = NG[u]\{x, y} is an (x, y)-separator (see
Figure 2.2). On the other hand, if there is such a separator S for some vertices
x, y ∈ NG(u) then x and y do not belong to the same connected component
in the graph G− S and, consequently, also in the graph G− (NG[u] \ {x, y}),
because S ⊂ NG[u]. Thus u is non-avoidable vertex.

9

CHAPTER 3
Detecting Avoidable
Vertices in Sparse or Dense
Graphs

Here we show how to compute efficiently all avoidable vertices on sparse
or dense graphs. In particular, for a graph G on n vertices and m edges, we
consider the cases in which m < n (sparse graphs) or m < n (dense graphs),
where m = |E(G)|. Our main motivation comes the naive algorithm that
lists all avoidable vertices in O(n · m · (n + m)) time that takes advantage
of the non-edges of G [3]. We will show that we can handle such cases in
linear time, so that the running time of the naive algorithm can be written as
O(n3 ·m). For doing so, we consider the impact of avoidable vertices on the
complement of a graph by considering the connected components in both G
and G. Before reaching the details of our approach, we give a simple linear-
time algorithm on the class of cographs, since they can be totally decomposed
by the corresponding operations.

3.1 Appetizer: an optimal algorithm on cographs

A graph G is cograph if every induced subgraph of G on at least two vertices
is either disconnected or its complement is disconnected. Cographs are exactly
the class of P4-free graphs [11]. Every cograph G admits a unique tree repre-
sentation known as cotree which is a rooted tree T with two types of internal
nodes: 0-nodes and 1-nodes. The vertices of G are assigned to the leaves of T
in a one-to-one manner. Thus T contains O(n) nodes (see Figure 3.1). The
properties of a cotree T are summarized as follows:

10

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

a

b

c

d

e

f g

(i)

1

a

0

1 1

f g

0

b d

0

c e

(ii)

Figure 3.1: Illustrating a cograph and the corresponding cotree.

(i) Two vertices of G are adjacent if and only if their least common ancestor
in T is a 1-node.

(ii) Every internal node of T has at least two children.

(iii) No two internal nodes of the same type are adjacent in T .

The cotree of a cograph is unique and can be generated in linear time [12].

We give the following characterization of avoidable vertices in G in terms
of the cotree T . For doing so, we denote by p(u) the parent of a vertex u in
T . A 1-node w of T is called full 1-node if the children of w are all leaves in
T .

Lemma 2. Let T be a cotree of a cograph G and let u be a vertex of G. Then,
u is avoidable in G if and only if either p(u) is a 0-node or p(u) is a full
1-node.

Proof. We first introduce some notation. For a node w of T , we let Tw be
the subtree of T rooted at w and we denote by V (Tw) the set of leaves in Tw.
Recall that V (Tw) corresponds to a subset of vertices of G. By property (i)
observe that all the vertices of V (Tw) are either adjacent or non-adjacent to
a vertex x of V (G) \ V (Tw). Let r be the root of T and let w be the parent

11

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

1

x 1

y

0
w

u a

0

0
w

1

u

x y

1

x 0y

1
w

u

a

1

x

1
w

y

0

u

a

Figure 3.2: Illustrating the cases considered in the proof of Lemma 2.

node of vertex u, that is w = p(u). We consider separately the following cases
(see Figure 3.2).

� Assume that w is a 0-node in T . We show that u is avoidable in G.
Consider two vertices x, y ∈ NG(u). By property (i), x, y ∈ V (Tr)\V (Tw)
and any vertex of V (Tw) is non-adjacent to u. Moreover, property (ii)
implies that there is a vertex a ∈ V (Tw) \ {u} such that au /∈ E(G).
Thus, both x and y are adjacent to u and a, since x, y /∈ V (Tw). Hence,
regardless of whether x and y being adjacent, there is a path between x
and y that does not contain any vertex of NG(u).

� Assume that w is a full 1-node in T . We show that u is avoidable
in G. Consider two vertices x, y ∈ NG(u). If x ∈ V (Tw) then xy ∈
E(G) because either y ∈ V (Tw) as a leaf vertex, or y /∈ V (Tw) and y
is adjacent to every vertex of V (Tw) as uy ∈ E(G). Suppose that both
x, y ∈ V (Tr) \ V (Tw). Let P (r, w) be the unique path of T between
the root r and the 1-node w. Since x, y ∈ NG(u), there are 1-nodes wx

and wy (not necessarily distinct) on P (r, w) such that x ∈ V (Twx) and
y ∈ V (Twy). Now consider the parent w′ of w in T . By property (iii), w′

12

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

exists and is a 0-node of T . Thus there is a vertex a ∈ V (Tw′) \ V (Tw)
that is non-adjacent to u. Since the least common ancestor of x and a is
wx, by property (i) we have xa ∈ E(G). Similarly, we have ya ∈ E(G).
Hence there is a path between x and y that contains a non-neighbor of
u, which shows that u is an avoidable vertex of G.

� Assume that w is a 1-node that is not full in T . We show that u is
non-avoidable in G. Let w′ be a non-leaf child of w. By property (iii),
w′ is a 0-node. Moreover, property (ii) implies that there are vertices
x, y ∈ V (Tw′) for which their least common ancestor is w′. Thus xy /∈
E(G) and ux, uy ∈ E(G), because w is a 1-node. If there is no path
between x and y in G−u then u is non-avoidable. Let A be the internal
vertices of an induced path between x and y in G−u. Since G is P4-free,
every vertex of A is adjacent to both x and y, so that A = {a}. We show
that u is adjacent to a. To see this, observe that a does not belong to
V (Tw′), since w′ is the 0-node that is the least common ancestor of x
and y. Hence a belongs to V (Tr)\V (Tw′) and its least common ancestor
wa with x and y is a 1-node. This means that wa is an ancestor of w′

that is a 1-node in T . As w′ is a child of w, we deduce that wa is the
least common ancestor of a and u. Thus ua ∈ E(G), which means that
u is non-avoidable, since there is no path between x and y that avoids
any neighbor of u.

Therefore, we have a complete characterization of u since all cases have been
considered depending on the parent of u in T .

Thus, we deduce the following optimal algorithm for the vertices of a co-
graph G. Note that, given a cograph G, its corresponding cotree T can be
constructed in O(n + m) time [12].

Theorem 3. Given a cotree T of a cograph G, there is an O(n)-time algorithm
that lists all avoidable vertices of G.

Proof. We first mark the internal nodes of the cotree T that have as children
only leaves of T . By a single bottom-up traversal from the leaves of T , this can
be done in O(n) time. Thus applying Lemma 2 in a straightforward way on the
cotree T with the marked information, results in an O(n)-time algorithm.

13

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

u
G

Cu

C1

C2

u

x

z

y

e

j k l

(i) (ii)

Figure 3.3: (i) Avoidability of a vertex u in a graph G is relevant only with
the component Cu ⊆ G of u. (ii) Trees have a trivial solution because only
their leafs are avoidable vertices.

3.2 Sparse or dense graphs

Here we extend the previous notions on cographs and show how to handle
the cases in which m < n (sparse graphs) or m < n (dense graphs).

It is not difficult to handle sparse graphs. Observe that m < n implies that
G is disconnected or G is a tree. The connectedness assumption of the input
graph G follows from the fact that a vertex u is avoidable in G if and only
if u is avoidable in the connected component containing u, since there are no
paths between vertices of different components. Moreover, trees have a trivial
solution as the leaves are exactly the set of avoidable vertices (see Figure 3.3).
We include both properties in the following statement.

Observation 4. Let u be a vertex of G and let C(u) be the connected com-
ponent of G containing u. Then u is avoidable if and only if u is avoidable in
G[C(u)]. Moreover, if G is a tree then u is avoidable if and only if u is a leaf
in G.

14

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

u

w1

x

y

w2

G

C1 C2

S u

w1

x

w2

y

G

C1 C2

S

(i) (ii)

Figure 3.4: Illustrating a non-avoidable vertex u of a graph G, and the compo-
nents C1,C2 and the separator S according to Observation 1. The horizontal
lines between C1 and C2 in G, indicate that every vertex of C1 is adjacent to
every vertex of C2. In G, u is avoidable.

Next we describe that we can follow almost the same approach on the
complement of G. For doing so, we first prove the following result which
interestingly relates avoidability on G and G. Note, however, that the converse
is not necessarily true.

Lemma 5. Let G be a graph and let u be a non-avoidable vertex. Then, u is
avoidable in G.

Proof. Since u is a non-avoidable vertex in G, there is a separator S that
contains u such that S ⊂ NG[u] by Observation 1. Let C1, . . . , Ck be the con-
nected components of G−S, with k ≥ 2. Notice that at least two components
of C1, . . . , Ck contain a neighbor of u. Without loss of generality, assume that
C1 ∩NG(u) 6= ∅ and C2 ∩NG(u) 6= ∅. Consider the complement G and let x, y
be two neighbors of u in G. Observe that both x and y do not belong to S,
since S ⊂ NG[u]. Thus x ∈ Ci and y ∈ Cj , for 1 ≤ i, j ≤ k. We show that
either xy ∈ E(G) or there is a path in G between x and y that avoids vertices
of NG(u). If i 6= j then xy ∈ E(G), because every vertex of Ci is adjacent
to every vertex of Cj in G. Suppose that x, y ∈ Ci. If Ci 6= C1 then there is
a vertex w1 ∈ C1 ∩ NG(u) such that w1u /∈ E(G) and w1x,w1y ∈ E(G). If
Ci = C1 then there is a vertex w2 ∈ C2 ∩ NG(u) such that w2u /∈ E(G) and
w2x,w2y ∈ E(G) (see Figure 3.4). Thus in both cases there is a path of length
two between x and y that avoids vertices NG(u). Therefore, u is avoidable in
G.

15

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

We next deal with the case in which G is disconnected. Notice that if
G = Kn then every vertex of G is simplicial and thus avoidable.

Lemma 6. Let G 6= Kn, u ∈ V (G), and let C(u) be the co-component contain-
ing u. Then, u is avoidable in G if and only if |C(u)| > 1 and u is avoidable
in G[C(u)].

Proof. Assume first that C(u) = {u}. Then u is universal in G. Since G 6= Kn,
there are vertices x, y such that xy /∈ E(G). As any path between x and y
contains a neighbor of u, we deduce that u is non-avoidable. In the following
we assume that |C(u)| > 1. This assumption implies that there is a vertex
a ∈ C(u) such that ua /∈ E(G). Also notice that every vertex of C(u) is
adjacent to every vertex of V (G) \ C(u).

� Suppose that u is avoidable in G. Assume for contradiction that u is
non-avoidable in G[C(u)]. Then there are vertices x, y in C(u) such that
x, y ∈ NG(u), xy /∈ E(G), and every path (if it exists) between x and y in
G[C(u)] contains a neighbor of u. Since G[C(u)] is an induced subgraph
of G and u is avoidable in G, there is path in G between x and y that
contains a vertex z of V (G)\C(u) such that zu /∈ E(G). Then, however,
we reach a contradiction to the fact that every vertex of C(u) is adjacent
to every vertex of V (G) \ C(u), so that zu ∈ E(G) for any such vertex
z. Thus u is avoidable in G[C(u)].

� Suppose that u is avoidable in G[C(u)]. We show that u is avoidable in
G. Consider two vertices x, y ∈ NG(u). If both vertices x, y belong to
C(u) then the avoidability of u in G[C(u)] carries along G, since G[C(u)]
is an induced subgraph of G. If x ∈ C(u) and y ∈ V (G) \ C(u) then
xy ∈ E(G). Now assume that both vertices x, y belong to V (G) \ C(u).
Then the path 〈x, a, y〉 with a ∈ C(u) and ua /∈ E(G) is the desired path
between x and y. Thus u is avoidable in G.

Therefore both directions show the claimed statement.

In general, avoidability is not a hereditary property with respect to in-
duced subgraphs, even when restricted to the removal of non-avoidable ver-
tices. However, as we show next, the removal of universal vertices does not
affect the rest of the graph.

16

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

u

w

G

u

G − w

(i) (ii)

Figure 3.5: Avoidability of a vertex u in a graph G is not affected by the
removal of a universal vertex w.

Lemma 7. Let G be a graph and let w be a universal vertex of G. Then
w is avoidable if and only if G is a complete graph. Moreover, any vertex
u ∈ V (G) \ {w} is avoidable in G if and only if u is avoidable in G− {w}.

Proof. First statement follows by Lemma 6 and from the fact that every vertex
of a complete graph is simplicial. For the second statement, assume that u
is avoidable in G. We show that u is avoidable in the graph G′ = G − {w}.
Consider two vertices x, y ∈ NG′(u). If xy ∈ E(G) then clearly xy ∈ E(G′).
Suppose that xy /∈ E(G). Then, as u is avoidable in G, there is a path P
between x and y in G. Since w is universal in G, w does not belong to P (see
Figure 3.5). Thus P exists in G′ which shows that u is avoidable in G′. For
the reverse direction, assume that u is avoidable in G′ = G − {w}. Observe
that any two vertices x, y ∈ NG(u) \ {w} fulfill the necessary conditions in
G, since G′ is as induced subgraph of G. Moreover, w ∈ NG(u) and for any
vertex x ∈ NG(u) \ {w}, we have wx ∈ E(G). Therefore u remains avoidable
in G.

To conclude the cases for which m < n, we next consider graphs whose
complement is a tree. By Observation 4 we restrict ourselves on connected
graphs.

17

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

x

y a

u

P4

G = T

x

y a

u

P4

G

(ii)(i)

Figure 3.6: Every leaf, and thus avoidable vertex u of G = T , belongs to a P4

since both G and G are connected and therefore considering this P4 we deduce
that u is non-avoidable in G because of x, y. Also by Lemma 5 we conclude
that every non-avoidable and thus non-leaf vertex of G, is avoidable in G.

Lemma 8. Let G be a connected graph such that G is a tree T . A vertex u
of G is avoidable if and only if u is a non-leaf vertex in T .

Proof. We consider the vertices of T . Let u be a non-leaf vertex of T . Then
u is a non-avoidable vertex in G. Thus by Lemma 5 u is avoidable in G.

Now assume that u is a leaf vertex of T , and thus avoidable in G. We prove
that u is non-avoidable in G. Since both graphs G and G are connected, u
belongs to a P4 in T [11]. Let 〈u, a, x, y〉 be a P4 in T that contains u. Observe
that u is adjacent to every vertex of V (G) \ {a} in G. Consider the vertices x
and y of the P4 for which x, y ∈ NG(u). As xy ∈ E(G), we have xy /∈ E(G).
We show that there is no path between x and y that avoids any neighbor of
u in G. If there is a path between x and y then it contains the vertex a and
it has the form 〈x, a, y〉 in G. Then, however, notice that ya ∈ E(G) but
xa /∈ E(G) by the induced P3 = 〈a, x, y〉 in G. Thus u is non-avoidable in G,

18

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

because of x and y (see Figure 3.6). Therefore, every avoidable vertex of T is
non-avoidable in G, since the set of leaves in T are exactly the set of avoidable
vertices in G.

3.3 A modular decomposition approach

Based on the previous results, we can reduce our problem to a graph G that
is both connected and co-connected and neither G nor G are isomorphic to
trees. To achieve this in linear time we apply known techniques that avoid
computing explicitly the complement of G, since we are mainly interested
in recursively detecting the components and co-components of G. Such a
decomposition, known as the modular decomposition, can be represented by a
tree structure, denoted by T (G), of O(n) size and can be computed in linear
time [16, 19]. More precisely, the leaves of T (G) correspond to the vertices
of G and every internal node w of T (G) is labeled with three distinct types
according to whether the subgraph of G induced by the leaves of the subtree
rooted at w is (i) not connected, or (ii) not co-connected, or (iii) connected
and co-connected (see Figure 3.7).

Moreover the connected components and the co-components of types (i)
and (ii), respectively, correspond to the children of w in T (G). Let G be a
collection of maximal vertex-disjoint induced subgraphs of G that are both
connected and co-connected. Then T (G) determines all graphs of G in linear
time. Observe that if G is empty, then G is a cograph. In addition, we call G,
typical collection of G if for each graph H ∈ G:

� H is connected and co-connected,

� |V (H)| ≤ |E(H)|, |V (H)| ≤ |E(H)|, and

� every avoidable vertex in H is an avoidable vertex in G.

The results of this section deduce the following algorithm.

Theorem 9. Let G be a graph and let A(G) be the set of avoidable vertices
in G. There is a linear-time algorithm, that

� computes a typical collection G of maximal vertex-disjoint induced sub-
graphs of G and

� for every vertex v ∈ V (G) \ V (G), decides if v ∈ A(G).

19

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

Proof. We first compute T (G) in linear time [16, 19]. Then we visit all nodes
of T (G) starting from the root and move towards the leaves of T (G). We stop
each branch when we reach either a leaf for which we include it in A(G), or
when we reach a graph of G. Given a node w of T (G), let Gw be the graph
induced by the leaves of the subtree rooted at w. At each node of T (G) we
perform the following steps.

1. If Gw is disconnected then consider the connected components C1, · · · , Ck

of G by Observation 4. That is, A(Gw) = A(C1) ∪ · · · ∪A(Ck).

2. If Gw is disconnected then consider the co-components C1, . . . , Ck of G
such that |Ci| ≥ 2, for each 1 ≤ i ≤ k.

(a) If Gw = Kn (that is, k = 0) then A(Gw) = V (Gw).

(b) Otherwise, A(Gw) = A(C1)∪· · ·∪A(Ck) by Lemma 6. Observe that
all universal vertices in Gw (that is, |Ci| = 1) have been disregarded
by Lemma 7.

3. Handling connected and co-connected graphs:

(a) If Gw = T then A(Gw) = the set of leaves in T by Observation 4.

(b) If Gw = T then A(Gw) = the set of non-leaves in T by Lemma 8.

(c) Otherwise, include Gw in the collection G.

All steps can be carried out in O(n + m) time by checking the type of the
internal node w in T (G) and assigning the components and the co-components
with the subtrees of w’s children. Testing the corresponding cases whenever
Gw is connected and co-connected can be done by looking at the number of
edges of Gw, that is in time O(|V (Gw)| + |E(Gw)|). Therefore the algorithm
outputs in O(n+m) time the described collection G and the set A(G) \A(G).

20

Chapter 3. Detecting Avoidable Vertices in Sparse or Dense Graphs

a

b

c

d

e

f g

G

(i)

a

bd

c

e

fg

G

(ii)

III

a c e
I II

b d f g

T (G)

I=Disconnected II=Not co-connected III=Connected and co-connected

(iii)

Figure 3.7: Illustrating the modular decomposition tree of a graph G given in
(i).

21

CHAPTER 4
Computing Avoidable
Vertices Directly from G

Here we give two different approaches for computing all avoidable vertices
of a given graph G. Both of them deal with the input graph itself without
shrinking any unnecessary information, as opposed to the algorithms given
in forthcoming sections. Our first algorithm makes use of notions related to
minimal triangulations of G and runs in time O(n2m). The second algorithm
runs in time O(n2 + m2) and is based on a modified, traditional breadth-first
search algorithm.

Let us first explain our algorithm through a minimal triangulation of G.
We first need some necessary definitions. A graph is chordal if it does not
contain an induced cycle of length more than three. In different terminology,
G is chordal if and only if G is (C4, C5, . . .)-free graph.

A graph H = (V,E ∪ F) is a minimal triangulation of G = (V,E) if H
is chordal and for every F ′ ⊂ F , the graph (V,E ∪ F ′) is not chordal. The
edges of F in H are called fill edges. Several O(nm)-time algorithms exist for
computing a minimal triangulation [4, 6, 14, 18]. In connection with avoidable
vertices, Beisegel et al. [3] showed the following characterization.

4.1 A nice minimal triangulation

Theorem 10 ([3]). Let u be a vertex of G. Then u is avoidable in G if and
only if u is a simplicial vertex in some minimal triangulation of G.

Although such a characterization is complete, it does not lead to an efficient
algorithm for deciding whether a given vertex is avoidable, since one has to
produce all possible minimal triangulations of G (see Figure 4.1). Here we

22

Chapter 4. Computing Avoidable Vertices Directly from G

u

e z x y

4 5 6

7 8

9

10

11

14

G

(i)

u

e z x y

4 5 6

7 8

9

10

11

14

H

(ii)

Figure 4.1: An avoidable vertex u in a graph G that is a simplicial vertex in
some minimal triangulation H of G.

strengthen such a characterization in the sense that it provides an efficient
recognition based on a particular, nice, minimal triangulation of G.

Lemma 11. Let u be a vertex of a graph G = (V,E) and let H = (V,E ∪ F)
be a minimal triangulation of G such that u is not incident to any edge of F .
Then u is avoidable in G if and only if u is simplicial in H.

Proof. If u is simplicial in H then by Theorem 10 we deduce that u is avoidable
in G. Suppose that u is non-simplicial in H. Then there are two vertices
x, y ∈ NG(u) that are non-adjacent in H. Since G is a subgraph of H, we have
xy /∈ E(G) (see Figure 4.2). We claim that there is no path in G between x and
y that avoids any vertex of NG[u]\{x, y}. Assume for contradiction that there
is such a path P . Then V (P) \ {x, y} is non-empty and contains vertices only
from V \N [u]. This means that x, y belong to the same connected component
of H induced by (V \ N [u]) ∪ {x, y}. As u is non-adjacent to any vertex of
V \ N [u] in H, the vertices of (V \ N [u]) ∪ {x, y, u} induce an induced cycle
of length at least four in H. Then we reach a contradiction to the chordality
of H. Therefore, there is no such path between x and y, which implies that u
is non-avoidable in G.

23

Chapter 4. Computing Avoidable Vertices Directly from G

u

e z x y

4 5 6

7 8

9

10

11

14

G

(i)

u

e z x y

4 5 6

7 8

9

10

11

14

H

(ii)

Figure 4.2: An avoidable vertex u of G is a non-simplicial vertex in a minimal
triangulation H of G. Notice that an incident edge to u is added as a fill edge.

4.2 Constructing a nice minimal triangulation via
vertex incremental approach

Next we show that such a minimal triangulation with respect to u, always
exist and can be computed in O(nm) time. Our approach for computing a
nice minimal triangulation of G is vertex incremental, in the following sense.
We take the vertices of G one by one in an arbitrary order (v1, . . . , vn), and at
step i we compute a minimal triangulation Hi of Gi = G[{v1, . . . , vi}] from a
minimal triangulation Hi−1 of Gi−1 by adding only edges incident to vi. This
is possible thanks to the following result.

Lemma 12 ([8]). Let G be an arbitrary graph and let H be a minimal trian-
gulation of G. Consider a new graph G′ = G + v, obtained by adding to G a
new vertex v. There is a minimal triangulation H ′ of G′ such that H ′−v = H.

We denote by H(v1, . . . , vn) a vertex incremental minimal triangulation of
G which is obtained by considering the vertex ordering (v1, . . . , vn) of G. Com-
puting such a minimal triangulation of G, based on any vertex ordering, can
be done in O(nm) time [8].

Lemma 13. Let u be a vertex of G and let X = NG(u) and A = V (G)\NG[u].
In any vertex incremental minimal triangulation H(A, u,X) of G, no fill edge
is incident to u.

24

Chapter 4. Computing Avoidable Vertices Directly from G

u

e z x y

4 5 6

7 8

9

10

11

14

G

A

X

u

(i)

u

4 5 6

7 8

9

10

11

14

H(A, u)

(ii)

u

e z

4 5 6

7 8

9

10

11

14

H(A, u, X{e, z})

1

1

2

2

2

2

(iii)

u

e z x y

4 5 6

7 8

9

10

11

14

H(A, u, X)

1

1 2

2

22
3

3

3 3

3 4
4

4

4
4

4
4

(iv)

Figure 4.3: Illustrating the construction of a nice minimal triangulation via
vertex incremental approach. (i) In order to check avoidability for an avoid-
able vertex u in a graph G we consider the vertex sets {u}, X,A. (ii) Starting
the vertex incremental by adding in an arbitrary order all the vertices of A
and then we add vertex u. Note that u is not adjacent to any vertex of A.
(iii) We assume that we have this vertex order (e, z, x, y) for X. First we add
vertex e and all edges labeled by 1 in black that already existed in G and then
none fill edge is needed to be added. Secondly vertex z and edges labeled 2
in black are added in the same way as for vertex e and additionally fill edges
are added, labeled by 2 in blue. (iv) Finally we add, in the exact same way,
vertices x and y and thus we end up in a nice minimal triangulation in which
u is simplicial.

25

Chapter 4. Computing Avoidable Vertices Directly from G

Algorithm 1: Testing if u is avoidable with a vertex incremental
minimal triangulation

Input : A graph G, a minimal triangulation H of G, and a vertex u
Output: Returns true iff u is avoidable in G

1 Let X = NG(u) and A = V (G) \NG[u];
2 Initialize a new graph H ′ = H[A ∪ {u}];
3 Add the vertices of X in H ′ in an arbitrary order and maintain a

minimal triangulation H ′ of G by applying the O(nm)-time
algorithm given in [8];

4 if u is simplicial in H ′ then
5 return true;
6 else
7 return false;

Proof. Let H(A, u,X) = (V,E ∪ F) be a vertex incremental minimal trian-
gulation of G = (V,E). Consider the vertex ordering (A, u,X). Observe
that when adding u to H[A] no fill edge is required, as the considered graph
H[A] + u is already chordal. Moreover u is adjacent in G to every vertex
appearing after u in the described ordering (A, u,X). Thus u is non-adjacent
to any vertex of A in H(A, u,X) which means that no edge of F is incident
to u (see Figure 4.3).

4.3 Avoidable vertex via minimal triangulations

A direct consequence of Lemmas 11 and 13 is an O(nm)-time recognition
algorithm for deciding whether a given vertex u is avoidable. For every vertex
u, we first construct a vertex incremental minimal triangulation H(A, u,X) of
G by applying the O(nm)-time algorithm given in [8]. Then we simply check
whether u is simplicial in the chordal graph H(A, u,X) by Lemma 11, which
means that the overall running time is O(nm).

We note that one may compute any minimal triangulation H of G, as a
preprocessing step in time O(nm), and then use H for constructing the vertex
incremental minimal triangulation at each vertex u, so that H[A] is already
computed for A = V (G)\NG[u]. Although such an approach results within the
same theoretical time complexity, in practice it avoids recomputing common
parts of the input data. We give the details in Algorithm 1 and, as already

26

Chapter 4. Computing Avoidable Vertices Directly from G

explained, its running time is O(nm). By applying Algorithm 1 on each vertex,
we obtain the following result.

Theorem 14. Listing all avoidable vertices of G by using Algorithm 1 takes
O(n2m) time.

An interesting remark of such an approach is that we can list all avoidable
vertices of a chordal graph G in an efficient way. We note that such a result
can be obtained directly from the definition of an avoidable vertex which shows
that a non-simplicial vertex of a chordal graph is non-avoidable.

Corollary 15. Let G be a chordal graph. Listing all avoidable vertices of G
can be done in O(nω) time, where O(nω) is the time required to multiply two
n× n binary matrices.

Proof. By Lemma 11 the set of simplicial vertices of G is the set of avoidable
vertices because any minimal triangulation H of G contains no fill edge, as G
is chordal. Thus listing the avoidable vertices of a chordal graph G reduces to
listing the simplicial vertices of G. Therefore detecting all avoidable vertices
can be done in O(nω) time by using the algorithm of [15], which is the time
needed to perform a fast matrix multiplication.

4.4 A fast algorithm for listing avoidable vertices

Our second approach is based on the following notion of protecting that we
introduce here. Given a set of vertices S ⊆ V , an S-excluded path is a path in
which no internal vertex belongs to S. Observe that an edge is an S-excluded
path, for any choice of S. By definition a single vertex is connected to itself by
the trivial path. Whenever there is an S-excluded path in G between vertices
a and b, notice that a can reach b through vertices of V (G)\S (see Figure 4.4).

Definition 2 (protecting). Let x and y be two vertices of G. We say that
x protects y if there is a NG[y]-excluded path between x and every vertex
of NG(y). In other words, x protects y if for any z ∈ NG(y) \ {x}, either
xz ∈ E(G) or x can reach z through vertices of V (G) \NG[y] (see Figure 4.5).

27

Chapter 4. Computing Avoidable Vertices Directly from G

a b

1 2 3

S − excluded path

S

G − S

(i)

edge

1

2 3

4

56

S

(ii)

Figure 4.4: (i) A path 〈a, b〉 is a S−excluded path if none of its internal vertices
belong to set S. Note that an edge is a S − excluded path for any choice of S.
(ii) An example for S − excluded path. Observe that for the vertices 1 and 4
there is a ({2}, {3})− excluded path but not a ({2}, {5})− excluded path.

4.4.1 A modified BFS

Let us explain how to check if x protects y in linear time, that is in O(n+m)
time. We consider the graph G′ = G − {y} and run a slight modification of
a breadth-first search algorithm on G′ starting from x. In particular, we try
to reach the vertices of NG(y) \ {x} (target set) from x in G′. Every time we
encounter a vertex v of the target set, we include v in a set T of discovered
target vertices and we do not continue the search from v by avoiding to place
v within the search queue. Consequently, no vertex of the target set is a
non-leaf node of the constructed search tree. Algorithm 2 shows in detail the
considered modification of a breadth-first search (see Figure 4.6).

Lemma 16. Algorithm 2 is correct and runs in O(n + m) time.

Proof. For the correctness, let T be the search tree discovered by the algorithm

28

Chapter 4. Computing Avoidable Vertices Directly from G

y

x

1 2 3 4

Protecting

= NG[y]-excluded path

edge

Figure 4.5: For two vertices x, y of a graph G we say that x is protecting y if
for x and every vertex z ∈ NG(y) there is a NG[y]− excluded path.

when the search starts from x. Observe that the basic concepts of the breadth-
first search are maintained, so that the key properties with the shortest paths
between the vertices of G and the search tree T are preserved. If there is a
leaf vertex v in the constructed tree T such that v ∈ S then the unique path
in T is an S-excluded path in G between x and v, since no vertex of S is a
non-leaf vertex of T . On the other hand, assume that there is an S-excluded
path in G between x and every vertex of S. For every v ∈ S, among such
S-excluded paths between x and v, choose P (v) to be the shortest. Let p(v)
be the neighbor of v in P (v). Clearly x and every vertex p(v) belong to the
same connected component of G. Consider the graph G−S. Notice that every
vertex p(v) belongs to the same connected component with x in G− S, since
for otherwise some vertices of S separate x and a vertex v of S which implies
that there is no S-excluded path in G between x and v in G. Now let Tx be a
breadth-first search tree of G−S that contains x. Then the distance between
x and p(v) in Tx corresponds to the length of their shortest path in G − S.
Construct T by attaching every vertex v of S to be a neighbor of p(v) in Tx.
Therefore T is a tree that contains the shortest S-excluded paths between x
and the vertices of S.

Regarding the running time, notice that no additional data structure is
required compared to the classical implementation of the breadth-first search.
Hence the running time of Algorithm 2 is bounded by the breadth-first search
algorithm which is O(n + m).

29

Chapter 4. Computing Avoidable Vertices Directly from G

Algorithm 2: Detecting whether there is an S-excluded path be-
tween x and every vertex of S

Input : A graph G, a vertex x, and a target set S ⊆ V (G)
Output: Returns true iff there is an S-excluded path between x and

every vertex of S
1 Set Q = {x}, T = ∅;
2 Mark x;
3 while Q is not empty do
4 s = Q.pop();
5 for v ∈ N(s) do
6 if v is unmarked then
7 if v ∈ S then
8 T = T ∪ {v};
9 else

10 Q.add(v);

11 Mark v;

12 return T = S

4.4.2 Exploiting the modified BFS

Therefore we can check whether x protects y by running Algorithm 2 on
the graph G − {y} with target set S = NG(y) \ {x}. The connection to the
avoidability of a vertex, can be seen with the following result.

Lemma 17. Let u be a vertex of a graph G = (V,E). Then u is avoidable in
G if and only if x protects u for every vertex x ∈ NG(u).

Proof. Suppose first that u is avoidable. Consider a vertex x ∈ NG(u). Then
for any vertex y ∈ NG(u) \ {x} there is a path between x and y that avoids
vertices of NG(u). This means that there is an S-excluded path between x
and y with S = NG[u]. Thus x protects u in G.

For the other direction, assume that u is non-avoidable. Then there are
vertices x, y ∈ NG(u) that belong to different connected components of G −
(NG[u] \ {x, y}). Thus x cannot reach y through vertices of V (G) \ NG[u],
implying that x (and y) does not protect u. Therefore there are at least two
vertices in NG(u) that do not protect u.

30

Chapter 4. Computing Avoidable Vertices Directly from G

x

s1

s2

y

z

e s3 s4

Traditional

BFS

V isited : x s1 y s2 z e s3 s4

Queue : s1 y s2 z e s3 s4

Out : x s1 y s2 z e s3 s4

x

s1

s2

y

z

e s3 s4

Algorithm 2
Input :
x = start vertex

S = {s1, s2, s3, s4}=target set

V isited : x s1 y z s3 s4

Queue : y z

Out : x s1 y z s3 s4

T : s1 s3 s4
Output = False(T 6= S)

Figure 4.6: Illustrating how Algorithm 2 works taking advantage of the mod-
ified BFS, in comparison to traditional BFS. We assume that start vertex is
x and the target set S = {s1, s2, s3, s4}.

Now we are ready to show our fast algorithm for deciding whether a vertex
is avoidable which is given in Algorithm 3.

Theorem 18. Listing all avoidable vertices of G by using Algorithm 3 takes
O(n2 + m2) time.

Proof. Correctness follows from Lemmas 16 and 17. For the running time,
observe that constructing G′ takes O(n+m) time. Moreover we need to make
d(u) calls to Algorithm 2 for a particular vertex u where d(u) is the degree of
u. Thus, by Lemma 16 the total running time is O(

∑
u(1 + d(u))(n + m)) =

O(n2 + m2).

31

Chapter 4. Computing Avoidable Vertices Directly from G

Algorithm 3: Testing if u is avoidable by detecting whether its neigh-
bors protect u

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G

1 Let X = Nu and G′ = G− {u};
2 for x ∈ X do
3 Set S = X \ {x};
4 if Algorithm 2(G′, x, S) is not true then
5 return false;

6 return true;

32

CHAPTER 5
Avoidable Vertices via
Contractions

Here we show how to compute all avoidable vertices of a graph G through
contractions. Given a graph G = (VG, EG) and a vertex u ∈ VG, we denote
by Gu the graph obtained from G by contacting every connected component
of G − NG[u]. We partition the vertices of Gu − u into (X,C), such that
X = NG(u) and C contains the contracted vertices of G−NG[u]. We denote
by Gu(X,C) the contracted graph where (X,C) is the vertex partition with
respect to Gu. Observe that Gu[X ∪{u}] = G[X ∪{u}] and Gu[C ∪{u}] is an
independent set (see Figure 5.1).

5.1 Computing a contracted graph

Observation 19. Given a vertex u of G = (V,E), the construction of Gu(X,C)
can be done in O(n + m) time.

Proof. To compute the connected components C1, . . . , Ck of G−NG[u] takes
linear time. For each vertex set Ci, 1 ≤ i ≤ k, we compute NG(Ci) in time
d(Ci) where d(Ci) is the sum of the degrees of the vertices in Ci. As C1, . . . , Ck

is a partition of V (G) \NG[u], the total running time for substituting each set
Ci is O(k +

∑
d(Ci)) = O(n + m).

Next we show that Gu(X,C) holds all necessary information of important
paths of G with respect to the avoidability of u.

33

Chapter 5. Avoidable Vertices via Contractions

u

e z x y

4 5 6

7 8

9

10

11

12

13

14

G

(i)

4 5 6

7 8

9

10

11

12

13

14

G − NG[u]

C2C1 C3

(ii)

u

e z x y

C1 C2 C3

Gu(X, C)

(iii)

Figure 5.1: (i) An avoidable vertex u of a graph G. (ii) After removing
NG[u], we find the connected components in O(n+m) time. (iii) Illustrating
Gu(X,C), by contracting the connected components of (ii).

5.2 Avoidable vertex in a contracted graph

Lemma 20. Let u be a vertex of a graph G = (V,E). Then u is avoidable in
G if and only if u is avoidable in Gu(X,C).

Proof. Since G[X ∪{u}] = Gu[X ∪{u}], we only need to consider the vertices
of X = NG(u) that are non-adjacent. Let x, y ∈ NG(u) = X such that
xy /∈ E(G) and let S = (X∪{u})\{x, y}. Observe that all vertices of S belong

34

Chapter 5. Avoidable Vertices via Contractions

to both graphs G and Gu(X,C). We claim that there is a path between x and
y in G − S if and only if there is a path between x and y in Gu(X,C) − S.
Consider any path in G − S of the form 〈x, P, y〉. The vertices of the given
path belong to the same connected component of G − S. Thus the vertices
of P belong to exactly one connected component CP of G− (S ∪ {x, y}). As
S ∪ {x, y} = NG[u], there is a vertex Ci ∈ C that corresponds to CP in the
contracted graph Gu(X,C). Hence, the path 〈x,Ci, y〉 forms the desired path
in Gu(X,C)− S.

If there is a path between x and y in Gu(X,C) − S then such a path is of
length two and has the form 〈x,Ci, y〉 where Ci ∈ C. Since xCi is an edge in
Gu(X,C), there is a vertex a ∈ V (Ci) such that xa ∈ E(G). Similarly, there
is a vertex b ∈ V (Ci) such that yb ∈ E(G). As a and b belong to the same
connected component Ci of G−NG[u], there is a path Pi in G between a and
b that contains only vertices from V (Ci). Thus there is a path 〈x, Pi, y〉 in G
where Pi ⊆ V (Ci).

Now observe that any path between two neighbors of u in either G − S or
Gu(X,C)− S does not contain any vertex of NG[u]. Therefore, by the above
claim, we get the desired characterization of u in both graphs.

Lemma 20 implies that we can apply all of our algorithms given in the
previous section in order to recognize an avoidable vertex. Although such an
approach does not lead to faster theoretical time bounds, in practice the con-
tracted graph has substantial smaller size than the original graph and may
lead to practical running times. We next show that the contracted graph re-
sults in an additional algorithm with different running time. Let Gu(X,C)
be the contracted graph of a vertex u. The filled-contracted graph, denoted
by Hu(X,C), is the graph obtained from Gu(X,C) by adding all necessary
edges in order to make clique every neighborhood of Ci ∈ C. That is, for
every Ci ∈ C, NHu(Ci) is a clique (see Figure 5.2). The following proof resem-
bles the characterization given through minimal triangulations in Lemma 11.
However observe that Hu(X,C) is not necessarily a chordal graph, because
X * NGu(C).

Lemma 21. A vertex u is avoidable in G if and only if Hu[X] is a clique.

Proof. We apply Lemma 20 and we need to show that u is avoidable in
Gu(X,C) if and only if Hu[X] is a clique. Assume that u is avoidable in
Gu(X,C). We show that Hu[X] is a clique. Consider two vertices x, y ∈ X. If
xy is an edge in Gu(X,C) then xy remains an edge in Hu(X,C), as Gu(X,C)

35

Chapter 5. Avoidable Vertices via Contractions

u

e z x y

C1 C2 C3

Gu(X, C)

(i)

u

e z x y

C1 C2 C3

Hu(X, C)

(ii)

Figure 5.2: Illustrating how the filled-contracted graph Hu(X,C) is obtained
from Gu(X,C). Observe that u is simplicial in Hu(X,C).

is a subgraph of Hu(X,C). If x and y are non-adjacent in Gu(X,C), there
is a vertex Ci ∈ C such that {x, y} ⊆ NGu(Ci), because u is avoidable and
Gu[C] is an independent set. Thus, by the definition of Hu(X,C), NHu(Ci) is
a clique implying that xy is an edge in Hu[X].

Assume that u is non-avoidable in Gu(X,C). Then there are vertices x, y ∈
X such that xy /∈ E(Gu) and they belong in different connected components
of Gu[C ∪ {x, y}]. Thus x and y is a pair of non-adjacent vertices in Hu[X],
since there is no vertex Ci ∈ C such that x, y ∈ NGu(Ci). Hence there is a
pair of non-adjacent vertices in Hu[X], so that Hu[X] is not a clique.

5.3 Exploiting a fast matrix multiplication

We take advantage of Lemma 21 in order to recognize whether u is avoidable.
The naive construction of Hu(X,C) requires O(n3) time, since |X| ≤ n and
|C| ≤ n. Instead of constructing Hu(X,C), we are able to check Hu[X] in an
efficient way through matrix multiplication. To do so, we consider the graph
G′ obtained from Gu(X,C) by removing u and deleting every edge with both
endpoints in X. Observe that the resulting graph G′ is a bipartite graph with
bipartition (X,C), as Gu[C ∪ {u}] is an independent set. It turns out that it

36

Chapter 5. Avoidable Vertices via Contractions

Algorithm 4: Testing if u is avoidable by using matrix multiplication

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G

1 Construct the contracted graph Gu(X,C) of u;
2 Let G1 = Gu(X,C)− {u};
3 Construct the adjacency matrix M1 of G1;
4 Let G2 be the bipartite graph obtained from G1 by removing every

edge having both endpoints in X;
5 Construct the adjacency matrix M2 of G2;
6 Compute the square of M2, i.e., M2

2 = M2 ·M2;
7 Construct the matrix M3 = M1 + M2

2 ;
8 for x, y ∈ X do
9 if the entry M3[x, y] is zero then

10 return false;

11 return true;

is enough to check whether two vertices of X are in distance two in G′ which
can be encapsulated by the square of its adjacency matrix. Algorithm 4 shows
in details our proposed approach.

We are now in position to claim the following running time through matrix
multiplication.

Theorem 22. Listing all avoidable vertices of G by using Algorithm 4 takes
O(n1+ω) time, where O(nω) is the time required to multiply two n× n binary
matrices.

Proof. We apply Algorithm 4 on each vertex of G. Let us first discuss on the
correctness of Algorithm 4. By Lemma 21, it is enough to show that Hu[X] is
a clique if and only if M3[X] has non-zero entries in its non-diagonal positions.
Let G1 and G2 be the two constructed graphs in Algorithm 4. Observe that
the square of G2, denoted by G2

2, is the graph obtained from the same vertex
set of G2 and two vertices u, v are adjacent in G2

2 if the distance of u and v is at
most two in G2. Thus the matrix M2

2 computed by Algorithm 4 corresponds to
the adjacency matrix of G2

2. Now it is enough to notice that two vertices x, y
of X are adjacent in Hu[X] if and only if xy ∈ E(G1) ∪ E(G2

2). In particular
observe that if x and y have a common neighbor w in G2 then w is a vertex of
C since there is no edge between vertices of X in G2 and u /∈ V (G2). Therefore
M3[x, y] has a non-zero entry if and only if x and y are adjacent in Hu[X].

37

Chapter 5. Avoidable Vertices via Contractions

Regarding the running time, notice that the construction of Gu take linear
time by Observation 19. All steps besides the computation of M2

2 can be done
in O(n2) time. The most time-consuming step is the matrix multiplication
involved in computing M2

2 , which can be done in O(nω) time. Hence the total
running time for recognizing all n vertices takes O(n1+ω) time.

38

CHAPTER 6
Recognizing Avoidable
Edges and Paths

Natural generalizations of avoidable vertices are avoidable edges and avoid-
able paths. Here we show how to efficiently recognize an avoidable edge and an
avoidable path. Recall that the two vertices having degree one in an induced
path Pk on k ≥ 2 vertices are called endpoints. Moreover, the edge obtained
after removing the endpoints from an induced path P4 on four vertices is called
middle edge.

u v

(i)

u v

(ii)

= closes each P4 in an induced cycle

Figure 6.1: (i) The edge uv is simplicial and thus avoidable. (ii) Illustrating
an avoidable edge uv.

Definition 3 (simplicial and avoidable edge). An edge uv is called simplicial
if there is no P4 having uv as a middle edge. An edge uv is called avoidable
if either uv is simplicial, or every P4 with middle edge uv is contained in an
induced cycle (see Figure 6.1).

39

Chapter 6. Recognizing Avoidable Edges and Paths

x y

G

Ax Ay

B(x, y)

Figure 6.2: Illustrating the sets B(x, y), Ax and Ay for the vertices x, y of a
graph G.

6.1 Private and common neighbors

Given two vertices x and y of G, we define the following sets of the neighbors
of x and y:

� B(x, y) contains the common neighbors of x and y; i.e., B(x, y) =
NG(x) ∩NG(y).

� Ax contains the private neighbors of x; i.e., Ax = NG(x)\(B(x, y)∪{y}).

� Ay contains the private neighbors of y; i.e., Ay = NG(y)\(B(x, y)∪{x}).

Under this terminology, observe that Ax∩Ay = ∅ and NG({x, y}) is partitioned
into the three sets B(x, y), Ax, Ay (see Figure 6.2). Clearly all described sets
can be computed in O(d(x) + d(y)) time.

Observation 23. An edge xy of G is simplicial if and only if Ax = ∅ or
Ay = ∅ or every vertex of Ax is adjacent to every vertex of Ay.

Proof. Consider a P4 = a, x, y, b that contains xy as a middle edge. Then
a ∈ Ax and b ∈ Ay because ay /∈ E(G) and xb /∈ E(G). Thus both sets
Ax and Ay are non-empty. Moreover, since ab /∈ E(G), we deduce that any
non-edge with one endpoint in Ax and the other in Ay results in a P4 having
xy as a middle edge.

By Observation 23, the recognition of a simplicial edge can be achieved in
O(n+m) time: consider the bipartite subgraph H(Ax, Ay) of G[Ax∪Ay] which

40

Chapter 6. Recognizing Avoidable Edges and Paths

is obtained by removing every edge having both endpoints in either Ax or Ay.
Then it is enough to check whether H(Ax, Ay) is a complete bipartite graph.

We show that the more general concept of an avoidable edge can be rec-
ognized in O(nm) time. For doing so, we will take advantage of Algorithm 2
and the notion of protecting given in Definition 2.

yx

= (NG[x] ∪ NG[y])-excluded path

Figure 6.3: Illustrating a protected edge xy.

6.2 Recognizing an avoidable edge

Definition 4 (protected edge). An edge xy is protected if there is an (NG[x]∪
NG[y])-excluded path between every vertex of NG(x) and every vertex of
NG(y) (see Figure 6.3).

We note that if an edge xy is protected then x protects y and y protects x
in accordance to Definition 2. However, the reverse is not necessarily true, as
shown in Figure 6.4.

Lemma 24. Let xy be an edge of G. Then xy is an avoidable edge in G if
and only if xy is a protected edge in G−B(x, y).

Proof. Let H = G − B(x, y) and let us first show that xy is an avoidable
edge in G if and only if xy is an avoidable edge in H. Suppose that xy is
an avoidable edge in G. For any two vertices a ∈ Ax and b ∈ Ay such that
ab /∈ E(G), there is an induced cycle C that contains a, x, y, b. Now observe
that no vertex of B(x, y) belongs to C, as C is an induced cycle in G. Thus

41

Chapter 6. Recognizing Avoidable Edges and Paths

x

y

a

c

b

d

Figure 6.4: In this example we have NG[x] ∪ NG[y] = V (G). Observe that
x protects y, because x has {c, y, d}-excluded paths to both c and d, and
similarly y protects x. However, the edge xy is not protected because, for
instance, there is no V (G)-excluded path (and, thus, an edge) between a and
d. Also notice that there is a P4 = 〈a, x, y, d〉 that is not contained in an
induced cycle.

x y

G

Ax Ay

B(x, y)

x y

G−B(x, y)

Ax Ay

= (NG[x] ∪NG[y])-excluded path

(i) (ii)

Figure 6.5: Illustrating Lemma 24.

xy is an avoidable edge in H. For the converse, notice that H is an induced
subgraph of G, so that all induced cycles of H remain induced cycles in G.
Therefore our task is to show that xy is an avoidable edge in H if and only if
xy is protected in the same graph H.

Suppose that xy is an avoidable edge in H. Observe that NH(x) = Ax∪{y}
and NH(y) = Ay ∪{x}. If at least one of Ax, Ay is empty then xy is protected
(as well as simplicial), because all required (NH [x] ∪ NH [y])-excluded paths
have length one between a vertex and its neighbors. Consider any two vertices
a ∈ Ax and b ∈ Ay. Clearly the edges xa and yb constitute NH [y]-excluded
path and NH [x]-excluded path, respectively. Assume first that ab /∈ E(H).
Then there is a P4 = 〈a, x, y, b〉 that contains xy as a middle edge. Any induced

42

Chapter 6. Recognizing Avoidable Edges and Paths

cycle C that contains the described P4, contains vertices from V (H)\(Ax∪Ay),
so that the vertices of C − P4 belong to V (H) \ (NH [x] ∪ NH [y]). Thus the
subpath on C taken from C−P4 with endpoints a and b is a (Ax∪Ay∪{x, y})-
excluded path of length at least two between a and b. If ab ∈ E(H) then 〈a, b〉
is an (Ax ∪ Ay ∪ {x, y})-excluded path of length one between a and b. In all
cases we deduce that xy is a protected edge.

Suppose that xy is a protected edge in H. Consider a P4 = 〈a, x, y, b〉 that
contains xy as middle edge. Then clearly a ∈ Ax, b ∈ Ay, and ab /∈ E(H).
We show that there is an induced cycle in H that contains the P4. Between
a and b, there is an (NH [x] ∪ NH [y])-excluded path Pab in H. The length of
Pab is at least two, since ab /∈ E(H). By definition, all internal vertices of Pab

belong to V (H) \ (NH [x] ∪ NH [y]) and, thus, are non-adjacent to x and y.
Let S = V (Pab) and consider the induced subgraph H[S] that is connected.
Then the shortest path P ′ab between a and b in H[S] is an induced path of
H. Therefore the concatenation of the P4 = 〈a, x, y, b〉 with P ′ab results in the
desired induced cycle of H.

Based on Lemma 24, we deduce the following running time for recognizing
an avoidable edge. This is achieved by carefully applying Algorithm 2. No-
tice that the stated running time is comparable to the O(d(u)(n + m))-time
algorithm for recognizing an avoidable vertex u implied by Theorem 18.

Theorem 25. Recognizing an avoidable edge of a graph G can be done in
O(n ·m) time.

Proof. Let xy be an edge of G. We first collect the vertices of B(x, y) in
O(n) time. By Lemma 24 we need to check whether xy is protected in H =
G−B(x, y)(see Figure 6.5). If xy is simplicial edge then xy is avoidable and,
by Observation 23, this can be tested in O(n+m) time. Otherwise, both sets
Ax, Ay are non-empty. Without loss of generality, assume that |Ax| ≤ |Ay|.
In order to check if xy is protected, we run |Ax| times Algorithm 2:

� for every vertex a ∈ Ax, run Algorithm 2(H−((Ax\{a})∪{x, y}), a, Ay).

In particular, we test whether there is an Ay-excluded path between a and
every vertex of Ay without considering the vertices of (Ax \ {a}) ∪ {x, y},
that is on the graph H − ((Ax \ {a}) ∪ {x, y}). If all vertices of Ax have an
Ay-excluded path with all the vertices of Ay on each corresponding graph,
then such paths do not contain any internal vertex from Ax ∪Ay ∪ {y}. Since

43

Chapter 6. Recognizing Avoidable Edges and Paths

u1 uku2 ui uk−1

Pk

u1 uku2 ui uk−1

Pk

(i)

u1 uku2 ui uk−1

Pk

= Paths that close each Pk+2 in an induced cycle

(ii)

Figure 6.6: (i) A path Pk that is simplicial and thus avoidable. (ii) A non-
simplicial avoidable path Pk.

NH [x] = Ax∪{x, y} and NH [y] = Ay∪{x, y}, we deduce that xy is a protected
edge, and thus, xy is avoidable in G. Regarding the running time, observe that
we make at most n ≥ |Ax| calls to Algorithm 2 on induced subgraphs of G.
Therefore, by Lemma 16, the total running time is O(nm).

6.3 Recognizing an avoidable path

Let us now show how to extend the recognition of an avoidable edge towards
their common generalization of avoidable induced paths. The internal path
of a non-edgeless induced path P is the path obtained from P without its
endpoints and it is denoted by in(P).

Definition 5 (simplicial and avoidable path). An induced path Pk on k ≥ 2
vertices is called simplicial if there is no induced path on k + 2 vertices that
contains Pk as an internal path. An induced path Pk on k ≥ 2 vertices is
called avoidable if either Pk is simplicial, or every induced path on k + 2
vertices that contains Pk as an internal path is contained in an induced cycle
(see Figure 6.6).

For k = 2, avoidable paths correspond to avoidable edges. Let Pk be an
induced path on k vertices of a graph G with k ≥ 3 having endpoints x and
y. We denote by I[Pk] the vertices of NG[in(Pk)] \ {x, y}. That is, I[Pk]
contains the vertices of the internal path of Pk and their neighbors outside Pk.

44

Chapter 6. Recognizing Avoidable Edges and Paths

x y

G
Pk

I[Pk]

(i)

x y

G + xy − I[Pk]

(ii)

Figure 6.7: Illustrating Lemma 26 by replacing Pk by an edge.

Given two non-adjacent vertices x and y in G, we denote by G+xy the graph
obtained from G by adding the edge xy (see figure 6.7).

Lemma 26. Let Pk be an induced path on k vertices of a graph G with k ≥ 3
having endpoints x and y. Then Pk is an avoidable path in G if and only if
xy is an avoidable edge in G + xy − I[Pk].

Proof. We claim first that there is a Pk+2 that contains Pk as an internal path
in G if and only if there is a P4 that contains xy as a middle edge in the graph
H = G + xy − I[Pk].

Assume that there is a Pk+2 that contains Pk as an internal path in G. Let
x′ and y′ be the endpoints of Pk+2. As Pk+2 is an induced path, both x′, y′

belong to H and x′y, xy′, x′y′ /∈ E(H). Thus 〈x′, x, y, y′〉 is a P4 in H that
contains xy as a middle edge.

Assume that there is a P4 = 〈x′, x, y, y′〉 in H that contains xy as a middle
edge. Consider the vertices of the path Pk−2 of Pk−{x, y} in G that correspond
to the edge xy of H. Then no vertex of the Pk−2 is adjacent to any of x′ or y′

by the construction of H. Thus, replacing the edge xy in the P4 = 〈x′, x, y, y′〉
by the path Pk−2, results in an induced path Pk+2 on k + 2 vertices in G.

Observe that the above claim implies that Pk is a simplicial path in G if and
only if xy is a simplicial edge in H. Next we show that a non-simplicial path
Pk with endpoints x and y is avoidable in G if and only if the non-simplicial
edge xy is avoidable in H. Assume that there is a Pk+2 = 〈x′, x, Pk−2, y, y

′〉
that contains Pk = 〈x, Pk−2, y〉 as an internal path in G. Let CG be an induced
cycle that contains the Pk+2 in G. Since CG is induced cycle, every vertex of
CG − Pk−2 belongs to H. Now observe that the vertices of CG − Pk−2 induce

45

Chapter 6. Recognizing Avoidable Edges and Paths

a path in G of length at least four. Hence the vertices of CG − Pk−2 induce a
cycle in H, since xy ∈ E(H), which shows that xy is avoidable edge in H.

To show that Pk is avoidable in G, we show that there is an induced cycle
that contains the described Pk+2. Let CH be an induced cycle of H containing
a P4 = 〈x′, x, y, y′〉. Since xy is a avoidable edge in H, such a cycle exists. Con-
struct the cycle C ′ obtained from CH by removing the edge xy and attaching
the path Pk−2 of Pk − {x, y}. Then C ′ is an induced cycle in G because:

� CH−{x, y} is an induced path in G, as H−{x, y} is an induced subgraph
of G,

� Pk is an induced path in G by definition, and

� no vertex of Pk−2 has a neighbor in CH −{x, y}, as NG(Pk−2) \ {x, y} ⊂
I[Pk].

Therefore there is an induced cycle in G that contains the described Pk+2 of
Pk.

Theorem 27. Given an induced path Pk on k > 2 vertices of G, testing
whether Pk is avoidable can be done in O(n ·m) time.

Proof. Assume that the endpoints of Pk are x and y. By Lemma 26, it is
enough to check if the edge xy is avoidable in the graph G+ xy− I[Pk]. Con-
structing the graph G+xy− I[Pk] takes O(nk) time. Applying the algorithm
given in Theorem 25 results in an algorithm with the claimed running time,
since k ≤ n.

46

CHAPTER 7
Empirical Analysis

Here we conduct an experimental analysis of the proposed algorithms for
computing all avoidable vertices of a graph. We mainly compare, in term of
time execution, four algorithms of the previous chapters. We also propose
two additional algorithms that we present in this chapter. All considered six
algorithms compute avoidable vertices of a graph that is both connected and
co-connected.

We wrote our implementations in Python, using NetworkX, a python pack-
age for studying data structure and network connection analysis to compile
the code. Also we used Matplotlib package for visualizing and plotting the
graph regarding the avoidability of its vertices. These two packages use a
pretty huge amount of resources such as CPU and memory consumption, so
it is only for study and analysis purpose.

We report the running times on a Dell Precision Tower 7820 CTO Base
machine running Ubuntu (16.04 LTS), equipped with an Intel Xeon Gold 5118
2.3 GHz processor with 16 MB L3 cache and 192GB DDR4-2400 RAM at 2,666
MHz. We did not use any parallelization, and each algorithm ran on a single
core. All our running times were averaged over ten different runs.

7.1 Experimental algorithms

We have implemented the naive algorithm that we denote by NG. NG is
based on the definition of an avoidable vertex. Given a vertex u, the naive
algorithm NG runs a linear-time connectivity algorithm (here we considered
BFS) for every pair (x, y) of non-adjacent vertices of NG(u) that is performed
on the graph G− (NG[u] \ {x, y}). As already explained, the running time of
NG is O(n3m).

47

Chapter 7. Empirical Analysis

Algorithm 5: Testing if Hu[X] is a clique.

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G

1 Construct the contracted graph Gu(X,C) of u;
2 Construct the filled-contracted graph Hu(X,C) of u;
3 if Hu[X] is a clique then
4 return true;
5 else
6 return false;

Moreover, we use two of the aforementioned algorithms, by applying the
notion of protecting (Definition 2 and Lemma 17) via Algorithm 3 which is
based on the modified BFS. The reason for reaching two such algorithms is
that of directly applying to the whole graph as well as on the contracted graph
by Lemma 20. We denote the two algorithms based on the protecting notion
by PG and PCG, respectively. Regarding their running time, Theorem 18
shows that they are both performed in O(n2 + m2) time.

Let us now explain three additional algorithms that are applied on the
contracted graph Gu(X,C) of a vertex u.

We propose an algorithm denoted by HuCG, that comes directly from
Lemma 21, in which it is stated that a vertex u of G is avoidable, if and
only if, the filled-contracted graph Hu[X] is a clique. Algorithm 5 gives the
details of the proposed algorithm. Regarding its running time, observe that
constructing Hu(X,C) takes O(n3) time, as we need to consider all pairs of
neighbors of a vertex Ci ∈ C in order to turn NHu(Ci) into a clique.

Furthermore, we propose the ICG algorithm that takes advantage of the
intersection of the neighborhood of two non-adjacent vertices in X.

Lemma 28. A vertex u is avoidable in G if and only if for every pair of
non-adjacent vertices (x, y) ∈ X, there is a Ci ∈ C such that Ci ∈ (NGu(x) ∩
NGu)(y)).

Proof. By Lemma 21, u is avoidable if and only if Hu[X] is a clique. If there
are two non-adjacent vertices x and y that have no common neighbor in C
then xy is not an edge of Hu. Thus Hu[X] is not a clique and u is a non-
avoidable vertex. On the other hand, if every pair of non-adjacent vertices
x, y ∈ X have a common neighbor in C then Hu[X] is a clique which means

48

Chapter 7. Empirical Analysis

Algorithm 6: Testing if each non-adjacent pair x, y ∈ NG(u) have a
common neighbor in C.

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G

1 Construct the contracted graph Gu(X,C) of u;
2 Let L={(x, y) : (x, y) /∈ E(G) and x, y ∈ X};
3 Remove all edges of X and remove u;
4 for (x, y) ∈ L do
5 if NGu(x) ∩NGu(y) = ∅ then
6 return false;

7 return true;

that u is avoidable.

In other words, a vertex u is avoidable if and only if every pair of non-
adjacent vertices of NGu(u) have a common neighbor in C. Algorithm 6 shows
the details of ICG. Regarding its running time, observe that the intersection
of NGu(x)∩C and NGu(y)∩C takes O(n) time and as there O(n2) pairs (x, y)
in X, the overall running time for testing a single vertex u is O(n3).

Further, we present the CXCG algorithm that uses the complement Fu of a
subgraph of Gu(X,C). Let us explain. We consider Gu(X,C), we remove ver-
tex u and all edges between vertices of X. At the new bipartite graph F with
partition (X,C), we take its bipartite complement, regarding only the edges
between X and C. The resulting graph is denoted by Fu (see Figure 7.2). In
particular, V (Fu) = X∪C and E(Fu) = {{x, c}|x ∈ X, c ∈ C, {x, c} /∈ E(Gu)}.
With the next lemma, we claim that u is non-avoidable iff there is at least
one pair (x, y) of non-adjacent vertices of X such that NFu(x) ∪NFu(y) = C.
That is, u is non-avoidable iff there are at most two non-adjacent vertices in
X that dominate the set C in Fu.

Lemma 29. Let u be a vertex of G and let Fu be the bipartite complement
of the contracted graph Gu(X,C). Then u is a non-avoidable vertex in G
if and only if there is a pair of non-adjacent vertices (x, y) ∈ X such that
NFu(x) ∪NFu(y) = C.

Proof. Assume that u is non-avoidable. Then from Lemma 28 there are non-
adjacent vertices x, y ∈ X that have no common neighbor in C. We show that
x and y dominate C in Fu. Let Nx = NGu(x) ∩ C and let Ny = NGu(y) ∩ C.

49

Chapter 7. Empirical Analysis

Algorithm 7: Testing if there is a non-adjacent pair (x, y) ∈ NG(u),
such that y is adjacent to every node Ci of Fu −NFu [x] .

Input : A graph G and a vertex u
Output: Returns true iff u is avoidable in G

1 Construct the contracted graph Gu(X,C) of u;
2 Let L={(x, y) : (x, y) /∈ E(G) and x, y ∈ X};
3 Construct the bipartite complement graph Fu;
4 for (x, y) ∈ L do
5 remove NFu [x];
6 if NFu(y) = C then
7 return false;

8 return true;

Then C is partitioned into three disjoint sets C \ (Nx ∪ Ny), Nx, Ny. In the
bipartite complement Fu, x is adjacent to every vertex of C \ (Nx ∪ Ny), Ny

and y is adjacent to every vertex of C \ (Nx ∪Ny), Nx. Thus every vertex of
C is dominated by x or y, which implies that NFu(x) ∪NFu(y) = C.

Now assume that there is a vertex Ci ∈ C such that Ci /∈ (NFu(x)∪NFu(y)),
for every pair of non-adjacent vertices x, y ∈ X. Then Ci is adjacent to both x
and y in Gu, since Ci is a vertex of C. Thus x and y have a common neighbor
in C in the graph Gu. By Lemma 28 we deduce that u is avoidable.

In order to take advantage of Lemma 29 and test if there exist two non-
adjacent vertices x and y in X, we first construct the bipartite complement
Fu of Gu(X,C), then we remove all vertices of NFu(x), and then we check
whether y is adjacent to every vertex of C (see Figure 7.1). The details of
the aforementioned CXCG algorithm are given in Algorithm 7. Regarding its
running time, the construction of the bipartite complement Fu takes O(n2)
time and testing each of the O(n2) pair of vertices takes O(dFu(x)) time where
dFu(x) is the degree of x in Fu. Thus the overall running time of CXCG is
O(n3 m).

In Table 7.1 we summarize all considered algorithms that we have imple-
mented and used in this experimental analysis.

50

Chapter 7. Empirical Analysis

x y e z

C1 C2 C3

Fu

(i)

y e z

C1

Fu − NFu [x]

(ii)

Figure 7.1: Illustrating CXCG algorithm in Fu graph. Observe that after the
removal of vertex x and its neigbours in C, the remaining vertex y is adjacent
to all of the remaining vertices of C.

Algorithm Description Complexity

NG Applying the naive algorithm directly in G O(n3m)
PG Using the notion of protecting directly in G

(Algorithm 3)
O(n2 + m2)

PCG Using the notion of protecting in the con-
tracted G (Algorithm 3)

O(n2 + m2)

HuCG Checking the filled-contracted graph Hu[X]
in the contracted G (Algorithm 5)

O(n4)

ICG Checking the intersection of the neighbor-
hood in the contracted G (Algorithm 6)

O(n4)

CXCG Testing for a dominating pair of non-adjacent
vertices of Gu(X) in Fu in the contracted G
(Algorithm 7)

O(n3m)

Table 7.1: The algorithms that are used in the experimental analysis. Here
n,m and m denote the number of vertices, edges, and non-edges, respectively,
of the given graph.

7.2 Random graphs

Here we compare the efficiency of our algorithms in random graphs. In order
to do so, we used random graph generator of NetworkX package with 100, 200
and 300 nodes. Moreover for each random graph we used three different values
of probability p, for edge creation : p=0.05, p=0.50 and p=0.95 (see table 7.3).

Table 7.2 shows the considered random graphs in which we report structural
properties in each generated graph. Besides the usual data, we report the
percentage of the number of non-avoidable vertices and the reduced sizes (in

51

Chapter 7. Empirical Analysis

u

x y e z

C1 C2 C3

Gu(X, C)

(i)

x y e z

C1 C2 C3

Gu(X, C)− {u}

(ii)

x y e z

C1 C2 C3

F

(iii)

x y e z

C1 C2 C3

Fu

(iv)

Figure 7.2: Illustrating the steps of Lemma 29.

average) of the contracted graphs.

The results in running times for all of our algorithms applied on the graphs
taken from Table 7.2 are given in Table 7.3.

7.3 Real-world graphs

For the experimental evaluation of our algorithms in real-world networks, we
use real datasets that are both connected and co-connected. The datasets are
taken from several divergent areas such as animal networks, brain networks,
social networks, infrastructure networks and facebook networks [20].

Table 7.4 reports the details of each considered real-world network. We
have chosen 12 networks in which the number of vertices ranges from 58 to
1458 and with edge density (i.e., 2m/n(n− 1)) that diverges significantly.

52

Chapter 7. Empirical Analysis

n p m Density Aver. Deg. Non-Avoid. (%) C.R. (%)

100 0.05 337 0.068 6.74 2 6
100 0.50 2475 0.500 49.50 0 29
100 0.95 4613 0.931 92.26 2 89

200 0.05 1175 0.059 11.75 2 2
200 0.50 9950 0.500 99.50 0 27
200 0.95 18725 0.940 187.25 0 90

300 0.05 2512 0.056 16.74 3 2
300 0.50 22425 0.500 149.50 0 26
300 0.95 42338 0.943 282.25 0 90

Table 7.2: Random graphs produced by NetworkX and their percentage of
non-avoidable vertices.The percentage of C.R. shows how much each graph is
reduced in terms of number of vertices, after the contraction procedure.

n p NG PG PCG HuCG ICG CXCG

100 0.05 0.5745 0.4939 0.0743 0.0737 0.0772 0.0786
100 0.50 18.2944 7.7577 0.4048 0.2798 0.8779 0.5677
100 0.95 18.8785 5.2704 1.4625 0.7490 5.1182 0.8820

200 0.05 7.1858 4.8089 0.3514 0.3480 0.3751 0.3835
200 0.50 278.7692 109.1687 2.8438 1.8785 8.8196 4.9547
200 0.95 242.1613 55.7412 11.2460 5.3009 66.9655 7.0046

300 0.05 30.8796 18.0353 0.8825 0.8717 0.9484 0.9631
300 0.50 1493.5639 525.0821 9.5477 6.1045 38.3495 19.2981
300 0.95 1147.9665 243.6962 39.2457 18.0800 309.1732 24.9562

Table 7.3: Running times of our algorithms, in random graphs produced by
NetworkX. We highlight with bold the best running time in each instance
(row).

The results in running times for all of our algorithms applied on the graphs
taken from Table 7.4 are given in Table 7.5.

7.4 Experimental conclusions

The corresponding plotted values from Table 7.3 and Table 7.5 are shown
in Figure 7.3 and Figure 7.5 respectively.

For the random graphs that are neither sparse nor dense, (0.05 < p < 0.95)
HuCG has the best performance. The same behavior occurs on sparse random
graphs (p = 0.05) as well as on dense random graphs (p = 0.95). However,
on real-world graphs in almost all instances both PCG and HuCG outperform

53

Chapter 7. Empirical Analysis

Dataset n m Density Aver. Deg. Non-Avoid. (%) C.R. (%)

insecta-ant-colony2-day39 58 879 0.531 30.310 22 45
soc-dolphins 62 159 0.084 5.129 23 13
insecta-ant-colony2-day16 111 4041 0.661 72.810 36 60
aves-wildbird-network-1 131 1444 0.169 22.045 65 23
insecta-ant-colony6-day01 164 10731 0.802 130.865 16 71
inf-USAir97 332 2126 0.038 12.807 35 17
bio-celegans 453 2025 0.019 8.940 35 6
bio-diseasome 516 1188 0.008 4.604 31 4
soc-wiki-Vote 889 2914 0.007 6.555 23 3
socfb-Reed98 962 18812 0.040 39.110 13 3
socfb-Haverford76 1446 59589 0.057 82.419 5 3
bio-yeast 1458 1948 0.001 2.672 31 2

Table 7.4: The datasets from Real World Networks taken from [20] that we
used for the evaluation of our algorithms.

Dataset NG PG PCG HuCG ICG CXCG

insecta-ant-colony2-day39 1.5365 0.7510 0.1117 0.0756 0.1685 0.0987
soc-dolphins 0.0691 0.0851 0.0249 0.0250 0.0251 0.0258
insecta-ant-colony2-day16 16.1304 6.3688 0.8177 0.5784 2.0461 0.7049
aves-wildbird-network-1 0.6090 0.5732 0.1952 0.2058 0.2050 0.2002
insecta-ant-colony6-day01 107.1668 38.1257 3.9208 2.2945 17.0078 3.6033
inf-USAir97 2.8236 2.7650 0.5876 0.6102 0.6157 0.6816
bio-celegans 3.9009 5.0335 1.0322 1.0532 1.0329 1.0621
bio-diseasome 0.2920 0.3045 0.4345 0.4382 0.4381 0.4377
soc-wiki-Vote 17.2691 19.4446 3.4021 3.4156 3.4144 3.4541
socfb-Reed98 1582.0383 597.3261 15.3947 15.1578 18.2741 18.0137
socfb-Haverford76 20 416.9665 6229.3409 70.4331 66.8618 105.9508 95.9866
bio-yeast 4.5956 7.6304 4.3437 4.3279 4.3423 4.3497

Table 7.5: Results in running times for our algorithms regarding real world
network datasets. We highlight with bold the best running time in each in-
stance (row).

the rest of the algorithms.

The results taken from random graphs in Table 7.3 suggest that the contrac-
tion process significantly reduces the actual running time. When comparing
PC and PCG which apply the same algorithm, an improvement of almost 85%
is occurred. As expected, the small number of non-avoidable vertices is crucial
for the exhaustive application of each algorithm. Moreover, sparsity and den-
sity of each test graph is an important aspect that affects the corresponding
running times. Furthermore, Table 7.5 shows that the outcomes taken from
the random graphs naturally correspond on real-world data.

54

Chapter 7. Empirical Analysis

1,000 10,000

0.1

1

10

100

1,000

Number of edges (logscale)

Ru
nn

in
g

tim
e

(s
ec

s,l
og

sc
al

e)

Random graphs

NG
PG

PCG
HuCG
ICG

CXCG

Figure 7.3: Running times in seconds with respect to the number of edges (in
log scale) taken by Table 7.3.

so
c-

do
lp

hi
ns

in
se

ct
a-

an
t-

co
lo

ny
2-

da
y3

9

bi
o-

di
se

as
om

e
av

es
-w

ild
bi

rd
-n

et
wo

rk
-1

bi
o-

ye
as

t
bi

o-
ce

le
ga

ns
in

f-U
SA

ir9
7

so
c-

w
ik

i-V
ot

e

in
se

ct
a-

an
t-

co
lo

ny
2-

da
y1

6

in
se

ct
a-

an
t-

co
lo

ny
6-

da
y0

1

so
cf

b-
R

ee
d9

8

so
cf

b-
H

av
er

fo
rd

76

0.01

0.1

1

10

100

1,000

10,000

100,000

Ru
nn

in
g

tim
e

(s
ec

s,l
og

sc
al

e)

Real-world graphs

NG
PG

PCG
HuCG
ICG

CXCG

Figure 7.4: Running times in seconds with respect to the number of edges (in
log scale) taken by Table 7.5.

55

CHAPTER 8
Concluding Remarks

The running times of our algorithms for listing all avoidable vertices are
comparable to the corresponding ones for listing all simplicial vertices. Thus
we believe it is difficult to achieve a reduction of the running time for avoid-
able vertices without affecting the time needed for simplicial vertices. As
pointed out, we can detect avoidable vertices in particular graph classes in
more efficient way. Towards this direction, it is interesting to consider planar
graphs and reveal any possible improvement on the running time. Moreover
the notion of protecting and the relative S-excluded paths seem to tackle fur-
ther problems concerning avoidable structures. Our recognition algorithm for
avoidable edges results in an algorithm for listing avoidable edges with running
time O(nm2) which is comparable to the O(m2)-algorithm for listing avoid-
able vertices. Regarding avoidable paths on k vertices, one needs to detect
first with a naive algorithm a path Pk in O(nk) time and then test whether Pk

being avoidable or not. As observed in [9], such a detection is nearly optimal,
since we can hardly avoid the dependence of the exponent in O(nk). Therefore
by Theorem 25 we get an O(nk+1 ·m)-algorithm for listing all avoidable paths
on k vertices. An interesting direction for further research along the avoidable
paths is to reveal problems that can be solved efficiently by taking advantage
the list of all avoidable paths in a graph.

56

Bibliography

[1] Pierre Aboulker, Pierre Charbit, Nicolas Trotignon, and Kristina
Vuskovic. Vertex elimination orderings for hereditary graph classes. Dis-
cret. Math., 338(5):825–834, 2015.

[2] Josh Alman and Virginia Vassilevska Williams. A refined laser method
and faster matrix multiplication. In Dániel Marx, editor, Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 522–539. SIAM, 2021.

[3] Jesse Beisegel, Maria Chudnovsky, Vladimir Gurvich, Martin Milanic,
and Mary Servatius. Avoidable vertices and edges in graphs. In Zachary
Friggstad, Jörg-Rüdiger Sack, and Mohammad R. Salavatipour, editors,
Proceedings of WADS 2019, volume 11646, pages 126–139, 2019.

[4] Anne Berry. A wide-range efficient algorithm for minimal triangulation.
In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 860–861. ACM/SIAM, 1999.

[5] Anne Berry, Jean R. S. Blair, Jean Paul Bordat, and Geneviève Simonet.
Graph extremities defined by search algorithms. Algorithms, 3(2):100–
124, 2010.

[6] Anne Berry, Jean R. S. Blair, Pinar Heggernes, and Barry W. Peyton.
Maximum cardinality search for computing minimal triangulations of
graphs. Algorithmica, 39(4):287–298, 2004.

[7] Anne Berry and Jean Paul Bordat. Separability generalizes dirac’s theo-
rem. Discret. Appl. Math., 84(1-3):43–53, 1998.

57

Bibliography

[8] Anne Berry, Pinar Heggernes, and Yngve Villanger. A vertex incremen-
tal approach for maintaining chordality. Discret. Math., 306(3):318–336,
2006.

[9] Marthe Bonamy, Oscar Defrain, Meike Hatzel, and Jocelyn Thiebaut.
Avoidable paths in graphs. Electron. J. Comb., 27(4):P4.46, 2020.

[10] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[11] Derek G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement
reducible graphs. Discret. Appl. Math., 3(3):163–174, 1981.

[12] Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recog-
nition algorithm for cographs. SIAM J. Comput., 14(4):926–934, 1985.

[13] G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathema-
tischen Seminar der Universitat Hamburg, 25(1):71–76, 1961.

[14] Pinar Heggernes. Minimal triangulations of graphs: A survey. Discret.
Math., 306(3):297–317, 2006.

[15] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small
induced subgraphs efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000.

[16] R. M. McConnell and J. P. Spinrad. Modular decomposition and transi-
tive orientation. Discrete Mathematics, 201:189–241, 1999.

[17] Tatsuo Ohtsuki, Lap Kit Cheung, and Toshio Fujisawa. Minimal triangu-
lation of a graph and optimal pivoting order in a sparse matrix. Journal
of Mathematical Analysis and Applications, 54(3):622–633, 1976.

[18] Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic
aspects of vertex elimination on graphs. SIAM J. Comput., 5(2):266–283,
1976.

[19] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul.
Simpler linear-time modular decomposition via recursive factorizing per-
mutations. In Proceedings of ICALP 2008, volume 5125 of Lecture Notes
in Computer Science, pages 634–645, 2008.

[20] Ryan A. Rossi and Nesreen K. Ahmed. The Network Data Repository
with Interactive Graph Analytics and Visualization. In Proceedings of
AAAI 2015.

58

