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Abstract 

Current literature on Massive Open Online Courses (MOOCs) focuses on adopting 

gamification to address the high dropout rates targeting on enhancing learners’ 

engagement. Recent reviews suggest to go beyond a simple application of game elements 

and use theory-driven gamification designs for learning scenarios in MOOCs. The present 

thesis emphasized on the importance of designing gamified learning assessment activities 

for MOOCs that create smooth learning curves for learners and evaluated their 

effectiveness by using psychophysiological measures. Our goal was to investigate whether 

the integration of the game element progression, could affect the learners’ cognitive and 

affective states. The design of the gamified activity was based on Goal-setting Theory and 

the revised Bloom’s Taxonomy. To evaluate the effectiveness of the proposed 

intervention, we conducted an empirical study, on Coursity MOOC platform, with a sample 

of 58 participants 19 to 46 years old. We used the technique of electroencephalography 

(EEG) to objectively evaluate the participants’ cognitive and affective state by extracting 

a set of EEG spectral features. Specifically, we calculated the absolute and relative power 

values in four frequency bands of EEG signal i.e., theta (θ), alpha (α), beta (β), low beta 

(low_β), and their ratios i.e., task engagement β/(α+θ), attention ratio θ/low_β, workload 

θ/α, arousal β/α, and valence αF4/βF4 – αF3/βF3. We also used a questionnaire to study 

the participants’ perceived engagement. Our results showed that the proposed gamified 

intervention did not have a significant impact on learners’ cognitive and affective states. 

Also, arousal was significantly increased in the task condition for both groups as 

compared to the baseline values. A significant increase was found in participants’ 

workload for the experimental group between the two conditions. Results regarding the 

participants’ perceived engagement showed no statistically significant differences 

between the two groups, which confirms the results from the neural data. This study 

contributes in the field of theory-based gamification design using the goal-setting theory 

as theoretical framework as it has not exploited in the field of MOOCs. The study provides 

psychophysiological measures for the evaluation of gamification in a MOOC assessment 

activity and discusses the potential value of these measures. Finally, we argue that 

electroencephalography has the potential to inform MOOC designers to design more 

engaging courses leading to lower dropout rates. 

Keywords 

Massive Open Online Courses (MOOCs), gamification, electroencephalography (EEG), 

progression, engagement, learner’s cognitive states, spectral analysis 
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Chapter 1. Introduction 

1.1. Problem Statement  

Massive open online courses (MOOCs) are an advanced version of online education that 

has recently received great attention by higher educational institutes due to their 

remarkable features. MOOCs are massive, as they have no limit on learners’ enrollments, 

they are open, as anyone may attend them without any constraints, they are online, as 

their learning material and activities are accessible via the web, and they are courses 

structured on video lectures and other interactive material. Through MOOCs, learners 

from all over the world are given the opportunity to access world-class educational 

resources. In the last decade, the number and the diversity of MOOCs have grown greatly 

and have gained popularity among learners and educators. Despite their flexibility and 

convenience over the traditional online learning, MOOCs have to deal with several 

challenges (Kim et al., 2017).  

The most significant challenge of MOOCs, as mentioned in the relevant literature, is the 

low completion rates. Research studies report that only a small percentage (about 10%) 

of the enrolled learners complete the course (Feng et al., 2019). As MOOCs are gaining 

more popularity worldwide, researchers and course developers are striving to find 

innovative ways to help learners that enroll in MOOCs to persist more (Barak et al, 2016; 

Chen et al., 2019). Their efforts lie on the fact that high dropout rates result in reduced 

revenue for the institutes, but more importantly, they are struggled to improve MOOCs’ 

educational effectiveness which is the principal goal for open learning. 

Several research studies have suggested models that predict learners’ dropout in order to 

help MOOC developers gain greater understanding of the factors that are affecting 

learner’s persistence in MOOCs. According to Aldowah et al. (2020), learners’ academic 

skills and background knowledge, feedback, course design, social presence, and social 

support, are factors that have a primary impact on learners’ dropout. However, other 

researchers argue that in order to evaluate the success rate in MOOCs, we should not take 

into account only the completion rates, but we should also be aware of learners’ initial 

goals and intentions. It should be noted that MOOCs are not traditional online courses as 

they can afford a massive number of learners, with diverse backgrounds, who may 

interact with the course in different ways. Some learners may enroll out of curiosity, other 

learners are interested in attending only a part of the course, while others may complete 

the course but not apply for a certificate. In every case, to continue with a MOOC, learners 

should be motivated. Their motives can be either intrinsic or extrinsic. For example, 
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learners who acknowledge that receiving a certificate of completion is important for 

obtaining employment, are extrinsically motivated. Other learners although may not be 

motivated enough to complete the course. Therefore, MOOC designers should use 

innovative features in their course design to provide (intrinsic or extrinsic) incentives to 

learners and keep them engaged during the course. Antonaci et al. (2019) argue that in 

order to increase completion rates, MOOC designers should enable learners to plan their 

objectives within the course while offering engaging learning activities.  

Engagement has a significant role in the design of contents and services. However, there 

are challenges regarding its conceptualization and measurement. The term “engagement” 

is used to describe the simultaneous experience of concentration, interest and enjoyment 

in a certain activity (Shernoff, 2013). Engagement is identified by researchers as a 

multidimensional construct with cognitive, behavioral, and emotional aspects. Cognitive 

engagement refers to an individual’s willingness to exert the necessary effort to 

comprehend complex ideas and master difficult skills (Fredricks, Blumenfeld, & Paris, 

2004). Emotional engagement is defined as learners’ emotional reactions towards co-

learners, instructors, or subject areas. Behavioral engagement refers to learner’s 

observable actions related to participation. Researchers should acknowledge that it is 

difficult to study only one dimension of engagement, as all three dimensions occur 

simultaneously and affect its measurement. 

To evaluate learners’ engagement, researchers should define engagement before 

selecting the method for its measurement. Their definition should drive the choice of 

appropriate measures. Researchers should also define the context and the level in which 

engagement is being measured. For example, we can measure learners’ engagement in 

microlevel, e.g., in a specific task, or we can measure it in macrolevel i.e., evaluate the 

engagement of a group of learners’ e.g., in a course, class, etc. Task engagement is 

described as an effortful commitment to task goals (Matthews et al., 2002; Fairclough, 

Ewing & Roberts, 2009). It is a multidimensional concept that involves cognition, 

motivation, and affect.  

Engagement in learning is typically assessed with surveys that are administered to 

learners after learning has completed. These questionnaires do not assess learner’s 

engagement during the learning process, and it is not clear whether they are reliable for 

measuring learners’ engagement (Trowler & Trowler, 2010). This stands true for MOOCs 

as well. Other research studies on engagement primarily focus on examining behavioral 

engagement based on MOOC learners’ observable actions (Li & Baker, 2016).  
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Several physiological measures such as heart rate variability, oculomotor activity, 

galvanic skin response, etc., have been proposed to measure engagement (Chaouachi et 

al., 2010; Nacke & Lindley, 2008). Among them, the electroencephalogram (EEG) is the 

only physiological signal that can reliably detect changes in learners’ cognitive and 

affective states in real-time with high precision. Therefore, EEG provides an unobtrusive 

method to assess learners’ engagement. However, it is generally accepted that a single 

method poses another challenge in the measurement of engagement. Ideally, researchers 

should use a combination of different methods and instruments to better approximate 

engagement (Park, Liu, Yi & Santhanam, 2019). Task engagement is measured using EEG 

either to monitor and evaluate learners’ cognitive state or to provide input data in real-

time adaptive systems (such as intelligent tutoring systems, games, etc.). MOOCs can take 

advantage of the technological advancement of neurophysiological sensors to inform the 

design of MOOCs or to provide learners with a personalized experience. 

Gamification, which is the process of using game thinking and game mechanics in non-

game scenarios, is often suggested as a strategy that has the potential to engage 

individuals in various settings. Gamification combines elements that promote both 

aspects of motivation i.e., the intrinsic and the extrinsic motivation. It uses rewards such 

as points, badges, levels, etc. (extrinsic), while trying to raise emotions of mastery, self-

efficacy, satisfaction, and autonomy (intrinsic). 

In MOOCs, although the implementation of gamification has not been studied extensively, 

it is considered to be a successful strategy to engage and facilitate MOOC learners to attain 

their goals within the course (Antonaci, Klemke & Specht, 2019; Rincón-Flores, Ramírez 

Montoya & Mena, 2019). It should be noted that, gamification design is a process that 

depends on the problem to be solved, the effect to be generated, the context, and the 

audience (Antonaci, Klemke & Specht, 2019). Additionally, recent studies suggest going 

beyond the simple applications of external rewards such as points, badges, leaderboards, 

etc., and exploit theory-based gamification designs that provide a better match between 

gamification affordances and existing problems (Nacke & Deterding, 2017; Park et al., 

2019, Rapp et al., 2019). Several theories of motivation have been suggested as the basis 

for gamification design methodologies. The Self-Determination Theory proposed by Deci 

& Ryan (2000) and the Flow Theory proposed by Csikszentmihalyi (1975) are the most 

referenced theories on gamification. The former highlights the importance of satisfying 

three human psychological needs, autonomy, competence, and relatedness, to increase 

motivation, while the latter suggest that the optimal state of intrinsic motivation is caused 

by providing challenges (tasks) that are in balance with the individual’s skills. 
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MOOC platforms technologically provide features that can be considered as game 

elements, e.g., the narrative of the video lectures, the challenges of the assignments, the 

score (or grade) of the assignments (usually quizzes with multiple choice questions), the 

potential to have timed assignments and graded/ungraded assignments, the automated 

performance feedback, learners’ potential to view their learning progress (grades) on 

their individual progress page, etc. Although technology allows the integration of game 

elements such as points, scores, leaderboards, levels, avatars, etc., the way these elements 

are selected, designed and embedded in a MOOC learning environment, depends on the 

choices of the MOOC designer. According to Ortega-Arranz et al. (2017), although some 

educational platforms have gamification capabilities, the effects of gamification in real 

MOOC contexts have not been thoroughly explored. Also, the authors argue that the most 

frequently used game elements in MOOCs are related to external rewards such as points, 

badges, and leaderboards (PBL), as it is shown by other reviews on gamification 

(Antonaci, Klemke & Specht, 2019; Dichev & Dicheva, 2017; Dicheva et al., 2015).  

Several frameworks have been proposed for incorporating game elements into non-game 

environments. The framework of Werbach & Hunter (2012) is usually mentioned in 

gamification studies. This framework organizes game elements into dynamics, mechanics, 

and components. The elements can be used separately or in combination, depending on 

the goal to be achieved. Dynamics are the most abstract elements and they are used to 

define the context in which gamification is applied. Dynamics comprises of five elements, 

progression (i.e., the player’s growth and development in the game), emotions (e.g., 

competitiveness, curiosity, frustration), constraints (i.e., limitations), narrative (i.e., a 

progressive storyline), and relationships (i.e., social interactions). Each dynamic connects 

players' actions with the goal in the game. Mechanics are the processes that are 

implemented according to the dynamics, to encourage individuals to engage in a gamified 

setting such as challenges, rewards, feedback, competition, etc. Components are the 

implemented form of dynamics and mechanics, such as levels, points, leaderboards, 

badges, etc. Despite the elements and the frameworks that are used, research studies have 

showed that gamification increases the completion rates in MOOCs. Usually, researchers 

use subjective measures, such as self-reported questionnaires to assess cognitive or 

behavioral engagement in gamified interventions in MOOCs (Deng, Benckendorff & 

Gannaway, 2020). However, other researchers suggest that gamification should be 

assessed using objective measures to state its effectiveness (Rincón-Flores, Ramírez 

Montoya & Mena, 2019). 
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1.2. Research goal of the thesis 

The present thesis suggests a gameful design method for MOOCs and aims to investigate 

empirically the effect of a proposed gamified intervention on learners’ cognitive states, 

mainly in terms of task engagement. The proposed design method uses the Goal-setting 

Theory (Latham & Locke, 1991) as a theoretical background for the design and the 

implementation of a game element, namely progression. The proposed design method 

concerns the implementation of the progression element in MOOC assessment activities 

(with multiple-choice questions) and seeks to enhance learners’ task engagement in these 

activities. Progression is a game element that (is included in the category of dynamics 

based on Werbach & Hunter’s model) and describes players’ development and growth in 

the game by continuously increasing their skills. Progression is also recognized in 

pedagogy as scaffolded instruction. This element is selected as learners’ skill level has 

been found to have a significant impact on learners’ retention in MOOCs. The proposed 

gameful design method attempts to create a smooth learning curve that allow individuals 

to acquire the necessary skills as to move forward.  

Goal-setting theory has been used mainly in work-related tasks to explain how to 

motivate individuals to perform better by setting goals. Interventions based on this theory 

are considered to be effective across various tasks (Latham & Locke, 1991). Gamification 

is also a goal-oriented activity. However, very few research studies so far have explored 

the use of goal-setting theory to inform a gameful design method. Most of these studies 

use the goal-setting theory to describe a specific game element (e.g., badges, leaderboards, 

levels, rewards, progress bars). In this thesis we combine the two practices to inform the 

design of the element of progression and to implement gamified MOOC assessment 

activities. 

EEG studies on MOOCs provide guidelines on how to improve the design of the learning 

content that is delivered through a MOOC mainly for the video lectures and other 

hardware choices (Díaz, Ramírez & Hernández-Leo, 2015; Moldovan, Ghergulescu & 

Muntean, 2017; Wang, Chen & Wu, 2015). The present thesis exploits the technological 

affordances of an OpenEdX MOOC platform (named Coursity) to implement a gamified 

MOOC assessment activity that integrates the element of progression. The procedure of 

designing the element of progression for a MOOC assignment is based on the basic 

principles of goal-setting theory and Bloom’s taxonomy. Using the technique of 

electroencephalography (EEG), we extracted power spectral features to study 

participants’ cognitive and affective states while interacting with a gamified theory-based 
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assessment activity. The present thesis follows a multi-method approach by comparing 

participants’ task engagement as calculated from their neural data with the perceived self-

reported engagement.  

1.3. Contribution of the thesis 

The present thesis introduces the goal-setting theory in MOOCs. It investigates the 

potential value of goal-setting theory as the theoretical framework for the design and the 

implementation of the game element progression in MOOC assessment activities and 

evaluates its effectiveness to enhance learners’ engagement and improve their learning 

experience. Specifically, this thesis contributes to the understanding on how gamification 

can be implemented in MOOC assessment activities to produce smooth learning curves 

that help learners persist more and engage in the learning through MOOCs.  

Moreover, this work suggests the use of EEG as a method to evaluate gameful 

interventions in MOOCs and provides information about the potential value of neural data 

in evaluating learners’ cognitive states in terms of engagement. Specifically, this thesis 

follows a multi-method approach to evaluate learner’s engagement by comparing neural 

and subjective (self-reported) measures.  

Finally, this work helps to address the current shortage of research in the area of 

gamification in MOOCs (as most research studies involve external rewards such as points, 

badges, etc.) and propose an objective evaluation of the gamified intervention. 

1.4. Thesis outline 

The present thesis is divided into nine (9) chapters. A brief description of the chapters 

follows. 

In Chapter 1 the subject of this thesis was introduced. The problem that this work 

addresses, the research goal, and the contribution of this work are presented. The 

limitations of the study are also discussed. 

In Chapter 2 some of the key concepts related to online learning, Open Educational 

Resources and Massive Open Online Courses (MOOCs) are described. A brief historical 

review of MOOCs’ growth is also presented. Also, the most widely used types of MOOCs 

i.e., xMOOCs and cMOOCs, are described, while other types that have been referenced are 

presented briefly. The most popular MOOC providers in national and international level 

are presented, while the basic characteristics of MOOC learners, courses and MOOC 
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platforms are also discussed. Furthermore, the main challenges that MOOC encounter 

regarding their design and management, emphasizing in the factors that affect learners’ 

dropout in MOOCs are presented. Finally, the basic elements of a MOOC, such as video 

lectures, learners’ assessments, discussion forum and progress page are described, while 

the core pedagogical aspects of MOOCs are also presented. 

In Chapter 3 basic concepts on motivational design are defined and some of the most 

popular theories of motivation are described. Key concepts on gamification are identified 

while the most widely used gamification frameworks and game elements are presented. 

Finally, the most frequently used in MOOCs game elements are presented. 

In Chapter 4 the human nervous system and the most popular brain imaging technique 

i.e., the electroencephalogram (EEG) is described. The EEG is the technique that is used in 

this thesis to record the brain activity of the participants. The frequency bands of the EEG 

are presented as well as the method of power spectral analysis that is used for the 

quantification of the EEG, specifically the Welch method. Also, the most widely referenced 

event-related potentials (ERPs) and process of the (de-) synchronization of alpha and 

theta bands are briefly discussed. Finally, the advantages and disadvantages of the EEG 

are presented. 

In Chapter 5 neural measures that are commonly used in EEG studies and the cognitive 

processes that are related to them are presented. The term engagement as well as its 

dimensions are defined. Other measures related to engagement such as attention, 

workload as well as to emotional states are also described. Finally, studies relevant to the 

neurophysiological measures that are used for assessing learners’ cognitive and affective 

state in MOOCs are presented. 

In Chapter 6 a detailed description of the research methodology, the research questions 

that are addressed, and the data that are collected are presented. 

In Chapter 7 the results of this thesis are presented in terms of statistical analysis and 

short comments on the results.  

In Chapter 8 the discussion and conclusions the emerged from the results of this work are 

presented, as well as assumptions, considerations, and points that need further 

investigation. Also, some recommendations for future works are given. 
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The present thesis is completed with the references and the Appendices I and II. In 

Appendix I the multiple-choice questions that consisted the MOOC assessment that was 

used in the experimental procedure is presented in Greek, while in Appendix II the self-

reported engagement questionnaire that was administer to the participants is presented 

in Greek. 

 

Note: This thesis has been checked for plagiarism with turnitin. 
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Chapter 2. Massive Open Online Courses - MOOCs 

2.1. Introduction to Massive Open Online Courses 

Massive Open Online Courses (MOOCs) is an advanced form of online education with 

innovative features that was developed to support open learning on a large scale. MOOCs 

in less than ten years, became the most prominent trend by allowing free participation for 

millions of learners who want to acquire professional knowledge and skills, anytime and 

anywhere.  

Many universities, mainly in the USA and some of them in Europe, are collaborating with 

MOOC platforms to provide online highly interactive online courses. MOOCs are created 

to engage learners who must self-determine their involvement in the course according to 

their background knowledge, skill level, interests, and objectives. 

Nowadays, MOOCs come in various formats and cover a broad range of topics. Most of 

them are delivered on a pre-defined schedule that is set by the course team. In those 

courses, learners sign up for a course which begins on a given date and usually has a 

duration of 4-10 weeks. The content is made available per week, with learners working 

approximately 2-10 hours a week in their own time and pace. Other courses give learners 

the opportunity to participate in a more flexible way adjusting the schedule according to 

their convenience. These courses are called self-paced. We should note that, most online 

participation in MOOCs is asynchronous. 

Common activities in MOOCs involve watching video-lectures (i.e., videos broken into 

small chunks of approximately 10 minutes), reading articles or other recommended 

materials, submitting assignments, etc. Additionally, MOOCs provide discussion forums 

that enable learners’ interaction with their co-learners and with the course staff (Agrawal 

et al., 2015). Learners who successfully complete a course can receive a certificate of 

completion.  

Taking the above into account, it is considered that MOOCs can provide an alternative to 

traditional classroom education or used in combination e.g., in flipped classrooms. 

2.1.1. Open education 

Open education refers to the resources, the tools and the practices that apply a framework 

of open sharing, to enhance the access to educational material as well as to improve 

learning effectiveness. Wiley (2007) has proposed a 4Rs framework to describe the 
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permissions on the use of Open Educational Resources (OER): Reuse (i.e., to use the 

resource as you found it), Revise (i.e., to alter the resource to meet your needs), Remix 

(i.e., to combine resources to meet your needs), and Redistribute (i.e., to share resources 

with others). More recently, the author added another R to this framework, Retain, to 

describe the right to create, own and manage a resource (Wiley, 2014). Atkins, Brown & 

Hammond (2007) argue that OER are resources that publicly available and they are 

released under a license of intellectual property that allows their free use (but not 

necessarily their commercial use). OERs include courses, materials, software, techniques 

and any other tool that supports the access to knowledge. 

In the last ten years, there is a shift of attention from Open Educational Resources (OER) 

to Open Educational Practices (OEP). According to Ehlers & Conole (2010), OER focuses 

on contents and resources’ availability and accessibility, while OEP represents the 

framework that helps to develop the educational environment in which OER can be 

created and used. Weller et al. (2018) reports several principles that are associated to 

OEP, such as open access, freedom to reuse, free of cost, easy to use, digital and networked 

content, ethical issues, and openness as a model. The authors proposed three main 

antecedents of the open education movement, web 2.0 culture, open-source software, and 

open universities. However, research on open education evolves continuously. 

Recently, the term “open education” is used to describe Massive Open Online Courses 

(MOOCs), as this initiative provides opportunities for opening up education, supporting 

social inclusion and widening participation (Conole, 2012). Although, MOOCs do not 

always meet Wiley’s 5Rs framework. Yuan & Powell (2013) stated that the development 

of MOOCs has its roots in the ideal that knowledge should be shared freely and without 

constraints such as geographical, economic, etc. 

2.1.2. The key features of MOOCs 

MOOCs have two core features, “openness” i.e., access to anyone and from anywhere with 

internet connection (Conole, 2015; Levy, 2011; Pappano, 2012) and “scalability”, in terms 

that courses are designed to support millions of participants (Conole, 2015; Hollands & 

Tirthali, 2014). Baturay (2015) adds two other characteristics, namely participation and 

distribution. MOOCs offer free and open participation to anyone who with an Internet 

connection and the learning content that is generated through these courses, either by the 

instructors or the learners, is made available to anyone. Any knowledge is distributed 

across the network of the participants and although, the participation is voluntary, the 
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learning in a MOOC is enhanced by the participation of the learners. Cormier (2010) 

defines MOOC as being open, participatory, distributed and supporting lifelong network 

learning. The term MOOC can be analyzed as following: 

“Massive” refers to the capacity of MOOCs to accommodate thousands of learners. This 

capacity reflects both the advancements in Information and Communication Technology 

(ICT), i.e., software services to store and remotely access the educational content, secure 

registration and identification of learners, as well as, the advances in pedagogy and 

educational technology of online and distance learning, such as connectivism, e-learning, 

learning management systems (LMS), computer-based education and training (CBT), etc.  

“Open” has several different meanings. “Open” may refer to the access in a MOOC as it is 

open to all, without restrictions on age or other individual differences, prior learning, 

qualifications etc. It may also refer to the scheduling, as learners may take the course at 

any time. Moreover, open may refer to open standards and formats for storing and sharing 

learning resources, or even to education, as it provides practices that increase access to 

formal education for learner who deal with physical, cognitive, geographical or other 

barriers in order to participate in educational institutions. Finally, open may refer to the 

assessment, as the learners have the opportunity to choose whether to have their work 

assessed or not, by applying an “on-demand accreditation”. Yuan and Powell (2013) add 

another aspect of openness by considering the curriculum that is created from learners 

by attending a MOOC.  

“Online” defines that MOOCs are online courses, regardless of their relationship to 

classroom-based courses. In MOOCs, online participation is mostly asynchronous i.e., 

learners at their own time and pace can access the content and complete the course 

activities. Being online and open, MOOCs can also be used as OERs, as a part of a traditional 

classroom course in order to transform it into a blended learning course. An adaptation 

of this model is a “flipped classroom” (Baker, 2000; Forsey, Low & Glance, 2013), in which 

students, study at home through a MOOC and lessons in the classroom are used to explain 

issues and handle difficulties that arise from homework.  

“Course” refers to a systematic sequence of learning activities that need to be designed, 

developed, evaluated and revised, particularly when they are open to massive numbers 

of learners of diverse skills and backgrounds. In a MOOC the learning content is organized 

according to a pedagogical concept, the development of knowledge follows certain 

predefined learning objectives, design elements such as course schedule, learning 

content, submission deadlines, social learning interaction etc. must also be defined. 
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2.1.3. History of MOOCs 

Distance education has started many years ago with correspondence courses that were 

delivering the educational material to learners and the submission of learners’ 

assignments were completed via postal services (Casey, 2008). The development of home 

computing and mobile internet allowed academics to share digital educational content. 

The sharing of open educational resources has gained great interest from higher 

education institutes (Adams et al., 2013). OpenCourseWare (OCW) was released in 2001 

by the Massachusetts Institute of Technology (MIT) aiming at publishing educational 

material from its courses, with licenses allowing the use, the modification and the 

redistribution of the material. Afterwards, many well-established universities have joined 

this movement. OER allowed learners to access the educational material and learn from 

it, while teachers could use the OER as part of their lessons. It should be noted that, some 

of these OER were created to be a part of larger educational experiences within specific 

educational contexts. Therefore, learners who attempted to learn directly from this 

material, they did not how to make the most of it and they were getting frustrated about 

its value (Liyanagunawardena, Adams & Williams, 2013). 

MOOCs combine e-learning and open education opportunities as they provide 

unrestricted access to large number of learners via the web. The term MOOC was 

introduced by Cormier and Alexander in (Siemens, 2012). Although, the first online 

course with massive participation was the "Connectivism and Connective Knowledge" 

offered by George Siemens and Stephen Downes to more than 2000 students from the 

University of Manitoba and the general public (Daniel, 2012; deWaard, 2011). This course 

uses the principles of connectivism (Siemens, 2005) and it is still offered to anyone for 

credit.  

Figure 2.1. Timeline of MOOCs (Yuan, Powell, & CETIS, 2013) 
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In 2011, MOOCs took another direction with the course “Introduction to Artificial 

Intelligence”, offered by Sebastian Thrun from the Stanford University and Peter Norvig, 

then Director at Google (Figure 2.1). The course team that created this MOOC, developed 

the for-profit company Udacity. Udacity offers courses for free while giving learners the 

option to pay for certification. Udacity activities were recently expanded in matching 

students who are qualified with partner companies to provide employment. Coursera is 

also a for-profit company that collaborates with leading universities to offer MOOCs in a 

broad range of topics. The pedagogical approach of Coursera includes peer assessment 

and mastery learning. Peer assessment is used in cases that automated assessment cannot 

be applied. MIT that has long history in open online courses through OpenCourseWare, 

started offering MOOCs through MITx. The first MOOC was offered by MITx in 2012 and 

was about Circuits and Electronics. This course had about 150,000 enrolled learners. In 

2012, MIT and Harvard have created edX, a nonprofit organization that was dedicated to 

offer MOOCs. This learning innovation continues to grow and gain popularity. 

2.2. Types of MOOCs 

2.2.1. xMOOCs and cMOOCs 

As MOOCs have grown in popularity, researchers started to suggest several schemes for 

their classification. Rodriguez (2012) defines two categories of MOOCs, connectivist 

MOOCs (cMOOCs) and AI-Stanford like courses. The author argues that cMOOCs have a 

social approach for learning while courses similar to AI-Stanford are based on an 

individualist learning approach. For Daniel (2012) two MOOCs categories have emerged: 

xMOOCs and cMOOCs. Daniel does not give a definition for xMOOCs, so we cannot argue 

that Rodriguez (2012) and Daniel (2012) are categorizing MOOCs in a similar way using 

different labels for “AI-Stanford like courses” and “xMOOCs”. 

Table 2.1. MOOCs in terms of components 

cMOOCs MOOCs xMOOCs 

Connectivity Massive Scalability 

Access and license Open Access but not license 

Networked learning Online Individual learning 

Develop shared practices and knowledge Course Acquire knowledge and skills 
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Based on the relevant literature, in xMOOCs the lesson is organized with pre-recorded 

video lectures, auto-graded assessments, slide presentations, and online notes. xMOOCs 

resemble the traditional way of a course in a classroom where the instructor has a central 

role. On the contrary, in cMOOCs learners learn by communicating and collaborating with 

each other and with their instructor. Learners and instructors collaborate to create the 

educational material and the assignments of the course. Learners in a cMOOC use blogs, 

social media, videoconferencing and e-communities to communication and collaborate. 

Learners in xMOOCs use the forum to address questions mainly to the instructor and less 

to their co-learners. Table 2.1 gives an overview of xMOOCs and cMOOCs regarding the 

components of the term Massive Open Online Course (Yuan & Powell, 2013). 

The most important difference between the two pedagogical models is related to the 

group that develops the courses. A cMOOC is created by a group of academics while a 

xMOOC, is created by one or more higher education institutions and, usually, a for-profit 

company. Platforms like Coursera, edX, and Udacity offer xMOOCs. 

According to Siemens (2013) apart from xMOOCs and cMOOCs, there is another category, 

the quasi-MOOCs. Quasi-MOOCs comprises of e-tutorials serving as OER. Technically, they 

are not courses but are intended to support learning tasks consisting of asynchronous 

learning resources. Thus, quasi-MOOCs do not provide the core features of cMOOC or 

xMOOCs i.e., social interaction and automated grading. In Table 2.2 the main differences 

cMOOCs and xMOOCs are presented (Admiraal, Huisman & Pilli, 2015). 

2.2.2. Other categories and taxonomies of MOOCs 

There are also researchers that have developed several other MOOC types. Lane (2012) 

organizes MOOCs according to the following elements: network, content and task, as 

Network MOOCs, Content MOOCs and Task MOOCs. Network MOOCs are similar to 

cMOOCs, they focus on the relationships among the learners. Content MOOCs are similar 

to xMOOCs having as a priority the acquisition of the content. Assessments with multiple 

choice questions or peer assessments are used due to the massive number of learners that 

participate in this type of courses. Finally, task MOOCs focus on problem-based learning. 

A task-based MOOC focuses on skill acquisition by performing activities. In this type of 

MOOC, the creation of learners’ communities is important for sharing knowledge and to 

providing support. 
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Table 2.2. Differences between xMOOCs and cMOOCs  

Basic Features xMOOCs cMOOCs 

Learning theories Cognitive/ Behaviorist Networking/ Connectivist 

Teaching approach Objective-oriented Construction-oriented 

Learning approach Information transferring Knowledge sharing 

Interaction Interaction is limited. It is mostly 

focused on learner-content 

interaction 

Interactions between learners, 

learner-content and learner-

instructor interaction 

Student role Receivers of the content, the 

instruction is mainly based in 

video lectures, submits 

assignments 

Creators of the learning content, 

contributors through discussion 

forms etc. 

Teacher role The instructor creates the 

content, assignments, quizzes 

and delivers the course 

Co-learners, create the content and 

define the goals, collaborating with 

their peers 

Content Fixed syllabus Individual syllabus 

Assessment Multiple-choice questions, 

assignments with automated 

grading, peer-assessments 

Informal assessment and feedback 

from knowledgeable learners 

Teaching materials Video-lectures, text-based notes, 

slides, assignments, online 

resources and online articles 

Centralized repository 

Social media, wikis, learning 

management systems (e.g., Moodle), 

Student-created material 

Distributed knowledge 

Providers Created by universities or 

organisations 

Created by academics 

Clack (2013) presented a taxonomy focusing on the delivery methods of the MOOCs, 

classifying them in eight (8) non-mutually exclusive categories (meaning that the same 

course might belong to one or many of these categories): Transfer MOOCs (classroom 

courses are transferred into MOOCs), Made MOOCs (developed by scratch as MOOC), 

Synch MOOCs (with fixed schedule), Asynch MOOCs (with more flexible schedule), 

Adaptive MOOCs (provide personalized learning experiences through dynamic 

assessments), Group MOOCs (small groups of learners who collaborate), Connectionist 

MOOCs (connection with peers through networks) and Mini MOOCs (smaller in 

duration).  

As MOOCs are still evolving, instructors are experimenting to improve learning outcomes 

and enhance learners’ experience. In this direction, researchers have defined several 

types of MOOCs. Although various taxonomies have been proposed, classifying a MOOC 
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into one category does not exclude it from the others. Table 2.3 briefly describes the types 

of MOOCs that are found in the literature (Economides & Perifanou, 2018; Sanchez-

Gordon & Luján-Mora, 2014; Pilli & Admiraal, 2016). 

Table 2.3. MOOC types  

MOOC type Description 

BOOC (Big Open Online 

Course) 

Provides distributed learning and personalized feedback for a small 

number of learners. Provided more interaction than ordinary MOOCs 

while learners are typically less than 500. 

COOC (Community 

Open Online Course) 

Small scale and non-profit course. Community decides the content of 

specific subjects and develops its own way of learning. These courses 

are based on contributions from informal instructors. 

SPOC (Self-Paced 

Online Course) 

Without any restriction learners can enroll in the course and complete 

the course at their own convinience. 

POOC (Personalized 

Open Online Course) 

Defines a personalized learning path according to the learner’s profile. 

Learning material and assessments can be formulated along with the 

participants’ characteristics. Technology is used to analyze learner’s 

learning profile.  

DOCC (Distributed 

Open Online Course) 

Recognizes that knowledge is distributed among participants situated 

in diverse institutional contexts, who embody diverse identities (as 

teachers, as students, etc.). 

MOOR (Massive Open 

Online Research) 

Gives emphasis on research that allows students to work together to 

improve learning outcomes. These courses give learners the 

opportunity to collaborate on research projects under the guidance of 

experts (Hosler, 2014). 

SMOC (Synchronous 

Massive Online Course) 

Live lectures are broadcasted and learners are encouraged to interact 

with instructors and their peers through chat rooms. 

sPOC (Small Private 

Online Course) 

A limited number of online learners are allowed. Involves a more 

customized experience such as custom-designed for corporate clients. 

aMOOC (Adaptive 

MOOC) 

Adapts the materials and feedback to learners’ preferences. 

MOOL (Massive Open 

Online Laboratories) 

Cost efficient experimentations are conducted by students at their 

own place and time. 

POOC (Participatory 

Open Online Course)  

Learners are expected to participate actively by creating and sharing 

knowledge. 

mMOOC (Mechanical 

MOOC) 

“Mechanical” there is not an instructor to guide the course. It focuses 

on peer-learning. 

pMOOC (Project-based 

MOOC) 

It follows a collaborative project-based pedagogy. 

iMOOC (Innovative 

MOOC) 

It follows a pedagogical model that focuses in innovation and 

individual responsibility. 
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Conole (2014) proposes a categorization based on the following dimensions: the scale of 

participation, the degree of openness, the use of multimedia, communication, the extent 

of collaboration, the type of learner pathway, the level of quality assurance, the degree to 

which reflection is encouraged, the type of assessment, autonomy and diversity. To 

examine the efficacy of the proposed classification scheme, Conole evaluated the degree 

to which five MOOCs (that comprised her study sample) satisfied each dimension in order 

to illustrate the goodness of fit. The work of Conole also provides an example of how to 

design a MOOC using the proposed dimensions. In a later study, Pilli & Admiraal (2016) 

suggested a categorization of MOOCs considering the dimensions of Massiveness and 

Openness. The authors described the following categories: small scale and more open, 

small scale and less open, large scale and more open, and large scale and less open. Finally, 

Mohamed & Hammond (2017), examined ten MOOCs by considering three aspects: 

pedagogy, content and assessment. 

2.3. MOOC affordances 

There several opinions about what is a MOOC and what a MOOC should offer to learners. 

MOOCs are designed to have certain features that make learning engaging and therefore 

effective. Apart from the obvious features described by their name, MOOCs provide 

personalized learning by allowing learning to be broken into smaller modules and 

allowing learners to select the learning unit that they will attend based on their prior 

knowledge and skills. Also, MOOCs have the power to ensure that every learner engages 

with the learning material. This is achieved through learner’s interaction with the course 

material as well as through the learner’s interaction with the instructors and their peers. 

The element of peer learning forms a global community where learners learn from their 

peers around the globe. This learning community gives learners access to a group of 

people who shares a common educational endeavor. Also, MOOCs enable learners to 

create and share content through their personal contributions. 

Economides & Perifanou (2018) proposed a model regarding the affordances of MOOCs 

consisting of eight (8) items: Massiveness, Openness, Interaction, Personalization, 

Autonomy, Support, Mobility, Accreditation. This model helps to classify a MOOC across a 

space of certain affordances. MOOCs can provide (or not) each of the affordances at a 

certain level. Table 2.4 presents MOOC affordances model. 

MOOC affordances depend in a great extent on the technology of the MOOC platform, 

however, even if technology offers all the above characteristics, a MOOC designer or 

instructor can decide to use all or some of them and to what extent. For example, cMOOCs 
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that are grounded in connectivism, utilize the affordances of networked online 

technology, where learners have a central role in activity design and self-organized 

learning (Yousef et al., 2014). In a cMOOC, learners decide their own objectives they 

collaboratively build their knowledge. Course contents are located in multiple resources 

within the web such as Learning Management System, social media, email, blogs, etc., 

unlike the traditional management systems. On the other hand, xMOOCs use a 

transmission model of instruction. Course content is delivered through video lectures, 

multiple choices quizzes, assignment submission and discussion forums. Openness is also 

defined differently in cMOOCs and xMOOCs. cMOOCs are open regarding content’s 

copyright, curriculum design and delivery methods, while in xMOOCs openness is limited 

in the use of the content but is open in accessibility to anyone. 

Table 2.4. MOOC affordances based on Economides & Perifanou (2018) 

Affordance Description 

Massiveness the upper limit of learners that can enroll in a MOOC. 

Openness the degree to which a MOOC provides free access, interaction, use 

and sharing of resources, knowledge, competences, 

collaborations without restrictions. 

Interaction the degree and quality to which a learner can communicate, 

collaborate, and interact with their co-learners, tutors, virtual 

agents, etc. using a range of tools. 

Personalization the degree and quality to which MOOC’s components i.e., 

schedule, interface, learning path, content, etc., could be adapted 

to learners’ characteristics (e.g., interests, skill level, etc.) as well 

as to learners’ devices’ characteristics. 

Autonomy the degree and quality to which a participant could efficiently 

control the interface of the learning environment, the schedule of 

the course, the learning path, the course contents, resources etc. 

Support & Scaffolding the degree and quality to which a learner could receive effective 

and on-time educational, technical and administrative support. 

Mobility & Ubiquity  the degree and quality to which a learner could be able to connect 

to the MOOC easily and efficiently, anytime and anywhere. 

Assessment & Certification  degree and quality to which a participant could receive a valuable, 

credible, and reputable Certification after submitting 

Assessments that are of high validity and reliability. 
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2.4. The context of MOOCs 

2.4.1. MOOC providers and aggregators 

A MOOC provider is usually for-profit companies that collaborates with universities, 

academics or individual instructors to create online courses and make them available to 

learners. Most providers offer additional services, such as marketing, technical support, 

certification, etc. MOOC providers are funded by venture capitals, government or private 

sector. Coursera, edX, Udacity, Udemy and NovoEd (US), MiriadaX and OpenMOOC 

(Spain), FutureLearn (UK), iversity and openHPI (Germany), OpenLearning and 

Open2Study (Australia), France Université Numerique (France), XuetangX and EWANT 

(China), Schoo (Japan), and Swayam (India) are some examples. Learning Management 

System companies (e.g., Moodle), Open Education Resource companies (such as Khan 

Academy) have followed the example of MOOC delivery. Lately, the social media company 

LinkedIn started to offer MOOCs (LinkedIn learning) from top universities and colleges 

with subjects relevant to professional development. Coursera is probably the largest 

MOOC provider, but its audience is constantly reduced as new providers are emerging 

(dela Cruz, 2015). 

Coursera is probably the largest MOOC provider. It is a for-profit company which started 

as spin-off company of Stanford University. The company was founded by venture 

capitalists. Coursera is a collaborative effort of universities and organizations such as the 

Princeton University, the Stanford University, the University of Pennsylvania, etc. 

Coursera partners with educational institutions, government entities, and businesses 

from all over the world but it also collaborates with organizations in Europe, China, Korea, 

Russia, and Mexico, etc. Coursera has started offering a Career Service to companies, 

introducing their learners to potential employers. 

edX is an open-source MOOC platform launched by the Massachusetts Institute of 

Technology and Harvard University. EdX is a non-profit company that started as a 

collaborative effort of the two Universities having as a goal to use the platform for 

research, and to investigate alternative models for education. It uses the OpenedX 

platform, an open-source course management system. According to Liyanagunawardena 

et al. (2019), edX provides courses of the following subject areas: Business Management, 

Data Analysis, Computer Science, Education, Economics, Biology, Engineering, 

Humanities, etc. Moreover, edX offers a number of different types of certificate programs 

such as MicroMasters (a series of Masters’ level courses which can be used to form a 

Masters’ degree), XSeries (courses that aim to provide a deeper understanding on key 



20 

subjects), Professional Certificate (courses on specialist training) and Professional 

Education. Google has partnered with edX, to develop the mooc.org, a Do-It-Yourself 

course creation site that allows teachers to create their own courses. 

Udacity is a for-profit start-up, founded by the professors Sebastian Thrun, David Stavens 

and Mike Sokolsky, from the Stanford University. Udacity started after the success of 

Thrun’s course “Introduction to AI”, with more than $20 million in investments from 

venture capitalists. Initially, Udacity offered university-style courses while now it focuses 

on vocational courses. It also offers “nanodegrees” for a fee for learners who want to 

develop new skills in areas such as mobile app development or earn certificates of 

completion. Udacity has partnered with Pearson VUE to provide proctored exams. 

Udemy is a MOOC provider that allows anyone to create or attend a course. It was founded 

in 2010 by Eren Bali, Oktay Caglar and Gagan Biyani by using venture capital. Udemy hosts 

the courses under a revenue-sharing agreement. Udemy is more oriented toward 

professionals’ skills than higher education studies. 

Khan Academy was founded by Salman Khan in 2008. It is an adaptive learning 

platform/provider that offers focused education programs and skills-development 

courses. Is a non-profit organization with funding from the Bill & Melinda Gates 

Foundation and Google. While not strictly a MOOC provider, Khan Academy is an 

established organization that offers massively online material as Open Education 

Resources. It offers video lectures in academic subjects with auto-graded assignments and 

continuous assessment. Other such examples are Saylor.org and P2PU. 

P2P University started in 2009 with funding from the Shuttleworth Foundation and the 

Hewlett Foundation. Although, P2PU provides some MOOC’ features, it focuses more on a 

community-centered approach. This means that anyone from the community can teach or 

learn. 

The Saylor.org is a platform that was created by the Saylor Foundation to offer 

certificates of successful completion of online classes.  

Several MOOC platforms have recently developed in Europe. 

FutureLearn was founded in 2012 by a consortium of UK universities as an effort to 

provide the opportunity to British higher institutions to get involved with MOOCs. 

Futurelearn aims not only to increase access to higher education by delivering high 

quality open learning, but also to redesign the learning experience combining online with 

mobile technology and social media. Initially the company was collaborating only with UK 

institutions, however Futurelearn currently has expanded globally and offers courses 
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from partner institutions in many countries e.g., Norway and Australia. FutureLearn has 

also partnered with non-university institutions, such as the British Museum, the British 

Council, etc. 

iMooX launched in 2014 in Austria. It was funded by the University of Graz and Graz 

University of Technology with the goal to offer online courses to the public. Now, more 

than fifteen universities and federal ministries of German speaking countries are 

associate partners of iMooX. It provides Open Educational Resources explicitly. All 

learning objects hold creative commons license. Moreover, in iMooX courses after their 

end, are not delete or hide from enrolled learners’ account. Courses are also available for 

self-paced learning (Kopp & Ebner, 2015).  

FUN launched in France in 2013 using the OpenEdX platform. 

Miríada X launched in 2013 in Spain. It is the leading MOOC provider for the Spanish 

speaking people that has expanded globally into wider markets such as the Latin 

American market. The courses are offered in Spanish and English. 

Alison is a for-profit company and one of the most popular e-learning providers in the 

world that was founded in Ireland in 2007, to provide distance learning in many fields. It 

is a UNESCO award-winning platform that focuses on topics relevant to workplace 

readiness such as business and enterprise skills, IT skills, etc. 

iversity was established in Germany in 2011 to develop initially a cross-university 

platform for distance education. The platform was re-launched in 2013 as a MOOC 

platform having as a goal to make education gain a more digital approach. 

In Greece, there are two MOOC platforms both build on edX’s open-source learning 

platform (OpenedX), namely Coursity and Mathesis. 

Coursity is a start-up company that was established in Greece in February 2017 to create 

and host of online courses, according to the standards of MOOCs. Coursity has developed 

a dual partnership with Greek Universities to create high quality courses. The instructors 

are well-known Professors of Greek Universities while the approval and certification 

process are controlled and permeated by the Lifelong Learning Centers of Greek Public 

Universities. Coursity is currently the only for-profit company in Greece that has a 

platform (based on OpenedX technology) with features that makes it the most innovative 

and advanced in terms of learning technologies and software technologies for MOOCs. The 

platform is currently hosting courses with a length of two months or annual courses. The 

bimester courses can be attended by anyone who is interested in free, with full access to 

the educational material and full teaching and technical support. The learners who 
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successfully complete the course and wish to receive a certificate of completion are 

required to pay an affordable fee. The annual courses are specialized training programs 

and are offered only as verified courses, i.e., free attendance is not offered. In these 

courses, the enrolled learners are less than at the bimester courses (approximately 600-

700 participants), thus providing the chance for more intensive interaction between the 

learners and between the learners and the instructors. Coursity has at the moment 15 

courses about Special Education and Learning disabilities, Statistics, Programming and 

Intercultural Education. In Coursity almost all the courses offer subtitles in Greek in order 

the help people with hearing disabilities to attend the courses. Recently, Coursity has been 

upgraded into a multilanguage platform targeting at hosting courses in English language 

as well. 

Mathesis was founded in 2015 in Greece as a special section of the University Publications 

of Crete. Its purpose was to create and offer online courses for free. The courses are open 

to students, scientists and everyone who is interested in joining these courses. Courses 

have a duration of about 4-6 weeks and their successful completion leads to a certificate 

of attendance by paying an affordable fee, only for those who apply for a certificate. 

Mathesis has at the moment approximately 40 courses about history, physics, math, 

ancient Greek civilization, philosophy and computer science. 

In addition to MOOC providers, learners who are interested in attending MOOCs in their 

field of interest can search for courses through aggregators such as my-mooc.com and 

mooc-list.com. The aggregators are offering MOOCs from different providers from all over 

the world. There is a search function with courses organized into categories according to 

the providers, subjects, start dates, etc. The mooc-list.com declares to offer a complete list 

of all available MOOCs by category, organization, etc. Another popular aggregator is Class 

Central. It is a multiplatform register of MOOCs. It also provides reports with trends and 

news about MOOCs. 

2.4.2. Higher-education institutions and organisations 

In the last ten years there has been a rise in the number of institutions that collaborate 

with providers to offer MOOCs. MOOCs are thought to expand the access to education and 

extend an institution’s reputation not only nationally but also globally. MOOCs have the 

potential to address important issues of higher education such as budget constraints by 

offering inexpensive, low-risk experiments. Hollands & Tirthali (2013) conducted a study 

from the perspective of institutions. Their study was based on interviews with people 

(researchers, administrators, etc.) working on MOOCs from more than 60 institutions. 

The authors reported that institutions offer MOOCs for the following reasons, to extend 
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learners’ access to knowledge, to build or maintain the institution’s brand name, to 

increase revenue, to enhance educational outcomes, and for conducting research on 

instruction and learning. Higher-education institutions are collaborating with MOOC 

providers to offer open courses. 

2.4.3. Courses 

Since the appearance of MOOCs in 2012, the number of available courses has increased 

rapidly. Additionally, the course formats and the modes of course delivery, are keep 

evolving. The most used formats are two: the instructor-paced and the self-paced format. 

Pacing defines the way that a course team run a course and whether learners need to 

complete the course materials on a set schedule. In both formats, MOOCs are being 

implemented mostly based on asynchronous online learning combined with interactive 

multimedia. 

Instructor-paced vs self-paced courses 

Instructor-paced courses have a fixed schedule. The course team sets specific due dates 

for assignments and learners must complete the course within a defined period of time. 

Course materials become available as the course progresses at specific dates. On the 

Course page, indicators show whether learners have a graded assignment and the due 

date for the assignment. Usually, in the instructor-paced courses, certificates are 

generated within two weeks of the end of the course. 

Self-paced courses do not have a fixed schedule. Course materials are available from the 

beginning of the course and assessments do not have a due date. The course shows marks 

for assignments that are graded. However, learners can complete the assignments at their 

own convenience. The only requirement for successful completion is to submit all 

assignments before the end of the course. In self-paced courses, the course team generates 

certificates on a schedule, such as once a month. The certificate generation schedule 

varies by course. 

Self-paced formats may have several variations. Usually, these courses have a longer 

duration. Course contents and assignments are available from the beginning of the course 

and there is only one due date for all assignments at the end of the course, allowing 

learners to study anytime they want. Therefore, self-paced MOOCs are very close to the 

characteristics of open educational resources (OERs). However, in contrast to OERs, self-

paced MOOCs are formed on an idea of a classroom lesson, where students drop in and 

drop out of the course, they interact with their peers and receive support from staff 

members. 
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The way in which self-paced MOOCs are delivered is attractive to both learners and 

instructors. From a learners’ perspective, the self-paced courses offer more flexibility 

since learners are not bound to deadlines. Recent studies have showed that learners from 

less developed countries are often less successful in MOOCs (Hennis et al., 2016; Kizilcec, 

Perez-Sanagustín & Maldonado, 2017). This may be explained by the fact that they have 

fewer opportunities due to lack of resources such as internet connection. Moreover, the 

format of self-paced courses seems beneficial for all learners as the main challenge for 

completing a MOOC is the lack of time (Kizilcec & Halawa, 2015; Yeomans & Reich, 2017). 

For the instructors, it may be easier to run a course one time in a self-paced format than 

several times in an instructor-paced format. Rhode (2009) argue that learners consider 

interactions as one of the most essential aspects of their learning experience, although 

they accept the fact that in a self-paced course interactions are difficult. Organizations 

may benefit from self-paced courses in several ways. Self-paced courses can provide 

higher revenues as they can attract more learners, can be easily available regularly, and 

costs that are required for each run can be lower. Moreover, they can support the 

ambition of the organizations of opening up education. 

Course domains distribution 

In the first years of MOOCs the disciplines were limited to those that could be assessed 

with quantitative assessments, such as engineering, computer science and math. 

Nowadays, MOOC platforms support several assessment methods (e.g., peer-assessment), 

thus, these courses are applicable to all disciplines. Figure 2.2. shows the growth of 

MOOCs through the years. 

Figure 2.2. Growth of MOOC courses  
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The subjects of MOOCs have remained quite similar in the last two years. Approximately, 

forty percent of the MOOCs are relevant to the subjects that are the easiest to generate 

revenue. Other significant subjects are Social Sciences, Science and Humanities. Figure 

2.3. presents the course distribution by subject. 

Types of enrollments in MOOCs 

Learners usually have two options when enrolling on a MOOC course: the audit (free) or 

verified (paid) track. 

The verified track gives learners unlimited access to course materials, including graded 

assignments, until the end of the course. MOOC learners still have access to the material 

after the end of the course but they cannot submit their assignments or apply for a 

certificate of completion. Learners who select the verified track pay a fee and they receive 

a certificate upon successful completion. 

The audit track gives learners access to all course materials, except graded assignments, and 

they cannot receive a certificate of completion. Learners are given access to the free content 

of the expected course length that is shown on the course “About” page. They can access the 

course from the course start day until the day it ends. After this duration, learners are no 

longer able to access the course material. If learners are enrolled in the audit track and decide 

that they do want to receive a certificate of completion, they can pay to change to the verified 

track. This is possible until the upgrade deadline that it is set by the course team. Learner in 

order to earn the certificate must take the graded assignments that are required. 

Figure 2.3. Course distribution by subject (from classcentral.com) 
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2.4.4. Platforms 

In recent years, MOOC platforms have had a considerable growth due to the shifting from 

traditional classroom activities to virtual activities. A MOOC platform is not only providing 

courses to learners but also all the associated services. It is either based on a web site (as 

in case of a xMOOC) or it can be distributed among several sites (as in case of a cMOOC). 

MOOC platforms provide the place where instructors can host their courses and manage 

the learning process. Anyone who wants to deliver a MOOC, an institution, or an individual 

instructor, should consider and select a suitable platform based on their needs and the 

technological capabilities.  

MOOC platform is a web-based software that it can be open source (edX), proprietary such 

as Coursera, or built on an LMS such as MOODLE. The platform can be hosted by the 

provider (Software as a Service-SaaS or Platform as a Service-PaaS) or can be self-hosted 

by the institution. MOOC platforms are more than an LMS (that is primarily used for 

management tasks, such as students’ registration, contents’ hosting, hosting of discussion 

forums etc.). They provide innovative assessment features and communication tools.  

An open-source platform is a software whose source code is available to the public. 

Developers are allowed to deploy, modify and distribute this software with no cost. One 

such example is OpenedX, the open-source platform offered by edX. OpenedX, is a full-

featured LMS and authoring tool, specifically dedicated for building MOOCs. It is a flexible 

and robust course-management platform that has the ability to accommodate thousands 

of users (over 100000 enrollments). Moreover, the edX’s software allows course 

developers to create courses via a graphical user interface. Several MOOC platforms are 

developed on OpenedX software, such as Edraak (Arab), XuetangX (China), France 

Université Numérique (France) and Coursity (Greece). 

2.4.5. Learners 

There is a wide range of MOOC learners, as MOOCs concern from high school students to 

retired people. In their majority, MOOC learners hold a college degree (Despujol et al., 

2014; Ding et al., 2014) and they are employed (Dillahunt, Wang & Teasley, 2014). 

Christensen et al. (2013) mentioned that a percentage of 83% of MOOC learners hold a 

post-secondary degree, about 80% of learners hold a Bachelor’s degree or higher, and 

almost 45% stated having a degree beyond Bachelor. Regarding the gender, males often 

constitute the majority of learners in a MOOC (Davis et al., 2014). Macleod et al. (2014) 

argue that the gender is associated with the topic of the course that learners enroll. The 

authors also argue that the differences in traditional education courses are replicated in 
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MOOCs (Macleod et al., 2014). Based on Park & Choi (2009) learners’ characteristics (e.g., 

gender) do not affect their performance in online courses, while other factors such as 

family, or financial support have a significant impact on learners’ persistence. 

According to Kizicec & Schneider (2015), the main reasons that learners enroll in a MOOC 

include learner’s general interest, academic relevance and social engagement. Koller et al. 

(2013) indicated three categories of learners in MOOCs: passive participants (watching/ 

reading the educational content), active participants (completers) and community 

contributors (posting in discussion forums). A positive relationship between learners’ 

motivation, performance and participation has been reported (De Barba, Kennedy & 

Ainley, 2016). McAuley et al. (2010) argued that learners determine their own levels of 

participation, based on their background knowledge, skill level, learning goals, and 

interests.  

Kizelec et al. (2013) conducted a research study on the disengagement of learners from 

MOOCs. Authors traced four clusters of learners that exhibited the same traits across 

different courses, and they were able to identify these patterns by tracking and clustering 

the engagement of learners in three different courses, with different difficulty level. The 

clusters that have been identified are the following: 

▪ Auditing learners i.e., the learners who watch all the video-lectures but attempt only a 

few assessments. 

▪ Completing learners i.e., the learners who submit most of the assessments. 

▪ Disengaging learners i.e., the learners who submit assignments at the beginning of the 

course but then rarely. They are only watching the video-lectures or disappear 

completely from the course. 

▪ Sampling learners i.e., the learners who explore the course by watching only a few 

videos-lectures. 

Authors also argue that “completing” learners are most satisfied with their learning 

experience and they tend to interact more through forum discussions.  

Researchers have already presumed several reasons that could explain the large dropout 

rates in MOOCs. The first barrier that MOOC learners encounter concerns the cost. MOOCs 

are free (at least for attending the course), so many people enroll just out of curiosity in 

order to check the new courses. Since learners do not invest on the course either 

psychologically or financially (i.e., they do not have an intrinsic or extrinsic motivation), 

it is easy to become disengaged. Another reason that concerns learners’ extrinsic 

motivations is that, since most learners will not earn a validated certificate or credits, they 
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are less focused on the course requirements i.e., to complete the assignments and finish 

the course. Though, if the content is too hard to understand, their interest declines. A third 

reason concerns the scope of learners’ interest. Some learners are interested only in one 

specific learning section of the course. They enroll to have access to the video lectures, the 

rest of the educational materials and the discussion forums, without having the intention 

to finish the course. Finally, the lack of physical interaction creates an absence of 

engagement which inevitably leads to dropouts. Yuan & Powell (2013) argue that MOOCs 

also demand from participants to have a certain level of digital literacy to be able to learn, 

which probably raises concerns on the equality of access. 

2.5. Possibilities and barriers of MOOCs 

2.5.1. Strength and challenges of MOOCs 

MOOCs, as a new initiative in the field of distance learning, have some strengths and 

limitations. According to Fasihuddin, Skinner & Athauda (2013), the strength points 

concern the way MOOCs are structured and offered to learners as well as the level of 

knowledge and skills that they provide. Specifically, MOOCs are mostly university level 

courses that cover a wide range of academic fields, offered online without any restriction 

to anyone who is interested. Also, MOOCs are learner-centered courses, which means that 

learners can adjust learning at their own pace and time. This is very important aspect of 

MOOCs as it provides learners the opportunity to keep their cognitive ability in the highest 

level. Moreover, in MOOCs learners have access to the learning resources of the course 

(i.e., video-lectures and other materials) continuously until they cover their learning 

needs. The authors also mention some limitations of MOOCs that may affect their efficacy. 

For example, in MOOCs, although learners are allowed to learn at their own pace, there 

are some deadlines in the submitting assignments. These deadlines can be an obstacle for 

learners in completing the course. Furthermore, in a MOOC, the content that can be 

delivered in a certain format mainly with video-lectures, however, there are some fields, 

such as humanities, where the teaching approach is based on discussion and dialogue. 

Thus, in order to offer such courses as MOOCs is must be further researched. One major 

limitation of MOOCs is that they deliver the learning materials using traditional 

approaches such as video-lectures. Therefore, they are not covering learner’s variable 

needs. Finally, in MOOCs, the possibility that a learner can create multiple accounts in 

order to earn a certification of completion, as well as the difficulty for learner’s identity 

authentication and are considered to be the most important limitations. 
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Based on the relevant literature, MOOCs have to deal with several challenges regarding 

their design and management (Bezerra & da Silva, 2015). The main issues that are 

mentioned in the research studies concern their business model, their pedagogical model, 

the high dropout rates, certification and quality issues. 

Business model: The model that MOOCs follow is not a new one. Dellarocas & Van Alstyne 

(2013) argue that MOOCs have adopted the business model of well-known technology 

companies that offer a basic service to their customers for free and then they charge for 

extra services. Even though MOOCs are free for enrolling in a course and for providing 

access to course contents, some institutions charge for issuing certificates of completion. 

Τhis initiative could have the potential to generate a sustainable business model, 

considering the large number of learners. Nevertheless, only a small number of 

educational institutions receive funds for the development of a MOOC platform, for 

content production and distribution, that has the potential to result in the creation of for-

profit companies. 

Low completion rate: Dropout in MOOCs is generally high, sometimes reaching 90% 

(Morris, 2013). According to Jordan (2014), the completion rate is related to the number 

of people who receive a certificate. However, in MOOCs, dropout should not be compared 

to that of traditional distance learning because in MOOCs learners do not pay fees. Khalil 

& Ebner (2014) investigated the factors that lead learners to dropout of MOOCs, including 

lack of the necessary knowledge and skills, lack of time, lack of learners’ motivation, lack 

of learners’ interactions with the peers and instructors, and hidden costs. More 

information on factors that predict learners’ dropout in a MOOC is given at the next 

section. 

Certification: MOOCs are mainly adaptations of face-to-face courses that are offered in 

higher education institutions. Thus, giving a full course with the certification for free 

would generate questions if the face-to-face course requires a fee. Another important 

aspect of MOOCs certification would be to investigate how employers assess such 

certificates. 

Pedagogical model: The most accepted categorization regarding MOOCs pedagogical 

model, divides them into cMOOCs and xMOOCs. cMOOCs aim to create knowledge through 

the interaction between the learners. In cMOOCs, learners are encouraged to reflect on 

their learning while in xMOOCs learners are mainly focusing in comprehending the 

learning material. cMOOCs follow the principles of connectivism whereas xMOOCs are 

based on behaviorism. Despite the benefits that cMOOCs offer, xMOOC are more popular 

and they are being adopted by the platforms such as edX and Coursera. 
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Quality: The concern with MOOCs quality is closely related to the high dropout rates 

(Rosewell & Jensen, 2014). The authors argue that MOOCs should follow the quality 

principles that are applied in traditional courses. This is explained by the fact that MOOCs 

mainly derive from undergraduate courses and they are created by the same faculty, with 

approximately the same educational material. It should be taken into account that this 

material is adapted to the new environment, thus it is important to be evaluated with the 

issues involving the quality assurance of MOOCs (Read & Rodrigo, 2014; Rosewell & 

Jensen, 2014). 

Validation and plagiarism: A great problem for MOOCs is to ensure that the submitted 

material from learners are original. According to Cooper & Sahami (2013), Coursera is 

working to develop a software for plagiarism detection. Udacity and edX have formed a 

partnership with Pearson VUE, an innovative computer-based testing solution to validate 

the exams in a supervised form. Although, this practice generates costs to students. 

2.5.2. The problem of dropout - factors affecting learner’s attrition in MOOCs 

The high dropout rate in MOOC courses is a major concern in the higher educational 

institutes and has led many researchers to investigate the reasons behind this issue. 

Several models have been proposed to help MOOC designers and developers gain a better 

understanding and predict learner’s dropout (Nagrecha et al. 2017). Although many of 

the factors that influence learners’ retention in a MOOC are beyond the control of the 

institutes, there are also other factors that are related to learners’ characteristics and 

course design issues that should be considered by MOOC designers when creating course 

material in order to enhance the efficiency of MOOCs, improve learners’ learning 

experience and increase learners’ engagement.  

Previous studies attributed the low completion rates in MOOCs to factors such as the large 

amount of information, the lack of learners’ motivation and the limited feedback (Li & 

Moore, 2018). Other studies, emphasized to certain social factors such as interaction with 

peers and instructors, learners’ characteristics (Khalil & Ebner, 2014; Shapiro et al., 

2017), course design issues (Shawky & Badawi, 2019) and social and environmental 

factors (Ma & Lee, 2019). Specifically, Park & Choi (2009) emphasize in the importance to 

design MOOCs that satisfy learners’ needs, keep them motivated, socially connected, and 

provide scenarios that apply to their everyday lives in order to improve the dropout rates. 

Khalil & Ebner (2014) listed the reasons for learners’ dropout of MOOCs including the lack 

of time, learners’ prior knowledge and skills, the lack of motivation, feelings of isolation 

that distant learners experience during the course, and also the hidden costs of MOOCs. 
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In the same direction, Zheng et al. (2015) argued that factors related to time, motivation, 

interaction, course content, workload and communication significantly influence 

learners’ dropout from MOOCs. Other researchers have reported that social factors such 

as interaction and communication along with family and university support can predict 

dropout in online environments (Rostaminezhad et al., 2013; Yang et al., 2013). According 

to Itani et al. (2018) dropout rates are mostly affected by personal circumstances such as 

the lack of time, the lack of prior experience, family issues, etc. Oakley, Poole & Nestor 

(2016) argue that learners are motivated to persist in MOOCs that have “stickiness” 

factors, such as clear instructions, content that is relevant to their interests, an engaging 

instructor, and a manageable schedule. 

The recent review of Aldowah et al. (2020) summarizes the factors that affect MOOC 

learners’ dropout. The factors they identified can be classified in four categories: personal 

factors, social factors, course factors and academic factors. Personal factors such as prior 

academic skills, students’ background knowledge and skill level, as well as prior 

experience in online courses are related to learners’ dropout. Henderikx et al. (2017) 

argue that personal differences may play a significant role in understanding the problem 

of dropout in MOOCs, as compared to course design issues, while Yamba-Yugsi & Lujan-

Mora (2017) reported, learner’s prior experience in MOOC courses and the level of 

satisfaction from learner’s interaction with the platform as core factors. For Kizilcec & 

Schneider (2015), learners’ motivational goals may predict different behavioral patterns 

among students in the MOOC environment. Park (2007) have stressed that the lack of 

social support in terms of encouraging learners to continue in the course, might lead to 

dropout from the MOOC. 

On the other hand, factors that are related to course design issues have also been reported 

as key determinants that lead MOOC learner’s dropout. Specifically, Itani et al. (2018) 

found that factors, such as course design, time, and course difficulty, are critical, while 

Yousef et al. (2014) argued that feedback, course design and content quality contribute to 

learners’ completion of MOOCs. Jordan (2015) examined the factors the affect the 

completion rate in 221 MOOCs and found that time in terms of course length, course 

design, feedback, and the level of commitment, are the core indicators of MOOC learners’ 

dropout. Moreover, academic factors such as feedback and motivation are linked with 

learners’ completion in MOOCs. Barak et al. (2016) argues that considering the 

importance of motivational differences between learners, the learning process may 

contribute positively to learners’ motivation to complete the MOOC. 
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To conclude, Aldowah et al. (2020) identified six factors that influence learners’ dropout 

in MOOCs in a direct way. These factors are academic skills, prior experience, course 

design, feedback, social presence and social support. Moreover, the authors identified 

factors that have a secondary role in learners’ dropout in MOOCs such as interaction, 

course difficulty and time, commitment, motivation, and individual issues e.g., family or 

work circumstances.  

Although, MOOC dropout rate is an issue that needs further exploration, there are few 

researchers who argue that the high dropout rate in MOOCs is somehow associated with 

the learners’ low level of commitment to the MOOCs as a result of no or low entry cost and 

that high dropout rate should be thought as an inevitable consequence of any open online 

learning activity (Chen, 2014; McAuley et al., 2010). Nevertheless, MOOC designers and 

developers should take into account the relevant literature to create effective learning 

environments and provide the necessary means for MOOC learners to achieve their goals. 

2.6. Basic elements of a MOOC 

A MOOC is usually shaped in three main sections: the course page, the discussion forum 

page and the progress page. Through MOOC’s home page, learners can enroll to the MOOC 

and enter to the course. The home page has information about the instructors, the 

learning sections, the duration of the course, assessment activities, costs, etc.  

 

 

The course page appears when a learner enrolls in a course. In this section learners can 

view course announcements and updates and can access the learning material as well as 

the deadlines for the assessment activities.  

Figure 2.4. A common course structure on edX platform 
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The educational content in MOOCs is usually segmented into sections. Each week 

participants gain access to new content and each section contains the materials that a 

learner should go through in a week. The content of each week is divided in subsections, 

relevant to the topics covered during the week. Course structure is further separated into 

smaller parts (learning units). Each unit in user interface is a single page with a piece of 

content. To add content in each unit, one or more components can be used (usually 

contains video lectures and quizzes). Figure 2.4. presents a common MOOC content 

structure. 

2.6.1. Video lectures 

There are several ways to produce video lectures for MOOCs. The selected method usually 

depends on the nature of the course and instructors’ preferences. Schmidt & McCormick 

(2013) have divided those methods into the following types: instructor lecturing by “voice 

over” using presentation slides, instructors recording themselves in an office setting, 

recording live lectures in a classroom, recording video lectures in studios, instructor 

demonstrating a concept, instructor drawing freehand on a digital tablet. Different 

formats of video lectures have a different impact on the learning process (Chen & Wu, 

2015). Researchers argue that the formatting of the video lectures has an impact on 

learners’ engagement and attention (Guo, 2014). 

Video lectures are considered to be the most important component in MOOCs as learners 

spent most of their time watching video lectures (Breslow et al., 2013). Therefore, 

creating effective video lectures is a challenge for researchers. Instructors have to apply 

new structures to their courses and acquire new skills as a MOOC structure differs from 

the traditional way of delivering courses. Recording live lectures in a classroom is a 

commonly used method to create video lectures for MOOCs. Chen & Wu (2015) refer to 

this type of video-lectures as lecture captures. These lecture captures provide learners 

with the sense of being in the classroom.  

Institutions or MOOC providers are equipped with recording studios to produce of video 

lectures for learning (Cheng et al., 2018). These video lectures are designed and formatted 

to be used for MOOCs. Learners prefer these type of video lectures as they find them more 

engaging for learning. However, lecturers find it difficult to give lectures without 

audience. Another issue is that they cannot receive instant feedback from the students 

about their understanding. Finally, the cost for producing a video lectures in a studio is 

high, regarding the appropriate equipment, the maintenance fees, and the technical team 

that is required.  
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A more widely used method is the recordings of the video lectures by the instructors 

themselves, using screen recording tools. Researchers argue that learners are more 

engaged with these video lectures as they are produced with a more personal impression 

(Guo et al., 2014).  

Researchers agree that the duration of the video lectures should not be long, less than 

15min (Osborn, 2010; Schmidt & McCormick, 2013), while others that the duration 

should be shorter than 6min, as learners are more engaged with shorter video lectures 

(Guo et al., 2014). Another important feature of the video lecture production process for 

MOOCs is the enrichment of the video lectures with interactive activities. These activities 

help the instructors to understand learners’ progress by providing feedback on specific 

parts of the lecture. Thus, instructors can further improve on their presentation methods 

and materials. Interaction activities, such as multiple-choice questions, are usually added 

within the video lecture during the editing process to increase the learners’ engagement 

(Danielson et al. 2014).  

Several types of interactive activities are used in MOOCs e.g., multiple-choice questions, 

short answer questions, peer assessments, polls, etc. For example, instructors can ask 

learners’ opinion on a specific issue that is related to the lecture topic before the lecture 

and reveal learners’ answers at the end of the lecture (Jemni, Kinshuk & Khribi, 2017). In 

general, there are two methods to incorporate interactive activities in a MOOC, i.e., after 

the video lectures and embedded within the video lectures (Figure 2.5). The latter is 

useful for MOOCs with video lectures of a longer duration (Osborn, 2010). It is suggested 

these activities to be introduced every 6–9min to sustain learners’ engagement (Guo et al. 

2014; Guo 2014). 

  

Figure 2.5. Course activities are separated from the video lectures 
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2.6.2. Learners’ assessment 

A MOOC is usually separated in several learning units. Each unit comprises of the lecture 

content, e.g., video lectures, pdf, pptx, followed by various assessment learning activities 

including quizzes, assignments, homework, final project, etc. MOOC instructors use the 

video lectures and the quizzes as instructional methods for their course (Yuan, Powell & 

CETIS, 2013), while the quiz is thought to be the basic method used for assessment by 

most of the MOOC providers.  

Researchers (Anderson et al, 2014; Koller, 2012; Onah, Sinclair & Boyatt, 2014) also argue 

that the quiz is the basic course activity in MOOCs as it contributes in evaluating a number 

of factors, such as completion rate (Onah, Sinclair & Boyatt, 2014), engagement (Anderson 

et al, 2014), usefulness etc. Moreover, the extent in which quizzes are used in MOOCs, 

forces the providers to work towards the improvement of the quizzes in various ways 

such as providing better responsive question types. 

Quizzes comprise of set of questions of several types i.e., multiple-choice questions, 

True/False, text or numerical short answers, image-based, activity-based that are 

delivered with the goal to evaluate learner’s performance. The quiz can be evaluated using 

various assessment methods based on the method selected by the course instructor, such 

as self-assessment, peer-assessment and most commonly automated assessment. 

A MOOC learner has to submit a quiz usually after watching some videos lectures or/and 

completing some readings. In case that the learners have a prior knowledge, they can 

submit the assignments before having any course lessons by skipping certain video 

lectures and jumping directly to a specific assessment, supporting the self-paced style of 

MOOCs. Learners’ answers on the quiz are evaluated according to the assessment method 

that is used i.e., self-assessment, peer-assessment or automated assessment, and the 

grading policy that is used by the course. Usually, the answers given by the learners are 

auto-graded by the system. The system records learner’s responses and compares them 

with the answers stored in the database of the MOOC. Also, in some quizzes, learner has 

time constraints while attempting a quiz.  

To improve the interactivity within the course, quiz questions are embedded within the 

video lecture that is called in-video or embedded quiz. This embedded quiz enables 

learners to evaluate their understanding while watching video lectures. Learners can go 

back to a particular video segment to reinforce their learning. The integration of 

embedded quiz provides many benefits from the increased interaction between the 

learner and the course content to the long retention rate (Koller, 2012).  
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MOOC supports several types of quizzes that satisfy different purposes. Generally, a quiz 

is used basically for two reasons, to evaluate learner’s performance, and for practice 

purposes to facilitate learners to check their level of understanding. Therefore, quizzes 

are usually divided into two types, performance-based quizzes that are used to evaluate 

learners’ performance in the form of score, and practice-based quizzes that are used for 

practice purposes mainly to provide instant feedback to learners. Also, a quiz can be 

integrated in MOOC courses in two ways, as an independent learning activity, that 

comprises of several questions with different types, or can be incorporated within the 

video lecture (embedded or in-video quizzes). The latter type supports limited question 

types (Chauhan & Goel, 2016).  

Quizzes can also be categorized based on the grading practice they apply. Graded quiz 

provides grades for each response depending on the grading practice that is used. As a 

learner submits a graded quiz, the grade will be calculated based on the sum of the points 

that each question gives. The final grade is usually presented as a percentage. On the 

contrary, non-graded quiz does not provide grades for learner’s responses and 

consequently these quizzes do not affect the final grading of the course. Typically, there is 

no limitation on the number of the attempts for those quizzes.  

The dependency among the above categories is explained as follows, the independent 

quizzes are used to evaluate performance, while the in-video quiz is used for self-

evaluation or practice. Also, independent quizzes can be either graded or non-graded, 

while in-videos quizzes are usually non-graded. Both types of quizzes provide feedback 

about learners’ performance. 

There are three basic assessment methods for computing learners’ grades: self-

assessment, peer-assessment, and automated assessment. In self-assessment the 

evaluation is done by the learner using rubrics, in peer-assessment the evaluation is done 

by co-learner’s using rubrics, while in automated assessment, the evaluation is done by a 

machine learning mechanism. Each of the assessment types serves for a different learning 

purpose. The simplest assessment method is the automated assessment as it captures 

learner’s responses and compares them with the answers in the database for exact match. 

A proper combination of all assessment types can assist in creating a better and more 

engaging learning environment. 

2.6.3. Discussion forums 

Discussion forums are used in MOOCs to increase learners’ engagement and to encourage 

reflection. Discussion forums in MOOCs provide the space for learners to exchange ideas. 
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A discussion forum in a MOOC involves making posts, reading posts, commenting on 

posts, and rating posts. Forum communities in MOOCs are forming spaces where learners 

can express new ideas and reinforce new thinking.  

Recent studies on discussion forums focus on examining learners’ activity, the content 

that is produced by the learners through the forums and the social aspect of learning. 

Specifically, relevant research studies examine learner-generated content from various 

perspectives, such as sentiment analysis for dropout prediction (Wen, Yang, & Rose, 

2014), identification of linguistic features of learners’ posts (Wise, Cui, & Vytasek, 2016), 

detection and evaluation of learners’ cognitive engagement, examination of learner’s 

interactions within the forums to understand the social aspect of learning in MOOCs.  

Learning analytics from trace data stored in MOOC discussion forums (e.g., the number of 

posts) are used to decode learner’s engagement (Coetzee, Fox, Hearst, & Hartmann, 

2014). Others researchers have examined qualitatively the content of learner 

contributions in the forum and found significant correlations between learners’ level of 

forum activity and learning outcomes (e.g., Wang, Wen, & Rose, 2016). Although, forum 

posts have been used to measure of learners’ engagement, usually forum threads are 

dominated by a small number of learners. Completing learners are likely to make more 

posts than other learners, while those who are not very social or confident about their 

level of comprehension, are likely not to make any posts.  

2.6.4. Progress page 

Monitoring the progress of learners in a MOOC and provide individual feedback about 

grades at each assessment, is impossible considering the large numbers of enrollments 

and the diversity of the learners. Therefore, MOOC instructors rely on automated 

mechanisms to assess learner’s performance.  

MOOCs require learners to be highly self-regulated during learning and to track their 

progress (i.e., their grades on individual assessment activities as well as their overall 

course grade) through their individual progress page. This page provides information 

about the learners’ grades in a graphical way as percentages with each column 

representing the performance on an assessment activity. Moreover, provides a place 

where learners can take information about their progress and to check whether they meet 

the criteria to complete the course successfully. Generally, the design of MOOCs is 

considered to have an impact on learners’ progression in different types of activities. 

Thus, in order for learners to progress in a MOOC, instructors should design the learning 

material and learning activities in a way to support learners.  
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2.7. MOOCs pedagogical aspects 

Researchers argue that the success of online learning is considered to be closely related 

to learning design (Conole, 2012). However, there is a lack of research studies on the 

pedagogical design of MOOCs (Davis et al. 2016; Sergis et al. 2017).  

Table 2.5. Pedagogical type decisions (based on Klobas, Mackintosh & Murphy, 2015) 

Pedagogical decisions 

Purpose and audience Course goal. 

Learning objectives. 

Level of difficulty. 

Course timing, pacing 

and effort 

Start and end dates (can be either open or fixed). 

Course length. A typical length is about 4-10 weeks. 

Pace (e.g., student self-paced). 

Student effort (i.e., the number of hours of student effort to be 

committed in each period or for each activity needs to be estimated. 

This is important both for student’s planning and for accreditation of 

MOOCs). 

Course structure Each learning component needs to be pre-designed and pre-

packaged following an objectives-based design, defined by what the 

participants are to learn. Quizzes and assessments also address the 

learning objectives. 

Course content Multimedia. xMOOC content is typically based on short video-

lectures (5–10 min). 

Intellectual property. Ensure rights are available or obtained, for 

material developed by others. 

Design exercises and other active learning activities. 

Quizzes and self-assessment. 

Sequencing. Linear, or will learners be permitted to branch to 

different content or make their own connections. xMOOCs currently 

offer only linear sequencing. 

Designed interaction Effective interaction in forums requires a design of questions and a 

structure of discussion categories rather than a laissez-faire 

approach. 

Assessment What will be assessed and when? Are learners permitted to re-take 

an assessment? What combination of computer-based assessment, 

self-assessment and peer-assessment will be used? Is verified 

identification of learners required for accreditation and is 

verification online or require physical presence at a testing center? 
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The technical capacity for infinite enrollments, combined with an openness to acceptance 

of all learners who register for a MOOC, has important implications for MOOC pedagogy. 

According to Baturay (2015), the pedagogies relevant for MOOCs are available in the field 

of distance education. Table 2.5 presents pedagogical type decisions that a MOOC course 

designer and instructor must take into account.  
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Chapter 3. Motivational design and gamification in 

learning 

3.1. Motivational design 

3.1.1. Introduction to motivation 

Motivation is described as an individual’s choice to engage in an activity and is related to 

processes that give energy and direction to peoples’ behavior. According to Reeve (2015), 

motivation is a construct that cannot be measured directly, however, expressions of 

motivation can be measured through observations of behavioral reactions, physiology, 

and self-reports. For example, motivation is often measured by the level of effort and 

persistence that the individual demonstrates in that activity.  

Researchers have acknowledged the significant role of motivation in learning and have 

proposed several theories of motivation. Early motivation theories were based on a 

behavioristic approach. They have considered as the basis of motivation, elements such 

as rewards and punishments. Other theories of motivation have been based on 

individuals’ psychological needs and motivational drivers. More recently, researchers 

have investigated motivation mainly from a social cognitive approach. 

Motivational design is described as the process of organizing methods and resources to 

cause changes in individual’s motivation (Keller, 2010). In this direction, game elements 

have been considered to achieve motivational effects when used in non-game 

environments or contexts. Gamification, which is the term that is used to describe this use 

of game elements, can combine the two aspects of motivation. It uses rewards such as 

levels, points, badges to increase extrinsic motivation while trying to enhance emotions 

of autonomy, self-efficacy, sense of belonging, etc. According to Keller (2006), 

motivational design includes rules and principles which guide a longer systematic 

process. These guidelines should be driven from motivational theories. 

Motivation can activate individuals to participate in a learning activity, to complete 

assignments, to stay focused in an activity, and to continue in an online course. Learners 

with different level of motivation behave differently towards learning. High motivated 

learners tend to show more persistence and exploratory learning behaviors. Paas et al. 

(2005) argue that motivation is an important factor that keeps learners learning, while 

Hart (2012) found that learners’ motivation is an essential factor of persistence in online 

learning environments. According to Lei (2010), learners’ lack of motivation is associated 
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with learners’ dropout of learning in online learning environments such as MOOCs. 

Pittenger & Doering (2010), found that the implementation of motivational design in an 

online self-paced course increased course completion rate. Therefore, motivation has the 

potential to decrease attrition rates in courses such as MOOCs. 

3.1.2. Theories of motivation 

Self-determination theory 

The Self-Determination Theory (SDT) concerns three human psychological needs, 

competence, autonomy, and relatedness (Deci & Ryan, 2000). The theory reports that the 

fulfillment of these needs can lead to motivation. Autonomy refers to the need for a sense 

of free choice when participating in a task. For example, in a game, autonomy is achieved 

when players choose the sequencies of their actions (Ryan, Rigby & Przybylski, 2006). 

Competence refers to the need to feel effective when participating in an activity or 

interacting with an environment. During the gameplay, competence is achieved when 

tasks provide optimal challenges, while the feeling of relatedness is enhanced when 

players interact with each other. Relatedness expresses the feeling of being connected 

with peers or of belonging, thus, is related to social interaction. 

According to Ryan & Deci (2000), there are two aspects of motivation that control 

individual’s motivation i.e., extrinsic, and intrinsic motivation. Autonomy, competence, 

and relatedness are the elements that according to SDT facilitate intrinsic motivation. 

Studies on SDT and education have shown that supporting the intrinsic needs of 

autonomy, competence, and relatedness enhance learning facilitating a more internalized 

learning (Ryan, Rigby & Przybylski, 2009). When individuals are intrinsically motivated, 

it is likely to exhibit higher levels of persistence and engagement.  

Based on the literature, game elements can fulfill players needs for autonomy, 

competence, and relatedness, but they can also have a negative impact on them. For 

example, according to Liu, Li & Santhanam (2013), competition can affect players’ 

enjoyment in a gameful experience either positively or negatively. The authors also argue 

that competition can satisfy player’s need for competence, while external rewards may 

undermine players’ autonomy. Mutter & Kundisch (2014) also argue that badges and 

other external rewards harm players’ autonomy. Sailer et al. (2017) state that game 

elements such as leaderboards and badges are related to higher levels of satisfaction of 

competence while elements such as avatars are related to higher level of relatedness. 
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Flow theory  

Flow theory is the most referenced theory in studies relevant to motivation. Flow is 

defined as the holistic sensation individuals feel when they act with total involvement 

(Csikszentmihalyi, 1975). Flow is an optimal state of intrinsic motivation where a person 

is deeply absorbed in what he/she is doing. This state is characterized by high 

concentration, a loss of self-awareness, merging of action and consciousness, a sense that 

one is in full control of one’s actions, distortion of temporal experience and experience 

the activity as being rewarding in itself (i.e., intrinsically rewarding). To experience the 

flow state, the challenge of the task must be in balance with the individual’s skills 

(Csikszentmihalyi, 1991). According to Nakamura & Csikszentmihalyi (2009), too much 

challenge causes anxiety while too little challenge causes boredom. Also, the authors 

argue that flow requires clear and proximal goals, appropriate level of challenges and 

immediate feedback (Nakamura & Csikszentmihalyi (2009). 

Flow is considered to be part of the gaming experience. The game element “challenge” can 

cause a flow state to players’ only when the degree of challenge is in balance with player’s 

skill level. Nevertheless, flow has been proven to be a core experience not only of 

gameplay but of educational scenarios as well. Nadolski et al. (2008) and Mueller et al., 

(2011) argue that flow contributes to an optimal learning state. 

Goal setting theory 

Goal-setting theory describes the way in which goals affect motivation and task 

performance (Locke & Latham, 2002). According to the authors, goals are objectives that 

individuals try to attaint while goals affect both motivation and achievement.  

The theory is based on the psychological process of self-regulation (Latham & Locke, 

1991) as it acts as an intermediate process between goal and performance. According to 

Pintrich & Zusho (2002), the term “self-regulation” refers to the level at which individuals 

can regulate their thoughts, motivation, and behavior during learning. Self-regulation is 

associated to monitoring and regulating the learning process, i.e., setting learning goals 

and choosing strategies to achieve those goals, regulating efforts and resources to exploit 

external feedback. According to Nicol & Macfarlane-Dick (2006), learners should be aware 

of the learning goals to self-regulate by comparing their performance against these goals 

and reduce the discrepancy among them.  

Goal-setting theory suggests four mechanism of goals that affect performance and 

motivation. These mechanisms are described as follows: goals direct individuals’ 
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attention in goal-relevant tasks (choice or direction), goals enhance persistence 

(persistence), goals mobilize individual’s effort and energy (effort), goals promote the 

development and use of goal-oriented strategies (task strategy). Also, it is considered that 

specific goals are positively related to motivation. 

The mechanism of choice defines the relationship between goals and performance, as 

goals direct individual’s efforts to goal-oriented task. Based on the mechanism of choice, 

many gameful design methods provide specific goals to individuals but they also present 

the next action that must be attained to accomplish the goals. The mechanism of effort is 

associated with an individual choice to act towards the accomplishment of a goal. Latham 

(2004) argues that the level of individual’s effort is proportional to the difficulty of the 

goal. Persistence considers that challenging goals can make individuals to try harder than 

makes an easy goal. In games, players are encouraged to fail and try again as many times 

they want, until they acquire the necessary skill to reach their goals (Tondello, Premsukh 

& Nacke, 2018). Tondello, Premsukh & Nacke (2018) also argue that gameful systems can 

provide individuals a space for learning and experimentation, which is particularly 

important when learning concerns the acquisition of new skills or the improvement of 

current skills. Task strategy is another goal mechanism. This is based on the idea that high 

complexity goals require the ability to use the necessary knowledge and skills, as well as 

to decide the appropriate strategy. 

Apart from the goal mechanism, Locke & Latham (2002, 2013) describe four moderators 

that are involved in the relationship between goals and performance, namely, ability, task 

complexity, performance feedback and goal commitment. Ability is an important 

moderator as individuals cannot achieve a goal when they lack the necessary knowledge 

and skills. The authors argue that performance increases with goal difficulty, however, 

this relationship fails when goals are perceived unattainable due to their level of difficulty. 

Moreover, when the complexity of a task increases, goal achievement is dependent on 

individual’s ability to develop and apply the appropriate task strategy (Locke & Latham, 

2002). For example, in games, challenges are usually separated into smaller ones which 

are presented with increasing difficulty. In this way players acquire knowledge and skills 

progressively which lead them to generate a feeling of competence and to pursue more 

difficult goals. Furthermore, feedback is the mechanism that reveals individual’s progress 

in relation to goals. It enables individuals to track their progress towards goal attainment 

in order to adjust their strategy and effort. Finally, goal commitment allows individuals to 

direct their efforts towards the goals they want to pursue. Tondello, Premsukh & Nacke 

(2018) argue that goal commitment is supported by goal importance and self-efficacy. The 
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authors mention that it is very important to provide a context for the goals to reinforce 

their importance and foster individual’s commitment. Moreover, self-efficacy has a 

prominent role in goal-setting theory as it is considered to act as a mediator of goals. 

Locke & Latham (2013) argue that positive affect can influence self-efficacy and 

consequently the level of goals that the individual is willing to pursue. 

Goal-setting theory considers different types of goals. Locke & Latham (2013) define 

outcome goals, performance goals and process (learning) goals. Outcome goals refer to the 

accomplishment of a specific result i.e., completing a task. Performance goals refers to an 

individual’s performance standards. Earning a specific number of points or reaching a 

specific position in a leaderboard are examples of performance goals. Process or learning 

goals are related to the acquisition of new skills or knowledge. Locke & Latham (2013) 

argue that in cases that an individual lacks the necessary skills or knowledge to 

accomplish a challenging goal, it is preferable to set learning goals rather than 

performance or outcome goals. This is explained by the fact that learning goals or mastery 

goal are considered to increase individuals’ intrinsic motivation. Also, learners who focus 

on learning goals are usually having a better performance than those who focus on 

performance goals (Latham & Brown, 2006). Other types of goals in goal-setting theory 

that are used rarely are stretch goals. Stretch goals are very difficult or even impossible 

to be attain. For example, some games provide challenges that only the most skilled 

players can accomplish.  

Finally, goal-setting theory defines proximal and distal goals. It is recommended to break 

distal goals into smaller proximal goals to encourage learning and engage individuals. 

According to Locke & Latham (2013), proximal goals facilitate the accomplishment of 

distal goals. For example, in games, completing several levels or challenges might be 

proximal goals which lead to a distal goal that is completing the game. Goal-setting theory 

has been used in gamified applications to provide a theory-based explanation about the 

way goals lead individuals to motivation and task performance. Interventions based on 

this theory are considered to be effective across various tasks (Latham & Locke, 1991). 

ARCS model 

The ARCS model is based on the expectancy theory. It claims that individuals are 

motivated to engage in an activity e.g., to learn, if knowledge that is presented is perceived 

as valuable i.e., it is considered to satisfy personal needs (value aspect), and if there is a 

positive prospect for success (expectancy aspect) (Keller, 1987). 
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Keller (1987) proposed a motivational design model which is defined by four 

components, Attention, Relevance, Confidence, and Satisfaction (ARCS). Attention refers 

to capturing learners’ attention and enhancing their interest and curiosity. This 

component is separated into the following categories: perceptual arousal i.e., using 

surprise, novelty or humor to stimulate perceptions, inquiry arousal i.e., offering 

challenging questions, problems or dilemmas, and variability, i.e., incorporate a variety of 

resources, presentation modalities and methods for learning. Relevance is associated to 

learners’ needs and experiences. Also, it expresses that learners should know how the 

content relates to their needs. To establish relevance, Keller proposes the three strategies 

of goal orientation, motive matching, and familiarity. Goal orientation refers to directing 

learners to useful goals i.e., explain the purpose if the goal, explicitly state their value, and 

allow learners to select goals. Motive matching is about adapting to learners’ preferences, 

interest, and needs. Familiarity is about using familiar language and relating goals to 

something familiar such as prior knowledge. Confidence aims on creating positive 

expectations for success. The level of learners’ confidence is associated to motivation as 

well as with the level of effort that individuals are willing to put to achieve a performance 

objective. Moreover, confidence is based on positive reinforcement for individual’s 

achievements given through timely and relevant feedback. Keller proposes the following 

strategies to enhance confidence, setting learning requirements i.e., setting clear goals 

and evaluating criteria, etc., creating success opportunities i.e., provide challenging 

opportunities for achievement within individuals’ available resources and effort, and 

finally encourage personal control correlating personal responsibility ad effort with 

success. Personal control is enhanced by providing informative feedback. Satisfaction is 

achieved by building a sense of achievement and reward learning process. Keller suggests 

three strategies to increase satisfaction, intrinsic reinforcement i.e., encourage intrinsic 

enjoyment, extrinsic rewards i.e., provide motivational feedback, and equity i.e., maintain 

consistent equitable evaluative criteria. 

According to Keller (1987), motivational strategies have to support instructional goals. 

The ARCS model uses a systematic design process that consists of four steps, i.e., defining 

target audiences’ motivations, designing motivational strategies, developing the 

strategies, and evaluating the effects (Keller, 1987).  

Bloom taxonomy 

A taxonomy of learning activities was proposed by Bloom (1956) to promote higher skills 

of thinking in education. The taxonomy includes three domains of learning activities: 

affective, cognitive, and psychomotor. Bloom’s cognitive taxonomy describes six 
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consecutive levels referring to cognitive processes, i.e., knowledge, comprehension, 

application, analysis, synthesis, and evaluation. The taxonomy was revised to be better 

aligned with the active process of thinking. In this revised taxonomy the names of the 

categories have changed into verbs while two levels were rearranged. These levels define 

remembering, understanding, applying, analyzing, evaluating, and creating new 

knowledge (Anderson & Krathwohl, 2001). Bloom’s taxonomy has been used to set goals, 

to link learning outcomes in digital environments with Bloom’s levels, to describe learning 

outcomes, as well as, as an assessment framework for the learning outcomes of 

experiential learning (Ben-Zvi, 2010; Legner et al., 2013; Monk & Lycett, 2011). In this 

work, the revised Bloom’s taxonomy was used to develop the learning goals that guided 

the delineation of levels of our assessment activity. 

3.1.3. Implementing game elements in MOOCs 

The implementation of game elements into learning management systems is considered 

as a positive reinforcement strategy to motivate and engage learners. A gamified 

intervention enhances learner’s engagement and self-efficacy, encourages self-regulated 

learning, and facilitates social and cognitive skills. Several studies have implemented 

gamification in learning management system to provide personalized experience for 

learners and prioritize learners’ needs. According to Dickey (2005), the main elements of 

engaging learning are clear goals, reinforcing feedback and increasing challenges. 

Learning progression 

Learning is an important element in gamification as many design methods suggest that 

each challenge should increase progressively in order to encourage learners to pursue 

the goals that are set and to enhance their skills. Gameful design methods should create 

a smooth learning curve that will allow individuals to practice the needed skills and to 

acquire the necessary knowledge as the move forward. Progression is recognized in 

pedagogy, among other things, as scaffolded instruction. Also, learning progression 

helps learners track the challenges they have completed and plan the next challenges in 

order to achieve their goals. Progression contributes to increasing learners’ self-efficacy 

within the course. For an effective progression, learners should be able to repeat the 

same challenges until they master the necessary concepts. In MOOCs, appropriate 

scaffolding can be provided with the use of levels. As in games, easier levels are 

presented first, advancing to more complex levels as learners achieve mastery. To 

enhance engagement, MOOCs should present learners with challenges that match 
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learners’ skills and that are a little outside their “comfort area”. This means that the 

desired level of difficulty is at the level at which learners need a moderate support to 

accomplish the task. 

As in games, the necessary assistance can be provided to learners through feedback in 

order to advance their skills. Effective feedback should always be clear and immediate, 

and to correspond to learners’ actions. Also, feedback can help reinforce motivation. 

Formative assessment 

Gameful design encourages players to attempt each challenge multiple times by giving 

them multiple lives. In this way, gamified environments motivate learners to put more 

effort in pursuing the goals. Sadler (1998) argues that formative assessment describes an 

assessment that is intended to generate feedback on performance in order to enhance and 

accelerate learning. It should be noted that, formative assessment focus on learning 

processes rather than on the result of the assessment as it encourages learners to explore 

the content. Shute (2008) argues that formative feedback is provided to learners in order 

to modify their thoughts or behavior about the purpose of improving learning. 

Feedback 

There are many different types of feedback in learning. Johnson, Bailey & Van Buskirk 

(2017) have conducted a literature review reporting the feedback types that are 

presented in the literature on serious games και simulations. The authors argue that the 

types of feedback are organized into two categories, outcome-based feedback, and 

process-based feedback. Outcome feedback provides information to learners about their 

performance and progress, while process feedback directs learners to strategies needed 

to achieve a goal or an action. Each of these groups are further analyzed into several types 

of feedback. 

Goals, challenges and feedback are the game elements that are suggested by the most 

gameful design methods (Chou, 2015; Deterding, 2015; Mora et al., 2017, Morschheuser 

et al. 2017). Several design elements have been employed in gamification to provide 

feedback such as progress bars (Landers et al., 2015), points, levels, badges, leaderboards, 

narrative, rewards etc. In a gamified system the feedback mechanisms help learners to 

progress and to feel that they are responsible for their accomplishments.  

Feedback is the information about how learner’s current performance relates to goals. 

The use of feedback in learning is considered a powerful strategy as it helps learners to 

reduce the discrepancy between current performance and desired performance. 
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According to Sadler (1989), learners should always know to answer the following 

questions, what good performance is, how current performance relates to good 

performance, and how to act to close the gap between current performance and good 

performance. 

Hattie & Timperley (2007) argue that designers should consider three questions 

regarding the effective feedback (where am I going? how am I going? where to next?). 

Based on this feedback model, van den Bergh, Ros & Beijaard (2012) stated that the first 

question relates to the learning goals, the second question addresses the fact that learners 

need to know how the current performance relates to the learning goals and, the third 

question refers to the activities that learners need undertake to make progress. 

Feedback is thought to have the potential to influence learners’ engagement. It is related 

to greater academic achievement and increased motivation. Nicol & Macfarlane-Dick 

(2006) suggest seven principles in order to design effective feedback which will facilitate 

self-regulated learning. Feedback helps learners to understand what good performance 

is, facilitates the development of reflection in learning i.e., self-assessment, delivers 

information to learners on their learning, encourages the dialogue around learning, 

encourages positive motivational beliefs, provides opportunities to close the gap between 

current and desired performance and provides evaluation to instructors about learning 

that helps to improve their teaching. 

According to Sadler (1989), for learners to attain learning goals, they should understand 

those goals, assume some ownership and be able to evaluate their progress. To assume 

some ownership means that there must be an overlap between the goals that are set by 

the instructors and the goals that learners set.  

Gibbs & Simpson (2004) argue that providing timely feedback (regularly and before the 

final submission of any task), can improve learners self-regulation and their performance. 

Other strategies to improve the quality of external feedback is to provide corrective 

advice, to limit the amount of feedback to the necessary, to highlight areas for 

improvement and to provide online tests so that feedback is available anytime. Feedback 

strategies that encourage high levels of motivation and self-esteem include automated 

tests with feedback and opportunities of resubmissions.  
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3.2. Gamification 

3.2.1. Introduction to gamification 

Gamification is a framework that guides the integration of game elements and gameful 

design techniques in non-game context to enhance individuals’ engagement and interest. 

Gamification’s definition is usually based on games or their characteristics. 

According to Zimmerman & Salen (2003), a game is a system in which players engage in 

an artificial conflict defined by specific rules that ends in a quantifiable outcome. Koster 

(2004) includes players’ emotional reaction in his definition as it is based on the idea of 

fun. Koster (2004) argues that “a game is a system in which players engage in an abstract 

challenge that is defined by rules, interactivity and feedback, that results in a quantifiable 

outcome while it is often eliciting an emotional reaction”. In gamification the aspect of 

affect is very important as its goal is to drive a behavioral change and a higher 

engagement. Gamification has an inherent feature from games, namely fun. Fun is one of 

the reasons that people engage in playing games. Game designers define games as a series 

of meaningful choices made by the player in pursuit of clear and challenging goals. Several 

researchers have defined the basic game characteristics. Garris et al. (2002) describe the 

game characteristics as rules/goals, fantasy, challenge, mystery, control and sensory 

stimuli. McGonigal (2011) includes, goals, rules, feedback systems and voluntary 

participation, while Rogers (2017) define game characteristics based on the interactions 

within a game. The author mentions conflict, challenge, competition, feedback, perception 

of an event, control, feelings and results of a game. 

The term “gamification” is described by researchers in different ways. Deterding et al. 

(2011) describe gamification as the use of game elements in non-game contexts, while 

Zichermann & Cunningham (2011) describe gamification as the process of using game 

thinking and game mechanics to engage people. Wu (2011) defines gamification as the 

use of game elements and techniques in non-game context in order to elicit a game-like 

player behavior. In another definition, gamification is described as the integration of game 

elements, mechanics, and frameworks into non-game scenarios or contexts (Sümer & 

Aydin, 2018).  

The concept of gamification is based on marketing efforts, such as memberships rewards 

and point cards. However, due to growing adoption of mobile technology, game-like 

elements became an essential part of our daily activities. Gamification has been 

implemented in several domains, such as trading (Hamari, 2015), marketing (Kim & Ahn, 
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2017; Yang, Asaad & Dwivedi, 2017), banking (Rodrigues, Oliveira & Costa, 2016), 

healthcare (Marques et al., 2017; Muangsrinoon & Boonbrahm, 2019). Also, gamification 

has been applied with the goal to examine whether game elements such as points, levels, 

leaderboards, etc., can harm motivation (Mekler, 2013). 

According to Dicheva et al. (2015), education is a field in which gamification has been 

applied widely. In education research, several literature reviews have been conducted to 

describe gamification as the state-of-the-art in education (Dicheva et al., 2015; De Sousa 

Borges et al., 2014; Caponetto, Earp & Ott, 2014). These reviews report the game elements 

that are used in educational settings most frequently (Nah et al., 2014), provide an 

overview of the available gamification design frameworks (Mora et al., 2015) and 

investigate the effects of gamification on learners in different learning situations e.g., face-

to-face and blended learning (De Almeida Souza et al., 2017; Monterrat, Lavoué & George, 

2017; Smith, 2017), or in online educational settings (Hamari, Koivisto & Sarsa, 2014; 

Looyestyn et al., 2017). 

Table 3.1. Classification of game elements (reproduced from Deterding et al., 2011) 

Level Description Example 

Game interface design 

patterns 

Common interaction design 

components and design solutions 

for a known problem in a context. 

Level, leaderboard, badge  

Game design patterns 

and mechanics 

Parts of the game design that 

concern gameplay and occurring 

in repeated mode. 

Time constraint, turns 

limited resources,  

Game design principles 

and heuristics 

Evaluative guidelines for the 

design of a problem or the analysis 

of a design solution. 

Clear goals, game styles 

Game models Conceptual models of the game’s 

components or the player’s 

experience. 

Game design, fantasy, 

curiosity, challenge, MDA, 

Game design methods Game design practices. Playtesting, playcentric 

design 

Well-known examples of gamification include the Foursquare (https://foursquare.com/), 

the piano staircase in the Odenplan subway station (www.thefuntheory.com/piano-

staircase) and the Duolingo application (https://el.duolingo.com/). Foursquare is a social 

networking platform which has urged its users to “check-in” using gamification 

techniques. The piano staircase in the Odenplan subway station in Stockholm that was an 

attempt for citizens to adopt a healthier living by adding game elements to subway stairs. 

Specifically, the existing stairs were transformed to piano keys that made a relevant 
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sound. Finally, Duolingo is a language-learning platform and application, which provides 

users provided with instant feedback and experience points as they progress through 

lessons. 

3.2.2. Gamification frameworks, game mechanics and elements 

According to Deterding et al. (2011), any element that contributes to the gaming 

experience is considered to be a game element. A gamified environment is an 

environment that incorporates games elements. Usually, researchers report in their 

studies the same game elements, but they categorize them with a different way. This 

divergence lays on the main dimension on which researchers based their classification. 

Adams (2009) organizes the game elements into categories based on the aspects of game 

definition. The author reports the elements of challenging goals (goals, challenges), play 

(competition, collaboration, feedback), rules (i.e., core mechanics such as levels, luck, risk) 

and pretended reality (i.e., game world, game aesthetics, story, characters). Deterding et 

al. (2011) categorize game elements in five game design levels. These elements are on 

varying regarding the level of abstraction. Table 3.1 presents these levels, starting from 

the more concrete which corresponds to the game interface design patterns. The levels 

are defined as follows: interface design patterns, game design patterns and mechanics, 

design principles heuristics, game models, and game design methods. It is obvious that 

game mechanics and game design patterns do not define implemented structures, but 

they can be implemented with several interface elements. 

Different frameworks for gamification have been proposed (Kim et al., 2018).  

The most frequently leveraged framework of game design is proposed by Hunicke, 

LeBlanc, Zubek (2004). The authors report a theoretical gamification framework, namely 

the MDA framework. It should be noted that in Table 4.1 MDA is categorized as a game 

model. This framework consists of Mechanics, Dynamics and Aesthetics (Figure 3.1). 

Mechanics constitute the functioning components of the game. This means that mechanics 

Figure 3.1. MDA framework (left) and Werbach & Hunter’s framework (right) 
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include the components that are implemented in a game to guide players’ actions and 

define the behaviors that are allowed. With data and algorithms, mechanics define the 

behaviors allowed to players and the control mechanisms of the game. Dynamics define 

the interactions with the mechanics, i.e., it is the observable behaviors that players are 

allowed to perform during the gameplay. For example, forming an alliance is an example 

of the dynamics of a strategy game. Dynamics determine what a player can do in response 

to the mechanics of the game. Aesthetics describes the emotions that players experience 

while interacting with the game or with the other players. Aesthetics can be created either 

from the mechanics or dynamics of the game. Sensation, fantasy, challenge, fellowship, 

and discovery are examples of aesthetics (Hunicke, LeBlanc & Zubek, 2004). 

In another gamification framework Werbach & Hunter (2012) argue that the game 

elements are organized in a hierarchy (Figure 3.1). The authors organized the elements 

into dynamics, mechanics and components (Table 3.2).  

Table 3.2. Categorization of game elements (Werbach and Hunter, 2012) 

Category Description Example 

Dynamics High-level elements that have to 

be considered but they are not 

implemented directly. 

Progression, emotions, constraints, 

narrative, relationships 

Mechanics Elements that engage players. Challenges, feedback, competition, 

rewards, cooperation 

Components Specific forms of mechanics or 

dynamics. 

Levels, badges, points, avatars 

Dynamics refers to the most abstract elements in a game or in a gamified setting. Dynamics 

comprises of five elements, progression (i.e., the player’s growth and development in the 

game), emotions (e.g., competitiveness, curiosity, frustration), constraints (i.e., 

limitations), narrative (i.e., a progressive storyline), and relationships (i.e., social 

interactions). Mechanics is the necessary element for the development of dynamics in a 

game. It is also the element that encourage players to engage in the game. Mechanics is 

comprised of ten elements, namely, challenges (i.e., tasks that require effort), chance (i.e., 

elements of randomness), competition (among players or groups), cooperation (players 

collaborate to attain a common goal), feedback (i.e., information on how the player is 

doing in the game), resource acquisition (e.g., collectible items), rewards (i.e., benefits that 

are acquired from an achievement), transactions (i.e., trading between players), turns 

(i.e., participation of players in a sequential form) and win states (i.e., criteria for winning 

the game). Finally, components are the least abstract game element, and they are 
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considered to be the implemented form of dynamics and mechanics. There are fifteen 

gamification components: levels (denied steps in player’s progression), points (numerical 

representations of game progression), leaderboards (visual display of player’s 

progression), achievements, badges (visual representations of achievements), avatars 

(visual representations of a player’s character), boss fights (especially hard challenges), 

combat (a determined battle, typically short-lived), collections (sets of items to 

accumulate), content unlocking (content available only when player attains a goal), gifting 

(sharing resources), quests (predetermined challenges with objectives and rewards), 

social graphs (representation of players’ social network within the game), virtual goods 

(i.e., game assets with virtual or real money value) and teams (groups of players 

collaborating to achieve a goal) 

Bunchball (2016) proposes a framework that consists of only two elements, dynamics and 

mechanics. The author defines dynamics as the player’s experience attained during the 

game. Dynamics includes reward, achievement, competition, self-expression, altruism, 

and status. Mechanics is defined as the gamification elements that are essential for 

providing players a specific experience. Mechanics includes points, challenges, levels, 

leaderboards, virtual goods, gift and charity.  

Schell (2014) includes the elements of story, mechanism, aesthetics and technology, in his 

framework. Story is described as a course of events that players experience while playing 

a game. The story is delivered using aesthetics and technology and can be implemented 

either in a linear or in a branching structure. The second element, mechanism, defines the 

rules and the procedures of a game. It describes players’ behaviors, rewards, and 

penalties. The rewards and penalties change the progression of a story. Technology 

Figure 3.2. The gamification framework proposed by Kim et al. (2018) 
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includes materials, hardware and information technologies that are required to create a 

game. Finally, aesthetics is about the audio and visual elements that affect the appearance 

of the game and the feel that players perceive within a game.  

Kim et al. (2018) proposed an integrative gamification framework based on the previous 

frameworks (Figure 3.2). Story provides a pivotal process as it comprises of educational 

objectives and stories related to the objectives. Story integrates various fun aspects in the 

game. During gameplay, players have a variety of choices that require them to choose one 

of them to progress in the game. Player’s decision will determine in which branch of the 

story he/she will proceed, even though all players are playing the same game. Dynamics, 

consists of the twenty playful experiences of PLEX (Playful Experience framework) 

proposed by Korhonen, Montola & Arrasvunori (2009) namely captivation, competition, 

fellowship, challenge, completion, control, fantasy, discovery, exploration, simulation, 

expression, eroticism, sensation, nurture, relaxation, subversion, suffering, sadism, thrill, 

sympathy. 

Dynamics are used to motivate learners to engage in learning. Mechanics is used to 

implement dynamics. For example, learners receive feedback and rewards through the 

mechanics i.e., leaderboards, badges, points, etc. Researchers suggest different 

perspectives on mechanics (Bunchball, 2016; Duggan & Shoup, 2013; Kumar & Herger, 

2013; Werbach & Hunter, 2012; Zichermann & Linder, 2013), although, leaderboards, 

badges, challenges (or quests), levels, points and virtual goods are common mechanics 

across the different approaches. Technology provides players the means to interact with 

a game or a gamified setting. 

3.2.3. Game mechanic elements 

Kim et al. (2018) described several core mechanic elements based on previous studies 

(Duggan & Shoup, 2013; Kapp, 2012; Kumar & Herger, 2013; Radoff, 2011; Schell, 2014; 

Zichermann & Linder, 2013). Α brief description of these mechanic elements is given in 

the following subsections. 

Rewards 

In games or game settings, rewards are usually represented by the following mechanics: 

Point: A numerical reward for specific actions. Players can also use points to buy virtual 

or physical goods. These goods are called redeemable points. Players can share their 

points with other players. These points are named karma points and they are considered 

to facilitate altruism between the players. 
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Level: A part of a game. Players can attain higher levels by completing a specific task. Also, 

there are systems with a single level or multiple levels. Higher levels require players to 

complete more difficult tasks than lower levels.  

Progression: A way to show player’s advancement in a game. Progression is represented 

by numbers, pie charts, etc. 

Badge: A visual achievement note. Players can win badges for completing tasks while 

badges show to the other players the accomplishments of the player. Some games use 

badges as leveling system. 

Authority: Refers to the ability to control characters, villages or other players, usually 

after having achieved a specific level. 

Virtual Goods: Virtual goods may be clothes, accessories, food, etc. Though the virtual 

goods players can increase the speed of the game, make the game character stronger or 

unlock content. Also, the players can sell, purchase or trade these goods. 

Physical Goods: Players can achieve the physical goods by an achievement in the game or 

the use of virtual goods.  

Discontinuation: A device to limit the reward according to a specific behavior 

Gifting: Refers to giving other players items.  

Free Lunch: A reward without player’s effort. This mechanism is often used to encourage 

players to play the game again or in a more regular basis. 

Virtual Currency: Currency with a value only within the game. Players purchase items 

with this currency to improve the speed of game progress. Players can also sell items. A 

player can gain virtual currency by achieving goals or by paying real money. 

Rewards schedule 

Rewards schedule defines the algorithms that are used in game settings for rewards. 

These schedules are the fixed interval reward schedule i.e., rewards are given to players 

on a specific time schedule. They also are the fixed ratio reward schedule i.e., rewards are 

given when a player completes a certain number of challenges, or the variable interval 

reward schedule i.e., rewards are given at irregular time intervals. Finally, schedules are 

the variable ratio reward schedule, i.e., rewards are provided when a player completes a 

mission. 
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Avoidance 

Avoidance describes the mechanics that are used to avoid specific behaviors. There are 

two such mechanics, discouragement, and penalty. Discouragement is a penalty given in 

order to prevent players to demonstrate a specific behavior, while leaky bucket refers to 

the fact that players can perform a quest without limitations at the beginning of the game, 

but limitations are applied over time.  

Leaderboard 

A board that is presenting the leading players’ achievements. There are several types of 

leaderboards such as, macro leaderboard i.e., a board that presents information of players 

leading the game (such as names, scores, rankings etc.), micro leaderboard i.e., a board 

showing information for players leading the game within a certain level, thus encouraging 

beginners to compete with others players, indirect competition, i.e., competition based on 

players’ relative progression, and direct competition i.e., competition between players. 

Status 

Status is about avatars, rankings, and social relationship within the game. An avatar visual 

representation of the player in the game. Sometimes the avatar of a player embeds its 

characteristics. Players can purchase accessories for their avatar which can also be used 

to improve the looks or the ability of avatars. Ranking is the result of competing with other 

players. Ranking is affected not only by players achievements, but also by the 

achievements of other players. Ranking often used as a criterion for rewards, and finally 

social network which allows players to view the status of other players. 

Quests 

A quest describes a specific mission that the player must complete to gain rewards. Quests 

include unlocking content, e.g., items, characters, missions, scenes, that a player cannot 

see or use, unless they complete a specific quest or reach a required level or point. Quests 

may relate to countdown i.e., a given time to complete a quest, lottery i.e., a type of reward 

that with haphazardness, communal discovery i.e., a quest completed through the 

collaboration of players and scaffolding i.e., support for the players who need help to 

complete a quest. There are several ways that scaffolding is implemented, including 

messages, agents etc. 
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3.2.4. Goal-setting theory and game elements 

Goals are common game elements employed in gamification design. Deterding et al. 

(2011) argue that gamification as derived from games is a goal-oriented activity. The 

authors suggest “clear goals” as one of the design elements of gamification. Goal-setting is 

associated with the most motivating goals. Those goals are just out of the comfortable 

reach. 

In a gamified system, goals can either be explicit such as earning badges, reaching a 

certain position in a leaderboard, etc., or implicit, presented as outcomes that should be 

attained. For example, Barata et al. (2017) use challenges as outcome goals in a gamified 

course. Also, other elements, such as quests and exploratory tasks, are suitable for 

outcome goals. Gamification is particularly important in increasing an individual’s 

perception of goal importance (Hamari & Koivisto, 2013; Chou, 2015). According to 

Tondello, Premsukh & Nacke (2018), goals are thought to be motivational affordances. A 

motivating environment should be built on attainable long-term and short-term goals, 

provide immediate feedback on learners’ performance, and help learners assess their own 

progress. In the relevant literature goal-setting theory is used with the following ways 

(Tondello, Premsukh & Nacke, 2018): 

▪ to understand how gamification works (Landers et al., 2015) 

▪ to explain a specific game element (Fanfarelli, Vie, & McDaniel, 2015; Landers, 

Armstrong & Collmus, 2017; Chernbumroong, Sureephong, & Muangmoon, 2017) 

▪ to serve as a theoretical base of incentives and rewards in gamification (Richter er 

al., 2015) 

Tondello, Premsukh & Nacke (2018) identify the following elements as mechanism for 

setting goals in gamification: badges (Fanfarelli, Vie, & McDaniel, 2015), leaderboards, 

levels, progress bars (Landers, Bauer, Callan & Armstrong, 2015), rules, goals, challenges, 

conflict (Landers, Armstrong, & Collmus, 2017), points, achievements and rewards 

(Richter, Raban & Rafaeli, 2015). The authors also argue that other elements can also be 

used to set goals such as, boss battles, collections, exploratory tasks, learning, certificates, 

quests, unlockable access to advanced features. In a learning environment, learners are 

motivated to attain a specific goal because goal seeking is considered to be motivating. 
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3.3. Gamification in MOOCs 

3.3.1. Introduction 

MOOCs and gamification are two trends in pedagogical design that started almost 

simultaneously. Gamification is considered to be a successful strategy to engage learners 

with a potential for online education. Although, there are not yet many research studies 

concerning the implementation of gamification in MOOCs, gamification is thought to be a 

successful strategy to increase learners’ engagement, along with enabling learners to 

attain their goals within a MOOC. Current literature focuses on implementing gamification 

to overcome MOOC drawbacks such as the low completion rates and the lack of learners’ 

engagement.  

Ortega-Arranz et al. (2017) argue that even though there are some educational platforms 

with gamification capabilities, the effects of gamification in MOOC contexts have not been 

explored thoroughly yet. The authors based on the results of their systematic literature 

review argue that the most frequently used game elements in MOOCs are points, badges, 

and leaderboards (PBL). This is confirmed by other reviews on gamification (Dichev & 

Dicheva, 2017; Dicheva et al., 2015).  

Chang & Wei (2016) categorized game elements that are used in MOOCs according to 

engagement level that cause to learners. The authors suggest that the most engaging 

gamification mechanics of MOOCs are virtual goods, redeemable points, team 

leaderboards and badges. According to Ortega-Arranz et al. (2017), some game elements 

not frequently implemented in small-scale contexts are getting attention in MOOCs, such 

as duels, ratings, status bars and avatars. Also, there are some other engaging game 

elements such as virtual goods and memory-game interactions that have not been highly 

investigated in MOOCs. 

There are some game elements that are independent of the learners’ performance, such 

as narrative, while other elements are related to learners’ actions in the learning 

environment. The most frequent actions related to gamification are individual actions e.g., 

submitting assignments, asking, or answering questions through a forum, voting, getting 

high scores in quizzes, etc. However, learners can also be involved in interactions with 

their peer learners, i.e., posting to forums, submitting assignments, and rating their peers’ 

posts and contents.  

According to Antonaci, Klemke & Specht (2019), the design and the implementation of 

gamification are closely related to the audience and the context of application. Thus, in 
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order for gamification to be effective, designers need to be aware of the outcomes that 

each specific game element could bring in learning, in terms of a certain scenario and 

audience. Moreover, Dicheva et al. (2015) and Khalil et al. (2018) emphasize on the fact 

that research should focus more on the empirical study in order to understand how 

gamification can influence both extrinsic and intrinsic motivation to players.  

Finally, Antonaci, Klemke & Specht (2019) argue that the implementation of game 

elements within MOOC environments has the potential to increase learners’ engagement 

and facilitate learners to attain their goals within the course. 

3.3.2. Most frequently used game elements in MOOCs 

Antonaci, Klemke & Specht (2019) have conducted a systematic literature review based 

on empirical studies. The authors provide an overview of the game elements that are most 

frequently used in online learning environments, including MOOCs and their empirically 

proven effects on human behaviors. The authors argue that game elements implemented 

in online learning scenarios are mainly external rewards i.e., points, scores, badges, etc. 

Twenty-two game elements were found by the authors. These elements are, badges, 

leaderboards, points (authors refer to points using other terms such as score or ranking), 

feedback (i.e., information on learners’ progress or achievements), which can take several 

forms and can be delivered as direct or indirect information, e.g., a clue can be considered 

feedback, challenges (appear in the form of quizzes or problems and they are related to 

levels or/and to missions), likes and other social features, communication channels (e.g., 

chats), narratives (a type of stories that is used to pass information and arouse learners’ 

curiosity and interest), levels (related to goals with different degrees of difficulty while in 

order to move up a level, it is necessary to reach the goals of the current level, progress 

bars, teams, agent (a virtual character by the system), medal, avatar, trophies, time limit, 

task, virtual currency, personalizing features, mission, replayability, goal indicators, 

competition, and win state. Some game elements, such as feedback, can be combined with 

other elements, such as leaderboards and badges. Furthermore, Antonaci, Klemke & 

Specht (2019) identify the effects of gamification on learners’ behavior within MOOCs. 

These effects mainly concern learners’ performance, engagement, motivation, 

collaboration, social awareness, and attitude towards gamification.  

Rincón-Flores, Ramírez Montoya & Mena (2019) have conducted a systematic mapping 

about gamification in MOOCs. The authors report that the most frequently used dynamic 

is the emotional while the second most frequent is the social dynamic. The emotional 

dynamic is considered to be associated with the use of mechanics such as challenges and 
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rewards, as those mechanics have the potential to generate emotion to participants while 

trying to solve challenges (i.e., assignments) or gaining recognition about their effort and 

achievements. Other dynamics used in MOOC scenarios are the narrative and the 

progression. As far as the mechanics are concerned, the authors report that challenge and 

rewards were the most frequently used. Other mechanics that are also used in MOOCs are 

competition, chances, cooperation, and battles. Finally, the most frequently used 

components are the points, the leaderboards, and the badges. Despite of the use of game 

elements in MOOCs, Rincón-Flores, Ramírez Montoya & Mena (2019) argue that most 

research studies show that gamification has increased the completion rates. However, the 

authors suggest that gamification should be assessed using objective measures in order 

to declare about its effectiveness. Also, the authors report that the research trend in 

MOOCs is to improve their didactic design.  
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Chapter 4. The nervous system and the human brain. 

Brain imaging techniques 

4.1. The nervous system  

The nervous system, along with the endocrine system, is responsible for maintaining a 

stable internal environment (homeostasis) by controlling and coordinating the 

operations of the other human systems. The human body understands and reacts to 

environmental changes. These changes are perceived by human as stimuli. Information 

on these stimuli is collected from the receptors and are transferred to the Central Nervous 

System (CNS). Then, the central nervous system gives the appropriate instructions to the 

muscles and the glands. In this way it enables the human body to regulate its functions 

according to changes in the environment, which is a prerequisite for its survival. 

The organs that constitute the nervous system are the brain, the spinal cord and the 

nerves. The brain with the spinal cord, form the Central Nervous System (CNS), while the 

nerves, form the Peripheral Nervous System (PNS). We could say that, the CNS is the part 

of the nervous system located inside the skull and spine, while the PNS is the part outside 

the skull and spine. The Central Nervous System will be further discussed in this chapter 

as this dissertation focuses on its association with brain functions. 

The CNS of an adult healthy person is bilateral, symmetrical, and is divided into seven 

main parts: the spinal cord, pons, cerebellum, medulla oblongata, midbrain (or 

mesencephalon), the diencephalon and the cerebral hemispheres (Figure 4.1). 

• Spinal cord: It is the lower part of the CNS. It receives and processes sensory 

information from the skin, the muscles of the limbs and trunk, the joints and the 

internal organs. It contains motor neurons that control involuntary and reflex 

movements, and controls many visceral functions. It is divided into cervical, thoracic, 

lumbar and sacral spinal cord. 

• Medulla oblongata. It is an extension of the spinal cord. It regulates vital autonomous 

functions such as digestion, breathing and heart rate. Together with the bridge and 

the midbrain form a continuous structure called the brain stem. 

• Pons. It transmits information related to the movement of a person from the cerebral 

hemispheres to the cerebellum. Along with the medulla oblongata, it regulates the 

blood pressure and breathing. 
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• Midbrain. It controls many kinesthetic functions, such as eye movements and is 

responsible for the coordination of visual and auditory reflexes. 

• Cerebellum. It has an essential role in learning motor skills and modifies the power 

and range of the motion. Coordinates the movements of the skeletal muscles during 

movement and the movements related to posture and balance of the body. 

• Diencephalon. It is located between the hemispheres and the midbrain. It contains 

two basic structures, the chamber that processes almost all the information 

transmitted to the cerebral hemispheres by the rest of the central nervous system 

and the hypothalamus that regulates autonomic, endocrine and visceral functions. 

• Cerebral hemispheres. The cerebral hemispheres are covered by a layer of tissue 

called the cerebral cortex. In humans, the cerebral cortex is strongly folded (Figure 

3.1). The folds increase the surface area of the cerebral cortex without increasing the 

total volume of the brain. The cerebral hemispheres consist of the cortex, the 

underlying white matter, the gray matter, the basal ganglia, the hippocampal 

formation, and the amygdala. The cerebral hemispheres are separated by a deep slit 

from the front to the back (called longitudinal fissure) in the left and right 

hemisphere. The two hemispheres, while they are in their biggest part identical, they 

generally perform different functions. The larger structure of the cerebral 

hemispheres, the cerebral cortex, has a central role in all the so-called higher-order 

brain functions such as memory, attention, perception, thinking, language and 

consciousness, and is described in more detail in the next section. The basal ganglia 

are involved in the regulation of the movement and generally in the cognitive 

function. Hippocampus and amygdala are parts of the coronary system. The 

hippocampus has an important role in the function of the memory, while the 

amygdala coordinates the actions of the autonomic and the endocrine systems and is 

involved in the generation of emotions. 

The brain and spinal cord are surrounded externally by bones, the skull and the spine, 

respectively. The spine forms the spinal canal in which the spinal cord is located. Inside 

these bones, we find three membranes, the meninges that envelop the brain and spinal 

cord. The main function of the meninges is to protect the central nervous system. Inside 

the meninges there is the cerebrospinal fluid. 
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4.2. The nerve cells (or neurons) 

The organs of the nervous system, i.e., the brain, the spinal cord and the nerves are 

composed of nerve tissue. The cells that compose the nerve tissue are of two types: nerve 

cells (or neurons) and glial cells. Neurons, which are the structural and functional unit of 

the nervous system, are capable of responding to specific changes in the environment, 

such as changes in temperature, pressure, light intensity, pH, etc. 

Nerve cells are components and functional units of the nervous system. Therefore, they 

are a foundation stone for understanding the functioning of the brain. All vertebrate 

animals, including humans, receive information from their environment through a 

variety of sensory receptors. From the receptors, information is transmitted to the brain 

and is transformed by the brain into senses or motion instructions. The complex and 

particularly useful process is achieved by using only the nerve cells and the connections 

between them. 

A neuron has four defined morphological areas: the cell body, the dendrites, the axon, 

and the presynaptic terminals (Figure 4.2). The cell body is the center of cell’s 

metabolism. It contains the kernel that is responsible for storing the genetic information. 

The cell body includes the two types of cellular extensions, the axon and the dendrites.  

Figure 4.1. Schematic representation of the Central Nervous System (Kandel et al., 2003) 
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Dendrites are used as the main system for receiving signals transmitted by other nerve 

cells. The axon is the main conductor unit of the neuron and can transmit electrical 

signals in lengths ranging from 0.1mm to 2m. It is divided into several branches for 

transferring information to different targets. The information is transmitted by chemical 

or electrical means. The electrical signals passing through the axon are called action 

potentials and they are short and transient nerve impulses (Kandel et al., 2003). 

Near its end, the axon comes divided into contact with other neurons. The cell that 

transmits the signal is called the synaptic cell, and the one that receives the signal is called 

a postsynaptic cell. The points of this contact are called synaptic terminal buttons or 

synaptic end bulbs. An important role in the electrical behavior of the neurons is played 

by the myelin sheath that surrounds and insulates many neurons (mainly the motor and 

sensory neurons) and which is interrupted at regular intervals by Ranvier nodes. 

When the nerve cells are in a state of rest, they are electrically polarized and they 

maintain a potential difference (difference in voltage) between the inside and outside of 

the cell membrane on average of 65mV. Since the potential outside the cell is 

conventionally set to zero, the potential in rest state is negative (-65mV). The potential 

difference is due to the uneven distribution of the extracellular sodium (Na+) cations and 

chlorine (Cl-) anions inside the cell, as well as potassium (K+) or other organic anions in 

combination with the selective permeability of the cell membrane in K+ and Na+ ions. 

This potential difference is called the resting membrane potential. 

The most important channels for describing the electrical behavior of the nerve cells are 

the K+ and Na+ channels. Under normal conditions, a membrane protein called a “K+/ 

Na+ pump” or “or sodium–potassium pump”, allows ions to move through the cell 

membrane, thereby altering the electrical balance of the cell relative to its environment. 

Figure 4.2. Schematic representation of a neuron. The basic parts of the nerve cell (cell body, dendrites, 
nerve axis) as well as synapses with other (postsynaptic) cells are depicted. 
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The neurons have differences regarding their morphology and function, and they are 

distinguished by their function in aesthetic, motor, and intermediate neurons. The 

aesthetic neurons transfer information from several parts of the body to the spinal cord 

and the brain, whereas, the motor neurons transmit messages from the brain and the 

spinal cord to the executive organs, that respond either with a contraction (muscle) or 

with a secretion of substances (glands). Moreover, the intermediate, relay, or associative 

neurons are located exclusively in the brain and the spinal cord and they direct messages 

coming from the sensory neurons to the appropriate areas of the brain or the spinal cord. 

They also transfer messages from one area of the brain or the spinal cord to another and 

ultimately to the pertinent motor neurons. 

So, the basic units of the brain, the nerve cells, are simply structured with quite a few 

elements in common. The brain is capable of producing extremely complex behavior 

because it contains an astonishingly large number of nerve cells (about 1011) that 

communicate with each other through specific interconnections. A key finding for the 

understanding of the brain is that the ability to produce complex behavior does not 

depend so much on the variety of nerve cells as, on their multitude and the connections 

between them (Kandel et al., 2003).  

The nerve tissue found in the brain and the spinal cord is of two colors: gray and white. 

The area with the gray color is called a gray matter and the area with the white color is 

called a white matter. The gray matter is formed by the cell bodies of many nerve cells 

together, whereas white matter is composed mainly of long-range myelinated axon tracts 

of these same nerve cells. The color difference arises mainly from the whiteness of 

myelin. Many axons together have white color since the axons have myelin (that is white), 

while many nerve cell bodies give a grey (gray) color since the cell body unlike the axons 

has no myelin. In the brain, the nerve cell bodies are arranged in the periphery, the cortex, 

and the surface of the brain, while the axons are oriented to the inner part of the brain. 

The result is that the gray matter is external to the brain, while the white matter is 

internal. On the contrary, in the spinal cord the cell bodies are central, inside the spinal 

cord, while their nerve fibers are directed to the periphery of the spinal cord. The long 

fibers are bundled and transfer information from the brain to the spinal cord and vice 

versa, as well as between the different levels of the spinal cord. The result is that in the 

spinal cord the gray matter is inside, while the white is external. 

Glial cells are larger in crowd than neurons and they have an auxiliary role. They do not 

retain other cells, despite the second synthetic part of their name deriving from the Greek 

word glute (= glue) and they are not necessary for information processing. However, they 
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are thought to be serving the stability and the structural cohesion of the brain and they 

act as garbage collectors, removing debris after injury or neuronal death. Glial cells have 

various shapes and specific functions. These auxiliary cells supply the neuron with 

nutrients and they serve in absorbing and removing junk. The glial cells that surround 

the axon of most neurons, contribute to its insulation and to the acceleration of the 

transportation of the nerve impulse. 

4.3. The cerebral cortex 

The brain is composed of billions of nerve cells, which communicate with each other via 

an electro-chemical route. Although the brain functions as an autonomous entity, several 

subsystems can be distinguished.  

The human brain can be divided into three main parts: the forebrain, midbrain, and 

hindbrain (Figure 4.3). The forebrain is the largest part of the brain. It includes the 

cerebrum, which occupies about two-thirds of the brain's mass and covers most other 

brain structures. The forebrain is subdivided to the telencephalon and the diencephalon. 

A prime component of the telencephalon is the cerebral cortex, which is divided into four 

lobes. The diencephalon is the area of the brain that relays sensory information and 

connects components of the endocrine system with the nervous system. The 

diencephalon regulates a number of functions such as autonomic, endocrine, and motor 

functions. It also plays a major role in sensory perception. Components of the 

diencephalon include thalamus, hypothalamus and the pineal gland. The midbrain is the 

area of the brain that connects the forebrain to the hindbrain. The midbrain and hindbrain 

together compose the brainstem. The brainstem allows the communication between the 

spinal cord with the cerebrum. Also, it regulates movement and assists in the processing 

of visual and auditory information. The hindbrain is located at the lower back part of the 

brain. It includes most of the brainstem and the cerebellum. The brainstem is one of the 

most important parts of the entire central nervous system, as it connects the brain with 

the spinal cord and coordinates several vital functions, such as breathing and heartbeat. 

Hindbrain has three main parts, the pons, the cerebellum, and the medulla oblongata.  

The cortex of the cerebral hemispheres is the intense folded surface of the hemispheres. 

A fold or ridge in the cortex is termed a gyrus and a groove is termed a sulcus. The cerebral 

cortex is separated into two cortices, by the medial longitudinal fissure that divides the 

cerebrum into the left and right cerebral hemispheres. 
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Figure 4.3. The cerebrum and the cerebral cortex 

The two hemispheres are joined beneath the cortex by the corpus callosum (mesolobe). 

The cerebral cortex is the largest area in the central nervous system. It plays a key 

role in perception, attention, awareness, memory, thought, consciousness, and language. 

In each of the two hemispheres of the brain, the cortex is divided into four independent 

lobes: the frontal, the parietal, the temporal, and the occipital (Figure 4.3). The lobes 

were named after the corresponding skull bones, from which they were covered 

(Figure 4.4). 

▪ The frontal lobe is the anterior part of the cerebral hemispheres to the central fissure 

that separates it from the parietal lobe. Its anterior lower surface rests on the upper 

part of the ocular junctions. The lateral sulcus (Sylvius fissure or lateral fissure 

distinguishes the frontal lobe from the temporal lobe. It has an important role in 

planning future actions and controlling movements. 

▪ The parietal lobe is above the occipital and behind the frontal lobe. The Sylvius fissure 

separates the parietal lobe from the temporal lobe. It is related to sense of touch and 

the image of the body. 

▪ The temporal lobe is the part of the cerebral hemispheres that lies beneath the Sylvius 

fissure. The posterior boundary of this lobe is a continuation of the occipital lobe. It 

is related to the sense of hearing and to some aspects of learning, memory and 

emotions. 

▪ The occipital lobe is the rearmost part of the cerebral hemispheres that it is located 

above the tentorium cerebelli and in front of the occipital bone. It is the smallest lobe 
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and it is the center for processing visual stimuli. It includes the large visual area in 

which information arrives from the eyes, analyzing colors, motion and stereoscopy 

and finally it is promoted to the association areas. 

 

Figure 4.4. Schematic representation of the cerebral lobes and sulci 

The hemispheres are connected by a bundle of nerve fibers, called the mesolobe 

(callosum or corpus callosum). The mesolobe is the great commissure of the cerebral 

hemispheres that allows the two parts of the brain to communicate and synchronize. The 

cerebral hemispheric cortex has two important organizational features. First, each 

hemisphere is related to the sensory and motor functions of the opposite half of the body. 

A sensory information that enters the spinal cord from the left side of the body is carried 

to the right side of the nervous system before being transmitted to the cerebral 

hemisphere. Accordingly, the motor areas in one hemisphere of the brain control the 

movements of the opposite half of the body. Second, although the hemispheres appear to 

be alike, they are not perfectly symmetrical in structure, nor equivalent in functioning. 

Many areas of the cerebral cortex are related to the processing of aesthetic as well as 

motor instructions or a combination of them. These areas are classified into primary, 

secondary, or tertiary (sensory or motor) areas, depending on the level of information 

that they receive, process and handle. For example, the primary motor cortex processes 

voluntary movements of the limbs and spine that are projected directly to the spinal cord 

without the mediation of other neurons, hence its name as the primary. Primary areas 

are surrounded by secondary and tertiary areas (sensory and motor), which are 
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characterized as upper order areas. They process the information coming from the 

primary areas and accordingly separate them as sensory or kinetic by re-sending them 

to the corresponding primary cortex. 

The primary as well as higher-order cortical areas are surrounded by three other large 

cortical areas called association areas. Their main function is to integrate various 

information for deliberate action and to participate in the control of three main brain 

functions: perception, motion and motivation. These areas are represented in Figure 4.4. 

▪ Parietal - temporal - occipital association cortex is the union of the three lobes and it 

is associated with higher perceptual functions such as physical sensation, vision and 

hearing, that is, the primary aesthetic stimuli of the three lobes respectively. This 

information is combined in the association cortex in order to form complex 

perceptions. 

▪ The prefrontal association cortex, the larger part of the frontal lobe, contributes to the 

planning of voluntary movements. 

▪ The limbic association lobe is associated with emotion, motivation, and memory. It is 

found in both the parietal, frontal, and temporal lobes. 

 

Figure 4.5. Schematic representation of the outer (visible) surface of the left cerebral cortex. 

Figure 4.5 illustrates a schematic representation of the outer surface of the human brain. 

The main areas of the primary motor and sensory cortex, the higher-order motor and 

sensory cortices, as well as the three association cortices, are shown. The Broca area 

controls speech production. It is located near the motor area controlling the movements 
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of the mouth and the tongue. The Wernicke area processes auditory information and it 

has an important role in the understanding of the speech. These two regions communicate 

with each other through a bundle of axons, the arcuate fasciculus. 

4.4. Brain imaging techniques (or neuroimaging methods) 

Several non-invasive methods have been developed to record brain activity in healthy 

subjects. The main methods are the following: 

▪ Electromagnetic recordings. There are two techniques for the non-invasive recording 

of the electrical activity of the brain: Electroencephalography (EEG) and 

Magnetoencephalography (MEG). Both techniques are extremely secure for the 

subject and they have excellent time resolution of milliseconds (ms). Such an analysis 

allows real-time monitoring of brain activity. However, they have limited spatial 

resolution as the recording of electrical activity is being made on the outer surface of 

the scalp. 

▪ Hemodynamic recordings. There are two techniques, Positron emission tomography 

(PET) and Functional Magnetic Resonance Imaging (fMRI). The PET records brain 

activity through the changes in the blood flow and the venous oxygenation level that 

follows the activation of brain nerve cells. PET records the gamma-ray (γ-radiation) 

emitted by the decay of the atoms that have initially stimulated by positrons that are 

released from radioactive elements. Its main disadvantages are the limited ability to 

repeat recordings on the same subject due to radiation exposure limitations, the low 

spatial resolution as well as the assumption that the brain should be in static 

condition for a period of time (60–90sec). The fMRI is based on the ability to bind the 

signals emitted by the hydrogen atoms that are in the tissues, especially those that 

are rich in water. When found inside a magnetic field, hydrogen atoms excite. In 

magnetic resonance imaging, the subject is exposed to a strong magnetic field that it 

is capable to orient the nuclei in a regular layout by means of a sequence of 

electromagnetic waves. The main advantage of the method is the very high spatial 

resolution, while its disadvantages include the need to expose the subject to 

extremely high magnetic fields and low temporal resolution. 

In the next section the Electroencephalogram (EEG) is described in detail as it is the 

technique that is used to record the electrical activity of subjects in this PhD thesis. 
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4.5. The electroencephalogram (EEG) 

4.5.1. The history of electroencephalogram (EEG) 

Electroencephalography (EEG) is the oldest brain imaging technique. The field of 

electroencephalography has its origin in the discovery of the possibility of recording 

electrical potentials that are induced by activated nerve cells of the cerebral cortex. The 

first attempts concerned recording in animals. Since 1791, Galvani had published the idea 

that the nerve cells contained an intrinsic form of electricity. In 1848, Du Bois-Reymond 

discovered that the activity of the peripheral nerves was accompanied by measurable 

changes in the electrical potentials. This prompted the scientific community to investigate 

the changes in the electrical activity due to the nervous system that would be indicative 

of its function. In 1875, the English physician Richard Caton published his research on the 

electrical brain activity of monkeys and rabbits using a galvanometer as a measuring 

instrument. In 1890, Beck observed the rhythmic electrical activity that was induced in 

the brain of rabbits and dogs caused by bright visual stimuli. Already in 1877, Catton had 

shown that there was a relationship between external stimuli and the electrical brain 

activity of rabbits and monkeys. He even mentioned that it was possible to record weak 

currents through electrodes placed on the skin surface of their heads. 

The first recordings in humans were made in the 1920s by the German physician Hans 

Berger (1873-1941), who based his research on Caton defining the beginning of the study 

of brain functions through EEG. Berger recorded electrical potentials from the scalp of 

patients with cranial injuries and a few years later using more sensitive equipment from 

healthy individuals. In 1929, Berger published the first electroencephalograms from 

humans, estimating the frequency of the signal at 10 cycles per second, which he called 

"alpha waves" from the first letter of the Greek alphabet. Berger's interest was primarily 

clinical, thus he performed thousands of EEGs in which he observed changes related to 

sleep, general anesthesia, cranial injuries and epilepsy while failing to detect differences 

in many other diseases (i.e., schizophrenia, melancholy, etc.). It is noteworthy that 

Berger's discoveries were ignored by the scientific community for some years because the 

recorded signals were considered as noise or harmonics due to the heartbeat or 

epidermal currents. 

4.5.2. The Neurophysiology of EEG 

Electroencephalography is the electrophysiological imaging technique by which we 

monitor and record the electrical activity that is produced by the nerve cells of the 
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cerebral cortex (neurons) due to cortical activity. It is noninvasive as the electrodes are 

being placed over the scalp. EEG records the voltage fluctuations that result from the ionic 

current within the neurons of the brain. These changing potentials are summed up and 

transferred to the skull from which they can be recorded (Fisch, 1999; Savoy, 2001; 

Triantafillou, 1994). Thus, EEG refers to the recording of the spontaneous brain electrical 

activity over a period of time, as recorded from multiple electrodes placed on the scalp. 

Electroencephalography is a field that has been heavily criticized particularly regarding 

key problems during recording as well as the subjective visual interpretation of complex 

recordings.  

The potential differences recorded from specific electrode locations on the skull as they 

evolve over time, make up the EEG or EEG signal. The EEG signal is a special class of 

bioelectric signal, i.e., an electrical signal produced by living cell and more specifically, by 

the cells of the nervous system. The EEG signals that originate by the brain, showing 

fluctuation over time, are often referred to as "brain waves", although, they are not 

oscillations in the sense used in wave theory. The production of these brain-derived 

signals that fluctuate over time is continuous, begins before the birth process, and is 

interrupted only by death. Another name for the EEG signal is "ongoing or spontaneous" 

EEG in order to be distinguished from the induced brain waves, such as evoked potentials. 

Evoked potentials are called the potential differences that are measured on the skin 

surface of the scalp, caused in preparation or in response to specific events that occur in 

the external physical world or take place as a psychological process (Koutsouris, 2003). 

 

Figure 4.6. The synapse of two neurons (left: https://bcachemistry.wordpress.com/, right: 
http://openneuronproject.org/synapse/ ) 

Α synapse, in the human nervous system, is a structure that allows a neuron to pass an 

electrical or chemical signal to another neuron (Figure 4.6). Synapses are the means that 

transfer the action from the presynaptic membrane to the postsynaptic membrane, 

https://bcachemistry.wordpress.com/
http://openneuronproject.org/synapse/
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through the very thin cleft that separates them, called the synaptic gap (or synaptic cleft). 

There are also cases where the synapse is very close to or on the body of a neuron and 

cases where one synapse involves three neurons at the same time, having two axons tips 

leading to the same point of a dendrite.  

Membrane potential (or transmembrane potential) is the difference in electric potential 

between the interior and the exterior of a nerve cell. Typical values of membrane 

potential, ranges from 40mV to –80mV. There are two types of transmembrane potentials 

related to the transmission of signals between neurons. 

The action potentials, that occur when the neuronal membrane is depolarized in response 

to a stimulus, i.e., brief reversal of electric polarization of the membrane of a nerve cell or 

muscle cell, beyond a threshold of 10 mV. This depolarization causes a sequence of events 

(Figure 4.7), consisting of an instantaneous decrease in membrane permeability to Na+ 

and K+ ions, which leads to a sudden collapse, inversion, and rapid restoration of the 

potential.  

 

Figure 4.7. Changes in membrane potential and relative membrane permeability to Na+ and K+ during an 
action potential (http://www.erexam.org). Neurons have a resting potential of about -70mV. 

http://www.erexam.org/
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This change in polarity travels throughout the membrane as a wave of excitation and 

reaching the tips of the dendrites it causes the release of neurotransmitters which in turn 

cause postsynaptic potentials in neighboring neurons. The action potentials are about 

110mV and they last only for 1ms. Action potentials are also known as "nerve impulses" 

or "spikes", and the temporal sequence of action potentials generated by a neuron is called 

its "spike train". A neuron that emits an action potential, is often said to "fire". In neurons, 

action potentials play a primary role in the communication between the cells. 

Postsynaptic potentials are changes in the membrane potential of the postsynaptic 

terminal of a synapse. These potentials are caused by excitation (action potentials) of 

other neurons reaching the presynaptic area, causing the release of neurotransmitters, 

which in turn alters the membrane permeability to Na+ and K+ ions in the postsynaptic 

area interacting with the appropriate receptors. This change in permeability causes a local 

change in the resting potential or otherwise a postsynaptic potential. The potential 

difference between the postsynaptic area and the rest of the neuron's membrane 

generates electrical current that flows through the membrane and changes its potential. 

A small portion of electric current penetrates through the meninges, the skull and the skin, 

as they are good conductors of electricity and creates areas with different potentials on 

the scalp. The potential differences on the scalp that range from 1 to 100µV can be 

recorded between two electrodes, constituting the electroencephalogram (EEG).  

The sum of the electrochemical effects from neuron to neuron, summed up for all areas of 

the brain, creates the so-called brain function, for which the various processes and 

manifestations can only partially be detected and studied. 

4.5.3. A general description of the electroencephalogram (EEG) 

The operation of the electroencephalograph (or EEG system), the device that records the 

electrical brainwaves via electrodes, is based on the recording of potential differences, 

which occur on the outer skin surface of the human head as a result of the brain function. 

There are two modes of recording, monopolar and bipolar recording. A monopolar 

recording is defined when the recorded signal is calculated as the potential difference 

between an active electrode and an inactive electrode (reference), while a bipolar 

recording is defined when the recorded signal is calculated as the potential difference 

between two active electrodes.  

The recorded electrical signals are weak, about 1µV to 100µV. Therefore, there is a need 

to amplify the signals, as much as possible. A reliable measurement requires an area of at 

least 6cm2-10cm2 of cortex in synchronized activity. 
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A typical digital EEG system consists of the EEG source, the recording electrodes, the 

analog amplifiers of the signals that receive and amplify the signals, the digital converters 

that digitize the signals, as well as the computer that performs the EEG filtering and 

analysis. 

4.5.4. The operation of the EEG system 

The first step in the extraction of EEG signals occurs in the electrodes. They convert the 

Na+ and K+ ion currents from the cerebral cortex to the scalp into electron currents in the 

cables leading them to subsequent processing steps. Before placing the electrodes, their 

exact position must have been identified and the area of contact must have been prepared. 

The skin is cleansed with alcohol or abrasive gel to remove grease, dead sebum or 

exfoliated cells in order to achieve low contact resistance, below 5KΩ. Various techniques 

are employed to stabilize the electrode in place, such as the use of adhesive conductive 

paste, headsets with special positions to stabilize the electrodes, and so on. The electrode 

comes into direct contact with the subject through the electrolyte that is used. Thus, it is 

possible for ions to move through the electrode-electrolyte "border" until equilibrium is 

reached. Insulated cables connect each electrode to the EEG recorder. Cables and 

especially the electrodes must be made by materials that have low electrical resistance 

and do not react with the electrolytes used in the conductive creams.  

Suitable materials are gold or platinum, silver or silver chloride and tin. A common 

electrode is made of silver (Ag) and silver chloride (AgCl) and used with an electrolyte 

mainly containing chlorine (Cl-) anions. Figure 4.8 shows gold-coated electrodes.  

The electrode impedance (z) is measured for each electrode placed on the cap with a 

device that sends a very weak alternating current through the active electrode to the 

reference electrode. Impedance is a measure of the impediment to this flow of alternating 

current, measured in ohms. The values of the impedance in a typical EEG are about 100Ω 

to 5MΩ. A larger impedance causes significant signal attenuation. Lower impedances are 

Figure 4.8. Gold-coated electrodes 
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usually due to short circuits that may be caused by the diffusion of the gel between 

adjacent electrodes or by the subject's sweat or saline that it is sometimes used as an 

electrolyte. Such phenomena are also limited by the quality of the electrode material, the 

relatively wide contact surface, and the high input impedance of the amplifiers. 

Needle-shaped electrodes with subcutaneous application are rarely used, likewise the 

nasopharyngeal and wedge electrodes. Often, in typical tests head-mounted electrodes 

are used consisting of a small silver rod at the end of which is added a pad impregnated 

with sodium chloride or a conductive cream, which are secured with straps or elastic nets 

in their locations. 

With the advances in integrated electronic systems technologies, a new generation of 

electrodes has been developed (Figure 4.9). Dry electrodes’ surface has an array of spikes 

that come directly into contact with the scalp. Spikes have been developed in the scale of 

nanometers, micrometers (MEMS) and millimeters. MEMS dry electrodes have several 

advantages in comparison with wet electrodes, such as the electrode–skin interface 

impedance and signal intensity. However, dry electrodes are subject to several challenges 

since they do not use the conductive gel to penetrate the hair and achieve a good contact 

with the skin.  

Another type of electrodes are the so-called active electrodes. Active electrodes differ from 

the passive electrodes described above as they do not require skin preparation. They have 

a built-in preamplifier. This allows the signal to be amplified before additional noise is 

added between the electrode and the system that would record, process or amplify the 

signal. Active electrodes greatly reduce EEG preparation time and do not tire the subject. 

Passive electrodes do not have a pre-amplification module, instead, they simply extend 

the connection from the conductive material to the equipment for recording, processing 

Figure 4.9. G.Nautilus dry electrodes 
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or amplifying the signal. Thus, dry and active electrodes seem to be the solution to the 

disadvantages of wet EEG electrodes. However, these new technologies must be evaluated 

and validated before use. 

A special type of electrodes are intracranial electrodes which are inserted internally into 

the skull by an invasive method applied to humans, only in pathological conditions. This 

category will not be further described as it is not used for research purposes. 

4.5.5. Electrode positions - The International System 10-20 

Various standards have been developed for the placement of the electrodes on a subjects' 

scalp. The most popular of those standards is the International System 10-20. With this 

system, the locations of the electrodes on the scalp allow not only a balanced coverage of 

the entire skull, but also the repeatability of the placement across sessions or subjects. 

The placement of the electrodes is done by considering the nasal bone at eye level and the 

occipital bone at the back of the head as the reference points (Figure 4.10). 

 

Figure 4.10. The International System 10-20 

Τhe semicircle of the skull between the reference points is measured horizontally and 

vertically. The electrode locations are determined by dividing the two semicircles at 10% 

and 20% intervals (hence the name of the system) of the measured skull (Teplan, 2002). 

Three more electrodes are placed on each side at equal distances between those already 

defined. In this way the locations of the electrodes are adjusted according to the 

dimensions of the subject's skull. 

The electrode locations are named after the cerebral cortex and the area in which they are 

placed. Their first synthetic consists of the letters: F (Frontal), C (Central), T (Temporal), 

P (Parietal) and O (Occipital). The second component consists either of an even number 

(2, 4, 6 etc.), if the electrodes are positioned on the right side of the skull, or of an odd 
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number (1, 3, 5 etc.) if it is placed on the left side. Finally, the letter z refers to the central 

areas of the skull. For example, electrode named Pz (Figure 4.11) refers to the electrode 

located on the parietal lobe and the central area of the skull. 

 

 

 

 

 

 

 

 

Some research studies require more detailed EEG recordings. In these cases, extra 

electrodes can be added using 10% division to fill in the intermediate areas midway 

between the sites that are defined by the standard 10–20 system. This system is more 

complicated giving rise to the Modified Combinatorial Nomenclature. The introduction of 

extra letter codes allows the naming of intermediate electrode sites. These locations are 

illustrated in Figure 4.12. It is noted that 4 electrodes have a different name than the 

system 10-20. 

 

Figure 4.12. The modified combinatorial 10-10 system. In this system four electrodes are renamed 
regarding the 10–20 system: T3 is T7, T4 is T8, T5 is P7 and T6 is P8 (noted with a blue outline) 

Figure 4.11 The Pz electrode location according to International System 10-20 
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The signal recorded at each electrode location occurs as the potential difference between 

two electrodes at any time. The electrodes that are located above the brain areas that 

present activity are said to correspond to active sites. On the contrary, electrodes that are 

placed above areas considered not to be related to brain function are said to correspond 

to inactive sites e.g., the ear or the two ears connected with a conducted wire, points of 

the neck, etc. These electrodes are called reference electrodes. 

Electrophysiological measurements are contacted following one of the two types of 

measurement principles, as mentioned above: the bipolar and the unipolar measurement 

principle. When the recorded signal occurs as the potential difference of two active 

electrodes, then, according to EEG terminology, we have a bipolar measurement. Bipolar 

measurements for 15 to 30 electrodes are the common methodology in clinical EEG 

neurological tests as it rejects the parasites that are detect to be common for both two 

electrodes. However, in psychophysiological research, the recorded signal is usually the 

difference between the potential of an active electrode and a reference electrode, so we have 

a unipolar measurement. The inactive site is common for all measurements and is considered 

as the reference electrode which it should not normally be affected by brain currents. In this 

way, we thus seek to have complete and simultaneous, from all active electrodes, information 

on any cerebral ion current reaching the outer skin surface of the head.  

The differences in potentials (i.e., differences in voltage between two electrodes) that are 

recorded, are initially driven to the EEG amplifier which also involves filtering devices. At 

the EEG amplifier, every detected signal is amplified so that it can be easily measured. The 

amplification factors of about 105 are common. The first amplifier stage, the preamplifiers, 

consists of low noise amplifiers. Specifically, if we intend to measure signals of the order 

of 1µV, the preamplifier must have an internal noise level of at least one order of 

magnitude smaller, thus hundreds of nV. In addition, circuits with differential amplifier 

combinations are used to keep the common mode rejection ratio (CMRR) at 120db. The 

analog signals are then either driven to a recorder and imprinted on paper, to 

conventional EEG systems, or, as is used in most advanced systems, via a multiplexer to 

the analog to digital signal (A/D) converter, where as digital signals are now measured on 

an electronic voltmeter. Then, a computer receives the digital data, so it is possible to 

digitally process and display the signal, either during the on-line measurements or at a 

later time if the signal is stored locally on the computer (offline). 

In modern systems, the operation of multiplexing, analog-to-digital conversion and 

recording, are often performed by data acquisition cards that are installed on the 

computer, along with the software for card control and digital signal processing. 
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The computer that presents the stimuli can also control a stimulus device. In this case, 

clinical and laboratory measurements may be performed, which include controlled trials 

providing for example specific sounds, words, numbers, images, etc. In this way it is 

possible to synchronize the presentation of the stimuli with the recording of the potential 

that arises from the stimulation (see 3.5 Evoked Potentials). It should be noted that for 

the proper operation of an EEG system, where the recorded signals are in the order of µV, 

the grounding of all parts of the system should be common so as not to create loops 

between different groundings which introduce errors. 

4.5.6. Artifacts 

One of the biggest challenges in recording an EEG signal is to identify and remove artifacts. 

Artifacts are the electrical potentials that are recorded with the electrodes mounted on 

the surface of the skull that are not generated by the brain. According to Tzimas (2010) 

and Bansal & Mahajan (2019), artifacts are divided into two main categories: 

physiological or biological artifacts and non-physiological or artificial artifacts.  

Physiological or biological artifacts (Figure 4.13) are bioelectrical signals that are 

generated from the subject’s body, excluding the brain. The physiological artifacts include 

the following: 

▪ Ocular artifacts. Eye movements produce potentials recorded mainly by frontal 

electrodes, although, they can extend to central and parietal electrodes. Special 

electrodes, placed around the eyes, record the potentials produced by horizontal and 

vertical eye movements to detect ocular artifacts in the procedure of EEG analysis. 

▪ Muscle artifacts. They can be recognized by their short duration and repeatability. 

Muscle artifact are considerably reduced during relaxation i.e., if the subject relaxes, 

opens his/her mouth slightly (because the jaw muscles produce strong muscular 

artifacts) or changes his/her position to feel more comfortable. 

▪ Movement artifacts. They come from the abrupt movements of the head, the body or 

the electrodes. Researcher's observation and recording of subjects' movements is 

important for identifying them and excluding them during the procedure of signal 

analysis. 

▪ Electrocardiogram (ECG). Artifacts are produced by heart function and are usually 

recorded by common reference montage, especially when the left ear is used as a 

reference. The use of both lobes as a common reference have reported a decrease in 

cardiac potentials. Also, the use of the sternum cervical bipolar as reference reduces 

such potentials. 
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▪ Pulse waves. Artifacts produced by large arterial pulses usually appear in frontal and 

parietal electrodes. 

▪ Skin potentials. The sweating of the scalp gradually changes the impedance between 

the scalp and the contact point of the electrodes thus altering the recorded potentials. 

Skin resistance can change due to sensory stimuli or emotional changes. 

Νon-physiological (extra-physiological) artifacts result from unsatisfactory technology: 

▪ Electrical interference (known in Greece as the "50Hz artifact"), interference from 

the wiring of the laboratory devices, buzzers and pacemakers (in clinical cases) and 

even cables that form loops can cause noise in the EEG. Noise may be caused as well 

by a malfunction of the recording system itself due to electrode movement, bad 

installation of the electrodes or the transformers of the recording system etc. Some 

of these artifacts are easily recognizable and can be removed, while others may be 

misinterpreted as brain activity. 

▪ Other people's movements in the recording area. 

▪ Artifacts may be also produced by the sampling technique that is used to convert the 

analog EEG signal to digital. When sampling frequency is low, spectral overlap (or 

aliasing) can occur. 

▪ Damaged electrodes, non-contact biosensors, movement of reference, etc., produce 

sharp potential (voltage) variations in EEG signal. 

Artifact identification and removal is an important area of research and much progress 

has been made since digital techniques have been introduced into EEG.  

Figure 4.13. Physiological artifacts (from Kanoga & Mitsukura, 2017) 
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4.5.7. Filtering of EEG signal 

During the recording and the offline analysis of the EEG (at the preprocessing or feature 

extraction phase), filters are used to limit the spectrum of the signal. The selection of the 

frequency band is based on research’s needs. The signal recorded by means of the 

electrodes is directed to the amplifiers of the system. Amplifiers enhance the potentials 

that are detected on the surface of the skull to drive them to the digital converter. The 

amplification factor is 106 (conversion from µV to V). After the initial amplification, the 

signal passes through a series of analog filters to cut off parts of the signal at a very low 

or a very high frequency. EEG systems typically have three types of analog filters: 

▪ High pass (HP) filters cut off low frequency waves. 

▪ Low pass (LP) filters cut off high frequency waves. 

When both HP and LP filters are applied (band pass filter), the signals with a 

frequency within the band passes and all other frequencies are blocked.  

▪ Notch filter cuts frequencies at 50Hz or 60Hz to minimize line noise i.e., any noise 

generated by the power line interference. 

Then, the signal is sent to the computer where it is converted from analog to digital, via 

the Analog to Digital Converter (ADC). This conversion can be viewed as applying a grid 

on a continuous signal (Figure 4.14).  

 

Figure 4.14. Analog-to-digital conversion 
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The signal becomes discrete in amplitude and time. It should be noted that, the grid must 

be sufficiently fine and cover the full extent of the signal, to avoid a significant loss of 

information. 

Analog signals are transformed into a voltage that is proportional to the amplitude of that 

signal. The digital signal consists of a series of discrete data that are separated by equal 

time intervals (epochs). The process required to convert the voltage recorded by the 

sensor to its digital equivalent is performed by the ADC through sampling and 

quantization. 

▪ Sampling is performed by the Sample-and-Hold (S/H) which is located directly at the 

input of the ADC. The S/H briefly opens its aperture window to capture the input 

voltage on the rising edge of the clock signal, and then closes it to hold its output at 

the newly acquired level. As shown in Figure 3.13, the signal present at the output of 

the S/H has a staircase-like appearance. The output level of the S/H is updated on 

every rising edge of the ADC’s clock input. 

The number of digital points per second that are used to represent the analog signal 

is called sampling rate (or sampling frequency). If the sampling rate is 100Hz, then 

every second of the digitized signal will contain 100 points (samples) (1/100s). 

When the function domain is time, sampling rates are expressed in samples/sec, and 

the unit of Nyquist frequency is cycles/sec (hertz). In order to digitize a signal of a 

given frequency, the sampling rate must be at least twice the frequency of the signal 

to be analyzed. This sentence is known as Nyquist's first law and the critical sampling 

rate is referred to as Nyquist rate. In practice it is common for the sampling frequency 

(usually 256Hz or 512Hz, up to 2048Hz) to be greater than the higher frequency, 

otherwise the digital signal representation would be far from analog and any 

interpretation would be particularly difficult. The application of Nyquist's law avoids 

the phenomenon of spectral overlap (or aliasing) which distorts the EEG signal.  

▪ Quantization assigns a numerical value to the voltage present at the output of the S/H. 

The amplitude of the analog signal is approximated by the discrete levels of the ADC. 

The number of bits used by the ADC to encode its digitized values. The number of 

possible different values of the amplitude of the digitized signal is called resolution.  

Studying the digital EEG on the computer screen has advantages over the analog EEG since 

it allows to define the part of the EEG signal or the electrodes that will be represented and 

processed each time, as well as the ability to apply digital filters. Moreover, an analog 

recorder system cannot record the small temporal differences (in the order of a ms) 

between different electrode channels. 
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Two types of filters commonly used in EEG 

Filtering is almost an integral step in the preprocessing of EEG signals as it helps to 

improve the signal-to-noise ratio (SNR). As mentioned in the previous section, the use of 

filters is an essential tool for producing interpretable EEG signals. Certain filter settings 

can be used to accentuate particular types of brain activity. Generally, filters should be 

used with caution as they can affect the EEG signal in way that range from subtle to 

dramatic, and they can lead to unintended consequences. The ideal filter design would be 

the one that removes all the artifacts from the EEG and allows brain activity to pass 

through without any distortions. Unfortunately, no such filter exists, as all filters remove 

certain waves based on mathematical rules.  

The filters are named after the frequency at which they attenuate the signal. The amount 

that a filter reduces a given wave is stated in decibels. A bel is defined as the logarithm of 

the ratio of the powers of two signals and a decibel is 10 times that number.  

𝑑𝐵 = 10 ∙ 𝑙𝑜𝑔 (
𝑝1

𝑝2
) 

where p1 and p2 are the powers of two signals being compared. 

The dB unit of a signal is used to describe the change in power rather than the change in 

amplitude (voltage), however, amplitude measurements are commonly used in EEG. 

Thus, we should consider the relationship between the power of the signal and its 

amplitude. The power varies as the square of its amplitude.  

𝑑𝐵 = 10 ∙ 𝑙𝑜𝑔 (
𝑎1

2

𝑎2
2) 

where a1 and a2 are the powers of two signals being compared. Thus, the equation can be 

written as: 

𝑑𝐵 = 20 ∙ 𝑙𝑜𝑔 (
𝑎1

𝑎2
) 

Temporal filtering or frequency filtering concerns to the attenuation of signal components 

of particular frequencies (bands). A filter can be described as an element in a two-port 

network with two inputs and two outputs (Widmann, Schröger & Maess, 2015). One 

electrode and the reference are fed to available inputs, while the output represents the 

filtered signal of the electrode against the reference. The term impulse response is used 

to describe filter’s response to the input. The frequency response is the Fourier transform 

of the impulse response which consists of the phase response and the magnitude (i.e., 



85 

amplitude) response. These responses filter’s properties. The transfer function is 

described by the impulse and the frequency response in the time and frequency domain 

respectively. They describe the effect of a filter on a signal. 

The Fourier transform of the impulse response is used to describe filters’ characteristics 

in the frequency domain. Frequency is usually plotted along the abscissa in Hz, from 0Hz 

(DC) to sampling rate/2 (Nyquist frequency) or in normalized units (in MATLAB, 

frequency is normalized to π radians per sample) i.e., one is half the sampling rate. In the 

magnitude response, the amplitude is plotted along the ordinate in linear or logarithmic 

scale (dB). 

Frequency bands in the passband ideally have magnitude values of one, which allows 

spectral components to pass without changing their amplitudes, while frequencies in the 

stopband ideally have zero magnitude values. In the phase response, phase is plotted in 

radians or degrees. Negative phase values reflect delayed spectral components. For 

example, a filter with a linear phase response in the passband has the same delay for all 

spectral components. This means that the time domain shape of the signal with spectral 

components within the passband is not changed by filtering. On the contrary, a non-linear 

phase introduces frequency-dependent delays, which cause changes in the shape of the 

signal even for spectral components within the passband. The cutoff frequency of a filter 

is defined by the frequency at which the power attenuated by 50% (Figure 4.15). 

Basically, is the frequency that separates passband from stopband of the filter and always 

lies within the transition band. This is the value that is most commonly reported when a 

filter is applied, but it is not enough to characterize the filter. This frequency is also called 

the “3dB point” of the filter because 50% reduction in power is approximately equal to 

3dB (i.e., if p1 is twice p2 then 10log (2)3). We should have in mind that a reduction in 

amplitude of 30% corresponds to a 50% reduction in power. The steepness of the roll-off 

characteristics of a filter is sometimes described in unit of dB per octave. An octave 

represents a doubling or a halving of the signal frequency. Different definitions of cutoff 

frequency are used e.g., -3dB cutoff (half-energy) is common for IIR filters, while -6dB 

cutoff (half-amplitude) is common for FIR filters. These two types of filters are described 

below in brief.  

The transition band is the region between the passband and stopband that encloses the 

cutoff frequency. For most FIR filters the -6dB cutoff frequency is at the center of the 

transition band. The term roll-off is used to describe the slope of the magnitude response 

in the transition band. Wide transition bands allow a shallow roll-off, while narrow 

transition bands lead to a steep roll-off. Filters with steep roll-off can separate the signal 
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from the noise components more efficiently. Moreover, the filter roll-off is a function of 

the filter order i.e., filter length minus one. Shorter filters with wider transition bands are 

preferable as sharper and longer filters produce stronger signal distortions. Finally, if the 

filter’s output depends on current and past inputs it is called causal, while. non-causal 

filters depend on past and future inputs.  

Digital filters are implemented as either Finite Impulse Response filters (FIR) or Infinite 

Impulse Response (IIR). FIR filters have either (anti-)symmetric impulse responses (i.e., 

linear-phase) or asymmetric impulse responses (i.e., non-linear phase). IIR filters have 

asymmetric impulse responses and non-linear phase. In EEG, Butterworth is applied 

widely. Butterworth filters have no passband and stopband ripple and have the 

shallowest roll-off near the cutoff frequency compared to the other commonly used IIR 

filters like Chebyshev and elliptic. In electrophysiology, almost exclusively odd length, 

symmetric FIR filters are applied. For FIR filters, the impulse response has to be 

windowed by a window function to reduce passband and stopband ripple. The transition 

bandwidth is a function of filter order and window type. Despite IIR filters often being 

considered as computationally more efficient, they are recommended only when sharp 

cutoffs are required. In electrophysiology, throughput is only relevant during recording. 

In offline analysis, computational time and throughput are not important issues. Thus, for 

sharp cutoffs and when a causal filter is needed, an IIR filter should be considered. Taken 

together, FIR filters are stable, have a well-defined passband, and can be converted to 

minimum-phase. 

Figure 4.15. Frequency domain response for a low-pass finite impulse response (FIR). The cutoff 
frequency in the middle of the transition band (ωc) separates passband and stopband. The deviation from 
designed passband (one) and stopband magnitude (zero) is described by passband ripple and stopband 

attenuation. the transition bandwidth is defined by passband and stopband ripple. δp indicates the 
magnitude of the passband ripple, which equals the maximum deviation from the unity. Passband ripple 
(1+δp) the maximum amount by which attenuation in the passband may deviate from nominal gain. δs 
shows the magnitude response of the stopband ripple, which equals the maximum deviation from zero. 
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4.5.8. Brain rhythms 

In healthy individuals, the frequencies and amplitudes of EEG signals varies from one 

state to another, e.g., between sleep and wakefulness. Brainwaves are actually the result 

of the brain's electrical activity.  

Table 4.4. Description of frequency bands 

Freq. band Description 

delta 0.5–4Hz.  

Delta waves are the slowest but high-amplitude brainwaves. They are mainly 

related to deep sleep but they could also be present when an individual is in a 

wakeful state. Rarely, they have been related to some continues attention tasks 

Frontal waves in adults. Rear waves in children. 

Delta waves are involved in the formation and consolidation of memory. 

theta 4–8Hz. 

The label “theta” implies its presumed thalamic origin. 

Theta waves are associated to deep learning and memory, access to 

unconscious material, creative thinking and deep meditation. Also, they seem 

to be associated with the level of arousal. 

alpha 8-13Hz. 

Alpha waves are associated to either a relaxed awareness or concentration. 

They mainly appear over the occipital brain region, having an amplitude 

normally less than 50µV. 

Most individuals produce alpha waves when they have their eyes closed. This 

is why it is assumed to be a waiting or scanning pattern produced by the 

occipital brain region. It is reduced with the presentation of a visual or auditory 

stimuli, anxiety or attention. Alpha activity is also related to the ability of 

recalling memories. 

beta 13-30Hz. 

Beta waves are associated with active attention, active thinking, anxiety and 

problem solving, and all conscious activities. These waves are produces in 

normal adults. 

Beta activity is encountered mainly over the frontal and central regions. 

Beta waves have small amplitude normally below 30 µV. 

gamma >30 Hz (up to 45 Hz). 

Gamma waves are mainly found are located in the frontocentral area. They  are 

associated to the concurrent processing of information from different brain 

areas. They appear mainly during cognitive functions. 

μ, mu Same as alpha frequency. 

It appears in the central areas in a state of relaxation. 
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These electrical signals in the brain change when sensory events occur, when there is a 

demand for attention, and during emotional and cognitive processes. These waves are 

called "rhythms" and are generally distinguished in slow (less than 7Hz), medium (8-

13Hz), fast (14-30Hz) and very fast (30Hz) frequencies. The characteristics of the waves 

also change with age. Usually, the signals observed in the EEG signal are between 1Hz and 

20Hz. Their amplitude is in the order of µV with typical values ranging from 1µV to 100µV 

for adults. The EEG spectrum is therefore subdivided into frequency bands or rhythms. 

The rhythms are named after the letters of the Greek alphabet without any order. Twelve 

letters have been used until today. However, there are slight differences in these 

frequency regions between researchers, as well as between people due to physiological 

differences or even from environmental effects on the same person. In 1929, Berger 

introduced the alpha and beta waves. Later, in 1938, Jasper and Andrews introduced the 

term “gamma” to describe the waves with a frequency over 30Hz. The delta rhythm was 

introduced by Walter (1936) to describe all frequencies that are below the alpha 

frequency range. Walter also designated theta waves as those that have frequencies of 4–

7.5Hz. Finally, Wolter and Dovey introduced theta waves in 1944. The most popular EEG 

signal rates are listed in Table 4.1. 

Figure 4.16 shows the main brain rhythms (waves) as time series of potential differences 

(differences in the voltage between two electrodes). 

Frequency is not always a sufficient measure to identify the brain rhythm. The shape, the 

amplitude, the topology, the skull distribution and the symmetry play an important role 

as well. In this direction, Klimesch (1999) argues that the use of predefined ranges of the 

EEG frequency bands is not appropriate because these ranges are affected by individuals’ 

Figure 4.16. Brain rhythms 
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characteristics such as the age. Specifically, the author suggests the use of peak frequency 

to define band ranges as it has been proven to provide meaningful and accurate results. 

Also, we should mention that information about skull distribution and the symmetry 

provide indications of specific EEG correlates. For example, frontal alpha asymmetry is 

the most frequently mentioned EEG correlate of valence. Moreover, in adults, two types 

of theta rhythm have been described. The first type is presented diffused over the skull 

and is associated with reduced alertness and reduced information processing. The second 

type, that is called frontal midline θ activity, is spread over the midline of the anterior 

brain region and is related to selective attention, cognitive effort, and is considered to 

reflect processes of mental concentration as well as meditative states (Kubota et al., 

2001). Finally, beta frequency band appears mainly in the anterior and central regions. 

Specifically, in the frontal and central brain areas increased beta power can be found 

during anxious thinking, deep concentration, and problem solving (Malik & Amin, 2017). 

An augmentation of beta power over the occipito-parietal brain lobe has been associated 

to a top-down increase of attention (Buschman & Miller, 2007). Therefore, in posterior 

regions, beta activity is thought to operate like alpha activity.  

4.6. Power spectral analysis of EEG 

4.6.1 Fourier transform 

Spectral analysis is a method widely used for the quantification of the EEG. The power 

spectral density (or power spectrum) represents the ‘frequency content’ of the signal, i.e.,  

it shows how the power of the signal is distributed over the frequencies. The most popular 

method for power spectral analysis is based on the Fourier theorem. According to Fourier 

theorem, each signal can be analyzed in a sum of simple sine signals with specific 

frequencies and amplitudes. This means that a signal can be converted from a signal in 

the time domain to a signal in the frequency domain. Amplitudes corresponding to each 

frequency of the signal, in the frequency domain, are calculated after the signal has 

undergone a transformation, called the Fourier Transform. The almost invariable used 

algorithm to compute Fourier transform is the Fast Fourier Transform (FFT). The 

algorithm calculates, for every frequency bin, a complex number from which we can 

extract the phase and the amplitude of the signal at each frequency.   

If the original signal is denoted by the function x(t), the Fourier transform is denoted by 

X(f) and is calculated from the mathematical expression: 
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𝛸(𝑓) =  ∫ 𝜒(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

+∞

−∞

 

where “t” is the time and “f” is the frequency. 

Discrete time signals result from sampling of continuous-time analog signals that are 

converted into digital values. The period between consecutive measurements is specified 

by the sampling frequency. Discrete time signals are not defined between sampling 

intervals, which means that the highest observable frequency cannot exceed Nyquist limit 

i.e., half of the sampling frequency. Therefore, for discrete time signals the Discrete Fourier 

Transform (DFT) is used: 

𝐹𝜒(𝑘) =
1

𝑁
∑ 𝜒(𝑛)𝑒−𝑗

2𝜋
𝛮

𝑘𝑛

𝑁−1

𝑛=0

 

where: 

N is the number of input samples,  

n=0, 1, …, N-1 are time points, 

χ(n) is the signal in the time domain,  

k is an integer index and,  

Fχ(k) is the vector of DFT samples 

For stationary signals where spectral content remains constant over time, Fourier 

transformation is a good method to calculate the frequency components of the signal. 

Stationarity basically explains the behavior of a signal in terms of its frequency and time 

relation. With the inverse Fourier transformation, the signal is reversed from the 

frequency domain into the time domain, in order to reproduce the original signal. 

For non-stationary signals where time and frequency are not constant but variable, Short-

time Fourier Transform (STFT) is usually applied. In this case, the signal is divided into 

successive segments in which the signal frequencies are considered stationary and 

Fourier transformation is applied on each segment. The signal is cut into segments using 

the windowing method. 

4.6.2. Window function 

In signal processing, a window is a mathematical function which has zero values outside 

of a specific interval that is to be processed, symmetric around the middle of the interval, 

having a maximum value in the middle, and tapering away from the middle. For example, 

a function that has a constant value in a specific interval and a zero value outside this 
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interval, is called a rectangular window. When another function e.g., a waveform, is 

multiplied by a window function, the result will be zero outside the interval and multiple 

within the interval. That means that what is left is the part where they overlap. This is 

often called the "view through the window". 

The most commonly window functions are: 

The rectangular window: 

𝑤(𝑛) = {
1, −𝑡1 ≤ 𝑛 ≤ 𝑡1

0, 𝛼𝜆𝜆𝜊ύ
 

Hamming and Hanning window: 

𝑤(𝑛) = {𝛼 + (1 − 𝛼)𝑐𝑜𝑠 (
2𝜋

𝛮
) 𝑛} , 𝑛 = 0,1, … , 𝑁 − 1 

where, N is the length of the filter.  

Alpha=0.5 for the Hanning window and alpha=0.54 for the Hamming window. 

As mentioned before, when the original signal is distinct, the Discrete Fourier Transform 

is used. Short-time Fourier transform (STFT) is the method of taking a “window” that 

slides along the signal and performs the DFT on each segment. The STFT discrete signal 

is calculated based on the expression: 

𝑋[𝑛, 𝑘] = ∑ 𝑥[𝑛 + 𝑚]

𝐿−1

𝑚=0

𝑤[𝑚]𝑒−𝑗
2𝜋
𝛮

𝑘𝑚 

where: 

n=0, 1, …, N-1: are time points, 

x[n], w[n]: are the signal and window sequences respectively, 

k: frequency indices, 

L: window length. 

A disadvantage of the Short Fourier Transform (STFT) method is the fact that windowing 

is a process of multiplying the signal over time by the window function and therefore, in 

the frequency domain, the window frequencies appear. Another pitfall of the STFT is that 

it has a fixed resolution. The width of the window function defines how the signal is 

represented i.e., it determines whether there is good frequency resolution or good time 

resolution. A wide window provides a better frequency resolution, while a narrower 

window provides good time resolution. 
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4.6.3. Power spectral density 

Spectral analysis is divided into two main areas: Fourier transform and power spectral 

density (PSD). When the data contains no random effects e.g., noise, Fourier transform 

can be calculated, while PSD is calculated when random effects obscure the desired 

underlying phenomenon. In the latter case, some sort of averaging or smoothing is 

employed to see the desired phenomenon,  

In case of EEG data, it is common to take the magnitude-squared of the FFT to obtain an 

estimate of the Power Spectral Density (PSD) that is expressed in μV2 per Hz. The PSD is 

a commonly used method for feature extraction. It is a signal processing technique that 

distributes the signal power over frequency and shows the strength of the energy as 

function of frequency. It should be noted that, PSD is a good tool for stationary signal 

processing.  

From the power spectrum of a signal, various characteristics of the EEG can be considered. 

These include the absolute power of frequency bands (absolute band power), the relative 

power of a frequency band (relative band power), spectral edge frequency, etc. The 

absolute power of the EEG is considered to reflect not only the amplitude of the signals, 

but also several other parameters, such as the morphology and electrical conductivity of 

the skull. With the relative power an attempt is made to dampen the non-cerebral effects 

by dividing the power of a frequency band by the total power (Abarbanel, 1999). 

Usually, the signal is separated in short segments (epochs) when analyzing using FFT. 

This is done to ensure that these signals segments will be free of artifacts. The length of 

the segment to be analyzed, is selected based on the following parameters. Firstly, the EEG 

segment must be small enough for the signal to be thought as stationary. Secondly, the 

EEG segment must be large enough to achieve the desired level of frequency resolution 

(i.e., the difference from one frequency to the next). Usually, the power spectrum is 

analyzed on the basis of broader frequency bands, which represent the sum of power of 

several smaller frequency bands (bins).  

To explain the importance of the frequency resolution, we consider a discrete time signal 

s (sequence of data values) with N samples:  

s = x[1], x[2], . . . , x[N] 

Each sample x[n] is indexed by its sample number n. The time between two successive 

samples x[n] and x[n+1] is T sec. The sampling frequency is defined as Fs=1/T samples 

per sec and the sequence of the data values was a length equal to Tseq=T*N sec. The 

frequency resolution is defined as Fres=Fs/N=Fs/(Fs×Tseq)=1/Tseq. 
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Thus, frequency resolution is the inverse of the segments’ length. This frequency is also 

the frequency increment for the Fourier transform i.e., the maximum difference between 

two adjacent frequencies to be analyzed. It is calculated as Fres=1/T, where Τ is the length 

of the EEG epoch in sec. For example, if EEG epochs length is 30sec, then Fres is equal to 

0.033Hz, which is 30 frequency bins per Hertz. If we take 4-second segments, we reduce 

the frequency resolution to 4 bins per Hz, with every step representing a frequency range 

of 0.25Hz.  

Statistically, estimating a frequency in an EEG epoch has a x2 distribution with 2 degrees 

of freedom. The degrees of freedom must increase and the dispersion of estimation must 

decrease. This is usually done by mediating multiple epochs or by a frequency window.  

The transformation of the EEG segments in frequency domain, leads to the mediation of 

their spectra, creating a new spectrum that is more representative of the activity of the 

participant's brain. The extraction of the average values has the advantage that reduces 

the effect of any random activity (generated by brain or not) especially when comparisons 

are made with other recordings. In a Fourier transform, the larger the epoch we assume, 

the greater the frequency resolution, while taking short epochs in order to reduce noise, 

the frequency resolution is quite small. 

To obtain the PSD estimation we can use parametric and non-parametric methods. The 

non-parametric methods are based on the Discrete Fourier Transform (DFT) and they do 

not assume that data have any structure. The parametric methods assume that data follow 

a certain model and require a certain amount of past information to calculate PSD. The 

most common non-parametric methods are the periodogram method which is the 

squared of the absolute value of DFT and the Welch method which takes advantages from 

the average of multiple DFT scans. Some examples of parametric methods are the 

autoregressive model (AR) and the moving-average window model (ARMA). 

4.6.4. Welch method  

The Welch algorithm (Same et al., 2021; Welch, 1967) is a non-parametric method to 

estimate PSD. This algorithm makes the frequency spectrum smoother than the raw FFT 

output. In the Welch algorithm, instead of processing the FFT over the entire signal (on 

time domain), the signal is separated in windows of the same size. Window size affects 

the clarity of the PSD by cutting frequencies with periods larger than the window. 

Windowing is taking a sample of a larger dataset and tapering the signal at the edges of 

each interval. In this way, the signal is made smoother without sharp transitions that can 



94 

disturb the frequency spectrum representation. This explains the reason that Welch 

method is described as a bandpass filter. There are different types of windowing sequence 

(e.g., Hamming, Hanning, Blackman) that affect the PSD results differently.  

The Welch method is based on Bartlett’s method. Each window overlaps the adjacent 

windows by a certain factor, which can be as much as 50% of the window size (Figure 

4.17). The overlapping helps to reduce the loss of information because of the tapering and 

gives a more reliable periodogram. The Fourier transform is calculated on each interval 

and the value is squared. The average of all periodograms is calculated as PSD estimation. 

Averaging enhances the SNR and it is optimal for spectrum estimation. The only issue with 

the Welch algorithm is that the frequency resolution (Fres=1/T, T is time in seconds) is 

reduced compared to the FFT.  

 

Figure 4.17. In Welch method each window overlaps with the adjacent windows by a factor between 0% and 
50% 

1. Partition of the data sequence: 

The signal s can be separated in K segments with M length (number of samples in each 

segment) and V overlapping, as following: 

1st segment: s1 = x[1], x[2], . . . , x[M] 

2nd segment: s2 = x[M − V + 1], x[M − V + 2], . . . , x[2M − V] 

. . . 

Kth segment: sK = x[(K − 1)M − (K − 1)V + 1], . . . , x[KM − (K − 1)V] 

where, si = {si[1], si[2], …, si[M]} represents the ith segment and K is number of the involved 

segment in the PSD calculation.  
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2. For each segment (K=0 to k), a windowed Discrete Fourier transform (DFT) is 

calculated by the following formula: 

𝑆𝑖[𝑣] = ∑ 𝑠[𝑚]

𝑀

𝑚=1

∙ 𝑤[𝑚] exp (
−2𝜋𝑗𝑚𝑣

𝑁𝐹
) , 1 ≤ 𝑣 ≤ 𝑁𝐹 

where w = {w[1], w[2], . . . w[M]} is the windowing vector (or function), NF is the DFT size, 

and Si = {Si[1], Si[2], . . . Si[NF]} represent the vector of frequency samples of ith input 

segment.  

3. For each segment, periodogram values are calculated as the squared absolute value of 

the DFT samples: 

𝑃𝑖[𝑣] =
1

𝐶
|𝑆𝑖[𝑣]|2, 1 ≤ 𝑣 ≤ 𝑁𝐹  

where C is normalization factor: 

𝐶 = ∑ 𝑤2[𝑚]

𝑀

𝑚=1

 

4. Periodogram values that are calculated from different segments are averaged and the 

PSD estimate is obtained:  

𝑃𝑆𝐷[𝑣] =
1

𝐾
∑ 𝑃𝑖[𝑣]

𝐾

𝑖=1

, 1 ≤ 𝑣 ≤ 𝑁𝐹  

We should notice that the number of segments involved in averaging affects the estimated 

PSD. Using more segments means that the estimation involves more time domain samples 

and the spectrum that is obtained is smoother as each frequency component is based on 

more observations. However, to deal with fast variation of frequency, smaller K values are 

more useful because the averaging over time can filter them (Same et al., 2021). 

4.7. Synchronization and desynchronization of alpha and theta rhythm  

The alpha rhythm is the dominant frequency band in the EEG signal of the human brain, 

especially in adults. It appears as a peak in the spectral analysis of the signal. The 

frequency and the power are two measures closely related. Typically, alpha frequency is 

defined as the peak in the frequency band corresponding to the alpha rhythm between 

7.5-12.5Hz or 8-13Hz. It is important to understand that the alpha rhythm is greatly 

affected by parameters such as age, possible neurological disorders, memory 

performance and the demands of the task that a person must perform. Based on the above 

admission, several researchers argue that the use of fixed frequency bands is not entirely 
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justified. For example, an elderly person with poor memory performance may display at 

rest a peak at a frequency of 7Hz or less. Thus, if we take for granted that the alpha 

frequency is the spectral component with the highest power between 7.5Hz and 12.5Hz, 

we will conclude that the frequency we recorded is the theta and not the alpha. 

If the power of the signal near 7Hz is desynchronized (i.e., decreased) during a task, 

compared to the resting state, we must consider that this peak at 7Hz corresponds to 

alpha frequency band and not to theta frequency. Alpha and theta frequency bands 

respond differently and in an exactly opposite way. With the increase of the difficulty of a 

task, there is a synchronization (i.e., increase) of the theta frequency and a 

desynchronization (i.e., decrease) of the alpha frequency. Research studies show that the 

reduction in alpha power due to the suppression of alpha rhythm may be observed 

primarily when the subjects have their eyes closed. Memory demands related to tasks that 

require attention and semantic processing, are factors that cause selective suppression of 

the alpha rhythm in different sub-bands. The result of the visual stimulation caused by 

the opening-closing of the subject's eyes, corresponds to a special case of sensory-

semantic demands of the task. There is a close relationship between sensory and semantic 

encoding. The encoding of sensory information is always targeting at extracting the 

meaning of the perceived information which is stored in the semantic long-term memory. 

4.8. Evoked potentials 

The stimuli or events that every person perceives from the outside environment as well 

as from the inside of his or her own body can trigger three types of EEG reactions: 

▪ Evoked potentials 

▪ Evoked or induced EEG oscillations 

▪ Synchronization or desynchronization of EEG rhythms i.e., suppression or 

enhancement of certain EEG rhythms. 

Evoked potentials (EPs) are parts of the EEG signal that represent the electrical responses 

of the cortex to a sensory, cognitive, or emotional event or stimulus. They represent the 

change in the electrical activity of the brain, which reflects the recognition and, in 

particular, the response to an external stimulus. Due to their nature, they are observed at 

specific and distinct intervals of very short duration, in the order of milliseconds (ms). 

The potentials are simply measured with electrodes on the skin without exposing the 

subject to any kind of electromagnetic field, so infants who are very sensitive can also be 

studied. Moreover, using many electrodes along the entire skull it is possible to examine 

which part of the brain presents electrical activity. 
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Evoked potentials may be produced by structures of the central or peripheral nervous 

system. However, when it comes to evoked potentials, we only consider those that are 

produced by the nerve cells of the central nervous system. The difference between the 

continuous EEG and the evoked potentials is that in evoked potentials we are interested 

in the instantaneous change of the electrical activity of the brain which is caused in 

response to a cognitive or sensory (visual, auditory, or somatosensory) stimulus. 

Evoked potentials consist of a series of positive and negative voltage fluctuations called 

components. Certain parameters describe the evoked potentials. The latency, that is the 

time that elapses from the moment the stimulus is presented to the moment the 

component (peak) of the potential is displayed. The amplitude, which is the maximum 

deviation from the isoelectric line. The polarity, that is the positive or negative of this 

deviation. 

 

Figure 4.18. The components of the evoked potentials. The horizontal axis shows the time (msec) and the 
vertical the potential difference (μV) 

The amplitude of the evoked potentials is very small compared to the amplitude of the 

EEG signal. Therefore, it is necessary for the stimulus and measurement to be repeated 

several times and then to apply techniques of overlapping waveforms, with the most 

popular technique being the 'averaging' which will be described in detail in section 5.7.1. 

In this way the automatic activity which generally does not show phase and frequency 

coincidence (as opposed to the induced dynamics) is greatly degraded due to the 

averaging, while the signal-to-noise ratio is increased, and the components of the induced 

potentials are highlighted (Figure 4.18). For example, the P300 is a positive component 

that appears about 300ms after the stimulus occurs. The P300 is produced when the 

subject is asked to distinguish between two stimuli (target / non target) that differ in one 

dimension, e.g., a natural characteristic (Triantafillou, 1994). 
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4.8.1. The technique of signal averaging 

After recording the EEG signal, the technique of signal averaging is usually applied to 

highlight the ERP components. This technique is an algorithm that calculates the average 

values for each point on the waveform (based on the sampling rate) on specific EEG 

segments, as it is based on the hypothesis that ERPs have a stable polarity (positive or 

negative) and they are closely related to the stimulus, while spontaneous EEG occurs 

randomly (Luck, 2005).  

Depending on the ERP component that it is under study, a short segment on the EEG signal 

is defined which includes a small region of about 100ms before the onset of the stimulus 

and a region of about 600ms after the onset of the stimulus. Based on the segments that 

have resulted from the repetition of the stimulus, the mean value for each point is 

calculated based on the sampling frequency (Figure 4.19). In this way the averaged final 

digital signal is obtained. As automatic electrical activity does not have a constant polarity 

and temporal relevance to the stimulus. After a number of repetitions, it tends to become 

an isoelectric line. The optimal number of repetitions is determined by the ERP 

component. 

 

Figure 4.19. Schematically the method of mediation (retrieved from Trends in Cognitive Sciences, Volume 4, 
Issue 11, 1 November 2000, Pages 432-440) 
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4.8.2. Exogenous and endogenous evoked potentials 

Based on their latent time of onset and other characteristics, the evoked potentials are 

divided into two categories, exogenous and endogenous. Exogenous evoked potentials 

(or stimulus-related potentials) are characterized by the following attributes: 

▪ They have a short latency (<= 100ms). 

▪ Their latency and amplitude depend on the physical parameters of the stimulus. 

▪ They are independent of the level of subject’s attention. 

▪ They show a relative stability in terms of latency and amplitude, among the normal 

population but also among the successive measurements on the same subject. 

Endogenous potentials are often termed as cognitive or event-related potentials (ERPs). 

ERPs are related to information processing and differentiation of the stimulus. They are 

an expression of higher cognitive functions, for this reason they are also called cognitive. 

They are characterized by the following attributes: 

▪ They have a latency of more than 100ms. 

▪ Their latency and amplitude do not depend on the physical parameters of the 

stimulus. 

▪ They are elicited when the subject is called upon to distinguish a stimulus (target) 

from a set of other stimuli (non-targets). 

▪ Their elicitation depends on the subject's selective attention towards the target 

stimulus. 

▪ It is independent of the type of stimulus (visual, auditory, or somatosensory). They 

are even elicited as a response to the lack of a stimulus. 

▪ They depend closely on the experimental design. 

The most popular ERP components that are often meet in cognitive studies are the N100 

(N1), P200 (P2), N200 (N2), P300 (P3) and N400 (N4). In the following sections, the N200 

and P300 components are described in detail. Those two components are related to 

recognition and discrimination processes. 

4.8.3. The N100 (N1) and P200 (P2) components 

The N100 component is the highest negative peak in the time interval from 70ms to 

150ms after the stimulus onset, while the P200 component is the highest positive peak in 

the interval from 120ms to 250ms after the stimulus onset. The N100 is considered to 

reflect the degree of attention of the subject, so in cases of distraction it presents a smaller 

amplitude and a prolonged latency. Current evidence suggests that the N1/P2 component 

may reflect the sensation-seeking behavior of an individual. 
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4.8.4. The N200 (N2) component 

The N200 component is the highest negative peak in the time interval from 150ms to 

350ms after the stimulus onset. It is related with the degree of subject’s attention and the 

difficulty of categorizing the target stimulus. It is recorded in the same areas as the P300 

and is often studied together as the N200-P300 complex (Patel & Azzam, 2005). 

Sometimes the component has two vertices, the N2a, which is considered exogenous and 

has a parieto-occipital distribution, and the N2b, which appears after the N2a component. 

The N2b usually gives its maximum value at the Cz electrode location. The time interval 

between the stimuli changes the latency and amplitude of the component.  

4.8.5. The P300 (P3) component 

The P300 component is elicited by unpredictable, infrequent task-related stimuli that are 

presented in a sequence of frequent stimuli i.e., when the subject is called to distinguish 

between two stimuli (or two categories of stimuli) which differ in one dimension e.g., a 

natural feature or a semantic feature of them. The elicitation of the component requires 

the subject’s attention, as it is related to the conscious processing of information. The most 

common experimental design for recording the P300 (as well as other event-related 

potentials) is the oddball paradigm. According to this design, the subject is asked to 

distinguish the target stimuli, which are randomly inserted into a sequence of stimuli that 

are not considered as targets. Non-target stimuli should be ignored by the subject. 

Considering the averaged signal, the largest positive peak between 250ms and 600ms is 

called P300. 

In terms of its topographic distribution, the P300 component has a parieto-central 

distribution and is usually displaying its maximum value at the Pz electrode location. 

Since the initial discovery of the P300, research has shown that the P300 has 

subcomponents (Luck, 2005; Polich, 2007; Squires, Squires & Hillyard, 1975). The 

subcomponents are the novelty P3, a.k.a. P3a, and the classic P300, which has since been 

renamed P3b. The P3a component has a shorter latency and a frontal topographic 

distribution, the P3b component has a longer latency and parietal distribution. The third 

component follows the first two components. The P3b is the component that is considered 

to be related to information processing and requires the subject's attention, which is why 

it is usually identified by researchers with the P300 component. The brain area that is 

responsible for producing this potential has not been identified. Most likely, the P300 is a 

multifocal operating process. 
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The latency and the amplitude of P300 component change with the age. The elderly 

usually elicits P300 with a longer latency and a smaller amplitude. Those changes are 

most likely due to the delay in memory processes. No gender differences are observed in 

the latency of the P300, while it appears that women have larger amplitude of the 

component.  

It has also been observed that P300 latency and amplitude are related to target stimulus 

characteristics. The more difficult it is for the subject to distinguish the target stimulus 

within a non-target sequence, the longer the latent time appears and the smaller the 

amplitude of the P300 component. In addition, the lower the probability of occurrence of 

target stimuli, the greater the width of the component. It should be noted that as the 

parameters of the P300 component vary based on the characteristics of the target 

stimulus, two consecutive EEG entries in the same subject should be at least 6 months 

apart to prevent familiarity with the process. 

According to Luck (2005) as P300 component depends on the probability of the task-

related category of a stimulus, it is necessary that the P300 to be generated after the 

stimulus has been categorized according to the rules of the specific task. As a result, any 

manipulation that postpones stimulus categorization increases P300 latency. 

Moreover, since the P300 is elicited when a stimulus or an event is subjected to a subject’s 

conscious information processing, it is closely related to decision-making processes. It 

may also be related to the immediate memory involved in these processes while its 

latency is directly proportional of the time required to categorize the stimulus. 

Finally, two are the main differences between the P300 and N200 components. Firstly, 

The P300 requires subject’s conscious processing of information while for N200 is not 

necessary. Secondly, the component N200 is elicited when the stimulus differs in one 

physical property from the preceded stimuli in a sequence, while the release of the P300 

component requires the stimulus to be task-related. 

4.8.6. The N400 (N4) component 

The most studied language-related ERP component is the N400 component. N400 was 

originally described by Marta Kutas and Steven A. Hillyard in 1980 as a reaction to an 

unexpected or inappropriate, but syntactically correct word, at the end of a sentence. 

Initially, the N400 component was described as a negative peak following the stimulus, 

starting at about 250ms and peaking at about 400ms. Based on the literature, its release 

time is between 200ms and 600ms (Kutas & Hillyard, 1980). The N400 has been used in 
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research to answer questions about issues such as storing information in the brain 

(semantic memory) and revealing how the human brain uses auditory language over 

visual language (Kutas & Federmeier, 2011). The N400 component appears to be 

generated primarily in the left temporal lobe.  

4.9. Advantages and disadvantages of electroencephalography 

An obvious advantage of EEG over other brain imaging techniques is that it allows 

repeated and long-term recordings. At the same time, it is a non-invasive technique, and 

the subjects are not subjected to strong electrical or magnetic fields or any form of 

radioactive material and no substances are administered to the subjects during recording. 

However, a particularly important advantage of EEG is its excellent temporal resolution, 

on the order of milliseconds rather than seconds. This is equal to the rate at which the 

brain functions evolve, which is important for the study of cognitive activities, cases 

where it is important to detect rapid changes in brain activity. The high availability of EEG 

systems, the low cost of acquisition and use, as well as the opportunity they provide for 

recordings outside the laboratory with the use of portable and wireless systems, enhance 

their usefulness. 

Perhaps the most important "problem" in the measurements of brain function with 

electromagnetic methods is the variability they present. EEG data is largely personalized. 

They show a differentiation from person to person that in some cases has no known 

justification. That is why the average values of the quantities calculated in the surveys do 

not fully correspond to the values that appear in the general population. Differences are 

also observed between different measurements in the same subject, with, in many cases, 

no apparent cause, possibly reflecting variability in brain states. This variability is lost 

with the use of classical averaging techniques. For this reason, analyzing isolated cases 

have their own value in EEG studies (Krause, 2006).  

The ultimate goal of EEG as a method of measuring electrical brain activity is to identify 

the sources of electrical potential in the skull and to relate them to groups of neurons that 

produce these potentials inside the brain. A significant limitation in the interpretation of 

the EEG is posed by the so-called reverse problem. In an EEG recording it is possible to 

have infinite combinations of sources in the brain that could explain and combine with 

the recorded signal from the scalp. Therefore, it is theoretically impossible to know the 

position of the source that produced the signal knowing only the position of the electrode. 
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In the literature there is a great variability in the study parameters that use EEG 

measurements, such as the number and location of electrodes, the type of recording 

(monopolar or bipolar) as well as the choice of reference electrode, the wide variety of 

signal processing and data extraction methods, the distinction EEG power in absolute and 

relative, as well as the differences in the determination of the borders of the rhythms. 

The most important disadvantages of EEG are mainly the low spatial analysis, the low 

signal-to-noise ratio, the several types of artifacts, and the great variability of the 

observations depending on the subject and the process that it is followed. 
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Chapter 5. Measuring cognition and affect in learning 

through psychophysiological measures 

5.1. EEG as an indicator of cognitive states 

Psychophysiological data have been found to provide objective measures of individuals’ 

cognitive state. These measures may include indices for task engagement (Chaouachi et 

al., 2010; Fairclough et al., 2013; Pope et al.,1995), attention (Chang, Lin & Chen, 2019; 

Chen & Wu, 2015), cognitive workload (Berka et al., 2007; Kobayashi et al., 2007), 

confusion (Wang et al., 2013), frustration (Heraz et al., 2007; Kapoor et al., 2007; 

Moldovan, Ghergulescu & Muntean, 2017), arousal (Bradley & Lang, 2000; Cuthbert et al., 

2000; Diaz, Ramirez, Hernandez-Leo, 2015; Xu & Xu, 2019), stress (Fairclough & Venables, 

2006) and boredom (Chanel et al., 2008).  

Psychophysiological computing has various applications such as adaptive automation, 

brain-computer interfaces, intelligent tutoring systems, etc. Research on adaptive 

automation uses users’ psychophysiological data to evaluate engagement and cognitive 

workload and provide assistance when a lack of concentration or an overload because of 

task difficulty occur. Users’ cognitive and emotional state can be also utilized for the 

design of adaptive systems. Moreover, changes in psychophysiological data can be used 

as an input to control computer-based systems, such as Brain-Computer Interfaces (BCI). 

The most accurate physiological signal for monitoring real-time changes in individual’s 

cognitive state, is the electroencephalogram (EEG). EEG has been also proven to be a 

reliable predictor of learners’ cognitive state while interacting with computer-based 

learning environments (Khedher, Jraidi & Frasson, 2019; Paradis & Mercier, 2021). 

Features extracted from spectral powers and ratios of the spectral band powers have 

been proven to be reliable indicators of cognitive states. The present study uses the 

spectral power of three frequency bands, namely theta (θ), alpha (α), and beta (β), in 

order to evaluate learners’ cognitive state while taking an assessment activity in a MOOC. 

Thus, in this chapter we describe features related to these bands. 

5.1.1. Theta band θ (4–8Hz): Cognitive workload, concentration  

Theta activity at the frontal cortical area has been related to the execution of cognitive 

processes (Niedermeyer & Lopes da Silva, 2005) as well as with drowsiness and sleep 

(Takahashi et al., 1997). Schacter (1977) states that during vigilance, two types of θ power 

have been described in adults. The first type is presented diffused over the skull and is 
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associated with reduced alertness and reduced information processing. The second type, 

that is called frontal midline θ activity, is spread over the midline of the anterior brain 

region and is related to selective attention, cognitive effort, and is considered to reflect 

processes of mental concentration as well as meditative states (Kubota et al., 2001). 

In cognitive tasks, theta activity is associated with cognitive workload (i.e., allocation of 

cognitive resources) and cognitive fatigue (Gevins et al., 1995) as well as with 

concentration (Yamada, 1998). An increase in frontal theta power is associated to an 

increase in the level of task difficulty (Antonenko et al., 2010), an increase in cognitive 

workload (Vidulich & Tsang, 2012; Xie et al., 2016), or the use of higher demands on 

working memory resources (Gevins & Smith, 2003; Parasuraman & Caggiano, 2002). 

Generally, frontal theta power increases when a task requires a sustained concentration 

(Gevins & Smith, 2003). Moreover, an increase in theta power is associated to a lower 

level of alertness and decreased cognitive vigilance, and is an indicator of lower arousal 

(Kamzanova, Kustubayeva & Matthews, 2014; Smit et al., 2005). Finally, theta activity has 

been also linked to emotional arousal and fear conditioning (Knyazev, 2007).  

5.1.2. Alpha band α (8–13Hz): Relaxed state, low arousal 

Alpha band increases when individuals are in a relaxed state, usually, with their eyes 

closed. When individuals open their eyes, alpha power has been found to decrease. 

Therefore, alpha band is closely related to visual attention (Antonenko et al., 2010). When 

alpha power is increased, the individual is in a state of decreased alertness and cognitive 

vigilance. This means that the attention resources that are allocated on a task are also 

decreased (Kamzanova, Kustubayeva & Matthews, 2014; MacLean et al., 2012; Ray & Cole, 

1985; Vidulich & Tsang, 2012). Additionally, alpha power is suppressed progressively 

when task difficulty and cognitive effort are increased (Mazher et al., 2017). 

The brain lobes that are mainly related to alpha power changes are, the occipital and 

parietal lobes (Dasari, Shou & Ding, 2017; Puma et al., 2018). A decrease in the power of 

a band is called desynchronization, while an increase is called synchronization. It has been 

found that posterior alpha desynchronization occurs during cognitive tasks (Klimesch, 

1999). Moreover, alpha power has been found to be sensitive to workload changes (Puma 

et al., 2018; Sterman & Mann, 1995) and cognitive fatigue (Borghini et al., 2012). Sterman 

et al. (1994) have investigated the EEG signals of aircraft pilot in different conditions in 

an aircraft simulator and reported that an alpha suppression that was associated to 

increases in cognitive load. 
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Theta and alpha bands have been shown to reflect cognitive and memory processes. 

According to Klimesch (1999), these bands have been found to react in opposite ways. 

Alpha power decreases while theta power increases as an individual is changing from a 

resting condition to a test condition. Also, an increase in the task demands leads to an 

augmentation of theta power and a suppression in alpha power. For example, Fairclough 

& Venables (2004) have shown that an increase in workload on a cognitive task causes an 

augmentation in theta power along with suppression in alpha power.  

Klimesch (1996, 1999) argues theta frequency changes as a function of alpha frequency. 

Therefore, it is suggested to use alpha frequency band as a common reference to adjust 

the ranges of the other frequency bands and achieve consistency in the interpretation of 

the data. Klimesch (1996) gives an example regarding the importance of defining an 

individual alpha band. He considers an elder adult with a poor memory performance. This 

individual is expected to show a smaller alpha peak frequency of 7Hz which falls in the 

range of theta. This is due to the use of predefined ranges of the EEG frequency band. 

Using peak frequency to define band ranges has been proven to provide meaningful and 

accurate results.  

EEG studies suggest that increases in alpha and theta activity during the vigil indicate a  

decrease of cortical arousal (Davies & Parasuraman, 1982). Alpha power has been found 

to be an indicator for a loss in alertness and cognitive fatigue in various settings (Borghini 

et al., 2012; Craig & Tran, 2012). Gevins & Smith (2003) in studies using multicomponent 

tasks, reported that workload changes decreased alpha power at parietal sites and 

increased theta power over the anterior frontal and frontal midline lobes. 

Finally, alpha band is separated in two sub-bands. The lower alpha activity is related to 

stimulus encoding and semantic processing, while the upper alpha activity is related to 

attention, cognitive processing, and cognitive effort (Jaušovec & Jaušovec, 2000). Upper 

alpha band is decreased by information processing that requires semantic memory. 

Lower alpha activity is suppressed as an index of alertness.  

5.1.3. Beta band β (13-30Hz): Alertness, anxious thinking 

Beta band activity (13–30Hz) is mostly studied with regards to sensorimotor behavior. 

Beta activity decreases during the preparation or the execution of voluntary movements 

(Pfurtscheller & Lopes da Silva, 1999). However, Engel & Fries (2010) noted that the 

changes in beta band during a sensorimotor activity are associated with several types of 

attention, and it is difficult to separate the processes that are associated to attention from 
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the sensorimotor processes. Beta activity is rarely associated with attention in human 

studies (Engel & Fries, 2010). On the contrary, alpha activity plays an essential role in the 

study of visual attention. 

In early studies, it has been found that there is a positive correlation between an 

augmentation of beta power and the accuracy level in a visual vigilance task, mainly over 

the occipito-parietal brain lobe (Belyavin & Wright, 1987). This increase has been 

associated to a top-down increase of attention (Buschman & Miller, 2007). An increase in 

beta power was also found during stimulus expectancy period (Basile et al., 2007). 

Townsend & Johnson (1979) have reported that when an increase in beta activity occurs 

just before the stimulus onset in a task, it could serve as a predictor of performance rate. 

In the same direction, Hanslmayer et al. (2007) showed that visual stimuli with very short 

duration were perceived by individuals only when their brain activity in beta band prior 

to stimulus presentation was high. Also, Gola et al. (2013) and Kamiński et al. (2012) have 

found that increased alertness, along with faster responses to target stimuli, was 

associated with a preceded increase in beta power over occipito-parietal brain regions 

and a decrease of alpha activity over occipital lobe. 

In cognitive tasks, beta band is associated with visual attention (Wróbel, 2000) and short-

term memory (Palva et al., 2011; Tallon-Baudry et al., 1999). Also, it is considered to 

reflect an increase in working memory (Spitzer & Haegens, 2017). In general, an increase 

in beta activity is related to an increase in cognitive workload (Coelli et al., 2015) and 

concentration (Kakkos et al., 2019). As far as the topology is concerned, an increase in 

beta activity has been found to be increased over the occipito-parietal area during visual 

working memory tasks (Mapelli & Özkurt, 2019). In the frontal and central brain areas 

increased beta power can be found during anxious thinking, deep concentration, and 

problem solving (Malik & Amin, 2017).  

The beta activity is usually divided into three sub-bands. Low beta activity (12–15Hz) or 

else known as “beta-1” waves, is associated mainly with focused, introverted 

concentration. Mid-range beta or “beta-2” activity (15–20Hz) is associated with increases 

in energy and performance. High beta or “beta-3” activity (20–30Hz) is related to 

significant stress, anxiety, and high arousal. 

To examine human cognitive and affective states, apart from the spectral power analysis 

of the most well-known frequency bands, the use of ratios of multiple frequency bands 

has been suggested. The use of these ratios is based on the assumption that we can 

improve the accuracy of the evaluation of cognitive states if we combine the information 

from multiple frequency bands.  
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5.2. Engagement 

5.2.1. Introduction to engagement  

Engagement is described as the simultaneous experience of concentration, interest, and 

enjoyment for a certain activity (Shernoff, 2013). According to Connell & Wellborn (1991) 

the term “engagement” reflects the level of behavioral, cognitive, and affective 

involvement in a certain task. Despite its importance, engagement is considered to be an 

overgeneralized construct in research studies in the field of education and psychology. 

Specifically, engagement is used to describe academic performance, students’ behavior in 

the classroom, interaction with instructional materials, instructor’s practices, as well as 

features of learning contexts designed to foster and sustain learning. It should be noted 

that, engagement is often used interchangeably with other related constructs, e.g., flow 

and motivation (Christenson, Reschly & Wylie, 2012). 

Researchers use engagement to refer to motivational beliefs, self-regulation, behaviors 

corresponding to cognitive strategies, persistence, as well as affective states. The term 

“disengagement” refers to a state that is usually related to learner’s lack of persistence, 

lack of perceived value of the task, lack of interest, rare use of effective strategies, negative 

emotions, and lack of meta-awareness. According to Azevedo (2015), this term is also 

pervasive and cannot be defined as there is a little agreement on a concrete definition. 

Engagement has been associated with positive learning outcomes not only in school 

education, but also in other educational settings (Fredricks, Blumenfeld, & Paris, 2004). 

Therefore, educators and policy makers consider engagement as the key to address core 

problems, such as low performance and low completion rates. Despite its importance in 

education, there are challenges regarding conceptualization and measurement of 

engagement.  

5.2.2. Defining engagement 

The definition of the term engagement depends on the theoretical perspective of the 

researcher and the level at which engagement is being evaluated based on the research 

context. We can measure a learner’s engagement in a specific moment or task, while we 

can also measure the engagement of a group of learners in a class, course, etc. To measure 

a learner’s engagement, researchers use physiological and psychological measures such 

as EEG, eye tracking, response time, etc., while researchers mainly use observations and 

ratings to assess engagement of a group of learners. Engagement in neuroscience 

research, is usually defined as the level of alertness.  
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Several aspects of engagement have been described in literature. Student engagement is 

thought to be an important factor that influences not only academic success (Newmann, 

1992), but also students’ motivation (Shernoff & Hoogstra, 2001), learning outcomes 

(Klem & Connell, 2004), and academic performance (Shernoff & Hoogstra, 2001).  

School engagement is defined as a multidimensional construct with cognitive, affective, 

and behavioral dimensions (Fredrick, Blumenfeld & Paris, 2004). In brief, cognitive 

engagement is defined as the willingness to engage in effortful tasks, self-regulation and 

use of strategy. Emotional engagement is defined as a sense of belonging. Behavioral 

engagement refers to actions that are related to participation in school activities. Fredrick, 

Blumenfeld & Paris (2004) as well as Reeve & Tseng (2011) conceptualize engagement as 

a componential construct with qualitative and categorical dimensions. For example, 

motivation and self-regulation are two constructs that exist in each dimension of the 

engagement while, behavioral engagement includes motivational constructs, such as 

persistence. Lan & Hew (2020) examined engagement in MOOCs in terms of competence, 

autonomy, and relatedness, using a mixed method. 

5.2.3. Engagement dimensions 

Most researchers conceptualize engagement as a multidimensional construct consisting 

of several facets (Anderson et al., 2004; Fredrick, Blumenfeld & Paris, 2004). Fredrick, 

Blumenfeld & Paris (2004) describe engagement as behavioral, emotional, and cognitive. 

According to Anderson et al. (2004), engagement consists of four dimensions, namely, 

behavioral, cognitive, psychological, and academic. According to Bosch (2016), 

engagement can be defined as affective, behavioral, and cognitive.  

Behavioral engagement is related to participation and can be defined as learner’s 

involvement in his/her own learning. According to Christenson & Reschly (2012), 

behavioral engagement may include classroom attendance, participation in extra-

curricular activities, assignments submission, following instructor’s dictation and staying 

focused. To measure behavioral engagement, researchers use indications of effort and 

persistence, behavioral aspects of attention (e.g., making eye contact), and self-regulating 

behavior such as seeking out information without instructors’ assistance. 

Emotional engagement is associated with positive and negative reactions to classmates, 

teachers (Fredricks, Blumenfeld & Paris, 2004), or to subject areas. Pekrun et al. (2002) 

define a relationship between engagement and emotions in the Control-Value Theory of 

Achievement Emotions. According to this theory, Pekrun (2006) suggested a taxonomy 
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that assumes the existence of positive and negative emotions in academic settings, as well 

as the existence of activating and deactivating emotions. Activating emotions are related 

to engagement. On the contrary, disactivating emotions may cause learners to disengage 

with the educational context. It has been shown that both positive and negative emotions 

can activate learner’s attention and engagement mainly when it is compared with neutral 

emotions. Additionally, research has shown that positive emotions promote engagement 

more efficiently than negative emotions (Heddy & Sinatra, 2013). Moreover, achievement 

and emotional engagement have been found to be positively correlated (Pekrun & 

Linnebrink-Garcia, 2012).  

The definition of the emotional dimension of engagement often includes motivational 

constructs such as perceived value, interest, or relative costs. The perceived value of a 

task refers to one’s belief about the benefits that will acquire out of his/her engagement 

in a task (Schunk, Meece & Pintrich, 2013). In this direction, Wigfield & Eccles (2000) 

propose the expectancy theory, which associates the motivation to engage in a task with 

the expectancy for utility value, interest, achievement, etc. (Eccles, 2005). Relative cost 

refers to the perceived negative aspects of being engaged in a certain task, while interest 

is related to intrinsic motivation. All these perceived values operate cumulatively to 

define the overall value and predict learner’s engagement level in a task.  

The next two engagement dimensions associate to the emotional dimension. 

Psychological engagement describes a sense of belonging along with the relationships that 

are developed with their teachers and their peers (Christenson & Anderson, 2002), while 

affective engagement refers to the emotional attitude (Bosch, 2016).  

Cognitive engagement is closely related to psychological investment (Wehlage & Smith, 

1992). It describes to the willingness to exert the necessary effort in order to comprehend 

complex ideas, acquire difficult skills (Anderson et al., 2004), use flexible problem-solving 

strategies, choose challenging tasks and generally to go beyond the requirements of the 

activity. Conceptualized in this way, cognitive engagement overlaps with behavioral 

engagement (effort) and emotional engagement (investment). According to Sinatra, 

Heddy & Lombardi (2015), this overlapping raises an issue about whether the dimensions 

of engagement could be differentiated effectively.  

Despite the definitional issues, cognitive engagement has been positively associated with 

self-regulation, achievement and self-efficacy. Based on Zimmerman (1990), cognitive 

engagement can be described in terms of self-regulation and persistence on challenging 

tasks. Cleary & Zimmerman (2012) argue that self-regulation is associated with the 
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construct of cognitive engagement as, self-regulation is a form of metacognition that is 

related to the flexible use of problem-solving and effort. Also, high levels of engagement 

have been found to increase learner’s motivation (Guthrie et al., 2004). However, 

cognitive engagement should not be confused with motivation and self-regulation. 

Cognitive engagement has also been found to be a predictor of achievement (Greene, 

2015; Greene et al., 2004). Pintrich (2000) argues that achievement goals and cognitive 

engagement are closely related. More specifically, learners who set mastery (or learning) 

goals are likely to employ deeper learning strategies than those who set performance-

related goals (Anderman & Patrick, 2012). Furthermore, Schunk & Mullen (2012) have 

found that higher levels of self-efficacy toward a certain activity is related to a higher 

cognitive engagement, while Anderson et al. (2004) argue that cognitive engagement is 

related to cognitive processes such as focused attention, memory, creative thinking, etc. 

Another dimension is the academic engagement which describes to academic 

identification and participation towards learning, e.g., time on task, etc. (Al-Hendawi, 

2012). Finally, Reeves & Tseng (2011) suggest another dimension of engagement, namely 

agentic engagement. Agentic engagement describes students’ contribution to the flow of 

instruction. According to Bandura (2001), students do not only interact, but they also 

enrich, personalize and modify the flow of the instruction. This contribution is called 

agency. 

To conclude, during learning each dimension of engagement co-occurs with the others. 

This means that, it is difficult to measure only dimension of engagement as the other 

dimensions also contribute to this evaluation. According to Sinatra, Heddy & Lombardi 

(2015), the problem arises when researchers do not take in account that engagement is a 

multidimensional construct and that is difficult to measure only one component of 

engagement without considering that other dimensions occur simultaneously and affect 

its measurement. Thus, the multidimensional approach to define engagement shows how 

important the different components of engagement are for achieving positive learning 

outcomes.  

5.2.4. Methods for measuring engagement 

Several methods are used to measure engagement. Generally, there are two types of data 

that can be used to measure learners’ engagement. Data that are internal to the individual 

(psychophysiological signals), and data that are external to the individual and can be 

recorded via observations (facial expressions, speech, actions, etc.). Dewan et al. (2019) 
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defines a taxonomy of the methods that are used for evaluating engagement. Based on this 

taxonomy, there are three main categories based on participants’ involvement in the 

engagement detection process, namely manual, automatic, and semi-automatic.  

The manual method is divided in two subcategories, self-reporting and observational 

checklist. Self-reports is the most popular technique through which participants report 

their cognitive and affective state (i.e., boredom, attention, anxiety, distraction, etc.) 

through questionnaires. Not all questionnaires evaluate implicitly the level of 

participants’ engagement, in most cases they imply engagement as a descriptive variable 

using factor analysis (Matthews et al., 2002). Self-reporting is widely used by researchers, 

as it is easy to administer. There are several questionnaires that have been used to 

evaluate engagement and related concepts (Appleton et al., 2006; Brockmyer et al., 2009; 

Whitton, 2007; Deng, Benckendorff & Gannaway, 2020; Lan & Hew, 2018). However, the 

validity of the data collected through these methods always depend on factors that 

researchers are not able to control, such as individuals’ willingness to state their 

emotions, whether they can accurately perceive their affective state, etc. Observational 

checklist is also based on questionnaires filled-in by external observers and not by the 

participants. Observers evaluate learner’s engagement during the task or based on 

recorded videos (Read, MacFarlane & Casey, 2002; Davies, 2002; Kapoor & Picard, 2005). 

The methods that are associated with tracing of engagement are classified in the semi-

automatic category. Engagement tracing utilizes elements such as the timing and the 

accuracy of learners’ responses on practicing problems. Many intelligent tutoring systems 

have used this method (Whitehill et al., 2014). 

The automatic category uses features that are extracted from image sensors, physiological 

and neurophysiological sensors, or by tracing participants activity in a learning 

environment (time spent on the course, number of forum posts, etc.). These methods do 

not interrupt learners during the evaluation of engagement. The methods in this category, 

are divided into three subcategories: computer vision-based, sensor data analysis and log-

file analysis depending on the data that the method processes.  

Computer vision-based methods measure engagement by identifying cues from facial 

expressions, gestures, and eye movements that reveal learners’ engagement, as is done in 

a classroom (Hughey, 2002; Jennett et at., 2008; Kappor & Picard, 2005; D’Mello, Craig & 

Graesser, 2009). The main advantage of these methods is the unobtrusiveness of the 

evaluation process. These technological advancements can be used in online courses such 

as MOOCs to provide personalized learning and reduce dropout rates. 
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Several physiological measures such as EEG, galvanic skin response, heart rate variability, 

blood pressure, have been used to evaluate engagement (Chaouchi et al., 2010; Fairclough 

& Venables, 2005; Nacke & Lindley, 2008). Although, these techniques can provide indices 

to evaluate engagement in real-time with high precision, it is not yet easy to be used in 

real-life educational contexts.  

Log files are also used to evaluate learners’ engagement. In online learning environments, 

learners’ actions are stored in log files which can provide useful information for 

evaluating learner’s engagement. Machine learning and data mining techniques can be 

used to analyze these files (Cocea & Weibelzahl, 2009). 

Regardless the method that a researcher uses to measure engagement, there are several 

concerns that pose challenges in measuring engagement. The first challenge relates to 

engagement’s definition. Researchers should define engagement before they choose a 

method to measure engagement as the definition should drive their choice of measures. 

Afterwards, researchers have to define the level of the measurement. This depends on the 

theoretical framework and the research questions. Learners’ characteristics such as age, 

gender, performance, socioeconomic status, etc. should also be taken into consideration 

by researchers when measuring engagement levels (Betts et al., 2010).  

It is generally accepted that, the single method problem poses another challenge of 

measuring engagement as each method has strengths and weaknesses. Ideally, 

researchers should use a combination of different methods and instruments to better 

approximate engagement. It should be noted that, to measure engagement during 

learning, researchers should ensure that this is done without disrupting the flow of 

learning. 

5.2.5. Engagement in MOOCs 

In MOOCs, studies on engagement primarily focus on examining behavioral engagement 

based on learners’ observable actions (Li & Baker, 2016). However, there is a little 

consensus on how behavioral engagement can be measured because metrics from the 

traditional classroom may not be useful for measuring behavioral engagement in MOOCs. 

In MOOCs, behavioral engagement has been studied either for certain learning tasks such 

as notetaking or video activity, or for multiple tasks which appear in the relevant 

literature as patterns of progression, participation patterns and patterns relevant to the 

use of the course components. Data from learners’ clickstream can be extracted from 

MOOC platforms and used as a metric for evaluating learners’ behavioral engagement.  
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Deng, Benckendorff & Gannaway (2020) have developed and validated a questionnaire 

for measuring engagement in MOOCs. Kizilcec, Piech & Schneider (2013) examined 

learners’ behavior based on the frequency of watching video-lectures and submitting 

assignments. The authors identified four distinct learners’ engagement patterns, namely 

disengaging, auditing, sampling, and completing. Other researchers have identified seven 

patterns of learners’ engagement in a MOOC, keen completers, strong starters, samplers, 

returners, nearly there, late completers, and mid-way dropouts (Ferguson & Clow, 2015). 

A few studies examined engagement considering not only the behavioral, but also the 

cognitive and the emotional dimensions (Floratos, Guasch & Espasa, 2015; Hew, 2016).  

5.2.6. EEG-based metric for engagement 

EEG is a technique that can be used to measure user’s engagement during a certain 

activity. Task engagement is described as an effortful commitment to cognitive (task) 

goals (Matthews et al., 2002; Fairclough, Ewing & Roberts, 2009). Similarly, it can be 

described as the energy that is mobilized to achieve cognitive goals (Gaillard, 2001). Task 

engagement is a multidimensional construct that combines cognition, emotion, and 

motivation.  

Measuring task engagement is important for computing systems that use real-time 

psychophysiological measurements to monitor individuals’ cognitive state (e.g., digital 

games, adaptive automation systems, intelligent tutoring systems). Unlike Brain-

Computer Interface (BCI) systems, the Physiological Computing (PC) paradigm is passive. 

This means that it requires no additional activity from users and it applies at the meta-

level of the human-computer interaction (e.g., to minimize user’s negative emotional 

states). Whereas in BCI systems, the physiological data operate as an input. The cycle that 

it is created from the mutual exchange of data between the user and the system through 

which a change on the user’s psychophysiological data is automatically transformed into 

adaptive control of the system, is called biocybernetic loop (Pope, Bogart & Bartolome, 

1995) (Figure 5.1). This exchange enables the so-called “smart” technology.  

Several physiological measures have been used to assess cognitive state e.g., heart rate 

variability, oculomotor activity, galvanic skin response. However, the EEG can reliably and 

accurately provide information about the changes in attention, workload, and alertness, 

in milliseconds (Berka et al., 2007). It has been proven to provide an unobtrusive method 

to monitor the dynamic fluctuations of cognitive states, e.g., task engagement and 

cognitive workload. 
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In general, research on EEG-based engagement evaluation primarily focuses on the 

features that are extracted from power spectral density (PSD) of the frequency bands and 

their relationship with the construct of cognitive engagement (Berka et al., 2007; Pope, 

Bogart & Bartolome, 1995; Prinzel et al., 1995). Although engagement is a little ambiguous 

as a construct, high levels of engagement is associated with a higher level of alertness 

which enables learners to attend to stimuli that are relevant to the task.  

Pope, Bogart & Bartolome (1995) developed at NASA the first adaptive system with the 

use of an EEG-based task engagement index. The researchers applied the index in a 

closed-loop system to modulate task allocation. Specifically, the system used a 

biocybernetic loop by adjusting the level of task automation in a flight control system 

(manual or automated), in response to the changes on operator’s engagement level. The 

authors reported that the engagement index, beta/(alpha+theta), measured at Cz, P3, Pz, 

P4 electrode sites, was the most successful from all other candidate indices to sustain 

operator’s engagement over the time. Chandra et al. (2015) used the engagement index 

to classify workload levels for an automated operating system and found that the index 

provided more accurate results at different electrode sites (namely at AF3, AF4, F7, F8).  

The engagement index was also validated in vigilance tasks. Freeman et al. (1999) 

extended the research that was conducted by Pope, Bogart & Bartolome (1995) and 

confirmed the effectiveness of the engagement index in a continuous tracking task. 

Freeman et al. (2004) and Mikulka et al. (2002) also evaluated engagement index in a 

biocybernetic, adaptive system. The authors found that better vigilance performance was 

obtained when negative feedback was given. Also, they argue that there is a need to 

increase task difficulty when engagement is low to maintain engagement and conversely. 

Other studies evaluated the success of the index when cognitive engagement was 

measured by using self-reports and participants’ behavioral changes (Prinzel et al., 1995; 

Freeman et al., 2004). 

Figure 5.1. The biocybernetic loop 
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Researchers have also used the same index to evaluate users’ cognitive states in 

educational settings. Berka et al. (2007) argue that workload and engagement increase 

during the encoding of learning and during memory test. Szafir & Mutlu (2012) used the 

index to evaluate participants’ attention levels in real-time while interacting with an 

adaptive robotic agent and adjusted the behavior of the agent for improving the discourse. 

Additionally, the authors implemented a system that used the EEG-based engagement 

index to evaluate in real time participants’ level of attention to the educational material. 

The system at the end of the session suggested the optimal review topics (Szafir & Mutlu, 

2013). Also, Huang et al. (2014) proposed an EEG-augmented reading system that 

monitored children’s engagement levels in real-time and provided training sessions for 

improve their engagement in reading. Moreover, Stevens, Galloway & Berka (2007) used 

the same EEG-based index to relate cognitive changes during problem-solving. Regarding 

distance education, Booth, Seamens & Narayanan (2018) recorded students EEG data 

while they were watching online lecture videos and used them to predict engagement 

rated by human annotators. The authors argue that individual differences in EEG signals 

demand a more complex index to evaluate engagement in distance learning 

environments. Eldenfria & Al-Samarraie (2019) developed an online continuous 

adaptation mechanism to regulate the presentation of learning material based on changes 

in the learner’s aptitude level. The authors reported that this mechanism had a positive 

impact on learners’ levels of concentration and cognitive load which consequently 

increased their engagement level. They also suggest the use of the proposed mechanism 

by designers of online courses in order to regulate the presentation of learning contents 

according to the learners’ level of aptitude. Alwedaie et al. (2017) used the task 

engagement index to capture learners’ engagement during the lecture in both real and VR 

classroom. The researchers found that engagement scores in both classes was 

approximately the same. 

Chaouachi et al. (2010) used the engagement index to confirm that there is a direct impact 

of learner’s affective state on the engagement level. More specifically, the authors found 

that positive emotions lead to higher levels of engagement, while negative emotions such 

as frustration and confusion might also elicit high engagement levels.  

Khedher, Jraidi & Frasson (2019) investigated whether combining data of two modalities 

(EEG and data from an eye tracker) have the potential to improve the prediction about 

students’ performance in the context of problem-solving. They confirmed that a 

prediction model can be built by combining data from two modalities namely fixation 

duration and cognitive state and suggested the use of a multimodal sensor-based 

approach to effectively predict learners’ performance during their interaction with a 
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learning environment. Also, the study of Nuamah, Seong & Yi (2017) relates to the use of 

physiological measures from autonomous systems to improve the fit between humans 

and systems. The researchers examined whether the EEG-based task engagement index 

could be used as an input to an artificial neural network for the identification and 

classification of users’ cognitive engagement. Authors found that the index can be used to 

distinguish different cognitive tasks. 

McMahan, Parberry & Parsons (2015a) verified the utility of the index for non-vigilance 

tasks. The authors used three different indices to evaluate players’ engagement in gaming 

modalities with increasing cognitive demands, and found that the ratio of β/(α+θ) 

(calculated using measurements from all electrode sites) is the best index for assessing 

the engagement levels of players’ while playing video games. In a similar study, McMahan, 

Parberry & Parsons (2015b) used the task engagement index along with two other indices 

for arousal and valence and found that the ratio β/(α+θ) can be used to differentiate game 

events with high intensity from the regular gameplay. Also, the authors reported that 

engagement and arousal indices can measure immersion levels during game play and 

could be used to define thresholds that could be used as indicators of players’ state of 

flow.  

Kamzanova et al. (2011) evaluated the sensitivity of several EEG indices (lower alpha, 

upper alpha, frontal theta, EEG-based engagement index, and Task Load Index-TLI θ/α) 

on the effects relevant to time-on-task and workload changes in a vigilance task. The 

authors reported that the engagement index failed to show the effects of task period and 

workload manipulations, while TLI and lower alpha power revealed the effects of both of 

them. Specifically, lower alpha power was increased and TLI was decreased over 

successive task periods. Based on the results of their study, the authors propose the TLI 

as a valid indicator of task engagement. In another work of Kamzanova and her colleagues 

(Kamzanova, Kustubayeva & Matthews, 2014), examined the validity of five EEG indices 

as indicators of diagnosing vigilance decrement, at two experiment condition with 

different levels of workload. Each participant was assigned to one condition, namely cued 

(lower levels of workload) and uncued (higher levels of workload) to perform a vigilance 

task. The researchers tested spectral power measures such as lower alpha, upper alpha 

and frontal theta, as well as ratios from frequency bands such as engagement index and 

task load index. They suggested that lower-frequency alpha (alpha-1) and TLI can be used 

to diagnose the loss in operator’s alertness on tasks requiring vigilance. Specifically, lower 

alpha showed a larger temporal change and was suggested to be used as the optimal index 

for monitor the loss of operator’s alertness on task requiring vigilance. Coelli et al. (2015) 
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also investigated the efficacy of another EEG-based task engagement measure, namely 

β/α, in monitoring the brain state during a sustained attention test (continuous 

performance test - CPT) and reported that this index could provide efficient and 

functional feedback during rehabilitation practice. 

To conclude, task engagement can be defined with respect to cognitive activity (mental 

effort), motivational orientation (approach vs avoidance) and emotional states (positive 

vs negative valence) (Fairclough et al., 2013). According to Berka et al., (2007), EEG 

engagement index β/(α+θ) is associated to cognitive processes such as information-

gathering and visual scanning. The ratio has been used to evaluate task engagement and 

alertness (Pope, Bogart & Bartolome, 1995; Freeman et al., 1999; Mikulka et al., 2002), 

mental attention investment (MacLean et al., 2012), and mental effort (Smit et al., 2005). 

Finally, other constructs, such as cognitive workload and focused attention, are usually 

being studied along with engagement, as they are thought to assess engagement 

indirectly. 

5.3. Attention 

5.3.1. Introduction to attention 

Attention is the cognitive process that describes the direction of cognitive resources 

toward certain stimuli in the environment. Based on the relevant literature, the process 

of attention relates to alpha and beta band activity of the human brain. For example, 

Hanslmayer et al. (2007) found that only the individuals that had a high EEG beta activity 

prior to the task were able to perceive brief visual stimuli. Also, MacLean et al. (2012) 

found a relationship between an increase in beta activity and high levels of accuracy in a 

vigilance task, while increased alpha band power was associated to lower performance. 

Moreover, many other studies have indicated a relation between alpha activity and 

attentive behavior (Haenschel et al., 2009; Jokisch & Jensen, 2007; Leiberg et al., 2006; 

Mathewson et al., 2009, 2010; Ray & Cole, 1985; vanRullen et al., 2011).  

5.3.2. Types of attention 

Attention is the cognitive process of selectively focusing on a discrete amount of 

information. There are several definitions of this concept. Attention is described as the 

allocation of limited cognitive processing resources (Anderson, 2004) or as a process of 

selecting the information to be processed. Regarding the latter definition, researchers 

argue that attention is manifested by an attentional bottleneck as the amount of data that 

the brain can process in each second is limited (Goldstein, 2011).  
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Visual attention is controlled by cognitive factors, such as prior knowledge, previous 

experience, goals, etc., as well as by sensory factors that reflect sensory stimulation 

(Corbetta & Shulman, 2002). Cognitive factors are also called top-down factors, while 

sensory factors are called bottom-up factors. Other factors, such as novelty and 

unexpectedness, are also affecting attention and they reflect an interaction between 

cognitive and sensory effects. The interaction of these factors directs individuals’ 

attention to certain stimuli of the visual environment. For example, it is easier for people 

to detect an object in their environment when they know in advance something about its 

features such as its color.  

Attention is not unitary but is rather a multidimensional concept with interacting 

subcomponents. Several processes are related to attention such as alertness, arousal, 

sustaining attention, and concentration (Parasuraman & Davies, 1984). Sohlberg & 

Mateer (2001) propose a model for the attention sub-components. This model of 

attention is based in cognitive theories and can be used as a clinical framework for the 

evaluation and treatment of attentional impairments. This model divides attention into 

the following sub-processes: 

▪ Arousal: describes the level of activation and alertness. 

▪ Focused Attention: defines the basic response to external or internal stimuli. The 

individual rejects irrelevant stimuli while attending to relevant stimuli. 

▪ Sustained attention: describes the individual’s ability to attend to a task over a long 

period of time. It concerns the maintenance of alertness over time in order to detect 

certain stimuli or stimulus changes. 

▪ Selective attention: individual’s ability to attend to a chosen stimulus or while other 

stimuli are present. 

▪ Alternating attention: describes the ability to control the allocation attention in order 

to switch between stimuli or tasks. 

▪ Divided attention: describes the ability to simultaneously allocate attentional 

resources to several cognitive tasks or stimuli. 

According to Kamzanova et al. (2014), there is a terminological confusion with the terms 

used for attention. However, the most studied components are the sustained attention 

and the selective attention.  
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Sustained attention 

Sustained attention refers to a one’s ability to concentrate on a task over a long period of 

time, even if there are other distracting stimuli present. Sohlberg & Mateer (2001) 

describe two components of sustained attention, vigilance and working memory. Working 

memory is associated to cognitive control that is necessary to hold and manipulate 

information while vigilance is defined as the continual response over time. Therefore, 

sustained attention is closely related with the process of learning. It should be noted that 

sustained attention is often used synonymously with vigilance. 

Selective attention 

Selective attention describes the process in which an individual selectively attends to one 

stimulus. According to Posner (1975), the term selective attention describes the shift of 

attention processing to a single source of information. Basar et al. (2001) argue that a 

significant increase in theta activity, in the frontal and parietal lobes, is related to 

processes of the selective attention. Grent-'t-Jong et al. (2006) in their study of selective 

visual-spatial attention of colors with event-related potentials (ERPs), noted that there is 

a great variability among individuals regarding the changes in the theta rhythm, the 

variability expanding even in the topological distribution. Moreover, Gruber et al. (1999) 

they observed a differentiation in gamma rhythm (35–51Hz). The power of the gamma 

rhythm increased when the subjects noticed a moving visual stimulus in contrast to those 

who ignored it. The shift of visual-spatial attention to the left or the right visual field was 

accompanied by a shift in gamma activity to the opposite hemisphere, mainly in parietal-

occipital areas. In addition to the expected involvement of parietal-occipital areas, a small 

increase in gamma power was observed in the frontal areas that was attributed to 

selective attention function. 

Vigilance 

Vigilance refers to the state of readiness to detect and respond to stimulus changes 

(Mackworth, 1957). The time course of vigilance decrement is affected by the cognitive 

aspects of the stimuli or task characteristics (e.g., modality, intensity, duration, 

probability) in addition to the motivational values. The loss of vigilance over duration less 

than one hour has been found in context as vehicle driving and students’ attention to 

lectures (Verster & Roth, 2012; Young, Robinson & Alberts, 2009). For cognitive 

neuroscientists vigilance is the ability to maintain attention on a task for a period. More 

specifically, vigilance refers to maintaining attention to discrete sources of stimuli 

(Kamzanova et al., 2014). For example, performance on a tracking task for a long time 
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would require sustained attention rather than vigilance. Alertness refers to the 

neurocognitive function that supports vigilance. Moreover, the term "vigilance 

decrement" refers to the degree to which performance declines over time (Ballard, 1996; 

Kamzanova et al., 2014).  

Finally, it should be noted that EEG-based measures of vigilance have been investigated 

most frequently in research studies regarding adaptive automation (Freeman et al., 

2004). In EEG studies, a decrease in theta power accompanied by an increase in alpha 

power is related to a state of reduced vigilance. 

Arousal 

The definition of arousal varies among researchers. Usually, arousal describes a non-

specific activation of cerebral cortex. The changes in the arousal are usually assessed from 

the EDA, while the assessment of sustained attention is usually based on behavioral data 

regarding performance. As far as the EEG is concerned, the alpha blockade which is 

related to an increase of faster EEG components such as beta activity, is considered to be 

the classic marker for general arousal processes (). Alertness overlaps with arousal, but it 

also includes some cognitive processing while vigilance is conceptually distinct from 

arousal. In general, researchers recommend different measures or ratios for evaluating 

attention (Gevins et al., 1997; Matousek & Petersen, 1983).  

5.3.3. EEG-based index for measuring attention 

The theta/beta ratio (TBR) is considered to be a stable biomarker for attentional control. 

van Son et al. (2020) define attentional control as the ability to apply top-down controlled 

attention over bottom-up information processing to support performance in goal-

directed tasks. The attentional control can be suppressed by the anxious thoughts which 

are distracting and can impair working memory (Coy et al. 2011). Lower levels of 

attentional control are associated with anxiety disorders (Amir et al. 2009). This agrees 

with the general belief that test anxiety causes divided attention, leading to poorer 

academic performance (Duty et al. 2016). 

This ratio is related to several aspects of attentional control in healthy young adults and 

decision making (Angelidis et al. 2016; Putman et al. 2010, 2014; van Son et al. 2018). 

Also, TBR is investigated in studies associated to mind-wandering (van Son et al. 2019), 

reversal learning (Wischnewski et al. 2016), and reduction of negative emotions 

(Tortella-Feliu et al. 2014). TBR has been used for monitoring car drivers’ cognitive state 

(Sun et al., 2015) and evaluate distraction from attentive driving (Zhao et al., 2013).  
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This index is based on the assumption that an increased level of task engagement results 

to an increase in beta activity and a suppression of theta activity (Gale & Edwards, 1983). 

Moreover, Derbali & Frasson (2012) argue that TBR correlates with responses to 

motivational stimuli and affective reactions. The authors argue that TBR is a significant 

predictor of learners’ motivation and can be used to assess motivational strategies. Also, 

the authors note that, there is a negative relationship between the attention ratio and 

learner’s level of attention. This means that a higher TBR correlates with excessive theta 

activity and inattentive states. 

Theta/beta ratio has been widely used in studies related to clinical disorders such as 

attention-deficit/hyperactivity disorder (ADHD) (Lansbergen et al., 2011; Arns, Conners, 

& Kraemer, 2013). An increased TBR ratio is related to shorter reaction time and poorer 

performance (Loo & Makeig, 2012). 

Furthermore, Clark et al. (2019) investigated whether that TBR is an indicator for arousal 

or a marker for cognitive processing capacity by examining the relationship between the 

P300 component and the TBR. The authors found a positive correlation between P300 

latency and the TBR. Therefore, the authors argue that TBR is an indicator of cognitive 

processing capacity. 

5.4. Cognitive workload 

5.4.1. Introduction to cognitive workload 

According to Paas et al. (2003), cognitive workload can be defined as a multidimensional 

construct that represents the load that is imposed on the learners’ cognitive system when 

they perform a certain task. The authors state that cognitive load has a causal and an 

assessment dimension. The causal dimension reflects the interaction between the task 

and the learner characteristics while the assessment dimension that reflects the 

measurable concepts of cognitive load, performance, and cognitive effort. It is argued that 

cognitive load is an important factor for learning as it can impede performance and 

learning outcomes (Sweller, 1988; Sweller, Ayres & Kalyuga, 2011).  

Cognitive load theory is based on the idea of the limited processing capacity of working 

(short-term) memory and its interaction with long-term memory (Sweller, 1988; Paas et 

al., 2003; Sweller, Ayres & Kalyuga, 2011). Thus, cognitive load theory is associated with 

the design of instructional methods in terms of using the limited working memory 

efficiently to apply acquired knowledge and skills to new tasks (Castro-Meneses, Kruger 

& Doherty, 2020). 
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According to Sweller, Ayres & Kalyuga (2011), cognitive load consists of three different 

components: the intrinsic load (i.e., the intrinsic nature of the information), the 

extraneous load (i.e., the way the information is presented) and the germane load (i.e., the 

cognitive activity required for learning). Moreover, Xie & Salvendy (2000) describe the 

various ways of considering cognitive load. Instantaneous load describes the changes of 

cognitive load at each moment while peak load is the maximum value of instantaneous 

load. Accumulated load measures the total amount of load during the task. Average load 

is calculated by averaging the instantaneous load. Finally, overall load refers to 

individual’s experience of load. Overall load is measured using the subjective scales of 

cognitive load, evaluating the intrinsic, extraneous, and germane cognitive load 

components. 

Cognitive workload has been measured mainly by means of subjective scales. Paas (1992) 

argue that learners can provide a reliable assessment of their cognitive effort. The author 

proposed a subjective measure consisted of one item on a 9-point Likert scale. This 

measure has been shown to be sensitive to variations of cognitive load and consistent to 

performance data. Many studies have used Paas’s scale (Antonenko & Niederhauser, 

2010; DeLeeuw & Mayer, 2008; Anmarkrud et al., 2019). It should be noted that, 

subjective scales measure the overall cognitive load (Xie & Salvendy, 2000). Moreover, 

Leppink & van den Heuvel (2015) propose a 10-item scale for measuring cognitive load. 

NASA Task Load Index (NASA-TLX) questionnaire is a multidimensional assessment tool 

for measuring perceived workload and is widely used in the studies on human 

performance (Hart & Staveland, 1988). 

Apart from the subjective measures, physiological measures are also used to measure 

workload such as heart-rate variability (Paas & Merrienboer, 2004) or via eye tracking 

(Kruger & Doherty, 2016). EEG due to the high temporal resolution, is considered to be a 

technique well suited to measure instantaneous and average cognitive load (Castro-

Meneses, Kruger & Doherty, 2020; Gevins & Smith, 2003; Xie & Salvendy, 2000). 

5.4.2. Defining cognitive load 

Cognitive workload describes the reduction of an individual’s cognitive resources due to 

demands that are imposed by a certain task. For example, an increase in task difficulty 

leads to an increase in workload due to the depletion of available resources (Kamzanova, 

Kustubayeva & Matthews, 2014). In high cognitive workload and specifically, when 

workload reaches individual’s cognitive capacity, it is expected that individuals will make 

errors. In addition, low cognitive workload can also lead to human errors due to boredom 

and consequently possible human distractions.  
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As humans have a limited amount of cognitive resources, it is important to optimize the 

allocation of these resources to different tasks in order to have better cognitive results. 

However, there are many factors affecting the amount of cognitive resources that an 

individual can dedicate in task, such as demographics (age, gender etc.), affective states 

(e.g., happy, anxious, sad), previous experience, skills etc. 

In the literature, there have been proposed several metrics to measure cognitive 

workload, both subjective and objective. Subjective metrics are based on questionnaires 

and interviews. The most popular questionnaire for the self-assessment of an individual’s 

cognitive workload is the NASA Task Load indeX. An overall rating of six dimensions 

namely, cognitive demand, physical demand, temporal demand, performance, frustration 

level and effort, is calculated as the average of all six ratings (Hart & Staveland, 1988). One 

important limitation of the questionnaire is that participants answer the questions after 

the completion of the task. 

Objective measures are based on the physiological, neurophysiological, and behavioral 

data recorded using different types of sensors and offer a continuous measure of 

workload in real-time. These measures do not interfere with participants act on the task 

(Wang et al., 2015). Physiological measures include electrocardiography (ECG), heart rate 

variability (HRV), pupil dilation, blink frequency and saccades (Tsai et al., 2007) while, 

neurophysiological measures include electroencephalography (EEG) and functional near-

infrared spectroscopy (fNIRS). Behavioral measures include keystrokes, mouse tracking 

and body positioning. Between the three techniques, neurophysiological measures are 

considered most direct indicators to objectively assess workload (Gevins et al., 1997; 

Debie et al., 2019; Rojas et al., 2020). 

5.4.3. EEG-based metric for cognitive workload 

Two components of the EEG have been found to be sensitive to manipulations of task 

complexity, alpha and theta frequency bands (Gevins & Smith 2003; Klimesch 1999). 

Researchers have observed that alpha and theta activity is related to task difficulty and 

cognitive workload in a variety of task demands. As task difficulty increases, theta 

activity increases (Antonenko & Niederhauser, 2010; Gevins & Smith, 2000), while 

alpha activity decreases (Antonenko & Niederhauser, 2010; Gevins et al., 1997; 

Sterman et al., 1993). Some studies show that increases in cognitive workload are 

associated to increases in alpha power (Jensen et al., 2002; Khader et al., 2010; 

Klimesch et al. 1999). Several studies have evaluated cognitive load in working-
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memory tasks (Gevins et al., 1997; Klimesch et al., 1999; Krause et al., 1996). 

Antonenko & Niederhauser (2010) evaluated participants’ workload in the  context of 

instructional design.  

As brain activity changes as a function of the age and individual differences (Klimesch, 

1999), it is proposed to study the changes induced by a certain task in the EEG signal, 

rather than evaluating at the absolute power of frequency bands. A measure for assessing 

brain activity changes is event-related synchronization (desynchronization). This 

measure was originally developed to quantify the changes only in the alpha band 

(Pfurtscheller & Aranibar, 1977). Generally, it represents the change in a band power on 

a task condition compared to a baseline condition. The baseline condition refers to an 

interval prior to stimulus with no task demands, while the task condition refers to the 

interval during the task. The ERD/ERS index is calculated using the formula:  

ERS/ERS% = (baseline band power – test band power)/ test band power * 100 

Additionally, another EEG-based index for assessing cognitive workload is the 

theta/alpha ratio (or Task Load Index, TLI). An increase in cognitive load has been 

consider relating to a decrease in alpha power and an increase in theta power (Stipacek 

et al., 2003; Käthner et al., 2014). Also, increased levels of fatigue relate to an increase in 

alpha and theta power (Käthner et al., 2014; Xie et al., 2016). Research has shown that 

workload changes increased theta power at anterior frontal and frontal midline brain 

regions and decreased alpha power at parietal regions (Gevins & Smith, 2003; Fairclough 

& Venables, 2004). We should mention that, EEG indices such as TLI do not discriminate 

the components of cognitive load (intrinsic load, extrinsic load and germane load) but 

they evaluate the overall cognitive workload.  

Although, many studies have associated high scores of TLI with performance impairment, 

Kamzanova, Kustubayeva & Matthews (2014) has found that higher TLI is associated with 

superior performance. Also, TLI increases with working memory load as well as during 

problem-solving and analytical reasoning. The index is also considered to be reflective of 

executive functions.  

Finally, Fernandez Rojas et al. (2020), propose several of indicators that can be used to 

objectively assess cognitive workload in a multitasking setting. The authors proposed the 

evaluation as indicator of workload the θ, α, β band power values as well as of frequency 

band ratios such as the task engagement index β/(α+θ), the TBR θ/β and the TLI θ/α. 
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5.5. Affect 

5.5.1. Introduction to emotions 

Emotion is a psychophysiological process triggered by conscious or unconscious 

perception of an object or a situation. It is often associated with mood, personality, and 

motivation. Emotions have a fundamental role in our daily life as they play an important 

role in human cognition. Human cognition refers to the cognitive process of acquiring 

knowledge and understanding through thought, experience, and senses. It consists of 

several processes such as rational decision-making, human perception, human 

interaction, and human intelligence. 

Affective computing is a field that combines technology and emotions into HCI. Affective 

computing aims to measure individuals’ affective responses and to correlate them with 

their emotions. According to Yadegaridehkordi et al. (2019), emotions can become the 

driving factor for learning and engagement. Involving an emotion detection capability in 

online learning environments can expand the use of such educational technologies, and 

provide personalized instruction (Cabada et al., 2018). 

Participant’s emotional state can be evaluated by subjective measures (self-reports), 

physiological signals and external expressions (e.g., audio/visual signals). Many studies 

on emotion assessment have focused on the analysis of facial expressions and speech. 

Subjective measures can provide valuable information about participant’s emotions, but 

such measures always confront validity issues. Physiological signals can assist in 

obtaining accurate and reliable measures of the participants’ emotions as they are 

recorded during the task. 

Physiological signals used to measure emotions include the galvanic skin response, which 

increases linearly with the participant’s level of arousal, electromyography, which is 

correlated with negative emotions, heart rate, which increases with negative emotions 

and respiration rate as breath becomes irregular with more aroused emotions like anger. 

Neurophysiological measures are also used to evaluate emotions. Neuroimaging 

techniques are also used to collect neurophysiological data for evaluating participants’ 

affective state.  

Many research studies use physiological signals for emotion recognition (Kim & Andre, 

2008; Wang & Gong, 2008; Chanel et al., 2009). Lisetti & Nasoz (2004) used physiological 

responses to identify emotions in movie scenes. Also, Kierkels et al. (2009) suggested a 
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method for personalized affective tagging of multimedia using physiological signals. 

Yazdani et al. (2009) suggested a brain-computer interface (BCI) based on P300 

component to tag videos with one of Ekman’s emotions. 

Recent studies have shown that it is possible to use EEG-based emotion recognition in 

areas such as entertainment, e-learning, e-healthcare applications, etc. As emotion is a 

complex psychological state that involves three distinct components (i.e., a subjective 

experience, a physiological response, and a behavioral response), a combination of 

different measures is often used to evaluate participant’s emotional state. 

In the literature, there are two different perspectives for the representation of emotions. 

The first one uses a categorial representation of emotions and indicates that the basic 

emotions have evolved through natural selection. Plutchik (2001) proposes eight basic 

emotions: anger, fear, sadness, disgust, surprise, curiosity, acceptance, and joy. According 

to Plutchik, all the other emotions can be formed by the basic ones. Ekman (1999) 

suggested a classification based on the relationship between emotions and facial 

expressions. The second perspective uses a dimensional representation which is based 

on cognition, specifically on cognitive appraisal. According to Lazarus (1991), cognitive 

appraisal refers to the evaluation of the significance of an event or a situation for a 

persons’ well-being. This suggests that emotions do not arise automatically but they are 

elicited by appraisals (people’s assessments) of particular events and situations. The 

emotional reaction is rather influenced by individuals’ cognitive processing of those 

experiences. In this perspective, emotions are organized into three dimensions: arousal, 

valence and dominance dimensions. Valence ranges from very positive emotions to very 

negative, while arousal can range from inactive (sleepy, uninterested, bored) to active 

states (excited). Dominance refers to the degree of control over the emotions (Ekman, 

1999; Lang, 1995) and can range from a weak feeling (without control) to an empowered 

feeling. The model that is most commonly used is the Circumplex Model of Affect. This 

model defines every emotion using two dimensions, arousal and valence (Posner, Russell 

& Peterson, 2005).  

Emotions are differentiated from similar concepts such as feelings, moods and affects in 

affective neuroscience. Feelings refer to a subjective representation of emotions, while 

moods are affective states that last longer and are usually less intense than emotions. The 

term affect is used to define all the aspects of emotion simultaneously. Recent studies have 

attempted to identify neural markers to understand the nature of emotions (Saarimäki et 

al., 2016). 
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EEG signals and emotions are found to be correlated in neuropsychological studies. Alpha 

asymmetry and changes in alpha power are associated to emotions. A right frontal 

activation is associated with withdrawal response or negative emotions whereas a 

relatively greater left frontal activation is associated with an approach response or 

positive emotions. Therefore, asymmetrical frontal EEG activity may reflect changes on 

the valence (Chanel et al., 2009; Liu & Sourina, 2011). Beta band is also related to valence 

(Jatupaiboon, Pan-Ngum & Israsena, 2013). 

Alpha asymmetry in prefrontal and parietal lobes and gamma asymmetry in temporal 

lobe can be used to identify valence, while alpha asymmetry in prefrontal lobe and gamma 

asymmetry in temporal lobe can be used to identify arousal (Huang et al., 2012). Changes 

in the gamma band are also related to emotions of happiness and sadness, so is the 

decrease in the alpha wave in different sides of the temporal lobe. The left lobe is 

considered to be linked to sadness while the right with happiness. (Li& Lu, 2009; Park et 

al., 2011). As far as ERP components are concerned, components with short to middle 

latencies like N100 and P100 as well as N200 and P200 have been associated with valence, 

whereas the components of middle to long latencies e.g., P300 have been associated with 

arousal (Kim et al., 2013).  

Previous studies suggest that gender affects the processing of emotional stimuli 

differently. Researchers suggest that men rely on the recall of past emotional experiences 

to evaluate current emotional experiences, while women seem to engage to the emotional 

stimuli more readily (Lee et al., 2005). To conclude, the frontal and parietal lobes are the 

most informative about the affective (emotional) states, while alpha, beta and gamma 

bands are shown to be the most discriminative. 

5.5.2. The circumplex model 

The affective (or emotional) state of an individual is defined as a psychological and 

physiological state in which emotions and behaviors are interrelated and appraised 

within a certain context (Scherer, 2005). Previous studies (Fredricks, Blumenfeld, & Paris, 

2004; Reschly et al., 2008; Pekrun & Linnenbrink-Garcia, 2012) acknowledge the 

importance of emotions for improving learning and reported that increased positive 

emotions are closely correlated with higher levels of student engagement. Kahu et al. 

(2015) argue that understanding the factors that affect emotions and the impact of 

emotions on learners’ engagement, can enable the improvement of course design and 

support. For example, learners’ emotions in online learning environments can be affected 

by the way learners interpret the learning experience. 
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Research studies have shown that it is possible to identify EEG correlates of emotional 

states that are correlated with specific events in computer-based applications such as 

digital games (Salminen & Ravaja, 2008) or HCI applications in general (Spiridon & 

Fairclough, 2009). Research studies have used different induction protocols to measure 

participants’ affect, e.g., pictures (Aftanas et al., 2001; Huster et al., 2009; Müller et al., 

1999), sentences (Marosi et al., 2002), music (Schmidt & Trainor, 2001), videos (Krause et 

al., 2000) and recall of emotional events (Chanel et al., 2009; Chanel, Ansari-Asl, & Pun, 

2007).  

Affect is usually studied within the circumplex model (Russell, 1980). This model defines 

a two-dimensional emotional space, with an arousal and a valence orthogonal dimensions. 

This means that all affective states can be defined in terms of valence and arousal. In the 

relevant literature, electroencephalogram and other physiological measures have been 

used to assess brain responses to emotional stimuli in the dimension of valence and 

arousal. The dimension of dominance is assessed in terms of EEG correlations only in the 

study of Heraz & Frasson (2007). The authors correlated the continuous EEG 

measurements with the self-reported valence, arousal and dominance. 

Results from research studies have shown that cognitive processes related to emotion 

recognition are associated with the right hemisphere (right hemisphere theory). 

Positive and negative emotional states have been associated to regions in the left and 

right frontal brain areas, respectively. This assumption is called the valence theory 

(Silberman & Weingartner, 1986). Based on the valence theory, positive emotions are 

processed in the left frontal brain area, while negative emotions are processed in the 

right frontal brain area. On the contrary, Davidson (1992) proposes an 

approach/withdrawal theory in which the two hemispheres are differently activated 

depending on the motivational direction of the affective state. More specifically, left 

hemispheric frontal activity is associated with an approach, while right hemispheric 

activity is associated with a withdrawal. As it is obvious, there is an overlap of the two 

theories, as most approach-related emotions are related to positive feelings and most 

withdrawal-related emotions to a negative feeling. Finally, Reuderink, Mühl & Poel 

(2013) argue that the dimension of dominance enables a differentiation between 

approach and withdrawal emotions that cannot be differentiated on the two-

dimensional space of arousal and valence. 
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5.5.3. EEG-based indices for measuring emotions 

Cortical activation has been shown to be inversely related to alpha activity (Pfurtscheller, 

1999). Positive affective information is associated with a decrease of alpha power over 

the left frontal cortex, while negative affective information is associated with a decrease 

of alpha power over the right frontal cortex. Therefore, the frontal alpha asymmetry is the 

most frequently mentioned EEG correlates of valence. 

Arousal activates the human brain and is associated with a global decrease of alpha 

activity (Barry et al., 2009). Few researchers studied more localized effects of arousal on 

alpha band power, reaching to contradictive results. Schmidt & Trainor (2001) found a 

correlation between the activation of frontal brain area and the perceived arousal of 

musical excerpts, while Aftanas & Golocheikine (2001) found a deactivation in the frontal 

brain areas (increased alpha power) associated with increasing arousal. Other EEG 

correlates have been observed at posterior sites with increasing arousal i.e., an increase 

of power in the delta band (Klados et al., 2009) and theta band (Aftanas et al., 2002), a 

decrease of alpha power and an increase in upper gamma power (Aftanas et al., 2004). 

Diaz, Ramirez & Hernàdez-Leo (2015) decoded participants’ affective states in terms of 

arousal and valence, using EEG signals recorded while participants were watching 

educational videos. The authors evaluated the effect of the talking head on cognitive load, 

emotion and attention by comparing three conditions: taking head, audio only and mixed 

condition. Arousal and valence were estimated by calculating the ratio of the beta β and 

alpha α power at four electrode sites in the prefrontal cortex AF3, F3, AF4, F4 (Ramirez & 

Vamvakousis, 2012; Eldenfria & Al-Samarraie, 2019). The authors used the following 

formula: Arousal=β/α, or Arousal=(βF3+βF4+βAF3+βAF4)/(αF3+αF4+αAF3+αAF4). 

In general, beta brain waves are associated with an alert or excited state of mind, whereas 

alpha brain waves are more dominant in a relaxed cognitive state. The calculation of the 

valence was based on the valence theory that was mentioned before i.e., that left frontal 

brain area inactivation is associated to a withdrawal response and is linked to negative 

emotions whereas, the right frontal inactivation is associated to an approach response 

and consequently to positive emotions. Diaz, Ramirez & Hernàdez-Leo (2015) computed 

valence using the following formula: Valence=αF4/βF3 – αF3/βF4. 

Soleymani et al. (2009) computed arousal and valence levels of participants’ emotions 

while they were watching videos using linear regression. Quantized arousal and valence 

levels for each clip was mapped to emotion labels. Koelstra et al. (2012), used music video 

clips to elicit different emotions. They proposed a novel semi-automatic stimuli selection 

method using affective tags which were rated by the participants. The authors reported 
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significant correlates between participants’ ratings and EEG data. Specifically for arousal, 

negative correlations in the theta, alpha, and gamma bands were found. The central alpha 

power decreased for higher arousal, and generally an inverse relationship between alpha 

power and the level of arousal was found. Valence showed the strongest correlations in 

all frequency bands. In theta and alpha band, an increase of valence led to an increase of 

power. These effects were located over occipital regions which might be indicative of a 

relative deactivation. For the beta frequency band, authors found a central decrease and 

an occipital and right temporal increase of power. Increased beta power over right 

temporal sites has been associated with positive emotional external stimulation.  

To evaluate arousal with subjective measures, the Self-Assessment Manikin (SAM) is 

usually used (Bradley, 1994). SAM is a self-report measure in which participants indicate 

their emotional state. 

Different techniques have been reported in the relevant literature to elicit participants’ 

emotions. When researchers use techniques to evoke emotions, the stimuli are usually 

taken from popular databases, such as the International Affective Picture System (IAPS) 

database and the International Affective Digitized Sounds (IADS). Other modalities, such 

as the recall paradigm and the dyadic interaction, are also used in research studies. 

Although the images, videos, and audio stimuli has been studied extensively as affective 

stimuli, olfactory stimuli (Kroupi, Vesin & Ebrahimi, 2016), written words (Briesemeister, 

Kuchinke & Jacobs, 2014; Mueller & Kuchinke, 2016; Imbir, Spustek & Zygierewicz, 2016), 

food stimuli (Novosel et al., 2014), and games, have been also used to assess emotional 

states using physiological signals (Chanel et al., 2011; Spape et al., 2013).  

5.5.4. Affective states in MOOCs 

MOOC platforms store data that are generated from learners’ navigation and interaction 

during the course. These data can provide the means to detect possible issues and make 

adjustments to improve learners’ learning experience. Affect in MOOCs is receiving an 

increasing attention because of the importance of emotions in learning. By identifying 

learners’ affective states in a MOOC, we can acknowledge the elements associated to 

positive and negative valence. The correlation between affect and learning is particularly 

important as emotions can lead to certain behaviors. For example, negative emotions such 

as frustration and confusion may affect learners’ interest and can be related to learner’s 

dropout. Positive emotions can be associated to increased engagement. Rothkrantz 

(2017) argues that positive emotions can support the intention of learner to continue in 

a MOOC. According to Gupta et al. (2016) learners’ affective states may indicate learner’s 

involvement and interest, as well as the level of understanding of the educational content.  
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Different methods have been used to evaluate the affective state of learners in a MOOC. 

Learning analytics, machine learning, sentiment analysis, physiological signals and self-

reports are some examples. Li & Baker (2018) analyzed log data obtained from MOOCs on 

Coursera to evaluate learners’ engagement and its relation to learning outcomes. The 

authors classified learners in subgroups, namely all-rounders, quiz-takers, auditors, 

disengagers, and found that an engagement measure may predict achievement for one 

subgroup but not for another. Guo, Kim & Rubin (2014) analyzed log data of a MOOC on 

edX platform to examine how video watching behavior correlates to engagement. The 

authors argue that shorter videos with enthusiastic speakers are more engaging.  

Leony et al. (2015) developed mathematical models for evaluating the affective state of 

MOOC learners to identify frustration, boredom, confusion and happiness. The authors 

report that frustration was related to the number of learners’ attempts to perform the 

assignments, time spent on the assignment and the level of difficulty, while boredom was 

calculated based on the time needed to answer a question. To identify confusion, the time 

and the way learners responded to a question is considered, while for happiness, authors 

considered gamification elements. Liu et al. (2016) proposed a system for the recognition 

of affective states in a MOOC. Emotion extraction was based on comments posted on a 

Chinese MOOC platform. 

In machine learning methods data can be of different types (such as text, clicks, time) and 

can be used as input to algorithms (Support Vector Machine, K-Nearest Neighbors etc.), 

statistical procedures (regression) and exploratory methods (clustering). These 

algorithms identify patterns in unlabeled data or try to predict an output variable given a 

set of mutually exclusive attributes. Yang et al. (2015) proposed a classification model to 

identify the degree of confusion expressed in discussion forums. Liu et al. (2018), 

developed a joint probabilistic model that incorporates an emotion lexicon to calculate 

the emotion-specific topic distribution on forum posts. Chen et al. (2016) created a system 

to predict personality traits from log data based on Gaussian processes and Random 

forests. 

Sentiment analysis is used to extract subjective information. In MOOCs the main source of 

data are discussion forums, email and messages exchanged inside the platform or through 

social media networks. Wang, Hu & Zhou (2018), proposed a model to identify the 

emotional tendencies of MOOC learners and predict the successful completion of the 

course. 
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In general, in MOOCs, it is difficult for instructors to know the true affective states of 

learners as they are learning in distance. EEG can objectively evaluate learners’ affective 

state and make assessments on the quality of the educational material. If most of the 

learners maintain a high degree of arousal during the course, then the material is 

attractive enough to learners, whereas if most students are in a low arousal, then the 

course materials can be less interesting, and instructors need to redesign the material. Xu 

& Xu (2019) proposed a prototype system, named Megrez for the detection and 

adjustment of the arousal level of learners in a MOOC. The authors used the β wave to 

analyze the arousal of the brain. The brain arousal is fed back to the learners to let them 

understand their affective state. Additionally, when the brain is in a low awake state, 

authors proposed a way to stimulate the brain by playing music.  

5.6. Neurophysiological measures for assessing learners’ cognitive 

and affective state in MOOCs 

Cognitive states, such as attention and memory workload, influence learning outcomes 

directly, while affective states (e.g., confusion, boredom, etc.) have influence learning 

indirectly. Unlike classroom education, immediate feedback from the student to 

instructors is less accessible in Massive Open Online Courses (MOOCs). Physiological 

signals, e.g., skin conductance, electroencephalogram (EEG), heart rate, facial expressions 

and eye gaze, are usually used to assess learners’ cognitive state.  

A selective literature review on the use of neurophysiological measurements in the field of 

MOOC, from the beginning of MOOCs’ research to 2020, focusing mainly on the scientific 

articles that examine the cognitive or affective states of learners, identified about ten scientific 

articles. The articles were retrieved from well-known bases such as ScienceDirect, ACM 

Digital Library, Taylor & Francis, Wiley, IEEE, ERIC, Sage journals, Springer, Scopus, and 

Google Scholar, using the keywords MOOC AND EEG. The search concerned articles of 

scientific journals and international conferences written in English in which the keywords 

appeared in any field. The search was extended by using the phrases “online course”, “e-

learning”, “online lecture video”, “educational video”, “video lecture” instead of the word 

“MOOC” and the words “brainwave” or “electroencephalography” were used instead of “EEG”. 

Papers that did not have a relevance with the topics or were about people with learning 

disabilities or other cognitive issues were excluded. Based on the results of this literature 

review, research on MOOCs that use neurophysiological measurements, aims in 

improving learner’s online learning experience and performance. Articles that were 

obtained can be separated in three main categories based on their main research purpose: 
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▪ articles that use the EEG data to examine weather EEG can provide information about 

learners’ cognitive and emotional state while interacting with the learning content 

of a MOOC (Chang, Lin & Chen, 2019; Lin & Kao, 2018; Wang et al., 2013; Xu & Xu, 

2019). 

▪ articles that use the EEG data to provide guidelines on how to improve the design of 

the learning content that is delivered through a MOOC (Díaz, Ramírez & Hernández-

Leo, 2015; Moldovan, Ghergulescu & Muntean, 2017). 

▪ articles that use the online EEG data to adapt the presentation of the learning content 

and provide a personalized learning experience (Kavitha, Mohanavalli & Bharathi, 

2018; Lin & Chen, 2019; Szafir & Mutlu, 2013). 

5.6.1. EEG as a measure for cognitive or affective state evaluation 

In a MOOC environment, learners interact with the learning content, the instructor, and 

their co-learners. The interaction between learners and the instructor is not immediate 

and there is a lack of immediate feedback as far as learners’ affective and cognitive states 

are concerned. When learning new things, learners might experience emotions such as 

confusion, frustration, anxiety, fear of failure etc. that negatively impact learning gains 

and engagement.  

Confusion 

Wang et al. (2013) examined learner’s cognitive state, and more specifically learner’s 

confusion, while watching MOOC clips using a single-channel EEG headset and compared 

the results with the observations of a human observer. The authors concluded that the 

proposed classifier had a comparable performance to human observers observing body 

language in predicting learners’ confusion. The authors argue that MOOC providers 

should supply learners an EEG device to get feedback on students’ brain activity or 

confusion level while they are watching the course materials. The results showed that the 

classifier has comparable performance to human observers observing body language in 

predicting students’ confusion. Thus, classifier would help instructors improve their 

video lectures based on the EEG data or the EEG data could be aggregated and augment 

subjective rating of course materials, to provide a simulation of real-world classroom 

responses. In this direction, Tahmassebi, Gandomi & Meyer-Baese (2018) proposed an 

evolutionary framework to enhance the performance of MOOCs using EEG data. A Genetic 

Programming (GP) function classifier was implemented by the researchers as a multi-

objective genetic programming approach based on non-dominated sorting genetic 

algorithm II (NSGA-II). The proposed framework aimed at detecting the confusion level 
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of students in real time using EEG signals to improve the quality of online education. 

Based on the classification algorithm accuracy there is a difference in the EEG signals of 

individuals with confusion vs not-confused individuals.  

Liao, Chen & Tai (2019) explored the significance of MOOC-based teaching in comparison 

with traditional method of teaching by observing changes in brainwaves. Researcher used 

the fast Fourier transform to find the Power Spectral Density (PSD) values for data 

analysis. The MindWave mobile brainwave instrument was used to measure changes in 

brainwaves. EEG data were combined with an unlimited number of instant click ratings 

that represented users’ feelings, in order to verify the subjective assessment results (click 

ratings) via comparison with the data from brainwaves. The results showed that MOOC-

based teaching method can increase the better attention of the participants than the 

traditional method, while it could also give relaxing learning for the students as it was 

displayed in their meditation values. 

Arousal 

During learning, learners might produce positive emotions such as arousal, engagement 

etc., which enhance the acquisition of the learning content. Xu & Xu (2019) constructed a 

prototype system called Megrez which detects learner’s arousal and adjusts learners’ 

cognitive state, if necessary, by playing the appropriate music in order to improve the 

arousal. Arousal shows the degree of excitement of human. For the recognition of brain 

arousal, authors classified EEG signals by frequency and selected β waves for analysis. 

They argue that the proposed system can only recognize high arousal and low arousal. 

Cognitive load 

Castro-Meneses, Kruger & Doherty (2020) examined the validity of theta power, as an 

objective measure of cognitive load in educational video context. The researchers 

measured the intrinsic cognitive load via a subjective scale and theta activity. The 

researchers argue that theta power may be used as a valid measure of average cognitive 

load, emphasizing in the fact that its value lies in the ability to measure online fluctuations 

of instantaneous cognitive load. 

Attention 

Chang, Lin & Chen (2019) explored how learners’ cognitive styles affect their attention 

levels and learning effectiveness. Two cognitive styles have been identified to classify 

individual differences in selective attention, dependent and independent cognitive style. 

The analysis occurred between the two dimensions of dependent/independent and 

verbal/imagery (Lee & Hsu, 2004). The authors argue that the attention level and learning 
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effectiveness were positively correlated among learners with the independent verbal type 

of cognitive style, so these students are the most benefitted from to MOOC teaching 

methods. 

5.6.2. EEG for improving the design of MOOCs 

Learners’ affective and cognitive state are affected not only by the content of the 

educational material, but also from the design features that are selected to deliver this 

content.  

Design of video lectures 

The talking head is an essential design feature in online lecture video as it produces social 

presence that enhance learner’s engagement. Díaz, Ramírez & Hernández-Leo (2015) 

examined the effect of talking head in academic videos. Arousal and valence values were 

calculated from the band power values at four electrode sites of prefrontal cortex. The 

authors provide guidelines about the design of video lectures. They also suggest that the 

talking head condition does not improve learning outcomes compared to audio condition. 

Moreover, Wang, Chen & Wu (2015) investigated the effect of three different video 

lectures styles, namely lecture capture (or talking head), voice over presentation, and 

picture-in-picture method, on the sustained attention, emotion, cognitive load, and 

learning performance of verbalizers and visualizers in an online learning scenario by 

using participants’ brainwave and other metrics. Results showed that learning 

performance is affected by the type of the lectures. 

Design choices for hardware 

Moldovan, Ghergulescu & Muntean (2017) investigated the effects of learners’ interest, 

quality of experience and emotional states on learning performance, in a mobile learning 

scenario, for two different devices i.e., a smartphone and a tablet. Results showed that 

learning performance and quality of experience were not affected by the type of the device 

while only engagement was found to be higher on smartphone than tablet. Also, the 

authors argue that gender has an effect on the mobile learning experience. The results did 

not show any significant effect of affective states on learning performance. 

5.6.3. EEG for adaptive learning 

It is argued that assessing learners’ cognitive and emotional states during learning in a 

digital environment makes it possible to provide personalized learning to learners. The 

goal is to enhance learners’ interest and engagement, to make the instruction more 

efficient and finally to improve the learning experience and students’ learning outcomes. 
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Researchers use not only neurophysiological data, but also facial expressions and other 

physiological measurements to provide real-time detection of the learners’ cognitive and 

emotional states. Machine learning and deep learning algorithms are considered useful in 

developing models for predicting the learning behavior. 

Szafir & Mutlu (2013) developed a system that monitors learners’ attention while they 

were watching online videos in order to suggest the optimal review topic. EEG data was 

evaluated along with subjective data from a pre-experiment questionnaire (students’ 

prior knowledge), a recall quiz and a post-experiment questionnaire (self-reported 

evaluation of participant’s experience and demographic information). The results showed 

that adaptively reviewing content optimizes the time spent on review. In the same 

direction, Lin & Chen (2019) proposed an attention-based mechanism based on 

brainwave signals. This mechanism could provide video segments for review based on 

learners’ sustained attention level. 

Zhou et al. (2017) proposed a passive Brain-Computer Interaction (BCI) system to 

continuously monitor learners’ cognitive workload using the Emotiv Epoc+ headset in an 

online digital environment. EEG signals recorded from F3 and F4 electrode sites were 

used as they are highly related to cognitive workload. Also, theta and alpha activity was 

used by the system as it is considered to reflect changes in workload. Moreover, Lin & Kao 

(2018) built a system to evaluate learners’ level of understanding during watching videos 

in online learning contexts based on Cognitive Load Theory. The authors argue that the 

proposed system can effectively facilitate learners’ self-awareness of their learning states 

and to provide the automatic feedback. The authors also argue that their classifier has 

high accuracy that MOOC platforms can benefit from in order to detect user’s cognitive 

state and improve learning outcomes and user experience. 

Kavitha, Mohanavalli & Bharathi (2018) proposed a hybrid model for predicting learners’ 

cognitive ability in order to make online environments suitable for smart learning. The 

authors developed a model, to evaluate the several aspects of learning by recording 

multiple physiological measures such as brain signals, pulse rate, etc., from learners as 

they were interacting with an  online course. The authors suggest that this model could 

be used to evaluate the overall effectiveness of a course, to design courses for different 

learning levels and from the learners' perspective to identify one's learning style. The 

authors also argue that the model could be used in MOOCs, although the experiment did 

not apply in such setting. 
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5.7. Research problem 

5.7.1. Introduction 

The present thesis aims to evaluate the effect of a game element named “progression” on 

a MOOC assessment activity on learners’ cognitive and affective states. Learners’ cognitive 

state is assessed mainly in terms of engagement, but other indices such as attention, 

workload and arousal/valence are evaluated as well. Initially, we propose some 

guidelines for the design of the “progression” element and its implementation on a MOOC 

assessment activity. We rely on motivational theories of learning, namely on the goal-

setting theory, to draw guidelines for the design of this gamified activity and its 

implementation on a MOOC platform. Then, we assess the effect of “progression” on 

participants’ cognitive and affective state, while completing the assessment activity using 

neurophysiological and subjective measures. The present thesis focuses on the study of 

measures that are extracted from the power spectrum of participants’ EEG signals. 

The general idea of this research lays on the fact that a large number of learners who 

enroll in a MOOC become disengaged during the course and they dropout of the course. 

Disengagement is usually related to learners’ negative emotions about their learning 

(such as confusion, frustration, boredom, etc.), and occurs mainly due to the lack of 

sufficient interaction. This interaction involves the instructors and the learning materials. 

MOOC learners and mostly low competent learners feel that they do not have the 

necessary support to advance their skills. They more importantly feel that the course does 

not offer the required scaffolding to balance their skills with the challenges that are posed 

through the assignments as the course progresses. Typically, in MOOC assignments the 

only feedback that learners receive is related to their performance, i.e., their grade per 

assignment. Based on the literature, to appeal to the learners’ feelings of competence, 

several forms of positive feedback should be provided (Deci & Ryan, 2004) such as 

progress assessments, including leveling system, feedback etc.  

The present thesis exploits the technological affordances of an OpenEdX MOOC platform 

(named Coursity) to implement a gamified MOOC assessment activity that integrates the 

element of progression. The procedure of designing the element of progression for a 

MOOC assignment is based on goal-setting theory and Bloom’s taxonomy and is described 

thoroughly in the following sections. 
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5.7.2. Research objective 

The research objective of the present thesis is to evaluate the cognitive and affective state 

of participants while interacting with a gamified theory-based MOOC activity. In MOOCs, 

the multiple-choice problem is the most used learning assessment activity. Using the 

technique of electroencephalography (EEG) we study participants’ cognitive and affective 

states while completing an assessment task that consists of several multiple-choice 

problems (quizzes). In the present thesis we focus on the study of three EEG frequency 

bands (namely theta 4-7Hz, alpha 8-13Hz and beta 13-30Hz), as well as on the EEG-based 

task engagement index and its proxies, i.e., attention, workload, arousal/valence.  

To examine whether gamification in MOOC assignments affects participants’ cognitive 

and affective states, we designed and developed two different assessment activities 

(modules) that consist of the same multiple-choice questions. The first module has the 

typical structure that is usually used in MOOC platforms, while the other integrates the 

element of progression. We name the first module “non-gamified activity” and the second 

“gamified activity”. 

5.7.3. Research questions 

The research questions that were addressed in the present thesis are the following: 

▪ Does the element of progression affect participants’ cognitive state in a MOOC 

assessment activity? 

o Does the element of progression affect participants’ engagement in a MOOC 

assessment activity? 

o Does the element of progression affect participants’ attention in a MOOC 

assessment activity? 

o Does the element of progression affect participants’ cognitive workload in a 

MOOC assessment activity? 

▪ Does the element of progression affect participants’ affectivity in a MOOC assessment 

activity? 

o Does the element of progression affect participants’ arousal in a MOOC 

assessment activity? 

o Does the element of progression affect participants’ valence in a MOOC 

assessment activity? 

▪ Does participants’ cognitive and affective state, while taking a MOOC assessment 

activity that uses the element of progression, affect their engagement? 
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o Does participants’ attention, while taking a MOOC assessment activity that 

uses the element of progression, affect their engagement? 

o Does participants’ cognitive workload, while taking a MOOC assessment 

activity that uses the element of progression, affect their engagement? 

o Does participants’ affectivity, while taking a MOOC assessment activity that 

uses the element of progression, affect their engagement? 

▪ Does the element of progression in a MOOC assessment activity affect participants’ 

perceived learning experience? 

o Does the element of progression in a MOOC assessment activity affect 

participants’ perceived engagement? 

o Does the element of progression in a MOOC assessment activity affect 

participants’ perceived usefulness? 

o Does the element of progression in a MOOC assessment activity affect 

participants’ learning effectiveness? 

o Does the element of progression in a MOOC assessment activity affect 

participants’ cognitive benefits? 

o Does the element of progression in a MOOC assessment activity affect 

participants’ intention to continue? 

The ultimate goal of the thesis is to evaluate the effect of the proposed gameful design 

method on learners’ cognitive and affective state and to investigate whether the above-

mentioned neural measures could be used to characterize participants’ learning 

experience and serve as a tool to provide useful information for the design of gamified 

MOOC activities. 
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Chapter 6. Research methodology 

6.1. Sample 

The sample of the study consisted of 58 volunteers (24 men and 34 women). The 

participants were between 19 and 47 years (M=34.23, SD=7.28). The sample was 

randomly assigned into two groups, namely Control Group and Experimental Group. The 

Control Group (Group1) consisted of 16 women and 12 men, while the Experimental 

Group (Group2) consisted of 18 women and 12 men.  

Table 6.1. Sample demographics (N=58) 

  Group1 (Control) Group2 (Experimental) 

Variables Classification Frequency 
Percentage 

(%) 
Frequency 

Percentage 

(%) 

Gender 

Male 12 20.69 12 20.69 

Female 16 27.59 18 31.03 

Total 28 48.28 30 51.72 

Age 

19-25 3 5.17 6 10.34 

26-35 10 17.24 11 18.97 

36-45 11 18.97 12 20.69 

46 and above 4 6.90 1 1.72 

Occupation 

Student 1 1.72 3 5.17 

Researcher  3 5.17 5 8.62 

Teacher 12 20.69 10 17.24 

Professor 1 1.72 2 3.45 

Employer/Employee 11 18.97 10 10.24 

Education level 

Undergraduate 1 1.72 2 3.45 

Bachelor 4 6.90 6 10.34 

Postgraduate 11 18.97 10 17.24 

Master 5 8.62 3 5.17 

PhD student 6 10.34 5 8.62 

Doctoral 1 1.72 4 6.90 

Prior 

experience on 

Coursity 

Yes 10 17.24 12 20.69 

No 18 31.03 18 31.03 

Prior 

experience on 

online learning 

Yes 22 37.93 25 43.10 

No 6 10.34 5 8.62 

Prior 

knowledge on 

ASD 

None 6 10.34 5 8.62 

Poor 11 18.97 8 13.79 

Fair 3 5.17 4 6.90 

Good 4 6.90 10 17.24 

Very good 4 6.90 3 5.17 
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All participants had normal vision or corrected-to-normal vision. They were right–

handed native Greek speakers, without certain diagnosed learning difficulties or mental 

impairment. They showed no sensory impairments. The participants were informed as 

not to receive any medication or substances that might affect the operation of their 

nervous system, and not to consume large quantities of caffeine or alcohol, in the last 24 

hours before the experiment. The alpha rhythm of all the participants was checked before 

the experiment and all participants had a normal alpha rhythm (8–12Hz). The study 

conformed to the code of ethics of the University of Ioannina. The participants did not 

receive any compensation for participating, and all of them gave their informed consent. 

Table 6.1. presents the demographics of the sample for each of the two groups, as 

frequencies and percentages. 

6.2. Gamification design process 

The design of gamification is not a linear process. Gamification design is always influenced 

by several aspects related to psychology, science learning, game design, user’s experience 

design and technology enhanced learning. Thus, gamification design is considered to be 

relative as it depending on the context, the problem that is to be solved, the effects we 

want to generate and the target audience (Antonaci et al., 2018). To generate a change in 

learner’s behavior through a gamified activity, all these aspects should be taken into 

account in the process of the design. In the present thesis the design process was based 

on the general rules of gamification design cycle proposed by Antonaci et al. (2018). We 

have followed this process as the authors have validated it in a MOOC scenario.  

The gamification design process consists of the following phases (Figure 6.1): 

 

Figure 6.1. Gamification design process 
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1st phase: Analysis of the application scenario 

In this work, gamification is implemented on an online learning environment, namely a 

MOOC assessment activity. As far as we know, it is the first time that such an intervention 

is implemented on a MOOC platform. The course, as well as the learning activity that was 

gamified, is about Special Education and Autism Spectrum Disorder (ASD). The course is 

offered via a MOOC platform (named Coursity), mainly to educators, adult women, and 

men, of all ages. The overall goal of the course was to provide the basic knowledge about 

the characteristics of people with ASD and the necessary skills to handle issues that 

people with ASD confront daily. This MOOC was selected in our application scenario, as 

participation in courses with similar topics concerns many people in Greece due to its 

direct connection to employment. 

2nd phase: Problem definition 

MOOCs have massive enrollments, but a great number of the enrolled learners quit their 

attendance before the end of the course. Based on the literature (which is described in 

Chapter 2), there are many factors that lead MOOC learners to dropout. A factor that 

significantly affects the attrition rate in MOOCs, is learners’ disengagement. The term 

“disengagement” refers to learners’ lack of interest and task value. It is related to learners’ 

negative emotions that originate from the lack of self-efficacy or the lack of goal 

orientation.  

The present thesis proposes the implementation of gamification in MOOC assessment 

activities, as gamification is thought to raise emotions such as mastery, satisfaction, self-

efficacy etc. and to enhance engagement through goal commitment. Particularly, we 

examined in a micro level (i.e., group level) whether the implementation of gamification 

in a MOOC assessment activity can positively affect learners’ engagement.  

To assess learners’ task engagement, we used a multi-method approach by combining 

objective and subjective measures. EEG sensors can provide accurate and valid 

information about learners’ mental engagement, while the perceived engagement level 

can be obtained with the use of a self-reporting questionnaire. 

3rd phase: Theoretical framework 

Several motivational theories have been adopted for the design of gamification in various 

settings. In the present thesis, based on the problem that has been set (i.e., high dropout 

rate) and the application scenario (i.e., gamification in MOOC assessment activities), we 

used the goal-setting theory as a basis of our theoretical framework. Goal setting theory 
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defines the elements that affect the relationship between goals, performance, and goal 

commitment. This theory was selected as goals activate various mechanisms related to 

learning such as direct attention to goal-relevant activities, mobilize the degree of effort, 

increase the persistence in pursuing the goals and promote the development of goal-

relevant strategies (Locke & Latham, 2002).  

Task engagement is defined as an effortful commitment to task goals (Matthews et al., 

2002). Therefore, goal-setting theory was used to draw guidelines for the design of 

gamification in a MOOC assessment activity, as it sets out the basic principles that should 

drive goals (either they are performance-related goals or learning goals) in order to 

enhance learners' goal achievement and engagement. 

4th phase: Game elements selection 

Deterding et al. (2011) argue that gamification as a concept that derived from games, is 

inherently a goal-oriented activity. Goals are the key component for learning, as well as 

for game design process. Game designers use goals to create different levels in the 

gameplay and to keep players focused on an activity, while for players, goals serve as a 

measure of their progress. Moreover, goals are traditionally quantifiable, i.e., goals are 

entities that can be measured. By making goals measurable, it is possible to tell when the 

goals are reached. In a game, players typically know if they have reached a certain goal 

through feedback. This feedback can be communicated by using badges, points or 

unlocked new challenges.  

In games, players get a feeling of satisfaction from level accomplishment and skill 

development. Player’s growth and skill development is known as “player’s progression”. 

The sense of satisfaction that players’ experience while they are progressing in the game, 

relates to the feeling of self-efficacy that leads to increased effort, persistence, and goal 

commitment. It should be noted that learners enjoy the same types of recognition. The 

sense of progression motivates learners’ continued effort. This effort is mobilized in 

proportion to goal difficulty. In educational settings, defining learning goals lead to higher 

engagement and performance than setting performance-oriented goals. 

Also, Deterding et al. (2011) suggest that a gamified system should be designed around 

challenges that users face already in accomplishing the goals, rather than creating 

additional artificial challenges. This implies that the elements that are used to gamify a 

learning environment should promote learning and not impose learners to redundant 

challenges. Moreover, Tondello, Premsukh & Nacke (2018) suggest that learning can be 
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used to set clear goals in gamification. Authors argue that in a well-designed system, goal 

difficulty should increase with the user’s skills in order to continuously provide a 

challenging activity. This requires the ability to consistently monitor user’s skills. 

Table 6.2. Matching goal-setting theory principles to game design elements in order to design the 
dynamics of progression 

Goal-setting theory Progression 

Principles Gameful design guidelines 
Game design 

elements 

B
as

ic
 p

ri
n

ci
p

le
s 

Specific goals 
Goals must be specific in order to hold learner’s 

attention and effort 
Clear goals 

Difficult goals 

Goals must be difficult enough to hold learner’s 

attention, but they should be balanced with 

learner’s skills 

Levels 

Proximal 

goals 

Completing several proximal goals will facilitate the 

attainment of distal goals 
Levels 

M
ed

ia
to

rs
 

Direction Presenting the next best task once a goal is reached Feedback 

Persistence 
Allow learner to try again after failure. Provide aid 

to encourage persistence 

Challenge, 

Feedback 

Task strategy 
Balance task difficulty to learner skills and allow 

practicing before introducing harder tasks 
Challenge 

Self-efficacy Provide a larger meaning for their achievements Feedback, Levels 

M
o

d
er

at
o

rs
 

Ability 
Task complexity should be balanced with learner’s 

skills 
Challenge 

Task 

complexity 

A complex task should be divided into smaller tasks 

to reduce complexity 
Levels 

Progress 

feedback 

Provide information about how the player is doing 

at a task 
Feedback 

Goal 

commitment 

Learners should acknowledge task importance, 

accept the goals and feel self-efficient  
Feedback 

G
o

al
 t

y
p

es
 

Outcome 

goals 
Accomplishment of a specific result Feedback 

Performance 

goals 
Goal to reach a certain performance level Feedback 

Process goals Learning goals based on Bloom’s taxonomy Challenge, Levels 
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Progression deals with those aspects of gameplay that stem from quality level design and 

mechanics that control player’s progress through these levels. Game designers create 

levels in which players need to overcome a predefined set of challenges. Each challenge is 

built on a set of (proximal) goals. Completing a particular challenge often unlocks other 

challenges and in this way players progress towards a distal goal. In the present thesis, 

following the conceptual framework of Tondello, Premsukh & Nacke (2018), we match 

goal-setting theory principles to gameful design guidelines (Table 6.2). Furthermore, 

based on these guidelines we select specific game design elements, as shown in Figure 6.2, 

in order to design the element of progression for a MOOC activity.  

As described in Chapter 4, based on Werbach & Hunter (2012) framework, the 

gamification elements are classified into dynamics, mechanics, and components. The 

element of progression belongs to the dynamics. Mechanics is the necessary element for 

implementing dynamics in a game or a gamified activity and the one that promotes users 

to engage in the game. Challenges (tasks that require effort to solve) and feedback 

(information about how the player is doing) are mechanics that we use to implement the 

dynamics of progression. Components are the substantiated form of dynamics and 

mechanics. Levels (i.e., denied steps in player’s progression) are components that we also 

use to create to element of progression. Specifically, in the present thesis, we design the 

element of progression for a MOOC assessment activity using the following game design 

elements: clear goals, challenges, levels, and feedback (Figure 6.2).  

Figure 6.2. Game design elements that are used for the implementation of progression 
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5th phase: Design and implementation 

Firstly, we describe the design of the selected game elements (clear goals, challenges, 

levels, feedback) on which the implementation of the progression element is based. Then, 

we present how gamification is applied to a MOOC platform. 

Clear goals 

Goals are most motivating when they are specific, measurable, attainable, realistic, and 

time-bound (Figure 6.3). Best practices for setting optimal goals are described in Chapter 

4. 

Using the revised Bloom's Taxonomy, we defined the following learning objectives which 

correspond to the first five levels of the taxonomy, namely “Remember”, “Understand”, 

“Apply”, “Analyze”, “Evaluate”.  

Learners after the completion of the learning section titled “Autism Spectrum Disorder” 

will be able to: 

▪ Recall the relevant terminology on Autism Spectrum Disorder and the basic 

characteristics of a person with ASD (1st level of Bloom’s taxonomy) 

▪ Identify the characteristics of people with ASD and interpret their behavior based on 

these characteristics (2nd level of Bloom’s taxonomy) 

▪ Apply the knowledge that they have acquired about ASD to new situations (3rd level 

of Bloom’s taxonomy) 

▪ Analyze a problem that people with ASD confront in their daily life to its components 

and find the best solution to solve it (4th level of Bloom’s taxonomy) 

▪ Combine information to solve complex problems and situations involving people 

with Autism Spectrum Disorder (5th level of Bloom’s taxonomy). 

Figure 6.3. Setting optimal (SMART) goals (Moskowitz & Grant, 2009) 
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These goals concern the topic of Autism Spectrum Disorder and are related to the content 

of two video-lectures of the MOOC “Introduction of Special Education” that is hosted on 

Coursity MOOC platform. The total duration of the video-lectures was thirty (30) minutes. 

The highest level of the taxonomy, named “Create”, is difficult to be assessed by using 

multiple-choice questions, as it requires the creation of knowledge. The goals that were 

articulated for the needs of the present thesis are described below. 

Challenges 

The above learning goals were used to create twenty-one (21) multiple-choice questions 

with four different choices. The questions were formulated based on Brame (2013) and 

was used to formulate five (5) challenges. Each challenge constitutes a formative 

assessment activity. The number of multiple-choice questions that were created for each 

learning goal was not equal (Figure 6.4).  

All questions were checked for the phrasing and the content by two Special Educators. 

Τhe Special Educators reviewed all the questions and the available choices independently 

and gave their comments in written form. Based on their comments, the questions and 

the choices were revised appropriately. After the revision, the Special Educators checked 

the questions one more time and gave their approval.  

Furthermore, to check the quality and the difficulty of the multiple-choice questions, item 

analysis was performed. Α google form that comprised of all the multiple-choice questions 

were sent to more than three hundred (300) learners who enrolled in the MOOC 

“Introduction to Special Education” on Coursity MOOC platform in the period July-

September 2020. All the learners that received the google form had attended the course 

either with free attendance or they had also applied to receive a Certificate of Training. 

Sixty-nine (69) learners answered the questionnaire. The learners’ answers were used to 

analyze the questions regarding the ease/ difficulty of answering and the quality of the 

distractors in each item. The item analysis was performed to ensure that the multiple-

choice questions were not too easy but rather challenging enough to activate learners’ 

Figure 6.4. Number of multiple-choice questions that are assigned in each challenge 
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effort and engagement. All the items had a fifth choice “I don’t know”. The learners were 

able to submit their answers only once and they did not receive any feedback after their 

submission. The results of the item analysis are presented in the Table 6.3. 

For each question, we have calculated the number of participants who answered the 

question correctly (frequency of correct answers), the item difficulty (p-value) which is 

the percentage of learners that answered the question correctly, the item discrimination 

which shows the point-biserial relationship between how well learners did on the 

question and their total score on the test (this is also referred as the Point-Biserial 

Correlation) and the number of learners that have chosen each distractor (Table 6.3). 

Generally, p-values range from 0% to 100% and they are often written as a proportion 

ranging from 0.00 to 1.00. P-values above 0.90 are thought to be very easy, while p-values 

below 0.20 are thought to be very difficult. The optimum difficulty level is around 0.50 in 

order to achieve a maximum discrimination between high and low achievers. Based on 

Zimmaro (2016), the ideal value is slightly higher than midway between chance (1.00 

divided by the number of choices) and a perfect score for the question i.e., 1.00. In our 

case, for a 4-option multiple choice questions the ideal value is about 0.63. In Table 6.3. 

we have underlined the items that had a p-value greater than 0.90 or less than 0.30. These 

items were revised in order to approximate a better difficulty level.  

Item discrimination values range from -1.00 to 1.00. The higher the value is, the more 

discriminating the question. The value indicates that learners who had high test scores 

got the item correct whereas students who had low test scores got the item incorrect. In 

Table 6.3 we have underlined the items that had an item discrimination value less than 

0.20. These items were revised to increase their discrimination level. Moreover, to 

examine distractors quality we have used a frequency table. In Table 6.3 we have noted 

the number of learners that have chosen each distractor. We have added an asterisk (*) 

to the correct choice. Also, we have marked in green the questions in which the correct 

item was chosen by the majority of the learners. Distractors that were not selected by 

learners was replaced. 

Finally, we used the Kuder-Richardson formula 20 (KR-20) to calculate the reliability 

coefficient (alpha). The reliability coefficient shows how reliable is the overall test score, 

i.e., the internal consistency reliability. This value ranges from 0.0 to 1.0. High reliability 

indicates that the questions are all measuring the same construct. The acceptable range 

is from 0.60 or higher. In our case, the reliability coefficient was equal to 0.72. We did not 

perform item analysis after the revision of the questions. 
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Table 6.3. Item analysis of the quality of multiple-choice questions 

# 

Item 

Freq. of 

correct 

Item 

difficulty 

(p-value) 

Item 

discrimination 

Response frequencies 

A B C D I don't know 

1 65 0.94 0.39 *65 2 1 1 0 

2 67 0.97 0.56 2 0 *67 0 0 

3 57 0.83 0.49 5 *57 0 2 5 

4 60 0.87 0.57 *60 1 3 3 2 

5 64 0.93 0.58 1 4 *64 0 0 

6 56 0.81 0.35 9 3 0 *56 1 

7 65 0.94 0.29 3 1 0 *65 0 

8 63 0.91 0.34 1 *63 1 4 0 

9 59 0.86 0.56 *59 2 3 4 1 

10 57 0.83 0.31 8 1 1 *57 2 

11 67 0.97 0.59 0 1 1 *67 0 

12 66 0.96 0.55 2 0 *66 1 0 

13 67 0.97 0.05 *67 1 1 0 0 

14 66 0.96 0.27 0 2 1 *66 0 

15 62 0.90 0.15 *62 0 3 2 2 

16 19 0.28 0.37 0 45 4 *19 1 

17 36 0.52 0.33 25 *36 0 8 0 

18 48 0.70 0.54 9 *48 5 2 5 

19 61 0.88 0.53 *61 4 0 2 2 

20 33 0.48 0.38 4 15 15 *33 2 

21 54 0.78 0.63 3 *54 1 7 4 

Levels 

Figure 6.5. The MOOC activity comprises five distinct levels of increasing difficulty 
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The MOOC assessment activity that was created within this work is divided in smaller 

activities. Specifically, we defined five (5) distinct levels to reduce the complexity and 

create “skill levels”. This means that the multiple-choice questions that correspond to a 

different level, require a different level of cognitive skills as they were created based on 

Bloom’s taxonomy. The levels were presented with an increasing task difficulty regarding 

the level of skills required. Each challenge described above was used to form a distinct 

level in the MOOC activity. Figure 6.5 shows the levels that were defined. In each level, the 

learners were given two possible attempts to find the correct answer for all the questions 

in the level.  

The multiple-choice questions are presented in Greek in Appendix I. Five levels have been 

created, which correspond to the five levels of the Bloom’s taxonomy. Each level included 

a set of multiple-choice questions. As the taxonomy is concerned, the questions were 

checked by the supervisor of the present thesis and the researcher.  

Each level corresponds to a specific learning goal and includes a formative assessment 

activity (Figure 6.6). We created a scaffolding activity by presenting the levels with an 

increasing difficulty in terms of the level of skills required to complete them. The ideal 

would be to create a smooth learning curve for every learner. To create a smooth learning 

curve, the difficulty of each activity that the learner is requested to complete, should be in 

balance with his/her skills. Moreover, learners should be able to practice the skills that 

are required to complete the activities as they progress in a higher level. It should be noted 

that the level of difficulty should be appropriate to activate the learner's motivation to 

pursue goal achievement. 

 

Figure 6.6. Five levels of the activity that corresponding to the first five levels of Bloom’s taxonomy 
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Feedback 

Based on the literature, goals succeed better when combined with the element of 

feedback. As learning assessment activities are a part of the learning process, feedback 

can be used to enhance learner's skills. Also, through feedback learners receive 

information about their progress. In the present thesis, feedback is being implemented 

with the following ways: 

Constructive feedback: This kind of feedback is given to the learners after submitting their 

answers (Figure 6.7). It concerns two types of information: 

▪ Feedback is given as to whether an answer is correct or incorrect. The correct 

answers are signed with a green check mark while the incorrect answers are signed 

with red cross mark. This helps learners to identify the wrong answers in order to 

reconsider the available choices and select another answer (as they are given two 

possible attempts for submission). According to Johnson, Bailey & Buskirk (2017) 

this type of feedback is an outcome-based feedback and is usually called by the 

researchers as “error flagging”. 

▪ Feedback is given for each correct and incorrect answer to explain why the chosen 

answer is correct or wrong, without revealing for the incorrect choices the correct 

one. The correct answers are also marked with the word “Correct” while the wrong 

answers are marked with the word “Incorrect”. Feedback on the correct answers is 

provided to enhance learner's knowledge in case the choice was made by chance. The 

information is presented in text form below each question. According to Johnson, 

Bailey & Buskirk (2017) this type of feedback is a process-based feedback and is 

usually called “response specific”. 

Performance feedback: Provide information about how the player is doing at a task (or 

challenge). When submitting their answers, learners are informed about the number of 

correct answers to the total questions e.g., 5/7 points (correct answers). Based on their 

performance on each challenge, learners’ can decide whether they want to improve their 

performance by resubmitting their answers or not. This information is given in written 

form, in the upper side of the page. This is also an outcome-based feedback. This type of 

feedback helps learners to monitor their progress in the course. In the present thesis, 

progress feedback is given separately for each level. 
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Figure 6.7 presents the constructive feedback that is given for two of the questions of our 

activity. 

Purpose feedback: This type of feedback is presented before and after each level of the 

assessment activity. It includes information about what has been achieved so far and what 

is the next goal to be achieved. Based on the literature, learners should always be aware 

of what is being achieved so far, be able to determine whether a goal is reached in order 

to adjust the learning strategy and the amount of effort accordingly, and to be informed 

about the next goal to be achieved. In the present thesis, learning goals are used to define 

levels and measure learner’s progress. This type of feedback is given in a written form and 

is presented in a separate page that precedes or follows each level (Figure 6.8). Moreover, 

this type of feedback provides information that explain the reasons the learning goals help 

to achieve an ultimate goal rather than providing skills which strengthens the goal 

commitment. 

Figure 6.7. Example of the constructive feedback. Each question is marked either with a green check mark or a 
red cross to indicate whether the choice that was selected is correct or incorrect. Below of each question, in a 

dashed rectangle an explanation was given to justify the assessment result. 
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Implementation of the gamified intervention 

In a MOOC-based scenario the design and the implementation of game elements depend 

on the platform that is used, its technological features, the available budget and the 

technical skills of the gamification designer. The present thesis uses the Coursity MOOC 

platform to apply and evaluate the proposed intervention. The learning section “Autism 

Spectrum Disorder” which is a part of the course titled “Introduction to Special Education” 

is used to implement the element of progression. This section consists of: 

▪ two (2) video-lectures (total duration 30') 

▪ one (1) assessment activity. The activity includes five (5) distinct levels. Each level 

corresponds to a single challenge that comprises of a set of multiple-choices 

questions (as described above). 

To evaluate the gamified activity, two different learning sections were created. Each of the 

sections included the two video-lectures and an assessment activity. The video-lectures 

were the same for both modules, while the assessment activity differed as to whether the 

element of progression was implemented or not. Below we describe both the gamified 

and the non-gamified activity. 

I. Gamified activity 

The gamified MOOC activity has been implemented based on the progression element. 

Thus, it includes the game elements as described above. Table 6.4 presents the 

components of the gamified activity and the way they differ from the non-gamified 

activity. Besides the components that are added in the activity, each challenge (quiz) has 

the typical structure of MOOC quizzes, i.e., a set of multiple-choice questions placed with 

Figure 6.8. Example of a page that presents purpose feedback that precedes Level 3 
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a vertical alignment. At the end of each multiple-choice problem (i.e., challenge), there is 

a “Submission” button and usually, learners have two possible attempts to answer its 

questions correctly. Both gamified and non-gamified activity comprise of the same 

multiple-choice questions. 

Table 6.4. Comparing elements in gamified vs non-gamified activity 

Element Gamified activity Non-gamified activity 

Goals Goals are used to define levels. Goals 

are explicitly presented to learners 

through feedback. 

Goals are not used to define levels. 

Goals are not explicitly presented to 

learners 

Challenge Each challenge is a set of multiple-

choice questions. Learners are given 

two possible attempts. 

Each challenge is a set of multiple-

choice questions. Learners are given 

two possible attempts. 

Levels Levels have an increasing difficulty as 

they correspond to a different level of 

goals in Bloom’s taxonomy 

No levels. Questions were assigned 
randomly in each challenge. 

Feedback Constructive (response specific and 

error flagging), performance and 

purpose feedback are given to 

learners 

Performance and error-flagging 

feedback are given to learners 

After the implementation of the progression, pre-evaluation is used to investigate the 

factors related to the principles of the goal-setting theory and user’s experience of the 

gamification design. The comments were used to reconsider the design of gamification. 

Eight (8) volunteers with diverse backgrounds evaluated the gamified activity. 

Specifically, two (2) software developers, three (3) Special Educators, one (1) Computer 

Science teacher, one (1) Special Teaching Staff, and one (1) Philologist. In the pre-

evaluation phase, we requested the volunteers to watch the two video-lectures as many 

times as they wanted and then complete the activity. During the completion of the activity, 

volunteers could interact with the system in the way they wanted. For example, they could 

attempt each level of questions only once or two times, they could read the feedback that 

is given or not, they could go back and forth in the activity. The volunteers during the 

completion of the activity externalized their thoughts and reactions following a think-out-

loud approach. Their comments were recorded in written form. After completing the 

activity, the volunteers were requested to give feedback about the gamification design 

and their experience focusing on the goal-setting theory principles. Specifically, they were 

asked to comment on the following: 

▪ the goal corresponding to each level of the activity was clear and specific 

▪ the purpose of the activity seemed important 
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▪ I knew what I had to do at every step of the activity  

▪ I wanted to explore all the available choices of each question 

▪ I felt I had the knowledge/ skills to complete each level 

▪ I liked the activity/ the activity was boring 

▪ the feedback that is provided helps to move on 

▪ the feedback had a lot of information and that made me tired 

▪ the feedback was given at the right time. 

The volunteers’ suggestions were classified based on the context, i.e., whether they were 

related to technical issues, gamification design issues or content issues. Also, they made 

comments regarding the aesthetics of the system (text fonts, images, etc.). The proposed 

changes were made based on whether a suggestion was proposed by more than four 

volunteers. Finally, after the changes had been implemented, the volunteers gave positive 

feedback before the experimental procedure. 

II. Non-gamified activity 

The non-gamified activity has the typical form of a multiple-choice problem in MOOCs i.e., 

a set of multiple-choice questions placed at a vertical alignment. At the end of each 

problem, there is a “Submission” button. Learners usually have two possible attempts to 

answer the questions correctly. Typically, in MOOCs, multiple-choice problems include 

questions that correspond to the two lower levels of Bloom’s taxonomy. In the present 

thesis, the non-gamified activity includes the multiple-choice questions that correspond 

to the first five levels of Bloom’s taxonomy. In this activity the questions also divided in 

five quizzes. However, these quizzes do not form distinct levels of increasing difficulty as 

in the gamified activity, rather each question was randomly assigned in one of the quizzes. 

Only performance feedback and error flagging feedback are provided, when learners 

submit their answers. This feedback informs learners about which questions were 

answered correctly and which did not. Learners are also informed about the number of 

the correct answers (e.g., 4/6 points). As in the gamified activity, the correct answers are 

marked with a green check sign, while the incorrect with a red cross sign. Figure 6.9. 

presents the components of the non-gamified activity. 
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We should note that, the control group participated in the non-gamified activity while the 

experimental group participated in the gamified activity. 

6th phase: Evaluation 

The evaluation phase aims to measure the effect of the implemented gamified 

intervention. In the present thesis, subjective and objective measures were used to assess 

the effect of the progression element in a MOOC assessment activity. Neurophysiological 

measures that were obtained by the spectral analysis of the participants’ brain signals 

were correlated with data collected via a self-report questionnaire that was administered 

to the participants at the end of the experimental procedure. In the following section, the 

experimental procedure is thoroughly described, as well as the instruments and 

apparatus that were used to collect the data.     

Figure 6.9. Example of the feedback that is given in non-gamified activity 
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6.3. Apparatus and instruments 

To record the participants’ neurophysiological signals, a wireless EEG recording system 

was used, namely g. Nautilus, manufactured by g.tec Medical Engineering GmbH (Figure 

6.10).  

The system consists of a cap with sixteen (16) dry electrodes that are uniformly 

distributed in accordance with the international 10–20 standard (Jasper, 1958). The 

ground and reference electrodes are located at the two mastoid bones (Figure 6.11). EEG 

signals were digitized with 24-bit resolution ADCs and sampled at 250 Hz. The system 

also contains a separate base station that receives the digitalized signals through a 2.4GHz 

wireless transmission and sends them to a PC through a USB port. EEG data obtained from 

g.Nautilus were visualized and processed by Simulink, a commonly used tool for dynamic 

simulation.  

Figure 6.10. The g.Nautilus headset 

Figure 6.11. g.Nautilus 16-channel electrode setup 
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After the completion of the experimental procedure, the learners were requested to 

evaluate the activity (either it was gamified or not) in terms of perceived engagement. In 

order to acquire information about the participants’ post-experiential engagement, the 

Whitton’s (2007) engagement questionnaire was administered via a google form. The 

google form also included questions about the participants’ demographics. Demographics 

included the following information: gender, age, education level, learning disability, 

occupation, ICT skills level, prior experience on Coursity, prior experience on online 

learning, prior knowledge on ASD (Table 6.1). 

II. Perceived engagement questionnaire 

A self-reported questionnaire was used to assess learners’ task engagement. Whitton 

(2007) through her dissertation proposed several statements to evaluate the perceived 

engagement of participants in an activity (task engagement). Whitton’s engagement 

questionnaire consists of 18-item in a 5-point Likert scale (strongly agree to strongly 

disagree). Each of the questions corresponds to a factor that Whitton argues to affect the 

engagement of the participants: Challenge, Interest, Control, Purpose, Immersion. This 

questionnaire has been used to examine and evaluated postexperiential engagement with 

educational games and other learning activities in Higher Education (Whitton, 2007, 

2011). Two theories of engagement with games are the basis for this questionnaire, flow 

theory and Malone’s theory in terms of challenge, curiosity, and control. Flow theory 

(Csikszentmihalyi, 1992) is a central component, but it should be acknowledged that flow 

is an extreme form of engagement and that it is possible to be engaged although not 

actually in a state of flow. However, the questionnaire also draws from theories of adult 

learning, such as the theory of andragogy (Knowles, 1988). This theory supports that 

adult motivations for learning differ from younger people. Adult learners need to know 

why they should learn something before they are willing to invest time and energy in 

learning it and they become ready to learn something when they need to apply it in real-

life situations. 

Table 6.5. presents the items that were used to assess the participant’ perceived 

engagement. Engagement constitutes of five engagement factors. Each factor contributes 

to the overall sense of engagement. The model on which Whitton’s questionnaire was 

developed, has been validated in research studies in various fields as well as in 

educational tasks, while the questionnaire was used in formative assessment studies 

(Ismail & Mohammad, 2017).  
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In Appendix II, we present the self-reported engagement questionnaire in Greek as it was 

administered to the participants.  

Table 6.5. Learning engagement factors proposed by Whitton (2007). The negative phrasing 
marked with asterisks 

Factor Description Question 

Challenge The motivation to undertake the 

activity. 

 

 

Clarity as to what it involves. 

 

 

A perception that the task is 

achievable. 

I wanted to complete the activity (I had a 

motivation) 

I did not care how the activity ended (in 

terms of grades) 

I knew what I had to do to complete the 

activity 

I found it easy to get started 

I found the activity frustrating* 

I felt that I could achieve the goal of the 

activity 

Control The fairness of the activity, the level 

of choice over types of action 

available in the environment, and 

the speed and transparency of 

feedback. 

It was not clear what I could and couldn’t 

do* 

The activity would not let me do what I 

wanted* 

I could not tell what effect my actions 

had* 

Immersion The extent to which the individual is 

absorbed in the activity. 

I felt absorbed in the activity 

I felt that time passed quickly 

I found the activity satisfying 

Interest The intrinsic interest of the 

individual in the activity or subject 

matter. 

I found the activity boring* 

I was not interested in exploring the 

options available* 

I did not enjoy the activity* 

Purpose The perceived value of the activity 

for learning, whether it is seen as 

being worthwhile in the context of 

study. 

It was clear what I could learn from the 

activity 

The activity was pointless* 

The feedback I was given was useful 

6.4. Experimental procedure 

The experimental procedure was divided in two phases. Figure 6.12 shows the 

experimental protocol that was followed. In the first phase participants were requested 

to watch two video-lectures about the Autism Spectrum Disorder. In order to have 

access to the video-lectures, the participants created an account on Coursity MOOC 

platform. They were able to access the content via the internet from their home or 

any other place they have chosen. The second phase included their arrival at Coursity’s 

office in order to participate in the experimental procedure. This phase involved the 
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recording of the participants’ brainwaves and answering a self-reported engagement 

questionnaire. 

Before the experiment 

An informative email was sent to each participant a few days before the experiment. 

Through this email, the researcher explained the procedure in detail, the duration of the 

experiment and the research objectives. Also, the participants received instructions about 

their preparation for the experiment. Specifically, the participants were informed that 

they should not take any medication or substances that may affect their nervous system, 

or consume a large amount of caffeine or alcoholic beverages in the last 24 hours before 

the experiment. Also, they were instructed to wash their hair before the experiment and 

not to use any cosmetics for their hair (e.g., hairspray, gel, etc.) or hair cream as it may 

reduce the quality of the EEG signals. The participants were also instructed to sleep at 

least 8 hours the night before the experiment to feel relaxed. The participants that had a 

vision problem (e.g., myopia), was proposed to wear lenses during the experiment, if that 

was possible, to make it easier to apply the EEG cap. Finally, all participants were 

instructed to come for the experiment wearing a medical face mask due to Covid-19 

regulations.  

Before the experiment, each participant was requested to register on Coursity platform, 

in order to watch two video-lectures about Autism Spectrum Disorder via the MOOC 

platform (Coursity). Each video-lecture had a duration of about 15min. The participants 

were instructed to watch the video-lectures from their own place and to attend each 

lecture one or more times via the online platform. After that, the participants could choose 

through a doodle form, the day and the time that they wanted to come for the experiment.  

During the experiment 

The experimental procedure was completed in one session. The experiment took place at 

Coursity’s office, at the Science & Technology Park of Epirus (Ioannina, Greece). After the 

arrival of the participant, the researcher briefly explained the experimental procedure 

and the participants were asked to read and sign a consent form. Each participant was 

first sited at the prep room and was provided with a wipe with 70% isopropyl alcohol to 

Figure 6.12. Experimental protocol 
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clean his/her forehead as well as the area behind their ears (mastoid bones). The 

researcher installed the electrode cap at the participants’ head and carried out skull 

measurements to fit the cap properly. The Cz electrode location was found for each 

participant (according to the 10-20 reference system) and the cap was adjusted if needed. 

The reference and ground electrodes were placed at right and left mastoid respectively 

(Figure 6.13). 

The g.NEEDaccess application was used to preview the signals before the recording in 

order for the researcher to correct any electrode that gave a signal with low quality. The 

researcher adjusted the placement of the electrodes to improve their contact with the 

skin. This was absolutely necessary because the electrodes that we used were dry and 

there was no conductive gel between the skin and the electrode. The researchers asked 

the participants to perform a set of actions, like blinking, chewing etc., in order to check 

the electrodes’ contact quality, as well as to show the participants that any head or body 

movement creates large artifacts on the EEG signal, thus they should try to avoid facial 

expressions and body movements as much as they could. 

Afterwards, each participant was comfortably seated at eye level and about 100 cm away 

from a 22’’ monitor in the test room. Before the beginning of the recording, the 

participants had a few minutes to adapt to the specific conditions, to relax and reduce the 

movements of their eyes. Each participant was familiarized with the environment of the 

MOOC platform for about 2 minutes.  

Figure 6.13. A female participant while completing the activity 
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During the experiment the participant’s brain activity was recorded for two different 

conditions, the baseline and task condition. At baseline condition, the participants were 

instructed to stay calm and relaxed as much as possible, with their eyes open, without 

thinking something particular, for 2 minutes. This task served as a “reference task” against 

which the actual task was compared. After that, the participants took a 2-minute break. 

Before the task condition, the participants received instructions and information about 

the MOOC environment and the assessment activity that they were requested to complete. 

At task condition we recorded the participants’ brain activity during the completion of the 

assessment activity. The researcher during the task condition kept notes about the 

participants' interaction with the learning environment and the assignment. Also, during 

the EEG data acquisition, the researcher was keeping notes about any particular or 

sudden event that would be useful to consider during data analysis. The participants were 

informed that there was not a time limit to complete the task.  

When the participant finished the task, the researcher stopped the EEG acquisition at the 

recording computer and removed the cap from the participant’s head. Then, participants 

were invited to complete a questionnaire to collect data about their demographics and 

their self-assessment of the task in terms of the perceived engagement and perceived 

effectiveness. 

After the experiment 

After each participant left the office, we cleaned the cap as well as all the surfaces using 

wipes with 70% isopropyl alcohol. Also, the researcher kept notes about participants’ 

behavioral reactions during the task. 

6.5. Data collection and analysis 

6.5.1. EEG acquisition and subjective data collection 

The EEG signals were recorded using a wireless EEG system (g.Nautilus). EEG raw data 

was recorded from Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, P3, Pz, P4, PO7, PO8, Oz 

electrode positions. The signals were referenced to the right mastoid. The EEG data 

acquisition system applied a digital bandpass 6th order Butterworth filter (HP=0.1Hz and 

LP=60Hz) and a Notch filter at 50Hz to raw data. We note that the system allows to select 

either 250 Hz or 500 Hz as the sampling frequency. Because the frequency of the brain 

waves is approximately between 1Hz to 64Hz, we chose to apply a sampling frequency of 

250Hz. EEG was recorded monopolarly from symmetrical frontal, central, parietal, 
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occipital, and temporal lobes in the following conditions: “baseline with opened eyes” and 

“task”. For each participant, the whole procedure lasted about 30-40 min, starting from 

the placement of the cap on participant’s head until the completion of the session.  

6.5.2. EEG pre-processing 

Preprocessing is the first step in the process of offline signal analysis and is a necessary 

step before feature extraction. In preprocessing we aimed to produce artefact-free signals 

from the raw files that are recorded, by removing eye movements and other artefacts. In 

the present thesis, the EEG preprocessing was performed in Matlab (version 2017b, The 

MathWorks Inc), by using EEGLab toolbox (Delorme & Makeig, 2004). The preprocessing 

that we followed in the present thesis consisted of the following steps: 

▪ Importing the raw data to EEGLab: EEG data were imported in the MATLAB R2017b 

(The MathWorks, Inc) environment and preprocessed by means of the open source 

EEGLAB toolbox (http://sccn.ucsd.edu/eeglab/). The recorded files were saved in .mat 

file format. In order to import the files into EEGLab we installed the necessary plugin 

that is provided by g.tec. 

▪ Filter: Raw EEG signals were digitally filtered in the band 1–30Hz by means of finite 

impulse response (FIR) filters. Specifically, we have applied a digital low-pass FIR filter 

(LP=30Hz) and a high-pass FIR filter (HP=1Hz) to the raw data to remove noise and 

muscular artifacts. We high-pass filtered the signals to remove slow drifts and have a 

better Independent Component Analysis (ICA) decomposition. The default filter 

implemented in EEGLAB is a zero phase Hamming-widowed sinc FIR filter. The length 

of the high-pass filter is 827, thus the filter order is 826 (i.e., filter length minus 1), 

while for the low-pass the order is 110. Figure 6.14 presents the parameters of the two 

filters such as, -6dB cutoff frequency, the pass-band edge, and the transition 

bandwidth. We did not apply a band-pass filter because high-pass filters often require 

narrower transition bands than low-pass filters.  

Figure 6.14. High-pass and low pass filters as shown in the MATLAB command window 
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▪ Artifact rejection: We performed visual inspection of the data to find channels that did 

not have a good signal quality in order to reject them. Power spectral density plots 

(spectopo function) of all channels were also examined in order to find the bad 

channels. Through visual inspection, we also rejected segments of the data that had 

large artifacts. Furthermore, we used EEGLAB function “Reject data using Clean 

Rawdata and ASR” with the default settings. 

In the present thesis, the data that were recorded from the electrode sites Fp1, Fp2, 

T7, T8, PO7, PO8 and Oz, were excluded from further analysis, as they were noisy 

enough for many participants. Due to use of dry electrodes, the size of the cap used for 

recording the EEG signals plays an important role in the quality of the recorded data. 

The above electrode sites were found to be more likely not to have a good contact with 

the skin. 

▪ Independent Component Analysis (ICA): ICA employing the ‘runica’ algorithm was 

applied on the filtered signals in order to identify ocular artifacts (e.g., blinking and 

eyes lateral movements) sources. Bad ICA components were rejected by visual 

inspection of the component maps (IClabel) and power spectral density distributions 

(Figure 6.15).  

We did not re-reference the data, after the recording, as the EEG signals were recorded 

from 16 electrodes placed on participant’s scalp which is not enough to provide a good 

coverage of the scalp in order to be able to convert the imported signals to the average 

reference. 

For each participant, we have recorded two signals, one for the baseline condition and 

one for the task condition. We have followed the same procedure for all recorded signals, 

for each group (control/ experimental) and for each condition (baseline/ task). 

Figure 6.15. Artifactual ICA components. Blinking component (left) and lateral movements component 
(right) as suggested by ICLabel 
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6.5.3. Spectral analysis of EEG bands 

In the present thesis the Welch periodogram method was used to compute an estimate of 

the power spectral density of the pre-processed EEG signals. The Welch method consists 

in averaging consecutive Fourier transform of small windows of the EEG signal with or 

without overlapping (Figure 6.16). In our case, the pwelch MATLAB function was 

performed on each channel to derive estimates of absolute spectral power in different 

frequency bands. Specifically, the bands of interest were theta (θ, 4–8Hz), alpha (α, 8–

13Hz), beta (β, 13-30Hz) and low-beta (β1, 13-15Hz). We have considered a Hamming 

window of 2-sec with 50% overlap. This means that each channel of a signal was 

segmented into several overlapping and equal parts as described in detail in Chapter 4. 

The EEG data were segmented into 2-second windows overlapped by 50%. The resulting 

segments were multiplied by a Hamming window function to mitigate spectral leakage.  

For the FFT computation stage the algorithm takes the segments, in which the signal was 

divided, and computes a FFT in each of them. A FFT is used to extract 1-Hz bin power data 

segment for each channel.  

As mentioned in the previous section, the data that were recorded from the electrode sites 

Fp1, Fp2, T7, T8, PO7, PO8 and Oz, were excluded from further analysis. For spectral 

analysis, frontal (F3, F4), parietal (P3, Pz, P4) and central (Cz) lobes were concerned. 

Figure 6.16. Welch’s method feature extraction algorithm 

Figure 6.17. Two different groups of electrode sites are used for feature extraction. The electrodes are 
marked with a circle 
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Specifically, from each EEG file, two separate files were created by extracting a different 

group of electrodes. We created a file that consists of Cz, Pz, P3, P4 electrodes and a file 

that consists of F3, F4, P3, P4 (Figure 6.17). 

Power Spectral Density (PSD) values for each electrode (i.e., Cz, Pz, P3, P4, F3, F4) in each 

band were averaged to obtain the power spectral features. Absolute and relative band 

powers were computed. Those values were further used to calculate ratios among the 

bands. 

6.5.4. EEG feature extraction - Procedure and measurements 

Feature extraction involves the process of describing the information about the brain 

activity by an ideally small number of relevant values. There are three main sources of 

information that can be extracted from EEG readings: spatial information (for 

multichannel EEG), spectral information (power in frequency bands) and temporal 

information (time windows-based analysis). In the present thesis the feature extraction 

was carried out using spectral analysis. In order to examine the participants’ affective and 

cognitive states from their brain activity, we calculated the absolute and relative spectral 

power for each frequency band, in Cz, Pz, P3, P4, F3, F4 electrode sites: 

▪ theta (θ, 4-8Hz) 

▪ alpha (α, 8-13Hz) 

▪ beta (β, 13-30Hz) 

▪ low beta (β1, 13-15Hz). 

Also, we calculated ratios between the above-mentioned frequency bands to obtain 

measures for assessing participants’ level of engagement. We also have examined indices 

that are closely related to engagement such as attention, cognitive workload, arousal, and 

valence. We computed the above indices from absolute and relative band power values. 

The data analysis that was performed in the present thesis was a between-groups 

approach for the two groups: Group1(control group) vs Group2(experimental group), 

based on the baseline vs the task condition. Below we describe the ratios that were 

calculated. These ratios are described in detail in Chapter 5. 

Engagement index 

In the literature, several candidate indices were computed combining power values in the 

theta (θ, 4–8Hz), alpha (α, 8–13Hz), and beta (β, 13–22Hz) frequency bands, as they are 

considered to reflect cognitive engagement and to provide information on cognitive 

efforts. In the present thesis, we used the task engagement index proposed by Pope 
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(Freeman et al., 1999; Pope et al., 1995; Prinzel et al., 2000), i.e., β/(α+θ), to evaluate 

participants’ engagement. As it is obvious, the EEG measurement for task engagement is 

a ratio value without a unit. To calculate the values θ, α, and β of the index, we summed 

the absolute band power that was computed from the electrode sites Cz, Pz, P3, and P4. 

Also, we calculated the same index using the sum of the relative band power from the four 

electrodes. 

This index, as described in Chapter 5, was built assuming that an increase in β power is 

related to an increase in brain activity during a cognitive task, whereas increases in α and 

θ activity is thought to be related with lower vigilance and alertness. Based on the relevant 

literature, this index has showed a great reliability in studies relevant to adaptive and 

automated task allocation (Chaouachi et al. 2010). In assessing learners’ engagement in 

educational context, this index showed to provide an efficient assessment of learners’ 

vigilance and cognitive attention (Chaouachi et al. 2010).  

Attention index  

We calculated an attention ratio as θ/β. This ratio is based on the assumption that an 

increase in alertness is related to an increase in beta power and a decrease in theta power 

(Gale & Edwards, 1983). The θ/β ratio is calculated as the sum of the absolute power in 

F3, F4 electrode sites, in the theta band (4-8Hz), divided by the sum of the absolute power 

in F3, F4 electrode sites, in the beta band (13-30Hz). This index is thought to be a potential 

biomarker for executive function, and in particular attentional processing (Angelidis et al. 

2016). The theta/beta ratio has been negatively correlated with attention (Derbali & 

Frasson, 2012; Putman, 2010). This means that a larger value of this index is related to 

inattentive states. 

Workload  

The θ/α ratio (or Task Load Index, TLI) was calculated as an index for workload. This 

index is based on the assumption that an increase of cognitive load is associated with a 

decrease in alpha power and an increase in theta power (Gevins & Smith, 2003; 

Kamzanova, Kustubayeva & Matthews, 2014). The θ/a ratio was calculated as the sum of 

the absolute power in F3, F4 electrode sites, in the theta band (4-8Hz), divided by the sum 

of the absolute power in P3, P4 electrode sites, in the alpha band (8-13Hz). 

Arousal and Valence 

Arousal and valence were calculated based on the EEG signal from F3 and F4 electrodes 

site. Usually, researchers use four sites from prefrontal cortex i.e., AF3, AF4, F3, F4 (Diaz, 

Ramirez, Hernandez-Leo, 2015; Eldenfria & Al-Samarraie, 2019; Ramirez & Vamvakousis, 
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2012). Our apparatus could not provide measurement for AF3, AF4, thus, we measured 

the signals from the available site F3, F4. The arousal level was calculated as β/α. The ratio 

was calculated as the sum of the absolute power in F3, F4 electrode sites, in the beta band 

(13-30Hz), divided by the sum of the absolute power in F3, F4 electrode sites, in the alpha 

band (8-13Hz). 

The ratio for estimating valence is based on the fact that left frontal inactivation is an 

indicator of a withdrawal response often linked to negative emotion and right frontal 

inactivation may be associated to an approach response or positive emotion (Aftanas et 

al., 2002, 2004; Pfurtscheller, 1999). Valence level was calculated with the following 

formula: Valence=αF4/βF4 – αF3/βF3 (Diaz, Ramirez, Hernandez-Leo, 2015). The ratio 

was calculated absolute powers of F3 and F4 electrode sites in the alpha band (8-13Hz) 

and in the beta band (13-30Hz). 

We calculated the above values for the two recording conditions i.e., baseline and task. All 

data analyses were performed offline with MATLAB R2017b (The MathWorks, Inc) 

environment and custom code. Table 6.6. summarizes the measures that were calculated 

in this work.  

Table 6.6. Neural measures that were calculated to assess learners’ cognitive and affective states 
in the present thesis. Frontal area involves the recordings from F3 and F4 electrode sites, while 

parietal involves the recordings P3, Pz, and P4 electrodes 

Frequency band power Frequency band power ratios 

Theta (frontal/ parietal) Engagement: β/(α+θ) 

Alpha (frontal/ parietal) Attention: θ/β 

Beta (frontal/ parietal) Workload: θ/α  

Beta low (frontal/ parietal) Arousal: β/α 

 Valence: αF4/βF4 – αF3/βF3 

Finally, in the present work, we compare the participants’ mental engagement with their 

subjective estimation of perceived engagement. 
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Chapter 7. Results 

7.1. Introduction 

In this chapter we present the results of the thesis. The results are separated into two 

sections based on the data used for analysis. In the section 7.2 we present the results that 

were generated by the participants’ neural data. We examine and compare the values of 

absolute and relative power of four frequency bands, namely theta (4-8Hz), alpha (8-

13Hz), beta (13-30Hz) and low-beta (13-15Hz). These values were extracted from the 

spectral analysis of the recorded EEG signals for both groups: control group and 

experimental group, and in each condition: baseline and task. In the section 7.3. we 

present the results that were obtained from participants’ answers on the self-reported 

engagement questionnaire. We analyze the results regarding each one of the five 

engagement factors, namely Challenge, Control, Interest, Immersion, Purpose. We also 

compare the overall values of perceived engagement between the two groups. 

Additionally, we investigate possible differences between the two groups in terms of 

perceived usefulness, perceived learning effectiveness, perceived cognitive benefits, and 

intention to continue the course. 

The goal of this work is to investigate whether the measures defined in Chapter 6 could 

be used to characterize participants’ learning experience in a MOOC activity. Moreover, 

we aim to evaluate the effect of the proposed gamification design on participants’ 

cognitive states and assess whether the neural data agree with the subjective data in 

terms of engagement. 

Data collected are described by the use of means and standard deviations as far as scale 

measurements are concerned, such as the engagement values, their normalized 

transformations, power values of frequency bands in the parietal and frontal areas, and 

the dimensions of the questionnaire, while frequencies and percentages were used for 

categorical data such as group membership or former course attendance. The 

independent samples t-test was used for comparisons between groups in all outcome 

measurements, while the paired samples t-test was used to assess the differences 

between the measurements in baseline and task condition of the experiment. The Shapiro 

Wilk test was used to assess the normality assumption in all cases. Correlations between 

scale measurements such as engagement values, θ frontal and α parietal power values 

were analyzed with the Pearson correlation coefficient. The statistical significance was 

set at 0.05 in all cases and all analyses were carried out with the use of SPSS v.23.0. 
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7.2. Comparing learners’ cognitive state in a MOOC activity (neural 

data) 

7.2.1. Comparison of the engagement values  

In this section, we present the results that were generated from the participants’ EEG 

signals. We present the results for the control and the experimental group, and for each 

condition, namely baseline and task. The engagement values were calculated as the ratio 

β/(α+θ) using the absolute band power values as well as the relative band power values 

of θ (4-8Hz), α (8-13Hz) and β (13-22Hz) bands from Cz, P3, Pz, P4 electrodes. The 

absolute power of a band is the integral of all of the power values within its frequency 

range while the relative power of a band was derived by dividing the absolute power in 

these frequency band with the absolute power of the total frequency range. The following 

tables show the results of the comparison between the values in baseline and task 

condition, for each group separately. The normalized values of engagement are also 

compared (i.e., (task_value-baseline_value)/baseline_value). The engagement values are 

studied in order to assess the effect of the proposed gamification design on the 

participants’ task engagement in the experimental group (Group2-GR2) in comparison to 

participants’ task engagement in the control group (Group1-GR1). 

Engagement values comparison between groups in the baseline condition 

Table 7.1 presents the comparison of the engagement values in the baseline condition, for 

each group of the present thesis. Specifically, the Table 7.1 shows the mean value of 

engagement that was calculated from the relative and the absolute power values. The 

estimated mean for each of the two groups appears under the label “Mean” followed by 

the respective estimation of the standard deviation.  

Table 7.1. Comparison of the engagement values in baseline condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

EngIdx_rel Baseline 
GR1 28 ,246 ,075 ,014 

,173 
GR2 30 ,216 ,091 ,017 

EngIdx_abs Baseline 
GR1 28 ,242 ,077 ,015 

,193 
GR2 30 ,211 ,097 ,018 

We compare the engagement values in the baseline condition to investigate whether the 

two groups differ in their participants’ level of engagement before participating in the 

activity. The comparison of the engagement values of the two groups showed no 
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statistically significant differences neither for the values of the engagement score that 

were calculated from relative power values (p=0.173), nor for the values of the 

engagement score calculated from the absolute power values (p=0.193). 

Engagement values comparison between groups in the task condition 

Respectively, in Table 7.2 we present the results that were obtained from the values of 

engagement in the task condition. The results show whether the proposed gamification 

design and subsequently the implementation of the progression element in the MOOC 

activity affected the level of participants’ engagement. Specifically, Table 7.2 describes the 

mean value of the engagement scores in the task condition for each group. It is quite 

evident, even by the intuitive inspection of the means and standard deviations, that no 

differences between the two groups are observed. The conclusion is verified by the 

relative analysis that leads to a p-value of 0.471 for the engagement scores that were 

calculated from the relative power values and a p-value equal to 0.528 for the engagement 

scores that were calculated from the absolute power values. 

Table 7.2. Comparison of the engagement values in task condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

EngIdx_rel Task 
GR1 28 ,228 ,066 ,013 

,471 
GR2 30 ,216 ,058 ,011 

EngIdx_abs Task 
GR1 28 ,228 ,068 ,013 

,528 
GR2 30 ,218 ,059 ,011 

Engagement values comparison between task and baseline condition by group 

Apart from the baseline and task comparison of the two groups, a comparison is made to 

examine the change that was observed in each group separately. The obtained 

engagement scores, calculated from the relative and the absolute power values, for 

Group1 appear in Table 7.3, while the respective estimations for Group2 appear in Table 

7.4. The p-values appearing on the last column of each table show that neither for the two 

measurements (i.e., baseline and task), nor for the groups the observed change is 

statistically significant. Therefore, the changes observed in both conditions and for both 

groups are similar and not statistically significant. 

Table 7.3. Paired comparisons of engagement values in baseline and task conditions for Group1 

  Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
EngIdx_rel Task ,228 28 ,066 ,013 

,128 
EngIdx_rel Baseline ,246 28 ,075 ,014 

Pair 2 
EngIdx_abs Task ,228 28 ,068 ,013 

,297 
EngIdx_abs Baseline ,242 28 ,077 ,015 

a. Group = GR1      
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Table 7.4. Paired comparisons of engagement values in baseline and task conditions for Group2 

 Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
EngIdx_rel Task ,216 30 ,058 ,011 

,977 
EngIdx_rel Baseline ,216 30 ,091 ,017 

Pair 2 
EngIdx_abs Task ,218 30 ,059 ,011 

,644 
EngIdx_abs Baseline ,211 30 ,097 ,018 

a. Group = GR2      

Normalized engagement values comparison between groups 

As engagement indices are dimensionless and their values are subject dependent, it is 

important to consider values corresponding to the task condition with respect to an 

individual baseline (rest) condition (Coelli et al., 2018). Therefore, another comparison 

made, regarded the normalized changes in the engagement values, i.e., (task_value-

baseline_value)/baseline_value. These comparisons also did not result in statistically 

significant differences. The p-value was 0.099 for the normalized engagement values 

calculated from the relative power values and 0.073 for the normalized engagement 

values that were calculated from the absolute power values. These estimations appear in 

Table 7.5. 

Table 7.5. Comparison of the normalized engagement values for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Normalized 

EngIdx_Rel 

GR1 28 -,024 ,294 ,056 
,099 

GR2 30 ,167 ,531 ,097 

Normalized 

EngIdx_Abs 

GR1 28 ,014 ,368 ,070 
,073 

GR2 30 ,328 ,838 ,153 

 

The non-statistically significant differences between the two groups are depicted in the 

comparative boxplots of Figures 7.1–7.2. Although, the differences between the 

normalized engagement values are not significant, neither for the relative values nor for 

the absolute values, they are depicted because engagement is the main index in this thesis. 
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Figure 7.1. Comparative boxplot of normalized engagement values (from the relative power values) 

Figure 7.2. Comparative boxplot of normalized engagement values (from the absolute power values) 
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7.2.2. Comparison of the attention values  

In this section we present the results that were obtained from the participants’ EEG 

signals for both groups. The attention values that are presented in the following tables 

were calculated as the ratio θ/β of the absolute power values in θ (4-8Hz) and β (13-30Hz) 

bands, recorded at F3 and F4 electrodes. Also, using the same ratio, we calculated 

attention values, from the absolute power values of low β (13-15Hz) frequency bands. We 

named the values of the latter index as attention_low to distinguish them from the values 

of the former index. It should be noted that high attention ratio values are correlated with 

excessive θ power and consequently with inattentive state, while low attention ratio 

values are correlated with excessive β power and consequently with attentive state. 

In the following tables, we present the results of the comparison between the baseline 

and task values of the attention index, for each group. 

Attention values comparison between groups in the baseline condition 

In Table 7.6 the comparison of attention index values in the baseline condition are 

presented for each group. We compare participants’ attention values in the baseline 

condition to examine whether the two groups differ in their level of attention before the 

activity. Specifically, Table 7.6 shows the mean value of the attention scores for both 

indices, in the baseline. The estimated mean for each of the two groups appears under the 

label “Mean” followed by the respective estimation of the standard deviation. The 

comparison of the values of the two groups showed no statistically significant differences 

neither for the values of the attention score (p=0.274) nor for the values of the 

attention_low score (p=0.317). 

Table 7.6. Comparison of attention scores in baseline condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-values 

Baseline 

Attention 

GR1 28 4,050 2,589 ,489 
,274 

GR2 30 5,530 6,631 1,211 

Baseline 

Attention_low 

GR1 28 2,788 1,630 ,308 
,317 

GR2 30 3,428 2,959 ,540 

Attention values comparison between groups in the task condition 

Table 7.7 describes the mean values of the above indices in the task condition for each 

group. As in the case of the baseline comparisons, no differences between the two groups 

are observed. The conclusion is verified by the statistical analysis that leads to a p-value 

of 0.217 for the attention score and a p-value equal to 0.574 for the attention_low score. 
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Table 7.7. Comparison of attention scores in task condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-values 

Task Attention 
GR1 28 4,156 1,789 ,338 

,217 
GR2 30 4,844 2,352 ,429 

Task Attention_low 
GR1 28 3,048 1,122 ,212 

,574 
GR2 30 3,235 1,376 ,251 

Attention values comparison between task and baseline condition by group 

Apart from the baseline and task comparison of the two groups, a comparison is made to 

examine the change that was observed in the attention level between the two conditions 

in each group separately. The obtained scores of attention and attention_low for Group1 

appear in Table 7.8, while the respective estimations for Group2 appear in Table 7.9. The 

p-values appearing on the last column of each table show that for neither of the two 

measurements and for neither of the groups the observed change is statistically 

significant and therefore the changes observed for both conditions and in both groups are 

similar and not statistically significant. 

Table 7.8. Paired comparisons of attention scores in baseline and task conditions for Group1 

 Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
Task Attention 4,156 28 1,789 ,338 

,840 
Baseline Attention 4,050 28 2,589 ,489 

Pair 2 
Task Attention_low 3,048 28 1,122 ,212 

,428 
Baseline Attention_low 2,788 28 1,630 ,308 

a. Group = GR1      

Table 7.9. Paired comparisons of attention values in baseline and task conditions for Group2 

 Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
Task Attention 4,844 30 2,352 ,429 

,505 
Baseline Attention 5,530 30 6,631 1,211 

Pair 2 
Task Attention_low 3,235 30 1,376 ,251 

,657 
Baseline Attention_low 3,428 30 2,959 ,540 

a. Group = GR2      

Normalized attention values comparison between groups 

Another comparison made, regarded the normalized changes in the attention values, i.e., 

(task_value-baseline_value)/baseline_value. These comparisons also showed not 

statistically significant differences with a p-value of 0.792 for the normalized attention 

values and of 0.862 for the normalized attention_low values. These estimations appear on 

Table 7.10. 
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Table 7.10. Descriptive statistics for normalized attention values for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Normalized 

Attention 

GR1 28 ,148 ,434 ,082 
,792 

GR2 30 ,187 ,638 ,117 

Normalized 

Attention_low 

GR1 28 ,203 ,398 ,075 
,862 

GR2 30 ,181 ,545 ,099 

Correlation between attention values and engagement values 

Regarding the attention scores, a correlation coefficient was estimated to examine a 

potential relationship between the changes that were observed in the attention values 

with the changes in the engagement values. The changes were defined as the differences 

of task scores minus baseline scores. For this correlation we used the engagement values 

that were calculated from the absolute band power values. The correlation was found to 

be statistically significant for both indices of attention in the experimental group 

(Group2). The p-value for the correlation of the attention difference to the engagement 

difference equals 0.013 with correlation coefficient equal to -0.446 and the p-value for the 

correlation of the attention_low difference to the engagement difference equals 0.003 

with correlation coefficient equal to -0.523 (Table 7.11). 

In both cases the correlation is negative showing that an increase in the attention scores 

is followed by a decrease in the engagement scores. The inference stands for both 

attention and attention_low scores. The relevant relationships are depicted on the 

scatterplots of Figures 7.3 and 7.4. Even though the relationships are similar in both 

groups, it is stressed out that they are statistically significant only for the experimental 

group (Group2). 

Table 7.11. Correlation between attention difference and engagement difference 

 

Group Engagement  Difference 

Correlation 

Coefficient Sig. (2-tailed) N 

Spearman's 

Rho 

GR1 
Attention Difference -,311 ,107 28 

Attention_low Difference -,304 ,116 28 

GR2 
Attention Difference -,446 ,013* 30 

Attention_low Difference -,523 ,003* 30 
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Figure 7.3. Scatterplot of attention score differences vs engagement score differences 

Figure 7.4. Scatterplot of attention_low score differences vs engagement score differences 
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7.2.3. Comparison of the workload values 

The workload values we present in this section have been calculated as the ratio θ/α of 

the absolute power values of θ (4-8Hz) band from electrode sites F3 and F4, and of α (8-

13Hz) band from electrode sites P3 and P4. 

Workload values comparison in baseline and task condition between groups 

Table 7.12 shows the mean value of the workload index in the baseline condition but also 

in the task condition. The estimated mean for each of the two groups appears under the 

label “Mean” followed by the respective estimation of the standard deviation. The 

comparison of the values of the two groups showed no statistically significant differences 

neither for the values at the baseline (p=0.496), nor at the task (p=0.583). 

Table 7.12. Comparison of workload values in baseline and task condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Baseline Workload 
GR1 28 1,378 1,778 ,336 

,496 
GR2 30 1,097 1,332 ,243 

Task Workload 
GR1 28 1,675 1,250 ,236 

,583 
GR2 30 1,494 1,245 ,227 

Workload values comparison between task and baseline condition by group 

Apart from the baseline and task values comparison of the two groups, a comparison is 

made to examine the change that was observed between the two conditions in each group 

separately. The changes in the obtained scores of the workload appear in Table 7.13 for 

both groups. The p-values appearing on the last column of the Table 7.13 show that there 

is a statistically significant increase observed in the experimental group (p=0.005) but not 

in the control group (p=0.335). 

Table 7.13. Paired comparisons of workload values in baseline and task conditions by group 

 Mean N Std. Deviation Std. Error Mean p-value 

Group 1 
Task Workload 1,675 28 1,250 ,236 

,335 
Baseline Workload 1,378 28 1,778 ,336 

Group 2 
Task Workload 1,494 30 1,245 ,227 

,005* 
Baseline Workload 1,097 30 1,332 ,243 
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The statistically significant change observed between the two conditions are depicted in 

the comparative boxplot of Figure 7.5. 

Normalized workload values comparison between groups 

Another comparison made, regarded the normalized values in the workload, i.e., the 

(task_value-baseline_value)/baseline_value. These comparisons also showed not 

statistically significant differences with a p-value of 0.925 for the normalized workload 

index. These estimations appear on Table 7.14. 

Table 7.14. Descriptive statistics for normalized workload values for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Normalized 

Workload 

GR1 28 1,392 2,430 ,459 
,925 

GR2 30 1,335 2,184 ,399 

Correlation between workload values and engagement values 

Regarding the workload score a correlation coefficient was estimated to examine a 

potential relationship between the differences observed in its values with the changes in 

the engagement value. For the engagement we have consider the values calculated from 

the absolute band power. The correlation was found to be non-statistically significant for 

Figure 7.5. Comparative boxplot of the workload scores in baseline and task condition for Group2 
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both groups. The p-value for the correlations equals 0.648 for the control group and 0.590 

for the experimental group (Table 7.15). 

Table 7.15. Correlation between workload values and engagement values 

 

Group Engagement Difference 

Correlation 

Coefficient 
Sig. (2-tailed) 

N 

Spearman's 

Rho 

GR1 Workload Difference ,090 ,648 28 

GR2 Workload Difference ,103 ,590 30 

These non-statistically significant correlations are depicted in Figure 7.6. 

 

 

 

 

 

 

Figure 7.6. Scatterplot of workload score differences vs engagement score differences 
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7.2.4. Comparison of the arousal and valence values 

The arousal values presented in this section were calculated as the ratio β/α of the 

absolute band power values in β (13-30Hz) and in α (8-13Hz) from electrode sites F3 and 

F4. The valence values were calculated as the difference between two ratios: αF4/βF4-

αF3/βF3. The absolute band power values in β (13-30Hz) and in α (8-13Hz) from 

electrode sites F3 and F4 were used for the calculation of valence. 

Arousal and valence values comparison between groups in the baseline condition 

Table 7.16 shows the mean value of the arousal and valence values in the baseline 

condition. The estimated mean for each group appears under the label “Mean” followed 

by the respective estimation of the standard deviation. The comparison of the values of 

the two groups showed no statistically significant differences neither for the values of the 

arousal score (p=0.475) nor for the values of the valence score (p=0.113). 

Table 7.16. Comparison of arousal and valence values in baseline condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Baseline Arousal 
GR1 28 ,464 ,186 ,035 

,475 
GR2 30 ,423 ,242 ,044 

Baseline Valence 
GR1 28 -,097 ,384 ,073 

,113 
GR2 30 ,648 2,428 ,443 

Arousal and valence values comparison between groups in the task condition 

Table 7.17 describes the mean of the above indices in task condition. As in the case of the 

baseline comparisons, no differences between the two groups are observed. The 

conclusion is verified by the statistical analysis that leads to a p-value of 0.612 for the 

arousal score and a p-value equal to 0.213 for the valence score. 

Table 7.17. Comparison of arousal and valence values in task condition for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Task Arousal 
GR1 28 ,519 ,162 ,031 

,612 
GR2 30 ,490 ,256 ,047 

Task Valence 
GR1 28 -,092 ,381 ,072 

,213 
GR2 30 ,016 ,264 ,048 
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Arousal and valence values comparison between task and baseline condition by 

group 

Apart from the baseline and task comparison of the two groups, a comparison is made to 

examine the change that was observed in each of the two groups separately. The obtained 

scores of the arousal and the valence change for Group1 appear in Table 7.18, while the 

respective estimations for Group2 appear in Table 7.19. The p-values appearing on the 

last column of each table show that for both groups the observed changes in the arousal 

measurements are statistically significant and therefore the observed increase occurs in 

both groups (p=0.043 for the control and 0.049 for the experimental). The valence scores 

remain similar in both groups. 

Table 7.18. Paired comparisons of arousal and valence values for baseline and task conditions in 
Group1 

 Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
Task Arousal ,519 28 ,162 ,031 

,043* 
Baseline Arousal ,464 28 ,186 ,035 

Pair 2 
Task Valence -,092 28 ,381 ,072 

,947 
Baseline Valence -,097 28 ,384 ,073 

a. Group = GR1      

Table 7.19. Paired comparisons of arousal and valence values for baseline and task conditions in 
Group2 

 Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
Task Arousal ,490 30 ,256 ,047 

,049* 
Baseline Arousal ,423 30 ,242 ,044 

Pair 2 
Task Valence ,016 30 ,264 ,048 

,176 
Baseline Valence ,648 30 2,424 ,443 

a. Group = GR2      

Normalized arousal and valence values comparison between groups 

Another comparison regarded the normalized changes in the arousal and valence scores, 

i.e., (task_value-baseline_value)/baseline_value. These comparisons also did not show 

statistically significant differences with a p-value of 0.223 for the normalized arousal 

values and of 0.218 for the normalized valence values. These estimations appear in Table 

7.20. 
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Table 7.20. Comparison of normalized arousal and valence values for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Normalized 

Arousal 

GR1 28 ,245 ,429 ,081 
,223 

GR2 30 ,462 ,834 ,152 

Normalized 

Valence 

GR1 28 -,254 7,867 1,487 
,218 

GR2 30 -4,398 15,866 2,897 

Correlation between arousal values and engagement values 

Regarding the arousal score, a correlation coefficient was estimated to examine a 

potential relationship between the differences observed in its values with the changes in 

the engagement difference. For the engagement we have consider the values calculated 

from the absolute band power values. The correlation was found to be statistically 

significant for both groups. The p-value for the correlations equals 0.000 for the control 

group and 0.003 for the experimental group (Table 7.21). 

Table 7.21. Correlations between arousal and engagement differences 

 

Group Engagement Difference 

Correlation 

Coefficient 
Sig. (2-tailed) 

N 

Spearman's 

Rho 

GR1 Arousal Difference ,627 ,000* 28 

GR2 Arousal Difference ,519 ,003* 30 
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These, statistically significant correlations are depicted in Figure 7.7. 

Correlation between valence values and engagement values 

Regarding the valence score, a correlation coefficient was estimated to examine a 

potential relationship between the differences observed in its values with the changes in 

the engagement values. For the engagement we have considered the values calculated 

from the absolute band power values. The correlation was found to be non-statistically 

significant for both groups. The p-value for the correlations equals 0.148 for the control 

group and 0.121 for the experimental group (Table 7.22). 

Table 7.22. Correlations between valence and engagement differences 

 

Group Engagement Difference 

Correlation 

Coefficient 
Sig. (2-tailed) 

N 

Spearman's 

Rho 

GR1 Valence Difference ,281 ,148 28 

GR2 Valence Difference -,295 ,121 30 

Figure 7.7. Scatterplot of arousal differences vs engagement differences 
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These non-statistically significant correlations are depicted in Figure 7.8. One single 

outlier measurement was excluded to enhance to optical representation. 

 

7.2.5 Comparison of the θ, α, β power values in frontal and parietal areas 

Tables 7.23 and 7.24 show the mean value of the absolute and relative band power values 

of θ, α, β and β_low in the parietal brain area, in the baseline and the task condition, for 

each group. We calculated each value in θ, α, β and β_low as the sum of the power values 

from P3, Pz, and P4 electrodes. The estimated mean for each group appears under the label 

“Mean” followed by the respective estimation of the standard deviation. The comparison 

of the power values in θ, α, β and β low band between the two conditions showed a 

significant decrease for the θ parietal (control, p=0.029; experimental p=0.006), α parietal 

(control, p=0.003; experimental p=0.002), the β parietal (control, p=0.026; experimental 

p=0.002), β_low parietal (control, p=0.074, NS; experimental p=0.001) and the relative α 

parietal (control, p=0.004; experimental p=0.001). Moreover, a statistically significant 

increase was observed for the relative θ parietal (control, p=0.001; experimental p=0.001). 

Except for the β_low parietal measurement that has a significant change only in the 

experimental group, in the two groups, the changes observed was almost identical. 

Figure 7.8. Scatterplot of valence differences vs engagement differences 
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Table 7.23. Paired comparison of power values in θ, α, β, β_low bands for baseline and task 
conditions in Group1. The values concern the parietal area. 

  Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
θ Parietal Task 15,025 28 15,759 2,978 

,029* 
θ Parietal Baseline 21,207 28 20,423 3,859 

Pair 2 
α Parietal Task 9,436 28 8,344 1,577 

003* 
α Parietal Baseline 17,498 28 14,865 2,809 

Pair 3 
β Parietal Task 4,525 28 3,759 ,710 

,026* 
β Parietal Baseline 7,024 28 7,016 1,326 

Pair 4 
β low Parietal Task 6,782 28 6,097 1,152 

,074 
β low Parietal Baseline 13,148 28 19,939 3,768 

Pair 5 
θ_ParietalRel Task 1,506 28 ,264 ,049 

001* 
θ_ParietalRel Baseline 1,321 28 ,285 ,054 

Pair 6 
α_ParietalRel Task 1,000 28 ,238 ,045 

,004* 
α_ParietalRel Baseline 1,180 28 ,362 ,068 

Pair 7 
β_ParietalRel Task ,494 28 ,150 ,028 

,834 
β_ParietalRel Baseline ,500 28 ,170 ,032 

Pair 8 

β_low_ParietalRel Task ,709 28 ,202 ,038 

,183 β_low_ParietalRel 

Baseline 
,781 28 ,290 ,055 

a. Group = GR1      

Table 7.24. Paired comparison of power values in θ, α, β, β_low bands for baseline and task 
conditions in Group2. The values concern the parietal area 

  Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
θ Parietal Task 13,132 30 8,398 1,533 

,006* 
θ Parietal Baseline 22,468 30 19,906 3,634 

Pair 2 
α Parietal Task 9,409 30 5,938 1,084 

,002* 
α Parietal Baseline 29,758 30 36,605 6,683 

Pair 3 
β Parietal Task 3,942 30 2,485 ,454 

,002* 
β Parietal Baseline 6,247 30 3,859 ,705 

Pair 4 
β low Parietal Task 6,211 30 4,006 ,731 

,001* 
β low Parietal Baseline 10,434 30 6,393 1,167 

Pair 5 
θ_ParietalRel Task 1,464 30 ,224 ,041 

,001* 
θ_ParietalRel Baseline 1,253 30 ,416 ,076 

Pair 6 
α_ParietalRel Task 1,069 30 ,226 ,041 

,001* 
α_ParietalRel Baseline 1,321 30 ,518 ,095 

Pair 7 
β_ParietalRel Task ,468 30 ,133 ,024 

,099 
β_ParietalRel Baseline ,426 30 ,198 ,036 

Pair 8 

β_low_ParietalRel Task ,712 30 ,1738 ,032 

,989 β_low_ParietalRel 

Baseline 
,713 30 ,369 ,067 

a. Group = GR2      
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All the differences described in detail in Table 8.25 and Table 8.26 are depicted on the 

comparative boxplots in Figures 7.9-7.14. 

Figure 7.9. Boxplot of absolute power of θ band from parietal area for baseline and task condition for each 
group 
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Figure 7.11. Boxplot of absolute power in β band from parietal area for baseline and task condition for each 
group 

Figure 7.10. Boxplot of absolute power in α band from parietal area for baseline and task condition for each 
group 
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Figure 7.12. Boxplot of power values in β low band from parietal area for baseline and task condition for each 
group 

Figure 7.13. Boxplot of relative power in θ band from parietal area for baseline and task condition for each 
group 
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We also examine the changes in the power values in θ, α, β, and β low, in frontal area. 

Tables 7.25 and 7.26 show the mean values of the absolute and relative power in θ, α, β 

and β_low bands, calculated from measurements at F3 and F4 electrodes, in baseline and 

task condition, for each group, respectively. We calculated each value in θ, α, β and β_low 

as the average of the power values of F3 and F4. The estimated mean for each of the two 

groups appears under the label “Mean” followed by the respective estimation of the 

standard deviation. The comparison of the values between the two conditions showed a 

significant decrease for the α frontal (control, p=0.009; experimental p=0.012), a 

significant increase for the relative θ frontal (control, p=0.031; experimental p=0.010) 

and a significant decrease for the relative α frontal (control, p=0.006; experimental 

p=0.002). Moreover, statistically significant decreases were observed for the control 

group for the θ frontal (p=0.030) and for the relative β_low frontal (p=0.030). 

 

 

 

Figure 7.14. Boxplot of relative power in α band from parietal area for baseline and task condition for each 
group 
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Table 7.25. Paired comparison of power values in θ, α, β, β_low bands for baseline and task 
conditions in Group1. The values concern the frontal area. 

  Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
θ Frontal Task 3,974 28 3,915 ,740 

,030* 
θ Frontal Baseline 5,650 28 5,940 1,123 

Pair 2 
α Frontal Task 2,327 28 2,822 ,533 

,009* 
α Frontal Baseline 3,681 28 3,882 ,734 

Pair 3 
β Frontal Task 1,167 28 1,338 ,253 

,090 
β Frontal Baseline 1,571 28 1,794 ,339 

Pair 4 
β low Frontal Task 1,576 28 1,885 ,356 

,028* 
β low Frontal Baseline 2,340 28 2,714 ,513 

Pair 5 
θ_ Frontal Rel Task ,553 28 ,081 ,015 

,031* 
θ_ Frontal Rel Baseline ,511 28 ,097 ,018 

Pair 6 
α_ Frontal Rel Task ,296 28 ,055 ,010 

,006* 
α_ Frontal Rel Baseline ,342 28 ,096 ,018 

Pair 7 
β_ Frontal Rel Task ,152 28 ,048 ,009 

,591 
β_ Frontal Rel Baseline ,147 28 ,048 ,009 

Pair 8 

β_low_Frontal Rel Task ,198 28 ,050 ,009 

,298 β_low_ Frontal Rel 

Baseline 
,207 28 ,057 ,011 

a. Group = GR1      

Table 7.26. Paired comparison of power values in θ, α, β, β_low bands for baseline and task 
conditions in Group2. The values concern the frontal area. 

  Mean N Std. Deviation Std. Error Mean p-value 

Pair 1 
θ Frontal Task 3,330 29 2,357 ,438 

,129 
θ Frontal Baseline 3,881 29 2,427 ,451 

Pair 2 
α Frontal Task 2,179 30 2,144 ,391 

,012* 
α Frontal Baseline 5,010 30 7,280 1,329 

Pair 3 
β Frontal Task ,847 30 ,615 ,112 

,125 
β Frontal Baseline 1,050 30 ,636 ,116 

Pair 4 
β low Frontal Task 1,287 30 1,259 ,230 

,183 
β low Frontal Baseline 1,650 30 1,274 ,233 

Pair 5 
θ_ Frontal Rel Task ,552 30 ,099 ,018 

,010* 
θ_ Frontal Rel Baseline ,494 30 ,146 ,027 

Pair 6 
α_ Frontal Rel Task ,305 30 ,071 ,013 

,002* 
α_ Frontal Rel Baseline ,370 30 ,147 ,027 

Pair 7 
β_ Frontal Rel Task ,143 30 ,072 ,013 

,526 
β_ Frontal Rel Baseline ,136 30 ,071 ,013 

Pair 8 

β_low_Frontal Rel Task ,197 30 ,070 ,013 

,900 β_low_Frontal Rel 

Baseline 
,199 30 ,092 ,017 

a. Group = GR2      
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All the differences described in detail in Tables 7.25 and 7.26 are depicted on the 

comparative boxplots in Figures 7.15-7.19. 

Figure 7.15. Comparative boxplot of θ frontal values in baseline and task condition 

Figure 7.16. Comparative boxplot of θ frontal values in baseline and task condition 
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Figure 7.17. Comparative boxplot of βlow frontal values in baseline and task condition 

Figure 7.18. Comparative boxplot of θ frontal relative values in baseline and task condition 
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Correlation between α parietal and θ frontal power values 

The correlations of the absolute and relative power values of the θ frontal to α parietal 

scores, in baseline and task condition, have been proven to be statistically significant 

almost in all cases for the control and the experimental group, as shown in Table 7.29. 

Specifically, Table 7.29 shows that the absolute values of θ frontal and the α parietal 

scores have a statistically significant and positive correlations in both conditions in the 

experimental group, and a statistically significant correlation with the control group after 

the intervention. In all three cases higher α parietal values are expected for higher θ 

frontal values. Moreover, the θ frontal relative scores have a statistically significant and 

negative correlation to the α parietal relative scores at both conditions in both groups. In 

all correlations presented in Table 7.27 we have considered the averaged power values in 

θ from measurements at F3 and F4 electrodes and the averaged power values in α from 

measurements at P3, Pz, and P4 electrodes. 

 

 

Figure 7.19. Comparative boxplot of α frontal relative values in baseline and task condition 
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Table 7.27. Correlation between α parietal and θ frontal power values 

  Control Experimental 

θ Frontal (absolute) Baseline 

α_Parietal 

Baseline 

Pearson Correlation ,203 ,589 

Sig. (2-tailed) ,300 ,001* 

N 28 30 

θ Frontal (absolute) Task 

α_Parietal 

Task 

Pearson Correlation ,485 ,582 

Sig. (2-tailed) ,009* ,001* 

N 28 30 

θ Frontal (relative) Baseline 

α_ParietalRel 

Baseline 

Pearson Correlation -,629 -,734 

Sig. (2-tailed) ,000* ,000* 

N 28 30 

θ Frontal (relative) Task 

α_ParietalRel 

Task 

Pearson Correlation -,619 -,438 

Sig. (2-tailed) ,000* ,016* 

N 28 30 

These relationships are attributed by the scatterplots in Figures 7.20-7.23. 

Figure 7.20. Scatterplot of absolute power values in θ frontal vs α parietal in baseline condition 
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Figure 7.21. Scatterplot of absolute power values θ frontal vs α parietal in task condition 

Figure 7.22. Scatterplot of relative power values in θ frontal vs α parietal in baseline condition 
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7.3. Comparison of learners’ self-reported state in a MOOC activity 

(subjective data) 

After the completion of the EEG recordings, a questionnaire was given to each participant. 

The questionnaire administered comprised of five (5) main dimensions namely, 

perceived engagement, perceived usefulness, perceived learning effectiveness, perceived 

cognitive benefits, and intention to continue. 

Table 7.28. Reliability statistics for questionnaire’s dimensions 

  Reliability Statistics 
 

Cronbach’s Alpha N of Items 

Perceived engagement 0,844 18 

Perceived usefulness 0,945 4 

Perceived learning effectiveness 0,882 8 

Perceived cognitive benefits 0,792 4 

Intention to continue 0,788 3 

Before getting to analyze the collected answers, the results of the reliability analysis are 

presented in Table 7.28. The Cronbach’s α coefficient estimated for each of the 

questionnaire’s dimensions was found to be over the based on the literature cut off of 0.7, 

showing that the concepts under study are reliably measured and can lead to sound 

interpretations of the inference that will be reached. 

Figure 7.23. Scatterplot of relative power values in θ frontal vs α parietal in baseline condition 
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7.3.1. Comparison of engagement factors and overall perceived engagement 

The dimension of the perceived engagement is also be subdivided to the dimensions of 

“Challenge”, “Interest”, “Control”, “Immersion” and “Purpose”. These dimensions, as well 

as their total, are examined in Table 7.29 for differences between the control and the 

experimental group. As proven by the p-values that appear on the last column of Table 

7.29, no statistically differences were observed in any case between the two groups. The 

estimations of partial eta squared for each of the engagement factors supports the 

findings of the p-value of the statistical tests carried out, as in all cases where rather low. 

Table 7.29. Comparison of engagement factors and overall engagement for each group 

 

Group N Mean 

Std. 

Deviation 

Std. Error 

Mean p-value 

Partial Eta 

Squared 

Perceived 

engagement 

GR1 28 4,399 ,481 ,091 
,371 ,014 

GR2 30 4,494 ,314 ,057 

Challenge 
GR1 28 4,589 ,409 ,077 

,455 ,010 
GR2 30 4,511 ,381 ,070 

Interest 
GR1 28 1,595 ,705 ,133 

,200 ,029 
GR2 30 1,400 ,414 ,076 

Control 
GR1 28 1,762 ,731 ,138 

,125 ,042 
GR2 30 1,511 ,477 ,087 

Immersion 
GR1 28 4,321 ,533 ,101 

,995 <,001 
GR2 30 4,322 ,459 ,084 

Purpose 
GR1 28 4,250 ,701 ,132 

,060 ,062 
GR2 30 4,533 ,388 ,071 

Table 7.30. Comparison of perceived engagement and its dimensions in terms of prior experience 
on Coursity in Group1 

 Prior 

experience 

on Coursity N Mean Std. Deviation 

Std. Error 

Mean p-value 

Perceived engagement 
No 18 4,441 ,375 ,088 

,541 
Yes 10 4,322 ,648 ,205 

Challenge 
No 18 4,620 ,361 ,085 

,599 
Yes 10 4,533 ,502 ,159 

Interest 
No 18 1,482 ,551 ,130 

,259 
Yes 10 1,800 ,919 ,291 

Control 
No 18 1,722 ,725 ,171 

,707 
Yes 10 1,833 ,774 ,245 

Immersion 
No 18 4,315 ,491 ,116 

,932 
Yes 10 4,333 ,629 ,199 

Purpose 
No 18 4,296 ,497 ,117 

,648 
Yes 10 4,167 ,997 ,315 
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Tables 7.30 and 7.31 examine the differences in the perceived engagement and its 

subdimensions based on whether the participants have attended Coursity’s courses in the 

past, for each group respectively. The analysis showed that no statistically significant 

differences were observed in any of the two groups. 

Table 7.31. Comparison of perceived engagement and its dimensions in terms of prior experience 
on Coursity in Group2 

 Prior 

experience 

on Coursity N Mean Std. Deviation 

Std. Error 

Mean p-value 

Perceived engagement 
No 18 4,556 ,289 ,068 

,196 
Yes 12 4,403 ,339 ,098 

Challenge 
No 18 4,537 ,373 ,088 

,656 
Yes 12 4,472 ,407 ,118 

Interest 
No 18 1,296 ,377 ,089 

,093 
Yes 12 1,556 ,434 ,125 

Control 
No 18 1,389 ,461 ,109 

,086 
Yes 12 1,694 ,460 ,133 

Immersion 
No 18 4,370 ,426 ,100 

,491 
Yes 12 4,250 ,515 ,149 

Purpose 
No 18 4,574 ,319 ,075 

,490 
Yes 12 4,472 ,481 ,139 

 

Table 7.32. Comparison of engagement and its dimensions in terms of prior experience on online 
courses in Group1 

 Prior 

experience 

on online 

courses N Mean Std. Deviation 

Std. Error 

Mean p-value 

Perceived engagement 
No 6 4,463 ,528 ,215 

,720 
Yes 22 4,381 ,480 ,102 

Challenge 
No 6 4,583 ,456 ,186 

,969 
Yes 22 4,591 ,407 ,087 

Interest 
No 6 1,500 ,587 ,240 

,716 
Yes 22 1,621 ,744 ,159 

Control 
No 6 1,667 ,817 ,333 

,726 
Yes 22 1,788 ,724 ,154 

Immersion 
No 6 4,389 ,574 ,234 

,733 
Yes 22 4,303 ,534 ,114 

Purpose 
No 6 4,389 ,491 ,200 

,593 
Yes 22 4,212 ,753 ,160 
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Tables 7.32 and 7.33 examine the differences in the perceived engagement and its 

subdimensions based on whether the participants have attended any online courses in 

the past, for each group respectively. The analysis showed that no statistically significant 

differences were observed in any of the two groups. 

Table 7.33. Comparison of engagement and its dimensions in terms of prior experience on online 
courses in Group2 

 Prior 

experience 

on online 

courses N Mean Std. Deviation 

Std. Error 

Mean p- value 

Perceived engagement 
No 5 4,589 ,422 ,189 

,471 
Yes 25 4,476 ,295 ,059 

Challenge 
No 5 4,533 ,545 ,244 

,889 
Yes 25 4,507 ,355 ,071 

Interest 
No 5 1,333 ,408 ,183 

,701 
Yes 25 1,413 ,423 ,085 

Control 
No 5 1,267 ,435 ,194 

,215 
Yes 25 1,560 ,478 ,096 

Immersion 
No 5 4,467 ,380 ,170 

,450 
Yes 25 4,293 ,475 ,095 

Purpose 
No 5 4,600 ,435 ,194 

,681 
Yes 25 4,520 ,386 ,077 

Tables 7.34 and 7.35 examine the correlations of the perceived engagement and its 

subdimensions with the participants’ level of knowledge on Special Education and Autism 

Spectrum Disorder (ASD) specifically. The analysis showed two statistically significant 

and negative correlations in the control group and two statistically significant and 

positive correlations in the experimental group. Specifically, Table 7.34 shows that 

participants in Group1 (control group) who score higher on perceived engagement and 

perceived learning effectiveness are expected to know less about Special Education and 

ASD. Of course, the opposite relationship is also true. Thus, the participants who know 

less on the subject of Special education and ASD are expected to score higher on perceived 

engagement and perceived learning effectiveness. These relationships appear in Figures 

7.24 and 7.25. 
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Table 7.34. Correlations of questionnaire’s subdimensions with participants’ level of knowledge 
on ASD, for Group1 

 

 Participants’ level of knowledge on 

ASD  

Πόσο καλά γνωρίζεις το πεδίο της Ειδικής 

Αγωγής και συγκεκριμένα της Διαταραχής 

Αυτιστικού Φάσματος; 

Correlation 

Coefficient 
Sig. (2-tailed) N 

Spearman’s 

Rho 

Perceived engagement -,532 ,004* 28 

Perceived usefulness ,053 ,790 28 

Perceived learning effectiveness -,413 ,029* 28 

Perceived cognitive benefits -,210 ,283 28 

Intention to continue -,059 ,767 28 

a. Group = GR1    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.24. Scatterplot of perceived engagement vs ASD awareness 
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On the contrary, Table 7.35 shows that participants in Group2 (experimental group) who 

score higher on “Intention to continue” and “Perceived learning effectiveness’ are 

expected to know more about Special Education and ASD. These relationships appear in 

Figures 7.26 and 7.27. 

Table 7.35. Correlations of questionnaire’s subdimensions with participants’ level of knowledge 
on ASD, for Group2 

 

 Participants’ level of knowledge on 

ASD  

Πόσο καλά γνωρίζεις το πεδίο της Ειδικής 

Αγωγής και συγκεκριμένα της Διαταραχής 

Αυτιστικού Φάσματος; 

Correlation 

Coefficient 
Sig. (2-tailed) N 

Spearman's 

Rho 

Perceived engagement ,101 ,595 30 

Perceived usefulness ,255 ,173 30 

Perceived learning effectiveness ,369 ,045* 30 

Perceived cognitive benefits ,123 ,518 30 

Intention to continue ,628 ,000* 30 

a. Group = GR2    

 

 

Figure 7.25. Scatterplot of perceived learning effectiveness vs ASD awareness 
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Figure 7.26. Scatterplot of perceived learning effectiveness vs ASD awareness 

Figure 7.27. Scatterplot of Intention to continue vs ASD awareness 
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7.3.2. Comparison of perceived usefulness, perceived learning effectiveness, 

perceived cognitive benefits and intention to continue 

Table 7.36 presents the differences in the perceived usefulness, learning effectiveness, 

cognitive benefits and intention to continue, between the two groups. The analysis 

showed that there is one statistically significant difference regarding the perceived 

cognitive benefits (p=0.024). Specifically, as shown in Table 7.36 and on the comparative 

boxplot in Figure 7.28, higher values of the perceived cognitive benefits were observed in 

the experimental group. 

Table 7.36. Comparison of perceived usefulness, effectiveness, cognitive benefits and intention to 
continue for each group 

 Group N Mean Std. Deviation Std. Error Mean p-value 

Perceived 

usefulness 

GR1 28 4,188 ,760 ,144 
,665 

GR2 30 4,267 ,623 ,114 

Perceived learning 

effectiveness 

GR1 28 4,121 ,697 ,132 
,102 

GR2 30 4,375 ,451 ,082 

Perceived 

cognitive benefits 

GR1 28 4,161 ,562 ,106 
,024* 

GR2 30 4,475 ,470 ,086 

Intention to 

continue 

GR1 28 4,238 ,684 ,129 
,802 

GR2 30 4,200 ,451 ,082 

 

Figure 7.28. Comparative boxplot of perceived cognitive benefits for each group 
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7.4. Comparison of learners’ mental engagement and perceived 

engagement 

Finally, a correlation analysis between the perceived engagement, as measured by the 

questionnaire, and the mental engagement values showed that no statistically significant 

relationships were detected for either of the two groups. The results regarding Group1 

(control group) appear in Table 7.37 while the results of Group2 (experimental group) 

appear in Table 7.38. 

Table 7.37. Correlations of mental engagement and perceived engagement in Group1 

 

 Perceived engagement 

Correlation 

Coefficient 
Sig. (2-tailed) N 

Spearman’s Rho 
EngIdx_rel Task -,233 ,233 28 

EngIdx_abs Task -,250 ,199 28 

a. Group = GR1    

 

Table 7.38. Correlations of mental engagement and perceived engagement in Group2 

 

 Perceived engagement 

Correlation 

Coefficient 
Sig. (2-tailed) N 

Spearman’s Rho 
EngIdx_rel Task ,108 ,570 30 

EngIdx_abs Task ,076 ,689 30 

a. Group = GR2    
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Chapter 8. Conclusions - Discussion 

8.1. Introduction 

The present thesis examines the effect of the proposed gamified design on participants’ 

cognitive states in terms of engagement. It also investigates the potential value of neural 

data in the evaluation of participants’ cognitive states in a MOOC assessment activity. The 

application of EEG in gamified educational settings is relatively recent. Research studies 

usually investigate whether the EEG data could provide reliable indications on learners’ 

cognitive and affective states as they progress in learning e.g., continuously monitoring 

learners’ attention levels. The research interest of such data lies on the fact that they could 

be incorporated into real-time learning systems to adapt them once a learner is predicted 

to be on an unproductive learning path or could be used to facilitate the design process in 

order to develop more effective learning environments. 

Engagement, which is a basic concept in this work, is thought to reflect estimates of 

several cognitive processes, such as information gathering, visual scanning (Berka et al., 

2007), and is considered to be a measure of effortful cognitive activity (Matthews et al., 

2002). As a construct, engagement is closely related to other cognitive states such as 

attention, cognitive workload, as well as to emotional states.  

The present thesis has considered two different groups of participants, i.e., a control 

group and an experimental group. Each group interacted with a MOOC activity. The 

activity differed between the two groups regarding the implementation of the element of 

progression. Specifically, the control group interacted with a non-gamified activity i.e., the 

activity did not incorporate the progression element, while the experimental group 

interacted with the gamified activity i.e., an activity in which the progression element was 

implemented. A comparative study was conducted based on the electrical brain activity 

of the participants of the two groups while interacting with the MOOC assessment activity. 

EEG was used to investigate whether the proposed design and implementation of the 

progression element had an effect on participants’ mental states, as well as, whether the 

extracted neural measures have the potential to characterize participants' learning 

experience. Participants’ cognitive states were evaluated in terms of mental engagement, 

attention, and mental workload, while affective experience was evaluated based on two 

dimensions, arousal, and valence. Moreover, to evaluate learners’ experience subjective 

measures were also used to compare participants’ self-reported perceived engagement 
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with the measures extracted from participants’ neural data regarding their engagement 

level. Other measures that characterize participants’ experience, such as perceived 

usefulness, perceived learning effectiveness, perceived cognitive benefits and intention to 

continue, were also compared between the two groups through subjective scales. 

This work draws conclusions regarding the effect of the proposed gamification design 

methodology of a MOOC assessment activity on participants’ mental states and 

participants’ perceived learning experience. This chapter presents and discusses the 

conclusions that emerged from the results of this work. 

8.2. Comparison of learners’ mental state in a MOOC activity (neural 

data) 

8.2.1. Comparison of the engagement values  

The comparison of the mental engagement values of the two groups showed no 

statistically significant differences. Thus, we can argue that the proposed intervention did 

not have a significant effect on the participants’ engagement. According to Berka et al. 

(2007), task engagement is related to cognitive processes, such as information gathering, 

visual scanning and sustained attention. Considering the definition that is given by Berka 

et al. (2007), we argue that the gamified intervention did not require a different activation 

of cognitive processes such as information processing and visual scanning. Also, we can 

claim that the duration of the task was not long enough to require the activation of the 

sustained attention. However, we expected an augmentation in information gathering for 

the experimental group, as participants were given more information through the various 

types of feedback. As engagement showed no differences between the two groups, we 

assume that the element of feedback probably was not utilized by the participants. This 

assumption can be confirmed up to a degree by their behavioral reaction (involvement) 

during the task. From the notes that were taken during the experiment, many participants 

in the experimental group did not utilize elements such as the “response specific” 

feedback given for each correct and incorrect answer. They only dealt with submitting 

their answers to the multiple-choice questions. It should be also noted that most of the 

participants used this type of feedback (i.e., “response specific”) only in the cases of 

incorrect answers (and not for the correct ones). We should mention that, at the end of 

the activity, several participants stated that they did not notice that feedback was given 

for all their answers, which raises issues about the design of this element. Other 

participants mentioned that they did not take the time to read the feedback because the 
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material was quite easy, while they pointed out that in a more difficult or more technical 

course such as computer programming, the feedback would be very particularly useful 

and would provide the necessary support to continue.  

Taking into account that the two activities comprised of the same multiple-choice 

questions (challenges) which however differed in their presentation order (levels) and in 

whether additional information was provided or not (feedback), we can assume that 

engagement reflects the effect that is generated as a result of the challenges that 

participants should confront, and not by the effect generated from levels or feedback. 

The comparison between the engagement values in the baseline and in the task condition 

for each group separately also shows that for none of the two groups the engagement had 

a statistically significant change. Since the engagement is defined as a measure of effortful 

cognitive activity (Matthews et al., 2002) or as a measure of energy mobilization in the 

service of cognitive goals (Gaillard, 2001) we can argue that both the gamified and non-

gamified activity were not demanding for participants. Although performance is not a 

measure studied in this work, we should mention that all participants got a grade over 

85%, which shows that the activity was not difficult for none of them. Therefore, we can 

conclude that the participants were skilled (efficient) enough to mobilize cognitive 

resources to complete the activity. This can also be supported by several other 

observations such as participants’ performance and their behavioral reaction during the 

completion of the activity.  

Finally, it should be noted that the EEG-based engagement index that we used in this work, 

has been used more frequently in research studies related to vigilance tasks to assess 

users’ alertness in a certain task (Freeman et al., 1999), or to non-vigilance tasks to 

differentiate high intensity game events from general game play (McMahan, Parberry & 

Parsons, 2015). Also, in studies relevant to distance learning, researchers argue that the 

EEG-based engagement index was not able to predict learners’ engagement as compared 

to human annotators (Booth, Seamans & Narayanan, 2018). This might indicate that an 

augmented mental engagement is not necessarily positive in educational settings as it can 

reveal high levels of stress which is related to an increase in β and a decrease in θ. In any 

case, we argue that other measures should always be studied along with mental 

engagement in order to evaluate participants’ learning experience.  
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8.2.2. Comparison of the attention ratio values 

The comparison of the attention ratio values of the two groups showed no statistically 

significant differences for neither of the two attention ratios that were calculated. To 

understand what the no statistically significant change means, we should consider that 

this ratio is a neural marker of executive control and is associated with various aspects of 

attentional control (Angelidis et al., 2016; Putman et al., 2010) and motivated decision 

making (Massar et al., 2014). Executive control describes individuals’ mental processes 

(e.g., working memory) that are deployed to perform goal-directed task, while attentional 

control refers to individual’s ability to deploy strategically top-down control attention to 

bottom-up information processing to support performance. In other words, attentional 

control is described as an individual's ability to concentrate, i.e., to choose where to pay 

attention and what to ignore. For example, a higher TBR in baseline is correlated to a large 

decline in attentional control when an individual is under stress. Moreover, attentional 

control is considered to be related to other executive functions such as working memory. 

Therefore, we can argue that attentional control and mental processes such as working 

memory, were not affected by the intervention.  

The comparison between the attention ratio values in the baseline and in the task 

condition for each group separately also shows that for neither of the two groups the 

attention ratio had a statistically significant change. We should note that high 

theta/beta_low ratio is usually correlated with an augmented θ and consequently 

inattentive states, while a low value for this ratio is normally correlated with excessive 

low β activity which reflects normal states in adults. For example, low beta activity is 

considered to increase during retention in working memory (Spitzer & Haegens, 2017). 

Therefore, since the ratio is influenced by the θ and β power values, we should consider 

whether this non-statistically significant change in values is due to a decrease in the θ and 

low β activity in the frontal region, or an increase in both values, in order to argue about 

the level of attention and executive control of the participants. For example, a lower θ 

activity and a lower β activity during a task in comparison to the baseline shows that the 

task difficulty is low, decreased requirement for memory resources, lower alertness and 

may be also related to emotions such as boredom.  

Regarding the correlation between the attention ratio values and the engagement values, 

we found a statistically significant negative correlation for both indices of attention in the 

experimental group. This means that, an increase in the attention scores is related to a 

decrease in the engagement scores. This negative correlation is reasonable as it shows 
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that people with lower attention scores are expected to show higher engagement. We can 

also argue that the ratio θ/ β_low as compared to θ/β, expresses a more certain result for 

this correlation. 

In the next section, other measures related to the study of attention will be evaluated, such 

as the changes in the θ and α activity.  

8.2.3. Comparison of the workload values 

The comparison of the workload values of the two groups showed no statistically 

significant differences. Thus, we can argue that the proposed intervention did not have a 

significant effect on the participants’ mental workload. Mental workload is of primary 

interest as it has a direct impact on learners’ performance in executing tasks. Workload 

can be explained in terms of cognitive resources or mental energy expended, including 

mental effort, alertness or decision making. According to Kahneman (1973), is also related 

to the amount of attention that is allocated to perform the task. Other researcher relates 

mental workload with the level of learners’ involvement (Chaouachi, Jraidi & Frasson, 

2011). In general, mental workload is a complex construct that reflects participants level 

of cognitive engagement and effort in a task (Babiloni, 2019). Therefore, the evaluation of 

workload is considered to be a quantification of mental activity. It describes in what 

extent cognitive resources that are required from the task have been actively engaged. We 

should note that, an increase or decrease in workload could not be considered as a 

positive or negative indication as there is always an optimal level of workload to reach an 

optimal performance. In our case, both groups deployed the same amount of mental 

resources to perform the task. 

A statistically significant increase was found only in the experimental group between the 

two conditions (baseline-task). We assume that this increase reflects an increase in 

learners’ mental effort and cognitive engagement in the task which is attributed to the 

intervention. The increase of mental workload is associated with either an increase in 

frontal θ and/or a decrease in parietal α. Both EEG oscillations are highly sensitive to 

variations in mental workload. The α parietal activity tends to decrease in power as tasks 

become more difficult (e.g., Gevins et al., 1979, Sterman et al., 1994). On the contrary, the 

frontal θ activity has been found to increase as tasks require more focused attention. As 

frontal θ activity is considered to be a reliable metric to evaluate workload, we evaluate 

the changes in its power values in the next sections. 

Regarding the correlation between the workload and the engagement, no statistically 

significant correlation was found. We assume that there is not a linear relationship 
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between mental workload and engagement. It has been found that very low or very high 

mental workload may result to a decreased engagement. This can be explained by the fact 

that the mental workload evaluates the total cognitive load and components that 

represent the inherent difficulty of the task. It should be noted that the most acceptable 

hypothesis for the relationship between mental workload and performance is described 

through an inverted U-shape function. Therefore, we can assume that the same 

relationship exists between mental workload and engagement. 

Finally, it is interesting to mention that, according to Kamzanova, Kustubayeva & 

Matthews (2014), the ratio θ/α is suggested to be a valid indicator for task engagement. 

8.2.4 Comparison of the arousal and valence values 

The comparison of the arousal values of the two groups showed no statistically significant 

differences. Arousal refers to an emotional reaction and is studied in this work as it plays 

an important role in decision making, information processing, memory, and cognitive 

performance. Arousal can be considered as a task-related feedback relevant to the 

importance of current thoughts. Therefore, we argue that the intervention did not have a 

significant effect in the level in which the activity was perceived as important by the 

participants. We assume that the level of task importance was mainly influenced by the 

challenges of the activities and not by the other elements that were also implemented in 

the gamified intervention, namely levels and feedback. These elements could have an 

impact on arousal in cases that there was a discrepancy between participants’ current 

skill level and the required by the activity skills.   

A statistically significant increase was found for both groups between the two conditions 

(baseline-task). We argue that both gamified and non-gamified task were able to activate 

emotionally the participants. This is very important as attention and arousal are 

considered critical to human performance in various type of task such as assessment tasks 

(Whyte, 1992). Arousal has been thought to have an optimal level for any particular task 

depending on task difficulty. Therefore, we can argue that the task difficulty for both 

groups was the same.  

Regarding the correlation between arousal and engagement, both groups showed a 

statistically significant positive correlation. This is reasonable as emotions are thought to 

have an important and pervasive role in learners’ engagement in academic and other 

educational settings (Pekrun & Linnenbrink-Garcia, 2012). It should be noted that, 

maintaining a task-appropriate level of attention and arousal is a core feature for learning. 
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The comparison of the valence values of the two groups showed no statistically significant 

differences. We argue that the intervention did not affect participants’ emotions regarding 

the valence (positive vs negative emotions). Valence describes the degree of positive 

(approach) or negative (withdrawal) emotions for a task or a stimulus. We can argue that 

the task was neither too satisfying nor too disappointing for the participants.    

Regarding the correlation between valence and engagement, no statistically significant 

correlation was found. This finding is in agreement with the literature as it has been 

shown that both positive and negative emotions activate learners’ attention and 

engagement mainly when it is compared with neutral emotions. Nevertheless, it should 

be noted that positive emotions promote engagement more efficiently than negative 

emotions (Heddy & Sinatra, 2013).  

8.2.5. Comparison of the θ, α, β power values in frontal and parietal areas 

We evaluated the changes in power values of θ, α, β, and β_low bands between the two 

conditions (i.e., baseline and task), in the frontal and the parietal lobes, as they are 

controlling processes related to cognitive and emotional processing. In general, the 

parietal lobe involves sensation, perception and integration of sensory input (primary 

visual input). Sensory information is processed to form a single perception i.e., cognition.  

Our results showed that brain activity in the parietal lobe showed almost the same 

patterns of activation for the two groups. The changes in the power values of θ, α, β, bands 

are the same for the two groups regarding both their absolute (θ↓, α↓, β↓) and their 

relative power values (θ↑, α↓). These measurements justify our previous conclusions 

regarding the fact that the proposed intervention did not have a significant impact on 

participants’ engagement.  

In both groups, the absolute α power is significantly decreased in the task condition as 

compared to the baseline. This decrease in α activity during the performance of cognitive 

tasks is a common observation in EEG. Alpha suppression represents a general response 

related to the task complexity and the level of attention that is allocated (Ray & Cole, 

1985). In our case, the level of alpha suppression in the two groups shows that both 

groups experienced the same level of task difficulty. In another task with an increased 

level of difficulty, the level of alpha suppression could be used to evaluate how the 

cognitive processes are required by the task. Therefore, alpha activity has a negative 

correlation with arousal and attention (Knyazev, 2007). In our case, alpha suppression 

justifies the increase of arousal that was found in both groups. It should be noted that, 

researchers have shown that decreases in alpha band have been associated with 
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individuals’ attentional engagement and cortical activation (Babiloni et al. 2004; Klimesch 

et al., 1998). Moreover, alpha power is suggested as a measure to evaluate alertness 

(Kamzanova, Kustubayeva & Matthews, 2014). In our results, the decrease in alpha 

activity is related to the increase of attentional demands required by the task, in relation 

to the baseline condition where there was no requirement for attention (i.e., participants 

were instructed to relax and not to think anything in particular).  

In both groups there is a statistically significant reduction in θ, α, β regarding their 

absolute values (θ↓, α↓, β↓). A general decrease in power values of the θ, α, and β 

frequency bands is related with a state of internal concentration. Researchers also report 

that a suppression in alpha and beta activity over the occipito-parietal lobe reflects an 

increased cortical excitability. A decrease in absolute power of θ frontal has been 

associated with immersion (Nacke & Lindley, 2009). In our case, this general decrease 

shows that the task had a moderate difficulty for the participants and was able to engage 

the participants. 

According to Berta et al. (2013), parietal and frontal regions have low activity when an 

individual is in flow. Klasen et al. (2012) also argue the general decrease in brain activity 

is considered to be related with flow state. In flow, alpha activity is decreased because it 

demands a high level of visual attention and concentration (Barry et al., 2007), while a 

decrease in the low beta band activity represents a decrease in active attention (Jenkins 

& Brown, 2014). Other researchers argue that alpha is positively correlated with flow, 

while beta is negatively correlated with flow (Nah et al., 2017). In our case, a general 

decrease was found in parietal area only for the experimental group. We should note that 

all participants from both groups achieved a high score in the task. This shows that the 

level of the task difficulty was in balance with their skill level. Bruya (2010) argues if an 

individual is flow state, a decrease in the alpha and the frontal theta activity occurs 

without any reduction in participants’ performance. Although, task engagement is the 

basic cognitive state in this work, we should acknowledge that cognitive states such as 

flow define optimal states to promote an individual’s development in an activity 

(Csikszentmihalyi, 1990). However, in order to assess whether participants were in flow 

we should also examine the other brain regions as well. 

There is a statistically significant decrease in the low β (↓) band of the parietal lobe for the 

experimental group. This decrease in low beta together along with a decrease in alpha 

activity shows that the participant experiences an effortless focused attention (Ergenoglu 

et al., 2004; Guo et al., 2016). Other researchers argue that the statistically significant 

reduction in low beta in combination with the decrease in alpha activity (in 
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occipitoparietal areas) is related to high arousal (Schubring & Schupp, 2021). This 

confirms the results from arousal values that were calculated using the ratio β/α. In the 

parietal brain region, there is a statistically significant decrease only for the experimental 

group however we can notice that there is a decrease in low β in control group as well but 

the decrease is not statistically significant.  

Regarding the relative values, we have a statistically significant decrease in α and 

statistically significant increase in θ in both groups. This applies for both the parietal and 

the frontal area. Generally, the changes in θ and α power are associated with evaluation 

of the level of cognitive load (Dan & Reiner, 2016; Pellouchoud et al., 1999). The increase 

in θ activity is defined as a correlate of increased cognitive effort.  

The frontal lobe is considered to be associated with emotional processing, problem 

solving, planning, memory, impulse, judgement and social behavior. It is considered to 

control an individual’s personality. A general comment regarding the results from the 

frontal lobe is that, unlike parietal lobe, there is a different activation pattern between 

the two groups.  

In the control group, there is a statistically significant decrease in θ, α, και β low bands, 

while there is no statistically significant change in β band (θ↓, α↓, β low↓, β -). Frontal theta 

power decreases as cognitive effort decreases (Antonenko & Niederhauser, 2010; Castro-

Meneses, Kruger & Doherty, 2020; Gevins et al., 1997). The reduction in frontal theta 

activity is related to less cognitive control, decreased attention, and decreased sustained 

neuronal activity reflecting active maintenance of working memory representations 

(Gevins et al., 1997). Moreover, a decrease in θ in the frontal region is associated with a 

decrease in arousal (Aftanas et al., 2002).  

We found that low β (↓) is only significantly decreased for the control group. Beta wave 

activity is related to an active state of mind and is most prominent in the frontal cortex 

during intense focused cognitive activity. According to Berka et al. (2013), low beta 

activity can be used to discriminate among gaming conditions. Also, the authors have 

shown that low beta is an important source of information for distinguishing the flow 

levels. We assume that participants in the control group were less concentrated in the 

task as compared to the experimental group.  

In both groups there is a decrease in frontal alpha activity (↓) that suggests a lower load 

on the working memory. 
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A statistically significant decrease in frontal theta is associated with emotional processing 

(McFarland et al., 2016) and is related with positive emotional experience and specifically 

relaxation state from anxiety (Suetsugi et al., 2000). For example, the intensity of a happy 

experience is positively related to theta power in the frontal midline region (Aftanas & 

Golocheikine, 2001). Frontal theta activity is a manifestation of sustained attention during 

a skilled performance and optimal attentional engagement. While, is has been found that 

a decrease in frontal theta activity is considered to be beneficial for successful skilled 

performance. Therefore, we can assume that although participants’ performance did not 

differ between the two groups, it is possible that the activity was considered easier by the 

control group. This shows the need for more personalized gamified interventions that 

would take into account learners’ characteristics such as background knowledge, skill 

level, personality characteristics, etc. 

Regarding the relative values, the results are consistent for both groups. There is an 

increase in θ (↑) and a decrease in α (↓) band, as it was recorded in parietal region. The 

increased theta oscillation in frontal lobe and decreased alpha lobe in parietal 

components reflect the cognitive demands and attentional requirements of the task 

(Pellouchoud et al., 1991).  

8.3. Comparison of learners’ self-reported state in a MOOC activity 

(subjective data) 

8.3.1. Comparison of engagement factors and overall perceived engagement 

There are no statistically significant differences either for the overall perceived 

engagement or for each of the engagement factors between the groups. This finding 

agrees with the results that were obtained from the neural data. Also, we should note that 

for the “Purpose” there is a p-value of 0.060. This might show that there is a tendency for 

its values to be different between the groups. We assume that with a larger sample we 

could examine whether there is indeed a differentiation between the two groups for this 

factor. This would be useful as the specific factor relates to the perceived value of the 

activity for learning as well as to the purpose feedback that was provided to the 

experimental group.  

Moreover, participants from the control and the experimental group evaluated positively 

the task in terms of the overall perceived engagement, as well as each of the engagement 

factor. This means that participants found both tasks to be engaging. It should be noted 

that participants perceived engagement may also reflect their general evaluation about 



217 

the technological and design features of MOOCs. The way that two groups interacted with 

the activity, is typical for a MOOC problem with multiple-choice questions. However, 

based on their answers, prior experience of participants’ on Coursity as well as prior 

experience on online courses did not affect the perceived engagement for none of the 

groups.  

For the control group, there is a statistically significant negative correlation between the 

level of knowledge on Special Education and ASD and two dimensions of the 

questionnaire, namely “Perceived engagement” and “Perceived learning effectiveness”. 

This means that participants who know less on the subject of Special education and ASD 

are expected to score higher on perceived engagement and perceived learning 

effectiveness. Consequently, participants who had less knowledge on ASD found the 

activity effective and engaging. The negative relationship between engagement and level 

of knowledge is reasonable, as participants with less knowledge found the activity more 

challenging and they felt that they learned more than participants who had already a good 

level of knowledge.  

For the experimental group, there is a statistically significant positive correlation between 

the level of knowledge on Special Education and ASD, and two dimensions of the 

questionnaire, namely “Intention to continue” and “Perceived learning effectiveness”. 

This means that participants who have more knowledge on ASD are expected to score 

higher on “Perceived learning effectiveness” and “Intention to continue”. Consequently, 

participants who had more knowledge on ASD found the activity effective but they also 

expressed a willingness to continue attending MOOCs. We would expect a negative 

relationship between the level of knowledge and the perceived learning effectiveness. 

However, we can assume that this positive relationship between level of knowledge and 

the two dimensions of “Intention to continue” and “Perceived learning effectiveness” may 

reflect participants’ willingness to attend other courses with the same gameful design 

elements. The perceived engagement was not affected by the level of participants’ 

knowledge on ASD. 

8.3.2. Comparison of perceived usefulness, perceived learning effectiveness, 

perceived cognitive benefits and intention to continue 

The participants from both groups gave a high score for each of the questionnaire’s 

dimensions, namely perceived usefulness, perceived learning effectiveness, perceived 

cognitive benefits and intention to continue. Statistically significant differences were 

found between the two groups only for the “perceived cognitive benefits”. Specifically, 
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participants in the experimental group gave a higher score in the dimension. This means 

that participants in the experimental group considered that they have gained more 

cognitive benefits through the activity e.g., the activity facilitated their understanding of 

information that was given through the video-lectures etc. 

8.4. Comparison of learners’ mental engagement and perceived 

engagement 

From the comparison of the values of mental engagement and perceived engagement we 

report that the two metrics show no statistically significant relationships. This means that 

the values of mental engagement do not correlate with the values of the perceived 

engagement. Therefore, we assume that the engagement questionnaire that was 

administered is not appropriate to evaluate participants’ task engagement in a MOOC 

scenario. Whitton’s questionnaire was validated in tasks such as digital games in which 

the level and the type of interaction may vary significantly.  

Table 8.1. Comments on the ratios that were used in the present thesis 

Measure Description Conclusions 

Task 

engagement 

Measure of effortful 

activity 

Task engagement is affected by the element of challenge, 

which in our case corresponds to the multiple-choice 

questions that comprised the assessment activity. Task 

engagement can be affected by the elements of levels and 

feedback, but only when the challenges require higher 

skills than learners’ current skill level. 

Attention Level of attentional 

control 

Game elements should be incorporated into a MOOC 

assessment activity with caution as they can impede 

learner’s concentration on the task.  

Cognitive 

Workload 

Cognitive effort, 

cognitive 

engagement 

Elements such as feedback should be presented only 

when learners lack the necessary skills to complete the 

activity. When learners do not need support to achieve 

the task goals, the additional elements may increase the 

workload unnecessarily.   

Emotional 

arousal 

Task-related 

feedback relevant to 

the importance of 

current thoughts 

The optimal level of arousal for any task depends on the 

on the task difficulty. For learning to be effective, a task-

appropriate level of arousal should be maintained. The 

level of challenge (task difficulty) should always be a 

little higher than learners’ current skill level. 

Valence Positively valenced 

emotions/ 

negatively valenced 

emotions 

Approach-related emotions enhance learning. These 

emotions are relevant to learners’ motivation to 

participate in a course, e.g., satisfaction, self-efficacy. 

Scaffolding activities that take into account learners’ 

current skill level can generate such emotions. 
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8.5. General conclusions 

This chapter presents the conclusions that derived from the results of the present thesis. 

We should note that, it is the first time that the evaluation of a gamified intervention in a 

MOOC platform is being studied in terms of neural measures. Although our results do not 

confirm the effectiveness of the intervention to increase learners’ engagement, we can 

draw useful indications about learners’ cognitive states while interacting with a MOOC 

assessment activity. These indications will help us to improve the design of future 

interventions. In this section we present the general conclusions of this work and some 

useful comments. In Table 8.1 we present a synopsis of the ratios that were used to 

evaluate learners’ cognitive states. Although statistically significant differences were not 

found between the two groups for none of these ratios, we can draw some clues which 

will be reconsidered in a future work. 

Regarding the changes in the power values of θ, α, β, β_low bands in the parietal lobe, as 

we can see in Figure 8.1, participants’ brain activity shows almost the same patterns of 

activation between the two groups. In Table 8.2. we present our findings and some useful 

indications. 

Table 8.2. Research findings and useful indication from the power values of θ, α, β, and β_low at 
parietal lobe 

Findings Indications 

α ↓ Increased attentional demands  

θ ↓ α ↓ β ↓ Moderate task difficulty, internal concentration 

α ↓  β ↓ Increased cortical excitability 

α ↓  β_low ↓ High arousal, effortless focused attention 

β_low ↓ Decreased active attention 

Figure 8.1. Statistically significant changes in power values in θ, α, β and β_low bands (parietal area)  
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Regarding the changes in the power values of θ, α, β, β_low bands in the frontal lobe, as 

we can see in Figure 9.2, participants’ brain activity shows some differences between the 

two groups.  

In Table 8.3 we present our findings and some useful indications based on the power 

values changes of the frequency bands in the frontal lobe. 

Table 8.3. Research findings and useful indication from the power values of θ, α, β, and β_low at 
frontal lobe 

Findings Indications 

α ↓ Decreased working memory load 

θ ↓ β↓ Decreased requirements for memory resources, lower alertness, 

low task difficulty 

θ ↓   Immersion, low cognitive effort, less cognitive control, 

decreased attention, positive emotional experience e.g., 

relaxation state from anxiety  

α↓ θ↓ Indicator for flow state 

Apart from the neural data and the data collected through the questionnaire, it is also 

useful to report and evaluate participants’ behavioral reactions and thoughts that were 

expressed after the experiment.  

The participants at the end of the experimental procedure stated that they liked the 

questions that were included in the activity, as they were requiring not only knowledge 

retrieval, but they were also testing higher skills of knowledge. This shows that the 

challenges involved in every learning activity have a significant role on learners’ 

engagement. Researchers suggest that the challenges involved in a gamified learning 

activities should always be within learners’ zone of proximal development. 

Figure 8.2. Statistically significant changes in power values in θ, α, β and β_low bands 
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All participants gave very positive feedback about the design of the platform. Therefore, 

we can assume that the subjective measures reflect the general feeling of the participants 

about the technological and pedagogical elements of MOOCs. Moreover, the participants 

of the experimental group stated that they liked the activity and gave a positive feedback 

about elements that were implemented in the gamified activity (Vygotsky, 1978)).  

Moreover, we should note that many researchers mention in their studies the EEG-based 

index for the evaluation of mental (or task) engagement and they argue that they measure 

the cognitive engagement. According to Anderson et al. (2004) cognitive engagement is 

defined as the willingness to exert the necessary effort to comprehend complex ideas, 

acquire difficult skills, use flexible problem-solving strategies, choose challenging tasks 

and generally go beyond the requirements of the activity. Also, cognitive engagement has 

positively associated with self-regulation which is very important for MOOC learners in 

order to determine their involvement in a MOOC. Based on this definition, we argue that 

the flow state and other cognitive states could be more effective in describing an optimal 

state for MOOC learners than task engagement. 

To conclude, gamification design for a MOOC assessment is a process that is influenced by 

many factors related to the subject of the course, learners’ characteristics, learners’ 

diverse background knowledge and skill level, learners’ personality (e.g., more sociable 

learners has been found to enjoy more game elements such as leaderboards than less 

sociable learners), etc. It should be noted that neural measures such as engagement, 

attention, etc., had a large dispersion in our results. This probably reveals the need for 

more personalized gamified interventions. The neural measures obtained through EEG 

could help MOOC designers to acquire a better understand of learners’ cognitive states in 

order to design more engaging and effective learning activities for MOOCs’ diverse 

audience. The use of mixed methods that combine neural and subjective measures could 

help us better understand and establish our knowledge on factors that influence learners’ 

cognitive states. Generally, gamified interventions in digital educational environments 

can be used to address problems such as low engagement, loss of learners’ attention, 

enhance learning outcomes, etc. Motivational theories should be used in the gamification 

design phase taking into account the problem that has been set and the application 

scenario. In every case, gamified interventions applied in educational settings in order to 

be successful they should be aligned with learners’ zone of proximal development.  
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8.6. Limitations of the research 

The following limitations have to be taken into account regarding the present thesis: 

▪ The participants’ cognitive states were examined using measurements from electrode 

sites F3, F4, P3, Pz, P4, and Cz. Measurements from the temporal lobe were not 

included in the results as well as electrodes C3 and C4. Also, electrodes Fp1, Fp2, PO7, 

PO8, Oz were excluded in the pre-processing step due to extensive artifacts. 

▪ Due to covid-19 regulations the experimental procedure was completed in one session. 

Therefore, we could not have multiple sessions per participant to familiarize them with 

the research area and the learning environment. 

▪ The questionnaire that was used to evaluate participants’ perceived engagement is not 

validated in MOOC scenarios. To our knowledge, there is no such validated instrument 

in Greek and the procedure of validating this instrument was out of the purpose of our 

study. Our intention to use this instrument was encouraged by the rather high and in 

all cases acceptable Cronbach’s α values regarding the reliability of the instrument 

used. Therefore, despite the fact that the instrument is not validated, we are confident 

that it does reflects participants perceived engagement. 

8.7. Suggestions for further research 

The present thesis examined the effect of a gamified MOOC activity on learners’ cognitive 

and affective states. In order to evaluate learners’ engagement, we applied a multi-method 

approach. We examined the neural data recorded from men and women volunteers of 

ages 19-47 years and we combined the results obtained from EEG signals with subjective 

self-reported data regarding the participants’ perceived engagement. Furthermore, we 

examined the changes in θ, α, β power values, in frontal and parietal areas, between the 

baseline and task condition, and we investigated possible significant statistical 

differences between these values. We also studied possible significant statistical 

differences between the ratios of these bands that represent indices relevant to 

engagement such as attention, workload, arousal and valence. 

Suggestions for further research concern the following: 

▪ Measurements from temporal and central electrodes could be used in the calculation 

of task engagement index. There are few studies that mention to have used all the 

available electrodes for the calculation of the engagement index and not only the four 

electrodes proposed by Pope et al. (1995). 



223 

▪ Combine EEG measures with other physiological measurements such as heart rate, 

skin conductivity, respiration rate, eye blinking, etc. Also, combine EEG measures with 

behavioral observations or objective measures such as response time, performance 

grades, etc.  

▪ Calculate the instantaneous EEG-based task engagement to examine how engagement 

is varying during the activity and assess which parts of the activity should be 

redesigned. 

▪ Application of the gamification methodology in other more demanding MOOC subjects 

such as computer programming. 

▪ Time-frequency analysis could be used instead of spectral analysis to provide useful 

information about the temporal evolution of the spectral power in various frequency 

bands. These methods can show in detail the complexity of brain electrical activity in 

relation to cognitive and affective processes. Time-frequency analysis methods can 

overcome the problem of non-stationarity of EEG signals and highlight individual 

differences. 

▪ Gender differences could be examined due to cognitive transgender differences that 

are referred on research studies. 
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Appendix I 

Multiple-choice questions that are presented in the MOOC assessment activity (in Greek) 

 

Level 1 

1. Ο όρος «Αυτισμός» είναι συνώνυμος με τον όρο ...  

(x) «Διαταραχές αυτιστικού φάσματος» 

( ) «Διάχυτες διαταραχές αυτισμού» 

( ) «Διαταραχές νοητικού φάσματος» 

( ) «Διάχυτες διαταραχές φάσματος» 

 

2. Από ποια ελληνική λέξη προέρχεται η λέξη Αυτισμός; 

( ) Αυτί 

( ) Αυτός 

(x) Εαυτός 

( ) Αυτοτελής 

 

3. Ποιο από τα παρακάτω χαρακτηριστικά ταιριάζει στα άτομα που χαρακτηρίζονται από 

«κλασικό αυτισμό τύπου Kanner» με βάση τις παρατηρήσεις του αυστριακού ψυχιάτρου 

Kanner το 1946; 

( ) Εμφάνιζαν δεξιότητες υψηλής λειτουργικότητας 

(x) Δεν ήθελαν επαφή με τους γύρω τους 

( ) Είχαν έντονο ενδιαφέρον στο να καταπιάνονται με νέα πράγματα 

( ) Εμφάνιζαν αυξημένες δεξιότητες στην επικοινωνία 

 

4. Τα άτομα με σύνδρομο Asperger σε σχέση με τα άτομα που έχουν τυπικό αυτισμό 

τύπου Kanner... 

(x) παρουσιάζουν δεξιότητες υψηλής λειτουργικότητας 

( ) παρουσιάζουν δεξιότητες χαμηλής λειτουργικότητας 

( ) παρουσιάζουν τα ίδια χαρακτηριστικά 

( ) παρουσιάζουν ταυτόχρονα και άλλα σύνδρομα 
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5. Ένα άτομο με αυτισμό χαρακτηρίζεται από: 

( ) τυπική φαντασία και προβλεπτικότητα 

( ) αυξημένη φαντασία και προβλεπτικότητα 

(x) μειωμένη φαντασία και προβλεπτικότητα 

( ) καλές επικοινωνιακές δεξιότητες 

 

6. Ως προς την επικοινωνία και την κοινωνική αλληλεπίδραση, ένα άτομο με αυτισμό 

χαρακτηρίζεται από: 

( ) μείωση του λεξιλογίου κατά την εφηβική ηλικία 

( ) επίμονη βλεμματική επαφή 

( ) αυξημένη φαντασία 

(x) περιορισμένη ή καθόλου ομιλία 

 

7. Ο αυτισμός χαρακτηρίζεται από: 

( ) διαταραχές στην κοινωνική αλληλεπίδραση 

( ) ελλείμματα στην επικοινωνία 

( ) στερεότυπα σχήματα συμπεριφοράς 

(x) όλα τα παραπάνω 

 

Level 2 

1. Τα άτομα με αυτισμό χαρακτηρίζονται από: 

( ) ανάγκη συνεχούς αλλαγής του περιβάλλοντος στο οποίο ζουν 

(x) αποφυγή σωματικής ή κοινωνικής επαφής/επικοινωνίας 

( ) αυξημένη ικανότητα σύναψης κοινωνικών επαφών 

( ) έλλειψη συγκέντρωσης σε οποιοδήποτε έργο 

 

2. Ως προς την καθημερινή ρουτίνα τα άτομα με αυτισμό...  

(x) επιδιώκουν την ομοιομορφία 

( ) επιζητούν να αλλάζουν τις συνήθειες τους 

( ) μιμούνται τις συμπεριφορές των άλλων 

( ) δυσκολεύονται στην τήρησή της καθημερινής τους ρουτίνας 
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3. Ποια από τις παρακάτω επιλογές δεν συγκαταλέγεται στις Διαταραχές Αυτιστικού 

Φάσματος: 

( ) Η αποδιοργανωτική διαταραχή 

( ) Ο μη διαφορετικά προσδιοριζόμενος αυτισμός 

( ) Το σύνδρομο Asperger  

(x) Διαταραχή Ελλειμματικής Προσοχής / Υπερκινητικότητα (ΔΕΠ-Υ) 

 

4. Αν ένα παιδί με αυτισμό βρίσκεται δίπλα από τρία παιδιά που παίζουν, τι από τα 

παρακάτω είναι πιο πιθανό να κάνει το παιδί με αυτισμό; 

( ) να αρχίσει να κλαίει 

( ) να πλησιάσει τα άλλα παιδιά 

( ) να τους φωνάξει για να έρθουν κοντά τους 

(x) να τους αγνοήσει 

 

Level 3 

1. Ο Σπύρος είναι ένα παιδί με αυτισμό. Πηγαίνει στο σχολείο μόνος του κάθε μέρα καθώς 

το σχολείο του δεν απέχει πολύ από το σπίτι του. Χθες καθώς γύριζε στο σπίτι του, μια 

παρέα ατόμων μεγαλύτερης ηλικίας τσακωνόταν στο δρόμο από τον οποίο συνηθίζει να 

περνάει ο Σπύρος. Ο Σπύρος παρόλο που είδε τον τσακωμό δεν άλλαξε δρόμο όπως θα 

περίμενε κανείς αλλά πέρασε δίπλα τους. Γιατί το έκανε αυτό;  

( ) Δεν ήθελε να δείξει ότι φοβάται 

( ) Ήθελε να δει από κοντά ποιοι τσακώνονταν 

(x) Δεν αντιλήφθηκε τον κίνδυνο 

( ) Βιαζόταν να φτάσει σπίτι του  

 

2. Ο Σπύρος είναι ένα παιδί με αυτισμό υψηλής λειτουργικότητας. Ο παππούς του 

αγόρασε στον Σπύρο ένα καινούριο παιχνίδι και συγκεκριμένα ένα αυτοκινητάκι καθώς 

αρέσουν πολύ στον Σπύρο. Ποιο από τα παρακάτω ταιριάζει περισσότερο στον τρόπο με 

τον οποίο αναμένουμε να αλληλεπιδράσει ο Σπύρος με το παιχνίδι; 

(x) θα περιεργαστεί με λεπτομέρεια το νέο παιχνίδι επαναλαμβάνοντας περίπου τις ίδιες 

κινήσεις 

( ) θα αναζητήσει άλλα παιδιά για να παίζει μαζί τους με το νέο του παιχνίδι 

( ) θα αδιαφορήσει για το παιχνίδι γιατί έχει πολλά αυτοκινητάκια 

( ) θα αρχίσει να κλαίει γιατί περίμενε ότι θα πάρει άλλο δώρο από τον παππού του 
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3. Τι αναμένουμε να συμβεί αν αλλάξουμε τη διαρρύθμιση του δωματίου ενός παιδιού με 

αυτισμό χωρίς να το προετοιμάσουμε; Το παιδί... 

( ) θα ενθουσιαστεί 

( ) δεν θα δώσει καμία σημασία 

( ) θα στεναχωρηθεί  

(x ) θα αναστατωθεί 

4. Ο Αντώνης είναι ένα παιδί με αυτισμό χαμηλής λειτουργικότητας. Στο σχολείο τον 

πλησιάζει ένας συμμαθητής του και τον ρωτάει «θέλεις να παίξουμε;». Ο Αντώνης δεν του 

απαντάει και ο συμμαθητής του τον ξαναρωτάει. Τι από τα παρακάτω συμβαίνει; 

(x) Ο Αντώνης δεν αντιλήφθηκε ότι το παιδί απευθύνεται σε αυτόν 

( ) Το παιδί ρώτησε τον Αντώνη χαμηλόφωνα και πιθανότατα ο Αντώνης δεν τον άκουσε 

( ) Ο Αντώνης ντράπηκε να του μιλήσει 

( ) Ο Αντώνης γνωρίζει ότι δεν πρέπει να μιλάει σε ξένους για αυτό δεν απάντησε 

 

Level 4 

1. Ο Αντώνης είναι ένα παιδί με αυτισμό χαμηλής λειτουργικότητας. Στην τάξη του 

Αντώνη όταν χτυπάει το κουδούνι ο δάσκαλος λέει στα παιδιά ότι μπορούν να βγουν 

στην αυλή για το διάλειμμά τους. Σήμερα βρέχει πολύ, το κουδούνι του σχολείου έχει 

ρυθμιστεί να χτυπάει αυτόματα τις ώρες του διαλλείματος. Τι πρέπει να κάνει ο 

δάσκαλος ώστε ο Αντώνης να μην βγει στην αυλή;   

( ) Να κλειδώσει την πόρτα 

( ) Να εξηγήσει στον Αντώνη για ποιο λόγο δεν θα βγουν διάλειμμα 

( ) Να πει στα παιδιά της τάξης να κάνουν θόρυβο ώστε να μην ακουστεί το κουδούνι 

(x) Να απενεργοποιήσει το κουδούνι του σχολείου 

 

2. Ο Αντώνης είναι ένα παιδί με αυτισμό υψηλής λειτουργικότητας (σύνδρομο Asperger). 

Η δασκάλα του αφού εξηγήσει στους μαθητές πως γίνεται η πρόσθεση δύο αριθμών λέει, 

«Ας πάμε τώρα στο πίνακα να λύσουμε μια άσκηση». Η πρόταση αυτή θεωρείται μη 

δόκιμη. Γιατί;  

( ) Έπρεπε να καλέσει ονομαστικά έναν μαθητή στον πίνακα για να τη λύσει 

(x) Μπορεί να παρερμηνευτεί η προτροπή για την επίλυση της άσκησης 

( ) Μπορεί τα παιδιά να μην θέλουν να ασχοληθούν με την άσκηση 

( ) Έπρεπε να σηκωθεί πρώτα η ίδια στον πίνακα 
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3. Ο Γιώργος είναι ένα παιδί οκτώ ετών που του αρέσει να παίζει μόνος του και δεν 

ενδιαφέρεται για το παιχνίδι των άλλων παιδιών που παίζουν δίπλα του στην παιδική 

χαρά. Συχνά ο πατέρας του τον στέλνει στο ψιλικατζίδικο της γειτονιάς του για να του 

αγοράσει μια εφημερίδα. Ο Γιώργος αφού ζητήσει την εφημερίδα από τον ιδιοκτήτη, 

δίνει τα χρήματα που του έχει δώσει ο πατέρας του και στη συνέχεια αφού μετρήσει τα 

ρέστα που πήρε, γυρίζει στο σπίτι του. Ποιο από τα παρακάτω είναι περισσότερο πιθανό 

να ισχύει για τον Γιώργο; 

( ) έχει αυτισμό τύπου Kanner 

(x) έχει αυτισμό υψηλής λειτουργικότητας (σύνδρομο Asperger) 

( ) είναι ντροπαλός 

( ) έχει αποδιοργανωτική διαταραχή 

 

Level 5 

1. Ο Αντώνης είναι ένα παιδί με αυτισμό. Με τον Σπύρο (μαθητής τυπικής ανάπτυξης) 

κάθονται στο ίδιο θρανίο. Οι δύο μαθητές έχουν κάτω από το θρανίο τους από ένα κουτί. 

Ο Αντώνης πριν βγει στην αυλή για το διάλειμμα έβαλε μέσα στο κουτί του μια μπίλια. Ο 

Σπύρος πήρε την μπίλια και τη μετακίνησε στο δικό του κουτί χωρίς να τον δει ο Αντώνης. 

Ο Αντώνης μετά το διάλειμμα θα έρθει και θα ψάξει για την μπίλια του 

(x) στο δικό του κουτί 

( ) πρώτα στο δικό του κουτί και μετά στο κουτί του Σπύρου 

( ) πρώτα στο κουτί του Σπύρου και μετά στο δικό του κουτί 

( ) στο κουτί του Σπύρου 

 

2. Ο Αντώνης είναι ένα παιδί με αυτισμό υψηλής λειτουργικότητας. Στην καλοκαιρινή 

σχολική γιορτή η δασκάλα της τάξης του Αντώνη θα δώσει στα παιδιά ποιήματα και 

ρόλους για ένα θεατρικό έργο. Στο θεατρικό έργο θα υπάρχει ένας αφηγητής και δέκα 

ακόμη ρόλοι οι οποίοι συνδιαλέγονται μεταξύ τους στις διάφορες σκηνές του έργου. Τι 

θεωρείτε ότι είναι πιο κατάλληλο να δώσει στον Αντώνη η δασκάλα του κατά τη 

διανομή; 

( ) Για να μην τον δυσκολέψει δεν πρέπει να του δώσει τίποτα 

( ) Οποιοδήποτε ρόλο από το θεατρικό έργο 

() Ένα ποίημα ή οποιονδήποτε ρόλο στο θεατρικό έργο 

(x ) Ένα ποίημα ή τον ρόλο του αφηγητή 
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3. Ο Αντώνης είναι ένας μαθητής με αυτισμό χαμηλής λειτουργικότητας. Συνήθως γυρίζει 

σπίτι μόνος του. Στο δρόμο προς το σπίτι του αρκετές φορές δέχεται επιθετική 

συμπεριφορά από ομάδα συμμαθητών του. Τι από τα παρακάτω αναμένουμε να κάνει ο 

Αντώνης τις επόμενες μέρες; 

( ) θα γυρίζει σπίτι από άλλο δρόμο 

(x) θα συνεχίσει να γυρίζει σπίτι από τον ίδιο δρόμο 

( ) θα ενημερώσει άμεσα τους γονείς του για να έρχονται οι ίδιοι να τον παίρνουν από το 

σχολείο 

( ) θα γυρίσει πίσω στο σχολείο όπου νιώθει ασφαλής όταν συναντά τα συγκεκριμένα 

άτομα στο δρόμο 
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Appendix IΙ 

The questionnaire that was administered to the participants comprised of five 

dimensions: Perceived engagement, perceived usefulness, perceived learning 

effectiveness, perceived cognitive benefits, and intention to continue. 

Perceived engagement 

The engagement questionnaire that was administered to participants in order to evaluate 

their perceived engagement level in the MOOC assessment activity (in Greek) is presented 

in Table 1 (Whitton, 2007, 2010). Whitton’s engagement questionnaire consists of 18-

item in a 5-point Likert scale (strongly agree to strongly disagree). Each of the questions 

corresponds to a factor that Whitton argues to affect the engagement of the participants: 

Challenge, Interest, Control, Purpose, Immersion. 

Table 1. The self-reported engagement questionnaire that was administered to participants 

(Whitton, 2007, 2010) 

# Question Engagement factor 

1 Ήθελα να ολοκληρώσω τη δραστηριότητα  Challenge (motivation) 

2 Δεν με ενδιέφερε να εξερευνήσω όλες τις διαθέσιμες επιλογές Interest 

3 Δεν ήταν σαφές τι έπρεπε να κάνω σε κάθε βήμα της 

δραστηριότητας  

Control 

4 Ήξερα τι έπρεπε να κάνω για να ολοκληρώσω τη 

δραστηριότητα  

Challenge (clarity) 

5 Αισθάνθηκα ότι μπορώ να επιτύχω τον στόχο της 

δραστηριότητας  

Challenge 

(achievability) 

6 Βρήκα την δραστηριότητα αποθαρρυντική  Challenge 

(achievability) 

7 Η δραστηριότητα δεν μου επέτρεπε να αλληλεπιδράσω με 

τον τρόπο που ήθελα 

Control 

8 Δεν μπορούσα να καταλάβω τι αποτέλεσμα είχαν οι 

ενέργειές μου  

Control 

9 Αισθάνθηκα ότι η ώρα πέρασε γρήγορα  Immersion 

10 Αισθάνθηκα απορροφημένος στη δραστηριότητα Immersion 

11 Βρήκα τη δραστηριότητα βαρετή  Interest 

12 Δεν μου άρεσε η δραστηριότητα  Interest 

13 Η δραστηριότητα ήταν άσκοπη  Purpose 

14 Η ανατροφοδότηση που μου δόθηκε ήταν χρήσιμη Purpose 

15 Η δραστηριότητα μου δημιούργησε το αίσθημα της 

ικανοποίησης 

Immersion 

16 Ήταν σαφές τι μπορούσα να μάθω από τη δραστηριότητα Purpose 

17 Δεν με ένοιαζε το πως τελείωσε η δραστηριότητα (σε σχέση 

με τη επίδοση μου) 

Challenge (motivation) 

18 Το βρήκα εύκολο να ξεκινήσω με τη δραστηριότητα Challenge (clarity) 
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In Table 2 we present Whitton’s original questionnaire (Whitton, 2007). Questions are 

presented in the same order as in Table 1. 

Table 2. Whitton’s questionnaire as it was presented in her PhD thesis (Whitton, 2007) 

# Question Engagement factor 

1 I wanted to complete the activity  Challenge (motivation) 

2 I was not interested in exploring the options available Interest 

3 It wasn't clear what I could and couldn't do  Control 

4 I knew what I had to do to complete the activity  Challenge (clarity) 

5 I felt that I could achieve the goal of the activity  Challenge 

(achievability) 

6 I found the activity frustrating  Challenge 

(achievability) 

7 The activity would not let me do what I wanted Control 

8 I could not tell what effect my actions had Control 

9 I felt that time passed quickly  Immersion 

10 I felt absorbed in the activity Immersion 

11 I found the activity boring  Interest 

12 I did not enjoy the activity  Interest 

13 The activity was pointless  Purpose 

14 Feedback I was given was useful Purpose 

15 I found the activity satisfying Immersion 

16 It was clear what I could learn from the activity Purpose 

17 I did not care how the activity ended Challenge (motivation) 

18 I found it easy to get started Challenge (clarity) 

The other dimension was evaluated with a questionnaire that comprised of the following 

items in a 5-point Likert scale. 

Perceived usefulness 

Απάντησε στις παρακάτω προτάσεις σχετικά με τη χρησιμότητα της δραστηριότητας 

όσον αφορά τη μάθηση μέσα σε ένα διαδικτυακό μάθημα (MOOC). Η δραστηριότητα (ως 

προς τη δομή της και την ανατροφοδότηση που προσφέρει)...  

1. θα μου επιτρέψει να βελτιώσω τον ρυθμό μάθησης σε ένα διαδικτυακό μάθημα 

(MOOC) 

2. θα βελτιώσει την επίδοσή μου σε ένα διαδικτυακό μάθημα (MOOC) 

3. θα κάνει πιο αποτελεσματική τη μαθησιακή μου εμπειρία σε ένα διαδικτυακό 

μάθημα (MOOC) 

4. είναι χρήσιμη για τη μάθησή μου μέσα σε ένα διαδικτυακό μάθημα (MOOC) γενικά 
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Perceived learning effectiveness 

Απάντησε στις παρακάτω προτάσεις σχετικά με τη μαθησιακή αποτελεσματικότητα της 

δραστηριότητας μέσα σε ένα διαδικτυακό μάθημα (MOOC)  

1. Η δραστηριότητα με έκανε να ενδιαφέρομαι να μάθω περισσότερα για τη ΔΑΦ 

2. Αποκόμισα πολλές τεκμηριωμένες πληροφορίες για τη ΔΑΦ 

3. Απέκτησα μια καλή κατανόηση γύρω από τις βασικές έννοιες που αφορούν τη ΔΑΦ 

4. Έμαθα να αναγνωρίζω τα κύρια και σημαντικά θέματα γύρω από τη ΔΑΦ 

5. Ενθαρρύνθηκα μέσα από τη δραστηριότητα να μάθω περισσότερα για τη ΔΑΦ 

6. Είμαι σε θέση να συνοψίσω ό,τι έμαθα και να καταλήξω σε συμπεράσματα 

7. Η δραστηριότητα μου φάνηκε ουσιαστική 

8. Αυτά που έμαθα μέσα από τη δραστηριότητα, μπορώ να τα εφαρμόσω και σε 

πραγματικό πλαίσιο 

Perceived cognitive benefits 

Απάντησε στις παρακάτω προτάσεις σχετικά με τα γνωστικά οφέλη που θεωρείτε ότι 

αποκομίσατε μέσα από τη δραστηριότητα  

1. Η δραστηριότητα διευκολύνει την κατανόηση των πληροφοριών που 

παρακολούθησα στις βιντεοδιαλέξεις 

2. Η δραστηριότητα διευκολύνει την απομνημόνευση των πληροφοριών που 

παρακολούθησα στις βιντεοδιαλέξεις 

3. Η δραστηριότητα με βοηθάει να εφαρμόσω αποτελεσματικότερα ό,τι έμαθα μέσω 

των βιντεοδιαλέξεων 

4. Η δραστηριότητα με βοηθά να αναλύσω πιο αποτελεσματικά προβλήματα που 

σχετίζονται με το περιεχόμενο των βιντεοδιαλέξεων 

Intention to continue 

Απαντήστε τις παρακάτω ερωτήσεις σχετικά με το αν σκοπεύετε να χρησιμοποιήσετε τα 

Μαζικά Ανοικτά Διαδικτυακά Μαθήματα (MOOCs) στο μέλλον  

1. Σκοπεύω να παρακολουθώ διαδικτυακά μαθήματα (MOOCs) στο μέλλον 

2. Θα παρακολουθώ διαδικτυακά μαθήματα (MOOCs) ολοένα και περισσότερο στο 

μέλλον 

3. Θα συνιστούσα έντονα και σε άλλους να παρακολουθήσουν διαδικτυακά μαθήματα 

(MOOCs) 
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