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Abstract

In this thesis we show how a new multi-parameter integration algorithm can be used to successfully
integrate not only the kinematic space of a theory but also its parameter space. The result of the
adaptive integration is a generator that samples simultaneously both particle kinematics and theory
parameters. Applications of this method include the efficient setting of new-physics limits in multi-
parameter space, the optimization of signal selection (because of the direct connection of
kinematics to parameters) and the determination of parameter space consistent with signal in case
of discovery.

We demonstrate this method in the case of Z' boson production at the LHC with two free
parameters: the mass of the boson and a factor that multiplies the Standard-Model coupling
constants of its decay to leptons. We establish that the integration of both kinematics and
parameters converges and can be used to determine cross sections for each point of parameter
space. We conclude that with a simple Monte Carlo run we can determine a finer two-dimensional
95% confidence-level exclusion region of new physics or, in the case of discovery, we are able to
determine the allowed parameter space.



NepiAnyn

H owpatdiakn ¢uotk amoteAel tov kKAAdo tng UOIKAG TIou OoXOAelTal PE TNV MEAETN TNG

Bepehlakng Soung tou KOoUou yUpw pog. H kaAlUtepn Beswpla mou £€xel avamtuxBel ywa tnv
Kotavonon oauth eival to KaBiepwpévo Mpotuno. To KaBiepwpévo Mpodtumo amoteAeital amd
Bewpieg BabBuidag mou a&lomolouv tov GopUaAlopo Katd Lagrange wote va e€nyrioouv ta media Kat
TIC GAANAETUEPAOELG TIOU TtapaTnpoUpe yUpw Hag. O Aaykpavt{laveg tng Bewplag umayopelovtol
Onmod TIC OCUMUETPleEG oTIC omoleg umakoUoUV oL aAANAeTOPAOcELS (NAEKTPOMOYVNTIKY, LOXUPNH
nupnvikn, acBevig mupnvikn). To KaBiepwpévo Mpdtumo efnyel (kat €xel MpoPAEYPEL 0 KATIOLEG
TMEPUTTWOELG) TNV UMapEn MoAAwv BepeAlwdwyv cwuatdiwy Ta omola mapatnpolvtol YUpw HAC.
Ouwg akOun umdpxouv epwtnuota ToU 6ev €xouv amavinbel amd v Beswpla KabBwg Kot
nipoBAEY LG mou Sev £xouv emkUpwOEL.

Ma autd to AOyw yilvovtal Tepapata Pe okomd tnv avokaAuyn véag ¢uolkng. O Baolkog
TELPAUOTIKOG TPOTIOC £lval N HeAETn aAAnAembpdocwy Twv BepeAlwdwy cwpattdiwv Kat eé€taon
yla kamola cupnepidopd SLadopeTIKr amd AUTAY TIOU aVAUEVOUUE cUudwva pe to Kablepwuévo
Mpotumo. Ta TLo PEYAAQ TELPAMATO TIOU UEAETOUV QUTEC TIC aAAnAsmdpaocslc AapBavouv xwpa
outn ™ otyun otov Meydho Adpovikd Emwtayuvtr) (Large Hadron Collider, LHC) oto CERN otov
omolov £XOUpE GUYKPOUGCELS TPWIOVIWY HE EVEPYELO OTO KEVTPO MALaC TNG oUykpouonc s = 13
TeV.

H katavonon twv aAAnAemdpdoswy mou AapBavouv xwpa Katd tn SLapKeLa plag cUykpouong eivatl
moAUTAoKo {ATNUa. MNa auTd To AGY0, XPNOLLOTIOLOUE TIPOCOLOLWOELS TWV CUYKPOUCEWV WOTE Va
OVATIOPOOTAOOUE TA YEYOVOTA TOU TEAIKA TtapatnpoUUEe OTo Telpapa Kol va BydAoupe
cupmnepacpata. OL TIPOCOOLWOELS AUTEG AELTOUPYOUV WG YEVVATOPEG CWHATLOIWY OAOKANPWVOVTAG
Kotd Monte Carlo Tov KvnuaTko Xwpo the Bewplog (ouvnBwg yla Tov UTIOAOYLOUO TNG eVEPYOU
Slatopng) pe xpnon detypotoAniag omoudaldtnTAg WOTE VA LA SWOEL TNV TOPOYWYN CWHATLS WY
OTIWG TIEPLUEVOULE VA TO TTAPATNPNOOUUE OTo Meipapa. Autd cupPaivel emeldr) peyaAUTepn TN
NG OAOKANPWTEQC TOOOTNTAG ONUAiveL peyaAUTepn evepyog Slatopn, apa mo mbavr cwuatdLlakn
Siepyaotia.

YKOTOC TNG gpyaciag Hog elval va eMEKTEIVOURE QUTAV TNV OAOKANPWON WOTE va cuUTiepAapBAaveL
TMEPA QMO TOV KWNUATIKO XWwpo TN¢ Bswplag Kol évav TOAPAPETPIKO XWPO OTNOU HUIMOPOULE
napdAMnAa va eléyfoupe Kal Tig eAelBepeg mapapétpouc tng Bswplog. Me auToOvV TOV TPOTO
UTTOPOUUE VO UEAETHOOUUE OAOKANPO TOV TIAPAUETPLKO XWPO TG Oswplag pe éva povo opyeio
npocopolwong. Mag erutpEnetal, €10, N AUeSn oUVOEON TNG KIVNUATIKAG TWV CWHATISlWVY HE TIG
TIHEC TWV TAPAUETPWY VEWV Bswplwv. Kipleg edpappoyég tng pebodouv cuumeplapfdavouv thv
€UKOAN BeAtioTOMOINON TNG KWVNUATLIKAC EMAOYNG YEYOVOTWV YL TNV £peuva BewpLwV VEAS PUTLKNG
KoL Tov anodotikd kaboplopd opiwv amokAewopol A avakaAuPng yia Ti¢ Oswpleg aUTEC.

Mo va To ETUTUXOULE aUTO Ba oXeSLACOUE TIPWTA EVAV YEVVITOPO CWHATLS WY yLa VAL LEAETHOOUE
v aMnAenidpaon Drell-Yan oe cuvBnrkeg tou LHC kat kotomiv Ba emekteivoupe TNV oAokKARpwon
WOTE va cuumepAapBavel kal eAeVBepeg MOPAPETPOUG TNG Bewplag.

H aA\nAeniSpaon Drell-Yan mpokUmtel amod thv cUykpouaon evog quark kot evog antiquark ta omoia
pog Sivouv éva dwtovio 1 éva pmoldvio Z ta omoia pog Sivouv wg TeAKO Tpoidv €va (elyog



Aemroviwv. MeAetrioape TI¢ oUYKPOUOELG OAwV Twv {euywv quark, ektog anod to {evyog top e anti-
top kaBwg Slabétouv moAU uPnAn pala. Emiong efetdoape povo tnv mepimtwon tou {evyoug
nAekTpoviou-molltpoviol w¢ TeAIKO TPoidv ylo Adyoug amAoUoTeucong Xwpig vo XAvetal n
YEVIKOTNTA.

H evepyog Statopn tng aAAnAsmidpaong divetal anod tnv e€lowon (Eq. 5 oto kelpevo):

dPout,k dxidxj

o= qui,qui(xi:.u)fj(xj; .U)lM(Pu Pj; Pout,k)l2 64(PL + Pj — Yk Pout,k) HRE—ICTE}"

v omoio vlomolwoupe otov kwdika. OL cuvaptioelg f;; eivatr ta PDFs (Particle Distribution
Functions) mou pag divouv tnv mBavotnta to ekdotote quark fj antiquark g;; evtog tou mpwtoviou
va €XeL TOCOOTO OpUNG X;;. Ta PDFs MPOKUTTOUV OItO TIPOCAPHOYEG TIELPAUOTIKWY Sedopévwy amnd
TMOMG TEPApOTO KAl €§OPTWVTIOL QMO ML EVEPYELOKN KAlpoka p. P;; elvat oL opuég twv
OUYKPOUOUEVWV quark Kot Pyt x OL OPUEG TwV £§EPXOUEVWV AETTOVIWV KaL E;; OL AVTIOTOLKEG EVEPYELS.
To otolxeio mivaka M (matrix element) pag divel Tnv mBavotnta va cuykpouctouv Vo quarks kat
va mapa&ouv to pUmoldvio Kal PETA dU0 AEMTOVLIA, UE TIG SE60UEVEG OPUEC. AUTOV TOV UTTOAOYLOUO
Tov naipvou e o Mpwto Babuod mpooéyylong (leading order) and to Madgraph. H cuvdptnon 6éAta
ekdpalel Tnv apyxn Slatnpnong Tt opuUng Kat eival emiong eVOWUOTWHUEVN LECO OTO Tpoypappa. H
oAokAnpwaon, Onwc PAEMOUE, YIVETAL TTAVW OTLG KIVNUOTLKEG LETOPANTEC.

H mapamdvw oAokAnpwon yivetal pe tov aAyoplBuo VEGAS mou xpnowdomolel dstypatoAnyia
onoudaotntag kabwe kot stratified. Evdeikvutal yla moAudlaotateg oAokAnpwoelg Kabwe sivat
SUVOUIKOG, EMAVOANTITIKOG KOL Ol UTIOAOYLOTIKEGC TOU OWVAYKEC, avaAloya HE TIC OSLOOTAOCELG
oAokAfpwaong, auéAavovtal YPOopULKA Kol OxL ekBeTikd. H oAokArpwaon mpayuatomnoleital Le xprion
TeXVIkWV Monte Carlo kaBwg kot pe BeAtiotonoinon Tou mMA&ypatog oto omoio AapBavel xwpa n
olokAfpwaon. Eival 8laitepa Xprowog o HOC ylatl £xoups emumA£ov SLOTACELC OAOKARPWGNG
AOYyw TN TAUTOXPOVNG OAOKARPWONG KoL OTOV TIOPALETPLKO XWPO TG Bewplag.

To enopevo Brpa sival eivat va cupmnepAdfouple otnv oAOKARPWON TG TOPAUETPOUG Bewplag VEQg
duokng. Mpokelpévou va edapudooupe tn pPEBOSO, peletdue tnv mapaywyn upmoloviov 7
petaBallovtag Svo mapapétpoug tng Siepyaociag Drell-Yan: Tn pdala tou pmoloviou Kal évov
napdayovra mou moAamAaotdlel tnv otabepd ouleuéng Tou pmoloviou pe ta AemTovia ota omnola
Sloomartal. To mpwto po¢ BAua elval, KAvOvtog XpHon TOU TPOYPAUUOTOS, Vo SWOOUUE
SLopoPETIKES TYUEG otV Hala (Ue Tn otabepd ouleuéng otnv T Tou Kablepwuévou Mpotumou) Kat
VO KAVOUUE EEXWPLOTEG OAOKANPWOELG YLt VA UTIOAOYIOOUE TNV OVTLOTOLYN TIPOKUTITOUCA EVEPYO
Slatopn (MeTd Kol amo Kamoleg emumAéov Slopbwoelc). Ixedlalovpe tnv ypadikr mapdotoon g
gvepyoU SLOTOWNG, TTou uTtoAoyicape, o cuvaptnon We tn pala tou pnoloviou, onmwg daivetal oto
Ixnua A. Ito 8o oxnua TMApPoUCLA{OUUE TNV UTIOAOYLOUEVN QVOAUTIKA €VEPYO OLOTOMN WG
ocuvaptnon tng paloc pe otabepéc ouleuvénce olpdwveg pe to Kabiepwpévo MMpotumo Kot
napatnpoUe oAU KaAn cupdwvia, e Baon tn Bewpntikn aBeBatdtnta. H opllovtia ypaupn tou
OXNMOTOG OVTILOTOLXEL OTO OpLO ATIOKAELOHOU €VEPYWV SLATOUWY, OE TIEPIMTWON TIOU AVLXVEUCOULE
UNGEV yeyovoTa e TEAELO OVIXVEUTH Kol Xwpi¢ va avapévoupe undPabpo amd to Kabiepwpévo
Mpotumo. e autnVv TNV Teplmtwon OAeG oL evepyEG SLATOMEG MAVW Ao TNV 0pLlOVTLA VPO
anoppintovral pe 95% confidence level (CL) mou onuaivel otL anoppintoupe Paleg Tou Z' KATW amd
5.11 TeV.
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IxAua A : Z0ykplon Hetagl tng OswpnTikng evepyol Slatopnng (Lavpa onueia) pLe ta
OLITOTEAEGLOLTOL TOU TIPOYPAUMATOC HLoG (KOKKLVOL ONUELR). £TO OXAUO CUMTIEPLAQUBAVETOL KOIL TO
TAvw 0pLo (95% CL) Twv ENLTPENMTWV EVEPYWV SLATOUWV yLa tn pwtewvotnta tou LHC, uno tnv
UNOOe0N TEAELOU QVLXVEUTH Kot Undevikol untoBadpou amnod to Kabiepwpévo MNpotumo (umAe
ypoppn). [Figure 7 oto Kupiwg keipevo.]

ATO TN OTLYUN TIou elpoote olyoupol mMw UTOAOYI{OUE CWOTEG EVEPYEG SLOTOUEG UMOPOULE va
adriooups v pala wg ehelBepn mapdpetpo, SnAadn petapAnt olokAnpwong (Béoaues opla
oAokAnpwong uetau 4600 GeV kat 5400 GeV). Ano tnv véa oAokAnpwaon UTOAOYI{OUE TLG TIUEG TNG
gvepyoUl SLaTopNG Kol KatoAnyoupe €ava oto mponyoUpevo Slaypappo 0w auth th dopd Ue
peyaAltepn Slakpltiki tkavotnta (10 GeV), 6nwg autr ¢aivetal oto IxAua B.
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IxAua B : H evepyog Statoun yia pada My petagy 4600 kat 5400 GeV onwg npogkuPe amo tnv
oAOKANpwWON TNG MaPAUETPOU palag (UAe onueia), o€ cUYKPLON LE TOUG EEXWPLOTOUG
UTtOAOYLOMOUG S£60MEVNG TLUAG TG LAag (KOKKWVa onueia kat ypapun). [Figure 8 oto kupiwg
Keipevo.]



MapatnpoUpe kdamolov B6puPBo otig uPnAég ualeg o omoiog SlopBwvetal eite pe avénon Twv
oTaTIOTIKWY SedOoUEVWY (TTEPLOCOTEPOC XPOVOC UTIOAOYLOUWV) ELTE XPNOLUOTIOLWVTAS HLKPOTEPO
€UPOG OAOKANPWONG.

2Tn ouvéxela adnvoupe wg emAéoyv eAeUBepn MAPAPETPO TOV Ttapdyovta oculeuéng. O mapayovTog
QUTOC yla To KaBLlepwpévo mpoTtumo eival (oog pe tn povada. Onwg mpLy, uTtoAoyi{oUUE TNV EVEPYO
Slatopn tng Slepyaciag Drell-Yan ylo ouykekplpéveg TIUEG TNG UAlaG aAAG KAl TOU OUVTEAEOTH
ouleuéng Kal mpokUmTel To SLodldotato Slaypoappa Tou IxAuotog [, oto omolo kABe onpelo
avtlotolxel g ouvduaouo tng pPalag Kol Tou Tmapdyovta oUleuEnG. ITo OXAHO ONUELWVOUUE LE
KOKKLVO XpwHo Ta onuela mou amokAsiovtal e 95% CL, av Sev mapatnpricoupe Sedouéva, o€
TéAelo aviyveutn kot Ywpl¢ umdPabpo. O okomodg pag £ival vo QVIIKATAOTACOUUE aUTO TO
Slaypappo amokAELOpHOU HE €va TIoU €XeL MEyOAUTEPN OKpiBela kol Xwpi¢ tnv emavaAnyn tng
npooopoiwaong yia S1adopeTikd cuVOUACUO TTAPAUETPWV.
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Ixnua I : Emavalappovopeveg olokAnpwoeig Monte Carlo yio 8£60EVEG TIMEG TTOPOAUETPWV
WOTE VO SLKPIVOUHE TNV TIEPLOYXI) UITOKAELOHOU. IMIE KOKKLVO ONHUELWVOUHE TO ONELD TOU
TLOPALETPLKOU XWPEOU Tou armokAeiovton e 95% CL, ov SV avIXVEUGOULE YEYOVOTA KOl
Oswpwvtog TEAELO AViXVEUTH Ko ndeviko umofabpo. [Figure 10 oto Kupiwg Keipevo.]

ITn OUVEXELD, Oopolwg e TPy, adnvoupde wg eAeUBepeg Mapapétpous TNV pala tou Z' Kol Ttov
napdayovta cLleuéng, oL omoieg yivovtol twpa Kol ot dUo petaBAnTéG oAokAnpwong. ApxLKda
g€etalouue TNV AELTOUPYiO TOU TIPOYPAPUATOC WC YEVVNTOPA YEYOVOTWY OTOV TIOPUUETPLKO XWPO
™G Bewplag mpayua mou emiBePatlwvetal KaBWE EXoupe PeyaAUTepn Mapaywyr cwpatidiwy yla
MLKPEC Haleg Z' kal peyalouc ouvtedeotég oUleuéng, onwe daivetal oto IxAua A.
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IxAua A : H dswypatoAnio otig U0 (mapopetpikg) amo tig £§L SLaotaoelg OAOKANPWONG KE Th
pado Mz petagt 4500 kot 5500 GeV ko mapayovta culeuéng petagu 0.1 ko 1.1. [Figure 11 oto
KUpLlwg Keipevo.]

Eniong, mpwv mopdyoupe TO TEAKO po¢ Sldypappa omokAElOpoU, emiBeBolwvoupe €avd Twg
ouveylloupe va umoAoyiloupe CWOTEC eVEPYEC SLATOMEG. A va TO TTETUXOUME aUTO BETOUUE TOV
ouvteheoty ouleuénc petaty 0.95 kat 1.05 mpooeyyilovtog &nAadn Tov mopdyovia TOU
KOBOLlEpWUEVOU TIPOTUTIOU KAl CUYKPLVOUUE Eava e TN ypadLkn mopdotacn Tou IXAUatog A omou
yla aKOWN o popd mapatnpoU e TOAU KaAn cupdwvia.
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IxAua E : H evepyog Statopn omwg autr urtoAoyiletol oo To TPOYPAHLA oG WG OUVAPTNON TNG
pagog My pe ouvteleotr) ouleuéng cupBato pe to Kabiepwpévo Mpotumno (Lotoypappo) Kat
oUYKPLON QWUTAG UE EEXWPLOTOUG UTTOAOYLOMOUG YL SLAKPLTEG MAPAUETPOUG (KOKKLVOL ONnUEio Ko
vpoppn). [Figure 12 oto Kupiwg Keipevo.]



T€Aog, mapayoupe to Slodlaotato Slaypappo amokAELopHoU o€ cuvaptnon tne nalag tou Z'(evpog
Tpwv 3000 GeV pe 5500 GeV) kot tou mapdyovta ouleuéng (evpo¢ Twwwv 0.1 pe 10) kat
ouyKpivoupe pe to avtiotolyo Slaypappa mou nmapaape pe Tov mapadootako Tpono. H olykplon
daivetal oto IxAua IT. NopatnpoUpe OTL EMITUXOIVOULLE CUVETT ATTOKAELOUO aAAG e PeyalUTepn
SLOKPLTIKN  LKAVOTNTA  Kal Xwpig emavailnyn mnpooopoiwong yia kKabe ouvduaoud TLUWV
napapétpwyv. O B06puPfog mou eudaviletal ivol OTATIOTIKOC Kol UMOPEL va TeploploTel Ue
mapaywyn mneplocotepwyv dedopévwy. Emiong mapatnpoupe Slaitepa KOAUTEPN  SLOKPLTLKA
LKOVOTNTA OTOV MPOCSLOPLOUO TNG KAUTIUANG QMOKAELOHOU (TG KAUMUANG mou Staxwpilel tig Suo
TIEPLOXEC) TOU OTO Tponyoupevo Staypappo Ba £npemne va Ppebel pe xpron interpolation petafl
TWV OKPLAVWV CNUELWV QUTWV TWV TIEPLOXWV.
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IxAua T : Awodiaotatn epLloxn anoKAELONoU pe pado petagy My petagu 3000 ko 5500 kou
ocuvteleotn oUTevéng petalL 0.1 kat 1.1 (KOKKLVN epLloxn) KaBwg Kat cUYKPLON LLE T CNUELQ
AMOKAELGHOU (paUpa onpeia) yia §eEXxwPLoToUg UTTOAOYLOHOUG SLOKPLTWV TTAPAMETPWV. [Figure 13
OTO KUPLwG KEipevo.]

Télog, mapabétoupe pio akopn Sduvardtnta tng pebodou authg os meplmtwon avoakdAuyng
onuatog véag ¢UOLKAG. XTnV TEePIMTwon auth, WITOPOUHE YPHYOPA VO UTOAOYIOOUWE TOV
TIOPOUETPIKO XWPO TIOU ELVOL OUVEMNAG HME TNV avokdaAuyn. AnAadn tou¢ ouvluacououg Twv
eAelBepwv MapapETpwY (TNG Halag Tou Z' Kal Tou oUVTEAEOTH oUleuéNng oTnV MePIMTWon pag) mou
pag Slvouv TNV TN tTNG €vePyoU OLATOUNAG KAl TIC KLVNUOTLKEC TIMEG TIOU TOPATNPNOAUE OTO
Melpapa. 2to IxAUo Z moapabEtoupe €va Slaypappa OMwE Kal oto IxAUa IT OpwG auth Th dopd
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TIAPOUCLA{OUE TNV TIEPLOXN TIOU QVTLOTOLXEL Ot TIMEG TNC evepyol SLATOUAC cupPBaTteC pe pia
UTOBETIK HETPNON avakdAupng He Twur evepyou Siatoung 0.022 + 0.006 fb. H meploxn tou

TIAPAUETPLIKOU XWPOUG TOU Mg Sivel eVeEPYEC SLATOUEC CUUPATES LE TNV TTAPATIAVW LETPNOTN, EVTOG
odAaApatog, £xeL TN popdn ToLou.
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IxAua Z : Tuvduaopol tng padog My Kat cuvteAeoth 6UEUENG CUVETELG LE L0l UTTOOETIKN
avokaAuyn He apatnpRoLn evepyo Statopn 0.022 + 0.006 fb. [Figure 14 oto kupiwg keipevo.]

JUUMEPACUATLKA, KATAANYOUUE WG Ttpdypatt n péBodog autr gival amoteAsopatiky Kabwe pag
MPoodEPEL TOV TPOCGSLOPLOUO TNG TEPLOXNG ATIOKAELOUOU Bewplwv e eAeUBePEG MAPAUETPOUG
TMPOCSLOPLOUO TWV CUVSUACHWY QUTWVY TWV TOPAUETPWY O MepUMTwon avakadAupng, pe KaAUTepN

SLOKPLTIKN IKavOTNTA OO TIG UTIAPXOoUOosC Slakpltég peBodoug. H péBobdoc autr umopel va
anodeBel Olaitepa xprolun oe HeAfteg Bewplwv He TOAAEG eAeUBEpPEC MOPOUETPOUG, OTIWG

BewplegY

TLEPOUUUETPLOC.
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JUYKpLON HETOEU TNG BewpnTikng evepyol Slatoung (Lavpa onuela) pe ta
OTOTEAEOUATA TOU TIPOYPAUUATOG HaG (KOKKWVOL onuela). Zto oxAupa
oupmnepllapBavetal kot To mavw 6plo (95% CL) Twv EMLTPEMTWV EVEPYWV
Slatopwv yla th pwtewvotnta tou LHC, umo tnv umobeon TEAELOU aVLXVEUTH
Kal pnéevikol umoBabpou amd to Kabiepwpévo Mpotumo (UmAe ypapun).
[Figure 7 oto kupilwg Kelpevo.]

H evepyog Statoun yia pala My petafl 4600 kal 5400 GeV onwce mpogkue
aro tnv oAokApwaon tg mapapétpou palag (Ume onpela), os olykplon Ue
TOUG EeXwPLOTOUG UTIOAOYLOMOUG Sedopévng TMAG TNG MAlag (KokKwva
onuela kat ypapun). [Figure 8 oto kuplwg kelpevo.]

EnavaAappavopeveg olokAnpwoelg Monte Carlo yia SeS0OMEVEG TLUEG
TIAPOPETPWY WOTE va Stakpivoupe TNV meplox amokAelopol. Me KOKKLVO
ONUELWVOUE T ONKELQ TOU TTOPAPETPLKOU XWPOU TIOU AmmoKAEiovTal
pe 95% CL, av &ev avixveUOOUUE yeyovoTa Kal Bewpwvtog TEAELO
QVIXVEUTH Kal pndevikd umoPabpo. [Figure 10 oto kupiwg keipevo.]

H dewypatoAnydio otig dUo (MOpAPETPLKEG) amo TG £EL SLACTACELS
olokAnpwong e tn Hala My petaty 4500 kot 5500 GeV kot
napdyovta oLleuéng petafu 0.1 kou 1.1. [Figure 11 oto Kuplwg
KElpLEVO.]

H evepyog Statour Omwe autr unoAoyiletol and To MPOYPOLUA HLOG
w¢ ouvaptnon tng paloag My pe ouvteheotr oLleuEng cuppatd He To
KaBlepwpévo Mpotuno (Lotoypappa) Kot oUYKPLON OUTAG HE
€eXWPLOTOUC UTIOAOYLOMOUG Yla SLOKPLTEG TIAPAUETPOUC (KOKKLVA
onuela kat ypapun). [Figure 12 oto kuplwg Kelpevo.]

Awodlaotatn meploxn amokAelopoU pe palo petafd My petafd 3000
kat 5500 kot ouvteheot ouleuvéng petafd 0.1 kot 1.1 (kOKKlvn
meploxn) koOwg kot oUykpLon HE Ta onpeia omokAElopoU (pavpa
onueia) yia Eexwplotol¢ UTIOAOYLOHOUG SLOKPLTWY TOPAUETPWV.
[Figure 13 oto kupiwg Keipevo.]

Juvduaopol tng palag My kat cuvtedeoth oUleuéng cuvemeic pe pa
umoBeTik avokalun pe mopatnenown evepyo Statoun 0.022 +
0.006 fb. [Figure 14 oto kupiwg Keipevo.]

Leading-Order Feynman diagram for the Drell-Yan progress. Note we
have already only taken into account the electrons and not all
leptons.
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Figure 2
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Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Leading Order Feynman Diagrams for the Drell-Yan interaction we
will be investigating. Red line denotes a quark coming from sea.

Poisson distribution (in continuous-function approximation) showing
the 5% chance of finding zero events.

Optimal grid for the integration of a two-dimensional Gaussian
produced with Importance Sampling. As shown in [11].

Optimal grid for the integration of two 2-dimensional Gaussian
produced with importance sampling showing phantom peaks. As
shown in [11].

Published Z’ limit by ATLAS [16].

Comparison between the theoretical cross section (black points) and
the results of the Apollo run (red dots). Also included is the
luminosity of the LHC (blue line).

Integrated cross section (points with errorbars) for My between 4600
and 5400 GeV compared to dedicated runs with fixed masses (red
points and line).

Fit of the Apollo integrated cross section and comparison to the
dedicated runs. The fit uses Apollo sigma in the Z’ mass range from
4650 GeV to 5150 GeV. The fit line overlaps with the red line that
connected dedicated runs.

Repetitive MC generation with fixed parameter values to discern
exclusion points, shown in filled red color.

Sampling of My and coupling factor in the 6-dimensional integration,
for My between 4500 and 5500 GeV and a coupling factor between
0.1and 1.1.

Produced Apollo cross section limited in a SM-consistent coupling
factor, as a function of My (histogram) and comparison to dedicated
runs with fixed parameters (red points and line).

2D exclusion limit with My between 3000 and 5500 and coupling
factor between 0.1 and 1.1 (red region) as compared to exclusion
points from dedicated fixed-parameter runs (black points).

Combinations of My and coupling factor consistent with a
hypothetical discovery with a measured cross section of 0.022 +
0.006 fb (contours content is proportional to Z' cross section).
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Introduction

A common way of simulating particle-physics events is sampling the kinematic phase space during
Monte-Carlo integration with importance sampling. If the integrand is a cross section, the momenta
of the outgoing and incoming interacting particles will be generated in phase space regions that are
more probable, which leads to realistic simulation. Although this method of particle generation is
sufficient in Standard Model processes, it is inefficient in new-physics simulations, where the
theories have a number of unknown parameters. In the latter cases, the parameters have to be set
to fixed values each time simulated events are produced.

The purpose of this thesis is to demonstrate the feasibility of using an adaptive integrator of cross
section to sample not just the kinematic space (particle momenta) but also the parameter space of a
theory. This will allow the use of this integrator as a new-physics particle generator in a
multidimensional range of theoretical parameters. A single simulation sample will include all
variations of parameters, generated in parameter-space that is more probable.

This will allow us to set limits on parameters described by theories in the absence of discovery or, in
case of discovery, be able to make quick determinations of the parameter space that agrees with
said observation. At the same time, all correlations between particle momenta and theory
parameters are included in a single file, which allows easy optimization of kinematic event selection
for maximizing new-physics signal.

The thesis is organized as follows:

In Chapter 1 we outline the theoretical background for the physics process we study. Starting from
the Standard Model we will introduce the Feynman calculus which we will utilize to obtain the
expression for the Drell-Yan process. The new-physics process we study will be Z’ boson production,
which is the Drell-Yan process with a much larger pole mass and a variety of coupling strengths to
leptons. We also briefly explain the statistics of setting limits to theories with a confidence level of
95% in some simplified experimental situations.

In Chapter 2 we outline the computational tools used, most importantly the VEGAS adaptive
integration algorithm with importance sampling and the Madgraph matrix element generation.

In Chapter 3 We describe the main program (Apollo) which expands the integration to parameters of
the theory. We demonstrate the usage of Apollo by efficiently calculating Z' production cross
sections with subsequently decays to electron-positron pairs. By including the Z' mass as an
integration parameter, thus a sampled quantity, we reproduce the distribution of cross section as a
function of mass. When we add the coupling factor as an integration variable, we can set exclusion
limits and determine discovery parameters in the 2D parametric space of mass vs coupling factor.

In Chapter 4 we summarize the conclusions.
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Chapter 1: Theory

The Standard Model

High Energy Physics or Particle Physics [1] is a field of physics that describes the basic constituents of
the world and their interactions. Although philosophical traces can be found in ancient times, for
example Democritus’ atomic theory, the beginning of particle physics is usually attributed to J.J.
Thomson with his discovery of the electron in 1887, the first truly fundamental particle discovered.
This lead to a cascade of new particles being discovered in the 20™ century many of them, as was
proven along the way, were blocks of even smaller fundamental particles (for example quarks that
make up the proton and neutron in the nucleus of every atom). The culmination of all these efforts
from many great scientists is what we now call the Standard Model (SM) of elementary particle
physics. The Standard Model includes all our experimentally verified knowledge of particle physics.
According to the Standard Model all fundamental particles can be categorized into either fermions
(half-integer spin) or bosons (integer spin).

The fermions are the constituents of the matter that makes up the world around us. They come into
three generations and each generation includes two quarks and two leptons for a sum of twelve
fundamental fermion particles. These are shown in Table 1. All of chemistry and most of what we
see around us can be attributed to the particles of the first generation. The rest of the particles only
come into existence, in at least an observable way, under high energy processes such as high energy
physics experiments, supernovas, cosmic ray bombardment into our atmosphere and similar
phenomena. But even when they come into existence they are short-lived and only exist for a
fraction of a second before decaying into more stable particles.

The bosons are the particles responsible for the interactions between particles giving rise to three
forces of nature, the electromagnetic force, the weak nuclear force and the strong nuclear force. Yet
we know that there is also a fourth force, gravity. The inclusion of gravity into the Standard Model is
a highly researched topic with many theoretical attempts as well the searches for the elusive
graviton. But there is no experimental evidence to support these claims till this day. These bosons
are also known as force carriers and can be seen in Table 2. The most well-known of them is of
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course the photon, which is the carrier of the electromagnetic force, followed by the W*, W™ and Z°
bosons, carriers of the weak nuclear force, and eight gluons, which are the carriers of the strong
nuclear force. The most recent addition to the Standard Model is the Higgs boson, discovered at the
Large Hadron Collider (LHC) in 2012, which is a scalar boson responsible for the mass of the
elementary particles.

Fermions
1* Generation 2" Generation 3" Generation
Quarks Up (u) Charm (c) Top (t)
Down (d) Strange (s) Bottom (b)
Leptons Electron (e) Muon (p) Tau (1)
Electron-Neutrino (ve) Muon-Neutrino (v,) Tau-Neutrino (v)

Table 1 : The Fermions of the Standard Model.

Bosons Interaction Mediators | Relative Magnitude
of Interactions*
Gauge Bosons Photon (y) Electromagnetic 102
Interaction
Gluons (g) Strong Nuclear 1
Interaction
Z-Boson (2°) Weak Nuclear 107
W Bosons (W?) Interaction
Scalar Boson Higgs Boson (H) Higgs Field -

Table 2 : The Bosons of the Standard Model.

*This is the relative magnitude between two protons when they are just in contact. There is also the gravitational

interaction with a relative magnitude of 10 but no mediator (graviton?) has yet been experimentally detected or verified.

Finally to complete the listing of all the fundamental particles, we shall add the antiparticles, which is
another class of particles discovered from the late 1930s to late 1950s. These particles have the

III

same attributes as the “normal” particles above but some quantum properties reversed such as
charge and also when they come into contact with their counterpart will annihilate each other. The
prime example is the positron which is the anti-electron, the antiparticle counterpart to the
electron. This holds true for nearly all particles except for the photon, gluons, the Z boson and the
Higgs boson which are their own antiparticle. So if we add them all up we have 30 fundamental
particles, 24 fermion particles including their antiparticle counterparts as well as 6 bosons which are

their own antiparticles. Still the search goes on.

From a mathematical perspective [2-4] the Standard Model is a gauge theory that utilizes the
Lagrangian formalism in order to describe the fields (that correspond to the three forces of nature)
and their interactions. The Lagrangians are dictated to by the symmetries that each force adheres to.

The gauge theory of the Standard Model is the product of 3 gauge symmetries

SU3)c®SU(2),®U(L)y
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SU(3) for the strong interaction
SU(2), for the weak interaction

U(1)y for the electromagnetic interaction

The corresponding compacted Standard-Model Lagrangian can be written as:
1 1 1 P =,
LSM = _ZB;WB!W - ZW;WWIW - ZGule‘uw + ZiflyﬂDuf (Eq- 1)
Where ”Zifi]/“D#f” is sum over all fermions and D, is the overall covariant derivative:
_ Y ] S , /1i i
D, = 6” + lglEB” + lgzz% + lg3?GH
First Term: By, is the gauge field from the electromagnetic U(1)y symmetry.

Second Term: W\, is the gauge field derived from the SU(2), symmetry of the weak interaction.

Third Term: G, is the gauge field derived from the SU(3)c symmetry that describes the stong
interaction.

Fourth Term: D, is the interactions between fermions through fields

The Lagrangian formalism is based on the least action principle. The action for a Lagrangian density
£, which is a function of the fields ¢; and its derivatives, is given by:

S= fttifL(QDi, 09;,) (Eq.2)
The least action principle requires that under small variations the action above must not change:
65=0
And so

ty
6| L(gidpy) =0,

t

which gives the Euler-Lagrange equation:

d ( oL ) oL (Eq. 3)
_— — — — q'
dt \9(d¢;,) ¢,
This gives us the equation of motion of the physical system under study.

This formalism follows the classical mechanics formalism but in quantum field theory the
Lagrangians are regarded as axiomatic functions whose only constrain is that they produce the field
equations that are consistent with experimental observations. They can be multiplied by a scale
factor or have an arbitrary factor added to them but when entered the Euler-Lagrange equations
must result in the same field equations.
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Feynman Calculus

Feynman diagrams are a convenient way to represent graphically the interactions between particles
and fields. In this formalism, straight lines represent fermions while wavy, curly or broken lines
represent bosons. The arrows indicate the time direction with time flowing from left to right (there
is also the down-up approach used in much bibliography but we shall adhere to the left-right flow of
time for the remainder of this project). If in some diagram a particle is depicted as travelling
backwards in time, it is the equivalent of the corresponding antiparticle moving forward in time, and
vice versa. The particles that correspond to lines which enter or leave the diagram are the “real”
particles that we observe whereas the particles that join these particles in between are called virtual
particles and only exist for the duration of the interaction.

Fermions and bosons meet at vertices where charge, energy, and momentum are conserved and the

strength of the interaction is represented by a coupling constant (for example for electrodynamic

2

. . L e 1

interactions the couplingis a = = ).
4mhc — 137.0360....

These diagrams are very useful as we can easily calculate the amplitude M of a given interaction by
using Feynman’s rules and eventually arrive at the cross section and decay rate of the interaction by
using the Golden Rule of Fermi for scattering:

a0 _ 1 2 M] (ﬁ)
dn  4m? Mfll (hc)4s Di gr (ka4

This gives us the cross section for a process a+b — c+d in the centre of mass frame. The total center
of mass energy is given by s = E, + Ej, = E, + E4. |Mj]| is the matrix element that is found using
the Feynman rules, p; and p; are the momenta of the final and initial state respectively. E, is the
energy of each particle and g; is the statistical weight of the final state spins. Our project utilises
these rules together with Fermi’s Golden Rule to arrive at the expression of the Drell-Yan process’s
cross section, which we will compute.

The most basic diagram for a particular process is called a Leading Order diagram for that process
and each subsequent diagram that involves more vertices are call Next to Leading (NLO) order and
so on. Every next order that includes more vertices is more and more unlikely. This can be
understood for example from the coupling constant mentioned above, as each additional vertex
adds another 1/137 factor making the procedure less likely by this amount. In our project we will
only use the LO diagram of the Drell-Yan process.

Experimental Measurement of Cross Sections

Cross sections together with decay rates are two quantities that are regularly measured in
experiments. Cross sections are fairly popular among scattering experiments such as the LHC [6],
where we have the collision of two proton beams with well-defined momenta. The likelihood of any
particular final state can be expressed in terms of a cross section. Roughly speaking it is the effective
area of a chunk taken out of one beam, by each particle in the other beam, which subsequently
becomes the final state we want to observe. Each cross section is also unique to each given process.

This can easily be observed in a collider experiment such as the CMS [5] at the LHC, where we know
that the number of events (N) observed is
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N=0oXLXeXa, (Eq. 5)

where o is the cross section we want to measure, L is the integrated luminosity, a measure of how
many collisions took place during the duration of data taking. This is different for every experiment
and depends upon the accelerating apparatus. At the LHC the instantaneous luminosity is typically
about 10** cm?s™. The integrated luminosity of Run-Il is 139 fb™, which is the value we use in this
thesis. The efficiency € and acceptance a correspond to the efficiency and acceptance of the
detector that we use. In the scope of our work we will assume that our detector is a perfect detector
that can detect every single event generated so both the acceptance and efficiency will be hitherto
regarded as equal to one (¢ X a =1). From the above we conclude that the cross section at a
perfect detector can be measured as the number of scattering events divided by the integrated
luminosity.

The Drell-Yan Process

Now we shall compute the cross section using the Feynman formalism for the Drell-Yan process [4,
7] which is a process in which a quark and antiquark pair annihilate each other and produce a lepton
pair which are the final observable state.

qq — 71", as shownin Fig. 1.

v, 2°

Figure 1 : Leading-Order Feynman diagram for the Drell-Yan progress. Note we have already only
taken into account the electrons and not all leptons.

This process was first proposed by Sidney Drell and Tung-Mow Yan in 1970 [8] to describe the
production of lepton-antilepton pairs in high-energy hadron collisions. Since then it has been
experimentally and theoretically scrutinized as it proved a very useful tool in further understanding
QED but also QCD. The Drell-Yan process was initially proposed as a process where two quarks
annihilate into a photon which later produces the pair of leptons. With later advancements and the
understanding of electroweak interactions we now know that the intermediate boson can be either
a photon or a neutral boson Z°. One important aspect is that it can by described as a factorized
hadronic cross section for the massive dilepton production in hadronic collisions, which can be
expressed as a sum (over quark pairs) of products of partonic hard parts and universal PDFs which
depend on the properties of the colliding hadrons. The Drell-Yan process also proved valuable for
the discovery of of the W and Z by bosons by the UA1 and UA2 experiments as well as aiding in the
discovery of the three heavy quarks c, b and t. Other important contributions are the probing of the
antiquark contents in hadrons, as well as the parton structures of pion, kaon and antiproton. One
main feature found and measured by the Drell-Yan process (while comparing to similar DIS
measurements) is also the sea antiquark distributions in heavy nuclei to which the Drell-Yan process
is particularly sensitive.
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Something important to note is that our process will be conducted within the confines of the LHC
experiment, which means that our initial quark and antiquark will be part of composite particles
namely the protons. The protons are baryons composed of three quarks, two up quarks and one
down quark. They have a +|e| charge and mass close to one atomic mass. They are the most stable
hadrons and together with the neutrons and electrons make up the vast majority of matter in the
universe. It is also the nucleus of hydrogen so it is very easy to isolate. But apart from the three
quarks which are called valence quarks, a proton also contains gluons that are responsible for
keeping the quarks within the proton. Because of the nature of QCD, the proton also contains an

|ll

indefinite number of virtual “sea” quarks. Unfortunately, the structure of a proton as we see is quite
complicated and so we still do not have a complete theoretical picture of how the momenta of its
components are distributed. Luckily, we have a fairly accurate experimental description, in the form
of PDFs (Particle Distribution Functions). These functions are determined from fits of observed
guantities from many different experiments, both collider and deep inelastic scattering experiments.
The structure of the proton is important when calculating the cross section, because an antiquark
coming from a proton can only be a sea antiquark. Also we have to take into account the
contributions from the spectator quarks (the quarks that don’t take immediate part in the
interaction but by their presence alter the final cross section). We will also examine only the
electron-positron pair production from the possible lepton pairs for simplicity. So we can rewrite the

Drell-Yan process according to our constraints as:
Examined Process: pp— ee’

which corresponds to the Feynman diagrams (in LO) shown in Fig. 2.

hadrons

v, 2°
a)

hadrons

pl
v, 2°
b)

" Cﬂﬁﬂ

Figure 2 : Leading Order Feynman Diagrams for the Drell-Yan interaction we will be investigating.
Red line denotes a quark coming from sea.

hadrons

In the above Feynman diagrams we have noted with pl and p2 the two colliding protons, q1 and g2
their corresponding quarks that take immediate part in the Drell-Yan process and with “hadrons” the
corresponding byproducts of the protons after the collision. We have also noted in red color the
quarks that originate among the sea quarks. Note that the only difference between diagram a) and
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diagram b) is the origin of the q1 quark: in diagram a) it is one of the valance quarks of the p1 proton
whereas in diagram b) it originates from the sea quarks of the p1 proton just like the g2 quark from
the p2 proton. This does not mean that they are different processes, as in both cases we have two
protons that produce a lepton pair, but has it has to be taken into account when determining the
matrix elements. This second diagram also takes into account the scenario of having the antiquark
gl interact with the quark g2. Also it should be added that q1 and g2 include all the different pairs of
quarks-antiquarks and vice versa including up, down, charm, strange and bottom quarks with their
corresponding antiquarks (the top quark is omitted as its mass is very large and so it cannot be found
inside the proton).

For the purposes of our project we will restrict ourselves to Leading Order processes but will
compensate for this later on with a correction on the final cross section computed.

Now by simply applying Feynman’s rules for QED and utilizing Fermi’s Golden Rule for cross sections
we can arrive at an expression that gives us the cross section of the above examined Drell-Yan
process:

0= [ Savay fiGeo 1015 (x 1) M P P, Poesc)|” 8% Py = S Poe) T gt 52 (Eq. 5)
Which is the expression that use in our software to find the cross section for the interaction. f; ( f; ) is
the PDF function which gives us the probability that the the quark i (j) has fraction x; (x;) of the
proton’s momentum, for the energy scale u, P;; are the momenta of colliding quarks, Py« the
momenta of outgoing lepton and E;;, the corresponding energies. M is the matrix element, for
which we shall utilize Madgraph to get an expression for. The delta function guarantees the
conservation of momentum. We also show the integration phase-space factors that we also
compute. In equation (5) the matrix element squared multiplied by the delta function and phase-
space energy factors gives us the partonic cross section, whereas its multiplication with the PDFs and
the sum over all partons gives us the hadronic integrand. The integration of the hadronic integrand

over all momenta gives us the total hadronic cross section.

Limits on New Theories

The Standard Model of Particle physics is up to today our most successful theory, able to explain a
large number of phenomena. Yet the theory has certain shortcomings, things that up to today it
cannot explain. Some of these are the dark matter, dark energy, the neutrino’s mass, matter-
antimatter asymmetry, strong CP violation, the hierarchy problem and more. So this means that
there is plenty of room for new physics and theories beyond the Standard Model.

When experimentally testing a theory, in the absence of observation, limits on the theoretical
parameters are set. For example, if a theory predicts the existence of a particle and no signal is
experimentally observed, we can make a statement about what is the highest cross section of the
process that could generate this particle, which usually translates to the lowest mass the particle can
have if it exists.

It can be statistically shown from a Poisson distribution that if we expect zero background, we
perform the experiment and we count zero events (an event could be the creation of said particle),
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then we can state with a 95% confidence level (CL) that the theory cannot produce three (3) or more
events.

-2
Poisson distribution: P(X < x) = Y7_, L (Eq. 6),

r!

where A is the mean and r is the number of events. If we substitute the values r=0 and A=3 into the
Poisson expression (which corresponds to the probability of finding zero events in a distribution with
mean 3) we will find that it is equal to:

P(A=3,r=0)=0.0498 = 5%
This can be represented graphically in Fig. 3.

LE- 12
[¥]=

LRE

Paisson Distribution

95% Confidence Level
016
[
a2k

53 Probability to
observe zers events

006 —

-
Fuumber of mvants:
Figure 3 : Poisson distribution (in continuous-function approximation) showing the 5% chance of

finding zero events.

The 95% CL limit on the expected signal events can be translated to a 95% CL cross section upper
limit if divided by the integrated luminosity L. If no signal events are observed and no background
events are expected, we exclude cross sections above 3/L, at 95% CL.
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Chapter 2: Computational Tools

VEGAS

The VEGAS algorithm [9], invented by Peter Lepage in 1978, is a multidimensional integration
algorithm. It is an iterative and adaptive Monte Carlo scheme and is considerably more efficient than
other algorithms especially in high dimensions (n24). It is widely used for multidimensional integrals
that occur in elementary particle physics. It utilizes both importance and stratified sampling
techniques and is ideal for computing the scattering amplitudes derived from Feynman perturbation
theory.

The main benefits of the integration as stated by LePage [9] are

(a) Areliable error estimate for the integral is readily computed.

(b) The integrand doesn’t need to be continuous.

(c) The convergence rate is independent of the dimension of the integral
(d) Itis adaptive.

We should also add that

(e) It avoids the “K® explosion”. The overhead and storage requirements grow only linearly with
dimension, because during sampling we end up with separable distribution densities [10].

Characteristics (a), (b) and (c) are common among Monte Carlo methods but what VEGAS adds is
adaptation (d) which sets it apart from the others. One of the major problems in multidimensional
integration is the exponential growth with the increasing dimension of the integration volume over
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which the integrand is computed. But VEGAS solves this by using sampling techniques before the
actual integration. These sampling techniques prepare the integrand so it can be more efficiently
integrated by the Monte Carlo that will follow.

So, there are two steps to the VEGAS algorithm. The first step includes two sampling techniques,
importance sampling and stratified sampling. These apply an automatic transformation to the
integration variables in order to flatten the integrand which makes the integrand easier and
improves the estimate. Then, in a second step VEGAS, computes the transformed integrand and
produces a Monte Carlo estimate.

Many variants of VEGAS exist today. The one used by us is supplied in Numerical Recipes [10] and is
written with FORTRAN 77 (see Appendix B).

The inputs that VEGAS requires are (using the variable names given):
region: multidimensional rectangular volume in which the integrand is to be computed,
ndim: number of dimensions,
itmx: number of statistically independent evaluations of the desired integral,

(It should be noted that although statistically independent the previous iterations assist the
next iterations by refining the sampling grid as will be explained later on.)

ncall: the number of function evaluations per each integral evaluation (itmx),

init: input flag which signals whether the call is a new start or a subsequent call for
additional iterations,

fxn: user-supplied integrand function,

nprn: input flag that controls the amount of diagnostic output, usually =0.
And its outputs are:

tgral: the final estimate of the integral,

sd: standard deviation of the above integral,

chi2a: Quantity that evaluates the quality of the results, if this is significantly larger than 1
then this means that the results of the iterations are statistically inconsistent and the results
are suspect.

VEGAS employs two sampling strategies in order to prepare the integrand before the actual
integration. These are the “importance sampling” and the “stratified sampling”.

Importance Sampling:

Importance sampling is the principle adaptive strategy employed by VEGAS. This technique focuses
the integration around the regions where the integrand has its largest values (for example around
peaks). It accomplishes this by choosing transformations for each integration variable that minimize
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the statistical errors in Monte Carlo estimates whose integrand samples are uniformly distributed in
the new variables. As explained in [11], the idea in one-dimension replaces the original integral over
X

I=[]dxf(x) (Eq.7)

With an equivalent integral over a new variable y.

1
I = f dy JO)f (X))
0

Where J(y) is the Jacobian of the transformation. As a result, a simple Monte Carlo estimate of the
transformed integral would be given by

1
1250 =23 J o) ()
y

Where the sum is over M random points uniformly distributed between 0 and 1. This estimate S is
also a random number from a distribution whose mean is the exact integral with a variance of

1 1
of = M(L dy P2 (x) - 12) =

1 b
» ( | axroenrie - 12)

The standard deviation o, is an estimate of the possible error in the Monte Carlo estimate and is

And through some calculations is shown to be minimized if

constrained by

J7dx|f()]
@) =

It can be easily shown that this kind of transformations minimize the standard deviation in areas
where the integrand has high peak values, since

2=Zoc|f(x)].

J
The end result is that regions in x space where |f(x)| is large are stretched out in y space. It is the
equivalent of changing the size of “bins” during the integration in order to have more samples
around the peaks than in areas with smaller (or zero) values of integrand. This means that when we
later apply the uniform Monte Carlo integration on the transformed y space we will have many more
measurements concentrated around regions where we have peaks than if we were to integrate in
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the pre-transformed x-space. It should be noted that the distribution of the Monte Carlo estimates
becomes Gaussian for a very large number of M.

The result of the above process in the VEGAS grid. As we typically have no knowledge of the
integrand initially, we start with a uniform x grid. The program makes estimates for the integral
while it samples the integrand refining its grid with every iteration, which affects the next one. After
several iterations, the number of which depends on the integrand complexity and the number of
dimensions, the VEGAS grid converges to its optimal configuration.

The algorithm can be generalized to any number of dimensions by applying the same procedure in
every dimension, making grid increments along an axis smaller in regions where the projection of
the integral on the axis has a larger value and larger where it has lower values.

For example, Fig. 4 shows the grid that was computed for the evaluation of a two-dimensional
Gaussian integral.
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Figure 4 : Optimal grid for the integration of a two-dimensional Gaussian produced with
Importance Sampling. As shown in [11].
Stratified Sampling:

The above importance-sampling technique has its shortcomings. One prime example are the so-
called phantom peaks that may be created. This occurs when we generalize into higher dimensions
because we examine the dimensions separately. This can create overlapping regions where we
assign samples as though we had a peak in this region when in reality they just share the coordinates
of different but unrelated peak regions. For example the x coordinate of one peak and the y
coordinate from a second peak. This is most prevalent when the peak distribution happens to be
along diagonals of the integration volume. We demonstrate this using the example in [11] as shown
in Fig. 5.
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Figure 5 : Optimal grid for the integration of two 2-dimensional Gaussian produced with
importance sampling showing phantom peaks. As shown in [11].

The grid of Fig. 5 has been created using importance sampling for two four-dimensional Gaussian
integrals whose means lie at [0.33, 0.33] and [0.67, 0.67] respectively. The above grid shows that
VEGAS concentrates its sampling in the regions around [0.33, 0.33] and [0.67, 0.67], where the peaks
are, but unfortunately, also concentrates in regions around [0.67, 0.33] and [0.33, 0.67], where the
integrand approaches zero.

Although this grid still produces better results than a uniform grid, it is apparent that useful
resources are being wasted as computational power is directed away from our regions of interest
into these phantom peaks. This is why in later alterations of the VEGAS algorithm, such as the one
we utilize, stratified sampling is used as well as importance sampling. Stratified sampling focuses the
sample region not according to its largest value but based on its variance or standard deviation in
our case. This is generally useful when we want to focus our computations in regions where we have
a greater uncertainty, in order to get a clearer result, instead of regions where we have a lower
uncertainty and fewer computations are needed to arrive to a satisfactory result.

Consequently, VEGAS divides the d-dimensional y-space volume into M® hypercubes using a
uniform y-space grid with M, stratifications on each axis. It estimates the integral by doing a
separate Monte Carlo integration in each of the hypercubes, and with adding the results together
provides an estimate for the integral over the entire integration region. But here we adjust the
number of evaluations used in a hypercube in proportion to the standard deviation in one iteration
in order to set the number of evaluations for that hypercube in the next iteration. The net effect is
that we focus our computations in areas where the potential statistical errors are largest.

This overall directs our computational efforts away from the above-mentioned phantom peaks and
focuses them in the regions where the real peaks lie as these real peaks are the regions producing
most of the error contributions of the integrand.

If the integrand of VEGAS is a matrix element, as in our case, then the importance sampling of
particle momenta can lead to a particle generator. Because we preferentially select momenta that
maximize the partonic cross-section, which are the most probable combinations of momenta. To

28



transform VEGAS to a particle generator, we have to store the momenta it samples during
integration of the partonic cross section after the creation of the grid.

Madgraph

MadGraph [12] is a Monte Carlo event generator used in collider physics to simulate events detected
by many experiments such as the LHC. Madgraph integrates partonic cross sections (based on matrix
elements it generates) using VEGAS. MadGraph software can be also coupled to a number of
programs which allow for a complete simulation at the LHC, going from events at the parton level to
detector signals. It is available online and part of the MadGraph5_aMC@NLO project. We should
note that in realistic settings we could use MadGraph to examine further complex processes that
follow the creation of particles within the CMS detector such as hadronization and showering or
detector inefficiencies, as shown below.

Events at the Showering and Detector
parton level ‘ hadronization ‘ response
MadEvent Pythia PGS or Delphes

For the scope of our work, however, we do not need the Pythia showering and hadronization
because we are investigating only leptonic final states. Furthermore, we do not utilize a detector
simulator because we are investigating a perfect detector. For the needs of our project we only use
MadGraph for the generation of the Drell-Yan process matrix elements at leading order.
Furthermore, we do not need a detector simulator: our goal is to demonstrate that the method
works; the detector acceptance and efficiency do not affect our conclusions.

MadGraph provides us the matrix elements for the Drell Yan process pp — e‘e , for all quark
combinations.

Parton Distribution Functions and Helicities

In order to get the hadronic integrand to be integrated by VEGAS, all quark combinations have to be
summed for all allowed spins. For that reason we need to access the parton distribution function of
the proton and the helicity combinations. We do that through CERNLIB and DHELAS libraries. We
use the Cteq5 PDF, as implemented in CERNLIB [13]. The function Ctg5pdf(Iparton,X,Q) returns the
parton distribution inside the proton for parton Iparton at Bjorken_X equal to X and scale Q in the
PDF set. We use an older PDF but this does not affect the scope of the thesis.

ROOT

Root [14] is a framework for data processing created at CERN that is widely used today by physicist
especially in the field of high energy physics. It is written mainly in C++ and is used for the analysis of
large amounts of multidimensional data. For the purposes of this project it has been installed and
used within a Linux environment.
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Root allows us to save, access, mine and publish data as well as run our own applications and also
provides a data structure, the tree, which allows fast access of huge amounts of data many times

faster than they would have been accessed otherwise.

The data analysis, plots and histograms in this thesis have been done using ROOT.
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Chapter 3: Apollo new-physics generator

Drell-Yan Implementation

Before we investigate the expansion of the code to new physics, we confirm that we can properly
simulate Z-boson events as produced through the Drell-Yan process at the LHC. For that reason, we
construct partonic cross sections to be integrated by VEGAS, according to equation (5). The matrix
elements come from Madgraph and we sum for all quark combinations. The input to the matrix
elements are momenta of incoming quarks and outgoing electron-positron pairs, parameterized as
shown below.
The incoming quarks have fractions of the incoming protons equal to

x; =+te ™ and x, =+te¥,

where T and y will be used in sampling instead of x; and x2. We set the center-of mass energy of the
colliding protons to be v/s = 13 TeV. This means that the 3-momenta of the incoming quarks in the
lab frame are

(0,0,x,E) and (0,0, —x,E)
where E = +/s/2
The outgoing particles (electron and positron) have momenta in the center-of-mass frame:
(Psinfcos, PsinBsing, Pcosf) and

(—Psinfcos@, —Psinfsing, — PcosH),

where P = \/x,x,E?
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The leptonic momenta are boosted back to the lab frame.

The incoming and outgoing momenta in the lab frame are arguments to matrix-element subroutines
that are generated by Madgraph. The resulted matrix element is multiplied by the probability that
the incoming quarks have fractions of the proton’s momentum equal to x1 and x2. These
probabilities are the parton distribution functions of the proton.

The most efficient choice of kinematic variables integration with VEGAS are:

TI yl el ¢
with range:

:0-1
y:-10-10
0:0-m
$:0-2m

From the above it is obvious that the ordinary Drell-Yan process can be generated with a 4-
dimensional integration. The main program sets the dimension of the integration and the specifics
of the integrand and calls VEGAS adaptive integrator with a large number of iterations (O(1000)) for
training of the grid and an equally large number of iterations for generating events. After the grid is
determined, the generation of events follows the specific combination of kinematics and parameters
that maximize the integrand, i.e., the partonic cross section times the parton distribution functions,
summed for all quark combinations, summed/averaged over allowed spins, within constraints of
total 4-momentum conservation.

We confirm that we get a reasonable Z-boson production cross section, after we multiply with a K-
factor of 1.3 (which corrects for higher-than-leading-order effects), compared to measurements at
the LHC. We also confirm that the resulted cross section is very close to the one calculated by
Madgraph (~1420 pb with 13 TeV collisions). For the study of the Z boson (or the heavier Z’ bosons
below) we make sure that we remove the photonic part of the Drell-Yan with a dilepton mass cut.

Apollo

New-physics theories are usually characterized by a number of free unknown parameters. In some
theories, such as Supersymmetry, the number of parameters can be fairly large. Ordinary new-signal
Monte-Carlo event generation requires fixing all parameters of a theory before generation.
Consequently, a large range of parameters and their values is investigated, usually for exclusion
limits purposes. A new Monte-Carlo sample has to be generated for each combination of parameter
values. For example, if we had 10 parameters and we want to investigate 10 different values per
parameter, we would have to generate 10'° Monte Carlo samples, which is practically impossible.

For this reason, in theories with a large number of parameters, most of the parameters have to be
set to arbitrary fixed values, when limits are set on the free parameters. The Apollo method [15]
allows us to set limits for all theory parameters without any artificial fixing of parameter values. This
can be done in principle with a single Apollo sample. This is achieved by including the parameters of
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the theory as integration variables, when we integrate the partonic cross section. As a result, we
sample not only kinematic variables but also parameters of the theory.

Used as particle generator, Apollo produces events that include different kinematics and theory
parameters per event. This allows for direct correlations between kinematics and theory
parameters and the investigation of a wide range of parameter combinations with a single Monte-
Carlo sample. Applications of Apollo include the efficient setting of multidimensional limits on
theoretical parameters in the absence of discovery, the optimization of kinematic cuts to study
particular regions in parameter space, and quick determination of parameter space consistent with
observation in case of discovery. The code structure of Apollo is presented in Appendix A.

We demonstrate the feasibility of Apollo using the Z’ boson generation.

Z' Boson Generation

The demonstration of the Apollo concept in this thesis is achieve with a simple example of Z’ boson
production in 13 TeV proton-proton at the LHC, with subsequent decay to electron and positron
pairs. In this thesis, we consider a Z’ that differs from the SM Z boson in its mass and coupling
strength to lepton. We consider two theoretical parameters that can be altered simultaneously: the
mass of Z’ and the decay coupling factor, which multiplies both the left-handed and right-handed
couplings of Z' to the electrons. For simplicity, and without loss of generality, the following ideal
conditions are considered:

a) The detector is perfect (acceptance and efficiency are equal to one),
b) There is no Standard-Model background expectation,
c) There is no observation of any events when we “open the search box”.

Usually, the theoretical predictions for the cross section of a new-physics signal come from analytic
calculations; the generation of new-physics Monte Carlo is used for the determination of the signal
acceptance and efficiency for different new-physics parameters. This acceptance and efficiency
affect the cross-section exclusion limit which is translated to limits on the theory parameters.
Because of the ideal conditions listed above, as already discussed, the 95% confidence level (CL)
exclusion limit is fixed at 3/L (where L is the integrated luminosity, 139 fb™ for the Run Il of ATLAS or
CMS). For that reason, we demonstrate the power of Apollo by using it for the determination of the
new-physics cross section, as a function of the new theory parameters. Any combination of
parameters is excluded or not, depending on the value of the cross section for these parameters. If
the cross section is above the 95% CL limit, the parameter combination is excluded, otherwise it is
not.

From the above, it is clear that the demonstration of feasibility greatly depends on the accuracy of
the produced cross section, within variations of the parameters. This accuracy is determined by
comparing the Apollo-produced cross sections with dedicated runs for fixed theory parameters. In
this thesis we do this both in one parameter dimension (cross section as a function of Z’ mass) and in
two parameter dimensions (cross section as a function of 2’ mass and Z' decay coupling factor).
Obviously, there may be regions of parameter space with limited Monte-Carlo statistics that lead to
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a larger uncertainty in the Apollo calculations. These regions can be identified and a separate run
within a different parameter range can be issued. In any case, it makes sense to study the
parameter space regions close to expected exclusion limits.

The above consistency checks will demonstrate that the phase-space normalization that should be
included in the adaptive integration is well understood. And that the framework can be used to set
multidimensional parameter limits. Our goal is to demonstrate that these limits are consistent with
the ones that we get from dedicated fixed-parameter runs. But at the same time offer a better
resolution in parameter space. Finally, we will demonstrate how Apollo can be used for determining
the allowed parameter-space in case of discovery of new physics.

When we move to Z' generation, we add two more integration variables, which are
theory free parameters (mass and coupling factor). This requires expanding the integration space to
6 variables and passing the new Z’ masses and coupling factors to the matrix elements. The width of
the Z’' is considered to be the same as that of the SM Z boson. We utilize a dilepton mass cut to
remove any photonic part from the dilepton spectrum. To achieve the Z' functionlality we have to
modify the ordinary Drell-Yan Madgraph matrix element to include the theory parameters (an
example of such modification is shown in Appendix C). We alter the code in 4 steps.

i) First we add the functionality for running Apollo with fixed values of Z' mass (with no alteration of
the couplings). Our goal is to reproduce a reasonable SM-like Z’ boson cross section as a function of
its mass, as a way of validating the cross section produced by Apollo. Fig. 6 shows the published
ATLAS Z’' limit, which includes a theoretical prediction as a function of mass. Our Z' boson
corresponds to the Z'sq in this plot, if we set the coupling factor to unity.
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Figure 6 : Published Z’ limit by ATLAS [16].
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In Fig. 7 we see the comparison of the theoretical cross section as a function of mass (black points,
taken from Fig. 6) with the red points which are the results of the Apollo run with a fixed Z’ boson
mass at a time. Note that there is no integration over this mass yet.
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Figure 7 : Comparison between the theoretical cross section (black points) and the results of the
Apollo run (red dots). Also included is the luminosity of the LHC (blue line).

The agreement is excellent, which is a first confirmation of the proper use of the VEGAS integrator.
Also shown is the horizontal exclusion limit as described earlier, at value 3/L, where L=139 fb™*. All
cross sections above that line are excluded, which sets the Z’ boson mass limit at 5.11 TeV at 95% CL.
As expected, this is a better limit than ATLAS 4.5 TeV, given that we assumed a perfect detector, no
background and zero events in observation.

ii) Next step is to let the Z' mass float in Apollo. After a proper calibration of the parameter-space
normalization, we can collect the generated Z' masses during sampling (and corresponding VEGAS
integrals that are used as weights) into a histogram that corresponds to cross section vs. mass. We
demonstrate the principle for a short run of ~40M events (that take about a half an hour on a
common processor). The cross section function is shown in Fig. 8 (points with errorbars) for a Z’
mass range from 4600 GeV to 5400 GeV, compared to dedicated runs with fixed masses (red points).
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Figure 8 : Integrated cross section (points with errorbars) for My between 4600 and 5400 GeV
compared to dedicated runs with fixed masses (red points and line).
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We observe a remarkable agreement with expected cross section, which confirms the validity of the
method. We see that we can achieve with a single run a better resolution (of 10 GeV), which could
be achieved by 100 dedicated simulation jobs in this mass range. Obviously, the distribution suffers
from low statistics at higher masses. The solution is a smaller mass range or a longer run to achieve
higher statistics. We can fit a range of the high-resolution distribution and compare it with the
dedicated runs. From the plot of Fig. 9 we see that they consistently overlap.
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Figure 9 : Fit of the Apollo integrated cross section and comparison to the dedicated runs. The fit
uses Apollo sigma in the Z’ mass range from 4650 GeV to 5150 GeV. The fit line overlaps with the
red line that connected dedicated runs.

iii) Next step is to run Apollo with different masses and coupling factors, which are fixed per job.
Now we can create a grid of cross sections for 11 different values of masses
(1000 to 6000 GeV with a step of 500 GeV) and 19 different values of coupling factors
(0.1 — 1 with a step of 0.1 and 2 — 10 with a step of 1). The 209 combinations are run for few events;
since statistics is not an issue here (we get the final cross section answer for each combination of
parameter with no need to sample masses and coupling factors yet). We can check which cross
sections are above the exclusion limit, which means that the corresponding parameters are
excluded. This way we produce the exclusion limit shown in Fig. 10 for a smaller range of coupling

factors.
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Figure 10 : Repetitive MC generation with fixed parameter values to discern exclusion points,
shown in filled red color.

The filled circles show parameter combinations that are excluded and the open circles the
parameter combinations that are allowed. This exercise emulates the situation of repetition of MC
generation too many times with fixed parameter values each time (a problem that Apollo tries to
solve). Eventually we would like to produce such an exclusion limit that it is more efficiently
generated and with better resolution in excluded parameter combinations.

iv) Finally, we let both mass and coupling factor float during Apollo integration. This results into a 6-
dimensional integration (and corresponding kinematics and parameter generation). We generate
25M events in this multidimensional space, with Z’ mass from 4500 and 5500 GeV and a coupling
factor range from 0.1 to 1.1. The 2D distribution of the generated parameters can be seen in Fig. 11.
Because we adaptively generate parameters based on importance sampling, we generate more
events where the cross section is higher. This means higher coupling factors and lower Z' masses.
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Figure 11 : Sampling of M and coupling factor in the 6-dimensional integration, for M, between
4500 and 5500 GeV and a coupling factor between 0.1 and 1.1.
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To confirm that we can properly determine the cross sections in the 2-parameter integration (6-
dimensional space), we limit the coupling factor around 1 (the SM value), namely from 0.95 to 1.05,
and we plot the sum of produced integrals (total cross section within bins) as a function of the mass.
Practically speaking, this is a 1D histogram of Z' mass, weighted with VEGAS integral, for this
particular range of coupling factors. We see in Fig. 12 that we get back the expected cross section of
Z’ boson production with SM couplings, as determined by dedicated fixed-parameter runs. The high-
mass statistical noise remains, as expected.
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Figure 12 : Produced Apollo cross section limited in a SM-consistent coupling factor, as a function
of My (histogram) and comparison to dedicated runs with fixed parameters (red points and line).

The ultimate confirmation of the functionality of Apollo is the production of a 2D exclusion limit
using a single run, with a resolution that is better than that of 209 dedicated runs. We demonstrate
this for the mass range from 3000 GeV to 5500 GeV and coupling factors from 0.1 to 1.1 (the reason
being that these ranges include the boundary between exclusion and not exclusion). We see in Fig.
13 that indeed we cover successfully the expected exclusion area, offering an improved resolution of
parameter space. Again, we observe statistical noise, but this is due to the very small number of
events (25 M generated per run, for three runs in three mass ranges).
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Figure 13 : 2D exclusion limit with M, between 3000 and 5500 and coupling factor between 0.1
and 1.1 (red area) as compared to exclusion points from dedicated fixed-parameter runs (black
points).

Finally, we can demonstrate the use of Apollo in case of discovery. If a cross section of a new
process is measured at 0.022 + 0.006 fb, we can determine which combinations of
Z' masses and coupling factors are consistent with this measurement. The answer is the strip
shown in Fig. 14. The content of the contours corresponds to Z' cross sections. This functionality, as
well as the exclusion limits or the selection optimization are extremely useful in theories with a
larger number of free parameters, such as Supersymmetry.
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Figure 14 : Combinations of M, and coupling factor consistent with a hypothetical discovery with a
measured cross section of 0.022 + 0.006 fb (contours content is proportional to Z’ cross section).
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Chapter 4: Conclusions

We demonstrated that Apollo can predict correctly the cross sections of a new physics process in a
multi-parameter space by adaptively integrating both the kinematic variables and theory
parameters. This allows us to efficiently get exclusion limits of these parameters with a single run.
At the same time, in case of discovery, it can determine the combinations of parameters that are
consistent with the measured cross section. Because of the direct connection of kinematics to a
multidimensional parameter space, the program can be used for optimizing the event selection for
maximization of signal over background. The value of Apollo is more significant for theories with a
large number of free parameters, for example, supersymmetry. In this thesis we demonstrated the
principle for a simpler problem of two free parameters in the case of Z’ boson production and decay
to leptons. In this work we generated only a limited number of events, with the result of statistical
noise. Future improvements will include the generation of a larger number of events by running on a
computer grid. At the same time, it would be very interesting to utilize Apollo on a SUSY project.
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Appendix A

Apollo Structure

Apollo [15] is a program which is the implementation of the idea that we can utilize VEGAS not only
to integrate over the kinematic phase but also over free parameters of a theory, thus making Apollo
a new-physics particle generator. Applications include setting limits to theories in the absence of
discovery or, in case of discovery, a quick determination of the possible combination of values of the
free parameters that are consistent with the observed new-physics signal. Apollo is also invaluable
at optimizing event selection for maximization of signal over background, because it provides a
direct connection of kinematics with the multi-parameter theory space.

The program is made up of four parts (with functions and subroutines incorporated in them as well).

Superscan.f

This is the main body of the program. In this program we call all the necessary subroutines and set
the main parameters of our computations such as the number of dimensions and the regions of
integration.

We then call the VEGAS function twice, once with a small number of iterations (for example 300) for
training. In this stage we don’t write the results in our output, this is done to allow VEGAS to adjust
to the integrand, by using its sampling techniques, before we actually start writing the sampled
momenta and parameter results to a file.

Next, VEGAS is called for the second time with a larger number of iterations (for example 2000).
During this integration, we write the sampled kinematics and parameters to a file. The number of
training and generation iterations depends on the dimensions of the problem (i.e. number of
outgoing particles and number of theory parameters).

Function Hadronic Integrand:

Here we call the particle distribution functions of each quark from the pdf library SetCtq5. Then, by
calling the fxn function below for each process and summing over all the 5 quark pairs, we get the
final Hadronic Integrand that will be the function integrated by VEGAS in our main program.

fxn.f

Function that calculates the partonic cross section for each of the 10 given interactions between the
five quarks up, down, strange, charmed and beauty (not the top quark as it is too heavy to be found
within the proton) and its corresponding antiquark. The number of interactions is double the
number of quarks because of the combinatorics: each quark can originate from either the colliding
protons.

The partonic cross section is a product of the Madgraph-generated matrix element of each
interaction times a kinematic phase-space factor times a factor for the conversion of results to pb.
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vegas.f

This file includes the VEGAS subroutine whose algorithm has already been presented. The actual
implementation can be found in Appendix B. It is called by superscan.f which also sets its integration
parameters (number of dimensions, region) and is given the integral from the Hadronic_Integral
subroutine also included in superscan.f.

Here is where we receive our final output, a data file which includes the energy and 3-dimensional
momenta of every particle, the sampled parameters of the theory, and the final integral which gives
us the cross section after certain corrections.

Matrix_Element.f

These are several separate files that are produced by Madgraph in FORTRAN with the use of the
helicity package HELAS. They are called by the fxn function individually to contribute to the overall
partonic cross section. Each file contains the matrix element of one of the following partonic
interactions:

ufl, iu, dd, dd, c¢, ¢c, s5,5s,bb, bb

These are all the partonic interactions that lead to the Drell-Yan interaction under investigation. An
example of the matrix-element code, modified for Z’ production, can be seen in Appendix C.
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Appendix B

VEGAS implementation

We present here the VEGAS algorithm as implemented in Fortran 77 in the Numerical Recipes [10].

#include <stdio.h>
#include <math.h>

#include "nrutil.h"
#define ALPH 1.5
#define NDMX 50

#define MXDIM 10

#define TINY 1.0e-30

extern long idum; !For random number initialization in main.

void vegas(float regn[], int ndim, float (*fxn) (float [], float), int init,
unsigned long ncall, int itmx, int nprn, float *tgral, float *sd,
float *chiza)

IPerforms Monte Carlo integration of a user-supplied ndim-dimensional function fxn over a
Irectangular volume specified by regn[1..2*ndim], a vector consisting of ndim “lower left’
Icoordinates of the region followed by ndim “upper right” coordinates. The integration consists
lof itmx iterations, each with approximately ncall calls to the function. After each iteration
Ithe grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init signals
lwhether this call is a new start, or a subsequent call for additional iterations (see comments
Ibelow). The input flag nprn (normally 0) controls the amount of diagnostic output. Returned
lanswers are tgral (the best estimate of the integral), sd (its standard deviation), and chi2a(x2
iper degree of freedom, an indicator of whether consistent results are being obtained). See
Itext for further detalils.

{

float ran2(long *idum) ;

void rebin(float rc, int nd, float r[], float xin[], float xi[]):;
static int i,it,3j,k,mds,nd,ndo,ng,npg,ia[MXDIM+1], kg[MXDIM+1];

static float calls,dv2g,dxg,f,f2,f2b, fb, rc,ti, tsi,wgt,xjac,xn,xnd, xo;
static float d[NDMX+1] [MXDIM+1],di [NDMX+1] [MXDIM+1],dt[MXDIM+1],

dx [MXDIM+1], r[NDMX+1],x[MXDIM+1],xi[MXDIM+1] [NDMX+1],xin[NDMX+1];
static double schi,si,swgt;

IBest make everything static, allowing restarts.

if (init <= 0) { Normal entry. Enter here on a cold start.

mds=ndo=1; !Change tomds=0 to disable stratified sampling,

i'.e., use importance sampling only.

for (j=1;7j<=ndim;J++) xi[3j][1]=1.0;

}

if (init <= 1) si=swgt=schi=0.0;

Enter here to inherit the grid from a previous call, but not its answers.

if (init <= 2) { !Enter here to inherit the previous grid and its answers.
nd=NDMX ;

ng=1;

if (mds) { !Setup for stratification.
ng=(int)pow(ncall/2.0+0.25,1.0/ndim) ;

mds=1;
if ((2*ng-NDMX) >= 0) {
mds = -1;
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npg=ng/NDMX+1;

nd=ng/npg;

ng=npg*nd;

}

}

for (k=1,i=1;i<=ndim;i++) k *= ng;
npg=IMAX (ncall/k,2);
calls=(float)npg * (float)k;

dxg=1.0/ng;
for (dv2g=1,i=1;i<=ndim;i++) dv2g *= dxg;
dv2g=SOR (calls*dv2g) /npg/npg/ (npg-1.0) ;

xnd=nd;
dxg *= xnd;
xjac=1.0/calls;

for (j=1;j<=ndim;j++) {

dx[j]=regn[j+ndim]-regn[j];

xjac *= dx[]j];

}

if (nd !'= ndo) { !Do binning if necessary.

for (i=1;i<=IMAX (nd,ndo);i++) r[i]1=1.0;

for (j=1;j<=ndim;j++) rebin(ndo/xnd,nd,r,xin,xi[]j]);
ndo=nd;

}

if (nprn >= 0) {

printf ("%$s: ndim= %$3d ncall= %$8.0f\n",

" Input parameters for vegas",ndim,calls);

printf ("%$28s it=%5d itmx=%5d\n"," ",it,itmx);
printf ("%$28s nprn=%3d ALPH=%5.2f\n"," ",nprn,ALPH);

printf ("%$28s mds=%3d nd=%4d\n"," ",mds,nd);

for (j=1;j<=ndim;j++) {

printf ("%$30s x1[%2d]= %$11.4g xul[%2d]= %$11.4g\n",
" ",J,regn[jl,J, regn[j+ndim]) ;

}

}

}

for (it=1;it<=itmx;it++) {

IMain iteration loop. Can enter here (init 2 3) to do an additional itmx iterations with all other
Iparameters unchanged.
ti=tsi=0.0;

1;j<=ndim;j++) {

1;i<=nd;i++) d[i][j]=di[i][3]=0.0;
fb=£f2b=0.0;

for (k=1;k<=npg;k++) {

wgt=xjac;

for (j=1;j<=ndim;j++) {

xn=(kg[j]-ran2 (&idum) ) *dxg+1.0;
ia[j]=IMAX (IMIN( (int) (xn) ,NDMX),1);

46



if (ialjl > 1) {
xo=xi[j][ial[j]l]l-xi[j][ialj]-1];
rc=xi[j][ial[j]l-1]+(xn-1ia[]j]) *xo0;
} else {
xo=xi[j][ial]
rc=(xn-ial[j])
}
x[jl=regn[j]l+rc*dx[]];
wgt *= xo*xnd;

}

f=wgt* (*fxn) (x,wgt) ;

11:
*x0;

f2=£f*f;
fb += £;
f2b += £2;

for (j=1;j<=ndim;j++) {
difialj]1[3] += £;

if (mds >= 0) dlial[j]1]1[]j] += f2;
}

}

f2b=sqgrt (£2b*npg) ;
f2b=(f2b-£fb) * (£2b+£fb) ;

if (f2b <= 0.0) £f2b=TINY;

ti += fb;

tsi += f2b;

if (mds < 0) { !Use stratified sampling.

for (j=1;7j<=ndim;j++) d[ial[j]l]l[]j] += f2b;
}

for (k=ndim;k>=1;k--) {

kgl[k] %= ng;

if (++kg[k] !'= 1) break;

}

if (k < 1) break;

}

tsi *= dv2g; !Compute final results for this iteration.
wgt=1.0/tsi;

si += wgt*ti;

schi += wgt*ti*ti;
swgt += wgt;
*tgral=si/swgt;

*chi2a=(schi-si* (*tgral))/ (it-0.9999);
if (*chi2a < 0.0) *chiZ2a = 0.0;
*sd=sqgrt (1.0/swgt)

tsi=sqrt(tsi);

if (nprn >= 0) {

printf ("%s %3d : integral = %$14.7g +/- %9.2g\n",
" iteration no.",it,ti,tsi);

printf ("%$s integral =%14.7g+/-%9.2g chi**2/IT n
" all iterations: ",*tgral, *sd, *chi2a);

if (nprn) {

for (j=1;j<=ndim;j++) {

printf (" DATA FOR axis %2d\n",J)
printf("°6sol3sollsol3sollsol3s\n",

%9

.2g\n",
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"X","delta i","X","delta i","X","delta i");

for (i=l+nprn/2;i<=nd;i += nprn+2) {

printf ("$8.5£%12.49%12.5£%12.4g%12.5£%12.4g\n",
xi[J1[1],di[i][3],xi[J][1i+1],
di[i+1]1([3],xi[J1[i+2],di[i+2]11[3]);

}

}
}
}

for (j=1;j<=ndim;j++) {

! Refine the grid. Consult references to understand the subtlety of this procedure. The refinement is
Idamped, to avoid rapid, destabilizing changes, and also compressed in range by the exponent ALPH.
xo=d[1][J];

xn=d[2][3]1;

d[1]1[j]=(x0+xn)/2.0;
dt[j]=d[1][3]~

for (i=2;i<nd;i++) {
rc=xo+xn;

d[il[J] = (rc+xn)/3.0;
dt[j] += dli][J];

}

dInd] [J]=(x0+xn) /2.0;
dt[j] += d[nd]l[]];

}

for (j=1;j<=ndim;j++) {
rc=0.0;

for (i=1;i<=nd;i++)

{
if (d[1i]1[3] < TINY) d[i][§]=TINY;
rlil=pow ((1.0-d[1][3F]1/dt[F]1)/
(log(dt[j])-log(d[i]l[]j])),ALPH);
rc += r[i];

}

rebin(rc/xnd,nd, r,xin,xi[J]);

}

}

}

void rebin(float rc, int nd, float r[], float xin[], float xi[])
IUtility routine used by vegas, to rebin a vector of densities xi into new bins defined by a vector r.
{

int i, k=0;

float dr=0.0,xn=0.0,x0=0.0;

for (i=1l;i<nd;i++) {

while (rc > dr)

dr += r[++k];

if (k > 1) xo=xil[k-1];

xn=x1i[k];

dr -= rc;

xin[i]=xn- (xn-xo0) *dr/r[k];

}

for (i=1;i<nd;i++) xi[i]l=xin[i];

xi[nd]=1.0;
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Appendix C

Modified matrix element for Z’ boson study

We present here an example of a matrix element as generated by Madgraph, with our Z’-boson
alterations shown in red. This is the matrix element for the process u + i—> 27— e’ e’

SUBROUTINE SUUB EPEM(P1,ANS, MZ , couplingFactor)

C

C FUNCTION GENERATED BY MADGRAPH

C RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS

C AND HELICITIES

C FOR THE POINT IN PHASE SPACE P (0:3,NEXTERNAL)

C

C FOR PROCESS : u u~ -> e+ e-

C

C Crossing 1 is u u~ -> et e-
IMPLICIT NONE

C

C CONSTANTS

C
INTEGER NEXTERNAL, NCOMB, NCROSS
PARAMETER (NEXTERNAL=4, NCOMB= 16, NCROSS= 1)
INTEGER THEL
PARAMETER (THEL=NCOMB*NCROSS)

C

C ARGUMENTS

C
REAL*8 P1(0:3,NEXTERNAL), ANS (NCROSS)
REAL*8 MZ , couplingFactor

C

C LOCAL VARIABLES

C

INTEGER NHEL (NEXTERNAL, NCOMB) , NTRY

REAL*8 T, P(0:3,NEXTERNAL)

REAL*8 UUB_EPEM

INTEGER IHEL, IDEN (NCROSS), IC (NEXTERNAL, NCROSS)
INTEGER IPROC, JC (NEXTERNAL)

LOGICAL GOODHEL (NCOMB, NCROSS)

DATA GOODHEL/THEL*.FALSE./

DATA NTRY/0/

DATA (NHEL(IHEL, 1),IHEL=1,4) / -1, -1, -1, -1/
DATA (NHEL (IHEL, 2),IHEL=1,4) / -1, -1, -1, 1/
DATA (NHEL(IHEL, 3),IHEL=1,4) / -1, -1, 1, -1/
DATA (NHEL(IHEL, 4),IHEL=1,4) / -1, -1, 1, 1/
DATA (NHEL(IHEL, 5),IHEL=1,4) / -1, 1, -1, -1/
DATA (NHEL (IHEL, 6),IHEL=1,4) / -1, 1, -1, 1/
DATA (NHEL (IHEL, 7),IHEL=1,4) / -1, 1, 1, -1/
DATA (NHEL (IHEL, 8),IHEL=1,4) / -1, 1, 1, 1/
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Q0000

aQ O

DATA (NHEL (IHEL, 9),IHEL=1,4) / 1, -1, -1, -1/
DATA (NHEL (IHEL, 10),IHEL=1,4) / 1, -1, -1, 1/
DATA (NHEL (IHEL, 1) IHEL=1,4) / 1, -1, 1, -1/
DATA (NHEL(IHEL, 12),IHEL=1,4) / 1, -1, 1, 1/
DATA (NHEL(IHEL, 13),IHEL=1,4) / 1, 1, -1, -1/
DATA (NHEL (IHEL, 14),IHEL=1,4) / 1, 1, -1, 1/
DATA (NHEL (IHEL, 15),IHEL=1,4) / 1, 1, 1, -1/
DATA (NHEL(IHEL, 6),IHEL=1,4) / 1, 1, 1, 1/
DATA ( IC(IHEL, l),IHEL=l,4) / 1, 2, 3, 4/
DATA (IDEN(IHEL),IHEL= 1, 1) / 36/
BEGIN CODE

NTRY=NTRY+1

DO IPROC=1,NCROSS

CALL SWITCHMOM (P1,P,IC(1,IPROC),JC,NEXTERNAL)
DO IHEL=1,NEXTERNAL

JC(IHEL) = +1
ENDDO
ANS (IPROC) = 0DO

DO IHEL=1, NCOMB
IF (GOODHEL (IHEL,IPROC) .OR. NTRY .LT. 2) THEN

T=UUB_EPEM(P ,NHEL(1,IHEL),JC(1l), MZ , couplingFactor)

ANS (IPROC)=ANS (IPROC) +T

IF (T .GT. ODO .AND. .NOT. GOODHEL (IHEL, IPROC))

GOODHEL (IHEL, IPROC)=.TRUE.
WRITE (*,*) IHEL,T

ENDIF
ENDIF
ENDDO
ANS (IPROC) =ANS (IPROC) /DBLE (IDEN (IPROC) )
ENDDO
END

REAL*8 FUNCTION UUB EPEM(P,NHEL,IC, MZ , couplingFactor)
FUNCTION GENERATED BY MADGRAPH

RETURNS AMPLITUDE SQUARED SUMMED/AVG OVER COLORS

FOR THE POINT WITH EXTERNAL LINES W(0:6,NEXTERNAL)

FOR PROCESS : u u~ -> e+ e-

IMPLICIT NONE

CONSTANTS
INTEGER NGRAPHS, NEIGEN, NEXTERNAL
PARAMETER (NGRAPHS= 2,NEIGEN= 1,NEXTERNAL=4)
INTEGER NWAVEFUNCS , NCOLOR
PARAMETER (NWAVEFUNCS= 6, NCOLOR= 1)
REAL*8 ZERO

PARAMETER (ZERO=0DO)



C ARGUMENTS

C
REAL*8 P (0:3,NEXTERNAL)
INTEGER NHEL (NEXTERNAL), IC(NEXTERNAL)
REAL*8 MZ , couplingFactor
C
C LOCAL VARIABLES
C
INTEGER I,J
COMPLEX*16 ZTEMP
REAL*8 DENOM (NCOLOR), CF (NCOLOR,NCOLOR)
COMPLEX*16 AMP (NGRAPHS), JAMP (NCOLOR)
COMPLEX*16 W (6, NWAVEFUNCS)
REAL*8 couplinglLeft, couplingRight
C
C GLOBAL VARIABLES
C
INCLUDE 'coupl.inc'
C
C COLOR DATA
C
DATA Denom (1l )/ 1/
DATA (CF(i,1 ),i=1 ,1 ) / 3/
C T[2,1]
C __________
C BEGIN CODE
C __________
CALL IXXXXX (P (0,1 ), ZERO ,NHEL (1 ), +1*IC (1 ), W(l,1 ))
CALL OXXXXX (P (0,2 ), ZERO ,NHEL (2 ), -1*IC (2 ), W(l,2 ))
CALL IXXXXX(P(0,3 ), ZERO ,NHEL (3 ), -1*IC (3 ), W(l,3 ))
CALL OXXXXX (P (0,4 ), ZERO ,NHEL (4 ), +1*IC (4 ), W(l,4 ))
CALL JIOXXX (W(1,1 ), W(l,2 ), GAU , ZERO , ZERO ,W(1,5 ))
CALL IOVXXX (W(1,3 ), W(l,4 ), W(l,5 ), GAL ,AMP (1 ))
CALL JIOXXX(W(1,1 ), W(l,2 ) ,GZU ,MZ_ , ZWIDTH ,W(l,6))
couplingLeft = 0.1973*couplingFactor
couplingRight = -0.173*couplingFactor
gzl (1l)= couplingLeft
gzl (2)= couplingRight
CALL IOVXXX (W(1l,3 ), W(l,4 ), W(l,6 ),GZL ,AMP (2 ))
JAMP ( 1) = +AMP( 1) +AMP ( 2)
UUB_EPEM = 0.DO
DO I = 1, NCOLOR
ZTEMP = (0.D0,0.DO)
DO J = 1, NCOLOR
ZTEMP = ZTEMP + CF (J,I)*JAMP (J)
ENDDO
UUB_EPEM =UUB_EPEM+ZTEMP*DCONJG (JAMP (I)) /DENOM (I)
ENDDO
C CALL GAUGECHECK (JAMP, ZTEMP,EIGEN VEC,EIGEN_VAL,NCOLOR,NEIGEN)
END

51



