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Abstract

This work will examine aspects of perturbative string theory in the one-loop level, utilising methods
of conformal field theory on the Riemann surfaces defined by the corresponding cosmic string
surfaces. By non-renormalisation theorems, it is known that the Planck mass does not admit
quantum corrections in any order of perturbation theory, apart from a possible correction in the
one-loop level, that may appear in type II string theories of which the compactification manifold
is characterised by a non-trivial value of the Euler characteristic, regardless of the existence or
not of unbroken supersymmetry. The proof of these theorems relies on the background field
method, which however is not well defined in the case of two-dimensional spacetimes, which
result after compactification of the 8 out of 10 dimensions of the superstring, with use of non
trivial 8-dimensional subspaces, such as the K3 × K3 surface. In the present work, after inspecting
the problem through the known background field method, we will generalise the calculation of
quantum corrections of the Einstein-Hilbert term to the two-dimensional case as well, sidestepping
the background field method and performing directly the calculation of the corresponding scattering
amplitude of gravitons. This method will succeed in the reconstruction of the respective term in
the effective action of the string and will prove that the quantum correction to the Planck mass in
type II theories is proportional to the modified elliptic genus of the 8-dimensional compactification
manifold, receives contributions only from its topological characteristics (and in particular the
dimensions of the Dolbeault cohomology) and is finally expressed through the Euler characteristic.
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Περίληψη

Στην εργασία αυτή θα μελετηθούν πτυχές της διαταρακτικής θεωρίας χορδών στο επίπεδο ενός βρόχου
με χρήση μεθόδων σύμμορφης θεωρίας πεδίου επί των επιφανειών Riemann που ορίζουν οι αντίστοιχες
κοσμικές επιφάνειες των χορδών. Από θεωρήματα μη επανακανονικοποίησης είναι γνωστό ότι η μάζα
του Planck δε λαμβάνει κβαντικές διορθώσεις σε καμία τάξη της θεωρίας διαταραχών εκτός από μια
ενδεχόμενη διόρθωση στο επίπεδο ενός βρόχου η οποία μπορεί να εμφανισθεί σε θεvρίες χορδών τύπου II
των οποίων η πολλαπλότητα συμπαγοποίησης χαρακτηρίζεται από μη τετριμμένη τιμή της χαρακτηριστι-
κής Euler, ασχέτως του αν υπάρχει ή όχι άσπαστη υπερσυμμετρία. Η απόδειξη των εν λόγω θεωρημάτων
στηρίζεται στη μέθοδο υποβάθρου (background field method), η οποία όμως δεν είναι καλώς ορισμένη
στην περίπτωση διδιάστατων χωρόχρονων, οι οποίοι προκύπτουν κατόπιν συμπαγοποίησης των 8 εκ
των 10 διαστάσεων της υπερχορδής με χρήση μη τετριμμένων 8- διάστατων υποχώρων, όπως η επιφά-
νεια K3 × K3. Στην παρούσα εργασία, κατόπιν μελέτης του προβλήματος μέσω της γνωστής μεθόδου
υποβάθρου, θα γενικεύσουμε τον υπολογισμό των κβαντικών διορθόσεων του όρου Einstein-Hilbert
και στη διδιάστατη περίπτωση, παρακάμπτωντας τη μέθοδο υποβάθρου και εκτελώντας απευθείας τον
υπολογισμό του αντίστοιχου πλάτους σκέδασης βαρυτονίων. Με τη μέθοδο αυτή θα επιτευχθεί η α-
νακατασκευή του αντίστοιχου όρου στην ενεργό δράση της χορδής και θα αποδειχθεί ότι η κβαντική
διόρθωση στη μάζα του Planck σε θεωρίες τύπου II είναι ανάλογη του τροποποιημένου ελλειπτικού
γένους της 8- διάστατης πολλαπλότητας συμπαγοποίησης, λαμβάνει συνεισφορές μόνο από τα τοπολο-
γικά χαρακτηριστικά αυτής (και συγκεκριμένα τις διαστάσεις της συνομολογίας Dolbeault) και τελικώς
εκφράζεται μέσω της χαρακτηριστικής Euler.
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Chapter 1

The Case for String Theory

1.1 Motivation for String Theory

1.1.1 The Quest of Unification in Theoretical Physics

The main ambition of modern theoretical physics has been, undoubtedly, the unification of the fun-
damental interactions in Nature. The Standard Model (SM) of particle physics does indeed provide
the unified mathematical framework of gauge Quantum Field Theories (QFTs) as a general method
to describe the fundamental interactions of Nature and their properties as well; however, it seems to
fall short of fulfilling the quest of their unification. Before anything else, the attempt of unifying the
gravitational interaction with the gauge interactions in the SM yields a non-renormalisable QFT. In
addition, the SM alone, containing roughly twenty five free physical parameters, is an experimen-
tally successful, yet highly theoretically arbitrary physical theory. Throughout the years, experience
has shown that both the non-renormalisability as well as the theoretical arbitrariness of a physical
theory may be interpeted as signs pointing to the existence of a new kind of Physics, that is manifest
in the high-energy regime. Consequently, there is a need of new principles in Physics, which will
prove to be succesful in resolving both the problem of physical divergences, that are always present
in a non-renormalisable theory, as well as in providing a theoretically well-reasoned structure, in
which the goal of the unification of the fundamental interactions of Nature can be achieved.
In order to attend to this enterprise, several ideas have been proposed. On the one hand, Grand Uni-
fication Theories (GUTs) attempt to extend, rationalise, and simplify the gauge structure of the SM.
Several GUTs have been succesful towards this end, up to an extent, even providing correct physical
predictions in certain cases. Nonetheless, all GUTs continue to be plagued by non-renormalisability
problems similar to those of the SM, in the sense that they fail to incorporate a renormalisable
QFT that can accurately describe the gravitational interaction. On the other hand, the physical
conjecture of the existence of extra spacetime dimensions, embedded in arbitrary manifolds of high
curvature, that is, being practically undetectable at typical low-energy regimes, seems to be a logical
idea, since it appears to be a generalisation of the dynamical spacetime of the General Theory of
Relativity (GTR). In QFTs of extra spacetime dimensions, the possibility of the unification of the
gravitational interaction with the gauge interactions of the SM remains open, via several natural
mechanisms regarding higher-dimensional quantum fields. Finally, the concept of Supersymmetry
(SUSY) relates fields of different spin and statistics, and may be useful in resolving the problem of
physical divergences in a QFT. It is reasonable to think that a complete, unified Theory Of Every-
thing (TOE), will contain elements of every idea that has been proposed until today, in order to
resolve the problems of the SM.

1.1.2 An Overview of String Theory

Over the past few decades, string theory has been the most prominent candidate of a physical theory
that is successful in unifying all the fundamental interactions in Nature, including the gravitational
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interaction, accomplishing this endeavour both in a theoretically well-reasoned fashion, as well as
in a structure that seems to be relieved of any physical divergences. In the case of string theory, all
elementary particles are assumed to be extended, one-dimensional objects, that is, strings, rather
than point-like, zero-dimensional objects, as they are supposed to be in the generic QFTs of the SM.
This very fact makes string theory much more complicated, but at the same time much richer in
structure, as well as much less theoretically arbitrary, in terms of free physical parameters, than the
SM; in the case of String Theory, the only relevant free physical parameter left in the theory is the
length of the strings. The strings of string theory may be open, or closed strings, and their different
modes of vibration may be translated as generating particles of various masses. In particular,
a remarkable property of any consistent string theory is the fact that it must always predict the
existence of a massless, spin-two particle, the interactions of which necessarily reduce, in the low-
energy limit, to these of the GTR; in this sense, String Theory is guaranteed to always contain
a quantum theory of the gravitational interaction, along with any other interaction that it may
describe. The rich structure of string theory means precisely that even some of the simplest string
theories lead to gauge structures large enough to contain the SM itself, or gauge groups that arise
in several GUTs. Moreover, with the addition of the concept of SUSY to string theory, a consistent
superstring theory requires a definite number of extra spacetime dimensions, namely, six spacetime
dimensions in number, which are embedded in a highly curved, arbitrary manifold, so that the
total number of spacetime dimensions is now ten; as a consequence, the field equations of string
theory possess string solutions in four ”large” flat, and six ”small” curved spacetime dimensions,
and result in four-dimensional physics that resemble to the SM. Additionally, string theory appears
to provide a finite theory of the gravitational interaction, at least as far as perturbation theory is
concerned, even though there is yet to be a complete, explicit proof of this conjecture. However,
there are mainly two important reasons for string theory to be rid of UV divergences. The first
reason is the fact that the string dynamics and interactions are inextricably linked to the geometry
of two-dimensional surfaces, in contrast to the particle dynamics and interactions that are present
in the SM. The generalisation from zero-dimensional particles to one-dimensional strings smears
out the interactions from spacetime points to surfaces and seems to have the result of effectively
smoothening the divergent behaviour of the amplitudes of the interactions. The second reason is the
very presence of an infinite number of particles of various masses, in the sense of the aforementioned
different modes of vibrations of the strings, that can be regarded as forming an ”infinite tower” of
states. The interactions between these particles of different masses are tuned carefully, so that they
become soft, and thus finite, at distances of length larger than the length of the string.
The first attempts to form a quantised and relativistic string theory yielded bosonic string theory.
Bosonic string theory, however, did not include fermions in its physical spectrum. The addition of
fermions in the physical spectrum of string theory ensued from superstring theory, which naturally
incorporated the concept of SUSY. There exist five kinds of consistent, stable superstring theories
in the so-called ”critical”, ten-dimensional case; namely, these are the type I theory, of open and
closed strings, the type IIA and type IIB theories of closed srings, as well as the E8 × E8 and
SO(32) heterotic theories of closed strings. Despite the apparent differences between these kinds
of superstring theories, it was eventually realised that they are all relevant to each other, in terms
of dualities; this hinted to the fact that all of these kinds of superstring theories are, essentially,
different vacua of a single underlying theory, that is referred to as the M-theory. Presently, string
theory and its non-perturbative extension, the M-theory, seem to be the most promising candidates
for a consistent, and unified, quantum theory of gravity. In summary, the reason why string theory
in particular, and not any other physical theory, must be successful in providing a unified TOE,
is, of course, not at all obvious a priori. However, experience has shown that problems regarding
physical divergences in QFTs cannot be easily solved, especially so in a manner that is as elegant,
and rational, as that of string theory. What is a certain fact, then, is the fact that string theory should
be seriously taken into consideration.
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Chapter 2

A Short Introduction to Bosonic
String Theory

Bosonic string theory constitutes the first attempt to a quantised and relativistic string theory,
although the absence of fermions from its spectrum, along with its other complications, renderred it
physically irrelevant. However, we will see that the study of the quantisation procedure of bosonic
string theory is quite instructive, in the sense that it elucidates the general methods of quantisation
of a theory, and produces interesting results, that are similar in a large class of theories; after a swift
glimpse of the general action of classical bosonic string theory, and of its symmetries, we will very
briefly identify this class of theories, and describe their elements, using the example of bosonic
string theory itself. We shall then move on to the quantisation procedure of bosonic string theory, in
the path integral formulation, with a short presentation of its basic common characteristics, as well
as its unique properties, with relation to a generic QFT. We will, in all respects, highlight several
qualitative physical features of any string theory in general, pinpointing some of the deficiencies or
complications of bosonic string theory.

2.1 Classical Bosonic String Theory

2.1.1 The Polyakov Action

A general and physically acceptable action S[X, g] that may describe a string X of string length
ls =
√
α′, which is embedded in a D-dimensional spacetime manifold M of metric field G(X), which

is alternatively called the target-space, is given by the following non-linear sigma model:

S[X, g] = − 1
4πα′

∫
W

d2σ
√
|det

(
g
)|(Gµν(X)gab + iBµν(X)

ϵab√
|det

(
g
)| )∂aXµ∂bXν

− λ
4π

∫
W

d2σ
√
|det

(
g
)|Φ(X)RW , (2.1)

where the integration takes place on the closed 2-dimensional surface W of metric g, which is
called the world-sheet, and RW signifies the Ricci scalar of the world-sheet; ϵab is, of course, the
antisymmetric Levi-Civita symbol or tensor density. The antisymmetric (0, 2)-tensor field B(X) is
called the Kalb-Ramond field, or, simply, the B-field, and it represents an electromagnetic potential,
while the scalar fieldΦ(X) is called the dilaton field. By requiring a Minkowski, electromagnetically-
neutral spacetime background, in the sense of imposing that G(X) = η, B(X) = 0, and Φ(X) = ⟨Φ⟩,
all hold identically, where, of course, η is the Minkowski metric, and ⟨Φ⟩ is the vacuum expectation
value (vev) of the dilaton field, Φ(X), the non-linear sigma model of eq.(2.1) reduces to what is
known as the Brink-Di Vecchia-Howe-Deser-Zumino action, which is, by virtue of its subsequent
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analysis by Polyakov, more commonly called the Polyakov action, for short:

SP[X, g] = − 1
4πα′

∫
W

d2σ
√
|det

(
g
)|ηµνgab∂aXµ∂bXν − λ⟨Φ⟩

4π

∫
W

d2σ
√
|det

(
g
)|RW , (2.2)

where the Gauss-Bonnet term, which is relevant to the Ricci scalar of the world-sheet, is now
proportional to the Euler characteristic of the world-sheet, χW =

1
4π

∫
W d2σ

√
|det

(
g
)|RW , that is a

topological invariant; as such, the Gauss-Bonnet term cannot influence the local dynamics of the
string, and the Polyakov action of eq.(2.2) can be equivalently expressed as:

SP[X, g] = − 1
4πα′

∫
W

d2σ
√
|det

(
g
)|ηµνgab∂aXµ∂bXν − λ⟨Φ⟩χW . (2.3)

For subsequent use, we recall that the Gauss-Bonnet theorem, for a closed world-sheet, W, relates
its Euler characteristic, χW , to its genus, gW , according to the following formula:

χW = 2 − 2gW . (2.4)

The Polyakov action of eq.(2.3) displays the symmetries of target-space Poicaré invariance and
world-sheet diffeomorphism invariance, as well as the symmetry of Weyl invariance, which consists
of local rescalings of the world-sheet metric. The direct product of the symmetry groups of world-
sheet diffeomorphisms and Weyl transformations is referred to as the gauge symmetry group of the
Polyakov action. In fact, it can be easily seen that the Polyakov action is indeed the most general
action that exhibits all three of these aforementioned types of symmetries. Specifically, as far as
Weyl invariance is concerned, it can be shown that the group of Weyl transformations on a specific
world-sheet metric can be used to define a relevant equivalence relation, and so an equivalence
class of metrics, the elements of which are called conformally equivalent metrics; Weyl invariance
of the Polyakov action, then, simply states that the Polyakov action is invariant for conformally
equivalent metrics.
Assuming a closed world-sheet and a closed string X, the extrema of the Polyakov action, with
respect to the closed string coordinates, Xµ, yield the equations of motion:

∇2Xµ = 0, (2.5)

while, the variation of the Polyakov action, with respect to the world-sheet metric, yields the
energy-momentum tensor, TP, which has the following components:

Tab
P = −4π

√
|det

(
g
)| δSP

δgab
= − 1

α′
ηµν(∂aXµ∂bXν − 1

2
gabgcd∂

cXµ∂dXν). (2.6)

Obviously, Noether’s theorem implies that, when subject to the constraints of the equations of
motion, the energy-momentum tensor is conserved, that is:

∇aTab
P = 0, (2.7)

as a direct consequence of the diffeomorphism invariance of the Polyakov action. In addition, the
energy-momentum tensor is traceless:

tr(TP) = 0, (2.8)

as an immediate result of the Weyl invariance of the Polyakov Action. Furthermore, considering
the extrema of the Polyakov action, with respect to the world-sheet metric, implies the following
constraints:

TP = 0, (2.9)

that is, the constraints of a null energy-momentum tensor. These constraints of the above eq.(9) are
known as the Virasoro constraints, and their physical significance is demonstrated by the following
reasoning:
According to the standard principle of simplicity, the most natural candidate for the action that
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describes a target-space string should be no other than the total area of the 2-dimensional world-
sheet of its parametrisation. By imposing the Virasoro constraints on the Polyakov action, it reduces
to the so-called Nambu-Goto action:

SNG[X] = − 1
2πα′

∫
W

d2σ
√
|det

(
γ
)| − λ⟨Φ⟩χW = −

1
2πα′

∫
W

d2σ
√
|det

(
ηµν∂aXµ∂bXν

)
| − λ⟨Φ⟩χW ,

(2.10)
which simply expresses just the total area of the 2-dimensional world-sheet, that now possesses
the naturally induced metric γab = ηµν∂aXµ∂bXν. Of course, the Nambu-Goto action describes the
correct dynamical theory of a classical string; what is more, it does so in the simplest target-space
Poincaré invariant and world-sheet diffeomorphism invariant way that is possible; however, the
Nambu-Goto action is rarely used for the study of bosonic string theory, mainly due to issues of
ambiguity in its quantisation procedure. Hence, the Polyakov action is regarded as the preferrable
starting point of bosonic string theory.

Elements of Conformal Field Theory

As any 2-dimensional surface is always diffeomorphic to a surface that is conformally equivalent
to a flat space, the 2-dimensional world-sheet is always conformally flat. By additionally assuming
a closed world-sheet W of a topology of genus gW equal to zero, that is gW = 0, the Euler charac-
teristic χW is consequently equal to 2, that is χW = 2, according to the preceding eq.(2.4); then, the
conformally flat world-sheet metric, g, can, without loss of generality, be set equal to the Minkowski
metric, η, that is g = η, due to Weyl invariance of the the Polyakov action. The Polyakov action is,
then, expressed in the so-called conformal gauge, as in the following:

SP[X, g] = − 1
4πα′

∫
W

d2σηµνη
ab∂aXµ∂bXν − 2λ⟨Φ⟩. (2.11)

Equivalently, the light-cone coordinates, σ+ and σ−, defined as:

σ+ = σ0 + σ1, (2.12)

and,
σ− = σ0 − σ1, (2.13)

may also be used, in order to alternatively express the Polyakov action in the conformal gauge, as:

SP[X, g] = − 1
2πα′

∫
W

dσ+dσ−ηµν∂+Xµ∂−Xν − 2λ⟨Φ⟩. (2.14)

However, for reasons relevant to the correct quantisation of the Polyakov action, in the path-integral
formulation, the appropriate Wick rotations must be performed, both on the world-sheet time-like
variable, σ0 = cτ, as well as on the target-space time-like coordinate, X0. These Wick rotations,
which are simply the redefinitions σ0 = iσ2, and, X0 = iXD, respectively, result to the emergence of
an extra, overall imaginary unit factor, i, in the Polyakov action, a factor which will be ommitted
for the moment, as well as to the effective transformation of the target-space Minkowski metric
to the Kronecker metric, respectively. Henceforth, a natural step further is the use of the complex
coordinates, defined as:

w = σ1 + iσ2, (2.15)

and,
w̄ = σ1 − iσ2, (2.16)

so that the powerful methods and techniques of complex analysis can be utilised in full, for the
study of the Polyakov action. Using complex coordinates, the Polyakov action in the conformal
gauge is expressed as:

SP[X, g] = − 1
πα′

∫
W

d Im(w)d Re(w)δµν∂Xµ∂̄Xν − 2λ⟨Φ⟩ = − 1
2πα′

∫
W

d2wδµν∂Xµ∂̄Xν − 2λ⟨Φ⟩. (2.17)
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The equations of motion, then, reduce to:

∂∂̄Xµ = 0, (2.18)

which is simply the wave equation, in the 2 dimensions of a conformally flat world-sheet, expressed
in complex coordinates. For the case of a closed string, the equations of motion must be solved for
the closed string boundary conditions, which may be expressed as:

Xµ ∈ R, (2.19)

and:
Xµ(w, w̄) = Xµ(w + 2π, w̄ + 2π), (2.20)

by which it is required that the string coordinates Xµ be real, 2π-periodic functions of the world-
sheet space-like variable σ1. The solution to the Cauchy problem of eqs.(2.18), (2.19), and (2.20), is
a harmonic function, so it can be expressed as a sum of a holomorphic, or ”left-moving”, and an
anti-holomorphic, or ”right-moving”, part, as in:

Xµ(w, w̄) = Xµ
L (w) + Xµ

R(w̄), (2.21)

subject, of course, to the reality and periodicity conditions of eqs.(2.19) and (2.20). The left-moving
and right-moving string coordinate functions, Xµ

L and Xµ
R, are, then, expressed by the following

mode expansions:

Xµ
L (w) =

xµ0
2
− α

′

2
pµw − i

√
α′

2

∑
n∈Z\{0}

aµn
n

e−inw, (2.22)

and:

Xµ
R(w̄) =

xµ0
2
+
α′

2
p̃µw̄ + i

√
α′

2

∑
n∈Z\{0}

ãµn
n

e−inw̄, (2.23)

respectively, while the reality and periodicity conditions of eqs.(2.19) and (2.20), impose the following
constraints:

pµ = p̃µ, (2.24)

and:
aµn = aµ−n; ãµn = ã

µ
−n, (2.25)

respectively. So, the full string coordinates, Xµ, are expressed as:

Xµ(w, w̄) = xµ0 −
α′

2
pµ(w − w̄) − i

√
α′

2

∑
n∈Z\{0}

aµn
n

e−inw − ãµn
n

einw̄, (2.26)

with derivatives:

∂Xµ(w, w̄) = ∂Xµ
L (w) = −

√
α′

2

∑
n∈Z

aµne−inw, (2.27)

and:

∂̄Xµ(w, w̄) = ∂̄Xµ
R(w̄) =

√
α′

2

∑
n∈Z

ãµne−inw̄. (2.28)

In the above relations the definitions:

pµ =

√
2
α′

aµ0 =

√
2
α′

ãµ0 , (2.29)

are implied. It can be seen, now, that the world-sheet is naturally compactified topologically into a
cylinder, which is formed by the motion and by the vibrations of the string. Obviously, the motion
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of the center-of-mass of the string, XCM(w, w̄), is described by its initial position, x0, and its canonical
momentum, p, as in the following:

XCM(w, w̄) = xCM(τ) = x0 −
α′

2
p(w − w̄) = x0 + α

′pcτ. (2.30)

Additionally, the energy-momentum tensor now satisfies the relations:

TP;ww = −
1
α′
δµν∂Xµ∂Xν = − 1

α′
δµν∂Xµ

L∂Xν
L = TP(w), (2.31)

TP;w̄w̄ = −
1
α′
δµν∂̄Xµ∂̄Xν = − 1

α′
δµν∂Xµ

R∂Xν
R = T̃P(w̄), (2.32)

and:
tr(TP) = 4TP;ww̄ = 0, (2.33)

that is, the energy-momentum tensor consists of a holomorphic component, TP(w), and an anti-
holomorphic component, T̃P(w̄), while the trace of the energy-momentum tensor, tr(TP), obviously
vanishes, due to the Weyl invariance of the Polyakov action.
The expression of the Polyakov action in the conformal gauge, by use of the complex coordinates,
(w, w̄), that were defined above, manifests explicitly both the full Poincaré invariance and gauge
invariance of the Polyakov action, as well as the invariance of the conformal gauge choice, under the
gauge subgroup which consists of holomorphic diffeomorphisms, combined with corresponding,
appropriate Weyl transformations, such that the world-sheet metric remains invariant. This gauge
subgroup is called the conformal group, while its, finite-dimensional, PSL(2;C)-subgroup, is known
as the restricted conformal group. Therefore, the Polyakov action describes a Conformal Field
Theory (CFT) on a 2-dimensional world-sheet. Finally, the following conformal transformation
may be considered:

w→ z = e−iw ⇔ w̄→ z̄ = eiw̄, (2.34)

which has the effect of a conformal mapping of the topologically cylindrical world-sheet onto the
complex plane plus the point at infinity, that is topologically equivalent to the Riemann sphere. The
Polyakov action in the conformal gauge may then be expressed as:

SP[X, g] = − 1
πα′

∫
W

d Im(z)d Re(z)δµν∂Xµ∂̄Xν − 2λ⟨Φ⟩ = − 1
2πα′

∫
W

d2zδµν∂Xµ∂̄Xν − 2λ⟨Φ⟩. (2.35)

The expression of eq.(2.35) for the Polyakov action demonstrates the following significant advantage:
The equations of motion for the string X, as they were expressed in eq.(2.18), are invariant, while the
boundary periodicity contitions for the string X are now transformed into the relatively more trivial
single-valuedness conditions; what is of even greater importance, however, is the consequential
fact that the string coordinates Xµ are now expressed by a mode expansion which is identical to
their respective Laurent series:

Xµ(z, z̄) = XL(z) + XR(z̄) = xµ0 − i
α′

2
pµ log |z|2 + i

√
α′

2

∑
n∈Z\{0}

aµn
n

z−n +
ãµn
n

z̄−n, (2.36)

with derivatives:

∂Xµ(z, z̄) = ∂Xµ
L (z) = −i

√
α′

2

∑
n∈Z

aµnz−n−1, (2.37)

and:

∂Xµ(z, z̄) = ∂Xµ
R(z̄) = −i

√
α′

2

∑
n∈Z

ãµn z̄−n−1. (2.38)
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Furthermore, the holomorphic and anti-holomorphic components of the energy-momentum tensor
can be expressed as the following Laurent series:

TP(z) = − 1
α′
δµν∂Xµ

L∂Xν
L =

∑
n∈Z

Lnz−n−2, (2.39)

and:
T̃P(z̄) = − 1

α′
δµν∂̄Xµ

R∂̄Xν
R =

∑
n∈Z

L̃nz̄−n−2, (2.40)

respectively, where the Laurent coefficients Ln and L̃n are known as the Virasoro coefficients; it can
be proved that the Virasoro coefficients, Ln and L̃n, are expressed as the following infinite series:

Ln =
1
2

∑
n∈Z

δµνa
µ
n−maνm, (2.41)

and:
L̃n =

1
2

∑
n∈Z

δµνã
µ
n−mãνm, (2.42)

respectively, with the use of simple calculations. The Virasoro coefficients are of great importance to
the quantisation of the Polyakov action. In the quantum theory of the Polyakov action, the Virasoro
coefficients are the generators, that is, the Noether charges, of the conformal group. Additionally,
in the quantum theory of the Polyakov action, the Virasoro coefficients are subject to an appropriate
notion of normal ordering; it has been proved that they generally result in an anomaly, which is
related to the target-space dimension of the bosonic string X. It has been also proved that this
anomaly always persists, but for the special case of the so-called critical target-space dimension,
D = 26, of the bosonic string X.

2.2 Quantisation of the Polyakov Action

2.2.1 Vacuum Expectation Values

As it is usual, in a QFT, we are concerned with the time-ordered vacuum expectation values of local
observables, O(X(z, z̄)), which, for an interaction-free QFT, such as the QFT of the Polyakov action,
are defined, in the path-integral formulation, by the following functional integral:

⟨R{
∏

n∈NN

On(X(zn, z̄n))}⟩g =
∫

FXg

[dX]ge−SP[X,g]
∏

n∈NN

On(X(zn, z̄n)), (2.43)

where the overall extra imaginary unit factor that emerges in the action as a result of the Wick
rotation of the world-sheet time-like variable, σ0 = iσ2, is now cancelled out against the positive
imaginary unit factor that multiplies the action in the definition of the path-integral, leaving an
overall negative sign in the action; the overall extra imaginary unit factor, that emerges in the
functional integration measure [dX]g of the function space FX of the closed string X, as a result
of the Wick rotation of the target-space time-like coordinate, X0 = iXD, is regarded to be of no
physical significance, and can be freely omitted. Of course, the respective Minkowski functional
integral of the Euclidean functional integral in the above eq.(2.43) can neither be defined, or be
practically calculated, without considering, in one way or another, the Wick rotations that have
been performed in it; rather, it is only defined in terms of the appropriate analytical continuation
of its respective Euclidean functional integral in the above eq.(2.43). Additionally, the symbolism
of R{. . . }, signifies the radial ordering operation on the respective operator product, which is
equivalent to the world-sheet Wick-rotated ”time” iσ0 = σ2 = Im(w) = log |z| -ordering operation
on the operator product; time ordering emerges naturally in the path-integral formalism. Formally,
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the radial ordering operation, R{O1(X(z1, z̄1))O2(X(z2, z̄2))}, on an operator product of two local
operators, O1(X(z1, z̄1))O2(X(z2, z̄2)), can be expressed as:

R{O1(X(z1, z̄1))O2(X(z2, z̄2))} =

= O1(X(z1, z̄1))O2(X(z2, z̄2))H(|z1| − |z2|) +O2(X(z2, z̄2))O1(X(z1, z̄1))H(|z2| − |z1|), (2.44)

while, in general, the radial ordering operation, R{∏n∈NN
On(X(zn, z̄n))}, on an operator product of

N local operators,
∏

n∈NN
On(X(zn, z̄n)), can be expressed recursively, as in the following formula:

R{
∏

n∈NN

On(X(zn, z̄n))} =
∑

n∈NN

On(X(zn, z̄n))R{
∏

m∈NN\{n}
H(|zn| − |zm|)Om(X(zm, z̄m))}. (2.45)

This symbolism, R{. . . }, for the radial ordering operation on any operator product, will be ommitted
from here on out, and it shall be implicitly assumed that every operator product is radially-ordered.
In the conformal gauge, now, Ehrenfest’s theorem and the Schwinger-Dyson equations imply the
following differential equations:

∂∂̄Xµ(z, z̄) = 0, (2.46)

and:
∂∂̄Xµ(z, z̄)Xν(z0, z̄0) = −πα′δµνδ(2)(z − z0, z̄ − z̄0), (2.47)

respectively; these equations, of course, hold as operator equations. Now, assuming that the world-
sheet W is topologically equivalent to the Riemann sphere, we can solve for the Green’s functions,
or propagators:

⟨Xµ(z1, z̄1)Xν(z2, z̄2)⟩ = −α
′

2
δµν log |z1 − z2|2. (2.48)

Then, we can find the following correlation functions:

⟨∂Xµ(z1)∂Xν(z2)⟩ = −α
′

2
δµν

(z1 − z2)2 , (2.49)

and similarly:

⟨∂̄Xµ(z̄1)∂̄Xν(z̄2)⟩ = −α
′

2
δµν

(z̄1 − z̄2)2 , (2.50)

and so on and so forth, for the correlators of higher derivatives of the string functions. We note
that the correlation functions of eqs.(2.49) and (2.50), as well as the correlators of higher derivatives
of the string coordinates, are conformally covariant only under the restricted conformal group,
while, the propagators of eq.(2.48) have rather poor conformal properties, as they are invariant
only under the U(1) subrgoup of the conformal group. We can see, then, that the string X itself
cannot be considered the natural field of interest in the QFT of the Polyakov action, while the
restricted conformal covariance of the correlation functions of its derivatives indicates an anomaly
in the quantum theory, regarding the subgroup of non-restricted conformal transformations; this
anomaly will be calculated shortly.

2.2.2 The Weyl Anomaly

In general, now, Ward’s identity for the Noether current (J(z), J̃(z̄)), and any operator, O(z, z̄), implies
that:

resz→z0 J(z)O(z0, z̄0) + resz̄→z0 J̃(z̄)O(z0, z̄0) = −iδO(z0, z̄0), (2.51)

holds as an operator equation. However, one must ensure that the vacuum expectation value of
the energy-momentum tensor is indeed zero. To that purpose, we can define the normal ordering
operation on the operators TP(z) and T̃P(z̄) respectively:

: TP(z0) := − 1
α′

lim
z→z0

δµν(∂Xµ(z)∂Xν(z0) − ⟨∂Xµ(z)∂Xν(z0)⟩), (2.52)
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and:
: T̃P(z0) := − 1

α′
lim
z̄→z̄0

δµν(∂̄Xµ(z̄)∂̄Xν(z̄0) − ⟨∂̄Xµ(z̄)∂̄Xν(z̄0)⟩). (2.53)

The normal ordering operation, : · · · :, on any arbitrary operator-valued functional, O[X], is then
defined accordingly, as : O[X] :; in general, we have the following definition:

: O[X] := e−
1
2

∫
d2z1d2z2⟨Xµ(z1,z̄1)Xν(z2,z̄2)⟩ δ

δXµ (z1 ,z̄1)
δ

δXν(z2 ,z̄2) O[X], (2.54)

and so we can see that the definition of the above eq.(2.54) ensures that Wick’s theorem is automat-
ically satisfied, that is:

: O1[X] :: O2[X] := e
∫

d2z1d2z2⟨Xµ(z1,z̄1)Xν(z2,z̄2)⟩ δ1
δ1Xµ (z1 ,z̄1)

δ2
δ2Xν (z2 ,z̄2) : O1[X]O2[X] : . (2.55)

It is obvious from the above that normal ordering operation comes with the following property:

∂∂̄ : Xµ(z, z̄)Xν(z0, z̄0) := 0, (2.56)

which may well be used alternatively as an equivalent, yet quicker and more concise definition for
the normal ordering operation. The symbolism : · · · :, for the normal ordering operation on any
operator, will be ommitted from here on out, and it shall be implicitly assumed that every operator
is normally-ordered. Now, using Wick’s theorem, one can deduce the following Operator Product
Expansions (OPEs), for the energy-momentum tensor, where, the symbol ∼ denotes equality up to
regular terms:

TP(z)Xµ(z0) ∼ 1
z − z0

∂Xµ(z0), (2.57)

T̃P(z̄)Xµ(z̄0) ∼ 1
z̄ − z̄0

∂̄Xµ(z̄0), (2.58)

TP(z)∂Xµ(z0) ∼ 1
(z − z0)2 ∂Xµ(z0) +

1
z − z0

∂2Xµ(z0), (2.59)

T̃P(z̄)∂̄Xµ(z̄0) ∼ 1
(z̄ − z̄0)2 ∂̄Xµ(z̄0) +

1
z̄ − z̄0

∂̄2Xµ(z̄0), (2.60)

TP(z)TP(z0) ∼ D
2(z − z0)4 +

2
(z − z0)2 TP(z0) +

1
z − z0

∂TP(z0), (2.61)

and:
T̃P(z̄)T̃P(z̄0) ∼ D

2(z̄ − z̄0)4 +
2

(z̄ − z̄0)2 T̃P(z̄0) +
1

z̄ − z̄0
∂̄T̃P(z̄0), (2.62)

while, any OPE between a holomporphic and an anti-holomorphic operator is purely regular
(non-singular). By comparing the above OPEs with Ward’s identity, for an infinitesimal conformal
transformation of the form δz = v(z); δz̄ = v̄(z̄), which results to the conserved Noether currents J(z) =
iv(z)T(z) and J̃(z̄) = iv̄(z̄)T̃(z̄), one ends up with the following operator equations, for infinitesimal
conformal transformations:

δXµ(z, z̄) = −v∂Xµ(z) − v̄∂̄Xµ(z̄), (2.63)

δ∂Xµ(z) = −∂v∂Xµ(z) − v∂2Xµ(z), (2.64)

δ∂̄Xµ(z̄) = −∂̄v̄∂̄Xµ(z̄) − v̄∂2Xµ(z̄), (2.65)

δT(z) = − c
12
∂3v − 2T(z)∂v − v∂T(z), (2.66)

and:
δT̃(z̄) = − c̃

12
∂̄3v̄ − 2T̃(z̄)∂̄v̄ − v̄∂̄T̃(z̄), (2.67)

as well as their corresponding operator equations, for finite conformal transformations of the form
z→ z′(z); z̄→ z̄′(z̄):

X′(z′, z̄′) = X(z, z̄), (2.68)
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∂′X′(z′) = (∂z′)−1∂X(z), (2.69)

∂̄′X′(z̄′) = (∂̄z̄′)−1∂̄X(z̄), (2.70)

T′(z′) = (∂z′)−2(T(z) − c
12

Sz(z′)), (2.71)

and:
T̃′(z̄′) = (∂̄z̄′)−2(T̃(z̄) − c̃

12
Sz̄(z̄′)), (2.72)

where the constant c = c̃ = D is called the central charge of the CFT described by the Polyakov
action, and the Schwarzian derivative:

Sz( f ) =
∂3 f
∂ f
− 3

2
(∂2 f )2

(∂ f )2 , (2.73)

has been used, due to its property of having the correct infinitesimal form, as well as preserving the
group structure of the conformal group:

Sz(( f1 ◦ f2)) = S f2 ( f1)(∂ f2)2 + Sz( f2). (2.74)

The Schwarzian derivative of a conformal transformation, which, by definition, consists of a par-
ticular product combination of a diffeomorphism, and a corresponding, appropriate Weyl trans-
formation, such that the world-sheet metric remains invariant, refers only to the Weyl part of the
conformal transformation, precisely due to the commutativity property between the diffeomor-
phism group and the Weyl group. As a result, the Schwarzian derivative may define a specific
representation of the Weyl group, with respect to its action on the energy-momentum tensor, T, and
it can be easily proved that the Schwarzian derivative must be equal to the following:

Sz(z′) = 2(∂2ϕ − (∂ϕ)2), (2.75)

for a Weyl transformation of the form g′ = e2ϕg. That is, the Weyl group acts on the components
T(z) and T̃(z̄) of the energy-momentum tensor T in the following manner:

T(z)→ T(z) − c
6

(∂2ϕ − (∂ϕ)2), (2.76)

and:
T̃(z̄)→ T̃(z̄) − c̃

6
(∂̄2ϕ − (∂̄ϕ)2), (2.77)

for any Weyl transformation of the world-sheet metric that has the form of g′ = e2ϕg. The trans-
formations of eqs.(2.68) through (2.72) imply that, under conformal transformations, the string X
is a scalar, while its derivative ∂aX is a (0, 1)-world-sheet tensor; fields with tensorial conformal
transformation properties such as these fields, are called primary fields, so the string X, and its
derivatives ∂aX, are primary fields, with respective conformal weights 0, (1, 0) and (0, 1). The
energy-momentum tensor T is not a conformal tensor, due to the central charges c = D and c̃ = D
of the CFT that is described by the Polyakov action. Still, the energy momentum tensor has at
least some tensorial properties; in particular, it is a restricted conformal group tensor, of conformal
dimension equal to 2, as Sz( f ) = 0 only for the, finite-dimensional, PGL(2;C) -subgroup of the
conformal group, which is known as the Möbius group. Fields with quasi-tensorial conformal
transformation properties such as this field, are called quasi-primary fields, so the components
T(z) and T̃(z̄) of the energy-momentum tensor T, are quasi-primary fields of respective conformal
weights (2, 0) and (0, 2). Furthermore, fields that are neither primary nor quasi-primary are called
descendant fields; the descendant fields can usually be expressed as derivatives of primary or
quasi-primary fields. The fact that the components T(z) and T̃(z̄) of the energy-momentum tensor
are quasi-primary fields, results in a quantum CFT with the following anomaly:

tr(T) = −c + c̃
24

RW = −
D
12

RW , (2.78)
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which is known as the Weyl anomaly of the quantum theory of the Polyakov action. The above
eq.(2.78) can be proved easily, starting from the useful relations of eqs.(2.76) and (2.77), and con-
sidering the conservation of the energy-momentum tensor. Moreover, from the definition of the
energy-momentum tensor, it can be proved that in any CFT defined on a 2-dimensional surface,
the energy-momentum tensor must be a quasi-primary field of conformal dimension equal to 2;
the relevant eqs.(2.71) and (2.72), that describe its transformation properties under the conformal
group, hold, in general, for any such CFT, of central charges c and c̃. Then, the energy-momentum
tensor must transform in accordance with eqs.(2.76) and (2.77), under a Weyl transformation of the
appropriate form; it follows, in a straightforward manner, that the form of the Weyl anomaly in
eq.(2.78), is universal, and holds for any such CFT, of central charges c and c̃. This fact is related to
the more general Wess-Zumino consistency condition, which is a very powerful restriction on the
form of possible anomalies that may be contained in a QFT.

2.2.3 Scattering Amplitudes I: The State-Operator Correspondence and Vertex
Operators

Contrary to an arbitrary, generic QFT, CFTs possess the property of the state-operator correspon-
dence; this remarkable property consists of the fact that any quantum state of a CFT bijectively
corresponds to a local operator, and can then be expressed as this local operator acting on the
vacuum state. In other words, the entire Fock space of a CFT is local; in fact, it can be regarded that
a copy of the entire Fock space of the CFT exists on each and any point of the world-sheet Riemann
sphere. The state-operator correspondence property of CFTs can be explained and understood
shortly: The symmetry of a CFT under the conformal transformation z = e−iw means that the world-
sheet cylinder of the w-conformal coordinate system can be mapped to the world-sheet Riemann
sphere of the z-conformal coordinate system, so any asymptotic string state can be defined to exist
only locally; this fact simply means, in turn, that any asymptotic string state can be expressed as a
local operator, which is evaluated on an arbitrary point of the world-sheet Riemann sphere, acting
on the vacuum state. The local operators, in terms of which the state-operator correspondence
is defined, are called vertex operators, they are denoted as V(n)(p; X(z, z̄)), and they constitute the
asymptotic, local Fock space of the CFT. It is clear from the aforementioned that the state-operator
correspondence is a property of CFTs due to their symmetry under the conformal mapping of the
world-sheet cylinder to the Riemann sphere; on the contrary, in non-CFTs, a typical local operator
can create many different states. Among other uses, the state-operator correnspondence property
of CFTs can also justify the fact that the OPEs are exact and convergent statements in CFTs.
A scattering amplitude is, by definition, a transition amplitude between asymptotic states; as a
result, then, of the state-operator correspondence, any scattering amplitude in string theory can be
expressed as integrated vacuum expectation values of vertex operators. That is, a generic scatter-
ing amplitude of N vertex operators, Vn(pn; X(zn, z̄n)), can be expressed as the following functional
integral:

⟨
∏

n∈NN

∫
W

d2znVn(pn; X(zn, z̄n))⟩g =
∫

FXg

[dX]ge−SP[X,g]
∏

n∈NN

∫
W

d2znVn(pn; X(zn, z̄n)). (2.79)

The scattering amplitudes in string theory, can then be expressed in a fashion that is similar to
the LSZ-reduction formula of an ordinary QFT, where scattering amplitudes are also expressed
as integrated vacuum expectation values of local functions of field operators. However, there are
two crucial differences, between scattering amplitudes in an ordinary QFT and in string theory:
First and foremost, it can be proved that the vertex operators must be, in fact, on -shell quantities;
this is to be expected, as the vertex operators express the external, asymptotic string states of the
scattering amplitude, which are, by definition, on-shell quantum states. On the contrary, in the LSZ-
reduction formula of an ordinary QFT, scattering amplitudes are expressed as integrated vacuum
expectation values of local functions of off-shell field operators; these off-shell field operators do
not, strictly, express the external states of the scattering amplitude, but they merely serve as a
mathematical convenience. Secondly, in string theory, there can obviously be no additional, gauge
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invariant interaction terms in the Polyakov action, as the Polyakov action is, in fact, the most general
physically acceptable and gauge invariant action, regarding its gauge symmetry group, of course.
Then, an interaction between vertex operators cannot be defined via an interaction Lagrangian; in
string theory, vertex operators are considered to interact with each other exclusively by coupling
to the world-sheet. Each vertex operator can couple to the world-sheet only via the creation of
a respective local puncture on the world-sheet. This way of coupling of vertex operators to the
world-sheet has the effect of the contribution of a positive unit to the original genus of the world-
sheet, so string theory must necessarily come with a totally natural definition of the string coupling
constant in terms of the genus of the world-sheet; the precise definition and form of the string
coupling constant will be derived shortly. On the contrary, in an ordinary QFT, the interaction
between functions of field operators is defined via interaction terms in the action of the theory,
which constitute the interaction Lagrangian; then, the coupling constant is just a free parameter in
this interaction Lagrangian.
In principle, now, a scattering amplitude has a physical meaning and interpretation only if it is a
gauge invariant quantity; evidently, this requirement imposes severe constraints on the functional
form of the vertex operators, V(n)(p; X(z, z̄)), for the case of such physical scattering amplitudes,
as this requirement is, in general, not satisfied, for the generic scattering amplitude of eq.(2.79).
It follows that, in a physical scattering amplitude, the integrated vertex operators, which can be
termed as V(n)[X](p), must all be conformally invariant operators. Equivalently, the vertex operators,
V(n)(p; X(z, z̄)), must all be primary fields of conformal weights (1, 1); these vertex operators are called
physical vertex operators. Undeniably, then, the requirement of conformal invariance of the physical
scattering amplitudes means precisely that the physical spectrum of the theory must be identified,
via the state-operator correspondence, to be the spectrum of the physical vertex operators. In fact,
it can be easily seen that this definition of the physical spectrum of the theory also ensures that the
Virasoro constraints are satisfied automatically, for any and all physical string states; this follows
from the fact that the vacuum expectation value of the product of the energy-momentum tensor
with primary fields always vanishes, as long as the Weyl anomaly of the theory is be cancelled,
which will be the case, as we shall show in the next section. It can be easily proved, now, that the
simplest physical vertex operators are the following:

V(0)(p; X(z, z̄)) = gseipµXµ(z,z̄), (2.80)

with the additional requirement p2 = −m2 = 4
α′ satisfied, and:

V(1)(p; X(z, z̄)) =
2
α′

gs fµν∂Xµ(z)∂̄Xν(z̄)eipλXλ(z,z̄), (2.81)

with the additional requirements pµ fµν = pν fµν = 0 and p2 = −m2 = 0 satisfied. The normalisation of
the above vertex operators is justified purely by virtue of dimensional analysis, and it also contains
a gs-factor. This gs-factor is just the aforementioned string coupling constant, which is induced from
to the coupling of the string states to the world-sheet. As it has been mentioned, the coupling of
string states to the world-sheet can only happen via the creation of a local puncture on the world-
sheet, so, the string coupling constant, gs, must have the effect of the contribution of a positive unit
to the original genus of the world-sheet; we shall just keep this in mind for now, and postpone the
precise definition and form of the string coupling constant, gs, for the following section. Obviously,
the identity operator, I, can also be regarded as an integrated physical vertex operator, due to its
trivial properties. On the one hand, now, the vertex operator of eq.(2.80) describes a target-space
scalar string state, with negative mass-squared; this is a physical tachyonic string state, and is a
complication of bosonic string theory. However, this complication can be resolved when one moves
on to the superstring theory, as we shall see in later chapters. On the other hand, the traceless
symmetric, the antisymmetric, and the trace parts of the vertex operator of eq.(2.81) describe the
graviton, the Kalb-Ramond, and the dilaton string states, respectively; these states are all spacetime
tensor massless states.
It would be practical, for subsequent use, to also have the definition of eq.(2.79), for a generic
scattering amplitude, expressed in a form which is manifestly gauge invariant, that is, in a form

14



where the integrated vertex operators are expressed in a general and arbitrary coordinate system.
The integrated vertex operators, which are themselves gauge invariant, can be expressed as:

V(n)[X, g](p) =
∫

W
d2zV(n)(p; X(z, z̄)) =

∫
W

d2σV(n)(p; X(σ), g(σ)), (2.82)

where the vertex operators, V(n)(p; X(σ), g(σ)), must be of the form:

V(n)(p; X(σ), g(σ)) =
√
|det

(
g(σ)

)|v(n)(p,X(σ)), (2.83)

with v(n)(p,X(σ)) being, of course, a diffeomorphism invariant operator, of conformal weights (1, 1),
so that the overall gauge invariance of the integrated vertex operators, V(n)[X](p) is ensured. It
follows that, a generic scattering amplitude of N vertex operators, Vn(pn,X(σn)), can be expressed,
in a manifestly gauge invariant form, as the following functional integral:

⟨
∏

n∈NN

∫
W

d2σnVn(pn; X(σn))⟩g =
∫

FXg

[dX]ge−SP[X,g]
∏

n∈NN

∫
W

d2σnVn(pn; X(σn)), (2.84)

or, equivalently, as:

⟨
∏

n∈NN

Vn[X, g](p)⟩g =
∫

FXg

[dX]ge−SP[X,g]
∏

n∈NN

Vn[X, g](p), (2.85)

more concisely, in terms of the integrated vertex operators, V(n)[X, g](p), as they are expressed in
eq.(2.82).
Now, as far as gravity is concerned, it can be seen, from the vertex operator of eq.(2.79), that the
graviton states can only have a number of (D−2)(D−3)

2 different spacetime polarisations, so, they
can define a (D − 2)-dimensional subspace of the D-dimensional spacetime, which is called the
transverse spacetime, as well as its orthogonal space, of 2 dimensions, which are called the lightcone
dimensions of the spacetime. This provides us with a hint, that the very existence of the target-space
string vibration modes, or string excitations, in the 2 lightcone dimensions of the spacetime, might
as well be a redundancy, as an artifact of the gauge invariance of the theory. This hint means that
it would be possible that these string states, which correspond to the 2 lightcone dimensions of
the target-space, can be excluded entirely from the analysis of the spectrum of the theory. This
supposed elimination of these string states is indeed a fact that can be proved rigorously; a short,
descriptive summary for this proof shall be given in a next section, where the partition function of
bosonic string theory will be calculated.

2.2.4 Scattering Amplitudes II: The Polyakov Expansion of the String S-Matrix

Despite the seemingly proper definition of arbitrary, physical scattering amplitudes, that was given
in the previous section, one can see that the scattering amplitudes of eq.(2.85) are not, in fact,
fully conformally invariant quantities, but merely invariant quantities only under the restricted
conformal group, even in the case of physical vertex operators; this fact is precisely due to the Weyl
anomaly of the theory. The Weyl anomaly of the theory is contained in the scattering amplitudes
of eq.(2.85), through the functional integration measure, [dX]g, so the Weyl anomaly of the theory
will, inevitably, emerge as a part of any Weyl transformation of these scattering amplitudes, due
to the Weyl transformation properties of the functional integration measure, [dX]g, as it will be
explained shortly. In other words, the vacuum state of the theory itself is not fully gauge invariant,
but merely invariant under the restricted conformal group. Now, in order to form a fully gauge
invariant scattering amplitude, one must also integrate the scattering amplitudes of eq.(2.85) over
the function space Fg, which consists of all the possible, different metrics, ggW , and for all the possible
closed topologies, that is, values for the genus, gW , of the closed world-sheet, W. This functional
integration must, necessarily, be defined along with an appropriate functional integration measure,
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[dg]g, that automatically imposes the essential normalisations, that is, the multiplicative weight
factors 1

Vgauge
gW

, for each such possible, different world-sheet metric; the factor Vgauge
gW

simply expresses

the volume of the gauge symmetry group of the theory on the corresponding topology of the closed
world-sheet. These multiplicative weight factors 1

Vgauge
gW

are the appropriate multiplicative weight

factors that can, essentially, account for the treatment of all the various such world-sheet metrics,
that can be related through a transformation of the gauge symmetry group of the theory, as gauge
equivalent. Then, the fully gauge invariant quantity that is formed in this way is called the string
S-matrix; it is termed as S({Vn[X, g](pn)}), and it is expressed as in the following:

S({Vn[X, g](pn)}) =
∫

Fg

[dg]g⟨
∏

n∈NN

Vn[X, g](pn)⟩g =
∫

Fg

[dg]g

∫
FXg

[dX]ge−SP[X,g]
∏

n∈NN

Vn[X, g](pn) =

=
∑

gW∈N

∫
FggW

[dg]ggW

1
Vgauge

gW

⟨
∏

n∈NN

Vn[X, ggW ](pn)⟩ggW
=

=
∑

gW∈N

∫
FggW

[dg]ggW

1
Vgauge

gW

∫
FXgW

[dX]ggW
e−SP[X,ggW ]

∏
n∈NN

Vn[X, ggW ](pn), (2.86)

where FggW
is, of course, the function space of all the possible, different metrics, ggW , of a closed

world-sheet, W, of a topology of genus gW . The scattering amplitudes of string theory must, then, be
considered as the elements of the string S -matrix, in the above eq.(2.86). The functional integration
measures, [dX]g and [dg]g, for the integration over the function space F, of all the various metrics,
g, of a closed world-sheet, W, of a topology of a specific, yet arbitrary genus, may be respectively
defined from the following norms:

||δX||2g =
∫

W
d2σ

√
|det

(
g
)|δµνδXµδXν, (2.87)

and:

||δg||2g =
∫

W
d2σ

√
|det

(
g
)|Mabcd(g)δgabδgcd, (2.88)

where Mabcd(g) = gacgbd is the normalised metric on the space of the symmetric (0, 2)-tensor fields on
the 2-dimensional world-sheet, W. The norms of eqs.(2.87) and (2.88) can, equivalently, be expressed
in the conformal gauge, where the world-sheet metric g is conformally flat, that is, where g = e2ϕγ,
with the metric γ being a constant, fiducial, flat world-sheet metric, as in the following:

||δX||2g =
∫

W
d2σ

√
|det

(
γ
)|e2ϕδµνδXµδXν, (2.89)

and:

||δg||2g =
∫

W
d2σ

√
|det

(
γ
)|e−2ϕMabcd(γ)δgabδgcd. (2.90)

Now, as far as the Weyl anomaly of the theory is concerned, it is obvious that, similarly to the
Polyakov action, both of the norms of the above eqs.(2.87) and (2.88) manifestly exhibit target-space
Poincaré invariance and world-sheet diffeomorphism invariance, while, contrary to the Polyakov
action, they fail the test of Weyl invariance; consequently, the respective functional integration
measures, [dX]g and [dg]g, are also not Weyl invariant, in general. This symmetry breaking of Weyl
invariance of the functional integration measures, [dX]g and [dg]g, is, essentially, the very cause of
the Weyl anomaly of the theory, which has been described in a previous section. The Weyl anomaly
for a CFT of a conformally flat world-sheet metric g = e2ϕγ, where γ is a fiducial, flat world-sheet
metric, must necessarily imply, then, the existence of a Weyl factor, A[ϕ, γ]; this Weyl factor, A[ϕ, γ],
is coupled to the functional integration measures, [dX]γ and [dg]γ, which are defined in terms of
the fiducial, flat world-sheet metric, γ, so that the functional integration measures, [dX]g and [dg]g,
which are defined in terms of the conformally flat world-sheet metric, g = e2ϕγ, can be formed, in
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the definition of eq.(2.86), for the functional integral of the S-matrix of the CFT. Consequently, the
functional integration measures, [dX]g and [dg]g, can, then, be expressed as:

[dX]g[dg]g = A[ϕ, γ][dX]γ[dg]γ. (2.91)

Evidently, due to the overall gauge invariance of the S -matrix of the CFT, the Weyl factor, A[ϕ, γ],
must also be precisely the factor which completely describes the Weyl dependence of the functional
integration measures. Considering the universality of the form of the Weyl anomaly of a CFT, as it
was expressed in eq.(2.78), it can be straightforwardly proved that the Weyl factor must be of the
form:

A[ϕ, γ] = ectotSL[ϕ,γ], (2.92)

where ctot is the total central charge of the CFT, that is described by the functional integral∫
Fg

[dg]γ
∫

FXg
[dX]γe−SP[X,γ], and the functional SL[ϕ, γ], which is equal to the following:

SL[ϕ, γ] = − 1
24π

∫
W f

d2σ
√
|det

(
γ
)|((∂ϕ)2 + RWϕ), (2.93)

has, apparently, the form of an action, for the dynamical, conformal factor, ϕ, of the conformally
flat world-sheet metric g = e2ϕγ, on a world-sheet, W f , of the fiducial, flat metric, γ. This action,
SL[ϕ, γ], was named the Liouville action, by Polyakov. The Weyl factor, as it is expressed in eq.(2.92),
completely describes, then, the Weyl transformation of the functional integration measures, [dX]g
and [dg]g, as in the following:

[dX]γ[dg]γ → [dX]g[dg]g = [dX]γ[dg]γectotSL[ϕ,γ], (2.94)

under a Weyl transformation of the form of γ → g = e2ϕγ, for the fiducial, flat world-sheet metric,
γ. However, as the process of quantisation of the Liouville action of eq.(2.93), and of the succeeding
calculation of a generic string S-matrix element, as it is expressed from the functional integral of
eq.(2.86), with the Weyl factor included, are no trivial matters, we shall restrict our attention to the
case of a specific class of quantum CFTs, in which, by definition, there is no Weyl anomaly. Such a
quantum CFT would then be a truly conformally invariant CFT, and it would have to incorporate
a natural way, so that its Weyl anomaly may be automatically cancelled. From the universal form
of the Weyl anomaly of a CFT, as it was expressed in eq.(2.78), it is evident that the automatic
cancellation of the Weyl anomaly of a CFT can happen only if the total central charge of the CFT is
equal to zero, that is ctot = 0. As it has been shown in a previous section, the total central charge of
a generic CFT can depend only on the dimension, or, number, D, as well as the various conformal
weights, of the fields in the CFT. Then, a CFT of total central charge that is equal to zero is said to exist
in its critical dimension, Dcrit.; the critical dimension, Dcrit., of a CFT be solved for, using precisely
its definition, that is: ctot(Dcrit.) = 0. By requiring, hence, that the theory described by the functional
integral

∫
Fg

[dg]γ
∫

FXg
[dX]γe−SP[X,γ], is a CFT that exists in its critical dimension, Dcrit., the total central

charge of the CFT, ctot, is imposed to be equal to zero; accordingly, the Weyl factor is enforced to be
equal to the unit, and it effectively decouples completely from the functional integration measures,
[dX]g and [dg]g, in the functional integral of eq.(2.86), for the string S-matrix. Consequently, the
theory that is described by the functional integral

∫
Fg

[dg]γ
∫

FXg
[dX]γe−SP[X,γ], is now a quantum CFT

that is truly conformally invariant, as the functional integration measures, [dX]g and [dg]g, are now
Weyl invariant; then, the expression of eq.(2.86), for the string S-matrix, reduces to the following:

S({Vn[X, g](pn)}) =
∑

gW∈N

∫
FggW

[dg]γgW

1
Vgauge

gW

⟨
∏

n∈NN

Vn[X, γgW ](pn)⟩γgW
=

=
∑

gW∈N

∫
FggW

[dg]γgW

1
Vgauge

gW

∫
FXgW

[dX]γgW
e−SP[X,γgW ]

∏
n∈NN

Vn[X, γgW ](pn). (2.95)
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What remains to be calculated, in the above expression of eq.(2.95), for the string S-matrix, is the
effect of the functional integrations over the different function spaces, FggW

. In general, it is known
that a metric, ggW , of a closed world-sheet, W, may have a number of µgW real metric moduli,
or Teichmüller parameters, which are denoted as τµ′ , as well as a number of κgW real Conformal
Killing Vectors (CKVs), which are simply the generators of its Conformal Killing Group (CKG);
these numbers, µgW and κgW , are related to the value of the genus, gW , of the closed world-sheet, W,
via a lemma of the Riemann -Roch theorem:

µgW − κgW = 6gW − 6, (2.96)

while, furthermore, µgW vanishes for values gW < 1 of the genus, and κgW vanishes for values
gW > 1 of the genus. As a reminder, the CKG of a metric, ggW , is defined as the subgroup of the
diffeomorphism group on the closed world-sheet W, which relates all of its conformally equivalent
metrics; that is, the CKG has the same effect that the Weyl group has, on the metric, ggW , of the
closed world-sheet, W. Hence, an arbitrary metric, of a closed world-sheet, W, of a topology of
a specific genus, gW , shall be denoted as ggW (τ), where (τ) is an arbitrary element of the space of
its metric moduli, which may be, in general, the space RµgW ; that is, (τ) ∈ RµgW . In addition, it is
also known that the set of all the various metrics, {ggW (τ)}, is the disjoint union of the equivalence
classes [ggW (τ)], each of which consists of world-sheet metrics that can be related to each other via
a diffeomorphism on the closed world-sheet W; such world-sheet metrics are called equivalent to
each other. Now, a generic diffeomorphism on a closed world-sheet W typically results in the trans-
formation of the world-sheet metric, ggW (τ), yet its moduli element, (τ), typically remains invariant
under any such diffeomorphism, with the exception of the so-called large diffeomorphisms; the
large diffeomorphisms on a closed world-sheet W, act on the world-sheet metric, ggW (τ), and have,
by definition, the property of keeping its functional form invariant, while transforming only the
value of its moduli element, (τ). That is, the world-sheet metric, ggW (τ), is simply transformed as
ggW (τ) → g′(τ) = ggW (τ′), under a large diffeomorphism. It is evident, then, that the large diffeo-
morphisms on a closed world-sheet W form a subgroup of the diffeomorphism group on the closed
world-sheet W, which is simply called the large diffeomorphism subgroup, or, the Teichmüller
modular group, or, just the modular group, MgW , of the closed world-sheet, W, of a topology of
genus gW . The name of the modular group can obviously be justified from the fact that the large
diffeomorphisms on the closed world-sheet, W, can be considered as acting only on the moduli
element, (τ), of the respective metric, ggW (τ), as they keep the functional form of the metric invari-
ant. Evidently, the modular group is a discrete subgroup of the respective diffeomorphism group.
In fact, the modular group constitutes the disconnected subroup of the respective diffeomorphism
group; by denoting the respective diffeomorphism group and its connected subgroup as DgW and
Dc

gW
respectively, we can see that the modular group, MgW , is equal to their relative quotient group,

that is, MgW = DgW/Dc
gW

. Then, it can be deduced that there are values of the moduli element, (τ),
that can be related to each other via a transformation element of the modular group; such moduli
elements, (τ), can form their respective equivalence class, [(τ)], and, so, they are called equivalent to
each other, while moduli elements that belong to different equivalence classes, cannot be related to
each other via a transformation element of the modular group, and so they are called inequivalent
to each other. Accordingly, the space of the metric moduli,RµgW , is simply the disjoint union of these
equivalence classes, [(τ)], and the quotient set FgW = R

µgW /MgW , which is called the fundamental do-
main, FgW , of the space of the metric moduli,RµgW , is the set that consists of these equivalence classes,
[(τ)]. Notice how the very definition of the fundamental domain is invariant, under the action of the
respective modular group, so the fundamental domain, FgW , due to its definition as a quotient set,
cannot have a unique representation, as a subset of the space of the metric moduli, RµgW ; naturally,
all the possible, different such representations of the fundamental domain, FgW , must be physically
equivalent. As a result of all the above, it can be now shown, via a subsequent implementation of
a standard Faddeev -Popov procedure, that the functional integration over the function space FggW
can be expressed in an elegant way, with the use of the respective Faddeev-Popov determinant,
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∆FP(γgW (τ)), which can be defined as in the following:∫
FggW

[dg(τ)]γgW (τ)
1

Vgauge
gW

=

∫
FgW

dµgW τ∆FP(γgW (τ)), (2.97)

where it is noted that the respective modular integration is over all the moduli elements, (τ), that
are inequivalent to each other, that is, over the corresponding fundamental domain, FgW . It is also
noted, for subsequent use, that, the integration measure, dµgW τ, can, without loss of generality, be
set to be invariant, under the action of the respective modular group, along with an appropriate
rescaling, or redefinition, of the Faddeev-Popov determinant. Then, using eq.(2.97), the expression
of eq.(2.95), for the string S-matrix, reduces to the following:

S({Vn[X, g](pn)}) =
∑

gW∈N

∫
FgW

dµgW τ∆FP(γgW (τ))⟨
∏

n∈NN

Vn[X, γgW (τ)](pn)⟩γgW (τ) =

=
∑

gW∈N

∫
FgW

dµgW τ∆FP(γgW (τ))
∫

FXgW

[dX]γgW (τ)e−SP[X,γgW (τ)]
∏

n∈NN

Vn[X, γgW (τ)](pn). (2.98)

Furthermore, it can be proved that each of the Faddeev-Popov determinants, ∆FP(γgW (τ)), can be
expressed in a simple way, by the following Berezin functional integral:

∆FP(γgW (τ)) =
1

VCKG
gW

(τ)

∫
FbgW

[db]γgW (τ)

∫
FcgW

[dc]γgW (τ)G[b, c, γgW (τ)]e−Sgh[b,c,γgW (τ)], (2.99)

where the factor VCKG
gW

(τ) expresses the volume of the respective CKG, of course. The functional
G[b, c, γgW (τ)] is proved to be equal to:

G[b, c, γgW (τ)] =
∏

µ′∈NµgW

1
4π

∫
W

d2σ
√
|det

(
γgW (τ)

)
|bmnγ

mk
gW

(τ)γnl
gW

(τ)
∂γkl

gW
(τ)

∂τµ′

∏
κ′∈N κgW

2

1
VW

∫
W

d2σκ′
1
2
ϵnmcn(σκ′ )cm(σκ′ ), (2.100)

where, of course, the factor VW expresses the volume of the world-sheet, and the functional
Sgh[b, c, γgW (τ)] is called the ghost action, or, simply, the b-c system, and it is equal to the following:

Sgh[b, c, γgW (τ)] =
1

2π

∫
W

d2σ
√
|det

(
γgW (τ)

)
|γkm

gW
(τ)bmn∇k(τ)cn, (2.101)

with the ghost field b being symmetric and traceless, by its definition, while FbgW
and FcgW

are
the function spaces for the, Grassmann-valued, that is, anti-commuting, ghost fields, b and c,
respectively. Eventually, it can be easily proved, in a fashion similar to the procedure that was
used for the case of the Polyakov action itself, that the b-c system describes a CFT of central
charges cgh = c̃gh = −26. The total central charge of the CFT described by the functional integral∫

FggW
[dg]γgW (τ)

∫
FXgW

[dX]γgW (τ)e−SP[X,γgW (τ)] is, then, ctot(D) = D − 26, and the condition so that this CFT

exists in the critical dimension, Dcrit., is simply ctot(Dcrit.) = Dcrit. − 26 = 0, that is, Dcrit. = 26; it can be
easily seen, now, that this condition is, essentially, a constraint on the number D of the spacetime
dimensions. In other words, it has been shown that the Weyl anomaly of the CFT of the Polyakov
action always persists, but in the special case of the critical target-space dimension, D = 26, as it
has been mentioned previously in this chapter. Additionally, by considering the action redefinition
S[X, γgW (τ)] = SP[X, γgW (τ)] + λ⟨Φ⟩χW , as well as the naturally motivated definition gs = e−λ⟨Φ⟩,
for the string coupling constant, gs, along with the reminder that, for the closed world-sheet, W,
the Euler characteristic, χW , is related to the genus, gW , by the Gauss-Bonnet theorem for closed
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surfaces, χW = 2 − 2gW , it can be concluded that the expression of eq.(2.98), for the string S-matrix,
is equal to the following power-series expansion, with respect to the string coupling constant, gs:

S({Vn[X, g](pn)}) =
∑

gW∈N
g2gW−2

s S({Vn[X, g](p)})gW =

=
∑

gW∈N
g2gW−2

s

∫
FgW

dµgW τ
1

VCKG
gW

(τ)

∫
FbgW

[db]γgW (τ)

∫
FcgW

[dc]γgW (τ)G[b, c, γgW (τ)]e−Sgh[b,c,γgW (τ)]

⟨
∏

n∈NN

Vn[X, γgW (τ)](pn)⟩γgW (τ) =

=
∑

gW∈N
g2gW−2

s

∫
FgW

dµgW τ
1

VCKG
gW

(τ)

∫
FbgW

[db]γgW (τ)

∫
FcgW

[dc]γgW (τ)G[b, c, γgW (τ)]e−Sgh[b,c,γgW (τ)]

∫
FXgW

[dX]γgW (τ)e−S[X,γgW (τ)]
∏
n∈N

Vn[X, γgW (τ)](pn). (2.102)

We note that, by this well-reasoned definition of the the string coupling constant, gs, as gs = e−λ⟨Φ⟩,
it is ensured that any additional factor of the string coupling constant, in each term of the power-
series expression of eq.(2.102), for the string S -matrix, which may emerge exclusively through
the integrated vertex operators, Vn[X, γgW (τ)](pn), simply results in the effective contribution of a
positive unit to the original genus, gW , of the world-sheet, W. It can be seen then, that, the coupling
of each vertex operator to the closed world-sheet, which can only happen via the creation of a
local puncture on the world-sheet, has indeed the effect of the contribution of a positive unit to
the original genus of the closed world-sheet, as it has been mentioned in the previous section. By
taking, now, the small gs-limit of the power-series expression of eq.(2.102), for the string S -matrix,
we can define the Polyakov expansion of the string S -matrix; that is, the Polyakov expansion is
defined as the perturbative expansion of the string S-matrix, with respect to the string coupling
constant, gs, so, the Polyakov epansion is, naturally, the cornerstone of the perturbation theory of
the bosonic string. Of course, the value of the genus of a closed world-sheet, which is simply the
number of punctures on the closed world-sheet, can, in essence, be equivalently considered as the
number of loops of the world-sheet. Accordingly, the term that corresponds to a value gW = N, for
the genus, gW , of a closed world-sheet, W, in the Polyakov expansion of the string S-matrix, and
by which the S-matrix of a string theory, in a world-sheet of a topology of genus N, is, essentially,
defined, can equivalently be considered as the term by which the S-matrix of a respective, ordinary
QFT, in the N-loop level, is described; this simple reasoning defines the correspondence between
the S-matrix of a string theory, in a world-sheet of a topology of genus N, and the S-matrix, in the N-
loop level, of a respective, ordinary QFT. In particular, the scattering amplitudes of string theory, in
the world-sheet topology of genus 0, which is the world-sheet topology of the Riemann sphere, S2,
correspond to the scattering amplitudes of a respective, ordinary QFT, in the zero-loop, ”tree”-level,
while, the scattering amplitudes of string theory, in the world-sheet topology of genus 1, which
is the world-sheet topology of the Riemann torus, T2, correspond to the scattering amplitudes of
a respective, ordinary QFT, in one-loop level, and so on and so forth. It can be seen, then, that
the sum of all the, factorially growing in number, with the increase of the loop level, different
Feynman diagrams, with a number of N loops, which defines the S-matrix, in the N-loop level, of
an ordinary QFT, corresponds to, and is expressed as, a single term, in the Polyakov expansion of
the string S-matrix. This fact constitutes, then, a formal, as well as a computational, advantage of
the S-matrix of a string theory, in comparison to the S-matrix of a respective, ordinary QFT, in each
loop level, as the need for the calculation of all the respective different, and factorially growing
in number with the increase of the loop level, Feynman diagrams, the sum of which defines the
S-matrix in the latter case, is eliminated, in the calculation of the string S-matrix, of the former case,
precisely due to its form. As a result, it appears that the overall calculation of the string S-matrix,
via the Polyakov expansion, is significantly simpler, than the overall calculation of the S-matrix, in
a respective, ordinary QFT.
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Modular Invariance and Unitarity

Taking a closer look at the power-series expression of eq.(2.102), for the string S-matrix, we can
deduce, for subsequent use, two important facts, for the terms S({Vn[X, g](pn)})gW of the string S
-matrix, each of which defines the S-matrix of a string theory in a world-sheet of a topology of genus
gW . Such a term, S({Vn[X, g](pn)})gW , of the string S-matrix, for a specific value gW of the genus of a
closed world-sheet, W, can, evidently, be expressed as:

S({Vn[X, g](pn)})gW =

=

∫
FgW

dµgW τ
1

VCKG
gW

(τ)

∫
FbgW

[db]γgW (τ)

∫
FcgW

[dc]γgW (τ)G[b, c, γgW (τ)]e−Sgh[b,c,γgW (τ)]

⟨
∏

n∈NN

Vn[X, γgW (τ)](pn)⟩γgW (τ) =

=

∫
FgW

dµgW τ
1

VCKG
gW

(τ)

∫
FbgW

[db]γgW (τ)

∫
FcgW

[dc]γgW (τ)G[b, c, γgW (τ)]e−Sgh[b,c,γgW (τ)]

∫
FXgW

[dX]γgW (τ)e−S[X,γgW (τ)]
∏
n∈N

Vn[X, γgW (τ)](pn) =

=

∫
FgW

dµgW τzgW (τ;
∏
n∈N

Vn[X, γgW (τ)](pn)), (2.103)

in accordance with eq.(2.102). First of all, it is noted that the form of the functional G[b, c, γgW (τ)],
of eq.(2.100), implies that the symmetry of the respective CKG can be used in such a way, so that
the world-sheet position arguments of its number of κgW ghost fields, c, are fixed to be the same
as the world-sheet position arguments of a number of

κgW
2 vertex operators, which may exist, in

the above term S({Vn[X, g](pn)})gW of the string S-matrix. However, the multiplicative factor of
1

VCKG
gW

(τ) , which also appears in the above eq.(2.103), for the term S({Vn[X, g](pn)})gW of the string S-

matrix, and, which expresses the volume of the respective CKG, imposes automatically a formal
constraint, on the value of this term, regarding the total number of its integrated vertex operators,
in the specific case where the volume of the respective CKG tends to infinity. In particular, it
can be easily seen that the terms S({Vn[X, g](pn)})gW of the string S-matrix, of a total number of N
integrated vertex operators, that is less than the number

κgW
2 , formally vanish, in the case where

the volume of the respective CKG tends to infinity, precisely on account of suppression due to
the infinite volume of the respective CKG. Secondly, the integration measure, dµgW τ, in the above
expression of eq.(2.103), for the term S({Vn[X, g](pn)})gW of the string S -matrix, can, without loss of
generality, be simply set to be invariant, under the action of the respective modular group, MgW ,
along with an appropriate redefinition, or rescaling, of the Faddeev-Popov determinant, as it has
been formerly mentioned. In addition, it is a fact that each term S({Vn[X, g](pn)})gW of the string
S-matrix is also invariant, under the action of the respective modular group, MgW , for any one of the,
naturally equivalent, different representations of the fundamental domain, FgW , as a consequence
of the overall gauge invariance of this term. It follows that, the, appropriately redefined, in accor-
dance with the respective redefinition, or rescaling, of the Faddeev-Popov determinant, quantity
zgW (τ;

∏
n∈N Vn[X, γgW (τ)](pn)), which was defined in eq.(2.103), must also be invariant, under the

action of the respective modular group, MgW , for any product
∏

n∈N Vn[X, γgW (τ)](pn), of integrated
vertex operators, Vn[X, γgW (τ)](pn). It is clear, from the aforementioned argument, that this modular
invariance of the quantity zgW (τ;

∏
n∈N Vn[X, γgW (τ)](pn)) is simply the consequence of the overall

gauge invariance of the S-matrix of a string theory, in a closed world-sheet, W, of a topology of genus
gW , that is, in turn, the consequence of the overall gauge invariance of the string S-matrix. The mod-
ular group, MgW , is the symmetry group of the respective quantity, zgW (τ;

∏
n∈N Vn[X, γgW (τ)](pn)), as

a remnant result of the overall gauge invariance of the string S-matrix, so, the modular group, MgW ,
can, then, be considered as the remnant symmetry group of the respective term, S({Vn[X, g](pn)})gW ,
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of the string S-matrix, that, essentially, characterises the the S-matrix of a string theory, in a closed
world-sheet, W, of a topology of genus gW . Eventually, it can be proved that, the overall gauge in-
variance of the string S-matrix, is a necessary, and sufficient condition, for the unitarity of the string
S-matrix. Consequently, the modular invariance of the quantities zgW (τ;

∏
n∈N Vn[X, γgW (τ)](pn)),

which are contained in the respective terms, S({Vn[X, g](pn)})gW , of the expression of eq.(2.102), for
the string S-matrix, is, then, a necessary condition for the unitarity of the string S-matrix; it can also
be proved that this modular invariance also determines the very finiteness of the string S-matrix,
as well as being essential for the cancellation of various spacetime anomalies of string theory.

2.2.5 The Perturbative Vacuum Amplitude and the Partition Function of Bosonic
String Theory

We are, now, in the position to further proceed to the analysis of the string S-matrix, with the
calculation of the perturbative vacuum amplitude of bosonic string theory. The calculation of the
perturbative vacuum amplitude is, of course, nothing more than the calculation of the terms of the
various orders, with respect to the string coupling constant, gs, in the power-series of the Polyakov
expansion, with no insertions of vertex operators. The tree-level vacuum amplitude of bosonic
string theory, which, obviously, corresponds to the term of the value gW = 0, for the genus of
the world-sheet, W, of the power-series of the Polyakov expansion, with no insertions of vertex
operators, is formally equal to zero, as it automatically vanishes, due to the suppression induced
by the infinite volume of the CKG of the metrics of a world-sheet of the topology of the Riemann
sphere, S2, as it has already been mentioned in the previous section. For the very same reason, all
the tree-level scattering amplitudes, of a number N of vertex operators, are, also, formally, equal to
zero, when this number N is less than 3, that is, half the number of the 6 real CKVs of the metrics
of a world-sheet of the topology of the Riemann sphere, S2; on these grounds, it can be concluded
that all the tree-level scattering amplitudes of 1 and 2 vertex operators automatically vanish. We
may proceed, then, to the calculation of the one-loop level vacuum amplitude of bosonic string
theory. The one-loop level vacuum amplitude of bosonic string theory corresponds, obviously,
to the term of the value gW = 1, for the genus of the world-sheet, W, of the power-series of the
Polyakov expansion, with no insertions of vertex operators. The one-loop level vacuum amplitude
is the simplest (non-zero) perturbative quantum correction to the tree-level vacuum amplitude, and
it can be proved that it also is the simplest case of a (non-zero) perturbative quantum correction,
in bosonic string theory; accordingly, the field-theoretic interpretation of the one-loop vacuum
amplitude, is that it constitutes a representation of the simplest quantum correction to the vacuum
energy of the corresponding effective field theory level of bosonic string theory. This fact means
precisely that the original vacuum of bosonic string theory is unstable; this result is already known,
due to the presence of physical tachyonic states in the spectrum of bosonic string theory, as it has
been mentioned in a previous section. However, as we shall see in the next chapters, tachyonic
states are not present in the physical spectrum of superstring theory: there, a non-zero value for the
respective one-loop vacuum amplitude, would mean the destabilisation of the vacuum state, and
it would constitute an instance of the cosmological constant problem; it can be proved, eventually,
that the cosmological constant problem is, in general, as serious in string theory, as it is in ordinary
QFTs [2]. The calculation of the one-loop level vacuum amplitude is considered to be additionally
useful because, apart from providing the vacuum energy of the theory, it also contains, in particular,
the partition function of the theory; this fact can be easily deduced, from the very definition of the
partition function itself, which can be naturally expressed as an appropriate trace over the entire
Fock space of the theory, and so, equivalently, as a corresponding functional integral, which ought to
be defined on the genus-one topology of the world-sheet torus [1]. The one-loop vacuum amplitude
contains and encodes, then, all the information about the spectrum of the theory; however, it does
not contain information about the various interactions between the states of the spectrum of the
theory, as this information is, similarly, contained and encoded in the respective two-loop level
vacuum amplitude. An attempt at the calculation of the two-loop level vacuum amplitude of
bosonic string theory is beyond the purposes of this report.
As it has already been mentioned before, the one-loop level vacuum amplitude of bosonic string
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theory, corresponds, obviously, to the term of the value gW = 1, for the genus of the world-sheet,
W, of the power-series of the Polyakov expansion, with no insertions of vertex operators. So, in
accordance with eq.(2.102) of the previous section, the one-loop level vacuum amplitude of bosonic
string theory is equal to the following functional integral:

S({∅})1 =

∫
FT2

dτ1dτ2
1

VCKG
T2 (τ)

∫
FbT2

[db]γT2 (τ)

∫
FcT2

[dc]γT2 (τ)G[b, c, γT2 (τ)]e−Sgh[b,c,γT2 (τ)]

∫
FXT2

[dX]γT2 (τ)e−S[X,γT2 (τ)], (2.104)

on a world-sheet of the topology of the Riemann torus, T2. From the Riemann-Roch theorem, it is
concluded that, the metric of the Riemann torus, T2, has two real moduli, τ1 and τ2, where τ2 > 0;
these two real moduli can be encoded, without loss of generality, into one complex modulus, which
is denoted as τ, in the above eq.(2.104), where τ is equal to τ = τ1 + iτ2, and τ ∈ H, with the space
H = {τ = τ1 + iτ2 ∈ C|τ1 ∈ R; τ2 > 0}, being, of course, the so-called upper-half plane. We shall,
principally, consider the following functional integral:∫

FXT2

[dX]γT2 (τ)e−S[X,γT2 (τ)], (2.105)

and work, for convenience, in the conformal gauge, with the real coordinate system (σ1, σ2), which
satisfies σ1,2 ∈ [0, 2π]. In this coordinate system, (σ1, σ2), the topology of the world-sheet torus, T2,
can be defined by the following boundary conditions:

Xµ(σ1, σ2) = Xµ(σ1 + 2π, σ2), (2.106)

and:
Xµ(σ1, σ2) = Xµ(σ1, σ2 + 2π), (2.107)

where, the former boundary condition refers to the nature and properties of the closed string
coordinates, Xµ, as it is the very definition of a closed string X, while, the latter boundary condition
refers to the topology of the Riemann torus, T2, itself. From its definition, the length element, dsT2 ,
on a Riemann torus, T2, of complex modulus τ, is equal to dsT2 (τ) = 1

2π |dσ1 + τdσ2|, so, its modular
group, MT2 , is the group MT2 = PSL(2;Z). Consequently, the fundamental domain, FT2 , of the space
H, of its complex modulus, τ, is the quotient set FT2 = H/MT2 = H/PSL(2;Z); the conventional,
and most convenient, representation, of this fundamental domain, FT2 =H/PSL(2;Z), is the region
FT2 = {τ ∈H|Re{τ} ∈ (− 1

2 ,+
1
2 ); |τ| > 1}, of the upper -half plane,H = {τ = τ1+ iτ2 ∈ C|τ1 ∈ R; τ2 > 0}.

In addition, det
(
γT2 (τ)

)
= 1

4π2 τ2
2, and the area element, dAT2 (τ), on the Riemann torus, T2, of complex

modulus τ, is equal to dAT2 (τ) = d2σ
√
|det

(
γT2 (τ)|) = d2σ 1

4π2 τ2, so, the respective volume, VT2 (τ),
of the torus, is, then, equal to VT2 (τ) =

∫
T2 d2σ

√
|det

(
γT2 (τ)|) = τ2. Alternatively, an appropriate,

global Weyl transformation, can yield a conformally equivalent, yet normalised length element,
ds(N)

T2 (τ), on the Riemann torus, T2, of complex modulus τ, which is defined to be equal to ds(N)
T2 (τ) =

1√
τ2
|dσ1 + τdσ2|, so that, now, det

(
γ(N)

T2 (τ)
)
= 1, and the respective normalised area element, dA(N)

T2 (τ),

is simply equal to dA(N)
T2 (τ) = d2σ

√
|det

(
γ(N)

T2 (τ)|
)
= d2σ; the respective normalised volume, V(N)

T2 (τ),

is, then, equal to V(N)
T2 (τ) =

∫
T2 d2σ

√
|det

(
γ(N)

T2 (τ)|
)
= 4π2. Accordingly, the normalised Laplacian,

∇2
T2(N)(τ), on a Riemann torus, T2, of complex modulus τ, is equal to the following:

∇2
T2(N)(τ) =

1
τ2
|τ∂1 − ∂2|2, (2.108)

and, the action S[X, γ(N)
T2 (τ)], on the Riemann torus, T2, of complex modulus τ, can be expressed as

in the following:

S[X, γT2 (τ)] = S[X, γ(N)
T2 (τ)] = − 1

4πα′

∫
T2

d2σ
√
|det

(
γ(N)

T2 (τ)|
)
γ(N)ab

T2 (τ)δµν∂aXµ∂aXν =
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=
1

4πα′

∫
T2

d2σ
1
τ2
δµνXµ∇2

T2(N)(τ)Xν. (2.109)

Consequently, the functional integral of eq.(2.105) is equal to:∫
FXT2

[dX]γT2 (τ)e−S[X,γT2 (τ)] =

∫
FXT2

[dX]γ(N)
T2 (τ)e

−S[X,γ(N)
T2 (τ)]

=

=

∫
FX

[dX]γ(N)
T2 (τ)δσ2 [X(2π) − X(0)]δσ1 [X(2π) − X(0)]e−S[X,γ(N)

T2 (τ)]
=

=

∫
FX

[dX]γ(N)
T2 (τ)δσ2 [X(2π) − X(0)]δσ1 [X(2π) − X(0)]e−

1
4πα′

∫
T2 d2σ 1

τ2
δµνXµ∇2

T2(N)
(τ)Xν

=

= V26(
′

det
T2

(
V(N)

T2 (τ)

π
1

4πα′
∇2

T2(N)(τ)))−13, (2.110)

where, V26 is the volume of the 26-dimensional target-space, and, V(N)
T2 (τ) is the normalised volume

of the world-sheet torus, T2, that was given above, as V(N)
T2 (τ) = 4π2; of course, in the above

functional integral of eq.(2.110), the very topology of the world-sheet torus, T2, in the function space
FXT2 , was obviously expressed with the manifest appearance of the appropriate delta-functional
factors, δσ2 [X(2π) − X(0)], and δσ1 [X(2π) − X(0)], multiplying the respective functional integration
measure, [dX]γ(N)

T2 (τ), that correspond to the real, conformal world-sheet coordinate system, (σ1, σ2), of

the Riemann torus, T2. Now, the determinant det′T2 (
V(N)

T2 (τ)

π
1

4πα′∇2
T2(N)(τ)) is, of course, the regularised

determinant of the operator
V(N)

T2 (τ)

π
1

4πα′∇2
T2(N)(τ), on the torus T2 of complex modulus τ, with the

eigenvalues that correspond to its zero-mode eigenfunctions excluded, obviously; the proof that
this operator is self-adjoint is trivial, and it can be easily shown that the the spectrum of the
eigenfunctions of this operator consists of the following, normalised eigenfunctions:

xnm(σ1, σ2) =
1

V(N)
T2 (τ)

ei(nσ1+mσ2), (2.111)

which correspond to their respective eigenvalues:

λnm(τ) =
1
τ2
|nτ −m|2, (2.112)

where, of course, (n,m) ∈ Z2\{(0, 0)}, so, the determinant det′T2 (
V(N)

T2 (τ)

π
1

4πα′∇2
T2(N)(τ)) can, then, be

expressed as the regularised, infinite product, of the respective eigenvalues, that is:

′
det
T2

(
V(N)

T2 (τ)

π
1

4πα′
∇2

T2(N)(τ)) =
∏

(n,m)∈Z2\{(0,0)}

1
α′τ2
|nτ −m|2. (2.113)

The most natural and convenient regularisation scheme, for the calculation of the above infinite
product of eq.(2.113) is, perhaps, the zeta-function regularisation scheme. In this scheme, the infinite
products are regularised with utilising the special values of the anayltical continuation of the zeta-
function, ζ(s), and its derivative, ζ′(s). We cite the special values ζ(−1) = − 1

12 , ζ(0) = − 1
2 , and

ζ′(0) = − 1
2 log(2π), that are needed for our purposes. Accordingly, the above infinite product of

eq.(2.113) is equal to the following:∏
(n,m)∈Z2\{(0,0)}

1
α′τ2
|nτ −m|2 = 4π2α′τ2|η(q(τ))|4, (2.114)
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where, the product formula
∏

n∈N(n + c) = 2i sin(πc) has also been applied, and the nome, q(τ),
has been defined as q(τ) = e2πiτ; the function η(q(τ)) is the Dedekind eta-function, and it can be
expressed as in the following relation:

η(q(τ)) = q
1
24 (τ)

∏
n∈N\{0}

(1 − qn(τ)). (2.115)

Then, the functional integral of eq.(2.110) is equal to:∫
FXT2

[dX]γT2 (τ)e−S[X,γT2 (τ)] = V26(4π2α′τ2|η(q(τ))|4)−13 = V26(4π2α′τ2)−13|η(q(τ))|−52. (2.116)

In the very same fashion as all of the above, the, regularised, Berezin functional integral:

1
VCKG

T2 (τ)

∫
FbT2

[db]γT2 (τ)

∫
FcT2

[dc]γT2 (τ)G[b, c, γT2 (τ)]e−Sgh[b,c,γT2 (τ)], (2.117)

which corresponds to the b-c system, can be calculated; it can be proved that the result of this
calculation is simply [1]:

1
VCKG

T2 (τ)

∫
FbT2

[db]γT2 (τ)

∫
FcT2

[dc]γT2 (τ)G[b, c, γT2 (τ)]e−Sgh[b,c,γT2 (τ)] =
1

VCKG
T2 (τ)

|η(q(τ))|4, (2.118)

where VCKG
T2 (τ) is the volume of the CKG of the metrics of the torus T2 of complex modulus τ. From

the Riemann-Roch theorem, it is concluded that the CKG of the metrics on the torus T2 has 2 real
CKVs, as well as a discrete subgoup, which is the transformation group, Z2, that is, in general, a
subgroup of the CKG on any oriented Riemann surface, of any topology. Then, the CKG of the
metrics on the torus T2 of complex modulus τ, is, obviously, the disconnected group U(1)×U(1)×Z2,
so, its volume is simply equal to twice the original volume of the the torus T2 of complex modulus
τ, that is VCKG

T2 (τ) = VZ2 VT2 (τ) = 2
∫

T2 d2σ
√
|det

(
γT2 (τ)|) = 2τ2. Consequently, by multiplying the

two preceding eqs.(2.116) and (2.118), the one-loop level vacuum amplitude of bosonic string theory,
that is expressed in eq.(2.104), is equal to:

S({∅})1 =

∫
FT2

d2τ
1
2

1
VCKG

T2 (τ)

∫
FbT2

[db]γT2 (τ)

∫
FcT2

[dc]γT2 (τ)G[b, c, γT2 (τ)]e−Sgh[b,c,γT2 (τ)]

∫
FXT2

[dX]γT2 (τ)e−S[X,γT2 (τ)] =

= V26

∫
FT2

d2τ
1
2

1
2τ2

(2π
√
α′τ2)−26|η(q(τ))|−48 =

=
V26

4(2π
√
α′)26

∫
FT2

d2τ

τ2
2

(τ2)−12|η(q(τ))|−48. (2.119)

The modular group, MT2 , of the metrics on the torus T2, is the group MT2 = PSL(2;Z), as it was shown
before; it can be proved that this modular group can be generated by the following transformations:

T : τ→ τ + 1, (2.120)

and:
S : τ→ −1

τ
. (2.121)

Then, focusing on the one-loop vacuum amplitude, as it is expressed in eq.(2.119), it is evident that its
integration measure, d2τ

τ2
2

, which may be sometimes referred to as the Poincaré measure, is invariant
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under the action of the modular group PSL(2;Z); additionally, the Dedekind eta function, η(q(τ)),
has, by its definition, the following transformation properties, under the action of the modular
group PSL(2;Z):

(Tη(q))(τ) = η(q(τ + 1)) = e
πi
12 η(q(τ)), (2.122)

and:
(Sη(q))(τ) = η(q(−1

τ
)) =

√
−iτη(q(τ)), (2.123)

as it can be deduced from its expression as in eq.(2.115), so, it is also evident that the product
(τ2)−12|η(τ)|−48, that is also contained in the expression of eq.(2.119), for the one-loop vacuum am-
plitude, is invariant as well, under the action of the modular group, PSL(2;Z). As a result, the
one-loop vacuum amplitude, S(∅)1, is an overall modular invariant quantity, under the action of
the modular group, PSL(2;Z), of the metrics on the torus T2, in accordance with the fact that all the
scattering amplitudes, in the topology of an arbitrary genus, are expected to be invariant quantities,
under the action of the respective modular group, as it has been mentioned in the previous section.
Furthermore, the expression of the one-loop level vacuum amplitude of bosonic string theory as in
eq.(2.119), allows for the deduction of the partition function of bosonic string theory; it is clear that
the factor |η(q(τ))|−48, in eq.(2.119), has the typical form of a partition function, as it can be expanded
in a power-series, with respect to the nome q(τ) = e2πiτ. Consequently, the term |η(q(τ))|−48 must be
interpreted as the partition function of bosonic string theory, in an ”inverse temperature” that is

equal to 2πτ2

√
α′
2 ; hence, this term shall be denoted as:

Z{X,b,c}(τ, τ̄) = |η(q(τ))|−48, (2.124)

where it can be seen, now, that the contribution to the partition function, of each one of the D = 26
target-space string coordinates, Xµ, is a factor of |η(q(τ))|−2, while the contribution to the partition
function, of the b and c ghost fields is simply to cancel out the contribution of these 2 target-space
string coordinates that are in the 2 lightcone dimensions of the D = 26-dimensional spacetime,
leaving, then, only the contribution of these (D − 2) = 24 target-space string string coordinates
that are in a (D − 2) = 24-dimensional subspace of the D = 26-dimensional spacetime, which was
previously called the transverse spacetime. Now, it is clear that the contribution of the b and c ghost
fields to the partition function of bosonic string theory is due to the Faddeev-Popov determinant,
which, in turn, is nothing more than a consequence of the overall gauge invariance of bosonic string
theory, as it was mentioned in the previous section. Then, it can be seen that the the contribution to
the partition function, of the 2 target-space string coordinates that are in the 2 lightcone dimensions
of the D = 26-dimensional spacetime, is, indeed, a redundancy, or an artifact of the overall gauge
invariance of the theory. That is, the hint that was mentioned in the previous chapter, that the very
existence of the target-space vibration modes, or string excitations, in the 2 lightcone dimensions of
the spacetime might as well be a redundancy, or an artifact of the overall gauge invariance of the
theory, which is a hint that means precisely that it would be possible that these string states, which
correspond to the 2 lightcone dimensions of the target-space, can be excluded entirely, from the
analysis of the spectrum of the theory, has, effectively, been proved. Additionally, it can be proved
that the following power-series expansion holds:

Z{X,b,c}(τ, τ̄) =
∑

n,m∈Z
Z(n,m)
{X,b,c}q

n(τ)q̄m(τ̄) =
∑

n,m∈Z
Z(n,m)
{X,b,c}e

2πiτ1(n−m)e−2πτ2(n+m), (2.125)

for the partition function of eq.(2.124), where the numbers Z(n,m)
{X,b,c}, are the positive integers, that

is, Z(n,m)
{X,b,c} = 0, which, naturally, express the level of degeneracy of the states of bosonic string

theory with energy, that is, mass, equal to M =
√

(n +m)
√

2
α′ ; these numbers, Z(n,m)

{X,b,c}, may be
accordingly called the degeneracy numbers, or multiplicities, of their respective states. It is also
evident, from the form of the power-series expression of the above eq.(2.125), for the partition
function of bosonic string theory, that only the states of degeneracy numbers Z(n,m)

{X,b,c}, with n = m,
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are the states that constitute the physical spectrum of bosonic string theory, whereas, the states
of degeneracy numbers Z(n,m)

{X,b,c}, with n , m, are unphysical. Of course, in the general form of the
power-series expression of the partition function of an arbitrary theory, it is naturally required
that the degeneracy numbers of the bosonic states are positive integers, whereas the degeneracy
numbers of the fermionic states are negative integers. As superstring theory naturally exhibits a
spectrum that contains both bosonic states, as well as their corresponding superpartners, which are
fermionic states, the relative degeneracy numbers of states, in the power-series expression of the
partition function of superstring theory, will, eventually, be either positive or negative integers, for
the cases of bosonic or fermionic states, respectively, as we shall see in the next chapter, where the
partition function of superstring theory will be calculated.
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Chapter 3

A Glance at Superstring Theory

After a lightning presentation of the conventional formalism for the inclusion of fermions in string
theory, we shall subjoin a short presentation of superstring theory, as a theory which can naturally
emerge as the result of the need of an appropriate, well-reasoned physical extension of bosonic
string theory. This nod to superstring theory follows along with a very brief qualitative description
of the physical essence of superstring theory, identifying the various types of superstring theory, as
well as highlighting several of their aspects, and specifically pinpointing the basic features of their
physical spectra.

3.1 Fermions in Superstring Theory

Bosonic string theory, as it has been described until now, appears to suffer from several deficiencies,
one of which is the complications of the presence of a tachyonic state in its physical spectrum.
Additionally, the target-space string coordinates, Xµ, in the Polyakov action of the bosonic string
theory, may transform under tensor, rather than spinor, representations of the spacetime Poincaré
group; this results to the total absence of spacetime fermionic states, from the spectrum of bosonic
string theory. There is, then, a need for an appropriate extension of bosonic string theory, that
is, for an extension which contains spacetime fermionic states in its physical spectrum; the full
theory that comes as a result of this extension is superstring theory, and the conventional approach
to its description is given in terms of the Ramond-Neuveu-Schwarz (RNS) formulation. In the
RNS formulation, the spacetime fermionic states can arise from the action of the fields ψµ, where
µ is a spacetime index, on a degenerate vacuum state, which transforms under the spinorial rep-
resentation of the little group of the spacetime Poincaré group. However, the introduction of an
action of these new, D in number, world-sheet fermion fields, ψµ, results, in general, in quantum
states of negative norms; naturally, there is also a need for the introduction of a new, appropriate
gauge symmetry of the overall action of the theory, so that these quantum states of negative norms
automatically decouple, from the spectrum of the physical states of the theory. It turns out that
this new, appropriate gauge symmetry of the overall action of superstring theory, must be the
super-diffeomorphism invariance; the full gauge group of superstring theory, then, consists of the
diffeomorphism group and the Weyl group, as well as local supersymmetry, super-Weyl transfor-
mations, and 2-dimensional local Lorentz transformations, which are precisely the transformations
of the fundamental spinor representation of the Lorentz group. The in-depth description of this
full gauge group of superstring theory, as well as the proof for the general form of the full action
of superstring theory, are beyond the purposes of this presentation. It can be proved that, after the
appropriate gauge fixing, the action of the D world-sheet fermion fields takes the following form,
in the conformal gauge, expressed in the complex coordinate system, (z, z̄) [2]:

SF[ψ, ψ̃] = − 1
2π

∫
W

d2z(ψµ∂̄ψµ + ψ̃µ∂ψ̃µ), (3.1)
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where the left-handed and right-handed world-sheet fermion fields, ψµ and ψ̃µ, respectively, are
Majorana-Weyl spinors, and so they can be taken to be real; the equations of motion for the world-
sheet fermion fields, ψµ and ψ̃µ, are, obviously, the following:

∂̄ψµ = 0, (3.2)

and:
∂ψ̃µ = 0, (3.3)

respectively, while, the holomorphic and anti-holomorphic components of the relevant energy-
momentum tensor, TF, are respectively denoted as TF(z) and T̃F(z̄), and are equal to the following:

TF(z) = −1
2
ψµ∂ψµ(z), (3.4)

and:
T̃F(z̄) = −1

2
ψ̃µ∂̄ψ̃µ(z̄). (3.5)

The fact that the world-sheet fermion fields, ψµ and ψ̃µ, are real fields, restricts their possible
boundary conditions, up to a real phase; from the global Poincaré invariance of their action, it
can be seen that the boundary conditions for the world-sheet fermion fields, ψµ and ψ̃µ, can be
expressed, conventionally, as in the following:

ψµ(e2πiz) = eiπ(1−a)ψ(z), (3.6)

and, similarly:
ψ̃µ(e2πiz̄) = eiπ(1−ã)ψ̃(z̄), (3.7)

respectively, where a, ã = 0, 1, of course. The case of the periodic boundary conditions of a world-
sheet fermion field is referred to as the Ramond (R) sector, whereas, the case of the anti-periodic
boundary conditions of a world-sheet fermion field is referred to as the Neveu -Schwarz (NS)
sector; accordingly, the full, composed sector of the action of the world-sheet fermion fields, ψµ

and ψ̃µ, can be any one of the composed R-R, R-NS, NS-R, or NS-NS sectors. It can be seen that a
world-sheet fermion field is single-valued in the NS sector, whereas a world-sheet fermion field has
a Z2 branch cut in the R sector: this fact implies that the action of the world-sheet fermion field on
a degenerate vacuum state is only possible in the R sector, so, accordingly, a world-sheet fermion
field can produce spacetime fermionic states only in the R sector, whereas it produces exclusively
spacetime bosonic states in the NS sector; consequently, fermionic states can be produced only in
the R-NS and the NS-R sectors, whereas bosonic states can be produced only in the R-R and the
NS-NS sectors, of the action of the world-sheet fermion fields, ψµ and ψ̃µ.
It can be seen, now, that the action of the 2D world-sheet fermion fields, ψµ and ψ̃µ, describes a
CFT of central charges c = c̃ = D

2 . The residual gauge symmetry of the the full action of the Super-
CFT (SCFT) of superstring theory is invariance under superconformal transformations, which are
generated by the holomorphic and anti-holomorphic Noether world-sheet supercurrents, TS(z), and
T̃S(z̄), as in the following [2]:

TS(z) = i

√
2
α′
ψµ∂Xµ(z), (3.8)

and:

T̃S(z̄) = i

√
2
α′
ψ̃µ∂̄Xµ(z̄), (3.9)

respectively, where the target-space string coordinates, ∂Xµ and ∂̄Xµ, act like the respective super-
partners of the worldsheet fermion fields, ψµ and ψ̃µ, so they are appropriately referred to as such;
these world-sheet supercurrents obviously have the same boundary conditions as their respective
worldsheet fermion fields, while the current algebra of these world-sheet supercurrents, with the
energy-momentum tensor of the full action of the SCFT of superstring theory, is called the N = 1
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superconformal algebra.
Considering, now, the scattering amplitudes of superstring theory, it can be proved that the stan-
dard Faddeev-Popov procedure, for the full action of superstring theory, results to the emergence
of the appropriate ”superpartners” for the b and c ghost fields, which are the, commuting, β and γ
superghost fields, respectively [2]; the corresponding action of the β and γ superghost fields is called
the superghost action, or, simply, the β-γ system, and it can be proved to eventually emerge, from
the standard Faddeev-Popov prodecure, as an action which is identical, in form, to the b-c system,
yet which describes a CFT of central charges c = c̃ = 11 [2]. Consequently, the total central charge,
ctot, of the SCFT of the superstring theory is ctot = D + D

2 − 26 + 11, and the critical dimension, Dcrit.,
of the SCFT of superstring theory, which can be solved for, by the requirement that ctot(Dcrit.) = 0, is
accordingly found to be Dcrit. = 10. Then, similarly to the case of bosonic string theory, which was
presented in the previous chapter, it must be, eventually, imposed that the number D of the space-
time dimensions be equal to D = Dcrit. = 10, in order that the Weyl and the respective super-Weyl
anomalies of the SCFT of superstring theory be cancelled, in general.

3.1.1 The Partition Function of the fermionic part of Superstring Theory

The partition function, for the action of the D = 10 ”doublets” of the world-sheet fermion fields, ψµ

and ψ̃µ, which has been expressed in the conformal gauge in the preceding eq.(3.1), is given by a
fashion kindred to the case of bosonic string theory, that is, from the calculation of the respective,
regularised, Berezin functional integral, as in the following:

Z{ψ,ψ̃}

[
a
b

] [
ã
b̃

]
(τ, τ̄) =

∫
FψT2

[dψ]γT2 (τ)

∫
Fψ̃T2

[dψ̃]γT2 (τ)eSF[ψ,ψ̃] =

=

∫
FψT2

[dψ]γT2 (τ)

∫
Fψ̃T2

[dψ̃]γT2 (τ)e−
1

2π

∫
W d2z(ψµ∂̄ψµ+ψ̃µ∂ψ̃µ) =

=

∫
FψT2

[dψ]γT2 (τ)e−
1

2π

∫
W d2zψµ∂̄ψµ


∫

Fψ̃T2

[dψ̃]γT2 (τ)e−
1

2π

∫
W d2zψ̃µ∂ψ̃µ

 , (3.10)

in the world-sheet topology of the Riemann torus, T2, of the complex modulus, τ, which is defined
by the following boundary conditions, for the world-sheet fermion fields, ψµ and ψ̃µ:

ψ(z + 2π) = eiπ(1−a)ψ(z),

ψ̃(z̄ + 2π) = eiπ(1−ã)ψ̃(z̄), (3.11)

and:
ψ(z + 2πτ) = eiπ(1−b)ψ(z),

ψ̃(z̄ + 2πτ) = eiπ(1−b̃)ψ̃(z̄), (3.12)

where a, ã, b, b̃ = 0, 1, of course. Then, by the usual methods of zeta-function regularisation, it can
be proved that the following holds [2]:

Z{ψ,ψ̃}

[
a
b

] [
ã
b̃

]
(τ, τ̄) =

∫
FψT2

[dψ]γT2 (τ)

∫
Fψ̃T2

[dψ̃]γT2 (τ)eSF[ψ,ψ̃] =


θ

[
a
b

]
(q(τ))

η(q(τ))


5 
θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


5

, (3.13)

where the function θ
[
a
b

]
(q(τ)) is the Jacobi theta-function of the characteristics a and b, and it can

be expressed as in the following relation [2]:

θ

[
a
b

]
(q(τ)) = lim

υ→0
θ

[
a
b

]
(q(τ); υ) = lim

υ→0

∑
n∈Z

q
1
2 (n− a

2 )2
(τ)e2πi(υ− b

2 )(n− a
2 ) =
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,
= eiπ ab

2 q
1
8 a2

(τ)
∏
n∈N

(1 − qn(τ))(1 + qn+ a−1
2 (τ)eiπb)(1 + qn− a+1

2 (τ)e−iπb) =

= eiπ ab
2 q

1
8 a2− 1

24 (τ)η(q(τ))
∏
n∈N

(1 + qn+ a−1
2 (τ)eiπb)(1 + qn− a+1

2 (τ)e−iπb), (3.14)

and q(τ), is the nome, q(τ) = e2πiτ, of course. The Jacobi theta-functions, θ
[
a
b

]
(q(τ)), have the

following, trivial, periodicity properties, relating to their characteristics, a and b:

θ

[
a + 2

b

]
(q(τ)) = θ

[
a
b

]
(q(τ)) (3.15)

and:

θ

[
a

b + 2

]
(q(τ)) = eiπaθ

[
a
b

]
(q(τ)), (3.16)

respectively, as well as the following transformation properties, under the transformations that are
defined by the generators T and S of the modular group, PSL(2;Z), of the metrics on the topology
of the torus, T2: (

Tθ
[
a
b

]
(q)

)
(τ) = θ

[
a
b

]
(q(τ + 1)) = e−

iπ
4 a(a−2)θ

[
a

a + b − 1

]
(q(τ)), (3.17)

and: (
Sθ

[
a
b

]
(q)

)
(τ) = θ

[
a
b

]
(q(−1

τ
)) =

√
−iτe

iπ
2 abθ

[
b
−a

]
(q(τ)), (3.18)

respectively. Similarly to the aforementioned, it can be proved that the contribution of the respective
functional integral, which corresponds to the β and γ superghost fields, is given by the following
[2]:

Z{β,γ};m,m̃

[
a
b

] [
ã
b̃

]
(τ, τ̄) = (−1)b+mab η(q(τ))

θ

[
a
b

]
(q(τ))

(−1)b̃+m̃ãb̃ η̄(q̄(τ̄))

θ̄

[
ã
b̃

]
(q̄(τ̄))

, (3.19)

where the numbers m and m̃, are called the left and right chirality projections, respectively, and
they may take the values m, m̃ = 0, 1. Consequently, by mutiplying the two preceding eqs.(3.13),

and (3.19), the consolidated partition function, which may be denoted as Z{ψ,ψ̃,β,γ};m,m̃

[
a
b

] [
ã
b̃

]
(τ, τ̄),

for the action of the D = 10 pairs of the world-sheet fermion fields, ψµ and ψ̃µ, combined with the
contribution of the functional integral that corresponds to the β and γ superghost fields, is equal to
the following:

Z{ψ,ψ̃,β,γ};m,m̃

[
a
b

] [
ã
b̃

]
(τ, τ̄) = Z{ψ,ψ̃}

[
a
b

] [
ã
b̃

]
(τ, τ̄)Z{β;γ};m,m̃

[
a
b

] [
ã
b̃

]
(τ, τ̄)

= (−1)b+mab


θ

[
a
b

]
(q(τ))

η(q(τ))


4

(−1)b̃+m̃ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


4

. (3.20)

It can be easily seen, now, in the partition function of the above eq.(3.20), that the contribution of
each of the D = 10 pairs of the world-sheet fermion fields, ψµ and ψ̃µ, of the appropriate boundary

conditions, is a factor of


θ

ab
(q(τ))

η(q(τ))


1
2

θ̄

ãb̃
(q̄(τ̄))

η̄(q̄(τ̄))


1
2

, while, the contribution of the functional integral,
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that corresponds to the β and γ superghost fields, is simply to cancel out the contributions of these
2 doublets of world-sheet fermion fields, which are the superpartners of these target-space string
coordinates that are in the 2 lightcone dimensions of the D = 10-dimensional spacetime, up to the
phase factor of (−1)b+mab(−1)b̃+m̃ãb̃, leaving, then, only the effects of exclusively these (D − 2) = 8
doublets of world-sheet fermion fields, which are the superpartners of these target-space string
coordinates that are in the (D − 2) = 8-dimensional, transverse spacetime.
However, there still remains the additional complication of the variety of the aforementioned
possible boundary conditions of the world-sheet fermion fields, ψµ and ψ̃µ, by which the world-
sheet topology of the Riemann torus T2 of the complex modulus τ is defined; from reasons which
can be regarded as being relevant to the consistency of superstring theory, such as, for instance, the
proper definition and calculation of functional integrals, in the world-sheet topology of the Riemann
torus, T2, as well as the modular invariance of the full partition function of superstring theory, it can
be concluded that an appropriately weighted summation, over all the various possible boundary
conditions of the world-sheet fermion fields, ψµ and ψ̃µ, must be additionally included, in the
definition of the full partition function of superstring theory. It can be proved, accordingly, that the
appropriate form of the weight factor for the summation over all the possible boundary conditions
of the world-sheet fermion fields, ψµ and ψ̃µ, is given by the weight factor Ca,ã =

1
2 (−1)a 1

2 (−1)ã;
consequently, the appropriate partition function, which is denoted as Z{ψ,ψ̃,β,γ};m,m̃(τ, τ̄), for the
theory of the D = 10 pairs of the world-sheet fermion fields, ψµ and ψ̃µ, along with the β and γ
superghost fields, is the partition function of the fermionic part of superstring theory and it is,
eventually, equal to the following:

Z{ψ,ψ̃,β,γ};m,m̃(τ, τ̄) =
1∑

a,b=0

1∑
ã,b̃=0

Ca,ãZ{ψ,ψ̃,β,γ};m,m̃

[
a
b

] [
ã
b̃

]
(τ, τ̄) =

=
1
2

1∑
a,b=0

(−1)a 1
2

1∑
ã,b̃=0

(−1)ãZ{ψ,ψ̃}

[
a
b

] [
ã
b̃

]
(τ, τ̄)Z{β,γ};m,m̃

[
a
b

] [
ã
b̃

]
(τ, τ̄) =

=
1
2

1∑
a,b=0

(−1)a+b+mab


θ

[
a
b

]
(q(τ))

η(q(τ))


4

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


4

, (3.21)

where, the different choices, m, m̃ = 0, 1, for the value of the left and right chirality projections, m, and
m̃, respectively, distinguish, between the various types of superstring theories, as it will be explained
in the next section. Evidently, now, from the aforementioned properties of the Jacobi theta-functions,

θ

[
a
b

]
(q(τ)), and the Dedekind eta-function, η(q(τ)), under the transformations of the modular group,

PSL(2;Z), on the topology of the Riemann torus, T2, the partition function Z{ψ,ψ̃,β,γ};m,m̃(τ, τ̄) of the
above eq.(3.21), is, indeed, a quantity that exhibits modular invariance; this fact holds precisely due
to the appropriate form of its weight factor, Ca,ã =

1
2 (−1)a 1

2 (−1)ã. Additionally, it can be proved that
this specific form of the weight factor, Ca,ã =

1
2 (−1)a 1

2 (−1)ã, in the partition function Z{ψ,ψ̃,β,γ};m,m̃(τ, τ̄)
of the above eq.(3.21), can also be deduced, from the requirement of the unitarity, that is, of the
modular invariance, of the string S-matrix elements, in the topology of a higher genus, along with
the requirement of their appropriate factorisation, as products of string S-matrix elements, in the
world-sheet topology of the Riemann torus, T2; it can be shown that, this specific form of the
weight factor ensures the correct spin-statistics, as well as the correct particle interpretation, for the
partition function Z{ψ,ψ̃,β,γ};m,m̃(τ, τ̄) of eq.(3.21), and, consequently, for the full partition function of
superstring theory [3].
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3.2 The Partition Function of Superstring Theory

We are, now, in the position to calculate the full partition function of superstring theory. According
to the previous section, superstring theory, existing in its critical dimension, D = Dcrit. = 10, is
a theory that contains D = 10 target-space string coordinates, Xµ, and the anti-commuting ghost
fields, b and c, along with their superpartners, which are the D = 10 pairs of the world-sheet fermion
fields, ψµ, and ψ̄µ, and the commuting superghost fields, β and γ, respectively. As a consequence,
the full partition function of superstring theory can, then, be readily caclulated, by assembling all the
appropriate preceding equations, which respectively express the functional integral contributions
of all these fields, that are contained in superstring theory, to its partition function; the result is the
following:

ZII;m,m̃(τ, τ̄) = Z{X,b,c,ψ,ψ̄,β,γ};m,m̃(τ, τ̄) =

= |η(q(τ))|−16 1
2

1∑
a,b=0

(−1)a+b+mab


θ

[
a
b

]
(q(τ))

η(q(τ))


4

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


4

, (3.22)

where two different cases, concerning the values of the left and right chirality projections, m and
m̃, respectively, can already be distinguished: namely, the case where m = m̃, that is conventionally
taken to be the case where m = m̃ = 1, refers to the so-called type IIB superstring theory, which is,
obviously, a chiral theory, whereas, the case where m , m̃, that is conventionally taken to be the
case where m = 0, and m̃ = 1, refers to the so-called type IIA superstring theory, which is, obviously,
a non-chiral theory. Then, the partition function of the chiral, type IIB superstring theory can be
expressed as:

ZIIB(τ, τ̄) = ZII;m,m̃(τ, τ̄)|m=m̃=1 =

= |η(q(τ))|−16 1
2

1∑
a,b=0

(−1)a+b+ab


θ

[
a
b

]
(q(τ))

η(q(τ))


4

1
2

1∑
ã,b̃=0

(−1)ã+b̃+ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


4

, (3.23)

whereas, the partition function of the non-chiral, type IIA superstring theory can be expressed as:

ZIIA(τ, τ̄) = ZII;m,m̃(τ, τ̄)|m=0,m̃=1 =

= |η(q(τ))|−16 1
2

1∑
a,b=0

(−1)a+b


θ

[
a
b

]
(q(τ))

η(q(τ))


4

1
2

1∑
ã,b̃=0

(−1)ã+b̃+ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


4

. (3.24)

We additionally mention that the type I superstring theory, which is a superstring theory that
contains both open strings and closed strings, as well as the two distinct ”flavours” of the heterotic
theory of closed strings, that contains an uneven number of leftψµ and right ψ̄µ world-sheet fermion
fields, may also stand as possibilities for a consistent superstring theory; we will not be occupied
with these other kinds of supertsring theory, as they are beyond the scope of this report, where
the range of the analysis of the superstring theory shall be restricted to enclose exclusively the
cases of the type IIA and type IIB superstring theory. Before we move on to the analysis of the
respective physical spectra of the type IIA and type IIB superstring theory, we note, for expressional
convenience, that the summations over the numbers b and b̃, which appear explicitly in the partition
functions of eqs.(3.23) and (3.24), for the type IIB and type IIA superstring theories, respectively, are
called the left and right Gliozzi-Scherk-Olive (GSO) projections, respectively. As it was mentioned
in the previous section, all the space-time bosonic states are encoded exclusively in the NS-NS and
R-R sectors, whereas all the space-time fermionic states are encoded exclusively in the NS-R and
R-NS sectors, of the theory of the world-sheet fermion fields, ψµ and ψ̄µ. The physical spectra of
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the type IIA and type IIB superstring theory may then be presented in an orderly fashion, relating
to the sectors of the respective theories; we will see that, in each of these sectors, the respective GSO
projections serve as a filter for the spectrum, prohibiting the controversial states, such as the physical
tachyonic states, while permitting exclusively the existence of appropriate, non-tachyonic states, in
the physical spectrum of the theory. Of course, in order to deduce the respective physical spectra
of the type IIB and type IIA superstring theory, their respective partition functions of eqs.(3.23)
and (3.24) must be expressed as their respective power-series expansions, in terms of the nome,
q = e2πiτ, just like in the case of the partition function of bosonic string theory; similarly to the
previous chapter, we will not write these respective power-series expansions explicitly, but we shall
rather consider them implicitly, and mention their corresponding massless physical spectra only
qualitatively.
On the one hand, concerning the spacetime bosonic states of the physical spectra of the type
IIB and type IIA superstring theory, it can be shown that they are identical in their respective
NS-NS sectors; there, the corresponding GSO projections, in the respective partition functions of
eqs.(3.23) and (3.24), ensure that they contain massless string states, all of which can transform
under tensor representations of the little group, SO(8), of the spacetime Poincaré group, SO(10),
that corresponds to the D = 10-dimensional target-space: namely, these massless string states can
form a traceless symmetric spacetime tensor and an antisymmetric spacetime tensor, as well as a,
pure trace, spacetime scalar; these massless states are, of course, the graviton, the Kalb-Ramond,
and the dilaton states, respectively. The most remarkable fact, however, for the GSO projections,
in the partition functions of eqs.(3.23) and (3.24), for the type IIB and type IIA superstring theory,
respectively, is that these GSO projections also ensure that the tachyonic state, of negative mass-
squared, that was contained in the physical spectrum of bosonic string theory, is now removed; the
spectra of the type IIA and type IIB superstring theories now contain no physical tachyonic states,
in their respective NS-NS sectors. Of course, from the very form of the power-series expansions,
in terms of the nome, q = e2πiτ, of the partition functions of the type IIA and type IIB superstring
theories, it is clear that their respective physical spectra can contain no such tachyonic states,
of negative mass-squared, in their respective R-R, NS-R, and R-NS sectors, precisely due to the
properties of the Dedekind eta-function and of the Jacobi theta-functions. Therefore, it is evident
that any such tachyonic states, of negative mass-squared, that may possibly be contained in the
physical spectra of the type IIA and type IIB superstring theories, must necessarily be spacetime
bosonic states that are included exclusively in their respective NS-NS sectors. Thus, it can be
concluded that the physical spectra of the type IIA and type IIB superstring theories, contain no
tachyonic states at all, in any one of their respective NS-NS, R-R, NS-R and R-NS sectors whatsoever.
It has been shown, then, that as the physical spectra of the type IIA and type IIB superstring theories
contain no tachyonic states at all, the complications of the presence of the tachyonic state in the
physical spectrum of the bosonic string theory can be completely resolved, when one moves on to
the superstring theory, as it was stated in the previous chapter, by the effects of the GSO projections
in the partition function of superstring theory. Additionally, it can be shown that the physical
spectra of the type IIB and type IIA superstring theory are different in their respective R-R sectors;
there, the corresponding GSO projections, in the respective partition functions of eqs.(3.23) and
(3.24), result to the fact that the physical spectrum of the type IIB superstring theory contains
massless states that can form a spacetime scalar, a two-index antisymmetric spacetime tensor, and
a self-dual, four-index antisymmetric spacetime tensor, whereas the physical spectrum of the type
IIA superstring theory contains massless states that can form a spacetime vector, and a three-index
antisymmetric spacetime tensor.
On the other hand, concerning the spacetime fermionic states of the physical spectra of the type
IIB and type IIA superstring theory, it can be shown that they are identical in their respective NS-R
sectors; there, the corresponding GSO projections, in the respective partition functions of eqs.(3.23)
and (3.24), ensure that they contain massless spacetime fermionic states, which correspond to a
spin- 3

2 gravitino, and to a massless, spin- 1
2 spacetime fermion, of opposite chiralities. In particular,

the spin- 3
2 gravitino and the massless, spin- 1

2 spacetime fermion are conventionally taken to have
right and left chiralities, respectively. Additionally, it can be shown that the physical spectra of
the type IIB and type IIA superstring theory are different, in their chirality, in their respective
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R-NS sectors; there, the corresponding GSO projections, in the respective partition functions of
eqs.(3.23) and (3.24), result to the fact that that the respective physical spectra of the type IIB and
type IIA superstring theory contain massless spacetime fermionic states of the same chirality, which
correspond to a spin- 3

2 gravitino, and to a massless, spin- 1
2 spacetime fermion. In particular, the

spin- 3
2 gravitino and the massless, spin- 1

2 spacetime fermion are conventionally taken to have left
and right chiralities, in the case of the physical spectra of the type IIA and type IIB superstring
theory, respectively. In summary, it can be seen that, each of the physical spectra of the type IIA
and type IIB superstring theory contains two spin- 3

2 gravitini; it is said, then, that both of the type
IIA and type IIB superstring theories, exhibitND=10 = 2 local supersymmetry. However, in the type
IIB superstring theory, the two spin- 3

2 gravitini have the same chiralities, whereas the two spin- 1
2

massless spacetime fermions have opposite chiralities, and the theory is then chiral; on the contrary,
in the type IIA superstring theory, the two spin- 3

2 gravitini and the two spin- 1
2 massless spacetime

fermions can have any one of the two possible chiralities, and the theory is then non-chiral, as it
was mentioned before.
Moreover, in both of the cases of the type IIA and type IIB superstring theory, it can be easily seen
that the contribution of the bosonic part of their respective partition functions, which corresponds
to the factor of |η(q(τ))|−16, that appears in their respective partition functions of eqs.(3.23) and (3.24),
refers exclusively to the massive states that are contained in their respective spectra. Furthermore, it
can be also seen that both the partition functions of eqs.(3.23) and (3.24), for the type IIB and type IIA
superstring theory, respectively, are identically equal to zero; this fact is to be expected, as both of the
type IIA and type IIB superstring theories are supersymmetric theories. The supersymmetric nature
of a theory means precisely that the spectrum of the theory contains an equal number of spacetime
bosonic states and spacetime fermionic states of a specific mass, as for each of these spacetime
bosonic states there corresponds exactly one spacetime fermionic state, of the same specific mass,
which is dubbed as its superpartner state; this bijective correspondence means precisely that the net
degeneracy numbers of all the states of any specific mass, in the partition function of the theory, are
zero. To elaborate even more, in the power-series expression of the partition function for the case of
a superstring theory the negative degeneracy number of a spacetime fermionic state of any specific
mass is cancelled out against the positive degeneracy number of its superpartner, bosonic spacetime
state, yielding, eventually, a zero result. This fact is in accordance with what was mentioned in the
previous chapter, where the partition function of bosonic string theory was calculated, concerning
the general form and the signs of the degeneracy numbers in the power-series expression of the
partition function of an arbitrary physical theory.
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Chapter 4

Space-Time Compactification

The notion of spacetime compactification is nothing more than the identification of regions of the
spacetime, by means of enforcing an specific equivalence relation on the spacetime. Of course, the
motivation for spacetime compactification is perfectly natural, as, in accordance with the current
knowledge and observations, it is expected that the 10-dimensional spacetime of a consistent su-
perstring theory must necessarily contain an exclusively 4-dimensional, uncompactified spacetime,
in addition to a 6-dimensional, arbitrarily curved and compactified spacetime, so that superstring
theory may constitute a physically acceptable theory. Spacetime compactification in string theory
is a vast subject, as vast as is the number of the various possible compactified spacetimes, in which
a string theory can exist. However, string theory in an arbitrary compactified spacetime is not
known to constitute, in general, an exactly solvable model, apart from some special cases. The
presentation that follows consists of the description of superstring theory in two rather simple
cases, which constitute exactly solvable models; namely, these cases are primarily the more generic
case of spacetime Td-type toroidal compactification, and, after the introduction of the notion of the
orbifold, the more specific case of spacetime Td/ZN-type orbifold compactification.

4.1 Space-Time Td-type Toroidal Compactification

We now return to the general, non-linear sigma model of eq.(2.1), where we now impose the typically
less restricting background of a flat, constant spacetime metric field, G, of a constant Kalb-Ramond
field, B, and of a constant dilaton field, Φ, that is equal to its vacuum expectation value, Φ = ⟨Φ⟩,
assuming again, as always, that the string field, X, expresses a closed string; then, the general,
non-linear sigma model of eq.(2.1), is reduced to the following:

S[X, g] = − 1
4πα′

∫
W

d2σ
√
|det

(
g
)|(Gµνgab + iBµν

ϵab√
|det

(
g
)| )∂aXµ∂bXν − λ⟨Φ⟩χW , (4.1)

where we can require, without loss of generality, that the action of the above eq.(4.1) is expressed
in the conformal gauge, with the real world-sheet coordinate system, (σ1, σ2), which satisfies σ1,2 ∈
[0, 2π]. The spacetime Td-type toroidal compactification means precisely the enforcement of the
following equivalence relation on the spacetime:

xM ≡ xM + 2π;∀M ∈Nd, (4.2)

that is, with regard to a specific, d-dimensional subspace of the D-dimensional spacetime, which
is called the compactified, or, internal, space Td. Accordingly, while the extrema of the action of
eq.(4.1), with respect to the closed string coordinates, Xµ, yield the same equations of motion as
those in eq.(2.5), that is:

∇2Xµ = 0, (4.3)
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the boundary conditions for the closed target-space string coordinates, XM, which are in the com-
pactified space Td, as it was defined in eq.(4.2), and which define the very topology of the compact-
ified target-space, are, now, the following:

XM(σ1 + 2π, σ2) ≡ XM(σ1, σ2);∀M ∈Nd, (4.4)

contrary to the case of the boundary conditions for the closed target-space string coordinates, Xµ,
which are not in the compactified space Td, that are simply the normal closed string boundary
conditions, that is:

Xµ(σ1 + 2π, σ2) = Xµ(σ1, σ2);∀µ ∈ND\Nd, (4.5)

as usual. It is evident, from what was mentioned in the previous chapters, that the partition function
of the theory of the action of eq.(4.1), taking into consideration only these Xµ target-space string
coordinates, which are not in the compactified spacetime Td, is precisely the following:

Z(D−d)
{X} (τ, τ̄) = |η(q(τ))|−2(D−d), (4.6)

so, in what follows, we shall give prominence to the calculation of the partition function of the
theory of the action of the preceding eq.(4.1), taking into consideration only those XM target-space
string coordinates, which are in the compactified space Td. In general, we can always express any
such target-space string coordinate, XM, as XM = XM

c. +XM
q. , that is, as the sum of a classical field part,

XM
c. , which is a solution to the Cauchy problem of the equations of motion of eq.(4.3), along with

the boundary conditions of eq.(4.4), and a quantum field part, XM
q. , which just satisfies the usual,

normal boundary conditions of eq.(4.5); then, taking into consideration only these XM string fields,
the action of eq.(4.1) is partitioned as in the following:

S[X, g] = − 1
4πα′

∫
W

d2σ
√
|det

(
g
)|(GMN gab + iBMN

ϵab√
|det

(
g
)| )∂aXM

c. ∂bXN
c.

− 1
4πα′

∫
W

d2σ
√
|det

(
g
)|(GMN gab + iBMN

ϵab√
|det

(
g
)| )∂aXM

q. ∂bXN
q. − λ⟨Φ⟩χW =

= S[Xc., g] + S[Xq., g] + λ⟨Φ⟩χW . (4.7)

Naturally, the partition function of the theory of the action of the above eq.(4.7), can be calculated
from the respective functional integral, of the form of eq.(2.105), that is:

ZTd (τ, τ̄) =
∫

FXT2 /≡
[dX]γT2 (τ)e−S[X,γT2 (τ)], (4.8)

where, now, the function space FXT2 / ≡, of volume that is equal to:

VFXT2 /≡ =

∫
FXT2 /≡

[dX]
√

det
(d)

(G) = VRd/≡ =

∫
Rd/≡

ddX
√

det
(d)

(G) =

=

∫
Rd

ddX
√

det
(d)

(G)H(X)H(X − 2π) =
∫ 2π

0
ddX

√
det
(d)

(G) = (2π)d
√

det
(d)

(G),

is the quotient space of the function space FXT2 , of target-space string fields, X, on the world-sheet
of the topology of the Riemann torus, T2, with respect to the equivalence relation of the spacetime
Td-type toroidal compactification, as it was defined in eq.(4.2). Of course, in the functional integral of
the preceding eq.(4.8), the action S[X, γT2 (τ)] is just the action of eq.(4.7), evaluated in the world-sheet
metric γT2 (τ) of the Riemann torus T2 of the complex modulus τ, so the topology of the world-sheet
Riemann torus T2 itself is, now, obviously not exclusively defined by the boundary conditions of
the eqs.(2.106) and (2.107), but it is naturally defined by the boundary conditions of the eqs.(2.106)
and (2.107) for the quantum field parts, XM

q. , along with the appropriate boundary conditions for
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the classical field parts, XM
c. , of the target-space string fields, XM, that are in the compactified space

Td. These appropriate boundary conditions must naturally enforce the equivalence relation of the
spacetime Td-type toroidal compactification, as it was defined in eq.(4.2), so the topology of the
world-sheet torus, T2, may, now, be defined by none other than the following boundary conditions:

XM(σ1, σ2) ≡ XM(σ1 + 2π, σ2), (4.9)

and:
XM(σ1, σ2) ≡ XM(σ1, σ2 + 2π), (4.10)

or, equivalently, with employment of the natural function for toroidal compactification, f (x) = eix:

f (XM(σ1, σ2) − XM(σ1 + 2π, σ2)) = 1, (4.11)

and:
f (XM(σ1, σ2) − XM(σ1 + 2π, σ2)) = 1, (4.12)

where, again, the former boundary condition refers to the nature and properties of the closed string,
as it is none other than the very definition of a closed string, of the preceding eq.(4.4), while, the
latter boundary condition refers to the topology of the world-sheet torus T2 itself, all similarly to
the boundary conditions of eqs.(2.106) and (2.107), respectively, yet, now, for the target-space string
fields, XM, that are in the compactified space Td. Consequently, and similarly to eq.(2.110), the
functional integral of eq.(4.8), is equal to the following:

ZTd (τ, τ̄) =
∫

FXT2 /≡
[dX]γT2 (τ)e−S[X,γT2 (τ)] =

=

∫
FX/≡

[dX]γ(N)
T2 (τ)δσ2 [ f (X(2π) − X(0))]δσ1 [ f (X(2π) − X(0))]e−S[X,γ(N)

T2 (τ)]
=

=

∫
FX/≡

[dX]γ(N)
T2 (τ)

∑
n,m∈Zd

δσ2 [Xc.(2π) − Xc.(0) + 2πn]δσ1 [Xc.(2π) − Xc.(0) + 2πm]e−S[X,γ(N)
T2 (τ)], (4.13)

where, now, the topology of the world-sheet torus, T2, in the function space FXT2 /≡, was evidently
expressed with the manifest appearance of the appropriate delta-functional factors, δσ2 [ f (X(2π) −
X(0))] and δσ1 [ f (X(2π)−X(0))], multiplying the respective functional integration measure [dX]γ(N)

T2 (τ),

that correspond to the real, conformal world-sheet coordinate system (σ1, σ2) of the Riemann torus,
T2. Of course, it can be easily seen that, in the functional integral of the above eq.(4.13), the classical
field, Xc., cannot but satisfy that:

Xc.(σ1, σ2) = X0 + nσ1 +mσ2, (4.14)

where the integer elements, n,m ∈ Zd, are called its winding numbers and its momentum numbers,
respectively; hence, in the functional integral of eq.(4.13), the action S[X, γ(N)

T2 (τ)] can, obviously, be
expressed as:

S[X, γ(N)
T2 (τ)] = − π

τ2α′
(nτ −m)(T)(G + B)(nτ̄ −m)+

+
1

4πα′

∫
T2

d2σ
√
|det

(
γ(N)

T2 (τ)
)
|GMNXM

q. γ
(N)ab
T2 (τ)∂a∂bXN

q. =

= − π
τ2α′

(nτ −m)(T)(G + B)(nτ̄ −m) + S[Xq., γ
(N)
T2 (τ)], (4.15)

and the functional integration measure, [dX]γ(N)
T2 (τ), can, obviously, be factorised, as in [dX]γ(N)

T2 (τ) =

ddX0
√

det(d)(G)[dXq.]γ(N)
T2 (τ). Then, the functional integral of eq.(162), is reduced to the following:

ZTd (τ, τ̄) =
∫

FXT2 /≡
[dX]γT2 (τ)e−S[X,γT2 (τ)] =
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=

∫
Rd/≡

ddX0
√

det
(d)

(G)
∑

n,m∈Zd

e
π

τ2α
′ (nτ−m)(T)(G+B)(nτ̄−m)

∫
FXq.

[dXq.]γ(N)
T2 (τ)e

−S[Xq.,γ
(N)
T2 (τ)]

=

= VFXT2 /≡
∑

n,m∈Zd

e
π

τ2α
′ (nτ−m)(T)(G+B)(nτ̄−m)

∫
FXq.

[dXq.]γ(N)
T2 (τ)e

−S[Xq.,γ
(N)
T2 (τ)]

=

=
√

det
(d)

(G)
∑

n,m∈Zd

e
π

τ2α
′ (nτ−m)(T)(G+B)(nτ̄−m)(α′τ2)−

d
2 (|η(q(τ))|)−2d. (4.16)

Now, the Poisson resummation formula can be used:∑
n∈Z

f (n) =
∑
n∈Z
F [ f ](n), (4.17)

where F is the operator of the Fourier transformation; it can be proved that, the result of the
appropriate use of the Poisson ressumation formula, with respect to the momentum numbers m of
the classical field Xc., in the preceding eq.(4.16), is equal to the following:

ZTd (τ, τ̄) =
∫

FXT2 /≡
[dX]γT2 (τ)e−S[X,γT2 (τ)] = Γ(d,d)(τ, τ̄; G,B)(|η(q(τ))|)−2d, (4.18)

where the factor Γ(d,d)(q(τ), q̄(τ̄); G,B) is called the d-dimensional Narain lattice, and it is equal to the
following:

Γ(d,d)(q(τ), q̄(τ̄); G,B) =
∑

n,m∈Zd

q
P2

L(G,B)

2 (τ)q̄
P2

R (G,B)

2 (τ̄), (4.19)

with:
P2

L,R(G,B) = P(T)
L,R(G,B)G(−1)PL,R(G,B), (4.20)

and:
PL,R(G,B) =

1√
2

(
√
α′m ± G ± B√

α′
n), (4.21)

respectively. Then, by multiplying the preceding eqs.(4.6) and (4.18), we arrive at the following
result:

ZD;Td (τ, τ̄) = Z(D−d)
{X} (τ, τ̄)ZTd (τ, τ̄) = Γ(d,d)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−2D, (4.22)

which can be interpreted as the contribution of D closed target-space string coordinates, in the case
of a D-dimensional spacetime with a Td-type toroidal compactification, as it was defined in eq.(4.2),
to the partition function of a bosonic string theory. Now, by additionally assuming that this bosonic
string theory is part of an arbitrary, general CFT, which exists in its critical dimension, Dcrit. = D,
the contribution of the b and c ghost fields to the partition function of the above eq.(4.22), leads to
the following result:

ZRD−d×Td (τ, τ̄) = Γ(d,d)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−2D+4, (4.23)

which can be interpreted as the partition function for a bosonic string theory, in the case of a D-
dimensional spacetime with a Td-type toroidal compactification, as it was defined in eq.(4.2). That
is, the result of the above eq.(4.23) yields the full partition function of the bosonic string theory
part of an arbitrary, general theory, which exists in its critical dimension, D, for the D-dimensional
spacetime with a Td-type toroidal compactification. Evidently, from the above eq.(4.23), it can be
seen that the sole effect of the spacetime Td-type toroidal compactification is the emergence of a
factor of Γ(d,d)(q(τ), q̄(τ̄); G,B), of the d-dimensional Narain lattice, in the generic partition function of
bosonic string theory. Of course, the spacetime Td-type toroidal compactification, as it was defined
in eq.(4.2) has, obviously, no effect whatsoever on any world-sheet fermion fields that may possibly
be incorporated into the theory, although we note that, in the context of superstring theory, the
spacetime states that correspond to the, d in number, pairs of world-sheet fermion fields, which are
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the superpartners of the, d in number, target-space string coordinates, that are in the compactified
spacetime Td, have a different interpretation, in a group-theoretical sense. Consistently, the partition
function of the theory of the D pairs of world-sheet fermion fields, which are the superpartners
of the D target-space string coordinates of bosonic string theory, included in a general, arbitrary
theory, which exists in its critical dimension, Dcrit. = D, in the case of a D-dimensional spacetime
with a Td-type toroidal compactification, is still identical in form to the partition function of the
fermionic part of superstring theory, in the sense that it is equal to the following:

Z(F)
RD−d×Td (τ, τ̄) =

1∑
a,b=0

1∑
ã,b̃=0

Z(F)
RD−d×Td

[
a
b

] [
ã
b̃

]
(τ, τ̄) =

=
1
2

1∑
a,b=0

(−1)a+b+mab


θ

[
a
b

]
(q(τ))

η(q(τ))


D
2 −1

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


D
2 −1

, (4.24)

where the contribution of the β and γ superghost fields, Z{β,γ};m,m̃(τ, τ̄), as it has been expressed in
eq.(2.144), has been already included. Eventually, by multiplying the eqs.(4.23) and (4.24), for the
special case of the critical dimension of superstring theory, Dcrit. = D = 10, the result can, obviously,
be expressed as in the following:

ZII;m,m̃|R10−d×Td (τ, τ̄) = ZR10−d×Td (τ, τ̄)Z(F)
R10−d×Td (τ, τ̄) =

= Γ(d,d)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−16

1
2

1∑
a,b=0

(−1)a+b+mab


θ

[
a
b

]
(q(τ))

η(q(τ))


4

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


4

, (4.25)

where, of course, 0 ≤ d ≤ 8; The result of the above eq.(4.25) is, evidently, the partition function of
a type II superstring theory, in the case of a D = 10-dimensional spacetime with a Td-type toroidal
compactification.

4.1.1 Orbifolds and Space-Time Td/ZN-type Orbifold Compactification

Considering a discrete symmetry group, G, of a manifold M, an orbifold can be defined as the
quotient set M/G. If the manifold M has no fixed points under the action of its symmetry group G,
then the symmetry group G is said to be freely acting, and M/G is smooth, whereas if the manifold M
has fixed points under the action of its symmetry group G, then the symmetry group G is non-freely
acting, and M/G is no longer smooth, but has conical singularities at these fixed points, which are
known as orbifold singularities. Orbifolds are interesting in the context of CFTs and superstring
theory, as they provide new spaces for spacetime string compactification, and a way of explicitly
reducing the number of supercharges, while also admitting an exact CFT description, meaning that
strings propagate smoothly on them, in the sense that the correlation functions of the respective
CFT are finite.
We shall principally consider the theory of the orbifold T2/ZN. The spacetime T2/ZN-type orbifold
compactification means precisely the enforcement of the following equivalence relation:

z ∼ e
2πi
N z + 2π, (4.26)

or:
z ≡ e

2πic
N z; c ∈NN (4.27)
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that is, concerning a specific, 2-dimensional complexified subspace, z = z(x1, x2), of the D-dimensional
spacetime, which may be called the twisted compactified space, or, simply, the internal space of
the orbifold T2/ZN; then, the topology of the orbifold T2/ZN is defined by a complex target-space
string coordinate, Z, which, on a world-sheet of the topology of the torus, T2, satisfies the following
boundary conditions:

Z(σ1 + 2π, σ2) ∼ Z(σ1, σ2) ≡ e
2πih

N Z(σ1, σ2), (4.28)

or:
Z(σ1 + 2π, σ2) ≡ e

2πih
N Z(σ1, σ2), (4.29)

and:
Z(σ1, σ2 + 2π) ∼ Z(σ1, σ2) ≡ e

2πig
N Z(σ1, σ2), (4.30)

or:
Z(σ1, σ2 + 2π) ≡ e

2πih
N Z(σ1, σ2), (4.31)

which are simply the boundary conditions of the preceding eqs.(4.9) and (4.10), now for a complex
target-space string coordinate, Z, and ”twisted” by the factors e

2πih
N and e

2πig
N , respectively, where

h, g ∈ NN, of course. The action, S[Z, γT2 (τ)], of the theory of the orbifold T2/ZN, is given by the
non-linear sigma model of the preceding eq.(4.1) of the previous section, yet now for the complex
target-space string coordinate, Z = G1X1 + G2X2, and its complex conjugate, of the topology of the

orbifold T2/ZN, where G1 =
√

G11 and G2 =
G12+i
√

det(G)
√

G11
, and evaluated in the world-sheet metric

γT2 (τ) of the world-sheet torus, T2 of the complex modulus τ, as in the following:

S[Z, Z̄;γT2 (τ)] = − 1
4πα′

∫
T2

d2σ
√
|det

(
γT2 (τ)

)|γab
T2 (τ)∂aZ∂bZ̄ − 1

4πα′

∫
T2

d2σi
√
|det(B)|ϵab∂aZ∂bZ̄.

(4.32)
Naturally, the partition function of the theory of the orbifold T2/ZN can be calculated from the
following functional integral:

ZT2/ZN (τ, τ̄; G,B) =
1
2

∫
FXT2 /∼

[d2Z]γT2 (τ)e−S[Z,Z̄;γT2 (τ)], (4.33)

where, evidently, the functional integration measure is equal to [d2Z]γT2 (τ) = 2[dX]
√

det(2)(G) =
2[dX1][dX2]

√
det(2)(G), and over the functional space FXT2 / ∼= (FXT2 / ≡)/ZN, of volume that is

equal to:

VFXT2 /∼ = V(FXT2 /≡)/ZN =
1

VZN

VFXT2 /≡ =
1
N

VFXT2 /≡ =
1
N

4π2
√

det
(2)

(G).

Evidently, for the case (h, g) = (0, 0), which is called the (0, 0)-sector of the theory of the orbifold
T2/ZN, the calculation of the partition function of eq.(4.33) can be done simply by replicating the
procedure that was presented in the previous chapter, for the case of the value d = 2, yet, now, using
the boundary conditions of the topology of the orbifold T2/ZN, instead of the boundary conditions
of the preceding eqs.(4.9) and (4.10); the result is, then, given by the partition function of the theory
of d = 2 target-space string coordinates with spacetime T2-type toroidal compactification, as it can
be expressed by the preceding eq.(4.18), of the previous section, for the case of the value d = 2:

ZT2/ZN

[
0
0

]
(τ, τ̄; G,B) = Γ(2,2)(q(τ), q(τ̄); G,B)(|η(q(τ))|)−4. (4.34)

Similarly, for the cases (h, g) , (0, 0), which are respectively called the (h, g)-sectors of the theory of
the orbifold T2/ZN, the calculation of the partition function of eq.(4.33) can also be done in a simple
way, again by replicating the procedure that was presented in the previous chapter, for the case of
the value d = 2, yet, now, using the boundary conditions of the topology of the orbifold T2/ZN,
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instead of the boundary conditions of the preceding eqs.(4.9) and (4.10); it can be straightforwardly
proved, then, that the result is:

ZT2/ZN

[
h
g

]
(τ, τ̄; G,B) = χT2/ZN

[
h
g

]
η(q(τ))

θ

[
1 − 2h

N
1 − 2g

N

]
(q(τ))

η̄(q̄(τ̄))

θ̄

[
1 − 2h

N
1 − 2g

N

]
(q̄(τ̄))

, (4.35)

where the numbers χT2/ZN

[
h
g

]
just express the number of fixed points of the torus T2, under the

action of its symmetry groupZN, in the respective (h, g)-sector of the theory of the orbifold T2/ZN.
We note that the partition function of eq.(4.33), of the theory of the orbifold T2/ZN in its (h, g)-sectors,
where (h, g) , (0, 0), does not depend at all on the spacetime background fields G and B; it can be
proved that this is a general characteristic of the cases of non-freely acting orbifolds, such as the
orbifold T2/ZN that is presently studied, while the situation is different in the cases of freely acting
orbifolds [2]. The full partition function of the theory of the orbifold T2/ZN, which is denoted
as ZT2/ZN (τ, τ̄; G,B), as it is expressed by the functional integral of eq.(4.33), is naturally given by
the weighted, that is, divided by the volume of the discrete symmetry group ZN of the torus T2,
summation of the partition functions of the preceding eqs.(4.34) and (4.35), over all the cases of its
(h, g)-sectors, and it can expressed in a concise manner, as in the following:

ZT2/ZN (τ, τ̄; G,B) =
1
N

∑
h,g∈NN

ZT2/ZN

[
h
g

]
(τ, τ̄; G,B). (4.36)

The (h = 0, g)-sectors and (h , 0, g)-sectors of the theory of the orbifold T2/ZN are conventionally
called its untwisted sectors and twisted sectors, respectively. It can be proved that the numbers

χT2/ZN

[
h
g

]
, that express the number of fixed points of the torus T2, under the action of its symmetry

group ZN, in the respective (h, g)-sector of the theory of the orbifold T2/ZN, satisfy the following
modular transformation requirements:

χT2/ZN

[
h
g

]
= χT2/ZN

[
g
h

]
, (4.37)

and:

χT2/ZN

[
h
g

]
= χT2/ZN

[
h

g + h

]
, (4.38)

in accordance with the property of modular invariance of the full partition function of the theory
of the orbifold T2/ZN, as it is expressed in eq.(4.36); in particular, it can be proved, using Pick’s
theorem, as a special case of the Lefschetz fixed-point theorem, that in the partition function of
eq.(4.35), for the specific case of the untwisted (0, g)-sector of the theory of the orbifold T2/ZN, the

corresponding numbers χT2/ZN

[
h = 0

g

]
can be given by the following formula:

χT2/ZN

[
0
g

]
= 4 sin2(

πg
N

); (4.39)

of course, the number χT2/ZN

[
h
g

]
, for the case of an arbitrary (h, g)-sector of the theory of the

orbifold T2/ZN, can then be calculated simply by using the above eq.(4.39), along with its modular
transformation requirements, of eqs.(4.37) and (4.38). In the very same fashion as above, it is evident
that the spacetime T2/ZN-type orbifold compactification, has a rather more trivial effect on the 2
pairs of world-sheet fermion fields, which are the superpartners of the above complex target-space
string coordinate Z, than it has on the complex target-space string coordinate Z itself, simply twisting
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their two distinct kinds of possible boundary conditions on the world-sheet torus, T2, by the factors
e

2πih
N and e

2πig
N , respectively, where h, g ∈NN, of course; the partition function of the (h, g)-sector of the

T2/ZN-orbifold theory of the 2 pairs of world-sheet fermion fields, which are the superpartners of
the above complex target-space string coordinate Z, the boundary conditions of which were twisted
by the equivalence relation of the spacetime T2/ZN-type orbifold compactification, is, then, equal
to:

Z(F)
T2/ZN

[
a, h
b, g

] [
ã, h
b̃, g

]
(τ, τ̄) =


θ

[
a + 2h

N
b + 2g

N

]
(q(τ))

η(q(τ))



θ̄

[
ã + 2h

N
b̃ + 2g

N

]
(q̄(τ̄))

η̄(q̄(τ̄))

 . (4.40)

In accordance with the previous section, we can see that, unsurprisingly, in the (h, g) = (0, 0)-
sector of the fermionic partition function of the above eq.(4.40), the spacetime Td-type toroidal
compactification alone has no effect whatsoever on the world-sheet fermion fields, apart from
the different interpretation, in a group-theoretical sense, of the spacetime states that correspond
to these, d in number, pairs of world-sheet fermion fields which are the superpartners of the, d
in number, target-space string coordinates that are in the compactified space of Td-type toroidal
compactification; evidently, only the spacetime Td/ZN-type orbifold compactification, in its (h, g) ,
(0, 0)-sectors, can essentially affect the world-sheet fermion fields, in the sense that was described
above, concerning the specific case of the value of d = 2. Eventually, as the higher-dimensional
torus, T2d, includes, and may be factorised into lower-dimensional tori T2, the partition function of a
type II superstring theory, compactified on the appropriately factorised orbifoldR4×T2× (T4/Z2) =
R4 × T2 × ((T2 × T2)/Z2), for example, is, evidently, equal to the following:

ZII;m,m̃|R4×T2×(T4/Z2)(τ, τ̄) = ZR4×T2×((T2×T2)/Z2)(τ, τ̄) =

=
1
2

∑
h,g∈N2

Γ(2,2)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−8

(
ZT2/Z2

[
h
g

]
(τ, τ̄; G,B)

)2

1
2

1∑
a,b=0

(−1)a+b+mab 1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃
(
Z(F)

T2/Z2

[
a, h
b, g

] [
ã, h
b̃, g

]
(τ, τ̄)

)2


θ

[
a
b

]
(q(τ))

η(q(τ))


2 
θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


2

=

=
1
2

∑
h,g∈N2

Γ(2,2)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−8ZT2/Z2

[
h
g

]
(τ, τ̄; G,B)ZT2/Z2

[
−h
−g

]
(τ, τ̄; G,B)

1
2

1∑
a,b=0

(−1)a+b+mab


θ

[
a
b

]
(q(τ))

η(q(τ))


2

θ

[
a + h
b + g

]
(q(τ))

η(q(τ))

θ

[
a − h
b − g

]
(q(τ))

η(q(τ))

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


2

θ̄

[
ã + h
b̃ + g

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã − h
b̃ − g

]
(q̄(τ̄))

η̄(q̄(τ̄))
, (4.41)

and the partition functions for the cases of a type II superstring theory compactified on various
appropriately factorised orbifolds of the above kind can be calculated similarly.

43



Chapter 5

The One-Loop Level Correction to the
Einstein-Hilbert term

As it was mentioned throughout this report, the string length, ls =
√
α′, or, equivalently, the string

mass, Ms =
1√
α′

, is the sole dimensionful, physical parameter of string theory; in the level of the

corresponding effective field theory, the string mass, Ms =
1√
α′

, is related to the dimensionless string
coupling constant, gs, through the definition of the Planck mass, as in the following:

M2
P =

M2
s

g2
s
, (5.1)

which is to be identified with the coefficient of the spacetime Einstein-Hilbert term,
∫
Rn dnx

√
|det(G)|R,

in the effective action of the string. In principle, then, the Planck mass is subject both to perturbative
and non-perturbative corrections; it has been proved in [5] that it receives no radiative corrections in
the case of a heterotic superstring, although it might receive such constant corrections in the type I
and type IIB superstring theory. In general, as it is conjectured that superstring theory is a UV-finite
theory, the radiative corrections to the various, running gauge coupling constants, which are to be
identified with the coefficient of the gauge group kinetic terms of the corresponding effective field
theory, may exhibit at most IR divergencies. In what follows, we will briefly present some results
that capture the spirit of the renormalisation of the gauge coupling constants of the effective field
theory with respect to attempts at their string unification. We will argue that possible quantum
corrections to the Einstein-Hilbert term may modify eq.(5.1) and so affect the string unification mass
scale. We will also shortly present the essence of the background field method approach to the cal-
culation of the one-loop level perturbative corrections to the gauge coupling constants, as well as its
limitations; in particular, we will see that the background field method seems to fail in superstring
theories of 8-dimensional orbifolds, where the whole spacetime but its 2 lightcone dimensions is
twisted and compactified. We will then resort to the conventional approach to the calculation of the
one-loop level perturbative correction to the Planck mass, which is through the explicit calculation
of the scattering amplitude of two gravitons, in the one-loop level, that corresponds to the one-loop
level perturbative correction in the spacetime Einstein-Hilbert term of the effective field theory.
Eventually, we will present a proof of the general form of the one-loop level perturbative correction
to the Planck mass in the type II superstring theory, as well as an application of this proof to the
specific case of the calculation of the quantum correction to the Einstein-Hilbert term, in a type IIB
superstring theory, compactified on a K3 × K3-orbifold.
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5.1 The Renormalisation of the Gauge Couplings and String Uni-
fication

In the effective field theory level of a superstring theory, the renormalisation group flow for the
gauge coupling gF(µ) that refers to the gauge group F is given by the following relation, which
holds up to the one-loop level of perturbation theory [4]:

1
g2

F(µ)
=

1
g2

s
+

βF

16π2 log
(

M2
s

µ2

)
+
∆F(G,B)

16π2 , (5.2)

where G and B are the scalar moduli arising from the toroidal compactification of the 10-dimensional
spacetime metric and Kalb-Ramond field respectively. In the above eq.(5.2), the beta-function term
βF

16π2 log
(

M2
s

µ2

)
expresses the logarithmic dependence of the gauge coupling gF(µ) on the mass scale µ,

which exists in a QFT independently of the superstring theory; it is exclusively due to the massless
spectrum of the theory, and it exhibits an IR divergence, as it is expected to in a superstring theory.
Separately, the moduli-dependent term ∆F(G,B)

16π2 , of the above eq.(5.2), is called the threshold correction
to the gauge coupling gF(µ); it expresses its dependence on the moduli G and B, it is exclusively
due to the massive spectrum of the theory, and it is purely an effect of string theory. In theories
preserving an unbroken N = 2 supersymmetry, a special universality structure often emerges, and
it can be proved that the threshold correction takes the following form [2]:

∆F(G,B) = βF∆(G,B) − Υ(G,B), (5.3)

where the gauge group dependence is, now, solely in the beta-function factor, βF, while the moduli-
dependent factor ∆(G,B) is exclusively due to the charged massive spectrum of the theory, that
is, due to the Kaluza-Klein momenta and winding modes of the string, and the term Υ(G,B) is a
universal moduli-dependent contribution. The result of the above eq.(5.3) is commonly referred
to as the N = 2 universality. We note that the functions ∆(G,B) and Υ(G,B) are known functions
of the compactification moduli and their form can be almost entirely fixed by general principles
of holomorphy and unitarity. Then, the N = 2 universality of eq.(5.3), combined with the the
renormalisation group flow for the gauge coupling gF(µ) of eq.(5.2) result in the following:

1
g2

F(µ)
=

1
g2

U(G,B)
+

βF

16π2 log

M2
U(G,B)

µ2

 , (5.4)

where the moduli-dependent quantities:

gU(G,B) =
gs√

1 − Y(G,B)
16π2

, (5.5)

and:
MU(G,B) =Mse

∆(G,B)
2 , (5.6)

are respectively called the unification gauge coupling constant and the unification mass scale.
Evidently, the renormalisation group flow of eq.(5.4) implies an automatic string unification of
all gauge couplings into the unified value gU(G,B), of eq.(5.5), at the string unification scale µ =
MU(G,B), of eq.(5.6). Assuming the desert scenario from a bottom-up approach, it would be tempting
to identify the string unification data, (gU(G,B),MU(G,B)), with the corresponding values arising
in GUTs. This possibility, however, relies on the existence of specific moduli configurations, (G,B),

consistent with the aforementioned identification,
g2

U(G,B)
4π =

g2
GUT
4π ≈ 1

25 , and MU(G,B) = MGUT ≈
1016GeV. Assumming, additionally, a constant, one-loop level perturbative correction c to the
Einstein-Hilbert term, we will have:

M2
P =

M2
s

g2
s
+M2

s c, (5.7)
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and combining the above relation with the renormalisation group flow of eq.(5.4), the unification
mass of eq.(5.6) can be expressed as:

MU(G,B) =
MP√

1 + g2
U(G,B)( Y(G,B)

16π2 + c)
gU(G,B)e

∆(G,B)
2 . (5.8)

As it has been formerly mentioned, it has been proved in [5] that the constant radiative correction
factor c, in the definition of of eq.(5.7) for the Planck mass is zero, and that the Planck mass recieves
no radiative corrections whatsoever, in the case of a heterotic superstring theory. Unfortunately, it
can be shown that, in the most simple cases, no (G,B) moduli configurations exists, such that the
string unification data matches the values of the GUT scale parameters. Rather, the best one can
do in heterotic theories is MU ≈ 20MGUT. In the case of type IIB orientifolds or type I superstrings,
where gauge theory lives on D-branes, this discrepancy can be usually lifted by a suitable choice
of the D-brane volume. However, there can be, in principle, radiative corrections to the Planck
mass, which again modify the relation between gs and Ms, as well as the metric of Kähler moduli
in the string effective action (after a suitable Weyl rescaling to go to the Einstein frame). One such
contribution is common to type I and type IIB orientifolds, and arises from the closed string oriented
topology of the world-sheet torus.
In what follows, we will give the general form of the one-loop level perturbative correction to the
spacetime Einstein-Hilbert term of the corresponding effective field theory, in the case of a type
IIB superstring theory. We will principally attend to some special cases of a type IIB superstring
theory, with various examples that demonstrate the benefits and limitations of the background field
method approach.

5.2 The Background Field Method

The background field method in string theory was introduced in [5], where it is motivated with
respect to the calculation of one-loop level perturbative corrections to coupling constants; a com-
prehensive summary of the background field method is also presented in [6], where it is used for
the calculation of gravitational threshold corrections in the case of non-supersymmetric heterotic
strings. The essence of the background field method is the introduction of a marginal, that is, an
exactly solvable, deformation to the general non-linear sigma model of eq.(2.1); this deformation
corresponds to a small, constant spacetime curvature, R, and the correlation functions of interest
are then calculated as the corresponding derivatives of the deformed partition function, Z(τ, τ̄;R)
[5]. It is proved in [5] that the deformed partition function, Z(τ, τ̄;R), corresponds, in essence, to a
Lorenzian boost of the left and right moving R-symmetry lattices, preserving L0 − L̄0 = const.. This
amounts to the introduction of complex, z and z̄ -deformations, to the zero-valued Jacobi parame-
ters, υ = 0 and ῡ = 0, of the Jacobi theta-functions which correspond to a pair of untwisted left and

right world-sheet fermions, θ
[
a
b

]
(q(τ); υ = 0) and θ̄

[
ã
b̃

]
(q̄(τ̄); ῡ = 0), respectively, as in:

θ

[
a
b

]
(q(τ); υ = 0)→ θ

[
a
b

]
(q(τ); υ = z),

and:

θ̄

[
ã
b̃

]
(q̄(τ̄); ῡ = 0)→ θ

[
ã
b̃

]
(q̄(τ̄); ῡ = z̄),

in the original, undeformed partition function Z(τ, τ̄) = Z(τ, τ̄;R = 0); consequently, the correlation
functions of interest can be calculated from the corresponding derivatives of the deformed partition
function, Z(τ, τ̄; z, z̄), with respect to the z and z̄ -deformed Jacobi parameters of these Jacobi theta-

functions, θ
[
a
b

]
(τ; z) and θ̄

[
ã
b̃

]
(q̄(τ̄); z̄), evaluated at the point z = z̄ = 0. It is also proved in [5] that

the correlation function of two gravitons, which can give the one-loop level perturbative correction
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to the corresponding spacetime Einstein-Hilbert term of the effective field theory, is related to the
following derivatives of the deformed partition function, Z(τ, τ̄; z, z̄):

⟨R⟩one−loop =

∫
FT2

d2τ

τ3
2

2πτ2 lim
z̄→0

( 1
2πi

∂̄z̄

)
lim
z→0

( 1
2πi

∂z

)
Z(z, z̄; τ, τ̄). (5.9)

For example, in the case of a type II superstring theory compactified on the factorised orbifold
R4 × T2 × (T4/Z2) = R4 × T2 × ((T2 × T2)/Z2), the partition function was given in eq.(4.41) of the
previous chapter, and it is now deformed as in the following:

ZII;m,m̃|R4×T2×(T4/Z2)(τ, τ̄; z, z̄) = ZR4×T2×((T2×T2)/Z2)(τ, τ̄; z, z̄) =

=
1
2

∑
h,g∈N2

Γ(2,2)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−8ZT2/Z2

[
h
g

]
(τ, τ̄; G,B)ZT2/Z2

[
−h
−g

]
(τ, τ̄; G,B)

1
2

1∑
a,b=0

(−1)a+b+mab
θ

[
a
b

]
(q(τ); z)

η(q(τ))

θ

[
a
b

]
(q(τ))

η(q(τ))

θ

[
a + h
b + g

]
(q(τ))

η(q(τ))

θ

[
a − h
b − g

]
(q(τ))

η(q(τ))

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃
θ̄

[
ã
b̃

]
(q̄(τ̄); z̄)

η̄(q̄(τ̄))

θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã + h
b̃ + g

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã − h
b̃ − g

]
(q̄(τ̄))

η̄(q̄(τ̄))
. (5.10)

The Jacobi theta-functions of a z-deformed Jacobi parameter, θ
[
a
b

]
(τ; z), were given in eq.(3.14), by

which one can deduce that the following holds:

lim
z→0

( 1
2πi

∂z

)
θ

[
a
b

]
(τ; z) = −iη3(q(τ))δa1δb1, (5.11)

so, only the term a = b = ã = b̃ = 1, which can be called the odd spin-structure, of the partition
function of the above eq.(5.10), may contribute to the the one-loop level perturbative correction in
the corresponding spacetime Einstein-Hilbert term; we can single out this odd spin-structure as in
the following:

ZII;m,m̃|R4×T2×(T4/Z2)(τ, τ̄; z, z̄)odd spin = ZR4×T2×((T2×T2)/Z2)(τ, τ̄; z, z̄)odd spin =

=
1
2

∑
h,g∈N2

Γ(2,2)(q(τ), q̄(τ̄); G,B)(|η(q(τ))|)−8ZT2/Z2

[
h
g

]
(τ, τ̄; G,B)ZT2/Z2

[
−h
−g

]
(τ, τ̄; G,B)

1
2

(−1)m
θ

[
1
1

]
(q(τ); z)

η(q(τ))

θ

[
1
1

]
(q(τ))

η(q(τ))

θ

[
1 + h
1 + g

]
(q(τ))

η(q(τ))

θ

[
1 − h
1 − g

]
(q(τ))

η(q(τ))

1
2

(−1)m̃
θ̄

[
1
1

]
(q̄(τ̄); z̄)

η̄(q̄(τ̄))

θ̄

[
1
1

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
1 + h
1 + g

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
1 − h
1 − g

]
(q̄(τ̄))

η̄(q̄(τ̄))
=

=
1
2

(|η(q(τ))|)−16Γ3
(2,2)(q(τ), q̄(τ̄); G,B)

1
4

(−1)m+m̃
θ

[
1
1

]
(q(τ); z)

η(q(τ))


θ

[
1
1

]
(q(τ))

η(q(τ))


3

θ̄

[
1
1

]
(q̄(τ̄); z̄)

η̄(q̄(τ̄))


θ̄

[
1
1

]
(q̄(τ̄))

η̄(q̄(τ̄))


3

+
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+3
16
2

(|η(q(τ))|)−8Γ(2,2)(q(τ), q̄(τ̄); G,B)
1
4

(−1)m+m̃
θ

[
1
1

]
(q(τ); z)

η(q(τ))

θ

[
1
1

]
(q(τ))

η(q(τ))

θ̄

[
1
1

]
(q̄(τ̄); z̄)

η̄(q̄(τ̄))

θ̄

[
1
1

]
(q̄(τ̄))

η̄(q̄(τ̄))
.

(5.12)
Then, using the formula of the preceding eq.(5.9), we can see that the one-loop level perturbative
correction to the corresponding spacetime Einstein-Hilbert term vanishes:

⟨R⟩one−loop|R4×T2×(T4/Z2) =

=

∫
FT2

d2τ

τ3
2

2πτ2 lim
z̄→0

( 1
2πi

∂̄z̄

)
lim
z→0

( 1
2πi

∂z

)
ZII;m,m̃|R4×T2×(T4/Z2)(τ, τ̄; z, z̄; )odd spin = 0, (5.13)

due to the Jacobi theta-function identityθ
[
1
1

]
(q(τ)) = 0. The above example demonstrates the formal

and calculative elegance of the background field method for the calculation of the one-loop level
perturbative correction in the spacetime Einstein-Hilbert term of the effective field theory, in the
case of a type II superstring theory compactified on an orbifold. For the case of a type II superstring
theory compactified on an orbifold R4 × T2 × T4/Z2, this correction vanishes due to the presence of
fermionic zero modes in the odd spin-structure of the path integral. In the corresponding scattering

amplitude, this is manifested in the presence of an untwisted theta-function θ
[
1
1

]
(q(τ)) = 0, that is

associated with fermions which are periodic in both cycles of the world-sheet torus. In essence, the
presence of these fermionic zero modes, in the odd spin-structure, reflect the fact that the T2-torus
directions are untwisted by the orbifold action. It is therefore clear that a non-vanishing contribution
to the 4-dimensional spacetime Einstein-Hilbert term can only occur in the odd spin-structures of
a type II superstring theory, and on those orbifold compactifications leaving no internal directions
untwisted [5].
However, there are extreme cases, which consist of type II superstring theory compactified on an
8-dimensional orbifold, where the background method fails. In order to clarify the deficiency of the
background field method, we may consider the partition function of a type II superstring theory
compactified on the factorised orbifoldR2 ×T4/Z2 ×T4/Z2 = R2 × ((T2 ×T2)/Z2)× ((T2 ×T2)/Z2) =
R2 × K3 × K3, which can be expressed as in the following:

ZII;m,m̃|R2×K3×K3(τ, τ̄) =

=
1
2

∑
h1,g1∈N2

1
2

∑
h2,g2∈N2

ZT2/Z2

[
h1
g1

]
(τ, τ̄; G,B)ZT2/Z2

[
−h1
−g1

]
(τ, τ̄; G,B)ZT2/Z2

[
h2
g2

]
(τ, τ̄; G,B)ZT2/Z2

[
−h2
−g2

]
(τ, τ̄; G,B)

1
2

1∑
a,b=0

(−1)a+b+mab
θ

[
a + h1
b + g1

]
(q(τ))

η(q(τ))

θ

[
a − h1
b − g1

]
(q(τ))

η(q(τ))

θ

[
a + h2
b + g2

]
(q(τ))

η(q(τ))

θ

[
a − h2
b − g2

]
(q(τ))

η(q(τ))

1
2

1∑
ã,b̃=0

(−1)ã+b̃+m̃ãb̃
θ̄

[
ã + h1

b̃ + g1

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã − h1

b̃ − g1

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã + h2

b̃ + g2

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã − h2

b̃ − g2

]
(q̄(τ̄))

η̄(q̄(τ̄))
, (5.14)

where the background field method amounts to deformations to the Jacobi parameters of the Jacobi
theta-functions that correspond to the world-sheet fermion superpartners of the lightcone target-
space coordinates. In the odd spin-structure, the z, z̄-deformation in the Jacobi theta-functions that
correspond to the lightcone world-sheet fermions effectively computes:

⟨QQ̄⟩one−loop = lim
z̄→0

∂̄z̄ lim
z→0

∂z⟨e−z
∫

W d2wΨΨ̄−z̄
∫

W d2wΨ̃ ¯̃Ψ⟩one−loop = ⟨
∫

W
d2wΨΨ̄

∫
W

d2wΨ̃ ¯̃Ψ⟩one−loop, (5.15)
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where Q is the SO(2) ≃ U(1) charge associated to the left-moving complexified lightcone fermions
Ψ, Ψ̄, and similarly for the right-movers. The above one-loop level correlator function receives
contributions only from zero modes, and gives:

⟨QQ̄⟩one−loop = ⟨Ψ0Ψ̄0Ψ̃0
¯̃Ψ0⟩one−loop = |η(q(τ))|4. (5.16)

In the trivial orbifold sector h1 = g1 = h2 = g2 = 0, all left-moving fermions in the internal directions
develop a total of 8 zero modes, two of which cancel against the zero mode contribution of the
superghosts, and so the contribution vanishes, and similarly for the right-movers. Likewise, in the
sectors where h1 = g1 = 0; (h2, g2) , (0, 0) or h2 = g2 = 0; (h1, g1) , (0, 0), there are 4 fermionic zero
modes, two of which cancel against the superghosts, and the contribution vanishes as well. In all
other orbifold sectors, the internal world-sheet fermions are twisted, so there are no fermionic zero
modes. In those cases, the zero modes of the superghosts no longer cancel, and have to be removed
by hand, in order to avoid a formally divergent path integral. After properly removing the zero
modes, the contribution of the superghosts gives |η(q(τ))|−4, cancelling the lightcone correlator ⟨QQ̄⟩
of the above eq.(5.16). As a result, with this prescription, we expect the one-loop level contribution
to the corresponding Einstein-Hilbert term to be given by:

⟨R⟩one−loop|R2×K3×K3 ∝
∫
FT2

d2τ

τ2
2

ZII;m,m̃|R2×K3×K3(τ, τ̄)odd spin. (5.17)

The apparent failure of the supeghosts to cancel against fermionic zero modes in the odd spin-
structure, reflects the fact that the background field method is ill-defined at face value, for super-
string theories compactified on these exotic 2-dimensional spacetime constructions. In what follows
we will justify the above prescription leading to eq.(5.17) by explicitly calculating the corresponding
one-loop, two-graviton scattering amplitude.

5.3 The One-Loop Level Two-Graviton Scattering Amplitude

We shall now consider the scattering amplitude of two gravitons, on the Riemann surface of the
world-sheet torus, T2, in the odd spin-structure of a superstring theory. Since we are interested in
the one-loop level perturbative correction to the corresponding spacetime Einstein-Hilbert term,
we need to extract exactly two powers of momenta p. Here, we take spacetime to be 2-dimensional
and assume that the theory is compactified on a general, 8-dimensional space, K. Our result
will be quite general and valid both in the case of smooth compactification manifolds, as well as
their singular (orbifold) limits, provided that the internal CFT description is well defined. In the
odd spin-structure of the theory, world-sheet fermions in the spacetime directions contribute zero
modes, and so do the left and right superghost fields. In order to obtain an non-vanishing result
the latter must be soaked up by appropriate superghost correlators, necessitating a specific choice
of superghost picture [7]. In particular, we may choose the one graviton in the (−1, 0)-picture and
the other graviton in the (0,−1)-picture. Furthermore, we need to cancel one unit of superghost
charge in the left-moving sector, and similarly for the right-movers; this is achieved by inserting two
Picture Changing Operators (PCOs) into the amplitude. The vertex operators of the two gravitons
in the above asymmetric pictures read:

V(−1,0)(p; z, z̄) = hµνe−ϕψµ(∂̄Xν + i(p · ψ̃)ψ̃ν)eip·X(z, z̄), (5.18)

and:
V(0,−1)(p; z, z̄) = hµν(∂Xµ + i(p · ψ)ψµ)e−ϕ̃ψ̃νeip·X(z, z̄), (5.19)

while the vertex operators of the PCOs read:

VPCO;(1,0)(z) =
∮

Cz

dw
2πi

eϕψµ∂Xµ(w), (5.20)
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and:

VPCO;(0,1)(z̄) =
∮

Cz̄

dw̄
2πi

eϕ̃ψ̃µ∂̄Xµ(w̄). (5.21)

Here, the fields ϕ and ϕ̃ arise from the bosonisation of the β, β̃;γ, γ̃-superghost system, p is the
spacetime momentum, and hµν = hµν(p) is the graviton polarisation. Normal ordering is implicitly
assummed throughout. The scattering amplitude takes the following form:∫

FT2

d2τ
1

2τ2

∫
W

d2z
1
τ2
⟨VPCO;(1,0)(z)V(1)

(−1,0)(p
(1); z, z̄)VPCO;(0,1)(0)V(2)

(0,−1)(p
(2); 0, 0)⟩T2 |odd =

= h(1)
µνh(2)

ρσ

∫
FT2

d2τ
1

2τ2

∫
W

d2z
1
τ2

∮
Cz

dw
2πi

∮
C0

dw̄
2πi

⟨e−ϕψµ(∂̄Xν + i(p(1) · ψ̃)ψ̃ν)eip(1)·X(z, z̄)(∂Xρ + i(p(2) · ψ)ψρ)

e−ϕ̃ψ̃σeip(2)·X(0, 0)eϕψα∂Xα(w)eϕ̃ψ̃β∂̄Xβ(w̄)⟩T2 |odd, (5.22)

where the factor 1
2τ2

, in the modular integral over the fundamental domain FT2 , in the left-hand
side of the above eq.(5.22) is, of course, the inverse of the volume of the CKG of the metrics on the
world-sheet torus, T2, of the complex modulus τ, as it has been shown that VCKG

T2 = 2τ2. Making use
of the symmetry of the CKG, we may fix the position of one graviton to zero, whereas the position
(z, z̄) of the other will be integrated over the Riemann surface of the world-sheet torus. By charge
conservation, the left-moving world-sheet fermions and superghosts must necessarily contract with
the corresponding fields in the PCOs, and similarly for the right-movers. Clearly, the bosons may
only contract among themselves. Then, the scattering amplitude of the above eq.(5.22) is factorised
as in the following:∫

FT2

d2τ
1

2τ2

∫
W

d2z
1
τ2
⟨VPCO;(1,0)(z)V(1)

(−1,0)(p
(1); z, z̄)VPCO;(0,1)(0)V(2)

(0,−1)(p
(2); 0, 0)⟩T2 |odd =

= h(1)
µνh(2)

ρσ

∫
FT2

d2τ
1

2τ2

∫
W

d2z
1
τ2

∮
Cz

dw
2πi

∮
C0

dw̄
2πi
⟨e−ϕ(z)eϕ(w)⟩T2 |odd⟨e−ϕ̃(0)eϕ̃(w̄)⟩T2 |odd

⟨ψµ(z)ψα(w)⟩T2 |odd⟨ψ̃σ(0)ψ̃β(w̄)⟩T2 |odd⟨∂̄Xνeip(1)·X(z, z̄)∂Xρeip(2)·X(0, 0)∂Xα(w)∂̄Xβ(w̄)⟩T2 . (5.23)

The fermionic and superghost correlators receive contributions only from zero modes, and are
therefore constant. A direct calculation gives:

⟨e−ϕ(z)eϕ(w)⟩T2 = η−2(q(τ)), (5.24)

⟨e−ϕ̃(0)eϕ̃(w̄)⟩T2 = η̄−2(q̄(τ̄)), (5.25)

⟨ψµ(z)ψα(w)⟩T2 = ηακϵ
µκη2(q(τ)) = ϵµαη2(q(τ)), (5.26)

and:
⟨ψ̃σ(0)ψ̃β(w̄)⟩T2 = ηβλϵ

σλη̄2(q̄(τ̄)) = ϵσβη̄2(q̄(τ̄)). (5.27)

Note that the τ, τ̄-superghost contributions precisely cancel those of the spacetime fermions, as
expected in a covariant description of the superstring. The contour integrals in w and w̄ can only
give non-vanishing contributions from appropriate simple poles; therefore, ∂Xα(w) can only contract
with the exponential eip(1)·X(z, z̄), and, similarly, ∂̄Xβ(w̄) can only contract with the exponential
eip(2)·X(0, 0). Thus, ∂̄Xν(z̄) must necessarily contract with ∂Xρ(0). As a result, we have:∫

W
d2z

1
τ2

∮
Cz

dw
2πi

∮
C0

dw̄
2πi
⟨∂̄Xνeip(1)·X(z, z̄)∂Xρeip(2)·X(0, 0)∂Xα(w)∂̄Xβ(w̄)⟩T2 =

= −p(1)
γ p(2)

δ

∫
W

d2z
1
τ2

∮
Cz

dw
2πi

∮
C0

dw̄
2πi
⟨Xγ(z, z̄)∂Xα(w)⟩T2⟨Xδ(0, 0)∂̄Xβ(w̄)⟩T2⟨∂̄Xν(z̄)∂Xρ(0)⟩T2 + O(p3) =
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= −p(1)
γ p(2)

δ η
γαηδβ

∫
W

d2z
1
τ2
⟨∂̄Xν(z̄)∂Xρ(0)⟩T2 + O(p3). (5.28)

In going from the first line to the second, we extracted the O(p2) terms that are relevant to our
scattering, and in the third line we used the free scalar propagator on the world-sheet torus, T2, of
the complex modulus τ [2]:

⟨Xµ(z, z̄)Xν(0, 0)⟩ = −ηµν log
(
e−

2π Im2(z)
τ2

∣∣∣∣∣ θ1(q(τ); z)
∂zθ1(q(τ); 0)

∣∣∣∣∣2) . (5.29)

Then, the only remaining z, z̄-dependence is in the factor ⟨∂̄Xν(z̄)∂Xρ(0)⟩T2 , which must be integrated
over the world-sheet torus, giving:∫

d2z
1
τ2
⟨∂̄Xν(z̄)∂Xρ(0)⟩T2 = − π

τ2
ηνρ. (5.30)

Putting everything together, we have the following result:∫
FT2

d2τ
1

2τ

∫
d2z

1
τ2
⟨VPCO;(1,0)(z)V(1)

(−1,0)(p
(1); z, z̄)VPCO;(0,1)(0)V(2)

(0,−1)(p
(2); 0, 0)⟩T2 |odd =

= h(1)
µνh(2)

ρσηακϵ
µκηβλϵ

σλp(1)
γ p(2)

δ η
γαηδβηνρ

∫
FT2

d2τ
2τ2

π
τ2

ZK(τ, τ̄)odd spin + O(p3). (5.31)

By going into the lightcone coordinates:

x+ =
x0 + x1

√
2
, (5.32)

x− =
x0 − x1

√
2
, (5.33)

the kinematics factor, which appears in the scattering amplitude of eq.(5.31), becomes:

h(1)
µνh(2)

ρσηακϵ
µκηβλϵ

σλp(1)
γ p(2)

δ η
γαηδβηνρ = 2p1;+p2;−h(1);+−h(2);+− →

∫
d2x(−2h+−∂+∂−h+−), (5.34)

where in the last step we performed a Fourier transformation, in order to convert the above
kinematics factor from the momentum space to the position space, taking also into account an
additional overall momentum conserving delta function, (2π)2δ(2)(p(1) + p(2)), which arises from the
integration over the X-zero modes. We can now check that the above kinematics factor of our
scattering amplitude precisely reproduces the Einstein-Hilbert term, to linear order. Indeed, by
considering a linear perturbation, hµν, around the 2-dimensional Minkowski background, ηµν, the
2-dimensional spacetime metric, gµν, can be expressed as:

gµν ≈ ηµν + hµν, (5.35)

making it straightforward to compute the linear order correction to the determinant:√
|det

(
g
)| ≈ 1 +

1
2

det(h), (5.36)

and to the Ricci scalar:
R ≈ ∂µ∂νhµν − ηµν∂µ∂ν det(h); (5.37)

therefore, modulo trivial total derivative terms, the spacetime Einstein-Hilbert term of interest
becomes:∫

d2x
√
|det

(
g
)|R ≈ ∫

d2x
1
2

det(h)(∂µ∂νhµν − ηµν∂µ∂ν det(h)) =
∫

d2x(−2h+−∂+∂−h+−), (5.38)
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matching precisely the kinematics factor which appears in the scattering amplitude of eq.(5.31).
Thus, factoring out the kinematics in the scattering amplitude of eq.(5.31), the one-loop level con-
tribution to the spacetime Einstein-Hilbert term is the following:

⟨R⟩one−loop|R2×K =
π
2

∫
FT2

d2τ

τ2
2

ZK(τ, τ̄)odd spin, (5.39)

where K is an appropriate, internal CFT, associated to the 8-dimensional internal space, and
ZK(τ, τ̄)odd spin is the corresponding partition function in the odd spin-structure. The above result in
eq.(5.39) holds for any consistent choice of the internal CFT, K. For the aforementioned special case
of the K3×K3 compactification of a type II superstring theory, the corresponding partition function,
ZK3×K3(τ, τ̄)odd spin, is given by eq.(5.14), of the previous section, evaluated only in the odd-spin struc-
ture. It might be interesting to investigate the contribution to the partition function ZK(τ, τ̄)odd spin
of individual target-space degrees of freedom in the string spectrum; however, it turns out that this
quantity is actually topological, and computes the Euler characteristic, χ(K), of the internal space
K. In what follows, we will prove that this is indeed the case, by relating the partition function
ZK(τ, τ̄)odd spin to the modified elliptic genus of K, which, in turn, contains information about the
dimensions of the Dolbeault cohomologies of K.

Topological Interpretation of the Partition Function ZK(τ, τ̄)odd spin

We now focus on a general symmetric orbifold compactification, K = T8/Γ, preserving at leastN =
(1, 1) target-space supersymmetries, implying the presence of an enhanced N = (2, 2) world-sheet
SCFT [8]. The orbifold is assumed to act non-freely, by appropriate crystallographic rotations of the
four complexified internal coordinates parametrising T8 = T2×T2×T2×T2. The orbifold action must
necessarily induce non-trivial twists on all four complex supercoordinates, otherwise the fermions
in the untwisted directions contain zero modes and the partition function ZK(τ, τ̄)odd spin vanishes
trivially. The contribution of all internal supercoordinates to the partition function ZK(τ, τ̄)odd spin, in
the sector {hn}, {gn}; n = 1, 2, 3, 4 is the following:

4∏
n=1

ZT2/Γ

[
hn(Γ)
gn(Γ)

]
(τ, τ̄)

∣∣∣∣∣∣∣∣∣∣∣∣
θ

[
1 + hn(Γ)
1 + gn(Γ)

]
(q(τ))

η(q(τ))

∣∣∣∣∣∣∣∣∣∣∣∣
2

=

4∏
n=1

χT2/Γ

[
hn(Γ)
gn(Γ)

]
. (5.40)

Note that the contributions of twisted bosons precisely cancel the contribution of twisted fermions
in the odd spin-structure. This is not surprising, since, in the odd spin-structure, the path integral
contribution of twisted fermions is the inverse of the contribution of their bosonic superpartners,
aside from the zero mode contribution of the latter. As a result, all τ, τ̄-dependence drops out, in
the left-hand side of the above eq.(5.40), and we are left with a constant, zero mode contribution

χT2/Γ

[
hn
gn

]
. As we have already discussed, this constant, zero mode contribution, precisely counts

the number of simultaneous fixed points of the given orbifold sector. Putting everything together,
we have:

ZK(τ, τ̄)odd spin =
1

card(Γ)

∑
Γ

4∏
n=1

χT2/Γ

[
hn(Γ)
gn(Γ)

]
. (5.41)

Taking into account the operatorial representation of the Euclidean path integral [1] over (anti-
)periodic paths, the contribution of the internal SCFT can be alternatively expressed as a trace over
the Hilbert space, in the RR sector of the theory, with the insertion of the left- and right- moving
world-sheet fermion parity:

ZK(τ, τ̄)odd spin = TrRR[(−1) f+ f̃ qL0− c
24 (τ)q̄L̃0− c̃

24 (τ̄)], (5.42)
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and it is now clear, from the above trace representation, that all coefficients in this q, q̄-series of
the partition function ZK(τ, τ̄)odd spin are integers. Moreover, the preceding eq.(5.41) implies that
the partition function ZK(τ, τ̄)odd spin is independent of the compactification moduli, and receives
contributions only from the ground states in the RR sector. Its precise numerical value is directly
related to the number of fixed points in the various orbifold sectors and must, then, be topological
in origin.
The role of the enhancement into an N = (2, 2) SCFT was crucial in the cancellation of string
oscillator states in eq.(5.40), indicating that the partition function ZK(τ, τ̄)odd spin is, in fact, an index.
To show that this is the case, we shall rewrite eq.(5.42) in a form that only involves the operators of a
general N = (2, 2) SCFT. We focus on the left-moving N = 2L SCFT, involving the energy-momentum
tensor T(z), a U(1) R-symmetry current J(z) and two supercurrents G+(z),G−(z) with U(1)-charges
±1 respectively. Similar arguments hold for the right-movers. Let us call {Zn,Ψn} the complexified
internal supercoordinates in the left-moving sector. The N = 2(L) SCFT can be realised in terms of
free fields, as:

G+(z) =
√

2
∑

n

Ψn∂Z̄n(z), (5.43)

G−(z) =
√

2
∑

n

Ψ̄n∂Zn(z), (5.44)

and:
J(z) =

∑
n

ΨnΨ̄n(z). (5.45)

Taking the contour integral of J(z) around the point z = 0 defines the U(1)(L) left R-symmetry charge:

J0 =

∮
C0

dz
2πi

∑
n

ΨnΨ̄n(z) =
∑

n

∑
ν>0

Ψn
−νΨ̄

n
ν = f , (5.46)

which is nothing but the total internal world-sheet fermion number, f , in the left-moving sector.
With this identification, eq.(5.42) becomes:

ZK(τ, τ̄)odd spin = TrRR−ground states[(−1)J0− J̃0 ]. (5.47)

Since the trace is only over the RR-ground states, it will involve only a finite sum. We can equiva-
lently let this sum run over RR-ground states with all possible U(1)(L) ×U(1)(R) charges:

ZK(τ, τ̄)odd spin =
∑
J0, J̃0

(−1)J0− J̃0 h(J0, J̃0), (5.48)

where h(J0, J̃0) are the appropriate multiplicities of the RR-ground states with charges (J0, J̃0).
It is known that N = 2 SCFTs admit a spectral flow, which induces an bijective map of RR-ground
states, with U(1)(L) charge q − c

6 , to chiral primary states in the NS sector, which are states of U(1)(L)

charge q and conformal weight q
2 . The shift in the U(1)(L) charges is proportional to the central

charge of the internal SCFT only. A similar spectral flow exists in the right-moving sector, and
therefore eq.(5.48) can be rewritten as:

ZK(τ, τ̄)odd spin =
∑
p,q

(−1)p+qhp,q, (5.49)

where the sum is now over the chiral primary states, in the NS sector, of the N = (2, 2) internal SCFT,
with U(1)(L) × U(1)(R) charges p, q, and hp,q being their multiplicities. It has been shown in [9] that
the N = 2 chiral ring is in bijective correspondence with the Dolbeault cohomology classes Ω(K)
of the manifold K. In particular, chiral primaries with charges p, q are mapped to p, q-forms in the
cohomology Ωp,q(K), which implies that the hp,q defined in eq.(5.49) are identified with the Hodge
numbers, hp,q = dimC(Ωp,q(K)), of the internal manifold K. In a complex manifold K, however, the
alternating sum of Hodge numbers precisely reproduces the topological (homological) definition
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of the Euler characteristic χ(K). Our result for the one-loop correction to the Einstein-Hilbert term
for such compactifications is, accordingly, the following:

⟨R⟩one−loop|R2×K = ζ(2)χ(K), (5.50)

where the volume of the fundamental domain VFT2 =
π
3 , from the modular integral in eq.(5.39),

has been combined with the π
2 -prefactor of the modular integral, to consequently produce a factor

π2

6 = ζ(2). Our result in the above eq.(5.50) is the 2-dimensional extention of known results in
the literature, obtained in 4 dimensions, both by the background field method and as a limit of
four-graviton scattering [10],[11]. In all these works, the one-loop correction to the Einstein-Hilbert
term is also found to be proportional to ζ(2) and to the Euler characteristic χ(K). It is interesting to
observe that this precise structure persists also in the 2-dimensional case.

The case of the K3 × K3 orbifold

The partition function of a type IIB supestring theory, compactified on a K3 × K3 orbifold, can be
given by setting the values m = m̃ = 0, 1, for the left and right chirality projectors, respectively, in
the preceding eq.(5.14). On the grounds of eq.(5.49) of the previous paragraph, we have but to count
the multiplicities, hp,q, of chiral primary states of specific U(1)(L) × U(1)(R) charges p, q, in the NS
sector of the theory, which are in bijective correspondence to the RR-ground states. As the K3 × K3
orbifold is explicitly factorised, we may freely consider the much simpler case of a K3 orbifold;
the topological nature of our result, in eq.(5.50), along with the factorisation property of the Euler
characteristic: χ(K1 × K2) = χ(K1)χ(K2), justifies this simplification.
The partition function of a type IIB supestring theory, compactified on a K3 orbifold, can be given
in accordance with the preceding eq.(5.14), as in the following:

ZIIB|R6×K3(τ, τ̄) =

=
1
2

∑
h,g∈N2

(|η(q(τ))|)−8ZT4/Z2

[
h
g

]
(τ, τ̄; G,B)

1
2

1∑
a,b=0

(−1)a+b+ab


θ

[
a
b

]
(q(τ))

η(q(τ))


2

θ

[
a + h
b + g

]
(q(τ))

η(q(τ))

θ

[
a − h
b − g

]
(q(τ))

η(q(τ))

1
2

1∑
ã,b̃=0

(−1)ã+b̃+ãb̃


θ̄

[
ã
b̃

]
(q̄(τ̄))

η̄(q̄(τ̄))


2

θ̄

[
ã + h
b̃ + g

]
(q̄(τ̄))

η̄(q̄(τ̄))

θ̄

[
ã − h
b̃ − g

]
(q̄(τ̄))

η̄(q̄(τ̄))
. (5.51)

We can decompose the partition function of the above eq.(5.51) as a sum of SO(4) Kac-Moody
character product terms; the Kac-Moody characters of the four distinct, adjoint O4, vector V4,
spinor S4, and conjugate spinor C4 representations of SO(4) are defined as in [2]:

χr = r = Tr(r)[qL0− c
24 (τ)], (5.52)

where c is the central charge relating to two complex fermions (that is, c=2), while r = O4,V4,S4,C4,
and a straightforward calculation results in the following expressions:

O4 =
1
2

1∑
b=0


θ

[
0
b

]
(q(τ))

η(q(τ))


2

, (5.53)
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V4 =
1
2

1∑
b=0

(−1)b


θ

[
0
b

]
(q(τ))

η(q(τ))


2

, (5.54)

S4 =
1
2

1∑
b=0

(−1)b


θ

[
1
b

]
(q(τ))

η(q(τ))


2

, (5.55)

and:

C4 =
1
2

1∑
b=0


θ

[
1
b

]
(q(τ))

η(q(τ))


2

, (5.56)

respectively. Focusing, now, on the RR sector of the partition function of eq.(5.51), we find, after
some algebra, that it can be expressed as in the following:

ZIIB|R6×K3(τ, τ̄)RR−sector =

= ZT4/Z2

[
0
+

]
(τ, τ̄; G,B)(|η(q(τ))|)−8(S4S4S̄4S̄4 + C4C4C̄4C̄4)+

+ZT4/Z2

[
1
+

]
(τ, τ̄; G,B)(|η(q(τ))|)−8(O4C4Ō4C̄4 + V4S4V̄4S̄4)+

+ZT4/Z2

[
0
−

]
(τ, τ̄; G,B)(|η(q(τ))|)−8(S4S4C̄4C̄4 + C4C4S̄4S̄4)+

+ZT4/Z2

[
1
−

]
(τ, τ̄; G,B)(|η(q(τ))|)−8(O4C4V̄4S̄4 + V4S4Ō4C̄4), (5.57)

where:

ZT4/Z2

[
k
±

]
(τ, τ̄; G,B) =

1
2

ZT4/Z2

[
k
0

]
(τ, τ̄; G,B) ± 1

2
ZT4/Z2

[
k
1

]
(τ, τ̄; G,B); k = 0, 1. (5.58)

The power series expansion of the partition function of eq.(5.57), with respect to q(τ), q̄(τ̄), reveals
that only the terms of the Kac-Moody character products S4S4S̄4S̄4, C4C4C̄4C̄4, and O4C4Ō4C̄4,
correspond to ground states; specifically, the former two terms of the untwisted sector respectively
describe 4 distinct, internal RR-ground states of U(1)(L) × U(1)(R) charges (1, 1), (−1, 1), (1,−1), and
(−1,−1), as well as 4 U(1)(L) × U(1)(R)-neutral internal RR-ground states, whereas the latter term of
the twisted sector describes 16 U(1)(L)×U(1)(R)-neutral internal RR-ground states, the multiplicity of
which being simply a result of the total number of 16 fixed points, in the twisted sector, of the T4/Z2
orbifold. The spectral flow that is admitted by the theory bijectively maps the preceding internal
RR-ground states to internal chiral primary states of U(1)(L) × U(1)(R) charges shifted by ( c

6 ,
c̃
6 ), in

the NS sector; the internal central charges are evidently c = c̃ = 6, so the possible U(1)(L) × U(1)(R)
charges, p, q, of the internal chiral primary states may accordingly be (0, 0), (2, 0), (0, 2), (2, 2), and
(1, 1), while the Hodge square may be constructed from their respective multiplicities, hp,q, and
found to be: h0,0 h0,1 h0,2

h1,0 h1,1 h1,2
h2,0 h2,1 h2,2

 =
1 0 1
0 20 0
1 0 1

 . (5.59)

We underline that the elements, hp,q, of the Hogde square, refer exclusively to the multiplicities
of internal states, in the NS sector of the theory. Using, then, the preceding eq.(5.49), along with
the topological definition of the Euler characteristic, we can straightforwardly compute the Euler
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characterictic of the K3 orbifold, χ(K3) = 24, meaning that the Euler characteristic of the K3 × K3
factorised orbifold of interest is simply found to be χ(K3 × K3) = 242 = 576, a result that is well-
known and established, in the mathematics literature. As a consequence, our derived general result,
in eq.(5.50), yields the following:

⟨R⟩one−loop|R2×K3×K3 = 96π2, (5.60)

for the one-loop level correction to the Einstein-Hilbert term, in a type IIB superstring theory,
compactified on a K3 × K3 orbifold. It is simple to see that the result of the above eq.(5.60) may
be explicitly verified by the straightforward calculation of the odd spin-structure of the partition
function of eq.(5.14), which corresponds to a type II superstring theory compactified on a K3 × K3
orbifold, along with the use of the final result of the one-loop level two-graviton scattering, in
eq.(5.39). Nevertheless, it would be much more instructive to explicitly show exactly how our
derived general result, in eq.(5.50), incorporates the topological definition of the Euler characteristic.
To that purpose, we can define the modified elliptic genus of a topological space K, by performing
a (t, t̄)-deformation in the partition function of the preceding eq.(5.42), that corresponds to the RR
sector of the respective internal SCFT, as in the following:

ZK(τ, τ̄; t, t̄)odd spin = TrRR[(−1)J0− J̃0 qL0− c
24 (τ)q̄L̃0− c̃

24 (τ̄)tJ0 t̄ J̃0 ]. (5.61)

We may also define the following quantity:

PK(t, t̄) = TrRR−ground states[(tt̄)
c
6 tJ0 t̄ J̃0 ], (5.62)

which, by virtue of the spectral flow, that is admitted by the SCFT, as it was described in the previous
paragraph, can be redefined as in the following:

PK(t, t̄) = TrNS−chiral primary states[tp t̄q], (5.63)

where the trace of the above eq.(5.63) is, now, over the chiral primary states of U(1)(L)×U(1)(R) charges
p, q, in the NS sector of the SCFT. We can see that the quantity PK(t, t̄) is essentially the partition
function relative to the chiral primary states in the NS sector of the SCFT, and can naturally be
expressed as a (t, t̄)-polynomial:

PK(t, t̄) =
∑
p,q

hp,qtp t̄q, (5.64)

where the coefficients hp,q are, evidently, the respective multiplicities of the chiral primary states
of U(1)(L) × U(1)(R) charges p, q, in the NS sector of the SCFT. As it has been mentioned in the
previous paragraph, it has been shown in [9] that the coefficients hp,q are identified with the Hodge
numbers of the topological space K, so that the (t, t̄)-polynomial PK(t, t̄) is identified with the Poincaré
polynomial of the topological space K. Noting, now, that only the ground states may have a non-zero
contribution to the modified elliptic genus of eq.(5.61), in its limit where τ2 → +∞⇒ q(τ), q̄(τ̄)→ 0,
the Poincaré polynomial PK(t, t̄) may also be rewritten as:

PK(t, t̄) = (tt̄)
c
6 lim
τ2→+∞

ZK(τ, τ̄;−t,−t̄)odd spin, (5.65)

and we can essentially reproduce the eqs.(5.47) − (5.49), of the previous paragraph, explicitly in
the form of the topological definition, χ(K) = PK(−1,−1), for the Euler characteristic, χ(K), of the
topological space K, as in the following:

χ(K) = PK(−1,−1) = lim
τ2→+∞

ZK(τ, τ̄; 1, 1)odd spin =

= TrRR−ground states[(−1)J0− J̃0 ] = TrNS−chiral primary states[(−1)p(−1)q] =
∑
p,q

hp,q(−1)p(−1)q = ZK(τ, τ̄)odd spin,

(5.66)
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on the grounds of the topological interpretation of the partition function ZK(τ, τ̄)odd spin, of the
previous paragraph. Focusing, then, on the case of the K3 orbifold, we can straightforwardly
calculate the Poincaré polynomial PK3(t, t̄), using eq.(5.61), along with the odd spin-structure of the
partition function of eq.(5.51); after some algebra, we find that the Poincaré polynomial PK3(t(z), t̄(z̄))
is equal to:

PK3(t, t̄) = (tt̄)
c
6 lim
τ2→+∞

ZIIB|R6×K3(τ, τ̄;−t,−t̄)odd spin = 1 + t2 + t̄2 + 20tt̄ + t2 t̄2 =

2∑
p=0

2∑
q=0

hp,qtp t̄q, (5.67)

reading off the corresponding Hodge numbers hp,q exactly as they appear in the Hodge square of
eq.(5.59), so that the topological definition, PK3(−1,−1) = χ(K3), of the Euler characteristic, χ(K3),
gives χ(K3) = 24, and the Euler characteristic of the K3 × K3 orbifold is again found to be equal
to χ(K3 × K3) = 242 = 576, as it is expected. It is evident, then, that the result in eq.(5.60), for the
one-loop level correction to the Einstein-Hilbert term, in a type IIB superstring theory, compactified
on a K3×K3 orbifold, may also be reproduced and verified via the above calculation of the Poincaré
polynomial, PK3(t, t̄), of the K3 orbifold.
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