
Transformer-Based Approaches for Automatic
Music Transcription

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Christos Zonios

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2021

Examining Committee:

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina (Supervisor)

• Konstantinos Blekas, Professor, Department of Computer Science and Engi-
neering, University of Ioannina

• Kostas Vlachos, Assist. Professor, Department of Computer Science & Engi-
neering, University of Ioannina

ACKNOWLEDGEMENTS

I would like to thank my supervisor, professor Aristidis Likas, for always being
helpful, patient and kind, passing on to me the love for scientific research, showing
me how to be measured and composed in my approach to new problems, answering
every question I had and providing more ideas and solutions than I could possibly
ever examine in my time working on this thesis.

A big thanks is also owed to Ioannis Pavlopoulos, who sacrificed many of his coffee
breaks to patiently explain complicated NLP concepts to me, and provide analogies,
visualizations and alternate viewing angles to difficult problems I faced.

TABLE OF CONTENTS

List of Figures iv

List of Tables vi

List of Algorithms vii

Abstract viii

Εκτεταμένη Περίληψη x

1 Introduction 1
1.1 Automatic Music Transcription . 1

1.1.1 Piano Music . 1
1.1.2 Music Transcription . 2
1.1.3 MIDI . 3
1.1.4 Music Language Modelling . 3

1.2 Audio Representations . 4
1.3 Deep Learning . 5

1.3.1 Convolutional Neural Networks 5
1.3.2 Recurrent Neural Networks . 6
1.3.3 Autoencoders . 6

1.4 Transformers . 7
1.4.1 Architecture . 8
1.4.2 Self-Attention . 8
1.4.3 wav2vec2 Model . 10
1.4.4 BERT . 10
1.4.5 Music Transformers . 11

1.5 Thesis Objectives . 12

i

1.6 Thesis Structure . 13

2 Transformer‐Based Approaches 14
2.1 Obtaining Better Music Representations 14
2.2 Decoding Musical Sequences & Music Language Modelling 15

2.2.1 Evaluating BERT for Music Language Modelling 15
2.2.2 Music-Encoded Pre-Training . 16

2.3 Encoder-Decoder Architectures (Wav2Vec2Bert) 17
2.4 Onset and Offset Detector Architectures 18

2.4.1 Eurydice . 18
2.4.2 Orpheus . 18

3 Implementation 22
3.1 Dataset and Preprocessing . 22

3.1.1 MAESTRO Dataset . 22
3.1.2 String Representation and Tokenization 23
3.1.3 Introducing Noise to the Dataset 24

3.2 Neural Networks . 24
3.2.1 Training . 25
3.2.2 Architectures . 27
3.2.3 Sequences and Sequence Lengths 28

4 Experiments 33
4.1 Performance Metrics . 33

4.1.1 Per Note Metrics . 34
4.1.2 Per Frame Metrics . 34

4.2 Experiment Setup . 34
4.3 Preliminary Testing . 35

4.3.1 Evaluating wav2vec2 for Music Audio Embeddings 35
4.3.2 Evaluating BERT for Music Language Modelling 35

4.4 System Specifications . 36

5 Results 37
5.1 Music Language Modelling . 37
5.2 Automatic Music Transcription . 43

ii

6 Conclusions and Future Work 48

Bibliography 50

Index 54

iii

LIST OF FIGURES

1.1 The process of transcription extracts the musical information from the
sound (left) into human-readable music notation (right) 3

1.2 Piano composition in MIDI format as represented in a piano roll (pic-
ture taken from recording software) . 4

1.3 Different audio representations . 5

2.1 The same model with a different head for two approaches to sequence
classification . 16

2.2 Wav2Vec2Bert: an end-to-end model connecting the encoder and decoder 19
2.3 Eurydice base model. Modules with frozen parameters are in light blue. 20
2.4 Orpheus model . 21

3.1 Few tokens make up most of the training dataset. All figures exclude
the most common token (musical pause) 24

3.2 Adaptive learning rate using different parameters 27
3.3 Convolutional stack used with mel-spectrogram feature inputs 30
3.4 Orpheus large model . 31
3.5 Orpheus full model . 32

5.1 MMLM results on masking the V chord of a perfect fall in the key of C.
Note that the model has no information on key and can infer different
keys and contexts. 38

5.2 MMLM results on a musical sequence in the key of C major. Note that
the model has no information on key and can infer different keys and
contexts. 39

iv

5.3 BERT pre-training results: using a noisy input, our model learns to
correct the errors and output a more realistic transcription (Legend for
bottom right picture: Green: TP, Red: FP, Blue: FN) 41

5.4 Comparison of training a pretrained on natural language versus an
uninitialized BERT model for music denoising 42

5.5 Piano roll visualizations of our reconstruction of the Onsets and Frames
model predictions on a part from the piece ”Fantasy in F-sharp Minor,
Op. 28” by composer Felix Mendelssohn 45

5.6 Piano roll visualizations of our Eurydice base model predictions on a
part from the piece ”Fantasy in F-sharp Minor, Op. 28” by composer
Felix Mendelssohn . 46

5.7 Piano roll visualizations of our Orpheus model predictions on a part
from the piece ”Fantasy in F-sharp Minor, Op. 28” by composer Felix
Mendelssohn . 47

v

LIST OF TABLES

3.1 Active notes in the most common tokens and token counts 25
3.2 Learning rates for separate training of encoder and decoder models . . 27
3.3 Different model configurations (m stands for millions) 29

5.1 BERT model performance on music denoising task with and without
checkpoint start . 40

5.2 Model performance on MAESTRO test set 44

vi

LIST OF ALGORITHMS

3.1 Adding noise to input frames . 26

vii

ABSTRACT

Christos Zonios, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2021.
Transformer-Based Approaches for Automatic Music Transcription.
Advisor: Aristidis Likas, Professor.

Automatic Music Transcription (AMT) is the process of extracting information
from audio into some form of music notation. In polyphonic music, this is a very
hard problem for computers to solve as it requires significant prior knowledge and
understanding of music language and the audio is subject to a multitude of variations
in frequencies depending on many factors such as instrument materials, tuning, player
performance, recording equipment and others.

Transformers are self-supervised models that have recently showed great promise
as they use self-attention in order to learn contextual representations from unlabeled
data. They have surpassed state of the art (SOTA) performance in various Speech
Recognition (SR), Natural Language Processing (NLP) and Computer Vision tasks.

In this work, we examine transformer-based approaches for performing AMT on
piano recordings by learning audio and music language representations. Specifically,
we look at the popular SR model wav2vec2 as a solution to the former and the NLP
model BERT in order to perform Music Language Modelling (MusicLM).

We propose a new pre-training approach for MusicLM transformers based on
an appropriately defined transcription error correction task. In addition, three novel
models for AMT are proposed and studied that appropriately integrate wav2vec2 and
BERT transformers at various stages.

We conclude that a wav2vec2 encoder model pre-trained on speech audio is not
able to surpass SOTAmodels using mel-scale spectrograms and convolutional network
encoders without significant conditioning on music audio.

viii

We show that a BERT transformer pre-trained on natural language has transfer
learning potential for MusicLM. We also examine the robustness of such a transformer
for performing MusicLM, and find that we are able to achieve interesting results when
doing Masked MusicLM and when replacing Recurrent Neural Networks with pre-
trained transformers in SOTA models for AMT.

ix

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Χρήστος Ζώνιος, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημάτων,
Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο Ιωαν-
νίνων, 2021.
Προσεγγίσεις Βασισμένες σε Transformers για Αυτόματη Μετεγγραφή Μουσικής.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Η Αυτόματη Μετεγγραφή Μουσικής (Automatic Music Transcription, AMT) είναι
η διαδικασία εξαγωγής πληροφορίας από ένα σήμα ήχου σε κάποια μορφή μουσικής
σημειογραφίας. Στην πολυφωνική μουσική, το AMT είναι ένα δύσκολο πρόβλημα
για υπολογιστικά συστήματα καθώς χρειάζεται σημαντική εκ των προτέρων γνώση
και κατανόηση της γλώσσας της μουσικής, και το σήμα του ήχου περιέχει πολλές
διαφοροποιήσεις στις συχνότητες που περιέχει λόγω διαφόρων συντελεστών όπως
τα υλικά του μουσικού οργάνου, το κούρδισμα, την εκτέλεση του κομματιού από
τον οργανοπαίκτη, τον εξοπλισμό ηχογράφησης κ.α.

Οι transformers είναι μοντέλα βαθιάς μάθησης τα οποία εκπαιδεύονται με τε-
χνικές αυτο-εποπτευόμενης μάθησης (self-supervised learning) και χρησιμοποιούν
αυτο-προσοχή (self-attention) ώστε να μάθουν αναπαραστάσεις που περιέχουν τα
συμφραζόμενα από ακολουθίες δεδομένων χωρίς ετικέτα. Έχουν δείξει ότι ξεπερ-
νούν σε απόδοση τα προηγούμενα state of the art (SOTA) μοντέλα σε πολλά προ-
βλήματα μοντελοποίησης ακολουθιών όπως Αυτόματη Αναγνώριση Φωνής (Speech
Recognition, SR), Επεξεργασία Φυσικής Γλώσσας (Natural Language Processing,
NLP) και Υπολογιστικής Όρασης (Computer Vision).

Σε αυτή την εργασία εξετάζουμε προσεγγίσεις βασισμένες σε transformers για
την υλοποίηση συστημάτων AMT σε ηχογραφήσεις εκτελέσεων μουσικών κομματιων
σε πιάνο, μαθαίνοντας αναπαραστάσεις για το σήμα του ήχου και τη γλώσσα της
μουσικής. Συγκεκριμένα, χρησιμοποιούμε το δημοφιλές SR μοντέλο wav2vec2 για να
εξάγουμε αναπαραστάσεις από το σήμα του ήχου, και το NLP μοντέλο BERT για

x

να κάνουμε Μοντελοποίηση της Μουσικής Γλώσσας (Music Language Modelling,
MusicLM).

Προτείνουμε μια νέα τεχνική προεκπαίδευσης (pre-training) για μοντέλα trans-
formers βασισμένη σε διόρθωση λαθών της μετεγγραφής μουσικής, καθώς και τρία
νέα μοντέλα για ΑΜΤ.

Συμπεραίνουμε πως το μοντέλο wav2vec2 προεκπαιδευμένο σε σήμα ήχου ομι-
λητικής φύσης δεν καταφέρνει να ξεπεράσει τα καλύτερα μοντέλα που χρησιμο-
ποιούν mel-scale φασματογράμματα και συνελικτικά νευρωνικά δίκτυα, χωρίς να
εκπαιδευτεί με σήμα ήχου μουσικών κομματιών.

Δείχνουμε πως ένας BERT transformer προεκπαιδευμένος σε φυσική γλώσσα
έχει μεγάλες δυνατότητες μεταφοράς μάθησης σε MusicLM. Εξετάζουμε επίσης την
ευρωστία ενός τέτοιου transformer για MusicLM, και βρίσκουμε πως πρκύπτουν
ενδιαφέροντα αποτελέσματα όταν εφαρμόζουμε Masked MusicLM, καθώς και όταν
αντικαθιστούμε τα επαναληπτικά νευρωνικά δίκτυα (Recurrent Neural Networks)
με προεκπαιδευμένους transformers στα SOTA μοντέλα για ΑΜΤ.

xi

CHAPTER 1

INTRODUCTION

1.1 Automatic Music Transcription

1.2 Audio Representations

1.3 Deep Learning

1.4 Transformers

1.5 Thesis Objectives

1.6 Thesis Structure

1.1 Automatic Music Transcription

Automatic Music Transcription (AMT) [1] is the process of automatically converting
an audio signal to a high-level representation of the musical information present in
it. When musicians perform transcription of music, they listen to the audio and use
some form of music notation to generate a human-readable representation of that
audio. One would later be able to use this representation to perform the music, by
interpreting this notation. A subfield of Music Information Retrieval (MIR), AMT has
been studied extensively due to its applications in musical analysis, teaching of music,
annotation and others.

1.1.1 Piano Music

Piano music is comprised of 88 notes. When a piano key is pressed, a small hammer
hits three strings, which vibrate. Once hit, they immediately produce a sound (”attack”

1

of the note). The strings keep vibrating and after a while the sound decays slowly,
unless the player stops pressing the key and is not using the sustain pedal, in which
case the note is quickly silenced. The pitch is considered active from the moment of
the attack up to the point where it has decayed below a certain volume threshold,
subjective to the transcriber. Music on the piano can range from simple to fairly
complex. The music can move slowly or fast (variable tempos), individual notes can
be loud or soft (variable dynamics), many can be active at any time (variable melodic
and harmonic structures), and bars can be structured in different counting systems
(variable time signatures). Piano notes range from very low to very high pitched.

1.1.2 Music Transcription

Music transcription is the process of notating a piece of music by means of listening
to a recording or live performance of said piece and deriving, using prior knowledge
of music, the musical information present in it in as much detail as possible, so that
one could use that notation to recreate the musical performance. Transcription could
also mean arranging a piece of music for a different instrument, however when we
use the term in this thesis, we are referring to the former definition. A visualization
of music transcription is shown in Figure 1.1.

As the piano is an acoustic instrument, and one that needs to be tuned, pressing
a key does not necessarily result in the same pitch every time. Furthermore, the
frequency (or pitch) of each note is accompanied by different frequencies (called
harmonics and disharmonics) due to the materials of the piano, acoustics of the room,
vibrations of the strings affecting each other, recording techniques and of course the
human touch of the musician. Transcribing a single sequence of non-overlapping
notes (called a melody) is somewhat trivial to do since the fundamental frequency
of the note is always the most prominent, and the note can be inferred from the
frequency. However, in polyphonic music notes can overlap making the task very
complex, as harmonics, disharmonics and fundamental frequencies can become mixed
together and make it difficult to not only infer how many notes are present at each
time but also which ones they are, since a harmonic produced by many pitches might
overpower a fundumental of another pitch.

2

(a) An audio wave

(b) Musical notation (sheet music)

Figure 1.1: The process of transcription extracts the musical information from the
sound (left) into human-readable music notation (right)

1.1.3 MIDI

Musical Instrument Digital Interface (MIDI) [2] is a technical standard that describes
a communications protocol, digital interface, and electrical connectors that connect a
wide variety of electronic musical instruments, computers, and related audio devices
for playing, editing and recording music. In this thesis, we will use the term in only
the digital interface definition.

MIDI, as a digital interface standard, is analogous to a digital form of music
notation (sheet music). In this thesis, the desired output of our model is a matrix
that can be directly used with some MIDI interface library to produce a MIDI file
containing the exact same notes, starting and ending at the same time, as in the input
audio file.

For all models implemented in this work, we adopt a piano roll representation
of MIDI information shown in Figure 1.2. A piano roll is a sequence of vectors of
size 88, since the piano has 88 keys (notes). Each vector represents a time frame.
Hereafter, it will be referred to simply as ”frame” .

1.1.4 Music Language Modelling

Music Language Modelling (MusicLM) is the musical equivalent of language mod-
elling in Natural Language Processing (NLP). By modelling the language of music,

3

Figure 1.2: Piano composition in MIDI format as represented in a piano roll (picture
taken from recording software)

and specifically its temporal, melodic, rhythmic and harmonic structure as well as
emergent patterns and repeated passages, we can not only further understand it but
also create better representations and abstractions. It is an essential step towards
solving various MIR problems. In the context of AMT, better MusicLM allows us to
predict more realistic transcriptions [3], improve transcription accuracy and increase
the confidence of the model predictions.

1.2 Audio Representations

Sound, or audio, is a continuous signal representing amplitude over time. When
recorded with modern equipment it is usually sampled thousands of times per second.
To sample audio, one would use a microphone, a device containing a diaphragm
which works like an eardrum and moves according to vibrations in the air, turning
those vibrations into an electrical signal. That signal is then optionally passed through
a pre-amplifier and turned into a discrete signal through sampling, resulting in a
WAVE file. The standard CD quality sampling rate for music audio is 44.1kHz.

Most approaches for AMT preprocess the audio into a frequency representation
([4], [5], [6], [7] and [8]), using the Short Time Fourier Transform (STFT) and scaling
the output spectrogram to the Mel Scale [9], or the Constant-Q Transform (CQT) [10].
Figure 1.3 shows various audio representations.

4

(a) Raw audio wave (b) CQT of audio

(c) Mel-scale spectrogram of audio (d) Neural network intermediate features

Figure 1.3: Different audio representations

1.3 Deep Learning

Deep Learning [11] is an area of Machine Learning where neural networks with many
layers are used in an attempt to learn a hierarchy of features for solving a problem.
Deep neural networks have exhibited near human-like performance in tasks that
have been traditionally hard for computers to solve, such as computer vision, speech
recognition and automatic translation, even surpassing humans in some cases [12]
[13] [14].

1.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [15] [16] have found extreme success in fields
such as Computer Vision and Speech Recognition, in some cases of image recognition
problems even outperforming human classification [17].

The design of CNNs is used to model the connectivity patterns of neurons in

5

the visual cortex of the brain. Cortical neurons are connected with only a region
of neurons, resulting in having a smaller receptive field than the entire visual field.
Intuitively, this means that starting from a single pixel, a CNN layer might be trained
to detect edges at certain angles, light or dark spots and similar relatively simple
features. The next layer might learn more complex patterns, like edges with certan
angles and simple shapes. By stacking convolutional layers, we are able to create
systems that recognize very complex patterns like different faces, objects and scenes.

In AMT, like Speech Regognition, CNNs are used to extract better intermediate
features ([4], [6], [7] and [8]) when fed with spectrogram images, distinguishing
between patterns of active notes or even combinations of notes and their respective
frequencies.

1.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [18] are used to model temporal sequences. They
use their internal state as memory to process sequences of inputs. They have been
used extensively in problems such as speech recognition, as well as in AMT. Long
Short-Term Memory (LSTM) [19] Networks are a type of RNN that mostly negates the
vanishing and exploding gradient problems of previous RNN implementations, by
using a ”forget gate”, which gives each LSTM cell a small probability allow gradients
during backpropagation to flow unchanged through it.

In the context of AMT, LSTMs have been successfully used to improve performance
and achieve state of the art (SOTA) performance [4].

RNNs are not feedforward networks, which makes each neuron’s output depend
on not just the previous layer’s outputs, but also outputs of neurons in the same layer.
This introduces complexity and does not allow for massively parallel processing as
is the case with feedforward networks, slowing down training and inference. Their
resulting features are also not particularly interpretable, which is a problem when a
system needs to be explainable. In this thesis, we will examine emergent temporal
sequence modelling architectures which do not suffer from these flaws.

1.3.3 Autoencoders

The emergence of big data has resulted in new problems and better, larger datasets
of various types. However, as data labelling by humans is very time and resource

6

consuming, these datasets cannot be used by traditional supervised learning models.
Self-supervised methods can use unlabeled data to learn better representations, called
embeddings, of the input data. These embeddings may then be used in place of the
input data in various models, requiring much less labeled data for fine-tuning to
particular supervised tasks [20].

Autoencoders [21] are self-supervised neural network architectures which learn
efficient representations of input data. An autoencoder is given an input and learns to
reconstruct the input signal in the output. Intermediate layer outputs can then be used
to provide efficient representations of the input data. It also achieves dimensionality
reduction, using intermediate layers that have a smaller dimensionality than the input.

1.4 Transformers

Transformers [20] are a class of autoencoders with the addition of an attention mecha-
nism, described below, which is used to add positional encodings and learn to weigh
the significance of different parts of the input data. Like RNNs, they are used to
handle sequential data and produce embeddings that include contextual informa-
tion of different scales, for example at the character, word, sentence, paragraph and
whole text level. Contrary to RNNs, they are massively parallelizable and conceptually
simpler, as they are feedforward networks.

Transformer architectures have introduced great improvements in a variety of
sequence modelling problems, not only showing robustness in their particular appli-
cation but also promising potential for transfer learning, by fine-tuning pre-trained
models with just one additional layer to achieve SOTA performance in similar applica-
tions, using only a fraction of resources such as available data, time and computational
power needed by previous approaches [22] [23] [24].

Another advantage of transformers over previous sequence modelling architec-
tures is the ability to inspect the outputs of their attention heads, visualizing the
sequence elements that were most important in a prediction [25] which can provide
valuable insight into the decision process of the network, leading to explainable AI.

7

1.4.1 Architecture

Transformers are encoder-decoder models. Specifically, a transformer is comprised of
an encoder stack of N encoder layers and a decoder stack of N decoder layers. The
encoder stack maps an input sequence of discrete representations X : (x1, x2, ..., xn)

to a sequence of continuous representations Z : (z1, z2, ..., zn), while the decoder stack
generates an output sequence Y : (y1, y2, ..., ym), one element at a time, at each step i

using the encoder representations Z and previous outputs (y1, ..., yi−1) as additional
inputs. In other words, the encoder stack is fed the entire input sequence, while the
decoder stack is fed the encoder output as well as the decoder outputs of previous
steps.

Each encoder layer is composed of two sub-layers: a multi-head self-attention
mechanism, described below, and a position-wise fully connected network, with a
residual connection around each of the two sub-layers that is followed by layer nor-
malization. The output of each sublayer is LayerNorm(x+Sublayer(x)). All sub-layers
have the same dimension dmodel.

Similarly, each decoder layer is composed of three sub-layers: a masked multi-head
self-attention mechanism on the output embedding, then a multi-head self-attention
mechanism on the output of the encoder stack, and finally a position-wise fully
connected network. All sub-layers employ residual connections like in the encoder
stack. The masked multi-head attention module prevents the decoder from attending
to subsequent positions, and since the outputs are shifted right, it only has access to
output embeddings that are already known.

1.4.2 Self‐Attention

Transformers employ an attention mechanism in order to encode sequence element
positions and produce representations that include contextual information. Each in-
put element is projected into an embedding (continuous representation) through a
linear (fully-connected) layer, producing a ”word embedding”, which is a semantic
representation of the input. The element’s position in the sequence is also projected
into an embedding of the same size, producing a ”positional embedding”, and the two
embeddings are then added or concatenated together to form the input embedding
to the next layer.

A self-attention module works by comparing every input embedding with all input

8

embeddings of the sequence, itself included, and reweighing the word embeddings of
each word according to their relevance to the meaning of the word in question. This
operation is defined using a query vector and a key and value vector pair, mapped to
an output. The key, value and query vectors are all representations of the input and
are produced using a linear layer for each one, with the embedding as their input.

The key and value vectors for all input embeddings are used at each step, while
the query vector is only calculated for the embedding of the current sequence ele-
ment. This essentially means that the attention score (weight) is computed for all
embeddings with regards to the current embedding, for each embedding.

An intuitive way to think about this operation is that it asks the question: ”how
much does each element in the sequence contribute to the meaning of the current
element in this context”? In other words, how much attention should the network pay
to each embedding in order to make a decision about the current embedding? The
keys (each embedding of the sequence) and the query (current embedding) answer
the question to produce an attention score, and the value of each sequence element is
weighted by its corresponding attention score to produce the output for the current
embedding.

Mathematically, the output of the self-attention module is defined as the sum of
the values weighted by a similarity function of the query and the corresponding key.
In the original transformer [20], Scaled Dot-Product Attention is used, which uses a
dot-product as the similarity function:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

where dk is the embedding vector size, seq_len is the number of sequence ele-
ments, and Qseq_len×dk ,Kseq_len×dk and Vseq_len×dv are matrices representing a sequence
of queries, keys and values respectively. The scaling factor 1√

dk
is used to counteract

large dot-products pushing the Softmax function to have small gradients.

Multi‐head Attention

Multi-head attention is a technique that allows the model to attend to information
from different contexts at different positions in the input sequence. Q, K and V

matrices are passed in parallel through h linear layers followed by Scaled Dot-Product
Attention layers, and the outputs are then concatenated and passed through another

9

linear layer to project them to the desired dimension:

MultiHead(Q,K, V) = concat(head1, head2, ..., headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i) and WQ

i , WK
i , W V

i and WO are the
weights of the linear layers with inputs Q, K , V and the output of the concatenation
Oh×dv respectively.

1.4.3 wav2vec2 Model

wav2vec2 [23] is a transformer-based pre-training framework for self-supervised learn-
ing of speech representations. These representations can be used in a variety of speech
audio-based supervised learning tasks such as Speech Recognition to achieve and even
surpass state-of-the-art methods while using orders of magnitude less labelled data.

The base wav2vec2 model accepts audio sampled at 16kHz and produces embed-
ding vectors of dimension 768. Each embedding vector has a receptive field of 400
samples which corresponds to 25ms. Embedding vectors are spaced by 320 samples
(20ms). We will hereafter refer to this spacing as hop_length.

The model is composed of a multi-layer temporal convolutional feature encoder
X → Z that takes in raw audio X as inputs and outputs latent speech representa-
tions Z. Those representations are then fed into a transformer Z → C that builds
representations C capturing contextual information from the entire input sequence.
The outputs of the feature encoder are also discretized using a quantization module
Z → Q and are used as the targets Q in the self-supervised objective. Self-attention
captures dependencies over the entire input sequence of latent representations.

The model is trained using a masking approach, where some time-steps p are
randomly sampled to be starting indices, and the following M latent representations
are then masked. The quantized representations are not masked. The learning ob-
jective is then to predict the correct quantized representations for all masked latent
representations.

1.4.4 BERT

Bidirectional Encoder Representations from Transformers (BERT) [22] is a transformer-
based pre-training technique for NLP tasks, which achieved state-of-the-art perfor-
mance on multiple natural language understanding tasks. By design, BERT pre-trains

10

on unlabeled text to learn bidirectional representations by conditioning on both left
and right contexts.

The BERT model usually works using sequences of special text representations
called token_ids. Generally, a tokenizer is trained on a large text corpus of the language
it would be applied to in order to be able to process sentences into a series of tokens
belonging to its learned vocabulary of a standard size. Each token is either a word or
a subword, and special tokens are used to represent unknown words, masked words,
separators, ends or beginnings of sentences etc. This tokenizer is then used during
training and inference to generate those tokens from the input and output sentences.

The input of the BERT model is a sequence of token_ids, representing a sentence.
It produces embedding vectors of dimension 768.

It uses an internal learned lookup table to transform these descrete token_ids into
continuous vectors, and adds to them a positional embedding and a segmentation
embedding to denote which sentence they belog to.

During pre-training with unlabeled data, the BERT model uses two tasks: Masked
Language Modelling (MLM) and Next Sentence Prediction. For the MLM task, it picks
15% of the input tokens at random. It replaces 80% of them with the [MASK] token,
10% of them with a random token, and 10% of them with the unchanged token. It is
then asked to predict each picked token using cross-entropy loss. The Next Sentence
Prediction task is conceptually simple: for each training example, pick two sentences
A and B. 50% of the time, B actually follows A in the text, while the other 50% B is
a random sentence from the corpus. The model is tasked to predict whether sentence
B actually follows sentence A, with target the binary label isNext.

1.4.5 Music Transformers

A few transformer models exist for music tasks, but could not be used in this work
for various reasons. However, we decided to include them here for completeness.

The Music Transformer [26] is a model that uses a sparse, MIDI-like representa-
tion of music to train a transformer with relative attention, on the task of harmonizing
a melody (predicting the rest of the voices). This is unsuitable for an end-to-end AMT
system as the tokenization process is not differentiable and loss cannot be propagated
back from the music representations. It could theoretically be useful in improving
transcriptions of an existing AMT model as an extra decoder step, however the au-

11

thors have not released a pre-trained checkpoint yet, and we are interested in an
end-to-end solution.

Wave2Midi2Wave [27] builds on the Music Transformer by introducing a WaveNet
model for generating audio from the symbolic representations. It also uses the Onsets
and Frames transcription model [4] to work with raw audio as its input, and shows
that an AMT model can be used to provide music representations for pre-training a
transformer. The model does not train Onsets and Frames further, as training cannot
be done end-to-end for the reason stated above, and the authors did not examine the
potential for improving transcription performance using the transformer as a decoder.

Finally, Jukebox [28] is a generative model for music, trained on raw audio. It is
built similar to wav2vec2 as it uses quantized representations of the input audio. It
additionally introduces a spectral loss, which encourages the reconstruction to contain
the same frequencies as the input by comparing their spectrogram representations.
The model performance is impressive, however the top-level prior part of the model,
which might be useful in producing audio representations for AMT, has 5 billion
parameters and requires very large amounts of GPU memory as well as computing
power for pre-training. Theoretically, the top-level prior part could be used and fine-
tuned for AMT, but this was unfeasible on our system, therefore it is not used in this
work.

1.5 Thesis Objectives

This thesis addresses the emergence of transformer-based approaches in the fields of
NLP and Speech Recognition in the context of improving AMT and MusicLM. Specif-
ically, we examine the use of transformers to extract better intermediate features (em-
beddings) from raw audio, bypassing the usual preprocessing steps of transforming
the data to the frequency domain and scaling to some logarithmic scale. Instead, we
attempt to learn the best feature extraction process using all of the available informa-
tion. We also examine text-based autoencoders as a means to introduce improvements
in MusicLM, resulting in more realistic transcriptions. As transformers have large po-
tential for transfer learning, this would additionally enable any viable solutions to be
used in MusicLM tasks other than AMT.

The research questions in this thesis are:

12

• can we generate good representations from the raw audio using a transformer,
bypassing the need for a preprocessing step and capturing better contextual
information?

• can a pre-trained natural language modelling transformer model learn to model
music language?

• can we replace RNNs with language modelling transformers, creating more re-
alistic transcriptions?

• finally, can we improve on the SOTA using the aforementioned techniques?

1.6 Thesis Structure

The remainder of this thesis is structured as follows: In Chapter 2 we introduce
the approaches used to answer the research questions. In Chapter 3 we provide
implementation details for our approaches. Chapter 4 describes the experiments we
designed to evaluate the efficacy of the proposed methods. Chapter 5 presents the
results of the experiments. Finally, in Chapter 6 we draw some conclusions, discuss
our findings, and propose future work directions.

13

CHAPTER 2

TRANSFORMER-BASED APPROACHES

2.1 Obtaining Better Music Representations

2.2 Decoding Musical Sequences & Music Language Modelling

2.3 Encoder‐Decoder Architectures (Wav2Vec2Bert)

2.4 Onset and Offset Detector Architectures

2.1 Obtaining Better Music Representations

A first approach is to train a wav2vec2 model from scratch using music audio data,
however that is infeasible in the scope of this thesis due to computational resource
constraints. Instead, we assume that speech representations adequately transfer to
music audio, and fine-tune the model with a transcription head instead.

The first proposed model is conceptually simple: pass a sequence of audio samples
directly to a wav2vec2model pre-trained on speech audio, acquire the embeddings and
add a fully connected layer on top, as shown in Figure 2.1 (a). An input sequence of
N audio samples produces a sequence of approximately N

hop_length
embeddings1. This

leads to two approaches:

1. sequence-to-one: The goal of the classifier is to predict the frame right in the
middle of this sequence - use a sliding window to predict all frames

1The precise number of embeddings is N
hop_length

+ 80, as the receptive field (400 samples) is not a
multiple of the hop_length (320 samples), thus we have a remainder of 80 samples.

14

2. sequence-to-sequence: The goal of the classifier is to predict the frame correspond-
ing to each embedding

Preliminary experiments for this encoder architecture were done using the first ap-
proach; however, all other experiments were done using sequence-to-sequence mod-
els, as they performed better and required less time to train.

In practice, the difference between the two model architectures is only the top
layer, as shown in Figure 2.1. In the sequence-to-one approach, the fully-connected
layer takes in the feature representations of all sequence elements and outputs the
prediction for a single element. The shape of the top layer is (sequence_length ×
embedding_dim)→ (88).

Conversely, in the sequence-to-sequence approach, the fully-connected layer takes
in the feature representations of a single sequence element and outputs the prediction
for that element, for each element of the sequence. This means that the layer is of
shape (embedding_dim)→ (88). The same layer is implicitly repeated for all sequence
elements, and predictions for the whole sequence can be calculated in parallel.

The latter approach is easier to train as the layer has significantly less weights. An
added benefit to the sequence-to-sequence approach is that any length sequence can
be given, which is not the case with the sequence-to-one approach, as in that case the
sequence_length must be known and is part of the network architecture.

2.2 Decoding Musical Sequences & Music Language Modelling

2.2.1 Evaluating BERT for Music Language Modelling

In order to evaluate the efficacy of a BERT in the context of improving AMT accuracy
by acting as a decoder, we first preprocessed the dataset labels into text representa-
tions, and trained a tokenizer using the N most frequent words (each word represents
a frame). A DistilBERT [29] model, later replaced with a full BERT model, with a
MLM head was subsequently trained on those N most frequent tokens. Both the
model performance in the f1 score and the subjective measures of listening to model
masked predictions on music sequences showed a lot of promise for MusicLM.

The problem with this approach is that the string encoding and tokenization steps
are not differentiable, and thus the model cannot be trained end-to-end. A simple

15

(a) sequence-to-one model (b) sequence-to-sequence model

Figure 2.1: The same model with a different head for two approaches to sequence
classification

solution to this problem is to remove the string encoding and tokenization altogether
and instead pass the input embeddings directly, bypassing BERT’s internal learned
lookup tables that transform the input token ids into embedding vectors.

This approach works well and within a few epochs the model achieves an f1 score
higher than 90. After doing this, an end-to-end solution was trained and preliminary
testing showed promising results, shown in Section 4.3.

2.2.2 Music‐Encoded Pre‐Training

Next, we investigate a different pre-training approach for a BERT-like decoder. Since
MLM and Next Sentence Prediction are not very suitable for the task of AMT, we
introduce a training technique based on the addition of noise to the input data, in
order to mimic transcription errors. To our knowledge, this is the first attempt for
creating a music transcription error detection/correction model.

The addition of noise is made as follows: for each frame, each active note has
a 50% chance of becoming inactive, and each inactive note has a 10% chance of
becoming active. This is modelled after transcription errors, which are usually false

16

negatives, as the classifier does not detect a note is active if other notes are active, with
higher velocities, in that frame. False positives can also occur, usually when other,
similar notes are activated, for example when another note contains harmonics of the
same frequency as the false positive. Negative samples are also vastly more common
than positive samples. This approach also worked well and the model managed to
achieve a high f1 score within a few epochs.

In order to train the BERT-like decoder, a fully-connected layer was used on top
of the BERT network, taking in the embeddings and outputting a sequence of frame
predictions. At the base of the network, another fully-connected layer is added in
order to transform the input noisy frames into embeddings the same size as the ones
BERT uses internally.

Note that BERT is the pre-training method, and we do not use it in this approach,
instead using only the model architecture, which is a bidirectional transformer. As
we often used a standard BERT checkpoint for NLP tasks as a starting point, we
will hereafter refer to this bidirectional transformer as a BERT model, disregarding
whether the pre-training approach was used or not.

2.3 Encoder‐Decoder Architectures (Wav2Vec2Bert)

An approach to a complete end-to-end model is then simply to combine the en-
coder model with the decoder model, with an added dropout layer in between to
reduce overfitting. A simplified end-to-end model is also used, where the encoder
embeddings directly go into the decoder, bypassing the two layers that are needed
when training the encoder and decoder parts separately. Figure 2.2 compares the
architectures of both models.

We will hereafter refer to this model as ”Wav2Vec2Bert”. The simplified model is
used as preliminary experiments showed no loss in performance over the full model
while having fewer parameters.

17

2.4 Onset and Offset Detector Architectures

The Onsets and Frames [4] model showed that by adding an onset detector, the model
is able to provide more realistic transcriptions and surpass SOTA performance. Cheuk
et al. revisited the model with additive attention and showed that the onset locations
are the most important feature in the decision process of the model [30]. Thus, our
final two models both include both an onset and an offset detector submodule.

2.4.1 Eurydice

The next proposed model is an adaptation of the Onsets and Frames model with the
improvements described in [27], with the following changes:

• Each input is a sequence of raw audio instead of a mel-spectrogram

• Convolutional stacks are replaced with a pre-trained wav2vec2 encoder

• BiLSTM layers are replaced with a pre-trained BERT decoder

• The velocity prediction part of the model is removed

We will hereafter refer to this model as ”Eurydice”. The base Eurydice model is
presented in Figure 2.3.

2.4.2 Orpheus

Finally, we propose another Onsets and Frames-based model, keeping the preprocess-
ing of the raw audio into a mel-spectrogram and swapping the BiLSTM layers with
BERT transformers in an attempt to improve the music language modelling part of
the model.

We will hereafter refer to this model as ”Orpheus”. The base Orpheus model is
presented in Figure 2.4.

18

(a) Wav2Vec2Bert

(b) Simplified model

Figure 2.2: Wav2Vec2Bert: an end-to-end model connecting the encoder and decoder

19

Figure 2.3: Eurydice base model. Modules with frozen parameters are in light blue.

20

Figure 2.4: Orpheus model

21

CHAPTER 3

IMPLEMENTATION

3.1 Dataset and Preprocessing

3.2 Neural Networks

3.1 Dataset and Preprocessing

3.1.1 MAESTRO Dataset

The MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization)
[27] is a music dataset containing about 200 hours of piano performance audio
recording and MIDI pairs. The recordings are real virtuosic piano performances from
ten years of International Piano-e-Competition, and they are aligned finely (around
3ms accuracy) with their corresponding MIDI files. The dataset is split by year and
then by individual piece. It is part of the Magenta project by Google and freely
available.

Audio Files

The file type used for storing uncompressed audio data is called a WAVE file and has
the .wav extension. For this work, we used a preprocessing script to turn all WAVE
files into .flac (Free Lossless Audio Codec) files to save space. The librosa library was
used to load the audio from the files, using a sample rate of 16kHz.

22

MIDI Files

MIDI files (extension .midi or .mid) contain events describing musical events such as
a particular note turning on or off at a certain time, with a certain velocity. We use
the pretty_midi library in order to read that musical information and turn it into a
piano roll representation as described in Section 1.1.3.

The piano roll is a tensor of shape (Nframes × 88), where each frame corresponds
to receptive_field input audio samples and contains the note information for that
time frame. A frame is a vector of size 88, each element being either an integer (1
for onset, 2 for inside, 3 for offset) in the case of models with an onset and/or offset
detector, or a bit representing whether each piano note was active (1) or not (0) for
all other models. Each frame’s receptive field is spaced by hop_length samples from
the next frame.

3.1.2 String Representation and Tokenization

A first approach is to train and use a standard text tokenizer on the musical rep-
resentations (frames). To that end, we need to define a way to represent frames as
text.

A simple way to perform this action is to turn each frame into a string literal. That
is, each inactive note is represented as the ’0’ character and each active note is rep-
resented by the ’1’ character. A sentence is then a sequence of string representations
of frames, separated by a whitespace character (’ ’).

Training a tokenizer on a dataset of such sentences yields words (string repre-
sentations of frames), subwords (strings representing patterns of active and inactive
notes, for example ”10001” which represents a major third interval) and special tokens
such as start and end of sentence, unknown and mask.

A problem we encounter immediately is that the language of piano music, unlike a
natural language like English, has a vocabulary too large to fit in memory, specifically
288 possible words or frame states. However, the overwhelming majority of these states
are extremely unlikely and will not show up in the dataset.

Figure 3.1 shows the distribution and boxplots for the 500 most common tokens
in the training dataset. Note that the most common token, which corresponds to no
active notes (musical pause), is not plotted because it is two orders of magnitude
more common than the next token. Generally, the first tokens after the musical pause

23

(a) Distribution of 500 most common

training set tokens
(b) Boxplot of 500 most common training

set tokens

Figure 3.1: Few tokens make up most of the training dataset. All figures exclude the
most common token (musical pause)

are ones that correspond to only one note being played. This means that the dataset
is very sparse, with orders of magnitude more negative than positive samples in each
frame. The total number of unique tokens in the training set is 885 768. For reference,
Table 3.1 shows the top 40 most common tokens and their count in the training set.

For our purposes, we pre-train our tokenizer and BERT model using only a
subset of the vocabulary consisting of the N-most common tokens. We tried N ∈
{2 000, 10 000, 50 000} but found no difference in the performance of the network.

3.1.3 Introducing Noise to the Dataset

As described in Section 2.2.2, we introduce a new pre-training approach based on
music-encoded noise. The implementation of this approach is described in Algo-
rithm 3.1.

3.2 Neural Networks

The huggingface library [31] was used for the implementation of wav2vec2 and a pre-
trained checkpoint for it. It was also used to provide implementations of all BERT
and DistilBERT models and tokenizers. We used the ”bert-base-uncased” checkpoint
so as to not start training from scratch, as we suspect that natural language has

24

Table 3.1: Active notes in the most common tokens and token counts

Notes Count Notes Count Notes Count Notes Count

pause 1616638 (C4) 54002 (D#4) 42551 (E3) 29105
(G4) 75832 (A#4) 53957 (A5) 41016 (G#5) 28082
(C5) 71296 (G5) 52131 (C#4) 37417 (D#3) 24444
(D5) 70794 (E5) 51862 (F#5) 35712 (A#5) 24358
(A4) 69172 (C#5) 48439 (B3) 35624 (G3, G4) 23945
(D4) 65716 (A3) 47464 (F3) 34680 (B5) 23406
(E4) 60953 (D#5) 46045 (A#3) 34218 (A2) 23155
(F4) 57825 (G#4) 45848 (C3) 33032 (F#3) 23074
(F5) 56145 (G3) 44351 (D3) 32731 (C6) 22635
(B4) 54719 (F#4) 44041 (G#3) 31410 (G2) 22169

similarities to music language and the pre-trained checkpoint might contain close-
enough representations of those similarities.

3.2.1 Training

Learning rates η for all encoder and decoder models, when trained separately, were
constant as shown in Table 3.2, with a reduction if the validation f1 score plateaued
for more than 10 epochs obtained by multiplying the current η with a reduction factor
set to 0.1.

For the end-to-end models, after trying various constant learning rates, we instead
adopted an adaptive learning rate as in [20], as shown in Figure 3.2, according to
the formula:

η = embed_dim−0.5 ·min(step−0.5, step · warmup_steps−1.5)

This approach gave much faster convergence times without sacrificing model per-
formance.

In order to train the final models, two data sampling approaches were considered
and tested:

• split each file into non-overlapping sequences of length sequence_length, trim-
ming the remainder

25

Algorithm 3.1 Adding noise to input frames
1: for (audio_fname, midi_fname) in performances do
2: audio ← load(audio_fname, sample_rate)
3: if len(audio) % (sequence_length * hop_length) > 0 then
4: audio ← audio[0:len(audio) % (sequence_length * hop_length)]
5: end if
6: audio ← audio.reshape(new_shape=(-1, sequence_length * hop_length))
7: outputs ← parse_midi(midi_fname, len(audio))
8: outputs ← outputs.reshape(new_shape=(-1, 88))
9: inputs ← outputs.clone()
10: for i in range(0, len(outputs)) do
11: for j in range(0, 88) do
12: if outputs[j] == 1 and rand() < one_to_zero_probability then
13: inputs[i][j] ← 0
14: else if outputs[j] == 0 and rand() < zero_to_one_probability then
15: inputs[i][j] ← 1
16: end if
17: end for
18: end for
19: save_tensor_to_file(inputs, inputs_fname)
20: save_tensor_to_file(outputs, labels_fname)
21: end for

• at each epoch, get one sequence of length sequence_length at random from each
file and use only that

The second approach seems to yield better results as the training and convergence
is faster, although the performance of the model did not seem to improve on the first
approach.

Weight sharing and parameter freezing

The full Eurydice model is exceptionally large as it contains three wav2vec2 encoders,
three complete BERT transformers, and five additional fully-connected layers. One
way to solve this was to freeze the parameters of the wav2vec2 model encoder as it is
already trained, and share it between all three stacks (onset predictor, offset predictor,

26

Table 3.2: Learning rates for separate training of encoder and decoder models

Model Submodel η

ConvStack 7.5× 10−5

Encoder wav2vec2 7.5× 10−6

Linear 1× 10−5

Decoder BERT 5× 10−5

Linear 5× 10−5

Figure 3.2: Adaptive learning rate using different parameters

note activation estimator). The two BERT transformers in the onset and offset stack
can also share weights.

Similarly, for the Orpheus model, in order to avoid having three complete BERT
transformers, we simplify our approach by sharing weights between the onset and
offset detector stacks, except for the last layer.

3.2.2 Architectures

A multitude of model architectures have been implemented in various phases of this
work. In this subsection we describe the most important ones.

27

Baseline mel‐spectrogram model

During preliminary experimentation, a baseline model using mel-spectrogram inputs
was established in order to provide a rough comparison between a traditional con-
volutional stack encoder and the wav2vec2 encoder.

The architecture of the convolutional stack is presented in Figure 3.3. It consists
of three Convolutional layers followed by batch normalization layers, with the last two
additionally having max pooling layers. Finally, a fully-connected layer transforms
the outputs of the last max pooling layer into the desired model dimension.

The baseline model contains two fully-connected layers as a transcription head.

Baseline wav2vec2 model

The baseline wav2vec2 model replaced the entire convolutional stack with a wav2vec2

encoder. No other changes were made.

Wav2Vec2Bert

The Wav2Vec2Bert model follows a basic encoder-decoder approach; A wav2vec2

encoder followed by a BERT decoder, with a single layer on top as a transcription
head.

Eurydice

For the final Eurydice model, three configurations were implemented: base, large and
full.

The full model contains no weight sharing, and all submodules are trainable.
For the large configuration, the wav2vec2 encoder is shared between modules, and
the onset and offset detector subnetworks have a shared BERT model. The base model
is the same as large with the modification of having the wav2vec2 encoder parameters
frozen. These configurations are shown in Figures 3.5, 3.4 and 2.3 respectively. The
total and trainable model parameters for each configuration are shown in Table 3.3.

3.2.3 Sequences and Sequence Lengths

For all experiments in this work using a BERT decoder, we used a sequence length
of 400 or 512 frames, as the BERT decoder can only work with sequences up to

28

Table 3.3: Different model configurations (m stands for millions)

Model Total Parameters Trainable Parameters

Reconstruction of [27] 22m 22m
Wav2Vec2Bert 204m 204m
Eurydice (base) 314m 219m
Eurydice (large) 314m 314m
Eurydice (full) 722m 722m
Orpheus 228m 228m

length 512, which correspond to roughly 8 and 10.24 seconds respectively using the
wav2vec2 encoder, and 12.8 and 16.4 seconds using the ConvStack encoder. For the
baseline Onsets and Frames model we used a sequence length of 640 frames which
correspond to 20.48 seconds.

29

Figure 3.3: Convolutional stack used with mel-spectrogram feature inputs

30

Figure 3.4: Orpheus large model

31

Figure 3.5: Orpheus full model

32

CHAPTER 4

EXPERIMENTS

4.1 Performance Metrics

4.2 Experiment Setup

4.3 Preliminary Testing

4.4 System Specifications

4.1 Performance Metrics

The metrics used to evaluate model performance are those in [27], first described in
[32]. The primary evaluation metric is the Note f1 score. Below are all the metrics
used:

• Note precision

• Note recall

• Note f1 score

• Note with offsets precision

• Note with offsets recall

• Note with offsets f1 score

• Frame precision

33

• Frame recall

• Frame f1 score

4.1.1 Per Note Metrics

A note is evaluated as correct if its onset is detected within ±50ms and its frequency
is within 50 cents of the ground truth. In case of evaluating both onset and offset, on
top of the above requirements, a note is required to have an offset value within 20%
or ±50ms of the ground truth, whichever is larger.

Precision, recall and f1 score are calculated using the above measurement of a
true positive (TP) note. The mir_eval Python library is used to provide the scores.

4.1.2 Per Frame Metrics

We calculate frame precision, recall and f1 score using the standard binary multilabel
classification method, where a true positive is a note that is predicted correctly as
active (1) at that time frame, over all notes and all frames.

4.2 Experiment Setup

In order to evaluate our models, we first train a complete Onsets and Frames model,
extended to introduce the improvements and modifications introduced in [27], for
640,000 steps in our own setup in order to provide an accurate baseline. The per-
formance of the proposed architectures is then evaluated and compared with the
baseline.

The models evaluated are the following:

1. Reconstruction of Onsets and Frames (baseline)

2. Wav2Vec2Bert (100,000 steps)

3. Eurydice base (100,000 steps)

4. Orpheus (200,000 steps)

34

4.3 Preliminary Testing

4.3.1 Evaluating wav2vec2 for Music Audio Embeddings

As a first step, a preliminary evaluation of the efficacy of the wav2vec2 model for AMT
had to be done. A checkpoint pre-trained on speech audio was used as a starting
point, which was provided by the huggingface library. A feature extractor based on
mel-spectrograms was also constructed for evaluation, using a convolutional stack as
pictured in Figure 3.3, based on the architecture described in [4].

For both encoder architectures, a decoder consisting of one fully-connected layer
was used as a transcription head. The task was to predict the middle frame for
each input window of frames (sequence-to-one approach). Approximately 10% of
the training files were used for the experiments described in this section.

The wav2vec2 encoder outperformed the convolutional encoder in the frame f1

score, without the need for a preprocessing step. Specifically, the former achieved an
f1 score of 50 while the latter achieved a score of 44.

Next, we evaluated the wav2vec2-based architecture using a sequence-to-sequence
approach. This significantly reduced the amount of training time while improving
performance in the f1 score by 3.

Using an RNN decoder, the performance of both architectures improved, however
the convolutional encoder slightly outperformed our approach. This presumably hap-
pens because the wav2vec2-based architecture is harder to train than the much simpler
convolutional stack, and the addition of an RNN, which is notoriously hard to train,
complicates it further. Perhaps with more data or time we would see different results.

4.3.2 Evaluating BERT for Music Language Modelling

Other than in the final transcription models, a few empirical experiments were con-
ducted to provide a subjective measure of BERT for MusicLM. We show that BERT
trained with a MLM task adequately learns to predict musical sequences, even gen-
erating subjectively more musically pleasing and interesting sequences than the ones
used as a baseline. See 5.1 for a visualization and explanations on the results.

35

4.4 System Specifications

The hardware system and libraries used to conduct all experiments reported in this
work was the following:

• GPU: 4x NVIDIA GeForce RTX 2080 Ti (1 maximum per experiment)

• CPU: 2x Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (1 maximum per ex-
periment)

• RAM: 96GB (32 maximum per experiment)

• 72 hours maximum time per experiment

• Python 3.8.5, with libraries:

– PyTorch 1.8.1

– Huggingface Transformers 4.5.0

– MIDO 1.2.9

– pretty_midi 0.2.8

– librosa 0.8.0

– numpy 1.20.2

36

CHAPTER 5

RESULTS

5.1 Music Language Modelling

5.2 Automatic Music Transcription

5.1 Music Language Modelling

The BERT model trained on the Masked Language Modelling task performed subjec-
tively better than expected in Masked Music Language Modelling (MMLM). Results
are presented in Figures 5.1 and 5.2 along with explanations of the underlying har-
mony as a human musician would attempt to explain it. The model appears to learn
musical structure and adequately understand the musical context even in very small
sequences as it predicts chords that are justifiable with music harmony.

37

(a) Ground truth (masked notes in blue).

(b) Prediction 1: same as the following chord (imperfect fall). Presum-

ably, this is the top prediction because it puts the I chord in the key

of C in a strong position in the measure.

(c) Prediction 2: Eb and G, inferred as a C minor (borrowed) chord

in the key of C major, or a suspended dominant chord (V, VII) in the

key of E minor that is solved into the VI of the scale.

(d) Prediction 3: C (root note in the key of C) in lower register, putting

the I chord in a strong position in the measure.

Figure 5.1: MMLM results on masking the V chord of a perfect fall in the key of
C. Note that the model has no information on key and can infer different keys and
contexts.

38

(a) Ground truth (masked notes in blue).

(b) Prediction 1: repeat/continuation of previous chord, the VI of the C

major scale with the subtraction of the third. It can also be inferred as

the I in the key of A natural minor, as it appears in a strong position

of the measure.

(c) Prediction 2: IV or II which are subdominant chords of the C major

scale (imperfect fall).

(d) Prediction 3: can be inferred as a II Chord in C major scale (sub-

dominant), or dominant chord (V, VII) of the same key.

Figure 5.2: MMLM results on a musical sequence in the key of C major. Note that
the model has no information on key and can infer different keys and contexts.

39

On the noisy input training task, it produced clean predictions on the test set.
Figure 5.3 presents a visualization of the noisy input, prediction and ground truth.
In hindsight, this is not surprising as most patterns can be picked out by eye as well.

When initialized with a pre-trained checkpoint from natural language, the BERT
model learned and performed better than the randomly initialized model on the
task of denoising music input. This might mean that there is at least some transfer
learning potential because natural language modelling benefits MusicLM. Figure 5.4
shows the training and validation results, while Table 5.1 shows the test set results
of a pretrained versus an uninitialized BERT model. The per-note metrics are very
low because of the 50% probability of setting the onset to zero, making it very hard
for the model to detect and thus miss it.

Table 5.1: BERT model performance on music denoising task with and without
checkpoint start

Frame metrics Note metrics
Checkpoint Precision Recall F1 Precision Recall F1

bert-base-uncased 93.32± 2.1 88.83± 3.2 91.01± 2.6 53.83± 3.7 39.84± 5.3 45.58± 4.1
None 91.42± 2.5 73.80± 5.7 81.60± 4.4 12.96± 2.8 17.86± 3.0 14.88± 2.5

40

Figure 5.3: BERT pre-training results: using a noisy input, our model learns to correct
the errors and output a more realistic transcription (Legend for bottom right picture:
Green: TP, Red: FP, Blue: FN)

41

(a) Training loss

(b) Validation F1 scores

Figure 5.4: Comparison of training a pretrained on natural language versus an unini-
tialized BERT model for music denoising

42

5.2 Automatic Music Transcription

We were able to reproduce, within around 1.5 points in the F1 scores, the results
reported in [27], and used that model as a baseline.

Table 5.2 shows the experimental results. Figures 5.5, 5.6 and 5.7 show visual-
izations of predictions and transcription errors of the baseline model, Eurydice (base)
and Orpheus respectively. We could not train the large and full versions of Eurydice
as the large number of parameters prohibited training in a reasonable amount of time
in our system, due to very small batch sizes or in the case of the full model, not
enough GPU memory.

Our Wav2Vec2Bert model performed poorly compared to the baseline. While it
was able to achieve a reasonable Note f1 score, it was not particularly accurate in
predicting frames correctly.

The Eurydice base model improved on all metrics except, somewhat counterin-
tuitively, Note f1. The addition of an onset detector significantly raised the precision
score in all situations, but also lowered the recall somewhat except in the Note with
Offset case. Our explanation for this is that the onset detection problem is significantly
easier than the frame estimation problem, and the model was too large to effectively
learn to adequately solve the latter in the given time and with the given dataset.

Finally, our Orpheus model improved on our previous models in all metrics, but
still failed to outperform the baseline model, except in the Note precision metric.
However, it came reasonably close to the SOTA model, being around 6 to 10 points
lower in the f1 scores in all situations. It might have the capacity to reach or even
exceed the performance of the SOTA model, however we expect it to need either more
hyperparameter tuning, time, or data.

Given the above results, we conclude that the wav2vec2 encoder, pre-trained on
speech audio, cannot compete with the mel-spectrogram and convolutional stack
encoder of the baseline. This was not unexpected, as the information in speech audio
does not contain as many changes in pitch, has different tempo and beat patterns, and
speech audio is usually not polyphonic. These differences are problematic as music
transcription relies on this information, and wav2vec2 would have no incentive to
capture them when pre-trained with speech audio. We expect that with enough pre-
training on music audio, perhaps with some added, appropriately designed objectives,
this result might be different.

43

The BERT-like decoder appears to be on par with the Bi-LSTM networks of the
baseline, even though it did not manage to achieve their performance. We expect
that it simply needs more training and hyperparameter tuning in order to achieve
better results, as it did not manage to converge in the allocated time. Another positive
attribute of the BERT-like decoder is the fact that it can be pre-trained separately,
whereas the RNNs cannot, and more importantly that it can be used in other MIR
and MusicLM problems, due to the transfer learning potential of transformers, while
the RNNs have not shown that property.

Table 5.2: Model performance on MAESTRO test set

Frame Note Note w/ offset
Model P R F1 P R F1 P R F1

Hawthorne et al.[27] 92.11 88.41 90.15 98.27 92.61 95.32 82.95 78.24 80.50
Reproduction of [27] 93.65 84.67 88.89 98.68 89.38 93.77 84.02 76.13 79.86
Wav2Vec2Bert 69.94 60.16 64.22 83.26 75.38 78.74 50.14 45.03 47.23
Eurydice (base) 88.52 59.73 70.47 95.58 64.07 75.74 68.52 46.69 54.86

Orpheus 91.18 76.50 82.97 98.83 80.87 88.77 77.22 63.21 69.38

44

Figure 5.5: Piano roll visualizations of our reconstruction of the Onsets and Frames
model predictions on a part from the piece ”Fantasy in F-sharp Minor, Op. 28” by
composer Felix Mendelssohn

45

Figure 5.6: Piano roll visualizations of our Eurydice base model predictions on a part
from the piece ”Fantasy in F-sharp Minor, Op. 28” by composer Felix Mendelssohn

46

Figure 5.7: Piano roll visualizations of our Orpheus model predictions on a part from
the piece ”Fantasy in F-sharp Minor, Op. 28” by composer Felix Mendelssohn

47

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, we show that a wav2vec2 encoder pre-trained on speech audio alone
produces embeddings that cannot reach the performance of a convolutional stack
encoder using mel-spectrogram features in the task of Automatic Music Transcription.

We also investigate and show that a BERT model is suitable for performing Music
Language Modelling, and there is evidence of transfer learning potential between
natural and music language.

When replacing BiLSTMs in the state of the art Automatic Music Transcription
model with a BERT transformer, we find that the model is able to learn context
representations from the data and approach state of the art transcription accuracy.

Finally, we were not able to surpass state of the art performance using transform-
ers. This might be because of our limited resources for running experiments leading
to sub-par hyperparameter search and having to simplify all models in order to fit
them in GPU memory.

These limitations are not caused by the models we describe, and we are hope-
ful that future work will overcome them and achieve performance greater than the
current state of the art, enabling the transfer learning and explainability benefits of
transformers to advance related Music Information Retrieval fields and helping solve
various Music Language Modelling problems.

Progress in the field of Automatic Music Transcription would allow the develop-
ment of musical tools for music editing, synthesis and teaching. Furthermore, ad-
vancement of Music Language Modelling would initiate a bloom in automatic music

48

analysis, synthesis, and possibly enhance our own understanding of musical language
and structure.

The wav2vec2 model could be pre-trained on music audio instead of speech, allow-
ing it to learn better representations for music-specific tasks. This would require large
amounts of unlabeled raw music audio, which can be gathered using web-scraping
techniques, using multiple music datasets, and using data augmentation techniques.
A spectral loss could also be added like in the Jukebox model.

Furthermore, the proposed decoder pre-training approach could be augmented
by intelligently designing input noise to more closely mimic transcription errors. For
example, more of the onsets could be left intact as transcription models usually are
able to accurately predict them, but more noise could be added towards the offset
side of the note, or when onsets occur on other notes (and so existing notes might
get briefly ”buried” in the new frequencies).

Musical sequences can have simultaneously very short (e.g. fast note alternations)
and long term (e.g. repeating melodic patterns or choruses) structures. The BERT
transformer used in this work can only work with sequences up to length 512, which
correspond to roughly 10.24 seconds using the wav2vec2 encoder and 16.384 seconds
using mel-spectrogram inputs. An approach such as the Longformer [33] could model
longer sequences, capturing more contextual information.

A novel music notation tokenization method, perhaps based on the representations
used in the Music Transformer, would enable pre-training standard NLP models such
as BERT without compromises and hacks. Such a method is, in our opinion, the key
to unlocking the power of transformer architectures and enabling new approaches
for various MusicLM tasks.

49

BIBLIOGRAPHY

[1] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Automatic music transcription:
An overview,” IEEE Signal Processing Magazine, vol. 36, no. 1, pp. 20–30, 2018.

[2] T. M. Association. (2020, 02) The midi association. [Online]. Available:
https://www.midi.org/

[3] J. W. Kim and J. P. Bello, “Adversarial learning for improved onsets and frames
music transcription,” arXiv preprint arXiv:1906.08512, 2019.

[4] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon, C. Raffel, J. Engel, S. Oore,
and D. Eck, “Onsets and frames: Dual-objective piano transcription,” arXiv
preprint arXiv:1710.11153, 2017.

[5] S. Sigtia, E. Benetos, S. Cherla, T. Weyde, A. Garcez, and S. Dixon, “Rnn-based
music language models for improving automatic music transcription,” 2014.

[6] J. Sleep, “Automatic music transcription with convolutional neural networks
using intuitive filter shapes,” 2017.

[7] S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neural network for poly-
phonic piano music transcription,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 5, pp. 927–939, 2016.

[8] J. M. Ender, Neural Networks for Automatic Polyphonic Piano Music Transcription.
University of Colorado Colorado Springs, 2018.

[9] S. S. Stevens and J. Volkmann, “The relation of pitch to frequency: A revised
scale,” The American Journal of Psychology, vol. 53, no. 3, pp. 329–353, 1940.

[10] J. C. Brown, “Calculation of a constant q spectral transform,” The Journal of the
Acoustical Society of America, vol. 89, no. 1, pp. 425–434, 1991.

50

https://www.midi.org/

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[12] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no.
7587, pp. 484–489, 2016.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

[14] Y. M. Assael, B. Shillingford, S. Whiteson, and N. De Freitas, “Lipnet: End-to-
end sentence-level lipreading,” arXiv preprint arXiv:1611.01599, 2016.

[15] K. Fukushima and S. Miyake, “Neocognitron: Self-organizing network capable
of position-invariant recognition of patterns,” in Proc. 5th Int. Conf. Pattern
Recognition, vol. 1, 1980, pp. 459–461.

[16] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL: http://yann.
lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[17] J. Wu, Y. Yu, C. Huang, and K. Yu, “Deep multiple instance learning for im-
age classification and auto-annotation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3460–3469.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[21] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou, “Autoencoder for words,”
Neurocomputing, vol. 139, pp. 84–96, 2014.

51

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[23] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A frame-
work for self-supervised learning of speech representations,” arXiv preprint
arXiv:2006.11477, 2020.

[24] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot
learners,” arXiv preprint arXiv:2005.14165, 2020.

[25] J. Vig, “A multiscale visualization of attention in the transformer model,” 2019.

[26] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, I. Simon, C. Hawthorne,
A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck, “Music transformer,”
arXiv preprint arXiv:1809.04281, 2018.

[27] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman,
E. Elsen, J. Engel, and D. Eck, “Enabling factorized piano music modeling and
generation with the maestro dataset,” arXiv preprint arXiv:1810.12247, 2018.

[28] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever, “Jukebox:
A generative model for music,” arXiv preprint arXiv:2005.00341, 2020.

[29] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[30] K. W. Cheuk, Y.-J. Luo, E. Benetos, and D. Herremans, “Revisiting the onsets
and frames model with additive attention,” arXiv preprint arXiv:2104.06607,
2021.

[31] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen,
C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame,
Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art natural
language processing,” in Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. Online: Association for

52

Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available:
https://www.aclweb.org/anthology/2020.emnlp-demos.6

[32] J. J. Salamon et al., “Melody extraction from polyphonic music signals,” Ph.D.
dissertation, Universitat Pompeu Fabra, 2013.

[33] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document trans-
former,” arXiv preprint arXiv:2004.05150, 2020.

53

https://www.aclweb.org/anthology/2020.emnlp-demos.6

INDEX

Attention, 8
Autoencoders, 7
Automatic Music Transcription, 1

BERT, 10

Constant-Q Transform, 4
Convolutional Neural Networks, 5

Deep Learning, 5

Frame, 3

Masked Language Modelling (MLM),
11

Masked Music Language Modelling
(MMLM), 37

Mel Scale, 4
MIDI, 3
Music Information Retrieval, 1
Music Language Modelling (MusicLM),

3

Recurrent Neural Networks, 6

Short Time Fourier Transform, 4

Transformers, 7

wav2vec2, 10

54

AUTHOR’S PUBLICATIONS

Zonios, Christos, and Vasileios Tenentes. ”Energy Efficient Speech Command Recog-
nition for Private Smart Home IoT Applications.” 2021 10th International Conference
on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2021.

SHORT BIOGRAPHY

Christos Zonios received a B.Sc. degree in Computer Science from the department
of Computer Science and Engineering, University of Ioannina, Greece in 2020. He is
currently a M.Sc. student in Data and Computer Systems Engineering, specialized in
Data Science and Engineering in the University of Ioannina, Greece.

His research interests include Sequence and Language Modelling, Deep Learning,
Neuromorphic Computing, Music Information Retrieval, Near-threshold Computing
and Intelligent IoT Systems.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Automatic Music Transcription
	Piano Music
	Music Transcription
	MIDI
	Music Language Modelling

	Audio Representations
	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Autoencoders

	Transformers
	Architecture
	Self-Attention
	wav2vec2 Model
	BERT
	Music Transformers

	Thesis Objectives
	Thesis Structure

	Transformer-Based Approaches
	Obtaining Better Music Representations
	Decoding Musical Sequences & Music Language Modelling
	Evaluating BERT for Music Language Modelling
	Music-Encoded Pre-Training

	Encoder-Decoder Architectures (Wav2Vec2Bert)
	Onset and Offset Detector Architectures
	Eurydice
	Orpheus

	Implementation
	Dataset and Preprocessing
	MAESTRO Dataset
	String Representation and Tokenization
	Introducing Noise to the Dataset

	Neural Networks
	Training
	Architectures
	Sequences and Sequence Lengths

	Experiments
	Performance Metrics
	Per Note Metrics
	Per Frame Metrics

	Experiment Setup
	Preliminary Testing
	Evaluating wav2vec2 for Music Audio Embeddings
	Evaluating BERT for Music Language Modelling

	System Specifications

	Results
	Music Language Modelling
	Automatic Music Transcription

	Conclusions and Future Work
	Bibliography
	Index
	Author's Publications
	Short Biography

