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Abstract

Georgiadis Ioannis, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, August 2021.
Detection of Fake News in Tree Propagation Networks.
Advisor: Spyridon Kontogiannis, Associate Professor.

The proliferation of fake news in online social media platforms has opened up
novel, multidisciplinary directions of research trying to achieve automated mecha-
nisms for the timely identification and containment of fake news, and mitigation of
its widespread impact on public opinion. While much of the earlier research was
focused on identification of fake news based on its contents (e.g., writing style of
the story, stance of involved reactions to it, linguistic analysis, etc.), or on the related
context (e.g., exploitation of users’ engagement and their reputation within the social
media platform, etc.), which are mostly based on AI-enabled techniques, there has
been a rising interest in the provision of proactive intervention strategies which are
mostly based on the analysis of the spatio-temporal characteristics of the evolving
story within the underlying propagation network infrastructure. Most of these works
mainly focus on the analysis of the time-series of the reactions to the stories. Some
recent works focus on the structural characteristics of the propagation network. For
example, it has been experimentally observed that a typical fake-news story evolves
faster, deeper and farther than a typical true-story, within the social network platform.

In this thesis we continue the line of research focusing on the structural char-
acteristics of the underlying propagation network. Our first differentiation from the
literature is that we adopt a probabilistic model for the creation of stories, in which
each story is created either by an expert (and is perceived as a true story, or by some
propagandist (and is then perceived as a fake story). Experts have a high probability
of providing the correct answer to the question posed by the story, e.g., because they
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are based on concrete arguments and scientific evidence. Propagandists, on the other
hand, simply try to promote a particular stance (in favor of, or against the ground-
truth answer) with the story, irrespective of the ground-truth. It should be noted that
both an expert and a propagandist might provide either a correct or a false answer,
but the expert is highly likely to be correct.

The above mentioned probabilistic model was proposed by Papanatasiou (2019),
and was then studied and analyzed for a very simplified case in which the underlying
propagation network is a simple directed path. In this thesis we provide a similar
analysis for the case in which the underlying propagation network is a rooted directed
tree. This is a much more challenging case, since the sequential nature of the users’
reactions to an emergent story (and the direct consequences of their own actions to
the entire story) no longer holds.

We first provide a careful analysis of the users’ behavior during the evolution of the
story, assuming that they behave rationally, i.e., they are expected-utility maximizers
based on their own prior and posterior beliefs for the ground-truth value and for
the type (true/fake) of the story. We then proceed with the involvement also of the
platform, as an independent observer of the entire propagation network. Our goal is
to determine an efficient mechanisms for the platform in order to decide in real-time
whether and when exactly to intervene the evolution of an emerging story, while only
observing in the underlying propagation tree.
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Ε Π

Γεωργιάδης Ιωάννης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, Αύγουστος 2021.
Detection of Fake News in Tree Propagation Networks.
Επιβλέπων: Σπυρίδων Κοντογιάννης, Αναπληρωτής Καθηγητής.

Το φαινόμενο των ψευδών ειδήσεων στις διαδικτυακές πλατφόρμες κοινωνικής
δικτύωσης έχει δημιουργήσει διεπιστημονικές κατευθύνσεις έρευνας που προσπα-
θούν να επιτύχουν αυτοματοποιημένους μηχανισμούς για τον έγκαιρο εντοπισμό
και περιορισμό των ψευδών ειδήσεων όπως και την αποτροπη εκτεταμένων επι-
πτώσεών τους στην κοινή γνώμη. Ενώ ένα μεγάλο μέρος της προηγούμενης έρευνας
επικεντρώθηκε στον εντοπισμό ψευδών ειδήσεων με βάση το περιεχόμενό τους, το
οποιο εκμεταλευετε χαρακτηριστικα οπως το ύφος γραφής της ιστορίας, τη στάση
των εμπλεκόμενων αντιδράσεων σε αυτήν, τη γλωσσική ανάλυση. Επισης, υπαρ-
χουν προσσεγγισεις οι οποιες εξεταζουν το σχετικό πλαίσιο οπως η εκμετάλλευση
της εμπλοκής των χρηστών και της φήμης τους εντός της πλατφόρμας κοινωνικής
δικτύωσης. Πολλες απο τις παραπανω τεχνικες βασίζονται κυρίως σε τεχνικές με
δυνατότητα τεχνητής νοημοσύνης οι οποιες παρουσιαζουν καποια μειονεκτηματα
οσον αφορα την λυση που παρεχουν στο ζητημα τον ψευδων ειδησεων. Μια αλλη
ενδιαφερουσα προσεγγιση για την παροχή στρατηγικών προληπτικής παρέμβασης,
ειναι τεχνικες οι οποίες βασίζονται κυρίως στην ανάλυση των χωροχρονικών χαρα-
κτηριστικών της εξελισσόμενης ιστορίας εντός της υποκείμενης υποδομής δικτύου
διάδοσης. Οι περισσότερες από αυτές τις εργασίες επικεντρώνονται κυρίως στην
ανάλυση των χρονοσειρών των αντιδράσεων στις ιστορίες. Ορισμένες πρόσφατες
εργασίες επικεντρώνονται στα δομικά χαρακτηριστικά του δικτύου διάδοσης. Για
παράδειγμα, έχει παρατηρηθεί πειραματικά ότι μια τυπική ψευδή είδηση εξελίσσε-
ται ταχύτερα, βαθύτερα και μακρύτερα από μια τυπική αληθινή ιστορία, εντός της
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πλατφόρμας του κοινωνικού δικτύου.
Στην παρούσα διατριβή συνεχίζουμε τη γραμμή της έρευνας που επικεντρώνεται

στα δομικά χαρακτηριστικά του υποκείμενου δικτύου διάδοσης, το οποίο προκύπτει
από τις υποθέσεις εργασίας που εισάγουμε για την συμπεριφορά των χρηστών. Η
πρώτη μας διαφοροποίηση από τη βιβλιογραφία είναι ότι υιοθετούμε ένα πιθανοθε-
ωριτικό μοντέλο για τη δημιουργία ιστοριών, στο οποίο κάθε ιστορία δημιουργείται
είτε από έναν ειδικό και γίνεται αντιληπτή ως αληθής ιστορία, είτε από κάποιον
προπαγανδιστή και στη συνέχεια γίνεται αντιληπτή ως ψευδή ιστορία. Οι ειδικοί
έχουν μεγάλη πιθανότητα να δώσουν τη σωστή απάντηση στο ερώτημα που θέτει η
ιστορία, επειδή για παράδειγμα βασίζονται σε συγκεκριμένα επιχειρήματα και επι-
στημονικά στοιχεία. Οι προπαγανδιστές, από την άλλη πλευρά, απλώς προσπαθούν
να προωθήσουν μια συγκεκριμένη στάση, υπέρ ή κατά ενός πραγματικού γεγονότος
με την ιστορία, ανεξαρτήτως της πραγματικής αλήθειας. Θα πρέπει να σημειωθεί
ότι τόσο ένας εμπειρογνώμονας όσο και ένας προπαγανδιστής μπορεί να δώσουν
είτε μια σωστή είτε μια λανθασμένη απάντηση, αλλά ο εμπειρογνώμονας είναι πολύ
πιθανό να είναι σωστός.

Για το προαναφερθέν πιθανοθεωριτικό μοντέλο υπάρχει ήδη μια ανάλυση για
μια πολύ απλοποιημένη περίπτωση στην οποία το υποκείμενο δίκτυο διάδοσης εί-
ναι ένα απλό κατευθυνόμενο μονοπάτι. Στην παρούσα διατριβή παρέχουμε μια
παρόμοια ανάλυση για την περίπτωση στην οποία το υποκείμενο δίκτυο διάδοσης
είναι ένα ριζωμένο κατευθυνόμενο δέντρο. Η μετάβαση από την απλούστερη πε-
ρίπτωση στην περίπτωση των δενδρικών δικτύων, αποτελεί πρόκληση καθώς δεν
ισχύει πλέον η διαδοχική φύση των αντιδράσεων των χρηστών σε μια αναδυόμενη
ιστορία και οι άμεσες συνέπειες των δικών τους ενεργειών σε ολόκληρη την ιστορία.
Ένα σημαντικό χαρακτηριστικό του μοντέλου, το οποίο θεωρούμε ότι προσεγγίζει
το γενικότερο πρόβλημα καλύτερα από άλλες εργασίες, είναι το γεγονός ότι λαμ-
βάνετε υπ’ όψιν κάποιου είδους οικονομικών παραγόντων κατά την εξέλιξη του
φαινόμενου.

Αρχικά παρέχουμε μια προσεκτική ανάλυση της συμπεριφοράς των χρηστών
κατά την εξέλιξη της ιστορίας, υποθέτοντας ότι συμπεριφέρονται ορθολογικά, δη-
λαδή επιδιώκουν την μεγιστοποίηση της αναμενόμενης ωφέλειας με βάση τις δικές
τους προηγούμενες και μεταγενέστερες πεποιθήσεις για την τιμή της βασικής αλή-
θειας και για τον τύπο της ιστορίας (αληθής ή ψευδής). Με βάση τις υποθέσεις
εργασίας που εισάγουμε για τους χρήστες, παραθέτουμε κάποιες παρατηρήσεις
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για την εξέλιξη της διαδικασίας μετάδοσης μιας είδησης σε ένα τέτοιο δίκτυο Στη
συνέχεια, προχωρούμε με τη συμμετοχή και της πλατφόρμας, ως ανεξάρτητου πα-
ρατηρητή ολόκληρου του δικτύου διάδοσης. Στόχος μας είναι να καθορίσουμε έναν
αποτελεσματικό μηχανισμό για την πλατφόρμα, ώστε να αποφασίζει σε πραγματικό
χρόνο αν και πότε ακριβώς θα παρέμβει στην εξέλιξη μιας αναδυόμενης ιστορίας,
παρατηρώντας μόνο στο υποκείμενο δέντρο διάδοσης. Τέλος, παραθέτουμε φραγ-
ματικές τιμές για την αναμενόμενη ωφέλεια της πλατφόρμας για την προσέγγιση
του εντοπισμού του βέλτιστου χρόνου παρέμβασης.
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Chapter 1

Introduction

1.1 Motivation

1.2 Objectives

1.3 Structure

1.1 Motivation

Social media has become an important part of our daily interactions due to its easy
accessibility for users. According to 1 the user base of social media such as Facebook,
YouTube, Twitter and Reddit is doubled since 2015. Hence, social media has become
a massive hub for information sharing and many users choose to consume news
from social media platform such the above mentioned. This ease of access to social
media platforms accompanied with the ability to publish information in form of
news article, which is given to regular users as well, creates the phenomenon of
misinformation spreading. Most recent important cases of fake news, that brought
spotlight to this problem, are the U.S. presidential elections of 2016 2 and similar
incidents in Germany’s election of 20173.

Researches on fake news and rumor propagation attract the academic community.
There is a collection of surveys that provide an overview of the problem, techniques
and challenges, such as [2, 3, 4]. Approaches on fake news detection and mitigation

1https://datareportal.com/reports/digital-2021-april-global-statshot
2https://news.stanford.edu/2017/01/18/stanford-study-examines-fake-news-2016-presidential-election/
3https://www.theguardian.com/world/2017/jan/09/

1

https://datareportal.com/reports/digital-2021-april-global-statshot
https://news.stanford.edu/2017/01/18/stanford-study-examines-fake-news-2016-presidential-election/
https://www.theguardian.com/world/2017/jan/09/


might vary, but there are two core concepts that are common. First, there should be a
way to describe and formulate human interactions and how they share information
in their ecosystem, such as a social media platform. The second core concept is based
on the above formulation, that describes those interactions. Based on these formulas,
an approach should devise efficient methods that detect, mitigate or even prevent the
spread of rumors and fake news.

There are many interesting challenges related to the topic of fake news and ru-
mor propagation. First and foremost, the human nature that is hard to describe or
formulate for a system to process it. Understanding human behavior on the topic of
fake news is important in order to improve algorithms or other ways of automation
in order to prevent this phenomenon. There is a plethora of researches, similar to
[5, 4, 6] that provide us with hints and information in order to understand human
behavior on fake news detection. A second challenge is the motive behind the spread
of misinformation. The reasons might be financial, political or even based on satire.
This challenge is similar to that which concerns human behavior but we specify this
explicitly because the development of such model rely heavily on those motives. Such
an example is YouTube where users acquire advertisement revenue based on num-
ber of views. An attractive video that contains rumors, or misinformation in general,
increases the income that it generates. The fact that more users have access to social
media platforms creates another issue, that is the classification of rumors. The amount
of posts shared within those networks is hard to monitor and classify in order to be
used for training in machine learning models. Many platforms rely on fact checking
from professional journalist, that specialize on this domain.

On the topic of fake news detection, there are several techniques from different
perspectives that deal with the phenomenon of fake news detection and mitigation.
One of the most common models used to deal with fake news is the epidemic model.
Epidemics tend to describe precisely the propagation of fake news inside social net-
works because of the similarities they have concerning structure of such networks
as well the propagation dynamics. Some notable researches that refine and adjust
the basic epidemic models presented in [1], are [7, 8, 9, 10, 11, 12]. The drawback
with epidemics is that they are time inefficient since they depend on observing the
rates at which the population transition occurs between different states. Aside from
propagation analysis, there are linguistics-based techniques that use the content of
the information in order to detect fake news. Those approaches can be effective in
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some cases but they suffer from the fact that most of the time we do not have the
exact values of ground truth in order to train those models 4.

1.2 Objectives

Propagation analysis seems prominent approach in order to solve the problem of
detecting fake news in online social media platforms. An interesting model is provided
in [13] which is a sequential model that consists of a network of agents and a
platform that monitors behaviors in that network 5. Although social networks in
real applications are by far more complex, the philosophy of this sequential model
can be extended to more complex case studies. Our main objective in this thesis is to
improve and adjust this model in order to work for tree propagation networks which
is more representative version of a real world scenario and mitigate the problem faster
than the approaches in related literature.

This modification comes with challenges concerning complexity of calculations
that arise from the fact that social networks are complex structures. For this chal-
lenge, we assume in this thesis that the network we are working on is an m-ary
tree, which is a more realistic representation of a social structure than the sequential
model based on paths provide. This transition form a simple path to an m-ary tree
comes with challenges such the formulation of propagation dynamics and the com-
plexity of calculations from platform’s side. We deal with this issue by providing the
appropriate assumptions. First and foremost, we assume that platform, which can
be seen as an super agent, possess some distributional information about the other
agents’ prior beliefs of the story’s type (true or fake) but they otherwise have access
only to the events revealed to them by the structure of the propagation network. For
example, neither an agent nor the platform may actually know what another agent
truly believes about the evolving story. They can only observe that this agent, trans-
mitted the story to its followers, but not the reasoning of an action (e.g., she could
blindly transmit the story, or she might have conducted a private fact-check and then
realized that the story is true). To simplify the analyses in our model, we also assume

4Models that do linguistic analysis are leveraging machine learning models.
5We provide every detail that we use from [13] but we strongly suggest the reader to study for

deeper insight.
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that this is a given Gaussian distribution. Another assumption that helps us deal with
complexity, is the knowledge that each entity posses throughout the process. Those
two assumptions make a natural transition from a sequential model that works for
paths, to a more general model that represents tree propagation networks.

Another objective that we have in this thesis is that our model assumed to work
under uncertainty. As we already mentioned in the previous paragraph, we make
assumptions for the knowledge that agents and platform possesses. This is very im-
portant for two reasons. First, it makes our model more general. Reducing the amount
of knowledge each entity posses makes the model more general and can work in many
scenarios. The second reason is that it respects privacy of personal information and
the opinions of agents fall under that category. There are many regulations such as
the European Union general data protection regulation that protect personal infor-
mation and many social media platforms are taking precautions in order to adjust to
those regulations. By limiting the amount of knowledge to a platform, we can have
such models that can be used in real life scenarios.

1.3 Structure

This thesis consists of five chapters and it is structured as follows. In chapter 2 we
provide background for two basic topics, branching processes on trees and Bayesian
inference, that will be mentioned and used extensively in the analysis of our news-
propagation model. Chapter 3 provides the details of the proposed news-propagation
model followed by an analysis of agent’s dynamics of the news sharing process with
the appropriate propositions and lemmas. In chapter 4 we formulate the platform’s
dynamics and we describe our solution for the optimal inspection time. Finally, in
chapter put conclusion chapter we have a discussion on how to generalize the model
in more realistic structures followed by our concluding remarks.

4



Chapter 2

Preliminaries

2.1 Branching Processes

2.2 Bayesian Inference

In this chapter we provide to the reader an introduction to the basic concepts of the
theory we are using in order to develop our news-propagation model. Most of the
topics in this chapter are provided more analytically in [1, 14, 15, 16] but we include
the necessary background to make this thesis complete and provide the reader with
a basic knowledge of the tools we used. We once again suggest the reader to further
study the chapters from the above bibliography for more details.

2.1 Branching Processes

Epidemics is the most common structure based mitigation technique that is widely
used in order to combat fake news propagation. Those models not only describe
spread of viruses, but we can use them to formulate computer malware in networks
and also information propagation such as the virality of social media posts. In this
thesis, our building block is a refined version of branching process. Branching process
is a simplistic version of epidemic and it works as follows:

• First wave A person that is carrying a disease enters a population with n
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Figure 2.1: Branching process example with k = 3. Reference in [1].

individuals. With probability p he transmits the disease to k independently, i.e
he meets three people and he infects only the first one.

• Subsequent waves Now, each infected person transmits the disease to their
contacts, so the amount of susceptible people we have in the second wave is k2

and in the n-th wave it is kn by induction.

The above rules define a simple epidemic model where the probability of infections
represents the rate and k is the an average amount of a person’s contacts. The question
on those models is if the disease will survive (i.e., turn into a pandemic) or eventually
stop spreading and die. The basic reproductive number determines whether a virus
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will continue spreading or if it fails. We have the next proposition from [1]:

Proposition 2.1. Let R0 = pk be the basic reproductive number where k is the average
people an individuals meets and p is the probability that the virus spreads. If R0 ≥ 1, then
with probability greater than zero the virus persists. If the basic reproductive number is less
than 1 then with probability 1 the virus with stop spreading after some waves.

The proof is provided more analytically in the related reference and it is based
on geometric sequences, which will concern the more complex branching process
later on the main body of this thesis. The reproductive number in our study can be
translated as a prediction where we can tell if the process will trigger a cascade, given
the contagion probability and the average people that a person meets.

In our thesis we use a more complex version of that model. First of all, we do not
have a fixed probability for infection. Every time nodes are added in the propagation
tree, this probability is affected. Another modification we make on that model is
the time that the process takes place. Instead of waves, we assume that each node
contacts his neighbors at some time t, more later at the appropriate chapter. Although
branching process seems significantly simpler than epidemics, it captures more with
the correct modifications and that is the fact that it micro manage the contagion inside
a network. In a nutshell, epidemics translate only the ratio at where entities move
from a state to another and it does not account a change of probabilities.

2.2 Bayesian Inference

Bayesian inference is a statistical inference that update beliefs about uncertain pa-
rameters as more information becomes available. The Bayesian inference is one of
the most successful methods used in decision theory, builds over Bayes’ theorem:

P(H|E) =
P(E|H)P(H)

P(E)

which expresses the conditional probability of the hypothesis H conditional to the
event E with the probability that the event, or evidence, E occurs given the hypothesis
H. In the previous expression, the posterior probability P(H|E) is inferred as an
outcome of the prior probability P(H) on the hypothesis, the model evidence P(E)

and the likelihood P(E|H) of the evidence E occurring, given the validity of the
hypothesis H. Bayes’ theorem has been widely used as an inductive learning model to

7



transform prior and sample information into posterior information and is widely used
in decision theory. In order to visualize the concept of Bayes theorem, we provide a
simple example. Suppose people are tested for some disease. If the test is 99% accurate,
then this means that P(Positive − test|Positive) = 0.99. However, the most relevant
information is P(Positive|Positive−test), namely the probability of having the disease
if the test is positive, using Bayes theorem. If the proportion P(Positive) of infected
people in the total population is 0.001, then if we have the value of normalizing factor,
i.e. P(Positive−test) = 0.01, and we conclude that P(Positive|Positive−test) = 0.099,
which provides different information and more relevant, using evidence rather than
a simply using the accuracy of the test. It is obvious that both prior observations and
the observable data, contain information, and so neither should be neglected. Bayes
theorem has a general form as well, that works with multiple variables. The formula
for discrete multiple variables, which we use in our thesis, is:

P(Hk|E) =
P(E|Hk)P(Hk)∑
i∈I P(E|Hi)P(Hi)

where Hi∈I is partition of the sample space and Hk is an observation inside that
partition.

The process of drawing conclusions from available information is called infer-
ence. However, in many cases the available information is often insufficient to reach
certainty through reasoning. In these cases, one may use different approaches for
doing inductive inference. The strength of Bayesian inference, which is the method
of using Bayes theorem to deduce a claim, is that it requires minimum but relevant
information in order to work. This ability makes Bayesian inference an appropriate
method to express how opinions are formed inside a social structure. Other notable
applications are in medicine, machine learning, data analysis and many more.
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Chapter 3

Agents Propagation Model

3.1 A Probabilistic Representation of News

3.2 Sharing Process and Agents Behavior

3.3 Propagation Dynamics

In this chapter we describe the information propagation process among a group of
rational agents taking place in discrete time. We first provide a probabilistic represen-
tation of the information shared by this group of individuals under our assumptions
followed by the propagation rules of our model. Finally, we conclude this chapter
with an analysis of agents news-sharing process dynamics and the structural proper-
ties that arise from those. Although this thesis is provides all the basic background,
we suggest the reader to study [13] which is the basis of our model.

3.1 A Probabilistic Representation of News

We assume that each event in the world is characterized by a binary state Θ ∈ {Y,N}
1 which is unobservant by a group of individuals (we call them agents) and they
are of interest to find the exact value of Θ. Agents may create informative content in
forms of news articles (we call them stories) that contain information over the ground

1This model supports events with more than two states but for the sake of simplicity we stay in a
binary model.
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Table 3.1: The probability distribution of truthful stories (V = T left) and fake
stories(V = F right) with respect to the ground truth.

P (m | (Θ, V )) Θ = Y Θ = N

m = y a 1− a

m = n 1− a a

P (m | (Θ, V )) Θ = Y Θ = N

m = y β β

m = n 1− β 1− β

truth. These stories are described by m ∈ {y, n} and state the creators realization of
the ground truth Θ. Each story can be characterized by another unobservant variable
V ∈ {F, T} which declares the validity of its content. If the stance of a story aligns
with the actual event, we have V = T with respect to Θ (truthful story). In the other
hand we have V = F with respect to Θ (fake story) whenever we are dealing with
stories that are uninformative or misleading in respect to Θ. 2

In table 3.1 we have the probability distributions for both possible types of mes-
sages when we are characterizing them with their validity V . The signal-generating
process for truthful stories is described by the system of equations:

P(y | (Y, T )) = P(n | (N, T )) = a

P(y | (N, T )) = P(n | (Y, T )) = 1− a
(3.1)

where a can be translated as the persuasiveness of source without any other prior
knowledge (i.e. the sharing history) or the probability of a story that shares the
same stance as the ground truth thus having truthful validity. We assume that the
persuasiveness is a ∈ (0.5, 1) and it is known parameter in our ecosystem. On contrary,
when we are dealing with fake stories the signal-generating process is:

P(y | (Y, F )) = P(y | (N,F )) = β

P(n | (Y, F )) = P(n | (N,F )) = 1− β
(3.2)

From the above equations we notice that the probabilities of stories m in both cases
remain the same over different values of Θ. This reflects the fact that the content of a
story is totally uninformative and is randomly aligned with one of the possible states
for ground truth, i.e if β > 0.5 the author of a the story pushes his own agenda with
a false narrative described by a story of type m = y. Another observable variable, that

2We should mention that our model does not capture the intention of creating fake stories, i.e.
deliberately creating fake information or bad journalism.
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we assume it is common knowledge, is the percentage of fake stories that circulate
in our social infrastructure. Platform can monitor the validity of previous stories and
calculate the frequency, or an approximation, of fake stories denoted as v. We can also
express this quantity as the probability of a newly created story being fake without
any prior evidence, v = P(V = F ). Those parameters conclude all possible outcomes
of a message type, in terms of validity and stance, that describes a binary state of
an event. In the next section we provide an example in order to illustrate how those
parameters work in a real scenario.

3.1.1 Example

We now provide an illustrative example in order to understand the role of those
parameters named in the previous section. There are several real world incidents we
can reference from fact checking sites, but we use a fabricated example for the sake
of simplicity. 3

Suppose we have the next claim about COVID-19:
”University of Ioannina study finds that mortality rate of COVID-19 is lower in countries

with warmer climate.”
In our example, we have the ground truth, described by Θ ∈ {Y,N} where Y

aligns with the content of the sentence, in other words Y is interpreted as ”Yes,
mortality rate is lower in warmer climates”, while N presents no link between climate
and the mortality rate of COVID-19. The content of the article support Θ = Y so
we have that m = y. Also we expect that a claim made by university of Ioannina
would be highly persuasive since it would be researched with valid methods so a is
expected to be over 85%, taken at face value. This means that we are likely to adopt
the validity of that claim no matter the content of the research, only by attributing
the persuasiveness of the source as an authoritative entity in the research domain.
Another case is when we expect from the source of a story to be in interest to push a
story that aligns with a narrative. For example, if we knew that university of Ioannina
had benefit from supporting Y , then it might be the case that it produces a fake story,
whose stance m = y holds with probability β, independently of the actual value of the
ground-truth variable Θ. Another scenario is when we expect that the source is not

3Some examples fact checking sites are snopes https://www.snopes.com/ and politifact https://www.
politifact.com/.
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biased but we distrust their journalistic effort or the claim is more likely to be false.
Remember that β expresses the bias of a source to produce a fake story that supports
either Y or N , while β = 0.5 means that the fake story is produced randomly to align
with one side.

Now let’s assume that all stories circulating our social structure is probably truth-
ful. This means that v is approaching 0% and in order to simplify things, let v = 0.
An agent with prior belief θ = P(Θ = Y ) will update his posterior belief as:

θposterior = P(Θ = Y | m = y) =
aθ

aθ + (1− a)(1− θ)

which is greater that his prior belief θ since a ∈ (0.5, 1). In other words, the fact that
all stories are truthful strengthens agent posterior belief that Θ = Y or equivalent
that the story is truthful, V = T and m = y. On the contrary, if all the stories shared
within the social network are almost certainly fake, v = 1, we have that:

θposterior =
βθ

βθ + (1− θ)β
= θprior

We see that posterior belief remains the same as our prior opinion since any new
information over previous actions would not affect agents posterior belief.

3.2 Sharing Process and Agents Behavior

We assume that a group of infinite rational agents act in a discrete time t ∈ {1, 2, ...}
(we refer time as round t) based on various parameters. Each agent is characterized
by its own prior belief over ground truth which we assume that is an iid draw from
a Gaussian distribution. We denote agent i’s prior belief as θi0 := P(Θ = Y ). 4 The
process begins with an emerging story from the first node 5. Each agent can choose
between the next strategies:

• React to the story by sharing it to its out-neighbors (follower list), without
inspecting its content. We refer to this action as send.

4Without loss of generality, we assume that prior opinions describe each agent’s belief over one
opinion, namely Θ = Y . Proofs for theorems and corollaries in this work are similar for Θ = N and
we mention if otherwise.

5We can assume that the first node is i = 0 since we can rearrange those id’s, which is planted
from an external source. We notice that t and i are similar in paths but this statement does not hold
for other structures such as trees.
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θ1

θ2 θ3 θ4 θ5

S S S S

Figure 3.1: Agent θ1 shares by sending without checking (A1t = S) the story via
broadcast to a group of agents (red).

• Refuse to share the story, namely block, without checking the content.

• To check the story and choose one of the next actions:

– Share the story is she\he finds that the article is truthful.

– Not share if she\he finds that the story is fake.

The strategy of each agent at round t is denoted as Ait = {S,B,C} for each of
the above actions respectively. From the above strategies we can see that each one
of them splits into 2 steps, namely the inspection choice and the sharing choice. We
assume that if an agent picks Ait = C , the inspection yields a perfect result and the
next action dependents on it, i.e. we have socially responsible agents that do not share
fake stories. Thus we do not include the option to inspect and share a story if it is
evaluated as fake. In advance, we mention that if an agent chooses to share the story
either by send or check, we assume that he shares the message by broadcasting to a
group of agents as we see in figure 3.1. Next, we define the probabilities of the above
actions in strategy set Ait, as:

Definition 3.1. The probabilities of each action Ait that agent i selects at round t are:

• Sit = Pi{Ait = S | m = y,Hi}

• Bit = Pi{Ait = B | m = y,Hi}

• Cit = Pi{Cit = C | m = y,Hi} and Cit = 1− Sit −Bit

for actions {S,B,C} respectively.

In the analysis of this chapter about agents’ sharing process dynamics, we provide
closed form equations of the above probabilities.

At each round, we assume that an agent acts and picks one of the actions men-
tioned in the previous paragraph. This sequential process forms a sub-network G′ ⊆ G
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θ1 θ2 θ3 θ4 θk−1 θk

…

(a) Sharing path

θ1

θ2

θ4

θ8 θ9

θ5

θ10 θ11

θ14 θ15

θ3

θ6

θ12 θ13

θ7

(b) Sharing Tree

Figure 3.2: Sharing process of a story in different structures (a) Path and (b) Binary
tree.

of the original network G = (V,E). We refer this sub-graph as sharing sub-network or
sharing tree, when we are dealing with tree structures, and this sub-graph is known
to the platform. For agent i we assume that the sharing history he perceives, namely
Hi, is the unique path from the originator of the story (source) up to agent i. As we
see in figure 3.2, we have the sharing network in which the red edges indicate the
sharing history for agent k, with prior belief θk, in a path and a tree. The sharing
network and history for agent i are the same for a path in contrast with a tree, where
we assume that agent i knows that the story is shared only by his predecessors. In
our analysis we assume that if agent i receives a story from a agent j, he cannot
receive the same story from another node l. As we see in figure 3.2, θ5 receives the
story from θ2 thus θ3 will not broadcast the story to θ5 again.6

Throughout the process, agents form and update their beliefs about the validity
of the story that is being shared in the network, and their validity. There are two
basic probabilities that express the agents opinions. First, we have the agents’ own
posterior belief over the value of ground-truth as well the agents’ posterior belief that

6We make a discussion for DAG’s in general in a final chapter of this thesis.

14



an article is fake, respectively:

bit = Pi{Θ = Y |m = y,Hi}

qit = Pi{V = F |m = y,Hi}
(3.3)

where he receives a message m = y with a history path Hi, ∀t ≥ 0. At each given
round t agent updates his own posterior beliefs based on a group of parameters that
is common knowledge. The parameters that each agents knows at the round t, when
he receives the story are:

• The sharing history Hi up to him from the source.

• His own prior belief θi for the ground-truth.

• The ratio of fake news and truthful news that circulate in the platform annotated
as v.

• The credibility a of a true story delivering a correct message about the ground-
truth value.

• The probability β that a fake story promotes the stance m = y for the ground-
truth variable, irrespectively of its actual value.

With the list of above parameters we calculate the closed form equations for 3.3 that
are the posterior beliefs of an agent i.

Proposition 3.1. For each i agent at each round t ≥ 0 it holds that:

bit = Pi{Θ = Y |m = y,Hi} =
θi[βvwit + a(1− v)]

βvwit + [aθi + (1− a)(1− θi)](1− v)

qit = Pi{V = F |m = y,Hi} =
βvwit

βvwit + [aθi + (1− a)(1− θi)](1− v)

where wit =
t−1∏
k=0

Sik

Sik + Cik

and wi0 = 1

Proof. We construct the equation for qit since it is the main quantity that we will
consider mostly in our work and the proof for bit is equivalent. The beliefs of this
model are defined over the set G = {(Θ, V )}Θ∈{Y,N},V ∈{T,F} and according to our model
for fake news and the independence of V and Θ, we have the prior opinions of an
agent as:
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• Pi0{(Y, T )} = θi(1− v)

• Pi0{(Y, F )} = θiv

• Pi0{(N, T )} = (1− θi)(1− v)

• Pi0{(N,F )} = (1− θi)v

Suppose an agent i receives a story in round t, he uses all the information available
to him in order to form his posterior belief that a story is fake. The only quantity
that changes as time passes is Hi. For an opinion g ∈ G we have the agents’ posterior
belief:

Pit{g | m = y,Hi} =
P{m = y,Hi | g}P(g)∑

g′∈G

P{m = y,Hi | g′}P(g′)
=

=
P{Hi | m = y, g}P{m = y | g}P(g)∑

g′∈G

P{Hi | m = y, g′}P{m = y | g′}P(g′)

(3.4)

which is the generalized Bayesian inference of an opinion g among a set of opinions
G. Now we calculate each probability in that expression in order to form qit. From
section 3.1 we have the probabilities below:

P{m = y | (Y, T )} = a,P{m = y | (N, T )} = 1− a,

P{m = y | (N,F )} = P{m = y | (Y, F )} = β

Now we calculate the quantity P{Hi | m = y, g} which is the probability of a history
given a m = y story and an opinion. We are given that the story is y, thus agent
i considers his strategy only on V . This means that a fake story is shared only by
action S and a truthful story either by S or C:

P{Hi | m = y, (Y, F )} = P{Hi | m = y, (N,F )} =

t−1∏
k=0

P{Ait = S | m = y,Hi} = Sit

and
P{Hi | m = y, (Y, T )} = P{Hi | m = y, (N, T )} =

=
t−1∏
k=0

[P{Ait = S | m = y,Hi}+ P{Ait = C | m = y,Hi}] = Sit + Cit
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Combining all the above equations, we can compute qit:

qit = Pit{g | m = y,Hi} = Pit{(Y, F ) ∨ (N,F ) | m = y,Hi} =

=
βvwit

βvwit + [aθi0 + (1− a)(1− θi0)](1− v)

Using the above calculations we can calculate bit in the same way as:

bit = Pit{g | m = y,Hi} = Pit{(Y, T ) ∨ (Y, F ) | m = y,Hi} =

=
θi[βvwit + a(1− v)]

βvwit + [aθi + (1− a)(1− θi)](1− v)

where wit =
t−1∏
k=0

Sik

Sik + Cik

, wi0 = 1 is the proportion probability that a story creates a

sharing tree G′ that is made with Ait = S up to round t where Sik and Cik are given
by definition 3.1.

Throughout the sharing process, each agent acts only once and he receives the
appropriate reward for his action. We define the utility of agent i, over his action A,
the function Ui(Ait). Agent i receives reward either if he blocks a fake story or chooses
to share a truthful story. On the other hand, he receives no reward if he blocks a
truthful story or shares a fake story. Finally, an agent that chooses to inspect a story,
does so by paying a price. Notice that the above function is evaluated only for the
variables V and Ait. Collectively, the induced evaluation function is the following:

Ui(Ait) =


1, (Ait = S ∧ V = T ) ∨ (Aih = B ∧ V = F )

0, (Ait = B ∧ V = T ) ∨ (Aih = S ∧ V = F )

1−K, Ait = C

(3.5)

where K is the cost of inspection. We assume that inspection occurs with a cost
K < 0.5 to avoid trivial cases where inspection is never optimal strategy. Agents are
choosing actions that maximize their utility at t-round and in order to do so, they
rely on their beliefs for values about the ground truth that we defined in proposition
3.1. Each agent chooses the strategy that maximizes his expected utility, given his
belief that the story is fake, qit. The expected utility can be calculated with the next
proposition:
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Proposition 3.2. The expected utility of agents action is given by the function:

E[Ui(Aih)] =


1− qih, Aih = S

qih, Aih = B

1−K, Aih = C

Proof. And agent receives reward if he shares truthful stories or blocks fake according
to his belief. Thus, agents j expectation for action send, according to his belief qjt in
round t, is E[Uj(S)] = (1 − qjt)Uj(S ∧ T ) + qjtUj(S ∧ F ) = 1 − qjt. In similar manner
we have that expected utility gained from blocking a story, based on agents j belief
that is fake, is E[Uj(S)] = (1− qjt)Uj(B ∧ T ) + qjtUj(B ∧ F ) = qjt. Finally, if a rational
agent chooses to inspect a story based on his updated belief, the expected utility can
be calculated as E[Uj(C)] = (1−qjt)Uj(S∧T )+qjtUj(B∧F )−K = 1−qjt+qjt−K = 1−K

where the subtraction of K presents the cost that agent j pays in order to inspect a
story and decide whether to send a truthful story or block it otherwise.

In figure 3.3 we have an illustration of the utility curves over different values of θi.
Figure 3.3 is also a visual justification for the assumption that we made for K < 0.5.
We can clearly see that if we assigned a value greater than 0.5, then 1 − K < 0.5

which implies that Ui(B) > Ui(C), ∀θi ∈ (0, θ) where Ui(B) and Ui(S) intersect, and
after that point it holds that Ui(S) > Ui(C), ∀θi ∈ (µ, 1).
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Figure 3.3: The expected utility curves over different prior beliefs that follow a
Gaussian distribution at first round. Parameters: v = K = 0.4, a = 90% and
θi ∼ N (µ = 0.3, σ2 = 0.09).

3.3 Propagation Dynamics

In this section we will focus on the dynamics of agents propagation and the properties
of our setup, in order to help us tackle the main problem which is the optimal time
that we can intervene to stop the propagation of a fake story. In order to introduce
the properties, we describe each individual step of the process in a sharing tree. The
proofs for theorems, propositions and lemmas that are mentioned in related work
are provided in A.

At each round t an agent i is up to decide if he will inspect a story m = y and then
if he will share it via a broadcast on a group of agents, i.e. his followers.7 According
to his belief, he evaluates each strategy and picks the one with that maximizes his
expected utility. If he decides to share the story, he broadcasts the story to the set of
all its out-neighbors (i.e., his\her followers) in the underlying social-network graph.
In round t + 1, we pick another agent to act in a sense that round t is a counter
that determines how many agents have reacted. On the other hand, if an agent j

7The choice of agents that are going to react and how it affects the sharing tree and the inspection
time is further studied later on this thesis.

19



(a)

θ1

θ2 θ3

S S

(b)

θ1

θ2

θ4 θ5

θ3

S S

S S

(c)

θ1

θ2

θ4 θ5

θ6 θ7

θ3

S S

S S

S S

(d)

θ1

θ2

θ4 θ5

θ6 θ7

θ3

θ8
θ9

S S

S S

S S

C C

(e)

θ1

θ2

θ4 θ5

θ6 θ7

θ3

θ8
θ9

θ10 θ11

S S

S S

S S

C C

S S

Figure 3.4: The resulting sharing tree after five reactions, from (a) to (e).

decides to not share the story, no matter if he inspects or not, the sharing history Hj

is discontinued at his path. Notice that in case of paths, time and agents are equivalent
in the sense that we can refer to each agent as t agent that is up to act. Additionally,
if an agent decides not to share the story, the whole process is discontinued while in
an m-ary tree it stops only in the particular sub-tree whose root node decides not to
share.

Before we further continue our study, it is time to illustrate each individual step
of a sharing process with an extended example. Using figure 3.4, we begin with
agent 1 with θ1 that chooses to share the story m = y with his neighbors. In order
to do that, evaluates his expected utility for each action and picks the appropriate
that has the maximum value. In order to do so, he calculates his posterior belief.
In the beginning of the process, there is no sharing history since he is the first that
reacts to the story on his unique path from the source up to him (i.e. he is the
root). From proposition 3.1 we have that q11 =

βvw11

βvw11 + [aθ1 + (1− a)(1− θ1)](1− v)
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where w11 = S0/(S0 +C0) since there is no previous sharing history. Continuing with
the next agent θ2 in (b) he also evaluates his own posterior belief with the expected
utility and he finds that it maximizes when he chooses to share with out checking
as well. The difference this time is that the sharing history of his ancestors is non
trivial, thus he has to make an estimation about wit. In order to do so, he must

calculate w22 =
1∏

k=0

Sik

Sik + Cik

which translates to the probability that a story reaches to

agent i without any inspection and it is a proportion of qit. We notice that this quantity
demands the knowledge of probabilities that concern the sharing actions of previous
agents in his sharing history. It is obvious that if agent i knew the prior beliefs of
their ancestors, then agent i would have a best response strategy and the choice of
action would be deterministic. Since we want to study a model that works under
uncertainty, we introduce the next two assumptions:

Assumption 3.1. Aside for the parameters that we assumed in section 3.2 is shared
throughout all agents and in order for agent to update his belief by calculating wit =
t−1∏
k=0

Sik

Sik + Cik

, we have two options:

• Agents presume that all prior opinions follow a normal distribution, θi ∼ N (θ∗, σ2),
and θ∗ is common knowledge in our social network ∀i.

• Agents presume that all prior opinions follow a normal distribution and each agent
creates his own normal distribution centralized around him such that θj ∼ Ni(θ

∗, σ2)

with θ∗ = θi, ∀j.

The first option translates to a setup that agents determine past reactions based on
a average prior opinion, i.e. an average value based on a similar subject that platform
historically recorded in the social network. This approach creates a normalized shar-
ing behavior because agents are assumed to be completely homogeneous, in the sense
that they all sample exactly the same distribution when considering the prior beliefs
of other agents. On the other hand, when agent i uses his prior opinion to determine
the reaction history up to him, e centers the normal distribution for sampling the
other agents’ prior beliefs to its own (actual) prior belief. I.e., the agents are now
assumed to be heterogeneous.

Continuing in figure 3.4, at (d) and (e) derived sub-trees in our sharing process,
we see that agent θ3 is choosing to inspect the information and share it with his
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neighbors, θ8 and θ9. For our model, and since we assumed that the inspection yields
perfect outcome, it is sufficient to find an agent that inspected the story and chose to
share it. This observation is useful in the next chapter that is focused on platform’s
inspection problem and the solution of interrupting probable viral stories that are
shared with suspicious reactions.

In order to separate the actual probabilities that an agent i chooses a strategy
between {B,C, S} from his estimated value about those probabilities for his ancestors,
we introduce the next annotations:

Definition 3.2. We define as Bj
it, C

j
it, S

j
it the probabilities that agent i observes for

agent j and his actions {B,C, S} respectively for round t. More specifically, we have
the equations below:

Bj
it = Pi{Ajt(θ

∗
i ) = B | m = y,Hj}

Cj
it = Pi{Ajt(θ

∗
i ) = C | m = y,Hj}

Sj
it = Pi{Ajt(θ

∗
i ) = S | m = y,Hj}

where Ajt(θ
∗
i ) is the action that agent i believes that is optimal for agent j according

to the assumption 3.1 where agent i presumes that his predecessors acting with some
prior θ∗.

Now we provide closed form equations for probabilities in definitions 3.1 and
3.2, derived from the above proposition.

Proposition 3.3. Let be agent i that is up to react in round t. Then for the probabilities
Bit, Cit, Sit it holds that:

Bit = F
(

1

2α− 1

[
βvwitK

(1− v)(1−K)
− (1− α)

])

Sit = 1−F
(

1

2α− 1

[
βvwit(1−K)

(1− v)K
− (1− α)

])

Cit = 1−Bit − Sit

where F is the cumulative distribution function (cdf) from where θi’s are drawn.

It is important to notice that in proposition 3.3, the formulation is independent
of the cdf F that distribution has. In our model we assumed that tall the agents, and
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the platform, presume that the other agents’ prior beliefs are drawn independently
from a normal distribution N(µ, σ2)

F(x) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
where erf(x) is the error function specified in the background.

Now that we have the appropriate tools and specified the all the assumptions
about how an agent processes information and how he acts, we are ready to analyze
each component of our setup and find useful properties that will help us tackle the
platform’s inspection problem. One important property that will help in the analysis
of this model is the monotonicity of qit. The following lemmas from [13] are useful
tools throughout the analysis.

Lemma 3.1. Suppose that an agent receives a story in round t. The agent’s posterior belief
that the story is fake, qit, is strictly decreasing in her prior opinion over ground truth, θi.

Lemma 3.2. Suppose that an agent receives a story in round t with a sharing history Hi

and a prior belief over Θ, θi. The agent’s posterior belief that this story is fake is decreasing
as t increases.

The probability qit can be seen as a sequence of θi, {qit}θi∼N (µ,σ) for fixed t’s, or as
a sequence of t, {qit}t∈N by fixing agents to their prior opinions. Lemma 3.1 describes
the behavior of qit as we adjust the prior opinion of an agent, while 3.2 expresses the
monotonicity of qit as time approaches to infinity. From 3.1 we notice that for a given
round t0, if agents’ prior belief that Θ = Y is closer to 1 then it is less likely that he
will perceive that the story is fake. In addition, in lemma 3.2 we see that the later an
agent receives a story he is less likely to believe that it is fake. In other words, as the
length of Hi increases8 up to an agent i, he is more willing to believe that some agent
j, between the originator of the story up to him, has inspected the story and found
its content truthful. Lemmas 3.1 and 3.2 are very important to extract properties
for the behavior of agents as well for the optimal solution for the platform that we
will analyze in the next chapter.

As soon as an agent receives a story and based on 3.2, his best response is the one
that maximizes his expected utility thus, every action Ait occurs with probability that
depends on his belief that a story is fake qit. Using definition 3.1 for those probabilities
combined the above proposition we derive bounds of our sharing process.

8We remind that the sharing history Hi is a path from the root to a node in a sharing tree G′ ⊆ G.
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Proposition 3.4. In any round t, there exists a lower and an upper bound Zit, Zit ∈ [0, 1]

respectively, for agent i, such that:

1. If θi < Z it then Ait = B.

2. If θi > Zit then Ait = S.

3. If Zit ≤ θi ≤ Zit then Ait = C.

where the thresholds Zit and Zit expressed as:

Zit =
1

2α− 1

[
βvwitK

(1− v)(1−K)
− (1− α)

]
Zit =

1

2α− 1

[
βvwit(1−K)

(1− v)K
− (1− α)

]

Proposition 3.4 shows that at any given time, the optimal choice of strategy that
maximizes the expected utility of an agent is bounded within the above thresholds
Zitand Zit. Notice that we can slightly modify proposition 3.4 in a way such that they
become sequences over θi for a given round t. This brings us to the next corollary:

Corollary 3.1. For all agents i, there exists thresholds with θi as argument such that:

W i =
1−K

K

1− v

v

2α− 1

β

(
θi +

1− a

2α− 1

)
< wit

W i =
K

1−K

1− v

v

2α− 1

β

(
θi +

1− a

2α− 1

)
> wit

equivalent to ZitZit ∈ [0, 1] respectively.

The last corollary is an alternative expression of thresholds Zit and Zit with the
advantage that they are not dependent on time t. With the help of corollary 3.1,
instead monitoring the sliding window where it is formed from Zit→∞, Zit→∞, we can
calculate the round t where wit0 escapes out of W i, W i ∈ [0, 1] thresholds. We remind
that wit is a proportion of the actual belief, for agent i, that the story is fake. The
sequence wit ∝ qit calculates the amount of shares that made without inspection in
the process, namely Ait = S. Corollary 3.1 is very useful for platforms mechanism
in order to answer which stories are probably fake based on the propagation and we
further exploit their properties in chapter 4.

In figure 3.5, we have a Gaussian pdf and the bounds Z,Z in first round t = 0.
We have three cases where:
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Figure 3.5: Regions (areas according to high and low thresholds) that characterize
agents actions for different prior opinions in first round. Parameters: v = K = 0.4,
a = 90% and θi ∼ N (µ = 0.3, σ2 = 0.09).

• Priors θi that are picked below Z , inside the red area, consists of users that
prefer to block the sharing process without even inspecting it.

• The green area, that is between the thresholds Z,Z , consists of agents with prior
opinions such that they are more likely to check the story in first round.

• The blue area, above Z threshold, belongs to agents with such prior opinions
that they are going to share the message with no inspection.

Now we proceed, with the next proposition, by proving that those thresholds are
non increasing in t and also the difference |Zit − Zit| is non increasing and non zero
while t → ∞.

Proposition 3.5. Given an agent j and thresholds Zjt, Zjt ∈ (0, 1), it holds that Zjt and
Zjt are decreasing in t as well as the difference |Zjt − Zjt|t→∞

Proof. The claim is complete if we prove that wit is non increasing. That is obvious

since wit =
t−1∏
k=0

Sik

Sik + Cik

is an product of quantities such that Sit, Cit ∈ (0, 1), thus
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wjt+1 < wjt, ∀t. For the difference |Zit −Zit| let’s assume that we have a agent j with
θj , we compare the difference in round t with the next round t+ 1. We have that:

|Zj(t+1) − Zj(t+1)| − |Zjt − Zjt| =

=
1

2α− 1

[
βvwj(t+1)(1−K)

(1− v)K
− (1− α)

]
− 1

2α− 1

[
βvwj(t+1)K

(1− v)(1−K)
− (1− α)

]
−

{
1

2α− 1

[
βvwjt(1−K)

(1− v)K
− (1− α)

]
− 1

2α− 1

[
βvwjtK

(1− v)(1−K)
− (1− α)

]}
=

1

2α− 1

[
βv(1−K)

(1− v)K
(wj(t+1) − wjt)−

βvK

(1− v)(1−K)
(wj(t+1) − wjt)

]
=

= δ(wj(t+1) − wjt)

where δ is a constant such that δ > 0 for K < 0.5 and a > 0.5. Since wj(t+1) < wjt we
have that the difference is decreasing and it is non zero.

The proof is equivalent using the assumption 3.1 where Sit and Cit are replaced
by Sj

it and Cj
it respectively, ∀j ∈ path(root, i).

With proposition 3.5, we have the next important corollary for the sharing process,
that expands the cascading behavior in [13] for sharing trees.

Corollary 3.2. Let G′ be a sharing tree as specified in section 3.2. There exists a
certain depth hc at which the best response is to share without inspect. More specif-
ically, there is a depth hc such that Zihc ≤ 0 for some agent i or equivalent, hc =

min
{
h | Sih = 1 or Zihc ≤ 0

}
.

Since each path expands as an independent experiment (agents know only how
many of their predecessors shared), for each of these paths there is a certain depth
that is critical. In the case of a path, where agents react in sequential manner, the
round represents the number of agents that react. In other words, we have a critical
agent positioned in a specific spot of the path such that, after a certain amount of
reactions, at round Tc the best response of Tc + 1 agent is to send without inspecting
the story. In figure 3.6 we have an example of a sharing process alongside with
the propagation network. The sequence of agents {θ1, θ2, θ5, θ11, θ15} reached in such
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Figure 3.6: The critical round Tc at where the best response of an agent in that depth
is to share without inspecting an event.

depth that the quantity wkTc will affect agents’ belief that the story is fake, qkTc that the
expected response is to share the story without inspection. In other words, agents’
interpretation of their depth is an increasing possibility of an existing agent that
checked the story and decided to share to the subsequent agents.

One question that emerges from the above analysis is the impact of depth over
agents opinion that a story is false, namely qit.

Corollary 3.3. For an agent i with prior opinion θ and his posterior belief that m = y is
fake, qit, it holds that:

• If agent i chooses action S in round t0, Ait0 = S then ∀t > t0 subsequent rounds,
Ait = S.

• If agent i chooses action B in round t0, Ait0 = B then ∀t ∈ [1, t0] previous rounds,
Ait = B.

Proof. We will prove the first bullet, since the second is proven in symmetrical manner
with opposite monotonicity. Lets assume that agent chooses to share a story without
inspecting it, at a given time t0 which means that Ait0 = S. This choice optimal when
his expected utility is maximized via action S, more specifically, whenever it holds
that 1−qit0 > qit0 and 1−qit0 > 1−K. Since qit is decreasing in time, then the quantity
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1− qit0 is increasing in time and since it is upper bound for both qit and 1−K , then
it will remain an upper bound as t increases, which proves the claim. For the second
bullet, the proof is symmetric since qit0 > 1− qit0 and qit0 > 1−K when the response
is Ait0 = B. Adding the fact that qit is decreasing in time, from lemma 3.2, we have
that the above inequalities hold, for each round 1 < t < t0.
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Chapter 4

Platforms’ Inspection Mechanisms

4.1 Introducing Platform in the Sharing Process

4.2 Platforms’ Inspection Problem

4.3 Optimization Criterion for Inspection Time

So far we created a setup for information exchange between a group of rational
agents alongside with the rationalization of the assumptions we made for our model.
The next step is to define the behaviour of our authoritative entity, in our case the
platform which is the social medium where agents interact and share stories with
each other. Given that the platform has an overview of the whole process, we utilize
this knowledge under a number of assumptions, to develop appropriate tools for our
platform in order to intervene and inspect information. Our goal is to consider the
properties of our network that will specify the optimal time for inspection.

In this chapter we introduce platform’s role in the sharing process model and
the inspection problem. We modify the basic sequential model introduced by [13]
in order to work for asynchronous propagation within tree structures, adding the
necessary assumptions. We continue with an analysis of the properties that emerge
from those assumptions. Finally, we leverage the structure features in order to find
an approximate solution for intervention and inspection of a story at proper time.
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Figure 4.1: The fact checking model of a social media service. The fact-checking
process is assumed to an external service for the platform, which of course comes with
a given cost for the platform. In practical scenarios, the platforms cannot conduct a
fact check over stories because this would affect their policy, given that fact checking
comes with a cost.

4.1 Introducing Platform in the Sharing Process

So far we have an ecosystem where agents share messages called stories, as we men-
tioned in previous chapter, and their actions are under the assumption that are re-
sponsible individuals. This technically means that they act in order to maximize their
expected utility by not sharing non trusted stories according to their judgment. Now
we introduce the platform, where those individuals reside in. Examples of such enti-
ties are Facebook, Twitter, YouTube and many more, where millions of user interact
and share information with each other. In our case study, platform is a super agent
providing those online services in order for agents to interact with each other. In
our study, the platform observes the evolution of the propagation tree, and infers the
posterior probabilities of the involved users, so as to have its own posterior belief
about the validity of a story.

In figure 4.1 we have our ecosystem with the introduction of platform. We see
that our platform monitors the activity of agents network in order to maintain a
trustworthy social network of information sharing. If platform suspects that a story
is shared effortless (without any inspection), then there is a global check via fact
checking organizations. Afterwards, the results are announced to our network and
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there are two options:

• If the story is validated as truthful, then this announcement leads to a sharing
cascade. Additionally, the platform will receive a discounted reward for each
share of the story in our network.

• If the story is fake, then the sharing process is terminated and the the platform
will receive only a penalty for each (previous) share of the fake story, along
with a fixed global-check cost.

In our case study, we assume that the inspection yields a perfect result. This assump-
tion holds for both agents and the authoritative entities such as the platform or fact
checking partners. We also remind that this setup is easily extensible for cases where
the fact checking action occurs with error.

Another important part of our setup is the amount of privileges that such a
platform possesses. We mentioned above that our platform is a super user with
extra knowledge. We assume that our platform observes the creation of edges in our
network without knowing if they are product of checking action or blindly sharing
the story. In other words, platform observes reactions at given round t from agents
without knowing the exact action, i.e. if it Ait = S or Ait = C in round t. Additionally,
the platform is unaware if an agent discontinued the sharing process by blocking of
checking the story. More specifically, platform cannot observe the round t where an
agent decided to not share a story with either Ait = B or via checking with Ait = C.
This assumption reflects a real life application where a social media administrator
cannot monitor if an individual user of such a service conducted a research or not in
order to share information within a network.

This brings us to a stronger assumption that makes the building block of our
model.

Assumption 4.1. The exact value of random variables θi ∼ N (θ, σ2) for each agent i

are hidden from platform. Platform only assumes a normal distribution N(θ, σ2) for the
independent sampling of prior beliefs for the agents.

The reasoning behind this assumption, that strengthens our model in order to
work under uncertainty, is that we cannot predict the exact value of a prior opinion
of a random agent. For example, let’s assume that we have an emerging topic. In such
case, most probably, we do not have prior opinions formed on the topic or even worse,
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θ1

θ2
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θ3 θ4

Figure 4.2: An example of a ternary sharing tree where each agent is picked uniformly
at random to react. The right triangle L is a subtree of the sharing tree.

we formed wrong prior opinions. Another important property this assumption has is
the fact that this model is more confidential since we can work without monitoring
users of such services where there are issues of private information leaks.

As we mentioned above, the platform monitors reactions of agents, more specifi-
cally, those reactions that share information from parents to children. In other words,
platform increases the round from t to t+ 1 whenever a node i decides to share and
create edges to his friends, followers or children (from data structure perspective). We
need to decide how those agents are picked to react and choose an action at round
t. There are two approaches for that issue:

• Agents that are terminal leaves in the sharing tree are picked uniformly at
random.

• Agents are picked with probability (1/m)l where m is the amount of children
that each node have (for m-ary trees) and l is the height of node i in the sharing
tree.

It is obvious that the first approach tends to create unbalanced trees in depth
first manner. In figure 4.2 we see such a case. After the root decided to share the
information, let’s assume that node θ2 is picked with probability 1/3, since we have a
ternary propagation tree, tree, to react at round 2. The set of leaves at that round, we
call it frontier from now on, consists of nodes θ3, θ4 and the children of θ2, Dθ2. Because
we assumed that agents are picked uniformly at random, hence the probability of
picking a node on the frontier is now 1/(| {θ3, θ4}∪Dθ2) |, in case of our example it is
1/5 since we have 3 children of θ2 plus the nodes in level 1. This implies that θ2 will
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probably will be picked, with probability 3/5, rather than θ3 or θ4, with probability
2/5. Moving forward in the next round, the probability of picking one node to react
in the subtree L will increase once again, making more likely an expansion of the
sharing tree towards L.

On the other hand we have the second approach where the level of each node
matters, hence we have that node i is picked with probability (1/m)l where m is the
amount of children each node is assumed to have1 and l is the level where node i

belongs. This approach is used to tackle down the issue that we have with unbalanced
tree when we are picking uniformly at random and also it is reasonable to say that we
expect from nodes who received the story earlier to react faster than freshly activated
nodes in the sharing tree.

Now that have established the role of the platform, alongside with the appropriate
assumptions, we proceed with the technical part and the introduction of the optimal
inspection problem.

4.2 Platforms’ Inspection Problem

Since we assumed that inspection yields a perfect outcome, it is sufficient to find one
agent that inspected the element. If an agent that inspects the story and decides to
share that means he found the story truthful. Because we assumed that the result
is irrefutable, the announcement of that the story is truthful will trigger an informa-
tion cascade in the sharing tree, and each sharing action afterwards will increase the
discounted reward that platform receives, i.e. advertise revenue or another moneti-
zation strategy that is benefit from sharing content. Apart from the agents’ private
inspections (fact-checks) for the type of a story, the platform may also intervene by re-
questing a global fact-check (e.g., from an external third-party fact-checking service)
and then communicating the result of this inspection to the entire community.

On the other hand, we have agents that are not reacting, and we cannot presume
if the chose Ait = C or B as an action, as we specified in section 4.1. An agent might
block a story either with or without inspection and that is hidden from platform
since it does not posses the exact value of θ for each agent nor it is clear if the

1We are using mean field analysis in our approach with an average degree for children in our tree
structure. Thus we are developing this model over m-ary trees.
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agent inspected or plainly blocked the story. Thus it is important for the platform
to estimate the probability that some agent received the story and decided to inspect
and block it. Once again, this event is sufficient enough since inspection is perfect.
The platform can also utilize the probability of that event and dispute the validity
of that story via fact checking organizations. We assume that the intervention of the
platform in the evolution of the emergent story via fact-checking comes with a cost
Kp. Now that we established those two warning mechanisms for global check, we
provide two propositions in order to calculate the probabilities of those events.

Proposition 4.1. Let T be a sharing tree and m = y is the story that propagates in T .
Then the platform’s belief there exist an agent i and Ait = C at some round t in T , under
the assumption that platform observes independent random experiments over agents, is:

rT = 1− PpT{∀i ∈ VT : Ait = S | Hi,m = y} = 1−
t−1∏
k=0
i∈VT

P[Aik = Sp
ik]

where VT are the set of nodes of T , respectively.

Before we begin with the proof of proposition 4.1, it is important to mention
that time is irrelevant in that equation since we can rearrange the sequence of shares
and agents id’s in order. We keep the annotation of Ait though to avoid polluting this
thesis with unnecessary notations. That being said, we only use the next definition
in order to specify the platform’s belief over agents’ i action:

Definition 4.1. For each action Ait = {B,C, S} of an agent i in round t, we define the
probabilities Bp

it, C
p
it , S

p
it that estimate the platform’s perception over the probabilities

Bit, Cit , Sit for each action respectively.

Proof. (Proposition 4.1) We need to calculate the probability of the event that at least
one agent chose C given that we have a sharing T and a story claiming m = y. Let this
probability be rT . We have that rT = PpT{∃i ∈ VT : Ait = C | T,m = y} = 1−PpT{∀i ∈
VT : Ait = S | T,m = y}. The last equality is equivalent, since the worst case scenario
is that none inspected the story and chose to share, in other words Ait = S, ∀i ∈ VT .
Since we assumed that events are independent the probability rT is the product of
all those independent experiments, thus rT = 1 − PpT{∀i ∈ VT : Ait = S | T,m =

y} ≈ 1 − Sp
00S

p
11S

p
22...S

p
i(t−1) where we rearranged agents id’s to match the round at

where they reacted throughout the propagation process due to the fact that actions
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are calculated independently. Thus we have that rT = 1−
t−1∏
k=0
i∈VT

P[Aik = Sp
ik], where S

p
ik

is platform’s perceived value that agent i chose S in round t.

This value is the platform’s posterior belief, just before the t-th round of sharing,
that at least one of the internal nodes actually conducted a check. Additionally, the
above calculation provides us with a warning indicator that approximates the ap-
proach followed in [13], where platform has a normalized belief qp that a story is
fake, based on the evolution of a sharing process in a path. This approach cannot
be used in the case where we have a tree structure since there are nodes that we
are unsure of their reaction. To further understand this issue, let’s assume that we
have an m-ary tree and there is a node in first level that did not react after m + t0

rounds. If the value of t0 is large enough at a point where the process evolved in lower
depths, then it is safe to assume that agent i either rejected the story by choosing B

or inspected the story and disclosed it’s validity with C. It is obvious that there is a
challenge in order to calculate this probability since we need to take into account the
fact that the agent’s reaction concerning shares are partially hidden. The next propo-
sition calculates the existence of such an agent, more specifically, the probability that
at least one agent inspected the story and found it fake.

Proposition 4.2. Let T be an k-ary sharing tree and m = y is the story that propagates
in T . Then the platform’s belief that a terminal node i blocked the story m by inspecting it,
Ait = C, in round t is:

nit = [1− (1/k)li ]t−ti(1/k)li
Cp

it

Bp
it + Cp

it

where li is the level of node i in T and ti is the round where i received the story.

Proof. Let i be a random node of T and li > 0 2 its’ depth in it. We will prove the
claim by induction over t − ti. For t − ti = 0, which means after the first time that
node i was candidate to react, there are to cases:

• With probability 1− (1/k)li , node i it is not picked to react at current round.

• With probability (1/k)li , node i reacts in that round.
2We do not bother proving the proposition for root since it holds trivially.
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In case where the node is picked to react, the probability that this node will inspect
the story and then decide to block it because it is fake, is equal to Cp

it

Bp
it+Cp

it
. Thus we

have that:
ni,ti = (1/k)li

Cp
it

Bp
it + Cp

it

after the first round that i was candidate to react and it was picked for that round.
On the other hand, if we move at the next round where i is once again candidate to
react, then the probability that he will react in t− ti = 1 is:

ni,ti+1 = P{did not react in previous round} P{ reacts in t round with C} =

[1− (1/k)li ](1/k)li
Cp

it

Bp
it + Cp

it

Assuming the claim holds for t− ti, we can easily prove that it holds for t− ti + 1 as
well.

4.3 Optimization Criterion for Inspection Time

In this section we develop an optimization criterion based on utility maximizing ap-
proach as in [13]. Recall that we developed a model where the agents are socially
responsible, which means that they share only truthful stories and also aim to max-
imize their utility. We assume that it is to the interest of the platform to forbid the
propagation of fake stories, i.e. such platforms try to maintain their reliability in order
to form a profitable model from advertisement revenue. In each round t, the platform
observes an activation of a node in the sharing tree. This means that rounds repre-
sent a counter for the amount of nodes that reacted throughout the sharing process.
At each round, and according it’s belief for the validity of the story, platform can
perform a global check if it suspects that the story is fake and can cause damage to
it’s credibility. In case where platform believes that the story is truthful we do not
have any interruption of the story.

In order to develop a criterion to calculated the existence of an optimal time to
interrupt the process in order to avoid further damage that un checked shares will
cause, we develop a utility maximizing scheme. We assume that if the story is fake,
then for each successful share platform receives penalty P . For each successful share
of a truthful story, the platform will receive a discounted reward R, with a discount
factor δ < 1 that is affected by the depth of the sharing process. The discount factor
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rationalization is that freshly shares are more relevant in order to form an opinion
over the validity of our story. If platform decides to intervene in order to check the
validity of a story, this action occurs with a cost Kp, and the this decision is once and
for all. This means that after the announcement of the results, we have two cases.
If the current story is fake, then the process ends with the appropriate penalties for
each share, while if it is truthful, an information cascade triggers and platform will
collect all future discounted rewards.

Platform determines its’ policy by estimating the utility of the sharing tree and
the option of inspecting or not is viable respectively. At each round t, the process
already created a sharing tree T . Therefore, we have an observed utility that either
we will receive penalty if the story is fake or collect reward otherwise. We define the
utility that platform gains, for each agent i in round t, as:

gpT (V ) =


P, w.p. SitqpT if V = F

R, w.p. (Sit + Cit)qpT if V = T

0, else

(4.1)

Assuming that platforms belief, that the story is fake, is qpT , we have the following
lemma for the observed utility of our platform:

Lemma 4.1. The expected observed discounted utility that platform gains from a sharing
tree T is:

Op(T ) =
∑
i∈VT

δli [P (Sp
itqpT ) +R(Sp

it + Cp
it)qpT ]

where li is the depth that agent i belongs and VT is the set of nodes/agents that belong in T .

Proof. Similarly to proposition 3.2, we have that:

Op(T ) = E[gpT (V )]∀i∈VT ,V ∈{T,F}

Thus, for each internal node that we already observed its reaction, we receive a
discounted reward in case it successfully shared the story. In case an internal node
shares a fake story, and assuming platform’s belief that the story is fake equals to
qpT , it comes with penalty P . According to equation 4.1:

Op(T ) = E[gpT (V )]∀i∈VT ,V ∈{T,F} =
∑
i∈VT

δli [p(Sp
itqpT ) + r(Sp

it + Cp
it)qpT ]
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Let’s assume that we observe a sharing tree T and define the frontier F , that is
a subgraph of T , as those nodes that are leaves of T (candidates to react). Then we
can calculate the expected utility that we will gain with the addition/s of nodes that
belong in frontier. Let’s assume that node j will react and enter in the sharing tree
such T ∪{j}. In worst case scenario, where the story is fake, we expect from the same
tree, a penalty for each descendant of j. We have two possible policies, to make a
global check, annotated as C, and collect reward/penalty or to let the process continue,
annotated as E , and reevaluate the expected utility once again. If the platforms’ belief
that the story is fake equals to qpT then the expected discounted utility gained from
subtree T ′ if platform chooses to global check, is:

(δliR + δli+1kR + δli+2k2R + ...)(1− qpT )−Kp

where Kp is the negative utility gained because the cost of inspection. If δk < 1 we
conclude that:

UC = δli(R + δkR + δ2k2R + ...)(1− qpT )−Kp = δli(1− qpT )
R

1− δk
−Kp

Observe that this is the anticipated utility gained only by one agent j ∈ F . If we want
to in account every other agent j in frontier we sum up the anticipated costs and we
have:

UC =
∑
j∈F

δlj+t(1− qpT )
R

1− δk
−Kp

Now let us discuss the utility that the platform will receive if it decides that it
will not intercept the sharing process. According to that strategy, E , we have the next
probable outcomes:

• With probability Cit, agent i checks and decide to only share a truthful story
and platform collects reward.

• With probability (1−qpT )Sit, agent i shares a truthful story and platform collects
reward.

• With probability qpTSit, agent i shares a fake story and platform receives penalty.

Then, the utility we gain from agent i, if the platform decides to E , is given by the
equation bellow:

Cit(1− qpt)R + Sit(1− qpT )R + SitqpTP
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Observe that the reaction of agent i creates a subtree T ′ with node i as root. Then
we have the recursive formula for the discounted anticipated utility that will grow
exponentially and make the calculations complex. It is obvious that it is not feasible
to calculate the utility that way for two main reasons. First reason is the complexity
of calculations and the fact that is hard to find a closed form type for that expected
utility in order to maximize it. Secondly, the platform’s belief is changing while the
depth increases and this formula should recalculate qpT at each step which increases
the complexity even more.

In order to deal with that problem, we propose the next approximation method.
Suppose that platform decided already the validity of the story at round t. Then we
have two probable cases where:

• The story is fake with probability qpT and platform chooses strategy E .

• The story is true, following the same strategy.

This modification simplifies the calculations by breaking down the problem in two
different cases. Let us see what happens in the case where platform decides that the
story is fake. There is only one way that fake stories will propagate after the platform
decides to let the propagation evolve and it is only if an agent decides to share without
check, namely Sih. Notice that if he decided to check the story given that platform
believes it is fake, implies that the agent will discontinue the propagation. So we have
that the utility in that case is:

∞∑
t=0

δlj+t
[
Slj+tk

tP
]

where lj is the depth that agent j belongs, Tj is the subtree, rooted on agent j that
belongs in frontier and δ is the discount factor. If the platform decides that a story is
true over a propagation tree T , then the story propagates with two ways. A story can
be sent to the next level in the tree with S or C action since it is true and agents even
when fact-checking it, will share it. Therefore, the probability that a story is shared
equals to (1− Bit). This observation simplifies things since it is easier to express the
monotonicity of the expression bellow. For that policy, we have that the next equation
that expresses that utility:

UA
t =

∞∑
t=0

δlj+t
[
(1−Blj+t)k

tR
]
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where Tj is the subtree, rooted on agent j that belongs in frontier. Now we are ready to
collect those expressions in the next proposition that gives a formula for the platforms
utility if it lets the propagation evolve.

Proposition 4.3. The anticipated utility that platform gains if it decided to let the news
sharing process evolve, for an agent j ∈ F in frontier is:

UA
f =

∞∑
t=0

δlj+t
[
Slj+tk

tP
]

for fake stories and

UA
t =

∞∑
t=0

δlj+t
[
(1−Blj+t)k

tR
]

for truthful.

Both of the above values will express the utility the platform gains for each agent
for a sub-tree created in the frontier, rooted at agent j. This means we get the ap-
propriate utility from agent j, discounted by δlj , plus the corresponding discounted
utility of his k descendants and so on. Before we find the boundaries, we collect
the above quantities in order to form the final expression of the platforms expected
discounted utility:

Up = Op(T ) + Ap(T )

where the anticipated utility of our propagation tree network T is:

Up(T ) =

 Op(T ) + UC(T ) , Global-check C

Op(T ) + UE(T ) , Let-evolve E
(4.2)

Now remains the issue of limits. As it was previously mentioned, for each agent
in the frontier, in order to calculate the anticipated utility we have to calculate the
probabilities of S and B indefinitely. In order to deal with that, we need convergence
for UA

f and UA
t . The next proposition uses the monotinicity of probabilities S and B

in order to bound those values.

Proposition 4.4. For the anticipated utilities over fake and truthful news respectively, it
holds that:

UA
f < δljSlj

P

1− δk
= U

A

f

for fake stories and
δlj(1−Blj)

R

1− δk
= UA

t < UA
t
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Figure 4.3: Evolution of platforms’ utility on a binary propagation tree. On round
1, the utility of agent was already evaluated and the policy was chosen by platform.
This is a greedy approach of finding the optimal policy.

for truthful, where j is the corresponding root agent that belongs in frontier.

Proof. We have from corollary 3.3 that Slj probability is increasing in depth lj , thus
we have that (Slj < Sli in every level li lower than lj. Thus we have that:

UA
f = δlj(PS(lj) + δkPS(lj+1) + δ2k2PS(lj+2) + ...) <

δlj(PS(lj) + δkPS(lj) + δ2k2PSj(lj) + ...) = δljSlj

P

1− δk

when P < 0

Respectively, we have that B is decreasing in depth. Thus (1−Bli) > (1−Blj) for
every level lj lower than li. In similar manner we can restrict, the anticipated utility
for the case a true story, such that:

UA
t = δlj(R(1−B(lj)) + δkR(1−Bj(lj+1)) + δ2k2R(1−B(lj+2)) + ...) >

δlj(R(1−B(lj)) + δkR(1−B(lj)) + δ2k2R(1−Bj(lj)) + ...) = δlj(1−Blj)
R

1− δk

In the last proposition, we use the probabilities of root j in the frontier, in order
to bound the geometric series. This is an important step, which will help in advance
to find a closed type equation for the anticipated utility. This allows the platform to
make a better prediction instead of letting the process continue up to the point that
agents propagation process arrive at some depth Tc where they all choose to share.
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In order to choose policy, we can restrict the calculation on future rewards/penalties
and the total inspection cost. Based on the two policies we can compare the anticipated
utility for both of them and find the first round where the sign changes. Therefore,
it is sufficient to observe the anticipated utility, for both policies, in order to decide
whether to terminate the process. If begin at round t = 0, where the first agent, 1 with
θ1, has already reacted and we have to calculate the anticipated utility that platform
will gain from his children. We assume that the average neighbor size is k = 2. Then
we have that:

Up(T ) = Op(T ) + Ap(T ) = Op({θ1}) + Ap({θ1})

where in that case the T consists only the first node θ1 and Ap({θ1}) = UE − UC.
Whenever a node reacts, it adds k new nodes in frontier and removes the node

that reacted in the previous round as we see in figure 4.3. In our case, since k = 2,
we get 2 new nodes in the first level. Since the observed cost is:∑

i∈VT

δli [P (Sp
itqpT ) +R(Sp

it + Cp
it)qpT ]

where in first round i is the root node with prior opinion θ1, is a positive quantity.
Observed utility is positive for each round t. Thus the sign of total utility is affected
only from the new nodes added in the current round, 2 in the case of binary tree.
This implies that if exists a round t where the difference of the anticipated value
change, the observed value would not affect this change. By induction we can prove
the claim for every round t. Also the proof holds for any k integer by induction as
well.

In this chapter, we established the mechanism under how platform monitors and
reacts to the process. First, we observed that the tree structure is affected on how
agents are picked react. In order to avoid unbalanced trees, we decided that the level
at where agent belongs affects the reaction time (agents that receive the story earlier
will probably react earlier as well). Secondly, we observed because the inspection is
perfect, if a path reaches at some depth will imply that we have at least one checking
action, which is sufficient to rely on him. We can use the last observation as a flag
where in order to intervene and verify the story (using a third party fact checking
organism). Lastly, we follow the same strategy as Papanastasiou in [13], using a
utility maximization criterion. After we provide bounds for the expected anticipated
utility, we use can observe where the penalty or cost will greater than the earning, and
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make an earlier decision before we reach critical depths, as we mentioned previously
in this paragraph.

43



Chapter 5

Conclusion and Future Work

5.1 Conclusion

5.2 Future Work

5.1 Conclusion

In this thesis, we study the problem of fake news detection, and we propose an in-
tervention based model that leverages on the structural properties of the propagation
network, which is derived from the agent’s behavior. Based on current literature, we
concluded that structural patterns provide a more interesting solution in contrast to
other methodologies. After studying and adjusting the preexisting model given by
[13], which is a simplified version (a sequential model on directed paths), we pro-
pose a similar model, followed by and analysis, for a tree propagation network that
consists of rational and socially responsible agents.

The agent’s behavior in the sequential case is straightforward, and the sharing
process is easy to model. In the case of a tree propagation network, we face the
challenge of how agents update their beliefs. First, we assumed that it is known to
all agents how the average person reacts (what is the average agent’s prior opinion),
as well the sharing history of their predecessors. This is an assumption important in
order to start working with the optimal strategy selection from platform’s perspective,
since platform needs a basic understanding of how agents interact with each other.
Secondly, we provide a similar analysis for the above assumptions. Similarly to the
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related work, we prove the monotonicity and the existence of thresholds values, and
we provide a simpler alternative to calculate those thresholds. Lastly, we assume that
the distribution of prior opinions is a Gaussian distribution in order to simplify the
model.

In chapter 4, we introduced the platform’s role in our model. In the case where
the propagation network is a directed path, it is easy to compute the time at where
a sharing cascade triggers (critical round) by using dynamic programming. Given
the critical round mentioned before, we are able to compute the optimal inspection
time using the threshold values. In the case of tree propagation network structure
there are challenges that concern the knowledge of the platform. First we noticed that
the platform do not have perfect information over agents reactions. More specifically,
whenever an agent is not reacting, platform cannot conclude if the story is blocked
or checked and found fake by this agent. In order to deal with those issues in
our proposed model, we specify how agents are picked to react, and afterwards, we
formulate the probabilities:

• At least one agent that have checked the story and decide it to share.

• At least one agent that checked the story and decided to not share it.

Since the inspection has perfect outcome, it is sufficient to find when the above events
have high probability to occur, given a sharing tree. The above values are approxi-
mations of the actual event that the story is true or fake, respectively, for each case.

We have also considered a similar approach to that in [13], using a utility maxi-
mizing criterion in order to find earlier inspection time. In order to find that inspection
time, we calculate the observed utility from the agents that already reacted (from the
internal nodes of the tree propagation network) and the anticipated utility of the
agents that are candidates to react in the current round (leaf nodes). By splitting the
anticipated utility on two policies:

• Global inspection (fact check from a third party).

• Let the process evolve to the next round.

we compare them and find the first round, if it exists such round, where the global
inspection becomes more profitable to the platform, using the appropriate threshold
values.
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In closing, our setup has some important advantages against the approaches in
related literature. First, the model we propose works under uncertainty without the
exact knowledge of what the agent’s prior opinions are. This is important since there
are few cases where we know what exactly a social media user believes over a topic,
i.e. we do not know the prior beliefs of agents over newly emerging topics. Secondly,
we utilize the fact that the underlying network structure is a tree. In our thresholds
values, we have quantities that are affected both from depth as well the average
degree k of our tree. We noticed that a tree structure provides more information in
contrast to a path in order to decide the platform’s policy, given a sharing tree. One
last concluding remark is that our model is not agnostic to the motives behind the
propagation. The building block in this setup is the probabilistic representation of
stories,which affect both user behavior and the inspection time of the platform as
well.

5.2 Future Work

In the chapter where we provide the analysis of agents, we assumed that agents are
social responsible actors that propagate only truthful news. In reality, this assumption
does not hold for all agents. There are incidents where agent react unpredictably (for
example, propagate something fake willingly as a joke) or share a story because it
aligns with their own opinion. This partisan behavior is discussed in [13] in the
case of paths, where agents use the probability of their own belief that a story aligns
with their own prior opinion. In that case, it is interesting to make an analysis of
the underlying properties that such a network has and how we can find a similar
solution in order to find an optimal interruption time.

In our work, the inspection that occurs from both the agents and the fact checking
organization is yields perfect result. While in most cases it is true, since there is a
vast amount of valid information available to help us fact check news stories, it is not
always the case. There are is a work provided in [6] where flagging mechanisms
explored to deal with the phenomenon of the implied truth effect, which is the case
where users come to conclusions based mostly on fact checking evaluations before
making their own research. An interesting analysis would be the case where the
inspection occur with an error and how this affects the underlying network in our

46



model and.
Another case study that has is interesting is the network topology of the sharing

process. In our case, we model a tree structure, where reactions between different
levels are not present. This translates to the case where agents are receiving the story
from only one agent at some round tk and cannot receive the same story from anyone
else. In reality, agents might receive the same story from different sources/agents in
different time periods, and the underlying sharing network has the form of a directed
acyclic graph. In order to follow a similar analysis, we need to specify how agent
update the beliefs now that multiple paths reach to them and what triggers her
reaction.
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Appendix A

Supplementary Material for Chapter 3

Proof of proposition 3.3.

Proof. Let Bit, Sit, Cit be the probabilities that agent i chooses action B, S,C respec-
tively, at round t. Then, we have from 3.1 that:

qit = Pi{V = F |m = y,Hi} =
βvwit

βvwit + [aθi + (1− a)(1− θi)](1− v)
(A.1)

where wit =
t−1∏
k=0

Sik

Sik + Cik

and wi0 = 1. Independently from the fact that we are using

a Gaussian distribution, we have that:

Bit = P(qit > 1−K)

Sit = P(1− qit > 1−K)

Cit = 1−Bit − Sit

Using A.1 and the properties a Gaussian pdf, we have the equations of the proposi-
tions.

Proofs of Lemmas 3.1 and 3.2.

Proof. We will use proposition 3.1 in order to prove those lemmas. It is obvious that:

qit = Pi{V = F |m = y,Hi} =
βvwit

βvwit + [aθi + (1− a)(1− θi)](1− v)

is strictly decreasing while θ is decreasing since 1/2 < a < 1.
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For lemma 3.2 we have the likelihood function:

qit
1− qit

=
βvwit

[aθi + (1− a)(1− θ)](1− v)

and since it is strictly increasing in wit we have that qit is strictly increasing in wit

which is non increasing since it is a product of fractions that are lower than 1. This
concludes the claim that qit is non increasing in t.
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