
Secure Content Distribution from Insecure Cloud
Computing Systems

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Evangelos Dimoulis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN ADVANCED COMPUTER SYSTEMS

University of Ioannina

School of Engineering

Ioannina August 2021



Examining Committee:

• Stergios Anastasiadis, Associate Professor, Department of Computer Science
and Engineering, University of Ioannina (Advisor)

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina

• Evangelos Papapetrou, Assistant Professor, Department of Computer Science
and Engineering, University of Ioannina



ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my research advisor
Prof. Stergios Anastasiadis for his invaluable assistance and guidance throughout this
thesis. With his deep knowledge on the field of computer systems, he taught me the
process of conducting research, how to understand, design and implement systems
software. He was always available for long and creative brainstorming sessions, and
it was a great privilege to work under his guidance.

I would also like to thank my friends who helped relax and clear my mind
after many demanding working hours required to complete this research. Especially,
Anargyros Katsoulieris with whom we worked together at the Computer Systems
Lab, for the many hours of brainstorming sessions in the field of computer systems
security, and his funny jokes that helped making time at the office even better.

Above all, however, I am grateful to my family for their support, love, care and
for encouraging me to pursue and accomplish my goals.



TABLE OF CONTENTS

List of Figures v

List of Tables vii

Abstract viii

Εκτεταμένη Περίληψη ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Data Encryption in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Public-Key Cryptoystems . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Data Re-Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Transport Layer Security (TLS) . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 WolfSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Object Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Amazon Simple Storage Service (S3) . . . . . . . . . . . . . . . . 11
2.3.2 MinIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Trusted Execution Environments & Related Work 15
3.1 Establishing Trust in Commodity Computers . . . . . . . . . . . . . . . 15

3.1.1 Trusted Platform Module (TPM) . . . . . . . . . . . . . . . . . . 16

i



3.2 Overview on Trusted Execution Environments . . . . . . . . . . . . . . 17
3.2.1 AMD Memory Encryption . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Arm TrustZone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Sanctum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Intel Software Guard Extensions (SGX) . . . . . . . . . . . . . . . . . . 19
3.3.1 Intel SGX Background . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Enclave Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 SGX Application Architecture . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Data Sealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.5 Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.6 Memory Limitations in SGX . . . . . . . . . . . . . . . . . . . . . 23
3.3.7 Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Secure Data Sharing on Untrusted Storage . . . . . . . . . . . . 25
3.4.2 Multitenant Access Control . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Cryptographically Enforced Access Control . . . . . . . . . . . . 26
3.4.4 Data Sharing using TEEs . . . . . . . . . . . . . . . . . . . . . . 26

4 Design 28
4.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 System Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Cloud Storage Provider . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Tenant Authorization Server . . . . . . . . . . . . . . . . . . . . 30
4.2.4 Serving Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.5 Object Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 User Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Encryption Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Overall System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5.1 Trust Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.7 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7.1 Requests Management . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7.2 User Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ii



4.7.3 User Folder Creation . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.7.4 Uploading Data to the Storage Provider . . . . . . . . . . . . . . 41
4.7.5 Accessing Shared Data . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7.6 Access Control List Revocation . . . . . . . . . . . . . . . . . . . 43
4.7.7 Removing Shared Data . . . . . . . . . . . . . . . . . . . . . . . 43
4.7.8 Listing Folder Contents . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Implementation 46
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 TeeStore Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 TeeStore Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 TeeStore Enclave . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Untrusted Application . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.3 MinIO Client & Server . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 Enclave Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Protocol Implementation Details . . . . . . . . . . . . . . . . . . . . . . 57

5.6.1 User Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.2 Bucket Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.3 Uploading Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.4 Downloading Data . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6.5 Access Control List Update . . . . . . . . . . . . . . . . . . . . . 60
5.6.6 Removing an Object . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6.7 Listing Bucket Contents . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Performance Evaluation 62
6.1 Experimental System Setup . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Protocol Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.1 File Upload Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3.2 File Download . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.3 List Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Access Control List Benchmarks . . . . . . . . . . . . . . . . . . . . . . 68

iii



6.5 Networked Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Conclusions & Future Work 73
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

iv



LIST OF FIGURES

2.1 Data sharing example using a hybrid re-encryption scheme. . . . . . . 8
2.2 A collection of objects stored in a Amazon S3 bucket. . . . . . . . . . . 11

3.1 Intel SGX application architecture. . . . . . . . . . . . . . . . . . . . . . 21

4.1 Secret key provisioning by tenant enclave to remote computing node
leveraging remote attestation. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Overall architecture displaying the interaction between the system’s
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Registering a new user to the file-sharing service. . . . . . . . . . . . . . 38
4.4 User request specification for creating a new folder, and delegation to

the file-sharing service. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Appending the new folder’s name to the user’s folder list file. . . . . . 40
4.6 Re-encrypting the folder list file and updating it at the object store. . . 41
4.7 Transferring the user’s file in data chunks through a secure channel to

an enclave that accumulates the chunks in a data buffer. . . . . . . . . 42

5.1 Overview on the system’s implementation. . . . . . . . . . . . . . . . . 47
5.2 Data structures supporting TeeStore’s protocols. . . . . . . . . . . . . . 48
5.3 Overview on TeeStore’s internal components. . . . . . . . . . . . . . . . 52
5.4 MinIO client process execution using system calls fork and execlp. . . . . 55
5.5 User registration request implementation. . . . . . . . . . . . . . . . . . 58
5.6 Accessing folder list files inside enclave memory for bucket creation. . . 59
5.7 Encrypting user file in the TeeStore enclave and uploading it to a MinIO

bucket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1 Experimentation environment setup. . . . . . . . . . . . . . . . . . . . . 63

v



6.2 File upload time comparison between MinIO Baseline, MinIO SSE, and
TeeStore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 File download time comparison between MinIO Baseline, MinIO SSE,
and TeeStore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Time to list bucket contents with scaling number of objects. . . . . . . . 67
6.5 ACL update and search times with scaling number of user public keys. 68
6.6 Impact of access control lists on TeeStore’s performance. . . . . . . . . 69
6.7 WolfSSL operations data throughput for increasing TLS chunk size. . . 70
6.8 File upload time with TeeStore Client running on different hosts. . . . . 71
6.9 File download time with TeeStore Client running on different hosts. . . 72

vi



LIST OF TABLES

4.1 Encryption keys overview for implementing secure file-sharing protocols. 34

5.1 TeeStore client application implemented function set. . . . . . . . . . . 50
5.2 E-CALLs we implemented on the TeeStore Enclave to facilitate secure

file sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 O-CALLs we implemented on the TeeStore Enclave to support secure

file sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Python API calls used for the interaction between the service and the

MinIO object store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Client and Server hardware specifications. . . . . . . . . . . . . . . . . . 63

vii



ABSTRACT

Evangelos Dimoulis, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, August 2021.
Secure Content Distribution from Insecure Cloud Computing Systems.
Advisor: Stergios Anastasiadis, Associate Professor.

The problem we aim to solve in the current MSc thesis is that of secure content
distribution in cloud computing environments. Οur main goal is to protect sensitive
user data stored in cloud storage services from a potentially honest-but-curious cloud
storage service provider. We design and implement a prototype file-sharing service
that leverages trusted execution environments, with the aid of specialized hardware
utilizing Intel’s SGX technology. We design secure protocols processing on user data
inside isolated memory regions via the use of encryption. To this end, we achieve
end-to-end security guarantees, by establishing secure channels between user client
applications and the encrypted memory regions managing the data on the provider.
We implement the file-sharing service by integrating the proposed protocols with an
object storage system. We evaluate the overhead and security of our proposed solution
when compared to the baseline storage system without the use of our protocols.
In the end of this thesis, we present the findings of our work and propose future
improvements.
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Ασφαλής διανομή περιεχομένου από ανασφαλή συστήματα υπολογιστικής νέφους.
Επιβλέπων: Στέργιος Αναστασιάδης, Αναπληρωτής Καθηγητής.

Το πρόβλημα που επιδιώκουμε να λύσουμε στην παρούσα μεταπτυχιακή εργασία
είναι η ασφαλής διαμοίραση αρχείων σε συστήματα υπολογιστικής νέφους. Πρω-
ταρχικός μας στόχος είναι να προστατεύσουμε ευαίσθητα δεδομένα χρηστών που
αποθηκεύονται σε υπηρεσίες υπολογιστικής νέφους από έναν δυνητικά περίεργο
αλλά έμπιστο πάροχο υπηρεσιών. Σχεδιάζουμε και υλοποιούμε ένα πρωτότυπο σύ-
στημα αποθήκευσης και διαμοίρασης δεδομένων, το οποίο αξιοποιεί τα ασφαλή
περιβάλλοντα εκτέλεσης με τη χρήση εξειδικευμένου υλικού της τεχνολογίας Intel
SGX. Σχεδιάζουμε ασφαλή πρωτόκολλα τα οποία διαχειρίζονται τα δεδομένα σε
απομονωμένες περιοχές μνήμης του συστήματος μέ τη χρήση κρυπτογράφησης. Ως
αποτέλεσμα, παρέχουμε εγγυήσεις ασφάλειας από άκρο σε άκρο με ασφαλή κα-
νάλια επικοινωνίας που μεταφέρουν την πληροφορία σε κρυπτογραφημένη μορφὴ
μεταξύ των εφαρμογών στην πλευρά του χρήστη και των κρυπτογραφημένων πε-
ριοχών μνήμης στον πάροχο. Υλοποιούμε την υπηρεσία διαμοίρασης αρχείων ενσω-
ματώνοντας τα πρωτόκολλα σε σύστημα αποθήκευσης αντικειμένων. Αξιολογούμε
το κόστος και την ασφάλεια της προτεινόμενης λύσης σε σύγκριση με το βασικό
σύστημα αποθήκευσης χωρίς την χρήση των πρωτοκόλλων μας. Στο τέλος της πα-
ρούσας εργασίας, παρουσιάζουμε τα ευρήματα της έρευνας μας και προτείνουμε
μελλοντικές βελτιώσεις.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.2 Summary of Contributions

1.3 Outline of the Thesis

1.1 Motivation

Over the past years, the increase in popularity and easy accessibility of the Internet
has led to an accelerated rate data is created. In 2020, approximately 2.5 quintillion
data bytes was created every day, and on average every person created at least 1.7
MB of data per second. Interestingly enough, experts estimate that by 2025 people
will generate 463 exabytes of data on a daily basis, with most data being related
to social media, content sharing, finance and communications in general [1]. Even
though a big part of the daily generated data is privately held by individuals, there
are manifold cases in which data owners wish to share their information with other
people they collaborate with. Privacy, generally means the ability of individuals or
organizations, to determine how personal information they own is shared with or
communicated to others. For example, patients have the right to keep private medical
records regarding their health, unless they wish to disclose this information. With
the term data sharing, we refer to the ability of individuals or organizations to
contribute their privately held data with other people. Very common use cases of data
sharing include sharing documents, sheets or other related data between employees
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and departments of the same company, medical records with a doctor or health
institute, or customer transactions using baking services.

However, this kind of data should be kept confidential and only be accessible to
people approved by the data owner. Data confidentiality is about protecting against
the disclosure of information by ensuring that the data is only limited to those au-
thorized or to those who possess some critical information (e.g., keys, passwords).
The privacy and confidentiality of online data is usually protected via the use of
encryption. Before distributing information, data is transformed into a form so that
only authorized parties can understand the information using encryption. Existing
encryption techniques rely on strong mathematical models and are widely adopted
by systems managing online data.

A great deal of effort has been dedicated by research institutions and companies to
efficiently store, manage and distribute online confidential data. Cloud systems can be
used to enable data-sharing capabilities over the Internet, and this can provide several
benefits to users when the data is shared in the cloud. Leveraging cloud storage for
data sharing, users can invite other users to view, edit, or download previously pri-
vately held files. Access to the files is feasible through almost any Internet-connected
device such as personal computers, tablets or smartphones. Existing cloud storage
platforms such as Amazon Simple Storage Service (S3) [2], Dropbox [3] or Google
Drive [4] offer high level cloud storage services to millions of users in the world. Using
these services, users are freed from the need of possessing high storage capabilities
on their devices and bestow the management and security of their data to cloud ser-
vices. Most of state-of-the-art cloud storage systems leverage the use of encryption
techniques to protect the privacy and confidentiality of user data contributed to the
cloud.

Despite the security mechanisms cloud providers embed into their systems to
secure data, in 2020 the total number of compromised records resulting from data
breaches at cloud services exceeded 37 billion leading to a 141% increase compared to
2019 [5]. Most data breaches result from inadequate data security measures, making
user data committed to the cloud susceptible to external attackers. Moreover, another
serious problem that arises is that data leakage is often caused by the people who
operate the systems of cloud storage providers. Privileged employees such as admin-
istrators may not actively impose a threat to user data (e.g. destroy data), however
a curious employee may view on sensitive user data such as medical records in the
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clear, which goes against the privacy needs of users sharing their data online. Thus,
a strong need emerges to introduce security measures that do not only protect data
stored and shared in the cloud, but to guarantee the privacy and confidentiality of the
data in the presence of a curious (but not malicious), or compromised cloud storage
provider. The goal of this thesis is to introduce a cloud-based data-sharing service
that mitigates these threats.

1.2 Summary of Contributions

In the era of big data, efficiently managing and storing data imposes a demanding
task. Secure data sharing in the cloud is a challenging problem with several research
effort having been made in this field by research facilities and companies. In our work,
we examine an approach for securing data in the cloud with respect to fundamental
security primitives and data-sharing requirements. Our ultimate goal, is to share data
in the cloud in a way where an external attacker, or even a curious cloud storage
provider is not able to gain insight to confidential user data stored on the cloud
storage platform.

In this thesis, we introduce secure file-sharing protocols leveraging the use of the
Intel SGX technology as a trusted execution environment to protect the confidentiality
of user data in the cloud. We provide a prototype implementation of our proposed
file-sharing service integrating our solution with the MinIO object store, which is
responsible for storing user files in the cloud in the form of objects. Thereafter, we
proceed to evaluating the performance of our implemented system. To summarize,
our contributions are the following:

• Analysis of secure data storage requirements in object storage systems for secure
data-sharing services.

• The design of secure file-sharing protocols leveraging the use of trusted execu-
tion environments.

• Implementation of a shielded data-sharing system using Intel’s SGX technology
over the MinIO object store.

• Performance evaluation and quantification of the overheads introduced by our
hardware enforced data-sharing scheme.
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1.3 Outline of the Thesis

The dissertation consists of 7 chapters in total.
In chapter 2 we talk about the need for encryption when storing data in the cloud,

and present common encryption methods leveraged by cloud providers. After that,
we describe how the communication between clients and servers is secured using
cryptography. Finally, we discuss about object storage systems for storing data in the
cloud, and the security guarantees such systems offer for protecting user data.

In chapter 3 we first discuss how specific hardware modules are used to establish
trust in modern computer systems. Afterwards, we argue about the need for secure
environments to perform operations on sensitive data. To this end, we present sys-
tems that offer secure computation environments and the technology we use in this
thesis. To sum up, we present existing research aiming to offer secure data-sharing
capabilities in the cloud.

In chapter 4 we analyze the requirements of a cloud-based data-sharing system
and list the goals that we have set for our design. Furthermore, we present the
entities participating in our proposed system and its overall architecture, we provide
details about our trust and threat model, and conclude with describing the file-sharing
protocols our systems supports and analyze the security of our design.

In chapter 5 we specify our implementation of the proposed file-sharing service’s
protocols over object-based storage systems, leveraging the use of trusted execution
environments to secure user data. Moreover, we describe the data structures we in-
troduce, and mention the system’s components. Finally, we provide significant im-
plementation details on the implementation of our proposed file-sharing protocols.

In chapter 6 we experimentally evaluate our prototype implementation of the
proposed file-sharing system. First, we present the system setup and the necessary
configurations applied before running our experiments. Then, we evaluate and com-
pare the performance of our file-sharing service with the baseline performance of the
object storage system we integrated into our implementation. To conclude, we sum-
marize the results of our experiments and reason about the performance overheads
introduced by our hardware enhanced scheme.

In chapter 7, we discuss the main findings we obtained from our research, we
indicate the conclusions of our proposed file-sharing service, and we suggest future
improvements.
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CHAPTER 2

BACKGROUND

2.1 Data Encryption in the Cloud

2.2 Transport Layer Security (TLS)

2.3 Object Storage Systems

In this chapter we present an introduction to fundamental security mechanisms
achieved through the use of encryption techniques for protecting private user data
in cloud computing systems. Furthermore, we describe object storage systems and
analyze the security mechanisms applied in the object storage system we utilize for
the completion of this thesis.

2.1 Data Encryption in the Cloud

Online data privacy has been one of the most prominent topics in the field of infor-
mation technology. In today’s cyber-world there is an unceasing risk of unauthorized
access to all forms of data. Most at risk is sensitive information including payment
system data that can expose the personal identifying information (PII), and patient’s
medical records. Cloud storage allows users to save data and files in an off-site location
that they can access either through the public internet or a dedicated private network
connection. Encryption is a critical component needed by cloud storage systems pro-
viding an additional layer of protection above basic access control, and its main aim
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is to secure and protect confidential information as it is transmitted through the In-
ternet and other computer systems. Encryption works by using an algorithm with a
key to convert data into unreadable data (ciphertext) that can only become readable
again with application of the right key. Encryption algorithms rely on mathematical
properties to produce ciphertext that can’t be decrypted using any practically avail-
able amount of computing power without the necessary key. Next we will present
some of the common encryption methods leveraged by cloud providers.

2.1.1 Symmetric Encryption

Symmetric encryption is a type of encryption where only one key (a secret key) is
used to both encrypt and decrypt digital information. The entities communicating via
symmetric encryption must exchange the key so that it can be used in the decryption
process. By using symmetric encryption algorithms, data is converted to a form that
cannot be understood by anyone who does not possess the secret key to decrypt it.
Once the intended recipient who possesses the key has the message, the algorithm
reverses its action so that the message is returned to its original and understandable
form. Symmetric encryption algorithms are broken down into two main types: stream
and block ciphers. Block ciphers encrypt data in chunks (blocks), whereas stream
ciphers encrypt data one bit at a time.

The most commonly-used symmetric algorithm is the Advanced Encryption Stan-
dard (AES), which was originally known as Rijndael, with two variants that operate
on 128-bit blocks using 128-bit keys or 256-bit keys. Overall, security experts con-
sider AES safe against brute-force attacks, in which all possible key combinations
are checked until the correct key is found. AES is used widely for protecting data
at rest. Applications for AES include self-encrypting disk drives, database encryption
and storage encryption. A major risk to AES encryption comes from side-channel at-
tacks, which aim at collecting leaked information from the system (e.g. monitoring
the cipher’s shared use of the processor’s cache tables). AES comes with a vari-
ety of operation modes. In this thesis we leverage AES with Galois/Counter Mode
(AES-GCM) [6]. AES-GCM provides both authenticated encryption (confidentiality
and authentication), and the ability to check the integrity and authentication of addi-
tional authenticated data (AAD) that is sent in the clear. Implementation and usage
details will be given in Chapter 5.
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2.1.2 Public‐Key Cryptoystems

Public-key cryptography, or asymmetric cryptography, is an encryption scheme that
uses two mathematically related, but not identical keys, a public key and a private
key. In contrast to symmetric cryptography, each key performs a unique function.
The public key is used to encrypt messages and verify digital signatures, while the
private key is used to decipher encrypted messages. Digital signatures serve as proof
to the recipient of a signed message that the message originated from the sender. The
private key is held confidential, whereas the public key is given to any party who
wishes to securely communicate with the private key’s holder. The most deployed
asymmetric key block cipher is the Rivest-Shamir-Adelman (RSA) [7] algorithm. The
idea behind public-key cryptosystems is attributed to Whitfield Diffie and Martin
Hellman. The Diffie-Hellman [8] key exchange algorithm was the first widely used
method of safely exchanging keys over an insecure channel. The main purpose of
the Diffie-Hellman key exchange is to securely develop shared secrets that can be
used to derive keys. These keys can then be used in conjunction with symmetric-key
algorithms to transmit information in a secure manner.

2.1.3 Homomorphic Encryption

Traditional encryption algorithms, such as AES, are generally fast allowing data to be
stored conveniently in encrypted form in the cloud. However, in order to perform even
simple analytics on data, either the cloud server needs access to the secret key, which
leads to security concerns, or the owner of the data needs to download, decrypt,
and operate on the data locally which can be a costly series of operations. Fully
homomorphic encryption, or simply homomorphic encryption refers to a class of encryption
methods constructed by Craig Gentry [9], that differ from typical encryption methods,
allowing computation to be performed directly on encrypted data without requiring
access to a secret key. Using homomorphic encryption, the data owner encrypts their
data and sends it to the cloud server. The server may perform computations on the
data without decrypting it, and sends the encrypted results to the data owner. Thus,
only the data owner is able to view the computed results in clear, since they alone
possess the secret key. Nonetheless, despite the novel way homomorphic encryption
operates on encrypted data current homomorphic encryption schemes are assumed
to be relatively slow, and require large memory compared to plaintext operations
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considering them impractical for some use cases (e.g. database queries).

2.1.4 Data Re‐Encryption

Data re-encryption is an encryption scheme that enables secure data sharing and
confidential data sharing in the cloud. Re-encryption allows a user to convert a ci-
phertext under the data owner’s secret key into another ciphertext that can only be
decrypted by other user’s secret key. Existing re-encryption techniques involve the
use of hybrid encryption schemes [10] where: (1) symmetric encryption techniques to
encrypt the actual data due to enhanced performance, and (2) public-key cryptography
for stronger security guarantees.

Alice Bob

PubB

PrivB

PlaintextCA

EA EB

Symmetric Decryption
CB

Symmetric Encryption

Asymmetric Encryption
Encrypted EB

CB

Figure 2.1: Data sharing example using a hybrid re-encryption scheme.

Figure 2.1 illustrates a basic re-encryption example combining symmetric and
asymmetric cryptography. A user, Alice, wants to share her data with another user,
say Bob. Alice owns an encrypted file called CA which is encrypted using a symmetric
key algorithm and the encryption key EA, and Bob owns a public-private key pair
(PubB,PrivB). Alice also owns a public-private key pair, which is not depicted to
simplify the procedure followed in the example. First, Alice decrypts CA and produces
the underneath plaintext of the file. Afterwards, Alice encrypts the original file with a
newly generated symmetric key EB and produces a new ciphertext called CB. Then,
the symmetric encryption key EB is encrypted using Bob’s public key (PubB). The
re-encrypted file and the encrypted symmetric key are sent to the receiver Bob. Bob
is now able to decrypt the encryption key EB using his private key (PrivB), and with
it decrypt CB. Finally, Bob has access to the original file owned by Alice, and using
this particular re-encryption scheme Bob is the only user able to gain access to the
file through the use of his private key, which he keeps secret at all times.
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2.2 Transport Layer Security (TLS)

The primary use of TLS is encrypting the communication between web applications
and servers, such as web browsers loading a website. TLS evolved from a previ-
ous encryption protocol called Secure Sockets Layer (SSL), which was developed by
Netscape. HTTPS is an implementation of TLS encryption on top of the HTTP proto-
col which is used by all websites as well as other web services. Any website that uses
HTTPS is therefore employing TLS encryption. TLS accomplishes the enforcement
of three fundamental security primitives: 1) encryption obfuscates the data that is
sent from one host to another, 2) authentication ensures that the parties exchanging
information are who they claim to be, and 3) integrity verifies that the transferred
data has not been forged or tampered with. In order to establish a cryptographically
secure data channel, the connection peers must agree on which cipher suites will be
used and the keys used to encrypt the data. The TLS protocol specifies a well-defined
handshake sequence to perform this exchange. During a TLS handshake [11], the
client and server corporate to do the following:

1. Agree on the version of TLS (TLS 1.0, 1.2, 1.3, etc.) they will use.

2. Decide on which set of encryption algorithms (e.g., RSA, Diffie-Hellman) they
will use for establishing a secure communication channel.

3. Verifies the identity of the server (sometimes also the client) via the server’s
public key and the SSL certificate authority’s digital signature.

4. Use asymmetric encryption techniques to generate shared session keys used for
symmetric encryption of messages, after the handshake is complete.

2.2.1 WolfSSL

The wolfSSL [12] embedded TLS library (formerly CyaSSL) is the SSL/TLS we use in
the implementation of our prototype. wolfSSL is a lightweight open-source SSL/TLS
library written in ANSI C targeted at embedded, RTOS (Real-Time Operating System),
and resource-constrained environments, primarily because of its size, speed, and fea-
ture set. It works seamlessly in desktop, enterprise, and cloud environments offering
closs platform support. wolfSSL supports industry standards up to the current TLS
1.3, is up to twenty times smaller than its widely used alternative OpenSSL [13],
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offers a simple API detailed in the wolfSSL manual [14], an OpenSSL compatibility
layer, and is backed by the wolfCrypt cryptography library. The wolfCrypt cryptog-
raphy engine supports cryptographic services leveraged by wolfSSL such as RSA,
Diffie-Hellman, AES-GCM, Random Number Generation etc. Recent advents [15] of
wolfSSL include integrating TPM 2.0 (Trusted Platform Module) support, providing
API calls to the underlying TPM 2.0 module which will be described in the next
section. wolfSSL includes a port for Intel® SGX (Software Guard Extensions) with
Linux, isolating the wolfSSL library from potentially malicious application running
on the host machine, which we make use of in our implementation.

2.3 Object Storage Systems

Designing and implementing a cloud storage service requires enforcing security mech-
anisms to safely handle user data. However, another crucial step involves determining
the type of storage system to utilize so as to efficiently store data. There are three
main types of data storage: object storage, file storage, and block storage. File storage
is a hierarchical storage methodology involving the existence of a file system orga-
nizing data as a single piece of information, namely files. On the other hand, block
storage breaks up data in blocks, allowing data to spread across multiple platforms.
The solution we propose in this thesis integrates object storage as the main storage
system. Object-based storage systems [16] process data as objects when compared
with the other state-of-the-art distributed storage system, blocks and files. Both files
and blocks are converged to be called Objects. An object has variable length, and can
be used to store all types of data, such as files, database records, audio/video images,
medical records. A single object could even be used to store an entire file system
or database. Unlike block I/O, creating objects on a storage device is accomplished
through an interface similar to a file system, allowing object storage systems to easily
manage files and metadata.

There are several reasons for which to prefer an object-storage-based solution
to store massive volumes of data. Scalability and reduced complexity are two of
the main advantages of object storage. Objects are stored in a structurally-flat data
environment within the storage cluster. By adding more servers to an storage cluster,
higher throughput and additional processing capabilities can be supported given that
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object storage also removes the complexity that comes with a hierarchical file system
with folders and directories. Furthermore, object storage goes hand in hand with
cloud or hosted environments that deliver multi-tenant storage as a service allowing
many companies or departments within a company or institution to share the same
storage repository [17].

2.3.1 Amazon Simple Storage Service (S3)

Amazon Simple Storage Service (Amazon S3) [2] is an object storage service that offers
industry-leading scalability, data availability, security and performance. Amazon S3
provides easy-to-use management features in order to organize data and configure
finely-tuned access controls to meet specific business, organizational, and compliance
requirements, In Amazon S3, objects are uploaded and stored into collections referred
to as buckets. Amazon S3 provides RESTful APIs for creating and managing buckets
which requires writing code and authenticating the requests. The requests are initiated
and executed via clients. Alternatively, managing buckets and objects can be achieved
using high-level S3 commands provided by command line tools used to establish
communication to an Amazon S3 instance.

Amazon S3 Objects

Amazon S3 is essentially an object store that uses unique key-values to store as many
objects as a client desires to. Objects can be handled across one or more buckets and
each object can be up to 5 TB in size.

Key

Version ID

Value

Metadata

Object #1

Key

Version ID

Value

Metadata

Object #N

Key

Version ID

Value

Metadata

Object #2

Amazon S3 Bucket

Figure 2.2: A collection of objects stored in a Amazon S3 bucket.

Figure 2.2 illustrates an example bucket which consists of a collection of total
N distinct objects. Each object is composed of the following (basic) attributes which
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uniquely describe the object in a bucket:

• Key: The name that you assign to an object. You use the object key to retrieve
the object.

• Version ID: Within a bucket, a key and version ID uniquely identify an object.

• Value: The content that is stored. An object value can be any sequence of bytes.
Objects can range in size from zero to 5 TB.

• Metadata: A set of name-value pairs with which information regarding an object
can be stored.

2.3.2 MinIO

MinIO [18] is a high-performance object storage system released under Apache Li-
cense v2.0 and written in Google’s Go programming language [19]. It has API compat-
ible with Amazon S3 cloud storage service. MinIO is used to build high performance
infrastructure for machine learning, analytics, and various application data work-
loads. MinIO provides different configuration of hosts, nodes, and drives depending
on the needs and infrastructure of the organization hosting the object storage ser-
vice. There are three distinct types of deployment modes for MinIO: a) Standalone,
b) Distributed, and c) Cloud Scale. For the purpose of this thesis, we integrate and
leverage the Standalone deployment mode of MinIO.

Accessing MinIO Server with TLS

In order to securely access MinIO server, all communication between a client and
a MinIO server instance is protected via TLS. To securely establish communication,
we need to provide a private key and a public certificate that have been obtained
from a certificate authority (CA). Alternatively, if the server is used for development
or research purposes and not for actual production release, the hosting provider
can generate a self-signed certificate using the OpenSSL library [13] which is full-
featured toolkit for the TLS and SSL protocols. First, the administrator generates an
SSL configuration file named openssl.conf, stating information such as the location
of the provider, domain name, IP address etc. By using the OpenSSL library the
administrator generates the private key and the public certificate, the certificate is
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signed using the private key and both files are stored under the MinIO configuration
directory.

Server Side Encryption (SSE)

The communication between client and MinIO server is securely established through
TLS/HTTPS protocol. Therefore, all data transmitted through HTTP requests is en-
crypted and integrity protected. However, upon successfully uploading an object into
a bucket the data resides in plaintext without any form of encryption, making the
data publicly accessible to any client that gains access to the MinIO server even with
simple collaboration with the storage provider. In order to further protect the pri-
vacy of sensitive data we want to securely store, MinIO supports two different types
of Server-Side-Encryption (SSE) schemes:

• SSE‐C: The MinIO server en/decrypts objects using a secret key provided by
the S3 client as part of the HTTP request headers. SSE-C requires TLS/HTTPS.

• SSE‐S3: The MinIO server en/decrypts objects with a secret key managed by a
Key Management System (KMS).

MinIO uses a unique, randomly generated secret key per object known as Object
Encryption Key (OEK). Neither the client provided SSE-C key nor the KMS-managed
key is directly used to en/decrypt an object. Instead, the OEK is stored as part of
the object metadata next to the object in an encrypted form. To en/decrypt the OEK
another secret key is needed also known as Key Encryption Key (KEK). To summarize,
for any encrypted object there exists three different keys:

• Object Encryption Key (OEK): A secret and unique key used to encrypt the
object, stored in an encrypted form as part of the object metadata and only
loaded to RAM in plaintext during en/decrypting the object.

• Key Encryption Key (KEK): A secret and unique key to en/decrypt the OEK
and never stored anywhere. It is (re-)generated whenever en/decrypting an
object using an external secret key and public parameters.

• External Key (EK): An external secret key, either the SSE-C client-provided
key or the KMS-managed key.
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For content encryption MinIO server leverages AES-256-GCM. Any secret key is
256 bits long. The secret key is never stored by the server however, it resides in RAM
during en/decryption process. The client provided key is not required to be unique
and multiple objects may be en/decrypted using the same secret key.
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CHAPTER 3

TRUSTED EXECUTION ENVIRONMENTS &
RELATED WORK

3.1 Establishing Trust in Commodity Computers

3.2 Overview on Trusted Execution Environments

3.3 Intel Software Guard Extensions (SGX)

3.4 Related Work

In this chapter we argue about trust in modern computer systems, present hardware-
based solutions for this purpose, and introduce the technology used in this thesis.

3.1 Establishing Trust in Commodity Computers

Throughout the past decades, numerous software solutions employing the use of
strong encrypting algorithms have been deployed to protect computer security. How-
ever, software is vulnerable by its nature and writing secure software is a difficult
task even for experienced developers. Businesses and individuals entrust progres-
sively greater amount of security-sensitive data to computer platforms. Data breaches
pose enormous threats to the privacy of individuals and the integrity of companies
whose responsibility it is to safeguard sensitive information. Before entrusting a se-
cret to a computer, a user needs some assurance that the computer can actually be
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trusted. Measuring code identity and establishing trust requires some functional root
of trust [20]. One way to bootstrap trust in a computer is to use secure hardware mod-
ules embedded by CPU and hardware vendors to monitor and report on the state
of the software stack running on the platform. In a trusted boot a hardware-based
root of trust initiates the chain of trust by measuring the initial BIOS code, which in
turn measures the bootloader, and finally the bootloader measures and executes the
operating system. With that in mind, we have to note that a trusted boot does not
guarantee the trustworthiness of the software that is running, but merely that it must
be trusted because the platform itself is considered to be trustworthy.

3.1.1 Trusted Platform Module (TPM)

The Trusted Computing Group (TCG) has the goal of developing and promoting open
standards for trusted computing. The main contribution of the TCG is the specifica-
tion for the Trusted Platform Module (TPM). TPM technology is designed to provide
hardware-based, security-related functions. A TPM chip is a security chip embedded
in both personal computers and servers, designed to carry out cryptographic oper-
ations. The chip provides a hardware-based tamper-resistant environment in which
malicious software is not able to tamper with the security functions of the TPM. Most
common TPM functions include generating, storing, protecting encryption keys, and
the primary scope of TPM is to ensure the integrity of the platform. In a trusted plat-
form, the TPM provides: attestation mechanisms reporting the platform state, and
the sealing operation using the platform state to authorize access to keys and data.

During the boot process of a system, the firmware and the operating system com-
ponents can be measured and recorded in the TPM. The integrity measurements can
be used as evidence for how a system started and to make sure that a TPM-based key
was used only when the correct software was used to boot the system. TPM-based
keys can be protected by making the keys unavailable outside the TPM to mitigate
phishing attacks, or they can also be configured to require an authorization value to
use them. If too many incorrect authorization guesses occur, the TPM will activate
its dictionary attack logic and prevent further authorization value guesses. The TPM
1.2 standard was incorporated into billions of PCs and server platforms, and the in-
creasing demand for security has led the TCG to develop a new TPM specification. To
this end, TCG designed TPM 2.0 [21] with a library-oriented approach supporting
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flexibility of application developing, allowing users to choose applicable aspects of
TPM functionality for different implementation levels and security.

3.2 Overview on Trusted Execution Environments

TPM’s main shortcoming is that it does not provide an isolated execution environment
of arbitrary code as its functionality is reduced to a set predefined APIs. Large projects
like the Linux kernel have million lines of code exposing a large attack surface to
adversaries, however no software based security technique ensures full protection.
Thus, there is need for an extra layer of security, in order to prevent sensitive content
compromise. Trusted Execution Enviroments (TEEs) [22] are encrypted and integrity-
protected memory regions, which are isolated by the CPU hardware from the rest of
the software stack, including privileged system software, such as the OS or Hypervisor.
TEEs enable the construction of shielded environments in which sensitive application
code and data is isolated and integrity protected. In the continuation of this section
we present the most prominent commercially available TEE implementations.

3.2.1 AMD Memory Encryption

AMD has recognized the serious challenges arising by the increase in system complex-
ity and has developed memory encryption technologies to address the need for pro-
tecting complex computing environments. Secure Memory Encryption (SME) [23]
is a general-purpose mechanism, integrated into CPU architecture for main mem-
ory encryption. SME is performed via on-die memory controllers each including an
AES engine for encryption. Encryption is done with a 128-bit key, and the key is
managed entirely by the AMD Secure Processor (AMD-SP). With Full Memory En-
cryption all DRAM contents are encrypted providing strong protection, while Partial
Memory Encryption selectively encrypts only a subset of memory if desired by the
OS or Hypervisor. AMD introduces Secure Encrypted Virtualization (SEV) to sup-
port encrypting virtual machines. SEV integrates main memory capabilities with the
existing AMD-V virtualization architecture to protect virtual machines from physi-
cal threats, other virtual machines hosted on the same system, and against privileged
software including the hypervisor. Software is executed in secure environments which
are typically hardware VM constructs (or even Docker containers), cryptographically
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isolated from the host system leveraging AES 128-bit encryption. The security of SEV
depends on the security of memory encryption keys. The SEV firmware administers
a secure key management interface enforcing three main security properties: 1) au-
thenticity of the platform, 2) attestation of the guest, and 3) confidentiality of the guest’s
data. Nevertheless, a major drawback is SEV is that the system needs to create a
seperate VM or container for each application the guest launches.

3.2.2 Arm TrustZone

ARMS’s TrustZone [24] is a collection of hardware modules that can be used to
enable trusted computing built into every modern ARM processor. TrustZone parti-
tions a system’s resources between two worlds: a secure world which hosts a secure
container, and the non-secure execution environment referenced as normal world, in
which the untrusted software stack runs. The trust of a computation system is usu-
ally bootstrapped from some elemental root of trust, that is typically the secrecy of a
private key. However, TrustZone does not directly provide any kind of root of trust
but a system-wide isolation of the two environments. TrustZone’s Trusted Comput-
ing Base (TCB) includes a boot loader, which initializes the platform, sets up the
TrustZone hardware to protect the secure container from untrusted software, and
loads the normal world’s bootloader. To switch between the Secure and Non-Secure
World, TrustZone introduces a secure state to the ARM architecture, the Secure Mon-
itor. This mode determines whether the system is operating within the secure or
non-secure world. The Secure Monitor Interrupt (SMI) instruction is used to imple-
ment transitions between the two worlds. Software for a TrustZone-enabled device
consists of both non-secure elements, such as the OS and common applications, and
the protected software components including the Secure Monitor, secure drivers and
boot loader. The software architecture supports flexibility allowing the secure world
to range from being a security sensitive process (e.g. pseudo-random number genera-
tion),even to a full operating system. Developers are allowed to incorporate their own
application-specific security measures through a number of key API’s publicly avail-
able. Common use cases of TrustZone include mobile devices such as smartphones
and the protection of smartphone applications that handle sensitive information (e.g.,
health apps, financial software).
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3.2.3 Sanctum

Sanctum [25] introduces a straightforward software/hardware co-design exposing re-
silience against an important class of software attacks, and adds protection against
attacks that infer information from memory access pattern leaks, such as cache timing
attacks. Sanctum is mostly implemented in trusted software targeting an open RISC-V
architecture allowing researchers to reason about its security properties, and does not
perform cryptographic key operations. Sanctum uses a cache partitioning scheme,
where a computer’s DRAM is split into equally-sized contiguous DRAM regions.
Each region is allocated to exactly one isolated container referred to by the author
as an enclave. Enclaves are protected from compromised system software through
isolation, manage their own page tables mapping their DRAM regions and handle
their own page faults. Sanctum security relies on a trusted security monitor that
operates on the highest privilege level (machine level in RISC-V), and is responsible
for verifying the system’s resource allocation decisions. However, Sanctum does not
protect against hardware based attacks as its threat model targets exclusively software
attacks.

3.3 Intel Software Guard Extensions (SGX)

By the end of 2015 Intel released processors containing Intel’s Software Guard Exten-
sions (SGX) technology [26]. Intel’s SGX is a set of extensions to the Intel architecture
that aims to shield code execution against attacks from privileged code and certain
physical attacks. Similarly to ARM Trustzone [24] or Sanctum [25], SGX’s main re-
sponsibility is to provide integrity and confidentiality guarantees to security sensitive
computation performed on a computer where all privileged software (e.g., kernel,
hypervisor, infected operating system) is potentially malicious.

3.3.1 Intel SGX Background

Commodity applications usually tend to have a large attack surface due to the inclu-
sion of hardware, hypervisor, OS, and the application itself in the Trusted Computing
Base (TCB). A unit of application code protected by SGX is called an enclave. Enclave
is the trusted execution environment embedded in a process. Application code can be
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put into an enclave via special instructions and software made available to delvelop-
ers via the Intel® SGX SDK [27]. The TCB of an SGX enclave is composed of the
CPU of the platform, and the code running within. As a result, the TCB is restricted
to the limits of the CPU and the enclave interface, reducing the attack surface. The
assumption is that we trust Intel for securely implementing SGX.

To implement this concept, SGX introduces a new set of instruction to the x86
architecture. It allows the BIOS to allocate a memory region restricted for processor
usage called the Processor Reserved Memory (PRM). Enclave data and code are placed
in a processor reserved memory area called the Enclave Page Cache (EPC), which is a
subset of PRM. To ensure its confidentiality, the EPC is kept encrypted by the Memory
Encryption Engine (MME), a CPU component which ensures that enclave data runs
clear only within the CPU limits. The encryption key is randomly generated by the
CPU, is changed at each power cycle and never crosses its boundaries. Unauthorized
enclave memory requests are blocked by the CPU and treated as non-existent memory
addresses. Thus, only the enclave has access to its own information. Furthermore,
operations involving the EPC are checked by the CPU utilzing the Enclave Page Cache
Map (EPCM) structure. EPCM is essentially a matrix that contains an entry for each
EPC page, listing information whether a page is being used, the enclave which the
page belongs to, and the type of the page. Thus, loading multiple enclaves at once is
enabled without conflicts among the memory regions belonging to each enclave.

3.3.2 Enclave Signing

To ensure that only authentic enclaves will be able to run, Intel provides an enclave
signing mechanism. It is a self-signed certificate with enough information for the SGX
architecture to identify tampered or modified enclaves. The main information is the
enclave measurement, a 256-bit hash of enclave code and data. The signature structure
contains a hash of the author’s public key, a product ID, and a security version num-
ber (ISVSVN) used for application updates. An enclave’s measurement is computed
using a secure hash algorithm, so the system software can only build an enclave that
matches an expected measurement. The SGX design uses the SHA256 secure hash
function to compute its measurements, and each enclave’s measurement is stored
to a dedicated register named MRENCLAVE. Another register, called MRSIGNER is
also reserved to hold the author’s key hash. This signed enclave signature is verified
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in the target system during the enclave initialization. The measurement data that is
obtained during enclave launch is used to verify the signature. If they are identical
the enclave will be able to load successfully. If there is any modification detected in
the measurement value, signature mismatch will occur and the enclave will not be
allowed to run. Enclave signatures are generated using Intel’s enclave signing tool.

3.3.3 SGX Application Architecture

The application of an Intel SGX application is split into parts: a secure one and
a non-secure one. Access to a specific enclave by the untrusted application is done
through a set of pre-defined functions by the enclave author. ECALLs are the interface
that the untrusted application can use to call executions within enclaves. Instead,
OCALLs are a set of declared functions that the enclave uses to access the non-secure
world. Both types of functions are defined in a special file using the Enclave Definition
Language (EDL). This file contains function declaration, similar to the C programming
language but with special attributes to specify the direction, size, and type of data
that will cross enclave’s boundaries. Using this file, a special tool (Edger8er) generates
the edge routines to safely manipulate the forementioned parameters.

SGX Application

Enclave

Priviledged Software Code - OS, BIOS,...

Untrusted Application

main ( )

Create enclave

ECALL

Edger8er
Process secrets

Release allocated memory

Return

1

2

3

4
5

Figure 3.1: Intel SGX application architecture.

To begin with, the untrusted application’s main function creates an enclave (1),
and once it needs to process on sensitive data, an ECALL is used to transfer the
execution to the enclave (2). The enclave executes the trusted function call to process
secrets (3), releases allocated memory buffers after the processing occurs(4), and
returns the execution flow to the untrusted application (5). System resources are
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not directly accessible inside enclaves, and enclaves cannot execute functions from
dynamic libraries either. If any of these actions is imperative, an OCALL should be
performed triggering an enclave exit. During enclave operation, privileged software
such as the OS, BIOS or the Hypervisor do not have access to the enclave code and
data. At the end of its operation, the enclave is destroyed and its data is erased.

3.3.4 Data Sealing

During the operation time of an enclave, the safety of data and secrets placed within
the enclave is protected, but once the enclave is destroyed data safety is not guaran-
teed. Intel SGX introduces a data sealing mechanism which is the process of encrypting
enclave secrets for persistent storage in disk. When protecting data using cryptog-
raphy, a potential security issue arises when it comes to the secret keys storage.
However, the SGX architecture performs data sealing using a private seal key unique
to platform running an enclave. The CPU generates a unique 128bit AES-GCM key
at runtime to seal or unseal data. The key is unknown to any other entity and never
leaves the processor boundaries, thus key storage is no more a relevant issue. The en-
clave developer is responsible for attaching the sealing key to either the MRENCLAVE
or to the MRSIGNER register. A sealing key attached to MRENCLAVE restricts access
to sealed data only to instances of the enclave that performed the sealing operation,
while MRSIGNER allows all enclaves on the same platform and signed by the same
authority to unseal the data. Data sealed by a specific CPU can only be unsealed by
this particular CPU on the same platform.

3.3.5 Attestation

Attestation is the process of demonstrating that a piece of software has been properly
instantiated on the platform, and proving your identity to a relying party. Intel pro-
vides a way for enclaves to attest each other. After the attestation process, enclaves will
be sure that each other is running code that they are meant to execute. Furthermore,
the attestation process results in a secure channel through which the participants can
exchange secrets with each other. Remote attestation is supported through an anony-
mous group signature scheme called Intel Enhanced Privacy ID (Intel® EPID). In the
case of Intel SGX, a group is a collection of Intel SGX-enabled platforms. Utilizing
EPID, each group member is given a unique private key for signing. Signatures gen-

22



erated by a member of the group are verified using the group’s public key. During
attestation, the processor’s provisioned EPID signature is validated, establishing that
it was signed by a member of a valid EPID group. Next we describe the two forms
of attestation Intel currently supports, local and remote.

1. Local Attestation: Local attestation allows two enclaves on the same platform
to attest each other. The enclaves perform a local message exchange employing
the platform’s Root Seal Key to generate a shared secret (called Report Key)
for symmetric authentication. Authentication is performed using the Intel SGX
report mechanism by applying a report based Diffie-Hellman key exchange.
The successful result of local attestation, offers a secure channel between two
enclaves of the same platform, that can corporate with each other to perform
higher level functions.

2. Remote Attestation: Remote attestation [28] involves generating a report that
can be verified by any report party. The enclave generates a report (enclave
measurements enclave attributes, software version etc.) that summarizes the
enclave and the platform state. Next, the enclave local attests to a special enclave
called the Quoting Enclave, sending it the report. The Quoting Enclave verifies
and signs this report and returns it to the enclave application. The signed report
is called a quote. The quote contains the data listed in the report but is signed
with a private key for Intel’s EPID remote attestation. Verifying these signatures
involves contacting the Intel Attestation Service (IAS), though in principle this
could be done by any verifier that has the group public key. As part of the
attestation process, it is possible to provision the enclave with secrets. They will
be securely transmitted to the enclave only if the remote attestation process was
successful.

3.3.6 Memory Limitations in SGX

One of the critical limitations of SGX is the capacity of the protected memory region
that is provided by the EPC component. Hardware and performance overheads of
securing the memory has led to limit the EPC to 128 MB (consisting of 4KB page
chunks) in current SGX implementations (e.g. SGX_LKL [29]) for all the enclaves of
a platform, which is relatively small considering the large main memory capacities
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of server systems. Applications can approximately use 90 MB of the EPC. The EPC
region allows efficient fine-grained accesses with cacheline-granularity encryption and
integrity protection by the MME. If enclave memory usage exceeds the EPC limit,
some pages are evicted from EPC, and remapped to the non-EPC memory region.
Accessing data in the enclave memory pages mapped in EPC involves a costly demand
paging step which maps the page back to the protected region, causing significant
performance penalties.

3.3.7 Vulnerabilities

Intel SGX does not consider side channel or reverse engineering attacks in its threat
model. Side-channel attacks exploit implementation details of an algorithm to learn
unauthorized information via side channels, as they are not monitored by the sys-
tem, while reverse engineering attacks aim to understand the application execution
though deductive reasoning. Several side-channel attacks that the SGX design is sus-
ceptible to include cache-timing attacks [26] and page-fault attacks. Additionally,
Foreshadow [30] attacks and Spectre [31] attacks have been announced leveraging
out-of-order execution to subvert the confidentiality of SGX enclaves. These kind
of attacks take advantage of speculative execution bugs embedded in modern Intel
processors, and ultimately aim to extract and steal SGX keys (e.g., Root Seal Key,
Attestation Key) by leaking enclave contents. This allows for example, an attacker to
access private CPU keys used for remote attestation, or even decrypt secrets that were
previously encrypted using the Root Seal Key.

3.4 Related Work

Securing and sharing data over untrusted storage services has been a demanding
research challenge over the past years. Since the emergence and wide adoption of
cloud computing systems for data storage and sharing, significant research effort has
been contributed to design and implement systems that facilitate secure data sharing,
and enable fine-grained access control to encrypted data.
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3.4.1 Secure Data Sharing on Untrusted Storage

Secure file systems like Plutus [32] leverage the use of cryptographic primitives to
protect and share data as files in untrusted environments. In Plutus, all user data is
stored in an encrypted form and Plutus features scalable encryption key management,
where keys are handled in a decentralized manner. Cryptographic operations and key
management operations are performed by clients, allowing users to manage access
control to their stored files, thus users are assumed to be frequently online. Files in
Plutus are divided into several blocks, and each block is encrypted with a symmetric
key called file-block key. File-block keys of the same file are kept in a lockbox that is
protected via encryption. Plutus groups files into filegroups so that keys are shared
among files in a file group, and each filegroup is associated with an RSA key pair.
Requirements for server trust are almost eliminated in Plutus (the server ought to
preserve and not delete data) delegating secret keys distribution to individual data
owners.

3.4.2 Multitenant Access Control

Dike [33] is an authorization architecture aiming to facilitate multitenant access con-
trol for distributed filesystems deployed in the cloud in a scalable and secure manner,
using virtual machines. Dike’s design introduces secure protocols to natively support
multitenant access control compatible with object-based filesystems. An attestation
server is used to bootstrap system trust, and tenants that wish to access the shared
filesystem use a tenant authentication service (TAS) to authenticate clients and users.
Public keys are used to identify the system’s entities, and tenants are identified though
their TAS keys. Users access shared files through the use of data tickets, that are issued
by clients on users behalf. The data tickets contain handles to files and the permissions
applying to the requesting user, and access is further restricted by the use of access
control lists (ACLs). Moreover, Dike introduces a multiview authorization methodology to
selectively grant access of metadata to tenants. Inheritance of access permissions is
also supported to simplify file access, using tree permissions for folder permissions and
file permission for the files in the folder.
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3.4.3 Cryptographically Enforced Access Control

Access control systems like Sieve [34] allows end-users to selectively expose their pri-
vate data stored in the cloud to third party services. In Sieve, users upload their pri-
vately held data to a cloud store, and initially only the owner of the data has access to
it and is in possession of the data encryption keys. Users define access policies to control
access to the their data. Using attribute-based encryption (ABE) where encrypted data
is associated with attributes, Sieve translates policies into cryptographically-enforced
restrictions. Additionally, Sieve introduces key homomorphism which is a technique
to refresh encryption keys. Key homomorphism leverages homomorphic encryption
to re-encrypt data in situ at the storage provider without leaking the new encryp-
tion keys. Finally, Sieve protects cryptographic secrets against user device loss and is
compatible with legacy web applications.

3.4.4 Data Sharing using TEEs

The recent advent of hardware-based trusted execution environments, has led re-
searchers to put on significant effort in order to implement systems that securely
share data in the cloud, by integrating TEEs in their design.

ShieldStore [35] is a secure in-memory-key-value store designed for shielded exe-
cution using Intel’s SGX technology. In ShieldStore, the authors propose a hash-based
key-value store that is designed for SGX and overcomes the memory restrictions of
SGX. ShieldStore maintains the majority of data structures used in key-value stores
(e.g., pointers, keys) in the non-enclave memory region by encrypting each key-value
pair inside enclaves with a 128-bit global secret using AES counter-mode encryp-
tion. Only the encrypted and integrity-protected data are placed in the non-enclave
memory, and data is read in the clear only inside the enclave.

IRON [36] is a practical implementation of functional encryption (FE), which is
a cryptographic tool that allows authorized entities to compute on encrypted data,
and learn results in the clear. IRON holds a master secret as root for key derivations.
IRON consists of: (1) a single trusted authority (Authority) that is responsible for secrets
provisioning, and (2) several decryption node platforms. Decryption nodes operate a
decryption enclave receiving client requests indicating a particular computation, and
forward client requests to function enclaves that compute on user data by loading the
related function code.
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IBBE‐SGX [37] is a cryptographic access control extension that allows collabora-
tive editing on data. IBBE-SGX is built upon Identity-Broadcast-Encryption (IBBE),
a scheme where a single public key can be paired with several private keys, one per
user, in order to facilitate data sharing among a group of users. In IBBE-SGX the
system interacts with standard users and administrators. Users form groups and group
data is encrypted through AES using a symmetric group key (gk). IBBE-SGX manages
keys inside SGX enclaves and establishes trust with the TEE leveraging Intel SGX
attestation services. All group management operations (e.g., create group, add user
to group) that involve the use of secret keys are handled inside enclaves.

Always Encrypted with secure enclaves [38] is a security extension that aims to
shield sensitive data managed in SQL database systems from high-privileged unau-
thorized users. Initially, the Always Encrypted method protected data by encrypting
it on the client side, however this scheme was impractical for higher level function-
alities (e.g., key rotation, complex database queries) since users needed to move data
back to the client side to perform these operations. Always Encrypted with secure en-
claves runs secure enclaves within the database engine process to allow computation
on plaintext data and access to cryptographic keys inside enclave memory directly
on the server side. SQL transactions that involve operations on encrypted data make
use of the secure enclaves. Column encryption keys are sent over secure channels to
the enclave by the client, and all cryptographic operations on encrypted columns are
performed inside the shielded memory region of the enclave directly on the plaintext
data. Before passing any secrets to the enclave, the process verifies the code running
in the enclave via the attestation services described in 3.3.5.
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CHAPTER 4

DESIGN

4.1 Design Goals

4.2 System Entities

4.3 User Requests

4.4 Encryption Keys

4.5 Overall System Architecture

4.6 Threat Model

4.7 Protocols

4.8 Security Analysis

In this chapter we explain the security requirements of a cloud-based data-sharing
system and list the goals we have set for our proposed design. Furthermore, we
explain the threat model, we describe the main entities participating in the system
as well as the secret encryption keys involved, and we illustrate the system’s overall
architecture. Additionally, we describe the protocols our system supports and the key
management policy we apply in order to securely handle secret keys. To conclude,
we summarize about the system’s design and analyze the security of our proposed
protocols.
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4.1 Design Goals

In the proposed system’s design, we set the following goals:

1. Data Sharing Support secure protocols for fundamental data-sharing operations
in untrusted cloud environments, leveraging object based storage in a flexible
and confidential manner.

2. Confidentiality Protect sensitive data from other users that should not have
access to it unless permission is granted by the data owner. The data is not
visible in the clear even by the cloud provider and only authorized users must
be allowed to access it.

3. End‐to‐end Security The system must ensure that all critical user data is secure
(e.g. encrypted) when transmitted from or to the storage provider at all stages
of the data-sharing operations. Data is never revealed in plaintext to any entity
besides certified users.

4. Availability The system must be able to interact with authenticated users, and
serve data-sharing requests. Thus, a user ought to have access to her private
data or data shared by other users of the service at all times.

5. Performance Achieve data-intensive throughput for secure file-sharing requests,
while maintaining low latency even for high data-intensive workloads.

4.2 System Entities

In this section we describe the entities participating in the establishment of the secure
data-sharing protocols, the responsibilities carried out by each entity, and the type of
storage we leverage in our design.

4.2.1 Users

The user is an entity (e.g. individual or application) that wants to securely store or
share their data in the cloud. Each user owns a public-private key pair, and is uniquely
identified by the system using their public key. In order to interact with the system
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and forward requests to the file-sharing service, users are equipped with a client ap-
plication that establishes secure channels (e.g. TLS) with the service. Data propagated
to the service is sent in encrypted form through secure channels established by the
client application. Furthermore, users’ key pairs are generated and managed by the
client application. The client application facilitates only outcoming connections to the
service, however it efficiently receives data transmitted to users by the service. The
client application does not need to run on an Intel SGX-enabled platform, and is
responsible for managing any secret keys it stores locally.

4.2.2 Cloud Storage Provider

A Cloud Storage Provider is an organization that offers other organizations or individ-
uals the ability to place and retain data on the Internet in an off-site storage system
that manages user data. The provider offers storage capacity in a pay-as-go model to
the cloud consumers. The provider’s organization usually consists of several privileged
employees such as administrators, that are responsible for managing, maintaining, and
supporting the cloud storage services. The provider’s employees can posses crucial
security sensitive information related to the storage service (e.g., passwords, encryp-
tion keys), manage privileged software running on the provider’s side, and may even
have physical access to the service’s storage systems.

4.2.3 Tenant Authorization Server

We call tenant an independent organization whose users consume networked services
from a cloud provider. The tenant is in possession of secret keys that are used for
bootstrapping the file-sharing service. Moreover, the tenant’s computing nodes are
equipped with Intel’s SGX extension, and are able to run secure enclave code for
managing the service’s secret keys. We assume that the tenant runs an enclave that
has passed the local attestation test before delivering its services. That enclave is
responsible for remote attesting enclaves running on remote computing nodes, and
has access to the tenant’s keys. Our system consists of a single trusted server that has
the role of distributing secrets to remote computing nodes, and operates the tenant’s
enclave. The tenant’s enclave authorizes enclaves operating on remote servers and
provisions them with secrets via remote attestation. We call the server operating the
tenant’s enclave Tenant Authorization Server (TAS).
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Figure 4.1: Secret key provisioning by tenant enclave to remote computing node
leveraging remote attestation.

Figure 4.1 illustrates the process of distributing secret keys to remote computing
nodes. The tenant’s enclave initiates a remote attestation test with a remote computing
node. We assume that the enclave initiating the process has locally attested itself to the
platform’s Quoting Enclave. By successfully executing the remote attestation protocol
as described in 3.3.5, a secure channel is established between the initiator enclave and
the remote enclave. Through this channel, the enclaves can safely exchange messages
and secrets with each other, and the tenant’s enclave is able to provision the remote
enclave with encryption keys related to the execution of the file-sharing service’s
protocols.

4.2.4 Serving Nodes

Our proposed system consists of an arbitrary number of serving nodes that belong
to the tenant, with a genuine Intel SGX component installed on all serving nodes
so as to participate in the proposed system’s protocols. For compatibility reasons,
we assume that all computing nodes run the same operating system, are equipped
with the same hardware, and that they are directly connected through the datacenter
network. All computing nodes execute the same locally-attested enclave code and
are signed using Intel’s signing mechanism. Prior to participating in the system’s
protocols, each enclave passes the remote attestation procedure initiated by the Tenant
Authorization Server. TAS delivers the service’s secrets through its enclave and the
serving node is integrated to the system. Consequently, the system is now able to
forward user requests to the serving node.
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4.2.5 Object Store

Object storage is the main type of storage we leverage in our proposed design. Our
object-store server is used for safely storing and sharing user’s data in the cloud.
In our design, the object-store server deployed in standalone mode on a single host.
The object-store server is accessible through a dedicated port in order to forward
requests to the server, and can also be accessed via a web browser through its web
interface to facilitate client requests. Nevertheless, in our design all network traffic
and user requests are passed through the serving nodes that participate and facilitate
the secure file-sharing protocols.

Objects are stored and managed inside collections. There are three types of object
collections we define to support our protocols. First, we have created a collection
where all principals can store their public keys. We refer to this collection as User
Keys Collection. Objects stored in the User Keys collection are not encrypted and any
user can gain access to the public keys in order to identify other users, and selectively
share their data with them. Moreover, we introduce a second collection to manage
and store objects containing the list of folders users are owners of. We denote this
as the User Folders Collection. All other collection of the system are used as common
Data Folders where users can upload and/or share files with other users. Each data
folder includes a user defined Access Control List (ACL), declaring the set of users that
are authorized to access the folder’s files.

4.3 User Requests

Before we proceed to analyze the protocols and the encryption keys we introduce in
the design of the proposed file-sharing service, we briefly mention the requests users
can make to the service and the entities involved. All user requests are propagated to
the service using the user’s client application. Each request is forwarded to a specific
serving node of the platform, and the serving node collaborates with the object storage
server which is responsible for handling data storage. Thus, the service acts as an
intermediary receiving and processing user requests and data, and leverages the object
store as a back-end for storing user data. Users may submit a specific set of data-
sharing requests to the service to manage their data. The types of user requests we
support in our design are listed as follows:
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1. User Registration: Users need to be able to register to the service. The regis-
tration process itself is the first request submitted by a user to the service, and
is essential in order to use the services file-sharing features.

2. Data Folder Creation: Registered users are allowed to create data folders which
they own, to privately store or even selectively share their files with other users
of the service by declaring access control lists for the specified folder.

3. Access Control List Update: Data folder owners are given the privilege of
updating the access control list of a specific folder they own. Thus, they may
restrict access to the folder’s contents to previously authorized users, or grant
access to other users who priorly did not have access.

4. Content Upload: Users are able to upload their privately held data to data
folders they own, or to folders they are granted access to by other users of the
service.

5. Content Download: Users are allowed to download content stored in data fold-
ers they are authorized to access and store it locally for private use.

6. Content Delete: Stored/Shared files residing in data folders can be removed by
folder owners, or by authorized users declared in the access control list.

7. List Folder Content: Users can request a list of the contents stored in a specific
data folder they have access to.

4.4 Encryption Keys

Each user accessing the service owns a public-private key pair. The public key is
used to identify the user to the system, and the private key is essential to perform
specific user transactions. Therefore, in order to implement the protocols that will
be described in section 4.7, we introduce a set of encryption keys. Table 4.1 lists the
encryption keys used by the system, provides a brief description for each type of key,
and states the keys length in bits.
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• Service Encryption Key (SEK): The Service Encryption Key is securely dis-
tributed among the platform’s SGX-enabled serving nodes by the tenant’s en-
clave operating on TAS, via the remote attestation service. Within each serving
node, SEK is protected using the machine’s Root Seal Key. Its main responsi-
bility is en/decrypting user’s folder encryption keys. Thus, users can share their
files without the need for file owners to be online at object request time from
other users, delegating the access control to the service.

• Folder Encryption Key (FEK): The Folder Encryption Key is generated by an
attested SGX enclave operating on a serving node, each time a new collection
is created by a principal participating in the system at the object store. Access
to the folder’s ACL is cryptographically enforced by each folder’s FEK, and
FEK’s are encrypted by the SEK. Each is stored as part of the respective ACL’s
metadata field.

• Object Encryption Key (OEK): An Object Encryption Key is generated by an
attested SGX enclave operating on a serving node, each time a user requests to
upload a new object to a collection. The object is encrypted using OEK, OEK is
encrypted using the folder’s FEK, and the the encrypted OEK is stored as part
of the object’s metadata. All encryption logic is securely handled inside SGX
enclaves.

Key Description Type Size

OEK Encrypts distinct data objects Symmetric 128bit
FEK Encrypts access control lists Symmetric 128bit
SEK Encrypts folder encryption keys Symmetric 128bit

Public-Private Keys Identify users to the system Key-Pair 1024 bit

Table 4.1: Encryption keys overview for implementing secure file-sharing protocols.

4.5 Overall System Architecture

In the previous sections we introduced and analyzed the individual entities that
our system is composed of, and the encryption keys involved. Figure 4.2 illustrates
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the overall architecture of our proposed system. The Tenant Authorization Server is
responsible for provisioning the SEK to each attested server participating in the Intel
SGX server farm via remote attestation. The server farm is comprised of N individual
servers that are directly connected through the datacenter network switch achieving
fast data transfer rates between the servers. As mentioned in 4.2.1, users own a public-
private key pair and are equipped with a client application to interact with the service
via secure channel. Using her public-private key pair and any additional information
required depending on the type of the request, a user transmits her requests through
the client application via a secure channel to the server farm. Each incoming request is
handled by an SGX-enabled server, that interacts with the object storage server. The
object store may contain an arbitrary number of data collections M, plus the User
Keys Collection and the User Folders Collection as described in 4.2.5. The object-
store server processes the SGX server request and returns a response indicating the
request’s execution result. Communication between server nodes and the object store
is also protected by secure channels. Finally, the system provides a response to the
initial request submitted by the user.

Client Application

Intel SGX Server Farm
Object Store

Client Request User Keys Collection

User Folders Collection

Tenant Authorization Server

Provisioning
SEK

Server Response

Server Request

Response

Datacenter
Network

Public-Private Key Pair

User

Serving Nodes
Data Collections

Figure 4.2: Overall architecture displaying the interaction between the system’s com-
ponents.

4.5.1 Trust Assumptions

The tenant operates the Intel SGX server farm nodes at which the data-sharing ser-
vice runs. Moreover, the Tenant Authorization Server also runs on an SGX-enabled
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platform. Prior to gaining access to the tenant’s keys, the enclave responsible for dis-
tributing secrets to the serving nodes uses Intel’s enclave signing tool to perform the
enclave’s signature and ensure the authenticity of the enclave. The serving nodes are
being remotely attested by the tenant authorization server and run secure, signed, and
attested enclave code. The remote attestation process involves contacting Intel’s EPID
Provisioning and Attestation Services guaranteeing the correctness of the procedure.
Secure hardware (e.g. TPM 2.0 support) is provisioned with each server machine to
perform static measurements and verify the integrity of the system’s software stack.
Client communication with the file-sharing service, and message exchange between
the service’s servers and the object store is integrity protected, authenticated, and
encrypted by the use of secure protocols (TLS 1.2, TLS 1.3 etc.).

4.6 Threat Model

In our work, we focus on three kinds of principals. A user is someone who wants
to store data online and may selectively expose the data to a third‐party service
or another user of the system. The user is allowed to upload and store her data
on an object storage server which claims the role of a cloud storage provider. All
users store their data on the same storage provider, but may selectively share their
data with other users of the system which request access. The considered adversary,
such as an employee of the provider, may already have control of the host machine and
may also have physical access to it. In consequence, the BIOS, OS kernel, and OS
subsystems may be compromised. We assume that the ultimate goal of the adversary
is not to disrupt the service’s operations, but may attempt to read user’s confidential
data in the clear (honest-but-curious). Furthermore, we consider the case where a user
of the same system (or even an external attacker) endeavors to obtain another user’s
files. This is possible by launching masquerade attacks using fake identities to gain
legitimate access to otherwise not accessible data, or eavesdrop on transmitted packets
to the file-sharing service.

Initially, users upload their data to the storage provider in plaintext through secure
channels without any sort of client-side encryption. Leveraging server-side encryption
schemes with user provided keys supported by commodity object storage solutions,
user data resides on the server-side in an encrypted form. Therefore, it is not acces-
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sible without being in possession of the client provided key. However, this does not
guarantee the security of users’ data in case of storage server compromise. During
en/decrypting an object the encryption keys are loaded to RAM in plaintext. Addition-
ally, even though the communication between client and the provider is encrypted,
during data upload the server ultimately decrypts the encrypted data chunks and
gains insight to the actual plaintext of the transmitted packets. Thus, a malicious user
which has access to the server, may launch cold boot attacks [39] to retain DRAM data
by freezing the memory chip even with simple cooling techniques (e.g. spray liquid
nitrogen). Using cold boot attacks attackers can gain access to object encryption keys,
or even read the actual data having being transmitted by client applications.

The set of encryption keys we employ to encrypt user files is solely managed by
the system. Object encryption keys are never revealed to users of the system and are
encrypted using the service’s keys. This scheme contrasts the methodology followed
by existing commodity storage systems, where authorized users are allowed to locally
store encryption keys. With our scheme we relieve users of the responsibility to
manage data encryption keys. Moreover, unauthorized users can never gain access
to a data folder’s encryption keys because the keys are never revealed in plaintext
to any entity besides the enclave’s encrypted memory area. Thus, we eliminate the
threat of unauthorized access by other users of the service or privileged personnel at
the cloud provider.

Nevertheless, we do not provide any security guarantees if the user’s client ma-
chine gets compromised. We do not protect against denial-of-service (DoS) attacks
by compromised system software: a malicious OS may deny service by refusing to
allocate any resources to an SGX enclave. Moreover, Intel’s SGX technology is suscep-
tible to specific types of side-channel attacks such as power analysis or cache-timing
attacks. Protection against against such kinds of attacks is out of the scope of this
thesis, and we bestow this to future improvements of the SGX technology.

4.7 Protocols

In this section we describe the protocols we designed in order to facilitate secure file-
sharing services utilizing an object-based store, with respect to fundamental security
primitives and design goals described in 4.1.

37



4.7.1 Requests Management

Anterior to describing the protocols we introduce in the system’s design, we briefly
propose a scheme to handle, distribute, and serve incoming user requests to the ser-
vice. In this thesis, we do not analyze the workload distribution among the SGX server
farm nodes. We assume that one node of the system is acting as a coordinator, and
delegates an incoming request to the first available node of the system, or to the node
which has less incoming requests waiting at its connection queue. Server workload
distribution is bestowed to future developments of the system. Upon receiving the
incoming request at a computing node, the SGX enclave processes the user’s request.
The system parses the request and after applying validity checks (contains all neces-
sary information) on the request, the system proceeds to follow the necessary steps
to serve the user request.

4.7.2 User Registration

Initially, to grant access to the file-sharing protocols a user needs to register to the
file-sharing service. The user constructs a registration request containing her public
key and forwards the request to the service.
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Figure 4.3: Registering a new user to the file-sharing service.

The user’s public key is securely transmitted to the cloud server, and is only
accessible inside the enclave memory. The user’s public key is used in order to prove
the user identity to the system, and identify other users of the system. Moreover, the
public key is leveraged in the establishment of the secure communication channels
with the service (e.g. TLS), thus only the user possessing the corresponding private
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key is able to read data transmitted by the service to her. Ultimately, all public keys
are stored inside the User Keys Collection without any form of encryption, and are
available to all users of the system in order to populate ACLs with user identities.

The user registration process is depicted in Figure 4.3. Initially, the enclave con-
structs an empty file (User Folder List) which will we be used to store the list of folders
the user will potentially create in her future transactions with the system. First, (1)
the file is encrypted with a randomly generated Object Encryption Key (OEK) inside
the enclave. Next, (2) the file’s OEK is encrypted with the user’s public key, and then
(3) the enclave generates the public key’s hash signature using a secure hash algo-
rithm. The enclave does not preserve any of the forementioned encryption keys, and
the encrypted list is uploaded to the object store’s User Folders Collection. Each list
is stored at the object store as an object (as with all files uploaded to the object store),
and objects are accompanied with the user’s public key hash and the encrypted OEK
in their metadata field. At the end of this process, a new object is stored that contains
the encrypted folder list file the requesting user owns, along with the user’s public
key hash and the OEK used (encrypted with the user’s public key) to encrypt the
list in its metadata field.

4.7.3 User Folder Creation

Users registered to the service are given the privilege of creating folders in the object
store to securely store and share their data. To create a new folder, the user needs to
specify the following information in her request: (1) the name of the folder to create,
(2) her public-private key pair, and (3) a file containing the folder’s initial Access
Control List (ACL).

User

Folder Name

ACL

Client Request

User Public-Private
Key Pair

SGX-enabled Server

Figure 4.4: User request specification for creating a new folder, and delegation to the
file-sharing service.
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Figure 4.4 illustrates the process of creating a new user folder. The user selects a
name for the new folder to be created. Consequently, the user locally constructs an
ACL for the folder, and attaches her key pair to the request. This bundle of informa-
tion is forwarded to the service, and is delegated to a specific server node to process
the request information. A new Folder Encryption Key (FEK) is randomly generated
by the enclave for the new folder to be created. With the newly derived FEK, we
encrypt the user provided ACL. The ACL must contain at least the user’s public key,
otherwise the ACL is not valid. The system is not responsible for scrutinizing the
folder’s ACL for invalid public key population. Other users’ public keys are publicly
accessible in the User Keys Collection due to the user registration process, or can be
obtained through any means of user interaction (e.g, public announcements, publicly
available directory, public-key authority). Following the creation of the collection, the
system uploads the folder’s ACL, which is essentially an object. The FEK is encrypted
with the Service Encryption Key (SEK). Instead of storing the FEK as a separate object,
we attach the FEK as one of the ACL’s metadata field to automatically gain access
to the key whenever we require to parse the ACL.

User Folder List

Folder Name

Object 
Encryption Key

 (OEK)

User Private Key

Private-Key Decryption

Updated ListEncrypted
Folder List

1

2
Symmetric Decryption

Encryted Object
Encryption Key

Enclave

OEK

SGX-enabled Server

Figure 4.5: Appending the new folder’s name to the user’s folder list file.

To conclude, the system needs to update the user’s folder list file. All users regis-
tered to the service own a folder list file that is stored in the User Folders Collection.
The system computes the hash signature of the requesting party’s public key to iden-
tify the user’s folder list file. We retrieve the specified object and its encrypted Object
Encryption Key (OEK) from its metadata fields. Figures 4.5 and 4.6 depict the steps
executed to update the file. Inside the SGX enclave:
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1. The system decrypts the folder list file’s OEK using the user’s private key in
order to gain access to the symmetric key the file is encrypted with.

2. The folder list file is decrypted using the retrieved OEK, and the folder name
is appended to the plaintext of the file. Hence, the user added a new folder she
owns to store or share her data to the list.

3. The system re-encrypts the file with its OEK to secure the data, and then replaces
the folder list file in the object store’s User Folders Collection with the updated
file, thus enabling the use of the newly created user folder.

Updated List

3
Symmetric Encryption Re-encrypted

Folder List

User Folders Collection

Encrypted Folder
List

Object
Encryption Key

Enclave

SGX-enabled Server

Figure 4.6: Re-encrypting the folder list file and updating it at the object store.

4.7.4 Uploading Data to the Storage Provider

Suppose a user wants to upload her data to the storage provider. Before uploading
the file, the user needs to construct a request providing her public key, the name of
the destination folder, and the file to be uploaded. The end-to-end upload protocol
is illustrated in Figure 4.7. First, the file is transferred to the server in chunks of
equal size by the client application, using the maximum available record size for each
chunk. Files with size less than or equal to the max record size require only sending a
single file chunk to the service. The chunks are accumulated inside a temporary buffer
for encryption. To grant upload access, the system fetches the specified folder’s ACL
along with the folder encryption key. FEK is decrypted using the service encryption
key, and the ACL is unsealed using FEK. We search the ACL file for the user’s public
key.

If the ACL does not contain the user’s public key, the request is rejected and
the system prevents unauthorized access. A user is allowed to upload just by being
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User File
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Figure 4.7: Transferring the user’s file in data chunks through a secure channel to
an enclave that accumulates the chunks in a data buffer.

enlisted to the folder’s ACL, without necessarily being the specified folder’s owner.
Upon successfully passing the ACL check, an new OEK is randomly generated. The
client’s file is encrypted using OEK, and OEK is encrypted using FEK. Finally, the
file is uploaded to the specified folder, with the associated metadata block containing
the encrypted OEK.

4.7.5 Accessing Shared Data

Accessing a shared or private file stored in our object store requires a series of steps.
First, when a user who is not the owner of the folder desires to access user files, the
user does need to interact with the owner. Instead, the user sends an access request
directly to the storage provider. The user needs to send a request to the system
specifying the folder and file name to download, and provide her public key. Similar
to the principle described in 4.7.4, the system accesses the folder’s ACL file and
metadata, decrypts the object encryption key and the file itself, and then parses the
ACL for the requesting user’s public key. If the ACL contains the designated public
key, the system retrieves the file listed in the request and decrypts its contents inside
the enclave. Afterwards, the enclave sends back a notification to the client application
indicating the file to receive, and as a last step begins streaming the file back to the
user in data chunks of equal size. The user receives and decrypts the data chunks, and
re-constructs the original file locally in plaintext. The file format is retained during
this process since we transfer bytes and we do not apply any transformations to the
original encoding of the data.
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4.7.6 Access Control List Revocation

The ACL is initially populated with the owner’s public key. In future transactions
with the system, the owner may want to declare an updated version of the ACL
populated with a user defined set of user public keys. Furthermore, a user may
selectively exclude a set of public keys from the ACL to restrict access to specific users
that previously where able to view/update the folder’s contents. To update the ACL,
the user needs to provide: (1) her public-private key pair, (2) the relevant folder
name, and (3) the updated ACL file. Initially, the system needs to verify the user’s
ownership of the declared folder. In a similar fashion to 4.4, the system retrieves the
user’s folder list file, and decrypts the file’s OEK using the user attached private key.
Thereafter, we replace the previous ACL with the updated file encrypted with the
folder’s FEK. In this scheme, we re-use the folder’s FEK and do not generate a new
as with any new file upload to the storage service. This is due to the fact that objects
of the same folder have their OEK encrypted with FEK. Thus, replacing the existing
FEK would require re-encrypting all OEK’s (Key Rotation) with a new FEK.

4.7.7 Removing Shared Data

Users are allowed to remove objects that are stored in the service’s data folders. To
perform this type of request, a user must be either the specified data folder’s owner,
or an authorized user the folder owner lists in the folder’s ACL. To remove a stored
object from the object store, the user constructs a request in which she specifies: (1)
her public key, (2) the folder name, (3) the name of the object to remove. The request
is forwarded to the service by the requesting party’s client application and then served
by the system. To begin, the system needs to verify that the user is indeed listed in
the data folder’s ACL. To this end, the system performs an ACL check to determine if
the the user’s public key is listed in the folder’s ACL file. To perform the ACL check,
the ACL is decrypted inside the enclave that handles the request and consequently
the system parses the ACL for the requesting user’s public key. Upon, verifying that
the user is authorized to remove content from the data folder, the system proceeds
to remove the specified object from the object store along with the object’s metadata.
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4.7.8 Listing Folder Contents

Users are able to obtain a list of the objects that are stored in a data folder. The
requesting user must be authorized to access the folder’s contents, and proves her
identity to the system using her public key. In order to retrieve the list of objects
managed in a specific data folder, the user specifies the following information in
her request: (1) her public key, and (2) the folder name. Afterwards, the request is
propagated to the file-sharing service by the user’s client application. As described
in the preceding file-sharing protocols, the system receives and parses the incoming
request, and performs an ACL check on the folder’s ACL file. Thereupon, the system
fetches the list of objects stored in the folder, and constructs a file containing the name
of the objects as well as the size of each object. At the end of this process, the system
sends back the file holding the folder contents to the requesting user.

4.8 Security Analysis

The proposed SGX file-sharing strategy leaves three basic approaches for the adver-
sary to read on users’ data given the above threat model. The first one is to crack
the sealed file containing the SEK which is encrypted with an AES-GCM 128bit key.
For that, she may capture the file and mount an offline attack in a high performance
environment. The sealing key is not stored anywhere in the serving nodes, and each
serving node uses a different private Seal Key that is unique to that particular plat-
form and enclave [40]. Hence, the only feasible option is brute-forcing the sealing
key, which would take an unreasonable amount of time, even considering one of the
most performant supercomputers in the world.

The second approach would be to access enclave memory during request serving,
to try and capture users’ files or even the private keys (e.g. during folder creation)
in the clear, through a memory dump. Enclave memory however is encrypted using
an AES-CTR 128bit key and the key exists within the CPU which leads to a situation
similar to the previous approach.

The last approach involves targeting the message exchange between clients and the
service through a man-in-the middle attack. Nonetheless, the message exchange between
the client application and the file-sharing service’s servers is protected through the
use of secure channels. Secure channels employ symmetric cryptography through
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the use of a shared key that is computed using the server’s public key. The server
can generate the secret key only if it can decrypt that data with the correct private
key [41]. For client authentication, the server uses the public key in the client certificate
to decrypt the data the client sends. The exchange of messages that are encrypted with
the secret key confirms that authentication is complete. However, the endpoint of the
secure channels terminates inside an SGX enclave which is responsible for decrypting
and reading the user data. Thus, user data is encrypted even when received at the
provider, since enclaves are encrypted memory regions not visible even to privileged
software managed by employees of the provider. Using this encryption scheme, we
ensure that user data is not viewed in the clear even by a curious cloud provider,
achieving end-to-end security throughout the whole execution of the file-sharing
service’s protocols.
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CHAPTER 5

IMPLEMENTATION

5.1 Overview

5.2 Data Structures

5.3 TeeStore Client

5.4 TeeStore Implementation

5.5 Enclave Encryption Scheme

5.6 Protocol Implementation Details

5.7 Limitations

In this chapter we present the implementation details of the proposed file-sharing
service prototype leveraging Intel SGX technology to secure sensitive data, and the
MinIO object store as the back-end for storing and managing data. We call our
prototype TeeStore. We describe: (1) the data structures that support our secure
protocols to enable fine-grained access to data, (2) the functionality we added to the
client application forwarding file-sharing requests to TeeStore, (3) the implementation
of the secure protocols described in section 4.7 through the aid of SGX enclaves, and
(4) the MinIO client operations we implemented to facilitate the interaction between
TeeStore and the object store. In the end of this chapter we briefly mention the
limitations of our implemented service.
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5.1 Overview

Our implementation is based on an open sourceWolfSSL TLS server application written
in C and C++ programming language. The difference between this application and
other commodity TLS server applications, is that the application integrates the Intel
SGX technology to handle incoming TLS connections. More specifically, the server
decrypts incoming traffic sent over the TLS protocol inside an SGX enclave, thus never
revealing the underneath plaintext data transmitted by the client even to privileged
software of the provider. Nevertheless, the SGX technology does not allow the execu-
tion of dynamic libraries inside enclaves and permits only a limited subset of trusted
functions referenced in the SGX Software Development Kit (SDK) [27] to execute inside
enclaves. To this end, in a similar fashion with other related work [42], we compiled
an SGX-enabled static library version of WolfSSL named libwolfssl.sgx.static.a and
linked this library to the SGX enclave to access WolfSSL APIs with SGX hardware.
Afterwards, we extended the functionality of the enclave managing the incoming TLS
data traffic to receive files of scaling size up to the maximum useful EPC limit. At the
same time, we extended the functionality of a baseline WolfSSL client application to
forward file-sharing requests directly to the SGX enclave. We name our implemented
client TeeStore Client.

TeeStore
Client

TeeStore Enclave

TLS
WolfSSL 

TLS Server TLS

MinIO 
Object Store

Figure 5.1: Overview on the system’s implementation.

Figure 5.1 illustrates the basic system components of TeeStore. On the left side
of the figure, a TeeStore Client sends data to the WolfSSl TLS server that runs inside
an SGX enclave, over a secure TLS channel. The enclave receives and decrypts the
incoming communication, processes user requests, and encrypts any sensitive user
information depending on the request type sent by the client application. Afterwards,
the encrypted data leaves the enclave memory region and is sent over TLS to the
MinIO object store that serves as permanent storage, for the now encrypted user
data.
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5.2 Data Structures

The implementation of the protocols described in the design of TeeStore requires the
aid of data structures to support the execution of the proposed protocols. The first
structure we implemented both at the client application and to the server application
is a C structure we name Request. Struct Request is populated with all necessary
information needed to serve a particular user request. The necessary information the
user provides in her request are the following:

1. Request Type: A character array indicating the type of the request the user
wishes to perform on the file service.

2. Bucket Name: A character array specifying the name of the relevant MinIO
bucket the user request involves.

3. File Name: The name of the file the request is associated with. This also corre-
sponds to the case of updating ACL files.

4. Payload: The size of the file to be transferred to the service counted in bytes.

This series of information is bundled together in the form of the Request struct.
Consequently, the structure is serialized in the form of a character array char[] we refer
to as a request string using the memcpy function call, and sent over TLS to TeeStore by
the TeeStore Client. The server application also contains a memory buffer to receive
incoming TLS data. Initially, this internal buffer’s size was 2048 bytes (2KB) and
after proper examination which will be presented in section 6.7, we increased its size
to 16384 bytes (16KB) which is the maximum TLS record size [43].

Chunk #1

Chunk #2

Chunk #K

(a) Data buffer for

accumulating file chunks.

Folder Name #1

Folder Name #2

Folder Name #M

(b) User folder list file as a

series of folder names.

Pub #1

Pub #2

Pub #N

(c) A series of public keys in

an ACL file.

Figure 5.2: Data structures supporting TeeStore’s protocols.
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In Figure 5.2 we illustrate an important class of supporting structures that aid
our implementation. First of all, Figure 5.2 (a) shows a data buffer that collects the
data transmitted by the TeeStore Client. This buffer stores the data received at the
internal TLS memory buffer in the form of chunks (e.g. K chunks) of 16KB size,
and is dynamically allocated using the C library function malloc, with its size being
specified in the payload field of the user request.

Figures 5.2 (b) & (c) illustrates another two fundamental structures of our pro-
posed design. The first is the user folder list file, and the second one describes access
control lists. For the purpose of this thesis, their structure is being kept as simple as
possible. The folder list file is initially an empty character buffer that lists the names
of the data folders a user owns and creates while using the file service, and all folder
list files are placed as objects in the User Folders Bucket. The names of the folders,
which are translated as MinIO buckets, are comma separated and stored in sequen-
tial order. Thus, the complexity of parsing this list is approximately O(M), with M
being the total number of folder names listed in a user folder list file. The second file
structure that is the ACL file, is composed of a list of say N user public keys. Each
ACL file corresponds to exactly one data folder, the ACL is stored as an object inside
the folder it belongs to, and it must contain at least the folder owner’s public key.
The keys are stored as a sequence of 1024 bytes, and the cost of parsing a list of N
keys is O(N) since the keys are also stored in sequential order.

5.3 TeeStore Client

Users interact with TeeStore using the TeeStore client application we implemented.
The client is written in the C programming language, and leverages standard C li-
braries to interact with the local filesystem (e.g., stdlib.h, stdio.h). Following the
official documentation of WolfSSL [12] and the developer manual [14], we compiled
a baseline WolfSSL client application with basic functionality. The basic functionality
the client provide included: (1) setting up an IP socket, (2) initializing a WolfSSL
client, (3) making a new SSL context with user provided information (keys, certifi-
cates etc.), and (4) sending a ”hello message” to a WolfSSL TLS server which in our
case operates inside the TeeStore Enclave. Nonetheless, in order to support the secure
protocols we explain in our design, we extended the client’s functionality with code
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functions that implement the interaction with TeeStore, and forward requests to the
service.

Function Name Description

void generate_rsa_key Generates an RSA key pair.

void store_rsa_key Stores an RSA key pair in .der format.

char* load_rsa_key Loads an RSA key pair from a .der file.

void register_user Registers a user to the service using her RSA key pair.

void create_folder Sends a ”create user data folder” request to the service.

void init_ACL Initializes an ACL file containing a list of public keys.

void update_ACL Propagates an ACL file to the service for update.

void upload_file Splits a file into chunks and sends it to the service.

void download_file Receives data chunks and stores them locally as a file.

void delete_file Sends a ”delete file” request to the service.

void list_files Receives a file listing a specific folder’s contents.

Table 5.1: TeeStore client application implemented function set.

Apart from the functions we implemented, the most important functions calls
we leverage from the WolfSSL TLS library API are: (1) wolfSSL_read to receive and
decrypt incoming TLS data communication, and (2)wolfSSL_write to send encrypted
data to the service over TLS.

Table 5.1 summarizes the functions we implemented and added to the existing
client application, and it also contains a brief sentence describing each function. The
client application uses the RSA algorithm for asymmetric key management opera-
tions. First, we implemented the function generate_rsa_key to bestow key generation
logic to the client. In our implementation the user defines the size of the RSA key
pair to be generated, but we mainly use 1024‐bit keys for user public-private key
pairs. RSA keys are then stored in .der format (store_rsa_key), and loaded back to the
application from the .der files when needed (load_rsa_key).

As a next step, we declared the Request struct in the client application to instantiate
user requests. For each of our designed system’s protocols, we further implemented a
separate function that: (1) instantiates the user request with the necessary information,
(2) serializes the request and propagates it as a request string to TeeStore, and (3)
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receives and handles incoming data responses by TeeStore corresponding to user
requests. Following, we shortly describe the implementation details for each request
type on the client side:

• Register User: Registering a user (register_user) involves sending a registration
request to TeeStore. In this case the client specifies only the request type and
sends the user’s public key to the service, which serves as the user’s identity to
the system.

• Create Data Folder: A registered user to the service wants to create a data folder
(create_folder) to store and share her data. To begin with, the user needs to create
and specify an ACL for the corresponding folder to be created. ACL initialization
(init_ACL) is handled at the client application. The client loads locally stored
RSA derived public keys as byte buffers in the application. Afterwards, the byte
arrays are sequentially written to an empty file using a File* pointer, and the
ACL is formed. The client sends a request to TeeStore indicating the folder creation
operation, the name of the folder to be created, and attaches the user’s public-
private RSA key pair to the request. Moreover, the client loads the previously
generated ACL file, and sends the file to TeeStore as a series of 16KB chunks
of bytes.

• Update ACL: A user may wish to update the ACL of a folder she owns (up-
date_ACL), in order to remove or add other users from the ACL. First, the client
makes a call to init_ACL function to construct a new ACL file, and then the
application propagates the user request to TeeStore. The application also sends
the user’s RSA key pair and the new ACL file split in data chunks.

• Upload File: Uploading a file to a specific folder (upload_file) involves construct-
ing a request specifying: (1) the folder name, (2) the file name, and (3) the byte
length of the file. The client sends the request, as well as the input file split in
chunks.

• Download File: To download a shared file (download_file) the client application
sends a request indicating: (1) the file name, and (2) the bucket name the file
is stored in. Afterwards the client waits in a while-loop with a timeout function of
10 seconds for the service response. The client allocates a memory buffer with
call to malloc to receive the file to be downloaded, and reads the incoming data
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chunks to the buffer. The byte buffer is then stored locally as the original file,
with a call to fwrite using a File* pointer.

• Delete File: Deleting a file requires the user to populate her request with the
file name and the folder name. The client application sends this information to
TeeStore, along with the user’s public key to issue file deletion.

• List Files: To obtain the list of files stored in a MinIO bucket as objects, the
client application sends a request specifying the bucket name. If the user is
authorized, TeeStore returns the list of objects stored in the bucket, along with
the byte length of each object listed in the file. The client application receives
the list in data chunks and writes the data to a local text file.

5.4 TeeStore Implementation

In this section we present our prototype implementation of TeeStore that is responsible
for serving user requests submitted by the TeeStore Client described in 5.3. First, we
present a high level overview of TeeStore’s internal architecture, we describe how
the individual system components our service consists of collaborate, and then we
proceed to detail the functionality of each component.

WolfSSL TLS Server

TeeStore 
Enclave

MinIO 
Object Store

Untrusted
Application

E-CALLS

O-CALLS
MinIO Python

Client

Encrypted
Data API CALLS

MinIO Processes

TeeStore
Client

TLS

Figure 5.3: Overview on TeeStore’s internal components.

Figure 5.3 illustrates the overall implementation of TeeStore. On the left side of
the figure we depict the TeeStore Client, and next to it the WolfSSL TLS server that
is responsible for receiving and processing user requests. This WolfSSL TLS server is
split it up into two sub-components: (1) the TeeStore Enclave, and (2) the Untrusted
Application. The TeeStore Enclave is responsible for processing user requests and data
inside the protected memory region of SGX and handles all encryption logic. The Un-
trusted Application is responsible for creating and managing the TeeStore Enclave.
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The Untrusted Application uses E-CALLs to access the enclave’s trusted function set
to process on user data, whereas the enclave uses O-CALLs to leverage untrusted
functions and libraries declared in the code of the Untrusted Application. Data en-
crypted by the enclave is stored in untrusted memory. The Untrusted Application
passes and reads encrypted data to and from MinIO. To be more precise, on the right
side of Figure 5.3, we depict the components operating on behalf of the object store.
First, there is the MinIO Python Client which is launched by the Untrusted Appli-
cation and forwards requests to MinIO, and second there is the MinIO Object Store
Server that actually stores the encrypted volumes of data. The client receives requests
and data by the Untrusted Application and makes calls to the corresponding APIs of
the MinIO service to serve data-sharing requests. The MinIO server ultimately stores
encrypted data as objects with metadata attached to them.

5.4.1 TeeStore Enclave

The TeeStore Enclave is the component that operates the WolfSSL TLS server. The
enclave is written in C/C++ and uses Intel’s SGX SDK. Furthermore, the enclave
makes use of the WolfSSL static library to access WolfSSL APIs and services. As
a starting guide, we built and executed the baseline WolfSSL TLS server published
on GitHub [44] by WolfSSL Inc. Initially, the main functionality of the TLS server
operating inside the SGX enclave was: (1) creating an SGX enclave that operates the
TLS server, (2) binding to an IP socket, (3) initiating a new SSL context with the
corresponding certificates, private key, etc., and (4) wait for incoming client requests.
The server establishes connections with clients, reads data transmitted by them inside
the enclave region, and sends a string-reply to the request issuer as a response.

In order to facilitate the execution of the file-sharing protocols introduced in the
design of this thesis, we extended the functionality of the TeeStore Enclave with 11
additional trusted function calls that support the implementation of our proposed
protocols. Table 5.2 summarizes the E-CALLs we added or modified in the imple-
mentation of the TeeStore Enclave. Most functions are related to the implementation
of exactly one protocol (e.g. enc_upload_file function corresponds to the file upload pro-
tocol). and process on user data inside the protected memory regions of the enclave.
Usage details will be given in the protocols implementation section 5.6. Additionally,
the enclave implements the Request structure introduced in the specification of the
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TeeStore client application, so as to parse user requests submitted to the service.

E‐CALL Description

void sgx_seal_sek Seals the SEK using the platform’s Root Seal Key.

void sgx_unseal_sek Unseals SEK using the platform’s Root Seal Key.

void encrypt_message Encrypts data with 128bit input key.

void decrypt_message Decrypts data with 128bit input key.

int enc_wolfSSL_read Reads data from incoming TLS messages.

int enc_wolfSSL_write Writes data to connected clients over TLS.

int enc_register_user Registers a user to the service.

int enc_create_data_folder Creates a new data folder.

int enc_update_ACL Updates the ACL file of a data folder.

int enc_upload_file Uploads a file to a specific data folder.

int enc_download_file Downloads a file from a data folder.

int enc_delete_file Deletes a file stored in a data folder.

int enc_list_files Returns the list of files managed in a data folder.

Table 5.2: E-CALLs we implemented on the TeeStore Enclave to facilitate secure file
sharing.

5.4.2 Untrusted Application

The Untrusted Application is the part of the system that acts as an intermediary be-
tween the TeeStore Enclave and the MinIO object store. Sensitive user data and request
information is passed directly to the enclave. However, the enclave encrypts sensitive
data and passes this data to the untrusted part of the system using O-CALLs. Ta-
ble 5.3 briefly summarizes the O-CALLs we implemented to support our file-sharing
service. The primary objective of our implemented O-CALLs is to: (1) write and load
encrypted data to and from the filesystem, (2) establish the communication with the
object store. Therefore, for each of our proposed protocols we implemented a corre-
sponding O-CALL that handles request serving through the MinIO Python Client.

The MinIO Python Client is instantiated by the Untrusted Application through
the use of the fork system call. Each time a request is successfully processed by
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O‐CALL Description

void ocall_write_file Writes (encrypted) data to untrusted storage.

void ocall_load_file Loads (encrypted) data from untrusted storage.

void ocall_register_user Uploads a user’s folder list.

void ocall_get_folder_list Returns a user’s folder list.

void ocall_create_folder Creates a new user bucket at MinIO.

void ocall_update_folder_ACL Updates the MinIO bucket’s ACL object.

void ocall_get_folder_ACL Returns the corresponding folder’s ACL.

void ocall_upload_file Uploads a (encrypted) file as a MinIO object.

void ocall_download_file Downloads a MinIO object to local storage.

void ocall_delete_file Deletes the specified MinIO object.

void ocall_list_files Returns a list of the objects stored in a bucket.

Table 5.3: O-CALLs we implemented on the TeeStore Enclave to support secure file
sharing.

the enclave, the enclave propagates the resulting encrypted data to the Untrusted
Application. Thenceforth, the untrusted part uses the fork call to create a separate
child process to pass on the execution flow. In turn, the child process makes a call to
execlp to instantiate a MinIO Python Client and passes all necessary arguments needed
by the client. The execlp function is most commonly used to overlay a process image
that has been created by a call to the fork function. The call to execlp replaces the
calling child process with a new process image that eventually executes the MinIO
client. Thus, the client process takes over the request serving, and interacts with the
object-store server.

Untrusted
Application

MinIO Python
Client

fork ( )
Child Process

execlp (*args )

Figure 5.4: MinIO client process execution using system calls fork and execlp.
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5.4.3 MinIO Client & Server

The MinIO object store serves as the storage back-end for our data-sharing service.
Requests to the MinIO server are passed through the MinIO client launched by the
Untrusted Application. Encrypted data is stored as MinIO objects, and the corre-
sponding encryption key is also stored in an encrypted form as part of the object
metadata. MinIO limits user-defined metadata for each object to 2 KB. The client
leverages the Python Client API Reference [45] to pass requests onto the object-store
server, and the communication between the client and the object store is protected
via TLS. Table 5.4 lists the set of APIs used by our client module to interact with the
object store, along with a short description for each API call.

API CALL Description

MinIO Initializes a new MinIO client.

bucket_exists Check if a bucket exists.

make_bucket Creates a new bucket.

set_bucket_tags Set tags configuration to a bucket.

get_bucket_tags Get tags configuration of a bucket.

list_objects Lists information of all objects in a bucket.

fput_object Uploads data from a file to an object in a bucket.

fget_object Downloads data of an object to file.

remove_object Remove an object from a bucket.

stat_object Get object information and metadata of an object.

Table 5.4: Python API calls used for the interaction between the service and the
MinIO object store.

5.5 Enclave Encryption Scheme

The TeeStore Enclave manages a series of secrets related to TeeStore and user data
committed to the service. Next, we briefly mention the encryption schemes leveraged
to encrypt the distinct pieces of information managed by TeeStore.

First of all, the Service Encryption Key is sealed using the platform’s Root Seal
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Key. Essentially, SEK is encrypted using a platform specific key using the sgx_seal_data
function referenced in the SGX SDK [27], and the MRSIGNER policy which binds
the identity of the enclave author to the sealing key derived within the CPU.

Data passed to the enclave is encrypted using the sgx_rijndael128GCM_encrypt
function which leverages Rijndael Galois Counter-Mode as the encryption algorithm
with 128-bit input keys. Encryption keys (OEKs and FEKs) are derived within the
enclave using the sgx_read_rand random function to generate 16-byte random byte
sequences that serve as encryption keys. An object encryption key is generated for
every new file sent to the service, and a new folder encryption key is derived for each
instantiated bucket. All FEKs are encrypted with SEK, whereas OEKs and ACL files
are encrypted using the specified folder’s encryption key.

Nevertheless, specific types of user requests rely on the use of asymmetric en-
cryption. For asymmetric encryption and hash generation, we rely on the APIs the
WolfSSL static library provides. Precisely, we leverage WolfSSL RSA API to encrypt
(wc_RsaPublicEncrypt) and decrypt (wc_RsaPrivateDecrypt) specific types of informa-
tion (e.g. OEK of User Folder List File), and SHA256 (wc_Sha256Update) to generate
hash signatures of user public keys stored in the metadata of user folder list file
objects.

5.6 Protocol Implementation Details

In the following section, we present the encryption schemes applied on user data, and
give implementation details for each of our proposed protocols. All data processing
logic and request serving is executed inside the TeeStore Enclave, and data exchange
between the enclave and MinIO is facilitated by the MinIO Python Client launched
by the Untrusted Application.

Access Control List Check

Each user bucket is associated with an ACL file that determines the set of users
authorized to access the bucket’s contents. All user requests except user registration
and folder creation, involve performing an ACL check. ACL’s are encrypted using the
corresponding folder’s encryption key, and are parsed in plaintext only inside enclave
memory. To determine if a user public key is listed in the ACL we parse the ACL

57



file in sequential order. We compare the user provided public key against each key
listed in the ACL using the memcmp C function that compares two blocks of memory.
Upon successfully passing the ACL check, the enclave proceeds to serving the user
request. Otherwise, it rejects requests submitted by unauthorized users.

5.6.1 User Registration

User registration requires a series of steps executed inside the TeeStore Enclave and
by the Untrusted Application. The enclave receives the registration request by the
client application which contains the requesting user’s public key and proceeds to
serving the request (enc_register_user). Figure 5.5 depicts the process of serving a user
registration request.
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Figure 5.5: User registration request implementation.

Initially, the enclave allocates an empty character buffer that is the user’s folder
list file. Inside the enclave: (1) a new object encryption key is randomly generated,
and the buffer is encrypted (encrypt_message) using OEK, (2) OEK is encrypted using
RSA encryption with user’s public key, and (3) the system generates the SHA256
hash of the public key. The encrypted folder list file, the encrypted OEK, and the
hash of the user’s public key are written to untrusted storage. Then the Untrusted
Application uses the MinIO Python Client to pass on the three pieces of information
to the object store. The folder list file is uploaded (fput_object) as a MinIO object in
the User Folders Bucket, and the encrypted OEK and public key hash are stored as
part of the object’s metadata fields.
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5.6.2 Bucket Creation

To create a new bucket at MinIO, the user attaches her RSA key pair to the request
and an initial ACL file for the folder. Upon receiving and parsing the information the
enclave serves the request (enc_create_data_folder), by reading the user folder list file
and the encryption key inside the enclave region as we show in Figure 5.6.
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Figure 5.6: Accessing folder list files inside enclave memory for bucket creation.

The system parses the request and issues the MinIO client to get the user folder
list file object from MinIO (fget_object). The MinIO client searches for the user’s public
key hash in the metadata fields (stat_object) of the objects stored in the User Folders
Bucket, and returns the encrypted folder list file along with its encrypted OEK to
the enclave. To access the folder list file the enclave: (1) decrypts the encrypted OEK
using the user’s RSA private key, and (2) decrypts the file with the decrypted OEK.
The file’s contents are loaded to a buffer, the buffer is re-allocated to append the
bucket name for the bucket to be created, and the bucket name is written to the end
of the file buffer. The file buffer and the key are re-encrypted, and then re-uploaded
to MinIO as an object. As a last step, the enclave generates a folder encryption key
with which it encrypts the initial ACL file. Thereafter, the MinIO client issues a create
bucket request (make_bucket) to MinIO and uploads the ACL file to the newly created
bucket.

5.6.3 Uploading Data

Uploading a file to TeeStore involves sending the original file in chunks via TLS to
the service’s enclave. The file is accumulated inside the data buffer structure and the
enclave proceeds to serving the upload request (enc_upload_file).
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Figure 5.7: Encrypting user file in the TeeStore enclave and uploading it to a MinIO
bucket.

Figure 5.7 depicts the process of encrypting and eventually uploading a file to
TeeStore. The data buffer containing the file chunks is encrypted using a randomly
generated object encryption key (OEK) for AES encryption. Inside the enclave: (1)
the file is encrypted using OEK, and (2) OEK is encrypted using the destination
folder’s encryption key (FEK). The encrypted file and the encrypted OEK are passed
to the MinIO client and uploaded to MinIO as an object with the encrypted key in
its metadata field.

5.6.4 Downloading Data

Downloading an object from MinIO through TeeStore involves a series of steps
(enc_download_file). First the MinIO client fetches the specified object and its encryp-
tion key and loads them inside the enclave. The encryption key and the data are
decrypted (decrypt_message) within the enclave, and the file is streamed to the re-
questing user in data chunks of 16KB. Files that are less than 16KB require sending
only a single data chunk to the recipient.

5.6.5 Access Control List Update

The process of updating a data folder’s ACL is essentially an upload request, with
extra security measures included. The user specifies in her request: (1) RSA key pair,
(2) the relevant bucket name, and (3) the new ACL file. The system parses the request
(enc_update_ACL) and issues the MinIO client to fetch the user’s folder list file. The
client searches the User Folders Bucket for the object that contains the user’s public
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key SHA256 hash in its metadata, along with its encryption key. Following the same
process that is described in section 5.6.2, the folder list file’s OEK is decrypted inside
the enclave using the user’s RSA private key, and thereafter the file is unsealed using
the decrypted key and loaded into a buffer. We parse the buffer contents in search for
the folder name declared in the user request, and if the name is included in the list
we replace the previous ACL file with the fresh one. The new ACL file is encrypted
with AES by re-using the folder’s encryption key and put back to the user bucket.

5.6.6 Removing an Object

Removing an object from TeeStore requires specifying the bucket name and the object
name in the TeeStore Client request. The system parses the request (enc_delete_file)
performs an ACL check, and launches the MinIO client to perform the delete action.
The object is then removed from the service by the MinIO client (remove_object).

5.6.7 Listing Bucket Contents

To list the contents of a MinIO bucket (enc_list_files), the enclave launches the MinIO
client to construct the list of objects contained in the bucket. The client lists the
bucket’s contents (list_objects) and writes the object names to a text file along with the
size of each object next to each name. The client passes the file to the enclave, and
the enclave transmits the file to the requesting user in chunks of 16KB via TLS.

5.7 Limitations

Our implementation guarantees the secure execution of TeeStore’s file-sharing proto-
cols. The implementation leverages Intel’s SGX technology to process on user files and
encryption keys inside trusted execution environments namely enclaves, and MinIO
as the storage back-end managing data as objects. However, a limitation introduced
in this implementation is that enclave memory is restricted to EPC limit which is
128MB total, but only around 90MB is usable by the file-sharing service. Moreover,
the WolfSSL TLS server does not leverage multi-threading, thus a single request is
served at a time. This limitation can be overcome by increasing the number of serving
nodes in the system and by extending the EPC limit in future releases of Intel SGX.
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CHAPTER 6

PERFORMANCE EVALUATION

6.1 Experimental System Setup

6.2 Methodology

6.3 Protocol Benchmarks

6.4 Access Control List Benchmarks

6.5 Networked Evaluation

6.6 Summary

In this chapter we experimentally evaluate our prototype implementation of TeeStore
through benchmarks that aim to quantify the performance of our system. The main
questions we seek to answer are the following: (a) how much overhead does the
interference of the SGX hardware module incur to the execution of TeeStore’s file-
sharing protocols when compared to their initial execution time on MinIO, (b) how do
long ACL files impact our system’s performance, and (c) how well does our TeeStore
Client perform when executed on different hosts.

6.1 Experimental System Setup

In order to evaluate the performance of TeeStore, we set up an experimental environ-
ment consisting of two physical hosts. We denote the first one as the Server Machine,
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and the second one as the Client Machine. The machines are connected to the local
area network through a 8-port 1 Gigabit Ethernet Switch.

1 Gigabit Ethernet Switch

Client
Machine

Server
Machine

Local Area Network

1 Gbps
 Link

1 Gbps
 Link

Figure 6.1: Experimentation environment setup.

Figure 6.1 illustrates the system’s connection setup. The machines are directly
connected to the switch, thus we achieve high data transfer rates between the two
hosts to conduct our experiments, with latency being bounded to the networking
hardware installed on each individual host. Table 6.1 summarizes the hardware and
software installed on each machine.

Client Server

Operating System Debian 10 (buster) Ubuntu 20.04

Linux Kernel 4.19.0-17-amd64 5.8.0-53-generic

Processor Unit Intel(R) Core(TM) i5-4590 Intel(R) Core(TM) i7-8700K

Intel SGX Not Supported Enabled

System Memory 8GiB DDR3 @ 1600 MHz 16GiB DDR4 @ 2666 MHz

Storage Capacity ATA Disk 1TB (HDD) 2xATA Disk 1TB (HDD)

Ethernet Controller Intel(R) I217-LM 1GbE Intel(R) I219-LM 1GbE

Table 6.1: Client and Server hardware specifications.

The server machine is a Dell Precision 3060 Tower equipped with an Intel i7-8700
processor at 3.70GHz with 6 physical cores (12 logical threads), 16GB DDR4 RAM,
two SATA HDD disks of 1TB storage capacity each, and an Intel(R) I219-LM 1GbE
ethernet controller. The machine is SGX enabled with 128MB maximum enclave size,
running the SGX driver, SDK, and platform software version 2.1.2 [27]. Furthermore,
the machine uses the Debian-based Ubuntu 20.04.2 LTS 64bit operating system with
Linux kernel 5.8.0-53 generic. The Server Machine hosts TeeStore and deploys a
standalone version of the MinIO object store built from source. Additionally, we de-
ploy the TeeStore Client we implemented on the server so as to test the performance
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of our data-sharing protocols, when both the client application and the service are
running on the same host.

On the other hand, the Client Machine is a Dell Precision T1700 Tower with an
Intel i5-4590 processor at 3.30GHz with 4 cores and one hardware thread running
per core. Moreover, it is equipped with 8GB DDR3 RAM and one SATA HDD disk
of 1TB size. The machine’s CPU does not support Intel SGX, and it runs the Debian
10 (Buster) operating system with Linux kernel 4.19.0-17-amd64. Finally, we deploy
the same version of the WolfSSL client application that we use on the server machine
to forward data-sharing requests to the service. Even though the server machine has
more advanced hardware components installed than the client machine, we assume
that this will not affect much the results we gain from our experiments, since the
TeeStore Client’s hardware requirements are limited.

6.2 Methodology

Next, we discuss the approach we followed to evaluate the performance of TeeStore.
The main goal of our benchmarks is to quantify the performance of our implemented
protocols executing on our SGX-enabled file-sharing system. In our benchmarks, we
do not examine the behavior of our system when executing the User Registration, and
Create Data Folder requests. This is due to the fact that the User Registration request
is executed only once for each user interacting with the service, and the Create Data
Folder request does not impose a performance demanding process.

Each of our experiments is repeated 5 times, and we plot the computed average
value of our collected experiment samples. Our dataset for testing the system’s per-
formance is composed of binary files ranging from 1KB up to 90MB which is the
maximum usable EPC limit. To enable a 90MB input file, a 64MB stack and 256MB
heap were configured for the enclave in all scenarios, and the maximum stack size
was set 128MB for the Untrusted Application.

Finally, we deployed a MinIO server in standalone mode to compare the perfor-
mance of a subset of our protocols against: (1) MinIO without encryption (Baseline),
and (2) MinIO with server-side encryption (SSE). MinIO with SSE enabled uses AES
with Galois/Counter Mode with 256-bit encryption keys, whereas the TeeStore En-
clave utilizes the same algorithm but with 128-bit keys.
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6.3 Protocol Benchmarks

In this section we present the results obtained from conducting our experiments on
TeeStore. In the following experiments, we use a constant ACL size comprised of 10
user public keys. Then, we proceed to benchmark the performance of TeeStore by
deploying the TeeStore Client on the same machine that hosts the service.

6.3.1 File Upload Time

First, we analyze the cost of uploading a file to TeeStore via the TeeStore Client. The
files we upload to the service are of scaling size up to 90MB. The cost of uploading a
file to the service includes: (1) transmitting the file in data chunks to the service’s en-
clave, (2) encrypting the collected data inside the TeeStore Enclave, and (3) uploading
the encrypted file to the object store through the MinIO client.
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Figure 6.2: File upload time comparison between MinIO Baseline, MinIO SSE, and
TeeStore.

In Figure 6.2 we measure the time needed to upload the input files to the service
and to MinIO. For files up to 32MB size, TeeStore introduces reasonable overhead of
less than 33%, when compared to MinIO Baseline and MinIO SSE, and the system
presents consistent upload time of roughly one second for a 32MB file. The overhead
observed during upload is due to the presence of ACL’s in our implementation, and
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the cost of transmitting the data to the enclave via TLS. Files of 64MB and 90MB
size require approximately twice the time needed by MinIO using SSE encryption,
which seems to be in compliance with what we initially expected.

6.3.2 File Download

The next aspect of our service’s performance, is the time needed to reclaim a user file
from TeeStore. Downloading files contributed to a cloud service apparently constitutes
one of the most commonly used features by users. Thus, it is of major importance to
present the download speed of our service. The main operations involved to download
a file from TeeStore are: (1) fetching the encrypted file from MinIO, (2) decrypting
the file inside the TeeStore Enclave, and (3) sending the original file to the requesting
client.
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Figure 6.3: File download time comparison between MinIO Baseline, MinIO SSE, and
TeeStore.

As shown in Figure 6.3, the y-axis representing the time needed to download a
file is in logarithmic scale because we observed a significant deviation between the
times required in our three schemes. In a high level overview, TeeStore seems to
present significant performance overheads compared to the download time needed
by MinIO. This is due to the fact that our implementation of the download request
involves using the same WolfSSL library functionality (wolfSSL_read & wolfSSL_write)
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as in the upload process. Thus, the data transmission time from the server to the
TeeStore client is expected to produce similar results to the upload time. Moreover,
MinIO supports disk caching to store data closer to tenants, which has an impact
on its download speed, whereas our service does not support any form of caching.
However, TeeStore displays an almost linear download time, needing approximately
1.6 seconds to download a 64MB file, and 2.5 seconds for 90MB.

6.3.3 List Files

Next, we evaluate the behavior of TeeStore when users request to list the contents
of a folder they are authorized to access. Essentially, the system constructs a list of
the object names stored in a particular folder, along with each object’s size. The cost
of obtaining the list involves: (1) constructing the list via the MinIO client, and (2)
sending the list to the requesting client through the TeeStore Enclave. Our testbest
includes MinIO buckets populated with up to 105 objects.
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Figure 6.4: Time to list bucket contents with scaling number of objects.

Figure 6.4 shows the results. The time needed to return the list of files in a
bucket is in logarithmic scale. Listing the contents of buckets with up to 103 objects
takes less than 0.2 seconds, with MinIO Baseline performing better as we anticipated.
Nevertheless, the construct of lists with orders of magnitude higher object count (that
is 105) is almost identical in both cases, with TeeStore incurring only a 5% performance
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overhead in the time needed to execute the request.

6.4 Access Control List Benchmarks

Next, our evaluation focuses on quantifying the influence of access control lists on
TeeStore’s performance. In a real-world scenario, there are situations where a large
group of users is granted access to files residing in the same data folder in a cloud
service. Access to the contents is restricted by the use of ACLs that are populated
with the public keys of authorized users. Our benchmarks include the use of ACL
files consisting of up to 104 public keys in logarithmic scale. Our goal is to highlight
the time needed: (1) to update a data folder’s ACL, (2) to search for the presence of
a user’s public key in the ACL, (3) to execute the file-sharing protocols with respect
to ACLs of scaling size.
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(a) Access control list update time.
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Figure 6.5: ACL update and search times with scaling number of user public keys.

The results are shown in Figures 6.5(a) and 6.5(b). In each case we constructed
ACL files populated with increasing number of user public keys. Figure 6.5(a) mea-
sures the time needed to update the ACL of a specific data folder. The time required
to update an ACL involves: (1) transmitting a new ACL file to the service’s enclave,
(2) encrypting the updated ACL, and (3) replacing the old ACL file with the new
ACL in the corresponding MinIO bucket. ACL files with up to 103 public keys re-
quire an almost constant update time of 0.3 seconds, while ACL’s listing 104 users
need less than 1.4 seconds which is an acceptable amount of time. On the other
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hand, Figure 6.5(b) illustrates the time needed to perform an ACL Check. An ACL
check determines if a specific user public key is listed in an ACL file by decrypting
a data folder’s ACL, and searching for the public key in it. ACLs containing up to
103 keys incur only a minimal overhead of less than 0.1 seconds to perform the ACL
check, while for ACLs listing 104 keys the system needs approximately less than half
a second.

In the next experiment, we measure the impact of long ACLs to the execution
time of our implemented protocols. To run our experiment, we use a constant file
size of 1MB and examine the performance of the file upload, download and delete
operations of TeeStore.
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Figure 6.6: Impact of access control lists on TeeStore’s performance.

Figure 6.6 summarizes the obtained results. By increasing the ACL size up to 103

user public keys, the execution of the download and delete operations are almost not
affected, while the data upload presents a small increase of approximately 0.1 seconds
in its execution time. For an ACL file comprised of 104 public keys, the execution time
of all three protocols presents an increase of 0.4 seconds, which is in compliance with
the results we observed in Figure 6.5(b).
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6.5 Networked Evaluation

This section evaluates the performance of TeeStore with a two machine setup. As in
the execution of our previous experiments TeeStore operates on the server machine,
however we now deploy the TeeStore Client on the client machine, and compare its
performance to the results we obtained while running the client application on the
same host as the file-sharing service.

Prior to comparing the performance of TeeStore with client’s running on different
hosts, we examine the importance of defining the correct TLS data chunk size for
our experiments. Our goal is determine which is the optimal TLS chunk size that
benefits the execution of our service’s protocols. In this experiment, we quantify the
performance of the primary WolfSSL functions we leverage in our implementation
with TLS data chunks of 1KB, 2KB, 4KB, 8KB, and 16KB. For this experiment,
instead of 1MB file we used a 10MB in order to tenfold the number of TLS chunks
needed to be transferred for serving the requests.
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Figure 6.7: WolfSSL operations data throughput for increasing TLS chunk size.

Figure 6.7 presents the throughput of the TeeStore client application for different
sizes of TLS data chunks. Decrypting and reading data received by a TLS commu-
nication channel requires a call to wolfSSL_read function, while data transmission is
handled using wolfSSL_write. As shown in Figure 6.7, increasing the size of the TLS
data chunk generally improves the throughput of our system. Increasing the TLS
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chunk size linearly enhances the performance of both read and write operations. By
setting the chunk size to 16KB that is the maximum TLS record size [43], read oper-
ations achieve an average throughput of 133MB per second, while write operations
display approximately 82MB data throughput per second.

Following, we use the optimal TLS chunk size of 16KB to measure the execution
time of the upload and download operations, by running the TeeStore client applica-
tion at: (1) the same host that deploys TeeStore, (2) a separate machine (Client) with
slightly less performant hardware installed on it.
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Figure 6.8: File upload time with TeeStore Client running on different hosts.

Figure 6.8 reports the time needed to upload a file to TeeStore. In all scenarios, the
server machine outperforms the client machine needing less time to upload the input
files. For files up to 16MB, both schemes demonstrate similar trends with minimal
deviations of less than 0.1 seconds. By increasing the size of the input files, we observe
that the client machine demonstrates a 15% overhead in the upload time for 90MB
file, which is acceptable considering the individual hosts hardware specifications.

Next, we study the download speed the client and server machines present in
Figure 6.9. As in the previous experiment, for files up to 16MB we observe an identical
behavior in the time needed to download the file in different hosts, with the server
machine performing slightly better. By measuring the download time with an 90MB
input file, the client machine scheme demonstrates only a minor overhead of 1%
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Figure 6.9: File download time with TeeStore Client running on different hosts.

which does not affect the efficiency of download requests executed on different hosts.

6.6 Summary

In this chapter we experimentally evaluated the performance of TeeStore. Initially, we
quantified the performance of our proposed protocols and compared the results to
the performance of MinIO without encryption and with SSE encryption. Our results
indicate that with reasonable performance overheads we provide stronger security
guarantees leveraging the use of enclaves. Furthermore, we explored the impact of
ACLs in our implementation, and our experiments demonstrate that long ACLs incur
acceptable latency to the execution of our protocols. Finally, we reasoned about the
performance of our protocols by deploying the TeeStore client application to a separate
host, and conclude that this scheme imposes minimal decline in the throughout of
TeeStore’s services.
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CHAPTER 7

CONCLUSIONS & FUTURE WORK

7.1 Conclusions

7.2 Future Work

In the present chapter, we discuss the main findings of our research and suggest
potential future improvements of our work.

7.1 Conclusions

Storing and sharing data in the cloud poses a challenging problem. Individuals and
organizations contribute their privately held data in the cloud in order to share it with
others, and collaboratively edit on the data. The privacy and confidentiality of user
data relies on the security mechanisms employed by cloud providers. However, even
though cloud providers provide strong security guarantees to their customers against
external attackers, user data is still at risk by privileged employees of the provider.
Thus, our adversary is a curious-but-honest cloud storage provider. Solutions that
depend on software to secure user data are considered to be incompetent, and do not
protect against privileged software operating on the provider’s systems.

To solve this problem, we designed secure protocols that manage user data lever-
aging trusted execution environments. We used specialized hardware with Intel’s SGX
technology to support our protocols, and facilitate secure file sharing in the cloud.
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Our proposed protocols process on user files inside trusted memory regions called
enclaves that are protected with the use encryption. Furthermore, we employ secure
channels to encrypt user data transmitted by client applications to SGX enclaves, thus
providing end-to-end security guarantees. Enclaves encrypt user files committed to
the service, and also handle secret keys generation. In order to support file sharing
among group of users, we introduce access control lists (ACLs) populated with users’
public keys, enabling users to control with whom they share their files with.

We implemented a prototype of our secure file-sharing service, integrating our
system with a production-level object store that stores encrypted user files as objects,
managed in collections of objects called buckets. Furthermore, we implemented a
client application that establishes secure communication channels with the service via
the use of TLS, and is responsible for propagating file-sharing requests to the service.

To conclude, we evaluated the performance of our file-sharing service against the
initial performance of the baseline object store we integrated to our system without
the use of secure protocols. We demonstrated that our system: (1) adds reasonable
performance overheads to the execution of file-sharing requests when compared to
the baseline object storage system, (2) scales well with long ACLs, and (3) secures
user data against the considered adversary.

7.2 Future Work

There are several directions for future work regarding the implementation and eval-
uation of our proposed file-sharing service. In the future, our aim is to extend the
number of protocols we support in order to grant users the ability to leverage more
complex operations on the file-sharing service. Moreover, our system would benefit
if we employ hash-based data structures (e.g., hashtables, hashsets) to minimize the
overhead introduced by ACL check operations, for long ACL files. Additionally, it
would be of great interest to evaluate the performance of our service with a scaling
number of serving nodes participating in it. Furthermore, another important advance
would be to develop a responsive web application that integrates the functionality of
our implemented client application, and will be responsible for interacting with the
service. Last but not least, we expect to overcome EPC memory limitations [46] in
future releases of the Intel SGX technology in order to manage larger files.
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